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Preface

The aim of this work is to present a tool for students interested in partial
differential equations, both those working toward a Master’s degree in pure
or applied mathematics and those with PhD research in this field. It gathers
results from functional analysis that make it easier to understand the nature
and properties of the functions occurring in these equations, as well as the
constraints they must obey to qualify as solutions. We present modern res-
olution methods for a class of such problems and interpret the solutions we
obtain by studying their regularity.

Let us recall that the domain in which we study a partial differential equa-
tion is an open subset £2 of RV, The equation is a relation that an unknown
function w and its partial derivatives (cf. the preliminary chapter) must sat-
isfy. Moreover, we impose certain conditions on the function u and possibly on
some of its derivatives (see the Dirichlet and Neumann problems in the pre-
liminary chapter), namely that they equal given functions on the boundary
042 of the open set under consideration. These relations are called boundary
conditions.

Looking for such a function is the aim of a so-called boundary problem. We
find many examples of these in physics.

If we consider the derivatives in the usual sense in the interior of the open
set, classical analysis proves to be ineffective for solving such problems, as can
be illustrated with examples. Indeed, the solutions obtained in these exam-
ples sometimes do not belong to the spaces of differentiable functions in the
classical sense because of their irreqularity. Moreover, we can find examples in
physics where the right-hand side f of the given equation has discontinuities.

Let us consider the simple example in R of the differential equation

v +y +y=1,
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where f is discontinuous at the point ¢ = 0. Any solution cannot be C? on R.
We can, however, look for a solution of class C' with derivative y” almost
everywhere, or such that 3" is a derivative of 3’ in the sense of distributions.
Assuming that f is even more irregular, but can be considered as a distribution
that we denote by [f], we are led to look for solutions that are distributions [u].
In this case, for every infinitely differentiable function ¢ with compact support
in R, we have ([u], ¢"” — ¢’ + ©) = ([f], ¢)- These solutions, which we can also
consider when f is regular, are also called weak solutions of the equation.

All of this leads, by replacing the usual differentiability with that in the
sense of distributions, to the concept of weak solutions for general PDEs and
leads us to study certain spaces of functions whose distributional derivatives
can be identified with summable pth power functions. We therefore study
Sobolev spaces W™P((2), which are normed and complete, so that the classical
theorems from functional analysis apply to them.

When there are boundary conditions, the functions in these spaces need
to be extended to the boundary of {2, since they are only defined in its inte-
rior. The existence of such extensions depends a priori on the regularity of
the boundary. We therefore in particular study the space WP ({2) when the
boundary of the open set 2 is a manifold that is either differentiable or piece-
wise differentiable. This allows us to give, for the functions in these spaces, an
interpretation of the boundary conditions that is in accordance with physics.

Consequently, in many situations, the great flexibility of differentiation
in the sense of distributions leads us to state limit problems under equivalent
forms that are better suited to establishing existence and uniqueness theorems.

Of course, the results we obtain necessitate preliminaries. These concern
the functional spaces that we can use, in particular, normed spaces, complete-
ness, density, and the generalization of the notion of function and integration.
The aim of Chapter 1 is to describe these.

Contents of this Book

Chapter 1 is titled Notions from Topology and Functional Analysis. In it, we
first recall the definition of topological vector spaces, including the important
example of normed spaces, and in particular Banach spaces. We state the
Baire theorem, the open image theorem, the Banach—Steinhaus theorem and
the Hahn—Banach theorem. After defining continuous linear maps, we intro-
duce dual topology on a normed space. To illustrate the different types of
convergence of sequences of functions that are most common, which are less
strict than (for example) uniform convergence, we introduce weak topologies
on a space and on its dual. We also define reflexive spaces, in particular Hilbert
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spaces, and uniform convex spaces, whose properties we use in many examples
in this book. We study the space of continuous functions on an open subset
of RY before recalling the definitions of distribution spaces, their topologies
and the operators that we define on them, as well as convergence properties
of sequences. The chapter concludes with the spaces LP({2), their completion
and reflexivity, and the density of the regular functions.

This last part of the chapter thus forms an introduction to the Sobolev
spaces that we study in later chapters.

Chapter 2 concerns these Sobolev spaces, which give a suitable functional
setting for most of the elliptic limit problems (cf. the preliminary chapter)
from physics. An important part of this chapter deals with Sobolev embed-
ding theorems. We first present the notion of the differentiation of functions
in the weak, or generalized sense, that is, differentiation in the sense of distri-
butions. After introducing the spaces LP, this allows us to define the Sobolev
spaces WP (§2). The properties of LP({2) lead to density results for the regu-
lar functions in the spaces W™P({2). The most important result of the chapter
is the Sobolev embedding theorem, which gives the inclusion of the elements
of W™P((2) in L1(£2) for ¢ > p, or in spaces of continuous Lipschitz or Hélder
functions. Some of these embeddings are compact. These compactness re-
sults, which hold for bounded open sets, form a key argument for showing the
existence of solutions of coercive minimization problems (cf. Chapter 5). In
the second part of the chapter, we study possible extensions of functions in
WP () to elements of W™P(RY), for which we need regularity conditions
on the boundary 0f2. At this point, we define the Lipschitz open sets and
the open sets of class C™. The chapter concludes with a trace theorem that
allows us, on such open sets, to extend u € W1?(§2) to the boundary, giving a
function in L?(942). This generalizes the restriction to 92 for functions that
are in principle only defined in the open set (2. This theorem is very useful
when stating boundary conditions for a limit problem.

Chapter 3 deals with the image of the trace map on W (£2) when the open
set is regular. This is our first example of a fractional Sobolev space, namely
W1=1/PP(90). The chapter also contains Green’s formulas and embedding
theorems. These can be deduced from the embedding results on Sobolev spaces
with integer exponents that they generalize.

Chapter 4 deals with more general fractional spaces W*P?(2) (for s a
noninteger real number). It also contains embedding and compact embedding
results.

In Chapter 5, we use all the theory presented up to now to prove the
existence of solutions of elliptic PDEs. There are, however, two exceptions,
namely minimal surfaces and linear elasticity in the case of small deformations.
For the first, the theoretical justifications from functions of a measure are
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given in the following chapter. The second necessitates the use of Korn’s
inequalities, which form the main subject of Chapter 7. In many situations, the
existence theorems concerning these elliptic PDEs result from rewriting these
limit problems in a variational form. The solutions then appear as functions
minimizing a convex and coercive functional. Next, we study the regularity of
the solutions of some of these problems, using for example approximations of
the derivative by finite difference or a priori estimation methods. We conclude
the chapter with properties characterizing these PDEs, namely the maximum
principle in its weak form followed by its strong form.

In Chapter 6, we study spaces related to the Sobolev spaces, in particular
the space of distributions whose derivative tensor, which is symmetric and is
also called the deformation tensor, is in LP(£2) for p € [1, 00[. We also study
the case p = 1 and the spaces where the deformation is a bounded measure.
In particular, we give embedding theorems analogous to those for the classical
Sobolev spaces, as well as existence results for a trace on the boundary when
the open set is sufficiently regular. We conclude with a section devoted to
functions of a measure.

In the setting of harmonic analysis, the results of Chapter 7 lead up to a
proof of Korn’s inequalities in WP,

We conclude the book with an appendix concerning the regularity of the
solutions of the p-Laplacian problems. As a complement to Chapter 5, we es-
tablish more technical results that we obtain using a priori estimation meth-
ods.

Organization of the Book

Each chapter is followed by a number of exercises. In most cases we give hints
for the solution. The level of the exercises varies. Some of them, indicated with
a [], offer additional details to a result given in the chapter, an application of
the results with explicit computations to illustrate them, or a different proof
for such a result. Other exercises, indicated with a [#x], offer complements to
a given subject. In some cases, the results are presented in dimension N =1
or N = 2, where the nature of the problems and the specifics of the proposed
methods can be highlighted. In these small dimensions, the methods may
lead to explicit computations that can help the reader better understand the
notions that are being studied.

Francoise Demengel and Gilbert Demengel
Paris, 16 September 2011
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Preliminaries on Ellipticity

General Definitions

Though the following definitions can be given for complex-valued functions,
we will restrict ourselves to real-valued functions.

Definition 0.1. A differential operator of order m in N variables is a map A
that sends an m times continuously differentiable function f on an open sub-
set £2 of RN to a function Af on £2, with the help of a function F:

Af(l‘) = F(f(x)aazf(x)a7 ;r‘}lxi,zvf(x)vx)

The operator A is called linear if the function F is a polynomial of degree
one with respect to each derivative D, where «, the order of the derivative,
is an N-tuple of integers aq, aa, ..., ay with sum |a| = Zf[ a; < m. In other
words,

Af(x) =Y calz)(DVf)(x) + ch(a).
lo]<m
The functions ¢, and ¢}, are called the coefficients of the operator A.

A partial differential equation is an equality Af = 0. It is called a linear
PDE if the operator A is linear, and a homogeneous linear PDE if, moreover,
¢y = 0. An equation is called quasi-linear if

Af(z) = Z calx,u, ..., DPu) D% + )z, u),

laj<m
where the N-tuples 8 satisfy |8| < |a| — 1.

Definition 0.2. A solution of a partial differential equation on an open subset
' C 2 is a function f that is sufficiently differentiable on (2’; such that
Vee 2, Af(z) =0.

XIII
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In this book we will in particular be interested in second-order linear par-
tial differential equations. Such an equation can be written as

(E) Z ¢jk(@) jkf +ZC7 9if(z) = g(z),

1<<hEN

where g = —¢f is called the second member of the equation. We say that
a second-order partial differential equation has constant coefficients if the
functions c; 5 and c¢; are constants.

To the linear equation (E) we associate, for every x € {2, the quadratic
polynomial P(E), in N variables {X;} whose coefficients are these functions,
that is,

N

P(E)o(X1,Xa,.. ., Xn) = > a@)X;Xp+ Y ci(2)X
1<i<k<N 1

Let P(E)g) be the homogeneous part of degree 2 of this polynomial, that is,

P(E);(CQ)(X) = Z ¢k (1) X; Xk

1<G<hEN

Definition 0.3. Given a linear equation of degree 2, we consider the real
symmetric square matrix C(x) of order N with the ¢; x(x) as coefficients. The
homogeneous part defined above can then be written as follows using the col-
umn vector [X| consisting of the N variables X: P(E)(2) (X) =X]C(x)[X].

We call a PDE elliptic at the point x € (2 if the eigenvalues of the matrix
C(z) (which in this case are real) are either all negative or all positive.

By changing the sign of the two sides of the equation, we can reduce to
the case that the matrix C(x) is positive definite.

For 2 connected, if © — C(z) is continuous on {2 and the kernel of C(x)
is 0 for every = € {2, we say that the PDE is elliptic on §2. After, if necessary,
changing the signs of the two sides of the equation, this corresponds to saying
that the matrix C(x) is always positive definite.

Let A\p(z) and Apr(x) be the minimal and maximal eigenvalues of C(z),
where A, (z) > 0. We call the PDE strictly elliptic if there exists a real number
Ao > 0 such that Va € 02, A\, (x) = No.

Finally, the PDE is called uniformly elliptic on 2 if, moreover, the function
x +— Ay () /Am(x) is bounded on f2.

When the coefficients c¢; are constants, strictly elliptic and uniformly
elliptic are equivalent.

Note that these definitions only concern the homogeneous part of de-
gree 2 of (F). To limit the influence of the homogeneous part of degree 1,
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we sometimes add conditions on the coefficients ¢;(z), for example that
x > | (2)]/Am(z) is bounded in 2.

Example 0.4. The second-order equation in one variable y”+a(z)y’ +b(z)y =
g(x) is an elliptic equation.
In the case of two variables, an equation of the type

adZ, f(@,y) + 2602, f(2,y) + Oy f (2, y) + (Do f + BOyf) (2, y) = g(z, ),

with @ > 0 is elliptic if and only if b2 —ac < 0. This is the case for the Laplace
operator, where a = c =1 and b = 0.

The more general Laplace operator in N variables, which can be written
as Af = Zf[ 822f7 is clearly also elliptic.
J
By contrast, the equations that occur in wave theory, for example
Pu  Pu f
0x2  oy?
in dimension 2, are not elliptic.
The equation with variable coefficients

0%u 0%u
2Y = 2Y 7 —
T TV G f(x,y)

is elliptic only on open subsets that do not meet either of the coordinate axes.

Limit Problems

Let us state the best-known problems governed by PDEs. We take the Laplace
operator as a model operator in all our examples, but the Dirichlet, Neumann
and Newton problems can also be considered for other elliptic operators.

Dirichlet Problems. In the case of the Laplacian, these problems consist in
solving the equation
Au = fv u|89 =9,

which, when f = 0, N = 2 and g is continuous, reduces to determining a
harmonic function that coincides with g on the boundary.

By extension, in dimension NV, the problem can be stated as follows. For
an open subset 2 C RY with boundary I, given f on {2 and ¢g on I, find a
twice differentiable function w on {2 such that

Au=f on 2 and ulr=g.

Keeping the operator A but modifying the conditions on the boundary
by, more particularly, introducing the normal derivative on the boundary 0?2
leads to other problems.
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Neumann Problems. Let {2 be a bounded open set with a regular boundary,
for example with a continuously differentiable boundary, on which we can
therefore define a normal vector 77. Given a function f on 2 and a function g
on I', we are looking for a function u such that

Au=f on {2, and,onl : Jmu=g.

Newton Problems. Let {2 be an open set with regular boundary I'. Given
a function f on {2 and two functions g and h on I', we are looking for a
function u such that

Au=f on {2, and,onl : Ogpu+hu=g.

We can generalize these problems without repeating the previous definitions.
For example, by replacing the operator A by its square as an operator, that
is, A2 = Ao A, we find the following.

Problems Involving the Bi-Laplacian A?. Given a function f on (2 and func-
tions g, and g, on I', we are looking for a function u such that

A’u=f onf, and,onl: u=g, and Opu=g,.

We can also define problems for the operator A% with limit conditions compa-
rable to those of the Neumann problem, as well as analogous problems where
we replace the operator A? by the operator u — A%u 4 u.

Another way to generalize the problems is by introducing quasi-linear
equations. Let us give some examples.

p-Laplacian Problems. This is an example of a nonlinear, quasi-linear equa-
tion. Let p be a real number with 1 < p < +00. We are looking for a function u
such that

div(|VulP™2Vu) = f on 2 and wu|gg = 0.
This is a divergence form. Writing it this way facilitates the application of
resolution methods. Let us show that it is indeed quasi-linear. By expanding

the operator on the left-hand side of the equation as in the product rule for
the divergence of a scalar times a vector, we obtain the following expression:

\VulP~2 Au + Vu - V(|Vul|P~?).

In the first instance, this is a formal expression that holds, for example, when
p > 2 or at points where the gradient is different from zero. Using the formula
V(|[VulP=2) = (p — 2)|Vu|P~*VuVVu and the definition of the gradient of a
vector, we can then write the equation in its quasi-linear form:

[VulP~* (|VU|23iiu +(p— 2)3,;ju8,;u6‘ju) =f
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Minimal Surface Problems. We are once more dealing with a quasi-linear
equation, which can be seen as an extension of the previous one for p — 1.
We are now looking for a function u such that

V( Vu
V14 |Vul?

Its quasi-linear form is as follows:

):f on 2 and ulpn =g.

((1 + |VU‘2)8MU — Oijuaiuaju) (1 + |Vu|2)_3/2 = f.

Example (of a nonlinear, quasi-linear equation). The following is an
example to which we will be able to apply the results of this book. For p > 1
and a real number A > 0, we have

Au=MNu[P%u on 2 and u|go =0.

Let us conclude this preliminary chapter by specifying the limitations of
this book.

Equations that Are not Treated

Non-divergence Type Nonlinear Functions. This category includes a whole
class of partial differential equations for which the concept of weak solutions
cannot be used and consequently needs to be replaced by that of wiscosity
solutions. This holds in dimension N > 2 for

|[Vul*Au = f,

where « is a real number > —1. We will not deal with this type of equa-
tion in this book. Note, however, that for divergence equations such as the
p-Laplacian above, the notions of viscosity solutions and weak solutions co-
incide thanks to regularity results. For this subject, the reader can consult
the work of Ishii [39], Ishii-Lions [40] and Guy Barles [3], as well as the more
recent work of Busca Esteban Quaas [11] and Birindelli-Demengel [7].

Hyperbolic Equations. These are not treated using the methods presented in
this course. Note that, in general, hyperbolic equations have the disadvantage
of having “too many” solutions. One of the best-known hyperbolic equations
is the Burgers equation ud,u = f. Only the entropic solutions in the sense
of Oleinik are considered physical solutions, as they are stable under certain
perturbations. These are also the solutions obtained as limits of solutions of
equations via elliptic regularizations. We will not consider these equations.
The reader can consult the work of Oleinik, Serre, etc.



XVIII  Preliminaries on Ellipticity

Parabolic Equations. Finally, many evolution equations are parabolic. Let us
state the best-known linear ones. The heat equations can be written as

Oyu — Au = f,

with not only limit conditions but also initial conditions, that is, conditions
on the solution w at ¢t = 0.
The Korteweg—De Vries problem is governed by the linear equation

Oyu — usy = f

on RT x R plus an initial condition. Such equations can be generalized to
nonlinear equations such as the Korteweg—De Vries—Burgers equation

Up — Uze + udyu = f.



1

Notions from Topology and Functional
Analysis

In this chapter we recall results from functional analysis, in particular in
Banach spaces. Most results are only stated. The reader can find the proofs (for
example the proof of the Hahn-Banach theorem) in publications specializing
in functional analysis.

The techniques used to solve elliptic partial differential equations very fre-
quently use the notion of compactness in the spaces LP, or, more generally,
the notion of reflexive space. We therefore devote a number of pages to re-
flexivity. In particular, we recall the compactness for the weak topology of
bounded subsets in a reflexive space and the relation between the spaces L?
and LP when p and p/ satisfy p € [1,+oc], p/ € [1,+0c], and 1/p + 1/p/ = 1.
We also mention results on distributions.

1.1 Topological Vector Spaces

Let X be a vector space over K (R or C). The convex, balanced or absorbing
subsets of X play an important role in defining a topology on X that is
compatible with its algebraic structure.

Definition 1.1. Let X be a vector space over K and let A C X.

e The subset A is called balanced if VA € K, |A\| < 1= A C A.
e It is called absorbing if

Vee X, A3r>0, VAeK, |M<r= lzxeA

Definition 1.2 (Topological vector spaces, abbreviated as TVS).
These are vector spaces over K (where K is either R or C) endowed with a
topology for which scalar multiplication and addition are continuous.

F. Demengel, G. Demengel, Functional Spaces for the Theory 1
of Elliptic Partial Differential Equations, Universitext,

DOI 10.1007/978-1-4471-2807-6_1,

(© Springer-Verlag London Limited 2012
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2 1 Notions from Topology and Functional Analysis

A normed space is an example of a TVS whose topology is easy to study.

Definition 1.3 (Norm on a K-vector space X). Let X be a vector space
over the field K. A norm on X is a function f from X to R™ satisfying the
following conditions:

Ve X, fl)=0 <= =0
VeekK, V€ X, flex) = || f(x)
V(z,y) € X7, fla+y) < fl2)+ £(y)

A vector space endowed with a norm is called a normed space.

To a given norm we associate the distance function d defined by d(x1,z3) =
|lx1 —22]; thus a normed space X is a metric space. It can be easily verified that
scalar multiplication and addition are continuous for the topology associated
with the norm. A normed space is therefore a TVS. Note that in such a space,
the family {Bo , }r>0 of open balls with center Ox forms a fundamental system
of convex neighborhoods of Ox. That is, every neighborhood of Ox contains
an element of {By ,}. By translation, this property holds at every point of X.

More generally, we say that a TVS is locally convex if every point of the
space admits a fundamental system of convex neighborhoods (see also Propo-
sition 1.5).

Remark 1.4. If in the previous definition we leave out the first (separating)
axiom, the function f satisfying the remaining conditions is called a seminorm.
A space endowed with a seminorm is still a TVS. It is locally convex but not
Hausdorff.

Because of the importance of these spaces in functional analysis, we will
present their topology in detail, first by describing a fundamental system of
neighborhoods of the origin and then by providing a family of seminorms
generating the topology.

Proposition 1.5. Let B be a family of subsets of a K-vector space X satisfy-
ing the following conditions:

(1) The family B is a filter base, that is, it does not contain the empty set,
and
V(A,B)eB? 3CecB, CcCANB.

(2) Every subset in B is convez, balanced, and absorbing.

(38)VAeB,Vr>0,3Be B, BCrA.

The family B is then a fundamental system of neighborhoods of 0x for a locally
conver TVS topology on X. In this topology, V is a neighborhood of x € X if
there exists a U € B such that x +U C V.
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Proposition 1.6 (seminorms generating a locally convex TVS topol-
ogy). Let {nx}rca be a family of seminorms on a K-vector space X. Let us
assume that it is separating and directed, that s, that

(1) For every x € X, there exists a X € A such that na(x) # 0.
(2) For every pair (A1, \2) € (A)?, the functions nx, and nx, are bounded in
the family, that is,

IXNEA,  nx =, and nxn = My,

The set of all closed balls {Bx,} associated with the seminorms in the
family, defined by By, = {z € X | nx(x) < r}, then forms a fundamental
system of neighborhoods of Ox for a locally convex Hausdorff TVS topology
on X.

We can easily show that this family of balls satisfies the conditions of
Proposition 1.5 and that the topology is Hausdorff, since for nonzero xy and A
such that nx(x¢) # 0, the closed ball By, with r = n)(z¢)/2 does not con-
tain xg.

Example 1.7 (of locally convex spaces). Let us define a structure of lo-
cally convex space on the space X = £¥(]a,b[) of C* functions on the open
interval Ja,b[ in R. We will generalize this example later on, replacing the
interval by an open subset {2 of RV,

Let us define as follows a function 7, x depending on an integer m < k
and on a compact subset K of R contained in ]a, b[:

dOt
mac(f) = sup 5500
o<asm

This is a seminorm for every pair (m, K). We have thus defined a family of
seminorms on X . This family, endowed with the order on real-valued functions,
is directed and separating. Indeed, for any pairs (K7, K3) and (mq, ms), the
functions 7, k, and N, K, have an upper bound in the family, namely 7, x
with K = K; U K3 and m = max(my, ms).

Moreover, for every nonzero function f on X, there exist m and K such
that nm,K(f) 7& 0.

The previous proposition now implies that the set B of closed unit balls
associated with these seminorms is a fundamental system of neighborhoods
of 0x for a locally convex Hausdorff space topology on X.

Note that, in general, the topology on an arbitrary locally convex space
can be defined in terms of a family of seminorms (see [75]).
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1.1.1 Baire Property and Applications

Baire Spaces.

Definition 1.8. A topological space F is called a Baire space if it satisfies
one of the following equivalent properties:

(1) For every countable family {U, },en of dense open subsets of E, that is,
U,, = E, the intersection ﬂneN U, is dense in E.

(2) For every countable family {F,}nen of closed subsets of E with empty

F,, has empty interior in E.

interior, the union (J,,cy

Theorem 1.9. Let X be a Banach space, that is, a complete normed space;
then X is a Baire space.

The proof of this theorem can be found in the exercises, with hints (see also
[76]). It has many important applications, in particular concerning continuous
linear functions.

1.1.2 Continuous Linear Maps between Normed Spaces

From here on, all topological vector spaces will have the same base field K.
Let us recall the characterization of the continuity of a linear map, which will
lead to the definition of the norm of such a map.

The continuity at every point of a linear map f from the normed space X
to the normed space Y follows from its continuity at the point = = 0, which
can be expressed by one of the two following equivalent properties:

(1) There exists an M > 0 such that
VeeX, |zllx <1 = [[f(@)lly <M.
(2) There exists an M > 0 such that
Vee X, [f@)ly < Mlz|x-

Note that, by linearity, the upper bound of ||f(z)||y on the unit ball in X
equals the upper bound on the unit sphere {||z||x = 1}. We will use this
characterization to construct a norm on the space of continuous linear maps.

Definition 1.10. Given topological vector spaces X and Y, we denote by
L(X,Y) the space of continuous linear maps from X to Y. When X and YV
are normed spaces and L € L(X,Y), we let

ILlecxyy = sup [L(z)lly-
zeX

llzllx=1
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The map L +— |L|z(x,y) is a norm, called the operator norm, which
endows L£(X,Y) with a natural normed space topology.

Proposition 1.11. If X is a normed space and Y is a Banach space, then
L(X,Y) endowed with the previous topology is a Banach space.

A proof can be found in Exercise 1.1 at the end of this chapter.

In particular, the proposition is true for Y = K considered as a vector space
over itself with the topology induced by the absolute value. This property is
used later on in this chapter.

When X and Y are both finite dimensional, the space £(X,Y) is finite
dimensional and coincides with the space of linear maps from X to Y with
the canonical topology of a finite dimensional vector space. When X and Y
are both infinite dimensional, this is no longer true.

Theorem 1.12 (open mapping theorem). Let T be a surjective continu-
ous linear map from a Banach space X to a Banach space Y ; then the image
of an open subset of X is an open subset of Y.

Proof of Theorem 1.12.
We will follow the arguments of [76]. We begin by showing that for a
neighborhood U of 0 in X, there exists a neighborhood V of 0 in Y such that

vV cT().

Indeed, for B(0,7) C U and W = B(0,7/2), we have X = J,cy-(nW), and
therefore T(X) = Y = U, cn- T(nW). Since the Banach space Y is covered

by a countable family of closed subsets T'(nWW), the Baire property tells us

that one of these closed subsets, say T(noW), has nonempty interior. There

consequently exists an open subset V5 of Y such that V3 C T'(ngW). Since a
homothety in Y is continuous, the closed subset T (W) contains the set nLon,

which is also an open subset of Y. Let yo be such that B(yg,d) C T(W);
then B(0,8) ¢ T(W) —yo C T(W) + T(W) C T(U). The neighborhood
V' = B(yo,9) of 0 satisfies the property stated above.

Let us now prove the theorem.

For the sake of simplicity, we let X. and Y. denote the open unit balls of
radius € with center 0 in X and Y, respectively. Let ¢; = /2%, and let {n;}

be a sequence of positive real numbers such that Y;, C T'(X.,). We may, and
do, assume that this sequence converges to 0.
Let y € Y,,. Since y € T(X,,), we can choose an z9 € X,, such that

ly — Taol < .
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Since y — T'rg € Yy, , there exists an x; € X, such that
ly — Txo — Ta1| < m2

By induction, we construct a sequence z,, € X, such that

oo e <.

Jjsn

The inequalities ||z;|| x < /27 imply that Zh llzillx < e/2"~1. It follows that
' j<n x;} is a Cauchy sequence. Since X is a Banach space, this sequence
converges to an element x of X, which satisfies

lz]lx < Z [l x <

Moreover, we have T'x = y. Finally, as y is an arbitrary element of Y, , we
conclude that the image under T of the ball of radius 2 with center 0 contains
the ball of radius ny with center 0 in Y. It follows that the image of an open

set under the map T is open. a

Theorem 1.13 (Banach—Steinhaus). Let {u,} be a sequence of continu-
ous linear maps from a Banach space X to a normed space Y .

If, for every x in X, the sequence {u,(x)} converges in'Y, then there exists
a constant C' such that

V’IlGN, ||un||£(X,y) < C.

Proof of Theorem 1.13 (cf. [76]).

The pointwise convergence given in the statement of the theorem implies
the existence of a limit u(z) for every x. The map u from X to Y is linear.
By replacing u,, by wu,, —u, we reduce to the case that for every z, u, (z) — 0.

Consequently, given € > 0, there exists for every x € X an N such that
for every n > N, ||un(z)||x < €. In other words, if B’(0,¢) denotes a closed
ball in X, then we have

X={J ) u,'(B02)).
NeNn>N
For every N, the set Fiy = (1,5 u,, ' (B'(0,¢)) is closed, as it is the intersec-
tion of closed sets, by the continuity of u,, for every n. Since X is complete,
and therefore a Baire space, there exists an Ny such that Fly, has nonempty
interior. Let xg and § be such that

B(wo,0) C () uy'(B'(0,2));

n}No
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then Vn > Ny,
B(0,6) C u, ' (B'(0,2¢)),
and for every n > Ny,
2e

supun(y)| < =
y€B(0,1)

The result follows. O

Remark 1.14. Under the hypotheses of the theorem, the linear limit map
u = lim,,_, 4 oo Uy, IS continuous.

Indeed, the continuity of u,, implies that
VeeX, |un(@)lly <llunllcaenlzllx < Clllx.

The continuity of the norm |||y allows us to deduce the inequality ||u(z)|| <
C||lz||x characterizing the continuity of « when taking the limit of the left-
hand side.

Example 1.15 (of an application of the Banach—Steinhaus theorem).
Let {\,} be a sequence of complex numbers such that for every summable
sequence {z,}, the sequence S0 °° \,x,, converges. Let us show that in this
case, sup, ey [An| < +00.

Let X = £' be the space of summable complex sequences z = {zn}.
Endowed with the norm ||z|| = S 0> |#,|, this is a Banach space (cf. Exercise
1.3). Let u, be the linear map from X to R defined by u,(z) = > 5 A,z It
is continuous because

p
fup (@) < | sup [Aal] 3 Jel < [ sup Al .
0<n<p 0 0<n<p

This inequality also proves that [lu,||zee1,c) = SUPo<n<p [Anl- Indeed, if this
bound is achieved at ng, defining 2 by z,, = 0, leads to the equality ||lu,|| =
SUPg<n<p |An|- By assumption, the sequence {u,(z)} converges for every ;
hence, by the Banach-Steinhaus theorem, the sequence of norms |[uy| £ ¢
is bounded, which shows that sup,,cy |An| < +00.

The converse of this property is clearly true. Moreover, starting with this
characterization, we can prove that £(£',C) = £, the space of bounded
complex sequences.

Remark 1.16. It is not in general true that, under the hypotheses of the
theorem, the sequence {u, } converges to u in L(X,Y") (cf. Exercise 1.6).
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1.2 Linear Functionals, Topological Dual, Weak
Topology

1.2.1 Topological Dual of a TVS, Hahn—-Banach Theorem

Definition 1.17 (topological dual). A continuous linear functional on a K-
topological vector space X is a linear map from X to K that is continuous for
the topologies on X and on K. We let X’ denote the vector space consisting
of these functionals.

When X is finite dimensional, it is clear that X’ coincides with the alge-
braic dual space and that X’ has the same dimension as X. We can see this
by taking a basis {e;} of X and associating with it the dual basis consisting
of the linear functionals e defined by e*(e;) = 47.

When X is a finite dimensional normed space, its dual is also finite di-
mensional. This follows, for example, from the analytic version of the Hahn—
Banach theorem that we will state below without proof. On the same occasion,
we will give the geometric version of the theorem. It will not only allow us to
prove certain theorems in this chapter, but will also be a key argument in the
theory of convex functions that we will develop in Chapter 6.

Theorem 1.18 (Hahn—Banach). Let X be a vector space over K, let M
be a linear subspace of X and let p be a seminorm on X. Let m' be a linear
functional on M such that |m/(x)| < p(x) for every x in M ; then there exists
a linear functional ¥’ on X such that

VmeM, a'(m)=m'(m) and Vze X, [2'(z)]<p(x).

In particular, if X is a normed space and the seminorm is ||-||x, then every
continuous linear functional m' on the subspace M endowed with this norm
can be extended to a linear functional on X that is continuous for this same
norm.

The reader can find a proof in [76]. For an arbitrary TVS, the geometric
version of the theorem is as follows.

Theorem 1.19 (Hahn—-Banach (geometric version)). Let X be a TVS
over K. Let C' be a nonempty convex open subset of X and let M be a linear
subspace of X that does not meet C; then there exists a hyperplane H, that
18, a subspace of X of codimension 1, that is closed, does not contain M, and
does not meet C.

The following property at least partially explains the relation between the
two versions of the theorem.
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Proposition 1.20. In a TVS X over K, a hyperplane H defined by H =
{z € X | f(x) = a} for a linear functional f on X and a scalar o € K is
closed if and only if the functional f is continuous on X.

1.2.2 A Normed Space and its Dual; Topologies on These Spaces

Norm Topologies.

Definition 1.21. Let X be a normed space over K. We denote the space
L(X,K) by X’ and call it the topological dual of X. It is the set of continuous
linear functionals on X, that is, the set of linear functionals f on X such that

IK >0, Vre X, |f(z) < K|z|x-

There exists a natural norm on X’ defined by

[fllx- = sup [f(x)].
X

xT
lzllx <1

Using our previous study of the space L£(X,Y), we note that X’ endowed
with the norm ||-||x- is a Banach space (whether or not X is). The topology
induced by the norm on X is called the norm topology on X. The topology
on X’ induced by the norm defined above is called the norm topology on X'.

Let us state two consequences of the Hahn—Banach theorem for this norm.
One of these shows that the dual X’ is not reduced to {0}.

Proposition 1.22.

(1) Ifx € X, x # 0, then there exists an element ' € X' such that ||2'||x =1
and (¢!, ) = jellx-
(2) The norm on X can be defined by ||z|x = Sup”x,|‘<1|<x', ).

Thanks to the duality of X and its dual X’, we can define weaker (or

coarser) topologies than the norm topologies, where the open subspaces for
the new topologies will also be open subspaces for the norm topology.

Weak Topology on X. For every 2’ € X', the function z — |(z/,z)| is a
seminorm. Let 7’ be the set of finite subsets of X’. For F’ € F/, set

Ve X, ne(z)= sup [{(2,z).
z' €F’
These functions form a family of seminorms on X. Let us verify the conditions
of Proposition 1.6 (see also Exercise 1.5):

e The family is directed; indeed, if we set F' = F{UF}, we have the inequality
nE > T]Fl/ for i € {1,2}
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e The family is separating; indeed, if zo € X is nonzero, then Proposition
1.5 gives the existence of an 2’ € X' such that 1,y (20) = [{zo,2")| # 0.

This family of seminorms therefore defines a topology of locally compact
Hausdorff vector space on X, which we will denote by o(X, X’). This is called
the weak topology on X. If, for any element z¢ € X, any finite subset F’ of X'
and any real € > 0 we set

By re={zeX|Va' e F', |(a/,x —x)| < e},

then the family B of such subsets of X forms a basis for the weak topology
on X (cf. Exercise 1.5).

We note that a set B, v . is a finite intersection of inverse images of open
subsets of R under the continuous maps z’ from the normed space X to K.
Every open subset of X for the weak topology is therefore an open subset of
the normed space X. In other words, the norm topology is finer that the weak
topology.

Weak-star Topology on X’. In an analogous manner, we consider the following
family of seminorms indexed by the finite subsets of X:

val € X', nw(al) = sup |(a, a)).

zeF
By a similar reasoning to the one given above, this family is directed. More-
over, if ' # 0, that is, the linear form z’ is nonzero, there exists an zg € X
such that 7y,,}(z) # 0; hence the family is separating.
If for any x{, € X', any finite subset F' of X, and any £ > 0 we define

By pe =12 € X'|Va € F, [(2/ — 20, 7)| < e},

then the set B’ of such subsets of X’ is a basis for a topology of locally compact
Hausdorff vector space on X', denote by o(X’, X) and called the weak-star
topology on X'. It is weaker than the norm topology on X”'.

Note that the normed space X’ has a topological dual, denoted by X",
which endows it with a third topology, the weak topology o(X’, X").

Also note that the norm topologies can be defined in an analogous manner
by replacing the finite subsets by bounded subsets of X’ or X.

Weak Convergence. We can use the previous definitions to characterize weak
convergence for sequences.

Definition 1.23. Let X be a TVS.
A sequence (u,), € X" converges to u in X with respect to the weak
topology (or converges weakly) if

vVieX', (fiu,—u)— 0.
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A sequence (fn)n € (X")N converges to f € X’ with respect to the weak-star
topology if
VeeX, (fn—fz)—0.

Continuity for the Weak Topology.

Proposition 1.24. The linear functionals on X that are continuous for the
norm topology and those continuous for the weak topology coincide.

Proof.

It is clear that a linear functional that is continuous for the weak topology
is also continuous for the norm topology. Conversely, let B. be a ball with
center 0 in K. The inverse image of this neighborhood under f € X’ is

B{f},s = {.’E €X | |<f,!17>| < 5}7

which is a neighborhood of 0 for the weak topology. It follows that f is also
continuous for the weak topology. a

Compactness. An important result concerning the weak-star topology is the
weak-star compactness of the closed unit ball in X’. We will give a weaker
statement that holds when X is separable, that is, when X has a countable
dense subset. In this case, the closed unit ball in X’ is weakly sequentially
compact. We choose to give the result in this particular case for two reasons.
First, all spaces used in this book are separable and weakly sequentially com-
pactness suffices in the applications. Second, the proof of the general result
uses the Tichonoff theorem ([76]), which we find too abstract to be included
in this course.

Let us recall a number of definitions and properties before stating the
result.

Definition 1.25 (compactness).

e A subset A of a Hausdorff topological space is called compact if every open
cover of A has a finite subcover.

e A subset A of a normed space X is called precompact if its completion is
compact for the topology on X.

e A subset A of a normed space X is called relatively compact if its closure
is compact.

e A subset A of a normed space X is called weakly sequentially compact if

every sequence of points of A admits a subsequence that converges weakly
in A.

Proposition 1.26. Compact, precompact, and relatively compact subsets have
the following properties:
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e A compact set in a metric space X is closed and bounded, but the converse
1s false unless X is finite dimensional.

o A subset of a metric space E is precompact if and only if for every e > 0,
it admits a cover by a finite number of open balls of radius €.

e The closure of a precompact set is compact.

e In a normed space, saying that A is compact is equivalent to saying that
every sequence of points of A admits a subsequence that converges in X to
an element of A.

e A precompact set in a Banach space is relatively compact.

We leave the proof of this proposition to the reader.

Proposition 1.27. Let X be a separable normed space and let B’ be the closed
unit ball in its dual X'; then B’ is sequentially compact for the weak-star
topology.

Proof.

Let { fn }nen be a sequence of linear functionals in B’. For the proof, we fix
a countable dense subset {z;};en of X. The sequence f,(x;) is then bounded
for every i. By the diagonal method, we can extract a subsequence from f,,
which we will also denote by f,, such that (f,(z;)), converges to l;. Let
us show that for every x € X, the sequence f,(z) converges, proving the
convergence of the sequence {f,} for the weak-star topology.

Let € > 0 and x € X; then there exists an x; in the dense subset such that
|z — ;|| x <e. Once we fix this element, there exists an integer N such that
Vn>= N, |fu(z;) —1;] <e. Consequently, as the f,, are in the unit ball in X’,
we have the following inequality for n > N and m > N:

[fo(@) = fm (@) < |ful@) = ful@)] + | fulz;) — 1]
+ |lj - fm(x]” + |fm(xj) - fm(x)| < 4e.

The above plus the completeness of X’ show that the sequence {f,(z)} con-
verges in X’ to an element that we will denote by f(z). It remains to show
that f € B'.

Let us show that f is linear. In order to do this, let us fix x1 and xo
in X. We consider three subsets of the dense subset, namely sequences {xgl)}g

{x§2)} and {y;} that converge in X to 1, xo and z1 + x2, respectively. By
the equicontinuity of the f,,, we have

2 2
[ Fa@S) + fu(@f) = Falyp)| < Il + 23 = yillx.
The right-hand side tends to 0. Consequently,

lim £, (y;) = lim(fu(2$7) + fu (@) = f(@1) + f(22).
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Repeating this method for Az, we obtain the linearity of f.
It is continuous because if we take the limit of the continuity inequality
Ve e X, |fn(x)] < ||z|x, we find

VeeX, |f(o) <llzllx.

Since this last inequality shows that || f||x < 1, we have f € B’, complet-
ing the proof. a

1.2.3 Second Dual Space, Reflexive Spaces

Definition 1.28. Let X be a normed space and let X’ be its dual, which is
also a normed space, and even a Banach space; then the space of continuous
linear functionals on X', (X’)’, which we also denote by X", is also a Banach
space. We call it the bidual space of X.

Let us show that there is a continuous injection from X into X”. Let
x € X. The map f, that sends 2’ to (2/,z) is clearly a continuous linear
functional on X’. We can therefore define the map J from X to (X') by
sending x to the linear functional f,. This map is injective but not surjective
except in special cases, namely the case of the reflexive spaces studied below.

Indeed, the image of J is exactly the set of linear functionals on X’ that
are continuous for the weak-star topology on X’. More precisely, we have the
following theorem.

Theorem 1.29. Let X be a normed space and let X' be its dual. A linear
functional f on X' is continuous for the weak-star topology on X' if and only
if it has the following property:

Jze X, Va' e X', f(2')= (2, ).

Proof.

Let x € X; then f, is continuous for the weak-star topology. Indeed, given
€ > 0, the inverse image of the interval {|¢| < e} in R under f, contains the
set

Bogoye = (&' | |(a',2)] < ¢}.

This set is a neighborhood of 0 (cf. Subsection 1.2.2) for the weak-star topol-
ogy. Consequently, f, is continuous for this topology.

Let f be a linear functional that is continuous for the weak-star topology
on X’; then the set of 2/ € X’ such that |f(z)] < 1 is a neighborhood of 0.
Therefore, there exist a real number § > 0 and a finite number of elements x;
of X such that if 2’ € X' satisfies [(«/, x;)| < § for every i, then |f(2')| < 1.
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It follows that there exist a § > 0 and a finite number of x;, 1 < ¢ < n, such
that for every o’ € X',

1
£ < 5 sup |G’ ).

In particular, if (2/,z;) = 0 for every 4, then f(z') = 0. Consequently, the
linear functional f on X’ vanishes on the intersection of the kernels of the
linear functionals f;,. By the algebraic lemma 1.30 below, there exist complex
numbers «;, 1 < i < n, such that f = Y a;fs,. The vector x = >, a;;
therefore satisfies f = f,., completing the proof. a

Lemma 1.30. Let X be a vector space. Let f be a linear functional on X that
vanishes on the intersection of the kernels of n linear functionals f;; then f
18 a linear combination of the f;.

Proof of Lemma 1.30.

We may assume that the f; are linearly independent. Indeed, if this is not
the case, there exists a p < n such that, after permuting the elements of the
family if necessary, the linearly independent subfamily {fi,..., f,} generates
the same space. In this case, ﬂlgigp Ker f; C Ker f; for every j > p+ 1 and
therefore ﬂlgign Ker f; = mlgigp Ker f;. Supposing that the lemma has been
proved for linearly independent functionals, there exist A; such that

F=> Nt
1<i<p

so that f is a linear combination of the f; with i < n.
Let us therefore assume that the f; are linearly independent. There then
exist vectors x; € X such that

filay) = 4],
For every x € X, we write
x = Z filx)x; + z;
1<ign
then z € (), <, Ker f;, so that f(z) =0, and therefore
fa)y= > fi@)f(w)).
1<j<n

It follows that

f=> f@)f,

1<j<n

which concludes the proof. a
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Recall that we denote by J the injection from X into X" that sends x
to fz, as defined in Subsection 1.2.3.

Definition 1.31. A normed space X is called reflexive if the map J is surjec-
tive, that is, if every linear functional on X’ that is continuous for the norm
topology is also continuous for the weak-star topology of X'.

Note that a reflexive space must be a Banach space, since it can be iden-
tified with the dual of a normed space.

Theorem 1.32. The closed unit ball of a reflexive separable space X is weakly
sequentially compact.

Proof of Theorem 1.32.
We will use Proposition 1.27 and the following proposition.

Proposition 1.33. Let X be a normed space with separable dual; then X is
also separable.

Proof of Proposition 1.33.

Let {z/,}, be a dense subset of the unit sphere in X'. It suffices to show
the existence of a countable dense subset of the unit sphere in X. Let {x,,} be
such that ||z,||x =1 and 2/, (z,) > 1/2. Let M be the vector space generated
by the x,. We want to prove that the subspace of M consisting of the linear
combinations with rational coefficients, which is countable, is dense in X. We
will prove this by contradiction. Let us therefore suppose that M # X, and let
x € X — M. By the Hahn-Banach theorem, there exists a functional xj, with
llzpllx: = 1 such that z{(x) # 0 and x5(z,) = 0 for every n. Consequently,

for every n,
r > 1
<$n :L.Oaxn> = 27

which contradicts the assumption that {z/,} is dense. O

The Hilbert spaces defined in the following subsection and the spaces L?
with p € ]1,+o00[ are examples of reflexive spaces. The reflexivity of the
space LP follows from its uniform convexity. For Hilbert spaces, the reasoning
is much more elementary.

Remark 1.34. Theorem 1.32 shows that the space L!(£2) is not reflexive. By
way of example, consider L!(] — 1,1[) and the sequence

n on [—1/2n,1/2n],
Up =
0 otherwise.

The sequence u, is contained in the unit sphere in L'(] — 1,1[). Suppose

that u, converges weakly to u in L. If ¢ is continuous and bounded, then
f_ll unp converges to p(0), so that u = §y, which is not an element of L1.
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1.2.4 Hilbert Spaces

Definition 1.35. For a vector space X over C, a Hermitian inner product
(.,.) is amap from X x X to C with the following properties:

V(r,y) e X x X (z,y) = (y,2)

Y (z,y,2) € X? (z,a2 + by) = a(z,x) + b(z,y)
¥ (a,b) € C? (x,2) >0

VeeX (r,2) =0<=2=0

We can associate a norm with the Hermitian inner product, called the
inner product norm, as follows:

(1.36) ]| = (z,2)"/2.

A vector space X endowed with such a norm is called an inner product
space, or pre-Hilbert space. If it is, moreover, complete for the inner product
norm, then we call it a Hilbert space. A normed space is an inner product
space if and only if the norm satisfies the following parallelogram law:

(1.37) lz+yl1* + o = yl* = 2(=l* + lylI*)

Theorem 1.38 (Riesz representation theorem). Let X be a Hilbert
space with inner product (-,-). A linear map f from X to C belongs to X'
if and only if

Jee X, Vye X, fly)=(z,vy).
The element x is then unique and the map that sends f to x is an isometry
from X to its dual X', that is,

1l = llllx-

The reflexivity of X follows. Other important properties of inner product
spaces follow from the Hilbert projection theorem, in particular the construc-
tion of orthonormal bases and the theory of Fourier series.

1.2.5 Uniformly Convex Spaces

Definition 1.39. A TVS X is called uniformly convex if

Ve >0, 35(e) >0, V(x,y) € X?, |z =lyll =1 and ||z —yl| > ¢
Hx#—y
2

H <1-4(c).
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Theorem 1.40. A uniformly convex space is reflexive.

(1) Inner product spaces are uniformly convex, as easily follows from the
parallelogram law.
(2) The spaces LP with p € ]1, +o00[ are uniformly convex (cf. the proof in [1]).

For the proof of Theorem 1.40, we need Helly’s theorem, which is a conse-
quence of the Hahn-Banach theorem.

Theorem 1.41 (Helly). Let f;, 1 <i < n be linear functionals on X. Let
v >0 and a;, 1 < i < n, be n compler numbers. A necessary and sufficient
condition for the existence, for every e > 0, of an element x. € X such that
for every i € [1,n],

filze) =, with |zel|x <v+e
is that, for every n-tuple (8;) € R™, we have
‘ Y Bl < WH > Bifi
1<ign 1<ign

Proof of Helly’s theorem.
Let us show that the condition is necessary. If f;(z.) = «; for every i with
lze|| < v+ ¢, then for every 8; € R™, we have

S Biar| =| X0 Befilae)| <llell | 2B

1<i<n 1<ign

X'

x'

The result follows from the arbitrariness of e.

Let us show that the condition is sufficient. We may assume that the f;
are linearly independent. Indeed, if this is not the case, let fi, fa,..., fp with
p < n be a linearly independent generating subset of the family {f;}.

Let us assume that the result has been proved for linearly independent
functionals. We have n complex numbers «;. Taking 8; = 0 for all ¢ > p + 1,

‘ > B <VH > Bifs

1<i<p 1<i<p

we have

)

X’

whence, for every € > 0, there exists an x. such that
|zellx <v+e and Vi<p, fi(z.)=a.

We need to verify that these equalities also hold for ¢ > p + 1. For this,

note that if fp,41 = 21@'@; vifi, then by taking 8,41 = —1 and 3; = ~; for
1 < p, we have the inequality

> B SWH > B

1<igp+1 1<i<p+1

X'
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This implies that

1<i<p+1

Consequently, we have
Qpt1 = Z%fz(ms) = fpr1(we).
i

We can repeat this for every f; with ¢ > p 4+ 1. In conclusion, we have shown
the result if we can prove that it holds for linearly independent f;.

Let us now suppose that the f; are linearly independent. The map ¢
from X to RP defined by p(z) = (f1(z),..., fp(z)) is therefore a continuous
surjective linear map. In particular, if S = {z € X | ||z||x < v+¢}, then the
image of S; is a convex subset of RP” whose interior contains 0.

Let us suppose that @ = (a;)1<i<, does not belong to ¢(S.). By Theorem
1.19, there exists a hyperplane that separates the convex set ¢(S;) from the
point with coordinates «;. In other words, there exist 3;, i < p, such that

> fics > sup Bifi(x).

€S,

Since the right-hand side equals (y+¢)(|| >_, B: fil x’), we have a contradiction.
O

Proof of Theorem 1.40.
Let 2”7 € X" be an element of norm 1. By the definition of the norm, for
every n there exists an f,, of norm 1 in X’ such that

1
" V> 1- -,
() 212

Let o; = 2"’ (f;) for i < n. For any n-tuple of real numbers f3;, we have

‘iﬂiai iﬁifi
1 1

Consequently, by Helly’s theorem applied with e = 1/n, there exists an z,, € X
such that for every i < n,

<l || .
X/

= ‘iﬁixﬂ(fi)
1

1
lznllx <14~ and  fi(zn) = @ = z" (f).

Note that the sequence ||z, | x tends to 1; indeed, setting i = n gives

1 1
1— g < ;C//(fn) = fn(l'n) < Hf"”X'HanX <1+ E
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We will use the uniform convexity to show that (x,) is a Cauchy sequence.
If this is not the case, then for every € > 0 there exist sequences ny < my <
Ngt1 < --- with

) — Ty || = €

Since X is uniformly convex, there exists a d(¢) > 0 such that
[ + @my || < 2(1 = 8(e))-

Consequently, as my > ny,

fnk(x"k) = fnk(wmk) = I//(fnk)a

whence

1
2(1- n—k) < o (@ny) + Fr @my) < Ny + Ty | < 21 = 6(2)).

Taking k to +oo leads to a contradiction.
The sequence x,, therefore converges to a point xy. By taking the limit,
we have

[zoll =1 and Vi, fi(zo) =2"(fi).

Let us show that xg is unique. Suppose that yy € X, yo # g, satisfies the
same equalities. Since X is uniformly convex, ||z + yo|| < 2. Moreover,

1
oo +yollx > filwo +y0) = 22" (£) > 2(1- ),

which leads to a contradiction when we let i tend to infinity.
Let fo € X’. We must show that

fo(xo) = xll(fo)'

By the previous reasoning, there exists a z9 € X such that
lzollx =1 and Vi, fi(z0) =2"(fs).

In particular, the uniqueness tells us that zy = x(, completing the proof of
the theorem. O

We will admit that the spaces LP and £? are uniformly convex for p > 1,
p < 00, without giving a proof. The proof uses Clarkson’s inequalities, which
the reader can find in [23] and [1].
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1.3 The Space of Continuous Functions on an Open
Subset of RY

Definition 1.42. Let X and Y be two normed spaces. We say that X is
embedded in Y if there exists a continuous injection ¢ from X to Y, that is,
an injection ¢ and a constant C' > 0 such that

(1.43) VeeX, |[li(z)ly <COlxllx.
We denote the embedding by
X —Y.

We call the embedding compact if the operator ¢ is compact, that is, if it maps
a bounded subset of X to a relatively compact subset of Y. We denote the
compact embedding by

(1.44) X . Y.

Definition 1.45. Let (2 be an open subset of RY. For any nonnegative inte-
ger m, let C™(§2) be the space of continuous functions whose partial derivatives
up to order m are continuous on {2. Let

(1.46) ()= () c™ (),
meN

and let C2°(£2) or D({2) denote the space of C>°(£2) functions with compact
support in (2.

Since {2 is open, the continuous functions on {2 are not necessarily
bounded. The following defines a useful and important subspace of C™({2).

Definition 1.47. For an open subset 2 of RY, let CJ"*(£2) be the subset of
C™(£2) consisting of the functions whose partial derivatives of order < m are
bounded and uniformly continuous on 2. By endowing this subspace with the
norm

(1.48) el

C'{,”(Q) = 8sup SUP|DQ<P(37)|’
la|<m zeR

we obtain a Banach space.

Note that when {2 is a bounded open subset, any function on this space,
as well as all its partial derivatives, admits a continuous extension to {2. The

space C; (2) is therefore identical to C™ ({2). Consider the following important
subspace of C}"*(£2).
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Definition 1.49. For 0 < A < 1, Cg’)‘(()) denotes the space of Holder contin-
uous functions of order A on {2, defined as follows:

C(2) = {9 € Co(2) | 3C >0,V (2,9) € 2°, |o(z) — p(y)| < Clz —y*}.

When A = 1, these are called the Lipschitz continuous functions. More gener-
ally, we define C;"’A(Q) to be the subset of C"(2) of functions ¢ such that

3C >0, Va, |a| =m, ¥(z,y) € 22, |D%p(z) — DY(y)| < Clz —y[*.

Endowed with the norms

D%p(x) — D%p(y
epy + Sup sup | () ( )l’

(1.50)  [l@llmar = ll¢
lal=m {(z.y)€(2)2|z£y} |z =y

these are Banach spaces. Moreover, we have
V(,A), 0<v<A<l = CMMN02) — " (2) — CH (1),
where the inclusions are strict.

Definition 1.51. An algebra A endowed with a norm is called a normed
algebra if multiplication is continuous for the norm.

Example 1.52. The space Cp(§2) of continuous bounded functions on 2,
where {2 is an open subset of RY, is a normed algebra.

Definition 1.53. Let A be an algebra. A subalgebra A’ of A is a vector
subspace that is stable for scalar multiplication.

Theorem 1.54 (Stone—Weierstrass). Let K be a compact subset of RV .
Let A be a subalgebra of C(K,C) satisfying

(1)VP, ¢ A= ®c A (Ais self-adjoint).

2)V(x,y) e K, x £y, AP € A, &(x) # D(y) (A separates points).

(3) VaeC, the function x+ a belongs to A (A contains the constant func-
tions).

Then A is dense in C(K,C).

An example of such an algebra is the algebra of polynomials in N variables
on K whose complex coefficients have rational real and imaginary parts. In
particular, this shows that C(K) is separable.

Proof of the Stone—Weierstrass Theorem.
Using the first property, we reduce to the case of a real algebra, where
the function we wish to approximate is real. We admit without proof the
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Weierstrass theorem, which allows us to uniformly approximate any contin-
uous function on a compact space by a sequence of polynomials. Let f € A.
This function is uniformly bounded. Let M = sup|f|. Since the function
t + |t| is continuous on the compact set [—M, M], there exists a sequence of
polynomials {P,} such that

Vte[fMaM]a ||t|7pn(t)|00<

S

By composing functions, we deduce the inequalities

Vse K, |f(s)]— Pu(f(s)] <

S|

Since A is an algebra, P,(f) € A. Consequently, |f| € A. It follows from the
equalities
Jr —
ftg |f—yg

sup(f,g) = 5 5

f+g |f—4d

2 2

and inf(f,g) =

that if f and g belong to A, then the functions sup(f, g) and inf(f, g) belong
to the closure A.
Next, let h € C(K,R), € > 0, and let s and ¢ be two points of K. By the
separating hypothesis, there exists an f € A such that f(s) # f(t). Let
h(s) h(t)
g= S (f = ) +
@ -0 T -5
The function g equals h at the two points s and ¢. Since the space A contains
the constant functions, it follows that g € A. We denote this function by gs ;.
Since (gs.t — h)(s) = 0, the continuity of these functions implies the existence,
for every point s of K, of an open neighborhood U(s) of s such that

(f = 1(s)).

VueU(s), gsi(u)=h(u)—e.

Since the U(s) cover the compact space K when we let s vary in K, we can
find a finite number p of such points, say (s;)1<igp, such that

K C U U(Si).

1<i<p

Keeping ¢ fixed, we now define g; = sup;,¢, gs,.«- By the above, as A is an
algebra, g; € A. For any u € K, there exists an s; such that u € U(s;). We
thus have: Vu € U(s;), gi(u) > gs,.¢(u) = h(u) — €, whence

(%) Vue K, g(u)=h(u)—e.
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Moreover, as gs, +(t) = h(t), we have g:(t) = h(¢). It follows from the continuity
at ¢ that there exists an open neighborhood V(¢) of ¢ such that Vu € V(?),
g¢(u) < h(u) + €. Extracting a finite subcover V'(¢;) from the family of open
subsets V(t), we let g = inf g;,. By (*), we have

(xx) Vue K, g(u)=h(u)—e.

Finally, we note that |g — h| < ¢; indeed, for every j, we have g;, < h+e.
Given u € K, there exists an integer j such that u € V' (¢;); hence

(xx%) 9(u) < g, (u) < h(u) +=.

The result follows from (%) and (xxx). We have, in fact, shown the following
property:

VheC(K), 3ge A, |lg—hllex) = sug lg(u) — h(u)] < e. O
ue
Theorem 1.55 (Ascoli-Arzela). Let (2 be a bounded domain in RN . A sub-
set K of C(£2) is precompact in C(2) if and only if

(1) There exists an M > 0 such that VP € K,V € 2, |p(x)] < M.
(2)Ve>0,30>0,Vope K,V (x,y)ef?, |z —y|<d = |o(x) — d(y)|<e.

A proof of Theorem 1.55 can be found in [28], as well as a proof of the
following proposition, whose second statement is a corollary of it.

Proposition 1.56. In an open subset 2 of RN, we have the following embed-
dings :

(1.57) VmeN, C"HQ)— C™(02)
(1.58) Vp) €R? 0<v <A<l = C™N0) — C™"(N)

If 2 is bounded, then the second embedding is compact. The first is compact
if, moreover, {2 is convez, or if, more generally, there exists an integer K such
that any two of its points can be joined by a piecewise linear curve consisting
of at most K segments in 2.

1.4 Distributions on an Open Subset of RY

1.4.1 Spaces of Regular Functions on an Open Set {2

Let {2 be an open subset of RY.
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Definitions and Algebraic Structure. For any k € N, we denote by £¥(£2) the
set of C* functions on 2. For any compact subset K of RV contained in 2,
we denote by Dk (£2) the set of C* functions f on §2 with supp(f) C K.

The set of functions f in £* such that supp(f) is a compact subset of 2
is denoted by D¥(£2). We therefore have

DF(02) = U DE(02).

K, compact C{2

The set of infinitely differentiable functions on {2 with compact support in 2,
which we denote by D(£2), or sometimes C2°({2), is a special case since D({2) =
D> (102).

It is clear that these definitions give vector spaces over C.

Information Concerning the Topologies. In what follows, the differentiation
indices will be N-tuples @ = (a1, aq,...,an), where «; is the order of the
partial derivative in the variable z; and the total order of the derivative is
denoted by |a| = )", o;. We will use the following shortened notation:

olal ¢

= g anN *
Ox(™"t -+ 0xy

D(f)

Let us fix a nonnegative integer k. For any ¢ € £¥(£2), integer m < k, and
compact subset K of 2, we let

Nm, k(@) = sup sup ’Dagp(x)’
la|<m z€K
For any pair (m, K), this gives a seminorm on £¥(£2). The family of such
seminorms is directed and separating (cf. Example 1.7).

It follows, as has already been stated in Proposition 1.6, that the family B
of closed balls By, () = {f | nm.x (f) < 7} associated with these seminorms
is a fundamental system of neighborhoods at the origin for a topology of
locally compact Hausdorff space. By translation, we deduce a fundamental
system of neighborhoods at any arbitrary element .

Note that in this locally compact space, the seminorms defined above are
continuous.

Countable Family of Bases of Neighborhoods. Let us consider an increasing
sequence of relatively compact open subsets {(2;} of {2 such that ﬁj C 2541
and (2 = J {2;. The reader can easily show the existence of such a sequence.

If we set K; = (2;, then the family of seminorms {n,, k, } is a basis of (con-
tinuous) seminorms in the locally compact space £¥(£2). In other words, the
closed balls associated with this family of seminorms also form a fundamental
system of neighborhoods of 0 in £¥(42).
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Consequently, we can say that the space contains a countable fundamental
system of neighborhoods of 0. Moreover, if {U,} is such a countable funda-

mental system, then setting V,, = U,, gives a fundamental system of

m<n
decreasing neighborhoods of 0. We endow D% (£2) with the induced topology.
The same construction can be used for the space £°(£2).

Let us now consider the space D*(§2) for k < +oo. Using the open cover
above, D¥(£2) can be seen as the union of an increasing sequence of vector
subspaces, namely the D’;(j () with 2; = K;.

Next, consider the set B of absorbing and balanced (cf. Definition 1.1)
convex subsets B of D*(£2) such that

VjeN, BNDj, () is aneighborhood of 0 in D (£2).

We use without proof (cf. Exercise 1.4) that B is a fundamental system of
neighborhoods of 0 for a topology of locally compact Hausdorff space, and that
this topology is independent of the {2;. Moreover, for any compact subset K,
the topology on D% (£2) is induced by this topology.

In the remainder of this book, we will call this topology the natural topology
on DF(02).

We will also admit without proof the following characterization of a neigh-
borhood of 0 in a space D¥(§2), which still holds when we replace k by oo.

Proposition 1.59. A convex subset U of D*(£2) is a neighborhood of 0 for
the natural topology on DF(82) if and only if, for every K, the intersection
Un ’D’;Q(Q) is a neighborhood of 0 for the topology on D’f(j (92).

Bounded Subsets and Convergent Sequences in the Locally Convexr Space
DF(£2). In the space X = D¥(2) endowed with the topology associated
with an increasing sequence of locally convex subspaces, we can character-
ize the bounded subsets and convergent sequences using a consequence of the
Dieudonné-Schwartz theorem. Let us state part of this theorem, which will
be useful when we study distributions.

Proposition 1.60 (Dieudonné—Schwartz). For fized k < oo, we endow
DF(£2) with its natural topology of locally compact space.

(1) A subset B of D*(£2) is bounded if and only if there exists a compact
subset K of £2 such that

Ve B, supp(p) C K  and Vm <k, sup nm, k(@) < 0.
peB

(2) A sequence {@n} converges to 0 in D¥(£2) if and only if there exists a
compact subset K of 2 such that ¥n, supp(p,) C K and

V(a) e (N, |af < k= {D%,} — 0 uniformly on K.
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1.4.2 Regularization of Functions, Applications

In many problems we wish to approximate a locally summable function by a
C* function. Classically, we use the convolution with what we call a regular-

izing sequence (or family) {pc}.
Construction of {p.}. Let p be a function in D(RY) with positive values such
that p(x) = 0 for [z| > 1 and [;n p(x)dz = 1. We can, for example, take

1 .
kexp(—m> if |l'| < 1,
0 if |z| > 1,

plx) =

with k such that [,y p(x)dz = 1. We then define p. by setting

(1.61) pe(x) = e Vp(z/e).
By taking, for example, ¢ = 1/, we obtain a so-called regularizing sequence.

Convolution with Summable f with Compact Support. Let f be such a function
on RV, Let v = f * p. be the function defined by

Ve eRY, w(z) = - f()pe(z —t)dt = - fz —t)pe(t)dt.

Take 2 in the complement of supp(f) + B(0,¢); then for any ¢ in the support
of f, we have |z — t| > €, whence v(z) = 0. The support of the convolution
v = f % pe is therefore contained in supp(f) + B(0, ).

Moreover, if xg belongs to this neighborhood, we can apply the Lebesgue
differentiation theorem, which allows us to take derivatives of arbitrary order
with respect to z under the integral sign. Consequently,

Vae NV, D(fxp:) = fxDp:).

We conclude that f  p. € D(RY).

By assuming that the support of f is included in the open set (2, there
exists an ¢ sufficiently small that supp(f) + B(0,e) C 2. Since any element
of D(2) extended by 0 outside of {2 is clearly a D(RY) function with support
in £2, it follows that f * p. € D(£2).

Conwolution with a C* Function f with Compact Support. Let us take k = 0.
For a continuous function w, consider ds(z) = u * ps(x) — u(x). Using the
integral of ps, which equals 1, we can write

dstoll = [ wte oty | | <x>p5<t>dt\
< [ luta =0 = ul@lpstt
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The function w is uniformly continuous on the compact set K = supp(u) +
B(0,1). Therefore, there exists a § > 0such that |t| < 6 = |u(z—t)—u(z)| < e.
Consequently, ||ds|loc < € [ ps(t)dt =e.

For k£ = 1 we will use the property that the derivative of a convolution
equals the convolution of either of the functions with the derivative of the
other. The reasoning remains the same for all values of k£ by induction, and
we can conclude that 7, x (uxps —u) — 0. Summarizing, we have the following

result.

Proposition 1.62. Let f be a summable function on 2 with compact support
in £2; then for e small enough, the convolution f x pe is an element of D({2).
If for every nonnegative integer k, f belongs to D*(£2), then when & — 0,
the family {f x pc} tends to f in the locally compact space D*(£2).
In particular, for any k € N, D(£2) is dense when considered as a subspace
of DF(92).

We will use these properties of regularizing sequences again when studying
the spaces LP(§2) (Section 1.5).

1.4.3 Continuous Linear Functionals on These Spaces;
Distributions

Definition 1.63. A distribution on (2 is a linear functional on D({2) that is
continuous for the natural locally convex topology.

For k € N, a distribution on {2 of order at most k is a linear functional on
D(2) that is continuous for the natural locally convex topology of D*(£2).

A distribution has order exactly k > 1 if it cannot be extended to a linear
functional that is continuous on D*~1(2).

We denote the corresponding spaces of continuous linear functionals by D’({2)
and D'*(§2). They are the duals of D(£2) and DF(2).

Continuity Condition for a Linear Functional. We begin by stating
(cf. Exercise 1.24) a necessary and sufficient condition for the continuity of
a linear functional that uses the fundamental system of neighborhoods of 0
defined using the family of seminorms {n,} that generate the topology of a
locally convex space X.

Proposition 1.64. A linear functional T on X is continuous if and only if
3N\, IM >0, Vre X, |T(x) <Mn(z).

The importance of the existence of countable fundamental systems of
neighborhoods in locally convex spaces is clear in the following two propo-
sitions. The second one characterizes distributions.
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Proposition 1.65. Let T be a linear functional on one of the spaces EF(12),
EX(£2); then T is continuous if and only it is sequentially continuous, that is,

{2n} — 0 = {T(zn)} — 0.

Proof.

Let {V,,} be a countable fundamental system of decreasing neighborhoods
of 0 in X = £¥(£2) (cf. Subsection 1.4.1). Let us assume that the linear func-
tional T on this space is sequentially continuous but not continuous. There
then exists an open disc D with center 0 in C such that T-(D) does not
contain any element V;, of the fundamental system. Let C be the complement
of T71(D) in X. Let us then take a sequence {x,,} in X such that z,, € V,,NC.
This sequence tends to 0 in X while for any n, T'(z,) ¢ D. Consequently, T'
is not sequentially continuous, contradicting the assumption. a

Let us now consider the continuity of the linear functionals on X = DF(2).
By the definition of the locally convex topology on X = DF(§2), where
k < 400, a linear functional T on X is continuous if and only if its restric-
tions Tj to the subspaces X; = Dj (£2) are continuous.

Indeed, if T is continuous on X and D is an open disc with center 0 in C,
then the convex set 7-1(D) is a neighborhood of 0 in X. By the definition
of the topology on X, (T;)~*(D) = T~'(D) N X; is then a neighborhood of 0
in X, giving the continuity of T;. The equality above proves the converse.
Summarizing, we find the following characterization of distributions, or rather
of distributions of order < k.

Proposition 1.66. Let T be a linear functional on Xy = D*(£2), where k €
N U {+oo}. The following three properties are equivalent:

(1) The linear functional T is continuous on Xy.

(2) The linear functional T is sequentially continuous on Xy.

(3) For any compact K C 2, the restriction of T to the space D% (£2) is
continuous. In other words, there exist a C > 0 and an integer m < k
(m € N in the case Xoo = D(£2)) such that

Vo e Xi, [(T,9)] < Cnim, i ().

Proof.

The proof of the equivalence of (1) and (2) is analogous to that of Propo-
sition 1.65. Above, we expressed their equivalence to the continuity of the
restrictions to the spaces DI}Q (£2). The fact that every compact subset is in-
cluded in some K; and the characterization given in Proposition 1.64 give the
equivalence with (3). |
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Remark 1.67. To apply the condition of sequential continuity, we must not
forget the condition that the sequences of D({2) converge to 0, established in
the Dieudonné—Schwartz theorem 1.60.

1.4.4 Examples

We leave it to the reader to show the (sequential) continuity of the linear
functionals considered below.

Example 1.68 (distribution associated with a function). Let f be a
locally summable function on 2. We associate with it a distribution, called
regular, and denoted by T or [f], as follows:

o eD(2), (T ) = /Q f(@)p(x)de.

Example 1.69 (Dirac distribution). We define the Dirac distribution at
a € RN by
p € DRY), (%a,) = ¢l(a).

There is no function f such that §, = [f]. Consequently, this distribution is
called singular. It has order < 0.

Example 1.70 (principal value distribution). In the case N = 1, we de-
fine the principal value of 1/z by

p € D(R), (Vp(l/z),p) = lim Mdm.
e—0 |:L">6 €T
We can also write
lim pla) :/ o) —o(=2) .
e—0 |z >e x R x )

We can show the continuity of Vp(1/z) using the mean value theorem. The
order of this distribution is finite and < 1.

Example 1.71 (Hadamard finite part distribution). Let N > 1. The
function z — f(z) = 1/|z|" is not locally summable on RY. We define the
distribution T = Pf(1/|z|") by setting:

Ve e DRY), (PE(1/|z[Y), o) = lim [/| @dﬁw_upm)ln(s)},

=0 Ljgyze |2V

where wx_1 is the area of the unit sphere in RY. We can show that the order
of the distribution is < 1.
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Likewise, we define the Hadamard finite part distribution of 1/|z|NV+!,
which will play an important role in the study of the Riesz transforms

(cf. Chapter 7). It is the distribution that maps ¢ € D(RY) to the number

<Pf(1/|x|N+1)’<p> = lim {/a;l}g |;0|§V$-s)-1dx —wal@ .

1.4.5 Topologies on the Space of Distributions D’(£2)

As is the case for normed spaces, we can put many topologies of locally convex
space on the dual D’. More particularly, we define the norm topology and weak
topology on this dual using seminorms.

Weak Topology on D’'. To an arbitrary finite subset F' of D({2), we associate
the seminorm

VT € D'(2), p,.(T)=sup|(T,p).
YeF

We can easily see that this defines a directed and separating family of semi-
norms on D’({2). We can therefore apply Proposition 1.6. It follows that the
family of closed balls associated with the p, forms a fundamental system of
neighborhoods of 0 for a topology of locally convex Hausdorff space. For this
topology, which we call the weak topology, the convergence of a sequence {7}, },
and therefore also that of a series, is equivalent to pointwise convergence on
D(S2).

Proposition 1.72. The sequence {T,} in D'(2) converges to T in D’ for the
weak topology on the dual if

Vo eD(2), (Tn,p) — (T, ).
The proof of the following proposition can be found in [22].

Proposition 1.73. If (T,,) is a sequence in D'({2) such that for any
p € D(2), (T,,p) converges to a finite limit, then the T, converge weakly,
that is (see Remark 1.7/ below), converge in the sense of distributions.

Norm Topology on D’'(£2). Let B be a bounded subset of D({2). By Proposi-
tion 1.60, this means that B is included in some Dk (§2) and that the semi-
norms 7, x are bounded on B. By analogy with the case of normed spaces,
we replace the finite subsets by bounded subsets in the previous definition. In
other words, we consider the seminorms pp and the associated closed balls.
The resulting topology of locally convex Hausdorff space is called the norm
topology on the dual D’'(2) (cf. Exercise 1.19).



1.4 Distributions on an Open Subset of RY 31

Remark 1.74. We will admit the following property without proof: a se-
quence of distributions converges to 0 for the weak topology on the dual if
and only if it converges to 0 for the norm topology on the dual.

Consequently, in statements concerning sequences or series we will not
specify the topology in question. We will simply talk of convergence.

1.4.6 Operations on Distributions

In addition to the algebraic operations associated with the structure of vector
space, we will consider the following operations.

Definition 1.75. Let o be a C* function on {2 and let T € D’'(£2). We let
oT" denote the distribution such that

Vo eD(2), (aT,p)= (T, ap).

We can verify that o7 is indeed a distribution, and that the linear map
T — oT from D’'(2) to itself is continuous, both for the norm topology and
for the weak topology.

For example, we easily see that, for any locally summable function f
on RY we have a[f] = [af], and that ad, = a(a)d,. In particular if a(a) = 0,
we get ad, = 0. When N =1, if (x — a)T = 0, there exists a constant C' such
that T'= Cd,. We can also verify that  Vp(1/z) = 1.

Definition 1.76. Let h € RY and let 7' € D'(RY). We define the translation
of T with index h, denoted by 7,1 or T}, by

Vo € DRY), (Th,0) = (T,7-np),
where (T_p9)(x) = p(x + h).

We can easily see that T}, is a distribution.

1.4.7 Support of a Distribution

Definition 1.77. We call an open subset O of 2 a vanishing set for an ele-
ment T of D'(£2) if for every ¢ € D(2) with compact support in O, we have

<T7 50> =0.

We can show that the union of all vanishing sets of T is also a vanishing
set. Consequently, we can give the following definition.

Definition 1.78. The support of T, denoted by supp T, is the complement
of the largest vanishing set of T
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Example 1.79. The support of the distribution d, is {a}. If f is a locally
summable function on (2, then the support of the distribution [f] equals the
support of the function f, which is supp(f) = {z | f(z) # 0}.

Let us consider the following theorem.

Theorem 1.80. Let T be a distribution with compact support K; then T can
be extended to a continuous linear functional on the locally conver space E(12)
of C* functions on §2. In other words, it can be identified with an element
of the dual £'(2). In particular, if T has compact support, then the symbol
(T, @) is still defined if ¢ is only C* on (2.

In the proof (cf. Exercise 1.20), we use a function o € D(§2) with value 1
on a neighborhood of K and extend T to T by setting

V€ 5(0)7 <f7 <)0> = <T7 oz(p).

1.4.8 Derivation of Distributions

Definition 1.81. Let o be a multi-index and let T' be a distribution on an
open subset §2 of RY. The derivative DT is the linear functional on D(§2)
defined by

Ve D(Q)7 <DQT7 <P> = (_1)|a‘<T7 Da(p>'

This functional is a distribution on 2.

When f is a Cl*l function, we have D*[f] = [D®f]. We can show that for
the weak topology on D', given h € RN with h = h;e;, we have
. T, =T OT
im —— = —.
Let us note the following property that follows from the definitions. If the

sequence {7} converges to T in D', then the sequence {D*(T},,)} converges
to D*(T).

Example 1.82. The distribution Vp(1/x) is the derivative of the distribu-
tion [f] associated with the locally summable function x — f(x) = In|z|.

The proof of the following proposition is given in [22].

Proposition 1.83. If T is a distribution on R of order at most k, then the
order of T is at most k+ 1. If T is of order k > 1, then T is of order k + 1.
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Example 1.84 (of a derivation). Consider the function f on R? defined by
f(z,y) = min(z,y). Let us determine the mixed partial derivative of f in the
sense of distributions. This example can be generalized to RY.

<32;y [f]’“o> - /+OO Uﬂo min(z, y) ;;gy (:v,y)dy] da

— 00 — 00

+o0 T 52 400 52
¥ ¥
[ vpeitnea [ S ] de

The sum J+ K of the two integrals inside the square brackets can be computed

as follows:

B e ) B
J+ K = {ya—i(w,y)} —/ a—i(w,y)der:v[a—i(%y)}

_ [T 0e

+oo

x

Consequently, using Fubini’s theorem one more time, we have
82 +oo  ptoo 690
=— —— dyd
<ax8y[f],s0> [m /y 5, (& Y)dy do
+oo 4o
= / [cp(fc,y)] dy
— 0o =y
+oo +oo
/ e(y, y)dy =/ p(x, z)d.

— 00 — 00

The result can be written as (da, ¢) and can be interpreted as the action on
the test function ¢ of the Dirac distribution with support the line A in R?
with equation y = z.

Example 1.85. On RY, consider a continuous function h of the N — 1
variables z1,...,zy_1. We define the function U, by setting Up(xz) = 1 if

xn = h(z1,...,zn-1) and Up(z) = 0 otherwise. Let us take the derivative
with respect to xy.
Let ' = (x1,22,...,2Nn—1). By applying Fubini’s theorem, we obtain
0 0 0
S nl, ) = —(Un], 5 — >:—/ Up——p|d
<8$N[ h] v [ h] (933N<p RN h@xN *

—/ {/ija (', xn)dz ]dx’
RN=1 | Jh(z") 6$N<P N N

- /RM o/, h(a))da'

This result can be interpreted as the action of ¢ on a Dirac distribution with
support the surface with Cartesian equation xy = h(a’).
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Indefinite Integration.

Proposition 1.86. If T € D'((2), then T admits infinitely many indefinite
integrals that can be deduced from each other by adding a constant.

This concludes our summary of results on distributions. We will give ad-
ditional information on tempered distributions in Chapter 4.

1.5 The Spaces LP for p € [1, +o0]

We assume known the definitions of (Lebesgue) measurable functions and of
the space L'(£2) of summable functions on §2, endowed with the norm defined

by | £l = [, f(z)|dz.

Definition 1.87. The space of functions on {2 with summable pth powers is
defined by

LP(02,C) = {u measurable on 2, with values in C | |u[? € L'}.

This is a normed space thanks to the Minkowski inequality. The norm, which
is denoted by ||-||, or ||||z», is defined by

= [ If(rv)pdwr/p.

Definition 1.88. Let L>°(f2) be the space of measurable functions f such
that
Ja >0, mesFE, =mes{z||f(z)] >a}=0.

This is a normed space with norm || f|lec = inf{q|mes(z,)=0} -

1.5.1 Hoélder’s Inequality and the Completeness of LP

For f € LP(f2) and g € LP'(£2) with real numbers p and p’ satisfying
l<p<ooand 1/p+1/p" =1, we have the inequality

[ 1f@gtaiae < [ / If(m)lpdx]l/p[ / |g<x>p'dx]””'.

This inequality can be generalized by considering real numbers p; > 1 such
that the sum of their inverses equals 1:

e, [[Mnwle<TI)( /[ |fj<x>wx)””].
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Theorem 1.89. The space LP({2) is complete.

Proof of Theorem 1.89.
We begin with the case p € [1,00[. Let (u,) be a Cauchy sequence for the
norm on LP. We extract a subsequence such that

||unj+1 - un;”p < 2_j

Let
j=J

(1.90) v(z) = Jim Zl(" — ) ().
J:

By the Minkowski inequality, we have

(o)™ < i 32 (e =)™

Consequently, the set of points where v is infinite has measure zero. More-
over, v is almost everywhere the limit of a sequence of measurable functions,
hence is itself measurable. By the previous inequality, v € LP and v is the
limit in L? of a subsequence of u,, because

1

<o

v —tun,llp = H Z (Uny iy = Un,)

i=J+1

Since any Cauchy sequence has only one limit point, the sequence {u,} con-
verges to v, concluding the proof of Theorem 1.89 for p € [1, o0|. O

Next, let p = co. We consider a Cauchy sequence {u,}. We define the sets
A = {2 | fur(@)] > [uelloc} and Bum = {& | Jun — | (@) > [lun = tmloc -
The union of the Ay and B,, ,, has measure zero. Moreover, the sequence u,,
is uniformly convergent on the complement. Let u be its limit. We can easily
see that v € L* and lim [Ju, — t/ec = 0. O

Let us now consider the density of the regular functions.

1.5.2 Density of the Regular Functions

L)

We assume know the property C.({2) LY(0).

Theorem 1.91. Let 2 be an open subset of RY ; then for any p with 1 <p < oo,
the space D({2) is dense in the normed space LP((2).
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Proof of Theorem 1.91.

Let u € LP(£2). We begin by approximating u by a sequence of continuous
functions with values in C and compact support. We begin by carrying out a
series of reductions of the problem.

(1) We reduce to u real by noting that if w is measurable and such that
|ulP € L(£2), then its real and imaginary parts have these same prop-
erties. Moreover, if (un,v,) € (C.(£2,R))? converge to (Rewu, Smu), then
Uy, + 1V, — U.

(2) We reduce to u positive. Let u = u* —u™. If uw € LP({2), then the same
holds for u™ and u~. Let {ug)} and {ug)} be sequences in C.(£2,R) that
converge to ut and u~, respectively, in LP({2); then {ug) — u%z)} — u in
L?(0).

(3) Let u be nonnegative; then u? € L'(£2). By assumption, there exists a se-
quence {vy,} of continuous functions with compact support that converges
to uP in L*(£2). By taking v;", we may, and do, assume that v,, > 0 almost
everywhere and that the sequence converges almost everywhere to uP.

We may, and do, also assume that {v,,} is dominated by an element of L!(2).
To reduce to this, we proceed as in the previous theorem. We extract a sub-
sequence {vy,} of {v,} and let vo = 0 and v; = Z:l‘](vnj+1 — Un, ), so that
{llvs]|z:} has an upper bound.

Summarizing, the sequence {v;} of continuous functions converges almost
everywhere to «” and has upper bound g = (')HX) |Vn, .1 — Un, |, which belongs
to L1(£2); hence v}/ P converges almost everywhere to v and for almost all z,
we have

03" = uf (@) < 27N ([ 4 [P ) (@) < 207 g + P ) (@):

/p

Consequently, by the dominated convergence theorem, 1{1] —u tends to 0 in

Lr(02).

Let p. be a regularizing sequence (cf. Section 1.4.2), let u be a function
belonging to LP({2), let § be a positive integer, and let ¢ be a continuous
function with compact support in {2 such that ||u—||Lr(o) < d. Let € be suf-
ficiently small that if | supp ()| denotes the N-dimensional Lebesgue measure
of the support of ¢, we have

b
supp ()| + 1)/’

H%*w—ﬂméu(

Since p. * ¢ € D(S2), this concludes the proof thanks to

(192) = pexeolly < u—lly+ o — pe % olly < 26. 0



1.5 The Spaces L? for p € [1,+00] 37
Let us note that in the case of RY, we have a more precise result, namely
(1.93) VYue LP(RY), |lpe*ullzr < ||ullze.

Indeed, if p’ denotes the conjugate of p, then Holder’s inequality gives

pewata)] = | [ oete = spatunay

< (/RN pe(x — y)dy> " (/RN pe(x — y)IU(y)pdy) "
= ([ o witwrar)”

By taking the pth power, integrating with respect to x, and applying Fubini’s
theorem, we obtain the result (1.93).

Let us conclude with the case RY. Let § > 0 and let ¢ € C.(RY) be such
that [|u — ||, < 6. Moreover, let ¢y be sufficiently small that

e<ey = |lpere—plp<e.

The triangle inequality then gives the result

e —ully < lloe * (w=@)llp + oo w0 = @llp +llp —ull, <35. O

Remark 1.94. The space D({2) is clearly not dense in L°°({2) for the norm
I|loo; indeed, density would imply the continuity of all functions in L.

The following theorem will be useful for results concerning compact em-
beddings in Sobolev spaces. It gives necessary and sufficient conditions for a
subset of L?(§2) to be precompact, that is, to have compact closure.

1.5.3 Compactness in the Spaces LP

Theorem 1.95. Let 2 be an open subset of RN and let p be a real number
with 1 < p < 00. A bounded subset K of LP({2) is precompact in LP(£2) if and
only if for every € > 0 there exist a real number § > 0 and an open subset G
with compact closure in §2 such that for every u € K and h € RN satisfying
|h| < § and |h| < d(G,052), we have

/ |u(z + h) — u(x)|Pde < e and / |u(z)Pde < €P.
G 2~\G

Let us note that by extending u by 0 outside of {2, we can replace G by {2
in the first condition.
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Proof of Theorem 1.95.
We may assume that 2 = RY. Indeed, it suffices to extend the functions
by zero outside of {2 and replace K by

K ={uecI?RY) |u-1,5 € K}.

The following arguments show that the precompactness of K in LP({2) is
equivalent to that of K’ in LP(RY). Indeed, let ¢ > 0, and let N(g) be an
integer such that if Bév is the open ball in LP(RY), we have the covering
property K’ C UKN(E) BZZ,V (pi,€) with ¢; € K'. Then, if B, denotes the open
ball in L?(£2), we have

K cC U B:D(Qoi|975>7
i<N(e)

where the ¢; belong to K'. Conversely, if K C UigN(s) B, (i, €), then K’ C
UigN(s) Bé\'(@-, €), where ¢; is the extension of ¢ by 0.

Let us now assume that K is a precompact bounded subset of LP(RY).
We begin by showing that the condition in the theorem is necessary.

Given € > 0, we can cover the precompact subset K by a finite number
of balls K; = Bj(v;,¢/6). By the density of the continuous functions with
compact support in LP(RY), there exists a finite set S of such functions ¢,
such that ||¢; —;|l, < €/6. Consequently, if u € K, there exists a j such that
u € K, whence

(1.96) Vue kK, 3o, €8, |u—pul, < g

Since the set S is finite, there exists a ball B, of radius r such that
Vo €S, supp(p) C By

hence, outside of B,., we have u = u — ¢,,. We can therefore conclude that

(1.97) Vue K, |u(:c)\pdx</ lu — @y P < €P.
N

RN\ B, R
The second condition of the theorem is therefore satisfied by taking G = B,..
For the first condition, let hy be such that |h| < hg implies

e

(1.98) Vo €S, Vz€bBn lplzth) —e@)l < gp——
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This implies that [, |¢(x+h)—p(z)[Pde < &P /3P. It follows that for all u € K,

([, o= atesipas)

3

1/p
n ( fuz) - sou<x>|f°dx) <35,
0 3

Conversely, let us show that if the conditions of Theorem 1.95 are verified,
then K is precompact in LP(RY). In order to do this, let p € D(RY) with
p =0, [onp(x)de =1 and, for n > 0, let p,(x) = n~Np(z/n) be the so-
called regularizing function. Let us begin by verifying that given € > 0 and
the compact subset G of RY of the theorem, there exists an ho > 0 such that
if n < hg, then

(1.99) Vue K, /‘(pn*u—u)(x)’pdxge.
G

Indeed, thanks to Holder’s inequality and [, p(z)dz = 1, we have almost
everywhere

g %1 — uf’(2) < / ool — y) — u(@)Pdy
< /pn(y)|7'yufu|p(x)dy.

Integrating with respect to = in G, we have for hq sufficiently small:
P P
/’pn*u—u’ < sup /‘Thu—u| (x)dx < e.
G h€B, JG

In particular, fG|p,7 * U — u’p uniformly tends to 0 for w € K when n — 0. Let
therefore ) be fixed such that for every u € K,

€
/G|p,7*u—u}pdx< T

Let us show, keeping 7 fixed, that the subset of C(RY) defined by K, =
{pn xu | u € K} verifies the hypotheses of the Ascoli-Arzela theorem on the

compact set G. In order to do this, we first use the inequality

(1.100) oy * )| < sup [py(@)] " ul,y,
TeRN
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to prove that the function p, x v is uniformly bounded for € G and v in K.
Indeed, this inequality results from the upper bound

1-1/p
— 1 - !
/ PP D Ol — Dldt < sup [py ()] /”( / o ””“’”) el

zERN

Next, for x € G, we have

1/
(1.101)  |py * u(x + h) — py xu(z)| < sup [pn(x)]l/p(/ |T—pu — u|p) p,
z€RN G

whence p;, x u is equicontinuous.

Finally, {p, *u | v € K} is precompact in C(G), so that there exist finite
subsets (1;) of C(G), 7 =1,2,...,k, such that
€

. p

Let ¢, be the extension of 1; by 0 outside of G. This belongs to L?(RY). We
have

[lu=dl < [ s [ -
RN RN _G G

€
§§—|—2p71 </ |u—pn*u|p—|—/ |p,,*u—1/)j|p> <e.
G G

By the above, K can be covered by a finite number of balls of radius € in LP.
Moreover, let us show that the centers of these balls can be chosen in K. We
will need the following result.

If K is a subset of a normed space X such that for every e > 0 there exists
a finite number of balls of radius € with center v; covering K, then K can be
covered by a finite number of balls of radius 2e with centers in K.

Indeed, let € > 0 and let vy, v2,...,v, be elements of X such that K C
U1<i<p B(v;,¢). Deleting some of the balls is necessary; we may, and do,
assume that for every i € [1,p], B(v;,e) N K # &. Let u; € B(v;,e) N K for
i € [1, p]. The finite set of the B(u;, 2¢) then covers K. Indeed, if u € K, then
for every i, there exists a v; such that |u — v;| < . Consequently, we have the
following result, which concludes the proof:

lu — ;] < 2e. O

1.5.4 Duality of the Spaces LP?

Theorem 1.103. Let 2 be an open subset of RN and let p be a real number
with 1 < p < 400. The topological dual of LP(£2) is L¥' (2), where p' is the
conjugate of p, that is,

p p
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Remark 1.104. The following proof uses the uniform convexity of L? for
1 <p<+o0.

Proof of Theorem 1.103.

We first show that if g € L¥'(£2), then we can define an element of the
dual LP(£2) as follows: to any g in L (£2) we associate a linear functional L,
on LP(£2) defined by fog = Ly(f). We verify that L, is linear and that

(1.105) I Lgll e 2y < lglprs
which implies that L, is indeed an element of the dual of L?(£2).

Next, let f = glg[”’ =2 if g # 0 and f = 0 otherwise; then f € L?(£2) and
JolfIP = fn|g|pl. Moreover,

(1.106) [Lg(N < 1 Lgllcro )y 1 f[lp-
However,
(1.107) Ly(h) = [ 1l = ol = 1515
We therefore have

, 1/p
(1.108) lglly, < I Lgllr oy (/ﬂ”f”p) )
whence

'(1—-1
(1.109) HglZ P = Lol oy = llgllpr-

This implies that the map associating L, to g is an isometry.

Conversely, we want to show that every linear functional on L?({2) can be
identified with an element of L¥'(£2). Let L be a linear functional on LP(£2)
of norm 1. We begin by showing the existence of a w of norm 1 in LP({2) such
that L(w) = ||L|(zr(2)) = 1. In order to do this, note that by the definition
of ||L|[(zr(0)y, there exists a sequence {wy} in LP(£2) such that [|w,|, = 1
and L(w,) — [|L||(zr(2))y- Let us show that {w,} is a Cauchy sequence in
LP(§2). If not, there would exist an € > 0 such that

VNeN Inm>=2N, |w,—wn|,>ec.

By the uniform convexity of LP({2), there exists a § > 0 such that for n,m
as above, we have || #2£%= |, < 1 —§. Moreover, we can choose N sufficiently
large that ||w, + wm|l, # 0, as ||wy, + ww ||, | L] = L(ws,) + L(wy,) — 2. We
then have

(1.110) 1>1L (M> >(1-6)"'L (M) .

[|wn, +wm”p 2
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Since n and m tend to infinity, L(w,)+L(w.,) — 2. This gives a contradiction,
whence {w,} is a Cauchy sequence.

Let w be its limit in LP(£2). We have L(w) = ||L|. Let g = w|w|P~2. It is
clear that g € L?' (£2) and ||g||£i = |lw||h = 1. We want to show that L = L.
We already have L(w) = Lgy(w). For w in L”, we have

(L111) u:(/gug)wm_(/gug)w.

Let us show that if v satisfies [, vg = 0, then L(v) = 0. For ¢ > 0 sufficiently
small that ||w + tv||, > 1/2, we have

w + tv
(1.112) L <4) < L(w) =1.
[[w + tvl|,
Consequently,
(1.113) tL(v) + 1 < [lw|lp + o(t).

Indeed, by the mean value theorem applied to the function t — |w + tv|P, we
have

[ wtol = [ ol = [ ot oo+ oeor

where 0(t) is a function such that |0(¢)| < t. For every t, the sequence of
functions g; defined by g:(z) = pv(w + 0(t)v)|w + 6(t)v[P~2 belongs to L.
For almost all z it converges to go(z) = pwv|w|P~2?(x) when ¢ tends to 0.
Moreover, g; is dominated by an L' function that is independent of ¢, as

lg9¢(2)] < plol(jv] + [w)([o] + [w])"~2(2) < p(|v] + [w])? (2).

By the dominated convergence theorem, we have

/Qgt(:z:)dx — /ng(x) =0.

In particular, |w + tv|, = 1 + to(1). Dividing by ¢t > 0 gives L(v) < o(1),
whence L(v) < 0. Replacing v by —v, which verifies the same properties, we
have L(v) > 0; whence, finally, L(v) = 0. We conclude the proof by using
(1.111):

(L.114) £w) = | (o)) = [ (ug) = Ly(w) 0

Proposition 1.115. Let 2 be an open subset of R™Y. The dual of L*(§2,R) is
L>~(2,R).
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Proof of Proposition 1.115.

Let us first treat the case where {2 is bounded. Let T € L'(2)’; then,
as LP(£2) has a continuous embedding into L'(§2) Vp € |1,+o0o], we have
T € (LP(2)). Let g, € LP (£2) be the element constructed in the proof of
Theorem 1.103, so that V f € LP(02), (T, f) = [,9pf. In particular, when we
suppose that f € C.(§2), we have

(1.116) /Q g () f () = /Q () f (2)dx

for all p1, p» > 1. Consequently g = g, is independent of p and ¢ € LT’,(Q),
Vp' < co. Moreover,

(1.117) (T < ATl zr @y £

Let ¢, = | g|” ~2g; then pp € LP(12), whence by Holder’s inequality, we have
Too) = [ a0y = [ loV" < loplh Tl oy

’ ’ (plfl)/p/ /
- ( / 9" Iy < ( / g") " (mes )7 | T 1 oy
2 2

Finally, by dividing by ||g||§i*1, we have ||g|l,y < (mes 2)Y/?||T|| 11y Let-
ting p’ tend to infinity, we obtain

(1.118) ge L™ and |glle <|IT|L1(0y-

Let us verify that this is actually an equality. Indeed,

17l = sup, (T.9)| = sup | [ o] < llellfl = gl
ferL! ferL!

[fla<1 [fli<1

Next, let £2 be unbounded. Let 2, = 2N {z | |z| < n} and let T}, be defined
on {2, by

(1.119) (T, ) = (T, fa),

where }; is the extension of f € L'(§2,) by 0 outside of £2,,. Note that };
belongs to L!(§2) whenever f € L'(§2,). The formula easily implies that
1Tl @y < I Tl o)y -

By the first part of the proof, there exist g, € L°°({2,) such that (T,,, f) =
an gnf. Taking functions f in D(f2,), we see that if n < m, we have the
equality g, = gm on §2,. In particular, g = lim g,, is well defined. Let y,, be
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the characteristic function of 2, and let f € L'(£2); then fx, — f in L'(£2).
As fxn € L' (2,) and T € (L'(£2))', it follows that

(1.120) (T, fxn) = (T, fxn) — (T, f).

Finally, using || T3 |[(z1(2,))" = |gn > (2), we conclude that

(1.121) ge L=(Q) and gl = ITIll(L1 () =
Comments

The results of this chapter cover different notions from functional analysis.
The reader can consult the work of Yosida [76] for functional analysis and
that of Schwartz [59] for distributions. The Clarkson inequalities are shown
in Adams [1], Clarkson [16]. The notions of weak topology and locally convex
spaces are, for example, developed in Bourbaki [9].

1.6 Exercises for Chapter 1

Exercise [#] 1.1 (Completeness of the Space L(X,Y)).

Let X be a normed space and let Y be a Banach space. Show that the space
L(X,Y) of continuous linear maps from X to Y, normed using L — [||L||| =
SUp|4(|x =1 | L(®)[ly, is a Banach space.

Hints. Let {L,} be a Cauchy sequence in £(X,Y). Show that for every z € X,
the sequence {Ln(x)} converges in Y. Next, show that the limit L(z) is such that
L : z — L(z) is linear. By passing to the limit with respect to the norms, show
that L is continuous. Finally, prove that |||L, — L||| — 0.

Exercise [] 1.2 (Examples of Baire Spaces).
Prove that a complete metric space X is a Baire space (cf. Definition 1.8).

Hints. You must, for example, show that if O, is a sequence of open subsets such

that for every n, O,, = X, then (1O, = X. Let W be an open subset of X. You
must show that W N () O.) # @. Let 1 be such that B(z1,71) C W N O;. By
recursion, let x; and r; < 1/i be such that B(x;,7;) C B(xi—1,7:—1) N O;. Show that
{z,} is a Cauchy sequence and that its limit belongs to W N (), On).

Exercise [#] 1.3 (Completeness of the Space of Summable Se-
quences).

Let £'(C) be the space of summable complex sequences. Show that the map
x={z,}— Zgoo |z, | is a norm for this space and that the space is Banach
for this norm.

Hints. Let {z™} be a Cauchy sequence. Show that for every n, the sequence

{xﬁm)}meN is convergent. Show that if x,, denotes the limit, then the sequence x
with terms x,, is summable and ||z(™ — z|| — 0.
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Exercise 1.4 (Topology on the Space D*(2)).
Let E = D*(2). Using the notations of Subsection 1.4.1 (cf. Countable family
of fundamental systems of neighborhoods), we know that E is the union of an
increasing sequence of topological vector spaces, namely the E; = D’;’(j. We
consider the family B of convex, balanced and absorbing subsets B of E such
that

Vj, BNE;isaneighborhood of 0 in Ej.

Prove that B is a fundamental system of neighborhoods of 0g for the TVS
topology on E.
Hints. Use Proposition 1.5. To be able to do this, first show that if B € B and A > 0,

then A\B € B and, moreover, that the intersection of two elements of B is also an
element of 5.

Exercise [#] 1.5 (Weak Topology on the Dual of a Normed Space X).
We consider a family B of subsets of X defined as follows using elements
zo € X, finite subsets F’ of X', and real numbers £ > 0:

By rre={r€X|Va' € F |(x —x,2)| <e}.

(1) Prove that B is a fundamental system of neighborhoods for the topology
on X. In order to do this, show the following two properties:
a) | {B|BeB}=X.
b) If By and Bj are elements of B and if € By N By, then

dBs €B, 1z € B3 C B;NBs.

(2) Prove that the resulting topology on X, denoted by o (X, X’), is Hausdorff
and that scalar multiplication and addition on X are continuous for this
topology. Show that this is a topology of locally convex space.

(3) Prove that every open subset of X for the weak topology is an open subset
of the normed space X . That is, show that the norm topology is finer than
the weak topology.

Hints. Use Propositions 1.5 and 1.6. For question (3), note that the set B, p/ . is
a finite intersection of inverse images of open subsets of R under the continuous
maps «’ from the normed space X to R.

Exercise 1.6 (Example of a Sequence of Continuous Linear Func-
tionals).

Let X = £' be the space of summable sequences. Let {un} be the sequence of
linear maps from X to C defined by u,(z) = .

(1) Show that w,, is continuous and determine its norm.
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(2) Show that the sequence of linear maps (u,,) converges pointwise to 0, that
is, that for any = € £, u,(x) — 0.

Note that the norm of u,, in £(X,C) equals 1. Deduce from this that u,
does not tend to 0 for the operator norm on L£(X, C).

Exercise 1.7 (Minkowski Functional).
We use the definitions of balanced and absorbing convex subsets given in this
book (Definition 1.1).

(1) Let M be a balanced absorbing convex subset of a topological vector
space X containing 0. We define the Minkowski functional p of the convex
set M as follows:

VeeX, px)= t1r>1£{t | 2/t € M}.

Show that p is subadditive, positively homogeneous of degree 1 (that is, p
is a seminorm on X). Also show that Vo € M, p(x) < 1.
(2) Conversely, show that if p is a seminorm, then the subset M defined by
M = {z | p(z) < 1} is convex, balanced, and absorbing and contains 0.
(3) Show that M is open in X if and only if p is continuous.

Hints. Note that for e > 0, z/(p(x) + ) € M. Use the convexity to deduce from this
that

pa)te _w  pyte _y
p(x) +ply)+2¢ plx)+e  plx)+ply)+2¢ ply)+e
Conclude that

eM

p(z +y) < plz) + ply) + 2.

Exercise 1.8 (Mazur’s Theorem).
Let M be a convex set containing 0 in its interior. Prove that if xo¢ M,
then there exists a continuous linear functional f such that fo(zo) >

sup e [ fo(@)]-

Hints. By the previous exercise, the Minkowski functional M is a continuous semi-
norm. Next, apply the geometric form of the Hahn-Banach theorem (Theorem 1.19).

Exercise [¥] 1.9 (Closed Graph Theorem).
Let T be a linear map from a Banach space X to a Banach space Y with
closed graph. Prove that T is continuous.

Hints. By assumption, the graph is closed in X x Y, which is a Banach space.
Consequently, the graph is a complete subset. The projection p; of the graph on the
first space (that is, p1(z,Tx) = x) is linear, continuous and bijective. It therefore
admits a continuous inverse U. If py is the projection on the second space, we have
T = p2 o U, which is the composition of two continuous linear maps. Complete the
proof.
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Exercise 1.10 (Embeddings in Lebesgue Spaces).

(1) Let £2 be an open set with finite Lebesgue measure. Show that if p > ¢
then we have
LP(02) — Li(£2).

(2) Use a counterexample to show that this is false if 2 has infinite measure.
(3) Let {2 be an arbitrary open set. Show that

p<r<q = LP(2)NLIN) — L"(02).
Also show that

Ve LP(@)nLi82),  |fllr < sup(fllp, [1£1q)-

Exercise 1.11 (The Limit of L? Norms when p — +00).
Recall the definition of L*°(f2) and of the norm ||:||o on this space. Prove
that if f € L ()N L"(12) for at least one index r > 1, then

g 1l = 1

Exercise 1.12 (Means of f for f € LP(RT)).
Let p € ]1,00[ and let f € LP(R"). Define F as follows on R™:

(1) Show that F' € LP(R*) and || F|, < %anp.

(2) Using, for example, functions with compact support, show that there ex-
ists an f € L'(R™) such that ' does not belong to L*(RT).

Hints. Apply Lemma 3.14 of Chapter 3 with v = 0.

Exercise 1.13 (Compact Operators Theory).
Let K be a continuous function on [a,b] x [a,b] where a < b, (a,b) € R2.
Define an operator as follows:

Viec(ab), Tf(x /ny

Use the Ascoli-Arzela theorem to prove that T is an operator that transforms
the unit ball in C([a, b]) into a relatively compact subset of C([a, b]).
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Exercise 1.14 (Compact Operators Theory, Continued).
Let {2 be an open subset of RV. Let K € L?(£2 x 2) and define T as follows:

VieLXQ), Ti(x)= /Q K(z,9)f(5)dy.

Prove that T sends L?(§2) to itself and that the image of the unit ball in
L?(0) is a relatively compact subset of L?({2).

Hints. Let {f»} be a sequence such that || f.|| 2 < 1; then T'f, is bounded in L?. You
can therefore extract a subsequence that converges weakly in L?. Show that (T'f»)?
is dominated by a fixed function belonging to L. Use the dominated convergence

theorem to conclude the proof. Another proof uses the criterion 1.95 given in this
book.

Exercise 1.15 (Space of Sequences, Completeness and Duals).
We define the spaces cg, £', €°, and £ as follows as subsets of CV:

+oo
(zn) €coif lim z, =0 (z,)€L"if Z |z, | < 00
0

n—-+oo
+o0
(@n) €7 D |an|? <00 (2n) €L IM, Vi |z, < M
0

(1) Show that these are Banach spaces.
(2) Show that ¢}, = £', (/) = £° with 1/p+ 1/p’ =1 for p € ]1,4o0[. Show
that (£') = £, while (£°)" # £'.

Exercise 1.16 (Jensen’s Inequality).
Let j be a convex function on R and let p be a probability measure on [a, b],
where a < b (that is, the measure p satisfies [dp = 1). Let f € C(]a, b[). Show

that X ,
j(/a fdu)</a jo fdp.

Deduce from this that if p € [1,+o00[ and f € LP(Ja, b[), then

/ab @)lde < Ja— b|(p1>/p(/a” |f(x)‘pdx>1/p.

Exercise 1.17 (Separable Hilbert Spaces).

Let f be an element of L?(]0,27[), extended periodically to R. Recall the
Bessel-Parseval theorem, which states that if the Fourier coefficients of f are
en(f), then

I 2 = 2
3 [, VOPE=3 a0

Prove that L?(]0,2n[) is a separable space.
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Exercise 1.18 (Sum of Two Lebesgue Spaces).
Show that if p € [p1, pa], p1 < p2, then

LP(02) — LP(0Q) + LP2 ().

Hints. Given o > 0, let

filz) = {f(a:) if |f(z)| > o,

0 otherwise;

then f; € LP' and f, € LP?, where fo = f — f1.

Exercise [¥] 1.19 (Weak or Norm Convergence of Sequences of Dis-
tributions).

Let {a;j};jen be a sequence of elements of RY such that |a;| — +oo. Let
{Aj}jen be a sequence of complex numbers. Prove that the sequence of dis-
tributions {\;dq,} converges to 0 in D'(RY).

Exercise [#] 1.20 (Extension of a Distribution with Compact Sup-
port).

We will only consider the case N = 1. Let T" be a distribution with compact
support K. Let V.(K) = K + [—¢, +¢] be the closed neighborhood of K of
order € > 0.

(a) Show that there exist functions o € D(R) such that
Ve e Vo(K), alx)=1.
(b) For every function ¢ in E(R), let

(Uyp) = (T, ap).

Show that U is a continuous linear functional on the locally convex space
E(R). Show that U does not depend on the choice of a and that U is an
extension of T' to the space £(R).

(c) Conversely, show that every element of £'(R) can be identified with a
distribution with compact support.

Hints. Consider a continuous function with compact support that equals 1 on
a neighborhood of K. Taking a convolution with a regularizing function p.
(cf. Subsection 1.4.2) gives a suitable function. For the independence of «, consider
(T, (a2 — a1)p) and use the definition of the support of 7T'.

For (c), the linearity and continuity are immediate. Show the result on the
support by contradiction, using the continuity of U on £(R).
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Exercise [] 1.21 (Relatively Weak-Star Sequentially Compact Sub-
set of L!(12)).

Let {2 be a bounded open subset of RV. Let A be a subset of L!(2) with the
following properties:

(1)3IM>0,VfeA [,|f(x)|ds <M.
(2) Ve > 0, 36 > 0 such that

VBC O, mes(B)<d — VfcA, / 1 (2)|dz < e.
B

Show that A is relatively weak-star sequentially compact in L!(2).

Hints. Begin by extracting from {f»}, a sequence of functions on A, a subsequence
that converges for the weak-star topology to a bounded measure p on 2. The next
step consists in using the lower semicontinuity of the integral on an open space
for the weak-star topology (cf. Chapter 6). Use this to show that u is absolutely
continuous with respect to the Lebesgue measure.

Exercise 1.22 (Equi-integrable Functions in L!).
We call a sequence { f,, } functions in L! equi-integrable if for every e > 0, there
exists a § > 0 such that mes(E) < d implies that for every n, [ |fn(z)|dz < e.

(1) Show the following property:
Let X be a subset of RV with finite Lebesgue measure. Let {f,} be
an equi-integrable sequence of functions in L*(X) that converges almost
everywhere to f; then f € L1(X) and {f,} converges to f in L*(X) for
the norm topology.

(2) Show that this result is false if X is not of finite measure.

(3) Show the analogous result for LP, that is, if {f,,} converges almost every-
where to f and if | f,|P is equi-integrable, then {f,} converges to f in LP
for the norm topology.

Hints. Show that the hypothesis that X has finite measure implies the existence of a
finite number N of sets E; of measure < ¢ such that X C UléigN E;. Consequently,
by Fatou’s lemma,

[ \s@ide <tim [ \gata)ide < N
X b'e

Conclude that f € L'(X). For the norm convergence, let § be associated with /3
in the definition of equi-integrability and such that mes £ < ¢ = [, |f(x)|dx < e/3.
Extract from {f.} a subsequence that converges in measure, that is, for which there
exists an NNg such that

n > No = mes[{z € X | |fn — f|(z) = e/3mes(X)}] < 4.
Conclude with the following inequalities, where A, = {z | |fn—f|(z) < /3 mes(X)}:

[ir=ni< [ -ne [ wnieimegeses

An
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(2) Consider the sequence {f,} on R defined by fn = Lx(;.24).

Exercise 1.23 (Rearrangement Function, cf. Chapter 7).
Let f be a measurable function on the measured space X with values in C
and almost everywhere finite. Let A(s) = [{z € X | |f(z)| > s}|.

(1) Show that X is decreasing and right-continuous on RT.

(2) If f € LP with p < 400, show that sA(s)'/? < ([ |f(x)|pdx)1/p. We then
define the decreasing rearrangement function of f on RT to be f*(t) =
inf{s | A(s) < ¢}. Show that f* is decreasing and right-continuous.

(3) Let f be a simple function, that is f(z) = ¢; for x € E;, where the E;
are disjoint measurable sets. Assume that |c;| > |¢;_1| for every j. Let
dj = > k<, |Ek|. Show that

Vt, dj,1 <t<dj:>f*(t):Cj.

(4) Suppose that p € [1,00[. Show that if f € LP(R), then there exists a
sequence of simple functions f,, such that {|f,|} is an increasing sequence
that converges almost everywhere to |f|. Also show that A, (s) converges
to A(s) as n increases and that for every ¢ > 0, f(¢) tends to f*(¢) as n
increases. Conclude that

vielLr, frelP and [fl,=f"llp-

Exercise [#] 1.24 (Continuous Linear Functionals on a Locally Con-
vex Space).

