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Preface

The present book is based on the authors’ works during recent years on construct-
ing exponentially convergent algorithms and algorithms without accuracy satura-
tion for operator equations and differential equations with operator coefficients in
Banach space. It is addressed to mathematicians as well as engineering, graduate
and post-graduate students who are interested in numerical analysis, differential
equations and their applications. The authors have attempted to present the ma-
terial based on both strong mathematical evidence and the maximum possible
simplicity in describing algorithms and appropriate examples.

Our goal is to present accurate and efficient exponentially convergent meth-
ods for various problems, especially, for abstract differential equations with un-
bounded operator coefficients in Banach space. These equations can be considered
as the meta-models of the systems of ordinary differential equations (ODE) and/or
the partial differential equations (PDEs) appearing in various applied problems.
The framework of functional analysis allows us to get rather general but, at the
same time, present transparent mathematical results and algorithms which can be
then applied to mathematical models of the real world. The problem class includes
initial value problems (IVP) for first-order differential equations with a constant
and variable unbounded operator coefficient in Banach space (the heat equation is
a simple example), IVPs for first-order differential equations with a parameter de-
pendent operator coefficient (parabolic partial differential equations with variable
coefficients), IVPs for first-order differential equations with an operator coeffi-
cient possessing a variable domain (e.g. the heat equation with time-dependent
boundary conditions), boundary value problems for second-order elliptic differen-
tial equations with an operator coefficient (e.g. the Laplace equation) as well as
IVPs for second-order strongly damped differential equations. We present also ex-
ponentially convergent methods to IVP for first-order nonlinear differential equa-
tions with unbounded operator coefficients.

The efficiency of all proposed algorithms is demonstrated by numerical ex-
amples.

Unfortunately, it is almost impossible to provide a comprehensive bibliogra-
phy representing the full set of publications related to the topics of the book. The
list of publications is restricted to papers whose results are strongly necessary to
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vi Preface

follow the narrative. Thus we ask those who were unable to find a reference to their
related publications to excuse us, even though those works would be appropriate.

Potential reader should have a basic knowledge of functional and numerical
analysis and be familiar with elements of scientific computing. An attempt has
been made to keep the presented algorithms understandable for graduate students
in engineering, physics, economics and, of course, mathematics. The algorithms are
suitable for such interactive, programmable and highly popular tools as MATLAB
and Maple which have been extensively employed in our numerical examples.

The authors are indebted to many colleagues who have contributed to this
work via fruitful discussions, but primarily to our families whose support is es-
pecially appreciated. We express our sincerest thanks to the German Research
Foundation (Deutsche Forschungsgemeinschaft) for financial support. It has been
a pleasure working with Dr. Barbara Hellriegel and with the Birkhäuser Basel
publication staff.

I. Gavrilyuk, V. Makarov, V. VasylykEisenach–Jena–Kyiv,
April, 2011
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Chapter 1

Introduction

The exponential function y = ex as well as the Euler number ‘e’ play fundamental
roles in mathematics and possess many miraculous features expressing the fas-
cination of nature. The exponential function is an important component of the
solution of many equations and problems. For example, taking into account the
commutative property of multiplication of numbers, the solution of the elementary
algebraic equation

AX +XB = C, A,B,C ∈ R, A+B > 0 (1.1)

can simply be found as

X =
C

A+B
. (1.2)

At the same time, this solution can be represented in terms of the exponential
function as

X =

∫ ∞

0

e−At · C · e−Btdt.

Equation (1.1) is known as the Silvester equation and, when A = B, as the Lya-
punov equation. If A,B,C are matrices or operators, the first formula can no
longer be used (matrix multiplication is not commutative and we can not write
AX+XB = X(A+B)!) but the second one remains true (under some assumptions
on A and B). This means that the latter can, after proper discretization, be used
in computations. In the case of a matrix or a bounded operator A, the exponential
function e−At (the operator exponential) can be defined, e.g., through the series

e−At =

∞∑
k=0

(−1)k
Aktk

k!
. (1.3)

1
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2 Chapter 1. Introduction

There are also various other representations, e.g., it was shown in [2, 3, 20] that

e−At = e−γt
∞∑
p=0

(−1)pL(0)
p (2γt)T p

γ (I + Tγ)

= e−γt
∞∑
p=0

(−1)p
[
L(0)
p (2γt)− L

(0)
p−1(2γt)

]
T p
γ ,

(1.4)

where
Tγ = (γI −A)(γI +A)−1

is the Cayley transform of the operator A, L
(0)
p (t) are the Laguerre polynomials,

and γ is an arbitrary positive real number. Another representation of e−At is given
by the Dunford-Cauchy integral

e−At =

∫
Γ

e−tz(zI −A)−1dz, (1.5)

where the integration path Γ envelopes the spectrum of A. The last two repre-
sentations can also be used for unbounded operators. In this case, the integral
becomes improper.

The operator exponential in general is lacking some properties of the usual
exponential function. For example, the definition (1.3) implies

e−(A+B)t = I − (A+B)t+
(A+B)2

2
t2 + · · · ,

e−Ate−Bt =

(
I −At+

A2t2

2
+ · · ·

)(
I −Bt+

B2t2

2
+ · · ·

)
,

e−(A+B)t − e−Ate−Bt = [A,B]
t2

2
+ · · · ,

where [A,B] = BA− AB is the so-called commutator of the operators A and B.
Therefore, if the well-known and important property of the exponential function

e−(A+B)t = e−Ate−Bt, ∀t (1.6)

is valid for the operator exponential, then the commutator is equal to zero, i.e.,
the operators A and B commute, AB = BA. One can show that this condition is
also sufficient for property (1.6).

The solution of the simple initial value problem

dy

dt
+Ay = 0, y(0) = b, A, b ∈ R (1.7)

for the ordinary differential equation is given by

y(t) = e−Atb. (1.8)
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One can say that the exponential function is a key to the solution of this prob-
lem or, in other words, the multiplication of the initial value by the exponential
function is a “solution operation” (compare with “solution operator” for partial
differential equations). The solution of the boundary value problem

d2y

dt2
−Ay = 0, y(0) = b, y(1) = c, A, b, c ∈ R (1.9)

is given by

y(t) = −A−1 sinh−1 (
√
A)

(
sinh (

√
At)c+ sinh (

√
A(1− t))b

)
,

where the functions involved are, once again, defined through the exponential
function :

sinh (
√
At) =

e
√
At − e−

√
At

2
.

If A is a matrix or operator, equations of type (1.7), (1.9) can be considered
as meta-models for various systems of ordinary or partial differential equations
(respectively, ODE and PDE). For example, the initial value problem for the well-
known heat equation

∂u

∂t
− ∂2u

∂x2
= 0,

u(0, x) = u0(x), x ∈ (0, 1),

u(t, 0) = 0, u(t, 1) = 0

with a known function u0(x) and unknown function u(t, x) can be written in the
form (1.7) if we understand A as the operator defined by the differential expression

Av = − d2v
dx2 with domain D(A) of twice differentiable functions v(x) such that

v(0) = v(1) = 0. The solution of (1.7) can then be formally written down in the
form (1.8) with the so-called solution operator T (t) = e−At which maps the initial
function b = u0(x) into the solution of problem (1.7). At this point the question
arises: how we can compute an efficient approximation to this solution operator
or to an element e−Atb?

When computing a function f(t), t ∈ D from a space of functions X , the
problem consists, in fact, of representing an element of, in general, an infinite-
dimensional space X (continuum), through some n real numbers, i.e., by an ele-
ment of Rn. There are many ways to do that, but the mostly-used approximation
method is to compute n approximate values of the function on a grid. Let us re-
call some facts from the theory of the so-called grid n-width, which characterize
the goodness of the approximation of an arbitrary element from the function set
X (see [5]). Let X = W r

p (M ; I) with M = (M1, . . . ,Md) and r = (r1, . . . , rd)
be the class of anisotropic Sobolev spaces defined on the d-dimensional interval

Introduction



4 Chapter 1. Introduction

I =
∏d

j=1[aj , bj]. The constant ρ = 1/(
∑d

j=1 r
−1
j ) defines the effective smoothness

of the class and the constant μ =
∏d

j=1 M
ρ/rj
j is the so-called constant of the class.

With help of the n-width theory one can estimate the optimal number n
(opt)
ε of

the parameters (coordinates) needed to approximate an arbitrary function from
this class with a given tolerance ε:

n(opt)
ε � const(μ) · ε−1/ (ρ− 1/p).

It is also known that

n(opt)
ε = O (

(log | log ε|)d| log ε|d)
numbers are needed to represent an analytical function of d variables with a tol-
erance ε.

We observe that, in general, n
(opt)
ε grows exponentially as d → ∞ ( this

phenomenon is known as “the curse of dimensionality”). It is of great practi-
cal importance since we need algorithms for representation of multidimensional
functions, say with polynomial complexity in d, at least, for partial subclasses of
functions.

The solutions or solution operators of many applied problems are analytic or
piecewise analytic. If an algorithm for solution of such a problem uses a constant
account of arithmetical operations per coordinate of the approximate solution
vector, then the measure for the complexity of this algorithm (in the case d = 1)
is of the order log ε−1. Let us suppose that an algorithm to find an analytic function
u(x) as the solution of an applied problem posits a vector y of na numbers where it
holds that ‖u− y‖ ≤ φ(na). To arrive at the tolerance ε with the (asymptotically)
optimal coordinate numbers na � log 1

ε , the function φ(na) must be exponential.
On the other hand, to be able to keep within the estimate nopt � na � log 1

ε ,
the algorithm must possess a complexity C = C(na) of the order na � log 1

ε with
respect to the account of arithmetical operations (we call this linear complexity).
If C(na) is proportional to na log

α na with α independent of na, we say that the
algorithm possesses almost linear complexity .

Thus, an optimal algorithm for analytic solutions has to be exponentially
convergent and possess a linear complexity such that the value log ε−1 is a near
optimal complexity measure.

In the analysis above we have assumed that algorithms can operate with real
numbers. Indeed, it is not the case; computer algorithms operate only with rational
numbers, and we need a measure to estimate the goodness of a representation of
functions from various classes by n rational numbers. This measure H(ε;X) is
called the ε-entropy of X (see [5], p. 245).

It is known that the method using numbers, say decimal numbers, of the
maximal length N for representation of elements of a Banach space, possesses
an accuracy ε if N ≥ H(ε;X), i.e., H(ε;X) is the optimal length of numbers to
represent X with a given tolerance ε.
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For the anisotropic class W r
p of functions, it holds that

H(ε;W r
p ) � (

μ

ε
)1/ρ. (1.10)

In the isotropic case, r1 = r2 = · · · = rd = r, we have ρ = r/d and
H(ε;W r

p ) � (με )
d/r, i.e., the length of the numbers increases exponentially with

increasing dimension d. Thus, we again deal with the curse of dimensionality and
the exponential function!

Let I0 = {x ∈ Rd : x = (x1, x2, . . . , xd), |xj | ≤ 1} and Erj be the domain in
the complex plane zj = xj + iyj enveloped by an ellipse with focal points −1 and
1 whose sum of semi-axes is equal to rj > 1 (the so-called Bernstein regularity
ellipse: see below). We set Er = Er1 ×· · ·×Erd . Let X(Er, I0;M) be the compact
of continuous on I0 functions with the usual Chebyshev norm ‖ · ‖∞ which can be
extended analytically into Er and are bounded by a positive constant M .

For the class A(Er , I0;M) of analytic functions, it holds [5], p. 262 that

H(ε;A(Er, I0;M)) =
2

(d+ 1)!
∏

j log rj
logd+1 M

ε
+O((log

M

ε
)d log log

M

ε
).

We see that, for analytic functions, the curse of dimensionality is somewhat
weaker since in the isotropic case we have

H(ε;A(Er, I0;M)) � logd+1 M

ε
;

however, it remains still exponential in d.
Having based this point on the considerations above, we can derive the follow-

ing requirement of a numerical algorithm of minimal complexity. It should possess
as far as possible:

1) an exponential convergence rate,

2) a polynomial complexity in d.

We shall see that the exponential function and the operator exponential
can be a key to fulfilling these aims within the framework of the present book.
To achieve the second goal, a tensor-product approximation with an exponential
operator exponential, property (1.6) in particular can be helpful as an important
integral part (see Appendix).

Exponentially convergent algorithms were proposed recently for various prob-
lems. The corresponding analysis is often carried out in an abstract setting. This
means that the initial value and boundary value problems of parabolic, hyperbolic
and elliptic type are formulated as abstract differential equations with an operator
coefficient A:

du

dt
+Au = f(t), t ∈ (0, T ]; u(0) = u0, (1.11)

Introduction



6 Chapter 1. Introduction

d2u

dt2
+Au = f(t), t ∈ (0, T ]; u(0) = u0, u′(0) = u01, (1.12)

d2u

dx2
−Au = −f(x), x ∈ (0, 1); u(0) = u0, u(1) = u01. (1.13)

Here, A is the densely defined closed (unbounded) operator with domain D(A)
in a Banach space X, u0, u01 are given vectors and f(t) is a given vector-valued
function. The operator A is, e.g., an elliptical differential operator. In particular, it
can be the Laplace operator, i.e., in the simplest one-dimensional case, the second
spatial derivative with appropriate boundary conditions:

D(A) := {v ∈ H2(0, 1) : v(0) = 0, v(1) = 0},

Av := −d2v

dy2
for all v ∈ D(A).

(1.14)

Which are typical approaches to construct exponentially convergent algo-
rithms for the operator differential equations above? One of the possibilities is
to represent the solution of (1.11), (1.12) and (1.13) by using the corresponding
solution operator (exponential etc.) families. For the governing equation (1.11),
this representation reads as

u(t) = e−Atu0 +

∫ t

0

e−A(t−τ)f(τ) dτ. (1.15)

The problems (1.12) and (1.13) yield analogous integral equations with the
operator-cosine cos(t

√
A) and operator-hyperbolic-sine sinh−1

√
A sinh(x

√
A) fam-

ily (normalized), respectively.
The majority of the exponentially convergentmethods based on this approach

require a suitable representation of the corresponding operator functions and its
approximations. A convenient representation of the operator functions in Banach
space X can be provided by an improper Dunford-Cauchy integral (see, e.g., [9]),
e.g., for the operator exponential given by (1.5). By employing a parametrization
of the integration path z = z(ξ) ∈ ΓI , ξ ∈ (−∞,∞) we get an improper integral
of the type

e−At =
1

2πi

∫
Γ

e−tz(zI −A)−1dz =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ (1.16)

with F(t, ξ) = e−tz(ξ)(z(ξ)I −A)−1z′(ξ).
The integral representation, e.g., (1.16), can then be discretized by a (possibly

exponentially convergent) quadrature formula involving a short sum of resolvents.
Such algorithms for linear homogeneous parabolic problems of the type (1.11) were
proposed (probably first) in [23, 24] and later on in [16, 18, 25, 27, 59, 65]. These
algorithms are based on a representation of the operator exponential T (t) = e−At

by the improper Dunford-Cauchy integral along a path enveloping the spectrum of
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A where a hyperbola containing the spectrum of A or a parabola as the integration
path are used. The methods from [16, 23, 27, 30] use Sinc-quadratures [44, 62] and
possess an exponential convergence rate. An exponential convergence rate for all
t ≥ 0 was proven in [17, 69] under assumptions that the initial function u0 belongs
to the domain of D(Aσ) for some σ > 1, where the preliminary computation of
Aσu0 is needed. Note that not all of these algorithms can be directly applied to in-
homogeneous problems due to inefficient computation of the operator exponential
at t = 0. In [43, 42] the exponentially convergent algorithms were used to invert the
Laplace transform with a better (up to a logarithmical factor) convergence rate.
However, these methods do not provide uniform convergence for all t ≥ 0 and the
parallel realization for different time values. In [27], a hyperbola as the integration
path and proper modification of the resolvent were used. This made it possible to
get the uniform and numerically stable exponential convergence rate with respect
to t ≥ 0 without preliminary computation of Aσu0. An exponentially convergent
algorithm for the case of an operator family A(t) depending on the parameter t
was proposed in [26]. This algorithm uses an exponentially convergent algorithm
for the operator exponential generation by a constant operator. Moreover, these
algorithms inherit two levels of parallelism (with respect to various time points
and with respect to the treatment of the summands in the quadrature sum) which
was perhaps first observed in the paper [58] and, independently for exponentially
convergent algorithms, in [16, 23, 24]. A parallel method for the numerical so-
lution of an integro-differential equation with positive memory was described in
[39]. The paper [12] deals with exponentially convergent algorithms for parabolic
PDEs based on Runge-Kutta methods. The problem of constructing exponentially
convergent approximations for operator sine and cosine functions is still open. The
following exact representation for a solution of the operator cosine-function with
generator A was proposed in [15, 22] (see also [25]):

C(t) ≡ cos
√
At = e−δt

∞∑
n=0

(
L(0)
n (t)− L

(0)
n−1(t)

)
Un,

which implies the next representation of the solution of problem (1.12),

x(t) ≡ x(t;A) = (cos
√
At)x0

= e−δt
∞∑

n=0

(
L(0)
n (t)− L

(0)
n−1(t)

)
un,

(1.17)

where δ is an arbitrary real number in (−1/2,∞) and L
(0)
n (t) are the Laguerre

polynomials. The sequences of vectors {un} and of operators {Un} ≡ {Un(A)} are
defined by

un+1 = 2(A+ δ(δ − 1)I)(A+ (δ − 1)2I)−1un

− (A+ δ2I)(A+ (δ − 1)2I)−1un−1, n ≥ 1,

u0 = x0, u1 = (A+ δ(δ − 1)I)(A+ (δ − 1)2I)−1x0

(1.18)

Introduction



8 Chapter 1. Introduction

and

Un+1 = 2(A+ δ(δ − 1)I)(A+ (δ − 1)2I)−1Un

− (A+ δ2I)(A + (δ − 1)2I)−1Un−1, n ≥ 1,

U0 = I, U1 = (A+ δ(δ − 1)I)(A+ (δ − 1)2I)−1

(1.19)

without using
√
A. The operator A was supposed to be strongly P-positive, i.e.,

its spectrum is enveloped by a parabola in the right half-plane and the resolvent
on and outside of the parabola satisfies

‖(sI −A)−1‖ ≤ M

1 +
√
z
.

As an approximation of the exact solution, one can use the truncated series con-
sisting of the first N summands. This approximation does not possess accuracy
saturation, i.e., the accuracy is of the order O(N−σ), σ > 0 as N → ∞, σ charac-
terizes the smoothness of the initial data and this accuracy decreases exponentially
provided that the initial data are analytical.

In the present book we develop our results in constructing exponentially
convergent methods for the aforementioned problems. We are sure that this book
can not clarify all the remarkable properties and applications of the exponential
function. We would therefore urge the reader to continue our excursion into the
wonderful world of applications of the exponential function.



Chapter 2

Preliminaries

In this chapter we briefly describe some relevant basic results on interpolation,
quadratures, estimation of operators and representation of operator-valued func-
tions using the Dunford-Cauchy integral.

2.1 Interpolation of functions

Interpolation of functions by polynomials is one of the basic ideas in designing
numerical algorithms. Let Πn be a class of polynomials of degree less than or
equal to n and a smooth function u(x) be defined on (a, b). The interpolation
polynomial Pn(x) = Pn(u;x) for the function u(x) satisfies the conditions:

• Pn(u;x) ∈ Πn,

• for n+ 1 various points in (a, b), x0, x1, . . . , xn ∈ (a, b),

Pn(u;xi) = u(xi), i = 0, n.

The interpolation polynomial is unique and can be written down in various
forms, e.g., in the form by Lagrange (discovered by Joseph Louis Lagrange in 1795)

Pn(u;x) = Ln(u, x) =
n∑

i=0

u(xi)Li,n(x), (2.1)

where

Li,n(x) =

n∏
j=0,
j �=i

x− xi

xi − xj
=

qn+1(x)

q′n+1(xi)(x− xi)
, i = 0, n;

qn+1(x) = (x− x0) · · · (x− xn)

(2.2)

9
Frontiers in Mathematics,  DOI 10.1007/978-3-0348-0119-5_2, © Springer Basel AG 2011  
I.P. Gavrilyuk et al., Exponentially Convergent Algorithms for Abstract Differential Equations,  
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are called the Lagrange fundamental polynomials. It is easy to see that

Li,n(xj) =

{
1, j = i,
0, j �= i.

Defining the k-th divided difference recursively by

u[xi, xi+1, . . . , xi+k] =
u[xi+1, . . . , xi+k]−u[xi, xi+1, . . . , xi+k−1]

xk − xi
, k=1, 2, . . . , n;

u[xi] = u(xi),

the Newton form of the interpolation polynomial (for equidistant nodes, found in
the 1670s by Isaak Newton) is given by

Pn(u;x) = u[x0] +

n∑
i=1

(x− x0) · · · (x− xi)u[x0, x1, . . . , xi].

Introducing the auxiliary quantities

λ
(n)
k =

n∏
i=1,i�=k

1

xk − xi
,

the interpolation polynomial can be written down as the following barycentric
formula:

Pn(u;x) =

∑n
k=0

λ
(n)
k

x−xk
u(xk)∑n

i=0
λ
(n)
i

x−xi

which possesses good computational properties [47].
One can hope that, if the grid of interpolation nodes covers the interpolation

interval from dense to dense, then the interpolation polynomial converges to the
function. In order to describe this process let us introduce the following infinite
triangular array of interpolation knots:

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

x0,0 0 · · · 0 · · ·
x0,1 x1,1 · · · 0 · · ·
· · · · · · · · ·

x0,n x1,n · · · xn,n · · ·
· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the (n+ 1)-th row contains the zeros of qn+1(x) = (x− x0,n) · · · (x− xn,n).
Now we can associate to the array X (or to qn+1(x)) a sequence of Lagrange
interpolation polynomials {Ln(X , u)}n∈N, defined by

Ln(X , u)(xn,k) = Ln(X , u;xn,k) = u(xn,k), k = 0, 1, . . . , n.
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These polynomials can be written in form (2.1) by putting xi,n instead of xi

and Li,n(X ;x) instead of Li,n(x). For a given interpolation array X we define
a sequence of linear operators Ln(X ) : C[−1, 1] → Πn, n = 0, 1, . . . such that
Ln(X )u = Ln(X , u). The sequence {Ln(X )}n∈N defines an interpolatory process
and, for each n ∈ N, the operator Ln(X ) is a projector onto Πn. The main question
is the convergence of Ln(X , u;x) → u(x) when n → ∞ and the corresponding
convergence rate is a norm. It is easy to compare the interpolation error εI(u) =
‖u− Ln(X , u)‖ with the error of best approximation En(u) given by

En(u) = min
p∈Πn

‖u− p‖ = ‖u− P ∗‖,

where P ∗ ∈ Πn is the polynomial of the best uniform approximation to u in the
corresponding norm.

Let us consider, for example, the space C0 = C[−1, 1] of all continuous
functions equipped with the uniform norm

‖u‖ = ‖u‖∞ = max
|x|≤1

|u(x)|.

We have

|u(x)− Ln(X , u;x)| ≤ |u(x)− P ∗(x)| + |P ∗ − Ln(X , u;x)|
≤ En(u) + |Ln(X , u− P ∗;x)|
≤ (1 + λn(X ;x))En(u),

(2.3)

where λn(X ;x) =
n∑

k=1

|Lk,n(X ;x)| is the Lebesgue function. Further, this yields

εI(u) ≤ ‖u(x)− Ln(X , u)‖ ≤ (1 + Λn(X ))En(u), (2.4)

where Λn(X ) = ‖Λn(X ;x)‖ is called the Lebesgue constant. Thus, the first factor
which influences the convergence of the interpolation process is this constant which
depends only on the knots distribution. In 1914 Faber proved that for the uniform
norm

Λn ≥ 1

12
logn, n ≥ 1. (2.5)

Besides, one can prove that:

1) there exist continuous functions for which the interpolation process diverges,

2) there exists an optimal nodes distribution, for which there exists a constant
C �= C(n) such that ‖Λn(X ;x)‖∞ ≤ C logn.

The interpolation points which produce the smallest value Λ∗n of all Λn are not
known, but Bernstein in 1954 proved that

Λ∗n =
2

π
logn+O(1).
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An algorithm to compute the optimal system of nodes can be found in [47].

The optimal system of nodes is known analytically only for some special
cases. For example, if the (n + 1)-th row of the array of interpolation knots X =
X (v(α,β)) consists of zeros of the n-th Jakobi orthogonal polynomials with weight
v(α,β)(x) = (1− x)α(1 + x)β , the following classical result due to Szegö holds [47,
p. 248]:

‖Λn(X ;x)‖∞ �
{

logn, if − 1 < α, β ≤ −1/2,

nmax{α,β}+1/2, otherwise.
(2.6)

Often it is necessary to use the interpolation including the ends of the segment
[−1, 1]. In this case it is natural to use the so-called Chebyshev-Gauss-Lobatto
interpolation with the knots being the zeros of the polynomial (1− x2)Un−1(x) =
(1−x2)Tn′(x), where Un−1(x) is the Chebyshev polynomial of the second kind [47,
p. 249]. These knots are also known as practical abscissas or Clenshaw’s abscissas.
The Lagrange fundamental polynomials in this case can be written in the form

Li,n(η) =
(1 − η2)T ′n(η)

(η − xi)
d
dη [(1− η2)T ′n(η)]η=xi

, i = 0, 1, . . . , n,

xj = cos (π(n− j)/n), j = 0, 1, . . . , n.

If X is the system of the practical abscissas or Clenshaw’s abscissas, then
the corresponding Lebesgue constant is optimal: ‖Λn(X ;x)‖∞ � logn. There are

other Jakobi polynomials J
(α,β)
n whose roots build an optimal system [47, p. 254].

For the array E of equidistant nodes on [−1, 1] it holds that (see [47])
‖Ln(E)‖∞ � 2n/(en logn), n → ∞.

It is clear that the Lebesque constant depends on the choice of the norm.
For X being zeros of the (n+ 1)-th orthogonal polynomial on [a, b] with a weight
ρ(x) ≥ 0, it holds that [63]

‖u− Ln(X , u)‖2,ρ =

(∫ b

a

ρ(x)
(
u(x)− Ln(X , u;x)

)2
dx

)1/2

≤ 2

(∫ b

a

ρ(x)dx

)1/2

En(u).

In the case (a, b) ≡ (−1, 1) Chebyshev nodes, i.e., the zeros of a Chebyshev
polynomial of the first kind Tn+1(x) = cos((n + 1) arccos(x)), are often used as
the interpolation points. These polynomials may be defined recursively by

T0(w) = 1, T1(w) = w,

Tn+1(w) = 2wTn(w) − Tn−1(w), n = 1, 2, . . . .
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In the case of such Chebyshev interpolation it can be shown that Λn grows at most
logarithmically in n, more precisely,

Λn ≤ 2

π
log n+ 1.

The second factor which affects the convergence of the interpolation process
is the error of best approximation En(u) depending only on the smoothness of
the function u(x). For example, if all derivatives of u(x) up to the order r be-
long to Lp(a, b) and ‖u(r)‖p ≤ M , then this dependence for the uniform norm is
polynomial with respect to n:

En(u) ≤ ArMn−r (2.7)

with a constant Ar independent of n,M .
A very interesting and important function class is the class of analytic func-

tions. Before we come to the estimate for En(u) for this function class, let us recall
some basic facts about these functions.

In the complex plane C, we introduce the circular ring

Rρ := {z ∈ C : 1/ρ < |z| < ρ} with ρ > 1

and the class Aρ of functions f : C → C which are analytic and bounded by M > 0
in Rρ with ρ > 1 and set

Cn :=
1

2π

∫ 2π

0

f(eiθ)einθdθ, n = 0, ±1, ±2, . . . . (2.8)

The Laurent theorem asserts that if f ∈ Aρ, then f(z) =
∞∑

n=−∞
Cnz

n for all

z ∈ Rρ, where the series (the Laurent series) converges to f(z) for all z ∈ Rρ.
Moreover |Cn| ≤ M/ρ|n|, and, for all θ ∈ [0, 2π] and arbitrary integer m,∣∣∣∣∣f(eiθ)−

m∑
n=−m

Cne
inθ

∣∣∣∣∣ ≤ 2M

ρ− 1
ρ−m. (2.9)

By Eρ = Eρ(B) with the reference interval B := [−1, 1], we denote the Bern-
stein regularity ellipse (with foci at w = ±1 and the sum of semi-axes equal to
ρ > 1),

Eρ := {w ∈ C : |w − 1|+ |w + 1| ≤ ρ+ ρ−1},
or

Eρ =

{
w ∈ C : w =

1

2

(
ρeiϕ +

1

ρ
e−iφ

)}

=

{
(x, y) :

x2

a2
+

y2

b2
= 1, a =

1

2

(
ρ+

1

ρ

)
, b =

1

2

(
ρ− 1

ρ

)}
.



14 Chapter 2. Preliminaries

It can be seen that for the Chebyshev polynomials, there holds

Tn(w) =
1

2
(zn + z−n) (2.10)

with w = 1
2 (z +

1
z ).

If F is analytic and bounded by M in Eρ (with ρ > 1), then the expansion
(Chebyshev series)

F (w) = C0 + 2
∞∑
n=1

CnTn(w), (2.11)

holds for all w ∈ Eρ, where

Cn =
1

π

∫ 1

−1

F (w)Tn(w)√
1− w2

dw.

Moreover, |Cn| ≤ M/ρn and for w ∈ B and for m = 1, 2, 3, . . . ,

|F (w)− C0 − 2

m∑
n=1

CnTn(w)| ≤ 2M

ρ− 1
ρ−m, w ∈ B. (2.12)

Let Aρ,s := {f ∈ Aρ : C−n = Cn}, then each f ∈ Aρ,s has a representation
(cf. (2.11))

f(z) = C0 +

∞∑
n=1

Cn(z
n + z−n), z ∈ Rρ. (2.13)

Furthermore, from (2.13) it follows that f(1/z) = f(z), z ∈ Rρ.
Let us apply the mapping w(z) = 1

2 (z + 1
z ), which satisfies w(1/z) = w(z).

It is a conformal transform of {ξ ∈ Rρ : |ξ| > 1} onto Eρ as well as of {ξ ∈ Rρ :
|ξ| < 1} onto Eρ (but not Rρ onto Eρ!). It provides a one-to-one correspondence of
functions F that are analytic and bounded by M in Eρ with functions f in Aρ,s.

Since under this mapping we have (2.10), it follows that if f defined by (2.13)
is in Aρ,s, then the corresponding transformed function F (w) = f(z(w)) that is
analytic and bounded by M in Eρ is given by (2.13).

Now the result (2.12) follows directly from the Laurent theorem.
The next assertion gives an error estimate for the interpolation polynomial

for analytic functions: Let u ∈ C∞[−1, 1] have an analytic extension to Eρ bounded
by M > 0 in Eρ (with ρ > 1). Then we have

‖u− Lnu‖∞,I ≤ (1 + Λn)
2M

ρ− 1
ρ−n, n ∈ N≥1. (2.14)

Actually, due to (2.12) one obtains for the best polynomial approximations
to u on [−1, 1],

min
v∈PN

‖u− v‖∞,B ≤ 2M

ρ− 1
ρ−N . (2.15)
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Note that the interpolation operator Ln is a projection, that is, for all v ∈ Πn we
have Lnv = v. Then applying the triangle inequality with v ∈ Πn,

‖u− Lnu‖∞,B = ‖u− v − Ln(u− v)‖∞,B ≤ (1 + Λn)‖u− v‖∞,B

completes the proof.
To present some more estimates for the interpolation error (see, e.g., [7]), we

define weighted Lp-norms as follows:

‖u‖Lp
w(−1,1) =

(∫ 1

−1

|u(x)|pw(x)dx
)1/p

, for 1 ≤ p < ∞,

‖u‖L∞
w (−1,1) = sup

−1≤x≤1
|u(x)| ,

and weighted Sobolev spaces

‖u‖Hm
w (−1,1) =

(
m∑

k=0

‖u(k)(x)‖2L2
w(−1,1)

)1/2

,

with seminorms

|u|Hm;N
w (−1,1) =

⎛
⎝ m∑

k=min(m,N+1)

‖u(k)(x)‖2L2
w(−1,1)

⎞
⎠

1/2

.

For the truncation error we have

‖u− Pn(u, ·)‖L2
w(−1,1) ≤ Cn−m|u|Hm;n

w (−1,1), (2.16)

for all u ∈ Hm
w (−1, 1) with m ≥ 0. For higher-order Sobolev norms the estimate is

‖u− Pn(u, ·)‖Ll
w(−1,1) ≤ Cn2l−m|u|Hm;n

w (−1,1), (2.17)

for all u ∈ Hm
w (−1, 1) with m ≥ 1 and 1 ≤ l ≤ m.

The estimates (2.16) and (2.17) remain true for the Chebyshev-Gauss-Lobat-
to interpolation too.

Sometimes it is useful to use other basis functions different from xi. Let Πg,n

be a class of generalized polynomials Pg,n(u, x) =
n∑

i=0

cigi(x) of degree less than or

equal to n in a basis {gi(x)}i=0,...,n (instead of {xi}i=0,...,n). Then, the generalized
interpolation polynomial for a continuous function u(x) is defined by the following
conditions:

• Pg,n(u, x) ∈ Πg,n,

• for n+ 1 various points in (a, b), x0, x1, . . . , xn ∈ (a, b),

Pg,n(u, xi) = u(xi), i = 0, n.
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The conditions on the basis function (they should build the so-called Chebyshev
system) under which this problem possesses the unique solution can be found in
[11].

One of the possible choices is the Sinc basis. To illustrate an approximation
technique using the Sinc basis we use the notation (see [62]):

Dd = {z ∈ C : −∞ < �z < ∞, |�z| < d},
where Dd(ε) is defined for 0 < ε < 1 by

Dd(ε) = {z ∈ C : |�z| < 1/ε, |�z| < d(1− ε)}.
Also we introduce the spaceHp(Dd) of all functions such that for each f ∈ Hp(Dd)
there holds ‖f‖Hp(Dd) < ∞ with

‖f‖Hp(Dd) =

⎧⎪⎪⎨
⎪⎪⎩
lim
ε→0

(∫
∂Dd(ε)

|f(z)|p|dz|
)1/p

if 1 ≤ p < ∞,

lim
ε→0

sup
z∈∂Dd(ε)

|f(z)| if p = ∞.

Let

S(k, h)(x) =
sin [π(x − kh)/h]

π(x− kh)/h
(2.18)

be the k-th Sinc function with step size h, evaluated in x. Given f ∈ Hp(Dd),
h > 0 and a positive integer N , let us use the notation

C(f, h) =

∞∑
k=−∞

f(kh)S(k, h),

CN (f, h) =

N∑
k=−N

f(kh)S(k, h),

E(f, h) = f − C(f, h) EN (f, h) = f − CN (f, h).

V.A. Kotelnikov (1933), J. Wittacker (1935) and C.E. Shannon(1948) have
proved that band-limited signals can be exactly reconstructed via their sampling
values or, mathematically speaking, if the support of the Fourier transform f̂(ω)
of a continuous function f(t) is included in [−π/h, π/h], then

f(t) =

∞∑
n=−∞

f(nh)S(n, h)(t) ≡ C(f, h)(t).

The truncated sum CN (f, h) is the generalized interpolation polynomial with
the basis functions S(k, h)(t) for the function f(t), i.e., CN (f, h)(kh) = f(kh), k =
−N,−N + 1, . . . , N .

The following error representation theorem holds true [62]
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Theorem 2.1. Let f ∈ Hp(Dd) with 1 ≤ p ≤ ∞. Then for z ∈ Dd,

E(f, h)(z) = f(z)− C(f, h)(z)

=
sin(πz/h)

2πi

∫ ∞

−∞

{
f(t− id−)

(t− z − id) sin[π(t− id)/h]
− f(t+ id−)

(t− z + id) sin[π(t+ id)/h]

}
dt.

This theorem yields the following error estimate for functions with an expo-
nential decay.

Theorem 2.2. Let the conditions of Theorem 2.1 be fulfilled and f satisfy

|f(x)| ≤ ce−α|x|, x ∈ (−∞,∞),

with positive constants c, α; then, taking

h =

(
πd

αN

)1/2

,

there exists a positive number C1, depending only on f, d, α, and y, such that for
s = 2 or s = ∞,

‖EN (f, h)‖s ≤ C1N
(1−1/s)/2exp

{
−
(πα

d

)1/2

(d− |y|)N1/2

}
.

2.2 Exponentially convergent quadrature rule

The main purpose of numerical analysis and scientific computing is to develop
efficient and accurate methods to compute approximations to quantities that are
difficult or impossible to obtain by analytic means. One of the most frequently
encountered problems in constructing numerical methods is the approximation of
integrals that arise. A very simple idea to compute an integral

I = I(u) =

∫ b

a

u(x)dx (2.19)

is to replace the integrand u(x) by an aproximation ũ(x) so that the integral

I(u) =
∫ b

a ũ(x)dx is “computable”. If we choose the interpolant

Ln(u, x) =
n∑

i=0

u(xi)Li,n(x) (2.20)

as ũ(x), then we obtain the quadrature formula

I = I(u) =

∫ b

a

u(x)dx ≈ Qnu =

n∑
i=0

ci,nu(xi) (2.21)
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with the coefficients ci,n =
∫ b

a
Li,n(x)dx which can be calculated analytically. Such

quadrature formulas are called interpolation quadrature formulas. Their error can
be estimated by

εQ(u) =
∣∣ ∫ b

a

[u(x)− [INu](x)]dx
∣∣ ≤ (b− a)εI(u) (2.22)

and has the same order with respect to N as the interpolation error.
We mentioned in the introduction that, for a given tolerance ε, an expo-

nential convergence rate provides algorithms of optimal or low complexity. Such
algorithms were developed for approximation of various types of integrals based
on Sinc-quadratures. Let us consider briefly the problem of approximation of the
integral (2.19) with a = −∞, b = ∞ which we will use in this monograph. For a
given f ∈ Hp(Dd), h > 0 (see [62]) and positive integer N , let us use the notation

I(f) =

∫
R

f(x)dx, TN(f, h) = h

N∑
k=−N

f(kh), T (f, h) = h

∞∑
k=−∞

f(kh),

ηN (f, h) = I(f)− TN(f, h), η(f, h) = I(f)− T (f, h).

The following theorem holds true [62].

Theorem 2.3. Let f ∈ H1(Dd). Then

η(f, h) =
i

2

∫ ∞

−∞

{
f(t− id−)e−π(d+it)/h

sin[π(t− id)/h]
− f(t+ id−)e−π(d−it)/h

sin[π(t+ id)/h]

}
dt.

Moreover,

|η(f, h)| ≤ e−πd/h

2 sin(πd/h)
‖f‖H1(Dd).

If in addition, f satisfies

|f(x)| ≤ ce−α|x|, x ∈ (−∞,∞),

with positive constants c, α, then, taking

h =

(
2πd

αN

)1/2

,

we obtain
|ηN (f, h)| ≤ c1e

−(2πdαN)1/2,

with c1 depending only on f, d and α.

This result can be extended to the case of vector-valued functions using the
Bochner integral [1, 71]. So, we have a quadrature rule that possesses exponential
convergence for the class of analytic functions with exponential decay on ±∞.
Using this quadrature, we develop in the next chapters new methods for solution
of some problems.
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2.3 Estimates of the resolvent through fractional
powers of strongly positive operators

Let A be a densely defined strongly positive (sectorial) operator in a Banach space
X with domain D(A), i.e., its spectrum Σ(A) lies in the sector

Σ = {z = a0 + reiθ : r ∈ [0,∞), |θ| < ϕ <
π

2
} (2.23)

and on its boundary ΓΣ and outside the sector the following estimate for the
resolvent holds true:

‖(zI −A)−1‖ ≤ M

1 + |z| (2.24)

with some positive constant M (compare with [20, 35, 54, 60]). The angle ϕ is
called the spectral angle of the operator A. A practically important example of
strongly positive operators in X = Lp(Ω), 0 < p < ∞ represents a strongly elliptic
partial differential operator [14, 15, 16, 20, 26, 54, 56] where the parameters a0, ϕ
of the sector Σ are defined by its coefficients.

For an initial vector u0 ∈ D(Am+1) it holds that

m+1∑
k=1

Ak−1u0

zk
+

1

zm+1
(zI −A)−1Am+1u0 = (zI −A)−1u.

0 (2.25)

This equality together with

A−(m+1)v =
1

2πi

∫
ΓI

z−(m+1)(zI −A)−1vdz (2.26)

by setting v = Am+1u0 yields the representation

u0 = A−(m+1)Am+1u0 =
1

2πi

∫
ΓI

z−(m+1)(zI −A)−1Am+1u0dz

=

∫
ΓI

[
(zI −A)−1 −

m+1∑
k=1

Ak−1

zk

]
u0dz

(2.27)

with an integration path ΓI situated in the right half-plane and enveloping ΓΣ. Let
us estimate the norm of the first integrand in (2.27) as a function of |z| under the
assumption u0 ∈ D(Am+α), m ∈ N, α ∈ [0, 1]. Since the operator A is strongly
positive it holds on and outside the integration path

‖(zI −A)−1w‖ ≤ M

1 + |z|‖w‖,

‖A(zI −A)−1w‖ ≤ (1 +M)‖w‖.
(2.28)
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These estimates yield (see, e.g., Theorem 4 from [35])

‖A1−α(zI −A)−1w‖ ≤ K‖A(zI −A)−1w‖1−α‖(zI −A)−1w‖α, (2.29)

where the constant K depends on α and M only. This inequality, taking into
account (2.28), implies

‖A1−α(zI −A)−1‖ ≤ K(1 +M)

(1 + |z|)α , α ∈ [0, 1] (2.30)

which leads to the estimate

‖
[
(zI −A)−1 − 1

z
I

]
u0‖ =

1

|z|‖A
1−α(zI −A)−1Aαu0‖ (2.31)

≤ (1 +M)K

|z|(1 + |z|)α ‖A
αu0‖, ∀α ∈ [0, 1], u0 ∈ D(Aα).

This estimate can be easily generalized to

‖
[
(zI −A)−1 −

m+1∑
k=1

Ak−1

zk

]
u0‖ = ‖ 1

zm+1
(zI −A)−1Am+1u0‖

=
1

|z|m+1
‖A1−α(zI −A)−1Am+αu0‖ ≤ 1

|z|m+1

(1 +M)K

(1 + |z|)α ‖Am+αu0‖,

∀α ∈ [0, 1], u0 ∈ D(Am+α).

(2.32)

Thus, we get the following result which we will need below.

Theorem 2.4. Let u0 ∈ D(Am+α) for some m ∈ N and α ∈ [0, 1]; then the estimate
(2.32) holds true.

2.4 Integration path

There are many possibilities to define and to approximate functions of an operator
A. Let Γ be the boundary of a domain Σ in the complex plane containing the
spectrum of A and f̃(z) be an analytical function in Σ; then the Dunford-Cauchy
integral

f̃(A) =
1

2πi

∫
Γ

f̃(z)(zI − A)−1dz (2.33)

defines an operator-valued function f̃(A) of A provided that the integral converges
(see, e.g., [9]).

By a parametrizing of Γ = {z = ξ(s) + iη(s) : s ∈ (−∞,∞)}, one can
translate integral (2.33) into the integral

f̃(A) =

∫ ∞

−∞
F (s)ds (2.34)
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with

F (s) =
1

2πi
f̃(z)(zI −A)−1z′(s). (2.35)

Choosing various integration paths and using then various quadrature formu-
las, one can obtain various approximations of f̃(A) with desired properties (see,
e.g., [16, 17, 18, 20, 26, 30]). A comparison of some integration contours can be
found in [70].

It was shown in [8, 15, 16, 23, 56] that the spectrum of a strongly elliptic
operator in a Hilbert space that lies in a domain enveloped by a parabola defined
by the coefficients of the operator and the resolvent on and outside of the parabola
is estimated by

‖(zI −A)−1‖ ≤ M

1 +
√|z| (2.36)

with some positive constant M . Such operators are called strongly P-positive op-
erators. The paper [56] contains also examples of differential operators which are
strongly P-positive in such genuine Banach spaces as L1(0, 1) or L∞(0, 1). One of
the natural choices of the integration path for these operators is a parabola which
does not intersect the spectral parabola containing the spectrum of the operator.

