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Preface

This book is intended for engineering undergraduate students, particularly aerospace
and mechanical engineers and students in other disciplines concerned with system
modeling, analysis, and control. It is intended to be a relatively comprehensive treat-
ment of engineering undergraduate differential equations as well as two primary ap-
plications thereof: linear vibrations and classical feedback control. This material is
traditionally separated into different courses in undergraduate engineering curric-
ula, however, consistent with the theme of this book, the current trend to optimize
and streamline curricula results in many programs combining courses where there is
a common underlying theoretical basis. Specifically this book was developed from
the materials presented in a two-course, required, junior-level sequence of courses
that I developed and have taught in the Department of Aerospace and Mechanical
Engineering at the University of Notre Dame over the past several years. The ratio-
nale behind the selection, arrangement, and relationship of the content of book has
four primary facets.

The first facet relates to the role of mathematical analysis in modern engineer-
ing. The modern reality, especially in industry but also in academic settings, is that
sophisticated software packages enabled by fast computing are starting to play a
dominant role in engineering analysis. Hence, to some extent, the skill of being able
to solve problems “by hand” is being displaced by computer simulation. This is not
an argument for not covering what has been traditionally been the subject of en-
gineering analysis courses, however, it can be taken as a justification for a slightly
altered focus toward fundamental understanding versus problem solving by hand.
Because the algorithmic aspects of many problem-solving methods are increasingly
“hidden” in software, a fundamental understanding of the relationship between the
attributes of a differential equation and the nature of its solution is critical; for few
things are as dangerous as an engineer who places complete faith in the output of a
computer.

This point may be best represented in the language of educational objectives. Per-
haps the most common is due to Bloom [7], which categorizes cognitive processes
in a hierarchical manner. From the lowest to highest process there are: knowledge,
comprehension, application, analysis, synthesis, and evaluation. Despite the label of
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“engineering analysis” many homework problems given to students fall within the
application process; that is, they are asked to apply a particular solution or analysis
method to a given problem. Then, through repeated exposure to a subject on the ap-
plication level, it is hoped that most students develop the ability (inductively through
experience) to become competent at the higher levels, at which point higher-level
synthesis or evaluation problems may be addressed.

With the application level being more and more automated, an increased focus
in courses on the higher cognitive levels is necessary for the students to remain
competent. I cannot argue that being able to “do” problems is not a necessary skill,
and it is one that certainly has not been removed from this book. However, focusing
on higher-level cognitive processes is what is going to serve students best. At a
minimum, it will allow them to be distinguishable from a computer, which is also
able to solve differential equations [27, 55]. By combining the mathematics and the
application in the same course, the full range of the theoretical mathematics can be
exercised through the engineering applications for which the students will ultimately
be accountable.

The second facet is pedagogical. There are several nonstandard features of the
content and presentation in this book that should be highlighted. First, there is an
abundance of detailed examples. These are present, not to serve as a template from
which students can copy the procedure to solve a problem, but rather a recognition
of the fact that, although traditionally mathematics and related application fields are
taught in a deductive manner, inductive learning actually “promotes deeper learn-
ing and longer retention of information” [15, 16, 33]. Thus, one way to consider
this abundance of examples is that they replace, to some extent, the more direct
application-oriented homework problems. Second, material is sometimes covered
or named in a nonstandard manner purely to promote a deeper understanding of the
ultimate result, but which otherwise does not directly help one “use” the result or is
otherwise nonstandard. Examples of this are found throughout the text. A superficial
example would be naming the procedure normally referred to as “integrating fac-
tors” for first-order equations “variation of parameters” because it shares a common
derivation with that method as typically applied to higher-order equations. A deeper
example would be in the study of frequency response methods for feedback control,
where emphasis is placed on the fact that what is plotted in Bode plots relates to the
harmonically forced steady-state solution of the system, when the usual use of the
plot for stability under unity feedback is essentially unrelated to that. Finally, an ex-
ample of including a whole nonstandard section is related to Taylor series methods
for numerical methods. It is included purely as a setup for the Runge–Kutta method
to facilitate developing a deeper understanding by the students. This is particularly
important in such a case. When the end result is just a formula to be used, without
the proper development, many students would be inclined perhaps simply to be con-
tent to “use” the formula, in which case the more modern approach would be simply
to bring the ode45() function in MATLAB� to the attention of the students.

The third facet is that this text provides a means for a streamlined and efficient
treatment of material normally covered in three courses. In the author’s program
it resulted in combining three courses into two courses with little lost in terms of
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content coverage. With the ever-broadening scope of engineering programs to in-
clude more, for example, biological sciences and design content, this would provide
a means to allocate credit hours to such content without overly substantially cutting
into the traditional engineering science material.

The fourth facet relates to the motivation engineering students have for studying
mathematics. Ultimately engineering students study mathematics in order to be able
to solve problems that are of importance to them. Although it is certainly legitimate
for engineering students to have courses solely focused on the mathematics followed
by the applications, it has been my experience that engineering students approach
the mathematical subjects with much greater interest and enthusiasm when they
have an application immediately at hand. Assessment from the sequence of courses
I teach verifies this conclusion.

Content

This book covers what is normally covered in undergraduate engineering differential
equations, vibrations, and controls courses. Less emphasis is placed on “recipes” or
enumerated “procedures” to solve problems than is usual, although such content is
not completely missing. There are plenty of problems that ask the student to simply
solve some differential equations, however, quite a few of them are, for the reasons
outlined above, deeper.

In addition to the combination of subjects unified by the content of the book,
there are a couple of additional unique features related to content. The final chapter
on nonlinear systems is perhaps longer than what is typically covered in engineering
courses. Also, in the appendix there are many computer programs that were used
to solve the example problems. These are presented in both the C programming
language as well as in FORTRAN. The former is included because it is still widely
used. The latter is, perhaps somewhat uniquely, still used in the aerospace industry
but, more important, is fairly transparent in syntax, so that a student who is not
proficient in programming can still easily determine what the program is doing.

It is important to note that the chapters are not of approximately uniform length.
This is particularly important for an instructor making a course syllabus from the
table of contents to note.

A Web page has been created for this book that contains:

• Some media content such as movies illustrating problem solutions that are
amenable to such a presentation

• Source code for computer programs
• Additional exercises
• Errata

The URL is: http://controls.ame.nd.edu/engdiffeq/

http://controls.ame.nd.edu/engdiffeq
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Prerequisites

The student is assumed to have a good background in calculus (at least through
multivariable calculus) and linear algebra. A dynamics course would be useful, but
the basic mechanics from the typical undergraduate engineering physics sequence
seems to suffice. A basic exposure to circuit analysis along the lines of the con-
tent typical in introductory physics courses would also be helpful. Finally, a good
introduction to computer programming would be very useful, but not necessarily
required.

Chapter Dependencies

The book is organized in what I consider the most logical order for a fundamental
treatment of the subject matter. Even if a chapter does not explicitly depend on a pre-
vious one, the general progression of understanding and sophistication that would
be developed when the chapters are covered in order was carefully considered.

However, curricular realities may prevent covering the chapters in order. Al-
though it is not ideal, it would be possible to treat some of the material out of order.
Specifically, the order of the following chapters may be altered without an extreme
disruption in the logical flow of the material.

• Chapter 5 considers variable-coefficient ordinary differential equations. The
method used, assuming a power series, is sufficiently different from the meth-
ods that precede the chapter that it could really be considered at any point.

• Chapters 8 through 10 cover Laplace transforms and control applications. It
would be possible to treat these chapters as an independent unit.

• Chapter 11 considers the simplest linear partial differential equations using the
separation of variables method. Hence, as long as Chapter 3 or the equivalent has
been covered, it should be possible to cover this material.

• Chapter 12 considers numerical methods, and hence really only requires an un-
derstanding of Taylor series.

In the text, these chapters do occasionally refer back to earlier chapters, however,
the dependence is typically one of pedagogy, rather than of theoretical necessity.
These references could typically be treated in a lecture with a relatively quick aside.
In my own case, for example, because of the structure of our curriculum, I cover
partial differential equations and numerical methods in the first semester of the two-
semester sequence.
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Chapter 1
Introduction and Preliminaries

This chapter presents an assortment of material, covered in varying degrees of de-
tail, which is needed as background material for the rest of this book. Students with
a strong background in mathematics can probably skim some of the sections in this
chapter. Section 1.1 discusses why differential equations are important to study in
engineering. Section 1.2 discusses functions in mathematics, which is important
not only because functions are solutions to differential equations but also because
it helps define the types of variables that appear in differential equations. Implicit
functions are also reviewed. The most important sections in this chapter are Sec-
tions 1.3 and 1.4 because they present new material that is used throughout the entire
book related to the types of differential equations and their solutions. Section 1.5 re-
views concepts from mechanical and electronic systems, including the properties of
the common elements that make up simple electromechanical engineering systems.
Finally, Section 1.6 presents the most basic method to use a computer to determine
an approximate solution to an initial value problem for a given ordinary differential
equation. More advanced numerical methods are considered in Chapter 12, but this
introductory material is presented so that, even in the earliest chapters, students can
check their work using a computer-solving method.

1.1 The Engineering Utility of Differential Equations

Nearly all the fundamental principles that govern physical processes of engineering
interest are described by differential equations. Hence, it is fair to say that the ability
to analyze, solve, and understand differential equations is fundamentally important
for engineers. This is particularly important in design, because in design an engineer
is usually tasked with choosing the parameters of a system. Those parameters, then,
are parameters in a differential equation describing the system, and hence insight
into the nature of the dependence of the solutions to that differential equation on the
parameters is critical to making design decisions.

B. Goodwine, Engineering Differential Equations: Theory and Applications, 
DOI 10.1007/978-1-4419-7919-3_1, © Springer Science+Business Media, LLC 2011
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2 1 Introduction and Preliminaries

This book is intended to make differential equations more accessible to engineer-
ing students by presenting and developing some application areas in parallel with
the presentation of the mathematics. This is done sometimes by way of simply using
the application as a motivational problem, and other times by fully developing the
application material. The main two application areas in this book are mechanical
vibrations and classical feedback control theory.

Additionally, there is an emphasis on analyzing the solutions to each problem, for
example, instead of the “answer” being simply a mathematical expression, an anal-
ysis of that answer is often required. For example, the “answer” to the differential
equation that is a simple model of an automotive suspension is

xp(t) = h

√
√
√
√
√
√

1 +
(

2ζ ω
ωn

)2

(

1− ω2

ω2
n

)2
+
(

2ζ ω
ωn

)2 cos
(

ωt + φ̂ + ψ
)

.

Such an equation is only really useful in the context of designing the suspension and,
for example, a more useful question may include determining speed of the vehicle,
which is related to the frequency, ω , at which xp(t) (how much the passengers in
the automobile are being shaken) has the greatest magnitude.

1.2 Sets, Relations, and Functions

Most engineering students have a pretty decent grip on the idea of a function, and
functions are important in this book because the solution to a differential equa-
tion is a function. This section first deals briefly with sets inasmuch as functions
are relationships between sets. Then functions and implicit functions are defined
as well. Implicit functions arise in this book because they are the natural represen-
tation of a solution to certain differential equations, particularly those considered
in Section 2.5.1, dealing with so-called separable first-order differential equations,
which is followed by the definition of multivariable functions and a review of their
calculus.

1.2.1 Sets

Without getting bogged down in the nuances of basic set theory, we consider a set
to be a collection of elements.1 We assume that there is a way for us to determine

1 More precisely, a collection of elements is a class and a set is a certain kind of class. A reader
interested in the distinction is referred to [24].
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whether an element is in a set2 and whether two elements are the same. Many sets
have common names. The two sets we are most concerned with are the set of real
numbers, denoted by R, and the set of complex numbers, denoted by C. We often
deal with particular subsets, the most common of which are intervals of R, such as
the closed interval

[a,b] = {x ∈ R |a ≤ x ≤ b} ,

that is, real numbers that are either a, b, or between3 a and b, or

(a,b] = {x ∈ R |a < x ≤ b} ,

that is, real numbers that are between a and b or are b. An open interval is an interval
of the form

(a,b) = {x ∈ R |a < x < b} ,

where the term “open” connotes the fact that the interval does not include its bound-
ary or endpoints. As is the usual convention, a parenthesis indicates that the bound-
ary point is not included in the set, and a square brace indicates that the boundary
point is included.

Sometimes we put more than one set together to make a new set. A common way
in which this is done is called the Cartesian product.

Definition 1.1. Let D1,D2, . . . ,Dn be sets. The Cartesian product of D1, D2, . . . ,
Dn, is the set

D1 ×D2 ×·· ·×Dn = {(x1,x2, . . . ,xn) |x1 ∈ D1,x2 ∈ D2, · · · ,xn ∈ Dn} .

If the sets D1,D2, . . . ,Dn are the same, then we use the notation

D1 ×D2 ×·· ·×Dn = Dn,

and elements of Dn are called called n-tuples. Elements of D1 ×D2 × ·· ·×Dn are
ordered which means that

(x1,x2, . . . ,xn) = (y1,y2, . . . ,yn)

if and only if x1 = y1, x2 = y2, · · · , and xn = yn.

An example of the way the Cartesian product is used is when vectors in Euclidean
space are used to represent something.

2 Whether an element is a member of a set is not even necessarily an either–or proposition. Fuzzy
logic is the branch of logic and mathematics where set theory is generalized to include the notion
of partial set membership. In this book an element is either in a set or it is not in the set. In contrast,
in fuzzy logic an element may be partially in a set. A classic example of a fuzzy set is the set of
“warm days.” It is natural to think of some days as “kind of” warm, which is represented in fuzzy
logic by being partially in the set of warm days and partially not in it. There is a vast literature on
fuzzy logic and the interested reader is referred to the original paper [56].
3 For an element to be between two others, we must be able to order the set and also to be able to
determine the order.
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Example 1.1. An example of a Cartesian product is the set of vectors in three-
dimensional Euclidean space. To specify a point in space, a set of three basis vectors
is needed, and the point is then represented by its component along each of these
three basis vectors. In this book we write

ξ =

⎡

⎣

x1

x2

x3

⎤

⎦

to represent the point. The set to which this point belongs is R×R×R = R
3.

1.2.2 Relations and Functions

In this book, a relation between elements of sets may be defined by an equation or a
set of equations. Elements of the sets satisfy the relation if they satisfy the equation.
A special kind of relation is a function.

Definition 1.2. Given two sets, D and R, if, for each element of x ∈ D there is a
rule that assigns one and only one element of y ∈R then we say that y is a function
of x. The set D is called the domain and the set R the range.

The variable x denoting an element of the domain is called the independent vari-
able and the variable y denoting the elements of the range is called the dependent
variable. It is common to write y = f (x) to indicate that y is a function of x, where
f is a name for the function. Two functions, f and g are equal if they have the same
domain and range and f (x) = g(x) for every element x of the domain.

Note that it is necessary to specify which set is the domain and which is the
range. Of course, we do not usually bother to do that and it is normally clear from
the context which set is the domain and which is the range. We often indirectly
specify the domain and range by saying that a function is from the domain to the
range.

Example 1.2. If s = μ + iω , the equation

r = ‖s‖ =
√

μ2 + ω2

defines a function from the complex numbers to the real numbers (the complex
numbers are the domain and the real numbers are the range) because there is one
and only one real number for each complex number that satisfies the equation. The
equation does not define a function from the real numbers to the complex numbers
because for most real numbers r, there are many complex numbers with ‖s‖ = r.

So far we have been considering functions between two sets. Of course, functions
may exist between multiple sets, which is manifested in the case where the depen-
dent variable depends upon more than one independent variable. In such a case,
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the dependent variable is a function of the independent variables if, for each possi-
ble combination of the independent variables, there corresponds only one value of
the dependent variable. Solutions to partial differential equations are multivariable
functions.

Definition 1.3. If, given m + 1 sets, D1,D2, . . . ,Dm, and R, and elements x1 ∈
D1,x2 ∈ D2, . . . ,xm ∈ Dm, there corresponds one and only one element of y ∈ R,
then we say that y is a function (or multivariable function of x1,x2, . . . ,xm). The
variables x1,x2, . . . ,xm are called the independent variables and the variable y is
called the dependent variable. Using the Cartesian product, the domain is given by
D = D1 ×D2 ×·· ·×Dm and the function is a function from D to R. It is common
to write y = f (x1,x2, . . . ,xm) to indicate that y is a function of x1,x2, . . . ,xm.

Example 1.3. For r ∈ R and (x,y) ∈ R×R, the equation

r =
√

x2 + y2

defines a function inasmuch as there is only one r for any specified values for x and
y.

1.2.3 The Derivative

The derivative is given by the usual limit definition.

Definition 1.4. Let x(t) be a function with the single independent variable t. The
derivative of x with respect to t is defined by

dx
dt

(t) = lim
Δ t→0

x(t + Δ t)− x(t)
Δ t

.

The usual interpretation of the derivative is that it is the rate of change of the
function with respect to the independent variable. If graphed, it is the slope of the
curve of x(t). If the function depends on more than one independent variable, then
we must consider the partial derivative.

Definition 1.5. Let x(t1, . . . ,tn) be a function with independent variables t1, . . . ,tn.
The partial derivative of x with respect to tm is defined by

∂x
∂ tm

(t1, . . . ,tn) = lim
Δ t→0

x(t1, . . . ,tm + Δ t, . . . ,tn)− x(t1, . . . ,tm, . . . ,tn)
Δ t

.

This book uses practically all the usual notational means to represent derivatives.
Which one is used typically depends on the conventional notation used by various
application areas. In particular, because it can be difficult to interpret an equation
with many parentheses, we often use a “subscript” notation to indicate the values at
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which a derivative function is evaluated instead of following the function name by
parentheses, that is,

d f
dx

∣
∣
∣
∣
x=x0

=
d f
dx

(x0) .

In cases where it is obvious what the independent variable is, it may be omitted, for
example,

mẍ + bẋ+ kx = 0

may be written instead of

mẍ(t)+ bẋ(t)+ kx(t) = 0.

1.2.4 Implicit Functions

So far things are simple: given an element of the domain, if we have a way to de-
termine one and only one element of the range, then we have a function. In some
cases, however, it naturally arises that for a function of more than one variable, we
are interested not so much in what element of the range corresponds to elements of
the domain, but rather in the relationship among the elements of the domain that
correspond to one particular element in the range. A circle is a typical example.

Example 1.4. Returning to Example 1.3, consider the set of points that satisfy

x2 + y2 = 1. (1.1)

A plot of all points that satisfy this equation is illustrated in Figure 1.1.

In Example 1.3 we had a function of two variables, and in Example 1.4 we stud-
ied the set of points that satisfy x2 +y2 = 1. This second example defines a relation,
which is more general than a function. Two points x ∈ R and y ∈ R satisfy the rela-
tion if they satisfy Equation (1.1). Mathematically a relation is defined to be a subset
of the domain. For purposes of this book we consider them to be the subset of the
domain that satisfies some equation, such as f (x,y) = 1, or f (x,y) ≥ 2.

It is logical in the second example to study the relationship between x and y
beyond simply asking whether they satisfy the relation. By referring to Figure 1.1,
it is clear that x and y are not related by a function because for any x ∈ (−1,1) there
are two values for y that satisfy the relation (and vice–versa). In the next example,
we show that it is possible to make the relationship between x and y that satisfies
f (x,y) = 1 into a function, at least for a limited domain or range.

Example 1.5. Consider the set of points that satisfy

x2 + y2 = 1. (1.2)

One way to make this relation into a function from one of the independent variables
to the other independent variable is to appropriately restrict the domain and range.
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Fig. 1.1 A plot of the subset of points in R
2 that satisfy x2 + y2 = 1.

It is clear from Figure 1.1 that, at most, the domain must be limited at least to the
interval D = [−1,1]. With respect to the range, it must also be restricted so that only
the top or bottom half of the circle is included in the range.

So, in this example, Equation (1.2) defines a function y = f (x) if we restrict the
domain to be

D = {x ∈ R |−1 ≤ x ≤ 1}
and specify either y =

√
1− x2 or y = −√

1− x2, which corresponds to either the
top or bottom half of the circle, respectively.

Do not infer from Example 1.5 that it will always be the case that an equation
that defines an implicit function can be “solved” for one of the variables. In fact
doing so will typically be difficult.

In Example 1.5 we were able to solve for y in terms of x for some region of the
domain. Motivated by this we define an implicit function as follows.

Definition 1.6. The equation f (x,y) = c where c is a constant, defines an implicit
function if and only if there exists a function g(x) such that

f (x,g(x)) = c.

A more natural way to write this is to write g(x) = y(x); that is, the y variable is
actually a function of x.

The following theorem gives a sufficient condition for the existence of an implicit
function.
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Theorem 1.1. Let f (x,y) be a continuously differentiable real-valued function de-
fined on an open set and let (x0,y0) be a point such that f (x0,y0) = c and such
that

∂ f
∂y

(x0,y0) �= 0.

Then, for x in an open interval about x0, there exists a unique function y(x) such that
y(x) is contained in an open interval about y0, y(x) is continuously differentiable,
and

f (x,y(x)) = c.

To gain some insight into implicit functions, it is natural to ask how y should
change if we want to vary x and simultaneously require f (x,y) = c. To gain some
insight into this, implicitly differentiate f (x,y(x)) = c with respect to x and solve
for dy/dx. Doing so gives

d f
dx

=
∂ f
∂x

+
∂ f
∂y

dy
dx

.

Because f (x,y(x)) = c, then d f/dx = 0, and hence

dy
dx

= −
∂ f
∂x
∂ f
∂y

. (1.3)

Intuitively, in order to determine how y should change as a function of x, we need
the denominator on the right-hand side of Equation (1.3) to be nonzero and points
where the denominator is zero to correspond exactly to points where the theorem
does not guarantee the existence of y(x).4

1.3 Types of Differential Equations

This section provides the basic definitions necessary to categorize a differential
equation so that the appropriate solution method can be identified. The solution
methods developed subsequently are only applicable to certain types of differential
equations; hence, it is critical from the beginning to be able to properly categorize
them. Before that, however, we must first consider exactly what a “differential equa-
tion” is.

Definition 1.7. Let x(t1,t2, . . . ,tm) be a function of the m independent variables
t1,t2, . . . ,tm. A differential equation is an equation that contains at least one deriva-
tive (of any order) of x(t1, . . . ,tm).

Example 1.6. The equation
1
t

ẍ(t) = 3

4 Note that this does not prove the theorem; on the contrary, we assumed that y was a function of x
when we implicitly differentiated the equation.



1.3 Types of Differential Equations 9

is a differential equation with dependent variable x and independent variable t.

Sometimes we have to consider a set of differential equations, which is called a
system of differential equations.

Definition 1.8. Let each function in the set of functions {x1,x2, . . . ,xn} be a function
of the m independent variables t1,t2, . . . ,tm. A system of differential equations is a
set of equations where each equation contains at least one derivative of each of the
functions in the set {x1,x2, . . . ,xn}.

Example 1.7. The set of equations describing the projectile motion of a particle with
mass m is

mẍ = 0

mÿ = −mg,

where g is the acceleration due to gravity. This is a system of two differential equa-
tions with dependent variables x and y and one independent variable t.

In general, because they can be determined from fundamental scientific prin-
ciples, the differential equation governing a system is known, but the solution is
unknown. For example, in Example 1.7, the differential equations follow from basic
principles from mechanics. “Solving” a differential equation amounts to determin-
ing the function (dependent variable) of the independent variable that satisfies the
differential equation.

Several chapters in this book deal with solution methods for differential equa-
tions, and which solution method works depends, not surprisingly, upon the charac-
teristics of the differential equation. The characteristics that are used in this book to
determine the correct solution method are:

• Whether the differential equation is an ordinary or partial differential equation
• What the order of the differential equation is
• Whether the differential equation is linear or nonlinear
• If the equation is linear, whether the equation is homogeneous
• If the equation is linear, whether the equation has constant or variable coefficients

The next few subsections present the definitions of these characteristics.

1.3.1 Ordinary Versus Partial Differential Equations

In a differential equation, if the dependent variable is a function of only one inde-
pendent variable, then the differential equation is an ordinary differential equation.
If the dependent variable depends on more than one independent variable and the
equation contains derivatives with respect to more than one of the independent vari-
ables, then the differential equation is a partial differential equation. Generally it is
trivial to distinguish between ordinary and partial differential equations because the
derivatives are notationally different.
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Example 1.8. The equation describing a mass–spring–damper system, studied in
complete detail in Chapter 4, under the influence of a harmonic forcing function
given by

ẍ(t)+ 3ẋ(t)+ 5x(t) = sin(t)

is an ordinary differential equation with independent variable t and dependent vari-
able x.

Example 1.9. The equation that described the motion of a vibrating string

∂ 2u
∂ t2 (x,t) =

∂ 2u
∂x2 (x,t),

where u(x,t) gives the displacement of the string at position x and time t, is a partial
differential equation.

A system of differential equations is ordinary if each of the dependent variables
is a function of one and the same independent variable. Generally speaking if there
are partial derivative signs in the equation it is a partial differential equation and if
there are only ordinary derivative operators (ds) or “dots” (ẋ) or “primes,” (y′) then
the equation is ordinary.

1.3.2 The Order of a Differential Equation

The order of a differential equation is the order of the highest derivative in the
equation.

Example 1.10. The equation

sin(t)+ x(t)+ ẍ(t) = 35ẋ(t)cos(t)

is second-order.

Example 1.11. The wave equation,

∂ 2u
∂x2 =

∂ 2u
∂ t2

is second-order.

Remark 1.1. This text only considers nth-order ordinary differential equation that
may be written in the form

dnx
dtn = f

(
dn−1x
dtn−1 ,

dn−2x
dtn−2 , . . . ,x,t

)

; (1.4)

that is, the equation can be solved for the highest derivative of the dependent vari-
able.
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So, this text considers differential equations of the form

mẍ(t)+ bẋ(t)+ kx(t) = cos(t),

but not of the form

m
(

ẍ(t)+ ẍ2(t)
)

+ bẋ(t)+ kx(t) = cos(t),

because the latter cannot be written in the form of Equation (1.4).

1.3.3 Linear Versus Nonlinear Differential Equations

This is perhaps the most important distinction of all. With the exception of some
first-order equations and other very specific examples, nonlinear differential equa-
tions do not have any known solution techniques; in contrast, linear differential
equations have some very nice properties and are easily solved. A differential equa-
tion is linear if all the terms in the equation are linear in the dependent variable and
its derivatives; otherwise, it is nonlinear.

Considering first an nth-order ordinary differential equation with independent
variable t and dependent variable x, if the equation can be put in the form

fn(t)
dnx
dtn (t)+ fn−1(t)

dn−1x
dtn−1 (t)+ · · ·+ f1(t)

dx
dt

(t)+ f0(t)x(t) = g(t) (1.5)

it is linear.

Remark 1.2. The functions fi(t) and g(t) do not have to be linear functions of t in
order for the equation to be linear. Only linearity in the dependent variable matters.

Extending this to the partial differential equation case is straightforward. The
equation is linear if all the terms containing the dependent variable or any of its
derivatives appear linearly in the equation; otherwise, it is nonlinear.

Considering an nth-order partial differential equation with independent variables
x and t and dependent variable u, if the equation can be put in the form

∑
i, j,i+ j≤n

fi, j(x,t)
∂ i+ ju
∂xi∂ t j (x,t) = g(x,t) (1.6)

it is linear.

Example 1.12. The differential equations listed in Table 1.1 are linear or nonlinear
as indicated.
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Differential Equation Linear or Nonlinear
ẍ(t)+ t2sin(t)x(t) = 5t linear

ẍ(t)+ t2sin(t)x2(t) = 5t nonlinear

ẍ(t)+ t2ẋ(t)x(t) = 5t nonlinear

ẍ(t)+ t2sin(t)sin(x(t)) = 5t nonlinear

ẍ(t)+ t2sin(t)x(t) = 5tx(t) linear

ẍ(t)+2t ẋ(t) = 5x(t) linear

ẍ(t)+2ẋ(t) = 5x(t) linear

ẍ(t)+2x(t)t = 5x(t) linear

ẍ(t)+2x(t)ẋ(t) = 5x(t) nonlinear

ẍ(t)+2x(t) = 5sin(t) linear

ẍ(t)+2x(t) = 5sin(t)ẋ(t) linear

ẍ(t)+2x(t) = 5sin(t)sin(ẋ(t)) nonlinear

∂ 2u
∂ x2 (x, t) =

∂ u
∂ t

(x, t) linear

∂ 2u
∂ x2 (x, t) = u(x, t)

∂ u
∂ t

(x, t) nonlinear

∂ 2u
∂ x2 (x, t) =

∂ u
∂ t

(x, t)
∂ u
∂ t

(x, t) nonlinear

∂ 2u
∂ x2 (x, t) =

∂ u
∂ t

(x, t)+ x linear

∂ 2u
∂ x2 (x, t) = x

∂ u
∂ t

(x, t)+u(x, t) linear

Table 1.1 Linear and nonlinear differential equations

1.3.4 Homogeneous Versus Inhomogeneous Linear Differential
Equations

If any of the nonzero terms of a linear differential equation are not a function of the
dependent variable, then the equation is inhomogeneous; otherwise, it is homoge-
neous. The “terms” of a differential equation are the elements of the equation that
are on either side of the equality and that are combined by addition or subtraction. In
the form of Equation (1.5), a linear ordinary differential equation is homogeneous
if g(t) = 0; otherwise, it is inhomogeneous.

Example 1.13. The linear differential equations listed in Table 1.2 with dependent
variable x and independent variable t are homogeneous or inhomogeneous as indi-
cated.
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Differential Equation Homogeneous or inhomogeneous
ẍ(t)+ t2sin(t)x(t) = 5t inhomogeneous

ẍ(t)+ t2sin(t)x(t) = 5tx(t) homogeneous

∂ 2u
∂ x2 (x, t) =

∂ u
∂ t

(x, t) homogeneous

∂ 2u
∂ x2 (x, t) =

∂ u
∂ t

(x, t)+ sin(x) inhomogeneous

Table 1.2 Homogeneous and inhomogeneous linear differential equations

1.3.5 Constant-Coefficient Versus Variable-Coefficient Linear
Differential Equations

If all the functions fi(t), i ∈ {1, . . . ,n} in Equation (1.5) are constants, then the lin-
ear ordinary differential equation is constant-coefficient; otherwise, it is variable-
coefficient. Note that if the equation is inhomogeneous, then there may be terms
that are functions of the independent variable, but if they are not coefficients of the
dependent variable it will still be a constant-coefficient differential equation. Espe-
cially in control theory and in dynamical systems, constant-coefficient equations are
often referred to as time invariant.

Example 1.14. The linear differential equations listed in Table 1.3 with dependent
variable x and independent variable t are either constant- or variable-coefficient as
indicated.

Differential Equation Constant- or Variable-Coefficient
ẍ(t)+ t2sin(t)x(t) = 5t variable-coefficient

ẍ(t)+ t2sin(t)x(t) = 5tx(t) variable-coefficient

ẍ(t)+2ẋ(t) = 5x(t) constant-coefficient

ẍ(t)+2ẋ(t)t = 5x(t) variable-coefficient

ẍ(t)+2x(t) = 5sin(t) constant-coefficient

∂ 2u
∂ x2 (x, t) =

∂ u
∂ t

(x, t) constant-coefficient

∂ 2u
∂ x2 (x, t) =

∂ u
∂ t

(x, t)+ x constant-coefficient

∂ 2u
∂ x2 (x, t) = x

∂ u
∂ t

(x, t)+u(x, t) variable-coefficient

Table 1.3 Constant- and variable-coefficient linear differential equations
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1.3.6 Types of Linear Second-Order Partial Differential Equations

By referring to Equation (1.6), a second-order linear partial differential equation
may be written as

f2,0(x,t)
∂ 2u
∂x2 (x,t)+ f1,1(x,t)

∂ 2u
∂x∂ t

(x,t)+ f0,2(x,t)
∂ 2u
∂ t2 (x,t)

+ f1,0(x,t)
∂u
∂x

(x,t)+ f0,1(x,t)
∂u
∂ t

(x,t)+ f0,0(x,t)u(x,t) = g(x,t).
(1.7)

If

1. ( f1,1(x,t))
2 −4 f2,0(x,t) f0,2(x,t) = 0, then the equation is called parabolic,

2. ( f1,1(x,t))
2 −4 f2,0(x,t) f0,2(x,t) > 0, then the equation is called hyperbolic,

3. ( f1,1(x,t))
2 −4 f2,0(x,t) f0,2(x,t) < 0, then the equation is called elliptic.

The functions fi, j(x,t) depend on the values of the independent variables, therefore
whether the equation is parabolic, hyperbolic, or elliptic may change depending
on the values of the independent variables. In the case of constant coefficients, the
equation will be of the same type throughout the domain.

Example 1.15. The one-dimensional heat conduction equation

∂ 2u
∂x2 (x,t) =

∂u
∂ t

(x,t)

is parabolic. In general, parabolic equations describe diffusionlike processes.

Example 1.16. The wave equation

∂ 2u
∂x2 (x,t) =

∂ 2u
∂ t2 (x,t),

which describes a vibrating string, is hyperbolic. In general, hyperbolic equations
describe vibrating and wavelike motions.

Example 1.17. Laplace’s equation

∂ 2u
∂x2 (x,y)+

∂ 2u
∂y2 (x,y) = 0,

which describes the steady-state temperature distribution in a plate is elliptic. In
general, elliptic equations describe steady-state phenomena.

1.4 Solutions of Differential Equations

This section deals with solutions of differential equations. There are, in fact, sev-
eral different types of solutions and distinguishing among them is important, not
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only for fundamentally understanding the subject, but also for avoiding frustration
subsequently when “solving” problems so that the right type of solution is actually
obtained. Another issue that arises in the study of differential equations relates to
whether a solution even exists to a given differential equation, and if one does exist,
whether it is unique.

1.4.1 Types of Solutions to Differential Equations

The projectile motion problem, introduced previously in Example 1.7 is used here to
motivate the need to consider different “types” of solutions to a differential equation.
The differential equations were given as

mẍ = 0

mÿ = −mg.
(1.8)

Thinking of this problem as a cannon shooting a cannonball, these differential equa-
tions are a consequence of the laws of mechanics, that is, the sum of the forces on
the ball is proportional to the acceleration.

It can be easily verified by substituting them into the differential equations that
the two functions

x(t) = x0 + ẋ0t

y(t) = y0 + ẏ0t − 1
2

gt2
(1.9)

satisfy the differential equations, for any constants x0, y0, ẋ0, and ẏ0. These functions
describe the trajectory of the ball. Clearly, the path of the ball depends not only on
the mechanics governing projectile motion, but also on the location of the cannon,
the angle from the ground at which it is pointed θ , and the velocity of the ball
when it leaves the cannon. These factors appear in the solution in the form of the
four constants, where x0 and y0 represent the position of the cannon and ẋ0 and ẏ0

may be computed from the angle and initial velocity of the cannonball. Figure 1.2
illustrates three solutions starting from the same position, (x0,y0) = (0,0) and the
same initial velocity, but with different angles.

The first type of solution that we consider is a function that, when substituted for
the dependent variable, satisfies the differential equation.

Definition 1.9. An explicit solution (usually just called “a solution”) of a differential
equation is a function that satisfies the differential equation.

The set of functions in Equation (1.9) is the solution to the set of equations in
Equation (1.8). There are constants in the solution to the projectile motion equations
that could take on any constant values. We are also interested in the case where there
are no arbitrary constants.
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Fig. 1.2 Three paths corresponding to the solution to Equation (1.8) with different cannon angles.

Definition 1.10. A particular solution of a differential equation is a function that
satisfies the differential equation, but contains no arbitrary constants.

Each of the three curves illustrated in Figure 1.2 represents a different particular
solution. In the case where the solution contains arbitrary constants, then it is natural
to ask when a solution has enough arbitrary constants to represent every possible
solution to a differential equation.

Definition 1.11. The general solution of a differential equation is a solution from
which every particular solution may be obtained by an appropriate choice of values
for arbitrary constants.

It should be apparent that it will typically be very difficult to know whether a
given solution is a general solution, even if it contains many arbitrary constants.
The way to think of the general solution to the cannonball problem would be to ask
if there is an expression for the solution that describes any possible motion of the
cannonball. At this point we do not have the tools to prove it, but it is the case that
the functions in Equation (1.9) represent every possible solution to the differential
equations in Equation (1.8). This is clearly very valuable because there is no way
the ball can move that is not represented by the general solution. The data used
to determine the arbitrary constants in a general solution to determine a specific
particular solution are called either the initial conditions or boundary conditions.

The distinction between initial conditions and boundary conditions is that initial
conditions all are specified at the same point in time (more precisely, for the same
value of the independent variable). Boundary conditions may be specified either
at different times, or more commonly in the case where an independent variable
represents a spatial dimension, specified at different points in space. Generally a
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problem comprised of a differential equation and initial conditions is called an initial
value problem and a problem comprised of a differential equation and boundary
values is called a boundary value problem.

For the cannonball example, an initial value problem would correspond to spec-
ifying the location and angle of the cannon and the initial velocity of the ball, and
the solution would be the trajectory that the ball follows. We would expect a so-
lution to such an initial value problem to be unique, meaning that once the initial
conditions are established, there is one and only one trajectory that the cannonball
follows. In the case where a function satisfies both the differential equation and the
initial conditions, the function is said to be the solution of the initial value problem.

In contrast, an example of a solution to the boundary value problem would cor-
respond to finding a solution that connects the initial location of the cannon and a
location of a target. In contrast to the initial value problem, this problem may have
many solutions. Figure 1.3 illustrates multiple solutions that start at the same loca-
tion and pass through the same target location. A solution that satisfies the differ-
ential equation and the boundary conditions is said to be a solution of the boundary
value problem. It is not necessarily always the case that there are many solutions to
a boundary value problem and one unique solution to an initial value problem, but
for most of the types of equations considered in this book, that is indeed the case.

0
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x

Fig. 1.3 Three projectile paths, each of which satisfies the same boundary values.

Finally, there is a definition that arises mainly because it is part of a procedure to
solve linear ordinary differential equations.

Definition 1.12. A homogeneous solution is the general solution to an ordinary, lin-
ear, homogeneous differential equation. If the equation is inhomogeneous, the ho-
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mogeneous solution is the general solution obtained by setting the inhomogeneous
term to zero.

If the equation is inhomogeneous, then a subscript h is used to designate the fact
that the solution is the homogeneous solution as opposed to the particular or general
solution. For the types of differential equations considered in this book where we
deal with homogeneous solutions, an nth-order differential equation has n different5

homogeneous solutions. An alternative common name for homogeneous solutions
is complementary functions.

Example 1.18. The function xh(t) = c1 sin t + c2 cost is the homogeneous solution
to all of the following differential equations,

ẍ + x = sin t

ẍ + x = cost

ẍ + x = t

ẍ + x = et

ẍ + x =
sin t + 35cost

et + 6
2ẍ+ 2x = 5.

Obviously all these equations are the same except for the inhomogeneous term (the
right-hand side). Hence, if the inhomogeneous term is set to zeros, the equations are
the same and hence have the same homogeneous solution.

As shown in Chapter 3, for an ordinary, linear, inhomogeneous differential equa-
tion, the homogeneous solution is usually added to a particular solution to determine
a general solution.

1.4.2 Existence and Uniqueness of Solutions

Given a differential equation, the issue of whether it actually has a solution, and
if it does, whether that solution is unique, is clearly of great importance. In engi-
neering it would normally be the case that solutions exist and are unique because
they are meant to describe physical phenomena that both exist and evolve in time
in a deterministic manner; however, knowledge and understanding of existence and
uniqueness theorems are still important for engineers because they provide insight
regarding the accuracy of the model of the physical phenomenon that the differential
equation is supposed to represent.

Although this topic is obviously an important one, it is not directly addressed
in this book. One reason was mentioned above: as engineers we deal with phys-
ical phenomena that will be modeled by equations that we would expect to have

5 What exactly constitutes “different” solutions is a bit subtle. In fact, we require linearly indepen-
dent solutions, which are considered in detail in Section 3.2.2.



1.5 A Few Fundamental Principles from Science 19

unique solutions. Furthermore, because much of the focus in this book is on solu-
tion methods, such methods obviously will only work for equations that have solu-
tions. Hence, at the beginning of each chapter, the type of differential equation that
is considered is stated with precision and, in most cases, a theorem relating to the
existence and uniqueness of solutions to the equation is presented in Appendix D.

1.5 A Few Fundamental Principles from Science

Differential equations arise in engineering because the fundamental laws governing
many physical processes are known relationships between various quantities and
their derivatives. Hence, the fundamental law is known, and is often quite simple
such as Newton’s second law, F = ma; however, the ultimate consequences of this
law may be quite complicated. This section reviews a few fundamental laws of sci-
ence, some of which are the foundation that gives rise to differential equations that
have engineering importance.

1.5.1 Units

In order for numeric descriptions of quantities to be meaningful, a system of units
must be employed. As is conventional this book uses the following as the base units
for the seven base quantities, and all other units are derived from these. These base
units are

1. The meter, m, which is a unit for the base quantity of length
2. The second, s, which is a unit for the base quantity of time
3. The kilogram, kg, which is a unit for the base quantity of mass
4. The ampere, A, which is a unit for the base quantity of electric current
5. The kelvin, K, which is a unit for the base quantity of thermodynamic temperature
6. The mole, mol, which is a unit for the base quantity of the amount of substance
7. The candela, cd, which is a unit for the base quantity of the luminous intensity of

light

See [37] for further information. Units derived from these base units that are used in
this book are presented in Table 1.4. For completeness, the usual prefixes used for
different orders of magnitude are presented in Table 1.5.

Remark 1.3. Most of the examples in this book do not include units in order to
emphasize the mathematics. However, engineering requires units, and hence some
of the exercises require that all the terms be labeled with the appropriate units.

The calculus operations of differentiation and integration change the units of a
function in an intuitive manner. By the definition of the derivative,
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Derived Quantity Name Symbol Base Units Other Units
Area square meter m2

Volume cubic meter m3

Plane angle radian rad m/m
Speed, velocity meters per second m/s
Angular velocity radians per second 1/s rad/s
Acceleration meters per second squared m/s2

Mass density kilograms per cubic meter kg/m3

Frequency hertz Hz 1/s
Force newton N (kg ·m)/s2

Moment newton meter
(

kg ·m2
)

/s2 N ·m
Energy, work joule J

(

kg ·m2
)

/s2 N ·m
Power watt W

(

kg ·m2
)

/s3 J/s
Electric charge coulomb C A · s
Electric potential volt V

(

kg ·m2
)

/
(

s3 ·A) W/A
Electric capacitance farad F

(

A2 · s4
)

/
(

kg ·m2
)

C/V
Electric resistance ohm Ω

(

kg ·m2
)

/
(

s3 ·A2
)

V/A
Electric inductance henry H

(

kg ·m2
)

/
(

s2 ·A2
)

Heat capacity joules per kelvin
(

kg ·m2
)

/
(

s2 ·K) J/K
Thermal conductivity watt per meter kelvin (kg ·m)/

(

s3 ·K) W/(m ·K)

Table 1.4 Some derived units based upon the seven base units in the SI system (adapted from [37])

Magnitude Name Symbol Magnitude Name Symbol
1024 yotta Y 10−1 deci d
1021 zetta Z 10−2 centi c
1018 exa E 10−3 milli m
1015 peta P 10−6 micro μ
1012 tera T 10−9 nano n
109 giga G 10−12 pico p
106 mega M 10−15 femto f
103 kilo k 10−18 atto a
102 hecto h 10−21 zepto z
101 deka da 10−24 yocto y

Table 1.5 Standard prefixes corresponding to different orders of magnitude [37]

d f
dt

(t) = lim
Δ t→0

f (t + Δ t)− f (t)
Δ t

the units of a derivative of a function are the units of that function divided by the
units of the independent variable with respect to which it is being differentiated.

Example 1.19. If x(t) has units of meters, then ẋ(t) will have units of meters divided
by seconds.

Example 1.20. If u(x,t) has units of kelvin, then ∂ 2u/∂x2 (x,t) will have units of
kelvin divided by meters squared.
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Conversely, the units of the integral of a function are the units of that function
multiplied by the units of the independent variable with respect to which it is being
integrated.

Example 1.21. If f (t) has units of meters and t has units of seconds, then
∫

f (t)dt
has units of meters times seconds.

1.5.2 Mechanical Systems

In this section we consider some basic ways to determine the equations of motion
for mechanical systems. This text is not intended to be a mechanics book; however,
it is important to consider the manner in which differential equations arise. Keep in
mind that the point of this section is only the means to determine the right equations.
The rest of the book is about how to solve them.

This section is intended as a summary of basic results from Newtonian dynamics
and is far from complete. An interested reader is referred to, for example, [34] for a
comprehensive introductory treatment, [23] for an intermediate treatment, or to [11,
19, 43, 51] for a more advanced treatment, and [1, 4] for very advanced treatments.

In The Principia, [39, 40], Isaac Newton states the following three laws of mo-
tion.

Law 1.1. Every body preserves in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed thereon.6

The modern expression of this law is conservation of momentum.

Law 1.2. The alteration of motion is ever proportional to the motive forces im-
pressed; and is made in the direction of the right line in which that force is im-
pressed.7

This gives rise to the familiar “force equals mass times acceleration” rule.

Law 1.3. To every action there is always opposed an equal reaction: or the mutual
actions of two bodies upon each other are always equal, and directed to contrary
parts.8

In other words, forces occur in equal and opposite pairs. If you push on a body,
the force you exert is exactly the same as the force that the body exerts on you. This
law plays a critical role in the development of rigid body mechanics.

6 As originally published, it states “Lex I: Corpus omne perseverare in statu suo quiescendi vel
movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare.”
7 “Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam
rectam qua vis illa imprimitur.”
8 “Lex III: Actioni contrariam semper et qualem esse reactionem: sive corporum duorum actiones
in se mutuo semper esse quales et in partes contrarias dirigi.”
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1.5.2.1 Application of Newton’s Laws to the Motion of Particles

Newton’s first law speaks of a “body.” We need to make a distinction between par-
ticles and rigid bodies. A particle is an object that generally has a finite mass, but
has no appreciable physical extent compared to its range of motion and negligible
rotational motion. In such a case it is valid to assume that the mass is concentrated
at a point. A rigid body is a collection of particles where the distance between any
two particles remains fixed. Unless otherwise indicated, all vectors describing phys-
ical systems are with respect to an inertial coordinate system, which is a coordinate
system that is not rotating and has an origin that is not accelerating.9

In this section, bold variables represent vector quantities, as is the convention in
mechanics. We consider a collections of N particles, each with a mass mi, position
vector with respect to the origin of some inertial coordinate system xi, and velocity
ẋi = vi.

