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Preface

The aim of this work is to present a tool for students interested in partial

differential equations, both those working toward a Master’s degree in pure

or applied mathematics and those with PhD research in this field. It gathers

results from functional analysis that make it easier to understand the nature

and properties of the functions occurring in these equations, as well as the

constraints they must obey to qualify as solutions. We present modern res-

olution methods for a class of such problems and interpret the solutions we

obtain by studying their regularity.

Let us recall that the domain in which we study a partial differential equa-

tion is an open subset Ω of RN . The equation is a relation that an unknown

function u and its partial derivatives (cf. the preliminary chapter) must sat-

isfy. Moreover, we impose certain conditions on the function u and possibly on

some of its derivatives (see the Dirichlet and Neumann problems in the pre-

liminary chapter), namely that they equal given functions on the boundary

∂Ω of the open set under consideration. These relations are called boundary

conditions.

Looking for such a function is the aim of a so-called boundary problem. We

find many examples of these in physics.

If we consider the derivatives in the usual sense in the interior of the open

set, classical analysis proves to be ineffective for solving such problems, as can

be illustrated with examples. Indeed, the solutions obtained in these exam-

ples sometimes do not belong to the spaces of differentiable functions in the

classical sense because of their irregularity. Moreover, we can find examples in

physics where the right-hand side f of the given equation has discontinuities.

Let us consider the simple example in R of the differential equation

y′′ + y′ + y = f,

V
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where f is discontinuous at the point t = 0. Any solution cannot be C2 on R.

We can, however, look for a solution of class C1 with derivative y′′ almost

everywhere, or such that y′′ is a derivative of y′ in the sense of distributions.

Assuming that f is even more irregular, but can be considered as a distribution

that we denote by [f ], we are led to look for solutions that are distributions [u].

In this case, for every infinitely differentiable function ϕ with compact support

in R, we have 〈[u], ϕ′′ − ϕ′ + ϕ〉 = 〈[f ], ϕ〉. These solutions, which we can also

consider when f is regular, are also called weak solutions of the equation.

All of this leads, by replacing the usual differentiability with that in the

sense of distributions, to the concept of weak solutions for general PDEs and

leads us to study certain spaces of functions whose distributional derivatives

can be identified with summable pth power functions. We therefore study

Sobolev spacesWm,p(Ω), which are normed and complete, so that the classical

theorems from functional analysis apply to them.

When there are boundary conditions, the functions in these spaces need

to be extended to the boundary of Ω, since they are only defined in its inte-

rior. The existence of such extensions depends a priori on the regularity of

the boundary. We therefore in particular study the space Wm,p(Ω) when the

boundary of the open set Ω is a manifold that is either differentiable or piece-

wise differentiable. This allows us to give, for the functions in these spaces, an

interpretation of the boundary conditions that is in accordance with physics.

Consequently, in many situations, the great flexibility of differentiation

in the sense of distributions leads us to state limit problems under equivalent

forms that are better suited to establishing existence and uniqueness theorems.

Of course, the results we obtain necessitate preliminaries. These concern

the functional spaces that we can use, in particular, normed spaces, complete-

ness, density, and the generalization of the notion of function and integration.

The aim of Chapter 1 is to describe these.

Contents of this Book

Chapter 1 is titled Notions from Topology and Functional Analysis. In it, we

first recall the definition of topological vector spaces, including the important

example of normed spaces, and in particular Banach spaces. We state the

Baire theorem, the open image theorem, the Banach–Steinhaus theorem and

the Hahn–Banach theorem. After defining continuous linear maps, we intro-

duce dual topology on a normed space. To illustrate the different types of

convergence of sequences of functions that are most common, which are less

strict than (for example) uniform convergence, we introduce weak topologies

on a space and on its dual. We also define reflexive spaces, in particular Hilbert



Preface VII

spaces, and uniform convex spaces, whose properties we use in many examples

in this book. We study the space of continuous functions on an open subset

of RN before recalling the definitions of distribution spaces, their topologies

and the operators that we define on them, as well as convergence properties

of sequences. The chapter concludes with the spaces Lp(Ω), their completion

and reflexivity, and the density of the regular functions.

This last part of the chapter thus forms an introduction to the Sobolev

spaces that we study in later chapters.

Chapter 2 concerns these Sobolev spaces, which give a suitable functional

setting for most of the elliptic limit problems (cf. the preliminary chapter)

from physics. An important part of this chapter deals with Sobolev embed-

ding theorems. We first present the notion of the differentiation of functions

in the weak, or generalized sense, that is, differentiation in the sense of distri-

butions. After introducing the spaces Lp, this allows us to define the Sobolev

spaces Wm,p(Ω). The properties of Lp(Ω) lead to density results for the regu-

lar functions in the spacesWm,p(Ω). The most important result of the chapter

is the Sobolev embedding theorem, which gives the inclusion of the elements

ofWm,p(Ω) in Lq(Ω) for q > p, or in spaces of continuous Lipschitz or Hölder

functions. Some of these embeddings are compact. These compactness re-

sults, which hold for bounded open sets, form a key argument for showing the

existence of solutions of coercive minimization problems (cf. Chapter 5). In

the second part of the chapter, we study possible extensions of functions in

Wm,p(Ω) to elements of Wm,p(RN ), for which we need regularity conditions

on the boundary ∂Ω. At this point, we define the Lipschitz open sets and

the open sets of class Cm. The chapter concludes with a trace theorem that

allows us, on such open sets, to extend u ∈W 1,p(Ω) to the boundary, giving a

function in Lp(∂Ω). This generalizes the restriction to ∂Ω for functions that

are in principle only defined in the open set Ω. This theorem is very useful

when stating boundary conditions for a limit problem.

Chapter 3 deals with the image of the trace map onW 1,p(Ω) when the open

set is regular. This is our first example of a fractional Sobolev space, namely

W 1−1/p,p(∂Ω). The chapter also contains Green’s formulas and embedding

theorems. These can be deduced from the embedding results on Sobolev spaces

with integer exponents that they generalize.

Chapter 4 deals with more general fractional spaces W s,p(Ω) (for s a

noninteger real number). It also contains embedding and compact embedding

results.

In Chapter 5, we use all the theory presented up to now to prove the

existence of solutions of elliptic PDEs. There are, however, two exceptions,

namely minimal surfaces and linear elasticity in the case of small deformations.

For the first, the theoretical justifications from functions of a measure are
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given in the following chapter. The second necessitates the use of Korn’s

inequalities, which form the main subject of Chapter 7. In many situations, the

existence theorems concerning these elliptic PDEs result from rewriting these

limit problems in a variational form. The solutions then appear as functions

minimizing a convex and coercive functional. Next, we study the regularity of

the solutions of some of these problems, using for example approximations of

the derivative by finite difference or a priori estimation methods. We conclude

the chapter with properties characterizing these PDEs, namely the maximum

principle in its weak form followed by its strong form.

In Chapter 6, we study spaces related to the Sobolev spaces, in particular

the space of distributions whose derivative tensor, which is symmetric and is

also called the deformation tensor, is in Lp(Ω) for p ∈ [1,∞[. We also study

the case p = 1 and the spaces where the deformation is a bounded measure.

In particular, we give embedding theorems analogous to those for the classical

Sobolev spaces, as well as existence results for a trace on the boundary when

the open set is sufficiently regular. We conclude with a section devoted to

functions of a measure.

In the setting of harmonic analysis, the results of Chapter 7 lead up to a

proof of Korn’s inequalities in W 1,p.

We conclude the book with an appendix concerning the regularity of the

solutions of the p-Laplacian problems. As a complement to Chapter 5, we es-

tablish more technical results that we obtain using a priori estimation meth-

ods.

Organization of the Book

Each chapter is followed by a number of exercises. In most cases we give hints

for the solution. The level of the exercises varies. Some of them, indicated with

a [∗], offer additional details to a result given in the chapter, an application of

the results with explicit computations to illustrate them, or a different proof

for such a result. Other exercises, indicated with a [∗∗], offer complements to

a given subject. In some cases, the results are presented in dimension N = 1

or N = 2, where the nature of the problems and the specifics of the proposed

methods can be highlighted. In these small dimensions, the methods may

lead to explicit computations that can help the reader better understand the

notions that are being studied.

Françoise Demengel and Gilbert Demengel

Paris, 16 September 2011
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Preliminaries on Ellipticity

General Definitions

Though the following definitions can be given for complex-valued functions,

we will restrict ourselves to real-valued functions.

Definition 0.1. A differential operator of order m in N variables is a map A
that sends an m times continuously differentiable function f on an open sub-

set Ω of RN to a function Af on Ω, with the help of a function F :

Af(x) = F
(
f(x), ∂if(x), . . . , ∂

m
x
α1
1 ···xαN

N
f(x), x

)
.

The operator A is called linear if the function F is a polynomial of degree

one with respect to each derivative Dα, where α, the order of the derivative,

is an N -tuple of integers α1, α2, . . . , αN with sum |α| =
∑N

1 αi � m. In other

words,

Af(x) =
∑

|α|�m

cα(x)(D
αf)(x) + c′0(x).

The functions cα and c′0 are called the coefficients of the operator A.
A partial differential equation is an equality Af = 0. It is called a linear

PDE if the operator A is linear, and a homogeneous linear PDE if, moreover,

c′0 = 0. An equation is called quasi-linear if

Af(x) =
∑

|α|�m

cα(x, u, . . . , D
βu)Dαu+ c′0(x, u),

where the N -tuples β satisfy |β| � |α| − 1.

Definition 0.2. A solution of a partial differential equation on an open subset

Ω′ ⊂ Ω is a function f that is sufficiently differentiable on Ω′, such that

∀x ∈ Ω′, Af(x) = 0.

XIII
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In this book we will in particular be interested in second-order linear par-

tial differential equations. Such an equation can be written as

(E)
∑

1�j�k�N

cj,k(x)∂
2
j,kf(x) +

N∑

1

ci(x)∂if(x) = g(x),

where g = −c′0 is called the second member of the equation. We say that

a second-order partial differential equation has constant coefficients if the

functions cj,k and ci are constants.

To the linear equation (E) we associate, for every x ∈ Ω, the quadratic

polynomial P (E)x in N variables {Xi} whose coefficients are these functions,

that is,

P (E)x(X1, X2, . . . , XN ) =
∑

1�j�k�N

cj,k(x)XjXk +

N∑

1

ci(x)Xi.

Let P (E)
(2)
x be the homogeneous part of degree 2 of this polynomial, that is,

P (E)(2)x (X) =
∑

1�j�k�N

cj,k(x)XjXk.

Definition 0.3. Given a linear equation of degree 2, we consider the real

symmetric square matrix C(x) of order N with the cj,k(x) as coefficients. The

homogeneous part defined above can then be written as follows using the col-

umn vector [X] consisting of the N variables Xj : P (E)
(2)
x (X) = t[X]C(x)[X].

We call a PDE elliptic at the point x ∈ Ω if the eigenvalues of the matrix

C(x) (which in this case are real) are either all negative or all positive.

By changing the sign of the two sides of the equation, we can reduce to

the case that the matrix C(x) is positive definite.

For Ω connected, if x 	→ C(x) is continuous on Ω and the kernel of C(x)

is 0 for every x ∈ Ω, we say that the PDE is elliptic on Ω. After, if necessary,

changing the signs of the two sides of the equation, this corresponds to saying

that the matrix C(x) is always positive definite.

Let λm(x) and λM (x) be the minimal and maximal eigenvalues of C(x),

where λm(x) > 0. We call the PDE strictly elliptic if there exists a real number

λ0 > 0 such that ∀x ∈ Ω, λm(x) � λ0.
Finally, the PDE is called uniformly elliptic on Ω if, moreover, the function

x 	→ λM (x)/λm(x) is bounded on Ω.

When the coefficients cj,k are constants, strictly elliptic and uniformly

elliptic are equivalent.

Note that these definitions only concern the homogeneous part of de-

gree 2 of (E). To limit the influence of the homogeneous part of degree 1,
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we sometimes add conditions on the coefficients ci(x), for example that

x 	→ |ci(x)|/λm(x) is bounded in Ω.

Example 0.4. The second-order equation in one variable y′′+a(x)y′+b(x)y =

g(x) is an elliptic equation.

In the case of two variables, an equation of the type

a∂2xxf(x, y) + 2b∂2xyf(x, y) + c∂
2
yyf(x, y) + (α∂xf + β∂yf)(x, y) = g(x, y),

with a > 0 is elliptic if and only if b2−ac < 0. This is the case for the Laplace

operator, where a = c = 1 and b = 0.

The more general Laplace operator in N variables, which can be written

as Δf =
∑N

1 ∂
2
x2
j
f , is clearly also elliptic.

By contrast, the equations that occur in wave theory, for example

∂2u

∂x2
− ∂

2u

∂y2
= f

in dimension 2, are not elliptic.

The equation with variable coefficients

x2
∂2u

∂x2
+ y2

∂2u

∂y2
= f(x, y)

is elliptic only on open subsets that do not meet either of the coordinate axes.

Limit Problems

Let us state the best-known problems governed by PDEs. We take the Laplace

operator as a model operator in all our examples, but the Dirichlet, Neumann

and Newton problems can also be considered for other elliptic operators.

Dirichlet Problems. In the case of the Laplacian, these problems consist in

solving the equation

Δu = f, u|∂Ω = g,

which, when f = 0, N = 2 and g is continuous, reduces to determining a

harmonic function that coincides with g on the boundary.

By extension, in dimension N , the problem can be stated as follows. For

an open subset Ω ⊂ R
N with boundary Γ , given f on Ω and g on Γ , find a

twice differentiable function u on Ω such that

Δu = f on Ω and u|Γ = g.

Keeping the operator Δ but modifying the conditions on the boundary

by, more particularly, introducing the normal derivative on the boundary ∂Ω

leads to other problems.
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Neumann Problems. Let Ω be a bounded open set with a regular boundary,

for example with a continuously differentiable boundary, on which we can

therefore define a normal vector −→n . Given a function f on Ω and a function g

on Γ , we are looking for a function u such that

Δu = f on Ω, and, on Γ : ∂−→n u = g.

Newton Problems. Let Ω be an open set with regular boundary Γ . Given

a function f on Ω and two functions g and h on Γ , we are looking for a

function u such that

Δu = f on Ω, and, on Γ : ∂−→n u+ hu = g.

We can generalize these problems without repeating the previous definitions.

For example, by replacing the operator Δ by its square as an operator, that

is, Δ2 = Δ ◦Δ, we find the following.

Problems Involving the Bi-Laplacian Δ2. Given a function f on Ω and func-

tions g1 and g2 on Γ , we are looking for a function u such that

Δ2u = f on Ω, and, on Γ : u = g
1

and ∂−→n u = g2 .

We can also define problems for the operator Δ2 with limit conditions compa-

rable to those of the Neumann problem, as well as analogous problems where

we replace the operator Δ2 by the operator u 	→ Δ2u+ u.

Another way to generalize the problems is by introducing quasi-linear

equations. Let us give some examples.

p-Laplacian Problems. This is an example of a nonlinear, quasi-linear equa-

tion. Let p be a real number with 1 < p < +∞. We are looking for a function u

such that

div(|∇u|p−2∇u) = f on Ω and u|∂Ω = 0.

This is a divergence form. Writing it this way facilitates the application of

resolution methods. Let us show that it is indeed quasi-linear. By expanding

the operator on the left-hand side of the equation as in the product rule for

the divergence of a scalar times a vector, we obtain the following expression:

|∇u|p−2Δu+∇u · ∇(|∇u|p−2).

In the first instance, this is a formal expression that holds, for example, when

p > 2 or at points where the gradient is different from zero. Using the formula

∇(|∇u|p−2) = (p − 2)|∇u|p−4∇u∇∇u and the definition of the gradient of a

vector, we can then write the equation in its quasi-linear form:

|∇u|p−4
(
|∇u|2∂iiu+ (p− 2)∂iju∂iu∂ju

)
= f.
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Minimal Surface Problems. We are once more dealing with a quasi-linear

equation, which can be seen as an extension of the previous one for p → 1.

We are now looking for a function u such that

div
( ∇u
√
1 + |∇u|2

)
= f on Ω and u|∂Ω = g.

Its quasi-linear form is as follows:
(
(1 + |∇u|2)∂iiu− ∂iju∂iu∂ju

)
(1 + |∇u|2)−3/2 = f.

Example (of a nonlinear, quasi-linear equation). The following is an

example to which we will be able to apply the results of this book. For p > 1

and a real number λ > 0, we have

Δu = λ|u|p−2u on Ω and u|∂Ω = 0.

Let us conclude this preliminary chapter by specifying the limitations of

this book.

Equations that Are not Treated

Non-divergence Type Nonlinear Functions. This category includes a whole

class of partial differential equations for which the concept of weak solutions

cannot be used and consequently needs to be replaced by that of viscosity

solutions. This holds in dimension N � 2 for

|∇u|αΔu = f,

where α is a real number > −1. We will not deal with this type of equa-

tion in this book. Note, however, that for divergence equations such as the

p-Laplacian above, the notions of viscosity solutions and weak solutions co-

incide thanks to regularity results. For this subject, the reader can consult

the work of Ishii [39], Ishii-Lions [40] and Guy Barles [3], as well as the more

recent work of Busca Esteban Quaas [11] and Birindelli-Demengel [7].

Hyperbolic Equations. These are not treated using the methods presented in

this course. Note that, in general, hyperbolic equations have the disadvantage

of having “too many” solutions. One of the best-known hyperbolic equations

is the Burgers equation u∂xu = f . Only the entropic solutions in the sense

of Oleinik are considered physical solutions, as they are stable under certain

perturbations. These are also the solutions obtained as limits of solutions of

equations via elliptic regularizations. We will not consider these equations.

The reader can consult the work of Oleinik, Serre, etc.



XVIII Preliminaries on Ellipticity

Parabolic Equations. Finally, many evolution equations are parabolic. Let us

state the best-known linear ones. The heat equations can be written as

∂tu−Δu = f,

with not only limit conditions but also initial conditions, that is, conditions

on the solution u at t = 0.

The Korteweg–De Vries problem is governed by the linear equation

∂tu− u3x = f

on R
+ × R plus an initial condition. Such equations can be generalized to

nonlinear equations such as the Korteweg–De Vries–Burgers equation

ut − u3x + u∂xu = f.
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Notions from Topology and Functional

Analysis

In this chapter we recall results from functional analysis, in particular in

Banach spaces. Most results are only stated. The reader can find the proofs (for

example the proof of the Hahn–Banach theorem) in publications specializing

in functional analysis.

The techniques used to solve elliptic partial differential equations very fre-

quently use the notion of compactness in the spaces Lp, or, more generally,

the notion of reflexive space. We therefore devote a number of pages to re-

flexivity. In particular, we recall the compactness for the weak topology of

bounded subsets in a reflexive space and the relation between the spaces Lp

and Lp
′
when p and p′ satisfy p ∈ [1,+∞], p′ ∈ [1,+∞], and 1/p+ 1/p′ = 1.

We also mention results on distributions.

1.1 Topological Vector Spaces

Let X be a vector space over K (R or C). The convex, balanced or absorbing

subsets of X play an important role in defining a topology on X that is

compatible with its algebraic structure.

Definition 1.1. Let X be a vector space over K and let A ⊂ X.

• The subset A is called balanced if ∀λ ∈ K, |λ| � 1⇒ λA ⊂ A.
• It is called absorbing if

∀x ∈ X, ∃ r > 0, ∀λ ∈ K, |λ| � r =⇒ λx ∈ A.

Definition 1.2 (Topological vector spaces, abbreviated as TVS).

These are vector spaces over K (where K is either R or C) endowed with a

topology for which scalar multiplication and addition are continuous.

F. Demengel, G. Demengel, Functional Spaces for the Theory
of Elliptic Partial Differential Equations, Universitext,
DOI 10.1007/978-1-4471-2807-6 1,
© Springer-Verlag London Limited 2012
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A normed space is an example of a TVS whose topology is easy to study.

Definition 1.3 (Norm on a K-vector space X). Let X be a vector space

over the field K. A norm on X is a function f from X to R
+ satisfying the

following conditions:

∀x ∈ X, f(x) = 0 ⇐⇒ x = 0

∀ c ∈ K, ∀x ∈ X, f(cx) = |c|f(x)
∀ (x, y) ∈ X2, f(x+ y) � f(x) + f(y)

A vector space endowed with a norm is called a normed space.

To a given norm we associate the distance function d defined by d(x1, x2) =

‖x1−x2‖; thus a normed spaceX is a metric space. It can be easily verified that

scalar multiplication and addition are continuous for the topology associated

with the norm. A normed space is therefore a TVS. Note that in such a space,

the family {B0,r}r>0 of open balls with center 0X forms a fundamental system

of convex neighborhoods of 0X . That is, every neighborhood of 0X contains

an element of {B0,r}. By translation, this property holds at every point of X.

More generally, we say that a TVS is locally convex if every point of the

space admits a fundamental system of convex neighborhoods (see also Propo-

sition 1.5).

Remark 1.4. If in the previous definition we leave out the first (separating)

axiom, the function f satisfying the remaining conditions is called a seminorm.

A space endowed with a seminorm is still a TVS. It is locally convex but not

Hausdorff.

Because of the importance of these spaces in functional analysis, we will

present their topology in detail, first by describing a fundamental system of

neighborhoods of the origin and then by providing a family of seminorms

generating the topology.

Proposition 1.5. Let B be a family of subsets of a K-vector space X satisfy-

ing the following conditions:

(1) The family B is a filter base, that is, it does not contain the empty set,

and

∀ (A,B) ∈ B2, ∃C ∈ B, C ⊂ A ∩B.
(2) Every subset in B is convex, balanced, and absorbing.

(3) ∀A ∈ B, ∀ r > 0, ∃B ∈ B, B ⊂ rA.

The family B is then a fundamental system of neighborhoods of 0X for a locally

convex TVS topology on X. In this topology, V is a neighborhood of x ∈ X if

there exists a U ∈ B such that x+ U ⊂ V .
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Proposition 1.6 (seminorms generating a locally convex TVS topol-

ogy). Let {ηλ}λ∈Λ be a family of seminorms on a K-vector space X. Let us

assume that it is separating and directed, that is, that

(1) For every x ∈ X, there exists a λ ∈ Λ such that ηλ(x) �= 0.

(2) For every pair (λ1, λ2) ∈ (Λ)2, the functions ηλ1 and ηλ2 are bounded in

the family, that is,

∃λ ∈ Λ, ηλ � ηλ1 and ηλ � ηλ2 .

The set of all closed balls {Bλ,r} associated with the seminorms in the

family, defined by Bλ,r = {x ∈ X | ηλ(x) � r}, then forms a fundamental

system of neighborhoods of 0X for a locally convex Hausdorff TVS topology

on X.

We can easily show that this family of balls satisfies the conditions of

Proposition 1.5 and that the topology is Hausdorff, since for nonzero x0 and λ

such that ηλ(x0) �= 0, the closed ball Bλ,r with r = ηλ(x0)/2 does not con-

tain x0.

Example 1.7 (of locally convex spaces). Let us define a structure of lo-

cally convex space on the space X = Ek(]a, b[) of Ck functions on the open

interval ]a, b[ in R. We will generalize this example later on, replacing the

interval by an open subset Ω of RN .

Let us define as follows a function ηm,K depending on an integer m � k
and on a compact subset K of R contained in ]a, b[:

ηm,K(f) = sup
x∈K

0�α�m

∣
∣
∣
∣
dαf

dxα
(x)

∣
∣
∣
∣.

This is a seminorm for every pair (m,K). We have thus defined a family of

seminorms onX. This family, endowed with the order on real-valued functions,

is directed and separating. Indeed, for any pairs (K1,K2) and (m1,m2), the

functions ηm1,K1 and ηm2,K2 have an upper bound in the family, namely ηm,K

with K = K1 ∪K2 and m = max(m1,m2).

Moreover, for every nonzero function f on X, there exist m and K such

that ηm,K(f) �= 0.

The previous proposition now implies that the set B of closed unit balls

associated with these seminorms is a fundamental system of neighborhoods

of 0X for a locally convex Hausdorff space topology on X.

Note that, in general, the topology on an arbitrary locally convex space

can be defined in terms of a family of seminorms (see [75]).
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1.1.1 Baire Property and Applications

Baire Spaces.

Definition 1.8. A topological space E is called a Baire space if it satisfies

one of the following equivalent properties:

(1) For every countable family {Un}n∈N of dense open subsets of E, that is,

Un = E, the intersection
⋂

n∈N
Un is dense in E.

(2) For every countable family {Fn}n∈N of closed subsets of E with empty

interior, the union
⋃

n∈N
Fn has empty interior in E.

Theorem 1.9. Let X be a Banach space, that is, a complete normed space;

then X is a Baire space.

The proof of this theorem can be found in the exercises, with hints (see also

[76]). It has many important applications, in particular concerning continuous

linear functions.

1.1.2 Continuous Linear Maps between Normed Spaces

From here on, all topological vector spaces will have the same base field K.

Let us recall the characterization of the continuity of a linear map, which will

lead to the definition of the norm of such a map.

The continuity at every point of a linear map f from the normed space X

to the normed space Y follows from its continuity at the point x = 0, which

can be expressed by one of the two following equivalent properties:

(1) There exists an M � 0 such that

∀x ∈ X, ‖x‖X � 1 =⇒ ‖f(x)‖Y �M.

(2) There exists an M � 0 such that

∀x ∈ X, ‖f(x)‖Y �M‖x‖X .

Note that, by linearity, the upper bound of ‖f(x)‖Y on the unit ball in X

equals the upper bound on the unit sphere {‖x‖X = 1}. We will use this

characterization to construct a norm on the space of continuous linear maps.

Definition 1.10. Given topological vector spaces X and Y , we denote by

L(X,Y ) the space of continuous linear maps from X to Y . When X and Y

are normed spaces and L ∈ L(X,Y ), we let

‖L‖L(X,Y ) = sup
x∈X

‖x‖X=1

‖L(x)‖Y .
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The map L 	→ ‖L‖L(X,Y ) is a norm, called the operator norm, which

endows L(X,Y ) with a natural normed space topology.

Proposition 1.11. If X is a normed space and Y is a Banach space, then

L(X,Y ) endowed with the previous topology is a Banach space.

A proof can be found in Exercise 1.1 at the end of this chapter.

In particular, the proposition is true for Y = K considered as a vector space

over itself with the topology induced by the absolute value. This property is

used later on in this chapter.

When X and Y are both finite dimensional, the space L(X,Y ) is finite

dimensional and coincides with the space of linear maps from X to Y with

the canonical topology of a finite dimensional vector space. When X and Y

are both infinite dimensional, this is no longer true.

Theorem 1.12 (open mapping theorem). Let T be a surjective continu-

ous linear map from a Banach space X to a Banach space Y ; then the image

of an open subset of X is an open subset of Y .

Proof of Theorem 1.12.

We will follow the arguments of [76]. We begin by showing that for a

neighborhood U of 0 in X, there exists a neighborhood V of 0 in Y such that

V ⊂ T (U).

Indeed, for B(0, r) ⊂ U and W = B(0, r/2), we have X =
⋃

n∈N∗(nW ), and

therefore T (X) = Y =
⋃

n∈N∗ T (nW ). Since the Banach space Y is covered

by a countable family of closed subsets T (nW ), the Baire property tells us

that one of these closed subsets, say T (n0W ), has nonempty interior. There

consequently exists an open subset V1 of Y such that V1 ⊂ T (n0W ). Since a

homothety in Y is continuous, the closed subset T (W ) contains the set 1
n0
V1,

which is also an open subset of Y . Let y0 be such that B(y0, δ) ⊂ T (W );

then B(0, δ) ⊂ T (W ) − y0 ⊂ T (W ) + T (W ) ⊂ T (U). The neighborhood

V = B(y0, δ) of 0 satisfies the property stated above.

Let us now prove the theorem.

For the sake of simplicity, we let Xε and Yε denote the open unit balls of

radius ε with center 0 in X and Y , respectively. Let εi = ε/2
i, and let {ηi}

be a sequence of positive real numbers such that Yηi ⊂ T (Xεi). We may, and

do, assume that this sequence converges to 0.

Let y ∈ Yη0 . Since y ∈ T (Xε0), we can choose an x0 ∈ Xε0 such that

‖y − Tx0‖ � η1.
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Since y − Tx0 ∈ Yη1 , there exists an x1 ∈ Xε1 such that

‖y − Tx0 − Tx1‖ � η2.

By induction, we construct a sequence xn ∈ Xεn such that
∥
∥
∥y −

∑

j�n

Txj

∥
∥
∥ � ηn.

The inequalities ‖xj‖X � ε/2j imply that
∑k

h ‖xj‖X � ε/2h−1. It follows that

{
∑

j�n xj} is a Cauchy sequence. Since X is a Banach space, this sequence

converges to an element x of X, which satisfies

‖x‖X �
∑

j

‖xj‖X � 2ε.

Moreover, we have Tx = y. Finally, as y is an arbitrary element of Yη0 , we

conclude that the image under T of the ball of radius 2ε with center 0 contains

the ball of radius η0 with center 0 in Y . It follows that the image of an open

set under the map T is open. ��

Theorem 1.13 (Banach–Steinhaus). Let {un} be a sequence of continu-

ous linear maps from a Banach space X to a normed space Y .

If, for every x in X, the sequence {un(x)} converges in Y , then there exists

a constant C such that

∀n ∈ N, ‖un‖L(X,Y ) � C.

Proof of Theorem 1.13 (cf. [76]).

The pointwise convergence given in the statement of the theorem implies

the existence of a limit u(x) for every x. The map u from X to Y is linear.

By replacing un by un−u, we reduce to the case that for every x, un(x)→ 0.

Consequently, given ε > 0, there exists for every x ∈ X an N such that

for every n > N , ‖un(x)‖X � ε. In other words, if B′(0, ε) denotes a closed

ball in X, then we have

X =
⋃

N∈N

⋂

n�N

u−1
n (B′(0, ε)).

For every N , the set FN =
⋂

n�N u
−1
n (B′(0, ε)) is closed, as it is the intersec-

tion of closed sets, by the continuity of un for every n. Since X is complete,

and therefore a Baire space, there exists an N0 such that FN0 has nonempty

interior. Let x0 and δ be such that

B(x0, δ) ⊂
⋂

n�N0

u−1
n (B′(0, ε));
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then ∀n � N0,

B(0, δ) ⊂ u−1
n (B′(0, 2ε)),

and for every n � N0,

sup
y∈B(0,1)

‖un(y)‖ �
2ε

δ
.

The result follows. ��

Remark 1.14. Under the hypotheses of the theorem, the linear limit map

u = limn→+∞ un is continuous.

Indeed, the continuity of un implies that

∀x ∈ X, ‖un(x)‖Y � ‖un‖L(X,Y )‖x‖X � C‖x‖X .

The continuity of the norm ‖·‖Y allows us to deduce the inequality ‖u(x)‖ �
C‖x‖X characterizing the continuity of u when taking the limit of the left-

hand side.

Example 1.15 (of an application of the Banach–Steinhaus theorem).

Let {λn} be a sequence of complex numbers such that for every summable

sequence {xn}, the sequence
∑+∞

0 λnxn converges. Let us show that in this

case, supn∈N |λn| < +∞.

Let X = �1 be the space of summable complex sequences x = {xn}.
Endowed with the norm ‖x‖ =

∑+∞
0 |xn|, this is a Banach space (cf. Exercise

1.3). Let up be the linear map from X to R defined by up(x) =
∑p

0 λnxn. It

is continuous because

|up(x)| �
[
sup

0�n�p
|λn|

] p∑

0

|xn| �
[
sup

0�n�p
|λn|

]
‖x‖1.

This inequality also proves that ‖up‖L(�1,C) = sup0�n�p |λn|. Indeed, if this
bound is achieved at n0, defining x by xn = δnn0

leads to the equality ‖up‖ =
sup0�n�p |λn|. By assumption, the sequence {up(x)} converges for every x;

hence, by the Banach–Steinhaus theorem, the sequence of norms ‖up‖L(�1,C)

is bounded, which shows that supn∈N |λn| < +∞.

The converse of this property is clearly true. Moreover, starting with this

characterization, we can prove that L(�1,C) = �∞, the space of bounded

complex sequences.

Remark 1.16. It is not in general true that, under the hypotheses of the

theorem, the sequence {un} converges to u in L(X,Y ) (cf. Exercise 1.6).
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1.2 Linear Functionals, Topological Dual, Weak

Topology

1.2.1 Topological Dual of a TVS, Hahn–Banach Theorem

Definition 1.17 (topological dual). A continuous linear functional on a K-

topological vector space X is a linear map from X to K that is continuous for

the topologies on X and on K. We let X ′ denote the vector space consisting

of these functionals.

When X is finite dimensional, it is clear that X ′ coincides with the alge-

braic dual space and that X ′ has the same dimension as X. We can see this

by taking a basis {ei} of X and associating with it the dual basis consisting

of the linear functionals e∗i defined by e∗i (ej) = δ
j
i .

When X is a finite dimensional normed space, its dual is also finite di-

mensional. This follows, for example, from the analytic version of the Hahn–

Banach theorem that we will state below without proof. On the same occasion,

we will give the geometric version of the theorem. It will not only allow us to

prove certain theorems in this chapter, but will also be a key argument in the

theory of convex functions that we will develop in Chapter 6.

Theorem 1.18 (Hahn–Banach). Let X be a vector space over K, let M

be a linear subspace of X and let p be a seminorm on X. Let m′ be a linear

functional on M such that |m′(x)| � p(x) for every x in M ; then there exists

a linear functional x′ on X such that

∀m ∈M, x′(m) = m′(m) and ∀x ∈ X, |x′(x)| � p(x).

In particular, if X is a normed space and the seminorm is ‖·‖X , then every

continuous linear functional m′ on the subspace M endowed with this norm

can be extended to a linear functional on X that is continuous for this same

norm.

The reader can find a proof in [76]. For an arbitrary TVS, the geometric

version of the theorem is as follows.

Theorem 1.19 (Hahn–Banach (geometric version)). Let X be a TVS

over K. Let C be a nonempty convex open subset of X and let M be a linear

subspace of X that does not meet C; then there exists a hyperplane H, that

is, a subspace of X of codimension 1, that is closed, does not contain M , and

does not meet C.

The following property at least partially explains the relation between the

two versions of the theorem.
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Proposition 1.20. In a TVS X over K, a hyperplane H defined by H =

{x ∈ X | f(x) = α} for a linear functional f on X and a scalar α ∈ K is

closed if and only if the functional f is continuous on X.

1.2.2 A Normed Space and its Dual; Topologies on These Spaces

Norm Topologies.

Definition 1.21. Let X be a normed space over K. We denote the space

L(X,K) by X ′ and call it the topological dual of X. It is the set of continuous

linear functionals on X, that is, the set of linear functionals f on X such that

∃K > 0, ∀x ∈ X, |f(x)| � K‖x‖X .

There exists a natural norm on X ′ defined by

‖f‖X′ = sup
x∈X

‖x‖X�1

|f(x)|.

Using our previous study of the space L(X,Y ), we note that X ′ endowed

with the norm ‖·‖X′ is a Banach space (whether or not X is). The topology

induced by the norm on X is called the norm topology on X. The topology

on X ′ induced by the norm defined above is called the norm topology on X ′.

Let us state two consequences of the Hahn–Banach theorem for this norm.

One of these shows that the dual X ′ is not reduced to {0}.

Proposition 1.22.

(1) If x ∈ X, x �= 0, then there exists an element x′ ∈ X ′ such that ‖x′‖X′ = 1

and 〈x′, x〉 = ‖x‖X .

(2) The norm on X can be defined by ‖x‖X = sup‖x′‖�1

∣
∣〈x′, x〉

∣
∣.

Thanks to the duality of X and its dual X ′, we can define weaker (or

coarser) topologies than the norm topologies, where the open subspaces for

the new topologies will also be open subspaces for the norm topology.

Weak Topology on X. For every x′ ∈ X ′, the function x 	→ |〈x′, x〉| is a

seminorm. Let F ′ be the set of finite subsets of X ′. For F ′ ∈ F ′, set

∀x ∈ X, ηF ′(x) = sup
x′∈F ′

|〈x′, x〉|.

These functions form a family of seminorms on X. Let us verify the conditions

of Proposition 1.6 (see also Exercise 1.5):

• The family is directed; indeed, if we set F ′ = F ′
1∪F ′

2, we have the inequality

ηF ′ � ηF ′
i
for i ∈ {1, 2}.
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• The family is separating; indeed, if x0 ∈ X is nonzero, then Proposition

1.5 gives the existence of an x′ ∈ X ′ such that η{x′}(x0) = |〈x0, x′〉| �= 0.

This family of seminorms therefore defines a topology of locally compact

Hausdorff vector space on X, which we will denote by σ(X,X ′). This is called

the weak topology on X. If, for any element x0 ∈ X, any finite subset F ′ of X ′

and any real ε > 0 we set

Bx0,F ′,ε = {x ∈ X | ∀x′ ∈ F ′, |〈x′, x− x0〉| < ε},

then the family B of such subsets of X forms a basis for the weak topology

on X (cf. Exercise 1.5).

We note that a set Bx0,F ′,ε is a finite intersection of inverse images of open

subsets of R under the continuous maps x′ from the normed space X to K.

Every open subset of X for the weak topology is therefore an open subset of

the normed space X. In other words, the norm topology is finer that the weak

topology.

Weak-star Topology on X ′. In an analogous manner, we consider the following

family of seminorms indexed by the finite subsets of X:

∀x′ ∈ X ′, ηF (x
′) = sup

x∈F
|〈x′, x〉|.

By a similar reasoning to the one given above, this family is directed. More-

over, if x′ �= 0, that is, the linear form x′ is nonzero, there exists an x0 ∈ X
such that η{x0}(x

′) �= 0; hence the family is separating.

If for any x′0 ∈ X ′, any finite subset F of X, and any ε > 0 we define

B′
x′
0,F,ε = {x′ ∈ X ′ | ∀x ∈ F, |〈x′ − x′0, x〉| < ε},

then the set B′ of such subsets ofX ′ is a basis for a topology of locally compact

Hausdorff vector space on X ′, denote by σ(X ′, X) and called the weak-star

topology on X ′. It is weaker than the norm topology on X ′.

Note that the normed space X ′ has a topological dual, denoted by X ′′,

which endows it with a third topology, the weak topology σ(X ′, X ′′).

Also note that the norm topologies can be defined in an analogous manner

by replacing the finite subsets by bounded subsets of X ′ or X.

Weak Convergence. We can use the previous definitions to characterize weak

convergence for sequences.

Definition 1.23. Let X be a TVS.

A sequence (un)n ∈ XN converges to u in X with respect to the weak

topology (or converges weakly) if

∀ f ∈ X ′, 〈f, un − u〉 −→ 0.



1.2 Linear Functionals, Topological Dual, Weak Topology 11

A sequence (fn)n ∈ (X ′)N converges to f ∈ X ′ with respect to the weak-star

topology if

∀x ∈ X, 〈fn − f, x〉 −→ 0.

Continuity for the Weak Topology.

Proposition 1.24. The linear functionals on X that are continuous for the

norm topology and those continuous for the weak topology coincide.

Proof.

It is clear that a linear functional that is continuous for the weak topology

is also continuous for the norm topology. Conversely, let Bε be a ball with

center 0 in K. The inverse image of this neighborhood under f ∈ X ′ is

B{f},ε = {x ∈ X | |〈f, x〉| < ε},

which is a neighborhood of 0 for the weak topology. It follows that f is also

continuous for the weak topology. ��

Compactness. An important result concerning the weak-star topology is the

weak-star compactness of the closed unit ball in X ′. We will give a weaker

statement that holds when X is separable, that is, when X has a countable

dense subset. In this case, the closed unit ball in X ′ is weakly sequentially

compact. We choose to give the result in this particular case for two reasons.

First, all spaces used in this book are separable and weakly sequentially com-

pactness suffices in the applications. Second, the proof of the general result

uses the Tichonoff theorem ([76]), which we find too abstract to be included

in this course.

Let us recall a number of definitions and properties before stating the

result.

Definition 1.25 (compactness).

• A subset A of a Hausdorff topological space is called compact if every open

cover of A has a finite subcover.

• A subset A of a normed space X is called precompact if its completion is

compact for the topology on X.

• A subset A of a normed space X is called relatively compact if its closure

is compact.

• A subset A of a normed space X is called weakly sequentially compact if

every sequence of points of A admits a subsequence that converges weakly

in A.

Proposition 1.26. Compact, precompact, and relatively compact subsets have

the following properties:
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• A compact set in a metric space X is closed and bounded, but the converse

is false unless X is finite dimensional.

• A subset of a metric space E is precompact if and only if for every ε > 0,

it admits a cover by a finite number of open balls of radius ε.

• The closure of a precompact set is compact.

• In a normed space, saying that A is compact is equivalent to saying that

every sequence of points of A admits a subsequence that converges in X to

an element of A.

• A precompact set in a Banach space is relatively compact.

We leave the proof of this proposition to the reader.

Proposition 1.27. Let X be a separable normed space and let B′ be the closed

unit ball in its dual X ′; then B′ is sequentially compact for the weak-star

topology.

Proof.

Let {fn}n∈N be a sequence of linear functionals in B′. For the proof, we fix

a countable dense subset {xi}i∈N of X. The sequence fn(xi) is then bounded

for every i. By the diagonal method, we can extract a subsequence from fn,

which we will also denote by fn, such that (fn(xi))n converges to li. Let

us show that for every x ∈ X, the sequence fn(x) converges, proving the

convergence of the sequence {fn} for the weak-star topology.

Let ε > 0 and x ∈ X; then there exists an xj in the dense subset such that

‖x− xj‖X � ε. Once we fix this element, there exists an integer N such that

∀n � N , |fn(xj)− lj | � ε. Consequently, as the fn are in the unit ball in X ′,

we have the following inequality for n � N and m � N :

|fn(x)− fm(x)| � |fn(x)− fn(xj)|+ |fn(xj)− lj |
+ |lj − fm(xj)|+ |fm(xj)− fm(x)| � 4ε.

The above plus the completeness of X ′ show that the sequence {fn(x)} con-

verges in X ′ to an element that we will denote by f(x). It remains to show

that f ∈ B′.

Let us show that f is linear. In order to do this, let us fix x1 and x2
in X. We consider three subsets of the dense subset, namely sequences {x(1)j },
{x(2)j } and {yj} that converge in X to x1, x2 and x1 + x2, respectively. By

the equicontinuity of the fn, we have

|fn(x(1)j ) + fn(x
(2)
j )− fn(yj)| � ‖x(1)j + x

(2)
j − yj‖X .

The right-hand side tends to 0. Consequently,

lim fn(yj) = lim(fn(x
(1)
j ) + fn(x

(2)
j )) = f(x1) + f(x2).
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Repeating this method for λx, we obtain the linearity of f .

It is continuous because if we take the limit of the continuity inequality

∀x ∈ X, |fn(x)| � ‖x‖X , we find

∀x ∈ X, |f(x)| � ‖x‖X .

Since this last inequality shows that ‖f‖X′ � 1, we have f ∈ B′, complet-

ing the proof. ��

1.2.3 Second Dual Space, Reflexive Spaces

Definition 1.28. Let X be a normed space and let X ′ be its dual, which is

also a normed space, and even a Banach space; then the space of continuous

linear functionals on X ′, (X ′)′, which we also denote by X ′′, is also a Banach

space. We call it the bidual space of X.

Let us show that there is a continuous injection from X into X ′′. Let

x ∈ X. The map fx that sends x′ to 〈x′, x〉 is clearly a continuous linear

functional on X ′. We can therefore define the map J from X to (X ′)′ by

sending x to the linear functional fx. This map is injective but not surjective

except in special cases, namely the case of the reflexive spaces studied below.

Indeed, the image of J is exactly the set of linear functionals on X ′ that

are continuous for the weak-star topology on X ′. More precisely, we have the

following theorem.

Theorem 1.29. Let X be a normed space and let X ′ be its dual. A linear

functional f on X ′ is continuous for the weak-star topology on X ′ if and only

if it has the following property:

∃x ∈ X, ∀x′ ∈ X ′, f(x′) = 〈x′, x〉.

Proof.

Let x ∈ X; then fx is continuous for the weak-star topology. Indeed, given

ε > 0, the inverse image of the interval {|t| < ε} in R under fx contains the

set

B0,{x} ε = {x′ | |〈x′, x〉| < ε}.

This set is a neighborhood of 0 (cf. Subsection 1.2.2) for the weak-star topol-

ogy. Consequently, fx is continuous for this topology.

Let f be a linear functional that is continuous for the weak-star topology

on X ′; then the set of x′ ∈ X ′ such that |f(x′)| < 1 is a neighborhood of 0.

Therefore, there exist a real number δ > 0 and a finite number of elements xi
of X such that if x′ ∈ X ′ satisfies |〈x′, xi〉| < δ for every i, then |f(x′)| < 1.
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It follows that there exist a δ > 0 and a finite number of xi, 1 � i � n, such
that for every x′ ∈ X ′,

|f(x′)| � 1

δ
sup
i
|〈x′, xi〉|.

In particular, if 〈x′, xi〉 = 0 for every i, then f(x′) = 0. Consequently, the

linear functional f on X ′ vanishes on the intersection of the kernels of the

linear functionals fxi . By the algebraic lemma 1.30 below, there exist complex

numbers αi, 1 � i � n, such that f =
∑

i αifxi . The vector x =
∑

i αixi
therefore satisfies f = fx, completing the proof. ��

Lemma 1.30. Let X be a vector space. Let f be a linear functional on X that

vanishes on the intersection of the kernels of n linear functionals fi; then f

is a linear combination of the fi.

Proof of Lemma 1.30.

We may assume that the fi are linearly independent. Indeed, if this is not

the case, there exists a p < n such that, after permuting the elements of the

family if necessary, the linearly independent subfamily {f1, . . . , fp} generates

the same space. In this case,
⋂

1�i�p Ker fi ⊂ Ker fj for every j � p + 1 and

therefore
⋂

1�i�n Ker fi =
⋂

1�i�p Ker fi. Supposing that the lemma has been

proved for linearly independent functionals, there exist λi such that

f =
∑

1�i�p

λifi,

so that f is a linear combination of the fi with i � n.
Let us therefore assume that the fi are linearly independent. There then

exist vectors xj ∈ X such that

fi(xj) = δ
j
i .

For every x ∈ X, we write

x =
∑

1�i�n

fi(x)xi + z;

then z ∈
⋂

1�j�n Ker fj , so that f(z) = 0, and therefore

f(x) =
∑

1�j�n

fj(x)f(xj).

It follows that

f =
∑

1�j�n

f(xj)fj ,

which concludes the proof. ��
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Recall that we denote by J the injection from X into X ′′ that sends x

to fx, as defined in Subsection 1.2.3.

Definition 1.31. A normed space X is called reflexive if the map J is surjec-

tive, that is, if every linear functional on X ′ that is continuous for the norm

topology is also continuous for the weak-star topology of X ′.

Note that a reflexive space must be a Banach space, since it can be iden-

tified with the dual of a normed space.

Theorem 1.32. The closed unit ball of a reflexive separable space X is weakly

sequentially compact.

Proof of Theorem 1.32.

We will use Proposition 1.27 and the following proposition.

Proposition 1.33. Let X be a normed space with separable dual; then X is

also separable.

Proof of Proposition 1.33.

Let {x′n}n be a dense subset of the unit sphere in X ′. It suffices to show

the existence of a countable dense subset of the unit sphere in X. Let {xn} be
such that ‖xn‖X = 1 and x′n(xn) � 1/2. Let M be the vector space generated

by the xn. We want to prove that the subspace of M consisting of the linear

combinations with rational coefficients, which is countable, is dense in X. We

will prove this by contradiction. Let us therefore suppose thatM �= X, and let

x ∈ X −M . By the Hahn–Banach theorem, there exists a functional x′0 with

‖x′0‖X′ = 1 such that x′0(x) �= 0 and x′0(xn) = 0 for every n. Consequently,

for every n,

〈x′n − x′0, xn〉 �
1

2
,

which contradicts the assumption that {x′n} is dense. ��

The Hilbert spaces defined in the following subsection and the spaces Lp

with p ∈ ]1,+∞[ are examples of reflexive spaces. The reflexivity of the

space Lp follows from its uniform convexity. For Hilbert spaces, the reasoning

is much more elementary.

Remark 1.34. Theorem 1.32 shows that the space L1(Ω) is not reflexive. By

way of example, consider L1(]− 1, 1[) and the sequence

un =

{
n on [−1/2n, 1/2n],
0 otherwise.

The sequence un is contained in the unit sphere in L1(] − 1, 1[). Suppose

that un converges weakly to u in L1. If ϕ is continuous and bounded, then∫ 1

−1
unϕ converges to ϕ(0), so that u = δ0, which is not an element of L1.
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1.2.4 Hilbert Spaces

Definition 1.35. For a vector space X over C, a Hermitian inner product

(., .) is a map from X ×X to C with the following properties:

∀ (x, y) ∈ X ×X (x, y) = (y, x)

∀ (x, y, z) ∈ X3 (z, ax+ by) = a(z, x) + b(z, y)

∀ (a, b) ∈ C
2 (x, x) � 0

∀x ∈ X (x, x) = 0⇐⇒ x = 0

We can associate a norm with the Hermitian inner product, called the

inner product norm, as follows:

(1.36) ‖x‖ = (x, x)1/2.

A vector space X endowed with such a norm is called an inner product

space, or pre-Hilbert space. If it is, moreover, complete for the inner product

norm, then we call it a Hilbert space. A normed space is an inner product

space if and only if the norm satisfies the following parallelogram law:

(1.37) ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

Theorem 1.38 (Riesz representation theorem). Let X be a Hilbert

space with inner product (·, ·). A linear map f from X to C belongs to X ′

if and only if

∃x ∈ X, ∀ y ∈ X, f(y) = (x, y).

The element x is then unique and the map that sends f to x is an isometry

from X to its dual X ′, that is,

‖f‖X′ = ‖x‖X .

The reflexivity of X follows. Other important properties of inner product

spaces follow from the Hilbert projection theorem, in particular the construc-

tion of orthonormal bases and the theory of Fourier series.

1.2.5 Uniformly Convex Spaces

Definition 1.39. A TVS X is called uniformly convex if

∀ ε > 0, ∃ δ(ε) > 0, ∀ (x, y) ∈ X2, ‖x‖ = ‖y‖ = 1 and ‖x− y‖ � ε

=⇒
∥
∥
∥
x+ y

2

∥
∥
∥ � 1− δ(ε).
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Theorem 1.40. A uniformly convex space is reflexive.

(1) Inner product spaces are uniformly convex, as easily follows from the

parallelogram law.

(2) The spaces Lp with p ∈ ]1,+∞[ are uniformly convex (cf. the proof in [1]).

For the proof of Theorem 1.40, we need Helly’s theorem, which is a conse-

quence of the Hahn–Banach theorem.

Theorem 1.41 (Helly). Let fi, 1 � i � n be linear functionals on X. Let

γ > 0 and αi, 1 � i � n, be n complex numbers. A necessary and sufficient

condition for the existence, for every ε > 0, of an element xε ∈ X such that

for every i ∈ [1, n],

fi(xε) = αi, with ‖xε‖X � γ + ε

is that, for every n-tuple (βi) ∈ R
n, we have

∣
∣
∣
∑

1�i�n

βiαi

∣
∣
∣ � γ

∥
∥
∥
∑

1�i�n

βifi

∥
∥
∥
X′
.

Proof of Helly’s theorem.

Let us show that the condition is necessary. If fi(xε) = αi for every i with

‖xε‖ � γ + ε, then for every βi ∈ R
n, we have

∣
∣
∣
∑

1�i�n

βiαi

∣
∣
∣ =

∣
∣
∣
∑

1�i�n

βifi(xε)
∣
∣
∣ � ‖xε‖

∥
∥
∥
∑

i

βifi

∥
∥
∥
X′
.

The result follows from the arbitrariness of ε.

Let us show that the condition is sufficient. We may assume that the fi
are linearly independent. Indeed, if this is not the case, let f1, f2, . . . , fp with

p � n be a linearly independent generating subset of the family {fi}.
Let us assume that the result has been proved for linearly independent

functionals. We have n complex numbers αi. Taking βi = 0 for all i � p+ 1,

we have ∣
∣
∣
∑

1�i�p

βiαi

∣
∣
∣ � γ

∥
∥
∥
∑

1�i�p

βifi

∥
∥
∥
X′
,

whence, for every ε > 0, there exists an xε such that

‖xε‖X � γ + ε and ∀ i � p, fi(xε) = αi.

We need to verify that these equalities also hold for i � p + 1. For this,

note that if fp+1 =
∑

1�i�p γifi, then by taking βp+1 = −1 and βi = γi for

i � p, we have the inequality
∣
∣
∣
∑

1�i�p+1

βiαi

∣
∣
∣ � γ

∥
∥
∥

∑

1�i�p+1

βifi

∥
∥
∥
X′
.
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This implies that ∑

1�i�p+1

βiαi = 0.

Consequently, we have

αp+1 =
∑

i

γifi(xε) = fp+1(xε).

We can repeat this for every fi with i � p+ 1. In conclusion, we have shown

the result if we can prove that it holds for linearly independent fi.

Let us now suppose that the fi are linearly independent. The map ϕ

from X to R
p defined by ϕ(x) = (f1(x), . . . , fp(x)) is therefore a continuous

surjective linear map. In particular, if Sε = {x ∈ X | ‖x‖X � γ+ ε}, then the

image of Sε is a convex subset of Rp whose interior contains 0.

Let us suppose that −→α = (αi)1�i�p does not belong to ϕ(Sε). By Theorem

1.19, there exists a hyperplane that separates the convex set ϕ(Sε) from the

point with coordinates αi. In other words, there exist βi, i � p, such that

∑

i

βiαi � sup
x∈Sε

βifi(x).

Since the right-hand side equals (γ+ε)(‖
∑

i βifi‖X′), we have a contradiction.

��

Proof of Theorem 1.40.

Let x′′ ∈ X ′′ be an element of norm 1. By the definition of the norm, for

every n there exists an fn of norm 1 in X ′ such that

x′′(fn) � 1− 1

n
.

Let αi = x
′′(fi) for i � n. For any n-tuple of real numbers βi, we have

∣
∣
∣

n∑

1

βiαi

∣
∣
∣ =

∣
∣
∣

n∑

1

βix
′′(fi)

∣
∣
∣ � ‖x′′‖X′′

∥
∥
∥

n∑

1

βifi

∥
∥
∥
X′
.

Consequently, by Helly’s theorem applied with ε = 1/n, there exists an xn ∈ X
such that for every i � n,

‖xn‖X � 1 +
1

n
and fi(xn) = αi = x

′′(fi).

Note that the sequence ‖xn‖X tends to 1; indeed, setting i = n gives

1− 1

n
� x′′(fn) = fn(xn) � ‖fn‖X′‖xn‖X � 1 +

1

n
.
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We will use the uniform convexity to show that (xn) is a Cauchy sequence.

If this is not the case, then for every ε > 0 there exist sequences nk < mk <

nk+1 < · · · with
‖xnk

− xmk
‖ � ε.

Since X is uniformly convex, there exists a δ(ε) > 0 such that

‖xnk
+ xmk

‖ � 2(1− δ(ε)).

Consequently, as mk > nk,

fnk
(xnk

) = fnk
(xmk

) = x′′(fnk
),

whence

2
(
1− 1

nk

)
� fnk

(xnk
) + fnk

(xmk
) � ‖xnk

+ xmk
‖ � 2(1− δ(ε)).

Taking k to +∞ leads to a contradiction.

The sequence xn therefore converges to a point x0. By taking the limit,

we have

‖x0‖ = 1 and ∀ i, fi(x0) = x′′(fi).

Let us show that x0 is unique. Suppose that y0 ∈ X, y0 �= x0, satisfies the

same equalities. Since X is uniformly convex, ‖x0 + y0‖ < 2. Moreover,

‖x0 + y0‖X � fi(x0 + y0) = 2x′′(fi) � 2
(
1− 1

i

)
,

which leads to a contradiction when we let i tend to infinity.

Let f0 ∈ X ′. We must show that

f0(x0) = x
′′(f0).

By the previous reasoning, there exists a z0 ∈ X such that

‖z0‖X = 1 and ∀ i, fi(z0) = x′′(fi).

In particular, the uniqueness tells us that z0 = x0, completing the proof of

the theorem. ��

We will admit that the spaces Lp and �p are uniformly convex for p > 1,

p <∞, without giving a proof. The proof uses Clarkson’s inequalities, which

the reader can find in [23] and [1].
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1.3 The Space of Continuous Functions on an Open

Subset of RN

Definition 1.42. Let X and Y be two normed spaces. We say that X is

embedded in Y if there exists a continuous injection i from X to Y , that is,

an injection i and a constant C > 0 such that

(1.43) ∀x ∈ X, ‖i(x)‖Y � C‖x‖X .

We denote the embedding by

X ↪−→ Y.

We call the embedding compact if the operator i is compact, that is, if it maps

a bounded subset of X to a relatively compact subset of Y . We denote the

compact embedding by

(1.44) X ↪−→c Y.

Definition 1.45. Let Ω be an open subset of RN . For any nonnegative inte-

germ, let Cm(Ω) be the space of continuous functions whose partial derivatives

up to order m are continuous on Ω. Let

(1.46) C∞(Ω) =
⋂

m∈N

Cm(Ω),

and let C∞c (Ω) or D(Ω) denote the space of C∞(Ω) functions with compact

support in Ω.

Since Ω is open, the continuous functions on Ω are not necessarily

bounded. The following defines a useful and important subspace of Cm(Ω).

Definition 1.47. For an open subset Ω of RN , let Cmb (Ω) be the subset of

Cm(Ω) consisting of the functions whose partial derivatives of order � m are

bounded and uniformly continuous on Ω. By endowing this subspace with the

norm

(1.48) ‖ϕ‖Cm
b (Ω) = sup

|α|�m

sup
x∈Ω

|Dαϕ(x)|,

we obtain a Banach space.

Note that when Ω is a bounded open subset, any function on this space,

as well as all its partial derivatives, admits a continuous extension to Ω. The

space Cmb (Ω) is therefore identical to Cm(Ω). Consider the following important

subspace of Cmb (Ω).
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Definition 1.49. For 0 < λ � 1, C0,λb (Ω) denotes the space of Hölder contin-

uous functions of order λ on Ω, defined as follows:

C0,λb (Ω) =
{
ϕ ∈ Cb(Ω) | ∃C > 0, ∀ (x, y) ∈ Ω2, |ϕ(x)− ϕ(y)| � C|x− y|λ

}
.

When λ = 1, these are called the Lipschitz continuous functions. More gener-

ally, we define Cm,λ
b (Ω) to be the subset of Cmb (Ω) of functions ϕ such that

∃C > 0, ∀α, |α| = m, ∀ (x, y) ∈ Ω2, |Dαϕ(x)−Dαϕ(y)| � C|x− y|λ.

Endowed with the norms

(1.50) ‖ϕ‖m,λ = ‖ϕ‖Cm
b (Ω) + sup

|α|=m

sup
{(x,y)∈(Ω)2|x �=y}

|Dαϕ(x)−Dαϕ(y)|
|x− y|λ ,

these are Banach spaces. Moreover, we have

∀ (ν, λ), 0 < ν < λ < 1 =⇒ Cm,λ
b (Ω) ↪−→ Cm,ν

b (Ω) ↪−→ Cmb (Ω),

where the inclusions are strict.

Definition 1.51. An algebra A endowed with a norm is called a normed

algebra if multiplication is continuous for the norm.

Example 1.52. The space Cb(Ω) of continuous bounded functions on Ω,

where Ω is an open subset of RN , is a normed algebra.

Definition 1.53. Let A be an algebra. A subalgebra A′ of A is a vector

subspace that is stable for scalar multiplication.

Theorem 1.54 (Stone–Weierstrass). Let K be a compact subset of RN .

Let A be a subalgebra of C(K,C) satisfying

(1) ∀Φ, Φ ∈ A ⇒ Φ ∈ A (A is self-adjoint).

(2) ∀ (x, y) ∈ K, x �= y, ∃Φ ∈ A, Φ(x) �= Φ(y) (A separates points).

(3) ∀ a∈C, the function x 	→ a belongs to A (A contains the constant func-

tions).

Then A is dense in C(K,C).

An example of such an algebra is the algebra of polynomials in N variables

on K whose complex coefficients have rational real and imaginary parts. In

particular, this shows that C(K) is separable.

Proof of the Stone–Weierstrass Theorem.

Using the first property, we reduce to the case of a real algebra, where

the function we wish to approximate is real. We admit without proof the
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Weierstrass theorem, which allows us to uniformly approximate any contin-

uous function on a compact space by a sequence of polynomials. Let f ∈ A.
This function is uniformly bounded. Let M = sup |f |. Since the function

t 	→ |t| is continuous on the compact set [−M,M ], there exists a sequence of

polynomials {Pn} such that

∀ t ∈ [−M,M ], ‖t| − Pn(t)|∞ � 1

n
.

By composing functions, we deduce the inequalities

∀ s ∈ K, ‖f(s)| − Pn(f(s))| �
1

n
.

Since A is an algebra, Pn(f) ∈ A. Consequently, |f | ∈ A. It follows from the

equalities

sup(f, g) =
f + g

2
+
|f − g|

2
and inf(f, g) =

f + g

2
− |f − g|

2

that if f and g belong to A, then the functions sup(f, g) and inf(f, g) belong

to the closure A.
Next, let h ∈ C(K,R), ε > 0, and let s and t be two points of K. By the

separating hypothesis, there exists an f ∈ A such that f(s) �= f(t). Let

g =
h(s)

f(s)− f(t) (f − f(t)) +
h(t)

f(t)− f(s) (f − f(s)).

The function g equals h at the two points s and t. Since the space A contains

the constant functions, it follows that g ∈ A. We denote this function by gs,t.

Since (gs,t−h)(s) = 0, the continuity of these functions implies the existence,

for every point s of K, of an open neighborhood U(s) of s such that

∀u ∈ U(s), gs,t(u) � h(u)− ε.

Since the U(s) cover the compact space K when we let s vary in K, we can

find a finite number p of such points, say (si)1�i�p, such that

K ⊂
⋃

1�i�p

U(si).

Keeping t fixed, we now define gt = sup1�i�p gsi,t. By the above, as A is an

algebra, gt ∈ A. For any u ∈ K, there exists an si such that u ∈ U(si). We

thus have: ∀u ∈ U(si), gt(u) � gsi,t(u) � h(u)− ε, whence

(∗) ∀u ∈ K, gt(u) � h(u)− ε.
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Moreover, as gsi,t(t) = h(t), we have gt(t) = h(t). It follows from the continuity

at t that there exists an open neighborhood V (t) of t such that ∀u ∈ V (t),
gt(u) � h(u) + ε. Extracting a finite subcover V (tj) from the family of open

subsets V (t), we let g = inf gtj . By (∗), we have

(∗∗) ∀u ∈ K, g(u) � h(u)− ε.

Finally, we note that |g − h| � ε; indeed, for every j, we have gtj � h+ ε.
Given u ∈ K, there exists an integer j such that u ∈ V (tj); hence

(∗∗∗) g(u) � gtj (u) � h(u) + ε.

The result follows from (∗∗) and (∗∗∗). We have, in fact, shown the following

property:

∀h ∈ C(K), ∃ g ∈ A, ‖g − h‖C(K) = sup
u∈K

|g(u)− h(u)| � ε. ��

Theorem 1.55 (Ascoli–Arzelà). Let Ω be a bounded domain in R
N . A sub-

set K of C(Ω) is precompact in C(Ω) if and only if

(1) There exists an M > 0 such that ∀Φ ∈ K, ∀x ∈ Ω, |φ(x)| �M .

(2) ∀ ε > 0, ∃ δ > 0, ∀φ ∈ K, ∀ (x, y)∈Ω, |x− y|<δ ⇒ |φ(x)− φ(y)|<ε.

A proof of Theorem 1.55 can be found in [28], as well as a proof of the

following proposition, whose second statement is a corollary of it.

Proposition 1.56. In an open subset Ω of RN , we have the following embed-

dings :

∀m ∈ N, Cm+1(Ω) ↪−→ Cm(Ω)(1.57)

∀ (λ, μ) ∈ R
2, 0 < ν < λ � 1 =⇒ Cm,λ(Ω) ↪−→ Cm,ν(Ω)(1.58)

If Ω is bounded, then the second embedding is compact. The first is compact

if, moreover, Ω is convex, or if, more generally, there exists an integer K such

that any two of its points can be joined by a piecewise linear curve consisting

of at most K segments in Ω.

1.4 Distributions on an Open Subset of RN

1.4.1 Spaces of Regular Functions on an Open Set Ω

Let Ω be an open subset of RN .



24 1 Notions from Topology and Functional Analysis

Definitions and Algebraic Structure. For any k ∈ N, we denote by Ek(Ω) the
set of Ck functions on Ω. For any compact subset K of RN contained in Ω,

we denote by Dk
K(Ω) the set of Ck functions f on Ω with supp(f) ⊂ K.

The set of functions f in Ek such that supp(f) is a compact subset of Ω

is denoted by Dk(Ω). We therefore have

Dk(Ω) =
⋃

K, compact⊂Ω

Dk
K(Ω).

The set of infinitely differentiable functions on Ω with compact support in Ω,

which we denote by D(Ω), or sometimes C∞c (Ω), is a special case since D(Ω) =
D∞(Ω).

It is clear that these definitions give vector spaces over C.

Information Concerning the Topologies. In what follows, the differentiation

indices will be N -tuples α = (α1, α2, . . . , αN ), where αi is the order of the

partial derivative in the variable xi and the total order of the derivative is

denoted by |α| =
∑

i αi. We will use the following shortened notation:

Dα(f) =
∂|α|f

∂xα1
1 · · · ∂xαN

N

.

Let us fix a nonnegative integer k. For any ϕ ∈ Ek(Ω), integer m � k, and
compact subset K of Ω, we let

ηm,K(ϕ) = sup
|α|�m

sup
x∈K

∣
∣Dαϕ(x)

∣
∣.

For any pair (m,K), this gives a seminorm on Ek(Ω). The family of such

seminorms is directed and separating (cf. Example 1.7).

It follows, as has already been stated in Proposition 1.6, that the family B
of closed balls Bm,K(r) = {f | ηm,K(f) � r} associated with these seminorms

is a fundamental system of neighborhoods at the origin for a topology of

locally compact Hausdorff space. By translation, we deduce a fundamental

system of neighborhoods at any arbitrary element ϕ0.

Note that in this locally compact space, the seminorms defined above are

continuous.

Countable Family of Bases of Neighborhoods. Let us consider an increasing

sequence of relatively compact open subsets {Ωj} of Ω such that Ωj ⊂ Ωj+1

and Ω =
⋃
Ωj . The reader can easily show the existence of such a sequence.

If we set Kj = Ωj , then the family of seminorms {ηm,Kj} is a basis of (con-

tinuous) seminorms in the locally compact space Ek(Ω). In other words, the

closed balls associated with this family of seminorms also form a fundamental

system of neighborhoods of 0 in Ek(Ω).
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Consequently, we can say that the space contains a countable fundamental

system of neighborhoods of 0. Moreover, if {Un} is such a countable funda-

mental system, then setting Vn =
⋂

m�n Um gives a fundamental system of

decreasing neighborhoods of 0. We endow Dk
K(Ω) with the induced topology.

The same construction can be used for the space E∞(Ω).

Let us now consider the space Dk(Ω) for k � +∞. Using the open cover

above, Dk(Ω) can be seen as the union of an increasing sequence of vector

subspaces, namely the Dk
Kj

(Ω) with Ωj = Kj .

Next, consider the set B of absorbing and balanced (cf. Definition 1.1)

convex subsets B of Dk(Ω) such that

∀ j ∈ N, B ∩ Dk
Kj

(Ω) is a neighborhood of 0 in Dk
Kj

(Ω).

We use without proof (cf. Exercise 1.4) that B is a fundamental system of

neighborhoods of 0 for a topology of locally compact Hausdorff space, and that

this topology is independent of the Ωj . Moreover, for any compact subset K,

the topology on Dk
K(Ω) is induced by this topology.

In the remainder of this book, we will call this topology the natural topology

on Dk(Ω).

We will also admit without proof the following characterization of a neigh-

borhood of 0 in a space Dk(Ω), which still holds when we replace k by ∞.

Proposition 1.59. A convex subset U of Dk(Ω) is a neighborhood of 0 for

the natural topology on Dk(Ω) if and only if, for every Kj, the intersection

U ∩ Dk
Kj

(Ω) is a neighborhood of 0 for the topology on Dk
Kj

(Ω).

Bounded Subsets and Convergent Sequences in the Locally Convex Space

Dk(Ω). In the space X = Dk(Ω) endowed with the topology associated

with an increasing sequence of locally convex subspaces, we can character-

ize the bounded subsets and convergent sequences using a consequence of the

Dieudonné–Schwartz theorem. Let us state part of this theorem, which will

be useful when we study distributions.

Proposition 1.60 (Dieudonné–Schwartz). For fixed k � ∞, we endow

Dk(Ω) with its natural topology of locally compact space.

(1) A subset B of Dk(Ω) is bounded if and only if there exists a compact

subset K of Ω such that

∀ϕ ∈ B, supp(ϕ) ⊂ K and ∀m � k, sup
ϕ∈B
ηm,K(ϕ) < +∞.

(2) A sequence {ϕn} converges to 0 in Dk(Ω) if and only if there exists a

compact subset K of Ω such that ∀n, supp(ϕn) ⊂ K and

∀ (α) ∈ (N)N , |α| � k =⇒ {Dαϕn} −→ 0 uniformly on K.
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1.4.2 Regularization of Functions, Applications

In many problems we wish to approximate a locally summable function by a

C∞ function. Classically, we use the convolution with what we call a regular-

izing sequence (or family) {ρε}.
Construction of {ρε}. Let ρ be a function in D(RN ) with positive values such

that ρ(x) = 0 for |x| � 1 and
∫
RN ρ(x)dx = 1. We can, for example, take

ρ(x) =

⎧
⎨

⎩
k exp

(
− 1

1− |x|2
)
if |x| < 1,

0 if |x| > 1,

with k such that
∫
RN ρ(x)dx = 1. We then define ρε by setting

(1.61) ρε(x) = ε
−Nρ(x/ε).

By taking, for example, ε = 1/j, we obtain a so-called regularizing sequence.

Convolution with Summable f with Compact Support. Let f be such a function

on R
N . Let v = f � ρε be the function defined by

∀x ∈ R
N , v(x) =

∫

RN

f(t)ρε(x− t)dt =
∫

RN

f(x− t)ρε(t)dt.

Take x in the complement of supp(f) +B(0, ε); then for any t in the support

of f , we have |x − t| > ε, whence v(x) = 0. The support of the convolution

v = f � ρε is therefore contained in supp(f) +B(0, ε).

Moreover, if x0 belongs to this neighborhood, we can apply the Lebesgue

differentiation theorem, which allows us to take derivatives of arbitrary order

with respect to x under the integral sign. Consequently,

∀α ∈ N
N , Dα(f � ρε) = f � D

α(ρε).

We conclude that f � ρε ∈ D(RN ).

By assuming that the support of f is included in the open set Ω, there

exists an ε sufficiently small that supp(f) + B(0, ε) ⊂ Ω. Since any element

of D(Ω) extended by 0 outside of Ω is clearly a D(RN ) function with support

in Ω, it follows that f � ρε ∈ D(Ω).
Convolution with a Ck Function f with Compact Support. Let us take k = 0.

For a continuous function u, consider dδ(x) = u � ρδ(x) − u(x). Using the

integral of ρδ, which equals 1, we can write

|dδ(x)| =
∣
∣
∣
∣

∫

RN

u(x− t)ρδ(t)dt−
∫

RN

u(x)ρδ(t)dt

∣
∣
∣
∣

�
∫

RN

|u(x− t)− u(x)|ρδ(t)dt.
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The function u is uniformly continuous on the compact set K = supp(u) +

B(0, 1). Therefore, there exists a δ > 0 such that |t| < δ ⇒ |u(x−t)−u(x)| � ε.
Consequently, ‖dδ‖∞ � ε

∫
RN ρδ(t)dt = ε.

For k = 1 we will use the property that the derivative of a convolution

equals the convolution of either of the functions with the derivative of the

other. The reasoning remains the same for all values of k by induction, and

we can conclude that ηm,K(u�ρδ−u)→ 0. Summarizing, we have the following

result.

Proposition 1.62. Let f be a summable function on Ω with compact support

in Ω; then for ε small enough, the convolution f � ρε is an element of D(Ω).
If for every nonnegative integer k, f belongs to Dk(Ω), then when ε→ 0,

the family {f � ρε} tends to f in the locally compact space Dk(Ω).

In particular, for any k ∈ N, D(Ω) is dense when considered as a subspace

of Dk(Ω).

We will use these properties of regularizing sequences again when studying

the spaces Lp(Ω) (Section 1.5).

1.4.3 Continuous Linear Functionals on These Spaces;

Distributions

Definition 1.63. A distribution on Ω is a linear functional on D(Ω) that is
continuous for the natural locally convex topology.

For k ∈ N, a distribution on Ω of order at most k is a linear functional on

D(Ω) that is continuous for the natural locally convex topology of Dk(Ω).

A distribution has order exactly k � 1 if it cannot be extended to a linear

functional that is continuous on Dk−1(Ω).

We denote the corresponding spaces of continuous linear functionals by D′(Ω)

and D′k(Ω). They are the duals of D(Ω) and Dk(Ω).

Continuity Condition for a Linear Functional. We begin by stating

(cf. Exercise 1.24) a necessary and sufficient condition for the continuity of

a linear functional that uses the fundamental system of neighborhoods of 0

defined using the family of seminorms {ηλ} that generate the topology of a

locally convex space X.

Proposition 1.64. A linear functional T on X is continuous if and only if

∃λ, ∃M > 0, ∀x ∈ X, |T (x)| �Mηλ(x).

The importance of the existence of countable fundamental systems of

neighborhoods in locally convex spaces is clear in the following two propo-

sitions. The second one characterizes distributions.
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Proposition 1.65. Let T be a linear functional on one of the spaces Ek(Ω),
EkK(Ω); then T is continuous if and only it is sequentially continuous, that is,

{xn} −→ 0 =⇒ {T (xn)} −→ 0.

Proof.

Let {Vn} be a countable fundamental system of decreasing neighborhoods

of 0 in X = Ek(Ω) (cf. Subsection 1.4.1). Let us assume that the linear func-

tional T on this space is sequentially continuous but not continuous. There

then exists an open disc D with center 0 in C such that T−1(D) does not

contain any element Vn of the fundamental system. Let C be the complement

of T−1(D) in X. Let us then take a sequence {xn} in X such that xn ∈ Vn∩C.
This sequence tends to 0 in X while for any n, T (xn) /∈ D. Consequently, T
is not sequentially continuous, contradicting the assumption. ��

Let us now consider the continuity of the linear functionals on X = Dk(Ω).

By the definition of the locally convex topology on X = Dk(Ω), where

k � +∞, a linear functional T on X is continuous if and only if its restric-

tions Tj to the subspaces Xj = Dk
Kj

(Ω) are continuous.

Indeed, if T is continuous on X and D is an open disc with center 0 in C,

then the convex set T−1(D) is a neighborhood of 0 in X. By the definition

of the topology on X, (Tj)
−1(D) = T−1(D)∩Xj is then a neighborhood of 0

in Xj , giving the continuity of Tj . The equality above proves the converse.

Summarizing, we find the following characterization of distributions, or rather

of distributions of order � k.

Proposition 1.66. Let T be a linear functional on Xk = Dk(Ω), where k ∈
N ∪ {+∞}. The following three properties are equivalent:

(1) The linear functional T is continuous on Xk.

(2) The linear functional T is sequentially continuous on Xk.

(3) For any compact K ⊂ Ω, the restriction of T to the space Dk
K(Ω) is

continuous. In other words, there exist a C > 0 and an integer m � k
(m ∈ N in the case X∞ = D(Ω)) such that

∀ϕ ∈ Xk, [〈T, ϕ〉| � Cηm,K(ϕ).

Proof.

The proof of the equivalence of (1) and (2) is analogous to that of Propo-

sition 1.65. Above, we expressed their equivalence to the continuity of the

restrictions to the spaces Dk
Ki

(Ω). The fact that every compact subset is in-

cluded in some Kj and the characterization given in Proposition 1.64 give the

equivalence with (3). ��



1.4 Distributions on an Open Subset of RN 29

Remark 1.67. To apply the condition of sequential continuity, we must not

forget the condition that the sequences of D(Ω) converge to 0, established in

the Dieudonné–Schwartz theorem 1.60.

1.4.4 Examples

We leave it to the reader to show the (sequential) continuity of the linear

functionals considered below.

Example 1.68 (distribution associated with a function). Let f be a

locally summable function on Ω. We associate with it a distribution, called

regular, and denoted by Tf or [f ], as follows:

ϕ ∈ D(Ω), 〈Tf , ϕ〉 =
∫

Ω

f(x)ϕ(x)dx.

Example 1.69 (Dirac distribution). We define the Dirac distribution at

a ∈ R
N by

ϕ ∈ D(RN ), 〈δa, ϕ〉 = ϕ(a).

There is no function f such that δa = [f ]. Consequently, this distribution is

called singular. It has order � 0.

Example 1.70 (principal value distribution). In the case N = 1, we de-

fine the principal value of 1/x by

ϕ ∈ D(R), 〈Vp(1/x), ϕ〉 = lim
ε→0

∫

|x|�ε

ϕ(x)

x
dx.

We can also write

lim
ε→0

∫

|x|�ε

ϕ(x)

x
dx =

∫

R

ϕ(x)− ϕ(−x)
x

dx.

We can show the continuity of Vp(1/x) using the mean value theorem. The

order of this distribution is finite and � 1.

Example 1.71 (Hadamard finite part distribution). Let N � 1. The

function x 	→ f(x) = 1/|x|N is not locally summable on R
N . We define the

distribution T = Pf(1/|x|N ) by setting:

∀ϕ ∈ D(RN ), 〈Pf(1/|x|N ), ϕ〉 = lim
ε→0

[∫

|x|�ε

ϕ(x)

|x|N dx+ ωN−1ϕ(0) ln(ε)
]
,

where ωN−1 is the area of the unit sphere in R
N . We can show that the order

of the distribution is � 1.
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Likewise, we define the Hadamard finite part distribution of 1/|x|N+1,

which will play an important role in the study of the Riesz transforms

(cf. Chapter 7). It is the distribution that maps ϕ ∈ D(RN ) to the number

〈
Pf(1/|x|N+1), ϕ

〉
= lim

ε→0

[∫

|x|�ε

ϕ(x)

|x|N+1
dx− ωN−1

ϕ(0)

ε

]
.

1.4.5 Topologies on the Space of Distributions D′(Ω)

As is the case for normed spaces, we can put many topologies of locally convex

space on the dual D′. More particularly, we define the norm topology and weak

topology on this dual using seminorms.

Weak Topology on D′. To an arbitrary finite subset F of D(Ω), we associate

the seminorm

∀T ∈ D′(Ω), pF (T ) = sup
ϕ∈F

|〈T, ϕ〉|.

We can easily see that this defines a directed and separating family of semi-

norms on D′(Ω). We can therefore apply Proposition 1.6. It follows that the

family of closed balls associated with the p
F
forms a fundamental system of

neighborhoods of 0 for a topology of locally convex Hausdorff space. For this

topology, which we call the weak topology, the convergence of a sequence {Tn},
and therefore also that of a series, is equivalent to pointwise convergence on

D(Ω).

Proposition 1.72. The sequence {Tn} in D′(Ω) converges to T in D′ for the

weak topology on the dual if

∀ϕ ∈ D(Ω), 〈Tn, ϕ〉 −→ 〈T, ϕ〉.

The proof of the following proposition can be found in [22].

Proposition 1.73. If (Tn) is a sequence in D′(Ω) such that for any

ϕ ∈ D(Ω), 〈Tn, ϕ〉 converges to a finite limit, then the Tn converge weakly,

that is (see Remark 1.74 below), converge in the sense of distributions.

Norm Topology on D′(Ω). Let B be a bounded subset of D(Ω). By Proposi-

tion 1.60, this means that B is included in some DK(Ω) and that the semi-

norms ηm,K are bounded on B. By analogy with the case of normed spaces,

we replace the finite subsets by bounded subsets in the previous definition. In

other words, we consider the seminorms pB and the associated closed balls.

The resulting topology of locally convex Hausdorff space is called the norm

topology on the dual D′(Ω) (cf. Exercise 1.19).
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Remark 1.74. We will admit the following property without proof: a se-

quence of distributions converges to 0 for the weak topology on the dual if

and only if it converges to 0 for the norm topology on the dual.

Consequently, in statements concerning sequences or series we will not

specify the topology in question. We will simply talk of convergence.

1.4.6 Operations on Distributions

In addition to the algebraic operations associated with the structure of vector

space, we will consider the following operations.

Definition 1.75. Let α be a C∞ function on Ω and let T ∈ D′(Ω). We let

αT denote the distribution such that

∀ϕ ∈ D(Ω), 〈αT, ϕ〉 = 〈T, αϕ〉.

We can verify that αT is indeed a distribution, and that the linear map

T 	→ αT from D′(Ω) to itself is continuous, both for the norm topology and

for the weak topology.

For example, we easily see that, for any locally summable function f

on R
N , we have α[f ] = [αf ], and that αδa = α(a)δa. In particular if α(a) = 0,

we get αδa = 0. When N = 1, if (x− a)T = 0, there exists a constant C such

that T = Cδa. We can also verify that xVp(1/x) = 1.

Definition 1.76. Let h ∈ R
N and let T ∈ D′(RN ). We define the translation

of T with index h, denoted by τhT or Th, by

∀ϕ ∈ D(RN ), 〈Th, ϕ〉 = 〈T, τ−hϕ〉,

where (τ−hϕ)(x) = ϕ(x+ h).

We can easily see that Th is a distribution.

1.4.7 Support of a Distribution

Definition 1.77. We call an open subset O of Ω a vanishing set for an ele-

ment T of D′(Ω) if for every ϕ ∈ D(Ω) with compact support in O, we have

〈T, ϕ〉 = 0.

We can show that the union of all vanishing sets of T is also a vanishing

set. Consequently, we can give the following definition.

Definition 1.78. The support of T , denoted by suppT , is the complement

of the largest vanishing set of T .
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Example 1.79. The support of the distribution δa is {a}. If f is a locally

summable function on Ω, then the support of the distribution [f ] equals the

support of the function f , which is supp(f) = {x | f(x) �= 0}.

Let us consider the following theorem.

Theorem 1.80. Let T be a distribution with compact support K; then T can

be extended to a continuous linear functional on the locally convex space E(Ω)
of C∞ functions on Ω. In other words, it can be identified with an element

of the dual E ′(Ω). In particular, if T has compact support, then the symbol

〈T, ϕ〉 is still defined if ϕ is only C∞ on Ω.

In the proof (cf. Exercise 1.20), we use a function α ∈ D(Ω) with value 1

on a neighborhood of K and extend T to T̃ by setting

∀ϕ ∈ E(Ω), 〈T̃ , ϕ〉 = 〈T, αϕ〉.

1.4.8 Derivation of Distributions

Definition 1.81. Let α be a multi-index and let T be a distribution on an

open subset Ω of RN . The derivative DαT is the linear functional on D(Ω)
defined by

∀ϕ ∈ D(Ω), 〈DαT, ϕ〉 = (−1)|α|〈T,Dαϕ〉.

This functional is a distribution on Ω.

When f is a C|α| function, we have Dα[f ] = [Dαf ]. We can show that for

the weak topology on D′, given h ∈ R
N with h = hiei, we have

lim
hi→0

τ−hT − T
hi

=
∂T

∂xi
.

Let us note the following property that follows from the definitions. If the

sequence {Tn} converges to T in D′, then the sequence {Dα(Tn)} converges

to Dα(T ).

Example 1.82. The distribution Vp(1/x) is the derivative of the distribu-

tion [f ] associated with the locally summable function x 	→ f(x) = ln |x|.

The proof of the following proposition is given in [22].

Proposition 1.83. If T is a distribution on R of order at most k, then the

order of T ′ is at most k+ 1. If T is of order k � 1, then T ′ is of order k+ 1.
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Example 1.84 (of a derivation). Consider the function f on R
2 defined by

f(x, y) = min(x, y). Let us determine the mixed partial derivative of f in the

sense of distributions. This example can be generalized to R
N .

〈 ∂2

∂x∂y
[f ], ϕ

〉
=

∫ +∞

−∞

[∫ +∞

−∞
min(x, y)

∂2ϕ

∂x∂y
(x, y)dy

]
dx

=

∫ +∞

−∞

[∫ x

−∞
y
∂2ϕ

∂x∂y
(x, y)dy + x

∫ +∞

x

∂2ϕ

∂x∂y
(x, y)dy

]
dx.

The sum J+K of the two integrals inside the square brackets can be computed

as follows:

J +K =

[
y
∂ϕ

∂x
(x, y)

]x

−∞
−
∫ x

−∞

∂ϕ

∂x
(x, y)dy + x

[
∂ϕ

∂x
(x, y)

]+∞

x

= −
∫ x

−∞

∂ϕ

∂x
(x, y)dy.

Consequently, using Fubini’s theorem one more time, we have

〈 ∂
2

∂x∂y
[f ], ϕ〉 = −

∫ +∞

−∞

∫ +∞

y

∂ϕ

∂x
(x, y)dy dx

= −
∫ +∞

−∞

[
ϕ(x, y)

]+∞

x=y
dy

=

∫ +∞

−∞
ϕ(y, y)dy =

∫ +∞

−∞
ϕ(x, x)dx.

The result can be written as 〈δΔ, ϕ〉 and can be interpreted as the action on

the test function ϕ of the Dirac distribution with support the line Δ in R
2

with equation y = x.

Example 1.85. On R
N , consider a continuous function h of the N − 1

variables x1, . . . , xN−1. We define the function Uh by setting Uh(x) = 1 if

xN � h(x1, . . . , xN−1) and Uh(x) = 0 otherwise. Let us take the derivative

with respect to xN .

Let x′ = (x1, x2, . . . , xN−1). By applying Fubini’s theorem, we obtain

〈 ∂
∂xN

[Uh], ϕ
〉
= −

〈
[Uh],

∂

∂xN
ϕ
〉
= −

∫

RN

[
Uh
∂

∂xN
ϕ

]
dx

= −
∫

RN−1

[∫ +∞

h(x′)

∂

∂xN
ϕ(x′, xN )dxN

]
dx′

=

∫

RN−1

ϕ(x′, h(x′))dx′.

This result can be interpreted as the action of ϕ on a Dirac distribution with

support the surface with Cartesian equation xN = h(x′).
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Indefinite Integration.

Proposition 1.86. If T ∈ D′(Ω), then T admits infinitely many indefinite

integrals that can be deduced from each other by adding a constant.

This concludes our summary of results on distributions. We will give ad-

ditional information on tempered distributions in Chapter 4.

1.5 The Spaces Lp for p ∈ [1,+∞]

We assume known the definitions of (Lebesgue) measurable functions and of

the space L1(Ω) of summable functions on Ω, endowed with the norm defined

by ‖f‖1 =
∫
Ω
|f(x)|dx.

Definition 1.87. The space of functions on Ω with summable pth powers is

defined by

Lp(Ω,C) = {u measurable on Ω, with values in C | |u|p ∈ L1}.

This is a normed space thanks to the Minkowski inequality. The norm, which

is denoted by ‖·‖p or ‖·‖Lp , is defined by

‖f‖p =

[∫

Ω

|f(x)|pdx
]1/p
.

Definition 1.88. Let L∞(Ω) be the space of measurable functions f such

that

∃α > 0, mesEα = mes{x | |f(x)| > α} = 0.

This is a normed space with norm ‖f‖∞ = inf{α|mes(Eα)=0} α.

1.5.1 Hölder’s Inequality and the Completeness of Lp

For f ∈ Lp(Ω) and g ∈ Lp′(Ω) with real numbers p and p′ satisfying

1 < p <∞ and 1/p+ 1/p′ = 1, we have the inequality

∫

Ω

|f(x)g(x)|dx �
[∫

Ω

|f(x)|pdx
]1/p[∫

Ω

|g(x)|p
′
dx

]1/p′

.

This inequality can be generalized by considering real numbers pj > 1 such

that the sum of their inverses equals 1:

∀ fj ∈ Lpj ,

∫

Ω

∣
∣
∣
∏
fj(x)

∣
∣
∣dx �

∏[(∫

Ω

|fj(x)|pjdx

)1/pj
]
.
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Theorem 1.89. The space Lp(Ω) is complete.

Proof of Theorem 1.89.

We begin with the case p ∈ [1,∞[. Let (un) be a Cauchy sequence for the

norm on Lp. We extract a subsequence such that

‖unj+1 − unj‖p � 1

2j
.

Let

(1.90) v(x) = lim
J→∞

j=J∑

j=1

(unj+1 − unj )(x).

By the Minkowski inequality, we have

(∫

Ω

|v|p
)1/p

� lim
J→∞

J∑

1

(∫

Ω

|(unj+1 − unj )|p
)1/p
.

Consequently, the set of points where v is infinite has measure zero. More-

over, v is almost everywhere the limit of a sequence of measurable functions,

hence is itself measurable. By the previous inequality, v ∈ Lp and v is the

limit in Lp of a subsequence of un because

‖v − unJ
‖p =

∥
∥
∥
∑

j�J+1

(unj+1 − unj )
∥
∥
∥
p
� 1

2J
.

Since any Cauchy sequence has only one limit point, the sequence {un} con-

verges to v, concluding the proof of Theorem 1.89 for p ∈ [1,∞[. ��
Next, let p =∞. We consider a Cauchy sequence {un}. We define the sets

Ak = {x | |uk(x)| > ‖uk‖∞} and Bn,m = {x | |un − um|(x) > ‖un − um‖∞}.
The union of the Ak and Bn,m has measure zero. Moreover, the sequence un
is uniformly convergent on the complement. Let u be its limit. We can easily

see that u ∈ L∞ and lim ‖un − u‖∞ = 0. ��

Let us now consider the density of the regular functions.

1.5.2 Density of the Regular Functions

We assume know the property Cc(Ω)
L1(Ω)

= L1(Ω).

Theorem 1.91. Let Ω be an open subset of RN ; then for any p with 1<p<∞,

the space D(Ω) is dense in the normed space Lp(Ω).
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Proof of Theorem 1.91.

Let u ∈ Lp(Ω). We begin by approximating u by a sequence of continuous

functions with values in C and compact support. We begin by carrying out a

series of reductions of the problem.

(1) We reduce to u real by noting that if u is measurable and such that

|u|p ∈ L1(Ω), then its real and imaginary parts have these same prop-

erties. Moreover, if (un, vn) ∈ (Cc(Ω,R))2 converge to (�eu,�mu), then
un + ivn → u.

(2) We reduce to u positive. Let u = u+ − u−. If u ∈ Lp(Ω), then the same

holds for u+ and u−. Let {u(1)n } and {u(2)n } be sequences in Cc(Ω,R) that
converge to u+ and u−, respectively, in Lp(Ω); then {u(1)n − u(2)n } → u in

Lp(Ω).

(3) Let u be nonnegative; then up ∈ L1(Ω). By assumption, there exists a se-

quence {vn} of continuous functions with compact support that converges

to up in L1(Ω). By taking v+n , we may, and do, assume that vn � 0 almost

everywhere and that the sequence converges almost everywhere to up.

We may, and do, also assume that {vn} is dominated by an element of L1(Ω).

To reduce to this, we proceed as in the previous theorem. We extract a sub-

sequence {vnj} of {vn} and let v0 = 0 and vJ =
∑J

1

(
vnj+1 − vnj

)
, so that

{‖vJ‖L1} has an upper bound.

Summarizing, the sequence {vJ} of continuous functions converges almost

everywhere to up and has upper bound g =
∑+∞

0 |vnj+1 −vnj |, which belongs

to L1(Ω); hence v
1/p
J converges almost everywhere to u and for almost all x,

we have

∣
∣v1/pJ − u

∣
∣p(x) � 2p−1(

∣
∣vp·1/pJ

∣
∣+

∣
∣up
∣
∣)(x) � 2p−1(g +

∣
∣up
∣
∣)(x).

Consequently, by the dominated convergence theorem, v
1/p
J − u tends to 0 in

Lp(Ω).

Let ρε be a regularizing sequence (cf. Section 1.4.2), let u be a function

belonging to Lp(Ω), let δ be a positive integer, and let ϕ be a continuous

function with compact support in Ω such that ‖u−ϕ‖Lp(Ω) � δ. Let ε be suf-
ficiently small that if | supp (ϕ)| denotes the N -dimensional Lebesgue measure

of the support of ϕ, we have

‖ρε � ϕ− ϕ‖∞ � δ

(|(supp (ϕ)|+ 1)1/p
.

Since ρε � ϕ ∈ D(Ω), this concludes the proof thanks to

��(1.92) ‖u− ρε � ϕ‖p � ‖u− ϕ‖p + ‖ϕ− ρε � ϕ‖p � 2δ.
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Let us note that in the case of RN , we have a more precise result, namely

(1.93) ∀u ∈ Lp(RN ), ‖ρε � u‖Lp � ‖u‖Lp .

Indeed, if p′ denotes the conjugate of p, then Hölder’s inequality gives

∣
∣ρε � u(x)

∣
∣ =

∣
∣
∣
∣

∫

RN

ρε(x− y)u(y)dy
∣
∣
∣
∣

�
(∫

RN

ρε(x− y)dy
)1/p′ (∫

RN

ρε(x− y)|u(y)|pdy
)1/p

=

(∫

RN

ρε(x− y)|u(y)|pdy
)1/p

.

By taking the pth power, integrating with respect to x, and applying Fubini’s

theorem, we obtain the result (1.93).

Let us conclude with the case R
N . Let δ > 0 and let ϕ ∈ Cc(RN ) be such

that ‖u− ϕ‖p < δ. Moreover, let ε0 be sufficiently small that

ε < ε0 =⇒ ‖ρε � ϕ− ϕ‖p < ε.

The triangle inequality then gives the result

‖ρε � u− u‖p � ‖ρε � (u− ϕ)‖p + ‖ρε � ϕ− ϕ‖p + ‖ϕ− u‖p � 3δ. ��

Remark 1.94. The space D(Ω) is clearly not dense in L∞(Ω) for the norm

‖·‖∞; indeed, density would imply the continuity of all functions in L∞.

The following theorem will be useful for results concerning compact em-

beddings in Sobolev spaces. It gives necessary and sufficient conditions for a

subset of Lp(Ω) to be precompact, that is, to have compact closure.

1.5.3 Compactness in the Spaces Lp

Theorem 1.95. Let Ω be an open subset of RN and let p be a real number

with 1 � p <∞. A bounded subset K of Lp(Ω) is precompact in Lp(Ω) if and

only if for every ε > 0 there exist a real number δ > 0 and an open subset G

with compact closure in Ω such that for every u ∈ K and h ∈ R
N satisfying

|h| < δ and |h| < d(G, ∂Ω), we have

∫

G

|u(x+ h)− u(x)|pdx < εp and

∫

Ω�G

|u(x)|pdx < εp.

Let us note that by extending u by 0 outside of Ω, we can replace G by Ω

in the first condition.
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Proof of Theorem 1.95.

We may assume that Ω = R
N . Indeed, it suffices to extend the functions

by zero outside of Ω and replace K by

K ′ = {u ∈ Lp(RN ) | u · 1Ω ∈ K}.

The following arguments show that the precompactness of K in Lp(Ω) is

equivalent to that of K ′ in Lp(RN ). Indeed, let ε > 0, and let N(ε) be an

integer such that if BN
p is the open ball in Lp(RN ), we have the covering

property K ′ ⊂
⋃

i�N(ε)B
N
p (ϕi, ε) with ϕi ∈ K ′. Then, if Bp denotes the open

ball in Lp(Ω), we have

K ⊂
⋃

i�N(ε)

Bp(ϕi|Ω , ε),

where the ϕi belong to K ′. Conversely, if K ⊂
⋃

i�N(ε)Bp(ϕi, ε), then K
′ ⊂⋃

i�N(ε)B
N
p (ϕ̃i, ε), where ϕ̃i is the extension of ϕ by 0.

Let us now assume that K is a precompact bounded subset of Lp(RN ).

We begin by showing that the condition in the theorem is necessary.

Given ε > 0, we can cover the precompact subset K by a finite number

of balls Kj = Bj(ψj , ε/6). By the density of the continuous functions with

compact support in Lp(RN ), there exists a finite set S of such functions ϕj
such that ‖ϕj−ψj‖p � ε/6. Consequently, if u ∈ K, there exists a j such that

u ∈ Kj , whence

(1.96) ∀u ∈ K, ∃ϕu ∈ S, ‖u− ϕu‖p <
ε

3
.

Since the set S is finite, there exists a ball Br of radius r such that

∀ϕ ∈ S, supp(ϕ) ⊂ Br;

hence, outside of Br, we have u = u− ϕu. We can therefore conclude that

(1.97) ∀u ∈ K,
∫

RN�Br

|u(x)|pdx �
∫

RN

|u− ϕu|p < εp.

The second condition of the theorem is therefore satisfied by taking G = Br.

For the first condition, let h0 be such that |h| � h0 implies

(1.98) ∀ϕ ∈ S, ∀x ∈ Br, |ϕ(x+ h)− ϕ(x)| < ε

3|Br+h0 |1/p
.
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This implies that
∫
Ω
|ϕ(x+h)−ϕ(x)|pdx � εp/3p. It follows that for all u ∈ K,

(∫

Ω

|u(x+ h)− u(x)|pdx
)1/p

�
(∫

Ω

|u(x+ h)− ϕu(x+ h)|pdx
)1/p

+

(∫

Br

|ϕu(x)− ϕu(x+ h)|pdx
)1/p

+

(∫

Ω

|u(x)− ϕu(x)|pdx
)1/p

� 3
ε

3
.

Conversely, let us show that if the conditions of Theorem 1.95 are verified,

then K is precompact in Lp(RN ). In order to do this, let ρ ∈ D(RN ) with

ρ � 0,
∫
RN ρ(x)dx = 1 and, for η > 0, let ρη(x) = η−Nρ(x/η) be the so-

called regularizing function. Let us begin by verifying that given ε > 0 and

the compact subset G of RN of the theorem, there exists an h0 > 0 such that

if η < h0, then

(1.99) ∀u ∈ K,
∫

G

∣
∣(ρη � u− u)(x)

∣
∣pdx � ε.

Indeed, thanks to Hölder’s inequality and
∫
RNρ(x)dx = 1, we have almost

everywhere

∣
∣ρη � u− u

∣
∣p(x) �

∫
ρη(y)|u(x− y)− u(x)|pdy

�
∫
ρη(y)

∣
∣τyu− u

∣
∣p(x)dy.

Integrating with respect to x in G, we have for h0 sufficiently small:

∫

G

∣
∣ρη � u− u

∣
∣p � sup

h∈Bη

∫

G

∣
∣τhu− u

∣
∣p(x)dx � ε.

In particular,
∫
G

∣
∣ρη �u−u

∣
∣p uniformly tends to 0 for u ∈ K when η → 0. Let

therefore η be fixed such that for every u ∈ K,

∫

G

∣
∣ρη � u− u

∣
∣pdx � ε

3 · 2p−1
.

Let us show, keeping η fixed, that the subset of C(RN ) defined by Kη =

{ρη � u | u ∈ K} verifies the hypotheses of the Ascoli–Arzelà theorem on the

compact set G. In order to do this, we first use the inequality

(1.100)
∣
∣ρη � u(x)

∣
∣ � sup

x∈RN

[
ρη(x)

]1/p‖u‖p,
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to prove that the function ρη � u is uniformly bounded for x ∈ G and u in K.

Indeed, this inequality results from the upper bound
∫
ρ1/pη (t)ρ(1−1/p)

η (t)|u(x− t)|dt � sup
x∈RN

[
ρη(x)

]1/p
(∫
ρ(1−1/p)(p′)
η

)1−1/p

‖u‖p.

Next, for x ∈ G, we have

(1.101)
∣
∣ρη � u(x+ h)− ρη � u(x)

∣
∣ � sup

x∈RN

[
ρη(x)

]1/p(
∫

G

|τ−hu− u|p
)1/p
,

whence ρη � u is equicontinuous.

Finally, {ρη � u | u ∈ K} is precompact in C(G), so that there exist finite

subsets (ψj) of C(G), j = 1, 2, . . . , k, such that

(1.102) ∀u ∈ K, ∃ j,
∣
∣ρη � u− ψj

∣
∣p
C(G)

� ε

3 · 2p−1|G| .

Let ψ̃j be the extension of ψj by 0 outside of G. This belongs to Lp(RN ). We

have
∫

RN

∣
∣u− ψ̃j

∣
∣p �

∫

RN−G

|u|p +
∫

G

|u− ψj |p

� ε
3
+ 2p−1

(∫

G

|u− ρη � u|p +
∫

G

|ρη � u− ψj |p
)

� ε.

By the above, K can be covered by a finite number of balls of radius ε in Lp.

Moreover, let us show that the centers of these balls can be chosen in K. We

will need the following result.

If K is a subset of a normed space X such that for every ε > 0 there exists

a finite number of balls of radius ε with center vi covering K, then K can be

covered by a finite number of balls of radius 2ε with centers in K.

Indeed, let ε > 0 and let v1, v2, . . . , vp be elements of X such that K ⊂⋃
1�i�pB(vi, ε). Deleting some of the balls is necessary; we may, and do,

assume that for every i ∈ [1, p], B(vi, ε) ∩K �= ∅. Let ui ∈ B(vi, ε) ∩K for

i ∈ [1, p]. The finite set of the B(ui, 2ε) then covers K. Indeed, if u ∈ K, then

for every i, there exists a vi such that |u− vi| � ε. Consequently, we have the

following result, which concludes the proof:

|u− ui| � 2ε. ��

1.5.4 Duality of the Spaces Lp

Theorem 1.103. Let Ω be an open subset of RN and let p be a real number

with 1 < p < +∞. The topological dual of Lp(Ω) is Lp
′
(Ω), where p′ is the

conjugate of p, that is,
1

p
+

1

p′
= 1.
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Remark 1.104. The following proof uses the uniform convexity of Lp for

1 < p < +∞.

Proof of Theorem 1.103.

We first show that if g ∈ Lp′
(Ω), then we can define an element of the

dual Lp(Ω) as follows: to any g in Lp
′
(Ω) we associate a linear functional Lg

on Lp(Ω) defined by
∫
Ω
fg = Lg(f). We verify that Lg is linear and that

(1.105) ‖Lg‖Lp(Ω)′ � |g|p′ ,

which implies that Lg is indeed an element of the dual of Lp(Ω).

Next, let f = g|g|p′−2 if g �= 0 and f = 0 otherwise; then f ∈ Lp(Ω) and∫
Ω
|f |p =

∫
Ω
|g|p′

. Moreover,

(1.106) |Lg(f)| � ‖Lg‖(Lp(Ω))′‖f‖p.

However,

(1.107) Lg(f) =

∫

Ω

|g|p
′
= ‖g‖p

′

p′ = ‖f‖pp.

We therefore have

(1.108) ‖g‖p
′

p′ � ‖Lg‖Lp(Ω)′

(∫

Ω

‖f‖p
)1/p

,

whence

(1.109) ‖g‖p
′(1−1/p)

p′ = ‖Lg‖Lp(Ω)′ = ‖g‖p′ .

This implies that the map associating Lg to g is an isometry.

Conversely, we want to show that every linear functional on Lp(Ω) can be

identified with an element of Lp
′
(Ω). Let L be a linear functional on Lp(Ω)

of norm 1. We begin by showing the existence of a w of norm 1 in Lp(Ω) such

that L(w) = ‖L‖(Lp(Ω))′ = 1. In order to do this, note that by the definition

of ‖L‖(Lp(Ω))′ , there exists a sequence {wn} in Lp(Ω) such that ‖wn‖p = 1

and L(wn) → ‖L‖(Lp(Ω))′ . Let us show that {wn} is a Cauchy sequence in

Lp(Ω). If not, there would exist an ε > 0 such that

∀N ∈ N ∃n,m � N, ‖wn − wm‖p > ε.

By the uniform convexity of Lp(Ω), there exists a δ > 0 such that for n,m

as above, we have ‖wn+wm

2 ‖p < 1− δ. Moreover, we can choose N sufficiently

large that ‖wn + wm‖p �= 0, as ‖wn + wm‖p ‖L‖ � L(wn) + L(wm) → 2. We

then have

(1.110) 1 � L
(
wn + wm

‖wn + wm‖p

)
� (1− δ)−1L

(
wn + wm

2

)
.
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Since n andm tend to infinity, L(wn)+L(wm)→ 2. This gives a contradiction,

whence {wn} is a Cauchy sequence.

Let w be its limit in Lp(Ω). We have L(w) = ‖L‖. Let g = w|w|p−2. It is

clear that g ∈ Lp′
(Ω) and ‖g‖p

′

p′ = ‖w‖pp = 1. We want to show that L = Lg.

We already have L(w) = Lg(w). For u in Lp, we have

(1.111) u =

(∫

Ω

ug

)
w + u−

(∫

Ω

ug

)
w.

Let us show that if v satisfies
∫
Ω
vg = 0, then L(v) = 0. For t > 0 sufficiently

small that ‖w + tv‖p > 1/2, we have

(1.112) L

(
w + tv

‖w + tv‖p

)
� L(w) = 1.

Consequently,

(1.113) tL(v) + 1 � ‖w‖p + o(t).

Indeed, by the mean value theorem applied to the function t→ |w + tv|p, we
have ∫

Ω

|w + tv|p −
∫

Ω

|w|p = pt

∫

Ω

v(w + θ(t)v)|w + θ(t)v|p−2,

where θ(t) is a function such that |θ(t)| < t. For every t, the sequence of

functions gt defined by gt(x) = pv(w + θ(t)v)|w + θ(t)v|p−2 belongs to L1.

For almost all x it converges to g0(x) = pwv|w|p−2(x) when t tends to 0.

Moreover, gt is dominated by an L1 function that is independent of t, as

|gt(x)| � p|v|(|v|+ |w|)(|v|+ |w|)p−2(x) � p(|v|+ |w|)p(x).

By the dominated convergence theorem, we have

∫

Ω

gt(x)dx −→
∫

Ω

g0(x) = 0.

In particular, |w + tv|p = 1 + to(1). Dividing by t > 0 gives L(v) � o(1),
whence L(v) � 0. Replacing v by −v, which verifies the same properties, we

have L(v) � 0; whence, finally, L(v) = 0. We conclude the proof by using

(1.111):

��(1.114) L(u) =

∫

Ω

(ug)L(w) =

∫

Ω

(ug) = Lg(u).

Proposition 1.115. Let Ω be an open subset of RN . The dual of L1(Ω,R) is

L∞(Ω,R).
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Proof of Proposition 1.115.

Let us first treat the case where Ω is bounded. Let T ∈ L1(Ω)′; then,
as Lp(Ω) has a continuous embedding into L1(Ω) ∀ p ∈ ]1,+∞[, we have

T ∈ (Lp(Ω))′. Let gp ∈ Lp
′
(Ω) be the element constructed in the proof of

Theorem 1.103, so that ∀ f ∈ Lp(Ω), 〈T, f〉 =
∫
Ω
gpf . In particular, when we

suppose that f ∈ Cc(Ω), we have

(1.116)

∫

Ω

gp1(x)f(x)dx =

∫

Ω

gp2(x)f(x)dx

for all p1, p2 > 1. Consequently g = gp is independent of p and g ∈ Lp′
(Ω),

∀ p′ <∞. Moreover,

(1.117) |〈T, f〉| � ‖T‖(L1(Ω))′‖f‖1.

Let ϕp′ = |g|p′−2g; then ϕp′ ∈ Lp(Ω), whence by Hölder’s inequality, we have

〈T, ϕp′〉 =
∫

Ω

gϕp′ =

∫

Ω

|g|p
′ � ‖ϕp′‖1‖T‖L1(Ω)′

=
(∫

Ω

|g|p
′−1
)
‖T‖L1(Ω)′ �

(∫

Ω

|g|p
′
)(p′−1)/p′

(mesΩ)1/p
′
‖T‖L1(Ω)′ .

Finally, by dividing by ‖g‖p
′−1

p′ , we have ‖g‖p′ � (mesΩ)1/p
′‖T‖L1(Ω)′ . Let-

ting p′ tend to infinity, we obtain

(1.118) g ∈ L∞ and ‖g‖∞ � ‖T‖L1(Ω)′ .

Let us verify that this is actually an equality. Indeed,

‖T‖ = sup
f∈L1

|f |1�1

|〈T, f〉| = sup
f∈L1

|f |1�1

∣
∣
∣
∫
fg
∣
∣
∣ � ‖g‖∞‖f‖1 = ‖g‖∞.

Next, let Ω be unbounded. Let Ωn = Ω ∩ {x | |x| � n} and let Tn be defined

on Ωn by

(1.119) 〈Tn, f〉 = 〈T, f̃n〉,

where f̃n is the extension of f ∈ L1(Ωn) by 0 outside of Ωn. Note that f̃n
belongs to L1(Ω) whenever f ∈ L1(Ωn). The formula easily implies that

‖Tn‖(L1(Ωn))′ � ‖T‖(L1(Ω))′ .

By the first part of the proof, there exist gn ∈ L∞(Ωn) such that 〈Tn, f〉 =∫
Ωn
gnf . Taking functions f in D(Ωn), we see that if n � m, we have the

equality gn = gm on Ωn. In particular, g = lim gn is well defined. Let χn be
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the characteristic function of Ωn and let f ∈ L1(Ω); then fχn → f in L1(Ω).

As fχn ∈ L1(Ωn) and T ∈ (L1(Ω))′, it follows that

(1.120) 〈Tn, fχn〉 = 〈T, fχn〉 −→ 〈T, f〉.

Finally, using ‖|Tn‖|(L1(Ωn))′ = ‖gn‖L∞(Ω), we conclude that

��(1.121) g ∈ L∞(Ω) and ‖g‖∞ = ‖|T‖|(L1(Ω))′ .

Comments

The results of this chapter cover different notions from functional analysis.

The reader can consult the work of Yosida [76] for functional analysis and

that of Schwartz [59] for distributions. The Clarkson inequalities are shown

in Adams [1], Clarkson [16]. The notions of weak topology and locally convex

spaces are, for example, developed in Bourbaki [9].

1.6 Exercises for Chapter 1

Exercise [∗] 1.1 (Completeness of the Space L(X,Y )).
Let X be a normed space and let Y be a Banach space. Show that the space

L(X,Y ) of continuous linear maps from X to Y , normed using L 	→ ‖|L‖| =
sup‖x‖X=1 ‖L(x)‖Y , is a Banach space.

Hints. Let {Ln} be a Cauchy sequence in L(X,Y ). Show that for every x ∈ X,
the sequence {Ln(x)} converges in Y . Next, show that the limit L(x) is such that
L : x �→ L(x) is linear. By passing to the limit with respect to the norms, show
that L is continuous. Finally, prove that ‖|Ln − L‖| → 0.

Exercise [∗] 1.2 (Examples of Baire Spaces).

Prove that a complete metric space X is a Baire space (cf. Definition 1.8).

Hints. You must, for example, show that if On is a sequence of open subsets such

that for every n, On = X, then
⋂

On = X. Let W be an open subset of X. You
must show that W ∩ (

⋂
On) �= ∅. Let x1 be such that B(x1, r1) ⊂ W ∩ O1. By

recursion, let xi and ri < 1/i be such that B(xi, ri) ⊂ B(xi−1, ri−1)∩Oi. Show that
{xn} is a Cauchy sequence and that its limit belongs to W ∩

(⋂
n On

)
.

Exercise [∗] 1.3 (Completeness of the Space of Summable Se-

quences).

Let �1(C) be the space of summable complex sequences. Show that the map

x = {xn} 	→
∑+∞

0 |xn| is a norm for this space and that the space is Banach

for this norm.

Hints. Let {x(m)} be a Cauchy sequence. Show that for every n, the sequence

{x(m)
n }m∈N is convergent. Show that if xn denotes the limit, then the sequence x

with terms xn is summable and ‖x(m) − x‖ → 0.
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Exercise 1.4 (Topology on the Space Dk(Ω)).

Let E = Dk(Ω). Using the notations of Subsection 1.4.1 (cf. Countable family

of fundamental systems of neighborhoods), we know that E is the union of an

increasing sequence of topological vector spaces, namely the Ej = Dk
Kj

. We

consider the family B of convex, balanced and absorbing subsets B of E such

that

∀ j, B ∩ Ej is a neighborhood of 0 in Ej .

Prove that B is a fundamental system of neighborhoods of 0E for the TVS

topology on E.

Hints. Use Proposition 1.5. To be able to do this, first show that if B ∈ B and λ > 0,
then λB ∈ B and, moreover, that the intersection of two elements of B is also an
element of B.

Exercise [∗] 1.5 (Weak Topology on the Dual of a Normed Space X).

We consider a family B of subsets of X defined as follows using elements

x0 ∈ X, finite subsets F ′ of X ′, and real numbers ε > 0:

Bx0,F ′,ε = {x ∈ X | ∀x′ ∈ F ′, |〈x− x0, x′〉| < ε}.

(1) Prove that B is a fundamental system of neighborhoods for the topology

on X. In order to do this, show the following two properties:

a)
⋃
{B | B ∈ B} = X.

b) If B1 and B2 are elements of B and if x ∈ B1 ∩B2, then

∃B3 ∈ B, x ∈ B3 ⊂ B1 ∩B2.

(2) Prove that the resulting topology on X, denoted by σ(X,X ′), is Hausdorff

and that scalar multiplication and addition on X are continuous for this

topology. Show that this is a topology of locally convex space.

(3) Prove that every open subset of X for the weak topology is an open subset

of the normed space X. That is, show that the norm topology is finer than

the weak topology.

Hints. Use Propositions 1.5 and 1.6. For question (3), note that the set Bx0,F ′,ε is
a finite intersection of inverse images of open subsets of R under the continuous
maps x′ from the normed space X to R.

Exercise 1.6 (Example of a Sequence of Continuous Linear Func-

tionals).

Let X = �1 be the space of summable sequences. Let {un} be the sequence of
linear maps from X to C defined by un(x) = xn.

(1) Show that un is continuous and determine its norm.
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(2) Show that the sequence of linear maps (un) converges pointwise to 0, that

is, that for any x ∈ �1, un(x)→ 0.

Note that the norm of un in L(X,C) equals 1. Deduce from this that un
does not tend to 0 for the operator norm on L(X,C).

Exercise 1.7 (Minkowski Functional).

We use the definitions of balanced and absorbing convex subsets given in this

book (Definition 1.1).

(1) Let M be a balanced absorbing convex subset of a topological vector

space X containing 0. We define the Minkowski functional p of the convex

set M as follows:

∀x ∈ X, p(x) = inf
t>0
{t | x/t ∈M}.

Show that p is subadditive, positively homogeneous of degree 1 (that is, p

is a seminorm on X). Also show that ∀x ∈M , p(x) � 1.

(2) Conversely, show that if p is a seminorm, then the subset M defined by

M = {x | p(x) � 1} is convex, balanced, and absorbing and contains 0.

(3) Show that M is open in X if and only if p is continuous.

Hints. Note that for ε > 0, x/(p(x) + ε) ∈ M . Use the convexity to deduce from this
that

p(x) + ε

p(x) + p(y) + 2ε
· x

p(x) + ε
+

p(y) + ε

p(x) + p(y) + 2ε
· y

p(y) + ε
∈ M.

Conclude that
p(x+ y) � p(x) + p(y) + 2ε.

Exercise 1.8 (Mazur’s Theorem).

Let M be a convex set containing 0 in its interior. Prove that if x0 /∈M ,

then there exists a continuous linear functional f such that f0(x0) �
supx∈M |f0(x)|.
Hints. By the previous exercise, the Minkowski functional M is a continuous semi-
norm. Next, apply the geometric form of the Hahn–Banach theorem (Theorem 1.19).

Exercise [∗] 1.9 (Closed Graph Theorem).

Let T be a linear map from a Banach space X to a Banach space Y with

closed graph. Prove that T is continuous.

Hints. By assumption, the graph is closed in X × Y , which is a Banach space.
Consequently, the graph is a complete subset. The projection p1 of the graph on the
first space (that is, p1(x, Tx) = x) is linear, continuous and bijective. It therefore
admits a continuous inverse U . If p2 is the projection on the second space, we have
T = p2 ◦ U , which is the composition of two continuous linear maps. Complete the
proof.
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Exercise 1.10 (Embeddings in Lebesgue Spaces).

(1) Let Ω be an open set with finite Lebesgue measure. Show that if p � q,
then we have

Lp(Ω) ↪−→ Lq(Ω).

(2) Use a counterexample to show that this is false if Ω has infinite measure.

(3) Let Ω be an arbitrary open set. Show that

p � r � q =⇒ Lp(Ω) ∩ Lq(Ω) ↪−→ Lr(Ω).

Also show that

∀ f ∈ Lp(Ω) ∩ Lq(Ω), ‖f‖r � sup(‖f‖p, ‖f‖q).

Exercise 1.11 (The Limit of Lp Norms when p→ +∞).

Recall the definition of L∞(Ω) and of the norm ‖·‖∞ on this space. Prove

that if f ∈ L∞(Ω) ∩ Lr(Ω) for at least one index r � 1, then

lim
r→+∞

‖f‖r = ‖f‖∞.

Exercise 1.12 (Means of f for f ∈ Lp(R+)).

Let p ∈ ]1,∞[ and let f ∈ Lp(R+). Define F as follows on R
+:

F (x) =
1

x

∫ x

0

f(t)dt.

(1) Show that F ∈ Lp(R+) and ‖F‖p � p

p− 1
‖f‖p.

(2) Using, for example, functions with compact support, show that there ex-

ists an f ∈ L1(R+) such that F does not belong to L1(R+).

Hints. Apply Lemma 3.14 of Chapter 3 with ν = 0.

Exercise 1.13 (Compact Operators Theory).

Let K be a continuous function on [a, b] × [a, b] where a < b, (a, b) ∈ R
2.

Define an operator as follows:

∀ f ∈ C([a, b]), T f(x) =
∫ b

a

K(x, y)f(y)dy.

Use the Ascoli–Arzelà theorem to prove that T is an operator that transforms

the unit ball in C([a, b]) into a relatively compact subset of C([a, b]).
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Exercise 1.14 (Compact Operators Theory, Continued).

Let Ω be an open subset of RN . Let K ∈ L2(Ω ×Ω) and define T as follows:

∀ f ∈ L2(Ω), T f(x) =
∫

Ω

K(x, y)f(y)dy.

Prove that T sends L2(Ω) to itself and that the image of the unit ball in

L2(Ω) is a relatively compact subset of L2(Ω).

Hints. Let {fn} be a sequence such that ‖fn‖L2 � 1; then Tfn is bounded in L2. You
can therefore extract a subsequence that converges weakly in L2. Show that (Tfn)

2

is dominated by a fixed function belonging to L1. Use the dominated convergence
theorem to conclude the proof. Another proof uses the criterion 1.95 given in this
book.

Exercise 1.15 (Space of Sequences, Completeness and Duals).

We define the spaces c0, �
1, �p, and �∞ as follows as subsets of CN :

(xn) ∈ c0 if lim
n→+∞

xn = 0 (xn) ∈ �1 if

+∞∑

0

|xn| <∞

(xn) ∈ �p if

+∞∑

0

|xn|p <∞ (xn) ∈ �∞ if ∃M, ∀n |xn| �M

(1) Show that these are Banach spaces.

(2) Show that c′0 = �1, (�p)′ = �p
′
with 1/p+ 1/p′ = 1 for p ∈ ]1,+∞[. Show

that (�1)′ = �∞, while (�∞)′ �= �1.

Exercise 1.16 (Jensen’s Inequality).

Let j be a convex function on R and let μ be a probability measure on [a, b],

where a < b (that is, the measure μ satisfies
∫
dμ = 1). Let f ∈ C(]a, b[). Show

that

j
(∫ b

a

fdμ
)
�
∫ b

a

j ◦ fdμ.

Deduce from this that if p ∈ [1,+∞[ and f ∈ Lp(]a, b[), then
∫ b

a

|f(x)|dx � |a− b|(p−1)/p
(∫ b

a

|f(x)|pdx
)1/p
.

Exercise 1.17 (Separable Hilbert Spaces).

Let f be an element of L2(]0, 2π[), extended periodically to R. Recall the

Bessel–Parseval theorem, which states that if the Fourier coefficients of f are

cn(f), then

1

2π

∫ 2π

0

|f(t)|2dt =
+∞∑

−∞
|cn(f)|2.

Prove that L2(]0, 2π[) is a separable space.
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Exercise 1.18 (Sum of Two Lebesgue Spaces).

Show that if p ∈ [p1, p2], p1 < p2, then

Lp(Ω) ↪−→ Lp1(Ω) + Lp2(Ω).

Hints. Given α > 0, let

f1(x) =

{
f(x) if |f(x)| � α,

0 otherwise;

then f1 ∈ Lp1 and f2 ∈ Lp2 , where f2 = f − f1.

Exercise [∗] 1.19 (Weak or Norm Convergence of Sequences of Dis-

tributions).

Let {aj}j∈N be a sequence of elements of R
N such that |aj | → +∞. Let

{λj}j∈N be a sequence of complex numbers. Prove that the sequence of dis-

tributions {λjδaj} converges to 0 in D′(RN ).

Exercise [∗] 1.20 (Extension of a Distribution with Compact Sup-

port).

We will only consider the case N = 1. Let T be a distribution with compact

support K. Let Vε(K) = K + [−ε,+ε] be the closed neighborhood of K of

order ε > 0.

(a) Show that there exist functions α ∈ D(R) such that

∀x ∈ Vε(K), α(x) = 1.

(b) For every function ϕ in E(R), let

〈U,ϕ〉 = 〈T, αϕ〉.

Show that U is a continuous linear functional on the locally convex space

E(R). Show that U does not depend on the choice of α and that U is an

extension of T to the space E(R).
(c) Conversely, show that every element of E ′(R) can be identified with a

distribution with compact support.

Hints. Consider a continuous function with compact support that equals 1 on
a neighborhood of K. Taking a convolution with a regularizing function ρε
(cf. Subsection 1.4.2) gives a suitable function. For the independence of α, consider
〈T, (α2 − α1)ϕ〉 and use the definition of the support of T .

For (c), the linearity and continuity are immediate. Show the result on the
support by contradiction, using the continuity of U on E(R).
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Exercise [∗] 1.21 (Relatively Weak-Star Sequentially Compact Sub-

set of L1(Ω)).

Let Ω be a bounded open subset of RN . Let A be a subset of L1(Ω) with the

following properties:

(1) ∃M > 0, ∀ f ∈ A,
∫
Ω
|f(x)|dx �M .

(2) ∀ ε > 0, ∃ δ > 0 such that

∀B ⊂ Ω, mes(B) < δ =⇒ ∀ f ∈ A,
∫

B

|f(x)|dx � ε.

Show that A is relatively weak-star sequentially compact in L1(Ω).

Hints. Begin by extracting from {fn}, a sequence of functions on A, a subsequence
that converges for the weak-star topology to a bounded measure μ on Ω. The next
step consists in using the lower semicontinuity of the integral on an open space
for the weak-star topology (cf. Chapter 6). Use this to show that μ is absolutely
continuous with respect to the Lebesgue measure.

Exercise 1.22 (Equi-integrable Functions in L1).

We call a sequence {fn} functions in L1 equi-integrable if for every ε > 0, there

exists a δ > 0 such that mes(E) < δ implies that for every n,
∫
E
|fn(x)|dx � ε.

(1) Show the following property:

Let X be a subset of R
N with finite Lebesgue measure. Let {fn} be

an equi-integrable sequence of functions in L1(X) that converges almost

everywhere to f ; then f ∈ L1(X) and {fn} converges to f in L1(X) for

the norm topology.

(2) Show that this result is false if X is not of finite measure.

(3) Show the analogous result for Lp, that is, if {fn} converges almost every-

where to f and if |fn|p is equi-integrable, then {fn} converges to f in Lp

for the norm topology.

Hints. Show that the hypothesis that X has finite measure implies the existence of a
finite number N of sets Ei of measure < δ such that X ⊂

⋃
1�i�N Ei. Consequently,

by Fatou’s lemma,
∫

X

|f(x)|dx � lim

∫

X

|fn(x)|dx � Nε.

Conclude that f ∈ L1(X). For the norm convergence, let δ be associated with ε/3
in the definition of equi-integrability and such that mesE < δ ⇒

∫
E
|f(x)|dx � ε/3.

Extract from {fn} a subsequence that converges in measure, that is, for which there
exists an N0 such that

n � N0 =⇒ mes[{x ∈ X | |fn − f |(x) � ε/3mes(X)}] < δ.

Conclude with the following inequalities, where An = {x | |fn−f |(x) � ε/3mes(X)}:
∫

X

|fn − f | �
∫

An

|fn − f |+
∫

X�An

[|fn|+ |f |] � ε

3
+

ε

3
+

ε

3
.
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(2) Consider the sequence {fn} on R defined by fn = 1
n
χ[n,2n].

Exercise 1.23 (Rearrangement Function, cf. Chapter 7).

Let f be a measurable function on the measured space X with values in C

and almost everywhere finite. Let λ(s) =
∣
∣{x ∈ X | |f(x)| > s}

∣
∣.

(1) Show that λ is decreasing and right-continuous on R
+.

(2) If f ∈ Lp with p < +∞, show that sλ(s)1/p �
(∫
|f(x)|pdx

)1/p
. We then

define the decreasing rearrangement function of f on R
+ to be f∗(t) =

inf{s | λ(s) � t}. Show that f∗ is decreasing and right-continuous.

(3) Let f be a simple function, that is f(x) = cj for x ∈ Ej , where the Ej

are disjoint measurable sets. Assume that |cj | > |cj−1| for every j. Let

dj =
∑

k�j |Ek|. Show that

∀ t, dj−1 � t < dj =⇒ f∗(t) = cj .

(4) Suppose that p ∈ [1,∞[. Show that if f ∈ Lp(R), then there exists a

sequence of simple functions fn such that {|fn|} is an increasing sequence

that converges almost everywhere to |f |. Also show that λn(s) converges

to λ(s) as n increases and that for every t > 0, f∗n(t) tends to f
∗(t) as n

increases. Conclude that

∀ f ∈ Lp, f∗ ∈ Lp and ‖f‖p = ‖f∗‖p.

Exercise [∗] 1.24 (Continuous Linear Functionals on a Locally Con-

vex Space).

On a locally convex space X, consider a linear functional f generated by a

family of seminorms {ηλ}. Show that f is continuous if and only if there exist

an M > 0 and a seminorm ηλ such that ∀x ∈ X, |f(x)| �Mηλ(x).
Hints. For every open disc D in C, f−1(D) is a neighborhood of 0 in X, and hence
contains a closed ball associated with one of the seminorms ηλ. Conclude the proof
as in a normed space.

Exercise [∗] 1.25 (Bounded Subsets of a Locally Convex Space).

By definition, a bounded subset B of a locally convex space X is a subset

of X such that for every neighborhood U of 0, there exists an α > 0 such that

|β| � α⇒ B ⊂ βU . Let {ηλ} be a family of seminorms defining the topology

on X. Show that B is bounded if all of these seminorms are bounded on B.

Hints. The unit ball associated with ηλ is a neighborhood of 0, and hence absorbs B.
The inequality follows from this. Conversely, suppose that supx∈B ηλ(x) � Mλ for
every λ. Denoting the unit balls by Bλ, we then have

∀ r > 0, B ⊂ Bλ(0,Mλ) = MλBλ =
Mλ

r
Bλ(0, r);

hence B is absorbed by every neighborhood of 0 in X.



52 1 Notions from Topology and Functional Analysis

Exercise 1.26 (Dense Subsets of Lp(I), where I Is an Interval).

Let I be an open interval of R. Consider the space Lp(I), where p ∈ [1,+∞[.

Let S(I) denote the space of simple functions on I, that is, of functions that

can be written as s =
∑N

1 ciχAi , where the Ai are measurable spaces. Let

E(I) denote the space of step functions on I, and let Cc(I) be the space of

continuous functions with compact support in I.

(1) Show that S(I) is dense in Lp(I). In order to do this, given a nonnegative

f ∈ Lp, use the sets f−1([ i−1
2n ,

i
2n [) and f

−1([n,+∞[).

(2) Use the following property of the Lebesgue measure μ on I:

if J ⊂ I is measurable, then there exists a sequence {Jn} of subsets

of I that are finite unions of disjoint open intervals such that μ(J) =

limn→+∞ μ(Jn),

to show that if I is bounded, then every simple function is the limit in

Lp(I) of a sequence of step functions.

Conclude that E(I) is dense in Lp(I), and then that Cc(I) is dense in

Lp(I). Show the same results when I is unbounded.

Hints. For (1), use the following simple functions, where Fi,n and Fn are the inverse
images introduced in (1):

sn =

n2n∑

1

(i− 1)2−nχFi,n + nχFn .

Show that 0 � sn � f and apply the dominated convergence theorem. Conclude
for f with arbitrary sign.

For the density of Cc(I), approximate χ[a,b] by a continuous function with com-
pact support in I that is piecewise affine.

For an unbounded I, write I as an increasing union of bounded intervals In =
[an, bn] with ‖f − fχIn‖p → 0.

Exercise [∗∗] 1.27 (Finite Subsets Distributions (cf. [22])).

In this exercise, we restrict ourselves to functions U(t)tα, where U is the Heav-

iside step function. These functions are not locally summable when α�−1.

(1) The case of U(t)tα, where α = −n and n � 1 is an integer.

The integral Jε =
∫ +∞
ε
ϕ(t)t−n dt, where ϕ is an element of D(R), in

general does not have a limit when ε → 0. If ϕ∗n−1(t) denotes the Taylor

polynomial of degree n − 1 about the origin for the function ϕ and A is

an upper bound for the support of ϕ, then we can write Jε as

Jε =

∫ A

ε

[
ϕ(t)− ϕ∗n−1(t)

]
t−n dt+

∫ A

ε

ϕ∗n−1(t)t
−n dt.

Show that the first integral has a finite limit when ε→ 0, so that the non-

existence of limJε in a sense comes from the second term. This second
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term can be written as
∫ A

ε

ϕ∗n−1(t)t
−n dt = KA − Iε(ϕ∗n−1(t)t

−n),

where Iε(ϕ∗n−1(t)t
−n) denotes the value in ε of the primitive without

constant term of the function ϕ∗n−1(t)t
−n, and KA is the value of this

primitive at the point A. The function −Iε(ϕ∗n−1(t)t
−n) can be qualified

as the infinite part.

Next, we cut off this infinite part from the integral Jε, making it possible

to take the limit for ε→ 0. Show that this gives a distribution T , denoted

by Pf(U(t)t−n), and defined by

(∗) ∀ϕ ∈ D, 〈T, ϕ〉 = lim
ε→0

[∫ +∞

ε

ϕ(t)t−ndt+ Iε(ϕ∗n−1(t)t
−n)

]

= lim
ε→0

[∫ +∞

ε

ϕ(t)t−ndt+

k=n−2∑

k=0

ϕ(k)(0)

k!

[ εk−n+1

k − n+ 1

]
+
[ϕ(n−1)(0)

(n− 1)!
ln(ε)

]]
.

Show that suppT ⊂ R
+. Prove that if p is an integer > 0, then

tp Pf(U(t)t−n) = Pf(U(t)t−(n−p)),

where the symbol Pf vanishes when p > n − 1. Determine the derivative

of Pf(U(t)t−n).

(2) The case where U(t)tα, α is complex, non integer, with �e (α) < −1.
Assume that −n−1 < �e (α) < −n, where n is still an integer with n � 1.

Applying the previous method, give the definition of the finite part Tα of

U(t)tα through an equality analogous to (∗). Show the formula

〈Tα, ϕ〉 = lim
ε→0

[∫ +∞

ε

ϕ(t)tαdt+
k=n−1∑

k=0

ϕ(k)(0)

k!

[ εk+α+1

k + α+ 1

]]
.

Determine the products tn Pf(U(t)tα). Find the derivative of Pf(U(t)tα).
(3) Likewise, we define the left-finite subsets Pf(U(−t)|t|−n), Pf(U(−t)t−n),

and Pf(U(−t)|t|α), and the two-sided finite subsets:

Pf(|t|α) = Pf(U(t)tα) + Pf(U(−t)|t|α),
Pf(t−n) = Pf(U(t)t−n) + Pf(U(−t)t−n).

Determine the derivative of Pf(t−n).