Let

Γ0 = {z = ξ − iη : ξ = a0η
2 + b0, a0 > 0, b0 > 0, η ∈ (−∞,∞)} (2.37)

be the spectral parabola enveloping the spectrum of the operator A. In [16, 23],
it was shown how one can define the coefficients of an integration parabola by
the coefficients of the spectral parabola so that the integrand in (2.34) can be
analytically extended into a symmetric strip Dd of a width 2d around the real
axes, however this choice was rather complicated.

Below we propose another (simpler) method to define the integration parabo-
la through the spectral one.

We have to choose an integration parabola

ΓI = {z = ξ − iη : ξ = aIη
2 + bI , aI > 0, bI > 0, η ∈ (−∞,∞)} (2.38)

so that its top lies in (0, b0) and its opening is greater than the one of the spectral
parabola, i.e., aI < a0. Moreover, by changing η to η + iν, the set of parabolas

Γ(ν) = {z = ξ − iη :

ξ = aIη
2 + bI − aIν

2 + ν − iη(1− 2aIν), η ∈ (−∞,∞)}
= {z = ξ − iη̃ : ξ =

aI
(1− 2aIν)2

η̃2 + bI − aIν
2 + ν,

η̃ = (1 − 2aIν)η ∈ (−∞,∞)},

(2.39)

for |ν| < d must lie outside of the spectral parabola (only in this case one can
guarantee that the resolvent of A remains bounded). Note, that the substitution
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η̃ = (1 − 2aIν)η must be nonsingular for all |ν| < d, which yields aI < 1/(2d).
We choose d so that the top of the integration parabola coincides with the top
of the spectral one and the opening of the integration parabola is greater than
the opening of the spectral parabola for ν = d. For ν = −d, we demand that the
integration parabola lies outside of the spectral parabola and its top lies at the
origin. Thus, it must be ⎧⎪⎪⎨

⎪⎪⎩
aI

(1− 2aId)2
= a0,

bI − aId
2 + d = b0,

bI − aId
2 − d = 0.

(2.40)

It follows immediately from the last two equations that 2d = b0. From the first
equation

4d2a0a
2
I − aI(1 + 4a0d) + a0 = 0, (2.41)

after inserting d = b0/2 we get

aI =
1 + 2a0b0 ±

√
1 + 4a0b0

2a0b0
(2.42)

but only the root

aI =
1+ 2a0b0 −

√
1 + 4a0b0

2a0b0
=

2a0

1 + 2a0b0 +
√
1 + 4a0b0

(2.43)

satisfies the condition aI < 1/(2d) = 1/b0. Thus, the parameters of the integration
parabola from which the integrand can be analytically extended into the strip Dd

of the width
d = b0/2 (2.44)

are

aI =
1 + 2a0b0 −

√
1 + 4a0b0

2a0b0
=

2a0

1 + 2a0b0 +
√
1 + 4a0b0

,

bI =
aIb

2
0

4
+

b0
2
.

(2.45)

In the next section we will use an integration hyperbola which envelopes the
spectral parabola and provides uniform approximations of the operator exponen-
tial including t = 0.



Chapter 3

The first-order equations

This chapter deals with problems associated with differential equations of the first
order with an unbounded operator coefficient A in Banach space. The operator-
valued function e−tA (generated by A) plays an important role for these equations.
This function is called also an operator exponential. In section 3.1, we present
exponentially convergent algorithms for an operator exponential generated by a
strongly positive operator A in a Banach space X . These algorithms are based on
representations of e−tA by the Dunford-Cauchy integral along various paths en-
veloping the spectrum of A combined with a proper quadrature involving a short
sum of resolvents where the choice of the integration path effects dramatically de-
sired features of the algorithms. Parabola and hyperbola as integration paths are
analyzed and scales of estimates in dependence on the smoothness of initial data,
i.e., on the initial vector and the inhomogeneous right-hand side, are obtained.
One of the algorithms possesses an exponential convergence rate for the operator
exponential e−At for all t ≥ 0 including the initial point. This makes it possible to
construct an exponentially convergent algorithm for inhomogeneous initial value
problems. The algorithm admits a natural parallelization. It turns out that the re-
solvent must be modified in order to obtain numerically stable algorithms near the
initial point. The efficiency of the proposed method is demonstrated by numerical
examples.

Section 3.2 is devoted to numerical approximation of the Cauchy problem
for a first-order differential equation in Banach and Hilbert space with an oper-
ator coefficient A(t) depending on the parameter t. We propose a discretization
method with a high parallelism level and without accuracy saturation, i.e., the
accuracy adapts automatically to the smoothness of the solution. For analytical
solutions, the convergence rate is exponential. These results can be considered as
a development of parallel approximations of the operator exponential e−tA with a
constant operator A possessing the exponential accuracy.

In Section 3.3, we consider the Cauchy problem for a first-order nonlinear
equation with an operator coefficient in a Banach space. An exponentially con-
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vergent approximation to the solution is proposed. The algorithm is based on the
equivalent Volterra integral formulation including the operator exponential gen-
erated by the operator coefficient. The operator exponential is represented by the
Dunford-Cauchy integral along a hyperbola enveloping the spectrum of the oper-
ator coefficient and, thereafter, the involved integrals are approximated by using
Chebyshev interpolation and an appropriate Sinc quadrature. Numerical examples
are given which confirm theoretical results.

Section 3.4 is devoted to the first-order differential equation with an oper-
ator coefficient possessing a variable domain. A suitable abstract setting of the
initial value problem for such an equation is introduced for the case when both
the unbounded operator coefficient and its domain depend on the differentiation
variable t. A new exponentially convergent algorithm is proposed. The algorithm
is based on a generalization of the Duhamel integral for vector-valued functions.
The Duhamel-like technique makes it possible to transform the initial problem to
an integral equation and then approximate its solution with exponential accuracy.
The theoretical results are confirmed by examples associated with heat transfer
boundary value problems.

3.1 Exponentially convergent algorithms for the
operator exponential with applications to

inhomogeneous problems in Banach spaces

We consider the problem

du(t)

dt
+Au(t) = f(t), u(0) = u0, (3.1)

where A is a strongly positive operator in a Banach space X , u0 ∈ X is a given
vector, f(t) is a given, and u(t) is the unknown vector-valued function. A simple
example of a partial differential equation associated with the abstract setting (3.1)
is the classical inhomogeneous heat equation

∂u(t, x)

∂t
− ∂2u(t, x)

∂x2
= f(t, x)

with the corresponding boundary and initial conditions, where the operator A is
defined by

D(A) = {v ∈ H2(0, 1) : v(0) = 0, v(1) = 0},

Av = −d2v

dx2
for all v ∈ D(A).

The homogeneous equation

dT (t)

dt
+AT (t) = 0, T (0) = I, (3.2)
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where I is the identity operator and T (t) is an operator-valued function that defines
the semi-group of bounded operators T (t) = e−At generated by A. This operator
is called also the operator exponential or the solution operator of the homogeneous
equation (3.1). Given the solution operator, the initial vector u0, and the right-
hand side f(t), the solution of the homogeneous initial value problem (3.1) can be
represented by

u(t) = uh(t) = T (t)u0 = e−Atu0 (3.3)

and the solution of the inhomogeneous problem by

u(t) = e−Atu0 + up(t) (3.4)

with

up(t) =

∫ t

0

e−A(t−ξ)f(ξ)dξ. (3.5)

We can see that an efficient approximation of the operator exponential is needed
to get an efficient discretization of both (3.3) and (3.4). Further, having in mind
a discretization of the second summand in (3.4) by a quadrature sum, we need
an efficient approximation of the operator exponential for all t ≥ 0 including the
point t = 0.

3.1.1 New algorithm with integration along a parabola and a scale
of estimates

Let A be a strongly P-positive operator and

u0 ∈ D(Aα), α > 0. (3.6)

In this case due to (2.32) with m = 0, we have

‖[(zI −A)−1 − 1

z
I]u0‖ = ‖1

z
(zI −A)−1Au0‖

=
1

|z|‖A
1−α(zI −A)−1Aαu0‖ ≤ 1

|z| ‖A
1−α(zI −A)−1‖‖Aαu0‖.

(3.7)

The resolvent of the strongly P-positive operator is bounded on and outside the
spectral parabola, more precisely, we have

‖(zI −A)−1w‖ ≤ M

1 +
√|z| ‖w‖,

‖A(zI −A)−1w‖ ≤
(
1 +

M |z|
1 +

√|z|

)
‖w‖ ≤ (1 +M

√
|z|)‖w‖.

(3.8)

We suppose that our operator A is strongly positive (note that a strongly ellip-
tic operator is both strongly P-positive [15] and strongly positive). We can use
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Theorem 4 from [35] and get

‖A1−α(zI −A)−1w‖ ≤ K(α)(1 +M
√
|z|)1−α

(
M

1 +
√|z|

)α

‖w‖

≤ max (1,M)K(α)
‖w‖

(1 +
√|z|)2α−1

(3.9)

with a constant K(α) independent of α, where K(1) = K(0) = 1. The last in-
equality and (3.6) implies

‖[(zI −A)−1 − 1

z
I]u0‖ ≤ max (1,M)K(α)

‖Aαu0‖
|z|α+1/2

(3.10)

which justifies the following representation of the solution of the homogeneous
problem (3.1) for the integration path above:

u(t) = e−Atu0 =
1

2πi

∫
ΓI

e−tz(zI −A)−1u0dz

=
1

2πi

∫
ΓI

e−tz[(zI −A)−1 − 1

z
I]u0dz

(3.11)

provided that α > 0. After parametrizing the integral we get

u(t) =

∫ ∞

−∞
F (t, η)dη (3.12)

with

F (t, η) = − 1

2πi
(2aIη − i)e−t(aIη

2+bI−iη)

×
{
[(aIη

2 + bI − iη)I −A]−1 − 1

aIη2 + bI − iη
I

}
u0.

(3.13)

Following [62], we construct a quadrature rule for the integral in (2.34) by
using the Sinc approximation on (−∞,∞). For 1 ≤ p ≤ ∞, we introduce the
family Hp(Dd) of all vector-valued functions, which are analytic in the infinite
strip Dd,

Dd = {z ∈ C : −∞ < �z < ∞, |�z| < d}, (3.14)

such that if Dd(ε) is defined for 0 < ε < 1 by

Dd(ε) = {z ∈ C : |�z| < 1/ε, |�z| < d(1− ε)}, (3.15)

then for each F ∈ Hp(Dd) there holds ‖F‖Hp(Dd) < ∞ with

‖F‖Hp(Dd) =

⎧⎪⎨
⎪⎩
lim
ε→0

(

∫
∂Dd(ε)

‖F(z)‖p|dz|)1/p if 1 ≤ p < ∞,

lim
ε→0

sup
z∈∂Dd(ε)

‖F(z)‖ if p = ∞.
(3.16)
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Let

S(k, h)(x) =
sin [π(x − kh)/h]

π(x− kh)/h
(3.17)

be the k-th Sinc function with step size h, evaluated in x. Given F ∈ Hp(Dd),
h > 0 and positive integer N , let us use the notation

I(F) =

∫
R

F(x)dx, TN (F , h) = h

N∑
k=−N

F(kh),

T (F , h) = h

∞∑
k=−∞

F(kh),

C(F , h) =

∞∑
k=−∞

F(kh)S(k, h),

ηN (F , h) = I(F)− TN(F , h), η(F , h) = I(F)− T (F , h).

Applying the quadrature rule TN with the vector-valued function (3.13) we
obtain

u(t) = exp(−tA)u0 ≈ uN (t) = expN (−tA)u0 = h

(
N∑

k=−N

F (kh, t)

)
u0 (3.18)

for integral (3.12).

Further, we show that this Sinc-quadrature approximation with a proper
choice of h converges exponentially provided that the integrand can be analytically
extended into a strip Dd. This property of the integrand depends on the choice of
the integration path.

Taking into account (3.10) we get

‖F (t, η)‖ ≤ c
e−t(aIη

2+bI )

(1 + |η|)2α ‖Aαu0‖, ∀t ≥ 0, α > 1/2 (3.19)

(the condition α > 1/2 guarantees the convergence of the integral (3.12)). The
analysis of the integration parabola implies that the vector-valued function F (η, t)
can be analytically extended into the strip Dd and belongs to the class H1(Dd)
with respect to η, with the estimate

‖F (t, z)‖H1(Dd) ≤ c
e−bI t

2α− 1
‖Aαu0‖, ∀t ≥ 0, α > 1/2. (3.20)

For our further analysis of the error ηN (F , h) = exp(−tA)u0− expN (−tA)u0

of the quadrature rule (3.18) we use the following lemma from [30].
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Lemma 3.1. For any vector-valued function f ∈ H1(Dd), there holds

η(f̃ , h) =
i

2

∫
R

{
f̃(ξ − id−)e−π(d+iξ)/h

sin [π(ξ − id)/h]
− f̃(ξ + id−)e−π(d−iξ)/h

sin [π(ξ + id)/h]

}
dξ, (3.21)

which yields the estimate

‖η(f̃ , h)‖ ≤ e−πd/h

2 sinh(πd/h)
‖f̃‖H1(Dd). (3.22)

If, in addition, f̃ satisfies on R the condition

‖f̃(x)‖ ≤ ce−βx2

(1 + x2)σ
, 1/2 < σ ≤ 1,

c, β > 0,

(3.23)

then

‖ηN(f̃ , h)‖ ≤ 2c

2σ − 1

{
2σ

exp(−πd/h)

sinh(πd/h)
+

exp
(−β(Nh)2

)
(Nh)2σ−1

}
. (3.24)

Taking into account the estimates (3.19), (3.20) and setting F for f̃ , α for σ
and taI for β we get the estimate

‖ηN (F, h)‖ = ‖exp(−tA)u0 − expN (−tA)u0‖

≤ c
e−bI t

2α− 1

{
2α

exp(−πd/h)

sinh(πd/h)
+

exp
(−aIt(Nh)2

)
(Nh)2α−1

}
‖Aαu0‖.

(3.25)

Equalizing the exponents by setting πd/h = aI(Nh)2, we get the step-size of the
quadrature

h = 3
√
πd/(aIN2). (3.26)

Because sinh (πd/h) ≥ eπd/h/2, πd/h = (
√
aIπdN)2/3, Nh = 3

√
πdN/aI ,

(Nh)2α−1 = (πdN/aI)
(2α−1)/3 and d = b0 we get the following scale of estimates

for the algorithm (3.18):

‖ηN (F , h)‖ = ‖exp(−tA)u0 − expN (−tA)u0‖ (3.27)

≤ c
e−bIt

2α− 1

{
4α exp(−2(

√
aIπb0)

2/3N2/3) +
exp

(−aIt(πb0N/aI)
2/3

)
(πb0N/aI)(2α−1)/3

}
‖Aαu0‖,

with the step-size (3.26). Thus, we have proven the following statement.



3.1. Algorithms for the operator exponential 29

Theorem 3.2. Let A be a strongly P-positive operator in a Banach space X with
the resolvent satisfying (2.36) and with the spectral parabola given by (2.37). Then
for the Sinc approximation (3.18) we have the estimate (3.27), i.e.,

‖exp(−tA)u0 − expN (−tA)u0‖ =

{
O(e−c1N

2/3

) if t > 0,

O(N (2α−1)/3) if t = 0,
(3.28)

provided that u0 ∈ D(Aα), α > 1/2.

Remark 3.3. The above developed algorithm possesses the two sequential levels of
parallelism: one can compute all û(zp) at Step 2 and the solution u(t) = e−Atu0

at different time values (t1, t2, . . . , tM ).

3.1.2 New algorithm for the operator exponential with an
exponential convergence estimate including t = 0

We consider the following representation of the operator exponential:

e−Atu0 =
1

2πi

∫
ΓI

e−zt(zI −A)−1u0dz. (3.29)

Our aim is to approximate this integral by a quadrature with exponential conver-
gence rate including t = 0. It is very important to keep in mind the representation
of the solution of the inhomogeneous initial value problem (3.1) by

u(t) = e−Atu0 +

∫ t

0

e−A(t−ξ)f̃(ξ)dξ, (3.30)

where the argument of the operator exponential under the integral becomes zero
for ξ = t. Taking into account (2.27) for m = 0 one can see that we can use the
representation

e−Atu0 =
1

2πi

∫
ΓI

e−zt

[
(zI −A)−1 − 1

z
I

]
u0dz (3.31)

instead of (3.29) (for t > 0 the integral from the second summand is equal to zero
due to the analyticity of the integrand inside of the integration path) and this
integral represents the solution of problem (3.1) for u0 ∈ D(Aα), α > 0. We call
the hyperbola

Γ0 = {z(ξ) = a0 cosh ξ − ib0 sinh ξ : ξ ∈ (−∞,∞), b0 = a0 tanϕ} (3.32)

the spectral hyperbola, which has a path through the vertex (a0, 0) of the spectral
angle and possesses asymptotes which are parallel to the rays of the spectral angle
Σ (see Fig. 3.1). We choose as an integration path the hyperbola

ΓI = {z(ξ) = aI cosh ξ − ibI sinh ξ : ξ ∈ (−∞,∞)}. (3.33)
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Figure 3.1: Spectral characteristics of the operator A.

The parametrization of the integral (3.31) by (3.33) implies

u(t) =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ (3.34)

with

F(t, ξ) = FA(t, ξ)u0,

FA(t, ξ) = e−z(ξ)t(aI sinh ξ − ibI cosh ξ)

[
(z(ξ)I − A)−1 − 1

z(ξ)
I

]
.

(3.35)

To estimate ‖F(t, ξ)‖, we need an estimate for

|z′(ξ)/z(ξ)| = (aI sinh ξ − ibI cosh ξ)/(aI cosh ξ − ibI sinh ξ)

=

√
(a2I tanh

2 ξ + b2I)/(b
2
I tanh

2 ξ + a2I).

The quotient under the square root takes its maximum at v = 0 as a function of
v = tanh2 ξ ∈ [0, 1], since the sign of the first derivative coincides with the sign of
a4I − b4I = −a40 sinϕ/ cos

4 ϕ, i.e., we have

|z′(ξ)/z(ξ)| ≤ bI/aI . (3.36)
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Supposing u0 ∈ D(Aα), 0 < α < 1, using (3.36) and Theorem 2.4, we can estimate
the integrand on the real axis ξ ∈ R for each t ≥ 0 by

‖F(t, ξ)‖ ≤ e−aIt cosh ξ
(1 +M)K

√
a2I sinh

2 ξ + b2I cosh
2 ξ

(a2I cosh
2 ξ + b2I sinh

2 ξ)(1+α)/2
‖Aαu0‖

≤ (1 +M)K
bI
aI

e−aI t cosh ξ

(a2I cosh
2 ξ + b2I sinh

2 ξ)α/2
‖Aαu0‖

≤ (1 +M)K
bI
aI

(
2

aI

)α

e−aIt cosh ξ−α|ξ|‖Aαu0‖, ξ ∈ R, t ≥ 0.

(3.37)

Let us show that the function F(t, ξ) can be analytically extended with respect to
ξ into a strip of a width d1. After changing ξ to ξ + iν, the integration hyperbola
ΓI is translated to the curve

Γ(ν) = {z(w) = aI cosh (ξ + iν)− ibI sinh (ξ + iν) : ξ ∈ (−∞,∞)}
= {z(w) = a(ν) cosh ξ − ib(ν) sinh ξ : ξ ∈ (−∞,∞)} (3.38)

with

a(ν) = aI cos ν + bI sin ν =
√
a2I + b2I sin (ν + φ/2),

b(ν) = bI cos ν − aI sin ν =
√
a2I + b2I cos (ν + φ/2),

cos
φ

2
=

bI√
a2I + b2I

, sin
φ

2
=

aI√
a2I + b2I

.

(3.39)

The analyticity of the function F(t, ξ + iν), |ν| < d1/2 can be violated when the
resolvent becomes unbounded. Thus, we must choose d1 in such a way as to provide
that the hyperbola Γ(ν) for ν ∈ (−d1/2, d1/2) remains in the right half-plane of
the complex plane, and, in addition, when ν = −d1/2 Γ(ν) coincides with the
imaginary axis, for ν = d1/2, Γ(ν) coincides with the spectral hyperbola, and for
all ν ∈ (−d1/2, d1/2), Γ(ν) does not intersect the spectral sector. Then we choose
the hyperbola Γ(0) as the integration hyperbola.

This implies the following system of equations⎧⎪⎨
⎪⎩
aI cos (d1/2) + bI sin (d1/2) = a0,

bI cos (d1/2)− aI sin (d1/2) = a0 tanϕ,

aI cos (−d1/2) + bI sin (−d1/2) = 0,

(3.40)

from which we get ⎧⎪⎨
⎪⎩
2aI cos (d1/2) = a0,

bI = a0 sin (d1/2) + b0 cos (d1/2),

aI = a0 cos (d1/2)− b0 sin (d1/2).

(3.41)
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Eliminating aI from the first and the third equations of (3.41) we get a0 cos d1 =
b0 sin d1, i.e., d1 = π/2 − ϕ with cosϕ = a0√

a2
0+b20

, sinϕ = b0√
a2
0+b20

. Thus, if we

choose the parameters of the integration hyperbola as follows:

aI = a0 cos
(π
4
− ϕ

2

)
− b0 sin

(π
4
− ϕ

2

)

=
√
a20 + b20 cos

(π
4
+

ϕ

2

)
= a0

cos
(
π
4 + ϕ

2

)
cosϕ

,

bI = a0 sin
(π
4
− ϕ

2

)
+ b0 cos

(π
4
− ϕ

2

)

=
√
a20 + b20 sin

(π
4
+

ϕ

2

)
= a0

sin
(
π
4 + ϕ

2

)
cosϕ

,

(3.42)

the vector-valued function F(t, w) is analytic with respect to w = ξ + iν in the
strip

Dd1 = {w = ξ + iν : ξ ∈ (−∞,∞), |ν| < d1/2}, (3.43)

for all t ≥ 0. Now, estimate (3.37) takes the form

‖F(t, ξ)‖ ≤ C(ϕ, α)e−aI t cosh ξ−α|ξ|‖Aαu0‖
≤ C(ϕ, α)e−α|ξ|‖Aαu0‖, ξ ∈ R, t ≥ 0

(3.44)

with

C(ϕ, α) = (1 +M)K tan
(π
4
+

ϕ

2

)( 2 cosϕ

a0 cos
(
π
4 + ϕ

2

)
)α

. (3.45)

Comparing (3.42) with (3.39), we get φ = π/2− ϕ and

a(ν) = aI cos ν + bI sin ν =
a0 cos (π/4 + ϕ/2− ν)

cosϕ
,

b(ν) = bI cos ν − aI sin ν =
a0 sin (π/4 + ϕ/2− ν)

cosϕ
,

0 < a(ν) < a0, a0 tanϕ < b(ν) <
a0

cosϕ
.

(3.46)

Choosing d = d1 − δ for an arbitrarily small positive δ and for w ∈ Dd gets the
estimate (compare with (3.37))
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‖F(t, w)‖ ≤ e−a(ν)t cosh ξ
(1 +M)K

√
a2(ν) sinh2 ξ + b2(ν) cosh2 ξ

(a2(ν) cosh2 ξ + b2(ν) sinh2 ξ)(1+α)/2
‖Aαu0‖

≤ (1 +M)K
b(ν)

a(ν)

e−a(ν)t cosh ξ

(a2(ν) cosh2 ξ + b2(ν) sinh2 ξ)(α/2)
‖Aαu0‖

≤ (1 +M)K
b(ν)

a(ν)

(
2

a(ν)

)α

e−a(ν)t cosh ξ−α|ξ|‖Aαu0‖

≤ (1 +M)K tan
(π
4
+

ϕ

2
− ν

)( 2 cosϕ

a0 cos (π/4 + ϕ/2− ν)

)α

× e−α|ξ|‖Aαu0‖, ∀w ∈ Dd.

(3.47)

Accounting for the fact that the integrals over the vertical sides of the rectangle
Dd(ε) vanish as ε → 0 the previous estimate implies

‖F(t, ·)‖H1(Dd) ≤ ‖Aαu0‖[C−(ϕ, α, δ) + C+(ϕ, α, δ)]

∫ ∞

−∞
e−α|ξ|dξ

= C(ϕ, α, δ)‖Aαu0‖
(3.48)

with

C(ϕ, α, δ) =
2

α
[C+(ϕ, α, δ) + C−(ϕ, α, δ)],

C±(ϕ, α, δ) = (1 +M)K tan

(
π

4
+

ϕ

2
± d

2

)(
2 cosϕ

a0 cos
(
π
4 + ϕ

2 ± d
2

)
)α

.
(3.49)

Note that the constant C(ϕ, α, δ) tends to ∞ as α → 0 or δ → 0, ϕ → π/2.
We approximate integral (3.34) by the Sinc-quadrature

uN (t) =
h

2πi

N∑
k=−N

F(t, z(kh)) (3.50)

with the error estimate

‖ηN (F , h)‖ = ‖u(t)− uN(t)‖

≤ ‖u(t)− h

2πi

∞∑
k=−∞

F(t, z(kh))‖+ ‖ h

2πi

∑
|k|>N

F(t, z(kh))‖

≤ 1

2π

e−πd/h

2 sinh (πd/h)
‖F‖H1(Dd)

+
C(ϕ, α)h‖Aαu0‖

2π

∞∑
k=N+1

exp[−aIt cosh (kh)− αkh]

≤ c‖Aαu0‖
α

{
e−πd/h

sinh (πd/h)
+ exp[−aIt cosh ((N + 1)h)− α(N + 1)h]

}

(3.51)
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where the constant c does not depend on h,N, t. Equalizing both exponentials for
t = 0 by

2πd

h
= α(N + 1)h (3.52)

we get

h =

√
2πd

α(N + 1)
(3.53)

for the step-size. With this step-size, the error estimate

‖ηN (F , h)‖ ≤ c

α
exp

(
−
√

πdα

2
(N + 1)

)
‖Aαu0‖ (3.54)

holds true with a constant c independent of t, N . In the case t > 0 the first
summand in the expression of exp[−aIt cosh ((N + 1)h)− α(N + 1)h] of (3.51)
contributes mainly to the error order. By setting h = c1 lnN/N with a positive
constant c1, we have an error

‖ηN (F , h)‖ ≤ c
[
e−πdN/(c1 lnN) + e−c1aI tN/2−c1α lnN

]
‖Aαu0‖, (3.55)

for a fixed t, where c is a positive constant. Thus, we have proved the following
result.

Theorem 3.4. Let A be a densely defined strongly positive operator and u0 ∈
D(Aα), α ∈ (0, 1), then the Sinc-quadrature (3.50) represents an approximate
solution of the homogeneous initial value problem (3.1) (i.e., u(t) = e−Atu0) and
possesses a uniform (with respect to t ≥ 0) exponential convergence rate with es-

timate (3.51). This estimate is of the order O(e−c
√
N ) uniformly in t ≥ 0 for

h = O(1/
√
N) and of the order O (

max
{
e−πdN/(c1 lnN), e−c1aI tN/2−c1α lnN

})
for

each fixed t > 0 provided that h = c1 lnN/N .

Remark 3.5. Two other algorithms of the convergence order O(e−c
√
N ) uniformly

in t ≥ 0 was proposed in [18, Remark 4.3 and (2.41)]. One of them used a sum of
resolvents applied to u0 provided that the operator coefficient is bounded. Another
one was based on the representation

u(t) =

∫
Γ

z−σe−zt(zI −A)−1Aσu0 (3.56)

valid for u0 ∈ D(Aσ), σ > 1. Approximating the integral (after parametrizing Γ)
by a Sinc-quadrature, one gets a short sum of resolvents applied to Aσu0 ([18, see
(2.41)], [68]). The last vector must be computed first, where σ = 2 is the common
choice. It is easy to see that, for u0 ∈ D(Aσ), both representations (3.56) and
(3.31) are, in fact, equivalent, although the orders of computational stages (i.e.,
the algorithms) are different depending on the integral representation in use. But
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in the case σ < 1, the convergence theory for (3.56) was not presented in [18, 68].
Our representation (3.31) produces a new approximation through a short sum of
modified resolvents (zI−A)−1−z−1I applied to u0 with the convergence properties
given by Theorem 3.4. An approximation of the accuracy order O(e−cN/ lnN ) for
each fixed t > 0 to the operator exponential generated by a strongly P-positive
operator and using a short sum of the usual resolvents was recently proposed in
[19].

Remark 3.6. Note that taking (zI −A)−1 in (3.31) instead of (zI −A)−1 − 1
z I we

obtain a difference given by

DI(t) = − 1

2πi

∫
ΓI

e−zt 1

z
u0dz. (3.57)

For the integration path ΓI and t = 0, this difference can be calculated analytically.
Actually, taking into account that the real part is an odd function and the integral
of it in the sense of Cauchy is equal to zero, we further get

DI(0) = − 1

2πi
P.V.

∫
ΓI

1

z
u0dz = − 1

2π

∫ ∞

−∞

aIbIdξ

a2I cosh
2 ξ + bI sinh

2 ξ
u0

=
aIbI
2π

∫ ∞

−∞

d(tanh ξ)

a2I + b2I tanh
2 ξ

u0 =
1

π
arctan

bI
aI

u0 =
1

π

(π
4
+

ϕ

2

)
u0

(3.58)

for the integral of the imaginary part, where the factor in the front of u0 is less
than 1/2. It means that one can expect a large error for sufficiently small t by
using (zI −A)−1 instead of (zI −A)−1− 1

z I in (3.31). This point can be observed
in the next example. Note that for t > 0, integral (3.57) is equal to 0 due to the
analyticity of the integrand inside of the integration path.

Example 3.7. Let us choose a0 = π2, ϕ = 0.8π/2, then Table 3.1 gives the values
of ‖DI(t)‖/‖u0‖ for various t.

t ‖DI(t)‖/‖u0‖
0 0.45

0.1 · 10−8 0.404552
0.1 · 10−7 0.081008
0.1 · 10−6 0.000257
0.1 · 10−5 0.147153 · 10−6

Table 3.1: The unremovable error obtained by using the resolvent instead of (zI−
A)−1 − 1

z I.

3.1.3 Exponentially convergent algorithm II

Figure 3.2 shows the behavior of the integrand F(t, ξ) in (3.34) with the operator

A defined by D(A) = {v(x) : v ∈ H2(0, 1), v(0) = v(1) = 0}, Au = − d2u
dx2 .
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Figure 3.2: The behavior of the integrand F(t, ξ) in (3.34).

One can observe that the integrand is concentrated on a small finite interval and
decays rapidly outside of this interval. This fact can be a cause for slow con-
vergence of the previous algorithm for not large N . In this section we construct
another exponentially convergent quadrature which accounts for the behavior of
the integrand.

Due to the fact that the integrand exponentially decays on the infinite inter-
val, it is reasonable to use an exponentially convergent quadrature rule on a finite
interval, where the integrand is mostly concentrated, and to estimate the residual
part. We represent integral (3.34) in the form

u(t) =
1

2πi

∫ ∞

−∞
F(t, ξ)dξ = I1(t) + I2(t) (3.59)

with

I1(t) =
1

2πi

∫ β

−β

F(t, ξ)dξ,

I2(t) =
1

2πi

∫ −β

−∞
F(t, ξ)dξ +

1

2πi

∫ ∞

β

F(t, ξ)dξ.

(3.60)

Using estimate (3.45) gets
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∥∥∥∥‖Aαu0‖
2πi

∫ ∞

β

F(t, ξ)dξ

∥∥∥∥ ≤ ‖Aαu0‖
2π

(1 +M)K tan
(π
4
+

ϕ

2

)

×
(

2√
a20 + b20 cos

(
π
4 + ϕ

2

)
)α ∫ ∞

β

e−
√

a2
0+b20 cos (π

4 +ϕ
2 )t cosh ξ−α|ξ|dξ

≤ C1(ϕ, α)‖Aαu0‖e−
√

a2
0+b20 cos (π

4 +ϕ
2 )t cosh β

∫ ∞

β

e−α|ξ|dξ

≤ C1(ϕ, α)‖Aαu0‖e−
√

a2
0+b20 cos (π

4 +ϕ
2 )t cosh βe−α|β|

(3.61)

with the constant

C1(ϕ, α) =
(1 +M)K

2πα
tan

(π
4
+

ϕ

2

)( 2√
a20 + b20 cos

(
π
4 + ϕ

2

)
)α

independent of β. This constant tends to ∞ if α → 0 or ϕ → π/2. Analogously,
one gets

‖ 1

2πi

∫ −β

−∞
F(t, ξ)‖ ≤ C1(ϕ, α)‖Aαu0‖e−

√
a2
0+b20 cos (π

4 +ϕ
2 )t cosh βe−α|β|, (3.62)

which yields the estimate

‖I2‖ ≤ 2C1(ϕ, α)‖Aαu0‖e−
√

a2
0+b20 cos (π

4 +ϕ
2 )t cosh βe−α|β|. (3.63)

Following [62] let us define the eye-shaped region (see Fig. 3.3)

D = D2
d =

{
z ∈ C :

∣∣∣∣arg
(
z + β

z − β

)∣∣∣∣ < d
}

(3.64)

for d ∈ (0, π) and the class Lκ,μ(D) of all vector-valued functions holomorphic in
D which additionally satisfy the inequality

‖F (z)‖ ≤ c|z + β|κ−1|z − β|μ−1 (3.65)

with some positive real constants c, κ, μ.
In the previous section, we have shown that F(t, ξ) can be analytically ex-

tended into the strip Dd of width 2d which is symmetric with respect to the real
axis. The equation of the boundary of the eye-shaped region in Cartesian coordi-
nates is 2βy

x2+y2−β2 = ± tan d1. For x = 0, the maximal value of y, which remains

in the analyticity region, is y = d and we get the equation 2βd
d2−β2 = ± tan d1 for

the maximal value of d1 implying

d1 � d/β (3.66)

for sufficiently large β.
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Figure 3.3: The eye-shaped region.

Given N and a function F (ξ) ∈ Lκ,μ, which can be analytically extended
into an eye-shaped domain D2

d1
, let us define (see [62])

ε = min (κ, μ), δ = max (κ, μ),

h =

(
2πd

εn

)1/2

,

Ml =

{
N if ε = κ,

[μN/κ] otherwise,
Mu =

{
[κN/μ] if ε = κ,

N otherwise.

(3.67)

Then ∥∥∥∥∥
∫ β

−β

F (ξ)dξ − 2βh

Mu∑
−Ml

ekh

(1 + ekh)2
F (zk)

∥∥∥∥∥ ≤ ce−
√
2πd1εN , (3.68)

where the nodes are zk = −β+βekh

1+ekh .
Using this quadrature and taking into account that F(t, ξ) ∈ L1,1(D) (with

respect to ξ) we get the following Sinc-quadrature approximation for I1:

I1(t) ≈ I1,N (t) =
2βh

2πi

N∑
−N

ekh

(1 + ekh)2
F(t, zk),

h =

(
2πd1
N

)1/2
(3.69)

with the approximation error

‖ηN,1(t)‖ ≤ c‖Aαu0‖e−
√
2πd1N . (3.70)
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Setting

u(t) = e−Atu0 ≈ I1(t) (3.71)

we obtain the full approximation error

‖u(t)− I1,N‖ = ‖e−Atu0 − I1,N‖ ≤ ‖ηN,1‖+ ‖I2(t)‖
≤ c‖Aαu0‖(e−

√
2πd1N + e−

√
a2
0+b20 cos (π

4 +ϕ
2 )t cosh βe−α|β|).

(3.72)

Equating the exponents and taking into account (3.66) we get that h =
(

2πd
N4/3

)1/2
and

‖e−Atu0 − I1,N (t)‖ ≤ c‖Aαu0‖e−c1N
1/3

(3.73)

provided

β � N1/3 (3.74)

Example 3.8. We consider problem (3.1) with u0 = (1− x)x2 and the operator A

defined by D(A) = {v(x) : v ∈ H2(0, 1), v(0) = v(1) = 0}, Au = − d2u
dx2 . It is easy

to see that u0 ∈ D(A1) and the exact solution is given by

u(t, x) = − 4

π3

∞∑
1

(2(−1)k + 1

k3
e−π2k2t sin (πkx).

One can show that

(zI −A)−1u0 − u0/z =
1

z
(zI −A)−1Au0 (3.75)

=
6x− 2

z2
− cos [

√
z(1/2− x)]

z2 cos (
√
z/2)

+ 3
sin [

√
z(1/2− x)]

z2 sin (
√
z/2)

.

Table 3.2 gives the solution computed by the algorithm (3.50) with h =
√
2π/N

(the first column) and by algorithm (3.71) with h =
√
2π/N4/3 (the second col-

umn). The exact solution is u(0, 1/2) = u0(1/2) = 1/8. This example shows that,
even though algorithm (3.50) is better for sufficiently large N , the algorithm (3.71)
can be better for relatively small N . Besides, the table confirms the exponential
convergence of both algorithms.

3.1.4 Inhomogeneous differential equation

In this section, we consider the solution of the inhomogeneous problem (3.1)

u(t) = uh(t) + up(t), (3.76)

where

uh(t) = e−Atu0, up(t) =

∫ t

0

e−A(t−s)f(s)ds. (3.77)
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N A1 A2
8 0.147319516168 0.121686777535
16 0.131006555144 0.124073586590
32 0.125894658654 0.124809057018
64 0.125055464496 0.124952849785
128 0.125000975782 0.124995882473
256 0.125000002862 0.124999802171

Table 3.2: The solution for t = 0, x = 1/2 by the algorithms (3.50) (A1) and
(3.71) (A2).

Note, that an algorithm for convolution integrals like the ones from previous
sections was described (without theoretical justification) in [62] based on the Sinc
quadratures. If the Laplace transform of f(t) is known and is sectorial, then one
can use an algorithm based on inversion of the Laplace transform of convolution
[48]. In the case when the Laplace transform of f(t) is not known we propose in
this section a discretization different from [62] and [48].

Using representation (3.31) of the operator exponential gives

up(t) =

∫ t

0

1

2πi

∫
ΓI

e−z(t−s)[(zI −A)−1 − 1

z
I]f(s)dzds

=
1

2πi

∫
ΓI

[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]∫ t

0

e−z(ξ)(t−s)f(s)dsz′(ξ)dξ,

z(ξ) = aI cosh ξ − ibI sinh ξ.

(3.78)

Replacing the first integral by quadrature (3.50) we get

up(t) ≈ uap(t) =
h

2πi

N∑
k=−N

z′(kh)
[
(z(kh)I −A)−1 − 1

z(kh)
I

]
fk(t) (3.79)

with

fk(t) =

∫ t

0

e−z(kh)(t−s)f(s)ds, k = −N, . . . , N. (3.80)

To construct an exponentially convergent quadrature for these integrals we change
the variables by

s =
t

2
(1 + tanh ξ) (3.81)

and get

fk(t) =

∫ ∞

−∞
Fk(t, ξ)dξ, (3.82)

instead of (3.80), where

Fk(t, ξ) =
t

2 cosh2 ξ
exp[−z(kh)t(1− tanh ξ)/2]f(t(1 + tanh ξ)/2). (3.83)
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The image of the strip 
t=10, nu=Pi/6
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Figure 3.4: The image of the strip for t = 10, ν = π/6.

Note that equation (3.81) with the complex variables z = ξ + iν and w = u + iv
represents the conformal mapping w = ψ(z) = t[1 + tanh z]/2, z = φ(w) =
1
2 ln

t−w
w of the strip Dν onto the domain Aν (compare with the domain D2

ν in
[62]). The integrand can be estimated on the real axis as

‖Fk(t, ξ)‖ ≤ t

2 cosh2 ξ
exp[−aI cosh (kh)t(1 − tanh ξ)/2]

× ‖f(t(1 + tanh ξ)/2)‖ ≤ 2te−2|ξ|‖f(t(1 + tanh ξ)/2)‖.
(3.84)

Lemma 3.9. Let the right-hand side f(t) in (3.1) for t ∈ [0,∞] be analytically
extended into the sector Σf = {ρeiθ1 : ρ ∈ [0,∞], |θ1| < ϕ} and for all complex
w ∈ Σf we have

‖f(w)‖ ≤ ce−δ|�w| (3.85)

with δ ∈ (0,
√
2a0]; then the integrand Fk(t, ξ) can be analytically extended into

the strip Dd1 , 0 < d1 < ϕ/2 and it belongs to the class H1(Dd1) with respect to ξ,
where a0, ϕ are the spectral characterizations (2.23) of A.

Proof. Let us investigate the domain in the complex plane for which the function
F(t, ξ) can be analytically extended to the real axis ξ ∈ R. Replacing ξ with ξ+iν,
ξ ∈ (−∞,∞), |ν| < d1, in the integrand we get

tanh (ξ + iν) =
sinh ξ cos ν + i cosh ξ sin ν

cosh ξ cos ν + i sinh ξ sin ν
=

sinh (2ξ) + i sin (2ν)

2(cosh2 ξ − sin2 ν)
,

1± tanh (ξ + iν) = q±r + iq±i

(3.86)
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Domain of Analiticity
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Figure 3.5: The domains of the analyticity of the integrand for t = 3, 5, 10, ν =
π/6.

in particular for the argument of f , where

q±r (ξ, ν) = 1± sinh 2ξ

2(cosh2 ξ − sin2 ν)
=

e±2ξ + cos (2ν)

2(cosh2 ξ − sin2 ν)
,

q±i (ξ, ν) = ± sin 2ν

2(cosh2 ξ − sin2 ν)
.

(3.87)

The denominator in (3.86) is not equal to zero for all ξ ∈ (−∞,∞) provided that
ν ∈ (−π/2, π/2). It is easy to see that we have

0 ≤ q±r (ξ, ν) ≤ 2,

|q±i (ξ, ν)| ≤ | tan ν|, (3.88)

for ξ ∈ (−∞,∞), i.e., for each fixed t, ν and for ξ ∈ (−∞,∞), the parametric
curve ΓA(t) from (3.86) given by (in the coordinates μ, η)

μ =
t

2
q−r (ξ, ν),

η =
t

2
q−i (ξ, ν)

(3.89)

is closed and forms the angle with the real axis at the origin,

θ = θ(ν) = arctan | lim
ξ→∞

q−i (ξ, ν)/q
−
r (ξ, ν)| = arctan (tan (2ν)) = 2ν. (3.90)

For ν ∈ (−π/4, π/4) the domain A(t) inside of ΓA(t) lies in the right half-plane
and for t → ∞ fills the sector Σf (ν) = {z = ρeiψ : ρ ∈ (0,∞), ψ ∈ (−ν, ν), ν ∈
(0, π/4)} (see Fig. 3.5). Taking into account (3.42), we have
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‖F(t, ξ + iν)‖ ≤ t

2(cosh2 ξ − sin2 ν)

× |exp{− t[aI cosh (kh)− ibI sinh (kh)]

2

[
q+r + iq+i

]}|
× ‖f(t(1 + tanh (ξ + iν))/2)‖

≤ t

2(cosh2 ξ − sin2 ν)

× exp{− ta0[cosh (kh) cos (π/4 + ϕ/2)(cos (2ν) + e2ξ)]

2(cosh2 ξ − sin2 ν)

− ta0[sinh (kh) cos (π/4 + ϕ/2) sin (2ν)]

2(cosh2 ξ − sin2 ν)
}

× ‖f(t(1 + tanh (ξ + iν))/2)‖

(3.91)

(note that ν ∈ (−π/2, π/2) provides that cosh2 ξ−sin2 ν > 0 for all ξ ∈ (−∞,∞)).
Because we assume that

‖f(w)‖ ≤ ce−δ|�w|, δ > 0, (3.92)

omitting the second summand in the argument of the exponential and replacing
cosh (kh) by 1 gets the inequality

‖F(t, ξ + iν)‖ ≤ ct

2(cosh2 ξ − sin2 ν)
exp

{
t[−Δe2ξ − δe−2ξ/2]

2(cosh2 ξ − sin2 ν)

}
(3.93)

where
a0
2

≤ Δ = a0
cos (ϕ/2 + π/4)

cosϕ
=

a0√
2
√
1 + sinϕ

≤ a0√
2
. (3.94)

Due to assumption δ ≤ √
2a0, we have δ/2 ≤ Δ and the last estimate yields

‖F(t, ξ + iν)‖ ≤ ct

2(cosh2 ξ − sin2 ν)
exp{− tδ cosh (2ξ)

2(cosh2 ξ − sin2 ν)
}. (3.95)

Denoting w = tΔcosh (2ξ)/[2(cosh2 ξ−sin2 ν)] and using (3.94) and the inequality
we−w ≤ e−1 ∀ w ≥ 0 gives∫ ∞

−∞
‖F(t, ξ + iν)‖dξ

≤
∫ ∞

−∞

ct

2(cosh2 ξ − sin2 ν)
exp{− tδ cosh (2ξ)

2(cosh2 ξ − sin2 ν)
}dξ

=

∫ ∞

−∞

1

Δ cosh (2ξ)
we−wdξ ≤ c

eΔ

∫ ∞

−∞

1

cosh (2ξ)
dξ

≤ 2c

eΔ

∫ ∞

−∞
e−2|ξ|dξ =

2c

eΔ
≤ 4c

a0e
.