Definition 1.13. The linear momentum pi of a particle of mass mi with velocity vi

measured relative to an inertial coordinate system is given by

pi(t) = mivi(t). (1.10)

Newton’s second law states that if Fi represents the vector sum of the forces
acting on the ith particle; then

d(mivi)
dt

(t) = Fi(t), (1.11)

and in the case where mi is constant,

mi
d2xi

dt2 (t) = Fi(t). (1.12)

Because it turns out to be very useful in the case of rotational motion, we now
take the cross-product of a vector from some fixed point with each side of Equa-
tions (1.10)–(1.12).

Definition 1.14. The angular momentum about the origin hi(t) of a particle of mass
mi with velocity vi(t) about the origin is given by

hi(t) = xi(t)×pi(t) = mi (xi(t)×vi(t)) , (1.13)

where × is the usual cross-product in R
3.

9 Exactly how to determine whether a coordinate system is inertial is not an easy thing. Generally,
however, on the earth if it is not accelerating with respect to the surface of the earth, then it is
approximately inertial unless the acceleration is extremely small or the extent of motion is large.
Sometimes an inertial frame is defined to be one in which Newton’s laws hold; however, this is not
of much use if our purpose is to apply Newton’s laws! Appealing to Einstein’s general theory of
relativity gives a complete answer, but is beyond the scope of this text.
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For the rest of this development, we assume that the mass of each particle is
constant and that, unless otherwise indicated, the angular momentum is computed
about the origin. Computing the derivative of angular momentum about the origin
with respect to time gives

dhi

dt
(t) =

d
dt

(xi(t)×pi(t)) =
(

dxi

dt
(t)×pi(t)

)

+
(

xi(t)× dpi

dt
(t)
)

= (vi(t)×mivi(t))+ (xi(t)×Fi(t))
= xi(t)×Fi(t). (1.14)

Putting together Equations (1.13) and (1.14):

hi(t) = mi (xi(t)×vi(t)) and
dhi

dt
(t) = xi(t)×Fi(t). (1.15)

Equation (1.15) is the usual, “the rate of change of angular momentum of a particle
about the origin is equal to the sum of the moments about the origin.”

In order to extend Newton’s laws to rigid bodies, we must consider the applica-
tion of them to a collection of particles. The first thing to consider is the center of
mass, defined by

xcom =
∑i mixi

∑i mi
=

∑i mixi

m
,

where ∑i is the sum over all the particles in the system; that is, ∑i = ∑N
i=1 and

m = ∑i mi is the total mass of the system.
Summing each side of Equation (1.11) over all the particles and using the defini-

tion of the center of mass we have

∑
i

d(mivi)
dt

(t) = ∑
i

Fi(t) =⇒ m
d2xcom

dt2 (t) = ∑
i

Fi(t). (1.16)

This equation expresses Newton’s law for a system of particles in terms of the ac-
celeration of the center of mass and the applied forces. If all we are concerned about
is the center of mass, this would be useful; however, it does not necessarily provide
any information about any individual particle in the system.

Summing Equations (1.13) and (1.15) over all the particles gives

h(t) = ∑
i

[mi (xi(t)×vi(t))] and
dh
dt

(t) = ∑
i

(xi(t)×Fi(t)) . (1.17)

This expression gives the rate of change of the angular momentum for the collec-
tion of particles that only depends on the applied forces and their location. As with
Equation (1.16), it does not necessarily provide any information about any individ-
ual particle, but does provide information about the whole system.

Observe that Equations (1.12), (1.15)–(1.17) always hold, and are nothing more
than expressions of Newton’s second law. Mechanics would be simple if there were
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not too many particles and the forces that each particle was subjected to were known.
Unfortunately, for engineering systems complications arise because

• Most systems are rigid bodies, which are a collection of particles which are ex-
erting forces on each other.

• Most engineering systems involve constrained motion, and the forces that enforce
the constraints may be difficult to determine.

Rigid bodies are considered next, followed by considering certain special types of
constrained motions.

1.5.2.2 Application of Newton’s Laws to a Rigid Body

A rigid body is a system of particles where the particles are constrained by internal
forces to remain a fixed distance from each other. We need to do two things to extend
the considerations of the previous section to rigid bodies. First, there are internal
constraint forces that keep the body rigid. Second, because most rigid bodies are
considered a continuum of material, the summations of the previous section have to
be replaced by integrals.

Let Fi j denote the force to which particle j is subjected by particle i, which will
be aligned with the vector connecting the two particles, xi −x j. Newton’s third law
states that F ji = Fi j. The internal forces all cancel, therefore the equations are the
same as before:

m
d2xcom

dt2 (t) = ∑
i

Fi(t) and
dh
dt

(t) = ∑
i

(xi(t)×Fi(t)) , (1.18)

where it is emphasized that Fi(t) are the external forces only.
The fact that the distance between points in a rigid body remains fixed allows a

useful reformulation of the angular momentum equation. Let ri denote the vector
from the center of mass to particle i, so that xi = xcom + ri and vi = vcom + ṙi.
Note that because the ri are measured with respect to the center of mass, they are
not measured with respect to a inertial coordinate system and we cannot directly
express Newton’s law using them. However, we can use them within an expression
of Newton’s law that is with respect to an inertial coordinate system.

Using curly braces to denote the extent of each summation, substituting this into
the definition of angular momentum for a system of particles gives
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h = ∑
i

{mi [xi ×vi]} = ∑
i

{mi [(xcom + ri)× (vcom + ṙi)]}

= ∑
i
{mi [(xcom ×vcom)+ (xcom × ṙi)+ (ri ×vcom)+ (ri × ṙi)]}

= (m(xcom ×vcom))+

(

xcom ×∑
i
{miṙi}

)

+

(

∑
i
{miri}×vcom

)

+

(

∑
i
{miri × ṙi}

)

.

In as much as ∑i miri = 0 (Exercise 1.15), the middle two terms are zero, and hence

h = m(xcom ×vcom)+∑
i

(miri × ṙi) . (1.19)

The interpretation of Equation (1.19) is that the angular momentum can be decom-
posed into two parts, one that is the related to the total mass and center of mass
position and velocity, and one that is related to the motion of the body about its
center of mass.

The last thing to incorporate is the fact that rigid bodies are often modeled as
continua, so the sums must be replaced by integrals. For the center of mass, the
computation is straightforward,

xcom =
∫

B dm
∫

B xdm
=

1
m

∫

B
xdm,

where the subscript B on the integral denotes that the integral is over the volume of
the body.

For rigid body rotational motion, the sums in Equation (1.19) must be integrated
through the whole body, which requires a fairly general formulation. In this book,
we only consider rigid body rotations constrained in a plane. Consider the planar
rigid body illustrated in Figure 1.4. A coordinate frame B is affixed to the body, and
the angle that the xb-axis of the body frame makes with respect to the inertial x-axis
is θ .

Define the vector ω to be out of the plane with magnitude θ̇ . It is left as an
exercise (Exercise 1.14) to show that the magnitude of ri × ṙi is given by

‖ri × ṙi‖ = ‖ω‖‖ri‖2 (1.20)

and the direction is out of the plane. Replacing the sum in Equation (1.19) with an
integral and assuming the mass per unit area of the body is given by ρ gives

h = m(xcom ×vcom)+ θ̇
∫

B
ρ ‖r‖2 dA.

The quantity
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Fig. 1.4 Planar rigid body.

B

y

xO

yb xb

θ

xcom

ri

dA

Icom =
∫

B
ρ ‖r‖2 dA,

is called the mass moment of inertia of the body about its center of mass, which
finally gives

h = m(xcom ×vcom)+ Icomθ̇ . (1.21)

The time rate of change of h is still given by Equation (1.18), but it may be the case
that it is convenient to express the location of the force in terms of the center of
mass, which gives

dh
dt

= xcom ×∑
i

Fi +∑
i

(ri ×Fi) , (1.22)

where the sum over i is over the points of application of the forces Fi.

1.5.2.3 Examples of the Application of Newton’s Laws

Most of the use of Newton’s laws in this book are concerned with the special case of
rectilinear motion, which is motion along a straight line. This case is nice because
the equations of motion reduce to a scalar differential equation and the application
of Newton’s law is simply to write F = ma in the relevant direction. The student
is cautioned to be cognizant of how restrictive this case actually is and to exercise
care in applying Newton’s law in the appropriate form, in particular Equation (1.11),
when the motion is not necessarily rectilinear.

Example 1.22. Consider a particle of mass m constrained to move along the x-axis
and subjected to an applied force F(t) as is illustrated in Figure 1.5. The force F(t)
may have both a magnitude and orientation that changes with time. Assume that the
constraint is frictionless.

Let

x(t) =
[

x(t)
y(t)

]

and F(t) =
[

Fx(t)
Fy(t)

]
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F(t)F(t)
Fc(t)

Fig. 1.5 System for Example 1.22.

denote the position of the particle and the two components of the applied force,
respectively. A free body diagram10 of the particle is illustrated on the right of Fig-
ure 1.5. There are two forces acting on the particle: the applied force F(t) and some
unknown constraint force Fc(t). The constraint is frictionless, thus Fc(t) must be
purely in the y-direction with no component in the x-direction, so we may write

Fc(t) =
[

0
−Fc(t)

]

.

For this particle, Equation (1.12) is of the form

m
d2x
dt2 (t)= F(t)+Fc(t), =⇒ m

d2

dt2

[

x(t)
y(t)

]

=
[

Fx(t)
Fy(t)

]

+
[

0
−Fc(t)

]

=
[

Fx(t)
Fy(t)−Fc(t)

]

which is equivalent to the two scalar equations

mẍ(t) = Fx(t) (1.23)

mÿ(t) = Fy(t)−Fc(t). (1.24)

Because the motion is constrained to be only in the x-direction, ÿ = 0 and Equa-
tion (1.24) reduces to Fy(t)−Fc(t) = 0.

Observe that if the point of interest in the problem were only the motion in the
x-direction, we could have easily determined Equation (1.23) by only considering
the forces in the x-direction. In such a case there is no need to even determine Equa-
tion (1.24). This nice form of the equations occurred not only because the direction
of motion and constraint force were orthogonal, but because they were in constant
directions, which is a consequence of the motion being rectilinear.

The following example illustrates that things become much more complicated
when the motion is not rectilinear.

Example 1.23. Consider a particle constrained to move along a curve described by
y = f (x) as illustrated in Figure 1.6 subjected to a known external force F(t). This
may be thought of as a bead moving along a curved frictionless wire.

10 A free body diagram is a representation of the particle isolated from the environment wherein
all the forces acting on the body are illustrated.
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x

y

F(t)

F(t)

Fc(t)

y = f (x)

Fig. 1.6 System for Example 1.23.

The particle must obey Newton’s second law; hence,

m
d2x
dt2 (t) = F(t)+ Fc(t), (1.25)

where Fc(t) is the constraint force between the bead and wire. Because the con-
straint is frictionless, the constraint force must always be perpendicular to the wire.

This seems like two equations for the two components of x(t). However, those
two components are not actually the unknowns. Because the particle must stay on
the wire, if we know x(t), then we know y(t) because y = f (x). So, only one of the
two components is really not known. The other unknown is the magnitude of Fc(t).
Inasmuch as Fc(t) must be orthogonal to the wire at the location of the bead, we
know its direction at any location x(t), but not its magnitude. The slope of y = f (x)
is given by the derivative at x; then the vector

t(x) =

[

1
d f
dx

∣
∣
∣
x

]

is in the direction tangent to the curve. Computing a normal vector, n(x) such that
n(x) · t(x) = 0, we have that

n(x) =

[

− d f
dx

∣
∣
∣
x

1

]

is normal to the curve at the point x. Hence the constraint force is in the direction of
this normal vector, but not necessarily of the same magnitude. It is a vector that has
the same direction as the normal, but not the same magnitude; that is,

Fc(t) = Fc

[

− d f
dx

∣
∣
∣
x(t)

1

]

, (1.26)

where the scalar Fc scales the constraint force vector to give it the appropriate mag-
nitude. Note that Fc itself is not the magnitude because the vector part in Equa-
tion (1.26) does not have unit magnitude, in general.

If we write
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x(t) =
[

x(t)
y(t)

]

because y(t) = f (x(t)), then the chain rule for differentiation gives

ẏ(t) =
d f
dx

∣
∣
∣
∣
x(t)

ẋ(t)

and then the chain rule and product rule for differentiation give

ÿ(t) =
d2 f
dx2

∣
∣
∣
∣
x(t)

ẋ2(t)+
d f
dx

∣
∣
∣
∣
x(t)

ẍ(t). (1.27)

Now we can substitute Equation (1.27) into the second component of Equa-
tion (1.25) and substitute Equation (1.26) into Equation (1.25), solve one of them
for Fc(t), and substitute into the other to result in a single differential equation in
dependent variable x and independent variable t. Substituting Equation (1.26) into
Equation (1.25) and writing it in components gives

mẍ(t) = Fx(t)−Fc(t)
d f
dx

∣
∣
∣
∣
x(t)

(1.28)

mÿ(t) = Fy(t)+ Fc(t).

Hence
Fc(t) = mÿ(t)−Fy(t)

and substituting from Equation (1.27) gives

Fc(t) = m

(

d2 f
dx2

∣
∣
∣
∣
x(t)

ẋ2(t)+
d f
dx

∣
∣
∣
∣
x(t)

ẍ(t)

)

−Fy(t).

Finally, substituting for Fc(t) in Equation (1.28) gives

mẍ(t) = Fx(t)−
[

m

(

d2 f
dx2

∣
∣
∣
∣
x(t)

ẋ2(t)+
d f
dx

∣
∣
∣
∣
x(t)

ẍ(t)

)

−Fy(t)

][

d f
dx

∣
∣
∣
∣
x(t)

]

, (1.29)

which is an ordinary second-order nonlinear differential equation with dependent
variable x and independent variable t.

The point of Example 1.23 was to demonstrate that the case of nonrectilinear
motion is rather involved. There are other ways to approach the problem, which in
some cases may be more efficient, but there is basically no way to just be able to
write the equations as one equation that is of the form mẍ = F , where F is simply the
applied forces projected onto the direction of motion. This is because, in general, the
motion of the particle, the applied force, and the constraint force have components
in both coordinate directions. Fortunately, for most problems in this book rectilinear
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motion is what is considered and hence, it is usually relatively easy to write F = ma
in the correct direction.

The following example shows the application of Newton’s laws to the motion of
a particle that is constrained to move in a circle.

Example 1.24. Consider a particle with mass m constrained to move along a fric-
tionless circular hoop with radius r under the influence of gravity, as illustrated in
Figure 1.7. Determine a differential equation that describes the motion of the parti-
cle using θ as the dependent variable and t as the independent variable.

Fig. 1.7 Hoop for Example 1.24.

x

y

θ
mg

m

The particle is constrained to move along the hoop therefore the magnitude of
the velocity is

‖v(t)‖ = r
∣
∣θ̇ (t)

∣
∣ .

The angular momentum about the center of the hoop is

h(t) = m(r(t)×v(t)) .

We could determine the components of v and r as a function of θ . However, it
is easier to observe that because of the geometry of the hoop, v will always be
orthogonal to r, and h about the center of the hoop and will always be orthogonal to
the plane of the hoop. Hence, we can let h be the scalar that represents the magnitude
of the angular momentum of the particle along the axis through the center of the
hoop and orthogonal to and out of the plane of the hoop and write

h(t) = mr2(t)θ̇ (t),

and because r is constant,
dh
dt

(t) = mr2θ̈ (t).

To determine the motion of the particle, we use Equation (1.15), so we need to
compute r×F. This cross-product is also along the axis orthogonal to the plane of
the hoop, so we may write

‖r(t)×F(t)‖ = −rmg cosθ (t).
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By Equation (1.15)
mr2θ̈(t) = −rmg cosθ (t)

or
θ̈ (t) = −g

r
cosθ (t), (1.30)

which is a second-order, nonlinear, ordinary differential equation. Equation (1.30) is
Equation (1.15) expressed in terms of the variable θ . Because the particle’s motion
is constrained to move in a circle, determining the equation of motion for the system
was more efficiently expressed in a formulation based on angular momentum.

The final example is a planar rigid body that requires the use of the rigid body
formulations of Newton’s laws.

Example 1.25. This example considers a simple model of a hovercraft. Consider the
body of the hovercraft to have uniformly distributed mass and be rectangular, with
a length of 2m and width of 3m and total mass of 12kg, as illustrated in Figure 1.8.
Assume that the body is subjected to a force F with magnitude F that is applied a
distance 1/2m from the back of the hovercraft at the centerline with an angle ψ with
respect to the centerline. The purpose of the problem is to determine the equations
of motion for the hovercraft.

Because it is common to do so, the dependence of the dependent variables on
the independent variable t, are dropped. It is important to be cognizant of which
variables depend on time and which are constant.

B

y

xO

yb xb

θ

xcomF
ψ

Fig. 1.8 Hovercraft model for Example 1.25.

This is a planar rigid body, so the differential equations describing its motion are
given by Equations (1.18), (1.21), and (1.22). For the derivative of the angular ve-
locity we could use either the right equation in Equations (1.18) or Equation (1.22).
The quantities in each of these equations are as follows:

xcom =
[

x
y

]

, F = F

[

cos(θ + ψ)
sin(θ + ψ)

]

, vcom =
[

ẋ
ẏ

]

, r = −1
2

[

cosθ
sinθ

]

.
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Substituting the relevant terms into Equation (1.21) and computing the cross-
products gives ‖h‖,

‖h‖ = 12(xẏ− yẋ)+
13
2

θ̇ ,

and hence
∥
∥ḣ
∥
∥= 12(xÿ− yẍ)+

13
2

θ̈ .

Computing the right-hand side of Equation (1.22) gives

∥
∥ḣ
∥
∥= F (xsin(θ + ψ)− ycos(θ + ψ))− F

2
sinψ .

Equation (1.18) gives

12ẍ = F cos(θ + ψ)
12ÿ = F sin(θ + ψ)

and equating the two
∥
∥ḣ
∥
∥ equations gives

12(xÿ− yẍ)+ 13θ̈ = F (xsin(θ + ψ)− ycos(θ + ψ))+
F
2

sinψ ,

and finally substituting for ẍ and ÿ from the first two equations into the third gives
what is finally a pretty simple answer:

12ẍ = F cos(θ + ψ)
12ÿ = F sin(θ + ψ)

13θ̈ = F sinψ .

(1.31)

1.5.3 Mechanical Components

This book is primarily concerned with interconnected rigid body systems. The
two main components this book mainly considers are linear springs and viscous
dampers.

1.5.3.1 Springs

An ideal linear spring is a mechanical device that requires a force to extend it which
is proportional to the amount of extension. Mathematically,

fs(t) = kx(t),
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where fs is the force required to extend the length of the spring, x is the amount by
which the length of the spring has been extended, and k is the spring constant, which
is a characteristic of the spring. The force fs and extension x must be defined in a
manner so that they have the same sign when a positive force and positive extension
are in the same direction. Negative extension is compression, and the equation still
holds. The relationship is illustrated in Figure 1.9 where the unstretched length of
the spring is l.

l

fs = 0

l + x

fs = kx

Fig. 1.9 The relationship between force and extension of an ideal spring.

Throughout this book we make an important assumption regarding the reference
point from which spring displacements are measured.

Assumption 1.1. Unless stated otherwise, any variable that represents the exten-
sion or compression of a spring is assumed to have a value of zero when the spring
is at an equilibrium. If there is no gravity, then the variable is zero when the spring
is unstretched. If there is gravity acting on a mass that is supported by the spring,
then the variable is zero when the spring is stretched by an amount that results in a
force equal to the weight of the mass.

Another important assumption is that, unless otherwise specified, the mass of the
spring itself may be neglected.

1.5.3.2 Viscous Dampers

A viscous damper11 is a mechanical device that requires a force to extend it which
is proportional to the rate at which it is being extended. A common example of such
a device is an automobile shock absorber. Mathematically,

fd(t) = bẋ(t),

where fd is the force required to extend the damper, ẋ is the rate at which the damper
is being extended, and b is the damper constant, which is a characteristic of the
damper. The force fd and the rate of extension ẋ must be defined in a manner so
that they have the same sign when a positive force and positive rate of extension
are in the same direction. Negative extension is compression, and the equation still
holds. The common schematic representation of a viscous damper as well as the
relationship between force and rate of displacement is illustrated in Figure 1.10.
Note that for an ideal damper, the force is independent of the length of the damper.

11 Another common term used to refer to these devices is viscous dashpot.
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Unless otherwise specified, throughout this book we assume that the mass of the
damper itself is negligible, and hence may be omitted from any model.

ẋ = 0

fd = 0

ẋ �= 0

fd = bẋ

Fig. 1.10 The relationship between force and the rate of extension of an ideal viscous damper.

Example 1.26. Determine the equation of motion for the mass–spring–damper sys-
tem illustrated in Figure 1.11. Assume that x = 0 when the spring is unstretched.

m m

k

b

x(t) x(t)

f (t) f (t)
kx

bẋ

Fig. 1.11 Mechanical system with a mass, spring, and damper and its free body diagram for Ex-
ample 1.26.

A free body diagram of the mass is illustrated on the right in Figure 1.11. So,
because the acceleration of the mass is equal to ẍ, we have

mẍ(t) = f (t)− kx(t)−bẋ(t),

which is usually expressed in the form

mẍ(t)+ bẋ(t)+ kx(t) = f (t).

1.5.4 Kirchhoff’s Laws

Kirchhoff’s laws provide the scientific principles that are used to derive the equa-
tions describing electrical circuits.

Law 1.4. Kirchhoff’s voltage law (KVL) states that the sum of the voltage drops
around any closed loop in a circuit is zero.

Law 1.5. Kirchhoff’s current law (KCL) states that the sum of the currents into any
point in a circuit is zero.

Law 1.4 is basically conservation of energy and Law 1.5 is basically conservation
of charge. These laws apply to circuits containing electrical components, which are
defined next.
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1.5.5 Electronic Components

There are many types of electronic components, and properly modeling some of
them is necessary in this book. In particular, we consider resistors, capacitors, in-
ductors, voltage sources, current sources, direct current motors (“dc motors”), and
operational amplifiers (“op-amps”).

1.5.5.1 Resistors

In an ideal resistor, the voltage drop across the resistor is proportional to the current
passing through the resistor. The constant of proportionality is called the resistance,
is represented by the symbol R and has units of ohms. The equation describing this
property is

vR(t) = i(t)R, (1.32)

where vR is the voltage across the resistor, i is the current passing through it, and R
is the resistance of the resistor. The typical schematic representation of a resistor is
illustrated on the left in Figure 1.12.

R C L

iii

vR+ ++ −−− vC vL

Fig. 1.12 Representation of an ideal resistor, capacitor, and inductor.

1.5.5.2 Capacitors

In an ideal capacitor, the time rate of change of the voltage across the capacitor is
proportional to the current through it. The constant of proportionality is called the
capacitance, is represented by the symbol C, and has units of farads. The equation
describing it is given by

i(t) = C
dvC

dt
(t).

This should make sense inasmuch as charge will not flow through the capacitor;
the effect of current flow will be the accumulation of charge on the plates of the
capacitor, which results in a change in voltage across the plates. The schematic
representation of a capacitor is illustrated in the center in Figure 1.12.
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1.5.5.3 Inductors

In an ideal inductor, the voltage drop across the inductor is proportional to the time
rate of change of the current through it. The constant of proportionality is called the
inductance, is represented by the symbol L and has units of henrys. The equation
governing it is

vL(t) = L
di
dt

(t).

The schematic representation of an inductor is illustrated on the right in Figure 1.12.

1.5.5.4 Voltage Source

An ideal voltage source supplies a specified voltage that is independent of the cur-
rent that the circuit draws. A schematic illustration of an ideal voltage source is il-
lustrated on the left in Figure 1.13. The voltage v(t) is specified, whereas the current
through the voltage source i is determined by the circuit to which it is attached. Of
course, a real voltage source cannot maintain a specified voltage if it would require
a very high current, for example, in a short circuit.

Fig. 1.13 An ideal voltage source (left)
and current source (right).

+−

i
i

1.5.5.5 Current Source

An ideal current source supplies a specified current that is independent of the termi-
nal voltage across the source. Its schematic representation is illustrated on the right
in Figure 1.13.

1.5.5.6 Direct Current Motors

The schematic representation for a direct current motor (“dc motor”) is illustrated in
Figure 1.14. The two idealized properties of a dc motor we need in this book relate
the output torque of the motor to the current flowing through it and the voltage drop
across the motor to the angular velocity of the shaft of the motor. Mathematically,

τ(t) = kτ i(t)

vm(t) = keθ̇(t),
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where i is the current through the motor, τ is the torque produced by the motor, vm is
the voltage drop across the motor, θ̇ is the angular velocity of the shaft of the motor,
and kτ and ke are the torque and back emf proportionality constants of the motor.

Fig. 1.14 Schematic representation of a
direct current motor. kτ ,ke

1.5.5.7 Operational Amplifier

An operational amplifier (“op-amp”) scales an input voltage difference by an
amount called the gain.12 The mathematical description is

vout(t) = kvin(t)

where vin is the potential difference across the two input pins and k is the open loop
gain. An ideal op-amp has infinite input impedance, which means that no current
flows across the input pins. A schematic representation of an op-amp is illustrated
in Figure 1.15.

Fig. 1.15 Operational amplifier
schematic.
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The application of these laws is illustrated with a simple example.

Example 1.27. Consider the circuit illustrated in Figure 1.16. Let vR, vL, vC, and vm

denote the voltage across the resistor, inductor, capacitor, and motor, respectively,
and let i1, i2, and i3 be the current through the resistor, motor, and inductor, respec-
tively.

The differential equations describing the circuit are determined by using Kirch-
hoff’s laws and the properties of the components in the circuit. Kirchhoff’s voltage
law around the left loop in the circuit13 gives

vin(t) = vR(t)+ vL(t)+ vC(t), (1.33)

and around the right loop gives

12 Sometimes the gain is specifically called the open-loop gain to distinguish it from the closed-
loop gain. The closed-loop gain of an op-amp is discussed in Chapter 9.
13 The signs are not indicated in the figure. A reader that is unsure should make a note of them.
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Fig. 1.16 Circuit for Example 1.27.
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vL(t) = vm(t). (1.34)

Kirchhoff’s current law at the top center node gives

i1(t) = i2(t)+ i3(t). (1.35)

The definitions of the components give

vR(t) = i1(t)R (1.36)

vL(t) = L
di3
dt

(t) (1.37)

C
dvC

dt
(t) = i1(t) (1.38)

vm(t) = ke
dθ
dt

(t). (1.39)

Note that for the equation for the capacitor, the current through the capacitor must
be i1(t), which is given by the current law applied to the bottom center node.

Finally, if the mass moment of inertia of the shaft of the motor is J, then

J
d2θ
dt2 (t) = kτ i2(t). (1.40)

Equations (1.33) through (1.40) are a set of algebraic and differential equations
describing the circuit and motor. It makes physical sense that if vin(t) and initial
conditions were specified, then unique solutions would exist for all the other vari-
ables. Hence, one check on whether these equations completely represent the system
is to compare the number of variables to the number of equations. There are nine
(vin,vR,vC,vL,vm,i1,i2,i3,θ ) variables that depend on time, and there are eight equa-
tions. Hence, if one is specified, then there should be a solution for all of the rest.14

14 Note that in order for consistency between the number of variables and equations to be mean-
ingful, the equations and variables must be independent. For example, vR could be replaced with
vR = v1 + v2 everywhere and it would seem there are two variables instead of one. Similarly, a
duplicate equation could be added by multiplying one of the equations by a constant. Normally,
for simple systems such features can be determined by inspection. In cases where the system is too
complicated to determine this by inspection, either linear algebraic approaches such as reducing
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The way to combine them to simplify things and reduce the number of variables
is not always straightforward because they are not all algebraic equations, so this
subject is deferred until Chapter 8. Leaving this as a long list of equations may not
be the most satisfying, but is where things stand at this point.

1.6 Introduction to Numerical Methods

Because it is a sad, but true, fact that most differential equations cannot be solved
using methods in this book (and any other book, for that matter) methods that use
computers to determine approximate solutions are extremely important. This sec-
tion considers Euler’s method for solving initial value problems for ordinary dif-
ferential equations, which is the most basic, and perhaps most common, method
to use a computer to determine an approximate solution to a differential equation.
Chapter 12 considers more advanced topics on numerical methods including more
sophisticated methods for initial value problems for ordinary and partial differential
equations.

As should be clear subsequently there are two major shortcomings to resorting to
numerical techniques. First, only explicit solutions may be obtained; that is, general
solutions that can be used for any initial conditions generally cannot be determined
using numerical methods. Therefore, if the initial conditions to a problem change,
the entire method must be used again. It is not simply a matter of computing different
coefficients within a solution. Secondly, the “answer” is only an approximate answer
and is in the form of tabulated data. If a more accurate solution is required, then
more computer resources must be allocated to the problem and if an expression of
the solution in terms of elementary functions such as sine, cosine, the exponential,
and so on, is required, the method is not appropriate. Even with these two caveats,
however, numerical methods are extremely useful and commonplace in engineering.

1.6.1 Euler’s Method

Consider an ordinary, first-order differential equation of the form

ẋ = f (x(t),t), (1.41)

and assume that either we do not know how to solve it, or we are too lazy to solve
it by hand. In order to derive an algorithm to determine an approximate solution,
recall the definition of the derivative from calculus

the system to echelon form can be applied or problems will arise when trying to solve the system
indicating that there is a problem with the set of equations describing the system.
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ẋ(t) =
dx
dt

(t) = lim
Δ t→0

(
x(t + Δ t)− x(t)

Δ t

)

. (1.42)

Another way to interpret this equation is that, if the limit exists and Δ t is small, then

ẋ(t) ≈ x(t + Δ t)− x(t)
Δ t

.

Keep in mind that the typical scenario is that the differential equation is known;
that is, f (x,t) in Equation (1.41) is known and the solution, x(t) is unknown. This is
in contrast to the usual use of Equation (1.42) in calculus where x(t) is known and
the derivative is unknown.

Now, assume that an initial condition is known as well, so that

x(t0) = x0 (1.43)

has been specified. So, what is known is f (x,t) in Equation (1.41), the initial condi-
tion in Equation (1.43), and also the definition of the derivative in Equation (1.42).
Now, at t = t0, the approximate derivative is given by

ẋ(t0) ≈ x(t0 + Δ t)− x(t0)
Δ t

.

For a specified Δ t, everything in the preceding equation is known except x(t0 +Δ t),
so it can be solved for x(t0 + Δ t) as

x(t0 + Δ t) ≈ ẋ(t0)Δ t + x(t0)

or, from Equation (1.41),

x(t0 + Δ t)≈ f (x(t0),t0)Δ t + x(t0). (1.44)

In words, if x(t0) is known and the differential equation, ẋ = f (x,t), is known,
then an approximation for x(t + Δ t) is given by Equation (1.44). Also, given nor-
mal convergence properties, it will be the case that as Δ t gets smaller, the approx-
imation will be more accurate. The final piece of the puzzle is to note that once
x(t + Δ t) is computed, x(t + 2Δ t) can be computed from Equation (1.44) by sub-
stituting the value for x(t + Δ t) for x(t0) and t0 + Δ t for t0 in the right-hand side of
Equation (1.44), that is,

x(t + 2Δ t)≈ f
(

x(t0 + Δ t),t0 + Δ t
)

Δ t + x(t0 + Δ t),

and by recursion, then

x(t + nΔ t)≈ f
(

x(t0 +(n−1)Δ t) ,t0 +(n−1)Δ t
)

Δ t + x
(

t0 +(n−1)Δ t
)

.

(1.45)
Equation (1.45) is “the answer.” The algorithm to implement it for a given Δ t is

called Euler’s method, and is as follows.
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1. Let x(t0) = x0 and let n = 0.
2. Let n = n + 1.
3. Let x(t + nΔ t) = f

(

x(t0 +(n−1)Δ t) ,t0 +(n−1)Δ t
)

Δ t + x
(

t0 +(n−1)Δ t
)

.
4. If nΔ t is less than the time to which the approximate solution is needed, return

to step 2.

Example 1.28. Determine an approximate numerical solution to

ẋ = sin2t, (1.46)

where x(0) = 3. It is useful to compare the approximate solution with an exact solu-
tion. The exact solution, which can be verified by differentiating it and substituting
into Equation (1.46), is

x(t) =
7
2
− 1

2
cos2t.

The method to determine this exact solution is covered subsequently in Section 2.5.1.
In this example, t0 = 0, x0 = 3, and f (x,t) = sin2t. Picking Δ t = 0.5 (a discussion

on how to choose Δ t appears subsequently), the first 20 steps of the algorithm are
presented in Table 1.6. The last column is the exact solution, which is included for
comparison. A plot of the approximate numerical solution and the exact solution are
illustrated in Figure 1.17.

t n x(t) f (x, t) x(t +Δt) 7
2 − 1

2 cos2(t +Δt)
0.000000 0 3.000000 0.000000 3.000000 3.229849
0.500000 1 3.000000 0.841471 3.420735 3.708073
1.000000 2 3.420735 0.909297 3.875384 3.994996
1.500000 3 3.875384 0.141120 3.945944 3.826822
2.000000 4 3.945944 -0.756802 3.567543 3.358169
2.500000 5 3.567543 -0.958924 3.088081 3.019915
3.000000 6 3.088081 -0.279415 2.948373 3.123049
3.500000 7 2.948373 0.656987 3.276866 3.572750
4.000000 8 3.276866 0.989358 3.771545 3.955565
4.500000 9 3.771545 0.412118 3.977605 3.919536
5.000000 10 3.977605 -0.544021 3.705594 3.497787
5.500000 11 3.705594 -0.999990 3.205599 3.078073
6.000000 12 3.205599 -0.536573 2.937312 3.046277
6.500000 13 2.937312 0.420167 3.147396 3.431631
7.000000 14 3.147396 0.990607 3.642699 3.879844
7.500000 15 3.642699 0.650288 3.967844 3.978830
8.000000 16 3.967844 -0.287903 3.823892 3.637582
8.500000 17 3.823892 -0.961397 3.343193 3.169842
9.000000 18 3.343193 -0.750987 2.967700 3.005648
9.500000 19 2.967700 0.149877 3.042638 3.295959

Table 1.6 Tabulated data for Example 1.28

Note that the numerical solution is approximate in two ways. First, in between
the times nΔ t, the solution can only be interpolated. In Figure 1.17 the interpolation
is linear, as is the default in many graphics packages. However, keep in mind that
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Fig. 1.17 Approximate and exact solutions for Example 1.28 with Δt = 0.5.

the only data about the solution we really have is at a finite list of points in time.
Second, even for the exact times nΔ t, the solution still does not exactly match the
exact solution. This is due to the fact that each computation for x(t0 + nΔ t) is only
an approximation. Thus, the only point where we know the answer is correct is point
t = t0.
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Fig. 1.18 Approximate and exact solutions for Example 1.28 with Δt = 0.1.
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Decreasing the time step to Δ t = 0.1 gives the result illustrated in Figure 1.18.
Note that decreasing the step size by a factor of 5 greatly improves the accuracy
of the approximate solution. A code listing using the C programming language is
included in Appendix E.1.0.1. A code listing using FORTRAN is included in Ap-
pendix E.2.0.16.

1.6.2 Determining an Appropriate Step Size

A more detailed and theoretically rigorous analysis of the types of errors introduced
by numerical methods is considered in Chapter 12. At this point a heuristic approach
is used to ensure accuracy of the approximate solution, which is simply to continue
to reduce the step size by a certain factor (say by a factor of two, or perhaps even by
an order of magnitude) until the answer seems to have converged to a fixed solution.
This is best illustrated by means of an example.

Example 1.29. Find an approximate solution to

ẋ = 75x(1− x) (1.47)

x(−1) =
1

1 + e75 (1.48)

using Euler’s method on the time interval −1 ≤ t ≤ 1. The solution to this problem
is simply implementing Euler’s method using

t0 = −1

x0 =
1

1 + e75

f (x,t) = 75x(1− x).

Figure 1.19 illustrates the solution for a variety of values for Δ t. Note that Δ t
must be quite small before the solution converges. A code listing using C is in-
cluded in Appendix E.1.0.2. A code listing using FORTRAN is included in Ap-
pendix E.2.0.17.

Euler’s method may be represented by the following algorithm.

Algorithm 1.1 (Euler’s Method).

1. Let x(t0) = x0 and n = 0.
2. Let n = n + 1.
3. Let x(t + nΔ t) = f

(

x(t0 +(n−1)Δ t) ,t0 +(n−1)Δ t
)

Δ t + x
(

t0 +(n−1)Δ t
)

.
4. If nΔ t is less than the time to which the approximate solution is needed, return to

step 2.
5. If only one approximate solution has been obtained, then reduce Δ t and return

to step 1.
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Fig. 1.19 Approximate solutions for Example 1.29 using various Δt values.

6. Compare the solution obtained to the previous one and if the solutions differ
significantly, then reduce Δ t and return to step 1.

1.6.3 Numerical Methods for Higher-Order Differential Equations

The development so far is limited to ordinary, first-order differential equations. This
section extends the approach to higher-order ordinary differential equations by using
a straightforward reformulation of the problem to convert it into a system of first-
order equations, which is illustrated by means of an example.

Example 1.30. Find an approximate numerical solution to

ẍ+ sin(t)ẋ + cos(t)x = e−5t (1.49)

where x(0) = 2 and ẋ(0) = 5.
The main idea is the following. Consider the change of variables

x1(t) = x(t)
x2(t) = ẋ(t).

Then the following equations are equivalent

ẍ + sin(t)ẋ+ cos(t)x = e−5t ⇐⇒
[

ẋ1

ẋ2

]

=
[

x2

e−5t − sin(t)x2 − cos(t)x1

]

.

(1.50)
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This is because the second line of the right-hand equation is determined by solving
Equation (1.49) for ẍ and recognizing that ẍ = ẋ2 because x2 = ẋ. The initial value
problems are equivalent as well if x1(0) = 2 and x2(0) = 5.

Observe that in general terms, the right-hand formulation of Equation (1.50) is
of the form

ẋ1 = f1(x1,x2,t)
ẋ2 = f2(x1,x2,t).

Hence, for this case Euler’s method, expressed in Equation (1.45), has the simple
reformulation of

x1(t + nΔ t)≈ f1
(

x1(t +(n−1)Δ t),x2(t +(n−1)Δ t),t +(n−1)Δ t
)

Δ t

+ x1(t +(n−1)Δ t)

x2(t + nΔ t)≈ f2
(

x1(t +(n−1)Δ t),x2(t +(n−1)Δ t),t +(n−1)Δ t
)

Δ t

+ x2(t +(n−1)Δ t),

or using the particular equations of this example

x1(t + xΔ t) ≈ x2
(

t +(n−1)Δ t
)

Δ t + x1
(

t +(n−1)Δ t
)

x2(t + xΔ t) ≈
[

e−5(t+(n−1)Δ t) − sin(t +(n−1)Δ t)x2(t +(n−1)Δ t)

− cos(t +(n−1)Δ t)x1(t +(n−1)Δ t)
]

Δ t

+ x2
(

t +(n−1)Δ t
)

.

Inasmuch as this is notationally a bit cumbersome, it may be easier to refer to the
example code in the appendix. A code listing using the C programming language
is included in Appendix E.1.0.3. A code listing using FORTRAN is included in
Appendix E.2.0.18. A plot of the solution for Δ t = 0.02 and Δ t = 0.01 is illustrated
in Figure 1.20.

1.6.4 Numerical Packages

The ode series15 of functions in MATLAB provide the basic functionality for solv-
ing initial value problems for ordinary differential equations. Perhaps the most com-
mon of these is ode45(), the usage of which is outlined here. This function used
the fourth-order Runge–Kutta method, the details of which are included in Chap-
ter 12.

15 The functions include, ode43(), ode23(), ode113(), ode15s(), ode23s(),
ode23t(), ode23tb(), ode15i() which provide functionality using a variety of solution
methods applicable to a variety of differential equations.
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Fig. 1.20 Solution for Example 1.30.

The reader is cautioned that although such computer software packages are very
common and used widely, they are essentially “black boxes” and a user must exer-
cise caution when relying upon the output. It is, frankly, rather easy to find differen-
tial equations where these functions fail to produce an accurate approximation.

The basic usage of ode45() is

>> [T,Y] = ODE45(ODEFUN,TSPAN,Y0,OPTIONS)

where

T

is the time vector,

Y

is the solution vector (or matrix),

ODEFUN

is a function that provides the derivative information (the right-hand side of the
equation),

Y0

is the initial condition, and

OPTIONS

is a list of optional parameters sent to the solver. The following example illustrates
its basic use.
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Example 1.31. Use MATLAB to determine an approximate numerical solution to
the set of equations from Example 1.30.

The file “secondorder.m” contains the following.

function xdot = secondorder(t,x)
xdot = zeros(2,1);
xdot(1) = x(2);
xdot(2) = exp(-5.0*t) - sin(t)*x(2) - cos(t)*x(1);

and in the command window

>> [t,y] = ode45(@secondorder,[0 30],[2 5]);
>> plot(t,y(:,1));
>> xlabel(’t’);
>> ylabel(’x(t)’);

The output of these commands would be very similar to the solution plotted in
Figure 1.20.

Octave16 is free software that has many features similar to MATLAB. The main
function for computing approximate solutions for ordinary differential equations
in Octave is lsode(). Similar to MATLAB, a user must exercise caution to not
necessarily assume the answer provided is a good approximation.

The basic usage is

y = lsode("f",x0,t)

where

f

is a function (which must be defined in a file with the same name),

x0

is the initial condition and

t

is a time vector. The following example illustrates its use.

Example 1.32. Use Octave to determine a solution to the set of equations from ex-
ample 1.30.

The file “secondorder.m” contains the following.

function xdot = secondorder(x,t)
xdot = zeros(2,1);
xdot(1) = x(2);
xdot(2) = exp(-5.0*t) - sin(t)*x(2) - cos(t)*x(1);

endfunction

16 For more information visit http://www.octave.org.

http://www.octave.org
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Within the Octave command line interface, the steps

octave:1> t = linspace(0,30,10000);
octave:2> y = lsode("secondorder",[2;5],t);
octave:3> plot(t,y(:,1),’;;’)
octave:4> xlabel(’t’)
octave:5> ylabel(’x(t)’)

produce a solution vector called y. The output of these commands would be very
similar to the solution plotted in Figure 1.20.

1.7 Exercises

1.1. Let A = (−10,10) and B = R. For x ∈ A and y ∈ B which of the following
equations define a function from A to B?

1. y = 2x.
2. y = 1/x.
3. y = sinx.
4. x = siny.
5. y = sin−1 x.
6. y = 0.

7. y =

⎧

⎪⎨

⎪⎩

0, x > 0

−1, x < 0

−24, x = 0

.

8. y = (x−2)/(x−6).

For each of the equations that you determined were not functions, is it possible to
alter the domain or range to make them functions?

1.2. Let C be the set composed of some vehicles in a parking lot and let M = R.
If you had a means to determine the mass of each automobile, would that define a
function from C to M? Would it necessarily define a function from M to C? Explain
your answer.

1.3. Let D = R = R. For x,y ∈ R, does y = 1/x define a function? Does it define a
function from R to D?

1.4. Use the limit definition of the derivative from Definition 1.4 to compute the
derivative with respect to t of the following functions.

1. f (t) = t2.
2. f (t) = sin t. Hint: You may use the fact that limt→0 sin(t)/t = 1.

1.5. The ideal gas law relates the pressure, volume, temperature, and amount of a
gas by the well-known equation
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pV = nRT.

Apply the implicit function theorem to this equation to determine the domain of
values of V so that for a fixed temperature T there exists a function which gives
the pressure for any value of the volume in that domain. Does the result from the
implicit function theorem make physical sense?

1.6. For each of the following equations, use implicit differentiation to determine
dx/dt and the intervals of values for t so that the equation f (x,t) = 0 defines x as an
implicit function of t.

1. t2 + 5t + 4x2 + 3x + 21 = 0.
2. sin(2t −4x) = 12x.
3.

√
6x−3t = t + 4x.

4. e2t+3x = 5.
5.
(

x2 + t2
)2 − x2 + t2 = 0.

On the (t,x)-plane, plot the values of x and t that satisfy the equation. You may use
a computer program for this. Then sketch x(t) versus t by hand.

1.7. Theorem 1.1 says that y(x) is a unique function when the conditions of the
theorem are satisfied. However, for the circle example, x2 + y2 = c, for any value of
x <

√
c there are two values of y on the circle, given in Example 1.5, which would

seem to indicate that function is not unique. Explain how this is consistent with the
theorem.

1.8. Classify each of the following differential equations according to whether it is

• Ordinary or partial
• Linear or nonlinear

If it is linear, indicate whether it is

• Constant- or variable-coefficient
• homogeneous or inhomogeneous.

Also determine

• Its order
• The dependent and independent variables

1. 5ẍ+ 6ẋ+ sin(t)x = cos
(

t2
)

,x(0) = 1, ẋ(0) = π .
2. 5ẍ+ 6ẋ+ sin(t)x = cos(t) ,x(0) = 1, ẋ(0) = π .
3. 5ẍ+ 6ẋ+ sin(t)x = cos(x) ,x(0) = 1, ẋ(0) = π .
4. cos(t) ẋ+ etx = x2,x(2) = e.
5. cos(x) ẋ + etx = x2,x(2) = e.
6. cos(t) ẋ+ etx = x,x(7) = e.
7. cos(t)cos(ẋ)+ etx = x,x(7) = e.
8. cos(t) ẋ+ etx = 2,x(−6) = e.
9. ẋ+ eπx = 2,x(0) = 1.
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10. ẋ+ etx = 2,x(0) = 1.
11. ẋ+ exx = 2,x(0) = 1.
12. 2ẍ+ 19ẋ+ 24x = 0,x(0) = 1, ẋ(0) = 0.

13. 2 ∂ 2ζ
∂γ2 + 19 ∂ζ

∂α + 24ζ = γ2 + α2.

14. 6ẍ+ 23ẋ+ t3x2 = 0,x(0) = 1, ẋ(0) = 0.
15. 6ẍ+ 23ẋ+ x3 = sin

(

t2
)

,x(0) = 1, ẋ(0) = 0.

16. 2 d2ξ
dη2 + 19 dξ

dη + 25ξ = 0,ξ (0) = 1, dξ
dη (0) = 0.

17. π ẍ+ eẋ+ x = sin(t) ,x(0) = 1, ẋ(0) = 0.

18. 2 d2ζ
dγ2 + 19 dζ

dγ + γ24ζ = 0,ζ (0) = 1, dζ
dγ (0) = 0.

19. 2 d2ζ
dγ2 + 19 dζ

dγ + γ24ζ = sin(γ) ,ζ (0) = 1, dζ
dγ (0) = 0.

20. 2 d2ζ
dγ2 + 19 dζ

dγ + γ24ζ = sin(ζ ) ,ζ (0) = 1, dζ
dγ (0) = 0.

21. 2 d2ζ
dγ2 + 19 dζ

dγ + 24ζ = γ,ζ (0) = 1, ζ̇ (0) = 0.