On a locally convex space X, consider a linear functional f generated by a
family of seminorms {n,}. Show that f is continuous if and only if there exist
an M > 0 and a seminorm 7, such that Vo € X, |f(z)| < Mn(x).

Hints. For every open disc D in C, f~*(D) is a neighborhood of 0 in X, and hence

contains a closed ball associated with one of the seminorms 7. Conclude the proof
as in a normed space.

Exercise ] 1.25 (Bounded Subsets of a Locally Convex Space).

By definition, a bounded subset B of a locally convex space X is a subset
of X such that for every neighborhood U of 0, there exists an o > 0 such that
|8l =2 a = B C SU. Let {n)} be a family of seminorms defining the topology
on X. Show that B is bounded if all of these seminorms are bounded on B.
Hints. The unit ball associated with 7, is a neighborhood of 0, and hence absorbs B.

The inequality follows from this. Conversely, suppose that sup,c g 7a(x) < M) for
every A. Denoting the unit balls by By, we then have

Vr >0, BC Bx0,M)\)=M\By= %BA(OJ“);

hence B is absorbed by every neighborhood of 0 in X.
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Exercise 1.26 (Dense Subsets of L?(I), where I Is an Interval).

Let I be an open interval of R. Consider the space L?(I), where p € [1,+o0].
Let S(I) denote the space of simple functions on I, that is, of functions that
can be written as s = Efi ciXa,;, where the A; are measurable spaces. Let
E(I) denote the space of step functions on I, and let C.(I) be the space of
continuous functions with compact support in I.

(1) Show that S(I) is dense in LP(I). In order to do this, given a nonnegative
f € LP, use the sets f~1([52, 5 [) and f~!([n, +00[).

(2) Use the following property of the Lebesgue measure p on I:
if J C I is measurable, then there exists a sequence {J,} of subsets
of I that are finite unions of disjoint open intervals such that p(J) =
limy, 40 p(Jn),
to show that if I is bounded, then every simple function is the limit in
LP(I) of a sequence of step functions.

Conclude that E(I) is dense in LP(I), and then that C.(I) is dense in
LP(I). Show the same results when I is unbounded.

Hints. For (1), use the following simple functions, where F; ,, and F, are the inverse
images introduced in (1):

n2™

sn= (i =127 "xr, . +nxr,.
1

Show that 0 < s, < f and apply the dominated convergence theorem. Conclude
for f with arbitrary sign.

For the density of C.(I), approximate x[4,;) by a continuous function with com-
pact support in I that is piecewise affine.

For an unbounded I, write I as an increasing union of bounded intervals I,, =
[, bu] with [[f — fx1, [[p — 0.

Exercise [+x] 1.27 (Finite Subsets Distributions (cf. [22])).
In this exercise, we restrict ourselves to functions U (¢)t*, where U is the Heav-
iside step function. These functions are not locally summable when a<—1.

(1) The case of U(t)t*, where . = —n and n > 1 is an integer.
The integral J. = f;oo p(t)t~ ™ dt, where ¢ is an element of D(R), in
general does not have a limit when ¢ — 0. If ¢¥ _,(¢) denotes the Taylor
polynomial of degree n — 1 about the origin for the function ¢ and A is

an upper bound for the support of ¢, then we can write J. as

A A
Jo= [Tt el ars [ e

Show that the first integral has a finite limit when € — 0, so that the non-
existence of lim.J. in a sense comes from the second term. This second
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term can be written as

A
/ (O dt = Ka — To(0f 1 (07,

where Z. (% _;(t)t™™) denotes the value in e of the primitive without
constant term of the function ¢ _(t)t™", and K4 is the value of this
primitive at the point A. The function —Z.(p}_;(t)t™™) can be qualified
as the infinite part.

Next, we cut off this infinite part from the integral J., making it possible
to take the limit for € — 0. Show that this gives a distribution 7', denoted
by Pf(U(t)t™™), and defined by

+oo
() VoeD, <T,so>=hm[/ so(t)t-"dt+zg<sazl<t>t-">}

e—0
oo k=n—2 —n n—
= limy U+ PO+ kZ:O LP(IZ!(O) {ksi 7:1] + [(p((n —1)1()0!) hl(s)H'

Show that supp T C R*. Prove that if p is an integer > 0, then
tPPEU (L)) = PEU)E P,

where the symbol Pf vanishes when p > n — 1. Determine the derivative
of PI(U(t)t™™).

(2) The case where U(¢)t*, « is complex, non integer, with Re () < —1.
Assume that —n—1 < Re (a) < —n, where n is still an integer with n > 1.
Applying the previous method, give the definition of the finite part T, of
U(t)t™ through an equality analogous to (*). Show the formula

k=n—1

(Ta, ) = lim [/:oo Q(t)tdt + kZ:O ¢(2!(0)[ e H

e—0 k+a+1

Determine the products t” Pf(U(¢)t®). Find the derivative of Pf(U(¢)t%).
(3) Likewise, we define the left-finite subsets PEU/(—t)[t|™™), PE(U(—t)t™™),
and Pf(U(—t)|t|*), and the two-sided finite subsets:
PE([t]%) = PEU(0)t*) + PEU(=)[E*),
PE(t™") = PEU@)t™") + PEU(—t)t™").

Determine the derivative of Pf(¢=™).
(4) Examples of logarithmic finite subsets.
a) Use the same method as above to justify the following definition:

In? ¢ T In

<Pf (U(t)T),<p> = lim U #g@(t)dﬂ— %(p(O)(lnt) .

e—0
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b) Let f(t) = U(t)t~>/?Int. Justify the following definition:

(PE(f), ) — lim { / T ()t f)j_g [3n(e)+2] - 2;’/(20) [in(e) +2H .

e—0

After defining the distribution Pf(|t|=3/21n[t|), determine its deriva-
tive.
¢) Show that for the function f defined by ¢t — f(t) = Int/t, we have

[PEUE) (1)) = [PEU®) ' (1))]-
Also determine the second derivative [Pf(U(t)f(t))]”.

Exercise 1.28 (Norm in a Quotient Space).
Let X be a normed space and let Y be a vector subspace of X. We define the
classes modulo Y by

VeeX, Z={z+ylyeY}.

Classically, the set of these classes is a vector space, denoted by X/Y and
called the quotient space of X modulo Y.

(1) Show that the map = — inf,cy {||z + y[|} is a seminorm and that it is a
norm on X/Y if and only if YV is closed in X.

(2) Suppose that X is a Banach space and Y is a close subspace of X. Show
that if {z,} is a sequence in X/Y, then there exists a sequence {xz,}
in X such that for every n, z, = 2, and |z,|[x < [lznllx/y + 1/2".
Deduce from this that all sequences converging normally in X/Y, that is,
such that 3¢ ||z,|| < 400, converge in X/Y. Conclude that X/Y is a
Banach space.

Hints. For the last conclusion, consider a Cauchy sequence {z,} in X/Y. There
exists a strictly increasing map o from N to itself such that

20(p+1) = 2ol x/v <277

Setting uo = 2,00y and up = 2,(p) — Zo(p—1), Show that the resulting sequence
converges normally. Deduce from this the convergence of a subsequence extracted
from the sequence {z,}. Conclude that {z,} converges.

Exercise [#x] 1.29 (Absolutely Continuous Functions and Distribu-
tions on an Interval I).
A function f on an interval I in R is called absolutely continuous if there

exists a function g: I — R belonging to L{,.(I) such that for every pair of

points (z,y) of I, we have f(z) — f(y) = f;g(t)dt.
An absolutely continuous function on [ is almost everywhere derivable
on I, and its derivative is almost everywhere equal to g.
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(1) Let U and V be absolutely continuous functions on I with almost ev-
erywhere derivatives u and v. Using the density of C.(Ja,b[) in L*(]a, b])
(cf. Exercise 1.26), show the formula for integration by parts, that is, for
every pair (a,b) of points of I,

b b
(1.122) / U(tyo(t)dt = UB)V (b) — U(a)V (a) — / V(t)u(t)dt.

(2) Let w € LL _(I) be such that its derivative in the sense of distributions

loc

satisfies [u]’ € L (I). Let a € I be a point at which u is well defined.
Let v(z) = u(a) — [ [u]'(t)dt, and let ¢ € D(I) have support in [a, 3.
Using formula (1.122), show that [v]" = [u]’ and deduce from this that
v — u is almost everywhere a constant C on I. Show that if u is moreover
continuous on I, then u is absolutely continuous on I and v’ = [u]" almost
everywhere on I. Finally, show that if w and [u]’ are continuous on I, then

u € CH(I).

Hints. For (1), as the sequences {u,} and {v,} in C.(I) converge to u and v, re-
spectively, in L' (Ja, b[), let Un(x) = U(a) + [“un(t)dt. Write down the integration
by parts for the functions u, and v, and show that U, converges uniformly to U in
]a, b[, and the analogous result for V,,.
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Sobolev Spaces and Embedding Theorems

2.1 Definitions and First Properties

Definition 2.1. Let {2 be an open subset of RY. For m € Nand 1 < p < +o0,
the Sobolev space denoted by W™P((2) consists of the functions in LP({2)
whose partial derivatives up to order m, in the sense of distributions, can be
identified with functions in LP(£2).

o N
For these derivatives, we set v = (v, ..., an) and |a| = > ] «;. Moreover,
we use the notation

olely
2.2 Dy= —--— .
( ) u aal.T]"'aaNxN
The definition above can now be written as
(2.3)  W™P(R2)={ue LP(2)|VaeNY, |a| <m= D € LP(2)}.

Remark 2.4 (on the structure of the derivatives in W1?(2)). We will
use the notion of the derivative of an absolutely continuous function in the
usual sense (cf. Exercise 2.3) to better understand what it means for u to
belong to W1P(£2).

Let u € WHP(£2); then for every i, the function u is absolutely continuous
along almost all lines parallel to the vector e of the canonical basis of RV.
Moreover, the derivative 0;u of u in the usual sense, which exists almost
everywhere on {2, belongs to LP({2) and is almost everywhere equal to the
derivative in the sense of distributions. Conversely, if for every i, u € LP(§2)
is absolutely continuous along almost all lines parallel to e;, with derivatives

d;u in LP(2), then u € WHP(02).

It follows that if u is of class C! on §2, then we can verify that u € W1P(§2)
by showing that the functions u and d;u belong to LP(§2). The following
examples use this property.
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Remark 2.5. For p = 2, the notation W™2(2) is generally replaced by
H™(0).

Remark 2.6. When 2 = R, we can use the Fourier transform & — () of
a function u in L2(RY) to give the following equivalent definition:

Wr2RYN) = H™(RY) = {ue L*(RY) | € = (1+ [¢[*)™/2a(§) € L*(RY)}.

Example 2.7. Consider the open unit ball 2 = B(0,1) in R2. Let us de-
termine under which condition the function w on {2 defined by w(z,y) =
xy(2? 4 y?) 7 outside of the origin, with 3 > 0, is an element of H'(£2).

More precisely, let us show that u € H(£2) if and only if 5 < 1. The
integral of |u|? on (2 exists if 5 — 43 > —1 or, equivalently, if 8 < 3/2. Indeed,
in polar coordinates, the integrand can be written as

|u|?rdrdf = r®=*F(sin 6 cos §)2drds.
For the derivative in x in the usual sense, this gives
Opu = y(a® +y°) 7 = 2827y (2® +¢*) 7L

This derivative is continuous outside of (0,0). The integral of its square con-
sists of three terms in which the exponent of r is equal to 3 — 43. These
exponents are all greater than —1 if and only if the condition f < 1 is sat-
isfied. Since the function is symmetric in z and y, it follows that if 5 < 1,
then u and its derivatives belong to L?(B). By Remark 2.4 above, this implies
that the latter are derivatives in the sense of distributions.

This concludes the proof of the necessity and sufficiency of the condition
stated above.

Example 2.8. Consider the open unit ball £ = B(0,1) in RY. Let 72 =
Ziv % and let u be defined on 2 by u(z) = (1 —7)P(=In(1—7))%, where « is
an arbitrary real number and 5 > 0. We want to know under which conditions
on « and B that u is an element of W1P(2).

The function u admits two singularities, at 7 = 0 and at r = 1. As the
logarithm is equivalent to r® at 0, the function |u|P is summable on 2 if
N -1+ ap > —1, that is, if « > —N/p. At r = 1, the function can be
extended by continuity. The derivative in the usual sense, for example at x1,
is then

dru(z) = %(1 — 1) In(1 — r)[*" (B In(1 — )| + ).

At r = 0, as the first logarithm on the right-hand side is equivalent to r®~1,
we find that v and its derivative both belong to L? in a neighborhood of 0 if
1—a< N/p.

At r =1, the integral of |0;u|P converges if
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e either #>1—1/p, or
e f=1—1/pand ap< —1.

Summarizing, u € W1?(B(0,1)) if and only if either 3 > 1 — 1/p and
a>—-N/p,or f=1—-1/pand —N/p < a < —1/p.

Example 2.9. Given k > 0, consider the open subset
Q={(z,y)|0<z<1,2"<y< 2"}

of R%. We will study for which a € R, (z,y) — u(x,y) = y* belongs to H™,
where m € {1,2,3,...}.

For a > 0, the function v admits a continuous extension to 9f2, so that
u € L2({2). The first derivative dyu(z,y) = ay® ! cannot be extended by
continuity to the point # = 0 if o < 1. Nevertheless, it does belong to L?(2)

if the integral
1 2"
/ {/ y20‘_2dy] dx
0 xk

exists, or, equivalently, if (2o — 1)k > —1. We can deduce from this that for
k>0, we have u € H*(02) if « > 1/2 — 1/2k.

The second derivative belongs to L?(£2) if (2a — 3)k > —1, that is, if
a > 3/2 — 1/2k. Under this condition, u € H?({2). This holds, for example,
when k = 1/6 (cf. Figure 2.1) and o > —3/2, in which case u need not be
bounded on f2.

Tz
Fig. 2.1. An open subset {2 and elements of H™.
Let us continue. We find that the condition under which u belongs to

H™(2) can be written as (2a — 2m + 1)k > —1. Given m, we can choose «
and k such that this necessary condition is satisfied.
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Proposition 2.10. The space W™P({2) endowed with the norm defined by

1/p
[ZK'QKW HD&“”Z?(Q)] if 1 < p < 4o0;

[ullwmr o) = . ,
mMaxog|af<m || D “HLw(Q) ifp=+oo,

is a Banach space. For p € |1, +o0l, this space is uniformly convex and there-
fore a reflexive space. The space H™(§2) endowed with the inner product

(u,v) = Z (Dau, Do‘v)L2(Q)

0<|al<m
is a Hilbert space.

Exercise 2.1 offers a proof of these statements. Many propositions in this
chapter are concerned with the approximation of functions in W1 (£2) or the
density of certain subspaces. For such problems, we often use a cover of the
open set 2 by a family of open subsets {A4,}. We admit (cf. Exercise 2.2) that
to such a cover, we can associate a family of functions {¢;} called a partition
of unity subordinate to the cover {A;} of (2.

Definition 2.11. A C* partition of unity subordinate to an open cover
{A;},en of the open set £2 is a set of functions t; with the following properties:

(1) For every j, the function t; is a nonnegative element of C*°({2) with
support in A;.

(2) For any compact subset K of {2, only a finite number of the functions v,
are not zero on K.

(3) Forallw € 2, 3 .y ¢;(z) = 1.

We use such a partition in the proposition below, where it allows us to
approximate functions in W™P?((2) from the inside, without any regularity
assumption on §2. The proposition makes it possible, for example, to replace
functions that belong to WP (£2) by C*>°(£2) functions during computations,
in particular during the proof of the Sobolev embedding theorem.

Proposition 2.12. Let §2 be an arbitrary open subset of RY. The subspace
C®(2)NW™P(R) is dense in W™P((2).

Proof of Proposition 2.12.

We begin with the case 2 = RN. Let u € W™P?(RY). Consider a regular-
izing sequence (cf. Section 1.4.2) z — p.(x) = 1/eNp(x/¢) and a real number
6 > 0. In Section 1.4.2, and in particular in the proof of Theorem 1.91, we
saw that the function p. x u € C*®(RY) and its derivatives, which satisfy
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D(p. % u) = p. x D*u, are elements of LP(R"). Moreover, we saw that there
exists an g¢ such that for all € < ¢y, we have

(2.13) |Ju—pexul|lr <0 and Va, |of <m, || D — pe*D%llrr <0

(cf. (1.92)). Tt follows that p.xu € W™P(RY) and that there exists a constant
', such that

(2.14) lw — pe * uljwm.r < Cpd,

which concludes the proof in the case of RV.
Next, consider an open subset 2 # RYN. We will use an open cover
{02;}jen+ of £2 defined by

Q2; ={z e 2||z| <jCi and d(z,002) > Ca/j + 1}.

The constants C; and Cy are chosen such that (2 # @&. The resulting
sequence of bounded open subsets is increasing and covers 2. After set-
ting £20=12_, =0, we define the sequence of open subsets {A;} by setting
Aj = Qj+2 \ﬁforj> 1 and Ag = Qg, A = (5.

The family {A,} is again an open cover of {2, and we can easily verify that
if |j — 4’| > 3, then A;NAj = @. Let {¢;} be a partition of unity associated
with the cover {A,}. Let ¢; be sufficiently small that for a given ¢, we have

Vj=>2, Aj+B(0,5j)CAj_1UAjUAj+1,

3

Viz 0, llp, > (ju) = (bju)llwme < 57

Next, consider the function v(®) defined by

—+oo

(2.15) V& =3, * ().

0

This function is well defined, as the sum on the right-hand side is locally finite.
We can deduce from the inequalities above that v(®) € W™P(2).

Setting u = Y ¢ (1);u), we can conclude the proof using the following
inequality:

“+o0
(2.16) 10 —ullwmaiay <Y llp., * (W) = (@ju) |wms
0

+o00 c
<22j+1:€' O
0
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Corollary 2.17. (1) Let u € W'?(2) and let v € W' (£2), where p and p'
satisfy 1/p + 1/p' = 1. The product uv is then an element of WH1(2),
and

Vie[l,N], 0;(uv) =udv+ vo;u,

where the expressions in the equality are all well defined under the as-
sumptions.

(2) Let u be an element of WHN(92); then |ulN"1u and |u|™N both belong to
WLL(92), while

V(julVu) = Nu|N'Vu. and  V(|ulY) = Nlu|N ?uVu.

Remark 2.18. In (2), W5V (£2) may be replaced by W14(02) for ¢ € |1, 00].
The result is then
Let u € WH4(0); then [u|7Yu and |u|? both belong to W11(£2), while

V(jul? ) = qlu|?'Vu  and  V(|ul?) = qu|?*uVu.
V(jul? ) = qlu|?'Vu  and  V(|ul?) = qlul?*uVu.

Proof of the Corollary. (1) By the proposition above, there exists a sequence
{u,} CC®(2)NWLP() that converges to u in W1P(£2). For this se-
quence, we have

i (unv) = 0;(un)v + und;v,

where each term is seen as a product of a C* function and a distribution.
Let us take the limit of the left-hand side in the sense of distributions.
We have u,v € L) and ||u,v — wv|pr < |Jun — ullze ||v]|zer — O.
It follows that {u,v} — wv in L', and consequently also in the sense
of distributions. By a property of distributions stated in Section (1.4.8),
0i(unv) — 0;(uv) in the sense of distributions. Likewise, as u, — u and
Oiuy, — Oju in LP, the right-hand side converges in D’ (2). Taking the limit
therefore gives the desired equality and, moreover, shows that 9;(uv) € L*,
whence uv € Wh1(£2).

(2) Consider a sequence u, € C°(£2) N WLP(£) that converges to u in
WLN(£2). We can easily show that the gradient of |u,|" is given by

Nlun [N 2 u, [Vu,].

Since |u,|N ~2u,, converges to |u|N~2u in LN/(N=1) and Vu,, converges to

Vu in LY, it follows that N|u,|Y~%u,Vu, converges to N|u|N~2uVu
in L'. Moreover, as |u,|¥ — |u|Y in L', the convergence also holds
in D'(£2). Consequently, V(|u,|V) converges to V(|u|") in D'(£2). Taking
the limit therefore provides us with the identity

V(|ulN) = Nju/N " 2uVau.
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Finally, using Holder’s inequality with the conjugate exponents N/(N — 1)
and N, we have

N-1/N 1/N
/\V(|u|N)|d:v<N(/ ]z (/ Vel Ve
2 (9] (9]

We have therefore proved that |u|N~1u € W11(£2).
The reasoning for the second statement concerning the gradient of |u|¥ ~1u
is similar. O

Corollary 2.19. Let u € Wli)cp(()) This means that for every function
© € D(92), we have pu € WHP(£2). Let x¢ be the point (z(,t) € 2, where
zh € RVN"1 and t € R. Let B'(zf,r) denote an open ball in RN~ and let
B*(x9,r) denote the open cylinder B'(xz(,r) x| —r,r| whose closure, for r suf-
ficiently small, is included in 2. Then, for almost all pairs (2',t) and (2',t’)
of elements of B*(xo,r), we have

t
(2.20) u(z' ) —u(a', t) = / On u(z’, s)ds.
t/
Proof of Corollary 2.19.
For (t,t') € (] — r,r[)? and 2’ € B'(z},r), let

¢
11(3:'):/ Oy u(a', s)ds.
t/

Let us show that v € LP(B’(x(,r)). The function (z’,s) — dyu(z’,s) is an
element of LP(f2), as B*(xo,r) C {2, and hence is summable in s on the
interval [t',t] in | — r,r[. It follows that v is defined almost everywhere on
B'(z(,r). Next, by Holder’s inequality and Fubini’s theorem, the following
holds for almost every pair (t,t'):

t/
1ol 0 (5 —/B/‘/t On u(a’, s)ds
t/
g/ \t—t'\p_l/ |On u(2’, s)|"dsda’
' t

<t — t’|p_1/ 0N u(z)["dz < +o0.
B*

p
dx’

Let {u,} be a sequence of elements of C*°(B*)NW?(B*) that converges to u
(cf. Proposition 2.12). We define the sequence {v,,} on B’ by setting

¢
vn(z’)z/ ON un (', 8)ds.
t/

Replacing u by u,, —u in the preceding computation, we see that v,, — v in
LP(B’"). We can therefore extract a subsequence {v,,} that converges almost
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everywhere to v on B’. Likewise, we can extract from {u,,} a subsequence
{to(ny} that converges almost everywhere to u on B*. Since the functions
Ug(n) are regular, we have

t
U (n) ('T/a t) — Ug(n) (l‘/, t/) = / On U (n) (I/, S)dS = Us(n) (I/)
t/

The corollary’s formula follows from the almost everywhere convergence on
both sides. O

Below we give another consequence of Theorem 2.12; which is very use-
ful, in particular when extending a function in W"P({2) to a function in
WmP(RY) when (2 is a Lipschitz open set. For a function in W™P({2), such
an extension requires a technical lemma about changes of variables.

Corollary 2.21. Consider two bounded open subsets £2 and 2" of RV, Let a
be a function giving a bijection from §2' to 2, where a and a~' are more-
over both Lipschitz. Let p > 1 be given. If u € WYP(£2), then the composed
function v = woa is an element of WYP(£2') and the derivatives of v in the
sense of distributions are given by the usual derivation formulas for composed
functions. Moreover, there exists a constant C(|Vals) depending on |Va|so,
such that

[uo allwr @y < C(IValoo)lullwir(e)-

Proof of Corollary 2.21.

Let {u,} be a sequence in WP(£2) N C>®(§2) that converges to u in
WhP(§2). The function y — vy (y) = un(a(y)) is Lipschitz on 2/, and therefore
on all lines parallel to any of the coordinate axes y;. Since Lipschitz implies
absolute continuity, it follows (cf. Remark 2.4) that v,, is almost everywhere
derivable on £’ and

(x)  foralmost all y € 2, 9i(va)(y) = L7 9 (un)(a(y))di(az)(y)-
We now need the following lemma.

Lemma 2.22. Given bounded open sets {2 and (2, let a be a continuous bi-
jection from §2' to 2 such that a=! is Lipschitz. Then, if u € LP(£2), we have
uoa € LP(£2) and there exists a constant c such that ||uocal| 1r (o) < cllul|Lr(2)-

Let us continue the proof of Corollary 2.21 using this result. Applying it
to 0;(un, — u), the inequality of the lemma gives us

10i(un) 0a — 0i(u) o allLr(ory < c||Oiun — diullLr(2)-
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Since we know that 9;(uy,) — 0;u in LP(§2), we deduce that {0;(un)oa} con-
verges to J;u o a in LP(£2'). Consequently, we can use (*) and the assump-
tions of the corollary to show that the open sets and derivatives 9;(a;) are
bounded, and that the sequence {0;(v,)} converges in LP({2") to the func-
tion Ziv([?ju oa) 0;(a;), which itself belongs to L”({2"). Taking the limit of a
subsequence, the inequality (%) then gives

for almost all y € ',  9;(uoca)(y) = Zf[ 0;(u)(a(y))0;(a;)(y).

Since these almost everywhere derivatives are in LP({2), it follows from
Remark 2.4 that they are derivatives in the sense of distributions. By the
lemma, we have u o a € LP(£2'). Consequently, u o a € WP(£2'). Moreover,
luoallLe(on < cllulle(e) and [|0i(woa)l| Ly (@) < ¢lullwrr2) IV (@)l Lo (2.
From this, we deduce the existence of a constant C' that depends only on the
Lipschitz constants of a and o™, such that [|uoa||w1.roy) < Cllullwie(g). O

Proof of Lemma 2.22. Let L denote the Lipschitz constant of a 1. Let us take
a sequence {u,} as in the proof of the corollary above. If we cover (2’ by a
finite number n,, of N-hypercubes Cj, with edge of length 21 and extend u, ca
by 0 outside of {2/, then the definition of the Riemann-integrability of |u, o a|?

gives
Ty

Pdu = li N P
ety = iy S g ol
We may, and do, assume that the hypercubes all satisfy Cj, C £2’. Let y;, be the
center of Cf, so that zp = a(yg) € 2. If z € I(a(Ck)), then the properties of a
imply that y = a=!(x) € OC%. Hence, as |yr — y| > 1, we have the following
inequalities for the distances in RY: 7 < |y — yx| = a7 (z) — a (x| <
L|z — z|. It follows that a(C}) contains the ball of radius n/L with center z,
whence mes(a(Cy)) = wynY /LY > K mes(C},), where K depends only on N
and L. We can now deduce the following upper bound:

mes(C| 1nf un(a mes(a(Cy)) inf |u,(x)|?
Z k) | Z k) mea(ck)| ()|

1
< E/(Z|un(x)|pdx
Taking the limit for  — 0 gives

(+) |ty < g [ (o).

We can find a subsequence u,(,) that converges almost everywhere to u. The
result of the lemma then follows from (xx*) using Fatou’s lemma. ad



66 2 Sobolev Spaces and Embedding Theorems

Let us now give a definition of WP, using approximations of the deriva-
tives by translation operators.

Proposition 2.23. For 1 < p < oo, the following properties are equivalent:

(1) u e WHP(02).
(2) w € LP(2) and there exists a constant C' > 0 such that for any open set
w with closure contained in {2, we have

VheRN, |h| <d(w,002) = [|mu—ul o) < ClAl.

In the case p = 1, property (2) must be replaced by

(2') For every open set w with closure contained in (2, there exists a constant
c(w) such that c(w) < C, c¢(w) = 0 when |w| = 0, and ||Thu — ul|L1(w) <
c(w)lhl.

Proof of Proposition 2.23.

Let us assume that 1 < p < +o00. We will first show that (1) = (2) when
the translation is parallel to a base vector.

Consider u € WP(2) and @ C (2. Let e; be the ith vector of the canonical
basis of R, and let hg = d(w,3¢2). Then @ C {2 implies that hg > 0 and if
|h| < ho, we have © € w = x + he; € (2. Corollary 2.19 subsequently tells us
that for every h such that |h| < hg and that for almost all z in w, we have

h
(2.24) u(z + he;) —u(z) = / diu(x + se;)ds.
0
Consequently, by Hoélder’s inequality,
h
(2.25) |u(z + he;) —u(z)P < |hP~! / |O;u(z + se;)|Pds.
0

Since |u|P € L'(£2), we can integrate this inequality over w, whence, using
Fubini and noting that w + B(0,h) C {2,

h
/ |The,u — u|P(x)dx < |h[P~! / / |O;u(x + se;)|Pdxds
w 0 w

< WP 0yul? -

(2.26)

Taking the 1/pth power of this inequality gives property (2) for the translation
The; -

For h € RN such that w + B(0,h) C £2, it suffices to replace 9; by the
derivative along h, namely Opu = Vu-(h/|h|). This leads to property (2) with,
for example, constant C' = (Zjlv ||8iuH%p(m)1/2.



2.1 Definitions and First Properties 67

Let us now show the implication (2) = (1).

Let u satisfy (2). We must prove that d;u € LP(w). Setting, for example,
h = 1/n, consider the sequence {(7he,u —u)/h} of distributions on w. We
know (Subsection 1.4.8) that this sequence converges in D’(w) to the distri-
bution d;u. Consequently,

() VoeDw), (M p) — Bu,p),

Now, by Holder’s inequality and property (2), we have

The, U — U
‘<Taéﬂ>‘ < Cllell -

Using (*), taking the limit of this inequality for h — 0 gives us the inequality
[(D5u, )| < C|lg|| o - Now, as p’ < 0o, D(w) is dense in L*' (w) (cf. Theorem
1.91). The distribution d;u therefore defines a linear functional on L*' (w) and
the previous inequality becomes

Vg e LM (W), [0iug) < Clallm ),

proving that d;u can therefore be identified with a function in LP(w) whose
norm moreover satisfies ||jul|L»(.,) < C. Since this is true for every relatively
compact open subset w of 2, we can use an increasing sequence of such open
subsets on which the LP norms of 0;u are uniformly bounded to show that
d;u € LP(£2). Since this result holds for every i, it follows that u € WP (£2),
which concludes the proof.

Let us now consider the case p = 1. For the implication (1) = (2/), the
reasoning remains the same as above and we see in inequality (2.25) that we
can use a constant ¢(w) such that c(w) < fw+B(07h) |Vu(z)|dz, which therefore
tends to [ [Vu(x)|dz when h tends to 0. In particular, as Vu € L', this
inequality tends to 0 when mes(w) — 0 (in the sense of Lebesgue).

Conversely, by an argument similar to that in the case p > 1, the inequality
in (2') implies that Vu is in the dual of C.(£2), which means that Vu is a
measure (cf. Chapter 6). Since this estimate does not depend on the support
of ¢, we deduce from it that Vu is a bounded measure.

Moreover, the inequality [ |[Vu| < ¢(w) shows that the measure Vu is
absolutely continuous with respect to the Lebesgue measure (cf. Chapter 6),
which proves that Vu € L!'(w). Since w is arbitrary and c(w) is bounded
independently of w, we conclude that Vu € L1(2). O

Remark 2.27. In the case p = 1, the above proof shows that property (2)
for p > 1 only implies that u € BV (§2), the space of functions with bounded
variation (cf. Chapter 6).
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Definition 2.28. Let {2 be an open subset of RY, either bounded or not. We
let WP (£2) denote the closure of the space D(£2) in W™P({2) for the norm

[{lm -

In general, finding an intrinsic characterization of the functions in
WP (82) is not obvious and depends strongly on the structure of 2. When
2 = RY, a method involving truncation and regularization allows us to show
the following result.

Proposition 2.29. The space D(RY) is dense in W™P(RY), so that
W?n,p(RN) _ W(;W’P(RN).

Proof of Proposition 2.29.

Let u € W™P(RY) and let n € N*. Let ¢ be a function in D(B(0,2)) with
value 1 on B(0,1) and such that 0 < ¢ < 1. Let ¢, (2) = ¢(x/n); then the
sequence u,, defined by u,(z) = ¢(z/n)u(x) converges to u in W™P(RN).
Indeed, as |u|P € L', we have

o mlly = N0~ el < [ @ — o0
On the other hand, the Leibniz formula for the derivative of the product of
a C* function and a distribution implies that if |a| = m, then D*(p,u) is the
sum of ¢, D% and expressions of the form (1/n)’ D* @(x/n)D*2u, where
|oq| + |a2] = m and |a1] = j > 1. We can bound the LP norm of these
expressions from above by

1 1/p
— D% 0| / D*?u(x)Pdr ,
Dl ( [ 1D (e ds)

which tends to 0 because j > 1. It follows that
|Da(@nu> - Daulp < |Da(‘PnU) - SDnDaulp + |‘PnDaU - Dau|p7

where the right-hand side is the sum of two quantities that both tend to 0.
We will now use regularization. Given a regularizing function p, we let

pn(x) = nVp(nz) and u,, = p, * (p,u). The functions wu,, then belong to

D(RY), and the sequence {u,} converges to u in W1?. O

In general, we will see that under regularity conditions on (2, a sufficient
condition for the inclusion u € Wy""(£2) is that the extension @ of u by 0
outside of {2 belongs to W™ (RY).

Remark 2.30. Later on, we will give a result concerning the density of C*(2)
in W™P((2) when {2 is Lipschitz.
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2.2 Sobolev Embeddings for W™P(RY)

2.2.1 Definitions of Functional Spaces
Given an integer j > 0, we define the family of spaces Ci (RN) by setting
CIRY) ={ue C'RY) |Va e N, |a| < j, IK,, ||DYul| < Ka}-

For a positive real number A, the subspace CZ’ M(RYN) consist of the functions
in Cj (RY) such that if || < j, then

3Ca, x, Y,y € RV, |D(O‘)u(x) — D(a)u(y)’ <Co |z — y|’\.

2.2.2 Statement of the Theorem and Preliminary Remarks

Theorem 2.31 (Sobolev embedding theorem). For p > 1 and m € N,
we have:

(1) If N > mp, then for every q satisfying p < ¢ < Np/(N —mp), we have
WmP(RN) s LY(RN). More precisely, under the given conditions, there
exists a constant C' such that

Voe W™PRY), olly < Cllellwms@y)-

(2) For p=1, we have WN1(RN) — C,(RY).

(3) If N = mp and p > 1, then for every q satisfying p < q¢ < 0o, we have
WmP(RNY) — LI(RN).

(4) If p > N, then we have

0<A<1—N/p = WLPRY) — CPMRY),
(5) If mp > N, N/p €N, and j satisfies (j —1)p < N < jp, then
0<A<j—N/p = WmPRYN) — O P ARY).

IfN/peNandm > j = N/p+1, then W™P(RN) — C;n_N/p_l’/\(]RN)
for every A < 1.

The following preliminary remarks allow us to better understand the proof
of Theorem 2.31.

Remark 2.32 (reduction to functions in D(RY)). By Proposition 2.29,
it suffices to prove the statements of the theorem for functions in D(RY).

Let us, for example, assume that under the conditions of statement (1),
we have proved the existence of a C' depending on N, p, ¢, such that

(%) Vo e DRY), el < Cllellwmr ).
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Consider u € W™P(RY) and a sequence {¢,} in D(RY) that converges to u
in W™P(RY). Since the inequality (*) shows that this is a Cauchy sequence
in LY(RY), we deduce that it converges to v € L4(RY) in this space. As,
moreover, it also converges to u in LP(RY™), we conclude that v = v and
u € LI(RYN). Furthermore, by taking the limit in (), we obtain the existence
of a constant C' depending on NV, p, g, such that

VYue W™PRY),  ully < Cllullwns@y,

which shows that the injection is continuous.
The reasoning for the other types of injections is similar.

Remark 2.33 (reduction to the case of critical injections). To prove
statements (1), (4) and (5) of Theorem 2.31, it suffices to prove them in the
critical cases, namely, for ¢ = Np/(N — mp) for statement (1), for A = 1—N/p
for statement (4), and for A = j — N/p for statement (5).

Indeed, let us suppose that statement (1) has been proved for
q=p*=Np/(N — mp). Let q € |p,p*[ and 0 € ]0, 1] satisfy ¢ = Op+ (1 — 0)p*
Holder’s inequality with conjugate exponents 1/6 and 1/(1 — ) gives

u(z)|tdx = w(2)?P|u(z)| 9P da
[ @l = [ u@) )00 a

<|[ |u<x>|p9/9dx]6 [

0 1— 0
< Nl B8 full? 0.

We know that u € LP, v € LP", and that there exists a C such that |lul|;,~ <
C'||u|]jwm.». Consequently, the previous inequality shows that u € L7 and
ullf, < Cllu ||€3j;; o) = Cllul/{ym.p, which implies the continuity of the
injection into LY.

A similar reasoning makes it possible to reduce the proof of statements (4)
and (5) to the critical cases mentioned above.

Remark 2.34 (on the impossibility of improving (1)). A simple scaling
argument shows that when N > p, there cannot exist an embedding from
WEP(RN) to LI(RN) for ¢ < p or ¢ > p*, where p* = Np/(N — mp).

Indeed, let us assume, in either case, the existence of a C' such that for
every u € WHP(RYN), ||ul|« < C|lu|lwr». Applying this inequality to the
family defined by ux(z) = u(z/A) gives

] 1/p

(/RN‘U(i)qu)l/qécvRN‘ dx+Z/N)\p
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Substituting the variable y = /A and using Minkowski’s inequality, this
becomes
[l AN/ < C [|fullpAN? + [ Vul A7)

or an inequality of the form
C1 < CoANO/P=Y/D) | Gy \~1+N(/p=1/0)

where C7, Cs, C3 are three fixed nonnegative numbers.

The hypothesis implies, when ¢ < p, that the exponents on the right-hand
side are negative, giving a contradiction when A\ — +oo. Likewise, we see
that the hypothesis ¢ > p* implies that the exponents are positive, giving a
contradiction when A — 0.

Remark 2.35 (reasoning in Sobolev’s proof). The idea Sobolev orig-
inally used to show the embedding consists in writing v formally as u =
uxd =uxAF, where E, a fundamental solution of the Laplacian, is defined
as follows (cf. Exercise 2.19).

For N > 2, it is the function E = kyr?~" with kx = 1/((2 — N)wn—_1),
where wy_1 denotes the (N — 1)-dimensional surface area of the unit sphere
in RV,

For N = 2, it is the function E = kg In(r) with ks = 1/(27). More precisely,
if ¢ is a function in D(RY) equal to 1 in a neighborhood of 0, we can write u
as

(%) uw=uxA(CE) —u*V(-VE —ux*(ACQ)E.

Note that when p > 1, the last two terms of (x), namely u * V¢ - VE and
ux (A¢)E, can each be expressed as the convolution of v € LP with a function
in D(RY). Tt follows that this convolution is in L* for every k > p. We are
therefore reduced to considering the first term of (x), which can be written as
ux A(CE) = Vux V(CE).

Let, for example, p = 1. Noting that V(CE) € L9 with ¢ < N/(N — 1),
and then using the properties of a convolution with an L' function, we obtain,
thanks to (x), that u € L? whenever ¢ < N/(N — 1).

The same computation shows that if 1 < p < IV, we still have u € L9 for
every ¢ < pN/(N —p).

To proceed up to the critical exponent in the case 1 < p < N with N > 2,
we use the Sobolev lemma (cf. [60]), where one of the factors of the convolution
is the radial function x — r~°. The lemma can be applied to the present
situation when p > 1 by choosing the exponent s = N — 1, in accordance with
the definition of V(CE), regardless whether N = 2 or not. The statement of
the lemma is as follows.
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Lemma 2.36 (Sobolev). Let f be an element of LP(RN) with compact sup-
port, where p > 1. Consider the convolution g = r—* % f. The following holds:

(1) If p > 1, then the function g belongs to LY on every compact subset of RY
provided that q satisfies

1 1 11
_251110{—,0}7 where — = - 4+ > _1.
q o @1 p N

(2) If p = 1, then the function g belongs to L% on every compact subset,
provided that 1/q¢ > 1/q1 = s/N.

(3) If 1/p+ s/N = 1, the function g belongs to LY on every compact subset
for every g < oc.

In all cases, we have upper bounds of the following type on every compact
subset:

lgllg < Cl1f N5,

where the constant C depends on q, on the compact on which we bound g, and
on the compact support of f.

The proof of this lemma is difficult for the cases not covered by the Riesz—
Thorin theorem and will not be given in this book.

Remark 2.37. The critical exponent N/(N — 1) for p = 1 is not covered by
Sobolev’s lemma. In what follows, we use more elementary arguments than
those in Sobolev’s proof.

2.2.3 The Structure of the Proof of Sobolev’s Theorem
Step A. We establish the following inequality for the functions ¢ in D(RY):

||30||LN/(N DRN) X C”(p”m/l (RN

Statement (1) of the theorem for the case p = m = 1 follows, using Remark
2.32.

Step B. We establish the following inequality for the functions ¢ in D(RYN)
in the case p < N:

HSDHLNP/(N*P)(]RN) < CHQOHWLp(]RN).

Step C. We use induction to establish the following inequality for the func-
tions ¢ in D(RY) in the case m > 2 and mp < N:

||<p||LNP/(N mp) (RN) X OH(,OHWm P (RN)-

Combining these three steps and Remarks 2.32 and 2.33 gives us statement (1).
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Step D. We establish the following inequality for the functions ¢ in D(RY):

[elloe < Cliellwn ey

Using the density of the regular functions, we deduce from this statement (2)
of the theorem.

Step E. We prove statement (3) of the theorem, beginning with the case m = 1
and p = N, followed by the case m > 2 and Np = m.

Step F. We show that last two statements, (4) and (5), of the theorem.

2.2.4 Proof of Sobolev’s Theorem
Proof of Step A. We must prove that
(2.38) 30, YoeDRY), |eliva-n < Cllgllwra.

Let ¢ € D(RY); then for every index i € [1, N], we have
@
Ve eRY, o(x)= / Oip(z + (s — x;)e;)ds.
—0o0
Consequently,
(2.39) lo(2)] < /R|6¢g0(x +(s— xi)ei)’ds.

Note that the integral on the right-hand side of (2.39) does not depend on the
component x; of . We denote the (N — 1)-tuple (21,...,2;—1,Zit1,---,TN)
by & x ). OnRN-! , we define the function ¢; with compact support by settmg

i) = [ oreta+ (5 = men)ds.
The inequalities (2.39) can now be written as
Vie[l,N], Ve e RN, |o(x)] < pi(x™M).

Since our goal is to study ||¢||~/v-1), we note that

N
Vo e RN, Jo(a) VOV < T e VY,
1

Next, we use the following lemma.
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Lemma 2.40. Let N > 2. Consider N functions F;, each belonging to
LN=YRN-1). We have

I ™) et ®wy)

1<i<N

and the inequality

£y oy -1 )
(2.41) /RNH|F N|dz < H(AN\F(x )| 7 d )

Proof of Lemma 2.40. The proof uses induction on N. For N = 2, it is the
following known property:

(2.42) /R  Fi(w2) Fy(a)daydary = /R Fy(22)dzs /R Py(z1)dzy.

Let us assume that the property has been proved up to order N. For

1 < j < N +1, consider elements F; of LV (RY), each a function of the
(N+1)
varlable :c
lemg ZN+1, consider the following integration over x = (x1,z2,...,2N):

v = / [ 11 |Fi(i§N)’xN+1)|} |y (2)|da < +oo.

In this integral, where x4 1 is fixed, we apply Holder’s inequality with expo-
nents N and N/(N — 1). This consists in the inequality

N/(N=1) (N-1)/N
e (T e
1<iKN
1/N
(/ |Favia | (@)

Next, consider the NV functions h;, which for zx; fixed and i < N, are defined
by

. . N/(N-1
(2.43) hi(l‘(-N)JSNH) = |Fi(l’§N)793N+1)| ! )'

K2

By the induction hypothesis at order N, as the function (h;)V~! is summable
on RV=1 the product of these functions is in L'(R™). The inequality (*)
above then gives Iy < +o00. Let

(N N , (N
[gi(xN+1)]N:/H§N71‘Fi($E ),$N+1)’ dmg ),
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By the induction hypothesis, the functions h; satisfy (2.41), namely

() ( /R I @ ax)de)

1<i<N

(N-1)/N

The right-hand side of this inequality is [[; <;< v [g:(zn+1)]-
The integral

IN+1 :/ H |F](f§N+l))|d{Ed$N+1
RN+1 ;
1SN +1
is the integral of
IN :/ H |Fi(fz(-N),JL‘N+1)| |FN+1(£E)| d.T
RN .
1<i<N

over R. We apply Holder’s inequality to I and note that

N YN
Ky = [/ | Fnga ()| dx}
RN

is independent of zn41. By the definitions of h; and g; and the inequalities
() and (*x), this leads to

(N—1)/N
INgKN(/ H hi(jq(:N)7:I/‘N+1)d:I;)
RV 1 <i<n

< Ky H gi(xN+1)-
1N

Finally, integrating over R, applying the generalized Holder inequality
(cf. Subsection 1.5.1) with N exponents that are all equal to 1/N, and using
Fubini’s formula for the integrals of g;, we obtain

1/N
Int1 < Ky H {/ (gi(l‘N+1))Nd$N+1]
R

1<i<N

_ F o (N+1) NdV(N-i-l) L
= 1II IRN| i8] dE;
1SN+

We thus obtain relation 2.41 for the rank N + 1 case, concluding the proof of
Lemma 2.40. O



76 2 Sobolev Spaces and Embedding Theorems

Let us conclude Step A. We apply Lemma 2.40 to the functions F; =
loi| /=1, The inequality |¢(z)] < [licien li ()N =1 then gives the
following results for the norm @ = ||| v/ (v-1):

(N-1)/N
LI
1/N
< |<Pz'(fz‘)d5«"i]
BIRT
1/N
:{ H / /|8i<p(m+sei)|dsdfci}
1<i<n /RY 1R
1/N
- [ I 1osellscen)]
1<iKN
<= 3 gl < =lelwiiey.
Sy 2 ®Y) S (RY)
1<iKN

We therefore have an embedding W (RN) « LN/(N=1)(RN). Moreover, by
Remark 2.32, statement (1) of the theorem has now been proved in the case
p=m=1.

Remark 2.44. The last inequality, which states the continuity of the injec-
tion, can be written more precisely as follows:

(2.45) llelln/v=1) < ClIVells.

Proof of Step B.

Let us now assume that m = 1 and p < N. Consider, for u € D(RY),
the function v = |u[P(N—D/(N=P)=1y where the exponent is positive since
p = 1. By the definition |u|® = exp(aIn(|u|)), the partial derivative d;v can
be written as

oo = PV =D v/ v-p)-19,,,
N—p

Moreover, the previous remark and Hoélder’s inequality give

([, 1o/ da
RN

N -1
< O/ %|u(x)|p(N71)/(pr)fl|vu(x)‘
RN p

1/ 1-1/
< C(/RN [Vu(e)dr) p(/RN ) |V ) ) "

)(Nfl)/N



2.2 Sobolev Embeddings for W™?(RY) 7

The left-hand side is none other than ||uH(N Up/(N=P) Hence, dividing by

Np/(N—p)
[lu ng}(;r Z()N 2 , we obtain the inequality
(2.46) lullvp/(v—p) < ClIVullp.

We have thus proved statement (1) of the theorem for m =1 and 1 < p < N.

Proof of Step C. Let us give a proof by induction on m.

Assume that m > 2 and mp < N. We therefore have (m — 1)p < N and
p < N. Let D denote the differential operator of order 1. By the existence
of an embedding W™—1» «— [NP/(N=(m=1)p) which we assume proved, we
have Du € W™~ and therefore Du € LNP/(IN=(m=1)p) Qince o € WP,
we have u € W™~ 1P hence also v € LNP/(N—=(m=1)p)

Finally, setting ¢ = Np/(N — (m — 1)p), we have u € W4, By the em-
bedding theorem for m = 1 and because ¢ < N, we have

we LNVN=a) — [ Np/(N=mp)

where the equality of the spaces follows from ¢/(N — q) = p/(N — mp). This
completes the proof of step C.
We have now proved statement (1) of the theorem.

Proof of Step D.

We move on to the proof of statement (2) by showing that W1 L
The density of the regular functions will then imply the existence of an em-
bedding W1 — C,(RV).

In the proof of result (1) (cf. (2.39)), we have already shown that if u €
WLLHRY), then

Va' e RV lulloo (2, /|8Nux t)|dt.

Let us make the following induction hypothesis. If v € W~ (RV=1) then
v e L®(RY~1) and

< Y[ Do)

aeNN 1
la|<N-1

Applying this inequality to the function Onyu(z’, 2 ) for fixed zy gives

sup |Oyu(az’,zN) Z /N |D*(Onu)|(2', xn)da
R 1

z/ RN -1 aENN 1
la|<N-1
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We then integrate with respect to xy:

sup |u(z’,zn)| §/sup|8Nu(x',xN)|da:N
' eRN ! R 2’

zny€ER
< D¥(Onu)(z', N da'dx
E / /Nil |D( ) )l

aeNV 1
la|<N-1

We have thus obtained the embedding W1 — L.

Let us return to statement (2). Let u € W™N1(RY) and let {u,} be a
sequence in D(RY) such that ||un, — ully~.gyy — 0. By the above, we can
deduce that [|u, — ul|pe@®~) — 0, which means that {u,} — u uniformly
on RY. Consequently, u is continuous on RY. Since v € L>, it follows that
u € Cp(RY). Moreover, the inequality |[u| =~ < Cllully~.1 gives

Vue WHLRY),  ulle,@yy < Cllullw.i.

This concludes step D and the proof of statement (2).

Proof of Step E. Let us now assume that mp = N.

We begin with the case m =1, p=N > 1.

Let u € WHN(RM). We will show that u belongs to L? for every ¢ > N.
We begin by showing that W%"(RY) has an embedding into L? for every
q € [N,N?/(N —1)]. For this, we note that if u € W1 then uV € W1l
This follows from V(u") = NuN~1Vu and Hélder’s inequality:

/ |Vul| SN/ |Vu||u™ 1t de
RN RN

< N(/RN |Vu|Ndx)1/N (/RN |u|Ndx)(N_1)/N.

Using the Sobolev embedding of W1 into LY/ (N=1) we deduce that u belongs
to LNV*/(N-1),

Let us now show that u belongs to all LY with ¢ > N2 /(N — 1). For this,
we note that ¢ can be written as ¢ = ¢’N/(N — 1) with ¢’ > N. Suppose
that ¢ is a regular function tending to u in W~ (R™). We consider

/ (N_l)/N ’
A= (/ | N/(N_1)|d$) = [l | Lvsv—1y.
RN
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Using V(||?) = ¢|¢|? ~2¢V g, Remark 2.44, that is, the upper bound (2.45),
and then Holder’s inequality, we obtain the following upper bounds for A:

A<qC / lol? | Viplde
RN

, (N—1)/N N
<qo([ el 0a) ([ velta)

We see that (¢ — 1)N/(N —1) € [N, ¢ N/(N — 1)). Therefore, there exists
a # € [0,1], namely 6 = 1/(q¢’ +1 — N), such that

(2.47)

(¢ —1)N
(N-1)

qN
(N-1)

—ON +(1-0)

Consequently, once more using Holder’s inequality, we obtain
/ ()] = DN/ (V=1) g
RN

<(/. o)l az) /. (@) V)

Substituting this in inequality (2.47) above, we find

/ (N-1)/(Nq")
¢ N/(N-1)
( / @)l )

N1y e (N=1)/(Nq) (¢'=N+1)/(d'N)
<Cq ([ ot ([, ve@r) .

R
We have thus established (cf. Remark 2.32) that u € L&'N/(N=1),

Note that we cannot conclude that uw € L°°, as the scalar sequence
q (@ =N+1)/4" i¢ hot bounded. Moreover, there exist examples of unbounded
WLN functions with N > 2.

Let us assume that m > 2 and mp = N.

We then have (m—1)p < N. From u € W™?, we deduce that u € W™~ 1P
and that for every j, 9ju € W™~1P. Hence, by statement (1) of the theorem,
we know that u and O;u are elements of L" with r = Np/(N — (m — 1)p).

From mp = N, we deduce that r = N. Hence u € W, which by the
above implies that u € L? for every ¢, concluding the proof of step E.

Proof of Step F. Let us now assume that mp > N.

We begin with the case p > N, m = 1.

Let u € WH?(RY) and let p > N. We will give two proofs that we then
have u € L= (RY).
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First proof that u € L>(RY) in step F. This proof is based on the integra-
tion of the function over a cone C} ¢ with vertex 0, opening angle ¢, and
bounded by a sphere of radius h in RY. This proof can therefore also be used
for an open subset {2 with the uniform cone property, that is, an open subset
for which there exist h, 6 such that for every x € (2, there exists a rotation
R of RY with 2 + R(Cj ) C £2. This is of course the case for Lipschitz open
sets, whose definition we will give further on. It does not hold for the open
set in Example 2.9, in which 02 has a cusp.
We will show that

(2.48) Ve e DRY), ol < CLR™N/(fgll, + Coh* NP V|,

After applying a translation, if necessary, we reduce to finding an upper bound
for |¢(0)]. We will use the polar coordinates (p, o), where p € [0,h] and o €
A(p), with A(p) the surface of intersection of C}, g and the sphere of radius p
(cf. Figure 2.2 below). Let ¢ € D(RY) and let @(p,0) be its expression in
polar coordinates.

Fig. 2.2. The cone Ch 9.

We have 0
(0) = F(p, ) + / 9,(3)(\, o).

For the remainder of the proof, we set

/|a )\, o)|dA.

The volume element is defined by dz = pN~'s(c)dodp, where s(o)do is the
(N —1)-dimensional surface element on the unit sphere Sy. Since the volume
of the cone is proportional to 2, by Fubini, integrating the inequality above
over Cp, ¢ gives the following inequality, where ¢; > 0 is a constant bounded
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from below independently of h:
hN

(%) |e(0)[h™ er
h
// 0)|@(p,0)| N_ldadfﬂr// p"ts(a)I(p,0)dodp.
A(p) 0 JA(p)

The first integral of (%) is the same as A = fCh ,l¢(z)|dz. Using Holder’s
inequality with conjugate exponents p and p’, we find

as(f )" ([ @) "

< ARl Lo (-

We will now study the second integral B of (). First consider the integral
I(p, o), which we write as

1(p / 10,3](A, ) AN =D P AN=D/0 \~(N=1) gy
giving
/ 10,(Z) (A, o) [PAN~Ld /p(/pA<N—1><1—P’>dA)l/p
0

when we apply Holder’s inequality to it. We note that the exponent of the last
integrand satisfies the relation (N —1)(1 —p’) > —1 as p > N, which implies
the finiteness of this integral. The second integral B in (x) therefore leads to
the inequality

h
BgK/prl/
0

/ 10,(Z)(\, o) [PAN - 1d)\) Pl N=D A=) H/P' g5,
Bounding the inner integral by the corresponding integral over [0, h], we have

h
/7 /
BgK/ pN/p/ / 10,(Z)(\, o) |PAN = 1d>\> dodp.
0 A(p)

Again applying Holder’s inequality, this time to the integral over A(p), we
have

B<K/ N/p (mes A(p ))l/p

1/
o) pdp.
a Y, o) |PAN"Lddo
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Since the measure of A(p) is bounded by the area of Sy, hence independently
of h, the right-hand side of the inequality above can be interpreted as an
integral over Cj, 9. Since |0,(@(A, o) is bounded from above by |Ve(z)|, we
can therefore write

B < K/h’1+N/p/Hv§0||Li”(Ch,8)'

Dividing by A" and applying (), we obtain the desired inequality (2.48). We
then extend to WP functions by density. Moreover, we will see later on that
in the case of RV, as h can be any element of R, the right-hand side of (2.48)
is bounded from above, giving an optimal upper bound for the norm ||-||oc. O

Second proof that u € L>®(RY) in step F. Consider the fundamental so-
lution E of the Laplacian. We can easily verify (cf. Exercise 2.19) that
E =knr*N for N > 3 and E = kalnr for N = 2, with ky = 1/(27) and
kn =1/((2— N)wn-_1), where wy_; is the (N — 1)-dimensional surface area
of the unit sphere in RY. Let 6 be a function in D(RY) with value 1 on a
ball with center 0. Let F' = 6F. We then have

AFZH(SQ"FQVH'VE‘F(AQ)E=5o+¢,
where ¢ € D(RY). We can write
u=0ru=AF *xu—Y*u

and
AF %u = Z &'F*Biu.
1<iKN

Moreover, the derivatives of F are of the form r'=» in the neighborhood

of 0 and have compact support on RY. Therefore they all belong to L7 for
g < N/(N —1). In particular, they belong to L*" because p > N. The con-
volution Y, 8;F % d;u therefore belongs to L>. Since ¢ € D(RY) and, for
example, u € L', the convolution u % ¢ is a bounded C* function.

We have thus obtained the existence of a constant C such that

lulloe < C(IVE Iy IVully + 161 ely).

completing the proof that u € L>(RY). O

Note that we obtain an optimal estimate by using functions of the form
ux(z) = u(x/A), where A > 0. Indeed, the continuity inequality |ullc <
Cyllullp + C2l|Vull, applied to uy gives

lulloe < CLANP[Jull, + CoA™ /2| Vu .
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In particular, the minimum of the function of A on the right-hand side is
reached for A = MHVUHP(Hqu)fl, where M = Ca(p — N)/(NC1). We thus
obtain the following inequality, where C' is a constant that depends only
on N, p, and universal data:

lulloo < C(Jlully /7| ul[77).

We conclude the proof of step F by studying the Holder continuity of w.
Let h € RY. In Proposition 2.23, we have already noted that

[T — ull, < Chl[Vull,
and
IV (Thu —u)lp < 2[[Vullp,
so that applying the previous inequality gives

I[The — ulloo < C’hl_N/pHVuHLp.

This implies that w is a Holder continuous function with exponent 1 — N/p.
We have thus proved that u is a Holder continuous function for m = 1.
Let us now consider the case m > 2. If mp > N, N/p ¢ N, and j =
[N/p] + 1, then
mep(RN) SN C;n—j,j—N/p(RN)_

Indeed, let j be such that jp > N > (j — 1)p; then
w e WIP(RN) = (u, Du) € (W3~ 12(RV))2.
Hence (u, Du) € (LNP/(N=G=1Dpr)(RN))2 by the first Sobolev embedding, since
(j — D)p < N. Consequently,
we Wlpr/(N*(J’*l)p)(RN).

By the above and the inequality Np/(N — (5 —1)p) >N, we find that u €
Cy(RY) or, more precisely,

u e Cgvl—N(N—(j—l)p)/(Np) _ C(()J?J‘—N/p(RN).

Next, let u € W™P(RN) with pm > N. Let j satisfy (j—1)p < N < jp. By
the above, D=1y, € WiP(RN), so that u € C™ 7 (RY) with j = [N/p]+1.
Since D™y € Cl(j’ﬁ]\l/p(RN)7 we have u € C;"fj’ij/p(RN).

If u € WiP(RN) with j = (N/p) + 1 € N, then Du € Wi~LP(RN).
Moreover, as (j — 1)p = N, step E implies that Du € L? for every q < oo.
By the above, u € CS’A(RN) for every A < 1 — N/qg, that is, u € CS’A(RN) for
every A < 1.

If j = (N/p) + 1 € N, then the above shows that D™ Ju € Cp*(RN) for
every A < 1, whence u € C;W_N/p_l”\(RN) for every \ < 1.

This concludes step F and the proof of Theorem (2.31).



84 2 Sobolev Spaces and Embedding Theorems
2.3 Generalization to Other Open Sets

In this section, we study certain classes of open subsets for which the state-
ments of the Sobolev embedding theorem of Section 1.2 still hold.

2.3.1 Methods, Examples and Counterexamples

One method for obtaining the embeddings is as follows. If possible, we extend
every function u € W™P(2) outside of {2 to a function u € W™P?(RYN). We
then use the properties of Theorem 2.31 for u. Returning to u, which is the
restriction of u to 2, we obtain the corresponding property for the space
WP ((2).

We will see that the existence of such extensions are closely linked to the
geometric structure of the open set 2. Let us first give a counterexample.

Example 2.49. Consider the open set (2 defined by
Q={(z,y) |0<z<1,0<y<a?}.

The Sobolev embeddings do not all hold for this open set (cf. [68]).

Indeed, the function (z,y) — 2% belongs to H!(§2) provided that
a > —1/2. On the other hand, it belongs to L? if and only if ap +2 > —1.
This implies that v € LP for p < 6 but not for p = 6, while the classical
Sobolev embedding would give the inclusion for arbitrary p.

Let us present a relatively large class of open sets for which the embed-
ding theorems hold. The reader can consult [1] for counterexamples and more
general open sets.

2.3.2 (m, p)-Extension Operators

Definition 2.50. We say that an open subset 2 of RY has an (m,p)-
extension if there exists a continuous linear operator E from W™P(2) to
WmP(RN) such that for every € 2, the operator satisfies Eu(z) = u(x).

We have the following theorem.

Theorem 2.51. Let 2 be an open subset of R that has an (m,p)-extension;
then the results concerning W™P in Theorem 2.31 extend to the case of (2.

Proof of Theorem 2.51.

Let us assume that mp < N. Let E be a continuous extension operator
from W™P(2) to W™P(RYN). Let ¢ < Np/(N —mp). Since Fu(x) = u(z)
for z in {2, we have

[ell Loy < 1E()llLe@y) < CIE@)wmr@yy < CIE| [[ullwmr(q)-

We use a similar method for the other cases (2) and (3) of the Sobolev em-
bedding theorem. O
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We will now give sufficient geometric conditions on the open set {2 for the
existence of an (m, p)-extension.

2.3.3 The Case of the Half-Space (RV)*

Let (RV)* = RN-! x ]0,4+0c[. We will show the existence of an (m,p)-
extension in W™P((RV)*). We begin with a lemma stating the existence
of a “trace” on the boundary. This result is a first encounter with the trace
theorem that we will see in the next chapter.

Proposition 2.52. There exists a continuous linear map
Yot WHP((RY ) — LP(RV )

such that if u € C(RN=1) x [0, +00]) NWLP((RN)T), then you(z') = u(z’,0).
Moreover, if u has compact support in RN~ x [0, 00|, then you has compact
support in RN~ and we have

(2.53) / Onu(z)dr = —/ o u(z')dx'.
RN ~1x]0,00] RN-1

Proof of Proposition 2.52.

Let us show that the sequence z’ — u(z’, 1/n) of functions in LP(RY 1) is
a Cauchy sequence. By Corollary 2.19 of Proposition 2.12, we have for almost
all ' € RN~ that

(%) | (', 1/n) —u(2, 1/m|‘/1/n81\;u:€ tdt’

Applying Holder’s inequality with fixed z/, taking the pth power, and inte-
grating gives

/RN J w(a’,1/n) —u(z’,1/m)|Pda’ < ‘—__)p 1/RN l/l/raNu(l'/7t)|pdtd;L'/.

Since the last integral is bounded by [[Onu||b, we conclude that the sequence
we are studying is a Cauchy sequence. Let vy u be the function defined by
You(z') = lim,,_, 4 o0 u(z’, 1/n). The above shows that you € LP(RN~1). More-
over, the linearity of g is clear, and when u € C}((R)T), the limit is none
other than u(z’, 0), whence o (u)(z’,0) = u(2’,0).

Let us show the continuity of 7 on WP (RN~ x ]0, 0o]).

By applying Corollary 2.19 of Proposition 2.12 with 1/m and y and taking
the limit in (x) for m tending to 400, we find

y
(%) for almost all y € R, ~ou(z') = u(z',y) — / Onu(a t)dt
0



86 2 Sobolev Spaces and Embedding Theorems

Integrating the pth power of (%) with respect to y € [0,1] and 2’ € RN~!
and applying Minkowski’s inequality, we obtain

/p ! 1/p
oulss- < ([ [ awrara) ([ jovipata)
0JrN-1

The continuity of the map g follows from this.
Consider u in WP (RN_I x [0, oo[) with compact support. The formula
() tells us that

Vo' e RV You(x / Onu(x’ t)d

We can now obtain (2.53) by integrating with respect to z’ O
This proposition is used in the proof of the following theorem.

Theorem 2.54. For everym € N* and 1 < p < oo, the half-space RN 1 x Rt
has an (m,p)-extension operator.

Proof of Theorem 2.54.
For u € W™P(RN*), we define the extension Fu of u for zy < 0 by

(2.55) Bu(z)= > Mula,—jzy),

1< <m

where the m-tuple ();) consists of the unique solution of the following system:

(2.56) VEe{0,1,...om—1}, > (=) =1L

1<gsm

We can first remark that under these conditions, if u € C™((R™)™), then for
every k < m — 1, the function u and the partial derivatives 0¥ Fu/ 835’1‘;[ are
continuous at the intersection with {z = 0}. Consequently, Eu € C™~1(RVN),
which we can show using the definition of the derivatives 9% along {zy = 0}.

In Theorem 2.54, we can in fact use the given formula for Fu with m’
numbers \; for any m’ > m, provided that the m conditions in (2.56) are
satisfied, this time with 1 < j < m’/. We apply this in the case m = 1 in
Proposition 2.57 below, which provides a good beginning for the proof of
Theorem 2.54.

Proposition 2.57. Consider v in WP(RN*) and k > 1 real numbers p;

such that
> mi=1
1<5<k
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Let v be defined on RY by

~ _ 7}(1-/71']\]) ifo>O7
v(2’zn) = o .
Yagi<k o, —jan) if ey <0;

then v € W1P(RY).

We will give the proof of Proposition 2.57 later. For the moment, we will
admit the results of the proposition, in order to continue the proof of Theorem
2.54.

We must first show that u € W™P((RN)T) implies Eu € W™P(RY). Let
u € WmP((RV)T) and let Eu be defined by (2.56). Assuming that we have
proved that Eu € Wm~LP((RN)T) it suffices to verify that for every a with
la| = m — 1, the derivative D*(E(u)) satisfies the conditions of the proposi-
tion. In order to do this, let D* = D"‘laﬁf with @ = (/, k) and k <m — 1;
then

D*(Bu)(a',xx) = Y Ai(=§)*D¥ Ofula’, —joy)-
1
Since the m > 1 numbers p; = Aj(—j)* satisfy the relation > 1" p; = 1,
the conditions of Proposition 2.57 are fulfilled. Consequently, D*(Eu) €
Whp(RN).
We still need to prove the continuity of E. We will give its proof after that
of Proposition 2.57.

Proof of Proposition 2.57. Let us show that © indeed belongs to W1?(RY).
For this we need the following lemma.

Lemma 2.58. Let v € WUYP((RM)F) and let ¢ € D(RY); then for every
ie[l,N-1],

. 0; d 0; dx = 0.
(2.59) /(RN)+ o(@)e(2) :c+/(RN)+v($) o()dz = 0

If ¢ satisfies p(a’,0) =0, then

2.60 onv(z)p(z)dx v(x)Onp(x)dz = 0.
eo) [ awetirs [ o@oete)

Proof of Lemma 2.58.

Let us show equality (2.59).

Let ¢ € D(RY) and let {v,,} be a sequence in C*((RN)T)nWLP((RV)*)
that converges to v in WP((RV)*). By the definition of the derivative d;v,,
in the sense of distributions on RY 1, we have for almost all =,

/ Oivn (2)(2, 2 n) (2!, 2 )da’ +/ Oip(x’,xN)vn (2, 2N )dz’ = 0.
RN-1 RN-1
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Integrating this equality with respect to zx and taking the limit gives the
desired result.

Let us now show equality (2.60).

If ¢ satisfies ¢(2/,0) = 0, then the function up is an element of
WLP((RM)*) and has value 0 on the boundary {zy = 0}. By Proposition
2.52, we have

/ On (up)(z)dz = 0,
(RN)+
that is,
/ Onu(x)p(x)de = —/ u(z)Onp(z)d. O
(RN)+ (RN)+

We conclude the proof of Proposition 2.57 by using derivation in the sense
of distributions and Lemma 2.58.

Let ¢ € D(R). The function v(z’, jzx) is still an element of WP ((RY)T),
and ¢(2', —xy) is still an element of D(RY), so that by substituting zy +
—x twice and using the first equality of Lemma 2.58, we have

/ vz, —jaxn)0ip(z)dr = / v, jon)Oip(2’, —xN)dz
(RN)= (RN)+

= 7/ ov(x jon)p(a', —xN)dz
(RN)+

= —/ Ov(2’, —jxn)e(x, xN)d
(RN)—

fori <N —1.
Again by the first part of the lemma,

(00, 0) = —(0,0i¢p)

k
—/ v(z)0;p(x)dx —/ Z,ujv(:v’, —jzN)0ip(x)dx
(RN)+ RN)=

k
— [ owednt [ S wonl' ~jen)eeds
(RN)+ (RN)= 77

where the right-hand side can also be written as

k
(*) /]RN [aiEX((RN)+) + (; llfjai’l)(;jj/7 _j;[;N)> X((]RN)f)}(P(x)dl‘

We have thus obtained

k

(261) O = OBy + (Z 1 00(a, —ij)) X(z~)-)-
1
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For the derivation in xp, we substitute the variable —jxy for zn:
(OND, ) = —(0,0n )
—- [ v@oyeado— [ Zug o(a’, —jen)Oepla)da
(RN)+

(RN)=

TN
=— 0 Ydx — )(0 ——)d
/(RN)JZ}(w) we(e)de /]RN)+ Z One)( J Jd

:—/(R v(m',wN)aN( z' xn) Zuij - ))d

Ny+
:/(RN)?NU( v, ) ZMJQD )d ‘

The last equality follows from the second part of Lemma 2.58 applied to the
function ¢(2/,zy) — Zlf pip(a’, —xn /), which is zero on {xx = 0} by the
hypothesis Zlf p; = 1. After another change of variables, we have

k
ot = [ ovepdn— [ Y wowela’s—jew)e()ds,
(RN)*) ®RN)=) 7
It follows that
(2.62) c‘)NE = an(x’, $N)X((]RN)+) - Zj,uj@Nv(x’, 7ij)X((RN)—).
1

The two relations (2.61) and (2.62) show that all 9;v for ¢ < N belong to
LP(RY).
We have thus completed the proof of Proposition 2.57. g

Let us finish the proof of Theorem 2.54 by proving the continuity of E.
The previous equalities show that for all i < N,

10i0| e vy < 2[|050]| Lo () +)-
It follows that there exists a constant C such that
| Eullm,p < Cllullwm.s @+
The continuity of the operator F follows from this. ad

Corollary 2.63. The space Wy P((RN)T) is the subspace of WhP((RN)T)
consisting of the functions u such that you = 0, that is, the functions u whose
extension by 0 outside of (RM)T is an element of WHP(RY).
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Proof of Corollary 2.63.

It is clear, using the continuity of the trace map =g, that for every sequence
of functions with compact support that converges in W12 ((RV)*), the trace
of the limit is zero. Tt follows that if u € Wy*(RN)1), then you = 0.

Conversely, let u satisfy you = 0. Let u denote the extension by 0 for
xny < 0. Then for i < N — 1, by the first equality (2.59) of Lemma 2.58,
computing the derivative of this extension in the direction e; gives

Vo e DRY), (0, ¢) = — (@ o) = - / udip = / Diug.
~N>0 N >0

x

For i = N, by the second equality (2.60) of Lemma 2.58 and since the trace
of uy is zero, we have

(ONTU, @) = —(u,ONp) = —/ udnp = / ONup.
z N >0 xn >0

Let v, (2") = u(a’,xzy — 1/n); then the sequence {v,} with compact support
in (RV)* converges to u in W1P(RM). To see this, note that

(2.64) VYw e LP(RY),  lim 7w — w||, = 0.
h—0

Indeed, let e > 0 and let 1 be an element of C.(RY) such that ||w—1)|, < /3.
By the continuity of 1, there exists an hg such that

£
Vh, |h<ho= ¢ =Yoo € 57—
a | loe < 3Tspp(@) 77

Hence, for |h| < ho, we have
lw = mhwllp < llw =Yllp + 1© = Ty + 709 = Thwllp <e
It follows that

lim |jv, —ul,=0 and Vje[l,N], lm |Jdv,— 0;ul,=0.

n—-+oo n—-+oo

Next, let p be a function in D(RY). We set pa, = (2n)Yp(2nz) and u, =
Pan * Un; then {u,} is a sequence of regular functions with compact support
in (RV)T that converges to u in W1?(R¥), completing the proof. O

2.3.4 Lipschitz Open Sets, C™ Open Sets

Let us begin with the definition of a uniformly Lipschitz open set, followed
by that of a uniformly C' open set.
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Definition 2.65. We call (2 a uniformly Lipschitz open set if:

(1) There exists an open cover (£2;);>0 of {2 such that d(£2y,02) > 0, for
every i > 1, §2; is bounded and 2; N 912 # &, and either the family {(2;}
is finite or

(2) There exists an open subset O} of RV =1 a function a; that is Lipschitz on
O}, and a system of coordinates such that, after permuting the coordinates
if necessary,

2N c{(@,zn) |2 €O, zn > a;(2)},
2,002 ={(2',a;(2")) | ' € O}}.

(3) There exist a partition of unity (p;); subordinate to the cover of 2 by the
£2; (cf. Definition 2.11) and constants C; and Cs such that

Vi, ||(,Di||W1,oo(]RN) < Cl and H(J,Z”Wloo((g;) < CQ.

Definition 2.66. We say that an open set is uniformly of class C! if it is
uniformly Lipschitz with functions a; of class C*.

Remark 2.67. To simplify the terminology, we will from now on often omit
the adjective regular or uniformly and simply use the terms C', C*, or Lips-
chitz.

Lipschitz open sets have the (1, p)-extension property. Proposition 2.70
below states this result. Further on, we will define a class of open sets that
have the (m,p)-extension property. Note that the latter is not necessary for
the embedding theorems, as we will see that being “Lipschitz” is sufficient.
However, when an open set is of class C"™ with m > 1, it is possible to de-
fine higher order traces (cf. next chapter) and, consequently, to obtain results
concerning the regularity up to the boundary. We will use these results when
studying the solutions of elliptic equations (cf. Chapter 5).

When using the definition above, it helps to know the relation between the
inclusion of restrictions of u € WP(£2) in each of the spaces WP (£ N §2,),
as well as the relation between the corresponding norms. These are as follows.

Proposition 2.68. Let {2 be a Lipschitz open set. If for every i, u € LP({2)
satisfies u € WHP(£2 N (2;), then w € WHP(£2). Moreover, there exist con-
stants C' and C' that do not depend on u such that

i ©il Lo (£2; gC’ u 1,p 5
(2.69) i leiullwrr2.ne) < Cllullws )

[ullwir@) < €32 lullwirena,)-
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Proof of Proposition 2.68. The first part of the proposition is obvious. Let us
show the inequalities concerning the norms.

Let u € LP(£2). By condition (1) of Definition 2.65, we can divide up the
sequence {f2;} into the union of k sequences of open sets {{2; } such that the
intersections 2 N §2;, are two-by-two disjoint. For such a sequence, the sum
>on ||u\|]zp(nin) is bounded from above by ||u\|’£p(m.

From this, we can deduce the inequality , ||uH]Zp(Qin) < kHuH’L)p(Q).
Next, let . € WUYP(£2). Using the chain rule for p;u and the uniform
upper bounds, we find that in condition (3) of Definition 2.65, the norm
lpsullwr.r(2ne,) is uniformly bounded from above by K||u|w1.r(on0,). The
previous upper bound therefore leads to

Z Hwiu”g{/lm(()mgi) g kK”quVl,p(Q)'

The second inequality follows from u =", p;u. a
We will now give a first important extension result for Lipschitz open sets.

Proposition 2.70. If {2 is Lipschitz, then for every p > 1, there exists a
(1, p)-extension operator from §2 to RN.

Proof of Proposition 2.70.

Let u € WHP(§2) and let i € N; then by the definition of the partition
of unity {¢;}, the function @;u has compact support contained in £2; N £2.
Moreover, @;u € WP(£2;1(2). We use the composition of p;u and a symmetry
on O} x R with respect to the hypersurface {xy = a;(2’)} (see Figure 2.3).

o A

Fig. 2.3. Construction of the (1, p)-extension.

This symmetry S is defined on O] x R by S(z’,zn) = (2/,2a;(z") — zn).
The image of the bounded open set 2, N (2 under S is a bounded open set §2..
We let U; = (2, N 2) U (002N §2;) U L2
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Let us begin by extending p;u. We will use local coordinates to define the
extension P;(p;u) from §2; N 2 to U;. For every (a/,zy) € U;, we set
Prloni) (o an) = LIN) if xy > a;(a'),

(psu)(a’,2a;(2") —xn) if xn < ai(a)).
For (2/,zn) ¢ Ui, we set P;(¢;u) = 0.

Let us verify that this extended function is an element of W?(RY) with
norm in W'?(RY) bounded from above by the norm ||ul|y 1.(r) multiplied
by a constant depending only on the constants C; and Cs of Definition 2.65.

We note that the symmetry S, which is its own inverse, is continuous
because a; is. Moreover, it satisfies

[S(21) = S(w2)| < (1+ 4] Valloo) |1 — a]-

It follows that we can apply Lemma 2.22 to the function P;(p;u) on the open
set £2; N {2 and on its image under S. Let v be defined on RV~ x ]0, +oo| by

v(@',t) = piu(a’ a;(x') +t).

The extension of v by reflection, that is, v(2/,t) = p;u(z’, a;(x’) —t) for t <0,
is the same as the previous reflection after the change of variable ¢t = zy —
a;(z'). Tt follows from Lemma 2.22 that v € WLP(R¥ =1 x ]0, +o0[). Since ¥
results from a (1, p)-extension on R, we find that p;u € WP (RY). Moreover,
the constant ¢ in Lemma 2.22 depends only on the Lipschitz constants of S
and S~!, and hence depends only on ||Va;||s, by the upper bound given
earlier. We therefore have

[ollwre@yy < C(L+ [[Vail|oo) llpiullwrrna)-
Moreover, as the norms ||Va;||e are bounded from above by Cs (cf. Definition
2.65), setting C5 = C(1 + C3), we have
lpiullwrr@yy < (1+ Co)[[v]lwrp @)
< Gsllpsullwrr ()

Let us return to the open set 2. Let

E(u) = Z Pi(psu).

By Proposition 2.68, we have E(u) € W1P(RY). The same proposition also
gives
IE@W)llwir@yy < 3 I1P (i) lwromyy < Csllullwirio)

This inequality implies the continuity of the extension operator E, completing
the proof of Proposition 2.70. g
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Corollary 2.71. If 2 is Lipschitz, then C>®(2) is dense in W™P((2).

Proof of the Corollary.

Let u € W™P(£2) and let v, € D(RY) converge to E(u) in W™P(RY).
The restrictions of the v, to {2 then converge to the restriction of u to 2,
which is u itself. O

In compliance with the principles announced earlier, Proposition 2.70 al-
lows us to prove the Sobolev embedding theorem.

Theorem 2.72. Given a Lipschitz open set {2, we have:

(1) If N > mp, then W™P($2) < L1(02) for every ¢ < Np/(N —mp).
(2) If N = mp, then W™P((2) — LU2) for every ¢ < co. If p = 1, then
WL sy Cb(_Q)
(3) If mp > N with N/p ¢ N and if j satisfies (j — 1)p < N < jp, then we
have
W™P(02) — CINR2), YA<j— N/p.

If NJp e Nand m > j = N/p + 1, then W™P(§2) — C;”*(N/p)’l’)‘(g)
for every A < 1.

For the proof, which is left to the reader, it suffices to first understand
that we can use the techniques of the proof of Theorem 2.31 to reduce to the
case m = 1. After that, use the extension operator given in Proposition 2.70.

Let us continue with the (m, p)-extension operators, where m > 1.

Definition 2.73. An open set is called uniformly C™ if it is Lipschitz with
functions a; of class C™ and with the following uniform upper bounds in
condition (3) of Definition 2.65:

(2.74) laillcm o + llpillem < Cs.

Theorem 2.75. A C™ open set has the (m,p)-extension property for every
p € [1,00][.

Proof of Theorem 2.75.

Using local coordinate systems, we reduce the problem to the extension of
a function of type ¢;u. Leaving out the indexes i in the function a; and in the
local coordinates for the sake of simplicity, we define

vz t) = u(@’, a(z’) + t),

which gives an element of W™P((R™)T) thanks to the properties of a. We then
use the extension provided by Theorem 2.54. The continuity of the extension is
an immediate consequence of the properties of C™-regularity, and the property
of an extension on RYV. O
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Note that we can also define w directly using the formula

ﬂ(xlva) = Z )‘ju(‘rlv —jan + (1 —|—j)a(m’)),
j=1

where the )A; satisfy

VEe0m—1], > (=)FN =1
J
However, in this case the computations are longer as we need to use the
conservation of the tangential derivatives along 942, for example, at order 1,
Oiu + 0;(a)Onu for every i € [, N —1].

2.4 Compact Embeddings in the Case of a Bounded
Open Set

Let us now give compactness results for the Sobolev embeddings in bounded
Lipschitz open sets. We begin by giving counterexamples in the case of the
critical exponent for a bounded set, and for all embeddings in the unbounded
case.

2.4.1 Two Preliminary Counterexamples

Example 2.76. Let us show that if 2 = B(0,1), N > p, and m = 1, then the
embedding W™P(2) — L4({2), where ¢ is the critical exponent Np/(N — p),
is not compact.

Let F be a C! function on RY with compact support in B(0,1) that is
not identically equal to zero. Let {F),} be the sequence of functions on B(0,1)
defined by F,(z) = n™/P)=1F(nz). We can easily see that {F,} tends to 0
almost everywhere and in LP(B(0,1)). Moreover, its gradient is bounded in
L?(B(0,1)). Indeed,

(2.77) / nWN/P=1H VPG PP (ng)de = ||[VF|,.
B(0,1)

In particular, {F,} is bounded in WP (£2). Moreover, we have
(2.78) [EnllLavwsav-m () = 1l pyesov-s (0)-

It easily follows (cf. Section 6.1) that |F,|V?/(N=P) converges vaguely to
|F|NP/(N*P)
LNT’/(N*TJ)(Q)

{F,} does not tend to 0 in LNP/(N=p),

do, where dg denotes the Dirac measure at zero. Nevertheless,
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Let us now give a counterexample to the existence of the compact embed-
dings when (2 is unbounded.

Example 2.79. Let us show that the embedding of W(RY) in L(RV) is
not compact.

Consider F € D(RY), non-identically zero, and a sequence {z,} that
tends to infinity; then the sequence {F,} defined by F,(x) = F(x — x,) is
bounded in W1P(RY) and converges almost everywhere to 0. Therefore, if it
were to converge strongly in L', we would have ||F,|; = ||F|1 = 0, giving a
contradiction.

2.4.2 Compactness Results

Theorem 2.80. Let 2 be a bounded Lipschitz open subset of RY, where
N > 1. If N > mp, then the embedding

Wm™P(()) — LI(2)

is compact for ¢ < Np/(N — mp).

Proof of Theorem 2.80. Let us first prove two lemmas.

Lemma 2.81. For any bounded Lipschitz open subset £2 of R, we have
whli(0) —. LY (2).

Proof of Lemma 2.81. Let B be a bounded subset of W11(£2). We use the
criteria for the compactness of bounded subsets of L?({2) given in Theorem
1.95 of Chapter 1. Let us verify the two conditions of that theorem.

Let € > 0 be given. We first show that there exists a compact subset K
of {2 such that

Yue B, lu(z)|dz < e.
O\K

Indeed, using Holder’s inequality with exponents N and N/(N — 1), we have

1/N (N-1)/N
/ |u(z)|dx < [/ dx} [/ \u(x)|N/(N_1)dx] .
ONK ONK O2NK

Since the open set {2 is bounded, we can choose mes K sufficiently large that
the measure of ({2 \ K) is arbitrarily small, giving the desired result.

Next, we prove that there exists a § such that if u denotes the extension
of u € B by 0 outside of (2, we have

Vh, |h <6 — /’ﬂ(x+h)7u(z) dz < .
(9}
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Let ho > 0 be given. Let B, denote the closure of the union of the family B,
of all open balls with center in 02 and radius hg. Let w = 2 \ By. This is
an open set contained in (2 for which we can easily see that if |h| < hg, then
r € w= x4+ h € (2. Consequently, for every © € w, u(x + h) = u(z + h).
Consider the composed function ¢ — u(z + th). For v € B, we have

/|u(x—|—h —u(z \—/‘/ o x + th)dt|dz.

Differentiating the absolutely continuous function ¢ — u(x + th) (cf. Exercise
2.3), we obtain

N
itu(a: +th) = zl: h;0;(u)(x +th) = h - Vu(z + th),

whence
/ lu(z + h) — u(@)] < / Ih| [Vu(z + th)|da.

Consequently, the last integral is bounded from above by |h|[|Vul|11(g), as
x + th € 2, hence by C|h|, as u € B. Therefore, there exists an hy < hy such
that

W <= [ fua ) - u(@)] < Il <

We still need to bound the integral over 2\ w. For this, we use the inequality

/Q Az + h) — u(z)| < /Q (lue + B)| + ua)]).

The argument given in the first part of the proof then implies the existence
of a 0 < hy such that |h| <6 =2 [y, 50)<as [u(7)|dz < c. Finally,

Yu € B, |h\<5:>/|ﬂ(x+h)—u(x)|dx<5
7

Theorem 1.95 now implies that B is relatively compact in L'(2). O

Lemma 2.82. Let 2 be an open subset of RN. Let {u,} be a sequence that is
convergent in L¥(£2) and bounded in LI(£2) for some q > k; then it converges
in every LP(§2) with k < p < q.

Proof of Lemma 2.82. We use Holder’s inequality to write p = 6k + (1 — 6)q,
where 6 € ]0,1[. We have

(2.83) l|n — Um”LP(Q) < lun — um”%’c(n)”“% umHLq(Q)

The right-hand side tends to zero when n and m tend to infinity, as it is
the product of a bounded sequence and a sequence that tends to zero. We
conclude that {u,} is a Cauchy sequence in LP(§2), and therefore converges
in LP(£2). O
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Let us return to the proof of Theorem 2.80.

Let {un} be a bounded sequence in WP (§2). As 2 is bounded, L?(§2) —
LY (2) and {u,} is also bounded in W1!(£2). By Lemma 2.81, the latter is
relatively compact in L!(£2). Moreover, by Theorem 2.72, the sequence {u,, } is
bounded in L1(2) with ¢ < Np/(N — mp). By Lemma 2.82, {u,} is relatively
compact in all L2(£2) with p < ¢ < Np/(N — mp). O

Let us now consider, when mp > N, the compact embeddings into the
spaces of Holder continuous functions.

Theorem 2.84. Let {2 be a Lipschitz open set. Let mp > N and let j =
[N/p] 4+ 1; then for all A < j — N/p, the embeddings

W™mP(2) — C™ I (0)
are compact.

Proof of Theorem 2.84.
Let us begin with the case m = 1 and p > N. We will use the following
result, whose proof we will give later.

Lemma 2.85. Let {2 be a bounded open subset of RN and let {u,} be a se-
quence in CON(£2) that is relatively compact in C(§2); then for every u satis-
fying 0 < p < A, the sequence {u,} is relatively compact in Cg’“(Q).

Let us now show that the embedding of WP (£2) in C(§2) is compact. We
will use the Ascoli-Arzela theorem. Let K be a bounded set in WP (£2). The
set {u(x) | u € K} is then uniformly bounded for every = € (2. Indeed, as we
already know that the injection is continuous (cf. Theorem 2.72), we have

[u(@)]loe < [lullwrre) <C

for all u € K. Let us show that K is equicontinuous. Indeed, by the continuity
of the embedding of WP (§2) in C%1~N/P((2) (Theorem 2.72, again), we have

. 1/
V(z,2+h) €2, |ule+h)—u(z)| < ChI=N/P (/ |vu|de) g
2

This implies that K is uniformly Holder, hence in particular equicontinuous.
Lemma 2.85 allows us to conclude the proof in the case m =1 and p > N.
Next, let K be a bounded subset of W7 (£2) with (j —1)p < N < jp. We
can easily see as above that K is relatively compact in C(£2). We again use
Lemma 2.85 to conclude that K is compact in C%*(§2) for every A < j—(N/p).
For the general case, let K be a bounded subset of W™P({2) and let
j =[N/p]+ 1. Let {uy} be a sequence of points of K. Since {u,} is bounded
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in W™P((2), both this sequence and the sequences consisting of its deriva-
tives {D™ Ju,} are bounded in W7P(2). By the above, we can extract sub-
sequences that converge in Cz? ’)‘(Q) to u and vy, ;, respectively. For the sake
of simplicity, we keep the same notation for the subsequences. They satisfy

[t — ullooc — 0 and HDm_jun — U jlloc — 0.

Since the convergence in L* implies the convergence in the sense of distribu-
tions, we have v, ; = D™ Ju. Moreover, by the above, { D™ Ju,,} converges
to D™y in CO*(02) for every A < j — N/p.

It follows that for every A < j — N/p, {u,} tends to u in C;n*j’)‘(ﬁ). This
implies the compactness of the embedding of W™ P((2) in Cl? H(0), for every
p<j—N/p. 0

Proof of Lemma 2.85. Let 6 € ]0,1] satisfy u = OX. Let {us(n)} be a subse-
quence of {u,} that converges in C(£2). For any pair of indexes (n,m), set

dn,m = |(ua(n) - ua(m))(x + h) - (uo(n) - u(r(m))(x”
We have dy, ,,, = df , d378. Thanks to the convergence of {u, ()} in C(£2)), we

n,m“n,m:*

can choose ng sufficiently large that if n,m > ng and z and x + h are elements
of £2 with |h| < hg, we have the following inequality:

di;fi = ’(uo'(n) — Ug(m)) (T + 1) = (U (n) — Ua(m))(aﬁ)‘(l_‘g) <e
Hence, under these conditions,
dp,m < 207e.
Consequently,
[t n) = o (m) lcon () < 2e. -

2.5 The Trace on the Boundary of a C! Open Set

Recall that we defined a uniformly C! open set to be an open subset of RV
that is Lipschitz with functions a; of class C!. In this situation, we can define
the integration on the subsets U; = 042 N £2; of the boundary, each of which
is a dimension N — 1 submanifold of class C' in RY. Such a submanifold is
defined by a Cartesian equation 2’ + zn = a;(2’), where a; is C! on the open
subset O} of RV~1 so that the (N — 1)-dimensional surface element on Uj; is
given by do(m) = /1 + [V(a;)|>(m) dm. Recall that in this case, the integral
of a function f that is summable in U; is defined by

[ romyim = [ 1" el VT V@)@ Pas
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In this section, we define the trace of a function u in W1 (£2) on the boundary
of 2 in the same manner as in the case of (RY)*, or more generally, in the
case of a straight boundary. More precisely, we have the following theorem.

Theorem 2.86. Let 2 be a uniformly C* open subset of RN ; then there exists
a continuous linear map Yo, called the trace map, from W1P(£2) into LP(012)
such that if u € C(2)NW P (£2), then its image yo(u) is the function x — u(x),
which is well defined on 052.

To see the importance of the class C' hypothesis on 2, let us give an
example of a non C! open set on which the functions of W1(§2) do not have
a restriction to 92 in LP.

Example 2.87. Consider the open sets defined in Example 2.9. We take the
function u(x,y) = 1/y? that belongs to H'(2), where the open set 2 is
defined using k& = 1/6. This function is the restriction of a function v defined
everywhere on {2 except at the point = = 0. Let us study whether v|sg, is an
element of L?(912).

We have already proved in Example 2.9 that this is the case. Let us restrict
ourselves to the part of 0f2 that can be identified with either the arc I" defined
by {z €[0,1] | y = 2'/6} or the arc {z = ¢° | y € [0,1]}. The infinitesimal
element of arc is ds(y) = V1 4 36t2° dt, hence fo y)2ds(y) diverges at 0. It
follows that this restriction, or trace, does not belong to L2(092).

Proof of Theorem 2.86. Even though the existence of the trace in the case of
a Lipschitz open set can be shown in a manner similar to the one used in
the case of WHP((RN)T), we will give a proof in which the importance of the
notions of Definitions 2.65 and 2.66 is more evident.

Let us assume that u € C*(£2) N W1P(£2). We begin by defining the trace
of v; = p;u using the partition of unity and local coordinates. This function,
which is an element of WP (£2;), can be extended by 0 outside of its support
in the open set O} x {xy > a;(z’)}. By Corollary 2.19, we have the following
equality for every integer n > 0 and every y > 0:

y
(x) vi(2',a;(x") +1/n) —v; (2, a(2’) +y) = — y On (v3) (2, a;(x") + t)dt.

n
Let up,(z') = vi(2',a;(z") + 1/n). From (x), we deduce that for every pair
(n,m) of nonzero integers, we have

lun(2) — ]/l/n}aN (vi)(2', ai(2") +t)|dt’.
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We then apply Holder’s inequality and take the pth power. Next, we multiply
on the left by the element of surface do; and integrate with respect to 2’ € Oj.
This allows us to prove that Ay = ||un — Ul Lr(07,do;) — O

An,m <
n

([ viEwaEe( [

{ai(z")—1/m<zN<ai(z’)—1/n}

‘1 1 ‘1—1/:0

’8Nvi(x)|p)} 1/p,

i

whence

(2.88) )—f—‘ ( 1+\|Val||2) 10 (i) Lo (2,)-

By Definition 2.66, this expresses the fact that |Va;(z’)| is bounded from
above. When p > 1 and n and m tend to infinity, the right-hand side tends
to zero, and therefore so does the left-hand side. When p = 1, the right-hand
side still tends to zero, by the definition of L' functions. In all cases, {uy,} is
a Cauchy sequence in LP(0}, do;), the Lebesgue space for the bounded mea-
sure do;, which is therefore complete. This sequence therefore converges in
LP(0;,do;) to a function w; € LP(O;,do;). Moreover, there exists a subse-
quence {u,)} of {u,} that converges almost everywhere in O] to w;(z’).
Now, saying that lim(p;u)(z’,a(z’) + 1/(n(n))) exists almost everywhere is
equivalent to saying that the function 2’ — @u(z’,a(z’)) = w;(a’) is well
defined.

This extension w; of w;u on 02 N §2; is the desired trace. We therefore
set vo(p;u) = w;. By the above, this function belongs to LP(O;,do;), and
therefore to LP (082 N (2;). Moreover, by taking the limit in () and taking y
sufficiently large that v;(z’, a;(2") + y) = 0, we find that

(2.89)
+oo

for almost all 2’ € O}, ~o(piu)(2’) = —lim [/ On (v;)(2',a;(z") + t)dt
1/n(n)

+oo
- / O (i) (2, as(a') + ).

We must now define the trace of u by gluing.

Let vou = Y, vo(psu). This sum is locally finite, and by condition (1)
of Definition (2.65), we conclude that vo(u) € LP(9(2). We can show that
the resulting trace does not depend on the choice of the elements in Defini-
tion (2.65).

If we assume that u € C!(§2), we can use the previous arguments. In par-
ticular, equality (2.89) gives us yo(p;u) (2, a;(2')) = u(a’, a;(z")). It follows
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that you is the extension by continuity of w to the boundary 92 (cf. the
definition of C(2)).

To conclude we need only prove that the map g is continuous. For this,
we start out with equality (2.89) and carry out the same computations we
used to obtain (2.88). This gives

1/p
olellzo ooy < C(VIFTVIE) " 198 (pit) oo e,

By condition (3) of Definition 2.65, this leads to the inequalities

1/p
Iroullzony < Csup(VIF+VaillZ) "~ S IV (i) oo,
<O uVei + i Vull (o,
< O sup{l|gilloes [Onilloc} 3 Nullwrnen):
K3 N

Using condition (2.66), we deduce that there exists a constant C* that does
not depend on the elements of Definition (2.65), such that

Yu € C™(2)NWHP(02), Ivoull zr 902y < C*||ullwir()-

We have thus defined the trace of u when u € C*(£2) N W1P(2). For
u € WHP(£2), we use the density stated in Proposition 2.12 to approximate u
with u,, € C®(2) N WP(£2). By taking the limit, formula (2.89) gives you =
- f0+°° On (psu) (2’ a;(2") + t)dt, whence vou, — vou in LP(82 N §2;). The
continuity follows, namely

Vue W, |voullran) < llullwieo)- o

Remark 2.90. The induced norm provides a way to define a norm on the
image space of the trace map without giving it explicitly. We will give an
explicit and intrinsic form of the norm in Chapter 3.

Let u be the trace of a function U € W1?(£2) on the boundary 9f2. Let

291 ulll = inf U P(0)-
(291) llall =y ypint W)

This defines a norm for which the image space vo(W1?(£2)) is a Banach space.
Indeed, let u and v be elements of vo(W'P(£2)) and let U and V be elements
of W1P(£2) such that U = u and V = v on 942, and

IUIF< Mllull] +&and [V < [[Jofl| + e
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We then have U +V =« + v on 92 and
[lu+oll < T+ VI <O+ VI < ([Julll + [[Joll] + 2,

concluding the proof of the subadditivity. The proof of the other properties
and of the completeness of the image space are left to the reader.

We conclude this chapter by going back to the characterization of the space
WP (£2) when £ is C'.
Theorem 2.92. Let §2 be an open set of class C'; then the following state-
ments are equivalent.
(1) u € WyP(9).
(2) (only if p > 1) There exists a constant C such that for every ¢ € D(RYN),

|| Ve @lde < CITulzoa el
(3) The function u defined by
_ {u(m) if v € 82,
u

0 otherwise,

is an element of W1 P(RN).
(4) The trace of u on 952 is zero, that is, you = 0.

Proof of Theorem 2.92.

The implication 1 = 2 is always true, without any assumptions on either
the open set or on p. Let u € Wy (£2) and let {u,} € D(£2) converge to u in
WLP(§2). We have

[ w@oee)is| = |- [ v (@)ptwids| < [Funlus ol

The result follows by taking the limit.
It is clear that (2) = (3), since if ¢ € D(RY), then

(w, 0;¢) :/ ud;p du.
Q

Moreover, using (2), we find that if p > 1, then u € WHP(RY).

The implication (3) = (4) follows from the uniqueness of the trace.

Let us show that (4) = (1). We reduce it to showing that if u =0 on 042,
then we can approximate ug; with functions in D({2). Indeed, let

__ 1
Ui = UP; (x’, —a;(¥') + N — E>

The functions u, ; are elements of WP (£2) with compact support. The se-
quence {u,;} converges to up; in W1P(RY), hence converges to uy; in
WLP(02). Regularizing by a suitable function, we find that u € Wy ?(£2). O
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Comments

There are many books on Sobolev spaces over open subsets of RYV. The sim-
plest and most complete, as far as we are concerned, is Adams’s book [1],
which has the advantage of also studying more general open sets than Lips-
chitz sets, for example open sets satisfying the uniform cone condition, or hav-
ing the segment property. One can also consult the original papers by Sobolev
and Nikolskii [53], Sobolev [62] and Uspenskii [73]. The book by Gilbarg and
Trudinger [34] presents the essentials, emphasizing the main points of the
results.

There also exists a vast literature on Sobolev spaces over Riemann vari-
eties. Let us mention, for example, the book by E. Hebey [37], which gives
complete results and is agreeable to read.

The case where the codomain has other topological properties than RP is
discussed by Bethuel [6] and Brezis, Bethuel and Coron [5].

2.6 Exercises for Chapter 2

Exercise [¥] 2.1 (On the Completeness of the Sobolev Space H!(2)).
Let §2 be an open subset of RY. Recall the definition of H({2). Show that

(u,v) = /Qu(x)v(x)dx + ij:(/n 8ju(x)8jv(x)d:17>,

defines a scalar product on the space H'({2). Show that H!({2) is a Hilbert
space.
Hints. Let {un}nen be a Cauchy sequence in H'(£2). Prove that the sequence of

derivatives {djun} converges in L? to u;. Next, prove that these functions are dis-
tributional derivatives of u = lim u,,. Conclude.

Exercise 2.2 (On the Construction of a Partition of Unity).

We call a cover {£2,} of (2 finer than the cover {2;} if for every k, there exists
a j such that £2; C £2;. We call the cover {{2;} locally finite if every element x
of 2 admits a neighborhood that meets only a finite number of open subsets
in the family {£2;}.

(1) Let {£2;} be an open cover of the open subset 2 of RV, Show that we can
find a locally finite cover {£2,.} of £2 that is finer than {f2;} and consists
of relatively compact sets.

(2) Consider a cover {2;} consisting of relatively compact open sets. Show
that there exist v; € D(£2;) such that v; > 0 and v; =1 on ﬁ; Use these
functions to construct a partition of unity associated with the given cover.
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In the general case, we will use the open cover of 2 given by question (1),
which is finer than {£2;} and consists of relatively compact sets.
Hints. For (1), use an increasing sequence {Uy } of relatively compact open sets that

covers {2 and satisfies o
Uo=9, Uk CUgy1.

Next, use the compactness of £2; to determine a cover of this compact set by a finite
number of Uy. It is easy to deduce a cover of 2 with the desired properties from
this.

For (2), the construction of the v;, set K = §2/. Let V be a neighborhood of 0
and let U be a compact neighborhood such that U+U C V (first prove the existence
of U). Let p. be a regularizing function (cf. Section 1.4.2) with support contained
in U and let x be the characteristic function of K + U 4 U. Let v; = x * pe.

Since the sum v = Y ~; is locally finite, we can define this sum at every point
of §2 and, by division, obtain the functions of a partition. Check this.

Exercise [] 2.3 (On the Absolute Continuity of the Functions on a
Sobolev Space (cf. Remark 2.4)).

The definition of an absolutely continuous function is given in Exercise 1.29.
For any two absolutely continuous functions on an interval I, the product
UV is also absolutely continuous. Moreover, for every [a,b] C I, we have
the following formula for integration by parts, where u and v are almost
everywhere derivatives of U and V:

b b
(2.93) / Ut)o(t)dt = Ub)V(b) — U(a)V(a) — / V(t)u(t)dt

Let u be defined almost everywhere in an open set 2 C R2.

(1) Let 2 C R? and let u € WHP(2), where p > 2. Let [0,u] denote the LP
function equal to the derivative of u with respect to x, seen as a distribu-
tion. We can cover {2 by squares C; and set v; = v;u, where ¢; € D(C})
and > 1; = 1 on {2. We extend v; by 0 outside of C;. Let v be defined
on 2 by v =) v;. Below we also write v for v], for the sake of simplicity.
Show that v € LP(2). Let v* be defined by v* f_ [010] (¢, y)dt for
every y satisfying fR ’ [010] (¢, y) ‘dt < +00. Deduce from this that v = v*
almost everywhere and that on almost all lines parallel to Oz, the func-
tion u is almost everywhere derivable with [0y u] = 0;u almost everywhere.

(2) Let u € L .(£2) be absolutely continuous on almost all lines parallel to
Ox and such that its derivative almost everywhere 0., u is an element of
LP(£2). Show that [0,,u] = 9, u almost everywhere.

(3) Let u € WH1(£2). Suppose that [z, 2z + h] € 2. Show that the derivative
of v : t — u(x+1th) exists almost everywhere on |0, 1[ and that dv/dt (x +
th) = h - Vu(z + th).

Hints. For (2), it suffices to compute fg 0z, udz by integrating by parts.
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For (3), use the decomposition of v(t') — v(t) as a sum of differences of the type
w(x+t'h) —u(z1+t'hi,z2o+t'ha,...,on_1+t'hy_1,zN +thy). Write each of these
differences as the integral of a partial derivative over some interval. Taking the limit
uses the continuity of a Lebesgue integral with respect to its bounds.

Exercise [] 2.4 (On the (1,p)-Extension in the Case of an Interval
in R).

Let u € WHP(]0, +00[). We extend u to | — 0o, 0[ by setting u(x) = u(—x).
Prove that this extension of u is an element of WP(R). Let u € WP (1)
where I = ]a, b[. Prove that we can extend u to an element of W1?(R).

Hints. First establish that &€ W?(] — co,0[) by showing that (&)’ =—u'.

Exercise 2.5 (Product of Functions in W1?(Q2) and W14(£2)).
Consider a Lipschitz open subset 2 of RN. Let p < N, let ¢ < N and let
1/s = 1/p+1/q— 1/N. Show that if u € WP(2) and v € Wh4(£2), then
uv € WH3(0).

Hints. Use the Sobolev theorem 2.31 with suitable exponents and Holder’s inequality.

Exercise 2.6 (Example of a Non-Lipschitz Open Set).
Let 2 ={0 <z <1, 0<y < x*}. Prove that the function z — z~! is an
element of H'(£2) but not an element of L>(§2). Conclude.

Exercise [%] 2.7 (Injection into a Non-Compact Space of Holder
Functions).
Let p> N. Show that the injection of W1P(B(0,1)) into Cg’lfN/p(B(O, 1)) is
not compact, as follows.

Let ' € D(B(0,1)) satisfy F' > 0 and sup,|; F'(x) = 1. Show that the
sequence F,(z) = n~'™N/PF(nz) tends to 0 in all the spaces Cg’)‘(B(O, 1))

and has a constant norm equal to 1 in C,?’l_N/p. Conclude.

Exercise 2.8 (Gluing Two Functions over a Straight Edge).

Let v~ be the trace operator defined in the same manner as over (RV)*
but using the open set RN =1 x R™. Let u™ € WLP((RV)*) and let u~ €
WhP((RM)~). We set

_ Jut(x) ifze (RV)F,
‘e u(x) ifze ®N)".

Prove that u € WHP(RY) if and only if yout = y~u~ on RV L.

Exercise 2.9 (Generalized Poincaré Inequality).
Let £2 be a Lipschitz bounded domain in RY. Let p € [1, 4+oc[ and let A be a
continuous seminorm on W1P(§2); that is, a norm on the constant functions.
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Show that there exists a constant C' > 0 that depends only on {2, N, p, such
that

fulhwoiay < ([ wutapar) ™+ vw).

Apply this result to A (u fF |u(z)|dx, when §2 is a C* open set and I is
a subset of 92 with pOblthG (N — 1)-dimensional Lebesgue measure.

Hints. Prove the result by contradiction. Assume that there exists a sequence {u,}

such that Y
P
HunlevP(m?”(( [ 1vuar) +N<un>).
2

Normalizing, that is, considering wn = un (||un |lw1.p (o)) ", gives
lwnllwie@)y =1, N(wn) — 0, [[Vwn|l, — 0.

Use the boundedness of {2 and the relative compactness of {w,} in L? to deduce a
contradiction.

Exercise 2.10 (Function from {2 to RN Whose Deformation Tensor
is an Element of LP({2)).
Consider the space

X,(0

p

)= {ue LP(2,RY) |
V(’L,]) < [17N]2, Eij(’u,) = %((%ui +(91’LLJ) S LP(Q)}

where p € |1, +o00[ (cf. Chapter 6). For the moment, we admit that if {2 is a
bounded Lipschitz open subset of R, then WP (£2,RY) coincides with the
space above when p > 1. More precisely, there exists a C' > 0 such that for
every u € WhP(02,RY),

P
sy < O [ e+ | > et par) "

We will show this in Chapter 7.
(1) Show that X, (£2) endowed with the norm
1/p

lulx, = /\u |pd:z:+/2\% z)|Pdz|

is a Banach space.

(2) Taking the derivatives in the sense of distributions, note that u; ;i =
O (gi5) () + 0j(gik)(u) — Di(ejk)(u). Show that the set R of the WP
functions satisfying e(u) = 0 consists of the rigid displacements, that is,
the functions of the form u = A + B(z), where A is a constant vector
and B is an antisymmetric matrix. Determine the dimension of R.
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(3) Consider a seminorm A on WP that is a norm on the rigid displacements.
Show that there exists a constant C' > 0 such that

Vue W(2), ulwise) < C[N(w)+ (/ﬂ |a(u)(x)|pdx)l/”]

Exercise 2.11 (Best Constant for the Injection of W'P(RY) in
LE(RM)).

Let p < N and let £ < Np/(N — p). We know that there exist two constants
C7 and C5 such that

Vue WHRY), Jull < Cil|Vullp + Collull,-

We say that C) is the best constant for the injection of WP in L¥ if C; is the
smallest constant for which there exists a Cy satisfying the inequality above.
Prove that if &k < Np/(N — p), then there does not exist any best constant.

Hints. Assume that C) exists and define, for A > 1, the sequence ux(z) = u(z/A).
Prove that

luallie < A™HHPNECY W]l 4+ Co AN NP .
Use this to prove that there exists a constant that is better than Ci.
Exercise 2.12 (Function with One Derivative in L' and the Other
in L?).
Let X' be the closure of the D(R?) functions for the norm [dyul; + |duls.
Show that X* < L*(R2).

Hints. For a regular function u, write
u4(x17x2) = US(Il,Ig)u(Il,CCQ).

Next, use that

[u? (21, z2)| < 3/ u®(z1,t)|02u(z1, t)dt
R

< 3(/]R ‘u|4(x1,t)dt) 1z (A|82U|2($1,t)dt> 1/2
= p(z1)¥(71)
and
|u(z1,22)| < /JR |B1u(t, z2)|dt = h(zs).

Finally, use Fubini’s formula and Holder’s inequality as follows:

Ydaydry < h(z2)dz1d
/R/IR\U\ z1dT2 /R/Rw(m)w(m (w2)dx1ds2
< llellzllgll2 )R]l

1/2
< 3(//u4d$1dm2) ||82UH2H61’U,H1
RJR

Conclude.
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Exercise [¥] 2.13 (Upper Bound for an Element u of W,"' on an In-
terval).

Let u € W, (]0,1[). Prove that |julloc < 1/2||¢/||; and that this inequality is
the best possible.

Hints. Write L

u(x) :/Ox ' (t)dt and wu(z) = f/w o' (t)dt.

Exercise [#] 2.14 (Consequences of the Existence of 7(u) for u De-
fined over an Interval in R).