(3.96)

This estimate yields Fk(t, ξ) ∈ H1(Dd1) with respect to ξ. �
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The assumptions of Lemma 3.9 can be weakened when we consider problem
(3.1) on a finite interval (0, T ].

Lemma 3.10. Let the right-hand side f(t) in (3.1) for t ∈ [0, T ] be analytically
extended into the domain A(T ), then the integrand Fk(t, ξ) can be analytically
extended into the strip Dd1 , 0 < d1 < ϕ/2 and belongs to the class H1(Dd1) with
respect to ξ.

Proof. The proof is analogous to that of Lemma 3.9 but with constants depending
on T . �

Let the assumptions of Lemma 3.9 hold. Then we can use the following
quadrature rule to compute the integrals (3.82) (see [62], p. 144):

fk(t) ≈ fk,N (t) = h
N∑

p=−N

μk,p(t)f(ωp(t)), (3.97)

where

μk,p(t) =
t

2
exp{− t

2
z(kh)[1− tanh (ph)]}/ cosh2 (ph),

ωp(t) =
t

2
[1 + tanh (ph)], h = O(1/

√
N),

z(ξ) = aI cosh ξ − ibI sinh ξ.

(3.98)

Substituting (3.97) into (3.79), we get the following algorithm to compute an
approximation uap,N (t) to uap(t):

uap,N (t) =
h

2πi

N∑
k=−N

z′(kh)[(z(kh)I −A)−1 − 1

z(kh)
I]

× h
N∑

p=−N

μk,p(t)f(ωp(t)).

(3.99)

The next theorem characterizes the error of this algorithm.

Theorem 3.11. Let A be a densely defined strongly positive operator with the spec-
tral characterization a0, ϕ and the right-hand side f(t) ∈ D(Aα), α > 0 (for t ∈
[0,∞]) be analytically extended into the sector Σf = {ρeiθ1 : ρ ∈ [0,∞], |θ1| < ϕ}
where the estimate

‖Aαf(w)‖ ≤ cαe
−δα|�w|, w ∈ Σf (3.100)

with δα ∈ (0,
√
2a0] holds. Then algorithm (3.99) converges with the error estimate

‖EN(t)‖ = ‖up(t)− uap,N(t)‖ ≤ ce−c1
√
N (3.101)

uniformly in t with positive constants c, c1 depending on α, ϕ, a0 and independent
of N .
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Proof. Let us set

Rk(t) = fk(t)− fk,N (t). (3.102)

We get for the error

EN (t) = up(t)− uap,N (t) = r1,N (t) + r2,N (t), (3.103)

where

r1,N (t) = up(t)− uap(t),

r2,N (t) = uap(t)− uap,N (t).
(3.104)

Using estimate (3.54) (see also Theorem 3.4), we get the estimate

‖r1,N (t)‖

= ‖
∫ t

0

{ 1

2πi

∫ ∞

−∞
FA(t− s, ξ)dξ − h

2πi

N∑
k=−N

FA(t− s, kh)}f(s)ds‖

≤ c

α
exp

(
−
√

πdα

2
(N + 1)

)∫ t

0

‖Aαf(s)‖ds,

(3.105)

for r1,N (t), where FA(t, ξ) is the operator defined in (3.35). Due to (2.31), the
error r2,N (t) takes the form

‖r2,N(t)‖ = ‖ h

2πi

N∑
k=−N

z′(kh)[(z(kh)I −A)−1 − 1

z(kh)
I]Rk(t)‖

≤ h(1 +M)K

2π

N∑
k=−N

|z′(kh)|
|z(kh)|1+α

‖AαRk(t)‖.
(3.106)

The estimate (3.84) yields

‖AαF(t, ξ)‖ ≤ 2te−2|ξ|‖Aαf(
t

2
(1 + tanh ξ))‖. (3.107)

Due to Lemma 3.9 the assumption ‖Aαf(w)‖ ≤ cαe
−δα|�w| ∀w ∈ Σf guarantees

that Aαf(w) ∈ H1(Dd1) and AαFk(t, w) ∈ H1(Dd1). Then we are in a situation
analogous to that of Theorem 3.2.1, p. 144 from [62] with Aαf(w) instead of f .
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This implies

‖AαRk(t)‖ = ‖Aα(fk(t)− fk,N (t))‖

= ‖
∫ ∞

−∞
AαFk(t, ξ)dξ − h

∞∑
k=−∞

AαFk(t, kh)‖+ ‖h
∑
|k|>N

AαFk(t, kh)‖

≤ e−πd1/h

2 sinh (πd1/h)
‖Fk(t, w)‖H1(Dd1

)

+ h
∑
|k|>N

2te−2|kh|‖Aαf(
t

2
(1 + tanh kh))‖

≤ ce−2πd1/h‖Aαf(t, w)‖H1(Dd1
)

+ h
∑
|k|>N

2te−2|kh|cαexp{−δα
t

2
(1− tanh kh)}

≤ ce−c1
√
N ,

(3.108)

where positive constants cα, δα, c, c1 do not depend on t, N, k. Now, (3.106) takes
the form

‖r2,N (t)‖ =
h

2πi

N∑
k=−N

z′(kh)[(z(kh)I −A)−1 − 1

z(kh)
I]Rk(t)

≤ ce−c1
√
NSN

(3.109)

with

SN =
N∑

k=−N

h
|z′(kh)|

|z(kh)|1+α
.

Using the estimate (3.36) and

|z(kh)| =
√

a2I cosh
2 (kh) + b2I sinh

2 (kh)

≥ aI cosh (kh) ≥ aIe
|kh|/2,

(3.110)

the last sum can be estimated by

|SN | ≤ c√
N

N∑
k=−N

e−α|k/√N| ≤ c

∫ √
N

−√N

e−αtdt ≤ c/α. (3.111)

Taking into account (3.108), (3.111) we get from (3.109)

‖r2,N(t)‖ ≤ ce−c1
√
N . (3.112)

The assertion of the theorem follows now from (3.103), (3.105). �
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Example 3.12. We consider the inhomogeneous problem (3.1) with the operator
A defined by

D(A) = {u(x) ∈ H2(0, 1) : u(0) = u(1) = 0},
Au = −u′′(x) ∀u ∈ D(A).

(3.113)

The initial function is u0 = u(0, x) = 0 and the right-hand side f(t) is given by

f(t, x) = x3(1 − x)3
1− t2

(1 + t2)2
− 6t

1 + t2
x(1 − x)(5x2 − 5x+ 1). (3.114)

It is easy to see that the exact solution is u(t, x) = x3(1− x)3 t
1+t2 . The algorithm

(3.99) was implemented for t = 1, x = 1/2 in Maple 8 with Digits=16. Table 3.3
shows an exponential decay of the error εN = |u(1, 1/2)− uap,N (1)| with growing
N .

N εN
8 0.485604499
16 0.184497471
32 0.332658314 e-1
64 0.196729786 e-2
128 0.236757688 e-4
256 0.298766899 e-7

Table 3.3: The error of algorithm (3.99) for t = 0, x = 1/2.

3.2 Algorithms without accuracy saturation for
first-order evolution equations in Hilbert

and Banach spaces

3.2.1 Introduction

We consider the evolution problem

du

dt
+A(t)u = f(t), t ∈ (0, T ]; u(0) = u0, (3.115)

where A(t) is a densely defined closed (unbounded) operator with the domain
D(A) independent of t in a Banach space X , u0, u01 are given vectors and f(t)
is a given vector-valued function. We suppose the operator A(t) to be strongly
positive; i.e., there exists a positive constant MR independent of t such that, on
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the rays and outside a sector Σθ = {z ∈ C : 0 ≤ arg(z) ≤ θ, θ ∈ (0, π/2)}, the
following resolvent estimate holds:

‖(zI −A(t))−1‖ ≤ MR

1 + |z| . (3.116)

This assumption implies that there exists a positive constant cκ such that (see
[14], p. 103)

‖Aκ(t)e−sA(t)‖ ≤ cκs
−κ, s > 0, κ ≥ 0. (3.117)

Our further assumption is that there exists a real positive ω such that

‖e−sA(t)‖ ≤ e−ωs ∀s, t ∈ [0, T ] (3.118)

(see [54], Corollary 3.8, p. 12, for corresponding assumptions on A(t)). Let us also
assume that the following conditions hold true:

‖[A(t)−A(s)]A−γ(t)‖ ≤ L̃1,γ |t− s| ∀t, s, 0 ≤ γ ≤ 1, (3.119)

‖Aβ(t)A−β(s)− I‖ ≤ L̃β|t− s| ∀t, s ∈ [0, T ]. (3.120)

In addition, we can suppose that

A(t) =

mA∑
k=0

Akt
k, f(t) =

mf∑
k=0

fkt
k. (3.121)

Note that efficient approximations without accuracy saturation or with ex-
ponential accuracy for the solution operator (3.115) (with an unbounded operator
A independent of t) were proposed in [15, 16, 20, 23, 27, 68]. Some of them were
considered in section 3.1.

The aim of this section is to get an algorithm without accuracy saturation
and an exponentially convergent algorithm for the solution of the problem (3.115).
We use a piecewise constant approximation of the operator A(t) and an exact in-
tegral corollary of these equations on the Chebyshev grid which is approximated
by the collocation method. The operator exponential (for equation (3.115)) with
stationary operator involved in the algorithm can be computed by the Sinc ap-
proximations from section 3.1 (see also [16, 23, 27]).

We begin with an example which shows the practical relevance for the as-
sumptions above.

Example 3.13. Let q(t) ≥ q0 > 0, t ∈ [0, T ], be a given function from the Hölder
class with the exponent α ∈ (0, 1]. We consider the operator A(t) defined by

D(A(t)) = {u(x) ∈ H4(0, 1) : u(0) = u′′(0) = u(1) = u′′(1) = 0},

A(t)u =

[
d2

dx2
− q(t)

]2
u =

d4u

dx4
− 2q(t)

d2u

dx2
+ q2(t)u ∀u ∈ D

(
A(t)

) (3.122)
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with domain independent of t. It is easy to show that

D(A1/2(t)) = {u(x) ∈ H2(0, 1): u(0) = u(1) = 0},

A1/2(t) = −d2u

dx2
+ q(t)u ∀u ∈ D

(
A1/2(t)

)
,

A−1/2(t) =

∫ 1

0

G(x, ξ; t)v(ξ) dξ,

(3.123)

where the Green function is given by

G(x, ξ; t) =
1√

q(t) sinh
√
q(t)

{
sinh (

√
q(t)x) sinh (

√
q(t)(1− ξ)), if x ≤ ξ,

sinh (
√

q(t)ξ) sinh (
√
q(t)(1 − x)), if ξ ≤ x.

(3.124)
Then we have the relation

[A(t) −A(s)]A−1/2(t)v

= [q(t)− q(s)]

{
−2

d2

dx2
+ [q(t) + q(s)]

}∫ 1

0

G(x, ξ; t)v(ξ) dξ

= [q(t)− q(s)]

{
2v(x)− [q(t)− q(s)]

∫ 1

0

G(x, ξ; t)v(ξ) dξ

}
,

(3.125)

which leads to the estimate

‖[A(t)−A(s)]A−1/2(t)v(·)‖C[0,1]→C[0,1]

≤ L|t− s|α
{
2‖v‖C[0,1] + L|t− s|α 1

2
√
q(t)

tanh
(√

q(t)/2
)‖v‖C[0,1]

}
,

(3.126)

where L is the Hölder constant. This inequality yields∥∥[A(t)−A(s)]A−1/2(t)
∥∥
C[0,1]→C[0,1]

≤ L
{
2 + LTα tanh (

√
q(t)/2)/(2

√
q(t))

}
|t− s|α,

(3.127)

i.e., condition (3.119) is fulfilled with γ = 1/2 provided that α = 1. Let us prove
the condition (3.120). We have

[
A1/2(t)A−1/2(s)− I

]
v =

[
− d2

dx2
+ q(t)

] ∫ 1

0

G(x, ξ; s)v(ξ) dξ − v(x)

= [q(t)− q(s)]

∫ 1

0

G(x, ξ; s)v(ξ) dξ,

(3.128)

from which it follows that

∥∥A1/2(t)A−1/2(s)− I
∥∥
C[0,1]→C[0,1]

≤ L
tanh (

√
q(t)/2)

2
√
q(t)

|t− s|α; (3.129)

i.e., condition (3.120) is fulfilled with β = 1/2, δ = α = 1.
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Remark 3.14. It is clear that, in general, inequalities (3.119) and (3.120) hold true
for elliptic operators with γ = 1, β = 1.

Remark 3.15. Assumption (3.121) is not restrictive due to stability results from
[29]. The two initial value problems

du

dt
+A(t)u = f(t), u(0) = u0 (3.130)

and
dv

dt
+B(t)v = g(t), v(0) = v0 (3.131)

with densely defined, closed operators A(t), B(t) having a common domain
D
(
A(t)

)
= D

(
B(t)

)
independent of t were considered. The following assumptions

were made.

1. There exist bounded inverse operators A−1(t), B−1(t) and for the resolvents,
RA(t)(z) = (z −A(t))−1, RB(t)(z) = (z −B(t))−1 we have

‖RA(t)(z)‖ ≤ 1

1 + |z| , ‖RB(t)(z)‖ ≤ 1

1 + |z| (θ + ε ≤ | arg z| ≤ π) (3.132)

for all θ ∈ (0, π/2), ε > 0 uniformly in t ∈ [0, T ].

2. Operators A(t), B(t) are strongly differentiable on D
(
A(t)

)
= D

(
B(t)

)
.

3. There exists a constant M such that

∥∥Aβ(s)B−β(s)
∥∥ ≤ M. (3.133)

4. For the evolution operators UA(t, s), UB(t, s) we have

‖A(t)UA(t, s)‖ ≤ C

t− s
, ‖B(t)UB(t, s)‖ ≤ C

t− s
. (3.134)

5. There exist positive constants C, Cβ such that

∥∥Aρ(t)A−ρ(s)− I
∥∥ ≤ C|t− s|α (3.135)

and

‖Aβ(t)UA(t, s)‖ ≤ Cβ

|t− s|β , ‖B
β(t)UB(t, s)‖ ≤ Cβ

|t− s|β (3.136)

for 0 ≤ β < α+ β.
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The following stability result for Banach spaces was proved in [29] under
these assumptions:

‖Aβ(t)z(t)‖ = ‖Aβ(t)(u(t) − v(t))‖
≤ M‖Aβ(0)z(0)‖+ cβM max

0≤s≤T

∥∥[B(s) −A(s)]A−β(s)
∥∥

× t1−β

1− β

{
‖Bβ(0)v(0)‖+

∫ t

0

‖Bβ(s)g(s)‖ ds
}

+M

∫ t

0

‖Bβ(s)g(s)‖ ds.

(3.137)

It is possible to avoid the restriction β < 1 if we consider equations (3.130),
(3.131) in a Hilbert space. In this case we assume that there exists an operator
C = C∗ ≥ c0I such that ∥∥[A(s) −B(s)]C−1

∥∥ ≤ δ, (3.138)

and (
A(s)y, Cy

) ≥ c0‖Cy‖2,(
B(s)y, Cy

) ≥ c0‖Cy‖2 ∀s ∈ [0, T ], c0 > 0.
(3.139)

Then the following stability estimate is fulfilled [29]:

1

2
(Cz(t), z(t)) + (c0 − ε− ε1)

∫ t

0

‖Cz(s)‖2ds

≤ max
0≤s≤T

‖[A(s)−B(s)]C−1‖2 (c0 − ε2)
−1

2ε

[
1

4ε2

∫ t

0

‖g(s)‖2ds+ 1

2
(Cv0, v0)

]

+
1

2ε1

∫ t

0

‖f(s)− g(s)‖2ds+ 1

2

(
C(u0 − v0), u0 − v0

)
, (3.140)

with arbitrary positive numbers ε, ε1, ε2 such that ε + ε1 < c0, ε2 < c0 which
stand for the stability with respect to the right-hand side, the initial condition
and the coefficient stability. Note that an analogous estimate in the case of a finite
dimensional Hilbert spaces and of a constant operator A was proved in [57, p. 62].

Example 3.16. Let Ω ⊂ R2 be a polygon and let

L(x, t,D) = −
2∑

i,j=1

∂

∂xi
ai,j(x, t)

∂

∂xj
+

2∑
j=1

bj(x, t)
∂

∂xj
+ c(x, t) (3.141)

be a second-order elliptic operator with time-dependent real smooth coefficients
satisfying the uniform ellipticity condition

2∑
i,j=1

aij(x, t)ξiξj ≥ δ1|ξ|2 (ξ = (ξ1, ξ2) ∈ R) (3.142)
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with a positive constant δ1. Taking X = L2(Ω) and V = H1
0 (Ω) or V = H1(Ω)

according to the boundary condition

u = 0 on ∂Ω× (0, T ) (3.143)

or
∂u

∂νL
+ σu = 0 on ∂Ω× (0, T ), (3.144)

we set

At(u, v) =
2∑

i,j=1

∫
Ω

ai,j(x, t)
∂u

∂xi

∂v

∂xj
dx+

2∑
j=1

∫
Ω

bj(x, t)
∂u

∂xj
v dx

+

∫
Ω

c(x, t)uv dx+

∫
∂Ω

σ(x, t)uv dS

(3.145)

for u, v ∈ V . Anm-sectorial operatorA(t) in X can be defined through the relation

At(u, v) =
(
A(t)u, v

)
, (3.146)

where u ∈ D(A(t)) ⊂ V and v ∈ V . The relation

D(A(t)) = H2(Ω) ∩H1
0 (Ω) (3.147)

follows for V = H1
0 (Ω) and

D
(
A(t)

)
=

{
v ∈ H2(Ω) | ∂v

∂νL
on ∂Ω

}
(3.148)

for V = H1(Ω), when ∂Ω is smooth, for instance.
It was proven in [14, pp. 95–101] that all the assumptions above hold for such

an operator A(t).

As we will see below, the parameter γ from (3.119) plays an essential role for
the construction and the analysis of discrete approximations and algorithms for
problem (3.115).

3.2.2 Discrete first-order problem in the case γ < 1

For the sake of simplicity we consider problem (3.115) on the interval [−1, 1] (if
it is not the case, one can reduce problem (3.115) to this interval by the variable
transform t = 2t′/T − 1, t ∈ [−1, 1], t′ ∈ [0, T ]). We choose a mesh ωn of n various

points ωn = {tk = cos (2k−1)π
2n , k = 1, . . . , n} on [−1, 1] and set τk = tk − tk−1,

A(t) = Ak = A(tk), t ∈ (tk−1, tk], (3.149)

where tk are zeros of a Chebyshev orthogonal polynomial of the first kind Tn(t) =
cos (n arccos t). Let tν = cos θν , 0 < θν < π, ν = 1, 2, . . . , n, be zeros of the
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Chebyshev orthogonal polynomial Tn(t) taken in decreasing order. Then it is well
known that (see [63], Ch. 6, Th. 6.11.12, [64], p. 123)

tν+1 − tν < π
n , ν = 1, . . . , n,

τmax = max1≤k≤n τk < π
n . (3.150)

Let us rewrite problem (3.115) in the form

du

dt
+A(t)u = [A(t)−A(t)]u(t) + f(t),

u(0) = u0

(3.151)

from which we deduce

u(t) = e−Ak(t−tk−1)u(tk−1)

+

∫ t

tk−1

e−Ak(t−η){[Ak −A(η)]u(η) + f(η)}dη, t ∈ [tk−1, tk].
(3.152)

Since Ak−1 and e−Ak−1τk commute, assumption (3.120) yields

‖Aβ
kA

−β
p ‖ ≤ 1 + ‖Aβ

kA
−β
p − I‖ ≤ 1 + L̃β |tk − tp| ≤ 1 + L̃βT. (3.153)

Let

Pn−1(t;u) = Pn−1u =

n∑
p=1

u(tp)Lp,n−1(t) (3.154)

be the interpolation polynomial for the function u(t) on the mesh ωn, let y =
(y1, . . . , yn), yi ∈ X be a given vector, and let

Pn−1(t; y) = Pn−1y =

n∑
p=1

ypLp,n−1(t) (3.155)

be the polynomial that interpolates y, where Lp,n−1 = Tn(t)
T ′
n(tp)(t−tp)

, p = 1, . . . , n,

are the Lagrange fundamental polynomials.
Substituting Pn(η; y) for u(η) and yk for u(tk) in (3.152), we arrive at the

following system of linear equations with respect to the unknowns yk:

yk = e−Akτkyk−1 +
n∑

p=1

αkpyp + φk, k = 1, . . . , n, (3.156)

where

αkp =

∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)]Lp,n−1(η)dη,

φk =

∫ tk

tk−1

e−Ak(tk−η)f(η)dη.

(3.157)
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Remark 3.17. To compute αkp and φk in an efficient way, we replace A(t), f(t)
by their interpolation polynomials (it is possible due to stability results (3.137),
(3.140); see also [29]) and calculate the integrals analytically. We have

A(t) =
n∑

l=1

Al

t− tl

Tn(t)

T ′n(tl)
,

f(t) =

n∑
l=1

fl
t− tl

Tn(t)

T ′n(tl)
, fl = f(tl),

(3.158)

so that

αkp =
1

T ′n(tp)

n∑
l=1

1

T ′n(tl)

∫ tk

tk−1

e−Ak(tk−η) T 2
n(η)

(η − tl)(η − tp)
dη[Ak −Al],

φk =

n∑
l=1

fk
T ′n(tl)

∫ tk

tk−1

e−Ak(tk−η)Tn(η)

η − tl
dη.

(3.159)

Using the relation 2T 2
n(η) = 1+ 2T2n(η), the polynomial p

(l,p)
2n−2 =

T 2
n(η)

(η−tl)(η−tp)
can

be represented as (see [6])

p
(l,p)
2n−2 =

2T2n(η) + 1

2(η − tl)(η − tp)

=
1

2(η − tl)(η − tp)

[
2n

n∑
m=0

(−1)m(2n−m− 1)!

m!(2n− 2m)!
(2η)2n−2m + 1

]

=

2n−2∑
i=0

qi(l, p)η
2n−2−i,

(3.160)

where the coefficients qi(l, p) can be calculated, for example, by the Horner scheme.
Given qi(l, p), we furthermore find that

αkp =
1

T ′n(tp)

n∑
l=1

1

T ′n(tl)

2n−2∑
i=0

qi(l, p)Ik,i[Ak −Al], (3.161)

where

Ik,i =

∫ tk

tk−1

e−Ak(tk−η)η2n−2−idη

=

2n−2−i∑
s=0

(−1)s(2n− 2− i)(2n− 3− i) · · ·

× (2n− 2− i− s+ 1)A−s−1
k t2n−2−i−s

k (3.162)
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−
2n−2−i∑

s=0

(−1)s(2n− 2− i)(2n− 3− i) · · ·

× (2n− 2− i− s+ 1)A−s−1
k t2n−2−i−s

k−1 e−Akτk .

Analogously one can also calculate φk.

For the error z = (z1, . . . , zn), zk = u(tk)− yk we have the relations

zk = e−Akτkzk−1 +

n∑
p=1

αkpzp + ψk, k = 1, . . . , n, (3.163)

where

ψk =

∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)][u(η) − Pn(η;u)]dη. (3.164)

We introduce the matrix S = {si,k}ni,k=1:

S =

⎛
⎜⎜⎜⎜⎝

I 0 0 · · · 0 0
−e−A1τ1 I 0 · · · 0 0

0 −e−A2τ2 I · · · 0 0
· · · · · · · ·
0 0 0 · · · −e−An−1τn−1 I

⎞
⎟⎟⎟⎟⎠ , (3.165)

the matrix C = {α̃k,p}nk,p=1 with α̃k,p = Aγ
kαk,pA

−γ
p and the vectors

y =

⎛
⎜⎜⎜⎜⎝

Aγ
1y1
·
·
·

Aγ
nyn

⎞
⎟⎟⎟⎟⎠, f =

⎛
⎜⎜⎜⎜⎝

Aγ
1φ1

·
·
·

Aγ
nφn

⎞
⎟⎟⎟⎟⎠, f̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Aγ
1e
−A1τ1u0

0
·
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, ψ =

⎛
⎜⎜⎜⎜⎝

Aγ
1ψ1

·
·
·

Aγ
nψn

⎞
⎟⎟⎟⎟⎠ . (3.166)

It is easy to see that for

S−1 = {s−1
i,k}ni,k=1

=

⎛
⎜⎜⎜⎜⎝

I 0 · · · 0 0
e−A1τ1 I · · · 0 0

e−A2τ2e−A1τ1 e−A2τ2 · · · 0 0
· · · · · · ·

e−An−1τn−1 · · · e−A1τ1 e−An−1τn−1 · · · e−A2τ2 · · · e−An−1τn−1 I

⎞
⎟⎟⎟⎟⎠

(3.167)

we have

S−1S =

⎛
⎜⎜⎝
I 0 · · · 0
0 I · · · 0
· · · · · ·
0 0 · · · I

⎞
⎟⎟⎠ . (3.168)
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Remark 3.18. Using results of [16, 23], one can get a parallel and sparse approxi-
mation with an exponential convergence rate of operator exponentials in S−1 and,
as a consequence, a parallel and sparse approximation of S−1.

We get from (3.156), (3.163)

Aγ
kyk = e−AkτkAγ

kyk−1 +

n∑
p=1

α̃kpA
γ
pyp +Aγ

kφk,

Aγ
kzk = e−AkτkAγ

kzk−1 +

n∑
p=1

α̃kpA
γ
pzp +Aγ

kψk, k = 1, . . . , n,

(3.169)

or, in the matrix form,

Sy = Cy + f − f̃ ,

Sz = Cz + ψ
(3.170)

with

z =

⎛
⎜⎜⎜⎜⎝

Aγ
1z1
·
·
·

Aγ
nzn

⎞
⎟⎟⎟⎟⎠ . (3.171)

Next, for a vector v = (v1, v2, . . . , vn)
T and a block operator matrix A =

{aij}ni,j=1 we introduce the vector norm

|‖v‖| ≡ |‖v‖|∞ = max
1≤k≤n

‖vk‖ (3.172)

and the consistent matrix norm

|‖A‖| ≡ |‖A‖|∞ = max
1≤i≤n

n∑
j=1

‖ai,j‖. (3.173)

Due to (3.118) we get

|‖S−1‖| ≤ n. (3.174)

In our forthcoming analysis we need the following auxiliary result.

Lemma 3.19. The estimates

|‖C‖| ≤ c(1 + L̃γT )n
γ−2 lnn, (3.175)

|‖S−1C‖| ≤ c(1 + L̃γT )n
γ−1 lnn (3.176)

with a positive constant c independent of n hold true.
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Proof. Assumption (3.119) together with (3.153) implies

‖α̃kp‖ = ‖Aγ
kαkpA

−γ
p ‖

= ‖
∫ tk

tk−1

Aγ
ke
−Ak(tk−η)[Ak −A(η)]A−γ

p Lp,n−1(η)dη‖

≤
(
1 + L̃γT

)
τ1−γ
max

∫ tk

tk−1

|Lp,n−1(η)|dη, T = 2.

(3.177)

Using the well- known estimate for the Lebesgue constant Λn related to the Cheby-
shev interpolation nodes (see, e.g., [63, 64])

Λn = max
η∈[−1,1]

n∑
p=1

|Lp,n−1(η)| ≤ c lnn (3.178)

and (3.177), we have

|‖C‖| ≤ max
1≤k≤n

n∑
p=1

‖α̃kp‖ ≤ (1 + L̃γT )τ
2−γ
max max

η∈[−1,1]

n∑
p=1

|Lp,n−1(η)| (3.179)

≤ (1 + L̃γT )τ
2−γ
maxΛn ≤ c(1 + L̃γT )τ

2−γ
max lnn ≤ c(1 + L̃γT )n

γ−2 lnn

with an appropriate positive constant c independent of n. Together with (3.174),
this estimate implies

|‖S−1C‖| ≤ c(1 + L̃γT )n
γ−1 lnn → 0 (3.180)

as n → ∞ provided that γ < 1. �
Remark 3.20. We have reduced the interval length to T = 2 but we write T
explicitly to underline the dependence of involved constants on T , in the general
case.

Let Πn−1 be the set of all polynomials in t with vector coefficients of degree
less than or equal to n− 1. Then the Lebesgue inequality

‖u(η)−Pn−1(η;u)‖C[−1,1] ≡ max
η∈[−1,1]

‖u(η)−Pn−1(η;u)‖ ≤ (1+Λn)En(u) (3.181)

can be proved for vector-valued functions in complete analogy with [5, 63, 64] with
the error of the best approximation of u by polynomials of degree not greater than
(n− 1),

En(u) = inf
p∈Πn−1

max
η∈[−1,1]

‖u(η)− p(η)‖. (3.182)

Now, we can go over to the main result of this section.

Theorem 3.21. Let assumptions (3.116)–(3.120) with γ < 1 hold. Then there exists
a positive constant c such that the following hold.
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1. For n large enough it holds that

|‖z‖| ≡ |‖y − u‖| ≤ cnγ−1 lnnEn(A
γ
0u), (3.183)

where u is the solution of (3.115).

2. The system of linear algebraic equations

Sy = Cy + f (3.184)

with respect to the approximate solution y can be solved by the fixed-point
iteration

y(k+1) = S−1Cy(k) + S−1(f + f̃), k = 0, 1, . . . ; y(0) arbitrary, (3.185)

with the convergence rate of a geometrical progression with the denominator
q ≤ cnγ−1 lnn < 1 for n large enough.

Proof. From the second equation in (3.170), we get

z = S−1Cz + S−1ψ (3.186)

from which, due to Lemma 3.19 and (3.174)

|‖z‖| ≤ cn|‖ψ‖| (3.187)

for n large enough. The last norm can be estimated in the following way:

|‖ψ‖| = max
1≤k≤n

‖
∫ tk

tk−1

[
Aγ

ke
−Ak(tk−η) [Ak −A(η)]A−γ

k (Aγ
kA

−γ
0 )(Aγ

0u(η)

−Pn(η;A
γ
0u))] dη‖

≤ (1 + L̃γT ) max
1≤k≤n

‖
∫ tk

tk−1

|tk − η|−γ |tk − η|‖Aγ
0u(η)− Pn(η;A

γ
0u)‖dη

≤ (1 + L̃γT )τ
2−γ
max ‖Aγ

0u(·)− Pn−1(·;Aγ
0u)‖C[−1,1]

≤ (1 + L̃γT )τ
2−γ
max (1 + Λn)En(A

γ
0u) ≤ cnγ−2 lnnEn(A

γ
0u)

(3.188)

and taking into account (3.187), we get the statement of the theorem. �

3.2.3 Discrete first-order problem in the case γ ≤ 1

In this section, we construct a new discrete approximation of problem (3.115)
which is a little more complicated than approximation (3.156) of the previous
section but possesses a higher convergence order and allows the case γ = 1.
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Applying transform (3.152) (i.e., substituting u(t) recursively), we get

u(t) =

{
e−Ak(t−tk−1) +

∫ t

tk−1

e−Ak(t−η) [Ak −A(η)] e−Ak(η−tk−1)dη

}
u(tk−1)

+

∫ t

tk−1

e−Ak(t−η)[Ak −A(η)]

∫ η

tk−1

e−Ak(η−s)[Ak −A(s)]u(s)dsdη

+

∫ t

tk−1

e−Ak(t−η)

{
[Ak −A(η)]

∫ η

tk−1

e−Ak(η−s)f(s)ds+ f(η)

}
dη.

(3.189)

Setting t = tk, we arrive at the relation

u(tk) = Sk,k−1u(tk−1) (3.190)

+

∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)]

∫ η

tk−1

e−Ak(η−s)[Ak −A(s)]u(s)dsdη + φk,

where

Sk,k−1 = e−Akτk +

∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)]e−Ak(η−tk−1)dη,

φk =

∫ tk

tk−1

e−Ak(tk−η)f(η)dη

+

∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)]

∫ η

tk−1

e−Ak(η−s)f(s)dsdη.

(3.191)

Substituting the interpolation polynomial Pn−1(η; y) from the previous sec-
tion for u(η) and yk for u(tk) in (3.190), we arrive at the following system of linear
equations with respect to the unknowns yk:

yk = Sk,k−1yk−1 +

n∑
p=1

αkpyp + φk, k = 1, . . . , n, (3.192)

where

αkp =

∫ tk

tk−1

e−Ak(tk−η)[Ak −A(η)]

∫ η

tk−1

e−Ak(η−s)[Ak −A(s)]Lp,n−1(s)dsdη.

(3.193)

Remark 3.22. Due to stability results (3.137), (3.140) (see also [29]) one can ap-
proximate the initial problems with polynomials Ã(t), f̃(t), for example, as inter-
polation polynomials for A(t), f(t).
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With the aim of getting a computational algorithm for αkp, we write down
formula (3.193) in the form

αkp =

∫ tk

tk−1

∫ η

tk−1

e−Ak(tk−η)[Ak −A(η)]e−Ak(η−s)dη[Ak −A(s)]Lp,n−1(s)ds.

(3.194)
In order to calculate the inner integral, we represent

A(η) = Ak + (tk − η)B1,k + · · ·+ (tk − η)n−1Bn−1,k. (3.195)

Then we have to calculate integrals of the type

α̃kp =

∫ η

tk−1

e−Ak(tk−η)(tk − η)pBp,ke
−Ak(η−s)dη. (3.196)

Analogously to [29], using the representation by the Dunford-Cauchy integrals and
the residue theorem under assumption of the strong P-positiveness [15, 23, 16] of
the operator A(t), one can get

α̃kp =
p!

2πi

∫
ΓI

e−z(tk−η)(Ak − zI)−p−1Bp,k(zI −Ak)
−1dz, (3.197)

where ΓI is an integration parabola enveloping the spectral parabola of the strong-
ly P-positive operator A(t). Now, using (3.195), (3.197) formula (3.194) can be
written down as

αkp = − 1

2πi

∫
ΓI

n−1∑
p=1

p!(Ak − zI)−p−1Bp,k(zI −Ak)
−1

×
∫ tk

tk−1

e−z(tk−s)[Ak −A(s)]Lp,n−1(s)dsdz.

(3.198)

The inner integral in this formula can be calculated analogously as in (3.161) and
the integral along ΓI can be calculated explicitly using the residue theorem.

For the error z = (z1, . . . , zn), zk = u(tk)− yk we have the relations

zk = Sk,k−1zk−1 +
n∑

p=0

αkpzp + ψk, k = 1, . . . , n, (3.199)

where

ψk =

∫ tk

tk−1

e−Ak(tk−η)

∫ η

tk−1

e−Ak(η−s)[Ak −A(s)][u(s)−Pn−1(s;u)]dsdη. (3.200)

We introduce the matrix

S̃ = {s̃i,k}ni,k=1 =

⎛
⎜⎜⎜⎜⎝

I 0 0 · · · 0 0

−S̃21 I 0 · · · 0 0

0 −S̃32 I · · · 0 0
· · · · · · · ·
0 0 0 · · · −S̃n,n−1 I

⎞
⎟⎟⎟⎟⎠ , (3.201)
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with S̃k,k−1 = Aγ
kSk,k−1A

−γ
k−1, the matrix C = {α̃k,p}nk,p=1 with α̃k,p = Aγ

kαk,pA
−γ
p

and the vectors

y =

⎛
⎜⎜⎜⎜⎝

Aγ
1y1
·
·
·

Aγ
nyn

⎞
⎟⎟⎟⎟⎠, f =

⎛
⎜⎜⎜⎜⎝
Aγ

1φ1

·
·
·

aγnφn

⎞
⎟⎟⎟⎟⎠, ψ =

⎛
⎜⎜⎜⎜⎝

Aγ
1ψ1

·
·
·

Aγ
nψn

⎞
⎟⎟⎟⎟⎠, f̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Aγ
1S21u0

0
·
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.202)

It is easy to check that for

S̃−1 = {s̃−1
i,k}ni,k=1

=

⎛
⎜⎜⎜⎜⎝

I 0 0 · · · 0 0

S̃21 I 0 · · · 0 0

S̃32S̃21 S̃32 I · · · 0 0
· · · · · · · ·

S̃n,n−1 · · · S̃21 S̃n,n−1 · · · S̃32 S̃n,n−1 · · · S̃43 · · · S̃n,n−1 I

⎞
⎟⎟⎟⎟⎠

(3.203)

we have

S̃−1S̃ =

⎛
⎜⎜⎝
I 0 · · · 0
0 I · · · 0
· · · · · ·
0 0 · · · I

⎞
⎟⎟⎠ . (3.204)

Remark 3.23. Using results of [16], one can get a parallel and sparse approxima-
tion of operator exponentials in S̃−1 and, as a consequence, a parallel and sparse
approximation of S̃−1.

We get from (3.192), (3.199)

Aγ
kyk = S̃k,k−1A

γ
k−1yk−1 +

n∑
p=0

α̃kpA
γ
pyp +Aγ

kφk,

Aγ
kzk = S̃k,k−1A

γ
k−1zk−1 +

n∑
p=0

α̃kpA
γ
pzp +Aγ

kψk,

(3.205)

or in matrix form

S̃y = Cy + f + f̃ ,

S̃z = Cz + ψ
(3.206)

with

z =

⎛
⎜⎜⎜⎜⎝

Aγ
1z1
·
·
·

Aγ
nzn

⎞
⎟⎟⎟⎟⎠ . (3.207)
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In the next lemma we estimate the norms of C and S̃−1C.

Lemma 3.24. The estimates

|‖C‖| ≤ c(γ, T )n2γ−4 lnn, (3.208)

|‖S̃−1C‖| ≤ c(γ, T )n2γ−3 lnn (3.209)

with a positive constant c = c(T, γ) depending on γ and the interval length T but
independent of n and such that c = c(T, γ) → ∞ as γ → 1 hold true.

Proof. Assumption (3.119) together with (3.117),(3.153), (3.150), (3.178) imply

‖α̃kp‖ = ‖Aγ
kαkpA

−γ
p ‖

= ‖
∫ tk

tk−1

Aγ
ke
−Ak(tk−η)[Ak −A(η)]

×A−γ
k

∫ η

tk−1

Aγ
ke
−Ak(η−s)[Ak −A(s)]A−γ

p Lp,n−1(η)dη‖

≤
(
1 + L̃γT

)(
cγL̃1,γ

)2
∫ tk

tk−1

|tk − η|1−γ

×
∫ η

tk−1

|η − s|−γ |tk − s||Lp,n−1(s)|dsdη.

(3.210)

Due to (3.210) we have

|‖C‖| = max
1≤k≤n

n∑
p=1

‖α̃kp‖

≤
(
1 + L̃γT

)(
cγL̃1,γ

)2

Λn max
1≤k≤n

∫ tk

tk−1

|tk − η|1−γ

×
∫ η

tk−1

|η − s|−γ |tk − s|dsdη

≤
(
1 + L̃γT

)(
cγL̃1,γ

)2

Λn max
1≤k≤n

τk
1− γ

∫ tk

tk−1

|tk − η|1−γ |η − tk−1|1−γdη

≤
(
1 + L̃γT

)(
cγL̃1,γ

)2

Λn max
1≤k≤n

τ2−γ
k

1− γ

∫ tk

tk−1

|tk − η|1−γdη

≤ c(γ, T )Λnτ
4−2γ
max ≤ c(γ, T )n2γ−4 lnn (3.211)

where c(γ, T ) = c
(1+L̃γT)(cγ L̃1,γ)

2

(1−γ)(2−γ) , c is a constant independent of n, γ and (3.208)

is proved.
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Furthermore, the inequalities (3.117), (3.119), (3.120) imply

‖S̃k,k−1‖ ≤ e−ωτk + cγL̃1,γ(1 + L̃γτk)

∫ tk

tk−1

|tk − η|−γ |tk − η|e−ω(η−tk−1)dη

≤ e−ωτk

[
1 +

cγL̃1,γ(1 + L̃γτk)

2− γ
τ2−γ
k

]
(3.212)

which yields

‖S̃−1‖ ≤
n−1∑
p=0

qp =
qn − 1

q − 1
(3.213)

with

q =

{
e−ωτmax

[
1 +

cγL̃1,γ(1 + L̃γτmax)

2− γ
τ2−γ
max

]}
→ 1

as τmax → 0. This means that there exists a constant C = C(γ, cγ , L̃γ , L̃1,γ) such
that

‖S̃−1‖ ≤ Cn (3.214)

(it is easy to see that C ≤ 1 provided that −ω +
cγ L̃1,γ(1+L̃γτmax)

2−γ τ1−γ
max ≤ 0). This

estimate together with (3.211) implies (3.209). The proof is complete. �

Now, we can go to the first main result of this section.

Theorem 3.25. Let assumptions (3.116)–(3.120) with γ < 1 hold. Then there exists
a positive constant c such that the following hold:

1. For n large enough it holds that

|‖z‖| ≡ |‖y − u‖| ≤ cn2γ−3 lnnEn(A
γ
0u), γ ∈ [0, 1), (3.215)

where u is the solution of (3.115) and En(A
γ
0u) is the best approximation of

Aγ
0u by polynomials of degree not greater than n− 1.

2. The system of linear algebraic equations

Sy = Cy + f (3.216)

from (3.206) with respect to the approximate solution y can be solved by the
fixed-point iteration

y(k+1) = S−1Cy(k) + S−1(f − f̃), k = 0, 1, . . . ; y(0) arbitrary (3.217)

converging at least as a geometrical progression with the denominator q =
c(γ, T )n2γ−3 lnn < 1, γ ∈ [0, 1) for n large enough.
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Proof. From the second equation in (3.206) we get

z = S−1Cz + S−1ψ (3.218)

from which due to Lemma 3.19 and (3.213) we get

|‖z‖| ≤ cn|‖ψ‖|. (3.219)

Let Πn−1 be the set of all polynomials in t with vector coefficients of degree less
than or equal to n − 1. Using the Lebesgue inequality (3.181) the last norm can
be estimated as

|‖ψ‖| = max
1≤k≤n

‖
∫ tk

tk−1

Aγ
ke
−Ak(tk−η) [Ak −A(η)]

×
∫ η

tk−1

e−Ak(η−s) [Ak −A(s)]A−γ
0 (Aγ

0u(s)− Pn−1(s;A
γ
0u))dsdη‖

≤ (1 + L̃γT )(cγL1,γ)
2 max
1≤k≤n

∫ tk

tk−1

|tk − η|−γ |tk − η|

×
∫ η

tk−1

|η − s|−γ |tk − s|‖Aγ
0u(η)− Pn−1(s;A

γ
0u)‖dsdη (3.220)

≤ (1 + L̃γT )(cγL1,γ)
2(1 + Λn)En(A

γ
0u)

× max
1≤k≤n

{∫ tk

tk−1

|tk − η|−γ |tk − η|
∫ η

tk−1

|η − s|−γ |tk − s|dsdη
}

≤ cc(γ, T )En(A
γ
0u)n

2γ−4 lnn

and taking into account (3.219), we get the first assertion of the theorem.
The second assertion is a simple consequence of (3.216) and (3.209), which

completes the proof of the theorem. �
Under somewhat stronger assumptions on the operator A(t) one can improve

the error estimate for our method in the case 0 ≤ γ ≤ 1. In order to do it we need
the following lemma.