1.9. Is the partial differential equation

∂u
∂ t

(x,t) = α
∂ 2u
∂x2 (x,t)−β u(x,t) ,

where α and β are real constants, elliptic, parabolic or hyperbolic?

1.10. Is the telegraph equation

∂ 2u
∂ t2 (x,t) = α

∂ 2u
∂x2 (x,t)−β

∂u
∂ t

(x,t)− γu(x,t) ,

where α , β , and γ are real positive constants, elliptic, parabolic or hyperbolic?
When modeling a telegraph, u(x,t) represents the voltage at time t at location x

in a wire. What are the units for α , β , and γ?

1.11. Is the interior Dirichlet problem for a circle

∂ 2u
∂ r2 (r,θ )+

1
r

∂u
∂ r

(r,θ )+
1
r2

∂ 2u
∂θ 2 (r,θ ) = 0

elliptic, parabolic, or hyperbolic?

1.12. Determine whether each of the given functions, x(t) is a solution to the asso-
ciated differential equation.

1. x(t) = cos(t), ẍ+ x = 0.
2. x(t) = sin(t), ẍ+ x = 0.
3. x(t) = 3cos(t)+ 2sin(t), ẍ + x = 0.
4. x(t) = cos2t, ẍ+ x = 0.
5. x(t) = c1t + c2/t, t2ẍ + tẋ− x = 0, t �= 0.
6. x(t) = 3t + 2/t, t2ẍ+ tẋ− x = 0, t �= 0.
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7. x(t) = t + 1/t + t/2lnt, t2ẍ + tẋ− x = t, t �= 0.
8. x(t) = cos2t, x2ẍ+ ẋ/x = −4cos3(2t)−2tan2t.
9. x(t) = 3cos2t, x2ẍ+ ẋ/x = −4cos3(2t)−2tan2t.

10. x(t) = t + 1/t + 5t/2lnt, t2ẍ+ tẋ− x = t, t �= 0.

1.13. Consider three particles that are free to move in the plane. Let the positions of
the particles be

x1 =
[

0
2

]

, x2 =
[

2
3

]

, x3 =
[−3

1

]

,

and the velocities be

v1 =
[

1
1

]

, v2 =
[−1
−1

]

, v3 =
[

2
0

]

.

1. Compute the linear momentum of the system.
2. Compute the angular momentum of the system about the origin.
3. Compute the time rate of change of the linear momentum of the system if a force

F1 =
[

3
−2

]

is applied to the first particle.
4. What is the time rate of change of the linear momentum if the force is applied

to the second particle? Does changing the particle to which the force is applied
matter for dp/dt?

5. Compute the time rate of change of the angular momentum about the origin of
the system if F1 is applied to the first particle.

6. What is the time rate of change of the angular momentum about the origin if F1

is applied to the second particle? Does changing the particle to which the force
is applied matter for dp/dt? Explain why this is the same or different from the
case for linear momentum when the particle to which the force was applied was
changed.

7. Consider a second force

F2 =
[−3

2

]

.

Let F1 be applied to the first particle and F2 be applied to the second particle.
What is the time rate of change of the linear momentum of the system? What is
the time rate of change of the angular momentum of the system? What can you
conclude from the answers?

1.14. Derive Equation (1.20).

1.15. Use the definition of the center of mass of a system of particles to show that
∑i miri = 0. Explain why this makes sense.

1.16. Write a computer program that solves for the motion of the particle in Exam-
ple 1.24 with m = 1 and r = 2, θ (0) = 1 and θ̇(0) = 0.
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1. Plot θ versus t.
2. By considering the total energy for the particle, determine what θ̇(0) should be

so that the particle goes clockwise from θ (0) = 1 and stops at the top. Verify
your prediction by changing your initial conditions in the computer program and
plotting θ versus t.

3. Is it possible to determine an initial velocity starting from θ (0) = 1 such that the
particle moves around the hoop more than one time and then comes to rest at the
top? If so, verify this with the computer program.

1.17. Referring to Example 1.23, determine the differential equation with dependent
variable x and independent variable t describing the motion of a particle with a mass
of 3 kg, constrained to move along the curve y = sin(x) subjected to an applied force

F =
[

cos(t)
3

]

.

Write a computer program to solve this equation starting at t = 0 if x(0) = 0 and
ẋ(0) = 5. Plot the solution in a manner that clearly illustrates the nature of the solu-
tion. Label all the axes and include appropriate units.

1.18. Referring to Example 1.23, determine the differential equation with dependent
variable x and independent variable t describing the motion of a particle of mass 3,
constrained to move along the curve y = cos(x)− x where the mass is subjected to
gravity in the negative y-direction. Write a computer program to solve this differen-
tial equation starting at t = 0 with x(0) = 0 and ẋ(0) = 1.

If this is a roller coaster, at what time and position, if any, does the roller coaster
leave the track? Hint: Keep track of the constraint force and if it ever has a y-
component that is negative.

1.19. Consider a body of mass m sliding along an incline plane with angle α under
the influence of gravity as is illustrated on the left in Figure 1.21. Assume the contact
between the mass and plane is frictionless and determine a differential equation with
dependent variable x and independent variable t.

m
g x

α

x

Fig. 1.21 System for Exercises 1.19 (left) 1.20 (right).
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1.20. Consider a uniform flexible rope of length l and total mass ρ l, as is illustrated
on the right in Figure 1.21. Assume that the length of rope hanging off the end of
the table is x and that the coefficient of friction (both dynamic and static) between
the rope and table is μ . Determine a differential equation with dependent variable x
and independent variable t that describes the motion of the rope. What are the units
for each term in the equation?

1.21. Consider a mass suspended from a string under the influence of gravity, as
illustrated on the left in Figure 1.22. An identical string hangs from the bottom. If
a force is applied at the bottom of the bottom string which starts with F = 0 and
is slowly increased, which string will break first, the top or bottom string? If the
force is very rapidly increased, which one will break first? Explain your answers.
This problem was adapted from [20]. If you have trouble with the problem, you may
want to do Exercise 1.28 first.

Fig. 1.22 System for Exercise 1.21

m m

g

FF

k

k

x

y

1.22. For each of the circuits illustrated in Figure 1.23, determine a set of equations
that, if vin were specified, would be sufficient to uniquely determine vout .

vin vout

R1

R2

C

vin vout

R1

R2

C

Fig. 1.23 Circuits for Exercise 1.22.
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1.23. This problem investigates series and parallel elements in mechanical and elec-
trical systems. Match the following mathematical relationship with the correspond-
ing system in Figure 1.24. Justify your answer by deriving the relationship for each
figure based on first principles, such as Newton’s laws, Kirchhoff’s laws, or the
mathematical representation of the properties of the components of the system:

f = (k1 + k2)x f =
1

1/k1 + 1/k2
x

f = (b1 + b2) ẋ f =
1

1/b1 + 1/b2
ẋ

v = i(R1 + R2) v = i
1

1/R1 + 1/R2

dv
dt

= i
1

C1 +C2

dv
dt

= i

(
1

C1
+

1
C2

)

v =
di
dt

(L1 + L2) v =
di
dt

1
1/L1 + 1/L2

.

1.24. Write a computer program to determine an approximate numerical solution to
ẋ+x = exp(3t) where x(0) = 1 using Euler’s method. Determine an appropriate step
size by decreasing the step size until the solution seems to converge. Compare your
answer with a solution determined using a numerical computation package such as
Octave or MATLAB.

1.25. Write a computer program to determine an approximate numerical solution to
ẋ =

(

t2 − x2
)

sinx where x(0) = −1 using Euler’s method. Be sure to continue to
decrease the step size until the solution seems to converge. Compare your answer
with a solution determined using MATLAB or Octave.

1.26. Write a computer program to determine an approximate numerical solution
to ẍ + tẋ + 2x = 0, where x(0) = 3 and ẋ(0) = −2 using Euler’s method. Be sure
to continue to decrease the step size until the solution seems to converge. Compare
your answer with a solution determined using MATLAB or Octave.

1.27. Write a computer program to determine an approximate numerical solution to
the differential equation describing the system in Exercise 1.20. Choose your one
set of reasonable values for the parameters in the system and plot the solution.

1.28. Consider the mass suspended from the spring on the right in Figure 1.22. Let
m = 1, k = 1, and g = 9.81. Assume that x and y are zero when the two springs are
unstretched. Assume the system starts from rest with the first spring extended by an
amount equal to the weight of the mass and the second spring is unstretched.

Determine the equations of motion for x and y. Let F = αt and write a computer
program to solve for x(t) and y(t) for various values of α . Plot the force in each
spring versus time for different values of α . Use your results to provide an answer
to Exercise 1.21. Hint: The force in the top spring is kx and the force in the bottom
spring is k (y− x).
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f

f f

f

x

x

x

x

v

v

v

v

v

v

i

i

i
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i

i R1

R1

R2

R2

L1

L1

L2

L2

C1

C1

C2

C2

k1

k1

k2

k2

b1

b1

b2

b2

Fig. 1.24 Systems for Exercise 1.23.

1.29. The exhaust velocity is the velocity, relative to the engine, at which air and
spent fuel leave a jet or rocket. Explain why a rocket can attain a velocity greater
than the exhaust velocity whereas a jet can not.

1.30. Use the ode45() function in MATLAB to determine an approximate nu-
merical solution to the initial value problem in Example 1.29. If it does not give
an answer that appears to be close to that illustrated in Figure 1.19, investigate the
options for ode45() or other MATLAB functions to obtain a good answer.

1.31. Determine the equations of motion for the systems in Figure 1.25. Write
a computer program that determines an approximate numerical solution for each
where k1 = 1, k2 = 2, b = 0.25, m = 1, f = sin(t), x(0) = 0, ẋ(0) = 0, and y(0) = 0.
Plot x versus t and y versus t starting from t = 0 for a sufficient interval of time to
illustrate the nature of the solution.
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f (t)

x y

k1
k2

b

m
f (t)

x y

k1

k2
b

m

Fig. 1.25 Mechanical systems for Exercise 1.31.

1.32. A telescope is not working as well as hoped because the floor on which it rests
shakes slightly, by an amount y(t) = ε sinωt, because of nearby vehicular traffic.
Someone proposes to use springs to isolate it, as illustrated in Figure 1.26 where
the thin rectangle represents the floor. The telescope should be stationary relative to
the earth, not the floor, and the displacement of the telescope relative to the earth
is given by x(t). Determine the differential equation that describes the system with
dependent variable x and independent variable t. Let m = 1, k = 9, and ε = 0.01.
Write a computer program that determines an approximate numerical solution with
all initial conditions zero for the three cases where ω1 = 1, ω2 = 3, and ω3 = 9.
From your results, does the spring work as expected for each of those cases?

Fig. 1.26 System for Exercise 1.32.
y(t)

x(t) k

m



Chapter 2
First-Order Ordinary Differential Equations

First-order ordinary differential equations have some rather special properties,
which result for the most part because they can only contain a limited number of
terms. In fact, all linear first-order ordinary differential equations can easily be
solved. This is in contrast to higher-order ordinary differential equations that be-
come much more difficult to solve when, for example, they contain variable coef-
ficients. Furthermore, some methods exist to solve a pretty large class of nonlinear
first-order ordinary differential equations, which is generally not the case for higher-
order nonlinear equations.

This chapter considers methods to solve first-order ordinary differential equa-
tions of the form

dx
dt

(t) = f (x,t) . (2.1)

If the first-order ordinary differential equation that must be solved is not of the form
of Equation (2.1) it must be transformed into that form, and in the process care
must be taken that solutions are neither gained nor lost. Theorem D.1 gives condi-
tions for existence and uniqueness of solutions to problems involving equations in
the form of Equation (2.1). For the purposes of this chapter, note that as long as
f (x,t) is infinitely differentiable in both x and t, then the theorem is satisfied. All
the equations considered in this chapter have the properties necessary for existence
and uniqueness of solutions.

Even if a reader is familiar with ordinary first-order differential equations, this
chapter should not be skipped. Detailed coverage of the method of undetermined
coefficients and solutions to constant-coefficient linear equations of any order is in
this chapter and serves as a basis for material in subsequent chapters.

2.1 Motivational Examples

The first example of a first-order differential equation comes from heat transfer.

B. Goodwine, Engineering Differential Equations: Theory and Applications, 57
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Example 2.1. Consider the problem of determining the temperature of an object
placed in an oven (or conversely, a refrigerator). If the inside of the oven is at tem-
perature Ta, and is constant, and the initial temperature of the body is T (0), we want
to determine T (t).

Although a complete exposition of heat transfer requires an entire course, a cou-
ple of relevant concepts can be introduced here. First, temperature can be consid-
ered as a measure of the amount of thermal energy that a body contains. Second,
heat transfer, then, is a measure of how much energy is transferred between systems
in a given amount of time. Let q denote the rate of heat transfer. The units for q are
energy per unit time J/s or watts W.

Considering an energy balance on the body, we have that the rate of change of
the internal energy of the body must be equal to the rate of energy transfer into (or
out of) the body from the surrounding air. A basic result from heat transfer is that
the heat transfer from a surrounding fluid to a body is given by

q(t) = hA(Ta −T (t)) , (2.2)

where A is the surface area of the body and h is the convection heat transfer coeffi-
cient which will have units of W ·K/m2. Equation (2.2) should make perfect sense.
The rate at which energy is transferred from the body to the fluid, or vice versa
is proportional to the difference in their temperatures and the amount of area over
which it may occur.

Inasmuch as temperature is a measure of the amount of thermal energy contained
in the body, the rate of change of temperature should be proportional to the rate at
which energy is transferred into the body. This is true, and in particular,

q(t) = ρVcp
dT
dt

(t), (2.3)

where ρ is the density of the body, V is the volume, and cp is the specific heat of the
material, which has units of J ·K/kg.

Conservation of energy requires that the rate of heat transfer into the body must
equal the rate of change of its internal energy, thus Equations (2.2) and (2.3) must
be equal, so we have

hA(Ta −T (t)) = ρVcpṪ (t).

If we let θ (t) = T (t)−Ta, then

−hAθ (t) = ρVcθ̇ (t)

or

θ̇ (t)+
hA

ρVc
θ (t) = 0. (2.4)

Usually, this equation is written in the form

θ̇ (t)+
1

RC
θ (t) = 0, (2.5)
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where R is the resistance to convective heat transfer and C is called the lumped
thermal capacitance.1 Equation (2.5) is a linear, first-order, ordinary, constant-
coefficient, homogeneous differential equation.

The next section outlines how to solve various forms of first-order equations. As
it turns out, there are multiple ways to solve Equation (2.5), and in particular, the
two different methods from Section 2.3 may be used to solve this problem.

The next examples come from the field of bioengineering, but first we need to
consider some basic reaction rate concepts. The Michaelis–Menton equation de-
scribes many physiological processes: among other things, biological process cat-
alyzed by enzymes and protein facilitated diffusion of substances into or out of cells.
The form of the equation is

vo =
vmax[s]
km +[s]

(2.6)

where vo is the reaction rate or uptake rate, [s] is the concentration of some sub-
strate, and vmax and km are constants that depend upon the particular process under
consideration. A plot of vo versus [s] for various values of vmax and km is illustrated
in Figures 2.1 and 2.2.

0

1

2

3

4

5

0 5 10 15 20

v o

[s]

vmax = 2.0
vmax = 3.0
vmax = 4.0

Fig. 2.1 Reaction rate for various vmax and km = 1.0.

1 A careful reader, or one with a background in heat transfer, will recognize that fact that when
we use T (t) to represent the temperature of the body, it is implicitly assuming that the temperature
distribution in the body is uniform. This is intuitively appropriate in some cases, and is rigorously
justified by considering the Boit number, which is defined as the dimensionless quantity Bi = hk/L,
where k is the thermal conductivity of the body and L is a characteristic length of the body. When
Bi � 1, then the approach taken in this example problem, which is called the lumped capacitance
method, is a justified approximation. See [25] for a complete exposition.
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Fig. 2.2 Reaction rate for various km and vmax = 2.0.

Example 2.2. The rate of uptake of blood plasma glucose into skeletal muscle, the
brain, liver, and other organs for oxidation (use for energy) is regulated by hormones
such as insulin and facilitated in the different organs by the GLUT family of pro-
teins. Thus if we let g represent the plasma glucose concentration, the change in
plasma glucose concentrations due to uptake by, say in, skeletal muscle, is given by

ġ = − vmaxg
km + g

or
kmġ+ gġ+ vmaxg = 0. (2.7)

This is an ordinary, first-order, nonlinear differential equation.

Example 2.3. The rates of metabolism of many drugs are described by Equation (2.6)
as well. In some cases, the constant km is either very large or very small compared
to the blood concentration of the drug so that some simplifications are possible.

For example, alcohol is such that if x represents blood alcohol concentrations, x
is always much larger than km. In this case the denominator of Equation (2.6) can
be approximated by km + x ≈ x, and then the equation describing the blood alcohol
concentration as a function of time is

ẋ = −vmax. (2.8)

This is an ordinary, first-order, constant-coefficient, inhomogeneous, linear differ-
ential equation.
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Example 2.4. For other drugs, cocaine is an illicit example but there are many phar-
maceutical examples; metabolism is such that the constant km is very large compared
to the drug concentration levels. In that case, the denominator of Equation (2.6) can
be approximated simply by km (km + x ≈ km) and the blood drug concentration as a
function of time is given by

kmẋ = −vmaxx (2.9)

which is an ordinary, first-order, constant-coefficient, homogeneous, linear differen-
tial equation.

2.2 Homogeneous Constant-Coefficient Linear First-Order
Ordinary Differential Equations

Because it is the case that the coefficients of the dependent variable terms in engi-
neering differential equations are often parameters that describe the physical prop-
erties of a system, and it is also often the case that such parameters are constant
(mass, thermal capacitance, etc.), it is thus often the case that differential equations
in engineering have constant coefficients. This section presents a method to solve
ordinary, first-order, constant-coefficient, linear differential equations.

The following fact regarding ordinary, constant-coefficient, linear, homogeneous
differential equations of any order and worthy of repeated emphasis.

If you remember anything from differential equations, remember the following:
ordinary, linear, constant-coefficient, homogeneous differential equations of any or-
der have exponential solutions. To emphasize the fact, let us make it a theorem.

Theorem 2.1. Ordinary, linear, constant-coefficient, homogeneous differential equa-
tions with dependent variable x and independent variable t have solutions of the
form x = ceλ t where c and λ are constants.

Proof. Consider an nth-order, ordinary, linear, constant-coefficient, homogeneous
differential equation of the form

αn
dnx
dtn + αn−1

dn−1x
dtn−1 + · · ·+ α1

dx
dt

+ α0x = 0. (2.10)

To verify the form of the solution, substitute x = ceλ t into Equation (2.10):

αnλ nceλ t + αn−1λ n−1ceλ t + · · ·+ α1λ ceλ t + α0eλ t = 0.

Note that c = 0 results in x(t) = 0, which is a solution to Equation (2.10), but only
satisfies the initial value problem where x(0) = 0. For the case where c �= 0, because
ceλ t is never zero, it is legitimate to divide each side of the equation by it which
gives

αnλ n + αn−1λ n−1 + · · ·+ α1λ + α0 = 0 (2.11)
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which is an nth-order polynomial in λ . Because, by the fundamental theorem of
algebra, Equation (2.11) has n solutions, there may be, in fact, up to n different
solutions of the form x = eλ t . ��
Remark 2.1. The fact bears repeating: ordinary, linear, constant-coefficient, homo-
geneous differential equations of any order have exponential solutions.

Armed with this knowledge, we now consider solutions to ordinary, first-order,
constant-coefficient, linear differential equations. This provides the general solution
to Equation (2.9) (because it is already homogeneous) as well as the homogeneous
solution to Equations (2.5) and (2.8). It does nothing for us for Equation (2.7) be-
cause it is not linear.

Any ordinary, first-order, homogeneous, linear, constant-coefficient differential
equation can be written as

ẋ + αx = 0.

Note that there is no restriction that α may not be zero. Assuming a solution of the
form

x(t) = ceλ t

and substituting gives
λ = −α

or
x(t) = ce−αt . (2.12)

This is the general solution because, by Theorem D.1, the solution is unique for a
given initial condition, and the constant c in Equation (2.12) may be used to satisfy
any initial condition.

Example 2.5. Returning to Example 2.4, we have a general solution of the form

x(t) = ce−vmaxt/km . (2.13)

To determine c, we would have to know the initial blood concentration of the drug.
Assuming x(0) = x0, substituting t = 0 into Equation (2.13) gives c = x0, so the
solution to

kmẋ = −vmaxx

with x(0) = x0, is
x(t) = x0e−vmaxt/km .

Remark 2.2. It is worth memorizing that the solution to

ẋ + αx = 0,

where x(0) = x0 is

x(t) = x0e−αt . (2.14)
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2.3 Inhomogeneous Constant-Coefficient Linear First-Order
Ordinary Differential Equations

Now we consider the same case as in the previous section but where the equation
is inhomogeneous. Two solution methods are presented. The first is easier, but only
works when the inhomogeneous term is in a particular class of functions, and the
second is computationally a bit harder, but will always work. Both approaches re-
quire that a homogeneous solution be known, so the first order of business is to
determine the homogeneous solution in the form of Equation (2.12) (not in the form
of Equation (2.14)) as outlined in the previous section.

2.3.1 Undetermined Coefficients

The idea behind undetermined coefficients is relatively simple, as is illustrated by
the following example. The approach has two components. First homogeneous and
particular solutions are determined separately and then combined for the solution
(this is mathematically justified after the example). Second, a specific form of the
particular solution is assumed, which is then substituted into the differential equa-
tion which gives rise to equations for some undetermined coefficients in the partic-
ular solution.

Example 2.6. Solve
ẋ + 3x = sin2t (2.15)

where x(0) = 1. This is an ordinary, first-order, linear, constant-coefficient, inhomo-
geneous differential equation. From Equation (2.12), the homogeneous solution (the
solution to ẋ+ 3x = 0) is

xh(t) = ce−3t ,

where c is an arbitrary real number.
To determine the particular solution, consider the following logic. We seek a

function x(t) such that if we take its derivative and add it to three times itself we
obtain the function sin2t. A moment’s reflection results in the conclusion that the
only sorts of functions that can be combined with their derivative to obtain a sine
function are sines and cosines that are a function of the same argument. So, it is
logical to assume that the particular solution is of the form

xp(t) = c1 cos2t + c2 sin 2t,

where c1 and c2 are coefficients that are yet to be determined, that is, the undeter-
mined coefficients. The manner in which to compute the undetermined coefficients
should be obvious: substitute xp into the differential equation to see if equations for
c1 and c2 can be derived. So, because ẋp(t) = −2c1 sin2t +2c2 cos2t, and substitut-
ing gives
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ẋ + 3x = (−2c1 sin2t + 2c2 cos2t)+ 3(c1 cos2t + c2 sin2t)
= (2c2 + 3c1)cos2t +(−2c1 + 3c2) sin2t

= sin2t,

where the last sin 2t term is the inhomogeneous term from Equation (2.15). The
second and third lines of the above equation must be true for all time, therefore

3c1 + 2c2 = 0

−2c1 + 3c2 = 1,

which gives c1 = −2/13 and c2 = 3/13, so the particular solution is

xp(t) = − 2
13

cos2t +
3
13

sin2t.

The final task is to ensure that the initial condition is satisfied; that is, x(0) = 1. Note
the following facts.

1. The particular solution satisfies Equation (2.15) but does not satisfy the initial
condition.

2. The homogeneous solution does not satisfy the differential equation in Equa-
tion (2.15), but does have a coefficient that has not yet been specified which
perhaps may be used in some way to satisfy the initial condition.

Now observe that inasmuch as xh is a homogeneous solution, by definition when it
is substituted into Equation (2.15) the result will be zero. So, because the equation
is linear, it may be added to the particular solution and the sum will still satisfy the
differential equation. In particular, using x = xh + xp and substituting gives

ẋ + 3x = (ẋh + ẋp)+ 3(xh + xp)
= (ẋh + 3xh)+ (ẋp + 3xp)
= 0 +(ẋp + 3xp)
= sin2t.

Because x = xh +xp satisfies Equation (2.15) and also contains a coefficient that has
not yet been specified (the c in xh), evaluating x(0) and setting it equal to the initial
condition gives an equation for c. So,

x(0) = xh(0)+ xp(0)

= c− 2
13

.

The initial condition was x(0) = 1, thus c = 15/13 and the solution to the differential
equation is

x(t) =
15
13

e−3t − 2
13

cos2t +
3
13

sin2t.
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At first glance, the main idea behind the undetermined coefficients approach may
seem to be simply educated guesswork. However, the method is actually guaran-
teed to work if the right conditions are met. Insight into the method is obtained by
observing that certain functions have only a finite number of linearly independent
derivatives.2

Example 2.7. Returning to Example 2.6, we computed that if

x(t) = c1 cos2t + c2 sin2t,

then
ẋ(t)+ 3x(t) = (3c1 + 2c2)cos2t +(−2c1 + 3c2)sin 2t.

The critical observation is that we started with a function of the form

x(t) = c1 cos2t + c2 sin2t,

and after substituting it into the differential equation obtained a function of the form

x(t) = k1 cos2t + k2 sin2t.

Specifically, a linear combination of the function x(t) and its derivative, which re-
sults when it is substituted into the differential equation, is exactly the same form as
the original function albeit with different coefficients.

As the following theorem shows that if the inhomogeneous term g(t) is such
that it only has a finite number of linearly independent derivatives, then, assuming a
solution that is a linear combination of g(t) and its derivatives will always lead to a
set of equations that will give a solution for the undetermined coefficients. First we
need to define what it means for functions to be linearly independent.

Definition 2.1. A set of functions, { f1(t), . . . , fn(t)} is linearly dependent on an in-
terval I = (t0,t1) if there exists a set of constants, c1, . . . ,cn that are not all zero such
that

c1 f1(t)+ c2 f2(t)+ · · ·+ cn fn(t) = 0, t ∈ I. (2.16)

If the functions are not linearly dependent, then they are linearly independent.

A necessary condition for linear dependence is easy to construct. Differentiating
Equation (2.16) n−1 times gives the system of algebraic equations

2 By specifying “only a finite number” of linearly independent derivatives, we mean that the largest
set of derivatives of the function that is linearly independent does not contain an infinite number of
elements.
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c1 f1(t)+ c2 f2(t)+ · · ·+ cn fn(t) = 0

c1
d f1

dt
(t)+ c2

d f2

dt
(t)+ · · ·+ cn

d fn

dt
(t) = 0

c1
d2 f1

dt2 (t)+ c2
d2 f2

dt2 (t)+ · · ·+ cn
d2 fn

dt2 (t) = 0

... =
...

c1
dn−1 f1

dtn−1 (t)+ c2
dn−1 f2

dtn−1 (t)+ · · ·+ cn
dn−1 fn

dtn−1 (t) = 0

which may be written as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1(t) f2(t) · · · fn(t)
d f1
dt (t) d f2

dt (t) · · · d fn
dt (t)

d2 f1
dt2 (t) d2 f2

dt2 (t) · · · d2 fn
dt2 (t)

...
...

. . .
...

dn−1 f1
dtn−1 (t) dn−1 f2

dtn−1 (t) · · · dn−1 fn
dtn−1 (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c1

c2

c3
...

cn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

From basic linear algebra, in order for this to have a nonzero solution, the deter-
minant of the matrix must be zero. Hence, if the determinant is nonzero, then the
set of functions is not linearly dependent; that is, the set of functions is linearly
independent. This determinant is called the Wronskian.

Definition 2.2. Given n functions, f1(t), f2(t), . . . , fn(t) define the Wronskian, W as
the following determinant

W ( f1, f2, . . . , fn) (t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f1(t) f2(t) · · · fn(t)
d f1
dt (t) d f2

dt (t) · · · d fn
dt (t)

...
...

. . .
...

dn−1 f1
dtn−1 (t) dn−1 f2

dtn−1 (t) · · · dn−1 fn
dtn−1 (t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Be careful about the logic. If the Wronskian is nonzero, then the set of functions
is linearly independent. If the Wronskian is zero, it does not necessarily mean that
the set of functions is linearly dependent. As is emphasized in the first few examples,
the main utility of knowing that a set of functions is linearly independent is that it
justifies equating coefficients of the functions on either side of an equality.

Theorem 2.2. An nth-order, linear, ordinary, constant-coefficient, inhomogeneous
differential equation of the form

αn
dnx
dtn (t)+ αn−1

dn−1x
dtn−1 (t)+ · · ·+ α1

dx
dt

(t)+ α0x(t) = g(t), (2.17)
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where g(t) has only a finite number of linearly independent derivatives has a par-
ticular solution of the form

xp(t) = c0g(t)+ c1
dg
dt

(t)+ c2
d2g
dt2 (t)+ · · ·+ cm

dmg
dtm (t)

where m is the maximum number of linearly independent derivatives and there does
not exist a combination of coefficients, ci, where not all the ci are zero such that
xp(t) is a homogeneous solution to Equation (2.17).

Proof. Consider the vector space

V =
{

c0g(t)+ c1
dg
dt

(t)+ · · ·+ cm
dmg
dtm (t)

∣
∣
∣
∣
ci ∈ R, i ∈ {1, . . . ,m}

}

.

The functions g, dg/dt, . . ., dmg/dtm are the basis elements for V and the operator
d/dt is a linear operator on V . Consequently

D = α0 + α1
d
dt

+ · · ·+ αm
dm

dtm

is also a linear operator on V . The null space of D contains only the zero function be-
cause by assumption no element of V is a homogeneous solution to Equation (2.17).
This implies that the set of functions Dg,D(dg/dt), . . . ,D(dmg/dtm) also is a basis
for V . Hence,

Dxp(t) = c0 Dg(t)+ · · ·+ cm D
dmg
dtm (t) = g(t)

is satisfied by a unique set of coefficients. ��
In general, computing the derivatives of g(t) and at each time checking whether

the set is linearly independent is the general approach. However, the number of
functions that are commonly encountered in engineering that have this property
is somewhat limited and the functions along with what to assume for a particular
solution are listed in Table 2.1.

If the inhomogeneous term, g(t) is Then assume for xp(t)
ĉcosωt c1 cosωt + c2 sinωt
ĉsinωt c1 cosωt + c2 sinωt
ĉeλ t ceλ t

ĉntn + · · ·+ ĉ1t + ĉ0 cntn + · · ·+ c1t + c0
sum of above terms sum of corresponding terms

product of above terms product of corresponding terms

Table 2.1 Forms to assume for xp depending on the inhomogeneous term g(t)

Example 2.8. Determine the particular solution to the ordinary, first-order, linear,
constant-coefficient, inhomogeneous differential equation
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3ẋ+ 6x = 9et .

Because g(t) = et does not have any linearly independent derivatives, assume
xp(t) = c0et . Then ẋp(t) = c1et and substituting gives

3c1et + 6c1et = 9et =⇒ c1 = 1.

Hence
xp(t) = et .

Example 2.9. Determine the particular solution to

ẋ− x = cost + e−t. (2.18)

Computing the first few derivatives of g(t) gives

g(t) = cost + e−t

dg
dt

(t) = −sint − e−t

d2g
dt2 (t) = −cost + e−t

d3g
dt3 (t) = sin t − e−t.

Either by computing the Wronskian or by simply observing that the third derivative
is equal to −1 times the sum of g(t) and its first two derivatives, shows that the
particular solution is of the form

xp(t) = c0
(

cost + e−t)+ c1
(−sin t − e−t)+ c2

(−cost + e−t)

as long as there is no set of constants which make it a homogeneous solution. Be-
cause the homogeneous solution is xh(t) = et , no combination of coefficients makes
xp(t) a homogeneous solution.

Substituting xp into Equation (2.18) gives

[

c0
(−sin t − e−t)+ c1

(−cost + e−t)+ c2
(

sin t − e−t)]

− [c0
(

cost + e−t)+ c1
(−sin t − e−t)+ c2

(−cost + e−t)]= cost + e−t ,

where the first term in square braces is ẋp and the second term in square braces is
xp. As pointed out, the third term in the ẋp term can be expressed as a sum of the
other terms, so

cost + e−t =
[

c0
(−sin t − e−t)+ c1

(−cost + e−t)

+ c2
(−cost − e−t + sint + e−t + cost − e−t)]

− [c0
(

cost + e−t)+ c1
(−sin t − e−t)+ c2

(−cost + e−t)] .
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Equating the coefficients of g(t), ġ(t), and g̈(t) gives the system of equations

−c2 − c0 = 1

c0 − c2 − c1 = 0

c1 − c2 − c2 = 0,

which gives

c0 = −3
4
, c1 = −1

2
, c2 = −1

4
or

xp(t) = −3
4

(

cost + e−t)− 1
2

(−sin t − e−t)− 1
4

(−cost + e−t) .

2.3.2 Complication: When the Assumed Solution Contains a
Homogeneous Solution

By the proof of Theorem 2.2, the method is not guaranteed to work if the function
g(t) is not in the range of the operator D. This can happen if D is not full rank, which
will be the case if there exists a linear combination of g(t) and its derivatives that is
a homogeneous solution of Equation (2.17). If there is a homogeneous solution of
this form, then the question is whether g(t) is in the range of D, and if it is not, what
can be done about it? First, consider an example.

Example 2.10. Use the method of undetermined coefficients to determine the gen-
eral solution to

ẋ+ 3x = e−3t + sin2t.

Referring to Table 2.1, it is logical to assume

xp(t) = c1e−3t + c2 sin2t + c3 cos2t.

Differentiating and substituting gives

(−3c1e−3t + 2c2 cos2t −2c3 sin2t
)

+ 3
(

c1e−3t + c2 sin 2t + c3 cos2t
)

= e−3t + sin2t.

Equating coefficients of e−3t ,sin2t and cos2t, respectively, gives the following set
of equations

−3c1 + 3c1 = 1

−2c3 + 3c2 = 1

2c2 + 3c3 = 0.
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Note that the first equation is 0 = 1; that is, there does not exist any c1 that will
satisfy the equations, and hence the assumed form for the particular solution is in-
correct.

This problem is due to the fact that e−3t is, in addition to being a component of the
inhomogeneous term, a homogeneous solution to the differential equation. When it
is substituted into the differential equation it must evaluate to zero, by definition.

To determine a method to deal with this case, first consider

ẋ + αx = e−αt . (2.19)

Table 2.1 would indicate to choose xp(t) = ce−αt ; however, this is also the homoge-
neous solution. Using a technique that actually foreshadows the method of variation
of parameters presented subsequently, assume a particular solution of the form

xp(t) = μ(t)e−αt ,

substitute into Equation (2.19) and use the result to (one hopes) determine μ(t).3

Differentiating xp(t) and substituting gives

(

μ̇(t)e−αt −αμ(t)e−αt)+ αμ(t)e−αt = e−αt ,

which simplifies to
μ̇(t) = 1

or
μ(t) = t + c.

Hence,
xp(t) = (t + c)e−αt .

Note that inasmuch as the term ce−αt is actually a homogeneous solution, it is not
necessary to add it to the particular solution at this stage in the process of determin-
ing the solution as it will be added to it subsequently anyway. So the simplest form
for the particular solution is

xp(t) = te−αt .

Hence, when the assumed form of the particular solution is also the homogeneous
solution to the differential equation, the approach is to multiply the assumed form
by the independent variable.

Example 2.11. Continuing from Example 2.10, instead of assuming

xp(t) = c1e−3t + c2 sin2t + c3 cos2t

3 Assuming a solution of the form of an unknown function times a homogeneous solution is some-
what common and should make some sense that it perhaps might work. Given the relationship be-
tween a homogeneous solution and the differential equation, it is definitely plausible that it could
be used in combination with other functions to generate a different type of solution.
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assume
xp(t) = c1te−3t + c2 sin 2t + c3 cos2t.

Differentiating and substituting gives

(

c1e−3t −3c1te−3t + 2c2 cos2t −2c3 sin2t
)

+ 3
(

c1te−3t + c2 sin2t + c3 cos2t
)

= e−3t + sin2t.

Collecting terms now gives

c1 = 1

−2c3 + 3c2 = 1

2c2 + 3c3 = 0

which has the solution

c1 = 1, c2 =
3
13

, c3 = − 2
13

,

and hence

xp(t) = te−3t +
3

13
sin2t − 2

13
cos2t,

and the general solution is

x(t) = xh(t)+ xp(t) = ce−3t + te−3t +
3

13
sin2t − 2

13
cos2t.

The next example illustrates that it may be the case that the homogeneous solu-
tion is “hidden” in some linear combination of g(t) and some of its derivatives.

Example 2.12. Consider
ẋ + x = te−t . (2.20)

Computing the first two derivatives of g(t) gives

dg
dt

= e−t − te−t,
d2g
dt2 = −2e−t + te−t.

By inspection, we may think that the second derivative is possibly a linear combi-
nation of the first two. In fact it is because

−1g(t)−2
dg
dt

(t) = −te−t −2e−t + 2te−t = −2e−t + te−t.

The fact that the set {g,dg/dt} is linearly independent is verified by the Wronskian
∣
∣
∣
∣

te−t e−t − te−t

e−t − te−t −2e−t + te−t

∣
∣
∣
∣
= −e−2t �= 0.

Assuming a solution of the form
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xp(t) = c0te−t + c1
(

e−t − te−t)

gives
ẋp(t) = c0

(

e−t − te−t)+ c1
(−2e−t + te−t) .

Substituting into Equation (2.20) gives
[

c0
(

e−t − te−t)+ c1
(−2e−t + te−t)]+

[

c0te−t + c1
(

e−t − te−t)]= (c0 − c1)e−t ,

and hence there is no combination of c0 and c1 that will allow xp to satisfy the dif-
ferential equation because we want this to equal g(t) = te−t . If, instead, the assumed
form of the particular solution is multiplied by t,

xp(t) = t
(

c0te−t + c1
(

e−t − te−t)) ,

then

ẋp(t) =
(

c0te−t + c1
(

e−t − te−t))+ t
(

c0
(

e−t − te−t)+ c1
(−2e−t + te−t)) .

Substituting into the differential equation and simplifying gives

ẋp + xp =
(

c0te−t + c1
(

e−t − te−t))

+ t
(

c0
(

e−t − te−t)+ c1
(−2e−t + te−t))

+ t
(

c0te−t + c1
(

e−t − te−t)) ,

which, after a tedious bit of work, simplifies to

ẋp + xp = 2(c0 − c1) te−t + c1e−t .

Equating coefficients with
g(t) = te−t

gives

c0 =
1
2
, c1 = 0.

Hence

xp(t) =
1
2

t2e−t .

One way to think of multiplying by t if the inhomogeneous term is a homoge-
neous solution is that because of the way the product rule for differentiation works, it
is “plugging the hole” in the assumed form of the particular solution caused by the
homogeneous solution being part of it. It may arise that the inhomogeneous term
contains some terms that combine to be a homogeneous solution and some terms
that do not. In such a case it would be incorrect to multiply the terms that are not
part of the homogeneous solution by t. In such a case there are two approaches.

• It will always work to assume
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xp(t) =
(

c1g(t)+ c2
dg
dt

(t)+ · · ·cm
dmg
dt

(t)
)

+ t

(

d1g(t)+ d2
dg
dt

(t)+ · · ·dm
dmg
dt

(t)
)

,

even if there is not a homogeneous solution in the first term. In such a case,
all the di coefficients will be zero. If there are some terms that combine to be
homogeneous solutions and some that do not, then some of the ci and some of
the di coefficients will be not zero.

• Although the above approach is nice in that it will always work, it is more work
to compute all the coefficients. A smarter approach is to try to identify which
terms are combining to make a homogeneous solution, and multiply only those
by t.

In general, other than being more work, it is not wrong to assume more terms in
the particular solution. It will just work out that the coefficients must be zero. If,
after substituting an assumed form for the particular solution into the differential
equation, it is not possible to determine one or more of the coefficients, it is not
possible to solve for them, it generally is due to the fact that they are combining as a
homogeneous solution. Clearly, it is advisable to always compute the homogeneous
solution first, so that if the homogeneous solution appears explicitly in the assumed
form for the particular solution they can be multiplied by the independent variable
right away.

The following example illustrates both approaches.

Example 2.13. Determine the general solution to

ẋ+ 3x = e−3t + sin2t.

According to Table 2.1, we should assume

xp(t) = c1e−3t + c2 sin2t + c3 cos2t.

It should be apparent that this will not work because the exponential is also a homo-
geneous solution. So, one approach would be to assume

xp(t) =
(

c1e−3t + c2 sin2t + c3 cos2t
)

+ t
(

d1e−3t + d2 sin2t + d3 cos2t
)

.

In this case, it will work out that d2 = d3 = 0 and c1 will be arbitrary. Because it
is a lot of work to deal with six equations and six coefficients, a more insightful
assumption for the particular solution would be

xp(t) = c1te−3t + c2 sin 2t + c3 cos2t,

where only the problematic term is multiplied by t.
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2.3.3 Variation of Parameters

This method will always work for linear first-order ordinary differential equations.
As long as one is willing to evaluate the integrals required, it will yield the solution.

The idea behind the variation of parameters method is that if a homogeneous
solution for a differential equation is known, denoted by xh, then assume a solution
of the form x(t) = μ(t)xh(t). Substituting the assumed form of the solution into
the differential equation will yield an equation for μ that, if it can be solved, will
give the solution. Unlike the method for undetermined coefficients, this method will
work for a variable-coefficient equation as well, but this section limits the coverage
to the constant-coefficient case. Also unlike the case for undetermined coefficients,
no special form of the inhomogeneous term is necessary.

Consider the ordinary, first-order, linear, constant-coefficient, inhomogeneous
differential equation

ẋ + αx = g(t),

where x(t0) = x0. From before, xh(t) = ce−αt . Assume x(t) = cμ(t)e−αt . Substitut-
ing into the differential equation gives

cμ̇(t)e−αt − cμ(t)αe−αt + αcμ(t)e−αt = cμ̇(t)e−αt = g(t).

Hence

μ̇(t) =
1
c

eαtg(t)

which can be directly integrated. So

μ(t)− μ(t0) =
∫ t

t0

1
c

eαsg(s)ds

or

μ(t) =
∫ t

t0

1
c

eαsg(s)ds+ μ(t0),

where μ(t0) is arbitrary. So

x(t) = μ(t)ce−αt

= ce−αt
∫ t

t0

1
c

eαsg(s)ds+ μ(t0)ce−αt

= e−αt
∫ t

t0
eαsg(s)ds+ c1e−αt ,

where c1 = μ(t0)c. Evaluating x(t0) gives

x(t0) = e−αt
∫ t0

t0
eαsg(s)ds+ c1e−αt0 = c1e−αt0 = x0.

Thus c1 = x0eαt0 and
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x(t) = e−αt
∫ t

t0
eαsg(s)ds+ x0eαt0e−αt . (2.21)

Remark 2.3. If the initial condition were not specified and a general solution were
desired, the integral in the above method would become an indefinite integral and a
constant of integration would be necessary. It is left as an exercise to prove that the
general solution to the ordinary, first-order, linear, constant-coefficient, inhomoge-
neous differential equation

ẋ + αx = g(t) (2.22)

is

x(t) = e−αt
∫

eαtg(t)dt + ce−αt. (2.23)

2.4 Variable-Coefficient Linear First-Order Ordinary
Differential Equations: Variation of Parameters

The same procedure as above may be used in the case of ordinary, first-order, linear,
variable-coefficient, differential equations (regardless of whether it is homogeneous
or inhomogeneous). Consider the initial value problem

ẋ+ h(t)x = g(t) (2.24)

x(t0) = x0. (2.25)

The procedure is the same as before: find a homogeneous solution, xh(t), assume the
solution of the form x(t) = μ(t)xh(t), substitute to determine an equation for μ(t),
and if possible, solve for μ(t). The first task is to determine the homogeneous solu-
tion, which is not simply xh(t) = ceλ t in the case of a variable-coefficient equation.

First consider the corresponding homogeneous equation

dxh

dt
(t)+ h(t)xh(t) = 0.

Rearranging gives
1

xh(t)
dxh

dt
(t) = −h(t).

Integrating each side with respect to t gives

∫
1

xh(t)
dxh

dt
(t)dt =

∫
d
dt

(ln(xh(t)))dt = ln(xh(t))+ c = −
∫

h(t)dt.

Hence
xh(t) = ke−

∫

h(t)dt , (2.26)

where k = −e−c.
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Remark 2.4. This procedure to find the homogeneous solution is a special case of
the method for separable equations considered subsequently in Section 2.5.1.

Now armed with the homogeneous solution, assume a solution of the form

x(t) = μ(t)xh(t) = μ(t)ke−
∫

h(t)dt .

Substituting gives

(μ̇(t)xh + μ(t)ẋh)+ h(t)(μ(t)xh) =
(

μ̇(t)ke−
∫

h(t)dt − μ(t)h(t)ke−
∫

h(t)dt
)

+ h(t)
(

μ(t)ke−
∫

h(t)dt
)

= μ̇(t)ke−
∫

h(t)dt

= g(t).

Hence

μ̇(t) =
1
k

g(t)e
∫

h(t)dt =⇒ μ(t) =
∫ (

1
k

g(t)e
∫

h(t)dt
)

dt + c.

and

x(t) =
(∫ (

1
k

g(t)e
∫

h(t)dt
)

dt + c

)(

ke−
∫

h(t)dt
)

or

x(t) =
(∫ (

g(t)e
∫

h(t)dt
)

dt + c

)(

e−
∫

h(t)dt
)

. (2.27)

Remark 2.5. Even though the integrals in Equation (2.27) are indefinite, when you
are evaluating them you should not include the constants of integration because they
were included in the derivation of the solution.

Remark 2.6. Occasionally it is convenient to combine arbitrary constants but not
change the name of the variable, as was done in Equation (2.27). The constant k
was distributed across both terms in the left side of the equation, so the constant
term c is now actually ck; however, because both c and k are arbitrary, it is most
convenient just to keep the variable name as c.

At this point it is worth observing that Equation (2.27) is the solution to Equa-
tion (2.24). The only possible complication is that sometimes the integrals may not
have a closed-form solution, or may simply be difficult to evaluate.

Example 2.14. Determine the general solution to

ẋ+
3
t

x = sin t.

This equation is of the form of Equation (2.24), so the general solution is given
by Equation (2.27) where h(t) = 3/t and g(t) = sin t. Substituting into the solution
gives



2.5 Ordinary First-Order Nonlinear Differential Equations 77

x(t) =
(∫ (

g(t)e
∫

h(t)dt
)

dt + c

)(

e−
∫

h(t)dt
)

=
(∫ (

(sin t)e
∫ 3

t dt
)

dt + c

)(

e−
∫ 3

t dt
)

=
(∫ (

(sin t)e3lnt
)

dt + c

)(

e−3 lnt
)

=
(∫

t3 sin tdt + c

)
1
t3

=
1
t3

[

3
(

t2 −2
)

sin t − t
(

t2 −6
)

cost + c
]

.