(4) Examples of logarithmic finite subsets.

a) Use the same method as above to justify the following definition:

〈
Pf
(
U(t) ln

2 t

t

)
, ϕ
〉
= lim

ε→0

[∫ +∞

ε

ln2 t

t
ϕ(t)dt+

1

3
ϕ(0)

(
ln3 ε

)
]
.
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b) Let f(t) = U(t)t−5/2 ln t. Justify the following definition:

〈Pf(f), ϕ〉 = lim
ε→0

[∫ +∞

ε

f(t)ϕ(t)dt− 2ϕ(0)

9ε3/2

[
3 ln(ε)+2

]
− 2ϕ′(0)

ε1/2

[
ln(ε)+2

]]
.

After defining the distribution Pf(|t|−3/2 ln |t|), determine its deriva-

tive.

c) Show that for the function f defined by t 	→ f(t) = ln t/t, we have

[Pf(U(t)f(t))]′ = [Pf(U(t)f ′(t))].

Also determine the second derivative [Pf(U(t)f(t))]′′.

Exercise 1.28 (Norm in a Quotient Space).

Let X be a normed space and let Y be a vector subspace of X. We define the

classes modulo Y by

∀x ∈ X, x̃ = {x+ y | y ∈ Y }.

Classically, the set of these classes is a vector space, denoted by X/Y and

called the quotient space of X modulo Y .

(1) Show that the map x̃ 	→ infy∈Y {‖x + y‖} is a seminorm and that it is a

norm on X/Y if and only if Y is closed in X.

(2) Suppose that X is a Banach space and Y is a close subspace of X. Show

that if {zn} is a sequence in X/Y , then there exists a sequence {xn}
in X such that for every n, x̃n = zn and ‖xn‖X � ‖zn‖X/Y + 1/2n.

Deduce from this that all sequences converging normally in X/Y , that is,

such that
∑+∞

0 ‖zn‖ < +∞, converge in X/Y . Conclude that X/Y is a

Banach space.

Hints. For the last conclusion, consider a Cauchy sequence {zn} in X/Y . There
exists a strictly increasing map σ from N to itself such that

‖zσ(p+1) − zσ(p)‖X/Y � 2−p.

Setting u0 = zσ(0) and up = zσ(p) − zσ(p−1), show that the resulting sequence
converges normally. Deduce from this the convergence of a subsequence extracted
from the sequence {zn}. Conclude that {zn} converges.

Exercise [∗∗] 1.29 (Absolutely Continuous Functions and Distribu-

tions on an Interval I).

A function f on an interval I in R is called absolutely continuous if there

exists a function g: I 	→ R belonging to L1loc(I) such that for every pair of

points (x, y) of I, we have f(x)− f(y) =
∫ x

y
g(t)dt.

An absolutely continuous function on I is almost everywhere derivable

on I, and its derivative is almost everywhere equal to g.
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(1) Let U and V be absolutely continuous functions on I with almost ev-

erywhere derivatives u and v. Using the density of Cc(]a, b[) in L1(]a, b[)

(cf. Exercise 1.26), show the formula for integration by parts, that is, for

every pair (a, b) of points of I,

(1.122)

∫ b

a

U(t)v(t)dt = U(b)V (b)− U(a)V (a)−
∫ b

a

V (t)u(t)dt.

(2) Let u ∈ L1loc(I) be such that its derivative in the sense of distributions

satisfies [u]′ ∈ L1loc(I). Let a ∈ I be a point at which u is well defined.

Let v(x) = u(a) −
∫ x

a
[u]′(t)dt, and let ϕ ∈ D(I) have support in [α, β].

Using formula (1.122), show that [v]′ = [u]′ and deduce from this that

v− u is almost everywhere a constant C on I. Show that if u is moreover

continuous on I, then u is absolutely continuous on I and u′ = [u]′ almost

everywhere on I. Finally, show that if u and [u]′ are continuous on I, then

u ∈ C1(I).

Hints. For (1), as the sequences {un} and {vn} in Cc(I) converge to u and v, re-
spectively, in L1(]a, b[), let Un(x) = U(a) +

∫ x

a
un(t)dt. Write down the integration

by parts for the functions un and vn and show that Un converges uniformly to U in
]a, b[, and the analogous result for Vn.
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Sobolev Spaces and Embedding Theorems

2.1 Definitions and First Properties

Definition 2.1. Let Ω be an open subset of RN . Form ∈ N and 1 � p � +∞,

the Sobolev space denoted by Wm,p(Ω) consists of the functions in Lp(Ω)

whose partial derivatives up to order m, in the sense of distributions, can be

identified with functions in Lp(Ω).

For these derivatives, we set α = (α1, . . . , αN ) and |α| =
∑N

1 αi. Moreover,

we use the notation

(2.2) Dαu =
∂|α|u

∂α1x1 · · · ∂αNxN
.

The definition above can now be written as

(2.3) Wm,p(Ω) =
{
u ∈ Lp(Ω) | ∀α ∈ N

N , |α| � m⇒ Dαu ∈ Lp(Ω)
}
.

Remark 2.4 (on the structure of the derivatives in W 1,p(Ω)). We will

use the notion of the derivative of an absolutely continuous function in the

usual sense (cf. Exercise 2.3) to better understand what it means for u to

belong to W 1,p(Ω).

Let u ∈W 1,p(Ω); then for every i, the function u is absolutely continuous

along almost all lines parallel to the vector −→ei of the canonical basis of RN .

Moreover, the derivative ∂iu of u in the usual sense, which exists almost

everywhere on Ω, belongs to Lp(Ω) and is almost everywhere equal to the

derivative in the sense of distributions. Conversely, if for every i, u ∈ Lp(Ω)
is absolutely continuous along almost all lines parallel to ei, with derivatives

∂iu in Lp(Ω), then u ∈W 1,p(Ω).

It follows that if u is of class C1 on Ω, then we can verify that u ∈W 1,p(Ω)

by showing that the functions u and ∂iu belong to Lp(Ω). The following

examples use this property.

F. Demengel, G. Demengel, Functional Spaces for the Theory
of Elliptic Partial Differential Equations, Universitext,
DOI 10.1007/978-1-4471-2807-6 2,
© Springer-Verlag London Limited 2012
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Remark 2.5. For p = 2, the notation Wm,2(Ω) is generally replaced by

Hm(Ω).

Remark 2.6. When Ω = R
N , we can use the Fourier transform ξ 	→ û(ξ) of

a function u in L2(RN ) to give the following equivalent definition:

Wm,2(RN ) = Hm(RN ) = {u∈L2(RN ) | ξ 	→ (1 + |ξ|2)m/2 û(ξ)∈L2(RN )}.

Example 2.7. Consider the open unit ball Ω = B(0, 1) in R
2. Let us de-

termine under which condition the function u on Ω defined by u(x, y) =

xy(x2 + y2)−β outside of the origin, with β > 0, is an element of H1(Ω).

More precisely, let us show that u ∈ H1(Ω) if and only if β < 1. The

integral of |u|2 on Ω exists if 5− 4β > −1 or, equivalently, if β < 3/2. Indeed,

in polar coordinates, the integrand can be written as

|u|2rdrdθ = r5−4β(sin θ cos θ)2drdθ.

For the derivative in x in the usual sense, this gives

∂xu = y(x
2 + y2)−β − 2βx2y(x2 + y2)−β−1.

This derivative is continuous outside of (0, 0). The integral of its square con-

sists of three terms in which the exponent of r is equal to 3 − 4β. These

exponents are all greater than −1 if and only if the condition β < 1 is sat-

isfied. Since the function is symmetric in x and y, it follows that if β < 1,

then u and its derivatives belong to L2(B). By Remark 2.4 above, this implies

that the latter are derivatives in the sense of distributions.

This concludes the proof of the necessity and sufficiency of the condition

stated above.

Example 2.8. Consider the open unit ball Ω = B(0, 1) in R
N . Let r2 =∑N

1 x
2
j and let u be defined on Ω by u(x) = (1− r)β(− ln(1− r))α, where α is

an arbitrary real number and β > 0. We want to know under which conditions

on α and β that u is an element of W 1,p(Ω).

The function u admits two singularities, at r = 0 and at r = 1. As the

logarithm is equivalent to rα at 0, the function |u|p is summable on Ω if

N − 1 + αp > −1, that is, if α > −N/p. At r = 1, the function can be

extended by continuity. The derivative in the usual sense, for example at x1,

is then

∂1u(x) =
x1
r
(1− r)β−1| ln(1− r)|α−1

(
β| ln(1− r)|+ α

)
.

At r = 0, as the first logarithm on the right-hand side is equivalent to rα−1,

we find that u and its derivative both belong to Lp in a neighborhood of 0 if

1− α < N/p.
At r = 1, the integral of |∂1u|p converges if
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• either β > 1− 1/p, or

• β = 1− 1/p and αp < −1.

Summarizing, u ∈ W 1,p(B(0, 1)) if and only if either β > 1 − 1/p and

α > −N/p, or β = 1− 1/p and −N/p < α < −1/p.

Example 2.9. Given k > 0, consider the open subset

Ω = {(x, y) | 0 < x < 1, xk < y < 2xk}

of R2. We will study for which α ∈ R, (x, y) 	→ u(x, y) = yα belongs to Hm,

where m ∈ {1, 2, 3, . . . }.
For α > 0, the function u admits a continuous extension to ∂Ω, so that

u ∈ L2(Ω). The first derivative ∂yu(x, y) = αyα−1 cannot be extended by

continuity to the point x = 0 if α < 1. Nevertheless, it does belong to L2(Ω)

if the integral
∫ 1

0

[∫ 2xk

xk

y2α−2dy

]
dx

exists, or, equivalently, if (2α − 1)k > −1. We can deduce from this that for

k > 0, we have u ∈ H1(Ω) if α > 1/2− 1/2k.

The second derivative belongs to L2(Ω) if (2α − 3)k > −1, that is, if

α > 3/2 − 1/2k. Under this condition, u ∈ H2(Ω). This holds, for example,

when k = 1/6 (cf. Figure 2.1) and α > −3/2, in which case u need not be

bounded on Ω.

Fig. 2.1. An open subset Ω and elements of Hm.

Let us continue. We find that the condition under which u belongs to

Hm(Ω) can be written as (2α − 2m + 1)k > −1. Given m, we can choose α

and k such that this necessary condition is satisfied.
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Proposition 2.10. The space Wm,p(Ω) endowed with the norm defined by

‖u‖Wm,p(Ω) =

⎧
⎨

⎩

[∑
0�|α|�m

∥
∥Dαu

∥
∥p
Lp(Ω)

]1/p
if 1 � p < +∞;

max0�|α|�m

∥
∥Dαu

∥
∥
L∞(Ω)

if p = +∞,

is a Banach space. For p ∈ ]1,+∞[, this space is uniformly convex and there-

fore a reflexive space. The space Hm(Ω) endowed with the inner product

〈u, v〉 =
∑

0�|α|�m

(
Dαu, Dαv

)
L2(Ω)

is a Hilbert space.

Exercise 2.1 offers a proof of these statements. Many propositions in this

chapter are concerned with the approximation of functions in W 1,p(Ω) or the

density of certain subspaces. For such problems, we often use a cover of the

open set Ω by a family of open subsets {Aj}. We admit (cf. Exercise 2.2) that

to such a cover, we can associate a family of functions {ψj} called a partition

of unity subordinate to the cover {Aj} of Ω.

Definition 2.11. A C∞ partition of unity subordinate to an open cover

{Aj}j∈N of the open set Ω is a set of functions ψj with the following properties:

(1) For every j, the function ψj is a nonnegative element of C∞(Ω) with

support in Aj .

(2) For any compact subset K of Ω, only a finite number of the functions ψj
are not zero on K.

(3) For all x ∈ Ω,
∑

j∈N
ψj(x) = 1.

We use such a partition in the proposition below, where it allows us to

approximate functions in Wm,p(Ω) from the inside, without any regularity

assumption on Ω. The proposition makes it possible, for example, to replace

functions that belong to Wm,p(Ω) by C∞(Ω) functions during computations,

in particular during the proof of the Sobolev embedding theorem.

Proposition 2.12. Let Ω be an arbitrary open subset of RN . The subspace

C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω).

Proof of Proposition 2.12.

We begin with the case Ω = R
N . Let u ∈Wm,p(RN ). Consider a regular-

izing sequence (cf. Section 1.4.2) x 	→ ρε(x) = 1/εNρ(x/ε) and a real number

δ > 0. In Section 1.4.2, and in particular in the proof of Theorem 1.91, we

saw that the function ρε � u ∈ C∞(RN ) and its derivatives, which satisfy
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Dα(ρε � u) = ρε �D
αu, are elements of Lp(RN ). Moreover, we saw that there

exists an ε0 such that for all ε < ε0, we have

(2.13) ‖u− ρε � u‖Lp � δ and ∀α, |α| � m, ‖Dαu− ρε � Dαu‖Lp � δ

(cf. (1.92)). It follows that ρε�u ∈Wm,p(RN ) and that there exists a constant

Cm such that

(2.14) ‖u− ρε � u‖Wm,p � Cmδ,

which concludes the proof in the case of RN .

Next, consider an open subset Ω �= R
N . We will use an open cover

{Ωj}j∈N∗ of Ω defined by

Ωj =
{
x ∈ Ω | |x| � jC1 and d(x, ∂Ω) > C2/j + 1

}
.

The constants C1 and C2 are chosen such that Ω2 �= ∅. The resulting

sequence of bounded open subsets is increasing and covers Ω. After set-

ting Ω0=Ω−1=∅, we define the sequence of open subsets {Aj} by setting

Aj = Ωj+2 �Ωj−1 for j > 1 and A0 = Ω2, A1 = Ω3.

The family {Aj} is again an open cover of Ω, and we can easily verify that

if |j − j′| � 3, then Aj ∩Aj′ = ∅. Let {ψj} be a partition of unity associated

with the cover {Aj}. Let εj be sufficiently small that for a given ε, we have

∀ j � 2, Aj +B(0, εj) ⊂ Aj−1 ∪Aj ∪Aj+1,

∀ j � 0, ‖ρεj � (ψju)− (ψju)‖Wm,p <
ε

2j+1
.

Next, consider the function v(ε) defined by

(2.15) v(ε) =

+∞∑

0

(
ρ

εj
� (ψju)

)
.

This function is well defined, as the sum on the right-hand side is locally finite.

We can deduce from the inequalities above that v(ε) ∈Wm,p(Ω).

Setting u =
∑+∞

0 (ψju), we can conclude the proof using the following

inequality:

‖v(ε) − u‖Wm,p(Ω) �
+∞∑

0

‖ρ
εj
� (ψju)− (ψju)‖Wm,p(2.16)

�
+∞∑

0

ε

2j+1
= ε. ��
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Corollary 2.17. (1) Let u ∈ W 1,p(Ω) and let v ∈ W 1,p′
(Ω), where p and p′

satisfy 1/p + 1/p′ = 1. The product uv is then an element of W 1,1(Ω),

and

∀ i ∈ [1, N ], ∂i(uv) = u∂iv + v∂iu,

where the expressions in the equality are all well defined under the as-

sumptions.

(2) Let u be an element of W 1,N (Ω); then |u|N−1u and |u|N both belong to

W 1,1(Ω), while

∇
(
|u|N−1u

)
= N |u|N−1∇u. and ∇

(
|u|N

)
= N |u|N−2u∇u.

Remark 2.18. In (2), W 1,N (Ω) may be replaced by W 1,q(Ω) for q ∈ ]1,∞[.

The result is then

Let u ∈W 1,q(Ω); then |u|q−1u and |u|q both belong to W 1,1(Ω), while

∇(|u|q−1u) = q|u|q−1∇u and ∇(|u|q) = q|u|q−2u∇u.

∇(|u|q−1u) = q|u|q−1∇u and ∇(|u|q) = q|u|q−2u∇u.

Proof of the Corollary. (1) By the proposition above, there exists a sequence

{un}⊂C∞(Ω)∩W 1,p(Ω) that converges to u in W 1,p(Ω). For this se-

quence, we have

∂i(unv) = ∂i(un)v + un∂iv,

where each term is seen as a product of a C∞ function and a distribution.

Let us take the limit of the left-hand side in the sense of distributions.

We have unv ∈ L1(Ω) and ‖unv − uv‖L1 � ‖un − u‖Lp ‖v‖Lp′ → 0.

It follows that {unv} → uv in L1, and consequently also in the sense

of distributions. By a property of distributions stated in Section (1.4.8),

∂i(unv) → ∂i(uv) in the sense of distributions. Likewise, as un → u and

∂iun → ∂iu in Lp, the right-hand side converges in D′(Ω). Taking the limit

therefore gives the desired equality and, moreover, shows that ∂i(uv) ∈ L1,
whence uv ∈W 1,1(Ω).

(2) Consider a sequence un ∈ C∞(Ω) ∩ W 1,p(Ω) that converges to u in

W 1,N (Ω). We can easily show that the gradient of |un|N is given by

N |un|N−2un [∇un].

Since |un|N−2un converges to |u|N−2u in LN/(N−1) and ∇un converges to

∇u in LN , it follows that N |un|N−2un∇un converges to N |u|N−2u∇u
in L1. Moreover, as |un|N → |u|N in L1, the convergence also holds

in D′(Ω). Consequently, ∇(|un|N ) converges to ∇(|u|N ) in D′(Ω). Taking

the limit therefore provides us with the identity

∇(|u|N ) = N |u|N−2u∇u.
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Finally, using Hölder’s inequality with the conjugate exponentsN/(N − 1)

and N , we have
∫

Ω

|∇(|u|N )|dx � N
(∫

Ω

|u|N |dx
)N−1/N(∫

Ω

|∇u|Ndx
)1/N

.

We have therefore proved that |u|N−1u ∈W 1,1(Ω).

The reasoning for the second statement concerning the gradient of |u|N−1u

is similar. ��

Corollary 2.19. Let u ∈ W 1,p
loc (Ω). This means that for every function

ϕ ∈ D(Ω), we have ϕu ∈ W 1,p(Ω). Let x0 be the point (x′0, t) ∈ Ω, where
x′0 ∈ R

N−1 and t ∈ R. Let B′(x′0, r) denote an open ball in R
N−1, and let

B∗(x0, r) denote the open cylinder B′(x′0, r)× ]−r, r[ whose closure, for r suf-

ficiently small, is included in Ω. Then, for almost all pairs (x′, t) and (x′, t′)

of elements of B∗(x0, r), we have

(2.20) u(x′, t)− u(x′, t′) =
∫ t

t′
∂N u(x

′, s)ds.

Proof of Corollary 2.19.

For (t, t′) ∈ (]− r, r[)2 and x′ ∈ B′(x′0, r), let

v(x′) =

∫ t

t′
∂N u(x

′, s)ds.

Let us show that v ∈ Lp(B′(x′0, r)). The function (x′, s) 	→ ∂Nu(x′, s) is an

element of Lp(Ω), as B∗(x0, r) ⊂ Ω, and hence is summable in s on the

interval [t′, t] in ] − r, r[. It follows that v is defined almost everywhere on

B′(x′0, r). Next, by Hölder’s inequality and Fubini’s theorem, the following

holds for almost every pair (t, t′):

‖v‖pLp(B′) =

∫

B′

∣
∣
∣
∣

∫ t′

t

∂N u(x
′, s)ds

∣
∣
∣
∣

p

dx′

�
∫

B′
|t− t′|p−1

∫ t′

t

∣
∣∂N u(x′, s)

∣
∣pdsdx′

� |t− t′|p−1

∫

B∗

∣
∣∂N u(x)

∣
∣pdx < +∞.

Let {un} be a sequence of elements of C∞(B∗)∩W 1,p(B∗) that converges to u

(cf. Proposition 2.12). We define the sequence {vn} on B′ by setting

vn(x
′) =

∫ t

t′
∂N un(x

′, s)ds.

Replacing u by un−u in the preceding computation, we see that vn → v in
Lp(B′). We can therefore extract a subsequence {vnj} that converges almost
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everywhere to v on B′. Likewise, we can extract from {unj} a subsequence

{uσ(n)} that converges almost everywhere to u on B∗. Since the functions

uσ(n) are regular, we have

uσ(n)(x
′, t)− uσ(n)(x′, t′) =

∫ t

t′
∂N uσ(n)(x

′, s)ds = vσ(n)(x
′).

The corollary’s formula follows from the almost everywhere convergence on

both sides. ��

Below we give another consequence of Theorem 2.12, which is very use-

ful, in particular when extending a function in Wm,p(Ω) to a function in

Wm,p(RN ) when Ω is a Lipschitz open set. For a function in Wm,p(Ω), such

an extension requires a technical lemma about changes of variables.

Corollary 2.21. Consider two bounded open subsets Ω and Ω′ of RN . Let a

be a function giving a bijection from Ω′ to Ω, where a and a−1 are more-

over both Lipschitz. Let p � 1 be given. If u ∈ W 1,p(Ω), then the composed

function v = u ◦ a is an element of W 1,p(Ω′) and the derivatives of v in the

sense of distributions are given by the usual derivation formulas for composed

functions. Moreover, there exists a constant C(|∇a|∞) depending on |∇a|∞,

such that

‖u ◦ a‖W 1,p(Ω′) � C(|∇a|∞)‖u‖W 1,p(Ω).

Proof of Corollary 2.21.

Let {un} be a sequence in W 1,p(Ω) ∩ C∞(Ω) that converges to u in

W 1,p(Ω). The function y 	→ vn(y) = un(a(y)) is Lipschitz on Ω′, and therefore

on all lines parallel to any of the coordinate axes yi. Since Lipschitz implies

absolute continuity, it follows (cf. Remark 2.4) that vn is almost everywhere

derivable on Ω′ and

(∗) for almost all y ∈ Ω′, ∂i(vn)(y) =
∑N

1 ∂j(un)(a(y))∂i(aj)(y).

We now need the following lemma.

Lemma 2.22. Given bounded open sets Ω and Ω′, let a be a continuous bi-

jection from Ω′ to Ω such that a−1 is Lipschitz. Then, if u ∈ Lp(Ω), we have

u◦a ∈ Lp(Ω′) and there exists a constant c such that ‖u◦a‖Lp(Ω′) � c‖u‖Lp(Ω).

Let us continue the proof of Corollary 2.21 using this result. Applying it

to ∂i(un − u), the inequality of the lemma gives us

‖∂i(un) ◦ a− ∂i(u) ◦ a‖Lp(Ω′) � c‖∂iun − ∂iu‖Lp(Ω).
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Since we know that ∂i(un)→ ∂iu in Lp(Ω), we deduce that {∂i(un)◦a} con-

verges to ∂iu ◦ a in Lp(Ω′). Consequently, we can use (*) and the assump-

tions of the corollary to show that the open sets and derivatives ∂i(aj) are

bounded, and that the sequence {∂i(vn)} converges in Lp(Ω′) to the func-

tion
∑N

1 (∂ju ◦ a) ∂i(aj), which itself belongs to Lp(Ω′). Taking the limit of a

subsequence, the inequality (∗) then gives

for almost all y ∈ Ω′, ∂i(u ◦ a)(y) =
∑N

1 ∂j(u)(a(y))∂i(aj)(y).

Since these almost everywhere derivatives are in Lp(Ω′), it follows from

Remark 2.4 that they are derivatives in the sense of distributions. By the

lemma, we have u ◦ a ∈ Lp(Ω′). Consequently, u ◦ a ∈ W 1,p(Ω′). Moreover,

‖u ◦ a‖Lp(Ω′) � c‖u‖Lp(Ω) and ‖∂i(u ◦ a)‖Lp(Ω′) � c′‖u‖W 1,p(Ω)‖∇(a)‖L∞(Ω′).

From this, we deduce the existence of a constant C that depends only on the

Lipschitz constants of a and a−1, such that ‖u◦a‖W 1,p(Ω′) � C‖u‖W 1,p(Ω). ��

Proof of Lemma 2.22. Let L denote the Lipschitz constant of a−1. Let us take

a sequence {un} as in the proof of the corollary above. If we cover Ω′ by a

finite number nη of N -hypercubes Ck with edge of length 2η and extend un ◦a
by 0 outside of Ω′, then the definition of the Riemann-integrability of |un ◦a|p
gives

∫

Ω′
|un(a(y))|pdy = lim

η→0

nη∑

1

(2η)N inf
y∈Ck

|un(a(y))|p.

We may, and do, assume that the hypercubes all satisfy Ck ⊂ Ω′. Let yk be the

center of Ck, so that xk = a(yk) ∈ Ω. If x ∈ ∂(a(Ck)), then the properties of a

imply that y = a−1(x) ∈ ∂Ck. Hence, as |yk − y| � η, we have the following

inequalities for the distances in R
N : η � |y − yk| = |a−1(x) − a−1(xk)| �

L|x−xk|. It follows that a(Ck) contains the ball of radius η/L with center xk,

whence mes(a(Ck)) � ωNηN/LN � Kmes(Ck), where K depends only on N

and L. We can now deduce the following upper bound:

nη∑

1

mes(Ck) inf
y∈Ck

|un(a(y))|p � 1

K

nη∑

1

mes(a(Ck)) inf
x∈a(Ck)

|un(x)|p

� 1

K

∫

Ω

|un(x)|pdx.

Taking the limit for η → 0 gives

(∗∗)
∫

Ω′
|un(a(y))|pdy �

1

K

∫

Ω

|un(x)|pdx.

We can find a subsequence uσ(n) that converges almost everywhere to u. The

result of the lemma then follows from (∗∗) using Fatou’s lemma. ��
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Let us now give a definition of W 1,p, using approximations of the deriva-

tives by translation operators.

Proposition 2.23. For 1 < p <∞, the following properties are equivalent:

(1) u ∈W 1,p(Ω).

(2) u ∈ Lp(Ω) and there exists a constant C > 0 such that for any open set

ω with closure contained in Ω, we have

∀h ∈ R
N , |h| � d(ω, ∂Ω) =⇒ ‖τhu− u‖Lp(ω) � C|h|.

In the case p = 1, property (2) must be replaced by

(2′) For every open set ω with closure contained in Ω, there exists a constant

c(ω) such that c(ω) � C, c(ω) → 0 when |ω| → 0, and ‖τhu − u‖L1(ω) �
c(ω)|h|.

Proof of Proposition 2.23.

Let us assume that 1 < p < +∞. We will first show that (1) ⇒ (2) when

the translation is parallel to a base vector.

Consider u ∈W 1,p(Ω) and ω ⊂ Ω. Let ei be the ith vector of the canonical

basis of RN , and let h0 = d(ω, ∂Ω). Then ω ⊂ Ω implies that h0 > 0 and if

|h| < h0, we have x ∈ ω ⇒ x+ hei ∈ Ω. Corollary 2.19 subsequently tells us

that for every h such that |h| < h0 and that for almost all x in ω, we have

(2.24) u(x+ hei)− u(x) =
∫ h

0

∂iu(x+ sei)ds.

Consequently, by Hölder’s inequality,

(2.25) |u(x+ hei)− u(x)|p � |h|p−1

∫ h

0

|∂iu(x+ sei)|pds.

Since |u|p ∈ L1(Ω), we can integrate this inequality over ω, whence, using

Fubini and noting that ω +B(0, h) ⊂ Ω,
∫

ω

|τheiu− u|p(x)dx � |h|p−1

∫ h

0

∫

ω

|∂iu(x+ sei)|pdx ds

� |h|p‖∂iu‖pLp(Ω).

(2.26)

Taking the 1/pth power of this inequality gives property (2) for the translation

τhei .

For h ∈ R
N such that ω + B(0, h) ⊂ Ω, it suffices to replace ∂i by the

derivative along h, namely ∂hu = ∇u ·(h/|h|). This leads to property (2) with,

for example, constant C = (
∑N

1 ‖∂iu‖2Lp(Ω))
1/2.
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Let us now show the implication (2)⇒ (1).

Let u satisfy (2). We must prove that ∂iu ∈ Lp(ω). Setting, for example,

h = 1/n, consider the sequence {(τheiu− u)/h} of distributions on ω. We

know (Subsection 1.4.8) that this sequence converges in D′(ω) to the distri-

bution ∂iu. Consequently,

(∗) ∀ϕ ∈ D(ω),
〈τheiu− u

h
, ϕ
〉
−→ 〈∂iu, ϕ〉.

Now, by Hölder’s inequality and property (2), we have

∣
∣
∣
〈τheiu− u

h
, ϕ
〉∣∣
∣ � C ‖ϕ‖Lp′ .

Using (∗), taking the limit of this inequality for h→ 0 gives us the inequality

|〈∂iu, ϕ〉| � C‖ϕ‖Lp′ . Now, as p′ < ∞, D(ω) is dense in Lp
′
(ω) (cf. Theorem

1.91). The distribution ∂iu therefore defines a linear functional on Lp
′
(ω) and

the previous inequality becomes

∀ g ∈ Lp
′
(ω), |〈∂iu, g〉| � C‖g‖Lp′ (ω),

proving that ∂iu can therefore be identified with a function in Lp(ω) whose

norm moreover satisfies ‖∂iu‖Lp(ω) � C. Since this is true for every relatively

compact open subset ω of Ω, we can use an increasing sequence of such open

subsets on which the Lp norms of ∂iu are uniformly bounded to show that

∂iu ∈ Lp(Ω). Since this result holds for every i, it follows that u ∈ W 1,p(Ω),

which concludes the proof.

Let us now consider the case p = 1. For the implication (1) ⇒ (2′), the

reasoning remains the same as above and we see in inequality (2.25) that we

can use a constant c(ω) such that c(ω) �
∫
ω+B(0,h)

|∇u(x)|dx, which therefore

tends to
∫
ω
|∇u(x)|dx when h tends to 0. In particular, as ∇u ∈ L1, this

inequality tends to 0 when mes(ω)→ 0 (in the sense of Lebesgue).

Conversely, by an argument similar to that in the case p > 1, the inequality

in (2′) implies that ∇u is in the dual of Cc(Ω), which means that ∇u is a

measure (cf. Chapter 6). Since this estimate does not depend on the support

of ϕ, we deduce from it that ∇u is a bounded measure.

Moreover, the inequality
∫
ω
|∇u| � c(ω) shows that the measure ∇u is

absolutely continuous with respect to the Lebesgue measure (cf. Chapter 6),

which proves that ∇u ∈ L1(ω). Since ω is arbitrary and c(ω) is bounded

independently of ω, we conclude that ∇u ∈ L1(Ω). ��

Remark 2.27. In the case p = 1, the above proof shows that property (2)

for p > 1 only implies that u ∈ BV (Ω), the space of functions with bounded

variation (cf. Chapter 6).
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Definition 2.28. Let Ω be an open subset of RN , either bounded or not. We

let Wm,p
0 (Ω) denote the closure of the space D(Ω) in Wm,p(Ω) for the norm

‖·‖m,p.

In general, finding an intrinsic characterization of the functions in

Wm,p
0 (Ω) is not obvious and depends strongly on the structure of Ω. When

Ω = R
N , a method involving truncation and regularization allows us to show

the following result.

Proposition 2.29. The space D(RN ) is dense in Wm,p(RN ), so that

Wm,p(RN ) =Wm,p
0 (RN ).

Proof of Proposition 2.29.

Let u ∈Wm,p(RN ) and let n ∈ N
∗. Let ϕ be a function in D(B(0, 2)) with

value 1 on B(0, 1) and such that 0 � ϕ � 1. Let ϕn(x) = ϕ(x/n); then the

sequence un defined by un(x) = ϕ(x/n)u(x) converges to u in Wm,p(RN ).

Indeed, as |u|p ∈ L1, we have

‖u− un‖pp = ‖(1− ϕn)u‖pp �
∫

|x|�n

|u(x)|pdx −→ 0.

On the other hand, the Leibniz formula for the derivative of the product of

a C∞ function and a distribution implies that if |α| = m, then Dα(ϕnu) is the

sum of ϕnD
αu and expressions of the form (1/n)

j
Dα1ϕ(x/n)Dα2u, where

|α1| + |α2| = m and |α1| = j � 1. We can bound the Lp norm of these

expressions from above by

1

nj
|Dα1ϕ|∞

(∫

|x|�n

|Dα2u(x)|pdx
)1/p
,

which tends to 0 because j � 1. It follows that

|Dα(ϕnu)−Dαu|p � |Dα(ϕnu)− ϕnDαu|p + |ϕnDαu−Dαu|p,

where the right-hand side is the sum of two quantities that both tend to 0.

We will now use regularization. Given a regularizing function ρ, we let

ρn(x) = nNρ(nx) and un = ρn � (ϕnu). The functions un then belong to

D(RN ), and the sequence {un} converges to u in W 1,p. ��

In general, we will see that under regularity conditions on Ω, a sufficient

condition for the inclusion u ∈ Wm,p
0 (Ω) is that the extension ũ of u by 0

outside of Ω belongs to Wm,p(RN ).

Remark 2.30. Later on, we will give a result concerning the density of C1(Ω)
in Wm,p(Ω) when Ω is Lipschitz.



2.2 Sobolev Embeddings for Wm,p(RN ) 69

2.2 Sobolev Embeddings for Wm,p(RN)

2.2.1 Definitions of Functional Spaces

Given an integer j � 0, we define the family of spaces Cjb (RN ) by setting

Cjb (R
N ) =

{
u ∈ Cj(RN ) | ∀α ∈ N

N , |α| � j, ∃Kα,
∥
∥D(α)u

∥
∥
∞ � Kα

}
.

For a positive real number λ, the subspace Cj, λb (RN ) consist of the functions

in Cjb (RN ) such that if |α| � j, then

∃Cα, λ, ∀x, y ∈ R
N ,

∣
∣D(α)u(x)−D(α)u(y)

∣
∣ � Cα, λ |x− y|λ.

2.2.2 Statement of the Theorem and Preliminary Remarks

Theorem 2.31 (Sobolev embedding theorem). For p � 1 and m ∈ N,

we have:

(1) If N > mp, then for every q satisfying p � q � Np/(N −mp), we have

Wm, p(RN ) ↪→ Lq(RN ). More precisely, under the given conditions, there

exists a constant C such that

∀ϕ ∈Wm, p(RN ), ‖ϕ‖q � C‖ϕ‖Wm,p(RN ).

(2) For p = 1, we have WN, 1(RN ) ↪→ Cb(R
N ).

(3) If N = mp and p > 1, then for every q satisfying p � q < ∞, we have

Wm, p(RN ) ↪→ Lq(RN ).

(4) If p > N , then we have

0 < λ � 1−N/p =⇒W 1, p(RN ) ↪−→ C0, λ
b (RN ).

(5) If mp > N , N/p �∈ N, and j satisfies (j − 1)p < N < jp, then

0 < λ � j −N/p =⇒Wm, p(RN ) ↪−→ Cm−j, λ
b (RN ).

If N/p ∈ N and m � j = N/p + 1, then Wm,p(RN ) ↪→ Cm−N/p−1,λ
b (RN )

for every λ < 1.

The following preliminary remarks allow us to better understand the proof

of Theorem 2.31.

Remark 2.32 (reduction to functions in D(RN )). By Proposition 2.29,

it suffices to prove the statements of the theorem for functions in D(RN ).

Let us, for example, assume that under the conditions of statement (1),

we have proved the existence of a C depending on N, p, q, such that

(∗) ∀ϕ ∈ D(RN ), ‖ϕ‖q � C‖ϕ‖Wm,p(RN ).
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Consider u ∈ Wm,p(RN ) and a sequence {ϕn} in D(RN ) that converges to u

in Wm,p(RN ). Since the inequality (∗) shows that this is a Cauchy sequence

in Lq(RN ), we deduce that it converges to v ∈ Lq(RN ) in this space. As,

moreover, it also converges to u in Lp(RN ), we conclude that u = v and

u ∈ Lq(RN ). Furthermore, by taking the limit in (∗), we obtain the existence

of a constant C depending on N, p, q, such that

∀u ∈Wm,p(RN ), ‖u‖q � C ‖u‖Wm,p(RN ),

which shows that the injection is continuous.

The reasoning for the other types of injections is similar.

Remark 2.33 (reduction to the case of critical injections). To prove

statements (1), (4) and (5) of Theorem 2.31, it suffices to prove them in the

critical cases, namely, for q = Np/(N −mp) for statement (1), for λ = 1−N/p
for statement (4), and for λ = j −N/p for statement (5).

Indeed, let us suppose that statement (1) has been proved for

q=p∗=Np/(N −mp). Let q ∈ ]p, p∗[ and θ ∈ ]0, 1[ satisfy q = θp+(1− θ)p∗.
Hölder’s inequality with conjugate exponents 1/θ and 1/(1− θ) gives

∫

RN

|u(x)|qdx =
∫

RN

|u(x)|θ p|u(x)|(1−θ) p∗
dx

�
[∫

RN

|u(x)|p θ/θdx

]θ[∫

RN

|u(x)|p
∗ (1−θ)/(1−θ)dx

]1−θ

� ‖u‖p θ
Lp ‖u‖p

∗(1−θ)

Lp∗ .

We know that u ∈ Lp, u ∈ Lp∗
, and that there exists a C such that ‖u‖Lp∗ �

C ‖u‖Wm,p . Consequently, the previous inequality shows that u ∈ Lq and

‖u‖qLq � C ‖u‖pθ+(1−θ)p∗

Wm,p = C‖u‖qWm,p , which implies the continuity of the

injection into Lq.

A similar reasoning makes it possible to reduce the proof of statements (4)

and (5) to the critical cases mentioned above.

Remark 2.34 (on the impossibility of improving (1)). A simple scaling

argument shows that when N > p, there cannot exist an embedding from

W 1,p(RN ) to Lq(RN ) for q < p or q > p∗, where p∗ = Np/(N −mp).

Indeed, let us assume, in either case, the existence of a C such that for

every u ∈ W 1,p(RN ), ‖u‖Lq � C‖u‖W 1,p . Applying this inequality to the

family defined by uλ(x) = u
(
x/λ

)
gives

(∫

RN

∣
∣
∣u
(x
λ

)∣∣
∣
q

dx

)1/q

� C
[∫

RN

∣
∣
∣u
(x
λ

)∣∣
∣
p

dx+
N∑

1

∫

RN

1

λp

∣
∣
∣∂iu

(x
λ

)∣∣
∣
p

dx

]1/p
.
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Substituting the variable y = x/λ and using Minkowski’s inequality, this

becomes

‖u‖qλN/q � C
[
‖u‖pλN/p + ‖∇u‖pλ−1+N/p

]
,

or an inequality of the form

C1 � C2λ
N(1/p−1/q) + C3λ

−1+N(1/p−1/q),

where C1, C2, C3 are three fixed nonnegative numbers.

The hypothesis implies, when q < p, that the exponents on the right-hand

side are negative, giving a contradiction when λ → +∞. Likewise, we see

that the hypothesis q > p∗ implies that the exponents are positive, giving a

contradiction when λ→ 0.

Remark 2.35 (reasoning in Sobolev’s proof). The idea Sobolev orig-

inally used to show the embedding consists in writing u formally as u =

u � δ = u � ΔE, where E, a fundamental solution of the Laplacian, is defined

as follows (cf. Exercise 2.19).

For N > 2, it is the function E = kNr
2−N with kN = 1/((2−N)ωN−1),

where ωN−1 denotes the (N − 1)-dimensional surface area of the unit sphere

in R
N .

ForN = 2, it is the function E = k2 ln(r) with k2 = 1/(2π). More precisely,

if ζ is a function in D(RN ) equal to 1 in a neighborhood of 0, we can write u

as

(∗) u = u � Δ(ζE)− u �∇ζ · ∇E − u � (Δζ)E.

Note that when p � 1, the last two terms of (∗), namely u � ∇ζ · ∇E and

u� (Δζ)E, can each be expressed as the convolution of u ∈ Lp with a function

in D(RN ). It follows that this convolution is in Lk for every k � p. We are

therefore reduced to considering the first term of (∗), which can be written as

u � Δ(ζE) = ∇u �∇(ζE).

Let, for example, p = 1. Noting that ∇(ζE) ∈ Lq with q < N/(N − 1),

and then using the properties of a convolution with an L1 function, we obtain,

thanks to (∗), that u ∈ Lq whenever q < N/(N − 1).

The same computation shows that if 1 < p < N , we still have u ∈ Lq for

every q < pN/(N − p).
To proceed up to the critical exponent in the case 1 < p < N with N � 2,

we use the Sobolev lemma (cf. [60]), where one of the factors of the convolution

is the radial function x 	→ r−s. The lemma can be applied to the present

situation when p > 1 by choosing the exponent s = N −1, in accordance with

the definition of ∇(ζE), regardless whether N = 2 or not. The statement of

the lemma is as follows.
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Lemma 2.36 (Sobolev). Let f be an element of Lp(RN ) with compact sup-

port, where p � 1. Consider the convolution g = r−s � f . The following holds:

(1) If p > 1, then the function g belongs to Lq on every compact subset of RN ,

provided that q satisfies

1

q
� sup

{ 1

q1
, 0
}
, where

1

q1
=

1

p
+
s

N
− 1.

(2) If p = 1, then the function g belongs to Lq on every compact subset,

provided that 1/q > 1/q1 = s/N .

(3) If 1/p + s/N = 1, the function g belongs to Lq on every compact subset

for every q <∞.

In all cases, we have upper bounds of the following type on every compact

subset:

‖g‖q � C‖f‖p,
where the constant C depends on q, on the compact on which we bound g, and

on the compact support of f .

The proof of this lemma is difficult for the cases not covered by the Riesz–

Thorin theorem and will not be given in this book.

Remark 2.37. The critical exponent N/(N − 1) for p = 1 is not covered by

Sobolev’s lemma. In what follows, we use more elementary arguments than

those in Sobolev’s proof.

2.2.3 The Structure of the Proof of Sobolev’s Theorem

Step A. We establish the following inequality for the functions ϕ in D(RN ):

‖ϕ‖LN/(N−1)(RN ) � C‖ϕ‖W 1,1(RN ).

Statement (1) of the theorem for the case p = m = 1 follows, using Remark

2.32.

Step B. We establish the following inequality for the functions ϕ in D(RN )

in the case p < N :

‖ϕ‖LNp/(N−p)(RN ) � C‖ϕ‖W 1,p(RN ).

Step C. We use induction to establish the following inequality for the func-

tions ϕ in D(RN ) in the case m � 2 and mp < N :

‖ϕ‖LNp/(N−mp)(RN ) � C‖ϕ‖Wm,p(RN ).

Combining these three steps and Remarks 2.32 and 2.33 gives us statement (1).
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Step D. We establish the following inequality for the functions ϕ in D(RN ):

‖ϕ‖∞ � C‖ϕ‖WN,1(RN ).

Using the density of the regular functions, we deduce from this statement (2)

of the theorem.

Step E. We prove statement (3) of the theorem, beginning with the casem = 1

and p = N , followed by the case m � 2 and Np = m.

Step F. We show that last two statements, (4) and (5), of the theorem.

2.2.4 Proof of Sobolev’s Theorem

Proof of Step A. We must prove that

(2.38) ∃C, ∀ϕ ∈ D(RN ), ‖ϕ‖LN/(N−1) � C‖ϕ‖W 1,1 .

Let ϕ ∈ D(RN ); then for every index i ∈ [1, N ], we have

∀x ∈ R
N , ϕ(x) =

∫ xi

−∞
∂iϕ(x+ (s− xi)ei)ds.

Consequently,

(2.39) |ϕ(x)| �
∫

R

∣
∣∂iϕ(x+ (s− xi)ei)

∣
∣ds.

Note that the integral on the right-hand side of (2.39) does not depend on the

component xi of x. We denote the (N − 1)-tuple (x1, . . . , xi−1, xi+1, . . . , xN )

by x̆
(N)
i . On R

N−1, we define the function ϕi with compact support by setting

ϕi(x̆
(N)
i ) =

∫

R

∣
∣∂iϕ(x+ (s− xi)ei)

∣
∣ds.

The inequalities (2.39) can now be written as

∀ i ∈ [1, N ], ∀x ∈ R
N , |ϕ(x)| � ϕi(x̆(N)

i ).

Since our goal is to study ‖ϕ‖LN/(N−1) , we note that

∀x ∈ R
N , |ϕ(x)|N/(N−1) �

N∏

1

[
ϕi(x̆

(N)
i )

]1/(N−1)
.

Next, we use the following lemma.
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Lemma 2.40. Let N � 2. Consider N functions Fi, each belonging to

LN−1(RN−1). We have

∏

1�i�N

Fi(x̆
(N)
i ) ∈ L1(RN )

and the inequality

(2.41)

∫

RN

∏

i

∣
∣Fi(x̆

(N)
i )

∣
∣dx �

∏

i

(∫

RN−1

∣
∣Fi(x̆

(N)
i )

∣
∣N−1

dx̆
(N)
i

)1/(N−1)

.

Proof of Lemma 2.40. The proof uses induction on N . For N = 2, it is the

following known property:

(2.42)

∫

R2

F1(x2)F2(x1)dx1dx2 =

∫

R

F1(x2)dx2

∫

R

F2(x1)dx1.

Let us assume that the property has been proved up to order N . For

1 � j � N + 1, consider elements Fj of LN (RN ), each a function of the

variable x̆
(N+1)
j .

Fixing xN+1, consider the following integration over x = (x1, x2, . . . , xN ):

IN =

∫

RN

[ ∏

1�i�N

∣
∣Fi(x̆

(N)
i , xN+1)

∣
∣
]∣
∣FN+1(x)

∣
∣dx � +∞.

In this integral, where xN+1 is fixed, we apply Hölder’s inequality with expo-

nents N and N/(N − 1). This consists in the inequality

(∗) IN �
(∫

RN

( ∏

1�i�N

∣
∣Fi(x̆

(N)
i , xN+1)

∣
∣
)N/(N−1)

dx

)(N−1)/N

·
(∫

RN

∣
∣FN+1

∣
∣N (x)dx

)1/N
.

Next, consider theN functions hi, which for xN+1 fixed and i � N , are defined

by

(2.43) hi(x̆
(N)
i , xN+1) =

∣
∣Fi(x̆

(N)
i , xN+1)

∣
∣N/(N−1)

.

By the induction hypothesis at order N , as the function (hi)
N−1 is summable

on R
N−1, the product of these functions is in L1(RN ). The inequality (∗)

above then gives IN < +∞. Let

[gi(xN+1)]
N =

∫

RN−1

∣
∣Fi(x̆

(N)
i , xN+1)

∣
∣Ndx̆(N)

i .



2.2 Sobolev Embeddings for Wm,p(RN ) 75

By the induction hypothesis, the functions hi satisfy (2.41), namely

(∗∗)
(∫

RN

∏

1�i�N

hi(x̆
(N)
i , xN+1)dx

)(N−1)/N

�
∏

1�i�N

(∫

RN−1

∣
∣Fi(x̆

(N)
i , xN+1)

∣
∣Ndx̆(N)

i

)1/N
.

The right-hand side of this inequality is
∏

1�i�N [gi(xN+1)].

The integral

IN+1 =

∫

RN+1

∏

1�j�N+1

∣
∣Fj(x̆

(N+1)
j )

∣
∣dx dxN+1

is the integral of

IN =

∫

RN

∏

1�i�N

∣
∣Fi(x̆

(N)
i , xN+1)

∣
∣
∣
∣FN+1(x)

∣
∣ dx

over R. We apply Hölder’s inequality to IN and note that

KN =

[∫

RN

∣
∣FN+1(x)

∣
∣Ndx

]1/N

is independent of xN+1. By the definitions of hi and gi and the inequalities

(∗) and (∗∗), this leads to

IN � KN

(∫

RN

∏

1�i�N

hi(x̆
(N)
i , xN+1)dx

)(N−1)/N

� KN

∏

1�i�N

gi(xN+1).

Finally, integrating over R, applying the generalized Hölder inequality

(cf. Subsection 1.5.1) with N exponents that are all equal to 1/N , and using

Fubini’s formula for the integrals of gi, we obtain

IN+1 � KN

∏

1�i�N

[∫

R

(gi(xN+1))
NdxN+1

]1/N

=

[ ∏

1�j�N+1

∫

RN

∣
∣Fj(x̆

(N+1)
j )

∣
∣N dx̆(N+1)

j

]1/N
.

We thus obtain relation 2.41 for the rank N +1 case, concluding the proof of

Lemma 2.40. ��
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Let us conclude Step A. We apply Lemma 2.40 to the functions Fi =

|ϕi|1/(N−1). The inequality |ϕ(x)| �
∏

1�i�N |ϕi(x̆i)|1/(N−1) then gives the

following results for the norm Φ = ‖ϕ‖LN/(N−1) :

Φ �
[∫

RN

∏

1�i�N

Fi(x̆i)dx

](N−1)/N

�
∏

1�i�N

[∫

RN−1

|ϕi(x̆i)|dx̆i
]1/N

=

[ ∏

1�i�N

∫

RN−1

∫

R

|∂iϕ(x+ sei)|ds dx̆i
]1/N

=

[ ∏

1�i�N

‖∂iϕ‖L1(RN )

]1/N

� 1

N

∑

1�i�N

‖∂iϕ‖L1(RN ) �
1

N
‖ϕ‖W 1,1(RN ).

We therefore have an embedding W 1,1(RN ) ↪→ LN/(N−1)(RN ). Moreover, by

Remark 2.32, statement (1) of the theorem has now been proved in the case

p = m = 1.

Remark 2.44. The last inequality, which states the continuity of the injec-

tion, can be written more precisely as follows:

(2.45) ‖ϕ‖N/(N−1) � C‖∇ϕ‖1.

Proof of Step B.

Let us now assume that m = 1 and p < N . Consider, for u ∈ D(RN ),

the function v = |u|p(N−1)/(N−p)−1u, where the exponent is positive since

p � 1. By the definition |u|α = exp(α ln(|u|)), the partial derivative ∂iv can

be written as

∂iv =
p(N − 1)

N − p |u|p(N−1)/(N−p)−1∂iu.

Moreover, the previous remark and Hölder’s inequality give

(∫

RN

|v(x)|N/(N−1)dx
)(N−1)/N

� C
∫

RN

p(N − 1)

N − p |u(x)|p(N−1)/(N−p)−1|∇u(x)|

� C
(∫

RN

|∇u(x)|pdx
)1/p(∫

RN

|u(x)|Np/(N−p)dx
)1−1/p

.
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The left-hand side is none other than ‖u‖(N−1)p/(N−p)
Np/(N−p) . Hence, dividing by

‖u‖N(p−1)/(N−p)
Np/(N−p) , we obtain the inequality

(2.46) ‖u‖Np/(N−p) � C‖∇u‖p.

We have thus proved statement (1) of the theorem for m = 1 and 1 < p < N .

Proof of Step C. Let us give a proof by induction on m.

Assume that m � 2 and mp < N . We therefore have (m − 1)p < N and

p < N . Let D denote the differential operator of order 1. By the existence

of an embedding Wm−1,p ↪→ LNp/(N−(m−1)p) which we assume proved, we

have Du ∈ Wm−1,p, and therefore Du ∈ LNp/(N−(m−1)p). Since u ∈ Wm,p,

we have u ∈Wm−1,p, hence also u ∈ LNp/(N−(m−1)p).

Finally, setting q = Np/(N − (m− 1)p), we have u ∈ W 1,q. By the em-

bedding theorem for m = 1 and because q < N , we have

u ∈ LNq/(N−q) = LNp/(N−mp),

where the equality of the spaces follows from q/(N − q) = p/(N −mp). This
completes the proof of step C.

We have now proved statement (1) of the theorem.

Proof of Step D.

We move on to the proof of statement (2) by showing that WN,1 ↪→L∞.

The density of the regular functions will then imply the existence of an em-

bedding WN,1 ↪→ Cb(RN ).

In the proof of result (1) (cf. (2.39)), we have already shown that if u ∈
W 1,1(RN ), then

∀x′ ∈ R
N−1, ‖u‖∞(x′, ·) �

∫

R

|∂Nu(x′, t)|dt.

Let us make the following induction hypothesis. If v∈WN−1,1(RN−1), then

v ∈ L∞(RN−1) and

‖v‖∞ �
∑

α∈N
N−1

|α|�N−1

∫

RN−1

|Dαv(x′)|dx′.

Applying this inequality to the function ∂Nu(x
′, xN ) for fixed xN gives

sup
x′∈RN−1

|∂Nu(x′, xN )| �
∑

α∈N
N−1

|α|�N−1

∫

RN−1

|Dα(∂Nu)|(x′, xN )dx′.
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We then integrate with respect to xN :

sup
x′∈R

N−1

xN∈R

|u(x′, xN )| �
∫

R

sup
x′
|∂Nu(x′, xN )|dxN

�
∑

α∈N
N−1

|α|�N−1

∫

R

∫

RN−1

|Dα(∂Nu)(x
′, xN )|dx′dxN

�
∑

α∈N
N

|α|�N

∫

RN

|Dαu|(x)dx.

We have thus obtained the embedding WN,1 ↪→ L∞.

Let us return to statement (2). Let u ∈ WN,1(RN ) and let {un} be a

sequence in D(RN ) such that ‖un − u‖WN,1(RN ) → 0. By the above, we can

deduce that ‖un − u‖L∞(RN ) → 0, which means that {un} → u uniformly

on R
N . Consequently, u is continuous on R

N . Since u ∈ L∞, it follows that

u ∈ Cb(RN ). Moreover, the inequality ‖u‖L∞ � C‖u‖WN,1 gives

∀u ∈WN,1(RN ), ‖u‖Cb(RN ) � C‖u‖WN,1 .

This concludes step D and the proof of statement (2).

Proof of Step E. Let us now assume that mp = N .

We begin with the case m = 1, p = N > 1.

Let u ∈ W 1,N (RN ). We will show that u belongs to Lq for every q � N .

We begin by showing that W 1,N (RN ) has an embedding into Lq for every

q ∈ [N,N2/(N − 1)]. For this, we note that if u ∈ W 1,N , then uN ∈ W 1,1.

This follows from ∇(uN ) = NuN−1∇u and Hölder’s inequality:

∫

RN

|∇uN | � N
∫

RN

|∇u||uN−1|dx

� N
(∫

RN

|∇u|Ndx
)1/N(∫

RN

|u|Ndx
)(N−1)/N

.

Using the Sobolev embedding ofW 1,1 into LN/(N−1), we deduce that u belongs

to LN
2/(N−1).

Let us now show that u belongs to all Lq with q > N2/(N − 1). For this,

we note that q can be written as q = q′N/(N − 1) with q′ > N . Suppose

that ϕ is a regular function tending to u in W 1,N (RN ). We consider

A =
(∫

RN

∣
∣ϕq

′N/(N−1)
∣
∣dx
)(N−1)/N

= ‖ϕq
′
‖LN/(N−1) .
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Using ∇(|ϕ|q′) = q′|ϕ|q′−2ϕ∇ϕ, Remark 2.44, that is, the upper bound (2.45),

and then Hölder’s inequality, we obtain the following upper bounds for A:

A � q′C
∫

RN

|ϕ|q
′−1|∇ϕ|dx

� q′C
(∫

RN

|ϕ|(q
′−1)N/(N−1)dx

)(N−1)/N(∫

RN

|∇ϕ|Ndx
)1/N

.

(2.47)

We see that (q′ − 1)N/(N − 1) ∈ [N, q′N/(N − 1)). Therefore, there exists

a θ ∈ [0, 1], namely θ = 1/(q′ + 1−N), such that

(q′ − 1)N

(N − 1)
= θN + (1− θ) q′N

(N − 1)
.

Consequently, once more using Hölder’s inequality, we obtain

∫

RN

|ϕ(x)|(q
′−1)N/(N−1)dx

�
(∫

RN

|ϕ(x)|q
′N/(N−1)dx

)1−θ(∫

RN

|ϕ(x)|Ndx
)θ
.

Substituting this in inequality (2.47) above, we find

(∫

RN

|ϕ(x)|q
′N/(N−1)

)(N−1)/(Nq′)

� Cq′(q
′−N+1)/q′

(∫

RN

|ϕ(x)|N
)(N−1)/(Nq′)(∫

RN

|∇ϕ(x)|N
)(q′−N+1)/(q′N)

.

We have thus established (cf. Remark 2.32) that u ∈ Lq′N/(N−1).

Note that we cannot conclude that u ∈ L∞, as the scalar sequence

q′
(q′−N+1)/q′

is not bounded. Moreover, there exist examples of unbounded

W 1,N functions with N � 2.

Let us assume that m � 2 and mp = N .

We then have (m−1)p < N . From u ∈Wm,p, we deduce that u ∈Wm−1,p

and that for every j, ∂ju ∈Wm−1,p. Hence, by statement (1) of the theorem,

we know that u and ∂ju are elements of Lr with r = Np/(N − (m− 1)p).

From mp = N , we deduce that r = N . Hence u ∈ W 1,r, which by the

above implies that u ∈ Lq for every q, concluding the proof of step E.

Proof of Step F. Let us now assume that mp > N .

We begin with the case p > N , m = 1.

Let u ∈ W 1,p(RN ) and let p > N . We will give two proofs that we then

have u ∈ L∞(RN ).
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First proof that u ∈ L∞(RN ) in step F. This proof is based on the integra-

tion of the function over a cone Ch,θ with vertex 0, opening angle θ, and

bounded by a sphere of radius h in R
N . This proof can therefore also be used

for an open subset Ω with the uniform cone property, that is, an open subset

for which there exist h, θ such that for every x ∈ Ω, there exists a rotation

R of RN with x+R(Ch,θ) ⊂ Ω. This is of course the case for Lipschitz open

sets, whose definition we will give further on. It does not hold for the open

set in Example 2.9, in which ∂Ω has a cusp.

We will show that

(2.48) ∀ϕ ∈ D(RN ), ‖ϕ‖∞ � C1h
−N/p‖ϕ‖p + C2h

1−N/p‖∇ϕ‖p.

After applying a translation, if necessary, we reduce to finding an upper bound

for |ϕ(0)|. We will use the polar coordinates (ρ, σ), where ρ ∈ [0, h] and σ ∈
A(ρ), with A(ρ) the surface of intersection of Ch,θ and the sphere of radius ρ

(cf. Figure 2.2 below). Let ϕ ∈ D(RN ) and let ϕ̃(ρ, σ) be its expression in

polar coordinates.

Fig. 2.2. The cone Ch,θ.

We have

ϕ(0) = ϕ̃(ρ, σ) +

∫ 0

ρ

∂ρ(ϕ̃)(λ, σ)dλ.

For the remainder of the proof, we set

I(ρ, σ) =

∫ ρ

0

|∂ρ(ϕ̃)(λ, σ)|dλ.

The volume element is defined by dx = ρN−1s(σ)dσdρ, where s(σ)dσ is the

(N − 1)-dimensional surface element on the unit sphere SN . Since the volume

of the cone is proportional to hN , by Fubini, integrating the inequality above

over Ch,θ gives the following inequality, where c1 > 0 is a constant bounded
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from below independently of h:

(∗) |ϕ(0)|hNc1

�
∫ h

0

∫

A(ρ)

s(σ)|ϕ̃(ρ, σ)|ρN−1dσdρ+

∫ h

0

∫

A(ρ)

ρN−1s(σ)I(ρ, σ)dσdρ.

The first integral of (∗) is the same as A =
∫
Ch,θ

|ϕ(x)|dx. Using Hölder’s

inequality with conjugate exponents p and p′, we find

A �
(∫

Ch,θ

dx
)1/p′(∫

Ch,θ

|ϕ(x)|pdx
)1/p

� c′1hN/p′
‖ϕ‖Lp(Ch,θ).

We will now study the second integral B of (∗). First consider the integral

I(ρ, σ), which we write as

I(ρ, σ) =

∫ ρ

0

|∂ρϕ̃|(λ, σ)λ(N−1)/pλ(N−1)/p′
λ−(N−1)dλ,

giving

I(ρ, σ) �
(∫ ρ

0

|∂ρ(ϕ̃)(λ, σ)|pλN−1dλ
)1/p(∫ ρ

0

λ(N−1)(1−p′)dλ
)1/p′

when we apply Hölder’s inequality to it. We note that the exponent of the last

integrand satisfies the relation (N − 1)(1− p′) > −1 as p > N , which implies

the finiteness of this integral. The second integral B in (∗) therefore leads to

the inequality

B � K
∫ h

0

ρN−1

∫

A(ρ)

s(σ)

·
(∫ ρ

0

|∂ρ(ϕ̃)(λ, σ)|pλN−1dλ
)1/p
ρ[(N−1)(1−p′)+1]/p′

dσdρ.

Bounding the inner integral by the corresponding integral over [0, h], we have

B � K
∫ h

0

ρN/p′
∫

A(ρ)

s(σ)
(∫ h

0

|∂ρ(ϕ̃)(λ, σ)|pλN−1dλ
)1/p
dσdρ.

Again applying Hölder’s inequality, this time to the integral over A(ρ), we

have

B � K
∫ h

0

ρN/p′
(mesA(ρ))1/p

′

·
(∫

A(ρ)

s(σ)

∫ h

0

|∂ρ(ϕ̃)(λ, σ)|pλN−1dλdσ
)1/p
dρ.
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Since the measure of A(ρ) is bounded by the area of SN , hence independently

of h, the right-hand side of the inequality above can be interpreted as an

integral over Ch,θ. Since |∂ρ(ϕ̃(λ, σ)| is bounded from above by |∇ϕ(x)|, we
can therefore write

B � K ′h1+N/p′
‖∇ϕ‖Lp(Ch,θ).

Dividing by hN and applying (∗), we obtain the desired inequality (2.48). We

then extend to W 1,p functions by density. Moreover, we will see later on that

in the case of RN , as h can be any element of R, the right-hand side of (2.48)

is bounded from above, giving an optimal upper bound for the norm ‖·‖∞. ��

Second proof that u ∈ L∞(RN ) in step F. Consider the fundamental so-

lution E of the Laplacian. We can easily verify (cf. Exercise 2.19) that

E = kNr
2−N for N � 3 and E = k2 ln r for N = 2, with k2 = 1/(2π) and

kN = 1/((2−N)ωN−1), where ωN−1 is the (N − 1)-dimensional surface area

of the unit sphere in R
N . Let θ be a function in D(RN ) with value 1 on a

ball with center 0. Let F = θE. We then have

ΔF = θδ0 + 2∇θ · ∇E + (Δθ)E = δ0 + ψ,

where ψ ∈ D(RN ). We can write

u = δ0 � u = ΔF � u− ψ � u

and

ΔF � u =
∑

1�i�N

∂iF � ∂iu.

Moreover, the derivatives of F are of the form r1−N in the neighborhood

of 0 and have compact support on R
N . Therefore they all belong to Lq for

q < N/(N − 1). In particular, they belong to Lp
′
because p > N . The con-

volution
∑

i ∂iF � ∂iu therefore belongs to L∞. Since ψ ∈ D(RN ) and, for

example, u ∈ L1, the convolution u � ψ is a bounded C∞ function.

We have thus obtained the existence of a constant C such that

‖u‖∞ � C
(
‖∇F‖p′‖∇u‖p + ‖ψ‖p′‖u‖p

)
,

completing the proof that u ∈ L∞(RN ). ��

Note that we obtain an optimal estimate by using functions of the form

uλ(x) = u(x/λ), where λ > 0. Indeed, the continuity inequality ‖u‖∞ �
C1‖u‖p + C2‖∇u‖p applied to uλ gives

‖u‖∞ � C1λ
N/p‖u‖p + C2λ

−1+N/p‖∇u‖p.
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In particular, the minimum of the function of λ on the right-hand side is

reached for λ = M‖∇u‖p
(
‖u‖p

)−1
, where M = C2(p−N)/(NC1). We thus

obtain the following inequality, where C is a constant that depends only

on N , p, and universal data:

‖u‖∞ � C
(
‖u‖1−N/p

p ‖∇u‖N/p
p

)
.

We conclude the proof of step F by studying the Hölder continuity of u.

Let h ∈ R
N . In Proposition 2.23, we have already noted that

‖τhu− u‖p � Ch‖∇u‖p
and

‖∇(τhu− u)‖p � 2‖∇u‖p,
so that applying the previous inequality gives

‖τhu− u‖∞ � Ch1−N/p‖∇u‖Lp .

This implies that u is a Hölder continuous function with exponent 1 − N/p.
We have thus proved that u is a Hölder continuous function for m = 1.

Let us now consider the case m � 2. If mp > N , N/p �∈ N, and j =

[N/p] + 1, then

Wm,p(RN ) ↪−→ Cm−j,j−N/p
b (RN ).

Indeed, let j be such that jp > N > (j − 1)p; then

u ∈W j,p(RN ) =⇒ (u,Du) ∈ (W j−1,p(RN ))2.

Hence (u,Du) ∈ (LNp/(N−(j−1)p)(RN ))2 by the first Sobolev embedding, since

(j − 1)p < N . Consequently,

u ∈W 1,Np/(N−(j−1)p)(RN ).

By the above and the inequality Np/(N − (j − 1)p)>N , we find that u ∈
Cb(RN ) or, more precisely,

u ∈ C0,1−N(N−(j−1)p)/(Np)
b = C0,j−N/p

b (RN ).

Next, let u ∈Wm,p(RN ) with pm > N . Let j satisfy (j−1)p � N < jp. By
the above, D(m−j)u ∈W j,p(RN ), so that u ∈ C(m−j)

b (RN ) with j =
[
N/p

]
+1.

Since Dm−ju ∈ C0,j−N/p
b (RN ), we have u ∈ Cm−j,j−N/p

b (RN ).

If u ∈ W j,p(RN ) with j = (N/p) + 1 ∈ N, then Du ∈ W j−1,p(RN ).

Moreover, as (j − 1)p = N , step E implies that Du ∈ Lq for every q < ∞.

By the above, u ∈ C0,λb (RN ) for every λ < 1−N/q, that is, u ∈ C0,λb (RN ) for

every λ < 1.

If j = (N/p) + 1 ∈ N, then the above shows that Dm−ju ∈ C0,λb (RN ) for

every λ < 1, whence u ∈ Cm−N/p−1,λ
b (RN ) for every λ < 1.

This concludes step F and the proof of Theorem (2.31).
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2.3 Generalization to Other Open Sets

In this section, we study certain classes of open subsets for which the state-

ments of the Sobolev embedding theorem of Section 1.2 still hold.

2.3.1 Methods, Examples and Counterexamples

One method for obtaining the embeddings is as follows. If possible, we extend

every function u ∈ Wm,p(Ω) outside of Ω to a function ũ ∈ Wm,p(RN ). We

then use the properties of Theorem 2.31 for ũ. Returning to u, which is the

restriction of ũ to Ω, we obtain the corresponding property for the space

Wm,p(Ω).

We will see that the existence of such extensions are closely linked to the

geometric structure of the open set Ω. Let us first give a counterexample.

Example 2.49. Consider the open set Ω defined by

Ω = {(x, y) | 0 < x < 1, 0 < y < x2}.

The Sobolev embeddings do not all hold for this open set (cf. [68]).

Indeed, the function (x, y) 	→ xα belongs to H1(Ω) provided that

α > −1/2. On the other hand, it belongs to Lp if and only if αp + 2 > −1.
This implies that u ∈ Lp for p < 6 but not for p = 6, while the classical

Sobolev embedding would give the inclusion for arbitrary p.

Let us present a relatively large class of open sets for which the embed-

ding theorems hold. The reader can consult [1] for counterexamples and more

general open sets.

2.3.2 (m,p)-Extension Operators

Definition 2.50. We say that an open subset Ω of R
N has an (m, p)-

extension if there exists a continuous linear operator E from Wm,p(Ω) to

Wm,p(RN ) such that for every x ∈ Ω, the operator satisfies Eu(x) = u(x).

We have the following theorem.

Theorem 2.51. Let Ω be an open subset of RN that has an (m, p)-extension;

then the results concerning Wm,p in Theorem 2.31 extend to the case of Ω.

Proof of Theorem 2.51.

Let us assume that mp < N . Let E be a continuous extension operator

from Wm,p(Ω) to Wm,p(RN ). Let q � Np/(N −mp). Since Eu(x) = u(x)

for x in Ω, we have

‖u‖Lq(Ω) � ‖E(u)‖Lq(RN ) � C‖E(u)‖Wm,p(RN ) � C‖E‖ ‖u‖Wm,p(Ω).

We use a similar method for the other cases (2) and (3) of the Sobolev em-

bedding theorem. ��
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We will now give sufficient geometric conditions on the open set Ω for the

existence of an (m, p)-extension.

2.3.3 The Case of the Half-Space (RN)+

Let (RN )+ = R
N−1 × ]0,+∞[. We will show the existence of an (m, p)-

extension in Wm,p((RN )+). We begin with a lemma stating the existence

of a “trace” on the boundary. This result is a first encounter with the trace

theorem that we will see in the next chapter.

Proposition 2.52. There exists a continuous linear map

γ0 :W 1,p((RN )+) −→ Lp(RN−1)

such that if u ∈ C((RN−1)× [0,+∞[)∩W 1,p((RN )+), then γ0u(x
′) = u(x′, 0).

Moreover, if u has compact support in R
N−1 × [0,∞[, then γ0u has compact

support in R
N−1 and we have

(2.53)

∫

RN−1×]0,∞[

∂Nu(x)dx = −
∫

RN−1

γ0 u(x
′)dx′.

Proof of Proposition 2.52.

Let us show that the sequence x′ 	→ u(x′, 1/n) of functions in Lp(RN−1) is

a Cauchy sequence. By Corollary 2.19 of Proposition 2.12, we have for almost

all x′ ∈ R
N−1 that

(∗)
∣
∣u(x′, 1/n)− u(x′, 1/m)

∣
∣ =

∣
∣
∣
∫ 1/n

1/m

∂Nu(x
′, t)dt

∣
∣
∣.

Applying Hölder’s inequality with fixed x′, taking the pth power, and inte-

grating gives

∫

RN−1

|u(x′, 1/n)− u(x′, 1/m)|pdx′ �
∣
∣
∣
1

n
− 1

m

∣
∣
∣
p−1
∫

RN−1

∫ 1/n

1/m

∣
∣∂Nu(x′, t)

∣
∣pdt dx′.

Since the last integral is bounded by ‖∂Nu‖pp, we conclude that the sequence

we are studying is a Cauchy sequence. Let γ0 u be the function defined by

γ0 u(x
′) = limn→+∞ u(x

′, 1/n). The above shows that γ0u ∈ Lp(RN−1). More-

over, the linearity of γ0 is clear, and when u ∈ C1((RN )+), the limit is none

other than u(x′, 0), whence γ0(u)(x
′, 0) = u(x′, 0).

Let us show the continuity of γ0 on W 1,p(RN−1 × ]0,∞[).

By applying Corollary 2.19 of Proposition 2.12 with 1/m and y and taking

the limit in (∗) for m tending to +∞, we find

(∗∗) for almost all y ∈ R
+, γ0u(x

′) = u(x′, y)−
∫ y

0

∂Nu(x
′, t)dt.
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Integrating the pth power of (∗∗) with respect to y ∈ [0, 1] and x′ ∈ R
N−1

and applying Minkowski’s inequality, we obtain

‖γ0u‖Lp(RN−1) �
(∫ 1

0

∫

RN−1

|u(x′, y)|pdx′dy
)1/p

+
(∫ 1

0

∫

RN−1

|∂Nu|pdx′dy
)1/p
.

The continuity of the map γ0 follows from this.

Consider u in W 1,p
(
R

N−1 × [0,∞[
)
with compact support. The formula

(∗∗) tells us that

∀x′ ∈ R
N−1, γ0u(x

′) = −
∫ ∞

0

∂Nu(x
′, t)dt.

We can now obtain (2.53) by integrating with respect to x′ ��

This proposition is used in the proof of the following theorem.

Theorem 2.54. For every m ∈ N
∗ and 1 � p <∞, the half-space R

N−1×R
+

has an (m, p)-extension operator.

Proof of Theorem 2.54.

For u ∈Wm,p(RN+), we define the extension Eu of u for xN < 0 by

(2.55) Eu(x) =
∑

1�j�m

λju(x
′,−jxN ),

where the m-tuple (λj) consists of the unique solution of the following system:

(2.56) ∀ k ∈ {0, 1, . . . ,m− 1},
∑

1�j�m

(−j)kλj = 1.

We can first remark that under these conditions, if u ∈ Cm((RN )+), then for

every k � m − 1, the function u and the partial derivatives ∂kEu/∂xkN are

continuous at the intersection with {xN = 0}. Consequently, Eu ∈ Cm−1(RN ),

which we can show using the definition of the derivatives ∂kN along {xN = 0}.
In Theorem 2.54, we can in fact use the given formula for Eu with m′

numbers λj for any m′ > m, provided that the m conditions in (2.56) are

satisfied, this time with 1 � j � m′. We apply this in the case m = 1 in

Proposition 2.57 below, which provides a good beginning for the proof of

Theorem 2.54.

Proposition 2.57. Consider v in W 1,p(RN+) and k � 1 real numbers μj
such that ∑

1�j�k

μj = 1.
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Let ṽ be defined on R
N by

ṽ(x′, xN ) =

{
v(x′, xN ) if xN > 0,
∑

1�j�k μjv(x
′,−jxN ) if xN < 0;

then ṽ ∈W 1,p(RN ).

We will give the proof of Proposition 2.57 later. For the moment, we will

admit the results of the proposition, in order to continue the proof of Theorem

2.54.

We must first show that u ∈ Wm,p((RN )+) implies Eu ∈ Wm,p(RN ). Let

u ∈ Wm,p((RN )+) and let Eu be defined by (2.56). Assuming that we have

proved that Eu ∈ Wm−1,p((RN )+), it suffices to verify that for every α with

|α| = m− 1, the derivative Dα
(
E(u)

)
satisfies the conditions of the proposi-

tion. In order to do this, let Dα = Dα′
∂kN with α = (α′, k) and k � m− 1;

then

Dα(Eu)(x′, xN ) =

m∑

1

λj(−j)kDα′
∂kNu(x

′,−jxN ).

Since the m � 1 numbers μj = λj(−j)k satisfy the relation
∑m

1 μj = 1,

the conditions of Proposition 2.57 are fulfilled. Consequently, Dα(Eu) ∈
W 1,p(RN ).

We still need to prove the continuity of E. We will give its proof after that

of Proposition 2.57.

Proof of Proposition 2.57. Let us show that ṽ indeed belongs to W 1,p(RN ).

For this we need the following lemma.

Lemma 2.58. Let v ∈ W 1,p((RN )+) and let ϕ ∈ D(RN ); then for every

i ∈ [1, N − 1],

(2.59)

∫

(RN )+
∂iv(x)ϕ(x)dx+

∫

(RN )+
v(x)∂iϕ(x)dx = 0.

If ϕ satisfies ϕ(x′, 0) = 0, then

(2.60)

∫

(RN )+
∂Nv(x)ϕ(x)dx+

∫

(RN )+
v(x)∂Nϕ(x)dx = 0.

Proof of Lemma 2.58.

Let us show equality (2.59).

Let ϕ ∈ D(RN ) and let {vn} be a sequence in C∞((RN )+)∩W 1,p((RN )+)

that converges to v in W 1,p((RN )+). By the definition of the derivative ∂ivn
in the sense of distributions on R

N−1, we have for almost all xN ,
∫

RN−1

∂ivn(x)(x
′, xN )ϕ(x′, xN )dx′ +

∫

RN−1

∂iϕ(x
′, xN )vn(x

′, xN )dx′ = 0.
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Integrating this equality with respect to xN and taking the limit gives the

desired result.

Let us now show equality (2.60).

If ϕ satisfies ϕ(x′, 0) = 0, then the function uϕ is an element of

W 1,p((RN )+) and has value 0 on the boundary {xN = 0}. By Proposition

2.52, we have ∫

(RN )+
∂N (uϕ)(x)dx = 0,

that is, ∫

(RN )+
∂Nu(x)ϕ(x)dx = −

∫

(RN )+
u(x)∂Nϕ(x)dx. ��

We conclude the proof of Proposition 2.57 by using derivation in the sense

of distributions and Lemma 2.58.

Let ϕ ∈ D(R). The function v(x′, jxN ) is still an element ofW 1,p((RN )+),

and ϕ(x′,−xN ) is still an element of D(RN ), so that by substituting xN 	→
−xN twice and using the first equality of Lemma 2.58, we have

∫

(RN )−
v(x′,−jxN )∂iϕ(x)dx =

∫

(RN )+
v(x′, jxN )∂iϕ(x

′,−xN )dx

= −
∫

(RN )+
∂iv(x

′, jxN )ϕ(x′,−xN )dx

= −
∫

(RN )−
∂iv(x

′,−jxN )ϕ(x′, xN )dx

for i � N − 1.

Again by the first part of the lemma,

〈∂iṽ, ϕ〉 = −〈ṽ, ∂iϕ〉

= −
∫

(RN )+
v(x)∂iϕ(x)dx−

∫

(RN )−

k∑

1

μjv(x
′,−jxN )∂iϕ(x)dx

=

∫

(RN )+
∂iv(x)ϕ(x)dx+

∫

(RN )−

k∑

1

μj∂iv(x
′,−jxN )ϕ(x)dx,

where the right-hand side can also be written as

(∗)
∫

RN

[
∂iṽ χ((RN )+) +

( k∑

1

μj∂iv(x
′,−jxN )

)
χ((RN )−)

]
ϕ(x)dx.

We have thus obtained

(2.61) ∂iṽ = ∂iṽ χ((RN )+) +
( k∑

1

μj∂iv(x
′,−jxN )

)
χ((RN )−).
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For the derivation in xN , we substitute the variable −jxN for xN :

〈∂N ṽ, ϕ〉 = −〈ṽ, ∂Nϕ〉

= −
∫

(RN )+
v(x)∂Nϕ(x)dx−

∫

(RN )−

k∑

1

μjv(x
′,−jxN )∂Nϕ(x)dx

= −
∫

(RN )+
v(x)∂Nϕ(x)dx−

∫

(RN )+

k∑

1

μj
j
v(x)(∂Nϕ)(x

′,−xN
j

)dx

= −
∫

(RN )+
v(x′, xN )∂N

(
ϕ(x′, xN )−

k∑

1

μjϕ(x
′,−xN

j
))
)
dx

=

∫

(RN )+
∂Nv

(
ϕ(x′, xN )−

k∑

1

μjϕ(x
′,−xN

j
)
)
dx.

The last equality follows from the second part of Lemma 2.58 applied to the

function ϕ(x′, xN ) −
∑k

1 μjϕ(x
′,−xN/j), which is zero on {xN = 0} by the

hypothesis
∑k

1 μj = 1. After another change of variables, we have

〈∂N ṽ, ϕ〉 =
∫

((RN )+)

∂Nv(x)ϕ(x)dx−
∫

((RN )−)

k∑

1

μjj∂Nv(x
′,−jxN )ϕ(x)dx.

It follows that

(2.62) ∂N ṽ = ∂Nv(x
′, xN )χ((RN )+) −

m∑

1

jμj∂Nv(x
′,−jxN )χ((RN )−).

The two relations (2.61) and (2.62) show that all ∂iṽ for i � N belong to

Lp(RN ).

We have thus completed the proof of Proposition 2.57. ��

Let us finish the proof of Theorem 2.54 by proving the continuity of E.

The previous equalities show that for all i � N ,

|∂iṽ|Lp(RN ) � 2‖∂iv‖Lp((RN )+).

It follows that there exists a constant C such that

‖Eu‖m,p � C‖u‖Wm,p((RN )+).

The continuity of the operator E follows from this. ��

Corollary 2.63. The space W 1,p
0 ((RN )+) is the subspace of W 1,p((RN )+)

consisting of the functions u such that γ0u = 0, that is, the functions u whose

extension by 0 outside of (RN )+ is an element of W 1,p(RN ).
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Proof of Corollary 2.63.

It is clear, using the continuity of the trace map γ0, that for every sequence

of functions with compact support that converges in W 1,p((RN )+), the trace

of the limit is zero. It follows that if u ∈W 1,p
0 ((RN )+), then γ0u = 0.

Conversely, let u satisfy γ0u = 0. Let ũ denote the extension by 0 for

xN < 0. Then for i � N − 1, by the first equality (2.59) of Lemma 2.58,

computing the derivative of this extension in the direction ei gives

∀ϕ ∈ D(RN ), 〈∂iũ, ϕ〉 = −〈ũ, ∂iϕ〉 = −
∫

xN>0

u∂iϕ =

∫

xN>0

∂iuϕ.

For i = N , by the second equality (2.60) of Lemma 2.58 and since the trace

of uϕ is zero, we have

〈∂N ũ, ϕ〉 = −〈ũ, ∂Nϕ〉 = −
∫

xN>0

u∂Nϕ =

∫

xN>0

∂Nuϕ.

Let vn(x
′) = ũ(x′, xN − 1/n); then the sequence {vn} with compact support

in (RN )+ converges to ũ in W 1,p(RN ). To see this, note that

(2.64) ∀w ∈ Lp(RN ), lim
h→0

‖τhw − w‖p = 0.

Indeed, let ε > 0 and let ψ be an element of Cc(RN ) such that ‖w−ψ‖p � ε/3.
By the continuity of ψ, there exists an h0 such that

∀h, |h| � h0 =⇒ ‖τhψ − ψ‖∞ � ε

3| supp(ψ)|1/p′ .

Hence, for |h| � h0, we have

‖w − τhw‖p � ‖w − ψ‖p + ‖ψ − τhψ‖p + ‖τhψ − τhw‖p � ε.

It follows that

lim
n→+∞

‖vn − ũ‖p = 0 and ∀ j ∈ [1, N ], lim
n→+∞

‖∂jvn − ∂j ũ‖p = 0.

Next, let ρ be a function in D(RN ). We set ρ2n = (2n)Nρ(2nx) and un =

ρ2n � vn; then {un} is a sequence of regular functions with compact support

in (RN )+ that converges to u in W 1,p(RN ), completing the proof. ��

2.3.4 Lipschitz Open Sets, Cm Open Sets

Let us begin with the definition of a uniformly Lipschitz open set, followed

by that of a uniformly C1 open set.
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Definition 2.65. We call Ω a uniformly Lipschitz open set if:

(1) There exists an open cover (Ωi)i�0 of Ω such that d(Ω0, ∂Ω) > 0, for

every i � 1, Ωi is bounded and Ωi ∩ ∂Ω �= ∅, and either the family {Ωi}
is finite or

∃ k � 2, |i− j| � k =⇒ Ωi ∩Ωj = ∅.

(2) There exists an open subset O′
i of R

N−1, a function ai that is Lipschitz on

O′
i, and a system of coordinates such that, after permuting the coordinates

if necessary,

Ωi ∩Ω ⊂ {(x′, xN ) | x′ ∈ O′
i, xN > ai(x

′)},
Ωi ∩ ∂Ω = {(x′, ai(x′)) | x′ ∈ O′

i}.

(3) There exist a partition of unity (ϕi)i subordinate to the cover of Ω by the

Ωi (cf. Definition 2.11) and constants C1 and C2 such that

∀ i, ‖ϕi‖W 1,∞(RN ) � C1 and ‖ai‖W 1,∞(O′
i)
� C2.

Definition 2.66. We say that an open set is uniformly of class C1 if it is

uniformly Lipschitz with functions ai of class C1.

Remark 2.67. To simplify the terminology, we will from now on often omit

the adjective regular or uniformly and simply use the terms C1, Ck, or Lips-
chitz.

Lipschitz open sets have the (1, p)-extension property. Proposition 2.70

below states this result. Further on, we will define a class of open sets that

have the (m, p)-extension property. Note that the latter is not necessary for

the embedding theorems, as we will see that being “Lipschitz” is sufficient.

However, when an open set is of class Cm with m > 1, it is possible to de-

fine higher order traces (cf. next chapter) and, consequently, to obtain results

concerning the regularity up to the boundary. We will use these results when

studying the solutions of elliptic equations (cf. Chapter 5).

When using the definition above, it helps to know the relation between the

inclusion of restrictions of u ∈ W 1,p(Ω) in each of the spaces W 1,p(Ω ∩ Ωi),

as well as the relation between the corresponding norms. These are as follows.

Proposition 2.68. Let Ω be a Lipschitz open set. If for every i, u ∈ Lp(Ω)
satisfies u ∈ W 1,p(Ω ∩ Ωi), then u ∈ W 1,p(Ω). Moreover, there exist con-

stants C and C ′ that do not depend on u such that

(2.69)

⎧
⎨

⎩

∑
i ‖ϕiu‖W 1,p(Ωi∩Ω) � C‖u‖W 1,p(Ω),

‖u‖W 1,p(Ω) � C ′∑
i ‖u‖W 1,p(Ω∩Ωi).
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Proof of Proposition 2.68. The first part of the proposition is obvious. Let us

show the inequalities concerning the norms.

Let u ∈ Lp(Ω). By condition (1) of Definition 2.65, we can divide up the

sequence {Ωi} into the union of k sequences of open sets {Ωin} such that the

intersections Ω ∩ Ωin are two-by-two disjoint. For such a sequence, the sum∑
n ‖u‖

p
Lp(Ωin ) is bounded from above by ‖u‖pLp(Ω).

From this, we can deduce the inequality
∑

i ‖u‖
p
Lp(Ω∩Ωi)

� k‖u‖pLp(Ω).

Next, let u ∈ W 1,p(Ω). Using the chain rule for ϕiu and the uniform

upper bounds, we find that in condition (3) of Definition 2.65, the norm

‖ϕiu‖W 1,p(Ω∩Ωi) is uniformly bounded from above by K‖u‖W 1,p(Ω∩Ωi). The

previous upper bound therefore leads to

∑

i

‖ϕiu‖pW 1,p(Ω∩Ωi)
� kK‖u‖pW 1,p(Ω).

The second inequality follows from u =
∑

i ϕiu. ��

We will now give a first important extension result for Lipschitz open sets.

Proposition 2.70. If Ω is Lipschitz, then for every p � 1, there exists a

(1, p)-extension operator from Ω to R
N .

Proof of Proposition 2.70.

Let u ∈ W 1,p(Ω) and let i ∈ N; then by the definition of the partition

of unity {ϕi}, the function ϕiu has compact support contained in Ωi ∩ Ω.
Moreover, ϕiu ∈W 1,p(Ωi∩Ω). We use the composition of ϕiu and a symmetry

on O′
i × R with respect to the hypersurface {xN = ai(x

′)} (see Figure 2.3).

Fig. 2.3. Construction of the (1, p)-extension.

This symmetry S is defined on O′
i × R by S(x′, xN ) = (x′, 2ai(x

′) − xN ).

The image of the bounded open set Ωi∩Ω under S is a bounded open set Ω′
i.

We let Ui = (Ωi ∩Ω) ∪ (∂Ω ∩Ωi) ∪Ω′
i.
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Let us begin by extending ϕiu. We will use local coordinates to define the

extension Pi(ϕiu) from Ωi ∩Ω to Ui. For every (x′, xN ) ∈ Ui, we set

Pi(ϕiu)(x
′, xN ) =

⎧
⎨

⎩

(ϕiu)(x
′, xN ) if xN > ai(x

′),

(ϕiu)(x
′, 2ai(x

′)− xN ) if xN < ai(x
′).

For (x′, xN ) /∈ Ui, we set Pi(ϕiu) = 0.

Let us verify that this extended function is an element of W 1,p(RN ) with

norm in W 1,p(RN ) bounded from above by the norm ‖u‖W 1,p(Ω) multiplied

by a constant depending only on the constants C1 and C2 of Definition 2.65.

We note that the symmetry S, which is its own inverse, is continuous

because ai is. Moreover, it satisfies

|S(x1)− S(x2)| �
(
1 + 4‖∇ai‖∞

)1/2|x1 − x2|.

It follows that we can apply Lemma 2.22 to the function Pi(ϕiu) on the open

set Ωi ∩Ω and on its image under S. Let v be defined on R
N−1 × ]0,+∞[ by

v(x′, t) = ϕiu(x
′, ai(x

′) + t).

The extension of v by reflection, that is, ṽ(x′, t) = ϕiu(x
′, ai(x

′)− t) for t < 0,

is the same as the previous reflection after the change of variable t = xN −
ai(x

′). It follows from Lemma 2.22 that v ∈ W 1,p(RN−1 × ]0,+∞[). Since ṽ

results from a (1, p)-extension on R
N , we find that ϕ̃iu ∈W 1,p(RN ). Moreover,

the constant c in Lemma 2.22 depends only on the Lipschitz constants of S

and S−1, and hence depends only on ‖∇ai‖∞, by the upper bound given

earlier. We therefore have

‖ṽ‖W 1,p(RN ) � C(1 + ‖∇ai‖∞)‖ϕiu‖W 1,p(Ω∩Ωi).

Moreover, as the norms ‖∇ai‖∞ are bounded from above by C2 (cf. Definition

2.65), setting C3 = C(1 + C2), we have

‖ϕ̃iu‖W 1,p(RN ) � (1 + C2)‖ṽ‖W 1,p(RN )

� C3‖ϕiu‖W 1,p(Ω).

Let us return to the open set Ω. Let

E(u) =
∑

i

Pi(ϕiu).

By Proposition 2.68, we have E(u) ∈ W 1,p(RN ). The same proposition also

gives

‖E(u)‖W 1,p(RN ) �
∑

i

‖Pi(ϕiu)‖W 1,p(RN ) � C3‖u‖W 1,p(Ω)

This inequality implies the continuity of the extension operator E, completing

the proof of Proposition 2.70. ��
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Corollary 2.71. If Ω is Lipschitz, then C∞(Ω) is dense in Wm,p(Ω).

Proof of the Corollary.

Let u ∈ Wm,p(Ω) and let vn ∈ D(RN ) converge to E(u) in Wm,p(RN ).

The restrictions of the vn to Ω then converge to the restriction of u to Ω,

which is u itself. ��

In compliance with the principles announced earlier, Proposition 2.70 al-

lows us to prove the Sobolev embedding theorem.

Theorem 2.72. Given a Lipschitz open set Ω, we have:

(1) If N > mp, then Wm,p(Ω) ↪→ Lq(Ω) for every q � Np/(N −mp).
(2) If N = mp, then Wm,p(Ω) ↪→ Lq(Ω) for every q < ∞. If p = 1, then

WN,1 ↪→ Cb(Ω).
(3) If mp > N with N/p �∈ N and if j satisfies (j − 1)p < N < jp, then we

have

Wm,p(Ω) ↪−→ Cm−j,λ
b (Ω), ∀λ � j −N/p.

If N/p ∈ N and m � j = N/p + 1, then Wm,p(Ω) ↪→ Cm−(N/p)−1,λ
b (Ω)

for every λ < 1.

For the proof, which is left to the reader, it suffices to first understand

that we can use the techniques of the proof of Theorem 2.31 to reduce to the

case m = 1. After that, use the extension operator given in Proposition 2.70.

Let us continue with the (m, p)-extension operators, where m > 1.

Definition 2.73. An open set is called uniformly Cm if it is Lipschitz with

functions ai of class Cm and with the following uniform upper bounds in

condition (3) of Definition 2.65:

(2.74) ‖ai‖Cm(Oi) + ‖ϕi‖Cm � C3.

Theorem 2.75. A Cm open set has the (m, p)-extension property for every

p ∈ [1,∞[.

Proof of Theorem 2.75.

Using local coordinate systems, we reduce the problem to the extension of

a function of type ϕiu. Leaving out the indexes i in the function ai and in the

local coordinates for the sake of simplicity, we define

v(x′, t) = u(x′, a(x′) + t),

which gives an element ofWm,p((RN )+) thanks to the properties of a. We then

use the extension provided by Theorem 2.54. The continuity of the extension is

an immediate consequence of the properties of Cm-regularity, and the property

of an extension on R
N . ��
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Note that we can also define ũ directly using the formula

ũ(x′, xN ) =

m∑

j=1

λju(x
′,−jxN + (1 + j)a(x′)),

where the λj satisfy

∀ k ∈ [0,m− 1],
∑

j

(−j)kλj = 1.

However, in this case the computations are longer as we need to use the

conservation of the tangential derivatives along ∂Ω, for example, at order 1,

∂iu+ ∂i(a)∂Nu for every i ∈ [1, N − 1].

2.4 Compact Embeddings in the Case of a Bounded

Open Set

Let us now give compactness results for the Sobolev embeddings in bounded

Lipschitz open sets. We begin by giving counterexamples in the case of the

critical exponent for a bounded set, and for all embeddings in the unbounded

case.

2.4.1 Two Preliminary Counterexamples

Example 2.76. Let us show that if Ω = B(0, 1), N > p, and m = 1, then the

embedding Wm,p(Ω) ↪→ Lq(Ω), where q is the critical exponent Np/(N − p),
is not compact.

Let F be a C1 function on R
N with compact support in B(0, 1) that is

not identically equal to zero. Let {Fn} be the sequence of functions on B(0, 1)
defined by Fn(x) = n(N/p)−1F (nx). We can easily see that {Fn} tends to 0

almost everywhere and in Lp(B(0, 1)). Moreover, its gradient is bounded in

Lp(B(0, 1)). Indeed,

(2.77)

∫

B(0,1)

n(N/p−1+1)p|∇F |p(nx)dx = ‖∇F‖pLp .

In particular, {Fn} is bounded in W 1,p(Ω). Moreover, we have

(2.78) ‖Fn‖LNp/(N−p)(Ω) = ‖F‖LNp/(N−p)(Ω).

It easily follows (cf. Section 6.1) that |Fn|Np/(N−p) converges vaguely to

|F |Np/(N−p)

LNp/(N−p)(Ω)
δ0, where δ0 denotes the Dirac measure at zero. Nevertheless,

{Fn} does not tend to 0 in LNp/(N−p).
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Let us now give a counterexample to the existence of the compact embed-

dings when Ω is unbounded.

Example 2.79. Let us show that the embedding of W 1,1(RN ) in L1(RN ) is

not compact.

Consider F ∈ D(RN ), non-identically zero, and a sequence {xn} that

tends to infinity; then the sequence {Fn} defined by Fn(x) = F (x − xn) is

bounded in W 1,p(RN ) and converges almost everywhere to 0. Therefore, if it

were to converge strongly in L1, we would have ‖Fn‖1 = ‖F‖1 = 0, giving a

contradiction.

2.4.2 Compactness Results

Theorem 2.80. Let Ω be a bounded Lipschitz open subset of R
N , where

N > 1. If N > mp, then the embedding

Wm,p(Ω) ↪−→ Lq(Ω)

is compact for q < Np/(N −mp).

Proof of Theorem 2.80. Let us first prove two lemmas.

Lemma 2.81. For any bounded Lipschitz open subset Ω of RN , we have

W 1,1(Ω) ↪−→c L
1(Ω).

Proof of Lemma 2.81. Let B be a bounded subset of W 1,1(Ω). We use the

criteria for the compactness of bounded subsets of Lp(Ω) given in Theorem

1.95 of Chapter 1. Let us verify the two conditions of that theorem.

Let ε > 0 be given. We first show that there exists a compact subset K

of Ω such that

∀u ∈ B,
∫

Ω�K

|u(x)|dx � ε.

Indeed, using Hölder’s inequality with exponents N and N/(N − 1), we have

∫

Ω�K

|u(x)|dx �
[∫

Ω�K

dx
]1/N[∫

Ω�K

|u(x)|N/(N−1)dx
](N−1)/N

.

Since the open set Ω is bounded, we can choose mes K sufficiently large that

the measure of (Ω �K) is arbitrarily small, giving the desired result.

Next, we prove that there exists a δ such that if ũ denotes the extension

of u ∈ B by 0 outside of Ω, we have

∀h, |h| � δ =⇒
∫

Ω

∣
∣
∣ũ(x+ h)− u(x)

∣
∣
∣dx � ε.
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Let h0 > 0 be given. Let B0 denote the closure of the union of the family Bh0

of all open balls with center in ∂Ω and radius h0. Let ω = Ω � B0. This is

an open set contained in Ω for which we can easily see that if |h| < h0, then
x ∈ ω ⇒ x + h ∈ Ω. Consequently, for every x ∈ ω, ũ(x + h) = u(x + h).

Consider the composed function t 	→ u(x+ th). For u ∈ B, we have
∫

ω

|u(x+ h)− u(x)| =
∫

ω

∣
∣
∣
∫ 1

0

d

dt
(u(x+ th)dt

∣
∣
∣dx.

Differentiating the absolutely continuous function t 	→ u(x+ th) (cf. Exercise
2.3), we obtain

d

dt
u(x+ th) =

N∑

1

hj∂j(u)(x+ th) = h · ∇u(x+ th),

whence ∫

ω

|u(x+ h)− u(x)| �
∫

ω

|h| |∇u(x+ th)|dx.

Consequently, the last integral is bounded from above by |h| ‖∇u‖L1(Ω), as

x+ th ∈ Ω, hence by C|h|, as u ∈ B. Therefore, there exists an h1 < h0 such

that

|h| � h1 =⇒
∫

ω

|u(x+ h)− u(x)| � C|h| � ε
2
.

We still need to bound the integral over Ω�ω. For this, we use the inequality
∫

Ω�ω

|ũ(x+ h)− u(x)| �
∫

Ω�ω

(
|u(x+ h)|+ |u(x)|

)
.

The argument given in the first part of the proof then implies the existence

of a δ < h1 such that |h| � δ ⇒ 2
∫
d(x,∂Ω)�2δ

|u(x)|dx < ε. Finally,

∀u ∈ B, |h| � δ =⇒
∫

Ω

|ũ(x+ h)− u(x)|dx � ε.

Theorem 1.95 now implies that B is relatively compact in L1(Ω). ��

Lemma 2.82. Let Ω be an open subset of RN . Let {un} be a sequence that is

convergent in Lk(Ω) and bounded in Lq(Ω) for some q > k; then it converges

in every Lp(Ω) with k � p < q.
Proof of Lemma 2.82. We use Hölder’s inequality to write p = θk + (1− θ)q,
where θ ∈ ]0, 1[. We have

(2.83) ‖un − um‖Lp(Ω) � ‖un − um‖θLk(Ω)‖un − um‖
1−θ
Lq(Ω).

The right-hand side tends to zero when n and m tend to infinity, as it is

the product of a bounded sequence and a sequence that tends to zero. We

conclude that {un} is a Cauchy sequence in Lp(Ω), and therefore converges

in Lp(Ω). ��
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Let us return to the proof of Theorem 2.80.

Let {un} be a bounded sequence in Wm,p(Ω). As Ω is bounded, Lp(Ω) ↪→
L1(Ω) and {un} is also bounded in W 1,1(Ω). By Lemma 2.81, the latter is

relatively compact in L1(Ω). Moreover, by Theorem 2.72, the sequence {un} is
bounded in Lq(Ω) with q � Np/(N −mp). By Lemma 2.82, {un} is relatively
compact in all Lq(Ω) with p � q < Np/(N −mp). ��

Let us now consider, when mp > N , the compact embeddings into the

spaces of Hölder continuous functions.

Theorem 2.84. Let Ω be a Lipschitz open set. Let mp > N and let j =

[N/p] + 1; then for all λ < j −N/p, the embeddings

Wm,p(Ω) ↪−→ Cm−j,λ(Ω)

are compact.

Proof of Theorem 2.84.

Let us begin with the case m = 1 and p > N . We will use the following

result, whose proof we will give later.

Lemma 2.85. Let Ω be a bounded open subset of RN and let {un} be a se-

quence in C0,λ(Ω) that is relatively compact in C(Ω); then for every μ satis-

fying 0 < μ < λ, the sequence {un} is relatively compact in C0,μb (Ω).

Let us now show that the embedding of W 1,p(Ω) in C(Ω) is compact. We

will use the Ascoli–Arzelà theorem. Let K be a bounded set in W 1,p(Ω). The

set {u(x) | u ∈ K} is then uniformly bounded for every x ∈ Ω. Indeed, as we
already know that the injection is continuous (cf. Theorem 2.72), we have

‖u(x)‖∞ � ‖u‖W 1,p(Ω) � C

for all u ∈ K. Let us show that K is equicontinuous. Indeed, by the continuity

of the embedding of W 1,p(Ω) in C0,1−N/p(Ω) (Theorem 2.72, again), we have

∀ (x, x+ h) ∈ Ω2
, |u(x+ h)− u(x)| � Ch1−N/p

(∫

Ω

|∇u|pdx
)1/p
.

This implies that K is uniformly Hölder, hence in particular equicontinuous.

Lemma 2.85 allows us to conclude the proof in the case m = 1 and p > N .

Next, let K be a bounded subset of W j,p(Ω) with (j − 1)p � N < jp. We

can easily see as above that K is relatively compact in C(Ω). We again use

Lemma 2.85 to conclude thatK is compact in C0,λ(Ω) for every λ < j−(N/p).

For the general case, let K be a bounded subset of Wm,p(Ω) and let

j = [N/p] + 1. Let {un} be a sequence of points of K. Since {un} is bounded
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in Wm,p(Ω), both this sequence and the sequences consisting of its deriva-

tives {Dm−jun} are bounded in W j,p(Ω). By the above, we can extract sub-

sequences that converge in C0,λb (Ω) to u and vm,j , respectively. For the sake

of simplicity, we keep the same notation for the subsequences. They satisfy

‖un − u‖∞ −→ 0 and ‖Dm−jun − vm,j‖∞ −→ 0.

Since the convergence in L∞ implies the convergence in the sense of distribu-

tions, we have vm,j = D
m−ju. Moreover, by the above, {Dm−jun} converges

to Dm−ju in C0,λ(Ω) for every λ < j −N/p.
It follows that for every λ < j −N/p, {un} tends to u in Cm−j,λ

b (Ω). This

implies the compactness of the embedding of Wm,p(Ω) in C0,μb (Ω), for every

μ < j −N/p. ��

Proof of Lemma 2.85. Let θ ∈ ]0, 1[ satisfy μ = θλ. Let {uσ(n)} be a subse-

quence of {un} that converges in C(Ω). For any pair of indexes (n,m), set

dn,m =
∣
∣(uσ(n) − uσ(m))(x+ h)− (uσ(n) − uσ(m))(x)

∣
∣.

We have dn,m = dθn,md
1−θ
n,m. Thanks to the convergence of {uσ(n)} in C(Ω)), we

can choose n0 sufficiently large that if n,m � n0 and x and x+h are elements

of Ω with |h| < h0, we have the following inequality:

d1−θ
n,m =

∣
∣(uσ(n) − uσ(m))(x+ h)− (uσ(n) − uσ(m))(x)

∣
∣(1−θ) � ε.

Hence, under these conditions,

dn,m � 2hθλε.

Consequently,

‖uσ(n) − uσ(m)‖C0,μ(Ω) � 2ε. ��

2.5 The Trace on the Boundary of a C1 Open Set

Recall that we defined a uniformly C1 open set to be an open subset of RN

that is Lipschitz with functions ai of class C1. In this situation, we can define

the integration on the subsets Ui = ∂Ω ∩ Ωi of the boundary, each of which

is a dimension N − 1 submanifold of class C1 in R
N . Such a submanifold is

defined by a Cartesian equation x′ 	→ xN = ai(x
′), where ai is C1 on the open

subset O′
i of R

N−1, so that the (N − 1)-dimensional surface element on Ui is

given by dσ(m) =
√
1 + |∇(ai)|2(m) dm. Recall that in this case, the integral

of a function f that is summable in Ui is defined by
∫

Ui

f(m)dm =

∫

O′
i

f(x′, ai(x
′))
√

1 + |∇(ai)(x′)|2dx′.
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In this section, we define the trace of a function u inW 1,p(Ω) on the boundary

of Ω in the same manner as in the case of (RN )+, or more generally, in the

case of a straight boundary. More precisely, we have the following theorem.

Theorem 2.86. Let Ω be a uniformly C1 open subset of RN ; then there exists

a continuous linear map γ0, called the trace map, from W 1,p(Ω) into Lp(∂Ω)

such that if u ∈ C(Ω)∩W 1,p(Ω), then its image γ0(u) is the function x 	→ u(x),
which is well defined on ∂Ω.

To see the importance of the class C1 hypothesis on Ω, let us give an

example of a non C1 open set on which the functions of W 1,p(Ω) do not have

a restriction to ∂Ω in Lp.

Example 2.87. Consider the open sets defined in Example 2.9. We take the

function u(x, y) = 1/y2 that belongs to H1(Ω), where the open set Ω is

defined using k = 1/6. This function is the restriction of a function v defined

everywhere on Ω except at the point x = 0. Let us study whether v|∂Ω is an

element of L2(∂Ω).

We have already proved in Example 2.9 that this is the case. Let us restrict

ourselves to the part of ∂Ω that can be identified with either the arc Γ defined

by {x ∈ [0, 1] | y = x1/6} or the arc {x = y6 | y ∈ [0, 1]}. The infinitesimal

element of arc is ds(y) =
√
1 + 36t25 dt, hence

∫ 1

0
v(y)2ds(y) diverges at 0. It

follows that this restriction, or trace, does not belong to L2(∂Ω).

Proof of Theorem 2.86. Even though the existence of the trace in the case of

a Lipschitz open set can be shown in a manner similar to the one used in

the case of W 1,p((RN )+), we will give a proof in which the importance of the

notions of Definitions 2.65 and 2.66 is more evident.

Let us assume that u ∈ C∞(Ω)∩W 1,p(Ω). We begin by defining the trace

of vi = ϕiu using the partition of unity and local coordinates. This function,

which is an element of W 1,p(Ωi), can be extended by 0 outside of its support

in the open set O′
i × {xN > ai(x′)}. By Corollary 2.19, we have the following

equality for every integer n > 0 and every y > 0:

(∗) vi(x′, ai(x′) + 1/n)− vi(x′, a(x′) + y) = −
∫ y

1/n

∂N (vi)(x
′, ai(x

′) + t)dt.

Let un(x
′) = vi(x

′, ai(x
′) + 1/n). From (∗), we deduce that for every pair

(n,m) of nonzero integers, we have

∣
∣un(x′)− um(x′)

∣
∣ �

∣
∣
∣
∫ 1/n

1/m

∣
∣∂N (vi)(x

′, ai(x
′) + t)

∣
∣dt
∣
∣
∣.
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We then apply Hölder’s inequality and take the pth power. Next, we multiply

on the left by the element of surface dσi and integrate with respect to x′ ∈ O′
i.

This allows us to prove that An,m = ‖un − um‖Lp(O′
i,dσi) → 0:

An,m �
∣
∣
∣
1

n
− 1

m

∣
∣
∣
1−1/p

·
[∫

O′
i

√
1 + |∇ai(x′)|2

(∫

{ai(x′)−1/m�xN�ai(x′)−1/n}

∣
∣∂Nvi(x)

∣
∣p
)]1/p

,

whence

(2.88) An,m �
∣
∣
∣
1

n
− 1

m

∣
∣
∣
1−1/p(√

1 + ‖∇ai‖2∞
)1/p

‖∂N (vi)‖Lp(Ωi).

By Definition 2.66, this expresses the fact that |∇ai(x′)| is bounded from

above. When p > 1 and n and m tend to infinity, the right-hand side tends

to zero, and therefore so does the left-hand side. When p = 1, the right-hand

side still tends to zero, by the definition of L1 functions. In all cases, {un} is

a Cauchy sequence in Lp(O′
i, dσi), the Lebesgue space for the bounded mea-

sure dσi, which is therefore complete. This sequence therefore converges in

Lp(O′
i, dσi) to a function wi ∈ Lp(O′

i, dσi). Moreover, there exists a subse-

quence {uη(n)} of {un} that converges almost everywhere in O′
i to wi(x

′).

Now, saying that lim(ϕiu)(x
′, a(x′) + 1/(η(n))) exists almost everywhere is

equivalent to saying that the function x′ 	→ ϕiu(x
′, a(x′)) = wi(x

′) is well

defined.

This extension wi of ϕiu on ∂Ω ∩ Ωi is the desired trace. We therefore

set γ0(ϕiu) = wi. By the above, this function belongs to Lp(O′
i, dσi), and

therefore to Lp(∂Ω ∩ Ωi). Moreover, by taking the limit in (∗) and taking y

sufficiently large that vi(x
′, ai(x

′) + y) = 0, we find that

for almost all x′ ∈ O′
i, γ0(ϕiu)(x

′) = − lim
[∫ +∞

1/η(n)

∂N (vi)(x
′, ai(x

′) + t)dt
]

= −
∫ +∞

0

∂N (ϕiu)(x
′, ai(x

′) + t)dt.

(2.89)

We must now define the trace of u by gluing .

Let γ0u =
∑

i γ0(ϕiu). This sum is locally finite, and by condition (1)

of Definition (2.65), we conclude that γ0(u) ∈ Lp(∂Ω). We can show that

the resulting trace does not depend on the choice of the elements in Defini-

tion (2.65).

If we assume that u ∈ C1(Ω), we can use the previous arguments. In par-

ticular, equality (2.89) gives us γ0(ϕiu)(x
′, ai(x

′)) = ϕiũ(x
′, ai(x

′)). It follows
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that γ0u is the extension by continuity of u to the boundary ∂Ω (cf. the

definition of C(Ω)).
To conclude we need only prove that the map γ0 is continuous. For this,

we start out with equality (2.89) and carry out the same computations we

used to obtain (2.88). This gives

‖γ0(ϕiu)‖Lp(O′
i,dσi) � C

(√
1 + ‖∇ai‖2∞

)1/p
‖∂N (ϕiu)‖Lp(Ωi).

By condition (3) of Definition 2.65, this leads to the inequalities

‖γ0u‖Lp(∂Ω) � C sup
i

(√
1 + ‖∇ai‖2∞

)1/p∑

i

‖∇(ϕiu)‖Lp(Ωi)

� C ′
∑

i

‖u∇ϕi + ϕi∇u‖Lp(Ωi)

� C ′ sup
i
{‖ϕi‖∞, ‖∂Nϕi‖∞}

∑

i

‖u‖W 1,p(Ωi).

Using condition (2.66), we deduce that there exists a constant C∗ that does

not depend on the elements of Definition (2.65), such that

∀u ∈ C∞(Ω) ∩W 1,p(Ω), ‖γ0u‖Lp(∂Ω) � C∗‖u‖W 1,p(Ω).

We have thus defined the trace of u when u ∈ C∞(Ω) ∩ W 1,p(Ω). For

u ∈W 1,p(Ω), we use the density stated in Proposition 2.12 to approximate u

with un ∈ C∞(Ω)∩W 1,p(Ω). By taking the limit, formula (2.89) gives γ0u =

−
∫ +∞
0
∂N (ϕiu)(x

′, ai(x
′) + t)dt, whence γ0un → γ0u in Lp(∂Ω ∩ Ωi). The

continuity follows, namely

∀u ∈W 1,p, ‖γ0u‖Lp(∂Ω) � ‖u‖W 1,p(Ω). ��

Remark 2.90. The induced norm provides a way to define a norm on the

image space of the trace map without giving it explicitly. We will give an

explicit and intrinsic form of the norm in Chapter 3.

Let u be the trace of a function U ∈W 1,p(Ω) on the boundary ∂Ω. Let

(2.91) ‖|u‖| = inf
{U∈W 1,p(Ω)|u=U |∂Ω}

‖U‖W 1,p(Ω).

This defines a norm for which the image space γ0(W
1,p(Ω)) is a Banach space.

Indeed, let u and v be elements of γ0(W
1,p(Ω)) and let U and V be elements

of W 1,p(Ω) such that U = u and V = v on ∂Ω, and

‖U‖ � ‖|u‖|+ ε and ‖V ‖ � ‖|v‖|+ ε.
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We then have U + V = u+ v on ∂Ω and

‖|u+ v‖| � ‖U + V ‖ � ‖U‖+ ‖V ‖ � ‖|u‖|+ ‖|v‖|+ 2ε,

concluding the proof of the subadditivity. The proof of the other properties

and of the completeness of the image space are left to the reader.

We conclude this chapter by going back to the characterization of the space

W 1,p
0 (Ω) when Ω is C1.

Theorem 2.92. Let Ω be an open set of class C1; then the following state-

ments are equivalent.

(1) u ∈W 1,p
0 (Ω).

(2) (only if p > 1) There exists a constant C such that for every ϕ ∈ D(RN ),
∣
∣
∣
∫

Ω

(u∇ϕ)(x)
∣
∣
∣dx � C‖∇u‖Lp(Ω)‖ϕ‖Lp′ .

(3) The function ũ defined by

ũ =

{
u(x) if x ∈ Ω,
0 otherwise,

is an element of W 1,p(RN ).

(4) The trace of u on ∂Ω is zero, that is, γ0u = 0.

Proof of Theorem 2.92.

The implication 1⇒ 2 is always true, without any assumptions on either

the open set or on p. Let u ∈W 1,p
0 (Ω) and let {un} ∈ D(Ω) converge to u in

W 1,p(Ω). We have
∣
∣
∣
∫

Ω

un(x)∂i(ϕ)(x)dx
∣
∣
∣ =

∣
∣
∣−
∫

Ω

∂iun(x)ϕ(x)dx
∣
∣
∣ � ‖∇un‖Lp‖ϕ‖Lp′ .

The result follows by taking the limit.

It is clear that (2)⇒ (3), since if ϕ ∈ D(RN ), then

〈ũ, ∂iϕ〉 =
∫

Ω

u∂iϕdx.

Moreover, using (2), we find that if p > 1, then ũ ∈W 1,p(RN ).

The implication (3)⇒ (4) follows from the uniqueness of the trace.

Let us show that (4)⇒ (1). We reduce it to showing that if u = 0 on ∂Ω,

then we can approximate uϕi with functions in D(Ω). Indeed, let

un,i = ũϕi

(
x′,−ai(x′) + xN −

1

n

)
.

The functions un,i are elements of W 1,p(Ω) with compact support. The se-

quence {un,i} converges to ũϕi in W 1,p(RN ), hence converges to uϕi in

W 1,p(Ω). Regularizing by a suitable function, we find that u ∈W 1,p
0 (Ω). ��
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Comments

There are many books on Sobolev spaces over open subsets of RN . The sim-

plest and most complete, as far as we are concerned, is Adams’s book [1],

which has the advantage of also studying more general open sets than Lips-

chitz sets, for example open sets satisfying the uniform cone condition, or hav-

ing the segment property. One can also consult the original papers by Sobolev

and Nikolskii [53], Sobolev [62] and Uspenskii [73]. The book by Gilbarg and

Trudinger [34] presents the essentials, emphasizing the main points of the

results.

There also exists a vast literature on Sobolev spaces over Riemann vari-

eties. Let us mention, for example, the book by E. Hebey [37], which gives

complete results and is agreeable to read.

The case where the codomain has other topological properties than R
p is

discussed by Bethuel [6] and Brezis, Bethuel and Coron [5].

2.6 Exercises for Chapter 2

Exercise [∗] 2.1 (On the Completeness of the Sobolev Space H1(Ω)).

Let Ω be an open subset of RN . Recall the definition of H1(Ω). Show that

(u, v) =

∫

Ω

u(x)v(x)dx+
N∑

1

(∫

Ω

∂ju(x)∂jv(x)dx
)
,

defines a scalar product on the space H1(Ω). Show that H1(Ω) is a Hilbert

space.

Hints. Let {un}n∈N be a Cauchy sequence in H1(Ω). Prove that the sequence of
derivatives {∂jun} converges in L2 to uj . Next, prove that these functions are dis-
tributional derivatives of u = limun. Conclude.

Exercise 2.2 (On the Construction of a Partition of Unity).

We call a cover {Ω′
k} of Ω finer than the cover {Ωj} if for every k, there exists

a j such that Ω′
k ⊂ Ωj . We call the cover {Ωj} locally finite if every element x

of Ω admits a neighborhood that meets only a finite number of open subsets

in the family {Ωj}.

(1) Let {Ωj} be an open cover of the open subset Ω of RN . Show that we can

find a locally finite cover {Ω′
k} of Ω that is finer than {Ωj} and consists

of relatively compact sets.

(2) Consider a cover {Ωj} consisting of relatively compact open sets. Show

that there exist γj ∈ D(Ωj) such that γj � 0 and γj = 1 on Ω′
j . Use these

functions to construct a partition of unity associated with the given cover.
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In the general case, we will use the open cover of Ω given by question (1),

which is finer than {Ωj} and consists of relatively compact sets.

Hints. For (1), use an increasing sequence {Uk} of relatively compact open sets that
covers Ω and satisfies

U0 = ∅, Uk ⊂ Uk+1.

Next, use the compactness of Ωj to determine a cover of this compact set by a finite
number of Uk. It is easy to deduce a cover of Ω with the desired properties from
this.

For (2), the construction of the γj , set K = Ω′
j . Let V be a neighborhood of 0

and let U be a compact neighborhood such that U+U ⊂ V (first prove the existence
of U). Let ρε be a regularizing function (cf. Section 1.4.2) with support contained
in U and let χ be the characteristic function of K + U + U . Let γj = χ � ρε.

Since the sum γ =
∑

γj is locally finite, we can define this sum at every point
of Ω and, by division, obtain the functions of a partition. Check this.

Exercise [∗] 2.3 (On the Absolute Continuity of the Functions on a

Sobolev Space (cf. Remark 2.4)).

The definition of an absolutely continuous function is given in Exercise 1.29.

For any two absolutely continuous functions on an interval I, the product

UV is also absolutely continuous. Moreover, for every [a, b] ⊂ I, we have

the following formula for integration by parts, where u and v are almost

everywhere derivatives of U and V :

(2.93)

∫ b

a

U(t)v(t)dt = U(b)V (b)− U(a)V (a)−
∫ b

a

V (t)u(t)dt.

Let u be defined almost everywhere in an open set Ω ⊂ R
2.

(1) Let Ω ⊂ R
2, and let u ∈ W 1,p(Ω), where p � 2. Let [∂xu] denote the Lp

function equal to the derivative of u with respect to x, seen as a distribu-

tion. We can cover Ω by squares Cj and set vj = ψju, where ψj ∈ D(Cj)

and
∑
ψj = 1 on Ω. We extend vj by 0 outside of Cj . Let v be defined

on Ω by v =
∑
vj . Below we also write v for vj , for the sake of simplicity.

Show that v ∈ Lp(Ω). Let v∗ be defined by v∗(x) =
∫ x

−∞[∂1v](t, y)dt for

every y satisfying
∫
R

∣
∣[∂1v](t, y)

∣
∣dt < +∞. Deduce from this that v = v∗

almost everywhere and that on almost all lines parallel to Ox, the func-

tion u is almost everywhere derivable with [∂1u] = ∂1u almost everywhere.

(2) Let u ∈ L1loc(Ω) be absolutely continuous on almost all lines parallel to

Ox and such that its derivative almost everywhere ∂x1u is an element of

Lp(Ω). Show that [∂x1u] = ∂x1u almost everywhere.

(3) Let u ∈ W 1,1(Ω). Suppose that [x, x + h] ∈ Ω. Show that the derivative

of v : t 	→ u(x+ th) exists almost everywhere on ]0, 1[ and that dv/dt (x+

th) = h · ∇u(x+ th).

Hints. For (2), it suffices to compute
∫
Ω
ϕ∂x1udx by integrating by parts.
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For (3), use the decomposition of v(t′)− v(t) as a sum of differences of the type
u(x+ t′h)−u(x1+ t′h1, x2+ t′h2, . . . , xN−1+ t′hN−1, xN + thN ). Write each of these
differences as the integral of a partial derivative over some interval. Taking the limit
uses the continuity of a Lebesgue integral with respect to its bounds.

Exercise [∗] 2.4 (On the (1, p)-Extension in the Case of an Interval

in R).

Let u ∈ W 1,p(]0,+∞[). We extend u to ] − ∞, 0[ by setting ũ(x) = u(−x).
Prove that this extension of u is an element of W 1,p(R). Let u ∈ W 1,p(I)

where I = ]a, b[. Prove that we can extend u to an element of W 1,p(R).

Hints. First establish that ũ∈W 1,p(]−∞, 0[) by showing that (ũ)′=−ũ′.

Exercise 2.5 (Product of Functions in W 1,p(Ω) and W 1,q(Ω)).

Consider a Lipschitz open subset Ω of RN . Let p < N , let q < N and let

1/s = 1/p + 1/q − 1/N . Show that if u ∈ W 1,p(Ω) and v ∈ W 1,q(Ω), then

uv ∈W 1,s(Ω).

Hints. Use the Sobolev theorem 2.31 with suitable exponents and Hölder’s inequality.

Exercise 2.6 (Example of a Non-Lipschitz Open Set).

Let Ω = {0 < x < 1, 0 < y < x4}. Prove that the function x 	→ x−1 is an

element of H1(Ω) but not an element of L5(Ω). Conclude.

Exercise [∗] 2.7 (Injection into a Non-Compact Space of Hölder

Functions).

Let p>N . Show that the injection of W 1,p(B(0, 1)) into C0,1−N/p
b (B(0, 1)) is

not compact, as follows.

Let F ∈ D(B(0, 1)) satisfy F � 0 and sup|x|<1 F (x) = 1. Show that the

sequence Fn(x) = n−1+N/pF (nx) tends to 0 in all the spaces C0,λb (B(0, 1))

and has a constant norm equal to 1 in C0,1−N/p
b . Conclude.

Exercise 2.8 (Gluing Two Functions over a Straight Edge).

Let γ− be the trace operator defined in the same manner as over (RN )+

but using the open set R
N−1 × R

−. Let u+ ∈ W 1,p((RN )+) and let u− ∈
W 1,p((RN )−). We set

ũ =

{
u+(x) if x ∈ (RN )+,

u−(x) if x ∈ (RN )−.

Prove that ũ ∈W 1,p(RN ) if and only if γ0u
+ = γ−u− on R

N−1.

Exercise 2.9 (Generalized Poincaré Inequality).

Let Ω be a Lipschitz bounded domain in R
N . Let p ∈ [1,+∞[ and let N be a

continuous seminorm on W 1,p(Ω); that is, a norm on the constant functions.
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Show that there exists a constant C > 0 that depends only on Ω,N, p, such

that

‖u‖W 1,p(Ω) � C
((∫

Ω

|∇u(x)|pdx
)1/p

+N (u)

)
.

Apply this result to N (u) =
∫
Γ0
|u(x)|dx, when Ω is a C1 open set and Γ0 is

a subset of ∂Ω with positive (N − 1)-dimensional Lebesgue measure.

Hints. Prove the result by contradiction. Assume that there exists a sequence {un}
such that

‖un‖W1,p(Ω) � n

(( ∫

Ω

|∇un|p
)1/p

+N (un)

)
.

Normalizing, that is, considering wn = un(‖un‖W1,p(Ω))
−1, gives

‖wn‖W1,p(Ω) = 1, N (wn) −→ 0, ‖∇wn‖p −→ 0.

Use the boundedness of Ω and the relative compactness of {wn} in Lp to deduce a
contradiction.

Exercise 2.10 (Function from Ω to R
N Whose Deformation Tensor

is an Element of Lp(Ω)).

Consider the space

Xp(Ω) =
{
u ∈ Lp(Ω,RN ) |

∀ (i, j) ∈ [1, N ]2, εij(u) =
1
2 (∂jui + ∂iuj) ∈ L

p(Ω)
}

where p ∈ ]1,+∞[ (cf. Chapter 6). For the moment, we admit that if Ω is a

bounded Lipschitz open subset of RN , then W 1,p(Ω,RN ) coincides with the

space above when p > 1. More precisely, there exists a C > 0 such that for

every u ∈W 1,p(Ω,RN ),

‖u‖W 1,p(Ω) � C
(∫

Ω

|u|pdx+
∫

Ω

∑

ij

|εij(u)|pdx
)1/p
.

We will show this in Chapter 7.

(1) Show that Xp(Ω) endowed with the norm

|u|Xp =
[∫

Ω

|u(x)|pdx+
∫

Ω

∑

ij

|εij(u)(x)|pdx
]1/p
,

is a Banach space.

(2) Taking the derivatives in the sense of distributions, note that ui,jk =

∂k(εij)(u) + ∂j(εik)(u) − ∂i(εjk)(u). Show that the set R of the W 1,p

functions satisfying ε(u) = 0 consists of the rigid displacements, that is,

the functions of the form u = A + B(x), where A is a constant vector

and B is an antisymmetric matrix. Determine the dimension of R.
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(3) Consider a seminormN onW 1,p that is a norm on the rigid displacements.

Show that there exists a constant C > 0 such that

∀u ∈W 1,p(Ω), ‖u‖W 1,p(Ω) � C
[
N (u) +

(∫

Ω

|ε(u)(x)|pdx
)1/p]

.

Exercise 2.11 (Best Constant for the Injection of W 1,p(RN ) in

Lk(RN )).

Let p < N and let k � Np/(N − p). We know that there exist two constants

C1 and C2 such that

∀u ∈W 1,p(RN ), ‖u‖k � C1‖∇u‖p + C2‖u‖p.

We say that C1 is the best constant for the injection ofW 1,p in Lk if C1 is the

smallest constant for which there exists a C2 satisfying the inequality above.

Prove that if k < Np/(N − p), then there does not exist any best constant.

Hints. Assume that C1 exists and define, for λ > 1, the sequence uλ(x) = u(x/λ).
Prove that

‖uλ‖k � λ−1+N/p−N/kC1‖∇u‖p + C2λ
−N/k+N/p‖u‖p.

Use this to prove that there exists a constant that is better than C1.

Exercise 2.12 (Function with One Derivative in L1 and the Other

in L2).

Let X1,2
0 be the closure of the D(R2) functions for the norm |∂1u|1 + |∂2u|2.

Show that X1,2
0 ↪→ L4(R2).

Hints. For a regular function u, write

u4(x1, x2) = u3(x1, x2)u(x1, x2).

Next, use that

|u3(x1, x2)| � 3

∫

R

u2(x1, t)|∂2u|(x1, t)dt

� 3
(∫

R

|u|4(x1, t)dt
)1/2(∫

R

∣
∣∂2u

∣
∣2(x1, t)dt

)1/2

= ϕ(x1)ψ(x1)

and

|u(x1, x2)| �
∫

R

|∂1u(t, x2)|dt = h(x2).

Finally, use Fubini’s formula and Hölder’s inequality as follows:
∫

R

∫

R

|u|4dx1dx2 �
∫

R

∫

R

ϕ(x1)ψ(x1)h(x2)dx1dx2

� ‖ϕ‖2‖ψ‖2‖h‖1

� 3
(∫

R

∫

R

u4dx1dx2

)1/2

‖∂2u‖2‖∂1u‖1.

Conclude.
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Exercise [∗] 2.13 (Upper Bound for an Element u of W 1,1
0 on an In-

terval).

Let u ∈ W 1,1
0 (]0, 1[). Prove that ‖u‖∞ � 1/2‖u′‖1 and that this inequality is

the best possible.

Hints. Write

u(x) =

∫ x

0

u′(t)dt and u(x) = −
∫ 1

x

u′(t)dt.

Exercise [∗] 2.14 (Consequences of the Existence of γ0(u) for u De-

fined over an Interval in R).

Show the following inequality, which specifies the continuity of the trace map

on W 1,1(]0, 1[):

(2.94) ∀u ∈W 1,1(]0, 1[), |u(0)|+ |u(1)| �
∫ 1

0

|u′|(t)dt+ 2

∫ 1

0

|u(t)|dt.

Show that the only functions that satisfy the equality are the constant func-

tions.

Hints. Since the function u is absolutely continuous, we have the equalities

∀x ∈ [0, 1], u(x) = u(0) +

∫ x

0

u′(t)dt,

∀x ∈ [0, 1], u(x) = u(1) +

∫ x

1

u′(t)dt.

Taking the absolute values and integrating the sum of the two resulting inequalities
over ]0, 1[ gives (2.94).

Assuming equality in (2.94) and taking into account the inequalities

|u(0)| � |u(x)|+
∫ x

0

|u′(t)|dt and |u(1)| � |u(x)|+
∫ 1

x

|u′(t)|dt,

deduce that for every x, |u(x)| �
∫ 1

0
|u(t)|dt. Applying this inequality to a point x

where the continuous function u reaches its minimum gives the desired result.

Exercise [∗∗] 2.15 (The Spaces W 1,p(I) for an Interval I in R).

Let 1 � p <∞.

(1) Using Exercise 1.29, show that u ∈ W 1,p(I) if and only if u ∈ Lp(I), u
is absolutely continuous, and the derivative almost everywhere satisfies

u′ ∈ Lp(I).
(2) Show that every function in W 1,p(I) can be extended to a continuous

function on I.

(3) In this question, we will use that W 1,p(R) = W 1,p
0 (R). Let u be a C1

function on R with compact support. Let v = |u|p−1u. Show that v is C1
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with compact support and that v′ = p|u|p−1u′. Use the equality v(x) =∫ x

−∞ v
′(t)dt to show that there exists a constant C such that

∀x ∈ R, |u(x)| � C‖u‖W 1,p(R).

Deduce that W 1,p(R) is embedded in L∞(R). Show that the constant C

can be chosen independently of p. Show that the result still holds true

when the interval I is bounded.

Hints.

(1) If u ∈ W 1,p(I), then Exercise 1.29 gives the desired properties. Conversely, use
integration by parts to prove that

∀ϕ, 〈[u]′, ϕ〉 = 〈[u′], ϕ〉.

(2) Since u′ is summable over I, u is absolutely continuous over I, giving the con-

tinuity on I.
(3) Starting with the given hint, use Hölder’s inequality to determine the upper

bound p1/p‖u‖1/p
′

p ‖u′‖1/pp for |u(x)|, giving the result by using p1/p � e and
Jensen’s inequality

|u|1/p
′

p |u′|1/pp � 1

p
|u|p +

1

p′
|u′|p.

This leads to the density of the continuous functions with compact support.
When I is bounded, use

u(x) = u(x0) +

∫ t

x0

u′(t)dt.

Exercise [∗∗] 2.16 (Solving Limit Problems on an Interval).

Let I = ]0, 1[. Given f ∈ L2(I), we wish to find a u that, in some sense, is a

solution of

(∗)
{
−u′′ + u = f,
u(0) = u(1).

(1) Assume that u ∈ C2(I)∩H1
0 (I) satisfies (∗). We multiply (∗) by a function

v ∈ H1
0 (I) and integrate by parts over I. Prove that if (·|·) denotes the

inner product on H1
0 (I), then

∀ v ∈ H1
0 (Ω), (u|v)H1(I) = 〈f, v〉L2(I).

Conversely, prove that if u ∈ H1
0 (I) satisfies this relation, then u is a

solution to the problem, where u′′ is taken in the sense of distributions.

Next, prove that v 	→
∫
I
f(t)v(t)dt defines an element of the dual of H1

0 (I)

and deduce the existence and uniqueness of a solution of the given problem

in H1
0 (I) (use the Riesz representation theorem for a Hilbert space). Prove

that this solution is in H2(I) and that if f ∈ C(I), then the solution is in

C2(I).
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(2) Use, for example, the fundamental solution of u′′− u = 0 on R
+ or varia-

tion of the constants to determine this solution explicitly using integrals

pertaining to the function f .

Exercise 2.17 (Relation Between ‖∇u‖L2 and ‖u/r‖L2).

(1) Let u ∈ Cc(RN ) with N � 3. By computing

∣
∣
∣∇u+

(N − 2)

2

u(x)−→x
r2

∣
∣
∣
2

,

integrating over RN , and integrating
∫

RN

2u ∂iu
xi
r2
dx =

∫

RN

∂i(u
2)
xi
r2
dx,

by parts, show that
∫

RN

|∇u(x)|2dx � (N − 2)2

4

∫

RN

u2

r2
dx.

(2) Deduce that if N � 3, we have u ∈ H1 ⇒ u/|x| ∈ L2. Show that this

result does not hold for N = 2.

Exercise 2.18 (Generalization of the Previous Exercise).

(1) Show that if u ∈ W 1,p(RN ), N > p, and 1 < p < ∞, then u/|x| ∈ Lp. In
order to do this, show Jensen’s inequality (where 1/p+ 1/p′ = 1):

∀X,Y ∈ R
N , X · Y � 1

p
|Y |p + 1

p′
|X|p

′
.

(2) Apply this inequality to the vectors Y = ∇u and

X =
∣
∣
∣
(N − p)u−→x
pr2

∣
∣
∣
p−2 (p−N)u−→x

pr2
= −

(N − p
p

)p−1 |u|p−2u−→x
rp

.

Integrating the term
∫
RN |u|p−2u−→x /rp · ∇udx by parts, deduce that

∫

RN

|∇u|pdx �
(N − p
p

)p∫

RN

(u
r

)p
dx.

Hints. For Jensen’s inequality, use f(x) = |x|p, which has derivative p|x|p−2x, giving
the inequality f(x+ y) � f(x) +Df(x) · y.

Exercise [∗∗] 2.19 (Fundamental Solutions of the Laplacian).

Show that there exists a constant k2 such that Δ(ln
√
x2 + y2) = k2δ0 in R

2

in the sense of distributions. Show that in R
N with N > 2, Δ(r2−N ) = kNδ0,

where kN can be expressed using the area ωN−1 of the unit sphere in R
N . Use

elementary computations of integrals in the cases N = 2 and N = 3. For the

general case, use Green’s second theorem.
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Hints.