Lemma 3.26. Let Lν,n−1(t) be the Lagrange fundamental polynomials related to
the Chebyshev interpolation nodes (zeros of the Chebyshev polynomial of the first
kind Tn(t)). Then

n∑
ν=1

|L′ν,n−1(t)| ≤
1√

1− x2

√
2/3n3/2. (3.221)

Proof. Let x ∈ [−1, 1] be an arbitrary point and let εν = sign(L′ν,n−1(x)). We
consider the polynomial of t,

ρ(t;x) =

n∑
ν=1

εν(x)Lν,n−1(t) =

n−1∑
ν=1

cν(x)Tν(t). (3.222)
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Since ρ2(t;x) is the polynomial of degree 2n− 2, then using the Gauß-Chebyshev
quadrature rule and the property Lk,n−1(tν) = δk,ν of the fundamental Lagrange
polynomials (δk,ν is the Kronecker symbol), we get

∫ 1

−1

ρ2(t;x)√
1− t2

dt =

n−1∑
ν=0

c2ν(x)
π

2
=

n∑
ν=1

λνρ
2(tν ;x)

=

n∑
ν=1

λνε
2
ν =

n∑
ν=1

λν =

∫ 1

−1

1√
1− t2

dt = π

(3.223)

with the quadrature coefficients λν which yields

n−1∑
ν=0

c2ν(x) = 2. (3.224)

The next estimate

ρ′(x) =
n∑

ν=1

|L′ν,n−1(x)| ≤
n−1∑
ν=0

|cν ||T ′ν(x)|

=
n−1∑
ν=0

|cν | ν√
1− x2

≤ 1√
1− x2

(
n−1∑
ν=0

c2ν

)1/2(n−1∑
ν=1

ν2

)1/2

≤ 1√
1− x2

(
n−1∑
ν=0

(cν)
2

)1/2√
n3/3

(3.225)

together with (3.224) proves the lemma. �
Now we are in the position to prove the following important result of this

section.

Lemma 3.27. Let the operator A(t) be strongly continuous differentiable on [0, T ]
(see [38], Ch. 2, 1, p. 218, [37]), satisfy condition (3.119) and A′(s)A−γ(0) be
bounded for all s ∈ [0, T ] and γ ∈ [0, 1] by a constant c′. Then for n large enough
the following estimates hold true:

|‖C‖| ≤ cnγ−5/2, γ ∈ [0, 1], (3.226)

|‖S̃−1C‖| ≤ cnγ−3/2, γ ∈ [0, 1] (3.227)

with some positive constant c independent of n, γ.

Proof. Opposite to the proof of Lemma 3.19 (see (3.210)), we estimate α̃kp as

‖α̃kp‖ = ‖Aγ
kαkpA

−γ
p ‖

= ‖
∫ tk

tk−1

Aγ
ke
−Ak(tk−η)[Ak −A(η)]
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×A−1
k

∫ η

tk−1

de−Ak(η−s)

ds
[Ak −A(s)]A−γ

p Lp,n−1(η)dη‖

= ‖
∫ tk

tk−1

Aγ
ke
−Ak(tk−η)[Ak −A(η)]A−1

k

{
[Ak −A(η)]A−γ

p Lp,n−1(η)

− e−Ak(η−tk−1)[Ak −Ak−1]A
−γ
p Lp,n−1(tk−1)

+

∫ η

tk−1

e−Ak(η−s)A′(s)A−γ
p Lp,n−1(s)ds

−
∫ η

tk−1

e−Ak(η−s)[Ak −A(s)]A−γ
p L′p,n−1(s)ds

}
dη‖

≤
∫ tk

tk−1

cγL̃1,1(tk − η)−γ(tk − η)
{
L̃1,γ(tk − η)(1 + L̃γT )|Lp,n−1(η)|

+ L̃1,γτk(1 + L̃γT )δp,k−1 + c′(1 + L̃γT )

∫ η

tk−1

|Lp,n−1(s)|ds

+

∫ η

tk−1

L̃1,γ(tk − s)(1 + L̃γT )|L′p,n−1(s)|ds
}
dη

≤
∫ tk

tk−1

cγL̃1,1

{
L̃1,γ(tk − η)2−γ |Lp,n−1(η)|

+ L̃1,γτk(1 + L̃γT )(tk − η)1−γδp,k−1

+ c′(1 + L̃γT )(tk − η)1−γ

∫ η

tk−1

|Lp,n−1(s)|ds

+ L̃1,γτk(1 + L̃γT )(tk − η)1−γ

∫ η

tk−1

|L′p,n−1(s)|ds
}
dη. (3.228)

Using this inequality together with (3.221), (3.213) and the relations arcsin t =
π/2− arccos t, tk = cos 2k−1

2n π, k = 1, . . . , n, we arrive at the estimates

|‖C‖| = max
1≤k≤n

n∑
p=1

‖Aγ
kαk,pA

−γ
p ‖

≤ M

{
nγ−3 lnn+ nγ−3 + nγ−3/2 max

1≤k≤n

∫ tk

tk−1

1√
1− s2

ds

}

≤ M

{
nγ−3 lnn+ nγ−3 + nγ−3/2 max

1≤k≤n
(arcsin tk − arcsin tk−1)

}
≤ Mnγ−5/2|‖S̃−1C‖| ≤ Mnγ−3/2

(3.229)

with a constant M independent of n. The proof is complete. �
Remark 3.28. If an operator A(t) is strongly continuous differentiable, then con-
dition (3.119) holds true with γ = 1 and the operator A(t)A−1(0) is uniformly
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bounded ( see [38], Ch. 2, 1, p. 219).

Now, we can go to the second main result of this subsection.

Theorem 3.29. Let the assumptions of Lemma 3.27 and conditions (3.116)–(3.120)
hold. Then there exists a positive constant c such that the following statements
hold.

1. For γ ∈ [0, 1) and n large enough it holds that

|‖z‖| ≡ |‖y − u‖| ≤ cn2γ−3 lnnEn(A
γ
0u), (3.230)

where u is the solution of (3.115) and En(A
γ
0u) is the best approximation of

Aγ
0u by polynomials of degree not greater than n− 1.

2. The system of linear algebraic equations (3.216) with respect to the approxi-
mate solution y can be solved by the fixed-point iteration

y(k+1) = S−1Cy(k) + S−1f, k = 0, 1, . . . ; y(0) arbitrary (3.231)

converging at least as a geometrical progression with the denominator q =
c(γ, T )nγ−3/2 < 1 for n large enough.

Proof. Proceeding analogously as in the proof of Theorem 3.25 and using Lemma
3.27 and (3.213), we get

|‖z‖| ≤ cn|‖ψ‖|. (3.232)

For the norm |‖ψ‖|, we have (see (3.220))

|‖ψ‖| ≤ c(1 + L̃γT )En(A
γ
0u)n

2γ−4 lnn, γ ∈ [0, 1) (3.233)

which together with (3.232) leads to the estimate (3.230) and to the first assertion
of the theorem.

The second assertion is a consequence of (3.229). The proof is complete. �

Remark 3.30. A simple generalization of Bernstein’s theorem (see [50, 51, 52]) to
vector-valued functions gives the estimate

En(A
γ
0u) ≤ ρ−n

0 (3.234)

for the value of the best polynomial approximation provided that Aγ
0u can be

analytically extended from [−1, 1] into an ellipse with the focus at the points
+1,−1 and with the sum of semi-axes ρ0 > 1.

If Aγ
0u is p times continuously differentiable, then a generalization of Jack-

son’s theorem (see [50, 51, 52]) gives

En(A
γ
0u) ≤ cpn

−pω
(dpAγ

0u

dtp
;n−1

)
(3.235)
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with the continuity modulus ω.
Further generalizations for the Sobolev spaces of the vector-valued functions

can be proven analogously [7], Ch. 9 (see also section 2.1). Let us define the
weighted Banach space of vector-valued functions Lp

w(−1, 1), 1 ≤ p ≤ +∞ with
the norm

‖u‖Lp
w(−1,1) =

(∫ 1

−1

‖u(t)‖pw(t)dt
)1/p

(3.236)

for 1 ≤ p < ∞ and
‖u‖L∞(−1,1) = sup

t∈(−1,1)

‖u(t)‖ (3.237)

for p = ∞. The weighted Sobolev space is defined by

Hm
w (−1, 1) =

{
v ∈ L2

w(−1, 1) : for 0 ≤ k ≤ m,
dkv

dtk
∈ L2

w(−1, 1)

}

with the norm

‖u‖Hm
w (−1,1) =

(
m∑

k=0

∥∥∥∥dkvdtk

∥∥∥∥
2

L2
w(−1,1)

)1/2

. (3.238)

Then one gets for the Chebyshev weight w(t) = 1√
1−t2

(see [7], p. 295–298),

for the polynomial of the best approximation Bn(t) and for the interpolation
polynomial Pn(t) with the Gauss (roots of the Chebyshev polynomial Tn+1(t)),

Gauss-Radau (roots of the polynomial Tn+1(t) − Tn+1(−1)
Tn(1)

Tn(t)) or the Gauss-

Lobatto (roots of the polynomial p(t) = Tn+1(t)+aTn(t)+ bTn−1(t) with a, b such
that p(−1) = p(1) = 0) nodes

En(u) ≡ ‖u−Bnu‖L∞(−1,1) ≤ cn1/2−m‖u‖Hm
w (−1,1),

‖u−Bnu‖L2
w(−1,1) ≤ cn−m‖u‖Hm

w (−1,1),

‖u− Pnu‖L2
w(−1,1) ≤ cn−m‖u‖Hm

w (−1,1),

‖u′ − (Pnu)
′‖L2

w(−1,1) ≤ cn2−m‖u‖Hm
w (−1,1).

(3.239)

When the function u is analytic in [−1, 1] and has a regularity ellipse whose sum
of semi-axes equals eη0 , then

‖u′ − (Pnu)
′‖L2

w(−1,1) ≤ c(η)n2e−nη ∀η ∈ (0, η0). (3.240)

For the Legendre weight w(t) = 1 one has (see [7], p. 289–294)

‖u−Bnu‖Lp(−1,1) ≤ cn−m‖u‖Hm(−1,1), 2 < p ≤ ∞,

‖u−Bnu‖Hl(−1,1) ≤ cn2l−m+1/2‖u‖Hm(−1,1), 1 ≤ l ≤ m,

‖u− Pnu‖Hl(−1,1) ≤ cn2l−m+1/2‖u‖Hm(−1,1), 1 ≤ l ≤ m,

‖u′ − (Pnu)
′‖L2(−1,1) ≤ cn5/2−m‖u‖Hm

w (−1,1),

(3.241)
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where the interpolation polynomial Pn(t) can be taken with the Gauss (roots of the
Legendre polynomial Ln+1(t)), Gauss-Radau (roots of the polynomial Ln+1(t) −
Ln+1(−1)

Ln(1)
Ln(t)) or the Gauss-Lobatto (roots of the polynomial p(t) = Ln+1(t) +

aLn(t) + bLn−1(t) with a, b such that p(−1) = p(1) = 0) nodes.

Note that the restriction γ �= 1 in Theorem 3.29 is only due to the estimate
(3.220). Below we show how this restriction can be removed.

Using (3.178), (3.239), we estimate the norm |‖ψ‖|2 for γ = 1 as

|‖ψ‖| = max
1≤k≤n

‖
∫ tk

tk−1

Aγ
ke
−Ak(tk−η) (Ak −A(η))

×
∫ η

tk−1

e−Ak(η−s) (Ak −A(s))A−γ
k (Aγ

kA
−γ
0 )(Aγ

0u(s)− Pn−1(s;A
γ
0u))dsdη‖

= max
1≤k≤n

‖
∫ tk

tk−1

Ake
−Ak(tk−η) (Ak −A(η))A−1

k

×
∫ η

tk−1

de−Ak(η−s)

ds
(Ak −A(s))A−1

k (AkA
−1
0 )(A0u(s)− Pn−1(s;A0u))dsdη‖

= max
1≤k≤n

‖
∫ tk

tk−1

Ake
−Ak(tk−η) (Ak −A(η))A−1

k

× [
(Ak −A(η))A−1

k (AkA
−1
0 )(A0u(η)− Pn−1(η;A0u))

+

∫ η

tk−1

e−Ak(η−s)A′(s)A−1
k (AkA

−1
0 )(A0u(s)− Pn−1(s;A0u))ds

−
∫ η

tk−1

e−Ak(η−s)(Ak −A(s))A−1
k (AkA

−1
0 )(A0u

′(s)− (Pn−1(s;A0u))
′)ds

]
dη‖

≤ c1L̃1,1 max
1≤k≤n

∫ tk

tk−1

|tk − η|−1|tk − η|

×
[
|tk − η|(1 + L̃1T ) max

η∈[−1,1]
‖(A0u(η)− Pn−1(η;A0u))‖

+ c′(1 + L̃1T )

∫ η

tk−1

‖(A0u(s)− Pn−1(s;A0u))‖ds

+ (1 + L̃1T )

∫ η

tk−1

|tk − s|‖(A0u
′(s)− (Pn−1(s;A0u))

′)‖ds
]
dη

≤ c1L̃1,1 max
1≤k≤n

[
τ2k (1 + L̃1T )(1 + Λn)En(A0u) + c′(1 + L̃1T )τ

2
k (1 + Λn)En(A0u)

+ (1 + L̃1T )τ
2
k

∫ tk

tk−1

‖(A0u
′(s)− (Pn−1(s;A0u))

′)‖ds
]
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≤ c1L̃1,1 max
1≤k≤n

[
τ2k (1 + L̃1T )(1 + Λn)En(A0u) + c′(1 + L̃1T )τ

2
k (1 + Λn)En(A0u)

+ (1 + L̃1T )τ
2
k

(∫ tk

tk−1

1√
1− s2

ds

)1/2

×
(∫ tk

tk−1

1√
1− s2

‖(A0u
′(s)− (Pn−1(s;A0u))

′)‖ds
)1/2

⎤
⎦

≤ c
[
n−2 lnnEn(A0u) + n−5/2‖u′ − (Pn−1u)

′‖L2
w(−1,1)

]
≤ c(n−(m+2) lnn+ n−(m+1/2))‖u‖Hm

w (−1,1) ≤ cn−(m+1/2)‖u‖Hm
w (−1,1)

provided that the solution u of problem (3.115) belongs to the Sobolev class
Hm

w (−1, 1). If u is analytic in [−1, 1] and has a regularity ellipse with the sum of
the semi-axes equal to eη0 > 1, then using (3.240), we get

|‖ψ‖| ≤ c(η0)n
2e−nη0 . (3.242)

Now, Lemma 3.27 together with the last estimates for |‖ψ‖| yields the fol-
lowing third main result of this section.

Theorem 3.31. Let the assumptions of Lemma 3.27 and conditions (3.116)–(3.120)
with γ = 1 hold. Then there exists a positive constant c such that the following
statements hold.

1. For γ = 1 and n large enough we have

|‖z‖| ≡ |‖y − u‖| ≤ cn−m‖u‖Hm
w (−1,1) (3.243)

provided that the solution u of problem (3.115) belongs to the class Hm
w (−1, 1)

with w(t) = 1√
1−t2

.

2. For γ = 1 and n large enough it holds that

|‖z‖| ≡ |‖y − u‖| ≤ c(η0)n
3/2e−nη0 (3.244)

provided that u is analytic in [−1, 1] and has a regularity ellipse with the sum
of the semi-axes equal to eη0 > 1.

3. The system of linear algebraic equations (3.216) with respect to the approxi-
mate solution y can be solved by the fixed-point iteration

y(k+1) = S−1Cy(k) + S−1f, k = 0, 1, . . . ; y(0) arbitrary (3.245)

converging at least as a geometrical progression with the denominator q =
cn−1/2 < 1 for n large enough.

Remark 3.32. Using estimates (3.241), one can analogously construct a discrete
scheme on the Gauss, the Gauss-Radau or the Gauss-Lobatto grids relative to
w(t) = 1 (i.e., connected with the Legendre orthogonal polynomials) and get the
corresponding estimates in the L2(−1, 1)-norm.
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3.3 An exponentially convergent algorithm for
nonlinear differential equations in Banach space

3.3.1 Introduction

We consider the problem

∂u(t)

∂t
+Au(t) = f(t, u(t)), t ∈ (0, 1],

u(0) = u0,
(3.246)

where u(t) is an unknown vector-valued function with values in a Banach space X ,
u0 ∈ X is a given vector, f(t, u) : (R+ ×X) → X is a given function (nonlinear
operator) and A is a linear densely defined closed operator with the domain D(A)
acting in X . The abstract setting (3.246) covers many applied problems such
as nonlinear heat conduction or diffusion in porous media, the flow of electrons
and holes in semiconductors, nerve axon equations, chemically reacting systems,
equations of population genetics theory, dynamics of nuclear reactors, Navier-
Stokes equations of viscous flow etc. (see, e.g., [32] and the references therein).
This fact together with theoretical interest is an important reason to study efficient
discrete approximations of problem (3.246).

In this section we construct exponentially convergent approximations to the
solution of nonlinear problem (3.246). To this end we use an equivalent Volterra
integral equation including the operator exponential and represent the operator
exponential by a Dunford-Cauchy integral along a hyperbola enveloping the spec-
trum of the operator coefficient. Then we approximate the integrals involved using
Chebyshev interpolation and an appropriate Sinc quadrature.

Problem (3.246) is equivalent to the nonlinear Volterra integral equation

u(t) = uh(t) + unl(t), (3.247)

where
uh(t) = T (t)u0, (3.248)

T (t) = e−At is the operator exponential (the semi-group) generated by A and the
nonlinear term is given by

unl(t) =

∫ t

0

e−A(t−s)f(s, u(s))ds. (3.249)

We suppose that the solution u(t) and the function f(t, u(t)) can be analytically
extended (with respect to t) into a domain which we will describe below.

3.3.2 A discretization scheme of Chebyshev type

Changing in (3.247) the variables by

t =
x+ 1

2
, (3.250)



72 Chapter 3. The first-order equations

we transform problem (3.247) to the following problem on the interval [−1, 1]:

u(
x+ 1

2
) = gh(x) + gnl(x, u) (3.251)

with

gh(x) = e−A x+1
2 u0,

gnl(x, u) =
1

2

∫ x

−1

e−Ax−ξ
2 f(

ξ + 1

2
, u(

ξ + 1

2
))dξ.

(3.252)

Using the representation of the operator exponential by the Dunford-Cauchy
integral along the integration path ΓI defined above in (3.33), (3.42) and envelop-
ing the spectral curve Γ0 we obtain

gh(x) = e−A x+1
2 u0 =

1

2πi

∫
ΓI

e−z x+1
2 [(zI −A)−1 − 1

z
I]u0dz,

gnl(x, u) =
1

2

∫ x

−1

e−Ax−η
2 f(

η + 1

2
, u(

η + 1

2
))dη (3.253)

=
1

4πi

∫ x

−1

∫
ΓI

e−z x−η
2 [(zI −A)−1 − 1

z
I]f(

η + 1

2
, u(

η + 1

2
))dzdη

(note, that P.V.
∫
ΓI

z−1dz = 0 but this term in the resolvent provides the numerical

stability of the algorithm below when t → 0, see section 3.1 or [27] for details).
After parametrizing the first integral in (3.253) by (3.42) we have

gh(x) =
1

2πi

∫ ∞

−∞
Fh(x, ξ)dξ (3.254)

with

Fh(x, ξ) = FA((x+ 1)/2, ξ)u0 (3.255)

(in the case A = 0 we define FA(t, ξ) = 0).
We approximate integral (3.254) by the following Sinc-quadrature (see (3.50),

(3.53), (3.54))

gh,N1(x) =
h

2πi

N1∑
k=−N1

Fh(x, kh), h =

√
2πd

α(N1 + 1)
(3.256)

with the error

‖ηN1(Fh, h)‖ = ‖E((x+ 1)/2)u0‖ ≤ c

α
exp

(
−
√

πdα

2
(N1 + 1)

)
‖Aαu0‖, (3.257)
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where

E((x−η)/2) =
1

2πi

∫ ∞

−∞
FA((x−η)/2, ξ)dξ− 1

2πi

N1∑
k=−N1

FA((x−η)/2, kh) (3.258)

and the constant c is independent of x,N1. Analogously, we transform the second
integral in (3.253) to

gnl(x, u) =
1

4πi

∫ x

−1

∫
ΓI

e−z x−η
2 [(zI −A)−1 − 1

z
I]f(

η + 1

2
, u(

η + 1

2
))dzdη

=
1

4πi

∫ x

−1

∫ ∞

−∞
Fnl(x, ξ, η)dξdη,

(3.259)

where

Fnl(x, ξ, η) = FA((x− η)/2, ξ)f(
η + 1

2
, u(

η + 1

2
)). (3.260)

Replacing the infinite integral by quadrature rule (3.256), we arrive at the approx-
imation

gnl,N1(x, u) =
h

4πi

∫ x

−1

N1∑
k=−N1

Fnl(x, kh, η)dη. (3.261)

To approximate the nonlinear operator gnl,N1(x, u) we choose the mesh

ωN = {xk,N = cos (2k−1)π
2N , k = 1, . . . , N} on [−1, 1], where xk,N are zeros of

the Chebyshev orthogonal polynomial of first kind TN (x) = cos (N arccosx). For
the step-sizes τk,N = xk,N − xk−1,N it is well known that (see [63], Ch. 6, Th.
6.11.12, [64], p. 123)

τk,N = xk+1,N − xk,N < π
N , k = 1, . . . , N,

τmax = max1≤k≤N τk,N < π
N . (3.262)

Let

PN−1(x; f(·, u)) =
N∑

p=1

f((xp,N + 1)/2, u((xp,N + 1)/2))Lp,N−1(x) (3.263)

be the interpolation polynomial for the function f(x, u(x)) on the mesh ωN , i.e.,
PN−1(xk,N ; f(·, u)) = f((xk,N + 1)/2, u((xk,N + 1)/2)), k = 1, 2, . . . , N , where

Lp,N−1 = TN (x)
T ′
N (xp,N )(x−xp,N) , p = 1, . . . , N are the Lagrange fundamental polyno-

mials. Given a vector y = (y1, . . . , yN), yi ∈ X let

PN−1(x; f(·, y)) =
N∑
p=1

f((xp,N + 1)/2, yp))Lp,N−1(x) (3.264)
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be the polynomial which interpolates f(x, y), i.e., PN−1(xk,N ; f(·, y)) = f((xk,N +
1)/2, yk)), k = 1, 2, . . . , N . Substituting PN−1(t; f(·, y)) instead of f(t, u) into
(3.260), (3.261), we get the approximation

gnl,N,N1(x, y) =
h

4πi

∫ x

−1

N1∑
k=−N1

FA((x− η)/2, kh)PN−1(η; f(·, y))dη. (3.265)

Substituting approximations (3.256) and (3.265) into (3.256) and collocating the
resulting equation on the grid ωN we arrive at the following Algorithm A1 for
solving problem (3.251): find y = (y1, . . . , yN), yi ∈ X such that

yj = gh,N1(xj,N ) + gnl,N,N1(xj,N , y), j = 1, . . . , N (3.266)

or

yj =
h

2πi

N1∑
k=−N1

Fh(xj,N , kh)

+
h

4πi

N1∑
k=−N1

∫ xj,N

−1

FA((xj,N − η)/2, kh)PN−1(η; f(·, y))dη,

j = 1, . . . , N.

(3.267)

Equations (3.266) or (3.267) define a nonlinear operator A so that

y = A(y) + φ, (3.268)

where

y = (y1, y2, . . . , yN ), yi ∈ X,

[A(y)]j =
h

4πi

N1∑
k=−N1

∫ xj,N

−1

FA((xj,N − η)/2, kh)PN−1(η; f(·, y))dη,

(φ)j =
h

2πi

N1∑
k=−N1

Fh(xj,N , kh) =
h

2πi

N1∑
k=−N1

FA((xj,N + 1)/2, kh)u0,

j = 1, . . . , N.

(3.269)

This is a system of nonlinear equations which can be solved by an iteration method.
Since the integrands in

Ij,k =

∫ xj,N

−1

FA((xj,N − η)/2, kh)PN−1(η; f(·, y))dη,

j = 1, . . . , N, k = −N1, . . . , N1
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are products of the exponential function and polynomials, these integrals can be
calculated analytically, for example, by a computer algebra tools.

For a given vector y = (y1, . . . , yN) the interpolation polynomial ũ(x) =
PN−1(x; y) represents an approximation for u((x+1)/2) = u(t), i.e., u((x+1)/2) =
u(t) ≈ PN−1(x; y).

3.3.3 Error analysis for a small Lipschitz constant

In this section, we investigate the error of algorithm (3.267). The projection of the
exact equation (3.251) onto the grid ωN provides

u(tj) = e−Atju0 +
1

2

∫ xj,N

−1

e−A(xj,N−ξ)/2f(
1 + ξ

2
, u(

1 + ξ

2
))dξ,

tj =
1 + xj,N

2
, xj,N = cos

(2j − 1)π

2N
, j = 1, . . . , N.

(3.270)

Using equations (3.267) we represent the error of the algorithm in the form

Zj = u(tj)− yj

= ψ
(0)
j + ψ

(1)
j + ψ

(2)
j + ψ

(3)
j , j = 1, . . . , N,

(3.271)

where

ψ
(0)
j = ηN (Fh, h)

=

{
e−Atj − h

2πi

N1∑
k=−N1

z′(kh)e−tjz(kh)

[
(z(kh)I −A)−1 − 1

z(kh)
I

]}
u0

ψ
(1)
j =

1

2

∫ xj,N

−1

f

(
1 + η

2
, u

(
1 + η

2

)){
e−A

(xj,N−η)

2

− h

2πi

N1∑
k=−N1

z′(kh)e−z(kh)
(xj,N−η)

2

[
(z(kh)I −A)−1 − 1

z(kh)
I

]}
dη,

ψ
(2)
j =

h

2πi

N1∑
k=−N1

z′(kh)
1

2

∫ xj,N

−1

e−z(kh)(xj,N−η)/2

[
(z(kh)I −A)−1 − 1

z(kh)
I

]

×
[
f

(
1 + η

2
, u

(
1 + η

2

))
−

N∑
l=1

f(tl, u(tl))Ll,N−1(η)

]
dη,

ψ
(3)
j =

h

2πi

N1∑
k=−N1

z′(kh)
1

2

∫ xj,N

−1

e−z(kh)(xj,N−η)/2

[
(z(kh)I −A)−1 − 1

z(kh)
I

]

×
[

N∑
l=1

[f(tl, u(tl))− f(tl, yl)]Ll,N−1(η)

]
dη,

z(ξ) = aI cosh ξ − ibI sinh ξ.
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Using notation as in (3.255), (3.258) we can write down

ψ
(0)
j = E((xj,N + 1)/2)u0,

ψ
(1)
j =

1

2

∫ xj,N

−1

E((xj,N − η)/2)f(
1 + η

2
, u(

1 + η

2
))dη,

ψ
(2)
j =

1

2

∫ xj,N

−1

h

2πi

N1∑
k=−N1

FA((xj,N − η)/2, kh)

×
[
f(

1 + η

2
, u(

1 + η

2
))− PN−1(η; f(·, u(·)))

]
dη,

ψ
(3)
j =

1

2

∫ xj,N

−1

h

2πi

N1∑
k=−N1

FA((xj,N − η)/2, kh)

× [PN−1(η; f(·, u(·))− f(·, y(·)))] dη
= [A(u)]j − [A(y)]j

where u = (u(t1), . . . , u(tN )), y = (y1, . . . , yN) and ψj = ψ
(0)
j + ψ

(1)
j + ψ

(2)
j is the

truncation error.
For the first summand, we have estimate (3.257):

‖ψ(0)
j ‖ ≤ c

α
exp

(
−
√

πdα

2
(N1 + 1)

)
‖Aαu0‖ (3.272)

and obviously the estimate

‖Aαψ
(0)
j ‖ ≤ c

β − α
exp

(
−
√

πdα

2
(N1 + 1)

)
‖Aβu0‖ ∀ β > α > 0. (3.273)

In order to estimate ψ
(1)
j we assume that

(i) f(t, u(t)) ∈ D(Aα) ∀ t ∈ [0, 1] and

∫ 1

0

‖Aαf(t, u(t))‖dt < ∞.

Using this assumption we obtain analogously to (3.272), (3.273)

‖ψ(1)
j ‖ ≤ c

α
exp

(
−
√

πdα

2
(N1 + 1)

)∫ 1

0

‖Aαf(t, u(t))‖dt (3.274)

and

‖Aαψ
(1)
j ‖ ≤ c

β − α
exp

(
−
√

πdα

2
(N1 + 1)

)

×
∫ 1

0

‖Aβf(t, u(t))‖dt ∀ β > α > 0.

(3.275)
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In order to estimate ψ
(2)
j we assume in addition to the assumption (i) that

(ii) the vector-valued function Aαf(1+ξ
2 , u(1+ξ

2 )) of ξ can be analytically extended
from the interval B = [−1, 1] into the domain Dρ enveloped by the so-called
Bernstein’s regularity ellipse Eρ = Eρ(B) (with the foci at z = ±1 and the sum of
semi-axes equal to ρ > 1):

Eρ =

{
z ∈ C : z =

1

2

(
ρeiϕ +

1

ρ
e−iφ

)}

=

{
(x, y) :

x2

a2
+

x2

a2
= 1, a =

1

2

(
ρ+

1

ρ

)
, b =

1

2

(
ρ− 1

ρ

)}
.

Using (2.32) with m = 0, the first inequality (3.36) with ν = 0 and the fact
that the Lebesque constant for the Chebyshev interpolation process is bounded
by c lnN , we obtain

‖ψ(2)
j ‖ ≤ c · SN1 · lnN · EN (Aαf (·, u (·))) (3.276)

where SN1 =
∑N1

k=−N1
h|z′(kh)|/|z(kh)|1+α, c is a constant independent ofN,N1, η

and EN (Aαf (·, u (·))) is the value of the best approximation of Aαf(t, u(t)) by
polynomials of degree not greater than N − 1 in the maximum norm with respect
to t. Using the estimate

|z(kh)| =
√
a2I cosh

2 (kh) + b2I sinh
2 (kh)

≥ aI cosh (kh) ≥ aIe
|kh|/2

(3.277)

the last sum can be estimated by

|SN1 | ≤
c√
N1

N1∑
k=−N1

e−α|k/√N1| ≤ c

∫ √
N1

−√N1

e−αtdt ≤ c/α. (3.278)

Due to assumption (ii) we have for the value of the best polynomial approx-
imation [7, 27]

EN (Aαf (·, u (·))) ≤ ρ−N

1− ρ
sup
z∈Dρ

‖Aαf(z, u(z))‖

which together with (3.276)and (3.278) yields

‖ψ(2)
j ‖ ≤ c

α
lnNρ−N sup

z∈Dρ

‖Aαf(z, u(z))‖ (3.279)

and

‖Aαψ
(2)
j ‖ ≤ c

β − α
lnNρ−N sup

z∈Dρ

‖Aβf(z, u(z))‖ ∀ β > α > 0. (3.280)
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Before we go over to the estimating of ψ
(3)
j , let us introduce the functions

Λ
(1)
j (ξ) =

N∑
k=1

∣∣∣∣∣
∫ ξ

−1

χj(η)Lk,N−1(η)dη

∣∣∣∣∣ , j = 1, . . . , N, (3.281)

and

Λ
(2)
j (ξ) =

N∑
k=1

∣∣∣∣
∫ xj,N

ξ

χj(η)Lk,N−1(η)dη

∣∣∣∣ , j = 1, . . . , N,

with some bounded functions χj(η):

|χj(η)| ≤ κj ∀η ∈ [−1, 1], j = 1, . . . , N (3.282)

and prove the following auxiliary assertion.

Lemma 3.33. There holds

Λ
(1)
j (ξ) ≤ κj

√
π(ξ + 1),

Λ
(2)
j (ξ) ≤ κj

√
π(xj,N − ξ), ξ ∈ (−1, xj,N ), j = 1, . . . , N.

(3.283)

Proof. Let

ε
(1)
k,j = sign

{∫ ξ

−1

χj(η)Lk,N−1(η)dη

}
,

ε
(2)
k,j = sign

{∫ xj,N

ξ

χj(η)Lk,N−1(η)dη

}
,

then taking into account that all coefficients of the Gauss quadrature relating to
the Chebyshev orthogonal polynomials of first kind are equal to π/N and the
Lagrange fundamental polynomials Lk,N (η) are orthogonal [63] with the weight

1/
√
1− η2, we obtain

Λ
(1)
j (ξ) =

∫ ξ

−1

χj(η)
N∑

k=1

ε
(1)
k,jLk,N−1(η)dη

≤
√
ξ + 1

⎧⎨
⎩
∫ ξ

−1

χ2
j (η)

[
N∑

k=1

ε
(1)
k,jLk,N−1(η)

]2

dη

⎫⎬
⎭

1/2

≤ κj

√
ξ + 1

⎧⎨
⎩
∫ ξ

−1

[
N∑

k=1

ε
(1)
k,jLk,N−1(η)

]2

/
√
1− η2dη

⎫⎬
⎭

1/2

≤ κj

√
ξ + 1

⎧⎨
⎩

N∑
k,p=1

ε
(1)
k,jε

(1)
p,j

∫ 1

−1

Lk,N−1(η)Lp,N−1(η)/
√
1− η2dη

⎫⎬
⎭

1/2
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= κj

√
ξ + 1

{
N∑

k=1

(
ε
(1)
k,j

)2
∫ 1

−1

L2
k,N−1(η)/

√
1− η2dη

}1/2

= κj

√
π/N

√
ξ + 1

{
N∑

k=1

1

}1/2

= κj

√
π(1 + ξ).

Analogously we obtain

Λ
(2)
j (ξ) =

∫ xj,N

ξ

χj(η)

N∑
k=1

ε
(2)
k,jLk,N−1(η)dη

≤ √
xj,N − ξ

⎧⎨
⎩
∫ xj,N

ξ

χ2
j(η)

[
N∑

k=1

ε
(2)
k,jLk,N−1(η)

]2

dη

⎫⎬
⎭

1/2

≤ κj

√
xj,N − ξ

⎧⎨
⎩
∫ xj,N

ξ

[
N∑

k=1

ε
(2)
k,jLk,N−1(η)

]2

/
√
1− η2dη

⎫⎬
⎭

1/2

≤ κj

√
xj,N − ξ

⎧⎨
⎩

N∑
k,p=1

ε
(2)
k,jε

(2)
p,j

∫ 1

−1

Lk,N−1(η)Lp,N−1(η)/
√

1− η2dη

⎫⎬
⎭

1/2

= κj

√
π(xj,N − ξ) =

√
2πκj cos

(2j − 1)π

4N
.

The proof is complete. �
Corollary 3.34. We define the numbers

Λ
(1)
j = Λ

(1)
j (xj,N ) =

N∑
k=1

∣∣∣∣
∫ xj,N

−1

χj(η)Lk,N−1(η)dη

∣∣∣∣ , j = 1, . . . , N,

then using Lemma 3.33 we derive

Λ
(1)
j ≤ κj

√
π(1 + cos

(2j − 1)π

2N
) =

√
2πκj cos

(2j − 1)π

4N
, j = 1, . . . , N. (3.284)

Conjecture. Setting χ(η) = 1, we obtain from (3.284) that

Λ
(1)
j ≤ Λ

(1)
u,j =

√
2π cos

(2j − 1)π

4N

and the upper bound Λ
(1)
u,j of Λ

(1)
j is monotonically decreasing in j. In the same

time calculations indicate the behavior of Λ
(1)
j given by Table 3.4.
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j 1 2 3 4 5 6 7 8
Λj 1.9807 1.8516 1.6037 1.2630 .8934 .5213 .2462 .3097e-1
Λu,j 1.9903 1.9138 1.76384 1.5460 1.2687 .9427 .5805 .1960

Table 3.4: The behavior of Λ
(1)
j and of Λ

(1)
u,j for N = 8.

Our hypothesis is that each Λ
(1)
j is also monotonically decreasing in j and

Λ
(1)
u,j = 2 cos (2j−1)π

4N .

Corollary 3.35. Numbers Λ
(1)
j remain bounded also if χj(η) = e−z(xj,N−η), where

z = ρeiθ is a complex number with ρ ≥ 0, θ ∈ (−π/2, π/2).

Actually, we have in this case

Λ
(1)
j =

N∑
k=1

∣∣∣∣
∫ xj,N

−1

e−ρexp{iθ}(xj,N−η)Lk,N−1(η)dη

∣∣∣∣
≤

N∑
k=1

∣∣∣∣
∫ xj,N

−1

χj,1(η)Lk,N−1(η)dη

∣∣∣∣
+

N∑
k=1

∣∣∣∣
∫ xj,N

−1

χj,2(η)Lk,N−1(η)dη

∣∣∣∣
where

χj,1(η) = e−ρ cos θ(xj,N−η) cos [ρ sin θ(xj,N − η)],

χj,2(η) = e−ρ cos θ(xj,N−η) sin [ρ sin θ(xj,N − η)].

Applying Lemma 3.33 for each summand and each of functions χj,1(η) ≤ 1 and
χj,1(η) ≤ 1 we arrive at the estimate

Λ
(1)
j ≤ 2

√
2π cos

(2j − 1)π

4N
, j = 1, . . . , N.

Now, we are in the position to estimate ψ
(3)
j . To this end we assume that

(iii) The function f(t, y) = f(t, y;N) in the domain G = {(t, y,N) : 0 ≤ t ≤ 1,
|‖y − u|‖ < γ, N ≥ N0} in addition to (i), (ii) satisfies

|‖Aα[f(t, y1)− f(t, y2)]|‖ ≤ L|‖y1 − y2|‖ ∀y1, y2 ∈ G,

for all (t, yi, N) ∈ G, i = 1, 2, where |‖Z‖| = |‖y−u‖| = maxj=1,...,N ‖yj − u(tj)‖,
γ is a positive real constant and N0 is a fixed natural number large enough.
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Under this assumption and taking into account Lemma 3.33, Corollary 3.35
as well as (3.277), (3.278) we have

‖ψ(3)
j ‖ ≤ cLh

N1∑
k=−N1

|z′(kh)|
|z(kh)|1+α

×
N∑
l=1

∣∣∣∣
∫ xj,N

−1

e−z(kh)(xj,N−η)Ll,N−1(η)dη

∣∣∣∣ ‖Zl‖

≤ |‖Z‖|cLh
N1∑

k=−N1

|z′(kh)|
|z(kh)|1+α

Λ
(1)
j ≤ cLSN1Λ

(1)
j |‖Z‖| ≤ c∗

α
L|‖Z‖|

(3.285)

with a new positive constant c∗. This estimate together with (3.271) implies

|‖Z‖| ≤ α

α− c∗L
|‖ψ‖|

with a constant c independent of α,N provided that c∗L/α < 1. Analogously, we
obtain

‖Aαψ
(3)
j ‖ ≤ c∗

β − α
L|‖AβZ‖| ∀ β > α > 0

and

|‖AαZ|‖ ≤ β − α

β − α− c∗L
|‖Aβψ‖| ∀ β > α > 0 (3.286)

with a constant c∗ independent of α, β,N provided that c∗L/(β − α) < 1.
Taking into account (3.271) and estimates (3.272), (3.274), (3.279) as well as

(3.285) we arrive at the estimate

|‖Z‖| ≤ c

α− c∗L

×
(
e−c1

√
N1

(
‖Aαu0‖+

∫ 1

0

‖Aαf(t, u(t))‖dt
)
+ lnNρ−N sup

z∈Dρ

‖Aαf(z, u(z))‖
)

provided that the Lipschitz constant L is such that c∗L/α < 1. Equating the
exponents by N � √

N1 (i.e., the number of the interpolation points must be
proportional to the square root of the number of nodes in the Sinc-quadrature),
gives

|‖Z‖| = |‖u− y‖| ≤ c

α− c∗L
lnN1e

−c1
√
N1

×
(
‖Aαu0‖+

∫ 1

0

‖Aαf(t, u(t))‖dt+ sup
z∈Dρ

‖Aαf(z, u(z))‖
)

(3.287)



82 Chapter 3. The first-order equations

and due to (3.273), (3.275), (3.280), (3.286), in a stronger norm

|‖AαZ‖| = |‖Aα(u− y)‖| ≤ c

β − α− c∗L
lnN1e

−c1
√
N1

×
(
‖Aβu0‖+

∫ 1

0

‖Aβf(t, u(t))‖dt+ sup
z∈Dρ

‖Aβf(z, u(z))‖
)
,

∀ β > α > 0, β − α > c∗L.

(3.288)

These estimates show in particular that the operator A is contractive on G pro-
vided that c∗L/α < 1 and N ≥ N0. Taking into account the Banach fixed point
theorem we obtain by usual arguments, that there exists the unique solution of
(3.268) in G for which the estimate (3.287) holds.

Thus, we have proven the following result.

Theorem 3.36. Let A be a densely defined, closed, strongly positive linear operator
with the domain D(A) in a Banach space X and the assumptions (i), (ii), (iii) hold.
Then algorithm A1 defined by (3.267) for the numerical solution of the nonlinear
problem (3.246) possesses a uniform with respect to t exponential convergence rate
with estimates (3.287), (3.288) provided that N � √

N1 and the Lipschitz constant
L is sufficiently small.

Remark 3.37. The same result can be obtained if one uses the interpolation poly-
nomial on the Chebyshev-Gauss-Lobatto grid

ωCGL
N = {xk,N = xCGL

k,N = cos
(N − j)π

N
, k = 0, 1, . . . , N, }

where the nodes are zeros of the polynomial (1− x2)T ′N (x).

Example 3.38. To have a view of the possible size of the Lipschitz constant let us
consider the nonlinear Cauchy problem

d�u(t)

dt
+A�u(t) = �f(t, �u(t)), t > 0,

�u(0) = �u0

with a linear self-adjoint positive definite operator A such that

A = A∗ ≥ λ0I, λ0 > 0.

In this case, algorithm (3.267) takes the form

�y(tj) = �yj = e−Atj�u0 +

N∑
p=1

1

2

∫ xj,N

−1

e−A(xj,N−η)/2Lp,N−1(η)dη �f (tp, �yp),

j = 1, . . . , N.
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For the error �zj = �yj − �u(tj) = �yj − �uj , we have the equation

�zj =

N∑
p=1

1

2

∫ xj,N

−1

e−A(xj,N−η)/2Lp,N−1(η)dη[�f (tp, �yp)− �f(tp, �up)] + �ψj ,

j = 1, . . . , N,

where

�ψj =
1

2

∫ xj,N−η

−1

e−A(xj,N−η)/2[PN−1(η, �u)− �f(
η + 1

2
, u(

η + 1

2
))]dη

is the truncation error. Using the equation∫ xj,N

−1

e−A(xj,N−η)/2Lp,N−1(η)dη

= −
∫ xj,N

−1

e−A(xj,N−η)/2 d

dη

∫ xj,N

η

Lp,N−1(ξ)dξdη

= e−A(xj,N+1)/2

∫ xj,N

−1

Lp,N−1(η)dη

+
1

2

∫ xj,N

−1

Ae−A(xj,N−η)/2

∫ xj,N

η

Lp,N−1(ξ)dξdη,

we obtain

�zj =

N∑
p=1

1

2

{
e−A(xj,N+1)/2

∫ xj,N

−1

Lp,N−1(η)dη

+
1

2

∫ xj,N

−1

Ae−A(xj,N−η)/2

∫ xj,N

η

Lp,N−1(ξ)dξdη

}
[�f(tp, �yp)− �f(tp, �up)]

+ �ψj , j = 1, . . . , N. (3.289)

Since A is a self-adjoint, positive definite operator we have

‖Ae−A(xj,N−η)/2‖ = max
λ0≤λ<∞

(λe−λ(xj,N−η)/2) ≤ 2

e(xj,N − η)
,

‖e−A(xj,N+1)/2‖ ≤ 1.