For most people, completing the last step without an integral table or computer
program would probably be quite difficult.

2.5 Ordinary First-Order Nonlinear Differential Equations

Unfortunately, it is generally the case that nonlinear differential equations are dif-
ficult to solve and often do not even have solutions that can be expressed in terms
of elementary functions. In the case of first-order equations, however, there is one
case in which a solution may be obtained, and that case is the so-called exact equa-
tion. Before presenting the theory and method of exact equations, the next section
presents a simplified special case of exact equations, namely, separable equations.

2.5.1 Separable Equations

A notationally simplistic, yet nonetheless useful, description of the idea behind sep-
arable equations is that if it is possible to put all the terms that are a function of the
dependent variable on one side of the equation and all the terms that are a function of
the independent variable on the other side of the equation the equation is separable.
In such a case, both sides may be directly integrated.

Example 2.15. Find the general solution to

(x + 1)
(

t2 + 5t + 3
)

= xẋ.

This may be rearranged as

t2 + 5t + 3 =
x

x + 1
dx
dt

and each side may be integrated with respect to t
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∫

t2 + 5t + 3dt =
∫

x(t)
x(t)+ 1

dx
dt

(t)dt.

Recall from calculus the substitution rule for integration, namely,

∫ t

t0
f (x(s))

dx
ds

(s)ds =
∫ x(t)

x(t0)
f (x)dx.

Using this fact,

∫

t2 + 5t + 3dt =
∫

x(t)
x(t)+ 1

dx(t)
dt

dt =
∫

x
x + 1

dx,

so
t3

3
+

5t2

2
+ 3t = x(t)− ln(x(t)+ 1)+ c.

Note that one problem is that the solution x(t) may be, as is the case in this example,
only determined as an implicit function of the dependent variable.

The preceding example was rather precise and in practice the approach is a bit
more informal. In words, the simplest way to approach the problem is to notationally
treat ẋ as dx/dt and try to manipulate the equation so that all the x terms are on one
side of the equation along with the dx term and all the t terms are on the other
side with the dt term. This casual use of notational convenience works correctly in
this case, however, it is important to recognize that what is actually going on is an
integration by substitution on the x side of the equation. Another example illustrates
this point and completes the treatment of separable equations. It also illustrates the
slight variation in the approach when the problem is an initial value problem rather
than finding a general solution, the only difference being that data are now available
to make the integrals definite integrals.

Example 2.16. Determine the solution to

ẋ + sin(t)x = 0,

where x(1) = 2. Note this can perhaps be more easily solved by directly using Equa-
tion (2.27) with g(t) = 0; however, just for the fun of it, this example solves it by
recognizing it is separable.

A bit of manipulation gives

dx
dt

+ sin(t)x = 0 ⇐⇒ dx
x

= −sin(t)dt,

so
∫ x(t)

x(t0)

1
x

dx = −
∫ t

t0
sin(s)ds

or ∫ x

2
(t)

1
x

dx =
∫ t

1
sin(t)dt ⇐⇒ lnx− ln2 = cost − cos1,
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which gives, upon taking the exponential of each side

x(t) = 2ecost−cos1.

2.5.2 Exact Equations

Although actually using it is another matter, the idea behind exact equations is ac-
tually quite simple. Consider a function ψ(x(t),t) (as usual, t is the independent
variable and x is the dependent variable) and consider the level sets of ψ ; namely,
ψ(x(t),t) = c. Differentiating ψ constrained to the level set with respect to t gives

dψ
dt

=
∂ψ
∂x

dx
dt

+
∂ψ
∂ t

= 0.

Note that this is of the form

f (x,t)ẋ + g(x,t) = 0, (2.28)

where f and g are functions of both the independent variable t and the depen-
dent variable x. If a differential equation just so happens to be of the form of
Equation (2.28) such that there exists a ψ(x(t),t) such that ∂ψ/∂x = f (x,t) and
∂ψ/∂ t = g(x,t), then solving Equation (2.28) is simply a matter of determining ψ
and setting ψ(x,t) = c for the general solution. The correct value of c is determined
from the initial condition in the case of the initial value problem.

Because the order of differentiating the partial derivatives does not matter, that
is,

∂ 2ψ
∂x∂ t

=
∂ 2ψ
∂ t∂x

and because
∂ψ
∂x

= f (x,t),
∂ψ
∂ t

= g(x,t)

the following are equivalent

∂ 2ψ
∂x∂ t

=
∂ 2ψ
∂ t∂x

⇐⇒ ∂ f
∂ t

=
∂g
∂x

.

In other words, this proves the following theorem.

Theorem 2.3. For the ordinary, first-order differential equation

f (x,t)ẋ + g(x,t) = 0, (2.29)

if
∂ f
∂ t

=
∂g
∂x
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then there exists a function ψ(x(t),t) such that

∂ψ
∂x

= f (x,t) and
∂ψ
∂ t

= g(x,t).

The general solution to Equation (2.29) is given implicitly by

ψ(x(t),t) = c.

So far, so good, but although the theory is nice and tidy, there are still two prac-
tical problems. First, the solution is only given implicitly by ψ . Second, we still
need to determine a way to find ψ . The first problem is inherent in the method and
is unavoidable. The second problem is addressed subsequently. First, we have an
example.

Example 2.17. Consider
2xẋ = −2t −1.

In this case f (x,t) = 2x and g(x,t) = 2t + 1.

∂ f
∂ t

= 0,
∂g
∂x

= 0,

the equation is exact.4 Note that

ψ(x,t) = x2 + t2 + t

is such that
ψ̇ = 0 ⇐⇒ 2xẋ+ 2t + 1 = 0,

so
x2 + t2 + t = c

gives the solution x(t) implicitly.

Determining ψ(x,t) is actually rather straightforward. Inasmuch as

∂ψ
∂x

= f (x,t)

then
ψ(x,t) =

∫

f (x,t)dx + h(t),

and

g(x,t) =
∂ψ
∂ t

=
∂
∂ t

(∫

f (x,t)dx + h(t)
)

=
∂
∂ t

(∫

f (x,t)dx

)

+ ḣ(t).

Thus,

4 Observe that it is also separable, but that is not the fact we exploit to solve it.
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h(t) =
∫ (

g(x,t)− ∂
∂ t

(∫

f (x,t)dx

))

dt

and the general solution is given by

ψ(x,t) =
∫

f (x,t)dx +
∫ (

g(x,t)− ∂
∂ t

(∫

f (x,t)dx

))

dt = c.

2.5.3 Integrating Factors

From the preceding section it may seem that whether a first-order differential equa-
tion is exact is simply a matter of luck. In fact, it is possible to convert any first-order
equation of the form

f (x,t)ẋ + g(x,t) = 0 (2.30)

that has a solution of the form
ψ(x,t) = c

into one that is exact. Unfortunately, doing this generally involves solving a partial
differential equation. To see this, if there exists a solution to Equation (2.30) of the
form ψ(x,t) = c, then, as before

dψ
dt

= 0 =⇒ ∂ψ
∂x

ẋ +
∂ψ
∂ t

= 0. (2.31)

In Section 2.5.2 we simply equated ∂ψ/∂x with f and ∂ψ/∂ t with g, and used
the fact that mixed partials were equal as the basis for Theorem 2.3. But this is
too restrictive because we could multiply Equation (2.30) by some function μ(x,t),
and as long as it is not zero and is defined, then the solution x(t) is the same. To
determine such a function, μ(x,t), solve both Equation (2.30) and the equation on
the right in Equation (2.31) for ẋ, because x is what ultimately interests us. Doing
so and equating them gives

g
f

=
∂ψ
∂ t
∂ψ
∂x

or
1

g(x,t)
∂ψ
∂ t

(x,t) =
1

f (x,t)
∂ψ
∂x

(x,t).

If we set

μ(x,t) =
1

g(x,t)
∂ψ
∂ t

(x,t) =
1

f (x,t)
∂ψ
∂x

(x,t),

then
∂ψ
∂x

(x,t) = μ(x,t) f (x,t),
∂ψ
∂ t

(x,t) = μ(x,t)g(x,t),

which is exactly what is needed for
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μ(x,t) f (x,t)ẋ(t)+ μ(x,t)g(x,t) = 0 (2.32)

to be exact. So, even if Equation (2.30) is not exact, Equation (2.32) will be as long
as we can find μ(x,t).

These equations were based on computations using the solution ψ(x,t), which is
not known. To find an equation for μ(x,t), expand the equation it must satisfy from
Theorem 2.3, which is

∂ (μ f )
∂ t

− ∂ (μg)
∂x

= 0,

which, expanding using the product rule gives the partial differential equation for μ

f (x,t)
∂ μ
∂ t

(x,t)+ μ(x,t)
∂ f
∂ t

(x,t)−g(x,t)
∂ μ
∂x

(x,t)− μ(x,t)
∂g
∂x

(x,t) = 0. (2.33)

This, unfortunately, is not easy to solve, except in certain special cases.
The following example illustrates the fact that an integrating factor works to

make an equation that is not exact into one that is exact. It does not show, however,
how to find the integrating factor.

Example 2.18. Consider
(

1 + sint
x + 1

)
dx
dt

+
xcost
x + 1

= 0. (2.34)

This is not exact because

∂ f
∂ t

=
cost
x + 1

�= ∂g
∂x

=
cost

(x + 1)2 .

However, if we multiply Equation (2.34) by μ = x + 1, then

(1 + sint)
dx
dt

+ xcost = 0

is exact because
∂
∂ t

(1 + sint) = cost

and
∂
∂x

(xcost) = cost.

Doing the necessary computations to find the solution gives

xsin t + x = c.

Because finding the integrating factor involves solving a partial differential equa-
tion, most approaches depend on special cases or iterative guesswork. A good review
of the special cases, such as when the integrating factor only depends on x or t but
not both, and how to exploit them are given in [44].
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2.6 Summary

Ordinary first-order differential equations are solved using the following methods.

• If the equation is linear, constant-coefficient, and homogeneous, then assuming a
solution of the form x(t) = ceλ t is probably the easiest method.

• If the equation is linear, variable-coefficient, and homogeneous, then using Equa-
tion (2.26) is probably the easiest method.

• If the equation is linear, constant-coefficient, and inhomogeneous with an inho-
mogeneous term of the form given in Table 2.1, then the method of undetermined
coefficients outlined in Section 2.3.1 is probably the easiest.

• If the equation is linear, constant-coefficient, and inhomogeneous the method of
variation of parameters with a solution given by Equation (2.23) will work. If the
inhomogeneous term is not given in Table 2.1 then this is probably the easiest
method.

• If the equation is linear, variable-coefficient, and inhomogeneous the method of
variation of parameters with a solution given by Equation (2.27) will work.

• If the equation is nonlinear, first check if it is separable; if it is not, then check if
it is exact. If it is not exact, attempt to determine an integrating factor.

2.7 Exercises

2.1. Based on Theorem D.1, which of the following differential equations are guar-
anteed to have solutions that exist and are unique?

1. ẋ = x where x(0) = 0.
2. ẋ2 = x where x(0) = 0.

3. ẋ =

{

−1, x ≥ 0,

1, x < 0,

where x(0) = 0.

4. ẋ =

{

−1, t ≥ 5,

1, t < 5,

where x(0) = 0.
5. ẋ = x2 where x(0) = 0.
6. ẋ = x1/2 where x(0) = 0.
7. ẋ = −|x| where x(0) = 0.
8. ẋ =

√
x2 + 9 where x(0) = 0.

2.2. Determine the solution to ẋ = αx where x(0) = 1. On the same graph, sketch
the solution for α = −1, α = 0, and α = 1.

2.3. In dead organic matter, the C14 isotope decays at a rate proportional to the
amount of it that is present. Furthermore, it takes approximately 5600 years for half
of the original amount present to decay.
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1. If x(0) denotes the amount present when the organism is alive, determine a dif-
ferential equation that describes the amount of the C14 isotope present if x(t)
represents the amount present after time t elapses after the organism dies.

2. In contrast to C14, the C12 isotope does not decay and the ratio of C12 to C14 is
constant while an organism is alive. Hence, one should be able to compare the
ratio of the two isotopes in a dead specimen to that of a live specimen. Determine
how many years have elapsed if the ratio of the amount of C14 to C12 is 30% of
the original value.

Do not look up the formula for half-life and exponential decay problems. The point
is to derive the equation in order to relate it to the problem, and then to solve it.

2.4. Consider the first-order, linear, variable-coefficient, homogeneous ordinary dif-
ferential equation

ẋ+ tx = 0.

Does assuming a solution of the form x(t) = eλ t where λ is a constant work? Why
or why not?

2.5. Consider the first-order, nonlinear, ordinary differential equation ẋ + x2 = 0.
Does assuming a solution of the form x(t) = eλ t work? Why or why not?

2.6. As part of a fabrication process, you encounter the following scenario. A vat
contains 100 liters of water. In error someone pours 100 grams of a chemical into
the vat instead of the correct amount, which is 50 grams. To correct this condition,
a stopper is removed from the bottom of the vat allowing 1 liter of the mixture to
flow out each minute. At the same time, 1 liter of fresh water per minute is pumped
into the vat and the mixture is kept uniform by constant stirring.

1. Show that if x(t) represents the number of grams of chemical in the solution at
time t, the equation governing x is

dx
dt

= − x
100

,

where x(0) = 100. How long will it take for the mixture to contain the desired
amount of chemical?

2. Determine the equation governing x(t) if the amount of water in the vat is W
liters, the rate at which the mixture flows out is F liters/minute (and the same
amount of fresh water is added), and the amount of the chemical initially added
is C grams.

2.7. Determine the general solution to Equation (2.5).

1. Determine the temperature of a body for which R = 1 and C = 10 if it is initially
at 100◦ and is plunged into a medium held at a constant temperature of Ta = 20◦.

2. If two hot objects with equal masses are dropped into the ocean, which will cool
faster, the object that has the shape of a sphere or the object that has the shape of
a cube? Justify your answer by referring to Equation (2.4).
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2.8. The rate by which people are infected by the zombie plague is proportional to
the number of people already infected. Let x denote the number of people infected.5

1. What is the differential equation describing the number of people infected? De-
note the proportionality constant by k. What are the units for k in the differential
equation? What is the general solution to this equation? What are the units for k
in the solution?

2. If at time t = 0 there are 100,000 people infected and at time t = 1 (the next day)
there are 150,000 people infected, what is the numerical value of k?

3. For the value of k determined in the previous part, if at time t = 0, one person
is infected, how long will it take for the zombie plague to infect every person on
earth?

2.9. Assume that the rate of loss of a volume of a substance, such as dry ice or a
moth ball, due to evaporation is proportional to its surface area.

1. If the substance is in the shape of a sphere, determine the differential equation
describing the radius of the ball and solve it to find the radius as a function of
time.

2. If the substance is in the shape of a cube, determine the differential equation
describing the length of an edge of the cube and solve it to find the length of the
edge as a function of time.

3. Use the answers from the previous two parts to determine which shape would
be better for a given quantity of material if it is desired for it to take as long as
possible to evaporate.

2.10. Use undetermined coefficients to determine the general solution to the follow-
ing first-order ordinary differential equations.

1. ẋ+ x = cost.
2. ẋ+ x = cos2t.
3. ẋ+ x = cost + 2sint.
4. ẋ+ 5x = cost + 2sint.
5. 5ẋ+ x = cost + 2sint.
6. ẋ+ 3x = t2 + 2t + 1.
7. ẋ+ 3x = t2 + 2t.
8. ẋ+ 3x = 3t2.
9. ẋ+ 3x = 3t2 + cos2t.

10. ẋ+ 2x = e−3t .
11. ẋ+ 2x = e−2t .
12. ẋ+ 2x = 2e−2t .
13. ẋ+ 2x = 2e−2t + cost.
14. ẋ+ 2x = 2e−2t + cost + t3.

2.11. Show that the set of functions
{

t0,t1,t2,t3,t4, . . . ,tn
}

is linearly independent.

5 In this problem, let x be a real number and do not restrict it to be an integer.
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2.12. From Example 2.13, substitute all three particular solutions into the differen-
tial equation to verify the conclusions from that example.

2.13. Determine the general solution to

ẋ+ x/t = cos5t.

2.14. Use two different methods to determine the general solution to ẋ + x = sin5t.
Also, find the solution if x(0) = 0.

2.15. Use two different methods to determine the general solution to

ẋ + 5x = e−5t .

Also, find the solution if x(0) = 1 and plot the solution versus time for a length of
time that is appropriate to demonstrate the qualitative nature of the solution.

2.16. Determine the solution to

tẋ+ 2x = t2 − t + 1

where x(1) = 1/2 and t > 0.

2.17. Prove that Equation (2.23) is the solution to Equation (2.22).

2.18. Determine the general solution to

ẋ+ t2x = 0

using two different methods.

2.19. You are in desperate need to determine (as in make up), by hand, 100 differ-
ent exact first-order differential equations in less than one hour. What would be a
good way to do that? Determine 10 different exact first-order ordinary differential
equations using your method.

2.20. Determine the general solution to

(2x + 1) ẋ = 3t2.

If necessary, you may express the solution as an implicit function.

2.21. Use two different methods to determine the general solution to

3t2ẋ + 6tx + 5 = 0.

2.22. Prove that all separable first-order ordinary differential equations are exact. In
other words, show that separable first-order differential equations are a special case
of exact first-order ordinary differential equations.
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2.23. A special type of nonlinear first-order ordinary differential equation that can
be converted into one that is separable is called a homogeneous equation.6 A func-
tion f (x,y) is homogeneous of order n if it can be written f (x,y) = xng(u) where
u = y/x. A first-order ordinary differential equation is homogeneous if it can be
written as

P(x,y)+ Q(x,y)
dx
dy

= 0,

where P(x,y) and Q(x,y) are homogeneous of the same order and hence may be
written P(x,y) = xn p(u) and Q(x,y) = xnq(u). Because y = ux,

dy
dx

= x
du
dx

+ u

then the differential equation is of the form

xn p(u)+ xnq(u)
(

x
du
dx

+ u

)

= 0

which is separable, can be solved for u as an implicit function of x, and then u = y/x
may be substituted to obtain the answer. Alternatively, the substitution u = x/y may
be used and the variable x eliminated. Which is better for any particular problem
requires some experience or trial and error.

Verify that each of the following equations is homogeneous, and use this fact to
solve them. Some of the integrals may be tricky, so resorting to a table or symbolic
mathematics computer package may be necessary.

1. Show that y3 + 2x2y = c implicitly defines the general solution y(x) to 2xy +
(

x2 + y2
)

dy/dx = 0 by using the substitution u = x/y and eliminating x.
2. Show that tan−1 (y/x)− 1/2ln

(

x2 + y2
)

= c is the general solution to (x + y)+
(y− x)dy/dx = 0 by using the substitution u = y/x.

2.24. An interesting class of nonlinear first-order ordinary differential equations
arises in so-called trajectory problems. Given a family of curves, the problem is
to find an orthogonal family of curves that are orthogonal at every point to the fam-
ily of curves. If y f (x) is the given family of curves, then the orthogonal family will
have a slope of −1/y′f (x) at any point

(

x,y f (x)
)

. If we denote the orthogonal family
by yo(x), then the orthogonality condition requires

dy f

dx
(x)

dyo

dx
(x) = −1.

For example, consider the family of curves given byy f (x) = cx5, which is illustrated
in Figure 2.3 for various values of c. The slope is given by dy f /dx(x) = 5cx4. Hence,
for a given point (x,y), the value of c is c = y/x5 so the slope at a given point (x,y)
is given by dy f /dx = 5y/x. So, finally, a curve orthogonal to y f (x) at the point (x,y)
satisfies

6 This is a homogeneous equation, not to be confused with a homogeneous solution.
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dyo

dx
(x) = −1

5
x
y
.

Determine the general solution to this equation. Plot it for various values of the
parameter that appears in the general solution and also plot y f (x) for various values
of c. Are the curves orthogonal at every point? Hint: The orthogonal curves should
be ellipses.

1. Repeat this problem for y f (x) = cx4.
2. Repeat this problem for y f (x) = cx.

-2
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-0.5

0

0.5

1
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Fig. 2.3 Family of curves for Exercise 2.24.

2.25. For each of the following first-order, ordinary differential equations, indicate

• If the equation is linear
• If the equation is not linear but it is separable
• If the equation is neither linear nor separable but it is exact
• If the equation is neither linear, separable nor exact.

1. ẋ+ 5tx = cosht.
2. ẋ

√
x3 cost + 35t2 = t.

3. ẋ
(

2t2x + t
)

+ 2tx2 = −x.
4. ẋ+ x = cosht.
5. ẋ

(

1− x2
)

= t.
6.
(

2tx2 + 2x
)

= −ẋ
(

2t2x + 2t
)

.
7.
(

2tx2 + 2x
)

= ẋ
(

2t2x + 2t
)

.
8. t2x3 + t

(

1 + x2
)

ẋ = 0.
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9. ẋ(cost + t)− xsint + x = 0.
10. ẋ+(cost)x = 0.

2.26. Determine the general solution to each of the differential equations in Exer-
cise 2.25 using the first method from the list that is applicable. If it is not linear and
not exact, then determine an approximate numerical solution. You may choose your
own initial conditions in such a case. Be careful not to pick an initial condition that
is a singularity, for example, using x = 0 or t = 0 if that causes a term in the equation
to be undefined.

2.27. Show that

(

2t2 + 3xsin2 t
) dx

dt
+ 2x(t + xsint cost) = 0

is not exact, but when multiplied by μ(x,t)= x, it is exact. Find the solution. Leaving
the solution in implicit form is fine.

2.28. Show that

(

2x2t2 + 3x3 sin2 t
) dx

dt
+
(

2x3t + 2x4 sin t cost
)

= 0

is not exact, but when multiplied by μ(x,t) = 1/x, it is exact. Find the solution.
Leaving the solution in implicit form is fine.

2.29. One special case where it is possible to determine an integrating factor is when
it only depends on t. In such a case, Equation (2.33) reduces to

f (x,t)
dμ
dt

(t)+ μ(t)
∂ f
∂ t

(x,t)− μ(t)
∂g
∂x

(x,t) = 0

which gives

1
μ(t)

dμ
dt

(t) =
∂g
∂x (x,t)− ∂ f

∂ t (x,t)
f (x,t)

. (2.35)

1. Show that if we additionally have that the right-hand side of Equation (2.35) is
only a function of t, then μ(t) is given by

μ(t) = exp

(
∫ ∂g

∂x (x)− ∂ f
∂ t (x)

f (x)
dx

)

.

2. Show that (et − sinx)+ cosx(dx/dt) = 0 is not exact, but that the above method
to determine an integrating factor applies. Use that to find the solution.

2.30. For each of the first-order differential equations listed in Problem 1.8, deter-
mine which, if any, of the following solution methods apply based upon what has
been covered in this book so far.

1. Assuming exponential solutions
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2. Undetermined coefficients
3. Variation of parameters
4. Using the fact that the equation is separable
5. Using the fact that the equation is exact
6. Determining an approximate numerical solution

It may be the case that no method, one method, or more than one method may apply.

2.31. For relatively high velocities7 the drag due to the motion of the body through
air is proportional to the square of the velocity of the body. Hence, if the direction
of positive velocity is down, Newton’s law on the body can be represented as

m
dv
dt

(t) = mg− kv2(t). (2.36)

1. If a body falls from a sufficiently high altitude, it will reach its terminal velocity
which is the velocity at which it will stop accelerating. Determine an expression
for the terminal velocity, vterm from Equation (2.36).

2. Determine the general solution to Equation (2.36).
3. For re-entry of a 5000 kg space vehicle into the atmosphere, it is determined

experimentally that the terminal velocity at low altitude is 300 kilometers per
hour. If the velocity at time t = 0 is 600 kilometers per hour, determine v(t) of
the vehicle and plot it versus time. Plot the deceleration (g-force) experienced by
the payload versus time.8

2.32. You work for the ACME parachute company. A person and parachute weigh
192 lb. Assume that a safe landing velocity is 16 ft/sec and that air resistance is
proportional to the square of the velocity, equaling 1/2 lb for each square foot of
cross-sectional area of the parachute when it is moving at 20 ft/sec. What must the
cross-sectional area of the parachute be in order for the paratrooper to land safely?9

7 More precisely, for certain geometries with Reynolds’ numbers between approximately 103 and
105 [52].
8 In this problem you are using a constant value for k. For a real vehicle re-entering the atmosphere,
due to variation in the density of the atmosphere, k varies significantly.
9 This problem is adapted from [50].



Chapter 3
Second-Order Linear Constant-Coefficient
Ordinary Differential Equations

This chapter considers ordinary, linear, second-order differential equations and the
main focus is on constant-coefficient equations of the form

d2x
dt2 (t)+ α1

dx
dt

(t)+ α0x(t) = g(t) . (3.1)

A general solution to Equation (3.1) is constructed by a linear combination of two
linearly independent homogeneous solutions and one particular solution. In order to
know that the constructed solution is in fact the general solution, we need a theorem
concerning the existence and uniqueness of solutions for these equations.

Theorem 3.1. If the function g(t) is continuous on an open interval t ∈ (t1,t2), then
there exists one and only one function x(t) satisfying Equation (3.1) and the given
initial conditions

x(t0) = x0,
dx
dt

(t0) = ẋ0.

This theorem1 is important because it allows us to know when we have computed a
general solution, which is useful because if we can do that, we know we have every
possible solution to the differential equation. If we conclude something based on an
analysis of a solution to an equation, we want to be guaranteed that it represents all
the possible behaviors of the system.

3.1 Introduction

Second-order equations arise quite frequently in engineering. In mechanical and
aerospace engineering, in particular, they arise often in the context of the study
of vibrations. First let us consider a few prototypical example problems to help
motivate the importance of second-order ordinary differential equations as well as
to illustrate their apparent importance.

1 For a proof, see [50], Lesson 65.

91B. Goodwine, Engineering Differential Equations: Theory and Applications, 
DOI 10.1007/978-1-4419-7919-3_3, © Springer Science+Business Media, LLC 2011
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Example 3.1. Consider the very simple mechanical system illustrated on the left in
Figure 3.1. The scenario modeled by the problem is that a mass is attached to a
moving base by a spring (on the left) and viscous damper (on the right). The base is
moving with a specified motion z(t). The question is what is the resulting motion of
the mass given a specified motion of the base?

Fig. 3.1 Mechanical system for Exam-
ple 3.1.

mm

k b

y(t)

z(t)

fs fd

A free body diagram of the mass is illustrated on the right in Figure 3.1, where fs

and fd are the forces that the spring and damper exert on the mass, respectively. As-
sume that y and z are measured from a configuration where the spring is unstretched;
that is, at y = 0 and z = 0 the spring is unstretched. In that case, fs = k (z− y) and
fd = b(ż− ẏ).

Newton’s law gives

mÿ = fs + fd = k (z− y)+ b(ż− ẏ)

or rearranging
mÿ + bẏ+ ky = kz+ bż.

This is an ordinary, second-order, linear, constant-coefficient, inhomogeneous dif-
ferential equation. Remember that z(t) is assumed to be known, so, for example, if
z(t) = Z sinωt, then

mÿ+ bẏ+ ky = kZ sin ωt + bZω cosωt.

For such a system, important and interesting questions may be the following.

1. Given y(0) and ẏ(0) what is the resulting motion of the mass y(t)?
2. What is the magnitude of the resulting motion of the mass as a function of the

magnitude of the base motion Z?
3. How does the magnitude of the motion of the mass change as Z or ω are changed?
4. Given either or both Z and ω , what are good choices for k and b so that the

magnitude of either or both the motion or acceleration of the mass is minimized?
This is basically designing a suspension or vibration absorber.
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3.2 Theory of Linear Homogeneous Equations

In the study of mechanical vibrations, the starting point is usually the case of free,
undamped vibrations. This case is illustrated by the following example and is the
starting point for the study of homogeneous equations.

Example 3.2. Consider the mass–spring system illustrated in Figure 3.2. Assume
for present purposes that there is no gravitational force acting on the spring and that
x = 0 when the spring is unstretched. The only force on the mass is due to the spring
and the equation of motion is

mẍ + kx = 0. (3.2)

Fig. 3.2 Mass spring system for Exam-
ple 3.2.

m

k

x(t)

From Theorem 2.1, this ordinary, second-order, homogeneous, linear, constant-
coefficient differential equation must have solutions of the form

x(t) = ceλ t .

Substituting this into the differential equation gives

mλ 2ceλ t + kceλ t = 0.

Inasmuch as eλ t is never zero and assuming that c �= 0, we have the characteristic
equation

mλ 2 + k = 0

or

λ = ±
√

− k
m

.

Real spring constants and masses have only positive values, therefore

λ = ±i

√

k
m

.
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Let ωn =
√

k/m denote the natural frequency of the system. Using this notation,
there are two possible solutions

x1(t) = eiωnt , x2(t) = e−iωnt .

The fact that these two functions are indeed solutions to the differential equation
may be verified by direct substitution.

At this point it would behoove the reader to read Appendix A which gives a
several-page review of complex variable theory. The one fact that is necessary and
repeated here is the definition of Euler’s formula, which relates the exponential of a
complex number to trigonometric functions. Namely,

e(μ+iω)t = eμt (cosωt + i sinωt) .

Example 3.3. Returning to Example 3.2 and using Euler’s formula, the two solutions
may be rewritten as

x1(t) = cosωnt + i sinωnt, x2(t) = cosωnt − i sinωnt.

Now consider the question: when will it be possible to combine the two solutions
to satisfy any specified initial conditions? First, note that because Equation (3.2) is
linear and homogeneous, the solution

x(t) = c1x1(t)+ c2x2(t)

also satisfies the differential equation. This may be verified by direct substitution
using either form of the solutions. Using the sine and cosine form, then

ẋ1(t) = −ωn sinωnt + iωn cosωnt

ẋ2(t) = −ωn sinωnt − iωn cosωnt

ẍ1(t) = −ω2
n cosωnt − iω2

n sin ωnt

ẍ2(t) = −ω2
n cosωnt + iω2

n sin ωnt

and substituting into Equation (3.2) and using the fact that ω2
n = k/m gives

mẍ+ kx = m(c1ẍ1 + c2ẍ2)+ k (c1x1 + c2x2)

= mc1
(−ω2

n cosωnt − iω2
n sinωnt

)

+ mc2
(−ω2

n cosωnt + iω2
n sinωnt

)

+ kc1 (cosωnt + i sinωnt)+ kc2 (cosωnt − i sinωnt)
= −c1k cosωnt − ic1k sinωnt − c2k cosωnt + ic2k sinωnt

+ kc1 cosωnt + ikc1 sinωnt + kc2 cosωnt − ikc2 sin ωnt

= 0.

The fact that a linear combination of the two solutions of Equation (3.2) also satisfies
the equation is a particular example of the principle of superposition.
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3.2.1 The Principle of Superposition

The principle of superposition states that any linear combination of solutions to an
ordinary, linear, homogeneous differential equation is also a solution. An example
is the final computation in Example 3.3. The following theorem proves the principle
for the second-order case. Proving it for nth-order equations is left as an exercise.

Theorem 3.2. Let the functions x1(t) and x2(t) each satisfy the ordinary, second-
order, linear, homogeneous differential equation

f2(t)ẍ(t)+ f1(t)ẋ(t)+ f0(t)x = 0. (3.3)

Then any linear combination of x1(t) and x2(t), that is,

x(t) = c1x1(t)+ c2x2(t),

also satisfies Equation (3.3).

Proof. The proof is simply by direct substitution.

f2(t)ẍ(t)+ f1(t)ẋ(t)+ f0(t)x(t) = f2(t)(c1ẍ1(t)+ c2ẍ2(t))
+ f1(t)(c1ẋ1(t)+ c2ẋ2(t))
+ f0(t)(c1x1(t)+ c2x2(t))

= c1 ( f2(t)ẍ1(t)+ f1(t)ẋ1(t)+ f0(t)x1(t))
+ c2 ( f2(t)ẍ2(t)+ f1(t)ẋ2(t)+ f0(t)x2(t))

= 0 + 0.

��
Note that the principle of superposition does not require that the equation have

constant coefficients.

Example 3.4. Returning to Example 3.3, at this point it has been shown that the two
functions

x1(t) = cosωnt + i sinωnt, x2(t) = cosωnt − i sinωnt

are solutions to Equation (3.2) and that any linear combination

x(t) = c1x1(t)+ c2x2(t)

is also a solution.
Because this text is also concerned with the solutions and analysis of vibration

problems, an alternative simpler form of the combination of the two solutions would
be nice. To achieve this, it is possible to simply rearrange the linear combination as
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x(t) = c1x1(t)+ c2x2(t)
= c1 (cosωnt + i sinωnt)+ c2 (cosωnt − i sinωnt)
= (c1 + c2)cosωnt + i(c1 − c2)sinωnt

= ĉ1 cosωnt + ĉ2 sinωnt,

where
ĉ1 = c1 + c2, ĉ2 = i(c1 − c2) .

Note also, by direct substitution, it may be verified that the two functions

x̂1(t) = sinωnt, x̂2(t) = cosωnt

are also solutions to Equation (3.2). This is an otherwise unremarkable fact, but they
are generally a more convenient representation of two homogeneous solutions than
the forms containing imaginary terms because most engineering problems are only
concerned with real solutions.

3.2.2 Linear Independence

Now consider the question of determining when it will be the case that any initial
conditions can be satisfied by appropriately determining the two unspecified coeffi-
cients in the various forms of the solutions above.

Example 3.5. Adding initial conditions to the problem statement corresponding to
the system illustrated in Figure 3.2 gives

mẍ + kx = 0,

where x(0) = x0, ẋ(0) = ẋ0. The examples above showed that

x(t) = c1x̂1(t)+ c2x̂2(t) = c1 cosωnt + c2 sinωnt

is a solution to the differential equation. Now to determine the values for c1 and c2

that satisfy the initial conditions, simply evaluate x(0) and ẋ(0) and set them equal
to x0 and ẋ0, respectively. Because x(0) = c1 and ẋ(0) = c2ωn, then

c1 = x0, c2 =
ẋ0

ωn
.

The main point of this example is the fact that regardless of the values given for x0

and ẋ0, there are values for c1 and c2 that satisfy the differential equation as well as
the initial conditions and the solution is

x(t) = x0 cosωnt +
ẋ0

ωn
sinωnt.
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Now consider the more general question: given two solutions, x1(t) and x2(t) of
an ordinary, second-order, linear, homogeneous differential equation, when will it
be the case that the two coefficients in the general solution

x(t) = c1x1(t)+ c2x2(t)

may be used to satisfy any given initial conditions?
Stated a bit more mathematically, consider the initial value problem

ẍ + p(t)ẋ+ q(t)x = 0,

x(t0) = x0, ẋ(t0) = ẋ0, and assume that x1(t) and x2(t) are solutions. From the prin-
ciple of superposition in Theorem 3.2, because the equation is ordinary, linear, and
homogeneous, then

x(t) = c1x1(t)+ c2x2(t)

also satisfies the differential equation.
Now solving x(t0) = x0 and ẋ(t0) = ẋ0 for c1 and c2 gives

x(t0) = c1x1(t0)+ c2x2(t0) = x0

ẋ(t0) = c1ẋ1(t0)+ c2ẋ2(t0) = ẋ0

which yields

c1 =
ẋ0x2(t0)− x0ẋ2(t0)

x1(t0)ẋ2(t0)− x2(t0)ẋ1(t0)
, c2 =

ẋ0x1(t0)− x0ẋ1(t0)
x1(t0)ẋ2(t0)− x2(t0)ẋ1(t0)

, (3.4)

so the only time there will be a problem with solving for the coefficients is when the
denominator is equal to zero (note that both denominators are equal). Observe that
the denominator is the Wronskian for the two functions, x1(t) and x2(t),

W (x1,x2)(t) =
∣
∣
∣
∣

x1(t) x2(t)
ẋ1(t) ẋ2(t)

∣
∣
∣
∣
= x1(t)ẋ2(t)− x2(t)ẋ1(t).

Thus, if the Wronskian is nonzero at the time where the initial conditions are
specified, we may use the two solutions to satisfy any initial conditions. If the Wron-
skian is nonzero over an interval, then the two functions form a fundamental set of
solutions on that interval. Due to the uniqueness of solutions for the types of equa-
tions we are considering, we have the following theorem.

Theorem 3.3. If x1(t) and x2(t) satisfy

ẍ + α1ẋ + α0x = 0,

and if
W (x1),x2)(t) = x1(t)ẋ2(t)− x2(t)ẋ1(t) �= 0,

then
x(t) = c1x1(t)+ c2x2(t)
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is the general solution to the initial value problem

ẍ + α1ẋ + α0x = 0,

x(t0) = x0, ẋ(t0) = ẋ0, where c1 and c2 are given by Equation (3.4).2

So, if the goal is to solve an ordinary, linear, homogeneous, second-order initial
value problem, then it will not suffice to find any two homogeneous solutions to
combine, but two linearly independent solutions. Fortunately, be illustrated subse-
quently, the methods developed in the next few sections all generate linearly inde-
pendent solutions, so obsessive attention to this detail is not always necessary.

3.3 Constant-Coefficient Homogeneous Equations

From Theorem 2.1 it is clear that ordinary, linear, constant-coefficient, homoge-
neous, second-order differential equations have solutions of the form x(t) = eλ t .
However, in contrast to the case of first-order equations of this type, there will gen-
erally be two solutions for λ which complicates matters somewhat, as illustrated by
the following example.

Example 3.6. Determine the general solution to

ẍ + 5ẋ+ 6x = 0. (3.5)

Assuming
x(t) = eλ t

and substituting gives

ẍ+ 5ẋ+ 6x = λ 2eλ t + 5λ eλ t + 6eλ t = 0

and inasmuch as eλ t is never equal to zero,

λ 2 + 5λ + 6 = 0.

Using the quadratic formula (or simply factoring, as is possible in this case) gives
λ = −2 or λ = −3, so

x1(t) = e−2t , x2(t) = e−3t

both satisfy Equation (3.5) and

x(t) = c1e−2t + c2e−3t

is a general solution as long as the Wronskian, W (x1,x2)(t) is nonzero. Checking
the Wronskian gives

2 In fact, a similar theorem holds for the variable-coefficient case.
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W (x1,x2)(t) =
∣
∣
∣
∣

e−2t e−3t

−2e−2t −3e−3t

∣
∣
∣
∣
= −3e−5t + 2e−5t = −e−5t �= 0,

so the initial conditions may be specified at any time t.

Now, it should be clear that assuming exponential solutions for second-order
equations of this type will result in a quadratic characteristic equation which, in
general, will have two roots. Because a quadratic equation may have distinct roots,
a complex conjugate pair of roots, or a repeated root, and each case results in a
solution of a different type, each case must be considered separately.

As a recurring example throughout the investigation of the three possible cases,
consider the system mass–spring–damper illustrated in Figure 3.3 which has the
equation of motion

mẍ+ bẋ+ kx = 0. (3.6)

Fig. 3.3 Mechanical system described by
Equation (3.6).

    m

k

b

x(t)

Assuming x(t) = eλ t results in the characteristic equation

mλ 2 + bλ + k = 0

which has roots

λ1 =
−b +

√
b2 −4mk

2m
, λ2 =

−b−√
b2 −4mk

2m
.

The roots, λ1 and λ2 are either

• Real and distinct (when b2 −4mk > 0)
• A complex conjugate pair (when b2 −4mk < 0)
• Repeated (when b2 −4mk = 0)

As is already clear, the solutions to Equation (3.6) involve the parameters m,
b, and k. However, there exists a standard canonical form for such equations. This
form is valuable to know both because it is a standard formulation for second-order
problems and also because it simplifies notation for the problem.

3.3.0.1 Canonical Form for Second-Order Systems

Consider
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mẍ + bẋ+ kx = 0

and the following definitions

ζ =
b

2
√

mk

ωd = ωn

√

1− ζ 2 =

√

k
m

√

1− b2

4mk
=

√

k
m

4mk−b2

4mk
=

√
4mk−b2

2m
.

These definitions hold for any values of m, b, and k, but are generally only used
when the three parameters have positive values.

The first term ζ is called the damping ratio and the second term ωd is called the
damped natural frequency. Observing that

b
2m

= ζωn,

Equation (3.11) can be rewritten as

mẍ + bẋ+ kx = m

(

ẍ +
b
m

ẋ+
k
m

x

)

= m
(

ẍ + 2ζωnẋ+ ω2
n x
)

.

The equation is homogeneous and m �= 0, thus the two differential equations

mẍ+ bẋ+ kx = 0 ⇐⇒ ẍ + 2ζωnẋ+ ω2
n x = 0,

are equivalent, meaning that they have the same solutions. In this case, the charac-
teristic equation is

λ 2 + 2ζωnλ + ω2
n = 0

which gives

λ =
−2ζωn ±

√

4ζ 2ω2
n −4ω2

n

2

= −ζωn ±ωn

√

ζ 2 −1.

The three cases corresponding to distinct, real roots, complex conjugate roots, and
repeated roots correspond to the cases where ζ > 1, ζ < 1, and ζ = 1 respectively.
The “simplification” is in that the roots only contain two parameters, ωn and ζ
instead of the three parameters, m, b, and k.
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3.3.1 Distinct Real Roots

In the case that the quadratic equation has distinct real roots, as was illustrated in
Example 3.6, the two solutions

x1(t) = eλ1t , x2(t) = eλ2t ,

where λ1 and λ2 are the roots of the characteristic equation, will both satisfy the
differential equation and by the principle of superposition the linear combination

x(t) = c1x1(t)+ c2x2(t) (3.7)

will also satisfy it. Furthermore, in this case where λ1 �= λ2 the Wronskian is always
nonzero. This fact is illustrated by the direct computation,

W (x1,x2)(t) =
∣
∣
∣
∣

eλ1t eλ2t

λ1eλ1t λ2eλ2t

∣
∣
∣
∣
= λ2e(λ1+λ2)t −λ1e(λ1+λ2)t = (λ2 −λ1)e(λ1+λ2)t �= 0.

(3.8)
Therefore any initial conditions specified at any t may be satisfied by a choice of c1

and c2, and this fact, in combination with Theorem 3.1, implies Equation (3.7) is the
general solution.

To emphasize its importance, the above results are restated in the form of a the-
orem.

Theorem 3.4. For an ordinary, second-order, linear, constant-coefficient, homoge-
neous differential equation, if the roots of the corresponding characteristic equation
are real and distinct, denoted by λ1 and λ2, then the functions

x1(t) = eλ1t , x2(t) = eλ2t

both are solutions to the differential equation. Furthermore x1(t) and x2(t) are lin-
early independent and therefore

x(t) = c1eλ1t + c2eλ2t

is a general solution of the differential equation.

In the case of the mass–spring–damper system illustrated in Figure 3.3 and de-
scribed by Equation (3.6) the general solution will be

x(t) = c1e

((

−b+
√

b2−4mk
)

/(2m)
)

t + c2e

((

−b−
√

b2−4mk
)

/(2m)
)

t

= c1e

(

−ζωn+ωn

√
ζ 2−1

)

t + c2e

(

−ζωn−ωn

√
ζ 2−1

)

t
.

Note that this solution corresponds to a linear combination of two decaying expo-
nentials.
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3.3.2 Complex Roots

In the case of the mass–spring–damper problem where b2 −4mk < 0 or ζ < 1, the
sign of the term inside the square root will be negative and hence the two roots will
be a complex conjugate pair given by

λ1 =
−b + i

√
4mk−b2

2m
= −ζωn + iωn

√

1− ζ 2

λ2 =
−b− i

√
4mk−b2

2m
= −ζωn − iωn

√

1− ζ 2.

Using Euler’s formula, the two solutions

x̂1(t) = ĉ1eλ1t , x̂2(t) = ĉ2eλ2t ,

where, using the canonical formulation

x̂1(t) = ĉ1e−ζωnt
(

cos
(

ωn

√

1− ζ 2t
)

+ i sin
(

ωn

√

1− ζ 2t
))

= ĉ1e−ζωnt (cosωdt + i sinωdt)

x̂2(t) = ĉ2e−ζωnt
(

cos
(

ωn

√

1− ζ 2t
)

− i sin
(

ωn

√

1− ζ 2t
))

= ĉ2e−ζωnt (cosωdt − i sinωdt) ,

and, following the procedure outlined in Example 3.4 and defining

c1 = ĉ1 + ĉ2, c2 = i(ĉ1 − ĉ2) (3.9)

then the two solutions

x1(t) = e−ζωnt cosωdt, x2(t) = e−ζωnt sinωdt (3.10)

may be added in a linear combination

x(t) = c1e−ζωnt cosωdt + c2e−ζωnt sinωdt (3.11)

to form a solution.
There is nothing wrong with repeating the Wronskian computation for this case;

however, it is worth noting that the computation in Equation (3.8) is valid for the
case where the λ s are complex as well. Also, because the combination of solu-
tions expressed by the constants in Equation (3.9) is full rank, the sine and cosine
combination of the solutions will be linearly independent as well. However, just to
complete the picture, the detailed Wronskian computation is as follows.
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W (x1,x2)(t) =
∣
∣
∣
∣

e−ζωnt cosωdt e−ζωnt sinωdt
−e−ζωnt (ωd sin ωdt + ζωn cosωdt) e−ζωnt (ωd cosωdt − ζωn sinωdt)

∣
∣
∣
∣

= ωde−2ζωnt �= 0.

So, the above proves the following theorem.

Theorem 3.5. For an ordinary, second-order, linear, constant-coefficient, homoge-
neous differential equation, if the roots of the corresponding characteristic equation
are a complex conjugate pair, denoted by λ1 and λ2, then the functions

x1(t) = eλ1t , x2(t) = eλ2t

both are solutions to the differential equation. Furthermore x1(t) and x2(t) are lin-
early independent and therefore

x(t) = c1eλ1t + c2eλ2t

is a general solution of the differential equation.

Using the sine and cosine formulation gives the following corollary to Theo-
rem 3.5.

Corollary 3.1. Equivalently, if the two roots to the characteristic polynomial are
denoted by

λ1 = −ζωn + iωn

√

1− ζ 2, λ2 = −ζωn − iωn

√

1− ζ 2

then the functions

x1(t) = e−ζωnt cosωdt, x2(t) = e−ζωnt sinωdt

both are solutions to the differential equation. Furthermore x1(t) and x2(t) are lin-
early independent and therefore

x(t) = c1e−ζωnt cosωdt + c2e−ζωnt sinωdt

is a general solution of the differential equation.

An example may be helpful at this point.

Example 3.7. Determine a general solution to

ẍ + 2ẋ+ 5x = 0.

Just for fun, let us solve this two ways.

1. Assuming a solution of the form x(t) = eλ t gives the characteristic equation

λ 2 + 2λ + 5 = 0 =⇒ λ = −1±2i.
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Immediately we can write either

x(t) = c1e(−1−2i)t + c2e(−1+2i)t

or
x(t) = c1e−tcos2t + c2e−tsin2t.