(1) First show that as functions and outside of the origin, we have ∂x[ln r] = x/r2

and ∂y[ln r] = y/r2. Next, show that these functions are locally summable.
Finally, use the function ϕ̃(r, θ) = ϕ(r cos θ, r sin θ), the formula

∂xϕ = cos θ ∂rϕ̃− sin θ

r
∂θϕ̃,

and the analogous formula for ϕy to deduce that

〈
∂x

x

r2
+ ∂y

y

r2
, ϕ
〉
= 2πϕ(0).

(2) Assume that N = 3. Show that the three derivatives of u = r−1 are locally
summable and deduce from this that

〈Δu,ϕ〉 = −
∫

R3

r−3[x∂xϕ+ y∂yϕ+ z∂zϕ
]
dx dy dz.

The polar coordinates are defined by

x = r cos ξ cos η, y = r cos ξ sin η, z = r sin η.

Compute the partial derivatives using those of ϕ̃ with respect to r, ξ and η, and
show that the previous integral is equal to −4πϕ(0).

(3) We admit Green’s second theorem: given a bounded open set Ω of class C1, a
C2 function f , and ϕ ∈ D(RN ), we have

(2.95)

∫

Ω

[
f(x)Δϕ(x)−ϕ(x)Δf(x)

]
dx =

∫

∂Ω

[
f(x)∂−→nϕ(x)−ϕ(x)∂−→n f(x)

]
dσ,

where the normal derivative ∂−→n on ∂Ω is oriented outward from Ω. Deduce
from this that when ε → 0, 〈Δ(r2−N ), ϕ〉 is the limit of

∫

r�ε

ϕΔ(r2−N )dx+

∫

r=ε

[
ϕ(x)∂−→n (r2−N )− r2−N∂−→n (ϕ)

]
εN−1dσ.

Use this to prove that Δ(r2−N ) = (2−N)ωN−1δ(0).
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Traces of Functions on Sobolev Spaces

At the end of the previous chapter, we showed the existence of a trace (that

is, the extension of an element u of W 1,p(Ω) to the boundary ∂Ω) when Ω

is a C1 open set. This function γ0(u) belongs to Lp(∂Ω). However, since we

do not have extensions of the derivatives ∂iu to ∂Ω when the open set is of

class C1, it is clear that, in general, saying that γ0u lies in a Sobolev space of

type W 1,p(∂Ω) has no sense.

However, using the notion of a fractional derivative, we can imagine that

the inclusion u ∈W 1,p(Ω) implies that certain derivatives of order s of γ0(u),

where 0 < s < 1, belong to Lp(∂Ω). This chapter begins with an example

where this inclusion holds at the order s � 1− 1/p.

In order to better picture this notion, the reader can take p = 2. In this

case, we can use the Fourier transformation, as we will do in Chapter 4. We

transform a partial derivative ∂iu into the product 2iπξiû whose inclusion

in L2 is equivalent to that of (1 + ξ2i )
1/2û. Conversely, by using the inverse

Fourier transformation, it is natural to call u 1/2 times derivable if the function

(1 + |ξ|2)1/4û belongs to L2.

In general, in cases other than p = 1, the trace of a function with deriva-

tives in Lp has better regularity than functions in Lp(∂Ω). We propose, in this

chapter, to give an intrinsic characterization of the trace x 	→ v(x), that is,

one that is independent of the choice of the function u in W 1,p(Ω) such that

γ0u = v. This characterization will lead us to identify, for p > 1, the image

space of the trace γ0 with a new space W 1−1/p,p(∂Ω), our first example of a

fractional Sobolev space. In Chapter 4, we will generalize this particular case

to all fractional Sobolev spaces.
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DOI 10.1007/978-1-4471-2807-6 3,
© Springer-Verlag London Limited 2012

113

http://dx.doi.org/10.1007/978-1-4471-2807-6_3


114 3 Traces of Functions on Sobolev Spaces

3.1 The Spaces W 1−1/p,p(RN−1) for p > 1

3.1.1 Preliminary Example

Example 3.1. We propose to begin by studying the regularity properties of

the traces of certain functions in W 1,p on a simple example. This will allow

us to introduce new Sobolev spaces using the notion of fractional derivative.

Consider the open set Ω = R × ]0,+∞[ and a function ϕ in D(R) such that

0 � ϕ � 1 and ϕ is 1 on [0, 1]. We define the function u by setting

u(x, y) = ϕ
(√
x2 + y2

)
(x2 + y2)α/2 = ϕ(r)rα,

where, given p > 1, we assume that

(∗) 1− 2/p < α < 1− 1/p.

We then have u ∈ W 1,p(Ω). The trace, or in this case, restriction, of the

function u to the boundary R× {0} is x 	→ f(x) = ϕ(|x|)|x|α.
We can verify that under the condition (∗), γ0u = f ∈ Lp(R) and f /∈

W 1,p(R).

Remark 3.2. To justify the statement in the introduction of this chapter, we

can apply the notion of fractional derivative of order s with 0 < s < 1 to

the traces of the functions u studied above. This will lead to the inequality

0 < s < 1 − 1/p as a condition for the inclusion of such a trace in Lp(∂Ω).

This result is a first approximation of the definition of a fractional Sobolev

space, in this case W 1−1/p,p(R).

This remark, which relies on the notion of fractional derivative presented

in the book [60], is expanded in Exercise 3.1. Let us consider the restriction of

the function u from the example above to [0, 1], that is, the function x 	→ xα
on this interval. Its derivative of order s is αxα−s. The condition under which

this derivative belongs to Lp(]0, 1[) is p(α− s) > −1, or s < α+ 1/p. Thanks

to (∗), we have 1 − 1/p < α + 1/p < 1. It follows that the values of s for

which α satisfies the relation (∗) are indeed those that satisfy the inequality

0 < s � 1− 1/p.

Moreover, we will see further on that the inclusion v ∈W 1−1/p,p(]− 1, 1[)

is equivalent to the following two conditions:

v ∈ Lp(]− 1, 1[) and

∫

]−1,1[×]−1,1[

∣
∣
∣
v(x)− v(y)
x− y

∣
∣
∣
p

dx dy < +∞.

To verify this, let us show that under the condition (∗) of Example 3.1, the

integral above, denoted by J(v), is indeed convergent for the function v on
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]−1, 1[ defined by v(x) = |x|α. We can actually reduce this to considering the

function v(x) = xα on ]0, 1[.

Setting β = (α − 1)p+ 1, after applying a homothety to the variable and

applying Fubini’s formula twice, we obtain

J(v) =

∫ 1

0

∫ 1

0

∣
∣
∣
xα − yα
x− y

∣
∣
∣
p

dx dy =

∫ 1

0

xβ
∫ 1/x

0

∣
∣
∣
1− λα
1− λ

∣
∣
∣
p

dλdx

=

∫ 1

0

xβdx

∫ 1

0

∣
∣
∣
1− λα
1− λ

∣
∣
∣
p

dλ+

∫ +∞

1

∣
∣
∣
1− λα
1− λ

∣
∣
∣
p
∫ 1/λ

0

xβdx dλ.

The function λ 	→
∣
∣(1− λα)/(1− λ)

∣
∣p is continuous on [0, 1]. The first

integral is therefore convergent under the condition β = (α − 1)p + 1 > −1.
This same condition allows us to write the second integral as

K

∫ +∞

1

(λ)−(α−1)p−2
∣
∣
∣
1− λα
1− λ

∣
∣
∣
p

dλ.

It is therefore also convergent, since (α−1)p−(α−1)p−2 = −2. To summarize,

J(v) is well defined if α > 1− 2/p.

3.1.2 Definition of a Fractional Sobolev Space; Examples

Definition 3.3. Consider a real number p > 1 and an integer N � 2. The

Sobolev space W 1−1/p,p(RN−1) is the subspace of Lp(RN−1) defined as

(3.4) W 1−1/p,p(RN−1) =
{
u ∈ Lp(RN−1)

∣
∣
∣

∫

RN−1

∫

RN−1

|u(x)− u(y)|p
|x− y|p+N−2

dx dy <∞
}
.

Theorem 3.5. The space W 1−1/p,p(RN−1) endowed with the norm

‖u‖W 1−1/p,p(RN−1) =

(
|u|p

Lp(RN−1)
+

∫

RN−1

∫

RN−1

|u(x)− u(y)|p
|x− y|p+N−2

dx dy

)1/p

is a Banach space.

We will give the proof of this theorem in the next chapter, for more general

fractional spaces and for an arbitrary open set Ω instead of RN−1.

Likewise, for an open subset Ω of RN−1, we define

(3.6) W 1−1/p,p(Ω) =
{
u ∈ Lp(Ω)

∣
∣
∣
∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|p+N−2

dx dy <∞
}
.

We begin by studying two simple examples in dimension 1.
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Example 3.7. Given a real number p satisfying 1 � p � 2, let us determine

when x 	→ u(x) = lnx belongs to W 1−1/p,p(]0, 1[).

For 1 � p, we have u ∈ Lp((]0, 1[). Let us study the finiteness of

J =

∫ 1

0

∫ 1

0

| lnx− ln y|p
|x− y|p dx dy.

Introducing the variable t = y/x and applying Fubini’s formula gives

J =

∫ 1

0

∫ 1

0

| lnx− ln y]p

xp|1− y
x
|p
dx dy =

∫ 1

0

1

xp−1

∫ 1/x

0

| ln t|p
|1− t|p dt dx

=

∫ 1

0

| ln t|p
|1− t|p

∫ 1

0

1

xp−1
dx dt+

∫ +∞

1

| ln t|p
|1− t|p

∫ 1/t

0

1

xp−1
dx dt.

For p < 2, both the function t 	→ | ln t|p/|1− t|p and x1−p are continuous

on ]0, 1] and integrable at t = 0. The first integral on the right-hand side

therefore converges. The second integral, which can be written as

1

2− p

∫ +∞

1

| ln t|p
t2−p|1− t|p dt,

also converges because, on the one hand, if t → +∞, then the function is

bounded from above by K| ln t|p/t2 and, on the other hand, we have | ln t| ∼
|1− t| when t→ 1.

For p=2, J is greater than the first integral, which is equal to +∞. It

follows that

u ∈W 1−1/p,p(]0, 1[) ⇐⇒ 1 < p < 2.

Example 3.8. Let p > 1. We want to show that if (α − 1)p > −2, then
x 	→ xα lnx belongs to W 1−1/p,p(]0, 1[).

The condition under which u(x) = xα lnx belongs to Lp((]0, 1[) can be

written as

(∗) αp > −1.

The inequality |a+ b|p � 2p−1(|a|p + |b|p) applied to the decomposition

|xα lnx− yα ln y| = |xα(lnx− ln y) + ln y(xα − yα)|

shows that the inclusion of u in W 1−1/p,p(]0, 1[) is implied by the finiteness

of the two integrals

I =

∫ 1

0

∫ 1

0

xpα| lnx− ln y|p
|x− y|p dx dy and J =

∫ 1

0

∫ 1

0

| ln y|p|xα − yα|p
|x− y|p dx dy.



3.1 The Spaces W 1−1/p,p(RN−1) for p > 1 117

Using computations similar to those of the previous example, we see that the

first integral I is finite if the integrals

I1 =

∫ 1

0

xpα−p+1dx

∫ 1

0

| ln t|p
(1− t)p dt, I2 =

∫ +∞

1

| ln t|p
(1− t)p

∫ 1/t

0

xpα−p+1dx dt

are. The integral I1 is finite if (α−1)p+1>−1, that is, if αp>p−2, a condition

that implies (∗). Under this same condition, after applying Fubini’s transfor-

mation, the integrand of the second integral I2 is equivalent to | ln t|p/tαp+2

at +∞. Its convergence follows because αp+ 2 > 1. We therefore have

I <∞ ⇐⇒ αp > p− 2.

Likewise, the second integral J is finite if the following integrals are, where

β = pα− p+ 1:

J1 =

∫ 1

0

yβ | ln y|pdy
∫ 1

0

|1− tα|p
|1− t|p dt,

J2 =

∫ +∞

1

|1− tα|p
|1− t|p

∫ 1/t

0

yβ | ln y|pdy dt.

The integral J1 behaves like J(v) in Example 3.1. It converges if αp > p− 2,

regardless of the sign of α. Moreover, as β > 1, when x < 1, the function

x 	→ xβ | lnx|p is dominated by x 	→ xγ for every γ satisfying 1 < γ < β.

Consequently, its primitive at 1/t is dominated by Kt−1−γ and the integrand

of J2 is dominated by t−((1−α)p+γ+1) at +∞, proving the finiteness of J2. The

stated result follows.

3.1.3 Characterization of the Trace of u ∈ W 1,p(RN−1 × R
+)

We will now show the following result.

Theorem 3.9. Let N�2; then the image of the trace map γ0 satisfies

γ0
(
W 1,p(RN−1 × ]0,+∞[)

)
=W 1−1/p,p(RN−1).

We will first prove the theorem for N = 2, after which we will proceed to

the general case.

Proof of Theorem 3.9 for N = 2.

We begin by showing that

W 1−1/p,p(R) ↪−→ γ0(W 1,p(R× ]0,+∞[)).
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Let u ∈ W 1−1/p,p(R) and let ϕ be a function in D(R) such that ϕ(0) = 1.

Since u belongs to Lp(R), we can define a function v as follows:

(3.10) v(x, t) =
ϕ(t)

t

∫ t

0

u(x+ z)dz.

The function v vanishes for |t| sufficiently large. Let us show that

v∈Lp(R×]0,+∞[). By Hölder’s inequality applied to the integral defining

the right-hand side of (3.10), we have
∫∫

R×R+

|v(x, t)|pdx dt �
∫

R

∫ +∞

0

|ϕ|p(t)
t

∫ t

0

|u|p(x+ s)ds dx dt.

Using Fubini’s formula, we see that the last integral is bounded from above by
∫ +∞

0

|ϕp(t)|1
t

∫ t

0

∫

R

|u(X)|pdX ds , dt =
∫ +∞

0

|ϕ|p(t)dt
∫

R

|u(x)|pdx.

This integral is finite, giving the desired result.

Let us now show that v belongs to W 1,p(R × R
+). For this, we need to

compute its derivatives with respect to x and t. We have

(3.11) ∂xv(x, t) =
u(x+ t)− u(x)

t
ϕ(t).

Introducing u(x+ t) in the integral with respect to z, we also have

∂tv(x, t) =
ϕ(t)

t2

∫ t

0

(
u(x+ t)− u(x+ z)

)
dz +

ϕ′(t)

t

∫ t

0

u(x+ s)ds

= ϕ(t)

∫ 1

0

u(x+ t)− u(x+ tz)
t

dz +
ϕ′(t)

t

∫ t

0

u(x+ s)ds

= f(x, t) +
ϕ′(t)

t

∫ t

0

u(x+ s)ds.(3.12)

By the definition of W 1−1/p,p(R), we have
∫

R×R+

|∂xv(x, t)|p � sup |ϕ|p
∫

R2

∣
∣
∣
u(y)− u(x)
y − x

∣
∣
∣
p

dx dy < +∞,

where t = y − x. This proves that ∂xv ∈ Lp(R× ]0,+∞[). Replacing ϕ by ϕ′

in the definition of v, we deduce from the computations above that

{
(x, t) 	−→ ϕ

′(t)

t

∫ t

0

u(x+ s)ds
}
∈ Lp(R× ]0,+∞[).

It remains to show that f ∈ Lp(R × ]0,+∞[). We will, in fact, show that

f ∈ Lp(R2). Using Hölder’s inequality, we first obtain the inequality

(3.13) ‖f‖pLp(R2) � ‖ϕ‖
p
∞

∫

R2

(∫ 1

0

|u(x+ t)− u(x+ tz)|p
tp

dz

)
dx dt.
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We then apply the change of variables X = x + tz, T = x + t with Jacobian

|dX ∧ dT | = |z − 1| |dx ∧ dt|. From |z − 1| < 1 and p > 1, we deduce that

|1− z|tp � |(1− z)t|p = |X − T |p, whence
∫

R2

|f(x, t)|pdx dt � ‖ϕ‖p∞
∫

R2

(∫ 1

0

|u(x+ t)− u(x+ tz)|p
tp

dz

)
dx dt

� ‖ϕ‖p∞
∫

R2

∫ 1

0

|u(X)− u(T )|p
|X − T |p dXdTdz

� C‖u‖p
W 1−1/p,p(R)

.

Now that we have proved that v ∈W 1,p(R× ]0,+∞[), it remains to show that

γ0v = u or, in other words, that limt→0+ ‖v(·, t)− u‖Lp(R) = 0.

Let us write

v(x, t)− u(x) = ϕ(t)
∫ 1

0

[u(x+ tz)− u(x)]dz + (ϕ(t)− 1)u(x).

Since limt→0[ϕ(t)−1]‖u‖p = 0, the property that we wish to prove reduces to

lim
t→0

∫

R

∣
∣
∣
∫ 1

0

[u(x+ tz)− u(x)]dz
∣
∣
∣
p

dx = 0.

After applying Hölder’s and Fubini’s formulas, proving this reduces further to

using the continuity of translations in Lp, that is, limh→0 ‖τhu− u‖p = 0. We

have thus proved the equality γ0(v) = u.

This concludes the proof of the inclusion for N = 2.

Conversely, we wish to show that if u ∈W 1,p(R× ]0,+∞[), then its trace

belongs to W 1−1/p,p(R× {0}). We will need the following lemma.

Lemma 3.14. Consider a real number ν and a function f from ]0,+∞[ to R.

We assume that 0 < ν + 1/p = θ < 1 and 1 � p < +∞. The following hold:

(i) If the map t 	→ tνf(t) belongs to Lp(]0,+∞[) and if g is defined by

(3.15) g(t) =
1

t

∫ t

0

f(s)ds,

then the map t 	→ tνg(t) belongs to Lp(]0,+∞[). Moreover, there exists a

constant C(p, ν) depending only on p and ν, such that

(3.16)

∫ ∞

0

tνp|g(t)|pdt � C(p, ν)
∫ ∞

0

tνp|f(t)|pdt.

(ii) Let α, β ∈ R with α < β, let f be defined on ]0,+∞[× ]α, β[, and let g be

defined as follows on ]0,+∞[× ]α, β[:

g(t, x) =
1

t

∫ t

0

f(s, x)ds.
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If tνf ∈ Lp(]0,+∞[× ]α, β[), then we have tνg ∈ Lp(]0,+∞[× ]α, β[) and

there exists a constant c(p, ν) depending only on p and ν, such that

(3.17)

∫ β

α

∫ ∞

0

tνp|g(t, x)|pdt dx � c(p, ν)
∫ β

α

∫ ∞

0

tνp|f(t, x)|pdt dx.

Remark 3.18. In (ii), the results extend to the case where the variable t is

in an interval ]a, b[ instead of ]0,+∞[.

Remark 3.19. We only use the lemma with ν = 0. We include the case ν �= 0

for the next chapter.

Proof of Lemma 3.14.

Let F be defined as follows for x > 0:

(3.20) F (x) = xν−1

∫ x

0

f(s)ds.

We begin by remarking that the assumptions on f imply that x|F (x)|p is

bounded and tends to 0 when x tends to 0. Indeed, if p > 1, then

∣
∣
∣xν−1

∫ x

0

f(t)dt
∣
∣
∣ =

∣
∣
∣xν−1

∫ x

0

tνf(t)t−νdt
∣
∣
∣

� xν−1
(∫ x

0

tνp|f(t)|pdt
)1/p(∫ x

0

t−νp′
dt
)1/p′

�
( 1

p′(1− θ)

)1/p′

xν−1x(−νp′+1)/p′
|tνf |Lp(]0,x[)

=
( 1

p′(1− θ)

)1/p′

x−1/p‖tνf‖Lp(]0,x[),

whence

x|F (x)|p � C‖tνf(t)‖pLp(]0,x[).

In particular, x|F (x)|p tends to 0 when x tends to 0 and, moreover, x|F (x)|p �
C‖tνf‖pLp(]0,+∞[).

This remark allows us to carry out the following integration by parts:

∫ M

0

|F (x)|p dx = −
∫ M

0

p|F |p−2F (x)F ′(x)xdx+M |F (M)|p.

Now,

(3.21) F ′(x) = (ν − 1)xν−2

∫ x

0

f(t)dt+ xν−1f(x),

whence

xF ′(x) = (ν − 1)F (x) + xνf(x).
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We obtain

(3.22)

∫ M

0

|F |p(x)dx = −p(ν − 1)

∫ M

0

|F |p(x)dx

− p
∫ M

0

xνf(x)|F |p−2F (x)dx+M |F (M)|p,

whence

∫ M

0

|F |p|1 + p(ν − 1)| dx � p
∫ M

0

xν |f(x)||F |p−2|F (x)|dx+ c‖tνf(t)‖pLp

� p
(∫ M

0

|xν (f(x)|)p dx
)1/p(∫ M

0

|F |p
)1−1/p

+ c‖tνf(t)‖pLp(]0,M [).

Setting XM =
( ∫M

0
|F (x)|p

)1/p
dx and α = ‖tνf(t)‖Lp(]0,+∞[), this implies

the inequality

(1− θ)Xp
M � pαXp−1

M + cαp � 1

p′
(XM (1− θ)1/p)p + 1

(1− θ)p−1
(pα)p + cαp

by inequality describing the convexity of the function x 	→ |x|p. It follows that

Xp
M � c(p, ν)αp.

Finally,
(∫ ∞

0

|F |p
)1/p

� C
(∫ ∞

0

|xνf(x)|dx
)1/p
.

For the proof of (ii), we repeat the proof given above, fixing x, and then

integrating with respect to x. This concludes the proof of the lemma. ��

Let us return to the proof of the theorem for N = 2.

Let v be an element of W 1,p(R× ]0,+∞[) and let u(x) = v(x, 0). We write

the integral of the function |u(x) − u(y)|p|x − y|−p over R
2 as the sum of

integrals over the sets {y > x} and {x > y}. It suffices to study the integral

over {y > x}:

u(x)− u(y)
x− y =

1

x− y

(
v(x, 0)− v

(
x+
y − x
2
,
y − x
2

))

+
1

x− y

(
v
(x+ y

2
,
y − x
2

)
− v(y, 0)

)

=
−1
x− y

∫ y−x

0

∂sv(x+ s/2, s/2)ds

+
1

x− y

∫ y−x

0

∂sv(y − s/2, s/2)ds.
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Taking the pth power and integrating the first term on the right-hand side

with respect to x and y gives

∫∫

y>x

∣
∣
∣
∣

1

x− y

∫ y−x

0

∂sv (x+ s/2, s/2) ds

∣
∣
∣
∣

p

dx dy

� 2

∫

R

∫

]0,+∞[

(
1

t

∫ t

0

|∂sv (x+ s/2, s/2)| ds
)p

dt dx.

Let us now define the function f by setting

f(s, x) = ∂sv (x+ s/2, s/2) ;

this satisfies f ∈ Lp(R× ]0,+∞[). Since v ∈W 1,p(R× ]0,+∞[), we may apply

Lemma 4.38, (ii):

∫

R

∫

]0,+∞[

∣
∣
∣
∣
1

t

∫ t

0

∂sv (x+ s/2, s/2) ds

∣
∣
∣
∣

p

dx dy � C‖v‖pW 1,p .

Repeating this for the integral

1

x− y

∫ y−x

0

∂sv (y − s/2, s/2) ds,

we obtain the desired result.

At the same time, we have shown that there exists a constant C > 0 such

that

(3.23) ‖u‖W 1−1/p,p(R) � C‖v‖W 1,p(R×]0,+∞[),

giving the continuity of the trace map in this space. ��

Remark 3.24. At the end of this chapter, we will give a different class of

liftings that is better suited to problems concerning higher order traces. The

advantage of the lifting we use here is that it allows more explicit computa-

tions.

Before continuing with the general case, let us consider an example.

Example 3.25. Let us illustrate the theorem we have just proved for N = 2

using Hϕ, where ϕ is an element of D(R) that equals 1 on [−1/2, 1/2] and H
is the Heaviside step function defined by

H(x) =

{
1 if x > 0,

0 otherwise.

We will study the inclusion Hϕ ∈W 1−1/p,p(R) for 1 < p � 2.
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To compute the seminorm
∫∫ |(ϕH)(x)− (ϕH)(y)|p

|x− y|p dx dy,

we note that its finiteness is equivalent to that of the sum Ap of the integrals

over the products ] − 1/2, 0[ × ]0, 1/2[ and ]0, 1/2[ × ] − 1/2, 0[. It therefore

suffices to show the finiteness of

Ap = 2

∫ 0

−1/2

∫ 1/2

0

1

|x− y|p dx dy =
2

1− p

∫ 0

−1/2

[
( 12 − x)

1−p − |x|1−p
]
dx.

The existence condition can then be written as −p + 1 > −1, or p < 2. We

note that p = 2 is a critical case, as Hϕ belongs to all W 1−1/p,p(R) for p < 2,

in spite of the existence of a point of discontinuity at x = 0, but does not

belong to H1/2(R).

In this example, we can also compute the fractional derivative of Hϕ of

order 1− 1/p for ϕ ∈ D(R) (cf. Exercise 3.1).

The proof given above shows the existence of a lifting of Hϕ to the space

W 1,p(R×]0,+∞[). We can also give a function belonging toW 1,p(R×]0,+∞[)

whose trace is Hϕ on the boundary R× {0} without using the intrinsic defi-

nition of H1/2(R).

Let u be defined by

u(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x < 0 and 0 < y < −x,
y + x

y
if x < 0 and y > −x > 0,

ϕ(x) if x > 0.

Let ψ be a function in D(R) that equals 1 on {y = 0}; then for p ∈ ]1, 2[,

ψ(y)u(x, y) belongs to W 1,p(R× ]0,+∞[) and equals Hϕ on R× {0}.

Remark 3.26. When a function has a discontinuity at a point, its derivative

in the sense of distributions involves a Dirac distribution, which cannot be

identified with a function. We can come across functions with jump disconti-

nuities whose fractional derivatives are elements of Lp for p < 2.

Proof of the theorem in the general case.

We will need the following lemma.

Lemma 3.27. The following properties are equivalent for an element u of

Lp(RK):

(i) u ∈W 1−1/p,p(RK).

(ii) ∀ i ∈ [1,K], ‖u‖pi,1−1/p,p =

∫

RK

∫

R

∣
∣
∣
∣
u(x+ tei)− u(x)

t

∣
∣
∣
∣

p

dx dt <∞.
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Moreover, ‖u‖′1−1/p,p = ‖u‖Lp(RK)+
∑K

1 ‖u‖i,1−1/p,p defines a norm equiv-

alent to ‖·‖W 1−1/p,p(RK).

Corollary 3.28. If p > q > 1 and u has compact support, then

u ∈W 1−1/p,p(RN ) =⇒ u ∈W 1−1/q,q(RN ).

Proof of the corollary.

We apply the lemma to U =‖u‖q1−1/q,q when u∈W 1−1/p,p(RN ). Hölder’s

inequality gives

U =

∫

RN

∫

R

|u(x+ tei)− u(x)|q
|t|q dt dx

�
∫

|t|�1

∫

suppu+B(0,1)

|u(x+ tei)− u(x)|q
|t|q dx dt+

∫

|t|>1

2q
‖u‖qq
|t|q dt

�
(∫

|t|�1

∫

RN

|u(x+ tei)− u(x)|p
|t|p dx

)q/p
| suppu+B(0, 1)|1−q/p

+ 2(q+1)/(q−1)‖u‖qq. ��

Proof of Lemma 3.27.

Let us show that (ii) implies (i).

Let u ∈ Lp(RK) be such that for every i,

∫

RK

∫

R

∣
∣
∣
∣
u(x+ tei)− u(x)

t

∣
∣
∣
∣

p

dx dt <∞.

For elements x and y of R
K , we introduce the notation x̂i =

∑i
1 xjej +∑K

i+1 yjej = (x1, x2, . . . , xi, yi+1, . . . , yK), where x̂K = x and x̂0 = y. We can

now write u(y)− u(x) as follows:

u(y)− u(x) =
i=K−1∑

i=0

[
u(x̂i)− u(x̂i+1)

]
.

We can consequently bound the pth power of the seminorm in W 1−1/p,p(RK)

from above by the sum of integrals
∑K−1

0 Ii, where

Ii =

∫

RK

∫

RK

|u(x̂i)− u(x̂i+1)|p
[∑

j |xj − yj |2
](p+K−1)/2

dx dy.

We therefore need to bound these integrals. For this, setting ηj = |xj − yj |2
and q = (p+K − 1)/2, we begin by bounding the denominator (

∑
j ηj)

q from

both sides. Using the equivalence of the norms in finite dimension, we see that
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there exist constants C1, C2, C3, C4 depending only on p and K, such that

C1

( K∑

1

|xj − yj |
)2q

� C2

( K∑

1

ηj

)q

�
K∑

1

(ηj)
q � C3

( K∑

1

ηj

)q

� C4

( K∑

1

|xj − yj |
)2q

.

Let us, for example, study the integral IK−1 by beginning with a partial

integration with respect to y1. Using the parity of y1 − x1, the previous in-

equalities with constants C ′
m when K is replaced by K − 1, plus a homothety

on an integration variable, we find, for fixed xi, i ∈ [1,K], and fixed yK , that
∫

R

|u(x)− u(x̂K−1)|p
(
∑

j ηj)
q

dy1 � 2C−1
3

∫ ∞

x1

|u(x)− u(x̂K−1)|p

|x1 − y1|2q +
[∑

j�2 η
q
j

]dy1

� 2C−1
3

∫ ∞

x1

|u(x)− u(x̂K−1)|p dy1
|x1 − y1|2q + C ′

1

[∑
j�2 |xj − yj |

]2q

� 2C−1
3

|u(x)− u(x̂K−1)|p
[∑

j�2 |xj − yj |
]2q−1

∫ +∞

0

dζ

ζ2q + C ′
1

.

Since p +K > 2, we have 2q > 1. Consequently, the last integral converges.

We must therefore consider the inequality

∫

R

|u(x)− u(x1, . . . , xK−1, yK)|p
(
∑

j ηj)
q

dy1 �M1

∣
∣
∣u(x)− u(x̂K−1)

∣
∣
∣
p

[∑
j�2 |xj − yj |

]p+K−2
,

where the constant M1 depends only on p and K.

By integrating this inequality with respect to y2, the same computations

give the following upper bound for the partial integral of IK−1 with respect

to y1, y2:

M1M2
|u(x)− u(x̂K−1)|p

[∑
j�3 |xj − yj |

]p+K−3
.

We now use induction to show that partial integration with respect to

(y1, y2, . . . , yK−1) gives the upper bound

IK−1 �M1M2 · · ·MK−1

∫

RK

∫

R

|u(x)− u(x̂K−1)|p
|xK − yK |p

dyKdx.

By a last change of variables, this leads to the existence of a constant c

depending only on p and K, such that

IK−1 � c
∫

RK

∫ +∞

0

|u(x+ teK)− u(x)|p
tp

dt dx.

By hypothesis (ii), this implies the finiteness of IK−1.
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We proceed in the same manner with the other integrals Ii. We have thus

proved the implication (ii) ⇒ (i), as well as the inequality

‖u‖p
W 1−1/p,p(RK)

� c
i=K∑

i=1

∫

RK

∫ +∞

0

|u(x+ tei)− u(x)|p
tp

dt dx.

Conversely, let us show that (i) implies (ii).

We will once more use induction on the exponents of the terms in the

denominator. Let us first set

J1 =

∫

RK

∫

]0,+∞[

|u(x+ tKeK)− u(x)|p
tpK

dtKdx.

Though the notation is different, this is the integral in statement (ii). We

generalize it to integrals Jk where the numerator of the integrand is of the

type |u(x′) − u(x)| with a difference x′ − x =
∑K

K−k+1 tjej of length k and

tj � 0, namely

J2 =

∫

RK

∫

(]0,+∞[)2

|u(x+ tK−1eK−1 + tKeK)− u(x)|p
(tK−1 + tK)p+1

dtKdtK−1dx,

...

JK =

∫

RK

∫

(]0,+∞[)K

|u(x+
∑K

1 tjej)− u(x)|p(∑K
1 tj

)p+K−1

K∏

1

dtjdx.

By using the variable x − y in the integrand, which expresses the seminorm

of u in W 1−1/p,p(RK) and restricting ourselves to integrations over ]0,+∞[,

we see that, by hypothesis, JK < ∞. Consequently, the implication (i)⇒(ii)

follows for i = K if we show that for every k ∈ [1,K − 1], we have

Jk+1 <∞ =⇒ Jk <∞.

Let us therefore suppose that Jk+1 <∞. Let

Jk =

∫

RK

∫

(]0,+∞[)k

∣
∣u(x+

∑K
K−k+1 tjej)− u(x)

∣
∣p

(∑K
K−k+1 tj

)p+k−1

K∏

K−k+1

dtjdx.

It follows from the equality

1
(∑K

K−k+1 tj
)p+k−1

= (p+ k − 1)

∫ +∞

0

1
(
t′ +

∑K
K−k+1 tj

)p+k
dt′.

that Jk is bounded from above by

(p+ k − 1)

∫

RK

∫

(]0,+∞[)k+1

∣
∣u(x+

∑K
K−k+1 tjej)− u(x)

∣
∣p

(
t′ +

∑K
K−k+1 tj

)p+k
dt′
[ K∏

K−k+1

dtj

]
dx.
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We now proceed to give an upper bound for the numerator by using a point x∗

that lies between x +
∑K

K−k+1 tjej and x, namely x∗ = x + t′eK−k +
∑K

K−k+1(tj/2)ej , and by using the inequality |a + b|p � 2p−1(|a|p + |b|p).
A lower bound for the denominators follows from the inequality

t′ +
∑K

K−k+1 tj � t′ +
∑K

K−k+1 tj/2. Consequently, writing

∣
∣u
(
x+

∑K
K−k+1 tjej

)
− u(x)

∣
∣p

� 2p−1
[∣
∣u
(
x+

K∑

K−k+1

tjej
)
− u(x∗)

∣
∣p +

∣
∣u(x∗)− u(x)

∣
∣p
]
,

we obtain Jk � 2p−1[A+B], where

A �
∫

RK

∫

(]0,+∞[)k+1

|u(x∗)− u(x)|p
(
t′ +

∑K
K−k+1(tj/2)

)p+k
dt′
[ K∏

K−k+1

dtj

]
dx,

B �
∫

RK

∫

(]0,+∞[)k+1

∣
∣u
(
x+

∑K
K−k+1(tj/2)ej

)
− u(x∗)

∣
∣p

(
t′ +

∑K
K−k+1(tj/2))

)p+k
dt′
[ K∏

K−k+1

dtj

]
dx.

In these upper bounds, the numerator of the integrand is associated with a

difference x′−x of length k. By considering the denominator, we see that this

upper bound is the integral Jk+1. We conclude that A <∞. For the integral B,

we must transform the numerator so that it is of the form |u(y)−u(y′)|, where y
is the integration variable and the difference y− y′ also has length k. In order

to do this, we apply the following transformation in the integral B:
⎧
⎪⎪⎨

⎪⎪⎩

y = x+
(∑K

K−k+1 tjej/2
)
,

tj = tj ∀ j ∈ [K − k + 1,K],

t′ = tK−k.

The Jacobian matrix of this transformation is triangular with diagonal terms

equal to 1. The integral B is therefore bounded from above by

∫

RK

∫

(]0,+∞[)k+1

∣
∣u(y)− u

(
y +

∑K
K−k+1(tj/2)ej + tK−keK−k

)∣∣p

[
tK−k +

∑K
K−k+1(tj/2))

]p+k

[ K∏

K−k

dtj

]
dy.

This last integral is of the type Jk+1 and is therefore finite. To summarize, we

have

Jk � K(A+B) <∞.

The reasoning is the same for the other integrals

Ii =

∫

RK

∫

]0,+∞[

|u(x+ tei)− u(x)|p
tp

dt dx.

We have thus proved the equivalence of (i) and (ii).
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Moreover, we have shown the existence of a constant c′ depending only

on K and p, such that

K∑

1

[∫

RK

∫

]0,+∞[

|u(x+ tei)− u(x)|p
tp

dt dx

]
� c′‖u‖′pW 1−1/p,p(RK).

This concludes the proof of the equivalence of the norms stated in the lemma.

��

Let us return to the proof of Theorem 3.9 for N > 2.

Let u be an element of W 1−1/p,p(RN−1) and let v be defined as follows for

t > 0:

(3.29) v(x′, t) =
ϕ(t)

tN−1

∫

]0,t[N−1

u(x′ + z)dz,

where ϕ ∈ D(R) with ϕ(0) = 1; then limt→0 ‖v(·, t)− u‖p = 0.

This follows from

‖v(., t)− u‖pp =

∫

RN−1

∣
∣
∣
∫

]0,1[N−1

ϕ(t)(u(x+ tz)− u(x))dz
∣
∣
∣
p

dx −→ 0,

because the inclusion u ∈ Lp implies that limh→0 ‖τhu − u‖p = 0

(cf. property (2.64)).

Next, we must verify that v ∈W 1,p(RN ). The derivative with respect to xi,

where 1 � i � N−1, can be seen as a derivative with respect to the endpoints

by applying Fubini’s formula and using the integration variable xi + zi. We

thus obtain

(3.30) ∂iv(x
′, t) = ϕ(t)

∫

(]0,t[)N−2

u(x′ + tei + z̆i)− u(x′ + z̆i)
tN−1

dz̆i.

Using Hölder’s inequality and the change of variables z̆i = tZ̆i, we have

|∂iv(x′, t)|p � |ϕ(t)|p
∫

(]0,1[)N−2

∣
∣
∣
u(x′ + tei + tZ̆i)− u(x′ + tZ̆i)

t

∣
∣
∣
p

dz̆i.

We then integrate with respect to x′ and t and apply the change of variables

(x′, t) −→ (X ′ = x′ + tZ̆i, t),

which, by Lemma 3.27 and Fubini’s formula, gives

∫

RN−1

∫

]0,+∞[

|∂iv|p

�
∫

RN−1

∫

]0,+∞[

∫

(]0,1[)N−2

∣
∣
∣
∣
u(X ′ + tei)− u(X ′)

t

∣
∣
∣
∣

p

dX ′ dt dZ̆i � C.
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Next, we compute ∂tv(x
′, t), which equals

∂tv(x
′, t) = ϕ(t)

(−(N − 1)

tN

∫ t

0

. . .

∫ t

0

u(x′ + z)dz
)

+ ϕ(t)
(i=N∑

i=1

1

tN−1

∫

]0,t[N−2

u(x′ + z̆i + tei)dz̆i

)

+ ϕ′(t)
1

tN−1

∫

(]0,t[)N−1

u(x′ + z)dz

= ϕ(t)
∑

i

1

tN−1

∫

(]0,t[)N−1

u(x′ + tei+ z̆i)− u(x′ + z)
t

dz

+ ϕ′(t)
1

tN−1

∫

(]0,t[)N−1

u(x′ + z) dz.

It is clear that the function

(x′, t) 	−→ ϕ
′(t)

tN−1

∫

(]0,t[)N−1

u(x′ + z) dz

belongs to Lp(RN−1 × ]0,+∞[). It remains to show that the same holds for

the integrals

Fi(x
′, t) = ϕ(t)

1

tN−1

∫

(]0,t[)N−1

u(x′ + tei+ z̆i)− u(x′ + z)
t

dz.

By applying the change of variables z = tZ and then using Hölder’s inequality,

we obtain

∑

i

|Fi(x′, t)|p � |ϕ|p∞
∑

i

∫

]0,1[N−1

∣
∣
∣
u(x′ + tei+ tZ̆i)− u(x′ + tZ)

t

∣
∣
∣
p

dz.

Integrating with respect to x′ and t, and then applying the change of variables

(x′, t) 	→
(
X ′ = x′+tZ, λ = t(1−zi)

)
gives dX ′∧dλ = (1−zi)dx′∧dt, whence,

using evident upper bounds,

∫∫
∑

i

∣
∣Fi(x′, t)

∣
∣pdx′dt

� ‖ϕ‖p∞
∑

i

∫

RN−1

∫

(]0,1[)N−2

∫

]0,+∞[

∣
∣
∣
v(X ′ + λei)− v(X ′)

λ

∣
∣
∣
p

dλ dX ′ dz

<∞.

This concludes the proof of Theorem 3.9. ��
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3.2 The Case of an Open Boundary Other than

R
N−1 × ]0,∞[

In Chapter 2, we showed the existence of a trace map with values in Lp(∂Ω)

when Ω is a C1 open set. In a manner similar to the one we used before, we

define the space

W 1−1/p,p(∂Ω) =
{
u ∈ Lp(∂Ω)

∣
∣
∫

∂Ω

∫

∂Ω

|u(x)− u(y)|p
|x− y|p+N−2

dσ(x)dσ(y) <∞
}
,

where dσ denotes the superficial density on ∂Ω. With this definition, Theorem

3.9 extends to open sets of class C1.

Proposition 3.31. Let Ω be a class C1 open set; then the image of the trace

map on W 1,p(Ω) satisfies

γ0(W
1,p(Ω)) =W 1−1/p,p(∂Ω).

Proof of Proposition 3.31.

Let u ∈ W 1,p(Ω) and let Ωi, O′
i, Fi, ai, and ϕi be as in the definitions

2.65 and 2.66 of an open set of class C1. Let vi be defined on R
N−1 × ]0,+∞[

by

vi(x
′, xN ) = ϕiu(x

′, ai(x
′) + xN ).

Since ai is of class C1 on the compact set Fi obtained by projecting the support

of ϕi onto R
N−1, we easily see that vi ∈W 1,p(RN−1×]0,+∞[). Consequently,

by Theorem 3.9, the trace γ0vi of this function belongs to W 1−1/p,p(RN−1).

Setting x̂′ = (x′, ai(x
′)), we will deduce from this that the composition ũi

defined by ũi(x̂
′) = ϕiu(x̂

′) = γ0vi(x̂
′) belongs to W 1−1/p,p(∂Ω ∩ Ωi). Let

‖ũi‖(i)1,p denote its seminorm in this last space. We use the inequality

|x′−y′| � |x̂′− ŷ′| =
(
|x′−y′|2+ |ai(x′)−ai(y′)|2

)1/2
�
√
1 + |∇ai|2∞ |y′−x′|

to give an upper bound. Using the extension by 0 outside of O′
i, the seminorm

‖ũi‖(i)1,p, whose pth power equals the integral

∫

(RN−1)2

|ϕiu(ŷ′)− ϕiu(x̂′)|p(1 + |∇ai(x′)|2)1/2(1 + |∇ai(y′)|2))1/2
(|ŷ′ − x̂′|)p+N−2

dx′dy′,

gives the upper bound

(∗) ‖ũi‖(i)1,p �
[
(1 + ‖∇ai‖2∞)

∫

RN−1

∫

RN−1

|γ0vi(x′)− γ0vi(y′)|p
|x′ − y′|p+N−2

dx′dy′
]1/p
.

We therefore have ũi ∈W 1−1/p,p(∂Ω).
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By Theorem 2.86, the trace γ0u is defined by
∑

i ũi. Letting |γ0u|1−1/p,p

denote the seminorm
(∫

∂Ω

∫

∂Ω

|γ0u(x)− γ0u(y)|p
|x− y|p+N−2

dσ(x)dσ(y)
)1/p
,

and applying Proposition 2.68 and the continuity of the trace map, we deduce

that

|γ0u|1−1/p,p � C
∑

i

‖ũi‖(i)1,p � C ′
∑

i

‖vi‖W 1,p((RN )+)

� C ′′
∑

i

‖ϕiu‖W 1,p(Ωi∩Ω) � C ′′′‖u‖W 1,p(Ω).

We have thus proved part of the proposition.

Conversely, let us assume that u ∈ Lp(∂Ω) and that the seminorm

|u|1−1/p,p in W 1−1/p,p(∂Ω) is finite; then we can easily show that for every i,

‖ϕiu‖(i)1,p <∞ because ϕi is Lipschitz.

For every x′ ∈ O′
i, let vi(x

′) = ϕiu(x̂
′). Using the inequalities

|x̂′ − ŷ′| �
√

(1 + ‖∇ai‖2∞) |x′ − y′|,

we can obtain an inequality inverse to (∗), from which we deduce that vi ∈
W 1−1/p,p(RN−1).

By Theorem 2.86, there exist Vi ∈W 1,p((RN )+) with compact support in

O′
i×[0, δ[ such that vi = γ0Vi. For x

′ ∈ O′
i and xN ∈ ]ai(x

′), ai(x
′) + δ[, let the

function Ui be defined by Ui(x
′, xN ) = Vi(x

′,−ai(x′) + xN ). It is defined on

Ωi ∩Ω, equals ui on {xN = ai(x
′)}, and, moreover, belongs to W 1,p(Ωi ∩Ω).

The previous computations show that there exists a constant C depending

only on ∂Ω, p,N , such that

‖Ui‖W 1,p(Ωi∩Ω) � C|ui|1−1/p,p.

Let U =
∑

i Ui. We have U(x′, 0) =
∑

i Ui(x
′, 0) =

∑
i ϕiu(x

′) = u(x′).

Moreover, U ∈W 1,p(Ω) because, by Proposition 2.68,

‖U‖W 1,p(Ω) �
∑

i

‖Ui‖W 1,p(Ωi∩Ω)

� C
∑

i

‖ϕiu‖W 1−1/p,p(Ωi∩∂Ω)(3.32)

� C‖u‖W 1−1/p,p(∂Ω). ��

3.3 Traces of Functions in W 1,1(Ω)

Let us now study the traces of functions in W 1,1(Ω). The following can be

seen as an extension of the previous result if we let the derivative of order

1− 1/p = 0 be the function itself.
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Theorem 3.33. Let Ω be an open set of class C1. There exists a surjective

continuous linear map, denoted by γ0, that sends W
1,1(Ω) to L1(∂Ω). When

u ∈W 1,1(Ω)∩C(Ω), this trace coincides with the restriction to the boundary.

Moreover, there exists a constant C > 0 such that, for every u ∈ L1(∂Ω),
there exists a U ∈W 1,1(Ω) satisfying γ0U = u and

‖U‖W 1,1(Ω) � C‖u‖L1(∂Ω).

Proof of Theorem 3.33.

Using the same method we used for the functions in W 1,p(Ω), we reduce

to the case where u has compact support in R
N−1 × [0, 1[. We then have, for

almost all pairs (s, t) of positive real numbers, assuming for the moment that

s < t to illustrate the idea,

(3.34)

∫

RN−1

|u(x′, t)− u(x′, s)|dx′ �
∫ t

s

∫

RN−1

|∂Nu|(x′, λ)dx′dλ.

Since s and t tend to zero, the right-hand side also tends to zero. We conclude

that u(·, t) is Cauchy in L1(RN−1), which is complete. Let γ0u denote the

limit. We can easily see that the trace map defined in this way is continuous.

Let us show that this map is surjective onto L1(RN−1). Consider u in

L1(RN−1) and let {uk} be a sequence of C1 functions with compact support

that converges to u in L1(RN−1). After extracting a subsequence if necessary,

we may, and do, assume that

(3.35)

∞∑

1

‖uk+1 − uk‖1 <∞.

Let {αk} be a sequence of positive real numbers such that

(3.36) ∀ k � 1, αk � 2−k

(‖∇uk+1‖1 + ‖∇uk‖1 + 1)
.

Next, consider the sequence {tk} of real numbers defined by

t0 =

∞∑

0

αk,

tk+1 = tk − αk (∀ k � 1).

(3.37)

This sequence is monotonically decreasing and tends to zero. We define the

function v on R
N−1 × ]0, t0[ by setting

(3.38) v(t, x′) = uk(x
′) +

tk − t
tk − tk+1

(uk+1 − uk)(x′)
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for every t ∈ ]tk+1, tk[ and for every x′ ∈ R
N−1. We then have v ∈

W 1,1(RN−1 × ]0, t0[). Indeed, if j ∈ [1, N − 1], then for every t ∈ ]tk+1, tk[,

∂jv = ∂juk +
tk − t
tk − tk+1

(∂juk+1 − ∂juk).

Consequently, we have

‖∂jv‖1 �
∑

k

∫ tk

tk+1

(
‖∂juk‖1 + ‖∂juk+1‖1

)

�
∞∑

0

|tk − tk+1|
(
‖∂juk‖1 + ‖∂juk+1‖1

)
�
∑

k

1

2k
.

Deriving with respect to t gives

(3.39) ∀ t ∈ ]tk+1, tk[, ∂tv =
uk+1 − uk
tk+1 − tk

.

Hence

‖∂tv‖1 �
∑

k

∫ tk

tk+1

‖uk+1 − uk‖1
|tk+1 − tk|

�
∑
‖uk − uk+1‖1 <∞.

We have thus shown that v ∈W 1,1(RN−1 × ]0, t0[).

By the open mapping theorem, the image under γ0 of the open ball of

radius 1 with center 0 contains an open ball B(0, r0) for some r0 > 0. Hence,

for every u ∈ L1(∂Ω), there exists a U ∈W 1,1 such that

‖U‖W 1,1(Ω) �
1

r0
‖u‖L1(∂Ω). ��

3.4 Density of C1(∂Ω) in W 1−1/p,p(∂Ω)

3.4.1 Density in W 1−1/p,p(∂Ω), Properties of the Trace Map

Proposition 3.40. Let Ω be a class C1 open subset of RN ; then C1(∂Ω) ∩
W 1−1/p,p(∂Ω) is dense in W 1−1/p,p(∂Ω).

Remark 3.41. We can establish this result using the definition of

W 1−1/p,p(∂Ω). In the next chapter, we give the proof for R
N−1 and

W s,p, where s ∈ ]0, 1[ is arbitrary. In the following proof, we have chosen to

use the properties “inherited” from W 1,p(Ω).
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Proof of Proposition 3.40.

Since Ω is of class C1, there exists a continuous linear extension E of

W 1,p(Ω) in W 1,p(RN ). Let u ∈ W 1−1/p,p(∂Ω). There exists a lifting U ∈
W 1,p(Ω) of u, that is, a U ∈W 1,p(Ω) such that γ0U = u on ∂Ω.

By the density of D(RN ) in W 1,p(RN ), there exists a sequence {Un} in

D(RN ) such that ‖Un − E(U)‖W 1,p(RN ) → 0. Let un be the restriction of Un
to Ω. Since the restriction of E(U) to Ω is U , we have ‖un −U‖W 1,p(Ω) → 0.

By the continuity of the trace map,

‖γ0(un)− u‖W 1−1/p,p(∂Ω) = ‖γ0(un)− γ0U‖W 1−1/p,p(∂Ω)

� C‖un − U‖W 1,p(Ω) −→ 0.

Now, as the boundary is of class C1, the function γ0un, which is the restriction

of un to ∂Ω, is also of class C1. Consequently, γ0un ∈ C1(∂Ω)∩W 1−1/p,p(∂Ω),

completing the proof. ��

We also prove the existence of a function that is regular inside Ω and has

the same trace as u on the boundary when Ω is a general open set of class C1.

Theorem 3.42. Let Ω be a class C1 open set and let u ∈W 1,p(Ω); then there

exists a sequence {un} ⊂ C∞(Ω) ∩W 1,p(Ω) that converges to u in W 1,p(Ω)

and satisfies γ0un = γ0u on ∂Ω.

Proof of Theorem 3.42.

We repeat the construction given in the proof of Proposition 2.12 of Chap-

ter 2. Recall that

uε =
∑

j

ρεj � (ϕju)

converges to u in W 1,p(Ω) when ε tends to 0. Let

vN,ε =
N∑

0

(
ρεj � (ϕju)− ϕju

)
.

By definition, vN,ε has compact support and converges to uε − u in W 1,p(Ω)

when N → +∞. By the continuity of the trace map, it follows that

γ0(uε − u) = 0. ��

Proposition 3.40 and the results before it allow us, in particular, to estab-

lish generalized Green’s formulas that extend the classical Green’s formula for

class C1 functions. This is the aim of the next subsection.
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3.4.2 Generalization of Green’s Formula and Applications

Theorem 3.43 (generalized Green’s formula). Let Ω be a class C1 open

subset of RN . Let U be an element of W 1,p(Ω) and let ϕ ∈ D(RN ,RN ); then

∫

Ω

∇U(x) · ϕ(x)dx+
∫

Ω

U(x) divϕ(x)dx =

∫

∂Ω

γ0U(s)ϕ(s) · −→n (s)dσ(s).

In this formula, dσ is the superficial density on ∂Ω, −→n is the outward-

pointing unit normal to ∂Ω, the terms ∇u(x) · ϕ(x) and ϕ(s) · −→n (s) are

inner products of vectors in R
N , and the divergence of ϕ is defined to be

divϕ(x) =
∑N

1 ∂i(ϕi)(x).

Proof of Theorem 3.43.

In the current situation, where Ω is of class C1, we already know this for-

mula when u is of class C1 on Ω. Let u ∈W 1,p(Ω). By Proposition 3.40, there

exists a sequence {un} in C1(Ω) ∩W 1,p(Ω) that converges to u in W 1,p(Ω)

with, moreover, γ0un → γ0u in W 1−1/p,p(∂Ω).

From the convergences ∂iunϕi → ∂iuϕi in Lp(Ω), it follows that
∫
Ω
∇un ·

ϕ→
∫
Ω
∇u · ϕ. Moreover, the term

∫
Ω
un divϕ tends to

∫
Ω
u divϕ.

Finally, by considering the integrals
∫
∂Ω

(−→n )iϕiγ0(u− un)dσ, we obtain

the convergence of the boundary term
∫
∂Ω
un(ϕ · −→n )dσ to

∫
∂Ω
γ0u(ϕ · −→n )dσ

because ‖γ0(un − u)‖Lp(∂Ω) → 0. This concludes the proof. ��

Another proof of Theorem 3.43. Let us now prove this result using a different

method. We will repeat the arguments of the proof of the classical version

of Green’s theorem in one of the open subsets of the cover occurring in the

definition of the C1 regularity of Ω (cf. Definition 2.65).

The components uϕi of the function uϕ belong to W 1,p(Ω), as we can see

by using the definition of the derivative of uϕi in the sense of distributions.

Let O be an open subset of RN such that there exist an open subset O′ of

R
N−1 and a piecewise C1 function a that is continuous on O′ satisfying

O ∩Ω ⊂ {(x′, xN ) | xN > a(x′), x′ ∈ O′},
O ∩ ∂Ω = {(x′, a(x′)) | x′ ∈ O′}.

After changing the local coordinate systems, if necessary, we may, and do,

assume that for every i, uϕi ∈ W 1,p(O ∩ Ω) has compact support in O. In

the present case, the trace of uϕi on the boundary of O∩Ω is zero outside of

O∩∂Ω (arc
�
mm′ in Figure 3.1). The boundary term in the formula therefore

reduces to ∫

O′
u(x′, a(x′))ϕ(x′, a(x′)) · −→n (x)dσ(x′).
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Fig. 3.1. Localization at a boundary point.

Note that the outward-pointing unit normal to ∂Ω is defined by

−→n (x) = ∇a− eN√
1 + |∇a(x)|2

.

Moreover, dσ(x′) =
√
1 + |∇a(x′)|2 dx′, from which we deduce that

ni(x
′)dσ(x′) = ∂ia(x

′) and nN (x′)dσ(x′) = −1.

We must therefore show the following formulas for each of the components:

(∗)
∫

O∩Ω

[
(∂iuϕi + u∂iϕi)(x)

]
dx =

∫

O′
γ0u(x

′)ϕi(x
′, a(x′))∂ia(x

′)dx′,

for every i � N − 1, and

(∗∗)
∫

O∩Ω

[
(∂NuϕN + u∂NϕN )(x)

]
dx = −

∫

O′
γ0u(x

′)ϕN (x′, a(x′))dx′.

For the first equality, we approximate u inW 1,p(Ω∩O) using a sequence {un}
of C1 functions. Since the function x′ 	→

∫∞
a(x′)

unϕi(x
′, xN )dxN has compact

support in O′, we have
∫

O′

(
∂i

∫ ∞

a(x′)

(unϕi)(x
′, xN )dxN

)
dx′ = 0.

Moreover, in this integral, we can use differentiation with respect to a param-

eter, giving

0 =

∫

O′
∂i

(∫ ∞

a(x′)

(unϕi)(x
′, xN )dxN

)
dx′

=

∫

O′
−∂ia(x′)(unϕi)(x′, a(x′))dx′ +

∫

O′

∫ ∞

a(x′)

∂i(unϕi)(x
′, xN )dxNdx

′.
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We now let n tend to +∞. The first term of the right-hand side has the

integral −
∫
O′ ∂ia(x

′)(uϕi)(x
′, a(x′))dx′ as a limit.

By the definition of the convergence in W 1,p, the second term of the right-

hand side has limit
∫
Ω
∂i(uϕi)dx. Using the derivative of the product uϕi, we

obtain the formula (∗).
In the case i = N , we obtain the formula (∗∗) by using the following

definition of the trace of x 	→ (uϕ)(x′, a(x′) + xN ):

∫

O′

∫ +∞

a(x′)

∂N (uϕ)(x′, xN ) = −
∫

O′
γ0(uϕ)(x

′, a(x′))dx′

and the derivative of uϕ with respect to xn in the sense of distributions. ��

Theorem 3.44. Let Ω be a C1 open set. Let u be in W 1,p(Ω), let v be in

W 1,p(RN
�Ω), and let ũ be defined by

ũ =

{
u in Ω,

v in R
N
�Ω.

Then ũ belongs to W 1,p(RN ) if and only if

γ0u = γ0v on ∂Ω.

Proof of Theorem 3.44.

Let us assume that γ0u = γ0v on ∂Ω. Let ϕ ∈ D(RN ,RN ). Applying the

above version of Green’s formula on both Ω and R
N
�Ω, with opposite normal

vectors −→n1 and −→n2, we find

∫

RN

∇ũ · ϕ = −
∫

RN

ũ divϕ = −
∫

Ω

u divϕ−
∫

RN�Ω

v divϕ

=

∫

Ω

∇u · ϕ+

∫

∂Ω

γ0u
−→n1 · ϕ+

∫

RN�Ω

∇v · ϕ+

∫

∂Ω

γ0v
−→n2 · ϕ.

Since the outward-pointing unit normal to ∂Ω is the opposite of the outward-

pointing unit normal to ∂(RN
�Ω) and γ0u = γ0v, we obtain

(3.45) ∇ũ = ∇u1Ω +∇v 1RN�Ω ;

hence ũ ∈W 1,p(RN ).

Conversely, let us assume that ũ ∈ W 1,p(RN ). We denote the Dirac delta

function with support ∂Ω by δ
∂Ω

(cf. Example 1.85); this is a measure. The

previous computation gives

∀ϕ ∈ D(RN ,RN ),

∫

∂Ω

−→n · ϕ(x)γ0(u− v)(x)dσ(x) = 0.
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Let us take for ϕ a function whose only nonzero component is ϕN ∈ D(RN ).

The previous inequality then becomes

∀ϕ ∈ D(RN ), 〈γ0(u− v)δΩ , nNϕN 〉 = 0.

We deduce from this that, seen as a function in Lp(∂Ω), we have γ0(u−v) = 0,

concluding the proof. ��

Corollary 3.46. Let Ω be a class C1 open set; then

W 1,p
0 (Ω) = {u | ũ ∈W 1,p(RN )},

where ũ is the extension by 0 outside of Ω. We also have

W 1,p
0 (Ω) = {u ∈W 1,p(Ω) | γ0u = 0 on ∂Ω}.

3.4.3 Determining the Duals of Sobolev Spaces

Dual of the Space W 1,p(Ω).

Proposition 3.47. Let 1 � p < +∞. We consider the product space

Lp(Ω)N+1 endowed with the norm ‖v‖p =
(∑N+1

0 ‖vi‖pp
)1/p

. The map J

from W 1,p(Ω) to Lp(Ω)N+1 defined by

∀u ∈W 1,p(Ω), J(u) = (u, ∂1u, ∂2u, . . . , ∂Nu)

is an isometry whose image ImJ is a closed subspace of Lp(Ω)N+1. It follows

that if T ∈W 1,p(Ω)′, then

(3.48) ∃ v ∈ Lp
′
(Ω)N+1, ∀u ∈W 1,p(Ω), T (u) =

∫

Ω

uv0 +

N∑

1

∫

Ω

∂iu vi.

Conversely, when v ∈ Lp′
(Ω)N+1, this formula defines an element T of the

dual of W 1,p(Ω). The norm of the linear functional T is then

‖T‖(W 1,p)′ = inf{‖v‖p′ | v satisfies (3.48)}.

Proof of Proposition 3.47.

The first statement concerning J is clear. Let T be an element of the dual

of W 1,p(Ω) and let T ∗ be defined on ImJ by T ∗(J(u)) = T (u). By the Hahn–

Banach theorem, T ∗ can be extended to a continuous linear functional on the

space Lp(Ω)N+1, that is, to an element of the dual of this space. It follows

that for 0 � i � N , there exist vi ∈ Lp
′
(Ω) such that

∀u ∈ Lp(Ω)N+1, T ∗(J(u)) = uv0 +
N∑

1

〈∂iu, vi〉.
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This leads to the statement about T . Since the converse is evident, we have

proved that the description of an element of the dual is correct.

For the norm, we note that the (N +1)-tuple (vi)0�i�N is not necessarily

unique. The previous extension, which conserves the norm of T ∗, gives the

following result using Hölder’s inequality:

‖T (u)‖ = ‖T ∗(J(u))‖ � ‖u‖p‖v0‖p′ +

N∑

1

‖vi‖p′‖∂iu‖p

� ‖u‖W 1,p

(
‖v0‖p′ +

N∑

1

‖vi‖p′

)
.

It follows that for any v satisfying the condition of (3.48), we have ‖T‖�‖v‖p′ .

The stated equality concerning the norm of T follows. ��

The Dual W−1,p′
(Ω) of the Space W 1,p

0 (Ω). The following is a consequence

of the previous proposition.

Proposition 3.49. Let 1 � p < +∞. Every element L of the dual of

W 1,p
0 (Ω), which we denote by W−1,p′

(Ω), can be identified with a distribu-

tion V satisfying

∀u ∈W 1,p
0 (Ω), L(u) = 〈V, u〉.

Indeed, V is associated with an element (vi) ∈ Lp
′
(Ω)N+1 by setting V =

[v0]−
∑N

1 ∂i[vi]. As before, the norm of this element of W−1,p′
(Ω) is defined

by Proposition 3.47.

Proof of Proposition 3.49.

Let L be an element of the dual. The Hahn–Banach theorem allows us to

extend this element to a continuous linear functional on W 1,p(Ω) while pre-

serving its norm. We deduce from this that there exist elements v0, v1, . . . , vN
of Lp

′
(Ω)N+1 such that

∀u ∈W 1,p
0 (Ω), L(u) =

N∑

1

〈∂iu, vi〉+ uv0.

We know that the space D(Ω) is dense inW 1,p
0 (Ω). Consequently, the previous

formula can be used for a sequence {ϕn} that converges to u, giving the

following equalities using differentiation in the sense of distributions and the

continuity of the duality pairing of Lp with Lp
′
:

L(u) = lim
n→+∞

[
〈v0, ϕn〉+

N∑

1

〈vi, ∂iϕn〉
]

= lim
n→+∞

〈v0, ϕn〉 −
N∑

1

〈∂ivi, ϕn〉 = 〈V, u〉,

where V is the distribution [v0]−
∑N

1 ∂i[vi].
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Conversely, we can easily see that such a distribution defines an element L

of the dual ofW 1,p
0 (Ω). The norm of L is, as before, the infimum of the norms

in Lp
′
of the (N + 1)-tuples (vi) used to define V . ��

Properties of the Dual of W 1−1/p,p(∂Ω). When p = 1, the space of traces

is L1(∂Ω); hence its dual is L∞(∂Ω). To study the dual when p > 1, we

introduce the space W p′
(div) defined by

W p′
(div) = {σ ∈ Lp

′
(Ω) | div(σ) ∈ Lp

′
(Ω)}.

We also define the following spaces.

Definition 3.50. Consider a class C1 open set Ω ⊂ R
N , a real number p > 1,

and the conjugate exponent p′ of p.

(1) If p < N , then we set, for q′ = Np/(Np−N + p),

(3.51) W p′

q′ (div) =
{
σ ∈ Lp

′
(Ω,RN ) | div(σ) ∈ Lq

′
(Ω)

}
.

(2) If p > N , then we set

(3.52) W p′

1 (div) =
{
σ ∈ Lp

′
(Ω,RN ) | div(σ) ∈ L1(Ω)

}
.

(3) If p = N and ε ∈ ]0, 1/(p− 1)], then we set

(3.53) W p′

ε (div) =
{
σ ∈ Lp

′
(Ω,RN ) | div(σ) ∈ L1+ε(Ω)

}
.

These spaces are normed using ‖σ‖p′,q∗ = ‖σ‖p′ + ‖ div σ‖q∗ , where q∗
equals Np/(Np−N + p) in the first case, q∗ = 1 in the second case, and

q∗ = 1 + ε in the third case. We have the following result.

Theorem 3.54. Let Ω be a C1 open subset of RN . For any σ ∈ W p′

p′ (div),

consider the linear functional S(σ) defined by

∀u ∈W 1−1/p,p(∂Ω), 〈S(σ), u〉=
∫

Ω

U(x) div σ(x)dx+

∫

Ω

σ(x) · ∇U(x)dx,

where U is a lifting of u in W 1,p(Ω). Then S(σ) is an element of the dual

W−1+1/p′,p′
(∂Ω) of W 1−1/p,p(∂Ω) and S is continuous and surjective onto

W p′

p′ (div). Indeed, the functional S can be extended continuously to W p′

q′ (div)

if p < N , to W p′

1 (div) if p > N , and to W p′

ε (div) if p = N , for ε > 0

sufficiently small.

Remark 3.55. In principle, p > 1 in the above, but we can adapt the follow-

ing proofs to the case p = 1 (cf. Exercise 3.6). In that case, we have p′ = +∞
and q′ = N and we obtain

S(W+∞
N (div)) ↪−→ L1(∂Ω)′ = L∞(∂Ω).
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Proof of Theorem 3.54.

We begin with the case p < N . Let us show that the right-hand side of the

equation defining S(σ) is well defined. This follows, on the one hand, from the

inclusion σ ∈ Lp′
(Ω) and, on the other hand, from the inclusion U ∈ Lq(Ω),

where q = Np/(N − p) is the conjugate exponent of q′ (cf. Theorem 2.31).

This second inclusion holds because p < N . Moreover, the definition of S(σ)

is independent of the choice of the lifting U . To see this, it suffices to prove

that the right-hand side is zero when γ0U = 0. Now, γ0U = 0 means that U

belongs to W 1,p
0 (Ω) (Corollary 3.46). Hence, there exists a sequence {Un} in

D(Ω) with limit U in W 1,p(Ω). By the definition of divergence in the sense

of distributions, we have

(3.56)

∫

Ω

σ(x) · ∇Un(x)dx+
∫

Ω

Un(x) div σ(x) dx = 0.

The density of the functions of D(Ω) in W 1,p
0 (Ω) implies that this equality

remains true when we take the limit.

It is clear that the functional S is linear. For the continuity of S, we use

the continuity of the injection ofW 1,p into Lq and the inequality of the norms

(3.32) linking the function u to one of its liftings U . This gives

|〈S(σ), u〉| � ‖U‖Lq‖ div σ‖Lq′ + ‖∇U‖Lp‖σ‖Lp′

� C1‖U‖W 1,p‖ div σ‖Lq′ + ‖∇U‖Lp‖σ‖Lp′

� C1‖U‖W 1,p(Ω)‖σ‖p′,q∗

� CC1‖u‖W 1−1/p,p(Ω)‖σ‖p′,q∗ .

The last inequality shows us the continuity of the map S, as its norm satisfies

the inequality ‖|S‖| � CC1‖σ‖p′,q∗ .

Let us now assume that p > N . We use the same definition for S(σ). The

elements U then belong to L∞(Ω); see step F of the proof of Theorem 2.31. It

follows that S(σ) is still well defined, since div σ ∈ L1(Ω). The independence

of the choice of a lifting, the linearity and the continuity are all proved as in

the previous case.

Finally, when N = p, Theorem 2.31 shows us that U ∈ Lq for every

q � p with q < +∞. As, by hypothesis, σ ∈ W p′

ε (div), we have σ ∈ Lp′

and div σ ∈ L1+ε. The integral
∫
Ω
σ(x) · ∇U(x)dx is well defined because

the gradient ∇U belongs to Lp. Moreover, the conjugate exponent q of 1 + ε

satisfies q = 1 + 1/ε � p since ε � 1/(p− 1). It follows that the integral∫
Ω
U(x) div σ(x)dx is also finite.

We have thus proved the first part of the theorem.

We will now show that S is surjective. Let f be in the dual

W−1+1/p′,p′
(∂Ω) of W 1−1/p,p(∂Ω). We define f̃ on W 1,p(Ω) by setting
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〈f̃ , U〉 = 〈f, γ0U〉 for every U in this space. By the continuity of the trace

map, we have

|〈f̃ , U〉| � C‖γ0U‖ � C ′‖U‖W 1,p(Ω).

It follows that f̃ is an element of the dual W 1,p(Ω)′. Consequently, using

Proposition 3.47, we deduce that there exist v0 ∈ Lp
′
(Ω) and σ ∈ Lp′

(Ω)N

such that

∀u ∈W 1−1/p,p(Ω), 〈f, u〉 =
∫

Ω

v0(x)U(x)dx+

∫

Ω

σ(x) · ∇U(x)dx.

Moreover, it is clear, using functions U ∈ D(Ω), that when U is in W 1,p
0 , the

quantity 〈f, u〉 vanishes. We therefore have v0 = div σ, which is equivalent to

saying that σ ∈W p′

p′ (div) and S(σ) = f . The surjectivity follows. ��

Let us now study the density of regular functions in spaces of the type

W p′

q′ (div). This will allow us to interpret the elements of the duals defined

above in the setting of an extension of Green’s formula.

3.4.4 Density Results and an Extension of Green’s Formula

We restrict ourselves to studying W p′

q′ (div)(Ω) when p < N , in which case we

can easily see that p′ > q′. We prove the following result, which uses simplified

notation.

Proposition 3.57. Let Ω be a class C1 open subset of RN . For p and q in

[1,∞[ with p > q, let

W p
q (div)(Ω) = {σ ∈ Lp(Ω,RN ) | div σ ∈ Lq(Ω)};

then D(Ω,RN ) is dense in W p
q (div)(Ω).

Proof of Proposition 3.57.

Let σ ∈ W p
q (div)(Ω). Let Ωi, ϕi,O′

i, ai be the elements occurring in the

definition of the C1 regularity of Ω. The vector functions vi = σϕi, which have

bounded support in Δi = Ωi ∩Ω, belong to W p
q (div)(Δi) because p > q.

Indeed, first of all, we have ‖vi‖p � |ϕi|∞‖σ‖p. Moreover, we have

div(σϕi) = ϕi div σ + σ · ∇ϕi. The first term belongs to Lq. By applying

Hölder’s inequality with exponents t = p/q > 1 and t′ = t/(t− 1) to the in-

tegral
∫
Δi
|σ · ∇ϕi|qdx, we also obtain the inclusion of the second term in Lq.

We have thus reduced the problem to approximating σϕi by functions in

D(Ω,RN ).

Each function ϕiσ can be extended to the open set

Ui = {(x′, xN ) | x′ ∈ O′
i, xN > ai(x

′)},
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after which ϕiσ belongs to W p
q (div)(Ui). The open set Ui is star-convex with

respect to one of its points, which we denote by xi (cf. Exercise 3.9). Let us

consider the function x 	→ hλ(x) = xi + λ(x− xi).

Fig. 3.2. Using star-convex open subsets of a Lipschitz cover.

If λ > 1, then the function wλ
i = σϕi ◦ h−1

λ is defined in hλ(Δi), which is an

open set containing the closure of Δi in its interior.

Using scaling on distributions (cf. [22, p. 103]), we have the equality

∂j(w
λ
i ) = 1

λ (∂jwi) ◦ h−1
λ for every j ∈ [1, N ], and consequently wλ

i ∈
W p

q (div)(hλ(Δi)). Moreover, the restriction of wλ
i to Δi converges to wi

when λ tends to 1.

Let ελi = d(∂Ω, ∂(hλ(Δi))/2, let Δ
λ
i = {x ∈ hλ(Δi) | d(x, ∂Ω) < ελi }, and

let ρ be a regularizing function. The function ρελi � w
λ
i is then well defined

on Δλ
i and its restriction to Δi converges to wi in W

p
q (div)(Δi) when λ tends

to 1. If, for each Δi, we multiply ρελi � w
λ
i by a function ψλ

i that belongs to

D(Δλ
i ) and has value 1 on Δi, then the function

∑
i ψ

λ
i (ρελi �w

λ
i ) is a sequence

in D(RN ) that converges to σ in W p
q (div)(Ω)).

The same proof can be used when p � N . ��

Let us apply this density result to an extension of Green’s formula.

Proposition 3.58. Let Ω be a class C1 open subset of RN . For every τ ∈ E,
where E = W p′

q′ (div), E = W p′

1 , or E = W p′

ε , depending on the value of p,

we define the element τ · −→n of the topological dual of W 1−1/p,p(∂Ω) to be the

element satisfying

∀U ∈W 1,p(Ω), 〈τ · −→n , γ0U〉=
∫

Ω

τ(x) · ∇U(x)dx+
∫

Ω

U(x) div τ(x)dx.

This formula is an extension of Green’s formula because when τ ∈ D(Ω,RN ),

the linear functional τ · −→n coincides with U 	→
∫
∂Ω
τ · −→n γ0U(σ)dσ.

Finally, the map S on W p′

q′ (div) defined by S : τ 	→ τ · −→n is surjec-

tive. Moreover, there exists a constant C such that if f ∈ W−1+1/p′,p′
(∂Ω),
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then there exists a τ ∈ W p′

q′ (div)(Ω) satisfying S(τ) = f and ‖f‖ �
C‖τ‖

Wp′
q′ (div)(Ω)

.

Proof of Proposition 3.58.

To a given element τ ∈ E, we associate the element T = S(τ) of the dual of

W 1−1/p,p(∂Ω). When u ∈W 1−1/p,p(∂Ω) and U ∈W 1,p(Ω) satisfies γ0U = u,

we have (cf. Theorem 3.54),

〈T, u〉 =
∫

Ω

U(x) div τ(x)dx+

∫

Ω

τ(x) · ∇U(x)dx.

In other words, thanks to the previous density result, we have a sequence {ϕk}
in D(RN ,RN ) that converges to τ in E. We then have

〈S(ϕk), u〉 =
∫

Ω

U(x) divϕk(x)dx+

∫

Ω

ϕk(x) · ∇U(x)dx.

By Green’s formula (3.43), we have

〈S(ϕk), u〉 =
∫

∂Ω

γ0U(s)ϕk(s) · −→n (s)dσ(s) =
∫

∂Ω

u(s)ϕk(s) · −→n (s)dσ(s).

Now, as U ∈ Lq(Ω) and div(τ − ϕk) tends to 0 in Lq
′
(Ω) when k → +∞,

it follows that
∫
Ω
U(x) divϕk(x)dx →

∫
Ω
U(x) div τ(x)dx. Likewise, we have∫

Ω
∇U(x)ϕk(x)dx→

∫
Ω
∇U(x)τ(x)dx.

To ϕk, we associate the linear functional ϕk · −→n on W 1−1/p,p(∂Ω) defined

by

〈(ϕk · −→n ), u〉 =
∫

∂Ω

u(s)ϕk(s) · −→n (s)dσ(s).

By the above, this sequence converges in the dual of W 1−1/p,p(∂Ω) to S(τ),

which can therefore also be denoted by τ · −→n . ��

Remark 3.59. It is clear that if, in addition to satisfying the conditions

stated above, τ also belongs to C(Ω,RN ), then τ ·−→n coincides with its restric-

tion to the boundary in the usual sense.

Corollary 3.60. Consider a class C1 open set Ω and two functions U ∈
W 1,p(Ω) and V ∈ W 1,q(Ω) with exponents p and q satisfying 1 � p < N
and 1/p + 1/q = (N + 1)/N . These two functions then satisfy Green’s for-

mula: ∫

Ω

U∂iV dx+

∫

Ω

V ∂iUdx =

∫

∂Ω

γ0U γ0V nidσ.

Proof.

The proof follows from Theorem 3.54 because τ equals V ei. ��
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3.5 Higher Order Traces

3.5.1 Preliminary Remarks

Regularity Hypotheses on the Open Sets Ω. For m > 1, the term higher order

trace of u ∈ Wm,p(Ω), for m > 1, refers to the trace of a derivative Dαu of

order |α| with 0 � |α| � m− 1. We have seen the construction of the trace of

an element u of W 1,p(Ω) in Chapter 2. This construction uses the existence

of ∇u on the open set Ω and equality (2.89), which in local coordinates is

for almost all x′ ∈ O′
i, γ0(ϕiu)(x

′) = −
∫ +∞

0

∂N (ϕiu)(x
′, ai(x

′) + t)dt.

This relation is only well defined if the local boundary, given by x′ 	→ ai(x′),
is of class C1.

Derivatives on ∂Ω. Let us first note that if Ω = R
N−1 × ]0,+∞[, then the

derivatives on the boundary ∂Ω = R
N−1 × {0} are the restrictions of the

N − 1 first derivatives in R
N . In that case, we have no trouble defining the

derivatives in the sense of distributions on ∂Ω and, therefore, defining the

Sobolev spaces Wm,p(∂Ω).

The same cannot be said about the other cases, because the derivative

with respect to the variable xj of x ∈ R
N , which is well defined in Ω, is,

in general, no longer defined on the hypersurface ∂Ω. The description of the

derivatives in ∂Ω and the definition of the Sobolev spaces on ∂Ω are therefore

no longer clear.

Let Ωi, O′
i, ai be the objects that occur in the definition of the regularity

of Ω. Recall that to define the induced Lebesgue measure μi on Ωi ∩ ∂Ω,
we use the local coordinate systems from that definition. Gluing the pieces,

we obtain the Lebesgue measure μ on ∂Ω. We then show that this measure

is unique and does not depend on the choice of local coordinate systems,

allowing us to define the spaces Lp(∂Ω). We used this same process to show

that the trace γ0U is indeed an element of Lp(∂Ω), by considering limits of the

integrals
∑

i

∫
O′

i
|U(x′, ai(x′) + 1/n)|pdx′. We proceed in the same manner to

define the traces of the derivatives ∂jU and the trace of ∇U . By extending the

definition of a derivative with respect to a vector, we can then, using γ0∇U ,
define the derivatives with respect to the directions linked intrinsically to ∂Ω,

in particular, those along a tangent vector of ∂Ω or along the normal vector.

Consequently, these derivatives are not defined, at least not directly, in the

sense of the distributions on ∂Ω (cf. [60]).

More precisely, let us assume that we are in the neighborhood of a pointm0

of ∂Ω that has a neighborhood V ′ where, in an orthonormal local coordinate

system {e′j}, the boundary is represented by the coordinates of the point m,
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that is (x′, xN = a(x′)) where a is a C1 function. The derivative of m with

respect to xj can be written as e′j + ∂ja(x
′)e′N . Consequently, the vectors

−→
t j =

e′j + ∂ja(x
′)e′N√

1 + |∇a(x′)|2

for 1 � j � N −1 form a basis of unit tangent vectors of ∂Ω at m. In general,

it is not orthonormal.

For 1 � j � N − 1, we can set

∂−→
t j
(γ0U)(x) = γ0∇U(x) ·

−→
t j(x) =

∂ju+ ∂ja∂Nu√
1 + |∇a(x′)|2

,

allowing us to define differentiation with respect to an arbitrary vector
−→
t of

the tangent space TN−1(∂Ω)(x). A vector orthogonal to the tangent space

can be written as
−∇a(x′) + eN√
1 + |∇a(x′)|2

.

Therefore the normal derivative of u, that is, the derivative with respect to a

vector orthogonal to the tangent space, can be written as

(3.61) ∂−→n u(x) =
−
∑N−1

1 ∂ia∂iu+ ∂Nu√
1 + |∇a(x′)|2

.

This derivative, which has already played an important role in Green’s for-

mula, is moreover essential to the formulation of the Neumann problems

(cf. Chapter 5).

The generalization to derivatives of order higher than 1 demands the use

of iterated operators ∇(k), which are gradients of vector functions (see below).

Let us assume that we have determined the traces of U and of ∇U . In
principle, we should obtain a better regularity for γ0U , which is an element of

W 1−1/p,p(Ω), than for γ0∇U . Does this regularity translate to the inclusion in

a subspace of W 1,p(∂Ω), which would be a different fractional Sobolev space,

thus generalizing the space W 1−1/p,p(∂Ω)?

We will devote part of this section to this question. In particular, if k�2,

we will see that the regularity behavior of γ0U and γ0(∇u) is analogous

to that of U and ∇U . Indeed, if γ0U ∈ W k−1−1/p,p(∂Ω), then γ0(∇U) ∈
W k−2−1/p,p(∂Ω).

Notions from Differential Calculus. In what follows, the derivative∇(k)(u)(x),

where k is an integer > 0, is the multilinear map whose components are the

partial derivatives of order k of u at the point x. For example, for k = 2,

consider the bilinear map∇(2)u(x), called the Hessian of u at x. The derivative
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∂
(2)
−→n u(x) is defined to be the image of the pair (−→n ,−→n ) under this map, that

is, if the components of −→n are {nj}, then

∇(2)u(x) · −→n · −→n =
∑

i+j=2

∂iju(x)ninj .

For α of order |α| = k, setting −→n (α) = nα1
1 n

α2
2 · · ·nαN

N , we generalize this to

∂
(k)
−→n u(x) =

∑

|α|=k

k!

α!
Dαu(x) · −→n α.

When
−→
t is a tangent vector, we define the derivatives ∂

(k)
−→
t

likewise.

Exercise 3.14 concerns the computations of such derivatives when ∂Ω is a

cylinder or a sphere.

3.5.2 Generalization of Liftings

To highlight the properties of traces of order greater than or equal to 1, we

introduce a lifting of u that is better adapted to problems concerning higher

orders than the one we used up to now.

Proposition 3.62. Let ρ ∈ D(RN ) and let ρy(z) = 1/yNρ(z/y). To every

u ∈ W 1−1/p,p(RN ), we associate the function (x, y) 	→ U(x, y) = ρy � u; then
U ∈W 1,p(RN × ]0, 1[) and γ0U = αu, where α =

∫
RN ρ(x)dx.

Moreover, there exists a constant C depending only on N and p, such that

∀u ∈W 1−1/p,p(RN ), ‖ρy � u‖W 1,p(RN×]0,1[) � C‖u‖W 1−1/p,p(RN ).

Proof of Proposition 3.62.

By the properties of a convolution and the equality
∫
∂iρ(t) dt = 0, we

have

∂iU =
1

y
(∂iρ)y � u =

∫
(∂iρ(t))

(u(x− yt)− u(x)
y

)
dt.

Let us show that this derivative belongs to Lp(RN × ]0, 1[).

We use the method from the proof of Lemma 3.27. This consists in giving

an upper bound for the integral

I =

∫ 1

0

∫

RN

∣
∣
∣
∫

t∈supp ρ

(∂iρ(t))
(u(x− yt)− u(x)

y

)
dt
∣
∣
∣
p

dx dy.

Let x̂j = x− y
(∑j

1 tses
)
for 1 � j � N − 1, x̂0 = x, and x̂N = x− yt, so that

|u(x)− u(x− yt)| �
N−1∑

0

|u(x̂j)− u(x̂j+1)|.
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We first use the discrete version of Hölder’s inequality, |
∑N−1

0 ai|p �
Np−1

∑N−1
0 |ai|p, and then give an upper bound for each of the inte-

grals of the type above using Hölder’s inequality, replacing the difference

u(x − yt) − u(x) by u(x̂j) − u(x̂j+1). We can then write I � C
∑N−1

0 Ij ,

where the integrals Ij are of the form

Ij =

∫ 1

0

∫

RN

[∫

t∈supp ρ

∣
∣
∣
u(x̂j)− u(x̂j+1)

y

∣
∣
∣
p

dt dx dy.

Let us determine the partial integral of the first term I0 with respect to

the variable y. Substituting the variable z1 defined by yt1 = z1, this partial

integral can be written as

∫ 1

0

∣
∣
∣
u(x)− u(x− yt1e1)

y

∣
∣
∣
p

dy = tp−1
1

∫ t1

0

∣
∣
∣
u(x)− u(x− z1e1)

z1

∣
∣
∣
p

dz1.

Since the domain of integration of the variables tj is bounded in R
N by the

bounds of the support of ρ, in particular |t1| � K1, we obtain the existence

of constants C ′
0 and C0 such that

I0 � C ′
0

∫

t∈supp ρ

∫

RN

∫ K1

−K1

∣
∣
∣
u(x)− u(x− z1e1)

z1

∣
∣
∣
p

dx dz1dt

� C0

∫

RN

∫

R

∣
∣
∣
u(x)− u(x− z1e1)

z1

∣
∣
∣
p

dz1dx � C0‖u‖p1,1−1/p < +∞.

The last inequality follows from Lemma 3.27, using the hypothesis u ∈
W 1−1/p,p(RN ). We have thus shown that I0 is finite.

Consider the integral Ij . By setting x′ = x̂j , it becomes

Ij =

∫ 1

0

∫

RN

[∫

t∈supp ρ

∣
∣
∣
u(x̂′)− u(x′ − ytj+1ej+1)

y

∣
∣
∣
p

dt dx dy.

Substituting the variable zj+1 = ytj+1 in the partial integral with respect to y

and applying Lemma 3.27, we obtain

Ij =

∫ 1

0

∫

RN

[∫

t∈supp ρ

∣
∣
∣
u(x′)− u(x′ − ytj+1ej+1)

y

∣
∣
∣
p

dt dx dy

� C ′
j

∫

RN

∫ Kj+1

−Kj+1

∣
∣
∣
u(x′)− u(x′ − zj+1ej+1)

zj+1

∣
∣
∣
p

dzj+1dx

� Cj‖u‖pj+1,1−1/p < +∞.

We can now conclude that all the derivatives ∂iU belong to Lp(RN × ]0, 1[).
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To give the derivative with respect to y explicitly, we assume that u ∈
D(RN ). Setting ũt(x, y) = u(x− yt) and ζj(t) = tjρ(t), we can write

∂yU(x, y) =
1

y

N∑

1

∫

RN

ζj∂tj ũtdt = −
1

y

N∑

1

∫

RN

∂j(ζj)(t)u(x− yt)dt

=

N∑

1

∫

RN

∂j(ζj)(t)
[u(x)− u(x− yt)

y

]
dt.

(3.63)

For u in W 1−1/p,p(RN ), let {un} be a sequence in D(RN ) that converges to u

in W 1−1/p,p(RN ). It is clear that the sequence Un defined by Un = ρy � un
converges, for example in Lp, to U = ρy � u. Moreover, {∂yUn} is a Cauchy

sequence in Lp, as is the sequence {∂xUn}, thanks to their expressions as

functions of un. Taking the limit, we find that because of identities between

functions in Lp,

(3.64) ∂yU(x, y) =

N∑

1

∫

RN

∂j(ζj)(t)
[u(x)− u(x− yt)

y

]
dt

still holds for almost all (x, y).

Beginning with this formula, the computations are analogous to those

concerning the derivatives ∂jU . Thanks to Lemma 3.27, they give a well-

defined result. We have thus obtained the inclusion U ∈ W 1,p(RN × ]0, 1[).

Moreover, the different upper bounds imply the existence of a constant C

depending only on ρ,N, p, such that

‖U‖W 1,p(RN×]0,1[) � C‖u‖1−1/p,p � C‖u‖W 1−1/p,p(RN ). ��

To generalize this proposition, we need to define new spaces.

3.5.3 Fractional Sobolev Spaces with Higher Order Derivatives

The definition of W 2−1/p,p(RN ) can be obtained by generalizing that of

W 1−1/p,p(RN ). More precisely, we replace the inclusion u ∈ Lp(RN ) by

u ∈W 1−1/p,p(RN ) and replace u by the derivatives ∂iu in the seminorm

‖u‖′ =
[∫

R2N

|u(x)− u(y)|p
|x− y|p+N−2

dx dy

]1/p
.

We continue this extension for a class Cm open subset Ω of RN by considering

tangential derivatives, that is, derivatives with respect to vectors
−→
t of the

space TN−1(x), which is tangent to ∂Ω at x.
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Definition 3.65. For f ∈ Cm(Ω) and a tangent vector
−→
t of ∂Ω at x, we set

∀ j � m, ∂(j)−→
t
f(x) = ∇(j)f(x) · −→t · · · −→t .

(1) Let Ω be a class Ck open set with k � 1 and let 1 < p <∞. We can write

the seminorm, denoted by ‖·‖′k−1,p,N , explicitly as follows:

‖u‖′k−1,p,N =

(∫

∂Ω

∫

∂Ω

∣
∣∂(k−1)

−→
t
u(x)− ∂(k−1)

−→
t
u(y)

∣
∣p

|x− y|p+N−2
dσ(x)dσ(y)

)1/p

.

(2) The space W k−1/p,p(∂Ω) is defined by

W k−1/p,p(∂Ω) = {u ∈W k−1,p(∂Ω) | ∀−→t ∈ TN−1, ‖u‖′k−1,p,N <∞}
= {u ∈W k−1,p(∂Ω) | ∀−→t ∈ TN−1,

∂k−1
−→
t
u ∈W 1−1/p,p(∂Ω)}.

Remark 3.66. When Ω = R
N × ]0,+∞[, this corresponds to the space

W k−1/p,p(RN ) defined before. For an element u, the partial derivatives ∂iu

with respect to the N variables xi of R
N belong to W k−1−1/p,p(RN ).

Theorem 3.67. Under the assumptions of the definition above, we have

W k−1/p,p(∂Ω) = γ0(W
k,p(Ω)).

We begin by giving the proof for N = 2 and Ω = R× ]0,+∞[. For this, we

propose to use the lifting used at the beginning of the chapter (cf. (3.10)). This

lifting, which works well in dimension 1, is not suitable for higher dimensions.

This is why, in the general case N � 2, we will use the regularizing lifting

introduced in Proposition 3.62 (cf. Remark 3.24).

The difference between the two liftings is as follows. In the first case, we

take the convolution with the characteristic function of a product of intervals.

In the second case, the convolution is with a C∞ function with compact sup-

port, which allows us to derive more easily at an arbitrary order and to use

induction. In Exercise 3.12, we propose to prove the theorem for N = 3 and

Ω = R
2× ]0,+∞[ using a lifting where the convolution is with a characteristic

function.

Let us also note that for Ω = R
N−1× ]0,+∞[, when N = 1, the tangential

derivative is the derivative with respect to x in R and when N � 2, the

tangential derivatives are the derivatives ∂iu with respect to the coordinates xi
in R

N−1.

Proof of Theorem 3.67 for Ω = R× R
+.

We begin by showing that

γ0(W
k,p(R× R

+)) ↪−→W k−1/p,p(R).
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Let us note that this proof does not require that the dimension is 2 and can

therefore be generalized.

We use the commutativity of differentiation with respect to x and re-

striction to {y = 0}. We also use induction on k. If k = 1, we know the

result. Assuming the result proved for k− 1, suppose that u ∈W k,p(R×R
+).

Then ∂xu ∈W k−1,p(R×R
+), hence by the induction hypothesis, ∂xu(x, 0) ∈

W k−1−1/p(R), which means that ∂xu(x, 0) ∈W k−2,p(R) and (∂xu)
(k−2)(·, 0) ∈

W 1−1/p,p(R). This implies that u(·, 0) ∈W k−1−1/p,p(R).

Consider the converse.

Since the property is clear for k = 1, we suppose that k � 2. Let u ∈
W k−1/p,p(R) satisfy ‖u‖′k−1,p,2 <∞. We define the lifting U by setting

∀x ∈ R, ∀ y > 0, U(x, y) =
1

y

∫ y

0

u(x+ z)dz.

We will show that U ∈W k,p(R× ]0, 1[) and U(x, 0) = u(x).

The proof once again uses induction on k. We therefore assume proved

that for all j with 1 � j � k − 1,

(3.68) u ∈W j−1/p,p(R) =⇒ U ∈W j,p(R× ]0, 1[).

By assumption, u∈W k−1/p,p(R); hence by Definition 3.65, ∂xu∈W k−2,p(R)

and ‖∂xu‖′k−2,p < +∞. Consequently, we have ∂xu ∈ W k−1−1/p,p(R). Using

the formula of the lifting, and the induction hypothesis (3.68), we deduce that

∂xU ∈W k−1,p(R× ]0, 1[).

We now only need to prove that

(3.69) ∂kyU ∈ Lp(R× ]0, 1[).

To prove this, let us first use induction to show the following formula, where

Kk = k!(−1)k+1/yk+1:

(3.70) ∂kyU(x, y) = Kk

∫ y

0

(
u(x+ z)−u(x+y)−

k−1∑

1

(z − y)j
j!

u(j)(x+y)
)
dz.

We assume this result, which is true for k = 1, established for ∂k−1
y U . Since

the function U can be written as U(x, y) =
∫ 1

0
u(x + zy)dz, differentiating it

gives

∂(k)y U(x, y) =

∫ 1

0

zku(k)(x+ zy)dz.
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Integrating by parts then gives

∂kyU(x, y) =
[zku(k−1)(x+ zy)

y

]1

0
− k

∫ 1

0

zk−1 u
(k−1)(x+ zy)

y
dy

=
u(k−1)(x+ y)

y
− k 1
y
∂k−1
y U(x, y)

= −k(−1)
k+1

yk+1

∫ y

0

(z − y)k−1u(k−1)(x+ y)dz − k 1
y
∂(k−1)
y U(x, y).

By the induction hypothesis (3.70) for the exponent k − 1, we see that

∂kyU(x, y) can be written as

− kKk−1

y

∫ y

0

(
u(x+ z)− u(x+ y)−

∑

1�j�k−2

(z − y)ju(j)(x+ y)
j!

)
dz

− k(−1)
k+1

yk+1

∫ y

0

(z − y)k−1u(k−1)(x+ y)dz

= Kk

∫ y

0

(
u(x+ z)− u(x+ y)−

∑

1�j�k−1

(z − y)ju(j)(x+ y)
j!

)
dz.

Formula (3.70) follows.

For the rest of the proof, let us set

(3.71) Ak(u)(x, y, z) = (u(x+ z)− u(x+ y)−
k−1∑

1

(z − y)j
j!

u(j)(x+ y)).

We note that

∂k−1
z Ak(u)(x, y, z) = u

(k−1)(x+ z)− u(k−1)(x+ y),

and that Ak(u)(x, y, y) = ∂jzAk(u)(x, y, y) = 0 for every index j satisfying

j � k − 1. Integrating k − 1 times, we deduce the relation

(3.72) Ak(u)(x, y, z)

=

∫ z

y

∫ t2

y

· · ·
∫ tk−1

y

(
u(k−1)(x+ tk)− u(k−1)(x+ y)

)
dtk · · · dt2.

Using homotheties on the variables, we can write the right-hand side of the

relation as

yk−1

∫ z/y

1

· · ·
∫ tk−1

1

(
u(k−1)(x+ tky)− u(k−1)(x+ y)

)
dtkdtk−1 · · · dt2.
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Fixing y, we apply the change of variables z = yt1 in the integral

Kk

∫ y

0
Ak(x, y, z)dz, giving

Kk

∫ y

0

Ak(u)(x, y, z)dz = Kky

∫ 1

0

Ak(x, y, t1y)dt1

= Kky
k

∫ 1

0

∫ t1

1

· · ·
∫ tk−1

1

(
u(k−1)(x+ tky)− u(k−1)(x+ y)

)
dtkdtk−1 · · · dt1

= K ′
k

∫ 1

0

∫ t1

1

· · ·
∫ tk−1

1

(
u(k−1)(x+ tky)− u(k−1)(x+ y)

)
dtkdtk−1 · · · dt1,

where K ′
k = (−1)k−1k!/(ky). We can bound the norm ‖·‖pLp(R×]0,1[) of the

function ∂
(k)
y U , which satisfies ∂

(k)
y U(x, y) = Kk

∫ y

0
Ak(u)(x, y, z)dz, from

above by

∫ 1

0

∫

R

[∫ 1

0

∫ 1

t1

· · ·
∫ 1

tk−1

∣
∣
∣
u(k−1)(x+ tky)− u(k−1)(x+ y)

y

∣
∣
∣
p

dtk · · · dt1
]
dx dy.

We apply the change of variables (x, y) 	→ (X,Y ) = (x+ y, x+ tky) with Ja-

cobian 1− tk. The denominator can then be written as y = (X − Y )/(1− tk)
and the domain of integration becomes {X > Y }. Exchanging x and y, we ob-
tain the previous upper bound with domain {Y > X}. Using Fubini’s formula

and the inequality (1− tk)p−1 � 1, we obtain

‖∂(k)y U‖
p
Lp(R×]0,1[)

�
∫ 1

0

· · ·
∫ 1

tk−1

∫

R

∫

R

(1− tk)p−1

∣
∣
∣
∣
u(k−1)(X)− u(k−1)(Y )

(X − Y )

∣
∣
∣
∣

p

dX dY dt1 · · · dtk

�
∫

R

∫

R

∣
∣
∣
∣
u(k−1)(X)− u(k−1)(Y )

(X − Y )

∣
∣
∣
∣

p

dX dY

� ‖u(k−1)‖′pk−1,p,2 < +∞.

Summarizing, we have shown that ∂
(k)
y U ∈ Lp(R×]0, 1[), concluding the proof

of (3.69), and therefore the proof of the theorem for N = 2. ��

We continue for N > 2 with results concerning the new lifting, starting

with a theorem generalizing Proposition 3.62, which in fact completes the

proof of Theorem 3.67.

Theorem 3.73. Let ρ ∈ D(RN ) and, as above, let ρy(z) = (1/yN )ρ(z/y).

To a function u in W k−1/p,p(RN ), we associate the function U defined by

U(x, y) = ρy � u. The following hold:

(1) We have U ∈W k,p(RN × ]0, 1[).
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(2) If, moreover,

∀ s = {si}, 0 < |s| � k − 1, we have

∫

RN

−→
ts ρ(t)dt = 0,

where
−→
ts = Πi(t

si
i ), then the trace of U satisfies

(3.74) U(x, 0) =
(∫

RN

ρ(t)dt
)
u(x) and ∀ j ∈ [1, k − 1], ∂jyU(x, 0) = 0.

Remark 3.75. The existence of such a function ρ can be shown, for example,

using a function ϕ ∈ D(R) such that for every integer � satisfying 0 < � � k−1,
we have

∫
R
ϕ(t)t�dt = δ�0. The existence of such a function ϕ is the aim of

Exercise 3.8.

It is now easy to see that ρ(t) = ΠN
1 ϕ(tj) satisfies the condition stated

above.

Proof of Theorem 3.73.

We make the following induction hypothesis on k:

∀ ρ ∈ D(RN ), u ∈W k−1/p,p(RN ) =⇒ ρy � u ∈W k,p(RN × ]0, 1[).

For k = 1, this is Proposition 3.62.

Let us assume the theorem proved up to rank k−1. Let u ∈W k−1/p,p(RN )

with k � 2. By the induction hypothesis, we already know that U(x, y) =

ρy � u ∈W k−1,p(RN × ]0, 1[).

By Remark 3.66, we know that ∂iu ∈ W k−1−1/p,p(RN ), where k − 1 � 1.

We can therefore compute ∂iU = ρy � ∂iu as a convolution of functions. The

induction hypothesis gives ∂iU ∈W k−1,p(RN × ]0, 1[). In order to obtain the

conclusion that U ∈ W k,p(RN × ]0, 1[), it now suffices to prove that ∂yU ∈
W k−1,p(RN × ]0, 1[).

For this derivative, we traditionally have

∂yU(x, y) =

N∑

1

∫
ρ(t)(−ti)∂iu(x− yt).

Setting ζi(t) = tiρ(t), an arbitrary term of the sum can be written as

−
∫

RN

ζi(z/y)∂iu(x− z)dz = −(ζi)y � ∂iu.

By the induction hypothesis, as ζi ∈ D(RN ) and ∂iu ∈ W k−1−1/p,p(RN ), we

deduce that each of these terms belongs to W k−1,p(RN × ]0, 1[), giving the

conclusion for ∂yU . We have thus proved that U ∈W k,p(RN × ]0, 1[).

It remains to see that ∂�yU(x, 0) = 0 for � � k − 1. To illustrate

the ideas behind our method, we first consider the case � = 1. We have



3.5 Higher Order Traces 155

∂yU(x, y) =
∑

i

∫
RN ζi(t)∂iu(x − yt)dt. Moreover, as ∂iu ∈ W 1−1/p,p, using

the equalities
∫
RNρ(t)tjdt = 0 for every j ∈ [1, N ], Proposition 3.62 tells us

that ∂yU(x, 0) = 0.

Let us now assume that � > 1 with � � k − 1. Since the convolution

can be differentiated up to order k − 1, we deduce the following formula by

differentiating the function u:

∂�yU(x, y) =
∑

|s|=�

Cs
j

∫

RN

ρ(
−→
t )Dsu(x− y−→t ) · (

−→
ts )dt.

It follows that ∂�yU(x, 0) is a sum of terms
∫
RN ρ(t)

−→
tsdtDsu(x) that are all

zero for the chosen ρ because s �= 0 and |s| � k − 1. ��

The next two propositions specify the previous liftings so that they satisfy

boundary conditions. These conditions are related to Neumann conditions, as

they concern derivatives.

Proposition 3.76. Let k � 1; then for every u ∈W 1−1/p,p(RN ) and for every

ρ ∈ D(RN ), the function V defined by V (x, y) =
(
yk−1/(k − 1)!

)
ρy � u(x) has

the following properties:

V ∈W k,p(RN × ]0, 1[), ∂k−1
y V (x, 0) = u(x)

∫

RN

ρ(t)dt,

∀ � � k − 2, ∂�yV (x, 0) = 0.and

Proof of Proposition 3.76.

We use induction on k.

When k = 1, this is Proposition 3.62. We assume that the result is true at

the exponent k − 1. Let

V (x, y) =
yk−1

(k − 1)!
ρy � u = y

yk−2

(k − 1)!
ρy � u = yv,

where v ∈W k−1,p(RN × ]0, 1[) by the induction hypothesis.

Let α be a differentiation index satisfying |α| = k − 1.

• If αN = 0, then we have Dα(yv) = yDαv ∈ Lp(RN × ]0, 1[).

• If αN = j > 0, then the Leibniz formula gives

Dj
yD

α′
(yv) = yDj

yD
α′
(v) + jDj−1

y Dα′
(v),

which also proves that this derivative is in Lp(RN×]0, 1[) because j+|α′| =
k − 1. We conclude that V ∈W k−1,p(RN × ]0, 1[).
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From here on, we use the notation ũx,y(t) = u(x− yt), giving

∂xj ũx,y(t) = −
1

y
∂tj ũx,y(t).

Following the method of Proposition 3.62 (cf. relations (3.63) and (3.64)),

that is, integrating the term
∫
RN ρ(t)∂tju(x− yt)dt by parts, we find that

∂jV (x, y) =
yk−1

(k − 1)!
ρy � ∂ju =

−yk−2

(k − 1)!

∫

RN

ρ(t)∂tj ũx,y

=
yk−2

(k − 1)!
(∂jρ)y � u.

Since the function (∂jρ)y belongs to D(RN ) and u belongs

to W 1−1/p,p(RN ), the induction hypothesis implies that ∂jV ∈
W k−1,p(RN × ]0, 1[). We still need to prove the same property for ∂yV . We

once more use the process described in the relations (3.63) and (3.64). This

gives

∂yV (x, y) =
yk−2

(k − 2)!
ρy � u+

yk−1

(k − 1)!

N∑

1

[
ρy � (−tj∂ju)

]

=
yk−2

(k − 2)!
ρy � u−

yk−2

(k − 1)!

N∑

1

∫

RN

tjρ(t)∂tju(x− yt)dt

=
yk−2

(k − 2)!
ρy � u−

yk−2

(k − 1)!

N∑

1

∫

RN

−∂j(tjρ(t))u(x− yt)dt,

whence

(3.77) ∂yV (x, y) =
yk−2

(k − 2)!
ρy � u+

yk−2

(k − 1)!

N∑

1

[
(ηj)y � u

]
.

The left-hand side belongs to W k−1,p(RN × ]0, 1[). All the terms on the right-

hand side also do, thanks to the induction hypothesis applied to the functions

ηj = ∂j(tjρ), which belong to D(RN ).

To summarize, we have shown that V ∈W k,p(RN × ]0, 1[).

The relations at the boundary are obvious. Indeed, for y = 0, the Leibniz

formula applied to the derivative of order k − 1 in y implies that all terms

vanish except for one, namely,

∂k−1
y

( yk−1

(k − 1)!

)[
ρy � u

]
y=0

= u(x)

∫

RN

ρ(t)dt. ��
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Proposition 3.78. Let u ∈W j−1/p,p(RN ). For k � 0, set

U(x, y) =
yk

k!
ρy � u,

where ρ satisfies

∀ s, |s| ∈ [1, j − 1] =⇒
∫

RN

ρ(t)
−→
tsdt = 0.

We then have:

(1) The function U belongs to W k+j,p(RN × ]0, 1[). Its norm in this space is

controlled by that of u in W j−1/p,p(RN ).

(2) The traces of U satisfy

∂kyU(x, 0) = u(x)

∫

RN

ρ(t)dt,

∀ � ∈ [0, k + j − 1], � �= k =⇒ ∂lyU(x, 0) = 0.

Proof of Proposition 3.78.

Part of the proof is by induction on k. We begin by noting that if |α| = j−1
and αN = 0, then we have Dαu ∈ W 1−1/p,p(RN ). Hence, by the previous

proposition,

DαU =
yk

k!
ρy � D

αu ∈W k+1,p(RN ),

which implies that all the derivatives other than ∂k+j
y U are in Lp. It remains

to prove that ∂k+j
y U is in Lp(RN × ]0, 1[). Now,

∂yU =
yk−1

(k − 1)!
ρy � u+

yk−1

k!

∑
(ηj)y � u.

Since the recursion hypothesis tells us that ∂yU ∈W k+j−1,p(RN × ]0, 1[), we

can deduce that U ∈W k+j,p(RN × ]0, 1[). This proves the first statement.

The previous computations show that, up to a constant, the norm of U in

W j+k,p(RN × ]0, 1[) is bounded from above by that of u inW j−1/p,p(RN ). For

the boundary conditions, we first note that, by the Leibniz formula, we have

∂lyU(x, 0) = 0 for every l satisfying l < k and ∂kyU(x, 0) =
(∫

RNρ(t)dt
)
u(x).

For the exponents l satisfying k < l � k + j − 1, we once more give a

proof by recursion on k, for fixed j. For k = 0, this is Theorem 3.73, where k

is replaced by j. We assume the proposition proved for j and k − 1, that is,

if U(x, y) = (yk−1/((k − 1)!)) ρy � u, then U is in W k+j−1,p(RN × ]0, 1[) and

satisfies

∀ � � k + j − 2, ∂�yU(x, 0) = δ
k−1
l

(∫

RN

ρ(t)dt
)
u(x).
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Let V (x, y) = (yk/k! )ρy�u. Once more setting ηj = ∂j(tjρ) and using previous

computations (cf. relation (3.77) and the ones following it), the derivative with

respect to y can be written as

∂yV =
yk−1

(k − 1)!
ρy � u+

yk−1

k!

N∑

1

[
(ηj)y � u

]
= V1 + V2.

By the recursion hypothesis, as the function ρ is in D(RN ) and satisfies the

condition
∫
RN ρ(t)

−→
t� dt = 0 for � ∈ [1, j − 1], we have

∀ � � k + j − 1, ∂�yV1(x, 0) = δ
k−1
�

(∫

RN

ρ(t)dt
)
u(x).

To conclude for the terms of the sum V2, we must verify the orthogonality of

the function ηj .

For |s| ∈ [1, j − 1], consider the integral
∫
RN ηj(t)

−→
tsdt. Since ηj = ∂j(tjρ),

integrating by parts with respect to tj gives

∫

RN

ηj(t)
−→
tsdt =

∫

RN

∂j(tjρ)
[∏

k t
sk
k

]
dt

= −sj
∫

RN

ρ(t)tjt
sj−1
j

[∏
k �=j t

sk
k

]
dt = −sj

∫

RN

ρ(t)
−→
tsdt = 0.

We can therefore apply the recursion hypothesis to the terms of V2. We deduce

that

∀ |�| � k + j − 2, ∂�yV (x, 0) = u(x)δ
k
�

(∫

RN

ρ(t)dt
)
.

Consequently, ∂�yV (x, 0) = 0 for k < |�| � k + j − 1. ��

In the following theorem, we extend the previous results to the case of an

arbitrary open set.

Theorem 3.79. Let Ω be a class Cm open subset of RN .

(1) For 0 � j � m− 1, the map ϕ 	→ ∂(j)−→n ϕ from Cm(Ω) to Cm−j(∂Ω) can be

extended to a continuous linear map from Wm,p(Ω) to Wm−j−1/p,p(∂Ω).

We will denote this extension by γj.

(2) Moreover, the map γ that sends u ∈Wm,p(Ω) to the m-tuple

(
u, ∂−→n u, . . . , ∂

(j)
−→n u, . . . , ∂

(m−1)
−→n u

)

is linear, continuous and surjective onto the product space

Wm−1/p,p(∂Ω)× · · · ×Wm−j−1/p,p(∂Ω)× · · · ×W 1−1/p,p(∂Ω).
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Proof of Theorem 3.79.

Let us prove the first statement.

We begin by showing the continuity of U 	→ γjU , where j � m − 1. By

definition, ∂j−→n = ∇(j) · −→n · −→n · · · −→n . Expanding, we obtain

∂k−→n =
∑

|α|=k

k!

α!
γ0(D

αU)nα1
1 n

α2
2 · · ·nαN

N .

By the above, the maps U 	→ γ0(DαU), where |α| = j, are continuous because
the open set is of class Cm. Taking the normal derivatives introduces the

product of a function v in W j−1/p,p(∂Ω) and a function f in Cm. We then

show (cf. Exercise 3.13) that we have

‖vf‖W j−1/p,p(∂Ω) � C‖v‖W j−1/p,p(∂Ω)

where the constant C depends on the norms of f . We deduce from this the

existence of constants cj such that

‖γjU‖Wm−j−1/p,p(∂Ω) � cj‖U‖Wm,p(Ω).

Since the maps γj are linear and continuous, we also obtain this result for

the map γ with values in the product space endowed with the corresponding

norm topology.

To prove the surjectivity of γ, we first consider the case Ω = R
N−1 ×

]0,+∞[.

Let u = (um, um−1, . . . , u1) be a function in the product space. We let

Uuj ,k denote the function of Proposition 3.78 that satisfies

∂kyUuj ,k = uj

and, for � �= k,
∂�yUuj ,k = 0.

We then let U =
∑m

1 Uuj ,m−j . This is an element of Wm,p that satisfies the

equality γ(U) = u, proving the surjectivity.

Let us now consider an arbitrary Ω. When defining the liftings, we can

use the objects of the definition of the regularity of Ω to reduce to reasoning

on the open set Δi = Ωi ∩Ω.
Let uϕi ∈ W k−1/p,p(∂∗Δi), where ∂

∗Δi = ∂Ω ∩ Ωi. For the sake of sim-

plicity, we denote uϕi by u and omit the indexes i. We may, and do, assume

that O′ = BN−1, the open unit ball in R
N−1. Let us consider the map Φ

from Δ to R
N−1 × ]0,+∞[ that sends the point (x′, xN ) of Δ to the point

(x̃′, y) defined by x̃′ = x′, y = xN − a(x′).
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Fig. 3.3. Surjectivity of γ.

We can easily see that this map is invertible and that it is a class Cm
diffeomorphism onto its image. The image of ∂∗Δ is an open subset of RN−1.

The inclusions in Sobolev spaces are conserved by Φ. Figure 3.3 illustrates the

situation.

Let us now study the surjectivity of γ onto ∂Ω. To simplify the ideas, we

study the case m = 2.

Let u ∈ W 1−1/p,p(Δ). Let us show the existence of a V ∈ W 2,p(Ω) such

that

V (x′, a(x′)) = 0 and ∂−→n V (x
′, a(x′)) = u(x′, a(x′)).

In order to do this, let U ∈W 2,p(RN−1 × ]0,+∞[) be an element satisfying

U(x′, 0) = 0 and ∂NU(x
′, 0) = u(x′, a(x′))

√
1 + |∇a(x′)|2.

The existence of such a function is guaranteed by Proposition 3.78. We let

V (x′, xN ) = U(x′, xN − a(x′));

then V (x′, a(x′)) = 0. Moreover, by taking the derivative with respect to xi,

we have

∂iV (x
′, xN ) = ∂iU(x

′, xN − a(x′))− ∂ia(x′)∂NU(x′, xN − a(x′)),

whence

∂iV (x
′, a(x′)) = ∂iU(x

′, 0)− ∂ia(x′)∂NU(x′, 0).
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Using ∂iU(x
′, 0) = 0 and the expression of the normal derivative (cf. (3.61))

along the boundary, we obtain

∂−→n V (x
′, a(x′)) =

−
∑

i ∂ia(x
′)∂iV (x

′, a(x′)) + ∂NV (x
′, a(x′))

√
1 + |∇a(x′)|2

=

∑
i(∂ia(x

′))2∂NU(x
′, 0) + ∂NU(x

′, 0)
√
1 + |∇a(x′)|2

=
√

1 + |∇a(x′)|2 ∂NU(x′, 0)
= u(x′, a(x′)).

To conclude the proof of the surjectivity, it suffices, under the hypothesis

u ∈W 2−1/p,p(Δ), to show the existence of a V in W 2,p(Ω) such that

V (x′, a(x′)) = u(x′, a(x′)).

Let U ∈W 2,p(RN−1 × ]0,+∞[) satisfy

U(x′, 0) = u(x′, a(x′)) and ∂NU(x
′, 0) = 0.

Then, if V (x′, xN ) = U(x′, xN − a(x′)), we indeed have

V (x′, a(x′)) = U(x′, 0). ��

Remarks (concerning specific cases).

Notations in the Case p = 2. When p = 2 and k is a nonzero integer, we let

Hk−1/2(∂Ω) denote the space W k−1/2,2(∂Ω).

The Case p = 1. Let u ∈ W 2,1(RN−1 × ]0,+∞[). It is clear that γ0u ∈
W 1,1(RN−1). However, as has been shown in [19], the space of traces is smaller

than W 1,1(RN−1). Describing the space γ0
(
W 2,1(RN−1 × ]0,+∞[)

)
is still

an open problem. However, we can describe the normal derivative on the

boundary. More generally, we have the following result.

Proposition 3.80. Let m � 1; then the image of the trace map γm−1 satisfies

γm−1

(
Wm,1(Ω)

)
= L1(∂Ω).

Proof of Proposition 3.80. It is clear that γm−1(W
m,1(Ω)) ↪→ L1(∂Ω).

Let us show the result for m = 2 (cf. [19]).

Let g ∈ L1(RN−1) and let {ϕp}p�0 be a sequence in C2c (RN−1) that con-

verges to g in L1(RN−1). We can extract a subsequence, which we will denote

in the same way, satisfying

‖ϕp+1 − ϕp‖1 � 2−p‖g‖1.
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Let {αp} be a sequence of positive real numbers such that

∀ p ∈ N, αp � 2−p‖g‖1
∑

{i∈{1,2},k∈[p,p+1]} ‖ϕ
(i)
k ‖1 + 1

.

Let t0 =
∑∞

0 αp and let tp+1 = tp − αp.
The resulting sequence {tp} is strictly decreasing and tends to zero when p

tends to infinity. Let t satisfy 0 < t � t0; then there exist unique tp and

λ ∈ [0, 1[ such that t = λtp+1 + (1 − λ)tp. We define the function v on

R
N−1 × [0, t0] by

v(x′, t) = λ(ϕp+1(x
′)− ϕp(x′)) + ϕp(x′).

For every x′ ∈ R
N−1, we have limt→0 ‖v(·, t) − g‖L1(RN−1) = 0. Let us show

that the following functions,

v,
∂v

∂xi
(1 � i � N − 1),

∂v

∂xN
,
∂2v

∂x2i

belong to L1(RN−1× ]0, t0[). For v, this follows from the inequality λ < 1 and

the inclusion ϕp ∈ L1(RN−1). For i = 1, 2 and j ∈ [1, N − 1], we have, thanks

to the definition of αp,

∫ t0

0

∫

RN−1

|∂ijv(x′)|dx′dt =
+∞∑

0

∫ tp

tp+1

∫

RN−1

|∂ijv(x′)|dx′dt

� 3

+∞∑

0

(tp − tp+1)‖∂ijϕp‖1

� 3

+∞∑

0

αp‖∂ijϕp‖1 � 3‖g‖1.

On [tp+1, tp] we have λ = (t− tp)/(tp+1 − tp). Therefore the derivative in t on
this interval can be written as (ϕp+1 − ϕp)/(tp+1 − tp). We deduce from this

that
∫ t0

0

∫

RN−1

|∂tv(x′, t)| dx′dt =
∫

RN−1

+∞∑

0

∫ tp

tp+1

|ϕp+1 − ϕp|
tp − tp+1

dx′dt

�
+∞∑

0

‖ϕp+1 − ϕp‖1 � 2‖g‖1.

Next, let u be defined by u(x′, xN ) = ϕ(xN )
∫ xN

0
v(x′, t) dt, where the

function ϕ is a function in D(R) with value 1 in the neighborhood of zero. We

then have

u ∈W 2,1(RN−1 × ]0, t0[),
∂u

∂xN
(x′, 0) = g(x′), and u(x′, 0) = 0. ��
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3.6 Embedding Theorems, Compact Injections

3.6.1 Results Concerning Embeddings

Theorem 3.81. Let Ω be a class Ck open subset of RN . We have the following

embeddings:

(1) If N > kp, then

W k−1/p,p(∂Ω) ↪−→ L(N−1)p/(N−kp)(∂Ω).

(2) If N = kp, then

∀ q <∞, W k−1/p,p(∂Ω) ↪−→ Lq(∂Ω).

(3) If N < kp and N/p is not an integer, then

∀λ � [N/p] + 1−N/p, W k−1/p,p(∂Ω) ↪−→ Ck−[N/p]−1,λ
b (∂Ω),

where [N/p] denotes the integral part of N/p.

If N/p ∈ N, then W k−1/p,p(∂Ω) ↪→ Ck−N/p−1,λ
b (∂Ω) for every λ < 1.

Remark 3.82. If we extend the formula W k,p(RN−1) ↪→ Lq(RN−1) in the

case kp > N − 1 to noninteger exponents k, in particular to the present

situation, then we indeed find the condition

q � (N − 1)p

N − 1− (1− 1/p)p
=

(N − 1)p

N − p .

We can make similar remarks in the other cases, kp > N and kp = N .

Indeed, in the next chapter, after defining the spaces W s,p for s a positive

noninteger, we will show the existence of analogous injections for every non-

integer s.

In what follows, we let (RN )+ denote the open set R
N−1 × ]0,+∞[. We

begin the proof of Theorem 3.81 by considering this specific case.

Proof of (1) and (2) for Ω = (RN )+.

Statement (1). We begin by assuming that k = 1, and therefore p < N .

Let C be a constant such that, for every u ∈ W 1,p(RN−1), there exists a

lifting U ∈ W 1,p(RN−1 × ]0,+∞[) of u, that is, satisfying U(x′, 0) = u(x′),

such that

‖U‖W 1,p(RN−1×]0,+∞[) � C‖u‖1,p.

Let γ = (N − 1)p/(N − p), whence γ−1 = (N(p− 1))/(N − p). We can then

write

(3.83) |U(x′, 0)|γ � γ
∫ ∞

0

∣
∣U(x′, y)

∣
∣γ−1∣∣∂NU(x′, y)

∣
∣dy.
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By Hölder’s inequality, we have

(3.84)
∣
∣U(x′, 0)

∣
∣γ

� γ
(∫ ∞

0

∣
∣∂NU(x′, y)

∣
∣p dy

)1/p(∫ ∞

0

∣
∣U(x′, y)

∣
∣Np/(N−p)

dy
)1/p′

.

Finally, integrating with respect to x′ and applying Hölder’s inequality gives

the following norm for u in Lγ(RN−1):

‖u‖γγ � γ
∥
∥∂NU

∥
∥
(∫

RN×]0,+∞[

∣
∣
∣U(x)

∣
∣
∣
Np/(N−p)

dx
)1/p′

� C‖U‖γ
W 1,p(RN−1×]0,+∞[)

,

giving the result of statement (1) for k = 1.

For arbitrary k in statement (1) with (RN )+, we use an induction on k.

Let us assume that assertion (1) has been proved for k − 1. Let u ∈
W k−1/p,p(RN−1); then by definition, we have u ∈W k−1,p(RN−1) and ∂k−1

i u ∈
W 1−1/p,p(RN−1) for every i � N − 1.

By the embedding theorem of Chapter 2, we have u ∈ L(N−1)p/(N−1−(k−1)p)

because (k − 1)p < N − 1.

By the induction hypothesis, the inclusion ∂iu ∈W k−1−1/p,p implies ∂iu ∈
L(N−1)p/(N−(k−1)p). We therefore have

u ∈ Lp and u ∈ L(N−1)p/(N−1−(k−1)p)

and, since

(N − 1)p/(N − (k − 1)p) ∈ [p, (N − 1)p/(N − 1− (k − 1)p)],

we can deduce that u ∈ L(N−1)p/(N−(k−1)p).

Finally, we have u ∈ W 1,(N−1)p/(N−(k−1)p). Once more applying the em-

bedding theorem of Chapter 2, we deduce that u ∈ L(N−1)p/(N−kp). We have

thus proved statement (1) in the case (RN )+.

Let us show (2). If k = 1 and p = N , then W 1,N (RN−1 × ]0,∞[) ↪→
Lq(RN−1 × ]0,∞[) for every q < ∞. Applying the inequality (3.84) with

arbitrary γ, we obtain W 1−1/N,N ↪→ Lq for every q <∞.

Let us now assume that k � 2 and kp = N . We then have (k − 1)p < N ,

which implies that

W k−1−1/p,p(RN−1) ↪−→ L(N−1)p/(N−(k−1)p)(RN−1) = LN−1(RN−1).

However, u and∇u belong toW k−1−1/p,p(RN−1), whence u∈W 1,N−1(RN−1).

By Sobolev’s embedding theorem for the spaces W 1,N−1(RN−1), we deduce

that u ∈ Lq(RN−1) for every q <∞, concluding the proof of statement (2) in

the case (RN )+. ��
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Proof of statements (1) and (2) in the general case.

Let Ω be a class Ck open set.

Using the regularity of Ω, let us show the continuity of the injections of

W k,p(Ω) in the cases (1) and (2). Let Ωi be open sets that cover Ω, let {Oi}
be open subsets of RN−1, and let {ai} be Ck functions on Oi such that, for

every i � 1,

Ωi ∩Ω ⊂ {(x′, xN ) | xN > ai(x′), x′ ∈ Oi},
Ωi ∩ ∂Ω = {(x′, ai(x′)) | x′ ∈ Oi}.

Let {ϕi} be a Ck partition of unity subordinate to the cover of Ω consisting

of the Ωi. The uniform regularity assumptions on the open set Ω imply the

existence of a constant C1 such that

∀ i, ‖ai‖Ck(Oi) + ‖ϕi‖Ck(Ωi) � C1,

and ∀ q � 1, ∃ cq, ∀u ∈ Lq(Ω),
∑

i

∫

Ωi∩Ω

|u(x)|qdx � cq
∫

Ω

|u(x)|qdx.

Note that this property also implies the existence of a constant C2 such that

∀u ∈W k−1/p,p(∂Ω),
∑

i

‖ui‖Wk−1/p,p(∂Ω∩Ωi) � C2‖u‖Wk−1/p,p(∂Ω).

Let u ∈ W k−1/p,p(∂Ω); then the function ui = ϕiu belongs to the space

W k−1/p,p(∂Ω∩Ωi).

Let vi(x
′) = ui(x

′, ai(x
′)). By the properties of ai, it is clear that vi ∈

W k−1/p,p(RN−1). It follows that vi ∈ Lq(RN−1) for q < (N − 1)p/(N − kp),
and therefore ui ∈ Lq(Ωi ∩ ∂Ω).

Moreover, there exist constants, which we all denote by C, such that

‖u‖Lq(∂Ω) �
∑

i

‖ui‖Lq(Ωi∩∂Ω) �
∑

i

‖vi‖Lq(RN−1)

� C
∑

i

‖ui‖Wk−1/p,p(Ωi∩∂Ω) � ‖u‖Wk−1/p,p(∂Ω). ��

Proof of statement (3) in the case (RN )+.

We again begin by assuming that k = 1 and p > N .

Let C be a constant such that for u ∈ W 1−1/p,p(RN−1), there exists a

U ∈W 1,p(RN−1 × ]0,+∞[) with U(x′, 0) = u(x′) and

‖U‖W 1,p(RN−1×]0,+∞[) � C‖u‖W 1−(1/p),p(RN−1).

We use the embedding into C0,λb given in the previous chapter (cf. Theorem

2.31), namely

U ∈W 1,p(RN−1 × [0,∞[) =⇒ u ∈ C0,1−(N/p)
b (RN−1).
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Then, for every t > 0 and for every (x, y) ∈ (RN−1)2, we have

|U(x, t)− U(y, t)| � C‖U‖W 1,p(RN−1×[0,∞[)|x− y|1−(N/p).

We obtain result (3) for k = 1 by letting t tend to 0.

Next let k > 1. Suppose first that jp > N > (j − 1)p and that u ∈
W j−1/p,p(RN−1). Then u ∈W j−1,p(RN−1), which implies, since (j−1)p < N ,

that u ∈ L(N−1)p/(N−1−(j−1)p). Furthermore Du ∈ W j−1−1/p,p, hence the

part “kp < N” ensures that Du ∈ L(N−1)p/(N−(j−1)p). Since

(N − 1)p

(N − (j − 1)p)
∈
[
p,

(N − 1)p

(N − 1− (j − 1)p)

]
,

we have u ∈W 1,(N−1)p/(N−(j−1)p) hence, since (N−1)p/(N−(j−1)p) > N−1
and

1− (N − 1)
(N−1)p

N−(j−1)p

= j − N
p
,

we have u ∈ C0,j−N/p
b .

If kp > N and N/p is not an integer, then let j ∈ N be such that jp >

N > (j − 1)p, that is, j = [N/p] + 1. We have D(k−j)u ∈ W j−(1/p),p(RN−1)

and, by the above, Dk−ju ∈ C0,j−N/p
b (RN−1). It follows that

u ∈ Ck−j,j−(N/p)
b (RN−1) = Ck−1−[N/p],[(N/p)+1]−(N/p)

b (RN−1).

The case where N/p ∈ N is left to the reader. ��

Proof of (3) in the general case.

In the general case of a class Ck open set, we define ui and vi as in the

proofs of (1) and (2). We then have vi ∈ Ck−1−[N/p],[(N/p)+1]−(N/p)
b (RN−1).

Setting

X(Ωi) = Ck−1−[N/p],[N/p+1]−(N/p)
b (Ωi ∩ ∂Ω),

we write

‖u‖X(∂Ω) = sup
i
‖ui‖X(Ωi) � sup

i
‖vi‖X(RN−1)

� C sup
i
‖vi‖Wk−1/p,p(RN−1)

� C sup
i
‖ui‖Wk−1/p,p(∂Ω∩Ωi) � C‖u‖Wk−1/p,p(∂Ω). ��

Let us now consider the compactness of some of these injections.



3.6 Embedding Theorems, Compact Injections 167

3.6.2 Compactness Results for Bounded ∂Ω

Theorem 3.85. We suppose that ∂Ω is bounded and of class Ck.

(1) Let p > 1 and let N − 1 be the dimension of ∂Ω. We suppose that

kp<N . The injection of W k−1/p,p(∂Ω) into Lq(∂Ω) is then compact for

all q < (N − 1)p/(N − kp).
(2) If kp = N , then the injection of W k−1/p,p(∂Ω) into any Lq(∂Ω) is com-

pact.

(3) If kp < N , then the injection of W k−1/p,p(∂Ω) into Ck−1−[N/p],λ(∂Ω) is

compact for every λ < [(N/p) + 1]−N/p.

Proof of Theorem 3.85.

In the first case, it suffices to show that the injection ofW k−1/p,p(∂Ω) into

Lp(∂Ω) is compact and then use Lemma 2.82 from Chapter 2. Moreover, it

suffices to show the result for k = 1 and for functions inW 1−1/p,p(RN−1×{0})
with support in a fixed compact set. Therefore, let {un} be a bounded sequence

in W 1−1/p,p(RN−1) with support in a fixed compact set. By the continuity of

the lifting of W 1−1/p,p(RN−1) in W 1,p((RN )+), there exists a ũn equal to un
on the boundary and such that ũn is bounded in W 1,p((RN )+). Consider a

function ψ ∈ D(RN−1) that is equal to 1 at 0. The sequence vn defined by

vn(x) = ũn(x)ψ(x
′)ϕ(xN ) then has the same trace as ũn and has support in

a fixed compact subset of RN−1 × [0,∞[.

The sequence {vn} is relatively compact in Lp(RN ), by the compactness

theorem for bounded subsets of W 1,p(Ω) when Ω is bounded. For two in-

dexes n and m of a convergent subsequence in Lp, which we also denote by

{vn}, we have

|un − um|p(x′, 0) � p
∫ 1

0

|vn − vm|p−1(|vn,N − vm,N |)(x′, s)ds.

Moreover, integrating with respect to x′ and using Hölder’s inequality gives

‖un − um‖pLp(RN−1×{0}) � p‖vn − vm‖
p−1
p

(
‖vn,N‖p + ‖vm,N‖p

)
,

which tends to 0 when n,m → ∞. The sequence {un} is therefore a Cauchy

sequence in Lp(RN−1) and consequently converges in Lp(RN−1), namely to

x′ 	→ u(x′, 0).
Let us now assume that kp > N . It suffices to show that the injection

W k−1/p,p(]− 1, 1[N−1×{0}) ↪−→ C([−1, 1]N−1 × {0})

is compact and to apply Lemma 2.85.
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Let {un} be a bounded sequence in W k−1/p,p(]−1, 1[N−1×{0}) and let ũn
be a bounded sequence in W k,p(] − 1, 1[N−1×]0, 1[) that equals un on the

boundary. By the compactness of the injection of W k,p(] − 1, 1[N−1×]0, 1[)
into C([−1, 1]N−1× [0, 1]), we can extract a subsequence of un that converges

in C([−1, 1]N−1 × [0, 1]). In particular, it converges in C([−1, 1]N−1 × {0}),
giving the desired result. ��

3.6.3 Comments

Few books give a simple approach to trace spaces. In general, the given defi-

nition uses interpolation spaces, which is more abstract than what we present

here. For these other approaches, the reader can consult Adams [1], J.-L. Lions

[47, 48] and Peetre [56].

3.7 Exercises for Chapter 3

Exercise [∗∗] 3.1 (Fractional Derivatives).

The aim of this exercise is to determine properties of the fractional differen-

tiation of distributions. In particular, we will be able to justify Remark 3.2,

which was made at the beginning of this chapter. We denote byH the function

equal to 1 on ]0,+∞[ and zero elsewhere. For the definition of the finite parts

used here, we refer, for example, to Exercise 1.27 of Chapter 1. The following

formula, which holds for α ∈ ]0, 1[, also suffices:

(∗) ∀ϕ ∈ D(R), 〈Pf(H(x)x−1−α), ϕ〉 =
∫ +∞

0

ϕ(x)− ϕ(0)
x1+α

dx.

We recall the definition of the convolution of two distributions T and S in

D′
+(R). Suppose that the function η ∈ D(R) has value 1 in a neighborhood of

supp(ϕ), this convolution is defined by

〈T � S, ϕ〉 =
〈
T,
(
〈S, η(x)η(y)ϕ(x+ y)〉

)〉
.

In most cases, it suffices to do formal computations where we disregard the

function η.

We will admit without proof that the derivative of the resulting distribu-

tion is either the convolution S′ � T or the convolution S � T ′.

Let us recall the definition of the Euler function B, namely

∀α > 0, ∀β > 0 B(α, β) =
∫ 1

0

tα−1(1− t)β−1dt.
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This function satisfies the relations

B(α, β) = Γ (α)Γ (β)
Γ (α+ β)

and B(α, 1− α) = π

sin(πα)
.

Finally, we extend Γ to the nonpositive real numbers that are not integers

using the following formulas:

∀x ∈ ]− 1, 0[, Γ ∗(x) =
Γ (x+ 1)

x
; ∀x ∈ ]− 2,−1[, Γ ∗(x) =

Γ ∗(x+ 1)

x

and so on, on all segments ]− n− 1,−n[.
For noninteger m > 0, the fractional derivative of order m of the distribu-

tion T ∈ D′
+(R) (cf. [60]) is defined to be

dm(T ) =
1

Γ ∗(−m)
Pf
(H(x)

xm+1

)
� T.