Show the following inequality, which specifies the continuity of the trace map
on W1i(]o, 1[):

(2.94)  Vuewh(o,1]), |u<o)|+|u(1)|</O |u’|(t)dt+2/0 fu(t)]dt.

Show that the only functions that satisfy the equality are the constant func-
tions.

Hints. Since the function w is absolutely continuous, we have the equalities

Ve [0,1], wu(x)=u(0)+ /0z o (t)dt,

Vze[0,1], u(x)=u(l)+ /j o' (t)dt.

Taking the absolute values and integrating the sum of the two resulting inequalities
over |0, 1] gives (2.94).
Assuming equality in (2.94) and taking into account the inequalities

[u(0)] < Ju(z)| + /:\u’<t>|dt and  Ju(1)] < Ju(z)| + / (1) dt,

deduce that for every z, |u(z)| > fol |u(t)|dt. Applying this inequality to a point z
where the continuous function u reaches its minimum gives the desired result.

Exercise [+#] 2.15 (The Spaces W'?(I) for an Interval I in R).
Let 1 <p < oo.

(1) Using Exercise 1.29, show that « € WP(I) if and only if u € LP(I), u
is absolutely continuous, and the derivative almost everywhere satisfies
u' € LP(I).

(2) Show that every function in W1P(I) can be extended to a continuous
function on I.

(3) In this question, we will use that W'P(R) = W, ”(R). Let u be a C'
function on R with compact support. Let v = |u[P~u. Show that v is C*
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with compact support and that v = p|u[P~1u’. Use the equality v(z) =
S v/ (t)dt to show that there exists a constant C' such that

VeeR, |u(@)] < Clulwis).

Deduce that W1P(R) is embedded in L>°(R). Show that the constant C
can be chosen independently of p. Show that the result still holds true
when the interval I is bounded.

Hints.

(1) If w € WHP(I), then Exercise 1.29 gives the desired properties. Conversely, use
integration by parts to prove that

Vo, ([ul',e) = ([u], ).

(2) Since u’ is summable over I, u is absolutely continuous over I, giving the con-
tinuity on I.
(3) Starting with the given hint, use Holder’s inequality to determine the upper

bound pl/pHuH;/p/Hu'H;/p for |u(z)|, giving the result by using p'/? < e and
Jensen’s inequality

/ 1 1
1 1
‘U‘P/p |u/ p/p < 5|u|p + _,|U/|p-
This leads to the density of the continuous functions with compact support.
When [ is bounded, use

t

u(x) = u(zo) +/ o' (t)dt.

z0
Exercise [x] 2.16 (Solving Limit Problems on an Interval).
Let 1 =]0,1[. Given f € L?*(I), we wish to find a u that, in some sense, is a
solution of

—u” +u= f>
*) {u(O) = u(1).

(1) Assume that u € C2(I)N H} (I) satisfies (x). We multiply (*) by a function
v € H}(I) and integrate by parts over I. Prove that if (-|-) denotes the
inner product on Hg(I), then

Vo e Hy(£2), (wlv)mgrry = (f,v)L2(n)-

Conversely, prove that if u € H}(I) satisfies this relation, then u is a
solution to the problem, where v is taken in the sense of distributions.
Next, prove that v — [, f(t)v(t)dt defines an element of the dual of Hg (1)
and deduce the existence and uniqueness of a solution of the given problem
in H}(I) (use the Riesz representation theorem for a Hilbert space). Prove
that this solution is in H2(I) and that if f € C(I), then the solution is in
C3(I).
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(2) Use, for example, the fundamental solution of u” —u = 0 on RT or varia-
tion of the constants to determine this solution explicitly using integrals
pertaining to the function f.

Exercise 2.17 (Relation Between ||Vul/z: and ||u/7|r2).
(1) Let u € C.(RY) with N > 3. By computing

N —2)u(z)Z
s 0202

2

)

integrating over RY, and integrating
x; x;
/ 2udju — dr = i (u?) = d,
RN r RN r

by parts, show that

N-—2? [
/ |Vu(z)|*de > u/ Y da.
RN 4 R

=
(2) Deduce that if N > 3, we have u € H! = u/|xz| € L?. Show that this
result does not hold for N = 2.

Exercise 2.18 (Generalization of the Previous Exercise).
(1) Show that if u € WHP(RN), N > p, and 1 < p < oo, then u/|z| € LP. In
order to do this, show Jensen’s inequality (where 1/p+1/p’ =1):
1 1 /
VX, Y eRY, X Y <-|[YP+=|XP.
p p

(2) Apply this inequality to the vectors Y = Vu and

(N —plu7 ’P—Q (p— Nz B (N — p)P—l lulP~2u 7
pr? [ P '

Integrating the term o |u[P=2u7 /7P - Vudz by parts, deduce that

/RN |VulPdz > (%)p/ﬂw (%)pdw.

Hints. For Jensen’s inequality, use f(z) = |«|”, which has derivative p|x|" 2z, giving
the inequality f(z +y) = f(z) + Df(x) - y.

X:‘
rp

Exercise [#+] 2.19 (Fundamental Solutions of the Laplacian).

Show that there exists a constant kg such that A(ln \/z2 + y2) = kadp in R?
in the sense of distributions. Show that in RY with N > 2, A(r?>=V) = kydo,
where kx can be expressed using the area wx_; of the unit sphere in RY. Use
elementary computations of integrals in the cases N = 2 and N = 3. For the
general case, use Green’s second theorem.
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Hints.
(1) First show that as functions and outside of the origin, we have d,[In7] = x/r?
and Oy[lnr] = y/r?. Next, show that these functions are locally summable.

Finally, use the function ¢(r,0) = ¢(r cos 8, rsin ), the formula

sin 6
T

Oxp = cos00,p — 09 P,

and the analogous formula for ¢, to deduce that
x Y
<8”r_2 +0y 3 90> = 2mp(0).

(2) Assume that N = 3. Show that the three derivatives of u = r~! are locally
summable and deduce from this that

(Au, p) = — / r? [$31-<,0 + yOyp + zach] dx dy dz.
R3

The polar coordinates are defined by
xr =rcosfcosn, y=rcossinn, z=rsinn.

Compute the partial derivatives using those of @ with respect to r, £ and 7, and
show that the previous integral is equal to —4mp(0).

(3) We admit Green’s second theorem: given a bounded open set £ of class C', a
C? function f, and ¢ € D(RY), we have

(2.95) /Q [(2) Ap(z) — p(x) Af (x)] dz = / @) pla) = pla)0z ()] do.

where the normal derivative 7 on 02 is oriented outward from (2. Deduce
from this that when ¢ — 0, (A(r?>™"), @) is the limit of

=€

[ oA Mo+ [ [p@on? ) =1t Non (o)) o

=z

Use this to prove that A(r*~ ) = (2 — N)wn—10(0).-
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Traces of Functions on Sobolev Spaces

At the end of the previous chapter, we showed the existence of a trace (that
is, the extension of an element u of W (£2) to the boundary 9¢2) when (2
is a C! open set. This function 7o(u) belongs to LP(942). However, since we
do not have extensions of the derivatives 0;u to {2 when the open set is of
class C1, it is clear that, in general, saying that you lies in a Sobolev space of
type W1P(942) has no sense.

However, using the notion of a fractional derivative, we can imagine that
the inclusion u € W1P(§2) implies that certain derivatives of order s of yo(u),
where 0 < s < 1, belong to LP(92). This chapter begins with an example
where this inclusion holds at the order s <1—1/p.

In order to better picture this notion, the reader can take p = 2. In this
case, we can use the Fourier transformation, as we will do in Chapter 4. We
transform a partial derivative d;u into the product 2iw&;u whose inclusion
in L? is equivalent to that of (1 + £2)Y/2%. Conversely, by using the inverse
Fourier transformation, it is natural to call w 1/2 times derivable if the function
(1+ |£*)/*% belongs to L2.

In general, in cases other than p = 1, the trace of a function with deriva-
tives in LP has better regularity than functions in LP(9{2). We propose, in this
chapter, to give an intrinsic characterization of the trace x — v(z), that is,
one that is independent of the choice of the function u in W1?(£2) such that
You = v. This characterization will lead us to identify, for p > 1, the image
space of the trace vy with a new space Wl_l/p’p(aﬁ), our first example of a
fractional Sobolev space. In Chapter 4, we will generalize this particular case
to all fractional Sobolev spaces.
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of Elliptic Partial Differential Equations, Universitext,

DOI 10.1007/978-1-4471-2807-6.3,

(© Springer-Verlag London Limited 2012


http://dx.doi.org/10.1007/978-1-4471-2807-6_3

114 3 Traces of Functions on Sobolev Spaces

3.1 The Spaces W'—/PP(RN-1) for p > 1
3.1.1 Preliminary Example

Example 3.1. We propose to begin by studying the regularity properties of
the traces of certain functions in WP on a simple example. This will allow
us to introduce new Sobolev spaces using the notion of fractional derivative.
Consider the open set 2 = R x |0, 400 and a function ¢ in D(R) such that
0<p<1land ¢is1on [0,1]. We define the function u by setting

u(z,y) = e(vz2+y2) (2 + y2)? = p(r)re,

where, given p > 1, we assume that
(%) 1-2/p<a<1-1/p.

We then have u € W1P(£2). The trace, or in this case, restriction, of the
function u to the boundary R x {0} is x — f(x) = o(|x|)|x|“.

We can verify that under the condition (%), you = f € LP(R) and f ¢
WhP(R).

Remark 3.2. To justify the statement in the introduction of this chapter, we
can apply the notion of fractional derivative of order s with 0 < s < 1 to
the traces of the functions u studied above. This will lead to the inequality
0 < s<1-—1/p as a condition for the inclusion of such a trace in L?(012).
This result is a first approximation of the definition of a fractional Sobolev
space, in this case W!=1/PP(R).

This remark, which relies on the notion of fractional derivative presented
in the book [60], is expanded in Exercise 3.1. Let us consider the restriction of
the function u from the example above to [0, 1], that is, the function z — z®
on this interval. Its derivative of order s is ax®~*. The condition under which
this derivative belongs to L”(]0, 1]) is p(aw — s) > —1, or s < o + 1/p. Thanks
to (%), we have 1 —1/p < o+ 1/p < 1. It follows that the values of s for
which « satisfies the relation (x) are indeed those that satisfy the inequality
0<s<1—1/p.

Moreover, we will see further on that the inclusion v € W'=1/P2(] — 1,1])
is equivalent to the following two conditions:

v(x) —v

veLP(]—-1,1]) and / y(y) ’pd:cdy < 4o00.

]—1,1[><]—1,1[’ T —

To verify this, let us show that under the condition (*) of Example 3.1, the
integral above, denoted by J(v), is indeed convergent for the function v on
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] —1,1[ defined by v(x) = |z|*. We can actually reduce this to considering the
function v(x) = 2 on |0, 1[.

Setting 8 = (o — 1)p + 1, after applying a homothety to the variable and
applying Fubini’s formula twice, we obtain

1,1 1/z
v):/ / ‘x / / " irda
| e o 1/,\
:/ ﬁdw/‘ A / ’ —A / 2P dX.
c el

The function A — |(1—A%)/(1 - )\)’p is continuous on [0,1]. The first
integral is therefore convergent under the condition 8 = (¢ — 1)p+1 > —1.
This same condition allows us to write the second integral as

+oo 1 — )\
K A 7((171);072’
e =

It is therefore also convergent, since (a—1)p—(a—1)p—2 = —2. To summarize,
J(v) is well defined if o > 1 — 2/p.

17)\0‘

p

dA.

3.1.2 Definition of a Fractional Sobolev Space; Examples

Definition 3.3. Consider a real number p > 1 and an integer N > 2. The
Sobolev space W'=1/PP(RN=1) is the subspace of LP(RVN~1) defined as

(3.4) WYY = fue LYY |

u(y)[”
AN I/RN 1 |x—y|P+N 2da:dy<oo}

Theorem 3.5. The space W=1/PP(RN=1Y) endowed with the norm

1/p
u(y)|?
Hu”Wkl/p’p(RN DT <|uLp R /]RN 1/RN 1 |5C—y|p+N 2 To— g2

is a Banach space.

We will give the proof of this theorem in the next chapter, for more general
fractional spaces and for an arbitrary open set {2 instead of RN~
Likewise, for an open subset {2 of RV ~! we define

(3.6) Wi=t/rr() = u e LP(n2 ’ / |x — |p+g\:7y)|2 drdy < oo}

We begin by studying two simple examples in dimension 1.
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Example 3.7. Given a real number p satisfying 1 < p < 2, let us determine
when x + u(z) = Inz belongs to W'=1/P2(]0, 1]).
For 1 < p, we have u € LP((]0,1]). Let us study the finiteness of

Inz — InyP
‘/ /‘|nx ng'dxdy
|z —
Introducing the variable ¢ = y/x and applying Fubini’s formula gives
1,1 1/
Inz —1 IntfP
:1/ /ﬁ|nx By e dy (/ . It g
0 xP|1——\P xP= 1 —tP

:/1 |1nt|p/ 1 dxdt—'_/-i-oo |1nt|p /l/t 1
o 1=t Jy ar—t TR B S

For p < 2, both the function ¢ +— |Int|?/|1 — ¢|? and z'~P are continuous
on |0,1] and integrable at ¢ = 0. The first integral on the right-hand side
therefore converges. The second integral, which can be written as

1 too | Intfp

— —dt,

2=p)y T
also converges because, on the one hand, if ¢ — 400, then the function is
bounded from above by K|Int[P/t? and, on the other hand, we have |Int| ~
|1 —t| when t — 1.

For p=2, J is greater than the first integral, which is equal to +oo. It
follows that
we W=VPr(j0,1]) <= 1<p<2.

Example 3.8. Let p > 1. We want to show that if (« — 1)p > —2, then
z +— 2% Inx belongs to W=1/P2(]0, 1[).

The condition under which u(z) = 2*Inz belongs to LP((]0,1]) can be
written as

(%) ap > —1.
The inequality |a + b|P < 2P~!(|al? + |b|P) applied to the decomposition
[z%Inx —y*Iny| = |z%(Inz — Iny) + Iny(z* — y°)|

shows that the inclusion of u in W'=1/P2(]0,1]) is implied by the finiteness
of the two integrals

! P Ing — 1 Uny|Plz® — yo P
z/ / 2z —Inyl” ———dxdy and J= / / [ Inyl?|z® = y°] ——————dzdy.
0 |z —yl |z —y|P
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Using computations similar to those of the previous example, we see that the
first integral [ is finite if the integrals

1 1 too 1/t
Int|P Int|P
Il = / $pa_p+1dl‘/ | - | dt, IQ = / | n | / Z‘pa_p+1d$ dt
0 o (1—t)p 1 (I=1)P Jy

are. The integral I is finite if (a«—1)p+1>—1, that is, if ap>p—2, a condition
that implies (). Under this same condition, after applying Fubini’s transfor-
mation, the integrand of the second integral I is equivalent to | Int|P/tr+2

at +o00. Its convergence follows because ap + 2 > 1. We therefore have
<o < ap>p—2.

Likewise, the second integral J is finite if the following integrals are, where

B=pa—p+1:
1 1
1o
J1:/ yﬂ|lny|pdy/ ——dt,
0 o 1t

+OO|17to¢|p l/t
= L B 1nylP
i [

The integral J; behaves like J(v) in Example 3.1. It converges if ap > p — 2,
regardless of the sign of . Moreover, as 8 > 1, when =z < 1, the function
x — z°|Inz[P is dominated by z + 27 for every v satisfying 1 < v < 3.
Consequently, its primitive at 1/t is dominated by K¢~'~7 and the integrand
of J5 is dominated by ¢~ ((1=®)P+7+1) at 400, proving the finiteness of J. The
stated result follows.

3.1.3 Characterization of the Trace of u € WL P(RN~1 x RY)

We will now show the following result.

Theorem 3.9. Let N >2; then the image of the trace map o satisfies
Yo (WHP(RN L % ]0, +00[)) = WH/PP(RN ).

We will first prove the theorem for N = 2, after which we will proceed to
the general case.

Proof of Theorem 3.9 for N = 2.
We begin by showing that

WSR2 (R) 5o (W7 (R X 0, +0c)
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Let w € W'=1/PP(R) and let ¢ be a function in D(R) such that p(0) = 1.
Since u belongs to LP(R), we can define a function v as follows:

(3.10) v(x,t) = @/0 u(z + z)dz.

The function v vanishes for |¢| sufficiently large. Let us show that
ve LP(Rx]0,4+00[). By Holder’s inequality applied to the integral defining
the right-hand side of (3.10), we have

el [
// lv(x, t)|Pdx dt < / / / |u|P(z + s)ds dx dt.
RxR+ R Jo tJo

Using Fubini’s formula, we see that the last integral is bounded from above by

[T en [ wepaxas a= [ jepo [

This integral is finite, giving the desired result.
Let us now show that v belongs to W?(R x R*). For this, we need to
compute its derivatives with respect to x and ¢. We have

u(z + ti — u(z) (1),

Introducing u(z + t) in the integral with respect to z, we also have

(3.11) Ov(z,t) =

O(z,t) = £ /0 (u(w +1t) — u(z + 2))dz + @ /0 u(x + s)ds

2
1 / t
t) — t t
:gp(t)/ wz+1) u(x—i— Z)dz—&-(p()/u(m—l—s)ds

0 t Jo
(3.12) = u(z + s)
By the definition of W~1/PP(R ) we have

/ |0zv(x, t)] sup\g0|p/ ‘ ’ dz dy < +o00,
RxR+

where t = y — x. This proves that d,v € LP(R x ]0, +00[). Replacing ¢ by ¢’
in the definition of v, we deduce from the computations above that

{(x,t) N @ /Otu(x + s)ds} e LP(R x 10, +-00]).

It remains to show that f € LP(R x ]0,4o00[). We will, in fact, show that
f € LP(R?). Using Holder’s inequality, we first obtain the inequality

(e +t) —u(x +tz)|P
313 Wl <lel [ ([ M5 o

tpP
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We then apply the change of variables X = z 4 tz, T = x + ¢t with Jacobian
|[dX ANdT| = |z — 1| |dx A dt|. From |z — 1] < 1 and p > 1, we deduce that
[1—z|tP > |(1 — 2)t|P = | X — T|P, whence

[ orasa<ior. [ ( / e e L

p
Hw\lp// X T|p)| dXdTdz

X CHU'”Wl—l/p,p(R)-

Now that we have proved that v € WP (R x ]0, +00[), it remains to show that
Yv = u or, in other words, that lim; o [|v(-,t) — ul|r(r) = 0.
Let us write

vo(z, 1) —u(z) = p(t) /0 [u(z +tz) — u(z)]dz + (¢(t) — Du(z).

Since lim;_o[p(t) — 1]||ull, = 0, the property that we wish to prove reduces to

%%A’Al[u(m +t2) — u(2)|dz| dz = 0.

After applying Holder’s and Fubini’s formulas, proving this reduces further to
using the continuity of translations in LP, that is, limj,_¢ ||7,u —ul[, = 0. We
have thus proved the equality vo(v) = u.

This concludes the proof of the inclusion for N = 2.

Conversely, we wish to show that if u € W1P(R x ]0, +00[), then its trace
belongs to W'=1/PP(R x {0}). We will need the following lemma.

Lemma 3.14. Consider a real number v and a function f from ]0,+oo[ to R.
We assume that 0 <v+1/p=60 <1 and 1 < p < +o0. The following hold:

(i) If the map t — t¥ f(t) belongs to LP(]0,+oo[) and if g is defined by

(3.15) o) =1 [ s(s)as

then the map t — t”g(t) belongs to LP(]0,4o00[). Moreover, there exists a
constant C(p,v) depending only on p and v, such that

(3.16) / S rlgrde < O(p.v) / TP

(i) Let a, B € R with a < B, let f be defined on )0, +oo[ x |, B, and let g be
defined as follows on |0, 4+o00[ X |, B[:

[ s
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Ift f € LP(]0, 4o00[ X |a, B]), then we have t¥g € LP(]0, +oo] X |a, B]) and
there exists a constant c(p,v) depending only on p and v, such that

B oo B oo
(3.17) / / 121g(t, 2)Pdt dz < c(p,v) / / 1P| £ (¢, 2)|Pdt da.
a J0 a J0
Remark 3.18. In (ii), the results extend to the case where the variable ¢ is
in an interval ]a, b] instead of ]0, +-00[.

Remark 3.19. We only use the lemma with v = 0. We include the case v # 0
for the next chapter.

Proof of Lemma 3.14.
Let F' be defined as follows for x > 0:

(3.20) P(z) = 2"~ /0 " f(s)ds.

We begin by remarking that the assumptions on f imply that x| F(x)|P is
bounded and tends to 0 when x tends to 0. Indeed, if p > 1, then

:c”*l/o f(t)dt’ = x”*l/o t”f(t)t”’dt‘

<ot ([Cemsopa)) ([ o)

<(;ﬁ

1/ ! / ’
) p xV_ll'(_Vp +1)/p |tVf|LP(}O,x[)

1/p’
)" a1 o

whence
2 F@)P < CIE SO 000,
In particular, «|F'(z)|? tends to 0 when z tends to 0 and, moreover, z|F(z)|? <

CHtVinp(]oﬂLooD
This remark allows us to carry out the following integration by parts:

M M
/ ()P da = — / | FIP~2F(2) F' (x)ada + M|F(M)JP.
0 0
Now,
(3.21) F'(z) = (v —1)2" 2 /Ox ft)dt 4+ 1 f(x),

whence
xF'(z) = (v — 1)F(z) + 2" f(x).
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‘We obtain

M M
(3.22) /0 |F|P(x)dx = —p(v — 1)/O |F|P(z)dx
M
“p [ S S@IFP @) + MFODP,
0

whence
M M
/ |F[P[1+p(v — 1) dz < p/ ¥ | f(@)||FIP~2|F () |da + cl[t” f(£) ||
0 0

< p(/OM " (f(2)])” dx)l/p(/oM |F|”)1_1/p + e[t FOIL o010

Setting Xy = (fo |p)1/pd:£ and o = ||t f(t)[|Lr(j0,+0cc[), this implies
the inequality

(1-60)X?, <paXP ' 4 caP < (XM(l —9)/Pyp 4 (pa)? + ca?
P’

1
(1-6)p-1
by inequality describing the convexity of the function x — |z|P. It follows that

XP < c(p,v)a?

([Twr)" <e( [ w i)

For the proof of (ii), we repeat the proof given above, fixing x, and then
integrating with respect to x. This concludes the proof of the lemma. O

Finally,

Let us return to the proof of the theorem for N = 2.

Let v be an element of WP(R x ]0, +o0o]) and let u(z) = v(x,0). We write
the integral of the function |u(z) — u(y)|P|z — y|~? over R? as the sum of
integrals over the sets {y > x} and {z > y}. It suffices to study the integral
over {y > x}:

u(xm).:;l(y) _ xiy(y(%o)—v(x—kygﬁﬁ’y;x))

oy (5 5T) )
~1

y—x
= / Osv(x + 8/2,8/2)ds
0

r—y

1
r—y

_|_

/ny Osv(y — s/2,8/2)ds
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Taking the pth power and integrating the first term on the right-hand side
with respect to x and y gives

Il

p

1
dx dy

r—y

y—x
/ Osv (x + 8/2,8/2)ds
0

t p
<2// (1/ |8Sv(:c+s/2,s/2)|ds) dt dz.
R J])0,400[ \T Jo

Let us now define the function f by setting

fls,x) = 0sv (x4 8/2,8/2);

this satisfies f € LP(R x]0, +0oc[). Since v € WP (R x |0, +00]), we may apply
Lemma 4.38, (ii):

¢
// ’1/ Osv (x +5/2,5/2)ds
R J]0,4+00[ | T Jo

Repeating this for the integral

P
dx dy < Clv|[.,-

1
r—y

y—x
/ Osv (y — s/2,5/2) ds,
0

we obtain the desired result.
At the same time, we have shown that there exists a constant C' > 0 such
that

(3.23) [ullwr-1/p.0 @) < Cllollwre®x]o,+oo))s
giving the continuity of the trace map in this space. O

Remark 3.24. At the end of this chapter, we will give a different class of
liftings that is better suited to problems concerning higher order traces. The
advantage of the lifting we use here is that it allows more explicit computa-
tions.

Before continuing with the general case, let us consider an example.

Example 3.25. Let us illustrate the theorem we have just proved for N = 2
using He, where ¢ is an element of D(R) that equals 1 on [—1/2,1/2] and H
is the Heaviside step function defined by

1 if
H(I){ if x>0,

0 otherwise.

We will study the inclusion Hy € W=1/PP(R) for 1 < p < 2.
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To compute the seminorm

[[ e -, ,

we note that its finiteness is equivalent to that of the sum A, of the integrals
over the products | —1/2,0[ x ]0,1/2[ and ]0,1/2[ x | — 1/2,0[. It therefore
suffices to show the finiteness of

A, = 2/0 /1/2 71 dx dy = —2 /O [(l —:E)lfp - |x|1*p]dx
P —12Jo T -yl L—pJ_q1ppl? '

The existence condition can then be written as —p+1 > —1, or p < 2. We
note that p = 2 is a critical case, as Hp belongs to all Wl_l/m’(R) for p < 2,
in spite of the existence of a point of discontinuity at = 0, but does not
belong to H'/2(R).

In this example, we can also compute the fractional derivative of Hy of
order 1 —1/p for ¢ € D(R) (cf. Exercise 3.1).

The proof given above shows the existence of a lifting of Hep to the space
WP(Rx]0, +00[). We can also give a function belonging to W1 (IR x]0, 4+o0[)
whose trace is H¢p on the boundary R x {0} without using the intrinsic defi-
nition of H'/?(R).

Let u be defined by

0 ifxr<0and 0 <y < —ux,
u(x,y) = % ifr <0andy>—z>0,
plx) ifz>0.

Let ¢ be a function in D(R) that equals 1 on {y = 0}; then for p € |1, 2],
Y(y)u(z,y) belongs to WHP(R x ]0, +oo[) and equals He on R x {0}.

Remark 3.26. When a function has a discontinuity at a point, its derivative
in the sense of distributions involves a Dirac distribution, which cannot be
identified with a function. We can come across functions with jump disconti-
nuities whose fractional derivatives are elements of LP for p < 2.

Proof of the theorem in the general case.
We will need the following lemma.

Lemma 3.27. The following properties are equivalent for an element u of
LP(RE):
(i) u € WH—H/PP(RK).

(i) Vi € [1, K], ||ul|? +tez u(x)

dx dt < oo.

i,1— l/pp
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K .
Moreover, Hu||’1_1/p7p = |lullLe ey +227 llullii—1/p,p defines a norm equiv-

alent to ||-||w1-1/p.p @)
Corollary 3.28. If p > g > 1 and u has compact support, then
we WVPP(RY) = 4 e WITVayRN).

Proof of the corollary.
We apply the lemma to U = ||uH‘{_1/q , When ue Wi=1/pp(RN), Holder’s
inequality gives

q
/ /'“ T tte) —u@)
RN |t|q

te;) — u(z)|®
</ / lule + bei) — u(@) dxdt+/ o 14 4y
|t]<1 Jsupp u+B(0,1) |t|q [t|>1 |t|q

te; P q/p
/ / |u il' + 6 (37)| d(E) |Sllpp’LL + B(O7 1)‘1—q/p
[t1<1 JRN

Itl”
+ 2(q+1)/(q—1)‘|u||g. 0O
Proof of Lemma 3.27.

Let us show that (ii) implies (i).
Let u € LP(RX) be such that for every i,

te;) — P
e +tei) - uz) dx dt < oco.
RK
For elements = and y of R¥X, we introduce the notation #; = le xzie; +
K —~ —
Zi+1 yie; = (T1,%2,. .., Tis Yit1, - - -, YK ), Where Tx = x and zg = y. We can
now write u(y) — u(z) as follows:
i=K—1
u(y) —u(z) = [u(@) — u(zi)]-
i=0

We can consequently bound the pth power of the seminorm in W—1/p:» (RE)
from above by the sum of integrals Zé{ -t I;, where

lu(@i) — u(zisa) [P
I; —/ / dx dy.
DO e

We therefore need to bound these integrals. For this, setting n; = |z; — yj|2
and ¢ = (p + K —1)/2, we begin by bounding the denominator (3_;7;)? from
both sides. Using the equivalence of the norms in finite dimension, we see that
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there exist constants C1, Cs, C3, C4 depending only on p and K, such that
K 2q
Cl<2|xjyj|> C2<Z77a>
! K K q K 2q
Z ;)% < Cs(ZUj) < C4<Z |75 —yj|)
1 1

Let us, for example, study the integral Ix_; by beginning with a partial
integration with respect to y;. Using the parity of y; — x1, the previous in-
equalities with constants C, when K is replaced by K — 1, plus a homothety
on an integration variable, we find, for fixed x;, i € [1, K], and fixed yg, that

—

u(z) —u(z 4 [ w(x) —uw(xg_1)P
JREC R MR g T EL T L
) |71 *yl| 1+ {Zj;Q 77]‘]

. / u(e) — u(@F ) dy,

a1 — y1|2q + C[Sysa I — |
Ju(e) - u(@E)P /+°° ¢
[Syonlay —yyl] 0 TG

Since p + K > 2, we have 2¢ > 1. Consequently, the last integral converges.

2q

< 205!

We must therefore consider the inequality
P
|u ) —w(xy, .., Tr—1,YK)|P ‘u(m)—u(xK,l)‘
(> m;)d dyr < My STR=%
7 [Zg‘>2 |z — y]\}

where the constant M; depends only on p and K.
By integrating this inequality with respect to y2, the same computations
give the following upper bound for the partial integral of Ix_1 with respect

to y1, y2:

|u(z) — u(@k—1)|P

pTK—3"
[2393 |z — yj@

We now use induction to show that partial integration with respect to

My My

(y1,92,---,YK—1) gives the upper bound

= \|p
Tic1 < MyMy-- My 1/ /'“ w1 dyxdz.
RK lv — yx [P

By a last change of variables, this leads to the existence of a constant c
depending only on p and K, such that

+o0
t _ P
T4 <C/ / oo + er) u)
rx Jo t

By hypothesis (ii), this implies the finiteness of I ;.

dtdz.
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We proceed in the same manner with the other integrals I;. We have thus
proved the implication (ii) = (i), as well as the inequality

i=K +oo
) Jul + tei) = u(@)l?
Il nay < © 3 L. ) dt da.

Conversely, let us show that (i) implies (ii).
We will once more use induction on the exponents of the terms in the

denominator. Let us first set

p
J1 / / $+tKeK) (.Z‘)| dthJ?.
p
RK J]0,400] tK

Though the notation is different, this is the integral in statement (ii). We
generalize it to integrals J; where the numerator of the integrand is of the
type |u(z') — u(z)| with a difference 2’ — z = Zg_kﬂ tje; of length k and
t; > 0, namely

t t p
J2 / / + K—1€K—1 + Kefi) (x)‘ dththld.'L'7
RE J(]0,400[)2 (tg—1 +tg)Pt

)
J _/ / w@+ 24 1) dt;dz.
K RK O+oo[ (21 )P+K 1 H

By using the variable x — ¢ in the integrand, which expresses the seminorm
of u in W1=1/PP(RK) and restricting ourselves to integrations over 0, +ocl,
we see that, by hypothesis, Jx < oo. Consequently, the implication (i)=-(ii)
follows for i = K if we show that for every k € [1, K — 1], we have

Jk+1<OO = Jp < 0.

Let us therefore suppose that Jx11 < co. Let

P K
Jk_// u(@ + S ties) — ul@)] 1] dtd
RE 0,4o0[)

k—1
(ZK—k-H j)er K—k+1

It follows from the equality
1
K
( ZK—k+1 tj )

that J is bounded from above by

“+o0
1
= -1) dt'.
T =tk / K e
o ('+ Xk ki1ts)

| p

p+k—1/ / e+ T ti6) ~ ar'| H dt; | dz.
RE J(]0,4oco[)k+1 (t’JrZK_kHt)erk K—k+1
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We now proceed to give an upper bound for the numerator by using a point x*
that lies between z + Zg_,ﬁ_l tje; and z, namely z* = x + t'ex_j +
Z§7k+1(tj/2)ej, and by using the inequality |a + bP < 2P71(|al? + [b|P).
A lower bound for the denominators follows from the inequality
'+ 3K parti =t + S k1 tj/2. Consequently, writing

|u(z + leg—k—&-l tie;) — u(x)[” .

<2t Uu(w + Z tie;) —u(z*)[’

K—k+1

+ [u() = u(@)]"],

we obtain Jj, < 2P71[A + B], where

lu(z*) — u(z)|?
AS/RK /(]07+00[)k+1 t/JrZK k+1(t /2))p+k [ H dt; }daj

K—k+1
#|P K
/ / u(@ + Y (t5/2)e;) — ula”) t,[ 1 dt}dx
k J .
REJ(]0, 4001 (t + ZK—k+1(tj/2)))p+ K—k+1
In these upper bounds, the numerator of the integrand is associated with a
difference 2’ — x of length k. By considering the denominator, we see that this
upper bound is the integral Ji11. We conclude that A < co. For the integral B,
we must transform the numerator so that it is of the form |u(y)—u(y’)|, where y
is the integration variable and the difference y — 3’ also has length k. In order
to do this, we apply the following transformation in the integral B:

K
y=az+ (ZK%H tjej/2)v
tj:tj V]’E[K—k-f—l,fq,

t=tg_g-

The Jacobian matrix of this transformation is triangular with diagonal terms
equal to 1. The integral B is therefore bounded from above by
|p K

u(y) = uly + Sk g1 (t5/2)e; +tr rex k) it d
/]RK /]0 +oo[)k+1 [tK—k —I—ZgikJrl(tj/Q))]p—kk [ng tj} v

This last integral is of the type Ji41 and is therefore finite. To summarize, we

have
Jr < K(A+ B) < oc.

The reasoning is the same for the other integrals

te;) — u(z)[P
Ii:/ / [ulz + te:) — u(@)| dtdzx.
RE J]0,+00] P

We have thus proved the equivalence of (i) and (ii).
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Moreover, we have shown the existence of a constant ¢’ depending only
on K and p, such that

K
|u(z + te;) — u(x)|P
21: [/JRK /]o +o0] ;p dtdr| < C/HUHIIV)VI*I/P*P(RK)'

This concludes the proof of the equivalence of the norms stated in the lemma.
O

Let us return to the proof of Theorem 3.9 for N > 2.
Let u be an element of W'=1/P?(R¥N=1) and let v be defined as follows for
t>0:

(3.29) vz’ t) = (fv(f)l / u(z' + z)dz,
t ]0,t[N71

where ¢ € D(R) with ¢(0) = 1; then lim; ¢ ||v(-,t) — ul|, = 0.
This follows from

v(.,t) —ulf =
oty =l = [

because the inclusion w € LP implies that limp_o|mhu — ull, = 0
(cf. property (2.64)).

Next, we must verify that v € W1P(RY). The derivative with respect to z;,
where 1 <7 < N —1, can be seen as a derivative with respect to the endpoints

/ o) (u(z + t2) — u())dz| dz — 0,
10, 1[N -1

by applying Fubini’s formula and using the integration variable z; + z;. We
thus obtain

(3.30) dv(a' 1) = () /

(JothN =2

u(ax’ +te; + %) —u(d' + %)
tN-1

dz;.

Using Holder’s inequality and the change of variables z; = tZ;, we have

w(ax! + te; + t2;) — u(x' +tZ;) |p

dz;.
n i

B P < [p(t)P /

(Jo,1pN-2

We then integrate with respect to 2’ and ¢ and apply the change of variables
(/1) — (X' =2’ +tZ;,1),

which, by Lemma 3.27 and Fubini’s formula, gives

[ ] poer
RN=1J]0,400[
</ / /
RV -1 JJ0, 400 J (0,1)N -2

X/ tz _ X/ P .
u( +et) N ixr araz, < c.




3.1 The Spaces W'=/PP(RN=1) for p > 1 129

Next, we compute dyv(2’,t), which equals

dv(z',t) = p(t) (Lj\:l) /t e /t u(z’ + z)dz

ZtN 1/ s u(x —l—zl—l—tel)dzl)

1
() / u(@’ + 2)dz
P o,

' +tei+ %) —u(a' + 2)
D%y : d:

0,t[)N -1

1
- / u(a! +2) dz.
N S go,epr-1

It is clear that the function

/
: (1) / '
(2',t) — FEES u(z' + z) dz

belongs to LP(RY~1 x ]0, +00[). It remains to show that the same holds for
the integrals

/ . 2\ /
Fi(2',t) = so(t)%/ o rieitE) —ule' v )
t (0.¢D)

t

By applying the change of variables z = tZ and then using Holder’s inequality,
we obtain

S IRE O <l Z/ v

Integrating with respect to =’ and ¢, and then applying the change of variables
(2/,t) = (X' =2/ +tZ, X = t(1—2;)) gives dX'Ad\ = (1—2z;)dz’ Adt, whence,
using evident upper bounds,

// S | Fi(a! )| da’ dt

/ N /
<l 3 / / / P A 2o 0y 4
RN -1 (0,12 o, +ool A

@+ tei+tZ;) — u(a' +tZ) |
4

dz.

This concludes the proof of Theorem 3.9. O
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3.2 The Case of an Open Boundary Other than
RN x ]0, 00|

In Chapter 2, we showed the existence of a trace map with values in LP(92)
when (2 is a C' open set. In a manner similar to the one we used before, we
define the space

p
Wi=1/rp(90) = u € LP(002) / )| x)do(y <oo}7
(09 { ’ a0 Joo \x_y|p+N2 do(w)do(v)
where do denotes the superficial density on 2. With this definition, Theorem
3.9 extends to open sets of class C'.

Proposition 3.31. Let {2 be a class C' open set; then the image of the trace
map on WHP(02) satisfies

(WP (02)) = WHVPr(90).

Proof of Proposition 3.31.

Let u € WHP(£2) and let £2;, O, F;, a;, and ¢; be as in the definitions
2.65 and 2.66 of an open set of class C'. Let v; be defined on RV =1 x ]0, 4+-o0[
by

vi(2', xn) = pou(a’,a; (') + zN).

Since a; is of class C! on the compact set F; obtained by projecting the support
of ¢; onto RN =1, we easily see that v; € WHP(RV =1 x]0, +-00[). Consequently,
by Theorem 3.9, the trace yov; of this function belongs to W!'=1/P»(RN-1),

Setting 7’ = (2/, a;(z")), we will deduce from this that the composition w;
defined by u;(2') = @;u(z’) = yovi(Z') belongs to WI=1/PP(902 N ;). Let
||u1||1 ") denote its seminorm in this last space. We use the inequality

1/2
@'~y | <3 =71 = (]2 =y PHla (@) —ay)?) < VIH Vail |y —a'

to glve an upper bound. Using the extension by 0 outside of O, the seminorm
||ul||1 »» whose pth power equals the integral

lpiu(@) — pau@)|P(1 + [Vai ()21 + [Vai () PNV,
de'dy’,
(RN-1)2 (|y —@|)p+N=2

gives the upper bound

~ 1(4) Ivovi(z') = youi(y') P Hr
() 1@l < jaivaiz) [ [ Dt R gy |

We therefore have @; € W=1/PP(912).
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By Theorem 2.86, the trace you is defined by . u;. Letting |you|i—1/p,
denote the seminorm

Ivou(z) — you(y)|? p
do(x)do(y ,
/ao/an |33—Z/|p+N 2 (=) ())

and applying Proposition 2.68 and the continuity of the trace map, we deduce
that

Ivouli-1/p,p < CZ a1, < Y lvillwro @y
i
< C”Z lpsullwrrne) < C" |ullwie)-

We have thus proved part of the proposition.

Conversely, let us assume that u € LP(9f2) and that the seminorm
], — 1/pp in W=1/P2(9£2) is finite; then we can easily show that for every 1,
||<plu||1 » < 00 because ¢; is Lipschitz.

For every 2’ € O}, let v;(2") = p;u(z’). Using the 1nequaht1eb

<V +|Vail%) 2" -

we can obtain an inequality inverse to (x), from which we deduce that v; €
Wlfl/p,p(RNfl).

By Theorem 2.86, there exist V; € W1P((RN)T) with compact support in
O} %[0, [ such that v; = v V;. For 2’ € O] and zn € ]a;(2'), a;(z") + d], let the
function U; be defined by U; (2, zn) = Vi(2', —a;(2") + zn). It is defined on
2: N 92, equals u; on {xx = a;(2)}, and, moreover, belongs to W1P(£2; N 2).
The previous computations show that there exists a constant C' depending
only on 942, p, N, such that

IUillwir,ne) < Cluii—1/p,p-
Let U = >, U;. We have U(2',0) = > . U;(2',0) = >, pu(z’) = u(2).
Moreover, U € W1P(§2) because, by Proposition 2.68,

[Ullwrre) < Z 1Uillw1r2ine)

i

(3.32) < CZ leiullwi-1/p0(0:n00)

< Cllullwi-1/v000)- .

3.3 Traces of Functions in Wh(£2)

Let us now study the traces of functions in W11(£2). The following can be
seen as an extension of the previous result if we let the derivative of order
1 —1/p = 0 be the function itself.
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Theorem 3.33. Let 2 be an open set of class C'. There exists a surjective
continuous linear map, denoted by o, that sends W1(£2) to L(012). When
u € WHL(02)NC(92), this trace coincides with the restriction to the boundary.

Moreover, there exists a constant C > 0 such that, for every u € L*(012),
there exists a U € WHL(82) satisfying voU = u and

U w112y < Cllullpro0)-

Proof of Theorem 3.33.

Using the same method we used for the functions in W (£2), we reduce
to the case where u has compact support in RV =1 x [0, 1[. We then have, for
almost all pairs (s,t) of positive real numbers, assuming for the moment that
s < t to illustrate the idea,

¢
(3.34) / lu(z',t) — u(z’, s)|dz’ < / / |Onu|(z’, N)dz'd.
RN—l s RN—I

Since s and ¢ tend to zero, the right-hand side also tends to zero. We conclude
that u(-,t) is Cauchy in L'(RY~!), which is complete. Let you denote the
limit. We can easily see that the trace map defined in this way is continuous.

Let us show that this map is surjective onto L'(RN~!). Consider u in
LY(RN=1) and let {u;} be a sequence of C! functions with compact support
that converges to u in L'(RV 1), After extracting a subsequence if necessary,
we may, and do, assume that

oo

(3.35) Z”Uk—H — Ul < 0.
1

Let {a} be a sequence of positive real numbers such that

271@
(IVuk+alls + Vgl + 1)

(3.36) Vk=1, o<
Next, consider the sequence {t;} of real numbers defined by

)
to = Zak7
0

tk+1 :tk—()ék (Vk}l)

(3.37)

This sequence is monotonically decreasing and tends to zero. We define the
function v on RV~1 x 0, ¢o[ by setting

tp — 1

(3.38) v(t,2") = up(a') + ——
by — tret1

(kg1 — ug)(2)
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for every t € Jtgi1,tx| and for every 2/ € RM~1. We then have v €
WEHRN=L %0, t0[). Indeed, if j € [1, N — 1], then for every t € Jtxi1,tx[,

tp —t

;v = 0;up +
! ’ t — gt

(ajuk+1 - ajuk)-

Consequently, we have

tit1

tr
601 < Z/ (105urlly + 10jur+1l1)
k

o0
1
< ZO:M — trg | ([105ully + 18uns1ll1) < Xk:Q—k

Deriving with respect to t gives

(3.39) VEe than te], O = kLl ™ Uk
ter1 — Tk

Hence

[tht1 — ti]

foulh <3 [ =i
~
k Ytetr

< ZHuk — Upy1l1 < oo.

We have thus shown that v € WLHRN =1 x 0, ¢9]).

By the open mapping theorem, the image under -y of the open ball of
radius 1 with center 0 contains an open ball B(0,7() for some rq > 0. Hence,
for every u € L1(042), there exists a U € W1 such that

1
U lwiao) < %HUHLI(an)- 0

3.4 Density of C1(942) in W1~1/PP(902)
3.4.1 Density in W'~1/PP(9£2), Properties of the Trace Map

Proposition 3.40. Let §2 be a class C' open subset of RY; then C1(982) N
W=1/PP(90) is dense in WI=1/PP(52).

Remark 3.41. We can establish this result using the definition of
W1=1/Pr(9f). In the next chapter, we give the proof for RN~ and
W#P where s € ]0,1[ is arbitrary. In the following proof, we have chosen to
use the properties “inherited” from W1P(£2).
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Proof of Proposition 3.40.

Since 2 is of class C!, there exists a continuous linear extension E of
WLr(02) in WHP(RN). Let w € W=1/PP(90). There exists a lifting U €
WLP(§2) of u, that is, a U € WP (§2) such that voU = u on 9f2.

By the density of D(RY) in WP(RY), there exists a sequence {U,} in
D(RY) such that ||U, — E(U)|w1.»®~xy — 0. Let uy, be the restriction of Uy,
to £2. Since the restriction of E(U) to §2 is U, we have ||u, — Ullw1.»(2) — 0.
By the continuity of the trace map,

70 (un) — UHWlfl/p-,P(an) = [|v0(un) — ’YOU”Wl*l/PvP(BQ)
S C”’Mn - Ule,p(Q) — 0.

Now, as the boundary is of class C', the function vyu,, which is the restriction
of u, to 912, is also of class C*. Consequently, you, € CH(dR2)NW=1/P»(512),
completing the proof. a

We also prove the existence of a function that is regular inside {2 and has
the same trace as u on the boundary when (2 is a general open set of class C!.

Theorem 3.42. Let 2 be a class C' open set and let uw € WP (02); then there
exists a sequence {u,} C C>(2) N WYP(£2) that converges to u in W1P((2)
and satisfies Yo, = You on 02.

Proof of Theorem 3.42.
We repeat the construction given in the proof of Proposition 2.12 of Chap-
ter 2. Recall that

Ue = Zpb‘j * (SD]'LL)
J

converges to u in W1P(£2) when ¢ tends to 0. Let

N
UNe = Z (pe, * (pju) — pju).
0

By definition, vy . has compact support and converges to u. —u in WP (£2)
when N — +00. By the continuity of the trace map, it follows that

~Yo(ue —u) = 0. O

Proposition 3.40 and the results before it allow us, in particular, to estab-
lish generalized Green’s formulas that extend the classical Green’s formula for
class C! functions. This is the aim of the next subsection.
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3.4.2 Generalization of Green’s Formula and Applications

Theorem 3.43 (generalized Green’s formula). Let §2 be a class C* open
subset of RN. Let U be an element of WP (£2) and let ¢ € D(RN,RYN); then

/VU d:v—i—/ U(x) divcp(x)dx:/ YU (s) p(s) - 7 (s)do(s).
Q o9

In this formula, do is the superficial density on 02, T is the outward-

pointing unit normal to 812, the terms Vu(z) - o(z) and @(s) - T (s) are

mnner pmducts of vectors in RY, and the divergence of ¢ is defined to be

divp(z) = 21 i (0i)(2)

Proof of Theorem 3.43.

In the current situation, where §2 is of class C', we already know this for-
mula when u is of class C! on £2. Let u € W'P(£2). By Proposition 3.40, there
exists a sequence {u,} in C1(£2) N WP () that converges to u in WP(£2)
with, moreover, You,, — You in W=1/PP(92).

From the convergences d;unp; — d;up; in LP(£2), it follows that [ o Vg
¢ = [, Vu - . Moreover, the term [, u, div<p tends to [, udiv .

Finally, by considering the integrals [, ( ) iivo(u — uy)do, we obtain
the convergence of the boundary term [}, un( - 1)do to Jo0 Youlp - 7 )do
because ||y (un — u)| Lr(902) — 0. This concludes the proof. O

Another proof of Theorem 3.43. Let us now prove this result using a different
method. We will repeat the arguments of the proof of the classical version
of Green’s theorem in one of the open subsets of the cover occurring in the
definition of the C! regularity of 2 (cf. Definition 2.65).

The components ugp; of the function ug belong to W1P(£2), as we can see
by using the definition of the derivative of uy; in the sense of distributions.
Let O be an open subset of RY such that there exist an open subset O’ of
RY=1 and a piecewise C' function a that is continuous on (' satisfying

onc{(,zn)|zy >a(z'), 2’ € O},
0NN = {(&,a(@)) | 2 € O},

After changing the local coordinate systems, if necessary, we may, and do,
assume that for every i, up; € W1P(O N §2) has compact support in O. In
the present case, the trace of up; on the boundary of O N {2 is zero outside of
ONaN (arc mm’ in Figure 3.1). The boundary term in the formula therefore
reduces to

/,u(x',a(x’))cp(as’,a(x’)) 7 (@)do (2).
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TN

Fig. 3.1. Localization at a boundary point.

Note that the outward-pointing unit normal to 92 is defined by
Va—en
(x) = ——
V14 |Va(z)]|
Moreover, do(z') = /1 + |Va(z")|? d2’, from which we deduce that
ni(x)do(x') = d;a(z’) and ny(2')do(z') = —1.

We must therefore show the following formulas for each of the components:

(*) /Om(z [(aiu%' +u8¢%)(x)}dx = //70“(33/)%‘(%/7a(ﬂ:’))ﬁia(m’)day’,

for every i < N — 1, and
(%) / [(8Nu<pN + u@NgoN)(x)} dz = —/ you(x )y (2, a(z’))dz’.
onR ’

For the first equality, we approximate u in WP (2N 0O) using a sequence {u,, }
of C! functions. Since the function 2’ — fao(c;,) Uni(2', zn)dzy has compact
support in @', we have

/ (81/ (ungai)(z/,xN)de>dx’ =0.
’ a(w/)

Moreover, in this integral, we can use differentiation with respect to a param-
eter, giving

O:/ 8,»(/ (unpi) (2, x N )dx N )dx'
’ a(z)

= —@-a(;v’)(ungoi)(x',a(x'))dm’—|—// Oi(un;) (2, xn)dz nyda'.
o’ + Ja(z')
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We now let n tend to +oo. The first term of the right-hand side has the
integral — [,,, dia(z’)(ug;)(z', a(z’))dz" as a limit.

By the definition of the convergence in W, the second term of the right-
hand side has limit |, o Oi(ugp;)dz. Using the derivative of the product uep;, we
obtain the formula ().

In the case ¢ = N, we obtain the formula (xx) by using the following
definition of the trace of x — (up)(2’,a(z’) + zy):

//a:: On (up)(2’, zn) = _/,’Yo(wp)(x/,a(a:’))dx’

and the derivative of up with respect to x,, in the sense of distributions. O

Theorem 3.44. Let 2 be a C* open set. Let u be in WHP(92), let v be in
WEP(RN \ 02), and let U be defined by

. u in {2,
u= _
v i RNV Q.
Then @ belongs to WHP(RN) if and only if

You = Yov on Of2.

Proof of Theorem 3.44.

Let us assume that you = yov on 942. Let ¢ € D(RYN,RY). Applying the
above version of Green’s formula on both 2 and RV \ 2, with opposite normal
vectors 1] and 73 , we find

Vﬂ~<p=—/ ﬂdivgpz—/udivg@—/ vdiv e
RN RN n RN 02

=/Vuwp+/ 70ur71>~<p+/ _Vv'so+/ YouTts - p.
0 [210) RN N2 o980

Since the outward-pointing unit normal to 0f2 is the opposite of the outward-
pointing unit normal to (R \ ) and yyu = yov, we obtain

(345) Vﬂ: VU/ 1_(2 +VU 1RN\Q;

hence u € WP(RY).

Conversely, let us assume that u € WHP(RY). We denote the Dirac delta
function with support 912 by ¢, (cf. Example 1.85); this is a measure. The
previous computation gives

a2

vy € DRY,RY), /a - e@pofu = v)(a)do(@) = 0.
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Let us take for ¢ a function whose only nonzero component is o € D(RY).
The previous inequality then becomes

Vo e DRY), (yo(u—v)d,,nnen) =0.

We deduce from this that, seen as a function in LP(942), we have vo(u—v) = 0,
concluding the proof. O

Corollary 3.46. Let {2 be a class C* open set; then
Wo?(2) = {u|ae WH(RN)},
where u is the extension by 0 outside of 2. We also have

Wa(2) = {u € W(£2) | you = 0 on 902}

3.4.3 Determining the Duals of Sobolev Spaces

Dual of the Space WP(2).

Proposition 3.47. Let 1 < p < +oo. We consider the product space
Lr(Q)N*L endowed with the norm |v|, = ( éVH ||vi||£)1/p. The map J
from WP () to LP(2)N+1 defined by

Yue WhP(Q2), J(u) = (u,01u, Oau, ..., Onu)
is an isometry whose image Im J is a closed subspace of LP(2)N*L. It follows
that if T € WP (), then

N
(3.48) Jwe LP ()N Yue WhP(2), T(u) = / uvy + Z/ diuv;.
0 T Jo
Conversely, when v € L”/(Q)N"‘l, this formula defines an element T of the
dual of WYP(£2). The norm of the linear functional T is then
IT||wrry = inf{||v||, | v satisfies (3.48)}.

Proof of Proposition 3.47.

The first statement concerning J is clear. Let T" be an element of the dual
of WHP(§2) and let T* be defined on Im J by T*(J(u)) = T(u). By the Hahn—
Banach theorem, T* can be extended to a continuous linear functional on the
space LP(£2)N*1 that is, to an element of the dual of this space. It follows
that for 0 < i < N, there exist v; € L' (£2) such that

N
Vue PN T (J(u) = uvo + Y _(D5u, vs).
1
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This leads to the statement about T'. Since the converse is evident, we have
proved that the description of an element of the dual is correct.

For the norm, we note that the (N + 1)-tuple (v;)o<i<n is not necessarily
unique. The previous extension, which conserves the norm of T*, gives the
following result using Holder’s inequality:

N
17| = 1T @) < lelplvollyr + > il |9sul,
N 1
< lallwss (Noolly + 3 il ).
1

It follows that for any v satisfying the condition of (3.48), we have || T'|| < ||v]|p.
The stated equality concerning the norm of 7" follows. O

The Dual W' (£2) of the Space W) "*(£2). The following is a consequence
of the previous proposition.

Proposition 3.49. Let 1 < p < +4oo. Every element L of the dual of
Wol’p(.Q), which we denote by W12 (2), can be identified with a distribu-
tion V' satisfying

Vue WyP(2), L(u) = (V,u).
Indeed, V is associated with an element (v;) € LP ()Nt by setting V =
[vo] — Ziv di[v]. As before, the norm of this element of W19 (2) is defined
by Proposition 3.47.

Proof of Proposition 3.49.
Let L be an element of the dual. The Hahn—-Banach theorem allows us to
extend this element to a continuous linear functional on WP (£2) while pre-

serving its norm. We deduce from this that there exist elements vy, v1,...,vN

of L¥'(£2)N+1 such that
N

Yue Wy P(2), Lu)= Z(@iu,vz) + uvp.
1
We know that the space D(£2) is dense in W, *(£2). Consequently, the previous
formula can be used for a sequence {¢,} that converges to u, giving the
following equalities using differentiation in the sense of distributions and the
continuity of the duality pairing of LP with L?":

N
Lw) = Tim [{vo,n) + Y {0ss 0on)|
Nl
:ngr—{-loo va(pn Z 8’0@,(,071 VU>

1

where V is the distribution [vg] — 21 i [vi].
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Conversely, we can easily see that such a distribution defines an element L
of the dual of Wol’p(Q). The norm of L is, as before, the infimum of the norms
in L?" of the (N + 1)-tuples (v;) used to define V. O

Properties of the Dual of W'=1/PP(92). When p = 1, the space of traces
is L1(02); hence its dual is L°°(92). To study the dual when p > 1, we
introduce the space W?' (div) defined by

WP (div) = {0 € L” () | div(c) € L (2)}.
We also define the following spaces.

Definition 3.50. Consider a class C' open set £2 C RV, a real number p > 1,
and the conjugate exponent p’ of p.

(1) If p < N, then we set, for ¢ = Np/(Np — N + p),

(3.51) WE (div) = {0 € L (2,RY) | div(o) € LY (2)}.
(2) If p > N, then we set

(3.52) WP (div) = {o € L7 (2,RY) | div(s) € L'(2)}.
(3)If p= N and € €10,1/(p — 1)], then we set

(3.53) WP (div) = {o € L7 (2,RY) | div(o) € L'*5(£2)}.

These spaces are normed using ||o||p.q+ = |o]lp where ¢*
equals Np/(Np — N + p) in the first case, ¢* = 1 in the second case, and
q¢* =1+ € in the third case. We have the following result.

Theorem 3.54. Let 2 be a C' open subset of RN. For any o € W]f,/ (div),
consider the linear functional S(o) defined by

Vu e W=VPP(90), (S(U),u}:/ﬂ U(z)dive(xz)dz + /Qa(x) - VU (z)dx,

where U is a lifting of u in WYP (). Then S(c) is an element of the dual
WP (902) of WE-L/PP(882) and S is continuous and surjective onto
W), (div). Indeed, the functional S can be extended continuously to W}, (div)
if p < N, to WF'(div) if p > N, and to WP'(div) if p = N, fore > 0
sufficiently small.

Remark 3.55. In principle, p > 1 in the above, but we can adapt the follow-
ing proofs to the case p = 1 (cf. Exercise 3.6). In that case, we have p’ = +00
and ¢’ = N and we obtain

S(Wk(div)) — L' (92) = L>(012).
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Proof of Theorem 3.54.

We begin with the case p < N. Let us show that the right-hand side of the
equation defining S(o) is well defined. This follows, on the one hand, from the
inclusion o € L¥'(£2) and, on the other hand, from the inclusion U € L9(£2),
where ¢ = Np/(N — p) is the conjugate exponent of ¢’ (cf. Theorem 2.31).
This second inclusion holds because p < N. Moreover, the definition of S(o)
is independent of the choice of the lifting U. To see this, it suffices to prove
that the right-hand side is zero when U = 0. Now, voU = 0 means that U
belongs to Wy (£2) (Corollary 3.46). Hence, there exists a sequence {U,} in
D(£2) with limit U in WHP(£2). By the definition of divergence in the sense
of distributions, we have

(3.56) / o) - VU, ()dz + / U, (z) div o(z) dz = 0.
Q Q
The density of the functions of D(£2) in Wy"*(£2) implies that this equality
remains true when we take the limit.
It is clear that the functional S is linear. For the continuity of S, we use
the continuity of the injection of W' into L9 and the inequality of the norms
(3.32) linking the function u to one of its liftings U. This gives

[(S(0), w)| < |Ullzall diveollpe + [VU|[Lo o]l s

<

< Ci|Ullwrrl[divel e + [[VUl[zello] 2o
< CilUllwir @ ol -
<

CCrllullwi-1/p. ()l llpr g

The last inequality shows us the continuity of the map S, as its norm satisfies
the inequality [||S]|| < CChllo||p g=-

Let us now assume that p > N. We use the same definition for S(o). The
elements U then belong to L>°({2); see step F of the proof of Theorem 2.31. It
follows that S(o) is still well defined, since divo € L'(£2). The independence
of the choice of a lifting, the linearity and the continuity are all proved as in
the previous case.

Finally, when N = p, Theorem 2.31 shows us that U € LY for every
g > p with ¢ < +o0c0. As, by hypothesis, ¢ € Wg’/(div), we have o € L¥
and dive € L'*. The integral [, o(z) - VU(x)dx is well defined because
the gradient VU belongs to LP. Moreover, the conjugate exponent q of 1 4 ¢
satisfies ¢ = 1 + 1/e > p since € < 1/(p — 1). It follows that the integral
Jo U(x)divo(x)dz is also finite.

We have thus proved the first part of the theorem.

We will now show that S is surjective. Let f be in the dual
WIH/P' P (902) of WI1/PP(902). We define f on WLP(02) by setting
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(f, U) = (f,vU) for every U in this space. By the continuity of the trace
map, we have _
(£, U)] < CllnoU|l < C|Ulwre(0)-

It follows that f is an element of the dual W1?(£2). Consequently, using
Proposition 3.47, we deduce that there exist vy € L? (2) and o € LP (2)N
such that

Vue WI=VPP(Q),  (fu) = / vo(x)U (z)dx +/ o(z) - VU (z)dz.
0 0
Moreover, it is clear, using functions U € D({2), that when U is in VVO1 P the
quantity (f,u) vanishes. We therefore have vy = div o, which is equivalent to
saying that o € W), (div) and S(o) = f. The surjectivity follows. O

Let us now study the density of regular functions in spaces of the type
Wé’, (div). This will allow us to interpret the elements of the duals defined
above in the setting of an extension of Green’s formula.

3.4.4 Density Results and an Extension of Green’s Formula

We restrict ourselves to studying Wé’; (div)(£2) when p < N, in which case we
can easily see that p’ > ¢’. We prove the following result, which uses simplified
notation.

Proposition 3.57. Let £2 be a class C* open subset of RN. For p and q in
[1, 00[ with p > q, let

WP(div)(£2) = {o € LP(2,RY) | dive € L(£2)};
then D(2,RYN) is dense in WP(div)(£2).

Proof of Proposition 3.57.

Let o € WP(div)(§2). Let §2;,¢;, O}, a; be the elements occurring in the
definition of the C! regularity of 2. The vector functions v; = o;, which have
bounded support in A; = §2; N £2, belong to W2 (div)(4;) because p > q.

Indeed, first of all, we have ||v;ll, < [|@ilsollo]lp. Moreover, we have
div(op;) = p;dive + o - V;. The first term belongs to L9. By applying
Holder’s inequality with exponents ¢t = p/q > 1 and ¢ = t/(t — 1) to the in-
tegral fAi |o - V;|9dx, we also obtain the inclusion of the second term in L9.
We have thus reduced the problem to approximating op; by functions in
D(02,RN).

Fach function ¢;0 can be extended to the open set

Ui ={(,zny) | 2" € O, zn > a;(z)},
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after which ;0 belongs to WP (div)(U;). The open set U; is star-convex with
respect to one of its points, which we denote by z; (cf. Exercise 3.9). Let us
consider the function x — hy(x) = x; + Az — ;).

Fig. 3.2. Using star-convex open subsets of a Lipschitz cover.

If A > 1, then the function w} = oy; o h;l is defined in hy(4;), which is an
open set containing the closure of 4; in its interior.

Using scaling on distributions (cf. [22, p.103]), we have the equality
d;(w}) = %(d;w;) o hy" for every j € [I,N], and consequently w} €
WP(div)(ha(4;)). Moreover, the restriction of w} to A; converges to w;
when A tends to 1.

Let e} = d(902,0(hx(4:))/2, let A} = {x € hy(4;) | d(x,002) < &)}, and
let p be a regularizing function. The function Pex * w) is then well defined
on A} and its restriction to A; converges to w; in W¥(div)(4;) when X tends
to 1. If, for each A;, we multiply Per * w? by a function v that belongs to
D(A?) and has value 1 on A;, then the function Y, ¥ (p.» xw}') is a sequence
in D(RY) that converges to o in W2(div)(£2)). '

The same proof can be used when p > N. a

Let us apply this density result to an extension of Green’s formula.

Proposition 3.58. Let 2 be a class C' open subset of RN . For every T € E,
where B = W}, (div), E =W}, or E = WP, depending on the value of p,
we define the element T - w of the topological dual of W'=Y/PP(912) to be the
element satisfying

YU W), (T 0) =

5 7(z) - VU (2)dz + / U(z)div7(z)dz.

o)
This formula is an extension of Green’s formula because when T € D(£2,RN),
the linear functional T- 7 coincides with U +— Joo T Wyl (o)do.

Finally, the map S on W(f,/(div) defined by S : T — T - is surjec-
tive. Moreover, there ezists a constant C such that if f € W—1+1/p"»' (092),
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then there exists a T € Wg’,/ (div)(£2) satisfying S(T) = f and ||f|| <
OHT”Wf/(div)(Q)'
Proof of Proposition 3.58.

To a given element 7 € E, we associate the element T' = S(7) of the dual of
Wi=1/rr(902). When u € W'=V/P2(92) and U € WP (£2) satisfies U = u,
we have (cf. Theorem 3.54),

(T, u) :/QU(x) diVT(:v)dm—i—/QT(a:)~VU(x)dx.

In other words, thanks to the previous density result, we have a sequence { ¢y}
in D(RY,RY) that converges to 7 in E. We then have

(Stow)u) = |

U(z) div oy (x)dx + / vr(x) - VU (x)dz.
7 fo)

By Green’s formula (3.43), we have

(S(p), ) = /8 AU (s) - 7 (3)dr(s) = /6 uls) puls) - T (5)dor(s)

Now, as U € L%(£2) and div(r — @) tends to 0 in L7 (£2) when k — 400,
it follows that [, U(x)div pg(x)de — [, U(x)div7(z)dz. Likewise, we have
[0 VU (2)pr(x)dz — [, VU (z)7(x)d.

To ¢y, we associate the linear functional ¢y - 7 on W'=1/P?(9(2) defined
by

(o - 7)) = /@ ) n(s) - 7 (o).

By the above, this sequence converges in the dual of W'=1/PP(902) to S(r),
which can therefore also be denoted by 7 - . a

Remark 3.59. It is clear that if, in addition to satisfying the conditions
stated above, T also belongs to C(£2, RY), then 7- 7 coincides with its restric-
tion to the boundary in the usual sense.

Corollary 3.60. Consider a class C' open set 2 and two functions U €
WP(2) and V. € WH4(Q) with exponents p and q satisfying 1 < p < N
and 1/p+1/q = (N +1)/N. These two functions then satisfy Green’s for-
mula:

/U(‘“)Zde—i—/ V@de:/ "/()U’Y()Vnid()'.
2 (0] s

Proof.
The proof follows from Theorem 3.54 because 7 equals Ve;. g
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3.5 Higher Order Traces

3.5.1 Preliminary Remarks

Regularity Hypotheses on the Open Sets 2. For m > 1, the term higher order
trace of u € W™P((2), for m > 1, refers to the trace of a derivative D%u of
order |a| with 0 < |a| < m — 1. We have seen the construction of the trace of
an element u of W1P(§2) in Chapter 2. This construction uses the existence
of Vu on the open set {2 and equality (2.89), which in local coordinates is

+oo
for almost all 2’ € O}, vo(piu)(z') = —/ On (piu) (2’ a;(z") + t)dt.
0

This relation is only well defined if the local boundary, given by &’ — a;(z’),
is of class C!.

Derivatives on 0f2. Let us first note that if 2 = RV~! x |0, 4+00], then the
derivatives on the boundary 92 = R¥~1 x {0} are the restrictions of the
N — 1 first derivatives in R In that case, we have no trouble defining the
derivatives in the sense of distributions on 92 and, therefore, defining the
Sobolev spaces W™P(912).

The same cannot be said about the other cases, because the derivative
with respect to the variable z; of z € RY, which is well defined in 2, is,
in general, no longer defined on the hypersurface 0(2. The description of the
derivatives in 042 and the definition of the Sobolev spaces on 02 are therefore
no longer clear.

Let £2;, O., a; be the objects that occur in the definition of the regularity
of f2. Recall that to define the induced Lebesgue measure p; on 2; N 02,
we use the local coordinate systems from that definition. Gluing the pieces,
we obtain the Lebesgue measure p on 0f2. We then show that this measure
is unique and does not depend on the choice of local coordinate systems,
allowing us to define the spaces LP(942). We used this same process to show
that the trace U is indeed an element of LP(942), by considering limits of the
integrals ), foi |U (2!, a;(z") 4+ 1/n)|Pdz’. We proceed in the same manner to
define the traces of the derivatives ;U and the trace of VU. By extending the
definition of a derivative with respect to a vector, we can then, using v,VU,
define the derivatives with respect to the directions linked intrinsically to 02,
in particular, those along a tangent vector of 92 or along the normal vector.
Consequently, these derivatives are not defined, at least not directly, in the
sense of the distributions on 982 (cf. [60]).

More precisely, let us assume that we are in the neighborhood of a point my
of 912 that has a neighborhood V' where, in an orthonormal local coordinate
system {e’}, the boundary is represented by the coordinates of the point m,
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that is (2/,xx = a(2’)) where a is a C! function. The derivative of m with
respect to x; can be written as e/ + d;a(xz”)ely. Consequently, the vectors

— e} + 0ja(x")ely

T 1t Na@)P

for 1 < j < N —1 form a basis of unit tangent vectors of 02 at m. In general,
it is not orthonormal.
For 1 <j < N — 1, we can set
_>

@) = 0ju + 0ja0nu

0- (vU)(z) =vwVU(x ,
¢ (000)(@) =0 VU o) ST
allowing us to define differentiation with respect to an arbitrary vector 7 of
the tangent space Tn—_1(9£2)(z). A vector orthogonal to the tangent space
can be written as
—Va(z') + en
1+ [Va(z')]2

Therefore the normal derivative of u, that is, the derivative with respect to a
vector orthogonal to the tangent space, can be written as

= Zjl\{il 0;a0;u + Onu
1+ [Va(z)]Z

(3.61) O=u(x)

This derivative, which has already played an important role in Green’s for-
mula, is moreover essential to the formulation of the Neumann problems
(cf. Chapter 5).

The generalization to derivatives of order higher than 1 demands the use
of iterated operators V(*), which are gradients of vector functions (see below).

Let us assume that we have determined the traces of U and of VU. In
principle, we should obtain a better regularity for voU, which is an element of
W=1/Pr((2), than for 49VU. Does this regularity translate to the inclusion in
a subspace of W1P(942), which would be a different fractional Sobolev space,
thus generalizing the space W'=1/PP(9£2)?

We will devote part of this section to this question. In particular, if k>2,
we will see that the regularity behavior of U and ~o(Vu) is analogous
to that of U and VU. Indeed, if vU € W*=1=1/Pr(90), then ~o(VU) €
Wh=2=1/p2(52).

Notions from Differential Calculus. In what follows, the derivative V) (u)(z),
where k is an integer > 0, is the multilinear map whose components are the
partial derivatives of order k of u at the point x. For example, for k = 2,
consider the bilinear map V®u(z), called the Hessian of u at x. The derivative
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(’9%2)u(x) is defined to be the image of the pair (77, 7) under this map, that
is, if the components of 7 are {n;}, then

VOu(z) -7 -7 = Z Oiju(z)nin;.

i+j=2
For o of order |a| = k, setting 7 (®) = n$'n9? ... n%Y, we generalize this to
k k! -
8(77)11(3:) = JDo‘u(x) A
o=k

When t is a tangent vector, we define the derivatives 8(_t]f) likewise.
Exercise 3.14 concerns the computations of such derivatives when 02 is a
cylinder or a sphere.

3.5.2 Generalization of Liftings

To highlight the properties of traces of order greater than or equal to 1, we
introduce a lifting of u that is better adapted to problems concerning higher
orders than the one we used up to now.

Proposition 3.62. Let p € D(RY) and let p,(2) = 1/y™p(z/y). To every
u € WIL/PP(RN) | we associate the function (x,y) — U(x,y) = py * u; then
UeWhP(RYN x]0,1[) and %U = au, where a =[x p(z)dz.

Moreover, there exists a constant C depending only on N and p, such that

Vue WVPP@®RN) oy ullwrs@y sgo.ip < Cllullwi-es@y)-

Proof of Proposition 3.62.
By the properties of a convolution and the equality f Oip(t)dt = 0, we

have
o0 = L), wu = [(@uptoy (W Y

Let us show that this derivative belongs to LP(RY x ]0, 1[).
We use the method from the proof of Lemma 3.27. This consists in giving
an upper bound for the integral

I:/O1 /RN‘/tesuppp(aip(t))(W)dt’pd:ﬁdy.

Let z; :x—y(Z{tseS) for1<j<N-1,75==x,and Ty = = — yt, so that

N—-1

Ju(@) —u(e — yt) < Y (@) — u(@)l-
0
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We first use the discrete version of Hoélder’s inequality, |Zév71 a;|P
NP1 Zévfl|ai|p, and then give an upper bound for each of the inte-
grals of the type above using Holder’s inequality, replacing the difference
u(z — yt) — u(x) by u(%;) — u(x;41). We can then write I < C’Z i
where the integrals I; are of the form

RN Ebuppp y

Let us determine the partial integral of the first term [y with respect to
the variable y. Substituting the variable z; defined by yt; = z1, this partial
integral can be written as

/‘ ) —u $—yt161 ’pdy—tpl/tl
=1
0

Since the domain of integration of the variables ¢; is bounded in RY by the
bounds of the support of p, in particular |¢;| < K, we obtain the existence
of constants C{, and Cy such that

K1
u\xr
<o
tesuppp JRN J—K;
— — P
< Cy @) —ulz = ze) dzdz < Collul?,_,, < +oo.
RN JR 21 Li-1/p

The last inequality follows from Lemma 3.27, using the hypothesis u €
Wi=1/pr(RN). We have thus shown that I is finite.
Consider the integral I;. By setting 2’ = Z;, it becomes

1
i LA
0 JRN tJtesuppp

Substituting the variable z;11 = yt;4+1 in the partial integral with respect to y
and applying Lemma 3.27, we obtain

u(x) —u(x — z1e1) |P

le.

21

—u(z — z1€1)

p
‘ da dzydt

21

u(@) —u(@ —ytitiej41)
Yy

p
‘ dt dz dy.

1 / /
u(z') —u(z’ —ytjzi1e; P
Ij — / / / ( ) ( Ylj+1 ]"rl)‘ dtdId’y
RN €Suppp )
Kjt1 ) —u(x' — zj11€ P
O// / ( j+1 ]+1 ’ de+1d$
RN Kjt1 Zj+1

< Cjllul® i1/ < Foo.

We can now conclude that all the derivatives 9;U belong to LP(RY x 10, 1[).
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To give the derivative with respect to y explicitly, we assume that u €
D(RY). Setting u;(z,y) = u(z — yt) and (;(t) = t;p(t), we can write

N N
00w =3 [ ot =237 [ 0G0t~ ey
1 1

. N (2) — u(z — y1)
_ " u(r) —ulx — yt
=3 [ @0 Ja.

Y

For u in W=1/PP(RN) let {u,} be a sequence in D(RY) that converges to u
in W1=1/P2(RN). Tt is clear that the sequence U, defined by U, = p, * uy,
converges, for example in L?, to U = p, » u. Moreover, {0,U,} is a Cauchy
sequence in LP, as is the sequence {9,U,}, thanks to their expressions as
functions of wu,. Taking the limit, we find that because of identities between
functions in LP,

N
aoy U =Y [ am M=

still holds for almost all (z,y).

Beginning with this formula, the computations are analogous to those
concerning the derivatives 0;U. Thanks to Lemma 3.27, they give a well-
defined result. We have thus obtained the inclusion U € WHP(RY x |0, 1[).
Moreover, the different upper bounds imply the existence of a constant C'
depending only on p, N, p, such that

1Ulwre @y xjo,1p < Cllulliz1/pp < Cllullwi-1/p.0@yy- 0

To generalize this proposition, we need to define new spaces.

3.5.3 Fractional Sobolev Spaces with Higher Order Derivatives

The definition of W2~1/PP(RN) can be obtained by generalizing that of
Wi=1/pP(RN). More precisely, we replace the inclusion u € LP(RN) by
u € W=1/PP(RN) and replace u by the derivatives d;u in the seminorm

= [ [, 0 "

oy |z — y[ptN—2

We continue this extension for a class C™ open subset §2 of RV by considering
tangential derivatives, that is, derivatives with respect to vectors t of the
space Ty_1(x), which is tangent to 02 at x.
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Definition 3.65. For f € C™(f2) and a tangent vector T of 80 at x, we set

vi<m, 09f() =V )T T

(1) Let £2 be a class C* open set with k& > 1 and let 1 < p < co. We can write
the seminorm, denoted by ||-[[},_; ,, x, explicitly as follows:
|8(k 1 8(k l)u(y)‘p 1/p
ulls L do(x)do(y) ) -
S 002 Jon |$ - y|p+N 2

(2) The space Wk=1/P2(502) is defined by

WhVPP(902) = {u e WFP(02) |V T € Ty 1, |ullj_1pn < o0}
= {ue WELP(90) |V T € Ty_1,
O e WITVPP(92)).

Remark 3.66. When 2 = RY x ]0,+oco[, this corresponds to the space
Wh=1/p.P(RN) defined before. For an element u, the partial derivatives d;u
with respect to the N variables z; of RV belong to Wk=1=1/p2(RN).

Theorem 3.67. Under the assumptions of the definition above, we have
WHUPP(002) = 5o (WH2(2).

We begin by giving the proof for N = 2 and §2 = R x |0, +o00[. For this, we
propose to use the lifting used at the beginning of the chapter (cf. (3.10)). This
lifting, which works well in dimension 1, is not suitable for higher dimensions.
This is why, in the general case N > 2, we will use the regularizing lifting
introduced in Proposition 3.62 (cf. Remark 3.24).

The difference between the two liftings is as follows. In the first case, we
take the convolution with the characteristic function of a product of intervals.
In the second case, the convolution is with a C* function with compact sup-
port, which allows us to derive more easily at an arbitrary order and to use
induction. In Exercise 3.12, we propose to prove the theorem for N = 3 and
2 = R? x]0, +-00[ using a lifting where the convolution is with a characteristic
function.

Let us also note that for 2 = RV~1 x]0, +-00[, when N = 1, the tangential
derivative is the derivative with respect to x in R and when N > 2, the
tangential derivatives are the derivatives 0;u with respect to the coordinates z;
in RV-1,

Proof of Theorem 3.67 for 2 =R x RY.
We begin by showing that

Yo(WHFP(R x RT)) —s WEL/PP(R).
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Let us note that this proof does not require that the dimension is 2 and can
therefore be generalized.

We use the commutativity of differentiation with respect to x and re-
striction to {y = 0}. We also use induction on k. If k¥ = 1, we know the
result. Assuming the result proved for k — 1, suppose that u € W*P(R x R*).
Then 0,u € WE=LP(R x R), hence by the induction hypothesis, d,u(x,0) €
Wk=1=1/P(R), which means that d,u(z,0) € WF=2P(R) and (9,u)*~2)(-,0) €
W1-1/p.P(R). This implies that u(-,0) € WF=1=1/PP(R).

Consider the converse.

Since the property is clear for £ = 1, we suppose that k£ > 2. Let u €
Wh=1/p2(R) satisfy lully_1 5o < oo. We define the lifting U by setting

1 (v
VreR, Vy >0, U(m,y)z;/ u(z + z)dz.
0

We will show that U € W*P?(R x ]0,1[) and U(z,0) = u(z).
The proof once again uses induction on k. We therefore assume proved
that for all j with 1 <j < k-1,

(3.68) uwe WITYPP(R) = U € WP (R x )0, 1]).

By assumption, v € W*~1/P?(R); hence by Definition 3.65, d,u € W*2P(R)
and [ 9pull}_,, < +o00. Consequently, we have d,u € Wh=1-1/pP(R). Using
the formula of the lifting, and the induction hypothesis (3.68), we deduce that

0,U € WFLP(R x ]0,1]).
We now only need to prove that
(3.69) OhU € LP(R x ]0,1]).

To prove this, let us first use induction to show the following formula, where
Ky = k(-1 /1

Y k—1 =gy |,
(3.70) 8§U(x,y) = Kk/o (u(m—i—z) —u(z+y)— Z jilyu(])(m—i—y))dz.

We assume this result, which is true for k£ = 1, established for 85’1U. Since
the function U can be written as U(z,y) = f01 u(z + zy)dz, differentiating it
gives

1
k _ k, (k
318 U (x,y) 7/0 2Fu®) (2 4 2y)dz.
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Integrating by parts then gives

2R =D (g 4 2g)71 oo (g4 2
Yy 0 0 Yy
uF D +y) 1
= — kfaglj 1U(:z:,y)
Y y
k(_l)k—i-l

Yy B B 1 e
:_W/o (z —y)Ftul 1)($+y)dz—k§8?5k VU (z,y).

By the induction hypothesis (3.70) for the exponent k — 1, we see that
3’;U(ac, y) can be written as

_ FEka /y (U(x tz)—u(z+y) - Y G y)ju.(j)(x +y)>dz

vy Jo 1<j<h—2 7t
k(-1 k+1 y 3 3
— (ykill/o (z— ) u* VD (z +y)dz
Y — )9, +
:Kk/ (u(x+z)7u(:ﬂ+y)* Z it ) u-' @ y)>dz
0 1<<h—1 J:

Formula (3.70) follows.
For the rest of the proof, let us set

k— 1

(3.71)  Ap(u)(z,y,2) = (u(z + 2) — u(z +y) — Z
1

uD (z +y)).

We note that
O Ap(u)(z,y,2) = u* V(@ + 2) —uF V(4 y),

and that Ay (u)(z,y,y) = 0L Ax(u)(x,y,y) = 0 for every index j satisfying
7 < k — 1. Integrating k — 1 times, we deduce the relation

(3.72)  Ag(u)(z,y, 2)

z  pta th—1
:/ / / (u(k_l)(x-i-tk) —u(’f—1>(x+y))dtk---dt2
Y Yy Y

Using homotheties on the variables, we can write the right-hand side of the
relation as

y* 1/ / Dz + try) — ulF~ 1)(:c+y))dtkdtk_1~~dt2.
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Fixing y, we apply the change of variables z = yt; in the integral
K, foy Ag(z,y, z)dz, giving

Yy 1
K, / Au(u)(z,y, 2)dz = Kyy / A,y try)dts
0

0

1 t1 th—1
= Kpy* / / iy / (u(k_l)(m +try) —uF "V (z + y))dtkdtk,l edty
0 1 1
1 ,t1 tp_1
=K / / e / (u(’“*U(x +try) — uF Y (z + y))dtkdtk_l o diy,
0 1 1

where K! = (—1)¥'k!/(ky). We can bound the norm |-||” of the
k L (Rx]0,1[)

function 83(,k)U, which satisfies aggk)U(;my) = Ky [) Ar(u)(z,y,2)dz, from
above by

ul=1)( a1
//// / (@ + try) — u $+y‘dtk diy | e dy.
y

We apply the change of variables (z,y) — (X,Y) = (v + y, z + try) with Ja-
cobian 1 — ¢;. The denominator can then be written as y = (X —Y) /(1 — t)
and the domain of integration becomes {X > Y'}. Exchanging = and y, we ob-
tain the previous upper bound with domain {Y > X}. Using Fubini’s formula
and the inequality (1 — t;)?~! < 1, we obtain

105 UIN e o1

<f o [ faser]f
<// uk=1) X—uUf D) ?

_Y)
< ||u(k Y ||k 1,p,2 < t00.

a0 () — b0 () [
xX-7)

dX dYdty ---dty

dX dY

Summarizing, we have shown that 87(,k)U € LP(Rx]0, 1[), concluding the proof
of (3.69), and therefore the proof of the theorem for N = 2. O

We continue for N > 2 with results concerning the new lifting, starting
with a theorem generalizing Proposition 3.62, which in fact completes the
proof of Theorem 3.67.

Theorem 3.73. Let p € D(RY) and, as above, let p,(2) = (1/yN)p(z/y).
To a function u in WE=Y/PP(RN), we associate the function U defined by
U(z,y) = py xu. The following hold:

(1) We have U € WEP(RN x |0, 1]).
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(2) If, moreover,

Vs={s}, 0<]|s|<k—1, we have / ?p(t)dt =0,
RN

where & = II;(t7%), then the trace of U satisfies
(3.74) U(x,0) = (/ p(t)dt)u(m) and Vjel,k—1], &U(x,0)=0.
RN

Remark 3.75. The existence of such a function p can be shown, for example,
using a function ¢ € D(R) such that for every integer ¢ satisfying 0 < ¢ < k
we have [, @(t)t‘dt = 65. The existence of such a function ¢ is the aim of
Exercise 3.8.

It is now easy to see that p(t) = II¥p(t;) satisfies the condition stated
above.

Proof of Theorem 3.73.
We make the following induction hypothesis on k:

Vpe DRY), we W VPPRN) = p, xu e WFP(RY x 0, 1]).

For k =1, this is Proposition 3.62.

Let us assume the theorem proved up to rank k—1. Let v € Wk=1/Pr(RY)
with & > 2. By the induction hypothesis, we already know that U(x,y) =
Py *x U € Wk LP(RN x 10, 1]).

By Remark 3.66, we know that 0;u € W*=1=1/PP(RN) where k — 1 > 1.
We can therefore compute 0;U = p, * O;u as a convolution of functions. The
induction hypothesis gives 9;U € W*~LP(RYN x ]0,1[). In order to obtain the
conclusion that U € W*P(RM x ]0,1[), it now suffices to prove that 9,U €
WhE=LP(RN x]0,1]).

For this derivative, we traditionally have

U(z,y) Z/ t;)Oiu(x — yt).

Setting (;(t) = t;p(t), an arbitrary term of the sum can be written as
- [ GGt - )z = ~(G), o
R

By the induction hypothesis, as ¢; € D(RY) and dyu € Wk=1-1/PP(RN), we
deduce that each of these terms belongs to W*=12(RYN x 0, 1[), giving the
conclusion for 9,U. We have thus proved that U € WP (RN x |0, 1]).

It remains to see that 8§U(x,0) = 0 for /¥ < k — 1. To illustrate
the ideas behind our method, we first consider the case ¢ = 1. We have
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Oy U(z,y) = 3, Jan Gi(H)0su(x — yt)dt. Moreover, as dju € W'~ 1/pp | using
the equalities fRNp )t;dt = 0 for every j € [1, N], Proposition 3.62 tells us
that 0,U(z,0) = 0.

Let us now assume that ¢ > 1 with ¢ < k& — 1. Since the convolution
can be differentiated up to order k — 1, we deduce the following formula by
differentiating the function wu:

-y CS/ D u(w — y ) - (F)dt

|s|=¢

It follows that 95U (x,0) is a sum of terms [p p(t)t?dt Dsu(x) that are all
zero for the chosen p because s # 0 and |s| < k — 1. O

The next two propositions specify the previous liftings so that they satisfy
boundary conditions. These conditions are related to Neumann conditions, as
they concern derivatives.

Proposition 3.76. Let k > 1; then for everyu € W=Y/PP(RN) and for every
p € D(RYN), the function V defined by V (z,y) = (y* ' /(k — 1)!) py x u(z) has
the following properties:

VewrP®RN x]0,1), 05 'V(x,0) = u(x)/ p(t)dt,

RN
and Vi<k—2, 0,V(x,0)=0.

Proof of Proposition 3.76.

We use induction on k.

When k = 1, this is Proposition 3.62. We assume that the result is true at
the exponent k — 1. Let

yh1 yh2
V(z,y) = mpy*u = ympy*u = yv,

where v € WF=LP(RY x ]0,1[) by the induction hypothesis.
Let « be a differentiation index satistying |a| = k — 1.

e If ay =0, then we have D%(yv) = yD%v € LP(RY x 0, 1]).
e If ay =j > 0, then the Leibniz formula gives

i na' _ i Ha! . i—1 o'
Dy D* (yv) = yD}D* (v) + jD}~ D (v),

which also proves that this derivative is in LP(RY x]0, 1) because j+|o/| =
k — 1. We conclude that V € W*k=LP(RYN x |0, 1]).
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From here on, we use the notation @ ,(t) = u(z — yt), giving

_ 1, -
Oy Uay(t) = _gafj Uz (t)-

Following the method of Proposition 3.62 (cf. relations (3.63) and (3.64)),
that is, integrating the term fRN )0y, u(x — yt)dt by parts, we find that

ykfl _yk72 -
05V (z,y) = mpy * dju = W /RN p(t)0; Uz y

yk72

Since the function (9;p), belongs to D(RY) and wu belongs
to W=1/PP(RN), the induction hypothesis implies that 9,V €
WHE=LP(RN x ]0,1[). We still need to prove the same property for 9,V. We
once more use the process described in the relations (3.63) and (3.64). This

gives
0,V (z,y) = (kk;py*w ,Z —t;0;u)]
- %py *u— (;/__1)! 21: /RN t5p(8)0h, u(x — yt)dt
- %p o % i |, ~ostsptute -y,
whence
(3.77) 0,V (x,y) = ﬁpy cu+ (;’k_j)! ilv:[(m)y*

The left-hand side belongs to W*~1P(RN x ]0, 1[). All the terms on the right-
hand side also do, thanks to the induction hypothesis applied to the functions
n; = 0;(t;p), which belong to D(RY).

To summarize, we have shown that V € WkP(RYN x 10, 1[).

The relations at the boundary are obvious. Indeed, for y = 0, the Leibniz
formula applied to the derivative of order k£ — 1 in y implies that all terms
vanish except for one, namely,

65—1((:k_i>!) [py * u] y=0 = u(x) /RN p(t)dt. O
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Proposition 3.78. Let u € WI=V/PP(RN). For k > 0, set
Y
U(‘T7 y) = Epy * U,
where p satisfies
. o
Vs, |slel,j—1 = p(t)t*dt = 0.
RN
We then have:
(1) The function U belongs to W*+3P(RN x 10,1[). Its norm in this space is
controlled by that of u in WI—1/PP(RN),

(2) The traces of U satisfy

DU (2,0) = u(z) / p(b)dt,

]RN
Vee0k+j—1], (#k=0.U(x,0)=0.

Proof of Proposition 3.78.

Part of the proof is by induction on k. We begin by noting that if |o| = j—1
and ay = 0, then we have D%u € W'~1/»P(RN). Hence, by the previous
proposition,

k
DU = %py * D%y € WHHLP(RN),
which implies that all the derivatives other than 6";” U are in LP. It remains
to prove that 957U is in LP(RY % ]0,1[). Now,
k-1 k-1

Y Y
8yU:mpy*u—|— x Z(nj)y*u.

Since the recursion hypothesis tells us that 9,U € WkTI—LP(RN x |0, 1[), we
can deduce that U € Wk+7P(RN x ]0,1[). This proves the first statement.

The previous computations show that, up to a constant, the norm of U in
Witkr(RN x]0, 1[) is bounded from above by that of u in W7=1/7P(RN). For
the boundary conditions, we first note that, by the Leibniz formula, we have
dLU(x,0) = 0 for every I satisfying | < k and 9} U (x,0) = (fRNp(t)dt)u(a:).

For the exponents [ satisfying k¥ < | < k4 j — 1, we once more give a
proof by recursion on k, for fixed j. For k = 0, this is Theorem 3.73, where k
is replaced by j. We assume the proposition proved for j and k — 1, that is,
if U(x,y) = (y*1/((k — 1)) py xu, then U is in WrH=LP(RN x 10, 1[) and
satisfies

VE<k+j—2, agU(x,O):af—l(/ p(t)dt)u(x).

RN
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Let V(z,y) = (y*/k!)py*u. Once more setting n; = 9;(t;p) and using previous
computations (cf. relation (3.77) and the ones following it), the derivative with
respect to y can be written as

yk=1 k-1 N

0,V = mpy*u—k yk' Z[(nj)y*u} =Vi+ V.
! ]

By the recursion hypothesis, as the function p is in D(RY) and satisfies the
condition [py p(t)?dt =0 for £ € [1,7 — 1], we have

VO<k4j—1, agvl(x,O)zag-l(/ p(t)dt ) u(a)
RN

To conclude for the terms of the sum V5, we must verify the orthogonality of
the function 7;.

For |s| € [1,j — 1], consider the integral [py nj(t)t?dt. Since n; = 0;(t;p),
integrating by parts with respect to t; gives

/ Uj(t)?dt:/ 9;(tip) [Hk tzk}dt
RN ]RN
s [ o0ty Mgttt = —s; [ o0t =0,
RN RN

We can therefore apply the recursion hypothesis to the terms of V5. We deduce
that

p(t)dt) .

Consequently, 8§V(x, 0)=0fork<|{|<k+j-1 O

VIO <k+j—2 8V (2,0) = u(x)st (/

RN

In the following theorem, we extend the previous results to the case of an
arbitrary open set.

Theorem 3.79. Let 2 be a class C™ open subset of RV .

(1) For 0 < j < m —1, the map ¢ — 8%)@ from C™(82) to C™~7(AS2) can be
extended to a continuous linear map from W™P(02) to Wm—I=1/PP(992).
We will denote this extension by ;.

(2) Moreover, the map v that sends u € W™P(£2) to the m-tuple

(uﬁﬁm ey %)u, ey 8%”71)u)

is linear, continuous and surjective onto the product space

Wm=VPP(90Q) x - x WI=V/PP(90Q) x - x WIV/PP(90).
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Proof of Theorem 3.79.

Let us prove the first statement.

We begin by showing the continuity of U +— ~;U, where j < m — 1. By
definition, 8% =V@ .7 .7 ... 7. Expanding, we obtain

=D (D Ung ng® -yt
lal=k

By the above, the maps U + ~o(D*U), where |a| = j, are continuous because
the open set is of class C". Taking the normal derivatives introduces the
product of a function v in WJ=1/PP(9(2) and a function f in C™. We then
show (cf. Exercise 3.13) that we have

[ofllw i-1m000) < Cllvllwi-1/r000)

where the constant C' depends on the norms of f. We deduce from this the
existence of constants c; such that

H’}’jUHWmfjfl/p,P(a_Q) < CjHU”W’"’p(Q)’

Since the maps ; are linear and continuous, we also obtain this result for
the map v with values in the product space endowed with the corresponding
norm topology.

To prove the surjectivity of -, we first consider the case 2 = R
10, 4+-o00[.

Let u = (Upm,Um—1,-..,u1) be a function in the product space. We let
Uy, 1 denote the function of Proposition 3.78 that satisfies

N-1 X

k
8yqu,k = Uy

and, for ¢ # k,
U,k = 0.

We then let U = ZT Uu; m—j. This is an element of WP that satisfies the
equality v(U) = u, proving the surjectivity.

Let us now consider an arbitrary 2. When defining the liftings, we can
use the objects of the definition of the regularity of {2 to reduce to reasoning
on the open set A; = 2, N £2.

Let uyp; € Wk’l/p’p(a*Ai), where 9*A; = 02 N §2;. For the sake of sim-
plicity, we denote up; by u and omit the indexes ¢. We may, and do, assume
that @' = Bx_1, the open unit ball in RV~1. Let us consider the map &
from A to RV~! x 0, +00[ that sends the point (2/,2x) of A to the point
(7', y) defined by 7’ = ', y = zny — a(a’).
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U+ ————470

(:(7/, IN)
b r(u)

(. aw))
i Upb — — — % uod!
i Diagram of the lifting of u

RN-1 0' = By,

Fig. 3.3. Surjectivity of ~.

We can easily see that this map is invertible and that it is a class C™
diffeomorphism onto its image. The image of 9* A is an open subset of RV 1.
The inclusions in Sobolev spaces are conserved by @. Figure 3.3 illustrates the
situation.

Let us now study the surjectivity of v onto 92. To simplify the ideas, we
study the case m = 2.

Let u € W'1/PP(A). Let us show the existence of a V' € W?2P?(£2) such
that

V(z',a(z")) =0 and 07V (2 a(z")) =u(2’ a(z")).

In order to do this, let U € W2P(RN~1 x |0, +-00[) be an element satisfying
U(z',0)=0 and dnU(z’,0) = u(z’,a(z'))\/1+ [Va(z')[2.
The existence of such a function is guaranteed by Proposition 3.78. We let
V(' ,zn) =U(a,zn — a(z'));

then V(a/,a(2’)) = 0. Moreover, by taking the derivative with respect to a;,
we have

OV (2, xn) = 0,U(x,zn —a(z) — 8ja(2x")ONU (2, 2n — a(x')),

whence

oV (' a(z")) = ;U (2',0) — dia(z")OnU (2, 0).
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Using 0;U(2',0) = 0 and the expression of the normal derivative (cf. (3.61))
along the boundary, we obtain

_ - Yo 0ia(x)o;V (2 a(a’)) + OnV (2!, a(z"))
1+ |Va(z')|?
> (0a(2))?0nU (', 0) + OnU (2, 0)
1+ |Va(z')|?
=1+ [Va(a)2onU(a’,0)

= u(a2’, a(z")).

07V (2 a(x))

To conclude the proof of the surjectivity, it suffices, under the hypothesis
u € W?=1/PP(A), to show the existence of a V in W?P(£2) such that

V(z' a(z") = u(@', a(z")).
Let U € W2P(RN~1 x ]0, +00]) satisfy
U(z',0) = u(2,a(z")) and InU(a’,0) = 0.
Then, if V(2',z2n) = U(2',2n — a(z’)), we indeed have
V(z',a(z")) = U(a',0). 0

Remarks (concerning specific cases).

Notations in the Case p = 2. When p = 2 and k is a nonzero integer, we let
H*=1/2(902) denote the space W =1/22(90).

The Case p = 1. Let u € W2L(RN~1 x |0, +oc[). It is clear that you €
WL (RN1). However, as has been shown in [19], the space of traces is smaller
than W' (RN~1). Describing the space ~o(W21(RY ™! x ]0,+oc)) is still
an open problem. However, we can describe the normal derivative on the
boundary. More generally, we have the following result.

Proposition 3.80. Let m > 1; then the image of the trace map ~vm—1 Satisfies
Tt (WH(@2)) = L1(092).

Proof of Proposition 3.80. It is clear that ~,,_1(W™(£2)) — L'(892).

Let us show the result for m = 2 (cf. [19]).

Let g € LY(RN1) and let {¢,},>0 be a sequence in C2(RY~1) that con-
verges to g in L*(RV~1). We can extract a subsequence, which we will denote
in the same way, satisfying

lop+1 — epllt <277 gll1-
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Let {cy} be a sequence of positive real numbers such that

27"]lgllx

VpeN, op< @ .
> tief1.2y ke 1okl +1

Let to = > o ap and let tpq1 =t — .

The resulting sequence {t,} is strictly decreasing and tends to zero when p
tends to infinity. Let ¢ satisfy 0 < ¢ < to; then there exist unique ¢, and
A € [0,1[ such that t = Atpp1 + (1 — A)t,. We define the function v on
RN-1 x [O7t0] by

(@', 1) = Mepa(a') = op(a) + pp().

For every 2/ € RN~!, we have limy_q [[v(:, ) — g||z1@n-1) = 0. Let us show
that the following functions,

ov ov 8%v
<1< — -
8%1' (1 \Z\N 1)’ 8$N7 81'2

7
belong to L' (RN ~1 x 10, 4[). For v, this follows from the inequality A < 1 and
the inclusion ¢, € LY(RN~1). For i = 1,2 and j € [1, N — 1], we have, thanks
to the definition of oy,

to ) too ip .
/ / (e’ de'dt = Z / / (e d'dt
0o JrN-1 tpp1 JRN-1
32 tpr1)0 <Pp||1

SZ%H iopllt < 3llgll-

v,

On [tp11,tp] we have A = (t — t,)/(tp+1 — tp). Therefore the derivative in ¢ on
this interval can be written as (pp4+1 — ©p)/(tp+1 — tp). We deduce from this

that
to too tp —
/ / 002!, t)| da’dt = / > / [per = @pl gy
0 RN-1 RN-1 tpi1 tp —tpi1

0
<D lleprr = wpllt < 209l
0

Next, let u be defined by u(2’,zy) = p(zn) OwN v(a’,t) dt, where the

function ¢ is a function in D(R) with value 1 in the neighborhood of zero. We
then have

“ (2,0) =g(z'), and wu(z’,0)=0. O

0
u < W2’1(RN_1 X }O,to[), %
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3.6 Embedding Theorems, Compact Injections

3.6.1 Results Concerning Embeddings

Theorem 3.81. Let £2 be a class C* open subset of RY . We have the following
embeddings:

(1) If N > kp, then
kal/p,p(a_()) « y [(N=1)p/(N—Fkp) (012).
(2) If N = kp, then
Vg <oo, WHEPP(HQ)—s LI(H).
(3) If N < kp and N/p is not an integer, then
VA< [N/pl+1—N/p, WEer(90) s cf- NP2 90),

where [N/p] denotes the integral part of N/p.
If N/p € N, then WF=1/PP(902) — Cl}f*N/pfl’A(a.Q) for every A < 1.

Remark 3.82. If we extend the formula W*P(RN-1) — LI(RN-1) in the
case kp > N — 1 to noninteger exponents k, in particular to the present
situation, then we indeed find the condition

(N -Dp _(N=Dp
N—-1-(-1/pp N-p

q<

We can make similar remarks in the other cases, kp > N and kp = N.
Indeed, in the next chapter, after defining the spaces W*P for s a positive
noninteger, we will show the existence of analogous injections for every non-
integer s.

In what follows, we let (RV)* denote the open set RN~1 x ]0, +oo[. We
begin the proof of Theorem 3.81 by considering this specific case.

Proof of (1) and (2) for 2 = (RV)*.

Statement (1). We begin by assuming that k£ = 1, and therefore p < N.

Let C be a constant such that, for every u € WHP(RY 1), there exists a
lifting U € WP(RN~1 x ]0, +o0]) of u, that is, satisfying U(z’,0) = u(z’),
such that

IUlw e @y-1x10,400) < Clluflp:

Let v = (N —1)p/(N — p), whence y—1 = (N(p — 1))/(N — p). We can then
write

(3.83) U, 0)" < /O U, )| |onU (e, )| dy.
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By Holder’s inequality, we have

(3.84) U, 0)]" . "
<7 /0 onU (' )| dy) (/O U,y ay)

Finally, integrating with respect to 2’ and applying Holder’s inequality gives
the following norm for u in LY (RN ~1):

Il < llowt) (

RN x]0,+00
g CHU”;VLP(RN—l x]0,+00[)?

Np/(N=p)  \1/¢
U (@) ! pda:) ’
[

giving the result of statement (1) for k = 1.

For arbitrary k in statement (1) with (R™)*, we use an induction on k.

Let us assume that assertion (1) has been proved for k — 1. Let u €
Wk=1/p»(RN=1): then by definition, we have u € W*=1P(RN-1) and 9F 'u €
Wi=1/pp(RN-1) for every i < N — 1.

By the embedding theorem of Chapter 2, we have u € L(N—1p/(N=1=(k=1)p)
because (k—1)p < N — 1.

By the induction hypothesis, the inclusion d;u € Wk =1=1/PP implies O;u €
LN=1p/(N=(k=1)p) We therefore have

weI? and we LW-Vp/(N=1-(k=1)p)

and, since

(N =1)p/(N = (k= 1)p) € [p,(N = 1)p/(N =1 = (k= 1)p)],

we can deduce that u € L(N-1p/(N=(k=1)p),

Finally, we have v € WHWN=1p/(N=(k=1)p) - Once more applying the em-
bedding theorem of Chapter 2, we deduce that u € LV —Dr/(N=kp) We have
thus proved statement (1) in the case (RV)*.

Let us show (2). If k = 1 and p = N, then WY (RN~ x ]0,[) —
LI(RN=1 x ]0,00[) for every ¢ < oo. Applying the inequality (3.84) with
arbitrary «, we obtain W'=1/N:N «y L4 for every ¢ < oo.

Let us now assume that £ > 2 and kp = N. We then have (kK —1)p < N,
which implies that

Wk:—l—l/p,p<RN—1) SN L(N—l)p/(N—(k—l)p)(RN—l) — LN_1<RN_1).

However, u and Vu belong to W*=1=1/P»(RN~1) whence uc WHN (RN,
By Sobolev’s embedding theorem for the spaces W1V =1(RV 1) we deduce
that v € LI(RN~1) for every ¢ < oo, concluding the proof of statement (2) in
the case (RV)*. |
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Proof of statements (1) and (2) in the general case.

Let 2 be a class C* open set.

Using the regularity of (2, let us show the continuity of the injections of
W¥P(£2) in the cases (1) and (2). Let £2; be open sets that cover §2, let {O;}
be open subsets of R¥~! and let {a;} be C* functions on O; such that, for
every ¢ > 1,

;N c{(@,zy) | zn > ai(z'), 2’ € O;},
2,N002 ={(2,a;(2")) | 2’ € O;}.
Let {¢;} be a C* partition of unity subordinate to the cover of §2 consisting

of the §2;. The uniform regularity assumptions on the open set {2 imply the
existence of a constant C7 such that

Vi, HaiHck(o + ||80iHck(Q )y < (1,
and Vg > 1, 3¢q, Vu € LI(2 Z/ z)|%dz < cq/ lu(x)|?dz.
2,0

Note that this property also implies the existence of a constant Cy such that

Yue W 1/pp(89 Z llwillwe-1/v, P(ARN2;) C2||U||Wk*1/r>vp(6(2)-

Let u € WF=1/PP(90); then the function u; = @;u belongs to the space
Wk=1/P2(5020102;).

Let v;(2’) = u;(2’,a;(2")). By the properties of a;, it is clear that v; €
Wh=1/pp(RN=1) Tt follows that v; € LI(RN"1) for ¢ < (N —1)p/(N — kp),
and therefore u; € LI(£2; N 012).

Moreover, there exist constants, which we all denote by C, such that

[ullLaoe) < Zl\uzlmnman) ZHWHLG(RN—l)
CZH“zHWk urr(2,n00) < [ullwr-1pp00)- o

Proof of statement (3) in the case (RV)*+

We again begin by assuming that k =1 and p > V.

Let C be a constant such that for u € W'=1/»P(RN=1) there exists a
U e WLP(RN=! x )0, +o0[) with U(2’,0) = u(z’) and

”UHWLP(RN* x]0,+00() < C”“HWFU/P%P(RN*U'

We use the embedding into Cg A given in the previous chapter (cf. Theorem
2.31), namely

UeW P (RN x [0,00]) = ue '~ NP(RN),
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Then, for every t > 0 and for every (z,y) € (RV~1)2 we have
U(2,t) — Uy, t)] < C|IU[lwrw@y-1x[0,00plz — y|*~N/P).

We obtain result (3) for kK =1 by letting ¢ tend to 0.

Next let & > 1. Suppose first that jp > N > (j — 1)p and that u €
Wi=1/pp(RN=1), Then u € W7~1P(RN~1), which implies, since (j—1)p < N,
that v € LN-Dp/(N=1=(G=1p)  Furthermore Du € WJ~1=1/PP hence the
part “kp < N” ensures that Du € LIN-Dp/(N=G=1p) Since

(N—-1)p (N—-1)p
N—G-1p) © p’(N—l—(j—np)}’

we have u € WHN=Dp/(N=(G=1p) hence, since (N —1)p/(N—(j—1)p) > N—1
and

(N-1) . N
l— =7 —,
(N=1)p P
N—(-1p

0,j—N,
Wehaveuer] /P,

If kp > N and N/p is not an integer, then let j € N be such that jp >
N > (j — 1)p, that is, j = [N/p] + 1. We have DF=y € Wi-(/Pp(RN-1)
and, by the above, D¥~Jy € C07 NP (RN=1)_ Tt follows that

= Cf*j’j*(N/p)(RN—l) _ Cl’fflf[N/pL[(N/P)Jrl]—(N/p) (]RN_l).

The case where N/p € N is left to the reader. O

Proof of (3) in the general case.

In the general case of a class C* open set, we define u; and v; as in the
proofs of (1) and (2). We then have v; € Cl]f*l7[N/p]’[(N/p)+1]f(N/p)(RN_l).
Setting

X(;) = C{:—l—[N/p]a[N/P'i‘l]—(N/P)(Qi nogn),

we write
lull x60) = Sup llwill x (2:) < Sup lvill x -1y
< Csup [villws=17v.0@n-1y
< ngp [willwe-1/0000n0,) < Cllullwr-1/0000)- 0

Let us now consider the compactness of some of these injections.
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3.6.2 Compactness Results for Bounded 912

Theorem 3.85. We suppose that 012 is bounded and of class C.

(1) Let p > 1 and let N — 1 be the dimension of 0f2. We suppose that
kp< N. The injection of W*=1/PP(902) into LI(d12) is then compact for
all g < (N —1)p/(N — kp).

(2) If kp = N, then the injection of WF=1/PP(902) into any LI(dN2) is com-
pact.

(3) If kp < N, then the injection of WF=1/PP(902) into CF=1=IN/PLA(902) is
compact for every A < [(N/p) + 1] — N/p.

Proof of Theorem 3.85.

In the first case, it suffices to show that the injection of W*=1/7:P(90) into
LP(942) is compact and then use Lemma 2.82 from Chapter 2. Moreover, it
suffices to show the result for k = 1 and for functions in W*=1/7P(RN=1x {0})
with support in a fixed compact set. Therefore, let {u,, } be a bounded sequence
in W-1/pp (RN—1) with support in a fixed compact set. By the continuity of
the lifting of W1=1/PP(RN=1) in WLP((RV)*), there exists a %, equal to uy,
on the boundary and such that ,, is bounded in WP((R™)*). Consider a
function ¢ € D(RY 1) that is equal to 1 at 0. The sequence v,, defined by
p(2) = Up(z)(2")p(zy) then has the same trace as 4, and has support in
a fixed compact subset of RV =1 x [0, oo|.

The sequence {v,,} is relatively compact in LP(RY), by the compactness
theorem for bounded subsets of W1P(£2) when {2 is bounded. For two in-
dexes n and m of a convergent subsequence in LP, which we also denote by
{v,}, we have

1
= (@', 0) < [ o = 0l (e vy 51,
0
Moreover, integrating with respect to 2’ and using Holder’s inequality gives

[[un — UmHip(RN—lx{o}) < pllvn — Um”gil (HUH,NHP + ||”m,N||p>a

which tends to 0 when n,m — co. The sequence {u,} is therefore a Cauchy
sequence in LP(RY~1) and consequently converges in LP(RY~1), namely to
' — u(z’,0).

Let us now assume that kp > N. It suffices to show that the injection

Wh=1/pr(] — 1, 1[N 1% {0}) — C([-1, 1]Vt x {0})

is compact and to apply Lemma 2.85.
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Let {u,} be a bounded sequence in W =1/P2(] =1, 1[N=1x{0}) and let 1,
be a bounded sequence in W¥?(] — 1,1[N=1x]0,1[) that equals u, on the
boundary. By the compactness of the injection of W*?(] — 1,1[N=1x]0,1])
into C([—1,1]N~1 x [0, 1]), we can extract a subsequence of u,, that converges
in C([-1,1]¥=! x [0,1]). In particular, it converges in C([—1,1]V~1 x {0}),
giving the desired result. a

3.6.3 Comments

Few books give a simple approach to trace spaces. In general, the given defi-
nition uses interpolation spaces, which is more abstract than what we present
here. For these other approaches, the reader can consult Adams [1], J.-L. Lions
[47, 48] and Peetre [56].