2. Alternatively, using the definition of ωn, ζ and ωd ,

ωn =

√

k
m

=
√

5

ζ =
b

2
√

mk
=

1√
5

=
√

5
5

ωd = ωn

√

1− ζ 2 =
√

5

√

1− 1
5

= 2.

and substituting into Equation (3.11) gives

x(t) = c1e−tcos2t + c2e−tsin2t.

3.3.3 Repeated Roots

Now consider the case when b2 = 4mk or, equivalently, ζ = 1. In this case, λ =
−ζωn = −ωn, and at this point there is only one solution

x1(t) = e−ωnt . (3.12)

To find another solution, assume a solution of the form

x2(t) = μ(t)x1(t),

and substitute to see if it determines μ(t). Computing

ẋ2 = μ ẋ1 + μ̇x1, ẍ2 = 2μ̇ ẋ1 + μ ẍ1 + μ̈x1

and substituting into
ẍ + 2ζωnẋ + ω2

n x = 0

gives
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(2μ̇ ẋ1 + μ ẍ1 + μ̈x1)+ 2ζωn (μ ẋ1 + μ̇x1)+ ω2
n μx1 =

μ
(

ẍ1 + 2ζωnẋ1 + ω2
n x1

)

+(2μ̇ ẋ1 + μ̈x1 + 2ζωnμ̇x1) =
μ̈x1 + 2μ̇ (ẋ1 + ωnx1) =

μ̈x1 =
μ̈ = 0 =⇒ μ(t) = t + c.

Note that in the second line the term in the left pair of parentheses is zero because x1

is a solution to the homogeneous equation. In the third line the term in parentheses
is zero due to the form of x1(t) from Equation (3.12). Finally, because c is arbitrary,
it may be zero and hence, finally,

x2(t) = tx1(t) = teλ t = te−ωnt .

So, the two solutions

x1(t) = eλ t = eωnt , x2(t) = teλ t = teωnt

both satisfy the differential equation.
A direct computation with the Wronskian shows they are linearly independent,

which is left as an exercise.
So, the above proves the following theorem.

Theorem 3.6. For an ordinary, second-order, linear, constant-coefficient, homoge-
neous differential equation, if the roots of the corresponding characteristic equation,
are equal (i.e., the roots are repeated, and are denoted by λ ), then the following two
functions

x1(t) = eλ t , x2(t) = teλ t

both are solutions to the differential equation. Furthermore x1(t) and x2(t) are lin-
early independent and therefore

x(t) = c1eλ1t + c2teλ2t

is a general solution of the differential equation.

An example follows.

Example 3.8. Find a general solution to

ẍ + 4ẋ+ 4x = 0.

The corresponding characteristic equation is

λ 2 + 4λ + 4 = 0.

Hence, λ = −2 is the repeated solution. Therefore

x(t) = c1e−2t + c2te−2t
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is the general solution.

3.4 Inhomogeneous Equations

The two methods for solving inhomogeneous, second-order, ordinary, linear differ-
ential equations go by the same name and are essentially equivalent in approach to
the methods outlined in Chapter 2 for inhomogeneous first-order equations, namely,
the method of undetermined coefficients and the method of variation of parameters.

3.4.1 The Method of Undetermined Coefficients
Constant-Coefficient Differential Equations

The method of undetermined coefficients is essentially the same as was presented
for first-order equations in Section 2.3.1. Thus this section limits the presentation to
a few examples.

Example 3.9. Find the general solution to

mẍ + kx = F cosωt.

From Examples 3.2 through 3.4, the homogeneous solution is

xh(t) = c1cosωnt + c2sinωnt,

where, as usual, ωn =
√

k/m. Although not necessary to simply find the solution,
this example will work with the normal form

ẍ+ ω2
n x =

F
m

cosωt.

Referring to Table 2.1, as long as ω �= ωn, then a correct assumption for the form of
the particular solution is

xp(t) = Acosωt + Bsinωt.

Skipping the gory details, differentiating xp(t), and substituting into the differential
equation gives

A =
F

m(ω2
n −ω2)

, B = 0,

so the entire solution is
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x(t) = c1cosωnt + c2sinωnt +
F

m(ω2
n −ω2)

cosωt

= c1cosωnt + c2sinωnt +
F

k

(

1−
(

ω
ωn

)2
) cosωt.

The case where ω = ωn is referred to as resonance, and is further explored in the
next chapter. At this point it suffices to note that it corresponds to the case where
the initially assumed form of the particular solution is the same as a homogeneous
solution; hence, the assumed form of xp(t) must be multiplied by t, which results in
a solution with a magnitude that increases linearly with time, as is illustrated by the
following example.

Example 3.10. Solve
ẍ+ x = cost,

where x(0) = 0 and ẋ(0) = 0, which corresponds, for example, to m = 1, k = 1
and hence, ωn = 1. Assuming homogeneous solutions of the form xh(t) = eλ t gives
λ = ±i, so

xh(t) = c1cost + c2sin t

is a homogeneous solution. Note that due to the inhomogeneous term cost, one may
be inclined to assume xp(t) = Acost + Bsin t; however, because sin t and cost are
homogeneous solutions, then the appropriate particular solution is

xp(t) = t (Acost + Bsint) .

Differentiating twice, substituting, equating coefficients of sin t and cost and solving
for A and B gives A = 0 and B = 1/2; hence

x(t) = c1 cost + c2 sin t +
t
2

sin t.

Evaluating the initial conditions gives c1 = c2 = 0. Hence

x(t) =
t
2

sin t

is the solution of the initial value problem. A plot of this solution is illustrated in
Figure 3.4 and is an illustration of the phenomenon of resonance. Note that the
solution grows unbounded.

Example 3.11. Find the general solution to

ẍ+ ẋ+ 4x = t sin2t.

Assuming
xh(t) = eλ t
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Fig. 3.4 Resonance response of solution to Example 3.10.

gives the characteristic equation

λ 2 + λ + 4 = 0

so

λ =
−1±√

1−16
2

= −1
2
±

√
15
2

i.

Hence,

xh(t) = e−t/2

(

c1sin

√
15
2

t + c2cos

√
15
2

t

)

.

The inhomogeneous term is of the product of a polynomial in t and sin2t, there-
fore we must assume a solution that contains the product of all the corresponding
linearly independent derivatives. Hence, assume

xp(t) = At sin 2t + Bt cos2t +C sin2t + Dcos2t.

Differentiating gives

ẋp(t) = Asin2t + 2At cos2t + Bcos2t −2Bt sin2t + 2C cos2t −2Dsin2t

= −2Bt sin2t + 2At cos2t +(A−2D)sin2t +(B + 2C)cos2t

and differentiating again gives



3.4 Inhomogeneous Equations 109

ẍp(t) = −2Bsin2t −4Bt cos2t + 2Acos2t −4At sin2t

+ 2(A−2D)cos2t −2(B + 2C)sin2t

= −4At sin2t −4Bt cos2t −4(B +C)sin2t + 4(A−D)cos2t.

Substituting into the differential equation gives

[−4At sin2t −4Bt cos2t −4(B +C)sin2t + 4(A−D)cos2t]
+ [−2Bt sin2t + 2At cos2t +(A−2D)sin2t +(B + 2C)cos2t]
+ 4 [At sin2t + Bt cos2t +C sin2t + Dcos2t] = t sin2t

and equating the coefficients of t sin2t, t cos2t, sin2t, and cos2t, respectively, gives
the following set of equations

−4A−2B + 4A = 1

−4B + 2A + 4B = 0

−4(B +C)+ (A−2D)+ 4C = 0

4(A−D)+ (B + 2C)+ 4D = 0.

From the first two equations, A = 0 and B = −1/2. Substituting this into the third
equation gives

2−2D = 0

so D = 1. From the last equation, C = 1/4. Hence

xp(t) = −1
2

t cos2t ++
1
4

sin2t + cos2t

and the general solution is

x(t) = xh(t)+ xp(t)

= e−
1
2 t

(

c1 sin

√
15
2

t + c2 cos

√
15
2

t

)

− 1
2

t cos2t +
1
4

sin2t + cos2t.

3.4.2 Method of Variation of Parameters for Constant or
Variable-Coefficient Equations

Recall in Section 2.3.3 the method of variation of parameters was used to find so-
lutions to ordinary, first-order, linear, inhomogeneous differential equations (either
constant or variable-coefficient). The same approach may be used in the case of
second-order equations; however, due to the second-order nature of the problem,
the computations involved become a bit more algebraically complex. Nevertheless,
proceed, as before, and consider the ordinary, second-order, linear, inhomogeneous
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differential equation
ẍ(t)+ p(t)ẋ(t)+ q(t)x(t) = f (t) (3.13)

and assume a particular solution of the form

xp(t) = μ1(t)x1(t)+ μ2(t)x2(t), (3.14)

where x1(t) and x2(t) are homogeneous solutions to Equation (3.13). The approach
is (one hopes) obvious: substitute xp(t) into Equation (3.13) to see if equations for
μ1(t) and μ2(t) may be obtained. So, proceeding thusly, and dropping the explicit
dependence on t

ẋp = μ̇1x1 + μ1ẋ1 + μ̇2x2 + μ2ẋ2

ẍp = μ̈1x1 + 2μ̇1ẋ1 + μ1ẍ1 + μ̈2x2 + 2μ̇2ẋ2 + μ2ẍ2

and substituting into Equation (3.13) gives

ẍ + pẋ+ qx = (μ̈1x1 + 2μ̇1ẋ1 + μ1ẍ1 + μ̈2x2 + 2μ̇2ẋ2 + μ2ẍ2)
+ p(μ̇1x1 + μ1ẋ1 + μ̇2x2 + μ2ẋ2)
+ q(μ1x1 + μ2x2)

= f .

Rearranging a bit gives

ẍ + pẋ+ qx = μ1 (ẍ1 + pẋ1 + qx1)+ μ2 (ẍ2 + pẋ2 + qx2)
+ (μ̈1x1 + 2μ̇1ẋ1 + μ̈2x2 + 2μ̇2ẋ2)+ p(μ̇1x1 + μ̇2x2)

= f ,

and noting that because x1 and x2 are homogeneous solutions, the terms in the paren-
theses multiplying μ1 and μ2 in the first line are zero, the equation reduces to

(μ̈1x1 + 2μ̇1ẋ1 + μ̈2x2 + 2μ̇2ẋ2)+ p(μ̇1x1 + μ̇2x2) = f . (3.15)

At this point, there is one equation for two unknown functions, μ1(t) and μ2(t);
furthermore, it is second-order, so at first glance it may seem not much progress
has been made inasmuch as one second-order equation (Equation (3.13)) has been
replaced with another one (Equation (3.15)). However, because it is one equation
with two unknowns, the system is underdetermined, and we have the freedom to
choose another independent equation. So, let us try to make the term in the left set
of parentheses zero. Note that if we choose (with much foresight)

μ̇1x1 + μ̇2x2 = 0 (3.16)

then its derivative must also be zero, so

μ̈1x1 + μ̇1ẋ1 + μ̈2x2 + μ̇2ẋ2 = 0.
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In light of this, Equation (3.15) reduces to

μ̇1ẋ1 + μ̇2ẋ2 = f . (3.17)

Solving Equations (3.16) and (3.17) for μ̇1 and μ̇2 gives

μ̇1(t) = − x2(t) f (t)
x1(t)ẋ2(t)− ẋ1(t)x2(t)

(3.18)

μ̇2(t) =
x1(t) f (t)

x1(t)ẋ2(t)− ẋ1(t)x2(t)
. (3.19)

Thus, if x1(t) and x2(t) are known, everything on the right-hand sides of the above
equations is known and μ1(t) and μ2(t) may be determined by integration. Hence

μ1(t) = −
∫

x2(t) f (t)
x1(t)ẋ2(t)− ẋ1(t)x2(t)

dt + c1

μ2(t) =
∫

x1(t) f (t)
x1(t)ẋ2(t)− ẋ1(t)x2(t)

dt + c2,

where c1 and c2 are the integration constants and are arbitrary. Substituting this into
the original assumed form of the solution, Equation (3.14) gives

xp(t) = −x1(t)
(∫

x2(t) f (t)
x1(t)ẋ2(t)− ẋ1(t)x2(t)

dt + c1

)

+ x2(t)
(∫

x1(t) f (t)
x1(t)ẋ2(t)− ẋ1(t)x2(t)

dt + c2

)

.

Note the following.

1. Because the denominator in each integrand must be nonzero, x1(t) and x2(t) must
be linearly independent.

2. Because xp(t) has a linear combination of the two homogeneous solutions con-
tained in it, it is actually the complete solution.

Hence the final answer is

x(t) = c1x1(t)+ c2x2(t)− x1(t)
∫

x2(t) f (t)
x1(t)ẋ2(t)− ẋ1(t)x2(t)

dt

+ x2(t)
∫

x1(t) f (t)
x1(t)ẋ2(t)− ẋ1(t)x2(t)

dt.

(3.20)

To illustrate the use of the method, consider some examples.

Example 3.12. Find the general solution to

ẍ+ x =
1

cost
,
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where x(0) = 0 and ẋ(0) = 0. Note that the method of undetermined coefficients
cannot be used for this problem because the inhomogeneous term is not of the ap-
propriate form. For the homogeneous solution, there are complex roots, λ = ±i;
hence,

x1(t) = cost, x2(t) = sin t.

Note that W (x1,x2)(t) = 1. Substituting into Equation (3.20) gives

x(t) = c1 cost + c2 sin t − cost
∫

sin t
cost

dt + sint
∫

cost
cost

dt

= c1 cost + c2 sin t + cost ln(cost)+ t sin t.

Evaluating the initial conditions gives

x(0) = 0 =⇒ c1 = 0

and
ẋ(0) = 0 =⇒ c2 = 0.

The following example repeats Example 3.10 using variation of parameters, illus-
trating the fact that variation of parameters may be used for all the types of second-
order equations that may be solved using undetermined coefficients. Using unde-
termined coefficients is probably usually easier, however, inasmuch as it requires
solving some algebraic equations rather than evaluating some integrals.

Example 3.13. Solve
ẍ+ x = cost,

where x(0) = 0 and ẋ(0) = 0. The homogeneous solutions are

x1(t) = cost, x2(t) = sin t.

A quick computation shows that W (x1,x2) = 1. Hence

x(t) = c1cost + c2sin t − cost
∫

sin t costdt + sin t
∫

cos2 tdt.

Aside 3.1. As a quick reminder of what you should already know from calculus,
these integrals are worked out in detail. For the first one, note that if u = sin t then
du/dt = cost; hence, by substitution

∫

sin t costdt =
∫

u
du
dt

dt =
∫

d
dt

(
u2

2

)

dt =
u2

2
+ c =

1
2

sin2 t + c.

Of course, mentally most people just “cancel” the dt terms on the right hand side
of the first line and skip right to

∫

udu, which is the familiar substitution rule in the
above process.

For the second integral, integrating by parts3 gives

3 To remember integration by parts, simply integrate the product rule, that is,
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∫

cos2 tdt = cost sin t + c +
∫

sin2 tdt = cost sin t + c
∫
(

1− cos2 t
)

dt

= cost sin t + c + t−
∫

cos2 tdt,

hence ∫

cos2 tdt =
t
2

+
cost sin t

2
+ c.

So, returning to the example, the general solution is

x(t) = c1cost + c2sin t − 1
2

cost sin2 t +
1
2

t sin t +
1
2

sin2 t cost

= c1cost + c2sin t +
1
2

t sin t.

Applying the initial conditions gives c1 = 0 and c2 = 0, so

x(t) =
1
2

t sin t,

which is the same answer as before.

3.5 Summary

1. For ordinary, second-order, linear, constant-coefficient, homogeneous differential
equations, solutions are of the form eλ t . Substituting this into the differential
equation gives the characteristic equation, which will have either distinct and real
roots, a pair of complex conjugate roots, or repeated roots. When the equation is
in canonical form

ẍ + 2ζωnẋ+ ω2
n x = 0

the roots are

λ1 = −ζωn + ωn

√

ζ 2 −1, λ2 = −ζωn −ωn

√

ζ 2 −1.

a. If the roots are real and distinct, then ζ > 1 and the general solution is

x(t) = c1e

(

−ζωn+ωn

√
ζ 2−1

)

t + c2e

(

−ζωn−ωn

√
ζ 2−1

)

t
.

∫
d
dt

(uv)dt =
∫ (

u
dv
dt

+ v
du
dt

)

dt

which, following the substitution rules gives the usual formula
∫

udv = uv−
∫

vdu.
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b. If the roots are a complex conjugate pair, then 0 < ζ < 1 and the general
solution is

x1(t) = c1e−ζωntcosωdt + c2e−ζωntsinωdt,

where ωd = ωn

√

1− ζ 2.
c. If the roots are repeated, then ζ = 1 and the general solution is

x(t) = c1e−ωnt + c2te−ωnt .

2. For ordinary, second-order, linear, constant-coefficient, inhomogeneous differen-
tial equations use

a. Undetermined coefficients if the inhomogeneous term is sums or products of
polynomials, sines, cosines or exponentials

b. Variation of parameters if the inhomogeneous term is not of that form

Variation of parameters works for any form of inhomogeneous term, but is gen-
erally more difficult than undetermined coefficients. For both methods, two ho-
mogeneous solutions are also needed.

3. For ordinary, second-order, linear, variable-coefficient, inhomogeneous differen-
tial equations, the method of variation of parameters works. However, two lin-
early independent homogeneous solutions are required for the method, and at
least at this point, you do not have any method to find them!

3.6 Exercises

3.1. Assume that x1(t) and x2(t) are (individually) solutions to the following ordi-
nary, second-order differential equations. For which of the following is the linear
combination

x(t) = c1x1(t)+ c2x2(t)

also a solution?

1. ẍ+ 5ẋ+ 4x = 0.
2. ẍ+ sintẋ + 4x = 0.
3. ẍ+ 4ẋx = 0.
4. ẍ+ 5ẋ+ 4x = t.

What are the differences between the equations for which x(t) is a solution and x(t)
is not a solution?

3.2. Prove the following theorem regarding the principle of superposition for ordi-
nary, linear, nth-order, homogeneous differential equations.

Theorem 3.7. Let the functions x1(t), . . . ,xn(t) each satisfy the ordinary, nth-order,
linear, homogeneous differential equation
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fn(t)
dnx
dtn + fn−1(t)

dn−1x
dtn−1 + · · ·+ f1(t)

dx
dt

+ f0(t)x = 0. (3.21)

Then any linear combination of x1(t), . . . ,xn(t), that is,

x(t) = c1x1(t)+ · · ·+ cnxn(t),

also satisfies Equation (3.21).

3.3. Show that4 x1(t) =
√

t and x2(t) = 1/t are solutions to

2t2ẍ+ 3tẋ− x = 0 (3.22)

on the interval 0 < t < ∞.

1. What happens to the Wronskian, W (x1,x2)(t) as t → 0?
2. Show that x(t) = c1x1(t)+ c2x2(t) is the general solution to Equation (3.22) for

0 < t < ∞.
3. Determine the solution to Equation (3.22) if x(1) = 2 and ẋ(1) = 1.

3.4. In the case of repeated roots of the characteristic equation

λ 2 + 2ζωnλ + ω2
n = 0,

prove the following two facts.

1. If the root is repeated, the value of the root is λ = −ωn.
2. If the root is repeated, then the two solutions

x1(t) = e−ωt , x2(t) = te−ωt

are linearly independent.

3.5. Determine the solution to 6ẍ−5ẋ+ x = 0, where x(0) = 4 and ẋ(0) = 0.

3.6. Determine the solution to ẍ+ 4ẋ+ 5x = 0, where x(0) = 1 and ẋ(0) = 0.

3.7. Determine the general solution to 25ẍ−20ẋ+ 4x = 0.

3.8. This chapter mainly deals with constant-coefficient second-order ordinary dif-
ferential equations. However, there is one class of variable-coefficient equations that
is easy to solve. The equation

t2ẍ + αtẋ+ β x = 0 (3.23)

is called Euler’s equation. Show that x(t) = tλ is a solution.

1. Are there usually two solutions to Euler’s equation? If so, are they linearly inde-
pendent? If they are not linearly independent everywhere, on what intervals do
they form a fundamental set of solutions?

4 This is from [9].
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2. Determine the general solution to

t2ẍ + 4tẋ+ 2x = 0.

3.9. Show that the set of functions {eωnt ,teωnt} is linearly independent.

3.10. In the case of distinct real roots where the solution is a linear combination of
two exponentials, that is,

x(t) = c1eλ1t + c2eλ2t ,

it may seem initially that it is only possible for the solutions to decay or grow.
However, due to the linear combination it is possible for the slope of the solution to
change once. Let λ1 =−1 and λ2 =−2 and plot x(t) for the following combinations
of c1 and c2.

1. c1 = 1 and c2 = 1.
2. c1 = −1 and c2 = 1.
3. c1 = 1 and c2 = −1.
4. c1 = −1 and c2 = −1.

Explain in words why the characteristics of each solution make sense.

3.11. The solution to 2ẍ + ẋ + 10x = 0 with x(0) = 1 and ẋ(0) = 0 is illustrated in
Figure 3.5. By referring to one of the forms of the solution given in Section 3.3,
without solving the equation sketch what the solution will look like if

1. The coefficient of ẍ is increased
2. The coefficient of ẍ is decreased
3. The coefficient of ẋ is increased a little
4. The coefficient of ẋ is increased a lot
5. The coefficient of ẋ is decreased
6. The coefficient of x is increased
7. The coefficient of x is decreased

Verify your predictions by solving the equation and plotting the solution. Using a
computer package is acceptable. Insight from problems of this type is very useful in
designing feedback controllers in Chapter 10.

3.12. For
aẍ+ bẋ+ cx = 0

prove that if b/a < 0 or c/a < 0 then one or both of the homogeneous solutions is
unstable; that is, as t gets large, the magnitude of the solution gets large. If one of
the two homogeneous solutions blows up, is it mathematically possible for a linear
combination to remain bounded? Is it practically possible if the equation represents
a real system for the solution to remain bounded?

3.13. Determine the solution to ẍ + 4x = t2 + 3et , where x(0) = 0 and ẋ(0) = 0.

3.14. Determine the general solution to ẍ + 4ẋ+ 8x = sin2t.
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Fig. 3.5 Response of system for Exercise 3.11.

3.15. Consider ẍ+ 2ẋ+ 2x = e−t sin t + 1.

1. Determine the general solution.
2. Sketch the solution if x(0) = ẋ(0) = 0.

3.16. Find the general solution of ẍ+ 4ẋ+ 4x = 4t2 + 6et.

3.17. Use the method of undetermined coefficients to find the general solution to

ẍ + 4ẋ+ 4x = e−2t .

3.18. Use the method of undetermined coefficients to determine the general solution
to the following equations.

1. ẍ+ 3ẋ+ 2x = cos2t.
2. ẍ+ 3ẋ+ 2x = t3.
3. ẍ+ 3ẋ+ 2x = e−2t .
4. ẍ+ 2x = cos2t.
5. ẍ+ 4x = cos2t.
6. ẍ+ 4x = cos2t + e−2t .
7. ẍ+ 4x = cos2t + e−2t + t2.
8. ẍ+ 3ẋ+ 2x = e−t .
9. ẍ+ 3ẋ+ 2x = e−t + 1.

10. ẍ+ 3ẋ+ 2x = t cos2t.
11. ẍ+ 3ẋ+ 2x = t2 cos2t.

3.19. Use the method of undetermined coefficients to solve

1. ẍ+ ẋ+ 25x = cost
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2. ẍ− ẋ+ 25x = cost

where x(0) = ẋ(0) = 1 for both cases. Plot the solutions. After a long period of time,
for each case does the homogeneous or particular solution dominate? Explain your
answer based on the homogeneous and particular solutions you computed.

3.20. Determine the general solution to x/t + 6t +(ln t −2) ẋ = 0, for t > 0.

3.21. Find the solution to the initial value problem ẍ + x = sec(t) where x(0) = 1
and ẋ(0) = 0 for 0 ≤ t < π/2 (this restriction on t is only to keep sec(t) defined).

3.22. Even if the method of undetermined coefficients applies, use the method of
variation of parameters to determine the general solution to each of the following
differential equations.

1. ẍ+ 3ẋ+ 2x = cost.
2. ẍ+ 3ẋ+ 2x = t3.
3. ẍ+ 3ẋ+ 2x = e−2t .
4. ẍ+ 2x = cos2t.
5. ẍ+ 4x = cos2t.

3.23. Determine the general solution to ẍ−2tẋ+ x = sec t.

3.24. Determine the solution to ẋ/x2 = 1−2t, where x(0) = −1/6.

3.25. One nice thing about the method of variation of parameters is that it works for
variable-coefficient problems also. For each of the following differential equations5

• Verify that x1(t) and x2(t) are homogeneous solutions.
• Determine the interval(s) of t for which they are linearly independent and hence

form a fundamental set of solutions
• Determine the general solution

1. x1(t) = 1 + t, x2(t) = et , for tẍ− (1 + t) ẋ+ x = t2e2t .
2. x1(t) = t−1/2 sin t, x2(t) = t−1/2 cost, for t2ẍ + tẋ+

(

t2 −1/4
)

x = 3t3/2 sin t.

3. x1(t) = et , x2(t) = t, for (1− t) ẍ + tẋ− x = 2(t −1)2 e−t .

3.26. For each of the second-order differential equations listed in Problem 1.8, de-
termine which, if any, of the following solution methods apply based upon what has
been covered in this book so far.

1. Assuming exponential solutions
2. Undetermined coefficients
3. Variation of parameters
4. Using the fact that the equation is separable
5. Using the fact that the equation is exact
6. Determining an approximate numerical solution

5 Adapted from [8].
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It may be the case that no method, one method, or more than one method may apply.

3.27. Plot the solution to ẍ + ẋ+ x = cos2.8t + cos3.0t, where x(0) = 2 and ẋ(0) =
5. You may use any method you want, including writing a computer program to
determine an approximate numerical solution, but plot the whole solution, not just
the steady-state solution. Explain the various features of the problem, namely

1. What is happening between 0 and 10 seconds
2. What is happening between 10 and 60 seconds

3.28. For each of the following differential equations, which of the following meth-
ods may be used to find the solution?

1. Undetermined coefficients
2. Variation of parameters
3. A numerical approach (Euler’s method)
4. None of the above

Which would be the best method to use and why?

1. ẍ+ e1ẋ + sin(5)x = (sin t)/t.
2. tẍ+ teπ ẋ + t sin(5)x = sin t.
3. t2ẍ + tẋ− x = t sin t, for t > 0,

where you know that x1(t) = t and x2(t) = 1/t are solutions to t2ẍ + tẋ− x = 0.
4. ẍ+ xẋ+ 5x = 0.
5. ∂ 2φ

∂x2 = ∂ 2φ
∂ t2 .

6. ẍ−3ẋ+ x = 2e2t sin t.
7. ẍ+ et ẋ + sin(5)x = 0.
8. tẍ+ tet ẋ + t sin(5)x = sin t.
9. ẍ+ 3ẋ+ πx = e23t t4 + t2 sin(t).

10. ẍ+ 3ẋ+ πx =
(

e23t
)

/t4 + t2 sin(t).

3.29. Table 3.1 contains 27 differential equations and Figure 3.6 contains plots of
27 different solutions. Each plot has three solutions, except the ones in the last row
which have two and one solution, respectively. The plots are the solution x(t) versus
t. Match each equation with the corresponding plot. It is possible to do this by
solving only six equations! In order to clearly communicate your answer, sketch
each of the plots by hand and indicate which equation goes with which solution.
On your sketch, indicate the feature(s) of the solution that were the basis for your
conclusion.

3.30. Determine the solution to t + xẋet = 0, where x(0) = 1.
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A B C

1
ẍ+8ẋ +4x = sint

x(0) = 1, ẋ(0) = 0

ẋ = −5x

x(0) = 1

ẍ+ ẋ+4x = 0

x(0) = 1, ẋ(0) = 0

2
ẋ+3x = 1

x(0) = 1

ẍ + x = 0

x(0) = 1, ẋ(0) = 0

ẍ+
1
2

ẋ+4x = 0

x(0) = 1, ẋ(0) = 0

3
xẋe2t − t = 0

x(0) = 1

ẍ +8ẋ+4x = sin2t

x(0) = 1, ẋ(0) = 0

ẋ+ x = 1

x(0) = 1

4
ẋ−0.1x = 0

x(0) = 1

ẋ = −5x+1

x(0) = 1

ẋ+(t −0.1)x = 0

x(0) = 1

5
ẍ +4x = sint

x(0) = 1, ẋ(0) = 0
ẋ +(t −1)x = 0

x(0) = 1

xẋe3t − t = 0

x(0) = 1

6
ẋ = 0.5x

x(0) = 1

ẍ+4x = sin2t

x(0) = 1, ẋ(0) = 0

ẍ+3x = 0

x(0) = 1, ẋ(0) = 0

7
ẋ− x = 0

x(0) = 1

ẋ+ x = 0

x(0) = 1

ẍ+2ẋ+4x = 0

x(0) = 1, ẋ(0) = 0

8
xẋet − t = 0

x(0) = 1

ẍ +4x = sin1.9t

x(0) = 1, ẋ(0) = 0

ẍ+2x = 0

x(0) = 1, ẋ(0) = 0

9
ẋ+(t −0.5)x = 0

x(0) = 1

ẋ +3x = 0

x(0) = 1

ẍ+0.2ẋ− x+ x3 = 0.3sint

x(0) = 1, ẋ(0) = 0

Table 3.1 Differential equations for Exercise 3.29
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Chapter 4
Single Degree of Freedom Vibrations

This chapter presents applications of second-order, ordinary, constant-coefficient
differential equations. The primary applications in mechanical engineering and re-
lated fields is that of vibrations analysis. Additionally, because a second-order sys-
tem is a canonical system for the design of some feedback controllers, this material
serves as important background for the design of feedback controllers, which are
considered in Chapter 10.

The study of single degree of freedom vibrations considers the analysis of prob-
lems of the type illustrated in Figure 4.1 and described by

mẍ + bẋ+ kx = f (t), (4.1)

where f (t) is an applied force. The term “single” refers to the fact that the system has
only one degree of freedom. This is in contrast with a multiple degree of freedom
system, an example of which is illustrated in Figure 6.1. This type of problem is
generally categorized according to whether it is

• Free or forced
• Damped or undamped

Sections 4.1 through 4.4 consider each of the four possible permutations of these
cases.

Fig. 4.1 Mechanical system described by
Equation (4.1).

m

k

b

x(t)

f (t)

This chapter is a complete study and analysis of the solutions to

123B. Goodwine, Engineering Differential Equations: Theory and Applications, 
DOI 10.1007/978-1-4419-7919-3_4, © Springer Science+Business Media, LLC 2011
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mẍ+ bẋ+ kx = f (t) ⇐⇒ ẍ + 2ζωnẋ+ ω2
n x =

f (t)
m

. (4.2)

The system is free if it is unforced; that is, f (t) = 0; otherwise it is forced. The
system is undamped if b = 0 (equivalently ζ = 0); otherwise, it is damped. Although
somewhat scattered throughout the example problems in Chapter 3, the quantities
of major importance in this chapter that have already been introduced include the
following.

1. The natural frequency: ωn =
√

k/m > 0

2. The damping ratio: ζ = b/
(

2
√

km
)

> 0

3. The damped natural frequency: ωd = ωn

√

1− ζ 2 (only relevant for 0 < ζ < 1)

4.1 Free Undamped Oscillations

This problem has been completely solved in Section 3.4.1 and particularly in Ex-
ample 3.9. Free and undamped implies that in Figure 4.1 b = 0 and f (t) = 0, or
equivalently, that the system is as illustrated in Figure 4.2, so the equation of motion
reduces to

mẍ+ kx = 0 ⇐⇒ ẍ+ ω2
n x = 0,

which, as presented previously, has a general solution

x(t) = c1cosωnt + c2sinωnt.

If the initial conditions are specified as

x(0) = x0, ẋ(0) = ẋ0,

then the solution is

x(t) = x0 cosωnt +
ẋ0

ωn
sinωnt. (4.3)

Fig. 4.2 Mechanical system with solution
described by Equation (4.4).

    m
k

x(t)

This equation is relatively simple to interpret and plot, however, it can be made
even simpler to analyze if the sine and cosine terms are combined. In particular,
equate the solution in Equation (4.3) with a phase-shifted cosine function
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x0cosωnt +
ẋ0

ωn
sin ωnt = ccos(ωnt + φ)

= c(cosφ cosωnt − sinφ sinωnt) .

Inasmuch as the set of functions {sinωnt,cosωnt} is linearly independent, the coef-
ficients of those functions must be equal. Hence,

ccosφ = x0, csinφ =
ẋ0

ωn
.

Normalizing the right hand side of each to have an absolute value less than or equal
to one and to provide a common value for the constant c gives

ccosφ =

√

x2
0 +

ẋ2
0

ω2
n

x0
√

x2
0 + ẋ2

0
ω2

n

, csinφ =

√

x2
0 +

ẋ2
0

ω2
n

ẋ0

ωn

√

x2
0 + ẋ2

0
ω2

n

.

Hence, solving for c and φ gives

c =

√

x2
0 +

(
ẋ0

ωn

)2

, φ = tan−1
(

− ẋ0

ωnx0

)

,

so an equivalent representation of the solution is

x(t) =

√

x2
0 +

(
ẋ0

ωn

)2

cos(ωnt + φ) . (4.4)

Remark 4.1. The function commonly denoted by tan−1 normally can not distinguish
between quadrants in the plane. Throughout this text the arc tangent function is al-
ways considered to be the one that is able to distinguish the quadrants.1 In particular,
tan−1 is used to denote the angle φ that satisfies

sinφ =
−ẋ0/ωn

√

x2
0 +

(
ẋ0
ωn

)2
, cosφ =

x0
√

x2
0 +

(
ẋ0
ωn

)2
.

Example 4.1. Figure 4.3 is a plot of the solution to

ẍ + ωnx = 0,

where x(0) = 1 and ẋ(0) = 1 for ωn = 1,2, and 3.
As is obvious from the form of the solution in Example 4.1, the solution is a

harmonic with a constant amplitude. As the natural frequency increases, the fre-

1 Numerical computational packages and programming languages often use the function atan2()
to denote this function.
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Fig. 4.3 Solutions to system in Example 4.1.

quency of the response increases. Also due to the ẋ0/ωn term in the amplitude of
the response, as ωn increases, the amplitude of the response decreases.

From the example and an analysis of the form of the solution in Equation (4.4),
one may conclude the following regarding the response of an undamped, free, single
degree of freedom system.

1. If ωn increases, the frequency of the response will increase.
2. If k increases, the frequency of the response will increase.
3. If m increases, the frequency of the response will decrease.
4. If |x0| increases, the magnitude of the response will increase.
5. If |ẋ0| increases, the magnitude of the response will increase.
6. If ẋ0 �= 0 and ωn increases, the magnitude of the response will decrease.

4.2 Harmonically Forced Undamped Vibrations

Now the problem considered in the previous section is modified to add a forcing
function acting on the mass as illustrated in Figure 4.4. The most common scenario
is the case when the forcing function, f (t) is a harmonic function (i.e., sines, cosines,
or combinations thereof).

Consider the case when f (t) = F cosωt, that is, a harmonic function of magni-
tude F and frequency ω . Note that there are now two frequencies appearing in the
problem; namely, the natural frequency ωn =

√

k/m and the frequency of the forc-
ing function ω . In general, they are not the same and care must be taken to observe
the subscript or absence thereof. The equation of motion for this system is
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Fig. 4.4 Single degree of freedom, un-
damped, forced oscillator.

m
k

x(t)

f (t)

mẍ+ kx = F cosωt ⇐⇒ ẍ+ ω2
n x =

F
m

cosωt. (4.5)

Clearly, this is an ordinary, second-order, constant-coefficient, linear, inhomo-
geneous differential equation; furthermore, due to the form of the inhomogeneous
term, the method of undetermined coefficients is probably the most expedient solu-
tion method. From Section 4.1, the homogeneous solution is

xh(t) = c1cosωnt + c2sinωnt.

Hence, for undetermined coefficients, assume

xp(t) = Acosωt + Bsinωt,

as long as ω �= ωn! The special case where ω = ωn, which requires

xp(t) = t (Acosωt + Bsinωt) ,

is considered subsequently.
Differentiating xp and substituting gives

A =
F

m(ω2
n −ω2)

, B = 0,

so a general solution to Equation (4.5) is

x(t) = c1 cosωnt + c2 sinωnt +
F

m(ω2
n −ω2)

cosωt. (4.6)

If the initial conditions are specified as x(0) = x0 and ẋ(0) = ẋ0, then a quick
calculation gives

c1 = x0 − F
m(ω2

n −ω2)
, c2 =

ẋ0

ωn
,

and hence the solution to the initial value problem is

x(t) =
(

x0 − F
m(ω2

n −ω2)

)

cosωnt +
ẋ0

ωn
sinωnt +

F
m(ω2

n −ω2)
cosωt. (4.7)
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To put Equation (4.7) into a form more amenable to analysis, define the static
deflection to be the amount the spring would displace due to a static force of magni-
tude F , which is, δ = F/k. Using this, and defining the frequency ratio as r = ω/ωn

gives

x(t) =
(

x0 − F
mω2

n (1− r2)

)

cosωnt +
ẋ0

ωn
sinωnt +

F
mω2

n (1− r2)
cosωt,

or

x(t) =
(

x0 − δ
1− r2

)

cosωnt +
ẋ

ωn
sinωnt +

δ
1− r2 cosωt. (4.8)

This solution can be considered in two parts. The first two terms depend on the
natural frequency and are from the homogeneous solution. The third term depends
on the forcing frequency and is from the particular solution. The effect of the mag-
nitude and frequency of the forcing also appears in the coefficient δ/

(

1− r2
)

. If the
magnitude of the force is increased, δ increases proportionally and the two corre-
sponding coefficients increase in magnitude.

If the frequency of the forcing is changed, the frequency of the cosωt terms
correspondingly changes which changes the frequency of that component of the so-
lution. However, the magnitude of two of the coefficients also changes. The amount
by which the frequency affects these coefficients is defined by the magnification
factor

M =
1

1−
(

ω
ωn

)2 =
1

1− r2 .

The magnification factor is the amount by which the static deflection is either am-
plified or attenuated in the solution and is a function of the ratio between the forcing
frequency of the system and the natural frequency. A plot of the magnification factor
versus frequency ratio is illustrated in Figure 4.5. Note that the case where r = 1 is
seemingly problematic; however, recall that is the case where ω = ωn, which has a
different solution. Also observe that for frequency ratios greater than one, the mag-
nification ratio is negative, which represents the fact that the particular solution is
out of phase with the forcing function.

Note that the solution, in Equation (4.8) depends upon

1. The natural frequency ωn,
2. The forcing frequency ω ,
3. The static deflection δ , and,
4. The initial conditions x0 and ẋ0.

Note, however, that the initial conditions as well as the static deflection simply scale
individual terms of the solution. Therefore, the most interesting feature of the solu-
tion is its dependence on the forcing and natural frequencies, which are explored in
the following example.

Example 4.2. Plot the solution for
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ẍ + ω2
n x =

F
m

cosωt

where x(0) = 0, ẋ(0) = 0 and ω � ωn; that is, the forcing frequency is much smaller
than the natural frequency. With zero initial conditions, the solution is

x(t) =
δ

1− r2 (cosωt − cosωnt)

and if ω � ωn, r ≈ 0; hence,

x(t) ≈ δ (cosωt − cosωnt) .

Thus, the solution will vary in magnitude between 0 and 2δ depending upon whether
ω and ωn are in phase or out of phase.

A plot of the solution where δ = 1, ω = 0.1, and ωn = 5 is illustrated in Fig-
ure 4.6. Note that because the two frequencies are well separated, the solution is
clearly the superposition of two cosine functions, one relatively fast and the other
relatively slow.

Example 4.3. Now consider the other extreme where ω � ωn; that is, the system is
forced at a frequency that is much greater than the natural frequency. In this case,
the frequency ratio will become very large and the coefficient of the solution

δ
1− r2 ≈− δ

r2

will be very small.
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A plot of the solution where δ = 1, ω = 5, and ωn = 0.1 is illustrated in Fig-
ure 4.7. At first glance this appears similar to the response when ω � ωn; however,
note the scale on the graph. The response is still the sum of two cosine functions but
the magnitude of the response is much smaller than in the case where ω � ωn

Example 4.4. Yet another interesting feature of this solution is apparent when one
considers the relative phase between the forcing function F cosωt and the response
of the system. Just for the fun of it, let us assume that

x(0) = − δ
1− r2 , ẋ(0) = 0.

The initial conditions were picked so that the terms in the solution due to the homo-
geneous solutions are zero and the complete solution is the same as the particular
solution; namely,

x(t) =
δ

1− r2 cosωt.

Recall that the forcing function is

f (t) = F cosωt.

The response x(t) and forcing function f (t) are plotted together for the two cases
where ω < ωn (r = 0.5) and ω > ωn (r = 1.5) in Figures 4.8 and 4.9, respectively.
In both figures, δ = 1.
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Fig. 4.8 Forcing function and particular solution in phase (ω < ωn).
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Fig. 4.9 Forcing function and particular solution out of phase (ω > ωn).

The interesting feature of these solutions is that the response of the system is
in phase with the forcing function when ω < ωn and out of phase with the forcing
function when ω > ωn. The latter is the somewhat counterintuitive case when the
force is always directed in the opposite direction of the velocity of the mass.

4.2.1 Resonance

This section deals with the case where the forcing frequency and natural frequency
are equal. This is known as resonance and a quick look at Figure 4.5 would give
the impression that unbounded solutions are a possibility, which is the case. In ad-
dition, resonance corresponds to the physically intuitive situation wherein a system
is forced at the frequency at which it is most amenable.

For

ẍ+ ω2
n x =

F
m

cosωt, (4.9)

where x(0) = x0, ẋ(0) = ẋ0, and ω = ωn, it is clearly the case that the assumed form
of the particular solution is the same as the homogeneous solutions because

xh(t) = c1cosωnt + c2sinωnt.

So, the correct assumption is

xp(t) = t (Acosωnt + Bsinωnt) .
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Skipping the mundane details of substituting and equating coefficients, the solution
is

x(t) = x0 cosωnt +
ẋ0

ωn
sinωnt +

δωnt
2

sinωnt. (4.10)

The part of the solution that is the particular solution (the second sinωnt term) is
multiplied by t, thus it grows linearly in time. A specific example follows, but the
general point that the solution grows with time is the fundamentally important point
regarding resonance.

Example 4.5. Solve
ẍ+ x = cost,

where x(0) = 0, ẋ(0) = 0 and plot the solution versus time.
This equation is exactly of the form of Equation (4.9) with ωn = F = m = 1,

therefore simply substituting those values into Equation (4.10) gives the solution

x(t) =
t
2

sin t,

which is plotted in Figure 4.10.
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Fig. 4.10 Solution for Example 4.5.
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4.2.2 Near Resonance

Obviously in physical situations, it is impossible to have exactly ω = ωn, so the
question regarding the nature of the solution when ω ≈ ωn and its relationship to
the resonance solution naturally arises.

Consider

ẍ+ ω2
n x =

F
m

cosωt, (4.11)

where x(0) = x0, ẋ(0) = ẋ0, and ω ≈ ωn. Because ω �= ωn, the solution is not from
Equation (4.10) but rather is from Equation (4.7),

x(t) =
(

x0 − F
m(ω2

n −ω2)

)

cosωnt +
ẋ0

ωn
sinωnt +

F
m(ω2

n −ω2)
cosωt.

If ω ≈ ωn, then the two coefficients with (ωn −ω) in the denominator will be very
large. Rewriting the solution by grouping those two terms gives

x(t) = x0 cosωnt +
ẋ0

ωn
sinωnt +

F
m(ω2

n −ω2)
(cosωt − cosωnt) . (4.12)

Note that the terms in this solution and in the resonance solution in Equa-
tion (4.10) that depend on the initial conditions are identical. In the resonance case,
the solution grows large because of the t term multiplying the sinωt function in the
solution. In the near resonance case, the solution grows large because of the large
coefficient, and the “growth” of the solution comes about because of the cosωt and
cosωnt terms shifting out of phase as t increases. To illustrate this fact, consider the
following example.

Example 4.6. Solve
ẍ+ x = cos1.05t,

where x(0) = 0, ẋ(0) = 0 and plot the solution versus time.
The solution is of the form of Equation (4.12) with ωn = 1, F/m = 1, and ω =

1.05, and is given by substitution into Equation (4.12)

x(t) =
1

(1− (1.05)2)
(cos1.05t − cost) .

A plot of this solution for 0 < t < 50 is illustrated in Figure 4.11. Note that, at
least to the extent possible by casual observation, it appears to be the same as the
solution illustrated for resonance in Figure 4.10.

Plotting the solution for a longer period of time, 0 < t < 500, as illustrated in
Figure 4.12, highlights the main difference. The solution grows because the cosine
terms slowly go out of phase as time increases, therefore they eventually must go
back in phase, resulting in a decrease in magnitude of the solution, which is in
contrast to the resonance solution which always grows with time. This phenomenon
is called beating.
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Fig. 4.11 Solution for Example 4.6 near resonance for 0 < t < 50.
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Fig. 4.12 Solution for Example 4.6 for 0 < t < 500.
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4.2.3 Vibrating Base

Now consider the problem of a mass coupled by a spring to a vibrating base, as
illustrated in Figure 4.13. In this problem the base of the system, illustrated by the
thin bar, moves with a prescribed motion z(t). The focus of the analysis is on the
resulting motion of the mass x(t) with particular emphasis on the dependence of this
motion on the system parameters m and k, as well as the nature of the base motion
z(t).

Fig. 4.13 Undamped vibrating base
system.

m

k

z(t)

x(t)

Using Newton’s law, the equation of motion for this system is

mẍ+ kx = kz(t).

or
ẍ + ω2

n x = ω2
n z(t).

Thus, the only variables of concern in the problem are the natural frequency and
the nature of z(t). For simplicity, assume that z(t) is harmonic, particularly, z(t) =
Z cosωt, so that

ẍ+ ω2
n x = Zω2

n cosωt.

Clearly, the homogeneous solution is

xh(t) = c1cosωnt + c2sinωnt.

Assuming that ω �= ωn and

xp(t) = Acosωt + Bsinωt,

substituting and equating coefficients gives

xp(t) =
Zω2

n

ω2
n −ω2 cosωt
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so that

x(t) = c1 cosωnt + c2 sinωnt +
Z

1− r2 cosωt,

where, as before, r = ω/ωn.
The coefficient of the part of the solution which is the particular solution is ex-

actly of the form of Equation (4.8), therefore the analysis is exactly the same as the
undamped, forced oscillation case, but where the static deflection is replaced by the
magnitude of the base motion. In this case, the magnification factor,

M =
1

1− r2

has an even more direct interpretation in that it is the magnification of the base
motion in the response of the mass motion. Referring back to Figure 4.5, M has a
value of 1 at r = 0, increases to an unbounded value at r = 1, decreases to M = 1
at r =

√
2 and asymptotically approaches zero as r gets large. Hence, the resonance

analysis is similar to that of the simple forced case. The smallest magnification
occurs at very high frequencies and for frequency ratios greater than one, the motion
of the base and mass are out of phase.