This estimate together with (3.289) and Lemma 3.33 implies

‖�zj‖ ≤ L

N∑
p=1

1

2

∣∣∣∣
∫ xj,N

−1

Lp,N−1(η)dη

∣∣∣∣ |‖�z‖|
+ L

1

2

N∑
p=1

1

2

∫ xj,N

−1

‖Ae−A(xj,N−η)/2‖ ·
∣∣∣∣
∫ η

−1

Lp,N(ξ)dξ

∣∣∣∣ dη · |‖�z‖|+ ‖�ψj‖
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≤ 1

2
LΛ

(1)
j (xj,N )|‖�z‖|+ L

2e

∫ xj,N

−1

1

xj,N − η
Λ
(2)
j (η)|‖�z‖|+ ‖�ψj‖

≤ L

2
Λj|‖�z‖|+ L

√
π

2e

∫ xj,N

−1

1√
xj,N − η

|‖�z‖|+ ‖�ψj‖

≤
(√

π

2
+

√
2π

e

)
L|‖�z‖|+ ‖�ψj‖.

The last inequality yields the condition

L <

√
2e√

πe+ 2
√
π

(3.290)

on the Lipschitz constant L which provides the convergence of the fixed point
iteration and a corresponding a priori estimate for |‖�z‖|.
Remark 3.39. Given N1 choose the integer number N2 = [

√
N1] and set y(t) =

PN2−1(t; y) with y defined by algorithm (3.267). To get an error estimate for all
t ∈ [0, 1] we represent Z(t) = u(t)− PN2−1(2t− 1; y) = u(t)− PN2−1(2t− 1;u) +
[PN2−1(2t−1;u)−PN2−1(2t−1; y)]. Taking into account that the Lebesque constant
relating to the Chebyshev interpolation nodes is bounded by c lnN2 and using
the estimates (3.287), ‖PN2−1(2t − 1;u) − PN2−1(2t − 1; y)‖ ≤ c lnN2|‖Z‖| ≤
c ln2 N2e

−c1N2 and ‖u(t)− PN2−1(2t− 1;u)‖ ≤ c lnN2e
−c1N2 we derive

max
0≤t≤1

‖u(t)− PN2−1(2t− 1; y)‖ ≤ c ln2 N2e
−c1N2 .

3.3.4 Modified algorithm for an arbitrary Lipschitz constant

In this section we show how the algorithm above can be modified for a nonlinear
case with an arbitrary Lipschitz constant. To this end we suppose that u(t) ∈
D(Aσ), σ > c∗L/2. We cover the interval [0, 1] by the grid ωG = {ti = i · τ :
i = 0, 1, . . . ,K, τ = 1/K} and consider problem (3.246) on each subinterval
[tk−1, tk], k = 1, . . . ,K. The substitution t = tk−1(1 − ξ)/2 + tk(1 + ξ)/2, v(ξ) =
u(tk−1(1 − ξ)/2 + tk(1 + ξ)/2) translates the original equation to the differential
equation

v′(ξ) + Ãv = f̃(ξ, v) (3.291)

on the reference interval [−1, 1] with Ã = τ
2A and with the function f̃(ξ, v) =

τ
2 f(tk−1(1−ξ)/2+tk(1+ξ)/2, u(tk−1(1−ξ)/2+tk(1+ξ)/2)) satisfying the Lipschitz

condition with the Lipschitz constant L̃ = τL/2 which can be made arbitrarily
small by the appropriate choice of τ. We cover each subinterval [tk−1, tk] by the
Chebyshev-Gauss-Lobatto grid

ωCGL
k,N = {tk,j : tk,j = tk−1(1− xj,N )/2 + tk(1 + xj,N )/2, j = 0, 1, . . . , N},
xj,N = cos (π(N − j)/N) (3.292)
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and write vk(xj,N ) = vk,j = u(tk,j), vk,0 = vk, u(tk,0) = u(tk) = uk, �vk =
[vk,j ]j=1,...,N , �uk = [u(tk,j)]j=1,...,N . Then, algorithm (3.267) with the correspond-
ing Chebyshev-Gauss-Lobatto interpolation polynomial can be applied which pro-
vides an exponential accuracy on the subinterval [tk−1, tk] under the assumption
that the initial vector uk−1 is known. This is exactly the case for k = 1 and, by
algorithm (3.267), we obtain a value v1,N = v1 as an approximation for u(t1).
Starting on the subinterval [t1, t2] with the approximate initial value v1 we obtain
an approximate solution for this subinterval and so on.

To write down this idea as an algorithm we derive from (3.291) the relation

vk,j = e−Ã(1+xj,N )uk−1 +

∫ xj,N

−1

e−Ã(xj,N−η)f̃(η, vk(η))dη.

Denoting by yk,j approximations to vk,j , approximating the operator exponential
by (3.50) with N1 nodes and the nonlinearity by the Chebyshev-Gauss-Lobatto
interpolation polynomial

PN (η, �̃f) =

N∑
l=0

f̃(xl,N , yk,l)Ll,N (η),

Ll,N (η) =
(1− η2)T ′N (η)

(η − xl,N ) d
dη [(1− η2)T ′N (η)]η=xl,N

,

�̃f = [f̃(xj,N , yk,j)]
N
j=0,

we arrive at the following system of nonlinear equations (analogous to (3.267)):

yk,j = e
−Ã(1+xj,N )
N1

yk−1 +

∫ xj,N

−1

e
−Ã(xj,N−η)
N1

PN (η,
�̃
f)dη, (3.293)

which expresses yk,j , j = 1, 2, . . . , N (in particular yk,N = yk+1) through yk−1.
Now, we can formulate the following algorithm.

Algorithm A2. Given K satisfying (3.296), and N1 computes the approximate so-
lution of nonlinear problem (3.246) with an arbitrary Lipschitz constant by solving
of the nonlinear discrete system (3.293) on each subinterval:

1. Choose K satisfying (3.296) and N1 and set τ = 1/K, t0 = 0, y0 = u0.

2. For i := 1 step 1 to K do

2.1. Set ti = ti−1−1−3 + τ and find the approximate solution yi,j, j =
1, 2, . . . , N of problem (3.246) on the Chebyshev-Gauss-Lobatto grid
(3.292) covering the interval [ti−1−1−3, ti] by algorithm (3.293) using
yi−1−1−3 as the initial value.

2.2. Set yi = yi,N .
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Now, let us analyze the error zk,j = u(tk,j − yk,j) = vk,j − yk,j of this
algorithm. We have the representation

zk,j = ψk,j +

3∑
p=0

ψ
(p)
k,j , (3.294)

where

ψk,j = e
−Ã(xj,N+1)
N1

zk−1,

ψ
(0)
k,j = [e−Ã(xj,N+1) − e

−Ã(xj,N+1)
N1

]uk−1,

ψ
(1)
k,j =

∫ xj,N

−1

[e−Ã(xj,N−η) − e
−Ã(xj,N−η)
N1

]f̃(η, vk(η))dη,

ψ
(2)
k,j =

∫ xj,N

−1

e
−Ã(xj,N−η)
N1

[f̃(η, vk(η)) −
N∑
l=0

f̃(xl,N , vk,l)Ll,N (η)]dη,

ψ
(3)
k,j =

∫ xj,N

−1

e
−Ã(xj,N−η)
N1

N∑
l=0

[f̃(xl,N , vk,l)− f̃(xl,N , yk,l)]Ll,N (η)dη.

Under the same assumptions and analogously to (3.272), (3.274), (3.279), (3.285)
we obtain the following estimates:

‖ψk,j‖ ≤ c

αk
‖Ãαkzk−1‖,

‖ψ(0)
k,j‖ ≤ c

αk
exp

(
−
√

πdαk

2
(N1 + 1)

)
‖Ãαkuk−1‖,

‖ψ(1)
k,j‖ ≤ c

αk
exp

(
−
√

πdαk

2
(N1 + 1)

)∫ 1

−1

‖Ãαk f̃(t, vk(t))‖dt,

‖ψ(2)
k,j‖ ≤ c

αk
lnNρ−N sup

z∈Dρk

‖Ãαk f̃(z, vk(z))‖,

‖ψ(3)
k,j‖ ≤ c∗

αk

Lτ

2
|||�zk|||,

(3.295)

where αk are some positive numbers, Dρk
are the analyticity ellipses for

Ãαk f̃(z, vk(z)) and |||�zk||| = max
1≤j≤N

‖zk,j‖. Choosing τ = 1/K such that

c∗

αk

Lτ

2
< 1, (3.296)

we obtain from (3.294), (3.295)

|||�zk||| = max
1≤j≤N

‖zk,j‖ ≤ c(τ/2)αk

αk − c∗Lτ/2

{
‖Aαkzk−1‖
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+

[∫ tk

tk−1

‖Aαkf(t, u(t))‖dt+ ‖Aαku(tk−1)‖
]
exp

(
−
√

πdαk

2
(N1 + 1)

)

+
τ

2
lnNρ−N sup

z∈Dρk

‖Aαkf(tk(z), u(tk(z)))‖
}
,

k = 2, 3, . . . ,K.

tk(z) = tk−1
1− z

2
+ tk

1 + z

2
. (3.297)

Equalizing the exponents by setting N � √
N1 (i.e., the number of the interpo-

lation points on each subinterval must be proportional to the square root of the
number of nodes in the Sinc approximation of the operator exponential) we obtain
from (3.297)

|||Aαk+1�zk||| ≤ c(τ/2)αk

αk − αk+1 − c∗Lτ/2

{
|‖Aαkzk−1|‖

+ lnN1e
−c1

√
N1

[∫ tk

tk−1

‖Aαkf(t, u(t))‖dt+ ‖Aαku(tk−1)‖

+
τ

2
sup

z∈Dρk

‖Aαkf(tk(z), u(tk(z)))‖
]}

,

k = 2, 3, . . . ,K,

(3.298)

where αk satisfy

αk − αk+1 − c∗Lτ/2 > 0,

0 < αk ≤ σ, k = 1, 2, . . . ,K.
(3.299)

Taking into account that z0 = 0 we have the estimate

|||Aα2�zk||| ≤ c(τ/2)α1

α1 − α2 − c∗Lτ/2
lnN1e

−c1
√
N1

[
‖Aα1u0‖+

∫ t1

t0

‖Aα1f(t, u(t))‖dt

+
τ

2
sup

z∈Dρ1

‖Aαkf(tk(z), u(tk(z)))‖
]

for k = 1. Estimate (3.298) can be rewritten in the form

wk ≤ μk(gk + wk−1), k = 1, 2, . . . ,K

with

wk = |||Aα2�zk|||, μk =
c(τ/2)α1

αk − αk+1 − c∗Lτ/2
,

gk = lnN1e
−c1

√
N1

[∫ tk

tk−1

‖Aαkf(t, u(t))‖dt+ ‖Aαku(tk−1)‖

+
τ

2
sup

z∈Dρk

‖Aαkf(tk(z), u(tk(z)))‖
]
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which yields

wk ≤ μk(gk + wk−1), k = 1, 2, . . . ,K

and further recursively

wk ≤ μkgk + μk−1μkgk−1 + · · ·+ μ1μ2 · · ·μkg1. (3.300)

Conditions (3.299) imply

0 < αk+1 < α1 − c∗Lkτ/2 > 0, k = 1, 2, . . . ,K.

Let us choose α1 = σ, ε ∈ (0, σ−c∗L/2
c∗L ) and

αk+1 = σ −
(
1

2
+ ε

)
c∗Lkτ, k = 1, 2, . . . ,K.

Then we have

ρk =
c(τ/2)αk

εc∗Lτ
=

c(τ/2)αk−1

2εc∗L
<

c

2εc∗L
(τ/2)σ−(0.5+ε)c∗L = q

and (3.300) implies

max
1≤k≤K

wk ≤ max{qK , q}
K∑
p=1

gp

or

max
1≤k≤K

|||Aα2�zk||| ≤ max{qK , q} lnN1e
−c1

√
N1

K∑
k=1

[∫ tk

tk−1

‖Aαkf(t, u(t))‖dt

+‖Aαku(tk−1)‖ + τ

2
sup

z∈Dρk

‖Aαkf(tk(z), u(tk(z)))‖
]
. (3.301)

Thus, we have proven the following second main result on the rate of conver-
gence of the algorithm A2.

Theorem 3.40. Let A be a densely defined closed strongly positive linear operator
with the domain D(A) in a Banach space X and the assumptions (i), (ii), (iii) hold.
If the solution of the nonlinear problem (3.246) belongs to the domain D(Aσ) with
σ > c∗L/2, then algorithm A2 possesses a uniform with respect to t exponential
convergence rate with estimate (3.301), provided that N � √

N1 and the chosen
number of subintervals K satisfies (3.296).
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3.3.5 Implementation of the algorithm

Algorithm (3.267) represents a nonlinear system of algebraic equations which can
be solved by the fixed point iteration

y
(m+1)
j =

h

2πi

N1∑
k=−N1

Fh(xj,N , kh)

+
h

4πi

∫ xj

−1

N1∑
k=−N1

FA(ξ, xj − η)PN−1(η; f(·, y(m)))dη,

j = 1, . . . , N, m = 0, 1, . . . .

(3.302)

Since the operator A is contractive we obtain the inequality

|‖y(m+1)
j − y

(m)
j |‖ ≤ Lc∗|‖y(m)

j − y
(m−1)
j |‖

which justifies the convergence of the fixed point iteration (3.302) with the speed of
a geometric progression with the denominator Lc∗ < 1, provided the assumptions
of Theorem 3.36 hold.

Let us estimate the asymptotical computational costs of our method and a
possible alternative polynomially convergent method (e.g., step-by-step implicit
Euler method) to arrive at a given tolerance ε. Assuming the time step τ and the
spatial step h in the Euler scheme to be equal, we have asymptotically to make t∗

ε
steps in order to arrive at a tolerance ε at a given fixed point t = t∗. At each step
the nonlinear equation τf(tk+1, yk+1)−(τAyk+1+I) = yk should be solved, where
yk is an approximation for u(tk). Assuming the computational costs for the solution
of this nonlinear equation to be M , we arrive at the total computational costs for
the Euler method TE � t∗M/ε. From the asymptotical relation lnN1e

−c
√
N1 <

e−c1
√
N1 � ε we obtain that in our algorithm N � √

N1 � ln (1/ε). It is natural to
assume that the computational costs for the numerical solution of the nonlinear
equation (3.302) (or (3.268)) are not greater than NM � √

N1M . Then the total
costs of our algorithm are TO � M ln (1/ε) � TE for ε small enough.

Example 3.41. Let us consider the nonlinear initial value problem

u′(t) + u(t) = μe−2t − μ[u(t)]2, t ∈ (−1, 1],

u(−1) = e
(3.303)

with the exact solution u(t) = e−t (independent of μ). The equivalent Volterra
integral equation is

u(t) = ϕ(t)− μ

∫ t

−1

e−(t−s)u2(s)ds

where
ϕ(t) = e−t + μ[e1−t − e−2t].
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Algorithm (3.267) combined with the fixed point iteration takes in this case the
form

y
(m+1)
j = ϕj − μ

N∑
p=1

αp,j [y
(m)
p ]2,

y
(0)
j = 1/2, j = 1, . . . , N, m = 0, 1, . . .

where

αp,j = e−xj,N

∫ xj,N

−1

Lp,N−1(s)e
sds,

yj = y(xj,N ), ϕj = ϕ(xj,N ).

(3.304)

The algorithm was implemented in Maple 8 (Digits=30) for μ = 1/4 where
integrals (3.304) were computed analytically. We denote by It the number of iter-

ations necessary to satisfy the interruption criterium |y(m+1)
J,N − y

(m)
J,N | < e−N · 10−2

and accept y
(It)
j = y

(m+1)
J,N as the approximate solution. The error is computed as

εN = ‖u − y‖N,∞ = max1≤j≤N |u(xj,N ) − y
(It)
j |. The numerical results are given

by Table 3.5 and confirm our theory.

N εN It
2 0.129406 6
4 0.626486 e-2 8
8 0.181353 e-5 9
16 0.162597 e-14 16
32 0.110000 e-28 26

Table 3.5: The error of algorithm (3.267) for problem (3.303).

Example 3.42. Let us consider the problem

∂u

∂t
+Au = f(t, u(t)),

u(−1) = u0

with the linear operator A given by

D(A) = {w(x) ∈ H2(0, 1) : w′(0) = 0, w′(1) = 0},
Av = −w′′ ∀w ∈ D(A),

with the nonlinear operator f given by

f(t, u) = −2tu2
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and with the initial condition given by

u0 = u(−1, x) = 1/2.

Since the numerical algorithm supposes that the operator coefficient is strongly
positive, we shift its spectrum by the variables transform u(t, x) = ed

2tv(t, x) with
a real number d. Then we obtain the problem

∂v

∂t
+Adv = fd(t, v(t)),

v(−1) = v0

with the linear operator Ad given by

D(Ad) = D(A),

Adw = Aw + d2w ∀w ∈ D(Ad),

with the nonlinear operator

fd(t, v) = −2ted
2tv2,

and with the initial condition

v0 = v(−1, x) = ed
2

/2.

It is easy to check that the exact solution of this problem is

v(t, x) = e−d2t/(1 + t2).

The equivalent Volterra integral equation for v has the form

v(t, x) =
1

2
e−Ad(t+1)ed

2 − 2

∫ t

−1

e−Ad(t−s)sed
2s[v(s, ·)]2ds.

Returning to the unknown function u, the integral equation takes the form

u(t, x) =
1

2
e−Ad(t+1)ed

2(t+1) − 2

∫ t

−1

e−Ad(t−s)se−d2s[u(s, ·)]2ds.

Our algorithm was implemented in Maple with numerical results given by
Table 3.6 where εN = max1≤j≤N εj,N , εj,k,N = |u(xj,N , kh)− yj,k|, j = 1, . . . , N ,
k = −N1, . . . , N1. The numerical results are in a good agreement with Theorem
3.36.

Example 3.43. This example deals with the two-dimensional nonlinear problem

∂u

∂t
+Au = f(t, u(t)),

u(0) = u0,
(3.305)
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N εN It
4 0.8 e-1 12
8 0.7 e-3 10
16 0.5 e-6 11
32 0.3 e-12 12

Table 3.6: The error of algorithm (3.267) for problem (3.303).

where

D(A) = {w(x, y) ∈ H2(Ω) : w|∂Ω = 0},
Av = −Δv ∀v ∈ D(A),

Ω = [0, 1]× [0, 1]

(3.306)

with the nonlinear operator f given by

f(t, u) = −u3 + e−6π2t sin3 πx sin3 πy (3.307)

and with the initial condition given by

u0 = u(0, x, y) = sinπx sin πy. (3.308)

The exact solution is given by u = e−2π2t sinπx sinπy. Algorithm (3.267) withN =√
N1 Chebyshev-Gauss-Lobatto nodes combined with the fixed point iteration

provides the error which is presented in Table 3.7.

N εN It
4 .3413e-6 12
8 .1761e-6 10
16 .8846e-7 14
32 .5441e-8 14

Table 3.7: The error εN of algorithm (3.267) for problem (3.305)- (3.308).

Example 3.44. Let us consider again the nonlinear initial value problem (3.303)
and apply the algorithm A2 for various values of the Lipschitz constant 2μ. In-
equality (3.290) guarantees the convergence of algorithm (3.267) combined with
the fixed point iteration for μ < 0.4596747673. Numerical experiments indicate
the convergence for μ > 0.4596747673 but beginning with μ ≈ 1, the process be-
comes divergent and algorithm A2 should be applied. The corresponding results
for various μ are presented in Table 3.8.

Here the degree of the interpolation polynomial is N = 16, K is the number
of subintervals of the whole interval [−1; 1], It denotes the number of the iterations
in order to arrive at the accuracy exp(−N) ∗ 0.01.
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μ K It
0.9 1 22
1 2 20
10 32 20
20 50 25
50 128 25
100 256 24

Table 3.8: The results of algorithm A2 for problem (3.303) with various values of
the Lipschitz constant μ.

3.4 Exponentially convergent Duhamel-Like algorithms

for differential equations with an operator
coefficient possessing a variable domain in a

Banach space

3.4.1 Introduction

This section deals with a special class of parabolic partial differential equations
with time-dependent boundary conditions in an abstract setting, which are asso-
ciated with the first-order differential equation in a Banach space X ,

du(t)

dt
+A(t)u(t) = f(t), u(0) = u0. (3.309)

Here t is a real variable, the unknown function u(t), and the given function f(t)
take values in X , and A(t) is a given function whose values are densely defined,
closed linear operators in X with domains D(A, t) depending on the parameter
t. In some special cases, it is possible to translate problem (3.309) to an opera-
tor differential equation, in which operator coefficient Ã possesses domain D(Ã)
independent of t. For example, let us consider the problem

∂u(x, t)

∂t
=

∂2u

∂x2
+ f(x, t),

ux(0, t)− α(t)u(0, t) = φ1(t), ux(1, t) + β(t)u(1, t) = φ2(t),

u(x, 0) = u0(x),

(3.310)

where f, α, β, φ1, φ2, and u0 are given smooth functions. This problem belongs
to class (3.309). The operator coefficient A is as follows:

D(A, t) = {u(x) ∈ H2(0, 1) : u′(0)− α(t)u(0) = φ1(t), u
′(1) + β(t)u(1) = φ2(t)},

Au = −u′′(x) ∀u ∈ D(A, t).
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Substitution of (compare with [33])

u(x, t) = er(x,t)v(x, t) (3.311)

with function r(x, t) satisfying

rx(0, t) + α(t) = 0, rx(1, t)− β(t) = 0 (3.312)

(one can, for example, choose r(x, t) = −α(t) · x+ 1
2 [α(t) + β(t)] · x2) transforms

(3.310) into

∂v(x, t)

∂t
=

∂2v

∂x2
+ 2rx(x, t)

∂v

∂x
+ (rxx − rt)v + e−r(x,t)f(x, t),

vx(0, t) = e−r(0,t)φ1(t), vx(1, t) = e−r(0,t)φ2(t),

v(x, 0) = e−r(x,0)u0(x).

(3.313)

The new operator coefficient Ã(t) is defined by

D(Ã, t) = {v(x) ∈ H2(0, 1) : v′(0) = e−r(0,t)φ1(t), v
′(1) = e−r(1,t)φ2(t)},

−Ã(t)u = v′′(x) + 2rx(x, t)v
′ + (rxx − rt)v ∀v ∈ D(Ã, t). (3.314)

The operator coefficient Ã becomes more complicated and is not self-adjoint any-
more. However, in the homogeneous case φ1(t) ≡ 0, φ2(t) ≡ 0 due to substitu-
tion (3.311), we obtain a bounded operator R(t) as the multiplicative operator
R(t) = er(x,t) such that the operator Ã(t) = [R(t)]−1AR(t) possesses the domain
independent of t. Under this and some other assumptions it was shown in [33, 31]
that the initial value problem (3.310) has a unique solution. Unfortunately there
is not a constructive way to find such an operator R(t) in the general case.

The variable domain of an operator can be described by a separate equation,
and then we have an abstract problem of the kind

du(t)

dt
= A(t)u(t), 0 ≤ s ≤ t ≤ T,

L(t)u(t) = Φ(t)u(t) + f(t), 0 ≤ s ≤ t ≤ T,

u(s) = u0

(3.315)

instead of (3.309). Here L(t) and Φ(t) are appropriate linear operators defined on
the boundary of the spatial domain, and the second equation represents an abstract
model of the time-dependent boundary condition. An existence and uniqueness
result for this problem was proven in [13]. Incorporating the boundary condition
into the definition of the operator coefficient of the first equation, one obtains
problem (3.309).

The literature concerning discretizations of such problems in an abstract set-
ting is rather limited (see, e.g., [53], where the Euler difference approximation
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of the first accuracy order for problem (3.309) with the time-dependent domain
was considered, and the references therein). The classical Duhamel integral to-
gether with discretization of high accuracy order for the two-dimensional heat
equation with the time-dependent inhomogeneous Dirichlet boundary condition
was proposed in [28]. It is clear that the discretization (with respect to t) is more
complicated than in the case of a t-independent domain D(A), since the inclusion
yk = y(tk) ∈ D(A, tk) of the approximate solution yk at each discretization point
tk should be additionally checked and guaranteed.

In this section, we consider the problem

du(t)

dt
+A(t)u(t) = f(t),

∂1u(t) + ∂0(t)u(t) = g(t),

u(0) = u0,

(3.316)

where u(t) is the unknown function u : (0, T ) → D(A) ⊂ X with values in a Banach
space X , f(t) is a given measurable function f : (0, T ) → X from Lq(0, T ;X) with

the norm ‖f‖ = {∫ T

0
‖f‖qXdt}1/q, A(t) : D(A) ∈ X is a densely defined, closed

linear operator in X with a time-independent domain D(A), g : (0, T ) → Y is a
given function from Lq(0, T ;Y ) with values in some other Banach space Y, and
∂1 : D(A) → Y (independent of t!), ∂0(t) : D(A) → Y (can depend on t!) are linear
operators. In applications, the second equation above is just the time-dependent
boundary condition with appropriate operators ∂1, ∂0 acting on the boundary of
the spatial domain (see section 3.4.6 for examples). For this reason, we call this
equation an abstract (time-dependent) boundary condition.

Incorporating the boundary condition into the definition of the operator co-
efficient in the first equation, we get a problem of the type (3.309) with a variable
domain. The difficulties of the discretization were mentioned above and were well
discussed in [53]. The separation of this condition in (3.316) will allow us below to
use an abstract Duhamel-like technique in order to reduce the problem to another
one including operators with t-independent domains.

3.4.2 Duhamel-like technique for first-order differential equations
in Banach space

In this subsection we consider a particular case of problem (3.316),

du(t)

dt
+Au(t) = f(t),

∂1u(t) + ∂0(t)u(t) = g(t), u(0) = u0,
(3.317)

where the operator A and its domain D(A) in some Banach space X are in-
dependent of t, f(t) is a given measurable function f : (0, T ) → X from the

space Lq(0, T ;X) with the norm ‖f‖ = {∫ T

0 ‖f‖qXdt}1/q, g : (0, T ) → Y is a
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given function from Lq(0, T ;Y ) with values in some other Banach space Y , and
∂1 : D(A) → Y (independent of t!), ∂0(t) : D(A) → Y (can depend on t!) are
linear operators.

We represent the solution in the form

u(t) = w(t) + v(t), (3.318)

with v and w satisfying

dv

dt
+Av = f(t),

∂1v = 0, v(0) = u0

(3.319)

and

dw(t)

dt
+Aw = 0,

∂1w(t) = −∂0(t)u(t) + g(t),

w(0) = 0,

(3.320)

respectively. Introducing the operator A(1) : D(A(1)) → X independent of t and
defined by

D(A(1)) = {u ∈ D(A) : ∂1u = 0},
A(1)u = Au ∀u ∈ D(A(1)),

(3.321)

we can rewrite problem (3.319) in the form

dv

dt
+A(1)v = f(t),

v(0) = u0.
(3.322)

We suppose that the operator A is such that the operator A(1) is strongly positive
(see 2 or [4, 20, 27]) (m-sectorial in the sense of [14]); i.e., there exist a positive
constantMR and a fixed θ ∈ [0, π/2) such that on the rays from the origin building
a sector Σθ = {z ∈ C : |arg(z)| ≤ θ} and outside this sector, the following resolvent
estimate holds:

‖(zI −A(1))−1‖ ≤ MR

1 + |z| . (3.323)

Then under some assumptions with respect to f(t), the solution of (3.322)
can be represented by (3.4), (3.5) (see [54])

v(t) = e−A(1)tu0 +

∫ t

0

e−A(1)(t−τ)f(τ)dτ. (3.324)
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Note that problem (3.322) with a strongly positive operatorA(1) can also be solved
numerically by the exponentially convergent algorithm from subsection 3.1.4.

Returning to problem (3.320) we introduce the auxiliary function W (λ, t) by

∂W (λ, t)

∂t
+AW (λ, t) = 0,

∂1W (λ, t) = −∂0(λ)u(λ) + g(λ),

W (λ, 0) = 0,

(3.325)

where the abstract boundary condition is now independent of t. The next result
gives a representation of the solution of problem (3.320) through the function W
by the so-called Duhamel integral.

Theorem 3.45. The solution of problem (3.320) with a t-dependent boundary condi-
tion can be represented through the solution of problem (3.325) with a t-independent
boundary condition by the following Duhamel integral:

w(t) =
d

dt

∫ t

0

W (λ, t− λ)dλ =

∫ t

0

∂

∂t
W (λ, t− λ)dλ. (3.326)

Proof. Let us show that the function (3.326) in fact satisfies (3.320) (compare with
the classical representation by Duhamel’s integral [28, 55]).

Actually, the initial condition w(0) = 0 obviously holds true. Due to the first
representation in (3.326) and (3.325), we have

∂1w(t) =
d

dt

∫ t

0

∂1W (λ, t− λ)dλ =
d

dt

∫ t

0

[−∂0(λ)u(λ) + g(λ)]dλ

= −∂0(t)u(t) + g(t);

(3.327)

i.e., the boundary condition ∂1w(t) = −∂0(t)u(t)+g(t) is also fulfilled. Due to the
second representation in (3.326) we obtain

dw(t)

dt
+Aw(t) =

d

dt

∫ t

0

∂

∂t
W (λ, t− λ)dλ +Aw(t) (3.328)

=
∂

∂t
W (λ, t− λ)

∣∣∣∣
λ=t

+

∫ t

0

∂2

∂t2
W (λ, t− λ)dλ +

∫ t

0

∂

∂t
AW (λ, t − λ)dλ

= −AW (λ, t− λ)|λ=t +

∫ t

0

∂

∂t

[
∂

∂t
W (λ, t− λ) +AW (λ, t− λ)

]
dλ = 0;

i.e., the first equation in (3.320) holds true, which completes the proof. �
To make the boundary condition in (3.325) homogeneous and independent

of t, we introduce the operator B : Y → D(A) by

A(By) = 0,

∂1By = y;
(3.329)

i.e., ∂1B is a projector on Y .
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Remark 3.46. To show the existence of the operator B, we set By = v. Then the
problem (3.329) is equivalent to the problem

Av = 0,

∂1v = y.

We assume that there exists an operator E : Y → D(A) such that ∂1Ey =
y (compare with E(t) from [53]). The existence of this operator for an elliptic
operator A is proven in [67, section 5.4, Theorem 5.4.5]. Let us introduce v1 =
v − Ey ∈ D(A), and then

Av1 = −AEy,

∂1v1 = 0.

Taking into account (3.321) we have the problem

A(1)v1 = −AEy,

which has a solution since operator A(1) is strongly positive. Thus, we have

B = (I − [A(1)]−1A)E.

Given operator B we change the dependent variable by

W (λ, t) = B[−∂0(λ)u(λ) + g(λ)] +W1(λ, t). (3.330)

For the new dependent variable we have the problem

∂W1(λ, t)

∂t
+AW1(λ, t) = 0,

∂1W1(λ, t) = 0,

W1(λ, 0) = −B[−∂0(λ)u(λ) + g(λ)]

(3.331)

or, equivalently,

∂W1(λ, t)

∂t
+A(1)W1(λ, t) = 0,

W1(λ, 0) = −B[−∂0(λ)u(λ) + g(λ)].
(3.332)

Using the operator exponential, the solution of this problem can be given in
the form

W1(λ, t) = −e−A(1)tB[−∂0(λ)u(λ) + g(λ)]. (3.333)

Now, taking into account the substitution (3.330) and the last representation, we
obtain

W (λ, t) = −[e−A(1)t − I]B[−∂0(λ)u(λ) + g(λ)], (3.334)
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where I : X → X is the identity operator. Due to relations (3.318), (3.326), and
(3.334), we arrive at the representation

u(t) = v(t) +
∂

∂t

∫ t

0

W (λ, t− λ)dλ

= v(t)−
∫ t

0

∂

∂t

{
e−A(1)(t−λ)B[−∂0(λ)u(λ) + g(λ)]

}
dλ

(3.335)

and further the following boundary integral equation:

∂0(t)u(t) = ∂0(t)v(t) − ∂0(t)

∫ t

0

∂

∂t

{
e−A(1)(t−λ)B[−∂0(λ)u(λ) + g(λ)]

}
dλ.

(3.336)
The last equation can also be written in the form

∂0(t)u(t) = ∂0(t)v(t) + ∂0(t)

∫ t

0

A(1)e−A(1)(t−λ)B[−∂0(λ)u(λ) + g(λ)]dλ. (3.337)

After determining ∂0(t)u(t) from (3.337), we can find the solution of problem
(3.317) by (3.324), (3.335) using the exponentially convergent algorithms for the
operator exponential from the subsection 3.1.4 (see also [27, 18]).

Let us introduce the operator-valued kernel K(t−τ) = A(1)e−A(1)(t−τ)B, the

functions θ(t) = ∂0(t)u(t) and F (t) = ∂0(t)v(t) + ∂0(t)
∫ t

0
A(1)e−A(1)(t−λ)Bg(λ)dλ,

and the operator V : Lq(0, T ;D(A)) → Lq(0, T ;Y ) defined by

V (t)y(·) = ∂0(t)

∫ t

0

K(t− λ)y(λ)dλ. (3.338)

Then (3.336) can be written in the fixed point iteration form

θ(t) = V (t)θ(·) + F (t). (3.339)

3.4.3 Existence and uniqueness of the solution of the integral
equation

To prove the existence and uniqueness result for the equivalent equations (3.336),
(3.337), and (3.339), we make the following hypotheses (see subsection 3.4.6 for
examples):

(A1) There exists a positive constant c such that

‖∂0(t)‖X→Y ≤ c ∀t ∈ [0, T ] (3.340)

(compare with H1 from [53]).
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(A2) For some p ≥ 1 it holds that[∫ t

0

‖A(1)e−A(1)(t−λ)B‖pY→Xdλ

]1/p
≤ c ∀t ∈ [0, T ]. (3.341)

(A3) The function

F (t) = ∂0(t)v(t)− ∂0(t)

∫ t

0

∂

∂t
e−A(1)(t−λ)Bg(λ)dλ

= ∂0(t)v(t) + ∂0(t)

∫ t

0

A(1)e−A(1)(t−λ)Bg(λ)dλ : (0, T ) → Y

(3.342)

belongs to the Banach space Lq(0, T ;Y ) and

‖F‖Lq(0,T ;Y ) =

{∫ T

0

‖F (τ)‖qY dτ
}1/q

≤ c, (3.343)

where q is such that 1
p + 1

q = 1 for p defined in (A2).

Let us define the sequences

θj(t) = V (t)θj−1(·) + F (t),

δj(t) = θj(t)− θ∗(t),
(3.344)

where θ∗(t) is the exact solution of (3.339).
Now we are in a position to prove the following result.

Theorem 3.47. Let conditions (A1)–(A3) be fulfilled; then (3.336) (or, equivalently,
(3.337), (3.339)) possesses the unique solution θ∗(t) ∈ Lq(0, T ;Y ). This solution is
the limit of the sequence {θj(t)} from (3.344) with the factorial convergence, i.e.,
with the estimate

‖δj(t)‖Lq(0,T ;Y ) = ‖θj(t)− θ∗(t)‖Lq(0,T ;Y )

≤
(
c2jqT n

j!

)1/q

‖θ0(t)− θ∗(t)‖Lq(0,T ;Y ).
(3.345)

For the solution θ∗(t) = ∂0(t)u(t), the following stability estimate holds:∫ t

0

‖∂0(τ)u(τ)‖qY dτ ≤ 2q/p
∫ t

0

‖F (τ)‖qY e2
q/pc2q(t−τ)dτ. (3.346)

Proof. Using the Hölder inequality and assumptions (A1)–(A3) we have(∫ t

0

‖V j(τ1)s(·)‖qdτ1
)1/q

=

(∫ t

0

∥∥∥∥∂0(τ1)
∫ τ1

0

K(τ1 − τ2)V
j−1(τ2)s(·)dτ2

∥∥∥∥
q

dτ1

)1/q
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≤ c

(∫ t

0

(∫ τ1

0

‖K(τ1 − τ2)‖ · ‖V j−1(τ2)s(·)‖dτ2
)q

dτ1

)1/q

≤ c

(∫ t

0

(∫ τ1

0

‖K(τ1 − τ2)‖pdτ2
)q/p

·
∫ τ1

0

‖V j−1(τ2)s(·)‖qdτ2dτ1
)1/q

≤ c2
(∫ t

0

∫ τ1

0

‖V j−1(τ2)s(·)‖qdτ2dτ1
)1/q

≤ · · ·

≤ c2j
(∫ t

0

∫ τ1

0

. . .

∫ τj

0

‖s(τj+1)‖qdτj+1 . . . dτ2dτ1

)1/q

≤ c2j
(∫ t

0

∫ τ1

0

. . .

∫ τj−1

0

dτj . . . dτ2dτ1

)1/q (∫ t

0

‖s(τj+1)‖qdτj+1

)1/q

≤ c2j
(
tj

j!

)1/q (∫ t

0

‖s(τj+1)‖qdτj+1

)1/q

∀s(t) ∈ Lq(0, T ;Y ),

which means that the spectral radius of the operator V : Lq(0, T ;Y ) → Lq(0, T ;Y )
is equal to zero. The general theory of the Volterra integral equations (see, for
example, [36, 34]) yields the existence and uniqueness of the solution of (3.336).

Applying the Hölder inequality to the equation

δj(t) = ∂0(t)

∫ t

0

K(t− λ)δj−1(λ)dλ

analogously as above, we deduce that(∫ t

0

‖δj(τ1)‖qdτ1
)1/q

≤ c2
(∫ t

0

∫ τ1

0

‖δj−1(τ2)‖qdτ2dτ1
)1/q

≤ · · ·

≤ c2j
(
tj

j!

)1/q (∫ t

0

‖δ0(τj+1)‖qdτj+1

)1/q

,

from which the factorial convergence (3.345) follows.
Further, let us prove the stability of the solution of (3.336) with respect to

the right-hand side. Using the Hölder inequality for integrals we obtain(∫ t

0

‖∂0(τ)u(τ)‖qY dτ
)1/q

≤
(∫ t

0

‖F (τ)‖qY dτ
)1/q

+

{∫ t

0

∥∥∥∥∂0(τ)
∫ τ

0

A(1)e−A(1)(τ−λ)B∂0(λ)u(λ)dλ

∥∥∥∥
q

Y

dτ

}1/q

≤
(∫ t

0

‖F (τ)‖qY dτ
)1/q

+

{∫ t

0

‖∂0(τ)‖q
(∫ τ

0

‖A(1)e−A(1)(τ−λ)B‖Y→X‖∂0(λ)u(λ)‖Y dλ
)q

dτ

}1/q

.
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Applying condition (3.340) to the last summand and then again the Hölder in-
equality, we arrive at the estimate

(∫ t

0

‖∂0(τ)u(τ)‖qY dτ
)1/q

≤
(∫ t

0

‖F (τ)‖qY dτ
)1/q

+ c

{∫ t

0

(∫ τ

0

‖A(1)e−A(1)(τ−λ)B‖pY→Xdλ

)q/p ∫ τ

0

‖∂0(λ)u(λ)‖qY dλdτ
}1/q

.

Due to (3.341), we further obtain

(∫ t

0

‖∂0(τ)u(τ)‖qY dτ
)1/q

≤
(∫ t

0

‖F (τ)‖qY dτ
)1/q

+ c2
{∫ t

0

∫ τ

0

‖∂0(λ)u(λ)‖qY dλdτ
}1/q

.

The well-known inequality (a + b)q ≤ 2q/p(aq + bq) and the last estimate
imply∫ t

0

‖∂0(τ)u(τ)‖qY dτ ≤ 2q/p
[∫ t

0

‖F (τ)‖qY dτ + c2q
∫ t

0

∫ τ

0

‖∂0(λ)u(λ)‖qY dλdτ
]
.

Now the Gronwall lemma [10, 7] yields (3.346).
The proof is complete. �
Given the solution θ∗(t) = ∂0(t)u(t) of integral equation (3.336), problem

(3.317) takes the form

du(t)

dt
+Au(t) = f(t),

∂1u(t) = g1(t), u(0) = u0,
(3.347)

with a known function g1(t) = θ∗(t)+g(t), and its solution is given by (see (3.335))

u(t) = v(t) +

∫ t

0

∂

∂t

{
e−A(1)(t−λ)Bg1(λ)

}
dλ. (3.348)

The solution can be computed with exponential accuracy by algorithms from sub-
section 3.1.4 (see also [27, 18]).

3.4.4 Generalization to a parameter-dependent operator.
Existence and uniqueness result

Let (X, ‖ · ‖), (W , ‖ · ‖W), (Y, ‖ · ‖Y ) be three Banachspaces and W ⊂ X . For each
t∈ [0, T ] we have a densely defined closed linear unbounded operator A(t) : W→X
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and linear bounded operator ∂0(t) : W → Y . We suppose that the domain
D(A(t)) = D(A) ⊂ W is independent of t.

Let us consider the problem

du(t)

dt
+A(t)u(t) = f(t),

∂1u(t) + ∂0(t)u(t) = g(t), t ∈ (0, T ],

u(0) = u0,

(3.349)

where u0 is a given vector, f(t) is a given vector-valued function, and the operator
∂0(t) is the product of two operators

∂0(t) = μ(t)∂0, (3.350)

with ∂0 : D(A) → Y , μ(t) : Y → Y . We suppose that problem (3.349) possesses a
unique solution u(t) for all t ∈ (0, T ) for input data f, g, u0 from a set including
the elements f = 0, g = 0, u0 = 0.

We choose a mesh ωn = {tk, k = 1, . . . , n} of n various points on [0, T ] and
set

A(t) = Ak = A(tk), t ∈ (tk−1, tk],

μ(t) = μk = μ(tk), t ∈ (tk−1, tk].
(3.351)

On each subinterval (tk−1, tk], we define the operator A
(2)
k with a t-indepen-

dent domain by

D(A
(2)
k ) = {u ∈ D(A) : ∂1u+ μk∂0u = 0},

A
(2)
k u = Aku ∀u ∈ D(A

(2)
k )

(3.352)

and the operator B
(1)
k : Y → D(A) by

Ak(B
(1)
k y) = 0,

(∂1 + μk∂0)B
(1)
k y = y.

(3.353)

For all t ∈ [0, T ), we define the operators

A(2)(t) = A
(2)
k , t ∈ (tk−1, tk],

B(1)(t) = B
(1)
k , t ∈ (tk−1, tk], ∀k = 1, . . . , n

(3.354)

(existence of B
(1)
k can be shown analogously to existence of B from subsection

3.4.2).
Further, we accept the following hypotheses (see subsection 3.4.6 for exam-

ples):
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(B1) We suppose the operator A(2)(t) to be strongly positive (see (3.323)).

This assumption implies that there exist a positive constant c and a fixed κ such
that (see, e.g., [14, p. 103])

‖[A(2)(t)]κe−sA(2)(t)‖ ≤ cs−κ, s > 0, κ > 0.

(B2) There exists a real positive ω such that

‖e−sA(2)(t)‖ ≤ e−ωs ∀s, t ∈ [0, T ]

(see [54, Corollary 3.8, p. 12] for the corresponding assumptions on A(t)).

We also assume that the following conditions hold:

(B3) ‖[A(2)(t)−A(2)(s)][A(2)(t)]−γ‖ ≤ c|t− s| ∀t, s, 0 ≤ γ ≤ 1;

(B4) ‖[A(2)(t)]β [A(2)(s)]−β − I‖ ≤ c|t− s| ∀t, s ∈ [0, T ], β ∈ (0, 1).

(B5) The operator μ(t)∂0 satisfies the following conditions:

‖μ(t)− μ(t′)‖Y→Y ≤ M |t− t′|,
‖∂0‖X→Y ≤ c.

(B6) For some p ≥ 1 and γ ≥ 0, there holds

[∫ t

0

‖[A(2)(η)]1+γe−A(2)(η)(t−λ)B(1)(η)‖pY→Xdλ

]1/p
≤ c ∀t, η ∈ [0, T ].

Let us rewrite problem (3.349) in the equivalent form (so-called prediscretization)

du

dt
+A(t)u = [A(t)−A(t)]u(t) + f(t),

[∂1 + μ(t)∂0]u(t) = −[μ(t)− μ(t)]∂0u(t) + g(t), t ∈ [0, T ],

u(0) = u0.