3.7 Exercises for Chapter 3

Exercise [#+] 3.1 (Fractional Derivatives).

The aim of this exercise is to determine properties of the fractional differen-
tiation of distributions. In particular, we will be able to justify Remark 3.2,
which was made at the beginning of this chapter. We denote by H the function
equal to 1 on |0, +o00[ and zero elsewhere. For the definition of the finite parts
used here, we refer, for example, to Exercise 1.27 of Chapter 1. The following
formula, which holds for « € ]0, 1], also suffices:

+o0 ) —
() VeeD[), (PH(H()r"),p) = /0 %d@

We recall the definition of the convolution of two distributions 7" and S in
D', (R). Suppose that the function € D(R) has value 1 in a neighborhood of
supp(), this convolution is defined by

(T%S,¢) = <T7 (Sn(@)nw)e(x +v))) >

In most cases, it suffices to do formal computations where we disregard the
function 7.

We will admit without proof that the derivative of the resulting distribu-
tion is either the convolution S’ x T or the convolution S x T".

Let us recall the definition of the Euler function B, namely

1
Va>0,Y8>0 Bla,p) = / to (1 — )P~ Ldt.
0
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This function satisfies the relations

L(a)I(B) ™

B(a,B) = Tt and B(a,1—a) =

sin(ra)’

Finally, we extend I" to the nonpositive real numbers that are not integers
using the following formulas:
r 1 r 1
Vee]-1,0[ I*(z)= %; Veel-2,-1, I'(z)= %
and so on, on all segments | —n — 1, —n|[.
For noninteger m > 0, the fractional derivative of order m of the distribu-
tion T' € D/ (R) (cf. [60]) is defined to be

d™(T) ! )Pf<H(x)) T

- I'“(—m gmtl

When m is an integer, it is d™(T) = §(™) T = T(™),

(1) As a first example, we consider the derivative of order 1/2 of H(z)z® for
« > 0. Prove the following result, where K is a constant:

1
I'*(—

) Pf(;,;(z)) * H(x)z® = KH(x)z 12,

d'/? [H(m)m(’} = T
2
More generally, determine the derivative of order s of the function H(z)x®
for s €0, 1] (use Definition (x)).
Using the differentiation of a convolution and the derivatives of the finite
parts, deduce the derivative of order s of H(z)z® for s € |1,2[ from the
previous result. Generalize to an arbitrary noninteger nonnegative differ-
entiation order.

(2) For o and f in |0, 1], determine the convolution of the distributions S =
H(x)r~* and T = H(z)z =", which can also be considered as a convolution
in the sense of functions. Give an explicit result for o + 8 = 1.

Deduce from this an explicit description of the composition of the two
derivatives of noninteger orders m > 0 and k > 0, using the derivative of
order m + k.

(3) (Question related to Example 3.25). Let f be the function with value 1 on
]0,1[ and 0 elsewhere. We assume that p > 1. Determine the convolution
of functions H(x)z/P~ x f. Deduce from this the fractional derivative of
order 1—1/p of f. The result is a function, in contrast to the derivatives of
integer order, which involve Dirac distributions. Show that this fractional
derivative belongs to LP(R) only if p < 2 (cf. Example 3.25).
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Hints. For (1), apply the definition of a convolution of distributions to obtain
(T, ) = (H(zx)z", (PE(H(y )/yw) e(z+y)))
T oz +y) —p(z)
/ z /0 " —sm dy dx.

Next, integration by parts gives
“+oo _ oo /
/ pla+ ?43)/2 G 2/ 4 (961/4; Y ay.
0 Y 0 Y

Using a translation applied to the variable, it follows that

+oo +oo /
_ a ¢'(2)
T<p>f2/0 x /Z (Z_m)l/dedx.

Use Fubini’s formula and the Euler function B(a + 1,1/2) to deduce that (T, ¢) =
K’ f+°° atl/2 ¢’ (2). Finally, integrating by parts gives the desired result, since a > 0:

(T, ) = K/ 227 V20(2)dz.

Use an analogous computation to determine the derivative of order s € |0, 1[. This
will again give the function K H(z)z*™°.

When a — s < —1, generalize the formula by replacing the power function by
the associated finite part. For example, when s € |1,2[ (whence 0 = s — 1 € ]0,1])
and a — s < —1, this gives

d*(H(z)z™) = d[d” (H(z)z")] = Kod[(H(2)z" 7] = K Pf(H(2)z*").

Use a derivative of integer order to show that this formula holds in general.

For (2), the analogous computation holds, giving the function H(z)z!~(*+# up
to a constant that can be expressed using the Euler function 5. Taking the derivative
of the resulting formula gives the desired property.

For (3), the convolution is pz'/? on ]0,1[ and p[z'/? — (z — 1)*/?] for = > 1.
The fractional derivative is the order one derivative of this function. The inclusion
in LP(R) poses no difficulty.

Exercise 3.2 (Weak Continuity of a Trace Map).

Let £2 be a class C' open subset of RY and let p > 1. Show that the trace
map is continuous for the weak topology on W1?(£2). More precisely, if {u, }
converges weakly to u in WP(£2), that is, if both u,, — u in LP and Vu,,
tends to Vu, then you, converges weakly to you in W'=1/PP(502).

Hints. Let f € WLt/ (092). Use the surjectivity of the map S introduced in
Theorem 3.58 to show that there exists a o € W*’ (div)(£2) such that
f=0-7.
We have
f(youn — you) = / (un —u)dive +/ (Vun —Vu) -0 — 0,
a0 fe) o)

giving the result.
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Exercise 3.3 (Example of a Non-Weakly Continuous Trace Map).
Verify that the trace of the space W1(]0, 1[V) in L'(J0, 1[NV ~1x{0}) is not
weakly star continuous. For this, use the sequence {u,} defined by

un (2, 2n) = (1 = nen)xj0,1/n) (TN)-

(1) Show that {u,} is bounded in Wh1(]0, 1[V).

(2) The sequence {u,} is in the space BV of functions in L!(]0,1[") whose
gradient is a bounded measure on ]0,1[YV (cf. Section 6.3 of Chapter 6).
In Chapter 6, we define the weak convergence of the sequence {u,} to u
in BV by the conditions

|un, —ullt — 0 and V@GCC(]O,l[N), [(Vu, — Vu,p)| — 0.

Show that this weak convergence is indeed verified with v = 0.
Consider the trace of u, on {xx = 0} and compare this to the trace of
the zero function to deduce that the trace map is not weakly continuous.

Exercise 3.4 (Noncompact Injection Into a Trace Space).

(1) Let N > 2 and let 0 < p—1 < N. Prove that the injection of
w=1/r2(]0,1[V) into LNP/(N=P+1) is not compact.

(2) Suppose that N 41 < p. Prove that the injection of W'=1/77(]0, 1[V) into
CO1=(N+1/r(10,1[N) is not compact.

Hints. For (1), use a function ¢ in D(]0,1[) and define a sequence {¢,} by setting

— (N=pH1)/p

en(z) o(nx).

Show that {¢,} is bounded in W'~1/7?(]0,1["). Next, show that it tends to 0 in
all L9 with ¢ < Np/(N — p + 1) but does not converge for the critical exponent.
For (2), let » € D(]0,1[") satisfy the condition

sup
(z,)€(]0,1[N)2

wlz) —e)| _
sl \ _1

Let {¢n} be a sequence such that

— (N=pH1)/p

en(z) w(nx).

Show that this sequence is bounded in W*~*/7:P(]0, 1[V) and that it tends to 0 in all
C%* with A < 1—(N + 1)/p but has a constant seminorm equal to 1 in %1~ (N+1/p,

Exercise 3.5 (Noncompact Injection into a Trace Space, Continued).
Prove that the injection of W'=/PP(RN) into L'(R") is not compact. Let ¢
be a nonzero function in D(RY). Let p,(x) = @p(x + ney), where e; is a
canonical basis vector of RY.

Prove that ¢, has a constant norm in W'~1/??(RN) while it tends to 0
almost everywhere.
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Exercise 3.6 (Function in WR°(div) and Green’s Formula).

Let 2 be a class C! open set. Prove that if o € L>°(£2) and dive € LN (02),
then there exists an element o - 7 € L such that for every u € W11 (£2),
the following Green’s formula holds:

/0~Vu+/div(o)u:/ o7 u.
9] 2 o1

Prove that the map that sends o to o - 7 is continuous for the topology

associated with the norm
ol = lloflec + [ div(o) | n-

Exercise 3.7 (Traces in W1>°((2)).
Let {2 be a class C* open set. Show that the functions in W1°°(£2) have a
trace on 2 that belongs to W1°°(942).

Conversely, show that every function in W1°°(92) is the trace of a func-
tion in W1 ().

Exercise 3.8 (Functions in D(R) Orthogonal to the Space of Polyno-
mials).

(1) Let p € N and let 0 < k < p. For any compact subset [a, b] of R, prove the
existence of a function ¢ in D(]a, b[) such that for every i € [0, p], we have

/t%p(t)dt = oF.
R
(2) Let p € N. Prove that there exists a function ¢ in D(RY) satisfying

/ p(t)dt =1 and P(t)p(t)dt =0,

RN RN

for every polynomial P with valuation at least 1 on R™ and degree less
than or equal to p.

Hints. For (1), take [a,b] = [—1,1] to illustrate the ideas. Let ¢;, where j € [0, p],
be functions in L?(] — 1,1[) such that det( [, @it’dt) # 0. Show their existence by
taking, for example, the Legendre polynomials on |—1, 1] for ;. Next, use the density
of D(] — 1,1]) in L*(] — 1,1]) to find ¢; in D(] — 1,1[) such that the determinant
det(( [, pit’dt)s ;), with indexes i and j in [0, p], is nonzero. Consider the system

p

Z AZ / (pi(t)tjdt = Qy,
R

i=0
for given «;. It admits a unique solution (Ao, A1,...,Ap). In particular, you can
obtain the desired result by taking "7 \ig; = ¢ and a; = 4.
For (2), take a function ¢ such that [, ¢(t)dt =1 and [ o)t/ dt = 0 for every
j = 1. Verify that p(t1,t2,...,tn) = Hllv ©(t;) has the desired properties.
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Exercise 3.9 (Proof That a Lipschitz Open Set Is Locally Star Con-
vex).
Let 2 be the open set {(z/,zn) | zy > a(z'), ' € O'}, where a is a Lipschitz
function and @’ is a bounded open ball in RV~ or a convex subset. Show
that (2 is star convex with respect to a point.
Hints. You can, and do, assume that the point (0, 0) belongs to 912 (hence a(0)=0).
Let m > ||a|| s (o) + ||Va|| Lo (o) sup 2| o/; then the open set is star convex with
respect to (0,m).
Let A € ]0,1[ and let (z', zn) € £2. You must show that A(0,m) + (1 — \)(z',zn) € 2.
For this, it suffices to prove that a((1 — A)z’) < Am + (1 — A)a(z’). Consider the
function (A) = Am + (1 — Na(z') — a((1 — A)z’). It has value 0 on {\ = 0} and is
increasing because if a is C*, then

o'AN)=m—a(@)+V(e(l-Nz) -z’ >0

on the ball O’ by the hypotheses on m.
This proof also works when a is Lipschitz, because ¢ is an increasing function.
Indeed, if A > ), then using the Lipschitz property of a, we find that

(V) = (V) = (A= N) (m — a(a’) + a((1 — Na') — a((1 — X))
> (A — )\/)(m —a(z') — K||Va||oo).

Exercise 3.10 (Inclusion of z — sin/z in Sobolev Spaces).
Prove that the function = — sin/z belongs to W1?(]0,1[) for every p < 2
and that it belongs to W1=1/P2(]0, 1]) for every p < 4.

Hints. Show that the following is an upper bound for the seminorm

A:/l/l\sinﬁ—sin\/gj\pdxdy:
o Jo

|z —yl?
A< // dx dy // dx dy
Wz +y)r (z +y)p/2

1/z du
< - p/2/ 7\0/ 2 P21 — 1+1/z)” P2+ o,
[ | ey

If p > 2, then the integrand is equivalent to z17P/2 at 0 and if p < 2, then it is
equivalent to

PR+ 1) 1) ~

This integral therefore converges when 1 — p/2 > —1, that is, when p < 4. To see
that it does not converge for p = 4, use

1 1
Vit Vi)~ 8@ty

Exercise 3.11 (Function in W!~/7?($2) That Does Not Belong To
whp(0)).

Let 2 = ]0,1] and let ¢(z) = 2~ /* where k € N*. Note that ¢ does not
belong to any W'?(]0,1[). Prove that ¢ € W'=1/7P(]0,1]) if and only if
p<2k/(k+1).
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Hints. The function ¢ is not bounded and therefore cannot be in any W*?(]0, 1[).
Determine an upper bound for the seminorm |||/} _, /,, , as follows:

1 |x_1/k y~ Lk
H‘Pl|1 1pp — / / z — P —————dxdy
Ry 1/k|p .y
<[ St e

1
< C/O /0 TRy g 4 g7k W
<C 1 xdx 1= du
= o w2p/k+p(-1/k)-1 [/ up/* (1 4 u)p(=17k)

1 +oo
zdx du
< C[/O xzp/k+p<1—1/k)—1} [/0 wP/*(1 + u)p(1-17k) =CJ1J2.

The second integral J» converges at u = 0 if p/k < 1, which implies that ¢ €
L?(]0,1[. Tt also converges at +oo if p > 1. The integral Jy is finite if and only
if 1 —p—p/k > —1, that is, p < 2k/(k+1). We have 2k/(k+ 1) < k, hence
p < 2k/(k+1) is a sufficient condition for ¢ € W'=1/P?(]0,1[). Tt is easy to see
that this condition is also necessary.

Exercise [¥#] 3.12 (Lifting in 2 = R? x R™).
For u € Wk=1/P2(R?) set 7@ = (a:l,xg) and define the lifting

U(Z,y) =Tu(Z,y) = // (2 + 7Z)dz1dzo,

where ¢ € D(R) with ¢(0) =1 (cf. Theorem 3.67). Show that this function is
indeed a lifting.

Hints. As in the theorem mentioned above, use a proof by induction to show that
for |a| < k — 1, we have D*U € W"?(£2). Suppose that

(3.86) Vj, j<k—1andue W/ VPP(R?) = U e W"P).

Show that if u € W*=1/PP(R), then d,u € W*~171/7P(R?). Use the formula of the
lifting and the induction hypothesis (3.86) to deduce that U satisfies

.U € WF1P(R? x )0, 4-00]).
You now only need to show that
(3.87) U € LP(R® x 10, 4-00]).

By treating the terms of ¢’(y) that are simple separately, reduce to

Yy Yy
_ LQ/ / W(T + 7 )dzidzs — / W(T 4y T)dtrdts,
Y= Jo Jo (0,12

For the derivative of order one, show that the following formula holds for 0,U:

ayU = / [tlalu(? + y?) —+ tzazu(? + y?)} dt1dts.
(Jo,1D)?
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Let Il(?, y) = f(]o 12 tlalu(? + y?)dtldtz. Show that
1 (v (v
[1(?,:!}) = E/ / z181u(7 + 7)dZ1dZ2
o Jo
1 (v v y
= E /0 ([zlu(? + 7)} 0 /0 u(? + ?)dzq)dzz
1 (v [v
== / / [u(ml +y,x2 + 22) —u(z1 + 21,22 + 22)] dz1dzo
o Jo
== / / [u(ﬂm +y,x2 + toy) — u(z1 + t1y, 2 + tgy)} dtidts.
o Jo

Deduce that || 11|, which is in R?x]0, +o0[), is bounded from above by the integral of

1 1 _ »
/ [/ / ‘ [U(.’I}1 + Y, T2 + t2y) yu(ljl + t1y7 T2 + to)} ‘dtldt2:| dl‘ld%g
R2

with respect to y over ]0, +00[ . Next, use the variables X, = x1+t1y, Xo = z2+t2y
and Y = x1 + y to prove that

+oo 1 1 _ P
HMIK/// {/ / ’u(Y,Xz) u(Xl,Xz)’dtldtz} AXodX1dY.
RJRJS X, o Jo Y - X,

Finally, use an upper bound for the inner integral and a translation, and set Y =
(X1, X2) to obtain

YX —u(X1, X
1L < /// 2Y 1;((1 LX) vadaxiay
+oo _ p
:// U?+t€1) u(?) dX dt.
R2 0 t

Conclude by applying Lemma 3.27 that the inclusion u € Wlfl/p’p(R2) implies that
the norm || 1 ||} is bounded from above by

w(X +tel) — uw(X) | |u(X) — (V)"
¢

dXdt < c —)_g—?il dX dY < oo.
R4 | ‘P‘F

Apply the same reasoning to the integral

R2

]2(?, y) = / tz@gu(? =+ y?)dtldtg.
(10,1])

For the derivative in y of arbitrary order k, observe that 8§U is the sum of integrals
of the type

/ [tﬁﬂD“u(? -+ y?)] dt1dto
(J0,1[)2

with |a| = kK — 1. Apply the induction hypothesis to the derivative D%u and use
arguments similar to the ones above to complete the proof.
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Exercise 3.13 (Map Sending U to the Normal Derivative of its
Trace).

(1) Consider U € WkP(§2) with regular §2. Show that if f belongs to C*~1(£2)
and D®f is Lipschitz for |a| = k, then the product Uf is still in W*-P(§2)
and we have || fullyr.r0) < Crllullwee(o)-

(2) Let §2 be of class C*. Show the existence of a constant C such that

VI<k—1,YU € Whe (), Ha%%uH < CUllwrr(ay-

Wh—t=1/p.p(942)
Exercise 3.14 (Determining Iterated Gradients and the Normal
Derivative).

The aim of this exercise is to determine iterated gradients and tangential or
normal derivatives on cylinders and spheres in dimension N = 3.

(1) Since the function U is in C?(R?), use the chain rule for differentiation
to determine the partial derivatives of U with the help of the cylindrical
coordinates x = rcosf, y = rsinf and z. Likewise, determine the partial
derivatives of order 2.

(2) Consider the cylinder 2 = {(z,y,2) | 22 +y? < 1, 2 € R}. Let the tangent
vector of 02 at x € 02 be defined by 7 = (—sin#, cosd,0). Determine
the tangential derivative dpu, where u is the trace of U on 9{2. Next,
determine the derivatives 82_t>u and B%u.

(3) Determine the previous results using a different method. Namely, find the
relation between the operators D = z0d, + yd, and 0,. Derive from it
an explicit description of V?u - W using D and D?, and deduce the
previous result.

Likewise, find the relation between the operators Dy = —y0d, + z0, and
9p. Use D and D? to determine the tangential derivative V2u - ¢ - 7
explicitly.

(4) Use a similar method to compute normal derivatives of orders one and
two when (2 is the ball of center O with radius 1, using the spherical
coordinates:

x=rcosfcosp, y=rsinfcosp, z=rsine.
Exercise 3.15 (The Zygmund Space).
Recall the definition of the deformation tensor (cf. Exercise 2.10):
Vi €[LNP eyln) = 24T
Let u€ L>(R?%,R?) satisfy ¢(u) € L>°(R?). Show that x+ uy(z,0)€ W1 (R)
and that wus(x,0) belongs to the Zygmund space
—y)—2
Z = {v € L*(R) sup vz +y) +ol@=y) v(x)‘ < oo}.
(=) y
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Hints. Write Agu = ua(z + y,0) + uz2(x — y,0) — 2uz(x, 0) as
Asu = uz(z +y,0) —wi(z +y,0) + (va(z — y,0) + us(z — y,0)
+’LL1($ + y70) - U1(.T - Y, 0) - 2’1,62(33,0)
= [(uz —uw)(z +y — £, 0[5 + [ (u2 + ur)(z —y + £, 1)[g
+ [ua(z +1),0)]2, + 2[ua(z, D)5

- —/Oyas(u2 —ul)(m-l-y—s,s)ds—/oyat(ug )yttt
+/j;ul,l(x+t,0)dt+2/oyam(x,t)dt

T /oy(a”(“) +en(u) — 2e12(u)) (@ +y — 5, 5)ds
_/()y(622(u)+811(u)+2512(u))(u)($_y+t7t)dt

v y
+ / u1,1(x + t, O)dt + 2/ E929 (u) (%, t)dt
—y 0

By the assumptions, the absolute value of Asu is bounded from above by
lyllle(w)llzee.
Exercise 3.16 (Explicit Converse of the Previous Result).
Let p € Z. Let H(x,y) = (1/y) ffy o(x—t)(y—|t|)dt and let uy (z,y) = -0, H,
ug(z,y) = 0, H.

Prove that e(u) € L>. We have e13(u) = 0; hence

oH 1 [V
G =1 [ @il —o

-y

when y tends to 0, while

w=-a/) [ " ol — t)(y — )+ (1/y) / " ol tydt,

—y —y
which tends to —¢(x) 4+ 2¢(x) when y — 0. Using integration by parts, show
that w11 = (1/y)(¢(z + y) + ¢(z — y) — 2¢(z)) and

2 (Y 9 (Y
U2 = 73/ oz —t)(y — |t|)dt — —2/ oz —t)dt
y v ),
1

+ g(w(af —y) + oz +y))

=22 [ e+ ol Ot + Lol +0) + ol - )
= ;_32 Oy ((z —t) + oz +t) — 2¢(x))tdt

+ é(w(r L)+ olr —y) — 20()),

proving that us o is bounded.
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Fractional Sobolev Spaces

This chapter continues where Chapter 3 left off. We begin by recalling results
concerning the Fourier transform. In the first two sections, we use this trans-
form to study the spaces W*2(R"), where s is an arbitrary real number. The
next sections are devoted to giving different definitions of the spaces WP ((2),
where 0 < s < 1 and 1 < p < 400, with p # 2. These generalize the spaces
W1=1/Pr(£2) of last chapter.

In these new spaces, we establish the analogous density and regularity
results, embedding and compact embedding theorems, and the existence the-
orems for traces when the open set {2 has a certain regularity. After demon-
strating these properties in the case 0 < s < 1, we extend them to the spaces
WP for s € R.

4.1 Tempered Distributions and Fourier Transforms

4.1.1 Rapidly Decreasing Functions and Tempered Distributions

Definition 4.1. A function ¢ is called rapidly decreasing in RY if ¢ €
C>®(RY) and if, when D7 denotes the differentiation operator with respect
to the multi-index j = (j1,j2,-..,Jn), we have:

(%) VieNV VkeN, |z|*Dipe L®RN).
The set of these functions is a vector space that we denote by S(RY).
Remark 4.2. The condition () has the following two equivalent forms:

V(5. k), [al*Dlp € L'RY),

or Y (4, k), lim |z[*Dip(z) = 0.
|z]|—+o0
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Topological Structure and Dual. The space S(R™) has a natural topology
generated by the following countable family of seminorms:
k3 () = [l12]* D7 ¢l oo

We let S'(RY) denote the topological dual of S(RY). By the following propo-
sition, this is a locally convex topological space and a subspace of D'(RY).
Proposition 4.3. The space D(RY) is dense in S(RY).
Proof of Proposition 4.3.

Let ¢ € S(RY) and let v € D(RY) with 0 < ¢ < 1 and ¢ = 1 on the ball

B(0,1). We define the sequence {¢,} by setting ¢, (z) = ¥(xz/n)e(z); then
{©n} converges uniformly to ¢ because

sup |on(z) — ()| < sup |o(z)] — 0
zeRN |z|>n

since ¢ tends to 0 at infinity. For £ € N and j € NV, we have

DY () = e va/mDIo + Y €2 Dry(a/m)pi v,

[pI<4]

It follows that
Hx|ij<pn — |x\ijg0’
. 1 -
< |SF>p HENIZE T ECfHD%HOOIHxI’“DJ Pl oo,
rizn [pI<d]

giving the desired conclusion because the right-hand side tends to 0. O

Thus we identify the elements of S’(RY) with distributions, which we call
tempered distributions. It is easy to see that the derivatives of a tempered dis-
tribution and the product of a tempered distribution and a slowly increasing
function are also tempered distributions.

4.1.2 Fourier Transform

We give the following results without proof.

Theorem 4.4. The Fourier transform F, defined by

Ve RY, Yo SBY), F)©) = [ s
RN
is an automorphism of S(RY). The inverse operator of F, which we denote
by F, is defined by

VEeR, F(p)(€) = Flo)(=E).
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The transpose of this Fourier transform is an automorphism of the dual,
which we also denote by F. We again denote its inverse by F.

Theorem 4.5. The Fourier transform of T € 8, defined by
Voes, (F(T),¢) =(T,F(p))
is a tempered distribution.

The Fourier transform of a function ¢ is often denoted by @. In what
follows, we will denote the transform of a distribution T either by F(T') or
by T.

We can easily see that if f € LP(RY), then the associated distribution [f]
is tempered. In particular, if f € L*(RY), then the function f: F(f), which
belongs to L, coincides with the transform F([f]).

Because of the density of the subspace L? N L' in L? and Plancherel’s
theorem, we can extend the Fourier transform on L! to an isometric automor-
phism of the Hilbert space L?(R™). The transform of f € L?, which we once
more denote by f, can be identified with F(fD)-

In general, we have the following result.

Proposition 4.6. The distributions with bounded support, which we know be-
long to &'(RYN) (cf. Exercise 1.20), are tempered. The Fourier transform of
such a distribution T can be identified with the function defined by

§ — (T(a), exp(—2i7§ - x)).

We thus see that F(dp) = 1 and, using the inverse Fourier transform, that
F(1) = bo. For more details, the reader can consult [22].

4.2 The Sobolev Spaces H*(RY)

4.2.1 Definitions, Density of the Regular Functions
Definition 4.7. Let s be a real number. If s > 0, then we let

HYRY) = {u € L2(RN) | {€ = (1+ [¢2)/2F (u)(&)} € L*®Y)}.
If s < 0, then we let

H*RY) = {ue S'RY) [{€ = (1 +[¢1)*F(u)(€)} € L*(R)}.
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To see that these spaces are well defined, we note that if ¢ € S, then the
function & +— (1 + |£]2)*/2¢(€), which is the product of a slowly increasing
C* function and a function in S, also belongs to S. The definition therefore
allows us to write

(L4 1€17)2F (u), ) = (u, F((1+ [£7)%0)).

It is then easy to verify that (1 + |£|?)%/2F(u) is a tempered distribution. In
particular, it is the product of a slowly increasing C*° function and a tempered
distribution.

Proposition 4.8. The space H*(RN) endowed with the norm defined by

el ey = |1+ 1€12)72F ()]

L2(RN)
is a Banach space.

Proof of Proposition 4.8.

We assume that s > 0. For a Cauchy sequence {u,}, the sequence with
general term (1+[¢|)%/2F (u,,) converges to U in L?(R™). Since the function f
defined by f(¢) = (1 4 |£|?)~*/? is bounded on RY, it follows that fU € L?.
Setting u = F~1(fU), we obtain an element of H*(R"). Hence, using the
continuity of the Fourier transform in L2, we can conclude that ||u,, —u||gs —
0.

The same proof holds if s < 0, with the exception that this time, the func-
tion f : € — (14€]2)~%/? is not bounded. However, as f is a slowly increasing
C* function, the product of U considered as a tempered distribution and f
is also a tempered distribution. We conclude in a similar manner using the
continuity of F in &'. O

The following result concerns the case where s is an integer.

Proposition 4.9. If s = m € N, then the space H*(RY) coincides with the
classical Sobolev space W™2(RY).

Proof of Proposition 4.9. Indeed, if u € H™(RY), then the function u as well
as all of its derivatives up to order m belong to L2. Using the Fourier trans-
form, we find that Fu € L*(RY) and —2iré*Fu € L*(RY), where « is a
multi-index with |o| < m and £* = & --- £ . In particular, this implies
that (14 [£]2)™/2F(u) € L*(RN).

Conversely, if F(u) satisfies (1 + |£[2)™/2F(u) € L?, then we also have
(2im€)T F(u) € L? for every j satisfying |j| < m. Consequently, the derivatives
of u up to order m are in L2.
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Moreover, by expanding the mth power of 1 + Ziv |€:]?, we can show the

equivalence of the norms ||-||yym.2 and ||| gm, where the latter is as defined
above. O

Proposition 4.10. For s > 0, the space H=*(RY™) coincides with the dual
Hs(RNY .
Proof of Proposition 4.10. Let v € H~*(R"). We define a linear functional L,
on H® by setting
Vue BRY), L= [ S©ue
R

We show its continuity as follows:

L)l = | [ 0+ 1ER) 2001+ ) (e e
1+ 1€R) /20 1L+ €5)*/2a(e)

<
< Cllull = mny-

It is therefore clear that the map that sends v to L, is an embedding; conse-
quently,
HS(RN) — H*(RYY.

Conversely, let T' € (H*®)'. Proposition 4.11 below states that the embed-
ding of S(RY) into H*(RY) is dense, whence H*(RN)" — S'(RY). Tt follows
that T € §'.

Note that if g € L?, then the Fourier transform of (1 4 [£|?)~%/2g belongs
to H*(R™) and has norm

1 (1 +16)7*/29) = = llgll

Let g € S(RY). By the definition of the multiplication of F(T) by the slowly
increasing function (1 + |£]?)~%/2, we have

(1 + 16 2F (@), 9)| = |(F(T), 1+ 167)7729))]

= (.7 (0 +1eP”)~29))|
T ey | (F L+ 122 g) | a4
= 1Tl ey N9 lo-

Consequently, (1+ |£|2)7*/2F(T) € L?, because it defines a continuous linear
functional on L?. We conclude that T € H~*. O

Proposition 4.11. The space S(RY) is dense in H*(RY).
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Proof of Proposition 4.11. The density of D(RY) in L?(R”) implies the exis-
tence of a sequence {1, } € D(RY) with
9o — (14 [€[%)*/2F (v)]|]2 —> 0.

The function @, = (1+&|?)~%/24,, therefore belongs to D(RY) and converges
to F(v) in L2. By the continuity of F~1, we deduce that F~1(¢,,) is in S(RY)
and converges to v in H*(RY). O

4.2.2 The Space H*(RY) Seen as a Trace Space

At this point, we are interested in a characterization of the functions in H*®
for s > 0. In the following theorem, we establish that they are the restrictions
of functions in H**/2(RV) to {xx = 0}.

Theorem 4.12. Let N > 2 and let s be a real number, integer or not, with
s > 1/2; then the functions in H*(RY) have a trace on {xx = 0} that belongs
to Hs—1/2(RN-1),

Conversely, every function in H*~Y/2(RN=1 x {0}) can be extended in a
linear and continuous manner to a function in H*(RY).

Proof of Theorem 4.12.

We begin with a lemma that expresses the Fourier transform of the re-
striction of the function u to {z = 0} in terms of the Fourier transform of u
with respect to the first N — 1 variables.

Lemma 4.13. Let v € S(RY) and let u € S(RN~Y). If i denotes the Fourier
transform of u with respect to the first N — 1 wvariables, then we have the
equivalence

v(2',0) = u(z') <= u(¢) :/R]-'(v)(fl,fN)di.

Proof of Lemma 4.13.

For fixed 2’ in RN =1 let ¢ be defined by ¢(zn) = v(2’, zx). Using §o(p) =
©(0) = (F(1),¢) = (1, F(¢)), we obtain ¢(0) = [, $(£x)dEn, which can also
be written as

(%) v(x’,())://u(x’,g;N)e—%WNdedgN.
R JR

Taking the Fourier transform in 2’ on both sides of the relation (x), we obtain
the result, that is,

ﬂ(gl):/ //U(LE’,:L’N)€72iﬂ(£/'wUra:NgN)dmNdl'/di
S = [ FO)€. exae.
R

The converse is evident. This concludes the proof of Lemma 4.13. g
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Let us return to the proof of Theorem 4.12. We suppose that v € H*(RY)
and set u(2’) = v(z’,0). We then show that there exists a constant C' > 0
such that

(@19 fa(e)
1/2
<C </R(]- + |£l‘2 + |§N2)S(]:(v))2(5/7§N)d§N> (1 + |£/|2)1/478/2'

Indeed, using the change of variables {x — En/+4/1 + [€|2, we have

—s/2

ae’) = / (L + [EP)2FW)E) (1 + |2 + en]?) ™ 2 den

< ([a+ierriFore.ads) " ([a+ier+ e ay)

1/4—s/2

- C(/]R(l + |§|2)6|]:(v)|2(§/7gN)dgN)l/Q(l + |€/‘2)

It follows that & +— (1 + |€/|2)%/2=1/4%(¢’) belongs to L?(RN~1) and that its
norm in this space is lesser than or equal to ||(1+ |£|2)5/2]-"(v)||2.

Let us now suppose that u € H5~1/2(RVN~1). We extend this function as
follows. Given ¢ € D(R) with integral equal to 1, we write

f(v)(§/7§N) :f(u)(fl)W(\/lij_vK/Q) \/1_i|§/2'

The function F(v) then has support in the cylinder {¢ | [{n] < C/1+ [€]2},
and v(z’,0) = u(a’) because

/R Fo)(€,n)dén = Flu)(€) /R o JlivW)d( ﬂgfw)
= F(u)(&).

It remains to show that v € H*®. For this, we write

(4.15) (L4 [€]*)*(F(v)*(€,6n)

_ 712\s—1/2 a2 (N2 €N (1+‘§|2)S 1
ey () (eryr) e

The relation

(L+[EP)° lEvl 2\’
e~ 0+ () )
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allows us to integrate with respect to & after applying the change of variables
t =&n/(1+1€2)1/2. Integrating both sides of the relation (4.15) with respect
to & then gives

[, PR+ 6Py
12Y5=1/2) () 12 (€
< [, awierrarare( [

S2(6)(1 + t2)8dt)dg’
R

< CHU||?_]5—1/2(RN—1)~

This concludes the proof of the surjectivity of the trace map from H*(RY)
onto H*~1/2(RN-1), 0

4.2.3 Generalization for Higher Order Traces

The following proposition generalizes the trace theorem of Chapter 3.

Proposition 4.16. Let m € N, let s € Jm+1/2,m+141/2], and let y be the
map sending u € H*(RN) to the (m + 1)-tuple consisting of the traces of the
successive derivatives u(x’,0), Onu(z’,0),...,00u(z’,0). Then y(u) belongs
to the product H*~/2(RN-1) x Hs~1-1/2(RN-1) x ... x Hs—™~V/2(RN-1)
and the map v is linear, continuous, and surjective onto the product space.

Proof of Proposition 4.16.
Let u € H* F=V/2(RN-1) with k fixed in [0,m]. Let ¢ be a function in
D(R) such that

/(int)kcp(t)dt =1 and Vje[0,m], j#k= /(int)jcp(t)dt =0
R R

(cf. Exercise 3.8 of Chapter 3). Next, let v be defined in R™ by its Fourier
transform

En oy —(k+1)/2
Fv = F(v) (¢, = F(u)(€ 1+|€ )
(0)(&) = F(0)(€', &) = Flu)(€ )w(m)( €'1%)
Let v (z') = &4 v(z’,0). By the characterization given in Lemma 4.13, we
have

FW) () = / F@0)(€ Ex)dey.
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Therefore, recalling that F (8{\,1)) = (2iné€n)? F(v) and applying a homothety
to the variable £, we obtain the following results:

e (2imén ) , EN
) = [ (3 opems) Fo€e( e e

=0 Vj#k

; k
(B)\(eh) — (2imén) / EN
Fu)e) = [ (et 0o e e
= F(u)(&).
The traces of the successive derivatives of v are therefore all zero, with the
exception of that of order k, which equals the given function w in H®~*~1/2,
It remains to show that v € H*(R"). For this, we integrate the equality

(L + 1€ F @) (©)

_ 112Y5R1/2) 20 N2y )2 N (1+1¢%)° 1
= @+ P PP () (err Ter

with respect to £, using the change of variables ¢t = £x/+/1+|£/|? in the
integral in £y and noting that [, [¢|?(t)(1 + t*)*dt < oco. We thus obtain

11+ 1€2)*2F (v)ll2 < Cllullgro-s-s/2,

proving the desired inclusion. O

4.2.4 Other Definitions of the Spaces H*

The following proposition will allow us to show that for R, the spaces H*
coincide with the spaces W*2 whose definition is given in the next section.

Proposition 4.17. Let s € |0, 1[; then u € HS(RN) if and only if

2
e L*(RY) d / / |d dy < oc.
u an . |x—y|N+25 xray 0

Proof of Proposition 4.17.
Let u € H*(RY). We will see further on (cf. Lemma 4.33) that the follow-
ing two properties are equivalent:

|2
dr dy < oo
// |x— |N+29 y

|u(x) — u(x + he;)|?
and //]RN e dx dh < oo
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To illustrate the ideas, let us take i = 1. Using |1 — e'®|> = 4sin®(a/2), we
have

1 237 1 2irhé, 2152
/Rh25+1 ||Th51U*UH2dh—/RW/RN e — 1]7|ul|“(&)dédh
_ 1
:/ |u|2(§)/w4sm2(wh§1)dhd§
RN
s 4sin? u
- [ meab™ar @ [ S

< Cllully. < o0

because the integral [p 4sin®u/u?*du converges for s € ]0, 1.
Conversely, these computations show that

ThU — U 2 ~ 2
WGL = |¢|°u € L”. O

4.2.5 Embedding Results using the Fourier Transform F

In Section 3.6.1, we gave the extension of the Sobolev embedding theorems of
Chapters 2 for the spaces W™, where m is an integer, to the spaces W1=1/P:»,
In the case of H?, using the Fourier transform allows us to show some of these
results in a somewhat elementary manner. We will state those results here.
For more complete results, we refer to the more general embedding theorems
for the spaces W*?P at the end of this chapter. In particular, the following
proposition concerns neither the critical embedding for ¢ = 2N /(N — 2s), nor
the embeddings into Holder function spaces.

Proposition 4.18. Let s > 0. We have the following embeddings:

(1) If 1/2 < s < N/2, then H*(RN) < LY(RY) for every ¢ < 2N /(N — 2s).
(2) If s = N/2, then H*(RYN) < LY(RYN) for every q < .
(3) If s > N/2, then H*(RY) — Co(RY).

Proof of Proposition 4.18.

In the case s < N/2, u is the inverse Fourier transform of F(u), which can
be written as F(u) = (1+|€]2)~*/2(1+¢]?)*/2F (u). The function (1+4|&|?)~5/2
belongs to L for every ¢ > N/s while (1+ |¢]?)%/2F (u) belongs to L?, so that
their product F(u) belongs to L™ with 1/r =1/2+4 1/q.

We can therefore apply Theorem 4.19 below (whose proof can be found in
the appendix), which states that the Fourier transform of a function in L" with
r € [1,2] belongs to L", where r is the conjugate of 7, and therefore belongs
to L* for k € [2,2N/(N — 2s)[ (cf. the remarks made before the proof of
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Theorem 4.59). Moreover, this same theorem applied to the conjugate Fourier
transform gives the existence of a constant C' such that ||u||px < C||lu| g=.

In the case s = N/2, we can use that if &' < s, then H® admits an embed-
ding into H*'. To see this, it suffices to use the definition of the norms (cf. 4.8).
We will generalize this further on, in Corollary 4.34. Using the previous result
with s’ < N/2, we obtain the desired result.

In the case s > N/2, the transform F(u) can still be written as a product
of the function g in L? defined by g(¢) = (1 + |¢|>)7%/? and the function
(1 4 |€]?)*/2F (u), which is also in L. The product is therefore in L', and,
consequently, u is the Fourier transform of a function in L'. It is therefore
continuous and tends to 0 at infinity. Moreover, we have

lg (1+ [€[%)*2F () 1

[uflze < |
lgllzz (1 + €172 F (u)l| = = llgllz= lulla-,

NN

concluding the proof in this last case. a
The theorem used above, which is proved in the appendix, is the following.

Theorem 4.19. Let T be a linear operator defined on all the LP(RY) and
continuous from LPi(RN) to L% (RN) fori = 0,1, where p; and q; are given
elements of [1,00]. We let k; denote the operator norm of T, that is,

ki =|{T|lp;q; = sup |<Tf7 9|,

Pi—
=1
gl

where ¢, denotes the conjugate of ¢;.
Ift €10,1] with 1/p = t/po + (1 —t)/p1, then T is continuous from LP
to LT with 1/q = t/qo+ (1 —t)/q1. Moreover, we have the continuity inequality

I1T|p.q < koki™".

4.3 The Spaces W*P(f2) for 0 < s < 1

We begin by recalling results concerning the Lebesgue spaces of functions with
values in a Banach space B.

4.3.1 The Spaces LP(]0, +ool[, B)

For a simple function ¢ — Y 7 x4, (t)a;, where the A; are two-by-two disjoint
measurable subspaces of I = ]0, +o00[ and the a; are elements of B, the integral
over I is defined to be Y7 |4;|a;.
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Let f be function from I to B. We call it strongly measurable if there exists
a sequence {f,} of simple functions such that for almost all ¢ in ]0, +oo[, we
have

lim [|f(t) = fu(®)llB = 0.

n—+oo

If, moreover, one of these sequences satisfies lim, oo fO—HX’H fit)y —
fn@®)||dt = 0, then we call f integrable. The integral of f is then de-
fined to be the limit of the integrals of the simple functions f,,. We will show
that this limit is independent of the choice of the approximating sequence
of f.

We will admit, from now on, that a strongly measurable function f is
integrable if and only if the function ¢ — ||f(¢)||z is summable on ]0,+oo].
Moreover, if this function has a summable pth power, then we will write
f € LP(]0,4o0[, B).

Definition of the Trace Spaces T. We let ¥ f denote the function ¢ — ¥ f(t)
and let f/ denote the derivative of f in the sense of distributions. In particular,
if f has values in the Banach space B and is locally integrable in the sense
defined above, then for every function ¢ in D(]0, +00[), we have

+oo “+oo
/ F(t)et)ydt = - / £ (t)dt,
0 0

where the integrals of functions with values in the Banach space B are defined
as before.

Definition 4.20. Given real numbers v and p with 1 < p < +00 and an open
subset {2 of RY | we let T'(p, v, §2) denote the space of functions f from ]0, +o0]
to {2 such that

t*f € LP(0, 400 W'P(2)) and ¢f € LP(J0, +ocl, LP(12)),
where the derivative of f is taken in the sense of distributions.

This space is a Banach space when endowed with the norm
+00 +oo
v v gl
£ =max{ |1 lwnarde, [ 187 it}
0 0

The following is a first regularity property of this space.
Proposition 4.21. Let f € T(p,v, (2), then there exists an a € LP({2) such
that .

for almost all t € ]0,+00[, f(t)=a —|—/ f(r)dr.
1
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Proof of Proposition 4.21.

Since the factor ¢ is bounded on every compact subset of I = ]0, +o0[, we
have the inclusions f € L (I, W'?(§2)) and f’ € L (I, L?(2)). Therefore,
almost everywhere on I we can define the function g in LY (I,LP(£2)) by
setting g(t fl

Let b be an element of the dual L¥'(£2) of LP(£2). To prove that g is almost
everywhere a constant, we consider the function ¢t — g,(t) = (g(t), b)p, where
(,)p is the duality pairing of LP with L¥'. Applying Fubini’s and Hoélder’s

loc

formulas, we see that the function g, belongs to LT (I). Consequently, the
pairing of the derivative of g, in the sense of distributions and a scalar function
¢ € D(I), which we denote by A = ((g»)’, ¢), satisfies

“+o0
A= / () (t)dt

- _/Supw/gb(x)g(t)( dxgo’(t)dt:—</+ocg() "(t)dt, b>
_</O+OO f(t)@’(t)dt—/ / f(r)drdt, b
( /0 o f’(t)gp(t)dt7b>p+ /Q b(x) / / /() (w)drdt ] da.

Note that applying Fubini’s formula can be justified by approximating g(t) on
the compact set supp ¢ by simple functions, for which the validity of Fubini’s
formula is obvious.

The same method allows us to replace the second term in the next to last

[ [ by

By the above, the function 7 — (f’(7), b),, is locally summable. We can there-
fore differentiate its integral over [0, ¢], in particular in the sense of distribu-

equality by

tions. Consequently, we can write
oo !/ K !/ oo !
[ @i == [ e,

- /O o f’(t)<p(t)dt,b>p.

We deduce from this that (g,)" = 0. Let ¢ be an element of the domain of g;
then we deduce from the above that for almost all ¢ and for all b € Lp/,
we have (g(t),b), = (g(t'),b),. We conclude that the function g(t) is a fixed
element a of LP({2), proving the relation stated above. O
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Corollary 4.22. Under the previous assumptions, the function f from
10, +00] to LP(£2) is continuous.

This results from the continuity of the integral of a locally summable function
with respect to the upper integration limit.

4.3.2 The Spaces W*P(f2) for 0 < s <1

Definition 4.23. Let s € ]0,1[ and let p € ]1,00[. We define the fractional
Sobolev space W*P({2) as follows:

|u(z) —u(y)”
,p p
W*P(02) = ueL ‘/ |m—y|SP+N da:dy<oo}.
This definition of the spaces WP generalizes that of the spaces in Chap-
ter 3.

Proposition 4.24. Let s € |0,1[. The space W*P(§2) endowed with the norm

1/p u(z) —u(y)”
Ulsp = [ |Ju]|24]]|w]] p) where [||u]|’ p:/ /I dad
[[ulls p (II (154 lells ] : [l ) o) o=y Y,
18 a Banach space.

Proof of Proposition 4.24.

Let {u,} be a Cauchy sequence for the norm ||ul|s,. In particular, {u,}
is a Cauchy sequence in LP. It converges to a function u € LP. Moreover, the
sequence {v,} of functions

_ un(z) —un(y)
Un(T,y) = W

is a Cauchy sequence in LP. It therefore also converges to an element of LP.
Let us extract a subsequence {u,(,)} of {u,} that converges almost every-
where to u. We note that v,(,)(z,y) converges, for almost every pair (z,y),
to v(z,y) = (u(z) — u(y))|z —y|~*~N/P. Applying Fatou’s lemma, we obtain

— p _ p
PR P g O R
Q |z — yl*P n—ooJ0Jo |z — y|*P

Hence u € W#P({2). Moreover, we find that u, — u in W*P({2) by taking
the limit for m — oo in [Jv, — V| Lr(2x2)- O

Example 4.25. Let us study the inclusion of the function = + In|z| in the
space W*P(]0,1[) when sp < 1, and the inclusion of x — |z|*In|z| in this
same space when s — a < 1/p. From this, we easily deduce the conditions for
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the inclusion in WJP(RY) of these functions considered as radial functions
on RV,
Let us first evaluate the seminorm I = || In |||/} , when sp < 1:

1,1 1/y
_ |In|z| —In[y|[? Yoo IIHUI”
I—/O / o — g —————dxdy = — Spﬂdudy

1 1 l/y
_ [Inul? / |1nu|p
< P ——d ———du)dy =1 + L.
/0 Y </0 (1 —u)sptd et 1 (1 —wu)sptl u) y=htbh

In the first integral between the parentheses, the integrand is equivalent to
|InulP at u =0 and to (1 —u)P~*P~1 at u = 1. The integral in u is therefore
convergent, and the integral in y is convergent when sp < 1. Under this same
condition, we deduce the existence of the first term I;. By Fubini’s formula,
I> can be written as

Yy |lnu|p oo | InulP 1/u
—sp — —sp
[ [ = [ G ()

Studying it therefore reduces to studying

oo |1nu‘p sp—1
. 4(1 )T u du.

From the equivalence of the integrand in the latter to | Inu|P|u| =2 in the neigh-
borhood of 400 and to (1 — u)P1=%)=1 at u = 1, we deduce the convergence
of I, giving the desired conclusion.

For  — x®In|x|, we evaluate the seminorm in the same manner as in
Chapter 3 (cf. Example 3.8). It therefore suffices to prove the finiteness of the

two integrals
|Inz — lny|P
1P
J1= / / |$—y\éi”+1 ————dzdy

and / / |lny|p |Sp+|1 dz dy.

Following the computations we made for s = 1 — 1/p (Example 3.8), we
obtain the finiteness of J; provided that pa—sp > —1 and pa+2 > 1, that is,
under the conditions stated at the beginning of this example. Finally, setting
~v = (a — s)p, the second integral J» becomes

! o (Y — e
JQ:/O [ Iny[Ply|* “’/0 [ et G
1

1 « 1 1/y «
|1 u |p |1 u ‘p
— P,y Py
_/O | Iny|Py T dudy + ; [Iny[Py T du dy.
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The first term is the product of an integral in y that converges because
p(a—s) > —1 and an integral in u that converges under the same condition
because the function is equivalent to K (1 — u)P=%)=1 at u = 1. Applying
Fubini’s formula, we can reduce the second term to the integral

+ee |1 - ua‘p L/u a—s
J5 :/1 m{/{) [ Iny [Py )de]du.

When y < 1, we can bound | Iny[Py(*~*)? from above by y~*T(@=%)? for every
e > 0. It follows that we can find, for the integrand of J;, a bounding function
equivalent to u” at the neighborhood of +o0o, where r = —2 + €. This shows
the finiteness of J, whence the desired conclusion.

When the integration domain is K x K with K a compact subset of RY,
the only additional difficulty corresponds to the case where 0 € K. Using
polar coordinates in a neighborhood of 0, we reduce to the previous integrals
with ap replaced by ap + N — 1. We easily deduce from this the conditions
for the inclusion of the function we are considering in the space W7 (RY).

4.3.3 First Properties of the Space W*P(12)

Proposition 4.26. The space W*P(£2) is of local type, that is, for every u in
WP (£2) and for every ¢ € D(£2), the product pu belongs to WP (§2).

Proof of Proposition 4.26.
Let u € W#P(£2) and let ¢ € D(£2). It is clear that up € LP. We will show

that | |p
pu)( eu)(y)
/ / \:c— |SP+N dr dy < oo.

In order to do this, we write the difference in the numerator as a sum of
two terms. The first is p(x)(u(x) —u(y)), which will give a convergent integral
because ¢ is bounded. The second gives the integral

P L e

This can be bounded from above by using the mean value theorem and inte-

grating with respect to x:
N L AR e
Supp ¢ SUpp ¢
< CpP I ulp,

where p is an upper bound for the diameter of the support of . O
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Let us consider the case 2 = RV,
Proposition 4.27. The space D(RY) is dense in WP (RY).

Proof of Proposition 4.27. We traditionally use a truncation and a regular-
ization. We will give the proof in the case N = 1. The general case easily
follows from this one.

Let us show that the functions with compact support in W*? are dense
in W*P,

Let u € W*P(R) and let ¢ € D(R) have value 1 on the open ball of radius 1
with center 0, value 0 for |z| > 2, and satisfy 0 < ¢ < 1 elsewhere. Let u,, be
defined to be p(z/n)u(x). It is clear that w,, has compact support and values
in W#*P. Moreover, it is a classical result that u,, converges to u in LP.

It remains to show that the sequence {v,}, where

0a(,9) = (= 0)(w) = (tn —w)(v)) 2 — |7

tends to 0 in LP(R?). To do this, we will show that the integrals

f=[Cao( [ toapads) g [T an( [T )

and those that we deduce from them by exchanging the variables x and y tend
to 0. Indeed, (u, —u)(z) — (u, —u)(y) vanishes when = and y are in [—n, n].

For the integral I,,, we have
- )P — -
In - / | ‘1 y/n) |:/0 (y_x)Serl:I dy

< [Tl - et

n)sp
1—p(u)|”
< Pq
nsp/n [u(y)] WP 1)

dy.

The function (1 — ¢(u))(w — 1)~ is in fact bounded for v > 1. When u > 2,
this results from the upper bound (u—1)"* < 1, and when u € [1, 2], it follows
from the inequality |(1 —pu)(u— 1)_5| < (u—1)""*]|¢'[| oo This inequality
can be deduced by applying the mean value theorem to ¢, because s € |0, 1].
We therefore obtain I,, — 0.

Let w,, denote the function defined by

wn(2,y) = (un(z) = un())le 7.

We will show that K, = [ [ |wy,(z,y)[Pdz dy — 0, which leads to J,, — 0
because, by hypothesis, [* [* |v(xz,y)[Pdz dy — 0. We first note that by the
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choice of ¢, we have

2n 2n |’LL 2n ‘u ( )l
[unlz) = un W) ; ) T Gy d
/ /' Ix—MW“ y*én/ Ix—mwﬂ Y

=K+ K®,

Integrating with respect to x and then using the properties of ¢, we find that
(2) ot
the term K, satisfies

2n 2n P
@) |un(y / e(y/n) — ¢(2)u(y)|
K An / |I* |sp+1dxdy c ‘277,7 |Sp dy
p

9) _ C’ 2n
<[ s [PEED sy < O [ ugray
e yel12] n

(2-y)®
Since u € LP, we have Kﬁf) — 0.
Moreover, using the triangular inequality, the mean value inequality for ¢,
the assumption that v € W#%P and the maximum of the function =z —
(2n — z)P1=%) 4 (z — n)P=%) on [n,2n], we can write

2n 2n P
k< [ [ lelein) el
xr —

ylsrrt
p [ [ st
|z —y|H!
ot ([ [ e o ay
o ),
2n 2n p
o] )
C/M Mli;m_”)lgl<ﬂwx+mn

2n np(l 5) C 2n
< C/ |u(z)|Pdr < / |u(z)|Pdz + o(1) — 0,
where the last line follows from the inclusion of u in LP.

Using a regularization, we now approximate the functions v with compact
support by functions in D. Let p be a function in D(R), let pe(t) = Lp(z/e),
and for a function u with compact support in R, let u. = pe * u.

The convergence of u. in LP is well known. We will prove that

u(z) — u(y)
|z —y|=T1/P

||’LL || pé‘*u( )_pf*u(y)
ells,p = | y‘s+1/p

Lr(R2) h Lr(R2) .
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Indeed, we have

P dxdy
el ) / ‘/ e —et) =y — etar]| s

_ — p
< [ [ o=
R2 |z — y|sP+t
—ct) —u(y —et)|P P
< [oty [ M=ty =S g yar < [, )"
R R2 |z — y|sPTt P

Moreover, setting v(zx,y) = (u(z) — u(y))|x — y| >~ /P, the convergence

|pe x u(w) — pe * u(y)|
|z — y|s+1/p

— v(z,y)

for almost every pair (z,y) is a classical result. By Fatou’s lemma, it follows
that

[ulls,, < lim [lpe x ulls -
e—0
In particular, the sequence defined by

ve = (ue(@) = ue(y)) e —y| 7>/
satisfies |[vellp = [[v]]p-

We have thus obtained the almost everywhere convergence and the conver-
gence of the norms. Now, the space L? is uniformly convex because p > 1 and
in such a space, these two convergences imply that ||v. —v||, — 0 (cf. Exercise
4.5). From this, we deduce the convergence of ||us —ul|s,, to 0, completing the
proof. O

At the end of this section, we will see that if {2 is an open set of class C!,
then the space C'(£2) is dense in W*P(£2).

4.3.4 Comparison of the Spaces W and T for 2 = RN

We will now show that W#?({2) equals the space of the traces of the elements
of T(p,1—1/p—s,2) at the point ¢ = 0. We have the following partial result.

Proposition 4.28. Let s € 10,1[ and let w € T(p,1 — 1/p — 5,92). Let {\,}
be an arbitrary sequence of real numbers tending to 0, and let w, = u(\,).
The sequence {u,} then has a limit w(0) in LP(§2) and the resulting trace map
u = u(0) from T to LP(§2) is continuous.

Proof of Proposition 4.28.
Let 0 <s<landsetv=1—1/p—s. Let u € T(p,v, 2). To illustrate the
ideas, we take A, = 1/n. Let {u,} be the sequence of functions on {2 defined
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by u, = u(1/n). By Proposition 4.21 and Hoélder’s inequality, when n > m,

1/m 1/m
fan =iy = | [ wolae], = [[[ 7 w@l@] e
" L) 1/n Lr(£2) -J1/n
1/m p
- / [ / t—VtV|u'(t)|(x)dt} dz
-J1/n
1/m , /p’ 1/m
(4.29) g/ [/ P dtr ’ [/ [t”|u’(t)|(x)}pdt}dm
N J1/n 1/n
1/m / 1/m
< [/ tﬂ’p/dt]p/p {/
1/n 1/n

g C{(%)lfvp' B (%)kup’r’/f/ Ht”u’”i;a(]o,-s-oo[,ﬂ’(m)’

we have

p

|’ (2)]

Lp(mdt]

where the last inequality uses the assumption that ¢“u’ belongs to
L?(]0, 4+o0[, LP(12)).

Since v + 1/p < 1, we have vp’ = vp/(p — 1) < 1. It follows that the first
factor tends to 0 when m and n tend to +o00, and, consequently, that {u,}
is a Cauchy sequence in the complete space LP({2). From inequality (4.29),
which still holds with the same proof, we can deduce that

(4.30)  lu(ts) = ult2)ll7, 0

<l — @ [ I, s iy
Using this inequality, we see that for all sequences {\,,} that tend to 0 from
above, the limits of the sequences {u(\,)} exist and coincide. This completes
the proof of the existence of the limit.

Let u(0) denote the limit of these sequences in LP({2). By letting ¢; tend
to 0 and using the triangle inequality, we deduce the following from (4.30):

vt >0, [u(0)}, )
1

1—vp

< Ol gy + et N 0 6

Integrating this inequality over [0, 1] and transforming fol llu(t)]| Lo (2ydt by
Holder’s inequality, as we did with the integral of ||u/(¢)| at the beginning of
(4.29), we obtain the inequality

[u(0)][r(2) < Cllullz-

The trace map u — (0) is therefore continuous. O
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From now on, we let 7o(7") denote the subspace of LP({2) consisting of
the u(0) for u in T. Let us now show the relation between W*?(RY) and

Yo (T(p7 1- 1/p - SaRN))'
Proposition 4.31.
% (T(p,1=1/p—5,RY)) = WP(RY).

Outline of the Proof. We first consider the case N =1, which we show using
two converse propositions (4.32 and 4.37). For the general case, we will apply
Lemma 4.33 in order to use an induction on the dimension N.

Proposition 4.32. Let u € W*P(R) and let v be defined on |0, +oo[ x R by

t o+t
v(t,x) = @/0 u(z + s)ds = @/m u(s)ds,

t

where ¢ € D(R) and ¢(0) = 1; then the function t — wv(t,-) belongs to
T(p,1—1/p—s,R). More precisely, if vi and ve denote the functions

0
t—s t1TVP () and b —s t1TY/PT Sa:(t ),

respectively, then we have
v1 € LP(]0, 400, WP(]0, +00[ x R)) and vs € LP(]0, +oc], LP(]0, +00[ x R)).

Proof of Proposition 4.32.
We begin by verifying that if v = 1—1/p—s, then v, = t"v € LP(]0, +-00[ X

R). Indeed,
“+ o0
o2 = / / P |o(t)]?

</ fmxwﬁ//ﬁL|mxw<m
0

We then show that t¥0,v € LP(]0, +o00[ X R). Indeed,

/ u(z + st)ds‘pdt dx

8,0 = @(t)t~1/Ps (u(z +t) — u(z)),

whence, by taking the pth power and integrating,

|u(z + ) — u()[?
/R/]o+ [|<P(t)|10 M ds < ||p|2,|[ull?y . < oo.
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Finally, we verify that t"0,v € LP(]0, +oo[ x R):
1 t 1
t" O = gp(t)til/pfsg / (w(x +t) —u(z + 8))ds + ' (t)t” / u(x + st)ds
0 0
1
=t"f(t,x) + ¢ ()t" / u(z + st)ds.
0

It is clear that t — ¢/ (¢)t” fo u(x + st)ds belongs to LP and, moreover, has
a norm in L? bounded from above by Hu||p, up to a constant.
Using Holder’s inequality and a change of variables, we have

t tz)|P
// 1t £ (t, 2)|Pda dt < ||g||Z / // we ) —ulz )1,
R+ R+ tspHl

Next, the change of variables (z,t,z) — (x 4+ t,z + tz, 2), whose Jacobian is

|1 — z|, allows us to deduce an upper bound for the last integral:

[u(X) = u(D) o
// ‘X 1 — 212 dX 4T < [,

giving the desired result. a

We begin by studying the case where N > 2 and establishing the following
equivalence result, which is the analogue of Lemma 3.27.

Lemma 4.33. The following two properties are equivalent:

(i) u e Wor(RK),
. , lu(x +te;) — u(z)[?
(ii) Vie[l, K], . pr) dx dt < oo

and there exists a universal constant ¢ such that

|u(@ + te;) — u(@)|? / u(z) — u(y)|”
drdt < ——————dzdy.
foo e e e [ S sy

The following result concerning the existence of embeddings, which will

be useful later on, easily follows.
Corollary 4.34. The spaces W*P(RN) satisfy the following embedding prop-

erties:

(1) If0 < s < s <1, then WsP(RN) — Ws"»(RN).
(ii) If s € 10,1, then WhP(RN) < WP (RN).
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Proof of Lemma 4.33.
Let us show that (ii) implies (i). Let u € LP(RX) satisfy

te; p
Viell / [u(z + tei) — u(z)] dx dt < oo.
REK tép-‘rl
For x and y in |0, 1[X, we use the decomposition of [u]¥ = —u(x) + u(y)

introduced in the proof of Lemma 3.27 and the functions §; derived from it:

i=K-—1

[u]y = Zu(m - ijej + Zyjej) — u(x —Z zje; —1—2 yjej)
=1 J<i J<i j<i+l j<it+1
0i(z,y) = u(m - ijej + Zyjej> — u(m —Z zje; +Z yjej).
j<i j<i j<itl j<itl

We can thus write the seminorm W*?(]0,1[¥) as a sum of integrals I;, where

6 p 1/p
1_(// I
RFJRK |‘T] ]” :

To bound these integrals from above, we note, as in the proof of Lemma 3.27
of Chapter 3, that there exists a constant C such that

1
|sp+K H dyj dek o — Ay |sp+1'

2+ k<i |xl+1 Yit1

(4.35)

RE— 12 |x1*y

In each integral I;, we can see the numerator as depending only on x; and y;.
Indeed, taking, for example, i = K — 1 and integrating with respect to
11 J<K—1 dy;, the previous inequality leads to

|(u(az1,...,:17K) fu(xl,...,xK_l,yK)V) _
(436) w/]RK ~/]RK 27 (|x2 B yl|)sp+K Hdm] del

w(x1,. .., TKk-1,2K) —u(T1,...,T ,
SC//’((I K-1,TK) (1 KlyK de]dyx,
RK

_ +1
|2 — Y|P <K

giving the result by using (ii).

Let us show that (i) implies (ii). To illustrate the ideas, suppose that i = K.
Reasoning by induction, we see that the result follows from the following
implication'

— ! p
RE JRK-1 |t‘ + [ —y'|)8p+K
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then

|U$ Tr_1, Tk +t) —uy xx_1,2K)[P 1
/ / - PRy | dx dy” dt < co.
e Jrrc—s (t+ 2"y

Integrating the quantity (¢ -+t + |2 —y”|)~*P~K with respect to t’ between 0

and 400, we find that there exists a constant ¢, s 1 such that
K+1 >
Cposic (E+ |2 =y )T > / (t+t + 2" —y")) 7P at’.
0
Moreover, we have

w(d xg +t) —uly, v _1,7K)

= u(:L'//,(EK,h:EK —I—t) — u(y”;‘r”,xK,l + t/,CL'K + t/2)

+ U(yluzrz“ ox—1 ok +1/2) —u(y’ wr-1, 7K),

where ' € [0,4o00[. Using the triangle inequality, the inequality ¢ + ¢’ +
l” —y"| > t/2 +t + %]z” — y”|, and the classical inequality |a + bJP <
2P~ (|a|P + |b|P) describing the convexity, we can bound the integral

Oolux .'EK 1>xK+t)_u(y TK— laxK)l dtdz d "
ol sp+K—1 tax Yy
RK JRE-2 Y’ + [t])sP

from above by the sum of the following two integrals, up to a multiplicative
constant:

w(@” wg_1,wx + 1) — w(LCE w4+ g+ t)2)P
/ lu(@” zx—1, 0k +1) —u(*= K1 K +1/2)] dtdt’ dz dy”,
RE JRE

(5la” = y"[ + 5]+ [¢])r+K

U y”Jrz”,m o+t e +t/2) —uly”, vr_1,xK)|P
/ lu(*— K1 Kk +1/2) —u(y” 2k _1,2K)| dtdt dedy”,
rEJREK (gla” =y + [t/2] + [t']) 5P+ K
thus concluding the proof of Lemma 4.33. O

Proof of Corollary 4.54.
We use the characterization given in the lemma. Let us write the integral

t
/ /'“ v te)l” L ar
RV |t\5p+1
as the sum

¢ - te;)|P
/ / luie) —ule +ie)l” dt+/ / I CAR Y
RN J|¢<1 [t]sP RN J|t|>1 [t]sP
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The second integral is bounded from above by

QP/RN |u(x)|p/|t>1 — o dtda < clull, -

For the first integral, we use the inequality

1 < 1
77 S T

for |t| < 1, which by the previous lemma gives the desired embedding. More-
over, it gives the existence of a constant C' depending only on N, p, s, s’, such
that

ll?, < (Nl + Nl ).

For the second embedding, let v € WLP(RN). For [t| < 1, we write
|u(x + te;) — u(x)| as an integral and apply Holder’s inequality, giving

t
lu(z + tei) — u(@)|? < 71 / Ol (z + 5)ds.
0

Using Fubini’s formula, we deduce from this that

_ t !
/ / u(x + te;)|P . dt</ tpfspfl/ |0julP < C|0;ulP
RN tsptl 0 R

because the integral in ¢ converges since p — sp — 1 > —1. Moreover, the same

function integrated over [1,00] gives a result that is bounded from above by
Clullp. O

Proof of Proposition 4.31 for N > 2.
Let u € W*P(RY). Taking a function ¢ in D(R) satisfying ¢(0) = 1, we
define v by setting

0] u(z + 2)dz
v(t,x) = N /]O,t[N (x4 2)dz.

‘We use the notation

5= ze, di=]]dz,
J#i J#i
so that
O, (u(m + z)) = Oy, (u((zi +z;)e; + & + 51))
0z, (u((@; + zi)e; + & + %)) = 0, (ulw + 2)).
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To derive v with respect to z;, we use the above and Fubini’s formula. This
leads to

t t
£ Jqoapy-2 Jo

= %)/ [l + te; + %) —ulw + )] d%.
t Jgoupy -1

Taking the pth power, applying Holder’s inequality, and multiplying by ¢*?,
we obtain

—+oo
/ / t"P|0;v(t, x)|Pdx dt
0

t+t) — ; .
w/ / / uletsitet) —uw+ SO s,
RN J]o,1[N -1 tsp+

The result follows by using the change of variables X = x + s;t.
Setting ¥(t,x) = ¢'(t) f]o ey u(z + zt)dz, differentiating with respect to ¢
gives

-N
3v<pt</ x+zdz+— / :chlerteldsl)
t ( ) tN+1 10,4~ ( Z 10,¢[N-1 )

+¢'(t) / w(z + 2t)dz
Jo,1[N

tN+1 Z/ 0.4 w(@ + 2 + te;) — u(x + 2)) dz + ¢(x, )

= f(t,l‘) + ¢(t’x)'

It is clear that (t,z) — t"¢(t,x) belongs to LP. Moreover, multiplying
|f(t, )P by t*P and integrating gives

/ |t” f(t, x)|Pdt dx
RN xR+

u(x + Zit + te;) — u(x + 2t)|P
< |z / Z/OlWx]R‘*’ s dt dz da.

Using the change of variable X = x + zt, we then obtain

t+te;) — t
/ / / lu(z + Z;t + te;) — u(x + zt)|P dtds d
RN Jr+ J]0,1[¥ toptl

_ P
/ / / [u(X) —uX + 1A= z)e)l” )ik
rY Jj0,1[N Jr+ tsp+l

1=z X) —u(X + Te;)|?
:/ /dzi/ (1—zi)sp|“( )~ uX A Te)” i — o,
RN JO 0

Tserl

completing the proof. a
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The following is the converse of Proposition 4.32.

Proposition 4.37. Let v be a real number such that 0 < v +1/p < 1. Let u
satisfy tYu(t,-) € LP(]0,1[, WLP(RY)) and t*O,u € LP(]0,+oo] x RN); then
u(0,-) € Wi—1/p=vp(RN),

Proof of Proposition 4.37.
To prove this proposition, we recall the following lemma from Chapter 3.

Lemma 4.38. Let v be a real number and let f be a function from R to R.
We assume that 0 < 1/p+v =0 <1 and 1 < p < co. The following holds:

(i) If the map t — t¥ f(t) belongs to LP(RT) and if g is defined by

(4.39) o) =1 [ s(s)as

then the map t — tYg(t) belongs to LP(RT) and there exists a constant
¢(p,v) depending only on p and v such that

(4.40) /O T Pt < clp,v) /0 T p) .

(ii) Let a, B be elements ofﬁ with a < B Let f be defined on RY x ]a, B[ and
letg be defined by g(t,x) = l/tf0 s,x)ds. If t¥ f € LP(RT x |av, B]), then
t” g belongs to LP(R™ x]a, B]) and there exists a constant c(p,v) depending

only on p and v, such that

B oS} B 0o
(4.41) / / 12)g(t, 2)Pdt dz < c(p,v) / / 1P| F (¢, 2)|Pdt da.
[} 0 [} 0

We can now show Proposition 4.37. By Lemma 4.33, we can reduce to

/ / |u(0, ) — u(0,2 + t)|P drdi < oo,
RN

proving that

tsp+1

To show this, we write w(0,2) — u(0,x 4+ t) as a sum of three differences:
U(O, Jj) —U(O, l‘—|—t) = U(O, JL') —U(t, 13)+U(t, ‘T) —U(t, x—|—t)—|—u(t, x+t) —’LL(O, I+t>

that we replace by
t t t
/ (X, x)dA, / Ozu(t,x + A)d\ and / (A, z 4+ t)dA,
0 0 0

respectively. We then apply Lemma 4.38 to each of these integrals with the
functions f(t,z,\) = dwu (A, z), f(t,x,\) = Ozu(t,z + \) and f(t,z,A) =
Oru (A, + t), respectively . This gives

/ f(z,A)dA’pdAdx < o0,

¢
RN JR+ tJo
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which implies that

1
/ / t(”fl)p|u(0,x)—u(t,x)\pZ/ / —u(0,z)—u(t,z)|’ <oo. O
RN JR+ RN JR+ toptl

After studying the difference between the cases R and R, we now consider
the case of a general open set (2.

4.3.5 Comparison of the Spaces W and T when 2 # RN

Before we begin, we need to recall certain results concerning (s, p)-extensions,
which will also be useful when we establish embedding theorems.

Preliminary Results on (s,p)-Extensions.

Definition 4.42. We say that {2 admits an (s,p)-extension if there exists
a continuous linear operator E that sends u € W*P(2) to E(u) = u €
WeP(RY), such that

Ve e 2, Eu(z)=u(x).

In the case of a class C! or Lipschitz open set, we have the following result.
Proposition 4.43. Any Lipschitz open set {2 admits an (s, p)-extension.

Proof of Proposition 4.43.

By assumption, there exists a cover of {2 by bounded open sets (2;, open
subsets O} of RNV ~1 and Lipschitz functions a; on O} with uniformly bounded
gradient norms, such that, for i > 1,

2N c{(@,zy) |2 €O, xn > a;(2")},
2;N002 ={(z',a;(z")) | 2’ € O}.

Let {6;} denote a partition of unity subordinate to the cover {£2;} of (2.
Given the function u € W*P(£2), we are going to construct E(u) locally.
Consider the product u; = uf; on the open set U; = 2N £2;. If we define a
function Eu; that extends u; outside of 2N ¢2; and that belongs to WP (RY),
then, as usual, it will suffice to glue these extensions Eu; to obtain the desired
(s, p)-extension and thus complete the proof of the proposition.
Let us first show that u; € W#P(U;).

We already have u; € LP(U;). For the seminorm ||lu;||

$,p?

(Oiu)(x) = (Oiu)(y) = Oi(z)(u(z) — u(y)) + u(y)(i(z) = 0i(y)).

we write
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Hence, using (|a] + [b])? < 2P~ !{|al? + |b|P] for the numerator and the mean
value theorem for ;, we obtain the following inequality for 277*! ||ui||’§7p:

—p+1// Jui(z) — wi(y)[”
Ix—ylsf’“v
1637 ( u(y)l 16:(x) — 6i(y)[”
// |x7 |SP+N e dy—i—/ el |P/ |:17* EZR dr dy

<l + 1902 [ P [ [ fo ol ay

Now, the last integral is finite. Indeed, taking the origin at y and supposing
that U; C B(y, R), which we may by our assumptions, we have

R
/ |z —y[P~* P~ Ndz < wN_l/ PP P NIN=L g, < oo
U; 0

because of the relation p — 1 — sp = (1 — s)p — 1 > —1, which results from
s < 1. Tt then follows from the previous inequality that u; € WP (U;) and
that there exist constants H and K such that

luillZy < KllullZ, + Hllullp < Cullull?,

Construction of the (s,p)-extension. For the sake of simplicity, we omit the
factor 6;. We have reduced the problem to extending the function u € W*?(£2)
to the open set (2’ defined by 2/ = {2/ € O’ | zny < a;(2’)}. We will use the
reflexion P defined by

if (2/,25) €RY, then 2xn <a(z') = P(z/,zy) = (2/,2ai(z') — zN).

Let u(z',zn) = u(z’,zn) if 2 € 2 and w(2/,2n) = w(P(2/,zn)) if x € 2.

Let us verify that u € W*P(RM).

We write the seminorm ||ﬁH’WS,p(RN) as the sum of four integrals Jy, Jo, J3
and Jy over the sets 2 x 2, 2 x 2/, ' x £ and ' x §, respectively. By
assumption, |Ji| < +oo. For the three other integrals, we will give a lower
bound for the denominator, which is of the form |z — y[*P+.

We will show the existence of a constant Cy such that

(4.44) V(z,y) € (2), |P(z) — P(y)
(4.45) and VY (z,y) € 2x 2, |r— Py)

Note that these properties generalize those of an oblique reflection symmetry.
Figure 4.1 illustrates this for the case N = 2, where the boundary is straight
and the norm is the sum of the absolute values of the coordinates.
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IN A Q:{(z’,rN) |xN >x’}

Y

O ={a'|ay <2’}

Fig. 4.1. A symmetry for the (s, p)-extension.
Case N = 2, a(z') = 2’; norm: |(a,b)|1 = |a| + |b];
PP, <37,

Indeed, for the first inequality, we use the distance function Zf[ |& —

in RY to obtain

[P(z) = P(y)l = |2" = /| + |20i(2") — 2n = 20i(y") + yn]

< (1+2||Vaillo)(J2" = ¢/ + lon —yn]) < Calz —yl,

and deduce (4.44).
For the second inequality, we have, on the one hand,
2a;(y') —an —yn = 2(ai(y) —yn) +yn — TN Z YN — TN
> —|zy —yn|s
since yn < a;(y’), and, on the other hand,
2a;(y") —ynv — an < 2(a;(y) — ai(2')) + 2a:(2) — 2N — YN
<2(ai(y) — ai(@) + o —yn
< lyv —2n| + 2| Vaillsolz’ — ¥/
< (14 2[IVaglloo) (|2 — yl),

77¢|

since xy > a;(2"). The inequality (4.45) follows from these two. Moreover, by

the uniform regularity conditions on the open set {2, we may replace the norm
IVa;llo in Co by the supremum sup, || Va;||eo, giving a constant Cy that does

not depend on i. Using (4.45) and the change of variables y = 2a;(y’)
we see that the second integral Jo satisfies

w0 fu(w) = uly, 20i(y') — yw)IP
C J < 9 7 d d /d
2J2 //// P(y)|sr+N e

|z -

0 Ju(x) —uly, yp)IP
dyndy'dz = Jy.
/// II— Y,y

— YN,
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We can obtain the analogous result for J; by exchanging x and y. For Jy,
the inequality (4.44) gives the analogous result using two changes of variables
similar to the ones above. Returning to the function u;, we can now conclude
that Eu; € W*P?(RY). Moreover, we have

1Bl gy < 2lwillfn o) +4C5 (luills )P

It follows that

||Eu1||wsp(]RN) CHuHWsp(Q)
where C does not depend on i. We have thus shown the exis-
tence of an Fu € W*®P(RY) extending u € W?#P(£2) and satisfying
|Bullwsr@myy < Cllullwere). The latter expresses the continuity of the
(s, p)-extension map E. O

Comparison of the Spaces W and T, Continued. Using the above, we can
generalize the previous result as follows.

Proposition 4.46. Let p > 1, let s € ]0,1[, and let v =1—1/p—s. If 2 is
a Lipschitz open subset of RN, then

Y0(T(p, v, £2)) = WP(82).

Proof of Proposition 4.46.

To v € T(p,v,§2), we associate the function Fu in T(p,v,RY)
(cf. Proposition 4.43). Indeed, since by assumption, t"u(t,") €
WP (]0, +o0o[, RY), it follows that for a fixed t > 0, t¥Eu(t,-) € WhP(RY)
while ||tV Eu(t,-)[lwir@yy < Cllt7ul(t,-)|lwir(e) for a constant C that is
independent of ¢. From this property, we obtain the convergence

—+oo —+oo
/ ||tVE’U,(t, ')HWl,p(RN)dt < C/ ||t”u(t, ')HWl,p(Q)dt < +o0.
0 0

We repeat this proof for t 9;u, giving the desired result. It follows that vo(Eu),
which we can also denote by Eu(0,), is an element of W*?(RM). By Propo-
sition 4.28, we now have, for every x € (2,
Eu(0,z) = lim Eu(t, ) = lim u(t,z) = u(0, x).
t—0 t—0

Conversely, let u € W*P(£2). We then have Eu € W*?(R¥) and by Propo-
sition 4.32, there exists a function v such that v € T(p, v, WHP(RY), LP(RY))
and v(0,2) = FEu(z). By restricting the functions in z to the open
set 2, we can easily see that (t,z) — ov(t,z) defines an element v* of
T(p,v, WHP(2), LP(£2)). For every x € §2, this restriction of v satisfies
v*(0,2) = u(x). O
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An immediate application of this comparison of spaces is the existence of
embeddings of the spaces W*P in the spaces L9. We will study this in the
next section.

4.4 Embeddings of the W*P(§2)

4.4.1 The Case 2 = RN

Theorem 4.47. Let s € 10,1[ and let p € ]1,00[. We have:

o Ifsp<N, then WP(RN) — LYRY) for every ¢ < Np/(N — sp).

e If N =sp, then WsP(RN) — LI(RYN) for every q < co.

e Ifsp> N, then WSP(RN) < L*(RY) and, more precisely,
WeP(RY) s ) VRN,

Remark 4.48. We have already shown this theorem for s = 1 — 1/p using
embeddings in Sobolev spaces of integer order.

Proof of Theorem 4.47.

Let uw € WSP(RY) and let v € LP(]0, +oo[ x RY) with v(0,2) = u(x) be
such that ¢ — tv belongs to LP(]0, +oo[, WP(RY)) and t ~— ¢“;v belongs
to LP(]0, 4oo[, LP(RY)), where v =1 —1/p — s.

We begin by assuming that N > p. We fix = and define f by setting
f(t) = v(t,z); we then have

t
- [ rs
0

By multiplying and dividing by ¢”, integrating over |0, 1[, applying Holder’s
inequality and the inequality —vp’ > —1, we obtain

1£(0)] < C[(/O1 |t»f|pdt)”” + (/01 |tuatf|pdt)1/p}
< c[(/ooo |t”f|pdt)1/p + (/OOO |t'ff'|pdt)1/p]

Using the function f)(¢) = f(At), we find that for every A > 0, this leads to
the inequality

MO /OOO o flear) " 4wt /Ooo o frar) "],

giving the optimal upper bound

|f(0)|<C'{</OOO |tl’f|pdt)1/p]s{(/ooo |t”3tf|pdt)1/pr_s'
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Let r satisfy

N — 1— N
1/r= s( ) +( s), that is, r = P

Np p (N —sp)’

Let |g|, = fo lg(t)[Pdt)'/P. By Hoélder’s inequality, we have the following
upper bound for [y [v(0,z)|"dz:

/RN|t”v(t,J:)|:;T|t”6tv’;1_s)rdx

(N—p)s/(N—sp) (1=s)N/(N—sp)
< (/ ’tv |Np/(N p)dx) (/ |t”8tv|pdx> '
RN P
Consequently, by taking the 1/rth power, we obtain

[[0(0, )|

This relation gives the result in the case N > p. Note that this method cannot
be adapted to the case p > N.

When p > N and sp < N, we need to use different arguments. We will use
the fundamental solution E of the Laplacian. Recall that in dimension N + 1,
it is defined by E(t, ) = kny1(|z|?>+12)1=N)/2 where ky 1 is chosen in such
a way that we have AE = g (cf. Exercise 2.19 of Chapter 2).

Let # and v be functions in D(RY) and D(R), respectively, with values
between 0 and 1 and equal to 1 in neighborhoods of 0. We can replace dg,
which has support {0}, by the product 0(x)1(¢)dp. Using the formula giving
the derivative of the product of a distribution and a C*° function, the formula

L™(RN) X CHt UHLp( 0,1[,LN#/(N=p) RN))Ht atU”Lp( 0,1[,LP(RN))"

giving the Laplacian of such a product, and the formula giving the derivative
of a convolution, that is, 9;(V)xU = 9;(Ux V) = 0;UxV, we can write, for v
satisfying v(0, z) = u(x),

v =200 %V = A(G(m)w(t)E) *v—2(V(9(m)¢(t))~VE) *v—A0(x)Y(t))E xv
= ) Vi VE) * Vv + 8,(0(x)(t)E) * dpv
1IN
- 2(V(0(:17)1/}(t)) -VE) xv — EA(0(z)(t)) *v.

Letting V., FE denote the gradient with respect to z and VA x VB the sum
of the convolutions 0; A x 9; B, we can also write

(4.49) v = (0(2)Y(t)VLE) x Vv + (¥(8)0(2)9, E) x dyv

+ (Y(t)EV40(2)) *x Vv + (0(x) Edp) x v — 2(V(0(x)(t)) - VE) x v
— (BEAO()¥(t)) * v.
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The last four terms of the right-hand side of (4.49) are finite sums of convo-
lutions of the type

(G(t,2)E) xv, (Gt z)0E)*v, ((3(t2)0E) *v,
(Ca(t,z)E) x9;v and  ((5(t,2)E) * Oyv,

where the (; are functions in D(RV+1).

We will evaluate these terms at (0, z) after studying the first two terms of
the right-hand side of (4.49), which involve the derivatives of both v and E.
These first two terms of (4.49) are sums of convolutions of the form

(0(x)¥(t)0;E) x ;v and  ((t)0(x)0,E) * Oyv.

We therefore need to evaluate these convolutions at the point (0,z).
On the one hand, the function v is such that ¢ — ¢"v(t,.) be-
longs to LP(]0,+oo[, WEP(RY)), which implies that t“0;u belongs to
LP(]0, +oo[, LP(RY)). On the other hand, the function t“9;v also belongs to
this space. The two convolutions above can therefore be written as

I=(v(t)0(z)0,E)xg and J = (¥()8(2)V,E) *g,

for a function g such that t — t“g(t,-) belongs to L?(]0, +oo[, LP(R™M)).
To study I, we let h(t,x) = ()¢ () t (|x|> +t2)~N+D/2 and we compute
the convolution that expresses I at the point (0, x):

0@ — ) (=t)tg(t,2)
(g% h)(0,z) = /]RN/O e +t2)(N+gl)/2 dtda’.

Using Hoélder’s inequality in the integrals in ¢, we bound (g x h)(0,z) from
above by the convolution G « H in RY, where the functions G and H are

defined as follows:

’

G) = ( /O o t”p|g(t,x)|pdt)1/ "oHE = ( /O o t—”p’|h(t,x)|p’dt)1/ v

The function H can be bounded from above by

too y-u 4
pllol( [ matt)

Moreover, as the integral in this bound equals, up to a constant, the func-
tion |z| to the power 1 — v + 1/p — (N + 1) = s — N, we find that
H(z) < ClO()[[x>~".

The product G = H is therefore bounded from above by the convolution
at z of a function in L?, which by definition is G, and a function of the form
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|z|*~%, which belongs to L* for k < N/(N — s). By Corollary 4.60 of the
appendix, the function G x H therefore belongs to L" for 1/p+1/k=1+1/r,
that is, for r < Np/(N — sp). For an optimal result, we must use Sobolev’s
lemma 2.36.

To study J, we let hi(t,z) = 0(x)y(t) z; (Jz|> + t2)~N+D/2. We compute
the convolution gxh; at the point (0, ), once again for Vg € LP(]0, +oo[xRY).
By Hélder’s inequality, the expression (gxh;)(0, z) can be bounded from above
by G x H;(x), where

+o0 , t=ve |z |7’ 1/p'
Hi(z) = (/0 Olzppe))” (J]2 +t2)|iv+1>p'/2dt) '

This convolution can be bounded from above by C8(x)|z|*~™. This concludes
our study of I and J, and we see that the two terms (Cg(t,x)aiE) * v and
(¢3(t,2)0,E) x v have also been dealt with.

We will now consider the terms of the form (3 Exv, (4 F *0;v, or (5 FExdv,
that is, the terms that involve F rather than its derivatives. The process is
similar to the previous one.

We consider, for example, a term of the form 0y (x)y (¢t)E(z,t) x v at the
point (0, x), where # and v are in D(RY) and D(R), respectively. We have

01 (x — 2 ) (—t)v(t,a’) ,
dtdzx’.
/RN/ (2 + |z — 2/]2)(N-1)/2 v

Using Holder’s inequality in the integrals in ¢ and multiplying by t¥t7%, we
find that the absolute value of I; (z) is bounded from above by the convolution
G1* Hy in RY, where

Gi(z) = (/Ooot”pv(t,xﬂpdt)l/p

([T @ (e
and Hl(l’) = (/0 (t2 + |$|2>(N—1)p’/2 dt) )

The function H; is bounded from above by

0 h t_ypl at)"”
[ilelor@)( | e )

that is, by a function of the type

C0; (z)] || A2 =N=DPVY = €19, ()] |V F

The product GGy x H; is therefore the convolution of a function in LP and a
function with compact support multiplied by |z|*~™*! which belongs to L¥
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for every k < N/(N — s —1). In particular, this product belongs to L" for
every r < Np/(N — (s + 1)p), hence belongs to LV?/(N=sp),

The other terms are dealt with in a similar way, concluding our treatment
of the case sp < .

Let us now consider the case sp = N. By Corollary 4.34, we have
WeP(RN) — W' P(RN) for every s’ € ]0,s[. Using the embeddings we ob-
tained for sp < N, we deduce that

WP (RNY) sy [NP/(N=s"P) (RN,

Moreover, since Np/(N — s'p) can be arbitrarily large, we conclude that
W#P(RY) is embedded into L4(RY) for every ¢ € [p, oc].

We continue with the case sp > N. We once more use the fundamental
solution of the Laplacian in RV*1. As in the case sp < N, we need to show
that certain sums of convolutions of the type (1 Exv, (s FE x 0,v, (4 F x 0 v, or
(VE % Vv belong to L.

For the last term, let g(t,z) denote a function such that t"g(t,z) €
LP(]0,+o00o[ x RN) and let h(t,z) = 0(x)(t)t(|z|> + t2)~N+D/2 where 0
is a regular function with support in B(0,1). We will show that for sp > N,
we have

z+— (hxg)(0,2) € L= (RN).

Indeed,
z—a t)tg(l‘/ﬂf) ’
(hxg)(0,x) /RN/]R+ t2+|x—x’|)N+1)/2dmdt

v / 1/p’
< gl O 0w — WO gy

9lip t2+|x 2/ |[2)(N+1D)p'/2
v |(E - m/|(1711)p/+1 e v

<t 9||p</|wwl<1 de’ < C|t"gllps

because the last integral can be written as

([per-re-]") "
0

which is bounded because sp > N. To bound the functions of the type (1 E v,
(s E % Opv, or (4 F % 0,v, it suffices to remark that each of these products is

bounded from above by the convolution of a function in LP and a function
in L?" that is of the form 6;(x)|z|*~N*! with 6; in D(RY).

Let us now show that u is a Holder continuous function with exponent
s — N/p. For this, we need to show the existence of a constant C' such that

I S L R (U Mt
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Indeed, let v satisfy v(0,x) = wu(z). By the above, there exist constants C
and Cy such that

flulloo < C’1||t”va + CthVV(t,m)UHp-
We define vy by setting vy (t, z) = v(At, Az). Computing the norms gives

[oall 0, =l [[E70a[], = A==

and [tV g ayoall, = XTIV g0l -

UHLP(RNX]O,+00[)

Consequently, by choosing A = ([|t"v||,) (||t V(¢ 4)v]lp) ", we obtain the in-
equality

(4.51) uflso < CHtuvH;*V*(l\PH)/pthv(t?x)v||;+(N+1)/p'

Let h € R and let ¢ € [1, N]. To illustrate the ideas, we assume that h > 0.
By a well-known inequality, we have

h
lo(t, 2 — hes) — vt )| < / O(t, z — se:)|ds.
0

Multiplying by t”, integrating the pth power, and using Holder’s inequality,
we obtain

1
// t"Plo(t,x — he;) — v(t, z)[Pdx dt
o Jr¥

1 h
g/ t”php_l/ / |0;v|P (¢, x — se;)ds
0 0 JRN

1
ghp// t"P|VolPdzx dt.
0o JrN

Taking the 1/pth power then gives
|t (riw = v)|, < 21al]| V] .
Since we also have
[tV (mv = )|, < 2[|t" V0],
applying inequality (4.51) to us — u gives the upper bound
Jun = ul| o < ORI~ NFDP( |80l + [V 12y 0llp) -

Since 1 —v — (N +1)/p = s — N/p, it follows that u is a Holder continuous
function with exponent s — N/p. This concludes the proof of the theorem for
2 =RV, O
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4.4.2 The Case of an Open Set Admitting an Extension

The analogue of Theorem 4.47 is true for open subsets satisfying certain reg-
ularity conditions. In particular, it is true if {2 is an open set that admits an
(s, p)-extension, a property we studied before.

Consequences of the Ezistence of an (s, p)-extension. We can easily obtain
the following density result.

Proposition 4.52. Let s € [0,1] and let p > 1. Let {2 be an open set that ad-
mits an (s, p)-extension; then D(£2), the space of restrictions to 2 of functions
in D(RY), is dense in WP (§2).

Proof of Proposition 4.52.

Let u € W*P({2). Let E be a continuous extension of W*P({2) to
WeP(RN). As E(u) € WSP(RY), there exists a sequence {¢,} of functions
in D(RY) that converges to E(u) in WP(RY). The sequence of restrictions
of the ¢, then converges to u in W*P({2). O

The following is a corollary to Proposition 4.52 and Theorem 4.47.

Corollary 4.53. Let s € ]0,1[ and let p € ]1,00][. Let 2 be a Lipschitz open
set. We then have:

e Ifsp <N, then W9P(02) — Li(£2) for every ¢ < Np/(N — sp).
e If N = sp, then W5P(2) — Li(f2) for every q < co.
o Ifsp> N, then W#*P(£2) — L*°(£2) and, more precisely,

WP (2) — C NP ().

4.5 Compact Embeddings of the W*P({2) with
Bounded {2

Theorem 4.54. Let 2 be a bounded Lipschitz open subset of RN. Let s €
[0,1], let p > 1, and let N > 1. We then have:

e Ifsp < N, then the embedding of WP (82) into L* is compact for every
k < Np/(N — sp).

e Ifsp = N, then the embedding of W*P({2) into L7 is compact for every
q < o0.

e If sp > N, then the embedding of W*P({2) into CE’A(Q) is compact for
A <s—N/p.
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Proof of Theorem 4.54.

We begin with the case sp < N.

To prove the statement, it suffices to show that the embedding into L!
is compact. Indeed, W5 — LNP/(N=5P) and every bounded sequence in LF
with k > 1 that converges in L' also converges in L¥ for k' <k, by Lemma
2.82.

We will therefore use the compactness criterion for bounded subsets of L!
(cf. Theorem 1.95). Let B be a bounded subset of W*P(£2). Let u€ B, let
i€[1,N], let h > 0, and let 2, = {z € 2| d(x,002) > h}. Setting h = he,,
we consider the integral

Iy = / / |u(z + he;) — u(x)|dy dz.
21, JB(w,h)

Since the integrand does not depend on y, we have

(4.55) I =wyoy BN / u(z + 1) — u(z)| dz,
-Qh

where wy_1 denotes the volume of the unit ball. Next, using the equality
%
ulw+ B —ulz) = ule + 1) —uly) +uly) — ul2),

for x € 2 and y € B(w, h) and setting o = (sp + N)/p, the integral I5» can
be bounded as follows:

h
Iﬁ</ / @+ <)‘|ac—|-h y|°dy dx
2, JB(z,h) x4+ h -yl

—|—/ / Ju(@) = uly)] _u((ry)||x—y|"dyda: =19+ 19
on JBan) 17—yl h h

After transforming these integrals to integrals over A, = (2, x B(0,h) by

applying a translation to y, we can bound the integrals I D and I(_h%) from

above using Holder’s inequality. For example, we have

@ :/ (@) ~ w0 1o g g,
Ay, |2

h
_ P 1/ , 1/p
< (/ [ulw) = ulz + 2)| dzdz) p(/ |z|7P dzda:) :
An |2|oP An

Since by assumption, B(z,h) C 2, C {2, the first integral on the right-hand

side, which equals
/ / u(y)[” [u@) = u@)” o,
Q5 (z,h) |£E - |sp+N ’
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can be bounded from above by the integral
_ P
/ |u(x) y(f])vl dy der.
oxa |lv—ylr

which is bounded for u in 5. Moreover, we have

R h 1-1/
(/A |Z|Up> 3 < (mes())lfl/l’(/ P((SPJFN)/(”*I))*N*ldp) p
h

0
< (mes 2)1 VP! | BN F,

where the constant on the right depends only on the seminorm |[|ull§ ,. We
can proceed in a similar manner for the integral I%). Finally, using inequality

(4.55) and the relations following it, we obtain
N g N+s
|A| u(z + h) = u(z)|de < ClA[,
25
that is, the first condition of the compactness criterion in L!(§2):
%
/ lu(z + h) —u(z)| < Clh)°.
2n

Moreover, as the set B is bounded in LP({2) and the set {2 itself is bounded,
we can find a compact set K that is sufficiently large that for every u € B,
we have

» 1/p —1/p
/Q_K lu(z)| < (/Q_K lu(z)| ) (mes(2 — K)) /P < e

We have thus shown that B is relatively compact in L!(§2), hence in all
the L¥(§2) with k < pN/(N — sp).

If s = Np, we use WP — WP with s’ < s, giving the second statement.

Let us now suppose that sp > N. Let B be a bounded subset of W*?({2).
We use the Ascoli-Arzela theorem to show that B is relatively compact in
C(£2). A consequence of Theorem 4.47 is then the existence of a constant
C > 0 such that for every u € B, we have

lullzee (@) < Cllullws»(e)-
Since for every pair of elements (z,y) of {2, we also have
u(z) = u(y)| < Cllullweso)le =y~ N2,

we can deduce that the set B is bounded in L*° and equicontinuous, concluding
the proof of the third statement of the theorem in the case of C(£2).

Finally, we use Theorem 4.47 and Lemma 2.85 to deduce the compactness
in Holder spaces. a
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4.6 The Spaces W*P(2) with s € |0, +o00]
4.6.1 Definition and Embedding Theorem

Definition 4.56. Let s € R ~\ N with s > 1. The space W*#P?({2) is defined
to be

Wer(2) = {u € WHP(0) | Diuc W=E2(2), ¥, 7| = [s]}.

It is clear that W*P(£2) endowed with the norm

| DI u(x Dju( )P 1/p
”UHs,p = (||U|p [s].2(£2) + Z / / DN dz dy < o0

alil= |$—y\

is a Banach space.
We can moreover easily verify that the functions in D(RY) are dense in
WP(RN). The following embedding theorem is similar to the previous ones.

Theorem 4.57. Let (2 be a Lipschitz open set. We then have:

o Ifsp <N, then W#*P(£2) — Li((2) for every ¢ < Np/(N — sp).
e Ifsp=N, then W*P(2) — Li(£2) for every q < oo.
e Ifsp> N, then we have:
— Ifs—N/p &N, then WoP(2) — = N/Phs=Np=ls=N/pl 0y
~ Ifs—N/p €N, then WP(2) — C,~ N/p=1, A( 2) for every A < 1.

Proof of Theorem 4.57.

For sp < N, we use an induction on [s].

If [s] = 0, this is Theorem 4.47. Let us assume that the theorem has been
proved for [s] = m — 1. Let w € W*P({2) with [s] = m and sp < N; then
Vu € W 2(02) and u € WllP(2). Hence, by the induction hypothesis,
Vu € L"(2) with r = Np/(N — (s — 1)p) and u € LNP/(N=[Ip)((9).

Using the inequalities p < Np/(N — (s —1)p) < Np/(N — [s]p), we de-
duce that u € W (£2). Since rp < N, we conclude that u € LN/ (N=7)(2) =
LNP/(N=sp)((2),

Let us assume that sp = N.

In this case, [s]p < N and (s — 1)p < N. If u € W*P({2), then by the
previous reasoning, u € W17 () with » = (Np)/(N — (s — 1)p) = N. Since
r = N, we conclude that u € LI((2) for every ¢ < co.

Let us now assume that sp > N. Let j be an integer satisfying s—1—N/p <
j < 8 — N/p; then for u € W*P v = Viu belongs to W*~JP. Therefore, v
and Vv belong to W*=7=1P and the inequality (s —j — 1)p < N implies
that v and Vv belong to L” with r = (Np)/(N — (s — j — 1)p). Consequently,
ve WhT(02) and r > N, whence v € )"~ NIty = Cy” N/P=i (). Finally,
we conclude that u € Cls=N/pPls=N/p=ls=N/pl( (),
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If s— N/p =3 €N, then u € W*P(£2) implies that (D7~1u, Diu) €
(V[/S*j’p(ﬂ))2 = (WN/I’*’(Q))Q. We deduce from this that DI~1u € W14($2)
for every ¢ < oo, and therefore D7~ 1y € Cl?”\(Q) for every A < 1. We conclude

that u € C;fN/p*l’)‘(Q) for every A < 1. O

4.6.2 Compact Embeddings

For a bounded open set we also have results concerning compact injections.
Theorem 4.58. Let {2 be a bounded Lipschitz open set. We then have:

e If sp < N, then the embedding W*P(2) — Li(£2) is compact for all
exponents q satisfying ¢ < Np/(N — sp).
e If sp= N, then the embedding W=P(§2) — Li({2) is compact for every
q<oo.
e Ifsp> N, then we have:
- Ifs— N/p &N, then the embedding WP (§2) — C£57N/p]’A(Q) is com-
pact for every A < s — N/p —[s — N/p|(§2);
- If s — N/p € N, then the embedding W*P({2) — CZ_N/p_l’X(Q) is
compact for every A < 1.

4.7 Appendix: The Riesz—Thorin Convexity Theorem

Let T be the Fourier transform. We know that 7 sends a function in L' to
a function in L™ and a function in L? to a function in L2. In particular, for
every g € L' and every f € L', we have

(Tf, ) < T fllollglle < £l

and for every pair (f,g) of elements of L?, we have

(T f,9)| < (I fll21lgllo-

The following theorem, which is known as the Riesz—Thorin theorem, allows
us to deduce that when p € [1,2], T sends L? into L?". We used this property
in the proof of Proposition 4.18.

In the proof, we use the arguments of Stein and Weiss [64]. The interested
reader can consult that book for the “stronger” theorem of Marcinkiewicz.

Theorem 4.59. Let T be a linear operator defined on all of the LP(RN,C),
such that for given p; and g; in [1,00], it is continuous from LPi(RN C) to
L% (RN, C). We denote its operator norms by

ki = ||IT

pi,gi — Sup ‘<Tf, g>‘7
1fllp; =1

. . llgllq, =1

where ¢; is the conjugate of g;. :
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If t € 10,1 and 1/p = t/po + (1 —t)/p1, then T is continuous from
LP(RN,C) to LY(RN,C), where 1/q = t/qo + (1 —t)/q1. Moreover, we have
the continuity inequality

ITllp.q < Kok ™"

Proof of the theorem.

We begin by showing the result for simple functions. Let f = > ; AiXE;
have norm in LP equal to 1, where the E; are two-by-two disjoint integrable
sets. We set a; = |a;jle®%i. Let g = > i bkXF,, where the Fj are two-by-two
disjoint integrable sets, by = |bg|e!?*, and ||g|, = 1. For p € [1, 0], let ¢ be
a real number in [0, 1] that satisfies 1/p = t/po + (1 —t)/p1. Let o and 8 be
the functions on C defined by

z 1—2 z 1—-=2
+ z +
Po P do q1

We also set

Z|a |a 2)/ o ]XE and g(z Z|bk‘ (1-8(2))/(1=B(1)) zLPkXF
Finally, let F' be defined by

F(z) = /RN Tf(2)g(z)dw = 3 |ay |2/t |}, [(1=8()/1=BO) givrry, |
g,k

with v x = [enT(XE,)XF, dz. It is easy to check that F(t) = [on T fgdz.

To prove the result, we begin by showing that |F(zy)| < k1 and that
|F'(14+1y)| < ko. We will then use the fact that F' is holomorphic and bounded
on the strip 0 < = < 1,y € R and the Phragmén—Lindel6f principle, which
implies that for every pair (z,y) with 0 < z < 1, we have |F(z+iy)| < k3ki .
From this, we will deduce the continuity inequality on the operator norm by
setting = + 1y = t.

Let us determine |F(iy)|. We have Re(a(iy)) = 1/p1, and therefore
Re(a(iy)/a(t)) = p/p1, so that

I1f (i) ZI%I”IE | =IIA15 =1

Moreover, Re(B(iy)) = 1/q1, so that

1-Re(Bliy) _1-1/a1 _d
1-4(t) 1-1/g ¢}

We therefore have

lg(iy)] Z bl [ Fe| = [lg]|¢) = 1.
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We also have Re(a(1l + iy)) = 1/po, so that Rea(l +iy)/a(t) = p/po, and
therefore

1f (1 + )5 Z|ag|p\E|—\|f||p=1
Finally, Re(8(1 + iy)) = 1/qo, which implies that

1-Re(B+iy) 1-1/90 _d
1—B(t) 1-1/¢ a

Consequently, we have

lg(1 +iy)| Z 1bk]7 [ Fi| = [|gll?, = 1.
By the continuity of the operator, we then have

B = | [ THgtin)] < £l Il = b
[F (1 +iy)| < kollF(1 + i) llpollg (1 + iy)llqy = ko,

giving the result for simple functions.

In the general case, let f € LP(RY,CY). We will show that there exists a
sequence f,, of simple functions such that || f,, — f|l, = 0 and T'f,,(z) — T f(z)
for almost all z. Let us first assume that such a sequence exists and show that
the result follows. The sequence {T'f,} is bounded in L?. By Fatou’s lemma,
setting k; = kbki ', we have

ITfllqg < Im [|Tfmllq < ke lim ([ follp < Kell fllp,
m—o0 m— oo

and in particular T'f € L9, proving the theorem.

It remains to show the existence of the f,. We reduce to the case where f
is real and f > 0. Let us assume that pg < p;. For f € LP let fy equal f
when f(z) > 1 and 0 elsewhere, and let f! = f — fo. We then have fo € LPo
and f! € LP1. Let g,, be an increasing sequence of simple functions that
converges almost everywhere to f. By the monotone convergence theorem, we
have ||gm — f||, — 0. Likewise, ||g%, — f°|l,, — 0 and ||g}, — f*|,, — 0. Since T'
is continuous from LP* to L% and from LP° to L%, we have

ITgp, =T llqg — 0 and [ Tgy, = Tf g — 0.

Therefore there exists a subsequence for which T'g%, — T fY almost everywhere
and T'gl, — Tf' almost everywhere. It follows that the sequence { f,,} defined
by fm = g%, + gi, satisfies the desired conditions. O
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Corollary 4.60 (Hausdorff-Young inequality). If f € LP(RY) and g €
LA(RN) with 1/p+1/q > 1, then the convolution of these two functions belongs
to L" forr with 1+ 1/r=1/p+1/q.

Proof of the corollary. In what follows, we fix f € LP. We associate to it the

operator T defined by T¢(g) = f g for every g in a suitable space L?. Let us

consider two situations that correspond to the assumptions of the theorem.
Ifge Lp/, then by a known result, we have Ty (g) € L*™ and, moreover,

1 * glloe < I F1lnllgllp

which proves the continuity of 7' as an operator from L? to L>. We can
therefore take pg = p’ and ¢g = +oo in the theorem. The operator norm
| 7%, 00 satisfies the following equalities:

Tyl = sup [(T5(o)90)| = swp || (F % 9)(@hn(a)da].
llgll, =1 llgll,r=1"JRN
llgallp=1 Hgl\lpfl

By the definition of the norm in a dual and the reflexivity, the last term is
the supremum of || f * g||o when ||g||,» = 1. It follows that

1T llp 00 = 1 Fllp-

If g€ L', then since f € LP, Young’s theorem guarantees that T(g)€ LP
and that, moreover, || f *gll, < || fllp|lgll1. The operator T is therefore contin-
uous from L' to LP. We can then take p; = 1 and ¢; = p in the theorem. The
operator norm associated with this situation also satisfies

1 T¢ll1p = 1£1lp-
Now, let ¢ satisfy 1/p+ 1/¢ > 1 and let ¢ satisfy
1 t 1-—1t t
=4 =—+1-t.
qa Do b1 p
We then have ¢t = p(1 — 1/q), which indeed lies strictly between 0 and 1.
Since this condition of the theorem has thus been satisfied, we deduce

that T sends LY continuously into L", where r satisfies
1 ¢t 1-t t 1-t 1 1

- = — = — _ = __1

T Qo q1 o0 p p q
The first statement of the corollary follows.
Next, consider the inequality

1Tl < koCk) = < IFIRNA™" = 1 1p-

Going back to the operator norms, it follows that

L gl < 1lflpllgllq- 0
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Remark 4.61. This corollary allows us to give new proofs of results used at
different points in this book, in particular in the proofs of embedding theorems.
Indeed, consider, for p > 1, the convolution g = f*(r' =N where f € LP and ¢
is a regular function with compact support. The function z +— g(z) = ¢(r1=
then belongs to L7 if (1 — N)(¢ — 1) > —1, that is, if ¢ < N/(N —1).

We can therefore apply the corollary, giving us the inclusion f xg € L7,
where 1+1/r =1/p+1/q. Since ¢ < N/(N — 1), it follows that the exponent r

satisfies
(N-1) ,_N-»p

1
>_
1)7L N Np

1
r

We thus once more find that the convolution f*¢r'~" belongs to L" for every
r < Np/(N —p).

Remark 4.62. In Chapter 6, we will prove the following stronger version of
the Riesz—Thorin convexity theorem.
We define the weak-L' space to be the set of measurable functions f that

satisfy

va> 0, el 7@z s <<

(Note that L' is contained in weak-L'.) Let T be an operator that sends L'
continuously into weak-L' and sends L? continuously into L?; then for 1 <
p <2, T sends LP continuously into itself.

This result is a special case of the Marcinkiewicz interpolation theorem,
which we will give later (cf. Theorem 7.34).

Comments

As in the case of trace spaces, we use interpolation spaces when we study
fractional Sobolev spaces. The article by Luc Tartar [69] is the best reference
for our approach to these spaces, as well as the most agreeable one to read. Let
us also mention the articles by J.-L. Lions and Peetre [49] and Uspenski [73].

4.8 Exercises for Chapter 4

Exercise 4.1 (Eigenfunction of the Fourier Transform).
Let f(z) = exp(—m|z|?) on RY. Show that f is its own Fourier transform.

Hints. For the case N = 1, you can use the first-order differential equation of which f
is a solution. You can also use Cauchy’s theorem applied to the holomorphic function
z — exp(—7z?) and a rectangular path with one side equal to the segment [—R, R)
on the real axis (subsequently, let R tend to +o0).

For arbitrary N, use the fact that f is a product of exponential functions of the
above type.
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Exercise 4.2 (Fourier Transform of = +— 1).

Compute the Fourier transform of the characteristic function y,, of [—n,n],
where n € N*. Prove that the sequence of Fourier transforms {F(x,)}» con-
verges in &’ to F(1). Deduce from this that

Conclude that
]_—~(e2i7rmot) — 5x

0*

Exercise 4.3 (Reciprocity Formula for the Fourier Transform).
Demonstrate the reciprocity formula for the Fourier transform for the func-
tions in S(R™Y). In other words, show that if ¢ € S(R”), then

FF(p) = .
Deduce the reciprocity formula for tempered distributions from this.
Hints. Let v = F(p). Note that
Flp—a)(N) = €™y (N).
Integrate with respect to A and use the equality F(1) = 4.

Exercise [¥x] 4.4 (Fourier Transforms of Homogeneous Distribu-
tions).

(1) Let f € LY(RYN). For every A > 0, define H,(f) by setting Hy(f)(z) =
f(Az). Prove that if [f] is the distribution associated with the locally
summable function f, then

((HA(D) ) = A7 f1, 0/ N)-

Let T be a distribution on RY. We extend the previous property by defin-
ing Hx(T) to be the distribution defined by

(HA(T), ) = XN, ¢(-/N)).

Use fto determine the Fourier transform of Hy(f). Next, prove that the
the following formula holds for the tempered distribution 7"

(4.63) F(HAT)) = A\ NHy-+ (F(T)).
(2) We call T homogeneous of degree k if
VA>0, H\T=MT.