4.3 Free Damped Vibrations

This section considers the case of damped oscillations with no forcing function, that
is, the solution to

ẍ + 2ζωnẋ + ω2
n x = 0

where x(0) = x0, ẋ(0) = ẋ0 and ζ �= 0.
Because this is a constant-coefficient, linear, homogeneous, second-order ordi-

nary differential equation, it has exponential solutions. The resulting characteristic
equation is

λ 2 + 2ζωnλ + ω2
n = 0

with roots
λ = −ζωn ±ωn

√

ζ 2 −1.

The nature of the solution clearly depends upon whether ζ is less than one, equal to
one, or greater than one.

4.3.1 Damping Ratio Greater than One

In this case, the solution is

x(t) = c1e

(

−ζωn+ωn

√
ζ 2−1

)

t + c2e

(

−ζωn−ωn

√
ζ 2−1

)

t
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and evaluating the initial conditions gives

x(0) = c1 + c2 = x0

and

ẋ(0) =
(

−ζωn + ωn

√

ζ 2 −1
)

c1 +
(

−ζωn −ωn

√

ζ 2 −1
)

c2 = ẋ0

which gives

x(t) =
ẋ0 + x0ωn

(

ζ +
√

ζ 2 −1
)

2ωn

√

ζ 2 −1
e

(

−ζωn+ωn

√
ζ 2−1

)

t

−
ẋ0 − x0ωn

(

ζ +
√

ζ 2 −1
)

2ωn

√

ζ 2 −1
e

(

−ζωn−ωn

√
ζ 2−1

)

t
.

Figure 4.14 illustrates the response for ωn = 1, x(0) = 1, and ẋ(0) = 0 for various
values of ζ .
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Fig. 4.14 Solution of second-order system for various values of ζ .
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4.3.2 Damping Ratio Equal to One

When the damping ratio is equal to one there are repeated roots of the characteristic
equation

λ = −ωn

so the general solution to the homogeneous equation is

x(t) = c1e−ωnt + c2te−ωnt .

Inasmuch as the exponential decays faster than t grows, this solution approaches
zero as t gets large.

4.3.3 Damping Ratio Less than One

When the damping ratio is less than one, the characteristic equation has complex
roots

λ = −ζωn ±ωn

√

ζ 2 −1 = −ζωn ± iωn

√

1− ζ 2

so the general solution to the differential equation is

x(t) = e−ζωnt
(

c1 cosωn

√

1− ζ 2t + c2 sinωn

√

1− ζ 2t
)

. (4.13)

Figure 4.15 illustrates the response for ωn = 1, x(0) = 1, and ẋ(0) = 0 for various
values of ζ .

4.4 Harmonically Forced Damped Vibrations

In this section we consider the system illustrated in Figure 4.1 with the equation
of motion given by Equation (4.2) where the applied force f (t) is assumed to be
harmonic. For the rest of this section we assume the forcing function is of the form

f (t) = F cosωt.

Confirming the details that the solution for a sine function of a combination of sines
and cosines is left as an exercise.

For the system

ẍ + 2ζωnx + ω2
n x =

F
m

cosωt (4.14)

Section 4.3 provides all the possible cases for the homogeneous solution.
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Fig. 4.15 Solution of second-order system for various values of ζ .

Using the method of undetermined coefficients, and consequently assuming a
particular solution of the form

xp(t) = Acosωt + Bsinωt

gives

ẋp = −Aω sinωt + Bω cosωt, ẍp = −Aω2 cosωt −Bω2 sinωt

and substituting into Equation (4.14) gives

(−Aω2 cosωt −Bω2 sinωt
)

+ 2ζωn (−Aω sinωt + Bω cosωt)

+ ω2
n (Acosωt + Bsinωt) =

F
m

cosωt.

A bit of algebra gives A and B so that

xp(t) =
F
m

(

ω2
n −ω2

(ω2
n −ω2)2 +(2ζωωn)

2 cosωt +
2ζωωn

(ω2
n −ω2)2 +(2ζωωn)

2 sin ωt

)

.

(4.15)
Observe that as long as ζ �= 0 the solution given by Equation (4.15) is correct, even
in the case of resonance when ω = ωn. Furthermore, when ζ = 0 this reduces to the
undamped forced solution as long as ω �= ωn.

As before, we convert the solution to the form of a single trigonometric function
with a phase shift; for example,
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xp(t) = ccos(ωt + φ) ,

where the magnitude of the response c and the phase shift φ must be determined.
Note that, reverting back to the coefficients A and B

xp(t) = Acosωt + Bsinωt

=
√

A2 + B2

(
A√

A2 + B2
cosωt +

B√
A2 + B2

sin ωt

)

.

The coefficients of the sine and cosine terms must have values in the interval [−1,1],
thus we can write this as

xp(t) = c(cosφ cosωt − sinφ sinωt) = ccos(ωt + φ) ,

where

c =
√

A2 + B2, φ = tan−1
(

−B
A

)

,

or, using the actual expressions for A and B

c =
F
m

√

1

(ω2
n −ω2)2 +(2ζωnω)2 , φ = tan−1

(

− 2ζωωn

ω2
n −ω2

)

.

So, that bit of work resulted in

xp(t) =
F
m

√

1

(ω2
n −ω2)2 +(2ζωnω)2 cos(ωt + φ) ,

where φ is given as above.
A final step, that may not be obvious a priori is to factor an ω2

n out of the denom-
inator of c, which gives

xp(t) =
F

ω2
n m

√
√
√
√

1
(

1− ω2

ω2
n

)2
+
(

2ζ ω
ωn

)2 cos(ωt + φ) .

Note that
F

ω2
n m

=
F
k

= δ ,

which gives

xp(t) = δ
√
√
√
√

1
(

1− ω2

ω2
n

)2
+
(

2ζ ω
ωn

)2 cos(ωt + φ)
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which is a complete description of the particular solution in terms of the static de-
flection, the ratio of the forcing frequency to the natural frequency and the damping
ratio. The quantity

M =

√
√
√
√

1
(

1− ω2

ω2
n

)2
+
(

2ζ ω
ωn

)2

can be interpreted to represent the amount that the static deflection is amplified or
attenuated in the response of the system due to the frequency of the forcing function.
The phase shift can similarly be expressed in terms of the frequency ratio by dividing
the numerator and denominator by ω2

n giving

φ = tan−1

⎛

⎝− 2ζ ω
ωn

1− ω2

ω2
n

⎞

⎠ .

We may gain insight into the nature of the response by considering the nature
of the dependence of M and φ on the frequency ratio ω/ωn and the damping ratio,
ζ . A plot of M as a function of the frequency ratio for different damping ratios is
illustrated in Figure 4.16 and a plot of the phase shift φ as a function of the frequency
ratio for different damping ratios is illustrated in Figure 4.17.
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Fig. 4.16 Magnification of static deflection for various damping ratios versus frequency ratio.

Up to now this section has considered only the particular solution to Equa-
tion (4.14). However, as long as the damping ratio is not zero, the homogeneous
solution will decay and the above analysis of M and φ are appropriate to consider
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Fig. 4.17 Phase shift between response and forcing function for various damping ratios versus
frequency ratio.

for the steady-state solution, that is, after the transient response represented by the
homogeneous solution has become negligible.

4.4.1 Resonance

Resonance when the damping ratio is greater than zero does not require a different
solution method. If damping is light, however, the magnitude of the response may
be large; however, unlike the undamped case, it does not grow unbounded.

4.4.2 Vibrating Base

In this section we consider an example that is illustrative of the operation of a sus-
pension system.

Example 4.7. Consider the system illustrated in Figure 4.18. Assume that a vehicle
is driving over a road with constant velocity v and that the surface of the road is
such that the center of the wheel follows a sinusoidal path with wavelength λ and
height h. Determine the magnitude of the steady-state motion of the car body (the
mass) as well as the force transmitted to the mass as a function of the velocity of
the vehicle. For this problem we assume there is no gravity and that x is measured
from the unstretched position of the spring. It is left as an exercise to show that if
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there is gravity if x is measured from the equilibrium position (the amount of static
deflection), the equations of motion are unchanged.

Fig. 4.18 Model suspension system.

m

b k

λ

h

v

x(t)

y(t)

The first task is to determine the vertical motion of the wheel. Because the ve-
locity of the wheel is v, the horizontal position of the wheel at time t is given by
vt. Because the wavelength of the oscillations of the road surface is λ , that means
that the argument to the sine function will need to go from zero to 2π in the amount
of time it takes the vehicle to travel the distance λ . Hence, the time to travel λ is
T = λ/v is the period and the vertical motion of the wheel is given by

y(t) = hsin

(
2π
T

t + φ̂
)

= hsin

(
2πvt

λ
+ φ̂

)

(4.16)

where φ̂ is some unknown phase angle (we do not know where on the road the car
was at t = 0, and we show subsequently that if all we care about is the steady-state
behavior, then it does not matter).

To use Newton’s law to derive the equations of motion of the system, we must
draw a free body diagram of the mass, as illustrated in Figure 4.19. The only forces
acting on the mass are from the damper and spring in the suspension. The force
of the spring is proportional to the amount it is compressed, which in this case is
y(t)− x(t). Similarly, the force from the damper is proportional to the rate at which
it is being compressed, which is ẏ(t)− ẋ(t).

Hence, using Newton’s law, we have

b(ẏ− ẋ)+ k(y− x) = mẍ,

or, substituting for y(t) from Equation (4.16) and rearranging gives



4.4 Harmonically Forced Damped Vibrations 145

Fig. 4.19 Free body diagram for mass in
suspension problem.

k (y(t)− x(t)) b(ẏ(t)− ẋ(t))

m

mẍ + bẋ+ kx =
2πvhb

λ
cos

(
2πvt

λ
+ φ̂

)

+ khsin

(
2πvt

λ
+ φ̂

)

.

Following the procedure used several times previously, we can rewrite the right-
hand side to transform the equation into

mẍ+ bẋ+ kx =

√
(

2πvhb
λ

)2

+(kh)2cos

(
2πvt

λ
+ φ̂ + φ

)

,

where

φ = tan−1
(

−2πvb
λ k

)

.

Dividing both sides by m and letting φ = φ̂ + φ gives

ẍ + 2ζωnẋ + ω2
n x =

√
(

2πvhb
λ m

)2

+
(

kh
m

)2

cos

(
2πvt

λ
+ φ

)

.

Finally, to simplify writing it, let

ω =
2πv
λ

(so ω is just proportional to v) which gives

ẍ + 2ζωnẋ + ω2
n x =

h
m

√

(ωb)2 + k2 cos(ωt + φ) .

It may be tempting to think that we have already solved this problem inasmuch
as this looks a lot like Equation (4.14); however, there is one critical distinction. In
Equation (4.14) the coefficient of the forcing term was constant. In this problem ω
appears in the coefficient of the forcing term. Let us see what effect, if any, this has.

Assuming a particular solution of the form

xp(t) = Acos(ωt + φ)+ Bsin(ωt + φ)
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and doing all the usual work gives

A =
h
m

√

(ωb)2 + k2

(

ω2
n −ω2

(ω2
n −ω2)2 +(2ζωnω)2

)

B =
h
m

√

(ωb)2 + k2

(

2ζωnω
(ω2

n −ω2)2 +(2ζωnω)2

)

.

Examining the coefficients of the fractions and noting the k and m, one might be
inclined to try to convert those to ωn and get the b term expressed somehow as ζ . In
fact,

h
m

√

(ωb)2 + k2 = h

√
(

ωb
m

)2

+
(

k
m

)2

= h
√

(2ζωnω)2 +(ω2
n )2

= hω2
n

√
(

2ζ
ω
ωn

)2

+ 1.

Dividing the numerator of both A and B by ω2
n and the denominator by ω4

n , and
while we are at it, computing

√
A2 + B2 gives the final answer

xp(t) = h

√
√
√
√
√
√

1 +
(

2ζ ω
ωn

)2

(

1− ω2

ω2
n

)2
+
(

2ζ ω
ωn

)2 cos(ωt + φ + ψ) ,

where

ψ = tan−1

⎛

⎝− 2ζ ω
ωn

1−
(

ω2

ω2
n

)

⎞

⎠ .

Note that the magnitude of the variation in the road height h is scaled by the term
in the square root. In other words, the magnitude of the oscillation of the mass is the
magnitude of the oscillation of the road times a factor that we call the displacement
transmissibility. The displacement transmissibility tells how much the oscillation of
the road is transmitted to result in an oscillation of the mass. Plotting the displace-
ment transmissibility as a function of the frequency ratio for various damping ratios
is probably a good idea, so it appears in Figure 4.20.

Note that Figures 4.16 and 4.20 are not identical. In particular, in the latter case all
the curves have the value of one at a frequency ratio of

√
2. Also, for high frequency

ratios, corresponding to high velocities, a low damping ratio is preferable. This is
in contrast to the magnitude factor for an applied force where it is always the case
that a larger damping ratio produces a smaller magnitude response, as should be
apparent from Figure 4.16.
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Fig. 4.20 Displacement transmissibility as a function of frequency ratio and damping ratio.

4.5 System Identification

This section considers the problem of system identification which is the problem
of determining the differential equation(s) governing a system based upon experi-
mental data rather than first principles. In principle, it should always be possible to
use first principles to determine the governing equations for a given system; how-
ever, in practice this is not always the case. First, many engineering systems may
simply be too complicated to reduce to a collection of interconnected systems that
can be individually modeled. Second, even if the components may be individually
modeled, the interaction among them may not be. Finally, even if both of the above
are possible, the approximations involved in modeling each individual component
may combine in a manner that make the overall model a poor representation of the
actual system. Hence, if it is the case that some data are available regarding how the
system behaves, it makes sense to use these data to either validate the given model
or as a basis for modeling the system.

Consider the problem of modeling the system illustrated in Figure 4.21 where
it is the case that the parameters for the model, m, k and b are not known, but
what is known is that the system responds in a particular manner as illustrated in
Figure 4.22.

The system is governed by the differential equation

mẍ+ bẋ+ kx = 0, (4.17)

therefore at first it may seem like a simple matter to find m, b, and k to give a
response that looks like what is in the figure. In fact, attempting to do so by trial and
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Fig. 4.21 Mass–spring–damper system.
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Fig. 4.22 Response of a second-order system.

error is not too difficult. However, because the system is simple enough, we may
as well make the effort to at least be a bit more sophisticated about it in order to
save the time involved in a trial-and-error method and to gain some insight into the
problem at hand.

First, note that there will actually be an infinite number of sets of values for m,
b, and k that give the same response. This is because of the fact that if x(t) satisfied
Equation (4.17) it will also satisfy a scaled version of the equation such as

αmẍ + αbẋ+ αkx = 0,

or, in particular, it will also satisfy

ẍ + 2ζωnẋ + ω2
n x = 0.

Because we may arbitrarily scale the equation without changing the solution, it
seems reasonable to conclude that we may only find at most two of the three pa-
rameters. In fact this is the case, as outlined subsequently, and hence it makes sense
to attempt to find the natural frequency ωn and the damping ratio ζ which are the



4.5 System Identification 149

parameters in the canonical form of the second-order linear oscillation equation.
Of course, once these two parameters are determined, it will be possible to use
their definitions to find all the possible combinations of m, b, and k that are equiva-
lent. Furthermore, if one of the parameters can be determined using an independent
method, then the unique set of three parameters may be determined.

The system is characterized by decaying oscillations, thus we know that 0 < ζ <
1. Hence, the form of the solution to

ẍ + 2ζωnẋ + ω2
n x = 0,

where x(0) = x0 and ẋ(0) = ẋ0 that we need is given by Equation (4.13) which is

x(t) = e−ζωnt
(

c1cosωn

√

1− ζ 2t + c2sinωn

√

1− ζ 2t
)

= e−ζωnt (c1cosωdt + c2sinωdt) . (4.18)

Inspecting Equation (4.18) indicates that it should be straightforward to deter-
mine ωd from simply inspecting the period of oscillation in the figure, as is illus-
trated in Figure 4.23. If the period is given by T , then the relationship between the
frequency and period is simply ωdT = 2π , which gives

ωd =
2π
T

. (4.19)
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Fig. 4.23 Response of a second-order system.
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Another quantity that is easy to determine from the response of the system is
the ratio of the magnitudes of two successive peaks in the response. Using Equa-
tion (4.18) we have

x(t + T)
x(t)

=
e−ζωn(t+T ) (c1cosωd (t + T)+ c2sinωd (t + T))

e−ζωnt (c1cosωdt + c2sinωdt)
.

However, since the period of oscillation is T , then the sine and cosine terms in the
ratio are the same, so

x(t + T)
x(t)

=
e−ζωn(t+T )

e−ζωnt
= e−ζωnT = e(−ζωdT )/

√
1−ζ 2

= e(−2πζ )/
√

1−ζ 2
. (4.20)

Hence, the ratio of the magnitude of two successive peaks is a function of the damp-
ing ratio only. Simply reading the values of two successive peaks, computing their
ratio, and then solving Equation (4.20) for the damping ratio is all that is necessary.
Observe that in the previous computations t was not specified; hence, it does not
matter which peaks are used as long as they are successive peaks.

Because the study of linear oscillations is a classical subject, we take it one step
further to make the presentation consistent with the usual treatment. Taking the nat-
ural logarithm of both sides of Equation (4.20) gives

δ̂ = ln

(
x(t + T )

x(t)

)

= lnx(t + T)− lnx(t) =
−2πζ
√

1− ζ 2
.

This quantity δ̂ is called the logarithmic decrement and Figure 4.24 is a plot of
the logarithmic decrement versus damping ratio. Note for small ζ the logarithmic
decrement is approximately linearly related to ζ and is given by

δ̂ ≈−2πζ .

Example 4.8. Find the damping ratio and natural frequency for the response illus-
trated in Figure 4.22. Referring to the figure, T ≈ 3. Hence, ωd ≈ 2π/3. Also the
value of x(t) at the second peak is approximately 0.7 and at the third peak it is
approximately 0.4. Hence

δ̂ ≈ ln

(
0.4
0.7

)

= −.56.

Because that is a rather small value to use in Figure 4.24 (corresponding to a small
value of ζ ) we use the formula for the approximation for small ζ , which gives

ζ ≈− δ
2π

= −−.56
2π

= 0.089.

Using this value gives
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Fig. 4.24 Plot of the logarithmic decrement versus damping ratio.

ωn =
ωd

√

1− ζ 2
= 2.1.

In fact, the plot was generated using ζ = 0.1 and ωn = 2, so the approximations
involved in reading the values from the graphs and for the linear approximation for
the relationship between the damping ratio and logarithmic decrement were really
quite good.

4.6 Exercises

Several of the following exercises refer to the mass–spring–damper system illus-
trated in Figure 4.25. Unless otherwise indicated, assume that there is no gravity
and that x = 0 at the unstretched position of the spring.

4.1. Consider the system illustrated in Figure 4.25. Assume that b = 0 and use either
undetermined coefficients or variation of parameters to determine the solution to
ẍ + ω2

n x = F/msinωt where x(0) = x0 and ẋ(0) = ẋ0. Does it matter whether ω =
ωn? If so, be sure to consider both cases.

4.2. Write a computer program to determine an approximate numerical solution to
the system in Problem 4.1 for the case where m = 1, k = 4, F = 1, and ω = 1.99 or
ω = 2.0. Plot the solution for each case on the same graph and explain any signifi-
cant phenomena that you observe.

4.3. Consider the system illustrated in Figure 4.25.
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Fig. 4.25 Mass–spring–damper system.
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1. Determine the solution when b �= 0 and F(t) = F sinωt, x(0) = x0, and ẋ(0) = ẋ0.
Does it matter if 0 < ζ < 1, ζ = 1, or ζ > 1? If so, be sure to determine the
solution for each case.

2. Recall that for the case of undamped forced oscillations, it was necessary to
determine a separate form of the solution in the case of resonance. Is the form of
the solution determined in Part 1 the same if ω = ωn or ω = ωd? If so, be sure to
determine those solutions as well.

3. Determine the magnification factor for the steady-state solution in Part 1 and plot
it for ζ = 0.2,0.4,0.6, and 0.8 versus ω/ωn.

4. Determine the phase shift between the forcing function and the steady-state re-
sponse in Part 1 and plot it for ζ = 0.2,0.4,0.6, and 0.8. Be sure to indicate
what form you assumed for the particular solution, for example, cos(ωt + φ) or
sin(ωt −φ), and so on, because the phase may be different depending on the
form of the solution you used.

4.4. Use the figures you plotted for Problem 4.3 to determine good approximations
to the steady-state solutions for the following equations.

1. ẍ+ 2ẋ+ 25x = 3sin2t.
2. ẍ+ 2ẋ+ 25x = 3sin5t.
3. ẍ+ 2ẋ+ 25x = 3sin10t.
4. ẍ+ 4ẋ+ 25x = 3sin10t.
5. ẍ+ 4ẋ+ 49x = 3sin10t.
6. ẍ+ 2ẋ+ 36x = 6sin20t.

4.5. Consider the system illustrated in Figure 4.25. If 0 < ζ < 1 and

F(t) = Fc cosωct + Fs sinωst

is it possible to combine your answer from Exercise 4.3 and the solution in Equa-
tion (4.15) to obtain the steady-state solution, or is it necessary to work out the
whole thing again? In either case, provide the answer and justify it.

4.6. Consider
ẍ + 4ẋ+ 16x = cos4t + cos4.2t.
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If we are only interested in the steady-state response, is it valid to write

xss = δ1M1cos(ωt + φ1)+ δ2M2cos(ωt + φ2) ,

where M1, M2, φ1, and φ2 are determined from the appropriate graphs? How would
you determine δ1 and δ2? Demonstrate whether it works by picking some initial
conditions and writing a computer program to determine an approximate numeri-
cal solution and comparing it to the combination of the approximate steady-state
solutions determined from the graphs.

4.7. Consider the system illustrated in Figure 4.25 and let m = 1, b = 1, k = 1,
and F(t) = 3cos2t. Use Figures 4.16 and 4.17 to determine a good approximation
for the steady-state response of the system. Will the magnitude of the steady state
response increase or decrease if the forcing frequency ω = 2 is increased?

4.8. Write a computer program to determine an approximate numerical solution to
the system in Part 1 of Problem 4.4 with x(0) = 0 and ẋ(0) = 0. Plot the approximate
solution as well as the solution determined in Problem 4.4 and compare the results.
Explain any significant differences.

4.9. Consider the system illustrated in Figure 4.25 and assume that there is gravity.

1. Determine the equation of motion for the system when x = 0 at the unstretched
position of the spring.

2. Determine the equation of motion for the system when x = 0 at the equilibrium
position. In other words, x = 0 at the position when the spring is stretched by an
amount due to the weight of the mass.

4.10. Consider the system illustrated in Figure 4.25 with F(t) = 0 (damped, un-
forced). Let ωn = 1, x(0) = 1, ẋ(0) = 0, and plot the solution for ζ = 0.0, 0.2, 0.4,
0.6, 0.8, and 1.0 for t = 0 to t = 10. Plot all the solutions on the same plot. Explain
the effect of increasing the damping ratio.

4.11. Write a computer program to determine an approximate numerical solution
for

mẍ+ bẋ+ kx = F sinωt,

when ωn = 2, ζ = 0.3, m = 1, ω = 1.5, F = 5, x(0) = 1, ẋ(0) = 1.

1. On the same plot, plot the numerical solution and the solution for these values
substituted into the closed-form solution from Exercise 4.3.

2. Vary the step size for the numerical solution to determine the largest step size
that gives a reasonable approximation to the exact solution.

3. Use the figures from Exercise 4.3 to determine a good approximation for the
steady-state solution and plot the solution on the same graph. At approximately
what time does the transient solution decay sufficiently so that the steady-state
solution is approximately equal to the exact solution?
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4.12. Figure 4.20 plots the magnitude of the steady-state oscillation of a mass sub-
jected to a vibrating base. For some applications, such as an automotive suspension,
the magnitude of the response is not the critical factor, but rather the net force to
which the mass is subjected.

1. Determine an expression for the force to which the mass illustrated in Figure 4.18
is subjected.

2. Manipulate the expression for the force so that it is in the form of

f = −khMf cos(ωt + φ) .

Explain the interpretation of the term Mf , which is called the force transmissi-
bility. Plot Mf as a function of ω/ωn for various damping ratios to make a plot
similar to Figure 4.20.

4.13. Use Figure 4.20 to determine the magnitude of the motion of the mass in
Figure 4.18 if k = 2, m = 2, b = 1, h = 0.25. Plot the magnitude of the motion
versus ω .

4.14. The system illustrated in Figure 4.26 is comprised of a board of length l with
uniform mass per unit length of ρ . It sits on top of two counter-rotating cylinders,
which are rotating with an angular velocity of ω in the directions indicated and
are separated by a distance l/2. You may assume that ω is large enough that the
points of contact between the board and cylinders are always slipping and that the
coefficient of dynamic friction between the board and cylinders is μ .

If the board is not centered on the two cylinders, then the normal force will be
greater on the side to which it is displaced because more of the weight of the board
will be supported on that side. For example, in the figure, the normal force between
the board and cylinder will be greater at the left cylinder, and this will cause a net
force to the right.

Let x denote the distance that the center of the board is displaced from the center
of the two cylinders, as is illustrated in the figure, and determine the differential
equation for this system. Solve it if x(0) = l/8 and ẋ(0) = 0.

μ μ

ω ω

ρ

x

g

l
2

l
2

l
2

Fig. 4.26 System for Exercise 4.14.
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4.15. Determine and plot the total energy versus time for an undamped mass–spring
system with m = 1, k = 9 subjected to a harmonic forcing function, f (t) = cos3t.
Determine and plot the total energy versus time for an undamped mass–spring sys-
tem with m = 1, k = 8 subjected to a harmonic forcing function, f (t) = cos3t. If the
energy is different, explain why the same forcing function acting on the same mass
can do a different amount of work in each case.

4.16. Find the motion of the mass illustrated in Figure 4.25 if m = 1, b = 2, k = 1,
x(0) = 0, ẋ(0)m = 0, and F(t) = cost + 4t.

4.17. The free response of a second-order system is illustrated in Figure 4.27. De-
termine the natural frequency and the damping ratio.
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0 5 10 15 20 25 30 35 40
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t

Fig. 4.27 System response for Exercise 4.17.

4.18. Add gravity to the suspension problem from Section 4.4.2 and determine the
velocity v, if any, at which the wheel would leave the road.

4.19. You are driving down a sinusoidally bumpy road in a vehicle that can be mod-
eled like the system illustrated in Figure 4.18.

• The distance between the peaks of the bumps is λ = 10 m.
• The mass of the vehicle and everything in/on it is m = 1000 kg.
• The spring constant in the suspension is k = 9000 N/m.
• The constant for the shock absorbers is b = 2400 N s/m.
• The speed you are driving is 60/(2π) m/s.

There are zombies all over the outside of the car that you need to shake off the
car by making the magnitude of the shaking as great as possible.
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1. By referring to Figure 4.20, do you want to speed up, slow down, or maintain
your speed? Explain your answer, perhaps by reproducing the figure and anno-
tating it with data from this problem.

2. By what factor are you able to maximize the magnitude of the shaking by chang-
ing your velocity, for example, two times greater, 10 times greater, no times
greater, and so on?

3. As is well known, the zombies are tenacious and after driving down the road for
a while the shock absorbers are now trashed so b is decreasing. If you are driving
at the original speed, will the decreasing b increase or decrease the magnitude of
the shaking? If you are driving at the speed that always maximizes the magnitude
of the shaking, will the decreasing b increase or decrease the magnitude of the
shaking? Explain your answer.

4. Attempting to shake the zombies off the car is not working. You decide to switch
strategies to liquefy what is remaining of their internal organs by subjecting to as
much acceleration (and hence force) as possible. If you are driving at the original
speed listed at the beginning of the problem and by referring to your answer
from Exercise 4.12, do you want to increase or decrease your speed? Explain
your answer. Also, explain what the best speed to drive would be to maximize
the force exerted on the car, and hence the zombies.

4.20. Is it possible based on the methods from this chapter to solve

ẍ + tẋ+ x = 0

where x(0) = 1 and ẋ(0) = 0 (other than by computing an approximate numerical
solution)? If so, solve it and plot the solution. If not, make an educated guess about
what the solution will look like and sketch it. Compare your guess with an approxi-
mate numerical solution.

4.21. Consider the U-shaped tube filled with a liquid under the influence of gravity
illustrated in Figure 4.28. Assume the fluid is inviscid2 and has a density ρ and that
the tube has a cross-sectional area of A. If the fluid is displaced down by an amount
x on one side and up by an amount x on the other side, what is the total force on the
body of fluid? Determine and solve the equation of motion.

4.22. Determine the equations of motion and determine the homogeneous solution
for the systems illustrated in Figure 4.29.

4.23. Consider the system illustrated in Figure 4.30. Assume that θ � 1 so that the
amount that the spring is extended is equal to l2θ . Determine the equation of motion
for this system.

2 An inviscid fluid has no viscosity. For the purposes of this problem, that means we may ignore
any force resisting the flow of the fluid in the tube.
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Fig. 4.28 System for Exercise 4.21.
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Fig. 4.29 Mechanical systems for Exercise 4.22.
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Fig. 4.30 System for Exercise 4.23.

4.24. Consider the system illustrated on the left in Figure 4.31. Assume the pulleys
are light with negligible inertia. Determine and solve the equation of motion.

4.25. Consider a solid block floating in a vat of liquid as is illustrated on the right in
Figure 4.31. Assume the height of the block is h and the widths are a (so if you look
from the top it is a square. Recall from elementary fluid mechanics, the buoyant
force exerted on a submerged object is equal to the amount of fluid it displaces.
Assume the density of the liquid is ρ f , the density of the object is ρo, and that the
object does not rotate.3

1. If ρo < ρ f , determine the equilibrium value for x.

3 Extra credit: would the object, in fact, stay oriented in the manner illustrated?
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2. If the object were displaced downward from its equilibrium position slightly and
let go, it would bob in the liquid. Determine the equation of motion for this. Is
this equation also valid for ρo ≥ ρ f ?

3. If the density of the object remained the same, but the geometry were altered so
that h was larger and a was less, would the frequency of the bobbing increase,
decrease, or remain the same?

x

m

g

r

r

k1

k2

x

g

Fig. 4.31 System for Exercise 4.24 (left) and Exercise 4.25 (right).

4.26. In Chapter 11 we are much smarter and are able to show that for a cantilever
beam, the force required to deflect the end, as is illustrated in Figure 4.32 is

F =
3EI
L3 x,

where E is the modulus of elasticity, which is a property of the material used, I is
the area moment of inertia of the cross-section of the beam, and L is the length.

If a mass m,is attached to the end of the beam, what is the equation of motion
for the vertical motion of the beam? If the length is doubled, what is the change in
frequency of the free vibration of the beam?

Fig. 4.32 Cantilever beam subjected to a
force at the end. x = 0 x = L

F
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4.27. For most of this chapter, the forcing function was of the form f (t) = F cosωt,
where F and ω were considered independently. There is an important class of prob-
lems in which they are related, however, which is when the force is caused by some
imbalance in rotating machinery.

Consider the mass constrained to rotate about the origin at a fixed distance r at a
fixed angular velocity ω . Assume this models an eccentricity of a motor, which is
attached to a mass–spring–damper system illustrated in Figure 4.33.

1. Show that the vertical force exerted on the mass by the motor is given by f (t) =
merω2cosωt.

2. Compute the steady-state solution for this system.
3. Plot the ratio of the magnitude of the steady-state response to the amount of

eccentricity versus frequency ratio; that is, plot
∣
∣xp/r

∣
∣ versus ω/ωn. Explain why

the low frequency, resonant frequency, and high frequency parts of the graph
make sense. Compare and contrast your plot with Figure 4.5.

r

x

m

me

k

ω

ω

Fig. 4.33 Rotating system with eccentricity for Exercise 4.27.

4.28. Referring to Exercises 4.26 and 4.27, assume an electric motor is mounted at
the end of a cantilever beam as illustrated in Figure 4.34. Assume the modulus of
elasticity of the beam is E = 200 GPa, the area moment of inertia is I = 1/4 m4, the
length is L = 1 m, and the imbalance in the motor is rm = 1 kg · cm.

1. Determine the resonant frequency of the system.
2. Determine the magnitude of the motion of the beam if the speed of the motor is

ω = 1000 rpm (note the units).

4.29. Determine the solution to ẍ + 1/5ẋ+ x = 5cos4t, x(0) = 1, and ẋ(0) = −1.

1. On the same plot, plot the particular solution and the whole solution versus t.
2. Identify the part of the solution you would identify as the transient response and

the part you would identify as the steady-state response.
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Fig. 4.34 Motor mounted on a cantilever beam for Exercise 4.28.

3. Explain why the solution is not the same as the steady-state response during the
transient response.

4.30. Damping is particularly difficult to properly model and viscous damping is
often assumed and this problem compares viscous damping to Coulomb friction.
Consider the system illustrated in Figure 4.35 where the coefficients of static and
dynamic friction between the block and surface are equal and are given by μ .

1. Draw a free body diagram for the mass and determine the equation of motion.
Explain why it is not possible to solve this equation using the methods from
Chapter 3.

2. Write a computer program to determine an approximate numerical solution for
the case where f (t) = 0, μ = 0.1, k = 9, m = 1, x(0) = 1, and ẋ(0) = −1. If you
do this problem correctly, the decay in the amplitude should be linear.

3. Because the Coulomb friction force is constant and the viscous damping force is
proportional to the velocity of the system, what can you say about the amount of
energy dissipated during each cycle of motion (an integral sign should be in your
answer)? Based on the amount of energy dissipated each cycle, explain why the
linear decay for the Coulomb friction is expected and why exponential decay for
viscous damping is expected.

4. If f (t) = F cosωt, show that the amount of energy dissipated over one cycle
with Coulomb friction is ΔE = 4μmgX where X is the magnitude of the motion,
and that the amount of energy dissipated over one cycle with viscous damping
is ΔE = πbeqωX2. Equating these two and solving for beq should give a system
with viscous damping that approximates the one with Coulomb friction. Com-
pute beq for the system you solved in Part 2, and plot the solution to the sys-
tem with the equivalent viscous damping on the same plot as the system with
Coulomb damping. How good is the approximation?

Fig. 4.35 System subjected to Coulomb
friction for Exercise 4.30.
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Chapter 5
Variable-Coefficient Linear Ordinary
Differential Equations

This chapter presents the the use of power series to determine solutions to differ-
ential equations. Although the method applies to a variable-coefficient linear equa-
tion of any order, the primary use of such solutions is for second-order variable-
coefficient linear ordinary differential equations. The basic approach is to assume a
solution of the form

x(t) = a0 + a1 (t − t0)+ a2 (t − t0)
2 + a3 (t − t0)

3 + · · ·

=
∞

∑
n=0

an (t − t0)
n

and then substitute it into the differential equation to determine the coefficients,
which is a relatively straightforward procedure. More complicated situations may
require assuming a solution of the form

x(t) = (t − t0)
m
(

a0 + a1 (t − t0)+ a2 (t − t0)
2 + a3 (t − t0)

3 + · · ·
)

=
∞

∑
n=0

an (t − t0)
n+m

and then substituting it into the differential equation to determine m as well as the
coefficients ai. Whether the series that is obtained by determining the coefficients
converges to the actual solution is, unfortunately, a more difficult matter. Finally
and interestingly, quite a few famous differential equations (famous enough to have
names) are second-order, variable-coefficient equations. This chapter presents the
equation and solutions for some of them, and contains mainly mathematical exam-
ples. The context in which most engineering uses for this subject arise appears later
in Chapter 11.

161B. Goodwine, Engineering Differential Equations: Theory and Applications, 
DOI 10.1007/978-1-4419-7919-3_5, © Springer Science+Business Media, LLC 2011
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5.1 Motivational Examples

This section presents two examples intended to illustrate two things. First, they illus-
trate the manner in which the coefficients in the power series solution are obtained.
Second, they illustrate that whether and in what manner the series converges to the
solution is not something that is obvious a priori.

Example 5.1. Determine the solution to

ẍ + btẋ+ x = 0

where x(0) = 2 and ẋ(0) = 5. Note that because this is a second-order variable-
coefficient problem, none of the methods in the previous chapters can be used to
determine a solution to it.

If we assume

x(t) = a0 + a1t + a2t2 + a3t3 + · · · =
∞

∑
n=0

antn

then differentiating the series termwise1

ẋ (t) = a1 + 2a2t + 3a3t2 + · · · =
∞

∑
n=1

anntn−1

and

ẍ(t) = 2a2 + 6a3t + 12a4t2 + · · ·=
∞

∑
n=2

ann(n−1)tn−2.

Substituting into the differential equation gives
(

∞

∑
n=2

ann(n−1)tn−2

)

+ bt

(
∞

∑
n=1

anntn−1

)

+

(
∞

∑
n=0

antn

)

= 0. (5.1)

The procedure is to equate the coefficients of the different powers of t in the
equation. Recall from Exercise 2.11 that the set of functions

{

1,t,t2,t3, . . . ,tn
}

is
linearly independent. Hence, the only way for an equation of the form

α0 + α1t + α2t2 + α3t3 + · · · = 0

to hold for all t is for each coefficient αn to be zero. In order to determine an ex-
pression for the coefficients of the different powers of t, it is desirable to shift the
exponent in the first sum by 2, which, along with distributing the t in the second
term gives

1 This is valid only in the interior of domains where the series converges. Convergence is consid-
ered subsequently in this chapter.
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(
∞

∑
n=0

an+2 (n + 2)(n + 1)tn

)

+ b

(
∞

∑
n=1

anntn

)

+

(
∞

∑
n=0

antn

)

= 0.

To see that the first summation is identical to what it was in Equation (5.1), let
m = n− 2 and substitute into the expression (alternatively, write out the first few
terms). Because m is an index, it may be changed back to n.

Collecting the powers of t and observing that the middle sum starts at 1, gives

2a2 + a0 +
∞

∑
n=1

[(n + 1)(n + 1)an+2 + bnan + an]tn = 0,

where the first two terms are from writing the n = 0 term separately from the first
and third series. From this we obtain

a2 = −1
2

a0

and

an+2 = − bn + 1
(n + 2)(n + 1)

an. (5.2)

Equation (5.2) is called a recurrence relation and can be used to determine every
term in the solution if a0 and a1 are known. The series solution partial sums2 in-
cluding different numbers of terms are illustrated along with an accurate solution
(determined numerically) in Figure 5.1 where b = 0.1. The notation PN in the figure
indicates how many terms were included in the partial sum. Specifically, PN means
that the partial sum

PN =
N

∑
n=0

antn

was used.

In Example 5.1, by comparing the partial sums to the numerical solution, it ap-
pears that as more terms are included in the partial sum, the partial sum from the
series becomes a better approximation to the real solution for longer periods of time.
However, note that at this point it is not guaranteed that the series will converge to
the solution. Intuitively it would seem correct to assume that more terms will guar-
antee a solution that converges for a larger interval of t, but as illustrated in the next
example, this is not always the case.

Example 5.2. Determine the solution to

ẍ(t)+
1

1 + t2 x(t) = 0, (5.3)

where x(0) = 1 and ẋ(0) = 5 by assuming a power series solution about t = 0.

2 The partial sum to N of a series is the sum of the first N terms of the series.
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Fig. 5.1 Accurate and partial sum solutions for Example 5.1.

If we leave the coefficient function, 1/
(

1 + t2
)

as it is, it will prevent us from
isolating the coefficients of different powers of t because of the denominator. One
approach would be to expand 1/

(

1 + t2
)

in a Taylor series about t = 0. Alternatively,
and more simply, we can multiply the differential equation by 1 + t2:

(

1 + t2) ẍ + x = 0. (5.4)

Assuming

x(t) =
∞

∑
n=0

antn

which, as before, gives

ẍ(t) =
∞

∑
n=2

n(n−1)antn−2 =
∞

∑
n=0

(n + 1)(n + 1)an+2tn (5.5)

and substituting, gives

(

1 + t2)
∞

∑
n=2

n(n−1)antn−2 +
∞

∑
n=0

antn = 0.

Distributing the
(

1 + t2
)

term and using the second form of ẍ(t) in Equation (5.5)
when multiplying by the 1 and the first form when multiplying by the t2 gives

∞

∑
n=2

n(n−1)antn +
∞

∑
n=0

(n + 2)(n + 1)an+2tn +
∞

∑
n=0

antn = 0.
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Collecting all the terms into one sum, which requires writing out the first two terms
in the second and third series gives

2a2 + 6a3t + a0 + a1t +
∞

∑
n=2

[(n(n−1)+ 1)an +(n + 2)(n + 1)an+2]tn =

(a0 + 2a2)+ (a1 + 6a3) t1 +
∞

∑
n=2

[(n(n−1)+ 1)an +(n + 2)(n + 1)an+2]tn = 0.

The coefficient of each power of t must be zero, thus we have

a2 = −1
2

a0

a3 = −1
6

a1

an+2 = − n(n + 1)+ 1
(n + 2)(n + 1)

an, n ≥ 2.

A plot illustrating an accurate numerical solution and several partial sums of the
power series solution are illustrated in Figure 5.2. As is apparent from the figure,
the partial sums provide a good approximate solution for t < 1 only. No matter how
many terms are included in the partial sum, it diverges from the accurate solution
once t ≈ 1.
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Fig. 5.2 Accurate and partial sum solutions for Example 5.2.
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5.2 Convergence: Real Rational Functions

For a variable-coefficient linear differential equation of the form

ẍ + f1 (t) ẋ+ f0 (t)x = g(t) , (5.6)

as shown in Section 5.3, it turns out that whether an assumed power series solution
to the differential equation converges to the actual solution depends on the extent to
which the Taylor series expansions for the functions f1 (t) , f0 (t), and g(t) converge
to those functions. The reason the series solutions for Example 5.2 did not converge
to the real solution beyond a very limited range of t was precisely due to the fact that
the Taylor series for 1/

(

1 + t2
)

only had a limited range of convergence. It makes
some intuitive sense that attempting to formulate a series solution to a differential
equation will only work for ranges of the independent variable for which terms in
the differential equation have convergent Taylor series representations.

Hence, we need a means to determine when a Taylor series expansion for a func-
tion f (t) actually converges to f (t), and the most fundamental answer is provided
by Taylor’s theorem.

Theorem 5.1. Define the nth Taylor remainder by

Rn (t) =
f (n+1) (t̂)
(n + 1)!

(t − t0)
n+1 , where |t̂ − t0| < |t − t0| .

If
lim
n→∞

Rn (t) = 0 for |t0 − t|< ρ

then

f (t) =
∞

∑
n=0

f (n) (t0)
n!

(t − t0)
n for |t − t0| < ρ .

See, for example, [10] for a proof.
Theorem 5.1 defines the remainder in terms of some unknown value t̂ that is

between t and t0 and states that the series converges to the function for the range of
values of t for which the remainder goes to zero as the number of terms included in
the series goes to infinity. Because we do not know what this value actually is, we
need to make sure the remainder goes to zero for all t̂ between t0 and t. A function
that has a convergent Taylor series in a neighborhood of points about t0 is called real
analytic at t0.3 Therefore, one way to check the extent to which the Taylor series for
a function converges to that function is to analyze the remainder, as the next example
illustrates.

Example 5.3. The Taylor series for the function

3 The beautiful subject of analyticity is beyond the scope of this text. However, suffice it to say
that a student is encouraged to take a course in complex analysis where this topic is considered
in detail. Surprisingly, in the case of a complex-valued function of a complex variable, tests for
analyticity are much simpler than for the case of a real-valued function.
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f (t) = cos(ωt)

about any t0 converges for all t. The remainder formula is given as above by

Rn (t) =
ωn+1 f̂ (n+1) (t̂)

(n + 1)!
(t − t0)

n+1 ,

where f̂ (t) is ±cosωt or ±sinωt. Because
∣
∣ f̂ (t)

∣
∣ ≤ 1, the remainder satisfies the

bound

|Rn (t)| ≤
∣
∣
∣
∣

ωn+1

(n + 1)!
(t − t0)

n+1
∣
∣
∣
∣
.

For any t, inasmuch as the factorial in the denominator grows faster than the powers
of the fixed numbers ω and (t − t0),

lim
n→∞

Rn = 0.

Hence, we know that the Taylor series for cosωt about t = 0 converges, that is

cos(ωt) =
∞

∑
n=0

ωn (−1)n

(2n)!
t2n.

The next example shows that the Taylor series for the function f0 (t) in Exam-
ple 5.2 does not converge for all t, and, in fact, converges for exactly the same range
of t for which the solution seems to converge to the accurate solution to the dif-
ferential equation as was illustrated in Figure 5.2. This example also illustrates the
fact that determining the range of convergence based only on the remainder may
be difficult because determining the form of the remainder term for any n may be
difficult.

Example 5.4. Compute the Taylor series for

f (t) =
1

1 + t2 . (5.7)

The first few derivatives are

d f
dt

(t) =
2t

(1 + t2)2

d2 f
dt2 (t) =

8t2

(1 + t2)3 − 2

(1 + t2)2

d3 f
dt3 (t) =

48t3

(1 + t2)4 +
24t

(1 + t2)3 .

Hence, the Taylor series about t = 0 is given by
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1
1 + t2 = 1− t2 + t4 − t6 + t8 + · · · . (5.8)

A plot of the function f (t) and the partial sum including different numbers of terms
in the Taylor series is illustrated in Figure 5.3. By examining the function in Equa-
tion (5.7), clearly

lim
t→±∞

| f (t)| = 0,

so in Figure 5.3 the actual graph of the function is the one with the outer tails ap-
proaching zero. As more and more terms are included in the Taylor series, the ap-
proximation becomes better, but only for values of t ∈ (−1,1).

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

f(
t)

t

Fig. 5.3 The function f (t) = 1/(1+ t2) and partial sums approximating it.

The main point from Example 5.4 is that even for functions that seem perfectly
normal, a series approximation may not converge for it for all values of the inde-
pendent variable, and attempts to increase the accuracy of the approximation by
including more terms in the series will be futile outside the range of convergence.

If one is to apply a standard test for convergence of the Taylor series for the
function in Equation (5.7) given by Equation (5.8), such as the ratio test4 it would

4 The ratio test is: for the series ∑∞
n=0 sn, if sn �= 0 for n ≥ 1, suppose

lim
n→∞

∣
∣
∣
∣

sn+1

sn

∣
∣
∣
∣
= r.

If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, no conclu-
sion can be drawn from this test alone.
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be clear that the series converges for |t| < 1 and one would be tempted to conclude
that all we need to do is check whether the series converges for some interval of
t. However, unfortunately, even that is not necessarily enough because it is not the
case that if a Taylor series converges for some range of values of the independent
variable that it actually converges to that function. It may, unfortunately, converge
to something else.5 So, we need to be able to say more than simply that the series
converges. The most basic way to do that is to consider the remainder term given
in Theorem 5.1. If the remainder goes to zero, not only does the series converge, it
converges to the function f (t).