When m is an integer, it is dm(T ) = δ(m) � T = T (m).

(1) As a first example, we consider the derivative of order 1/2 of H(x)xα for

α > 0. Prove the following result, where K is a constant:

d1/2
[
H(x)xα

]
=

1

Γ ∗(−1
2 )

Pf
(H(x)

x3/2

)
�H(x)xα = KH(x)xα−1/2.

More generally, determine the derivative of order s of the function H(x)xα

for s ∈ ]0, 1[ (use Definition (∗)).
Using the differentiation of a convolution and the derivatives of the finite

parts, deduce the derivative of order s of H(x)xα for s ∈ ]1, 2[ from the

previous result. Generalize to an arbitrary noninteger nonnegative differ-

entiation order.

(2) For α and β in ]0, 1[, determine the convolution of the distributions S =

H(x)x−α and T = H(x)x−β , which can also be considered as a convolution

in the sense of functions. Give an explicit result for α+ β = 1.

Deduce from this an explicit description of the composition of the two

derivatives of noninteger orders m > 0 and k > 0, using the derivative of

order m+ k.

(3) (Question related to Example 3.25). Let f be the function with value 1 on

]0, 1[ and 0 elsewhere. We assume that p > 1. Determine the convolution

of functions H(x)x1/p−1 � f . Deduce from this the fractional derivative of

order 1−1/p of f . The result is a function, in contrast to the derivatives of

integer order, which involve Dirac distributions. Show that this fractional

derivative belongs to Lp(R) only if p < 2 (cf. Example 3.25).
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Hints. For (1), apply the definition of a convolution of distributions to obtain

〈T, ϕ〉 = 〈H(x)xα, 〈Pf
(
H(y)/y3/2), ϕ(x+ y)〉〉

=

∫ +∞

0

xα

∫ +∞

0

ϕ(x+ y)− ϕ(x)

y3/2
dy dx.

Next, integration by parts gives
∫ +∞

0

ϕ(x+ y)− ϕ(x)

y3/2
dy = 2

∫ +∞

0

ϕ′(x+ y)

y1/2
dy.

Using a translation applied to the variable, it follows that

〈T, ϕ〉 = 2

∫ +∞

0

xα

∫ +∞

x

ϕ′(z)

(z − x)1/2
dz dx.

Use Fubini’s formula and the Euler function B(α + 1, 1/2) to deduce that 〈T, ϕ〉 =
K′∫ +∞

0
zα+1/2ϕ′(z). Finally, integrating by parts gives the desired result, since α>0:

〈T, ϕ〉 = K

∫ +∞

0

zα−1/2ϕ(z)dz.

Use an analogous computation to determine the derivative of order s ∈ ]0, 1[. This
will again give the function KsH(x)xα−s.

When α − s � −1, generalize the formula by replacing the power function by
the associated finite part. For example, when s ∈ ]1, 2[ (whence σ = s − 1 ∈ ]0, 1[)
and α− s � −1, this gives

ds
(
H(x)xα) = d

[
dσ(H(x)xα)

]
= Kσd

[
(H(x)xα−σ] = Ks Pf(H(x)xα−s).

Use a derivative of integer order to show that this formula holds in general.
For (2), the analogous computation holds, giving the function H(x)x1−(α+β) up

to a constant that can be expressed using the Euler function B. Taking the derivative
of the resulting formula gives the desired property.

For (3), the convolution is px1/p on ]0, 1[ and p[x1/p − (x − 1)1/p] for x > 1.
The fractional derivative is the order one derivative of this function. The inclusion
in Lp(R) poses no difficulty.

Exercise 3.2 (Weak Continuity of a Trace Map).

Let Ω be a class C1 open subset of RN and let p > 1. Show that the trace

map is continuous for the weak topology on W 1,p(Ω). More precisely, if {un}
converges weakly to u in W 1,p(Ω), that is, if both un ⇀ u in Lp and ∇un
tends to ∇u, then γ0un converges weakly to γ0u in W 1−1/p,p(∂Ω).

Hints. Let f ∈ W−1+1/p′,p′(∂Ω). Use the surjectivity of the map S introduced in

Theorem 3.58 to show that there exists a σ ∈ W p′(div)(Ω) such that

f = σ · −→n .

We have
∫

∂Ω

f(γ0un − γ0u) =

∫

Ω

(un − u) div σ +

∫

Ω

(∇un −∇u) · σ −→ 0,

giving the result.
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Exercise 3.3 (Example of a Non-Weakly Continuous Trace Map).

Verify that the trace of the space W 1,1(]0, 1[N ) in L1(]0, 1[N−1×{0}) is not

weakly star continuous. For this, use the sequence {un} defined by

un(x
′, xN ) = (1− nxN )χ]0,1/n](xN ).

(1) Show that {un} is bounded in W 1,1(]0, 1[N ).

(2) The sequence {un} is in the space BV of functions in L1(]0, 1[N ) whose

gradient is a bounded measure on ]0, 1[N (cf. Section 6.3 of Chapter 6).

In Chapter 6, we define the weak convergence of the sequence {un} to u

in BV by the conditions

‖un − u‖1 −→ 0 and ∀ϕ ∈ Cc(]0, 1[N ), |〈∇un −∇u, ϕ〉| −→ 0.

Show that this weak convergence is indeed verified with u = 0.

Consider the trace of un on {xN = 0} and compare this to the trace of

the zero function to deduce that the trace map is not weakly continuous.

Exercise 3.4 (Noncompact Injection Into a Trace Space).

(1) Let N � 2 and let 0 < p − 1 < N . Prove that the injection of

W 1−1/p,p(]0, 1[N ) into LNp/(N−p+1) is not compact.

(2) Suppose that N+1 < p. Prove that the injection ofW 1−1/p,p(]0, 1[N ) into

C0,1−(N+1)/p(]0, 1[N ) is not compact.

Hints. For (1), use a function ϕ in D(]0, 1[N ) and define a sequence {ϕn} by setting

ϕn(x) = n(N−p+1)/pϕ(nx).

Show that {ϕn} is bounded in W 1−1/p,p(]0, 1[N ). Next, show that it tends to 0 in
all Lq with q < Np/(N − p+ 1) but does not converge for the critical exponent.

For (2), let ϕ ∈ D(]0, 1[N ) satisfy the condition

sup
(x,y)∈(]0,1[N )2

∣∣
∣
∣
ϕ(x)− ϕ(y)

|x− y|λ

∣∣
∣
∣ = 1.

Let {ϕn} be a sequence such that

ϕn(x) = n(N−p+1)/pϕ(nx).

Show that this sequence is bounded in W 1−1/p,p(]0, 1[N ) and that it tends to 0 in all

C0,λ with λ < 1−(N + 1)/p but has a constant seminorm equal to 1 in C0,1−(N+1)/p.

Exercise 3.5 (Noncompact Injection into a Trace Space, Continued).

Prove that the injection of W 1−1/p,p(RN ) into L1(RN ) is not compact. Let ϕ

be a nonzero function in D(RN ). Let ϕn(x) = ϕ(x + ne1), where e1 is a

canonical basis vector of RN .

Prove that ϕn has a constant norm in W 1−1/p,p(RN ) while it tends to 0

almost everywhere.
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Exercise 3.6 (Function in W∞
N (div) and Green’s Formula).

Let Ω be a class C1 open set. Prove that if σ ∈ L∞(Ω) and div σ ∈ LN (Ω),

then there exists an element σ · −→n ∈ L∞ such that for every u ∈ W 1,1(Ω),

the following Green’s formula holds:
∫

Ω

σ · ∇u+
∫

Ω

div(σ)u =

∫

∂Ω

σ · −→n u.

Prove that the map that sends σ to σ · −→n is continuous for the topology

associated with the norm

‖σ‖ = ‖σ‖∞ + ‖ div(σ)‖N .

Exercise 3.7 (Traces in W 1,∞(Ω)).

Let Ω be a class C1 open set. Show that the functions in W 1,∞(Ω) have a

trace on ∂Ω that belongs to W 1,∞(∂Ω).

Conversely, show that every function in W 1,∞(∂Ω) is the trace of a func-

tion in W 1,∞(Ω).

Exercise 3.8 (Functions in D(R) Orthogonal to the Space of Polyno-

mials).

(1) Let p ∈ N and let 0 � k � p. For any compact subset [a, b] of R, prove the

existence of a function ϕ in D(]a, b[) such that for every i ∈ [0, p], we have
∫

R

tiϕ(t)dt = δki .

(2) Let p ∈ N. Prove that there exists a function ϕ in D(RN ) satisfying
∫

RN

ϕ(t)dt = 1 and

∫

RN

P (t)ϕ(t)dt = 0,

for every polynomial P with valuation at least 1 on R
N and degree less

than or equal to p.

Hints. For (1), take [a, b] = [−1, 1] to illustrate the ideas. Let ϕj , where j ∈ [0, p],
be functions in L2(] − 1, 1[) such that det(

∫
R
ϕit

jdt) �= 0. Show their existence by
taking, for example, the Legendre polynomials on ]−1, 1[ for ϕi. Next, use the density
of D(] − 1, 1[) in L2(] − 1, 1[) to find ϕj in D(] − 1, 1[) such that the determinant
det((

∫
R
ϕit

jdt)i,j), with indexes i and j in [0, p], is nonzero. Consider the system

p∑

i=0

λi

∫

R

ϕi(t)t
jdt = αj ,

for given αj . It admits a unique solution (λ0, λ1, . . . , λp). In particular, you can
obtain the desired result by taking

∑p
0 λiϕi = ϕ and αj = δki .

For (2), take a function ϕ such that
∫
R
ϕ(t)dt = 1 and

∫
ϕ(t)tjdt = 0 for every

j � 1. Verify that ρ(t1, t2, . . . , tN ) =
∏N

1 ϕ(ti) has the desired properties.



3.7 Exercises for Chapter 3 173

Exercise 3.9 (Proof That a Lipschitz Open Set Is Locally Star Con-

vex).

Let Ω be the open set {(x′, xN ) | xN > a(x′), x′ ∈ O′}, where a is a Lipschitz

function and O′ is a bounded open ball in R
N−1 or a convex subset. Show

that Ω is star convex with respect to a point.

Hints. You can, and do, assume that the point (0, 0) belongs to ∂Ω (hence a(0)=0).
Let m > ‖a‖L∞(O′) + ‖∇a‖L∞(O′) sup |x′|O′ ; then the open set is star convex with
respect to (0,m).
Let λ ∈ ]0, 1[ and let (x′, xN )∈Ω. You must show that λ(0,m) + (1− λ)(x′, xN )∈Ω.
For this, it suffices to prove that a((1 − λ)x′) < λm + (1 − λ)a(x′). Consider the
function ϕ(λ) = λm+ (1− λ)a(x′)− a((1− λ)x′). It has value 0 on {λ = 0} and is
increasing because if a is C1, then

ϕ′(λ) = m− a(x′) +∇(a(1− λ)x′) · x′ > 0

on the ball O′, by the hypotheses on m.
This proof also works when a is Lipschitz, because ϕ is an increasing function.

Indeed, if λ > λ′, then using the Lipschitz property of a, we find that

ϕ(λ)− ϕ(λ′) = (λ− λ′)
(
m− a(x′) + a((1− λ)x′)− a((1− λ′)x′)

)

� (λ− λ′)
(
m− a(x′)−K‖∇a‖∞

)
.

Exercise 3.10 (Inclusion of x 	→ sin
√
x in Sobolev Spaces).

Prove that the function x 	→ sin
√
x belongs to W 1,p(]0, 1[) for every p < 2

and that it belongs to W 1−1/p,p(]0, 1[) for every p < 4.

Hints. Show that the following is an upper bound for the seminorm

A =

∫ 1

0

∫ 1

0

| sin
√
x− sin

√
y|p

|x− y|p dx dy :

A �
∫ 1

0

∫ 1

0

dx dy

(
√
x+

√
y)p

�
∫ 1

0

∫ 1

0

dx dy

(x+ y)p/2

�
∫ 1

0

x1−p/2

∫ 1/x

0

du

(1 + u)p/2
� C

∫ 1

0

x1−p/2
∣
∣1− (1 + 1/x)−p/2+1

∣
∣dx.

If p > 2, then the integrand is equivalent to x1−p/2 at 0 and if p < 2, then it is
equivalent to

x1−p/2((1 + 1/x)1−p/2 − 1
)
∼ 1.

This integral therefore converges when 1 − p/2 > −1, that is, when p < 4. To see
that it does not converge for p = 4, use

1

(
√
x+

√
y)4

� 1

8(x2 + y2)
.

Exercise 3.11 (Function in W 1−1/p,p(Ω) That Does Not Belong To

W 1,p(Ω)).

Let Ω = ]0, 1[ and let ϕ(x) = x−1/k, where k ∈ N
∗. Note that ϕ does not

belong to any W 1,p(]0, 1[). Prove that ϕ ∈ W 1−1/p,p(]0, 1[) if and only if

p < 2k/(k + 1).
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Hints. The function ϕ is not bounded and therefore cannot be in any W 1,p(]0, 1[).
Determine an upper bound for the seminorm ‖ϕ‖′1−1/p,p as follows:

‖ϕ‖′p1−1/p,p =

∫ 1

0

∫ 1

0

|x−1/k − y−1/k|p
|x− y|p dx dy

�
∫ 1

0

∫ 1

0

|x1/k − y1/k|p
xp/kyp/k|x− y|p dx dy

� C

∫ 1

0

∫ 1

0

1

xp/kyp/k|x+ y|p(k−1)/k
dx dy

� C

∫ 1

0

xdx

x2p/k+p(1−1/k)−1

∫ 1/x

0

du

up/k(1 + u)p(1−1/k)

� C
[∫ 1

0

xdx

x2p/k+p(1−1/k)−1

][∫ +∞

0

du

up/k(1 + u)p(1−1/k)

]
= CJ1 J2.

The second integral J2 converges at u = 0 if p/k < 1, which implies that ϕ ∈
Lp(]0, 1[. It also converges at +∞ if p > 1. The integral J1 is finite if and only
if 1 − p − p/k > −1, that is, p < 2k/(k + 1). We have 2k/(k + 1) � k, hence

p < 2k/(k + 1) is a sufficient condition for ϕ ∈ W 1−1/p,p(]0, 1[). It is easy to see
that this condition is also necessary.

Exercise [∗∗] 3.12 (Lifting in Ω = R
2 × R

+).

For u ∈W k−1/p,p(R2), set −→x = (x1, x2) and define the lifting

U(−→x , y) = Tu(−→x , y) = ϕ(y)
y2

∫ y

0

∫ y

0

u(−→x +−→z )dz1dz2,

where ϕ ∈ D(R) with ϕ(0) = 1 (cf. Theorem 3.67). Show that this function is

indeed a lifting.

Hints. As in the theorem mentioned above, use a proof by induction to show that
for |α| � k − 1, we have DαU ∈ W 1,p(Ω). Suppose that

(3.86) ∀ j, j � k − 1 and u ∈ W j−1/p,p(R2) =⇒ U ∈ W j,p(Ω).

Show that if u ∈ W k−1/p,p(R), then ∂xu ∈ W k−1−1/p,p(R2). Use the formula of the
lifting and the induction hypothesis (3.86) to deduce that U satisfies

∂xU ∈ W k−1,p(R2 × ]0,+∞[).

You now only need to show that

(3.87) ∂k
yU ∈ Lp(R2 × ]0,+∞[).

By treating the terms of ϕ′(y) that are simple separately, reduce to

U(−→x , y) =
1

y2

∫ y

0

∫ y

0

u(−→x +−→z )dz1dz2 =

∫

(]0,1[)2
u(−→x + y

−→
t )dt1dt2.

For the derivative of order one, show that the following formula holds for ∂yU :

∂yU =

∫

(]0,1[)2

[
t1∂1u(

−→x + y
−→
t ) + t2∂2u(

−→x + y
−→
t )
]
dt1dt2.
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Let I1(
−→x , y) =

∫
(]0,1[)2

t1∂1u(
−→x + y

−→
t )dt1dt2. Show that

I1(
−→x , y) =

1

y3

∫ y

0

∫ y

0

z1∂1u(
−→x +−→z )dz1dz2

=
1

y3

∫ y

0

([
z1u(

−→x +−→z )
]y

0
−
∫ y

0

u(−→x +−→z )dz1
)
dz2

=
1

y3

∫ y

0

∫ y

0

[
u(x1 + y, x2 + z2)− u(x1 + z1, x2 + z2)

]
dz1dz2

=
1

y

∫ 1

0

∫ 1

0

[
u(x1 + y, x2 + t2y)− u(x1 + t1y, x2 + t2y)

]
dt1dt2.

Deduce that ‖I1‖pp, which is in R
2×]0,+∞[), is bounded from above by the integral of

∫

R2

[∫ 1

0

∫ 1

0

∣
∣
∣
[u(x1 + y, x2 + t2y)− u(x1 + t1y, x2 + t2y)]

y

∣
∣
∣dt1dt2

]p
dx1dx2

with respect to y over ]0,+∞[ . Next, use the variables X1 = x1+ t1y, X2 = x2+ t2y
and Y = x1 + y to prove that

‖I1‖pp �
∫

R

∫

R

∫ +∞

X1

[∫ 1

0

∫ 1

0

∣
∣
∣
u(Y,X2)− u(X1, X2)

Y −X1

∣
∣
∣dt1dt2

]p
dX2dX1dY.

Finally, use an upper bound for the inner integral and a translation, and set
−→
X =

(X1, X2) to obtain

‖I1‖pp �
∫

R

∫

R

∫ +∞

X1

∣
∣
∣∣
u(Y,X2)− u(X1, X2)

Y −X1

∣
∣
∣∣

p

dX2dX1dY

=

∫

R2

∫ +∞

0

∣
∣
∣
∣
u
(−→
X + t−→e1

)
− u

(−→
X
)

t

∣
∣
∣
∣

p

dX dt.

Conclude by applying Lemma 3.27 that the inclusion u ∈ W 1−1/p,p(R2) implies that
the norm ‖I1‖pp is bounded from above by

∫

R2

∫

R

∣
∣
∣
∣
u(
−→
X + t−→e1)− u(

−→
X )

t

∣
∣
∣
∣

p

dX dt � c

∫

R4

∣
∣u(

−→
X )− u(

−→
Y )
∣
∣p

∣
∣−→X −−→

Y
∣
∣p+1

dX dY < ∞.

Apply the same reasoning to the integral

I2(
−→x , y) =

∫

(]0,1[)2
t2∂2u(

−→x + y
−→
t )dt1dt2.

For the derivative in y of arbitrary order k, observe that ∂k
yU is the sum of integrals

of the type ∫

(]0,1[)2

[
ti∂i(D

αu(−→x + y
−→
t )
]
dt1dt2

with |α| = k − 1. Apply the induction hypothesis to the derivative Dαu and use
arguments similar to the ones above to complete the proof.
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Exercise 3.13 (Map Sending U to the Normal Derivative of its

Trace).

(1) Consider U ∈W k,p(Ω) with regular Ω. Show that if f belongs to Ck−1(Ω)

and Dαf is Lipschitz for |α| = k, then the product Uf is still in W k,p(Ω)

and we have ‖fu‖Wk,p(Ω) � Cf‖u‖Wk,p(Ω).

(2) Let Ω be of class Ck. Show the existence of a constant C such that

∀ � � k − 1, ∀U ∈W k,p(Ω),
∥
∥
∥∂�−→n γ0u

∥
∥
∥
Wk−	−1/p,p(∂Ω)

� C‖U‖Wk,p(Ω).

Exercise 3.14 (Determining Iterated Gradients and the Normal

Derivative).

The aim of this exercise is to determine iterated gradients and tangential or

normal derivatives on cylinders and spheres in dimension N = 3.

(1) Since the function U is in C2(R3), use the chain rule for differentiation

to determine the partial derivatives of U with the help of the cylindrical

coordinates x = r cos θ, y = r sin θ and z. Likewise, determine the partial

derivatives of order 2.

(2) Consider the cylinder Ω = {(x, y, z) | x2+y2 < 1, z ∈ R}. Let the tangent
vector of ∂Ω at x ∈ ∂Ω be defined by

−→
t = (− sin θ, cos θ, 0). Determine

the tangential derivative ∂−→
t
u, where u is the trace of U on ∂Ω. Next,

determine the derivatives ∂2−→
t
u and ∂2−→n u.

(3) Determine the previous results using a different method. Namely, find the

relation between the operators D = x∂x + y∂y and ∂r. Derive from it

an explicit description of ∇2u · −→n · −→n using D and D2, and deduce the

previous result.

Likewise, find the relation between the operators D1 = −y∂x + x∂y and

∂θ. Use D and D2
1 to determine the tangential derivative ∇2u · −→t · −→t

explicitly.

(4) Use a similar method to compute normal derivatives of orders one and

two when Ω is the ball of center O with radius 1, using the spherical

coordinates:

x = r cos θ cosϕ, y = r sin θ cosϕ, z = r sinϕ.

Exercise 3.15 (The Zygmund Space).

Recall the definition of the deformation tensor (cf. Exercise 2.10):

∀ i, j ∈ [1, N ]2, εij(u) =
∂jui + ∂iuj

2
.

Let u∈L∞(R2,R2) satisfy ε(u)∈L∞(R2). Show that x 	→u1(x, 0)∈W 1,∞(R)

and that u2(x, 0) belongs to the Zygmund space

Z =
{
v ∈ L∞(R) sup

(x,y)

∣
∣
∣
v(x+ y) + v(x− y)− 2v(x)

y

∣
∣
∣ <∞

}
.
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Hints. Write Δ2u = u2(x+ y, 0) + u2(x− y, 0)− 2u2(x, 0) as

Δ2u = u2(x+ y, 0)− u1(x+ y, 0) + (u2(x− y, 0) + u1(x− y, 0)

+ u1(x+ y, 0)− u1(x− y, 0)− 2u2(x, 0)

= [−(u2 − u1)(x+ y − t, t)|y0 + [−(u2 + u1)(x− y + t, t)|y0
+ [u1(x+ t), 0)]y−y + 2[u2(x, t)]

y
0

= −
∫ y

0

∂s(u2 − u1)(x+ y − s, s)ds−
∫ y

0

∂t(u2 + u1)(x− y + t, t)dt

+

∫ y

−y

u1,1(x+ t, 0)dt+ 2

∫ y

0

∂tu2(x, t)dt

= −
∫ y

0

(ε22(u) + ε11(u)− 2ε12(u))(x+ y − s, s)ds

−
∫ y

0

(ε22(u) + ε11(u) + 2ε12(u))(u)(x− y + t, t)dt

+

∫ y

−y

u1,1(x+ t, 0)dt+ 2

∫ y

0

ε22(u)(x, t)dt.

By the assumptions, the absolute value of Δ2u is bounded from above by
|y|‖ε(u)‖L∞ .

Exercise 3.16 (Explicit Converse of the Previous Result).

Let ϕ ∈ Z. LetH(x, y) = (1/y)
∫ y

−y
ϕ(x−t)(y−|t|)dt and let u1(x, y) = −∂xH,

u2(x, y) = ∂yH.

Prove that ε(u) ∈ L∞. We have ε12(u) = 0; hence

∂H

∂x
=

1

y

∫ y

−y

ϕ′(x− t)(y − |t|)dt −→ 0

when y tends to 0, while

u2 = −(1/y2)
∫ y

−y

ϕ(x− t)(y − |t|)dt+ (1/y)

∫ y

−y

ϕ(x− t)dt,

which tends to −ϕ(x) + 2ϕ(x) when y → 0. Using integration by parts, show

that u1,1 = (1/y)
(
ϕ(x+ y) + ϕ(x− y)− 2ϕ(x)

)
and

u2,2 =
2

y3

∫ y

−y

ϕ(x− t)(y − |t|)dt− 2

y2

∫ y

−y

ϕ(x− t)dt

+
1

y
(ϕ(x− y) + ϕ(x+ y))

=
−2
y3

∫ y

0

(
ϕ(x− t) + ϕ(x+ t))tdt+ 1

y
(ϕ(x+ y) + ϕ(x− y)

)

=
−2
y3

∫ y

0

(
ϕ(x− t) + ϕ(x+ t)− 2ϕ(x)

)
tdt

+
1

y

(
ϕ(x+ y) + ϕ(x− y)− 2ϕ(x)

)
,

proving that u2,2 is bounded.
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Fractional Sobolev Spaces

This chapter continues where Chapter 3 left off. We begin by recalling results

concerning the Fourier transform. In the first two sections, we use this trans-

form to study the spaces W s,2(RN ), where s is an arbitrary real number. The

next sections are devoted to giving different definitions of the spacesW s,p(Ω),

where 0 < s < 1 and 1 < p < +∞, with p �= 2. These generalize the spaces

W 1−1/p,p(Ω) of last chapter.

In these new spaces, we establish the analogous density and regularity

results, embedding and compact embedding theorems, and the existence the-

orems for traces when the open set Ω has a certain regularity. After demon-

strating these properties in the case 0 < s < 1, we extend them to the spaces

W s,p for s ∈ R.

4.1 Tempered Distributions and Fourier Transforms

4.1.1 Rapidly Decreasing Functions and Tempered Distributions

Definition 4.1. A function ϕ is called rapidly decreasing in R
N if ϕ ∈

C∞(RN ) and if, when Dj denotes the differentiation operator with respect

to the multi-index j = (j1, j2, . . . , jN ), we have:

(∗) ∀ j ∈ N
N , ∀ k ∈ N, |x|kDjϕ ∈ L∞(RN ).

The set of these functions is a vector space that we denote by S(RN ).

Remark 4.2. The condition (∗) has the following two equivalent forms:

∀ (j, k), |x|kDjϕ ∈ L1(RN ),

∀ (j, k), lim
|x|→+∞

|x|kDjϕ(x) = 0.or
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Topological Structure and Dual. The space S(RN ) has a natural topology

generated by the following countable family of seminorms:

nk,j(ϕ) = ‖|x|kDjϕ‖∞.

We let S ′(RN ) denote the topological dual of S(RN ). By the following propo-

sition, this is a locally convex topological space and a subspace of D′(RN ).

Proposition 4.3. The space D(RN ) is dense in S(RN ).

Proof of Proposition 4.3.

Let ϕ ∈ S(RN ) and let ψ ∈ D(RN ) with 0 � ψ � 1 and ψ = 1 on the ball

B(0, 1). We define the sequence {ϕn} by setting ϕn(x) = ψ(x/n)ϕ(x); then

{ϕn} converges uniformly to ϕ because

sup
x∈RN

|ϕn(x)− ϕ(x)| � sup
|x|�n

|ϕ(x)| −→ 0

since ϕ tends to 0 at infinity. For k ∈ N and j ∈ N
N , we have

|x|kDj(ϕn) = |x|kψ(x/n)Djϕ+
∑

|p|�|j|
Cp

j

|x|k
np
Dpψ(x/n)Dj−pϕ.

It follows that

∣
∣|x|kDjϕn − |x|kDjϕ

∣
∣

� sup
|x|�n

{|x|k
∣
∣Djϕ

∣
∣}+

∑

|p|�|j|

1

np
Cp

j ‖Dpψ‖∞‖|x|kDj−pϕ‖∞,

giving the desired conclusion because the right-hand side tends to 0. ��

Thus we identify the elements of S ′(RN ) with distributions, which we call

tempered distributions. It is easy to see that the derivatives of a tempered dis-

tribution and the product of a tempered distribution and a slowly increasing

function are also tempered distributions.

4.1.2 Fourier Transform

We give the following results without proof.

Theorem 4.4. The Fourier transform F , defined by

∀ ξ ∈ R
N , ∀ϕ ∈ S(RN ), F(ϕ)(ξ) =

∫

RN

e−2iπ ξ·xϕ(x)dx,

is an automorphism of S(RN ). The inverse operator of F , which we denote

by F , is defined by

∀ ξ ∈ R, F(ϕ)(ξ) = F(ϕ)(−ξ).
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The transpose of this Fourier transform is an automorphism of the dual,

which we also denote by F . We again denote its inverse by F .

Theorem 4.5. The Fourier transform of T ∈ S ′, defined by

∀ϕ ∈ S, 〈F(T ), ϕ〉 = 〈T,F(ϕ)〉,

is a tempered distribution.

The Fourier transform of a function ϕ is often denoted by ϕ̂. In what

follows, we will denote the transform of a distribution T either by F(T ) or

by T̂ .

We can easily see that if f ∈ Lp(RN ), then the associated distribution [f ]

is tempered. In particular, if f ∈ L1(RN ), then the function f̂ = F(f), which
belongs to L∞, coincides with the transform F([f ]).

Because of the density of the subspace L2 ∩ L1 in L2 and Plancherel’s

theorem, we can extend the Fourier transform on L1 to an isometric automor-

phism of the Hilbert space L2(RN ). The transform of f ∈ L2, which we once

more denote by f̂ , can be identified with F([f ]).
In general, we have the following result.

Proposition 4.6. The distributions with bounded support, which we know be-

long to E ′(RN ) (cf. Exercise 1.20), are tempered. The Fourier transform of

such a distribution T can be identified with the function defined by

ξ 	−→ 〈T(x), exp(−2iπξ · x)〉.

We thus see that F(δ0) = 1 and, using the inverse Fourier transform, that

F(1) = δ0. For more details, the reader can consult [22].

4.2 The Sobolev Spaces Hs(RN)

4.2.1 Definitions, Density of the Regular Functions

Definition 4.7. Let s be a real number. If s > 0, then we let

Hs(RN ) =
{
u ∈ L2(RN ) | {ξ 	→ (1 + |ξ|2)s/2F(u)(ξ)} ∈ L2(RN )

}
.

If s < 0, then we let

Hs(RN ) =
{
u ∈ S ′(RN ) | {ξ 	→ (1 + |ξ|2)s/2F(u)(ξ)} ∈ L2(RN )

}
.
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To see that these spaces are well defined, we note that if ϕ ∈ S, then the

function ξ 	→ (1 + |ξ|2)s/2ϕ(ξ), which is the product of a slowly increasing

C∞ function and a function in S, also belongs to S. The definition therefore

allows us to write

〈(1 + |ξ|2)s/2F(u), ϕ〉 = 〈u,F((1 + |ξ|2)s/2ϕ)〉.

It is then easy to verify that (1 + |ξ|2)s/2F(u) is a tempered distribution. In

particular, it is the product of a slowly increasing C∞ function and a tempered

distribution.

Proposition 4.8. The space Hs(RN ) endowed with the norm defined by

‖u‖Hs(RN ) =
∥
∥
∥(1 + |ξ|2)s/2F(u)

∥
∥
∥
L2(RN )

is a Banach space.

Proof of Proposition 4.8.

We assume that s > 0. For a Cauchy sequence {un}, the sequence with

general term (1+|ξ|2)s/2F(un) converges to U in L2(RN ). Since the function f

defined by f(ξ) = (1 + |ξ|2)−s/2 is bounded on R
N , it follows that fU ∈ L2.

Setting u = F−1(fU), we obtain an element of Hs(RN ). Hence, using the

continuity of the Fourier transform in L2, we can conclude that ‖un−u‖Hs →
0.

The same proof holds if s < 0, with the exception that this time, the func-

tion f : ξ 	→ (1+ |ξ|2)−s/2 is not bounded. However, as f is a slowly increasing

C∞ function, the product of U considered as a tempered distribution and f

is also a tempered distribution. We conclude in a similar manner using the

continuity of F in S ′. ��

The following result concerns the case where s is an integer.

Proposition 4.9. If s = m ∈ N, then the space Hs(RN ) coincides with the

classical Sobolev space Wm,2(RN ).

Proof of Proposition 4.9. Indeed, if u ∈ Hm(RN ), then the function u as well

as all of its derivatives up to order m belong to L2. Using the Fourier trans-

form, we find that Fu ∈ L2(RN ) and −2iπξαFu ∈ L2(RN ), where α is a

multi-index with |α| � m and ξα = ξα1
1 · · · ξαN

N . In particular, this implies

that (1 + |ξ|2)m/2F(u) ∈ L2(RN ).

Conversely, if F(u) satisfies (1 + |ξ|2)m/2F(u) ∈ L2, then we also have

(2iπξ)jF(u) ∈ L2 for every j satisfying |j| � m. Consequently, the derivatives

of u up to order m are in L2.
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Moreover, by expanding the mth power of 1 +
∑N

1 |ξi|2, we can show the

equivalence of the norms ‖·‖Wm,2 and ‖·‖Hm , where the latter is as defined

above. ��

Proposition 4.10. For s > 0, the space H−s(RN ) coincides with the dual

Hs(RN )′.

Proof of Proposition 4.10. Let v ∈ H−s(RN ). We define a linear functional Lv
on Hs by setting

∀u ∈ Hs(RN ), Lv(u) =

∫

RN

v̂(ξ)û(ξ)dξ.

We show its continuity as follows:

|Lv(u)| =
∣
∣
∣
∫

RN

(1 + |ξ|2)−s/2v̂(ξ)(1 + |ξ|2)s/2û(ξ)dξ
∣
∣
∣

� ‖(1 + |ξ|2)−s/2v̂(ξ)‖2 ‖(1 + |ξ|2)s/2û(ξ)‖2
� C‖u‖Hs(RN ).

It is therefore clear that the map that sends v to Lv is an embedding; conse-

quently,

H−s(RN ) ↪−→ Hs(RN )′.

Conversely, let T ∈ (Hs)
′
. Proposition 4.11 below states that the embed-

ding of S(RN ) into Hs(RN ) is dense, whence Hs(RN )′ ↪→ S ′(RN ). It follows

that T ∈ S ′.

Note that if g ∈ L2, then the Fourier transform of (1 + |ξ|2)−s/2g belongs

to Hs(RN ) and has norm

‖F
(
(1 + |ξ|2)−s/2g

)
‖Hs = ‖g‖2.

Let g ∈ S(RN ). By the definition of the multiplication of F(T ) by the slowly

increasing function (1 + |ξ|2)−s/2, we have
∣
∣
∣
〈
(1 + |ξ|2)−s/2F(T ), g

〉∣∣
∣ =

∣
∣
∣
〈
F(T ), (1 + |ξ|2)−s/2g

〉∣∣
∣

=
∣
∣
∣
〈
T,F

(
(1 + |ξ|2)−s/2g

)〉∣∣
∣

� ‖T‖(Hs)′‖(F(1 + |ξ|2)−s/2g)‖Hs

= ‖T‖(Hs)′‖g‖2.

Consequently, (1 + |ξ|2)−s/2F(T ) ∈ L2, because it defines a continuous linear

functional on L2. We conclude that T ∈ H−s. ��

Proposition 4.11. The space S(RN ) is dense in Hs(RN ).
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Proof of Proposition 4.11. The density of D(RN ) in L2(RN ) implies the exis-

tence of a sequence {ψn} ∈ D(RN ) with

‖ψn − (1 + |ξ|2)s/2F(v)‖2 −→ 0.

The function ϕn = (1+ |ξ|2)−s/2ψn therefore belongs to D(RN ) and converges

to F(v) in L2. By the continuity of F−1, we deduce that F−1(ϕn) is in S(RN )

and converges to v in Hs(RN ). ��

4.2.2 The Space Hs(RN) Seen as a Trace Space

At this point, we are interested in a characterization of the functions in Hs

for s > 0. In the following theorem, we establish that they are the restrictions

of functions in Hs+1/2(RN ) to {xN = 0}.

Theorem 4.12. Let N � 2 and let s be a real number, integer or not, with

s > 1/2; then the functions in Hs(RN ) have a trace on {xN = 0} that belongs
to Hs−1/2(RN−1).

Conversely, every function in Hs−1/2(RN−1 × {0}) can be extended in a

linear and continuous manner to a function in Hs(RN ).

Proof of Theorem 4.12.

We begin with a lemma that expresses the Fourier transform of the re-

striction of the function u to {xN = 0} in terms of the Fourier transform of u

with respect to the first N − 1 variables.

Lemma 4.13. Let v ∈ S(RN ) and let u ∈ S(RN−1). If û denotes the Fourier

transform of u with respect to the first N − 1 variables, then we have the

equivalence

v(x′, 0) = u(x′) ⇐⇒ û(ξ′) =

∫

R

F(v)(ξ′, ξN )dξN .

Proof of Lemma 4.13.

For fixed x′ in R
N−1, let ϕ be defined by ϕ(xN ) = v(x′, xN ). Using δ0(ϕ) =

ϕ(0) = 〈F(1), ϕ〉 = 〈1,F(ϕ)〉, we obtain ϕ(0) =
∫
R
ϕ̂(ξN )dξN , which can also

be written as

(∗) v(x′, 0) =

∫

R

∫

R

v(x′, xN )e−2iπξNxNdxNdξN .

Taking the Fourier transform in x′ on both sides of the relation (∗), we obtain
the result, that is,

û(ξ′) =

∫

RN−1

∫

R

∫

R

v(x′, xN )e−2iπ(ξ′·x′+xNξN )dxNdx
′dξN

=

∫

R

F(v)(ξ′, ξN )dξN .

The converse is evident. This concludes the proof of Lemma 4.13. ��
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Let us return to the proof of Theorem 4.12. We suppose that v ∈ Hs(RN )

and set u(x′) = v(x′, 0). We then show that there exists a constant C > 0

such that

(4.14) |û(ξ′)|

� C
(∫

R

(1 + |ξ′|2 + |ξN |2)s(F(v))2(ξ′, ξN )dξN

)1/2

(1 + |ξ′|2)1/4−s/2.

Indeed, using the change of variables ξN 	→ ξN/
√
1 + |ξ′|2, we have

û(ξ′) =

∫

R

(1 + |ξ|2)s/2F(v)(ξ)
(
1 + |ξ′|2 + |ξN |2

)−s/2
dξN

�
(∫

R

(1 + |ξ|2)s|F(v)|2(ξ′, ξN )dξN

)1/2(∫

R

(1 + |ξ′|2 + |ξN |2)−sdξN

)1/2

= C
(∫

R

(1 + |ξ|2)s|F(v)|2(ξ′, ξN )dξN

)1/2(
1 + |ξ′|2

)1/4−s/2
.

It follows that ξ′ 	→ (1 + |ξ′|2)s/2−1/4û(ξ′) belongs to L2(RN−1) and that its

norm in this space is lesser than or equal to
∥
∥(1 + |ξ|2)s/2F(v)

∥
∥
2
.

Let us now suppose that u ∈ Hs−1/2(RN−1). We extend this function as

follows. Given ϕ ∈ D(R) with integral equal to 1, we write

F(v)(ξ′, ξN ) = F(u)(ξ′)ϕ
( ξN√

1 + |ξ′|2
) 1
√

1 + |ξ′|2
.

The function F(v) then has support in the cylinder
{
ξ | |ξN | � C

√
1 + |ξ′|2

}
,

and v(x′, 0) = u(x′) because

∫

R

F(v)(ξ′, ξN )dξN = F(u)(ξ′)
∫

R

ϕ
( ξN√

1 + |ξ′|2
)
d
( ξN√

1 + |ξ′|2
)

= F(u)(ξ′).

It remains to show that v ∈ Hs. For this, we write

(4.15) (1 + |ξ|2)s(F(v))2(ξ′, ξN )

= (1 + |ξ′|2)s−1/2(F(u))2(ξ′)ϕ2
( ξN√

1 + |ξ′|2
)( (1 + |ξ|2)s

(1 + |ξ′|2)s

)
1

√
1 + |ξ′|2

.

The relation
(1 + |ξ|2)s
(1 + |ξ′|2)s =

(
1 +

( |ξN |√
1 + |ξ′|2

)2)s

,
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allows us to integrate with respect to ξN after applying the change of variables

t = ξN/(1 + |ξ′|2)1/2. Integrating both sides of the relation (4.15) with respect

to ξ then gives

∫

RN

|F(v)|2(ξ)(1 + |ξ|2)sdξ

�
∫

RN−1

(1 + |ξ′|2)s−1/2|F(u)|2(ξ′)
(∫

R

ϕ2(t)(1 + t2)sdt
)
dξ′

� C‖u‖2Hs−1/2(RN−1).

This concludes the proof of the surjectivity of the trace map from Hs(RN )

onto Hs−1/2(RN−1). ��

4.2.3 Generalization for Higher Order Traces

The following proposition generalizes the trace theorem of Chapter 3.

Proposition 4.16. Let m ∈ N, let s ∈ ]m+1/2,m+1+1/2], and let γ be the

map sending u ∈ Hs(RN ) to the (m+ 1)-tuple consisting of the traces of the

successive derivatives u(x′, 0), ∂Nu(x
′, 0), . . . , ∂mN u(x

′, 0). Then γ(u) belongs

to the product Hs−1/2(RN−1) × Hs−1−1/2(RN−1) × · · · × Hs−m−1/2(RN−1)

and the map γ is linear, continuous, and surjective onto the product space.

Proof of Proposition 4.16.

Let u ∈ Hs−k−1/2(RN−1), with k fixed in [0,m]. Let ϕ be a function in

D(R) such that

∫

R

(2iπt)kϕ(t)dt = 1 and ∀ j ∈ [0,m], j �= k =⇒
∫

R

(2iπt)jϕ(t)dt = 0

(cf. Exercise 3.8 of Chapter 3). Next, let v be defined in R
N by its Fourier

transform

F(v)(ξ) = F(v)(ξ′, ξN ) = F(u)(ξ′)ϕ
( ξN√

1 + |ξ′|2
)(

1 + |ξ′|2
)−(k+1)/2

.

Let v(j)(x′) = ∂jNv(x
′, 0). By the characterization given in Lemma 4.13, we

have

F(v(j))(ξ′) =
∫

R

F(∂jNv)(ξ′, ξN )dξN .
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Therefore, recalling that F(∂jNv) = (2iπξN )jF(v) and applying a homothety

to the variable ξN , we obtain the following results:

F(v(j))(ξ′) =
∫

R

( (2iπξN )j

(1 + |ξ′|2)(k+1)/2

)
F(u)(ξ′)ϕ

( ξN√
1 + |ξ′|2

)
dξN

= 0 ∀ j �= k

F(v(k))(ξ′) =
∫

R

( (2iπξN )k

(1 + |ξ′|2)k+1/2
F(u)(ξ′)

)
ϕ
( ξN√

1 + |ξ′|2
)
dξN

= F(u)(ξ′).

The traces of the successive derivatives of v are therefore all zero, with the

exception of that of order k, which equals the given function u in Hs−k−1/2.

It remains to show that v ∈ Hs(RN ). For this, we integrate the equality

(1 + |ξ|2)s|F(v)|2(ξ)

=
(
1 + |ξ′|2

)s−k−1/2|F(u)|2(ξ′)|ϕ|2
( ξN√

1 + |ξ′|2
) (1 + |ξ|2)s
(1 + |ξ′|2)s

1
√

1 + |ξ′|2

with respect to ξ, using the change of variables t = ξN/
√
1 + |ξ′|2 in the

integral in ξN and noting that
∫
R
|ϕ|2(t)(1 + t2)sdt <∞. We thus obtain

‖(1 + |ξ|2)s/2F(v)‖2 � C‖u‖Hs−k−1/2 ,

proving the desired inclusion. ��

4.2.4 Other Definitions of the Spaces Hs

The following proposition will allow us to show that for R
N , the spaces Hs

coincide with the spaces W s,2 whose definition is given in the next section.

Proposition 4.17. Let s ∈ ]0, 1[; then u ∈ Hs(RN ) if and only if

u ∈ L2(RN ) and

∫

RN

∫

RN

|u(x)− u(y)|2
|x− y|N+2s

dx dy <∞.

Proof of Proposition 4.17.

Let u ∈ Hs(RN ). We will see further on (cf. Lemma 4.33) that the follow-

ing two properties are equivalent:

∫

RN

∫

RN

|u(x)− u(y)|2
|x− y|N+2s

dx dy <∞

∀ i,
∫

R

∫

RN

|u(x)− u(x+ hei)|2
|h|1+2s

dx dh <∞and
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To illustrate the ideas, let us take i = 1. Using |1 − eiα|2 = 4 sin2(α/2), we

have
∫

R

1

h2s+1
‖τhe1u− u‖22dh =

∫

R

1

h2s+1

∫

RN

|e2iπhξ1 − 1|2|û|2(ξ)dξdh

=

∫

RN

|û|2(ξ)
∫

R

1

h2s+1
4 sin2(πhξ1)dhdξ

=

∫

RN

(π|ξ1|)2s|û|2(ξ)dξ
∫

R

4 sin2 u

u2s+1
du

� C‖u‖2Hs <∞

because the integral
∫
R
4 sin2 u/u2s+1du converges for s ∈ ]0, 1[.

Conversely, these computations show that

τhu− u
|h|s+1/2

∈ L2 =⇒ |ξ|sû ∈ L2. ��

4.2.5 Embedding Results using the Fourier Transform F

In Section 3.6.1, we gave the extension of the Sobolev embedding theorems of

Chapters 2 for the spacesWm,p, wherem is an integer, to the spacesW 1−1/p,p.

In the case of Hs, using the Fourier transform allows us to show some of these

results in a somewhat elementary manner. We will state those results here.

For more complete results, we refer to the more general embedding theorems

for the spaces W s,p at the end of this chapter. In particular, the following

proposition concerns neither the critical embedding for q = 2N/(N − 2s), nor

the embeddings into Hölder function spaces.

Proposition 4.18. Let s > 0. We have the following embeddings:

(1) If 1/2 < s < N/2, then Hs(RN ) ↪→ Lq(RN ) for every q < 2N/(N − 2s).

(2) If s = N/2, then Hs(RN ) ↪→ Lq(RN ) for every q <∞.

(3) If s > N/2, then Hs(RN ) ↪→ C0(RN ).

Proof of Proposition 4.18.

In the case s < N/2, u is the inverse Fourier transform of F(u), which can

be written as F(u) = (1+|ξ|2)−s/2(1+|ξ|2)s/2F(u). The function (1+|ξ|2)−s/2

belongs to Lq for every q > N/s while (1+ |ξ|2)s/2F(u) belongs to L2, so that

their product F(u) belongs to Lr with 1/r = 1/2 + 1/q.

We can therefore apply Theorem 4.19 below (whose proof can be found in

the appendix), which states that the Fourier transform of a function in Lr with

r ∈ [1, 2] belongs to Lr
′
, where r′ is the conjugate of r, and therefore belongs

to Lk for k ∈ [2, 2N/(N − 2s)[ (cf. the remarks made before the proof of
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Theorem 4.59). Moreover, this same theorem applied to the conjugate Fourier

transform gives the existence of a constant C such that ‖u‖Lk � C‖u‖Hs .

In the case s = N/2, we can use that if s′ < s, then Hs admits an embed-

ding into Hs′ . To see this, it suffices to use the definition of the norms (cf. 4.8).

We will generalize this further on, in Corollary 4.34. Using the previous result

with s′ < N/2, we obtain the desired result.

In the case s > N/2, the transform F(u) can still be written as a product

of the function g in L2 defined by g(ξ) = (1 + |ξ|2)−s/2 and the function

(1 + |ξ|2)s/2F(u), which is also in L2. The product is therefore in L1, and,

consequently, u is the Fourier transform of a function in L1. It is therefore

continuous and tends to 0 at infinity. Moreover, we have

‖u‖L∞ � ‖g (1 + |ξ|2)s/2F(u)‖L1

� ‖g‖L2 ‖(1 + |ξ|2)s/2F(u)‖L2 = ‖g‖L2 ‖u‖Hs ,

concluding the proof in this last case. ��

The theorem used above, which is proved in the appendix, is the following.

Theorem 4.19. Let T be a linear operator defined on all the Lp(RN ) and

continuous from Lpi(RN ) to Lqi(RN ) for i = 0, 1, where pi and qi are given

elements of [1,∞]. We let ki denote the operator norm of T , that is,

ki = ‖T‖pi,qi = sup
‖f‖pi

=1

‖g‖q′
i
=1

∣
∣〈Tf, g〉

∣
∣,

where q′i denotes the conjugate of qi.

If t ∈ ]0, 1[ with 1/p = t/p0 + (1− t)/p1, then T is continuous from Lp

to Lq with 1/q = t/q0+(1− t)/q1. Moreover, we have the continuity inequality

‖T‖p,q � kt0k1−t
1 .

4.3 The Spaces W s,p(Ω) for 0 < s < 1

We begin by recalling results concerning the Lebesgue spaces of functions with

values in a Banach space B.

4.3.1 The Spaces Lp(]0,+∞[, B)

For a simple function t 	→
∑n

1 χAi(t)ai, where the Ai are two-by-two disjoint

measurable subspaces of I = ]0,+∞[ and the ai are elements of B, the integral

over I is defined to be
∑n

1 |Ai|ai.
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Let f be function from I to B. We call it strongly measurable if there exists

a sequence {fn} of simple functions such that for almost all t in ]0,+∞[, we

have

lim
n→+∞

‖f(t)− fn(t)‖B = 0.

If, moreover, one of these sequences satisfies limn→+∞
∫ +∞
0

‖f(t) −
fn(t)‖Bdt = 0, then we call f integrable. The integral of f is then de-

fined to be the limit of the integrals of the simple functions fn. We will show

that this limit is independent of the choice of the approximating sequence

of f .

We will admit, from now on, that a strongly measurable function f is

integrable if and only if the function t 	→ ‖f(t)‖B is summable on ]0,+∞[.

Moreover, if this function has a summable pth power, then we will write

f ∈ Lp(]0,+∞[, B).

Definition of the Trace Spaces T . We let tνf denote the function t 	→ tνf(t)
and let f ′ denote the derivative of f in the sense of distributions. In particular,

if f has values in the Banach space B and is locally integrable in the sense

defined above, then for every function ϕ in D(]0,+∞[), we have

∫ +∞

0

f ′(t)ϕ(t)dt = −
∫ +∞

0

f(t)ϕ′(t)dt,

where the integrals of functions with values in the Banach space B are defined

as before.

Definition 4.20. Given real numbers ν and p with 1 � p � +∞ and an open

subset Ω of RN , we let T (p, ν,Ω) denote the space of functions f from ]0,+∞[

to Ω such that

tνf ∈ Lp(]0,+∞[,W 1,p(Ω)) and tνf ′ ∈ Lp(]0,+∞[, Lp(Ω)),

where the derivative of f is taken in the sense of distributions.

This space is a Banach space when endowed with the norm

‖f‖T = max
{∫ +∞

0

‖tνf‖W 1,p(Ω)dt,

∫ +∞

0

‖tνf ′‖Lp(Ω)dt
}
.

The following is a first regularity property of this space.

Proposition 4.21. Let f ∈ T (p, ν,Ω), then there exists an a ∈ Lp(Ω) such

that

for almost all t ∈ ]0,+∞[, f(t) = a+

∫ t

1

f ′(τ)dτ.
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Proof of Proposition 4.21.

Since the factor tν is bounded on every compact subset of I = ]0,+∞[, we

have the inclusions f ∈ Lploc(I,W 1,p(Ω)) and f ′ ∈ Lploc(I, Lp(Ω)). Therefore,
almost everywhere on I, we can define the function g in Lploc(I, L

p(Ω)) by

setting g(t) = f(t)−
∫ t

1
f ′(τ)dτ .

Let b be an element of the dual Lp
′
(Ω) of Lp(Ω). To prove that g is almost

everywhere a constant, we consider the function t 	→ gb(t) = 〈g(t), b〉p, where
〈 , 〉p is the duality pairing of Lp with Lp

′
. Applying Fubini’s and Hölder’s

formulas, we see that the function gb belongs to Lploc(I). Consequently, the

pairing of the derivative of gb in the sense of distributions and a scalar function

ϕ ∈ D(I), which we denote by A = 〈(gb)′, ϕ〉, satisfies

A = −
∫ +∞

0

gb(t)ϕ
′(t)dt

= −
∫

suppϕ

∫

Ω

b(x)g(t)(x)dxϕ′(t)dt = −
〈∫ +∞

0

g(t)ϕ′(t)dt, b
〉

p

= −
〈∫ +∞

0

f(t)ϕ′(t)dt−
∫ +∞

0

ϕ′(t)

∫ t

1

f ′(τ)dτdt, b
〉

p

=
〈∫ +∞

0

f ′(t)ϕ(t)dt, b
〉

p
+

∫

Ω

b(x)
[∫ +∞

0

ϕ′(t)

∫ t

1

f ′(τ)(x)dτdt
]
dx.

Note that applying Fubini’s formula can be justified by approximating g(t) on

the compact set suppϕ by simple functions, for which the validity of Fubini’s

formula is obvious.

The same method allows us to replace the second term in the next to last

equality by ∫ +∞

0

ϕ′(t)

∫ t

1

〈f ′(τ), b〉pdτdt.

By the above, the function τ 	→ 〈f ′(τ), b〉p is locally summable. We can there-

fore differentiate its integral over [0, t], in particular in the sense of distribu-

tions. Consequently, we can write

∫ +∞

0

ϕ′(t)

∫ t

1

〈f ′(τ), b〉pdτ = −
∫ +∞

0

ϕ(t)〈f ′(t), b〉pdt

= −
〈∫ +∞

0

f ′(t)ϕ(t)dt, b
〉

p
.

We deduce from this that (gb)
′ = 0. Let t be an element of the domain of g;

then we deduce from the above that for almost all t′ and for all b ∈ Lp′
,

we have 〈g(t), b〉p = 〈g(t′), b〉p. We conclude that the function g(t) is a fixed

element a of Lp(Ω), proving the relation stated above. ��
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Corollary 4.22. Under the previous assumptions, the function f from

]0,+∞[ to Lp(Ω) is continuous.

This results from the continuity of the integral of a locally summable function

with respect to the upper integration limit.

4.3.2 The Spaces W s,p(Ω) for 0 < s < 1

Definition 4.23. Let s ∈ ]0, 1[ and let p ∈ ]1,∞[. We define the fractional

Sobolev space W s,p(Ω) as follows:

W s,p(Ω) =
{
u ∈ Lp(Ω)

∣
∣
∣
∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|sp+N

dx dy <∞
}
.

This definition of the spaces W s,p generalizes that of the spaces in Chap-

ter 3.

Proposition 4.24. Let s ∈ ]0, 1[. The space W s,p(Ω) endowed with the norm

‖u‖s,p =
(
‖u‖pp+[‖u‖′s,p]p

)1/p
, where [‖u‖′s,p]p =

∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|sp+N

dx dy,

is a Banach space.

Proof of Proposition 4.24.

Let {un} be a Cauchy sequence for the norm ‖u‖s,p. In particular, {un}
is a Cauchy sequence in Lp. It converges to a function u ∈ Lp. Moreover, the

sequence {vn} of functions

vn(x, y) =
un(x)− un(y)
|x− y|s+N/p

is a Cauchy sequence in Lp. It therefore also converges to an element of Lp.

Let us extract a subsequence {uσ(n)} of {un} that converges almost every-

where to u. We note that vσ(n)(x, y) converges, for almost every pair (x, y),

to v(x, y) = (u(x)− u(y))|x− y|−s−N/p. Applying Fatou’s lemma, we obtain

∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|sp+N

dx dy � lim
n→∞

∫

Ω

∫

Ω

|uσ(n)(x)− uσ(n)(y)|p

|x− y|sp+N
dx dy.

Hence u ∈ W s,p(Ω). Moreover, we find that un → u in W s,p(Ω) by taking

the limit for m→∞ in ‖vn − vm‖Lp(Ω×Ω). ��

Example 4.25. Let us study the inclusion of the function x 	→ ln |x| in the

space W s,p(]0, 1[) when sp < 1, and the inclusion of x 	→ |x|α ln |x| in this

same space when s− α < 1/p. From this, we easily deduce the conditions for
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the inclusion in W s,p
loc (R

N ) of these functions considered as radial functions

on R
N .

Let us first evaluate the seminorm I = ‖ ln |x|‖′s,p when sp < 1:

I =

∫ 1

0

∫ 1

0

| ln |x| − ln |y||p
|x− y|sp+1

dx dy =

∫ 1

0

y−sp

∫ 1/y

0

| lnu|p
(1− u)sp+1

du dy

�
∫ 1

0

y−sp
(∫ 1

0

| lnu|p
(1− u)sp+1

du+

∫ 1/y

1

| lnu|p
(1− u)sp+1

du
)
dy = I1 + I2.

In the first integral between the parentheses, the integrand is equivalent to

| lnu|p at u = 0 and to (1− u)p−sp−1 at u = 1. The integral in u is therefore

convergent, and the integral in y is convergent when sp < 1. Under this same

condition, we deduce the existence of the first term I1. By Fubini’s formula,

I2 can be written as

∫ 1

0

y−sp

∫ 1/y

1

| lnu|p
(1− u)sp+1

du dy =

∫ +∞

1

| lnu|p
(1− u)sp+1

(∫ 1/u

0

y−spdy
)
du.

Studying it therefore reduces to studying

∫ +∞

1

| lnu|p
(1− u)sp+1

usp−1du.

From the equivalence of the integrand in the latter to | lnu|p|u|−2 in the neigh-

borhood of +∞ and to (1 − u)p(1−s)−1 at u = 1, we deduce the convergence

of I2, giving the desired conclusion.

For x 	→ xα ln |x|, we evaluate the seminorm in the same manner as in

Chapter 3 (cf. Example 3.8). It therefore suffices to prove the finiteness of the

two integrals

J1 =

∫ 1

0

∫ 1

0

xpα
| lnx− ln y|p
|x− y|sp+1

dx dy

J2 =

∫ 1

0

∫ 1

0

| ln y|p |x
α − yα|p

|x− y|sp+1
dx dy.and

Following the computations we made for s = 1 − 1/p (Example 3.8), we

obtain the finiteness of J1 provided that pα−sp > −1 and pα+2 > 1, that is,

under the conditions stated at the beginning of this example. Finally, setting

γ = (α− s)p, the second integral J2 becomes

J2 =

∫ 1

0

| ln y|p|y|αp−sp

∫ 1/y

0

|1− uα|p
|1− u|sp+1

du dy

=

∫ 1

0

| ln y|pyγ
∫ 1

0

|1− uα|p
|1− u|sp+1

du dy +

∫ 1

0

| ln y|pyγ
∫ 1/y

1

|1− uα|p
|1− u|sp+1

du dy.
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The first term is the product of an integral in y that converges because

p(α − s) > −1 and an integral in u that converges under the same condition

because the function is equivalent to K(1 − u)p(1−s)−1 at u = 1. Applying

Fubini’s formula, we can reduce the second term to the integral

J ′2 =

∫ +∞

1

|1− uα|p
|1− u|sp+1

[∫ 1/u

0

| ln y|py(α−s)pdy
]
du.

When y < 1, we can bound | ln y|py(α−s)p from above by y−ε+(α−s)p for every

ε > 0. It follows that we can find, for the integrand of J ′2, a bounding function

equivalent to ur at the neighborhood of +∞, where r = −2 + ε. This shows

the finiteness of J2, whence the desired conclusion.

When the integration domain is K ×K with K a compact subset of RN ,

the only additional difficulty corresponds to the case where 0 ∈ K. Using

polar coordinates in a neighborhood of 0, we reduce to the previous integrals

with αp replaced by αp + N − 1. We easily deduce from this the conditions

for the inclusion of the function we are considering in the space W s,p
loc (R

N ).

4.3.3 First Properties of the Space W s,p(Ω)

Proposition 4.26. The space W s,p(Ω) is of local type, that is, for every u in

W s,p(Ω) and for every ϕ ∈ D(Ω), the product ϕu belongs to W s,p(Ω).

Proof of Proposition 4.26.

Let u ∈W s,p(Ω) and let ϕ ∈ D(Ω). It is clear that uϕ ∈ Lp. We will show

that ∫

Ω

∫

Ω

∣
∣(ϕu)(x)− (ϕu)(y)

∣
∣p

|x− y|sp+N
dx dy <∞.

In order to do this, we write the difference in the numerator as a sum of

two terms. The first is ϕ(x)(u(x)−u(y)), which will give a convergent integral

because ϕ is bounded. The second gives the integral

Jp =

∫

Ω

∫

Ω

∣
∣
∣
(ϕ(x)− ϕ(y))u(y)
|x− y|s+N/p

∣
∣
∣
p

dx dy.

This can be bounded from above by using the mean value theorem and inte-

grating with respect to x:

Jp � ‖ϕ′‖p∞
∫

suppϕ

|u(y)|p
[∫

suppϕ

|x− y|p(1−s)−Ndx
]
dy

� Cρp(1−s)‖u‖pp,

where ρ is an upper bound for the diameter of the support of ϕ. ��
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Let us consider the case Ω = R
N .

Proposition 4.27. The space D(RN ) is dense in W s,p(RN ).

Proof of Proposition 4.27. We traditionally use a truncation and a regular-

ization. We will give the proof in the case N = 1. The general case easily

follows from this one.

Let us show that the functions with compact support in W s,p are dense

in W s,p.

Let u ∈W s,p(R) and let ϕ ∈ D(R) have value 1 on the open ball of radius 1

with center 0, value 0 for |x| � 2, and satisfy 0 � ϕ � 1 elsewhere. Let un be

defined to be ϕ(x/n)u(x). It is clear that un has compact support and values

in W s,p. Moreover, it is a classical result that un converges to u in Lp.

It remains to show that the sequence {vn}, where

vn(x, y) =
(
(un − u)(x)− (un − u)(y)

)
|x− y|−s−1/p

tends to 0 in Lp(R2). To do this, we will show that the integrals

In =

∫ n

0

dx
(∫ ∞

n

|vn|p(x, y)dy
)
, Jn =

∫ ∞

n

dx
(∫ ∞

n

|vn|p(x, y)dy
)

and those that we deduce from them by exchanging the variables x and y tend

to 0. Indeed, (un − u)(x)− (un − u)(y) vanishes when x and y are in [−n, n].
For the integral In, we have

In =

∫ ∞

n

|u(y)|p
∣
∣
∣1− ϕ(y/n)

∣
∣
∣
p[∫ n

0

dx

(y − x)sp+1

]
dy

� C
∫ ∞

n

|u(y)|p
∣
∣
∣1− ϕ(y/n)

∣
∣
∣
p 1

(y − n)sp dy

� C

nsp

∫ ∞

n

|u(y)|p sup
u�1

∣
∣
∣
∣
1− ϕ(u)
(u− 1)s

∣
∣
∣
∣

p

dy.

The function (1− ϕ(u))(u − 1)−s is in fact bounded for u � 1. When u > 2,

this results from the upper bound (u−1)−s � 1, and when u ∈ [1, 2], it follows

from the inequality
∣
∣(1−ϕ(u))(u− 1)−s

∣
∣ � (u− 1)1−s‖ϕ′‖∞. This inequality

can be deduced by applying the mean value theorem to ϕ, because s ∈ ]0, 1[.

We therefore obtain In → 0.

Let wn denote the function defined by

wn(x, y) = (un(x)− un(y))|x− y|−s−1/p.

We will show that Kn =
∫∞
n

∫∞
n
|wn(x, y)|pdx dy → 0, which leads to Jn → 0

because, by hypothesis,
∫∞
n

∫∞
n
|v(x, y)|pdx dy → 0. We first note that by the
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choice of ϕ, we have

Kn �
∫ 2n

n

∫ 2n

n

|un(x)− un(y)|p
|x− y|sp+1

dx dy +

∫ ∞

2n

∫ 2n

n

|un(x)− un(y)|p
|x− y|sp+1

dx dy

= K(1)
n +K(2)

n .

Integrating with respect to x and then using the properties of ϕ, we find that

the term K
(2)
n satisfies

K(2)
n �

∫ ∞

2n

∫ 2n

n

|un(y)|p
|x− y|sp+1

dx dy � C
∫ 2n

n

|(ϕ(y/n)− ϕ(2))u(y)|p
|2n− y|sp dy

� C

nsp

∫ 2n

n

sup
y∈[1,2]

∣
∣
∣
∣
ϕ(2)− ϕ(y)
(2− y)s

∣
∣
∣
∣

p

|u(y)|pdy � C
′

nsp

∫ 2n

n

|u(y)|pdy.

Since u ∈ Lp, we have K
(2)
n → 0.

Moreover, using the triangular inequality, the mean value inequality for ϕ,

the assumption that u ∈ W s,p, and the maximum of the function x 	→
(2n− x)p(1−s) + (x− n)p(1−s) on [n, 2n], we can write

K(1)
n � 2p−1

∫ 2n

n

∫ 2n

n

|ϕ(x/n)− ϕ(y/n)|p|u(x)|p
|x− y|sp+1

dx dy

+ 2p−1

∫ 2n

n

∫ 2n

n

|ϕ(x/n)|p|u(x)− u(y)|p
|x− y|sp+1

dx dy

� 2p−1

(∫ 2n

n

∫ 2n

n

|x− y|p(1−s)−1

np
‖ϕ′‖p∞|u(x)|pdx dy

+

∫ 2n

n

∫ 2n

n

∣
∣
∣
∣
u(x)− u(y)
|x− y|s+1/p

∣
∣
∣
∣

p

dx dy

)

� C
∫ 2n

n

(2n− x)p(1−s) + (x− n)p(1−s)

np
|u(x)|pdx+ o(1)

� C
∫ 2n

n

np(1−s)

np
|u(x)|pdx � C

nsp

∫ 2n

n

|u(x)|pdx+ o(1) −→ 0,

where the last line follows from the inclusion of u in Lp.

Using a regularization, we now approximate the functions u with compact

support by functions in D. Let ρ be a function in D(R), let ρε(t) = 1
ερ(x/ε),

and for a function u with compact support in R, let uε = ρε � u.

The convergence of uε in Lp is well known. We will prove that

‖uε‖′s,p =

∣
∣
∣
∣
ρε � u(x)− ρε � u(y)

|x− y|s+1/p

∣
∣
∣
∣
Lp(R2)

�
∣
∣
∣
∣
u(x)− u(y)
|x− y|s+1/p

∣
∣
∣
∣
Lp(R2)

.
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Indeed, we have

[
‖uε‖′s,p

]p
=

∫

R2

∣
∣
∣
∫

R

ρ(t)(u(x− εt)− u(y − εt))dt
∣
∣
∣
p dx dy

|x− y|sp+1

�
∫

R2

∫

R

ρ(t)
|u(x− εt)− u(y − εt)|p

|x− y|sp+1
dt dx dy

�
∫

R

ρ(t)

∫

R2

|u(x− εt)− u(y − εt)|p
|x− y|sp+1

dx dy dt �
[
‖u‖′s,p

]p
.

Moreover, setting v(x, y) = (u(x)− u(y))|x− y|−s−1/p, the convergence

|ρε � u(x)− ρε � u(y)|
|x− y|s+1/p

−→ v(x, y)

for almost every pair (x, y) is a classical result. By Fatou’s lemma, it follows

that

‖u‖′s,p � lim
ε→0

‖ρε � u‖′s,p.

In particular, the sequence defined by

vε = (uε(x)− uε(y))|x− y|−s−1/p

satisfies ‖vε‖p → ‖v‖p.
We have thus obtained the almost everywhere convergence and the conver-

gence of the norms. Now, the space Lp is uniformly convex because p > 1 and

in such a space, these two convergences imply that ‖vε−v‖p → 0 (cf. Exercise

4.5). From this, we deduce the convergence of ‖uε−u‖s,p to 0, completing the

proof. ��

At the end of this section, we will see that if Ω is an open set of class C1,
then the space C1(Ω) is dense in W s,p(Ω).

4.3.4 Comparison of the Spaces W and T for Ω = R
N

We will now show that W s,p(Ω) equals the space of the traces of the elements

of T (p, 1−1/p−s,Ω) at the point t = 0. We have the following partial result.

Proposition 4.28. Let s ∈ ]0, 1[ and let u ∈ T (p, 1 − 1/p − s,Ω). Let {λn}
be an arbitrary sequence of real numbers tending to 0, and let un = u(λn).

The sequence {un} then has a limit u(0) in Lp(Ω) and the resulting trace map

u 	→ u(0) from T to Lp(Ω) is continuous.

Proof of Proposition 4.28.

Let 0 < s < 1 and set ν = 1− 1/p− s. Let u ∈ T (p, ν,Ω). To illustrate the

ideas, we take λn = 1/n. Let {un} be the sequence of functions on Ω defined



198 4 Fractional Sobolev Spaces

by un = u(1/n). By Proposition 4.21 and Hölder’s inequality, when n > m,

we have

‖un − um‖pLp(Ω) =
∥
∥
∥
∫ 1/m

1/n

|u′(t)|dt
∥
∥
∥
p

Lp(Ω)
=

∫

Ω

[∫ 1/m

1/n

|u′(t)|(x)dt
]p
dx

=

∫

Ω

[∫ 1/m

1/n

t−νtν |u′(t)|(x)dt
]p
dx

�
∫

Ω

[∫ 1/m

1/n

t−νp′
dt
]p/p′[∫ 1/m

1/n

[tν |u′(t)|(x)]pdt
]
dx(4.29)

�
[∫ 1/m

1/n

t−νp′
dt
]p/p′[∫ 1/m

1/n

∥
∥
∥tν |u′(t)|

∥
∥
∥
p

Lp(Ω)
dt
]

� C
[( 1

m

)1−νp′

−
( 1
n

)1−νp′]p/p′

‖tνu′‖pLp(]0,+∞[,Lp(Ω)),

where the last inequality uses the assumption that tνu′ belongs to

Lp(]0,+∞[, Lp(Ω)).

Since ν + 1/p < 1, we have νp′ = νp/(p− 1) < 1. It follows that the first

factor tends to 0 when m and n tend to +∞, and, consequently, that {un}
is a Cauchy sequence in the complete space Lp(Ω). From inequality (4.29),

which still holds with the same proof, we can deduce that

(4.30) ‖u(t1)− u(t2)‖pLp(Ω)

� C
∣
∣
∣(t1)1−νp′

− (t2)
1−νp′

∣
∣
∣
p/p′

‖tνu′‖pLp(]0,+∞[,Lp(Ω)).

Using this inequality, we see that for all sequences {λn} that tend to 0 from

above, the limits of the sequences {u(λn)} exist and coincide. This completes

the proof of the existence of the limit.

Let u(0) denote the limit of these sequences in Lp(Ω). By letting t1 tend

to 0 and using the triangle inequality, we deduce the following from (4.30):

∀ t > 0, ‖u(0)‖pLp(Ω)

� 2p−1
[
‖u(t)‖pLp(Ω) +

1

1− νp′ t
(p/p′)−ν‖tνu′‖pLp(]0,+∞[,Lp(Ω))

]
.

Integrating this inequality over [0, 1] and transforming
∫ 1

0
‖u(t)‖Lp(Ω)dt by

Hölder’s inequality, as we did with the integral of ‖u′(t)‖ at the beginning of

(4.29), we obtain the inequality

‖u(0)‖Lp(Ω) � C‖u‖T .

The trace map u 	→ u(0) is therefore continuous. ��
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From now on, we let γ0(T ) denote the subspace of Lp(Ω) consisting of

the u(0) for u in T . Let us now show the relation between W s,p(RN ) and

γ0
(
T (p, 1− 1/p− s,RN )

)
.

Proposition 4.31.

γ0
(
T (p, 1− 1/p− s,RN )

)
=W s,p(RN ).

Outline of the Proof. We first consider the case N=1, which we show using

two converse propositions (4.32 and 4.37). For the general case, we will apply

Lemma 4.33 in order to use an induction on the dimension N .

Proposition 4.32. Let u ∈W s,p(R) and let v be defined on ]0,+∞[× R by

v(t, x) =
ϕ(t)

t

∫ t

0

u(x+ s)ds =
ϕ(t)

t

∫ x+t

x

u(s)ds,

where ϕ ∈ D(R) and ϕ(0) = 1; then the function t 	→ v(t, ·) belongs to

T (p, 1− 1/p− s,R). More precisely, if v1 and v2 denote the functions

t 	−→ t1−1/p−sv(t, ·) and t 	−→ t1−1/p−s ∂v

∂t
(t, ·),

respectively, then we have

v1 ∈ Lp
(
]0,+∞[,W 1,p(]0,+∞[×R)

)
and v2 ∈ Lp

(
]0,+∞[, Lp(]0,+∞[×R)

)
.

Proof of Proposition 4.32.

We begin by verifying that if ν = 1−1/p−s, then vν = tνv ∈ Lp(]0,+∞[×
R). Indeed,

‖vν‖pp =

∫

R

∫ +∞

0

tνp|ϕ(t)|p
∣
∣
∣
∫ 1

0

u(x+ st)ds
∣
∣
∣
p

dt dx

�
∫ +∞

0

tνp|ϕ(t)|pdt
∫ 1

0

∫

R

|u(X)|pdX ds <∞.

We then show that tν∂xv ∈ Lp(]0,+∞[× R). Indeed,

tν∂xv = ϕ(t)t
−1/p−s

(
u(x+ t)− u(x)

)
,

whence, by taking the pth power and integrating,

∫

R

∫

]0,+∞[

|ϕ(t)|p |u(x+ t)− u(x)|
p

|t|sp+1
ds � ‖ϕ‖p∞‖u‖pW s,p <∞.
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Finally, we verify that tν∂tv ∈ Lp(]0,+∞[× R):

tν∂tv = ϕ(t)t
−1/p−s 1

t

∫ t

0

(u(x+ t)− u(x+ s))ds+ ϕ′(t)tν
∫ 1

0

u(x+ st)ds

= tνf(t, x) + ϕ′(t)tν
∫ 1

0

u(x+ st)ds.

It is clear that t 	→ ϕ′(t)tν
∫ 1

0
u(x+st)ds belongs to Lp and, moreover, has

a norm in Lp bounded from above by ‖u‖p, up to a constant.

Using Hölder’s inequality and a change of variables, we have

∫

R

∫

R+

|tνf(t, x)|pdx dt � ‖ϕ‖p∞
∫ 1

0

∫

R

∫

R+

|u(x+ t)− u(x+ tz)|p
tsp+1

dz dx dt.

Next, the change of variables (x, t, z) → (x + t, x + tz, z), whose Jacobian is

|1− z|, allows us to deduce an upper bound for the last integral:

∫ 1

0

∫

R

∫

R

|u(X)− u(T )|p
|X − T |sp+1

|1− z|spdz dX dT � ‖u‖ps,p,

giving the desired result. ��

We begin by studying the case where N � 2 and establishing the following

equivalence result, which is the analogue of Lemma 3.27.

Lemma 4.33. The following two properties are equivalent:

u ∈W s,p(RK),(i)

∀ i ∈ [1,K],

∫

RK

∫

R

|u(x+ tei)− u(x)|p
tsp+1

dx dt <∞(ii)

and there exists a universal constant c such that
∫

RK

∫

R

|u(x+ tei)− u(x)|p
tsp+1

dx dt � c
∫

R2K

|u(x)− u(y)|p
|x− y|sp+K

dx dy.

The following result concerning the existence of embeddings, which will

be useful later on, easily follows.

Corollary 4.34. The spaces W s,p(RN ) satisfy the following embedding prop-

erties:

(i) If 0 < s′ < s < 1, then W s,p(RN ) ↪→W s′,p(RN ).

(ii) If s ∈ ]0, 1[, then W 1,p(RN ) ↪→W s,p(RN ).
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Proof of Lemma 4.33.

Let us show that (ii) implies (i). Let u ∈ Lp(RK) satisfy

∀ i ∈ [1, N ],

∫

RK

∫

R

|u(x+ tei)− u(x)|p
tsp+1

dx dt <∞.

For x and y in ]0, 1[K , we use the decomposition of [u]yx = −u(x) + u(y)
introduced in the proof of Lemma 3.27 and the functions δi derived from it:

[u]yx =

i=K−1∑

i=1

u
(
x−

∑

j�i

xjej +
∑

j�i

yjej

)
− u

(
x−

∑

j�i+1

xjej +
∑

j�i+1

yjej

)

δi(x, y) = u
(
x−

∑

j�i

xjej +
∑

j�i

yjej

)
− u

(
x−

∑

j�i+1

xjej +
∑

j�i+1

yjej

)
.

We can thus write the seminorm W s,p(]0, 1[K) as a sum of integrals Ii, where

Ii =

(∫

RK

∫

RK

|δi(x, y)|p
[∑

j |xj − yj |
]sp+K

dx′dy′
)1/p

.

To bound these integrals from above, we note, as in the proof of Lemma 3.27

of Chapter 3, that there exists a constant C such that

(4.35)

∫

RK−1

1
∑

i |xi − yi|sp+K

∏

j�2+i

dyj
∏

k�i

dxk � C 1

|xi+1 − yi+1|sp+1
.

In each integral Ii, we can see the numerator as depending only on xi and yi.

Indeed, taking, for example, i = K − 1 and integrating with respect to∏
j�K−1 dyj , the previous inequality leads to

(4.36)

∫

RK

∫

RK

∣
∣(u(x1, . . . , xK)− u(x1, . . . , xK−1, yK)

∣
∣p

∑
i (|xi − yi|)

sp+K

∏

j

dxj
∏

l

dyl

� C
∫

RK

∫

R

∣
∣(u(x1, . . . , xK−1, xK)− u(x1, . . . , xK−1, yK)

∣
∣p

|xK − yK |sp+1

∏

j�K

dxjdyK ,

giving the result by using (ii).

Let us show that (i) implies (ii). To illustrate the ideas, suppose that i = K.

Reasoning by induction, we see that the result follows from the following

implication:

If
∫

RK

∫

RK−1

∫

R

|u(x′, xK + t)− u(y′, xK)|p
(|t|+ |x′ − y′|)sp+K

dx′dxKdy
′ dt <∞,
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then
∫

RK

∫

RK−2

∫

R

|u(x′′, xK−1, xK + t)− u(y′′, xK−1, xK)|p

(t+ |x′′ − y′′|)sp+K−1
dx dy′′ dt <∞.

Integrating the quantity (t+ t′+ |x′′−y′′|)−sp−K with respect to t′ between 0

and +∞, we find that there exists a constant cp,s,k such that

cp,s,K (t+ |x′′ − y′′|)−sp−K+1 �
∫ ∞

0

(t+ t′ + |x′′ − y′′|)−sp−Kdt′.

Moreover, we have

u(x′, xK + t)− u(y′′, xK−1, xK)

= u(x′′, xK−1, xK + t)− u(y
′′+x′′

2 , xK−1 + t
′, xK + t/2)

+ u(y
′′+x′′

2 , xK−1 + t
′, xK + t/2)− u(y′′, xK−1, xK),

where t′ ∈ [0,+∞[. Using the triangle inequality, the inequality t + t′ +

|x′′ − y′′| � t/2 + t′ + 1
2 |x′′ − y′′|, and the classical inequality |a + b|p �

2p−1(|a|p + |b|p) describing the convexity, we can bound the integral

∫

RK

∫

RK−2

∫ ∞

0

|u(x′′, xK−1, xK + t)− u(y′′, xK−1, xK)|p
(|x′′ − y′′|+ |t|)sp+K−1

dt dx dy′′

from above by the sum of the following two integrals, up to a multiplicative

constant:

∫

RK

∫

RK

|u(x′′, xK−1, xK + t)− u(y
′′+x′′

2 , xK−1 + t
′, xK + t/2)|p

( 12 |x′′ − y′′|+ |
t
2 |+ |t′|)sp+K

dt dt′ dx dy′′,

∫

RK

∫

RK

|u(y
′′+x′′

2 , xK−1 + t
′, xK + t/2)− u(y′′, xK−1, xK)|p

( 12 |x′′ − y′′|+ |t/2|+ |t′|)sp+K
dt dt′ dx dy′′,

thus concluding the proof of Lemma 4.33. ��

Proof of Corollary 4.34.

We use the characterization given in the lemma. Let us write the integral

∫

RN

∫

R

|u(x)− u(x+ tei)|p
|t|s′p+1

dx dt

as the sum
∫

RN

∫

|t|�1

|u(x)− u(x+ tei)|p
|t|s′p+1

dx dt+

∫

RN

∫

|t|>1

|u(x)− u(x+ tei)|p
|t|s′p+1

dx dt.
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The second integral is bounded from above by

2p
∫

RN

|u(x)|p
∫

|t|>1

1

ts′p+1
dt dx � c‖u‖p

Lp(RN )
.

For the first integral, we use the inequality

1

|t|s′p+1
� 1

|t|sp+1
,

for |t| � 1, which by the previous lemma gives the desired embedding. More-

over, it gives the existence of a constant C depending only on N , p, s, s′, such

that

‖u‖ps′,p � C
(
‖u‖ps,p + ‖u‖pp

)
.

For the second embedding, let u ∈ W 1,p(RN ). For |t| � 1, we write

|u(x+ tei)− u(x)| as an integral and apply Hölder’s inequality, giving

|u(x+ tei)− u(x)|p � tp−1

∫ t

0

|∂iu|p(x+ s)ds.

Using Fubini’s formula, we deduce from this that

∫ 1

0

∫

RN

|u(x)− u(x+ tei)|p
tsp+1

dx dt �
∫ 1

0

tp−sp−1

∫

RN

|∂iu|p � C|∂iu|p

because the integral in t converges since p− sp− 1 > −1. Moreover, the same

function integrated over [1,∞] gives a result that is bounded from above by

C‖u‖pp. ��

Proof of Proposition 4.31 for N � 2.

Let u ∈ W s,p(RN ). Taking a function ϕ in D(R) satisfying ϕ(0) = 1, we

define v by setting

v(t, x) =
ϕ(t)

tN

∫

]0,t[N
u(x+ z)dz.

We use the notation

z̆i =
∑

j �=i

ziei, dz̆i =
∏

j �=i

dzj ,

so that

∂xi

(
u(x+ z)

)
= ∂xi

(
u((xi + zi)ei + x̆i + z̆i)

)

= ∂zi
(
u((xi + zi)ei + x̆i + z̆i)

)
= ∂zi

(
u(x+ z)

)
.
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To derive v with respect to xi, we use the above and Fubini’s formula. This

leads to

∂iv(t, x) =
ϕ(t)

tN

∫

(]0,t[)N−1

∫ t

0

∂zi
(
u(x+ ziei + z̆i

)
dzidz̆i

=
ϕ(t)

tN

∫

(]0,t[)N−1

[
u(x+ tei + z̆i)− u(x+ z̆i)

]
dz̆i.

Taking the pth power, applying Hölder’s inequality, and multiplying by tνp,

we obtain
∫ +∞

0

∫

RN

tνp|∂iv(t, x)|pdx dt

� ‖ϕ‖p∞
∫

R+

∫

RN

∫

]0,1[N−1

|u(x+ s̆it+ t)− u(x+ s̆it)|p
tsp+1

dx ds̆idt.

The result follows by using the change of variables X = x+ s̆it.

Setting ψ(t, x) = ϕ′(t)
∫
]0,1[N

u(x+ zt)dz, differentiating with respect to t

gives

∂tv = ϕ(t)

(
−N
tN+1

∫

]0,t[N
u(x+ z)dz +

1

tN

∑

i

∫

]0,t[N−1

u(x+ s̆i + tei)ds̆i

)

+ ϕ′(t)

∫

]0,1[N
u(x+ zt)dz

=
ϕ(t)

tN+1

∑

i

∫

]0,t[N
(u(x+ z̆i + tei)− u(x+ z)) dz + ψ(x, t)

= f(t, x) + ψ(t, x).

It is clear that (t, x) 	→ tνψ(t, x) belongs to Lp. Moreover, multiplying

|f(t, x)|p by tνp and integrating gives
∫

RN×R+

|tνf(t, x)|pdt dx

� C‖ϕ‖p∞
∫

RN

∑

i

∫

]0,1[N×R+

|u(x+ z̆it+ tei)− u(x+ zt)|p
tsp+1

dt dz dx.

Using the change of variable X = x+ zt, we then obtain
∫

RN

∫

R+

∫

]0,1[N

|u(x+ z̆it+ tei)− u(x+ zt)|p
tsp+1

dtdz dx

=

∫

RN

∫

]0,1[N

∫

R+

|u(X)− u(X + t(1− zi)ei)|p
tsp+1

dz dt dX

=

∫

RN

∫ 1

0

dzi

∫ 1−zi

0

(1− zi)sp
|u(X)− u(X + Tei)|p

T sp+1
dT dX <∞,

completing the proof. ��
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The following is the converse of Proposition 4.32.

Proposition 4.37. Let ν be a real number such that 0 < ν + 1/p < 1. Let u

satisfy tνu(t, ·) ∈ Lp(]0, 1[,W 1,p(RN )) and tν∂tu ∈ Lp(]0,+∞[ × R
N ); then

u(0, ·) ∈W 1−1/p−ν,p(RN ).

Proof of Proposition 4.37.

To prove this proposition, we recall the following lemma from Chapter 3.

Lemma 4.38. Let ν be a real number and let f be a function from R to R.

We assume that 0 < 1/p+ ν = θ < 1 and 1 � p <∞. The following holds:

(i) If the map t 	→ tνf(t) belongs to Lp(R+) and if g is defined by

(4.39) g(t) =
1

t

∫ t

0

f(s)ds,

then the map t 	→ tνg(t) belongs to Lp(R+) and there exists a constant

c(p, ν) depending only on p and ν such that

(4.40)

∫ ∞

0

tνp|g(t)|pdt � c(p, ν)
∫ ∞

0

tνp|f(t)|pdt.

(ii) Let α, β be elements of R with α < β. Let f be defined on R
+× ]α, β[ and

let g be defined by g(t, x) = 1/t
∫ t

0
f(s, x)ds. If tνf ∈ Lp(R+× ]α, β[), then

tνg belongs to Lp(R+×]α, β[) and there exists a constant c(p, ν) depending

only on p and ν, such that

(4.41)

∫ β

α

∫ ∞

0

tνp|g(t, x)|pdt dx � c(p, ν)
∫ β

α

∫ ∞

0

tνp|f(t, x)|pdt dx.

We can now show Proposition 4.37. By Lemma 4.33, we can reduce to

proving that ∫

RN

∫ ∞

0

|u(0, x)− u(0, x+ t)|p
tsp+1

dx dt <∞.

To show this, we write u(0, x)− u(0, x+ t) as a sum of three differences:

u(0, x)−u(0, x+t) = u(0, x)−u(t, x)+u(t, x)−u(t, x+t)+u(t, x+t)−u(0, x+t)

that we replace by
∫ t

0

∂λu(λ, x)dλ,

∫ t

0

∂xu(t, x+ λ)dλ and

∫ t

0

∂λu(λ, x+ t)dλ,

respectively. We then apply Lemma 4.38 to each of these integrals with the

functions f(t, x, λ) = ∂tu (λ, x), f(t, x, λ) = ∂xu(t, x + λ) and f(t, x, λ) =

∂tu (λ, x+ t), respectively . This gives
∫

RN

∫

R+

tνp
∣
∣
∣
1

t

∫ t

0

f(x, λ)dλ
∣
∣
∣
p

dλdx <∞,
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which implies that

∫

RN

∫

R+

t(ν−1)p|u(0, x)−u(t, x)|p =

∫

RN

∫

R+

1

tsp+1
|u(0, x)−u(t, x)|p <∞. ��

After studying the difference between the cases R and R
N , we now consider

the case of a general open set Ω.

4.3.5 Comparison of the Spaces W and T when Ω �= R
N

Before we begin, we need to recall certain results concerning (s, p)-extensions,

which will also be useful when we establish embedding theorems.

Preliminary Results on (s, p)-Extensions.

Definition 4.42. We say that Ω admits an (s, p)-extension if there exists

a continuous linear operator E that sends u ∈ W s,p(Ω) to E(u) = ũ ∈
W s,p(RN ), such that

∀x ∈ Ω, Eu(x) = u(x).

In the case of a class C1 or Lipschitz open set, we have the following result.

Proposition 4.43. Any Lipschitz open set Ω admits an (s, p)-extension.

Proof of Proposition 4.43.

By assumption, there exists a cover of Ω by bounded open sets Ωi, open

subsets O′
i of R

N−1 and Lipschitz functions ai on O′
i with uniformly bounded

gradient norms, such that, for i � 1,

Ωi ∩Ω ⊂ {(x′, xN ) | x′ ∈ O′
i, xN > ai(x

′)},
Ωi ∩ ∂Ω = {(x′, ai(x′)) | x′ ∈ O′

i}.

Let {θi} denote a partition of unity subordinate to the cover {Ωi} of Ω.

Given the function u ∈ W s,p(Ω), we are going to construct E(u) locally.

Consider the product ui = uθi on the open set Ui = Ω ∩ Ωi. If we define a

function Eui that extends ui outside of Ω∩Ωi and that belongs toW s,p(RN ),

then, as usual, it will suffice to glue these extensions Eui to obtain the desired

(s, p)-extension and thus complete the proof of the proposition.

Let us first show that ui ∈W s,p(Ui).

We already have ui ∈ Lp(Ui). For the seminorm ‖ui‖′s,p, we write

(θiu)(x)− (θiu)(y) = θi(x)(u(x)− u(y)) + u(y)(θi(x)− θi(y)).
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Hence, using (|a| + |b|)p � 2p−1[|a|p + |b|p] for the numerator and the mean

value theorem for θi, we obtain the following inequality for 2−p+1‖ui‖′ps,p:

2−p+1

∫

Ui

∫

Ui

|ui(x)− ui(y)|p
|x− y|sp+N

�
∫

Ui

∫

Ui

|θi|p(x)|u(x)− u(y)|p
|x− y|sp+N

dx dy +

∫

Ui

|u(y)|p
∫

Ui

|θi(x)− θi(y)|p
|x− y|sp+N

dx dy

� C1‖u‖′ps,p + ‖∇θi‖
p
∞

∫

Ui

|u(y)|p
[∫

Ui

|x− y|p−sp−Ndx
]
dy.

Now, the last integral is finite. Indeed, taking the origin at y and supposing

that Ui ⊂ B(y,R), which we may by our assumptions, we have

∫

Ui

|x− y|p−sp−Ndx � ωN−1

∫ R

0

ρp−sp−N+N−1dρ <∞

because of the relation p − 1 − sp = (1 − s)p − 1 > −1, which results from

s < 1. It then follows from the previous inequality that ui ∈ W s,p(Ui) and

that there exist constants H and K such that

‖ui‖′ps,p � K‖u‖′ps,p +H‖u‖pp � C1‖u‖ps,p.

Construction of the (s, p)-extension. For the sake of simplicity, we omit the

factor θi. We have reduced the problem to extending the function u ∈W s,p(Ω)

to the open set Ω′ defined by Ω′ = {x′ ∈ O′ | xN < ai(x′)}. We will use the

reflexion P defined by

if (x′, xN ) ∈ R
N , then xN < a(x

′) =⇒ P (x′, xN ) = (x′, 2ai(x
′)− xN ).

Let ũ(x′, xN ) = u(x′, xN ) if x ∈ Ω and ũ(x′, xN ) = u(P (x′, xN )) if x ∈ Ω′.

Let us verify that ũ ∈W s,p(RN ).

We write the seminorm ‖ũ‖′W s,p(RN ) as the sum of four integrals J1, J2, J3
and J4 over the sets Ω × Ω, Ω × Ω′, Ω′ × Ω and Ω′ × Ω′, respectively. By

assumption, |J1| < +∞. For the three other integrals, we will give a lower

bound for the denominator, which is of the form |x− y|sp+N .

We will show the existence of a constant C2 such that

∀ (x, y) ∈ (Ω′)2, |P (x)− P (y)| � C2|x− y|(4.44)

and ∀ (x, y) ∈ Ω ×Ω′, |x− P (y)| � C2|x− y|.(4.45)

Note that these properties generalize those of an oblique reflection symmetry.

Figure 4.1 illustrates this for the case N = 2, where the boundary is straight

and the norm is the sum of the absolute values of the coordinates.
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Fig. 4.1. A symmetry for the (s, p)-extension.

Case N = 2, a(x′) = x′; norm: |(a, b)|1 = |a|+ |b|;
∣
∣−−−−−−→P (x)P (y)

∣
∣
1
� 3

∣
∣−→xy
∣
∣
1
.

Indeed, for the first inequality, we use the distance function
∑N

1 |ξi − ηi|
in R

N to obtain

|P (x)− P (y)| = |x′ − y′|+ |2ai(x′)− xN − 2ai(y
′) + yN |

� (1 + 2‖∇ai‖∞)(|x′ − y′|+ |xN − yN |) � C2|x− y|,

and deduce (4.44).

For the second inequality, we have, on the one hand,

2ai(y
′)− xN − yN = 2(ai(y

′)− yN ) + yN − xN � yN − xN
� −|xN − yN |,

since yN < ai(y
′), and, on the other hand,

2ai(y
′)− yN − xN � 2(ai(y

′)− ai(x′)) + 2ai(x
′)− xN − yN

� 2(ai(y
′)− ai(x′)) + xN − yN

� |yN − xN |+ 2‖∇ai‖∞|x′ − y′|
� (1 + 2‖∇ai‖∞)(|x− y|),

since xN > ai(x
′). The inequality (4.45) follows from these two. Moreover, by

the uniform regularity conditions on the open set Ω, we may replace the norm

‖∇ai‖∞ in C2 by the supremum supi ‖∇ai‖∞, giving a constant C2 that does

not depend on i. Using (4.45) and the change of variables y′N = 2ai(y
′)− yN ,

we see that the second integral J2 satisfies

C2J2 �
∫

Ω

∫

O′

∫ ai(x
′)

−∞

|u(x)− u(y′, 2ai(y′)− yN )|p
|x− P (y)|sp+N

dyNdy
′dx

�
∫

Ω

∫

O′

∫ +∞

ai(x′)

|u(x)− u(y′, y′N )|p
|x− (y′, y′N )|sp+N

dyNdy
′dx = J1.
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We can obtain the analogous result for J3 by exchanging x and y. For J4,

the inequality (4.44) gives the analogous result using two changes of variables

similar to the ones above. Returning to the function ui, we can now conclude

that Eui ∈W s,p(RN ). Moreover, we have

‖Eui‖pW s,p(RN )
� 2‖ui‖pLp(Ω) + 4C−1

2 (‖ui‖′s,p)p.

It follows that

‖Eui‖pW s,p(RN )
� C‖u‖pW s,p(Ω),

where C does not depend on i. We have thus shown the exis-

tence of an Eu ∈ W s,p(RN ) extending u ∈ W s,p(Ω) and satisfying

‖Eu‖W s,p(RN ) � C‖u‖W s,p(Ω). The latter expresses the continuity of the

(s, p)-extension map E. ��

Comparison of the Spaces W and T , Continued. Using the above, we can

generalize the previous result as follows.

Proposition 4.46. Let p > 1, let s ∈ ]0, 1[, and let ν = 1 − 1/p − s. If Ω is

a Lipschitz open subset of RN , then

γ0(T (p, ν,Ω)) =W
s,p(Ω).

Proof of Proposition 4.46.

To u ∈ T (p, ν,Ω), we associate the function Eu in T (p, ν,RN )

(cf. Proposition 4.43). Indeed, since by assumption, tνu(t, ·) ∈
W 1,p(]0,+∞[,RN ), it follows that for a fixed t > 0, tνEu(t, ·) ∈ W 1,p(RN )

while ‖tνEu(t, ·)‖W 1,p(RN ) � C‖tνu(t, ·)‖W 1,p(Ω) for a constant C that is

independent of t. From this property, we obtain the convergence

∫ +∞

0

‖tνEu(t, ·)‖W 1,p(RN )dt � C
∫ +∞

0

‖tνu(t, ·)‖W 1,p(Ω)dt < +∞.

We repeat this proof for tν∂tu, giving the desired result. It follows that γ0(Eu),

which we can also denote by Eu(0, ·), is an element of W s,p(RN ). By Propo-

sition 4.28, we now have, for every x ∈ Ω,

Eu(0, x) = lim
t→0
Eu(t, x) = lim

t→0
u(t, x) = u(0, x).

Conversely, let u ∈W s,p(Ω). We then have Eu ∈W s,p(RN ) and by Propo-

sition 4.32, there exists a function v such that v ∈ T (p, ν,W 1,p(RN ), Lp(RN ))

and v(0, x) = Eu(x). By restricting the functions in x to the open

set Ω, we can easily see that (t, x) 	→ v(t, x) defines an element v∗ of

T (p, ν,W 1,p(Ω), Lp(Ω)). For every x ∈ Ω, this restriction of v satisfies

v∗(0, x) = u(x). ��



210 4 Fractional Sobolev Spaces

An immediate application of this comparison of spaces is the existence of

embeddings of the spaces W s,p in the spaces Lq. We will study this in the

next section.

4.4 Embeddings of the W s,p(Ω)

4.4.1 The Case Ω = R
N

Theorem 4.47. Let s ∈ ]0, 1[ and let p ∈ ]1,∞[. We have:

• If sp < N , then W s,p(RN ) ↪→ Lq(RN ) for every q � Np/(N − sp).
• If N = sp, then W s,p(RN ) ↪→ Lq(RN ) for every q <∞.

• If sp > N , then W s,p(RN ) ↪→ L∞(RN ) and, more precisely,

W s,p(RN ) ↪−→ C0,s−N/p
b (RN ).

Remark 4.48. We have already shown this theorem for s = 1 − 1/p using

embeddings in Sobolev spaces of integer order.

Proof of Theorem 4.47.

Let u ∈ W s,p(RN ) and let v ∈ Lp(]0,+∞[ × R
N ) with v(0, x) = u(x) be

such that t 	→ tνv belongs to Lp
(
]0,+∞[,W 1,p(RN )

)
and t 	→ tν∂tv belongs

to Lp
(
]0,+∞[, Lp(RN )

)
, where ν = 1− 1/p− s.

We begin by assuming that N > p. We fix x and define f by setting

f(t) = v(t, x); we then have

f(0) = f(t)−
∫ t

0

f ′(s)ds.

By multiplying and dividing by tν , integrating over ]0, 1[, applying Hölder’s

inequality and the inequality −νp′ > −1, we obtain

|f(0)| � C
[(∫ 1

0

|tνf |p dt
)1/p

+
(∫ 1

0

|tν∂tf |p dt
)1/p]

� C
[(∫ ∞

0

|tνf |pdt
)1/p

+
(∫ ∞

0

|tνf ′|pdt
)1/p]

.

Using the function fλ(t) = f(λt), we find that for every λ > 0, this leads to

the inequality

|f(0)| � C
[
λ−ν−1/p

(∫ ∞

0

|tνf |pdt
)1/p

+ λ1−ν−1/p
(∫ ∞

0

|tν∂tf |pdt
)1/p]

,

giving the optimal upper bound

|f(0)| � C ′
[( ∫ ∞

0

|tνf |pdt
)1/p]s[( ∫ ∞

0

|tν∂tf |pdt
)1/p]1−s

.
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Let r satisfy

1/r =
s(N − p)
Np

+
(1− s)
p
, that is, r =

Np

(N − sp) .

Let |g|p = (
∫ 1

0
|g(t)|pdt)1/p. By Hölder’s inequality, we have the following

upper bound for
∫
RN |v(0, x)|rdx:

∫

RN

∣
∣tνv(t, x)

∣
∣sr
p

∣
∣tν∂tv

∣
∣(1−s)r

p
dx

�
(∫

RN

∣
∣tνv

∣
∣Np/(N−p)

p
dx
)(N−p)s/(N−sp)(∫

RN

∣
∣tν∂tv

∣
∣p
p
dx
)(1−s)N/(N−sp)

.

Consequently, by taking the 1/rth power, we obtain

‖v(0, x)‖Lr(RN ) � C
∥
∥tνv

∥
∥s
Lp(]0,1[,LNp/(N−p)(RN ))

‖tν∂tv‖1−s
Lp(]0,1[,Lp(RN ))

.

This relation gives the result in the case N > p. Note that this method cannot

be adapted to the case p > N .

When p > N and sp < N , we need to use different arguments. We will use

the fundamental solution E of the Laplacian. Recall that in dimension N +1,

it is defined by E(t, x) = kN+1(|x|2+t2)(1−N)/2, where kN+1 is chosen in such

a way that we have ΔE = δ0 (cf. Exercise 2.19 of Chapter 2).

Let θ and ψ be functions in D(RN ) and D(R), respectively, with values

between 0 and 1 and equal to 1 in neighborhoods of 0. We can replace δ0,

which has support {0}, by the product θ(x)ψ(t)δ0. Using the formula giving

the derivative of the product of a distribution and a C∞ function, the formula

giving the Laplacian of such a product, and the formula giving the derivative

of a convolution, that is, ∂i(V ) �U = ∂i(U �V ) = ∂iU �V , we can write, for v

satisfying v(0, x) = u(x),

v = δ0 � v = Δ
(
θ(x)ψ(t)E

)
� v−2

(
∇(θ(x)ψ(t))·∇E

)
� v−Δ(θ(x)ψ(t))E � v

=
∑

1�i�N

∇i(θ(x)ψ(t)E) �∇iv + ∂t(θ(x)ψ(t)E) � ∂tv

− 2
(
∇(θ(x)ψ(t)) · ∇E

)
� v − EΔ(θ(x)ψ(t)

)
� v.

Letting ∇xE denote the gradient with respect to x and ∇xA �∇xB the sum

of the convolutions ∂iA � ∂iB, we can also write

(4.49) v =
(
θ(x)ψ(t)∇xE

)
�∇xv +

(
ψ(t)θ(x)∂tE

)
� ∂tv

+
(
ψ(t)E∇xθ(x)

)
�∇xv +

(
θ(x)E∂tψ

)
� ∂tv − 2

(
∇(θ(x)ψ(t)) · ∇E

)
� v

−
(
EΔθ(x)ψ(t)

)
� v.
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The last four terms of the right-hand side of (4.49) are finite sums of convo-

lutions of the type

(
ζ1(t, x)E

)
� v,

(
ζ2(t, x)∂iE

)
� v,

(
ζ3(t, x)∂tE

)
� v,

(
ζ4(t, x)E

)
� ∂iv and

(
ζ5(t, x)E

)
� ∂tv,

where the ζi are functions in D(RN+1).

We will evaluate these terms at (0, x) after studying the first two terms of

the right-hand side of (4.49), which involve the derivatives of both v and E.

These first two terms of (4.49) are sums of convolutions of the form

(
θ(x)ψ(t)∂iE

)
� ∂iv and

(
ψ(t)θ(x)∂tE

)
� ∂tv.

We therefore need to evaluate these convolutions at the point (0, x).

On the one hand, the function v is such that t 	→ tνv(t, .) be-

longs to Lp(]0,+∞[,W 1,p(RN )), which implies that tν∂iv belongs to

Lp(]0,+∞[, Lp(RN )). On the other hand, the function tν∂tv also belongs to

this space. The two convolutions above can therefore be written as

I =
(
ψ(t)θ(x)∂tE

)
� g and J =

(
ψ(t)θ(x)∇xE

)
� g,

for a function g such that t 	→ tνg(t, ·) belongs to Lp(]0,+∞[, Lp(RN )).

To study I, we let h(t, x) = θ(x)ψ(t) t (|x|2 + t2)−(N+1)/2 and we compute

the convolution that expresses I at the point (0, x):

(g � h)(0, x) =

∫

RN

∫ +∞

0

θ(x− x′)ψ(−t)tg(t, x′)
(|x|2 + t2)(N+1)/2

dt dx′.

Using Hölder’s inequality in the integrals in t, we bound (g � h)(0, x) from

above by the convolution G � H in R
N , where the functions G and H are

defined as follows:

G(x) =
(∫ +∞

0

tνp|g(t, x)|pdt
)1/p
, H(x) =

(∫ +∞

0

t−νp′
|h(t, x)|p

′
dt
)1/p′

.

The function H can be bounded from above by

|θ(x)|‖ψ‖∞
(∫ +∞

0

t(1−ν)p′

(t2 + x2)(N+1)p′/2
dt

)1/p′

.

Moreover, as the integral in this bound equals, up to a constant, the func-

tion |x| to the power 1 − ν + 1/p′ − (N + 1) = s − N , we find that

H(x) � C|θ(x)||x|s−N .

The product G � H is therefore bounded from above by the convolution

at x of a function in Lp, which by definition is G, and a function of the form
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|x|s−N , which belongs to Lk for k < N/(N − s). By Corollary 4.60 of the

appendix, the function G�H therefore belongs to Lr for 1/p+1/k = 1+1/r,

that is, for r < Np/(N − sp). For an optimal result, we must use Sobolev’s

lemma 2.36.

To study J , we let hi(t, x) = θ(x)ψ(t)xi (|x|2 + t2)−(N+1)/2. We compute

the convolution g�hi at the point (0, x), once again for tνg ∈ Lp(]0,+∞[×RN ).

By Hölder’s inequality, the expression (g�hi)(0, x) can be bounded from above

by G � Hi(x), where

Hi(x) =
(∫ +∞

0

(θ(x)ψ(t))p
′ t−νp′ |xi|p

′

(|x|2 + t2)(N+1)p′/2
dt
)1/p′

.

This convolution can be bounded from above by Cθ(x)|x|s−N . This concludes

our study of I and J , and we see that the two terms
(
ζ2(t, x)∂iE

)
� v and(

ζ3(t, x)∂tE
)
� v have also been dealt with.

We will now consider the terms of the form ζ1E�v, ζ4E�∂iv, or ζ5E�∂tv,

that is, the terms that involve E rather than its derivatives. The process is

similar to the previous one.

We consider, for example, a term of the form θ1(x)ψ1(t)E(x, t) � v at the

point (0, x), where θ and ψ are in D(RN ) and D(R), respectively. We have

I1(x) =

∫

RN

∫ ∞

0

θ1(x− x′)ψ(−t)v(t, x′)
(t2 + |x− x′|2)(N−1)/2

dt dx′.

Using Hölder’s inequality in the integrals in t and multiplying by tνt−ν , we

find that the absolute value of I1(x) is bounded from above by the convolution

G1 � H1 in R
N , where

G1(x) =
(∫ ∞

0

tνp|v(t, x)|pdt
)1/p

H1(x) =
(∫ ∞

0

|θ1(x)ψ1(−t)|p
′
t−νp′

(t2 + |x|2)(N−1)p′/2
dt
)1/p′

.and

The function H1 is bounded from above by

‖ψ1‖∞|θ1|(x)
(∫ ∞

0

t−νp′

(t2 + |x|2)(N−1)p′/2
dt
)1/p′

,

that is, by a function of the type

C|θ1(x)| |x|(1−νp′−(N−1)p′)/p′
= C|θ1(x)| |x|s−N+1.

The product G1 � H1 is therefore the convolution of a function in Lp and a

function with compact support multiplied by |x|s−N+1, which belongs to Lk
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for every k < N/(N − s− 1). In particular, this product belongs to Lr for

every r < Np/(N − (s+ 1)p), hence belongs to LNp/(N−sp).

The other terms are dealt with in a similar way, concluding our treatment

of the case sp < N .

Let us now consider the case sp = N . By Corollary 4.34, we have

W s,p(RN ) ↪→ W s′,p(RN ) for every s′ ∈ ]0, s[. Using the embeddings we ob-

tained for sp < N , we deduce that

W s′,p(RN ) ↪−→ LNp/(N−s′p)(RN ).

Moreover, since Np/(N − s′p) can be arbitrarily large, we conclude that

W s,p(RN ) is embedded into Lq(RN ) for every q ∈ [p,∞[.

We continue with the case sp > N . We once more use the fundamental

solution of the Laplacian in R
N+1. As in the case sp < N , we need to show

that certain sums of convolutions of the type ζ1E � v, ζ5E � ∂tv, ζ4E � ∂xv, or

ζ∇E �∇v belong to L∞.

For the last term, let g(t, x) denote a function such that tνg(t, x) ∈
Lp(]0,+∞[ × R

N ) and let h(t, x) = θ(x)ψ(t)t(|x|2 + t2)−(N+1)/2, where θ

is a regular function with support in B(0, 1). We will show that for sp > N ,

we have

x 	−→ (h � g)(0, x) ∈ L∞(RN ).

Indeed,

(h � g)(0, x) =

∫

RN

∫

R+

θ(x− x′)ψ(−t)tg(x′, t)
(t2 + |x− x′|2)(N+1)/2

dx′ dt

� ‖tνg‖p
(∫

RN

∫

R+

t(1−ν)p′
(θ(x− x′)ψ(t))p′

(t2 + |x− x′|2)(N+1)p′/2
dx′dt

)1/p′

� ‖tνg‖p
(∫

|x−x′|�1

|x− x′|(1−ν)p′+1

|x− x′|(N+1)p′ dx
′
)1/p′

� C‖tνg‖p,

because the last integral can be written as

([
ρ(sp−N)/(p−1)

]1

0

)1/p′

,

which is bounded because sp > N . To bound the functions of the type ζ1E�v,

ζ5E � ∂tv, or ζ4E � ∂xv, it suffices to remark that each of these products is

bounded from above by the convolution of a function in Lp and a function

in Lp
′
that is of the form θi(x)|x|s−N+1 with θi in D(RN ).

Let us now show that u is a Hölder continuous function with exponent

s−N/p. For this, we need to show the existence of a constant C such that

(4.50) ‖u‖∞ � C
∥
∥tνv

∥
∥1−ν−(N+1)/p

p

∥
∥tν∇(t,x)v

∥
∥ν+N+1/p

p
.
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Indeed, let v satisfy v(0, x) = u(x). By the above, there exist constants C1

and C2 such that

‖u‖∞ � C1

∥
∥tνv

∥
∥
p
+ C2

∥
∥tν∇(t,x)v

∥
∥
p
.

We define vλ by setting vλ(t, x) = v(λt, λx). Computing the norms gives

∥
∥vλ

∥
∥
∞(0, ·) = ‖u‖∞,

∥
∥tνvλ

∥
∥
p
= λ−ν−(N+1)/p

∥
∥tνv

∥
∥
Lp(RN×]0,+∞[)

∥
∥tν∇(t,x)vλ

∥
∥
p
= λ1−ν−(N+1)/p

∥
∥tν∇(t,x)v

∥
∥
p
.and

Consequently, by choosing λ = (‖tνv‖p)(‖tν∇(t,x)v‖p)−1, we obtain the in-

equality

(4.51) ‖u‖∞ � C
∥
∥tνv

∥
∥1−ν−(N+1)/p

p

∥
∥tν∇(t,x)v

∥
∥ν+(N+1)/p

p
.

Let h ∈ R and let i ∈ [1, N ]. To illustrate the ideas, we assume that h > 0.

By a well-known inequality, we have

|v(t, x− hei)− v(t, x)| �
∫ h

0

|∂iv(t, x− sei)|ds.

Multiplying by tν , integrating the pth power, and using Hölder’s inequality,

we obtain
∫ 1

0

∫

RN

tνp|v(t, x− hei)− v(t, x)|pdx dt

�
∫ 1

0

tνphp−1

∫ h

0

∫

RN

|∂iv|p(t, x− sei)ds

� hp
∫ 1

0

∫

RN

tνp|∇v|pdx dt.

Taking the 1/pth power then gives

∥
∥tν(τhv − v)

∥
∥
p
� 2|h|

∥
∥tν∇v

∥
∥
p
.

Since we also have

∥
∥tν∇t,x(τhv − v)

∥
∥
p
� 2

∥
∥tν∇(t,x′)v

∥
∥
p
,

applying inequality (4.51) to uh − u gives the upper bound

∥
∥uh − u

∥
∥
∞ � C|h|1−ν−(N+1)/p

(
‖tνv‖p + ‖tν∇(t,x)v‖p

)
.

Since 1 − ν − (N + 1)/p = s − N/p, it follows that u is a Hölder continuous

function with exponent s−N/p. This concludes the proof of the theorem for

Ω = R
N . ��
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4.4.2 The Case of an Open Set Admitting an Extension

The analogue of Theorem 4.47 is true for open subsets satisfying certain reg-

ularity conditions. In particular, it is true if Ω is an open set that admits an

(s, p)-extension, a property we studied before.

Consequences of the Existence of an (s, p)-extension. We can easily obtain

the following density result.

Proposition 4.52. Let s ∈ [0, 1[ and let p > 1. Let Ω be an open set that ad-

mits an (s, p)-extension; then D(Ω), the space of restrictions to Ω of functions

in D(RN ), is dense in W s,p(Ω).

Proof of Proposition 4.52.

Let u ∈ W s,p(Ω). Let E be a continuous extension of W s,p(Ω) to

W s,p(RN ). As E(u) ∈ W s,p(RN ), there exists a sequence {ϕn} of functions

in D(RN ) that converges to E(u) in W s,p(RN ). The sequence of restrictions

of the ϕn then converges to u in W s,p(Ω). ��

The following is a corollary to Proposition 4.52 and Theorem 4.47.

Corollary 4.53. Let s ∈ ]0, 1[ and let p ∈ ]1,∞[. Let Ω be a Lipschitz open

set. We then have:

• If sp < N , then W s,p(Ω) ↪→ Lq(Ω) for every q � Np/(N − sp).
• If N = sp, then W s,p(Ω) ↪→ Lq(Ω) for every q <∞.

• If sp > N , then W s,p(Ω) ↪→ L∞(Ω) and, more precisely,

W s,p(Ω) ↪−→ C0,s−N/p
b (Ω).

4.5 Compact Embeddings of the W s,p(Ω) with

Bounded Ω

Theorem 4.54. Let Ω be a bounded Lipschitz open subset of R
N . Let s ∈

[0, 1[, let p > 1, and let N � 1. We then have:

• If sp < N , then the embedding of W s,p(Ω) into Lk is compact for every

k < Np/(N − sp).
• If sp = N , then the embedding of W s,p(Ω) into Lq is compact for every

q <∞.

• If sp > N , then the embedding of W s,p(Ω) into C0,λb (Ω) is compact for

λ < s−N/p.
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Proof of Theorem 4.54.

We begin with the case sp < N .

To prove the statement, it suffices to show that the embedding into L1

is compact. Indeed, W s,p ↪→ LNp/(N−sp) and every bounded sequence in Lk

with k > 1 that converges in L1 also converges in Lk
′
for k′ < k, by Lemma

2.82.

We will therefore use the compactness criterion for bounded subsets of L1

(cf. Theorem 1.95). Let B be a bounded subset of W s,p(Ω). Let u ∈ B, let
i∈ [1, N ], let h > 0, and let Ωh = {x ∈ Ω | d(x, ∂Ω) > h}. Setting −→h = hei,

we consider the integral

I−→
h
=

∫

Ωh

∫

B(x,h)

|u(x+ hei)− u(x)|dy dx.

Since the integrand does not depend on y, we have

(4.55) I−→
h
= ωN−1 |h|N

∫

Ωh

|u(x+−→h )− u(x)| dx,

where ωN−1 denotes the volume of the unit ball. Next, using the equality

u(x+
−→
h )− u(x) = u(x+−→h )− u(y) + u(y)− u(x),

for x ∈ Ωh and y ∈ B(x, h) and setting σ = (sp+N)/p, the integral I−→
h

can

be bounded as follows:

I−→
h
�
∫

Ωh

∫

B(x,h)

|u(x+−→h )− u(y)|
|x+−→h − y|σ

|x+−→h − y|σdy dx

+

∫

Ωh

∫

B(x,h)

|u(x)− u(y)|
|x− y|σ |x− y|σdy dx = I(1)−→

h
+ I

(2)
−→
h
.

After transforming these integrals to integrals over Ah = Ωh × B(0, h) by

applying a translation to y, we can bound the integrals I
(1)
−→
h

and I
(2)
−→
h

from

above using Hölder’s inequality. For example, we have

I
(2)
−→
h

=

∫

Ah

|u(x)− u(z + x)|
|z|σ |z|σdz dx

�
(∫

Ah

|u(x)− u(z + x)|p
|z|σp dz dx

)1/p(∫

Ah

|z|σp
′
dz dx

)1/p′

.

Since by assumption, B(x, h) ⊂ Ωh ⊂ Ω, the first integral on the right-hand

side, which equals ∫

Ωh

∫

B(x,h)

|u(x)− u(y)|p
|x− y|sp+N

dy dx,
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can be bounded from above by the integral
∫

Ω×Ω

|u(x)− u(y)|p
|x− y|sp+N

dy dx,

which is bounded for u in B. Moreover, we have

(∫

Ah

|z|σp
′
)1/p′

� (mesΩ)1−1/p
(∫ h

0

ρ((sp+N)/(p−1))+N−1dρ
)1−1/p

� (mesΩ)1−1/pC ′|h|N+s,

where the constant on the right depends only on the seminorm ‖u‖′s,p. We

can proceed in a similar manner for the integral I
(1)
−→
h
. Finally, using inequality

(4.55) and the relations following it, we obtain

|h|N
∫

Ωh

|u(x+−→h )− u(x)|dx � C|h|N+s,

that is, the first condition of the compactness criterion in L1(Ω):
∫

Ωh

|u(x+−→h )− u(x)| � C|h|s.

Moreover, as the set B is bounded in Lp(Ω) and the set Ω itself is bounded,

we can find a compact set K that is sufficiently large that for every u ∈ B,
we have

∫

Ω−K

|u(x)| �
(∫

Ω−K

|u(x)|p
)1/p

(mes(Ω −K))
1−1/p � ε.

We have thus shown that B is relatively compact in L1(Ω), hence in all

the Lk(Ω) with k < pN/(N − sp).
If s = Np, we use W s,p ↪→W s′,p with s′ < s, giving the second statement.

Let us now suppose that sp > N . Let B be a bounded subset of W s,p(Ω).

We use the Ascoli–Arzelà theorem to show that B is relatively compact in

C(Ω). A consequence of Theorem 4.47 is then the existence of a constant

C > 0 such that for every u ∈ B, we have

‖u‖L∞(Ω) � C‖u‖W s,p(Ω).

Since for every pair of elements (x, y) of Ω, we also have

|u(x)− u(y)| � C‖u‖W s,p(Ω)|x− y|s−N/p,

we can deduce that the set B is bounded in L∞ and equicontinuous, concluding

the proof of the third statement of the theorem in the case of C(Ω).
Finally, we use Theorem 4.47 and Lemma 2.85 to deduce the compactness

in Hölder spaces. ��
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4.6 The Spaces W s,p(Ω) with s ∈ ]0,+∞[

4.6.1 Definition and Embedding Theorem

Definition 4.56. Let s ∈ R � N with s � 1. The space W s,p(Ω) is defined

to be

W s,p(Ω) = {u ∈W [s],p(Ω) | Dju ∈W s−[s],p(Ω), ∀−→j , |−→j | = [s]}.

It is clear that W s,p(Ω) endowed with the norm

‖u‖s,p =

(
‖u‖p

W [s],p(Ω)
+

∑

j,|j|=[s]

∫

Ω

∫

Ω

|Dju(x)−Dju(y)|p
|x− y|(s−[s])p+N

dx dy

)1/p

<∞

is a Banach space.

We can moreover easily verify that the functions in D(RN ) are dense in

W s,p(RN ). The following embedding theorem is similar to the previous ones.

Theorem 4.57. Let Ω be a Lipschitz open set. We then have:

• If sp < N , then W s,p(Ω) ↪→ Lq(Ω) for every q � Np/(N − sp).
• If sp = N , then W s,p(Ω) ↪→ Lq(Ω) for every q <∞.

• If sp > N , then we have:

– If s−N/p �∈ N, then W s,p(Ω) ↪→ C[s−N/p],s−N/p−[s−N/p]
b (Ω).

– If s−N/p ∈ N, then W s,p(Ω) ↪→ Cs−N/p−1,λ
b (Ω) for every λ < 1.

Proof of Theorem 4.57.

For sp < N , we use an induction on [s].

If [s] = 0, this is Theorem 4.47. Let us assume that the theorem has been

proved for [s] = m − 1. Let u ∈ W s,p(Ω) with [s] = m and sp < N ; then

∇u ∈ W s−1,p(Ω) and u ∈ W [s],p(Ω). Hence, by the induction hypothesis,

∇u ∈ Lr(Ω) with r = Np/(N − (s− 1)p) and u ∈ LNp/(N−[s]p)(Ω).

Using the inequalities p � Np/(N − (s− 1)p) � Np/(N − [s]p), we de-

duce that u ∈W 1,r(Ω). Since rp < N , we conclude that u ∈ LNr/(N−r)(Ω) =

LNp/(N−sp)(Ω).

Let us assume that sp = N .

In this case, [s]p < N and (s − 1)p < N . If u ∈ W s,p(Ω), then by the

previous reasoning, u ∈ W 1,r(Ω) with r = (Np)/(N − (s− 1)p) = N . Since

r = N , we conclude that u ∈ Lq(Ω) for every q <∞.

Let us now assume that sp > N . Let j be an integer satisfying s−1−N/p <
j < s − N/p; then for u ∈ W s,p, v = ∇ju belongs to W s−j,p. Therefore, v

and ∇v belong to W s−j−1,p and the inequality (s − j − 1)p < N implies

that v and ∇v belong to Lr with r = (Np)/(N − (s− j − 1)p). Consequently,

v ∈ W 1,r(Ω) and r > N , whence v ∈ C0,1−N/r
b (Ω) = C0,s−N/p−j

b (Ω). Finally,

we conclude that u ∈ C[s−N/p],s−N/p−[s−N/p](Ω).
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If s − N/p = j ∈ N, then u ∈ W s,p(Ω) implies that (Dj−1u,Dju) ∈(
W s−j,p(Ω)

)2
=
(
WN/p,p(Ω)

)2
. We deduce from this that Dj−1u ∈W 1,q(Ω)

for every q <∞, and therefore Dj−1u ∈ C0,λb (Ω) for every λ < 1. We conclude

that u ∈ Cs−N/p−1,λ
b (Ω) for every λ < 1. ��

4.6.2 Compact Embeddings

For a bounded open set we also have results concerning compact injections.

Theorem 4.58. Let Ω be a bounded Lipschitz open set. We then have:

• If sp < N , then the embedding W s,p(Ω) ↪→ Lq(Ω) is compact for all

exponents q satisfying q < Np/(N − sp).
• If sp = N , then the embedding W s,p(Ω) ↪→ Lq(Ω) is compact for every

q<∞.

• If sp > N , then we have:

– If s−N/p �∈ N, then the embedding W s,p(Ω) ↪→ C[s−N/p],λ
b (Ω) is com-

pact for every λ < s−N/p− [s−N/p](Ω);
– If s − N/p ∈ N, then the embedding W s,p(Ω) ↪→ Cs−N/p−1,λ

b (Ω) is

compact for every λ < 1.

4.7 Appendix: The Riesz–Thorin Convexity Theorem

Let T be the Fourier transform. We know that T sends a function in L1 to

a function in L∞ and a function in L2 to a function in L2. In particular, for

every g ∈ L1 and every f ∈ L1, we have

|〈Tf, g〉| � ‖Tf‖∞‖g‖1 � ‖f‖1‖g‖1
and for every pair (f, g) of elements of L2, we have

|〈Tf, g〉| � ‖f‖2‖g‖2.

The following theorem, which is known as the Riesz–Thorin theorem, allows

us to deduce that when p ∈ [1, 2], T sends Lp into Lp
′
. We used this property

in the proof of Proposition 4.18.

In the proof, we use the arguments of Stein and Weiss [64]. The interested

reader can consult that book for the “stronger” theorem of Marcinkiewicz.

Theorem 4.59. Let T be a linear operator defined on all of the Lp(RN ,C),

such that for given pi and qi in [1,∞], it is continuous from Lpi(RN ,C) to

Lqi(RN ,C). We denote its operator norms by

ki = ‖T‖pi,qi = sup
‖f‖pi

=1

‖g‖q′
i
=1

|〈Tf, g〉|,

where q′i is the conjugate of qi.
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If t ∈ ]0, 1[ and 1/p = t/p0 + (1− t)/p1, then T is continuous from

Lp(RN ,C) to Lq(RN ,C), where 1/q = t/q0 + (1− t)/q1. Moreover, we have

the continuity inequality

‖T‖p,q � kt0k1−t
1 .

Proof of the theorem.

We begin by showing the result for simple functions. Let f =
∑

j ajχEj

have norm in Lp equal to 1, where the Ej are two-by-two disjoint integrable

sets. We set aj = |aj |eiθj . Let g =
∑

k bkχFk
, where the Fk are two-by-two

disjoint integrable sets, bk = |bk|eiϕk , and ‖g‖p = 1. For p ∈ [1,∞], let t be

a real number in [0, 1] that satisfies 1/p = t/p0 + (1− t)/p1. Let α and β be

the functions on C defined by

α(z) =
z

p0
+

1− z
p1
, β(z) =

z

q0
+

1− z
q1
.

We also set

f(z) =
∑

j

|aj |α(z)/α(t)eiθjχEj and g(z) =
∑

k

|bk|(1−β(z))/(1−β(t))eiϕkχFk
.

Finally, let F be defined by

F (z) =

∫

RN

Tf(z)g(z) dx =
∑

j,k

|aj |α(z)/α(t)eiθj |bk|(1−β(z))/(1−β(t))eiϕkγj,k,

with γj,k =
∫
RNT (χEj )χFk

dx. It is easy to check that F (t) =
∫
RN Tfgdx.

To prove the result, we begin by showing that |F (iy)| � k1 and that

|F (1+iy)| � k0. We will then use the fact that F is holomorphic and bounded

on the strip 0 � x � 1, y ∈ R and the Phragmén–Lindelöf principle, which

implies that for every pair (x, y) with 0 � x � 1, we have |F (x+iy)| � kx0k1−x
1 .

From this, we will deduce the continuity inequality on the operator norm by

setting x+ iy = t.

Let us determine |F (iy)|. We have �e(α(iy)) = 1/p1, and therefore

�e
(
α(iy)/α(t)

)
= p/p1, so that

‖f(iy)‖p1
p1

=
∑

j

|aj |p|Ej | = ‖f‖pp = 1.

Moreover, �e(β(iy)) = 1/q1, so that

1−�e(β(iy))
1− β(t) =

1− 1/q1
1− 1/q

=
q′

q′1
.

We therefore have

‖g(iy)‖q
′
1

q′1
=
∑

k

|bk|q
′
|Fk| = ‖g‖q

′

q′ = 1.
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We also have �e(α(1 + iy)) = 1/p0, so that �eα(1 + iy)/α(t) = p/p0, and

therefore

‖f(1 + iy)‖p0
p0

=
∑

j

|aj |p|Ej | = ‖f‖pp = 1.

Finally, �e(β(1 + iy)) = 1/q0, which implies that

1−�e(β(1 + iy))
1− β(t) =

1− 1/q0
1− 1/q

=
q′

q′0
.

Consequently, we have

‖g(1 + iy)‖q
′
0

q′0
=
∑

k

|bk|q
′
|Fk| = ‖g‖q

′

q′ = 1.

By the continuity of the operator, we then have

|F (iy)| =
∣
∣
∣
∫
Tf(iy)g(iy)

∣
∣
∣ � k1‖f(iy)‖p1‖g(iy)‖q′1 = k1,

|F (1 + iy)| � k0‖f(1 + iy)‖p0‖g(1 + iy)‖q′0 = k0,

giving the result for simple functions.

In the general case, let f ∈ Lp(RN ,CN ). We will show that there exists a

sequence fn of simple functions such that ‖fn−f‖p → 0 and Tfn(x)→ Tf(x)
for almost all x. Let us first assume that such a sequence exists and show that

the result follows. The sequence {Tfn} is bounded in Lq. By Fatou’s lemma,

setting kt = k
t
0k

1−t
1 , we have

‖Tf‖q � lim
m→∞

‖Tfm‖q � kt lim
m→∞

‖fm‖p � kt‖f‖p,

and in particular Tf ∈ Lq, proving the theorem.

It remains to show the existence of the fn. We reduce to the case where f

is real and f � 0. Let us assume that p0 < p1. For f ∈ Lp, let f0 equal f

when f(x) > 1 and 0 elsewhere, and let f1 = f − f0. We then have f0 ∈ Lp0

and f1 ∈ Lp1 . Let gm be an increasing sequence of simple functions that

converges almost everywhere to f . By the monotone convergence theorem, we

have ‖gm−f‖p → 0. Likewise, ‖g0m−f0‖p0 → 0 and ‖g1m−f1‖p1 → 0. Since T

is continuous from Lp1 to Lq1 and from Lp0 to Lq0 , we have

‖Tg0m − Tf0‖q0 −→ 0 and ‖Tg1m − Tf1‖q1 −→ 0.

Therefore there exists a subsequence for which Tg0m → Tf0 almost everywhere

and Tg1m → Tf1 almost everywhere. It follows that the sequence {fm} defined
by fm = g0m + g1m satisfies the desired conditions. ��
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Corollary 4.60 (Hausdorff–Young inequality). If f ∈ Lp(RN ) and g ∈
Lq(RN ) with 1/p+1/q > 1, then the convolution of these two functions belongs

to Lr for r with 1 + 1/r = 1/p+ 1/q.

Proof of the corollary. In what follows, we fix f ∈ Lp. We associate to it the

operator Tf defined by Tf (g) = f ∗ g for every g in a suitable space Lq. Let us

consider two situations that correspond to the assumptions of the theorem.

If g ∈ Lp′
, then by a known result, we have Tf (g) ∈ L∞ and, moreover,

‖f ∗ g‖∞ � ‖f‖p‖g‖p′ ,

which proves the continuity of T as an operator from Lp
′
to L∞. We can

therefore take p0 = p′ and q0 = +∞ in the theorem. The operator norm

‖Tf‖p′,∞ satisfies the following equalities:

‖Tf‖p′,∞ = sup
‖g‖p′=1

‖g1‖p=1

∣
∣〈Tf (g), g1〉

∣
∣ = sup

‖g‖p′=1

‖g1‖p=1

∣
∣
∣
∫

RN

(f ∗ g)(x)g1(x)dx
∣
∣
∣.

By the definition of the norm in a dual and the reflexivity, the last term is

the supremum of ‖f ∗ g‖∞ when ‖g‖p′ = 1. It follows that

‖Tf‖p′,∞ = ‖f‖p.

If g ∈L1, then since f ∈Lp, Young’s theorem guarantees that Tf (g)∈Lp
and that, moreover, ‖f ∗ g‖p � ‖f‖p ‖g‖1. The operator T is therefore contin-

uous from L1 to Lp. We can then take p1 = 1 and q1 = p in the theorem. The

operator norm associated with this situation also satisfies

‖Tf‖1,p = ‖f‖p.

Now, let q satisfy 1/p+ 1/q > 1 and let t satisfy

1

q
=
t

p0
+

1− t
p1

=
t

p′
+ 1− t.

We then have t = p(1− 1/q), which indeed lies strictly between 0 and 1.

Since this condition of the theorem has thus been satisfied, we deduce

that Tf sends Lq continuously into Lr, where r satisfies

1

r
=
t

q0
+

1− t
q1

=
t

∞ +
1− t
p

=
1

p
+

1

q
− 1.

The first statement of the corollary follows.

Next, consider the inequality

‖Tf‖q,r � kt0(k1)1−t � ‖f‖tp‖f‖1−t
p = ‖f‖p.

Going back to the operator norms, it follows that

‖f ∗ g‖r � ‖f‖p‖g‖q. ��
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Remark 4.61. This corollary allows us to give new proofs of results used at

different points in this book, in particular in the proofs of embedding theorems.

Indeed, consider, for p � 1, the convolution g = f ∗ζr1−N where f ∈ Lp and ζ

is a regular function with compact support. The function x 	→ g(x) = ζr1−N

then belongs to Lq if (1−N)(q − 1) > −1, that is, if q < N/(N − 1).

We can therefore apply the corollary, giving us the inclusion f ∗ g ∈ Lr,
where 1+1/r = 1/p+1/q. Since q < N/(N − 1), it follows that the exponent r

satisfies
1

r
>

1

p
+

(N − 1)

N
− 1 =

N − p
Np

.

We thus once more find that the convolution f ∗ζr1−N belongs to Lr for every

r < Np/(N − p).

Remark 4.62. In Chapter 6, we will prove the following stronger version of

the Riesz–Thorin convexity theorem.

We define the weak-L1 space to be the set of measurable functions f that

satisfy

∀ s > 0,
∣
∣{x | |f(x)| � s}

∣
∣ � C
s
.

(Note that L1 is contained in weak-L1.) Let T be an operator that sends L1

continuously into weak-L1 and sends L2 continuously into L2; then for 1 <

p � 2, T sends Lp continuously into itself.

This result is a special case of the Marcinkiewicz interpolation theorem,

which we will give later (cf. Theorem 7.34).

Comments

As in the case of trace spaces, we use interpolation spaces when we study

fractional Sobolev spaces. The article by Luc Tartar [69] is the best reference

for our approach to these spaces, as well as the most agreeable one to read. Let

us also mention the articles by J.-L. Lions and Peetre [49] and Uspenski [73].

4.8 Exercises for Chapter 4

Exercise 4.1 (Eigenfunction of the Fourier Transform).

Let f(x) = exp(−π|x|2) on R
N . Show that f is its own Fourier transform.

Hints. For the case N = 1, you can use the first-order differential equation of which f
is a solution. You can also use Cauchy’s theorem applied to the holomorphic function
z �→ exp(−πz2) and a rectangular path with one side equal to the segment [−R,R]
on the real axis (subsequently, let R tend to +∞).

For arbitrary N , use the fact that f is a product of exponential functions of the
above type.
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Exercise 4.2 (Fourier Transform of x 	→ 1).