We identify T' with the radial function f defined by f(z) = |x|¥, where
z € RY and |z = (35, 22)Y/2.
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a) We suppose that —N < k < 0. Show that T is tempered by noting
that it can be written as the sum

T =TX{z|<1} + TX{allz|21}

of a function in L' and a function in LP with p > —N/k. Show

that its Fourier transform exists and that it is a radial distribution

(cf. Exercise 7.12 of Chapter 7).

Show that this Fourier transform is homogeneous of degree —k — N
b) We now suppose that 2k < —N. In this case, T is the sum of a function

in L! and a function in L2 Show that F(T) is a function. Use the

positive homogeneity to show that there exists a constant ¢(N, k) such

that

FT)(E) = e(N, k).

(3) Use the function ¢(z) = e~™** to deduce that

—k-ny2 (N +K)/2)

C(N,k):ﬂ' F(—k/2) )

where I' is the Euler function ([22], [58] or Exercise 3.1 of Chapter 3).
We will use these results in Chapter 7 in the case where k = —N + 1,
which indeed satisfies the condition 2k < —N when N > 2. There, we will
use a derivative with respect to the variable x; to show that we have

P/l 1) = o N1 = ),

(cf. the Riesz transform in Chapter 7).

(4) Let us now suppose that 0 > 2k > —N. Use the reciprocity formula to
show that the previous results still hold. Consider the distribution 7" = |z|*
and set k' = —N — k. Prove that we can apply the previous results to the
function x — |#|*". Deduce the Fourier transform of T from this. Study
the case 2k = —N.

Hints. For formula 4.63, it suffices to use the following definitions:
(F(HAT)), ¢) = (HA(T), ?)
= AT, @(/2) = (T, Hx(9))
= (F(T), Ha(g)) = A" (Hy-1 (F(T)), ).
If T is homogeneous of degree k, then we have

F(HA(T)) = XN Hy )5 (F(T))
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In the case where the radial distribution becomes a function, we know that the
Fourier transform of T' can be identified with the function £ — g(|£|) (cf. Exercise
7.12 of Chapter 7). For A > 0, this leads to the equality g(A|¢]) = A"V g(|¢]). Use
|€] = 1 to obtain g(A\) = A™*"Ng(1). Using a constant that we denote by ¢(N, k),
deduce that

F(T) = (N, k)lg[ .

Use the function = — exp(—7r|x|2), which is its own transform, to obtain the equality

+oo Foo
/ rE N exp(—mr?)dr = ¢(N, k)/ 7 exp(—mr?)dr.
0 0

Introducing the variable s = w72, this becomes
7= F"N2P((k 4+ N)/2) = (N, k)7*/* [ (—k/2).

Deduce the desired result.
The number &’ lies in the interval | — N, —N/2[. The previous results gives

Fl2[*)(&) = (N K€V = e(N, k)"
Applying the inverse transformation F~! to this gives
F(l2]*)(©) = [e(N, =N = k)] g7V 7.
Use the definition of the constant ¢(N, k) introduced above to show that the coeffi-

cient [¢(N, —N — k)]! is equal to this constant. Letting k tend to —N/2 also gives
~N/2 g =N/2 k —N/2
F(lz|7™=) (&) = [€] since [¢]" tends to [¢]7 /7.

Exercise [#] 4.5 (Convergences of Sequences in LP).

Let u,, be a sequence in LP, where p > 1, that converges either weakly or
almost everywhere to u and satisfies ||up||, — ||ullp. Show that w, converges
strongly to u in LP.

Hints. Reduce to u of norm 1 by dividing by ||lux|p, that is, by setting v, =
Un/||unl||p- The sequence v, then converges weakly to v = u/||ul|, and the norms
equal 1. Next, use the semicontinuity of the LP-norm for the weak topology to show
that ||vn, + v||p, — 2. Moreover, by Minkowski’s inequality and the convergence of
the norm, we have lim ||v, + v||, < 2. Finally, the norm of (v, + v)/2 tends to 1.
Consequently, by the uniform convexity in L”, we have

VUp —v — 0.

If, instead of the weak convergence, we have almost everywhere convergence, you
can still reduce to a sequence {v,} of norm 1 that converges to v of norm 1 and for
which (v, 4+ v)/2 converges almost everywhere to v. In this case, use Fatou’s lemma
to prove that
Un + v

2

and then use the uniform convexity to conclude.

Un + v

lglim‘
- 2

=1
P

< lim

P
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Exercise [¥] 4.6 (Convolution of a Function in L?(R") and a Function
in D(RY)).

Let f € LP(RY) and let ¢ € D(RY). Prove that the convolution f ¢ belongs
to C°(RY) N LE(RY) for every k > p.

Hints. Let k > p and 7 > 1 be defined by 1+ 1/k = 1/r+1/p. Since ¢ € D(RY), we
have ¢ € L and consequently ¢ x f € L*.
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Elliptic PDE: Variational Techniques

In this chapter we present a method for solving certain elliptic partial dif-
ferential equations, namely those of the form DJ(u) = 0 where DJ is the
differential, in the weak sense, of a functional J that will be convex in most
cases. The properties of convex functions allow us to search for a solution
of the partial differential equation (PDE) in the form of the minimum of a
functional, provided that the functional tends to 400 at infinity. After quickly
presenting the theoretical ingredients that allow us to deduce the existence
of a minimum for J, we give a number of classical boundary problems gov-
erned by elliptic PDE that may or may not be linear. We will solve these
by variational methods. We will then give regularity results for the solutions
of the problems. We conclude by presenting other properties in relation with
these solutions, in particular those that generalize the maximum principle for
harmonic functions.

5.1 Some Useful Results

A sequence {u,}nen is called bounded in LP(2) if there exists a constant
C > 0 such that

VneN, / |un|P(z)dx < C.
Q

For such a sequence, we will use the following notions and results:

e Quwing to the weak compactness of the bounded closed subsets of a reflexive
space: From any bounded sequence in LP({2) with 1 < p < oo, we can
extract a weakly convergent subsequence in L?((2).

e (Ouwing to the weak-star sequential compactness of the unit ball of the dual
of a separable normed space: From any bounded sequence in L!(£2), we
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can extract a subsequence that converges vaguely in the sense of measures
to a bounded measure on (2.

e Ouwing to the compact embedding theorem in WP (£2): Let 2 be a bounded
C* subset of RY and let p be a real number in |1, N[. From any bounded
sequence in WP (£2), we can extract a subsequence that converges almost
anywhere, converges weakly in W1?(£2), and converges strongly in L9(§2)
for ¢ < Np/(N —p).

e Owing to the uniform boundedness principle (Banach—Steinhaus theorem):
Let p € ]1, 00[. Every sequence in LP({2) that converges weakly in LP({2) is
bounded in LP(£2). For every sequence of measures or functions in L{ . ({2)
that converges vaguely to a measure, the integral of the sequence of its
absolute values over any compact subset of {2 is bounded uniformly with
respect to n.

In this chapter, we will assume {2 connected unless stated otherwise.

5.2 Notions from Convex Analysis

We begin by recalling results on convexity, which we give without proof. The
details can be found in the book [23]. From now on, X will denote a Banach
space, X' its dual, and (-, -) the duality pairing of X with X’. We assume that
all functions have values in R = R U {400} U {—o0}.

5.2.1 Convex Spaces, Hausdorff Property, Lower Semicontinuous
Functions

Definition 5.1. A subset C of X is called convex if it is closed under convex
combinations, that is, if

V(z,y) € C?, VA €]0,1], Xx+(1-NyeC.

Definition 5.2. A hyperplane is a vector subspace of codimension 1, that is,
a proper subspace of X for which there exists an zy € X such that the space
[xo] generated by it satisfies [xo] @ H = X.

Proposition 5.3. Let f be a nonzero linear functional on X ; then its kernel
is a hyperplane that is closed if f is continuous and everywhere dense in X
if f is not.

Definition 5.4. Given two convex sets C7 and Cy and an element b € X', we
say that the hyperplane H orthogonal to b, that is, defined by H = {z € X |
(b, x) = a}, separates C; and Cs if

CiCEt={xeX|({bx)>a} and CyCE ={rec X|(bx)<a}.
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Definition 5.5. We say that C; and C5 are strictly separated by H if there
exists an € > 0 such that

Cy + B(0,¢) C ET and Cy+ B(0,e) C E™.
The following is a weak form of the Hahn—Banach theorem.

Theorem 5.6. Let C' be a relatively compact convex subset of X and let M
be an affine submanifold of X such that M N C = @. Then there exists a
hyperplane H that separates M and C.

Definition 5.7. A functional J on X with values in R is called lower semi-
continuous (l.s.c.) at x if for every sequence {z,} that converges to z, we
have
(5.8) J(x) < lim J(zy).

n—oo

This property can also be expressed in the following equivalent form:
VAeR, A< J(z) = {y| J(y) > A} is an open subset containing x.

We say that a functional J on X is Ls.c. on X if it is L.s.c. at all points
of X. This property can also be expressed as follows:

VAeR, Ve e X, {z]|J(x)> A}isan open set.

This semicontinuity can easily be translated into a property of the epigraph
of the functional.

Proposition 5.9. A functional J is l.s.c. on X if and only if its epigraph,
defined by {(z,y) € X xR |y > J(x)}, is closed.

We continue with useful results on the minimization of convex functions.

Definition 5.10. A functional J from X to R is called proper if it is not
identically equal to +co and does not take on the value —oo. In particular,
its domain dom(J) = {z € X | J(x) € R} is nonempty.

Theorem 5.11. If J is convex and bounded in a neighborhood of a point xg
where J(xq) is finite, then it cannot take on the value —oo and it is continuous
and even Lipschitz in this neighborhood.

Theorem 5.12. If J is convez, l.s.c., and does not take on the value —oo,
then it is the upper envelope of the continuous linear functions that bound it
from below.

Corollary 5.13.

o Fwvery closed convex subset of a Banach space is also weakly sequentially
closed.
e A convex functional is l.s.c. if and only if it is weakly sequentially I.s.c.
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5.2.2 Subdifferentiability, Gateaux-differentiability
Definition 5.14. The subdifferential of J at z is the subset of X’ defined by
dJ(z) ={ae X' |Vy e dom(J), (a,y —z) < J(y) — J(x)}.

If J is convex, then 0.J(z) is a convex subset of X’. The subdifferential
can be empty, for example when the domain of the function is a single point
or, more generally, when the interior of the domain of the function is empty.

If J is differentiable in the sense of Fréchet, with derivative D.J(z) at «,
then 8J(z) = {DJ(z)}. We call a function subdifferentiable at x if its subdif-
ferential at = is nonempty. For example, the function x — |z| is differentiable
everywhere except at 0, where it is nevertheless subdifferentiable. Its subdif-
ferential at this point is the convex set [—1, 1].

Proposition 5.15. Let J be a convex function from X to R that is finite and
continuous at the point u € X; then 0J(u) # .

The Gateaux-differentiable functions are a special case of subdifferentiable
functions. Let us recall the notion of directional derivative.

Definition 5.16. Let J be a convex function on X. We define the right deriva-
tive of J along y € X’ at the point x to be

/ . J(x—i—/\y)—J(x)
o) = o S

When f is a function of one variable, then f'(z,y) = yfi(x) if y > 0 and
f(@,y) = fo(z)y if y <O0.

It is clear that in the general case, this infimum, which is also a limit,
exists. The following theorem links its derivative to the subdifferential.

Theorem 5.17. If J is continuous and finite at x, or if x is a point in the
interior of the domain of J, then
Vye X, J(z,y)= sup (z"y).
z*€df(x)
The notion of Gateaux-differentiability can be deduced from that of direc-
tional derivative.

Definition 5.18. A convex function J on X is called Gateaux-differentiable
at the point u of X if for every w € X, the map w — J'(u,w) is an element
of X', which we then denote by J’'(u). Thus, for every v € X, we have

T — ) = (J'(w),0—u) = lm 2Lz Dutt) = J@)

t—0,t>0 t
— lim J((u—l—t(v—u))—J(u).
t—0,t>0 t
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Corollary 5.19 (of Theorem 5.17). If J is convex and continuous at u,
then its subdifferential at the point u is reduced to a singleton in X' if and
only if J is Gdteaux-differentiable at u. We then have dJ(u) = {J'(u)}.

Example 5.20 (of Gateaux-differentiable functions). Let F' be defined
on LP(£2) with 1 < p < oo by setting F(u) = 1/p [, |u|P(x)dz; then F is
everywhere Gateaux-differentiable and

F'(u) = plu|P~2u.

Indeed, we first note that |u[P=2u € L*". Consider the convexity inequality
applied to v and h in LP({2), that is,

Ju+ hIP(2) = ul?(2) = plulP~*u(z)h(z).

By integrating this over (2, we obtain the inclusion p|u[P~2u € 9F (u).
Moreover, for almost every x € {2, the mean value theorem tells us that
there exists a number 6, ; € ]0, 1] such that

[u(z) + th(@)[” — |u(z)|P — pth(z)u(z) P~ >u(z)
= pth(z)(|u(z) + t0,.ch(x) P72 (u(x) + t0, ch(x)) — \u(x)|p*2u(x)).
By continuity, the term between parentheses on the right-hand side tends to 0

almost everywhere in {2 when ¢ — 0. Bounding the right-hand side from above
by 2(|u(x)| + |h(x)])P~t, we have

lu(z) + th(z)|P — |Ju(z)|P — pth(x)|u(x)|p’2u(x) ‘
t
< Clh@)|(Ju(@) P + [h()) "7

Finally, using Holder’s inequality, we see that the integral of this function is
bounded from above by [|h|, ([|ull, + ||h||p)p_1. We can therefore apply the
dominated convergence theorem and conclude that F' is Gateaux-differentiable
at u.

Remark 5.21. This example can be generalized to Sobolev spaces as follows.
Let G € WhP(£2) with p > 1 be defined by G(u) = 1/p [, |[Vu|P(z)dz;
then G is Gateaux-differentiable everywhere (cf. Section 5.8):

Yo e WP (0), (G'(u),v) = /Q |Vu(z) P2 Vu(z) - Vo(z)dz.
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5.2.3 Minimization of a Convex Function

Definition 5.22. A functional J on a separable Banach space is called coer-
cive if
lim  J(z) = +o0.

llzll x =00

We wish to study the minimum of J on a convex closed subset of X. We
will use the following results.

Proposition 5.23. Let J be a convex function on X with values in RU{+o0}.
The following two properties are equivalent for every u € dom(J):

(1) J(u) = infrex J(x).
(2) For every v € dom(J), we have J' (u,v —u) > 0.

Proof of Proposition 5.23.
e If u satisfies (1), then

J(u+tlv—u) — J(u)

Vo € dom(J), YVt €]0,1], n

2 0.

We obtain property (2) by letting ¢ tend to 0.
e Conversely, for every x € X and every t € ]0, 1], we have
Ju+(z—u)—J(u) _ Ju+tlz—u))—J(u)

J(x)— J(u) = 1 > ;

We obtain the inequality J(z) — J(u) > J'(u,z — u) > 0 by letting ¢ tend
to 0, whence property (1).

O

Proposition 5.24. If inf,cx J(u) is reached for some v € X and J is
Gateauz-differentiable at u, then the subdifferential at u, which we can write as
0J(u) = {J'(u)}, is reduced to zero. Conversely, if J is conver and Gateaur-
differentiable at u with J'(u) = 0, then it has a minimum at u.

Theorem 5.25. Let X be a reflexive separable Banach space, let U be a con-
vez closed subset of X, and let J be a proper, convex, coercive, lower semi-
continuous functional. Then

inf
I

1s reached at some w. This minimum is determined by the relations

Vv edom(J)NU, J'(u,v—u)=0.
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When U = X, this characterization becomes
Vv € dom(J), J'(u,v)=0,

or 0 € 8J(u), once more giving J'(u) =0 if J is Gateauz-differentiable at w.
In the case of an affine subspace U = xog + Y, where Y is a closed vector
subspace of X, the minimum xq + u satisfies

VoeY, xzg+v€domJNU = J (29 +u,7)=0.

If J is Gateauz-differentiable at xo + w, this characterization becomes
J/(LU() + ﬂ) =0.

Proof of Theorem 5.25.

Let us show that the infimum is finite. We assume that it is not, in which
case it equals —oo and there exists a sequence {u, } € UN with J(u,) — —oo.
If {u,, } were bounded, then by extracting a subsequence that converges weakly
to u, we can show that since J is Ls.c.,

J(u) = —o0,

which is absurd. Therefore {u,} is unbounded and there exists a subsequence
ugm)llx — 00, so that the coercivity of J implies that J(uy(,)) — +oo,
giving a contradiction. We conclude that
m = inf J(u) > —oc.
uclU

Let {uy} be a minimizing sequence for the problem; then J(u,) — m and, in
particular, {u,} is bounded. If not, there would exist a subsequence {uq ()}
that tends to infinity and therefore satisfies .J(tq(y)) — 00. Since X is reflexive
and U is weakly sequentially closed, we can extract a subsequence from {u,}
that converges weakly to u in U. Since J is convex and l.s.c., it is also weakly

l.s.c., so that
J(w) < lim J(uy) =m,

n—roo

proving that u is a solution. The remainder of the theorem follows from the
definitions of the directional derivative and of the subdifferential. O

Remark 5.26. If J is strictly convex, then the solution w is unique.

Remark 5.27. If u is an interior point of U, then J is continuous at u and has
a nonempty subdifferential at w. Since v is the minimum, we have 0 € 0.J(u)
by the previous proposition.
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5.3 Solving Elliptic Linear PDE with Dirichlet Boundary
Conditions

5.3.1 Introduction

Let us consider the physics problem that consists of studying the equilibrium
position of a stretched elastic membrane in a plane. The membrane projects
into an open subset (2 of the plane, with its boundary mapping onto the
boundary 9f2. At each point x = (21, z2), we apply a vertical force defined by
a function z +— f(z), giving tension in the membrane. The displacement of the
point = can be identified with the height of the membrane z = u(z) at that
point. The equations describing the situation in physics lead to an equation
for w, namely —Awu = f with, moreover, the boundary condition v = 0 on 0f2.
Replacing the boundary condition v = 0 by u = ug, where ug is a function
on 02, we obtain an inhomogeneous Dirichlet problem.

Fig. 5.1.

By modifying the boundary condition, we also find other types of problems
such as the Neumann problems, which we will study further on.

5.3.2 The Dirichlet Problem [Dir]% in H'(£2) for the Laplacian

Statement of the Dirichlet Problem. For an open subset £2 of RY, we let A
be the Laplace operator that sends a distribution T' € D’(£2) to

0T

AT = —.
> o

1KigN 7 E

We begin by considering the so-called Dirichlet problem. Let {2 be a bounded
open subset of RV of class C!, and let f be a function in L?(§2). We are
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looking for a solution u of the problem

—Au = in 2
[Dir); - u=J in®
u=20 on Of2.

We can also consider the same problem with a nonzero restriction to the
boundary, which will need to have a certain degree of regularity. For example,
if we are looking for a solution in H!(§2), then the restriction will need to be
at least in HY2(912).

Uniqueness of the Solution in H'($2) if it exists. Let us suppose that both u
and v in H'(£2) satisfy the equation. The difference u — v then satisfies
A(u—wv) = 0. Multiplying this by u — v, integrating over {2, and applying the
generalized Green’s formula from Chapter 3, we obtain

/ |V(u —v)[*(z)dz =0, whence wu— v = constant.
Q

Since u — v = 0 on the boundary, the uniqueness of the solution follows.

Existence of a Solution in H'(£2). To show the existence of a solution, we
transform the problem into a so-called variational one. We then apply Propo-
sition 5.24 and Theorem 5.25 to a functional J that we will associate to the
Dirichlet problem.

Let 2 be a bounded open subset of RV, let f € L2({2), and let J be
defined on H{ (2) = Wy(£2) by setting

J(u):%/Q|Vu|2—/qu.

Let us suppose that J is convex, continuous, and coercive in H}(§2). Theorem
5.25 then ensures us of the existence of a minimum for J. Since J is Gateaux-
differentiable, and even Fréchet-differentiable, at every point u € H'(£2), with

<J’(u),v):/QVu-Vv—/va,

it follows that if w is a minimum, then for v € D(2), the condition (J'(u),v)=0
(Proposition 5.24) gives —Au = f. In other words, u is a solution of the
Dirichlet problem.

We can easily see that J is convex and continuous, so that it remains
to show that J is coercive on HJ(£2). We will need the following Poincaré
inequality (cf. its generalization in Exercise 2.9).

Proposition 5.28. Let {2 be a bounded domain of class C*; then there exists
a constant Cp > 0 such that every u in H}(£2) satisfies

lull 71 (2) < Cpl|Vull2.
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Proof of Proposition 5.28. If we assume that the result of the proposition is
false, then there exists a sequence {u,} in H}(§2) with [unllgz = 1 and
[Vu, |3 < 1/n. By the compactness of the Sobolev embedding H!(§2) —
L?(02), we may extract a subsequence from {u,} that converges weakly in
H(£2) and strongly in L?(£2). Let u be its limit. Since we have ||Vu,|2 — 0,
the lower semicontinuity of the norm in L? for the weak topology gives

IVullz < lim [[Vug[|2 = 0.

Consequently, u is a constant that must be zero because it belongs to H}.
However, since {u, } converges strongly to u in L2, we also have

l[ulla = Tim [lupll2 = Tm fJun || 73 =1,
giving a contradiction. O

Let us return to the coercivity of J. Using the constant Cp of Proposition
5.28, we can write

’fg fU’ < [ fllellulle < I l2llwl 2 o)
< CBIIfII3 + @HUH%H(Q)‘

The coercivity then follows from J(u) > 1/40123||u||%,1(m — 113
We will now generalize this Dirichlet problem to an operator other than A.

5.3.3 The Dirichlet Problem [l)i’r]i in H(£2) for an Operator A

Statement of the Problem. Let £2 be a bounded domain of class C! and let f
be an element of L2(£2). Let A = (A;j)i; € L>®(2,RN x RY) satisfy the
following:

(1) For every ¢ and every j in [1, N], we have A;; = Aj;.
(2) There exists an o > 0 such that

Vo eRY, ZAijl”il’j > alz|?.
ij

This last property is called the uniform ellipticity of A.
We are looking for a solution u of the problem
[Q)ZT]Q : — Zij 81' (Aijﬁju) = f in .Q,
u=0 on 0f2.
Remark 5.29. This problem can also be written as — div(A(z)Vu) = f, that
is, as a PDE in divergence form (cf. introduction). One of the advantages of

writing it this way is that we obtain a variational form of the problem. This
problem is a generalization of [Dir]fA, which corresponds to the case A;; = 7.
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Ezistence and Uniqueness of a Solution. Both for the existence and for the
uniqueness, it suffices to follow the same arguments as those used for the
problem [Dzr] The functional J that we associate with the problem is

J(u) = %/Q A(x)Vu(z) - Vu(z)dx — /Q f(@)u(z)dx

where A(z)X-Y denotes the scalar A;;(x)X;Y;. The variational form of [Dir]ﬁ
is therefore the minimization associated with

1
inf - A . — .
uegl&(ﬂ){2/g (x)Vu - Vudz /qudx}

We can easily demonstrate the convexity and continuity of J. The coercivity
follows from the Poincaré inequality and the uniform ellipticity of A. The
functional J is Gateaux-differentiable since its derivative is defined by

(J' (u),v) = /QA(J:)Vu(x) -Vo(z) dx — . f(@)v(x) dx

Using Green’s formula, we can show that the minimum of J on H}(2) is
indeed the solution of the problem [Dir]?,.

Remark 5.30. Note that we can also replace f € L? by f € H-1(£2). In
that case, we replace the integral [, fu by the duality pairing (f,u). The
corresponding modification of the previous functional remains continuous and
coercive.

This remark will be useful in the section on nonhomogeneous problems,
for both the Dirichlet and the Neumann problems.

5.3.4 The Problem [’Dir]OA, »» Eigenvalues and Eigenvectors of —A

Let {2 again be a bounded domain of class C'. The optimal constant C' = C%
in Proposition 5.28 is given by 1+ 1/A;, where

= inf / \Vul|?(x
u€HG ()

flull2=1

We will see that this critical value A; is an eigenvalue of —A and that the
associated homogeneous problem, [Dir]OAv_ y» admits nonzero solutions that
are eigenvectors of —A for the eigenvalue A;. More precisely, we have the
following result.
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Proposition 5.31. Let Ay be as above; then A1 is positive and there exists a
u > 0 satisfying ||lull2 = 1 and ||Vul|> = A\1. Moreover, u is an eigenvector
of —A for the eigenvalue A1, that is, u is a solution of [Dir]%_)\l.

Furthermore, the associated eigenspace has dimension 1 when {2 is con-
nected. In particular, under this assumption, every eigenfunction has constant
sign.

Proof.

We begin by showing that A; > 0. This follows from the Poincaré inequal-
ity, but we will give a direct proof for ease of reading.

We have A1 > 0. Let us assume that Ay = 0. Then there exists a sequence
{un} in HE(2) with [Ju,ll2 = 1 and [|[Vu,|l2 — 0. Since HZ(£2) is a Hilbert
space and therefore reflexive, we can extract a subsequence from {u,} that
converges weakly in H'({2) to a function u. By the compactness of the em-
bedding of H} in L?, we have ||ul|s = 1 and, finally, the strong convergence of
{u,} to win H! because it tends to u in L? and {Vu,} — 0 in L?. We deduce
that Vu = limy,— 4 o0 Vu, = 0, whence u = 0 because v = 0 on the boundary,
giving a contradiction with ||u|l2 = 1. Consequently, we have A; > 0.

Next, let {u,} be a minimizing sequence, that is, one satisfying
V|3 = A1 with ||u,|l2 = 1. The sequence is bounded in H}, so that there
exists a subsequence, which we also denote by {u,}, satisfying

un—\uinHé, u, — uin L2

In particular, |lullz = 1, and by the lower semicontinuity of u +— ||[Vul|3 for
the weak topology, we have

M < [ VP @de < lim [Vual3 = A
(9

Consequently, u satisfies ||u||2 = 1 and || Vu||3 = A\;. Moreover, by noting that
(V|u])|| = [|[Vul|| (cf. Lemma 5.62 at the end of the chapter), we deduce that
there exists a nonnegative solution.

Let us now show that u satisfies the equation —Au = Aju. Let u be a
solution of the variational problem that satisfies |Ju|2 = 1, let ¢ € D(£2), and
let t € R satisfy 2|t| < ||¢[l3 " Then ||u + t@|l2 # 0 and u + to € H}, so that,
by the definition of A1,

|V (u+ tp)|2de > M\ / |u + tp|*da.
Q 0
It follows from the assumptions that

2t/Q Vu~Vgo(x)dx+t2/Q|Vgo\2(m)d:v2 A1 (2t/{2ugo(x)dx+t2/9|<p|2(ac)dx).
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Dividing by ¢, which we assume to be positive, and letting ¢ tend to 0, we
obtain [, Vu-Vedr > A\ [, up(x)de. When t < 0, we either apply the same
process or change ¢ to —p to obtain the opposite inequality, whence

Vu - Veodr = A\ / up(x)de.

2 02

The result follows by using the definition of Au in the sense of distributions.

Let us show that \; is the smallest eigenvalue. We take a A € R and a
nonzero v € Hg such that —Av = Av. Multiplying by v and applying the
generalized Green’s formula, we obtain

Mloll? < /Q Vof? = Allo]2

and therefore A > A\;.

Let us now show that the eigenspace corresponding to A\; has dimension
1. Let v be an eigenvector for A; and let u be a nonnegative eigenfunction.
We showed the existence of such a u earlier on in this proof. We multiply the
eigenvalue equation by v?/(u +¢) € H}, where € > 0. This gives

2 2
)\1/ ”“dxz/vu-v( Y )dx.
Qu+e 0 u—+e

The right-hand side satisfies

2 2
Vu~v< v ) =2V Vu - Vo— —>|Vul?
u+e u+e€ (u+e)?

v

2
Vu — Vv‘ + |Vv)?.

u—+e

Hence

viu v 2 9
A dr = — ‘ Vu - w‘ dz+ | |Vvl*da.
0 u—+e 0 u—+e 0

Now, by the dominated convergence theorem, the left-hand side tends to
M [ v (x)dz = [, |Vv|*(x)dz. Consequently,

lim/‘ Y Vu — Vo
e=0 Jolu+¢€

which implies that lim. o V(v/(u +¢€)) = 0 strongly in L? on any compact
set. By the strong maximum principle (cf. Proposition 5.72), v > 0 in the

2
:0,

interior of f2. Let {21 be a connected compact subset of {2 and let mg, be a
lower bound for u in 2. The sequence {v/(u + ¢))} then converges to v/u in
L?(£21). The previous limit shows that its gradient is zero in 2. We deduce
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from this that v = cg, u. Finally, by considering connected open sets contain-
ing 21, we see that this constant does not depend on {2;. Since the open set (2
is connected, we have thus proved the existence of a C' such that v = Cu in (2.
At the same time, we have shown that every eigenfunction has constant sign,
concluding the proof. O

Remark 5.32. Instead of this proof, we can also use the regularity of the
solutions of Dirichlet problems (see further on) and the Hopf principle stated
in Theorem 5.81. In that case, we note that the function v?/u belongs to H*,
allowing us the avoid the use of the parameter e (cf. Exercise 5.1).

5.3.5 The Problem [Dir]}, _, with 0 <X < X\

We wish to find a solution u of the problem

—Au+AIu=f in2
Dir), | ’
[ }A’A {u:() on 0f2.

The functional we now wish to minimize is no longer convex but is coercive
and weakly l.s.c.. We assume that 0 < A < A;. Given a bounded domain {2
in RY of class C!, we wish to find a solution u of [Dir]g’#\ in H}($2), where
feL?n).
Ezistence of a Solution.

The equation leads us to consider the functional on H}(£2) defined by

J(u):%/Q|Vu|2(x)dxf%/Q|u\2(x)dx7/9f(x)u(x)dx.

This functional is coercive because A < A;. Its minimum therefore belongs
to R. Let {u,} be a minimizing sequence for J. It is bounded in H}, whence,
after extracting a subsequence, if necessary, it converges to u € Hy, converges
weakly in H', and converges strongly in L?. It follows that the nonconvex term
A [o |un|?(z)dx converges to —A [, [u|?(z)dz. Since the gradient of the other
term is L.s.c. for the weak topology, we can deduce that u is a solution of

giving the desired result.

Since J admits a minimum in u, we have J'(u) = 0, giving the PDE
satisfied by v in HJ(£2), namely —Au — \u = f.
Uniqueness. Since the equation is linear, it suffices to verify that the solu-
tion w of [Dir]) _, vanishes in 2. Recall that if w is not identically zero,
then it is an eigenfunction for an eigenvalue A < A1, which is impossible by
Proposition 5.31.
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5.4 Regularity of the Given Solutions

We will now consider the regularity of the solutions of the Dirichlet problems
we have studied above.

5.4.1 The Problem [’Di'r]fg

Theorem 5.33. Let {2 be a bounded domain of class C* and let f be an ele-
ment of L*(£2). Let A € C'(2,RN*N) satisfy the following conditions:

(1) For every i and every j in [1, N], we have A;; = Aj;.

(2) There exists an o > 0 such that

Ve RY, ZAijxixj > alz]?.
ij

Then the solution u of [Dirm in H}($2) belongs to H?((2).

Proof of Theorem 5.33. Let us begin with an introduction for ease of reading.
We will divide the proof into three steps that we will each justify.

Using a partition of unity {¢;} associated with the class C? cover of 2, we
reduce to showing that every ¢;u belongs to H?(2). Indeed, if ¢ belongs to
D(RYN), then

div(A(z)V(pru)) € L*(£2),

because the right-hand side of
div(A(z)V(pru))
= Y [0:(Audienn) + AiyOssion)u + Aidipndiu] + pr div (A() V)

belongs to L?(£2). When k = 0, then by the compactness of the support of
wou in 2, we have

div(A(z)V(pou)) € L*(RN),
thus justifying the first step, which we will now state.
Step 1. We begin by showing the result on RY| that is, if u € H'(RY) has
compact support and satisfies the equation

—div(A(z)Vu) = f
with f € L2(R™) and A symmetric, Lipschitz, and coercive, then u € H?(RY).

For the remaining functions ¢,u, we must now show that if v has com-
pact support in an open set of the form (2 N {2, with boundary condition
oru(a’,a(z’)) = 0 and, moreover, satisfies div(A(z)V(pru)) € L?, then
oru € H?. Unless a is the zero function, in which case the boundary is lo-
cally straight, we can reduce to this situation by changing the local coordinate
systems, as we will show further on. This remark justifies the second step.
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Step 2. We extend the result obtained in the first step to the open set RV~ x
10, +o00[ with the condition u = 0 on {zx = 0}.

We will conclude the proof as follows.

Step 3. We use local coordinate systems and partitions of unity to extend the
result to 2.

The difficulty in this step lies in the modification of A(x) when we change
the local coordinate systems. We deal with this problem by noting that A(x)
is replaced by a matrix B(z) that is also uniformly elliptic. We can therefore
conclude using the results we have already obtained on R¥~1 x ]0, +o0].

First Step. Let u € Hl(RN) have compact support. We fix a direction e; and
define the translation uy :  — u(x + he;). Since this is linear in u, we have
div(ApVuy) = fr. Consequently, after subtracting the equation for uj, from
that for u and multiplying by uj, —u, integrating over {2 and applying Green’s
formula on H' x W2(div) gives

/ (AhVuh - AVu) . (Vuh - Vu)dx = / (fn — )(up —u)dz.
RN RN

We expand the first factor to (A —A)Vup +A(Vu, —Vu), after which we use
a translation of the variable in the integral on the right-hand side to deduce
that

. S Ao~ ) -y
* /]RN %: ((Ai)n — Aij) 0i(w)n (95 (un) — Oju) dzx

= / (fo — f)(up —u)de = - f(@)(—u—p — up + 2u)da.

RN

Dividing by h? gives

[ S (Pl (=2

_ _/ 3 (Aij)n — Aij ai(uh)aj(uh) —Oju .
RN h h

U_p +up — 2u
. (x)T(x) dx.
To bound the second term on the right-hand side, we let v = (up —u)/h.
We then have (v —v_j)/h = (up —2u+u_y)/h?. Since v € HY(RY), we
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can deduce the following inequality from inequality (2.26) of the proof of
Proposition 2.23 applied to 2 = RY:

V(up —u
o= vl < Bl < [af] Y=
2
Using, moreover, the uniform ellipticity of A, the previous relation gives
V(uy — 2
o 75
h

Finally, we obtain

< |VA| ol Vur |2 HiH + /12 H H

uh—u
=5

Since the right-hand sides does not depend on h, we may use the charac-
terization of the functions in H! using finite differences given in Chapter 2
(cf. Proposition 2.23). By choosing a basis of R for the e;, we obtain that
for a solution u of [Dir]ﬁ, VVu belongs to L? and has norm satisfying

1
< = (IVull2 1V Al + 117112 ).

1
IVVulla < ~([IVull2 [VAfloo + 1 f]l2)-

Second Step: RVN~1 x |0, +00[. We can repeat the computations given above
with h = he;, where ¢ < N. Given the vanishing of u;, — u on the boundary,
Green’s formula applied to the formula obtained by integrating the product
div(A"Vuy, — AVu)(up — u) gives us the inclusion

diju € L* (RN~ x 10, 4+00]),

provided that one of the indexes (i, j) is different from N. It remains to show
that dyyu € L2, For this, we write the equation as

On(ANNOnu) = f — Z 9;(Aij0ju) € L.
i<N—1,j

Setting Ay yOnu = bv, we reduce to showing the following result.

Lemma 5.34. If b € WH(RVN=1 x |0, +00]) with b > a > 0 and v €
L2(RN=1 x 10, +00[) satisfy Oy (bv) =V € L2 (RN~ x )0, +00[) in the sense
of distributions, then Oxv = (V — (Onb)v)/b belongs to L?(RN 1 x |0, +-o0]).

Proof of Lemma 5.3/.

We first assume that b is also of class C!, in which case the argument is
simpler. Indeed, since dyv is a distribution of order < 1, we can differenti-
ate its product with b using the formula Oy (bv) = bOyv + vONb, giving us
bOnv € L2 The result now follows from the inclusion 1/b € L.



246 5 Elliptic PDE: Variational Techniques

The result still holds when b € W1 Indeed, if dy(bv) € L2 (RN ~1 x
10, 4+00[), then by extending b and v by the reflexion (z/,zx) — (2, —2xn),
that is, by taking v(a’,xy) = v(z/,—2y) and the analogue for b, we ob-
tain dn(bv) € L2(RY). Consequently, once more using Proposition 2.23, we
find the upper bound ||((bv)y — bv)/h|l2 < C, where C' does not depend on
h = hey. It follows that the function b(v, — v)/h+ v (by, — b)/h is uniformly
bounded in L?(RY). Since b is Lipschitz, whence vy, (b, — b)/h is also uniformly
bounded in L?(R™), we can deduce that b(v;, — v)/h is uniformly bounded in
L?(RY). Finally, since b has a lower bound, (v —v)/h is also bounded in
L2(RY), giving dyv € L2(RY). 0

Remark 5.35. Let us note that when A either is a diagonal matrix or has
coefficients A;n all equal to zero, which is for example the case for the Laplace
operator, then we can use the extension u(2’, zy) = —u(z’, —x 5 ) that satisfies

div A(Va)(z',zn) = f(2',xn) in RY, where f is the antisymmetrization of f.

Third Step. We continue with the case of an open set of class C2. Let u be
the solution of [Dz'r]ﬁ. Let ¢ be a regular function with compact support in
2N £2;,, where £2;, has the property that there exists a C? function aj on an
open subset O" of RN~ such that

2N, c{(@,zy) |2 € O, xy > ar(2))},
02N 2 ={(z',ax(z")) | 2’ € O'}.

Let us show that the function pgu satisfies

div(A(z)V(pru)) = g € L*(2 N 24).
Simplifying the notation by writing ¢ for ¢y and (2 for 2N (2, we have

div(A(2)V(pu)) = div(A(z)eVu) + div (A(z)(Ve)u)
= pdiv(A(z)Vu) + Vo - A(x)Vu + div(u A(z)(Ve))
=e@f+h,

where h € L?(2). Indeed, A € L and Vu € L? imply that A(z)Vu € L?
and Vi € D(RY), so that A(z)VuVe € L2. Moreover, (V)u € H', so that
uA(x) - Vo belongs to H! since it is the product of a function in W1>° and a
function in H'. We have thus reduced the problem to showing the following
regularity result.

Lemma 5.36. Let u have compact support in 2, N 2 and satisfy
div(A(z) - Vu) =g € L2(2,N2) and w=0 on NN 4;

then u € H*(RN=1 x 10, +o0l).
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Proof of Lemma 5.36.

Let v be defined on O’ x |0, 4o0[ by v(z/,2n) = u(z’,a(2’) + xn). The
regularity of {2 then implies that v belongs to H(O’ x ]0,+oco[) and has
compact support in @’ x [0,4o00[. We will show that it satisfies an equation
of the type div(B(Vv)) = h, where h is an element of L? and B is a matrix
that we will determine using A.

For a fixed x in {2 N {2, the relations

Ou(z',xn) = Ov(a’,zn — a(z)) — O;adnv(z’, zn — a(x')),
Onu(z',xn) = Onv(x', oy — a(x')),
lead us to associate to X € RY the vector Y defined by
Vie[l,N-1], YV;=X,—-0;aXy and Yy =Xn.

We must therefore determine the symmetric matrix B such that for every
X € RY, we have

(*) D BiXiX; =) AyYY;.
ij ij
Expanding this equality and simplifying, we obtain the relations

V(’L,]) S [l,N — 1]2, Bij = Aij
Vie [LNﬁ 1]; BiN = AiN - Z Aijﬁja

JSN-1
Byny = AnNn + E Aijaiaaja — E O;aA;nN.
ij<N—1 I<N—1

The matrix B therefore has coefficients in W1°°. Our assumptions on a allow
us to conclude that the function (2/,zy) — h(z',zy) = f(2/,a(2") + zn)
belongs to L?(0’ x ]0, +o0]). Since v(z’,0) = u(2’,a(z’)), we see that v is a
solution of [’Dz'r]%. In order to apply the results of the second step, we still
need to show the uniform ellipticity of B.

Let C be the matrix for which Y = CX:

Vng—l, Cij :5ij—8ia5Nj, CNj:(ij.

This matrix is invertible, and () corresponds to B = CAC. It is therefore
clear that both C and its inverse belong to L°° and that, consequently, the
matrix B is uniformly elliptic. It follows that v is in the situation of the second
step. Hence v € H?(RN~! x )0, +o0|).

Returning to u, we finally have

oru € H?(12, N R2),

giving the inclusion stated in the lemma. a
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Since u is the sum of the ¢gu, it belongs to H2(£2). This concludes the
proof of Theorem 5.33. O

Remark 5.37. When A = Id, that is, for [Dir]fA, we can use a regularizing
argument in the first step, as follows.
We begin by showing that if u € D(RY), then

/|Au|2:/ |VVul?
RN RN

This follows by carrying out two successive integrations by parts:

/]RN ;&‘j(uf(m)dx = — ;/RN dijju(x)diu(x)dz
- Z/RN 0jju(x)diu(z)dr = /RN | Aul?.

We then consider u. = p. x u. We have
Aue = pe * f

and, by the computation above, VVu, is a Cauchy sequence in L?(R"Y). Since
it converges in the sense of D’ to VVu, we find that u € H2(RY).

5.4.2 Higher Order Regularity

Proposition 5.38. For m > 0, consider a bounded domain £2 of class C"™+?
and let f € H™(§2). Let A be a matriz satisfying the conditions of Theorem
5.33 and the regularity condition A € C™+1(82). Then the solution u of the
problem [Dir]!y is an element of H™+2(£2).

Using Sobolev embeddings, we note, in particular, the following conse-
quences of the theorem:

When 2(m + 2) > N, the solution u is continuous, and when 2m > N, it
is of class C2.

If feC>®(f2) and A € C*(£2), which implies that f €, H.(12), then
u €, H2(02) = C>(0).

loc

Proof of Proposition 5.38.

We use induction on m. Let u be the solution of the problem [Dir]ﬁ in
HY(RN=! x )0, +00]), where f € H™(RN~! x ]0,+o00[). We suppose that
the proposition has been proved at the order m — 1. We therefore have
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u € H™M(RN=! x ]0,+00]). For k < N — 1, differentiating the equation
with respect to the variable xj gives

(%) D 0;(Ai;0i(kw)) = O f =Y 05 ((0rAij)Oru).

ij ij
Hence, taking into account the assumptions and the result at the order m —1,
we see that the right-hand side g of (%) belongs to H™~!. Moreover, on 9f2,
we have Oyu = 0 because u(z’,0) = 0 implies dyu(z’,0) = 0. The relation ()
therefore expresses the fact that dyu is a solution of [Dirl¥.

Once again using the induction hypothesis for dyu, we see that the inclu-
sion of g in H™~ (RN =1 x]0, +00]) implies that its derivative dyu belongs to
H™ RN % ]0, +o0]).

It remains to show that Oyu € H™ (RN~ x ]0, +oc[). Now, since u €
H™ RN x )0, +0[), we already have dyu € H™(RN~1 x ]0, +o0o[). We
have just shown that Opu € H™ RV =1 x ]0, +00]), so that we have Opyu €
H™RN=1 x]0, +00]) for kK < N — 1. Moreover,

ANNONNU = f — Z Aijaiju — Z@Aiﬁiu S .[T[’"L(RN_1 X ]O, —I-OOD
(1,4)#(N,N) ij

Finally, by the uniform ellipticity of A, there exists a constant a > 0 such that
AnnNn = a > 0. Therefore, since for a function v € H™ and a nonzero b € C™,
we have v/b € H™, we obtain dynu € H™(RN =1 x ]0, +00]). It follows that
u € H™F2(RN-1 x 0, +00]).

In the above, we could also only assume that A is an element of W™m+1:>°,

Let us continue with the general case. We again use the partition of unity
and localization. We use the notation from the definition of the C™*2 reg-
ularity. We must show that if div(A(Vu)) € H™(2, N 2), then pru €
Hm+2(9k N Q)

Let v be the function on (2 N {2 defined by

v(a’,en) = (pru) (', a(z’) + zn),

where a is a C"™*? function on O’; then v has compact support in O’ x [0, col.
For B as in the proof of Proposition 5.33, we have

div(B(Vv)) =g

with g € H™(O' x |0, 4+oc[). Since B € C™T(£2N §2;), the first part of the
proposition tells us that v € H™+2(0’ x |0, +00[). Moreover, since a is C™*2,
we find that pru € H™2(02, N 2).

By gluing the local results, we finally conclude that v € H™2((2). O
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5.5 Neumann Problems

When, in the physical model of Dirichlet, the boundary condition no longer in-
volves an equality concerning the unknown function but rather one concerning
a derivative of that function, we speak of a Neumann problem.

5.5.1 Normal Trace and Derivative

Let 2 be a bounded domain of class C! and let A be a function in C1(£2) with
values in the space of symmetric N x N matrices over R. We suppose that o €
L?(02,RY), so that z — A(x)o(z) defines a function on £2 with values in RY.
Since (2 is bounded, we have Ao € L?(£2,RY), so that if div(Ao) € L%(2),
then Ao € W (div)(£2) (this space was introduced in Chapter 3, §3.4.3). By

the generalized Green’s formula 3.58, the symbol Ao - 7 is well defined on

0f2. Hence
YU € H'(2), (Ao-T,vU) = Aa(x)-VU(a:)dm+/ U(z)div(Ac)(x)dx.
2 Q

Definition 5.39. The linear functional Ao - 77, which belongs to the dual
H=1/2(002) of the space of traces H'/2(012), is called the normal trace of Ao
on 0f2.

In particular, if u € H*(£2) and div(AVu) € L?, the normal derivative or,
more precisely, the A-normal derivative A(x)Vu - W= Aij0;un;  of u belongs
to H~1/2(92). Taking the identity matrix for A, we find that if Au € L?(£2)
and u € H'(£2), then the normal derivative d,,u belongs to H~'/2(042).

5.5.2 Homogeneous Neumann Problem [./V'eu]£

Statement of the Problem. The problem consists in determining u in H*'({2)
such that

e —div(A(z)Vu) = f in £2,
Weals {A(Vu) T =0 on 0f2.

Remark 5.40. Note that this problem has a solution only if
(5.41) / f(x)dz = 0.
0

Indeed, if u is a solution, then by applying Green’s formula with ¢ = 1, and
A(z)Vu, which belongs to W (div), we have

/ fl@)dx = / — diV(A(x)Vu(x))dx = (A(z)Vu - 7, 1) =0.
Q 19,

We will assume that this condition is satisfied and, moreover, that A satisfies
the conditions of Theorem 5.33.
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Variational Formulation. As before, the variational form of this problem is
the minimization associated to

(5.42) inf J(u) = inf {%/Q(A(x)Vu) -Vudr — /qud:v}

uweH ()
to this problem. Taking into account the hypothesis fQ f(x)dx = 0, we note
that if u is a solution, then so is u + cte. More generally, the functional J
defined in (5.42) satisfies J(v + cte) = J(v)Vv € H(£). By identifying
the space of constant functions with R, we can work on the quotient space

P

H'(Q2) = H'(2)/R. When endowed with the quotient norm, that is,

(5.43) el v, = nf 1w+ el oy

(cf. Exercise 1.28), this is a reflexive separable Banach space. To show the co-

ercivity of .J, which on I?\(ﬁ) is defined by J(v) = J(v), we use an inequality
analogous to that of Poincaré.

Proposition 5.44. Let {2 be a bounded domain in RN . For every u in H'(12),
let [u]o = (mes(2))~* [, u(z)dz.
Then there exists a constant C' > 0 such that

Vue H (), |u] < lu = [ulelelln (o) < ClIVullz-

HY(2)
Proof of Proposition 5.44. If u = cte, the inequality is obvious. Otherwise, for
u € HY(R2), we set m(u) = [u]n1p. Our proof is by contradiction. We therefore
assume that there exists a sequence {u,} € H' with nonconstant u,, such
that

ot = ()13 () > [Vt

Consider the sequence with terms v, = (|[u, — m(uy)|2)~(un — m(uy)).
We have |[Vu,|2 < 1/n and ||Jv,]l2 = 1, so that {v,} is bounded in H*(£2).
Since {2 is bounded, we can therefore extract a subsequence, which we de-
note in the same way, that converges weakly in H'(2) and strongly in L2(£2).
Since ||Vu,||2 converges to 0, we have strong convergence in H'({2). In par-
ticular, the chosen subsequence converges to a constant function. However,
as the functional m is linear, we have m(v,) = 0. Since m is clearly contin-
uous for the norm on H!, it follows that {m(v,)} converges to m(v), which
equals v because v is a constant. Consequently, v = 0. Using the equality
vl = 1 and the strong convergence, we deduce that [[v]|z2(o) = 1, giving
a contradiction. O
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Ezistence of a Solution. Let us return to the variational form (5.42) of the
problem. The convexity of J follows from the convexity of the integral and
the linearity of the term [, f(2)u(z)dz. The continuity is obvious. To deduce
the coercivity, we first note that J(v) > «|Vl|3 — || f||2||v|l2 by the ellipticity,
and then, that by Proposition 5.44,

= a ~
J@) = ZZ ol = 111200

We deduce from this the existence of a minimum of J on fﬁ\(ﬁ) It remains to
describe the function w realizing this minimum and to verify that it satisfies
the Neumann condition.

Using the differentiability of J, u is characterized by

Yo € D(02), / A(x)Vu(z) - Vo(x)de — / f(z)p(z)dx = 0.
Q Q
It follows that in {2, we have the equality
Vee 2, —div(A(x)Vu(x)) = f(z).

Keeping in mind this equality, we apply Green’s formula for every ¢ € H*(£2).
This gives

A(z)Vu(z) - Vo(x)dx — /Q f@)p(x)de =0= A(z)Vu- T p(z)dz.

N o8

We conclude that A(z)Vu-7 = 0 in the dual H'/2(8£2). This guarantees the
existence of a solution.

Uniqueness in the Quotient Space. Let u and v be two solutions. We will show
that their difference w is a constant. Indeed, w satisfies [Neu}%, that is,

Vze 2, —div(A(z)Vw(z)) =0 andon dR, A(z)Vw- -7 =0.

By multiplying by w and applying Green’s formula, we obtain

/ A(z)Vw(z) - Vw(x)dr = / w(z)A(z)Vw - Wdo = 0.

2 09

By the uniform ellipticity, the left-hand side is bounded from below by
ozHVwH%z(m. It follows that w = cte, or, in other words, that w = 0.

Regularity of the Solution. We now assume that (2 is of class C2, that the
function f belongs to L?({2), and that the matrix function A is C! on 2
and, obviously, uniformly elliptic. Finally, let u be the solution of the problem
[ eu]ﬁ. We will show regularity results analogous to those for the solutions
of Dirichlet problems.
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Theorem 5.45.

(1) Under the assumptions stated above, the solution of [Neu]’, belongs to
H?(92).

(2) If f € H™(£2) and A € C™1(R2), where the open set (2 is of class C"™+2,
then the solution satisfies u € H™2($2).

Proof of Theorem 5.45. As in the Dirichlet regularity theorem, we divide the
proof into several steps.

The first step, on RY, is the same as in the Dirichlet case.

We proceed to RV~=1 x 10, +o0.

Let u have compact support in RV =1 x [0, oo[. We note that, owing to the
homogeneous Neumann condition, Green’s formula

/ (A(z)Vu) - Vo + / fv=20
RN —1x]0,00[ RN—=1x]0,00[

still holds for every v € HY(RN~! x ]0,00[). We can therefore proceed as in
the proof of the Dirichlet regularity, using translations in directions other
than eyn. We take the difference of the equations satisfied by u and by wuyp,
multiply by u; —u, and integrate over RN =1 x ]0, oo[. This gives us a uniform
estimate that allows us to show that 0;u € L? provided that at least one
index is not V. For the inclusion of Oy yu in L?, we conclude as in the proof
of the Dirichlet regularity by writing the equation as

On(AnNONu) = —f — Z 9;(Ai;0;u) € L2,

i<N-—1,j

and using Lemma 5.34.

General case. We take the usual elements of the regularity of £2: the cover,
the local coordinate systems, the functions ¢y of the partition of unity, and
so on. Reasoning as we did in the Dirichlet case, we see that the function ¢pu
satisfies

div(A(z)V(pru)) = g

in 2N 2, where g € L%(£2N §2;). However, in contrast to the Dirichlet case,
the boundary condition A(z)V(pgu) - 7 = 0 on 82 N 2}, may no longer be
verified. Nevertheless, by expanding V(¢xu), using the linearity of the normal
trace on L2, and factoring by the real-valued functions, we obtain

AV (pru) - T = (AVu - ﬁ))gok + (A(Vey) - ﬁ)u = (A(Vey) - W)u

Let us consider the function A* on 912 defined by 2’ — (A(2/)7 («') - 7 («')).
It is a class C! function and, by the uniform ellipticity condition, does not take
on the value zero. Since 042 is of class C?, when restricted to this boundary, the
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function (1/A*)A(Vy) - 7 u is the product of the trace you € H'/2(842) and
a function that is C* on 2. Adapting the proof of the local character of H'/2
stated in Proposition 4.26 of Chapter 4, we show that this function belongs
to Hl/z(aﬂ). Since 2 is of class C2, we can then apply the trace theorem
3.79 of Chapter 3 for m = 2 and p = 2. It states that the map v = (7y0,71)
from H?(§2) to the product space H*/2(9§2) x H'/?(02) that sends v to the

pair (yov, 0-v) is surjective. In our present situation, we can therefore find a
V € H?(2) such that

V(z)=0 if x € 042,
_ — ~
02V = = (A(chk) : n))u if x € 99,

From this, we deduce that
A(VV) -7 = (A(Ver) - T )u.
The function U = ppu — V therefore satisfies the relation
—div(A(2)VU) = — div(A(z) - V(pgu) + div(A(z)VV) € L?

with the condition A(z)VU - 7 = 0.
We then define v on H*(RY~1 x |0, 4+00]) by setting

v(@ zn) = U@ zn + a(z))).

As in the proof of the Dirichlet regularity, the function v satisfies
div(B(x)Vv) = h, where h belongs to L?(RM~1 x ]0,+oo[). We will
show that v is the solution of a Neumann problem on RN~1 x ]0, +oc]),
allowing us to use the regularity result on that open space.

We recall that

Vie [1,N—1], B,y = Ain — Z Aijaja,

J<N—1
Byy = Anny + AVaVa — Z ANjﬁja.
J<N-1
We verify the relation
(%) Z B;nO;v + BynOnv = 0.

i<N—1

Indeed, taking into account the colinearity of 7 to —Va+ey and the relations
between the partial derivatives of U and v computed in the previous section,
the relation

A(x)VU -7 =0
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can be written as

0= Z Aij (Blv — 8ia8Nv)(—8ja) + Z AiN(ai’U — &-aan)

i, i<N—1 iKN—1
+ Z ANjéNv(—aja) + AnNOnv
JN-1
== Y Aydwdia+ Aindv+ Oxv( Ay + AVaVa— Y A;0ia)
ij<N-1 N JEN—-1

= — Z BiNo”'iv — BNNan.
1

This proves (), which shows that the normal trace BVv - ex vanishes on

{zn = 0}. The function v is therefore a solution of the problem [Neu]’ in the
open set 2 = RYV~1x]0, +-00], as desired. We have thus reduced the problem to
showing a regularity result on RV =1 x]0, +oo[. Now, v € H2(RN~1x]0, +oc),
which, using the fact that a is C?, easily implies that u € H2(£2 N (24).

Higher Order Regularity. Let us show the order H™*? regularity when the
boundary of {2 is of class C™*2, A € C™1(0), and f € H™(2).

We first consider the case where £2 = RN~ x]0, +-oc[, which we will from
now on denote by RN ™.

We suppose that u satisfies div(A(z)Vu)=—f in RN and > AinOiu=0
on the boundary {zy = 0}. We will use induction on m. Let us therefore
suppose shown that if f € H™~1 and A € C™(£2), then u € Hm+1(RN+).

Now, let f € H™(RY") and A € C™+1(RNT). The derivative of u with
respect to xg, where k < N — 1, satisfies

div(A(z)V(0ku)) = =0k f — div(0p A(z)Vu).

The right-hand side of this equation is an element of H™~!, because Vu € H™
by the induction hypothesis and because dx A € C™ by a variant of the argu-
ment we used to show the local character. The condition on the boundary is
not zero, but we have

A(x)V(0ku) - ey = Ox(AVu-en) — (0 A)Vu-eny = —(0pA)Vu - en.

This last function —(9xA)Vu - ey is the trace of a function belonging to
H™ (RN 1t is therefore an element of H™~1/2(RN=1). Using the surjectivity
of 7, which was shown in Theorem 3.79, we can prove the existence of a
V € H™*! such that A(z)VV -eny = (O A)Vu-en. The function w = pu—V
satisfies the relations

div(A(z)Vw) € H™1(2), A(z)Vw-en =0.

It follows that w € H™*!, and therefore O,u € H™*1!,
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It remains to show that Oyu € H™T1(£2). Since we already have Oynu €
H™((2), it suffices to verify that Onnyu € H™(£2). We can show that this
holds by writing

ANNaNNu = — Z Aijaiju — Z&AU 8ju c Hm,
ij#(N,N) ij

as we did in the Dirichlet case.

Next, we consider the case of an open set of class C™ 2.

We use localization and modify the function to reduce to RV =1 x 0, +ool.
Let {£2;} be open sets of class C™*2 that cover {2 and let {¢}} be a partition
of unity subordinate to this cover, as in the definition of the C™*2-regularity.
The function ygu satisfies

div(A(2)V(pru)) € H™,

for some A, but the Neumann boundary condition is not zero. In order to
apply the induction hypothesis, we note that

A@)V(oru) - T = A@)(Vor)u- 7 € H™/2(00)
because u € H™T1(£2). Let V be a function in H™*2 that satisfies
(5.46) V=0 and (A(z)n,n)d,V = A(z)(Ver)u- 7
on 9f2. On 92 N 2, the function pxu — V then satisfies
—div(A(z)V(ppu—V)) € H™ and A(z) -V(gpu—V)-T =0 on .

As before, we set
v(@'zy) = u(r,a(x") + zN)

and verify, as in the case of H?-regularity, that
—div(B(z)Vv) € H™(RY x]0,+00[) and, on {zy =0}, B(x)Vv-ex = 0.

The regularity we showed in the case of the half-space now implies that v
belongs to H™+2(RV~1 x 0, 4+0cc[). The regularity of A then allows us to
deduce that p,u € H™T2(£2N§2;). Finally, we use the properties of the locally
finite cover of 2 to conclude that u = Y, ppu € H™ 2. This completes the
proof of Theorem 5.45. O
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5.6 Nonhomogeneous Dirichlet and Neumann Problems

5.6.1 Nonhomogeneous Dirichlet Problem

As before, let {2 denote a bounded domain of class Cl. Let ug € Hl/z(aﬁ).
The nonhomogeneous Dirichlet problem [Dir]/™ consists in looking for a u
in H*(£2) such that

—div(A(z)Vu) = in (2,
W]Quoz{ (Afw)Vu) = f

U = U on 0f2.

Ezistence and Uniqueness. We can show these by considering the correspond-
ing variational problem of determining a u in H'(£2) for which

(A7) inf m}{% /Q A(@)Vu(z) - Vu(z)de — /Q f(;v)u(x)dz}

is reached. This problem is a minimization on a closed convex set, but we
can translate it to a minimization on all of H'. For this, we note that wug
belongs to the trace space H'/?(912). We can therefore lift this function to
an element Uy of H'(£2) (cf. Chapter 3). Fixing this lifting and applying the
translation u = Up+wv, the above problem becomes to determine a u in H*(£2)
where

inf {%/QA(@’)V(UOJrv)(x)~V(U0+v)(x)d:r—/Qf(x)(erUo)(x)dx}

veH} (2)

is reached. Setting K = 1/2 [, A(z)VUy(z) - VU (z)dx — [, f( x)dx, we
can also write the infimum as

inf /Aw VUda+ - /A Wo(z) Vo(z)de— /f d:c—i—K}
veHL(R2)

This new functional v — Ji(v) whose first term is a continuous linear func-
tional, is still convex and continuous on H'({2). Indeed, using the uniform
ellipticity of A, the coercivity of J; leads to the inequality

[J1(v)] = | Voll3 = [|AVU |12 Voll2 = [ l|2lI V]2 — K]

We may therefore apply Theorem 5.25 and use the strict convexity of J; to
prove the existence and uniqueness of a solution of the problem associate with
(5.47).

Let us continue. The functional J; is G-differentiable. Through a compu-
tation that is by now classic, we have, for every ¢ € D({2),

Ji (v, ) = /QAVgo - VUydzx + /QA(JC)VU(JC) -Ve(x)dr — /Q f(x)p(x)dz
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Consequently,
Ji(v) = —div(A(V(v + Uo)) - f.

By making this derivative vanish at v, we find that the solution v = v + Uy

of the problem associated with (5.47) is indeed also the solution of [Dir]ﬁ’“o.
Note that we can use the translation u — Uy to directly reduce to a homo-

geneous Dirichlet problem. In that case, u — Uy must be the solution of

—div(A(z)Vv) = f + div(A(z)VUy),
v=0 on 02
Since it is the divergence of a function in L?, we have div(A(z)VUy) €

H~1(£2), which shows that the right-hand side belongs to H~1(£2). Remark
5.30 now allows us to conclude the proof.

Regularity Properties.

Proposition 5.48. Let m > 0. Let £2 be a bounded domain of class C™+2, let
A€ Cm™t(0), let ug € H™3/2(002), and let f € H™(2). The solution u of

{div(A(m)Vu) =f inf,

U = ug on 012,
then is an element of H™2(12).

Proof of Proposition 5.48.

The proof is obvious when we use a translation. By the trace theorem 3.79,
there exists a U € H™+2(2) with trace up on 912 because ug € H™3/2(912).
By the properties of A and U, we therefore have

—div((A(x)V(u—-U)) = f + Z(ai(Aij)ajU + Ay;05U) = g.

The regularity assumptions on f, A, and u imply that g € H™(£2). We ob-
tain the desired conclusion, namely that v € H™%2(§2), using the regularity
theorem 5.38 for the problem [Dir]¥. |

5.6.2 Nonhomogeneous Neumann Problem

Let 2 be a bounded domain of class C'. We begin by supposing that u; €
H~'/2(082). We propose to solve the problem

—div(A(x)Vu) = f in £,

[Neu] ™ {
A(Vu) -1 =uy on 0f2.
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Ezistence and Uniqueness of a Solution.

In order to prove the existence of a solution u in H'(£2), we multiply
the equation by an element v of H'(§2). By the generalized Green’s formula
(cf. Proposition 3.58), we have

/A Wu(z) - Vo(z dx—/f z)dx + (A(x)Vu - 7,v),
which leads us to considering the minimization

5.49 inf J
( ) UE}R(Q) (’U)

:vegllf(!?){/ ;(A( \Wo(a /f dx—(ul,v>}.

Since the constant functions belong to H'(2), we note that if Jo f(@)dx +
(u1,10p) # 0, then the infimum in the equation is equal to —oco. We therefore
suppose that f o f(@)dx + (u1,15) = 0, which generalizes the assumptions we
made for the homogeneous Neumann problem.

The functional J on the separable and reflexive quotient space H 1) is
strictly convex, continuous, and coercive. The existence and uniqueness of a
solution of the problem associated with (5.49) follow modulo the constant
functions, giving the result for | eu]f L O

Regularity Result. As above, we suppose that [, f(x)dz + (u1,10) = 0.

Theorem 5.50. If f € H™(Q) with m > —1, A € C""(2), and u; €
H™1/2(90), then the solution u of [Neu]’;"™ belongs to H™+2(12).

Proof of Theorem 5.50. The proof uses a function V in H™*2 for which
(A(z)VV) - T = uy, as, for example, in the proof of the homogeneous Neu-
mann case (cf. relation 5.46).

We conclude the proof by noting that div(A(z)VV) € H™(2) and by
using the regularity results for the homogeneous Neumann problem. a

5.7 Elasticity Problem

Elasticity problems are studied in [15].

5.7.1 Linear Elasticity, Small Deformations

In these problems, taking {2 to be a bounded domain of class C', we consider
the deformation tensor £(u) associated with the displacement u in H*(£2, RY),
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which is the variable in this problem. This tensor of order 2 has components
e(u)ij = 3(d5u; + O;u;) that belong to L%(£2). We define the seminorm u —

le(u)]2 in HY(£2,RN) by
u)3 = Z \5(U)ij|2L2(Q)-
i<

This seminorm usually becomes a norm in the space H{(£2,RY), as we can
see using Exercise 2.10.

If the divergence of the tensor e(u) is the vector with components
div(e(u))): = >_; 0j((u)i;) and if f is a fixed vector in L2(02,RY), then the
problem [Elast]¥Y consists in finding the solution u of

[Elast])0 —div(e(u)) = f in £,
u=0 on 0f2

in H'(£2,RY).
Variational Form of the Problem. The variational form of the problem consists
in determining a u where

ueHl(Q RN) / e (u dx—/ﬂ(fﬂ)(x)d:z:}

Ezistence and Uniqueness. Under this form, it is clear that the functional J

is reached.

in the infimum is strictly convex and continuous. To show that it is coercive,
we first use the Poincaré inequaulity7 namely

| [ (¢ wi@ds] < el < 17l

and then Korn’s inequality (cf. Chapter 7, Section 7.4). The latter gives the
existence of a C’ such that

IV ull2 < € [e(u)]2-

From this, we deduce that

| [ (- w@ds] < Fletwl +c2c g
[0}

Finally, we have

)1 =[5 [ @ Pz = [ (7| > Tl - 751

giving us the coercivity. The existence and uniqueness of a solution u of the
variational problem follow. |

We leave it to the reader to study the differentiability of J, which allows
us to show that u is also the solution of [Elast]/°.
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5.7.2 Extension to the Case where p # 1, co

Let p>1 and let feLP (2,RN). We set |e(u)[P = ( > Eij(u)Q)p/2 and begin
with the variational problem of finding a u where

it @ [ (7 )

is reached. The system of Euler equations associated with this minimization
can be written as

Jj=

Vie[L,N], = 9(le()[P?e(u)iy) = fi

j=1

We show the existence and uniqueness of a solution by using the convexity and
coercivity of the functional. The latter is a consequence of Korn’s inequality
(cf. Section 7.4).

Let us now proceed to examples of solutions of nonlinear PDE.

5.8 The Equation of the p-Laplacian

5.8.1 Statement of the p-Laplacian problem

The problem we will now study is obtained by replacing the Laplace operator
A = div(V) by the nonlinear operator A, defined by

Apu = div(|VuP~2Vu).

Let p > 1 be a real number, let p’ be its conjugate, and let {2 be a bounded
domain of class C!. Given A > 0 and f € L¥' (£2), we wish to solve the problem

ANu|P~2u — div(|Vu[P2Vu) = in 2,
(5.51) (Lap]? |ulP~*u — div(|Vul u)=f in

u=20 on 0f2.
We are looking for a solution u in W, *(£2). Note that |Vu[P~2Vu is the vector
function in L?'(£2) that is colinear with Vu and has absolute value |VulP~!.
This defines a distribution, so that we may talk of its divergence.

Remark 5.52. We can consider this same problem when f belongs to another
space than L¥ . We will give the details of these other cases further on.
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5.8.2 Existence

Proposition 5.53. The function u is the solution of the problem [Lapl} if
and only if u realizes the minimum of the functional on Wol’p(()) defined by

(5.54) J(u)z%(/gVu|p(z)da:+/\/n|u|”(x)dx> —/ﬂf(x)u(:c)d;v

For the proof of this proposition when A = 0, we need a generalization of
the Poincaré inequality, which we proved on H{.

Proposition 5.55. Let 1 < p < oo and let 2 be a bounded domain of class C*
in RN. Let N be a continuous seminorm on WP(§2) that, moreover, is a
norm on the constants. Then there exists a constant C > 0 such that

(5.56) Vue W'2(2), [|Vull, + N(w) = C(||lully + [ Vull,).

We gave the proof of this proposition in Exercise 2.9 and will not repeat
it here. Below, we will use the seminorm N (u) = ( [, [ul?) P We conclude
that in W,?(£2), || Vul, is a norm that is equivalent to the norm I-llwe ()

Proof of Proposition 5.53. Since treating the questions of coercivity and
G-differentiability is more complex than in the elliptic linear PDE case we
have already considered, we will give the proof of this equivalence in detail.
In the particular case we study explicitly, this will correspond to the proof of
Theorem 5.25.

We use minimizing sequences and the extraction of subsequences to show
the existence of a solution of the variational form of the problem, which is
associated with inf, c g1 J(u).

Let {uy} be a minimizing sequence, that is, a sequence such that {J(u,)}
converges to the infimum of J. By using Holder’s inequality and Proposition
5.55 for p > 1, p < 0o, we obtain

| s@uta)ds] < 1yl < Ol [Vl

We then use the convexity inequality X*Y? < aX + Y, where o + 8 = 1,
with X = 277||Vu/[ and Y = (2C)?'[| f|[E,. This gives

‘/Q f(x)u(ff)dﬂf‘ < 1%(/9 |Vu\p(x)dx> + (20)—||f||

from which we deduce the inequality

J(up) = (1 =27 p)Hvun”p + )‘Hun”p + K.

’EH—‘
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Since A > 0, it follows by replacing w, by u that infJ(u) > —oo, and,
moreover, that {u,} is bounded in W1P(£2). Using the weak compactness
of bounded subsets of LP({2) when 1 < p < oo (cf. Section 5.1) and the lower
weak semicontinuity of J for the LP norm, we find that after extracting a
subsequence, if necessary, the sequence converges weakly to u in WP(£2) and

J(uw) < lim J(uy).
n—oo
We will now show that v = 0 on 9f2. Since yyu, = 0, it suffices to use the
continuity of the trace map from WP(£2) onto W'=1/PP(902) for the weak
topology on W, This is the aim of Exercise 3.2 of Chapter 3. Consequently,
the above supplies the first part of the proof.
Let us now show the converse. We suppose that the infimum

inf  J(v)
vEWP(2)

is reached at u. The functional J is well defined on W1?(£2). By expressing
it in terms of [lu|b and ||Vul/) and using Holder’s formula, we see that it is
continuous on WO1 P(£2). Tt is convex, because the first term involves integration
and the composition of V, which is linear, and the convex function ¢t — tP.
For the coercivity, we again use Holder’s formula and Proposition 5.55. Let
us show that Jy : u— [, [Vu(x)[Pdz is Gateaux-differentiable with

(Ji(u),v) = p/Q |VulP~2(z)Vu(z) - Vo(z)dz.

We proceed as in Example 5.20. By the mean value theorem, we know that
for almost all x € {2 and for all ¢ > 0, there exists a function 6 with values in
10,1 such that we can write

(5.57) |V + tVo)(x) [P — |Vu(z)|P — tp|Vu(z)|P*Vu(z) - Vo(x)
= tp|Vu(x) + 0(t, 2)tVo(z)) [P~ (Vu(z) + 0(t, 2)tVu(z)) - Vou(z)
— tp|Vu(z)|P2Vu(z) - Vo(x).

Dividing by t, we find that for almost all x,

i V(@ F ) (@) = [Vu(@)] — tp|Vu(@)[P~*Vu(z) - Vo(z)
t—0 t

=0.

We can also bound the right-hand side of equality (5.57) divided by ¢ from
above by h(z) = 2|Vu(z)|(Vu(z)| + |Vv(z)|P~t. Next, using Holder’s inequal-
ity, we have

Bl < ClIVollp(IVullp ™ + [IVollp™).
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We can therefore apply the dominated convergence theorem and conclude that
(iw),0) =p [ [Vul (@) Vulz) - Vo(e)da,
0

The second term of J is also G-differentiable, as shown in Example 5.20.
Taking this into account, we can write

(J'(u),v) = /Q |Vu|P~2(2) Vu(z) - Vo(z)dz

4 /Q P~ 2u(z)o(z)dz — /Q F@)o(a)da.

In particular, using this equality when v belongs to D({2), which is dense in
VVO1 P(£2), we deduce the following characterization of the minimum u of J:

—div(|Vu|p_2Vu) + MulP72u — f =0,

with u € W, P(£2). m

Remark 5.58. The above holds for any A > 0. It still holds when f is a
function belonging to LNP/(NP=N+p) if < N, belonging to L'(£2) if p > N,
or belonging to L'*¢ for some € > 0 if p= N.

It suffices to see that in each of these cases, we can define the integral
Jo f(@)u(x)dx when u € WP (£2), which follows from the Sobolev embedding
theorem of Chapter 2. We leave the details to the reader.

5.8.3 Uniqueness

Theorem 5.59. The solution of the problem [Lap]} is unique.

Proof of Theorem 5.59.

Consider two solutions u; and us. For the sake of simplicity, we use the
notation o; = (|Vu;[P~2Vu;) for i = 1,2. Taking the difference of the two
associated equations, multiplying by (u; — ug), and integrating over 2, we
obtain
(5.60)

—div(ey —03) - (w1 —u2)dz + /\/ (Jur|P~ 2wy — Jua P~ 2us) (uy — ug)dz = 0.
Q Q
Let us consider the signs of the integrants.

Let X and Y be vectors in RY. For p > 1, we expand the scalar product
U(X,Y) = (|X|P~2X — [Y[P=2Y) - (X — Y). Using X - Y < |X||Y], we have
UX,Y) > [XPP+[Y [P = (IX[P72 + [Y[P72)|X] Y], that is,

UX.Y) > (X~ — [YP) (1X] - [Y]) > 0.
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This result also holds for the scalars X = u;(x) and Y = ug(z), where € (2.
Consequently, (Jui(z)[P~2u1(z) — |ug(z)|[P~2uz(z))(ui(z) — uz(z)) = 0, which
means that the second integral in (5.60) is positive. Using the generalized
Green’s formula and the equality vo(u1 — us) = 0, we transform the first
integral into

/ (IVur[P72Vuy — [Vus[P*Vug) - (Vuy — Vuy)da.
Q

The relation U(Vuy(x), Vuz(x)) > 0 implies that if A # 0, then almost every-
where on (2, we have

u(x) =wug(z) and Vuy(z) = Vua(z).

If A = 0, then the single conclusion Vu; = Vusg suffices to prove that u; = us
on {2, since u; = ugy = 0 on the boundary 9f2. The uniqueness follows. O

In the appendix, we establish certain results concerning the regularity of
the solution of the p-Laplacian problem, using, in particular, a priori error
estimates.

5.9 Maximum Principles for Elliptic PDE

We recall the classical maximum principle. A nonconstant function u that is
harmonic on a bounded connected subset 2 of RY and extends to a continuous
function on 2 reaches its maximum and minimum on the boundary 9¢2. This
corresponds to saying that if u(z) > m on 942, then u(z) > m in 2. Using
u—m, we reduce the problem to studying the sign of a solution of a PDE based
on the sign of its trace on 0f2. Let us add, however, that this technique only
works for linear PDE. Below, we study principles of the same type that can
be associated with solutions of elliptic PDE, which generalize the harmonic
functions in the classical case.

5.9.1 Weak Maximum Principle

The Solution of [Dir]f;/\. In this subsection, {2 denotes a bounded domain
of class C! in RN. Let us recall the definition of the first eigenvalue of the
operator — div(A(x)Vu) on HE(£2).

As in Subsection 5.3.5, we study [Dir]y _,. Using the inequality defining
the uniform ellipticity of A, we find that the real number

A= i /Q Ax)(Vulz)) - Vu(x)dr ).

{ueHg (2)|ul2=1}
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is positive and is the smallest eigenvalue of the operator —div(A(Vu)) on
H (D).

Theorem 5.61. Let A be a real number satisfying 0 < A < A1 and let f >0
in 2. Let u € H'(£2) be the solution of the problem

—div(A(z)Vu) = Au= f in §2.
Then if u > 0 on 052, we also have u > 0 in 2.

Proof of Theorem 5.61. We use the following result on the positive and neg-
ative parts of the functions in WP,

Lemma 5.62. Let u € W1P(02) and let H denote the Heaviside step function

satisfying
1 x>0,
H@=q 10
0 ifx<0.

Then u™,u~, |u| € WHP(R2) and

V(ut) = H(u)Vu,
V(u™)=—-H(—u)Vu,
V0u| = Vu (H(u) — H(—u)).

Proof of Lemma 5.62 (see also [10] or [41]). Clearly, it suffices to show the
result for p = 1. Indeed, if p > 1, then for every open set {21 with compact
closure in 2, we have Vu € L'(£2;), whence V(u) = H(u)Vu. This equality
proves that for arbitrary (2, the distributional gradient V(u™) belongs to
Lr(02).

Let j. be the function on R defined by

Vt>0, jo(t)=(+t)Y?2—¢c and Vt<0, j.(t)=0.

We can easily see that j. converges uniformly to j(t) = ¢* and that j.(t)
converges to H(t) for every t. Let u € L .(£2). By the dominated convergence
theorem, j.(u) converges to j(u) = u™ in Li (§2).

Furthermore, for almost all z in 2, V(j.(u)) = (€2 +u?)~"/?(u*Vu) con-

verges to H(u)Vu and is dominated by |Vu|. We deduce that in L(£2),
lim V (je(u)) = H(u)Vu.
e—0

The conjunction of these two results implies that H(u) € W1 and VH (u) =
H(u)Vu. Since u~ = (—u)™, we also have V(u~) = H(—u)V(—u). O
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We return to the proof of Theorem 5.61. We multiply the equation in
Theorem 5.61 by w~. Since f > 0 in {2, we obtain

/ﬂ—div(AVu)(z)uf(x)dx—/Q)\u(z)uf(x)dxz/Qf(x)uf(z)dx20.

Moreover, since u~ = 0 on 0f2, Green’s formula gives
/ — div(AVa)(@)u (z)dz = / A(z) V() - V(u)da.
0 0
No

/A YWu(z) - Vu ( /A )WVu™ (x) - Vu™ (z)dx.

Hence, using [, f(z)u™ (z)dz > 0, we have

—/ A(x)Vu™ (z) - Vu™ (z) + )\/ (u™)?(z)dx > 0.
[0}

9]

From this, we deduce that
/ A(x)Vu™ (2) - Vu~ (z)dz < Mu™ %,
7]
which contradicts the definition of A\; unless u~ = 0. It follows that v > 0
in £2. O

Of course, the linearity of the equation allows us to show that if f < 0
then v < 0 in 2 if it is < 0 on the boundary of (2.

We will see the strong maximum principle later. In a more general form,
it is due to Vazquez. It states that if u is a solution > 0 of the inequality
—div(A(z)Vu) > 0, then in each of the connected components of 2, u is
either identically zero or positive.

The reader can consult [34] and [57] for more general maximum principles.

The Solution of [Lap]}.

Theorem 5.63. Let A > 0. If u is the solution of
—div(|VuP=2Vu) + MulP~?u = f,
f=201n 2, and u > 0 on the boundary of 2, then u > 0 in (2.

Proof of Theorem 5.63. As before, we multiply by v™, giving

(5.64) /Q [IVuP=2Vu¥ (u) + Al 2u(u) | do = /Q F@)(u
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We have two integrals of nonpositive functions on the left-hand side and one
integral of a nonnegative function on the right-hand side. From this, we deduce

that
—/ \Vu7|pdx—/\/(u7)pdm=/ fu~dx,
Q Q Q

which implies that

[Vu™|P + Au")P = 0.
Since A > 0, it follows that V(u~) = 0 and therefore u~ = 0 because this
already holds on the boundary 0f2. O

In Example 5.82, we show the existence of a first eigenvalue, as we did in
the Laplacian case. For A greater than the opposite of the first eigenvalue, the
result remains true (cf. [17]).

The following theorem generalizes the maximum principle to a statement
concerning the sign of the difference u; — uo of two solutions of the PDE
under consideration. We do not need this result when the equation is linear
as in the previous section, because the difference of the two solutions is then a
solution of the homogeneous equation and we can apply the classical maximum
principle.

Comparison of Two Solutions in the Case of Nonlinear Equations.

Theorem 5.65. Let A > 0. Consider functions uy and ug satisfying
— div(|Vui|p’2Vui) + /\|ui\p72ui = f;.
If fi>fo in 2 and uy >us on 92, then we have uy >ug in §2.

Remark 5.66. In contrast to the Laplacian case, this result cannot be de-
duced from the maximum principle, since the equation is not linear. We note
that the comparison principle is the key argument for Vazquez’s strong max-
imum principle, which we present in the next section. In the case A > —A\y,
where ) is the first eigenvalue, this comparison result still holds but is more
delicate to prove (cf. [17]).

Proof of Theorem 5.65. We multiply the difference of the equations for u; and
ug by (uz —u1)T, integrate over 942, and use that the boundary term is zero
to obtain

/ (\Vu1|p_2Vu1 — |VUQ‘p_QVUQ> . V((UQ — U1)+)
2
+ )\/ (Jur [P~y — JuaP~?ug) ((ug — ur) ™)
2

- / (1 — F2) (2 — ur)™).
(]
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It follows that the first integral is nonnegative. Now, by the properties of the
gradient of (uz —uy)T we saw earlier, we have

(|Vu1|p_2Vu1 - |VUQ|p_2VUQ) : V((UQ — U1)+)
= —H(ug — u1)(|Vui|P"2Vuy — |Vua[P72Vug) - (Vuy — Vauy),

which is nonpositive. Since it vanishes if and only if V((uz — u1)™) = 0, the
previous equality implies that (us — u1)™ = cte and therefore that us < ug
because (us —uq)t vanishes on the boundary. O

We can generalize this comparison result as follows.

Theorem 5.67. Let 8 be a continuous nondecreasing function on R. Let uy
and ug satisfy
— div(|Vu P2 V) + Bus) = fi.

Then if f1 > fo in 2 and u; Zus on 352, we have uy >us in 2.

Proof. The proof is the same as the previous one. O

5.9.2 Strong Maximum Principle

Strong Mazximum Principle for the Laplacian. We begin by recalling a result
that is certainly well known to a reader who is familiar with the theory of
harmonic functions, at least in the case N = 2.

Proposition 5.68. If u is nonnegative and of class C* and if Au = 0 in a
domain (2, then either u is identically zero or u > 0 in {2.

Proof of Proposition 5.68. Indeed, the set of points Z where u = 0 is closed
because u is continuous. Let us show that it is also open. Let zo € Z and
r > 0 be such that the ball of radius r» with center xq is contained in 2. For
every € < r, the mean value property for harmonic functions (cf. Exercise 7.2
of Chapter 7) gives

1
_ u(s)ds,
wy—1eM /aBm,s) )

where wy_1 is the (N — 1)-dimensional surface measure of the unit sphere
in R, In particular, since u > 0, the continuity of « implies that v = 0 on the
boundary dB(zg, ). Since this property holds for every e € |0, r[, we deduce
that « = 0 in B(xg, 7). Consequently, the set Z is open. Since the open set 2
is connected, it follows that either Z = & or Z = {2, concluding the proof. O

0 =u(zg) =
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We now set out to obtain the same property for a function w that is
continuous and superharmonic in {2. The latter means that —Au > 0 in 2.
Before we do this, we need to describe the solutions of class C? of the Dirichlet
problem explicitly when the boundary function is continuous. We will then use
the expression specifying these solutions in an argument involving comparison,
in order to obtain the positivity of the superharmonic function.

We first recall the existence and uniqueness result for this so-called classical
Dirichlet problem, classical in the sense that the solutions must be of class C2
in the open set under consideration. The proof of this result when the open
set is the unit ball B = B(0,1) is given in Exercise 7.5. We use the Poisson
kernel (s,z) +— p(s,z) for 0B, which for s € 9B and = € B is defined by

1 1—z?
wy—_1 |z — sV’

p(s,z) =
For a function f that is continuous on 9B, the function Pf defined by

Ve eRY, |z|<1 = Pf(z)= (8)p(s,z)ds

f
OB
is harmonic on the ball B and admits a continuous extension to the boundary
that is identical to f.

Remark 5.69. Using the maximum principle, we can see that the function
Pf is the unique solution of class C? of the Dirichlet problem associated with
the continuous boundary condition f.

Remark 5.70. Using a translation and a homothety, we can easily deduce
the solution of the classical Dirichlet problem, namely

1 r? — |z — x|

P - -
/@) /aw(zo,l)) flaotra)y

— s
wy_1r2—N x —x9) — 18|V

for the ball B(xg,r) from the previous result.

Let us now compare the classical solution given above, which is of class C2,
to the solution of the variational problem on the ball B when the boundary
condition is continuous. We have the following result.

Proposition 5.71. Let v € C(dB) N HY?(0B). On the one hand, let u €
HY(B) be the solution of the problem [Dir](zv, whose Laplacian Au, taken in
the sense of distributions in B, is zero and satisfies u = v on 0B. On the
other hand, let w be the C? solution defined by w = Pv, which is harmonic
in B and satisfies w = v on B. Then w = u in B.
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Proof of Proposition 5.71.

By the density of the regular functions in C(0B) N H'/2(0B), there exists
a sequence {v,} in C*>°(dB) that converges in C(9B) N H'/2(0B) to the func-
tion v. Let us take such a sequence. Let Pv,, = w,, denote the image of v,, in B
under the Poisson operator and let u,, denote the solution in H!(B) of the
Dirichlet problem with boundary condition v,,, which, in particular, belongs
to H'/2(0B). Taking the variational form of the problem, this solution is the
minimum of

1
Py = inf —/|Vu(x)\2da:.
u€H(B) 2 B
u=v, on 0B

We will first show that w,, is of class C*°, from which we will then deduce that
Up = W

To see that u, is of class C*°, we can use regularity results for the solution
of Au = 0 when the boundary function is of class C*>. Since the boundary
is C>, the right-hand side, which is zero, belongs to H*(B) for every integer k,
and the boundary condition v,, belongs to H**1/ 2(0B), this regularity result
tells us that u, € H* for every k. It follows that u,, is of class C*> in B and,
consequently, that u,, = w, in B.

Using the Poisson kernel, it is clear that w,, tends to w in C(B). Namely,
using the positivity of p and the equality fB(0,1) p(s)ds =1 (cf. Exercise 7.5),
this follows from the uniform convergence of v, to v on 0B:

| pls.0lels) — ()l s — 0.
oB

It remains to show that u,, tends to u, even if only in the sense of distributions.
We will in fact show it in the sense of strong convergence in H'. For this, we

show that the infimum )
inf = / |Vu|?
u=v, ondB 2 B

of P,, converges to inf P, which is defined to be

1
inf  — / |Vul?.
u=vondB 2 B
Let u,, realize the infimum of P,, then u,, is clearly bounded in H'. To see
this, it suffices to consider a lifting V,, of v,,, that is, an element of H!(B)

with trace v, on 0B. By the continuity of the lifting map, there exists a C
such that, for every n € N,

IVallzr(s)) < Cllvallgiizas)-

Since the sequence {v, } converges to v in H'/?, we deduce from this that the
sequence {VV,,} is bounded in L?(B) by a constant K. For the minimum u,,
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of P,,, this gives
/ IV (2)|? da </ YV (2)%dz < K.
B B

Now, since the sequence {u,, } is bounded in H', we can extract a subsequence
that converges to a function u* € H' that equals v on the boundary. Finally,
by the lower semicontinuity, we have

/ VP < lim || Va2
B

It remains to show that liminf P,, < inf P, from which we will deduce that u*
is a minimum for P. Let ¢ € H'(B) with ¢ = v on the boundary. We will show
that there exists a sequence {(,} € H*(B) with (,, = v,, on the boundary that
converges in H' to ¢. Indeed, by the continuity of the lifting of H'/?(0B) to
H'(B), there exists a &, that tends to 0 in H!' and equals v, — v on the
boundary. Let ¢, = &, + (. The sequence {(,,} converges to ¢ in H(B). If we
now take ( to realize the infimum of P, then for n sufficiently large,

inf P, g/ |V(n]? <infP 4.
B

As before, ||Vuy,||2 converges to || Vul|2, which implies the strong convergence
of u,, to u in H', completing the proof. O

Let us now return to the positivity of the subharmonic functions.

Proposition 5.72. Let u be a nonnegative continuous function in H' that
satisfies the inequality Au < 0 in a connected open set §2; then either u > 0
in §2 or u is identically zero in (2.

Proof of Proposition 5.72. By Proposition 5.61, we already know that u > 0
in £2. It therefore suffices to show that if the set Z of points of {2 where u
vanishes is nonempty, then it is open.

Let zg satistfy u(zg) = 0 and let € < r with B(zg,r) C {2. Let v be the
C? solution of the Dirichlet problem in B(zg,¢) with boundary condition on
0B(x, €) equal to u, which is continuous by assumption. By expressing v using
the Poisson kernel, namely v = Pu, we see that it is continuous. Moreover,
by the weak maximum principle, it is nonnegative. By Proposition 5.68, v is
either positive in B(zg,¢) or identically zero. Furthermore, the comparison
principle implies that, since u = v on dB(xg,¢) and —A(u — v) > 0, we have
u 2 v in B(z, ). In particular, 0 < v(zg) < u(zg) = 0, which implies that v
is identically zero on B(xg,¢) and, consequently, also on the boundary, where
it coincides with u. It follows that u = 0 on 0B(xo,e). By letting ¢ tend
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to r, we see that v is identically zero on B(xg,r). The set Z is therefore both
open and closed. Using the connectedness of {2, we finally deduce the desired
result. O

Strong Mazimum Principle for More General Dirichlet Problems. We will now
show a simplified statement of the strong maximum principle for more general
operators than A.

Proposition 5.73. Let u be a solution of class C' of the inequality
—div(A(x)Vu) =0

in the bounded domain 2 in RN. If u > 0 in (2, then u is either identically
zero or positive in 2.

Proof of the proposition. Let us also note that if {2 were not connected, then
we would apply our reasoning to each of the connected components. We sup-
pose that there exist points m € §2 such that u(m) > 0 as well as points m/
such that u(m’) = 0. Then there exists a ball in 2 in which this same prop-
erty holds. If this were not the case, then given a ball B in {2, we would have
either u(x) > 0 at every point x € B or u(z) = 0 at every point z € B. The
union of the balls where the first holds is then an open set 21 and that of the
balls where the second holds is then an open set £2°. These sets are disjoint,
with union {2, contradicting the connectedness of (2. We may, and do, there-
fore assume that {2 = B is a ball. Hence there exist z(, and x; in B such that
u(z() = 0 and u(z1) > 0. By a similar reasoning using connectedness, we may,
and do, assume that x; is the center of the ball B, whence 2 = B(x1, R),
uw(z1) >0, and |z — 21| < R.

Let us first suppose that u is continuous. In this case, there exist balls
B(zy,r) in whose interior we have u(z) > 0. We have r < |z1 — zg|. If we
set 11 = sup{r | Vo € B(x1,r), u(x) > 0}, then the boundary I of the
ball B(z1,r1) contains at least one point xg such that u(zg) = 0. If not, we
would be able to find neighborhoods of each of the points of I in which u > 0,
and by extracting from these neighborhoods a finite cover of the boundary, we
would find a ball B(x1,r) with r > r; with the desired property, contradicting
the assumption on the supremum.

Let us consider the annulus G = {x | r1/2 < |z — 21| < r1} in RY, on
which we have u > 0. Let m be defined by m; = inf{u(x) | |z — x1| = r1/2}.
By the continuity of u, we have m; > 0. Supposing that R > 3r1/2, we also
define the annulus G’ = {z | r1/2 < |z — 21| < 3r1/2}. The main idea of the
proof is as follows.
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Fig. 5.2. An argument used for the strong maximum principle. We have u(zo) = 0,
u(z1) > 0, and |zo — z1| = r1; G and G’ are the annuli with center x;.

We are going to construct a function v, v > 0 in G', that satisfies the
following conditions:

(%) VeeG, - div(A(x)V(u - U)) >0,
(%) Vo e dG, wv(z)<u(x).

By using the weak mazimum principle, we will see that uw > v in the annu-
lus G', and therefore also in G. Supposing that u is of class C*, we will obtain
the expected contradiction by considering the normal derivative at the point
zo € 0G.

We therefore suppose that u is of class Ct at zg. Let 0 < 8 < my.
We choose the number ¢ > 0 sufficiently large that the function v =
Be~clz=e1l _ g=cleo—1l) " which vanishes at xo, satisfies the conditions (%)
and (%) stated above.

On the sphere S; = {|x— 1| = r1/2}, we have v = B(e~"/2 —e~"1) < 3,
whence v < u on S; because § < my. On the sphere Sy = {|x — 21| = 3r1/2},
we have v = B(e3"1/2 — ¢=¢"1) < 0, whence v < u also holds on Sy because
u > 0 on this sphere. We deduce condition (xx) from this, that is, v < u on
0G'.

For condition (), we set f(z) = e~°*~*1| and begin by computing Vf.
From this we deduce div(A(x)Vwv), which is none other than g div(A(z)Vf).

We have 0; f(z) = —cf(z)(z — x1);/|z — 21| and then

div(A(z)Vf) = —c% [Z 0; (141‘3‘(35>(9’j - xl)j)}

62 C

+ /@) (
- ViU

ZXA@Xx—m%@—xﬂ>

| — 212 B |l — 2|3
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In U, the term between the parentheses, which we can also write as
[e/|x — z1]?)(c|x — 1] — 1), is positive if ¢ > 2/r;. Under this condition, the
uniform ellipticity of A implies that U(x) > 0 in G’, giving the lower bound

U(z) 2 af(x) {02 - 23},
1
where « is the ellipticity constant of A.
By expanding the derivative in the first term —V, which is negative, we
see that V < ¢f (2)(||[VA]|0o + N||Al|oo/71). Summarizing, we have

A (A@WT) > fee 7 2o~ 2) - (19a] + T2,

Therefore there exist values of ¢ that are sufficiently large that
div(A(z)Vv) = 0 on G’, thus giving condition (x).

Since — div(A(z)Vu) = 0, we have —div(A(x)V(u —v)) > 0. We apply
the weak maximum principle (cf. Theorem 5.61) to this situation and deduce
that v > v in G’, and therefore also in G. In particular, at the point xg, we
know that v(zo) = u(z) = 0. Let W = (x¢ — 21)/|xo — 1| be the outward-
pointing normal to the boundary of G at xy. For h > 0 sufficiently small, we
have

w(zg — h1t) — u(xg) = v(wg — h ) — v(x0).

Applying the mean value theorem to the right-hand side of the inequality
gives
w(xg — hl) — u(wo) > Beh.

Dividing by —h and letting h tend to 0, we obtain
O7u < —fc <0,

which contradict the fact that the C! function u takes on its minimum at the
point xg. O

The Strong Mazimum Principle for the p-Laplacian. The previous result is
called the strong maximum principle and is due to Vézquez [74]. More gener-
ally, Vazquez’s strong maximum principle can be applied to equations related
to the p-Laplacian. As above, its proof is based on the local comparison to a
positive sub-solution. This phenomenon moreover generalizes to other types
of operators.

Let us take a continuous function 3 that is nondecreasing on [0, +-00], such
that 8(0) = 0, and satisfies the condition

T1 d
(574) El’l"l > O7 /(; W = Q.
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We let j(s) = [, B(t)dt and note that

%ﬁ(s/?) < Jj(s) < sB(s),

so that condition (5.74) can be written as

m ds
(5.75) /0 7(3’(3))1/1’ = 400.

Theorem 5.76. Let 5 be a continuous nondecreasing function with 3(0)=0
that satisfies condition (5.74). Let u € C1(£2) be a nonnegative bounded solu-
tion of the inequality

—Apu+ B(u) 20

in the bounded domain §2. Then u is either identically zero or positive in {2.

Remark 5.77. A solution of the inequality of the theorem is called a super-
solution of the PDE —A,u + B(u) = 0. In most cases, we use the principle
stated in the theorem for solutions of the equation and not only for superso-
lutions. When it is stated for a solution, the continuous differentiability and
boundedness conditions on v may in general be omitted because of regularity
results for solutions of elliptic PDE that ensures us that u is bounded and C!.

For this matter, the reader can consult the introduction to the appendix
and the partial results that are established there. For the proofs of the full
results concerning the C! regularity, one can read Evans [31], Moser [52],
Tolksdorff [72], Lewis [46], or Di Benedetto [27].

Proof of Theorem 5.76. We repeat the first part of the previous proof, replac-
ing r; by r. Let us consider the annulus G = {z | r/2 < |z — 21| < 7}, on
which v > 0. We set my = inf{u(x) | |x — 21| = r/2} > 0. Since the structure
of the proof is the same as in that of the previous proposition, we are going
to construct a suitable solution of —Apu + f(u) < 0, that is, a subsolution.
We begin with the following result.

Lemma 5.78. Let k1, ko, 11, and my be positive real numbers, let p > 1, and
let 8 be an nondecreasing function with 5(0) = 0. Then there exists a unique
function v = v(r, k1, ka,r1,m1) of class C* on [0,71] satisfying

d 1p—2_ 1 I\p—2_ 1

(12| = B 12+ RaB(0),

ds
v(0) = 0, and v(r1) = my. Moreover, v 2 0, v' > 0, and 0 < v < my on
]0, 7“1[.
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Proof of Lemma 5.78. In this proof, we set
W* = {uc W?(0,71[) | u(0) = 0, u(ry) = m1},

and we consider the variational problem associated with

T1 T1
vg{l/{f/ {117/0 [0 [P(s)e *15ds + k‘g/o j(v)(s)eiklsds}.
Since exp(—kis) = exp(—kir1) and j > 0, we can easily verify the conditions
of Theorem 5.25 for the closed convex set W* in the reflexive separable space
Wr(]0,r1[) with p > 1. Moreover, the functional v +— J(v), whose mini-
mization was the aim of the previous problem, is G-differentiable. By using
the expression of the derivative of the functional u — 1/p [, [Vu(z)[Pdz ob-
tained in Proposition 5.53, we find that the derivative J’'(v) equals the linear
functional

(). ) = / PR () - e P (s)ds + / " B(0)(s)e 0 o(s)ds.

The derivative at the point v is therefore

d
J/(U) — |:£ [|v/|p—20/] o k‘1|U/‘p_2 o k’g,@(v):| e_kls.
Since W* is an affine space, the equation J'(v) = 0 supplies the solution of

the problem, namely

d
(5.79) — [|v’|p—%'} = k0[P 20 + ko (0).
S
Let us multiply this equation by v~ exp(—k;s) and proceed as in Theorem

5.61. Since v~ =0 at 0 and at rq, integration gives
/OT1 exp(—kys) [WV’*%’} (v7) ds + ks /OT1 Bw)v™ exp(—kis)ds =0,
which can also be written as
_ /07“1 exp(—kis)|(v™) [Pds + ko /(:1 Bw)(s)v™(s) exp(—kis) = 0.

We have 8(v)v™ < 0 because § is nondecreasing. The negativity of the integral
of the first term therefore implies that v=’ = 0. Consequently, since v(0) = 0,
we have v~ = 0, or, in other words, v > 0.

Furthermore, since ko8(v) = 0, the equation (5.79) implies that the func-
tion [v/[P~%0" exp(—k; s) is nondecreasing, and therefore that v’ is nondecreas-
ing. Since v(0) = 0 and v > 0, we have v'(0) > 0, and since v’ is nondecreasing,
we find that v'(r) > 0 on [0, r4].
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Let us now show that v > 0 and v > 0 on ]0,71]. Let r¢ be the largest r
in )0, r1[ for which v(r) = 0. We wish to show that ro = 0. We have v/ > 0 on
|70, 1 since otherwise there would exist an r € ]rg, [ with ’(r) = 0. Since v’
is nondecreasing, we then have v = 0 on [rg, 1] and therefore v(r;) = 0, which
contradicts the fact that ry is the greatest zero of v.

The function v is therefore bijective from [rg,r;] into [0, m1]. We have

" meq
() /TO Wdt:/o st = 400.
Let w = (v')P and @ = p/(p — 1), so that
(splabir)o)’ = esp(—ar) (—abvu-+ 1),
Now, since v/ > 0, we can write equation (5.79) as
(p = D)2 — ki (V)P = k2B ().

The choice of a therefore implies that

(EXP(—ale)w)/ = aexp(—ak;ir) [_klw +(p— 1)(1]/);0—1@//}

= aks exp(—akir)B(v)v'.

Let us assume that v'(rg) = 0. Then, by integrating this expression from rg
to r, using the upper bound 1 for the exponential expression and the inequality
j(v(ro)) = 0, we obtain

exp(—akir)(v")P(r) = akg/ exp(—akis)B(v)(s)v'(s)ds < akaj(v)(r).
o
From this, we deduce that (v/(7))((j(v)(r))~Y? < (akq exp(akir))'/P. This ex-
pression is bounded on [rg, 71], which implies that the integral of the left-hand
side is finite, in contradiction to (). By continuity, there exists a neighbor-
hood of rg, namely [rg — «, ro[, on which v’ > 0. Therefore if ry > 0, we have
the inequality v(s) < 0 on this interval, once more giving a contradiction. We
conclude that ro = 0 and v'(0) > 0. O

Let us conclude the proof of the theorem. We apply the lemma with the
function
u(z) =v(r — |l — a1, k1, 1,7/2,mq)

on the annulus G. We first compute A, f for a function f that is radial in RY.
The gradient satisfies 9; f = z; f'(r)/r, whence |V f| = |f/(r)|. The p-Laplacian
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is then
N

Ay(f) = div(IV 2w ) = > o (17 )~ 2f<) w)]

1

_ _ N
|fP2 PR 2
— x
r 73

; (717721 Z 2+N
2

r

- I U RCY

It follows that p N1
Ay = (V' P720] + 5 S

Consequently, by taking k; > 2(N — 1)/r, since ko = 1, the resulting func-

tion @ is the desired subsolution satisfying

(5.80) — A+ B(3) <0

Moreover, we have @(0) = 0 by construction, so that u > @ on the sphere
|z —x1] = r and U(xz) = my < u(x) on the sphere |x — x1| = r/2. Let us apply
Theorem 5.67 to the two equations

~

—Apu+Bu)=f>0 and —A,u+ P =f<0

in G, with f > annd u > u on OG. We conclude that v > u in G.
Let us finish our proof by contradiction. Since v'(0) > 0, we have

1
lim  —u(zo+ h(z1 — x0) = lim v'(r) = v'(0) > 0.
h—0,h>0 Th—0
This result contradicts the fact that Vu(xg) = 0 because the minimum is
reached at xo and u is of class C'. Consequently, v cannot take its minimum
in 2. O

Hopf Principle. Let us also suppose that u > 0 is a solution of
—Apu+B(u) >0, u=0ondfN

in C1(£2). The Hopf principle then gives us information on the sign of the
normal derivatives on the boundary 0f2, namely

Vo e 012, aa%(x) < 0.
Theorem 5.81. Let xg € 92 be such that there exists an x1 € {2 with
OB(x1,|x1 — x0|) NN = {xo}. Let T be the outward-pointing normal to O
at xo. Then, under the previous assumptions, there exists a v > 0 such that

lim u(z)

im —— =1
r—xo,LEB (l’() - LE) T n
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Proof of Theorem 5.81.

Indeed, let zo € Of and consider a sphere B(xzi,|r1 — zo|) in {2
with 0B(x1,|z1 — 20]) N 02 = {xo}. By the previous result, we know
that « > 0 in B(zi,|zo — x1|). Moreover, taking the definitions of
G={z € B||x—x1| > |ro — z1]/2}, v, and U as before, we have

uza, v=v(0)>0,

u(zo + h(z1 — x0))

h—0,h>0 h

> 0'(0). O

Example 5.82 (of an application). Let A; be the first eigenvalue of the
p-Laplacian, that is,

M= inf {/ VP (z)d ).
ueWwyP(2) L Jo
llullp=1

We can easily see that the infimum A; is reached and that there exists a
nonnegative solution, which satisfies the PDE

—Apu = A |ulP~2u.

In particular, —A,u > 0 and v > 0. Admitting that this v is ct (see the intro-
duction of this chapter and that of the appendix) and applying the previous
theorem with § = 0, we find that « > 0 in (2.

5.10 Coercive Problems on Nonreflexive Spaces

5.10.1 A Typical Problem and Calculus of Variations

Given a bounded open set §2 in RY of class C! and f € LY (§2), we consider
the variational problem associated with

(5.83) inf {/ |Vu|dx—/fudx}.
wewy ' (2) Yo 0

The functional
J(u):/ |Vu|—/ fu
2 2

is convex and well defined, owing to the Sobolev embeddings. It cannot be
coercive, because the terms |, o |Vul and /, o fu have similar growth and can
therefore not cancel each other out. Let C be a constant such that

Yue WE, flull v (a) < c/ Vu(2)dz,
2
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and let us assume that || f||L~ () < 1/C. The functional J is then coercive on
Whi(90).

Having taken care of this first difficulty, we note that since the space W'!
is not coercive, the minimizing sequence for (5.83), which is bounded in W11
if we assume that [|f|[;~o) < 1/C, is not necessarily relatively compact
in Wh1. However, it it relatively compact in BV (§2) for the weak topology
(Chapter 6). This latter space consists of the functions u in L'(§2) for which
Yu belongs to the space of bounded measures M*(£2). We therefore need to
extend the definition of the infimum in (5.83). Let us consider

(5.84) ueél&ﬁ(ﬂ){/ﬁ |Vu|dx — /qud:ﬁ}

For the moment, we admit the following density result that we will prove in
Chapter 6:

If uw € BV (£2) satisfies u = 0 on 92, in other words, if u belongs to
BVo(£2), then there exists a sequence {u,} in WHY(2) with u, = u = 0
on 02 such that

/ [V, —>/ [Vu| and  [Jup — ul| pa/ov—1) () — 0.
Q Q
This result implies that

inf(5.83) = inf(5.84).

To conclude we only need to show the existence of a solution in BV of the
problem associated with (5.84). Let {u,} be a minimizing sequence, which
consequently is bounded in BV (£2). We can extract a subsequence that con-
verges weakly in BV (£2), strongly in all the L? with ¢ < N/(N —1), and
weakly in LNV/(V _1)(()). By the lower semicontinuity of the integral over an
open set of a measure that is nonnegative for the vague topology, we have

/ [Vu| < lim |Vun|( )dx.

n—oo

By the weak convergence of {u,} to u in LN/(N’l)(.Q), we also have

The only delicate point concerns the behavior of the limit of {u,} on the
boundary. In Chapter 6, we will see that the trace map on BV is not weakly
continuous. To compensate for this difficulty, we introduce that so-called re-
laxzed problem, which is associated with

(5.85) L /\Vu|+/ | - /fu
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Note that we have
inf(5.85) = inf(5.84)

by the density theorem for the inclusion of W11 (£2) in BV (£2) (cf. Theorem
6.56 of Chapter 6).

We will now show that the problem associated with (5.85) admits a solu-
tion. Let {u,} be a minimizing sequence for (5.84). Our previous results show
that {u,} is bounded in BV ({2). Defining u, as the extension of u, by 0
outside of £2, we have u,, € BV (RY) with

v(ﬂn) = VUnXQ + (0 - Un)5a(z
From this, we deduce that
[Viin| = [Vun|xe + [un|dog-

If {u,} converges weakly to u in BV ({2), then u, converges weakly to an
element v of BV (RY). We must then have v = 0 in the complement of {2
and v = w in £2. In particular, Vo = Vuyg + (0 — u)dgp. By the weak lower
semicontinuity, we have

/ |Vv\—/ fo< lim |van\—/ Fun
RN (9} n—oo JRN (9}

because [, fu, converges to [, fu. Consequently,

/|Vu|+/ |u\—/ fu < inf(5.85),
7 00 2

and therefore, u is the solution of the problem associated with (5.85).

5.11 Minimal Surfaces

5.11.1 Presentation of the Problem

We can describe the problem of minimal surfaces as follows. Consider the set of
C! scalar functions v on a bounded domain {2 in RY that satisfy u = g on 92
for a given g € L1(962). We are looking for an element u of this set such that
the hypersurface with Cartesian equation (z1,...,xx—1,u(21,...,2x—1)) has
a minimal N — 1-dimensional surface area.
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Variational Formulation of the Problem. This corresponds to determining a

function u where
inf {/ VIT V() de}
u€e? 0
u=gon o2

is reached. The question mark denotes a space in which all quantities that are
involved are well defined. We will first define a suitable space. Note that if g
is a constant, then the unique solution of the problem is given by u = cte,
which corresponds to a plane surface. In that case, we of course find that the
infimum equals
trace space Yo(W11), we see that W11(£2) is a “minimal” space on which all
quantities are well defined. We therefore wish to determine a function u where

inf / V1+ | Vul?(z da:}
uewh! Q)
u= gona_Q

is reached.

Transformation of the Problem. Below, we propose to replace the previous
problem by an equivalent so-called relazed problem that consists of a mini-
mization on BV ({2).

Because it is not reflexive, we replace the space W11(£2) by BV (£2). Its
definition and main properties are studied in Chapter 6.

In order to show the existence of a solution, let us start by reasoning as in
the case of a reflexive space. It is clear that the infimum is > 1, hence positive,
and that the functional J is convex. The functional J is moreover coercive in
WL1(92), by the Poincaré inequality. Indeed, let U in W11(§2) be a lifting of
g € LY(092) in WH1(£2). Then u — U = 0 on 02, whence, by the Poincaré
inequality,

IV(u—=U)llri2) = Cllu—Ullwia (o).

The coercivity of J(u) follows because

J(u) = [Vuly 2 [V(u—=U)lL = VU]
2 [lu = Ullwra = VU1 2 |lullwrs = 2[[Ullw.1.