Interestingly, a more general study of convergence properties of a series approxi-
mation beyond analyzing the remainder term depends on the properties of the func-
tion where the dependent variable may be a complex number, and is fundamentally
related to the property of analyticity. A general study of analyticity is beyond the
scope of this text and an interested reader is referred to [10] for a complete exposi-
tion.

One final set of results is useful subsequently and is presented without a proof.
It is limited to rational functions, which are ratios of polynomials. This is particu-
larly useful because many of the important examples of variable-coefficient ordinary
differential equations in engineering have rational functions as the variable coeffi-
cients.

Theorem 5.2. The Taylor series for a rational function

f (t) =
n(t)
d (t)

(n(t) and d(t) are polynomials) about the point t = t0 converges for all |t − t0| < ρ
where ρ is the distance in the complex plane from t0 to the nearest zero of the
polynomial d (t).

The proof follows from a few facts from complex variable theory.

1. Polynomial functions are analytic everywhere.
2. If the polynomials n(t) and d(t) have real coefficients, then they will be real-

valued when t is real.
3. The quotient of two analytic functions is analytic except where the denominator

is zero.
4. If a function is analytic everywhere inside a circle of radius ρ in the complex

plane centered at t0, then the Taylor series for the function about t0 converges to
the function for every point in that circle.

5 A classic example is Taylor series for the function

f (t) =

{

exp
(−1/t2

)

, t �= 0,

0, t = 0,

about t = 0. The function is smooth, and the Taylor series converges. However, it converges to the
function that is zero everywhere, which is not equal to the function f .
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Referring to the function in Example 5.4, note that if t can be complex, then
the denominator is zero for t = ±i, and the distance in the complex plane from the
origin, where t = 0, to ±i is one, which is exactly the distance from t0 = 0 to t = 1,
which is the point at which the Taylor series graphed in Figure 5.3 approximations
diverge from the function. A list of common functions with the associated Taylor
series expansions and radius of convergence are listed in Table 5.2.

Function Convergence Interval

eμt =
∞

∑
n=0

(μt)n

n!
t ∈ (−∞,∞)

cosωt =
∞

∑
n=0

(−1)n (ωt)2n

(2n)!
t ∈ (−∞,∞)

sinωt =
∞

∑
n=0

(−1)n (ωt)2n+1

(2n+1)!
t ∈ (−∞,∞)

arcsin t =
∞

∑
n=0

(2n)!

4n (n!)2 (2n+1)
t2n+1 |t| < 1

arctan t =
∞

∑
n=1

(−1)n

2n+1
t2n+1 |t| < 1

1
1− t

=
∞

∑
n=0

tn |t| < 1

t

(1− t)2 =
∞

∑
n=0

ntn |t| < 1

tet =
∞

∑
n=0

n
tn

n!
|t| < 1

√
1+ t =

∞

∑
n=0

(−1)n (2n)!

(1−2n) (n!)2 4n
tn |t| < 1

Table 5.1 Series expansions for common functions (with 0! = 1) and the domain of convergence

In summary, we have considered three ways to check the radius of convergence
for the functions that are the variable coefficients in the differential equation.

1. Determining an expression or bound for the remainder and showing that it goes
to zero as n becomes large.

2. In the specific case of the ratio of two polynomials, the radius of convergence of
the Taylor series to the function will be the distance from t0 to the nearest zero of
the denominator in the complex plane.

3. Checking if the function is in Table 5.2 and having faith that it is correct.
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5.3 Series Solutions About an Ordinary Point

In Section 1.3.3 a linear differential equation was defined by Equation (1.5) to be of
the form

fn(t)
dnx
dtn (t)+ fn−1(t)

dn−1x
dtn−1 (t)+ · · ·+ f1(t)

dx
dt

(t)+ f0(t)x(t) = g(t). (5.9)

Although the methods generalize in exactly the manner expected to higher order,
we restrict our attention to second-order equations of the form

d2x
dt2 (t)+ f1(t)

dx
dt

(t)+ f0(t)x(t) = g(t), (5.10)

because a surprisingly large number of important differential equations in engineer-
ing are of this form.

Examining Equation (5.9), one may reasonably (and correctly) conclude that
points where fn(t) = 0 are problematic. This makes intuitive sense because the order
of the equation changes at those points. Also, based on Theorem 5.2, these points
also define the limit of the radius of convergence of the Taylor series for f1(t), f0(t),
and g(t) in the case where they are rational functions. This section considers solu-
tions of Equation (5.10) for values of t where f1(t), f0(t), and g(t) have properties
that guarantee a unique solution exists that may be expressed as a convergent series
for some range of the independent variable.

Definition 5.1. For the second-order, linear, ordinary differential equation

d2x
dt2 (t)+ f1(t)

dx
dt

(t)+ f0(t)x(t) = g(t),

a point t = t0 where g(t), f1(t), and f0(t) are analytic is called an ordinary point.

The main result of this section is the following theorem that says that about an
ordinary point of a second-order linear ordinary differential equation, a unique so-
lution exists and the Taylor series for that solution converges about the ordinary
point.

Theorem 5.3. If each function g(t), f0(t), and f1(t) in Equation (5.10) is analytic at
t = t0, and the Taylor series for each function converges for |t − t0| < ρ , then there
is a unique solution x(t) of Equation (5.10) that is also analytic at t = t0 satisfying
the initial conditions

x(t0) = a0, ẋ(t0) = a1.

In other words, the solution has a Taylor series expansion in powers of (t − t0).
Furthermore, the Taylor series converges for |t − t0| < ρ .

For a proof of the existence part, see [36].
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Remark 5.1. Note that the solution is only guaranteed to converge in the region of
convergence for the coefficient functions. So do not conclude that if this theorem
applies, the series solution converges everywhere.

Example 5.5. Determine a solution to

ẍ + t2x = 0,

where x(0) = 1 and ẋ(0) = −1. Before solving this equation, note that it can be
interpreted as a mass–spring system where the spring constant is equal to t2. Hence,
expecting solutions that oscillate with a frequency that increases with time would
be reasonable. Also, because the function f0(t) = t2 is analytic everywhere, Theo-
rem 5.3 guarantees a series solution that converges for all t.

Assuming the usual

x(t) =
∞

∑
n=0

antn =⇒ ẍ(t) =
∞

∑
n=2

n(n−1)antn−2

and substituting gives
(

∞

∑
n=2

n(n−1)antn−2

)

+ t2

(
∞

∑
n=0

antn

)

=

(
∞

∑
n=2

n(n−1)antn−2

)

+

(
∞

∑
n=0

antn+2

)

= 0.

Shifting the index on the first sum by four gives
(

∞

∑
n=−2

(n + 4)(n + 3)an+4tn+2

)

+

(
∞

∑
n=0

antn+2

)

= 2a2 + 6a3t +
∞

∑
n=0

((n + 4)(n + 3)an+4 + an) tn+2 = 0.

From the initial conditions and the first two terms in the above equation, we have

a0 = 1, a1 = −1, a2 = 0, a3 = 0,

and from solving the coefficient in the series for an+4,

an+4 =
1

(n + 4)(n + 3)
an n = 0,1,2, . . .

gives the recurrence relation for the rest of the coefficients. A plot comparing an
accurate numerical solution with several partial sums is illustrated in Figure 5.4.

There is nothing special about computing the series about the point t = 0, unless
we are particularly interested in the features of the solution there. For comparison,



5.3 Series Solutions About an Ordinary Point 173

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10

x(
t)

t

accurate
P10

P30

P50

P80

Fig. 5.4 Accurate solution and several partial sums for solution to Example 5.5.

the next example solves essentially the same problem as Example 5.2, but about
t = 10 instead of t = 0.

Example 5.6. Determine the series solution to

ẍ +
5

t2 + 1
x = 0 (5.11)

about t = 10.
Assuming a solution of the form

x(t) =
∞

∑
n=0

an (t −10)n , (5.12)

observing that
t2 + 1 = 101 + 20(t −10)+ (t −10)2 ,

and substituting gives

[

101 + 20(t − 10)+ (t −10)2
] ∞

∑
n=2

n(n−1)an (t −10)n−2 + 5
∞

∑
n=0

an (t −10)n = 0.

Distributing the three terms before the second derivative term and shifting indices
to make all the powers of (t −10) to be n gives
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101
∞

∑
n=0

(n + 2)(n + 1)an+2 (t −10)n + 20
∞

∑
n=1

n(n + 1)an+1 (t −10)n

+
∞

∑
n=2

n(n−1)an (t −10)n + 5
∞

∑
n=0

an (t −10)n = 0.

Explicitly writing the first terms of the sums that do not begin with n = 2 gives

(202a2 + 5a0)+ (606a3 + 40a2 + 5a1) (t −10)

+
∞

∑
n=2

[101(n + 2)(n + 1)an+2 + 20n(n + 1)an+1 + n(n−1)an + an] (t −10)n = 0.

(5.13)
At this point, observe the following.

1. If the initial conditions are specified at t = 10, then the first term in Equa-
tion (5.13) gives a2 in terms of a0, the second term gives a3, and the rest can
be computed by a recursion relation given by the third term (the series).

2. Theorem 5.3 allows us to conclude that the series solution will converge in the
range t ∈ (10−√

101,10 +
√

101
)

.
3. It is not the case that a0 = x(0) and a1 = ẋ(0). If t = 0 is substituted into the

assumed form of the solution (Equation (5.12)) every term in the series remains
and must be evaluated.

4. If the initial conditions are given at a time other than t = 10, then we could
include all the terms up to a point in the series and solve a system of algebraic
equations to determine approximate values for the coefficients.

If the initial conditions are given at t = 10, such as x(10) = 1 and ẋ(10) = −1,
then computing the coefficients is straightforward:

a0 = 1, a1 = −1, a2 = − 5
202

, a3 = − 1
606

(5a1 + 40a2) ,

and the rest of the coefficients can be computed from

an+2 = −n(n + 1)an+1 + n(n−1)an + an

101(n + 2)(n + 1)
, (5.14)

for n = 2,3,4, . . .. A graph of the solution determined numerically and several partial
sums are illustrated in Figure 5.5.

5.4 Series Solutions About a Singular Point

Sometimes it is the case that a series solution about a point which is not an ordinary
point is needed. Because singular points are less common when the independent
variable is time and are more commonly associated with an independent spatial
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Fig. 5.5 Solution and several partial sums for Example 5.6.

variable, this section switches notation and has x represent the independent vari-
able and y represent the dependent variable. A common scenario is when the second
derivative term is multiplied by a function that can be zero at some points. An ex-
ample would be

(

1− x2) d2y
dx2 (x)+ sin(x)

dy
dx

(x)+ y(x) = cos(x),

where at x = ±1, 1− x2 = 0. As a general matter, such points are clearly important
because they correspond to situations in which the order of the equation changes.
Also, if the equation is converted to the form of Equation (5.10),

d2y
dx2 (x)+

(
sin(x)
1− x2

)
dy
dx

(x)+
(

1
1− x2

)

y(x) =
cos(x)
1− x2 ,

the points x = ±1 are the points at which the Taylor series for each of the functions

f1(x) =
sin(x)
1− x2 , f0(x) =

1
1− x2 , g(x) =

cos(x)
1− x2

will not converge. Hence, we cannot make use of Theorem 5.3 to ensure we will
find a unique solution at those points. Points where the coefficient of the highest
derivative is equal to zero are called singular points. If it is not important to have a
solution at the singular point, then using the method from the previous section and
finding a series solution about a nearby ordinary point would suffice. However, it is
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sometimes the case that the singular point is actually the point of greatest interest,
and hence having a means to find the solution there is important.

It is not possible to handle a series solution about any singular point, however, it
is possible to determine a series solution about a point if the manner in which it is
singular is not too serious.

Definition 5.2. Consider a second-order linear ordinary differential equation of the
form

d2y
dx2 + p(x)

dy
dx

+ q(x)y = 0.

If p̂(x) = (x− x0) p(x) and q̂(x) = (x− x0)
2 q(x) are analytic at x0, then x0 is called

a regular singular point of the equation.

The way to intuitively think of this definition is that to be a regular singular
point, the terms (x− x0) and (x− x0)

2 must “cancel” the term in the denominator
that is causing p(x) or q(x) to be singular. A way a function could fail to satisfy the
definition would be, for example, if it had (x− x0)

5 in the denominator. In that case
the denominator would still go to zero even when multiplied by (x− x0)

2 and hence
not be analytic at x = x0. Because (x− x0)

5 goes to zero faster than (x− x0)
2, a term

in which it appears in the denominator will “blow up” faster, which is an indication
of the singularity being, in some sense, worse.

If the usual approach outlined in the previous section is used to find a series
solution, it will generally fail to work (see Exercise 5.16). Instead, the approach to
find a series solution about a regular singular point is to assume a solution of the
form

y(x) = (x− x0)
m

∞

∑
n=0

an (x− x0)
n =

∞

∑
n=0

an (x− x0)
n+m (5.15)

and, in addition to the coefficients an, determine m. Note that to fix values for m, we
require that a0 �= 0.

Although the approach is simple (“find m and then all the coefficients ai by sub-
stituting into the equation”) the implementation is complicated by the fact that there
are no less than five different possible outcomes. Before those can be outlined, we
determine the formula used to determine m.

Assume that x0 is a regular singular point of

d2y
dx2 (x)+ p(x)

dy
dx

(x)+ q(x)y(x) = 0.

Multiplying this equation by (x− x0)
2 and expanding p̂(x) and q̂(x) in a Taylor

series, gives
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(x− x0)
2 d2y

dx2 (x)+ (x− x0) [(x− x0) p(x)]
dy
dx

(x)+
[

(x− x0)
2 q(x)

]

y(x)

= (x− x0)
2 d2y

dx2 (x)+ (x− x0) [p̂(x)]
dy
dx

(x)+ [q̂(x)]y(x)

= (x− x0)
2 d2y

dx2 (x)+ (x− x0)
[

p0 + p1 (x− x0)+ p2 (x− x0)
2 + · · ·

] dy
dx

(x)

+
[

q0 + q1 (x− x0)+ q2 (x− x0)
2 + · · ·

]

y(x)

= 0.

Assuming a solution of the form

y(x) =
∞

∑
n=0

an (x− x0)
n+m

and substituting gives (Exercise 5.18) gives

[m(m−1)+ p0m+ q0]a0 (x− x0)
m

+ [(m(m+ 1)+ p0 (m+ 1)+ q0)a1 +(p1m+ q1)a0] (x− x0)
m+1

+ · · · = 0.

(5.16)

Remark 5.2. Three important conclusions are worth emphasizing.

1. Note that inasmuch as a0 is assumed not to be zero, the term in the square brack-
ets in the first line of Equation (5.16) must be zero, and hence determines the
value(s) for m. It is quadratic, so there are two solutions and the values for m
may be real and distinct, repeated real, or a complex conjugate pair. A complete
investigation into the nature of series solutions about singular points requires
considering all of those cases.

2. If the values for m are determined by the coefficient of (x− x0)m, then each term
in the coefficient of (x − x0)m+1 is fixed except a0 and a1, so this gives a re-
cursion relation. Unlike the examples considered previously for series solutions
about ordinary points for second-order equations, this recursion relation is be-
tween coefficients with indices that differ only by one. The same is true for the
coefficients for the higher powers in (x− x0). The consequence of this is that the
value for a0 determines the values for all the other ai. In order to obtain a sec-
ond linearly independent solution, the second value for m is used in the series.
Hence, instead of alternating terms in the series forming the two solutions, the
entire series is used twice, once for each value of m.

3. The different values for m are used to find the two solutions, therefore the case
where m is repeated requires some work to find another solution. Less obvious
is the case where there are distinct values for m, but they differ by an integer;
this also requires additional work because when the ms differ by an integer, that
effect is only to shift the powers of (x− x0)

n+m which may complicate matters
significantly.
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We do not delve into all the intricacies of this subject and work out every case.
Good basic references are [8, 50], which provide all the answers, but not necessarily
every derivation. A theorem presenting formulae for all the solutions appears in
Appendix D.2. The remainder of this section presents a few examples

Euler’s equation, which is of the form

x2 d2y
dx

(x)+ xp0
dy
dx

(x)+ q0y(x) = 0, (5.17)

is an example of a variable-coefficient second-order ordinary differential equation
where the series solution about a regular singular point simplifies dramatically, and
is good to use to develop some intuition about the nature of the solutions to these
types of problems.6 Euler’s equation is of the general form of a second order equa-
tion with a regular singular point, but where the functions p(x) and q(x) are con-
stants.

Example 5.7. Determine a solution to

x2 d2y
dt2 + x

dy
dt

− 1
4

y = 0 (5.18)

valid in the neighborhood of x = 0. Note that the point x0 = 0 is a regular singular
point for this equation. Assuming

y(x) = xm
∞

∑
n=0

anxn =
∞

∑
n=0

anxn+m

gives

dy
dx

(x) =
∞

∑
n=0

(n + m)anxn+m−1,
d2y
dx2 (x) =

∞

∑
n=0

(n + m)(n + m−1)anxn+m−2.

Note that the sums start at n = 0, which is a consequence of the fact that m is not yet
specified. Substituting gives

6 A reader with a great memory will recall Euler’s equation appeared earlier in this book. Exer-
cise 3.8 presented the equation, but provided the form of the solution instead of deriving it, as we
are doing here.
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x2
∞

∑
n=0

(n + m)(n + m−1)anxn+m−2 + x
∞

∑
n=0

(n + m)anxn+m−1 − 1
4

∞

∑
n=0

anxn+m =

∞

∑
n=0

(n + m)(n + m−1)anxn+m +
∞

∑
n=0

(n + m)anxn+m − 1
4

∞

∑
n=0

anxn+m =

∞

∑
n=0

[

(n + m)(n + m−1)+ (n + m)− 1
4

]

anxn+m =

∞

∑
n=0

[

(n + m)2 − 1
4

]

anxn+m = 0.

Observe that no recurrence relation results from this substitution. Hence, we can
choose one value for n for which an �= 0, but all the rest of the coefficients must be
zero. For that value of n, the term in square brackets can be zero by an appropriate
choice for m. Specifically, for whatever n is picked,

(n + m)2 =
1
4

=⇒ n + m = ±1
2
.

There is a solution corresponding to the one term for each value of n + m, namely

y1(x) = x1/2, y2(x) = x−1/2.

These do not come from two different terms in a recurrence relation, but rather from
two different series collapsing into one term each. Computing the Wronskian gives

∣
∣
∣
∣

x1/2 x−1/2

1
2 x−1/2 − 1

2 x−3/2

∣
∣
∣
∣
= −1

x
,

which shows that the two solutions are linearly independent for −∞ < x < 0 or
0 < x < ∞, and hence

y(x) = c1
√

x + c2
1√
x

(5.19)

is the general solution to Equation (5.18) for x �= 0.

The complete solution to Euler’s equation is given in Appendix D.2, Theo-
rem D.2. It was the special structure of Euler’s equation that led the power series
solution to reduce to a combination of two powers in x. In the general case, the
entire series is necessary, as is illustrated by the following example.

Remark 5.3. It is worth emphasizing that the solution to the differential equation in
Example 5.7 is not defined at x = 0 if c2 �= 0. However, if the nature of the solution
near x = 0 is important, then a series solution computed about a point other than
zero cannot possibly capture this. This is because if the series is computed about an
ordinary point near zero, it will be a polynomial with positive powers of x only and
hence cannot possibly blow up at x = 0. The terms necessary for it to appropriately
capture the nature of the singularity in the solution simply are not in the form of the
series that was assumed for the solution. Exercise 5.21 compares two such solutions.
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Example 5.8. Determine the general solution to

x2 d2y
dx2 + x

(

x +
1
2

)
dy
dx

−
(

x2 +
1
2

)

y = 0

for values of x near zero.
The fact that x = 0 is a regular singular point is easily verified. Assuming

y(x) =
∞

∑
n=0

anxn+m

and substituting gives

x2
∞

∑
n=0

(n + m)(n + m−1)anxn+m−2

+ x

(

x +
1
2

) ∞

∑
n=0

(n + m)anxn+m−1 −
(

x2 +
1
2

) ∞

∑
n=0

anxn+m = 0.

Rearranging gives

∞

∑
n=0

(n + m)(n + m−1)anxn+m +
∞

∑
n=0

(n + m)anxn+m+1

+
1
2

∞

∑
n=0

(n + m)anxn+m −
∞

∑
n=0

anxn+m+2 − 1
2

∞

∑
n=0

anxn+m = 0.

Shifting the indices on the terms so that all the powers of x are n + m gives

∞

∑
n=0

(n + m)(n + m−1)anxn+m +
∞

∑
n=1

(n + m−1)an−1xn+m

+
1
2

∞

∑
n=0

(n + m)anxn+m −
∞

∑
n=2

an−2xn+m − 1
2

∞

∑
n=0

anxn+m = 0,

and writing out the n = 0 and n = 1 terms gives

m(m−1)a0xm +(m+ 1)ma1xm+1 + ma0xm+1

+
1
2

ma0xm +
1
2

(m+ 1)a1xm+1 − 1
2

a0xm − 1
2

a1xm+1

+
∞

∑
n=2

{(

(n + m)
(

n + m− 1
2

)

− 1
2

)

an +(n + m−1)an−1 −an−2

}

xn+m = 0.

Collecting terms in equal powers of x gives
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(

m(m−1)+
1
2

m− 1
2

)

a0xm +
(

ma0 +
[

(m+ 1)
(

m+
1
2

)

− 1
2

]

a1

)

xm+1

+
∞

∑
n=2

{[

(n + m)
(

n + m− 1
2

)

− 1
2

]

an +(n + m−1)an−1 −an−2

}

xn+m = 0.

(5.20)

Setting the coefficient of a0xm in Equation (5.20) to zero gives

m(m−1)+
1
2

m− 1
2

= 0

or

m2 − 1
2

m− 1
2

= 0, =⇒ m = 1,−1
2
,

which are distinct and do not differ by an integer. We could have obtained these
from Equation (5.16), but we needed the whole expansion anyway to construct the
solution. Checking with Equation (5.16) verifies the two values for m.

Using m = 1, the relationship between a0 and a1 given by the coefficient of xm+1

in Equation (5.20) is

a1 = −2
5

a0,

and the recursion relation given by the series term in Equation (5.20), after some
simplification, is

n

(

n +
3
2

)

an = an−2 −nan−1.

So, for n = 2,

7a2 = a1 −2a0 =
(

1 +
4
5

)

a0, =⇒ a2 =
9

35
a0,

and so on for n > 2. Hence, we have for the m = 1 solution

y1(x) = a0x

(

1− 2
5

x +
9

35
x2 + · · ·

)

.

Note, the x outside the parentheses is the xm term.
Following the same procedure, but for m = −1/2 gives

y2(x) =
a0√

x

(

1− x +
3
2

x2 + · · ·
)

.

The complete solution is a linear combination of y1 and y2, namely,

y(x) = c1x

(

1− 2
5

x +
9

35
x2 + · · ·

)

+
c2√

x

(

1− x +
3
2

x2 + · · ·
)

.
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5.5 A Collection of Famous Series Solutions

The following five examples are some famous differential equations and solutions.
Many of these play a role in Sturm–Liouville boundary value problems considered
in Chapter 11.

5.5.1 Airy Equation

One famous variable-coefficient differential equation is the Airy equation, which
has an ordinary point at x = 0. This equation describes optical phenomena and is
named after the astronomer George Airy.

The Airy equation is
d2y
dx2 (x)− xy(x) = 0.

Assume

y(x) =
∞

∑
n=0

anxn.

As before

d2y
dx2 (x) =

∞

∑
n=2

n(n−1)anxn−1 =
∞

∑
n=0

(n + 2)(n + 1)an+2xn

and substituting into the differential equation gives
(

∞

∑
n=0

(n + 2)(n + 1)an+2xn

)

− x

(
∞

∑
n=0

anxn

)

=

(
∞

∑
n=0

(n + 2)(n + 1)an+2xn

)

−
(

∞

∑
n=0

anxn+1

)

= 0.

In order to equate powers of x, shift the index of summation in the second sum by
one; that is,

∞

∑
n=0

anxn+1 =
∞

∑
n=1

an−1xn,

so we have (
∞

∑
n=0

(n + 2)(n + 1)an+2xn

)

−
∞

∑
n=1

an−1xn = 0.

The two series have the same powers in x, but start at different values of n. To handle
this, simply write the first term of the first series by itself; that is,
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(2)(1)a2x0 +

(
∞

∑
n=1

(n + 2)(n + 1)an+2xn

)

−
∞

∑
n=1

an−1xn =

2a2 +
∞

∑
n=1

[(n + 2)(n + 1)an+2 −an−1]xn = 0.

So, equating powers of x gives
a2 = 0

and

an+2 =
1

(n + 2)(n + 1)
an−1. (5.21)

It is possible to show (see [8]) that the solution can be written as

y(x) = a0

(

1 +
1
6

x3 +
∞

∑
n=2

1
(3n)(3n−1)(3n−3)(3n−4)· · · (3)(2)

x3n

)

+ a1

(

x +
1

12
x4 +

∞

∑
n=2

1
(3n + 1)(3n)(3n−2)(3n−3)· · · (4)(3)

x3n+1

)

.

Writing this solution as y(x) = a0y1(x)+a1y2(x), Figures 5.6 and 5.7 illustrate y1(x)
and y2(x) for partial sums including various numbers of terms. As one should expect
by examining the differential equation, the solutions oscillate for x < 0 and grow
exponentially for x > 0.7

5.5.2 Chebychev Equation

The differential equation

(

1− x2) d2y
dx2 − x

dy
dx

+ λ 2y = 0 (5.22)

is called the Chebychev equation.8 Dividing by
(

1− x2
)

to put Equation (5.22) into
the form of Equation (5.10) makes it clear that x0 = 0 is an ordinary point and a
series solution about x0 = 0 will converge to the solution to the differential equation
for x ∈ (−1,1). Assuming a solution of the form

y(x) =
∞

∑
n=1

anxn

7 The reader is cautioned that the Airy function and Airy function of the second kind, as they
are commonly defined and used in numerical computational packages, are not usually the same as
these. They are, in fact, typically a linear combination of these two.
8 Sometimes this name is spelled Tchebycheff or Chebyshev.
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Fig. 5.6 Partial sum solutions for the Airy equation including various numbers of terms.
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Fig. 5.7 Partial sum solutions for the Airy equation including various numbers of terms.
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gives the recurrence relation

an+1 = − (n−λ )(n + λ )
(n + 1)(n + 2)

an.

As is common, then, y(0) = a0 specifies all the values for an where n is even, and
dy/dx(0) = a1 specifies all the values for an where n is odd, and we can write the
solution as

y(x) = a0Se + a1So,

where Se and So stand for the even and odd series with the even and odd powers of
x, respectively.

Because of the n−λ term in the numerator of the recurrence relation, when λ
is a nonnegative integer, one of the two series Se or So terminates at xn; that is, it is
a polynomial of finite degree that consequently globally converges. When properly
normalized, these resulting polynomials are the Chebychev polynomials.

5.5.3 Hermite Equation

Another famous second-order variable-coefficient differential equation with an or-
dinary point at x = 0 is the Hermite equation given by

d2y
dx2 −2x

dy
dx

+ λ y = 0. (5.23)

Because x = 0 is an ordinary point, a series representation of the solution is given
by

y(x) =
∞

∑
n=0

anxn.

Upon substituting and equating coefficients of the powers of x, we obtain

a2 = −λ
2

a0

and

an+2 =
2n−λ

(n + 2)(n + 1)
an.

In the case where λ is a positive even integer, the series is finite and Hermite poly-
nomials are the result. The details are left as an exercise (Exercise 5.9).
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5.5.4 Legendre Equation

The Legendre equation is given by

(

1− x2) d2y
dx2 −2x

dy
dx

+ λ (λ + 1)y = 0. (5.24)

As with the other equations, x = 0 is an ordinary point, and assuming a power series
solution of the usual form results in a recurrence relation of the form

an+1 = − (λ −n)(λ + n + 1)
(n + 1)(n + 2)

an.

Similar to the case for Hermite’s equation, if λ is a positive integer, then the series
containing either the even or odd powers of x will terminate at the power of xλ .
When normalized in a particular way, the resulting polynomials are the Legendre
polynomials.

5.5.5 Bessel Equation

The Bessel equation is

t2 d2x
dt2 + t

dx
dt

+
(

t2 −λ 2)x = 0. (5.25)

The parameter λ may be a real or complex number. A couple of cases are considered
in the exercises. In the special case where it is an integer, it is called the order
of the equation. Because this is a second-order equation, two linearly independent
solutions are necessary to determine a general solution. In the case when λ is an
integer, the two solutions are given by

Jλ (t) =
∞

∑
n=1

(−1)n

22n+λ n!(n + λ )!
t2n+λ

and

Yλ (t) =
Jr(t)cos(λ π)− J−λ (t)

sin(λ π)
.

The function Jλ (t) is called the Bessel function of the first kind and the function
Yλ (t) is called the Bessel function of the second kind. Figure 5.8 illustrates Jλ (t)
for various integer orders and Figure 5.9 illustrates Yλ (t) for various integer orders.
In addition to being the linearly independent solutions to Equation (5.25), these
two functions have some additional remarkable properties which are explored in
Chapter 11.
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It turns out to be handy to have the values at which Jλ (t) is zero. Table 5.2
tabulates them for Jλ (t) and Table 5.3 tabulates them for Yλ (t).

Order 1st Zero 2nd Zero 3rd Zero 4th Zero 5th Zero 6th Zero 7th Zero 8th Zero 9th Zero 10th Zero
0 2.40483 5.52008 8.65373 11.7915 14.9309 18.0711 21.2116 24.3525 27.4935 30.6346
1 3.83171 7.01559 10.1735 13.3237 16.4706 19.6159 22.7601 25.9037 29.0468 32.1897
2 5.13562 8.41724 11.6198 14.796 17.9598 21.117 24.2701 27.4206 30.5692 33.7165
3 6.38016 9.76102 13.0152 16.2235 19.4094 22.5827 25.7482 28.9084 32.0649 35.2187
4 7.58834 11.0647 14.3725 17.616 20.8269 24.019 27.1991 30.371 33.5371 36.699
5 8.77148 12.3386 15.7002 18.9801 22.2178 25.4303 28.6266 31.8117 34.9888 38.1599
6 9.93611 13.5893 17.0038 20.3208 23.5861 26.8202 30.0337 33.233 36.422 39.6032
7 11.0864 14.8213 18.2876 21.6415 24.9349 28.1912 31.4228 34.6371 37.8387 41.0308
8 12.2251 16.0378 19.5545 22.9452 26.2668 29.5457 32.7958 36.0256 39.2404 42.4439
9 13.3543 17.2412 20.807 24.2339 27.5837 30.8854 34.1544 37.4001 40.6286 43.8438

10 14.4755 18.4335 22.047 25.5095 28.8874 32.2119 35.4999 38.7618 42.0042 45.2316

Table 5.2 Table of zeros of the Bessel function of the first kind

Order 1st Zero 2nd Zero 3rd Zero 4th Zero 5th Zero 6th Zero 7th Zero 8th Zero 9th Zero 10th Zero
0 0.893577 3.95768 7.08605 10.2223 13.3611 16.5009 19.6413 22.782 25.923 29.064
1 2.19714 5.42968 8.59601 11.7492 14.8974 18.0434 21.1881 24.3319 27.4753 30.6183
2 3.38424 6.79381 10.0235 13.21 16.379 19.539 22.694 25.8456 28.9951 32.143
3 4.52702 8.09755 11.3965 14.6231 17.8185 20.9973 24.1662 27.3288 30.487 33.642
4 5.64515 9.36162 12.7301 15.9996 19.2244 22.4248 25.6103 28.7859 31.9547 35.1185
5 6.74718 10.5972 14.0338 17.3471 20.6029 23.8265 27.0301 30.2203 33.4011 36.575
6 7.83774 11.811 15.3136 18.6707 21.9583 25.2062 28.429 31.6349 34.8286 38.0135
7 8.91961 13.0077 16.5739 19.9743 23.294 26.5668 29.8095 33.0318 36.2393 39.4358
8 9.99463 14.1904 17.8179 21.2609 24.6126 27.9105 31.1737 34.4129 37.6346 40.8434
9 11.0641 15.3613 19.0479 22.5328 25.9162 29.2394 32.5233 35.7797 39.0162 42.2376

10 12.1289 16.5223 20.266 23.7917 27.2066 30.555 33.8597 37.1336 40.3851 43.6195

Table 5.3 Table of zeros of the Bessel function of the second kind

5.6 Exercises

For any exercise that requires a series solution assume a series solution and substi-
tute it into the differential equation to determine the recursion relation. Plot your
solution for different numbers of terms in the partial sum. Your answer should in-
clude enough terms to satisfy you that the graph is an accurate representation of the
solution.

5.1. Consider ẍ−2tẋ+ 6x = 0.

1. Is this one of the differential equations outlined in Section 5.5?
2. Is the point x = 0 an ordinary point or a singular point?
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3. Assume a series solution and substitute to determine the coefficients.
4. If x(0) = 1, ẋ(0) = 1 and plot the solution for various numbers of terms. Compare

your series solutions to a solution obtained numerically.
5. If x(0) = 0, ẋ(0) = 1 and plot the solution for various numbers of terms. Compare

your series solutions to a solution obtained numerically.

5.2. Consider ẍ−2tẋ+ 5x = 0.

1. Is this one of the differential equations outlined in Section 5.5?
2. Is the point x = 0 an ordinary point or a singular point?
3. Assume a series solution and substitute to determine the coefficients.
4. If x(0) = 1, ẋ(0) = 1 and plot the solution for various numbers of terms. Compare

your series solutions to a solution obtained numerically.
5. Did changing the 6 to a 5 have a large effect on the solution?

5.3. Consider ẍ + x = 0.

1. Determine a power series solution about t = 0.
2. Determine the general solution using a method from Chapter 3.
3. Are the solutions the same?

5.4. Determine a partial sum of the series solution about t = 0 to

ẍ− (t + 1) ẋ + t2x = 0,

where x(0)= 1 and ẋ(0)= 1. Compare your partial sum approximations to a solution
determined numerically.

5.5. Determine a partial sum of the series solution about t = 0 to

ẍ + 3
(

t2 + 1
)

ẋ+ x = 0,

where x(0) = 1 and ẋ(0) = −1. Compare your partial sum approximations to a
solution determined numerically.

5.6. Determine a series representation for two linearly independent solutions to
Airy’s equation

d2y
dx2 −2xy = 0.

Plot them.

5.7. Determine a series solution to Airy’s equation

d2y
dx2 + xy = 0,

where y(0) = 1 and dy/dx(0) = −1.

5.8. For the Chebychev equation:
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1. Determine a series solution about x = 0 when λ = 3 and y(0) = 1 and y′(0) = 0.
2. Determine a series solution about x = 0 when λ = 1/2 and y(0)= 0 and y′(0)= 1.

For each case, plot your solution and compare it to an accurate approximate numer-
ical solution.

5.9. For the Hermite equation:

1. Determine a series solution about x = 0 when λ = 1 and y(0) = 1 and y′(0) = 0.
2. Determine a series solution about x = 0 when λ = 2 and y(0) = 0 and y′(0) = 1.

For each case, plot your solution and compare it to an accurate approximate numer-
ical solution.

5.10. For the Legendre equation:

1. Determine a series solution about x = 0 when λ = 2 and y(0) = 1 and y′(0) = 0.
2. Determine a series solution about x = 0 when λ = 1/2 and y(0)= 0 and y′(0)= 1.

For each case, plot your solution and compare it to an accurate approximate numer-
ical solution.

5.11. Determine a partial sum of the series solution about t = 0 to

ẍ+ ẋ+(t + 2)x = 0,

where x(0)= 1 and ẋ(0)= 1. Compare your partial sum approximations to a solution
determined numerically.

5.12. Determine a partial sum of the series solution about t = 0 to

ẍ +
t

1− t2 ẋ− 1
1− t2 x = 0,

where x(0)= 1 and ẋ(0)= 1. Compare your partial sum approximations to a solution
determined numerically. Based upon your analysis of the equation, what will be the
range for t in which the series solution converges? Do your results represent this?

5.13. Consider

ẍ +
1

t2 + t2 + 2
ẋ +

1
t2 + 4t + 8

x = 0.

1. For what interval of t would a series solution about t = 0 converge?
2. Determine the recursion relation for the series solution.
3. Compare the series solution for partial sums including different numbers of terms

for the following two cases.

a. x(0) = 1 and ẋ(0) = −1.
b. x(0) = 5 and ẋ(0) = 0.

Do the initial conditions seem to affect the interval of convergence?
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5.14. Determine a partial sum of the general series solution about t = 0 to

ẍ + sin(t) ẋ + 2etx = 0.

The answer should be in terms of a0 and a1 because it is the general solution. Hint:
expand the sine and exponential functions in their Taylor series.

5.15. Determine the power series solution about t = 1 for

ẍ +
1
t

ẋ− 1
t2 x = 0,

where x(0) = 1 and ẋ(0) = 1.

5.16. Consider

x2 d2y
dt2 + 2x2 dy

dt
+ y = 0,

where y(0) = 1 and dy/dx(0) = −1. Assume a series solution of the form

y(x) =
∞

∑
n=0

anxn.

Are you able to find coefficients that satisfy the differential equation as well as the
initial conditions?

5.17. Determine a partial sum of the series solution about t = 0 to

d3x
dt3 +

1
t

dx
dt

− 1
t2 x = 0,

where x(0) = 1, ẋ(0) = 0, and ẍ(0) = 1. Compare your partial sum approximations
to a solution determined numerically. Based upon your analysis of the equation,
what will be the range for t in which the series solution converges? Do your results
represent this?

5.18. Verify Equation (5.16).

5.19. Find a series solution about x = 0 for the Bessel equation

x2 d2y
dx2 (x)+ x

dy
dx

(x)+
(

x2 − 1
9

)

y(x) = 0. (5.26)

5.20. In the development of the method for series solutions about a regular singular
point, we required that a0 �= 0. Explain why this was done.

5.21. Consider the solution to Euler’s equation given in Example 5.7,

x2 d2y
dt2 + x

dy
dt

− 1
4

y = 0
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which was given by

y(x) = c1
√

x +
c2√

x
.

1. Let c1 = c2 = 1 and plot the solution from 0 < ε � 1.
2. For these values of c1 and c2, compute y(1) and dy/dx(1). Show that x = 1 is an

ordinary point for the equation. Compute the series solution about x = 1. Use a
computer plotting package to plot a partial sum of the solution and compare the
solution about x = 1 to y(x) = c1

√
x + c2/

√
x. How well does the series about

x = 1 match the solution near x = 0?

5.22. For each of the following, compute a series solution about x = 0 and determine
two linearly independent solutions.

1. 2x2 d2y
dx2 + x

(

x + 1
2

) dy
dx + 2xy = 0,

2. 2x2 d2y
dx2 + 3x dy

dx +(3x−1)y = 0,

3. 2x d2y
dx2 +(x + 1) dy

dx + 3y = 0.

5.23. Although this chapter focused on linear equations with variable coefficients,
power series methods may also sometimes work for nonlinear equations. Assume a
series solution about t = 0 and substitute it into ẋ = t2 + x2 to find the coefficients.
Compare the series solution to an approximate numerical solution if x(0) = 1.



Chapter 6
Systems of First-Order Linear
Constant-Coefficient Ordinary Differential
Equations

This chapter considers systems of n first-order linear constant-coefficient ordinary
differential equations, which arise from nth-order differential equations or from sys-
tems of coupled differential equations. As becomes readily apparent, the theoreti-
cal basis for solving such systems relies heavily upon matrix algebra theory. Ap-
pendix B contains a review of some of the more important concepts from linear
algebra.

The types of equations considered in this chapter are systems of n first-order
linear constant-coefficient ordinary differential equations of the form

d
dt

⎡

⎢
⎢
⎢
⎣

ξ1(t)
ξ2(t)

...
ξn(t)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ξ1(t)
ξ2(t)

...
ξn(t)

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

g1(t)
g2(t)

...
gn(t)

⎤

⎥
⎥
⎥
⎦

where all the elements of the matrix ai j are constants. This is a system of n first-
order linear constant-coefficient differential equations because each line may be put
in the form of Equation (1.5) where the coefficients are constants. If all the functions
gi(t) are zero, then the system is homogeneous.

6.1 Introduction

This section first gives an example which illustrates that equations of the type con-
sidered in this chapter are common, after which the foundation of the solution
method for the homogeneous case is presented.

Example 6.1. Consider the mass–spring–damper system illustrated in Figure 6.1.
As is the usual case, assume that x1 and x2 are the displacements of m1 and m2,
respectively, measured in an inertial coordinate system where the values of x1 and
x2 are zero when the springs are unstretched. Considering a free body diagram for

193B. Goodwine, Engineering Differential Equations: Theory and Applications, 
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each mass illustrated in Figure 6.2 and applying Newton’s law gives

m1ẍ1 +(b1 + b2) ẋ1 −b2ẋ2 +(k1 + k2)x1 − k2x2 = 0

m2ẍ2 −b2ẋ1 + b2ẋ2 − k2x1 + k2x2 = f (t).
(6.1)

x1 x2

k1

b1

k2

b2

f (t)m1 m2

Fig. 6.1 Two degree of freedom mass–spring–damper system.

k1x1

b1ẋ1

k2 (x2 − x1)

b2 (ẋ2 − ẋ1)
m1 m2

Fig. 6.2 Free body diagrams for masses in Figure 6.1.

These equations are coupled because x1 appears in the x2 equation and vice versa.
A first inclination may be to try to solve one equation for one of either x1 or x2

and substitute into the other, but such an approach is problematic inasmuch as the
equations involve the derivatives of the variables as well.

An insightful extrapolation of the method considered in Chapter 3 might lead one
to attempt to solve the homogeneous problem first followed by some method for the
particular solutions; indeed, this is fundamentally the approach we utilize. In fact,
for the homogeneous case ( f (t) = 0), that is,

m1ẍ1 +(b1 + b2) ẋ1 −b2ẋ2 +(k1 + k2)x1 − k2x2 = 0

m2ẍ2 −b2ẋ1 + b2ẋ2 − k2x1 + k2x2 = 0,

because the equations are linear, constant-coefficient, and homogeneous, a good
guess may be to assume exponential solutions and substitute. In order to have a
general approach that will work for all systems of linear, constant-coefficient, ordi-
nary differential equations, we first convert the system into an equivalent system of
first-order equations and the results are expressed in matrix form.

If we let
ξ1 = x1, ξ2 = ẋ1, ξ3 = x2, ξ4 = ẋ2,

then
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d
dt

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

ξ2
1

m1
(−b1ξ2 − k1ξ1 + k2ξ3 − k2ξ1 + b2ξ4 −b2ξ2)

ξ3
1

m2
(−k2ξ3 + k2ξ1 −b2ξ4 + b4ξ2)

⎤

⎥
⎥
⎦

.

Because this equation is linear in the ξis, it can be expressed as

d
dt

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0 1 0 0
− k1+k2

m1
− b1+b2

m1

k2
m1

b2
m1

0 0 0 1
k2
m2

b2
m2

− k2
m2

− b2
m2

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

.

If we let

ξ =

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

, A =

⎡

⎢
⎢
⎢
⎣

0 1 0 0
− k1+k2

m1
− b1+b2

m1

k2
m1

b2
m1

0 0 0 1
k2
m2

b2
m2

− k2
m2

− b2
m2

⎤

⎥
⎥
⎥
⎦

, (6.2)

then this whole system can be expressed simply as

ξ̇ = Aξ . (6.3)

Clearly, the nature of the solution to the vibrating masses depends on the properties
of the matrix A because that is the only term in the equation where the parameters
of the system are expressed. Exploiting the properties of A to solve this equation is
our task at hand.

Now, the question arises as to the nature of the solution to Equation (6.3). Moti-
vated by the results from Chapters 2 and 3, consider the possibility of a solution of
the form

ξ (t) = ξ̂eλ t ,

where ξ̂ is a constant vector. In full detail,

ξ (t) =

⎡

⎢
⎢
⎢
⎣

ξ1(t)
ξ2(t)

...
ξn(t)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

ξ̂1

ξ̂2
...

ξ̂n

⎤

⎥
⎥
⎥
⎦

eλ t =

⎡

⎢
⎢
⎢
⎣

ξ̂1eλ t

ξ̂2eλ t

...
ξ̂neλ t

⎤

⎥
⎥
⎥
⎦

.

Substituting this into Equation (6.3) gives

λ

⎡

⎢
⎢
⎢
⎣

ξ̂1eλ t

ξ̂2eλ t

...
ξ̂neλ t

⎤

⎥
⎥
⎥
⎦

= A

⎡

⎢
⎢
⎢
⎣

ξ̂1eλ t

ξ̂2eλ t

...
ξ̂neλ t

⎤

⎥
⎥
⎥
⎦

.
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Inserting an identity matrix gives

λ

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ξ̂1eλ t

ξ̂2eλ t

...
ξ̂neλ t

⎤

⎥
⎥
⎥
⎦

= A

⎡

⎢
⎢
⎢
⎣

ξ̂1eλ t

ξ̂2eλ t

...
ξ̂neλ t

⎤

⎥
⎥
⎥
⎦

.

which can be rearranged to give

(A−λ I) ξ̂ = 0, (6.4)

where the exponentials are canceled inasmuch as they are never zero. Recall from
linear algebra that the values for λ that satisfy Equation (6.4) are the eigenvalues of
the matrix A and the ξ̂ that satisfy it are the corresponding eigenvectors of A. More
importantly, what this shows is that solutions to Equation (6.3) are the product of
the eigenvectors and exponentials of the eigenvalues of A.

Computing the eigenvalues and eigenvectors involves two steps. First, Equa-
tion (6.4) only has nonzero solutions for ξ̂ if

det(A−λ I) = 0.

If A is n× n, this results in an nth-order polynomial for λ called the characteristic
polynomial, and the roots of this polynomial are the eigenvalues. To determine the
corresponding eigenvectors, substitute each of the eigenvalues into Equation (6.4)
and solve for the eigenvector. Note that the eigenvalues and eigenvectors occur in
pairs and that furthermore, eigenvectors are unique only up to multiplication by a
scalar.

Because the system of equations is linear, if there are multiple pairs of eigenval-
ues and eigenvectors that satisfy Equation (6.4), a linear combination of the solu-
tions is still a solution; that is,

ξ (t) = c1ξ̂ 1eλ1t + c2ξ̂ 2eλ2t + · · · ,

where each ξ̂ i corresponds to λi. If there are n components, then there are n initial
conditions to be satisfied, so what we need to be able to satisfy any initial conditions
are n linearly independent eigenvectors. Unfortunately, an n× n matrix does not
always have n linearly independent eigenvectors, so, in such a case some more work
is necessary, which, unsurprisingly, involves things such as multiplying solutions by
t.
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6.2 Converting to Systems of First-Order Differential Equations

Systems of first-order differential equations may arise naturally, but they are often
the result of converting higher-order equations into that form. This has been ad-
dressed previously in Section 1.6.3 (and as subsequently in Section 12.5), so rather
than present a formal procedure, an example should suffice.