(3.355)

Note that now all operators on the left-hand side of these equations are constant
on each subinterval and piecewise constant on the whole interval [0, T ).

From (3.355) analogously to (3.335), (3.337) we deduce

u(t) = e−A
(2)
k (t−tk−1)u(tk−1)

+

∫ t

tk−1

e−A
(2)
k

(t−τ) {[Ak −A(τ)]u(τ) + f(τ)} dτ
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+

∫ t

tk−1

A
(2)
k e−A

(2)
k (t−λ)B

(1)
k {−[μ(λ)− μk]∂0u(λ) + g(λ)}dλ, (3.356)

∂0u(t) = ∂0e
−A

(2)
k (t−tk−1)u(tk−1)

+ ∂0

∫ t

tk−1

e−A
(2)
k (t−τ) {[Ak −A(τ)]u(τ) + f(τ)} dτ

+ ∂0

∫ t

tk−1

A
(2)
k e−A

(2)
k (t−λ)B

(1)
k {−[μ(λ)− μk]∂0u(λ) + g(λ)}dλ,

t ∈ [tk−1, tk], k = 1, . . . , n.

Thus, with the Duhamel-like technique, we have obtained the system of two
integral equations with respect to the unknown functions u(t) and ∂0u(t) which
is equivalent to (3.349). This system is the starting point for our forthcoming
investigations and for a numerical algorithm.

To prove the existence and uniqueness result it is sufficient to choose in the
framework above n = 1, t0 = 0, t1 = T, A(t) = A(0) = A, and μ(t) = μ(T ). In
addition, we introduce the vectors

U(t) =
(

u(t)
θ(t)

)
, Un(t) =

(
un(t)
θn(t)

)
, F =

(
F1(t)
F2(t)

)
(3.357)

and the matrices

K(t, τ) =

(
K11(t, τ) K12(t, τ)
K21(t, τ) K22(t, τ)

)
,

D =

(
I 0
0 ∂0

)
, Eγ =

(
[A(2)]γ 0

0 I

)
,

(3.358)

with

K11(t, τ) = K21(t, τ) = −e−A(2)(t−τ)[A(τ) −A],

K12(t, τ) = K22(t, τ) = −A(2)e−A(2)(t−τ)B(1)(t)[μk − μ(τ)],

F1(t) = e−A(2)tu0 +

∫ t

0

e−A(2)(t−τ)f(τ)dτ

+

∫ t

0

A(2)e−A(2)(t−λ)B(1)g(λ)dλ, F2(t) = ∂0F1(t).

(3.359)

We also introduce the space Y of vectors U = (u, v)T with the norm

‖U‖Y = max{‖u‖Lq(0,T ;D([A(2)]γ)), ‖v‖Lq(0,T ;Y )}, (3.360)

and we equip the space of matrices K(t, τ) from (3.358) with the matrix norm

‖K‖∞ = max{‖K1,1‖X→X + ‖K1,2‖Y→X , ‖K2,1‖X→X + ‖K2,2‖Y→X}, (3.361)
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which is consistent with the vector norm (3.360). Now the system (3.356) with
k = 1, t0 = 0, t1 = T can be written in the form

U(t) = D
∫ t

0

K(t, τ)U(τ)dτ + F(t). (3.362)

The fixed point iteration for the system (3.362) is given by

Uj+1(t) = D
∫ t

0

K(t, τ)Uj(τ)dτ + F(t), j = 0, 1, . . . , U0(t) = 0. (3.363)

Since the operators Eγ and D(t) commute, we get from (3.363) that

Uγ,j+1(t) = D
∫ t

0

EγK(t, τ)E−1
γ Uγ,j(τ)dτ + Fγ(t), j = 0, 1, . . . ,

U0(t) = 0,

(3.364)

where Uγ,j(t) = EγUj(t) and Fγ(t) = EγF(t).
Now we are in a position to formulate the following result (the proof is

completely analogous to the one of Theorem 3.47).

Theorem 3.48. Let us assume that the conditions (B1)–(B6) are fulfilled; then the
system of equations (3.356) possesses the unique solution U∗γ (t) in Y. This solution
is the limit of the sequence Uγ,j(t) from (3.364) with the factorial convergence
characterized by the estimate

‖Uγ,j(t)− U∗γ (t)‖Y ≤
(
c2jqT j

j!

)1/q

‖Uγ,0(t)− U∗γ (t)‖Y . (3.365)

For the solution U∗γ (t) the following stability estimate holds:

∫ t

0

‖U∗γ (τ)‖qYdτ ≤ 2q/p
∫ t

0

‖F(τ)‖qYe2
q/pc2q(t−τ)dτ. (3.366)

Proof. Let us introduce the linear operator V(t) by

V(t)U(·) = D(t)

∫ t

0

EγK(t, τ)E−1
γ U(τ)dτ.

Using assumptions (B1) and (B3), we get the following for the element
[EγKE−1

γ ]1,1 of the matrix EγKE−1
γ with the indexes (1, 1):

∥∥∥[EγK(τ1, τ2)E−1
γ

]
1,1

∥∥∥ =

∥∥∥∥[A(2)
]γ

e−A(2)(τ1−τ2) [A(τ2)−A]
[
A(2)

]−γ
∥∥∥∥

≤
∥∥∥[A(2)

]γ
e−A(2)(τ1−τ2)

∥∥∥
∥∥∥∥[A(τ2)−A]

[
A(2)

]−γ
∥∥∥∥ ≤ c2(τ1 − τ2)

−γ(T − τ2).
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This estimate implies∫ τ1

0

‖ [EγK(τ1, τ2)E−1
γ

]
1,1

‖pdτ2 ≤ c2p
∫ τ1

0

(τ1 − τ2)
−γp(T − τ2)

pdτ2

≤ c2pτ1−γp
1 T p

∫ 1

0

(1− η)−γpdη = c2pτ1−γp
1

T p

1− γp
≤ Cp,

with some new constant C. This expression remains bounded for γp ∈ [0, 1).
Assumption (B6) implies(∫ τ1

0

‖ [EγK(τ1, τ2)E−1
γ

]
1,2

‖pdτ2
)1/p

=

(∫ τ1

0

∥∥∥∥[A(2)
]γ+1

e−A(2)(τ1−τ2)B(1)

∥∥∥∥
p

dτ2

)1/p

≤ C,

(∫ τ1

0

‖ [EγK(τ1, τ2)E−1
γ

]
2,2

‖pdτ2
)1/p

=

(∫ τ1

0

‖A(2)e−A(2)(τ1−τ2)B(1)‖pdτ2
)1/p

≤ C.

Using (B2) and (B3) we have(∫ τ1

0

‖ [EγK(τ1, τ2)E−1
γ

]
2,1

‖pdτ2
)1/p

=

(∫ τ1

0

∥∥∥∥e−A(2)(τ1−τ2) [A(τ2)−A]
[
A(2)

]−γ
∥∥∥∥
p

dτ2

)1/p

≤
(∫ τ1

0

∥∥∥∥[A(τ2)−A]
[
A(2)

]−γ
∥∥∥∥
p

dτ2

)1/p

≤ c

(∫ τ1

0

(T − τ2)
pdτ2

)1/p

≤ C.

Therefore

‖EγK(τ1, τ2)E−1
γ ‖∞ ≤ 2max

i,j
‖ [EγK(τ1, τ2)E−1

γ

]
i,j

‖ ≤ C.

Assumption (B5) yields

‖D(τ1)‖1 ≤ max {1, ‖∂0(τ)‖} ≤ C.

Now, using estimates (3.4.4) and (3.4.4) we get, for the n-th power of the
operator V(t),
(∫ t

0

‖Vj(τ1)s(·)‖qdτ1
)1/q

=

(∫ t

0

∥∥∥∥D(τ1)

∫ τ1

0

EγK(τ1, τ2)E−1
γ Vj−1(τ2)s(·)dτ2

∥∥∥∥
q

dτ1

)1/q
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≤
(∫ t

0

‖D(τ1)‖q∞
(∫ τ1

0

‖EγK(τ1, τ2)E−1
γ Vj−1(τ2)s(·)‖∞dτ2

)q

dτ1

)1/q

≤ C

(∫ t

0

(∫ τ1

0

‖EγK(τ1, τ2)E−1
γ ‖∞‖Vj−1(τ2)s(·)‖∞dτ2

)q

dτ1

)1/q

≤ C

(∫ t

0

(∫ τ1

0

‖EγK(τ1, τ2)E−1
γ ‖p∞dτ2

)q/p

·
∫ τ1

0

‖Vj−1(τ2)s(·)‖q∞dτ2dτ1

)1/q

≤ C2

(∫ t

0

∫ τ1

0

‖Vj−1(τ2)s(·)‖q∞dτ2dτ1

)1/q

≤ · · ·

≤ C2j

(∫ t

0

∫ τ1

0

. . .

∫ τj

0

‖s(τj+1)‖q∞dτj+1 . . . dτ2dτ1

)1/q

≤ C2j

(∫ t

0

∫ τ1

0

. . .

∫ τj−1

0

dτj . . . dτ2dτ1

)1/q (∫ t

0

‖s(τj+1)‖q∞dτj+1

)1/q

≤ C2j

(
tj

j!

)1/q (∫ t

0

‖s(τj+1)‖q∞dτj+1

)1/q

∀s(t) ∈ Y.

For the difference

Δj(t) = Uj(t)− U∗(t)
between the j-th iteration and the exact solution, we have the equation

Δj(t) = D(t)

∫ t

0

EγK(t, τ)E−1
γ Δj−1(τ)dτ.

Applying the Hölder inequality analogously as above, we get

(∫ t

0

‖Δj(τ1)‖q∞dτ1

)1/q

≤ c2
(∫ t

0

∫ τ1

0

‖Δj−1(τ2)‖q∞dτ2dτ1

)1/q

≤ · · ·

≤ c2j
(
tj

j!

)1/q (∫ t

0

‖Δ0(τj+1)‖q∞dτj+1

)1/q

,

from which the factorial convergence (3.365) follows.

Finally, let us prove the stability of the solution of (3.361) with respect to
the right-hand side. Using the Hölder inequality for integrals, we obtain

(∫ t

0

‖Uγ(τ)‖q∞dτ

)1/q

≤
(∫ t

0

‖F(τ)‖q∞dτ

)1/q

+

{∫ t

0

∥∥∥∥D(τ1)

∫ τ1

0

EγK(τ1, τ2)E−1
γ Uγ(τ2)dτ2

∥∥∥∥
q

∞
dτ1

}1/q

.
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Using estimates as above we obtain

(∫ t

0

‖Uγ(τ)‖q∞dτ

)1/q

≤ c2
(∫ t

0

∫ τ1

0

‖Uγ(τ2)‖q∞dτ2dτ1

)1/q

+

(∫ t

0

‖F(τ)‖q∞dτ

)1/q

.

This estimate together with the inequality (a+ b)q ≤ 2q/p(aq + bq) implies∫ t

0

‖Uγ(τ)‖q∞dτ ≤ 2q/p
[
c2q

∫ t

0

∫ τ1

0

‖Uγ(τ2)‖q∞dτ2dτ1 +

∫ t

0

‖F(τ)‖q∞dτ

]
.

Now, the Gronwall lemma yields (3.366).
The proof is complete. �

3.4.5 Numerical algorithm

To construct a discrete approximation of (3.356) we use the Chebyshev interpola-
tion on the interval [−1, 1] (if it is not the case, one can reduce the problem (3.349)
to this interval by the variable transform t = 2t′/T − 1, t ∈ [−1, 1], t′ ∈ [0, T ]).

We choose a mesh ωn = {tk = − cos (2k−1)π
2n , k = 1, . . . , n} on [−1, 1] of n zeros of

Chebyshev orthogonal polynomial Tn(t) and set τk = tk − tk−1. It is well known
that (see [63, Chapter 6, Theorem 6.11.12], [64, p. 123])

tν+1 − tν <
π

n
, ν = 1, . . . , n,

τ = τmax = max
1≤k≤n

τk <
π

n
. (3.367)

Let

Pn−1(t;u) = Pn−1u =

n∑
j=1

u(tj)Lj,n−1(t),

Pn−1(t; ∂0u) = Pn−1(∂0u) =
n∑

j=1

∂0u(tj)Lj,n−1(t)

(3.368)

be the Lagrange interpolation polynomials for u(t) and ∂0u(t) on the mesh ωn,

where Lj,n−1 = Tn(t)
T ′
n(tj)(t−tj)

, j = 1, . . . , n, are the Lagrange fundamental polynomi-

als. For a given vector v = (v1, . . . , vn), we introduce the interpolation polynomial

Pn−1(t; v) = Pn−1y =

n∑
j=1

vjLj,n−1(t), (3.369)

so that Pn−1(tj ; v) = vj , j = 1, 2, . . . , n. Let x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) be the approximating vectors for U = (u(t1), u(t2), . . . , u(tn)) and
∂U = (∂0u(t1), ∂0u(t2), . . . , ∂0u(tn)), respectively; i.e., xk approximates u(tk),
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and yk approximates ∂0u(tk). Substituting Pn−1(η;x) for u(η) and Pn−1(η; y) for
∂0u(λ) and then setting t = tk in (3.356), we arrive at the following system of
linear equations with respect to the unknown elements xk, yk:

xk = e−A
(2)
k τkxk−1 +

n∑
j=1

αkjxj +

n∑
j=1

βkjyj + φk,

yk = ∂0e
−A

(2)
k

τkxk−1 + ∂0

n∑
j=1

αkjxj + ∂0

n∑
j=1

βkjyj + ∂0φk,

k = 1, . . . , n, x0 = u0, y0 = ∂0u0,

(3.370)

which represents our algorithm. Here we use the notation

αkj =

∫ tk

tk−1

e−A
(2)
k (tk−η)[Ak −A(η)]Lj,n−1(η)dη,

βkj =

∫ tk

tk−1

A
(2)
k e−A

(2)
k (tk−λ)B

(1)
k [μ(λ)− μk]Lj,n−1(λ)dλ,

φk =

∫ tk

tk−1

e−A
(2)
k (tk−η)f(η)dη +

∫ tk

tk−1

A
(2)
k e−A

(2)
k (tk−λ)B

(1)
k g(λ)dλ.

(3.371)

Furthermore, for the sake of simplicity we analyze this algorithm for the particular
case of problem (3.349), where operator A(t) is independent of t, i.e., A(t) ≡ A.
In this case we have αkj = 0, and system (3.370) takes the form

xk = e−A
(2)
k τkxk−1 +

n∑
j=1

βkjyj + φk,

yk = ∂0e
−A

(2)
k τkxk−1 + ∂0

n∑
j=1

βkjyj + ∂0φk,

k = 1, . . . , n, x0 = u0, y0 = ∂0u0.

(3.372)

Remark 3.49. Under the assumption that f(t), μ(t), g(t) are polynomials, the cal-
culation of the operators βkj and the elements φk can be reduced to the calcula-

tion of integrals of the kind Is =
∫ tk
tk−1

e−A
(2)
k (tk−λ)λsdλ, which can be found by

a simple recurrence algorithm: Il = −l[A
(2)
k ]−1Il−1 + [A

(2)
k ]−1(tlkI − tlk−1e

−A
(2)
k τk),

l = 1, 2, . . . , s, I0 = [A
(2)
k ]−1(I− e−A

(2)
k τk), where the operator exponentials can be

computed by the exponentially convergent algorithm from the subsection 3.1.4.

For the errors zx = (zx,1, . . . , zx,n), zy = (zy,1, . . . , zy,n), with zx,k = u(tk)−
xk and zy,k = ∂0u(tk)− yk, we have the relations
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zx,k = e−Akτkzx,k−1 +

n∑
j=1

βkjzy,j + ψy,k,

zy,k = ∂0e
−Akτkzy,k−1 + ∂0

n∑
j=1

βkjzy,j + ∂0ψy,k,

k = 1, . . . , n, zx,0 = 0, zy,0 = 0,

(3.373)

where

ψy,k =

∫ tk

tk−1

A
(2)
k e−A

(2)
k (tk−η)B

(1)
k [μk − μ(η)][∂0u(η)− Pn(η; ∂0u)]dη. (3.374)

To represent algorithm (3.370) in a block-matrix form, we introduce a matrix
like the one in (3.165),

S = {si,k}ni,k=1 =

⎛
⎜⎜⎜⎜⎜⎝

EX 0 0 · · · 0 0

−e−A
(2)
2 τ2 EX 0 · · · 0 0

0 −e−A
(2)
3 τ3 EX · · · 0 0

· · · · · · · ·
0 0 0 · · · −e−A(2)

n τn EX

⎞
⎟⎟⎟⎟⎟⎠ ,

with EX being the identity operator in X, the matrix D = {βk,j}nk,j=1, and the
vectors

x =

⎛
⎜⎜⎜⎜⎝
x1

·
·
·
xn

⎞
⎟⎟⎟⎟⎠ , fx =

⎛
⎜⎜⎜⎜⎝
φ1

·
·
·
φn

⎞
⎟⎟⎟⎟⎠ , f̃x =

⎛
⎜⎜⎜⎜⎜⎜⎝

e−A
(2)
1 τ1u0

0
·
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, ψy =

⎛
⎜⎜⎜⎜⎝
ψy,1

·
·
·

ψy,n

⎞
⎟⎟⎟⎟⎠ ,

fy =

⎛
⎜⎜⎜⎜⎝
∂0φ1

·
·
·

∂0φn

⎞
⎟⎟⎟⎟⎠ , f̃y =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂0e
−A

(2)
1 τ1u0

0
·
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, ψ(0)
y =

⎛
⎜⎜⎜⎜⎝
∂0ψy,1

·
·
·

∂0ψy,n

⎞
⎟⎟⎟⎟⎠ .

(3.375)

It is easy to see that for the (left) inverse

S−1 =

⎛
⎜⎜⎜⎜⎝

EX 0 · · · 0 0
s1 EX · · · 0 0
s2s1 s2 · · · 0 0
· · · · · · ·

sn−1 · · · s1 sn−1 · · · s2 · · · sn−1 EX

⎞
⎟⎟⎟⎟⎠ , (3.376)
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where sk = −e−A
(2)
k+1τk+1 , it holds that

S−1S =

⎛
⎜⎜⎝
EX 0 · · · 0
0 EX · · · 0
· · · · · ·
0 0 · · · EX

⎞
⎟⎟⎠ . (3.377)

Remark 3.50. Using results of [27, 18, 19] one can get a parallel and sparse ap-
proximation with an exponential convergence rate of the operator exponentials
contained in S−1 and, as a consequence, a parallel and sparse approximation of
S−1.

The first and second equations of (3.370) can be written in the matrix form
as

Sx = Dy + fx + f̃x,

y = Λ[(IX − S)x+Dy + fx + f̃x],
(3.378)

where

Λ = diag [∂0, . . . , ∂0] , IX = diag(EX , . . . , EX). (3.379)

The errors zx, zy satisfy the equations

Szx = Dzy + ψy,

zy = Λ [(IX − S)zx +Dzy + ψy] .
(3.380)

From the second equation in (3.378) and the second equation in (3.380) we
obtain

[IY − ΛD]y = Λ[(IX − S)x+ fx + f̃x],

[IY − ΛD]zy = Λ[(IX − S)zx + ψy],
(3.381)

where IY = diag(EY , . . . , EY ) and EY is the identity operator in Y.

For a vector v = (v1, v2, . . . , vn)
T and a block operator matrix A = {aij}ni,j=1,

we introduce the vector norm

|‖v‖| ≡ |‖v‖|∞ = max
1≤k≤n

‖vk‖ (3.382)

and the consistent matrix norm

|‖A‖| ≡ |‖A‖|∞ = max
1≤i≤n

n∑
j=1

‖ai,j‖. (3.383)

For further analysis we need the following auxiliary result.
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Lemma 3.51. Under assumptions (B1)–(B6) the following estimates hold true:

|‖S−1‖| ≤ n,

|‖D‖| ≤ cn−(1+1/q) lnn, 1/p+ 1/q = 1,

|‖Λ‖| ≤ c,

(3.384)

with a positive constant c independent of n.

Proof. The assumption (B2) yields

|‖S−1‖| ≤ 1 + e−ωτ + · · ·+ e−ωτ(n−1) ≤ n. (3.385)

For the matrix D, we have from (B6)

|‖D‖| ≤ max
1≤k≤n

n∑
j=1

‖βkj‖

= max
1≤k≤n

n∑
j=1

∥∥∥∥∥
∫ tk

tk−1

A
(2)
k e−A

(2)
k (tk−τ)B

(1)
k [μ(tk)− μ(τ)]Lj,n−1(τ)dτ

∥∥∥∥∥
≤ max

1≤k≤n

∫ tk

tk−1

‖A(2)
k e−A

(2)
k

(tk−τ)B
(1)
k ‖‖μ(tk)− μ(τ)‖

n∑
j=1

|Lj,n−1(τ)|dτ

≤ cΛn(tk − tk−1)

∫ tk

tk−1

‖A(2)
k e−A

(2)
k

(tk−τ)B
(1)
k ‖dτ ≤ cn−(1+1/q) lnn,

(3.386)

where Λn = max−1≤τ≤1

∑n
j=1 |Lj,n−1(τ)| is the Lebesgue constant related to the

Chebyshev interpolation nodes.
The last estimate is a simple consequence of assumption (B5). The lemma is

proved. �
Due to (3.384) for n large enough, there exists the inverse (IY − ΛD)−1,

which is bounded by a constant c independent of n; i.e.,

|‖(IY − ΛD)−1‖| ≤ c. (3.387)

Therefore, we obtain from (3.381)

y = [IY − ΛD]
−1

Λ
[
(IX − S)x+ fx + f̃x

]
,

zy = [IY − ΛD]−1 Λ [(IX − S)zx + ψy] .
(3.388)

Substituting these expressions into the first equation in (3.378) and (3.380), re-
spectively, we obtain

Gx = Q(fx + f̃x),

Gzx = Qψy,
(3.389)
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where

G = S −D[IY − ΛD]−1Λ(IX − S),

Q = D[IY − ΛD]−1Λ + IX .
(3.390)

The next lemma presents estimates for G−1 and Q.

Lemma 3.52. Under assumptions of Lemma 3.51 there exists G−1, and there holds

|‖G−1‖| ≤ cn,

|‖Q‖| ≤ c
(3.391)

with some constant independent of n.

Proof. We represent G = S[IX −G1] with G1 = S−1D[IY −ΛD]−1Λ(IX −S) and
estimate |‖G1‖|. We have

|‖G1‖| ≤ |‖S−1‖| · |‖D‖| · |‖(IY − ΛD)−1‖| · |‖Λ‖| · |‖IX − S‖|,

and now Lemma 3.51 implies that

|‖G1‖| ≤ nn−(1+1/q)c lnn = c
lnn

n1/q
. (3.392)

This estimate guarantees the existence of the bounded inverse operator (IX −
G1)

−1, which together with the estimate |‖S−1‖| ≤ n proves the first assertion of
the lemma. The second assertion is evident. The proof is complete. �

This lemma and (3.389) imply the following stability estimates:

|‖x‖| ≤ cn|‖fx + f̃x‖|,
|‖zx‖| ≤ cn|‖ψ̃y‖|.

(3.393)

Substituting estimates (3.393) into (3.388) and taking into account the estimates
|‖IX − S‖| ≤ c, |‖Λ‖| ≤ c as well as (3.387), we obtain

|‖y‖| ≤ cn|‖fx + f̃x‖|,
|‖zy‖| ≤ cn|‖ψy‖|.

(3.394)

Remark 3.53. We have reduced the interval length to T = 2, but in general the
constants c involved depend on the interval length T .

Let Πn−1 be the set of all polynomials in t with vector coefficients of degree
less than or equal to n − 1. In complete analogy with [5, 63, 64], the following
Lebesgue inequality for vector-valued functions can be proved:

‖u(η)− Pn−1(η;u)‖C[−1,1] ≡ max
η∈[−1,1]

‖u(η)− Pn−1(η;u)‖ ≤ (1 + Λn)En(u),
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with the error of the best approximation of u by polynomials of degree not greater
than n− 1,

En(u) = inf
p∈Πn−1

max
η∈[−1,1]

‖u(η)− p(η)‖.
Now we can go to the main result of this section.

Theorem 3.54. Let the assumptions of Lemma 3.51 hold; then there exists a positive
constant c such that:

1. for n large enough it holds that

|‖zx‖| ≤ cn−1/q · lnn ·En(∂0u),

|‖zy‖| ≤ cn−1/q · lnn ·En(∂0u),
(3.395)

where u is the solution of (3.349);

2. the first equation in (3.389) can be written in the form

x = G1x+ S−1Q(fx + f̃x) (3.396)

and can be solved by the fixed point iteration

x(k+1) = G1x
(k) + S−1Q(fx + f̃x), k = 0, 1, . . . ; x(0) is arbitrary

(3.397)

with the convergence rate of a geometrical progression with the denominator
q ≤ c lnn

n1/q < 1 for n large enough.

Proof. Using (B6) the norm of ψy can be estimated in the following way:

|‖ψy‖| = max
1≤k≤n

∣∣∣∣∣
∫ tk

tk−1

A
(2)
k e−A

(2)
k (tk−η)B

(1)
k [μk − μ(η)] [θ(η) − Pn(η; θ)]dη

∣∣∣∣∣
≤ c‖θ(·)− Pn(·; θ)‖C[−1,1] max

1≤k≤n
(tk − tk−1)

1+1/q

≤ cn−(1+1/q)(1 + Λn)En(θ) ≤ cn−(1+1/q) · lnn ·En(θ).

Now the first assertion of the theorem follows from (3.393) and (3.394) and
the second one from (3.392). �
Remark 3.55. Assuming that the vector-valued functions ∂0u(t) can be analyt-
ically extended from the interval [−1, 1] into the domain Dρ enveloped by the
Bernstein regularity ellipse Eρ = Eρ(B) with the foci at z = ±1 and the sum of
semiaxes equal to ρ > 1 (see also section 2.1), we obtain for the value of the best
polynomial approximation [7, 27]

En(∂0u) ≤ ρ−n

1− ρ
sup
z∈Dρ

‖∂0u(z)‖,

which together with (3.395) yields the exponential convergence rate with the esti-
mates (3.395).
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Remark 3.56. For an elliptic operator A and for its discrete counterpart Ah (say,
Ah is the finite element method/finite difference stiffness matrix corresponding to
A), it holds that (see, e.g., [14])

‖(zI −A)−1‖X→X ≤ 1

|z| sin (θ1 − θ)
∀z ∈ C : θ1 ≤ |arg z| ≤ π (3.398)

for any θ1 ∈ (θ, π), where cos θ = δ0/C, i.e., both are strongly positive in the sense
of (3.323). Replacing A by Ah in (3.349) and then applying the temporal dis-
cretization described above, we arrive at the full discretization of problem (3.317).
Since the bound (3.398) on the matrix resolvent of Ah is valid uniformly in the
mesh size h, the full error is the sum of the temporal and the spatial errors which
can be controlled independently from each other.

3.4.6 Examples

In this subsection, we show that many applied parabolic problems with a time-
dependent boundary condition can be fitted into our abstract framework. Our aim
here is to illustrate the assumptions accepted in sections 3.4.3 and 3.4.4.

A special example of the problem from the class (3.309) is

∂u

∂t
=

∂2u

∂x2
+ f(x, t),

u(0, t) = 0,
∂u(1, t)

∂x
+ b(t)u(1, t) = g(t),

u(x, 0) = u0(x),

(3.399)

where the operator A : D(A) ∈ X → X, X = Lq(0, 1), is defined by

D(A) = {v ∈ W 2
q (0, 1) : v(0) = 0},

Av = −∂2v

∂x2
,

(3.400)

the operators ∂1 : D(A) → Y and ∂0(t) : D(A) → Y, Y = R are defined by

∂1u =
∂u(x, t)

∂x

∣∣∣∣
x=1

,

∂0(t)u = b(t) · u(x, t)|x=1,

(3.401)

and g(t) ∈ Lq(0, T ;Y ) = Lq(0, T ).

We represent the solution of (3.399) in the form (compare with (3.319),
(3.320))

u(x, t) = w(x, t) + v(x, t), (3.402)
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where the function v(x, t) is the solution of the problem

∂v

∂t
=

∂2v

∂x2
+ f(x, t),

v(0, t) = 0,
∂v(1, t)

∂x
= 0,

v(x, 0) = u0(x)

(3.403)

and the function w(x, t) satisfies

∂w

∂t
=

∂2w

∂x2
,

w(0, t) = 0,
∂w(1, t)

∂x
= −b(t)u(1, t) + g(t),

w(x, 0) = 0.

(3.404)

Introducing the operator A(1) : D(A(1)) → X defined by

D(A(1)) = {u ∈ W 2
q (0, 1) : u(0) = 0, u′(1) = 0} = {u ∈ D(A) : u′(1) = 0},

A(1)u = −d2u

dx2
∀u ∈ D(A(1)) (3.405)

(see (3.321) for an abstract setting), we can also write problem (3.403) in the form

dv

dt
+A(1)v = f(t),

v(0) = u0,
(3.406)

with the solution

v(t) = e−A(1)tu0 +

∫ t

0

e−A(1)(t−τ)f(τ)dτ. (3.407)

To solve the problem (3.404) we use the Duhamel integral. We introduce the auxil-
iary function W (x, λ, t) satisfying the following equations (compare with (3.326)):

∂W (x, λ, t)

∂t
=

∂2W (x, λ, t)

∂x2
,

W (0, λ, t) = 0,
∂W (1, λ, t)

∂x
= −b(λ)u(1, λ) + g(λ),

W (x, λ, 0) = 0

(3.408)

with time-independent boundary conditions. Then the solution of problem (3.404)
is given by (see Theorem 3.45)

w(x, t) =

∫ t

0

∂

∂t
W (x, λ, t− λ)dλ. (3.409)
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Using this representation one can obtain an integral equation with respect to
u(1, t). Actually, we have

w(1, t) = u(1, t)− v(1, t) =
∂

∂t

∫ t

0

W (1, λ, t− λ)dλ

=

∫ t

0

∂

∂t
W (1, λ, t− λ)dλ.

(3.410)

The substitution

W (x, λ, t) = B[−b(λ)u(1, λ) + g(λ)] +W1(x, λ, t) (3.411)

implies the following problem with homogeneous boundary conditions for
W1(x, λ, t) :

∂W1(x, λ, t)

∂t
=

∂2W1(x, λ, t)

∂x2
,

W1(0, λ, t) = 0,
∂W1(1, λ, t)

∂x
= 0,

W1(x, λ, 0) = −B[−b(λ)u(1, λ) + g(λ)],

(3.412)

where the operator B is given by

B[−b(λ)u(1, λ) + g(λ)] = x[−b(λ)u(1, λ) + g(λ)]. (3.413)

By separation of variables we get the solution of this problem explicitly in the
form

W1(x, λ, t) = −2[−b(λ)u(1, λ) + g(λ)] (3.414)

×
∞∑
n=1

(−1)n+1

[
2

(2n− 1)π

]2
e−[π(2n−1)/2]2t sin

[π
2
(2n− 1)x

]
.

Due to (3.413) the boundary integral equation (3.336) (or, equivalently, (3.339))
for the example problem (3.399) takes the form

b(t)u(1, t) = b(t)v(1, t) + b(t)

∫ t

0

∂

∂t
W1(1, λ, t− λ)dλ

= b(t)v(1, t)− b(t)

∫ t

0

K(t− λ)g(λ)dλ + b(t)

∫ t

0

K(t− λ)b(λ)u(1, λ)dλ,

(3.415)

with

K(t) = 2
∞∑
n=1

e−[π(2n−1)/2]2t. (3.416)
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Remark 3.57. Note that in this particular case we can represent the integrand
through the kernel K(t − λ) analytically. In the general case, one can use the
exponentially convergent algorithm for the operator exponential in (3.337) like
the one from subsection 3.1.4.

Let us illustrate Theorem 3.47 for the example problem (3.399). It is easy to
see that the condition (A1) is fulfilled provided that

|b(t)| ≤ c ∀t ∈ [0, T ]. (3.417)

Let us show that there exists p for which the assumption (A2) holds. Actually, we
have∫ t

0

‖A(1)e−A(1)(t−λ)B‖pY→Xdλ =

∫ t

0

[K(t− λ)]
p
dλ

=

∫ t

0

[
2

∞∑
n=1

e−(π(2n−1)
2 )2(t−λ)

]p
dλ.

(3.418)

Using the Hölder inequality, the kernel K(t− λ) can be estimated by

K(t− λ) = 2

∞∑
n=1

e−(π(2n−1)
2 )2(t−λ)

= 2

∞∑
n=1

(2n− 1)αe−(π(2n−1)
2 )2(t−λ) 1

(2n− 1)α

≤ 2

{ ∞∑
n=1

(2n− 1)pαe−p(π(2n−1)
2 )2(t−λ)

}1/p

·
{ ∞∑

n=1

1

(2n− 1)qα

}1/q

,

(3.419)

where 1
p + 1

q = 1.

Substituting this inequality into (3.418), we obtain

∫ t

0

[K(t− λ)]pdλ ≤ 2p+1

pπ2

{ ∞∑
n=1

1

(2n− 1)qα

}p/q

×
∞∑

n=1

1

(2n− 1)2−pα

[
1− e−p(π(2n−1)

2 )2t
]

≤ 2p+1

pπ2

{ ∞∑
n=1

1

(2n− 1)qα

}p/q

·
∞∑
n=1

1

(2n− 1)2−pα
.

(3.420)

The series are bounded by a constant c if{
qα > 1,
2− pα > 1,

(3.421)



120 Chapter 3. The first-order equations

or 1
q < α < 1

p . Thus, we can choose an arbitrary p ∈ [1, 2), and then 1
q = 1 − 1

p

and the choice of an arbitrary α from the interval (1 − 1
p ,

1
p ) provide that the

assumption (A2) holds.
The assumption (A3) for the example problem (3.399) reads as

{∫ T

0

∣∣∣∣b(t)v(1, t)− b(t)

∫ t

0

K(t− λ)g(λ)dλ

∣∣∣∣
q

dt

}1/q

≤ c. (3.422)

Since K(t− ·) ∈ Lp(0, T ), this inequality holds provided that

g(t) ∈ Lq(0, T ), v(1, t) ∈ Lq(0, T ). (3.423)

Due to the estimate(∫ T

0

|v(1, t)|qdt
)1/q

=

(∫ T

0

∣∣∣∣
∫ 1

0

∂v(x, t)

∂x
dx

∣∣∣∣
q

dt

)1/q

≤
(∫ T

0

∫ 1

0

∣∣∣∣∂v(x, t)∂x

∣∣∣∣
q

dxdt

)1/q

,

(3.424)

the condition v(1, t) ∈ Lq(0, T ) is fulfilled if the last integral exists. The corre-
sponding sufficient conditions on the input data f(x, t), u0(x) of the problem
(3.399) can be found in [54, 40].

Given the solution of (3.415) (which can be found numerically by algorithm
(3.370) consisting in this case of the second equation only), the problem (3.399)
takes the form

du

dt
+Au = f(t),

u(0) = u0, ∂1u = g1(t),
(3.425)

with a known function g1(t) = g(t) − ∂0(t)u(t). Using the representation by
Duhamel’s integral (3.409) we have

u(t) = v(t)−
∫ t

0

A(1)e−A(1)(t−λ)Bg1(λ)dλ. (3.426)

Now let us show that the assumptions (B1)–(B6) hold for the following model
problem from the class (3.309):

∂u(x, t)

∂t
=

∂2u

∂x2
− q(x, t)u + f(x, t),

u(0, t) = 0,
∂u(1, t)

∂x
+ b(t)u(1, t) = g(t),

u(x, 0) = u0(x).

(3.427)
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The results of [40, section 4, paragraph 9, p. 388] yield that this problem possesses
the unique solution u ∈ W 2,1

q (QT ) provided that q(x, t), f(x, t) ∈ Lq(QT ), QT =

(0, 1) × (0, T ), g(t) ∈ W
1−1/(2q)
q (0, T ), b(t) ∈ W

1/2
q (0, T ), u0 ∈ W

2− 2
q

q (0, 1), q >
3/2, and some compatibility conditions for initial and boundary conditions are
fulfilled.

Here the operator A(t) : D(A) ∈ X → X, X = Lq(0, 1), is defined by

D(A(t)) = {v ∈ W 2
q (0, 1) : v(0) = 0},

A(t)v = −d2v(x)

dx2
+ q(x, t)v(x),

(3.428)

the operators ∂1 : D(A) → Y and ∂0(t) : D(A) → Y, Y = R are defined by

∂1u =
∂u(x, t)

∂x

∣∣∣∣
x=1

,

∂0(t)u = b(t) · u(x, t)|x=1,

(3.429)

and g(t) ∈ Lq(0, T ;Y ) = Lq(0, T ). We suppose that the function b(t) satisfies
condition (3.417), so that our assumption (B5) is fulfilled.

The piecewise constant operatorA(2)(t) from (3.354) is defined on each subin-
terval [tk−1, tk] by

D(A(2)(t)) = {v ∈ W 2
q (0, 1) : v(0) = 0, v′(1) + μkv(1) = 0}, μk = b(tk),

Akv = −d2v(x)

dx2
+ q(x, tk)v(x)

and the operator B
(1)
k by

B
(1)
k z =

x

μk + 1
z, z ∈ Y.

Assumptions (B1)–(B2) are fulfilled due to results from [14], and assumptions
(B3)–(B4) are obviously fulfilled, too. It remains to check assumption (B6). Let

(λ
(k)
j , e

(k)
j ), j = 1, 2, . . . , be the system of eigenpairs of A(2)(t), t ∈ [tk−1, tk]. Then

we have

∫ t

0

‖[A(2)]1+γe−A(2)(t−λ)B(1)‖pY→Xdλ =

n∑
k=1

∫ tk

tk−1

[
K(k)

γ (t− λ)
]p

dλ, (3.430)

where

K(k)
γ (t− λ) =

∞∑
j=1

[λ
(k)
j ]γe−λ

(k)
j (t−λ). (3.431)
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Using the well-known asymptotic cLj
2 ≤ λj ≤ cU j

2 (see, e.g, [45]) and

Hölder’s inequality, the kernel K
(k)
γ (t− λ) can be estimated in the following way:

K(k)
γ (t− λ) =

∞∑
j=1

(
λ
(k)
j

)γ

e−λ
(k)
j (t−λ) ≤ cγU

∞∑
j=1

j2γe−cLj2(t−λ)

= cγU

∞∑
n=1

j2γ+αe−cLj2(t−λ) 1

jα

≤ cγU

⎧⎨
⎩
∞∑
j=1

jp(α+2γ)e−pcLj2(t−λ)

⎫⎬
⎭

1/p

·
⎧⎨
⎩
∞∑
j=1

1

jqα

⎫⎬
⎭

1/q

,
1

p
+

1

q
= 1.

Substituting this inequality into (3.430) we obtain

n∑
k=1

∫ tk

tk−1

[K(k)
γ (t− λ)]pdλ

≤
n∑

k=1

cγU

∫ tk

tk−1

∞∑
j=1

jp(α+2γ)e−pcLj2(t−λ)dλ ·
⎧⎨
⎩
∞∑
j=1

1

jqα

⎫⎬
⎭

p/q

= cγU

∞∑
j=1

jp(α+2γ)(pcLj
2)−1

[
1− e−pcLj2t

]
·
⎧⎨
⎩
∞∑
j=1

1

jqα

⎫⎬
⎭

p/q

≤ cγU
pcL

∞∑
j=1

1

j2−p(α+2γ)
·
⎧⎨
⎩
∞∑
j=1

1

jqα

⎫⎬
⎭

p/q

.

The series remains bounded if{
qα > 1,
2− p(α+ 2γ) > 1,

or 1
q < α < 1

p − 2γ. Thus, we can choose an arbitrary p ∈ [1, 2); then 1
q = 1 − 1

p

and the assumption (B6) holds with an arbitrary γ from the interval [0, 1
p − 1

2 ).

3.4.7 Numerical example

In this subsection we show that the algorithm (3.370) possesses the exponential
convergence with respect to the temporal discretization parameter n predicted
by Theorem 3.54. To eliminate the influence of other errors (the spatial error, the
error of approximation of the operator exponential and of the integrals in (3.371)),
we calculate the coefficients of the algorithm (3.372) exactly using the computer
algebra tool Maple.
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We consider the model problem (3.399) with

u0(x) =
4
√
2

π
sin

π

4
x, b(t) =

π

4
exp

(
π2

16
t

)
, g(t) = 1 + exp

(
−π2

16
t

)
,

for which algorithm (3.370) consists of the second equation only, where αkj = 0.
The exact solution of this problem is

u(x, t) = exp

(
−π2

16
t

)
4
√
2

π
sin

π

4
x.

For the function v(x, t) from (3.403) we have the following problem:

∂v(x, t)

∂t
=

∂2v(x, t)

∂x2
, v(0, t) = 0,

∂v(1, t)

∂x
= 0,

v(x, 0) =
4
√
2

π
sin

π

4
x.

It is easy to check that

v(x, t) =

∞∑
k=1

(−1)k+132

π2(4k − 1)(4k − 3)
e−(

π(2k−1)
2 )

2
t sin

(π
2
(2k − 1)x

)
.

Equation (3.415) (compare also with (3.414), (3.420)) reads as follows:

u(1, t) = v(1, t) + 2

∫ t

0

[
1 + e

−π2

16 τ
] ∞∑
k=1

e−(
π(2k−1)

2 )
2
(t−τ)dτ

− 2

∫ t

0

π

4
e

π2

16 τu(1, τ)

∞∑
k=1

e−(
π(2k−1)

2 )
2
(t−τ)dτ

= f(t)− π

2

∫ t

0

e
π2

16 τu(1, τ)

∞∑
k=1

e−(
π(2k−1)

2 )
2
(t−τ)dτ , (3.432)

with

f(t) = v(1, t)− 2

∞∑
k=1

e−(
π(2k−1)

2 )
2
t

⎡
⎢⎣ 1(

π(2k−1)
2

)2 +
1(

π(2k−1)
2

)2

− π2

16

⎤
⎥⎦+ 1

+
4

π
e−

π2

16 t = − 8

π2

∞∑
k=1

e−(
π(2k−1)

2 )
2
t

(2k − 1)2
+ 1 +

4

π
e−

π2

16 t.

To reduce the problem to the interval [−1, 1] we change the variable t in
(3.432) by

t =
s+ 1

2
T, s ∈ [−1, 1]; τ =

ξ + 1

2
T, ξ ∈ [−1, s]; dτ =

T

2
dξ
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and obtain

u

(
1,

s+ 1

2
T

)
= f

(
s+ 1

2
T

)

− πT

4

∞∑
k=1

∫ s

−1

e
π2

16
ξ+1
2 Tu

(
1,

ξ + 1

2
T

)
e−(

π(2k−1)
2 )

2 T
2 (s−ξ)dξ.

Note that this equation is, in fact, the explicit form of the operator equation
(3.420) with an explicitly calculated integrand including the operator exponential.

Substituting the corresponding interpolation polynomials and collocating the
obtained equation at the points

sl = cos

[
2l− 1

2n
π

]
, l = 1, n,

analogously as in (3.372), we arrive at a system of linear algebraic equations with
respect to yj ≈ u(1, tj), where the calculation of the values βkj and ∂0φk is reduced
to the calculation of integrals of the type

∫ s

−1
e−a(s−τ)τndτ and can be performed

exactly. The computations were provided in Maple 9. For the cases of n = 2, 3, 4, 8
we used Digits=20, whereas we used Digits=40 for the case n = 16. The results
of the computation presented in Tables 3.9–3.12 confirm our theory above.

Point t ε
0.8535533905 0.64328761e-2
0.1464466094 0.1817083e-2

Table 3.9: The error in the case n = 2, T = 1.

Point t ε
0.9619397662 0.11818295e-4
0.6913417161 0.98439031e-5
0.3086582838 0.71990794e-5
0.0380602337 0.18751078e-5

Table 3.10: The error in the case n = 4, T = 1.
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Point t ε
0.9903926402 0.23186560e-11
0.9157348061 0.26419501e-11
0.7777851165 0.2614635e-11
0.5975451610 0.2367290e-11
0.4024548389 0.2059591e-11
0.2222148834 0.1600175e-11
0.0842651938 0.1298227e-11
0.0096073597 0.3285404e-12

Table 3.11: The error in the case n = 8, T = 1.