Let {u,} be a minimizing sequence; it is bounded in W11(£2) and, con-
sequently, bounded in BV ({2). By Proposition 6.52 on the weak compactness
of bounded sequences in BV ({2), it follows that we can extract a subsequence
{to(ny} from {u,} that converges weakly to an element u in BV (f2). This
means that

/ [Ugny — ul(r)de — 0 and V¢ € C(2), (Vugnm)— Vu,p) — 0,
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where the last property expresses the vague convergence of Vu,(,) to Vu.
However, as in the previous subsection, we do not necessarily have v = ¢
on 0f2.

We must therefore both extend the functional /1 + |Vu|? to the func-
tions in BV and compensate for the difficulty that we mentioned in Sub-
section 5.10.1. For the first problem, we use the theory of convex functions
of a measure, which we will develop in Chapter 6, for the bounded measure

= Vu (cf. Section 6.8 and in particular the example f(u) = /1 + |ul?,
which is worked out in detail). This function f admits an asymptotic func-
tion, namely lim;_, ;o f(tx)/t = |z|. It therefore follows from Chapter 6 that
if Vu = Vu?® + Vu® is the Lebesgue decomposition of the measure Vu, then
we can define f(Vu) (cf. Theorem 6.138) by

= I+ + [Vu].

With this extension, the functional u — |, o f(Vu) is lower semicontinuous for
the weak topology on BV (£2).

In order to solve the trace problem, we consider a function G € W11 (RN 2)
with trace g on J(RY \ §2). This extends u outside of 2, giving a function
with 4 € BV(RY). Using Exercise 6.18 and the function f — 1 with value
zero for x = 0, we obtain

F(ViD) = f(Vu)xe +|(u = G) 7 |0o + F(VG)xan 2
Finally, we have the following density results. First, there exists a sequence
U, € C®(2) N WH(Q) such that u, — u in L' (£2) and
IVl — / Val, / 1(vu) — [ (v

(cf. Theorem 6.144). Second, if u € BV ({2) and g € Ll(aﬂ)7 then Remark
6.73 shows that there exists a sequence {u,,} in W1(£2) that converges weakly
to v in BV with

%
[ #vu) — / () + /a =gl

The first density result allows us to deduce that the infimum
inf \Y%
I RLL
You=g

coincides with the corresponding infimum on W', where we maintain the
limit condition you = g.
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The second result allows us to show that these infima are also equal to

ueg%/f(n){/n f(Vu)+ /zm fu— g|}.

This corresponds to the relaxed problem, for which we will now show the
existence of a solution.

5.11.2 Existence of a Solution

Let us fix an element G of WLL(RY < 2) with value g on 9f2. Let {u,} be
a minimizing sequence in W11(£2) with u,, = g on 942; then the extension
of u, by G € WHL(RN < 2) (which we take with compact support) belongs to
WLL(RN). Tt is therefore bounded in W11 (RY). Consequently, we can extract
a subsequence that converges weakly to V € BV (R™). By construction, we
have V = G on R¥ \ 2. Moreover, by the lower semicontinuity, we have

/]RN (V1I+|VV]2—1)
<tim [ (VIFVwP-1)+ [ (VITGE-1).

RN Q2
Let u be the restriction of V' to {2; then V' = ux o + Gxz~ 5. Moreover, since
the jump when crossing the boundary 942 for V is g — u, we see that the
gradient satisfies

VV = Vuxe + (9 — u)doe® + VGxpy 5.
Consequently, the relation

V1+|VV]2 =14 |Vul2xo + g — uldae + V1+ VG2 xzgy 5

gives
L WP ) = [T 1)+ [ gl
o[ (WITRGE- ).

because (G — u)dggp, is singular (see Theorem 6.138 and Exercise 6.17).
We then deduce that

/ 1+|Vu|2—|—/ |u—g|<li_m/ V14 |Vu,|?,
o 00 7

and therefore that u is a solution of the relaxed problem, in other words, of
the problem stated at the beginning. We do not treat the regularity of this
solution in this book. Interested readers can consult the book [35] and the
articles [33] and [61].
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Comments

The literature on subjects related to elliptic nonlinear partial differential equa-
tions is considerable. As a consequence, we can choose between many different
directions.

In some cases, the variational approach is not possible and we could expect
solutions in the sense of viscosity, as in the book by Barles [3] and the articles
by Berestycki, Capuzzo-Dolcetta and Nirenberg [4], Cabré and Caffarelli, [12],
and many other authors.

For recent work on the different maximum principles, we mention, by way
of example, the articles by Grenon, Murat and Poretta [36], or Casado-Diaz,
Murat and Poretta [14].

For problems involving nonlinear terms with critical Sobolev exponent,
one may consult the articles by Demengel [18, 21, 20] and Demengel and
Hebey [24], the basic articles by P.-L. Lions on the concentration compactness
method [50, 51], and finally, the article by M. Struwe [66], which includes
methods for solving noncoercive variational problems using supersolutions
and subsolutions.

Finally, the book by Ferédéric Hélein [38] provides a complete overview of
harmonic maps between two Riemann varieties that is very pleasant to read.

5.12 Exercises for Chapter 5

Exercise 5.1 (Regularity of the Eigenfunctions of the Laplacian).
Show that if 2 is an open subset of R of class C>, then every solution
u € H(2) of —Au = Au, where ) is a real number, is C* in the interior
of (2.

Hints. By the regularity theorem (cf. Proposition 5.38), we have u € H?(f2) whence,
step by step, we obtain the implication

Vu, uweH™(2)=ue H"?().

Exercise 5.2 (Existence of a First Eigenvalue for the p-Laplacian).
Let p satisfy 1 < p < oo and let £2 be a bounded domain of class C' in RY.
We consider

A= inf / [Vu(z)|P dx
u€W, P (£2)
H'“‘HLP*
Prove that A\; > 0 and that the infimum is reached. Prove that a minimum w
satisfies

—Apu = A |ulP~2u.
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Let g be a number such that there exists a v € Wol’p, v # 0, with —A,v =
plv|P~2v. Prove that u > ;. For p = 2, this corresponds to the first eigenvalue
of the Laplacian.
Hints. Use Proposition 5.55 (the Poincaré inequality) to deduce that, for a con-
stant C' given by this proposition, A; > ((1 — C)/C)"/?.

Next, let {un} be a sequence of norm 1 such that ||[Vu, |5 — A1. Deduce the

existence of a subsequence that converges weakly to u in W'* and strongly to u
in L?. In particular, ||ul|, = 1. By the lower semicontinuity for the weak topology
of the seminorm, ||Vul|} < A1. Conclude using ||[Vul|b > A1.

Use the inequality |V (u+t@)||h > Ai|lu+tp||h for t € R and ¢ € D(£2) and the
mean value theorem (cf. for example Chapter 1) to show that

/ |Vul|Pdz + pt/ |VulP>Vu - Vpdz 4 o(t)
17} 7}
>\ / |u|Pdz + )qpt/ [ulP 2 updz + o(t).
2 2
Since ||Vul|h = A1]jul|b, dividing by t > 0 and letting ¢ tend to 0 gives

/ |Vu|P?Vu - Vdr > M\ / lulP " upd.
I 17

Conclude by replacing ¢ by —¢.

Let u be such that there exists a nonzero v € W, with —A,v = plv|P~v. By
the definition of A1, it suffices to multiply by v and integrate to obtain the stated
property, namely p > Ai.

Exercise [#%] 5.3 (Regularity of the Eigenfunctions of the Divergence
Operator).

Let {2 be an open subset of RY. Let A € C*(£2) with k > 1+ [N/2] be a sym-
metric uniformly elliptic matrix. Show that any solution u of div(A(z)Vu) =
Au is of class C! in the interior of £2. Use induction to show that u € H{"T1(£2).
Finally, use the Sobolev embeddings to deduce that u € Cpu% for some a. De-
termine « explicitly.

Exercise [#] 5.4 (Complements to the Strong Maximum Principle:
the Hopf Principle).
Let 2 be a domain in RY of class C! and let p > 1 be a real number. Suppose
that u is a solution of —Apu > 0 with © = 0 on 942, and that w is Clon 0.
Prove that on the boundary, we have

0

dm >0, Va € 012, —u(x) < —m.

on
Exercise [x+] 5.5 (Simplicity of the First Eigenvalue of the Laplacian).
We use the notations of Subsection 5.3.4.

(1) Prove that —Ap = Ay, where A; is the first eigenvalue of the Laplacian
and ¢ belongs to H{ (£2), admits a solution.
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(2) Use the strong maximum principle to prove that ¢ > 0 in 2. Prove that
for every u and every v > 0 in H{(£2), we have Picone’s identity:

|Vu|? = V(u?/v) - Vv >0,

where equality holds if and only if there exists a A € R such that u = Av.
(3) Let w and v be nonnegative solution of

—Au=XMu and — Av= \jv.

Prove that w and v are proportional to each other. First use the Hopf
principle to establish the existence of an € > 0 such that u > ev in £2. From
this, deduce that u? /v belongs to Hg (£2). Next, multiply the equation in v
by u? /v, integrate, and use Picone’s identity to prove the desired result.

Hints.

(1) The function ¢ is the solution of the minimization associated with

inf / |Vu(z)|*da
uGHé(Q) (9]
[lull2=1

(cf. Exercise 5.1). The existence of a nonnegative solution results from the in-
equality |V|u|| < |Vul.
If ¢ > 0, then —Ayp > 0. Use Vézquez’s maximum principle with g = 0.

(2) Expand the left-hand side in Picone’s identity to obtain

Vo
02

|Vu\2—2%Vu~Vv+u2 Vu,

which corresponds to
|Vu — EV11|2.
v
This expression is therefore nonnegative. Moreover, if it is everywhere zero, then
we have V(u/v) =0 in £2.
Conclude that u/v = cte, for a constant > 0.

(3) Since there exists a C > 0 such that u < Cv on the boundary, we have u?/v €
H ().
Multiplying the equation in v by u?/v and the equation in u by u gives

2 2
)\1/ vldr =\ lu(z)|*de = —AvLd
e

v Q Q v
= / Vo - V(u® fv)dz < / |Vaul|®de = M ||ul?,
2 o)

so that the inequalities become equalities everywhere, giving u = Av.
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Exercise [++] 5.6 (Simplicity of the First Eigenvalue of the
p-Laplacian).

Let £2 be a bounded domain of class C'. Show that if p > 1, u and v belong
to W, P(£2) and satisfy u > 0 and v > 0, then we have the following form of
Picone’s identity, which generalizes that of the previous exercise:

VulP = V(ul/v"~1) - o(v) >0,

where o(v) = |Vo|P~2Vv. Moreover, show that equality holds if and only if
U= A\v.

Use the strong maximum principle and Picone’s identity to show that if u
and v are solutions of

—Apu = M |uP2u,  —Ay = A |o[P 2,

then there exists a A € R such that u = A\v.
Hints. Expanding the above gives the convexity inequality
U

%WU\P V- a(v)(;)p_l +(1- 1—1)>cr(v) vo(%)" >0,

with equality if Vu = (u/v) Vv because of the strict convexity of z — |x|P. Conclude.
Multiply the equation in u by uw and the equation in v by w?/(v?~'). Since
uP /(vP~1) € WP (by the Hopf principle), we have

P P
p_ _ u_ — . u < P _ 4
)\1/Q|u| /QAvap_l /Qa(v) v(vp—1> \/Q\Vu| >\1/Q|u\ ,

so that the inequalities turn into equalities everywhere. In particular, in Picone’s
identity, this implies that u = Av.

Exercise [xx] 5.7 (Eigenfunctions of V? in H?).
Let 2 be a bounded domain of class C2 in RN . Recall that VVu is the vector
in RV with components J;;u and that

H{(2) = {u € L*(2,R) | Vu € L*(2,R"),
VVu € LP(2,RYY), ulog = du/dn|an = 0}.

Consider the variational problem associated with

A= inf {/Q|VVu(x)|2dx}.

u€HZ ()
fa Ju|?dz=1

Prove that A > 0 and that this problem admits a unique solution. Prove that
if u is this solution, then A?u = Au.
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Hints. The value A is positive because of the following generalization of the Poincaré
inequality:
Vue H3(2), Jullz < C|VVuls.

Prove this by contradiction, using a sequence {un} with [|[VVuy|2 < 1/n||un]2.
Divide by the norm y/||un||2 + || Vun||2 to obtain ||vp||g: =1 and ||[VVu,|l2 < 1/n.

Extract a subsequence and use the compactness of the embedding of H? into H*
to prove the existence of a subsequence {v,} that converges strongly to v in H*!
while {VVuv,} converges weakly to VVv. By the lower semicontinuity of the semi-
norm, we have VVv = 0. In particular, v is a linear polynomial. However, since
v =0 = 0v/On = 0 on 92, we must have v = 0, contradicting the equality
[vll3 = lim Jon]|7 = 1.

Next, let {vn} be a minimizing sequence for the value X. The sequence ||[VVuvy,||2
is bounded, whence, by using Green’s formula and the equality dwv, = 0 on 942,
we have

190allE = | = [ ondiv(T0)] < lvall2 [V5 00z
(]

which implies that v, is bounded in H'. Extract a subsequence that converges
weakly to v in H? and strongly in H'. The lower semicontinuity then gives
IVV0lle < lim [VVoal2 = A and [[v]l2 = lim on 2 = 1.
Now, v is the solution of the problem defining A. Let t € R™ and let ¢ € D(£2).
Write
IVV (u+t)|* = Allu+ te]*.

Using the notation VVu : VVp = Z” 0iju0;jp, expanding gives

2t/ VVu: VVe + O(t?) >A2t/ up + O(t?).
2 J 2

Integrating by parts then gives
2t/ (A2u)p > m/ up + O(t2),
2 Q

from which the result follows by dividing by ¢ and setting ¢ = 0. Replace ¢ by —¢
to obtain the equality A%u = Au.

Indeed,
/&ju@mﬁ:*/ 3@‘]‘“&‘%0:/ 5’n-jjwp:/ Aluep.
2 0 2 (93

Exercise [+] 5.8 (Eigenfunctions for A% — A).
Let 2 be a bounded domain of class C? in RY. We consider the variational
problem associated with

A= inf / |VVul? + / |Vu|
u€H3 (2)NH (Q)

jQ |u\ =1

Show that this problem admits a solution and that the infimum is positive.
Show that a solution wu satisfies
0%u

(5.86) A%y — Au = u, 2= U= 0 on 012.
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Hints. To show the positivity of the infimum, use the Poincaré inequality ||ull2 <
C||Vu||2 if w = 0 on the boundary. For a reasoning by contradiction, assume that
the infimum is zero. Then there exists a sequence {uy} such that ||un|2 =1, up =0
on the boundary, and ||u,||2 + ||[VVun|2 < 1/n. Extracting a subsequence, we see
that {u,} converges strongly to u in H' with |jull2 = lim |Jus||2 = 1 and ||Vul|2 +
[VVull2 < 0 by the lower semicontinuity of the seminorm. Since u is zero on the
boundary, it follows that v = 0, contradicting |lu||2 = 1.
Show the existence of a solution in a similar manner. Use u + t¢ and

/ IV (u+to))* + |VV(u+to)|* > A/ (u + tp)?.
(9] 2
Expand to obtain
%/Vqu+%/VVMVV@+mﬁPﬂ%/uw+mﬁL
2 2 2

with notation VVu : VVg = 37, - 9;;ud;;p, as before. By the definition of A%y in
the sense of distributions, this gives

/Azunp—/Auga:/\/ up,
fo) Q Q

that is, the first equation in (5.86). Show the limit condition by taking ¢ in H? with
¢ =0 on 02. This gives

VVu:VVep = f/ 0ij;u0; +/ 0i;u0;pn;
Q o0

= / Diijjusp — / Dijjuen; + / Dijudipn;
2 on on

22

:/ A2ug0+/ Oijudipn;
2 o9
and /Vu-Vnp:f/AugonLO.
17} 17}
Finally, use equation (5.86) to obtain [,,dijudien; = 0. Note that dn,u €

H~2(89).

Recall that the surjectivity of the trace map we proved in Chapter 4 implies that
for every (0,v) € H3/? x HY/?(2), there exists a ¢ € H?(£2) such that ¢ = 0 on
082 and 9,9 = v on 0f2. Using the equality 0,0 = vn; that holds on 92, deduce
that [, dijuvnin; = 0. This implies that 0?u/On? = 0 because v is arbitrary in

HY2(00).

Exercise [x+] 5.9 (Solving a PDE by a Variational Method).
Let £2 be a bounded domain of class C'. Consider the equation

—Au+ [ulP~Pu = f,
u =0 on 912,

where f belongs to L?(2), p is a real number satisfying 1 < p < 2N /(N — 2),
and p’ is the conjugate of p.
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(1) Prove the existence of a solution by considering the problem associated

with . )
inf {/ |Vu|2dx+f/ |u\pd9:—/ fud:r}
ueHy(2) |2 /o PJo Q

(2) Prove that if f > 0 in {2, then every solution u of

—Au+ [ulPPu = f,
u=0 ondN

satisfies © > 0 in £2.

(3) Prove the uniqueness of the solution. If {2 is C2, then prove that if p <
2(N —1)/(N —2), then u € H?2. Moreover, if {2 is C3, then prove that
under this same condition on p, if f € H!, then u € H3.

Hints. Under the given conditions, the functional stated in the problem is convex,
continuous, and coercive. By considering u + t¢p, it is clear that u satisfies

t/ Vu~V<p+t/|u|p72uapft/ fe+o(t) > 0.
Q 17 Q

Use a classical argument to obtain the PDE.
For the uniqueness, take the difference of the equations in w1 and in us2, multiply
this by u1 — ug, and integrate over (2. Applying Green’s formula then gives

[ 19 =+ [ (= el ) - ) =0,
J 2 2

which implies that (|u1|p72u1 - |uz|p72u2)(u1 —u2) is nonnegative, whence u1 = us.

Show that |u[?~2u € L2 if p < 2(N — 1)/(N — 2). Indeed, 2(p—1) < 2N/(N — 2).
Use Theorem 5.33 to deduce from this that u € H? because f — |u|P~2u € L% Use
V(JulP~2u) = (p — 1)|u|P">Vu to show that if N > 4, then the inclusion u € H?
implies that u € L2N/(N=9 and therefore u € L®~2N If N < 4, then the inclusion
in all L9 gives the result. We conclude that |u[P~2u € H'. Hence, if f € H', then
by Proposition 5.38, —Au € H', so that u € H?.

To see that v > 0, multiply the equation by u~, which belongs to H&(Q). When
f =0, this gives the inequality

~[ver - [ = [ o
2 2 7]
and therefore ©v~ = 0.

Exercise [] 5.10 (Variational Problem and p-Laplacian with Con-
straint).

Let 2 be a bounded domain of class C! in RY. Let C be a Poincaré constant,
that is, a constant C' > 0 such that for every u € W, ?(£2), we have Jo IVulp >

C [, lul?.
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Let 0 < ¢ < C and let f be a continuous function that is nonnegative at
at least one point. For p < N and p < ¢ < p* = pN /(N — p), we consider the
problem associated with

inf Vup—c/ ulP
u€EW,y P (2) {/n‘ | nl |}

Jo F(@)|ul?(z)dz=1

(1) Prove that this problem admits a solution by noting that the functional
that we minimize is coercive. Prove that there exists a nonnegative solu-
tion and that a solution u satisfies the Euler equation

—Apu — clulP"2u = \f|u|??u,

where X is a constant equal to the previous infimum.
(2) Use a suitable scalar to prove that the equation

—Apu — cuP ™t = fu?l, w>0, andu=0 ondN

admits a solution.
(3) Write the equation as

—Apu+ [ flloouw?™ = (|| flloo + Hud™" + cu?t > 0.

Suppose that u is C! and use Vézquez’s strong maximum principle with
B(u) = || fllooud™t to deduce that u > 0 in £2.

Hints. The functional is coercive. It is not convex, but it is l.s.c.
Let {u,} be a minimizing sequence. It is bounded in W'?(£2), hence has a

subsequence that converges to u € WO1 P Use the weak lower semicontinuity of
the seminorm |[Vu||, and the strong convergence in L?, which follows from the
compactness theorem in L7, to prove that fQ f(@)|u(z)|? = 1. Consequently, u
realizes the infimum. Moreover, if u is a solution, then so is |u|, because the functional
is even.

Use the inequality

r/q
Hurte)> ([ He)@+ ) @lde) " Iw)
where u is a solution, ¢ € D({2), and ¢t is sufficiently small that

/ () (Ju+ |z £ 0.
(93

The homogeneity ensures the existence of t. Expanding this, a classical computation
gives

J(u)+tp/ |Vu|p72Vu-V<pftcp/ [ulP~2uep + o(t)
Q 17}

= (1419 /Q Ful"ug + o(£))”/*) I (u).
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Therefore, there exists a constant p > 0 such that

77

—Apu — c|ulP?u = pflu|?%u

in 2. In order to obtain a solution when we replace p by 1, let v = /P~ Dy,

Exercise [x%] 5.11 (The Equation —A,u + u?~! = 0 with a Neumann
Boundary Condition).

Let £2 be a bounded domain of class C! and let p > 1 be a real number.
Consider the problem associated with

A1 = inf /|Vu|p /|u|p
uEWlp(Q)

fan [ulP=1

Show that A; is nonnegative and that the infimum is reached. Show that there
exists a nonnegative solution and that such a solution satisfies

~Apu+uP™t =0 in 0
and —o- T+ MuP"' =0 on dL,

with o - 7 = 8,u(|Vul[P~2). Suppose that u is C' on 12 and use the strong
maximum principle and Hopf principle to show that u > 0 on £2.

Hints. The continuity of the trace, namely ||you| Lr@02) < Cllullwr.p, implies that
the infimum is > 0. Moreover, the continuity of o for the weak topology on W!?
implies that the infimum is reached. Indeed, if {u,} is a minimizing sequence with
loun|zra0) = 1, then it is bounded in W"*. By the lower semicontinuity, we
can extract a convergent subsequence, giving u, — u where u satisfies ||u|y1,, <
lim J(u,). Consider u + typ with, in first instance, ¢ € D({2), to conclude that
—Apu + |[ulP72u = 0.
In the second instance, when ¢ € D(£2), use

[i IV (u+to)llp + [lu+ t@H?} —0
dt ||'70(u+t$0)“1]ip(a(z) t=0 7

which shows that
p [ A9u eVt [l Pups [ (9ul 4 [ o)
Q o) Q Q
>\ (1 +pt/ ul?~2uep + o(t)).
a0
Use Green’s formula on the left-hand side, divide by ¢, and let ¢ tend to 0 to obtain

/ o-Hodr =X\ / [ulPup dz.
EYe) Jog
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Exercise [¥] 5.12 (Variational Problem in W!'? with a Neumann
Boundary Condition).

Let {2 be a bounded domain of class C' and let f be a function that is con-
tinuous on 942 and admits at least one point where it is positive. We admit
that by the continuity of the trace map from WP to LP(92), there exists a
constant ¢ > 0 such that for u € WP (£2) we have

/ |Vu\p+/ |ul? 20/ [ul?.
7 Q 00

Let g be a continuous function on 92 such that ||g||c < c. Finally, let p < N
and let ¢ < (N — 1)p/(N — p). We consider the problem associated with

inf {/ |Vu|p+/ |u|p+/ glul?}.
ueWP(92) 7] 2 a0
Jog flul?=1

(1) Show that this problem admits a solution, and, moreover, that there exist
nonnegative solutions.
(2) Show that such a solution satisfies

~Apu+uP"'=0 in 02
and o(u) -7 +guP™t = A fu?™t  on 8.
Use multiplication by a scalar to show that
~Apu+uPt=0in 2 and o(u)- 7 +guP"' = fu?"! on AN
admits a nonnegative solution.

Exercise 5.13 (Nonconvex Variational Problem).

Let £2 be a bounded domain of class C* in RV. Let p > 1, p < N, let k < p,
let ¢ < p* = Np/(N —p), and let f € L?' (£2). We consider the variational
problem associated with

uewi/?'f"(n){]% /g [Vul” = (/Q |“|q)k/q - /Q fuy.

(1) Prove that the infimum is finite. After taking a minimizing sequence and
showing that it is bounded, extract a subsequence to deduce the existence
of a u that realizes the minimum.

(2) Give the differential equation verified by a solution w. Is it unique?



296 5 Elliptic PDE: Variational Techniques

Exercise [#] 5.14 (Variational Problem and Best Constant for a Crit-
ical Sobolev Embedding).

We admit that if p < N, then there exists a best constant for the critical
Sobolev embedding on R¥,

K(N,p)P = inf / [VulP,
wewe(®RN) JpN
[upe =1

and that this constant is reached for functions of the form w(z) =
(AP + rP)P=N)/P Tet 2 be a bounded domain of class C'. We consider a
continuous function a such that a(x) > —A1, where )\ is the first eigenvalue of
the p-Laplacian on {2. Let f be a non-identically zero nonnegative continuous
function that reaches its supremum inside (2.

We consider the problem associated with

inf {/ |Vu|p+/ aluf?}.
weEW,P(2) YJ 0 0

[ flulP”=1

Use a point xy where f reaches it supremum and a function of the form

T — xo |P/ (0= (P—N)/p
’ ) p(x),

ue(x) = (1 + ‘

where ¢ has compact support and equals 1 in a neighborhood of xy, to show
that we have

€

in {/ |vu|p+/ alul?} < |12 K (V..
2 2

uEW,y P (2)
f_o flul? =1

Exercise [¥] 5.15 (Extrema for Sobolev Embeddings in H!(RY)).
Consider the equation

—Au = pu? 1

on RM, where u is nonnegative, N > 5, 2* = 2N /(N —2) is the critical

Sobolev exponent, and p > 0 is given.

(1) Show that if there exists a nontrivial solution, then y > 0. Determine how
we can pass from a solution of the equation with u = 1 to a solution with
arbitrary pu.

(2) Let r* =", 22 and let

U(’I’) — ()\2 +,,,2)1—N/2

for A # 0 in R. Show that w is a solution of the equation (first verify that
u € HY(RY)) by choosing A as a function of .
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Exercise 5.16 (Extrema for Critical Sobolev Embeddings in
WLP(RY), Generalization).
Consider the equation

— quP 1L
—Apu = pu

on RV, where u is nonnegative, N > p?, p* = pN/(N —p) is the critical
exponent for the Sobolev embedding of WP into L9, and p > 0 is given.

(1) Show that if there exists a nontrivial solution, then y > 0. Determine how
we can pass from a solution of the equation with © = 1 to a solution with
arbitrary pu.

(2) Show that the p-Laplacian for a radial function can be written as

Or (rN_l |u’|p_2u’).
(3) Show that the functions
u(r) = (W0 4 rp/(p—l))l—N/P
belong to WHP(R™) and are solutions of the equation (give A explicitly
as a function of u).

Exercise 5.17 (Using the Pohozaev Identity).
Consider the equation

—Au = u2*_1, u=0on 0B

in a Euclidean ball in RY, where v is nonnegative and not identically zero.
We wish to prove that no solution of class C? exists with these properties.
Recall that if u is not identically zero, then du/dn > 0 on 0B.

(1) Multiply by u and integrate over B to find a first energy identity.
(2) Multiply by z - Vu and integrate by parts several times to obtain the

identity
ou\?
(=) =o.
/83 (8”)

Conclude using the Hopf principle.

Exercise [«] 5.18 (Existence of Solutions Using Supersolutions and
Subsolutions).

Let 2 be a bounded domain of class C' in RY. Let p > 1 and let 7 and u
be two bounded functions in Wol’p(Q) with 0 < u < w in 2. Let f be a
nonnegative function in L> and let ¢ > 1. We suppose that

-Apu > fu? and - Apu < ful



298 5 Elliptic PDE: Variational Techniques

Show that there exists a function u in W, (2) with u < u < 7 that is a
solution of —Ayu = fud.

Hints. Use induction to construct a sequence {u(k)}. Start with w. The function u®
is then defined by

u™ e WiP(£2) s a solution of — A,u®™ = fuF1)1,
The maximum principle and comparison theorem imply the following properties:

u® > 0, {u®™} is increasing, and u < u® < @ Deduce from this that {u(®}
converges to u. Note that it also converges weakly in WP because

/ Vu® Pdz = / £(@) () @)u® (2)dz < [ fl]oo (suppm) "
2 (9]

Extract a weakly converging subsequence in W1 to show that |Vu®[P=2vy ) =
o) admits a weak limit o up to a subsequence. Taking the limit in

—dive™® = (u(kfl))q f

then gives

—dive = ulf.
We wish to show that ¢ = |Vu|p72Vu. To do this, prove the convergence
Io |Vu® [Pde — [ |VulPdz, which implies the strong convergence in W'* because

p > 1. Consequently, by extracting a subsequence, we obtain Vu® — Vu almost
everywhere.

To prove the desired result note that, by the dominated convergence theorem
and the pointwise convergence of the sequence {u(k)}, we have

| @@tV @) @i — [ w @)@,
whence
/U(k>-Vu(k> —)/ uqH(I)f(x)dm and /U~Vu:/ uqH(I)f(w)dm.
(] (] (] (9]
Consequently,
m/ |Vu(k)|pd:v:/ o - Vude < lim [|[Va™ |27 Vull,
(] (9]
_ 1-1/
< lim</ |Vu<k)(1:)|pda:) "IVl
(]
Dividing by Iim [, [Vu® |Pdz leads to the inequality
(5 [ (vu®@Pds)” < (17l
2

which implies the result since by the lower semicontinuity for the weak topology
in L?, we already have ||[Vul|, <lim [, |Vu® (z)[Pdz.
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Distributions with Measures as Derivatives

In this chapter, we study the properties of function spaces that present strong
analogies to Sobolev spaces, namely spaces of functions with certain deriva-
tives belonging to either L!(§2) or to the space M'(§2) of bounded measures
on an open subset {2 of RY. The properties of Sobolev spaces extend to
most of these spaces, but not all. For example, the space BV ({2) of functions
in L1(02) with derivatives in M'(£2) is embedded in all of the LP({2) with
p < N/(N —1). Moreover, for p < N/(N — 1), the embeddings are compact
when 2 is bounded.

In Chapter 3, we showed that the functions of W11(£2) have a trace on
every regular hypersurface X' inside {2 as well as a “boundary value”. Both
are obtained by taking a limit. The trace belongs to L!(XY), while the bound-
ary value belongs to L!(9£2). In this chapter, we will show that this property
partially extends to functions in BV ({2), with the exception that, as in di-
mension 1, a function in BV has limits on both sides of the hypersurface X
inside {2 and that these limits may be distinct. When we consider the trace
of a function in BV on the boundary 02, there is no ambiguity because {2 is
of class C' and therefore locally only lies on one side of its boundary.

To better understand this phenomenon, the reader can consider the Heav-
iside step function H on | — 1,1[. When defined as in this book, the trace of
H e BV(]—1,1]) at 0 is 0 on the left and 1 on the right.

We will see in this chapter that the existence of certain embeddings and
the compactness of W11(§2) in larger Sobolev spaces extend to the space
BV ().
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300 6 Distributions with Measures as Derivatives

6.1 Results on Measures, Convergence

6.1.1 General Results on Measures
Let {2 be an open subset of RY, where N > 2.

Definition 6.1. A complex measure on {2 is a complex distribution that ex-
tends to a continuous linear functional on the space C.(£2,C). The measure
spaces, which we denote by M (£2), can therefore be identified with the dual
of C.(£2,C). Tt follows that to every compact subset K of {2, we can associate
a constant Cx such that

Vo €Ce(2,C), supp ¢ C K = [{1, 0)| < Ck[|loo-

Definition 6.2. The constant Cx does not necessarily depend on the com-
pact subset K of 2. When it does not, we call the measure p bounded on (2.
In this case, there exists a constant C' such that

Ve €Ce(2),  [m9)| < Cllglloo
We denote the vector space of bounded measures on 2 by M (£2).

Definition 6.3. Let p be a measure on (2. The conjugate measure, denoted
by T, is the linear functional on C.(£2,C) defined by

(I, ¢) = (1, 9)-
Definition 6.4. A measure p on {2 is called real if
Vo eC(2,R), (u,¢)€R.
This corresponds to saying that p = .
Definition 6.5. A real measure p on {2 is called positive if
Vo eC(2,R), ¢©>0= (u,) =0.

Proposition 6.6. A nonnegative distribution on {2 can be extended to a pos-
itive measure on (2.

Proof of Proposition 6.6.
Recall that a nonnegative distribution is one that satisfies

Ve eD(2), ¢20=(T,p)20.
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Let K be a compact subset of {2 and let {2, be an open subset of K with
K1 = ;. Let ¢ be a function in D(£2) with ¢» = 1 on K. If ¢ € D(£2) has
compact support in K, then |p|st)+¢ is a nonnegative function and therefore

(T, ) < llelloolT, 9)

and
—(T,¢) < llelloo{T, %)

In particular, for ¢ € C.(£2) with support in Ki, let {p,} C D(£2) be a
sequence with support in K that converges uniformly to ¢ in K;. The sequence
(T, pn) is then a Cauchy sequence by the inequality above; it converges to a
real number that we will denote by (T, ¢). We leave it to the reader to verify
that this constant does not depend on the chosen sequence ¢,, and that the
resulting extension of T to the continuous functions with compact support is
linear and continuous. O

6.1.2 Absolute Value of a Measure, Bounded Measure

Proposition 6.7. If i is a measure with real or complex values, then we can
define its absolute value, denoted by |u|, as the map with real values such that

Vi € C.(,R), =0, (lul,v) = sup {|(u, 9}
p€eC.(£2,C)
lp| <y

The map |p| is the restriction of a positive measure to the functions in
Co(2,RY). It is bounded if u is a bounded measure.

The proof of this proposition is left to the reader, who may also consult
[22].

Proposition 6.8 (and Definition). Let u be a positive bounded measure
on 2. We define its total variation, denoted by |u|q or fn u, to be

lulo = sup (u, o).
pEC(£2)
0<p<1

(1) If {¢n} is an increasing sequence of functions with compact support, values
in [0,1], and value 1 on

K,={x€ 2|dz,002)>1/n},

then the sequence {{u,1,)} converges to |u|n, which we also denote by
(b, 12).



302 6 Distributions with Measures as Derivatives

(2) Moreover, for every e > 0, there exists an Ny such that if n > Ny, then

<:u7 1Q\Kn> <E.

Proof of Proposition 6.8.

(1) The sequence {{u,1,)} is nondecreasing and bounded from above by |u| .
It follows that it converges and

im () < il
Let e > 0 and let ¢ € C.(£2) with 0 < ¢ <1 and (i, p) > |u|ln —e. Let K
be the compact support of ¢. Then for sufficiently large n, K C K,, and
(1, 0) < (1, Yp) because ¥, =1 on K.
By taking the limit, we deduce that lim,, (i, ¥n) = || — €, which
implies the result since ¢ is arbitrary.

(2) Let {¢,} be a sequence of functions in D(RY) equal to 1 on K, that
converge to 1. Let Ny be sufficiently large that for n > Ny, we have
{1y on — ©N,) < €. Let ¢ be a function with values between 0 and 1 and
with compact support in 2 \ Ky,. Let n > Ny be sufficiently large that
supp ¢ C K,,. We then have ¢ = ¢(p, — ¢n,), whence

(wp) <e.

By taking the supremum among all such ¢, it follows that (1, 1ok, ) <,
concluding the proof. O

Proposition 6.9. Let u be a positive bounded measure on (2. Let p € Cp(§2) be
nonnegative. Let {1, } be a nondecreasing sequence in C.(§2) with 0 < 1, < 1
that converges to 1. Then {(u,¥,p) converges to a nonnegative real number
that we denote by {u, ).

Proof of Proposition 6.9.

The sequence (i, ¥, ) is nondecreasing and bounded by C||¢||eo- It there-
fore converges. We let (i, ¢) denote the limit, which we can show to be inde-
pendent of the sequence ,,. a

Definition 6.10. For ¢ € C,(£2,R) and p a positive measure in M(§2), we
set
</’La 90> = <:u‘7 Y1 — ()02>7

where 1 — @9 is a decomposition of ¢ as the difference of two bounded
continuous functions with nonnegative values.
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We can verify that this definition does not depend on the choice of the
two nonnegative functions. In particular, we will often use the positive and
negative parts ot and ¢~ of ¢ for ¢, and s, respectively.

Definition 6.11. If i is a complex measure, then we can define its real and
imaginary parts as follows:

Bt =
R =—, ¢ = .
e(u) 5 Sm(p) =~
If the measure p is real, then we can define its positive and negative parts as
follows: 1 "
+_ K + p - _ M=
2 g 0 M T

Definition 6.12. If y is a real bounded measure, not necessarily positive,
then we extend p to the functions in Cp(§2) by setting

(1, 0) = (™, 0) — (U™, 0).

We can furthermore extend the definition of p with complex values to
bounded continuous functions ¢ with complex values by using the real and
imaginary parts.

Definition 6.13. Let 7 = (1, fi2, .., un) € M(£2,CN) be a vector-valued
measure. We define the functional | 77| by setting

Vi €C(2),0 >0, (H|,v)= swp |7, D)
Bec.(2,c)
SV il <y

where (7, @) = 31 wipi.

We then show that |ﬁ| is the restriction of a positive measure on {2 to
Cc(2,RT) (cf. [22]).
6.1.3 Vague and Tight Convergence

Definition 6.14. We say that a sequence of measures p,, € M ({2) converges
vaguely to p € M(£2) if for every ¢ € C.(2), we have

|{ttn — p, )| — 0.

Proposition 6.15. If {u,} is a sequence of measures that converges vaguely
to a measure p, then we have the following inequality in R U +oo:

Lt v [ .
n—><>o
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Proof of Proposition 6.15.

The inequality is trivial if lim,, , [, |ttn] = +00.

Let us therefore assume that this limit is finite and consider a suitable
subsequence {o(n)} with lim [, |pn| = lim [, |ft5(n)|- Note that in this case,
for every ¢ € C.({2) satistying |¢| < 1, we have

()] = | ity @) < lim /Q inl,

which implies that the measure p is bounded. Let € > 0 and let ¢ € C.(12)
satisfy || < 1and [, |u] < [, pe +e. Let Ny satisfy

¥ No | [ (-] <=
(%}

Then, for every n > Ny, we have

/\ulé/uw+6<li_m/ unw+2€<M/ |pn| 4 2¢. 0
2 (% (7] 2

Remark 6.16. Note that if p,, > 0 converges vaguely to p, then we do not
necessarily have |, oHn — fQ p. Indeed, the sequence in B(0,1) defined by
pn = n(XB(0,1) — XB(0,1—1/n)) converges vaguely to 0 in B(0,1) while for
every n, the total variation is equal to the volume wy_; of the unit ball
in RV,

Definition 6.17. We say that a sequence of bounded measures yu,, € M*(2)
converges tightly to u € M1(£2) if

Vo elCy(R2), [{ttn—p o) — 0.

Proposition 6.18. If {u,} is a sequence of bounded positive measures that
converges vaguely to p in M1 (£2), then the following statements are equivalent:

(1) The sequence {p,} converges tightly to p.

(2) f_o Hn — f_() 2z
(3) For every € > 0, there exists a compact subset K of {2 such that

/ Hn S E.
2NK

Remark 6.19. It is clear that if the sequence {u, } of bounded measures con-
verges vaguely to u, then this sequence cannot converge tightly to a measure
other than p.
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Proof of Proposition 6.18.
We will show that (1) implies (2), which in turn implies (1).
Since p, is positive, we use the bounded continuous function 1, in state-

ment (1). We then have
/ Hn — / M-
2 Q

Let K7 be a compact set such that fQ\Kl u < € and let 27 be an open set
with compact closure K = 2; containing K. Let ¢ have compact support
in £2; and be equal to 1 on K; with, moreover,

/ p< A, (1= @) +e.
2 NKq

Every continuous function with compact support in 2 ~ K and values be-
tween 0 and 1 is lesser than 1 — ¢. It follows that

lim pin < T (g, 1= @) :H/ fin — (g, )
O\K 2

=/u—<u7¢><2€-
(7]

The result follows.

Let us now show that (2) implies (1). Let ¢ € Cp(£2) and, given € > 0,
let K be a compact set such that for every n, fQ\K tn < €. Let ¢ € C.(02)
equal 1 on K and have values between 0 and 1, and let Ny be sufficiently large
that the vague convergence of {u,} to o implies that |(p, — p, )| <e. We
then have

(i = 1, 0) | < [pn = s o) | + ||80||oo/9 K(Wrun) <e(l+2fpllo). O

Proposition 6.20. Let {u,} be a sequence of bounded measures such that
there exists a constant C with [, |jin| < C. We can then extract a subsequence
of measures from {un,} that converges vaguely to a bounded measure.

Proof of Proposition 6.20.
This is obvious because the unit ball of the dual of the separable normed
space C.(£2) is relatively weak-star sequentially compact. O

Proposition 6.21. Let € M*(£2). There exists a sequence {u,} in C°(§2)

such that
[ tual = [ 1l
1) o}
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Proof of Proposition 6.21.

Let € > 0, let K be a compact subset of {2 such that fQ\K || < e, and let @
be a function in C.(§2) with 0 < ¢ < 1 and ¢ = 1 on K. Let Ny be sufficiently
large that 1/Ny < d(K, 012), and let p be an even regularizing function. Then
for n > No, the sequence {p1,, * (¢p)} converges tightly to ¢u, as does its
absolute value. Indeed, let us first show that this sequence converges vaguely
to @u. Let ¢ € C.(£2). For n sufficiently large, the uniform continuity of ¢
gives

lo1/n %% = Blloo < -
f 0 |l

We note that the measure pp has compact support in (2. For n sufficiently
large, we use the definition of the convolution of two distributions ¢u and
[P1/n] With compact support in {2 and the fact that this convolution is a
distribution of order < 0, which allows us to apply this convolution to the
function 1. Therefore, since p is an even function, we have

/Q (P10 * (o)) dz = ((p)e @ (P1/n)y: (@ +y))

= (o), p1jn * ).

Moreover, since

o e =901 < ([ 1) lpajn 50 = bl <2

the previous equality implies that

/Q (P + (010) (2))0() dzr —> (ppi, ).

In particular, by Proposition 6.15, it follows that [, |ou| < Lm [, |p1/,x(op)]-

Let us now show that [, [p1/, * (¢)] < [, |u|- Indeed, since the distri-
bution pu has compact support, we see that the convolution on the left-hand
side is a function with compact support that can be written as

(6.22) (P1/n * (o)) () = (pp, prym(x —-)).

Since the integral of p;,, over RY is 1, we have

(iout. [ ot =iz = [ o

By the definition of the absolute value of a measure and Fubini’s formula,
integrating equality (6.22) with respect to z over RY gives

[ tesmtemlde < (Joul, [ pinta =iz < [ fiu,
RN RN 2

which implies the result because of the vague convergence and Proposition
6.18 (the equivalence (1) < (2)). O
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6.2 Extension of a Positive Measure

The notions that we introduce in this section are meant to help understand the
properties of bounded measures related to absolute continuity and singularity
with respect to the Lebesgue measure.

For most of the definitions and properties that we set out we give only a
short proof. For example, our presentation of the theory of the integration of
arbitrary functions with respect to a positive measure is very concise. We do
not state Lebesgue’s theorems and say only a few words about p-measurability
and p-integrability.

We will frequently invoke the Lebesgue-Radon—Nikodym theorem, which
we state and prove succinctly. Readers interested in more details can con-
sult references dealing with the theory of Radon measures, in particular [8]
and [29].

Below, {2 is an open subset of RV and y is a positive measure.

6.2.1 Extension to l.s.c. and u.s.c. Functions

When p is a positive measure, we can extend its definition to a class of func-
tions larger than that of the continuous functions. We will assume known the
definitions of lower semicontinuous functions (denoted by the symbol s.c.i.)
and of upper semicontinuous functions (u.s.c.). We admit that any function f
with positive values that are either finite or not is the upper envelope for
the relation < of the functions ¢ € CH(£2) with ¢ < f. We let Z(§2) denote
the set of l.s.c. functions on 2 that are bounded from below by a function
in C.(§2). This set contains the nonnegative l.s.c. functions. Likewise, we let
TZ'(£2) denote the set of u.s.c. functions on {2 that are bounded from above by
a function in C.(12).

Definition 6.23. Let f € Z(£2) and let u be a positive measure on 2. We
define the extension p* of the measure p to the function f to be

(u™, f) = sup (u, ).
weCc(£2)
p<f

When this supremum is finite, we say that the function f is p-integrable.

For f € T'(£2), we can also define

* 9 = i f Y .
(s fy = b Kpio )
f<e
The sum f; + fo of the two functions in Z is well defined since these do not
take on the value —oo; we have f1 + fo € Z. We admit the following additivity

property.
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Proposition 6.24. For two functions f1 and fo in Z, we have

W (f1+ fa) = p*(f1) + 1" (fo)-

6.2.2 Extension to Arbitrary Functions and to Subsets of 2

Results on p-integrability. From the above, we deduce the notion of integra-
bility for functions h on £2 with values in R. Since there exist functions f in Z
with f > h, for example f = +o00, we can also extend p, which we assume to
be positive, in order to obtain the upper and lower integrals of h.

Definition 6.25. For an arbitrary function h on {2, we set

(u*s h) = inf (", f) and (g, h) = sup (s, f).
" fer’
fzh t<h
We have py(h) = —p*(—h) and p,(h) < p*(h). We say that h is p-integrable
if 1. (h) = p*(h), where the common value of both sides is finite. We denote
this value by w(h).

One can show the following characterization of p-integrability.

Proposition 6.26. A function h is u-integrable if and only for every e > 0,
there exist f € T and g € ' with g < h < f satisfying p*(f —g) <e

Proposition 6.27. If f is p-integrable, then the same holds for f+, f—,
and |f|, and we have |u(f)| < p(|f]). If f and g are u-integrable, then the
same holds for f + g, sup(f, g), and inf(f, g).

We extend the measure p to subsets A of {2 by introducing the character-
istic functions x, .

Definition 6.28. Let K be a compact subset of §2; then x, € Z’, which
justifies the decision to define the measure of K to be the real number pi, (X, ),
that is,

Let O be an open subset of {2; then yo belongs to Z and we set

p(0) = sup (u, ).
peCt(2)
e<lon {2
Every compact subset K of §2 is p-integrable. Every open subset O of {2 is
p-integrable provided that p*(O) is finite. This holds, for example, for every
relatively compact open subset.
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Definition 6.29. We say that a subset E of (2 is p-integrable if for every
€ > 0, there exist an open subset O of {2 and a compact subset K with
K C E C O, such that

p(0) = pu(K) <e.

It is clear that F is u-integrable if and only if its characteristic function is
p-integrable. This corresponds to saying that the numbers p*(E) and py(E)
are finite and equal. We denote their common value by p(F) and call it the
measure of F.

If A and B are two p-integrable sets, then we can show that the sets AUB,
ANB, and AN(2~ B) are all p-integrable. In particular, both compact sets and
finite intersections of a compact set with open sets are universally integrable,
that is, integrable for every positive measure pu.

Definition of p-measure 0.

Definition 6.30. A set A is said to be of py-measure 0 if p*(A) = 0. We admit
that if this is the case, then A is p-integrable so that the condition becomes
u(A) = 0.

A function f is said to be of |u|-measure 0 if p*(|f|) = 0.

If two functions f and g are equal outside of a set of measure 0, then we
call them p-equivalent and we have p*(f) = p*(g). By defining the associated
equivalence classes, this notion leads to the definitions of the vector spaces
LP(£2, ).

Properties of pu-measurability and p-integrability.

Definition 6.31. A function f on {2 is u-measurable if there exist a set N of
p-measure 0 and a partition of £2 ~. NV in the form of a sequence of compact
subsets K,, such that for every n, the restriction of f to K, is continuous. A
subset A of {2 is p-measurable if its characteristic function is.

We can show that a p-integrable subset is py-measurable. The converse is
false, but we do have the following result.

Proposition 6.32. A set A is p-measurable if and only if for every compact
set K, the set ANK is p-integrable. A function f from 2 to R is p-measurable
if and only if for every compact set K, the function fx, is p-integrable.

The following characterization of y-integrability follows from Egoroff’s the-
orem, which we do not state.

Proposition 6.33. A function f from £2 to R is u-integrable if and only if f
is pu-measurable and, moreover, the upper integral p*(|f]) is finite.
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This leads to the following result.

Proposition 6.34. If f is p-integrable, then so is fx, for every measurable
set A, and in particular for every compact set.

Definition 6.35. Let A be a p-measurable set. We define px, to be the map
that sends an element ¢ of C.({2) to the number

{1y ©Xa)-
This is well defined because x , ¢ is pu-integrable.

Local Integrability.

Definition 6.36. A map f from 2 to R is called locally p-integrable if every
point x of 2 admits a neighborhood V such that fy, is p-integrable.

Proposition 6.37. Let f be a map from §2 to R; then f is locally j-integrable
if and only if f is p-measurable and for every compact set K, we have

([ fx ) < oo

Proof of Proposition 6.37.

Let f be locally u-integrable and let K be compact. By decomposing f into
its positive and negative parts, we may, and do, assume that f > 0. We can
cover K by a finite number of open sets V; such that f Xv, is p-integrable for
every j. The function sup;(f ij) is then p-integrable (cf. Proposition 6.27).
Since fx, = Xx supj(fxvj), it follows from Proposition 6.34 that fy, is
integrable, and in particular measurable. Since this is true for every compact
set K, we see that f is measurable (cf. Proposition 6.32). Proposition 6.33
moreover gives us the finiteness of u*(|f|xx)-

Conversely, let € 2. Consider a function ¢ € C.(f2) with values be-
tween 0 and 1 that equals 1 in a compact neighborhood V' of x. Then the
function f¢ is integrable by Proposition 6.33. Consequently, the same holds
for fx, = fex,, by Proposition 6.34. g

Definition 6.38. We say that a locally p-integrable set A supports the posi-
tive measure p if p(2~ A) =0.

6.2.3 Absolute Continuity
In this subsection, p and v are two positive measures on 2.

Definition 6.39. We call u absolutely continuous with respect to v if the
following implication holds:

VACQ, v(Ad)=0 = u*(A)=0.
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This relation between positive measures is often denoted by u < v. We also
say that p is dominated by v.

This notion can also be expressed in the following manner. Let h be a
locally p-integrable function; then for every ¢ € C.(f2), the function hy is
p-integrable. Moreover, the map that sends a function ¢ € C.(£2) to the
integral p*(hy), which we also denote by |, o hedp, is a linear functional. It
is a measure on 2. Indeed, for every compact subset K of {2 and for every
continuous function ¢ with support in K, we have the inequality

[ o] < ol [ el
9] 2

Definition 6.40. The measure defined above is denoted by h - u. We call it
the measure with density h with respect to p.

Proposition 6.41. Let v = h-p, where h is locally p-integrable. Then v*(f) =
w*(fh) for every function f from §2 to R, where the product fh is zero by
definition whenever one of the factors is zero.

We admit the proposition without proof (cf. [29, chap. 13, §14]).

We can deduce from it that if v(A) = 0, then u(A) = 0. In other words,
the measure y is dominated by v. This property and its converse are part of
the Lebesgue-Nikodym theorem. The following result is a corollary of that
theorem.

Proposition 6.42. A measure > 0 is absolutely continuous with respect to
v 2 0 if and only if there exists a locally v-integrable function g such that

p=g-v.

6.2.4 Singular Measures

Definition 6.43. We say that p is singular with respect to v if there exist
disjoint subsets A and B of {2 that are locally p-integrable and locally v-
integrable, respectively, such that p is supported by A while v is supported
by B. This relation between the two positive measures is denoted by u L v.
We then have

p=px, and v=vy;.

Under these conditions, we can show that A and B may be chosen univer-
sally measurable. We will admit this result (cf. [29]).

Definition 6.44. The measure p > 0 is called singular if it is singular with
respect to the Lebesgue measure.
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Proposition 6.45. A measure 1 > 0 is singular with respect to v > 0 if and
only if inf(u,v) =0

Proof of Proposition 6.45.

Suppose that p is singular with respect to v. Let A and B be two disjoint
universally measurable sets such that u = px, and v = vx,. If ¢ € C.(02),
then we have

inf (p, v) () = inf ((u, x4 0), (v, X5 9)) = 0.

For the converse, we use Proposition 6.42. Consider the measure p = p+v.
By Definition 6.39, both p and v are absolutely continuous with respect to p.
Therefore there exist locally p-integrable g and h such that p = ¢ - p and
v = h - p (cf. Proposition 6.42). Since inf(u,v) = inf(g,h)p = 0, it follows
that inf(g, h) is of p-measure 0. Next, let M = {z | g(z) # 0} and let N =
{z | h(x) # 0}. These sets are locally p-integrable and, by the above, we have
p(MNN)=0.Let A= M~ (MNN) and let B= N~ (M NN). These sets
are locally p-integrable and we have g = x 49 and h = yph outside of a set of
measure zero for p. O

6.2.5 Canonical Decomposition of a Positive Measure

Theorem 6.46 (Lebesgue decomposition). Let p be a positive measure;
then there is a unique way to write p as the sum of a measure that is absolutely
continuous with respect to the Lebesgue measure and a singular measure.

Proof of Theorem 6.46.

The uniqueness is obvious. Indeed, suppose that p’ and p’' are absolutely
continuous with respect to the Lebesgue measure and that v/ and v are two
singular measures with

H:MI+V/:M//+VH~

We then have

!/ " /! /
w—=p = —v.

Both sides of the equation are measures that are absolutely continuous with
respect to the Lebesgue measure and singular; they are therefore both zero.
To prove the existence, we set

v = sup inf (p, ndx).

n

Note that v is a measure. Indeed, since v < p, we have the inequality vy <
e < Ckll¢|lso for every nonnegative function ¢ with compact support in K.
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We must also verify the additivity and positive homogeneity, that is, if ¢; > 0
and \; > 0, then we must verify that

2

A1+ dapa) = D> Niv i)
1

Let 1 and @9 be elements of C.({2) and let ng > n1,ng with n; f i = w(ei)
for i = 1,2. We then have

v(p;) = sup inf(lu(ga),n/gpidaj).

n<no

It follows that

no /()\1% + Aapa)dz > 1y //\1901 + n2/>\2902 > u( 7 i)

Hence
v( > Aipi) = sup,, <., inf (M( >3 /\i%‘),n/ (Z% Aipi) dx).

Since this reduces the problem to computing the supremum of the infimum of
a finite number of measures, we indeed have the stated additivity.

Let us now show that the measure v is absolutely continuous with respect
to the Lebesgue measure.

Indeed, if A is a set with Lebesgue measure zero, that is, fA dx = 0, then
the infima of v(A) and of n [, da are zero. Consequently, we have v/(A) = 0.
The measure v is therefore absolutely continuous with respect to the Lebesgue
measure.

Finally, let us show that the measure p — v is singular with respect to the
Lebesgue measure.

We will show, by contradiction, that if (u—v)(A) > 0, then fA dx = 0. Let
us therefore suppose that [ 4 dz > 0. Then for ng sufficiently large, we have
no [, dz > p(A), whence v(A) = p(A), that is, (u—v)(A) = 0. 0

6.2.6 Complex Measures and Vector Measures

For a real measure pu, the results presented above apply to the positive part u*
and to the negative part p~. Likewise, if u is a complex measure, then we
consider the real and imaginary parts of this measure, allowing us to restrict
ourselves to considering positive measures.

Let us briefly study the Lebesgue decomposition of a vector measure in
finite dimension.
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Definition 6.47. Let ﬁ be a measure with vector values and let v be a
positive measure. We call ﬁ absolutely continuous with respect to v if |7| <LV
(cf. Definition 6.39).

We call two vector measures 7/ and 7/ mutually singular if |7/| and | 7/|
are mutually singular.

We state the decomposition theorem in a specific case.

Theorem 6.48. Let ﬁ belong to MY (2,RN); then there exist a function h
in L'(£2,RN) and a vector measure U that is singular with respect to the
Lebesgue measure dx on 2 with

T =7+ Hdr.

Proof of Theorem 6.48. We apply Theorem 6.46 to the positive and negative
parts of each of the components p; of 7, giving

i =hidz + vy, p; = gidr + A,

From this, we deduce that p; = (h; — g;)dx + v; — A;. We then have

N N
= [Z(hz - gz’)ei] dx + [Z(Vz - )\i)ez}a

where the last sum represents a measure that is singular with respect to dx,
or rather, whose components are all singular with respect to dzx. a

6.3 The Space of Functions with Bounded Variation

Definition 6.49. We say that u € BV (2) if u € L*(£2) and Vu € M*(£2).
We can also define BV (£2) as the set of u in L*({2) such that

/ |Vuldz :sup{/ udivg | g € CH(R2,RY), |g] < 1} < +00.
Q o

Namely, we have

/ |Vulde = sup / Vu-@dr = sup { 7/ udiv gp(w)dm},
2 pec 9] n

(2,RN) peck(2,RY)
lel<1 lpl<1

while the opposite inequality follows by a density argument.
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Remark 6.50. Clearly W1(£2) C BV(2), but the inclusion in the other
direction does not hold. To see this, we can, for example, consider the char-
acteristic function xp(o,g) of a Euclidean ball. This belongs to LY(RM) and
has gradient V(xp(o,r) = —(z/|%|)dz/=r. Indeed, if ¢ € D(RY,RY), then
the classical Green’s formula gives

—/ V(XB(O,R))'@:/ div ¢(x) dx
RN B(0,R)

- /lxl:Rgo(x) CHdr = /|x=R é—| () da.

This proves that the characteristic function belongs to BV (R”), but not to
WELLRN).

Definition 6.51. We say that a sequence {u,} in BV ({2) converges weakly
tou e BV () if

/ |ty —u|de — 0 and Vu, converges vaguely to Vu.
Q

The following result is a consequence of the theorem on the weak com-
pactness of sequences of measures with bounded integrals.

Proposition 6.52. Let {u,} be a bounded sequence in BV (£2); then we can
extract a subsequence from {uy,} that converges weakly in BV (2).

Remark 6.53. We will see further on that when the open set 2 is sufficiently
regular, the space BV (§2) is embedded in LP({2) for every p < N/(N —1).
If 2 is moreover bounded, then the embedding in L?(f2) is compact for every
q < N/(N —1). These properties immediately give the strong convergence of
{un} to u in every LI(£2) with ¢ < N/(IN — 1) and the weak convergence in
LN/(N—l)(Q).

Proposition 6.54. Let 2 be an open subset of RY. Let {u,} be a sequence

of functions that converges to w in Li (£2). Then

/ |[Vuldzr < lim [Vup|.
2 n—-+oo J
Proof of Proposition 6.54.
If we know that Vu, is a measure, then we can apply Proposition 6.15.

In the general case, since u, tends to u in Li (§2), we know that for every
g € CL(2), we have

/Q () div g(z)dz —> /Q w(w) div g(z)dz.

This implies the result by taking the upper bound when |g| < 1 (cf. Definition
6.49). O
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Remark 6.55. Suppose that {u,} converges strongly to u in L'(§2) and that
{Vun} converges weakly to Vu; then we do not necessarily have [, [Vu,| —

Jo IVul.

Let us take a very simple example to illustrate this. Consider, in dimen-
sion 1, the sequence of functions {u,} with general term w, = nxxjo,1/n] +
X(1/n,1]- This sequence converges to 1 on |0, 1[ but fol lul,(t)|dt = 1, so it does
not tend to fo |u/(t)|dt, which equals 0.

6.3.1 Density Results

Theorem 6.56. The space C*°(2)NW1L(§2) is dense in BV (§2) for the inter-
mediate topology described above. This topology is finer than that of weak con-
vergence, and is related to the tight convergence of measures. Let u € BV ({2).
There exists a sequence {u,} C C®(2) N WHL(§2) such that

U, — u in L(2) and / |V, —>/ [Vul.
2 7

Remark 6.57. From now on, we will say that a sequence u,, of functions in
BV (£2) converges tightly to v in BV (£2) if

/|un—u|+/|Vun|—/ |Vu|]—>o

Proof of Theorem 6.56.
We use the notation of Proposition 2.12. Let {2; be an increasing sequence
in (2 with union (2. Consider the open sets A; defined by

Aj =010\ 2;_1, where 2_1=02y=0

and let {¢;} be the partition of unity subordinate to the cover {4;} of £2:
(o)
(6.58) 0 €CE(Ay), Spi=1, 0<g <l

Next, let {n;} be a nonincreasing sequence of nonnegative real numbers tend-
ing to 0 such that
Aj+B(0,n;) C Aj-1UA; U Ay forj>2

and such that, for a given § > 0,

[ 10+ @90l = [ Ite;vw)

(6.60) [ 1o, (g = ()| < 527971,

(6.59) < 627972

(6:61 [ 1 (Vo) = (V] < 2777,
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We then set

(6.62) Us = me. *
0

The existence of a sequence satisfying inequality (6.59) follows from Proposi-
tion 6.21.

We thus obtain a C* function on (2. Indeed, the resulting “sequence”
{us} whose general term is a C> function, is locally finite on every compact
subset K of {2, because there always exists a jo sufficiently large that A;_; N
K = @ for j > jo. It follows that the terms with indexes > jy are zero, because
their supports lie in A;_1 UA; U A;;.

We will first show that ||U5 —ul[1() < 6, which implies that u; € L*(£2).

Next, we will show that ’fn |Vus| — [, |Vu|‘ 26, which implies that Vus €

L'(£2), and even that Jo IVus| < C. Together, these upper bounds imply that
the “sequence” of functions {us} satisfies the property stated in the theorem.
By (6.60), we have,

[ tas=ul= [ |30 o)~ (] < Y2 15 =
7 2l% 5
Let us write A = | Y07 py, * V(p;ju)]| as follows:
A= ’Zp quDj—i-c,O]Vu)‘
0
<D [pny Vi) = @] |+ D uVes| + |3 o, + (5 V).
0 0 0

Then, since > " Vo, = 0 and [Vu| = > ¢;|Vu|, we have

!/Q(\Vu5|—|wl)ﬂ <§:]/{Z(pnj*(uv¢j)—(uv¢j))’
+§’/Qpnj*(90jvu)|/n|90jVu‘.

y (6.59) and (6.60), it now follows that

‘/Q|Vu5|—/9|Vu|‘<25. 0

After proving the trace theorem, we will see that the sequence {us} has the
same trace as u when §2 is of class C'. These density theorems for a topology
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intermediate between the weak topology and the norm topology allow us to
extend the embedding and compact embedding results concerning W11(§2)
to the space BV (£2).

Remark 6.63. Using the previous theorem, we can prove the following prop-
erty for the absolutely continuous and singular parts (cf. Theorem 6.46) of
the terms of the sequence {Vu,,}:

/Q\vw_(vu)ac| _>/Q;vusy.

We will use this property when we study functions of a measure in Section
6.10. Exercise 6.3 contains a proof of this result.

6.3.2 Embedding Results

Theorem 6.64. Let 2 be a Lipschitz open subset of RN ; then the space
BV (£2) is embedded in LP(§2) for every p < N/(N—1). If p < N/(N —1)
and (2 is bounded, then the embedding is compact.

Proof of Theorem 6.6/, existence of embeddings.
We will use the density of Wi1(£2) in BV (£2) (Theorem 6.56). Let u be
an element of BV (£2). There exists a sequence {u,} in W11(£2) such that

Up — win L'(2) and / [V, —>/ [Vul.
Q Q

Using the existence of the embedding of W11(£2) in LP(2) for all p <
N/(N —1), we see that there exists a constant C' that does not depend on n
such that

lunlly < C(llunlly + 1 Vun|l1)-

Since for 1 < p < oo, every bounded sequence in LP({2) is relatively weakly
compact in LP(§2), we deduce that we can extract a subsequence that con-
verges weakly to an element v € LP(§2). We of course have u = v, and by the
lower semicontinuity of the norm in LP({2),

||u||p< lim ||“n||p
n—oo

< C lim ([funlly + [Vun[1)
n— 00

= (s + | V).

giving the existence of the embeddings. O
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Proof of Theorem 6.6/, compactness.

Let us show the result for p = 1. Let K be a bounded subset of BV ({2).
We use the description of the compact subsets of L' (cf. Theorem 1.95 of
Chapter 1) to show that K is relatively compact in L!(§2). Let ¢ > 0 and
let G be a compact subset of £2 such that |2 — G|'/N < e. Then by using
Holder’s formula for every u € K, the embedding of BV (£2) in LN/N=1(12),
and the boundedness of K in BV, we have

/ lu| < ellullpv/av-n o) < ellullpy/v-1 (o) < Ce.

Next, we must show that
0 < |h] < d(G,092) —> / I — | < \h|/ V.
G e}
To do this, let {u,} be a sequence in W11(§2) with
/ |V, (z)|dz —>/ |[Vu| and / |tn, — u|(z)dz — 0.

I7) 2 fo)

Let Ny be sufficiently large that for n > N,

|V, |(z)dz —/ [Vul| < e and / |y, — ul(z)de < €.
2 Q 7

The last inequality implies that for n > Ny and for h < d(G,012), we have

/ |Thu — TRy |(z)dz < e.
G

The proof of Theorem 2.23 in the case p = 1 ensures us that fG | T —up|de <
h [ |Vun|(x)dz because u,, belongs to Wh(42). It follows that

/ |Thu — ul|(z / |Thu — TRy |(z dx—l—/ |Thity, — up|(z)dx

|un —ul(z)dz

h/ |V, |(z)de + 2 < h/ [Vu| + 3¢,
7 2

giving the result because ¢ is arbitrary.

Next, let p > 1. We consider the bounded sequence {u,,} in BV (§2). By the
relative compactness proved earlier, we can extract a subsequence {ug(n)} that
converges in L' (£2). By the continuity of the embedding BV «— LN/(N=1) this
sequence is bounded in LN/N=1_ This situation allows us to apply Lemma
2.82 of Chapter 2. We thus obtain that {u,,)} converges in every L9 with
g < N/(N-1). O
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6.3.3 Trace Results

Before stating the existence theorem for a trace on the boundary, we first need
the following result.

Lemma 6.65. Let ;1 be a bounded measure on the open subset £2 of RN . There
exists a number of a, at most countable, such that p charges 2N {xy = a},
that is, such that p(2N{zy = a}) > 0.

Proof of Lemma 6.65.
By Fubini’s theorem, we can write

() = / (@A {2y = a})da.

Let ¢ be defined by
p@) = [ lul(@n {ax = B))ds.
B

The function ¢ is nondecreasing, it therefore has at most countably many
discontinuities. Now, by definition, these discontinuities are precisely the real
numbers « for which

Elig%)u(ﬂﬂ{xjv=a+5})—u(9ﬁ{mN:a—e})7é0. 0

Proposition 6.66. Let {1, } be a sequence of positive measures that converges
tightly to p on £2. Then if 2, C 2, C 2 satisfies fé’!?l ©n=0, we have

/ Hn — K-
21 (P21

Exercise 6.1 provides the proof with a number of hints.

Theorem 6.67. Let 2 be an open set of class C'. There exists a surjective
continuous linear map from BV (£2) onto L*(982) that coincides with the usual
restriction map on the boundary when u € BV () NC(£2) and with the trace
map studied in Chapter 3 when u € WH1(£2).

Proof of Theorem 6.67.
We use a cover of 92 by bounded open sets (2; that, after changing the
coordinate system, if necessary, satisfy

;N2 c{(@,zn)]al@) <zn, 2 €O},
NN ={(2,a(x') | 2’ € O},
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where O’ is an open subset of RV~1 and a € C'(0’). We moreover suppose
that u has compact support in £2; N £2. Now, let a > 0 satisfy

IVul{(2',a(z’) + @)} = 0

(cf. Lemma 6.65). Let {u, } be a sequence in W1 given by the density theo-
rem. We have

up (2, a(z") + @) —up (2’ a(z’) + ') = / ONun (2, a(x") + s)ds.
Let g” denote the function &’ — wu, (2’ a(a’) + «) and let
Ao ={(2',zn) € 2| zn < a(z') + a}.

By integrating the equality over O’ we find that for 0 < o < &/,

o — gl o < / / (') + )

Ouy o
< + dx.

8un o,

aIN

The convergence of u,, to u in L'(§2) implies that the left-hand side tends to
l9a = gallL1(07y When n tends to infinity. Applying Proposition 6.66 to the
right-hand side, we find that its limit is

ou , , ,
— (2", a(z’) + zN)|dz.
~/.,4&/\Aa’8xN( ( ) N)’

From this, we deduce that the inequality

90 — goll L1 0y < / |Onul
o NAq
for the functions in W1 extends to the functions in BV when 0.4, and 0.4,/
have measure 0 for Oyu.

Since |0u/0x N | is a bounded measure on 2, the limit above is zero when «
and o/ tend to 0 from above. In particular, since {g,} is a Cauchy sequence in
LY(Q'), it converges to a function in L' (0’) that we denote by u(;)(2’, a(z)).
Using the usual gluing process that is compatible with the used cover of 2,
the sum of the resulting limit functions gives what we will call the trace of u
on the boundary of (2. O

Theorem 6.68. Let £2 be an open set of class C'. The trace map is continuous
for the intermediate topology described in Theorem 6.56.
More precisely, if un, — u in L*(£2) and if [, |Vun| = [, |Vul|, then

170 (un) = yo(u)|L102) — 0.
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Proof of Theorem 6.68.
Since the trace map - is continuous, there exists a constant C' depending
only on {2, such that

Vue BV(9), / | < /|Vu |dx—|—/ ju(a)]dz).

Let {un} converge tightly to w in BV, that is, satisfy ||u, — ul|s — 0 and
Jo IVu,| — [, ¢|Vu| for every ¢ € Cy(£2). Let € > 0 be given. Let 2
be a relatively compact open subset of {2 and let ¢y be a function with
compact support in {2, equal to 1 on {2y, and satisfying 0 < ¢g < 1 and
Jo(1 —0)|Vu| < e. By the tight convergence, there then exists an Ny such
that

Vn > Ny, /(1—<p0)|Vun\<25

We may, and do, suppose Ny sufficiently large that for n > Ny,

/ [y, — uldz < S
2 1+ [[Veol|oo

Using the continuity of the trace map and the equality 1 — pg =1 on 02, we
then have for n > Ng:

/{m‘ —ul< /‘V )L = o) ‘dx+/|“n_“|(1—<ﬂo)d$}
CQLHMMU—¢M+/JVMQ_@@

[ un =l Fioldo + [ [, = )1 = o))

2

< 0[45 +/ iy — u) (1+ ||V<p0||oo)dx] < 5Ck. 0
2

Remark 6.69. The sequence {us} of Theorem 6.56 satisfies vo(us) = yo(u).
Indeed, u — us is the strong limit in BV of

n

vp =Y (oo, * (pju) — pju),

0

a sequence whose general term has compact support in 92 for every n, and
therefore vanishes on the boundary.

Theorem 6.70. Let 2 be an open subset of RV of class C' and let u €
BV (£2). Then there exists a sequence {un} of functions in C°(£2) such that

tn —ulli — 0 and /|Vun|—>/ \Vu\—i—/ lul.
(9] (] o
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Proof of Theorem 6.70.

We begin by covering {2 with a countable family of open sets (finite if {2 is
bounded), where (2 satisfies d(£2y, 912) > 0 and, after changing the coordinate
system, if necessary, the £2; with ¢ > 1 satisfy

;N2 c{(@,zn) |2 € Oszn > a;i(a)},

for a class C! function a; on the bounded open subset O; of RV =1. Let {(;);}
be a partition of unity subordinate to this cover. We begin by showing the
result for p;u with fixed index i. We extend ¢;u by 0 outside of 2N §2;. The
resulting function g;u belongs to BV (RY) and satisfies

oy [ veEmi= [ ewls [ el

As in the proof of Proposition 3.57, we use the inclusion of 2, N 2 in U; =
{(@',zn) | &' € O}, xn > a;(2’)}, which is star-convex with respect to one
of its points. Consider the map @ — hy(z) = z; + Mz — ;). If \p(4) is a
sequence of nonnegative real numbers < 1 that tend to 1, then p;u o h;:l(i)
has compact support in {2 and converges tightly to p;u in BV (RY). Let
Em(i) = d(012,0(hA(4;))/2 and let p be a regularizing function; then p. ¢ *
(@Oh;\i(i)) belongs to D(£2) and converges tightly to g;u in BV (RY) when X
tends to 1. We thus obtain a sequence of functions in C°(£2; N §2) that tends
tightly to p;u in BV (R™) when A, (i) tends to 1. In particular,

D) = [ V(e * @ols )| = [ [Tl = [ ol —o.
RN " )

£2,N2 £2N982;

Next, imposing that A, ;) is sufficiently near 1 to have |[D(m, )| < n27¢, we
can complete the proof by using the properties of the cover of 92 by the
2; N 9L for i > 1 and the properties of the partition of unity {;}. O

Remark 6.72. By extending ¢;u outside of £2 by a function G € W (RN <\ §2)
instead of by 0, the same process allows us to construct a sequence {v,} in
WELHRN) that equals g = oG on 0f2 and satisfies

(6.73) /Q|Wn|—>/Q\Vu|+/m|(u—g)ﬁ|da.

We used this remark when studying minimal surfaces in Chapter 5.

6.4 Distributions with Gradient in LP

We will use the notion of an open set of class C' given in Chapter 2.
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Theorem 6.74. Let T be a distribution on an open subset 2 of RN then
VT € I}, (2) = T € Wl(92).

If 2 is moreover bounded and of class C', then we have
VT € LP(2) = T c W'P().

Proof of Theorem 6.7/ (see also [70]).

Let w be a relatively compact open subset of (2. We will show that the
restriction T | w belongs to LP(w). Let n > 0 be such that w + B(0,2n) € 2.
Let v be a regular function that equals 1 in a neighborhood of zero and has
compact support in B(0,7n). We let E denote the fundamental solution of the
Laplacian, that is, the function

Inr if N =2,
(6.75) E(ry=< 27
kNTQ_N ifN>3

where r = (ZZ |x1|2) 2 and ky is the constant given in Chapter 2. We have
A(YE) = yAE +( = 8o + ¢,

where ¢ = (Ay)E 4 2Vy - VE is a function in D(B(0,7)). The convolution
T x ¢ belongs to C*°(w + B(0, 7)), and therefore to LP(w) for every p. We have

T=Txby=T*A(WE)—-T (.
It therefore suffices to study the regularity of T x A(yE) on w. Let us write

T« A(YE) = ZaT*a vE) = Z&T*fyaE—i—Z@T*@()

Since V(v)E is C*° with compact support in B(0,7), the convolution VT %
V(v)E is an element of C*°(w + B(0, 7)), hence belongs to LP(w) for every p.
Let ¢ be a function that equals 1 on w + B(0,7n) and has compact support
in £2. When restricted to w, the convolution VT *yVE on RY coincides with
VT vV E. We now use the inclusions oVT € LP and yVE € L', which imply
that the convolution belongs to LP(w). To obtain a better result, we note that
YVE € L for every k < N/(N —1). It follows that T € LI (§2) for every r
with 1+1/r > 1/p+ (N —1)/N or, equivalently, with » < pN /(N — p). This
completes the proof that T' € L} (£2).

Let us now suppose that 2 is a bounded open set of class C' and that
Vu € LP(£2). We already know that v € LI, (£2). Since {2 is of class C', we
can cover it with a finite number of bounded open subsets (2; such that, after

loc
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changing the coordinate system in such a way that T en # 0, if necessary,
we can write

2NN c{@,zn)| 2 € 2, xn > a;(z)},
2:0002 ={(2',a;(2")) | 2" € 2/},

where (2! is a bounded open subset of RV~ and a; is a C! function on (2/.
Let ¢ be the first element of the partition of unity subordinate to the cover
{£2;} of 2. This function has compact support in 2. Since 2y € {2, we have
pou € LP(£2). Let us show that, likewise, p;u € LP(§2; N (2). Let B, be the
strip in £2; N {2 defined by

B, ={(2,zn) | 2" € 2], xy = a;(2") + \, X € [1/n,1]}.

Using the upper bound we give below, we show that lim, o |[@iul|1r(B,) is
finite, thus proving the finiteness of ||¢;ul|L»(p_. ). Together with the inclusion
w;u € LY, this will give the desired conclusion, namely that p;u € LP(£2;N2).
Indeed, since p;u(z’, a;(z") + Ag) = 0 for sufficiently large Ag, we see that the
function A — p;u(z’,a;(z') + A) can be obtained as an integral over [, o).

More precisely,

1
el = [ f Tl ae) +3) dnda’

1

whence, by Holder’s formula,

Ao
On(piu) (2, a;(x") + s)ds N dz’,
A

Ao
w01/ [ [T 9l ) 43 ds !
< /\8_1||V(<piu)||ip(m.

As stated above, we therefore have p,u € LP(£2N§2;). We conclude by writing
Jo lulP <32, [ ulP, where the sum on the right-hand side is finite. 0

In Exercise 6.14, we treat one of the consequences of this theorem. Let 2
be an open subset of RY of class C! and let m be an integer with m > 1. For
p > 2, we define the space

(6.76) X (02) = {u € LP(2) | D™u € LP(2)} .

Using Theorem 6.74, we see that it is of local type, which means that if
u € X, (92), then for every ¢ € C°(£2), we have pu € X,,,(§2). Exercise 6.14
contains other properties of these spaces.
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6.5 Distributions with Gradient in M*

Theorem 6.77. If T € D'(2) and VT € M (02), then T € BV 1,.(2). If 2
is moreover of class C' and bounded, then T € BV (£2).

Proof of Theorem 6.77.

The proof is analogous to that of Theorem 6.74. It suffices to verify that
if F is the fundamental solution of the Laplacian and u is a bounded measure
on R¥, then the convolution p x (VE belongs to LP for p < N/(N —1). We
will show, more generally, that if y € M'(RY) and f € LP with p > 1 has
compact support, then f * p belongs to LP and satisfies

1 xuly < anp/ Il

RN
This is true even when f does not have compact support, but in that case, we
need to define the convolution f x u, for which we need generalized convolu-
tions (cf. [22]). Let {u,} be a sequence of functions in L!(RY) that converges
vaguely to u. For example, we can take u, = pi/, x 4 where p is a function
in D(RY) with [pn p(z)dz =1 and p1/,, = n™¥ p(na). We then know that [u,|
converges tightly to |u| on RY. By a well-known property of convolutions, we
have
it * Fly < lanll 11

The sequence u, x f is therefore bounded in LP and, by the weak compactness
of the bounded subsets of LP, we can extract a subsequence that converges
weakly in LP. In the sense of generalized convolutions, its limit is ux f. Finally,
p* f € LP and by the lower semicontinuity of the norm on LP(RY) for the
weak convergence, we have

i £l < im0 = (bl 171 0

6.6 Functions with Deformations in L?P for 1 < p < o©

This section is linked to Section 7.4, which is devoted to Korn’s inequality.

Definition 6.78. Let T be a distribution with values in RY. We denote the
components of T" by T; and define the deformation distribution of T" to be a
symmetric matrix whose coefficients are the distributions

i,j € [1, N].
For p > 1, we define the space
Y, (2) = {u € LP(Q,RY) | Vi,j € [1, N2, £i;(u) € LY(2,R)}.
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We endow this space with the norm

1/p
ly, = (Il + [ @ P@)

where |e(u)] = (20, les (w)]?) .

Note that if u € WP(£2,RY), then the derivatives of the components w;
are in LP(£2), which implies that (u) € LP(£2, RN") and gives u € Y, (£2). For
many reasons, a crucial question is whether the converse implication holds,
which would imply the equality WP(2,RN) = Y,(£2) or, equivalently, the
existence of a constant C' such that

VueYy(2), |[[Vulp < Cllully,@)-

In analogy to the case p = 2, this last relation can be called Korn’s inequality.
Its proof is set up in Chapter 7 and carried out in Section 7.4 for regular open
sets. In this section, we content ourselves with three useful results.

Proposition 6.80. The space Y,(£2) endowed with the norm mentioned above
is a Banach space.

The proof is left to the reader.
Proposition 6.81. The space Y, (12) is of local type, which means that
Vo eD(2), VueY,(2), wueY,(2).

Proof of Proposition 6.81.
First, we have u;p € LP(2) for every i. It follows that up € LP(£2,RY).
Second,

2e55(up) = 9i((up);) + 05 ((up)i)
= 0i(ujp) + 95(uip)
= (8¢Uj + ajui)QO + Ujaz'(P + Ui6j<ﬂ>
so that

(682) 5ij(u§0) = @sij(u) —+ w

The component ¢;;(up) belongs to LP(§2) because it is a sum of products of
functions in LP, giving the stated result. a

We can now deduce the following density result.

Proposition 6.83. Let £2 be an open subset of RN of class C1; then C*(£2)N
Y, (£2) is dense in Y,(£2).
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Proof of Proposition 6.83.

Let 2, and Ay be as in the proof of Proposition 6.56. Let {¢x} be a
partition of unity subordinate to the cover of {2 by the A;. Finally, let n > 0,
let p be a regularizing function, and let 7 be sufficiently small that

(6.84) |0y * (o) — prull, < n2~FHD,
(6.85) o * (V(or)u) — V(gp)ull, < n2= ",
(6.86) 19me * (pre(u)) — pre(u)|l, < n2~FFD.

As in the proof of Theorem 6.56, we show that the sequence defined by v, =
Yk P * (ru) lies in C*°(£2). Every term v,, of the sequence belongs to Y}, (2).
To see this, it suffices to note that e;;(py, * (pru)) = pr, * €i5(pru) and to
apply formula (6.82) to &;;(pru).

Finally, let us show that u, converges to u in Y,({2), which at the same
time shows that u, is an element of Y,(£2). To begin, by (6.84), we have

[ = < [ [ 1on o0 = (] <

We also have
—+oo

€ij(uy —u) = €i; [Z(Pnk * (pru) — ‘Pku},
0

and owing to the properties of convolutions, the right-hand side can be written
as the sum of the sequence with general term p,, * €;;(¢ru) — €i;(wru). By
(6.82), it can also be written as the sum of the two terms

Uij = pyy, * (prgij(u)) — preij(u),
1
Vij = 5 {Pnk * (u;0;01 + uiOjor) — (ujOipr + Uiaj@k)]

By applying Minkowski’s inequality to the norms of these two terms in LP({2)
and using the relations (6.85) and (6.86), we obtain the result

/ le(uy —u)|Pde < KnP. O
f?)

6.7 Spaces of Functions with Deformations in L!

When p = 1, the space Y; is denoted by! LD(£2). One can show that Korn’s
inequality does not extend to the case p = 1, [55]. In particular, Y7(2) #
Whi(90).

! The name of the space LD({2) is an abbreviation of “Lebesgue deformation”, that
is, with deformations in L*(£2).
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Definition 6.87.
LD(2) = {u e L'(2,RY) | e(u) € L'(2,RN)} = V1(02).
It is clear that LD(f2) endowed with the norm
(6.88) lull o) = Il + e,
is a Banach space.

Theorem 6.89. If T is a distribution on an open set £2 with values in RN
such that (T) € L. _(2,RN"), then T € LL _(2,RN). If 2 is, moreover,

loc loc
bounded and of class C* and if T € D' (2,RN) satisfies e(T) € L'(2,RN),
then T € L' (2,RY).

Proof of Theorem 6.89 (see also [70]).
To prove the theorem, we use the following characterization of LD(2):

(6.90) Vue L' (), uweLD(2) «— YaecRY, (a -V(a-u))ec L' (N).

We obtain the implication < by taking o = e;, followed by a = (e; + ¢;)/2.
Conversely, if u € LD({2), then

a-V(oa-u) = oo = aoe(u),

which concludes the proof. Now that we have this result, given a vector «, we
introduce a solution of the equation in the sense of distributions, namely

(6.91) AE, + V(div E,) = adp.

We can verify that the function E, defined by

S A if N =2
B, =457 3a T IN-2 x(r- )
kN4TN——2+kN (T) N lfN>2,

(cf. Exercise 6.4) satisfies the equation. Moreover, the derivatives of E,, clearly
belong to LY (RY) for every p < N/(N —1). We want to show that u € L} _
if u is a distribution on 2 with e(u) € LP. Let w be a relatively compact open
subset of {2 and let 1 be such that w+B(0,2n) C 2. Let v € D(B(0,7)) equal 1

in a neighborhood of 0. We compute the jth component of (A + V div)(vE,):
A(YEaj) + 05 (div(yE o)) = YAEwj + 2V - VEaj + Eoj Ay +10; div E

+ (07)(div Be) + V(9;7) - B
= ;00 + ¢,
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where (; is a function in D(B(0,7)). In particular, the convolution of wu,;
and ¢ is a function in C*°(w + B(0,7)), and therefore lies in L?(w) for every
p < oo. Let us show that for every «, we have o - u € LP. For this, we take
the convolution of the previous equality with u;. Simplifying the notation F,,
to F, this gives

N

N
a~u=ZOéjUg Zuﬂ A(VE;) + 05(div(vE)) —I—Zuj*gj,
1

whence, by setting u % ¢ = Zf/ u;¢;, we obtain

a-u—uw(= Z Oiuj * O;(VEj) + Orui0; (Y Ey,)

1<i,5,k<N
Y duix (9,(VE:) + 0i(vEy))
1<i,j<N
=2 Z gij(u) *x g5 (VE).
1<, <N

This last function restricted to w coincides with the product
2(peij(u)) * €ij(vE), where ¢ is a function in D(B(0,2n) + w) that
equals 1 on w + B(0,7). Since 2¢(vE) € LP for every p < N/(N —1) and
we(u) € L', we find that u belongs to LP(w) for p < N/(N —1).

We now wish to show that u € LP(§2) when §2 is bounded and of class C*.
We once more use the usual cover of {2 and the associated partition of unity.
We note that a derivative of the type 9;u;, which lies on the diagonal of the
matrix (g;(u)), is an element of L'(£2). Consider the open set {2 N {2 for
k > 1. There exists an index i such that the outward-pointing normal 7 to
the boundary 892 N £2; satisfies 7/ - ¢; # 0 almost everywhere. We can then
write

02N, C {(:Ev“ffz) | z; € Ok, ak(fi) < I'i},

where O}, is an open subset of RV=1 q, is a C' function on O, and the
boundary is defined by

0NNy, = {(x“i,ak(fi)) ‘ T; € Ok}.

Given this, the same computation as in the proof of Theorem 6.74 shows that
u; € LP(£2 N §2;) because of the inclusion du;/dz; € L*(£2).

The same reasoning can be applied to every other component u; with j # i
for which 7/ - e; # 0 almost everywhere on 02 N (2. If this is not the case,
then we still have 7/ - ((e; + e;)/V2) # 0 almost everywhere. This suggests
that we reduce to considering the function v defined by v = u; +u; and change
the variables so that we can use a derivative of v that belongs to L!(£2) (see
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Exercise 6.8 for the details). By applying the same reasoning as before, we
find that v € LP(£2 N (2). Since v = u; + u; and u; € LP(2 N (2), it follows
that uj; € Lp(ﬂﬂ .Qk)

We use the partition of unity to deduce from the above that every com-
ponent u; belongs to LP(S2), and therefore that u € LP({2). O

6.7.1 Trace Results

Theorem 6.92. Let 2 be an open subset of RN of class C*. Then there ex-
ists a continuous surjective linear map from LD(2) onto L'(02,RN) that

coincides with the trace operator as defined in the classical sense, that is, on
LD(2)NC(2,RN) or on WHL(02,RY).

Proof of Theorem 6.92. We take up the arguments of P. Suquet [67] and of
R. Temam [70].

We begin by assuming that we are in the neighborhood of a point of the
boundary where there exists a system of coordinates that allows us to write
the boundary in the form {zx = a;(z') | 2’ € O'}. We also assume that u has
compact support in £2; N §2, while

;N2 {2 zy) | zn > a;i(z'), 2’ € O'},

where O’ is an open subset of RY~1 and the function a; is C' on O’. We show
that in the neighborhood of such a point, we can define a trace un (2, a;(z')).
The usual reasoning that uses a cover of {2 and the associated partition of
unity then allows us to construct the trace youx in L'(942), starting with
this neighborhood. We recall that Oyuy € L(£2) and for a pair (o, o’) with
0 < a < o, we write the equality

’

un (@', a;(2") + o) —un(2’,a;(z") + @) = /a Onun (2, a;(2") + y)dy.

To simplify the notation, we set g, (z') = un(2’,a;(z') + @). By integrating
|ga — gor| over the hypersurface X' = 92 N §2;, we obtain
(6.93)

a;(z')+a’
Jlga =gl @< [ [ oy o) vl oo ds o
OrJa;

(z")+a

where vy (2/,a;(2")) = —1/4/1+ ||Va;(2")||? is the Nth component of the

unit outward—pomtlng normal vector to 92 at (2',a;(z")). Using the assump-
tions on Va; and setting A, = {(z,2n) € 2 | 2y < a;(2") + a, 2" € O'}, we
deduce that

(6.94) / o — gov| (2')dor < C / Onun| (z)dz.
P .Aa/\.Aa
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Since Onuy lies in L', the right-hand side satisfies

lim |Onun (z)|dx = 0.
=0 J 4 /N Aa

o’ =0
It follows that {g,} is a Cauchy sequence in L'(X).

Let us set B, = {(a/,a;(z') + N) | A € [0,a]}. By the above, the limit
of {ga}, which we denote by g and which belongs to L*(X) = L' (82N £2;),
satisfies

[ o= gl@)io < [ lovuno)dz,
E [e3

whence

/ lgldo < / lgaldo+ Oy / Oy (2)] do.
X b Ba

By integrating this relation with respect to a over [0, ag], where g is bounded
from above as a function of the compact support of u, we obtain

@ (73}
ao/ |g|d0</ /IgaldoderCl/ / |Onun (2)| dz ds
X 0 X 0 Ba

g/ \uN(a:)|dz+Cl/ / |Onun (x)] dx ds.
B 0 Bao

0

The first term on the right-hand side is bounded from above by [lux||z1 ()
and the second term by agl|Onun||11(2). Consequently, the function g, which
we now denote by youy, satisfies the inequality

Ivoun |l 00ne) < KllunllLpoone,)-

This implies that the map that sends uy to g, which is linear, is a continuous
map from LD (902N §2;) to L1(02 N ;).

This reasoning remains valid for every component u; in the neighborhood
of a boundary point « with v;(z) # 0. If v;(z) = 0, then there exists a j dif-
ferent from 4, such that v;(z) # 0. We then have (v; + v;)(z) # 0 and, by an
argument we already used in the proof of Theorem 6.89, we can use the previ-
ous method to define the trace vyo(u; + u;) in a neighborhood of z. Moreover,
since you; is well defined, this leads to the trace of u; in this neighborhood. As
we have already stated, we construct the trace of each component in L (92)
and the resulting trace map is indeed linear and continuous.

Moreover, since the trace map g from WH(£2,RN) to L1(902,RY) is
surjective, we see that the embedding W1 (£2,RY) c BD(2,R"Y) gives the
surjectivity of the new trace map. a
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6.7.2 Embedding Results

Theorem 6.95. Let {2 be a Lipschitz open subset of RY; then the space
LD(£2) is embedded in LN/(N_I)(Q,RN), and therefore in L1(£2,RN) for ev-
ery q with ¢ < N/(N —1).

Proof of Theorem 6.95.

We begin by establishing the critical property of the embedding, namely
the inequality [|ullLv/(v-1(ory) < C(le(u)1) for € functions with com-
pact support. The corresponding result for functions in LD({2) will follow by
density. Let u € D(£2,RY). We consider

i=N N
o= g ae;, lal=1 and vy =a-u= E ;.
i=1 1

Using the inequality | Y-, v i<y @iajeij(u)| < Nle(u)|, we have

0 N
[va (x ‘/ (x + sa)ds’ < / ‘ Z a0 05u(z + sa)‘ds

i,j=1
/ ‘Zazaﬁ” a:—&—sa)‘dséNQIa,

where I, —f_ u)(x + sa)|ds.
Let us now con51der vectors hy = a — ageg for k = 1,2,..., N — 1. For
1 # k, we write

0
d
ui(x) = / 7 ui(x + shy)ds = / Zozja ui(x + shyg)ds
o st Sy
and for i = k,

0
= / Oruk(x + sey)ds.

For a given k in {1,..., N — 1}, we can then also write v, (z) as

N
Z aui(x / Z o 05u;(x + shy)ds + / apOgug(z + sex)ds
i=1

0 i,j#k

_ 2/ Z a;age;j(u)(x + shy)ds

1,57k

0
—l—/ arerr(u)(x + sex)ds = I, + J.
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Let us consider the power v, (x)|Y/ V=1, We must show that this belongs to
Li. .. We begin by using the definition of I, given before to write the following
inequality, which holds up to a multiplicative constant:

|Ua(x)|N/(N—1) < [Ia |Ua($)|] 1/(N*1).

Using the formula |v, (z)|V~1 = Hivfl(fk + Ji) and a classical inequality on
norms in finite dimension, we deduce that |vy(z)]N/(V=1 is bounded from
above by a linear combination of functions of the form

[Io Hi Hy - Hy_1] 1/(N71)7

where H; denotes either an integral I; or an integral J;. In the situations
where we can apply Lemma 2.40 of Chapter 2, we will bound each term of
such a product from above by a function in N — 1 variables. Exercise 6.20
concerns the case N = 3, where we need a change of variables for which these
products are all functions of two variables. That exercise can help motivate the
following algebraic lemma, which we will use to determine the upper bounds.
We state and prove the lemma in the general case.

Lemma 6.96. Consider vectors o = . cze; with nonzero a; and for every
i€[l,N—1], let h; = a — aje;. For each index i, let E; be a vector belonging
to {h;,e;}. Then every sequence of the form o, E1,Es, ..., Enx_1 is a basis
for RNV,

Proof of Lemma 6.96.

We begin by supposing that E; = h; for every 4. In this case, the determi-
nant of the system o, hy,ho---hy_1 equals ay - - - an det(J), where J is the
matrix whose elements all equal 1 except for those on the first superdiago-
nal, which are all 0. Consequently, the lemma holds since this determinant is
nonzero.

To show the result in the other cases, we use an induction on the dimension
of the space, where the initial step is obvious. We use vectors @ and E; such
that

a=a+ayey and Vi< N -2, E;=F;+c¢ien,

where ¢; = ay if E; = h; and ¢; = 0 if E; = e;. The induction hypothesis
applied to the N — 1-dimensional space [el, €2,..., eN_l} ensures us that the
vectors @, B, ..., En_o form a basis of that space. Indeed, they are defined
in the same manner as «, F;, but without components over ey . Since En_1 €
{hn_1,en—1}, we obtain the result of the lemma for dimension N by proving
that the sequences

a+aynen, By +een,...,En_o+en_2en, en—1

a+anen, Er+eien, ..., En_a+en—zen, hn-1
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both form bases.
Consider the first sequence, and let \;, j € [0, N — 1], satisfy

N-2
Xo(@+ anen) + Z Ni(E; +eien) + Av_1en—1 =0,
1
which implies that

N—-2

N-2
(6.97) Ao + Z )\iE+ AN—_1EN_1 = —()\oaN + Z )\iffi)eN~
1 1

We deduce from this that A\pay + Zi\[*? Aigi = 0 or, by letting A7 denote
the \; for which g; is nonzero, that Agany + Zi\,d Afan = 0. Consequently,
since ay # 0, we obtain the relation Ay + Zi\fﬂ Af = 0. When ¢; # 0, that
is, when E; = h;, the coefficient of E; over ex_1 is an—_1. Consequently, the
coefficient of ey_1 on the left-hand side of (6.97) can be written as Ay_1 +
Aoan_1 + Zivfz Ajan—1 and therefore equals Ay_;. By this result and the
induction hypothesis, we see that when the left-hand side of (6.97) equals 0,
we have Ay_1 =0, \g =0, and \; =0 for every i € [1, N — 2].

Next, consider the second sequence. In this case, since hy_1 = a@+anyeny —
an_1en—1, the right-hand side of (6.97) is replaced by

N-2
—()\QOéN + Z )\2‘0&]\/ + )\NflaN)eN,
1

whence

N-2
(6.98) Mo+ D> AT+ Ay =0
1

The left-hand side of (6.97) is replaced by

N-2
(Ao +Anv_1)a — An_1en—1 + Z NE;.
1

Taking into account equality (6.98), we see that the coefficient of the left-hand
side with index N — 1 is —Ay_1. We conclude, as in the first case, by using
the induction hypothesis. O

Let us return to the proof of the theorem. We consider a product
I Hy---Hy where H; = [on |e(u)|(x + sE;)ds. Let & be the coefficient in
the basis o, B, ..., En_1, so that x = > x,e; = {oa + Eiv_lngj. Then,
through a change of variables that involves the determinant of the system of
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vectors a, F1, ..., EFn, we prove that H; does not depend on the variable &;.
Consequently, we can apply Lemma 2.40 of Chapter 2, which tells us that v,
N/(N-1) ().

loc

belongs to L

Moreover, the inequality concerning the norms in the lemma shows that
there exists a constant C' such that [[va || ~x/v-1) < Cllul|Lp(e). Finally, since
this is true for every «, we can deduce that for the functions in D({2), the
embedding is not surjective, and the existence of the embedding is proved, as
stated at the beginning of the proof. O

To obtain the regularity up to the boundary, we take up arguments already
used in Theorem 6.74.

Theorem 6.99. Let 2 be a Lipschitz bounded open subset of RN. The em-
beddings of LD($2) in LP(£2,RN) for p < N/N — 1 are compact.

Proof of Theorem 6.99. By the previous theorem and Lemma 2.82 of Chap-
ter 2, it suffices to show that the embedding of LD(£2) in L'(£2) is compact.
We will use the compactness criterion of Theorem 1.95. Let {u,, } be a bounded
sequence in LD({2). We want to show the following statement:

Ve >0, 36 >0, 3G compact, Vn € N, Vh, |h| <inf (,d(G,00)) =

(6.100) / lun(2)|dz < & and / (& + B) — ()| < .
[PANE G

The first inequality of (6.100) is obvious, because w,, is bounded, owing to the
existence of the embedding of BV (£2) into LN/ (N=1)(0)

(6.101) /Q ; |tn (2)|dx
> 1/N

N-1/
< (/ |un(x)\N/(N_1)dac) mes(£2 ~ G)/N.
O2NG

Moreover, because {2 is bounded, this measure can be made arbitrarily small
by a suitable choice of G.

Proving the second statement is more delicate. To begin, we can drop the
index n and suppose that u has compact support in 2. Namely, it suffices to
replace u by @u, where ¢ is a C! function with compact support in 2 and
value 1 on G. Let o be a vector of norm 1 in RY. We will show that for h
sufficiently small,

Vs €01, Je> 0, [mla-u) —a-ullaa) < bl le(w) 4 g e

We use the computations of Theorem 6.89. Let E,, be as defined in the proof
of that theorem and satisfy

AE, + V(div(E.)) = ady,



6.7 Spaces of Functions with Deformations in L' 337

and let v be a function in D(B(0,n)). We recall the following result from
Theorem 6.89:

au—uwC=2 Z €ij(u) *x €5 (VEq),
1<i, SN

in which ( is a regular function with compact support in RY. Since translation
commutes with convolution, it follows that

Tho-u) —a-u= QZ€ij(Th(7Ea) — (VEa)) *€i5(u) + (3¢ — () Fu.

To continue, we have |(7,¢ — ¢)Fu| < C|h| and €ij(Eq) is a positively ho-
mogeneous function of degree 1 — IV, which allows us to apply the following
lemma.

Lemma 6.102. Let f be a function on RY with values in R that is positively
homogeneous of degree 1 — N and C' outside of 0. Then for every s € [0,1],
there exists a C such that for every h with |h| < 1, we have

1 1
o < S .
|f(x+h) f($)| \C|h| {a;‘—l—hN_H's + |x|N_1+s}

Proof of Lemma 6.102.

We reduce to showing the result for x of norm 1. Indeed, let us suppose
the result proved for such x and for every h. Using the homogeneity, we then
write

@+ h) = f(@)| = el N f (2 + h)/|2]) = fz/|2])]

< Cla|~N 1 (|h)/|2))* <(1 n ‘h|/|1x‘)N—1+s + 1)

1 1
= C|h)® .
7] <|;I;+h|N—1+s ™ |x|N—1+s>

We therefore wish to prove the property for x of norm 1. Let us suppose that
|h| < 1/2. We use the inequality of the mean value theorem at x. Since f is
homogeneous of degree 1 — N, its gradient is homogeneous of degree —N,

whence "
flx+h)— f(x)| < sup |[Vfy)|————=.
e+ 1) = @) < s 1V )l
Using |h| < 1/2, we have
1 3
|9h+x\>|x|f|h|>§ and |9h+x|<5§3|x+h|.
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Hence
Bt 1 L+ |z +h"  _§ 3N
|z +6nN = |z +0nN |x + h|N—1+s
1
< _ .
= C(1+ ‘x+h|N71+s)
Consequently,
C'|h| 1 1
sl < U o )
G+ 1) = £ < gy < O (e + e

Let us now suppose that |h| > 1/2 and |z| = 1. We then have |h|/|x + h| >
1/3 and, by the homogeneity, |f(z)| < |z|*~ supjy <1 |f(y)]- It follows that

1 3%|h)*
fa+h) — f@] <C (F ek 1) <¢ (—|x T 1)

1
< Oh? <|:1: + h|N-1+s + 1)

because h > 1/2 implies (3|h])™° < 1. O

We return to the proof of the theorem by applying the lemma to the
€;j(Eq). Taking into account all components and the factor 7, up to the term
concerning ¢, we can write

|Th(c-u) — - ul(x) < C|h {Th( x|’]yv(x3+s) + |x7\,(x3+8 } * |e(u)],

I (- u) — a - ul(x) < Clh|* {|x|ry1\’(7x3+5 x (|mhe(u)| + |5(u)|)} .

The Hausdorff-Young theorem (cf. Appendix to Chapter 4) implies that, since
x + y(z)|z|~N 175 belongs to L* for k < N/(N — 1+ s), hence for k =1 in
the present situation, the convolution y1/|z|¥ =143 x(|7,e(u)| +|e(u)|) belongs
to L*(G) for the same values of k. For k = 1, we have the inequality

1
v ()] + () <Hv—_s W)l r(-
H s ) s | fEle

LY(G)
We deduce from this that
ITh(a - u) —a-ullia) < Clhle(w)|p (2

for every s < 1. Returning to the vector function u, this concludes the proof
of the compactness of the embedding of LD(§2) in L'(£2), and therefore in
every LP(£2) with 1 <p < N/(N —1). O
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6.8 The Space of Functions with a Measure as

Deformation

For an open subset £2 of RY that need not be bounded, we let
BD(02) = {ue L'(2,RY) | Vi,j € [1,N], e;;(u) € M'(2)}

(BD(£2) means “with bounded deformations”.) Taking the seminorm [, |e(u)|
defined by

/|€(u)|: sup /Eij(u)goijdx,
2 {0i;€C(2), 0 1< j<n 1#is|2 <1} /2

we can endow the space BD with the norm

lullape) = llullzs oz + /Q ()|

for which it is a Banach space.

6.8.1 Regularity and Density Results

Theorem 6.103. Let T € D'(2,RYN) be such that for every (i,7) € [1,N]?,
€i;(T) € M*(2); then T € BD1oc(£2). If 2 is moreover a bounded open set of
class C*, then T € BD(2).

The proof of this theorem is similar to that for LD (£2). We leave it to the
reader.

Theorem 6.104. The space C*°(2) NWL(£2) is dense for the tight topology
on BD(§2). In other words,
Yu € BD(2), 3{u,} c WH1(2)nC>(0),
Up, — u in L1(0),
e(up) — e(u) vaguely in M1 ()
Jolen)l = [ le(u)].

Proof of Theorem 6.104.
We will use the approximation from the inside of Theorem 6.56 and its
notation. Moreover, we impose the following inequalities:

’/Q |pu; * (pje(u)] — /9 lpje(u)]

/Q ’pm * (pju) — @ju’ <6277,

<3,

/ |pu; * (Vepj @ u) = Vo @ u| < 6277
[0}



340 6 Distributions with Measures as Derivatives

We let -
Us = anj * (pju).
0

We can easily verify that

[ s—ul <5 ana | [ sl = [ Jetwl

concluding the proof. O

< 26,

Corollary 6.105. Let £2 be a Lipschitz open subset of RY ; we then have

N
< P
Vp < N1 BD(2) — LP(£2),
where the embedding is compact for p < N/(N — 1) if £2 is bounded.
Proof of Corollary 6.105.
Let u € BD(£2) and let {u,} be as in Theorem 6.104; then there exists a
constant C' > 0 depending only on {2, such that

[unllpy < C(lJunlls + lle(un)ll)-

In particular, since the sequence {u,} is bounded in LD({?2), it is bounded
in every LP(£2) with p < N/(N — 1). We can therefore extract a subsequence
that converges weakly in LP for p > 1. Since {u,} also converges to u in L1,
we see that the lower semicontinuity of the norm in LP({2) gives

ullp < Im[junll, < lim C (Junll + [le(un)]1)
n—oo n—oo
= C([lully +[le(w)l1),

and therefore u € LP(§2). To see that the embedding is compact in L!(£2) (for
example) when (2 is bounded, we prove the following inequality, which holds
for G € 2 and h > 0 satisfying G + B(0, h) C £2:

s = ull0) < 1 [ [etu]
o)
Here s is a real number in [0, 1] that we obtain by using both the analogue of

this inequality for functions in LD({2) and the previous density theorem. 0O

Korn’s inequality (cf. the remark after Definition 6.78) does not hold in
BD(£2). In other words, we have the following result.

Theorem 6.106.
BV (2,RY) # BD(12).
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Proof of Theorem 6.106.

We will give a proof by contradiction. Let us therefore assume that
BV(2,RYN) = BD(2). The open image theorem then tells us that there
exists a constant C' > 0 such that for every u in BV (£2,R"), we have

(6.107) ull 21 (0) /IVuI ||u|\L1(Q /|‘E

Let u € LD(2), u ¢ W11(02), and let {u,} € C*° N LD(£2) converge to u in
LD(£2). Then the inequality applied to {u, —u,} implies that {u,} is a Cauchy
sequence in W11(£2), hence converges in this space. Now, {u,,} converges to u
in L. It follows by the uniqueness of the limit that v € W(£2), giving a
contradiction. O

6.8.2 Results on Traces

Theorem 6.108. Let 2 be an open subset of RY of class C'. There exists a
surjective linear map from BD(£2) onto L'(8£2) that coincides with the trace
map on WHL(82) defined earlier.

Remark 6.109. This trace map is not continuous for the weak topology.

Proof of Theorem 6.108.

We follow the arguments used for LD({2). We begin by proving the exis-
tence of a trace for uy in a neighborhood of a boundary point where there
exists a system of coordinates that allows us to write

2N c{(@,zy) |2 €O, xn > a;(z)},
NN ={(2,a;(2")) | 2" € O},

where O is an open subset of R¥~! and a; is a C' function on O’. We
moreover may, and do, assume that u has compact support in £21(2;. Let «
have the property that fﬂa |Onvun| = 0, that is, that Oyuy does not charge
the hypersurface X, = {(2/,a(2’) + «) | 2’ € O'}.

For a and o’ chosen this way with a < o/, we write

a(z’)+a’ Oun

un (@’ a(z’) + o) —un(@',a(z’) + a) = / (2, s)ds.

a(z' )+ 833N

By integrating over X = {(2/,a(2’),2’ € O’}, using the notation g, for the
function g, (2') = un(2’,a(2’) + @) we obtain

a(z’)+a’
/ |ga ga’ / /
OrJa(z')+o

dsdz’

ln | (o, a(a'))

auN

o —(,9)

)

axN
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with vy (2, a(z’)) = —(1 + |Va(a')|>)~1/2. Consequently,

ou
/Iga—gaqgc&/ 2 dx < 01/ -
X Ao ~NAa ozn (2N92;)N A,

where A, = {(¢/,zn) € 2 | zy < a(2’) + a}. When « and & tend to 0,
the term on the right-hand side of this inequality tends to 0, because it is
the integral of a measure that is bounded on the complement in 2N (2; of a
sequence of compact sets A, that tends to £2 N §2;. It follows that {g.} is a
Cauchy sequence in L'(X). Let g be its limit. By the above, we have

3UN

Dz dx,

8uN
[la-sl<en [ o),

= Aa~Ao |OTN

whence 5
uN

Jlai< [lalver [ |5
Aa~Ao | OTN

Integrating with respect to « € [0, o[, we obtain

/‘9| / /|9a|da+C1—/ /
Qo Aa~Ag
/\UNH‘/ \3NUN|
0 0

(in these inequalities, oy satisfies un (2, a(z') + o) = 0). When v(z)-en =0,
we use an 4 for which v;(z) # 0. We then have (v; + vy)(x) # 0, so that we
can define u; + upy, and therefore uy since u; is well defined. O

a’LLN
aJCN

The reader may also consult [67].

At this point, let us make an important remark concerning, for example,
BD(£2), which emphasizes the value of the interior and exterior traces of a
function on a hypersurface in 2.

Proposition 6.110. Let 2, and 2, be two open subsets of RN of class C'
and let X be a manifold of dimension N — 1 such that 2 = £, U X U (25,
N2 =0, 0 N2=2X, and 2 is the interior of 21 U (2.

Ifu € BD(R2) and if u™ and u™ are the traces of u on X seen as elements
of BD(§23) and BD({21), respectively, then for every ¢ € D(§2), we have

(eij(u), ) = (gij (u), oxa) + (€3(1), PX22)
/ uing + uj'nZ — (u; nj +ujng)
- P
b

2 )

where T denotes the outward-pointing normal to X in the direction from (24
to .QQ.
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Proof of Proposition 6.110.
Let w € BD(12) € BD(£2;). Let ¢ € D(£2). We first apply
Green’s formula to ;;(u) and to  in the regular open set (27, noting that

the trace is reduced to the trace on 3/, that is, to ©~, and that the outward-
pointing normal is ﬁ, with components n;:

2/9 gij(u)pde = —/Q [uiajgo—l—ujaiga}dx
+ /2 ()= (@) () + ()~ (") (n0) | ().