Compute the Fourier transform of the characteristic function χn of [−n, n],
where n ∈ N

∗. Prove that the sequence of Fourier transforms {F(χn)}n con-

verges in S ′ to F(1). Deduce from this that

F(1) = δ0.

Conclude that

F(e2iπx0t) = δx0 .

Exercise 4.3 (Reciprocity Formula for the Fourier Transform).

Demonstrate the reciprocity formula for the Fourier transform for the func-

tions in S(RN ). In other words, show that if ϕ ∈ S(RN ), then

FF(ϕ) = ϕ.

Deduce the reciprocity formula for tempered distributions from this.

Hints. Let γ = F(ϕ). Note that

F(ϕ−a)(λ) = e2iπλaγ(λ).

Integrate with respect to λ and use the equality F(1) = δ.

Exercise [∗∗] 4.4 (Fourier Transforms of Homogeneous Distribu-

tions).

(1) Let f ∈ L1(RN ). For every λ > 0, define Hλ(f) by setting Hλ(f)(x) =

f(λx). Prove that if [f ] is the distribution associated with the locally

summable function f , then

〈[Hλ(f)], ϕ〉 = λ−N
〈
[f ], ϕ(·/λ)

〉
.

Let T be a distribution on R
N . We extend the previous property by defin-

ing Hλ(T ) to be the distribution defined by

〈Hλ(T ), ϕ〉 = λ−N
〈
T, ϕ(·/λ)

〉
.

Use f̂ to determine the Fourier transform of Hλ(f). Next, prove that the

the following formula holds for the tempered distribution T :

(4.63) F
(
Hλ(T )

)
= λ−NHλ−1

(
F(T )

)
.

(2) We call T homogeneous of degree k if

∀λ > 0, HλT = λkT.

We identify T with the radial function f defined by f(x) = |x|k, where
x ∈ R

N and |x| = (
∑

i x
2
i )

1/2.
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a) We suppose that −N < k < 0. Show that T is tempered by noting

that it can be written as the sum

T = Tχ{|x|<1} + Tχ{x||x|�1}

of a function in L1 and a function in Lp with p > −N/k. Show

that its Fourier transform exists and that it is a radial distribution

(cf. Exercise 7.12 of Chapter 7).

Show that this Fourier transform is homogeneous of degree −k −N
b) We now suppose that 2k < −N . In this case, T is the sum of a function

in L1 and a function in L2. Show that F(T ) is a function. Use the

positive homogeneity to show that there exists a constant c(N, k) such

that

F(T )(ξ) = c(N, k)|ξ|k−N .

(3) Use the function ϕ(x) = e−π|x|2 to deduce that

c(N, k) = π−k−N/2 Γ ((N + k)/2)

Γ (−k/2) ,

where Γ is the Euler function ([22], [58] or Exercise 3.1 of Chapter 3).

We will use these results in Chapter 7 in the case where k = −N + 1,

which indeed satisfies the condition 2k < −N when N > 2. There, we will

use a derivative with respect to the variable xi to show that we have

F(xi/|x|N+1) =
−2iπξi

(N − 1)|ξ| c(N, 1−N),

(cf. the Riesz transform in Chapter 7).

(4) Let us now suppose that 0 > 2k > −N . Use the reciprocity formula to

show that the previous results still hold. Consider the distribution T = |x|k
and set k′ = −N − k. Prove that we can apply the previous results to the

function x 	→ |x|k′
. Deduce the Fourier transform of T from this. Study

the case 2k = −N .

Hints. For formula 4.63, it suffices to use the following definitions:
〈
F(Hλ(T )), ϕ

〉
=
〈
Hλ(T ), ϕ̂

〉

= λ−N〈T, ϕ̂(·/λ)
〉
=
〈
T, Ĥλ(ϕ)

〉

=
〈
F(T ), Hλ(ϕ)

〉
= λ−N〈Hλ−1

(
F(T )

)
, ϕ
〉
.

If T is homogeneous of degree k, then we have

F
(
Hλ(T )

)
= λ−NH1/λ

(
F(T )

)

= λ−N−kH1/λ

(
Hλ(F(T ))

)
= λ−N−kF(T ).
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In the case where the radial distribution becomes a function, we know that the
Fourier transform of T can be identified with the function ξ �→ g(|ξ|) (cf. Exercise
7.12 of Chapter 7). For λ > 0, this leads to the equality g(λ|ξ|) = λ−k−Ng(|ξ|). Use
|ξ| = 1 to obtain g(λ) = λ−k−Ng(1). Using a constant that we denote by c(N, k),
deduce that

F(T ) = c(N, k)|ξ|−k−N .

Use the function x �→ exp(−π|x|2), which is its own transform, to obtain the equality

∫ +∞

0

rk+N−1 exp(−πr2)dr = c(N, k)

∫ +∞

0

r−k−1 exp(−πr2)dr.

Introducing the variable s = πr2, this becomes

π−(k−N)/2Γ ((k +N)/2) = c(N, k)πk/2Γ (−k/2).

Deduce the desired result.
The number k′ lies in the interval ]−N,−N/2[. The previous results gives

F(|x|k
′
)(ξ) = c(N, k′)|ξ|−N−k′

= c(N, k′)|ξ|k.

Applying the inverse transformation F−1 to this gives

F(|x|k)(ξ) = [c(N,−N − k)]−1|ξ|−N−k.

Use the definition of the constant c(N, k) introduced above to show that the coeffi-
cient [c(N,−N − k)]−1 is equal to this constant. Letting k tend to −N/2 also gives

F(|x|−N/2)(ξ) = |ξ|−N/2 since |ξ|k tends to |ξ|−N/2.

Exercise [∗] 4.5 (Convergences of Sequences in Lp).

Let un be a sequence in Lp, where p > 1, that converges either weakly or

almost everywhere to u and satisfies ‖un‖p → ‖u‖p. Show that un converges

strongly to u in Lp.

Hints. Reduce to u of norm 1 by dividing by ‖un‖p, that is, by setting vn =
un/‖un‖p. The sequence vn then converges weakly to v = u/‖u‖p and the norms
equal 1. Next, use the semicontinuity of the Lp-norm for the weak topology to show
that ‖vn + v‖p → 2. Moreover, by Minkowski’s inequality and the convergence of

the norm, we have lim ‖vn + v‖p � 2. Finally, the norm of (vn + v)/2 tends to 1.
Consequently, by the uniform convexity in Lp, we have

vn − v −→ 0.

If, instead of the weak convergence, we have almost everywhere convergence, you
can still reduce to a sequence {vn} of norm 1 that converges to v of norm 1 and for
which (vn + v)/2 converges almost everywhere to v. In this case, use Fatou’s lemma
to prove that

1 � lim
∥
∥
∥
vn + v

2

∥
∥
∥
p
� lim

∥
∥
∥
vn + v

2

∥
∥
∥
p
= 1

and then use the uniform convexity to conclude.
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Exercise [∗] 4.6 (Convolution of a Function in Lp(RN ) and a Function

in D(RN )).

Let f ∈ Lp(RN ) and let ζ ∈ D(RN ). Prove that the convolution f � ζ belongs

to C∞(RN ) ∩ Lk(RN ) for every k � p.
Hints. Let k > p and r > 1 be defined by 1+1/k = 1/r+1/p. Since ζ ∈ D(RN ), we
have ζ ∈ Lr and consequently ζ � f ∈ Lk.
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Elliptic PDE: Variational Techniques

In this chapter we present a method for solving certain elliptic partial dif-

ferential equations, namely those of the form DJ(u) = 0 where DJ is the

differential, in the weak sense, of a functional J that will be convex in most

cases. The properties of convex functions allow us to search for a solution

of the partial differential equation (PDE) in the form of the minimum of a

functional, provided that the functional tends to +∞ at infinity. After quickly

presenting the theoretical ingredients that allow us to deduce the existence

of a minimum for J , we give a number of classical boundary problems gov-

erned by elliptic PDE that may or may not be linear. We will solve these

by variational methods. We will then give regularity results for the solutions

of the problems. We conclude by presenting other properties in relation with

these solutions, in particular those that generalize the maximum principle for

harmonic functions.

5.1 Some Useful Results

A sequence {un}n∈N is called bounded in Lp(Ω) if there exists a constant

C > 0 such that

∀n ∈ N,

∫

Ω

|un|p(x)dx � C.

For such a sequence, we will use the following notions and results:

• Owing to the weak compactness of the bounded closed subsets of a reflexive

space: From any bounded sequence in Lp(Ω) with 1 < p < ∞, we can

extract a weakly convergent subsequence in Lp(Ω).

• Owing to the weak-star sequential compactness of the unit ball of the dual

of a separable normed space: From any bounded sequence in L1(Ω), we
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DOI 10.1007/978-1-4471-2807-6 5,
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can extract a subsequence that converges vaguely in the sense of measures

to a bounded measure on Ω.

• Owing to the compact embedding theorem in W 1,p(Ω): Let Ω be a bounded

C1 subset of RN and let p be a real number in ]1, N [. From any bounded

sequence in W 1,p(Ω), we can extract a subsequence that converges almost

anywhere, converges weakly in W 1,p(Ω), and converges strongly in Lq(Ω)

for q < Np/(N − p).
• Owing to the uniform boundedness principle (Banach–Steinhaus theorem):

Let p ∈ ]1,∞[. Every sequence in Lp(Ω) that converges weakly in Lp(Ω) is

bounded in Lp(Ω). For every sequence of measures or functions in L1loc(Ω)

that converges vaguely to a measure, the integral of the sequence of its

absolute values over any compact subset of Ω is bounded uniformly with

respect to n.

In this chapter, we will assume Ω connected unless stated otherwise.

5.2 Notions from Convex Analysis

We begin by recalling results on convexity, which we give without proof. The

details can be found in the book [23]. From now on, X will denote a Banach

space, X ′ its dual, and 〈·, ·〉 the duality pairing of X with X ′. We assume that

all functions have values in R = R ∪ {+∞} ∪ {−∞}.

5.2.1 Convex Spaces, Hausdorff Property, Lower Semicontinuous

Functions

Definition 5.1. A subset C of X is called convex if it is closed under convex

combinations, that is, if

∀ (x, y) ∈ C2, ∀λ ∈ ]0, 1[, λx+ (1− λ)y ∈ C.

Definition 5.2. A hyperplane is a vector subspace of codimension 1, that is,

a proper subspace of X for which there exists an x0 ∈ X such that the space

[x0] generated by it satisfies [x0]⊕H = X.

Proposition 5.3. Let f be a nonzero linear functional on X; then its kernel

is a hyperplane that is closed if f is continuous and everywhere dense in X

if f is not.

Definition 5.4. Given two convex sets C1 and C2 and an element b ∈ X ′, we

say that the hyperplane H orthogonal to b, that is, defined by H = {x ∈ X |
〈b, x〉 = a}, separates C1 and C2 if

C1 ⊂ E+ = {x ∈ X | 〈b, x〉 � a} and C2 ⊂ E− = {x ∈ X | 〈b, x〉 � a}.
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Definition 5.5. We say that C1 and C2 are strictly separated by H if there

exists an ε > 0 such that

C1 +B(0, ε) ⊂ E+ and C2 +B(0, ε) ⊂ E−.

The following is a weak form of the Hahn–Banach theorem.

Theorem 5.6. Let C be a relatively compact convex subset of X and let M

be an affine submanifold of X such that M ∩ C = ∅. Then there exists a

hyperplane H that separates M and C.

Definition 5.7. A functional J on X with values in R is called lower semi-

continuous (l.s.c.) at x if for every sequence {xn} that converges to x, we

have

(5.8) J(x) � lim
n→∞

J(xn).

This property can also be expressed in the following equivalent form:

∀λ ∈ R, λ < J(x) =⇒ {y | J(y) > λ} is an open subset containing x.

We say that a functional J on X is l.s.c. on X if it is l.s.c. at all points

of X. This property can also be expressed as follows:

∀λ ∈ R, ∀x ∈ X, {x | J(x) > λ} is an open set.

This semicontinuity can easily be translated into a property of the epigraph

of the functional.

Proposition 5.9. A functional J is l.s.c. on X if and only if its epigraph,

defined by {(x, y) ∈ X × R | y � J(x)}, is closed.

We continue with useful results on the minimization of convex functions.

Definition 5.10. A functional J from X to R is called proper if it is not

identically equal to +∞ and does not take on the value −∞. In particular,

its domain dom(J) = {x ∈ X | J(x) ∈ R} is nonempty.

Theorem 5.11. If J is convex and bounded in a neighborhood of a point x0
where J(x0) is finite, then it cannot take on the value −∞ and it is continuous

and even Lipschitz in this neighborhood.

Theorem 5.12. If J is convex, l.s.c., and does not take on the value −∞,

then it is the upper envelope of the continuous linear functions that bound it

from below.

Corollary 5.13.

• Every closed convex subset of a Banach space is also weakly sequentially

closed.

• A convex functional is l.s.c. if and only if it is weakly sequentially l.s.c.



232 5 Elliptic PDE: Variational Techniques

5.2.2 Subdifferentiability, Gâteaux-differentiability

Definition 5.14. The subdifferential of J at x is the subset of X ′ defined by

∂J(x) = {α ∈ X ′ | ∀ y ∈ dom(J), 〈α, y − x〉 � J(y)− J(x)} .

If J is convex, then ∂J(x) is a convex subset of X ′. The subdifferential

can be empty, for example when the domain of the function is a single point

or, more generally, when the interior of the domain of the function is empty.

If J is differentiable in the sense of Fréchet, with derivative DJ(x) at x,

then ∂J(x) = {DJ(x)}. We call a function subdifferentiable at x if its subdif-

ferential at x is nonempty. For example, the function x 	→ |x| is differentiable
everywhere except at 0, where it is nevertheless subdifferentiable. Its subdif-

ferential at this point is the convex set [−1, 1].

Proposition 5.15. Let J be a convex function from X to R that is finite and

continuous at the point u ∈ X; then ∂J(u) �= ∅.

The Gâteaux-differentiable functions are a special case of subdifferentiable

functions. Let us recall the notion of directional derivative.

Definition 5.16. Let J be a convex function onX. We define the right deriva-

tive of J along y ∈ X ′ at the point x to be

J ′(x, y) = inf
λ>0

J(x+ λy)− J(x)
λ

.

When f is a function of one variable, then f ′(x, y) = yf ′d(x) if y > 0 and

f ′(x, y) = f ′g(x)y if y < 0.

It is clear that in the general case, this infimum, which is also a limit,

exists. The following theorem links its derivative to the subdifferential.

Theorem 5.17. If J is continuous and finite at x, or if x is a point in the

interior of the domain of J , then

∀ y ∈ X, J ′(x, y) = sup
x∗∈∂f(x)

〈x∗, y〉.

The notion of Gâteaux-differentiability can be deduced from that of direc-

tional derivative.

Definition 5.18. A convex function J on X is called Gâteaux-differentiable

at the point u of X if for every w ∈ X, the map w 	→ J ′(u,w) is an element

of X ′, which we then denote by J ′(u). Thus, for every v ∈ X, we have

J ′(u, v − u) = 〈J ′(u), v − u〉 = lim
t→0,t>0

J ((1− t)u+ tv)− J(u)
t

= lim
t→0,t>0

J ((u+ t(v − u))− J(u)
t

.
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Corollary 5.19 (of Theorem 5.17). If J is convex and continuous at u,

then its subdifferential at the point u is reduced to a singleton in X ′ if and

only if J is Gâteaux-differentiable at u. We then have ∂J(u) = {J ′(u)}.

Example 5.20 (of Gâteaux-differentiable functions). Let F be defined

on Lp(Ω) with 1 < p < ∞ by setting F (u) = 1/p
∫
Ω
|u|p(x)dx; then F is

everywhere Gâteaux-differentiable and

F ′(u) = p|u|p−2u.

Indeed, we first note that |u|p−2u ∈ Lp′
. Consider the convexity inequality

applied to u and h in Lp(Ω), that is,

|u+ h|p(x)− |u|p(x) � p|u|p−2u(x)h(x).

By integrating this over Ω, we obtain the inclusion p|u|p−2u ∈ ∂F (u).
Moreover, for almost every x ∈ Ω, the mean value theorem tells us that

there exists a number θx,t ∈ ]0, 1[ such that

|u(x) + th(x)|p − |u(x)|p − pth(x)|u(x)|p−2u(x)

= pth(x)
(
|u(x) + tθx,th(x)|p−2(u(x) + tθx,th(x))− |u(x)|p−2u(x)

)
.

By continuity, the term between parentheses on the right-hand side tends to 0

almost everywhere in Ω when t→ 0. Bounding the right-hand side from above

by 2(|u(x)|+ |h(x)|)p−1, we have

∣
∣
∣
|u(x) + th(x)|p − |u(x)|p − pth(x)|u(x)|p−2u(x)

t

∣
∣
∣

� C|h(x)|
(
|u(x)|p + |h(x)|p

)(p−1)/p
.

Finally, using Hölder’s inequality, we see that the integral of this function is

bounded from above by ‖h‖p
(
‖u‖p + ‖h‖p

)p−1
. We can therefore apply the

dominated convergence theorem and conclude that F is Gâteaux-differentiable

at u.

Remark 5.21. This example can be generalized to Sobolev spaces as follows.

Let G ∈ W 1,p(Ω) with p > 1 be defined by G(u) = 1/p
∫
Ω
|∇u|p(x)dx;

then G is Gâteaux-differentiable everywhere (cf. Section 5.8):

∀ v ∈W 1,p(Ω), 〈G′(u), v〉 =
∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx.
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5.2.3 Minimization of a Convex Function

Definition 5.22. A functional J on a separable Banach space is called coer-

cive if

lim
‖x‖

X
→+∞

J(x) = +∞.

We wish to study the minimum of J on a convex closed subset of X. We

will use the following results.

Proposition 5.23. Let J be a convex function on X with values in R∪{+∞}.
The following two properties are equivalent for every u ∈ dom(J):

(1) J(u) = infx∈X J(x).

(2) For every v ∈ dom(J), we have J ′(u, v − u) � 0.

Proof of Proposition 5.23.

• If u satisfies (1), then

∀ v ∈ dom(J), ∀ t ∈ ]0, 1[,
J(u+ t(v − u)− J(u)

t
� 0.

We obtain property (2) by letting t tend to 0.

• Conversely, for every x ∈ X and every t ∈ ]0, 1[, we have

J(x)− J(u) = J(u+ (x− u))− J(u)
1

� J(u+ t(x− u))− J(u)
t

.

We obtain the inequality J(x)− J(u) � J ′(u, x− u) � 0 by letting t tend

to 0, whence property (1).

��

Proposition 5.24. If infu∈X J(u) is reached for some u ∈ X and J is

Gâteaux-differentiable at u, then the subdifferential at u, which we can write as

∂J(u) = {J ′(u)}, is reduced to zero. Conversely, if J is convex and Gâteaux-

differentiable at u with J ′(u) = 0, then it has a minimum at u.

Theorem 5.25. Let X be a reflexive separable Banach space, let U be a con-

vex closed subset of X, and let J be a proper, convex, coercive, lower semi-

continuous functional. Then

inf
u∈U
J(u)

is reached at some u. This minimum is determined by the relations

∀ v ∈ dom(J) ∩ U, J ′(u, v − u) � 0.
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When U = X, this characterization becomes

∀ v ∈ dom(J), J ′(u, v) = 0,

or 0 ∈ ∂J(u), once more giving J ′(u) = 0 if J is Gâteaux-differentiable at u.

In the case of an affine subspace U = x0 + Y , where Y is a closed vector

subspace of X, the minimum x0 + ũ satisfies

∀ ṽ ∈ Y, x0 + ṽ ∈ domJ ∩ U =⇒ J ′(x0 + ũ, ṽ) = 0.

If J is Gâteaux-differentiable at x0 + ũ, this characterization becomes

J ′(x0 + ũ) = 0.

Proof of Theorem 5.25.

Let us show that the infimum is finite. We assume that it is not, in which

case it equals −∞ and there exists a sequence {un} ∈ UN with J(un)→ −∞.

If {un} were bounded, then by extracting a subsequence that converges weakly

to u, we can show that since J is l.s.c.,

J(u) = −∞,

which is absurd. Therefore {un} is unbounded and there exists a subsequence

‖uσ(n)‖X → +∞, so that the coercivity of J implies that J(uσ(n)) → +∞,

giving a contradiction. We conclude that

m = inf
u∈U
J(u) > −∞.

Let {un} be a minimizing sequence for the problem; then J(un)→ m and, in

particular, {un} is bounded. If not, there would exist a subsequence {uσ(n)}
that tends to infinity and therefore satisfies J(uσ(n))→∞. SinceX is reflexive

and U is weakly sequentially closed, we can extract a subsequence from {un}
that converges weakly to u in U . Since J is convex and l.s.c., it is also weakly

l.s.c., so that

J(u) � lim
n→∞

J(un) = m,

proving that u is a solution. The remainder of the theorem follows from the

definitions of the directional derivative and of the subdifferential. ��

Remark 5.26. If J is strictly convex, then the solution u is unique.

Remark 5.27. If u is an interior point of U , then J is continuous at u and has

a nonempty subdifferential at u. Since u is the minimum, we have 0 ∈ ∂J(u)
by the previous proposition.
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5.3 Solving Elliptic Linear PDE with Dirichlet Boundary

Conditions

5.3.1 Introduction

Let us consider the physics problem that consists of studying the equilibrium

position of a stretched elastic membrane in a plane. The membrane projects

into an open subset Ω of the plane, with its boundary mapping onto the

boundary ∂Ω. At each point x = (x1, x2), we apply a vertical force defined by

a function x 	→ f(x), giving tension in the membrane. The displacement of the

point x can be identified with the height of the membrane z = u(x) at that

point. The equations describing the situation in physics lead to an equation

for u, namely −Δu = f with, moreover, the boundary condition u = 0 on ∂Ω.

Replacing the boundary condition u = 0 by u = u0, where u0 is a function

on ∂Ω, we obtain an inhomogeneous Dirichlet problem.

Fig. 5.1.

By modifying the boundary condition, we also find other types of problems

such as the Neumann problems, which we will study further on.

5.3.2 The Dirichlet Problem [Dir ]fΔ in H1(Ω) for the Laplacian

Statement of the Dirichlet Problem. For an open subset Ω of RN , we let Δ

be the Laplace operator that sends a distribution T ∈ D′(Ω) to

ΔT =
∑

1�i�N

∂2T

∂x2i
.

We begin by considering the so-called Dirichlet problem. Let Ω be a bounded

open subset of R
N of class C1, and let f be a function in L2(Ω). We are
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looking for a solution u of the problem

[Dir ]fΔ :

{
−Δu = f in Ω,

u = 0 on ∂Ω.

We can also consider the same problem with a nonzero restriction to the

boundary, which will need to have a certain degree of regularity. For example,

if we are looking for a solution in H1(Ω), then the restriction will need to be

at least in H1/2(∂Ω).

Uniqueness of the Solution in H1(Ω) if it exists. Let us suppose that both u

and v in H1(Ω) satisfy the equation. The difference u − v then satisfies

Δ(u− v) = 0. Multiplying this by u− v, integrating over Ω, and applying the

generalized Green’s formula from Chapter 3, we obtain
∫

Ω

|∇(u− v)|2(x)dx = 0, whence u− v = constant.

Since u− v = 0 on the boundary, the uniqueness of the solution follows.

Existence of a Solution in H1(Ω). To show the existence of a solution, we

transform the problem into a so-called variational one. We then apply Propo-

sition 5.24 and Theorem 5.25 to a functional J that we will associate to the

Dirichlet problem.

Let Ω be a bounded open subset of R
N , let f ∈ L2(Ω), and let J be

defined on H1
0 (Ω) =W

1,2
0 (Ω) by setting

J(u) =
1

2

∫

Ω

|∇u|2 −
∫

Ω

fu.

Let us suppose that J is convex, continuous, and coercive in H1
0 (Ω). Theorem

5.25 then ensures us of the existence of a minimum for J . Since J is Gâteaux-

differentiable, and even Fréchet-differentiable, at every point u ∈ H1(Ω), with

〈J ′(u), v〉 =
∫

Ω

∇u · ∇v −
∫

Ω

fv,

it follows that if u is a minimum, then for v∈D(Ω), the condition 〈J ′(u), v〉=0

(Proposition 5.24) gives −Δu = f . In other words, u is a solution of the

Dirichlet problem.

We can easily see that J is convex and continuous, so that it remains

to show that J is coercive on H1
0 (Ω). We will need the following Poincaré

inequality (cf. its generalization in Exercise 2.9).

Proposition 5.28. Let Ω be a bounded domain of class C1; then there exists

a constant CP > 0 such that every u in H1
0 (Ω) satisfies

‖u‖H1(Ω) � CP ‖∇u‖2.
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Proof of Proposition 5.28. If we assume that the result of the proposition is

false, then there exists a sequence {un} in H1
0 (Ω) with ‖un‖H1

0
= 1 and

‖∇un‖22 � 1/n. By the compactness of the Sobolev embedding H1(Ω) ↪→
L2(Ω), we may extract a subsequence from {un} that converges weakly in

H1(Ω) and strongly in L2(Ω). Let u be its limit. Since we have ‖∇un‖2 → 0,

the lower semicontinuity of the norm in L2 for the weak topology gives

‖∇u‖2 � lim ‖∇un‖2 = 0.

Consequently, u is a constant that must be zero because it belongs to H1
0 .

However, since {un} converges strongly to u in L2, we also have

‖u‖2 = lim ‖un‖2 = lim ‖un‖H1
0
= 1,

giving a contradiction. ��

Let us return to the coercivity of J . Using the constant CP of Proposition

5.28, we can write
∣
∣
∣
∫
Ω
fu
∣
∣
∣ � ‖f‖2‖u‖2 � ‖f‖2‖u‖H1(Ω)

� C2
P ‖f‖22 +

1

4C2
P

‖u‖2H1(Ω).

The coercivity then follows from J(u) � 1/4C2
P ‖u‖2H1(Ω) − ‖f‖22.

We will now generalize this Dirichlet problem to an operator other than Δ.

5.3.3 The Dirichlet Problem [Dir ]fA in H1(Ω) for an Operator A

Statement of the Problem. Let Ω be a bounded domain of class C1 and let f

be an element of L2(Ω). Let A = (Aij)ij ∈ L∞(Ω,RN × R
N ) satisfy the

following:

(1) For every i and every j in [1, N ], we have Aij = Aji.

(2) There exists an α > 0 such that

∀x ∈ R
N ,

∑

ij

Aijxixj � α|x|2.

This last property is called the uniform ellipticity of A.

We are looking for a solution u of the problem

[Dir ]fA :

{
−
∑

ij ∂i
(
Aij∂ju

)
= f in Ω,

u = 0 on ∂Ω.

Remark 5.29. This problem can also be written as −div(A(x)∇u) = f , that
is, as a PDE in divergence form (cf. introduction). One of the advantages of

writing it this way is that we obtain a variational form of the problem. This

problem is a generalization of [Dir ]fΔ, which corresponds to the case Aij = δ
j
i .



5.3 Solving Elliptic Linear PDE with Dirichlet Boundary Conditions 239

Existence and Uniqueness of a Solution. Both for the existence and for the

uniqueness, it suffices to follow the same arguments as those used for the

problem [Dir ]fΔ. The functional J that we associate with the problem is

J(u) =
1

2

∫

Ω

A(x)∇u(x) · ∇u(x)dx−
∫

Ω

f(x)u(x)dx,

where A(x)X ·Y denotes the scalar Aij(x)XiYj . The variational form of [Dir ]fA
is therefore the minimization associated with

inf
u∈H1

0 (Ω)

{1
2

∫

Ω

A(x)∇u · ∇u dx−
∫

Ω

fu dx
}
.

We can easily demonstrate the convexity and continuity of J . The coercivity

follows from the Poincaré inequality and the uniform ellipticity of A. The

functional J is Gâteaux-differentiable since its derivative is defined by

〈J ′(u), v〉 =
∫

Ω

A(x)∇u(x) · ∇v(x) dx−
∫

Ω

f(x)v(x) dx.

Using Green’s formula, we can show that the minimum of J on H1
0 (Ω) is

indeed the solution of the problem [Dir ]fA.

Remark 5.30. Note that we can also replace f ∈ L2 by f ∈ H−1(Ω). In

that case, we replace the integral
∫
Ω
fu by the duality pairing 〈f, u〉. The

corresponding modification of the previous functional remains continuous and

coercive.

This remark will be useful in the section on nonhomogeneous problems,

for both the Dirichlet and the Neumann problems.

5.3.4 The Problem [Dir ]0Δ,λ, Eigenvalues and Eigenvectors of −Δ

Let Ω again be a bounded domain of class C1. The optimal constant C = C2
P

in Proposition 5.28 is given by 1 + 1/λ1, where

λ1 = inf
u∈H1

0 (Ω)
‖u‖2=1

∫

Ω

|∇u|2(x)dx.

We will see that this critical value λ1 is an eigenvalue of −Δ and that the

associated homogeneous problem, [Dir ]0Δ,−λ, admits nonzero solutions that

are eigenvectors of −Δ for the eigenvalue λ1. More precisely, we have the

following result.
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Proposition 5.31. Let λ1 be as above; then λ1 is positive and there exists a

u � 0 satisfying ‖u‖2 = 1 and ‖∇u‖2 = λ1. Moreover, u is an eigenvector

of −Δ for the eigenvalue λ1, that is, u is a solution of [Dir ]0Δ,−λ1
.

Furthermore, the associated eigenspace has dimension 1 when Ω is con-

nected. In particular, under this assumption, every eigenfunction has constant

sign.

Proof.

We begin by showing that λ1 > 0. This follows from the Poincaré inequal-

ity, but we will give a direct proof for ease of reading.

We have λ1 � 0. Let us assume that λ1 = 0. Then there exists a sequence

{un} in H1
0 (Ω) with ‖un‖2 = 1 and ‖∇un‖2 → 0. Since H1

0 (Ω) is a Hilbert

space and therefore reflexive, we can extract a subsequence from {un} that

converges weakly in H1(Ω) to a function u. By the compactness of the em-

bedding of H1
0 in L2, we have ‖u‖2 = 1 and, finally, the strong convergence of

{un} to u in H1 because it tends to u in L2 and {∇un} → 0 in L2. We deduce

that ∇u = limn→+∞∇un = 0, whence u = 0 because u = 0 on the boundary,

giving a contradiction with ‖u‖2 = 1. Consequently, we have λ1 > 0.

Next, let {un} be a minimizing sequence, that is, one satisfying

‖∇un‖22 → λ1 with ‖un‖2 = 1. The sequence is bounded in H1
0 , so that there

exists a subsequence, which we also denote by {un}, satisfying

un −⇀ u in H1
0 , un −→ u in L2.

In particular, ‖u‖2 = 1, and by the lower semicontinuity of u 	→ ‖∇u‖22 for

the weak topology, we have

λ1 �
∫

Ω

|∇u|2(x)dx � lim ‖∇un‖22 = λ1.

Consequently, u satisfies ‖u‖2 = 1 and ‖∇u‖22 = λ1. Moreover, by noting that

‖(∇|u|)‖ = ‖∇u‖ (cf. Lemma 5.62 at the end of the chapter), we deduce that

there exists a nonnegative solution.

Let us now show that u satisfies the equation −Δu = λ1u. Let u be a

solution of the variational problem that satisfies ‖u‖2 = 1, let ϕ ∈ D(Ω), and
let t ∈ R satisfy 2|t| < ‖ϕ‖−1

2 . Then ‖u+ tϕ‖2 �= 0 and u+ tϕ ∈ H1
0 , so that,

by the definition of λ1,

∫

Ω

|∇(u+ tϕ)|2dx � λ1
∫

Ω

|u+ tϕ|2dx.

It follows from the assumptions that

2t

∫

Ω

∇u·∇ϕ(x)dx+t2
∫

Ω

|∇ϕ|2(x)dx � λ1
(
2t

∫

Ω

uϕ(x)dx+t2
∫

Ω

|ϕ|2(x)dx
)
.
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Dividing by t, which we assume to be positive, and letting t tend to 0, we

obtain
∫
Ω
∇u ·∇ϕdx � λ1

∫
Ω
uϕ(x)dx. When t < 0, we either apply the same

process or change ϕ to −ϕ to obtain the opposite inequality, whence
∫

Ω

∇u · ∇ϕdx = λ1
∫

Ω

uϕ(x)dx.

The result follows by using the definition of Δu in the sense of distributions.

Let us show that λ1 is the smallest eigenvalue. We take a λ ∈ R and a

nonzero v ∈ H1
0 such that −Δv = λv. Multiplying by v and applying the

generalized Green’s formula, we obtain

λ1‖v‖22 �
∫

Ω

|∇v|2 = λ‖v‖22,

and therefore λ � λ1.
Let us now show that the eigenspace corresponding to λ1 has dimension

1. Let v be an eigenvector for λ1 and let u be a nonnegative eigenfunction.

We showed the existence of such a u earlier on in this proof. We multiply the

eigenvalue equation by v2/(u+ ε) ∈ H1
0 , where ε > 0. This gives

λ1

∫

Ω

v2u

u+ ε
dx =

∫

Ω

∇u · ∇
( v2

u+ ε

)
dx.

The right-hand side satisfies

∇u · ∇
( v2

u+ ε

)
= 2

v

u+ ε
∇u · ∇v − v2

(u+ ε)2
|∇u|2

= −
∣
∣
∣
v

u+ ε
∇u−∇v

∣
∣
∣
2

+ |∇v|2.

Hence

λ1

∫

Ω

v2u

u+ ε
dx = −

∫

Ω

∣
∣
∣
v

u+ ε
∇u−∇v

∣
∣
∣
2

dx+

∫

Ω

|∇v|2dx.

Now, by the dominated convergence theorem, the left-hand side tends to

λ1
∫
Ω
v2(x)dx =

∫
Ω
|∇v|2(x)dx. Consequently,

lim
ε→0

∫

Ω

∣
∣
∣
v

u+ ε
∇u−∇v

∣
∣
∣
2

= 0,

which implies that limε→0∇(v/(u+ ε)) = 0 strongly in L2 on any compact

set. By the strong maximum principle (cf. Proposition 5.72), u > 0 in the

interior of Ω. Let Ω1 be a connected compact subset of Ω and let mΩ1 be a

lower bound for u in Ω1. The sequence {v/(u+ ε))} then converges to v/u in

L2(Ω1). The previous limit shows that its gradient is zero in Ω1. We deduce
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from this that v = cΩ1u. Finally, by considering connected open sets contain-

ing Ω1, we see that this constant does not depend on Ω1. Since the open set Ω

is connected, we have thus proved the existence of a C such that v = Cu in Ω.

At the same time, we have shown that every eigenfunction has constant sign,

concluding the proof. ��

Remark 5.32. Instead of this proof, we can also use the regularity of the

solutions of Dirichlet problems (see further on) and the Hopf principle stated

in Theorem 5.81. In that case, we note that the function v2/u belongs to H1,

allowing us the avoid the use of the parameter ε (cf. Exercise 5.1).

5.3.5 The Problem [Dir ]fΔ,−λ with 0 < λ < λ1

We wish to find a solution u of the problem

[Dir ]fΔ,λ :

{
−Δu+ λu = f in Ω,

u = 0 on ∂Ω.

The functional we now wish to minimize is no longer convex but is coercive

and weakly l.s.c.. We assume that 0 < λ < λ1. Given a bounded domain Ω

in R
N of class C1, we wish to find a solution u of [Dir ]fΔ,−λ in H1

0 (Ω), where

f ∈ L2(Ω).
Existence of a Solution.

The equation leads us to consider the functional on H1
0 (Ω) defined by

J(u) =
1

2

∫

Ω

|∇u|2(x)dx− λ
2

∫

Ω

|u|2(x)dx−
∫

Ω

f(x)u(x)dx.

This functional is coercive because λ < λ1. Its minimum therefore belongs

to R. Let {un} be a minimizing sequence for J . It is bounded in H1
0 , whence,

after extracting a subsequence, if necessary, it converges to u ∈ H1
0 , converges

weakly inH1, and converges strongly in L2. It follows that the nonconvex term

−λ
∫
Ω
|un|2(x)dx converges to −λ

∫
Ω
|u|2(x)dx. Since the gradient of the other

term is l.s.c. for the weak topology, we can deduce that u is a solution of

J(u) � limJ(un),

giving the desired result.

Since J admits a minimum in u, we have J ′(u) = 0, giving the PDE

satisfied by u in H1
0 (Ω), namely −Δu− λu = f .

Uniqueness. Since the equation is linear, it suffices to verify that the solu-

tion w of [Dir ]0Δ,−λ vanishes in Ω. Recall that if w is not identically zero,

then it is an eigenfunction for an eigenvalue λ < λ1, which is impossible by

Proposition 5.31.
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5.4 Regularity of the Given Solutions

We will now consider the regularity of the solutions of the Dirichlet problems

we have studied above.

5.4.1 The Problem [Dir ]fA
Theorem 5.33. Let Ω be a bounded domain of class C2 and let f be an ele-

ment of L2(Ω). Let A ∈ C1(Ω,RN×N ) satisfy the following conditions:

(1) For every i and every j in [1, N ], we have Aij = Aji.

(2) There exists an α > 0 such that

∀x ∈ R
N ,

∑

ij

Aijxixj � α|x|2.

Then the solution u of [Dir ]fA in H1
0 (Ω) belongs to H2(Ω).

Proof of Theorem 5.33. Let us begin with an introduction for ease of reading.

We will divide the proof into three steps that we will each justify.

Using a partition of unity {ϕi} associated with the class C2 cover of Ω, we

reduce to showing that every ϕiu belongs to H2(Ω). Indeed, if ϕk belongs to

D(RN ), then

div
(
A(x)∇(ϕku)

)
∈ L2(Ω),

because the right-hand side of

div
(
A(x)∇(ϕku)

)

=
∑

i

[
∂i
(
Aij∂jϕku

)
+Aij(∂ijϕk)u+Aij∂jϕk∂iu

]
+ ϕk div

(
A(x)∇u

)

belongs to L2(Ω). When k = 0, then by the compactness of the support of

ϕ0u in Ω, we have

div
(
A(x)∇(ϕ0u)

)
∈ L2(RN ),

thus justifying the first step, which we will now state.

Step 1. We begin by showing the result on R
N , that is, if u ∈ H1(RN ) has

compact support and satisfies the equation

−div(A(x)∇u) = f

with f ∈ L2(RN ) and A symmetric, Lipschitz, and coercive, then u ∈ H2(RN ).

For the remaining functions ϕku, we must now show that if u has com-

pact support in an open set of the form Ωk ∩ Ω, with boundary condition

ϕku(x
′, a(x′)) = 0 and, moreover, satisfies div

(
A(x)∇(ϕku)

)
∈ L2, then

ϕku ∈ H2. Unless a is the zero function, in which case the boundary is lo-

cally straight, we can reduce to this situation by changing the local coordinate

systems, as we will show further on. This remark justifies the second step.
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Step 2. We extend the result obtained in the first step to the open set RN−1×
]0,+∞[ with the condition u = 0 on {xN = 0}.

We will conclude the proof as follows.

Step 3. We use local coordinate systems and partitions of unity to extend the

result to Ω.

The difficulty in this step lies in the modification of A(x) when we change

the local coordinate systems. We deal with this problem by noting that A(x)

is replaced by a matrix B(x) that is also uniformly elliptic. We can therefore

conclude using the results we have already obtained on R
N−1 × ]0,+∞[.

First Step. Let u ∈ H1(RN ) have compact support. We fix a direction ei and

define the translation uh : x 	→ u(x + hei). Since this is linear in u, we have

div(Ah∇uh) = fh. Consequently, after subtracting the equation for uh from

that for u and multiplying by uh−u, integrating over Ω and applying Green’s

formula on H1 ×W 2(div) gives

∫

RN

(
Ah∇uh −A∇u

)
·
(
∇uh −∇u

)
dx =

∫

RN

(fh − f)(uh − u)dx.

We expand the first factor to (Ah−A)∇uh+A(∇uh−∇u), after which we use

a translation of the variable in the integral on the right-hand side to deduce

that

∫

RN

∑

i,j

Aij(∂i(uh)− ∂iu)(∂j(uh)− ∂ju) dx

+

∫

RN

∑

ij

(
(Aij)h −Aij

)
∂i(u)h(∂j(uh)− ∂ju) dx

=

∫

RN

(fh − f)(uh − u)dx =
∫

RN

f(x)
(
−u−h − uh + 2u

)
dx.

Dividing by h2 gives

∫

RN

∑

ij

Aij

(∂i(uh)− ∂iu
h

)( (∂j(uh)− ∂ju
h

)
dx

= −
∫

RN

∑

j,i

(Aij)h −Aij

h
∂i(uh)

∂j(uh)− ∂ju
h

dx

−
∫

RN

f(x)
u−h + uh − 2u

h2
(x) dx.

To bound the second term on the right-hand side, we let v = (uh − u)/h.
We then have (v − v−h)/h = (uh − 2u+ u−h)/h

2. Since v ∈ H1(RN ), we
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can deduce the following inequality from inequality (2.26) of the proof of

Proposition 2.23 applied to Ω = R
N :

‖v − v−h‖2 � |h|‖∂iv‖2 � |h|
∥
∥
∥
∇(uh − u)
h

∥
∥
∥
2
.

Using, moreover, the uniform ellipticity of A, the previous relation gives

α
∥
∥
∥
∇(uh − u)
h

∥
∥
∥
2

2
� ‖∇A‖∞‖∇uh‖2

∥
∥
∥
∇(uh − u)
h

∥
∥
∥
2
+ ‖f‖2

∥
∥
∥
∇(uh − u)
h

∥
∥
∥
2
.

Finally, we obtain

∥
∥
∥
∇(uh − u)
h

∥
∥
∥
2
� 1

α

(
‖∇u‖2 ‖∇A‖∞ + ‖f‖2

)
.

Since the right-hand sides does not depend on h, we may use the charac-

terization of the functions in H1 using finite differences given in Chapter 2

(cf. Proposition 2.23). By choosing a basis of RN for the ei, we obtain that

for a solution u of [Dir ]fA, ∇∇u belongs to L2 and has norm satisfying

‖∇∇u‖2 � 1

α
(‖∇u‖2 ‖∇A‖∞ + ‖f‖2).

Second Step: RN−1 × ]0,+∞[. We can repeat the computations given above

with
−→
h = hei, where i < N . Given the vanishing of uh − u on the boundary,

Green’s formula applied to the formula obtained by integrating the product

div(Ah∇uh −A∇u)(uh − u) gives us the inclusion

∂iju ∈ L2(RN−1 × ]0,+∞[),

provided that one of the indexes (i, j) is different from N . It remains to show

that ∂NNu ∈ L2. For this, we write the equation as

∂N
(
ANN∂Nu

)
= f −

∑

i�N−1,j

∂i
(
Aij∂ju

)
∈ L2.

Setting ANN∂Nu = bv, we reduce to showing the following result.

Lemma 5.34. If b ∈ W 1,∞(RN−1 × ]0,+∞[) with b � α > 0 and v ∈
L2(RN−1 × ]0,+∞[) satisfy ∂N (bv) = V ∈ L2(RN−1 × ]0,+∞[) in the sense

of distributions, then ∂Nv = (V − (∂Nb)v)/b belongs to L2(RN−1 × ]0,+∞[).

Proof of Lemma 5.34.

We first assume that b is also of class C1, in which case the argument is

simpler. Indeed, since ∂Nv is a distribution of order � 1, we can differenti-

ate its product with b using the formula ∂N (bv) = b∂Nv + v∂Nb, giving us

b∂Nv ∈ L2. The result now follows from the inclusion 1/b ∈ L∞.
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The result still holds when b ∈ W 1,∞. Indeed, if ∂N (bv) ∈ L2(RN−1 ×
]0,+∞[), then by extending b and v by the reflexion (x′, xN ) 	→ (x′,−xN ),

that is, by taking v(x′, xN ) = v(x′,−xN ) and the analogue for b, we ob-

tain ∂N (bv) ∈ L2(RN ). Consequently, once more using Proposition 2.23, we

find the upper bound ‖((bv)h − bv)/h‖2 � C, where C does not depend on−→
h = heN . It follows that the function b(vh − v)/h+vh(bh − b)/h is uniformly

bounded in L2(RN ). Since b is Lipschitz, whence vh(bh − b)/h is also uniformly

bounded in L2(RN ), we can deduce that b(vh − v)/h is uniformly bounded in

L2(RN ). Finally, since b has a lower bound, (vh − v)/h is also bounded in

L2(RN ), giving ∂Nv ∈ L2(RN ). ��

Remark 5.35. Let us note that when A either is a diagonal matrix or has

coefficients AiN all equal to zero, which is for example the case for the Laplace

operator, then we can use the extension ũ(x′, xN ) = −ũ(x′,−xN ) that satisfies

divA(∇ũ)(x′, xN ) = f̃(x′, xN ) in R
N , where f̃ is the antisymmetrization of f .

Third Step. We continue with the case of an open set of class C2. Let u be

the solution of [Dir ]fA. Let ϕk be a regular function with compact support in

Ω ∩ Ωk, where Ωk has the property that there exists a C2 function ak on an

open subset O′ of RN−1 such that

Ω ∩Ωk ⊂ {(x′, xN ) | x′ ∈ O′, xN > ak(x
′)},

∂Ω ∩Ωk = {(x′, ak(x′)) | x′ ∈ O′}.

Let us show that the function ϕku satisfies

div(A(x)∇(ϕku)) = g ∈ L2(Ω ∩Ωk).

Simplifying the notation by writing ϕ for ϕk and Ω for Ω ∩Ωk, we have

div(A(x)∇(ϕu)) = div(A(x)ϕ∇u) + div
(
A(x)(∇ϕ)u

)

= ϕdiv(A(x)∇u) +∇ϕ ·A(x)∇u+ div(u A(x)(∇ϕ))
= ϕf + h,

where h ∈ L2(Ω). Indeed, A ∈ L∞ and ∇u ∈ L2 imply that A(x)∇u ∈ L2
and ∇ϕ ∈ D(RN ), so that A(x)∇u∇ϕ ∈ L2. Moreover, (∇ϕ)u ∈ H1, so that

uA(x) · ∇ϕ belongs to H1 since it is the product of a function in W 1,∞ and a

function in H1. We have thus reduced the problem to showing the following

regularity result.

Lemma 5.36. Let u have compact support in Ωk ∩Ω and satisfy

div(A(x) · ∇u) = g ∈ L2(Ωk ∩Ω) and u = 0 on ∂Ω ∩Ωk;

then u ∈ H2(RN−1 × ]0,+∞[).
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Proof of Lemma 5.36.

Let v be defined on O′ × ]0,+∞[ by v(x′, xN ) = u(x′, a(x′) + xN ). The

regularity of Ω then implies that v belongs to H1(O′ × ]0,+∞[) and has

compact support in O′ × [0,+∞[. We will show that it satisfies an equation

of the type div(B(∇v)) = h, where h is an element of L2 and B is a matrix

that we will determine using A.

For a fixed x in Ω ∩Ωk, the relations

∂iu(x
′, xN ) = ∂iv(x

′, xN − a(x′))− ∂ia∂Nv(x′, xN − a(x′)),
∂Nu(x

′, xN ) = ∂Nv(x
′, xN − a(x′)),

lead us to associate to X ∈ R
N the vector Y defined by

∀ i ∈ [1, N − 1], Yi = Xi − ∂iaXN and YN = XN .

We must therefore determine the symmetric matrix B such that for every

X ∈ R
N , we have

(∗)
∑

ij

BijXiXj =
∑

ij

AijYiYj .

Expanding this equality and simplifying, we obtain the relations

∀ (i, j) ∈ [1, N − 1]2, Bij = Aij

∀ i ∈ [1, N − 1], BiN = AiN −
∑

j�N−1

Aij∂ja

BNN = ANN +
∑

i,j�N−1

Aij∂ia∂ja−
∑

i�N−1

∂iaAiN .

The matrix B therefore has coefficients in W 1,∞. Our assumptions on a allow

us to conclude that the function (x′, xN ) 	→ h(x′, xN ) = f(x′, a(x′) + xN )

belongs to L2(O′ × ]0,+∞[). Since v(x′, 0) = u(x′, a(x′)), we see that v is a

solution of [Dir ]hB. In order to apply the results of the second step, we still

need to show the uniform ellipticity of B.

Let C be the matrix for which Y = CX:

∀ i � N − 1, Cij = δij − ∂iaδNj , CNj = δNj .

This matrix is invertible, and (∗) corresponds to B =t CAC. It is therefore

clear that both C and its inverse belong to L∞ and that, consequently, the

matrix B is uniformly elliptic. It follows that v is in the situation of the second

step. Hence v ∈ H2(RN−1 × ]0,+∞[).

Returning to u, we finally have

ϕku ∈ H2(Ωk ∩Ω),

giving the inclusion stated in the lemma. ��
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Since u is the sum of the ϕku, it belongs to H2(Ω). This concludes the

proof of Theorem 5.33. ��

Remark 5.37. When A = Id, that is, for [Dir ]fΔ, we can use a regularizing

argument in the first step, as follows.

We begin by showing that if u ∈ D(RN ), then

∫

RN

|Δu|2 =

∫

RN

|∇∇u|2.

This follows by carrying out two successive integrations by parts:

∫

RN

∑

ij

∂ij(u)
2(x)dx = −

∑

i,j

∫

RN

∂ijju(x)∂iu(x)dx

=
∑

i,j

∫

RN

∂jju(x)∂iiu(x)dx =

∫

RN

|Δu|2.

We then consider uε = ρε � u. We have

Δuε = ρε � f

and, by the computation above, ∇∇uε is a Cauchy sequence in L2(RN ). Since

it converges in the sense of D′ to ∇∇u, we find that u ∈ H2(RN ).

5.4.2 Higher Order Regularity

Proposition 5.38. For m � 0, consider a bounded domain Ω of class Cm+2

and let f ∈ Hm(Ω). Let A be a matrix satisfying the conditions of Theorem

5.33 and the regularity condition A ∈ Cm+1(Ω). Then the solution u of the

problem [Dir ]fA is an element of Hm+2(Ω).

Using Sobolev embeddings, we note, in particular, the following conse-

quences of the theorem:

When 2(m + 2) > N , the solution u is continuous, and when 2m > N , it

is of class C2.
If f ∈ C∞(Ω) and A ∈ C∞(Ω), which implies that f ∈

⋂
mH

m
loc(Ω), then

u ∈
⋂

mH
m+2
loc (Ω) = C∞(Ω).

Proof of Proposition 5.38.

We use induction on m. Let u be the solution of the problem [Dir ]fA in

H1(RN−1 × ]0,+∞[), where f ∈ Hm(RN−1 × ]0,+∞[). We suppose that

the proposition has been proved at the order m − 1. We therefore have
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u ∈ Hm+1(RN−1 × ]0,+∞[). For k � N − 1, differentiating the equation

with respect to the variable xk gives

(∗∗)
∑

ij

∂j
(
Aij∂i(∂ku)

)
= ∂kf −

∑

ij

∂j
(
(∂kAij)∂iu

)
.

Hence, taking into account the assumptions and the result at the order m−1,

we see that the right-hand side g of (∗∗) belongs to Hm−1. Moreover, on ∂Ω,

we have ∂ku = 0 because u(x′, 0) = 0 implies ∂ku(x
′, 0) = 0. The relation (∗∗)

therefore expresses the fact that ∂ku is a solution of [Dir ]gA.
Once again using the induction hypothesis for ∂ku, we see that the inclu-

sion of g in Hm−1(RN−1× ]0,+∞[) implies that its derivative ∂ku belongs to

Hm+1(RN−1 × ]0,+∞[).

It remains to show that ∂Nu ∈ Hm+1(RN−1 × ]0,+∞[). Now, since u ∈
Hm+1(RN−1 × ]0,+∞[), we already have ∂Nu ∈ Hm(RN−1 × ]0,+∞[). We

have just shown that ∂ku ∈ Hm+1(RN−1 × ]0,+∞[), so that we have ∂kNu ∈
Hm(RN−1 × ]0,+∞[) for k � N − 1. Moreover,

ANN∂NNu = f −
∑

(i,j) �=(N,N)

Aij∂iju−
∑

ij

∂jAij∂iu ∈ Hm(RN−1 × ]0,+∞[).

Finally, by the uniform ellipticity of A, there exists a constant α > 0 such that

ANN � α > 0. Therefore, since for a function v ∈ Hm and a nonzero b ∈ Cm,

we have v/b ∈ Hm, we obtain ∂NNu ∈ Hm(RN−1 × ]0,+∞[). It follows that

u ∈ Hm+2(RN−1 × ]0,+∞[).

In the above, we could also only assume that A is an element of Wm+1,∞.

Let us continue with the general case. We again use the partition of unity

and localization. We use the notation from the definition of the Cm+2 reg-

ularity. We must show that if div(A(∇u)) ∈ Hm(Ωk ∩ Ω), then ϕku ∈
Hm+2(Ωk ∩Ω).

Let v be the function on Ωk ∩Ω defined by

v(x′, xN ) = (ϕku)(x
′, a(x′) + xN ),

where a is a Cm+2 function on O′; then v has compact support in O′× [0,∞[.

For B as in the proof of Proposition 5.33, we have

div(B(∇v)) = g

with g ∈ Hm(O′ × ]0,+∞[). Since B ∈ Cm+1(Ω ∩Ωk), the first part of the

proposition tells us that v ∈ Hm+2(O′× ]0,+∞[). Moreover, since a is Cm+2,

we find that ϕku ∈ Hm+2(Ωk ∩Ω).
By gluing the local results, we finally conclude that u ∈ Hm+2(Ω). ��
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5.5 Neumann Problems

When, in the physical model of Dirichlet, the boundary condition no longer in-

volves an equality concerning the unknown function but rather one concerning

a derivative of that function, we speak of a Neumann problem.

5.5.1 Normal Trace and Derivative

Let Ω be a bounded domain of class C1 and let A be a function in C1(Ω) with
values in the space of symmetric N×N matrices over R. We suppose that σ ∈
L2(Ω,RN ), so that x 	→ A(x)σ(x) defines a function on Ω with values in R

N .

Since Ω is bounded, we have Aσ ∈ L2(Ω,RN ), so that if div(Aσ) ∈ L2(Ω),
then Aσ ∈ W 2

2 (div)(Ω) (this space was introduced in Chapter 3, §3.4.3). By
the generalized Green’s formula 3.58, the symbol Aσ · −→n is well defined on

∂Ω. Hence

∀U ∈ H1(Ω), 〈Aσ ·−→n , γ0U〉 =
∫

Ω

Aσ(x)·∇U(x)dx+
∫

Ω

U(x) div(Aσ)(x)dx.

Definition 5.39. The linear functional Aσ · −→n , which belongs to the dual

H−1/2(∂Ω) of the space of traces H1/2(∂Ω), is called the normal trace of Aσ

on ∂Ω.

In particular, if u ∈ H1(Ω) and div(A∇u) ∈ L2, the normal derivative or,

more precisely, the A-normal derivative A(x)∇u · −→n = Aij∂iunj of u belongs

to H−1/2(∂Ω). Taking the identity matrix for A, we find that if Δu ∈ L2(Ω)
and u ∈ H1(Ω), then the normal derivative ∂nu belongs to H−1/2(∂Ω).

5.5.2 Homogeneous Neumann Problem [Neu]fA

Statement of the Problem. The problem consists in determining u in H1(Ω)

such that

[Neu]fA :

{
−div(A(x)∇u) = f in Ω,

A(∇u) · −→n = 0 on ∂Ω.

Remark 5.40. Note that this problem has a solution only if

(5.41)

∫

Ω

f(x)dx = 0.

Indeed, if u is a solution, then by applying Green’s formula with ϕ = 1Ω and

A(x)∇u, which belongs to W 2
2 (div), we have

∫

Ω

f(x)dx =

∫

Ω

−div
(
A(x)∇u(x)

)
dx = 〈A(x)∇u · −→n , 1Ω〉 = 0.

We will assume that this condition is satisfied and, moreover, that A satisfies

the conditions of Theorem 5.33.
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Variational Formulation. As before, the variational form of this problem is

the minimization associated to

(5.42) inf J(u) = inf
u∈H1(Ω)

{
1

2

∫

Ω

(A(x)∇u) · ∇udx−
∫

Ω

fudx

}
.

to this problem. Taking into account the hypothesis
∫
Ω
f(x)dx = 0, we note

that if u is a solution, then so is u + cte. More generally, the functional J

defined in (5.42) satisfies J(v + cte) = J(v) ∀ v ∈ H1(Ω). By identifying

the space of constant functions with R, we can work on the quotient space

H̃1(Ω) = H1(Ω)/R. When endowed with the quotient norm, that is,

(5.43) ‖u‖
H̃1(Ω)

= inf
c∈R

‖u+ c‖H1(Ω)

(cf. Exercise 1.28), this is a reflexive separable Banach space. To show the co-

ercivity of J̃ , which on H̃1(Ω) is defined by J̃(ṽ) = J(v), we use an inequality

analogous to that of Poincaré.

Proposition 5.44. Let Ω be a bounded domain in R
N . For every u in H1(Ω),

let [u]Ω = (mes(Ω))−1
∫
Ω
u(x)dx.

Then there exists a constant C > 0 such that

∀u ∈ H1(Ω), ‖u‖
H̃1(Ω)

� ‖u− [u]Ω1Ω‖H1(Ω) � C‖∇u‖2.

Proof of Proposition 5.44. If u = cte, the inequality is obvious. Otherwise, for

u ∈ H1(Ω), we setm(u) = [u]Ω1Ω . Our proof is by contradiction. We therefore

assume that there exists a sequence {un} ∈ H1 with nonconstant un, such

that

‖un −m(un)‖H1(Ω) � n‖∇un‖2.

Consider the sequence with terms vn = (‖un − m(un)‖2)−1(un − m(un)).

We have ‖∇vn‖2 � 1/n and ‖vn‖2 = 1, so that {vn} is bounded in H1(Ω).

Since Ω is bounded, we can therefore extract a subsequence, which we de-

note in the same way, that converges weakly in H1(Ω) and strongly in L2(Ω).

Since ‖∇vn‖2 converges to 0, we have strong convergence in H1(Ω). In par-

ticular, the chosen subsequence converges to a constant function. However,

as the functional m is linear, we have m(vn) = 0. Since m is clearly contin-

uous for the norm on H1, it follows that {m(vn)} converges to m(v), which

equals v because v is a constant. Consequently, v = 0. Using the equality

‖vn‖H1 = 1 and the strong convergence, we deduce that ‖v‖L2(Ω) = 1, giving

a contradiction. ��
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Existence of a Solution. Let us return to the variational form (5.42) of the

problem. The convexity of J follows from the convexity of the integral and

the linearity of the term
∫
Ω
f(x)u(x)dx. The continuity is obvious. To deduce

the coercivity, we first note that J(v) � α‖∇v‖22−‖f‖2‖v‖2 by the ellipticity,

and then, that by Proposition 5.44,

J̃(ṽ) � α

C2
‖ṽ‖2H1 − ‖f‖2‖ṽ‖H1 .

We deduce from this the existence of a minimum of J̃ on H̃1(Ω). It remains to

describe the function u realizing this minimum and to verify that it satisfies

the Neumann condition.

Using the differentiability of J , u is characterized by

∀ϕ ∈ D(Ω),
∫

Ω

A(x)∇u(x) · ∇ϕ(x)dx−
∫

Ω

f(x)ϕ(x)dx = 0.

It follows that in Ω, we have the equality

∀x ∈ Ω, −div(A(x)∇u(x)) = f(x).

Keeping in mind this equality, we apply Green’s formula for every ϕ ∈ H1(Ω).

This gives
∫

Ω

A(x)∇u(x) · ∇ϕ(x)dx−
∫

Ω

f(x)ϕ(x)dx = 0 =

∫

∂Ω

A(x)∇u · −→n ϕ(x)dx.

We conclude that A(x)∇u ·−→n = 0 in the dual H1/2(∂Ω). This guarantees the

existence of a solution.

Uniqueness in the Quotient Space. Let u and v be two solutions. We will show

that their difference w is a constant. Indeed, w satisfies [Neu]0A, that is,

∀x ∈ Ω, −div(A(x)∇w(x)) = 0 and on ∂Ω , A(x)∇w · −→n = 0.

By multiplying by w and applying Green’s formula, we obtain
∫

Ω

A(x)∇w(x) · ∇w(x)dx =
∫

∂Ω

w(x)A(x)∇w · −→n dσ = 0.

By the uniform ellipticity, the left-hand side is bounded from below by

α‖∇w‖2L2(Ω). It follows that w = cte, or, in other words, that w̃ = 0.

Regularity of the Solution. We now assume that Ω is of class C2, that the

function f belongs to L2(Ω), and that the matrix function A is C1 on Ω

and, obviously, uniformly elliptic. Finally, let u be the solution of the problem

[Neu]fA. We will show regularity results analogous to those for the solutions

of Dirichlet problems.



5.5 Neumann Problems 253

Theorem 5.45.

(1) Under the assumptions stated above, the solution of [Neu]fA belongs to

H2(Ω).

(2) If f ∈ Hm(Ω) and A ∈ Cm+1(Ω), where the open set Ω is of class Cm+2,

then the solution satisfies u ∈ Hm+2(Ω).

Proof of Theorem 5.45. As in the Dirichlet regularity theorem, we divide the

proof into several steps.

The first step, on R
N , is the same as in the Dirichlet case.

We proceed to R
N−1 × ]0,+∞[.

Let u have compact support in R
N−1× [0,∞[. We note that, owing to the

homogeneous Neumann condition, Green’s formula
∫

RN−1×]0,∞[

(A(x)∇u) · ∇v +
∫

RN−1×]0,∞[

fv = 0

still holds for every v ∈ H1(RN−1 × ]0,∞[). We can therefore proceed as in

the proof of the Dirichlet regularity, using translations in directions other

than eN . We take the difference of the equations satisfied by u and by uh,

multiply by uh−u, and integrate over RN−1 × ]0,∞[. This gives us a uniform

estimate that allows us to show that ∂iju ∈ L2 provided that at least one

index is not N . For the inclusion of ∂NNu in L2, we conclude as in the proof

of the Dirichlet regularity by writing the equation as

∂N
(
ANN∂Nu

)
= −f −

∑

i�N−1,j

∂i
(
Aij∂ju

)
∈ L2,

and using Lemma 5.34.

General case. We take the usual elements of the regularity of Ω: the cover,

the local coordinate systems, the functions ϕk of the partition of unity, and

so on. Reasoning as we did in the Dirichlet case, we see that the function ϕku

satisfies

div
(
A(x)∇(ϕku)

)
= g

in Ω ∩Ωk, where g ∈ L2(Ω ∩Ωk). However, in contrast to the Dirichlet case,

the boundary condition A(x)∇(ϕku) · −→n = 0 on ∂Ω ∩ Ωk may no longer be

verified. Nevertheless, by expanding ∇(ϕku), using the linearity of the normal

trace on L2, and factoring by the real-valued functions, we obtain

A∇(ϕku) · −→n =
(
A∇u · −→n

)
ϕk +

(
A(∇ϕk) · −→n

)
u =

(
A(∇ϕk) · −→n

)
u.

Let us consider the function A∗ on ∂Ω defined by x′ 	→ (A(x′)−→n (x′) · −→n (x′)).
It is a class C1 function and, by the uniform ellipticity condition, does not take

on the value zero. Since ∂Ω is of class C2, when restricted to this boundary, the
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function (1/A∗)A(∇ϕk) ·−→n u is the product of the trace γ0u ∈ H1/2(∂Ω) and

a function that is C1 on Ω. Adapting the proof of the local character of H1/2

stated in Proposition 4.26 of Chapter 4, we show that this function belongs

to H1/2(∂Ω). Since Ω is of class C2, we can then apply the trace theorem

3.79 of Chapter 3 for m = 2 and p = 2. It states that the map γ = (γ0, γ1)

from H2(Ω) to the product space H3/2(∂Ω)×H1/2(∂Ω) that sends v to the

pair (γ0v, ∂−→n v) is surjective. In our present situation, we can therefore find a

V ∈ H2(Ω) such that
⎧
⎨

⎩

V (x) = 0 if x ∈ ∂Ω,

∂−→n V =
1

A∗

(
A(∇ϕk) · −→n )

)
u if x ∈ ∂Ω.

From this, we deduce that

A(∇V ) · −→n = (A(∇ϕk) · −→n )u.

The function U = ϕku− V therefore satisfies the relation

−div(A(x)∇U) = −div(A(x) · ∇(ϕku) + div(A(x)∇V ) ∈ L2

with the condition A(x)∇U · −→n = 0.

We then define v on H1(RN−1 × ]0,+∞[) by setting

v(x′, xN ) = U(x′, xN + a(x′)).

As in the proof of the Dirichlet regularity, the function v satisfies

div(B(x)∇v) = h, where h belongs to L2(RN−1 × ]0,+∞[). We will

show that v is the solution of a Neumann problem on R
N−1 × ]0,+∞[),

allowing us to use the regularity result on that open space.

We recall that

∀ i ∈ [1, N − 1], BiN = AiN −
∑

j�N−1

Aij∂ja,

BNN = ANN +A∇a∇a−
∑

j�N−1

ANj∂ja.

We verify the relation

(∗)
∑

i�N−1

BiN∂iv +BNN∂Nv = 0.

Indeed, taking into account the colinearity of −→n to −∇a+eN and the relations

between the partial derivatives of U and v computed in the previous section,

the relation

A(x)∇U · −→n = 0
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can be written as

0 =
∑

i,j�N−1

Aij(∂iv − ∂ia∂Nv)(−∂ja) +
∑

i�N−1

AiN (∂iv − ∂ia∂Nv)

+
∑

j�N−1

ANj∂Nv(−∂ja) +ANN∂Nv

= −
∑

ij�N−1

Aij∂iv∂ja+AiN∂iv + ∂Nv
(
ANN +A∇a∇a−

∑

j�N−1

ANj∂ja
)

= −
N∑

1

BiN∂iv −BNN∂Nv.

This proves (∗), which shows that the normal trace B∇v · −→eN vanishes on

{xN = 0}. The function v is therefore a solution of the problem [Neu]hB in the

open set Ω = R
N−1×]0,+∞[, as desired. We have thus reduced the problem to

showing a regularity result on R
N−1×]0,+∞[. Now, v ∈ H2(RN−1×]0,+∞[),

which, using the fact that a is C2, easily implies that u ∈ H2(Ω ∩Ωk).

Higher Order Regularity. Let us show the order Hm+2 regularity when the

boundary of Ω is of class Cm+2, A ∈ Cm+1(Ω), and f ∈ Hm(Ω).

We first consider the case where Ω = R
N−1× ]0,+∞[, which we will from

now on denote by R
N+

.

We suppose that u satisfies div(A(x)∇u)=−f in R
N+

and
∑

iAiN∂iu=0

on the boundary {xN = 0}. We will use induction on m. Let us therefore

suppose shown that if f ∈ Hm−1 and A ∈ Cm(Ω), then u ∈ Hm+1(RN+
).

Now, let f ∈ Hm(RN+
) and A ∈ Cm+1(RN+

). The derivative of u with

respect to xk, where k � N − 1, satisfies

div(A(x)∇(∂ku)) = −∂kf − div(∂kA(x)∇u).

The right-hand side of this equation is an element ofHm−1, because∇u ∈ Hm

by the induction hypothesis and because ∂kA ∈ Cm by a variant of the argu-

ment we used to show the local character. The condition on the boundary is

not zero, but we have

A(x)∇(∂ku) · eN = ∂k(A∇u · eN )− (∂kA)∇u · eN = −(∂kA)∇u · eN .

This last function −(∂kA)∇u · eN is the trace of a function belonging to

Hm(RN+
). It is therefore an element ofHm−1/2(RN−1). Using the surjectivity

of γ, which was shown in Theorem 3.79, we can prove the existence of a

V ∈ Hm+1 such that A(x)∇V ·eN = (∂kA)∇u ·eN . The function w = ∂ku−V
satisfies the relations

div(A(x)∇w) ∈ Hm−1(Ω), A(x)∇w · −→eN = 0.

It follows that w ∈ Hm+1, and therefore ∂ku ∈ Hm+1.
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It remains to show that ∂Nu ∈ Hm+1(Ω). Since we already have ∂kNu ∈
Hm(Ω), it suffices to verify that ∂NNu ∈ Hm(Ω). We can show that this

holds by writing

ANN∂NNu = −
∑

ij �=(N,N)

Aij∂iju−
∑

ij

∂iAij ∂ju ∈ Hm,

as we did in the Dirichlet case.

Next, we consider the case of an open set of class Cm+2.

We use localization and modify the function to reduce to R
N−1× ]0,+∞[.

Let {Ωk} be open sets of class Cm+2 that cover Ω and let {ϕk} be a partition

of unity subordinate to this cover, as in the definition of the Cm+2-regularity.

The function ϕku satisfies

div
(
A(x)∇(ϕku)

)
∈ Hm,

for some A, but the Neumann boundary condition is not zero. In order to

apply the induction hypothesis, we note that

A(x)∇(ϕku) · −→n = A(x)(∇ϕk)u · −→n ∈ Hm+1/2(∂Ω)

because u ∈ Hm+1(Ω). Let V be a function in Hm+2 that satisfies

(5.46) V = 0 and (A(x)n, n)∂nV = A(x)(∇ϕk)u · −→n

on ∂Ω. On ∂Ω ∩Ωk, the function ϕku− V then satisfies

−div(A(x)∇(ϕku− V )) ∈ Hm and A(x) · ∇(ϕku− V ) · −→n = 0 on ∂Ω.

As before, we set

v(x′, xN ) = u(x′, a(x′) + xN )

and verify, as in the case of H2-regularity, that

−div(B(x)∇v) ∈ Hm(RN × ]0,+∞[) and, on {xN = 0}, B(x)∇v ·−→eN = 0.

The regularity we showed in the case of the half-space now implies that v

belongs to Hm+2(RN−1 × ]0,+∞[). The regularity of A then allows us to

deduce that ϕku ∈ Hm+2(Ω∩Ωk). Finally, we use the properties of the locally

finite cover of Ω to conclude that u =
∑

k ϕku ∈ Hm+2. This completes the

proof of Theorem 5.45. ��
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5.6 Nonhomogeneous Dirichlet and Neumann Problems

5.6.1 Nonhomogeneous Dirichlet Problem

As before, let Ω denote a bounded domain of class C1. Let u0 ∈ H1/2(∂Ω).

The nonhomogeneous Dirichlet problem [Dir ]f,u0

A consists in looking for a u

in H1(Ω) such that

[Dir ]f,u0

A :

{
−div(A(x)∇u) = f in Ω,

u = u0 on ∂Ω.

Existence and Uniqueness. We can show these by considering the correspond-

ing variational problem of determining a u in H1(Ω) for which

(5.47) inf
{u∈H1(Ω),u=u0 on ∂Ω}

{1
2

∫

Ω

A(x)∇u(x) · ∇u(x)dx−
∫

Ω

f(x)u(x)dx
}

is reached. This problem is a minimization on a closed convex set, but we

can translate it to a minimization on all of H1. For this, we note that u0
belongs to the trace space H1/2(∂Ω). We can therefore lift this function to

an element U0 of H1(Ω) (cf. Chapter 3). Fixing this lifting and applying the

translation u = U0+v, the above problem becomes to determine a u in H1(Ω)

where

inf
v∈H1

0 (Ω)

{1
2

∫

Ω

A(x)∇(U0 + v)(x) · ∇(U0 + v)(x)dx−
∫

Ω

f(x)(v + U0)(x)dx
}

is reached. Setting K = 1/2
∫
Ω
A(x)∇U0(x) ·∇U0(x)dx−

∫
Ω
f(x)U0(x)dx, we

can also write the infimum as

inf
v∈H1

0 (Ω)

{∫

Ω

A∇v ·∇U0dx+
1

2

∫

Ω

A(x)∇v(x)·∇v(x)dx−
∫

Ω

f(x)v(x)dx+K
}
.

This new functional v 	→ J1(v) whose first term is a continuous linear func-

tional, is still convex and continuous on H1(Ω). Indeed, using the uniform

ellipticity of A, the coercivity of J1 leads to the inequality

|J1(v)| � α‖∇v‖22 − ‖A∇U0‖2‖∇v‖2 − ‖f‖2‖∇v‖2 − |K|.

We may therefore apply Theorem 5.25 and use the strict convexity of J1 to

prove the existence and uniqueness of a solution of the problem associate with

(5.47).

Let us continue. The functional J1 is G-differentiable. Through a compu-

tation that is by now classic, we have, for every ϕ ∈ D(Ω),

J ′1(v, ϕ) =

∫

Ω

A∇ϕ · ∇U0dx+
∫

Ω

A(x)∇v(x) · ∇ϕ(x)dx−
∫

Ω

f(x)ϕ(x)dx.
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Consequently,

J ′1(v) = −div
(
A(∇(v + U0)

)
− f.

By making this derivative vanish at v, we find that the solution u = v + U0
of the problem associated with (5.47) is indeed also the solution of [Dir ]f,u0

A .

Note that we can use the translation u−U0 to directly reduce to a homo-

geneous Dirichlet problem. In that case, u− U0 must be the solution of

−div(A(x)∇v) = f + div(A(x)∇U0),
v = 0 on ∂Ω.

Since it is the divergence of a function in L2, we have div(A(x)∇U0) ∈
H−1(Ω), which shows that the right-hand side belongs to H−1(Ω). Remark

5.30 now allows us to conclude the proof.

Regularity Properties.

Proposition 5.48. Let m � 0. Let Ω be a bounded domain of class Cm+2, let

A ∈ Cm+1(Ω), let u0 ∈ Hm+3/2(∂Ω), and let f ∈ Hm(Ω). The solution u of

{
−div(A(x)∇u) = f in Ω,

u = u0 on ∂Ω,

then is an element of Hm+2(Ω).

Proof of Proposition 5.48.

The proof is obvious when we use a translation. By the trace theorem 3.79,

there exists a U ∈ Hm+2(Ω) with trace u0 on ∂Ω because u0 ∈ Hm+3/2(∂Ω).

By the properties of A and U , we therefore have

−div
(
(A(x)∇(u− U)

)
= f +

∑

i,j

(
∂i(Aij)∂jU +Aij∂ijU

)
= g.

The regularity assumptions on f,A, and u imply that g ∈ Hm(Ω). We ob-

tain the desired conclusion, namely that u ∈ Hm+2(Ω), using the regularity

theorem 5.38 for the problem [Dir ]gA. ��

5.6.2 Nonhomogeneous Neumann Problem

Let Ω be a bounded domain of class C1. We begin by supposing that u1 ∈
H−1/2(∂Ω). We propose to solve the problem

[Neu]f,u1

A :

{
−div(A(x)∇u) = f in Ω,

A(∇u) · n = u1 on ∂Ω.
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Existence and Uniqueness of a Solution.

In order to prove the existence of a solution u in H1(Ω), we multiply

the equation by an element v of H1(Ω). By the generalized Green’s formula

(cf. Proposition 3.58), we have

∫

Ω

A(x)∇u(x) · ∇v(x)dx =
∫

Ω

f(x)v(x)dx+ 〈A(x)∇u · −→n , v〉,

which leads us to considering the minimization

(5.49) inf
v∈H1(Ω)

J(v)

= inf
v∈H1(Ω)

{∫

Ω

1

2
(A(x)∇v(x) · ∇v(x)−

∫

Ω

f(x)v(x)dx− 〈u1, v〉
}
.

Since the constant functions belong to H1(Ω), we note that if
∫
Ω
f(x)dx +

〈u1, 1Ω〉 �= 0, then the infimum in the equation is equal to −∞. We therefore

suppose that
∫
Ω
f(x)dx+ 〈u1, 1Ω〉 = 0, which generalizes the assumptions we

made for the homogeneous Neumann problem.

The functional J̃ on the separable and reflexive quotient space H̃1(Ω) is

strictly convex, continuous, and coercive. The existence and uniqueness of a

solution of the problem associated with (5.49) follow modulo the constant

functions, giving the result for [Neu]f,u1

A . ��

Regularity Result. As above, we suppose that
∫
Ω
f(x)dx+ 〈u1, 1Ω〉 = 0.

Theorem 5.50. If f ∈ Hm(Ω) with m � −1, A ∈ Cm+1(Ω), and u1 ∈
Hm+1/2(∂Ω), then the solution u of [Neu]f,u1

A belongs to Hm+2(Ω).

Proof of Theorem 5.50. The proof uses a function V in Hm+2 for which

(A(x)∇V ) · −→n = u1, as, for example, in the proof of the homogeneous Neu-

mann case (cf. relation 5.46).

We conclude the proof by noting that div(A(x)∇V ) ∈ Hm(Ω) and by

using the regularity results for the homogeneous Neumann problem. ��

5.7 Elasticity Problem

Elasticity problems are studied in [15].

5.7.1 Linear Elasticity, Small Deformations

In these problems, taking Ω to be a bounded domain of class C1, we consider

the deformation tensor ε(u) associated with the displacement u inH1(Ω,RN ),
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which is the variable in this problem. This tensor of order 2 has components

ε(u)ij = 1
2 (∂jui + ∂iuj) that belong to L2(Ω). We define the seminorm u 	→

|ε(u)|2 in H1(Ω,RN ) by

|ε(u)|22 =
∑

i�j

|ε(u)ij |2L2(Ω).

This seminorm usually becomes a norm in the space H1
0 (Ω,R

N ), as we can

see using Exercise 2.10.

If the divergence of the tensor ε(u) is the vector with components

div(ε(u)))i =
∑

j ∂j(ε(u)ij) and if f is a fixed vector in L2(Ω,RN ), then the

problem [Elast ]f,0 consists in finding the solution u of

[Elast ]f,0 :

{
−div(ε(u)) = f in Ω,

u = 0 on ∂Ω

in H1(Ω,RN ).

Variational Form of the Problem. The variational form of the problem consists

in determining a u where

inf
u∈H1

0 (Ω,RN )

{1
2

∫

Ω

|ε(u)|2(x)dx−
∫

Ω

(f · u)(x)dx
}

is reached.

Existence and Uniqueness. Under this form, it is clear that the functional J

in the infimum is strictly convex and continuous. To show that it is coercive,

we first use the Poincaré inequality, namely
∣
∣
∣
∫

Ω

(f · u)(x)dx
∣
∣
∣ � ‖f‖2‖u‖2 � C‖f‖2‖∇u‖2,

and then Korn’s inequality (cf. Chapter 7, Section 7.4). The latter gives the

existence of a C ′ such that

‖∇u‖2 � C ′ |ε(u)|2.

From this, we deduce that
∣
∣
∣
∫

Ω

(f · u)(x)dx
∣
∣
∣ � 1

4
|ε(u)|22 + C2C ′2‖f‖2.

Finally, we have

|J(u)| =
∣
∣
∣
1

2

∫

Ω

|ε(u)|2(x)dx−
∫

Ω

(f · u)(x)dx
∣
∣
∣ � 1

4
|ε(u)|22 − C ′2‖f‖2,

giving us the coercivity. The existence and uniqueness of a solution u of the

variational problem follow. ��
We leave it to the reader to study the differentiability of J , which allows

us to show that u is also the solution of [Elast ]f,0.
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5.7.2 Extension to the Case where p �= 1,∞

Let p>1 and let f ∈Lp′
(Ω,RN ). We set |ε(u)|p=

(∑
ij εij(u)

2
)p/2

and begin

with the variational problem of finding a u where

inf
u∈W 1,p

0 (Ω,RN )

{1
p

∫

Ω

|ε(u)|p(x)dx−
∫

Ω

(f · u)(x)dx
}

is reached. The system of Euler equations associated with this minimization

can be written as

∀ i ∈ [1, N ], −
j=N∑

j=1

∂j(|ε(u)|p−2ε(u)ij) = fi.

We show the existence and uniqueness of a solution by using the convexity and

coercivity of the functional. The latter is a consequence of Korn’s inequality

(cf. Section 7.4).

Let us now proceed to examples of solutions of nonlinear PDE.

5.8 The Equation of the p-Laplacian

5.8.1 Statement of the p-Laplacian problem

The problem we will now study is obtained by replacing the Laplace operator

Δ = div(∇) by the nonlinear operator Δp defined by

Δpu = div
(
|∇u|p−2∇u

)
.

Let p > 1 be a real number, let p′ be its conjugate, and let Ω be a bounded

domain of class C1. Given λ � 0 and f ∈ Lp′
(Ω), we wish to solve the problem

(5.51) [Lap]pλ :

{
λ|u|p−2u− div(|∇u|p−2∇u) = f in Ω,

u = 0 on ∂Ω.

We are looking for a solution u inW 1,p
0 (Ω). Note that |∇u|p−2∇u is the vector

function in Lp
′
(Ω) that is colinear with ∇u and has absolute value |∇u|p−1.

This defines a distribution, so that we may talk of its divergence.

Remark 5.52. We can consider this same problem when f belongs to another

space than Lp
′
. We will give the details of these other cases further on.
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5.8.2 Existence

Proposition 5.53. The function u is the solution of the problem [Lap]pλ if

and only if u realizes the minimum of the functional on W 1,p
0 (Ω) defined by

(5.54) J(u) =
1

p

(∫

Ω

|∇u|p(x)dx+ λ
∫

Ω

|u|p(x)dx
)
−
∫

Ω

f(x)u(x)dx.

For the proof of this proposition when λ = 0, we need a generalization of

the Poincaré inequality, which we proved on H1
0 .

Proposition 5.55. Let 1 < p <∞ and let Ω be a bounded domain of class C1
in R

N . Let N be a continuous seminorm on W 1,p(Ω) that, moreover, is a

norm on the constants. Then there exists a constant C > 0 such that

(5.56) ∀u ∈W 1,p(Ω), ‖∇u‖p +N (u) � C
(
‖u‖p + ‖∇u‖p

)
.

We gave the proof of this proposition in Exercise 2.9 and will not repeat

it here. Below, we will use the seminorm N (u) =
( ∫

∂Ω
|u|p

)1/p
. We conclude

that in W 1,p
0 (Ω), ‖∇u‖p is a norm that is equivalent to the norm ‖·‖W 1,p(Ω).

Proof of Proposition 5.53. Since treating the questions of coercivity and

G-differentiability is more complex than in the elliptic linear PDE case we

have already considered, we will give the proof of this equivalence in detail.

In the particular case we study explicitly, this will correspond to the proof of

Theorem 5.25.

We use minimizing sequences and the extraction of subsequences to show

the existence of a solution of the variational form of the problem, which is

associated with infu∈H1
0
J(u).

Let {un} be a minimizing sequence, that is, a sequence such that {J(un)}
converges to the infimum of J . By using Hölder’s inequality and Proposition

5.55 for p > 1, p <∞, we obtain

∣
∣
∣
∫

Ω

f(x)u(x)dx
∣
∣
∣ � ‖f‖p′‖u‖p � C‖f‖p′‖∇u‖p.

We then use the convexity inequality XαY β � αX + βY , where α + β = 1,

with X = 2−p‖∇u‖pp and Y = (2C)p
′‖f‖p

′

p′ . This gives

∣
∣
∣
∫

Ω

f(x)u(x)dx
∣
∣
∣ � 1

p2p

(∫

Ω

|∇u|p(x)dx
)
+

(2C)p/(p−1)

p′
‖f‖p

′

Lp′ (Ω)
,

from which we deduce the inequality

J(un) �
1

p
(1− 2−p)‖∇un‖pp + λ‖un‖pp +K.
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Since λ � 0, it follows by replacing un by u that inf J(u) > −∞, and,

moreover, that {un} is bounded in W 1,p(Ω). Using the weak compactness

of bounded subsets of Lp(Ω) when 1 < p <∞ (cf. Section 5.1) and the lower

weak semicontinuity of J for the Lp norm, we find that after extracting a

subsequence, if necessary, the sequence converges weakly to u in W 1,p(Ω) and

J(u) � lim
n→∞

J(un).

We will now show that u = 0 on ∂Ω. Since γ0un = 0, it suffices to use the

continuity of the trace map from W 1,p(Ω) onto W 1−1/p,p(∂Ω) for the weak

topology on W 1,p. This is the aim of Exercise 3.2 of Chapter 3. Consequently,

the above supplies the first part of the proof.

Let us now show the converse. We suppose that the infimum

inf
v∈W 1,p

0 (Ω)
J(v)

is reached at u. The functional J is well defined on W 1,p(Ω). By expressing

it in terms of ‖u‖pp and ‖∇u‖pp and using Hölder’s formula, we see that it is

continuous onW 1,p
0 (Ω). It is convex, because the first term involves integration

and the composition of ∇, which is linear, and the convex function t 	→ tp.
For the coercivity, we again use Hölder’s formula and Proposition 5.55. Let

us show that J1 : u 	→
∫
Ω
|∇u(x)|pdx is Gâteaux-differentiable with

〈J ′1(u), v〉 = p
∫

Ω

|∇u|p−2(x)∇u(x) · ∇v(x)dx.

We proceed as in Example 5.20. By the mean value theorem, we know that

for almost all x ∈ Ω and for all t > 0, there exists a function θ with values in

]0, 1[ such that we can write

(5.57) |∇u+ t∇v)(x)|p − |∇u(x)|p − tp|∇u(x)|p−2∇u(x) · ∇v(x)
= tp|∇u(x) + θ(t, x)t∇v(x))|p−2(∇u(x) + θ(t, x)t∇v(x)) · ∇v(x)

− tp|∇u(x)|p−2∇u(x) · ∇v(x).

Dividing by t, we find that for almost all x,

lim
t→0

|∇(u+ tv)(x)|p − |∇u(x)|p − tp|∇u(x)|p−2∇u(x) · ∇v(x)
t

= 0.

We can also bound the right-hand side of equality (5.57) divided by t from

above by h(x) = 2|∇v(x)|(∇u(x)|+ |∇v(x)|p−1. Next, using Hölder’s inequal-

ity, we have

|h| � C‖∇v‖p
(
‖∇u‖p−1

p + ‖∇v‖p−1
p

)
.
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We can therefore apply the dominated convergence theorem and conclude that

〈J ′1(u), v〉 = p
∫

Ω

|∇u|p−2(x)∇u(x) · ∇v(x)dx.

The second term of J is also G-differentiable, as shown in Example 5.20.

Taking this into account, we can write

〈J ′(u), v〉 =
∫

Ω

|∇u|p−2(x)∇u(x) · ∇v(x)dx

+ λ

∫

Ω

|u|p−2u(x)v(x)dx−
∫

Ω

f(x)v(x)dx.

In particular, using this equality when v belongs to D(Ω), which is dense in

W 1,p
0 (Ω), we deduce the following characterization of the minimum u of J :

−div
(
|∇u|p−2∇u

)
+ λ|u|p−2u− f = 0,

with u ∈W 1,p
0 (Ω). ��

Remark 5.58. The above holds for any λ � 0. It still holds when f is a

function belonging to LNp/(Np−N+p) if p < N , belonging to L1(Ω) if p > N ,

or belonging to L1+ε for some ε > 0 if p = N .

It suffices to see that in each of these cases, we can define the integral∫
Ω
f(x)u(x)dx when u ∈W 1,p

0 (Ω), which follows from the Sobolev embedding

theorem of Chapter 2. We leave the details to the reader.

5.8.3 Uniqueness

Theorem 5.59. The solution of the problem [Lap]pλ is unique.

Proof of Theorem 5.59.

Consider two solutions u1 and u2. For the sake of simplicity, we use the

notation σi = (|∇ui|p−2∇ui) for i = 1, 2. Taking the difference of the two

associated equations, multiplying by (u1 − u2), and integrating over Ω, we

obtain

(5.60)∫

Ω

−div(σ1−σ2) · (u1−u2)dx+λ
∫

Ω

(|u1|p−2u1−|u2|p−2u2)(u1−u2)dx = 0.

Let us consider the signs of the integrants.

Let X and Y be vectors in R
N . For p > 1, we expand the scalar product

U(X,Y ) =
(
|X|p−2X − |Y |p−2Y

)
· (X − Y ). Using X · Y � |X| |Y |, we have

U(X,Y ) � |X|p + |Y |p −
(
|X|p−2 + |Y |p−2

)
|X| |Y |, that is,

U(X,Y ) �
(
|X|p−1 − |Y |p−1

)(
|X| − |Y |

)
� 0.
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This result also holds for the scalars X = u1(x) and Y = u2(x), where x ∈ Ω.
Consequently, (|u1(x)|p−2u1(x)− |u2(x)|p−2u2(x))(u1(x)− u2(x)) � 0, which

means that the second integral in (5.60) is positive. Using the generalized

Green’s formula and the equality γ0(u1 − u2) = 0, we transform the first

integral into
∫

Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
·
(
∇u1 −∇u2

)
dx.

The relation U(∇u1(x),∇u2(x)) � 0 implies that if λ �= 0, then almost every-

where on Ω, we have

u1(x) = u2(x) and ∇u1(x) = ∇u2(x).

If λ = 0, then the single conclusion ∇u1 = ∇u2 suffices to prove that u1 = u2
on Ω, since u1 = u2 = 0 on the boundary ∂Ω. The uniqueness follows. ��

In the appendix, we establish certain results concerning the regularity of

the solution of the p-Laplacian problem, using, in particular, a priori error

estimates.

5.9 Maximum Principles for Elliptic PDE

We recall the classical maximum principle. A nonconstant function u that is

harmonic on a bounded connected subset Ω of RN and extends to a continuous

function on Ω reaches its maximum and minimum on the boundary ∂Ω. This

corresponds to saying that if u(x) � m on ∂Ω, then u(x) � m in Ω. Using

u−m, we reduce the problem to studying the sign of a solution of a PDE based

on the sign of its trace on ∂Ω. Let us add, however, that this technique only

works for linear PDE. Below, we study principles of the same type that can

be associated with solutions of elliptic PDE, which generalize the harmonic

functions in the classical case.

5.9.1 Weak Maximum Principle

The Solution of [Dir ]fA,λ. In this subsection, Ω denotes a bounded domain

of class C1 in R
N . Let us recall the definition of the first eigenvalue of the

operator −div(A(x)∇u) on H1
0 (Ω).

As in Subsection 5.3.5, we study [Dir ]0A,−λ. Using the inequality defining

the uniform ellipticity of A, we find that the real number

λ1 = inf
{u∈H1

0 (Ω)||u|2=1}

{∫

Ω

A(x)(∇u(x)) · ∇u(x)dx
}
,
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is positive and is the smallest eigenvalue of the operator −div(A(∇u)) on

H1
0 (Ω).

Theorem 5.61. Let λ be a real number satisfying 0 � λ < λ1 and let f � 0

in Ω. Let u ∈ H1(Ω) be the solution of the problem

−div(A(x)∇u)− λu = f in Ω.

Then if u � 0 on ∂Ω, we also have u � 0 in Ω.

Proof of Theorem 5.61. We use the following result on the positive and neg-

ative parts of the functions in W 1,p.

Lemma 5.62. Let u ∈W 1,p(Ω) and let H denote the Heaviside step function

satisfying

H(x) =

{
1 if x > 0,

0 if x � 0.

Then u+, u−, |u| ∈W 1,p(Ω) and

∇(u+) = H(u)∇u,
∇(u−) = −H(−u)∇u,
∇|u| = ∇u (H(u)−H(−u)) .

Proof of Lemma 5.62 (see also [10] or [41]). Clearly, it suffices to show the

result for p = 1. Indeed, if p > 1, then for every open set Ω1 with compact

closure in Ω, we have ∇u ∈ L1(Ω1), whence ∇(u+) = H(u)∇u. This equality
proves that for arbitrary Ω1, the distributional gradient ∇(u+) belongs to

Lp(Ω).

Let jε be the function on R defined by

∀ t > 0, jε(t) = (ε2 + t2)1/2 − ε and ∀ t < 0, jε(t) = 0.

We can easily see that jε converges uniformly to j(t) = t+ and that j′ε(t)

converges to H(t) for every t. Let u ∈ L1loc(Ω). By the dominated convergence

theorem, jε(u) converges to j(u) = u
+ in L1loc(Ω).

Furthermore, for almost all x in Ω, ∇(jε(u)) = (ε2 + u2)−1/2(u+∇u) con-
verges to H(u)∇u and is dominated by |∇u|. We deduce that in L1(Ω),

lim
ε→0

∇ (jε(u)) = H(u)∇u.

The conjunction of these two results implies that H(u) ∈W 1,p and ∇H(u) =

H(u)∇u. Since u− = (−u)+, we also have ∇(u−) = H(−u)∇(−u). ��
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We return to the proof of Theorem 5.61. We multiply the equation in

Theorem 5.61 by u−. Since f � 0 in Ω, we obtain

∫

Ω

−div(A∇u)(x)u−(x)dx−
∫

Ω

λu(x)u−(x)dx =

∫

Ω

f(x)u−(x)dx � 0.

Moreover, since u− = 0 on ∂Ω, Green’s formula gives

∫

Ω

−div(A∇u)(x)u−(x)dx =
∫

Ω

A(x)∇u(x) · ∇(u−)dx.

Now,

∫

Ω

A(x)∇u(x) · ∇u−(x)dx = −
∫

Ω

A(x)∇u−(x) · ∇u−(x)dx.

Hence, using
∫
Ω
f(x)u−(x)dx � 0, we have

−
∫

Ω

A(x)∇u−(x) · ∇u−(x) + λ
∫

Ω

(u−)2(x)dx � 0.

From this, we deduce that

∫

Ω

A(x)∇u−(x) · ∇u−(x)dx � λ|u−|2,

which contradicts the definition of λ1 unless u− = 0. It follows that u � 0

in Ω. ��

Of course, the linearity of the equation allows us to show that if f � 0,

then u � 0 in Ω if it is � 0 on the boundary of Ω.

We will see the strong maximum principle later. In a more general form,

it is due to Vázquez. It states that if u is a solution � 0 of the inequality

−div(A(x)∇u) � 0, then in each of the connected components of Ω, u is

either identically zero or positive.

The reader can consult [34] and [57] for more general maximum principles.

The Solution of [Lap]pλ.

Theorem 5.63. Let λ � 0. If u is the solution of

−div(|∇u|p−2∇u) + λ|u|p−2u = f,

f � 0 in Ω, and u � 0 on the boundary of Ω, then u � 0 in Ω.

Proof of Theorem 5.63. As before, we multiply by u−, giving

(5.64)

∫

Ω

[
|∇u|p−2∇u∇(u−) + λ|u|p−2u(u−)

]
dx =

∫

Ω

f(x)(u−(x))dx.
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We have two integrals of nonpositive functions on the left-hand side and one

integral of a nonnegative function on the right-hand side. From this, we deduce

that

−
∫

Ω

|∇u−|pdx− λ
∫

Ω

(u−)pdx =

∫

Ω

fu−dx,

which implies that

|∇u−|p + λ(u−)p = 0.

Since λ � 0, it follows that ∇(u−) = 0 and therefore u− = 0 because this

already holds on the boundary ∂Ω. ��

In Example 5.82, we show the existence of a first eigenvalue, as we did in

the Laplacian case. For λ greater than the opposite of the first eigenvalue, the

result remains true (cf. [17]).

The following theorem generalizes the maximum principle to a statement

concerning the sign of the difference u1 − u2 of two solutions of the PDE

under consideration. We do not need this result when the equation is linear

as in the previous section, because the difference of the two solutions is then a

solution of the homogeneous equation and we can apply the classical maximum

principle.

Comparison of Two Solutions in the Case of Nonlinear Equations.

Theorem 5.65. Let λ � 0. Consider functions u1 and u2 satisfying

−div(|∇ui|p−2∇ui) + λ|ui|p−2ui = fi.

If f1�f2 in Ω and u1�u2 on ∂Ω, then we have u1�u2 in Ω.

Remark 5.66. In contrast to the Laplacian case, this result cannot be de-

duced from the maximum principle, since the equation is not linear. We note

that the comparison principle is the key argument for Vázquez’s strong max-

imum principle, which we present in the next section. In the case λ > −λ1,
where λ1 is the first eigenvalue, this comparison result still holds but is more

delicate to prove (cf. [17]).

Proof of Theorem 5.65. We multiply the difference of the equations for u1 and

u2 by (u2 − u1)+, integrate over ∂Ω, and use that the boundary term is zero

to obtain
∫

Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
· ∇((u2 − u1)+)

+ λ

∫

Ω

(
|u1|p−2u1 − |u2|p−2u2

)(
(u2 − u1)+

)

=

∫

Ω

(f1 − f2)((u2 − u1)+).
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It follows that the first integral is nonnegative. Now, by the properties of the

gradient of (u2 − u1)+ we saw earlier, we have

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2) · ∇((u2 − u1)+)
= −H(u2 − u1)(|∇u1|p−2∇u1 − |∇u2|p−2∇u2) · (∇u1 −∇u2),

which is nonpositive. Since it vanishes if and only if ∇((u2 − u1)+) = 0, the

previous equality implies that (u2 − u1)+ = cte and therefore that u2 � u1
because (u2 − u1)+ vanishes on the boundary. ��

We can generalize this comparison result as follows.

Theorem 5.67. Let β be a continuous nondecreasing function on R. Let u1
and u2 satisfy

−div(|∇ui|p−2∇ui) + β(ui) = fi.

Then if f1�f2 in Ω and u1�u2 on ∂Ω, we have u1�u2 in Ω.

Proof. The proof is the same as the previous one. ��

5.9.2 Strong Maximum Principle

Strong Maximum Principle for the Laplacian. We begin by recalling a result

that is certainly well known to a reader who is familiar with the theory of

harmonic functions, at least in the case N = 2.

Proposition 5.68. If u is nonnegative and of class C2 and if Δu = 0 in a

domain Ω, then either u is identically zero or u > 0 in Ω.

Proof of Proposition 5.68. Indeed, the set of points Z where u = 0 is closed

because u is continuous. Let us show that it is also open. Let x0 ∈ Z and

r > 0 be such that the ball of radius r with center x0 is contained in Ω. For

every ε < r, the mean value property for harmonic functions (cf. Exercise 7.2

of Chapter 7) gives

0 = u(x0) =
1

wN−1εN−1

∫

∂B(x0,ε)

u(s)ds,

where wN−1 is the (N − 1)-dimensional surface measure of the unit sphere

in R
N . In particular, since u � 0, the continuity of u implies that u = 0 on the

boundary ∂B(x0, ε). Since this property holds for every ε ∈ ]0, r[, we deduce

that u = 0 in B(x0, r). Consequently, the set Z is open. Since the open set Ω

is connected, it follows that either Z = ∅ or Z = Ω, concluding the proof. ��
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We now set out to obtain the same property for a function u that is

continuous and superharmonic in Ω. The latter means that −Δu � 0 in Ω.

Before we do this, we need to describe the solutions of class C2 of the Dirichlet

problem explicitly when the boundary function is continuous. We will then use

the expression specifying these solutions in an argument involving comparison,

in order to obtain the positivity of the superharmonic function.

We first recall the existence and uniqueness result for this so-called classical

Dirichlet problem, classical in the sense that the solutions must be of class C2
in the open set under consideration. The proof of this result when the open

set is the unit ball B = B(0, 1) is given in Exercise 7.5. We use the Poisson

kernel (s, x) 	→ p(s, x) for ∂B, which for s ∈ ∂B and x ∈ B is defined by

p(s, x) =
1

wN−1

1− |x|2
|x− s|N .

For a function f that is continuous on ∂B, the function Pf defined by

∀x ∈ R
N , |x| < 1 =⇒ Pf(x) =

∫

∂B

f(s)p(s, x)ds

is harmonic on the ball B and admits a continuous extension to the boundary

that is identical to f .

Remark 5.69. Using the maximum principle, we can see that the function

Pf is the unique solution of class C2 of the Dirichlet problem associated with

the continuous boundary condition f .

Remark 5.70. Using a translation and a homothety, we can easily deduce

the solution of the classical Dirichlet problem, namely

Pf(x) =
1

wN−1r2−N

∫

∂(B(x0,1))

f(x0 + rs)
r2 − |x− x0|2
|(x− x0)− rs|N

ds

for the ball B(x0, r) from the previous result.

Let us now compare the classical solution given above, which is of class C2,
to the solution of the variational problem on the ball B when the boundary

condition is continuous. We have the following result.

Proposition 5.71. Let v ∈ C(∂B) ∩ H1/2(∂B). On the one hand, let u ∈
H1(B) be the solution of the problem [Dir ]0,vΔ , whose Laplacian Δu, taken in

the sense of distributions in B, is zero and satisfies u = v on ∂B. On the

other hand, let w be the C2 solution defined by w = Pv, which is harmonic

in B and satisfies w = v on ∂B. Then w = u in B.
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Proof of Proposition 5.71.

By the density of the regular functions in C(∂B)∩H1/2(∂B), there exists

a sequence {vn} in C∞(∂B) that converges in C(∂B)∩H1/2(∂B) to the func-

tion v. Let us take such a sequence. Let Pvn = wn denote the image of vn in B

under the Poisson operator and let un denote the solution in H1(B) of the

Dirichlet problem with boundary condition vn, which, in particular, belongs

to H1/2(∂B). Taking the variational form of the problem, this solution is the

minimum of

Pn = inf
u∈H1(B)

u=vn on ∂B

1

2

∫

B

|∇u(x)|2 dx.

We will first show that un is of class C∞, from which we will then deduce that

un = wn.

To see that un is of class C∞, we can use regularity results for the solution

of Δu = 0 when the boundary function is of class C∞. Since the boundary

is C∞, the right-hand side, which is zero, belongs to Hk(B) for every integer k,

and the boundary condition vn belongs to Hk+1/2(∂B), this regularity result

tells us that un ∈ Hk for every k. It follows that un is of class C∞ in B and,

consequently, that un = wn in B.

Using the Poisson kernel, it is clear that wn tends to w in C(B). Namely,

using the positivity of p and the equality
∫
B(0,1)

p(s)ds = 1 (cf. Exercise 7.5),

this follows from the uniform convergence of vn to v on ∂B:
∫

∂B

p(s, x)|v(s)− vn(s)| ds −→ 0.

It remains to show that un tends to u, even if only in the sense of distributions.

We will in fact show it in the sense of strong convergence in H1. For this, we

show that the infimum

inf
u=vn on ∂B

1

2

∫

B

|∇u|2

of Pn converges to inf P , which is defined to be

inf
u=v on ∂B

1

2

∫

B

|∇u|2.

Let un realize the infimum of Pn, then un is clearly bounded in H1. To see

this, it suffices to consider a lifting Vn of vn, that is, an element of H1(B)

with trace vn on ∂B. By the continuity of the lifting map, there exists a C

such that, for every n ∈ N,

‖Vn‖H1(B)) � C‖vn‖H1/2(∂B).

Since the sequence {vn} converges to v in H1/2, we deduce from this that the

sequence {∇Vn} is bounded in L2(B) by a constant K. For the minimum un
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of Pn, this gives
∫

B

|∇un(x)|2 dx �
∫

B

|∇Vn(x)|2dx � K.

Now, since the sequence {un} is bounded in H1, we can extract a subsequence

that converges to a function u∗ ∈ H1 that equals v on the boundary. Finally,

by the lower semicontinuity, we have
∫

B

|∇u∗|2 � lim ‖∇un‖2.

It remains to show that lim inf Pn � inf P , from which we will deduce that u∗

is a minimum for P . Let ζ ∈ H1(B) with ζ = v on the boundary. We will show

that there exists a sequence {ζn} ∈ H1(B) with ζn = vn on the boundary that

converges in H1 to ζ. Indeed, by the continuity of the lifting of H1/2(∂B) to

H1(B), there exists a ξn that tends to 0 in H1 and equals vn − v on the

boundary. Let ζn = ξn + ζ. The sequence {ζn} converges to ζ in H1(B). If we

now take ζ to realize the infimum of P , then for n sufficiently large,

inf Pn �
∫

B

|∇ζn|2 � inf P + ε.

As before, ‖∇un‖2 converges to ‖∇u‖2, which implies the strong convergence

of un to u in H1, completing the proof. ��

Let us now return to the positivity of the subharmonic functions.

Proposition 5.72. Let u be a nonnegative continuous function in H1 that

satisfies the inequality Δu � 0 in a connected open set Ω; then either u > 0

in Ω or u is identically zero in Ω.

Proof of Proposition 5.72. By Proposition 5.61, we already know that u � 0

in Ω. It therefore suffices to show that if the set Z of points of Ω where u

vanishes is nonempty, then it is open.

Let x0 satisfy u(x0) = 0 and let ε < r with B(x0, r) ⊂ Ω. Let v be the

C2 solution of the Dirichlet problem in B(x0, ε) with boundary condition on

∂B(x0, ε) equal to u, which is continuous by assumption. By expressing v using

the Poisson kernel, namely v = Pu, we see that it is continuous. Moreover,

by the weak maximum principle, it is nonnegative. By Proposition 5.68, v is

either positive in B(x0, ε) or identically zero. Furthermore, the comparison

principle implies that, since u = v on ∂B(x0, ε) and −Δ(u− v) � 0, we have

u � v in B(x0, ε). In particular, 0 � v(x0) � u(x0) = 0, which implies that v

is identically zero on B(x0, ε) and, consequently, also on the boundary, where

it coincides with u. It follows that u = 0 on ∂B(x0, ε). By letting ε tend
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to r, we see that u is identically zero on B(x0, r). The set Z is therefore both

open and closed. Using the connectedness of Ω, we finally deduce the desired

result. ��

Strong Maximum Principle for More General Dirichlet Problems. We will now

show a simplified statement of the strong maximum principle for more general

operators than Δ.

Proposition 5.73. Let u be a solution of class C1 of the inequality

−div(A(x)∇u) � 0

in the bounded domain Ω in R
N . If u � 0 in Ω, then u is either identically

zero or positive in Ω.

Proof of the proposition. Let us also note that if Ω were not connected, then

we would apply our reasoning to each of the connected components. We sup-

pose that there exist points m ∈ Ω such that u(m) > 0 as well as points m′

such that u(m′) = 0. Then there exists a ball in Ω in which this same prop-

erty holds. If this were not the case, then given a ball B in Ω, we would have

either u(x) > 0 at every point x ∈ B or u(x) = 0 at every point x ∈ B. The
union of the balls where the first holds is then an open set Ω+ and that of the

balls where the second holds is then an open set Ω0. These sets are disjoint,

with union Ω, contradicting the connectedness of Ω. We may, and do, there-

fore assume that Ω = B is a ball. Hence there exist x′0 and x1 in B such that

u(x′0) = 0 and u(x1) > 0. By a similar reasoning using connectedness, we may,

and do, assume that x1 is the center of the ball B, whence Ω = B(x1, R),

u(x1) > 0, and |x′0 − x1| < R.
Let us first suppose that u is continuous. In this case, there exist balls

B(x1, r) in whose interior we have u(x) > 0. We have r � |x1 − x′0|. If we
set r1 = sup{r | ∀x ∈ B(x1, r), u(x) > 0}, then the boundary Γ1 of the

ball B(x1, r1) contains at least one point x0 such that u(x0) = 0. If not, we

would be able to find neighborhoods of each of the points of Γ1 in which u > 0,

and by extracting from these neighborhoods a finite cover of the boundary, we

would find a ball B(x1, r) with r > r1 with the desired property, contradicting

the assumption on the supremum.

Let us consider the annulus G = {x | r1/2 < |x − x1| < r1} in R
N , on

which we have u > 0. Let m1 be defined by m1 = inf{u(x) | |x− x1| = r1/2}.
By the continuity of u, we have m1 > 0. Supposing that R > 3r1/2, we also

define the annulus G′ = {x | r1/2 � |x− x1| � 3r1/2}. The main idea of the

proof is as follows.
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Fig. 5.2. An argument used for the strong maximum principle. We have u(x0) = 0,

u(x1) > 0, and |x0 − x1| = r1; G and G′ are the annuli with center x1.

We are going to construct a function v, v > 0 in G′, that satisfies the

following conditions:

∀x ∈ G′, −div
(
A(x)∇(u− v)

)
� 0,(∗)

∀x ∈ ∂G′, v(x) � u(x).(∗∗)

By using the weak maximum principle, we will see that u � v in the annu-

lus G′, and therefore also in G. Supposing that u is of class C1, we will obtain

the expected contradiction by considering the normal derivative at the point

x0 ∈ ∂G.
We therefore suppose that u is of class C1 at x0. Let 0 < β < m1.

We choose the number c > 0 sufficiently large that the function v =

β(e−c|x−x1| − e−c|x0−x1|), which vanishes at x0, satisfies the conditions (∗)
and (∗∗) stated above.

On the sphere S1 = {|x−x1| = r1/2}, we have v = β(e−cr1/2−e−cr1) < β,

whence v < u on S1 because β < m1. On the sphere S2 = {|x− x1| = 3r1/2},
we have v = β(e−3cr1/2 − e−cr1) < 0, whence v < u also holds on S2 because

u � 0 on this sphere. We deduce condition (∗∗) from this, that is, v < u on

∂G′.

For condition (∗), we set f(x) = e−c|x−x1| and begin by computing ∇f .
From this we deduce div(A(x)∇v), which is none other than β div(A(x)∇f).

We have ∂jf(x) = −cf(x)(x− x1)j/|x− x1| and then

div(A(x)∇f) = −c f(x)|x− x1|

[∑

ij

∂i

(
Aij(x)(x− x1)j

)]

+ f(x)
( c2

|x− x1|2
− c

|x− x1|3
)〈
A(x)(x− x1), (x− x1)

〉

= −V + U.
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In U , the term between the parentheses, which we can also write as

[c/|x− x1|3](c|x − x1| − 1), is positive if c > 2/r1. Under this condition, the

uniform ellipticity of A implies that U(x) > 0 in G′, giving the lower bound

U(x) � αf(x)
[
c2 − 2

c

r1

]
,

where α is the ellipticity constant of A.

By expanding the derivative in the first term −V , which is negative, we

see that V � cf(x)(‖∇A‖∞ +N‖A‖∞/r1). Summarizing, we have

div(A(x)∇v) � βce−3cr1/2
[
α
(
c− 2

r1

)
−
(
‖∇A‖∞ +

N‖A‖∞
r1

)]
.

Therefore there exist values of c that are sufficiently large that

div(A(x)∇v) � 0 on G′, thus giving condition (∗).
Since −div(A(x)∇u) � 0, we have −div(A(x)∇(u − v)) � 0. We apply

the weak maximum principle (cf. Theorem 5.61) to this situation and deduce

that u � v in G′, and therefore also in G. In particular, at the point x0, we

know that v(x0) = u(x0) = 0. Let −→n = (x0 − x1)/|x0 − x1| be the outward-

pointing normal to the boundary of G at x0. For h > 0 sufficiently small, we

have

u(x0 − h−→n )− u(x0) � v(x0 − h−→n )− v(x0).

Applying the mean value theorem to the right-hand side of the inequality

gives

u(x0 − h−→n )− u(x0) � βch.

Dividing by −h and letting h tend to 0, we obtain

∂−→n u < −βc < 0,

which contradict the fact that the C1 function u takes on its minimum at the

point x0. ��

The Strong Maximum Principle for the p-Laplacian. The previous result is

called the strong maximum principle and is due to Vázquez [74]. More gener-

ally, Vázquez’s strong maximum principle can be applied to equations related

to the p-Laplacian. As above, its proof is based on the local comparison to a

positive sub-solution. This phenomenon moreover generalizes to other types

of operators.

Let us take a continuous function β that is nondecreasing on [0,+∞[, such

that β(0) = 0, and satisfies the condition

(5.74) ∃ r1 > 0,

∫ r1

0

ds

(sβ(s))1/p
=∞.



276 5 Elliptic PDE: Variational Techniques

We let j(s) =
∫ s

0
β(t)dt and note that

s

2
β(s/2) � j(s) � sβ(s),

so that condition (5.74) can be written as

(5.75)

∫ r1

0

ds

(j(s))1/p
= +∞.

Theorem 5.76. Let β be a continuous nondecreasing function with β(0)=0

that satisfies condition (5.74). Let u ∈ C1(Ω) be a nonnegative bounded solu-

tion of the inequality

−Δpu+ β(u) � 0

in the bounded domain Ω. Then u is either identically zero or positive in Ω.

Remark 5.77. A solution of the inequality of the theorem is called a super-

solution of the PDE −Δpu + β(u) = 0. In most cases, we use the principle

stated in the theorem for solutions of the equation and not only for superso-

lutions. When it is stated for a solution, the continuous differentiability and

boundedness conditions on u may in general be omitted because of regularity

results for solutions of elliptic PDE that ensures us that u is bounded and C1.

For this matter, the reader can consult the introduction to the appendix

and the partial results that are established there. For the proofs of the full

results concerning the C1 regularity, one can read Evans [31], Moser [52],

Tolksdorff [72], Lewis [46], or Di Benedetto [27].

Proof of Theorem 5.76. We repeat the first part of the previous proof, replac-

ing r1 by r. Let us consider the annulus G = {x | r/2 < |x − x1| < r}, on
which u > 0. We set m1 = inf{u(x) | |x− x1| = r/2} > 0. Since the structure

of the proof is the same as in that of the previous proposition, we are going

to construct a suitable solution of −Δpu + β(u) � 0, that is, a subsolution.

We begin with the following result.

Lemma 5.78. Let k1, k2, r1, and m1 be positive real numbers, let p > 1, and

let β be an nondecreasing function with β(0) = 0. Then there exists a unique

function v = v(r, k1, k2, r1,m1) of class C2 on [0, r1[ satisfying

d

ds

[
|v′|p−2v′

]
= k1|v′|p−2v′ + k2β(v),

v(0) = 0, and v(r1) = m1. Moreover, v � 0, v′ � 0, and 0 < v < m1 on

]0, r1[.
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Proof of Lemma 5.78. In this proof, we set

W ∗ = {u ∈W 1,p(]0, r1[) | u(0) = 0, u(r1) = m1},

and we consider the variational problem associated with

inf
v∈W∗

{1
p

∫ r1

0

|v′|p(s)e−k1sds+ k2

∫ r1

0

j(v)(s)e−k1sds
}
.

Since exp(−k1s) � exp(−k1r1) and j � 0, we can easily verify the conditions

of Theorem 5.25 for the closed convex set W ∗ in the reflexive separable space

W 1,p(]0, r1[) with p > 1. Moreover, the functional v 	→ J(v), whose mini-

mization was the aim of the previous problem, is G-differentiable. By using

the expression of the derivative of the functional u 	→ 1/p
∫
Ω
|∇u(x)|pdx ob-

tained in Proposition 5.53, we find that the derivative J ′(v) equals the linear

functional

〈J ′(v), ϕ〉 =
∫ r1

0

|v′|p−2(s)v′(s) · e−k1sϕ′(s)ds+ k2

∫ r1

0

β(v)(s)e−k1sϕ(s)ds.

The derivative at the point v is therefore

J ′(v) = −
[
d

ds

[
|v′|p−2v′

]
− k1|v′|p−2v′ − k2β(v)

]
e−k1s.

Since W ∗ is an affine space, the equation J ′(v) = 0 supplies the solution of

the problem, namely

(5.79)
d

ds

[
|v′|p−2v′

]
= k1|v′|p−2v′ + k2β(v).

Let us multiply this equation by v− exp(−k1s) and proceed as in Theorem

5.61. Since v− = 0 at 0 and at r1, integration gives
∫ r1

0

exp(−k1s)
[
|v′|p−2v′

]
(v−)′ds+ k2

∫ r1

0

β(v)v− exp(−k1s)ds = 0,

which can also be written as

−
∫ r1

0

exp(−k1s)|(v−)′|pds+ k2
∫ r1

0

β(v)(s)v−(s) exp(−k1s) = 0.

We have β(v)v− � 0 because β is nondecreasing. The negativity of the integral

of the first term therefore implies that v−′ = 0. Consequently, since v(0) = 0,

we have v− = 0, or, in other words, v � 0.

Furthermore, since k2β(v) � 0, the equation (5.79) implies that the func-

tion |v′|p−2v′ exp(−k1s) is nondecreasing, and therefore that v′ is nondecreas-

ing. Since v(0) = 0 and v � 0, we have v′(0) � 0, and since v′ is nondecreasing,

we find that v′(r) � 0 on [0, r1].
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Let us now show that v > 0 and v′ > 0 on ]0, r1]. Let r0 be the largest r

in ]0, r1[ for which v(r) = 0. We wish to show that r0 = 0. We have v′ > 0 on

]r0, r1[ since otherwise there would exist an r ∈ ]r0, r1[ with v
′(r) = 0. Since v′

is nondecreasing, we then have v′ = 0 on [r0, r1] and therefore v(r1) = 0, which

contradicts the fact that r0 is the greatest zero of v.

The function v is therefore bijective from [r0, r1] into [0,m1]. We have

(∗)
∫ r1

r0

v′(t)

(j(v)(t))1/p
dt =

∫ m1

0

1

(j(s))1/p
ds = +∞.

Let w = (v′)p and a = p/(p− 1), so that

(
exp(−ak1r)w

)′
= exp(−ak1r)

(
−ak1w + p(v′)p−1v′′

)
.

Now, since v′ � 0, we can write equation (5.79) as

(p− 1)(v′)p−2v′′ − k1(v′)p−1 = k2β(v).

The choice of a therefore implies that

(
exp(−ak1r)w

)′
= a exp(−ak1r)

[
−k1w + (p− 1)(v′)p−1v′′

]

= ak2 exp(−ak1r)β(v)v′.

Let us assume that v′(r0) = 0. Then, by integrating this expression from r0
to r, using the upper bound 1 for the exponential expression and the inequality

j(v(r0)) � 0, we obtain

exp(−ak1r)(v′)p(r) = ak2
∫ r

r0

exp(−ak1s)β(v)(s)v′(s)ds � ak2j(v)(r).

From this, we deduce that (v′(r))((j(v)(r))−1/p � (ak2 exp(ak1r))
1/p. This ex-

pression is bounded on [r0, r1], which implies that the integral of the left-hand

side is finite, in contradiction to (∗). By continuity, there exists a neighbor-

hood of r0, namely [r0 − α, r0[, on which v′ > 0. Therefore if r0 > 0, we have

the inequality v(s) < 0 on this interval, once more giving a contradiction. We

conclude that r0 = 0 and v′(0) > 0. ��

Let us conclude the proof of the theorem. We apply the lemma with the

function

û(x) = v(r − |x− x1|, k1, 1, r/2,m1)

on the annulus G. We first compute Δpf for a function f that is radial in R
N .

The gradient satisfies ∂if = xif
′(r)/r, whence |∇f | = |f ′(r)|. The p-Laplacian
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is then

Δp(f) = div
(
|∇f |p−2∇f

)
=

N∑

1

[
∂i

(
|f ′(r)|p−2 f

′(r)

r
xi

)]

=
d

dr
[|f ′|p−2f ′]

N∑

1

x2i
r2

+N
|f ′|p−2f ′

r
− |f

′|p−2f ′

r3

N∑

1

x2i

=
d

dr
[|f ′|p−2f ′] + (N − 1)

|f ′|p−2f ′

r
.

It follows that

Δpû =
d

dr
[|v′|p−2v′] +

N − 1

r
|v′|p−2v′.

Consequently, by taking k1 � 2(N − 1)/r, since k2 = 1, the resulting func-

tion û is the desired subsolution satisfying

(5.80) −Δpû+ β(û) � 0.

Moreover, we have û(0) = 0 by construction, so that u � û on the sphere

|x−x1| = r and û(x) = m1 � u(x) on the sphere |x−x1| = r/2. Let us apply
Theorem 5.67 to the two equations

−Δpu+ β(u) = f � 0 and −Δpû+ β(û) = f̂ � 0

in G, with f � f̂ and u � û on ∂G. We conclude that u � û in G.

Let us finish our proof by contradiction. Since v′(0) > 0, we have

lim
h→0,h>0

1

h
u(x0 + h(x1 − x0) � lim

rh→0
v′(rh) = v

′(0) > 0.

This result contradicts the fact that ∇u(x0) = 0 because the minimum is

reached at x0 and u is of class C1. Consequently, u cannot take its minimum

in Ω. ��

Hopf Principle. Let us also suppose that u � 0 is a solution of

−Δpu+ β(u) � 0, u = 0 on ∂Ω

in C1(Ω). The Hopf principle then gives us information on the sign of the

normal derivatives on the boundary ∂Ω, namely

∀x ∈ ∂Ω, ∂u

∂−→n (x) < 0.

Theorem 5.81. Let x0 ∈ ∂Ω be such that there exists an x1 ∈ Ω with

∂B(x1, |x1 − x0|) ∩ ∂Ω = {x0}. Let −→n be the outward-pointing normal to ∂Ω

at x0. Then, under the previous assumptions, there exists a γ > 0 such that

lim
x→x0,x∈B

u(x)

(x0 − x) · −→n
= γ.
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Proof of Theorem 5.81.

Indeed, let x0 ∈ ∂Ω and consider a sphere B(x1, |x1 − x0|) in Ω

with ∂B(x1, |x1 − x0|) ∩ ∂Ω = {x0}. By the previous result, we know

that u > 0 in B(x1, |x0 − x1|). Moreover, taking the definitions of

G = {x ∈ B | |x− x1| � |x0 − x1|/2}, v, and û as before, we have

u � û, γ = v′(0) > 0,

and lim
h→0,h>0

u(x0 + h(x1 − x0))
h

� v′(0). ��

Example 5.82 (of an application). Let λ1 be the first eigenvalue of the

p-Laplacian, that is,

λ1 = inf
u∈W 1,p

0 (Ω)
‖u‖p=1

{∫

Ω

|∇u|p(x)dx
}
.

We can easily see that the infimum λ1 is reached and that there exists a

nonnegative solution, which satisfies the PDE

−Δpu = λ1|u|p−2u.

In particular, −Δpu � 0 and u � 0. Admitting that this u is C1 (see the intro-

duction of this chapter and that of the appendix) and applying the previous

theorem with β = 0, we find that u > 0 in Ω.

5.10 Coercive Problems on Nonreflexive Spaces

5.10.1 A Typical Problem and Calculus of Variations

Given a bounded open set Ω in R
N of class C1 and f ∈ LN (Ω), we consider

the variational problem associated with

(5.83) inf
u∈W 1,1

0 (Ω)

{∫

Ω

|∇u| dx−
∫

Ω

fu dx
}
.

The functional

J(u) =

∫

Ω

|∇u| −
∫

Ω

fu

is convex and well defined, owing to the Sobolev embeddings. It cannot be

coercive, because the terms
∫
Ω
|∇u| and

∫
Ω
fu have similar growth and can

therefore not cancel each other out. Let C be a constant such that

∀u ∈W 1,1
0 , ‖u‖LN/(N−1)(Ω) � C

∫

Ω

|∇u|(x)dx,
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and let us assume that ‖f‖LN (Ω) < 1/C. The functional J is then coercive on

W 1,1(Ω).

Having taken care of this first difficulty, we note that since the space W 1,1

is not coercive, the minimizing sequence for (5.83), which is bounded in W 1,1

if we assume that ‖f‖LN (Ω) < 1/C, is not necessarily relatively compact

in W 1,1. However, it it relatively compact in BV (Ω) for the weak topology

(Chapter 6). This latter space consists of the functions u in L1(Ω) for which

∇u belongs to the space of bounded measures M1(Ω). We therefore need to

extend the definition of the infimum in (5.83). Let us consider

(5.84) inf
u∈BV 0(Ω)

{∫

Ω

|∇u| dx−
∫

Ω

fu dx
}
.

For the moment, we admit the following density result that we will prove in

Chapter 6:

If u ∈ BV (Ω) satisfies u = 0 on ∂Ω, in other words, if u belongs to

BV 0(Ω), then there exists a sequence {un} in W 1,1(Ω) with un = u = 0

on ∂Ω such that
∫

Ω

|∇un| −→
∫

Ω

|∇u| and ‖un − u‖LN/(N−1)(Ω) −→ 0.

This result implies that

inf(5.83) = inf(5.84).

To conclude we only need to show the existence of a solution in BV of the

problem associated with (5.84). Let {un} be a minimizing sequence, which

consequently is bounded in BV (Ω). We can extract a subsequence that con-

verges weakly in BV (Ω), strongly in all the Lq with q < N/(N − 1), and

weakly in LN/(N−1)(Ω). By the lower semicontinuity of the integral over an

open set of a measure that is nonnegative for the vague topology, we have
∫

Ω

|∇u| � lim
n→∞

∫

Ω

|∇un|(x)dx.

By the weak convergence of {un} to u in LN/(N−1)(Ω), we also have
∫

Ω

fun −→
∫

Ω

fu.

The only delicate point concerns the behavior of the limit of {un} on the

boundary. In Chapter 6, we will see that the trace map on BV is not weakly

continuous. To compensate for this difficulty, we introduce that so-called re-

laxed problem, which is associated with

(5.85) inf
u∈BV (Ω)

{∫

Ω

|∇u|+
∫

∂Ω

|u| −
∫

Ω

fu
}
.
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Note that we have

inf(5.85) = inf(5.84)

by the density theorem for the inclusion of W 1,1(Ω) in BV (Ω) (cf. Theorem

6.56 of Chapter 6).

We will now show that the problem associated with (5.85) admits a solu-

tion. Let {un} be a minimizing sequence for (5.84). Our previous results show

that {un} is bounded in BV (Ω). Defining ũn as the extension of un by 0

outside of Ω, we have ũn ∈ BV (RN ) with

∇(ũn) = ∇unχΩ + (0− un)δ∂Ω .

From this, we deduce that

|∇ũn| = |∇un|χΩ + |un|δ∂Ω .

If {un} converges weakly to u in BV (Ω), then ũn converges weakly to an

element v of BV (RN ). We must then have v = 0 in the complement of Ω

and v = u in Ω. In particular, ∇v = ∇uχΩ + (0− u)δ∂Ω . By the weak lower

semicontinuity, we have

∫

RN

|∇v| −
∫

Ω

fv � lim
n→∞

∫

RN

|∇ũn| −
∫

Ω

fun

because
∫
Ω
fun converges to

∫
Ω
fu. Consequently,

∫

Ω

|∇u|+
∫

∂Ω

|u| −
∫

Ω

fu � inf(5.85),

and therefore, u is the solution of the problem associated with (5.85).

5.11 Minimal Surfaces

5.11.1 Presentation of the Problem

We can describe the problem of minimal surfaces as follows. Consider the set of

C1 scalar functions u on a bounded domain Ω in R
N that satisfy u = g on ∂Ω

for a given g ∈ L1(∂Ω). We are looking for an element u of this set such that

the hypersurface with Cartesian equation (x1, . . . , xN−1, u(x1, . . . , xN−1)) has

a minimal N − 1-dimensional surface area.
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Variational Formulation of the Problem. This corresponds to determining a

function u where

inf
u∈?

u=g on ∂Ω

{∫

Ω

√
1 + |∇u|2(x) dx

}

is reached. The question mark denotes a space in which all quantities that are

involved are well defined. We will first define a suitable space. Note that if g

is a constant, then the unique solution of the problem is given by u = cte,

which corresponds to a plane surface. In that case, we of course find that the

infimum equals |Ω|. By the trace theorem, since the function g belongs to the

trace space γ0(W
1,1), we see that W 1,1(Ω) is a “minimal” space on which all

quantities are well defined. We therefore wish to determine a function u where

inf
u∈W 1,1(Ω)
u=g on ∂Ω

{∫

Ω

√
1 + |∇u|2(x) dx

}

is reached.

Transformation of the Problem. Below, we propose to replace the previous

problem by an equivalent so-called relaxed problem that consists of a mini-

mization on BV (Ω).

Because it is not reflexive, we replace the space W 1,1(Ω) by BV (Ω). Its

definition and main properties are studied in Chapter 6.

In order to show the existence of a solution, let us start by reasoning as in

the case of a reflexive space. It is clear that the infimum is � 1, hence positive,

and that the functional J is convex. The functional J is moreover coercive in

W 1,1(Ω), by the Poincaré inequality. Indeed, let U in W 1,1(Ω) be a lifting of

g ∈ L1(∂Ω) in W 1,1(Ω). Then u − U = 0 on ∂Ω, whence, by the Poincaré

inequality,

‖∇(u− U)‖L1(Ω) � C‖u− U‖W 1,1(Ω).

The coercivity of J(u) follows because

J(u) � ‖∇u‖1 � ‖∇(u− U)‖1 − ‖∇U‖1
� ‖u− U‖W 1,1 − ‖∇U‖1 � ‖u‖W 1,1 − 2‖U‖W 1,1 .

Let {un} be a minimizing sequence; it is bounded in W 1,1(Ω) and, con-

sequently, bounded in BV (Ω). By Proposition 6.52 on the weak compactness

of bounded sequences in BV (Ω), it follows that we can extract a subsequence

{uσ(n)} from {un} that converges weakly to an element u in BV (Ω). This

means that
∫

Ω

|uσ(n) − u|(x)dx −→ 0 and ∀ϕ ∈ Cc(Ω), 〈∇uσ(n) −∇u, ϕ〉 −→ 0,
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where the last property expresses the vague convergence of ∇uσ(n) to ∇u.
However, as in the previous subsection, we do not necessarily have u = g

on ∂Ω.

We must therefore both extend the functional
√
1 + |∇u|2 to the func-

tions in BV and compensate for the difficulty that we mentioned in Sub-

section 5.10.1. For the first problem, we use the theory of convex functions

of a measure, which we will develop in Chapter 6, for the bounded measure

μ = ∇u (cf. Section 6.8 and in particular the example f(μ) =
√
1 + |μ|2,

which is worked out in detail). This function f admits an asymptotic func-

tion, namely limt→+∞ f(tx)/t = |x|. It therefore follows from Chapter 6 that

if ∇u = ∇uac +∇uS is the Lebesgue decomposition of the measure ∇u, then
we can define f(∇u) (cf. Theorem 6.138) by

f(∇u) =
√

1 + |(∇u)ac|2 + |∇uS |.

With this extension, the functional u 	→
∫
Ω
f(∇u) is lower semicontinuous for

the weak topology on BV (Ω).

In order to solve the trace problem, we consider a function G∈W 1,1(RN
�Ω)

with trace g on ∂(RN
� Ω). This extends u outside of Ω, giving a function

with ũ ∈ BV (RN ). Using Exercise 6.18 and the function f − 1 with value

zero for x = 0, we obtain

f(∇ũ) = f(∇u)χΩ + |(u−G)−→n |δ∂Ω + f(∇G)χ
RN�Ω .

Finally, we have the following density results. First, there exists a sequence

un ∈ C∞(Ω) ∩W 1,1(Ω) such that un → u in L1(Ω) and

‖∇un‖1 −→
∫

Ω

|∇u|,
∫

Ω

f(∇un) −→
∫

Ω

f(∇u)

(cf. Theorem 6.144). Second, if u ∈ BV (Ω) and g ∈ L1(∂Ω), then Remark

6.73 shows that there exists a sequence {un} inW 1,1(Ω) that converges weakly

to u in BV with
∫

Ω

f(∇un) −→
∫

Ω

f(∇u) +
∫

∂Ω

|u− g|−→n .

The first density result allows us to deduce that the infimum

inf
u∈BV (Ω)
γ0u=g

∫

Ω

f(∇u)

coincides with the corresponding infimum on W 1,1, where we maintain the

limit condition γ0u = g.
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The second result allows us to show that these infima are also equal to

inf
u∈BV (Ω)

{∫

Ω

f(∇u) +
∫

∂Ω

|u− g|
}
.

This corresponds to the relaxed problem, for which we will now show the

existence of a solution.

5.11.2 Existence of a Solution

Let us fix an element G of W 1,1(RN
� Ω) with value g on ∂Ω. Let {un} be

a minimizing sequence in W 1,1(Ω) with un = g on ∂Ω; then the extension

of un by G ∈W 1,1(RN
�Ω) (which we take with compact support) belongs to

W 1,1(RN ). It is therefore bounded inW 1,1(RN ). Consequently, we can extract

a subsequence that converges weakly to V ∈ BV (RN ). By construction, we

have V = G on R
N
�Ω. Moreover, by the lower semicontinuity, we have

∫

RN

(√
1 + |∇V |2 − 1

)

� lim

∫

Ω

(√
1 + |∇un|2 − 1

)
+

∫

RN�Ω

(√
1 + |∇G|2 − 1

)
.

Let u be the restriction of V to Ω; then V = uχΩ +Gχ
RN�Ω . Moreover, since

the jump when crossing the boundary ∂Ω for V is g − u, we see that the

gradient satisfies

∇V = ∇uχΩ + (g − u)δ∂Ω−→n +∇Gχ
RN�Ω .

Consequently, the relation
√

1 + |∇V |2 =
√
1 + |∇u|2 χΩ + |g − u|δ∂Ω +

√
1 + |∇G|2 χ

RN�Ω

gives
∫

RN

(√
1 + |∇V |2 − 1

)
=

∫

Ω

(√
1 + |∇u|2 − 1

)
+

∫

∂Ω

|u− g|

+

∫

RN�Ω

(√
1 + |∇G|2 − 1

)
.

because (G− u)δ∂Ω is singular (see Theorem 6.138 and Exercise 6.17).