Point t ε
0.9975923633 0.25187858260140e-26
0.9784701678 0.17507671148106e-26
0.9409606321 0.26606504614832e-26
0.8865052266 0.19216415631333e-26
0.8171966420 0.14389447843978e-26
0.7356983684 0.8729247130003e-27
0.6451423386 0.12250410788313e-26
0.5490085701 0.20057933602212e-26
0.4509914298 0.27443715793522e-26
0.3548576613 0.2071356401636e-26
0.2643016315 0.1352407675441e-26
0.1828033579 0.4176006046401e-26
0.1134947733 0.5890397288154e-26
0.0590393678 0.49643071858013e-25
0.0215298321 0.4614912514700e-26
0.0024076366 0.12497053453746e-25

Table 3.12: The error in the case n = 16, T = 1.



Chapter 4

The second-order equations

This chapter is devoted to studying the problems associated with second-order dif-
ferential equations with an unbounded operator coefficient A in a Banach space.
In Section 4.1, we consider these equations with an unbounded operator in either
Banach or Hilbert spaces depending on the parameter t. We propose a discretiza-
tion method with a high parallelism level and without accuracy saturation, i.e., the
accuracy adapts automatically to the smoothness of the solution. For analytical
solutions, the rate of convergence is exponential. These results can be viewed as a
development of parallel approximations of the operator cosine function cos(

√
At)

which represents the solution operator of the initial value problem for the second-
order differential equation with a constant operator A coefficient.

Section 4.2 focuses on the second-order strongly damped differential equation
with operator coefficients in a Banach space. A new fast convergent algorithm is
proposed. This algorithm is based on the Dunford–Cauchy integral representation
and on the Sinc-quadratures providing an exponential convergence rate of the
algorithm. Examples of initially-boundary value problems for the strongly damped
wave equation are given that justify the theoretical results.

In section 4.3, we consider the second-order differential equation with an
unbounded operator coefficient in a Banach space equipped with a boundary
condition which can be viewed as a meta-model for elliptic PDEs. The solution
can be written down by using the normalized operator hyperbolic sine family
sinh−1(

√
A) sinh(x

√
A) as a solution operator. The solution of the corresponding

inhomogeneous boundary value problem is found through a solution operator and a
Green function. Starting with the Dunford-Cauchy representation for a normalized
hyperbolic operator sine family and for a Green function, we use discretization of
the integrals involving the exponentially convergent Sinc quadratures which leads
to a short sum of resolvents of A. Our algorithm inherits a two-level parallelism
with respect to both the computation of resolvents and the evaluation for different
values of the spatial variable x ∈ [0, 1].

127
Frontiers in Mathematics,  DOI 10.1007/978-3-0348-0119-5_4, © Springer Basel AG 2011  
I.P. Gavrilyuk et al., Exponentially Convergent Algorithms for Abstract Differential Equations,  



128 Chapter 4. The second-order equations

4.1 Algorithm without accuracy saturation for
second-order evolution equations in Hilbert and

Banach spaces

4.1.1 Introduction

In this section, we consider the evolution problem

d2u

dt2
+A(t)u = f(t), t ∈ (0, T ]; u(0) = u0, u′(0) = u01 (4.1)

where A(t) is a densely defined closed (unbounded) operator with domain D(A)
independent of t in a Banach space X , u0, u01 are given vectors, and f(t) is a given
vector-valued function. We suppose the operator A(t) to be strongly positive; i.e.,
there exists a positive constant MR independent of t such that on the rays and
outside a sector Σθ = {z ∈ C : 0 ≤ arg(z) ≤ θ, θ ∈ (0, π/2)} the following
resolvent estimate holds:

‖(zI −A(t))−1‖ ≤ MR

1 + |z| . (4.2)

This assumption implies that there exists a positive constant cκ such that (see
[14], p. 103)

‖Aκ(t)e−sA(t)‖ ≤ cκs
−κ, s > 0, κ ≥ 0. (4.3)

Our further assumption is that there exists a real positive ω such that

‖e−sA(t)‖ ≤ e−ωs ∀s, t ∈ [0, T ] (4.4)

(see [54], Corollary 3.8, p. 12, for corresponding assumptions on A(t)). Let us also
assume that the conditions

‖[A(t)−A(s)]A−γ(t)‖ ≤ L̃1,γ |t− s| ∀t, s, 0 ≤ γ ≤ 1, (4.5)

‖Aβ(t)A−β(s)− I‖ ≤ L̃β |t− s| ∀t, s ∈ [0, T ] (4.6)

hold.
The example is considered in subsection 3.2.1 which shows the practical rel-

evance for the assumptions above .

4.1.2 Discrete second-order problem

In this subsection, we consider the problem (4.1) in a Hilbert space H with the
scalar product (·, ·) and the corresponding norm ‖ · ‖ =

√
(·, ·). Let assumption

(4.6) related to A(t) hold. In addition, we assume that the assumption (3.121)
holds. Namely:

A(t) =

mA∑
k=0

Akt
k, f(t) =

mf∑
k=0

fkt
k (4.7)
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and

‖Aγ−1/2(0)(A(t) −A(s))A−γ(0)‖ ≤ L̃2,γ |t− s|α, γ, α ∈ [0, 1]. (4.8)

Remark 4.1. Condition (4.8) coincides with (4.5) for γ = 1/2, α = 1.

Let A(t) be a piece-wise constant operator defined on the grid ωn of n Cheby-
shev points as in subsection 3.2.2,

A(t) = Ak = A(tk), t ∈ (tk−1, tk],

We consider the auxiliary problem

d2u

dt2
+A(t)u = [A(t)−A(t)] + f(t),

u(−1) = u0, u′(1) = u′0,
(4.9)

from which we get the following relations for the interval [tk−1, tk] :

u(t) = cos [
√
Ak(t− tk−1)]u(ttk−1

) +A
−1/2
k sin [

√
Ak(t− tk−1)]u

′(ttk−1
)

+

∫ tk

tk−1

A
−1/2
k sin [

√
Ak(t− η)]{[A(η)−A(η)]u(η) + f(η)}dη,

u′(t) = −
√
Ak sin [

√
Ak(t− tk−1)]u(ttk−1

) + cos [
√
Ak(t− tk−1)]u

′(ttk−1
)

+

∫ tk

tk−1

cos [
√
Ak(t− η)]{[A(η)−A(η)]u(η) + f(η)}dη.

(4.10)

Let

Pn−1(t;u) = Pn−1u =

n∑
p=1

u(tp)Lp,n−1(t)

be the interpolation polynomial for the function u(t) on the mesh ωn, let y =
(y1, . . . , yn), yi ∈ X be a given vector, and let

Pn−1(t; y) = Pn−1y =
n∑

p=1

ypLp,n−1(t) (4.11)

be the polynomial that interpolates y, where Lp,n−1 = Tn(t)
T ′
n(tp)(t−tp)

, p = 1, . . . , n,

are the Lagrange fundamental polynomials.

We substitute the interpolation polynomial (4.11) in (4.10) instead of u. Then
by collocation, we arrive at the following system of linear algebraic equations with
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respect to unknowns yk, y
′
k which approximate u(tk) and u′(tk), respectively, i.e.,

yk = cos [
√
Akτk]yk−1 +A

−1/2
k sin [

√
Akτk]y

′
k−1

+

n∑
i=1

αk,iyi + φ
(1)
k ,

y′k = −
√
Ak sin [

√
Akτk]yk−1 + cos [

√
Akτk]y

′
k−1

+
n∑

i=1

βk,iyi + φ
(2)
k , k = 1, 2, . . . , n,

y0 = u0, y′0 = u′0,

(4.12)

where

αk,i =

∫ tk

tk−1

A
−1/2
k sin [

√
Ak(tk − η)][Ak −A(η)]Li,n−1(η)dη,

βk,i =

∫ tk

tk−1

cos [
√
Ak(tk − η)][Ak −A(η)]Li,n−1(η)dη,

φ
(1)
k =

∫ tk

tk−1

A
−1/2
k sin [

√
Ak(tk − η)]f(η)dη,

φ
(2)
k =

∫ tk

tk−1

cos [
√
Ak(tk − η)]f(η)dη, k = 1, 2, . . . , n.

(4.13)

The errors zk = u(tk)− yk, z
′
k = u′(tk)− y′k satisfy the equations

zk = cos [
√
Akτk]zk−1 +A

−1/2
k sin [

√
Akτk]z

′
k−1

+

n∑
i=1

αk,izi + ψ
(1)
k ,

z′k = −
√
Ak sin [

√
Akτk]zk−1 + cos [

√
Akτk]z

′
k−1

+

n∑
i=1

βk,izi + ψ
(2)
k , k = 1, 2, . . . , n,

z0 = 0, z′0 = 0,

(4.14)

where

ψ
(1)
k =

∫ tk

tk−1

A
−1/2
k sin [

√
Ak(tk − η)][Ak −A(η)][u(η) − Pn−1(η;u)]dη,

ψ
(2)
k =

∫ tk

tk−1

cos [
√
Ak(tk − η)][Ak −A(η)][u(η) − Pn−1(η;u)]dη,

k = 1, 2, . . . , n.

(4.15)
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Let us write ỹk = Aγ
kyk, ỹ

′
k = A

γ−1/2
k y′k, z̃k = Aγ

kzk, z̃
′
k = A

γ−1/2
k z′k and rewrite

(4.14) in the form

z̃k = cos [
√
Akτk](A

γ
kA

−γ
k−1)z̃k−1 + sin [

√
Akτk](A

γ−1/2
k A

−(γ−1/2)
k−1 )z̃′k−1

+

n∑
i=1

α̃k,iz̃i + ψ̃
(1)
k ,

z̃′k = − sin [
√
Akτk](A

γ
kA

−γ
k−1)z̃k−1 + cos [

√
Akτk](A

γ−1/2
k A

−(γ−1/2)
k−1 )z̃′k−1

+
n∑

i=1

β̃k,iz̃i + ψ̃
(2)
k , k = 1, 2, . . . , n,

z0 = 0, z̃′0 = 0,

(4.16)

where

α̃k,i = Aγ
kαk,iA

−γ
i

=

∫ tk

tk−1

A
γ−1/2
k sin [

√
Ak(tk − η)][Ak −A(η)]A−γ

i Li,n−1(η)dη,

β̃k,i = A
γ−1/2
k βk,iA

−γ
i

=

∫ tk

tk−1

A
γ−1/2
k cos [

√
Ak(tk − η)][Ak −A(η)]A−γ

i Li,n−1(η)dη,

ψ̃
(1)
k = Aγ

kφ
(1)
k

=

∫ tk

tk−1

A
γ−1/2
k sin [

√
Ak(tk − η)]A−γ

k [Aγ
k(u(η)− Pn−1(η;u))]dη,

ψ̃
(2)
k = A

γ−1/2
k φ

(2)
k

=

∫ tk

tk−1

A
γ−1/2
k cos [

√
Ak(tk − η)]A−γ

k [Aγ
k(u(η) − Pn−1(η;u))]dη.

(4.17)

We introduce the 2× 2 block matrices

E =

(
I 0
0 I

)
,

Bk(tk − η) =

(
cos (

√
Ak)(tk − η) sin (

√
Ak)(tk − η)

− sin (
√
Ak)(tk − η) cos (

√
Ak)(tk − η)

)
,

Dk =

(
Aγ

kA
−γ
k−1 0

0 A
γ−1/2
k A

−(γ−1/2)
k−1

)
,

Fi(η) =

(
A

γ−1/2
k [Ai −A(η)]A−γ

i 0
0 0

)
,
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and

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

E 0 0 · · · 0 0 0
−B2D2 E 0 · · · 0 0 0

0 −B3D3 E · · · 0 0 0
· · · · · · · · ·
0 0 0 · · · −Bn−1Dn−1 E 0
0 0 0 · · · 0 −BnDn E

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C ≡ {ci,j}ni,j=1 =

⎛
⎜⎜⎜⎜⎝
α̃11 0 α̃12 0 · · · α̃1n 0

β̃11 0 β̃12 0 · · · β̃1n 0
· · · · · · · · ·

α̃n1 0 α̃n2 0 · · · α̃nn 0

β̃n1 0 β̃n2 0 · · · β̃nn 0

⎞
⎟⎟⎟⎟⎠

with Bk = Bk(tk − tk−1) = Bk(τk) and the 2× 2 operator blocks

ci,j =

(
α̃i,j 0

β̃i,j 0

)
.

These blocks can also be represented as

ci,j =

∫ ti

ti−1

Lj,n(η)D
∗
iB

∗
i (ti − η)Fi(η)dη.

Using the integral representation of functions of a self-adjoint operator by the
corresponding spectral family, one can easily show that

BkB
∗
k = B∗kBk = E,Bk(tk − η)Bk(tk − η)∗ = Bk(tk − η)∗Bk(tk − η) = E. (4.18)

Analogously to the previous section, we get

S−1 ≡ {s(−1)
i,k }ni,k=1

=

⎛
⎜⎜⎜⎜⎝

E 0 0 · · · 0
B2D2 E 0 · · · 0

B3D3B2D2 B3D3 E · · · 0
· · · · · · ·

BnDn · · ·B2D2 BnDn · · ·B3D3 BnDn · · ·B4D4 · · · E

⎞
⎟⎟⎟⎟⎠

(4.19)

with 2× 2 operator block-elements s
(−1)
i,k . We introduce the vectors

z = (w1, w2, . . . , wn)

= (z̃1, z
′
1, . . . , z̃n, z′n), wi = (zi, z

′
i), zi, z

′
i ∈ H,

ψ = (Ψ1,Ψ2, . . . ,Ψn)

= (ψ̃
(1)
1 , ψ

(2)
1 , . . . , ψ̃(1)

n , ψ(2)
n ), Ψi = (ψ̃

(i)
i , ψ

(2)
i ), ψ̃

(i)
i , ψ

(2)
i ∈ H.
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Then equations (4.16) can be written in the block matrix form

z = S−1Cz + S−1ψ. (4.20)

Note that the vector-blocks Ψi can be written as

Ψi =

∫ ti

ti−1

B̃∗i (ti − η)Dψ(η)dη (4.21)

with the block-vectors

Dψ(η) =

(
0

Aγ−1/2[Ai −A(η)]A−γ
i [Aγ

i (u(η)− Pn(η;u))]

)
. (4.22)

The blocks E,Bi act in the space of two-dimensional block-vectors v = (v1, v2),
v1, v2 ∈ H. In this space, we define the new scalar product by

((u, v)) = (u1, v1) + (u2, v2), (4.23)

the corresponding block -vector norm by

|‖v‖|b =
√
((v, v)) =

(‖v1‖2 + ‖v2‖2
)1/2

(4.24)

and the consistent norm for a block operator matrix G =

(
g11 g12
g21 g22

)
by

|‖G‖|b = sup
y �=0

√
((Gv,Gv))

|‖v‖| .

In the space of n-dimensional block-vectors, we define the block-vector norm by

|‖y‖| = max
1≤k≤n

|‖vk‖|b (4.25)

and the consistent matrix norm

|‖C‖| ≡ |‖{ci,j}ni,j=1‖| = sup
y �=0

|‖Cy‖|
|‖y‖| = max

1≤k≤n

n∑
p=1

|‖ckp‖|b. (4.26)

It is easy to see that

|‖Bi‖|b = |‖B∗i ‖|b = sup
v �=0

|‖Biv‖|
|‖v‖| = sup

v �=0

√
((Biv,Biv))

|‖v‖|

= sup
v �=0

√
((BiB∗i v, v))

|‖v‖| = 1

(4.27)
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and, due to (4.6),

|‖Dk‖|b = sup
v �=0

|‖Dkv‖|
|‖v‖| = sup

v �=0

√
((Dkv,Dkv))

|‖v‖|

= sup
v �=0

√
((DkDik∗v, v))

|‖v‖| ≤ cD,

|‖D∗k‖|b ≤ cD

(4.28)

with cD =
√
(1 + L̃γT )2 + (1 + L̃γ−1/2T )2. Let us estimate |‖S−1‖|. Due to (4.27),

(4.28), (4.26) and (4.19) we have

|‖S−1‖| ≤ cDn. (4.29)

Using assumptions (4.8) and (4.18), (4.29), we get

|‖ci,j‖|b ≤
∫ ti

ti−1

|‖D∗i ‖||‖Bi(ti − η)‖||‖Fi(η)‖||Lj,n(η)|dη

≤ cDL̃2,γτ
α
max

∫ ti

ti−1

|Lj,n−1(η)|2dη,

|‖C‖| ≤ max
1≤k≤n

n∑
p=1

|‖ck,p‖|b

≤ cταmax

⎛
⎝∫ tk

tk−1

n∑
j=1

|Lj,n(η)|dη
⎞
⎠ ≤ cΛnτ

1+α
max ≤ cn−1−α lnn,

|‖S−1C‖| ≤ n−α lnn

(4.30)

with an appropriate positive constant c independent of n.
Now we are in a position to prove the main result of this section.

Theorem 4.2. Let assumptions (4.2)–(4.7), (4.8), (4.6) hold. Then there exists a
positive constant c such that the following hold.

1. For n large enough it holds that

|‖z‖| ≡ |‖y − u‖| ≤ cn−α lnnEn(A
γ
0u), (4.31)

where u is the solution of (4.1) and En(A
γ
0u) is the best approximation of

Aγ
0u by polynomials of degree not greater than n− 1.

2. The system of linear algebraic equations

Sy = Cy + f (4.32)
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with respect to the approximate solution y can be solved by the fixed-point
iteration

y(k+1) = S−1Cy(k) + S−1f, k = 0, 1, . . . ; y(0) arbitrary, (4.33)

which converges as a geometric progression with the denominator

q = cn−α lnn < 1

for n large enough.

Proof. Due to (4.20), (4.29) for τmax small enough (or for n large enough) there
exists a bounded norm |‖(E − S−1S)−1‖| and we get

|‖z‖| ≤ cn|‖ψ‖|. (4.34)

It remains to estimate |‖ψ‖|. Using (4.24), (4.21), (4.22) and (4.18), we have

|‖ψ‖| = max
1≤k≤n

|‖Ψk‖|b

= max
1≤k≤n

|‖
∫ tk

tk−1

B̃∗k(tk − η)Dψ(η)dη‖|

≤ max
1≤k≤n

∫ tk

tk−1

|tk − η|α‖Aγ
kA

−γ
0 ‖‖[Aγ

0(u(η)− Pn(η;u))]‖dη

≤ (1 + L̃γT )τ
1+α
max (1 + Λn)En(A

γ
0u)

≤ c(1 + L̃γT )n
−1−α lnnEn(A

γ
0u).

(4.35)

This inequality together with (4.34) completes the proof of the first assertion. The
second one can be proved analogously to Theorem 3.25. �

Remark 4.3. We arrive at an exponential accuracy for piecewise analytical solu-
tions if we apply the methods, described above, successively on each subinterval
of the analyticity.

4.2 Exponentially convergent algorithm for a strongly
damped differential equation of the second order

with an operator coefficient in Banach space

4.2.1 Introduction

The problem which we deal with in the present section is a particular case of the
following initial value problem for a differential equation with operator coefficients
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in a Banach space:

d2u(t)

dt2
+A

du(t)

dt
+Bu(t) = 0 for t > 0, α > 0

u(0) = ϕ,

du(0)

dt
= ψ,

(4.36)

which has been studied by many authors. The sufficient solvability conditions in
the case of a dominant operator A were given in [38]. The uniqueness and existence
theorems were proved in [61] under the so-called conditions of Miyadera–Feller–
Phillips type. A classification as well as the existence and uniqueness results for
solutions of problems (4.36) depending on the type of operators A and B were
given in [49] (see also the literature cited therein).

A particular case of the problem (4.36) is

d2u(t)

dt2
+ αA

du(t)

dt
+Au = 0, for t > 0,

u(0) = ϕ,

du(0)

dt
= ψ,

(4.37)

where A is an operator in a Banach space X equipped with norm ‖ · ‖. We assume
that the operator A : X → X is such that its spectrum Σ(A) lies in a segment
[γ0,∞) of the positive real axis, and that, for any ε > 0, we have the resolvent
estimate

‖(zI −A)−1‖ ≤ C(1 + |z|)−1 ∀z /∈ Σε = {z : |arg(z) < ε|}, (4.38)

with a constant C = Cε. In the case A = −Δ, where Δ denotes the Laplacian
in Rk, k ≥ 2 with the Dirichlet boundary condition u(x, t) = 0 for x ∈ ∂Ω, and
Ω being a bounded domain in Rk, we have the so-called strongly damped wave
equation [41, 66].

The finite-element approximations with a polynomial convergence for this
equation were considered in [41, 66]. In the first of these works, spatial discretiza-
tions by finite elements and associated fully discrete methods were analyzed in
an L2-based norm. The analysis depends on the fact that the solution may be
expressed in terms of the operator exponential. In the second work, this approach
was combined with recent results on discretization to parabolic problems and
essentially optimal order error bounds in maximum-norm for piecewise linear fi-
nite elements combined with the backward Euler and Crank–Nicolson time step-
ping methods were derived. The stability of various three-level finite-difference
approximations of second-order differential equations with operator coefficients
was studied in [56]. It was shown that an essential stability condition is the strong
P-positiveness of the operator coefficients.
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The aim of this section is to construct and to justify exponentially convergent
approximations in time for problem (4.36).

4.2.2 Representation of the solution through the operator
exponential

We introduce the vector w and the operator-valued matrix B by

w =

(
u
ut

)
, B =

(
0 −I
A αA

)
.

We equip the space of vectors v=(v1, v2)
T with the norm |‖v|‖=max{‖v1‖, ‖v2‖},

which generates the corresponding norm for operator block matrices. The problem
(4.37) can be written in the form

dw(t)

dt
+Bw = 0,

w(0) = w0,
(4.39)

where

w0 =

(
ϕ
ψ

)
.

The resolvent of B is of the form

(zI −B)−1 = (αz − 1)−1R(z)

(
zI − αA −I

A zI

)

= (αz − 1)−1

(
αI − z(αz − 1)−1R(z) −R(z)
−I + z2(αz − 1)−1R(z) zR(z)

)
,

(4.40)

where
R(z) = (z2(αz − 1)−1I −A)−1.

Let A satisfy (4.38), then there exists ε > 0 such that [66]

‖R(z)‖ ≤ C

1 + |z| ∀z /∈ Σε = {z : |arg(z) < ε|},

with a positive constant C = Cε. Using this estimate, one can show analogously
to [66] that there exists an angle θ ∈ (0, π

2 ) such that, on its rays and outside of
the sector, the following estimate for the resolvent holds:

|‖(zI −B)−1‖| ≤ C

1 + |z| , z /∈ Σθ,

and the angle θ contains the set

Ψ =

{
z : |z − α| = α−1, Rez ≥ 1

2
αγ0

}⋃{
z : Imz = 0, Rez ≥ α−1

}
.
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For our algorithm below we need the value of θ expressed through the input data
of the problem γ0, α.

One can see from (4.40) that the spectral set Σ(B) of the operator B consists
of z = α−1 and of all z such that

z2

αz − 1
− λ = 0,

where λ ∈ Σ(A). Rewriting the last equation in the form z2 − αλz + λ = 0 we
obtain the function

z = z(λ) =

⎧⎨
⎩

λα
2 ±

√(
λα
2

)2 − λ, if λ ≥ 4α−2,

λα
2 ± i

√
λ− (

λα
2

)2
, if γ0 ≤ λ < 4α−2.

Let us consider the following cases.

1. If γ0 ≥ 4α−2 then we have z = z1(λ) = λα
2 +

√(
λα
2

)2 − λ, z = z2(λ) =

λα
2 −

√(
λα
2

)2 − λ. The function z1(λ) maps the spectral set Σ(A) into a subset of

S1 = [2α−1,∞). Since

lim
λ→∞

z2(λ) = lim
λ→∞

λ

λα
2 +

√(
λα
2

)2 − λ
= α−1

and z2(4α
−2) = 2α−1, the function z2(λ) translates the set Σ(A) into a subset of

S2 = [α−1, 2α−1]. Thus, the function z(λ) maps in this case the spectral set Σ(A)
into S1 ∪ S2 = [α−1,∞) provided that λ ≥ γ0 ≥ 4α−2.

2. If 0 < γ0 < 4α−2 then we have z = z(λ) = λα
2 ± i

√
λ− (

λα
2

)2
. For such z

it holds that

|z − α−1| =
∣∣∣∣∣∣
λα

2
± i

√
λ−

(
λα

2

)2

− α−1

∣∣∣∣∣∣
=

[(
λα

2
− α−1

)2

+ λ−
(
λα

2

)2
]1/2

= α−1,

i.e., these z lie in the intersection of the circle S3 = {z : |z − α−1| = α−1} with
the half-plane S4 = {z : Rez ≥ γ0α

2 }. Since αγ0

2 < 2α−1, the point αγ0

2 lies inside
of S3 (see Fig. 4.1). The points A and B have the coordinates A = (αγ0/2, 0),
B = (αγ0/2,

√
γ0 − (γ0α/2)2) and it is easy to find that the spectral angle θ of

the operator B is defined by

θ = arccos
α
√
γ0

2
.
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O

B

A

0

2

αγ 1α −
12α −

θ

Figure 4.1: The spectral angle of the operator B.

This formula gives the upper bound for the spectral angle in all cases.
The above spectral properties of B guarantee the existence of the operator

exponential e−Bt and the solution of problem (4.39) can be represented by

w(t) = e−Btw0.

4.2.3 Representation and approximation of the operator
exponential

We use a convenient representation of the operator exponential as in chapter 2 by
the improper Dunford-Cauchy integral

e−Btw0 =
1

2πi

∫
ΓΣ

e−tz(zI −B)−1w0dz, (4.41)

where ΓΣ is a path which envelopes the spectrum of the operator B. It is obvious
that the spectrum of the operator B lies inside of the hyperbola

ΓΣ = {z = cosh s− 1− i tan θ sinh s : s ∈ (−∞,∞)}.
We choose a path

ΓI = {z = a cosh s− 1− ib sinh s : s ∈ (−∞,∞)}
so that it envelopes ΓΣ and construct an algorithm like in section 3.1 (see also
[27]). The particular values of a, b we define later.

For this path, we have

w(t) =
1

2πi

∫
ΓΣ

e−tz(zI −B)−1w0dz =
1

2πi

∫
ΓI

e−tz(zI −B)−1w0dz. (4.42)
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After parametrization of the last integral, we obtain

w(t) =
1

2πi

∫ ∞

−∞
e−tz(s)z′(s)(z(s)I −B)−1w0ds =

∫ ∞

−∞
f(t, s)ds, (4.43)

where

z(s) = a cosh s− 1− ib sinh s,

z′(s) = a sinh s− ib cosh s.

In the following, we use the infinite strip

Dd := {z ∈ C : −∞ < �e z < ∞, |�mz| < d}

as well as the finite rectangles Dd(ε) defined for 0 < ε < 1 by

Dd(ε) = {z ∈ C : |�e z| < 1/ε, |�mz| < d(1− ε)}.

For 1 ≤ p ≤ ∞, we introduce the space Hp(Dd) of all operator-valued func-
tions which are analytic in Dd, such that, for each F ∈ Hp(Dd), there holds
‖F‖Hp(Dd) < ∞ with

‖F‖Hp(Dd) :=

⎧⎨
⎩limε→0

(∫
∂Dd(ε)

‖F(z)‖p|dz|
)1/p

if 1 ≤ p < ∞,

limε→0 supz∈Dd(ε) ‖F(z)‖ if p = ∞.

For our further analysis and for the algorithm below it is necessary, analo-
gously to section 3.1, to find the width of a strip Dd to which we can analytically
extend the function f(t, s) with respect to s. The change of variable s to s + iν
maps the integration hyperbola ΓI into the parametric set

Γ(ν) = {z = a cosh(s+ iν) − 1− ib sinh(s+ iν) : s ∈ (−∞,∞)}
= {z = (a cos ν + b sin ν) cosh s− 1− i(b cos ν − a sin ν) sinh s : s ∈ (−∞,∞)}.

We have to choose the parameters a, b so that for ν ∈ (− d
2 ,

d
2

)
, Γ(ν) does not

intersect ΓΣ and, at the same time, envelopes the spectrum. Let us select a, b in
the following way: when ν = − d

2 , Γ(ν) should be transformed into a line parallel

to the imaginary axis, and for ν = d
2 the set Γ(ν) should coincide with ΓΣ. These

requirements provide the equations⎧⎪⎨
⎪⎩
a cos d

2 − b sin d
2 = 0,

a cos d
2 + b sin d

2 = 1,

b cos d
2 − a sin d

2 = tan θ.

The solution of this system is as follows:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d =
π

2
− θ,

a =
1

2 cos
(
π
4 − θ

2

) ,
b =

1

2 sin
(
π
4 − θ

2

) .
(4.44)

For these parameters, the vector-valued function f(t, s) is analytic with respect to
s in the strip

Dd =
{
ζ = ξ + iν : ξ ∈ (−∞,∞), |ν| < d

2

}
.

To provide the numerical stability of the algorithm, we modify the resolvent
in (4.42) analogously to section 3.1. The only difference from section 3.1 is that
we add 1

z+1I instead of 1
z I as in section 3.1 since our integration hyperbola passes

through the origin. Thus, we represent the solution of (4.39) as

w(t) =
1

2πi

∫
ΓI

e−tz

[
(zI −B)−1 − 1

z + 1
I

]
w0dz

=

∫ ∞

−∞
f1(t, s)ds,

(4.45)

where

f1(t, s) =
1

2πi
e−tz(s)z′(s)

[
(z(s)I −B)−1 − 1

z(s) + 1

]
w0.

Remark 4.4. Note that ∫
ΓI

e−tz 1

z + 1
ds = 0,

because the point (z + 1) remains outside of the integration path, i.e., our correc-
tion does not change the value of the integral, but influences the stability of the
algorithm below (see section 3.1 for details).

Let us estimate the function f1(t, s) in (4.45) under the additional assumption
that w0 ∈ D(Bσ) for some σ > 0. It is easy to see that this means that ϕ,
ψ ∈ D(Aσ). Analogously to section 3.1 we obtain∥∥∥∥

[
(z(s)I −B)−1 − 1

z(s) + 1
I

]
w0

∥∥∥∥ =
1

|z(s) + 1|
∥∥(B + I)(z(s)I −B)−1w0

∥∥
≤ 1

|z(s) + 1|
∥∥(B + I)B−1

∥∥ ∥∥B(z(s)I −B)−1w0

∥∥
≤ C

|z(s) + 1|
∥∥B1−σ(z(s)I −B)−1

∥∥ ‖Bσw0‖

≤ C

|z(s) + 1| (1 + |z(s)|)σ ‖Bσw0‖
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with positive constants C. Taking into account this inequality we arrive at the
following estimate of the integrand:

‖f1(t, s)‖ ≤ C|e−z(s)t| |z′(s)|
2π|z(s) + b| (1 + |z(s)|)σ ‖Bσw0‖

≤ C1e
−ta cosh s+t

√
a2 sinh2 s+ b2 cosh2 s(

a2 cosh2 s+ b2 sinh2 s
)σ+1

2

‖Bσw0‖

≤ C1e
−ta cosh s+t

(
a2 tanh2 s+ b2

a2 + b2 tanh2 s

) 1
2 ‖Bσw0‖
(cosh s)σ

(
a2 + b2 tanh2 s

)σ
2

≤ C2e
−ta cosh s+t−σ|s| ‖Bσw0‖ (4.46)

with a new positive constant C1. Estimate (4.46) shows that integral (4.45) exists
(is convergent) ∀ t ≥ 0, provided that σ > 0.

Proceeding analogously to section 3.1, we obtain

‖f1(t, ·)‖H1(Dd)
≤ C(θ, σ)

∫ ∞

−∞
e−σ|s|ds =

2C(θ, σ)

σ
,

where

C(θ, σ) = C2

(
2

a

)σ

‖Bσw0‖ = C2
1[

cos
(
π
4 − θ

2

)]σ ‖Bσw0‖ .

To approximate the integral (4.45) let us use the following Sinc quadrature [62]:

w(t) ≈ wN (t) =
h

2πi

N∑
k=−N

f1(t, z(kh)). (4.47)

For the error of this quadrature, we have

‖ηN (f1, h)‖ = ‖w(t) − wN (t)‖

≤
∥∥∥∥∥w(t)− h

2πi

N∑
k=−N

f1(t, z(kh))

∥∥∥∥∥+

∥∥∥∥∥∥
h

2πi

∑
|k|>N

f1(t, z(kh))

∥∥∥∥∥∥ .
For the first sum in this inequality the following estimate holds true (see [23, 30, 18]
for details):∥∥∥∥∥w(t)− h

2πi

N∑
k=−N

f1(t, z(kh))

∥∥∥∥∥ ≤ 1

2π

e−πd/h

2 sinhπd/h
‖f1(t, v)‖H1(Dd)

≤ C(θ, σ)

2πσ

e−πd/h

2 sinhπd/h
. (4.48)
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For the second summand, we have∥∥∥∥∥∥
h

2πi

∑
|k|>N

f1(t, z(kh))

∥∥∥∥∥∥ ≤ h

2π

∑
|k|>N

‖f1(t, z(kh))‖

≤ h

π

∞∑
k=N+1

C(θ, σ)e−ta cosh(kh)+t−khσ

≤
⎧⎨
⎩

C(θ, σ)et

πt
e−ta cosh((N+1)h)−σ(N+1)h, t > 0,

C(θ, σ)e−σ(N+1)h, t = 0.

(4.49)

Combining the estimates (4.48) and (4.49) for t = 0, we conclude that

‖ηN (f1, h)‖ ≤ c

σ

[
e−πd/h

sinhπd/h
+ e−σ(N+1)h

]
. (4.50)

Equalizing both exponentials by the choice

h =

√
πd

σ(N + 1)
, (4.51)

we obtain

‖ηN (f1, h)‖ ≤ c

σ

⎡
⎣ e−

√
πdσ(N+1)

sinh
(√

πdσ(N + 1)
) + e−

√
πdσ(N+1)

⎤
⎦

=
c

σ

[
e−2

√
πdσ(N+1)

1− e−
√

πdσ(N+1)
+ e−

√
πdσ(N+1)

]
.

(4.52)

In the case t > 0, the first summand in the exponent of exp(−ta cosh((N +
1)h) − σ|(N + 1)h|) in (4.49) contributes mainly to the error order. Setting h =
O(lnN/N), we remain for a fixed t > 0 asymptotically with an error

‖ηN (f1, h)‖ ≤ c

[
e−c1N/ lnN

σ
+

e−tc2N/ lnN

t

]
, (4.53)

where c, c1, c2 are positive constants.
Thus, we have proven the following result.

Theorem 4.5. Let ϕ, ψ ∈ D(Aσ) and A be an operator satisfying estimate (4.38)
and having spectrum Σ(A) which lies in a segment [γ0,∞) of the positive real axis.
Then the formula (4.47) represents an approximate solution of the initial value

problem (4.39) with estimate (4.52) of the order O(e−c
√
N) provided that t ≥ 0,

h =
√

πd
σ(N+1) and with the estimate (4.53) of the order O(e−cN/ lnN ) provided

that t > 0, h = O(lnN/N).
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4.2.4 Numerical examples

In this section, we consider a model problem of type (4.39) with a known ex-
plicit solution, solve this problem numerically by our algorithm and compare with
theoretical results predicted.

Let us consider the following initial boundary value problem:

∂2u(t, x, y)

∂t2
− α

∂

∂t
(Δu(t, x, y))−Δu(t, x, y) = 0,

u(t, 0, y) = u(t, 1, y) = u(t, x, 0) = u(t, x, 1) = 0,

u(0, x, y) = sin(πx) sin(2πy),

∂u(t, x, y)

∂t

∣∣∣∣
t=0

= 0,

(4.54)

where

Δu(t, x, y) =
∂2u(t, x, y)

∂x2
+

∂2u(t, x, y)

∂y2
.

Depending on parameter α, there are three cases of the solution of problem
(4.54).

1. If 0 < α < 2
π
√
5
, then

u(t, x, y, α) = exp {p1t}
(
cos(p2t)− p1

p2
sin(p2t)

)
sin(πx) sin(2πy),

where

p1 = −5

2
π2α,

p2 =
1

2

√
20π2 − 25π4α2.

2. If α = 2
π
√
5
, then

u(t, x, y, α) = exp
{
−√

5πt
}(

1 + π
√
5t
)
sin(πx) sin(2πy).

3. If α > 2
π
√
5
, then

u(t, x, y, α) = (exp {p1t}p2 − exp {p2t}p1) sin(πx) sin(2πy)
p2 − p1

,

where

p1 = −5

2
π2α+

1

2

√
25π4α2 − 20π2,

p2 = −5

2
π2α− 1

2

√
25π4α2 − 20π2.
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Figure 4.2: α < 2
π
√
5
.
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Figure 4.3: α > 2
π
√
5
.

The solutions of problem (4.54) are presented in Figures 4.2–4.4 depending
on parameter α, at the point (x, y) = (12 ,

1
4 ).

Example 4.6. In the case α = 2
π
√
5
, it is easy to check that γ0 = 2π2 and

α =
2

π
√
5
<

2√
γ0

=

√
2

π
.



146 Chapter 4. The second-order equations
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Figure 4.4: α = 2
π
√
5
.

Due to (4.44) and definition of θ, we obtain

θ = arccos

2
π
√
5

√
2π2

2
= arccos

√
2

5
,

d =
π

2
− arccos

√
2

5
≈ 0, 68,

a =
1

2 cos
(
π
4 − θ

2

) ≈ 0, 53,

b =
1

2 sin
(
π
4 − θ

2

) ≈ 1, 49.

Using

R(z) sin(πx) sin(2πy) =

(
z2

αz − 1
I −A

)−1

sin(πx) sin(2πy)

=
1

z2

αz−1 − 5π2
sin(πx) sin(2πy) =

αz − 1

z2 − 5π2αz + 5π2
sin(πx) sin(2πy),

we can obtain explicitly

(zI −B)
−1

w0 =

⎛
⎜⎜⎝

(
α− z

z2 − 5π2αz + 5π2

)
sin(πx) sin(2πy)

αz − 1(
−1 +

z2

z2 − 5π2αz + 5π2

)
sin(πx) sin(2πy)

αz − 1

⎞
⎟⎟⎠

and further apply algorithm (4.47). The computations were provided with Maple
9. The results of computation presented in Table 4.1 confirm our theory above.
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N ε
4 0.948769502e-1
8 0.300504394e-1
16 0.586642368102507018e-2
32 0.53379300563269739e-3
64 0.1778497771451899e-4
128 0.14181989945806e-6
256 0.14977670055e-9

Table 4.1: The error in the case α = 2
π
√
5
, t = 0.5, x = 0.5, y = 0.2.

Example 4.7. In the second example we consider the problem (4.54) with α = 2
5π .

The exact solution in this case is

u(t, x, y) =

(
cos(2πt) +

1

2
sin(2πt)

)
e−πt sin(πx) sin(2πy).

Exactly as in Example 4.6 we have γ0 = 2π2,

α =
2

5π
<

2√
γ0

=

√
2

π
.

Due to (4.44) and to the definition of θ, we obtain

θ = arccos
2
5π

√
2π2

2
= arccos

√
2

5
,

d =
π

2
− arccos

√
2

5
≈ 0, 29,

a =
1

2 cos
(
π
4 − θ

2

) ≈ 0, 51,

b =
1

2 sin
(
π
4 − θ

2

) ≈ 3, 5.

The function R(z) and the resolvent (zI −B)
−1

w0 for this case can be calcu-
lated explicitly analogously to Example 4.6. Further computations in accordance
with (4.47) were provided with Maple 9. The results of computation are presented
in Table 4.2 and confirm our theory above.

4.3 Exponentially convergent approximation to the

elliptic solution operator

4.3.1 Elliptic problems in cylinder type domains

We consider an elliptic problem in a cylindrical domain.



148 Chapter 4. The second-order equations

N ε
8 0.1557679918
16 0.5180574507494855008e-1
32 0.1097312605636203481e-1
64 0.121349430767272743e-2
128 0.5330597600436985e-4
256 0.63049289198752e-6

Table 4.2: The error in the case α = 2
5π , t = 0.5, x = 0.5, y = 0.2.

Let A be a linear, densely defined, closed, strongly positive operator in a
Banach space X . The operator-valued function (hyperbolic sine family of bounded
operators [21])

E(x) ≡ E(x;
√
A) := sinh−1(

√
A) sinh(x

√
A),

satisfies the elliptic differential equation

d2E

dx2
−AE = 0, E(0) = Θ, E(1) = I,

where I is the identity and Θ the zero operator. Given the normalized hyperbolic
operator sine family E(x), the solution of the homogeneous elliptic differential
equation (elliptic equation)

d2u

dx2
−Au = 0, u(0) = 0, u(1) = u1 (4.55)

with a given vector u1 and the unknown vector-valued function u(x) : (0, 1) → X
can be represented as

u(x) = E(x;
√
A)u1.

In applications, A can be an elliptic partial differential operator with respect
to the spatial variables (x1, x2, . . . , xd) ∈ ΩA ⊂ Rd (see, e.g., Example 1). The so-
lution of the inhomogeneous elliptic boundary value problem posed in the cylinder
type domain ΩA × [0, 1] ⊂ Rd+1,

d2u

dx2
−Au = −f(x), u(0) = u0, u(1) = u1, (4.56)

with the unknown function u(x) = u(x;x1, . . . , xd), with known boundary data
u0, u1 and with the given right-hand side f(x) = f(x;x1, . . . , xd), can be repre-
sented as

u(x) = uh(x) + up(x), (4.57)

where
uh(x) = E(x;

√
A)u1 + E(1− x;

√
A)u0 (4.58)
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is the solution of the homogeneous problem and

up(x) =

∫ 1

0

G(x, s;A)f(s)ds, (4.59)

is the solution of the inhomogeneous problem with the Green function

G(x, s;A) ≡ G(x, s)

= [
√
A sinh

√
A]−1

{
sinh(x

√
A) sinh((1− s)

√
A) x ≤ s,

sinh(s
√
A) sinh((1 − x)

√
A) x ≥ s.

(4.60)

4.3.2 New algorithm for the normalized operator sinh-family

We consider the following representation of the solution of problem (4.55)

u(x) = uhl(x) =
1

2πi

∫
ΓI

E(x;
√
z)(zI −A)−1u1dz, (4.61)

where
E(x;

√
z) = sinh (x

√
z)/ sinh

√
z

is the normalized hyperbolic sine function. Our goal consists of an approximation
of this integral by a quadrature with the exponential convergence rate including
x = 1. It is of great importance to have in mind the representation of the solution of
the non-homogeneous boundary value problem (4.56)–(4.60), where the argument
of the hyperbolic operator sine family under the integral becomes zero for x = s =
0 or x = s = 1. Taking into account (2.27) for m = 0, we can represent

u(x) = uhl(x) =
1

2πi

∫
ΓI

E(x;
√
z)

[
(zI −A)−1 − 1

z
I

]
u1dz, (4.62)

instead of (4.61) (for x > 0 the integral from the second summand is equal to zero
due to the analyticity of the integrand inside of the integration path) and this
integral represents the solution of the problem (4.55) for u1 ∈ D(Aα), α > 0.

Similar to that in section 3.1.2, we call the hyperbola

Γ0 = {z(ξ) = a0 cosh ξ − ib0 sinh ξ : ξ ∈ (−∞,∞), b0 = a0 tanϕ}
the spectral hyperbola, which goes through the vertex (a0, 0) of the spectral angle
and possesses asymptotes which are parallel to the rays of the spectral angle Σ
(see Fig. 3.1). We choose a hyperbola

ΓI = {z(ξ) = aI cosh ξ − ibI sinh ξ : ξ ∈ (−∞,∞)} (4.63)

as an integration path, where the parameter will be chosen later:

u(x) = uhl(x) =
1

2πi

∫ ∞

−∞
F(x, ξ)dξ, (4.64)
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with

F(x, ξ) = FA(x, ξ)u1,

FA(x, ξ) = E(x;
√

z(ξ))(aI sinh ξ − ibI cosh ξ)

[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]
.