Likewise, in {25, noting that for the function we are considering, the trace on
the boundary of 92, reduces to the trace on X, that is, to u™, and that the
outward-pointing normal is —7 with components —n;, we have

2/ eij(u)godacz—/ [uiﬁjnp—kujaigp}dx
2 2o

= [ [ @) + )" )l
X

We obtain the desired formula by adding the last two equalities and using the
definition of the derivative of a distribution in f2. O

As was the case for BV, we have a continuity result for the trace map for
the intermediate topology.

Theorem 6.111. Let 2 be an open subset of RY of class C* and let {u,} be
a sequence in BD({2) that converges tightly to w in BD({2) in the following
sense:

Up — w in L' (2) and /Q le(un)|] — /Q le(u)
then vo(un) — yo(u) in L1(052).
Proof of Theorem 6.111.
Let C be a constant such that for every u € BD({2), we have
lullzro0) < C (Jully +le(w)]) -

Let {2 be a relatively compact subset of 2 with fﬁ\!To le(u)| < n. Let ¢ be a
regular function with values between 0 and 1 and compact support in {2 that
equals 1 on §2y. Moreover, let Ny satisfy

< T
1+ [[Veolloo

and /|€un (1—¢0) < /|5 (I—wo)|+n<

Vn = Ny, |un u| X
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Such an Ny exists by the tight convergence of |e(uy,)| to |e(u)|. Then, since
©o = 1 on 812, we see that the integral [, [vo(u, —u)| is bounded from above
as follows:

C(/Q|(un—u)(1—<po+|V<po|)|+/Q|E(un)(1—soo)—5(u)(1—s@o)|) <4n. O

6.9 Generalized Green’s Formulas

Using a simplified notation, we define the following space:

(6.112) W(div)(2) = {o € L=(2,RY) | dive € LY (22)} .
We endow this with the norm

(6.113) lollw @ivy2) = llolle + | divellry o).

We also define the space

(6.114) L(div)(2) = {0 € L™(2,E) | dive € LY (2,RV)},

where E denotes the space of symmetric tensors of order 2 on RY, endowed
with the same norm, adapted to the functions with values in R™. We then have
the following generalized Green’s formula (see also Exercise 3.6 of Chapter 3).

Theorem 6.115. Let 2 be an open set of class Ct. There exists a continuous
linear mayp from W (div)(£2) to L>®(d82) that sends o to o - W and for which
the generalized Green’s formula

/Vu~0+/udiv0:/ (0 -T)u
2 2 a0

holds for every u € WHL(2) and every o € W(div)(£2). The vector T in
the formula denotes the unit outward-pointing normal to 2. Moreover, o - w
coincides with the restriction to the boundary when

o € C(2) N W(div)(92).
The following is an extension of this formula to the functions in BV (£2).

Theorem 6.116. Let 2 be an open set of class C' and let (u,0) € BV (£2) x
W (div)(£2). We consider the distribution (Vu - o) defined by

VSOGD(Q’R)v <(vu0')7(p>:*/

udivaogaf/ u(o- V).
7 fe)
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Then (Vu - o) is a bounded measure on (2 that is absolutely continuous with
respect to |Vu| and coincides with the usual definition of Vu - o when u €
WH(02) and o € W(div)(£2). More precisely, |Vu-o| < ||0| | Vu|. Moreover,
the measure Vu® defined by (Vu® - o) = (Vu - o) — (Vu* - o) is a singular
measure that satisfies |(Vu® - o)| < |(Vu)®| ||o]|co-

Finally, we obtain the following Green’s formula. If (u,0) € BV (£2) x
W (div)(§2) and if p € C(2) N CH(£2), then

((Vu-a),gp)z—/udivmp—/uU-V<p+/ uo - .
fo) Q FYe)

Proof of Theorem 6.115.

Let o € W(div)({2). By the surjectivity of the trace map from Wht((2)
to LY(012), there exists a C' > 0 with the following property. For every v €
LY(9£2), there exists a V € WH1(£2) such that Vs = v and

(6117) ||VHW11(Q) < C”UHLl(BQ)-

This defines a linear functional on L'(9£2). For v € L'(8£2) and V as before,
we set

Vo e LY(092), LU(’U):/QO"VVJr/QdiV(J)V

To see that this does not depend on the choice of V, we must show that if
v =0on 92, then L,(v) = 0. We know that if v =0, then V € Wol’l. Since {2
is of class C!, there exists a sequence {V,,} in C°(£2) that converges to V in
WL1($2). By the definition of div o in the sense of distributions, we have

/ o-VV,+ / div(o)V,, = 0.
Ie) 2

Taking its limit gives

/U-VV+/diV(U)V:O.
2 7

This remark also shows the linearity of L. Indeed, for v; and vy € L(912),
let Vi and V» be elements of W1t(£2) with V; = v; on 962. Let A € R. Then
V1 + AVz belongs to W (£2) and equals vy + Avg on 9f2. Since L, (v1 + Ava)
can be written as

/ o-V(V1+ A\Vs) +/ div(e)(Vy + AVa),
2 2
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which equals Ly (v1) + ALy (v2), we have the linearity. The continuity follows
from the following sequence of inequalities:

Lo ()] < ||0||c><>/Q IVVlde + [[V][n/v-nl divelly

< OVllwraga)(lolleo + I divelly)
< Colicron) (ol + [T divelly),

with V as in (6.117). Since L, is a continuous linear functional on L!(92),
there exists an element of L>(842), which we denote by o - 7, such that

Vo e L(09), La(v):/w(a-ﬁ) . o

Proof of Theorem 6.116.
Consider the map defined by

Ve D(12), <(VU~U)7W>:*/

U diva~g07/ uo - V.
[0 Q

This is clearly a distribution. Let {u,} be a sequence in W1(§2) that con-
verges to u in the sense of Theorem 6.56. The terms fo Uy divoe and
— [ uno - Vo converge to — [, udivop and — [, uo - Vi, respectively. Con-
sequently, the distribution Vu,, - o converges to Vu - o in D'(12).

We also have (Vu, - 0,¢) = [,(Vun - 0)¢ by Green’s formula. Since
Vu, € L', it follows that

[(Vun -0, 9)| < [Vl o]l [I@]loo-

Consequently, the sequence of distributions {Vu,, - 0} is bounded in M*(£2).
Since it converges to Vu - o in D’(£2), this last distribution belongs to M1(£2)
and satisfies

(Vaa)] < lim | [ Vo o] < tim ([ [9unllel) ol

n—oo

= ([ el lole < ([ [9al) ole ol

for every ¢ € C.(£2). In particular, the before last inequality gives the absolute
continuity of Vu - o with respect to |Vul (cf. Definition 6.39 and Proposition
6.42).

To prove Green’s formula, we use the generalized Green’s formula from
Theorem 6.115 for {u,}, where {u,} € W11(£2) converges tightly to u in
BV (£2). We then have

/undiv(a)goﬁ/udiv(o)go and /una~Vg0—>/u0~Vgo.
o) o) 7 2
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Finally, the sequence {u, } converges to u in L'(9£2), so that

/ (Un —u)o - T @ —> 0.
le)

We also know that the sequence {Vu, - o} converges tightly to Vu - o.
Indeed, since we already have vague convergence, it suffices to verify that
given € > 0, there exists a compact subset K of {2 such that

/ |Vu, -o| <e.
ONK

for every n. Let € > 0 and let K be a compact subset of {2 such that for every n,
we have [, . [Vu,| <e;then [, o [Vun -0 < [ [Vtn||0]o < €l0]oo-

To conclude, the sequence {Vu,, -0} converges tightly to Vu-o and Green’s
formula holds.

We now wish to show that Vu® ¢ is a singular measure. We will use the re-
mark following the approximation theorem (Theorem 6.56), which notes that
the sequence {u, } may be chosen in such a way that |Vu,, — (Vu)2°| converges
tightly to |(Vu)®|. By construction, we also have the vague convergence of the
sequence {(Vu, —Vu®®)-o} to (Vu)? - o. By the lower semicontinuity for the
vague topology of an integral over an open set and by the vague convergence
of |Vu, — (Vu)*| to |(Vu)®|, we can write, for every ¢ € D(£2),

(Vu® 09| < lim | [ (Vun = 90) 00
(9}

n— oo

< llofloe im [ [Vuy — V| pldz

n—o0 J
<ol [ 190 plda.
¢
This implies the following inequality in the sense of measures:
Vu - o] < oo [V

and concludes the proof (cf. Proposition 6.42) because Vu® - o is absolutely
continuous with respect to |Vu®|. O

Theorem 6.118. Let 2 be an open subset of RN and let
(u,0) € BD(£2) x L(div)(£2).

Then there exists a measure, which we denote by (e(u) : o), that is absolutely
continuous with respect to |e(u)| and satisfies

f/u~divag0dx7/u®Vg0:adx
2 9]

= 7/ w - divopdr — / u;0jpo;;dx.
Q i 0

Vo e D(2,R), ((e(u):0),¢)
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Moreover, this measure coincides with the function in L'(£2) defined by the
product (e(u) : 0) = >, ;ei5(u)oyj for (u,0) € LD(82) x L(div). We also have

|(e(w) = 0)] < lofloce(w)].

S

The measure (e(u)® : o) = (e(u) : o) — (e(u)?® : ) is singular and satisfies

|(e(w)® : )] < le(u)*[ oo

To conclude, if 12 is of class C', then we have Green’s formula, which holds
for every function ¢ € C(£2) NCL(£2):

(9] 0 7

+/ Z(umj —&—ujni)aijcp.
02 %

The proof is analogous to that of the previous theorem.

6.10 Functions of a Measure

In modeling problems for the mechanics of materials, as well as in problems
coming from the calculus of variations, we use functionals | o J(Vu) where f
is a convex function with linear growth at infinity. We gave an example of such
a functional in Chapter 5 while treating minimal surfaces. Even if studying
these functions can be of general interest to the reader, we will presently justify
the techniques and results that we used to solve the variational problem in
Section 5.10. We will need some preliminary results, in particular concerning
conjugates in the sense of Fenchel. The reader may also consult [25] and [26].

6.10.1 Definitions and Properties

In the general case, the functions f that we consider are defined on a Banach
space X and take on their values in R. The domain of f, which we denote by
dom f, is defined to be the set dom f = {z € X | f(z) < +00}. We say that f
is proper if its domain is nonempty and if the function only takes on finite
values in this domain.

Definition 6.119. Let f be a function defined on a Banach space X with
values in R and a nonempty domain. The conjugate of f, which we denote
by f*, is the function defined on the dual X* by

Vye X*, f*(y) = §g§{<y,x> — f(@)}.
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Proposition 6.120. If f is convex and proper, then its conjugate is conver,
lower semicontinuous for the weak topology on X, and does not take on the
value —oo.

We also state the following result without proof.

Proposition 6.121. Let f be conver on X with nonempty domain; then the
four following properties concerning u € dom f and y € X* are equivalent:

()yeaf()

(2) flu) + f*(y) < (u, y),

(3) flu) + f*(y) = (u, y),
AV e X, f() = (x —u, y) + f(u).

We define the biconjugate of f to be f** = (f*)*. We have the following
result.

Proposition 6.122.

(1) If f is convex, then at every point x in the interior of dom f, f is contin-
uous, subdifferentiable, and f(x) = f**(z).

(2) If f is convexr on RYN and everywhere finite, then it is everywhere subdif-
ferentiable and f = f**.

The book [23] contains examples of computations of conjugates and bicon-
jugates (see also further on in this section and in the exercises). That same
book (cf. its Theorem 6.2) contains the proof of a result concerning the con-
jugate of a functional on the space L?({2) (p > 1) defined by an integral. This
result is related to the definition of a function of a measure. The argument we
present in the preliminaries below gives a version of the result for p = 1.

Let us define the linear growth at infinity and the asymptotic function.

Definition 6.123. Let f be a convex proper function defined on R"V. We say
that it has linear growth at infinity if there exist constants ¢y > 0 and ¢; > 0
such that

(6.124) Ve e RY, co(jz| — 1) < f(x) < ar(jz] +1).
The function f.,, which we call the asymptotic function of f, is then defined

to be
fita)

t—>+oo t

foo(z) = 1

The function f. is everywhere finite, convex, and positively homogeneous
of degree 1.
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Moreover, when f has linear growth at infinity, we can show that the
domain of its conjugate f* is a bounded subset of L>(R¥) that is contained
in the ball B(0,¢;) and itself contains the ball B(0, ¢g). If we also have f > 0
and f(0) = 0, then f*(0) = sup—f(x) = 0 and f* > 0. Let us note that the
inequality (6.124) also implies that u + f o u is continuous from L'(RY RY)
to LY(RN), (cf. [13]).

6.10.2 Preliminaries to the Definition

We intend to use an example to show how the definition of the conjugate
of f* can be adapted to extend to measures. Since under conditions that
are not very restrictive, this conjugate equals f, namely f = f**, we see
that we are led to define the function f(u), where p is a measure, using the
conjugate f*. To illustrate the ideas, let £2 be an open subset of RV and let f
be convex and nonnegative, satisfy the conditions of linear growth, and have
f(0) = 0. Consider the measure u(x)dz, where u € L'(£2,dz) and dz is the
Lebesgue measure on 2. Using linear growth, we see that fou € L'(§2, dx). By
adapting the definition of f**, we consider the functional f(udz) on the cone
of continuous nonnegative functions ¢ with compact support in (2, defined by

g = s { [ ua@pds = [ @)@},

vEL>®(£2,dom f*)

We now wish to show that under certain assumptions, this function satisfies
the relation

(6.125) (fluda). ) = [ (o w)@)ota)da.

In other words, we wish to prove that f(udz) extends to the measure
(f ou)(x)dx defined previously.

In addition to the assumptions on f, which imply that dom f* is bounded
and that f*(0) = 0, we will suppose that f* is bounded on its domain.

Proof of formula (6.125).
Let us begin by proving that

61200 [ f@pta)da
> s | wep@eds - [ @@}

vEL> (£2,dom f*)

Indeed, by the definition of f*, we have

Vee 2, Voe L™, f(u)(z) > ulx)v(z) — f*(v)(x).
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Multiplying by the nonnegative function ¢ and integrating over {2 gives in-
equality (6.126).

Let us now show the opposite inequality to (6.126). Let ¢ > 0 and let
u € L'(£2,dz) be fixed. We consider a simple function w = >, w;xa,, where
the A; are universally disjoint measurable sets whose union equals (2. As said
above, the map u — fou from L' to L' is continuous. Consequently, there
exists a simple function w such that

(6.127) [u = w24 <& and  [[f(u) = f(w)llLry (o) <e
The second inequality implies that

Veoell (), [I(f(w) - fw)elle @) < ellello-

Let us now use the formula f = f**, which holds because f is convex on RY
and therefore continuous (cf. 23] and Proposition 6.122). Therefore, for ev-
ery i, there exists an element v; of dom f* such that

(6128) f(wl) < VW — f*(’l}z) +e- 27i71/|A7;|.

By the assumptions f(0) = 0 and f*(0) = 0, we have f(w) =, f(w;)xa, and
[*(v) =, f*(vi)xa,. Moreover, by taking the product of simple functions,

/! vlayu(a)p(a)ds = Zw /A s

Next by multiplying (6.128) by ¢xa4,, taking the sum over ¢, and integrating
over {2, we obtain

, fwreaz =32 s [ oo
< wai/bwdx—zf*<vi>/_wdx+e||¢||m

:/g (@) dm—/ (@) (@)p()dz + elo]|oo-

The relations (6.127) now give
/f Yodr < /f Yodr + & < /vwgodx—/f*(v)gpda:+5(1+||gp||oo)
19,
</vunpda:—/ f*(v)gpda:—i—/ [v] |u — w]pdx + (1 + ||¢]oo)-
Q 10, 19,

Taking into account that since f* is bounded on its domain, we have the upper
bound [, [v]lu — wlpdz < €l|¢llco SUD,edom s+ [V(2)], we obtain the opposite
inequality to (6.126), thus concluding the proof. O
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6.10.3 Definition of a Function of a Measure and First Properties
The computation we just carried out suggests the following general definition.

Definition 6.129. Let 2 be an open subset of RY. Let f be a nonnegative
convex function from R* to R with linear growth at infinity and f(0) = 0.
Let p be a bounded measure with values in R*. The function f(u) sends a
nonnegative function ¢ in C.(£2) to the number

(6.130) Gy = s (uog)— / (f* ov)gda,

{veC.(£2,dom f*)}

where (1, vp) = 37 (i, vip).

Remark 6.131. In this definition, the upper bound is taken in the set
Cc(£2,dom f*). Tt remains the same when taken over L>({2,dom f*) or even
over LY(£2, u + dx). Tt follows that when yu = udz with u € L, the measure
f(p) is identical to (f o u)dz.

These equalities of upper bounds over different sets are studied in Exercise
6.5.

Proposition 6.132. Let 2 be an open subset of RN. We suppose that f is
convex and satisfies (6.124), and that f* is bounded on its domain. Let u be
a measure on §2; then f(u) is positively homogeneous and additive. Conse-
quently, it extends to a measure on (2. This measure is absolutely continuous
with respect to || + dz.

When the measure p is moreover bounded on §2, then the measure f(p) is
also bounded and formula (6.130) extends to functions ¢ € Cy(S2).

Proof of Proposition 6.132.

The positive homogeneity is obvious. Let us show the additivity. Let
e > 0, let ¢; be a nonnegative function in C.(£2) for ¢ = 1,2, and let
v € Co(£2,dom f*) satisfy

)01+ 2) < (i v(ior + 2)) — /Q (" 0v)(gn + p2) + <.

The right-hand side is then lesser than or equal to (f(u), 1) + (f (1), p2) +e.
Conversely, let v; and v in C.({2, dom f*) satisfy

(), 0i) < (g, vispi) — /Q (F* ovi)pi + &
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and let v = Y, vip;/(3_; ¢i). This function has values in dom f* because
dom f* is convex, and it is continuous. Moreover, by the convexity of f*, we
have

(W) (1 + ¢2) Zf ;)
It follows that

<f(M)> Zi:1,2 90i> > <Ma Uzz‘ S"i> - /Q I (v) Zz Pi
>3 (v = [ (7 ovde) = S0 =22

completing the proof of the additivity.

The absolute continuity of f(u) with respect to |u| + dz follows from the
inequality below, which holds for every v with values in the domain of f*.
Recall that we assumed f* to be bounded on its domain. By Section 6.2,
Proposition 6.42, we have

6139 (oo - [ Fwe <o [l + sw 7@ [l
2 2 r€dom f* dom f*

We now suppose that u is a bounded measure. It is obvious that f(u) is also
bounded, since f(u) is absolutely continuous with respect to |¢| 4+ Xdom f+dx.
We wish to show that the formula defining (f(u), ¢) extends to the bounded
continuous functions ¢. Let 1) be a nonnegative element of Cp(f2). Let € > 0
and let ¢ € C.(£2) be nonnegative, such that

(6.134) /ﬂﬂmm /waws and

3

(6.135) /Q I — ol + /ﬂ (Y =el) < 5 SUP,cdom 7+ /*(2)

Moreover, let v € C.(£2,dom f*) satisfy

(6.136) / e < /Q v — /Q Fw)p+e.

Owing to the relations (6.134) and (6.136), followed by (6.135) and (6.133),
the expression (f(u), ) is bounded from above as follows:

/Qf(ﬂ)<ﬁ+€</ﬂlwg07/gf*(v)<p+2€
< [ [ 5@ [ o= [ Feie-v vz

< sup /quw—/gf*(v)zb—k?)e.

v€EC,(£2,dom f*)
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For the opposite inequality, let v € C.(§2,dom f*) satisfy

vecc(?;,limf*)/gww_/f*(vwg/ﬂﬂm/’—/nf*(v)z/)—ka

and let ¢ = 1 on supp v and have compact support in 2. We have

/Q o — /Q @) = /Q i — /Q 1)
< (f(w), o) < (f(1), ),

giving the opposite inequality. We conclude that the formula defining (f(u), )
extends to the functions ¢ € Cp(£2). O

Remark 6.137 (on the conditions of Proposition 6.132). When f does
not satisfy the condition f(0) = 0, we can still make sure that the formula
defining f(u) holds (cf. Exercises 6.15 and 6.16). Indeed, we use the fact
that f, which is defined on R* and is convex and everywhere finite, is every-
where subdifferentiable (cf. 6.122) and therefore admits a continuous linear
lower bound. By Subsection 5.2.2, f(0)+ (y, z) is such a lower bound, where y
is an element of df(0) (we just noted that df(0) is nonempty).

For example, in the case of the function used in Chapter 5 in the context
of minimal surfaces, the function f defined by f(z) = /1 + |z|? satisfies
f(0) = 1. We then use the function g defined by g(x) = f(z) — f(0). We
can verify that the assumptions of Definition 6.129 hold for g. We will see in
Exercise 6.19 that the formula defining f(u) can be extended to any f, not
only the ones verifying f(0) =0 and f > 0.

Theorem 6.138. Let jn = gdx + p° be the Lebesque decomposition of j with
g € LY(92,dx) and p° singular. We suppose that f satisfies the conditions of
Proposition 6.132. The Lebesgque decomposition of f(u) is then

F() = (fog)dz + foo(u®).

Proof of Theorem 6.138.

We refer to Section 6.2 for the Lebesgue decomposition of a measure
(cf. Theorem 6.46). We begin by showing that f(u) < (f o g)dx + foo(p®).
After noting that fX = Xdom s+ (cf. Exercise 6.6), we have, for every v €
Cc(£2,dom f*) and every ¢ > 0,

<u,w>—/9f*(v)s0dw=/ngdx+<us,vs0>—/9f*(v)<pdw
_ * S
< sup ( /Q gupdz /Q f (v)¢> +sgp<u ,VP)

< / (f 0 9)pdz + (Foo(15), ).
2
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Indeed, in the previous inequalities, we have used on the one hand, the prop-
erty of f(gdx) given in 6.10.2 and on the other hand, the definition of f., (1)
taken from the remark on (foo)*.

Conversely, let ¢ > 0, €, and v; in C.(£2,dom f*) for ¢ = 1,2 be such that
we have the following inequalities:

(6.139) /Q(fog)godxé/nglgodx—/gf*(vl)gadx—i—a,

(6.140) (oo (1), ) < /Q pivgpda + €.

Let K be a compact set that contains supp x° and let £2; be an open set
containing K, with [, !21(| gl + 1)dx < e. This last property is a consequence
of the mutual singularity of 1 and dx. Next, let 1) be a function equal to 1
on K, with values in [0, 1], and continuous and with compact support in £2;.
We set v = vatp +v1(1 — 1) and D = [, pwpda — [, guipdr — (1, vap). We
will show that there exists a C such that |D| < Ce.

Indeed, since (v — v2)Y = (1 — 9)(v; — v3) is zero on the support of u*
and © is zero outside of (21, we have

DI = [ gtoa = v)ve| < el [ lglloa— wrlde < Ce.
n 2,

Taking into account this definition of D and the definition of a conjugate,
adding the inequalities (6.139) and (6.140) then gives

/Q(fog)@dxﬂL/nfoo(uS)wdx
g/nglgpdm—/Qf*(vl)godm—l—/g,usvg(pdx—l—2€
g/mepda:—D—/Qf*(v)gadx+/9(f*(v)—f*(vl))gadx—i-%
< [ wopde— [ p)eda DI+ [ (7w = £ (00) oo + 22

</f(u)s0+06+2€+2 sup If*l/wdx
(9} dom(f*) 2

< | fwe+C7%,
(9}

concluding the proof. O

Remark 6.141. In fact, we can show, more generally, that if y; and po are
two mutually singular measures, then we also have

S+ p2) = flpa) + f(p2).
This property is the object of Exercise 6.17.
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Because of its role in the problem of minimal surfaces (cf. Chapter 5), we
choose to illustrate the definition using z — /1 + |z|? — 1 as an example.

Example 6.142. We propose to give the formula defining /1 + |u|? explic-
itly, where p is an arbitrary measure on the bounded open set 2.

The function g defined on R* by g(x) = /1 + |z|? — 1 possesses the re-
quired properties, namely g(0) =0, g > 0, and g has linear growth at infinity.
We have ¢g* = f* + 1. The function f*, which is the conjugate of a radial
function, is clearly also radial. This allows us to reduce to considering R.

e For |y| > 1, the upper bound defining f*(y) is +oc.

e For |y| = 1, this upper bound is 0.

e For |y| < 1, the derivative of z — a2y — v/1+ 2? vanishes for zyp =
y/+/1 — y? and the maximum equals f(z). It follows that

Vy € dom f* = B(0,1), f*(y)=—v1—|y[? and g*(y)=1-+/1-y%

We note that dom f* is bounded and that the functions g* and f* are bounded
and continuous on dom f*.

We also verify that ¢g*(0) = 0 and ¢g* > 0. The function g therefore satisfies
all the conditions of Proposition 6.132. Moreover, = — |z| is the asymptotic
function of both f and g. Consequently, if we write u = p*°+u°, then Theorem
6.138 allows us to write

Wit = s { [ vpd)+ [ VIZR(@Pe(e)ds)
vEC(£2,B(0,1)) "V 2

+ (1), ).

6.10.4 Sequences of Measures and Density Results

We begin by showing that under the previous assumptions, the map p — f(p)
is L.s.c. for the topology of the vague convergence of measures.

Theorem 6.143. Let f be convex and satisfy the conditions of Proposition
6.132. If {un} is a sequence of bounded measures on a bounded open subset 2
of RN that converges vaguely to a bounded measure i on §2, then there exists
a subsequence of {f(un)} that converges vaguely to a bounded measure v on 2
with f(p) < v. As a consequence,

Proof of Theorem 6.1/43.
The sequence of integrals [, f(tn) is bounded because f(jr) is absolutely
continuous with respect to |u,| + dz. We can therefore extract a subsequence
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that converges vaguely to a bounded measure v (cf. Proposition 6.20). It fol-
lows that there exists a sequence o(n) such that
Ho(n) — MU and hmf(ua(n)) L

for the vague convergence. Let £ > 0 and let ¢ € C.(§2) with ¢ > 0. By the
definition of {f(u), @), there exists a v € C.(£2,dom f*) such that

mmms/

[0}

pvp — /Q fr)p+e.

By the lower semicontinuity of the integral over an open set for the vague
topology, the right-hand side can be bounded from above by

h_m/ ua<n>w—/ g +e
o Q ) .
<lim  sup {/ ua(mw—/ [ )e
vEC(£2)

< hm{< (/’La(n ) >} +e< < (,0> +e.

Since this is true for every ¢, this concludes the proof of the desired property.
O

The following is another important result, concerning the density of the
regular functions for a topology intermediate between the norm topology and
the vague convergence topology, which is close to the tight topology.

Theorem 6.144. Let 2 be an open subset of RF, let u be a measure in
M*Y(£2,R*), and let f be a nonnegative convexr function satisfying the con-
ditions of Proposition 6.132 and the equality f(0) = 0. Then there exists a
sequence {u,} of elements of C*°(£2) N WHL(£2) such that

e Sw) = ) and [ ) — [ ),
In particular, we can deduce that inequality (6.124) extends to measures, giving
co(lpl = 1) < f(p) < ex(lpl +1).

Proof of Theorem 6.144.
We begin by showing that if § is continuous with compact support in 2
and values in [0, 1], then, as when p is a function, we have

f(Op) <Of ().

Let ¢ be a nonnegative function in C.(2) and let v € C.(§2,dom f*).
Since f* and ¢ are nonnegative and 6 € [0, 1], we can write

ww@—ﬁﬁ@> (b, ) — /f 01 (1), ).
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The desired result follows by taking the supremum in v. In particular, if {6}
is a sequence of continuous functions with compact support equal to 1 on
a compact set K; that for every j satisfies d(K;,02) < 1/j, so that the
sequence converges to lp, then the sequence {f(6,;1)} converges tightly to
f(w). Indeed, since f(0;u) < 6;f(p) and f(p) is a bounded measure, we see
that the sequence f(6;u) is bounded. We can therefore extract a subsequence
that converges vaguely to a positive and bounded measure (cf. Proposition
6.20). By the previous theorem, we have

flp) <v=lm f(O;p) <Lm6;f(p) < fu).

j—+oo

Since, by the lower semicontinuity, we also have

Af(u)ggia o /f

we see that f(6;u) converges tightly to f(u), that is, converges in (Cy(£2))".

We now suppose that p has support in a fixed compact subset of RV
contained in (2.

Let p be an element of D(RY) that is even and nonnegative, and which
has integral equal to 1. We set p.(z) = 1/eNp(z/e) and u. = pe * p.

We first show that

Yo € C.(RY, dom f*) / I (pe xv) / f*(v).

This inequality comes from the properties of f* (cf. Theorem 6.2 in [23]).
Since the formula is also true for p, we will from now on denote both p and p.
by p. We set dm; = pdt, giving a measure that satisfies fRN dmy = 1. Since the
domain of f* is bounded and f* is bounded on its domain, we have f*(0) = 0.
Consequently, the composition f*(vx p) is summable over RY and since f* is
convex and f* > 0, Jensen’s inequality gives

Vo e RY, f*(/ v(m—t)dmt) < fr(v(x —t))dmy.
RN RN
By integrating and using Fubini’s formula, we obtain the desired property
fspz< [ [ p@ee - od
RN JRN
— [ rew / oz — t)du dt
RN RN
— [ rwo [ sed= [ oo
RN RN

RN

RN
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The definition of f(p* p), where px p € L*(RY), gives

/RN flpxp) = veCc(]RSJ}’lEomf*)(/RN [(p* v — f*(v)}dx)-

Given a number § > 0, there exists a function v € C.(R",dom f*) such that

flp*p) < / [(p* p)o — f*(v)]dx + 6.

RN RN

Noting that by the parity of p, we have

[ = oo+ 90) = G (ol = )

which gives [on pxvdu = (i, px v), we can deduce that
floxp) < (p, (pxv)) = | fH(p*v)+é.
RN RN

Let us recall that 4 has compact support. Hence, by taking ¢ = 1 in a neigh-
borhood of the support of p, we can write the following inequality for the
total variation of the measure f(u):

£ > G (pxo) = [ 7Gx

RN

It follows that [on f(p*p) < [pn f(1) + 6, and finally

/RNf(P*u)</RNf(M) and /RNf(pE*M)g/RNﬂM)'

Owing to this property, we can choose sequences {6;} and {¢;} such that
the sequence of integrals fQ J(pe; x0;u) converges to fQ f(w). Let 8; be as in
the first part of the proof, and let €; < d(supp 6;,92). Since the sequence of
positive measures f(pc, x0;u) is bounded, we can extract a subsequence that
converges vaguely to a bounded measure v with

f(///) < V= hﬂf(pt?g(j) *ea(j)/’(‘)7

whose integrals satisfy

/Q J() < lim /Q F(peney % Bopyp) < lim /Q F6s) < /Q F().

We now deduce that the full sequence { [, f(pe, x0;1)} converges to [, f(1).
Since inequality (6.124) is true for the functions p.; * u, it extends to the
measure U. O
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Corollary 6.145. Let 6 be a function in C.(£2) with values in [0,1], let p be a
measure in M*, and let p be a function in D with supp p+supp(Ou) C 2. Then
the inequality f(p=0u) < px (0f(u)), which holds for functions u, extends to
the measure p, giving

flox0p) < px(0f(n)).

Proof of the corollary.
Indeed, let {u;} in C°(£2) be as in the first part of the previous proof,
with
wj—p and  fu;) — f(u).

The pointwise inequality gives

flp* (Buy)) < px(0f(uy)).

Moreover, since the sequence f(u;) converges vaguely to f(u), we can use
a simple argument to show that p x (8f(u;)) tends vaguely to p* (6f()).
Likewise, the sequence {p*6u;} converges vaguely to p* 6. Hence, using the
lower semicontinuity property of Theorem 6.143, we obtain

F(px (61)) < Lim f(p + (6u)) < p (9 (1)). 0

The reader can consult [25] and [26] for more details and other results
concerning functions of a measure.

Comments

This chapter gives us the first notions of spaces of functions with a measure
as derivative. These spaces have been introduced to form models of problems
coming from the computation of variations and from solid mechanics. On the
subject of the space BV, the work of Giusti [35] is no doubt one of the most
complete. The first important advances on the subject of the spaces BD are
due to Suquet [67], Strang and Temam [71], and Kohn and Temam [42].

6.11 Exercises for Chapter 6

Exercise 6.1 (Vague and Tight Convergence).
Let {un} be a sequence of positive measures that converges vaguely to pu
on f2. Prove that it converges tightly on every open set {2, C 21 C {2 with

fafh uw=0.

Hints. First, {un} also converges vaguely to u on 21. Since {21 is an open set, it
follows that

/uéli_m ftn and /u>ﬂ Han-
2 2 21 21
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Indeed, if we let F' denote the set of ¢ with ¢ = 1 on 2, then we have fg—l,u =

sup e [ 11 = mfg—l Jin, Whence

/ u:/ p=lim Lo
2 o7 o7

Exercise 6.2 (Characterization of the Gradient Distributions).
Let T € D'(2,RY). Show that if T = VS with S € D’, then for every
(i,5) € [1,N]?, 8;T; = 9;T;. Establish the converse. Deduce that 7' = VS if
and only if for every ¢ € D(§2, RY) with div = 0, we have (T, ¢) = 0.

Hints. Use an induction argument for the converse, where the case N = 1 is the
existence of a primitive of a distribution. For the second part, consider the functions
of the form ¢ = djve; — d;ve; for v € D(£2).

Exercise 6.3 (On the Absolutely Continuous and Singular Parts of
a Sequence Vu, that Tends to Vu when u € BV (12)).
We use the notations of Theorem 6.56. Prove that

/|VU5—(VU)aC|—>/ VS|,
N 0

where ;¢ and 1 denote the absolutely continuous and singular parts of the
measure p, respectively (we refer to Section 6.2 for the definitions and for
the Lebesgue decomposition). Use inequalities of the same type as (6.60) and
(6.62).

Hints. Write
Vs = (V)™ = |3 [pn, * (05 Vu+ uVp;) = i, (V)]
<D owy % @3 (V)™ = 05 (V)] [+ 3 low, * (05(Ve) ).

Through inequalities of the type used in the proof of the theorem, show that

/ Vs — (V)™ < / (Vu)®] + 26.
o Ja

Exercise [#x] 6.4 (Determining F, in the Proof of Theorem 6.89).
Determine a solution of the following equation, taken in the sense of distribu-
tions:

(6.146) (A + V(div)) (Ea) = ado.

Use the fundamental solution of the Laplacian, that is, M with AM = §.
This solution equals

ar if N = 2
(6.147) M={"2r ' ’

kn|z2N if N > 3.
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Prove that

(6.148) B, = %M - %(a VM)

is indeed a solution of (6.146). Deduce from this the explicit formula

?’—&lnr—mﬂ if N =2,
Eo = ST 3 s N =2\ z(z-«)
kNW+kN <T> N it N > 2.

Exercise [#%] 6.5 (Comparison of Upper Bounds in the Definition
of f(u)).
We would like to justify Remark 6.131. In the formula defining f(u), under the
assumptions of Proposition 6.132, we consider the upper bounds «, 3, and ~y
of {{u, vp) — [, (f*ov)pdx} when v belongs to L' (£2, p+dz), L (82, dom f*),
and C.(£2,dom f*), respectively.

First prove that a > 3 > 7. Next, show that o < 7.

Hints. To prove that a <+, show that given a v in L'(£2, 4 + dz), we can associate
with it a function v € D(£2,dom f*) such that

lu—v|(dp +dz) <e and [|f(v) = (V)]s <&
(9]

Exercise 6.6 (Determining the Conjugate of the Asymptotic Func-
tion).

Show that if f satisfies the conditions of the definition of a function of a
measure f(u), then fX = Xdom f+-

Hints. Reduce to showing that foo(z) = supP,cgom s+ ((%,¥)). Show that foo(x) >
(z,y) using the definition of the conjugate, which when defining fo(z) involves the

expression (tz,y) — f*(y) for y € dom f~.
Conversely, show that given e, we can find y; . € dom f* such that

ftz) < (2, yee) — [ (yee) + e

Exercise [¥] 6.7 (Properties of the Functions in L?({2) with Diver-
gence in L%(12)).

Let §2 be an open subset of RY and let X(£2) = {u € L*(2,RY) | divu €
12(2)}.

(1) Prove that X endowed with the norm ||.||x defined by
D\ e
e = (3 )+ ([ @)
1<K N 2

is a Banach space.
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(2) Suppose that (2 is of class C'. Show, beginning with the case 2 = RV,
that the functions in C'(£2) N X (£2) are dense in X (£2). In the general
case, use the method of Proposition 3.57 of Chapter 3.

(3) Still supposing that §2 is of class C!, show that we can define a trace map
that is continuous on X (§2), has values in H~/2(9£2), and for which the
following Green’s formula holds:

Yuec HY (), Yo € X(92), /(ZVu-aJr/(zdiv(cr)u:(a-ﬁ,u).

Exercise 6.8 (Details of the Proof of Theorem 6.89).

In the proof of Theorem 6.89, we work in the open set 2 N {2, and on a
component u; of u such that v; = 7-ei # 0 almost everywhere along 02N 2,
where 7/ is the unit outward-pointing normal. The argument remains the same
on a different component u; if v e; # 0 almost everywhere. Let us assume
that this is not the case.

(1) Prove that in this case, we have 7/ - (HTQJ) # 0 almost everywhere, which
suggests that we reduce to the function v defined by v = u; + u;.

(2) We change the basis by replacing (e;, e;) by ((e; + ¢€;)/Vv2, (e; — €;)/V2),
and leaving ey, the same for k # ¢, j. Prove that the function v obtained
from this base change belongs to LD({2). Next, use the argument of the
proof of Theorem 6.89 to deduce that u; € LP(£2 N (2).

Exercise [x+] 6.9 (Functions in W11(2) with Hessian in M1(£2)).
Let {2 be an open subset of RY and let

HB(Q) = {ue L") | Vu e L'(2,RY), VVu € M (2,RV)}.

For u € HB(S2), we set

/Q|VVU|CZ1‘— su /;@Ua a

PEC.(92, RN )
>l P<t

(1) Show that HB(f2) endowed with the norm

lull sz = lul + [Vl + /Q IVVul(z)de

is a Banach space.
(2) Show that if u € D'(2) satisfies VVu € M(£2), then u € HBjoc(92).
Show that if 2 is moreover Lipschitz and bounded, then u € HB({2).
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Exercise 6.10 (Continuation of the Previous Exercise: the Trace
Map).
Prove that if {2 is of class C2, then we can define the trace map to be
HB(02) — WH1(002) x L' (092)
w—s (u,u/0T).

In HB((2), we define the weak convergence u,, — u by
lun — ullwri(e) — 0 and Vo € CC(Q,RNZ), /VVun T — /VVu .

Prove that the trace map is not continuous for the weak topology.
Prove that if

u, — u and /|VVun|—>/ |VVul,
17 o

then
ou

/ Ouy, ‘ 0
000 o7 '
Exercise [] 6.11 (Embeddings of the Space HB({?)).

(1) Show that if N > 2 and if {2 is an open set of class C2, then we have an
embedding
HB(2) — WHN/(N=1 (),
(2) Suppose that N = 2. We want to show that HB(R?) < C,(R?). This

follows once we show that if v is an element of HB with compact support
in R2, then the function V defined by

0%v
Vi(z,y) = / dz dy
|—o0,2[x]—oc,y[ 0TOY

is continuous and, moreover, equals v almost everywhere. To do this, show
that the measure 9?v/dxdy charges neither horizontal nor vertical lines.

Exercise [#] 6.12 (Restriction of a Function in BV ({2) to (2).
As in Proposition 6.110, let £2; and {25 be two open subsets of RY of class C!
and let X' be a manifold of dimension N —1 with 2 = 2, UX U2, 21N =
@,and 21 N2 = X. Let 7 be the outward-pointing normal to 0f2. Let
u € BV ({2) and consider the restrictions u;, = u|p,, i = 1, 2.

First show that u; € BV (2;) and then that for the uniform Dirac measure
dp0, on 0f2;, we have

Vu = Z Vuixa, + (o(uz2 — ul))ﬁ(;aﬂy
i=1,2



6.11 Exercises for Chapter 6 365

Also show that

IVul = > [Vuilxa, + |(vo(uz — u1))|0a0, -

i=1,2
Let 0 € C(2,RY). Show that if o - Vu = |Vu| in £2, then

o for every i € {1,2} and every x € §2;, we have o - Vu,;(z) = |[Vu;|(x),
o for every z € 912y, we have o - 7 (ug — u1) = |ug — uy|(x).

Show that this property extends to the case where o € L* with div(o) €
LN (), where we see o - Vu as a measure.

Exercise 6.13 (Restriction of a Function in BD({2) to Open Subsets
of 2).

Let §2, {21, and {25 be as in the previous exercise. Let u € BD({2). Prove that
the restriction of w to {2, which we denote by uy, belongs to BD({2) for
k = 1,2 and that

eij(u) = eij(ur)x o, + ((u2 — u1)ing + (u2 — u1);n:))do0, -

Let 0 € L>=(2, E), where E denotes the space of symmetric matrices over RY.
We suppose that div(c) € LV (£2,RY). Prove that if u € BD(£2), then

o:e(u) = Z(a se(ui))xa, + Z(UQ —U1)iN;0:;090, -
i ij
Exercise [¥%] 6.14 (The Space X,,(2) ={u € LP(2) | V™u € LP(12)} for
p=2).

We endow X, (£2) with the natural norm ||u|| x,, = |Jull, +||V™ul|,, for which
it is complete.

(1) Use Theorem 6.74 to show that X,,(£2) is of local type, that is,
Vo eD(2),Vuec Xn(02), pue X,(02).

(2) Show that the space D(RY) is dense in X,,(RY).
(3) Show the following inequality for every m > 2 and every j < m:

i m 1/m 1—j5/m
(6.149) V70l oy < CIUV™ull7 sl -

(4) Let £2 be an open set of class C™. Show that inequality (6.149) implies
that

IV7ull Loy < Clllully + IV ull o 2))-
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Hints. (2) For a given 6 > 0, use a function ¢ € D(RY) with

(6.150) lpu —ullp <6 and ||eV"u— V™ul, < 6.
Next, take a regularizing function p. and set us = p. * (pu), so that
(6.151) V™ e =V (eu)lp <0 and [lue — (pu)ll, < 6.

Deduce that [|ue — (pu)]|x,, < kd. Apply the generalized Holder’s inequality to the
integral [, ue div(|Vue|P"2Vu.) to prove that we have

[ ul <€ [l Fud 9Vl < CIVVa s e | Ve
JR R

and, consequently, inequality (6.149) for u., j = 1, and m = 2. Pass to the limit to
prove that {Vu.} is a Cauchy sequence in LP(R™) and that its limit in this space is
Vu (use convergence in the sense of distributions). Use an induction on m to prove
that

(6.152) Vi<m, [V7ully < epgomlully ™™ [V ull ™

Indeed, apply the induction formula, first with Vu and j = m — 1, and then with u
and j = 1, to show that there exist constant such that we have the following upper
bound for D = ||V ul|p:

D < OV~ v

1—-1/m)1/m m lm,2 m—+1 m—1)/m
< Ol S ™ g/ ) [0 | D

It follows that

m m—1)(m+1 m2 m—1 m2 m—+1 m—1/m
[V |y = DD O DO O

To conclude,
IV ullp < Clully Do a0

and for every j < m — 1,

1—5/m m j/m
Cllully™ ™IV ™3

V7 ull, <
< C||u||117—]'/m+j/(m+1)mva-!—l
<

|G/ Im(m D]
1—j +1 m j +1
Clullp =2/ gty |5 (Y.

Use these inequalities to deduce that V7u. is a Cauchy sequence in LP(R™) that
converges to V7u, which therefore belongs to LP(R™). In this manner, all the in-
equalities given above extend to the functions in X (R ). Moreover, the norms are
equivalent (use the open image theorem).

Exercise 6.15 (Example of a Function of a Measure).
Consider the measure p defined by

Vo e C01), () = / 22 4 4 o(0).

(1) Show that u is bounded on ]0, 1[.
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(2) Let f(xz) = Va2 + 1. Compute f(u).

Exercise 6.16 (Second Example of a Function of a Measure).

Let f be a function on R? defined by f(x1,72) = /227 + 23 + 21 + 2. Show
that f is convex and has linear growth at infinity. Compute fo,. Let p be
the measure on R defined by p = (zdz + 1,8;). Show that f(u) = v/36; +
V222 4+ x + 2dx.

Exercise [] 6.17 (Images of Two Mutually Singular Measures Under
a Function).
Let f be a convex function with linear growth at infinity with f(0)=0. Prove

that if p; is a measure that is singular to ps, which we denote by py L o
(cf. Section 6.2, Definition 6.43), then

fun) L f(p2).

Exercise [+] 6.18 (Property of the Composition of a Convex Function
and a Gradient).

Let f be a convex function with linear growth at infinity such that f(0) =0
and the conjugate f* of f is bounded on its domain. Let {2, {21, {25, and o
be as in Proposition 6.110 and Exercises 6.12 and 6.13, and let u € BV (12).
Prove that

f(Vu) = f(Vu)xe, + f(Vu)xa, + fooluz —u1)ds.

Exercise [#] 6.19 (Function of a Measure where the Function Admits
a Nonempty Subdifferential at 0).

Let f be a convex function that admits a nonempty subdifferential at 0.
Let ¢ = f(x) — f(0) — (z*,z), where z* € 9f(0). Show that domg* =
dom(f*) — 0f(0) and that

g9 (x) = f(0) + f*(z +27).

Deduce the following property: if f is a convex function with linear growth
at infinity and with conjugate f* that is bounded on its domain and if ¢ is a
nonnegative function in C.(§2), then the formula

(o) = sup /Q o — /Q F* ()¢

vEC,(§2,dom f*)
still holds. Prove that g(u) = f(u) — f(0) — a* - p.

Exercise [%] 6.20 (Details for N = 3 in the Proof of Theorem 6.95).
We use the notation of the proof of Theorem 6.95 in the case N = 3. We set
a = aje + azes + ages and suppose that a; # 0 for every i € {1,2,3}. We
begin by proving Lemma 6.96 in this situation.
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(1) Consider the product I,J;J2. Use the components (£1,&2,£3) of  in the
new basis a, e1, es to show that

&1

O ~ ~
I(x) = / Fer+s.6.6)ds = [ Fls, 0, 63)ds.

Deduce that there exists a w, € L?(R?) such that |I(z)| < wa(&a,&3).
Also show that |Jo(z)| < we(£1,&3) and |Ji(x)] < wi(&1,&2). Apply
Lemma 2.40 to prove that w,wow; € L*(R3) and conclude that I,.J;J> €
L1(R3).

(2) Use a different basis to show that the same holds for a different product, for
example I, J5. Deduce that every linear combination of these products,
each taken to the power 1/2, therefore belongs to L?O/f (R?). This concludes
the proof of Theorem 6.95 in the case N = 3.

Hints. For the first question, we have, for example,

- [ 2
Jz<x>:J2(£1,£z,£3):/_ f(£1,£2+s,£3)ds:/_ F(er, s, €2)ds.

Use an integral wz over R to give an upper bound and conclude that |J2(z)| <

wa(&1,&3).

Exercise 6.21 (Linear Combinations of Dirac Masses, [50, 51]).
Let v be a positive measure for which there exists a constant C' > 0 such that
for every measurable set A, we have

either v(A)=0 or v(A)>=C.

Prove that v is a linear combination of Dirac masses with mass > C.

Hints. If v is not identically zero, then let zo € suppv. Suppose that v(xq) = 0;
then there exists a ball B(zo,r) with 7 > 0 such that v(B(zo,r)) = 0. Indeed, if
this were not the case, then there would exist a sequence r, tending to 0, such that
v(B(zo,7mn)) > 0, and therefore > C. Consequently, by the definition of the measure
of a compact set, we would have

v({zo}) > limv(B'(zo,mn)) = C.

It follows that in this case, either we have v(({z}) > C at every point, or the measure
is identically zero. However, we also have v(B(zo,r)) > C for every r > 0, so that
by using a countable finite open set in {2 with finite measure for v, we would have

v(2) > V(Zn xn) > NC

for every N. It follows that if v is a bounded measure, then it cannot consist of a
finite number of Dirac masses.
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Exercise 6.22 (Generalization of the Previous Result, [50, 51]).

Let p and v be two positive measures on R for which there exist a constant
C > 0 and real numbers p and ¢ satisfying 1 < p < ¢ < oo such that, for
every universally measurable function ¢, we have

(/leqV)l/q < C(/lepu)l/p-

Prove that there exist a countable set of points {x;} in RY and a sequence of
real numbers v; such that

v = Zujéxj and g > Zuf/qéxj.
J J

Hints. First note that the assumptions imply that v is absolutely continuous with
respect to u, so that

v=fu.
Next, by the Lebesgue-Radon-Nikodym theorem, there exist g € L'(RY,v) and a
measure o singular with respect to v, such that

n=gv—+o.

Reduce to the case where ¢ = 0 and set vp = g‘mq*p)lm g(x)<k}V =
gp/(qu)l{z‘ g(z)<k} M- Let ¢ be a universally measurable function and let

o= gl/(Q*P)lggkw.

(/soqu>l/q < C(/Is@\pdu)l/p~
We then have

1/q _ 1/p
(/W\qd%) < C(/W\pg”/(q p>91{z\g<z)<k}dV)

— C(/W;\pdyk)l/p.

Taking ¢ = xa, deduce that vy satisfies the conditions of Exercise 6.21, and con-
clude.

Write

Exercise 6.23 (Applications of the Previous Exercises, [50, 51]).
Let p < N and let p* = Np/(N — p). Let {u,,} be a sequence that converges
weakly to 0 in W1P(RY). Use the continuity inequality

-\ 1/p"
o[ tewnl?) " <1l
RN

for ¢ € D(RY) and the previous exercise, after extracting a subsequence from
{tnm}, to show that {|u,,|P"} converges weakly to a linear combination of
Dirac masses v = y . 1;0,. Also show that

|V, [P — p,  with u)Cny/p*ém.

(2
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Korn’s Inequality in LP?

This final chapter is devoted to the proof of Korn’s inequality, which we have
already used in Chapter 5. This inequality says that if {2 is a regular bounded
open set, then

3C >0, Yue WeP(2,RY), |Vul, < Cle(u)|,,

where the last inequality can also be written as
p/2 Oju; + Oju; 2\p/2
(7.1) /(ij(ui)(:ﬁn?) d:cgcp/ (Z\%(m‘ ) d.
2N N
2] (A

Let us begin with an introductory remark.

When Korn’s inequality is explained in the mathematical literature, it is,
in general, in the case p = 2; see, in particular, the articles contained in [44],
[45], [43], [32], [54], and [30]. In some works, it is just mentioned that the
result extends to the case where 1 < p < oo, with counterexamples for the
cases p = 1 and p = oco. Most articles about these inequalities concern the
case p = 2 and look to extend the result to quite general classes of open sets,
for example open sets of class C!, open sets with the cone property, or certain
unbounded open sets. In the case p # 2, P. Ciarlet gives a proof that uses
rather difficult results on the regularity of solutions of elliptic equations over
WP asin [2] (cf. [15]).

Because of the lack of simple proofs in the case p # 2, we have chosen to
prove the result for those values of p, for a bounded open set {2 of class C2,
using results from harmonic analysis, without worrying about generalizing to
less regular open sets.

Let us return to inequality (7.1). To obtain it, we will show the property

VT eD'(Q), VIeW ' (2) = Tel’(Q)

F. Demengel, G. Demengel, Functional Spaces for the Theory 371
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This can be proved using Riesz’s inequality, where C' is a constant depending
on N and p:

Vo e S(RY), H

axlaxj C|A§0|P

Namely, we will use arguments from distribution theory and characterizations
of the images of the operators div and A on the space S(R™).

Riesz’s inequality, which bounds the mixed partial derivatives from above
using only the seminorm of the Laplacian in L?, can be shown using the Fourier
transform applied to convolutions of functions in LP with Riesz kernels (Riesz
transforms).

An important part of this chapter consists of studying Hardy’s and
Hilbert’s maximal functions, leading to properties of the Riesz transforms.
The arguments we give in these preliminaries mostly come from the book
[64], after being ordered and adapted to suit our objectives.

7.1 Harmonicity, Mean values, Hardy Maximal
Functions

7.1.1 Construction of Harmonic Functions using the Poisson
Kernel

The homogeneous Dirichlet problem associated with the operator A and
R x]0, +oo[ with boundary condition defined by a continuous function admits
a regular solution. Below we provide the means to give the solution explicitly.
When the open set is a ball, such a solution is defined by the formula given
in Remark 5.70.

Definition 7.2. A function f of class C? on an open subset {2 of RY is called

harmonic if
N

Ve, Af(x)=)_ 0if(z)=0.
1
In the case N = 2, the real and imaginary parts of these functions are
holomorphic functions. The same holds for the Poisson kernel P defined on

R x ]0, 4+o00[ by . X
Y
Plz,y) = T2+ %e(_ﬁ)'
Let f be a continuous function on R. We wish to extend f to a function
on R x ]0,4o0] that coincides with f on R x {0} and is harmonic on the
upper half-plane. Note that if we let P, be the function « — P(x,y), then the
combination of the differentiation of the convolution h = (f x P,) in = and
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the differentiation with respect to y gives Ah = 0, at least formally for now.
More precisely, we have the following result.

Proposition 7.3. Let f € LP(R) for p satisfying 1 < p < oo; then the func-
tion u defined by

Vy>0, Vx e R u(x,y) = / Pz —t,y)f(t)dt
R
belongs to LP(R x ]0, +oo[) with [[u(-,y)|lp < |[fllp-
Moreover, u is harmonic on the upper half-plane and

lim [[u(-, ) — fllp = 0.

If f is continuous and bounded on R, then the convergence is uniform on every
compact subset of R.!

Remark 7.4. When we only have the inclusion of f in LP, there exist regions
where the convergence of P(-,y)*f to f when y — 0 is uniform. More precisely,
let zp € R and let o > 0 be a real number. We let I',(z¢) denote the open
cone with top zg € R lying in R X ]0, +o0|, defined by

T'o(z0) = {(z,y) € R x]0,400[ | |z — mo|/y < a}.

This region is a cone with vertical axis, whose top lies on the horizontal
axis, and whose top semi-angle is less than 7/2. When (z,y) tends to (xo,0)
while staying in the cone, the resulting limit of P(-,y) * f is called nontan-
gential. We will show further on that if zg is a Lebesgue point? of f, then
this limit exists and, moreover, the convergence is uniform in the cone. This
property will be useful when we study the Hilbert transform. Its proof is given
in Exercise 7.15.

Proof of Proposition 7.3.

We will use two important properties in the proof, namely the positivity
of P in the upper half-plane and the relation [, P(x,y)dz = 1 that holds for
every y > 0.

! In the book [64] we mentioned above, the results concern the harmonicity in the
half-plane RY x ]0, +oc.
2 Given a locally integrable function f in RV, an element z of RY is called a
Lebesgue point of f if
1

lim BO Jyyer If(z—t) — f(z)[dt = 0.

We can show that the set of these points has a complement with measure zero.
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To establish the harmonicity, we can use derivatives or the characterization
of harmonic functions using the mean value property (cf. Exercise 7.3).
Let M, »(f) denote the mean value of f on the ball B((z,y),r). We
use Fubini’s formula and the fact that the function (z,y) — P(x —t,y) is
harmonic for every ¢ to obtain that for every y > 0 and for every r < y,

Moo = =5 [ [ [ PG~ tomsoa]acan

mr2

1
oz L0 e tmdcan]as

/R (P —t,y)dt = u(z, ).

Since the function u is continuous, this shows that Au = 0 (cf. Exercise
7.3).

Let us now show the assertion concerning the uniform convergence of
P, % —¢ to 0 when y — 0 on a compact subset K of R2, provided that ¢
is continuous and bounded.

Let € > 0 and § > 0 satisfy 7/2 — arctan(1/d) < ¢ and for every z € K,

p(z) = oz — 1) <

provided that [t| < d. Then for y < §%, we can write

-/ 7 L lele — )~ pla)lds

Yy
£ dt+2||90||oo/ S dt
/t|< y =8 2+ °

em + 2]|¢]|co (m — 2arctan(d/y))
(m+4l[¢lloo)e,

N

N IN

which concludes the proof of the uniform convergence.
Let us now show the convergence of || P, x ¢ — ||, in L? when ¢ € C.(R).
We use the equality

(Py*ap—cp)(x) = t,

L [ o —yt) —p(x)
_/]R d

T 1+¢2

which is obtained after a change of variables. We will then use the density
of C.(R) in LP(R) and the following property, which holds for f in LP:

1Py % fllp < CllF -



7.1 Harmonicity, Mean values, Hardy Maximal Functions 375

This inequality is a consequence of Holder’s inequality together with Fu-
bini’s formula. Indeed, using (1 + t2) = (1 4 t2)1/2(1 + ¢2)2/?' | we have

/\P * fIP(x /‘/ flfij—tzzft
/ | £( f;i/; )(/ 1it2dt)p/pldx
< /R =P ([ 5 ) e < el

We therefore suppose that ¢ is continuous and has compact support. Let
e > 0and let 6 < 1 be such that by the uniform continuity on R, |z—2'| < §
implies that

, €
px) —p@) < /.
lp(@) ()] | supp ¢| + 1

Suppose that y < 1 and let D denote the order § neighborhood of the
support of ¢, so that if y|t| < 6 and = ¢ D, then p(z — yt) — ¢(z) = 0.
Computations similar to the previous ones give

oz —yt) —p(x) P
/|P *p — <p| dr < /’/ T+ dt
ol — yt) — ()| / L\
/ o dt)( R1+t2dt) da
P V (/ o(z —yt) — w(x)lpdt)dx
- D Mt |yt|<6 1+¢
—ut) — P
+/(/’ lp(x y)waﬂde4
R \J {8yt >6) 1+1¢

/ dt
< cePrP/? / dx+20/ \<p|pdx/ —
D R {Iyt|>or L 1

< de? 4 4cllg|, (w/2 — arctan(5/y),

dx

which concludes the proof by choosing y < 6.
To conclude, we suppose that f € LP(R). Let ¢ > 0 and ¢ € C.(R) satisfy

1f = ellp < e

Under the previous conditions, let § be a number such that y < §2 implies
the inequality

[Py xo—¢lp<e
Then

|Pyxf—fllp <
<

[Py * (f = @)lp + 1Py * o —llp + llo = fllp
Cllf —¢llp+e+e<ece,

completing the proof. a



376 7 Korn’s Inequality in L?

Proposition 7.5. If u is defined as before with f € LP(R), then |u(z,y)| <
Cy~Y? for every y > 0. In particular, the function u is bounded in the half-
plane {y > yo}, where yo is taken to be positive.

Proof of Proposition 7.5.
For a fixed x in R, we use Hélder’s inequality. By the change of variable
t = yz, we have

d /v
(B, x D@ < B 151 = o[ | ] A1,

) 1 1/p’
o [ il < e o
Yy R (1 T |Z|2)p/ ||pr Y Hf”P
Proposition 7.6. Let u be a harmonic function on the half-plane {y > 0}
that is bounded on every half-space {y > yo} with yo > 0; then for every pair
(y1,y2) of positive numbers, we have

umwﬁwazjﬁu—umwwWMt
R

Proof of Proposition 7.6.

We fix a yg > 0. By assumption, the function (z,y) — v(x,y) = u(x, y+yo)
is harmonic in a neighborhood of the upper half-plane {y > 0} and bounded in
this half-plane. We let v; denote the function associated with the continuous
function ¢ — u(t,yp) on R as in Proposition 7.3, namely

VeeR, Vy >0, wv(zy) = / Pz —t,y)u(t,yo)dt.
R

This function vy is harmonic in the upper half-plane and extends continuously
to the function ¢ — u(t, yo) on the boundary {y = 0}. In other words, we have
v1(x,0) = u(x,yo)-

We will show that the functions v and vy coincide in the upper half-plane,
which will prove the equality of Proposition 7.6.

Indeed, the two functions v and v; are harmonic in {y > 0} and, since
v1(2,0) = v(x,0), they coincide on {y = 0}. Moreover, they are bounded.
For v, this follows from the conditions of the proposition, and for vy, it follows
from Proposition 7.3 in the case p = oo and also from Proposition 7.5 because
the function ¢ — u(t, yo) belongs to L>(R). The conclusion now follows using
a symmetry argument. For this, we extend the difference d(z,y) = v(z,y) —
v1(z,y) to the lower half-plane using the formula

Ve eR, Vy>0, dz,—y)=—d(z,—y),

which, because of Ad(z,y) = —Ad(z, —y), implies that the extended function
is harmonic on R? \ {y = 0}. Moreover, by extending the function d by 0 on
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{y =0}, we obtain a continuous function on R2. Using the Poisson kernel,
we can use, for example, the solution of a Dirichlet problem in a ball, with
continuous boundary condition, to show that this function is harmonic in
R2. Furthermore, the extended function d is bounded in R2. It follows, in
the dimension 2 case, that it is the real part of an integral function that is
holomorphic in the plane and bounded, and therefore constant by Liouville’s
theorem. Consequently, v — v; is a constant, which must be zero since it is
zero on {y = 0}. O

Remark 7.7. We must emphasize the importance of the boundedness in this
argument. Since the domain is unbounded, we cannot use the uniqueness of
the solutions of Dirichlet problems. Moreover, we can easily construct nonzero
functions that are harmonic in the plane and zero on the horizontal axis.

7.1.2 Rearrangement Function

Definition 7.8. The rearrangement function A; of the function f is defined
to be
M(s) = [{z [ 1f(2)] > s}].

We can easily see that the function Ay is nonincreasing and right-
continuous. This function will be useful when we study the maximal
functions further on. For the moment, the inclusion of f in LP gives the
following result.

Proposition 7.9. Let f € L*(RY); then the function f belongs to LP(RY) if
and only if fooo sP7IN¢(s)ds < oo. More precisely, we have

(7.10 | s = S,

Proof of Proposition 7.9.

We begin by proving relation (7.10) when f is simple. By considering the
positive and negative parts of f and the relation |f| = f™ + f~, we see that
we may assume that f > 0 and that f is simple, which we do. Then f can be

written as
n
f= E CiXE;,
j=1

where ¢,41 =0 < ¢, < cpo1 < --- < c; and the E; are two-by-two disjoint
measurable subsets of RY. For j € [1,n], we set d; = |Ey| + -+ |E;|. The
function Ay can then be written as

A\ ( ) dj if Cj+1 <s < Cj,
S) =
! 0 ifs>c
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(cf. Exercise 1.23). Consequently,

/ sP7IAf(5) ds—z st dsd; = Z(cf e 1)d;
0

Ci+1 i
——cp|E1\+ZcP d; —d;-1) (Zc”\E ) =Sl

We continue with the general case, where we may, and do, still suppose
that f > 0. Since f € L*(R"), there exists a nondecreasing sequence of simple
functions { f,} with f,, < f and || f, — f|l1 — 0. In particular, after extracting
a subsequence, if necessary, the sequence {f,} converges almost everywhere
to f. The sequence E,(s) is nondecreasing, hence E(s) = {z | |f(z)| > s} =
Uz | |fn(z)] > s} = U, En(s) by the monotone convergence theorem.
Moreover, As(s) = lim Ay, (s).

Let us assume that [;° s?"*Af(s)ds < 4o0; then the dominated conver-
gence theorem gives

/0 sp_l)\fn(s)ds—>/0 sP7INp(s)ds.

We can also apply the monotone convergence theorem to the sequence {f?}.
Using the result already proved for the simple functions, this gives

1||f|\p _1 lim || f,]|2 = lim /OO Af (s)sp_lds:/oo Af(s)sP~ds.
p P pnooo P onseo 0 " 0

In particular, this implies that f € LP(RY).

Let us now suppose that f € LP. The sequence {f,} of simple functions
can be chosen such that ||f, — f||, — 0. One of the previous relations then
implies the convergence of [ sP* Ay, (s)ds and equality (7.10). 0

7.1.3 Hardy-Littlewood Maximal Functions

In this subsection, we take f € LL (RY) and define the mean value of f on
the balls in RY using the formula

1 1
My@)0) = iy L o= g [ e

where 7 > 0. We then study the existence of the Hardy-Littlewood maximal
function (HLM function) defined below.

Definition 7.11. Let f be a function in L]
of f is the supremum of the mean values on the balls with center x:

1 1
my(z) =sup ———— |f(z +t)|dt = sup 75— |£(¥)|dt.
P [BO s >0 [BO 1] Jeor 50

(RY). The maximal function m s
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The HLM Function When f € L'.

Example 7.12. Let f be the function on R defined by f(t) = 1/(t*> + 1). We
study the existence of my and its possible inclusion in a space LP(R).

The change of variables ¢t = —7 shows that my is an even function. Since
the function r — (arctanr)/r is nonincreasing, setting x = 0, we obtain
my(0) = lim,_, (arctanr)/r = 1. We therefore need to study the following
mean values when z > 0:

1 [ at arctan(z + r) — arctan(x — r)
u(r,z) = — = .
2r Jo_, 241 2r
The function U(r, z) = —2ul.(r,z)r? satisfies
U(r,2) = axctane + 1) — aretan(z =) = r( o+ )
r,z) = arctan(x + r) — arctan(z — r)) — r .
’ (x+7r)2+1 (z—7)2+1

Setting a = x +r and b = & — r, its derivative can be written as

b
= ]
By expanding a(b® + 1)? — b(a? + 1)2, we see that U/ (r, z) has the same sign
as the trinomial 7'(r?) defined by

T(r?) =r*+2(1+2%)r* = 32* — 222 +1 = r* +2(1+2?)r? — (22 +1)(32% - 1).

We note that the discriminant of T'(r?) equals A = 422(1 + z2). For x # 0,
the trinomial therefore admits two distinct roots in the variable 2. Moreover,
when < 1/4/3, these two solutions are negative, so that the trinomial is
positive for every 7. When = > 1/4/3, one of the solutions we just mentioned
is positive, namely 7?(z) = —(1 + 22) + 22v/1 + 22.

In Exercise 7.4, we will study v when z < 1/ v/3 and show not only the
existence of the function m; on the interval [0,1/+/3] but also the equality
my = f in this interval.

For 2 > 1/4/3, we see that the function r + U/ (r, ) is positive on [ry, +oo[
and negative on |0, r1[. Since U(0,z) = 0 and lim,_, 1 o U(r,z) = =, it follows
that there exists an ro(z) > r1(z) such that U(ra(z),2) < 0 on ]0,r9[ and
U(ra(x),2z) > 0 on [re,4oo[. To conclude, r — u(r, z) reaches its supremum
for r = ro(x) and we have

Vo >1/V3, myp(x) =u(ra(z), z).

In the exercise we mentioned above, we also prove the continuity of the func-
tion my in the interval |1/v/3, +oo[. Studying the inclusion of m; in a space
LP(R) therefore reduces to studying its behavior at +oco.
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To do this, we estimate 72(z) using the signs of the numbers U(z, z) and
U(2z,z) when z — +o0o. We have

U(zx,z) = arctan(2x) — z(42* + 2)/(42% + 1),
which tends to —oo when z — +00 and
U(2z,2) = arctan(3z) + arctan x — 22(1022 + 2)/[(92% + 1)(2? + 1)],

which tends to m when * — +00. We deduce from this that for a large pos-
itive , we have x < r2(x) < 2z. Let us return to mys(x) = u(ra(x), ). For
x> 1/\/§7 we have the following results:

3z dt

14t2°

5 and 2r2(x)u(r2(a:),x)>/0x

2ry(w)u(ra (), z) < / 142

—T

These inequalities lead to the bounds

1 (% qt <(())<1/3w dt
-— — <u(ra(x),r — —_— .
iz J, 1+ 2 2w |, 1+¢2

It follows that the function my is not summable on R while it does belong to
LP(R) for every p > 1.

Example 7.13 (HLM Function of the Characteristic Function of
[a,b]).
o If z € ]a,b[ then either M;(r)(z) = 1 or Ms(x) < 1. We therefore have

my(z) = 1.
e If z = a or b, then the mean value is either 1/2 or < 1/2. Consequently,
my(x) =1/2.

e Finally, let us consider x ¢ [a,b]. If © < a, then the mean values are zero
if r <a—umx, equal to (1/2r)(z+7 —a) if a < z+r < b, and equal to
b—a/2rifr > b—ua. It follows that ms(z) = (b — a)/[2(b — z)]. For z > b,
we obtain my(z) = (b — a)/2(x — a). It again follows that my € LP for
p> 1.

Remark 7.14. We can also use other mean values to define an HLM function,
for examples the mean values on open hypercubes with sides parallel to the
coordinate axes. In this case, we can see on the one hand, that the subsets
of R where the two associated maximal functions are finite coincide and on
the other hand, that each of these functions can be bounded from above by
the other function times a constant depending only on N.
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Indeed, it suffices to use the fact that the Euclidean ball of radius r with
center x is contained in an open hypercube with center x and edges of length 2r
and itself contains a hypercube with center z and edges of length /v/N. By
the inequalities on the integrals of nonnegative functions that we can asso-
ciate with these two types of integration domains, we obtain upper and lower
bounds, giving the result by taking the suprema. Therefore, in the following
theorem the HLM function may be defined using the mean values on these
hypercubes.

Theorem 7.15. Let f € LY(RY). We set
Vs>0, Fy={zecRY|mys(z)>s>0}

Then the Lebesque measure of Fs, that is, the value of the rearrangement
function of my at the point s satisfies

cllfllx
)

|Fs| <
S

where ¢ = ¢(N) with ¢ = 2V when we take the mean values on the hypercubes.
In particular, we have my(x) < oo for almost every z € RY.

Proof of Theorem 7.15.
Taking the above into account, we let C'(x,r) denote the open hypercube
with center x and edge 2r. For s > 0, we let

1
sup ——— t)|dt > s .
r>1:0) (QT)N /C(:v,'r) ‘f( )| }

If this set is empty, then the property we wish to prove is trivial. We therefore
assume that Fs # @. Let S be a compact subset of Fj; then for every x € S,
there exists an r,, > 0 such that 1/((2r,)") fc(xh) | f(¢)|dt > s. The function
Y — fC(y o) |f(#)|dt is continuous because f € L'; hence there exists a ball
B, with center x such that

FS:{xeRN

1
Vy € By, —/ t)|dt > s.
Y @™ Joins L)l

The compact set S is covered by these balls B, . Therefore there exists a finite
number B,, with 1 < ¢ < n that cover S. We choose such a finite cover with
hypercubes C(z;, ry,).

Let C! denote the hypercube with center 0 and edge r,,, so that
C(zi,ry;) = x; + CL. We may, and do, assume that the numbering is such
that we have the inclusions

ciccyc---cCl.
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Furthermore, for every y in S, we set
. 1
K(y)=sw{ieln]| o [ If@lde> s},
|Cz| y+C

thus defining a map from S to [1, n]. To simplify the ideas behind the reasoning
below, we can first consider the case N = 1, which is dealt with in Exercise
7.7. The first question of the exercise consists of proving Lemma 7.78, stated
there. That result is generalized in the following lemma, which we will use in
the proof of Theorem 7.15.

Lemma 7.16. We take the situation as above.

(1) There ezists a finite set of points {s; }1<j<k such that the set S is contained
in Uij<n{si + Cks,y} and each of the centers s; of these hypercubes
belongs only to the hypercube with indez j.

(2) Every intersection of more than 2 hypercubes with two-by-two distinct
indexes among the V; = s; + C}((s]-) s empty.

Proof of Lemma 7.16.

For (1), we choose s; in S such that K(s1) > K(s) for every s, which
is possible because the image of K is finite. We consider the set S; =
S~ {s1 +C’}((sl)}. If this difference of sets is empty, then S C V; = 51+C’}<(Sl)
and the first part of the lemma holds for £ = 1 while the second part is triv-
ial. If the difference is nonempty, then we choose a point s5 in S; such that
K(s2) = K(s) for every s € Sy. If S3 = 51 — V4 is empty, then we obtain the
lemma with & = 2 by noting that because of the inequality 7 (s,) < 7 (s,), the
center s; of the first hypercube cannot belong to the second one, s + C}((S2).

We can continue this construction using the same algorithm. The number
of steps is necessarily finite. Indeed, by the previous property of the centers
of these hypercubes, the distance between two centers is greater than ry =
min;{r,, }. It follows that the balls of radius r9/2 with center s; are two-by-
two disjoint. Since the set S is bounded, it cannot contain infinitely many
such balls, thus proving the desired property and the first statement of the
lemma.

For (2), consider an intersection point of hypercubes V; and take this point
as the origin. We consider the 2V quadrants of RN that are delimited by the
coordinate hyperplanes through this origin. Let () be such a quadrant; then
for every 4, the coordinates with index i of two arbitrary points of Q) have the
same sign. Let us show that the centers of two hypercubes in the intersection
cannot belong to the same quadrant. To illustrate the ideas, let C(s,a) and
C(t,b) with a > b be two such hypercubes, where we leave out the indexes to
simplify. Let s; be the coordinates of s and let ¢; be the coordinates of t. We
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will show that for ¢ € [1, N], we cannot have signs; = signt;. We argue by
contradiction and assume that we do have this relation and, moreover, that
s; > 0 and t; > 0, for further simplification. Since the origin is in C(s,a), we
then have s; < a for every i, whence |s; — t;| < a for every i. However, the
point ¢ must lie in the exterior of the hypercube C(s, a), so that |s;—¢;| > a for
every j, contradicting the previous inequality. We conclude that the centers of
the hypercubes in the intersection we are considering lie in different quadrants,
and therefore cannot be more than 2%V in number. O

Let us return to the proof of the theorem. The measure of S is lesser than
that of the union of the Vj, hence lesser than the sum of the measures Z]f [V;].
It then follows from the definition of the V; using the map K that

1 k
sl< > [ e

Let us consider the sum of the characteristic functions of the sets V;. This
sum has value m > 1 at a point s € S only if s belongs to the intersection
of m sets V;. Since m is at most 2%, it follows that Z}f x(V;) < 2Mx(UV)).
Consequently,

Z]I:/v_j [f(@)|dt < 21\//U

and therefore

fole <2 [

Vi

1 2N
S1<5 3 [ 100l < 1l 0
1 J

Remark 7.17. We can obtain the following partial result more easily. We
take balls instead of hypercubes and construct B(s;, K(s;)) in an analogous
manner. We then have N

2

without having to use that the intersection of more than 2V balls is empty.
Indeed, by construction,

TK(si) T TK(s))

|5i — 5J| > Sup(TK(si)7TK(5j)) z 2

for i # j, which implies that B(s;, 7k (s;,)/2) N B(sj, Tk (s;)/2) = &, and there-
fore

D IB(si,m (s /2)] = U B(si,Tic(s) /2)] < @
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and N
271

IS1< D2 IBsisricien| = 2V 3 IB(sisac(o /2] < =

This in turn implies that
2N
[Fol < —IIfll,
s
thus justifying the remark.
Consequently,
for almost all z € R, my(x) < oo.

Indeed, if m¢(x) = +o0, then we can apply the theorem with arbitrary s,
which leads to |Fs| = oo, giving a contradiction.

Using examples, we have seen that when f € L', the HLM function my
does not necessarily belong to L. The situation is different for L? with p > 1.

The HLM Function for Functions in LP with p > 1. Let us first give a property
that will allow us to generalize the previous theorem.

Proposition 7.18. Let p > 1 and let f € LP(RYN); then the function

@) = {f(sc) if1f ()] > s,

0 otherwise,
belongs to L*(R™N).

Proof of Proposition 7.18.
For |f(x)| > s, we can write |f(z)| = |fP(2)| |f17P(x)] < s'7P|fP(z)]. Tt
follows by integration that

/ 1 (@)de = / f(@)lde < s / |7()|dx
RN {z||f(x)|>s} {z||f(x)|>s}

<SP
concluding the proof. m]

This property will allow us to generalize Theorem 7.15 to functions in
LP(RN) when p > 1.

Theorem 7.19. Let f € LP(RY) with p > 1; then for almost all x, we have
my(x) < +oo. Moreover, there exists a constant c(p, N) such that

Ve LP®RY), mglly < c(p, N)|£ll,.
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Proof of Theorem 7.19.

Let f € LP(RY). We denote the rearrangement functions of my and m s
by A and A®, respectively. We set f, = f — f°. The subadditivity of f — my,
which clearly follows from the definition that uses a supremum, gives m; <
mys + my,. Since |fs| is bounded by s, we deduce that it is an element of
L°°. Moreover, since the mean value of f; is < s, we deduce that my, < s.
By the inclusion of the function f* in L', this inequality proves the almost
everywhere finiteness of my.

Let us now show that A\(2s) < A*(s). We set E¢(s) = {z | |ms(x)| > s}
and compare the measures of E(2s) and of Eys(s). If z € Ef(2s), then
2s < |my(z)| < mys(x) + my, (x), which implies that mys(z) > s because
my,(z) < s. The inclusion « € Es(s) follows. Consequently, E¢(2s) C Es(s),
and therefore

A(2s) < N (s).

We then apply relation (7.10) of Proposition 7.9 to the function m; and to
its rearrangement function A\, where the common value can be either finite or
infinite. Using the integration variable 2s in this relation, applying Theorem
7.15 to the function f* (cf. Proposition 7.18), and then Fubini’s formula, we
obtain

oo o0
lmylb < p2p/ sP7IN(28)ds < p2p/ sPIN(s)ds
0 0

<pre [ [ )
0 x| f(z)]|>s

(@) e
< pQPC/ \f(:c)|/ sP~2dsdy < L~
RN 0

LI

To conclude, this equality implies that my € L? (RY) and proves the assertion
of the theorem. O

An important application of this property concerns the convolution of a
function in LP with a radial function.

Corollary 7.20. Let ¢ € LY(RY) satisfy p(t) = p*(|t]), where ¢* is a non-
negative nonincreasing function on [0, +oco[. We set ¢.(t) = e Np(t/e).
Then for every f € LP(RY), we have
Sup £+ ¢el(z) < my(@)elh < Cllfllplielh
€

for almost all x € RN
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Proof of Corollary 7.20.

We may, and do, assume that f > 0. We begin by proving the property
when ¢* is a linear combination of characteristic functions of intervals in R¥,
that is, * = 30" axx([tk, tk+1]), where the sequence {t;} is increasing and
to = 0. Since {ay} is nonincreasing and nonnegative, we can write

" = Zka[O,tk+1]a
0

where the by are defined by
by = ag — agt1, am =bpy

and are therefore > 0. Since ¢ is radial, it follows that

Y= Z kaB(Oikﬂ)'
k

Let us set X = Xp(0,t,)- The convolution e~ x4 41(z/e) * f can be written as

e_N/ f(z —t)dt.
[t|<eti+1

Denoting the volume of the unit ball by wy, we have

G 1
(e D)) =D b st -0

+1WN
<my(@) 3 0| BO, )| = ms @)l
1

The desired inequality follows for simple functions.

Let us now suppose ¢* to be an arbitrary nonincreasing and nonnegative
function on RT. If (¢) = »*(|t|) belongs to L' and if {(}} is a nonincreasing
sequence of simple functions that converges to ¢ while ¢F < ¢* converges
almost everywhere to ¢*, then the dominated convergence theorem implies
that

et = @i ieD] ¥ — o,
RN
By the first part of the argument, we have

SUp [ f x @en| < C|f[lpllenll1-

For fixed ¢, since ¢, converges almost everywhere to ¢, in L', we see that
f*@e n converges in LP to f*p.. In particular, after extracting a subsequence,
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if necessary, f* e n(x) = f*@-(x) for almost all z. It follows that for almost
all  and for € > 0, we have

[f % pe(@)| <Tm[f x e n(2)] < Cllfllp lim [lonlls = Cllfllpllell,

giving the result by taking the supremum in e, because the right-hand side
does not depend on €. m]

Example 7.21. Consider, for y > 0 and 1 < p < oo, the convolution u(-,y) =
f*P(-,y) studied in Proposition 7.3, where f € LP(R). For almost all z in R,
we have

fu,y)] < my(a) < +00.

It suffices to apply the above to the function ¢ defined by ¢(z) =
1/(Jz* + 1).

7.2 Hilbert Transform in R

7.2.1 Preliminaries to the Definition

Let f € LP(R) with 1 < p < +oo0. We first consider the convolution f * gy,
where g, (t) = t/(t* + y*). Since the latter belongs to LI(R) for every ¢ > 1,
the convolution exists almost everywhere on R. When p = 1, we use ¢ = co.
When p > 1, we choose ¢ with ¢ < p/(2p—1), so that fxg, € L"(R)
(cf. Corollary 4.60) for a real number r > 1 satisfying 1/r = 1/p+1/q — 1.
When y — 0, the function g, converges, outside of ¢ = 0, to the function
t — 1/t, which does not belong to any of the LP. Meanwhile, the distribution
associated with g, converges to the “principal value” distribution defined in
Chapter 1. This leads us to conjecture that the limit of fxg, is the distribution,
or function, L Vp(1/t) * f. Classically, this convolution is called the Hilbert
transform of the function f. Further on, we will generalize it to the Riesz
transforms for the dimensions N > 2.

7.2.2 Complements on Convolutions and the Fourier Transform

Let T be a tempered distribution and let ¢ be a function of S. Their convolu-
tion can be seen as a generalized convolution (cf. the G-convolution [22]). In
order to illustrate its use for the reader, we will now give a number of results
that are well adapted to the cases we will be studying.

Proposition 7.22. Let T € S'(RY) and let ¢ € S(RYN); then the convolution
T x ¢ exists and is the slowly increasing C* function f defined by

VIERN, f(x): <Ta7_:t(¢)>a
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where ¢ is the function t — p(—t). Moreover, we have

(7.23) (THp, ) = (T, ).

Proof of Proposition 7.22.

We admit (cf. Exercise 7.8) that the function f defined in the proposi-
tion has the stated properties. It can therefore be identified with a tempered
distribution. Let us verify the equality T x ¢ = [f].

To begin, A = ([f],) is well defined for 1y € D(RY), using the integral of
the product. To show that the general definition using the tensor product is
satisfied, we will consider 1 as a distribution (with compact support) and use
the commutativity of the tensor product:

A = ([T, 72 (@), (@) = ([¥)1a), [(Tr, 72 (S(1))])
[ ® Ty, 6t — 2)) = (Tiy © [][a), Bt — 2))

(
= <T[t], /RN Y(x)p(x — t)dw> = <T[t]7 P(t+ y)cp(y)dy>

RN

Inside these relations, we obtain equality (7.23) by noting in passing that
@ % 1, the convolution of two functions in S(RY), is an element of S(RY).
This moreover allows us to give a sense to the inequalities above. ad

We admit that the Fourier transform has the property of homomorphisms
stated in the following proposition (cf. [22] or Exercise 7.9).

Proposition 7.24. Let T € S'(RY) and let ¢ € S(RY); then the Fourier
transform of the convolution T equals the product of the Fourier transforms
of T and .

The other properties of convolutions, in particular those concerning differ-
entiation, also hold. Moreover, we have the following result.

Proposition 7.25. For a tempered distribution T, the map ¢ — T % ¢ from
S(RY) to 8'(RYN) is continuous.

Proof of Proposition 7.25.

Let {¢n} be a sequence of functions in S that converges to ¢ in S. Let
1 € S§. By the continuity of convolution in S, the sequence of convolutions
{¢n * ¥} converges to @ x1 in S. Since the distribution T is tempered, we
deduce that (T, g, x 1) converges to (T, @ *1). Since this is true for every
¥ € S, it now follows from relation (7.23) that T'x ¢, = T *x ¢ in §’. O
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7.2.3 Definition of the Hilbert Operator f — %Vp(l/m) *x f

Explicit Definition When f Belongs to S(R). By the above, when ¢ € S(R),
the convolution Vp(1/t) * ¢ is the function h such that

Vo e R, @)= (Vp(/, (@) = lm [ ZLZD

e—0 \t|>s t

dt.

Explicit Definition When f Belongs to LP(R). Since the space S(R) is dense
in LP(R), we can approximate f € LP(R) by a sequence of functions {¢,}
in §. We must then show that the limit of the function

z— (Vp(1/t) % ¢n)(2)
exists almost everywhere and that this limit also equals

lim M d

e—0 \t|2€ t

t.

In order to do this, we establish the existence almost everywhere of the limit
of f* gy, where mg,(t) = t/(t* + y?) (cf. Preliminaries 7.2.1), when y — 0.
Let F be the function of the complex variable z such that

LY i

vz eC, %mz>0:>F(z):7T po—
R Z—

Since z — 1/(z — t) is holomorphic, the Lebesgue theorem on complex differ-
entiability tells us that F' is analytic on the open upper half-plane. The real
part of F' can be written as a convolution:
L fWO@=t) 1 [ =t
Re F =— | ————=dt=— | ———=dt = fxg,.
(&} (x—f—ly) ﬂ_/R(x_t)Q_'_yQ 7 Jr t2+y2 f gy
We propose to show that this real part admits a nontangential limit almost
everywhere (cf. Remark 7.4) when y — 0.

Remark 7.26. The imaginary part of —F' is none other than the function
u(z,y) introduced in Proposition 7.3 as the convolution f * P(-,y), where P
is the Poisson kernel relative to the upper half-plane.

Proposition 7.27. At every Lebesgue point xo of f, the function x —
v(z,y) = (f * gy)(z) admits a nontangential limit when (x,y) — (x¢,0).

Proof of Proposition 7.27.
We fix a positive real number y and set F(z) = v(z,y) — iu(x,y). By
writing f as the sum of its positive and negative parts, we may, and do, assume
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that the function f, and therefore also the function u(-,y) = f*P(-,y), is = 0.
Let G(z) = exp(—iF(z)). This function is holomorphic in the upper half-plane
and bounded because exp(—u) = |exp(—iF(z))| < 1. Our problem therefore
reduces to proving that the nontangential limit lim,_,o, G(z) exists almost
everywhere and is nonzero.

Since |G(z)| < 1, we know that the sequence {x — G(x+iy,)}, where {y, }
is a sequence of positive real numbers tending to 0, is bounded in L*°(R). Since
the space L>°(R) is the dual of L!(IR), it follows that there exists a subsequence
of {yn}, which we also denote by {y,}, such that {z — G(z +iy,)} is weakly
star convergent to a function A in L (R). This means that for every element g
of L'(R), we have

i [(9,G@+iya))] = (9.h).
Now, the function ¢ — P(z — t,y) belongs to L! for every z € R and every
y > 0. Consequently,

V(z,y), lim Pz —t,y)G(x + iy,)dt = / Pz —t,y)h(t)dt.
n—-+oo R R

Let us now show that this last integral in fact equals G(x + 1y). We will use

Proposition 7.6, which gives us [ P(x —t,y)G(x + iyn)dt = G(z +i(y + yn))-

Since the function G is continuous in the upper half-plane, it follows that for

every y > 0, we have

G(z +iy) :ngrfoo RP(Z’ —t,y)G(t+ iyn)dt:/RP(x —t,y)h(t)dt=G1(x,y).
The function z — Gi(x,y) is a convolution of h, an element of L*°, with
the Poisson kernel. Consequently, almost everywhere on R, it admits a limit
when y converges nontangentially to 0 (cf. Proposition 7.3 and, more precisely,
Remark 7.4).

This limit of G(z+1y) is, furthermore, almost everywhere nonzero. Indeed,
by Corollary 7.20 (or, more precisely, by Example 7.21), the function u satisfies

for almost all z € R, Vy >0, |u(z,y)| < my(z) < +oo.

u

Since w is nonnegative, this proves that e™ cannot tend to 0 almost every-

where. Therefore there exists a nonzero function x — Go(z) such that

for almost all zg € R, lim Gz +iy) = Go(zo).

y—0
(z,y) €T (z0)

Since |G(x+iy)| — |Go(zo)| for this type of convergence, we find that e~ (*-)
converges nontangentially to the point €??(#0) of the unit circle, where O(xo) is
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the argument of G(zg) up to a constant times 2. It follows that if L and L'
are two nontangential limits of v at the point x(, then their distance to each
other is 2km for an integer k. In order to obtain a contradiction, we assume
that k& # 0 and, to illustrate the ideas, that L < L’. Let | € |L, L'[. We will
show that [ is also a nontangential limit of v at xg, giving the contradiction.

Let ¢ < inf(I—L/2,L' —1/2). By assumption, there exist sequences
{(@n,yn)} and {(z},,y,,)} that tend to (zo,0) while staying in the fixed cone
I, (zo) and satisfy v(zn,yn) — L and v(z!,,y,) — L’. In particular, there
exists an ng sufficiently large that n > ng implies

(7.28) V(Tn,yn) < L+e <l and o(x),y,)>L —e>1

Let us set Y, = sup,,>,,(Ym, ¥,,) for n > no, and let us consider the truncated
cone

Iy (z0) = {(z,y) | y < Yo, |z — 20| < ay}

in the upper half-plane R x ]0,00[. Since the function v is continuous in
R x]0, o[, the image of the truncated cone v(I'Y" (z0)) is convex. Since n > ng,
it contains all the real numbers v(z,, y,) and v(x,, y,,) satisfying the relations
(7.28). This image therefore also contains [. It follows that there exists a point
(2", y")in [Y" (z¢) such that v(z”, y") = I. Now, when n — +00, the sequence
{(z!,y/")} tends to (g, 0) while staying inside the cone I, (o). The number [
is therefore also a nontangential limit of v, giving a contradiction.

We conclude that a nontangential limit lim, ,o(f * gy) exists almost ev-

erywhere on R. a

7.2.4 Definition of the Hilbert Transform
Let us state the theorem and definition.

Theorem 7.29 (and definition).
Consider f € LP(R) and the family of functions

{xl—) 1 Lm_t)dt}s.

T J|t|>e t
When € — 0, this family converges almost everywhere on R to the function
x = 1/mlimyo(fxgy)(x). Consequently, we can define the Hilbert transform
of f to be the function defined almost everywhere by

Hf(x) = %(Vp(l/x)*f) () = = lm (f * g,)(z) = L im fla=t)

T y—0 T e—0 [¢]>e t
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Proof of Theorem 7.29.

For the sake of simplicity, we will ignore the factor 1/7. Let us first prove
that for every fixed z in the Lebesgue set of the function f (cf. Remark 7.4),
that is, for almost every x since the complement of this set has measure zero,

ii_r}ré[/tlxwdt—/ﬂgm%f(x—t)dt} = 0.

By writing the integrals over R as the sums of two integrals over ]0, +o00[ and
setting h(z,t) = f(x —t) — f(x +t) and

we have

tz_—tz if0<t<e,
ve)=2""5
m ift >e,
we reduce the problem to showing that
(7.30) 611_1;% 0+<>0 h(z,t).(t)dt = 0.

We note that this function 1. is not continuous but that |¢).| is continuous
and piecewise C'. It moreover belongs to L N L!.

By assumption, z satisfies lim, o 1/r [* |f(z —t) — f(z)|dt = 0 (cf. Part
[3] of Remark 7.4). The same property holds when we replace t by —¢. Hence,
for every § > 0, there exists an n > 0 such that

1 T
Vr>0, r<n—= —/ |h(z,t)|dt < 6.
rJo

Tt follows that if we set H(x,t) = ‘ fg h(x, u)du|, then
0<t<n== H(x,t) <0t

To prove property (7.30), it now suffices to show that when ¢ — 0, we have
n +o0
Li(e) = / Ye(®)h(z,t)dt — 0 and I(e) = Ye(t)h(z, t)dt — 0.
0 7
From now on, we will assume that e < inf{, (93 ~1)1/2}.

The Integral I, (). We carry out an integration by parts over |0, e[ and over

Je,n[, noting that ¥ (n) = 52/[77(772 + 52)] < 1/n and limy ;.40 ¥ (t) = £1/2¢.

Moreover, we let {1} denote the absolutely continuous part of the derivative

of 9., that is, Y. = {.} + (1/€)d{z—c}. The integral I; can then be written

as

H(z,n)
n

< 5[1 +1 +/Ont¢;(t)|dt} =52+ J(e)).

Hwe) [ :
ne) < S DS [t
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After computing the derivatives, the last integral J(¢) becomes

€ 2 t2 n 3t2 2
/t;dwf/ pe2 O E
(121 e2)2 j 2(£2 + e2)2

The upper bounds

g2 —¢? 1 3t2 + €2 3
< , and <
(t2 + 52)2 t2 + 82 t2(t2 + 82)2 t2(t2 + 52)

lead to

= ¢ m3e2 1. /2?2 ne 3
JE) < |t 00 =2 (—) / _° 4
() /0 21 +/6 @ra) "2\ E) ) waras™

+oo 3
<Inv2 — % =K.
n\/_—|-/1 w2 U

It follows that |I1(e)| < 6(2 + K), whence I1(g) — 0.

The Integral I(e). We use Holder’s inequality to bound the integral Io:

E< |/

n

+oo +o0 2 1/p’

h(a 1) v [ / g

g Ht?+e?)

The first integral on the right-hand side is bounded from above by 2|| f||, and
the second one is bounded by &2 f:m =37 dt, which converges because p’ > 1.
It follows that |I2(¢)] < K'd — 0, concluding the proof of equality (7.30). O

Exercises 7.11 and 7.13 propose computations of Hilbert transforms.

7.2.5 Operators of Weak Type (p, p)

Definition 7.31. We say that an operator T is of weak type (p,p) if there
exists a constant C such that every f € LP(RY) satisfies

sPArp(s) < C| fI[5-

It is clear that if 7" sends LP(RY) continuously into itself, then it is of
weak type (p,p). Indeed,

sP{z [ ITf(2)] > s}| < /RN T(f)(@)[Pdx < C|fI5-
This is, for example, the case for the Hilbert transform when p = 2.

Proposition 7.32. The Hilbert transform sends L*(R) into L?(R).
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First proof of Proposition 7.32.

We first assume that f € S. Let us recall relation (7.24), that is, when
T € &, we have F(T x f) = F(T)F(f) (cf. [22]). Using the transform of
Vp(1/z) and noting that F is an isometry of L?(R), we then have (cf. [22] or
Exercise 7.10):

1
1H fllz = IFH)ll2 = —IF(Vp(L/2))F(f)ll2
1 -
= | = (msign ) F(F)(E)ll2 = 7 ()]l
Hence, by the density of S in L?, H extends to an isometry on L2. O

Second proof of Proposition 7.32.

This time, we will only use the properties of convolution in L? and the
Fourier transform of functions.

We are looking for the Fourier transform of g, (-,y), which belongs to L.
It can be seen as the semiconvergent integral

) t
/Rexp(—ngt)mdt.

The details of the computation of this integral are given in Exercise 7.1. If
& > 0, then the result is —im exp(—2in&y)). Replacing ¢t by —t gives the result
when & < 0. The convolution g,(-,y) x f then belongs to L?, as does its
Fourier transform. The latter is therefore (—i sign &) exp(—2x(¢|y)f(£) and
we can apply the Plancherel-Parseval theorem:

lgy () % 115 = | exp(=27l¢ly) F ()13

Now, we know that Hf = lim,_,g,(-,y) * f. Hence, since the functions
are nonnegative, Fatou’s lemma followed by the Plancherel-Parseval theorem
gives

IHfI3 < lim | |exp(—2mély)f(€)[2de = || F3 = || fII3.

y—0JR

It follows that ||H f||2 < || f]|2, allowing us to conclude the proof. O
Proposition 7.33. The Hilbert transform is of weak type (1,1).

Proof of Proposition 7.33.

By considering the nonnegative and nonpositive parts of f separately,
we reduce to the case where f > 0. Let F(2) = u(z,y) + iv(z,y) =
P, * f(x)+iQy* f(x) for (z,y) € Rx]0,+0o[. The functions @ and P are the
real and imaginary parts of i/[7(z + iy)]. The function F' is holomorphic in
R % ]0,4o00[. The function w(z,y) = In(|1 + sF(z)|) is harmonic in the upper
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half-plane for every s > 0. It is bounded in the half-plane {z + iy | y > yo}-
By Proposition 7.3 with y1 =y —n and y2 =7, 0 < n <y, we have

w(x,y):ﬂln|1+sF(z+iy)|:/ i

NP e — In(|1 + sF(& + in)|)dE.

Fatou’s lemma then gives

/ S E— T LS
R

(z—&)?+y Y
giljn}) A s —r In(|1 + sF (€ +in)|)dE.

Multiplying by y, we obtain

2
Y .
—————In|1+sF(&§)|d§ < myln |1 + sF(z + iy)|
/R (x — &) +y?

< wyln(l + s|F(z +iy)|)

< mys|F(x +iy)|
by the properties of the function In. Furthermore, by the dominated conver-
gence theorem, we see that

hm yF(z +iy)

:yggloo/f dt+z/f x_t ) dt}
/Rf(t)dt.

Thus, by taking the limit when y — 400 and once more applying the domi-
nated convergence theorem, we have

/R I |/(T T s/ @) + GHFE)?| de < ms|f-

Setting E, = {&, |Hf(&)| > 7}, we deduce that

In(s7)|E, | < / In [sH £(€)|dé < ms]| 1.

T

Next, setting s = e/7, we obtain

e
|E-| < 7||f\|1,

which implies that the Hilbert transform is of weak type (1,1). O
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Proposition 7.34 (weak form of the Marcinkiewicz theorem). Let T
be an operator on L*(RY) + L™(RY) for some real number r > 1, that is sub-
additive, of weak type (1,1), and continuous from L™ (RN) to L"(RN). Then T
sends LP(RY) continuously into LP(RN) for every p € ]1,7].

Proof of Proposition 7.34.
By Proposition 7.9, we must show that for 1 < p < r, there exists a
constant C), such that

Vfe LP(RN), A o U | IT(x)] > a}|da < Cy| FI.

Fixing «, we write f = f1 + fo, where

ﬁ:{ﬂ@ it [f(z)] > a ﬁ:{ﬂ@ if |f(z)] < a
0 if |[f(z)| <o’ 0 if | f(z)] > o

The function f; then belongs to L' by Proposition 7.18. The function fo
belongs to L” because integrating the inequality |f2(z)|” < o P|f(z)[? gives
the finiteness of || f2]|-. The subadditivity of T gives |Tf| < [Tf1]| + |T f2|-
Hence, if |[T'f(x)| > «, one of the numbers |T'f;(z)| is greater than «/2 (use
contradiction), whence

{z [ITf(2)] > a} CH{z [|Tfi(2)] > a/2} Uiz | [T fa(2)] > /2}.

By assumption, T is of type (1,1) and (r,r). Hence we have the inequalities
(/20 y, (/2) < Chllfrlly and [/2]" A7 g, (a/2) < Cr| fa[7- Consequently,

\WIWﬂM>aH<CMW®AUWﬁ+QQMYAUMWﬁ
=CUW®/%)Iﬂﬂﬁ+@MV/

If(B)|<a
The integral I = [~ P~ {z | |Tf(x)| > a}|do therefore satisfies

o0 oép—l
I< C'/ / |f(z)|dz do
0 @ Jz||f(@)>a}

(o)
+C/ ap_la_r/ |f(2)|"dz da
0 {o||f(@)|<a}

e [f(x)] 00 0
<O/|ﬂw/ M*mw+c/|ﬂmr P dada
0 0 0 |f(x)]

gCAWQﬂ@W@W1M+fwmuwwmwx

<allflp

F@)"dt).

[>a
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where we have used Fubini’s theorem for the last inequalities. This concludes
the proof. O

Corollary 7.35. The Hilbert transform on R sends LP(R) continuously into
LP(R) forp €]1,00].

Proof of Corollary 7.35.

Let us first consider 1 < p < 2. By the two previous results,
Marcinkiewicz’s theorem can be applied with r = 2. We can therefore
conclude that we have an inequality of the type || H fl|, < Cpl|f|l, for every p
with 1 <p < 2.

Let us now take p > 2. Let H* be the adjoint of the Hilbert transform H,
which is defined by

Vop €8, (H*(W),0) = (Ho) = / () (2) () da.

Since p > 2, we have p’ < 2, whence, by the above, | Hy|, < Cpll¢llpy- By
the definition and Holder’s inequality, it follows that

(H" (), o)l < TH @)l [$llp < Corllellp141]p-

Hence, if 1) € S, then the linear functional associated with H*1 is continuous
on S for the topology of L. By density, H*y extends to L', whence it follows
that this linear function is an element of LP. Since we still have

VEeLr, [(H @), ) < (Colwlo) 1 fll

it follows that for every ¢ € S, we have ||H*¢||, < Cp||9||p-

Let us now show that H*(¢)) = —Vp(1/z) * ¢, which will prove that
I H ()|l < Cpll?|l, and, by density, that the operator H is continuous from
L? into LP. We use relation (7.23) and the oddness of the distribution Vp(1/z):

(H*(¢),) = (VDp(1/x),p % 1) = =(Vp(1/2), (P x ) (=)

A direct computation gives

“+o0 +0°u o
/ Gz -ttt = [ da—te(t)dt = (@ * 0)(2).

— 00 — 00

We therefore have

Vo €8, (H*(¥),0) = —(Vp(1/2),9 * ) = —(HY, p). 0
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7.2.6 Maximal Hilbert Function

Definition 7.36. The maximal Hilbert function of the function f, denoted
by H,,(f) or Hy, f, is defined by

— 1) dt
s =g | L0
E>07T [t|=e

Theorem 7.37. Let f € LP(R) with 1 < p < oo; then
14+1In2

Hm(f)(x) < mf($)+me(x)'

In particular, Hy, acts on LP(R) and there exists a constant B, such that
Ve L’R), [[Hn(Hlp < Bpllfllp-

Proof of Theorem 7.37.
We may, and do, assume that f > 0. Let . be defined by

t
t2—|——52 lf0<t<5,
Pe(t) = —g2 ¢
—— it >
t2+ez) 0 7F

It allows us to write

/ fa-t), _ [fa=0t, (f *¢e)(@).
t|>e

t r t2+¢e?

We can easily verify that ¢, = (1/e)¢(x/¢e), where ¢ is the function

t
A B if [t > 1
g =

Since the function f is nonnegative, we can bound |f x .| from above by
f x . where v is defined by

1

3 if [t] < 1,
P(t) = 1 ,

PICE=) if [t| >1

This element of L'(R) is a decreasing function of the absolute value and
satisfies ||¥]|1 = 1 + In2. We can therefore apply Corollary 7.20, giving

(7.39) up £+ 02(@)] < [[¥]limy (@) < (1+ I 2)m; @)

It remains to bound the integral (1/7)f x Q. from above, where Q.(t) =
t/(t? 4+ €?) is the real part of 1/(¢ + ic). We will use the following lemma.
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Lemma 7.39. Let f € LP(R). We set Py(t) = y/(y* + t?) (Poisson kernel)
and Qy(t) =t/(t* + y?); then

Vy>0, fxQyu=Hfx*P,.

Proof of Lemma 7.9 when f € S.

It suffices to show the equality of the Fourier transforms with respect to
the variable z. Using the results from the second proof of Proposition 7.32 or
Exercise 7.1, we can write

F(f*Qy)(€) = F(HEF(Qy) (&) = —imsignée > F(£)(€).

Furthermore, using the Fourier transform of Vp(1/t), we also have

F((Hf)*Py)(&) = F(Hf)(E)F(P,)(€) = —imsign&e > F(f)(9).

Finally, applying the inverse Fourier transform gives the equality of the lemma
when f € S. O

Proof of Lemma 7.39 when f € LP.

We use the density by approximating f in L? by a sequence {p,} in S. We
note that P, belongs to LT"/7 as does Q. Hence ¢, x @, converges pointwise
to fx Q. Moreover, by Corollary 7.35, the Hilbert transform H,, converges
in L? to Hf, from which it follows that He, « P, converges pointwise to
H f % P,. The equality we have proved in S gives the result by taking the limit
in LP. g

Let us return to Theorem 7.37. With the help of Example 7.21, the equality
of the lemma leads to the inequality

1f = QC.y)llp = 1Hf x P y)llp < muay.

Together with the upper bound (7.38), this proves the theorem. O

7.3 The Riesz Transforms on RV

7.3.1 Definition of the Riesz Transforms

We introduce generalizations of the Hilbert transform in dimension N > 1.

The functions 2 + z;(|2])~ ¥+ are not locally summable. We will asso-
ciate to them (cf. Chapter 1, Section 1.4) the finite parts Pf(z;(|z[)~(V+1),
which are distributions in R™. Let us first define Pf(1/|z|V*1).
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Classically, since the power we are considering is related to 2 in R, given
a function ¢ in D(RY), we begin with the integral

[ e tbie),
|z]>e

(|z[N+1)

T,

where T5(¢) is the Taylor expansion of ¢ at the point = 0 truncated at the
order 2 and 0, is a function in D with value 1 on supp ¢, which we may assume
to be an even function. We remove from this integral the terms whose limit
when € — 0 is not finite. By passing to polar coordinates, the first term 6,¢(0)
of Tx(p) leads to the integral wy_1 fEA ©(0)dr/r? whose infinite part can be
written as wy_1¢(0)/e, where wy_; denotes the (N — 1)-dimensional surface
area of the unit sphere RY. The other term of T2(p), namely z - Vi (0)0,,,
leads to a combination of integrals that all vanish. Noting that the factor 6 is
redundant for the term ¢(0), we conclude with the following definition.

Definition 7.40. The finite part of |2|~(M*1 is the distribution such that for
every function ¢ of D(RY), we have

(PE(L/[2/N 1Y, ) = Tim [/-|> ;ﬁgledx —wN,l@ ,

A similar process leads to the definition of Pf(x;/|x|V*1).

Definition 7.41. The Riesz kernel K of index j is defined to be the finite
part Pf(x;/|z|N*T1). This is the distribution such that for every ¢ € D(RY)
and for every even 6, in D(RY) with value 1 at 0, we have

zi(ep(x) —0 z:(olz) — 6
(PE(K;), ) = lim y(w(|;N+fso(0)) dp — /RNJ(go(|;|N+f¢(0)) .

|| >e

The last expression is justified by the fact that the absolute value of the
integrant is bounded from above by r2|V(0)|/r¥ 1, which shows the summa-
bility in x = 0 when we take into account the Jacobian.

Remark 7.42. Since the integral concerning 2;¢(0)|z|~ (V1) vanishes, we
could also define the distribution K; using the integral of z;p(x)/|z|VT1,
as the sum of two absolutely convergent integrals, where the decomposition
depends of the sign of x;. The resulting expression is, however, less suited to
our computations.

Remark 7.43. We can see that the finite part is the product of Pf(1/|z|V+1)
and the monomial function z — z;.
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Indeed, by the previous remark, since the function z;¢ vanishes in z = 0,
we have

(23 PEL/[ M), ) = (PE(L/[2|Y10), 20)

: zjp(x)
= lim J d
=0 |z|>e |',I"|N+1

- »”Ujs@(x) "

*/RN Fhi

oy () ~Opp(0))
RN .

‘,I|N+1

Definition 7.44. We call Riesz transform of index j the map R; that sends a
function f in a space LP(RY) to the convolution Pf(K;)* f, when this exists.

Noting that outside of x = 0, the derivative of the function z — g(x) =
|z|~(N=1) with respect to x;j equals —(N — 1)K, we begin by comparing this
derivative to the finite part Pf(K}).

Proposition 7.45. Let [g] be the distribution associated with the locally
summable function r — |m|_(N_1). The derivative of this distribution with
respect to x; equals —(N — 1) Pf(K).

Proof of Proposition 7.45.

Let X = (9j]g], ¢). Using Fubini’s formula, we reduce to integrating by
parts with respect to x;, where we use the function ¢1 = ¢ — 6,¢(0) that
coincides with ¢ — ¢(0) on supp ¢ for the primitive of 9;¢:

X:—<[9L<9jso>=—/RN a;fifffdw /RN . / Iz \N 1
—— [, 4V =1) [ p@; s,

~(V=1) [ (pla) = 00, (@) K (a)da

= —(N = )(PL(K;), ¢)- O

7.3.2 Fourier Transforms of the Riesz Kernels

Let us first note that by multiplying by the characteristic function of a com-
pact set, we see that ¢g is the sum of a summable function and a bounded
function, both of which can be identified with tempered distributions. This
function therefore admits a Fourier transform in the sense of distributions.
Since its derivatives are tempered, it follows that the same holds for the finite
parts Pf(K;). We compute its transforms, beginning with that of [g].
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Since g is a radial function, its transform [/g\] is also one (cf. Exercise 7.12).
Moreover, using the properties of homogeneous tempered distributions and
those of their Fourier transforms (cf. Exercise 4.4), we know that the trans-
form [g] is of the form K|&|™. We can, moreover, compute the degree m using
the dilation [g]) of the distribution [g], which is defined by

(lglkr 2) = ool /R

On the one hand, we obviously have

Fle)(©) = K = €™

On the other hand, by the formula defining [g],

= K~V (lg), B(E/R)) = kN (o], kN p(k))
= ([g], p(kz)) K/ || (kz)d
= Kk~ (€™, ).

From these two equalities, we deduce that N +m = N — 1, whence m = —1.

To compute the constant K, we apply the definition of [g] using the func-
tion p(x) = exp(—m|z|?), which is its own Fourier transform (cf. Exercise 4.1).
We thus obtain the equality

1 2 1 2
—rexp(=mlaf?)) = (Ko, exp(—=ml¢)).
< [N €l
Passing to integrals over RY and polar coordinates, we have

+oo t+oo
WN-1 / exp(—mr?)dr = Kwy_4 / rN =2 exp(—mr?)dr.
0 0

By the relation
+oo
It = 27rt/ 2?1 exp(—ma?)dr
0

(cf. Exercise 3.1 of Chapter 1), this becomes 7N ~"1/2 = KT'((N —1)/2). The
Fourier transform of Pf(K) follows.