We then deduce that
∫

Ω

√
1 + |∇u|2 +

∫

∂Ω

|u− g| � lim

∫

Ω

√
1 + |∇un|2,

and therefore that u is a solution of the relaxed problem, in other words, of

the problem stated at the beginning. We do not treat the regularity of this

solution in this book. Interested readers can consult the book [35] and the

articles [33] and [61].
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Comments

The literature on subjects related to elliptic nonlinear partial differential equa-

tions is considerable. As a consequence, we can choose between many different

directions.

In some cases, the variational approach is not possible and we could expect

solutions in the sense of viscosity, as in the book by Barles [3] and the articles

by Berestycki, Capuzzo-Dolcetta and Nirenberg [4], Cabré and Caffarelli, [12],

and many other authors.

For recent work on the different maximum principles, we mention, by way

of example, the articles by Grenon, Murat and Poretta [36], or Casado-Dı́az,

Murat and Poretta [14].

For problems involving nonlinear terms with critical Sobolev exponent,

one may consult the articles by Demengel [18, 21, 20] and Demengel and

Hebey [24], the basic articles by P.-L. Lions on the concentration compactness

method [50, 51], and finally, the article by M. Struwe [66], which includes

methods for solving noncoercive variational problems using supersolutions

and subsolutions.

Finally, the book by Ferédéric Hélein [38] provides a complete overview of

harmonic maps between two Riemann varieties that is very pleasant to read.

5.12 Exercises for Chapter 5

Exercise 5.1 (Regularity of the Eigenfunctions of the Laplacian).

Show that if Ω is an open subset of R
N of class C∞, then every solution

u ∈ H1
0 (Ω) of −Δu = λu, where λ is a real number, is C∞ in the interior

of Ω.

Hints. By the regularity theorem (cf. Proposition 5.38), we have u ∈ H2(Ω) whence,
step by step, we obtain the implication

∀u, u ∈ Hm(Ω) =⇒ u ∈ Hm+2(Ω).

Exercise 5.2 (Existence of a First Eigenvalue for the p-Laplacian).

Let p satisfy 1 < p < ∞ and let Ω be a bounded domain of class C1 in R
N .

We consider

λ1 = inf
u∈W 1,p

0 (Ω)
‖u‖Lp=1

{∫

Ω

|∇u(x)|pdx
}
.

Prove that λ1 > 0 and that the infimum is reached. Prove that a minimum u

satisfies

−Δpu = λ1|u|p−2u.
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Let μ be a number such that there exists a v ∈ W 1,p
0 , v �= 0, with −Δpv =

μ|v|p−2v. Prove that μ � λ1. For p = 2, this corresponds to the first eigenvalue

of the Laplacian.

Hints. Use Proposition 5.55 (the Poincaré inequality) to deduce that, for a con-

stant C given by this proposition, λ1 � ((1− C)/C)1/p.
Next, let {un} be a sequence of norm 1 such that ‖∇un‖pp → λ1. Deduce the

existence of a subsequence that converges weakly to u in W 1,p and strongly to u
in Lp. In particular, ‖u‖p = 1. By the lower semicontinuity for the weak topology
of the seminorm, ‖∇u‖pp � λ1. Conclude using ‖∇u‖pp � λ1.

Use the inequality ‖∇(u+ tϕ)‖pp � λ1‖u+ tϕ‖pp for t ∈ R and ϕ ∈ D(Ω) and the
mean value theorem (cf. for example Chapter 1) to show that

∫

Ω

|∇u|pdx+ pt

∫

Ω

|∇u|p−2∇u · ∇ϕdx+ o(t)

� λ1

∫

Ω

|u|pdx+ λ1pt

∫

Ω

|u|p−2uϕdx+ o(t).

Since ‖∇u‖pp = λ1‖u‖pp, dividing by t > 0 and letting t tend to 0 gives

∫

Ω

|∇u|p−2∇u · ∇ϕdx � λ1

∫

Ω

|u|p−2uϕdx.

Conclude by replacing ϕ by −ϕ.
Let μ be such that there exists a nonzero v ∈ W 1,p

0 with −Δpv = μ|v|p−2v. By
the definition of λ1, it suffices to multiply by v and integrate to obtain the stated
property, namely μ � λ1.

Exercise [∗∗] 5.3 (Regularity of the Eigenfunctions of the Divergence

Operator).

Let Ω be an open subset of RN . Let A ∈ Ck(Ω) with k � 1+ [N/2] be a sym-

metric uniformly elliptic matrix. Show that any solution u of div(A(x)∇u) =
λu is of class C1 in the interior of Ω. Use induction to show that u ∈ Hk+1

loc (Ω).

Finally, use the Sobolev embeddings to deduce that u ∈ C1,αloc for some α. De-

termine α explicitly.

Exercise [∗] 5.4 (Complements to the Strong Maximum Principle:

the Hopf Principle).

Let Ω be a domain in R
N of class C1 and let p > 1 be a real number. Suppose

that u is a solution of −Δpu � 0 with u = 0 on ∂Ω, and that u is C1 on Ω.

Prove that on the boundary, we have

∃m > 0, ∀x ∈ ∂Ω, ∂u

∂n
(x) � −m.

Exercise [∗∗] 5.5 (Simplicity of the First Eigenvalue of the Laplacian).

We use the notations of Subsection 5.3.4.

(1) Prove that −Δϕ = λ1ϕ, where λ1 is the first eigenvalue of the Laplacian

and ϕ belongs to H1
0 (Ω), admits a solution.
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(2) Use the strong maximum principle to prove that ϕ > 0 in Ω. Prove that

for every u and every v > 0 in H1
0 (Ω), we have Picone’s identity :

|∇u|2 −∇(u2/v) · ∇v � 0,

where equality holds if and only if there exists a λ ∈ R such that u = λv.

(3) Let u and v be nonnegative solution of

−Δu = λ1u and −Δv = λ1v.

Prove that u and v are proportional to each other. First use the Hopf

principle to establish the existence of an ε > 0 such that u � εv in Ω. From
this, deduce that u2/v belongs to H1

0 (Ω). Next, multiply the equation in v

by u2/v, integrate, and use Picone’s identity to prove the desired result.

Hints.

(1) The function ϕ is the solution of the minimization associated with

inf
u∈H1

0 (Ω)
‖u‖2=1

∫

Ω

|∇u(x)|2dx

(cf. Exercise 5.1). The existence of a nonnegative solution results from the in-
equality |∇|u| | � |∇u|.
If ϕ � 0, then −Δϕ � 0. Use Vázquez’s maximum principle with β = 0.

(2) Expand the left-hand side in Picone’s identity to obtain

|∇u|2 − 2
u

v
∇u · ∇v + u2∇v

v2
· ∇u,

which corresponds to

|∇u− u

v
∇v|2.

This expression is therefore nonnegative. Moreover, if it is everywhere zero, then
we have ∇(u/v) = 0 in Ω.
Conclude that u/v = cte, for a constant � 0.

(3) Since there exists a C > 0 such that u � Cv on the boundary, we have u2/v ∈
H1

0 (Ω).
Multiplying the equation in v by u2/v and the equation in u by u gives

λ1

∫

Ω

v
u2

v
dx = λ1

∫

Ω

|u(x)|2dx =

∫

Ω

−Δv
u2

v
dx

=

∫

Ω

∇v · ∇(u2/v)dx �
∫

Ω

|∇u|2dx = λ1‖u‖2,

so that the inequalities become equalities everywhere, giving u = λv.
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Exercise [∗∗] 5.6 (Simplicity of the First Eigenvalue of the

p-Laplacian).

Let Ω be a bounded domain of class C1. Show that if p > 1, u and v belong

to W 1,p
0 (Ω) and satisfy u � 0 and v > 0, then we have the following form of

Picone’s identity, which generalizes that of the previous exercise:

|∇u|p −∇(up/vp−1) · σ(v) � 0,

where σ(v) = |∇v|p−2∇v. Moreover, show that equality holds if and only if

u = λv.

Use the strong maximum principle and Picone’s identity to show that if u

and v are solutions of

−Δpu = λ1|u|p−2u, −Δpv = λ1|v|p−2v,

then there exists a λ ∈ R such that u = λv.

Hints. Expanding the above gives the convexity inequality

1

p
|∇u|p −∇u · σ(v)

(u
v

)p−1

+
(
1− 1

p

)
σ(v) · ∇v

(u
v

)p

� 0,

with equality if ∇u = (u/v)∇v because of the strict convexity of x �→ |x|p. Conclude.
Multiply the equation in u by u and the equation in v by up/(vp−1). Since

up/(vp−1) ∈ W 1,p
0 (by the Hopf principle), we have

λ1

∫

Ω

|u|p = −
∫

Ω

Δpv
up

vp−1
=

∫

Ω

σ(v) · ∇
( up

vp−1

)
�
∫

Ω

|∇u|p = λ1

∫

Ω

|u|p,

so that the inequalities turn into equalities everywhere. In particular, in Picone’s
identity, this implies that u = λv.

Exercise [∗∗] 5.7 (Eigenfunctions of ∇2 in H2
0).

Let Ω be a bounded domain of class C2 in R
N . Recall that ∇∇u is the vector

in R
N2

with components ∂iju and that

H2
0 (Ω) =

{
u ∈ L2(Ω,R) | ∇u ∈ L2(Ω,RN ),

∇∇u ∈ L2(Ω,RN2

), u|∂Ω = ∂u/∂n|∂Ω = 0
}
.

Consider the variational problem associated with

λ = inf
u∈H2

0 (Ω)∫
Ω

|u|2dx=1

{∫

Ω

|∇∇u(x)|2dx
}
.

Prove that λ > 0 and that this problem admits a unique solution. Prove that

if u is this solution, then Δ2u = λu.
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Hints. The value λ is positive because of the following generalization of the Poincaré
inequality:

∀u ∈ H2
0 (Ω), ‖u‖2 � C‖∇∇u‖2.

Prove this by contradiction, using a sequence {un} with ‖∇∇un‖2 � 1/n‖un‖2.
Divide by the norm

√
‖un‖2 + ‖∇un‖2 to obtain ‖vn‖H1 = 1 and ‖∇∇vn‖2 � 1/n.

Extract a subsequence and use the compactness of the embedding of H2 into H1

to prove the existence of a subsequence {vn} that converges strongly to v in H1

while {∇∇vn} converges weakly to ∇∇v. By the lower semicontinuity of the semi-
norm, we have ∇∇v = 0. In particular, v is a linear polynomial. However, since
v = 0 = ∂v/∂n = 0 on ∂Ω, we must have v = 0, contradicting the equality
‖v‖2H1 = lim ‖vn‖2H1 = 1.

Next, let {vn} be a minimizing sequence for the value λ. The sequence ‖∇∇vn‖2
is bounded, whence, by using Green’s formula and the equality ∂−→n vn = 0 on ∂Ω,
we have

‖∇vn‖22 =
∣
∣
∣−

∫

Ω

vn div(∇vn)
∣
∣
∣ � ‖vn‖2 ‖∇∇vn‖2,

which implies that vn is bounded in H1. Extract a subsequence that converges
weakly to v in H2 and strongly in H1. The lower semicontinuity then gives
‖∇∇v‖2 � lim ‖∇∇vn‖2 = λ and ‖v‖2 = lim ‖vn‖2 = 1.

Now, v is the solution of the problem defining λ. Let t ∈ R
+ and let ϕ ∈ D(Ω).

Write
‖∇∇(u+ tϕ)‖2 � λ‖u+ tϕ‖2.

Using the notation ∇∇u : ∇∇ϕ =
∑

i,j ∂iju∂ijϕ, expanding gives

2t

∫

Ω

∇∇u : ∇∇ϕ+O(t2) � λ2t

∫

Ω

uϕ+O(t2).

Integrating by parts then gives

2t

∫

Ω

(Δ2u)ϕ � 2tλ

∫

Ω

uϕ+O(t2),

from which the result follows by dividing by t and setting t = 0. Replace ϕ by −ϕ
to obtain the equality Δ2u = λu.

Indeed,
∫

Ω

∂iju∂ijϕ = −
∫

Ω

∂ijju∂iϕ =

∫

Ω

∂iijjuϕ =

∫

Ω

Δ2uϕ.

Exercise [∗∗] 5.8 (Eigenfunctions for Δ2 −Δ).
Let Ω be a bounded domain of class C2 in R

N . We consider the variational

problem associated with

λ = inf
u∈H1

0 (Ω)∩H2(Ω)∫
Ω

|u|2=1

{∫

Ω

|∇∇u|2 +
∫

Ω

|∇u|2
}
.

Show that this problem admits a solution and that the infimum is positive.

Show that a solution u satisfies

(5.86) Δ2u−Δu = λu, ∂2u

∂n2
= u = 0 on ∂Ω.
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Hints. To show the positivity of the infimum, use the Poincaré inequality ‖u‖2 �
C‖∇u‖2 if u = 0 on the boundary. For a reasoning by contradiction, assume that
the infimum is zero. Then there exists a sequence {un} such that ‖un‖2 = 1, un = 0
on the boundary, and ‖un‖2 + ‖∇∇un‖2 � 1/n. Extracting a subsequence, we see
that {un} converges strongly to u in H1 with ‖u‖2 = lim ‖un‖2 = 1 and ‖∇u‖2 +
‖∇∇u‖2 � 0 by the lower semicontinuity of the seminorm. Since u is zero on the
boundary, it follows that u = 0, contradicting ‖u‖2 = 1.

Show the existence of a solution in a similar manner. Use u+ tϕ and
∫

Ω

|∇(u+ tϕ)|2 + |∇∇(u+ tϕ)|2 � λ

∫

Ω

(u+ tϕ)2.

Expand to obtain

2t

∫

Ω

∇ϕ · ∇u+ 2t

∫

Ω

∇∇u : ∇∇ϕ+O(t2) = λ2t

∫

Ω

uϕ+O(t2),

with notation ∇∇u : ∇∇ϕ =
∑

i,j ∂iju∂ijϕ, as before. By the definition of Δ2u in
the sense of distributions, this gives

∫

Ω

Δ2uϕ−
∫

Ω

Δuϕ = λ

∫

Ω

uϕ,

that is, the first equation in (5.86). Show the limit condition by taking ϕ in H2 with
ϕ = 0 on ∂Ω. This gives

∫

Ω

∇∇u : ∇∇ϕ = −
∫

Ω

∂ijju∂iϕ+

∫

∂Ω

∂iju∂iϕnj

=

∫

Ω

∂iijjuϕ−
∫

∂Ω

∂ijjuϕnj +

∫

∂Ω

∂iju∂iϕnj

=

∫

Ω

Δ2uϕ+

∫

∂Ω

∂iju∂iϕnj

∫

Ω

∇u · ∇ϕ = −
∫

Ω

Δuϕ+ 0.and

Finally, use equation (5.86) to obtain
∫
∂Ω

∂iju∂iϕnj = 0. Note that ∂nnu ∈
H−1/2(∂Ω).

Recall that the surjectivity of the trace map we proved in Chapter 4 implies that
for every (0, v) ∈ H3/2 × H1/2(∂Ω), there exists a ϕ ∈ H2(Ω) such that ϕ = 0 on
∂Ω and ∂nϕ = v on ∂Ω. Using the equality ∂iϕ = vni that holds on ∂Ω, deduce
that

∫
∂Ω

∂ijuvninj = 0. This implies that ∂2u/∂n2 = 0 because v is arbitrary in

H1/2(∂Ω).

Exercise [∗∗] 5.9 (Solving a PDE by a Variational Method).

Let Ω be a bounded domain of class C1. Consider the equation

{
−Δu+ |u|p−2u = f,

u = 0 on ∂Ω,

where f belongs to L2(Ω), p is a real number satisfying 1 < p < 2N/(N − 2),

and p′ is the conjugate of p.
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(1) Prove the existence of a solution by considering the problem associated

with

inf
u∈H1

0 (Ω)

{
1

2

∫

Ω

|∇u|2 dx+ 1

p

∫

Ω

|u|p dx−
∫

Ω

fu dx

}
.

(2) Prove that if f � 0 in Ω, then every solution u of

{
−Δu+ |u|p−2u = f,

u = 0 on ∂Ω

satisfies u � 0 in Ω.

(3) Prove the uniqueness of the solution. If Ω is C2, then prove that if p <

2(N − 1)/(N − 2), then u ∈ H2. Moreover, if Ω is C3, then prove that

under this same condition on p, if f ∈ H1, then u ∈ H3.

Hints. Under the given conditions, the functional stated in the problem is convex,
continuous, and coercive. By considering u+ tϕ, it is clear that u satisfies

t

∫

Ω

∇u · ∇ϕ+ t

∫

Ω

|u|p−2uϕ− t

∫

Ω

fϕ+ o(t) � 0.

Use a classical argument to obtain the PDE.
For the uniqueness, take the difference of the equations in u1 and in u2, multiply

this by u1 − u2, and integrate over Ω. Applying Green’s formula then gives

∫

Ω

|∇(u1 − u2)|2 +
∫

Ω

(|u1|p−2u1 − |u2|p−2u2)(u1 − u2) = 0,

which implies that (|u1|p−2u1−|u2|p−2u2)(u1−u2) is nonnegative, whence u1 = u2.
Show that |u|p−2u ∈ L2 if p < 2(N − 1)/(N − 2). Indeed, 2(p−1) � 2N/(N − 2).

Use Theorem 5.33 to deduce from this that u ∈ H2 because f − |u|p−2u ∈ L2. Use
∇(|u|p−2u) = (p − 1)|u|p−2∇u to show that if N > 4, then the inclusion u ∈ H2

implies that u ∈ L2N/(N−4), and therefore u ∈ L(p−2)N . If N � 4, then the inclusion
in all Lq gives the result. We conclude that |u|p−2u ∈ H1. Hence, if f ∈ H1, then
by Proposition 5.38, −Δu ∈ H1, so that u ∈ H3.

To see that u � 0, multiply the equation by u−, which belongs to H1
0 (Ω). When

f � 0, this gives the inequality

−
∫

Ω

|∇u−|2 −
∫

Ω

|u−|p =

∫

Ω

fu− � 0,

and therefore u− = 0.

Exercise [∗] 5.10 (Variational Problem and p-Laplacian with Con-

straint).

Let Ω be a bounded domain of class C1 in R
N . Let C be a Poincaré constant,

that is, a constant C > 0 such that for every u ∈W 1,p
0 (Ω), we have

∫
Ω
|∇u|p �

C
∫
Ω
|u|p.
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Let 0 < c < C and let f be a continuous function that is nonnegative at

at least one point. For p < N and p < q < p∗ = pN/(N − p), we consider the

problem associated with

inf
u∈W 1,p

0 (Ω)∫
Ω

f(x)|u|q(x)dx=1

{∫

Ω

|∇u|p − c
∫

Ω

|u|p
}
.

(1) Prove that this problem admits a solution by noting that the functional

that we minimize is coercive. Prove that there exists a nonnegative solu-

tion and that a solution u satisfies the Euler equation

−Δpu− c|u|p−2u = λf |u|q−2u,

where λ is a constant equal to the previous infimum.

(2) Use a suitable scalar to prove that the equation

−Δpu− cup−1 = fuq−1, u � 0, and u = 0 on ∂Ω

admits a solution.

(3) Write the equation as

−Δpu+ ‖f‖∞uq−1 = (‖f‖∞ + f)uq−1 + cup−1 � 0.

Suppose that u is C1 and use Vázquez’s strong maximum principle with

β(u) = ‖f‖∞uq−1 to deduce that u > 0 in Ω.

Hints. The functional is coercive. It is not convex, but it is l.s.c.
Let {un} be a minimizing sequence. It is bounded in W 1,p(Ω), hence has a

subsequence that converges to u ∈ W 1,p
0 . Use the weak lower semicontinuity of

the seminorm ‖∇u‖p and the strong convergence in Lq, which follows from the
compactness theorem in Lq, to prove that

∫
Ω
f(x)|u(x)|q = 1. Consequently, u

realizes the infimum. Moreover, if u is a solution, then so is |u|, because the functional
is even.

Use the inequality

J(u+ tϕ) �
(∫

Ω

f(x)(|(u+ tϕ)(x)|qdx
)p/q

J(u),

where u is a solution, ϕ ∈ D(Ω), and t is sufficiently small that
∫

Ω

f(x)(|u+ tϕ|q)dx �= 0.

The homogeneity ensures the existence of t. Expanding this, a classical computation
gives

J(u) + tp

∫

Ω

|∇u|p−2∇u · ∇ϕ− tcp

∫

Ω

|u|p−2uϕ+ o(t)

=
(
1 + tq

∫

Ω

f |u|q−2uϕ+ o(t))p/q
)
J(u).
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Therefore, there exists a constant μ > 0 such that

−Δpu− c|u|p−2u = μf |u|q−2u

in Ω. In order to obtain a solution when we replace μ by 1, let v = μ1/(p−q)u.

Exercise [∗∗] 5.11 (The Equation −Δpu + u
p−1 = 0 with a Neumann

Boundary Condition).

Let Ω be a bounded domain of class C1 and let p > 1 be a real number.

Consider the problem associated with

λ1 = inf
u∈W 1,p(Ω)∫
∂Ω

|u|p=1

{∫

Ω

|∇u|p +
∫

Ω

|u|p
}
.

Show that λ1 is nonnegative and that the infimum is reached. Show that there

exists a nonnegative solution and that such a solution satisfies

−Δpu+ u
p−1 = 0 in Ω

−σ · −→n + λ1u
p−1 = 0 on ∂Ω,and

with σ · −→n = ∂nu(|∇u|p−2). Suppose that u is C1 on Ω and use the strong

maximum principle and Hopf principle to show that u > 0 on Ω.

Hints. The continuity of the trace, namely ‖γ0u‖Lp(∂Ω) � C‖u‖W1,p , implies that

the infimum is > 0. Moreover, the continuity of γ0 for the weak topology on W 1,p

implies that the infimum is reached. Indeed, if {un} is a minimizing sequence with
‖γ0un‖Lp(∂Ω) = 1, then it is bounded in W 1,p. By the lower semicontinuity, we
can extract a convergent subsequence, giving un → u where u satisfies ‖u‖W1,p �
lim J(un). Consider u + tϕ with, in first instance, ϕ ∈ D(Ω), to conclude that
−Δpu+ |u|p−2u = 0.

In the second instance, when ϕ ∈ D(Ω), use

[
d

dt

‖∇(u+ tϕ)‖pp + ‖u+ tϕ‖pp
‖γ0(u+ tϕ)‖pLp(∂Ω)

]

t=0

= 0,

which shows that

p

∫

Ω

t|∇u|p−2∇u · ∇ϕ+ pt

∫

Ω

|u|p−2uϕ+

∫

Ω

|∇u|p +

∫

Ω

|u|p + o(t)

� λ1

(
1 + pt

∫

∂Ω

|u|p−2uϕ+ o(t)
)
.

Use Green’s formula on the left-hand side, divide by t, and let t tend to 0 to obtain

∫

∂Ω

σ · −→n ϕdx = λ1

∫

∂Ω

|u|p−2uϕdx.
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Exercise [∗] 5.12 (Variational Problem in W 1,p with a Neumann

Boundary Condition).

Let Ω be a bounded domain of class C1 and let f be a function that is con-

tinuous on ∂Ω and admits at least one point where it is positive. We admit

that by the continuity of the trace map from W 1,p to Lp(∂Ω), there exists a

constant c > 0 such that for u ∈W 1,p(Ω) we have

∫

Ω

|∇u|p +
∫

Ω

|u|p � c
∫

∂Ω

|u|p.

Let g be a continuous function on ∂Ω such that ‖g‖∞ < c. Finally, let p < N
and let q < (N − 1)p/(N − p). We consider the problem associated with

inf
u∈W 1,p(Ω)∫
∂Ω

f |u|q=1

{∫

Ω

|∇u|p +
∫

Ω

|u|p +
∫

∂Ω

g|u|p
}
.

(1) Show that this problem admits a solution, and, moreover, that there exist

nonnegative solutions.

(2) Show that such a solution satisfies

−Δpu+ u
p−1 = 0 in Ω

σ(u) · −→n + gup−1 = λ1fu
q−1 on ∂Ω.and

Use multiplication by a scalar to show that

−Δpu+ u
p−1 = 0 in Ω and σ(u) · −→n + gup−1 = fuq−1 on ∂Ω

admits a nonnegative solution.

Exercise 5.13 (Nonconvex Variational Problem).

Let Ω be a bounded domain of class C1 in R
N . Let p > 1, p < N , let k < p,

let q < p∗ = Np/(N − p), and let f ∈ Lp′
(Ω). We consider the variational

problem associated with

inf
u∈W 1,p

0 (Ω)

{1
p

∫

Ω

|∇u|p −
(∫

Ω

|u|q
)k/q

−
∫

Ω

fu
}
.

(1) Prove that the infimum is finite. After taking a minimizing sequence and

showing that it is bounded, extract a subsequence to deduce the existence

of a u that realizes the minimum.

(2) Give the differential equation verified by a solution u. Is it unique?
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Exercise [∗] 5.14 (Variational Problem and Best Constant for a Crit-

ical Sobolev Embedding).

We admit that if p < N , then there exists a best constant for the critical

Sobolev embedding on R
N ,

K(N, p)p = inf
u∈W 1,p(RN )

|u|p∗=1

∫

RN

|∇u|p,

and that this constant is reached for functions of the form u(x) =

(λp + rp)(p−N)/p. Let Ω be a bounded domain of class C1. We consider a

continuous function a such that a(x) > −λ1, where λ1 is the first eigenvalue of
the p-Laplacian on Ω. Let f be a non-identically zero nonnegative continuous

function that reaches its supremum inside Ω.

We consider the problem associated with

inf
u∈W 1,p

0 (Ω)
∫
Ω

f |u|p
∗
=1

{∫

Ω

|∇u|p +
∫

Ω

a|u|p
}
.

Use a point x0 where f reaches it supremum and a function of the form

uε(x) =
(
1 +

∣
∣
∣
x− x0
ε

∣
∣
∣
p/(p−1))(p−N)/p

ϕ(x),

where ϕ has compact support and equals 1 in a neighborhood of x0, to show

that we have

inf
u∈W 1,p

0 (Ω)
∫
Ω

f |u|p
∗
=1

{∫

Ω

|∇u|p +
∫

Ω

a|u|p
}
� ‖f‖−p/p∗

∞ K(N, p)p.

Exercise [∗] 5.15 (Extrema for Sobolev Embeddings in H1(RN )).

Consider the equation

−Δu = μu2
∗−1

on R
N , where u is nonnegative, N � 5, 2∗ = 2N/(N − 2) is the critical

Sobolev exponent, and μ > 0 is given.

(1) Show that if there exists a nontrivial solution, then μ > 0. Determine how

we can pass from a solution of the equation with μ = 1 to a solution with

arbitrary μ.

(2) Let r2 =
∑

i x
2
i and let

u(r) = (λ2 + r2)1−N/2

for λ �= 0 in R. Show that u is a solution of the equation (first verify that

u ∈ H1(RN )) by choosing λ as a function of μ.
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Exercise 5.16 (Extrema for Critical Sobolev Embeddings in

W 1,p(RN ), Generalization).

Consider the equation

−Δpu = μu
p∗−1

on R
N , where u is nonnegative, N � p2, p∗ = pN/(N − p) is the critical

exponent for the Sobolev embedding of W 1,p into Lq, and μ > 0 is given.

(1) Show that if there exists a nontrivial solution, then μ > 0. Determine how

we can pass from a solution of the equation with μ = 1 to a solution with

arbitrary μ.

(2) Show that the p-Laplacian for a radial function can be written as

Δp(u(r)) =
1

rN−1
∂r
(
rN−1|u′|p−2u′

)
.

(3) Show that the functions

u(r) =
(
λp/(p−1) + rp/(p−1)

)1−N/p

belong to W 1,p(RN ) and are solutions of the equation (give λ explicitly

as a function of μ).

Exercise 5.17 (Using the Pohozaev Identity).

Consider the equation

−Δu = u2
∗−1, u = 0 on ∂B

in a Euclidean ball in R
N , where u is nonnegative and not identically zero.

We wish to prove that no solution of class C2 exists with these properties.

Recall that if u is not identically zero, then ∂u/∂n > 0 on ∂B.

(1) Multiply by u and integrate over B to find a first energy identity.

(2) Multiply by x · ∇u and integrate by parts several times to obtain the

identity ∫

∂B

x · −→n
(
∂u

∂n

)2

= 0.

Conclude using the Hopf principle.

Exercise [∗] 5.18 (Existence of Solutions Using Supersolutions and

Subsolutions).

Let Ω be a bounded domain of class C1 in R
N . Let p > 1 and let u and u

be two bounded functions in W 1,p
0 (Ω) with 0 � u � u in Ω. Let f be a

nonnegative function in L∞ and let q � 1. We suppose that

−Δpu � fuq and −Δpu � fuq.
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Show that there exists a function u in W 1,p
0 (Ω) with u � u � u that is a

solution of −Δpu = fu
q.

Hints. Use induction to construct a sequence {u(k)}. Start with u. The function u(k)

is then defined by

u(k) ∈ W 1,p
0 (Ω) is a solution of −Δpu

(k) = f(u(k−1))q.

The maximum principle and comparison theorem imply the following properties:
u(k) � 0, {u(k)} is increasing, and u � u(k) � u. Deduce from this that {u(k)}
converges to u. Note that it also converges weakly in W 1,p because

∫

Ω

|∇u(k)|pdx =

∫

Ω

f(x)
(
u(k−1))q(x)u(k)(x)dx � ‖f‖∞

(
supΩ u

)q+1
.

Extract a weakly converging subsequence in W 1,p to show that |∇u(k)|p−2∇u(k) =

σ(k) admits a weak limit σ up to a subsequence. Taking the limit in

−div σ(k) = (u(k−1))q f,

then gives
−div σ = uqf.

We wish to show that σ = |∇u|p−2∇u. To do this, prove the convergence∫
Ω
|∇u(k)|pdx →

∫
Ω
|∇u|pdx, which implies the strong convergence in W 1,p because

p > 1. Consequently, by extracting a subsequence, we obtain ∇u(k) → ∇u almost
everywhere.

To prove the desired result note that, by the dominated convergence theorem
and the pointwise convergence of the sequence {u(k)}, we have

∫

Ω

f(x)(u(k−1)(x))qu(k)(x)dx −→
∫

Ω

uq+1(x)f(x)dx,

whence
∫

Ω

σ(k) · ∇u(k) −→
∫

Ω

uq+1(x)f(x)dx and

∫

Ω

σ · ∇u =

∫

Ω

uq+1(x)f(x)dx.

Consequently,

lim

∫

Ω

|∇u(k)|pdx =

∫

Ω

σ · ∇u dx � lim ‖∇u(k)‖p−1
p ‖∇u‖p

� lim
(∫

Ω

|∇u(k)(x)|pdx
)1−1/p

‖∇u‖p.

Dividing by lim
∫
Ω
|∇u(k)|pdx leads to the inequality

(
lim

∫

Ω

|∇u(k)(x)|pdx
)p

� (‖∇u‖p)p,

which implies the result since by the lower semicontinuity for the weak topology
in Lp, we already have ‖∇u‖p � lim

∫
Ω
|∇u(k)(x)|pdx.
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Distributions with Measures as Derivatives

In this chapter, we study the properties of function spaces that present strong

analogies to Sobolev spaces, namely spaces of functions with certain deriva-

tives belonging to either L1(Ω) or to the space M1(Ω) of bounded measures

on an open subset Ω of R
N . The properties of Sobolev spaces extend to

most of these spaces, but not all. For example, the space BV (Ω) of functions

in L1(Ω) with derivatives in M1(Ω) is embedded in all of the Lp(Ω) with

p � N/(N − 1). Moreover, for p < N/(N − 1), the embeddings are compact

when Ω is bounded.

In Chapter 3, we showed that the functions of W 1,1(Ω) have a trace on

every regular hypersurface Σ inside Ω as well as a “boundary value”. Both

are obtained by taking a limit. The trace belongs to L1(Σ), while the bound-

ary value belongs to L1(∂Ω). In this chapter, we will show that this property

partially extends to functions in BV (Ω), with the exception that, as in di-

mension 1, a function in BV has limits on both sides of the hypersurface Σ

inside Ω and that these limits may be distinct. When we consider the trace

of a function in BV on the boundary ∂Ω, there is no ambiguity because Ω is

of class C1 and therefore locally only lies on one side of its boundary.

To better understand this phenomenon, the reader can consider the Heav-

iside step function H on ] − 1, 1[. When defined as in this book, the trace of

H ∈ BV (]− 1, 1[) at 0 is 0 on the left and 1 on the right.

We will see in this chapter that the existence of certain embeddings and

the compactness of W 1,1(Ω) in larger Sobolev spaces extend to the space

BV (Ω).
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6.1 Results on Measures, Convergence

6.1.1 General Results on Measures

Let Ω be an open subset of RN , where N � 2.

Definition 6.1. A complex measure on Ω is a complex distribution that ex-

tends to a continuous linear functional on the space Cc(Ω,C). The measure

spaces, which we denote by M(Ω), can therefore be identified with the dual

of Cc(Ω,C). It follows that to every compact subset K of Ω, we can associate

a constant CK such that

∀ϕ ∈ Cc(Ω,C), supp ϕ ⊂ K =⇒ |〈μ, ϕ〉| � CK‖ϕ‖∞.

Definition 6.2. The constant CK does not necessarily depend on the com-

pact subset K of Ω. When it does not, we call the measure μ bounded on Ω.

In this case, there exists a constant C such that

∀ϕ ∈ Cc(Ω), |〈μ, ϕ〉| � C‖ϕ‖∞.

We denote the vector space of bounded measures on Ω by M1(Ω).

Definition 6.3. Let μ be a measure on Ω. The conjugate measure, denoted

by μ, is the linear functional on Cc(Ω,C) defined by

〈μ, ϕ〉 = 〈μ, ϕ〉.

Definition 6.4. A measure μ on Ω is called real if

∀ϕ ∈ Cc(Ω,R), 〈μ, ϕ〉 ∈ R.

This corresponds to saying that μ = μ.

Definition 6.5. A real measure μ on Ω is called positive if

∀ϕ ∈ Cc(Ω,R), ϕ � 0 =⇒ 〈μ, ϕ〉 � 0.

Proposition 6.6. A nonnegative distribution on Ω can be extended to a pos-

itive measure on Ω.

Proof of Proposition 6.6.

Recall that a nonnegative distribution is one that satisfies

∀ϕ ∈ D(Ω), ϕ � 0 =⇒ 〈T, ϕ〉 � 0.
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Let K be a compact subset of Ω and let Ω1 be an open subset of K with

K1 = Ω1. Let ψ be a function in D(Ω) with ψ = 1 on K. If ϕ ∈ D(Ω) has

compact support in K, then |ϕ|∞ψ±ϕ is a nonnegative function and therefore

〈T, ϕ〉 � ‖ϕ‖∞〈T, ψ〉

and

−〈T, ϕ〉 � ‖ϕ‖∞〈T, ψ〉.

In particular, for ϕ ∈ Cc(Ω) with support in K1, let {ϕn} ⊂ D(Ω) be a

sequence with support inK that converges uniformly to ϕ inK1. The sequence

〈T, ϕn〉 is then a Cauchy sequence by the inequality above; it converges to a

real number that we will denote by 〈T, ϕ〉. We leave it to the reader to verify

that this constant does not depend on the chosen sequence ϕn and that the

resulting extension of T to the continuous functions with compact support is

linear and continuous. ��

6.1.2 Absolute Value of a Measure, Bounded Measure

Proposition 6.7. If μ is a measure with real or complex values, then we can

define its absolute value, denoted by |μ|, as the map with real values such that

∀ψ ∈ Cc(Ω,R), ψ � 0, 〈|μ|, ψ〉 = sup
ϕ∈Cc(Ω,C)

|ϕ|�ψ

{|〈μ, ϕ〉|}.

The map |μ| is the restriction of a positive measure to the functions in

Cc(Ω,R+). It is bounded if μ is a bounded measure.

The proof of this proposition is left to the reader, who may also consult

[22].

Proposition 6.8 (and Definition). Let μ be a positive bounded measure

on Ω. We define its total variation, denoted by |μ|Ω or
∫
Ω
μ, to be

|μ|Ω = sup
ϕ∈Cc(Ω)
0�ϕ�1

〈μ, ϕ〉.

(1) If {ψn} is an increasing sequence of functions with compact support, values

in [0, 1], and value 1 on

Kn = {x ∈ Ω | d(x, ∂Ω) � 1/n},

then the sequence {〈μ, ψn〉} converges to |μ|Ω, which we also denote by

〈μ, 1Ω〉.
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(2) Moreover, for every ε > 0, there exists an N0 such that if n � N0, then

〈μ, 1Ω�Kn〉 < ε.

Proof of Proposition 6.8.

(1) The sequence {〈μ, ψn〉} is nondecreasing and bounded from above by |μ|Ω .
It follows that it converges and

lim
n→+∞

〈μ, ψn〉 � |μ|Ω .

Let ε > 0 and let ϕ ∈ Cc(Ω) with 0 � ϕ � 1 and 〈μ, ϕ〉 > |μ|Ω − ε. Let K
be the compact support of ϕ. Then for sufficiently large n, K ⊂ Kn and

〈μ, ϕ〉 � 〈μ, ψn〉 because ψn = 1 on Kn.

By taking the limit, we deduce that limn→+∞〈μ, ψn〉 � |μ|Ω − ε, which
implies the result since ε is arbitrary.

(2) Let {ϕn} be a sequence of functions in D(RN ) equal to 1 on Kn that

converge to 1Ω . Let N0 be sufficiently large that for n � N0, we have

〈μ, ϕn − ϕN0〉 � ε. Let ϕ be a function with values between 0 and 1 and

with compact support in Ω �KN0 . Let n > N0 be sufficiently large that

supp ϕ ⊂ Kn. We then have ϕ = ϕ(ϕn − ϕN0), whence

〈μ, ϕ〉 � ε.

By taking the supremum among all such ϕ, it follows that 〈μ, 1Ω�KN0
〉�ε,

concluding the proof. ��

Proposition 6.9. Let μ be a positive bounded measure on Ω. Let ϕ ∈ Cb(Ω) be
nonnegative. Let {ψn} be a nondecreasing sequence in Cc(Ω) with 0 � ψn � 1

that converges to 1. Then 〈μ, ψnϕ〉 converges to a nonnegative real number

that we denote by 〈μ, ϕ〉.

Proof of Proposition 6.9.

The sequence 〈μ, ψnϕ〉 is nondecreasing and bounded by C‖ϕ‖∞. It there-

fore converges. We let 〈μ, ϕ〉 denote the limit, which we can show to be inde-

pendent of the sequence ψn. ��

Definition 6.10. For ϕ ∈ Cb(Ω,R) and μ a positive measure in M1(Ω), we

set

〈μ, ϕ〉 = 〈μ, ϕ1 − ϕ2〉,

where ϕ1 − ϕ2 is a decomposition of ϕ as the difference of two bounded

continuous functions with nonnegative values.
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We can verify that this definition does not depend on the choice of the

two nonnegative functions. In particular, we will often use the positive and

negative parts ϕ+ and ϕ− of ϕ for ϕ1 and ϕ2, respectively.

Definition 6.11. If μ is a complex measure, then we can define its real and

imaginary parts as follows:

�e(μ) = μ+ μ
2
, �m(μ) =

μ− μ
2i
.

If the measure μ is real, then we can define its positive and negative parts as

follows:

μ+ =
μ+ |μ|

2
, μ− =

|μ| − μ
2
.

Definition 6.12. If μ is a real bounded measure, not necessarily positive,

then we extend μ to the functions in Cb(Ω) by setting

〈μ, ϕ〉 = 〈μ+, ϕ〉 − 〈μ−, ϕ〉.

We can furthermore extend the definition of μ with complex values to

bounded continuous functions ϕ with complex values by using the real and

imaginary parts.

Definition 6.13. Let −→μ = (μ1, μ2, . . . , μN ) ∈ M(Ω,CN ) be a vector-valued

measure. We define the functional |−→μ | by setting

∀ψ ∈ Cc(Ω), ψ � 0, 〈|−→μ |, ψ〉 = sup
−→ϕ∈Cc(Ω,CN )∑N

1 |ϕi|2�ψ2

|〈−→μ ,−→ϕ 〉|,

where 〈−→μ ,−→ϕ 〉 =
∑N

1 μiϕi.

We then show that |−→μ | is the restriction of a positive measure on Ω to

Cc(Ω,R+) (cf. [22]).

6.1.3 Vague and Tight Convergence

Definition 6.14. We say that a sequence of measures μn ∈M(Ω) converges

vaguely to μ ∈M(Ω) if for every ϕ ∈ Cc(Ω), we have

|〈μn − μ, ϕ〉| −→ 0.

Proposition 6.15. If {μn} is a sequence of measures that converges vaguely

to a measure μ, then we have the following inequality in R ∪+∞:
∫

Ω

|μ| � lim
n→+∞

∫

Ω

|μn|.
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Proof of Proposition 6.15.

The inequality is trivial if limn→+∞
∫
Ω
|μn| = +∞.

Let us therefore assume that this limit is finite and consider a suitable

subsequence {σ(n)} with lim
∫
Ω
|μn| = lim

∫
Ω
|μσ(n)|. Note that in this case,

for every ϕ ∈ Cc(Ω) satisfying |ϕ| � 1, we have

|〈μ, ϕ〉| = | lim〈μσ(n), ϕ〉| � lim

∫

Ω

|μn|,

which implies that the measure μ is bounded. Let ε > 0 and let ϕ ∈ Cc(Ω)
satisfy |ϕ| � 1 and

∫
Ω
|μ| �

∫
Ω
μϕ+ ε. Let N0 satisfy

∀n � N0,
∣
∣
∣
∫

Ω

(μn − μ)ϕ
∣
∣
∣ � ε.

Then, for every n � N0, we have

∫

Ω

|μ| �
∫

Ω

μϕ+ ε � lim

∫

Ω

μnϕ+ 2ε � lim

∫

Ω

|μn|+ 2ε. ��

Remark 6.16. Note that if μn � 0 converges vaguely to μ, then we do not

necessarily have
∫
Ω
μn →

∫
Ω
μ. Indeed, the sequence in B(0, 1) defined by

μn = n(χB(0,1) − χB(0,1−1/n)) converges vaguely to 0 in B(0, 1) while for

every n, the total variation is equal to the volume ωN−1 of the unit ball

in R
N .

Definition 6.17. We say that a sequence of bounded measures μn ∈M1(Ω)

converges tightly to μ ∈M1(Ω) if

∀ϕ ∈ Cb(Ω), |〈μn − μ, ϕ〉| −→ 0.

Proposition 6.18. If {μn} is a sequence of bounded positive measures that

converges vaguely to μ inM1(Ω), then the following statements are equivalent:

(1) The sequence {μn} converges tightly to μ.

(2)
∫
Ω
μn →

∫
Ω
μ.

(3) For every ε > 0, there exists a compact subset K of Ω such that

∫

Ω�K

μn � ε.

Remark 6.19. It is clear that if the sequence {μn} of bounded measures con-

verges vaguely to μ, then this sequence cannot converge tightly to a measure

other than μ.
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Proof of Proposition 6.18.

We will show that (1) implies (2), which in turn implies (1).

Since μn is positive, we use the bounded continuous function 1Ω in state-

ment (1). We then have ∫

Ω

μn −→
∫

Ω

μ.

Let K1 be a compact set such that
∫
Ω�K1

μ � ε and let Ω1 be an open set

with compact closure K = Ω1 containing K1. Let ϕ have compact support

in Ω1 and be equal to 1 on K1 with, moreover,

∫

Ω�K1

μ � 〈μ, (1− ϕ)〉+ ε.

Every continuous function with compact support in Ω � K and values be-

tween 0 and 1 is lesser than 1− ϕ. It follows that

lim

∫

Ω�K

μn � lim〈μn, 1− ϕ〉 = lim

∫

Ω

μn − lim〈μn, ϕ〉

=

∫

Ω

μ− 〈μ, ϕ〉 � 2ε.

The result follows.

Let us now show that (2) implies (1). Let ϕ ∈ Cb(Ω) and, given ε > 0,

let K be a compact set such that for every n,
∫
Ω�K

μn � ε. Let ψ ∈ Cc(Ω)
equal 1 on K and have values between 0 and 1, and let N0 be sufficiently large

that the vague convergence of {μn} to μ implies that |〈μn − μ, ϕψ〉| � ε. We

then have

|〈μn − μ, ϕ〉| � |〈μn − μ, ϕψ〉|+ ‖ϕ‖∞
∫

Ω−K

(μ+ μn) � ε(1 + 2‖ϕ‖∞). ��

Proposition 6.20. Let {μn} be a sequence of bounded measures such that

there exists a constant C with
∫
Ω
|μn| � C. We can then extract a subsequence

of measures from {μn} that converges vaguely to a bounded measure.

Proof of Proposition 6.20.

This is obvious because the unit ball of the dual of the separable normed

space Cc(Ω) is relatively weak-star sequentially compact. ��

Proposition 6.21. Let μ ∈ M1(Ω). There exists a sequence {un} in C∞c (Ω)

such that ∫

Ω

|un| −→
∫

Ω

|μ|.
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Proof of Proposition 6.21.

Let ε > 0, letK be a compact subset ofΩ such that
∫
Ω�K

|μ| � ε, and let ϕ

be a function in Cc(Ω) with 0 � ϕ � 1 and ϕ = 1 on K. Let N0 be sufficiently

large that 1/N0 < d(K, ∂Ω), and let ρ be an even regularizing function. Then

for n � N0, the sequence {ρ1/n � (ϕμ)} converges tightly to ϕμ, as does its

absolute value. Indeed, let us first show that this sequence converges vaguely

to ϕμ. Let ψ ∈ Cc(Ω). For n sufficiently large, the uniform continuity of ψ

gives

‖ρ1/n � ψ − ψ‖∞ � ε∫
Ω
|μ| .

We note that the measure ϕμ has compact support in Ω. For n sufficiently

large, we use the definition of the convolution of two distributions ϕμ and

[ρ1/n] with compact support in Ω and the fact that this convolution is a

distribution of order � 0, which allows us to apply this convolution to the

function ψ. Therefore, since ρ is an even function, we have
∫

Ω

(
ρ1/n � (ϕμ)

)
ψ dx =

〈
(ϕμ)x ⊗ (ρ1/n)y, ψ(x+ y)

〉

=
〈
(ϕμ), ρ1/n � ψ

〉
.

Moreover, since

|〈ϕμ, ρ1/n � ψ − ψ〉| �
(∫

Ω

|μ|
)
‖ρ1/n � ψ − ψ‖∞ � ε,

the previous equality implies that
∫

Ω

(
ρ1/n � (ϕμ)(x)

)
ψ(x) dx −→ 〈ϕμ, ψ〉.

In particular, by Proposition 6.15, it follows that
∫
Ω
|ϕμ| � lim

∫
Ω
|ρ1/n�(ϕμ)|.

Let us now show that
∫
Ω
|ρ1/n � (ϕμ)| �

∫
Ω
|μ|. Indeed, since the distri-

bution ϕμ has compact support, we see that the convolution on the left-hand

side is a function with compact support that can be written as

(6.22)
(
ρ1/n � (ϕμ)

)
(x) = 〈ϕμ, ρ1/n(x− ·)〉.

Since the integral of ρ1/n over RN is 1, we have

〈
|ϕμ|,

∫

RN

ρ1/n(x− ·)dx
〉
=

∫

Ω

|ϕμ|.

By the definition of the absolute value of a measure and Fubini’s formula,

integrating equality (6.22) with respect to x over RN gives
∫

RN

|ρ1/n � (ϕμ)|dx �
〈
|ϕμ|,

∫

RN

ρ1/n(x− ·)dx
〉
�
∫

Ω

|ϕμ|,

which implies the result because of the vague convergence and Proposition

6.18 (the equivalence (1)⇔ (2)). ��
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6.2 Extension of a Positive Measure

The notions that we introduce in this section are meant to help understand the

properties of bounded measures related to absolute continuity and singularity

with respect to the Lebesgue measure.

For most of the definitions and properties that we set out we give only a

short proof. For example, our presentation of the theory of the integration of

arbitrary functions with respect to a positive measure is very concise. We do

not state Lebesgue’s theorems and say only a few words about μ-measurability

and μ-integrability.

We will frequently invoke the Lebesgue–Radon–Nikodym theorem, which

we state and prove succinctly. Readers interested in more details can con-

sult references dealing with the theory of Radon measures, in particular [8]

and [29].

Below, Ω is an open subset of RN and μ is a positive measure.

6.2.1 Extension to l.s.c. and u.s.c. Functions

When μ is a positive measure, we can extend its definition to a class of func-

tions larger than that of the continuous functions. We will assume known the

definitions of lower semicontinuous functions (denoted by the symbol s.c.i.)

and of upper semicontinuous functions (u.s.c.). We admit that any function f

with positive values that are either finite or not is the upper envelope for

the relation � of the functions ϕ ∈ C+c (Ω) with ϕ � f . We let I(Ω) denote

the set of l.s.c. functions on Ω that are bounded from below by a function

in Cc(Ω). This set contains the nonnegative l.s.c. functions. Likewise, we let

I ′(Ω) denote the set of u.s.c. functions on Ω that are bounded from above by

a function in Cc(Ω).

Definition 6.23. Let f ∈ I(Ω) and let μ be a positive measure on Ω. We

define the extension μ∗ of the measure μ to the function f to be

〈μ∗, f〉 = sup
ϕ∈Cc(Ω)

ϕ�f

〈μ, ϕ〉.

When this supremum is finite, we say that the function f is μ-integrable.

For f ∈ I ′(Ω), we can also define

〈μ�, f〉 = inf
ϕ∈Cc(Ω)

f�ϕ

〈μ, ϕ〉.

The sum f1 + f2 of the two functions in I is well defined since these do not

take on the value −∞; we have f1+f2 ∈ I. We admit the following additivity

property.
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Proposition 6.24. For two functions f1 and f2 in I, we have

μ∗(f1 + f2) = μ
∗(f1) + μ

∗(f2).

6.2.2 Extension to Arbitrary Functions and to Subsets of Ω

Results on μ-integrability. From the above, we deduce the notion of integra-

bility for functions h on Ω with values in R. Since there exist functions f in I
with f � h, for example f = +∞, we can also extend μ, which we assume to

be positive, in order to obtain the upper and lower integrals of h.

Definition 6.25. For an arbitrary function h on Ω, we set

〈μ∗, h〉 = inf
f∈I
f�h

〈μ∗, f〉 and 〈μ�, h〉 = sup
f∈I′

f�h

〈μ�, f〉.

We have μ�(h) = −μ∗(−h) and μ�(h) � μ∗(h). We say that h is μ-integrable

if μ�(h) = μ
∗(h), where the common value of both sides is finite. We denote

this value by μ(h).

One can show the following characterization of μ-integrability.

Proposition 6.26. A function h is μ-integrable if and only for every ε > 0,

there exist f ∈ I and g ∈ I ′ with g � h � f satisfying μ∗(f − g) � ε.

Proposition 6.27. If f is μ-integrable, then the same holds for f+, f−,

and |f |, and we have |μ(f)| � μ(|f |). If f and g are μ-integrable, then the

same holds for f + g, sup(f, g), and inf(f, g).

We extend the measure μ to subsets A of Ω by introducing the character-

istic functions χA .

Definition 6.28. Let K be a compact subset of Ω; then χ
K
∈ I ′, which

justifies the decision to define the measure of K to be the real number μ�(χK ),

that is,

μ�(K) = inf
ϕ=1 onK
0�ϕ�1
ϕ∈Cc(Ω)

〈μ, ϕ〉.

Let O be an open subset of Ω; then χO belongs to I and we set

μ∗(O) = sup
ϕ∈C+

c (Ω)
ϕ�1 onΩ

〈μ, ϕ〉.

Every compact subset K of Ω is μ-integrable. Every open subset O of Ω is

μ-integrable provided that μ∗(O) is finite. This holds, for example, for every

relatively compact open subset.
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Definition 6.29. We say that a subset E of Ω is μ-integrable if for every

ε > 0, there exist an open subset O of Ω and a compact subset K with

K ⊂ E ⊂ O, such that

μ∗(O)− μ�(K) � ε.

It is clear that E is μ-integrable if and only if its characteristic function is

μ-integrable. This corresponds to saying that the numbers μ∗(E) and μ�(E)

are finite and equal. We denote their common value by μ(E) and call it the

measure of E.

If A and B are two μ-integrable sets, then we can show that the sets A∪B,
A∩B, and A∩(Ω�B) are all μ-integrable. In particular, both compact sets and

finite intersections of a compact set with open sets are universally integrable,

that is, integrable for every positive measure μ.

Definition of μ-measure 0.

Definition 6.30. A set A is said to be of μ-measure 0 if μ∗(A) = 0. We admit

that if this is the case, then A is μ-integrable so that the condition becomes

μ(A) = 0.

A function f is said to be of |μ|-measure 0 if μ∗(|f |) = 0.

If two functions f and g are equal outside of a set of measure 0, then we

call them μ-equivalent and we have μ∗(f) = μ∗(g). By defining the associated

equivalence classes, this notion leads to the definitions of the vector spaces

Lp(Ω,μ).

Properties of μ-measurability and μ-integrability.

Definition 6.31. A function f on Ω is μ-measurable if there exist a set N of

μ-measure 0 and a partition of Ω �N in the form of a sequence of compact

subsets Kn such that for every n, the restriction of f to Kn is continuous. A

subset A of Ω is μ-measurable if its characteristic function is.

We can show that a μ-integrable subset is μ-measurable. The converse is

false, but we do have the following result.

Proposition 6.32. A set A is μ-measurable if and only if for every compact

set K, the set A∩K is μ-integrable. A function f from Ω to R is μ-measurable

if and only if for every compact set K, the function fχ
K

is μ-integrable.

The following characterization of μ-integrability follows from Egoroff’s the-

orem, which we do not state.

Proposition 6.33. A function f from Ω to R is μ-integrable if and only if f

is μ-measurable and, moreover, the upper integral μ∗(|f |) is finite.
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This leads to the following result.

Proposition 6.34. If f is μ-integrable, then so is fχ
A
for every measurable

set A, and in particular for every compact set.

Definition 6.35. Let A be a μ-measurable set. We define μχ
A
to be the map

that sends an element ϕ of Cc(Ω) to the number

〈μ, ϕχ
A
〉.

This is well defined because χ
A
ϕ is μ-integrable.

Local Integrability.

Definition 6.36. A map f from Ω to R is called locally μ-integrable if every

point x of Ω admits a neighborhood V such that fχ
V
is μ-integrable.

Proposition 6.37. Let f be a map from Ω to R; then f is locally μ-integrable

if and only if f is μ-measurable and for every compact set K, we have

μ∗(|f |χ
K
) <∞.

Proof of Proposition 6.37.

Let f be locally μ-integrable and letK be compact. By decomposing f into

its positive and negative parts, we may, and do, assume that f � 0. We can

cover K by a finite number of open sets Vj such that fχ
Vj

is μ-integrable for

every j. The function supj(fχVj
) is then μ-integrable (cf. Proposition 6.27).

Since fχ
K

= χ
K
supj(fχVj

), it follows from Proposition 6.34 that fχ
K

is

integrable, and in particular measurable. Since this is true for every compact

set K, we see that f is measurable (cf. Proposition 6.32). Proposition 6.33

moreover gives us the finiteness of μ∗(|f |χ
K
).

Conversely, let x ∈ Ω. Consider a function ϕ ∈ Cc(Ω) with values be-

tween 0 and 1 that equals 1 in a compact neighborhood V of x. Then the

function fϕ is integrable by Proposition 6.33. Consequently, the same holds

for fχ
V
= fϕχ

V
, by Proposition 6.34. ��

Definition 6.38. We say that a locally μ-integrable set A supports the posi-

tive measure μ if μ(Ω �A) = 0.

6.2.3 Absolute Continuity

In this subsection, μ and ν are two positive measures on Ω.

Definition 6.39. We call μ absolutely continuous with respect to ν if the

following implication holds:

∀A ⊂ Ω, ν(A) = 0 =⇒ μ∗(A) = 0.
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This relation between positive measures is often denoted by μ � ν. We also

say that μ is dominated by ν.

This notion can also be expressed in the following manner. Let h be a

locally μ-integrable function; then for every ϕ ∈ Cc(Ω), the function hϕ is

μ-integrable. Moreover, the map that sends a function ϕ ∈ Cc(Ω) to the

integral μ∗(hϕ), which we also denote by
∫
Ω
hϕdμ, is a linear functional. It

is a measure on Ω. Indeed, for every compact subset K of Ω and for every

continuous function ϕ with support in K, we have the inequality

∣
∣
∣
∫

Ω

hϕdμ
∣
∣
∣ � ‖ϕ‖∞

∫

Ω

|hχ
K
|dμ.

Definition 6.40. The measure defined above is denoted by h · μ. We call it

the measure with density h with respect to μ.

Proposition 6.41. Let ν = h·μ, where h is locally μ-integrable. Then ν∗(f) =
μ∗(fh) for every function f from Ω to R, where the product fh is zero by

definition whenever one of the factors is zero.

We admit the proposition without proof (cf. [29, chap. 13, §14]).
We can deduce from it that if ν(A) = 0, then μ(A) = 0. In other words,

the measure μ is dominated by ν. This property and its converse are part of

the Lebesgue–Nikodym theorem. The following result is a corollary of that

theorem.

Proposition 6.42. A measure μ � 0 is absolutely continuous with respect to

ν � 0 if and only if there exists a locally ν-integrable function g such that

μ = g · ν.

6.2.4 Singular Measures

Definition 6.43. We say that μ is singular with respect to ν if there exist

disjoint subsets A and B of Ω that are locally μ-integrable and locally ν-

integrable, respectively, such that μ is supported by A while ν is supported

by B. This relation between the two positive measures is denoted by μ ⊥ ν.
We then have

μ = μχ
A

and ν = νχ
B
.

Under these conditions, we can show that A and B may be chosen univer-

sally measurable. We will admit this result (cf. [29]).

Definition 6.44. The measure μ � 0 is called singular if it is singular with

respect to the Lebesgue measure.
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Proposition 6.45. A measure μ � 0 is singular with respect to ν � 0 if and

only if inf(μ, ν) = 0

Proof of Proposition 6.45.

Suppose that μ is singular with respect to ν. Let A and B be two disjoint

universally measurable sets such that μ = μχ
A
and ν = νχ

B
. If ϕ ∈ Cc(Ω),

then we have

inf(μ, ν)(ϕ) = inf
(
〈μ, χ

A
ϕ〉, 〈ν, χ

B
ϕ〉
)
= 0.

For the converse, we use Proposition 6.42. Consider the measure ρ = μ+ν.

By Definition 6.39, both μ and ν are absolutely continuous with respect to ρ.

Therefore there exist locally ρ-integrable g and h such that μ = g · ρ and

ν = h · ρ (cf. Proposition 6.42). Since inf(μ, ν) = inf(g, h)ρ = 0, it follows

that inf(g, h) is of ρ-measure 0. Next, let M = {x | g(x) �= 0} and let N =

{x | h(x) �= 0}. These sets are locally ρ-integrable and, by the above, we have

ρ(M ∩N) = 0. Let A =M � (M ∩N) and let B = N � (M ∩N). These sets

are locally ρ-integrable and we have g = χAg and h = χBh outside of a set of

measure zero for ρ. ��

6.2.5 Canonical Decomposition of a Positive Measure

Theorem 6.46 (Lebesgue decomposition). Let μ be a positive measure;

then there is a unique way to write μ as the sum of a measure that is absolutely

continuous with respect to the Lebesgue measure and a singular measure.

Proof of Theorem 6.46.

The uniqueness is obvious. Indeed, suppose that μ′ and μ′′ are absolutely

continuous with respect to the Lebesgue measure and that ν′ and ν′′ are two

singular measures with

μ = μ′ + ν′ = μ′′ + ν′′.

We then have

μ′ − μ′′ = ν′′ − ν′.

Both sides of the equation are measures that are absolutely continuous with

respect to the Lebesgue measure and singular; they are therefore both zero.

To prove the existence, we set

ν = sup
n

inf(μ, ndx).

Note that ν is a measure. Indeed, since ν � μ, we have the inequality νϕ �
μϕ � CK‖ϕ‖∞ for every nonnegative function ϕ with compact support in K.
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We must also verify the additivity and positive homogeneity, that is, if ϕi � 0

and λi � 0, then we must verify that

〈ν, λ1ϕ1 + λ2ϕ2〉 =
2∑

1

λi〈ν, ϕi〉.

Let ϕ1 and ϕ2 be elements of Cc(Ω) and let n0 � n1, n2 with ni
∫
ϕi � μ(ϕi)

for i = 1, 2. We then have

ν(ϕi) = sup
n�n0

inf
(
μ(ϕ), n

∫
ϕidx

)
.

It follows that

n0

∫
(λ1ϕ1 + λ2ϕ2)dx � n1

∫
λ1ϕ1 + n2

∫
λ2ϕ2 � μ

(∑2
1 λiϕi

)
.

Hence

ν
(∑2

1 λiϕi
)
= supn�n0

inf
(
μ
(∑2

1 λiϕi
)
, n

∫ (∑2
1 λiϕi

)
dx
)
.

Since this reduces the problem to computing the supremum of the infimum of

a finite number of measures, we indeed have the stated additivity.

Let us now show that the measure ν is absolutely continuous with respect

to the Lebesgue measure.

Indeed, if A is a set with Lebesgue measure zero, that is,
∫
A
dx = 0, then

the infima of ν(A) and of n
∫
A
dx are zero. Consequently, we have ν(A) = 0.

The measure ν is therefore absolutely continuous with respect to the Lebesgue

measure.

Finally, let us show that the measure μ− ν is singular with respect to the

Lebesgue measure.

We will show, by contradiction, that if (μ−ν)(A) > 0, then
∫
A
dx = 0. Let

us therefore suppose that
∫
A
dx > 0. Then for n0 sufficiently large, we have

n0
∫
A
dx > μ(A), whence ν(A) = μ(A), that is, (μ− ν)(A) = 0. ��

6.2.6 Complex Measures and Vector Measures

For a real measure μ, the results presented above apply to the positive part μ+

and to the negative part μ−. Likewise, if μ is a complex measure, then we

consider the real and imaginary parts of this measure, allowing us to restrict

ourselves to considering positive measures.

Let us briefly study the Lebesgue decomposition of a vector measure in

finite dimension.



314 6 Distributions with Measures as Derivatives

Definition 6.47. Let −→μ be a measure with vector values and let ν be a

positive measure. We call−→μ absolutely continuous with respect to ν if |−→μ | � ν
(cf. Definition 6.39).

We call two vector measures −→μ and −→ν mutually singular if |−→μ | and |−→ν |
are mutually singular.

We state the decomposition theorem in a specific case.

Theorem 6.48. Let −→μ belong to M1(Ω,RN ); then there exist a function h

in L1(Ω,RN ) and a vector measure −→ν that is singular with respect to the

Lebesgue measure dx on Ω with

−→μ = −→ν +
−→
h dx.

Proof of Theorem 6.48. We apply Theorem 6.46 to the positive and negative

parts of each of the components μi of
−→μ , giving

μ+i = hidx+ νi, μ
−
i = gidx+ λi.

From this, we deduce that μi = (hi − gi)dx+ νi − λi. We then have

−→μ =
[ N∑

1

(hi − gi)ei
]
dx+

[ N∑

1

(νi − λi)ei
]
,

where the last sum represents a measure that is singular with respect to dx,

or rather, whose components are all singular with respect to dx. ��

6.3 The Space of Functions with Bounded Variation

Definition 6.49. We say that u ∈ BV (Ω) if u ∈ L1(Ω) and ∇u ∈ M1(Ω).

We can also define BV (Ω) as the set of u in L1(Ω) such that

∫

Ω

|∇u|dx = sup
{∫

Ω

u div g
∣
∣ g ∈ C1c (Ω,RN ), |g| � 1

}
< +∞.

Namely, we have

∫

Ω

|∇u|dx = sup
ϕ∈Cc(Ω,RN )

|ϕ|�1

∫

Ω

∇u · ϕdx = sup
ϕ∈C1

c (Ω,RN )
|ϕ|�1

{
−
∫

Ω

u divϕ(x)dx
}
,

while the opposite inequality follows by a density argument.
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Remark 6.50. Clearly W 1,1(Ω) ⊂ BV (Ω), but the inclusion in the other

direction does not hold. To see this, we can, for example, consider the char-

acteristic function χB(0,R) of a Euclidean ball. This belongs to L1(RN ) and

has gradient ∇(χB(0,R)) = −(x/|x|)δ|x|=R. Indeed, if ϕ ∈ D(RN ,RN ), then

the classical Green’s formula gives

−
∫

RN

∇(χB(0,R)) · ϕ =

∫

B(0,R)

divϕ(x) dx

=

∫

|x|=R

ϕ(x) · −→n dx =
∫

|x|=R

x

|x| · ϕ(x) dx.

This proves that the characteristic function belongs to BV (RN ), but not to

W 1,1(RN ).

Definition 6.51. We say that a sequence {un} in BV (Ω) converges weakly

to u ∈ BV (Ω) if
∫

Ω

|un − u|dx −→ 0 and ∇un converges vaguely to ∇u.

The following result is a consequence of the theorem on the weak com-

pactness of sequences of measures with bounded integrals.

Proposition 6.52. Let {un} be a bounded sequence in BV (Ω); then we can

extract a subsequence from {un} that converges weakly in BV (Ω).

Remark 6.53. We will see further on that when the open set Ω is sufficiently

regular, the space BV (Ω) is embedded in Lp(Ω) for every p � N/(N − 1).

If Ω is moreover bounded, then the embedding in Lq(Ω) is compact for every

q < N/(N − 1). These properties immediately give the strong convergence of

{un} to u in every Lq(Ω) with q < N/(N − 1) and the weak convergence in

LN/(N−1)(Ω).

Proposition 6.54. Let Ω be an open subset of RN . Let {un} be a sequence

of functions that converges to u in L1loc(Ω). Then
∫

Ω

|∇u|dx � lim
n→+∞

∫

Ω

|∇un|.

Proof of Proposition 6.54.

If we know that ∇un is a measure, then we can apply Proposition 6.15.

In the general case, since un tends to u in L1loc(Ω), we know that for every

g ∈ C1c (Ω), we have
∫

Ω

un(x) div g(x)dx −→
∫

Ω

u(x) div g(x)dx.

This implies the result by taking the upper bound when |g| � 1 (cf. Definition

6.49). ��



316 6 Distributions with Measures as Derivatives

Remark 6.55. Suppose that {un} converges strongly to u in L1(Ω) and that

{∇un} converges weakly to ∇u; then we do not necessarily have
∫
Ω
|∇un| →∫

Ω
|∇u|.

Let us take a very simple example to illustrate this. Consider, in dimen-

sion 1, the sequence of functions {un} with general term un = nxχ]0,1/n[ +

χ[1/n,1[. This sequence converges to 1 on ]0, 1[ but
∫ 1

0
|u′n(t)|dt = 1, so it does

not tend to
∫ 1

0
|u′(t)|dt, which equals 0.

6.3.1 Density Results

Theorem 6.56. The space C∞(Ω)∩W 1,1(Ω) is dense in BV (Ω) for the inter-

mediate topology described above. This topology is finer than that of weak con-

vergence, and is related to the tight convergence of measures. Let u ∈ BV (Ω).

There exists a sequence {un} ⊂ C∞(Ω) ∩W 1,1(Ω) such that

un −→ u in L1(Ω) and

∫

Ω

|∇un| −→
∫

Ω

|∇u|.

Remark 6.57. From now on, we will say that a sequence un of functions in

BV (Ω) converges tightly to u in BV (Ω) if
∫

Ω

|un − u|+
∣
∣
∣
∫

Ω

|∇un| −
∫

Ω

|∇u|
∣
∣
∣ −→ 0.

Proof of Theorem 6.56.

We use the notation of Proposition 2.12. Let Ωj be an increasing sequence

in Ω with union Ω. Consider the open sets Aj defined by

Aj = Ωj+2 �Ωj−1, where Ω−1 = Ω0 = ∅

and let {ϕj} be the partition of unity subordinate to the cover {Aj} of Ω:

(6.58) ϕj ∈ C∞0 (Aj),

∞∑

0

ϕj = 1, 0 � ϕj � 1.

Next, let {ηj} be a nonincreasing sequence of nonnegative real numbers tend-

ing to 0 such that

Aj +B(0, ηj) ⊂ Aj−1 ∪Aj ∪Aj+1 for j � 2

and such that, for a given δ > 0,
∣
∣
∣
∣

∫

Ω

∣
∣ρηj ∗ (ϕj∇u)

∣
∣−

∫

Ω

|(ϕj∇u)|
∣
∣
∣
∣ < δ2

−j−2,(6.59)

∫

Ω

∣
∣ρηj ∗ (ϕju)− (ϕju)

∣
∣ < δ2−j−1,(6.60)

∫

Ω

∣
∣ρηj ∗ (∇(ϕj)u)− (∇(ϕj)u)

∣
∣ < δ2−j−2.(6.61)
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We then set

(6.62) uδ =

∞∑

0

ρηj ∗ (ϕju).

The existence of a sequence satisfying inequality (6.59) follows from Proposi-

tion 6.21.

We thus obtain a C∞ function on Ω. Indeed, the resulting “sequence”

{uδ} whose general term is a C∞ function, is locally finite on every compact

subset K of Ω, because there always exists a j0 sufficiently large that Aj−1 ∩
K = ∅ for j > j0. It follows that the terms with indexes > j0 are zero, because

their supports lie in Aj−1 ∪Aj ∪Aj+1.

We will first show that ‖uδ −u‖L1(Ω) � δ, which implies that uδ ∈ L1(Ω).
Next, we will show that

∣
∣
∣
∫
Ω
|∇uδ| −

∫
Ω
|∇u|

∣
∣
∣ � 2δ, which implies that ∇uδ ∈

L1(Ω), and even that
∫
Ω
|∇uδ| � C. Together, these upper bounds imply that

the “sequence” of functions {uδ} satisfies the property stated in the theorem.

By (6.60), we have,

∫

Ω

|uδ − u| =
∫

Ω

∣
∣
∣

∞∑

0

ρηj ∗ (ϕju)− (ϕju)
∣
∣
∣ �

∞∑

0

2−j−1δ = δ.

Let us write A = |
∑∞

0 ρηj ∗ ∇(ϕju)| as follows:

A =
∣
∣
∣
∞∑

0

ρηj ∗ (u∇ϕj + ϕj∇u)
∣
∣
∣

�
∣
∣
∣
∞∑

0

[
ρηj ∗ (u∇ϕj)− (u∇ϕj)

]∣∣
∣+

∣
∣
∣
∞∑

0

u∇ϕj
∣
∣
∣+

∣
∣
∣
∞∑

0

ρηj ∗ (ϕj ∇u)
∣
∣
∣.

Then, since
∑∞

0 ∇ϕj = 0 and |∇u| =
∑∞

0 ϕj |∇u|, we have

∣
∣
∣
∫

Ω

(
|∇uδ| − |∇u|

)∣∣
∣ �

∞∑

0

∣
∣
∣
∫

Ω

(
ρηj ∗ (u∇ϕj)− (u∇ϕj)

)∣∣
∣

+

∞∑

0

∣
∣
∣
∫

Ω

|ρηj ∗ (ϕj ∇u)| −
∫

Ω

|ϕj∇u|
∣
∣
∣.

By (6.59) and (6.60), it now follows that

∣
∣
∣
∫

Ω

|∇uδ| −
∫

Ω

|∇u|
∣
∣
∣ < 2δ. ��

After proving the trace theorem, we will see that the sequence {uδ} has the
same trace as u when Ω is of class C1. These density theorems for a topology
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intermediate between the weak topology and the norm topology allow us to

extend the embedding and compact embedding results concerning W 1,1(Ω)

to the space BV (Ω).

Remark 6.63. Using the previous theorem, we can prove the following prop-

erty for the absolutely continuous and singular parts (cf. Theorem 6.46) of

the terms of the sequence {∇un}:
∫

Ω

∣
∣∇uδ − (∇u)ac

∣
∣ −→

∫

Ω

∣
∣∇uS

∣
∣.

We will use this property when we study functions of a measure in Section

6.10. Exercise 6.3 contains a proof of this result.

6.3.2 Embedding Results

Theorem 6.64. Let Ω be a Lipschitz open subset of R
N ; then the space

BV (Ω) is embedded in Lp(Ω) for every p � N/(N − 1). If p < N/(N − 1)

and Ω is bounded, then the embedding is compact.

Proof of Theorem 6.64, existence of embeddings.

We will use the density of W 1,1(Ω) in BV (Ω) (Theorem 6.56). Let u be

an element of BV (Ω). There exists a sequence {un} in W 1,1(Ω) such that

un −→ u in L1(Ω) and

∫

Ω

|∇un| −→
∫

Ω

|∇u|.

Using the existence of the embedding of W 1,1(Ω) in Lp(Ω) for all p �
N/(N − 1), we see that there exists a constant C that does not depend on n

such that

‖un‖p � C
(
‖un‖1 + ‖∇un‖1

)
.

Since for 1 < p < ∞, every bounded sequence in Lp(Ω) is relatively weakly

compact in Lp(Ω), we deduce that we can extract a subsequence that con-

verges weakly to an element v ∈ Lp(Ω). We of course have u = v, and by the

lower semicontinuity of the norm in Lp(Ω),

‖u‖p � lim
n→∞

‖un‖p

� C lim
n→∞

(‖un‖1 + ‖∇un‖1)

= C
(
‖u‖1 +

∫

Ω

|∇u|
)
,

giving the existence of the embeddings. ��
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Proof of Theorem 6.64, compactness.

Let us show the result for p = 1. Let K be a bounded subset of BV (Ω).

We use the description of the compact subsets of L1 (cf. Theorem 1.95 of

Chapter 1) to show that K is relatively compact in L1(Ω). Let ε > 0 and

let G be a compact subset of Ω such that |Ω − G|1/N � ε. Then by using

Hölder’s formula for every u ∈ K, the embedding of BV (Ω) in LN/N−1(Ω),

and the boundedness of K in BV , we have
∫

Ω−G

|u| � ε‖u‖LN/(N−1)(Ω�G) � ε‖u‖LN/(N−1)(Ω) � Cε.

Next, we must show that

0 < |h| < d(G, ∂Ω) =⇒
∫

G

|τhu− u| � |h|
∫

Ω

|∇u|.

To do this, let {un} be a sequence in W 1,1(Ω) with
∫

Ω

|∇un(x)|dx −→
∫

Ω

|∇u| and

∫

Ω

|un − u|(x)dx −→ 0.

Let N0 be sufficiently large that for n � N0,
∣
∣
∣
∣

∫

Ω

|∇un|(x)dx−
∫

Ω

|∇u|
∣
∣
∣
∣ � ε and

∫

Ω

|un − u|(x)dx � ε.

The last inequality implies that for n � N0 and for h < d(G, ∂Ω), we have
∫

G

|τhu− τhun|(x)dx � ε.

The proof of Theorem 2.23 in the case p = 1 ensures us that
∫
G
|τhun−un|dx �

h
∫
Ω
|∇un|(x)dx because un belongs to W 1,1(Ω). It follows that

∫

G

|τhu− u|(x)dx �
∫

G

|τhu− τhun|(x)dx+
∫

G

|τhun − un|(x)dx

+

∫

G

|un − u|(x)dx

� h
∫

Ω

|∇un|(x)dx+ 2ε � h
∫

Ω

|∇u|+ 3ε,

giving the result because ε is arbitrary.

Next, let p > 1. We consider the bounded sequence {un} in BV (Ω). By the

relative compactness proved earlier, we can extract a subsequence {uσ(n)} that
converges in L1(Ω). By the continuity of the embedding BV ↪→ LN/(N−1), this

sequence is bounded in LN/(N−1). This situation allows us to apply Lemma

2.82 of Chapter 2. We thus obtain that {uσ(n)} converges in every Lq with

q < N/(N − 1). ��
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6.3.3 Trace Results

Before stating the existence theorem for a trace on the boundary, we first need

the following result.

Lemma 6.65. Let μ be a bounded measure on the open subset Ω of RN . There

exists a number of α, at most countable, such that μ charges Ω ∩ {xN = α},
that is, such that μ(Ω ∩ {xN = α}) > 0.

Proof of Lemma 6.65.

By Fubini’s theorem, we can write

|μ|(Ω) =
∫

R

|μ|(Ω ∩ {xN = α})dα.

Let ϕ be defined by

ϕ(α) =

∫

β�α

|μ|(Ω ∩ {xN = β})dβ.

The function ϕ is nondecreasing, it therefore has at most countably many

discontinuities. Now, by definition, these discontinuities are precisely the real

numbers α for which

lim
ε→0
μ(Ω ∩ {xN = α+ ε})− μ(Ω ∩ {xN = α− ε}) �= 0. ��

Proposition 6.66. Let {μn} be a sequence of positive measures that converges

tightly to μ on Ω. Then if Ω1⊂Ω1⊂Ω satisfies
∫
∂Ω1
μ=0, we have

∫

Ω1

μn −→
∫

Ω1

μ.

Exercise 6.1 provides the proof with a number of hints.

Theorem 6.67. Let Ω be an open set of class C1. There exists a surjective

continuous linear map from BV (Ω) onto L1(∂Ω) that coincides with the usual

restriction map on the boundary when u ∈ BV (Ω) ∩ C(Ω) and with the trace

map studied in Chapter 3 when u ∈W 1,1(Ω).

Proof of Theorem 6.67.

We use a cover of ∂Ω by bounded open sets Ωi that, after changing the

coordinate system, if necessary, satisfy

Ωi ∩Ω ⊂ {(x′, xN ) | a(x′) < xN , x′ ∈ O′},
∂Ω ∩Ωi = {(x′, a(x′) | x′ ∈ O′},
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where O′ is an open subset of RN−1 and a ∈ C1(O′). We moreover suppose

that u has compact support in Ωi ∩Ω. Now, let α > 0 satisfy

|∇u|{(x′, a(x′) + α)} = 0

(cf. Lemma 6.65). Let {un} be a sequence in W 1,1 given by the density theo-

rem. We have

un(x
′, a(x′) + α)− un(x′, a(x′) + α′) =

∫ α

α′
∂Nun(x

′, a(x′) + s)ds.

Let gnα denote the function x′ 	→ un(x′, a(x′) + α) and let

Aα = {(x′, xN ) ∈ Ω | xN < a(x′) + α}.

By integrating the equality over O′, we find that for 0 < α < α′,

‖gnα − gnα′‖L1(O′) �
∫ α′

α

∫

O′

∣
∣
∣
∂un
∂xN

(x′, a(x′) + s)
∣
∣
∣dx′ds

� c
∫

Aα′�Aα

∣
∣
∣
∂un
∂xN

(x′, a(x′) + xN )
∣
∣
∣dx.

The convergence of un to u in L1(Ω) implies that the left-hand side tends to

‖gα − gα′‖L1(O′) when n tends to infinity. Applying Proposition 6.66 to the

right-hand side, we find that its limit is
∫

Aα′�Aα

∣
∣
∣
∂u

∂xN
(x′, a(x′) + xN )

∣
∣
∣dx.

From this, we deduce that the inequality

‖gα − gα′‖L1(O′) �
∫

Aα′�Aα

|∂Nu|

for the functions inW 1,1 extends to the functions in BV when ∂Aα and ∂Aα′

have measure 0 for ∂Nu.

Since |∂u/∂xN | is a bounded measure on Ω, the limit above is zero when α

and α′ tend to 0 from above. In particular, since {gα} is a Cauchy sequence in

L1(O′), it converges to a function in L1(O′) that we denote by u(i)(x
′, a(x′)).

Using the usual gluing process that is compatible with the used cover of Ω,

the sum of the resulting limit functions gives what we will call the trace of u

on the boundary of Ω. ��

Theorem 6.68. Let Ω be an open set of class C1. The trace map is continuous

for the intermediate topology described in Theorem 6.56.

More precisely, if un → u in L1(Ω) and if
∫
Ω
|∇un| →

∫
Ω
|∇u|, then

|γ0(un)− γ0(u)|L1(∂Ω) −→ 0.
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Proof of Theorem 6.68.

Since the trace map γ0 is continuous, there exists a constant C depending

only on Ω, such that

∀u ∈ BV (Ω),

∫

∂Ω

|u| � C
(∫

Ω

|∇u(x)|dx+
∫

Ω

|u(x)|dx
)
.

Let {un} converge tightly to u in BV , that is, satisfy ‖un − u‖1 → 0 and∫
Ω
ψ|∇un| →

∫
Ω
ψ|∇u| for every ψ ∈ Cb(Ω). Let ε > 0 be given. Let Ω0

be a relatively compact open subset of Ω and let ϕ0 be a function with

compact support in Ω, equal to 1 on Ω0, and satisfying 0 � ϕ0 � 1 and∫
Ω
(1 − ϕ0)|∇u| � ε. By the tight convergence, there then exists an N0 such

that

∀n > N0,

∫

Ω

(1− ϕ0)|∇un| � 2ε.

We may, and do, suppose N0 sufficiently large that for n � N0,
∫

Ω

|un − u|dx �
ε

1 + ‖∇ϕ0‖∞
.

Using the continuity of the trace map and the equality 1−ϕ0 = 1 on ∂Ω, we

then have for n > N0:
∫

∂Ω

|un − u| � C
[∫

Ω

∣
∣∇
(
(un − u)(1− ϕ0)

)∣∣dx+
∫

Ω

|un − u|(1− ϕ0)dx
]

� C
[∫

Ω

|∇un|(1− ϕ0) +
∫

Ω

|∇u|(1− ϕ0)

+

∫

Ω

|un − u| · |∇ϕ0|dx+
∫

Ω

|(un − u)(1− ϕ0)|dx)
]

� C
[
4ε+

∫

Ω

|un − u|
(
1 + ‖∇ϕ0‖∞

)
dx
]
� 5Cε. ��

Remark 6.69. The sequence {uδ} of Theorem 6.56 satisfies γ0(uδ) = γ0(u).

Indeed, u− uδ is the strong limit in BV of

vnδ =

n∑

0

(
ρηj ∗ (ϕju)− ϕju

)
,

a sequence whose general term has compact support in ∂Ω for every n, and

therefore vanishes on the boundary.

Theorem 6.70. Let Ω be an open subset of R
N of class C1 and let u ∈

BV (Ω). Then there exists a sequence {un} of functions in C∞c (Ω) such that

‖un − u‖1 −→ 0 and

∫

Ω

|∇un| −→
∫

Ω

|∇u|+
∫

∂Ω

|u|.
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Proof of Theorem 6.70.

We begin by covering Ω with a countable family of open sets (finite if Ω is

bounded), whereΩ0 satisfies d(Ω0, ∂Ω) > 0 and, after changing the coordinate

system, if necessary, the Ωi with i � 1 satisfy

Ωi ∩Ω ⊂ {(x′, xN ) | x′ ∈ Oi, xN > ai(x
′)},

for a class C1 function ai on the bounded open subset Oi of R
N−1. Let {(ϕi)i}

be a partition of unity subordinate to this cover. We begin by showing the

result for ϕiu with fixed index i. We extend ϕiu by 0 outside of Ω ∩Ωi. The

resulting function ϕ̃iu belongs to BV (RN ) and satisfies

(6.71)

∫

RN

|∇(ϕ̃iu)| =
∫

Ω∩Ωi

|∇(ϕiu)|+
∫

∂Ω∩Ωi

|ϕiu|.

As in the proof of Proposition 3.57, we use the inclusion of Ωi ∩ Ω in Ui =

{(x′, xN ) | x′ ∈ O′
i, xN > ai(x

′)}, which is star-convex with respect to one

of its points. Consider the map x 	→ hλ(x) = xi + λ(x − xi). If λm(i) is a

sequence of nonnegative real numbers < 1 that tend to 1, then ϕ̃iu ◦ h−1
λm(i)

has compact support in Ω and converges tightly to ϕ̃iu in BV (RN ). Let

εm(i) = d(∂Ω, ∂(hλ(Δi))/2 and let ρ be a regularizing function; then ρεm(i) �

(ϕ̃iu◦h−1
λm(i)) belongs to D(Ω) and converges tightly to ϕ̃iu in BV (RN ) when λ

tends to 1. We thus obtain a sequence of functions in C∞c (Ωi ∩Ω) that tends
tightly to ϕ̃iu in BV (RN ) when λm(i) tends to 1. In particular,

D(m, i) =

∫

RN

∣
∣∇
(
ρεm(i)

� (ϕ̃iu ◦ h−1
λm(i))

)∣∣−
∫

Ωi∩Ω

|∇(ϕiu)| −
∫

∂Ω∩Ωi

|ϕiu| −→ 0.

Next, imposing that λm(i) is sufficiently near 1 to have |D(m, i)| � η2−i, we

can complete the proof by using the properties of the cover of ∂Ω by the

Ωi ∩ ∂Ω for i > 1 and the properties of the partition of unity {ϕi}. ��

Remark 6.72. By extending ϕiu outside ofΩ by a function G∈W 1,1(RN
�Ω)

instead of by 0, the same process allows us to construct a sequence {ṽn} in

W 1,1(RN ) that equals g = γ0G on ∂Ω and satisfies

(6.73)

∫

Ω

|∇vn| −→
∫

Ω

|∇u|+
∫

∂Ω

|(u− g)−→n |dσ.

We used this remark when studying minimal surfaces in Chapter 5.

6.4 Distributions with Gradient in Lp

We will use the notion of an open set of class C1 given in Chapter 2.
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Theorem 6.74. Let T be a distribution on an open subset Ω of RN ; then

∇T ∈ Lploc(Ω) =⇒ T ∈W 1,p
loc (Ω).

If Ω is moreover bounded and of class C1, then we have

∇T ∈ Lp(Ω) =⇒ T ∈W 1,p(Ω).

Proof of Theorem 6.74 (see also [70]).

Let ω be a relatively compact open subset of Ω. We will show that the

restriction T | ω belongs to Lp(ω). Let η > 0 be such that ω +B(0, 2η) � Ω.
Let γ be a regular function that equals 1 in a neighborhood of zero and has

compact support in B(0, η). We let E denote the fundamental solution of the

Laplacian, that is, the function

(6.75) E(r) =

⎧
⎨

⎩

ln r

2π
if N = 2,

kNr
2−N if N � 3,

where r =
(∑

i |xi|2
)1/2

and kN is the constant given in Chapter 2. We have

Δ(γE) = γΔE + ζ = δ0 + ζ,

where ζ = (Δγ)E + 2∇γ · ∇E is a function in D(B(0, η)). The convolution

T � ζ belongs to C∞(ω+B(0, η)), and therefore to Lp(ω) for every p. We have

T = T � δ0 = T � Δ(γE)− T � ζ.

It therefore suffices to study the regularity of T � Δ(γE) on ω. Let us write

T � Δ(γE) =
∑

i

∂iT � ∂i(γE) =
∑

i

∂iT � γ∂iE +
∑

i

∂iT � ∂i(γ)E.

Since ∇(γ)E is C∞ with compact support in B(0, η), the convolution ∇T �
∇(γ)E is an element of C∞(ω +B(0, η)), hence belongs to Lp(ω) for every p.

Let ϕ be a function that equals 1 on ω + B(0, η) and has compact support

in Ω. When restricted to ω, the convolution ϕ∇T �γ∇E on R
N coincides with

∇T �γ∇E. We now use the inclusions ϕ∇T ∈ Lp and γ∇E ∈ L1, which imply

that the convolution belongs to Lp(ω). To obtain a better result, we note that

γ∇E ∈ Lk for every k < N/(N − 1). It follows that T ∈ Lrloc(Ω) for every r
with 1+ 1/r > 1/p+ (N − 1)/N or, equivalently, with r < pN/(N − p). This
completes the proof that T ∈ Lploc(Ω).

Let us now suppose that Ω is a bounded open set of class C1 and that

∇u ∈ Lp(Ω). We already know that u ∈ Lploc(Ω). Since Ω is of class C1, we
can cover it with a finite number of bounded open subsets Ωi such that, after
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changing the coordinate system in such a way that −→n · eN �= 0, if necessary,

we can write

Ωi ∩Ω ⊂ {(x′, xN ) | x′ ∈ Ω′
i, xN > ai(x

′)} ,
Ωi ∩ ∂Ω = {(x′, ai(x′)) | x′ ∈ Ω′

i} ,

where Ω′
i is a bounded open subset of RN−1 and ai is a C1 function on Ω′

i.

Let ϕ0 be the first element of the partition of unity subordinate to the cover

{Ωi} of Ω. This function has compact support in Ω0. Since Ω0 � Ω, we have

ϕ0u ∈ Lp(Ω). Let us show that, likewise, ϕiu ∈ Lp(Ωi ∩ Ω). Let Bn be the

strip in Ωi ∩Ω defined by

Bn =
{
(x′, xN ) | x′ ∈ Ω′

i, xN = ai(x
′) + λ, λ ∈ [1/n, 1]

}
.

Using the upper bound we give below, we show that limn→+∞ ‖ϕiu‖Lp(Bn) is

finite, thus proving the finiteness of ‖ϕiu‖Lp(B∞). Together with the inclusion

ϕiu ∈ Lploc, this will give the desired conclusion, namely that ϕiu ∈ Lp(Ωi∩Ω).
Indeed, since ϕiu(x

′, ai(x
′) + λ0) = 0 for sufficiently large λ0, we see that the

function λ 	→ ϕiu(x′, ai(x′) + λ) can be obtained as an integral over [λ, λ0].

More precisely,

‖ϕiu‖pLp(Bn)
=

∫

Ω′
i

∫ 1

1/n

|ϕiu|p(x′, ai(x′) + λ) dλ dx′

=

∫

Ω′
i

∫ 1

1/n

∣
∣
∣
∫ λ0

λ

∂N (ϕiu)(x
′, ai(x

′) + s)ds
∣
∣
∣
p

dλ dx′,

whence, by Hölder’s formula,

‖ϕiu‖pLp(Bn)
� (1− 1/n)λp−1

0

∫

Ω′
i

∫ λ0

0

|∇(ϕiu)|p(x′, ai(x′) + s) ds dx′

� λp−1
0 ‖∇(ϕiu)‖pLp(Ω).

As stated above, we therefore have ϕiu ∈ Lp(Ω∩Ωi). We conclude by writing∫
Ω
|u|p �

∑
i

∫
Ωi
|u|p, where the sum on the right-hand side is finite. ��

In Exercise 6.14, we treat one of the consequences of this theorem. Let Ω

be an open subset of RN of class C1 and let m be an integer with m � 1. For

p � 2, we define the space

(6.76) Xm(Ω) = {u ∈ Lp(Ω) | Dmu ∈ Lp(Ω)} .

Using Theorem 6.74, we see that it is of local type, which means that if

u ∈ Xm(Ω), then for every ϕ ∈ C∞c (Ω), we have ϕu ∈ Xm(Ω). Exercise 6.14

contains other properties of these spaces.
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6.5 Distributions with Gradient in M1

Theorem 6.77. If T ∈ D′(Ω) and ∇T ∈ M1(Ω), then T ∈ BV loc(Ω). If Ω

is moreover of class C1 and bounded, then T ∈ BV (Ω).

Proof of Theorem 6.77.

The proof is analogous to that of Theorem 6.74. It suffices to verify that

if E is the fundamental solution of the Laplacian and μ is a bounded measure

on R
N , then the convolution μ � ζ∇E belongs to Lp for p < N/(N − 1). We

will show, more generally, that if μ ∈ M1(RN ) and f ∈ Lp with p > 1 has

compact support, then f � μ belongs to Lp and satisfies

|f � μ|p � ‖f‖p
∫

RN

|μ|.

This is true even when f does not have compact support, but in that case, we

need to define the convolution f � μ, for which we need generalized convolu-

tions (cf. [22]). Let {un} be a sequence of functions in L1(RN ) that converges

vaguely to μ. For example, we can take un = ρ1/n � μ where ρ is a function

in D(RN ) with
∫
RN ρ(x)dx = 1 and ρ1/n = nNρ(nx). We then know that |un|

converges tightly to |μ| on R
N . By a well-known property of convolutions, we

have

‖un � f‖p � ‖un‖1‖f‖p.
The sequence un �f is therefore bounded in Lp and, by the weak compactness

of the bounded subsets of Lp, we can extract a subsequence that converges

weakly in Lp. In the sense of generalized convolutions, its limit is μ�f . Finally,

μ � f ∈ Lp and by the lower semicontinuity of the norm on Lp(RN ) for the

weak convergence, we have

‖μ � f‖p � lim ‖un‖1‖f‖p =
(∫

Ω

|μ|
)
‖f‖p. ��

6.6 Functions with Deformations in Lp for 1 < p < ∞

This section is linked to Section 7.4, which is devoted to Korn’s inequality.

Definition 6.78. Let T be a distribution with values in R
N . We denote the

components of T by Ti and define the deformation distribution of T to be a

symmetric matrix whose coefficients are the distributions

(6.79) εij(T ) =
∂jTi + ∂iTj

2
, i, j ∈ [1, N ].

For p > 1, we define the space

Yp(Ω) = {u ∈ Lp(Ω,RN ) | ∀ i, j ∈ [1, N ]2, εij(u) ∈ Lp(Ω,R)}.
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We endow this space with the norm

‖u‖Yp =

(
‖u‖pLp(Ω) +

∫

Ω

|ε(u)(x)|p(x)dx
)1/p

,

where |ε(u)| =
(∑

ij |εij(u)|2
)1/2

.

Note that if u ∈ W 1,p(Ω,RN ), then the derivatives of the components ui
are in Lp(Ω), which implies that ε(u) ∈ Lp(Ω,RN2

) and gives u ∈ Yp(Ω). For
many reasons, a crucial question is whether the converse implication holds,

which would imply the equality W 1,p(Ω,RN ) = Yp(Ω) or, equivalently, the

existence of a constant C such that

∀u ∈ Yp(Ω), ‖∇u‖p � C‖u‖Yp(Ω).

In analogy to the case p = 2, this last relation can be called Korn’s inequality .

Its proof is set up in Chapter 7 and carried out in Section 7.4 for regular open

sets. In this section, we content ourselves with three useful results.

Proposition 6.80. The space Yp(Ω) endowed with the norm mentioned above

is a Banach space.

The proof is left to the reader.

Proposition 6.81. The space Yp(Ω) is of local type, which means that

∀ϕ ∈ D(Ω), ∀u ∈ Yp(Ω), ϕu ∈ Yp(Ω).

Proof of Proposition 6.81.

First, we have uiϕ ∈ Lp(Ω) for every i. It follows that uϕ ∈ Lp(Ω,RN ).

Second,

2εij(uϕ) = ∂i((uϕ)j) + ∂j((uϕ)i)

= ∂i(ujϕ) + ∂j(uiϕ)

= (∂iuj + ∂jui)ϕ+ uj∂iϕ+ ui∂jϕ,

so that

(6.82) εij(uϕ) = ϕεij(u) +
uj∂iϕ+ ui∂jϕ

2
.

The component εij(uϕ) belongs to Lp(Ω) because it is a sum of products of

functions in Lp, giving the stated result. ��

We can now deduce the following density result.

Proposition 6.83. Let Ω be an open subset of RN of class C1; then C∞(Ω)∩
Yp(Ω) is dense in Yp(Ω).
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Proof of Proposition 6.83.

Let Ωk and Ak be as in the proof of Proposition 6.56. Let {ϕk} be a

partition of unity subordinate to the cover of Ω by the Ak. Finally, let η > 0,

let ρ be a regularizing function, and let ηk be sufficiently small that

‖ρηk
� (ϕku)− ϕku‖p � η2−(k+1),(6.84)

‖ρηk
� (∇(ϕk)u)−∇(ϕk)u‖p � η2−(k+1),(6.85)

‖ρηk
� (ϕkε(u))− ϕkε(u)‖p � η2−(k+1).(6.86)

As in the proof of Theorem 6.56, we show that the sequence defined by vη =∑
k ρηk

�(ϕku) lies in C∞(Ω). Every term vη of the sequence belongs to Yp(Ω).

To see this, it suffices to note that εij(ρηk
� (ϕku)) = ρηk

� εij(ϕku) and to

apply formula (6.82) to εij(ϕku).

Finally, let us show that uη converges to u in Yp(Ω), which at the same

time shows that uη is an element of Yp(Ω). To begin, by (6.84), we have
∫

Ω

|uη − u|p �
∫

Ω

[∑
|ρηk
� (ϕku)− (ϕku)|

]p
� ηp.

We also have

εij(uη − u) = εij
[+∞∑

0

(ρηk
� (ϕku)− ϕku

]
,

and owing to the properties of convolutions, the right-hand side can be written

as the sum of the sequence with general term ρηk
� εij(ϕku) − εij(ϕku). By

(6.82), it can also be written as the sum of the two terms

Uij = ρηk
� (ϕkεij(u))− ϕkεij(u),

Vij =
1

2

[
ρηk
� (uj∂iϕk + ui∂jϕk)− (uj∂iϕk + ui∂jϕk)

]
.

By applying Minkowski’s inequality to the norms of these two terms in Lp(Ω)

and using the relations (6.85) and (6.86), we obtain the result
∫

Ω

|ε(uη − u)|pdx � Kηp. ��

6.7 Spaces of Functions with Deformations in L1

When p = 1, the space Y1 is denoted by1 LD(Ω). One can show that Korn’s

inequality does not extend to the case p = 1, [55]. In particular, Y1(Ω) �=
W 1,1(Ω).

1 The name of the space LD(Ω) is an abbreviation of “Lebesgue deformation”, that

is, with deformations in L1(Ω).
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Definition 6.87.

LD(Ω) =
{
u ∈ L1(Ω,RN ) | ε(u) ∈ L1(Ω,RN2

)
}
= Y1(Ω).

It is clear that LD(Ω) endowed with the norm

(6.88) ‖u‖LD(Ω) = ‖u‖1 + ‖ε(u)‖1,

is a Banach space.

Theorem 6.89. If T is a distribution on an open set Ω with values in R
N

such that ε(T ) ∈ L1loc(Ω,RN2

), then T ∈ L1loc(Ω,RN ). If Ω is, moreover,

bounded and of class C1 and if T ∈ D′(Ω,RN ) satisfies ε(T ) ∈ L1(Ω,RN2

),

then T ∈ L1(Ω,RN ).

Proof of Theorem 6.89 (see also [70]).

To prove the theorem, we use the following characterization of LD(Ω):

(6.90) ∀u ∈ L1(Ω), u ∈ LD(Ω) ⇐⇒ ∀α ∈ R
N , (α · ∇(α · u)) ∈ L1(Ω).

We obtain the implication ⇐ by taking α = ei, followed by α = (ei + ej)/2.

Conversely, if u ∈ LD(Ω), then

α · ∇(α · u) = αiαjui,j = αiαjεij(u),

which concludes the proof. Now that we have this result, given a vector α, we

introduce a solution of the equation in the sense of distributions, namely

(6.91) ΔEα +∇(divEα) = αδ0.

We can verify that the function Eα defined by

Eα =

⎧
⎪⎨

⎪⎩

3α

8π
ln r − x α · x

8π
if N = 2,

kN
3α

4rN−2
+ kN

(
N − 2

4

)
x(x · α)
rN

if N > 2,

(cf. Exercise 6.4) satisfies the equation. Moreover, the derivatives of Eα clearly

belong to Lploc(R
N ) for every p < N/(N − 1). We want to show that u ∈ Lploc

if u is a distribution on Ω with ε(u) ∈ Lp. Let ω be a relatively compact open

subset of Ω and let η be such that ω+B(0, 2η) ⊂ Ω. Let γ ∈ D(B(0, η)) equal 1
in a neighborhood of 0. We compute the jth component of (Δ+∇div)(γEα):

Δ(γEαj) + ∂j
(
div(γ

−→
E α)

)
= γΔEαj + 2∇γ · ∇Eαj + EαjΔγ + γ∂j div

−→
E α

+ (∂jγ)(div
−→
Eα) +∇(∂jγ) ·

−→
E α

= αjδ0 + ζj ,
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where ζj is a function in D(B(0, η)). In particular, the convolution of uj
and ζj is a function in C∞(ω +B(0, η)), and therefore lies in Lp(ω) for every

p � ∞. Let us show that for every α, we have α · u ∈ Lp. For this, we take

the convolution of the previous equality with ui. Simplifying the notation Eα

to E, this gives

α · u =
N∑

1

αjuj =

N∑

1

uj � (Δ(γEj) + ∂j(div(γE)) +

N∑

1

uj � ζj ,

whence, by setting u−→� ζ =
∑N

1 uiζi, we obtain

α · u− u−→� ζ =
∑

1�i,j,k�N

∂iuj � ∂i(γEj) + ∂kui∂i(γEk)

=
∑

1�i,j�N

∂jui � (∂j(γEi) + ∂i(γEj))

= 2
∑

1�i,j�N

εij(u) � εij(γE).

This last function restricted to ω coincides with the product

2(ϕεij(u)) � εij(γE), where ϕ is a function in D(B(0, 2η) + ω) that

equals 1 on ω + B(0, η). Since 2ε(γE) ∈ Lp for every p < N/(N − 1) and

ϕε(u) ∈ L1, we find that u belongs to Lp(ω) for p < N/(N − 1).

We now wish to show that u ∈ Lp(Ω) when Ω is bounded and of class C1.
We once more use the usual cover of Ω and the associated partition of unity.

We note that a derivative of the type ∂iui, which lies on the diagonal of the

matrix (εij(u)), is an element of L1(Ω). Consider the open set Ωk ∩ Ω for

k � 1. There exists an index i such that the outward-pointing normal −→ν to

the boundary ∂Ω ∩ Ωk satisfies −→ν · ei �= 0 almost everywhere. We can then

write

Ω ∩Ωk ⊂ {(x̆i, xi) | x̆i ∈ Ok, ak(x̆i) < xi},

where Ok is an open subset of R
N−1, ak is a C1 function on Ok, and the

boundary is defined by

∂Ω ∩Ωk = {(x̆i, ak(x̆i)) | x̆i ∈ Ok}.

Given this, the same computation as in the proof of Theorem 6.74 shows that

ui ∈ Lp(Ω ∩Ωk) because of the inclusion ∂ui/∂xi ∈ L1(Ω).
The same reasoning can be applied to every other component uj with j �= i

for which −→ν · ej �= 0 almost everywhere on ∂Ω ∩ Ωk. If this is not the case,

then we still have −→ν · ((ei + ej)/
√
2) �= 0 almost everywhere. This suggests

that we reduce to considering the function v defined by v = ui+uj and change

the variables so that we can use a derivative of v that belongs to L1(Ω) (see
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Exercise 6.8 for the details). By applying the same reasoning as before, we

find that v ∈ Lp(Ω ∩ Ωk). Since v = ui + uj and ui ∈ Lp(Ω ∩Ωk), it follows

that uj ∈ Lp(Ω ∩Ωk).

We use the partition of unity to deduce from the above that every com-

ponent ui belongs to L
p(Ω), and therefore that u ∈ Lp(Ω). ��

6.7.1 Trace Results

Theorem 6.92. Let Ω be an open subset of RN of class C1. Then there ex-

ists a continuous surjective linear map from LD(Ω) onto L1(∂Ω,RN ) that

coincides with the trace operator as defined in the classical sense, that is, on

LD(Ω) ∩ C(Ω,RN ) or on W 1,1(Ω,RN ).

Proof of Theorem 6.92. We take up the arguments of P. Suquet [67] and of

R. Temam [70].

We begin by assuming that we are in the neighborhood of a point of the

boundary where there exists a system of coordinates that allows us to write

the boundary in the form {xN = ai(x
′) | x′ ∈ O′}. We also assume that u has

compact support in Ωi ∩Ω, while

Ωi ∩Ω ⊂ {(x′, xN ) | xN > ai(x′), x′ ∈ O′} ,

where O′ is an open subset of RN−1 and the function ai is C1 on O′. We show

that in the neighborhood of such a point, we can define a trace uN (x′, ai(x
′)).

The usual reasoning that uses a cover of Ω and the associated partition of

unity then allows us to construct the trace γ0uN in L1(∂Ω), starting with

this neighborhood. We recall that ∂NuN ∈ L1(Ω) and for a pair (α, α′) with

0 < α < α′, we write the equality

uN (x′, ai(x
′) + α′)− uN (x′, ai(x

′) + α)) =

∫ α′

α

∂NuN (x′, ai(x
′) + y)dy.

To simplify the notation, we set gα(x
′) = uN (x′, ai(x

′) + α). By integrating

|gα − gα′ | over the hypersurface Σ = ∂Ω ∩Ωi, we obtain

(6.93)
∫

Σ

|gα − gα′ | (x′)dσ �
∫

O′

∫ ai(x
′)+α′

ai(x′)+α

|∂NuN (x′, s)| |ν−1
N |(x′, ai(x′))ds dx′,

where νN (x′, ai(x
′)) = −1/

√
1 + ‖∇ai(x′)‖2 is the Nth component of the

unit outward-pointing normal vector to ∂Ω at (x′, ai(x
′)). Using the assump-

tions on ∇ai and setting Aα = {(x′, xN ) ∈ Ω | xN < ai(x′) + α, x′ ∈ O′}, we
deduce that

(6.94)

∫

Σ

|gα − gα′ | (x′)dσ � C1

∫

Aα′�Aα

|∂NuN | (x)dx.
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Since ∂NuN lies in L1, the right-hand side satisfies

lim
α→0
α′→0

∫

Aα′�Aα

|∂NuN (x)| dx = 0.

It follows that {gα} is a Cauchy sequence in L1(Σ).

Let us set Bα = {(x′, ai(x′) + λ) | λ ∈ [0, α]}. By the above, the limit

of {gα}, which we denote by g and which belongs to L1(Σ) = L1(∂Ω ∩ Ωi),

satisfies ∫

Σ

|g − gα| (x′)dσ � C1

∫

Bα

|∂NuN (x)| dx,

whence ∫

Σ

|g|dσ �
∫

Σ

|gα| dσ + C1

∫

Bα

|∂NuN (x)| dx.

By integrating this relation with respect to α over [0, α0], where α0 is bounded

from above as a function of the compact support of u, we obtain

α0

∫

Σ

|g|dσ �
∫ α0

0

∫

Σ

|gα| dσds+ C1

∫ α0

0

∫

Bα

|∂NuN (x)| dx ds

�
∫

Bα0

|uN (x)| dx+ C1

∫ α0

0

∫

Bα

|∂NuN (x)| dx ds.

The first term on the right-hand side is bounded from above by ‖uN‖L1(Ω)

and the second term by α0‖∂NuN‖L1(Ω). Consequently, the function g, which

we now denote by γ0uN , satisfies the inequality

‖γ0uN‖L1(∂Ω∩Ωi) � K‖uN‖LD(∂Ω∩Ωi).

This implies that the map that sends uN to g, which is linear, is a continuous

map from LD(∂Ω ∩Ωi) to L
1(∂Ω ∩Ωi).

This reasoning remains valid for every component ui in the neighborhood

of a boundary point x with νi(x) �= 0. If νi(x) = 0, then there exists a j dif-

ferent from i, such that νj(x) �= 0. We then have (νi + νj)(x) �= 0 and, by an

argument we already used in the proof of Theorem 6.89, we can use the previ-

ous method to define the trace γ0(ui + uj) in a neighborhood of x. Moreover,

since γ0uj is well defined, this leads to the trace of ui in this neighborhood. As

we have already stated, we construct the trace of each component in L1(∂Ω)

and the resulting trace map is indeed linear and continuous.

Moreover, since the trace map γ0 from W 1,1(Ω,RN ) to L1(∂Ω,RN ) is

surjective, we see that the embedding W 1,1(Ω,RN ) ⊂ BD(Ω,RN ) gives the

surjectivity of the new trace map. ��
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6.7.2 Embedding Results

Theorem 6.95. Let Ω be a Lipschitz open subset of R
N ; then the space

LD(Ω) is embedded in LN/(N−1)(Ω,RN ), and therefore in Lq(Ω,RN ) for ev-

ery q with q � N/(N − 1).

Proof of Theorem 6.95.

We begin by establishing the critical property of the embedding, namely

the inequality ‖u‖LN/(N−1)(Ω,RN ) � C(|ε(u)|1) for C∞ functions with com-

pact support. The corresponding result for functions in LD(Ω) will follow by

density. Let u ∈ D(Ω,RN ). We consider

α =

i=N∑

i=1

αiei, |α| = 1 and vα = α · u =
N∑

1

αiui.

Using the inequality
∣
∣∑

i�N,j�N αiαjεi,j(u)
∣
∣ � N |ε(u)|, we have

|vα(x)| =
∣
∣
∣
∫ 0

−∞

d

ds
vα(x+ sα)ds

∣
∣
∣ �

∫ 0

−∞

∣
∣
∣

N∑

i,j=1

αiαj∂jui(x+ sα)
∣
∣
∣ds

=

∫ 0

−∞

∣
∣
∣

N∑

i,j=1

αiαjεij(u)(x+ sα)
∣
∣
∣ds � N2Iα,

where Iα =
∫ 0

−∞ |ε(u)(x+ sα)|ds.
Let us now consider vectors hk = α − αkek for k = 1, 2, . . . , N − 1. For

i �= k, we write

ui(x) =

∫ 0

−∞

d

ds
ui(x+ shk)ds =

∫ 0

−∞

∑

j �=k

αj∂jui(x+ shk)ds

and for i = k,

uk(x) =

∫ 0

−∞
∂kuk(x+ sek)ds.

For a given k in {1, . . . , N − 1}, we can then also write vα(x) as

N∑

i=1

αiui(x) =

∫ 0

−∞

∑

i,j �=k

αiαj∂jui(x+ shk)ds+

∫ 0

−∞
αk∂kuk(x+ sek)ds

= 2

∫ 0

−∞

∑

i,j �=k

αiαjεij(u)(x+ shk)ds

+

∫ 0

−∞
αkεkk(u)(x+ sek)ds = Ik + Jk.
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Let us consider the power |vα(x)|N/(N−1). We must show that this belongs to

L1loc. We begin by using the definition of Iα given before to write the following

inequality, which holds up to a multiplicative constant:

|vα(x)|N/(N−1) �
[
Iα |vα(x)|

]1/(N−1)
.

Using the formula |vα(x)|N−1 =
∏N−1

1 (Ik + Jk) and a classical inequality on

norms in finite dimension, we deduce that |vα(x)|N/(N−1) is bounded from

above by a linear combination of functions of the form
[
IαH1H2 · · ·HN−1

]1/(N−1)
,

where Hi denotes either an integral Ii or an integral Ji. In the situations

where we can apply Lemma 2.40 of Chapter 2, we will bound each term of

such a product from above by a function in N − 1 variables. Exercise 6.20

concerns the case N = 3, where we need a change of variables for which these

products are all functions of two variables. That exercise can help motivate the

following algebraic lemma, which we will use to determine the upper bounds.

We state and prove the lemma in the general case.

Lemma 6.96. Consider vectors α =
∑

i αiei with nonzero αi and for every

i ∈ [1, N − 1], let hi = α−αiei. For each index i, let Ei be a vector belonging

to {hi, ei}. Then every sequence of the form α,E1, E2, . . . , EN−1 is a basis

for R
N .

Proof of Lemma 6.96.

We begin by supposing that Ei = hi for every i. In this case, the determi-

nant of the system α, h1, h2 · · ·hN−1 equals α1 · · ·αN det(J), where J is the

matrix whose elements all equal 1 except for those on the first superdiago-

nal, which are all 0. Consequently, the lemma holds since this determinant is

nonzero.

To show the result in the other cases, we use an induction on the dimension

of the space, where the initial step is obvious. We use vectors α and Ei such

that

α = α+ αNeN and ∀ i � N − 2, Ei = Ei + εieN ,

where εi = αN if Ei = hi and εi = 0 if Ei = ei. The induction hypothesis

applied to the N − 1-dimensional space
[
e1, e2, . . . , eN−1

]
ensures us that the

vectors α,E1, . . . , EN−2 form a basis of that space. Indeed, they are defined

in the same manner as α,Ei, but without components over eN . Since EN−1 ∈
{hN−1, eN−1}, we obtain the result of the lemma for dimension N by proving

that the sequences

α+ αNeN , E1 + ε1eN , . . . , EN−2 + εN−2eN , eN−1

α+ αNeN , E1 + ε1eN , . . . , EN−2 + εN−2eN , hN−1
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both form bases.

Consider the first sequence, and let λj , j ∈ [0, N − 1], satisfy

λ0(α+ αNeN ) +

N−2∑

1

λi(Ei + εieN ) + λN−1eN−1 = 0,

which implies that

(6.97) λ0α+

N−2∑

1

λiEi + λN−1eN−1 = −
(
λ0αN +

N−2∑

1

λiεi

)
eN .

We deduce from this that λ0αN +
∑N−2

1 λiεi = 0 or, by letting λ∗i denote

the λi for which εi is nonzero, that λ0αN +
∑N−2

1 λ∗iαN = 0. Consequently,

since αN �= 0, we obtain the relation λ0 +
∑N−2

1 λ∗i = 0. When εi �= 0, that

is, when Ei = hi, the coefficient of Ei over eN−1 is αN−1. Consequently, the

coefficient of eN−1 on the left-hand side of (6.97) can be written as λN−1 +

λ0αN−1 +
∑N−2

1 λ∗iαN−1 and therefore equals λN−1. By this result and the

induction hypothesis, we see that when the left-hand side of (6.97) equals 0,

we have λN−1 = 0, λ0 = 0, and λi = 0 for every i ∈ [1, N − 2].

Next, consider the second sequence. In this case, since hN−1 = α+αNeN−
αN−1eN−1, the right-hand side of (6.97) is replaced by

−
(
λ0αN +

N−2∑

1

λ∗iαN + λN−1αN

)
eN ,

whence

(6.98) λ0 +

N−2∑

1

λ∗i + λN−1 = 0.

The left-hand side of (6.97) is replaced by

(λ0 + λN−1)α− λN−1eN−1 +

N−2∑

1

λiEi.

Taking into account equality (6.98), we see that the coefficient of the left-hand

side with index N − 1 is −λN−1. We conclude, as in the first case, by using

the induction hypothesis. ��

Let us return to the proof of the theorem. We consider a product

IαH1 · · ·HN where Hi =
∫
RN |ε(u)|(x + sEi)ds. Let ξj be the coefficient in

the basis α,E1, . . . , EN−1, so that x =
∑
xiei = ξ0α +

∑N−1
1 ξjEj . Then,

through a change of variables that involves the determinant of the system of
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vectors α,E1, . . . , EN , we prove that Hi does not depend on the variable ξi.

Consequently, we can apply Lemma 2.40 of Chapter 2, which tells us that vα
belongs to L

N/(N−1)
loc (Ω).

Moreover, the inequality concerning the norms in the lemma shows that

there exists a constant C such that ‖vα‖LN/(N−1) � C‖u‖LD(Ω). Finally, since

this is true for every α, we can deduce that for the functions in D(Ω), the
embedding is not surjective, and the existence of the embedding is proved, as

stated at the beginning of the proof. ��

To obtain the regularity up to the boundary, we take up arguments already

used in Theorem 6.74.

Theorem 6.99. Let Ω be a Lipschitz bounded open subset of RN . The em-

beddings of LD(Ω) in Lp(Ω,RN ) for p < N/N − 1 are compact.

Proof of Theorem 6.99. By the previous theorem and Lemma 2.82 of Chap-

ter 2, it suffices to show that the embedding of LD(Ω) in L1(Ω) is compact.

We will use the compactness criterion of Theorem 1.95. Let {un} be a bounded
sequence in LD(Ω). We want to show the following statement:

∀ ε > 0, ∃ δ > 0, ∃G compact, ∀n ∈ N, ∀h, |h| � inf (δ, d(G, ∂Ω)) =⇒
∫

Ω�G

|un(x)|dx � ε and

∫

G

|un(x+ h)− un(x)|dx � ε.(6.100)

The first inequality of (6.100) is obvious, because un is bounded, owing to the

existence of the embedding of BV (Ω) into LN/(N−1)(Ω)

(6.101)

∫

Ω�G

|un(x)|dx

�
(∫

Ω�G

|un(x)|N/(N−1)dx
)N−1/N

mes(Ω �G)1/N .

Moreover, because Ω is bounded, this measure can be made arbitrarily small

by a suitable choice of G.

Proving the second statement is more delicate. To begin, we can drop the

index n and suppose that u has compact support in Ω. Namely, it suffices to

replace u by ϕu, where ϕ is a C1 function with compact support in Ω and

value 1 on G. Let α be a vector of norm 1 in R
N . We will show that for h

sufficiently small,

∀ s ∈ ]0, 1[, ∃ c > 0, ‖τh(α · u)− α · u‖L1(Ω) � c|h|s‖ε(u)‖L1(Ω,RN2 ).

We use the computations of Theorem 6.89. Let Eα be as defined in the proof

of that theorem and satisfy

ΔEα +∇(div(Eα)) = αδ0,
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and let γ be a function in D(B(0, η)). We recall the following result from

Theorem 6.89:

α · u− u−→� ζ = 2
∑

1�i,j�N

εij(u) � εij(γEα),

in which ζ is a regular function with compact support in R
N . Since translation

commutes with convolution, it follows that

τh(α · u)− α · u = 2
∑

ij

εij(τh(γEα)− (γEα)) � εij(u) + (τhζ − ζ)−→� u.

To continue, we have |(τhζ − ζ)−→� u| � C|h| and εij(Eα) is a positively ho-

mogeneous function of degree 1 − N , which allows us to apply the following

lemma.

Lemma 6.102. Let f be a function on R
N with values in R that is positively

homogeneous of degree 1 − N and C1 outside of 0. Then for every s ∈ [0, 1[,

there exists a C such that for every h with |h| � 1, we have

|f(x+ h)− f(x)| � C|h|s
{

1

|x+ h|N−1+s
+

1

|x|N−1+s

}
.

Proof of Lemma 6.102.

We reduce to showing the result for x of norm 1. Indeed, let us suppose

the result proved for such x and for every h. Using the homogeneity, we then

write

|f(x+ h)− f(x)| = |x|−N+1|f
(
(x+ h)/|x|

)
− f(x/|x|)|

� C|x|−N+1 (|h|/|x|)s
(

1

(1 + |h|/|x|)N−1+s
+ 1

)

= C|h|s
(

1

|x+ h|N−1+s
+

1

|x|N−1+s

)
.

We therefore wish to prove the property for x of norm 1. Let us suppose that

|h| < 1/2. We use the inequality of the mean value theorem at x. Since f is

homogeneous of degree 1 − N , its gradient is homogeneous of degree −N ,

whence

|f(x+ h)− f(x)| � sup
|y|=1

|∇f(y)| |h|
|x+ θh|N .

Using |h| < 1/2, we have

|θh+ x| � |x| − |h| � 1

2
and |θh+ x| � 3

2
� 3|x+ h|.
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Hence

|h|1−s 1

|x+ θh|N � 1 + |x+ h|1−s

|x+ θh|N � 2N +
3N

|x+ h|N−1+s

� C
(
1 +

1

|x+ h|N−1+s

)
.

Consequently,

|f(x+ h)− f(x)| � C ′|h|
|x+ θh|N � C ′|h|s

( 1

|x|N−1+s
+

1

|x+ h|N−1+s

)
.

Let us now suppose that |h| � 1/2 and |x| = 1. We then have |h|/|x+ h| �
1/3 and, by the homogeneity, |f(x)| � |x|1−N sup|y|�1 |f(y)|. It follows that

|f(x+ h)− f(x)| � C
(

1

|x+ h|N−1
+ 1

)
� C ′

(
3s|h|s

|x+ h|N−1+s
+ 1

)

� Chs
(

1

|x+ h|N−1+s
+ 1

)

because h � 1/2 implies (3|h|)−s � 1. ��

We return to the proof of the theorem by applying the lemma to the

εij(Eα). Taking into account all components and the factor γ, up to the term

concerning ζ, we can write

|τh(α · u)− α · u|(x) � C|h|s
{
τh(

γ(x)

|x|N−1+s
) +

γ(x)

|x|N−1+s

}
� |ε(u)|,

or

|τh(α · u)− α · u|(x) � C|h|s
{
γ(x)

|x|N−1+s
� (|τhε(u)|+ |ε(u)|)

}
.

The Hausdorff–Young theorem (cf. Appendix to Chapter 4) implies that, since

x 	→ γ(x)|x|−N+1−s belongs to Lk for k < N/(N − 1 + s), hence for k = 1 in

the present situation, the convolution γ1/|x|N−1+s�(|τhε(u)|+ |ε(u)|) belongs
to Lk(G) for the same values of k. For k = 1, we have the inequality

∥
∥
∥
∥γ

1

|x|N−1+s
�
(
|τhε(u)|+ |ε(u)|

)∥∥
∥
∥
L1(G)

�
∥
∥
∥
∥γ

1

|x|N−1+s

∥
∥
∥
∥
1

|ε(u)|L1(Ω).

We deduce from this that

‖τh(α · u)− α · u‖L1(G) � C|h|s|ε(u)|L1(Ω)

for every s < 1. Returning to the vector function u, this concludes the proof

of the compactness of the embedding of LD(Ω) in L1(Ω), and therefore in

every Lp(Ω) with 1 < p < N/(N − 1). ��
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6.8 The Space of Functions with a Measure as

Deformation

For an open subset Ω of RN that need not be bounded, we let

BD(Ω) =
{
u ∈ L1(Ω,RN ) | ∀ i, j ∈ [1, N ], εij(u) ∈M1(Ω)

}

(BD(Ω) means “with bounded deformations”.) Taking the seminorm
∫
Ω
|ε(u)|

defined by
∫

Ω

|ε(u)| = sup
{ϕij∈Cc(Ω),

∑
1�i,j�N |ϕij |2∞�1}

∫

Ω

εij(u)ϕijdx,

we can endow the space BD with the norm

‖u‖BD(Ω) = ‖u‖L1(Ω,RN ) +

∫

Ω

|ε(u)|

for which it is a Banach space.

6.8.1 Regularity and Density Results

Theorem 6.103. Let T ∈ D′(Ω,RN ) be such that for every (i, j) ∈ [1, N ]2,

εij(T ) ∈M1(Ω); then T ∈ BD loc(Ω). If Ω is moreover a bounded open set of

class C1, then T ∈ BD(Ω).

The proof of this theorem is similar to that for LD(Ω). We leave it to the

reader.

Theorem 6.104. The space C∞(Ω)∩W 1,1(Ω) is dense for the tight topology

on BD(Ω). In other words,

∀u ∈ BD(Ω), ∃ {un} ⊂W 1,1(Ω) ∩ C∞(Ω),
⎧
⎪⎪⎨

⎪⎪⎩

un → u in L1(Ω),

ε(un)⇀ ε(u) vaguely in M1(Ω)
∫
Ω
|ε(un)| →

∫
Ω
|ε(u)|.

Proof of Theorem 6.104.

We will use the approximation from the inside of Theorem 6.56 and its

notation. Moreover, we impose the following inequalities:
∣
∣
∣
∣

∫

Ω

∣
∣ρηj ∗ (ϕjε(u))

∣
∣−

∫

Ω

|ϕjε(u)|
∣
∣
∣
∣ < δ,

∫

Ω

∣
∣ρηj ∗ (ϕju)− ϕju

∣
∣ < δ2−j ,

∫

Ω

∣
∣ρηj ∗ (∇ϕj ⊗ u)−∇ϕj ⊗ u

∣
∣ < δ2−j .
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We let

uδ =

∞∑

0

ρηj ∗ (ϕju).

We can easily verify that

∫

Ω

|uδ − u| < δ and

∣
∣
∣
∣

∫

Ω

|ε(uδ)| −
∫

Ω

|ε(u)|
∣
∣
∣
∣ < 2δ,

concluding the proof. ��

Corollary 6.105. Let Ω be a Lipschitz open subset of RN ; we then have

∀ p � N

N − 1
, BD(Ω) ↪−→ Lp(Ω),

where the embedding is compact for p < N/(N − 1) if Ω is bounded.

Proof of Corollary 6.105.

Let u ∈ BD(Ω) and let {un} be as in Theorem 6.104; then there exists a

constant C > 0 depending only on Ω, such that

‖un‖p � C(‖un‖1 + ‖ε(un)‖1).

In particular, since the sequence {un} is bounded in LD(Ω), it is bounded

in every Lp(Ω) with p � N/(N − 1). We can therefore extract a subsequence

that converges weakly in Lp for p > 1. Since {un} also converges to u in L1,

we see that the lower semicontinuity of the norm in Lp(Ω) gives

‖u‖p � lim
n→∞

‖un‖p � lim
n→∞

C (‖un‖1 + ‖ε(un)‖1)

= C(‖u‖1 + ‖ε(u)‖1),

and therefore u ∈ Lp(Ω). To see that the embedding is compact in L1(Ω) (for

example) when Ω is bounded, we prove the following inequality, which holds

for G � Ω and h > 0 satisfying G+B(0, h) ⊂ Ω:

‖τhu− u‖L1(G) � hs
∫

Ω

|ε(u)|.

Here s is a real number in [0, 1[ that we obtain by using both the analogue of

this inequality for functions in LD(Ω) and the previous density theorem. ��

Korn’s inequality (cf. the remark after Definition 6.78) does not hold in

BD(Ω). In other words, we have the following result.

Theorem 6.106.

BV (Ω,RN ) �= BD(Ω).
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Proof of Theorem 6.106.

We will give a proof by contradiction. Let us therefore assume that

BV (Ω,RN ) = BD(Ω). The open image theorem then tells us that there

exists a constant C > 0 such that for every u in BV (Ω,RN ), we have

(6.107) ‖u‖L1(Ω) +

∫

Ω

|∇u| � C
(
‖u‖L1(Ω) +

∫

Ω

|ε(u)|
)
.

Let u ∈ LD(Ω), u /∈ W 1,1(Ω), and let {un} ∈ C∞ ∩ LD(Ω) converge to u in

LD(Ω). Then the inequality applied to {up−uq} implies that {up} is a Cauchy
sequence inW 1,1(Ω), hence converges in this space. Now, {un} converges to u
in L1. It follows by the uniqueness of the limit that u ∈ W 1,1(Ω), giving a

contradiction. ��

6.8.2 Results on Traces

Theorem 6.108. Let Ω be an open subset of RN of class C1. There exists a

surjective linear map from BD(Ω) onto L1(∂Ω) that coincides with the trace

map on W 1,1(Ω) defined earlier.

Remark 6.109. This trace map is not continuous for the weak topology.

Proof of Theorem 6.108.

We follow the arguments used for LD(Ω). We begin by proving the exis-

tence of a trace for uN in a neighborhood of a boundary point where there

exists a system of coordinates that allows us to write

Ω ∩Ωi ⊂ {(x′, xN ) | x′ ∈ O′, xN > ai(x
′)} ,

∂Ω ∩Ωi = {(x′, ai(x′)) | x′ ∈ O′} ,

where O′ is an open subset of R
N−1 and ai is a C1 function on O′. We

moreover may, and do, assume that uN has compact support in Ω∩Ωi. Let α

have the property that
∫
Σα
|∂NuN | = 0, that is, that ∂NuN does not charge

the hypersurface Σα = {(x′, a(x′) + α) | x′ ∈ O′}.
For α and α′ chosen this way with α < α′, we write

uN (x′, a(x′) + α′)− uN (x′, a(x′) + α) =

∫ a(x′)+α′

a(x′)+α

∂uN
∂xN

(x′, s)ds.

By integrating over Σ = {(x′, a(x′), x′ ∈ O′}, using the notation gα for the

function gα(x
′) = uN (x′, a(x′) + α) we obtain

∫

Σ

|gα − gα′ | (x′)dx′ �
∫

O′

∫ a(x′)+α′

a(x′)+α

∣
∣
∣
∣
∂uN
∂xN

(x′, s)

∣
∣
∣
∣

dsdx′

|νN | (x′, a(x′))
,
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with νN (x′, a(x′)) = −(1 + |∇a(x′)|2)−1/2. Consequently,

∫

Σ

|gα − gα′ | � C1

∫

Aα′�Aα

∣
∣
∣
∣
∂uN
∂xN

∣
∣
∣
∣ dx � C1

∫

(Ω∩Ωi)�Aα

∣
∣
∣
∣
∂uN
∂xN

∣
∣
∣
∣ dx,

where Aα = {(x′, xN ) ∈ Ω | xN < a(x′) + α}. When α and α′ tend to 0,

the term on the right-hand side of this inequality tends to 0, because it is

the integral of a measure that is bounded on the complement in Ω ∩ Ωi of a

sequence of compact sets Aα that tends to Ω ∩ Ωi. It follows that {gα} is a

Cauchy sequence in L1(Σ). Let g be its limit. By the above, we have

∫

Σ

|g − gα| � C1

∫

Aα�A0

∣
∣
∣
∣
∂uN
∂xN

∣
∣
∣
∣ ,

whence ∫

Σ

|g| �
∫

Σ

|gα|+ C1

∫

Aα�A0

∣
∣
∣
∣
∂uN
∂xN

∣
∣
∣
∣ .

Integrating with respect to α ∈ [0, α0[, we obtain

∫

Σ

|g| � 1

α0

∫ α0

0

∫

Σ

|gα| dα+ C1
1

α0

∫ α0

0

∫

Aα�A0

∣
∣
∣
∣
∂uN
∂xN

∣
∣
∣
∣ dα

� C
(∫

Ω

|uN |+
∫

Ω

|∂NuN |
)

(in these inequalities, α0 satisfies uN (x′, a(x′)+α0) = 0). When ν(x) ·eN = 0,

we use an i for which νi(x) �= 0. We then have (νi + νN )(x) �= 0, so that we

can define ui + uN , and therefore uN since ui is well defined. ��

The reader may also consult [67].

At this point, let us make an important remark concerning, for example,

BD(Ω), which emphasizes the value of the interior and exterior traces of a

function on a hypersurface in Ω.

Proposition 6.110. Let Ω1 and Ω2 be two open subsets of RN of class C1
and let Σ be a manifold of dimension N − 1 such that Ω = Ω1 ∪ Σ ∪ Ω2,

Ω1 ∩Ω2 = ∅, Ω1 ∩Ω2 = Σ, and Ω is the interior of Ω1 ∪Ω2.

If u ∈ BD(Ω) and if u+ and u− are the traces of u on Σ seen as elements

of BD(Ω2) and BD(Ω1), respectively, then for every ϕ ∈ D(Ω), we have

〈εij(u), ϕ〉 = 〈εij(u), ϕχΩ1〉+ 〈εij(u), ϕχΩ2〉

−
∫

Σ

ϕ
u+i nj + u

+
j ni − (u−i nj + u

−
j ni)

2
,

where −→n denotes the outward-pointing normal to Σ in the direction from Ω1

to Ω2.
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Proof of Proposition 6.110.

Let u ∈ BD(Ω) with u |Ωi ∈ BD(Ωi). Let ϕ ∈ D(Ω). We first apply

Green’s formula to εij(u) and to ϕ in the regular open set Ω1, noting that

the trace is reduced to the trace on Σ, that is, to u−, and that the outward-

pointing normal is −→n , with components ni:

2

∫

Ω1

εij(u)ϕdx = −
∫

Ω1

[
ui∂jϕ+ uj∂iϕ

]
dx

+

∫

Σ

[
(ui)

−(x′)(nj) + (uj)
−(x′)(ni)

]
ϕ(x′)dx′.

Likewise, in Ω2, noting that for the function we are considering, the trace on

the boundary of ∂Ω2 reduces to the trace on Σ, that is, to u+, and that the

outward-pointing normal is −−→n with components −ni, we have

2

∫

Ω2

εij(u)ϕdx = −
∫

Ω2

[
ui∂jϕ+ uj∂iϕ

]
dx

−
∫

Σ

[
(ui)

+(x′)(nj) + (uj)
+(x′)(ni)

]
ϕ(x′)dx′.

We obtain the desired formula by adding the last two equalities and using the

definition of the derivative of a distribution in Ω. ��

As was the case for BV , we have a continuity result for the trace map for

the intermediate topology.

Theorem 6.111. Let Ω be an open subset of RN of class C1 and let {un} be

a sequence in BD(Ω) that converges tightly to u in BD(Ω) in the following

sense:

un −→ u in L1(Ω) and

∫

Ω

|ε(un)| −→
∫

Ω

|ε(u)|;

then γ0(un)→ γ0(u) in L1(∂Ω).

Proof of Theorem 6.111.

Let C be a constant such that for every u ∈ BD(Ω), we have

‖u‖L1(∂Ω) � C (‖u‖1 + |ε(u)|1) .