In order to estimate ‖F(x, ξ)‖ we need estimates for

|z′(ξ)/z(ξ)| = (aI sinh ξ − ibI cosh ξ)/(aI cosh ξ − ibI sinh ξ)

=

√
(a2I tanh

2 ξ + b2I)/(b
2
I tanh

2 ξ + a2I)

and for ‖E(x;
√
z(ξ))‖.

It was shown in section 3.1 that

|z′(ξ)/z(ξ)| ≤ bI/aI . (4.65)

Before we move to estimating ‖E(x;
√
z(ξ))‖, let us estimate |√z(ξ)|. We

have

|
√
z(ξ)| = |

√
aI cosh ξ − ibI sinh ξ| = 4

√
a2I cosh

2 ξ + b2I sinh
2 ξ

= 2
√
aI cosh ξ

4

√
1 + (bI/aI)2 tanh

2 ξ,

from which we obtain

√
aI cosh ξ ≤ |

√
z(ξ)| ≤ 4

√
1 + (bI/aI)2

√
aI cosh ξ. (4.66)

Using this estimate we have

|e−2x
√
z| =

∣∣∣∣∣exp
{
−2x

(√(
aI cosh ξ +

√
a2I cosh

2 ξ + b2I sinh
2 ξ

)
/2

+i

√(
−aI cosh ξ +

√
a2I cosh

2 ξ + b2I sinh
2 ξ

)
/2

)}∣∣∣∣∣
= exp

{
−2x

(√(
aI cosh ξ +

√
a2I cosh

2 ξ + b2I sinh
2 ξ

)
/2

)}

< e−2x
√
aI cosh ξ ∀x ∈ (0, 1], (4.67)

|1− e−2x
√
z| ≤ 1 + |e−2x

√
z| ≤ 2,

|1− e−2x
√
z| ≥ 1− |e−2x

√
z| ≥ 1− e−2x

√
aI cosh ξ,

|e(x−1)
√
z − e−(x+1)

√
z | = |e(x−1)

√
z(1− e−2x

√
z)| ≤ 2e(x−1)

√
aI cosh ξ,
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and, finally,

|E(x;
√
z)| =

∣∣∣∣∣e
x
√
z − e−x

√
z

e
√
z − e−

√
z

∣∣∣∣∣ =
∣∣∣∣∣e

(x−1)
√
z − e−(x+1)

√
z

1− e−2
√
z

∣∣∣∣∣
≤ 2e(x−1)

√
aI cosh ξ

1− e−2
√
aI cosh ξ

≤ 2

1− e−2
√
aI

e(x−1)
√
aI cosh ξ.

Supposing u1 ∈ D(Aα), 0 < α < 1, using (4.65) and Theorem 2.4, we can
estimate the integrand on the real axis ξ ∈ R for each x ∈ (0, 1) by

‖F(x, ξ)‖ = ‖FA(x, ξ)u1‖ ≤ |E(x;
√
z)| ·

∣∣∣∣z′(ξ)z(ξ)

∣∣∣∣ (1 +M)K

|z(ξ)|α ‖Aαu1‖

≤ (1 +M)K
bI
aI

|E(x;
√
z)|

|z(ξ)|α ‖Aαu1‖

≤ (1 +M)K
2bI

aI(1− e−2
√
aI )

e(x−1)
√
aI cosh ξ

|z(ξ)|α ‖Aαu1‖

≤ (1 +M)K
bI

1− e−2
√
aI

(
2

aI

)1+α

e(x−1)
√
aI cosh ξ−α|ξ|‖Aαu1‖,

ξ ∈ R, x ∈ (0, 1].

(4.68)

Let us show that the function F(x, ξ) can be analytically extended into a
strip of a width d1 with respect to ξ. After changing ξ to ξ + iν, the integration
hyperbola ΓI will be translated into the curve

Γ(ν) = {z(w) = aI cosh (ξ + iν)− ibI sinh (ξ + iν) : ξ ∈ (−∞,∞)}
= {z(w) = a(ν) cosh ξ − ib(ν) sinh ξ : ξ ∈ (−∞,∞)}

with

a(ν) = aI cos ν + bI sin ν =
√
a2I + b2I sin (ν + φ/2),

b(ν) = bI cos ν − aI sin ν =
√
a2I + b2I cos (ν + φ/2),

cos
φ

2
=

bI√
a2I + b2I

, sin
φ

2
=

aI√
a2I + b2I

.

(4.69)

The analyticity of the function F(x, ξ + iν), |ν| < d1/2 can be violated when the
resolvent becomes unbounded. Thus, we must choose d1 so that the hyperbola
Γ(ν) for ν ∈ (−d1/2, d1/2) remains in the right half-plane of the complex plane,
for ν = −d1/2 coincides with the imaginary axis, for ν = d1/2 coincides with the
spectral hyperbola and for all ν ∈ (−d1/2, d1/2) does not intersect the spectral
sector. Then we can choose the hyperbola Γ(0) as the integration hyperbola.
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This implies the system of equations⎧⎪⎨
⎪⎩
aI cos (d1/2) + bI sin (d1/2) = a0,

bI cos (d1/2)− aI sin (d1/2) = a0 tanϕ,

aI cos (−d1/2) + bI sin (−d1/2) = 0,

which yields ⎧⎪⎨
⎪⎩
2aI cos (d1/2) = a0,

bI = a0 sin (d1/2) + b0 cos (d1/2),

aI = a0 cos (d1/2)− b0 sin (d1/2).

Eliminating aI from the first and the third equations we get a0 cos d1 = b0 sin d1,
i.e., d1 = π/2− ϕ with cosϕ = a0√

a2
0+b20

, sinϕ = b0√
a2
0+b20

and ϕ being the spectral

angle. Thus, if we choose the parameters of the integration hyperbola by

aI = a0 cos
(π
4
− ϕ

2

)
− b0 sin

(π
4
− ϕ

2

)

=
√
a20 + b20 cos

(π
4
+

ϕ

2

)
= a0

cos
(
π
4 + ϕ

2

)
cosϕ

,

bI = a0 sin
(π
4
− ϕ

2

)
+ b0 cos

(π
4
− ϕ

2

)

=
√
a20 + b20 sin

(π
4
+

ϕ

2

)
= a0

sin
(
π
4 + ϕ

2

)
cosϕ

,

(4.70)

then the vector-valued function F(x,w) is for all x ∈ [0, 1] analytic with respect
to w = ξ + iν in the strip

Dd1 = {w = ξ + iν : ξ ∈ (−∞,∞), |ν| < d1/2}.
Comparing (4.70) with (4.69), we observe that φ = π/2− ϕ and

a(ν) = aI cos ν + bI sin ν =
a0 sin (ν + π/4− ϕ/2)

cosϕ
=

a0 cos (π/4 + ϕ/2− ν)

cosϕ
,

b(ν) = bI cos ν − aI sin ν =
a0 sin (π/4 + ϕ/2− ν)

cosϕ
.

We choose a positive δ such that ϕ + δ
2 < π

2 − δ
2 , set d = d1 − δ and consider

ν such that |ν| < d
2 = π

4 − ϕ
2 − δ

2 . Note that δ → 0 when ϕ → π/2. Since

ϕ+ δ
2 ≤ π

4 + ϕ
2 − ν ≤ π

2 − δ
2 , we have

a0 cos
(
π
2 − δ

2

)
cosϕ

≤ a(ν) =
a0 cos (π/4 + ϕ/2− ν)

cosϕ
≤ a0 cos

(
ϕ+ δ

2

)
cosϕ

,

a0 sin
(
ϕ+ δ

2

)
cosϕ

≤ b(ν) =
a0 sin (π/4 + ϕ/2− ν)

cosϕ
≤ a0 sin

(
π
2 − δ

2

)
cosϕ

.

(4.71)
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Replacing aI and bI by a(ν) and b(ν) in (4.68) and taking into account (4.71),
we arrive at the estimate

‖F(x,w)‖ = ‖FA(x,w)u1‖

≤ (1 +M)Ka0 sin
(
π
2 − δ

2

)
cosϕ

(
1− e

−2
√

a0 cos (π
2− δ

2 )/ cosϕ

)

×
(

2 cosϕ

a0 cos
(
π
2 − δ

2

)
)1+α

e(x−1)ã
√
cosh ξ−α|ξ|‖Aαu1‖,

ξ ∈ R, ∀x ∈ [0, 1], ∀w ∈ Dd,

where

ã =
√
a0 cos (ϕ+ δ/2)/ cosϕ.

Taking into account that the integrals over the vertical sides of the rectangle
Dd(ε) = {z ∈ C : |�e z| < 1/ε, |�mz| < d(1 − ε)} with the boundary ∂Dd(ε)
vanish as ε → 0, this estimate implies

‖F(x, ·)‖H1(Dd) = lim
ε→0

(∫
∂Dd(ε)

‖F(z)‖|dz|
)

≤ C(ϕ, α, δ)‖Aαu1‖
∫ ∞

−∞
e−α|ξ|dξ =

2

α
C(ϕ, α, δ)‖Aαu0‖

(4.72)

with

C(ϕ, α, δ) =
2(1 +M)Ka0 sin

(
π
2 − δ

2

)
cosϕ

(
1− e

−2
√

a0 cos ( π
2− δ

2 )/ cosϕ

)
(

2 cosϕ

a0 cos
(
π
2 − δ

2

)
)1+α

.

Note that the constant C(ϕ, α, δ) tends to ∞ if α → 0 or ϕ → π/2.
We approximate integral (4.64) by the Sinc-quadrature

uN(t) = uhl,N (x) =
h

2πi

N∑
k=−N

F(t, z(kh)) (4.73)

with the error

‖ηN (F , h)‖ = ‖u(t)− uN (t)‖ ≤ η1,N (F , h) + η2,N (F , h), (4.74)

where

η1,N (F , h) = ‖u(t)− h

2πi

∞∑
k=−∞

F(t, z(kh))‖,

η2,N (F , h) = ‖ h

2πi

∑
|k|>N

F(t, z(kh))‖.
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The first term can be estimated by (see Theorem 3.2.1, p. 144 in [62])

‖η1,N (F , h)‖ ≤ 1

2π

e−πd/h

2 sinh (πd/h)
‖F‖H1(Dd). (4.75)

For the second term we have due to (4.72) and due to the elementary inequality
√
cosh ξ =

√
2 cosh2 (ξ/2)− 1 ≥

√
cosh2 (ξ/2) = cosh (ξ/2),

‖η2,N (F , h)‖ ≤ C(ϕ, α)h‖Aαu1‖
2π

∞∑
k=N+1

e(x−1)ã
√

cosh (kh)−αkh

≤ C(ϕ, α)h‖Aαu1‖
2π

∞∑
k=N+1

e(x−1)ã cosh (kh/2)−αkh

≤ c‖Aαu1‖
α

exp[(x− 1)ã cosh ((N + 1)h/2)− α(N + 1)h],

(4.76)

where the constant c does not depend on h,N, x. Equating both exponentials in
(4.75) and (4.76) for x = 1 by

πd

h
= α(N + 1)h

we obtain for the step-size

h =

√
πd

α(N + 1)
.

With this step-size, the error estimate

‖ηN (F , h)‖ ≤ c

α
exp

(
−
√
πdα(N + 1)

)
‖Aαu1‖ (4.77)

holds true with a constant c independent of x,N . In the case x < 1 the first sum-
mand in the exponent of exp[(x − 1)ã cosh ((N + 1)h/2)− α(N + 1)h] in (4.76)
contributes mainly to the error order. Setting h = c1 lnN/N with a positive con-
stant c1, we remain asymptotically for a fixed x with an error

‖ηN (F , h)‖ ≤ c
[
e−πdN/(c1 lnN) + e−c1(x−1)ãN/2−c1α lnN

]
‖Aαu1‖,

where c is a positive constant. Thus, we have proven the following result.

Theorem 4.8. Let A be a densely defined strongly positive operator and u1 ∈
D(Aα), α ∈ (0, 1), then the Sinc-quadrature (4.73) represents an approximate
solution of the homogeneous initial value problem (4.55) (i.e., u(t) = uhl(x) =
E(x;A)u1) and possesses a uniform with respect to x ∈ [0, 1] exponential con-

vergence rate with estimate (4.74) which is of the order O(e−c
√
N ) uniformly in

x ∈ [0, 1] provided that h = O(1/
√
N) and of the order

O
(
max

{
e−πdN/(c1 lnN), e−c1(x−1)ãN/2−c1α lnN

})
for each fixed x ∈ [0, 1] provided that h = c1 lnN/N .



4.3. Approximation to the elliptic solution operator 155

Analogously we can construct the exponentially convergent approximation
uhr,N(x) for uhr(x) = E(1− x;

√
A)u0 and the exponentially convergent approxi-

mation

uh,N(x) = uhl,N(x) + uhr,N(x)

to the solution (4.58) of the homogeneous problem (4.56).

4.3.3 Inhomogeneous differential equations

In this section, we consider the inhomogeneous problem (4.56) whose solution
is given by (4.57)- (4.60). We obtain an exponentially convergent approximation
uh,N for the part uh(x) applying representation (4.58) and the discretization of
the operator normalized hyperbolic sine family (4.73) described in the previous
section.

To construct an exponentially convergent approximation up,N to up(x) we
use the following Dunford-Cauchy representation through the Green function:

up(x) =

∫ 1

0

G(x, s;A)f(s)ds

=

∫ 1

0

1

2πi

∫
ΓI

G(x, s; z)

[
(zI −A)−1 − 1

z
I

]
f(s)dzds

=
1

2πi

∫ ∞

−∞
Ip(x, ξ)dξ

(4.78)

with

Ip(x, ξ) =
∫ 1

0

Fp(x, s, ξ)f(s)ds,

Fp(x, s, ξ) = G(x, s;
√
z(ξ))(aI sinh ξ − ibI cosh ξ)

[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]
,

G(x, s; z) ≡ G(x, s) = [
√
z sinh

√
z]−1

{
sinh(x

√
z) sinh((1− s)

√
z) x ≤ s,

sinh(s
√
z) sinh((1 − x)

√
z) x ≥ s.

Taking into account the last formula, we can represent (4.78) in the form

up(x) =
1

2πi

∫ ∞

−∞
[Ip,1(x, ξ) + Ip,2(x, ξ)]dξ,
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where

Ip,1(x, ξ) =
∫ x

0

sinh (s
√
z(ξ)) sinh ((1 − x)

√
z(ξ))z′(ξ)√

z(ξ) sinh (
√
z(ξ))

×
[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]
f(s)ds,

Ip,2(x, ξ) =
∫ 1

x

sinh (x
√

z(ξ)) sinh ((1 − s)
√
z(ξ))z′(ξ)√

z(ξ) sinh (
√
z(ξ))

×
[
(z(ξ)I −A)−1 − 1

z(ξ)
I

]
f(s)ds.

(4.79)

Using the formula

sinh (α) sinh (β) =
1

2
[cosh(α+ β)− cosh(α − β)] ,

the fraction in the first formula in (4.79) can be represented as

sinh (s
√

z(ξ)) sinh ((1− x)
√

z(ξ))

sinh (
√

z(ξ))

=
cosh ((1 − x+ s)

√
z(ξ))− cosh ((1− x− s)

√
z(ξ))

2 sinh (
√

z(ξ))
.

Taking into account that 0 ≤ s ≤ x ≤ 1 (it means that x−s ≥ 0, 0 ≤ 1−x+s ≤ 1)
we deduce analogously to (4.67) that∣∣∣∣cosh ((1− x+ s)

√
z)

sinh (
√
z)

∣∣∣∣ =
∣∣∣∣∣e

(1−x+s)
√
z + e−(1−x+s)

√
z

e
√
z − e−

√
z

∣∣∣∣∣
=

∣∣∣∣∣e
(1−x+s−1)

√
z + e−(1−x+s+1)

√
z

1− e−2
√
z

∣∣∣∣∣
=

e−(x−s)
√
z
∣∣∣1 + e−2(1−x+s)

√
z
∣∣∣∣∣1− e−2

√
z
∣∣ ≤ 2e−(x−s)

√
z∣∣1− e−2

√
z
∣∣

≤ 2e−(x−s)
√

aI cosh(ξ)

1− e−2
√
aI

,

(4.80)

∣∣∣∣cosh ((1− x− s)
√
z)

sinh (
√
z)

∣∣∣∣ = e−(x+s)
√
z + e−(2−x−s)

√
z∣∣1− e−2

√
z
∣∣

≤
e−(x−s)

√
z
(
e−2s

√
z + e−2(1−x)

√
z
)

∣∣1− e(−2
√
z)
∣∣

≤ 2e−(x−s)
√

aI cosh(ξ)

1− e−2
√
aI

.

(4.81)
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In the case 0 ≤ x ≤ s ≤ 1 (it means that s− x ≥ 0, 0 ≤ 1− s+ x ≤ 1), we have

sinh (x
√

z(ξ)) sinh ((1 − s)
√
z(ξ))

sinh (
√

z(ξ))

=
cosh ((1 − s+ x)

√
z(ξ))− cosh ((1− s− x)

√
z(ξ))

2 sinh (
√

z(ξ))
,

∣∣∣∣cosh ((1 − s+ x)
√
z)

sinh (
√
z)

∣∣∣∣ ≤ 2e−(s−x)
√

aI cosh(ξ)

1− e−2
√
aI

. (4.82)

Estimates (2.32), (4.65), and (4.66) yield now the following inequalities for
Ip,1(x, ξ), Ip,2(x, ξ):

‖Ip,1(x, ξ)‖ ≤ 2(1 +M)KbI

(1− e−2
√
aI )a

3/2
I

∫ x

0

e−(x−s)
√
aI cosh ξ−0.5|ξ|‖f(s)‖ds,

≤ c e−0.5|ξ|
∫ 1

0

‖f(s)‖ds,

‖Ip,2(x, ξ)‖ ≤ 2(1 +M)KbI

(1− e−2
√
aI )a

3/2
I

∫ 1

x

e−(s−x)
√
aI cosh ξ−0.5|ξ|‖f(s)‖ds

≤ c e−0.5|ξ|
∫ 1

0

‖f(s)‖ds,

(4.83)

where c is a constant independent of x, ξ. Analogously as above (see the proof of
Theorem 4.8), one can also show for each x that Ip,k(x,w) ∈ H1(Dd), 0 < d <
ϕ, k = 1, 2 and

‖Ip,k(x, ·)‖H1(Dd) ≤ c

∫ 1

0

‖f(s)‖ds ≤ c max
s∈[0,1]

‖f(s)‖, k = 1, 2

with a positive constant c depending on the spectral characteristics of A.
As the first step towards the full discretization we replace the integral in

(4.78) by quadrature (4.73):

up(x) ≈ upa(x) =
h

2πi

N∑
k=−N

z′(kh)
[
(z(kh)I −A)−1 − 1

z(kh)
I

]
fk(x) (4.84)

where

fk(x) =

∫ 1

0

G(x, s; z(kh))f(s)ds = fk,1(x) + fk,2(x), k = −N, . . . , N,

fk,1(x) =

∫ x

0

sinh((1− x)
√

z(kh)) sinh(s
√
z(kh))√

z(kh) sinh
√
z(kh)

f(s)ds, (4.85)
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and

fk,2(x) =

∫ 1

x

sinh(x
√
z(kh)) sinh((1 − s)

√
z(kh))√

z(kh) sinh
√
z(kh)

f(s)ds. (4.86)

To construct an exponentially convergent quadrature for integral (4.85) we
change the variables by

s = 0.5x(1 + tanh ζ) (4.87)

and obtain

fk,1(x) =

∫ ∞

−∞
Fk,1(x, ζ)dζ, (4.88)

instead of (4.85), where

Fk,1(x, ζ) =
x sinh((1− x)

√
z(kh)) sinh

(
x
√
z(kh)(1 + tanh ζ)/2

)
2
√
z(kh) sinh

√
z(kh) cosh2 ζ

× f (x(1 + tanh ζ)/2) .

We change the variables in integral (4.86) by

s = 0.5x(1− tanh(ζ)) + 0.5(1 + tanh(ζ))

and obtain

fk,2(x) =

∫ ∞

−∞
Fk,2(x, ζ)dζ, (4.89)

instead of (4.86) with

Fk,2(x, ζ) =
(1− x) sinh(x

√
z(kh)) sinh

(
0.5(1− x)

√
z(kh) (1− tanh(ζ))

)
2
√
z(kh) sinh

√
z(kh) cosh2 ζ

× f (0.5x(1− tanh(ζ)) + 0.5(1 + tanh(ζ))) .

Note that, with the complex variables z = ζ + iν and w = u + iv, equation
(4.87) represents the conformal mapping w = ψ(z) = x[1 + tanh z]/2, z = φ(w) =
0.5 ln w

x−w of the strip Dν onto the domains Aν(x) (compare with the domain D2
ν

in [62]) and Aν(x) ⊆ Aν(1) ∀x ∈ [0, 1]. It is easy to see that the imagesA1,ν(x) of
the stripDν by the mapping w = ψ1(z) = 0.5x(1−tanh(ζ))+0.5(1+tanh(ζ)), z =
φ1(w) = 0.5 ln x−w

w−1 of the strip Dν are all of the same form and are contained in
Aν(1) = A1,ν(0).

Due to (4.80)–(4.82) the integrands Fk,1(x, ζ) and Fk,2(x, ζ) satisfy on the
real axis ζ ∈ R (for each fixed x ∈ [0, 1]) the estimates

‖Fk,1(x, ζ)‖

≤
x exp

[
−(x− 0.5x(1 + tanh ζ))

√
aI cosh (kh)

]
(
1− e−2

√
aI
) |√z(kh)| cosh2 ζ ‖f(x(1 + tanh ζ)/2)‖,

(4.90)
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Figure 4.5: The images Aν(x) of the strip for x = 0.5, 0.8, 1.0, ν = 1.
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Figure 4.6: The images A1,ν(x) of the strip for x = 0, 0.5, 0.8, ν = 1.
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‖Fk,2(x, ζ)‖

≤
(1− x) exp

[
−(0.5x(1− tanh(ζ)) + 0.5(1 + tanh(ζ)) − x)

√
aI cosh (kh)

]
(
1− e−2

√
aI
) |√z(kh)| cosh2 ζ

× ‖f(0.5x(1− tanh(ζ)) + 0.5(1 + tanh(ζ)))‖,
which show their exponential decay as ζ → ±∞. To obtain the exponential con-
vergence of the Sinc-quadratures below we show with the next lemma that the
integrands can be analytically extended into a strip of the complex plane.

Lemma 4.9. If the right-hand side f(x) in (4.56) for x ∈ [0, 1] can be analytically
extended into the domain Aν(1), then the integrands Fk,1(t, ζ), Fk,2(t, ζ) can be
analytically extended into the strip Dd1 , 0 < d1 < π/2 and belong to the class
H1(Dd1) with respect to ζ.

Proof. Let us investigate the domain in the complex plane in which the function
F(x, ζ) can be analytically extended to the real axis ζ ∈ R. Replacing in the
integrand ζ to ξ + iν, ξ ∈ (−∞,∞), |ν| < d1, we have in particular for the
argument of f ,

tanh (ξ + iν) =
sinh ξ cos ν + i cosh ξ sin ν

cosh ξ cos ν + i sinh ξ sin ν
=

sinh (2ξ) + i sin (2ν)

2(cosh2 ξ − sin2 ν)
,

1± tanh (ξ + iν) = q±r + iq±i

(4.91)

where

q±r (ξ, ν) = 1± sinh 2ξ

2(cosh2 ξ − sin2 ν)
=

e±2ξ + cos (2ν)

2(cosh2 ξ − sin2 ν)
,

q±i (ξ, ν) = ± sin 2ν

2(cosh2 ξ − sin2 ν)
.

The denominator in (4.91) is positive for all ξ ∈ (−∞,∞) provided that
ν ∈ (−π/2, π/2). It is easy to see that for ξ ∈ (−∞,∞) we have

0 ≤ q±r (ξ, ν) ≤ 2,

|q±i (ξ, ν)| ≤ | tan ν|.
Therefore, for each fixed x, ν and for ξ ∈ (−∞,∞) the parametric curve ΓA(t)
given by (in the coordinates μ, η)

μ =
x

2
q−r (ξ, ν),

η =
x

2
q−i (ξ, ν)

from (4.91) is closed and builds with the real axis at the origin the angle

θ = θ(ν) = arctan | lim
ξ→∞

q−i (ξ, ν)/q
−
r (ξ, ν)| = arctan (tan (2ν)) = 2ν.
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For ν ∈ (−π/2, π/2) the domains A(x) for various x ∈ [0, 1] lie in the right half-
plane (q±r can not be negative) and fill the domain Aν(1) (see Fig. 4.5). Taking
into account (4.70) and (4.90), we have

‖Fk,1(x, ξ + iν)‖

≤
∣∣∣∣∣ x e−0.5x(1−tanh(ξ+iν))

√
aI cosh(kh)

2(1− e−2
√
aI )|√z(kh)|(cosh2 ξ − sin2 ν)

∣∣∣∣∣
× ‖f(x(1 + tanh (ξ + iν))/2)‖

≤
∣∣∣∣∣ x e−0.5x(q−r +iq−i )

√
aI cosh(kh)

2(1− e−2
√
aI )|√z(kh)|(cosh2 ξ − sin2 ν)

∣∣∣∣∣ ‖f(0.5x(q+r + iq+i ))‖

≤
x exp

(
−0.5x

√
aI cosh(kh)

e−2ξ+cos(2ν)
2(cosh2 ξ−sin2 ν)

)
2(1− e−2

√
aI )

√
aI(cosh

2 ξ − sin2 ν)
‖f(0.5x(q+r + iq+i ))‖.

(4.92)

This inequality implies∫ ∞

−∞
‖Fk,1(x, ξ + iν)‖dξ ≤ c1 max

w∈Aν(1)
‖f(w)‖

∫ ∞

−∞

x

cosh2 ξ − sin2 ν
dξ

< c max
w∈Aν(1)

‖f(w)‖.

This estimate yields Fk,1(x,w) ∈ H1(Dd1) with respect to w. The same conclusions
are valid for Fk,2(x,w). �

Under assumptions of Lemma 4.9, we can use the following Sinc quadrature
rule to compute the integrals (4.88), (4.89) (see [62], p. 144):

fk(x) = fk,1(x) + fk,2(x) ≈ fk,N (x) = fk,1,N (x) + fk,2,N (x)

= h

N∑
j=−N

[μk,1,j(x)f(ω1,j(x)) + μk,2,j(x)f(ω2,j(x))] ,
(4.93)

where

μk,1,j(x) =
x sinh((1 − x)

√
z(kh)) sinh

(
0.5x

√
z(kh)(1 + tanh jh)

)
2
√
z(kh) sinh

√
z(kh) cosh2 jh

,

ω1,j(x) = 0.5x[1 + tanh (jh)],

μk,2,j(x) =
(1− x) sinh(x

√
z(kh)) sinh

(
0.5(1− x)

√
z(kh) (1− tanh(jh))

)
2
√
z(kh) sinh

√
z(kh) cosh2 jh

,

ω2,j(x) = 0.5x[1− tanh (jh)] + 0.5[1 + tanh (jh)],

h = O(1/
√
N),

z(ξ) = aI cosh ξ − ibI sinh ξ.
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Substituting (4.93) into (4.84) gives the following fully discrete algorithm to com-
pute an approximation upa,N(t) to upa(t),

upa,N(t) =
h2

2πi

N∑
k,j=−N

z′(kh)[(z(kh)I −A)−1 − 1

z(kh)
I]

× [μk,1,j(x)f(ω1,j(x)) + μk,2,j(x)f(ω2,j(x))] .

(4.94)

The next theorem characterizes the error of this algorithm.

Theorem 4.10. Let A be a densely defined strongly positive operator with the spec-
tral characterization a0, ϕ and the right-hand side f(x) ∈ D(Aα), α > 0 be
analytically extended into the domain Aν(1), then algorithm (4.94) converges with
the error estimate

‖EN(x)‖ = ‖up(x) − uap,N(x)‖
≤ c

α
e−c1

√
N max

w∈Aν(1)
‖Aαf(w)‖ (4.95)

uniformly in x ∈ [0, 1] with positive constants c, c1 depending on a0, ϕ but inde-
pendent of N .

Proof. We represent the error in the form

EN(x) = up(x)− upa,N (x) = r1,N (x) + r2,N (x), (4.96)

where

r1,N (x) = up(x)− upa(x),

r2,N (x) = upa(x)− upa,N (x).

Taking into account estimate (4.83), we obtain for h =
√
2πd/(N + 1) simi-

larly to as above (see estimate (4.77) in the proof of Theorem 4.8)

‖r1,N(x)‖ = ‖ 1

2πi

∫ ∞

−∞
[Ip,1(x, ξ) + Ip,2(x, ξ)] dξ

− h

2πi

N∑
k=−N

[Ip,1(x, kh) + Ip,2(x, kh)] ‖

≤ c exp
(
−
√
0.5πd(N + 1)

) ∫ 1

0

‖f(s)‖ds

≤ c exp
(
−
√
0.5πd(N + 1)

)
max

w∈Aν(1)
‖Aαf(w)‖.

(4.97)
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Due to (2.31), we have for the error r2,N (t),

‖r2,N (t)‖ = ‖ h

2πi

N∑
k=−N

z′(kh)[(z(kh)I −A)−1 − 1

z(kh)
I]Rk(t)‖

≤ h(1 +M)K

2π

N∑
k=−N

|z′(kh)|
|z(kh)|1+α

‖AαRk(t)‖,
(4.98)

where Rk(x) = fk(x)− fk,N (x),

‖AαRk(t)‖ = ‖Aα(fk,1(x)− fk,1,N (x)) +Aα(fk,2(x)− fk,2,N (x))‖,
≤ ‖Aα(fk,1(x)− fk,1,N (x))‖ + ‖Aα(fk,2(x)− fk,2,N (x))‖.

The estimates (4.66), (4.80)-(4.82) analogously to (4.90) yield, for real ξ,

‖AαFk,1(x, ξ)‖ ≤ c xe−2|ξ|‖Aαf((1 + tanh ξ)/2)‖.
Due to Lemma 4.9, we have AαFk,1(x,w) ∈ H1(Dd1), 0 < d1 < π/2 and we are
in the situation analogous to that of Theorem 3.2.1, p. 144 from [62] with Aαf(w)
instead of f which implies

Aα(fk,1(x)− fk,1,N (x))‖

= ‖
∫ ∞

−∞
AαFk,1(x, ξ)dξ − h

∞∑
j=−∞

AαFk,1(x, jh) + ‖h
∑
|j|>N

AαFk,1(x, jh)‖

≤ e−πd1/h

2 sinh (πd1/h)
‖Fk,1(x,w)‖H1(Dd1

)+h
∑
|j|>N

c xe−2|jh|‖Aαf(x(1 + tanh jh)/2)‖

≤ ce−2πd1/h max
w∈Aν(1)

‖Aαf(w)‖ + hc x max
w∈Aν(1)

‖Aαf(w)‖
∑
|j|>N

e−2|jh|,

and, therefore, we have

‖Aα(fk,1(x)− fk,1,N(x))‖ ≤ ce−c1
√
N max

w∈Aν(1)
‖Aαf(w)‖, (4.99)

where positive constants c, c1 do not depend on x, N and k. The same is valid for
‖Aα(fk,2(x) − fk,2,N (x))‖, i.e., we have

‖Aα(fk,2(x)− fk,2,N(x))‖ ≤ ce−c1
√
N max

w∈Aν(1)
‖Aαf(w)‖.

Now, estimate (4.98) can be continued as

‖r2,N (x)‖

=
h

2πi

N∑
k=−N

z′(kh)[(z(kh)I −A)−1 − 1

z(kh)
I]Rk(x) ≤ ce−c1

√
NSN

(4.100)
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with

SN =

N∑
k=−N

h
|z′(kh)|

|z(kh)|1+α
.

Using (4.65) and

|z(kh)| =
√

a2I cosh
2 (kh) + b2I sinh

2 (kh) ≥ aI cosh (kh) ≥ aIe
|kh|

2

the last sum can be estimated by

|SN | ≤ c√
N

N∑
k=−N

e−α|k/√N| ≤ c

∫ √
N

−√N

e−αtdt ≤ c/α. (4.101)

Taking into account (4.99) and (4.101), we deduce, from (4.100),

‖r2,N (x)‖ ≤ c

α
e−c1

√
N max

w∈Aν(1)
‖Aαf(w)‖. (4.102)

The assertion of the theorem follows now from (4.96), (4.97), (4.102). �
The exponentially convergent approximation to the solution of the inhomo-

geneous problem (4.56) is given by

uN (x) = uh,N(x) + up,N (x).

Example 4.11. We consider the inhomogeneous problem (4.56) with the operator
A defined by

D(A) = {u(x1) ∈ H2(0, 1) : u(0) = u(1) = 0},
Au = −u′′(x1) ∀u ∈ D(A).

The initial functions are u0 = u(0, x1) = 0, u1 = u(1, x1) = 0 and the right-hand
side f(x) = f(x;x1) is given by

f(x;x1) = 2π2 sin(πx) sin(πx1).

It is easy to see that the exact solution is u(x) = u(x;x1) = sin(πx) sin(πx1).
The algorithm (4.94) was implemented for x = 1/2, x1 = 1/2 in Maple with
Digits=16. Table 4.3 shows an exponential decay of the error εN = |u(1/2, 1/2)−
upa,N(1/2, 1/2)| = |u(1/2, 1/2)− uN(1/2, 1/2)| with growing N.
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N εN
4 0.1872482412
8 0.829872855 e-1
16 0.115819650e-1
32 0.4730244e-3
64 0.46664e-5
128 0.63619e-9

Table 4.3: The error of algorithm (4.94) for x = 1/2, x1 = 1/2.



Appendix: Tensor-product
approximations of the operator
exponential

We will show on the level of ideas that the operator exponential together with
the tensor product of matrices allows us to make the computational costs of an
approximation linear in d, at least, for some particular (but important) problems.
As a simple example we consider the Dirichlet boundary value problem for the
two-dimensional Laplacian in the unit square Ω with the boundary Γ:

−Δu ≡ −∂2u

∂x2
1

− ∂2u

∂x2
2

= f(x1, x2), x = (x1, x2) ∈ Ω,

u(x) = 0, x ∈ Γ.

Let ωj,h = {x1,i = ih, i = 1, 2, . . . , n}, j = 1, 2 be the equidistant grid with a
step h in both directions and the operator of the second derivative in one direction
be approximated by the well-known finite difference operator (in matrix form)

{
d2u(xi)

dx2

}
i=1,...,n

≈ Du

with

u =

⎛
⎜⎜⎜⎜⎝

u(x1)
·
·
·

u(xn)

⎞
⎟⎟⎟⎟⎠ , D =

1

h2

⎛
⎜⎜⎜⎜⎝

−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
· · · · · ·
0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ .

If we provide the unknown grid function uij with two indexes and introduce
the unknown matrix U = {uij}i=1,...,n;j=1,...,n (see Fig. A.1) and the given ma-

trix F = {f(x1,i, x2,j)}i=1,...,n;j=1,...,n, then we obtain the approximate discrete
problem
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Figure A.1: To discretization of the Laplacian

DU + UD = −F. (A.1)

This is a system of linear algebraic equations with N = n2 unknowns which
can be solved by the Gauss algorithm of the complexity O(n6) (elementary mul-
tiplications). The use of the fast Fourier transform leads to an algorithm of com-
plexity O(n4 lnn). Below we shall outline a scheme for obtaining an approximate
algorithm of complexity O(n2). The algorithm uses the exponential function.

Let us recall some facts from matrix theory [46]. Let Mm,n be the space of
matrices with m rows and n columns and with the usual operations,Mn,n ≡ Mn. If
A = {ai,j} ∈ Mm,n and B = {bi,j} ∈ Mp,q, then the tensor or Kronecker product
A⊗B is defined as the block matrix from Mmp,nq,

A⊗B =

⎛
⎜⎜⎝

a11B a12B · · · a1nB
a21B a22B · · · a2nB
· · · ·

am1B am2B · · · amnB

⎞
⎟⎟⎠ .

It is easy to prove the following elementary properties of the tensor product:

(A⊗B)(C ⊗D) = AC ⊗BD,

(A⊗B)T = AT ⊗BT ,

(A⊗B)−1 = A−1 ⊗B−1,

(A.2)

provided that A and B are not singular in the last formula.
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If A and B are matrices with complex elements, then (A⊗B) = A⊗B and
(A ⊗ B)∗ = A∗ ⊗ B∗, where the operation A changes all elements of A to their
complex conjugate elements and the operation A∗ means the transposition and
change to the complex conjugate elements, simultaneously.

If A = {ai,j} ∈ Mp,q and B = {bi,j} ∈ Ms,t then the direct sum C = A⊕B ∈
Mp+s,q+t is the block matrix

C = A⊕B =

(
A 0p,t
0s,q B

)
,

where 0k,l ∈ Mk,l denotes the zero matrix, i.e., the matrix with all elements
equal to zero. This operation is not commutative but associative. If A ∈ Mn,1

is an n-dimensional vector and B ∈ Mm,1 is an m-dimensional vector, then we
define C = A ⊕ B ∈ Mn+m,1 as an n + m-dimensional vector. If Ai = {ai} is

a square (1 × 1)-matrix (i=1,. . . ,m), then the direct sum
m⊕
i=1

Ai is the diagonal

matrix diag(a1, . . . , am).
Let A = {Ai,j}j=1,...,c

i=1,...,d be a block matrix with elements Aij being (mi × nj)-

matrices. Let B = {Bi,j}j=1,...,f
i=1,...,c be a block matrix with elements Bij being (ni ×

rj)-matrices.Then each product AijBjl is well defined and is an mi × rl -matrix.

The product C = AB ∈ Mm,r can be represented in block form C = {Cil}l=1,...,f
i=1,...,d

with the elements Cil =
c∑

j=1

AijBjl, i = 1, . . . , d; l = 1, . . . , f.

Let X = {xi,j} ∈ Mm,n, A = {ai,j} ∈ Mp,m, B = {bi,j} ∈ Mn,q, then the
products Y = AX,Z = XB,W = AXB are well defined. Let the mn-dimensional

vector x =
m⊕
i=1

X(i) be the direct sum of the matrix columns X(i). If we define the

pn-dimensional vector
n⊕

t=1
Y (t), then we have y =

n⊕
t=1

AX(t) = (In ⊗ A)x where In

is the n-dimensional identity matrix.

Analogously, if z =
q⊕

t=1
Z(t) then Z(t) =

n∑
s=1

bstX
(s) =

n∑
s=1

(BT )tsImX(s) where

(BT )ts is the (t, s)-element of the matrix BT . Thus, we have

z =

q⊕
t=1

n∑
s=1

(BT )tsImX(s) = (BT ⊗ Im)x and

w =

q⊕
t=1

W (t) = (BT ⊗ Im)(In ⊗A)x = (BT In ⊗ ImA)x = (BT ⊗A)x.

Using these formulas, the matrix equation

AX +XA∗ = In

with square complex matrices A,X of the order n can be transformed to the form

(In ⊗A+A⊗ In)x = e,
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where e =
n⊕

j=1

ej and ej is the j -th column of the matrix In. If A ∈ Mn, B ∈ Mm,

then it follows from [A⊗ Im, In ⊗ B] = (A ⊗ Im)(In ⊗ B) − (In ⊗ B)(A ⊗ Im) =
A⊗B −A⊗B = 0 that A⊗ Im and In ⊗B are commutative.

The exponential function possesses some specific properties in connection
with tensor operations. Actually, let A ∈ Mn, B ∈ Mm, then, due to the commu-
tativity of the corresponding tensor products, we have

eA⊗Im+In⊗B = eA⊗Im · eIn⊗B. (A.3)

Furthermore, due to

eA⊗Im =
∞∑
k=0

(A⊗ Im)k

k!
,

eIn⊗B =

∞∑
j=0

(In ⊗B)j

j!
,

(A.4)

the arbitrary term in eA⊗ImeIn⊗B is given by

(A⊗ Im)k(In ⊗B)j

k!j!
.

Imposing

(A⊗ Im)k(In ⊗B)j = (Ak ⊗ Ikm)(Ijn ⊗Bj) = (Ak ⊗ Im)(In ⊗Bj)

= (AkIn)⊗ (BjIm) = Ak ⊗Bj ,

we arrive at
(A⊗ Im)k(In ⊗B)j

k!j!
=

Ak ⊗Bj

k!j!
,

and we have the arbitrary term of the tensor product

eA ⊗ eB,

i.e., it holds that

eA⊗ImeIn⊗B = eA ⊗ eB. (A.5)

Returning to the example with the discretization of the Laplace equation, let
us denote the i-th column of the unknown matrix U by ui and of the given matrix
F by fi. Then in accordance with the rules of the tensor calculus, equation (A.1)
can be written down as

Lhuh = fh
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with the block (n2 × n2)-matrix Lh = L1,h + L2,h,

L1,h = In ⊗D =

⎛
⎜⎜⎜⎜⎝

D 0 0 0 · · · 0
0 D 0 0 · · · 0
0 0 D 0 · · · 0
· · · · · · · ·
· · · · · · · D

⎞
⎟⎟⎟⎟⎠ ,

L2,h = D ⊗ In =
1

h2

⎛
⎜⎜⎜⎜⎝

−2In In 0 0 · · · 0
In −2In In 0 · · · 0
0 In −2In In · · · 0
· · · · · · · ·
· · · · · · · In

⎞
⎟⎟⎟⎟⎠

and the n2-dimensional unknown vector uh as well as the given vector fh:

uh =

⎛
⎜⎜⎜⎜⎜⎜⎝

u1

u2

·
·
·
un

⎞
⎟⎟⎟⎟⎟⎟⎠

, fh =

⎛
⎜⎜⎜⎜⎜⎜⎝

f1
f2
·
·
·
fn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Note that the matrices L1,h and L2,h are commutative. Suppose we could approx-
imate

L−1
h =

r∑
k=1

αke
βk(In⊗D+D⊗In)

with some αk, βk and a moderate constant r. Then using the properties (A.3) and
(A.4) we would obtain an approximation

L−1
h =

r∑
k=1

αke
βkD ⊗ eβkD.

Furthermore supposing that we could approximate fh = f1,h ⊗ f2,h, f1,h ∈ R
n,

f2,h ∈ Rn and using the property (A.2) give

uh = L−1
h fh ≈

r∑
k=1

αk(e
βkDf1,h)⊗ (eβkDf2,h).

This is an algorithm of O(rn2) = O(n2) complexity.
To solve a d-dimensional elliptic problem

Lu = f
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in a d-dimensional rectangle one uses a discretization

Lhuh = (L1,h + · · ·+ Ld,h)uh = fh

with N = nd nodes (n nodes in each dimension, h = 1/n) and a matrix Lh ∈
Rnd×nd

. The complexity of the uh = L−1
h fh computation is, in general, O(n2d)

(again the curse of dimensional ity!). Supposing the tensor-product representations

L−1
h = L1 ⊗ L2 ⊗ · · · ⊗ Ld, fh = f1 ⊗ f2 ⊗ · · · ⊗ fd

we have, due to

L−1
h fh = (L1 ⊗ L2 ⊗ · · · ⊗ Ld) · (f1 ⊗ f2 ⊗ · · · ⊗ fd)

= (L1 · f1)⊗ (L2 · f2)⊗ · · · (Ld · fd)

the polynomial in d of complexity O(dn2).
The Kronecker product with the Kronecker rank r,

L−1
h =

r∑
k=1

ckL(k)
1 ⊗ L(k)

2 ⊗ · · · ⊗ L(k)
d ,

does not influence this asymptotics.
To get a representation L−1

h = L1 ⊗ L2 ⊗ · · · ⊗ Ld the exponential function
is helpful again, namely we can use the representations

L−σ−1
h =

1

Γ(σ + 1)

∫ ∞

0

tσe−tLhdt, σ > −1,

or

L−σ−1
h =

∫ ∞

−∞
e(σ−1)u−euLhdu, σ > −1

with σ = 0.
These ideas for getting exponentially convergent algorithms of low complexity

were implemented in [19] for various problems.
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