Proposition 7.46. The Fourier transform of Pf(K;) is the function defined
by

3 A(N+1)/2

where Cp

vEERY,  F(PI(K;))(E) = ~iCx f, RIGEDE)
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Proof of Proposition 7.46.
This formula follows from Proposition 7.45 and the fact that on the Fourier
transform, differentiation with respect to x; becomes multiplication by 2im¢;.
O

7.3.3 Convolution of a Function and a Riesz Kernel

Convolution with a Function in D(RY). We use Proposition 7.22, which gives
the formula

ti(p(z —1) —(2)) ,

|t‘N+1 2

PI(K;)xp=f with f(z) z/
RN
Convolution with a Function in §. We show that the previous formula still
holds when ¢ € S(RY). By the continuity of convolution (cf. Proposition
7.25) we know that if a sequence {¢, } in D converges in S to ¢, then we have
P{(K;) * ¢, — PE(K;) % .
Let ¢ € 8. Let n € D, with value 1 on the unit ball in RY, and let
on(x) = n(x/n)p(z). Then ¢, is an element of D(RY) and converges to ¢
in S, and we have

. ti(on(x —t) — pn(x
Jim [ (n |t|N)+1 2ol®) 4y — [PE(K,) % o] (2).

Now, we can easily show that the integral of the left-hand side converges
to the integral

i

/ tilple —1) — p(2))
RN

|t|(N+D)
so that

ti(p(z —1t) —p(2)) ,

|t|(N+1) ¢

VeoeS, Pi(K;)xp=f with f(x):/

RN
for every .

Convolution When ¢ Is an Element of a Space LP. In the two previous
cases, the formulas can be simplified to give the convolution in the form
Jan [t (o(z = )](Jt] "N +D)dt. When ¢ € LP, density will give us the fol-
lowing formula, which holds for almost all 2 € RYV:

. ti(o(z —t))
VfelLP, |PI(K;)*f|(x)=lim A dt.
[ ( J) ]( ) c0 <] |t|N+1
We will show not only that this limit exists almost everywhere, but also that

it belongs to LP, so that the operator R; defines a continuous endomorphism
of LP.
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7.3.4 Riesz Operator on LP(RYY)

We suppose that 1 < p < 400 and f € LP(RY). Using the formula from the
previous subsection, we define

, tiflx—t
fe@) = /ggn Jlt(]af’+1 Lir

When p > 1, Hélder’s inequalities show us that this integral exists for every
x € RY and every € > 0. Indeed, we have Np' — (N —1) = N(p' = 1) +1 > 1,

whence
t; f P 1/p / 1 1/p’
\tIN“ ‘dt </s<|t /()] dx) ( o |t‘Np/dt> < +o0.

/s<|t|

Using the properties of the maximal functions defined before, we will show
that the function z ~ sup, |fZ(z)| is an element of LP(RY) whose norm is
bounded from above by that of f. We will then show that this property implies,

on the one hand, the existence almost everywhere of the limit when ¢ — 0,
and on the other hand, the continuity of the Riesz transform R; in LP(RY).
We begin with the following result.

Theorem 7.47. Let f € LP(RY) with 1 < p < +oo; then the function x
sup,~ | fZ(z)| belongs to LP(RN) for every integer j in [1, N] and there exists
a constant C depending only on p and N such that

Sup|fe C”fHLP(]RN)

e>0 ‘HL P(RN)

Proof of Theorem 7.47.

Using the variables (r, §) with 7 = |¢t| and 6 = ¢/|t| in RY, where the latter
describes the unit sphere Sy in RY, we reduce to the integration over the
unit sphere of a function that is, up to a factor depending on #, a maximal
Hilbert function, thus allowing us to apply Theorem 7.37.

Let p;(60) be the component of 1ndex j of the unit vector in RY associated
with § € Sy, which we denote by 9 Using the oddness of p;, that is, the
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property p;(—6) = —p;(6), we have
j oo dr
2oy = [ [ 1= romom]

:/5 pj(e)[/:oo Mdr}de
:/Sij(_a)[—/:oo Mdr}de
:[5 pj(_e)[/ozif(x:m)dr]de

_ /SN pi(6)| oo 7f(x;ro)dr]d0.

From this, we deduce the equality

pw =y [ nof[ D

and, by noting that |p,;(#)| < 1, we obtain
— sb
[ e,
|s|>e §

Let us consider the function x — fl I>e [f(z — s0)/s]ds. Let e; be the first
vector of the canonical basis of RY and let oy be an isometry of SO(N),
which we will simply denote by o, such that og(e;) = 6. Let R, f be the
function defined by R, f(z) = f(oz) for every x € RY. We then have

(7.48) Ve>0, 2|f(z) < / sup de.
SN

€

flx —s0) = f(x — soe1) = (Ro f) (07 x — seqp).

From this we deduce that the right-hand side of (7.48) satisfies

(7.49) / sup‘/ Mds‘d@
Sy € |s|>=e S
/ sup ‘/ Sel)ds de.
Sy €30 1 |s|2e §

Let £ = (0712); and let ¢’ denote the (N —1)-tuple of the other coordinates
of o~ 1z. We can write the previous integral as

/ Raf(o—ilx - Sel)ds _ / Raf(f - S7£,)d8
[s|>e |s|>e

S S
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Let us therefore define, for a function h in LP(RY), the following HLM func-

tion: )
M} (x) = sup — |h(z1 — s, @a,...,2N)|ds.
r>0 21 |s|<r

Using the one-dimensional model, we show that under the assumption that
h € LP(RY), the function M} also belongs to LP(RY™) and has norm in
LP(RY) bounded from above, up to a constant, by the norm ||A/|,. Indeed, by
Theorem 7.19 for dimension 1, we have

[ Mi@rae= [ [ 1My
RN RN-1 JR
<C(p,1)p/ /Ih(xl,x')V’dxdx’,
RN-1 JR

or
(+) [ M@ e < clp 17 1B g,

For almost all 2/ in RN~! the function h,s defined by z; + h(zy,2') is
an element of LP(R). We can therefore apply Theorem 7.37 concerning the
maximal Hilbert function to it. Therefore, for almost all z in RY, we have

/ (Ryf)(o™te — sep)ds
>

S

1
sup —
e>0 T

<Oy M}%Uf(aflx) + M}{m(Raf)(ar*l:c).

By the properties of isometries, the maximal HLM functions and Hilbert trans-
form of z + R, f(c~ ') have norms in LP(R™) equal to those of these same
functions associated with x — R, f(z). By previous theorems, the norms of
the latter are bounded from above by || R, f||,. Moreover, by the invariance of
the norm under o, this equals || f||,. We will use these properties further on.

Returning to inequality (7.48) and denoting by F, and G, the functions

T — M};iﬂf(aflx) and x+—— M}{m(Raf)(Jflx),

respectively, we can write

(7.50) 2sup

€

/ f(thl)tjdtlg/ [C1Fy, (2) + C2Goy(z)]db.
e [HNT Sn

We take the pth power and integrate both sides of (7.48) over RY. By Holder’s
inequality, the right-hand side is bounded from above by

/ (wN,l)p/pl/ |C’1F09(ac)+CQGJB(m)’pd0dx.
RN SN
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Using Fubini’s formula and the inequality |a + b|P < 2P~1(aP + bP), it follows
that the right-hand side is bounded from above by

Clp, N) /SN [/]RN |Fg(x)|pdx+/]RN G (2)[Pdz] dO.

Now, as we noted before, up to constants, these integrals over RY are bounded
from above by || %, (rwy- Consequently, we obtain the result

Isup|fZ115 < Clp, NI £,
€

concluding the proof of Theorem 7.47. a
Let us now establish the main result for R;.

Theorem 7.51. For every j and every p with 1 < p < oo, the operator R;
has the following property:

VfeLP(RY), R;(f)(x) ewists for almost all x € RY.

To a function f in LP(RYN, this operator associates the function defined by

L —1),

e

Ry(f)(&) = (8= ) = g |

Moreover, there exists a constant C depending only on p and N, such that
Ve P®RY), [Ri(Hlly < Clflp-

Proof of Theorem 7.51.

Let f € LP(RY). For every fixed integer j with 1 < j < N, we set f(z) =
fe<\t|[tjf(x — )](|t|=™+Y)dt. The space S is dense in LP; hence, for every
n >0, we can find a g € S such that f — g = h with ||h]|, < 7.

We know (cf. Subsection 7.3.3) that the limit lim._, g/ (z) exists for ev-
ery x. Let us consider, for every integer k > 0, the set Ex(f) of z € R such
that we can find sequences {e,} and {e]} tending to 0 and satisfying the

inequality
, } 2
(@) — f2, (2)] > 7.

k
Let us show that we have |Ey(f)] < Cn(2k)? for some constant C. Indeed,
by the above and Theorem 7.47, the map that sends the function h to the

supremum
; tih(z —t

sup |kl (x)| = sup / %ﬂ)dt

e<t ‘ﬂ

e>0 e>0
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is continuous from LP to LP, which implies that it is of weak type (p,p). It
follows (cf. Definition 7.31) that A* = A | satisfies the inequality

sup, |hi

(7.52) sPA*(s) = sp’{sup |hl(z)| > s}| < H sup \hﬁ:|Hi
€ €
Let z € Ex(f) and let e, e}, satisfy

@) - @) > 7

Then for n sufficiently large, we have

) , 1
192, (@) — g2, (@) < &
because the sequence {g7 (z)} tends to a finite limit.

It follows that for n sufficiently large, we have the lower bound

, . 1
() 2, )] > 1,
whence x € Eyi(h). Consequently,

Ek(f) C Egk(h).

Now, if |l (z)—h!, (x)| > 1/k, then sup, |hZ| > 1/2k. Indeed, if the oppo-
site inequality held, then the previous difference would be less than k~1. The
measure of Ex(f) is therefore less than that of the set {sup, |hi(x)| > 1/2k}.
Now, by (7.52), we have

1\? . .
() Hsup [kl > 1/2k} | < || sup B

Since we have |sup|hi|||, < CJhl, by Theorem 7.47, it follows that
|{sup, |hi(x)| > 1/2k}| < Cn(2k)P, and therefore |Ey(f)| < Cn(2k)P.

Since the number £k is fixed and 7 is arbitrarily small, this proves that the
set Ej(f) has measure zero. The union F = |J* Ey(f) therefore also has
measure zero, proving the first assertion of the theorem.

For the second assertion, we use Fatou’s lemma, which gives us the in-
equality

[1R; fII <

lim || f2][5 < || sup | £2][15.
e—0 €

Since the last norm is bounded from above by C|| f||,, (cf. Theorem 7.47), this
concludes the proof. |
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7.4 Korn’s Inequality in WP(£2) for Bounded {2

The principal result of this section, which will imply Korn’s inequality, is the
following.

Theorem 7.53. Let T be a distribution with compact support in a bounded
domain 2 in RYN. We suppose that for every i € [1, N], there erists a con-
stant C such that the distribution 0;T satisfies the property

Vo €CORY), [(0T, )| < ClIVel L ()
The distribution T can then be identified with an element of LP({2).

To prepare for the proof of this theorem, we first use the previous sub-
sections to establish the Riesz inequalities that link the mixed derivatives of
a function to the Laplacian of that function, after which we prove additional
preliminary results.

7.4.1 Relation between Ay and a Mixed Derivative of ¢ in RV,
Riesz’s Inequalities

Let us consider the Riesz kernels K;(z) = Pflz;lz|~™+V]. The fi-
nite parts K;, which belong to &'(RV), have the functions defined by
F(K;)(€) = —iCn&;/|¢| as Fourier transforms, with coefficients Cy com-

puted in Proposition 7.46. We recall that the transform of a derivative d; of
a distribution is the product of the transform of the distribution and 2iw¢;.
It follows that if ¢ € S(RY), then

F(Ap)(€) = —4m*|€]B(€)-

Using Proposition 7.24, we can write A = F(92¢/ Ox;0x;) using the transform
of Ayp:

A= 47 ;6 F(p)(€) = —4n” Téli

= CY2F(K)F(K;)F(Ap)().

€2 F(9)(€)

Now, by Proposition 7.24 or Theorem 7.51, the convolution K; x Ay exists
and its Fourier transform is the product of the transforms. Moreover, this
convolution is an element of LP(RY) for every p > 1. By Theorem 7.51, it
now follows that the convolution K; * (K; x Ayp) is well defined, and that
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Using the inverse Fourier transform in &'(RY), it follows that

0%p

= C4 K » (K; x Ap).
8xzax] C(]\f 1*( ]* QO)

Using the results of the previous section, and in particular Theorem 7.51, we
can deduce inequalities that will later lead to Theorem 7.53.

Theorem 7.54 (Riesz inequalities). For every p with 1 < p < oo, there
exists a constant C(p, N) depending only on p and N, such that

. 0?
Vo e SE®Y), VijeLN] |50 <. M)ldgl,.
1ULg

This inequality, which holds in S(RY), extends by density to the closure of
SRY) for the norm ¢ — || Ag||,.

To attack the proof of Theorem 7.53, we need a number of lemmas allowing
us to give, in suitable spaces, solutions u or ¢ of equations such as Au = f
and —dive = f for a regular function f.

Even when these lemmas establish properties that may be of interest out-
side of the present context, we have not tried to optimize these preliminary
results, which are meant to be used in establishing Korn’s inequality.

7.4.2 Preliminary Results
The proof of this first lemma is given in Exercise 7.16.
Lemma 7.55. Let {21 be a bounded open subset of RN ; then there exist func-
tions @; in D(21) for i € [1, N| such that
Vi, j € [1,N], / wi(x)zdr = 6{ and Vi€ [l,N], / wi(x)de =0
(o2} 2
and a function ¢ in D(£21) such that
/ p=1 and Viell,N], / p(x)z;dx = 0.
Ql -Ql
The second lemma gives the image of the Laplacian in the space S(RY)
explicitly.

Lemma 7.56. The image A(S(RY)) of S(RY) under the Laplacian is char-
acterized by the equivalence of the following properties:

(7.57) g€ SMRY) and Jue SMRY) such that Au=g.

(7.58) g€ S(RY), / g(x)dzx =0, and Vie][l,N], / g(x)x;dx = 0.
RN RN
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Proof of Lemma 7.56.

Let us suppose that the element u of S(RY) is a solution of Au = g. Using
the Fourier transform, we obtain 472|¢]2%(¢) = g(€). Hence, if g satisfies
(7.57), then it follows that ¢ — g(&)/|¢|? is in S(RY). In particular, this
function is regular at the point £ = 0. Using the Taylor expansion of g at the
point 0, we necessarily have g(0) = 0 and, for every ¢ € [1, N], 9;g(0) = 0.
Using the inverse Fourier transform, these equalities are equivalent to

/ g(x)de =0 and Vie[l,N], / x;g(x)dr = 0.
RN RN
We have thus proved the implication (7.57) = (7.58).

The converse is obvious. If g verifies (7.58), then

% € SRY) and Au=g with a(¢)= % € S(RY). O

Let us note, for later on, that the correspondence between u and g is linear.
More precisely, under the given conditions, we can write u = A~ 'g. Indeed,
using once again F, we see that the operator A is injective into S(RY).

The third lemma is useful for proving the second part of Theorem 7.53.
It is not essential for establishing the theorem, but by giving the image of
the operator div on S(RY) explicitly, it allows us to better understand the
problems linked to studying functions with given divergence.

Lemma 7.59. Let ¢ € S(RY). The following properties are equivalent:
(7.60) Jo = (01,...,0n5) € S(RY,RY), dive = ¢.
(7.61) / o(z)dz = 0.

]RN

Proof of Lemma 7.59.
We begin with the implication (7.60)= (7.61).
If p = div(c) with o € S(RY,RY), then

<p‘ = lim ‘/ | = lim ’/ (o-7)(s)ds
’/I:QN R—+o00 B(0,R) R—0 9B(0,R)

< li _ N-1 —=0.

pim W 1R ‘;u:pR\a(:vﬂ 0
To show (7.61)=-(7.60), we use an induction on the dimension of the space.
Let us begin with N = 1. It suffices to find a primitive for ¢ € S(R) in
S(R) when [ ¢ = 0. Assuming that [, ¢ is arbitrary, we construct a primitive
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that will be useful for the induction in higher dimension. Let p € D(R) have
integral equal to 1. We set

xT

7o) = 0ppla) = [

— 0o

(p(t) — /)(t)/ o(u)du)dt.

R

If we show that o, , is strongly decreasing, then this will give the desired
result when ¢ has integral zero in dimension 1. It is obvious that o, is C*°
and that its derivatives are strongly decreasing. It therefore suffices to show
that for every k € N,

lim  |z|*|o(x)| = 0.
|z| =400

Now, for large |z| with < 0, we have

lo(x)| = ’/ gp(t)dt’ < c/ (=t)*2 dt < cla| 1,

giving the desired result. When x is large and positive, we have the same:

otw) = [ ot~ [ otar= [ "

lo(2)] < cx™

giving

The result follows for NV = 1.

Let us continue with arbitrary dimension N. We suppose the result proved
in dimension N — 1 for the variables (z2,...,zn). Let ¢ be an element of
S(RY) with integral zero. We associate to it the function ¢; defined by

Sol(xlax% e axN) = Up,ga(.,;cg,...,xN)(xl)
z1
= / (cp(t,:cg, coxy) — p(t) / o(u,xa,. .., :cN)du)dt.
—o0 R

It follows from the computations in dimension 1 that this function is rapidly
decreasing in x;. Moreover, we can easily verify that this holds for all variables.
Let us therefore consider the function

z/J(acQ,...,ch):/ap(t,wg,...,xN)dt.
R

Since, by assumption, [pn @(21,22,...,2x5)dz = 0, we have

/¢($2,...,$N)d1‘2”~dl‘]v =0.
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By the induction hypothesis, it follows that there exists an (N — 1)-tuple
(Y2, ...,¥n) in S(RV~1) such that

N
Z@i¢i:/¢(t,$2,...,$N)dt.
2 R

Next, let ¢; be defined for i € [2, N] by

wi(x1,@e,...,xN) = p(a1)i (T2, 23, ..., TN)-

These functions are rapidly decreasing and

N
> Oipi+ dipr = o,
2

concluding the proof. a
These lemmas lead to the following result.

Proposition 7.62. Let 2 be a bounded open subset of RN ; then there exists a
constant C' such that for every function f € D({2), there is a o € C® (RN, RY)
satisfying the following conditions:

(7.63) —dive = f,

N
(1:64) 190l < O gy + | [ Fladia] + 3| [ fiaa)
1

SNl o)

If moreover [ has integral zero, then the function o associated with f is an
element of S(RY  RY).

Proof of Proposition 7.62.

Let us consider the functions ¢ and ¢; introduced in Lemma 7.55. We can
deduce from them functions ¢ and w; for i € [1, N] with values in RY, each
belonging to C*° (RN, RY) n W°(RY RY), such that

— —
divey =¢ and Vie([l,N], divy; = ¢;.

To see this, we can, for example, set 1) = ff;o o(t, xa,...,xN)dt and E} = ey,
and define the E analogously.

Let us note that for i € [1, N], the functions ¢; satisfy [¢; = 0. More-
over, since we can identify these functions with functions in S(RY) with zero
integral, we can apply the more precise construction of Lemma 7.59 to them,
which gives functions 1; belonging to S(RY, RY).
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Consider the function g = f — ([, f(z)dz)p— 21 ([ fridz)p;. This is an
element of D(RY) that satisﬁes the equahtles (7.58). Lemma 7.56 therefore
gives the existence and uniqueness of a u in S(RY) such that

(7.65) —Au=f— (/Q f(x)dm)ap - iv:(/g fmida?)goi.

We then define

U—Vu— /f dx - /f:czdx

By the definitions of u, div E}, and div E, we see that o € C°(RY, RY) N
Whoo (RN RN). A fortiori, its restriction to £2 belongs to W#'(£2). This
vector function satisfies

—dive = f,

and, setting a = [, f(z)dz and a; = [, x;f(x)dz, its gradient satisfies the
inequality

(7.66) Vol ) S < |VVull e @ T |al ||V1/’ 7% @ T Z |a;] ||V¢l||LP (2)°

Since u is an element of S(RY), we can use Riesz’s inequality, which leads
to [VVull o o) < IVVull Lo mvy < On|[|Aul 0 gy Since the function Au
has compact support in {2, we also have

IVVull Lo (@) < OnllAu o )

Letting K and K; denote constants fixed by the choice of the functions ¢
and ¢;, respectively, we obtain

Vol ) < Ol Aulriey + K] [ fda] + K,

x)xldx‘

This gives the first upper bound of the proposition. Bounding the integrals
|a] and |a;| from above using Holder’s inequality, we finally obtain

Vol o) < C2,0" NI f | o (2

which concludes the proof of the first part of Proposition 7.62.

For the second part, we keep the same formula to define g. Since the
function f has zero integral, as well as the ¢;, the same holds for g. Lemma
7.59 therefore tells us that the function o defined above is an element of
S(RYN RY). 0
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7.4.3 Local Korn’s Inequality

Theorem 7.67. Let T be a distribution with compact support in a bounded
domain 2 in RN. We suppose that for every i € [1,N] there exists a con-
stant C' such that the distribution 0;T satisfies the property

Vo e COO(RN)ﬂ |<aiT7 90>‘ < CHVSOHLP/(Q)'
The distribution T can then be identified with an element of LP({2).

Proof of Theorems 7.67 and 7.53.
We begin by defining a distribution 77 on 2. Let f be an element of D({2)
with zero integral. The distribution 77 acts on f by

(Th, f) = (VT, 0),

where o is an element of C®(RY ,RY) satisfying —dive = f (cf. Lemma
7.59). For a fixed o, the right-hand side is well defined because T has compact
support. Moreover, this definition does not depend on the choice of o. Indeed,
let 01,09 € C*™ satisfy divo; = div os; then we have the relation

(VT,01 — 09) = —(T,div(o; — 02)) = 0.

Next, we define T} on the functions f € D({2). Setting

r=1=([ £+ ([ 1)

where € is an element of D({2) with integral equal to 1, we let

(+) @) = (1= ([ 1))+ ([ swe)ro),

where we use the earlier definition of 77 on the function f — ( /, o f)C , whose
integral is zero. It is obvious that T} is linear and is a distribution on (2. We
still need to show that 77 belongs to LP({2). Now, because of the independence
of the choice of o, we can choose one provided by Proposition 7.62, so that
there exists a constant C' such that for every f € D(£2),

(T2, )] < CllFll o ()

The desired conclusion, namely the extension of T to the space LP({2), follows.

Let us now show that the distributions 7" and 77 have the same gradient.
Let us consider a derivative 0;T;. Let o satisfy — diveo = f, so that — div 9;0 =
0; f. Since fQ 0;f = 0, it follows that we can take 0;0 to be the function o
associated with 0; f. By definition (x), we then have

(0;Ty, f) = =(T1,0:f) = —(VT, 0;0).
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Moreover,
<81T, f> == 7<T7 61f> = <T, div 87O'> = 7<VT, 310'>

We therefore have 9,7 = 9;T for every i € [1, N]. Using the connectedness
of 2, we conclude that there exists a constant C' such that T'=T; + C in 2.
Since we moreover have (T, () = (T1,(), it follows that C' [, {dz = 0, whence
C=0and T ="1T;j. O

Applications to the so-called Korn’s Inequality.

Proposition 7.68. Let 1 < p < oo and let u € LP(2,RY) satisfy e(u) €
LY (RN). Then for every function ¢ in D(RY), the functions 8;((uy);) belong
to LP(£2); in other words, V(up) € LP(£2, R*V).

Proof of Proposition 7.68 when p = 2.
This case is elementary and does not need the previous theorem. We show
that for every u € Ya(RY),

le()ll2 = Cl[Vulla.

We begin by noting that for every i, j € [1, N] with i # j and for u in C2(RY),
we have

(7.69) /|ajui|2dx+/ |0;u;|*da
RN RN
<t [ le@Pdot [+ 0)da,
RN RN

To prove identity (7.69), we write the integral [y (8;u; + O;u;)*dx for any
pair (i,7) as follows, by applying two integrations by parts on the term
fRN 6jui8iujda::

/RN(ﬁjui +ain)2dl‘ = /]RN (8jui)2d:l:+/RN (8Z‘Uj)2d$—|—2/RN ajui 8iujdx
RN RN RN

Let Y2(RY) be the space of vector functions v with the property that both v
and the deformation tensor £(v) belong to L*(RY RY). Let u € Yo(RY)
have compact support and let {u,} be a sequence in C2(R™ RY) obtained
by convolution with a regularizing kernel, that converges to u in the space
Y2(RM). The identity (7.69) shows that {Vu,} is a Cauchy sequence in L2.
Consequently, Vu € L2(RN,RN). It follows that if e(u) € L2(RN,RY), then
Vu € L2(RN R2V).
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Finally, let u € L? with e(u) € L% Then for every ¢ € D({2), we have
up € Yo(RY), whence up € H'(RV). It follows that V(u) € L% _(£2), thus
concluding the proof in the case p = 2. a

Proof of Proposition 7.68 when p > 2.
Let v = up. We first demonstrate a relation expressing a distributional
mixed derivative of u in terms of the tensor e(u):

(7.70) (’%k(vj) = ak(é‘ij(’u)) + ai(Ejk(v)) — Oj(aik(v)).

Since e(up) € LP, we see that the derivatives of e(v) are distributions T'
with compact support that satisfy the conditions of the previous propositions.
Hence, for fixed j and k, the distribution Oyv; has compact support and
satisfies the conditions of Theorem 7.67. Consequently, Oyv; € LP, giving the
desired result because j and k are arbitrary. a

To conclude, we prove the following result.

Theorem 7.71 (Korn’s inequality in LP(2), 1 < p < o0). Let 2 be a
domain in RN . We consider the space

Yp(02) = {u € LP(2) | ¥ (i, ) € [1, N, &ij(u) = (9ju;s + Diuy)/2 € LP(£2)}.

If u e Y,(£2), then u € VVIO’CP( ). If, moreover, £2 is bounded and of class C?,

then the space Y,(£2) can be identified with WP (£2). More precisely, there
exists a constant C' such that every u € WHP(82) satisfies

/p
IVullire <l + [ letwi@par) ™.

The idea of the proof of the inclusion u € WP (£2) consists in extending a
function w in Y,(£2), when 2 is bounded, to a function with compact support
in Y, (RY). We then apply Theorem 7.68. We begin by extending u in the case
2 =RN=1x]0, 00[, giving a general idea of the proof, after which we proceed
with the general case.

Proof of Theorem 7.71 around a point where 32 is locally straight.

We wish to extend the vector function wu, which is an element of
Y,(RN¥=1 x ]0,00[) with compact support in R¥=! x [0,00[, to a vector
function @ in Y, (RY).

For zy < 0and i € [1, N — 1], we set

(7.72) wi(z',xn) = 2u; (2, —xn) — ui (2, —3zN)
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and for xxy < 0 and i = N, we set
(7.73) un (@', xn) = —2un (2, —xn) + 3un(2’, —3zyN).

We thus obtain a function % on RY with compact support. We can easily
verify that @ € Y,(RY). Indeed, for xx < 0 and i and j € [1, N — 1], we have

(7.74) 20jui(2', xn) = 20ju; (', —xN) — Oju; (2!, =3z w),
whence
(7.75) 2e;j(u) (2, zn) = 25 (u) (2!, —axn) — &5 (u) (2, =3z N).

Furthermore, if one of the indexes is N, then we have

2e;n (u)(2, xn) = —20Nui(2', —xN) + 30Nnu; (2, =3z N)
—20iun (2, —xN) + 30;un (2, —3xN)
= —4€iN(u)(a:’, —J)N) + 6€iN(u)(x’, —3IN)

and enn(u)(@,zy) =20yun(2',—zN) — 9ONnun (2, —3zN).

We thus see that the function u belongs to Y,(RY). It follows that @ €
WLP(RY) and that u € WHP(RN =1 x RT). |

Proof of Theorem 7.71 when 2 is a bounded open set of class C2.

Let us recall our motivation, which is presented in the introduction of this
chapter. Readers interested in other arguments in the case p = 2 or for much
more general open spaces than those we consider may consult, for example,
the article by Nitsche [54]. The proof given by Nitsche concerns open sets
with only the cone property. The methods used for p = 2 for such open sets
can no doubt be adapted to arbitrary p. We will not address this research.
Consequently, we will only be interested in the extension of the local Korn
inequality when the open set is of class C2. We begin by noting that it suffices
to prove the result in the neighborhood of a boundary point zg, where the
normal to {2 has a nonzero scalar product with ey. Locally, the open set {2
lies on one side of its boundary in the neighborhood of this point, and there
exists an open subset £2; of RN containing x( such that

2N c{@,zy)| 2 €O, a;i(z") <zn},
2;N002 ={(2',a;(2")) | ' € O},
where (0 is an open subset of RV~! and a; is a class C? function on O'.

The set {2 can be covered with such open sets (2;. Consequently, using a
partition of unity {;} subordinate to this cover of £2, it suffices to show that
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if u € Y,(£2N62;), then p;u € WHP(£2N(2;). For the sake of simplicity, we will
omit the factor ¢;. In other words, we assume that u belongs to Y, (2N (2;)
and that v has compact support in 2N £2;. We will also omit the index i. We
can reduce to the case of a straight boundary, that is, to the case of functions
on R¥=1 x ]0, +-00[, which we have already studied.

We use the function v with components v; defined by

vi(2',t) = (u; + (0;a) un) (2’ a(z’) +t)
for i < N —1 and by
on (2, t) = un (2’ a(z’) + 1)

for i = N. The function v is defined on O’ x R*. Let us show that v €
Y, (O x ]0,+00[). To do this, we compute the derivatives 0jv; and 9;v; for i
and j in [1, N — 1] plus the derivatives dnv; and O;vy, where we use the
assumption that the function a is C2 on the open set O’:

0jv; = (3jui+3Nu18ja+8ia8ju1v—|—8ia3ja8NuN+3ijauN)(x’,a(x’)+t)
div; = (8uj+0nu;0;a+0;adiun +0;a0;a0nun +0i5aun ) (@', a(x’) +1)
Onvn = Onun (2, a(z") + 1)
Onvi = (Onu; + Diadnun) (2, a(z’) + 1)
divn = (Qun + diadyun) (2, a(z’) +1).

It follows that the components of e(v) with ¢ and j in [1, N — 1] satisfy
gij(v) = (ij(u) +0jae;n (u) +0;ae v (u) +0;a0;a0Nun +Oyjaun ) (2, a(z’) +1).
Moreover, for (i,j) = (i, N), we have

ein () = (gin (0) + (8;0)0nun) (2, alz’) + t).

These formulas clearly show that v belongs to Y,(RY~! x 0, +00[) and has
compact support in RV =1 x [0, +o00[. Keeping the results for a straight bound-
ary in mind, we obtain

v E WO x 10, +00)).

In particular, the component vy, that is, ux, belongs to W1P(§2;1(2). Finally,
by noting that

wi(2', an) = vi(2', an —a(2)) — (Gia)vn (2, 2y — al')),

we obtain the inclusion of u; in the space WP (£2; N (2), concluding the proof.
O
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Comments

Since we are not specialists in harmonic analysis, we have used the book of
Stein and Weiss [64] as our principal source. We recommend that the reader
who wishes to learn more consult the following books and articles for more
details: Stein and Weiss [64], Stein and Weiss [65], Stein [63], and Zygmund
[77].

7.5 Exercises for Chapter 7

Exercise 7.1 (Fourier Transform of a Function in L*(R)).
Let f be defined by f(t) = t/(t* + y?), where y > 0.

(1) Show that f € L?*(R) and that its Fourier transform in the sense of
tempered distributions is defined by a semiconvergent integral, namely
Flo) = Jg texp(—2im&t) (12 + y?)~'dt.

(2) Use the residue theorem applied to the contour consisting of a segment
[~ R, R] and a semicircle (Cr or C%) and a suitable holomorphic function

to compute f(£) when £ < 0 and when £ > 0. You can also use one of the
contours and the reflexion £ — —¢&.

Cr
£<0 .
iy
t
-R ‘R
—Z’y
£E>0
__________ o

Fig. 7.1. A computation using the residue theorem.

Hints. For (2), use the function F(z) = zexp(—2iméz)/(2* +y*). When £ > 0,
you must show that limg_ 4o fc’ F(z)dz = 0. Reduce to bounding the integral
R

foﬂ/ 2 exp(—asin#)df when a is a positive real number by using a lower bound for
sin @, and conclude that this integral is lesser than K/R. Conclude that

VEER, [f(§) = —imsign(£) exp(—27[€y|).
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Exercise 7.2 (Mean Value Property for Harmonic Functions).

Let N > 2. We recall that the fundamental solution of the Laplacian is
E(z) = ky|z|~™W=2), where ky is a constant. Let u be a harmonic func-
tion in a domain £2 in RY. Consider a ball B(a, ) whose closure lies inside 2.
Generalize the case N = 2 by showing that u(a) equals the mean value of u on
the sphere dB(a,r). Use Green’s formula for class C? functions in the following
form:

/Q(g(w)ﬂf(x) — [(2)Ag())dx =/ (9(2)05 f (2) — f(2)059(x))do(x).

o0
Apply this formula to the functions u and 1 to determine a property of the
normal derivative of u on the spheres inside 2. Next, apply this formula to F
and u in the region between the sphere 0B(a,r) and the sphere of radius

with center a to show that the mean value on 9B(a,r) equals the mean value
on 0B(a,¢). Conclude.

Hints. We may, and do, assume that a = 0. By Green’s formula, we have
0 :/ Au(z)dz :/ Onu(z)dx
B(0,r) 0B(0,r)

for every r such that B(0,7) C 2. We then apply Green’s formula to the functions E
and u in the region 2., delimited by the spheres S. = dB(0,¢) and S, = 0B(0,r).
By the harmonicity of the two functions, we have

/ (uAE — EAu)dx =0.
QE,T

Moreover, the normal differentiation of E on the spheres gives the expressions — (N —
2)|z|~N*!, which are constant on each of the spheres. This leaves

— (N — 2)/ e N u(s)ds + (N — 2)/3 N u(s)ds

[ E(s)aﬁu(s)ds—&—/s E(s)0=u(s)ds =0

Js.

in Green’s formula. By the previous result, since the function E is constant on the
spheres, the sum of the last two integrals is zero. Consequently, we have

1 1
o N /ST u(s)ds = o TN /55 u(s)ds.

Since the mean value of u on the sphere S, equals its mean value on the sphere S;,
which by the continuity of u is arbitrarily close to u(0) when ¢ is sufficiently small,
the result follows.

Exercise 7.3 (Converse of the Previous Exercise’s Property).
Consider a continuous function u on a domain {2 in RY that has the mean
value property on this open set. In other words, for every a € {2, the mean
value M, (a,r) of u on a sphere with boundary B(a,r) and closure contained
in 2 equals u(a). Prove that the function w is harmonic in (2.
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(1) To begin, assume that u is a C? function. Establish the result by showing
that the limit of the second derivative of r — M, (a,r) at the point a is
proportional to Au(a).

(2) In the general case, where the function w is only continuous, use a regu-
larization of v and show that, locally, v coincides with its regularization,
which allows us to reduce to the first case.

Hints.

(1) The second derivative of r — fz’)B(O H u(a + rs)ds gives

i[M (a,7)] = ! / d—2u(a+rs)ds
dr2 N T N oB(0,1) dr? ’

Up to wn—1, the limit of this derivative at a equals the sum

Z &-ju(a)/ si8;ds.
ij 2

B(0,1)
We note that if i # j, then fBB(O 1 sisjds = 0 and, moreover, that
faB(o,1) s2ds = faB(o,l) s3ds. It follows that the limit of this derivative at a is

proportional to Au(a), giving the result since by assumption, the mean value
function is constant for r > 0.

(2) Consider a ball By = B(zo, o) with closure inside {2 and let uo be the restriction
of u to this ball extended by 0 outside of the ball. We use the convolution
U. = uo * p where, as usual, p.(z) = ¢ " p(x/e) with p a positive function
in D(RY) with support in B(0,1) and integral equal to 1. We may, and do,
moreover assume p to be radial. Let « € By. By definition, for € < 7o — |xo — x|,
we have

U:(z) = /]RN pe(t)uo(x — t)dt = /B(O )pg(t)u(:c — t)dt.

Using the spherical coordinates of the variable ¢ and Fubini’s formula, and letting
o be the variable on the unit sphere such that t = |t|o, we can write

Ue(x) = /OE e Np(r/e) [/E)B(O’1> u(z — ra)da} Nl

Now, the mean value of u at the point x is defined by

1 1
My(z,r) = / u(x 4+ rs)ds = / u(z — ro)do.
WN-1 JaB(0,1) WN-1 JaB(o,1)

It follows that

Ue(z) = wN_l/ e Np(r/e) My (z,r)rN " dr,
0

so that, using the assumption, which holds because of the condition on &, we
obtain

Ue(z) :wN,lu(m)/O p(MAY T
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Finally, since

1
wN,l/ p(IAY TN = / p(y)dy =1,
0 B(0,1)

we deduce that u(z) = U (z).

Taking z in B(zo,70/2), we can then fix £9 = ro/2 and the function u coincides
with the function U, in the entire ball B(xo,70/2). The function u is therefore
of class C* in (2. We have thus reduced to case (1).

Exercise 7.4 (Complement to Example 7.12).
Consider the function f on R defined by f(t) = (t?+1)~'. For 0 < x < 1/v/3,
we study the mean values defined by

1 /”E” dt arctan(z + r) — arctan(x — )
u(r,z) = o = :
2r Jo_, t2+1 2r
The function U(r, ) = —2u’.(r, x)r? can be written as
1 1
U(r,x) = arctan(z + r) — arctan(z — r)) — T((m s vE + ERTSENT 1).

Setting a = x 4+ r and b = = — r, its derivative equals

b
"
Urlro) =2r [ i ~ @y 1
Expanding a(b? + 1)? — b(a? + 1)%, we see that U/ (r,z) has the same sign as
the trinomial T'(r?) defined by

T(r?) = r* +2(1+2?)r? =32 =222 +1 = r* +2(1 +-2H)r? — (2?2 +1) (322 - 1).

(1) Let 2 < 1/4/3. Determine the sign of the derivative of r + u(r, x) by first
studying the sign of T'(r?) and then using the formulas above. Prove that

1 1

(2) Next, assume that 2 > 1/v/3 (use the results of Example 7.12). Prove that
the function z — U(r,x) is nondecreasing and that x — ry(x) is there-
fore nonincreasing in ]1/v/3, +00[. Deduce that the function x +— r5(x)
is continuous on this interval, and consequently that my is a continu-
ous function on ]1/v/3, +oc|. Finally, examine the behavior of m(z) as x
tends to 1/ /3 from above.

Exercise 7.5 (Solution for the Dirichlet Problem on the Sphere using
the Poisson Integral).

Let B be the open unit ball in R and let 9B be the unit sphere. We set
(Poisson kernel):

VreB,VsedB, p(s,z)=K 1-fal®
) y  PLS, - N|$—S|N’
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where the constant K is the reciprocal of the (N — 1)-dimensional surface
area of the unit sphere in RY. Note that the function p is nonnegative.

(1) Show that the function « — p(s, z) is harmonic in B for every s in 0B.

(2) Show that we have [, p(s,z)ds =1 for every = in B.

(3) We set & = ry with r < 1 and |y| = 1. Show that for every n > 0, when
r — 1, the function = — fseaB,\sfy\>n p(s,ry)ds converges uniformly to 0
at y.

(4) (Poisson formula) Let f be a continuous function on 0B. Let u be the
function on B defined by

(7.76) w(o) = ) Jop [P0 i e B

f(z) if x € 0B.
Show that the function w is harmonic in B and continuous on B.

Hints.

(1) Compute the Laplacian of a product using the function y — (1—|y+s|?)|y|~".
(2) Let r < 1. Since the function p is harmonic in B for s fixed in 9B, the mean
value property (cf. Exercise 7.2) implies that

1 1
p(s,0) = —— = (/ p(s, z)dz,
8B(0,r)

WN -1 wn_1rN-1

whence, by setting x = ry, which allows us to reduce to the unit sphere,
1
p(s,0) = p(s,ry)dy.
WN-1 JoaB(0,1)

Show the inequality |ry — s| = |rs — y| using, for example, the symmetry axis
for the two rays [0, s] and [0, y] or a direct computation. It follows that

(5,79) 1—r? 1—r?s]? 1—|rs|?
WN — = = =
NPT s N T s — oV T s —ylN

=wnN-_1p(y,Ts).

We therefore have

S

9B(0,1)

p(s,ry)dy = / p(y,rs)dy.

2B(0,1)

This relation holds for arbitrary s of norm 1 in RY and arbitrary real numbers r
with 0 < 7 < 1. Let x be a given element of B, so that |z| < 1; we can then
choose the elements s and r in the relation in such a way that rs = . We then

obtain
1= / p(s, z)ds,
8B(0,1)

giving the result.
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(3) We again set x = ry, where y lies on the sphere. We assume that |s — y| > 7.
Using a lower bound, we find

ry—sl>ls—yl=(1=r) > 1

for 1 — r sufficiently small. From this, we deduce the uniform upper bound
C(1 —r?) for p(s,ry), giving the result.

(4) We use the first question and carry out a differentiation under the integral sign
with respect to  when |z| < 1. It suffices to show the continuity at a point
z € 0B. Let € > 0 be given. We wish to show that for x € B sufficiently close
to z, we have |u(z) —u(z)| < €. We may, and do, assume that = # 0 and we use
a y such that = ry and |y| = 1, which allows us to fall back on the previous
results. Decomposing the integral into two parts, one on the set A, of points of
OB for which |s — y| > n, we have

lu(z) — u( |—‘/ [f(s)— f(y)]p (s,ry)ds‘
< /A 1£(5) — £(3)| pls, ry)ds + /8 1) = )l pl s

Since the integral of p on the boundary equals 1, we can bound the second
integral on the right-hand side as follows:

/BBAv(s) F@)lp(s, ry)ds < sup{|£(s) — )] | 1s — ] <n}.

By the continuity of f on @B, this integral can be bounded from above by /2
for n < no. Choosing n = 79, we obtain

) ~ ) < 5 +2 g 170 [, g

Now, by question (3), this last integral tends to 0 uniformly with respect to y
when r — 1. It follows that there exists an 11 such that |z — y| < n1 implies
|u(z) — u(y)| < e. Returning to z, we then write

u(z) = w(@)] < u(z) = u)] + |uy) — u(2)].

By the continuity of f on the boundary, the difference |u(z) — u(y)|, which
equals |f(z) — f(y)|, can be made < e provided that |z — y| < n2. Let = €
B(z,1/2inf (m1,72)); then |z—y| < n1 and, consequently, the previous inequality
implies that |u(z) — u(z)| < 2e, giving the desired result.

Exercise 7.6 (Application of the Poisson Formula Given Above).
Consider a continuous function (z,y) + u(z,y) on RY x R with the following
symmetry property:

Ve e RN Vy >0, u(z,—y)=—u(z,y).

We suppose that u is harmonic in R x ]0, +oo[. Show that the function u
is then harmonic in RY x R. To do this, first show that « is harmonic in
RY x ] — 00,0[ and then prove that it is harmonic in the entire ball with
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center (x9,0) in RN*!, For that property, compare the function u in the
ball to the harmonic function defined by the Poisson integral of Exercise 7.5
(cf. formula (7.76)).

Hints. Use formula (7.76) on the ball By = B((z0,0),r); this defines a function v
that is harmonic inside By and can be identified with © on 9Bg. The Poisson kernel
p(s,z) of this formula has an analogue in dimension N + 1, where the point = is
replaced by (o 4 r€,0+n) for (€,7) on the unit sphere dB(0,1) in RY*!. Letting
wn denote the surface area of the sphere and do its Lebesgue measure, we obtain

1
v(z,y) = ———— w(zo + 7€, mn)p" (z,y, &, n)do,
(z,9) o N /63(071) (zo +7r&,mr)p" (2, 9,8, 1)
where p* is defined by
« 2 —[(z — z0)? + 92
p(z,y,§m) = I o) +v]

(& — o) — 7£)2 + r2q2) N+

By the symmetry assumption on u, we have v(z,0) = 0 when y = 0. In the bounded
domain consisting of the interior of the hemisphere By N (RY x ]0, +00[), the func-
tions v and w are therefore solutions of a same Dirichlet problem. Since the open
set is not of class C!, we do not have uniqueness. However, applying the maximum
principle to the difference, as in Remark 5.69, nonetheless gives the equality u = v
in the open set. The same reasoning holds for the lower hemisphere. It follows that
the function u is harmonic in By and, consequently, everywhere in RV 1,

Exercise [%] 7.7 (Proof of Theorem 7.15 when N =1).
Let us take the statement of Theorem 7.15. By translating the neighborhoods
Jz,.r, Which in this case are intervals, so that their centers x; become 0, we
obtain intervals J; with center 0 that we can order as follows:

J1CJ2C"'CJn,
where J; = | — r;, r;[, with the property that
1
Vye S, Jieln, —/ F(O)ldt > 5.
Ti Jy+d;
For every y € S, we can set

K@) =swp e |5 [ o)

thus defining a map K from S to [1,n]. We wish to estimate the measure of S
using its cover by these intervals of length 2r;, which satisfy

(7.77) i=K(y) = 2r < 2/Ji|f(t+y)dt.

We will bound the measure |S| from above by a sum of the lengths of the
intervals in a suitable cover of S, so that we can use relation (7.77), allowing
us to estimate this measure using the integral of |f| over R.
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(1) More precisely, show that

Lemma 7.78. There exist a finite number of points s;, 1 < j < k, of S
such that
a) The set S is contained in U, ;< {8 + Jr(s;)} and a center s; is
contained only in the interval with index j.
b) Setting V; = s; + J(s,), we have

k
;/Vj|f(t)|dt§2/R|f(t)|dt2|f||L1(R).

(2) After proving the lemma, finish the proof of Theorem 7.15 in the case
N =1 using relation (7.77):

k k k
1 2
Pl Wl <2 <03 [ i i< i
1 1 1 J

Hints. Choose a point s1 in S such that K(s1) > K(s) Vs € S. Such a point exists
because of the inverse image K ~*({n}). Consider the set S1 = S\ {s1 + Jr(s;)}- If
it is empty, then S C Vi = s1+Jk(s,) and the first part of the lemma is verified with
k =1, while the second part is trivial. If the difference of the sets is nonempty, then
we choose a point sz in S1 such that K(s2) > K(s) for every s € S1. If So = S1\ V2
is empty, then we obtain the lemma with & = 2 by noting, moreover, that the
inequality 7 (s,) < Tk (s;) implies that the center s1 of the first interval does not lie
in the second one, s2 + Ji(s,)-
The second part of the lemma then follows from

/ RUCEE / 1@l = /| RCLE / BCIES [ irwyae

This construction can be extended using the given algorithm. The number of steps is
necessarily finite, giving the first statement of the lemma. By the above, the center s;
does not belong to s; + JK(S . for j = j£1. By the assumption that the dimension
is one, it follows that the same holds for every other index. The first part of the
lemma, follows.

For the second part of the lemma, we first note that any three V; with two-
by-two distinct indexes have an empty intersection. Indeed, let a belong to the
intersection of two of the V;. We may, and do, assume that ¢ and j are the two
smallest indexes for which a € V; N Vj. Then, if a € V}, for k other than i and j, we
have |sp — a|] < ri < inf (r4,7;), which implies that the center s; belongs to one of
the intervals V;, V}, giving a contradiction. Under these conditions, we can generalize
an earlier equality by using the sum of the characteristic functions of the V;. We
will show that this sum is lesser than 2x(UVj;), from which it follows that

Z/ t)|dt < /|f )|dt.

Consequently, Theorem 7.15 in dimension 1 follows from

2| £l 22wy

!{x€R|mf( >5>0}| .
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We could also formulate the reasoning given above in a way that makes general-
ization easier. Namely, let 7, be a translation such that SN 7,(S) = @ and consider
two-by-two disjoint semi-open intervals {W,} that are each contained in a V; and
that form a cover of S. To every point ¢ belonging to two intervals V;, we associate
71 (¢). We denote the set of these translated points by S’. We then have

k
Z/V £ (8)ldt = /W solar+ [ 1 <2 [ 17

Exercise 7.8 (Convolution of T € §'(RY) with ¢ € S(RY)).
In this chapter, we have seen that this convolution is a function f defined by

Vo e RN7 f(m) = <Tv7—a:(¢)>v

where ¢ is the function ¢ — p(—t).
Prove that f is a C* function and that there exist a multi-index k£ and a
constant C'(k) such that

Ve e RY, |f(z)| < C(k)|z|"

In other words, prove that f is a slowly increasing function.

Hints. Show that
. 1
Vi, (Tw, 3 @+ he; —t) = p(a + h—t) = hdjp(z = 1)] ) — 0

when h — 0. Deduce that 8;f(x) = (T, 7,9;¢). Use iteration to obtain the result
for an arbitrary order of differentiation.

For the slow growth, use the continuity of 7" and the family of seminorms defining
the topology of S. We have

[f(2)| < D sup|X|* [DPp(X — ).
la|<k
[Bl<m
Use the Taylor expansion of ¢ to bound |f| from above by a polynomial.
Exercise 7.9 (Fourier Transform of the Convolution T * ¢).
Let T € 8’ and let ¢ € S. Show that the Fourier transform of the convolution
T x ¢ is the product of the individual transforms.

Hints. Use the expression for A = T'x¢ given in Proposition 7.22 for the computation

of (A, 1), which makes use of the commutativity of the tensor product:
(A1) = (4,8) = (T, (@), D) = (D @ Tia, 72 ()
= (Tlg ® P, 9t = M) = (T, | D)@ — A)dr)
= (Tiy, (D * @)(1)).

Show that the product @iy is the convolution of the transforms, that is, @ 1Z
Conclude.

RN
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Exercise 7.10 (Determining the Fourier Transform of Vp(1/x)).

(1) Prove that v(&) = Vp( [ exp(—2imét)/tdt) exists for every real . Decom-
pose it into two integrals and show that computing it traditionally corre-
sponds to computing f0+oo sin(27&t) /tdt. Deduce that v(§) = —im sign(§).
Next, prove that the distributions 7, 4 associated with the truncations of
1/t on [—A, —¢€] U [e, A], which are tempered, converge in 8’ to Vp(1/t).
Finally, prove that the Fourier transforms of T, 4 converges to the func-
tion v.

(2) Use a different method: show that the desired transform is an odd function,
and that ¢t Vp(1/t) = 1. The result then follows using a property of the
Fourier transform.

Exercise 7.11 (Computation of a Hilbert Transform).
Use the definition of the Fourier transform to compute the convolution of
Vp (1/t) and the function f defined by f(t) = (t2 +1)/(t*> +t + 1)2.

Exercise 7.12 (Fourier Transform of a Radial Function).
Use isometries to show that if f is a function in L'(RY) satisfying f(x) =

g(|x|), then the Fourier transform of f is a function of p = 1/2? &

Exercise 7.13 (Computation of a Hilbert Transform).
Consider the function f on R \ {0} defined by f(t) = (1/]¢[(1 + |t|))71. We
will use two different methods to compute its Hilbert transform H f.

By way of this example, we will be able to illustrate certain results, namely
Theorem 7.29, which gives two definitions of the Hilbert transform, the propo-
sition concerning the weak type (1,1) of the transform, and Corollary 7.35,
which states that the Hilbert transform maps LP to itself for p > 1.

Let us therefore first note that the function f belongs to LP(R) for 1 <
p <2

(1) First computation method. Let F' be the function on R defined by F =
[ * gy, where g,(t) = t/(t* + y*) with y > 0. By one of the definitions in
this book, the transform of f is

1
Hf(x)=— lim F(z,y),

T y—04

where
T —t

1
Pl = | N CE TR

Replacing x by —x, we obtain, up to the sign, the same integral trans-
formed by the change of variables ¢ — —t. It follows that x — F(z,y) is
an odd function, allowing us to restrict our computation to z > 0.

VreR, Vy >0,
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Using changes of variables and, for example, the residue theorem, we re-
duce to computing two integrals of rational functions over R.
(2) Second computation method. We use the formula

Hf(x) =1/7lim flx —1t)/tdt.

e—0 |t|>6

We therefore compute
1

dt.
/t|>a Ve 11+ e — )t

We can, for example, write this integral as the sum of three integrals,
one of which concerns a rational function and can be computed using the

residue theorem.

In the hints, we show how our results illustrate Theorem 7.29 and Corollary
7.35.

Hints.

(1) First computation method. Write F(z,y) as the sum of two integrals over
10, +o0[, namely:

“+ oo CL‘+U2
I(z,y) =2 du
T A e e
Feo z —u?
and J(z,y) —2/0 0+ (@— ) 1 du.

Since these are even functions, we have

. Jc+u2
Iwy) = / )@@ g2 ™

x7u2

1) = | e

e Computation of I(z,y) for z > 0.

Use the residue theorem. Let § = arctan(y/z), which is an element of |—7 /2, /2]
and let p = /22 + y2. Consider the function G of the complex variable z defined
by

z + 2°
(1+2%) (22 +x+iy)(* + @ —iy)
When z > 0, the square root of 2% + x + iy in the upper half-plane equals
21 = iy/p exp (i0/2). For 2® 4+ x —iy, the square root z» is obtained by replacing
by —0 in z;.
The residue theorem now gives

G(z) =

I(z,y) = 2im [ Rés(G, i) + Rés(G, 21) + Rés(G, z2)] .-
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For the simple poles, the classical formula gives

i N r—1
Rés(G, 1) = 20 +1—22)°
. —i0/2
. _ —w - e
Rés(G, z1) = 2i\/pe®/2(1 — x — iy)(—2iy)  4i/p(l —x —iy)’
. i6/2
Rés(G, 22) = W :

2i/pe 0721 —a + i) (2iy)  di/p(1 —x + iy)

when z > 0. It follows that in this case,
-1 o—10/2 o +i0/2
EES _, .
pP+1-2z 2/p(1—z—iy) 2/p(1—x+iy)

I(z,y) :ﬂ[

e Computation of J(z,y) for z > 0.
Continue with similar computations, which give

r4l i0/2 o—i0/2
J(z,y) = w[ + — — - ]
CES TN (e R W

We thus obtain the function F':

Flo,p) = 7|2t 7+ 1 "
T ey o T 2 it2s ! 2 /p(l—x—iy)
o +i0/2 o +i0/2 o—19/2
+ 4+ S ‘ }
2/p(1—xz+1iy) 2¢p(14+z—1y) 2/p(1+z+iy)

e Taking the limit for y — 0+.
The result is obvious, because it suffices to replace y and 6 by 0, p by z, and
/P by v/x, because x > 0. We thus obtain the Hilbert transform of f:

Va >0, H(f)(x):mi1+xi1+\/§(1l—x)
or V>0, H(f)(x)=\/5(11+\/g)+(141ra;)'

Using the oddness noted above, we see that the function we obtain is defined
everywhere except at * = 0, thus illustrating the existence almost everywhere
of the Hilbert transform (cf. Proposition 7.26). Moreover, using this formula, we
see that the Hilbert transform belongs to the space LP for 1 < p < 2, as stated
in Corollary 7.35 on the interval ]1, 2[.

(2) Second computation method. Let us compute

1
dt.
le1>e |z = (1 + |z — )t

Assuming that * > 0 and € < z, this integral can be written as the sum of
three terms I, I2, and I3 by integrating over the intervals | — oo, —¢], ¢, [, and
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|z, +o00[. Using changes of variables, we obtain

o[ dt _72/+°° du
Vet -t e U@ —2)

[T t _ Va=e du
12‘/5 Vi—tl+az—tt 2/0 1+ u?)(u? — )

I — Foo dt _2/+°° du
T ), Vicz(l+t-aot o A+ud)(@+ud)

The computations of I; and I» are rather elementary, while we can use the
residue theorem to compute Is. The result is

[1:1_’2_ _arctanu—% )z_’_ﬁr_
= 1Jlrx W—Qarctan\/x——i—a—i—Tl %;?]
12:1—12—37 arctanu72\1f ’Z;ﬁ}
zlix:Qarctan\/w——\/—_ \/m;\/»}
13=217r[Res(g, )JrRes(g,z\/_)} [xil + (1_;)\/5},
1

where g is the complex function z — (the formulas we give still

1+ )@+ 2)
hold when we pass to the limit when the pole is of order 2, namely for z = 1).
It remains to take the limit of the sum of the three integrals for ¢ — 0. Since

lims_m(\/f + ;i) = 0 by an obvious equivalence, we find that for x > 0,
T —¢€
we have
1 1 1 1 1
H = = .
f@) =35+ {x—l + (1—:5)\/5} vz Vel +va)

Since the function Hf is odd, this concludes the computation, and we note
that this result equals that found using the first method, as was announced in
Theorem 7.29.

Exercise [xx] 7.14 (Computation of a Riesz transform in R?).

Let

flx,y) =1/(x® + 9% + 1) and let p* = &2 + n%. Prove that

e — o) = . /27r/ COS U drdu
1 1) = J1lp  e—0,A 400 0 e T(P2+T2+1—2PTCOSU) .

By decomposing a rational fraction to reduce to a simple trigonometric inte-
gral, show that

s

p cos?u

filp) =
( PP+1Jo /1+p2 smu

which can therefore be expressed using a Legendre function.
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Exercise 7.15 (Nontangential Uniform Convergence of P(-,y) x f
when y — 0).

Recall that the Poisson kernel can be written as P(t,y) = y/(t* + y?). Let
xo € R and let @ > 0 be a real number. We let I',(xg) denote the open cone
in R x ]0, 400 with top z¢ € R, which is defined by

Ia(z0) = {(z,y) € R x]0, +oo[ | |z — zol/y < a}.
Show that if f € L? and if z( is a Lebesgue point, then

(7.79) lim sup ‘P * f(x) — f(x)‘ =0.
¥=02er, (20)

(1) First prove that if there exists a constant d, > 0 such that
V(m,y)efa(xo), thR, P(x—t,y)édap(xo—t,y),

then (7.79) holds.

(2) Proving the existence of d, corresponds to proving that the function ¢
on R defined by ¢(t) = (y> + (z — t)?)/(y* + (zo — t)?) for fixed 2o and y
admits a positive minimum.

a) First suppose that x > x¢ and determine the sign of the derivative of
the function, which is the sign of a degree two trinomial. Deduce the
lower bound

(z0 —x+ /(z — 20)? +4y2)2 +y?
(x—z0+ /(z —20)> + 4y2)2 + 92

for > xzg. Deduce a similar lower bound for x < xy and prove that

VteR, ot) >

(Jzo — o — /(& — 20)2 + 42)° + ¢
(|z — zo| + /(& — z0)> + 4y2)2 +y?

b) Study the sign of the derivative of this minimum using the variable
u = |z — xo|/y. Deduce the existence of the number d,,.

VteR, ot)>

Hints.
(1) By the property [, P(z,y)dz = 1, we have

(P« )(e) = £@o) = | [ (Pl = t.9)(7(0) = Flao)i
< do [ (Pla=t0)IF0) = F(oo)lat.

The last term tends to 0 because zo is a Lebesgue point of f (cf. Proposition 7.3
and Remark 7.4), giving uniform convergence in the cone I'4(x0) when y tends
to 0.



434 7 Korn’s Inequality in L?

(2) The sign of the derivative ¢’ is the same as that of the trinomial T = t? —
(x 4+ xo)t + zxo — y? whose discriminant A = (x — x)? + 4y? is > 0. The two
roots are t; = & + xo + V/A/2 with j € {1,2}. We have T'(x0) = —y* < 0, which
implies that z¢ € ]t1,t2[. The function ¢ is therefore nonincreasing on [t1,t2]
and nondecreasing outside of this interval. Since z > ¢, we have

_ 4y + (VA (30— 2))?
42 + (VA = (w0 — 2))?

Moreover, the limit of ¢ at —oco equals 1. It follows that

B 4y® + (VA + (z0 — z))2
dy? + (VA = (20 — )%

When x < xo, the function is replaced by its inverse and we obtain the same
result by using the root t1 instead of t2. This corresponds to replacing x — o
by its absolute value in the formula giving the minimum.

(b) The derivative of the function

m(u)=[14(u — Vu? +4)°]/[1+ (u + Va2 + 4)%],
where u is nonnegative, has the same sign as
—(u-— \/u2+4)2(1+(u+\/u2+4)2) —(u+Vu? +4)2(1—|—(u+\/u2—|—4)2),

and therefore is nonpositive. The minimum of m is therefore m(«), concluding
the proof.

<1

o(ta)

min ¢ = ¢(t2)

Exercise 7.16 (Details of the Constructions of the Functions ¢; of
Lemma 7.55).

Prove the following result corresponding to Lemma 7.55. Let {2 be a bounded
open subset of RY. Then there exist functions ¢; for i € [1, N] in D(£2) such
that

Vi, j €1, N], / pi(x)xjde = 0;; and / i(z)dr =0
Q 12,

and a function ¢ in D({2) such that
/ =1 and Viel[l,N], / o(x)z;dx = 0.
Q Q

Hints. Since the open set §2 is bounded in L?*(§2), we see that the N 4 1 functions
Zo, Ti, where xo is the function z — 1 and the others are the coordinate functions,
are linearly independent in L?(£2). Deduce that there exist functions ¢; € L*(£2)
such that the determinant

det(/ C,-(x)@dx)i,je[u\ull £0.

Next, use the density of D(£2) in L*(§2). Finally, look for functions of the form
pi = Zi\;o @i 1k Ch-
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Appendix on Regularity

In this appendix, we will expand on results on the regularity of the solutions
of certain elliptic PDEs that we studied in Chapter 5. We will, in particular,
consider the solutions of the p-Laplacian equation.

Let us recall a result we used in Chapter 5 to show Vazquez’s strong
maximum principle. Let 2 be a bounded open subset of RY. Given a real
number p > 1, let g be an element of W'=1/PP(£). The solution of the
problem

(A1)
u=g on 042,

Lol {—div(|Vup2Vu) =0 in
is of class C! inside £2. This result is equivalent to the following one:

A solution u of —A,u = 0 in an open subset of RY is of class C! in that
open set.

The steps needed to prove this general result are very long and rather
difficult. They follow from different articles in the cases p < 2 and p > 2. The
main part can be found in the articles by Evans [31], Moser [52], Tolksdorff
[72], Lewis [46], and Di Benedetto [27].

Our aim is not to obtain the result that p-harmonic functions are C' by
adapting these proofs to the contents of this book. Taking into account earlier
remarks, we have rather chosen to give a partial presentation of the argu-
ments used by the authors mentioned above, insisting on a priori estimate
and fractional differentiation arguments that can be used for those types of
equations.

This appendix is therefore devoted to giving estimates for the typical prob-
lem of the so-called p-harmonic functions, that is, the solutions of —A,u = 0.
We begin by giving L*> estimates, for which we need truncation methods and
an iteration method by Moser, both of which can be followed quite easily.
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436 Appendix on Regularity

We then give W1* estimates followed by W1 estimates when p > 2, which
are easier to deal with than the case p < 2. The latter requires additional
precautions because of the singularity of the operator A,.

A.1 L°° Estimate

A.1.1 Inclusion in L°°(£2)

We begin by showing that if the function giving the boundary condition is
bounded, then the solution of the problem [Lap]h (cf. Chapter 5) on a bounded
open subset 2 of RV of class C! is also bounded.

Proposition A.2. Let 2 be a bounded open subset of R of class C'. Let u
be the solution in WP (£2) of the problem

—div(|VuP™2Vu) =0, u=g on 1.

If g is a function in L>®°(002) N WI=1/PP(902), then the solution u belongs to
L>®(2) and satisfies the inequalities

ming < v < maxg.

Proof of Proposition A.2.
We multiply the PDE by (u — max g)™, which is an element of Wol’p(Q),
and we use the generalized Green’s formula to obtain

/Q(|Vu|p_2Vu) - (V((u — max g)*))dz = 0.

This implies the equality V((u—max g)*) = 0 in {2, whence (u—max g)™ = C
for some constant C. Since this function vanishes on the boundary, we deduce
that (u — maxg)™ = 0 in §2, so that u < maxg. Multiplying the PDE by
(ming — u)*, we obtain u > min g in the same manner. O

A.1.2 Locally L*° Estimate

Proposition A.3. Without conditions on the boundary, the solution of the
problem [Laplh, namely the p-harmonic u, satisfies

u € Ly (£2)  with sup  |u()] < ClVullLo(B(2o,R))-
z€B(z0,R/2)

Proof of Proposition A.3.
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e When p > N, the Sobolev embedding theorem tells us that u € L>({2),
giving the first statement of the proposition.

e When p = N, the same theorem gives the inclusion u € L
with p < ¢ < 400 (cf. proof of step E).

e When p < N, we first show that the p-harmonic function u belongs to
LL (£2) for every q > p.

loc

q
loc

(£2) for every g

We use truncation. For M > 1, let
up = sup(—M, inf(u, M)).

It is obvious that uy, € Wy (£2) N L>®(£2) for every M.

Let us now consider the sequence of nonnegative real numbers {l,, }nen
with Iy = 0 and (20, + p)N/(N —p) = 2l;ns1 + p for every m € N*. This
sequence is increasing and converges to +o00. To show that u € L{ _ for every
q > p, it therefore suffices to show that u € L!™ for every integer m. This

loc
leads us to do an induction on the following property:

w e L AIN/(N=p)

u€ LAntP —

loc

The initial step, for m = 0, follows from the Sobolev embedding theorem
2.31. For the sake of simplicity, we omit the index m in the rest of the proof;
for example, [,,, becomes .

Let us consider vas = |ups|*ups. On the one hand, since |ups|?* is bounded
and up; € LP(£2), we have vy, € LP(£2). On the other hand, since the gradient
V(ups) is an element of LP, which we see by differentiating in the sense of
distributions, V(vys) is the product of a bounded function with V(ups), which
belongs to LP(§2). We can deduce the inclusion vy, € WHP(£2) from these two
results.

|2l ‘21

Let us multiply the equation of the p-Laplacian by v,;(P, where ( is a
regular function with values between 0 and 1. By the remark we made above
on gradients, which implies that we should, in general, replace |Vu| by the
absolute value |V (uaz)| of the gradient in the products, Green’s formula on 2
applied to the product

diV(‘VUMFD_QV’LLM)|’LLM|2ZUMCP

gives the inequality

(A.4) (2z+1)/9|vuM(x)|P\uM(x)\2l<de

< p/ Cp*1|VC \VuM|p71\uM(x)\2H1dx.
2



438 Appendix on Regularity

Applying Holder’s inequality to the right-hand side pB of (A.4), we find that
for an arbitrary nonnegative real number a, we have

1/p ' 1/p
pB <p<a/ |VuM|p\uM|2ledx> (a"’ /p/ |uM|2l+”\VC|pda:)
Q Q

Next, for a = 1/2, we use a mean value inequality, giving a constant ¢ de-
pending only on p and on universal data, such that

1
pB< - [/ \VuM|p|uM|2l<pdx} + c[/ |uM|2l+P|vqux]
20 Q
The inequality (A.4) can then be written as
(A5 @+1/2) [ Fun@Plus(@P'cPdo < c [ fuw7Iv¢Pds].
2 2

We note that [Vuas|[Pu3) can be written as (p/(21 + p))p|V(\uM|2l/puM) }p.
The function w = |upr|?/Pupr¢ belongs to WHP and its gradient satisfies
Vw = (V(|lua|?Puns) + |uar|?/PunVC. Using Minkowski’s inequality and
the discrete Holder inequality, it follows that

||V’LU||£ < or/p’ [ |CV(|uM|2l/puM)||§ + |||UM|2l/pqu<H§]

Noting that (41 + 1)(p/(2l + p))? is bounded from above by a constant
depending only on p, equation (A.5) gives

(2l +1/2)pP
(2l + p)P

Let us now use reasoning that combines the Sobolev inequality and that of
Poincaré: since w € WHP(£2) and p < N, we can use the Sobolev embedding
theorem to deduce the inequality ||w||psn/(v-p < Cllw]|w1.r. Moreover, since ¢
has compact support, the Poincaré inequality gives ||w|[w1.» < C'||Vw||L».
Combining these inequalities to obtain a lower bound for the left-hand side of
(A.5), we find

(21+1/2)p1’/ (21/p) 41 NP/ N—p (N—p)/N
A6 5 (RN““M' 9 dm)

/ IV (lunt 2Pun ) < © / 2P| VCP.
RN RN

< K/ lung |2PP|V¢|Pda.
]RN

Next, we use the induction hypothesis, namely that u € Liﬁi’p . Since
0< (¢ <1, we have (CHPN/(N=p) < ¢Np/(N-p)  (Consequently, we can
take the right-limit of the previous inequality for M — +o0o. Setting
Chp = (214 1/2)pP /(21 + p)P, we obtain the relation

. 2l+p p+21 p
Cup i NaniCEE oy < B [ 729G da,
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Both Fatou’s lemma and the monotone convergence theorem ensure us that

w e LEHIN/(N=D)

We have thus proved that for every ¢ > p, the function w is an element of
Lq

loc(‘Q)'
Next, we wish to show that u is an element of L

(£2), concluding the induction argument.

.- We will work the case

p < N out in detail. A remark at the end of the proof will make it possible to
easily adapt the proof to the case p = N.

During the proof we will use uniform upper bounds for the gradients of
regular functions with values between 0 and 1 whose supports form a nonde-
creasing sequence of compact sets. We have the following result.

Lemma A.7. Let R and o be two positive numbers. There exists a function ¢
in D(B(0,R + o)) equal to 1 on B(0, R), with values between 0 and 1, and

such that

wel< &
ag

for a universal constant C.

Proof of Lemma A.7.
Let ¢ be an even function on R with support in {|t| < 2} that equals 1 on
{|t] < 1}. We define the following radial function:

((z) = p(|2l/o + (1 = R/07)).

The function ¢ clearly has support in B(0, R + o) and equals 1 on B(0, R).
Moreover, we have

V<@ = | ¢ (el + (1= Bo))] < 2119l

which concludes the proof. a

Let us return to the estimate of Proposition A.3. We suppose that xg € {2
and that R satisfies B(xg, R) € {2. We will show that v € L*(B(xo, R/2)).
To do this, we define sequences {ky, }, {Rm}, and {l,,} (the latter has already
been defined above):

N \m N R
kmz(—) U A p =k = ———(p+20 1), Ry = —(1+1/2).
N ) P +p N_p(p+ 1), Bm =5 (1+1/2")
We also define a regular function (, with values between 0 and 1 that
equals 1 on B(xg, Rm41), has support in B(zg, R,,), and whose gradient sat-
isfies |V(n| < C/(Ryy — Rint1) < 2™C'/R by the previous lemma.
Finally, let

L/km
Oy, = (/ |u|’“mgﬁp/(N—P)dx> .
B(xzo,Rm)
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From the previous inequalities, we deduce that there exists a constant K*
such that

kP 1/km
) < (gr—Fm -
(A-8) A (K km+1/2—p) “

Indeed, let
B,, = B(zg,Ry,) and I, :/ |u|km(§m)Np/(N7p)da:,
B(zo,Rm)

whence
Np/(N—
Im+1:/ (\U|1+2lm/pgm+1) PIN=R) gy
Bt

By taking the (N — p)/Nth power and replacing ¢ by the function (,,+1, which
has the same properties as ¢, inequality (A.6) gives

K
(Im+1)(N_p)/N < T(/B |U|km|VCm+1|p dx)
m,P m41

and even, by using the upper bound for the gradient,

K 9(m+1)p
(L) NPV < crr (/ | dz).
Clm,P Rp Bt

Since (,, = 1 on B,,4+1, the last integral may be replaced by the integral
me+1 |u|k’"ij\{/(N_p)dx. Finally, since By,11 C By, we can bound this from
above by the integral of the same function over B,,. It follows that

K 9(m+1)p
I N-PN ¢ o ( / - N/(medx).
(Ims1) GO T (),

Note that 1/k,,+1 = [(N —p)/N] - [1/k.], so that this inequality taken to
the power 1/k,, leads to the relation

OUm41 = [Im+1]1/km < Ko,

in which K20t p 1/,
Km = {Clm,pc RP } '
Since [KC’p2(m+1)p/RP]1/km is bounded by K*, which is independent of [,
and 1 ke
(Cy,, ) = ((k‘m —pz 1/2)pp) ;

we obtain (A.8).
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By iterating this relation, we obtain

m

Umt1 < Qo €Xp |:Z
0

In(K*) + pln(k;) —In(k; —p+1/2)
kj

Since {k;} is a geometric progression with common ratio > 1, the sequence
with general term (In(K*)+ pln(k;) —In(k; —p+ 1/2))]{;{1 converges. Conse-
quently, we have a,,, < K'aq for every m. By taking the limit for m — +oo,
we obtain

||uHLoo(B(zO,R/2)) <K ||“HLP(B(mo,R))' O

Remark A.9. When p = N, we multiply by |u|?u¢P and use the Sobolev
embedding of W in L for a fixed ¢ > p. The sequence k,, is then defined
to be (¢/p)™ p and 20y, +p = kp = ¢/p(p + 2lm—1).

Remark A.10. Let 8 be a nondecreasing function with 5(0) = 0 and |8(z)| <
C|z|P~1. The previous estimate then also holds for a solution u € WP (£2) of

—Apu+B(u) =0

in £2.
It suffices to disregard the term [, B(u)|uas|* upsr¢Pda, which is nonnega-
tive, when multiplying the equation by |uas |2 upsCP.

|2l

A.2 Wi* and WhH> Estimates When p > 2

In this section, we assume that p > 2. We first differentiate the equation of
the p-Laplacian formally with respect to the variable x;. This corresponds
to considering u as a regular function. This technique will be justified by
using the discrete derivative, that is, by replacing the expression —0;(A,u)
by (—A,u” + Apu)/h, where h = he;, and a generalization of this for all
derivatives.

We begin with estimates for ||Vul|y, for arbitrary k > p.

A.2.1 Estimates for Vu in WhHk

In the following computations, the symbol C' denotes constants that can differ
from one line to the next. These different values depend only on N, p, {2 and
on universal data. Moreover, we may, and do, suppose that N > 3, in which
case we pass to the next step of the induction we are using by considering
the gth power of ||Vul[b for ¢ = N/(N —2). When N = 2, we will replace
this exponent by an arbitrary real number ¢ > 1. In a first step, we multiply
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the equation 8;(—A,u) = 0 by (20;u, where ( is a regular function with
values between 0 and 1, giving a first local estimate for the gradient in W1*
with & = pN/(N —2) (this is the aim of Proposition A.11). In the next
step, we take the analogous inequalities obtained by multiplying the same
differential equation by ¢?|0;u|*d;u. By induction, we thus obtain Proposition
A.11, which gives a local estimate for the gradient in W for arbitrary k.

Proposition A.11. Let u be a regular solution of —Apu =0 in £2. Then for
every p > 0 and every o > 0, we have the following local estimate for u in
WYE with k = pN /(N — 2):

(N-2)/N
(A.12) ( / |vu\PN/<N*2>da:) < % |VulPdz,
B(0,p) 0% JB(0,p+0)
which can also be written as
(A.13) IVullrBo.p)) < C(p, 0, 0)IVUllLr(B(0,p40))-

Proof of Proposition A.11. Let us first note that by exchanging the deriva-
tives, expressing the identity 9;(—A,u) = 0 leads to

0= Bﬁj(|Vu|p*2u,j) = 8j(\Vu|p*2u,ij + (p — 2)|Vu|p74u7kiuwku7j).

As above, we multiply this relation by (d;u)¢2. Integrating over R™ and ap-
plying Green’s formula, we obtain

/ |Vu|p_2|3iVu|2C2+(p—2)/ |VuP~4(0; Vu - Vu)?¢?
RN RN

<2 / VulP=2(10,Vu - Vul)C0:C].
]RN

By taking the absolute values and disregarding the second term of the left-
hand side, which is nonnegative because p > 2, we see that

(A.14) / VP20, Vul2¢? < 2p/ VP20,V ul [V [¢] 15¢].
RN RN

We apply Schwarz’s inequality to the right-hand side:

2
[/ (V| P=2/2|9;Vu| [VulP/2]0:¢] ¢ dx]
RN

< (/RN Vulr2(0,Vu?l P d) (/RN Vul?|0,C[? de).

Applying the Young type inequality, which we will use several times, for a
suitable choice of &, we find

a? 1
v 0 bl <e— —b2,
(%) >0, labl<e 1 + 5
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so that relation (A.14) becomes
1
/ [VulP~2|0;Vu|*¢* < —/ \vu\P—2|aNu\2<2+c/ [VulP|9;¢|%.

RN 2 Jr~ RN
Consequently, for a constant C' > 0, we have
(A.15) / |VulP~2|0; Vu|?¢? < c/ |VulP|9;¢|?.

RN RN

We note that the left-hand side of (A.15) equals the expression

4 _
P/RN ¢, (IVu|?2/2Vu)) da.

Given the formula for the derivative of a product, this last integral can be
written as

/ [0:(|Vu| P22V ) — (|Vu|P~2/2Vud;()) da.
RN

Expanding this square of a difference and applying inequality (x) to the cor-
responding double product, for a suitable e, we obtain a lower bound for the
left-hand side of (A.15) that gives us the inequality

(A.16) / 10,1Vl P2 /2vu0) | de < c/ IVl |9:¢ 2de
RN RN
Taking the sum of this inequality over ¢ then leads to
(A.17) / [V(|Vu|P~2/2vu¢))? < C/ |VulP| V|2 d.
RN RN

Let us now consider the function ¢|Vu|?=2/2Vu. Since N > 2, the Sobolev
embedding theorem allows us to write the following inequality at the critical
exponent 2N /(N — 2):

| C|Vu\(”*2)/2Vu||2N/(N_2) < C|VU|(Z)72)/2VUHHl(]RN)'

Moreover, since the function ¢ has compact support, we can use the Poincaré
inequality to determine the upper bound, giving

(A.18) [ CIVul P22V |,y vy < CIVC IV P2 200) .

Applying inequality (A.17), we find

_ (N-2)/N
(a1) / (19up ) ) <C / VulP| V¢ 2da
RN RN
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Let us now assume that the regular function ¢ takes on its values between 0
and 1, has support in B(0,p + o), and equals 1 in B(0, p). Then, using the
usual upper bound for the gradient V¢ (cf. Lemma A.7), the above implies
the desired result:

(N-2)/N C
) < —2/ |VulPdz. O
0% JB(0,p+0)

Proposition A.21. Let u be a regular solution of —Ap,u = 0. Then for every
p > 0 and for every o > 0, there exists a constant C' depending only on p,
o, p, and l, such that

(A.20) ( |Vu[PN/(N=2) g
B(0,p)

C

(A.22) IVull Lorann/iv-2)(50,p)) < ?"quLP*zl(B(O,era))-

Proof of Proposition A.21.

This time, we multiply the derivative with respect to x; of the equation
of the p-Laplacian by ¢2|0;u|?'0;u. By computations similar to the preceding
ones, generalizing to the case related to | = 0, in particular the passage from
(A.15) to (A.17), we obtain

420 +1)

| |V(Vulf/* v degc/ VaulPT2| V2.
el IO Ofe<c [ 1varwg

Once more using the combination of the Poincaré and Sobolev inequalities,
the previous inequalities remain valid when we replace p by p 4+ 2l in each of
the integrals. Setting Cy, = 4(21 +1)/(2l +p)2, we then obtain inequality
(A.23), which, up to a coefficient, equals inequality (A.19) with p replaced by
p + 21, namely:

. N/(N=2) , \N2/N
(A.23) Cly (/RN(|Vu|(p+21)C2) /( )dm)
< C/ |Vu| P20 |V ¢ 2 da.
RN

Using a regular function ¢ equal 1 in B(0,p) and with support in
B(0, p+ o), we deduce an upper bound analogous to (A.20):

(A.24) Cr (/ |Vu|(p+2l)N/(N72)dx) (N—2)/N
" B0.0)

< %/ V| P20 ., 0
0% JB(0,p+0)

For an arbitrary integer I, these inequalities allow us to bound Vu in L]

for g = (p+2l)N/N — 2, from above by its norm in Lfotﬂ. They will allow us
to determine local estimates for the gradient in L°°.
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A.2.2 Estimate for the Gradient in L°

loc

Proposition A.25. Let u be a p-harmonic function on RN . Then for every

o0

. satisfies

point xg and every R > 0, the gradient of u, which belongs to L
the inequality

sup{|Vu(z)” | € B(zo, R/2)} < C’/ |Vul|Pde.
B(zo,R)
Proof of Proposition A.25.

We use formula (A.24). To do this, as in Subsection A.1.2, we define
the sequence k,, = (21, + p) = (21 + p)N/(N — 2) whose first term kg
corresponds to lp = 0. This is a geometric progression with common ratio
N/(N —2) > 1. One can assume that xop = 0. We also define the sequence
{Rn} by setting R,, = (R/2)(1+2~™). We set

1/Em
Qo = (/ [Vu kdm) ,
B(0,R,m)

whence, by a computation analogous to that leading to (A.8),

CkQ 1/km,
< - m m-
et ((km +1- p)4> ¢

- Ck2 1/km
Using the infinite product Hm:O( m ] 4> , which is convergent

because {kp,} is a geometric progression with common ratio > 1, we obtain

m——+oo m——+o0

— 1/km —
lim (/ |Vu|k'”dx> < lim a,, < Cag,
B(0,R/2)
giving the desired inequality. O

A.2.3 Justification of the Formal Derivative for a Nonregular
Function

Instead of differentiating with respect to x;, we use a discrete differentiation
with translation step h = he;. Instead of the equation, we write

—Apuh + Apu

(A.26) .

:0’

%
where 1" denotes the translation of w in the direction h .
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Outline of the Method. It is analogous to those used previously.
We first multiply equation (A.26) by ((u" —u)/h)¢? and integrate over
the open set 2. We can easily see that

(IVu"[P2Vul — [VuP~2Vu) - ((Vu" = Vu)¢?) > 0.

We thus obtain the inequality
(A.27) /RN (V" P=2Vul — [VuP~2Vu) - (V" = Vu)(?)da

< 2/RN‘(|Vuh|p_2Vuh — |Vu|p_2Vu) . ((uh — u)(VC)‘dw.
From this inequality, we deduce the formula

(N=2)/N
(a29) ([ [waprieagniee) <c [ [wupier
RN RN

In a second step, we multiply equality (A.26) by the function
C(ul —u)/h)? (uh — u)/h. We set

Dy (u) = (|Vuh\p*2Vuh — |VulP~2Vu).
As in the previous step, we note that
[u" — u|? Dy, (u) - (Vuy, — Vu)¢?

is nonnegative. Consequently, Green’s formula gives the inequality

(A29) (2 +1) /Q " — w? Dy () - (Vun — V)

<2 [ IDa)| " = a1 Vo
10}

From this, computations similar to those of the first step allow us to estab-
lish on the one hand, that if Vu € L®*+20/2 then this gradient belongs to
LW+2DN/(N=2) and on the other hand, that the corresponding norm satisfies

420 +1)

(/ V| P H2ON/N=2(2N/(N=2) g,
RN

< c/ |VulPH2Iv¢|2de,
RN

)<N—2>/N

which generalizes equation (A.28). This establishes an induction, with initial
step (A.28).
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First Step. In order to bound the right-hand side of (A.27) from above, we
use the vector function \t|1’2/pt. By applying the mean value theorem to it
for the vectors t and t', we can write

1617228 = 122 < (2= 2/p) (] + el') 71t = ).

By taking t = |2|®?=2)/2z and ¢’ = |y|(P=2)/2y for two given vectors z and y
in RY, we obtain the inequality

(A31)  [Jal" 22 — [y["~?y|

_ ‘ Hmlp/2—1x‘ (p—2)/p|x|p/2—1 ‘p/2—1y‘(p—2)/p |p/2—1

z—|ly ly y‘
—2 _ _
< (2= 2/p)(|[P/2 + |y[P/2) PR P p/2 e — [y 2y
We set

Ap(u) = / (V" P2Vul — |[VuP=2Vu) - (V" — Vu)(?)da
RN
and
Al (u) = 2/ (VP2 Vu" — [VuP~2Vu) - ((u" — u)¢V¢)da.
RN

We wish to bound Aj (u) from above and Ap(u) from below.

Using inequality (A.30) with vectors z = Vu and y = Vu" and the inequal-
ity (4 —4/p)ab < ea® + C.b?, where € > 0 will be chosen later on depending
on the upper bounds we have found, we can write the right-hand side A}, (u)
of (A.27) as

A(u) < 2 /Q 1D ()] [ — u| ¢ V¢ de
< (4-4/p) [/ (IVulf/2 4 [Ful(r/2) =20
]RN
VUt | P=220ut — V| P22 [u — uf [¢] [V(|dz |,

whence

Al (u) < s/ |IVut|P=2/2guk — V| P=2270u)? ¢ de
RN

+C: /N (IVulP/? + [Vl Pr2) 2y 2 | da
R
Next, using the inequality

(A.32) (ap/2 Jrbp/2)2/p < C(a‘p72 erp,g)l/(pr),
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we obtain
(A.33) ! () < 6/ ||vuh‘(P*2)/2vuh _ |vu|(:0*2)/2vu|2 |C|2 dx
RN
+ OE/ (IVulP~2 + |V P=2) [u" — u|? V¢ |? da.
RN

For the sake of simplicity, we will, from now on, keep the notation x = Vu
and y = Vu". Moreover, we set

B (u) = / o] P=2/20 — |y| =22y |2 da,
RN
Colw) = [ TP+ Iy Ju" — w9 d,
RN
Inequality (A.27) then becomes

\Ah(u)| < QEBh(U) + QCSC}L(U)

Let us continue by bounding Ap(u) from below by an expression that is
proportional to By (u). This will then allow us to bound Bj(u) from above
by Cj(u), up to a multiplicative constant. We use the following result for the
lower bound.

Lemma A.34. Let p be a real number > 2. There exists a constant c, > 0
depending only on p, such that for every pair (z,y) of elements of RN, we
have

_ _ _ _ 2
(A35) (el — ol 2) - (2~ 9) > el ol 02—y 0
which in turn implies that Ap(u) > ¢, Bp(u).

Proof of Lemma A.3/.
After dividing by |z|?, if necessary, we may, and do, assume that z has
norm 1.

Case Where |x —y| > 1/2. Let us use a contradiction argument. We suppose
that there exist sequences {z,} and {y,} with |z,| =1, |z, —yn| = 1/2, and
the following inequality, which implies that {y,} is bounded:

_ 1 _
(1 + ‘yn|p - (‘Tn : yn)(l + |yn|p 2) < E(l + |yn|p - 2(xn : yn)‘yn|(p 2)/2)'

We can then extract subsequences from x, and y, such that z,, — = with
|| =1 and y,, — y. By taking the limit in the inequality above, we obtain

(I+lylP = (z-y)(1 + y[P7?)) <0,
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which can also be written as
(lz[P =2z = [y[P%y) - (z — y) < 0.

Now, by using the strict convexity of the function x +— |z|P, this inequality
implies that y = z, giving a contradiction with |x—y| > 1/2. Inequality (A.35)
follows.

Case Where |z —y| < 1/2. In this case, |y| > 1/2. We begin by showing
(A.35) in the scalar case. If © = 1, then y € [1/2, 3/2] and if © = —1, then
the situation is symmetric with respect to 0. In the scalar case, we reduce to
proving that

(p—1)2'77

(A36)  Vye[1/2,1], (1—yHl-y) > o

(1—yP/?)%

Indeed, by replacing y by 1/y, this inequality remains true when y € [1,2],
and in particular when y € [1, 3/2].

In order to prove (A.36), we use the mean value theorem for the function
y — yP~1, and then for the function y — 3?/2. This leads to

A=lyP 1=y =@-DA+0y - 1)) *1-y)?
> (p—1)(1/2)"2(1 — y)

and (P = 2 (L4 - D) < R )

for real numbers 6 and ¢’ in 0, 1], and consequently (A.36).

Let us now prove inequality (A.35) in the vectorial case, again for |z| =1
and |y| > 1/2, where the constant c, is defined by ¢, = [(p —1)/p?|2*7P.
By using, in particular, inequality (A.36) applied to the scalar function ¥ =
(1= lylP~H)(1 = |y]), we obtain

(Je[" =22 — |yl"2y) - (@ —y) =Y + (jyl — 2 - y) (1 + [yI"™?)
> cp(1= [yl + (lyl = = - y) (1 + |y]”~?)
_ _ 2 _
= ||| @722 — [y P22y 4 26, [y PP (@ y — |y))
+(lyl =2 y) A+ [yI"™?)
= o |le|PD/2 — |y P22y
+(lyl =2 - y) L+ [yl ~2 = 2e |y P~2)72)
> cp||x\(7’_2)/2x _ |y|(p—2)/2y’2
since we have, on the one hand, the inequality |z - y| < |y| and on the other

hand, the inequality 2¢,|y|?~2/2 < 1+ |y|P~2 because ¢, is less than 1. This
concludes the proof of the lemma. a
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Let us return to Proposition A.25. Recall that the notation h in fact de-
notes he;. By the lemma, the inequality Ay (u) < 2e By (u)+2C.Cp(u) becomes
(¢p — 26)Bp(u) < 2C:Ch(u). In other words, since £ may be chosen < ¢,/2,
we may conclude that there exists a constant C' such that By (u) < CCh(u).
Dividing by h? then gives

By, (u) :/ ’|vuh|<1’*2>/2‘vu’u|vu|<1f’*2>/2w‘2C2
h2 RN h

ho_ a2
< [ (val e vatp) e
RN

which can also be written as

() Drle

h 2 h _ 2
<C RJVW*?]“]%*“( |vg|2+c/RN|wh|P*2]“7h“‘ IV ¢|2.

h

In the first integral on the right-hand side, the function (u" — w)/h converges

almost everywhere to d;u. Since the function u belongs to WP, the continuity
of the translation 75, in LP and the convergence of (u" — u)/h to d;u also give
the convergence of the second integral on the right-hand side, to

0/ |VulP~2|05ul?| V).
RN
It follows that when he; — 0, the right-hand side of (%) converges to
20/ |Vu|P~2|0;u)? | V¢ d.
RN

The first integral in (x) is therefore bounded. We also note that, up to a
factor (2, its integrand can be written as the quotient

ﬁ“Vuﬁp_Q)/?Vu — |Vul|e=2/2gyh

which converges, almost everywhere, to the absolute value of the partial
derivative

%8¢(|Vu\(p72)/2Vu).

From this result, the limits we found earlier, Fatou’s lemma, and inequality
(), we deduce

(A.37) / 10,1V u|®2/2Vu)¢ PPz < c/ VP2 |05 V¢ 2da.
RN RN
Taking the sum of these inequalities from ¢ = 1 to i = N, we obtain

(A.38) / IV (|Vu| P22 )¢ *de < c/ |VaulP~2 |[Vu|?| V| da.
RN RN
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In the integral on the left-hand side of (A.38), we write
V(|Vu|P=22V0) ¢ = V(|Vu|P2D/2Vu¢) — |[Vu|P=2/2Vu V.

Taking the square of the absolute value and applying an inequality of the type
ab < ga? + b? /e, as we have done before, we deduce that

(A.39) / V(¢ |Vu|P=272v0) Pdz < C/ \VulP|V¢|2da.
RN RN

The absolute value of the part between parentheses on the left, whose
gradient we take, is the pth power of |Vu|¢?/P. Hence, since |Vu[P/2¢ is an
element of L? and the gradient of this function also belongs to L? by (A.39),
we find that

¢|Vul|P? € HYRY).
Let us apply a reasoning we have used before. First, by Sobolev’s embedding
theorem, we have

C|Vu|(p_2)/2Vu e [2N/(N=2)
and ICIvul @22y gy < <Vl 2200

By the Poincaré inequality, which allows us to bound the H' norm from above
by the norm of the gradient in L?, we finally obtain the inequality

(N-2)/N
(A.40) ( / |vu|pN/<N*2>42N/<N*2>dx) <C / |Vul|P|V | d,
RN RN

which is the bound (A.28). This completes the first step of our proof.
Second Step. Using a process similar to the previous one, we will now deduce
from the upper bound (A.40) that, step by step, we can obtain estimates for
the gradient in the spaces LloC for arbitrary k.

We replace the assumption of the ﬁrst step, namely Vu € L
L2 Let us multiply the difference A,u” — Ayu by

loc
P (e

where ¢ is a regular function with values between 0 and 1. Using Green’s
formula, we have seen that we obtain inequality (A.29):

Api(u) < 243, (u),

by Vu €

loc?

h

—

where

zzD _
Apg(u) = (21 +1) /‘ h w)  (Vun VU)Cde

h
Dh "U _u‘2l+1
= C|V¢|dex.
/,J | 5] ava
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We first consider the right-hand side, using inequality (A.30):

i) < 22| [

ul — w1 [ Vul| P22y — | V| (P=2)/27y
T B A

h

_ I+1 _
‘“ - “‘ (Il P2 4 |Vulp/2) de].

By a classical inequality, this becomes

;zl(u)

<e

/ ’uh —u ’21’ |Vuh|P=2/27yh — |Vu|(P=2)/27y |2
RN

h ‘ (dz
R

2(1+1)
for an ¢ that we will choose further on. We then use the lower bound for
Ap i (u), taking into account the definition of Dj(u), and using the result
(A.35) of Lemma A.34:

|vuh‘p/2 + ‘V’U,|p/2)2(p_2)/2

wl — w2l ) [ Vul|e=2) /2yl — |Vu|(P—2)/2v 2
Apa(u) > (2z+1)c,,/ | gZ“ | - [Vul
RN

Without going into the details of the computations, which are analogous to
those that lead from (A.31) to (A.37), in particular concerning the choice of
a suitable € and the application of (A.32), we obtain

wl — w2l |Vl |P=2/2ygyh — V| (P=2)/2y, |2
A e R e
RN

|V¢|2da.

uh
<c / (IVa P2 + [Vl =)
RN

— 2042
=

Keeping in mind the assumption that Vu € Lfotm and using Holder’s inequal-
ity with exponents (p + 21)/(21 + 2) for |(u" — u)/h|?*+2|V¢|2(+2)/(P+2D) and
(p+20)/(p—2) for (|Vu"|P=2 4 |Vu|P=2|V¢|2P=2)/(P+2) e can repeat earlier
arguments to show that the right-hand side of (A.41) is bounded from above
by

ult — 2l
e [ rwapregk s [ varwep s [ v,
RN RN RN h

Consequently, by (A.41), the sequence

(1= o)

is bounded in LZ2.
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Since V(|Vu[P/2)¢ is an element of L? and h is colinear with e;, the
sequence {Dy(u)} converges strongly to 0;(|Vu|®P=2/2Vu) in L?(supp(¢))
and there exists a subsequence that converges almost everywhere. Likewise,
|(u" —u)/h|' converges in L? to |0;u|' and there exists a subsequence that
also converges almost everywhere.

By Fatou’s lemma, we therefore have

[ 1vulo(vup’?) Pda
RN

‘uh — |2 |Vuh|P=2/27yh — |Vu|(P=2)/27y |2
i

<lim [ ¢? ; ,

RN

where the last sequence is bounded by

c / Va2 Ve

By taking the sum of these results over the indexes ¢ from 1 to N, we
obtain

(A.42) / CIVul? |V (|VulP/?) Pdz < c/ |VulP+2 V(|2 da.
RN RN
The results of Chapter 2 allow us to write
l p/2y| — p p/241
IVl [VAVa?)| = s | VATuP’>),

giving the inclusion of |Vu|P/2!in L2 ..
From this, we deduce the following upper bound:

(2l+1)4/ 2 p+2l/2 2 /
= < p+21 2.
o L evavaref <o [ areg

Differentiation of the product of ¢ and |Vu|(?+P)/2 Jeads us to write the left-
hand side as the integral associated with the square of

(A.43)

v(|vu|(P+21)/2<) _ |Vu|(p+2l)/2VC.

We conclude as in the step | = 0, which gives us the existence of a constant C'
that is independent of [, such that

420 +1
( + )/ |V(|VU|(p+2l)/2C)|2dI§C/ ‘Vu|p+21|v<|2dx.
RN

(a4 o |

By assumption, the function |Vu|p/2+lC belongs to L% .. The upper bound
(A.44) proves that the gradient of this function also belongs to LZ _. It follows

loc*

that |Vul|P/?H¢ € H _, so that the Sobolev embedding theorem gives

(A.45) IVl 2HE || oy < | IVUP2HE|
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To conclude, we apply the Poincaré inequality, which gives
Va2 o sin—ay < | VAV P20 || .

Consequently, taking into account inequality (A.45), we obtain the inclusion
of Vu in LPT2DN/(N=2) Moreover, because of the upper bound (A.44), we
can deduce the inequality announced in (A.30), namely

420+ 1) (/ V| (PH2ON/(N=2) 2N/ (N=2) g
]RN

(N—2)/N
(p+20)? x)

< c/ |VuP 2V ¢ de.
RN

This concludes the second step.

Let us finish the proof. From this last upper bound, which allows us to
pass from Vu € LPt20/2 to Vo € LPH2ON/(N=2) we deduce step by step
that Vu € LF for every k. Finally, by following the process described several
times in this chapter and using once more the sequences {(;,}, {km}, and
{Rm}, we obtain, by induction, an estimate for the L> norm of |Vu. O
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Notation

Spaces
(RM)*, 85
Xm(£2), 325
Y, (£2), 326

Distribution spaces
D'(1), 27
DF($2), 27
E'(RY), 181
HS_I/Q(RN_l), 185
H™*(RY), 183
S'(RY), 180
W*P(£2), 219

Function spaces
M), 21
C>(0), 94
Cc™(£2), 20
(), 20
M), 21
C™I2(§2), 98
cr(n), 307
D(R), 20
D(]0, +o0l, B), 190
D*(02), 25
Dk, (£2), 25
£%°(0), 25
L(X,Y), 4
LP(0,C), 34
L?P(]0, +o0l, B), 189

S(R™), 179

LD(0), 328

as derivatives
BD(£2), 339
BV (£2), 281, 299, 314
BV(£2), 281

Measure spaces

M(£2), 300
M'(£2), 300

Sobolev spaces

H™(RY), 58, 182
H*(RY), 181
H'Y*(8B), 272
wi-ter(@RN=1 115
WhE=YPP(902), 150
W™P(02), 57, 84, 94
W*P(£2), 189, 192
WP(82), 68
WhP(£2), 63
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(p, v, 12) (trace space), 190
(

Spaces of functions with measures
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Index

A
absolute continuity, 57, 64
absolutely continuous, 310

B

base, filter, 2

basis
canonical —, 405
dual —, 8
of open subsets for a topology, 10
of tangent vectors, 146
orthonormal —, 146

best constant, 296

C
coercivity, 234, 242, 281, 283
compactness, 11
comparison of solutions, 268
computation of variations, 280
conjugate exponent, 63, 140, 141
constant
Lipschitz —, 65
universal —, 439
convergence
almost everywhere —, 197, 227
dominated —, 42, 48, 264, 386
in the sense of distributions, 366
monotone —, 378, 439
nontangential —, 373, 389, 391, 433
norm —, 50
tight —, 303, 322, 360
uniform —, 35, 301
vague —, 284, 303, 347, 356, 357, 360
weak —, 10, 227

weak sequential —, 10

weak-x —, 390
convolution, 26, 49, 82, 147, 306, 324,
389, 394, 403
cover, 11, 23, 38, 60, 61, 104, 165
D
deformation tensor, 107, 176, 259, 416
density

of a measure, 311
of a subspace, 38, 172, 183, 271, 281,
314, 316, 333, 339
superficial — on 942, 130, 135
derivative
A-normal —, 250
directional —, 232, 235
fractional —, 113, 114, 123, 169
in the sense of distributions, 32, 139,
156, 241
normal —, XV, 146, 176, 250, 274, 421
tangential —, 95, 149, 176
with respect to a vector, 145
differentiability
in the sense of Fréchet, 232, 237
in the sense of Gateaux, 232-234, 239
displacement, 259
distribution
associated with a locally summable
function, 29, 225, 401
deformation —, 326
Dirac —, 29, 33, 123, 137
finite part —, 399, 400
finite subsets —, 52
gradient —, 361
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Hadamard finite part —, 29

homogeneous —, 225, 402

logarithmic finite subset —, 53

of order < k, 27

on an open subset, 23

positive —, 300

principal value —, 29

tempered —, 179, 180, 401, 420

two-sided finite subset —, 53

with compact support, 49, 415
domain of a function, 350, 353, 367

E
eigenfunction, 240, 241
eigenspace, 241
eigenvalue, 239, 241, 265, 280, 289
elasticity, 259
ellipticity, XIII
embedding, 76, 188, 200, 318, 333, 336,
364
compact —, 20, 23, 216, 220, 318
continuous —, 20, 47
critical —, 188, 296
Sobolev —, 164, 238, 248, 296, 437,
438, 443, 451
epigraph, 231
equation
Cartesian —, 99
Euler —, 261, 293
in the sense of distributions, 361
of the p-Laplacian, 444
PDE, divergence, XVI
PDE, elliptic at one point, XIV
PDE, elliptic on an open set, XIV
PDE, linear, XIII
PDE, quasi-linear, XIII
PDE, strictly elliptic, XIV
PDE, uniformly elliptic, XIV
equicontinuity, 12, 40, 98, 218

F
family
directed —, 9
of seminorms, 2, 9, 10
separating —, 10
first eigenvalue, 268, 286
formula

Fubini’s —, 63, 118, 153, 203, 320, 397,

407

Green’s —, 134, 135, 142-144, 146,
172, 239, 245, 250, 252, 253, 267,
290, 292, 315, 343, 346, 348, 421,
437, 442, 446

Green’s generalized —, 135, 241, 250,
259, 265, 344, 436

Leibniz —, 68, 155, 156

Poisson —, 424

reciprocity —, 225

Taylor’s —, 400

Fourier series, 16
function

Ls.c—, 231, 272, 307, 347

Hardy-Littlewood maximal (HLM) —,
378, 406

absolutely continuous —, 54, 97, 105

analytic —, 389

asymptotic —, 362

biconjugate —, 349

characteristic —, 150, 308

conjugate — in the sense of Fenchel,
348, 350, 355, 356, 362, 367

convex —, 232

eigen-, 224

equi-integrable —, 50

p-equivalent —s, 309

Euler, I —, 226

Holder —, 21, 106

Hoélder continuous —, 83, 98

Hardy-Littlewood maximal (HLM) —,
372

harmonic —, 269, 374, 376, 394, 421,
424

p-harmonic —, 435, 436

Heaviside step —, 52, 122

holomorphic —, 221, 372, 377, 390,
394

p-integrable — 308, 309

Lipschitz —, 21, 64, 131, 173, 206, 231

locally integrable —, 310

maximal Hilbert —, 398, 404, 406

measurable —, 34, 35

p-measurable —, 309

of p-measure 0, 309

of a measure, 348, 366

of bounded variation, 67

positively homogeneous —, 349

proper — (with values in R), 348

radial —, 297, 356, 402



rapidly decreasing —, 179, 412
rearrangement —, 51, 385
Riemann-integrable —, 65
simple —, 51, 52, 189
slowly increasing —, 182, 428
step —, 52
strongly measurable —, 190
subdifferentiable —, 232
subharmonic —, 272
superharmonic —, 270
universally measurable —, 369
weakly l.s.c.—, 242
with measures as deformations, 339
fundamental solution, 71, 82, 111, 214,
324, 326, 361, 421
fundamental system
of neighborhoods, 2, 24, 25
countable —, 24

G
gluing, 101, 106, 249, 321
Green’s second theorem, 111

H
Hessian, 146, 363
higher order trace, 145
homorphism, 388
hypercube, 65
hyperplane, 8, 9, 18, 230
kernel, 230
hypersurface, 92, 145, 299, 331, 341, 342

1
identity
Picone’s —, 288, 289
Pohozaev —, 297
inequality
Clarkson’s —, 19
continuity —, 221
convexity —, 121, 202, 233, 262, 289
Holder’s —, 34, 63, 66, 81, 97, 124,
128, 198, 414
discrete Holder’s —, 148, 438
generalized Holder’s —, 34, 366
Jensen’s —, 48, 358
Korn’s —, 260, 326, 327, 371, 415-417
Minkowski’s —, 34, 35, 86, 438
Poincaré’s —, 237, 260, 262, 283, 438,
443, 451, 454
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generalized Poincaré’s —, 106
Riesz —, 372, 409, 410, 414
Schwarz —, 442

injection
compact —, 95
critical —, 70

isometry, 394, 405

iterated gradients, 176

J
Jacobian, 400
K
kernel
Poisson —, 270-272, 372, 377, 389,

423, 433
Riesz —, 372, 400, 409

L
Lebesgue decomposition, 312, 354
lemma
Fatou’s —, 50, 65, 192, 197, 394, 395,
408, 439, 450
Sobolev’s —, 72, 213
lifting, 122, 123, 134, 141, 147, 150, 151,
159, 163, 174, 271, 272, 283
linear functional
continuous —, 8, 11, 13, 15, 46
sequentially continuous —, 28
linear growth, 349, 350
local coordinate system, 94, 244

M
measure
absolutely continuous —, 67, 347, 369
bounded —, 67, 300, 321
charging a subset, 320
complex —, 300
conjugate —, 300
(N — 1)-dimensional, 71, 107
dominated by v, 311
Lebesgue —, 34, 36, 47, 50
mutually singular —s, in the vector
case, 314
on an open set, 300
positive —, 300
positive part of a —, 303
real —, 300
real part of a —, 303
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singular —, 311, 367

vector-valued —, 303
minimal surface, 282
Minkowski functional, 46

N
norm
inner product —, 16
operator —, 5
normal, 135, 136, 275, 279, 342, 363
outward-pointing, 137, 343, 344
normal trace, 250
normed algebra, 21

(0}
open set
class Ct —, 90
Lipschitz —, VII, 80, 92, 173, 219, 363
relatively compact —, 104
uniformly Lipschitz —, 91
uniformly of class C' —, 91
uniformly C™ —, 94
with the cone property, 80
operator
compact —, 47
divergence —, 411
Laplacian —, XV, 236, 410
p-Laplacian —, 261, 278, 289, 292
of weak type (p,p), 393, 408
Riesz —, 399
translation —, 66

P
parallelogram law, 16
partition of unity, 60, 91, 104, 244, 316,
323
point
Lebesgue —, 373, 389, 433
limit —, 35
principle
Hopf —, 279, 287, 294
maximum —, 265
strong maximum —, 241, 267-269,
273, 275, 287, 289
weak maximum —, 265, 272, 275
Vazquez —, 267, 293, 435
problem
coercive —, 280

Dirichlet —, XV, 236, 238, 239, 270,
273, 377, 423

nonhomogeneous Dirichlet —, 257

bi-Laplacian —, XVI

p-Laplacian —, XVI, 261

limit —, XV, 110

minimal surface —, XVII

Neumann —, XVI, 236, 239, 250, 252,

254, 294, 295
nonhomogeneous Neumann —, 257,
258
Newton —, XVI
relaxed —, 281, 283
property
Baire —, 4

(1, p)-extension, 91

(m, p)-extension —, 84, 91, 94
(s, p)-extension —, 206, 209
mean value —, 421

R

rearrangement, 377, 381
regularization, 26, 68, 196, 422
rigid displacements, 108

S
seminorm, 2
sequence
approximating —, 190
Cauchy —, 6
minimizing —, 235, 240, 242, 262, 281,

283, 290, 295
regularizing —, 26
summable —, 44

space
Baire —, 4, 44
Banach —, 5, 48

separable Banach —, 234, 251
bidual —, 13

complete normed (Banach) —, 4
dual —, 8, 140, 250

Hilbert —, 16, 60

separable Hilbert —, 48
locally convex —, 2

quotient —, 54, 259

reflexive —, 15, 60

Sobolev —, 57, 113

tangent —, 146

topological dual —, 8, 27, 191



topological vector —, 1
uniformly convex —, 16, 19, 197
Zygmund —, 176

spherical coordinates, 176, 422
star convex, 173
subdifferential, 232, 367
subset

absorbing —, 1, 2

balanced —, 1, 2

compact —, 11, 96
connected —, 230

convex —, 2, 230
p-integrable —, 309
precompact —, 11, 38
relatively compact —, 11
sequentially compact —, 11
universally integrable — 309

supersolution, 276
support of a distribution, 31

tangent vector, 145, 147, 150, 176
Taylor polynomial, 52
theorem

Ascoli-Arzela, 23, 39, 47, 98
Banach—-Steinhaus, 6
Bessel-Parseval, 48

Cauchy, 224

closed graph, 46
Dieudonné-Schwartz, 25

dominated convergence, 36, 52, 233

embedding, 210

Fubini, 37

Green, 112

Hahn—Banach, 1, 8, 15, 138
geometric version, 8

Hausdorff—Young, 223, 338

Helly, 17

Lebesgue-Radon—Nikodym, 369

Marcinkiewicz, 220, 396

Mazur, 46

open image, 341

open mapping, 5, 133
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Phragmén—Lindeldf, 221
Plancherel, 181
Plancherel-Parseval, 394
residue, 420
Riesz, 16
Riesz representation, 110
Riesz—Thorin, 220
Riesz—Thorin convexity, 220
Sobolev, 106
Sobolev embedding, 94
Stone—Weierstrass, 21
topology
intermediate —, 316, 318, 321, 357
norm —, 9, 10, 30
of Hausdorff TVS, 10
of separating TVS, 3
weak —, 263
weak-x —, 10
total variation, 301, 359
trace map, 85, 90, 100, 102, 109, 117,
130, 132, 321, 364
transform
adjoint Hilbert — 397
Fourier —, 180, 183, 394, 401
Hilbert —, 399, 429
inverse Fourier —, 410, 411
Riesz —, 30, 372, 399, 401, 404, 432
translation of a distribution, 31
truncation, 437
truncation and regularization, 68, 195

U
uniform
convexity, 41
ellipticity of a matrix, 238, 245, 247,
252, 257, 275, 287
upper integral, 309

A\

value, critical, 239
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weakly sequentially compact, 305
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