Let Ω0 be a relatively compact subset of Ω with
∫
Ω�Ω0

|ε(u)| � η. Let ϕ be a

regular function with values between 0 and 1 and compact support in Ω that

equals 1 on Ω0. Moreover, let N0 satisfy

∀n � N0,

∫

Ω

|un − u| �
η

1 + ‖∇ϕ0‖∞∫

Ω

|ε(un)|(1− ϕ0) �
∫

Ω

|ε(u)(1− ϕ0)|+ η � 2η.and
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Such an N0 exists by the tight convergence of |ε(un)| to |ε(u)|. Then, since
ϕ0 = 1 on ∂Ω, we see that the integral

∫
∂Ω
|γ0(un−u)| is bounded from above

as follows:

C
(∫

Ω

|(un−u)(1−ϕ0+ |∇ϕ0|)|+
∫

Ω

|ε(un)(1−ϕ0)−ε(u)(1−ϕ0)|
)
� 4η. ��

6.9 Generalized Green’s Formulas

Using a simplified notation, we define the following space:

(6.112) W (div)(Ω) =
{
σ ∈ L∞(Ω,RN ) | div σ ∈ LN (Ω)

}
.

We endow this with the norm

(6.113) ‖σ‖W (div)(Ω) = ‖σ‖∞ + ‖ div σ‖LN (Ω).

We also define the space

(6.114) L(div)(Ω) =
{
σ ∈ L∞(Ω,E) | div σ ∈ LN (Ω,RN )

}
,

where E denotes the space of symmetric tensors of order 2 on R
N , endowed

with the same norm, adapted to the functions with values in R
N . We then have

the following generalized Green’s formula (see also Exercise 3.6 of Chapter 3).

Theorem 6.115. Let Ω be an open set of class C1. There exists a continuous

linear map from W (div)(Ω) to L∞(∂Ω) that sends σ to σ · −→n and for which

the generalized Green’s formula

∫

Ω

∇u · σ +
∫

Ω

u div σ =

∫

∂Ω

(σ · −→n )u

holds for every u ∈ W 1,1(Ω) and every σ ∈ W (div)(Ω). The vector −→n in

the formula denotes the unit outward-pointing normal to ∂Ω. Moreover, σ ·−→n
coincides with the restriction to the boundary when

σ ∈ C(Ω) ∩W (div)(Ω).

The following is an extension of this formula to the functions in BV (Ω).

Theorem 6.116. Let Ω be an open set of class C1 and let (u, σ) ∈ BV (Ω)×
W (div)(Ω). We consider the distribution (∇u · σ) defined by

∀ϕ ∈ D(Ω,R), 〈(∇u · σ), ϕ〉 = −
∫

Ω

u div σ · ϕ−
∫

Ω

u (σ · ∇ϕ).
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Then (∇u · σ) is a bounded measure on Ω that is absolutely continuous with

respect to |∇u| and coincides with the usual definition of ∇u · σ when u ∈
W 1,1(Ω) and σ ∈W (div)(Ω). More precisely, |∇u·σ| � ‖σ‖∞|∇u|. Moreover,

the measure ∇uS defined by (∇uS · σ) = (∇u · σ) − (∇uac · σ) is a singular

measure that satisfies |(∇uS · σ)| � |(∇u)S | ‖σ‖∞.

Finally, we obtain the following Green’s formula. If (u, σ) ∈ BV (Ω) ×
W (div)(Ω) and if ϕ ∈ C(Ω) ∩ C1(Ω), then

〈(∇u · σ), ϕ〉 = −
∫

Ω

u div σϕ−
∫

Ω

uσ · ∇ϕ+

∫

∂Ω

uσ · −→n ϕ.

Proof of Theorem 6.115.

Let σ ∈ W (div)(Ω). By the surjectivity of the trace map from W 1,1(Ω)

to L1(∂Ω), there exists a C > 0 with the following property. For every v ∈
L1(∂Ω), there exists a V ∈W 1,1(Ω) such that V |∂Ω = v and

(6.117) ‖V ‖W 1,1(Ω) � C‖v‖L1(∂Ω).

This defines a linear functional on L1(∂Ω). For v ∈ L1(∂Ω) and V as before,

we set

∀ v ∈ L1(∂Ω), Lσ(v) =
∫

Ω

σ · ∇V +

∫

Ω

div(σ)V.

To see that this does not depend on the choice of V , we must show that if

v = 0 on ∂Ω, then Lσ(v) = 0. We know that if v = 0, then V ∈W 1,1
0 . Since Ω

is of class C1, there exists a sequence {Vn} in C∞c (Ω) that converges to V in

W 1,1(Ω). By the definition of div σ in the sense of distributions, we have

∫

Ω

σ · ∇Vn +

∫

Ω

div(σ)Vn = 0.

Taking its limit gives

∫

Ω

σ · ∇V +

∫

Ω

div(σ)V = 0.

This remark also shows the linearity of L. Indeed, for v1 and v2 ∈ L1(∂Ω),
let V1 and V2 be elements of W 1,1(Ω) with Vi = vi on ∂Ω. Let λ ∈ R. Then

V1 + λV2 belongs to W 1,1(Ω) and equals v1 + λv2 on ∂Ω. Since Lσ(v1 + λv2)

can be written as
∫

Ω

σ · ∇(V1 + λV2) +

∫

Ω

div(σ)(V1 + λV2),



346 6 Distributions with Measures as Derivatives

which equals Lσ(v1) + λLσ(v2), we have the linearity. The continuity follows

from the following sequence of inequalities:

‖Lσ(v)‖ � ‖σ‖∞
∫

Ω

|∇V |dx+ ‖V ‖N/(N−1)‖ div σ‖N

� C‖V ‖W 1,1(Ω)

(
‖σ‖∞ + ‖ div σ‖N

)

� C ′‖v‖L1(∂Ω)

(
‖σ‖∞ + ‖ div σ‖N

)
,

with V as in (6.117). Since Lσ is a continuous linear functional on L1(∂Ω),

there exists an element of L∞(∂Ω), which we denote by σ · −→n , such that

∀ v ∈ L1(∂Ω), Lσ(v) =
∫

∂Ω

(σ · −→n ) v. ��

Proof of Theorem 6.116.

Consider the map defined by

∀ϕ ∈ D(Ω), 〈(∇u · σ), ϕ〉 = −
∫

Ω

u div σ · ϕ−
∫

Ω

uσ · ∇ϕ.

This is clearly a distribution. Let {un} be a sequence in W 1,1(Ω) that con-

verges to u in the sense of Theorem 6.56. The terms −
∫
Ω
un div σϕ and

−
∫
Ω
unσ · ∇ϕ converge to −

∫
Ω
u div σϕ and −

∫
Ω
uσ · ∇ϕ, respectively. Con-

sequently, the distribution ∇un · σ converges to ∇u · σ in D′(Ω).

We also have 〈∇un · σ, ϕ〉 =
∫
Ω
(∇un · σ)ϕ by Green’s formula. Since

∇un ∈ L1, it follows that

|〈∇un · σ, ϕ〉| � ‖∇un‖1 ‖σ‖∞ ‖ϕ‖∞.

Consequently, the sequence of distributions {∇un · σ} is bounded in M1(Ω).

Since it converges to ∇u ·σ in D′(Ω), this last distribution belongs to M1(Ω)

and satisfies

|〈∇u · σ, ϕ〉| � lim
n→∞

∣
∣
∣
∫

Ω

∇un · σ ϕ
∣
∣
∣ � lim

n→∞

(∫

Ω

|∇un| |ϕ|
)
‖σ‖∞

=
(∫

Ω

|∇u| |ϕ|
)
‖σ‖∞ �

(∫

Ω

|∇u|
)
‖ϕ‖∞ ‖σ‖∞

for every ϕ ∈ Cc(Ω). In particular, the before last inequality gives the absolute

continuity of ∇u · σ with respect to |∇u| (cf. Definition 6.39 and Proposition

6.42).

To prove Green’s formula, we use the generalized Green’s formula from

Theorem 6.115 for {un}, where {un} ∈ W 1,1(Ω) converges tightly to u in

BV (Ω). We then have
∫

Ω

un div(σ)ϕ −→
∫

Ω

u div(σ)ϕ and

∫

Ω

un σ · ∇ϕ −→
∫

Ω

uσ · ∇ϕ.
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Finally, the sequence {un} converges to u in L1(∂Ω), so that
∫

∂Ω

(un − u)σ · −→n ϕ −→ 0.

We also know that the sequence {∇un · σ} converges tightly to ∇u · σ.
Indeed, since we already have vague convergence, it suffices to verify that

given ε > 0, there exists a compact subset K of Ω such that
∫

Ω�K

|∇un · σ| � ε.

for every n. Let ε > 0 and letK be a compact subset ofΩ such that for every n,

we have
∫
Ω�K

|∇un| � ε; then
∫
Ω�K

|∇un · σ| �
∫
Ω�K

|∇un| |σ|∞ � ε‖σ‖∞.

To conclude, the sequence {∇un ·σ} converges tightly to ∇u·σ and Green’s

formula holds.

We now wish to show that ∇uS ·σ is a singular measure. We will use the re-

mark following the approximation theorem (Theorem 6.56), which notes that

the sequence {un} may be chosen in such a way that |∇un−(∇u)ac| converges
tightly to |(∇u)S |. By construction, we also have the vague convergence of the

sequence {(∇un−∇uac) ·σ} to (∇u)S ·σ. By the lower semicontinuity for the

vague topology of an integral over an open set and by the vague convergence

of |∇un − (∇u)ac| to |(∇u)S |, we can write, for every ϕ ∈ D(Ω),

|〈∇uS · σϕ〉| � lim
n→∞

∣
∣
∣
∫

Ω

(∇un −∇uac) · σϕ
∣
∣
∣

� ‖σ‖∞ lim
n→∞

∫

Ω

|∇un −∇uac| |ϕ|dx

� ‖σ‖∞
∫

Ω

|∇uS | |ϕ|dx.

This implies the following inequality in the sense of measures:

|∇uS · σ| � ‖σ‖∞ |∇uS |

and concludes the proof (cf. Proposition 6.42) because ∇uS · σ is absolutely

continuous with respect to |∇uS |. ��

Theorem 6.118. Let Ω be an open subset of RN and let

(u, σ) ∈ BD(Ω)× L(div)(Ω).

Then there exists a measure, which we denote by (ε(u) : σ), that is absolutely

continuous with respect to |ε(u)| and satisfies

∀ϕ ∈ D(Ω,R), 〈(ε(u) : σ), ϕ〉 = −
∫

Ω

u · div σϕdx−
∫

Ω

u⊗∇ϕ : σdx

= −
∫

Ω

u · div σϕdx−
∑

i,j

∫

Ω

ui∂jϕσijdx.
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Moreover, this measure coincides with the function in L1(Ω) defined by the

product (ε(u) : σ) =
∑

i,j εij(u)σij for (u, σ) ∈ LD(Ω)×L(div). We also have

|(ε(u) : σ)| � ‖σ‖∞|ε(u)|.

The measure (ε(u)S : σ) = (ε(u) : σ)− (ε(u)ac : σ) is singular and satisfies

|(ε(u)S : σ)| � |ε(u)S | ‖σ‖∞.

To conclude, if Ω is of class C1, then we have Green’s formula, which holds

for every function ϕ ∈ C(Ω) ∩ C1(Ω):

〈(ε(u) : σ), ϕ〉 = −
∫

Ω

u · div σ ϕdx−
∫

Ω

∑

ij

ui∂jϕσijdx

+

∫

∂Ω

∑

ij

(uinj + ujni)σijϕ.

The proof is analogous to that of the previous theorem.

6.10 Functions of a Measure

In modeling problems for the mechanics of materials, as well as in problems

coming from the calculus of variations, we use functionals
∫
Ω
f(∇u) where f

is a convex function with linear growth at infinity. We gave an example of such

a functional in Chapter 5 while treating minimal surfaces. Even if studying

these functions can be of general interest to the reader, we will presently justify

the techniques and results that we used to solve the variational problem in

Section 5.10. We will need some preliminary results, in particular concerning

conjugates in the sense of Fenchel. The reader may also consult [25] and [26].

6.10.1 Definitions and Properties

In the general case, the functions f that we consider are defined on a Banach

space X and take on their values in R. The domain of f , which we denote by

dom f , is defined to be the set dom f = {x ∈ X | f(x) < +∞}. We say that f

is proper if its domain is nonempty and if the function only takes on finite

values in this domain.

Definition 6.119. Let f be a function defined on a Banach space X with

values in R and a nonempty domain. The conjugate of f , which we denote

by f∗, is the function defined on the dual X∗ by

∀ y ∈ X∗, f∗(y) = sup
x∈X

{〈y, x〉 − f(x)}.
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Proposition 6.120. If f is convex and proper, then its conjugate is convex,

lower semicontinuous for the weak topology on X, and does not take on the

value −∞.

We also state the following result without proof.

Proposition 6.121. Let f be convex on X with nonempty domain; then the

four following properties concerning u ∈ dom f and y ∈ X∗ are equivalent:

(1) y ∈ ∂f(u),
(2) f(u) + f∗(y) � 〈u, y〉,
(3) f(u) + f∗(y) = 〈u, y〉,
(4) ∀x ∈ X, f(x) � 〈x− u, y〉+ f(u).

We define the biconjugate of f to be f∗∗ = (f∗)∗. We have the following

result.

Proposition 6.122.

(1) If f is convex, then at every point x in the interior of dom f , f is contin-

uous, subdifferentiable, and f(x) = f∗∗(x).

(2) If f is convex on R
N and everywhere finite, then it is everywhere subdif-

ferentiable and f = f∗∗.

The book [23] contains examples of computations of conjugates and bicon-

jugates (see also further on in this section and in the exercises). That same

book (cf. its Theorem 6.2) contains the proof of a result concerning the con-

jugate of a functional on the space Lp(Ω) (p > 1) defined by an integral. This

result is related to the definition of a function of a measure. The argument we

present in the preliminaries below gives a version of the result for p = 1.

Let us define the linear growth at infinity and the asymptotic function.

Definition 6.123. Let f be a convex proper function defined on R
N . We say

that it has linear growth at infinity if there exist constants c0 > 0 and c1 > 0

such that

(6.124) ∀x ∈ R
N , c0(|x| − 1) � f(x) � c1(|x|+ 1).

The function f∞, which we call the asymptotic function of f , is then defined

to be

f∞(x) = lim
t→+∞

f(tx)

t
.

The function f∞ is everywhere finite, convex, and positively homogeneous

of degree 1.
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Moreover, when f has linear growth at infinity, we can show that the

domain of its conjugate f∗ is a bounded subset of L∞(RN ) that is contained

in the ball B(0, c1) and itself contains the ball B(0, c0). If we also have f � 0

and f(0) = 0, then f∗(0) = sup−f(x) = 0 and f∗ � 0. Let us note that the

inequality (6.124) also implies that u 	→ f ◦ u is continuous from L1(RN ,RN )

to L1(RN ), (cf. [13]).

6.10.2 Preliminaries to the Definition

We intend to use an example to show how the definition of the conjugate

of f∗ can be adapted to extend to measures. Since under conditions that

are not very restrictive, this conjugate equals f , namely f = f∗∗, we see

that we are led to define the function f(μ), where μ is a measure, using the

conjugate f∗. To illustrate the ideas, let Ω be an open subset of RN and let f

be convex and nonnegative, satisfy the conditions of linear growth, and have

f(0) = 0. Consider the measure u(x)dx, where u ∈ L1(Ω, dx) and dx is the

Lebesgue measure on Ω. Using linear growth, we see that f◦u ∈ L1(Ω, dx). By
adapting the definition of f∗∗, we consider the functional f(udx) on the cone

of continuous nonnegative functions ϕ with compact support in Ω, defined by

〈f(udx), ϕ〉 = sup
v∈L∞(Ω,dom f∗)

{∫

Ω

u(x)v(x)ϕ(x)dx−
∫

Ω

f∗(v)(x)ϕ(x)dx
}
.

We now wish to show that under certain assumptions, this function satisfies

the relation

(6.125) 〈f(udx), ϕ〉 =
∫

Ω

(f ◦ u)(x)ϕ(x)dx.

In other words, we wish to prove that f(udx) extends to the measure

(f ◦ u)(x)dx defined previously.

In addition to the assumptions on f , which imply that dom f∗ is bounded

and that f∗(0) = 0, we will suppose that f∗ is bounded on its domain.

Proof of formula (6.125).

Let us begin by proving that

(6.126)

∫

Ω

f(u)(x)ϕ(x)dx

� sup
v∈L∞(Ω,dom f∗)

{∫

Ω

u(x)v(x)ϕ(x)dx−
∫

Ω

f∗(v)(x)ϕ(x)dx
}
.

Indeed, by the definition of f∗, we have

∀x ∈ Ω, ∀ v ∈ L∞, f(u)(x) � u(x)v(x)− f∗(v)(x).
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Multiplying by the nonnegative function ϕ and integrating over Ω gives in-

equality (6.126).

Let us now show the opposite inequality to (6.126). Let ε > 0 and let

u ∈ L1(Ω, dx) be fixed. We consider a simple function w =
∑

i wiχAi , where

the Ai are universally disjoint measurable sets whose union equals Ω. As said

above, the map u 	→ f ◦ u from L1 to L1 is continuous. Consequently, there

exists a simple function w such that

(6.127) ‖u− w‖L1(Ω,dx) � ε and ‖f(u)− f(w)‖L1(Ω) � ε.

The second inequality implies that

∀ϕ ∈ C+c (Ω), ‖(f(u)− f(w))ϕ‖L1(Ω) � ε‖ϕ‖∞.

Let us now use the formula f = f∗∗, which holds because f is convex on R
N

and therefore continuous (cf. [23] and Proposition 6.122). Therefore, for ev-

ery i, there exists an element vi of dom f
∗ such that

(6.128) f(wi) � viwi − f∗(vi) + ε · 2−i−1/|Ai|.

By the assumptions f(0) = 0 and f∗(0) = 0, we have f(w) =
∑

i f(wi)χAi and

f∗(v) =
∑

i f
∗(vi)χAi . Moreover, by taking the product of simple functions,

∫

Ω

v(x)w(x)ϕ(x)dx =
∑

i

viwi

∫

Ai

ϕ(x)dx.

Next by multiplying (6.128) by ϕχAi , taking the sum over i, and integrating

over Ω, we obtain
∫

Ω

f(w)ϕdx =
∑

i

f(wi)

∫

Ai

ϕdx

�
∑

i

viwi

∫

Ai

ϕdx−
∑

i

f∗(vi)

∫

Ai

ϕdx+ ε‖ϕ‖∞

=

∫

Ω

v(x)w(x)ϕ(x)dx−
∫

Ω

f∗(v)(x)ϕ(x)dx+ ε‖ϕ‖∞.

The relations (6.127) now give
∫

Ω

f(u)ϕdx �
∫

Ω

f(w)ϕdx+ ε �
∫

Ω

vwϕdx−
∫

Ω

f∗(v)ϕdx+ ε(1 + ‖ϕ‖∞)

�
∫

Ω

vuϕdx−
∫

Ω

f∗(v)ϕdx+

∫

Ω

|v| |u− w|ϕdx+ ε(1 + ‖ϕ‖∞).

Taking into account that since f∗ is bounded on its domain, we have the upper

bound
∫
Ω
|v‖u − w|ϕdx � ε‖ϕ‖∞ supx∈dom f∗ |v(x)|, we obtain the opposite

inequality to (6.126), thus concluding the proof. ��
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6.10.3 Definition of a Function of a Measure and First Properties

The computation we just carried out suggests the following general definition.

Definition 6.129. Let Ω be an open subset of RN . Let f be a nonnegative

convex function from R
k to R with linear growth at infinity and f(0) = 0.

Let μ be a bounded measure with values in R
k. The function f(μ) sends a

nonnegative function ϕ in Cc(Ω) to the number

(6.130) 〈f(μ), ϕ〉 = sup
{v∈Cc(Ω,dom f∗)}

〈μ, vϕ〉 −
∫

Ω

(f∗ ◦ v)ϕdx,

where 〈μ, vϕ〉 =
∑k

1〈μi, viϕ〉.

Remark 6.131. In this definition, the upper bound is taken in the set

Cc(Ω, dom f∗). It remains the same when taken over L∞(Ω, dom f∗) or even

over L1(Ω,μ + dx). It follows that when μ = udx with u ∈ L1, the measure

f(μ) is identical to (f ◦ u)dx.

These equalities of upper bounds over different sets are studied in Exercise

6.5.

Proposition 6.132. Let Ω be an open subset of RN . We suppose that f is

convex and satisfies (6.124), and that f∗ is bounded on its domain. Let μ be

a measure on Ω; then f(μ) is positively homogeneous and additive. Conse-

quently, it extends to a measure on Ω. This measure is absolutely continuous

with respect to |μ|+ dx.
When the measure μ is moreover bounded on Ω, then the measure f(μ) is

also bounded and formula (6.130) extends to functions ϕ ∈ Cb(Ω).

Proof of Proposition 6.132.

The positive homogeneity is obvious. Let us show the additivity. Let

ε > 0, let ϕi be a nonnegative function in Cc(Ω) for i = 1, 2, and let

v ∈ Cc(Ω, dom f∗) satisfy

〈f(μ), ϕ1 + ϕ2〉 � 〈μ, v(ϕ1 + ϕ2)〉 −
∫

Ω

(f∗ ◦ v)(ϕ1 + ϕ2) + ε.

The right-hand side is then lesser than or equal to 〈f(μ), ϕ1〉+ 〈f(μ), ϕ2〉+ ε.
Conversely, let v1 and v2 in Cc(Ω, dom f∗) satisfy

〈f(μ), ϕi〉 � 〈μ, viϕi〉 −
∫

Ω

(f∗ ◦ vi)ϕi + ε
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and let v =
∑

i viϕi/(
∑

i ϕi). This function has values in dom f∗ because

dom f∗ is convex, and it is continuous. Moreover, by the convexity of f∗, we

have

f∗(v)(ϕ1 + ϕ2) �
∑

i

f∗(vi)ϕi.

It follows that

〈
f(μ),

∑
i=1,2 ϕi

〉
�
〈
μ, v

∑
i ϕi

〉
−
∫

Ω

f∗(v)
∑

i ϕi

�
∑

i

(
〈μ, viϕi〉 −

∫

Ω

(f∗ ◦ vi)ϕi
)
�
∑

i

〈f(μ), ϕi〉 − 2ε,

completing the proof of the additivity.

The absolute continuity of f(μ) with respect to |μ|+ dx follows from the

inequality below, which holds for every v with values in the domain of f∗.

Recall that we assumed f∗ to be bounded on its domain. By Section 6.2,

Proposition 6.42, we have

(6.133)
∣
∣
∣〈μ, vϕ〉 −

∫

Ω

f∗(v)ϕ
∣
∣
∣ � C1

∫

Ω

|μ| |ϕ|+ sup
x∈dom f∗

|f∗(x)|
∫

dom f∗
|ϕ|.

We now suppose that μ is a bounded measure. It is obvious that f(μ) is also

bounded, since f(μ) is absolutely continuous with respect to |μ|+ χdom f∗dx.

We wish to show that the formula defining 〈f(μ), ϕ〉 extends to the bounded

continuous functions ϕ. Let ψ be a nonnegative element of Cb(Ω). Let ε > 0

and let ϕ ∈ Cc(Ω) be nonnegative, such that
∫

Ω

f(μ)ψ �
∫

Ω

f(μ)ϕ+ ε and(6.134)

∫

Ω

|ψ − ϕ|+
∫

Ω

|μ|(|ψ − ϕ|) � ε

C1 + supx∈dom f∗ f∗(x)
.(6.135)

Moreover, let v ∈ Cc(Ω, dom f∗) satisfy

(6.136)

∫

Ω

f(μ)ϕ �
∫

Ω

μvϕ−
∫

Ω

f∗(v)ϕ+ ε.

Owing to the relations (6.134) and (6.136), followed by (6.135) and (6.133),

the expression 〈f(μ), ψ〉 is bounded from above as follows:
∫

Ω

f(μ)ϕ+ ε �
∫

Ω

μvϕ−
∫

Ω

f∗(v)ϕ+ 2ε

�
∫

Ω

μvψ −
∫

Ω

f∗(v)ψ +

∫

Ω

μv(ϕ− ψ)−
∫

Ω

f∗(v)(ϕ− ψ) + 2ε

� sup
v∈Cc(Ω,dom f∗)

∫

Ω

μvψ −
∫

Ω

f∗(v)ψ + 3ε.
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For the opposite inequality, let v ∈ Cc(Ω, dom f∗) satisfy

sup
v∈Cc(Ω,dom f∗)

∫

Ω

μvψ −
∫
f∗(v)ψ �

∫

Ω

μvψ −
∫

Ω

f∗(v)ψ + ε

and let ϕ = 1 on supp v and have compact support in Ω. We have
∫

Ω

μvψ −
∫

Ω

f∗(v)ψ =

∫

Ω

μvψϕ−
∫

Ω

f∗(v)ψϕ

� 〈f(μ), ϕψ〉 � 〈f(μ), ψ〉,

giving the opposite inequality. We conclude that the formula defining 〈f(μ), ϕ〉
extends to the functions ϕ ∈ Cb(Ω). ��

Remark 6.137 (on the conditions of Proposition 6.132). When f does

not satisfy the condition f(0) = 0, we can still make sure that the formula

defining f(μ) holds (cf. Exercises 6.15 and 6.16). Indeed, we use the fact

that f , which is defined on R
k and is convex and everywhere finite, is every-

where subdifferentiable (cf. 6.122) and therefore admits a continuous linear

lower bound. By Subsection 5.2.2, f(0)+〈y, x〉 is such a lower bound, where y

is an element of ∂f(0) (we just noted that ∂f(0) is nonempty).

For example, in the case of the function used in Chapter 5 in the context

of minimal surfaces, the function f defined by f(x) =
√

1 + |x|2 satisfies

f(0) = 1. We then use the function g defined by g(x) = f(x) − f(0). We

can verify that the assumptions of Definition 6.129 hold for g. We will see in

Exercise 6.19 that the formula defining f(μ) can be extended to any f , not

only the ones verifying f(0) = 0 and f � 0.

Theorem 6.138. Let μ = gdx+ μS be the Lebesgue decomposition of μ with

g ∈ L1(Ω, dx) and μS singular. We suppose that f satisfies the conditions of

Proposition 6.132. The Lebesgue decomposition of f(μ) is then

f(μ) = (f ◦ g)dx+ f∞(μS).

Proof of Theorem 6.138.

We refer to Section 6.2 for the Lebesgue decomposition of a measure

(cf. Theorem 6.46). We begin by showing that f(μ) � (f ◦ g)dx + f∞(μS).

After noting that f∗∞ = χdom f∗ (cf. Exercise 6.6), we have, for every v ∈
Cc(Ω, dom f∗) and every ϕ � 0,

〈μ, vϕ〉 −
∫

Ω

f∗(v)ϕdx =

∫

Ω

gvϕdx+ 〈μS , vϕ〉 −
∫

Ω

f∗(v)ϕdx

� sup
v

(∫

Ω

gvϕdx−
∫

Ω

f∗(v)ϕ

)
+ sup

v
〈μS , vϕ〉

�
∫

Ω

(f ◦ g)ϕdx+ 〈f∞(μS), ϕ〉.
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Indeed, in the previous inequalities, we have used on the one hand, the prop-

erty of f(gdx) given in 6.10.2 and on the other hand, the definition of f∞(μS)

taken from the remark on (f∞)∗.

Conversely, let ϕ � 0, ε, and vi in Cc(Ω, dom f∗) for i = 1, 2 be such that

we have the following inequalities:
∫

Ω

(f ◦ g)ϕdx �
∫

Ω

gv1ϕdx−
∫

Ω

f∗(v1)ϕdx+ ε,(6.139)

〈f∞(μS), ϕ〉 �
∫

Ω

μSv2ϕdx+ ε.(6.140)

Let K be a compact set that contains suppμS and let Ω1 be an open set

containing K, with
∫
Ω1

(|g| + 1)dx < ε. This last property is a consequence

of the mutual singularity of μS and dx. Next, let ψ be a function equal to 1

on K, with values in [0, 1], and continuous and with compact support in Ω1.

We set v = v2ψ + v1(1− ψ) and D =
∫
Ω
μvϕdx−

∫
Ω
gv1ϕdx− 〈μS , v2ϕ〉. We

will show that there exists a C such that |D| � Cε.
Indeed, since (v − v2)ψ = (1 − ψ)(v1 − v2) is zero on the support of μS

and ψ is zero outside of Ω1, we have

|D| =
∣
∣
∣
∫

Ω

g(v2 − v1)ψϕ
∣
∣
∣ � ‖ϕ‖∞

∫

Ω1

|g| |v2 − v1|dx � Cε.

Taking into account this definition of D and the definition of a conjugate,

adding the inequalities (6.139) and (6.140) then gives
∫

Ω

(f ◦ g)ϕdx+
∫

Ω

f∞(μS)ϕdx

�
∫

Ω

gv1ϕdx−
∫

Ω

f∗(v1)ϕdx+

∫

Ω

μSv2ϕdx+ 2ε

�
∫

Ω

μvϕdx−D −
∫

Ω

f∗(v)ϕdx+

∫

Ω

(
f∗(v)− f∗(v1)

)
ϕdx+ 2ε

�
∫

Ω

μvϕdx−
∫

Ω

f∗(v)ϕdx+ |D|+
∫

Ω

(
f∗(v2)− f∗(v1)

)
ψϕdx+ 2ε

�
∫

Ω

f(μ)ϕ+ Cε+ 2ε+ 2 sup
dom(f∗)

|f∗|
∫

Ω

ψϕdx

�
∫

Ω

f(μ)ϕ+ C ′′ε,

concluding the proof. ��

Remark 6.141. In fact, we can show, more generally, that if μ1 and μ2 are

two mutually singular measures, then we also have

f(μ1 + μ2) = f(μ1) + f(μ2).

This property is the object of Exercise 6.17.
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Because of its role in the problem of minimal surfaces (cf. Chapter 5), we

choose to illustrate the definition using x 	→
√
1 + |x|2 − 1 as an example.

Example 6.142. We propose to give the formula defining
√

1 + |μ|2 explic-

itly, where μ is an arbitrary measure on the bounded open set Ω.

The function g defined on R
k by g(x) =

√
1 + |x|2 − 1 possesses the re-

quired properties, namely g(0) = 0, g � 0, and g has linear growth at infinity.

We have g∗ = f∗ + 1. The function f∗, which is the conjugate of a radial

function, is clearly also radial. This allows us to reduce to considering R.

• For |y| > 1, the upper bound defining f∗(y) is +∞.

• For |y| = 1, this upper bound is 0.

• For |y| < 1, the derivative of x 	→ xy −
√
1 + x2 vanishes for x0 =

y/
√
1− y2 and the maximum equals f(x0). It follows that

∀ y ∈ dom f∗ = B(0, 1), f∗(y) = −
√

1− |y|2 and g∗(y) = 1−
√

1− |y|2.

We note that dom f∗ is bounded and that the functions g∗ and f∗ are bounded

and continuous on dom f∗.

We also verify that g∗(0) = 0 and g∗ � 0. The function g therefore satisfies

all the conditions of Proposition 6.132. Moreover, x 	→ |x| is the asymptotic

function of both f and g. Consequently, if we write μ = μac+μS , then Theorem

6.138 allows us to write

〈
√

1 + μ2, ϕ〉 = sup
v∈Cc(Ω,B(0,1))

{∫

Ω

vϕd(μac) +

∫

Ω

√
1− |v(x)|2ϕ(x)dx

}

+ 〈|μS |, ϕ〉.

6.10.4 Sequences of Measures and Density Results

We begin by showing that under the previous assumptions, the map μ 	→ f(μ)
is l.s.c. for the topology of the vague convergence of measures.

Theorem 6.143. Let f be convex and satisfy the conditions of Proposition

6.132. If {μn} is a sequence of bounded measures on a bounded open subset Ω

of RN that converges vaguely to a bounded measure μ on Ω, then there exists

a subsequence of {f(μn)} that converges vaguely to a bounded measure ν on Ω

with f(μ) � ν. As a consequence,

f(μ) = lim
n→∞

f(μn).

Proof of Theorem 6.143.

The sequence of integrals
∫
Ω
f(μn) is bounded because f(μn) is absolutely

continuous with respect to |μn|+ dx. We can therefore extract a subsequence
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that converges vaguely to a bounded measure ν (cf. Proposition 6.20). It fol-

lows that there exists a sequence σ(n) such that

μσ(n) −⇀ μ and lim f(μσ(n)) = ν

for the vague convergence. Let ε > 0 and let ϕ ∈ Cc(Ω) with ϕ � 0. By the

definition of 〈f(μ), ϕ〉, there exists a v ∈ Cc(Ω, dom f∗) such that

〈f(μ), ϕ〉 �
∫

Ω

μvϕ−
∫

Ω

f∗(v)ϕ+ ε.

By the lower semicontinuity of the integral over an open set for the vague

topology, the right-hand side can be bounded from above by

lim

∫

Ω

μσ(n)vϕ−
∫

Ω

f∗(v)ϕ+ ε

� lim sup
v∈Cc(Ω)

{∫

Ω

μσ(n)vϕ−
∫

Ω

f∗(v)ϕ
}
+ ε

� lim{〈f(μσ(n)), ϕ〉}+ ε � 〈ν, ϕ〉+ ε.

Since this is true for every ε, this concludes the proof of the desired property.

��

The following is another important result, concerning the density of the

regular functions for a topology intermediate between the norm topology and

the vague convergence topology, which is close to the tight topology.

Theorem 6.144. Let Ω be an open subset of R
k, let μ be a measure in

M1(Ω,Rk), and let f be a nonnegative convex function satisfying the con-

ditions of Proposition 6.132 and the equality f(0) = 0. Then there exists a

sequence {un} of elements of C∞(Ω) ∩W 1,1(Ω) such that

un −⇀ μ, f(un) −⇀ f(μ) and

∫

Ω

f(un) −→
∫

Ω

f(μ).

In particular, we can deduce that inequality (6.124) extends to measures, giving

c0(|μ| − 1) � f(μ) � c1(|μ|+ 1).

Proof of Theorem 6.144.

We begin by showing that if θ is continuous with compact support in Ω

and values in [0, 1], then, as when μ is a function, we have

f(θμ) � θf(μ).

Let ϕ be a nonnegative function in Cc(Ω) and let v ∈ Cc(Ω, dom f∗).
Since f∗ and ϕ are nonnegative and θ ∈ [0, 1], we can write

〈μ, θvϕ〉 −
∫

Ω

f∗(v)ϕ � 〈μvθ, ϕ〉 −
∫

Ω

f∗(v)θϕ � 〈θf(μ), ϕ〉.
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The desired result follows by taking the supremum in v. In particular, if {θj}
is a sequence of continuous functions with compact support equal to 1 on

a compact set Kj that for every j satisfies d(Kj , ∂Ω) � 1/j, so that the

sequence converges to 1Ω , then the sequence {f(θjμ)} converges tightly to

f(μ). Indeed, since f(θjμ) � θjf(μ) and f(μ) is a bounded measure, we see

that the sequence f(θjμ) is bounded. We can therefore extract a subsequence

that converges vaguely to a positive and bounded measure (cf. Proposition

6.20). By the previous theorem, we have

f(μ) � ν = lim
j→+∞

f(θjμ) � lim θjf(μ) � f(μ) .

Since, by the lower semicontinuity, we also have

∫

Ω

f(μ) � lim
j→+∞

∫

Ω

f(θjμ) �
∫

Ω

f(μ),

we see that f(θjμ) converges tightly to f(μ), that is, converges in (Cb(Ω))′.
We now suppose that μ has support in a fixed compact subset of R

N

contained in Ω.

Let ρ be an element of D(RN ) that is even and nonnegative, and which

has integral equal to 1. We set ρε(x) = 1/εNρ (x/ε) and uε = ρε ∗ μ.
We first show that

∀ v ∈ Cc(RN , dom f∗),

∫

RN

f∗(ρε � v) �
∫

RN

f∗(v).

This inequality comes from the properties of f∗ (cf. Theorem 6.2 in [23]).

Since the formula is also true for ρ, we will from now on denote both ρ and ρε
by ρ. We set dmt = ρdt, giving a measure that satisfies

∫
RN dmt = 1. Since the

domain of f∗ is bounded and f∗ is bounded on its domain, we have f∗(0) = 0.

Consequently, the composition f∗(v � ρ) is summable over RN and since f∗ is

convex and f∗ � 0, Jensen’s inequality gives

∀x ∈ R
N , f∗

(∫

RN

v(x− t)dmt

)
�
∫

RN

f∗(v(x− t))dmt.

By integrating and using Fubini’s formula, we obtain the desired property

∫

RN

f∗(v � ρ)dx �
∫

RN

∫

RN

f∗(v(t))ρ(x− t)dt

=

∫

RN

f∗(v(t))

∫

RN

ρ(x− t)dx dt

=

∫

RN

f∗(v(t))dt

∫

RN

ρ(ξ)dξ =

∫

RN

(f∗ ◦ v)(t)dt.
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The definition of f(ρ � μ), where ρ � μ ∈ L1(RN ), gives

∫

RN

f(ρ � μ) = sup
v∈Cc(RN ,dom f∗)

(∫

RN

[
(ρ � μ)v − f∗(v)

]
dx
)
.

Given a number δ > 0, there exists a function v ∈ Cc(RN , dom f∗) such that

∫

RN

f(ρ � μ) �
∫

RN

[
(ρ � μ)v − f∗(v)

]
dx+ δ.

Noting that by the parity of ρ, we have
∫

RN

ρ � v dμ =
〈
μ, 〈ρy, v(·+ y)〉〉 = 〈μ, 〈ρ(−y), v(· − y)〉

〉
,

which gives
∫
RN ρ � v dμ = 〈μ, ρ � v〉, we can deduce that

∫

RN

f(ρ � μ) � 〈μ, (ρ � v)〉 −
∫

RN

f∗(ρ � v) + δ.

Let us recall that μ has compact support. Hence, by taking ϕ = 1 in a neigh-

borhood of the support of μ, we can write the following inequality for the

total variation of the measure f(μ):

∫

RN

f(μ) � 〈μ, (ρ � v)〉 −
∫

RN

f∗(ρ � v).

It follows that
∫
RN f(ρ � μ) �

∫
RN f(μ) + δ, and finally

∫

RN

f(ρ � μ) �
∫

RN

f(μ) and

∫

RN

f(ρε � μ) �
∫

RN

f(μ).

Owing to this property, we can choose sequences {θj} and {εj} such that

the sequence of integrals
∫
Ω
f(ρεj � θjμ) converges to

∫
Ω
f(μ). Let θj be as in

the first part of the proof, and let εj < d(supp θj , ∂Ω). Since the sequence of

positive measures f(ρεj � θjμ) is bounded, we can extract a subsequence that

converges vaguely to a bounded measure ν with

f(μ) � ν = lim f(ρεσ(j)
� θσ(j)μ),

whose integrals satisfy
∫

Ω

f(μ) � lim

∫

Ω

f(ρεσ(j)
� θσ(j)μ) � lim

∫

Ω

f(θσ(j)μ) �
∫

Ω

f(μ).

We now deduce that the full sequence {
∫
Ω
f(ρεj � θjμ)} converges to

∫
Ω
f(μ).

Since inequality (6.124) is true for the functions ρεj � μ, it extends to the

measure μ. ��
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Corollary 6.145. Let θ be a function in Cc(Ω) with values in [0, 1], let μ be a

measure inM1, and let ρ be a function in D with supp ρ+supp(θμ) ⊂ Ω. Then
the inequality f(ρ � θu) � ρ � (θf(u)), which holds for functions u, extends to

the measure μ, giving

f(ρ � θμ) � ρ � (θf(μ)).

Proof of the corollary.

Indeed, let {uj} in C∞c (Ω) be as in the first part of the previous proof,

with

uj −⇀ μ and f(uj) −⇀ f(μ).

The pointwise inequality gives

f(ρ � (θuj)) � ρ � (θf(uj)).

Moreover, since the sequence f(uj) converges vaguely to f(μ), we can use

a simple argument to show that ρ � (θf(uj)) tends vaguely to ρ � (θf(μ)).

Likewise, the sequence {ρ � θuj} converges vaguely to ρ � θμ. Hence, using the

lower semicontinuity property of Theorem 6.143, we obtain

f(ρ � (θμ)) � lim f(ρ � (θuj)) � ρ � (θf(μ)). ��

The reader can consult [25] and [26] for more details and other results

concerning functions of a measure.

Comments

This chapter gives us the first notions of spaces of functions with a measure

as derivative. These spaces have been introduced to form models of problems

coming from the computation of variations and from solid mechanics. On the

subject of the space BV , the work of Giusti [35] is no doubt one of the most

complete. The first important advances on the subject of the spaces BD are

due to Suquet [67], Strang and Temam [71], and Kohn and Temam [42].

6.11 Exercises for Chapter 6

Exercise 6.1 (Vague and Tight Convergence).

Let {μn} be a sequence of positive measures that converges vaguely to μ

on Ω. Prove that it converges tightly on every open set Ω1 ⊂ Ω1 ⊂ Ω with∫
∂Ω1
μ = 0.

Hints. First, {μn} also converges vaguely to μ on Ω1. Since Ω1 is an open set, it
follows that ∫

Ω1

μ � lim

∫

Ω1

μn and

∫

Ω1

μ � lim

∫

Ω1

μn.
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Indeed, if we let F denote the set of ϕ with ϕ = 1 on Ω1, then we have
∫
Ω1

μ =

supϕ∈F

∫
μϕ � lim

∫
Ω1

μn, whence

∫

Ω1

μ =

∫

Ω1

μ = lim

∫

Ω1

μn.

Exercise 6.2 (Characterization of the Gradient Distributions).

Let T ∈ D′(Ω,RN ). Show that if T = ∇S with S ∈ D′, then for every

(i, j) ∈ [1, N ]2, ∂iTj = ∂jTi. Establish the converse. Deduce that T = ∇S if

and only if for every ϕ ∈ D(Ω,RN ) with divϕ = 0, we have 〈T, ϕ〉 = 0.

Hints. Use an induction argument for the converse, where the case N = 1 is the
existence of a primitive of a distribution. For the second part, consider the functions
of the form ϕ = ∂jvei − ∂ivej for v ∈ D(Ω).

Exercise 6.3 (On the Absolutely Continuous and Singular Parts of

a Sequence ∇un that Tends to ∇u when u ∈ BV (Ω)).

We use the notations of Theorem 6.56. Prove that
∫

Ω

|∇uδ − (∇u)ac| −→
∫

Ω

|∇uS |,

where μac and μS denote the absolutely continuous and singular parts of the

measure μ, respectively (we refer to Section 6.2 for the definitions and for

the Lebesgue decomposition). Use inequalities of the same type as (6.60) and

(6.62).

Hints. Write

|∇uδ − (∇u)ac| =
∣
∣
∣
∑ [

ρηj � (ϕj∇u+ u∇ϕj)− ϕj(∇u)ac
]∣∣
∣

�
∣
∣
∣
∑ [

ρηj � (ϕj(∇u)ac − ϕj(∇u)ac
]∣∣
∣+

∑
|ρηj � (ϕj(∇u)S)|.

Through inequalities of the type used in the proof of the theorem, show that
∫

Ω

|∇uδ − (∇u)ac| �
∫

Ω

|(∇u)S |+ 2δ.

Exercise [∗∗] 6.4 (Determining Eα in the Proof of Theorem 6.89).

Determine a solution of the following equation, taken in the sense of distribu-

tions:

(6.146) (Δ+∇(div)) (Eα) = αδ0.

Use the fundamental solution of the Laplacian, that is, M with ΔM = δ0.

This solution equals

(6.147) M =

⎧
⎨

⎩

ln r

2π
if N = 2,

kN |x|2−N if N � 3.
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Prove that

(6.148) Eα =
3α

4
M − x

4
(α · ∇M)

is indeed a solution of (6.146). Deduce from this the explicit formula

Eα =

⎧
⎪⎨

⎪⎩

3α

8π
ln r − xα · x

8π
if N = 2,

kN
3α

4rN−2
+ kN

(
N − 2

4

)
x(x · α)
rN

if N > 2.

Exercise [∗∗] 6.5 (Comparison of Upper Bounds in the Definition

of f(μ)).

We would like to justify Remark 6.131. In the formula defining f(μ), under the

assumptions of Proposition 6.132, we consider the upper bounds α, β, and γ

of {〈μ, vϕ〉−
∫
Ω
(f∗◦v)ϕdx} when v belongs to L1(Ω,μ+dx), L∞(Ω, dom f∗),

and Cc(Ω, dom f∗), respectively.
First prove that α � β � γ. Next, show that α � γ.

Hints. To prove that α � γ, show that given a v in L1(Ω,μ+ dx), we can associate
with it a function v ∈ D(Ω,dom f∗) such that

∫

Ω

|v − v|(dμ+ dx) � ε and ‖f(v)− f(v)‖∞ � ε.

Exercise 6.6 (Determining the Conjugate of the Asymptotic Func-

tion).

Show that if f satisfies the conditions of the definition of a function of a

measure f(μ), then f∗∞ = χdom f∗ .

Hints. Reduce to showing that f∞(x) = supy∈dom f∗(〈x, y〉). Show that f∞(x) �
〈x, y〉 using the definition of the conjugate, which when defining f∞(x) involves the
expression 〈tx, y〉 − f∗(y) for y ∈ dom f∗.

Conversely, show that given ε, we can find yt,ε ∈ dom f∗ such that

f(tx) � 〈tx, yt,ε〉 − f∗(yt,ε) + ε.

Exercise [∗] 6.7 (Properties of the Functions in L2(Ω) with Diver-

gence in L2(Ω)).

Let Ω be an open subset of RN and let X(Ω) = {u ∈ L2(Ω,RN ) | div u ∈
L2(Ω)}.

(1) Prove that X endowed with the norm ‖.‖X defined by

‖u‖X =

( ∑

1�i�N

|ui|22
)1/2

+
(∫

Ω

(div u)2dx
)1/2

is a Banach space.
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(2) Suppose that Ω is of class C1. Show, beginning with the case Ω = R
N ,

that the functions in C1(Ω) ∩ X(Ω) are dense in X(Ω). In the general

case, use the method of Proposition 3.57 of Chapter 3.

(3) Still supposing that Ω is of class C1, show that we can define a trace map

that is continuous on X(Ω), has values in H−1/2(∂Ω), and for which the

following Green’s formula holds:

∀u ∈ H1(Ω), ∀σ ∈ X(Ω),

∫

Ω

∇u · σ +
∫

Ω

div(σ)u = 〈σ · −→n , u〉.

Exercise 6.8 (Details of the Proof of Theorem 6.89).

In the proof of Theorem 6.89, we work in the open set Ω ∩ Ωk and on a

component ui of u such that νi =
−→ν ·ei �= 0 almost everywhere along ∂Ω∩Ωk,

where−→ν is the unit outward-pointing normal. The argument remains the same

on a different component uj if −→ν · ej �= 0 almost everywhere. Let us assume

that this is not the case.

(1) Prove that in this case, we have −→ν · ( ei+ej√
2

) �= 0 almost everywhere, which

suggests that we reduce to the function v defined by v = ui + uj .

(2) We change the basis by replacing (ei, ej) by ((ei + ej)/
√
2, (ei − ej)/

√
2),

and leaving ek the same for k �= i, j. Prove that the function v obtained

from this base change belongs to LD(Ω). Next, use the argument of the

proof of Theorem 6.89 to deduce that uj ∈ Lp(Ω ∩Ωk).

Exercise [∗∗] 6.9 (Functions in W 1,1(Ω) with Hessian in M1(Ω)).

Let Ω be an open subset of RN and let

HB(Ω) = {u ∈ L1(Ω) | ∇u ∈ L1(Ω,RN ), ∇∇u ∈M1(Ω,RN2

)}.

For u ∈ HB(Ω), we set

∫

Ω

|∇∇u|dx = sup
ϕ∈Cc(Ω,RN2

)∑
ij |ϕij |2�1

∫

Ω

∑

ij

ϕij
∂2u

∂xi∂xj
dx.

(1) Show that HB(Ω) endowed with the norm

‖u‖HB(Ω) = ‖u‖1 + ‖∇u‖1 +
∫

Ω

|∇∇u|(x)dx

is a Banach space.

(2) Show that if u ∈ D′(Ω) satisfies ∇∇u ∈ M1(Ω), then u ∈ HBloc(Ω).

Show that if Ω is moreover Lipschitz and bounded, then u ∈ HB(Ω).
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Exercise 6.10 (Continuation of the Previous Exercise: the Trace

Map).

Prove that if Ω is of class C2, then we can define the trace map to be

HB(Ω) −→W 1,1(∂Ω)× L1(∂Ω)
u 	−→ (u, ∂u/∂−→n ).

In HB(Ω), we define the weak convergence un ⇀ u by

‖un − u‖W 1,1(Ω) −→ 0 and ∀ϕ ∈ Cc(Ω,RN2

),

∫
∇∇un : ϕ −→

∫
∇∇u : ϕ.

Prove that the trace map is not continuous for the weak topology.

Prove that if

un −⇀ u and

∫

Ω

|∇∇un| −→
∫

Ω

|∇∇u|,

then ∫

∂Ω

∣
∣
∣
∂un
∂−→n −

∂u

∂−→n

∣
∣
∣ −→ 0.

Exercise [∗] 6.11 (Embeddings of the Space HB(Ω)).

(1) Show that if N � 2 and if Ω is an open set of class C2, then we have an

embedding

HB(Ω) ↪−→W 1,N/(N−1)(Ω).

(2) Suppose that N = 2. We want to show that HB(R2) ↪→ Cb(R2). This

follows once we show that if v is an element of HB with compact support

in R
2, then the function V defined by

V (x, y) =

∫

]−∞,x[×]−∞,y[

∂2v

∂x∂y
dx dy

is continuous and, moreover, equals v almost everywhere. To do this, show

that the measure ∂2v/∂x∂y charges neither horizontal nor vertical lines.

Exercise [∗] 6.12 (Restriction of a Function in BV (Ω) to Ω).

As in Proposition 6.110, let Ω1 and Ω2 be two open subsets of RN of class C1
and let Σ be a manifold of dimension N −1 with Ω = Ω1∪Σ∪Ω2, Ω1∩Ω2 =

∅, and Ω1 ∩ Ω2 = Σ. Let −→n be the outward-pointing normal to ∂Ω2. Let

u ∈ BV (Ω) and consider the restrictions ui = u|Ωi , i = 1, 2.

First show that ui ∈ BV (Ωi) and then that for the uniform Dirac measure

δ∂Ω1 on ∂Ω1, we have

∇u =
∑

i=1,2

∇uiχΩi + (γ0(u2 − u1))−→n δ∂Ω1 .
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Also show that

|∇u| =
∑

i=1,2

|∇ui|χΩi + |(γ0(u2 − u1))|δ∂Ω1 .

Let σ ∈ C(Ω,RN ). Show that if σ · ∇u = |∇u| in Ω, then

• for every i ∈ {1, 2} and every x ∈ Ωi, we have σ · ∇ui(x) = |∇ui|(x),
• for every x ∈ ∂Ω1, we have σ · −→n (u2 − u1) = |u2 − u1|(x).

Show that this property extends to the case where σ ∈ L∞ with div(σ) ∈
LN (Ω), where we see σ · ∇u as a measure.

Exercise 6.13 (Restriction of a Function in BD(Ω) to Open Subsets

of Ω).

Let Ω, Ω1, and Ω2 be as in the previous exercise. Let u ∈ BD(Ω). Prove that

the restriction of u to Ωk, which we denote by uk, belongs to BD(Ωk) for

k = 1, 2 and that

εij(u) = εij(uk)χΩk
+ ((u2 − u1)inj + (u2 − u1)jni))δ∂Ω1 .

Let σ ∈ L∞(Ω,E), where E denotes the space of symmetric matrices over RN .

We suppose that div(σ) ∈ LN (Ω,RN ). Prove that if u ∈ BD(Ω), then

σ : ε(u) =
∑

i

(σ : ε(ui))χΩi +
∑

ij

(u2 − u1)injσijδ∂Ω1 .

Exercise [∗∗] 6.14 (The Space Xm(Ω) = {u ∈ Lp(Ω) | ∇mu ∈ Lp(Ω)} for

p � 2).

We endow Xm(Ω) with the natural norm ‖u‖Xm = ‖u‖p+‖∇mu‖p, for which
it is complete.

(1) Use Theorem 6.74 to show that Xm(Ω) is of local type, that is,

∀ϕ ∈ D(Ω), ∀u ∈ Xm(Ω), ϕu ∈ Xm(Ω).

(2) Show that the space D(RN ) is dense in Xm(RN ).

(3) Show the following inequality for every m � 2 and every j � m:

(6.149) ‖∇ju‖Lp(RN ) � C‖∇mu‖j/m
Lp(RN )

‖u‖1−j/m

Lp(RN )
.

(4) Let Ω be an open set of class Cm. Show that inequality (6.149) implies

that

‖∇ju‖Lp(Ω) � C(‖u‖p + ‖∇mu‖Lp(Ω)).
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Hints. (2) For a given δ > 0, use a function ϕ ∈ D(RN ) with

(6.150) ‖ϕu− u‖p � δ and ‖ϕ∇mu−∇mu‖p � δ.

Next, take a regularizing function ρε and set uε = ρε � (ϕu), so that

(6.151) ‖∇muε −∇m(ϕu)‖p � δ and ‖uε − (ϕu)‖p � δ.

Deduce that ‖uε − (ϕu)‖Xm � kδ. Apply the generalized Hölder’s inequality to the
integral

∫
RN uε div(|∇uε|p−2∇uε) to prove that we have

∫

RN

|∇uε|p � C

∫

RN

|uε‖∇uε|p−2|∇∇uε| � C‖∇∇uε‖Lp‖uε‖Lp‖∇uε‖p−2
Lp

and, consequently, inequality (6.149) for uε, j = 1, and m = 2. Pass to the limit to
prove that {∇uε} is a Cauchy sequence in Lp(RN ) and that its limit in this space is
∇u (use convergence in the sense of distributions). Use an induction on m to prove
that

(6.152) ∀ j � m, ‖∇ju‖p � cp,j,m‖u‖1−j/m
p ‖∇mu‖j/mp .

Indeed, apply the induction formula, first with ∇u and j = m− 1, and then with u
and j = 1, to show that there exist constant such that we have the following upper
bound for D = ‖∇mu‖p:

D � C‖∇u‖1−(m−1)/m
p ‖∇m+1u‖(m−1)/m

p

� C‖u‖(1−1/m)1/m
p ‖∇mu‖1/(m

2)
p ‖∇m+1u‖(m−1)/m

p .

It follows that

‖∇mu‖(m−1)(m+1)/m2

p � C‖u‖((m−1)/m2)
p ‖∇m+1u‖m−1/m

p .

To conclude,

‖∇mu‖p � C‖u‖1/(m+1)
p ‖∇m+1u‖m/(m+1)

p

and for every j � m− 1,

‖∇ju‖p � C‖u‖1−j/m
p ‖∇mu‖j/mp

� C‖u‖1−j/m+j/(m+1)m
p ‖∇m+1u‖(jm)/[m(m+1)]

� C‖u‖1−j/(m+1)
p ‖∇m+1u‖j/(m+1)

p .

Use these inequalities to deduce that ∇juε is a Cauchy sequence in Lp(RN ) that
converges to ∇ju, which therefore belongs to Lp(RN ). In this manner, all the in-
equalities given above extend to the functions in X(RN ). Moreover, the norms are
equivalent (use the open image theorem).

Exercise 6.15 (Example of a Function of a Measure).

Consider the measure μ defined by

∀ϕ ∈ Cc(]0, 1[), 〈μ, ϕ〉 =
∫ 1

0

ϕ(x)√
x
dx+ ϕ(0).

(1) Show that μ is bounded on ]0, 1[.



6.11 Exercises for Chapter 6 367

(2) Let f(x) =
√
x2 + 1. Compute f(μ).

Exercise 6.16 (Second Example of a Function of a Measure).

Let f be a function on R
2 defined by f(x1, x2) =

√
2x21 + x

2
2 + x1 + 2. Show

that f is convex and has linear growth at infinity. Compute f∞. Let μ be

the measure on R defined by μ = (xdx + δ1, δ1). Show that f(μ) =
√
3δ1 +√

2x2 + x+ 2dx.

Exercise [∗] 6.17 (Images of Two Mutually Singular Measures Under

a Function).

Let f be a convex function with linear growth at infinity with f(0)=0. Prove

that if μ1 is a measure that is singular to μ2, which we denote by μ1 ⊥ μ2
(cf. Section 6.2, Definition 6.43), then

f(μ1) ⊥ f(μ2).

Exercise [∗] 6.18 (Property of the Composition of a Convex Function

and a Gradient).

Let f be a convex function with linear growth at infinity such that f(0) = 0

and the conjugate f∗ of f is bounded on its domain. Let Ω, Ω1, Ω2, and σ

be as in Proposition 6.110 and Exercises 6.12 and 6.13, and let u ∈ BV (Ω).

Prove that

f(∇u) = f(∇u)χΩ1 + f(∇u)χΩ2 + f∞(u2 − u1)δΣ .

Exercise [∗] 6.19 (Function of a Measure where the Function Admits

a Nonempty Subdifferential at 0).

Let f be a convex function that admits a nonempty subdifferential at 0.

Let g = f(x) − f(0) − 〈x∗, x〉, where x∗ ∈ ∂f(0). Show that dom g∗ =

dom(f∗)− ∂f(0) and that

g∗(x) = f(0) + f∗(x+ x∗).

Deduce the following property: if f is a convex function with linear growth

at infinity and with conjugate f∗ that is bounded on its domain and if ϕ is a

nonnegative function in Cc(Ω), then the formula

〈f(μ), ϕ〉 = sup
v∈Cc(Ω,dom f∗)

∫

Ω

μ vϕ−
∫

Ω

f∗(v)ϕ

still holds. Prove that g(μ) = f(μ)− f(0)− x∗ · μ.

Exercise [∗] 6.20 (Details for N = 3 in the Proof of Theorem 6.95).

We use the notation of the proof of Theorem 6.95 in the case N = 3. We set

α = α1e1 + α2e2 + α3e3 and suppose that αi �= 0 for every i ∈ {1, 2, 3}. We

begin by proving Lemma 6.96 in this situation.
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(1) Consider the product IαJ1J2. Use the components (ξ1, ξ2, ξ3) of x in the

new basis α, e1, e2 to show that

Iα(x) =

∫ 0

−∞
f̃(ξ1 + s, ξ2, ξ3)ds =

∫ ξ1

−∞
f̃(s, ξ2, ξ3)ds.

Deduce that there exists a wα ∈ L2(R2) such that |Iα(x)| � wα(ξ2, ξ3).

Also show that |J2(x)| � w2(ξ1, ξ3) and |J1(x)| � w1(ξ1, ξ2). Apply

Lemma 2.40 to prove that wαw2w1 ∈ L1(R3) and conclude that IαJ1J2 ∈
L1(R3).

(2) Use a different basis to show that the same holds for a different product, for

example IαI1J2. Deduce that every linear combination of these products,

each taken to the power 1/2, therefore belongs to L
3/2
loc (R

3). This concludes

the proof of Theorem 6.95 in the case N = 3.

Hints. For the first question, we have, for example,

J2(x) = J̃2(ξ1, ξ2, ξ3) =

∫ 0

−∞
f̃(ξ1, ξ2 + s, ξ3)ds =

∫ ξ2

−∞
f̃(ξ1, s, ξ3)ds.

Use an integral w2 over R to give an upper bound and conclude that |J2(x)| �
w2(ξ1, ξ3).

Exercise 6.21 (Linear Combinations of Dirac Masses, [50, 51]).

Let ν be a positive measure for which there exists a constant C > 0 such that

for every measurable set A, we have

either ν(A) = 0 or ν(A) � C.

Prove that ν is a linear combination of Dirac masses with mass � C.
Hints. If ν is not identically zero, then let x0 ∈ supp ν. Suppose that ν(x0) = 0;
then there exists a ball B(x0, r) with r > 0 such that ν(B(x0, r)) = 0. Indeed, if
this were not the case, then there would exist a sequence rn tending to 0, such that
ν(B(x0, rn)) > 0, and therefore � C. Consequently, by the definition of the measure
of a compact set, we would have

ν({x0}) � lim ν(B′(x0, rn)) � C.

It follows that in this case, either we have ν(({x}) � C at every point, or the measure
is identically zero. However, we also have ν(B(x0, r)) � C for every r > 0, so that
by using a countable finite open set in Ω with finite measure for ν, we would have

ν(Ω) � ν
(∑

n xn

)
� NC

for every N . It follows that if ν is a bounded measure, then it cannot consist of a
finite number of Dirac masses.
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Exercise 6.22 (Generalization of the Previous Result, [50, 51]).

Let μ and ν be two positive measures on R
N for which there exist a constant

C > 0 and real numbers p and q satisfying 1 � p < q � ∞ such that, for

every universally measurable function ϕ, we have
(∫

|ϕ|qν
)1/q

� C
(∫

|ϕ|pμ
)1/p
.

Prove that there exist a countable set of points {xj} in R
N and a sequence of

real numbers νj such that

ν =
∑

j

νjδxj and μ �
∑

j

ν
p/q
j δxj .

Hints. First note that the assumptions imply that ν is absolutely continuous with
respect to μ, so that

ν = fμ.

Next, by the Lebesgue–Radon–Nikodym theorem, there exist g ∈ L1(RN , ν) and a
measure σ singular with respect to ν, such that

μ = gν + σ.

Reduce to the case where σ = 0 and set νk = gq/(q−p)1{x| g(x)�k}ν =

gp/(q−p)1{x| g(x)�k}μ. Let ψ be a universally measurable function and let

ϕ = g1/(q−p)1g�kψ.

Write ( ∫
ϕqdν

)1/q

� C
( ∫

|ϕ|pdμ
)1/p

.

We then have
( ∫

|ψ|qdνk
)1/q

� C
( ∫

|ψ|pgp/(q−p)g1{x|g(x)�k}dν
)1/p

= C
( ∫

|ψ|pdνk
)1/p

.

Taking ψ = χA, deduce that νk satisfies the conditions of Exercise 6.21, and con-
clude.

Exercise 6.23 (Applications of the Previous Exercises, [50, 51]).

Let p < N and let p∗ = Np/(N − p). Let {um} be a sequence that converges

weakly to 0 in W 1,p(RN ). Use the continuity inequality

C
(∫

RN

|ϕum|p
∗
)1/p∗

� ‖∇(ϕum)‖p

for ϕ ∈ D(RN ) and the previous exercise, after extracting a subsequence from

{um}, to show that {|um|p
∗} converges weakly to a linear combination of

Dirac masses ν =
∑

i νiδxi . Also show that

|∇um|p −⇀ μ, with μ � C
∑

i

ν
p/p∗

i δxi .
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Korn’s Inequality in Lp

This final chapter is devoted to the proof of Korn’s inequality , which we have

already used in Chapter 5. This inequality says that if Ω is a regular bounded

open set, then

∃C > 0, ∀u ∈W 1,p
0 (Ω,RN ), |∇u|p � C|ε(u)|p,

where the last inequality can also be written as

(7.1)

∫

Ω

(∑

i,j

|∂j(ui)(x)|2
)p/2
dx � Cp

∫

Ω

(∑

i�j

∣
∣
∣
∂jui + ∂iuj

2
(x)
∣
∣
∣
2)p/2

dx.

Let us begin with an introductory remark.

When Korn’s inequality is explained in the mathematical literature, it is,

in general, in the case p = 2; see, in particular, the articles contained in [44],

[45], [43], [32], [54], and [30]. In some works, it is just mentioned that the

result extends to the case where 1 < p < ∞, with counterexamples for the

cases p = 1 and p = ∞. Most articles about these inequalities concern the

case p = 2 and look to extend the result to quite general classes of open sets,

for example open sets of class C1, open sets with the cone property, or certain

unbounded open sets. In the case p �= 2, P. Ciarlet gives a proof that uses

rather difficult results on the regularity of solutions of elliptic equations over

W 1,p, as in [2] (cf. [15]).

Because of the lack of simple proofs in the case p �= 2, we have chosen to

prove the result for those values of p, for a bounded open set Ω of class C2,
using results from harmonic analysis, without worrying about generalizing to

less regular open sets.

Let us return to inequality (7.1). To obtain it, we will show the property

∀T ∈ D′(Ω), ∇T ∈W−1,p′
(Ω) =⇒ T ∈ Lp

′
(Ω).

F. Demengel, G. Demengel, Functional Spaces for the Theory
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DOI 10.1007/978-1-4471-2807-6 7,
© Springer-Verlag London Limited 2012
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This can be proved using Riesz’s inequality, where C is a constant depending

on N and p:

∀ϕ ∈ S(RN ),
∥
∥
∥
∂2ϕ

∂xi∂xj

∥
∥
∥
p
� C|Δϕ|p.

Namely, we will use arguments from distribution theory and characterizations

of the images of the operators div and Δ on the space S(RN ).

Riesz’s inequality, which bounds the mixed partial derivatives from above

using only the seminorm of the Laplacian in Lp, can be shown using the Fourier

transform applied to convolutions of functions in Lp with Riesz kernels (Riesz

transforms).

An important part of this chapter consists of studying Hardy’s and

Hilbert’s maximal functions, leading to properties of the Riesz transforms.

The arguments we give in these preliminaries mostly come from the book

[64], after being ordered and adapted to suit our objectives.

7.1 Harmonicity, Mean values, Hardy Maximal

Functions

7.1.1 Construction of Harmonic Functions using the Poisson

Kernel

The homogeneous Dirichlet problem associated with the operator Δ and

R×]0,+∞[ with boundary condition defined by a continuous function admits

a regular solution. Below we provide the means to give the solution explicitly.

When the open set is a ball, such a solution is defined by the formula given

in Remark 5.70.

Definition 7.2. A function f of class C2 on an open subset Ω of RN is called

harmonic if

∀x ∈ Ω, Δf(x) =
N∑

1

∂iif(x) = 0.

In the case N = 2, the real and imaginary parts of these functions are

holomorphic functions. The same holds for the Poisson kernel P defined on

R× ]0,+∞[ by

P (x, y) =
1

π

y

x2 + y2
= �e

(
− 1

iπz

)
.

Let f be a continuous function on R. We wish to extend f to a function

on R × ]0,+∞[ that coincides with f on R × {0} and is harmonic on the

upper half-plane. Note that if we let Py be the function x 	→ P (x, y), then the

combination of the differentiation of the convolution h = (f � Py) in x and
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the differentiation with respect to y gives Δh = 0, at least formally for now.

More precisely, we have the following result.

Proposition 7.3. Let f ∈ Lp(R) for p satisfying 1 � p � ∞; then the func-

tion u defined by

∀ y > 0, ∀x ∈ R u(x, y) =

∫

R

P (x− t, y)f(t)dt

belongs to Lp(R× ]0,+∞[) with ‖u(·, y)‖p � ‖f‖p.
Moreover, u is harmonic on the upper half-plane and

lim
y→0

‖u(·, y)− f‖p = 0.

If f is continuous and bounded on R, then the convergence is uniform on every

compact subset of R.1

Remark 7.4. When we only have the inclusion of f in Lp, there exist regions

where the convergence of P (·, y)�f to f when y → 0 is uniform. More precisely,

let x0 ∈ R and let α > 0 be a real number. We let Γα(x0) denote the open

cone with top x0 ∈ R lying in R× ]0,+∞[, defined by

Γα(x0) =
{
(x, y) ∈ R× ]0,+∞[ | |x− x0|/y < α

}
.

This region is a cone with vertical axis, whose top lies on the horizontal

axis, and whose top semi-angle is less than π/2. When (x, y) tends to (x0, 0)

while staying in the cone, the resulting limit of P (·, y) � f is called nontan-

gential. We will show further on that if x0 is a Lebesgue point2 of f , then

this limit exists and, moreover, the convergence is uniform in the cone. This

property will be useful when we study the Hilbert transform. Its proof is given

in Exercise 7.15.

Proof of Proposition 7.3.

We will use two important properties in the proof, namely the positivity

of P in the upper half-plane and the relation
∫
R
P (x, y)dx = 1 that holds for

every y > 0.

1 In the book [64] we mentioned above, the results concern the harmonicity in the

half-plane R
N × ]0,+∞[.

2 Given a locally integrable function f in R
N , an element x of R

N is called a

Lebesgue point of f if

lim
r→0

1

|B(0, r)|

∫

|t|<r

|f(x− t)− f(x)| dt = 0.

We can show that the set of these points has a complement with measure zero.
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(1) To establish the harmonicity, we can use derivatives or the characterization

of harmonic functions using the mean value property (cf. Exercise 7.3).

Let Mx,y,r(f) denote the mean value of f on the ball B((x, y), r). We

use Fubini’s formula and the fact that the function (x, y) 	→ P (x− t, y) is
harmonic for every t to obtain that for every y > 0 and for every r < y,

Mx,y,r(u) =
1

πr2

∫

B((x,y),r)

[∫

R

P (ζ − t, η)f(t)dt
]
dζdη

=
1

πr2

∫

R

f(t)
[∫

B((x,y),r)

P (ζ − t, η)dζdη
]
dt

=

∫

R

f(t)P (x− t, y)dt = u(x, y).

Since the function u is continuous, this shows that Δu = 0 (cf. Exercise

7.3).

(2) Let us now show the assertion concerning the uniform convergence of

Py �ϕ−ϕ to 0 when y → 0 on a compact subset K of R2, provided that ϕ

is continuous and bounded.

Let ε > 0 and δ > 0 satisfy π/2− arctan(1/δ) � ε and for every x ∈ K,

|ϕ(x)− ϕ(x− t)| � ε

provided that |t| � δ. Then for y � δ2, we can write

π|Py � ϕ(x)− ϕ(x)| �
∫

|t|<δ

y

y2 + t2
|ϕ(x− t)− ϕ(x)|dt

+

∫

|t|>δ

y

y2 + t2
|ϕ(x− t)− ϕ(x)|dt

� ε
∫

|t|<δ

y

y2 + t2
dt+ 2‖ϕ‖∞

∫

|t|>δ

y

t2 + y2
dt

� επ + 2‖ϕ‖∞(π − 2 arctan(δ/y))

� (π + 4‖ϕ‖∞)ε,

which concludes the proof of the uniform convergence.

(3) Let us now show the convergence of ‖Py � ϕ−ϕ‖p in Lp when ϕ ∈ Cc(R).
We use the equality

(
Py � ϕ− ϕ

)
(x) =

1

π

∫

R

ϕ(x− yt)− ϕ(x)
1 + t2

dt,

which is obtained after a change of variables. We will then use the density

of Cc(R) in Lp(R) and the following property, which holds for f in Lp:

‖Py � f‖p � C‖f‖p.
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This inequality is a consequence of Hölder’s inequality together with Fu-

bini’s formula. Indeed, using (1 + t2) = (1 + t2)1/p(1 + t2)1/p
′
, we have

πp
∫

R

|Py � f |p(x)dx �
∫

R

∣
∣
∣
∫

R

f(x− yt)
1 + t2

dt
∣
∣
∣
p

dx

�
∫

R

(∫

R

|f(x− yt)|p
1 + t2

dt
)(∫

R

1

1 + t2
dt
)p/p′

dx

� πp/p′
∫

R

|f(x− yt)|p
(∫

R

dt

1 + t2

)
dx � c‖f‖pp.

We therefore suppose that ϕ is continuous and has compact support. Let

ε > 0 and let δ < 1 be such that by the uniform continuity on R, |x−x′| � δ
implies that

|ϕ(x)− ϕ(x′)| � ε

| suppϕ|+ 1
.

Suppose that y < 1 and let D denote the order δ neighborhood of the

support of ϕ, so that if y|t| < δ and x /∈ D, then ϕ(x − yt) − ϕ(x) = 0.

Computations similar to the previous ones give

πp
∫

R

∣
∣Py � ϕ− ϕ

∣
∣pdx �

∫

R

∣
∣
∣
∫

R

ϕ(x− yt)− ϕ(x)
1 + t2

dt
∣
∣
∣
p

dx

�
∫

R

(∫

R

|ϕ(x− yt)− ϕ(x)|p
1 + t2

dt
)(∫

R

1

1 + t2
dt
)p/p′

dx

� πp/p′
[∫

D

(∫

t,|yt|�δ

|ϕ(x− yt)− ϕ(x)|p
1 + t2

dt
)
dx

+

∫

R

(∫

{t,|yt|>δ}

|ϕ(x− yt)− ϕ(x)|p
1 + t2

dt
)
dx

]

� cεpπp/p′
∫

D

dx+ 2c

∫

R

|ϕ|pdx
∫

{|yt|>δ}

dt

1 + t2

� c′εp + 4c‖ϕ‖pLp

(
π/2− arctan(δ/y)

)
,

which concludes the proof by choosing y � δ2.
To conclude, we suppose that f ∈ Lp(R). Let ε > 0 and ϕ ∈ Cc(R) satisfy

‖f − ϕ‖p � ε.

Under the previous conditions, let δ be a number such that y � δ2 implies

the inequality

‖Py � ϕ− ϕ‖p � ε.
Then

‖Py � f − f‖p � ‖Py � (f − ϕ)‖p + ‖Py � ϕ− ϕ‖p + ‖ϕ− f‖p
� C‖f − ϕ‖p + ε+ ε � cε,

completing the proof. ��
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Proposition 7.5. If u is defined as before with f ∈ Lp(R), then |u(x, y)| �
Cy−1/p for every y > 0. In particular, the function u is bounded in the half-

plane {y � y0}, where y0 is taken to be positive.

Proof of Proposition 7.5.

For a fixed x in R, we use Hölder’s inequality. By the change of variable

t = yz, we have

π|(Py � f)(x)| � π‖Py‖p′‖f‖p = y
[∫

R

ydz

y2p′(1 + z2)p′

]1/p′

‖f‖p

= y−1+1/p′
[∫

R

1

(1 + |z|2)p′ dz
]1/p′

‖f‖p � cy−1/p‖f‖p. ��

Proposition 7.6. Let u be a harmonic function on the half-plane {y > 0}
that is bounded on every half-space {y � y0} with y0 > 0; then for every pair

(y1, y2) of positive numbers, we have

u(x, y1 + y2) =

∫

R

u(x− t, y1)P (t, y2)dt.

Proof of Proposition 7.6.

We fix a y0 > 0. By assumption, the function (x, y) 	→ v(x, y) = u(x, y+y0)
is harmonic in a neighborhood of the upper half-plane {y � 0} and bounded in

this half-plane. We let v1 denote the function associated with the continuous

function t 	→ u(t, y0) on R as in Proposition 7.3, namely

∀x ∈ R, ∀ y > 0, v1(x, y) =

∫

R

P (x− t, y)u(t, y0)dt.

This function v1 is harmonic in the upper half-plane and extends continuously

to the function t 	→ u(t, y0) on the boundary {y = 0}. In other words, we have

v1(x, 0) = u(x, y0).

We will show that the functions v and v1 coincide in the upper half-plane,

which will prove the equality of Proposition 7.6.

Indeed, the two functions v and v1 are harmonic in {y > 0} and, since

v1(x, 0) = v(x, 0), they coincide on {y = 0}. Moreover, they are bounded.

For v, this follows from the conditions of the proposition, and for v1, it follows

from Proposition 7.3 in the case p =∞ and also from Proposition 7.5 because

the function t 	→ u(t, y0) belongs to L∞(R). The conclusion now follows using

a symmetry argument. For this, we extend the difference d(x, y) = v(x, y) −
v1(x, y) to the lower half-plane using the formula

∀x ∈ R, ∀ y > 0, d(x,−y) = −d(x,−y),

which, because of Δd(x, y) = −Δd(x,−y), implies that the extended function

is harmonic on R
2
� {y = 0}. Moreover, by extending the function d by 0 on
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{y = 0}, we obtain a continuous function on R
2. Using the Poisson kernel,

we can use, for example, the solution of a Dirichlet problem in a ball, with

continuous boundary condition, to show that this function is harmonic in

R
2. Furthermore, the extended function d is bounded in R

2. It follows, in

the dimension 2 case, that it is the real part of an integral function that is

holomorphic in the plane and bounded, and therefore constant by Liouville’s

theorem. Consequently, v − v1 is a constant, which must be zero since it is

zero on {y = 0}. ��

Remark 7.7. We must emphasize the importance of the boundedness in this

argument. Since the domain is unbounded, we cannot use the uniqueness of

the solutions of Dirichlet problems. Moreover, we can easily construct nonzero

functions that are harmonic in the plane and zero on the horizontal axis.

7.1.2 Rearrangement Function

Definition 7.8. The rearrangement function λf of the function f is defined

to be

λf (s) =
∣
∣{x | |f(x)| > s}

∣
∣.

We can easily see that the function λf is nonincreasing and right-

continuous. This function will be useful when we study the maximal

functions further on. For the moment, the inclusion of f in Lp gives the

following result.

Proposition 7.9. Let f ∈ L1(RN ); then the function f belongs to Lp(RN ) if

and only if
∫∞
0
sp−1λf (s)ds <∞. More precisely, we have

(7.10)

∫ ∞

0

sp−1λf (s)ds =
1

p
‖f‖pp.

Proof of Proposition 7.9.

We begin by proving relation (7.10) when f is simple. By considering the

positive and negative parts of f and the relation |f | = f+ + f−, we see that

we may assume that f � 0 and that f is simple, which we do. Then f can be

written as

f =

n∑

j=1

cjχEj ,

where cn+1 = 0 < cn < cn−1 < · · · < c1 and the Ej are two-by-two disjoint

measurable subsets of RN . For j ∈ [1, n], we set dj = |E1|+ · · ·+ |Ej |. The
function λf can then be written as

λf (s) =

{
dj if cj+1 � s < cj ,
0 if s > c1
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(cf. Exercise 1.23). Consequently,

∫ ∞

0

sp−1λf (s)ds =

n∑

1

∫ cj

cj+1

sp−1dsdj =
1

p

n∑

1

(cpj − c
p
j+1)dj

=
1

p
cp1|E1|+

n∑

2

cpj (dj − dj−1) =
1

p

( n∑

1

cpj |Ej |
)
=

1

p
‖f‖pp.

We continue with the general case, where we may, and do, still suppose

that f � 0. Since f ∈ L1(RN ), there exists a nondecreasing sequence of simple

functions {fn} with fn � f and ‖fn−f‖1 → 0. In particular, after extracting

a subsequence, if necessary, the sequence {fn} converges almost everywhere

to f . The sequence En(s) is nondecreasing, hence E(s) = {x | |f(x)| > s} =⋃
n{x | |fn(x)| > s} ≡

⋃
nEn(s) by the monotone convergence theorem.

Moreover, λf (s) = limλfn(s).

Let us assume that
∫∞
0
sp−1λf (s)ds < +∞; then the dominated conver-

gence theorem gives
∫ ∞

0

sp−1λfn(s)ds −→
∫ ∞

0

sp−1λf (s)ds.

We can also apply the monotone convergence theorem to the sequence {fpn}.
Using the result already proved for the simple functions, this gives

1

p
‖f‖pp =

1

p
lim
n→∞

‖fn‖pp = lim
n→∞

∫ ∞

0

λfn(s)s
p−1ds =

∫ ∞

0

λf (s)s
p−1ds.

In particular, this implies that f ∈ Lp(RN ).

Let us now suppose that f ∈ Lp. The sequence {fn} of simple functions

can be chosen such that ‖fn − f‖p → 0. One of the previous relations then

implies the convergence of
∫∞
0
sp−1λfn(s)ds and equality (7.10). ��

7.1.3 Hardy–Littlewood Maximal Functions

In this subsection, we take f ∈ L1loc(RN ) and define the mean value of f on

the balls in R
N using the formula

Mf (x)(r) =
1

|B(x, r)|

∫

B(x,r)

|f(t)|dt = 1

|B(r)|

∫

B(0,r)

|f(t+ x)|dt,

where r > 0. We then study the existence of the Hardy–Littlewood maximal

function (HLM function) defined below.

Definition 7.11. Let f be a function in L1loc(R
N ). The maximal function mf

of f is the supremum of the mean values on the balls with center x:

mf (x) = sup
r>0

1

|B(0, r)|

∫

B(0,r)

|f(x+ t)|dt = sup
r>0

1

|B(0, r)|

∫

x+B(0,r)

|f(t)|dt.



7.1 Harmonicity, Mean values, Hardy Maximal Functions 379

The HLM Function When f ∈ L1.

Example 7.12. Let f be the function on R defined by f(t) = 1/(t2 + 1). We

study the existence of mf and its possible inclusion in a space Lp(R).

The change of variables t = −τ shows that mf is an even function. Since

the function r 	→ (arctan r)/r is nonincreasing, setting x = 0, we obtain

mf (0) = limr→0 (arctan r)/r = 1. We therefore need to study the following

mean values when x > 0:

u(r, x) =
1

2r

∫ x+r

x−r

dt

t2 + 1
=

arctan(x+ r)− arctan(x− r)
2r

.

The function U(r, x) = −2u′r(r, x)r2 satisfies

U(r, x) = arctan(x+ r)− arctan(x− r))− r
( 1

(x+ r)2 + 1
+

1

(x− r)2 + 1

)
.

Setting a = x+ r and b = x− r, its derivative can be written as

U ′
r(r, x) = 2r

[ a

(a2 + 1)2
− b

(b2 + 1)2

]
.

By expanding a(b2 + 1)2 − b(a2 + 1)2, we see that U ′
r(r, x) has the same sign

as the trinomial T (r2) defined by

T (r2) = r4+2(1+x2)r2−3x4−2x2+1 = r4+2(1+x2)r2− (x2+1)(3x2−1).

We note that the discriminant of T (r2) equals Δ = 4x2(1 + x2). For x �= 0,

the trinomial therefore admits two distinct roots in the variable r2. Moreover,

when x < 1/
√
3, these two solutions are negative, so that the trinomial is

positive for every r. When x � 1/
√
3, one of the solutions we just mentioned

is positive, namely r21(x) = −(1 + x2) + 2x
√
1 + x2.

In Exercise 7.4, we will study u when x � 1/
√
3 and show not only the

existence of the function mf on the interval [0, 1/
√
3] but also the equality

mf = f in this interval.

For x > 1/
√
3, we see that the function r 	→ U ′

r(r, x) is positive on [r1,+∞[

and negative on ]0, r1[. Since U(0, x) = 0 and limr→+∞ U(r, x) = π, it follows

that there exists an r2(x) > r1(x) such that U(r2(x), x) < 0 on ]0, r2[ and

U(r2(x), x) > 0 on [r2,+∞[. To conclude, r 	→ u(r, x) reaches its supremum

for r = r2(x) and we have

∀x > 1/
√
3, mf (x) = u(r2(x), x).

In the exercise we mentioned above, we also prove the continuity of the func-

tion mf in the interval ]1/
√
3,+∞[. Studying the inclusion of mf in a space

Lp(R) therefore reduces to studying its behavior at +∞.
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To do this, we estimate r2(x) using the signs of the numbers U(x, x) and

U(2x, x) when x→ +∞. We have

U(x, x) = arctan(2x)− x(4x2 + 2)/(4x2 + 1),

which tends to −∞ when x→ +∞ and

U(2x, x) = arctan(3x) + arctanx− 2x(10x2 + 2)/[(9x2 + 1)(x2 + 1)],

which tends to π when x → +∞. We deduce from this that for a large pos-

itive x, we have x < r2(x) < 2x. Let us return to mf (x) = u(r2(x), x). For

x > 1/
√
3, we have the following results:

2r2(x)u(r2(x), x) <

∫ 3x

−x

dt

1 + t2
and 2r2(x)u(r2(x), x) >

∫ 2x

0

dt

1 + t2
.

These inequalities lead to the bounds

1

4x

∫ 2x

0

dt

1 + t2
< u(r2(x), x) <

1

2x

∫ 3x

−x

dt

1 + t2
.

It follows that the function mf is not summable on R while it does belong to

Lp(R) for every p > 1.

Example 7.13 (HLM Function of the Characteristic Function of

[a, b]).

• If x ∈ ]a, b[ then either Mf (r)(x) = 1 or Mf (x) < 1. We therefore have

mf (x) = 1.

• If x = a or b, then the mean value is either 1/2 or < 1/2. Consequently,

mf (x) = 1/2.

• Finally, let us consider x /∈ [a, b]. If x < a, then the mean values are zero

if r < a − x, equal to (1/2r)(x + r − a) if a < x + r < b, and equal to

b− a/2r if r > b−x. It follows that mf (x) = (b− a)/[2(b− x)]. For x > b,
we obtain mf (x) = (b − a)/2(x − a). It again follows that mf ∈ Lp for

p > 1.

Remark 7.14. We can also use other mean values to define an HLM function,

for examples the mean values on open hypercubes with sides parallel to the

coordinate axes. In this case, we can see on the one hand, that the subsets

of RN where the two associated maximal functions are finite coincide and on

the other hand, that each of these functions can be bounded from above by

the other function times a constant depending only on N .



7.1 Harmonicity, Mean values, Hardy Maximal Functions 381

Indeed, it suffices to use the fact that the Euclidean ball of radius r with

center x is contained in an open hypercube with center x and edges of length 2r

and itself contains a hypercube with center x and edges of length r/
√
N . By

the inequalities on the integrals of nonnegative functions that we can asso-

ciate with these two types of integration domains, we obtain upper and lower

bounds, giving the result by taking the suprema. Therefore, in the following

theorem the HLM function may be defined using the mean values on these

hypercubes.

Theorem 7.15. Let f ∈ L1(RN ). We set

∀ s > 0, Fs = {x ∈ R
N | mf (x) > s > 0}.

Then the Lebesgue measure of Fs, that is, the value of the rearrangement

function of mf at the point s satisfies

|Fs| �
c‖f‖1
s
,

where c = c(N) with c = 2N when we take the mean values on the hypercubes.

In particular, we have mf (x) <∞ for almost every x ∈ R
N .

Proof of Theorem 7.15.

Taking the above into account, we let C(x, r) denote the open hypercube

with center x and edge 2r. For s > 0, we let

Fs =
{
x ∈ R

N
∣
∣
∣ sup
r>0

1

(2r)N

∫

C(x,r)

|f(t)|dt > s
}
.

If this set is empty, then the property we wish to prove is trivial. We therefore

assume that Fs �= ∅. Let S be a compact subset of Fs; then for every x ∈ S,
there exists an rx > 0 such that 1/((2rx)

N )
∫
C(x,rx)

|f(t)|dt > s. The function
y 	→

∫
C(y,rx)

|f(t)|dt is continuous because f ∈ L1; hence there exists a ball

Bx with center x such that

∀ y ∈ Bx,
1

(2rx)N

∫

C(y,rx)

|f(t)|dt > s.

The compact set S is covered by these balls Bx. Therefore there exists a finite

number Bxi with 1 � i � n that cover S. We choose such a finite cover with

hypercubes C(xi, rxi).

Let C ′
i denote the hypercube with center 0 and edge rxi , so that

C(xi, rxi) = xi + C
′
i. We may, and do, assume that the numbering is such

that we have the inclusions

C ′
1 ⊂ C ′

2 ⊂ · · · ⊂ C ′
n.
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Furthermore, for every y in S, we set

K(y) = sup
{
i ∈ [1, n]

∣
∣
∣

1

|C ′
i|

∫

y+C′
i

|f(t)|dt > s
}
,

thus defining a map from S to [1, n]. To simplify the ideas behind the reasoning

below, we can first consider the case N = 1, which is dealt with in Exercise

7.7. The first question of the exercise consists of proving Lemma 7.78, stated

there. That result is generalized in the following lemma, which we will use in

the proof of Theorem 7.15.

Lemma 7.16. We take the situation as above.

(1) There exists a finite set of points {sj}1�j�k such that the set S is contained

in
⋃

1�j�k{sj + C ′
K(sj)

} and each of the centers sj of these hypercubes

belongs only to the hypercube with index j.

(2) Every intersection of more than 2N hypercubes with two-by-two distinct

indexes among the Vj = sj + C
′
K(sj)

is empty.

Proof of Lemma 7.16.

For (1), we choose s1 in S such that K(s1) � K(s) for every s, which

is possible because the image of K is finite. We consider the set S1 =

S �{s1+C ′
K(s1)

}. If this difference of sets is empty, then S ⊂ V1 = s1+C
′
K(s1)

and the first part of the lemma holds for k = 1 while the second part is triv-

ial. If the difference is nonempty, then we choose a point s2 in S1 such that

K(s2) � K(s) for every s ∈ S1. If S2 = S1 − V2 is empty, then we obtain the

lemma with k = 2 by noting that because of the inequality rK(s2) � rK(s1), the

center s1 of the first hypercube cannot belong to the second one, s2 +C
′
K(s2)

.

We can continue this construction using the same algorithm. The number

of steps is necessarily finite. Indeed, by the previous property of the centers

of these hypercubes, the distance between two centers is greater than r0 =

mini{rxi}. It follows that the balls of radius r0/2 with center sj are two-by-

two disjoint. Since the set S is bounded, it cannot contain infinitely many

such balls, thus proving the desired property and the first statement of the

lemma.

For (2), consider an intersection point of hypercubes Vj and take this point

as the origin. We consider the 2N quadrants of RN that are delimited by the

coordinate hyperplanes through this origin. Let Q be such a quadrant; then

for every i, the coordinates with index i of two arbitrary points of Q have the

same sign. Let us show that the centers of two hypercubes in the intersection

cannot belong to the same quadrant. To illustrate the ideas, let C(s, a) and

C(t, b) with a � b be two such hypercubes, where we leave out the indexes to

simplify. Let si be the coordinates of s and let ti be the coordinates of t. We
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will show that for i ∈ [1, N ], we cannot have sign si = sign ti. We argue by

contradiction and assume that we do have this relation and, moreover, that

si > 0 and ti > 0, for further simplification. Since the origin is in C(s, a), we

then have si < a for every i, whence |si − ti| < a for every i. However, the

point tmust lie in the exterior of the hypercube C(s, a), so that |sj−tj | > a for
every j, contradicting the previous inequality. We conclude that the centers of

the hypercubes in the intersection we are considering lie in different quadrants,

and therefore cannot be more than 2N in number. ��

Let us return to the proof of the theorem. The measure of S is lesser than

that of the union of the Vj , hence lesser than the sum of the measures
∑k

1 |Vj |.
It then follows from the definition of the Vj using the map K that

|S| � 1

s

k∑

1

∫

Vj

|f(t)|dt.

Let us consider the sum of the characteristic functions of the sets Vj . This

sum has value m > 1 at a point s ∈ S only if s belongs to the intersection

of m sets Vj . Since m is at most 2N , it follows that
∑k

1 χ(Vj) � 2Nχ(
⋃
Vj).

Consequently,

k∑

1

∫

Vj

|f(t)|dt � 2N
∫

⋃
Vj

|f(t)|dt � 2N
∫

RN

|f(t)|dt,

and therefore

|S| � 1

s

k∑

1

∫

Vj

|f(t)|dt � 2N

s
‖f‖L1(RN ). ��

Remark 7.17. We can obtain the following partial result more easily. We

take balls instead of hypercubes and construct B(si,K(si)) in an analogous

manner. We then have

|S| � 2N‖f‖1
s

without having to use that the intersection of more than 2N balls is empty.

Indeed, by construction,

|si − sj | � sup(rK(si), rK(sj)) �
rK(si) + rK(sj)

2

for i �= j, which implies that B(si, rK(si)/2)∩B(sj , rK(sj)/2) = ∅, and there-

fore ∑

i

|B(si, rK(si)/2)| = | ∪B(si, rK(si)/2)| �
‖f‖1
s
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and

|S| �
∑

i

|B(si, rK(si)| = 2N
∑

i

|B(si, rK(si)/2)| �
2N |f |1
s
.

This in turn implies that

|Fs| �
2N

s
‖f‖1,

thus justifying the remark.

Consequently,

for almost all x ∈ R, mf (x) <∞.

Indeed, if mf (x) = +∞, then we can apply the theorem with arbitrary s,

which leads to |Fs| =∞, giving a contradiction.

Using examples, we have seen that when f ∈ L1, the HLM function mf

does not necessarily belong to L1. The situation is different for Lp with p > 1.

The HLM Function for Functions in Lp with p > 1. Let us first give a property

that will allow us to generalize the previous theorem.

Proposition 7.18. Let p � 1 and let f ∈ Lp(RN ); then the function

fs(x) =

{
f(x) if |f(x)| > s,
0 otherwise,

belongs to L1(RN ).

Proof of Proposition 7.18.

For |f(x)| > s, we can write |f(x)| = |fp(x)| |f1−p(x)| � s1−p|fp(x)|. It
follows by integration that

∫

RN

|fs(x)|dx =
∫

{x||f(x)|>s}
|f(x)|dx � s1−p

∫

{x||f(x)|>s}
|fp(x)|dx

� s1−p‖f‖pp ,

concluding the proof. ��

This property will allow us to generalize Theorem 7.15 to functions in

Lp(RN ) when p > 1.

Theorem 7.19. Let f ∈ Lp(RN ) with p > 1; then for almost all x, we have

mf (x) < +∞. Moreover, there exists a constant c(p,N) such that

∀ f ∈ Lp(RN ), ‖mf‖p � c(p,N)‖f‖p.
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Proof of Theorem 7.19.

Let f ∈ Lp(RN ). We denote the rearrangement functions of mf and mfs

by λ and λs, respectively. We set fs = f − fs. The subadditivity of f 	→ mf ,

which clearly follows from the definition that uses a supremum, gives mf �
mfs + mfs . Since |fs| is bounded by s, we deduce that it is an element of

L∞. Moreover, since the mean value of fs is � s, we deduce that mfs � s.
By the inclusion of the function fs in L1, this inequality proves the almost

everywhere finiteness of mf .

Let us now show that λ(2s) � λs(s). We set Ef (s) = {x | |mf (x)| > s}
and compare the measures of Ef (2s) and of Efs(s). If x ∈ Ef (2s), then

2s < |mf (x)| � mfs(x) + mfs(x), which implies that mfs(x) > s because

mfs(x) � s. The inclusion x ∈ Efs(s) follows. Consequently, Ef (2s) ⊂ Efs(s),

and therefore

λ(2s) � λs(s).

We then apply relation (7.10) of Proposition 7.9 to the function mf and to

its rearrangement function λ, where the common value can be either finite or

infinite. Using the integration variable 2s in this relation, applying Theorem

7.15 to the function fs (cf. Proposition 7.18), and then Fubini’s formula, we

obtain

‖mf‖pp � p2p
∫ ∞

0

sp−1λ(2s)ds � p2p
∫ ∞

0

sp−1λs(s)ds

� p2pC
∫ ∞

0

sp−2

∫

x,|f(x)|>s

|f(x)|dx

� p2pC
∫

RN

|f(x)|
∫ |f(x)|

0

sp−2dsdx � p2
pC

p− 1

∫

RN

|f(x)|pdx.

To conclude, this equality implies that mf ∈ Lp(RN ) and proves the assertion

of the theorem. ��

An important application of this property concerns the convolution of a

function in Lp with a radial function.

Corollary 7.20. Let ϕ ∈ L1(RN ) satisfy ϕ(t) = ϕ∗(|t|), where ϕ∗ is a non-

negative nonincreasing function on [0,+∞[. We set ϕε(t) = ε
−Nϕ(t/ε).

Then for every f ∈ Lp(RN ), we have

sup
ε>0

|f � ϕε|(x) � mf (x)‖ϕ‖1 � C‖f‖p‖ϕ‖1

for almost all x ∈ R
N .
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Proof of Corollary 7.20.

We may, and do, assume that f � 0. We begin by proving the property

when ϕ∗ is a linear combination of characteristic functions of intervals in R
+,

that is, ϕ∗ =
∑m

0 akχ([tk, tk+1]), where the sequence {tk} is increasing and

t0 = 0. Since {ak} is nonincreasing and nonnegative, we can write

ϕ∗ =

m∑

0

bkχ[0,tk+1],

where the bk are defined by

bk = ak − ak+1, am = bm

and are therefore � 0. Since ϕ is radial, it follows that

ϕ =
∑

k

bkχB(0,tk+1).

Let us set χk = χB(0,tk). The convolution ε
−Nχk+1(x/ε)�f can be written as

ε−N

∫

|t|�εtk+1

f(x− t)dt.

Denoting the volume of the unit ball by ωN , we have

(ϕε � f)(x) =

m∑

1

bkt
N
k+1ωN

[ 1

εN tNk+1ωN

∫

|t|�εtk+1

f(x− t)dt
]

� mf (x)

m∑

1

bk

∣
∣
∣B(0, tk+1)

∣
∣
∣ = mf (x)‖ϕ‖1.

The desired inequality follows for simple functions.

Let us now suppose ϕ∗ to be an arbitrary nonincreasing and nonnegative

function on R
+. If ϕ(t) = ϕ∗(|t|) belongs to L1 and if {ϕ∗n} is a nonincreasing

sequence of simple functions that converges to ϕ while ϕ∗n � ϕ∗ converges

almost everywhere to ϕ∗, then the dominated convergence theorem implies

that ∫

RN

∣
∣ϕ∗(|t|)− ϕ∗n(|t|)

∣
∣ |t|N−1dt −→ 0.

By the first part of the argument, we have

sup |f � ϕε,n| � C‖f‖p‖ϕn‖1.

For fixed ε, since ϕε,n converges almost everywhere to ϕε in L1, we see that

f �ϕε,n converges in Lp to f �ϕε. In particular, after extracting a subsequence,
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if necessary, f �ϕε,n(x)→ f �ϕε(x) for almost all x. It follows that for almost

all x and for ε > 0, we have

|f � ϕε(x)| � lim |f � ϕε,n(x)| � C‖f‖p lim ‖ϕn‖1 = C‖f‖p‖ϕ‖1,

giving the result by taking the supremum in ε, because the right-hand side

does not depend on ε. ��

Example 7.21. Consider, for y > 0 and 1 � p �∞, the convolution u(·, y) =
f �P (·, y) studied in Proposition 7.3, where f ∈ Lp(R). For almost all x in R,

we have

|u(x, y)| � mf (x) < +∞.

It suffices to apply the above to the function ϕ defined by ϕ(x) =

1/(|x|2 + 1).

7.2 Hilbert Transform in R

7.2.1 Preliminaries to the Definition

Let f ∈ Lp(R) with 1 � p < +∞. We first consider the convolution f � gy,

where πgy(t) = t/(t
2 + y2). Since the latter belongs to Lq(R) for every q > 1,

the convolution exists almost everywhere on R. When p = 1, we use q = ∞.

When p > 1, we choose q with q < p/(2p− 1), so that f � gy ∈ Lr(R)
(cf. Corollary 4.60) for a real number r > 1 satisfying 1/r = 1/p + 1/q − 1.

When y → 0, the function gy converges, outside of t = 0, to the function

t 	→ 1/t, which does not belong to any of the Lp. Meanwhile, the distribution

associated with gy converges to the “principal value” distribution defined in

Chapter 1. This leads us to conjecture that the limit of f�gy is the distribution,

or function, 1
π Vp(1/t) � f . Classically, this convolution is called the Hilbert

transform of the function f . Further on, we will generalize it to the Riesz

transforms for the dimensions N � 2.

7.2.2 Complements on Convolutions and the Fourier Transform

Let T be a tempered distribution and let ϕ be a function of S. Their convolu-
tion can be seen as a generalized convolution (cf. the G-convolution [22]). In

order to illustrate its use for the reader, we will now give a number of results

that are well adapted to the cases we will be studying.

Proposition 7.22. Let T ∈ S ′(RN ) and let ϕ ∈ S(RN ); then the convolution

T � ϕ exists and is the slowly increasing C∞ function f defined by

∀x ∈ R
N , f(x) = 〈T, τx(ϕ̆)〉,
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where ϕ̆ is the function t 	→ ϕ(−t). Moreover, we have

(7.23) 〈T � ϕ, ψ〉 = 〈T, ϕ̆ � ψ〉 .

Proof of Proposition 7.22.

We admit (cf. Exercise 7.8) that the function f defined in the proposi-

tion has the stated properties. It can therefore be identified with a tempered

distribution. Let us verify the equality T � ϕ = [f ].

To begin, A = 〈[f ], ψ〉 is well defined for ψ ∈ D(RN ), using the integral of

the product. To show that the general definition using the tensor product is

satisfied, we will consider ψ as a distribution (with compact support) and use

the commutativity of the tensor product:

A =
〈
[〈T[t], τx(ϕ̆(t)〉], ψ(x)

〉
=
〈
[ψ][x], [〈T[t], τx(ϕ̆(t)〉]

〉

=
〈
[ψ][x] ⊗ T[t], ϕ̆(t− x)

〉
=
〈
T[t] ⊗ [ψ][x], ϕ̆(t− x)

〉

=
〈
T[t],

∫

RN

ψ(x)ϕ(x− t)dx
〉
=
〈
T[t],

∫

RN

ψ(t+ y)ϕ(y)dy
〉

=
〈
T[t] ⊗ [ϕ][y], ψ(t+ y)

〉
= 〈T � ϕ, ψ〉 .

Inside these relations, we obtain equality (7.23) by noting in passing that

ϕ̆ � ψ, the convolution of two functions in S(RN ), is an element of S(RN ).

This moreover allows us to give a sense to the inequalities above. ��

We admit that the Fourier transform has the property of homomorphisms

stated in the following proposition (cf. [22] or Exercise 7.9).

Proposition 7.24. Let T ∈ S ′(RN ) and let ϕ ∈ S(RN ); then the Fourier

transform of the convolution T �ϕ equals the product of the Fourier transforms

of T and ϕ.

The other properties of convolutions, in particular those concerning differ-

entiation, also hold. Moreover, we have the following result.

Proposition 7.25. For a tempered distribution T , the map ϕ 	→ T � ϕ from

S(RN ) to S ′(RN ) is continuous.

Proof of Proposition 7.25.

Let {ϕn} be a sequence of functions in S that converges to ϕ in S. Let
ψ ∈ S. By the continuity of convolution in S, the sequence of convolutions

{ϕ̆n � ψ} converges to ϕ̆ � ψ in S. Since the distribution T is tempered, we

deduce that 〈T, ϕ̆n � ψ〉 converges to 〈T, ϕ̆ � ψ〉. Since this is true for every

ψ ∈ S, it now follows from relation (7.23) that T � ϕn → T � ϕ in S ′. ��
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7.2.3 Definition of the Hilbert Operator f �→ 1
π
Vp(1/x) � f

Explicit Definition When f Belongs to S(R). By the above, when ϕ ∈ S(R),
the convolution Vp(1/t) � ϕ is the function h such that

∀x ∈ R, h(x) = 〈Vp(1/t), τx(ϕ̆)(t)〉 = lim
ε→0

∫

|t|�ε

ϕ(x− t)
t

dt.

Explicit Definition When f Belongs to Lp(R). Since the space S(R) is dense
in Lp(R), we can approximate f ∈ Lp(R) by a sequence of functions {ϕn}
in S. We must then show that the limit of the function

x 	−→ (Vp(1/t) � ϕn)(x)

exists almost everywhere and that this limit also equals

lim
ε→0

∫

|t|�ε

f(x− t)
t

dt.

In order to do this, we establish the existence almost everywhere of the limit

of f � gy, where πgy(t) = t/(t
2 + y2) (cf. Preliminaries 7.2.1), when y → 0.

Let F be the function of the complex variable z such that

∀ z ∈ C, �m z > 0 =⇒ F (z) =
1

π

∫

R

f(t)

z − tdt.

Since z 	→ 1/(z − t) is holomorphic, the Lebesgue theorem on complex differ-

entiability tells us that F is analytic on the open upper half-plane. The real

part of F can be written as a convolution:

�eF (x+ iy) = 1

π

∫

R

f(t)(x− t)
(x− t)2 + y2 dt =

1

π

∫

R

f(x− t)t
t2 + y2

dt = f � gy.

We propose to show that this real part admits a nontangential limit almost

everywhere (cf. Remark 7.4) when y → 0+.

Remark 7.26. The imaginary part of −F is none other than the function

u(x, y) introduced in Proposition 7.3 as the convolution f � P (·, y), where P
is the Poisson kernel relative to the upper half-plane.

Proposition 7.27. At every Lebesgue point x0 of f , the function x 	→
v(x, y) = (f � gy)(x) admits a nontangential limit when (x, y)→ (x0, 0).

Proof of Proposition 7.27.

We fix a positive real number y and set F (z) = v(x, y) − iu(x, y). By
writing f as the sum of its positive and negative parts, we may, and do, assume



390 7 Korn’s Inequality in Lp

that the function f , and therefore also the function u(·, y) = f �P (·, y), is � 0.

Let G(z) = exp(−iF (z)). This function is holomorphic in the upper half-plane

and bounded because exp(−u) = | exp(−iF (z))| � 1. Our problem therefore

reduces to proving that the nontangential limit limy→0+ G(z) exists almost

everywhere and is nonzero.

Since |G(z)| � 1, we know that the sequence {x 	→ G(x+iyn)}, where {yn}
is a sequence of positive real numbers tending to 0, is bounded in L∞(R). Since

the space L∞(R) is the dual of L1(R), it follows that there exists a subsequence

of {yn}, which we also denote by {yn}, such that {x 	→ G(x+ iyn)} is weakly
star convergent to a function h in L∞(R). This means that for every element g

of L1(R), we have

lim
n→+∞

[
〈g,G(x+ iyn)〉

]
= 〈g, h〉.

Now, the function t 	→ P (x − t, y) belongs to L1 for every x ∈ R and every

y > 0. Consequently,

∀ (x, y), lim
n→+∞

∫

R

P (x− t, y)G(x+ iyn)dt =
∫

R

P (x− t, y)h(t)dt.

Let us now show that this last integral in fact equals G(x+ iy). We will use

Proposition 7.6, which gives us
∫
R
P (x− t, y)G(x+ iyn)dt = G(x+ i(y + yn)).

Since the function G is continuous in the upper half-plane, it follows that for

every y > 0, we have

G(x+ iy)= lim
n→+∞

∫

R

P (x− t, y)G(t+ iyn)dt=
∫

R

P (x− t, y)h(t)dt≡G1(x, y).

The function x 	→ G1(x, y) is a convolution of h, an element of L∞, with

the Poisson kernel. Consequently, almost everywhere on R, it admits a limit

when y converges nontangentially to 0 (cf. Proposition 7.3 and, more precisely,

Remark 7.4).

This limit of G(x+iy) is, furthermore, almost everywhere nonzero. Indeed,

by Corollary 7.20 (or, more precisely, by Example 7.21), the function u satisfies

for almost all x ∈ R, ∀ y > 0, |u(x, y)| � mf (x) < +∞.

Since u is nonnegative, this proves that e−u cannot tend to 0 almost every-

where. Therefore there exists a nonzero function x 	→ G0(x) such that

for almost all x0 ∈ R, lim
y→0

(x,y)∈Γα(x0)

G(x+ iy) = G0(x0).

Since |G(x+iy)| → |G0(x0)| for this type of convergence, we find that e−iv(x,y)

converges nontangentially to the point eiθ(x0) of the unit circle, where θ(x0) is
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the argument of G0(x0) up to a constant times 2π. It follows that if L and L′

are two nontangential limits of v at the point x0, then their distance to each

other is 2kπ for an integer k. In order to obtain a contradiction, we assume

that k �= 0 and, to illustrate the ideas, that L < L′. Let l ∈ ]L,L′[. We will

show that l is also a nontangential limit of v at x0, giving the contradiction.

Let ε < inf(l − L/2, L′ − l/2). By assumption, there exist sequences

{(xn, yn)} and {(x′n, y′n)} that tend to (x0, 0) while staying in the fixed cone

Γα(x0) and satisfy v(xn, yn) → L and v(x′n, y
′
n) → L′. In particular, there

exists an n0 sufficiently large that n � n0 implies

(7.28) v(xn, yn) � L+ ε < l and v(x′n, y
′
n) > L

′ − ε > l.

Let us set Yn = supm�n(ym, y
′
m) for n � n0, and let us consider the truncated

cone

ΓYn
α (x0) = {(x, y) | y � Yn, |x− x0| � αy}

in the upper half-plane R × ]0,∞[. Since the function v is continuous in

R×]0,∞[, the image of the truncated cone v(ΓYn
α (x0)) is convex. Since n � n0,

it contains all the real numbers v(xn, yn) and v(x
′
n, y

′
n) satisfying the relations

(7.28). This image therefore also contains l. It follows that there exists a point

(x′′n, y
′′
n) in Γ

Yn
α (x0) such that v(x′′n, y

′′
n) = l. Now, when n→ +∞, the sequence

{(x′′n, y′′n)} tends to (x0, 0) while staying inside the cone Γα(x0). The number l

is therefore also a nontangential limit of v, giving a contradiction.

We conclude that a nontangential limit limy→0(f � gy) exists almost ev-

erywhere on R. ��

7.2.4 Definition of the Hilbert Transform

Let us state the theorem and definition.

Theorem 7.29 (and definition).

Consider f ∈ Lp(R) and the family of functions

{
x 	−→ 1

π

∫

|t|>ε

f(x− t)
t

dt
}

ε
.

When ε → 0, this family converges almost everywhere on R to the function

x 	→ 1/π limy→0(f �gy)(x). Consequently, we can define the Hilbert transform

of f to be the function defined almost everywhere by

Hf(x) =
1

π

(
Vp(1/x) � f

)
(x) =

1

π
lim
y→0

(f � gy)(x) =
1

π
lim
ε→0

∫

|t|>ε

f(x− t)
t

dt.
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Proof of Theorem 7.29.

For the sake of simplicity, we will ignore the factor 1/π. Let us first prove

that for every fixed x in the Lebesgue set of the function f (cf. Remark 7.4),

that is, for almost every x since the complement of this set has measure zero,

we have

lim
ε→0

[∫

|t|>ε

f(x− t)
t

dt−
∫

R

t

t2 + ε2
f(x− t)dt

]
= 0.

By writing the integrals over R as the sums of two integrals over ]0,+∞[ and

setting h(x, t) = f(x− t)− f(x+ t) and

ψε(t) =

⎧
⎪⎨

⎪⎩

−t
t2 + ε2

if 0 < t < ε,

ε2

t(t2 + ε2)
if t � ε,

we reduce the problem to showing that

(7.30) lim
ε→0

∫ +∞

0

h(x, t)ψε(t)dt = 0.

We note that this function ψε is not continuous but that |ψε| is continuous
and piecewise C1. It moreover belongs to L∞ ∩ L1.

By assumption, x satisfies limr→0 1/r
∫ r

−r
|f(x− t)− f(x)|dt = 0 (cf. Part

[3] of Remark 7.4). The same property holds when we replace t by −t. Hence,
for every δ > 0, there exists an η > 0 such that

∀ r > 0, r � η =⇒ 1

r

∫ r

0

|h(x, t)|dt � δ.

It follows that if we set H(x, t) =
∣
∣ ∫ t

0
h(x, u)du

∣
∣, then

0 < t < η =⇒ H(x, t) � δ t.

To prove property (7.30), it now suffices to show that when ε→ 0, we have

I1(ε) =

∫ η

0

ψε(t)h(x, t)dt −→ 0 and I2(ε) =

∫ +∞

η

ψε(t)h(x, t)dt −→ 0.

From now on, we will assume that ε < inf{η, (ηδ3p′−1)1/2}.
The Integral I1(ε). We carry out an integration by parts over ]0, ε[ and over

]ε, η[, noting that ψε(η) = ε
2/[η(η2 + ε2)] � 1/η and limt→ε±0 ψε(t) = ±1/2ε.

Moreover, we let {ψ′
ε} denote the absolutely continuous part of the derivative

of ψε, that is, ψ′
ε = {ψ′

ε} + (1/ε)δ{x=ε}. The integral I1 can then be written

as

|I1(ε)| �
H(x, η)

η
+
H(x, ε)

ε
+

∫ η

0

H(x, t)|ψ′
ε(t)|dt

� δ
[
1 + 1 +

∫ η

0

t|ψ′
ε(t)|dt

]
≡ δ(2 + J(ε)).
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After computing the derivatives, the last integral J(ε) becomes

∫ ε

0

t
ε2 − t2

(t2 + ε2)2
dt+

∫ η

ε

tε2
3t2 + ε2

t2(t2 + ε2)2
dt.

The upper bounds

ε2 − t2
(t2 + ε2)2

� 1

t2 + ε2
, and

3t2 + ε2

t2(t2 + ε2)2
� 3

t2(t2 + ε2)

lead to

J(ε) �
∫ ε

0

t

t2 + ε2
dt+

∫ η

ε

3ε2

t(t2 + ε2)
dt =

1

2
ln
(2ε2

ε2

)
+

∫ η/ε

1

3

u(1 + u2)
du

� ln
√
2 +

∫ +∞

1

3

u(1 + u2)
du = K.

It follows that |I1(ε)| � δ(2 +K), whence I1(ε)→ 0.

The Integral I2(ε). We use Hölder’s inequality to bound the integral I2:

|I2(ε)| �
[∫ +∞

η

|h(x, t)|pdt
]1/p[∫ +∞

η

[
ε2

t(t2 + ε2)
]p

′
dt
]1/p′

.

The first integral on the right-hand side is bounded from above by 2‖f‖p and

the second one is bounded by ε2
∫ +∞
η
t−3p′

dt, which converges because p′ > 1.

It follows that |I2(ε)| � K ′δ → 0, concluding the proof of equality (7.30). ��

Exercises 7.11 and 7.13 propose computations of Hilbert transforms.

7.2.5 Operators of Weak Type (p, p)

Definition 7.31. We say that an operator T is of weak type (p, p) if there

exists a constant C such that every f ∈ Lp(RN ) satisfies

spλTf (s) � C‖f‖pp.

It is clear that if T sends Lp(RN ) continuously into itself, then it is of

weak type (p, p). Indeed,

sp
∣
∣{x | |Tf(x)| > s}

∣
∣ �

∫

RN

|T (f)(x)|pdx � C‖f‖pp.

This is, for example, the case for the Hilbert transform when p = 2.

Proposition 7.32. The Hilbert transform sends L2(R) into L2(R).
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First proof of Proposition 7.32.

We first assume that f ∈ S. Let us recall relation (7.24), that is, when

T ∈ S ′, we have F(T � f) = F(T )F(f) (cf. [22]). Using the transform of

Vp(1/x) and noting that F is an isometry of L2(R), we then have (cf. [22] or

Exercise 7.10):

‖Hf‖2 = ‖F(Hf)‖2 =
1

π
‖F(Vp(1/x))F(f)‖2

=
1

π
‖ − (iπ sign ξ)F(f)(ξ)‖2 = ‖F(f)‖2.

Hence, by the density of S in L2, H extends to an isometry on L2. ��

Second proof of Proposition 7.32.

This time, we will only use the properties of convolution in L2 and the

Fourier transform of functions.

We are looking for the Fourier transform of gy(·, y), which belongs to L2.

It can be seen as the semiconvergent integral
∫

R

exp(−2iπξt) t

(t2 + y2)
dt.

The details of the computation of this integral are given in Exercise 7.1. If

ξ > 0, then the result is −iπ exp(−2iπξy)). Replacing t by −t gives the result
when ξ < 0. The convolution gy(·, y) � f then belongs to L2, as does its

Fourier transform. The latter is therefore (−i sign ξ) exp(−2π|ξ|y)f̂(ξ) and

we can apply the Plancherel–Parseval theorem:

‖gy(·, y) � f‖22 = ‖ exp(−2π|ξ|y)f̂(ξ)‖22.

Now, we know that Hf = limy→0 gy(·, y) � f . Hence, since the functions

are nonnegative, Fatou’s lemma followed by the Plancherel–Parseval theorem

gives

‖Hf‖22 � lim
y→0

∫

R

| exp(−2π|ξ|y)f̂(ξ)|2dξ = ‖f̂‖22 = ‖f‖22.

It follows that ‖Hf‖2 � ‖f‖2, allowing us to conclude the proof. ��

Proposition 7.33. The Hilbert transform is of weak type (1, 1).

Proof of Proposition 7.33.

By considering the nonnegative and nonpositive parts of f separately,

we reduce to the case where f � 0. Let F (z) = u(x, y) + iv(x, y) =

Py �f(x)+ iQy �f(x) for (x, y) ∈ R× ]0,+∞[. The functions Q and P are the

real and imaginary parts of i/[π(x+ iy)]. The function F is holomorphic in

R× ]0,+∞[. The function w(x, y) = ln(|1 + sF (z)|) is harmonic in the upper
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half-plane for every s > 0. It is bounded in the half-plane {x + iy | y � y0}.
By Proposition 7.3 with y1 = y − η and y2 = η, 0 < η < y, we have

w(x, y)=π ln |1 + sF (x+ iy)|=
∫

R

y − η
(x− ξ)2 + (y − η)2 ln(|1 + sF (ξ + iη)|)dξ.

Fatou’s lemma then gives

∫

R

y

(x− ξ)2 + y2 ln |1 + sF (ξ)|dξ

� lim
η→0

∫

R

y − η
(x− ξ)2 + (y − η)2 ln(|1 + sF (ξ + iη)|)dξ.

Multiplying by y, we obtain

∫

R

y2

(x− ξ)2 + y2 ln |1 + sF (ξ)|dξ � πy ln |1 + sF (x+ iy)|

� πy ln(1 + s|F (x+ iy)|)
� πys|F (x+ iy)|

by the properties of the function ln. Furthermore, by the dominated conver-

gence theorem, we see that

lim
y→+∞

yF (x+ iy)

= lim
y→+∞

[∫

R

f(t)
y2

(x− t)2 + y2 dt+ i
∫

R

f(t)
y(x− t)

(x− t)2 + y2 dt
]

=

∫

R

f(t)dt.

Thus, by taking the limit when y → +∞ and once more applying the domi-

nated convergence theorem, we have

∫

R

ln |
√
(1 + sf(ξ))2 + (sHf(ξ))2| dξ � πs‖f‖1.

Setting Eτ = {ξ, |Hf(ξ)| > τ}, we deduce that

ln(sτ)|Eτ | �
∫

Eτ

ln |sHf(ξ)|dξ � πs‖f‖1.

Next, setting s = e/τ , we obtain

|Eτ | �
πe

τ
‖f‖1,

which implies that the Hilbert transform is of weak type (1, 1). ��
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Proposition 7.34 (weak form of the Marcinkiewicz theorem). Let T

be an operator on L1(RN ) +Lr(RN ) for some real number r > 1, that is sub-

additive, of weak type (1, 1), and continuous from Lr(RN ) to Lr(RN ). Then T

sends Lp(RN ) continuously into Lp(RN ) for every p ∈ ]1, r].

Proof of Proposition 7.34.

By Proposition 7.9, we must show that for 1 < p < r, there exists a

constant Cp such that

∀ f ∈ Lp(RN ),

∫ ∞

0

αp−1
∣
∣{x | |Tf(x)| > α}

∣
∣dα � Cp‖f‖pp.

Fixing α, we write f = f1 + f2, where

f1 =

{
f(x) if |f(x)| > α
0 if |f(x)| � α

, f2 =

{
f(x) if |f(x)| < α
0 if |f(x)| � α.

The function f1 then belongs to L1 by Proposition 7.18. The function f2
belongs to Lr because integrating the inequality |f2(x)|r � αr−p|f(x)|p gives

the finiteness of ‖f2‖r. The subadditivity of T gives |Tf | � |Tf1| + |Tf2|.
Hence, if |Tf(x)| > α, one of the numbers |Tfi(x)| is greater than α/2 (use

contradiction), whence

{x | |Tf(x)| > α} ⊂ {x | |Tf1(x)| > α/2} ∪ {x | |Tf2(x)| > α/2}.

By assumption, T is of type (1, 1) and (r, r). Hence we have the inequalities

[α/2]λTf1(α/2) � C1‖f1‖1 and [α/2]rλTf2(α/2) � Cr‖f2‖rr. Consequently,
∣
∣{x | |Tf(x)| > α}

∣
∣ � C1 (2/α)

∫

R

|f1|dt+ Cr (2/α)
r
∫

R

|f2(t)|rdt

= C
(
(2/α)

∫

|f(t)|>α

|f(t)|dt+ (2/α)
r
∫

|f(t)|<α

|f(t)|rdt
)
.

The integral I =
∫∞
0
αp−1

∣
∣{x | |Tf(x)| > α}

∣
∣dα therefore satisfies

I � C
∫ ∞

0

αp−1

α

∫

{x | |f(x)|>α}
|f(x)|dx dα

+ C

∫ ∞

0

αp−1α−r

∫

{x | |f(x)|<α}
|f(x)|rdx dα

� C
∫ ∞

0

|f(x)|
∫ |f(x)|

0

αp−2dαdx+ C

∫ ∞

0

|f(x)|r
∫ ∞

|f(x)|
αp−r−1dαdx

� C
∫ ∞

0

(
|f(x)||f(x)|p−1dx+ |f |r(x)|f |p−r(x)

)
dx

� c1‖f‖pp,
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where we have used Fubini’s theorem for the last inequalities. This concludes

the proof. ��

Corollary 7.35. The Hilbert transform on R sends Lp(R) continuously into

Lp(R) for p ∈ ]1,∞[.

Proof of Corollary 7.35.

Let us first consider 1 < p < 2. By the two previous results,

Marcinkiewicz’s theorem can be applied with r = 2. We can therefore

conclude that we have an inequality of the type ‖Hf‖p � Cp‖f‖p for every p

with 1 < p < 2.

Let us now take p > 2. Let H∗ be the adjoint of the Hilbert transform H,

which is defined by

∀ϕ, ψ ∈ S, 〈H∗(ψ), ϕ〉 = 〈Hϕ,ψ〉 =
∫

R

H(ϕ)(x)ψ(x)dx.

Since p > 2, we have p′ < 2, whence, by the above, ‖Hϕ‖p′ � Cp′‖ϕ‖p′ . By

the definition and Hölder’s inequality, it follows that

|〈H∗(ψ), ϕ)| � ‖H(ϕ)‖p′‖ψ‖p � Cp′‖ϕ‖p′‖ψ‖p.

Hence, if ψ ∈ S, then the linear functional associated with H∗ψ is continuous

on S for the topology of Lp
′
. By density, H∗ψ extends to Lp

′
, whence it follows

that this linear function is an element of Lp. Since we still have

∀ f ∈ Lp
′
, |〈H∗(ψ), f〉| �

(
Cp′‖ψ‖p

)
‖f‖p′ ,

it follows that for every ψ ∈ S, we have ‖H∗ψ‖p � Cp′‖ψ‖p.
Let us now show that H∗(ψ) = −Vp(1/x) � ψ, which will prove that

‖H(ψ)‖p � Cp′‖ψ‖p and, by density, that the operator H is continuous from

Lp into Lp. We use relation (7.23) and the oddness of the distribution Vp(1/x):

〈H∗(ψ), ϕ〉 = 〈Vp(1/x), ϕ̆ � ψ〉 = −〈Vp(1/x), (ϕ̆ � ψ)(−x)〉.

A direct computation gives

∫ +∞

−∞
ϕ̆(−x− t)ψ(t)dt =

∫ +∞

−∞
ψ̆(x− t)ϕ(t)dt = (ψ̆ � ϕ)(x).

We therefore have

∀ϕ, ψ ∈ S, 〈H∗(ψ), ϕ〉 = −〈Vp(1/x), ψ̆ � ϕ〉 = −〈Hψ,ϕ〉. ��
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7.2.6 Maximal Hilbert Function

Definition 7.36. The maximal Hilbert function of the function f , denoted

by Hm(f) or Hmf , is defined by

Hm(f)(x) = sup
ε>0

1

π

∣
∣
∣
∫

|t|�ε

f(x− t)dt
t

∣
∣
∣.

Theorem 7.37. Let f ∈ Lp(R) with 1 < p <∞; then

Hm(f)(x) � 1 + ln 2

π
mf (x) +mHf (x).

In particular, Hm acts on Lp(R) and there exists a constant Bp such that

∀ f ∈ Lp(R), ‖Hm(f)‖p � Bp‖f‖p.

Proof of Theorem 7.37.

We may, and do, assume that f � 0. Let ϕε be defined by

ϕε(t) =

⎧
⎪⎨

⎪⎩

t

t2 + ε2
if 0 < t < ε,

−ε2
t(t2 + ε2)

if t � ε.

It allows us to write
∫

|t|>ε

f(x− t)
t

dt =

∫

R

f(x− t)t
t2 + ε2

dt− (f � ϕε)(x).

We can easily verify that ϕε = (1/ε)ϕ(x/ε), where ϕ is the function

ϕ(t) =

⎧
⎪⎨

⎪⎩

t

t2 + 1
if |t| < 1,

− 1

t(t2 + 1)
if |t| � 1.

Since the function f is nonnegative, we can bound |f � ϕε| from above by

f � ψε where ψ is defined by

ψ(t) =

⎧
⎪⎨

⎪⎩

1

2
if |t| < 1,

1

|t|(t2 + 1)
if |t| � 1.

This element of L1(R) is a decreasing function of the absolute value and

satisfies ‖ψ‖1 = 1 + ln 2. We can therefore apply Corollary 7.20, giving

(7.38) sup
ε>0

|f � ϕε(x)| � ‖ψ‖1mf (x) � (1 + ln 2)mf (x).

It remains to bound the integral (1/π)f � Qε from above, where Qε(t) =

t/(t2 + ε2) is the real part of 1/(t+ iε). We will use the following lemma.
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Lemma 7.39. Let f ∈ Lp(R). We set Py(t) = y/(y2 + t2) (Poisson kernel)

and Qy(t) = t/(t
2 + y2); then

∀ y > 0, f � Qy = Hf � Py.

Proof of Lemma 7.39 when f ∈ S.
It suffices to show the equality of the Fourier transforms with respect to

the variable x. Using the results from the second proof of Proposition 7.32 or

Exercise 7.1, we can write

F(f � Qy)(ξ) = F(f)(ξ)F(Qy)(ξ) = −iπ sign ξe−2π|yξ|F(f)(ξ).

Furthermore, using the Fourier transform of Vp(1/t), we also have

F((Hf) � Py)(ξ) = F(Hf)(ξ)F(Py)(ξ) = −iπ sign ξe−2π|yξ|F(f)(ξ).

Finally, applying the inverse Fourier transform gives the equality of the lemma

when f ∈ S. ��

Proof of Lemma 7.39 when f ∈ Lp.
We use the density by approximating f in Lp by a sequence {ϕn} in S. We

note that Py belongs to Lp
′
, as does Qy. Hence ϕn � Qy converges pointwise

to f �Qy. Moreover, by Corollary 7.35, the Hilbert transform Hϕn converges

in Lp to Hf , from which it follows that Hϕn � Py converges pointwise to

Hf �Py. The equality we have proved in S gives the result by taking the limit

in Lp. ��

Let us return to Theorem 7.37. With the help of Example 7.21, the equality

of the lemma leads to the inequality

‖f � Q(·, y)‖p = ‖Hf � P (·, y)‖p � mHf .

Together with the upper bound (7.38), this proves the theorem. ��

7.3 The Riesz Transforms on R
N

7.3.1 Definition of the Riesz Transforms

We introduce generalizations of the Hilbert transform in dimension N > 1.

The functions x 	→ xj(|x|)−(N+1) are not locally summable. We will asso-

ciate to them (cf. Chapter 1, Section 1.4) the finite parts Pf(xj(|x|)−(N+1)),

which are distributions in R
N . Let us first define Pf(1/|x|N+1).
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Classically, since the power we are considering is related to t−2 in R, given

a function ϕ in D(RN ), we begin with the integral

∫

|x|�ε

ϕ(x)− θϕT2(ϕ(x))
(|x|N+1)

dx,

where T2(ϕ) is the Taylor expansion of ϕ at the point x = 0 truncated at the

order 2 and θϕ is a function in D with value 1 on suppϕ, which we may assume

to be an even function. We remove from this integral the terms whose limit

when ε→ 0 is not finite. By passing to polar coordinates, the first term θϕϕ(0)

of T2(ϕ) leads to the integral ωN−1

∫ A

ε
ϕ(0)dr/r2 whose infinite part can be

written as ωN−1ϕ(0)/ε, where ωN−1 denotes the (N − 1)-dimensional surface

area of the unit sphere R
N . The other term of T2(ϕ), namely x · ∇ϕ(0)θϕ,

leads to a combination of integrals that all vanish. Noting that the factor θ is

redundant for the term ϕ(0), we conclude with the following definition.

Definition 7.40. The finite part of |x|−(N+1) is the distribution such that for

every function ϕ of D(RN ), we have

〈
Pf
(
1/|x|N+1

)
, ϕ
〉
= lim

ε→0

[∫

|x|�ε

ϕ(x)

|x|N+1
dx− ωN−1

ϕ(0)

ε

]
.

A similar process leads to the definition of Pf(xj/|x|N+1).

Definition 7.41. The Riesz kernel Kj of index j is defined to be the finite

part Pf(xj/|x|N+1). This is the distribution such that for every ϕ ∈ D(RN )

and for every even θϕ in D(RN ) with value 1 at 0, we have

〈
Pf(Kj), ϕ

〉
= lim

ε→0

∫

|x|�ε

xj(ϕ(x)− θϕϕ(0))
|x|N+1

dx =

∫

RN

xj(ϕ(x)− θϕϕ(0))
|x|N+1

dx.

The last expression is justified by the fact that the absolute value of the

integrant is bounded from above by r2|∇ϕ(0)|/rN+1, which shows the summa-

bility in x = 0 when we take into account the Jacobian.

Remark 7.42. Since the integral concerning xjϕ(0)|x|−(N+1) vanishes, we

could also define the distribution Kj using the integral of xjϕ(x)/|x|N+1,

as the sum of two absolutely convergent integrals, where the decomposition

depends of the sign of xj . The resulting expression is, however, less suited to

our computations.

Remark 7.43. We can see that the finite part is the product of Pf(1/|x|N+1)

and the monomial function x 	→ xj .
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Indeed, by the previous remark, since the function xjϕ vanishes in x = 0,

we have

〈
xj Pf(1/|x|N+1), ϕ

〉
=
〈
Pf(1/|x|N+1), xjϕ

〉

= lim
ε→0

∫

|x|�ε

xjϕ(x)

|x|N+1
dx

=

∫

RN

xjϕ(x)

|x|N+1
dx

=

∫

RN

xj(ϕ(x)− θϕϕ(0))
|x|N+1

dx.

Definition 7.44. We call Riesz transform of index j the map Rj that sends a

function f in a space Lp(RN ) to the convolution Pf(Kj) � f , when this exists.

Noting that outside of x = 0, the derivative of the function x 	→ g(x) =
|x|−(N−1) with respect to xj equals −(N − 1)Kj , we begin by comparing this

derivative to the finite part Pf(Kj).

Proposition 7.45. Let [g] be the distribution associated with the locally

summable function x 	→ |x|−(N−1). The derivative of this distribution with

respect to xj equals −(N − 1)Pf(Kj).

Proof of Proposition 7.45.

Let X = 〈∂j [g], ϕ〉. Using Fubini’s formula, we reduce to integrating by

parts with respect to xj , where we use the function ϕ1 = ϕ − θϕϕ(0) that

coincides with ϕ− ϕ(0) on supp ϕ for the primitive of ∂jϕ:

X = −〈[g], ∂jϕ〉 = −
∫

RN

∂jϕ(x)

|x|N−1
dx = −

∫

RN−1

dx̂j

∫

R

∂jϕ(x)

|x|N−1
dxj

= −
∫

RN−1

dx̂j(N − 1)

∫

R

ϕ1(x)Kj(x)dxj

= −(N − 1)

∫

RN

(ϕ(x)− ϕ(0)θϕ(x))Kj(x)dx

= −(N − 1)〈Pf(Kj), ϕ〉. ��

7.3.2 Fourier Transforms of the Riesz Kernels

Let us first note that by multiplying by the characteristic function of a com-

pact set, we see that g is the sum of a summable function and a bounded

function, both of which can be identified with tempered distributions. This

function therefore admits a Fourier transform in the sense of distributions.

Since its derivatives are tempered, it follows that the same holds for the finite

parts Pf(Kj). We compute its transforms, beginning with that of [g].
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Since g is a radial function, its transform [̂g] is also one (cf. Exercise 7.12).

Moreover, using the properties of homogeneous tempered distributions and

those of their Fourier transforms (cf. Exercise 4.4), we know that the trans-

form [̂g] is of the form K|ξ|m. We can, moreover, compute the degree m using

the dilation [g]k of the distribution [g], which is defined by

〈[g]k, ϕ〉 =
1

kN
〈[g], ϕ(x/k)〉.

On the one hand, we obviously have

F([g]k)(ξ) = K
1

kN−1
|ξ|m.

On the other hand, by the formula defining [g]k,

〈F([g]k), ϕ〉 = 〈[g]k, ϕ̂〉
= k−N 〈[g], ϕ̂(ξ/k)〉 = k−N

〈
[g], kN ϕ̂(kx)

〉

= 〈[̂g], ϕ(kx)〉 = K
∫

RN

|x|mϕ(kx)dx

= Kk−N−m〈|ξ|m, ϕ〉.

From these two equalities, we deduce that N +m = N − 1, whence m = −1.
To compute the constant K, we apply the definition of [̂g] using the func-

tion ϕ(x) = exp(−π|x|2), which is its own Fourier transform (cf. Exercise 4.1).

We thus obtain the equality

〈 1

|x|N−1
, exp(−π|x|2)

〉
=
〈
K

1

|ξ| , exp(−π|ξ|
2)
〉
.

Passing to integrals over RN and polar coordinates, we have

ωN−1

∫ +∞

0

exp(−πr2)dr = KωN−1

∫ +∞

0

rN−2 exp(−πr2)dr.

By the relation

Γ (t) = 2πt
∫ +∞

0

x2t−1 exp(−πx2)dr

(cf. Exercise 3.1 of Chapter 1), this becomes π(N−1)/2 = KΓ ((N − 1)/2). The

Fourier transform of Pf(Kj) follows.

Proposition 7.46. The Fourier transform of Pf(Kj) is the function defined

by

∀ ξ ∈ R
N , F(Pf(Kj))(ξ) = −iCN

ξj
|ξ| , where CN =

π(N+1)/2

Γ ((N + 1)/2)
.
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Proof of Proposition 7.46.

This formula follows from Proposition 7.45 and the fact that on the Fourier

transform, differentiation with respect to xj becomes multiplication by 2iπξj .

��

7.3.3 Convolution of a Function and a Riesz Kernel

Convolution with a Function in D(RN ). We use Proposition 7.22, which gives

the formula

Pf(Kj) � ϕ = f with f(x) =

∫

RN

tj(ϕ(x− t)− ϕ(x))
|t|N+1

dt.

Convolution with a Function in S. We show that the previous formula still

holds when ϕ ∈ S(RN ). By the continuity of convolution (cf. Proposition

7.25) we know that if a sequence {ϕn} in D converges in S to ϕ, then we have

Pf(Kj) � ϕn → Pf(Kj) � ϕ.

Let ϕ ∈ S. Let η ∈ D, with value 1 on the unit ball in R
N , and let

ϕn(x) = η(x/n)ϕ(x). Then ϕn is an element of D(RN ) and converges to ϕ

in S, and we have

lim
n→+∞

∫

RN

tj(ϕn(x− t)− ϕn(x))
|t|N+1

dt =
[
Pf(Kj) � ϕ

]
(x).

Now, we can easily show that the integral of the left-hand side converges

to the integral ∫

RN

tj(ϕ(x− t)− ϕ(x))
|t|(N+1)

dt,

so that

∀ϕ ∈ S, Pf(Kj) � ϕ = f with f(x) =

∫

RN

tj(ϕ(x− t)− ϕ(x))
|t|(N+1)

dt

for every x.

Convolution When ϕ Is an Element of a Space Lp. In the two previous

cases, the formulas can be simplified to give the convolution in the form∫
RN [tj(ϕ(x− t))](|t|−(N+1))dt. When ϕ ∈ Lp, density will give us the fol-

lowing formula, which holds for almost all x ∈ R
N :

∀ f ∈ Lp,
[
Pf(Kj) � f

]
(x) = lim

ε→0

∫

ε�|t|

tj(ϕ(x− t))
|t|N+1

dt.

We will show not only that this limit exists almost everywhere, but also that

it belongs to Lp, so that the operator Rj defines a continuous endomorphism

of Lp.
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7.3.4 Riesz Operator on Lp(RN)

We suppose that 1 < p < +∞ and f ∈ Lp(RN ). Using the formula from the

previous subsection, we define

f jε (x) =

∫

ε�|t|

tjf(x− t)
|t|N+1

dt.

When p > 1, Hölder’s inequalities show us that this integral exists for every

x ∈ R
N and every ε > 0. Indeed, we have Np′− (N − 1) = N(p′− 1)+ 1 > 1,

whence
∫

ε�|t|

∣
∣
∣
tjf(x− t)
|t|N+1

∣
∣
∣dt �

(∫

ε�|t|
|f(x)|pdx

)1/p(∫

ε�|t|

1

|t|Np′ dt
)1/p′

< +∞.

Using the properties of the maximal functions defined before, we will show

that the function x 	→ supε |f jε (x)| is an element of Lp(RN ) whose norm is

bounded from above by that of f . We will then show that this property implies,

on the one hand, the existence almost everywhere of the limit when ε → 0,

and on the other hand, the continuity of the Riesz transform Rj in Lp(RN ).

We begin with the following result.

Theorem 7.47. Let f ∈ Lp(RN ) with 1 < p < +∞; then the function x 	→
supε>0 |f jε (x)| belongs to Lp(RN ) for every integer j in [1, N ] and there exists

a constant C depending only on p and N such that

∥
∥
∥sup
ε>0

|f jε (x)|
∥
∥
∥
Lp(RN )

� C‖f‖Lp(RN ).

Proof of Theorem 7.47.

Using the variables (r, θ) with r = |t| and θ = t/|t| in R
N , where the latter

describes the unit sphere SN in R
N , we reduce to the integration over the

unit sphere of a function that is, up to a factor depending on θ, a maximal

Hilbert function, thus allowing us to apply Theorem 7.37.

Let pj(θ) be the component of index j of the unit vector in R
N associated

with θ ∈ SN , which we denote by
−→
θ . Using the oddness of pj , that is, the
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property pj(−θ) = −pj(θ), we have

f jε (x) =

∫ +∞

ε

[∫

SN

f(x− rθ)pj(θ)dθ
]dr
r

=

∫

SN

pj(θ)
[∫ +∞

ε

f(x− rθ)
r

dr
]
dθ

=

∫

SN

pj(−θ)
[
−
∫ +∞

ε

f(x− rθ)
r

dr
]
dθ

=

∫

SN

pj(−θ)
[∫ −ε

−∞

f(x+ rθ)

r
dr
]
dθ

=

∫

SN

pj(θ)
[∫ −ε

−∞

f(x− rθ)
r

dr
]
dθ.

From this, we deduce the equality

f jε (x) =
1

2

∫

SN

pj(θ)
[∫

|s|�ε

f(x− sθ)
s

ds
]
dθ,

and, by noting that |pj(θ)| � 1, we obtain

(7.48) ∀ ε > 0, 2|f jε (x)| �
∫

SN

sup
ε

∣
∣
∣
∫

|s|�ε

f(x− sθ)
s

ds
∣
∣
∣dθ.

Let us consider the function x 	→
∫
|s|�ε

[f(x− sθ)/s] ds. Let e1 be the first

vector of the canonical basis of R
N and let σθ be an isometry of SO(N),

which we will simply denote by σ, such that σθ(e1) = θ. Let Rσf be the

function defined by Rσf(x) = f(σx) for every x ∈ R
N . We then have

f(x− sθ) = f(x− sσe1) = (Rσf)(σ
−1x− se1).

From this we deduce that the right-hand side of (7.48) satisfies

(7.49)

∫

SN

sup
ε

∣
∣
∣
∫

|s|�ε

f(x− sθ)
s

ds
∣
∣
∣dθ

=

∫

SN

sup
ε>0

∣
∣
∣
∫

|s|�ε

Rσf(σ
−1x− se1)
s

ds
∣
∣
∣dθ.

Let ξ = (σ−1x)1 and let ξ′ denote the (N−1)-tuple of the other coordinates
of σ−1x. We can write the previous integral as

∫

|s|>ε

Rσf(σ
−1x− se1)
s

ds =

∫

|s|>ε

Rσf(ξ − s, ξ′)
s

ds.
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Let us therefore define, for a function h in Lp(RN ), the following HLM func-

tion:

M1
h(x) = sup

r>0

1

2r

∫

|s|<r

|h(x1 − s, x2, . . . , xN )|ds.

Using the one-dimensional model, we show that under the assumption that

h ∈ Lp(RN ), the function M1
h also belongs to Lp(RN ) and has norm in

Lp(RN ) bounded from above, up to a constant, by the norm ‖h‖p. Indeed, by
Theorem 7.19 for dimension 1, we have

∫

RN

|M1
h(x)|pdx =

∫

RN−1

∫

R

|M1
h(x1, x

′)|pdx1dx′

� c(p, 1)p
∫

RN−1

∫

R

|h(x1, x′)|pdx dx′,

or

(∗)
∫

RN

|M1
h(x)|pdx � c(p, 1)p‖h‖pLp(RN )

.

For almost all x′ in R
N−1, the function hx′ defined by x1 	→ h(x1, x

′) is

an element of Lp(R). We can therefore apply Theorem 7.37 concerning the

maximal Hilbert function to it. Therefore, for almost all x in R
N , we have

sup
ε>0

1

π

∣
∣
∣
∣

∫

|t|�ε

(Rσf)(σ
−1x− se1)ds
s

∣
∣
∣
∣ � C1M1

Rσf (σ
−1x) +M1

Hm(Rσf)
(σ−1x).

By the properties of isometries, the maximal HLM functions and Hilbert trans-

form of x 	→ Rσf(σ
−1x) have norms in Lp(RN ) equal to those of these same

functions associated with x 	→ Rσf(x). By previous theorems, the norms of

the latter are bounded from above by ‖Rσf‖p. Moreover, by the invariance of

the norm under σ, this equals ‖f‖p. We will use these properties further on.

Returning to inequality (7.48) and denoting by Fσ and Gσ the functions

x 	−→M1
Rσf (σ

−1x) and x 	−→M1
Hm(Rσf)

(σ−1x),

respectively, we can write

(7.50) 2 sup
ε

∣
∣
∣
∣

∫

|t|�ε

f(x− t)tj
|t|N+1

dt

∣
∣
∣
∣ �

∫

SN

[
C1Fσθ

(x) + C2Gσθ
(x)
]
dθ.

We take the pth power and integrate both sides of (7.48) over RN . By Hölder’s

inequality, the right-hand side is bounded from above by

∫

RN

(
ωN−1

)p/p′
∫

SN

∣
∣C1Fσθ

(x) + C2Gσθ
(x)
∣
∣pdθ dx.
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Using Fubini’s formula and the inequality |a+ b|p � 2p−1(ap + bp), it follows

that the right-hand side is bounded from above by

C(p,N)

∫

SN

[∫

RN

|Fσ(x)|pdx+
∫

RN

|Gσ(x)|pdx
]
dθ.

Now, as we noted before, up to constants, these integrals over RN are bounded

from above by ‖f‖p
Lp(RN )

. Consequently, we obtain the result

‖ sup
ε
|f jε |‖pp � C(p,N)‖f‖pp,

concluding the proof of Theorem 7.47. ��

Let us now establish the main result for Rj .

Theorem 7.51. For every j and every p with 1 < p < ∞, the operator Rj

has the following property:

∀ f ∈ Lp(RN ), Rj(f)(x) exists for almost all x ∈ R
N .

To a function f in Lp(RN , this operator associates the function defined by

Rj(f)(x) = (Kj � f)(x) = lim
ε→0

∫

|t|>ε

tj(f(x− t))
|t|N+1

dt.

Moreover, there exists a constant C depending only on p and N , such that

∀ f ∈ Lp(RN ), ‖Rj(f)‖p � C‖f‖p.

Proof of Theorem 7.51.

Let f ∈ Lp(RN ). For every fixed integer j with 1 � j � N , we set f jε (x) =∫
ε�|t|[tjf(x − t)](|t|

−(N+1))dt. The space S is dense in Lp; hence, for every

η > 0, we can find a g ∈ S such that f − g = h with ‖h‖p � η.
We know (cf. Subsection 7.3.3) that the limit limε→0 g

j
ε(x) exists for ev-

ery x. Let us consider, for every integer k > 0, the set Ek(f) of x ∈ R
N such

that we can find sequences {εn} and {ε′n} tending to 0 and satisfying the

inequality

|f jεn(x)− f
j
ε′n
(x)| > 2

k
.

Let us show that we have |Ek(f)| � Cη(2k)p for some constant C. Indeed,

by the above and Theorem 7.47, the map that sends the function h to the

supremum

sup
ε>0

|hjε(x)| = sup
ε>0

∣
∣
∣
∫

ε�t

tjh(x− t)
|t|N+1

dt
∣
∣
∣
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is continuous from Lp to Lp, which implies that it is of weak type (p, p). It

follows (cf. Definition 7.31) that λ∗ = λsupε |hj
ε| satisfies the inequality

(7.52) spλ∗(s) = sp
∣
∣{sup

ε
|hjε(x)| > s}

∣
∣ �

∥
∥ sup

ε
|hjε|

∥
∥p
p
.

Let x ∈ Ek(f) and let εn, ε
′
n satisfy

|f jεn(x)− f
j
ε′n
(x)| > 2

k
.

Then for n sufficiently large, we have

|gjεn(x)− g
j
εn′ (x)| <

1

k

because the sequence {gjεn(x)} tends to a finite limit.

It follows that for n sufficiently large, we have the lower bound

|hjεn(x)− h
j
ε′n
(x)| > 1

k
,

whence x ∈ E2k(h). Consequently,

Ek(f) ⊂ E2k(h).

Now, if |hjεn(x)−h
j
ε′n
(x)| > 1/k, then supε |hjε| > 1/2k. Indeed, if the oppo-

site inequality held, then the previous difference would be less than k−1. The

measure of Ek(f) is therefore less than that of the set {supε |hjε(x)| > 1/2k}.
Now, by (7.52), we have

( 1

2k

)p∣
∣{sup

ε
|hjε| > 1/2k}

∣
∣ � ‖ sup |hjε|‖pp.

Since we have ‖ sup |hjε|‖p � C‖h‖p by Theorem 7.47, it follows that∣
∣{supε |hjε(x)| > 1/2k}

∣
∣ � Cη(2k)p, and therefore |Ek(f)| � Cη(2k)p.

Since the number k is fixed and η is arbitrarily small, this proves that the

set Ek(f) has measure zero. The union F =
⋃+∞

1 Ek(f) therefore also has

measure zero, proving the first assertion of the theorem.

For the second assertion, we use Fatou’s lemma, which gives us the in-

equality

‖Rjf‖pp � lim
ε→0

‖f jε ‖pp � ‖ sup
ε
|f jε |‖pp.

Since the last norm is bounded from above by C‖f‖p, (cf. Theorem 7.47), this

concludes the proof. ��
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7.4 Korn’s Inequality in W 1,p(Ω) for Bounded Ω

The principal result of this section, which will imply Korn’s inequality, is the

following.

Theorem 7.53. Let T be a distribution with compact support in a bounded

domain Ω in R
N . We suppose that for every i ∈ [1, N ], there exists a con-

stant C such that the distribution ∂iT satisfies the property

∀ϕ ∈ C∞(RN ), |〈∂iT, ϕ〉| � C‖∇ϕ‖Lp′ (Ω).

The distribution T can then be identified with an element of Lp(Ω).

To prepare for the proof of this theorem, we first use the previous sub-

sections to establish the Riesz inequalities that link the mixed derivatives of

a function to the Laplacian of that function, after which we prove additional

preliminary results.

7.4.1 Relation between Δϕ and a Mixed Derivative of ϕ in R
N ,

Riesz’s Inequalities

Let us consider the Riesz kernels Kj(x) = Pf[xj |x|−(N+1)]. The fi-

nite parts Kj , which belong to S ′(RN ), have the functions defined by

F(Kj)(ξ) = −iCNξj/|ξ| as Fourier transforms, with coefficients CN com-

puted in Proposition 7.46. We recall that the transform of a derivative ∂j of

a distribution is the product of the transform of the distribution and 2iπξj .

It follows that if ϕ ∈ S(RN ), then

F(Δϕ)(ξ) = −4π2|ξ|2ϕ̂(ξ).

Using Proposition 7.24, we can write Â = F(∂2ϕ/∂xi∂xj) using the transform

of Δϕ:

Â = −4π2 ξjξi F(ϕ)(ξ) = −4π2
ξjξi
|ξ|2 |ξ|

2F(ϕ)(ξ)

= C−2
N F(Ki)F(Kj)F(Δϕ)(ξ).

Now, by Proposition 7.24 or Theorem 7.51, the convolution Kj � Δϕ exists

and its Fourier transform is the product of the transforms. Moreover, this

convolution is an element of Lp(RN ) for every p > 1. By Theorem 7.51, it

now follows that the convolution Ki � (Kj � Δϕ) is well defined, and that

Â = C−2
N F

(
Ki � (Kj � Δϕ)

)
.
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Using the inverse Fourier transform in S ′(RN ), it follows that

∂2ϕ

∂xi∂xj
= C2

NKi � (Kj � Δϕ).

Using the results of the previous section, and in particular Theorem 7.51, we

can deduce inequalities that will later lead to Theorem 7.53.

Theorem 7.54 (Riesz inequalities). For every p with 1 < p < ∞, there

exists a constant C(p,N) depending only on p and N , such that

∀ϕ ∈ S(RN ), ∀ i, j ∈ [1, N ],
∥
∥
∥
∂2ϕ

∂xi∂xj

∥
∥
∥
p
� C(p,N)‖Δϕ‖p.

This inequality, which holds in S(RN ), extends by density to the closure of

S(RN ) for the norm ϕ 	→ ‖Δϕ‖p.

To attack the proof of Theorem 7.53, we need a number of lemmas allowing

us to give, in suitable spaces, solutions u or σ of equations such as Δu = f

and −div σ = f for a regular function f .

Even when these lemmas establish properties that may be of interest out-

side of the present context, we have not tried to optimize these preliminary

results, which are meant to be used in establishing Korn’s inequality.

7.4.2 Preliminary Results

The proof of this first lemma is given in Exercise 7.16.

Lemma 7.55. Let Ω1 be a bounded open subset of RN ; then there exist func-

tions ϕi in D(Ω1) for i ∈ [1, N ] such that

∀ i, j ∈ [1, N ],

∫

Ω1

ϕi(x)xjdx = δ
j
i and ∀ i ∈ [1, N ],

∫

Ω1

ϕi(x)dx = 0

and a function ϕ in D(Ω1) such that
∫

Ω1

ϕ = 1 and ∀ i ∈ [1, N ],

∫

Ω1

ϕ(x)xidx = 0.

The second lemma gives the image of the Laplacian in the space S(RN )

explicitly.

Lemma 7.56. The image Δ(S(RN )) of S(RN ) under the Laplacian is char-

acterized by the equivalence of the following properties:

g ∈ S(RN ) and ∃u ∈ S(RN ) such that Δu = g.(7.57)

g ∈ S(RN ),

∫

RN

g(x)dx = 0, and ∀ i ∈ [1, N ],

∫

RN

g(x)xidx = 0.(7.58)
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Proof of Lemma 7.56.

Let us suppose that the element u of S(RN ) is a solution of Δu = g. Using

the Fourier transform, we obtain 4π2|ξ|2 û(ξ) = ĝ(ξ). Hence, if g satisfies

(7.57), then it follows that ξ 	→ ĝ(ξ)/|ξ|2 is in S(RN ). In particular, this

function is regular at the point ξ = 0. Using the Taylor expansion of g at the

point 0, we necessarily have ĝ(0) = 0 and, for every i ∈ [1, N ], ∂iĝ(0) = 0.

Using the inverse Fourier transform, these equalities are equivalent to

∫

RN

g(x)dx = 0 and ∀ i ∈ [1, N ],

∫

RN

xig(x)dx = 0.

We have thus proved the implication (7.57) ⇒ (7.58).

The converse is obvious. If g verifies (7.58), then

ĝ(ξ)

|ξ|2 ∈ S(R
N ) and Δu = g with û(ξ) =

ĝ(ξ)

|ξ|2 ∈ S(R
N ). ��

Let us note, for later on, that the correspondence between u and g is linear.

More precisely, under the given conditions, we can write u = Δ−1g. Indeed,

using once again F , we see that the operator Δ is injective into S(RN ).

The third lemma is useful for proving the second part of Theorem 7.53.

It is not essential for establishing the theorem, but by giving the image of

the operator div on S(RN ) explicitly, it allows us to better understand the

problems linked to studying functions with given divergence.

Lemma 7.59. Let ϕ ∈ S(RN ). The following properties are equivalent:

∃σ = (σ1, . . . , σN ) ∈ S(RN ,RN ), div σ = ϕ.(7.60)
∫

RN

ϕ(x)dx = 0.(7.61)

Proof of Lemma 7.59.

We begin with the implication (7.60)⇒ (7.61).

If ϕ = div(σ) with σ ∈ S(RN ,RN ), then

∣
∣
∣
∫

RN

ϕ
∣
∣
∣ = lim

R→+∞

∣
∣
∣
∫

B(0,R)

ϕ
∣
∣
∣ = lim

R→0

∣
∣
∣
∫

∂B(0,R)

(σ · −→n )(s)ds
∣
∣
∣

� lim
R→+∞

ωN−1R
N−1 sup

|x|=R

|σ(x)| = 0.

To show (7.61)⇒(7.60), we use an induction on the dimension of the space.

Let us begin with N = 1. It suffices to find a primitive for ϕ ∈ S(R) in

S(R) when
∫
R
ϕ = 0. Assuming that

∫
R
ϕ is arbitrary, we construct a primitive
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that will be useful for the induction in higher dimension. Let ρ ∈ D(R) have
integral equal to 1. We set

σ(x) = σρ,ϕ(x) =

∫ x

−∞
(ϕ(t)− ρ(t)

∫

R

ϕ(u)du)dt.

If we show that σρ,ϕ is strongly decreasing, then this will give the desired

result when ϕ has integral zero in dimension 1. It is obvious that σρ,ϕ is C∞
and that its derivatives are strongly decreasing. It therefore suffices to show

that for every k ∈ N,

lim
|x|→+∞

|x|k|σ(x)| = 0.

Now, for large |x| with x < 0, we have

|σ(x)| =
∣
∣
∣
∫ x

−∞
ϕ(t)dt

∣
∣
∣ � c

∫ x

−∞
(−t)−k−2 dt � c|x|−k−1,

giving the desired result. When x is large and positive, we have the same:

σ(x) =

∫ x

−∞
ϕ(t)dt−

∫

R

ϕ(t)dt =

∫ +∞

x

ϕ(t)dt,

giving

|σ(x)| � cx−k−1.

The result follows for N = 1.

Let us continue with arbitrary dimension N . We suppose the result proved

in dimension N − 1 for the variables (x2, . . . , xN ). Let ϕ be an element of

S(RN ) with integral zero. We associate to it the function ϕ1 defined by

ϕ1(x1, x2, . . . , xN ) = σρ,ϕ(.,x2,...,xN )(x1)

=

∫ x1

−∞

(
ϕ(t, x2, . . . , xN )− ρ(t)

∫

R

ϕ(u, x2, . . . , xN )du
)
dt.

It follows from the computations in dimension 1 that this function is rapidly

decreasing in x1. Moreover, we can easily verify that this holds for all variables.

Let us therefore consider the function

ψ(x2, . . . , xN ) =

∫

R

ϕ(t, x2, . . . , xN )dt.

Since, by assumption,
∫
RN ϕ(x1, x2, . . . , xN )dx = 0, we have

∫
ψ(x2, . . . , xN )dx2 · · · dxN = 0.
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By the induction hypothesis, it follows that there exists an (N − 1)-tuple

(ψ2, . . . , ψN ) in S(RN−1) such that

N∑

2

∂iψi =

∫

R

ϕ(t, x2, . . . , xN )dt.

Next, let ϕi be defined for i ∈ [2, N ] by

ϕi(x1, x2, . . . , xN ) = ρ(x1)ψi(x2, x3, . . . , xN ).

These functions are rapidly decreasing and

N∑

2

∂iϕi + ∂1ϕ1 = ϕ,

concluding the proof. ��

These lemmas lead to the following result.

Proposition 7.62. Let Ω be a bounded open subset of RN ; then there exists a

constant C such that for every function f ∈ D(Ω), there is a σ ∈ C∞(RN ,RN )

satisfying the following conditions:

− div σ = f,(7.63)

‖∇σ‖Lp′ (Ω) � C
(
‖f‖Lp′ (Ω) +

∣
∣
∣
∫

Ω

f(x)dx
∣
∣
∣+

N∑

1

∣
∣
∣
∫

Ω

fxidx
∣
∣
∣
)

(7.64)

� C ′‖f‖Lp′ (Ω).

If moreover f has integral zero, then the function σ associated with f is an

element of S(RN ,RN ).

Proof of Proposition 7.62.

Let us consider the functions ϕ and ϕi introduced in Lemma 7.55. We can

deduce from them functions
−→
ψ and

−→
ψi for i ∈ [1, N ] with values in R

N , each

belonging to C∞(RN ,RN ) ∩W 1,∞(RN ,RN ), such that

div
−→
ψ = ϕ and ∀ i ∈ [1, N ], div

−→
ψi = ϕi.

To see this, we can, for example, set ψ =
∫ x1

−∞ ϕ(t, x2, . . . , xN )dt and
−→
ψ = ψe1,

and define the
−→
ψi analogously.

Let us note that for i ∈ [1, N ], the functions ϕi satisfy
∫
ϕi = 0. More-

over, since we can identify these functions with functions in S(RN ) with zero

integral, we can apply the more precise construction of Lemma 7.59 to them,

which gives functions
−→
ψi belonging to S(RN ,RN ).
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Consider the function g = f−(
∫
Ω
f(x)dx)ϕ−

∑N
1 (
∫
Ω
fxidx)ϕi. This is an

element of D(RN ) that satisfies the equalities (7.58). Lemma 7.56 therefore

gives the existence and uniqueness of a u in S(RN ) such that

(7.65) −Δu = f −
(∫

Ω

f(x)dx
)
ϕ−

N∑

1

(∫

Ω

fxidx
)
ϕi.

We then define

σ = ∇u−
(∫

Ω

f(x)dx
)−→
ψ −

N∑

1

(∫

Ω

fxidx
)−→
ψi.

By the definitions of u, div
−→
ψ , and div

−→
ψi, we see that σ ∈ C∞(RN ,RN ) ∩

W 1,∞(RN ,RN ). A fortiori, its restriction to Ω belongs to W 1,p′
(Ω). This

vector function satisfies

−div σ = f,

and, setting a =
∫
Ω
f(x)dx and ai =

∫
Ω
xif(x)dx, its gradient satisfies the

inequality

(7.66) ‖∇σ‖Lp′ (Ω) � ‖∇∇u‖Lp′ (Ω) + |a| ‖∇
−→
ψ ‖Lp′ (Ω) +

N∑

1

|ai| ‖∇
−→
ψi‖Lp′ (Ω).

Since u is an element of S(RN ), we can use Riesz’s inequality, which leads

to ‖∇∇u‖Lp′ (Ω) � ‖∇∇u‖Lp′ (RN ) � CN‖Δu‖Lp′ (RN ). Since the function Δu

has compact support in Ω, we also have

‖∇∇u‖Lp′ (Ω) � CN‖Δu‖Lp′ (Ω).

Letting K and Ki denote constants fixed by the choice of the functions ϕ

and ϕi, respectively, we obtain

‖∇σ‖Lp′ (Ω) � CN‖Δu‖Lp′ (Ω) +K
∣
∣
∣
∫

Ω

fdx
∣
∣
∣+Ki

∣
∣
∣
∫

Ω

f(x)xidx
∣
∣
∣.

This gives the first upper bound of the proposition. Bounding the integrals

|a| and |ai| from above using Hölder’s inequality, we finally obtain

‖∇σ‖Lp′ (Ω) � C(Ω, p′, N)‖f‖Lp′ (Ω),

which concludes the proof of the first part of Proposition 7.62.

For the second part, we keep the same formula to define g. Since the

function f has zero integral, as well as the ϕi, the same holds for g. Lemma

7.59 therefore tells us that the function σ defined above is an element of

S(RN ,RN ). ��
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7.4.3 Local Korn’s Inequality

Theorem 7.67. Let T be a distribution with compact support in a bounded

domain Ω in R
N . We suppose that for every i ∈ [1, N ] there exists a con-

stant C such that the distribution ∂iT satisfies the property

∀ϕ ∈ C∞(RN ), |〈∂iT, ϕ〉| � C‖∇ϕ‖Lp′ (Ω).

The distribution T can then be identified with an element of Lp(Ω).

Proof of Theorems 7.67 and 7.53.

We begin by defining a distribution T1 on Ω. Let f be an element of D(Ω)
with zero integral. The distribution T1 acts on f by

〈T1, f〉 = 〈∇T, σ〉,

where σ is an element of C∞(RN ,RN ) satisfying −div σ = f (cf. Lemma

7.59). For a fixed σ, the right-hand side is well defined because T has compact

support. Moreover, this definition does not depend on the choice of σ. Indeed,

let σ1, σ2 ∈ C∞ satisfy div σ1 = div σ2; then we have the relation

〈∇T, σ1 − σ2〉 = −〈T, div(σ1 − σ2)〉 = 0.

Next, we define T1 on the functions f ∈ D(Ω). Setting

f = f −
(∫

Ω

f
)
ζ +

(∫

Ω

f
)
ζ

where ζ is an element of D(Ω) with integral equal to 1, we let

(∗) 〈T1, f〉 =
〈
T1, f −

(∫

Ω

f
)
ζ
〉
+
(∫

Ω

f(x)dx
)
〈T, ζ〉,

where we use the earlier definition of T1 on the function f −
(∫

Ω
f
)
ζ, whose

integral is zero. It is obvious that T1 is linear and is a distribution on Ω. We

still need to show that T1 belongs to L
p(Ω). Now, because of the independence

of the choice of σ, we can choose one provided by Proposition 7.62, so that

there exists a constant C such that for every f ∈ D(Ω),

|〈T1, f〉| � C‖f‖Lp′ (Ω).

The desired conclusion, namely the extension of T1 to the space L
p(Ω), follows.

Let us now show that the distributions T and T1 have the same gradient.

Let us consider a derivative ∂iT1. Let σ satisfy −div σ = f , so that −div ∂iσ =

∂if . Since
∫
Ω
∂if = 0, it follows that we can take ∂iσ to be the function σ

associated with ∂if . By definition (∗), we then have

〈∂iT1, f〉 = −〈T1, ∂if〉 = −〈∇T, ∂iσ〉.
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Moreover,

〈∂iT, f〉 = −〈T, ∂if〉 = 〈T, div ∂iσ〉 = −〈∇T, ∂iσ〉.

We therefore have ∂iT = ∂iT1 for every i ∈ [1, N ]. Using the connectedness

of Ω, we conclude that there exists a constant C such that T = T1 +C in Ω.

Since we moreover have 〈T, ζ〉 = 〈T1, ζ〉, it follows that C
∫
Ω
ζdx = 0, whence

C = 0 and T = T1. ��

Applications to the so-called Korn’s Inequality.

Proposition 7.68. Let 1 < p < ∞ and let u ∈ Lp(Ω,RN ) satisfy ε(u) ∈
Lploc(R

N ). Then for every function ϕ in D(RN ), the functions ∂j((uϕ)i) belong

to Lp(Ω); in other words, ∇(uϕ) ∈ Lp(Ω,R2N ).

Proof of Proposition 7.68 when p = 2.

This case is elementary and does not need the previous theorem. We show

that for every u ∈ Y2(RN ),

‖ε(u)‖2 � C‖∇u‖2.

We begin by noting that for every i, j ∈ [1, N ] with i �= j and for u in C2c (RN ),

we have

(7.69)

∫

RN

|∂jui|2dx+
∫

RN

|∂iuj |2dx

� 4

∫

RN

|εij(u)|2dx+
∫

RN

[ε2ii(u) + εjj(u)
2]dx.

To prove identity (7.69), we write the integral
∫
RN (∂jui + ∂iuj)

2dx for any

pair (i, j) as follows, by applying two integrations by parts on the term∫
RN ∂jui∂iujdx:

∫

RN

(∂jui + ∂iuj)
2dx =

∫

RN

(∂jui)
2dx+

∫

RN

(∂iuj)
2dx+ 2

∫

RN

∂jui ∂iujdx

=

∫

RN

(∂jui)
2dx+

∫

RN

(∂iuj)
2dx+ 2

∫

RN

∂iui ∂jujdx.

Let Y2(R
N ) be the space of vector functions v with the property that both v

and the deformation tensor ε(v) belong to L2(RN ,RN ). Let u ∈ Y2(RN )

have compact support and let {un} be a sequence in C2c (RN ,RN ) obtained

by convolution with a regularizing kernel, that converges to u in the space

Y2(R
N ). The identity (7.69) shows that {∇un} is a Cauchy sequence in L2.

Consequently, ∇u ∈ L2(RN ,RN ). It follows that if ε(u) ∈ L2(RN ,RN ), then

∇u ∈ L2(RN ,R2N ).
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Finally, let u ∈ L2 with ε(u) ∈ L2. Then for every ϕ ∈ D(Ω), we have

uϕ ∈ Y2(RN ), whence uϕ ∈ H1(RN ). It follows that ∇(u) ∈ L2loc(Ω), thus
concluding the proof in the case p = 2. ��

Proof of Proposition 7.68 when p > 2.

Let v = uϕ. We first demonstrate a relation expressing a distributional

mixed derivative of u in terms of the tensor ε(u):

(7.70) ∂ik(vj) = ∂k(εij(v)) + ∂i(εjk(v))− ∂j(εik(v)).

Since ε(uϕ) ∈ Lp, we see that the derivatives of ε(v) are distributions T

with compact support that satisfy the conditions of the previous propositions.

Hence, for fixed j and k, the distribution ∂kvj has compact support and

satisfies the conditions of Theorem 7.67. Consequently, ∂kvj ∈ Lp, giving the

desired result because j and k are arbitrary. ��

To conclude, we prove the following result.

Theorem 7.71 (Korn’s inequality in Lp(Ω), 1 < p < ∞). Let Ω be a

domain in R
N . We consider the space

Yp(Ω) =
{
u ∈ Lp(Ω) | ∀ (i, j) ∈ [1, N ], εij(u) = (∂jui + ∂iuj)/2 ∈ Lp(Ω)

}
.

If u ∈ Yp(Ω), then u ∈ W 1,p
loc (Ω). If, moreover, Ω is bounded and of class C2,

then the space Yp(Ω) can be identified with W 1,p(Ω). More precisely, there

exists a constant C such that every u ∈W 1,p(Ω) satisfies

‖∇u‖Lp(Ω) � C
(
‖u‖pp +

∫

Ω

|ε(u)(x)|pdx
)1/p
.

The idea of the proof of the inclusion u ∈W 1,p(Ω) consists in extending a

function u in Yp(Ω), when Ω is bounded, to a function with compact support

in Yp(R
N ). We then apply Theorem 7.68. We begin by extending u in the case

Ω = R
N−1× ]0,∞[, giving a general idea of the proof, after which we proceed

with the general case.

Proof of Theorem 7.71 around a point where ∂Ω is locally straight.

We wish to extend the vector function u, which is an element of

Yp(R
N−1 × ]0,∞[) with compact support in R

N−1 × [0,∞[, to a vector

function ũ in Yp(R
N ).

For xN < 0 and i ∈ [1, N − 1], we set

(7.72) ui(x
′, xN ) = 2ui(x

′,−xN )− ui(x′,−3xN )
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and for xN < 0 and i = N , we set

(7.73) uN (x′, xN ) = −2uN (x′,−xN ) + 3uN (x′,−3xN ).

We thus obtain a function ũ on R
N with compact support. We can easily

verify that ũ ∈ Yp(RN ). Indeed, for xN < 0 and i and j ∈ [1, N − 1], we have

(7.74) 2∂jui(x
′, xN ) = 2∂jui(x

′,−xN )− ∂jui(x′,−3xN ),

whence

(7.75) 2εij(u)(x
′, xN ) = 2εij(u)(x

′,−xN )− εij(u)(x′,−3xN ).

Furthermore, if one of the indexes is N , then we have

2εiN (u)(x′, xN ) = −2∂Nui(x′,−xN ) + 3∂Nui(x
′,−3xN )

− 2∂iuN (x′,−xN ) + 3∂iuN (x′,−3xN )

= −4εiN (u)(x′,−xN ) + 6εiN (u)(x′,−3xN )

εN,N (u)(x′, xN ) = 2∂NuN (x′,−xN )− 9∂NuN (x′,−3xN ).and

We thus see that the function ũ belongs to Yp(R
N ). It follows that ũ ∈

W 1,p(RN ) and that u ∈W 1,p(RN−1 × R
+). ��

Proof of Theorem 7.71 when Ω is a bounded open set of class C2.
Let us recall our motivation, which is presented in the introduction of this

chapter. Readers interested in other arguments in the case p = 2 or for much

more general open spaces than those we consider may consult, for example,

the article by Nitsche [54]. The proof given by Nitsche concerns open sets

with only the cone property. The methods used for p = 2 for such open sets

can no doubt be adapted to arbitrary p. We will not address this research.

Consequently, we will only be interested in the extension of the local Korn

inequality when the open set is of class C2. We begin by noting that it suffices

to prove the result in the neighborhood of a boundary point x0, where the

normal to ∂Ω has a nonzero scalar product with eN . Locally, the open set Ω

lies on one side of its boundary in the neighborhood of this point, and there

exists an open subset Ωi of R
N containing x0 such that

Ωi ∩Ω ⊂ {(x′, xN ) | x′ ∈ O′, ai(x
′) < xN},

Ωi ∩ ∂Ω = {(x′, ai(x′)) | x′ ∈ O′},

where O′ is an open subset of R
N−1 and ai is a class C2 function on O′.

The set Ω can be covered with such open sets Ωi. Consequently, using a

partition of unity {ϕi} subordinate to this cover of Ω, it suffices to show that
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if u ∈ Yp(Ω∩Ωi), then ϕiu ∈W 1,p(Ω∩Ωi). For the sake of simplicity, we will

omit the factor ϕi. In other words, we assume that u belongs to Yp(Ω ∩ Ωi)

and that u has compact support in Ω ∩Ωi. We will also omit the index i. We

can reduce to the case of a straight boundary, that is, to the case of functions

on R
N−1 × ]0,+∞[, which we have already studied.

We use the function v with components vi defined by

vi(x
′, t) = (ui + (∂ia)uN )(x′, a(x′) + t)

for i � N − 1 and by

vN (x′, t) = uN (x′, a(x′) + t)

for i = N . The function v is defined on O′ × R
+. Let us show that v ∈

Yp(O′ × ]0,+∞[). To do this, we compute the derivatives ∂jvi and ∂ivj for i

and j in [1, N − 1] plus the derivatives ∂Nvi and ∂ivN , where we use the

assumption that the function a is C2 on the open set O′:

∂jvi =
(
∂jui+∂Nui∂ja+∂ia∂juN+∂ia∂ja∂NuN+∂ijauN

)
(x′, a(x′)+t)

∂ivj =
(
∂iuj+∂Nuj∂ia+∂ja∂iuN+∂ia∂ja∂NuN+∂ijauN

)
(x′, a(x′)+t)

∂NvN = ∂NuN (x′, a(x′) + t)

∂Nvi =
(
∂Nui + ∂ia∂NuN

)
(x′, a(x′) + t)

∂ivN =
(
∂iuN + ∂ia∂NuN

)
(x′, a(x′) + t).

It follows that the components of ε(v) with i and j in [1, N − 1] satisfy

εij(v)=
(
εij(u)+∂jaεiN (u)+∂iaεjN (u)+∂ia∂ja∂NuN+∂ijauN

)
(x′, a(x′)+t).

Moreover, for (i, j) = (i, N), we have

εiN (v) = (εiN (u) + (∂ia)∂NuN )(x′, a(x′) + t).

These formulas clearly show that v belongs to Yp(R
N−1 × ]0,+∞[) and has

compact support in R
N−1× [0,+∞[. Keeping the results for a straight bound-

ary in mind, we obtain

v ∈W 1,p(O′ × ]0,+∞[).

In particular, the component vN , that is, uN , belongs toW 1,p(Ωi∩Ω). Finally,
by noting that

ui(x
′, xN ) = vi(x

′, xN − a(x′))− (∂ia)vN (x′, xN − a(x′)),

we obtain the inclusion of ui in the space W 1,p(Ωi∩Ω), concluding the proof.

��
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Comments

Since we are not specialists in harmonic analysis, we have used the book of

Stein and Weiss [64] as our principal source. We recommend that the reader

who wishes to learn more consult the following books and articles for more

details: Stein and Weiss [64], Stein and Weiss [65], Stein [63], and Zygmund

[77].

7.5 Exercises for Chapter 7

Exercise 7.1 (Fourier Transform of a Function in L2(R)).

Let f be defined by f(t) = t/(t2 + y2), where y > 0.

(1) Show that f ∈ L2(R) and that its Fourier transform in the sense of

tempered distributions is defined by a semiconvergent integral, namely

f̂(ξ) =
∫
R
t exp(−2iπξt)(t2 + y2)−1dt.

(2) Use the residue theorem applied to the contour consisting of a segment

[−R,R] and a semicircle (CR or C ′
R) and a suitable holomorphic function

to compute f̂(ξ) when ξ < 0 and when ξ > 0. You can also use one of the

contours and the reflexion ξ 	→ −ξ.

Fig. 7.1. A computation using the residue theorem.

Hints. For (2), use the function F (z) = z exp(−2iπξz)/(z2 + y2). When ξ > 0,
you must show that limR→+∞

∫
C′

R
F (z)dz = 0. Reduce to bounding the integral

∫ π/2

0
exp(−a sin θ)dθ when a is a positive real number by using a lower bound for

sin θ, and conclude that this integral is lesser than K/R. Conclude that

∀ ξ ∈ R, f̂(ξ) = −iπ sign(ξ) exp(−2π|ξy|).
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Exercise 7.2 (Mean Value Property for Harmonic Functions).

Let N > 2. We recall that the fundamental solution of the Laplacian is

E(x) = kN |x|−(N−2), where kN is a constant. Let u be a harmonic func-

tion in a domain Ω in R
N . Consider a ball B(a, r) whose closure lies inside Ω.

Generalize the case N = 2 by showing that u(a) equals the mean value of u on

the sphere ∂B(a, r). Use Green’s formula for class C2 functions in the following

form:
∫

Ω

(
g(x)Δf(x)− f(x)Δg(x)

)
dx =

∫

∂Ω

(
g(x)∂−→n f(x)− f(x)∂−→n g(x)

)
dσ(x).

Apply this formula to the functions u and 1 to determine a property of the

normal derivative of u on the spheres inside Ω. Next, apply this formula to E

and u in the region between the sphere ∂B(a, r) and the sphere of radius ε

with center a to show that the mean value on ∂B(a, r) equals the mean value

on ∂B(a, ε). Conclude.

Hints. We may, and do, assume that a = 0. By Green’s formula, we have

0 =

∫

B(0,r)

Δu(x)dx =

∫

∂B(0,r)

∂−→n u(x)dx

for every r such that B(0, r) ⊂ Ω. We then apply Green’s formula to the functions E
and u in the region Ωε,r delimited by the spheres Sε = ∂B(0, ε) and Sr = ∂B(0, r).
By the harmonicity of the two functions, we have

∫

Ωε,r

(
uΔE − EΔu

)
dx = 0.

Moreover, the normal differentiation of E on the spheres gives the expressions −(N−
2)|x|−N+1, which are constant on each of the spheres. This leaves

− (N − 2)

∫

Sε

ε−N+1u(s)ds+ (N − 2)

∫

Sr

r−N+1u(s)ds

−
∫

Sε

E(s)∂−→n u(s)ds+

∫

Sr

E(s)∂−→n u(s)ds = 0

in Green’s formula. By the previous result, since the function E is constant on the
spheres, the sum of the last two integrals is zero. Consequently, we have

1

ωN−1rN−1

∫

Sr

u(s)ds =
1

ωN−1εN−1

∫

Sε

u(s)ds.

Since the mean value of u on the sphere Sr equals its mean value on the sphere Sε,
which by the continuity of u is arbitrarily close to u(0) when ε is sufficiently small,
the result follows.

Exercise 7.3 (Converse of the Previous Exercise’s Property).

Consider a continuous function u on a domain Ω in R
N that has the mean

value property on this open set. In other words, for every a ∈ Ω, the mean

value Mu(a, r) of u on a sphere with boundary B(a, r) and closure contained

in Ω equals u(a). Prove that the function u is harmonic in Ω.
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(1) To begin, assume that u is a C2 function. Establish the result by showing

that the limit of the second derivative of r 	→ Mu(a, r) at the point a is

proportional to Δu(a).

(2) In the general case, where the function u is only continuous, use a regu-

larization of u and show that, locally, u coincides with its regularization,

which allows us to reduce to the first case.

Hints.

(1) The second derivative of r �→
∫
∂B(0,1)

u(a+ rs)ds gives

d2

dr2
[Mu(a, r)] =

1

ωN−1

∫

∂B(0,1)

d2

dr2
u(a+ rs)ds.

Up to ωN−1, the limit of this derivative at a equals the sum

∑

ij

∂iju(a)

∫

∂B(0,1)

sisjds.

We note that if i �= j, then
∫
∂B(0,1)

sisjds = 0 and, moreover, that
∫
∂B(0,1)

s2i ds =
∫
∂B(0,1)

s2jds. It follows that the limit of this derivative at a is

proportional to Δu(a), giving the result since by assumption, the mean value
function is constant for r > 0.

(2) Consider a ball B0 = B(x0, r0) with closure inside Ω and let u0 be the restriction
of u to this ball extended by 0 outside of the ball. We use the convolution
Uε = u0 � ρε where, as usual, ρε(x) = ε−Nρ(x/ε) with ρ a positive function
in D(RN ) with support in B(0, 1) and integral equal to 1. We may, and do,
moreover assume ρ to be radial. Let x ∈ B0. By definition, for ε < r0 −|x0 −x|,
we have

Uε(x) =

∫

RN

ρε(t)u0(x− t)dt =

∫

B(0,ε)

ρε(t)u(x− t)dt.

Using the spherical coordinates of the variable t and Fubini’s formula, and letting
σ be the variable on the unit sphere such that t = |t|σ, we can write

Uε(x) =

∫ ε

0

ε−Nρ(r/ε)
[∫

∂B(0,1)

u(x− rσ)dσ
]
rN−1dr.

Now, the mean value of u at the point x is defined by

Mu(x, r) =
1

ωN−1

∫

∂B(0,1)

u(x+ rs)ds =
1

ωN−1

∫

∂B(0,1)

u(x− rσ)dσ.

It follows that

Uε(x) = ωN−1

∫ ε

0

ε−Nρ(r/ε)Mu(x, r)r
N−1dr,

so that, using the assumption, which holds because of the condition on ε, we
obtain

Uε(x) = ωN−1u(x)

∫ 1

0

ρ(λ)λN−1 dλ.
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Finally, since

ωN−1

∫ 1

0

ρ(λ)λN−1 dλ =

∫

B(0,1)

ρ(y)dy = 1,

we deduce that u(x) = Uε(x).
Taking x in B(x0, r0/2), we can then fix ε0 = r0/2 and the function u coincides
with the function Uε0 in the entire ball B(x0, r0/2). The function u is therefore
of class C∞ in Ω. We have thus reduced to case (1).

Exercise 7.4 (Complement to Example 7.12).

Consider the function f on R defined by f(t) = (t2+1)−1. For 0 < x < 1/
√
3,

we study the mean values defined by

u(r, x) =
1

2r

∫ x+r

x−r

dt

t2 + 1
=

arctan(x+ r)− arctan(x− r)
2r

.

The function U(r, x) = −2u′r(r, x)r2 can be written as

U(r, x) = arctan(x+ r)− arctan(x− r))− r
( 1

(x+ r)2 + 1
+

1

(x− r)2 + 1

)
.

Setting a = x+ r and b = x− r, its derivative equals

U ′
r(r, x) = 2r

[ a

(a2 + 1)2
− b

(b2 + 1)2

]
.

Expanding a(b2 + 1)2 − b(a2 + 1)2, we see that U ′
r(r, x) has the same sign as

the trinomial T (r2) defined by

T (r2) = r4+2(1+x2)r2−3x4−2x2+1 = r4+2(1+x2)r2− (x2+1)(3x2−1).

(1) Let x � 1/
√
3. Determine the sign of the derivative of r 	→ u(r, x) by first

studying the sign of T (r2) and then using the formulas above. Prove that

∀x � 1√
3
, mf (x) =

1

1 + x2
= f(x).

(2) Next, assume that x > 1/
√
3 (use the results of Example 7.12). Prove that

the function x 	→ U(r, x) is nondecreasing and that x 	→ r2(x) is there-

fore nonincreasing in ]1/
√
3,+∞[. Deduce that the function x 	→ r2(x)

is continuous on this interval, and consequently that mf is a continu-

ous function on ]1/
√
3,+∞[. Finally, examine the behavior of mf (x) as x

tends to 1/
√
3 from above.

Exercise 7.5 (Solution for the Dirichlet Problem on the Sphere using

the Poisson Integral).

Let B be the open unit ball in R
N and let ∂B be the unit sphere. We set

(Poisson kernel):

∀x ∈ B, ∀ s ∈ ∂B, p(s, x) = KN
1− |x|2
|x− s|N ,
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where the constant KN is the reciprocal of the (N − 1)-dimensional surface

area of the unit sphere in R
N . Note that the function p is nonnegative.

(1) Show that the function x 	→ p(s, x) is harmonic in B for every s in ∂B.

(2) Show that we have
∫
∂B
p(s, x)ds = 1 for every x in B.

(3) We set x = ry with r < 1 and |y| = 1. Show that for every η > 0, when

r → 1, the function x 	→
∫
s∈∂B,|s−y|>η

p(s, ry)ds converges uniformly to 0

at y.

(4) (Poisson formula) Let f be a continuous function on ∂B. Let u be the

function on B defined by

(7.76) u(x) =

⎧
⎨

⎩

∫

∂B

f(s)p(s, x)ds if x ∈ B,

f(x) if x ∈ ∂B.

Show that the function u is harmonic in B and continuous on B.

Hints.

(1) Compute the Laplacian of a product using the function y �→
(
1−|y+s|2

)
|y|−N .

(2) Let r < 1. Since the function p is harmonic in B for s fixed in ∂B, the mean
value property (cf. Exercise 7.2) implies that

p(s, 0) =
1

ωN−1
=

1

ωN−1rN−1

∫

∂B(0,r)

p(s, x)dx,

whence, by setting x = ry, which allows us to reduce to the unit sphere,

p(s, 0) =
1

ωN−1

∫

∂B(0,1)

p(s, ry)dy.

Show the inequality |ry − s| = |rs − y| using, for example, the symmetry axis
for the two rays [0, s] and [0, y] or a direct computation. It follows that

ωN−1p(s, ry) =
1− r2

|s− ry|N =
1− r2|s|2
|rs− y|N =

1− |rs|2
|rs− y|N = ωN−1p(y, rs).

We therefore have

1 = ωN−1p(s, 0) =

∫

∂B(0,1)

p(s, ry)dy =

∫

∂B(0,1)

p(y, rs)dy.

This relation holds for arbitrary s of norm 1 in R
N and arbitrary real numbers r

with 0 � r < 1. Let x be a given element of B, so that |x| < 1; we can then
choose the elements s and r in the relation in such a way that rs = x. We then
obtain

1 =

∫

∂B(0,1)

p(s, x)ds,

giving the result.



7.5 Exercises for Chapter 7 425

(3) We again set x = ry, where y lies on the sphere. We assume that |s − y| > η.
Using a lower bound, we find

|ry − s| � |s− y| − (1− r) � η

2

for 1 − r sufficiently small. From this, we deduce the uniform upper bound
C(1− r2) for p(s, ry), giving the result.

(4) We use the first question and carry out a differentiation under the integral sign
with respect to x when |x| < 1. It suffices to show the continuity at a point
z ∈ ∂B. Let ε > 0 be given. We wish to show that for x ∈ B sufficiently close
to z, we have |u(z)− u(x)| � ε. We may, and do, assume that x �= 0 and we use
a y such that x = ry and |y| = 1, which allows us to fall back on the previous
results. Decomposing the integral into two parts, one on the set Aη of points of
∂B for which |s− y| � η, we have

|u(x)− u(y)| =
∣
∣
∣
∫

∂B

[
f(s)− f(y)

]
p(s, ry)ds

∣
∣
∣

�
∫

Aη

|f(s)− f(y)| p(s, ry)ds+
∫

∂B�Aη

|f(s)− f(y)| p(s, ry)ds.

Since the integral of p on the boundary equals 1, we can bound the second
integral on the right-hand side as follows:

∫

∂B�Aη

|f(s)− f(y)|p(s, ry)ds � sup
{
|f(s)− f(y)| | |s− y| � η

}
.

By the continuity of f on ∂B, this integral can be bounded from above by ε/2
for η � η0. Choosing η = η0, we obtain

|u(x)− u(y)| � ε

2
+ 2 sup

t∈∂B
|f(t)|

∫

Aη

p(s, ry)ds.

Now, by question (3), this last integral tends to 0 uniformly with respect to y
when r → 1. It follows that there exists an η1 such that |x − y| < η1 implies
|u(x)− u(y)| < ε. Returning to z, we then write

|u(z)− u(x)| � |u(z)− u(y)|+ |u(y)− u(x)|.

By the continuity of f on the boundary, the difference |u(z) − u(y)|, which
equals |f(z) − f(y)|, can be made < ε provided that |z − y| � η2. Let x ∈
B(z, 1/2 inf (η1, η2)); then |x−y| < η1 and, consequently, the previous inequality
implies that |u(z)− u(x)| < 2ε, giving the desired result.

Exercise 7.6 (Application of the Poisson Formula Given Above).

Consider a continuous function (x, y) 	→ u(x, y) on R
N ×R with the following

symmetry property:

∀x ∈ R
N , ∀ y > 0, u(x,−y) = −u(x, y).

We suppose that u is harmonic in R
N × ]0,+∞[. Show that the function u

is then harmonic in R
N × R. To do this, first show that u is harmonic in

R
N × ] − ∞, 0[ and then prove that it is harmonic in the entire ball with
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center (x0, 0) in R
N+1. For that property, compare the function u in the

ball to the harmonic function defined by the Poisson integral of Exercise 7.5

(cf. formula (7.76)).

Hints. Use formula (7.76) on the ball B0 = B((x0, 0), r); this defines a function v
that is harmonic inside B0 and can be identified with u on ∂B0. The Poisson kernel
p(s, x) of this formula has an analogue in dimension N + 1, where the point x is
replaced by (x0 + rξ, 0 + rη) for (ξ, η) on the unit sphere ∂B(0, 1) in R

N+1. Letting
ωN denote the surface area of the sphere and dσ its Lebesgue measure, we obtain

v(x, y) =
1

ωN−1r1−N

∫

∂B(0,1)

u(x0 + rξ, rη)p∗(x, y, ξ, η)dσ,

where p∗ is defined by

p∗(x, y, ξ, η) =
r2 − [(x− x0)

2 + y2]
(
(x− x0)− rξ)2 + r2η2

)(N+1)/2
.

By the symmetry assumption on u, we have v(x, 0) = 0 when y = 0. In the bounded
domain consisting of the interior of the hemisphere B0 ∩ (RN × ]0,+∞[), the func-
tions v and u are therefore solutions of a same Dirichlet problem. Since the open
set is not of class C1, we do not have uniqueness. However, applying the maximum
principle to the difference, as in Remark 5.69, nonetheless gives the equality u = v
in the open set. The same reasoning holds for the lower hemisphere. It follows that
the function u is harmonic in B0 and, consequently, everywhere in R

N+1.

Exercise [∗∗] 7.7 (Proof of Theorem 7.15 when N = 1).

Let us take the statement of Theorem 7.15. By translating the neighborhoods

Jxi,ri , which in this case are intervals, so that their centers xi become 0, we

obtain intervals Ji with center 0 that we can order as follows:

J1 ⊂ J2 ⊂ · · · ⊂ Jn,

where Ji = ]− ri, ri[, with the property that

∀ y ∈ S, ∃ i ∈ [1, n],
1

2ri

∫

y+Ji

|f(t)|dt > s.

For every y ∈ S, we can set

K(y) = sup
{
j ∈ [1, n]

∣
∣
∣

1

2rj

∫

y+Jj

|f(t)|dt > s
}
,

thus defining a map K from S to [1, n]. We wish to estimate the measure of S

using its cover by these intervals of length 2ri, which satisfy

(7.77) i = K(y) =⇒ 2ri <
1

s

∫

Ji

|f(t+ y)|dt.

We will bound the measure |S| from above by a sum of the lengths of the

intervals in a suitable cover of S, so that we can use relation (7.77), allowing

us to estimate this measure using the integral of |f | over R.
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(1) More precisely, show that

Lemma 7.78. There exist a finite number of points sj, 1 � j � k, of S
such that

a) The set S is contained in
⋃

1�j�k{sj + JK(sj)} and a center sj is

contained only in the interval with index j.

b) Setting Vi = si + JK(si), we have

k∑

1

∫

Vj

|f(t)|dt � 2

∫

R

|f(t)|dt = 2‖f‖L1(R).

(2) After proving the lemma, finish the proof of Theorem 7.15 in the case

N = 1 using relation (7.77):

|Fs| �
k∑

1

|Vj | � 2

k∑

1

rj �
1

s

k∑

1

∫

Vj

|f(t+ y)|dt � 2

s
‖f‖1.

Hints. Choose a point s1 in S such that K(s1) � K(s) ∀ s ∈ S. Such a point exists
because of the inverse image K−1({n}). Consider the set S1 = S � {s1 + JK(s1)}. If
it is empty, then S ⊂ V1 = s1+JK(s1) and the first part of the lemma is verified with
k = 1, while the second part is trivial. If the difference of the sets is nonempty, then
we choose a point s2 in S1 such that K(s2) � K(s) for every s ∈ S1. If S2 = S1 �V2

is empty, then we obtain the lemma with k = 2 by noting, moreover, that the
inequality rK(s2) � rK(s1) implies that the center s1 of the first interval does not lie
in the second one, s2 + JK(s2).

The second part of the lemma then follows from
∫

V1

|f(t)|dt+
∫

V2

|f(t)|dt =
∫

V1∪V2

|f(t)|dt+
∫

V1∩V2

|f(t)|dt � 2

∫

R

|f(t)|dt.

This construction can be extended using the given algorithm. The number of steps is
necessarily finite, giving the first statement of the lemma. By the above, the center sj
does not belong to sj′ +JK(sj′ )

for j′ = j±1. By the assumption that the dimension

is one, it follows that the same holds for every other index. The first part of the
lemma follows.

For the second part of the lemma, we first note that any three Vj with two-
by-two distinct indexes have an empty intersection. Indeed, let a belong to the
intersection of two of the Vj . We may, and do, assume that i and j are the two
smallest indexes for which a ∈ Vi ∩ Vj . Then, if a ∈ Vk for k other than i and j, we
have |sk − a| < rk � inf (ri, rj), which implies that the center sk belongs to one of
the intervals Vi, Vj , giving a contradiction. Under these conditions, we can generalize
an earlier equality by using the sum of the characteristic functions of the Vj . We
will show that this sum is lesser than 2χ(∪Vj), from which it follows that

k∑

1

∫

Vj

|f(t)|dt � 2

∫

R

|f(t)|dt.

Consequently, Theorem 7.15 in dimension 1 follows from

∣
∣{x ∈ R | mf (x) > s > 0}

∣
∣ �

2‖f‖L1(R)

s
.
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We could also formulate the reasoning given above in a way that makes general-
ization easier. Namely, let τh be a translation such that S ∩ τh(S) = ∅ and consider
two-by-two disjoint semi-open intervals {Wα} that are each contained in a Vj and
that form a cover of S. To every point ζ belonging to two intervals Vi, we associate
τh(ζ). We denote the set of these translated points by S′. We then have

k∑

1

∫

Vj

|f(t)|dt =
∫

∪Wα

|f(t)|dt+
∫

S′
|f(t)|dt � 2

∫

S

|f(t)|dt.

Exercise 7.8 (Convolution of T ∈ S ′(RN ) with ϕ ∈ S(RN )).

In this chapter, we have seen that this convolution is a function f defined by

∀x ∈ R
N , f(x) = 〈T, τx(ϕ̆)〉,

where ϕ̆ is the function t 	→ ϕ(−t).
Prove that f is a C∞ function and that there exist a multi-index k and a

constant C(k) such that

∀x ∈ R
N , |f(x)| � C(k)|x|k.

In other words, prove that f is a slowly increasing function.

Hints. Show that

∀ j,
〈
T(t),

1

h

[
[ϕ(x+ hej − t)− ϕ(x+ h− t)− h∂jϕ(x− t)

]〉
−→ 0

when h → 0. Deduce that ∂jf(x) = 〈T, τx ˘∂jϕ〉. Use iteration to obtain the result
for an arbitrary order of differentiation.

For the slow growth, use the continuity of T and the family of seminorms defining
the topology of S. We have

|f(x)| �
∑

|α|�k
|β|�m

sup
X

|X|α
∣
∣Dβϕ(X − x)

∣
∣.

Use the Taylor expansion of ϕ to bound |f | from above by a polynomial.

Exercise 7.9 (Fourier Transform of the Convolution T � ϕ).

Let T ∈ S ′ and let ϕ ∈ S. Show that the Fourier transform of the convolution

T � ϕ is the product of the individual transforms.

Hints. Use the expression for A = T �ϕ given in Proposition 7.22 for the computation

of 〈Â, ψ〉, which makes use of the commutativity of the tensor product:

〈Â, ψ〉 = 〈A, ψ̂〉 = 〈〈T, τλ(ϕ̆)〉, ψ̂(λ)〉 = 〈ψ̂[λ] ⊗ T[t], τλ(ϕ̆)〉

= 〈T[t] ⊗ ψ̂[λ], ϕ̆(t− λ)〉 =
〈
T[t],

∫

RN

ψ̂(λ)ϕ̆(t− λ)dλ
〉

= 〈T[t], (ψ̂ � ϕ̆)(t)〉.

Show that the product ϕ̂ψ is the convolution of the transforms, that is, ϕ̆ � ψ̂.
Conclude.
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Exercise 7.10 (Determining the Fourier Transform of V p(1/x)).

(1) Prove that v(ξ) = Vp(
∫
R
exp(−2iπξt)/tdt) exists for every real ξ. Decom-

pose it into two integrals and show that computing it traditionally corre-

sponds to computing
∫ +∞
0

sin(2πξt)/tdt. Deduce that v(ξ) = −iπ sign(ξ).

Next, prove that the distributions Tε,A associated with the truncations of

1/t on [−A,−ε] ∪ [ε,A], which are tempered, converge in S ′ to Vp(1/t).

Finally, prove that the Fourier transforms of Tε,A converges to the func-

tion v.

(2) Use a different method: show that the desired transform is an odd function,

and that tVp(1/t) = 1. The result then follows using a property of the

Fourier transform.

Exercise 7.11 (Computation of a Hilbert Transform).

Use the definition of the Fourier transform to compute the convolution of

Vp (1/t) and the function f defined by f(t) = (t2 + 1)/(t2 + t+ 1)2.

Exercise 7.12 (Fourier Transform of a Radial Function).

Use isometries to show that if f is a function in L1(RN ) satisfying f(x) =

g(|x|), then the Fourier transform of f is a function of ρ =
√∑N

1 ξ
2
j .

Exercise 7.13 (Computation of a Hilbert Transform).

Consider the function f on R � {0} defined by f(t) =
(√
|t|(1 + |t|)

)−1
. We

will use two different methods to compute its Hilbert transform Hf .

By way of this example, we will be able to illustrate certain results, namely

Theorem 7.29, which gives two definitions of the Hilbert transform, the propo-

sition concerning the weak type (1, 1) of the transform, and Corollary 7.35,

which states that the Hilbert transform maps Lp to itself for p > 1.

Let us therefore first note that the function f belongs to Lp(R) for 1 �
p < 2.

(1) First computation method. Let F be the function on R defined by F =

f � gy, where gy(t) = t/(t
2 + y2) with y > 0. By one of the definitions in

this book, the transform of f is

Hf(x) =
1

π
lim

y→0+
F (x, y),

where

∀x ∈ R, ∀ y > 0, F (x, y) =

∫

R

1
√
|t|(1 + |t|)

x− t
[
(x− t)2 + y2

] dt.

Replacing x by −x, we obtain, up to the sign, the same integral trans-

formed by the change of variables t 	→ −t. It follows that x 	→ F (x, y) is
an odd function, allowing us to restrict our computation to x > 0.
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Using changes of variables and, for example, the residue theorem, we re-

duce to computing two integrals of rational functions over R.

(2) Second computation method. We use the formula

Hf(x) = 1/π lim
ε→0

∫

|t|>ε

f(x− t)/tdt.

We therefore compute

∫

|t|>ε

1
√
|x− t| (1 + |x− t|)t

dt.

We can, for example, write this integral as the sum of three integrals,

one of which concerns a rational function and can be computed using the

residue theorem.

In the hints, we show how our results illustrate Theorem 7.29 and Corollary

7.35.

Hints.

(1) First computation method. Write F (x, y) as the sum of two integrals over
]0,+∞[, namely:

I(x, y) = 2

∫ +∞

0

x+ u2

(1 + u2)(x+ u2)2 + y2
du

J(x, y) = 2

∫ +∞

0

x− u2

(1 + u2)(x− u2)2 + y2
du.and

Since these are even functions, we have

I(x, y) =

∫

R

x+ u2

(1 + u2)(x+ u2)2 + y2
du

J(x, y) =

∫

R

x− u2

(1 + u2)(x− u2)2 + y2
du.

• Computation of I(x, y) for x > 0.
Use the residue theorem. Let θ = arctan(y/x), which is an element of ]−π/2, π/2[

and let ρ =
√

x2 + y2. Consider the function G of the complex variable z defined
by

G(z) =
x+ z2

(1 + z2)(z2 + x+ iy)(z2 + x− iy)
.

When x > 0, the square root of z2 + x + iy in the upper half-plane equals
z1 = i

√
ρ exp (iθ/2). For z2+x−iy, the square root z2 is obtained by replacing θ

by −θ in z1.
The residue theorem now gives

I(x, y) = 2iπ
[
Rés(G, i) + Rés(G, z1) + Rés(G, z2)

]
.
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For the simple poles, the classical formula gives

Rés(G, i) =
x− 1

2i(ρ2 + 1− 2x)
,

Rés(G, z1) =
−iy

2i
√
ρeiθ/2(1− x− iy)(−2iy)

=
e−iθ/2

4i
√
ρ(1− x− iy)

,

Rés(G, z2) =
iy

2i
√
ρe−iθ/2(1− x+ iy)(2iy)

=
eiθ/2

4i
√
ρ(1− x+ iy)

when x > 0. It follows that in this case,

I(x, y) = π
[ x− 1

ρ2 + 1− 2x
+

e−iθ/2

2
√
ρ(1− x− iy)

+
e+iθ/2

2
√
ρ(1− x+ iy)

]
.

• Computation of J(x, y) for x > 0.
Continue with similar computations, which give

J(x, y) = π
[ x+ 1

(x+ 1)2 + y2
+

eiθ/2

2
√
ρ(1 + x− iy)

− e−iθ/2

2
√
ρ(1 + x+ iy)

]
.

We thus obtain the function F :

F (x, y) = π
[ x− 1

ρ2 + 1− 2x
+

x+ 1

ρ2 + 1 + 2x
+

e−iθ/2

2
√
ρ(1− x− iy)

+
e+iθ/2

2
√
ρ(1− x+ iy)

+
e+iθ/2

2
√
ρ(1 + x− iy)

− e−iθ/2

2
√
ρ(1 + x+ iy)

]
.

• Taking the limit for y → 0+.
The result is obvious, because it suffices to replace y and θ by 0, ρ by x, and√
ρ by

√
x, because x > 0. We thus obtain the Hilbert transform of f :

∀x > 0, H(f)(x) =
1

x− 1
+

1

x+ 1
+

1√
x(1− x)

∀x > 0, H(f)(x) =
1√

x(1 +
√
x)

+
1

(1 + x)
.or

Using the oddness noted above, we see that the function we obtain is defined
everywhere except at x = 0, thus illustrating the existence almost everywhere
of the Hilbert transform (cf. Proposition 7.26). Moreover, using this formula, we
see that the Hilbert transform belongs to the space Lp for 1 < p < 2, as stated
in Corollary 7.35 on the interval ]1, 2[.

(2) Second computation method. Let us compute

∫

|t|>ε

1
√

|x− t|(1 + |x− t|)t
dt.

Assuming that x > 0 and ε < x, this integral can be written as the sum of
three terms I1, I2, and I3 by integrating over the intervals ]−∞,−ε[, ]ε, x[, and
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]x,+∞[. Using changes of variables, we obtain

I1 =

∫ −ε

−∞

dt√
x− t(1 + x− t)t

= −2

∫ +∞

√
x+ε

du

(1 + u2)(u2 − x)

I2 =

∫ x

ε

dt√
x− t(1 + x− t)t

= −2

∫ √
x−ε

0

du

(1 + u2)(u2 − x)

I3 =

∫ +∞

x

dt√
t− x(1 + t− x)t

= 2

∫ +∞

0

du

(1 + u2)(x+ u2)
.

The computations of I1 and I2 are rather elementary, while we can use the
residue theorem to compute I3. The result is

I1 =
2

1 + x

[
arctanu− 1

2
√
x
ln
∣
∣
∣
u−

√
x

u+
√
x

∣
∣
∣
]+∞

√
x+ε

=
1

1 + x

[
π − 2 arctan

√
x+ ε+

1√
x
ln
∣
∣
∣
√
x+ ε−

√
x√

x+ ε+
√
x

∣
∣
∣
]
,

I2 =
2

1 + x

[
arctanu− 1

2
√
x
ln
∣
∣
∣
u−

√
x

u+
√
x

∣
∣
∣
]√x−ε

0

=
1

1 + x

[
2 arctan

√
x− ε− 1√

x
ln
∣
∣
∣
√
x− ε−

√
x√

x− ε+
√
x

∣
∣
∣
]
,

I3 = 2iπ
[
Rés(g; i) + Rés(g; i

√
x)
]
= π

[ 1

x− 1
+

1

(1− x)
√
x

]
,

where g is the complex function z �→ 1

(1 + z2)(x+ z2)
(the formulas we give still

hold when we pass to the limit when the pole is of order 2, namely for x = 1).
It remains to take the limit of the sum of the three integrals for ε → 0. Since

limε→0

(√x+ ε−
√
x√

x−
√
x− ε

)
= 0 by an obvious equivalence, we find that for x > 0,

we have

Hf(x) =
1

1 + x
+
[ 1

x− 1
+

1

(1− x)
√
x

]
=

1

1 + x
+

1√
x(1 +

√
x)

.

Since the function Hf is odd, this concludes the computation, and we note
that this result equals that found using the first method, as was announced in
Theorem 7.29.

Exercise [∗∗] 7.14 (Computation of a Riesz transform in R
2).

Let f(x, y) = 1/(x2 + y2 + 1) and let ρ2 = ξ2 + η2. Prove that

R1(f)(ξ, η) = f1(ρ) = lim
ε→0,A→+∞

∫ 2π

0

∫ A

ε

cosu

r
(
ρ2 + r2 + 1− 2ρr cosu

)drdu.

By decomposing a rational fraction to reduce to a simple trigonometric inte-

gral, show that

f1(ρ) =
ρ

ρ2 + 1

∫ π

0

cos2 u
√
1 + ρ2 sin2 u

du,

which can therefore be expressed using a Legendre function.
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Exercise 7.15 (Nontangential Uniform Convergence of P (·, y) � f
when y → 0).

Recall that the Poisson kernel can be written as P (t, y) = y/(t2 + y2). Let

x0 ∈ R and let α > 0 be a real number. We let Γα(x0) denote the open cone

in R× ]0,+∞[ with top x0 ∈ R, which is defined by

Γα(x0) = {(x, y) ∈ R× ]0,+∞[ | |x− x0|/y < α}.

Show that if f ∈ Lp and if x0 is a Lebesgue point, then

(7.79) lim
y→0

sup
x∈Γα(x0)

∣
∣P (·, y) � f(x)− f(x)

∣
∣ = 0.

(1) First prove that if there exists a constant dα > 0 such that

∀ (x, y) ∈ Γα(x0), ∀ t ∈ R, P (x− t, y) � dαP (x0 − t, y),

then (7.79) holds.

(2) Proving the existence of dα corresponds to proving that the function ϕ

on R defined by ϕ(t) = (y2 + (x− t)2)/(y2 + (x0 − t)2) for fixed x0 and y

admits a positive minimum.

a) First suppose that x > x0 and determine the sign of the derivative of

the function, which is the sign of a degree two trinomial. Deduce the

lower bound

∀ t ∈ R, ϕ(t) �
(
x0 − x+

√
(x− x0)2 + 4y2

)2
+ y2

(
x− x0 +

√
(x− x0)2 + 4y2

)2
+ y2

for x > x0. Deduce a similar lower bound for x < x0 and prove that

∀ t ∈ R, ϕ(t) �
(
|x0 − x| −

√
(x− x0)2 + 4y2

)2
+ y2

(
|x− x0|+

√
(x− x0)2 + 4y2

)2
+ y2

.

b) Study the sign of the derivative of this minimum using the variable

u = |x− x0|/y. Deduce the existence of the number dα.

Hints.

(1) By the property
∫
R
P (x, y)dx = 1, we have

|(P (·, y) � f)(x)− f(x0)| =
∣∣
∣
∫

R

(P (x− t, y)(f(t)− f(x0)dt
∣∣
∣

� dα

∫

R

(P (x− t, y)|f(t)− f(x0)|dt.

The last term tends to 0 because x0 is a Lebesgue point of f (cf. Proposition 7.3
and Remark 7.4), giving uniform convergence in the cone Γα(x0) when y tends
to 0.
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(2) The sign of the derivative ϕ′ is the same as that of the trinomial T = t2 −
(x + x0)t + xx0 − y2 whose discriminant Δ = (x − x0)

2 + 4y2 is > 0. The two

roots are tj = x+ x0 ±
√
Δ/2 with j ∈ {1, 2}. We have T (x0) = −y2 < 0, which

implies that x0 ∈ ]t1, t2[. The function ϕ is therefore nonincreasing on [t1, t2]
and nondecreasing outside of this interval. Since x > x0, we have

ϕ(t2) =
4y2 + (

√
Δ+ (x0 − x))2

4y2 + (
√
Δ− (x0 − x))2

< 1.

Moreover, the limit of ϕ at −∞ equals 1. It follows that

minϕ = ϕ(t2) =
4y2 +

(√
Δ+ (x0 − x)

)2

4y2 +
(√

Δ− (x0 − x)
)2 .

When x < x0, the function is replaced by its inverse and we obtain the same
result by using the root t1 instead of t2. This corresponds to replacing x − x0

by its absolute value in the formula giving the minimum.
(b) The derivative of the function

m(u)=
[
1+
(
u−

√
u2 + 4

)2]
/
[
1+
(
u+

√
u2 + 4

)2]
,

where u is nonnegative, has the same sign as

−
(
u−

√
u2 + 4

)2(
1+ (u+

√
u2 + 4)2

)
−
(
u+

√
u2 + 4

)2(
1+ (u+

√
u2 + 4)2

)
,

and therefore is nonpositive. The minimum of m is therefore m(α), concluding
the proof.

Exercise 7.16 (Details of the Constructions of the Functions ϕi of

Lemma 7.55).

Prove the following result corresponding to Lemma 7.55. Let Ω be a bounded

open subset of RN . Then there exist functions ϕi for i ∈ [1, N ] in D(Ω) such
that

∀ i, j ∈ [1, N ],

∫

Ω

ϕi(x)xjdx = δij and

∫

Ω

ϕi(x)dx = 0

and a function ϕ in D(Ω) such that

∫

Ω

ϕ = 1 and ∀ i ∈ [1, N ],

∫

Ω

ϕ(x)xidx = 0.

Hints. Since the open set Ω is bounded in L2(Ω), we see that the N + 1 functions
x0, xi, where x0 is the function x �→ 1 and the others are the coordinate functions,
are linearly independent in L2(Ω). Deduce that there exist functions ζi ∈ L2(Ω)
such that the determinant

det
(∫

ζi(x)xjdx
)

i,j∈[1,N+1]
�= 0.

Next, use the density of D(Ω) in L2(Ω). Finally, look for functions of the form

ϕi =
∑N

k=0 ai,kζk.
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Appendix on Regularity

In this appendix, we will expand on results on the regularity of the solutions

of certain elliptic PDEs that we studied in Chapter 5. We will, in particular,

consider the solutions of the p-Laplacian equation.

Let us recall a result we used in Chapter 5 to show Vázquez’s strong

maximum principle. Let Ω be a bounded open subset of RN . Given a real

number p > 1, let g be an element of W 1−1/p,p(Ω). The solution of the

problem

(A.1) [Lap]p0 :

{
−div(|∇u|p−2∇u) = 0 in Ω,

u = g on ∂Ω,

is of class C1 inside Ω. This result is equivalent to the following one:

A solution u of −Δpu = 0 in an open subset of RN is of class C1 in that

open set.

The steps needed to prove this general result are very long and rather

difficult. They follow from different articles in the cases p � 2 and p � 2. The

main part can be found in the articles by Evans [31], Moser [52], Tolksdorff

[72], Lewis [46], and Di Benedetto [27].

Our aim is not to obtain the result that p-harmonic functions are C1 by

adapting these proofs to the contents of this book. Taking into account earlier

remarks, we have rather chosen to give a partial presentation of the argu-

ments used by the authors mentioned above, insisting on a priori estimate

and fractional differentiation arguments that can be used for those types of

equations.

This appendix is therefore devoted to giving estimates for the typical prob-

lem of the so-called p-harmonic functions, that is, the solutions of −Δpu = 0.

We begin by giving L∞ estimates, for which we need truncation methods and

an iteration method by Moser, both of which can be followed quite easily.
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We then give W 1,k estimates followed by W 1,∞ estimates when p � 2, which

are easier to deal with than the case p � 2. The latter requires additional

precautions because of the singularity of the operator Δp.

A.1 L∞ Estimate

A.1.1 Inclusion in L∞(Ω)

We begin by showing that if the function giving the boundary condition is

bounded, then the solution of the problem [Lap]p0 (cf. Chapter 5) on a bounded

open subset Ω of RN of class C1 is also bounded.

Proposition A.2. Let Ω be a bounded open subset of RN of class C1. Let u
be the solution in W 1,p(Ω) of the problem

−div(|∇u|p−2∇u) = 0, u = g on ∂Ω.

If g is a function in L∞(∂Ω) ∩W 1−1/p,p(∂Ω), then the solution u belongs to

L∞(Ω) and satisfies the inequalities

min g � u � max g.

Proof of Proposition A.2.

We multiply the PDE by (u −max g)+, which is an element of W 1,p
0 (Ω),

and we use the generalized Green’s formula to obtain

∫

Ω

(
|∇u|p−2∇u

)
·
(
∇((u−max g)+)

)
dx = 0.

This implies the equality ∇((u−max g)+) = 0 in Ω, whence (u−max g)+ = C

for some constant C. Since this function vanishes on the boundary, we deduce

that (u − max g)+ = 0 in Ω, so that u � max g. Multiplying the PDE by

(min g − u)+, we obtain u � min g in the same manner. ��

A.1.2 Locally L∞ Estimate

Proposition A.3. Without conditions on the boundary, the solution of the

problem [Lap]p0, namely the p-harmonic u, satisfies

u ∈ L∞loc(Ω) with sup
x∈B(x0,R/2)

|u(x)| � C‖∇u‖Lp(B(x0,R)).

Proof of Proposition A.3.
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• When p > N , the Sobolev embedding theorem tells us that u ∈ L∞(Ω),

giving the first statement of the proposition.

• When p = N , the same theorem gives the inclusion u ∈ Lqloc(Ω) for every q
with p < q < +∞ (cf. proof of step E).

• When p < N , we first show that the p-harmonic function u belongs to

Lqloc(Ω) for every q > p.

We use truncation. For M > 1, let

uM = sup(−M, inf(u,M)).

It is obvious that uM ∈W 1,p
0 (Ω) ∩ L∞(Ω) for every M .

Let us now consider the sequence of nonnegative real numbers {lm}n∈N

with l0 = 0 and (2lm + p)N/(N − p) = 2lm+1 + p for every m ∈ N
+. This

sequence is increasing and converges to +∞. To show that u ∈ Lqloc for every

q > p, it therefore suffices to show that u ∈ Llmloc for every integer m. This

leads us to do an induction on the following property:

u ∈ L2lm+p
loc =⇒ u ∈ L(2lm+p)N/(N−p)

loc .

The initial step, for m = 0, follows from the Sobolev embedding theorem

2.31. For the sake of simplicity, we omit the index m in the rest of the proof;

for example, lm becomes l.

Let us consider vM = |uM |2luM . On the one hand, since |uM |2l is bounded
and uM ∈ Lp(Ω), we have vM ∈ Lp(Ω). On the other hand, since the gradient

∇(uM ) is an element of Lp, which we see by differentiating in the sense of

distributions, ∇(vM ) is the product of a bounded function with ∇(uM ), which

belongs to Lp(Ω). We can deduce the inclusion vM ∈W 1,p(Ω) from these two

results.

Let us multiply the equation of the p-Laplacian by vMζ
p, where ζ is a

regular function with values between 0 and 1. By the remark we made above

on gradients, which implies that we should, in general, replace |∇u| by the

absolute value |∇(uM )| of the gradient in the products, Green’s formula on Ω

applied to the product

div(|∇uM |p−2∇uM )|uM |2luMζp

gives the inequality

(A.4) (2l + 1)

∫

Ω

|∇uM (x)|p|uM (x)|2lζpdx

� p
∫

Ω

ζp−1|∇ζ |∇uM |p−1|uM (x)|2l+1dx.
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Applying Hölder’s inequality to the right-hand side pB of (A.4), we find that

for an arbitrary nonnegative real number a, we have

pB � p
(
a

∫

Ω

|∇uM |p|uM |2lζpdx
)1/p(

a−p′/p

∫

Ω

|uM |2l+p|∇ζ|pdx
)1/p′

.

Next, for a = 1/2, we use a mean value inequality, giving a constant c de-

pending only on p and on universal data, such that

pB � 1

2

[∫

Ω

|∇uM |p|uM |2lζpdx
]
+ c
[∫

Ω

|uM |2l+p|∇ζ|pdx
]
.

The inequality (A.4) can then be written as

(A.5) (2l + 1/2)

∫

Ω

|∇uM (x)|p|uM (x)|2lζpdx � c
[∫

Ω

|uM |2l+p|∇ζ|pdx
]
.

We note that |∇uM |pu2lM can be written as
(
p/(2l + p)

)p∣∣∇(|uM |2l/puM )
∣
∣p.

The function w = |uM |2l/puMζ belongs to W 1,p and its gradient satisfies

∇w = ζ∇(|uM |2l/puM ) + |uM |2l/puM∇ζ. Using Minkowski’s inequality and

the discrete Hölder inequality, it follows that

‖∇w‖pp � 2p/p
′
[∥
∥ζ∇(|uM |2l/puM )

∥
∥p
p
+
∥
∥|uM |2l/puM∇ζ

∥
∥p
p

]
.

Noting that (4l + 1)(p/(2l + p))p is bounded from above by a constant

depending only on p, equation (A.5) gives

(2l + 1/2)pp

(2l + p)p

∫

RN

∣
∣∇(|uM |2l/puMζ)

∣
∣p � C

∫

RN

|uM |2l+p|∇ζ|p.

Let us now use reasoning that combines the Sobolev inequality and that of

Poincaré: since w ∈ W 1,p(Ω) and p < N , we can use the Sobolev embedding

theorem to deduce the inequality ‖w‖LpN/(N−p) �C‖w‖W 1,p . Moreover, since ζ

has compact support, the Poincaré inequality gives ‖w‖W 1,p � C ′‖∇w‖Lp .

Combining these inequalities to obtain a lower bound for the left-hand side of

(A.5), we find

(A.6)
(2l + 1/2)pp

(2l + p)p

(∫

RN

(
|uM |(2l/p)+1ζ

)Np/N−p
dx
)(N−p)/N

� K
∫

RN

|uM |2l+p|∇ζ|pdx.

Next, we use the induction hypothesis, namely that u ∈ L2l+p
loc . Since

0 � ζ � 1, we have ζ(2l+p)N/(N−p) � ζNp/(N−p). Consequently, we can

take the right-limit of the previous inequality for M → +∞. Setting

Cl,p = (2l + 1/2)pp/(2l + p)p, we obtain the relation

Cl,p lim
M→+∞

‖uMζ‖2l+p
(2l+p)N/(N−p) � K

∫

Ω

|u|p+2l|∇ζ|pdx.



A.1 L∞ Estimate 439

Both Fatou’s lemma and the monotone convergence theorem ensure us that

u ∈ L(2l+p)N/(N−p)
loc (Ω), concluding the induction argument.

We have thus proved that for every q > p, the function u is an element of

Lqloc(Ω).

Next, we wish to show that u is an element of L∞loc. We will work the case

p < N out in detail. A remark at the end of the proof will make it possible to

easily adapt the proof to the case p = N .

During the proof we will use uniform upper bounds for the gradients of

regular functions with values between 0 and 1 whose supports form a nonde-

creasing sequence of compact sets. We have the following result.

Lemma A.7. Let R and σ be two positive numbers. There exists a function ζ

in D(B(0, R + σ)) equal to 1 on B(0, R), with values between 0 and 1, and

such that

|∇ζ| � C
σ

for a universal constant C.

Proof of Lemma A.7.

Let ϕ be an even function on R with support in {|t| � 2} that equals 1 on

{|t| � 1}. We define the following radial function:

ζ(x) = ϕ
(
|x|/σ + (1−R/σ)

)
.

The function ζ clearly has support in B(0, R + σ) and equals 1 on B(0, R).

Moreover, we have

|∇ζ(x)| =
∣
∣
∣
x

|x|σϕ
′(|x|/σ + (1−R/σ)

)∣∣
∣ � 1

σ
‖ϕ′‖∞,

which concludes the proof. ��

Let us return to the estimate of Proposition A.3. We suppose that x0 ∈ Ω
and that R satisfies B(x0, R) � Ω. We will show that u ∈ L∞(B(x0, R/2)).

To do this, we define sequences {km}, {Rm}, and {lm} (the latter has already
been defined above):

km =
( N

N − p

)m
p, 2lm + p = km =

N

N − p (p+ 2lm−1), Rm =
R

2
(1 + 1/2m).

We also define a regular function ζm with values between 0 and 1 that

equals 1 on B(x0, Rm+1), has support in B(x0, Rm), and whose gradient sat-

isfies |∇ζm| � C/(Rm −Rm+1) � 2mC ′/R by the previous lemma.

Finally, let

αm =
(∫

B(x0,Rm)

|u|kmζNp/(N−p)
m dx

)1/km

.
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From the previous inequalities, we deduce that there exists a constant K∗

such that

(A.8) αm+1 �
(
K∗ kpm
km + 1/2− p

)1/km

αm.

Indeed, let

Bm = B(x0, Rm) and Im =

∫

B(x0,Rm)

|u|km(ζm)Np/(N−p)dx,

whence

Im+1 =

∫

Bm+1

(
|u|1+2lm/pζm+1

)Np/(N−p)
dx.

By taking the (N − p)/Nth power and replacing ζ by the function ζm+1, which

has the same properties as ζ, inequality (A.6) gives

(Im+1)
(N−p)/N � K

Clm,p

(∫

Bm+1

|u|km |∇ζm+1|p dx
)

and even, by using the upper bound for the gradient,

(Im+1)
(N−p)/N � K

Clm,p
C ′p 2(m+1)p

Rp

(∫

Bm+1

|u|km dx
)
.

Since ζm = 1 on Bm+1, the last integral may be replaced by the integral∫
Bm+1

|u|kmζ
N/(N−p)
m dx. Finally, since Bm+1 ⊂ Bm, we can bound this from

above by the integral of the same function over Bm. It follows that

(Im+1)
(N−p)/N � K

Clm,p
C ′p 2(m+1)p

Rp

(∫

Bm

|u|kmζN/(N−p)
m dx

)
.

Note that 1/km+1 = [(N − p)/N ] · [1/km], so that this inequality taken to

the power 1/km leads to the relation

αm+1 = [Im+1]
1/km � Kmαm

in which

Km =
[ K
Clm,p

C ′p 2
(m+1)p

Rp

]1/km

.

Since
[
KC ′p2(m+1)p/Rp

]1/km
is bounded by K∗, which is independent of l,

and

[Clm,p]
1/km =

( kpm
(km − p+ 1/2)pp

)1/km

,

we obtain (A.8).
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By iterating this relation, we obtain

αm+1 � α0 exp
[ m∑

0

ln(K∗) + p ln(kj)− ln(kj − p+ 1/2)

kj

]
.

Since {kj} is a geometric progression with common ratio > 1, the sequence

with general term (ln(K∗)+ p ln(kj)− ln(kj − p+1/2))k−1
j converges. Conse-

quently, we have αm � K ′α0 for every m. By taking the limit for m→ +∞,

we obtain

‖u‖L∞(B(x0,R/2)) � K ‖u‖Lp(B(x0,R)). ��

Remark A.9. When p = N , we multiply by |u|2luζp and use the Sobolev

embedding of W 1,N in Lq for a fixed q > p. The sequence km is then defined

to be (q/p)
m
p and 2lm + p = km = q/p(p+ 2lm−1).

Remark A.10. Let β be a nondecreasing function with β(0) = 0 and |β(x)| �
C|x|p−1. The previous estimate then also holds for a solution u ∈W 1,p(Ω) of

−Δpu+ β(u) = 0

in Ω.

It suffices to disregard the term
∫
Ω
β(u)|uM |2luMζpdx, which is nonnega-

tive, when multiplying the equation by |uM |2luMζp.

A.2 W 1,k and W 1,∞ Estimates When p � 2

In this section, we assume that p � 2. We first differentiate the equation of

the p-Laplacian formally with respect to the variable xi. This corresponds

to considering u as a regular function. This technique will be justified by

using the discrete derivative, that is, by replacing the expression −∂i(Δpu)

by (−Δpu
h +Δpu)/h, where h = hei, and a generalization of this for all

derivatives.

We begin with estimates for ‖∇u‖k, for arbitrary k > p.

A.2.1 Estimates for ∇u in W 1,k

In the following computations, the symbol C denotes constants that can differ

from one line to the next. These different values depend only on N, p,Ω and

on universal data. Moreover, we may, and do, suppose that N � 3, in which

case we pass to the next step of the induction we are using by considering

the qth power of ‖∇u‖pp for q = N/(N − 2). When N = 2, we will replace

this exponent by an arbitrary real number q > 1. In a first step, we multiply
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the equation ∂i(−Δpu) = 0 by ζ2∂iu, where ζ is a regular function with

values between 0 and 1, giving a first local estimate for the gradient in W 1,k

with k = pN/(N − 2) (this is the aim of Proposition A.11). In the next

step, we take the analogous inequalities obtained by multiplying the same

differential equation by ζ2|∂iu|2l∂iu. By induction, we thus obtain Proposition

A.11, which gives a local estimate for the gradient in W 1,k for arbitrary k.

Proposition A.11. Let u be a regular solution of −Δpu = 0 in Ω. Then for

every ρ > 0 and every σ > 0, we have the following local estimate for u in

W 1,k with k = pN/(N − 2):

(A.12)
(∫

B(0,ρ)

|∇u|pN/(N−2)dx
)(N−2)/N

� C
σ2

∫

B(0,ρ+σ)

|∇u|pdx,

which can also be written as

(A.13) ‖∇u‖Lk(B(0,ρ)) � C(p, ρ, σ)‖∇u‖Lp(B(0,ρ+σ)).

Proof of Proposition A.11. Let us first note that by exchanging the deriva-

tives, expressing the identity ∂i(−Δpu) = 0 leads to

0 = ∂i∂j(|∇u|p−2u,j) = ∂j(|∇u|p−2u,ij + (p− 2)|∇u|p−4u,kiu,ku,j).

As above, we multiply this relation by (∂iu)ζ
2. Integrating over RN and ap-

plying Green’s formula, we obtain

∫

RN

|∇u|p−2|∂i∇u|2ζ2 + (p− 2)

∫

RN

|∇u|p−4(∂i∇u · ∇u)2ζ2

� 2p

∫

RN

|∇u|p−2(|∂i∇u · ∇u|)ζ|∂iζ|.

By taking the absolute values and disregarding the second term of the left-

hand side, which is nonnegative because p � 2, we see that

(A.14)

∫

RN

|∇u|p−2|∂i∇u|2ζ2 � 2p

∫

RN

|∇u|p−2|∂i∇u| |∇u| |ζ| |∂iζ|.

We apply Schwarz’s inequality to the right-hand side:

[∫

RN

|∇u|(p−2)/2|∂i∇u| |∇u|p/2|∂iζ| |ζ| dx
]2

�
(∫

RN

|∇u|p−2|∂i∇u|2|ζ|2 dx
)(∫

RN

|∇u|p|∂iζ|2 dx
)
.

Applying the Young type inequality, which we will use several times, for a

suitable choice of ε, we find

(∗) ∀ ε > 0, |ab| � εa
2

4
+

1

ε
b2,
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so that relation (A.14) becomes

∫

RN

|∇u|p−2|∂i∇u|2ζ2 � 1

2

∫

RN

|∇u|p−2|∂i∇u|2ζ2 + c
∫

RN

|∇u|p|∂iζ|2.

Consequently, for a constant C > 0, we have

(A.15)

∫

RN

|∇u|p−2|∂i∇u|2ζ2 � C
∫

RN

|∇u|p|∂iζ|2.

We note that the left-hand side of (A.15) equals the expression

4

p2

∫

RN

ζ2
(
∂i (|∇u|(p−2)/2∇u)

)2
dx.

Given the formula for the derivative of a product, this last integral can be

written as
∫

RN

[
∂i(|∇u|(p−2)/2∇uζ)− (|∇u|(p−2)/2∇u∂iζ)

]2
dx.

Expanding this square of a difference and applying inequality (∗) to the cor-

responding double product, for a suitable ε, we obtain a lower bound for the

left-hand side of (A.15) that gives us the inequality

(A.16)

∫

RN

∣
∣∂i(|∇u|(p−2)/2∇uζ)

∣
∣2dx � C

∫

RN

|∇u|p|∂iζ|2dx.

Taking the sum of this inequality over i then leads to

(A.17)

∫

RN

[
∇(|∇u|(p−2)/2∇uζ)

]2 � C
∫

RN

|∇u|p|∇ζ|2dx.

Let us now consider the function ζ|∇u|(p−2)/2∇u. SinceN > 2, the Sobolev

embedding theorem allows us to write the following inequality at the critical

exponent 2N/(N − 2):

∥
∥ ζ|∇u|(p−2)/2∇u

∥
∥
2N/(N−2)

� C
∥
∥ ζ|∇u|(p−2)/2∇u

∥
∥
H1(RN )

.

Moreover, since the function ζ has compact support, we can use the Poincaré

inequality to determine the upper bound, giving

(A.18)
∥
∥ ζ|∇u|(p−2)/2∇u

∥
∥
2N/(N−2)

� C
∥
∥∇(ζ |∇u|(p−2)/2∇u)

∥
∥
2
.

Applying inequality (A.17), we find

(A.19)
(∫

RN

(
|∇u|p ζ2

)N/(N−2)
dx
)(N−2)/N

� C
∫

RN

|∇u|p|∇ζ|2dx.
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Let us now assume that the regular function ζ takes on its values between 0

and 1, has support in B(0, ρ + σ), and equals 1 in B(0, ρ). Then, using the

usual upper bound for the gradient ∇ζ (cf. Lemma A.7), the above implies

the desired result:

��(A.20)
(∫

B(0,ρ)

|∇u|pN/(N−2)dx
)(N−2)/N

� C
σ2

∫

B(0,ρ+σ)

|∇u|pdx.

Proposition A.21. Let u be a regular solution of −Δpu = 0. Then for every

ρ > 0 and for every σ > 0, there exists a constant C depending only on ρ,

σ, p, and l, such that

(A.22) ‖∇u‖L(p+2l)N/(N−2)(B(0,ρ)) �
C

σ2
‖∇u‖Lp+2l(B(0,ρ+σ)).

Proof of Proposition A.21.

This time, we multiply the derivative with respect to xi of the equation

of the p-Laplacian by ζ2|∂iu|2l∂iu. By computations similar to the preceding

ones, generalizing to the case related to l = 0, in particular the passage from

(A.15) to (A.17), we obtain

4(2l + 1)

(2l + p)2

∫

RN

∣
∣∇(|∇u|p/2+l−1∇uζ)

∣
∣2dx � C

∫

RN

|∇u|p+2l|∇ζ|2.

Once more using the combination of the Poincaré and Sobolev inequalities,

the previous inequalities remain valid when we replace p by p+ 2l in each of

the integrals. Setting C∗
l,p = 4(2l + 1)/(2l + p)2, we then obtain inequality

(A.23), which, up to a coefficient, equals inequality (A.19) with p replaced by

p+ 2l, namely:

C∗
l,p

(∫

RN

(
|∇u|(p+2l)ζ2

)N/(N−2)
dx
)N−2/N

(A.23)

� C
∫

RN

|∇u|(p+2l)|∇ζ|2dx.

Using a regular function ζ equal 1 in B(0, ρ) and with support in

B(0, ρ+ σ), we deduce an upper bound analogous to (A.20):

C∗
l,p

(∫

B(0,ρ)

|∇u|(p+2l)N/(N−2)dx
)(N−2)/N

(A.24)

� C
σ2

∫

B(0,ρ+σ)

|∇u|(p+2l)dx. ��

For an arbitrary integer l, these inequalities allow us to bound ∇u in Lqloc
for q = (p+2l)N/N − 2, from above by its norm in Lp+2l

loc . They will allow us

to determine local estimates for the gradient in L∞.
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A.2.2 Estimate for the Gradient in L∞
loc

Proposition A.25. Let u be a p-harmonic function on R
N . Then for every

point x0 and every R > 0, the gradient of u, which belongs to L∞loc, satisfies

the inequality

sup
{
|∇u(x)|p | x ∈ B(x0, R/2)

}
� C

∫

B(x0,R)

|∇u|pdx.

Proof of Proposition A.25.

We use formula (A.24). To do this, as in Subsection A.1.2, we define

the sequence km = (2lm + p) = (2lm−1 + p)N/(N − 2) whose first term k0
corresponds to l0 = 0. This is a geometric progression with common ratio

N/(N − 2) > 1. One can assume that x0 = 0. We also define the sequence

{Rm} by setting Rm = (R/2)(1 + 2−m). We set

αm =
(∫

B(0,Rm)

|∇u|kmdx
)1/km

,

whence, by a computation analogous to that leading to (A.8),

αm+1 �
(

Ck2m
(km + 1− p)4

)1/km

αm.

Using the infinite product
∏∞

m=0

( Ck2m
(km + 1− p)4

)1/km

, which is convergent

because {km} is a geometric progression with common ratio > 1, we obtain

lim
m→+∞

(∫

B(0,R/2)

|∇u|kmdx
)1/km

� lim
m→+∞

αm � Cα0,

giving the desired inequality. ��

A.2.3 Justification of the Formal Derivative for a Nonregular

Function

Instead of differentiating with respect to xi, we use a discrete differentiation

with translation step
−→
h = hei. Instead of the equation, we write

(A.26)
−Δpu

h +Δpu

h
= 0,

where uh denotes the translation of u in the direction
−→
h .
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Outline of the Method. It is analogous to those used previously.

We first multiply equation (A.26) by ((uh − u)/h)ζ2 and integrate over

the open set Ω. We can easily see that

(
|∇uh|p−2∇uh − |∇u|p−2∇u

)
·
(
(∇uh −∇u)ζ2

)
� 0 .

We thus obtain the inequality

(A.27)

∫

RN

(
|∇uh|p−2∇uh − |∇u|p−2∇u

)
·
(
(∇uh −∇u)ζ2

)
dx

� 2

∫

RN

∣
∣
∣
(
|∇uh|p−2∇uh − |∇u|p−2∇u

)
·
(
(uh − u)ζ∇ζ

)∣∣
∣dx.

From this inequality, we deduce the formula

(A.28)
(∫

RN

|∇u|pN/(N−2)ζ2N/(N−2)
)(N−2)/N

� C
∫

RN

|∇u|p|∇ζ|2.

In a second step, we multiply equality (A.26) by the function

ζ2|(uh − u)/h|2l(uh − u)/h. We set

Dh(u) =
(
|∇uh|p−2∇uh − |∇u|p−2∇u

)
.

As in the previous step, we note that

|uh − u|2lDh(u) · (∇uh −∇u)ζ2

is nonnegative. Consequently, Green’s formula gives the inequality

(A.29) (2l + 1)

∫

Ω

|uh − u|2lDh(u) · (∇uh −∇u)ζ2dx

� 2

∫

Ω

|Dh(u)| |uh − u|2l+1ζ|∇ζ|dx.

From this, computations similar to those of the first step allow us to estab-

lish on the one hand, that if ∇u ∈ L(p+2l)/2, then this gradient belongs to

L(p+2l)N/(N−2) and on the other hand, that the corresponding norm satisfies

(A.30)
4(2l + 1)

(p+ 2l)2

(∫

RN

|∇u|(p+2l)N/N−2ζ2N/(N−2)dx
)(N−2)/N

� C
∫

RN

|∇u|p+2l∇ζ|2dx,

which generalizes equation (A.28). This establishes an induction, with initial

step (A.28).
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First Step. In order to bound the right-hand side of (A.27) from above, we

use the vector function |t|1−2/pt. By applying the mean value theorem to it

for the vectors t and t′, we can write

∣
∣|t|1−2/pt− |t′|1−2/pt′

∣
∣ � (2− 2/p)

(
|t|+ |t|′

)1−2/p|t− t′|.

By taking t = |x|(p−2)/2x and t′ = |y|(p−2)/2y for two given vectors x and y

in R
N , we obtain the inequality

(A.31)
∣
∣|x|p−2x− |y|p−2y

∣
∣

=
∣
∣
∣
∣
∣|x|p/2−1x

∣
∣(p−2)/p|x|p/2−1x−

∣
∣|y|p/2−1y

∣
∣(p−2)/p|y|p/2−1y

∣
∣
∣

� (2− 2/p)
(
|x|p/2 + |y|p/2

)(p−2)/p∣∣|x|p/2−1x− |y|p/2−1y
∣
∣.

We set

Ah(u) =

∫

RN

(
|∇uh|p−2∇uh − |∇u|p−2∇u

)
·
(
(∇uh −∇u)ζ2

)
dx

and

A′
h(u) = 2

∫

RN

(
|∇uh|p−2∇uh − |∇u|p−2∇u

)
·
(
(uh − u)ζ∇ζ

)
dx.

We wish to bound A′
h(u) from above and Ah(u) from below.

Using inequality (A.30) with vectors x = ∇u and y = ∇uh and the inequal-

ity (4 − 4/p)ab � εa2 + Cεb
2, where ε > 0 will be chosen later on depending

on the upper bounds we have found, we can write the right-hand side A′
h(u)

of (A.27) as

A′
h(u) � 2

∫

Ω

|Dh(u)| |uh − u| ζ |∇ζ| dx

� (4− 4/p)

[∫

RN

(
|∇u|p/2 + |∇uh|p/2

)(p−2)/p

∣
∣|∇uh|(p−2)/2∇uh − |∇u|(p−2)/2∇u

∣
∣ |uh − u| |ζ| |∇ζ|dx

]
,

whence

A′
h(u) � ε

∫

RN

∣
∣|∇uh|(p−2)/2∇uh − |∇u|(p−2)/2∇u

∣
∣2 |ζ|2 dx

+ Cε

∫

RN

(
|∇u|p/2 + |∇uh|p/2

)2(1−2/p) |uh − u|2 |∇ζ|2 dx.

Next, using the inequality

(A.32)
(
ap/2 + bp/2

)2/p � C
(
ap−2 + bp−2

)1/(p−2)
,
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we obtain

(A.33) A′
h(u) � ε

∫

RN

∣
∣|∇uh|(p−2)/2∇uh − |∇u|(p−2)/2∇u

∣
∣2 |ζ|2 dx

+ Cε

∫

RN

(
|∇u|p−2 + |∇uh|p−2

)
|uh − u|2 |∇ζ|2 dx.

For the sake of simplicity, we will, from now on, keep the notation x = ∇u
and y = ∇uh. Moreover, we set

Bh(u) =

∫

RN

∣
∣|x|(p−2)/2x− |y|(p−2)/2y

∣
∣2ζ2 dx,

Ch(u) =

∫

RN

[
|x|p−2 + |y|p−2

]
|uh − u|2|∇ζ|2 dx.

Inequality (A.27) then becomes

|Ah(u)| � 2εBh(u) + 2CεCh(u).

Let us continue by bounding Ah(u) from below by an expression that is

proportional to Bh(u). This will then allow us to bound Bh(u) from above

by Ch(u), up to a multiplicative constant. We use the following result for the

lower bound.

Lemma A.34. Let p be a real number � 2. There exists a constant cp > 0

depending only on p, such that for every pair (x, y) of elements of RN , we

have

(A.35) (|x|p−2x− |y|p−2y) · (x− y) � cp
∣
∣|x|(p−2)/2x− |y|(p−2)/2y

∣
∣2,

which in turn implies that Ah(u) � cpBh(u).

Proof of Lemma A.34.

After dividing by |x|p, if necessary, we may, and do, assume that x has

norm 1.

Case Where |x− y| � 1/2. Let us use a contradiction argument. We suppose

that there exist sequences {xn} and {yn} with |xn| = 1, |xn − yn| � 1/2, and

the following inequality, which implies that {yn} is bounded:

(1 + |yn|p − (xn · yn)(1 + |yn|p−2) � 1

n

(
1 + |yn|p − 2(xn · yn)|yn|(p−2)/2

)
.

We can then extract subsequences from xn and yn such that xn → x with

|x| = 1 and yn → y. By taking the limit in the inequality above, we obtain

(
1 + |y|p − (x · y)(1 + |y|p−2)

)
� 0,
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which can also be written as

(|x|p−2x− |y|p−2y) · (x− y) � 0.

Now, by using the strict convexity of the function x 	→ |x|p, this inequality

implies that y = x, giving a contradiction with |x−y| > 1/2. Inequality (A.35)

follows.

Case Where |x − y| < 1/2. In this case, |y| > 1/2. We begin by showing

(A.35) in the scalar case. If x = 1, then y ∈ [1/2, 3/2] and if x = −1, then
the situation is symmetric with respect to 0. In the scalar case, we reduce to

proving that

(A.36) ∀ y ∈ [1/2, 1], (1− yp−1)(1− y) � (p− 1)24−p

p2
(1− yp/2)2.

Indeed, by replacing y by 1/y, this inequality remains true when y ∈ [1, 2],

and in particular when y ∈ [1, 3/2].

In order to prove (A.36), we use the mean value theorem for the function

y 	→ yp−1, and then for the function y 	→ yp/2. This leads to

(1− |y|p−1)(1− y) = (p− 1)(1 + θ(y − 1))p−2(1− y)2

� (p− 1)(1/2)p−2(1− y)2

(1− |y|p/2)2 = (p/2)2
(
1 + θ′(y − 1)

)p−2
(1− y)2 � p

2

4
(1− y)2,and

for real numbers θ and θ′ in ]0, 1[, and consequently (A.36).

Let us now prove inequality (A.35) in the vectorial case, again for |x| = 1

and |y| > 1/2, where the constant cp is defined by cp = [(p− 1)/p2]24−p.

By using, in particular, inequality (A.36) applied to the scalar function Y =

(1− |y|p−1)(1− |y|), we obtain

(|x|p−2x− |y|p−2y) · (x− y) = Y + (|y| − x · y)(1 + |y|p−2)

� cp(1− |y|p/2)2 + (|y| − x · y)(1 + |y|p−2)

= cp
∣
∣|x|(p−2)/2x− |y|(p−2)/2y

∣
∣2 + 2cp|y|(p−2)/2(x · y − |y|)
+ (|y| − x · y)(1 + |y|p−2)

= cp
∣
∣|x|(p−2)/2x− |y|(p−2)/2y

∣
∣2

+ (|y| − x · y)(1 + |y|p−2 − 2cp|y|(p−2)/2)

� cp
∣
∣|x|(p−2)/2x− |y|(p−2)/2y

∣
∣2,

since we have, on the one hand, the inequality |x · y| � |y| and on the other

hand, the inequality 2cp|y|(p−2)/2 � 1 + |y|p−2 because cp is less than 1. This

concludes the proof of the lemma. ��
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Let us return to Proposition A.25. Recall that the notation h in fact de-

notes hei. By the lemma, the inequality Ah(u) � 2εBh(u)+2CεCh(u) becomes

(cp − 2ε)Bh(u) � 2CεCh(u). In other words, since ε may be chosen < cp/2,

we may conclude that there exists a constant C such that Bh(u) � CCh(u).

Dividing by h2 then gives

Bh(u)

h2
=

∫

RN

∣
∣
∣
|∇uh|(p−2)/2∇uh − |∇u|(p−2)/2∇u

h

∣
∣
∣
2

ζ2

� C
∫

RN

(
|∇u|p−2 + |∇uh|p−2

)∣∣
∣
uh − u
h

∣
∣
∣
2

|∇ζ|2,

which can also be written as

(∗) Bh(u)

h2
� C

∫

RN

|∇u|p−2
∣
∣
∣
uh − u
h

∣
∣
∣
2

|∇ζ|2 + C
∫

RN

|∇uh|p−2
∣
∣
∣
uh − u
h

∣
∣
∣
2

|∇ζ|2.

In the first integral on the right-hand side, the function (uh − u)/h converges

almost everywhere to ∂iu. Since the function u belongs toW
1,p, the continuity

of the translation τh in Lp and the convergence of (uh − u)/h to ∂iu also give

the convergence of the second integral on the right-hand side, to

C

∫

RN

|∇u|p−2|∂iu|2|∇ζ|2.

It follows that when hei → 0, the right-hand side of (∗) converges to

2C

∫

RN

|∇u|p−2|∂iu|2 |∇ζ|2dx.

The first integral in (∗) is therefore bounded. We also note that, up to a

factor ζ2, its integrand can be written as the quotient

1

|h|
∣
∣|∇u|(p−2)/2∇u− |∇uh|(p−2)/2∇uh

∣
∣,

which converges, almost everywhere, to the absolute value of the partial

derivative
2

p
∂i
(
|∇u|(p−2)/2∇u

)
.

From this result, the limits we found earlier, Fatou’s lemma, and inequality

(∗), we deduce

(A.37)

∫

RN

∣
∣∂i(|∇u|(p−2)/2∇u)ζ

∣
∣2dx � C

∫

RN

|∇u|p−2 |∂iu|2|∇ζ|2dx.

Taking the sum of these inequalities from i = 1 to i = N , we obtain

(A.38)

∫

RN

∣
∣∇(|∇u|(p−2)/2∇u)ζ

∣
∣2dx � C

∫

RN

|∇u|p−2 |∇u|2|∇ζ|2dx.
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In the integral on the left-hand side of (A.38), we write

∇
(
|∇u|(p−2)/2∇u

)
ζ = ∇

(
|∇u|(p−2)/2∇u ζ

)
− |∇u|(p−2)/2∇u∇ζ.

Taking the square of the absolute value and applying an inequality of the type

ab � εa2 + b2/ε, as we have done before, we deduce that

(A.39)

∫

RN

∣
∣∇(ζ |∇u|(p−2)/2∇u)

∣
∣2dx � C

∫

RN

|∇u|p|∇ζ|2dx.

The absolute value of the part between parentheses on the left, whose

gradient we take, is the pth power of |∇u|ζ2/p. Hence, since |∇u|p/2ζ is an

element of L2 and the gradient of this function also belongs to L2 by (A.39),

we find that

ζ |∇u|p/2 ∈ H1(RN ).

Let us apply a reasoning we have used before. First, by Sobolev’s embedding

theorem, we have

ζ|∇u|(p−2)/2∇u ∈ L2N/(N−2)

∥
∥ζ|∇u|(p−2)/2∇u

∥
∥
2N/(N−2)

�
∥
∥ζ|∇u|(p−2)/2∇u

∥
∥
H1 .and

By the Poincaré inequality, which allows us to bound the H1 norm from above

by the norm of the gradient in L2, we finally obtain the inequality

(A.40)
(∫

RN

|∇u|pN/(N−2)ζ2N/(N−2)dx
)(N−2)/N

� C
∫

RN

|∇u|p|∇ζ|2dx,

which is the bound (A.28). This completes the first step of our proof.

Second Step. Using a process similar to the previous one, we will now deduce

from the upper bound (A.40) that, step by step, we can obtain estimates for

the gradient in the spaces Lkloc for arbitrary k.

We replace the assumption of the first step, namely ∇u ∈ Lploc, by ∇u ∈
Lp+2l
loc . Let us multiply the difference Δpu

h −Δpu by

∣
∣
∣
(uh − u)
h

∣
∣
∣
2l(uh − u

h

)
ζ2,

where ζ is a regular function with values between 0 and 1. Using Green’s

formula, we have seen that we obtain inequality (A.29):

Ah,l(u) � 2A′
h,l(u),

where

Ah,l(u) = (2l + 1)

∫

Ω

∣
∣
∣
uh − u
h

∣
∣
∣
2lDh(u)

h
· (∇uh −∇u)

h
ζ2dx

A′
h,l(u) =

∫

Ω

∣
∣
∣
Dh(u)

h

∣
∣
∣
∣
∣
∣
uh − u
h

∣
∣
∣
2l+1

ζ|∇ζ|dx.
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We first consider the right-hand side, using inequality (A.30):

A′
h,l(u) � (2− 2/p)

[∫

RN

∣
∣
∣
uh − u
h

∣
∣
∣
l∣∣
∣
|∇uh|(p−2)/2∇uh − |∇u|(p−2)/2∇u

h

∣
∣
∣ζ|∇ζ|

∣
∣
∣
uh − u
h

∣
∣
∣
l+1(

|∇uh|p/2 + |∇u|p/2
)(p−2)/2

dx

]
.

By a classical inequality, this becomes

A′
h,l(u)

� ε
∫

RN

∣
∣
∣
uh − u
h

∣
∣
∣
2l∣∣
∣
|∇uh|(p−2)/2∇uh − |∇u|(p−2)/2∇u

h

∣
∣
∣
2

ζ2dx

+ Cε

∫

RN

|∇ζ|2
∣
∣
∣
uh − u
h

∣
∣
∣
2(l+1)(

|∇uh|p/2 + |∇u|p/2
)2(p−2)/2

for an ε that we will choose further on. We then use the lower bound for

Ah,l(u), taking into account the definition of Dh(u), and using the result

(A.35) of Lemma A.34:

Ah,l(u) � (2l + 1)cp

∫

RN

∣
∣
∣
uh − u
h

∣
∣
∣
2l

ζ2
∣
∣
∣
|∇uh|(p−2)/2∇uh − |∇u|(p−2)/2∇u

h

∣
∣
∣
2

.

Without going into the details of the computations, which are analogous to

those that lead from (A.31) to (A.37), in particular concerning the choice of

a suitable ε and the application of (A.32), we obtain

(A.41)

∫

RN

∣
∣
∣
uh − u
h

∣
∣
∣
2l

ζ2
∣
∣
∣
|∇uh|(p−2)/2∇uh − |∇u|(p−2)/2∇u

h

∣
∣
∣
2

� C
∫

RN

(
|∇uh|p−2 + |∇u|p−2

)∣∣
∣
uh − u
h

∣
∣
∣
2l+2

|∇ζ|2dx.

Keeping in mind the assumption that ∇u ∈ Lp+2l
loc and using Hölder’s inequal-

ity with exponents (p+ 2l)/(2l+ 2) for |(uh − u)/h|2l+2|∇ζ|2(2l+2)/(p+2l) and

(p+2l)/(p−2) for (|∇uh|p−2+ |∇u|p−2|∇ζ|2(p−2)/(p+2l), we can repeat earlier

arguments to show that the right-hand side of (A.41) is bounded from above

by

C
(∫

RN

|∇uh|p+2l|∇ζ|2 +
∫

RN

|∇u|p+2l|∇ζ|2 +
∫

RN

∣
∣
∣
uh − u
h

∣
∣
∣
p+2l

|∇ζ|2
)
.

Consequently, by (A.41), the sequence

{∣∣
∣
uh − u
h

∣
∣
∣
l

Di(u)
}

is bounded in L2.
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Since ∇(|∇u|p/2)ζ is an element of L2 and h is colinear with ei, the

sequence {Dh(u)} converges strongly to ∂i(|∇u|(p−2)/2∇u) in L2(supp(ζ))

and there exists a subsequence that converges almost everywhere. Likewise,

|(uh − u)/h|l converges in L2 to |∂iu|l and there exists a subsequence that

also converges almost everywhere.

By Fatou’s lemma, we therefore have

∫

RN

ζ2|∇u|2l|∂i(|∇u|p/2)|2dx

� lim

∫

RN

ζ2
∣
∣
∣
uh − u
h

∣
∣
∣
2l∣∣
∣
|∇uh|(p−2)/2∇uh − |∇u|(p−2)/2∇u

h

∣
∣
∣
2

,

where the last sequence is bounded by

C

∫
|∇u|p+2l|∇ζ|2.

By taking the sum of these results over the indexes i from 1 to N , we

obtain

(A.42)

∫

RN

ζ2|∇u|2l
∣
∣∇(|∇u|p/2)

∣
∣2dx � C

∫

RN

|∇u|p+2l|∇ζ|2dx.

The results of Chapter 2 allow us to write

|∇u|l
∣
∣∇(|∇u|p/2)

∣
∣ =

p

(2l + p)

∣
∣∇(|∇u|p/2+l)

∣
∣,

giving the inclusion of |∇u|p/2+l in L2loc.

From this, we deduce the following upper bound:

(A.43)
(2l + 1)4

(p+ 2l)2

∫

RN

ζ2
∣
∣∇(|∇u|p+2l/2)

∣
∣2 � C

∫

RN

|∇u|p+2l|∇ζ|2.

Differentiation of the product of ζ and |∇u|(2l+p)/2 leads us to write the left-

hand side as the integral associated with the square of

∇
(
|∇u|(p+2l)/2ζ

)
− |∇u|(p+2l)/2∇ζ.

We conclude as in the step l = 0, which gives us the existence of a constant C

that is independent of l, such that

(A.44)
4(2l + 1)

(p+ 2l)2

∫

RN

∣
∣∇
(
|∇u|(p+2l)/2ζ

)∣∣2dx � C
∫

RN

|∇u|p+2l|∇ζ|2dx.

By assumption, the function |∇u|p/2+lζ belongs to L2loc. The upper bound

(A.44) proves that the gradient of this function also belongs to L2loc. It follows

that |∇u|p/2+lζ ∈ H1
loc, so that the Sobolev embedding theorem gives

(A.45)
∥
∥ |∇u|p/2+lζ

∥
∥
L2N/(N−2) �

∥
∥ |∇u|p/2+lζ

∥
∥
H1 .
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To conclude, we apply the Poincaré inequality, which gives

∥
∥ |∇u|p/2+lζ

∥
∥
L2N/(N−2) �

∥
∥∇(|∇u|(p+2l)/2ζ)

∥
∥
L2 .

Consequently, taking into account inequality (A.45), we obtain the inclusion

of ∇u in L(p+2l)N/(N−2). Moreover, because of the upper bound (A.44), we

can deduce the inequality announced in (A.30), namely

4(2l + 1)

(p+ 2l)2

(∫

RN

|∇u|(p+2l)N/(N−2)ζ2N/(N−2)dx
)(N−2)/N

� C
∫

RN

|∇u|p+2l∇ζ|2dx.

This concludes the second step.

Let us finish the proof. From this last upper bound, which allows us to

pass from ∇u ∈ L(p+2l)/2 to ∇u ∈ L(p+2l)N/(N−2), we deduce step by step

that ∇u ∈ Lk for every k. Finally, by following the process described several

times in this chapter and using once more the sequences {ζm}, {km}, and
{Rm}, we obtain, by induction, an estimate for the L∞ norm of |∇u|. ��
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Spaces
(RN )+, 85
Xm(Ω), 325
Yp(Ω), 326

Distribution spaces
D′(Ω), 27
D′k(Ω), 27
E ′(RN ), 181
Hs−1/2(RN−1), 185
H−s(RN ), 183
S ′(RN ), 180
W s,p(Ω), 219

Function spaces
C0,λ
b (Ω), 21

C∞(Ω), 94
Cm(Ω), 20
Cm
b (Ω), 20

Cm,λ
b (Ω), 21

Cm−j,λ(Ω), 98
C+
c (Ω), 307

D(Ω), 20
D(]0,+∞[, B), 190
Dk(Ω), 25
Dk

Kj
(Ω), 25

E∞(Ω), 25
L(X,Y ), 4
Lp(Ω,C), 34
Lp(]0,+∞[, B), 189

S(RN ), 179

T (p, ν,Ω) (trace space), 190

T (p, 1− 1/p− s,Ω), 197

W p′(div), 140

W p′

1 (div), 140

W p′
ε (div), 140

W p′

q′ (div), 140

LD(Ω), 328

Spaces of functions with measures
as derivatives

BD(Ω), 339

BV (Ω), 281, 299, 314

BV 0(Ω), 281

Measure spaces

M(Ω), 300

M1(Ω), 300

Sobolev spaces

Hm(RN ), 58, 182

Hs(RN ), 181

H1/2(∂B), 272

W 1−1/p,p(RN−1), 115
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Wm,p(Ω), 57, 84, 94
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A
absolute continuity, 57, 64
absolutely continuous, 310

B
base, filter, 2
basis

canonical –, 405
dual –, 8
of open subsets for a topology, 10
of tangent vectors, 146
orthonormal –, 146

best constant, 296

C
coercivity, 234, 242, 281, 283
compactness, 11
comparison of solutions, 268
computation of variations, 280
conjugate exponent, 63, 140, 141
constant

Lipschitz –, 65
universal –, 439

convergence
almost everywhere –, 197, 227
dominated –, 42, 48, 264, 386
in the sense of distributions, 366
monotone –, 378, 439
nontangential –, 373, 389, 391, 433
norm –, 50
tight –, 303, 322, 360
uniform –, 35, 301
vague –, 284, 303, 347, 356, 357, 360
weak –, 10, 227

weak sequential –, 10
weak-∗ –, 390

convolution, 26, 49, 82, 147, 306, 324,
389, 394, 403

cover, 11, 23, 38, 60, 61, 104, 165

D
deformation tensor, 107, 176, 259, 416
density

of a measure, 311
of a subspace, 38, 172, 183, 271, 281,

314, 316, 333, 339
superficial – on ∂Ω, 130, 135

derivative
A-normal –, 250
directional –, 232, 235
fractional –, 113, 114, 123, 169
in the sense of distributions, 32, 139,

156, 241
normal –, XV, 146, 176, 250, 274, 421
tangential –, 95, 149, 176
with respect to a vector, 145

differentiability
in the sense of Fréchet, 232, 237
in the sense of Gâteaux, 232–234, 239

displacement, 259
distribution

associated with a locally summable
function, 29, 225, 401

deformation –, 326
Dirac –, 29, 33, 123, 137
finite part –, 399, 400
finite subsets –, 52
gradient –, 361
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Hadamard finite part –, 29
homogeneous –, 225, 402
logarithmic finite subset –, 53
of order � k, 27
on an open subset, 23
positive –, 300
principal value –, 29
tempered –, 179, 180, 401, 420
two-sided finite subset –, 53
with compact support, 49, 415

domain of a function, 350, 353, 367

E
eigenfunction, 240, 241
eigenspace, 241
eigenvalue, 239, 241, 265, 280, 289
elasticity, 259
ellipticity, XIII
embedding, 76, 188, 200, 318, 333, 336,

364
compact –, 20, 23, 216, 220, 318
continuous –, 20, 47
critical –, 188, 296
Sobolev –, 164, 238, 248, 296, 437,

438, 443, 451
epigraph, 231
equation

Cartesian –, 99
Euler –, 261, 293
in the sense of distributions, 361
of the p-Laplacian, 444
PDE, divergence, XVI
PDE, elliptic at one point, XIV
PDE, elliptic on an open set, XIV
PDE, linear, XIII
PDE, quasi-linear, XIII
PDE, strictly elliptic, XIV
PDE, uniformly elliptic, XIV

equicontinuity, 12, 40, 98, 218

F
family

directed –, 9
of seminorms, 2, 9, 10
separating –, 10

first eigenvalue, 268, 286
formula

Fubini’s –, 63, 118, 153, 203, 320, 397,
407

Green’s –, 134, 135, 142–144, 146,
172, 239, 245, 250, 252, 253, 267,
290, 292, 315, 343, 346, 348, 421,
437, 442, 446

Green’s generalized –, 135, 241, 250,
259, 265, 344, 436

Leibniz –, 68, 155, 156
Poisson –, 424
reciprocity –, 225
Taylor’s –, 400

Fourier series, 16
function

l.s.c.–, 231, 272, 307, 347
Hardy–Littlewood maximal (HLM) –,

378, 406
absolutely continuous –, 54, 97, 105
analytic –, 389
asymptotic –, 362
biconjugate –, 349
characteristic –, 150, 308
conjugate – in the sense of Fenchel,

348, 350, 355, 356, 362, 367
convex –, 232
eigen-, 224
equi-integrable –, 50
μ-equivalent –s, 309
Euler, Γ –, 226
Hölder –, 21, 106
Hölder continuous –, 83, 98
Hardy–Littlewood maximal (HLM) –,

372
harmonic –, 269, 374, 376, 394, 421,

424
p-harmonic –, 435, 436
Heaviside step –, 52, 122
holomorphic –, 221, 372, 377, 390,

394
μ-integrable –, 308, 309
Lipschitz –, 21, 64, 131, 173, 206, 231
locally integrable –, 310
maximal Hilbert –, 398, 404, 406
measurable –, 34, 35
μ-measurable –, 309
of μ-measure 0, 309
of a measure, 348, 366
of bounded variation, 67
positively homogeneous –, 349
proper – (with values in R), 348
radial –, 297, 356, 402
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rapidly decreasing –, 179, 412
rearrangement –, 51, 385
Riemann-integrable –, 65
simple –, 51, 52, 189
slowly increasing –, 182, 428
step –, 52
strongly measurable –, 190
subdifferentiable –, 232
subharmonic –, 272
superharmonic –, 270
universally measurable –, 369
weakly l.s.c.–, 242
with measures as deformations, 339

fundamental solution, 71, 82, 111, 214,
324, 326, 361, 421

fundamental system
of neighborhoods, 2, 24, 25
countable –, 24

G
gluing, 101, 106, 249, 321
Green’s second theorem, 111

H
Hessian, 146, 363
higher order trace, 145
homorphism, 388
hypercube, 65
hyperplane, 8, 9, 18, 230

kernel, 230
hypersurface, 92, 145, 299, 331, 341, 342

I
identity

Picone’s –, 288, 289
Pohozaev –, 297

inequality
Clarkson’s –, 19
continuity –, 221
convexity –, 121, 202, 233, 262, 289
Hölder’s –, 34, 63, 66, 81, 97, 124,

128, 198, 414
discrete Hölder’s –, 148, 438
generalized Hölder’s –, 34, 366
Jensen’s –, 48, 358
Korn’s –, 260, 326, 327, 371, 415–417
Minkowski’s –, 34, 35, 86, 438
Poincaré’s –, 237, 260, 262, 283, 438,

443, 451, 454

generalized Poincaré’s –, 106
Riesz –, 372, 409, 410, 414
Schwarz –, 442

injection
compact –, 95
critical –, 70

isometry, 394, 405
iterated gradients, 176

J
Jacobian, 400

K
kernel

Poisson –, 270–272, 372, 377, 389,
423, 433

Riesz –, 372, 400, 409

L
Lebesgue decomposition, 312, 354
lemma

Fatou’s –, 50, 65, 192, 197, 394, 395,
408, 439, 450

Sobolev’s –, 72, 213
lifting, 122, 123, 134, 141, 147, 150, 151,

159, 163, 174, 271, 272, 283
linear functional

continuous –, 8, 11, 13, 15, 46
sequentially continuous –, 28

linear growth, 349, 350
local coordinate system, 94, 244

M
measure

absolutely continuous –, 67, 347, 369
bounded –, 67, 300, 321
charging a subset, 320
complex –, 300
conjugate –, 300
(N − 1)-dimensional, 71, 107
dominated by ν, 311
Lebesgue –, 34, 36, 47, 50
mutually singular –s, in the vector

case, 314
on an open set, 300
positive –, 300
positive part of a –, 303
real –, 300
real part of a –, 303
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singular –, 311, 367
vector-valued –, 303

minimal surface, 282
Minkowski functional, 46

N
norm

inner product –, 16
operator –, 5

normal, 135, 136, 275, 279, 342, 363
outward-pointing, 137, 343, 344

normal trace, 250
normed algebra, 21

O
open set

class C1 –, 90
Lipschitz –, VII, 80, 92, 173, 219, 363
relatively compact –, 104
uniformly Lipschitz –, 91
uniformly of class C1 –, 91
uniformly Cm –, 94
with the cone property, 80

operator
compact –, 47
divergence –, 411
Laplacian –, XV, 236, 410
p-Laplacian –, 261, 278, 289, 292
of weak type (p, p), 393, 408
Riesz –, 399
translation –, 66

P
parallelogram law, 16
partition of unity, 60, 91, 104, 244, 316,

323
point

Lebesgue –, 373, 389, 433
limit –, 35

principle
Hopf –, 279, 287, 294
maximum –, 265
strong maximum –, 241, 267–269,

273, 275, 287, 289
weak maximum –, 265, 272, 275
Vázquez –, 267, 293, 435

problem
coercive –, 280

Dirichlet –, XV, 236, 238, 239, 270,
273, 377, 423

nonhomogeneous Dirichlet –, 257
bi-Laplacian –, XVI
p-Laplacian –, XVI, 261
limit –, XV, 110
minimal surface –, XVII
Neumann –, XVI, 236, 239, 250, 252,

254, 294, 295
nonhomogeneous Neumann –, 257,

258
Newton –, XVI
relaxed –, 281, 283

property
Baire –, 4
(1, p)-extension, 91
(m, p)-extension –, 84, 91, 94
(s, p)-extension –, 206, 209
mean value –, 421

R
rearrangement, 377, 381
regularization, 26, 68, 196, 422
rigid displacements, 108

S
seminorm, 2
sequence

approximating –, 190
Cauchy –, 6
minimizing –, 235, 240, 242, 262, 281,

283, 290, 295
regularizing –, 26
summable –, 44

space
Baire –, 4, 44
Banach –, 5, 48
separable Banach –, 234, 251
bidual –, 13
complete normed (Banach) –, 4
dual –, 8, 140, 250
Hilbert –, 16, 60
separable Hilbert –, 48
locally convex –, 2
quotient –, 54, 259
reflexive –, 15, 60
Sobolev –, 57, 113
tangent –, 146
topological dual –, 8, 27, 191
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topological vector –, 1
uniformly convex –, 16, 19, 197
Zygmund –, 176

spherical coordinates, 176, 422
star convex, 173
subdifferential, 232, 367
subset

absorbing –, 1, 2
balanced –, 1, 2
compact –, 11, 96
connected –, 230
convex –, 2, 230
μ-integrable –, 309
precompact –, 11, 38
relatively compact –, 11
sequentially compact –, 11
universally integrable –, 309

supersolution, 276
support of a distribution, 31

T
tangent vector, 145, 147, 150, 176
Taylor polynomial, 52
theorem

Ascoli–Arzelà, 23, 39, 47, 98
Banach–Steinhaus, 6
Bessel–Parseval, 48
Cauchy, 224
closed graph, 46
Dieudonné–Schwartz, 25
dominated convergence, 36, 52, 233
embedding, 210
Fubini, 37
Green, 112
Hahn–Banach, 1, 8, 15, 138
geometric version, 8

Hausdorff–Young, 223, 338
Helly, 17
Lebesgue–Radon–Nikodym, 369
Marcinkiewicz, 220, 396
Mazur, 46
open image, 341
open mapping, 5, 133

Phragmén–Lindelöf, 221
Plancherel, 181
Plancherel–Parseval, 394
residue, 420
Riesz, 16
Riesz representation, 110
Riesz–Thorin, 220
Riesz–Thorin convexity, 220
Sobolev, 106
Sobolev embedding, 94
Stone–Weierstrass, 21

topology
intermediate –, 316, 318, 321, 357
norm –, 9, 10, 30
of Hausdorff TVS, 10
of separating TVS, 3
weak –, 263
weak-∗ –, 10

total variation, 301, 359
trace map, 85, 90, 100, 102, 109, 117,

130, 132, 321, 364
transform

adjoint Hilbert –, 397
Fourier –, 180, 183, 394, 401
Hilbert –, 399, 429
inverse Fourier –, 410, 411
Riesz –, 30, 372, 399, 401, 404, 432

translation of a distribution, 31
truncation, 437
truncation and regularization, 68, 195

U
uniform

convexity, 41
ellipticity of a matrix, 238, 245, 247,

252, 257, 275, 287
upper integral, 309

V
value, critical, 239

W
weakly sequentially compact, 305
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