Example 6.2. Consider the system of three ordinary differential equations

d3x1

dt3 + 4x2 = x3

dx2

dt
= x1

d2x3

dt2 +
dx3

dt
= x1 + x2.

(6.5)

This is a system of linear, homogeneous, constant-coefficient, ordinary differential
equations. Note that the highest-order derivative of x1 is three, of x2 is one, and of
x3 is two. If we let

ξ1 = x1, ξ2 =
dx1

dt
, ξ3 =

d2x1

dt2 , ξ4 = x2, ξ5 = x3, ξ6 =
dx3

dt
, (6.6)

then the system of equations in Equation (6.5) is equivalent to

d
dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ2

ξ3

ξ5 −4ξ4

ξ1

ξ6

ξ1 + ξ4 − ξ6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −4 1 0
1 0 0 0 0 0
0 0 0 0 0 1
1 0 0 1 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The ξ̇1, ξ̇2, ξ̇4, and ξ̇5 components follow from the definitions in Equation (6.6) and
the ξ̇3, ξ̇4, and ξ̇6 components are determined by solving the original three differen-
tial equations in Equation (6.5) for d3x1/dt3, dx2/dt, and d2x3/dt2, respectively.

6.3 Linearly Independent Full Set of Real Eigenvectors

This section deals with the case when A ∈ R
n×n has a set of n linearly independent

real eigenvectors. In this case, the general solution to ξ̇ = Aξ is

ξ̇ (t) = c1ξ̂ 1eλ1t + c2ξ̂ 2eλ2t + · · ·+ cnξ̂ neλnt . (6.7)
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This is the general solution because the n linearly independent eigenvectors allow
any initial condition to be satisfied. This section deals with the case when the eigen-
values and eigenvectors are real and the following sections consider when they may
be complex or when there may not be a full set of them.

The first issue, then, is to determine when an n×n matrix A will have n linearly
independent real eigenvectors. The complete answer is determined from actually
computing the eigenvectors; however, for any given problem, it would be nice to
know early on if this is the type of problem we have. This book presents two results
from linear algebra.

1. If the eigenvalues of a matrix are distinct, then the eigenvectors are linearly in-
dependent.

2. If the matrix is symmetric, the eigenvectors are linearly independent and also
orthogonal, even if some of the eigenvalues are repeated.

These results only provide sufficient conditions for the existence of a set of n linearly
independent eigenvectors. There may be cases where they are not satisfied, but there
still is a full set of linearly independent eigenvectors.

6.3.1 Some Useful Results from Linear Algebra

This first theorem proves that eigenvectors corresponding to distinct eigenvalues are
linearly independent.

Theorem 6.1. Let A ∈R
n×n. If A has n distinct, real eigenvalues, then it has a set of

n linearly independent eigenvectors.

Proof. Let λ1, . . . ,λn denote the distinct eigenvalues of A; that is, λi �= λ j if i �= j and
let ξ̂ 1, . . . , ξ̂ n denote the corresponding eigenvectors. To show that the eigenvectors
are linearly independent it suffices to show that

α1ξ̂ 1 + α2ξ̂ 2 + · · ·+ αnξ̂ n = 0 ⇐⇒ αi = 0

for all i; that is, that is there is no linear combination of the eigenvectors that is zero.
First consider finding α1 and α2 such that

α1ξ̂ 1 + α2ξ̂ 2 = 0. (6.8)

Multiply both sides of this equation by (A−λ2I) (note the specific eigenvalue, λ2):

α1 (A−λ2I) ξ̂ 1 + α2 (A−λ2I) ξ̂ 2 = 0

α1

(

Aξ̂ 1 −λ2ξ̂ 1
)

+ 0 = 0

α1

(

λ1ξ̂ 1 −λ2ξ̂ 1
)

= 0

α1 (λ1 −λ2) ξ̂ 1 = 0.
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Because λ1 �= λ2 and ξ̂ 1 �= 0, then α1 = 0. Hence by Equation (6.8), α2 = 0 and

hence, by definition, the set
{

ξ̂ 1, ξ̂ 2
}

is linearly independent.

Now proceed by induction and assume the set
{

ξ̂ 1, ξ̂ 2, . . . , ξ̂ i
}

is linearly inde-

pendent. Consider

α1ξ̂ 1 + α2ξ̂ 2 + · · ·+ αiξ̂ i + αi+1ξ̂ i+1 = 0. (6.9)

Multiplying both sides of the equation by (A−λi+1I) gives

α1 (λ1 −λi+1) ξ̂ 1 + α2 (λ2 −λi+1) ξ̂ 2 + · · ·+ αi (λi −λi+1) ξ̂ i + 0 = 0.

The set
{

ξ̂ 1, ξ̂ 2, . . . , ξ̂ i
}

is linearly independent, thus

αi = α2 = · · · = αi = 0

and by Equation (6.9), αi+1 = 0. Hence the set
{

ξ̂ 1, ξ̂ 2, . . . , ξ̂ i, ξ̂ i+1
}

is linearly

independent and by induction, the set
{

ξ̂ 1, ξ̂ 2, . . . , ξ̂ n
}

is linearly independent. ��

The implication of this theorem for solving ξ̇ = Aξ is that if all the eigenvalues
of A are different, then simply substituting everything into Equation (6.7) gives the
general solution.

Another useful theorem states that even if some of the eigenvalues are repeated,
if the matrix is symmetric, then the eigenvectors are still linearly independent.

Theorem 6.2. If A ∈ R
n×n is symmetric (i.e., A = AT ), then following are true.

1. All the eigenvalues of A are real.
2. A has n linearly independent eigenvectors, regardless of the multiplicity of any

eigenvalue.
3. Eigenvectors corresponding to different eigenvalues are orthogonal.

The proof uses notation common in complex variable theory, which is

A∗ = A
T
,

where A is transposed and if any of the elements are complex, then the complex
conjugate is taken.1

Proof. 1. Assume A = AT . Because

Aξ̂ i = λiξ̂ i =⇒
(

ξ̂ i
)∗

Aξ̂ i = λi

(

ξ̂ i
)∗

ξ̂ i

the eigenvalue may be expressed as

1 A matrix is called Hermitian if A = A∗.
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λi =

(

ξ̂ i
)∗

Aξ̂ i

(

ξ̂ i
)∗

ξ̂ i
.

Note that the notation
(

ξ̂ i
)∗

ξ̂ i is simply the dot product between the vector ξ̂ i

and its complex conjugate. Then

λ ∗
i =

⎛

⎝

(

ξ̂ i
)∗

Aξ̂ i

(

ξ̂ i
)∗

ξ̂ i

⎞

⎠

∗

=

((

ξ̂ i
)∗

Aξ̂ i
)∗

((

ξ̂ i
)∗

ξ̂ i
)∗ =

(

ξ̂ i
)∗

A∗ξ̂ i

(

ξ̂ i
)∗

ξ̂ i
=

(

ξ̂ i
)∗

Aξ̂ i

(

ξ̂ i
)∗

ξ̂ i
= λi.

Because λi = λ ∗
i , it must be real.

2. The proof of this part is beyond the scope of this book.
3. Let ξ̂ i be the eigenvector associated with eigenvalue λi and ξ̂ j be the eigenvector

associated with eigenvalue λ j. Because A is real and symmetric, it is Hermitian,
and A = A∗, so

(

Aξ̂ i
)∗

ξ̂ j =
(

ξ̂ i
)∗

A∗ξ̂ j =
(

ξ̂ i
)∗

Aξ̂ j = λ j

(

ξ̂ i
)∗

ξ̂ j.

But we also have (

Aξ̂ i
)∗

ξ̂ j = λ ∗
i

(

ξ̂ i
)∗

ξ̂ j.

Because these are equal, and λi �= λ j, then
(

ξ̂ i
)∗

ξ̂ j = 0; that is, they are orthog-

onal.
��

This is a very useful theorem because if A is symmetric, then we are guaranteed
to have n orthogonal eigenvectors, and orthogonal vectors are linearly independent.
Nothing in the theorem required distinct eigenvalues, so this works even if some
of the eigenvalues are repeated. Also, as we show subsequently, we often have to
compute the inverse of some matrices, and when the eigenvectors are orthogonal
this will save a lot of work. The next section illustrates the use of both of these
theorems where they are applicable.

6.3.2 Solution Technique for ξ̇ = Aξ

The general solution to ξ̇ = Aξ is a linear combination of n homogeneous solutions

ξ (t) = c1ξ̂ 1eλ1t + · · ·+ cnξ̂ neλnt ,

where the set of eigenvectors is linearly independent and the coefficients ci may be
used to satisfy specified initial conditions. The eigenvectors are linearly indepen-
dent, thus any initial condition may be satisfied with the appropriate coefficients,
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cis. In particular, for a specified ξ (0)

ξ (0)= c1ξ̂ 1+ · · ·+cnξ̂ n =
[

ξ̂ 1 · · · ξ̂ n
]

⎡

⎢
⎣

c1
...

cn

⎤

⎥
⎦ =⇒

⎡

⎢
⎣

c1
...

cn

⎤

⎥
⎦=

[

ξ̂ 1 · · · ξ̂ n
]−1

ξ (0),

although, as illustrated in the examples below, it is usually easiest just to solve for
the coefficients using row reduction methods.

Example 6.3. Find the homogeneous solutions to

ξ̇ = Aξ , (6.10)

where

A =
[

1 2
1 0

]

, ξ (0) =
[

1
0

]

.

Note that A is not symmetric, so we cannot make use of Theorem 6.2. The com-
putations for the eigenvalues of A are

det(A−λ I) =
∣
∣
∣
∣

1−λ 2
1 −λ

∣
∣
∣
∣
= −(1−λ )λ −2 = λ 2 −λ −2−0,

so the eigenvalues are
λ1 = 2, λ2 = −1.

These are real and distinct, so according to Theorem 6.1 the eigenvectors are guar-
anteed to be linearly independent.

Substituting each eigenvalue into (A−λ I)ξ = 0 gives

[−1 2
1 −2

][

ξ̂ 1
1

ξ̂ 1
2

]

=
[

0
0

]

=⇒ ξ̂ 1 =
[

2
1

]

[

2 2
1 1

][

ξ̂ 2
1

ξ̂ 2
2

]

=
[

0
0

]

=⇒ ξ̂ 2 =
[

1
−1

]

.

Thus

ξ1(t) =
[

2
1

]

e2t , ξ2(t) =
[

1
−1

]

e−t

both satisfy ξ̇ = Aξ , and the general solution is

ξ (t) = c1

[

2
1

]

e2t + c2

[

1
−1

]

e−t .

Substituting t = 0 and the initial condition gives

ξ (0) = c1

[

2
1

]

+ c2

[

1
−1

]

=
[

1
0

]

,
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which may be rearranged as
[

2 1
1 −1

][

c1

c2

]

=
[

1
0

]

=⇒ c1 =
1
3
, c2 =

1
3
,

so

ξ (t) =
1
3

[

2
1

]

e2t +
1
3

[

1
−1

]

e−t

is the solution to the initial value problem.

Example 6.4. Find the solution to the initial value problem

d
dt

⎡

⎣

ξ1

ξ2

ξ3

⎤

⎦=

⎡

⎣

−4 1 0
0 −6 0
0 0 −2

⎤

⎦

⎡

⎣

ξ1

ξ2

ξ3

⎤

⎦ , ξ (0) =

⎡

⎣

3
4
3

⎤

⎦ .

The eigenvalues of A are computed by
∣
∣
∣
∣
∣
∣

−4−λ 1 0
0 −6−λ 0
0 0 −2−λ

∣
∣
∣
∣
∣
∣

= 0.

Computing the determinant by an expansion about the third row and column gives

(−2−λ )[(−4−λ )(−6−λ )] = −(λ + 2)
(

λ 2 + 10λ + 24
)

= 0

so λ1 = −2, λ2 =−4, and λ3 =−6, which are distinct, so from Theorem 6.1 we are
guaranteed that the set of eigenvectors is linearly independent.

The eigenvector corresponding to λ1 = −2 is computed from
⎡

⎣

−4− (−2) 1 0 0
0 −6− (−2) 0 0
0 0 −2− (−2) 0

⎤

⎦⇐⇒
⎡

⎣

−2 1 0 0
0 −4 0 0
0 0 0 0

⎤

⎦=⇒ ξ̂ 1 =

⎡

⎣

0
0
1

⎤

⎦ .

The eigenvector corresponding to λ1 = −4 is computed from
⎡

⎣

−4− (−4) 1 0 0
0 −6− (−4) 0 0
0 0 −2− (−4) 0

⎤

⎦⇐⇒
⎡

⎣

0 1 0 0
0 −2 0 0
0 0 2 0

⎤

⎦=⇒ ξ̂ 2 =

⎡

⎣

1
0
0

⎤

⎦ .

The eigenvector corresponding to λ1 = −6 is computed from
⎡

⎣

−4− (−6) 1 0 0
0 −6− (−6) 0 0
0 0 −2− (−6) 0

⎤

⎦⇐⇒
⎡

⎣

2 1 0 0
0 0 0 0
0 0 4 0

⎤

⎦⇐⇒
⎡

⎣

2 1 0 0
0 0 4 0
0 0 0 0

⎤

⎦ .

The second row requires that the third component be zero; that is, ξ̂ 3
3 = 0. Setting

the first component to be one gives that the second component must be two, from
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the first equation. Hence

ξ̂ 3 =

⎡

⎣

−1
2
0

⎤

⎦ .

The eigenvectors are guaranteed to be linearly independent, therefore the general
solution is

ξ (t) = c1ξ̂ 1eλ1t + c2ξ̂ 2eλ2t + c3ξ̂ 3eλ3t

= c1

⎡

⎣

0
0
1

⎤

⎦e−2t + c2

⎡

⎣

1
0
0

⎤

⎦e−4t + c3

⎡

⎣

−1
2
0

⎤

⎦e−6t .

To satisfy the initial conditions, substitute t = 0 into the general solution, which
gives the system of equations and associated augmented matrix

c1

⎡

⎣

0
0
1

⎤

⎦+ c2

⎡

⎣

1
0
0

⎤

⎦+ c3

⎡

⎣

−1
2
0

⎤

⎦=

⎡

⎣

3
4
3

⎤

⎦ =⇒
⎡

⎣

0 1 −1 3
0 0 2 4
1 0 0 3

⎤

⎦⇐⇒
⎡

⎣

1 0 0 3
0 1 −1 3
0 0 2 4

⎤

⎦

from which we get c3 = 2, c2 = 5, and c1 = 3.
Hence, the solution is

ξ (t) = 3

⎡

⎣

0
0
1

⎤

⎦e−2t + 5

⎡

⎣

1
0
0

⎤

⎦e−4t + 2

⎡

⎣

−1
2
0

⎤

⎦e−6t =

⎡

⎣

5e−4t −2e−6t

4e−6t

3e−2t

⎤

⎦ .

The final example is with a symmetric matrix with repeated eigenvalues.

Example 6.5. Find the general solution to ξ̇ = Aξ where

A =

⎡

⎣

5 0 −1
0 4 0
−1 0 5

⎤

⎦ .

Because A = AT , by Theorem 6.2, the set of three eigenvalues will be linearly inde-
pendent (and orthogonal too). Computing the characteristic equation

∣
∣
∣
∣
∣
∣

(5−λ ) 0 −1
0 (4−λ ) 0
−1 0 (5−λ )

∣
∣
∣
∣
∣
∣

= (4−λ )
[

(5−λ )2 −1
]

= (4−λ )
[

λ 2 −10λ + 24
]

= (4−λ )[(λ −4)(λ −6)] = 0,

so the eigenvalues are λ1 = 4, λ2 = 4, and λ3 = 6. These are not distinct, so Theo-
rem 6.1 does not apply; however, Theorem 6.2 does apply, so we know that A still
has a set of three linearly independent eigenvectors.



204 6 Systems of First-Order Linear Constant-Coefficient ODEs

For λ = 4,

⎡

⎣

1 0 −1
0 0 0
−1 0 1

⎤

⎦

⎡

⎢
⎣

ξ̂1

ξ̂2

ξ̂3

⎤

⎥
⎦=

⎡

⎣

0
0
0

⎤

⎦ =⇒ ξ̂ 1 =

⎡

⎣

1
0
1

⎤

⎦ , ξ̂ 2 =

⎡

⎣

0
1
0

⎤

⎦ .

and skipping the computational details,

ξ̂ 3 =

⎡

⎣

−1
0
1

⎤

⎦ .

Hence, the general solution is

ξ (t) = c1

⎡

⎣

0
1
0

⎤

⎦e4t + c2

⎡

⎣

1
0
1

⎤

⎦e4t + c3

⎡

⎣

−1
0
1

⎤

⎦e6t .

6.4 Complex Eigenvectors

The eigenvalues are computed from a polynomial, thus complex values are possible.
In a manner similar to complex roots in Chapter 3, it is desirable to convert the
complex exponentials into trigonometric functions.

Example 6.6. Again consider the mass–spring–damper system illustrated in Fig-
ure 6.1. Let

m1 = 1, k1 = 10, b1 = 0.1, m2 = 1, k2 = 1, b2 = 0.1.

As a starting observation, because the damping is relatively light, oscillatory so-
lutions should be expected. Substituting these values into the A matrix in Equa-
tion (6.2) gives

A =

⎡

⎢
⎢
⎣

0 1 0 0
−11 −0.2 1 0.1

0 0 0 1
1 0.1 −1 −0.1

⎤

⎥
⎥
⎦

which has eigenvalues

λ1 = −0.1093 + 3.3285i, λ2 = −0.1093−3.3285i,

λ3 = −0.0407 + 0.9487i, λ4 = −0.0407−0.9487i,

and corresponding eigenvectors
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ξ̂ 1 =

⎡

⎢
⎢
⎣

−0.0094−0.2859i
0.9527

−0.0074 + 0.0287i
−0.0946−0.0278i

⎤

⎥
⎥
⎦

, ξ̂ 2 =

⎡

⎢
⎢
⎣

−0.0094 + 0.2859i
0.9527

−0.0074−0.0287i
−0.0946 + 0.0278i

⎤

⎥
⎥
⎦

ξ̂ 3 =

⎡

⎢
⎢
⎣

0.0713 + 0.0060i
−0.0086 + 0.0674i

0.7216
−0.0294 + 0.6846i

⎤

⎥
⎥
⎦

, ξ̂ 4 =

⎡

⎢
⎢
⎣

0.0713−0.0060i
−0.0086−0.0674i

0.7216
−0.0294−0.6846i

⎤

⎥
⎥
⎦

.

Observe that the eigenvalues occur in complex conjugate pairs. This should be
obviously expected inasmuch as eigenvalues are the roots of a polynomial. Less
obvious, but probably not surprising, is that the eigenvectors also occur in complex
conjugate pairs. The reason this is true is given by the proof of the following.

Proposition 6.1. If A ∈R
n×n and two eigenvalues of A are such that λi = λ j , then if

ξ̂ i is the eigenvector corresponding to λi, ξ̂ i is an eigenvector corresponding to λ j.

Proof. Eigenvector ξ̂ i satisfies

(A−λiI) ξ̂ i = 0.

Taking the complex conjugate of both sides gives

(A−λiI) ξ̂ i = 0 =⇒
(

A−λiI
)

ξ̂ i = 0 =⇒ (A−λ jI) ξ̂ i = 0.

Thus, ξ̂ j = ξ̂ i. ��
To solve the initial value problem

ξ̇ = Aξ , ξ (0) = ξ0

we may proceed as before and simply write the general solution

ξ (t) = c1ξ̂ 1eλ1t + · · ·c1ξ̂ neλnt ,

substitute t = 0
ξ (0) = c1ξ̂ 1 + · · ·c1ξ̂ n,

and solve for the unknown coefficients ci. The following example illustrates that
fact.

Example 6.7. Solve

ξ̇ = Aξ ξ (0) =
[

1
1

]

,

where

A =
[

1 −2
2 1

]

.
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Computing the eigenvalues gives

det(A−λ I) = (1−λ )2 + 4 = 0 =⇒ λ = 1±2i.

For λ1 = 1 + 2i
[−2i −2

2 −2i

][

x1

x2

]

=
[

0
0

]

=⇒ ξ̂ 1 =
[

ξ 1
1

ξ 1
2

]

=
[

1
−i

]

.

We do not need to compute the second eigenvector because it is guaranteed to be
the complex conjugate, but just as a check we compute it this time. For λ2 = 1−2i,

[

2i −2
2 2i

][

x1

x2

]

=
[

0
0

]

=⇒ ξ̂ 2 =
[

ξ 2
1

ξ 2
2

]

=
[

1
i

]

.

So the general solution is

ξ (t) = c1

[

1
−i

]

e(1+2i)t + c2

[

1
i

]

e(1−2i)t

and at t = 0,

ξ (0) = c1

[

1
−i

]

+ c2

[

1
i

]

=
[

1 1
−i i

][

c1

c2

]

=
[

1
1

]

.

Either solving for c1 and c2 by inverting the matrix or by eliminating one coefficient
from one equation and substituting into the other gives

c1 =
1
2

+
1
2

i, c2 =
1
2
− 1

2
i.

Finally, substituting c1 and c2 into the general solution gives

ξ (t) =
[ 1

2 + 1
2 i

1
2 − 1

2 i

]

e(1+2i)t +
[1

2 − 1
2 i

1
2 + 1

2 i

]

e(1−2i)t . (6.11)

This is the correct answer, however, it is somewhat dissatisfying in that it is com-
plex whereas the matrix A and the initial conditions were all real. If the complex
exponentials are expanded using Euler’s formula, then

ξ (t) =
[

cos2t − sin2t
cos2t + sin2t

]

et (6.12)

is obtained. Interestingly, the imaginary components of the terms in Equation (6.11)
are identically zero, although, it is certainly difficult to see that without all the work
to convert from Equation (6.11) to Equation (6.12).

The preceding example illustrates that the general solution may still be correctly
expressed as a linear combination of the eigenvalues times the exponential of the
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corresponding eigenvectors. However, there are several reasons to reformulate the
answer.

1. The solution may not “naturally” result in a purely real expression for ξ , which
is what is expected.

2. Furthermore, and perhaps arduous, manipulation may be necessary to determine
the form of the solution that is purely real.

3. Many computations involving complex numbers, requiring four operations for
multiplication and two operations for addition, are involved in computing the
solution.

4. The fact that the eigenvalues and eigenvectors occur in complex conjugate pairs
was not exploited at all.

In order to make the computations less burdensome, an alternative approach
which is analogous to the approach in the case of second-order systems with a char-
acteristic equation with complex roots is utilized. Fundamentally, the “shortcut” to
this approach is based upon the complex conjugate nature of the eigenvalues and
eigenvectors.

Consider a matrix with n eigenvalues, and assume that the first two are a pair of
complex conjugate eigenvalues. Denote them by by

λ1 = μ + iω , λ2 = μ − iω (6.13)

and the eigenvectors by

ξ̂ 1 = ξ̂ 1
r + iξ̂ 1

i , ξ̂ 2 = ξ̂ 1
r − iξ̂ 1

i , (6.14)

where ξ̂ 1
r and ξ̂ 1

i are the real and imaginary parts of the eigenvector ξ̂ 1, respectively.
The general solution is

ξ (t) = c1ξ̂ 1eλ1t + c2ξ̂ 2eλ2t + · · · ,

where only the complex terms are written. Substituting for the components of λ1,
λ2, ξ̂ 1 and ξ̂ 2 and using Euler’s formula gives

ξ (t) = c1ξ̂ 1eλ1t + c2ξ̂ 2eλ2t + · · ·
= c1

(

ξ̂ 1
r + iξ̂ 1

i

)

e(μ+iω)t + c2

(

ξ̂ 1
r − iξ̂ 1

i

)

e(μ−iω)t + · · ·

= c1

(

ξ̂ 1
r + iξ̂ 1

i

)

eμt (cosωt + i sinωt)+ c2

(

ξ̂ 1
r − iξ̂ 1

i

)

eμt (cosωt − i sinωt)+ · · ·

= eμt
[

c1ξ̂ 1
r cosωt − c1ξ̂ 1

i sinωt + ic1ξ̂ 1
r sinωt + ic1ξ̂ 1

i cosωt

+ c2ξ̂ 1
r cosωt − c2ξ̂ 1

i sinωt − ic2ξ̂ 1
i cosωt − ic2ξ̂ 1

r sinωt
]

+ · · ·

= eμt
[

(c1 + c2) ξ̂ 1
r cosωt − (c1 + c2) ξ̂ 1

i sinωt
]

+ eμt i
[

(c1 − c2) ξ̂ 1
r sinωt +(c1 − c2) ξ̂ 1

i cosωt
]

+ · · · .
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Let
k1 = c1 + c2, k2 = i(c1 − c2)

and substitute into ξ (t) to give

ξ (t) = k1eμt
(

ξ̂ 1
r cosωt − ξ̂ 1

i sinωt
)

+ k2eμt
(

ξ̂ 1
r sinωt + ξ̂ 1

i cosωt
)

+ · · · ,
(6.15)

where the terms in the equations are defined in Equations (6.13) and (6.14).

Example 6.8. Returning to the mass–spring–damper system in Example 6.6, observe
that we have

μ1 = −0.1093 ω1 = 3.3285

μ2 = −0.0407 ω2 = 0.9487

and

ξ̂ 1
r =

⎡

⎢
⎢
⎣

−0.0094
0.9527
−0.0074
−0.0946

⎤

⎥
⎥
⎦

ξ̂ 1
i =

⎡

⎢
⎢
⎣

−0.2859
0

0.0287
−0.0278

⎤

⎥
⎥
⎦

ξ̂ 2
r =

⎡

⎢
⎢
⎣

0.0713
−0.0086
0.7216
−0.0294

⎤

⎥
⎥
⎦

ξ̂ 2
r =

⎡

⎢
⎢
⎣

0.0060
0.0674

0
0.6846

⎤

⎥
⎥
⎦

.

From Equation (6.15), the general solution is of the form

ξ (t) = k1eμ1t
(

ξ̂ 1
r cosω1t − ξ̂ 1

i sinω1t
)

+ k2eμ1t
(

ξ̂ 1
r sinω1t + ξ̂ 1

i cosω1t
)

+ k3eμ2t
(

ξ̂ 2
r cosω2t − ξ̂ 2

i sin ω2t
)

+ k4eμ2t
(

ξ̂ 2
r sinω2t + ξ̂ 2

i cosω2t
)

,

or substituting all the numerical values
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ξ (t) = k1e−0.1093t

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

−0.0094
0.9527
−0.0074
−0.0946

⎤

⎥
⎥
⎦

cos3.3285t−

⎡

⎢
⎢
⎣

−0.2859
0

0.0287
−0.0278

⎤

⎥
⎥
⎦

sin3.3285t

⎞

⎟
⎟
⎠

+ k2e−0.1093t

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

−0.0094
0.9527
−0.0074
−0.0946

⎤

⎥
⎥
⎦

sin3.3285t +

⎡

⎢
⎢
⎣

−0.2859
0

0.0287
−0.0278

⎤

⎥
⎥
⎦

cos3.3285t

⎞

⎟
⎟
⎠

+ k3e−0.0407t

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0.0713
−0.0086
0.7216
−0.0294

⎤

⎥
⎥
⎦

cos0.9487t−

⎡

⎢
⎢
⎣

0.0060
0.0674

0
0.6846

⎤

⎥
⎥
⎦

sin0.9487t

⎞

⎟
⎟
⎠

+ k4e−0.0407t

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0.0713
−0.0086
0.7216
−0.0294

⎤

⎥
⎥
⎦

sin0.9487t +

⎡

⎢
⎢
⎣

0.0060
0.0674

0
0.6846

⎤

⎥
⎥
⎦

cos0.9487t

⎞

⎟
⎟
⎠

.

Example 6.9. Returning to Example 6.7,

λ1 = 1 + 2i

and

ξ̂ 1 =
[

1
−i

]

.

Hence μ = 1 and ω = 1, and

ξ̂ 1
r =

[

1
0

]

, ξ̂ 1
i =

[

0
−1

]

.

Substituting into Equation (6.15) gives
[

ξ1(t)
ξ2(t)

]

= k1et
([

1
0

]

cos2t −
[

0
−1

]

sin2t

)

+ k2

([

1
0

]

sin2t +
[

0
−1

]

cos2t

)

.

The initial condition is

ξ (0) =
[

1
1

]

.

Substituting t = 0 into the solution and equating it to the initial condition gives
[

1
1

]

= k1

[

1
0

]

+ k2

[

0
−1

]

which gives
k1 = 1, k2 = −1.

Hence,
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[

ξ1(t)
ξ2(t)

]

= et
([

1
0

]

cos2t −
[

0
−1

]

sin2t

)

−
([

1
0

]

sin2t +
[

0
−1

]

cos2t

)

= et
([

1
1

]

cos2t +
[−1

1

]

sin2t

)

which is the same as Equation (6.12).

This next example contains one real eigenvalue and one complex conjugate pair
of eigenvalues.

Example 6.10. Determine the general solution to

ξ̇ = Aξ ,

where

A =

⎡

⎣

−7 0 8
0 −2 0
−4 0 1

⎤

⎦ .

Computing

det(A−λ I) =

∣
∣
∣
∣
∣
∣

−7−λ 0 8
0 −2−λ 0
−4 0 1−λ

∣
∣
∣
∣
∣
∣

by a cofactor expansion across the second row gives

−1(−2−λ )[(−7−λ )(1−λ )+ 32] = (2 + λ )
(

λ 2 + 6λ + 25
)

= 0.

Hence, λ1 = −2 and

λ2,3 =
−6±√

36−100
2

= −3±4i.

For λ1 = −2, (A + 2I) ξ̂ = 0 is computed by

⎡

⎣

−5 0 8 0
0 0 0 0
−4 0 3 0

⎤

⎦ ⇐⇒
⎡

⎣

−5 0 8 0
0 0 − 17

5 0
0 0 0 0

⎤

⎦

which gives

ξ̂ 1 =

⎡

⎣

0
1
0

⎤

⎦ .

For λ2 = −3 + 4i,
(A +(3−4i)I) ξ̂ = 0

is computed by
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⎡

⎣

−4−4i 0 8 0
0 1−4i 0 0
−4 0 4−4i 0

⎤

⎦ ⇐⇒
⎡

⎣

−4−4i 0 8 0
0 1−4i 0 0
0 0 0 0

⎤

⎦ ,

which was obtained by dividing the first row by 1+ i and subtracting the result from
the third row. If we let ξ̂ 2

3 = 1, then

ξ̂ 2 =

⎡

⎣

1− i
0
1

⎤

⎦ .

Both the eigenvalues and eigenvectors must occur in complex conjugate pairs, there-
fore for λ3 = −3−4i,

ξ̂ 3 =

⎡

⎣

1 + i
0
1

⎤

⎦ .

Using the second eigenvalue μ = −3, ω = 4,

ξ̂ 1
r =

⎡

⎣

1
0
1

⎤

⎦ , ξ̂ 1
i =

⎡

⎣

−1
0
0

⎤

⎦ .

Hence,

ξ (t) = c1e−2t

⎡

⎣

0
1
0

⎤

⎦+ c2e−3t

⎛

⎝

⎡

⎣

1
0
1

⎤

⎦cos4t −
⎡

⎣

−1
0
0

⎤

⎦sin4t

⎞

⎠

+ c3e−3t

⎛

⎝

⎡

⎣

1
0
1

⎤

⎦sin4t +

⎡

⎣

−1
0
0

⎤

⎦cos4t

⎞

⎠ .

6.5 Generalized Eigenvectors

The case where some of the eigenvalues are repeated is the most complicated. This
is because when there are repeated eigenvalues, there may or may not be a complete
set of linearly independent eigenvectors associated with the repeated eigenvalue.
The next set of examples illustrates this fact.

Example 6.11. Consider ξ̇ = Aξ where

A =
[

2 1
0 2

]

.

Computing the eigenvalues gives
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(2−λ )2 = 0 =⇒ λ = 2.

Computing the eigenvectors,
[

0 1
0 0

][

x1

x2

]

=
[

0
0

]

=⇒ ξ̂ =
[

1
0

]

.

In the preceding example, the eigenvalue λ = 2 was repeated. It may not be
surprising that there also is only one eigenvector ξ̂ as well. However, things are not
so simple. Consider the following example.

Example 6.12. Consider ξ̇ = Aξ where

A =
[

2 0
0 2

]

.

Computing the eigenvalues gives

(2−λ )2 = 0 =⇒ λ = 2,

which is exactly the same as before. Now computing the eigenvectors,
[

0 0
0 0

][

x1

x2

]

=
[

0
0

]

.

In this case, however, we have that

ξ̂ 1 =
[

1
0

]

, ξ̂ 2 =
[

0
1

]

both satisfy the eigenvector equation and are linearly independent.

These two examples illustrate the fact that when an eigenvalue is repeated m
times, there may or may not be a set of m linearly independent eigenvectors associ-
ated with it. This is problematic in that to use the approach utilized so far to solve
ξ̇ = Aξ we need a full set of linearly independent eigenvectors in order to obtain a
general solution.

First we address the practical computational matter of determining how many
linearly independent eigenvectors are associated with a repeated eigenvalue. Then
we delineate the solution techniques for each case.

6.5.1 Geometric and Algebraic Multiplicities

The number of times that an eigenvalue is repeated is called its algebraic multiplic-
ity. Similarly, the number of linearly independent eigenvectors associated with an
eigenvalue is called its geometric multiplicity.
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Definition 6.1. Let A ∈ R
n×n and let

det(A−λ I) =
m

∑
i=1

(λ −λi)
ki ,

where each λi is distinct. Note that ∑m
i=1 ki = n. The number ki is the algebraic

multiplicity of eigenvalue λi.

Example 6.13. Consider

A =

⎡

⎢
⎢
⎣

1 0 0 0
−1 2 0 0
−1 0 1 1
−1 0 −1 3

⎤

⎥
⎥
⎦

.

The characteristic equation is

det(A−2I) = (1−λ )(2−λ )3 .

Hence the algebraic multiplicity of λ = 1 is one and the algebraic multiplicity of
λ = 2 is three.

Definition 6.2. Let A ∈ R
n×n. The dimension of the null space of (A−λiI) is the

geometric multiplicity of eigenvalue λi.

The definition of geometric multiplicity should make sense. Because the defini-
tion of an eigenvector is a nonzero vector, ξ̂ satisfying

(A−λ I) ξ̂ = 0,

and the null space of a matrix is the set of vectors that, when multiplied into the
matrix produce the zero vector, the number of linearly independent vectors that
produce the zero vector is the dimension of the null space.

First we consider a matrix with distinct eigenvalues to illustrate the concept of the
dimension of the null space of (A−λ I) being the number of linearly independent
eigenvectors associated with an eigenvalue as well as the simple procedural aspect
of computing it.

Example 6.14. Determine all the linearly independent eigenvectors of

A =

⎡

⎣

1 0 1
0 1 1
0 −2 4

⎤

⎦ .

From an expansion down the first column, the characteristic equation is
∣
∣
∣
∣
∣
∣

(1−λ ) 0 1
0 (1−λ ) 1
0 −2 (4−λ )

∣
∣
∣
∣
∣
∣

= (1−λ )[(1−λ )(4−λ )+ 2]

= (1−λ )[(λ −2)(λ −3)] = 0
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so the eigenvalues are λ1 = 1, λ2 = 2 and λ3 = 3. The eigenvalues are distinct,
by Theorem 6.1, therefore each should have one linearly independent eigenvector
associated with it and dim(N (A−λiI)) = 1 for each λi.

In detail, for λ1 = 1 the associated eigenvalue satisfies

(A−λ1I) ξ̂ 1 = (A− I) ξ̂ 1 = 0.

The augmented matrix is
⎡

⎣

1−λ 0 1 0
0 1−λ 1 0
0 −2 4−λ 0

⎤

⎦ . (6.16)

Substituting λ1 = 1 and making a couple of elementary row manipulations yields
⎡

⎣

0 0 1 0
0 0 1 0
0 −2 3 0

⎤

⎦ ⇐⇒
⎡

⎣

0 −2 3 0
0 0 1 0
0 0 1 0

⎤

⎦ ⇐⇒
⎡

⎣

0 −2 3 0
0 0 1 0
0 0 0 0

⎤

⎦ .

The last augmented matrix has one row of zeros, indicating that the dimension of
its null space is one, so there is one linearly independent eigenvector associated with
λ1 = 1. From the second row, the third component ξ̂ 1

3 clearly must be zero. Using
this fact and noting the first row indicates that the second component must also be
zero. Finally, the first component of ξ̂ 1

1 is clearly arbitrary. Thus, the eigenvector
must be

ξ̂ 1 =

⎡

⎣

1
0
0

⎤

⎦ .

Similarly, substituting λ2 = 2 into Equation (6.16) gives
⎡

⎣

−1 0 1 0
0 −1 1 0
0 −2 2 0

⎤

⎦ ⇐⇒
⎡

⎣

−1 0 1 0
0 −1 1 0
0 0 0 0

⎤

⎦ .

Picking the third component ξ̂ 2
3 to be one, we have

ξ̂ 2 =

⎡

⎣

1
1
1

⎤

⎦ .

Finally, for λ3 = 3
⎡

⎣

−2 0 1 0
0 −2 1 0
0 −2 1 0

⎤

⎦ ⇐⇒
⎡

⎣

−2 0 1 0
0 −2 1 0
0 0 0 0

⎤

⎦ .
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This time picking the third component, ξ̂ 3
3 , to be 2 gives

ξ̂ 3 =

⎡

⎣

1
1
2

⎤

⎦ .

Now consider an example with repeated eigenvalues.

Example 6.15. Determine the eigenvalues and eigenvectors of

A =

⎡

⎣

0 1 1
−4 5 1
−5 1 5

⎤

⎦ .

The characteristic equation is

λ 3 −10λ 2 + 32λ −32 = 0,

so (using a numerical root finder)2 the eigenvalues are λ1 = 2, λ2 = 4 and λ3 = 4.
For λ1 = 2,

⎡

⎣

−2 1 1 0
−4 3 1 0
−4 1 3 0

⎤

⎦ ⇐⇒
⎡

⎣

−2 1 1 0
0 1 −1 0
0 −1 1 0

⎤

⎦ ⇐⇒
⎡

⎣

−2 1 1 0
0 1 −1 0
0 0 0 0

⎤

⎦ .

Because there is one row of zeros, there is one linearly independent eigenvalue
associated with λ1 = 2, which is expected inasmuch as it is not repeated. Picking
the third component of ξ̂ 1 to be one,

ξ̂ 1 =

⎡

⎣

1
1
1

⎤

⎦ .

Now, for λ2 = 4
⎡

⎣

−4 1 1 0
−4 1 1 0
−4 1 1 0

⎤

⎦ ⇐⇒
⎡

⎣

−4 1 1 0
0 0 0 0
0 0 0 0

⎤

⎦ .

There are two rows of zeros, thus there are two linearly independent eigenvectors
associated with λ2 = 4. Picking the third component of ξ̂ 2 to be 4 and the second
component to be zero, we have

ξ̂ 2 =

⎡

⎣

1
0
4

⎤

⎦ .

2 Both MATLAB and Octave have the roots() command to calculate the roots of polynomials.



216 6 Systems of First-Order Linear Constant-Coefficient ODEs

There are two rows of zeros, thus we can find another solution to the equations. To
determine one, we pick another combination of variables with the only restriction
that it cannot be a scaled version of two of the components of ξ̂ 2. Picking the third
component to be zero and the second component to be 4 gives

ξ̂ 3 =

⎡

⎣

1
4
0

⎤

⎦ .

The fact that there were two rows of zeros in upper triangular form of the augmented
matrix indicates that the dimension of the null space of (A−4I) was two. Thus, we
were able to determine two linearly independent eigenvectors associated with the
repeated eigenvalue.

Finally, just to complete the picture, the following is an example of an eigenvalue
with algebraic multiplicity two but a geometric multiplicity of one.

Example 6.16. Returning to the matrix from Example 6.11 with

A =
[

2 1
0 2

]

,

we computed previously that λ = 2 was the only eigenvalue and that it had an alge-
braic multiplicity of two. Constructing the augmented matrix for A−2I gives

[

0 1 1
0 0 0

]

.

Because there is one row of zeros, the geometric multiplicity is one. Clearly the first
component of the eigenvector is arbitrary and the second component must be zero.
Thus, for example,

ξ̂ 1 =
[

1
0

]

.

Finally, after this rather extensive detour into the realm of the nature of repeated
eigenvalues and the computational details of computing the associated eigenvectors,
we return to the main task at hand which is to solve ξ̇ = Aξ .

6.5.2 Homogeneous Solutions with Repeated Eigenvalues

Because there may or may not be a full set of linearly independent eigenvectors
when there are repeated eigenvalues, we have to consider each case separately.
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6.5.2.1 Equal Algebraic and Geometric Multiplicities

This is the case for which to hope because the solution technique is identical to
the case of distinct eigenvalues. Even if there are repeated eigenvalues, the general
solution is simply

ξ (t) = c1ξ̂ 1eλ1t + c2ξ̂ 2eλ2t + · · ·+ cnξ̂ neλnt .

This is, in fact, the general solution. The set of eigenvectors is linearly independent,
therefore it will always be possible to solve for the coefficients for a specified initial
condition regardless of the fact that some of the eigenvalues are repeated.

6.5.2.2 Algebraic Multiplicity Greater Than the Geometric Multiplicity

The case where the geometric multiplicity of an eigenvalue is less than its algebraic
multiplicity is much more interesting, but unfortunately, requires a bit more work.
In this case, if we simply compute eigenvectors, we will have a set of homogeneous
solutions of the form

ξ (t) = ξ̂ ieλit ,

but we will not have n linearly independent eigenvalues, so

ξ (t) = c1ξ̂ 1eλ1t + c2ξ̂ 2eλ2t + · · ·+ cmξ̂ meλmt ,

where m < n is a solution, but not a general solution. In this case, it is not possible
to compute coefficients ci to satisfy any set of initial conditions because there is not
a full set of linearly independent eigenvectors.

Recall from Chapter 3 that in the case of repeated roots, the approach was to
multiply the one homogeneous solution by the independent variable t and add it to
the first solution. The following two examples illustrate that fact, but also then go to
make a connection to the matrix approach that is the subject of this chapter.

Example 6.17. Find the general solution to

ẍ + 4ẋ+ 4x = 0. (6.17)

Assuming x(t) = eλ t and substituting gives

λ 2 + 4λ + 4 = 0 =⇒ (λ + 2)2 = 0. (6.18)

So, λ = 2 is the solution. Hence, xh(t) = e−2t is a homogeneous solution. Because
there is no other root to the characteristic equation, the approach (which was fully
detailed in Chapter 3) is to assume a second homogeneous solution of the form
xh(t) = te−2t . The fact that this is a second homogeneous solution can be verified by
substituting it into Equation (6.17) and the fact that it is linearly independent can be
verified by computing the Wronskian. Thus the general solution to Equation (6.17)
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is
x(t) = c1e−2t + c2te−2t . (6.19)

Example 6.18. Consider the same equation as in Equation (6.17), but first convert it
into a system of two first-order equations. The equivalent system is

d
dt

[

x
ẋ

]

=
[

0 1
−4 −4

][

x
ẋ

]

.

Computing the eigenvalues for the matrix in the preceding equation gives
∣
∣
∣
∣

−λ 1
−4 −4−λ

∣
∣
∣
∣
= λ 2 + 4λ + 4 = (λ + 2)2 = 0.

It is no coincidence that the characteristic equation for the eigenvalue problem is
exactly the same as Equation (6.18). Thus, the only distinction is one of nomencla-
ture: there are “repeated eigenvalues” instead of “repeated roots.” Now computing
the eigenvectors corresponding to λ1 = −2 gives

[

2 1 0
−4 −2 0

]

⇐⇒
[

2 1 0
0 0 0

]

.

Thus, there is one linearly independent eigenvector,

ξ̂ 1 =
[

1
−2

]

.

The goal is obviously to construct a solution that is equivalent to the general solution
in Equation (6.19). Differentiating Equation (6.19) gives

ẋ(t) = −2c1e−2t + c2e−2t −2c2te−2t ,

or in vector form

d
dt

[

x
ẋ

]

=
d
dt

[

ξ1

ξ2

]

= c1

[

1
−2

]

e−2t + c2

([

0
1

]

e−2t + t

[

1
−2

]

e−2t
)

= c1ξ̂ 1eλ1t + c2

(

ξ̂ 2eλ1t + tξ̂ 1eλ1t
)

.

Clearly, in the notation of the last line in the above equation, ξ̂ 1 is simply the eigen-
vector that we already computed. The question is how to compute ξ̂ 2, the other
vector.3

Recall that the whole business regarding eigenvalues and eigenvectors came
about by simply assuming solutions of the form ξ (t) = ξ̂eλ t . Substituting this into

3 Note that the superscripts for the ξ̂s are indices, not powers.
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ξ̇ = Aξ then indicated that ξ̂ had to be an eigenvector and λ had to be an eigenvalue.
The approach now is pretty obvious: substitute the assumed form of the second ho-
mogeneous solution

ξh(t) =
(

ξ̂ 2 + tξ̂ 1
)

eλ t

to verify first that ξ̂ 1 indeed satisfies the eigenvector equation (so that the fact that
they are the same in this example is not a coincidence) and second, to determine
what sort of equation ξ̂ 2 must satisfy. Differentiating and substituting gives

λ
(

ξ̂ 2 + tξ̂ 1
)

eλ t + ξ̂ 1eλ t = A
(

ξ̂ 2 + tξ̂ 1
)

eλ t .

Because this must hold for all t, the coefficients of the different powers of t must be
equal. Therefore, collecting terms multiplying the same powers of t gives

t0 : λ
(

ξ̂ 2 + ξ̂ 1
)

eλ t = Aξ̂ 2eλ t

t1 : λ ξ̂ 1eλ t = Aξ̂ 1eλ t .

Inasmuch as eλ t is never zero we have the following two equations

(A−λ I) ξ̂ 1 = 0

(A−λ I) ξ̂ 2 = ξ̂ 1.

The first equation has already been solved, so

ξ̂ 1 =
[

1
−2

]

.

For the second equation we have
[

2 1 1
−4 −2 −2

]

⇐⇒
[

2 1 1
0 0 0

]

.

As with eigenvectors, the solution is determined only up to an arbitrary scaling
constant. In this case, clearly, the vector

ξ̂ 2 =
[

0
1

]

satisfies the equation for ξ̂ 2.

The task now is to generalize the approach to systems of n equations where the
multiplicity of a repeated eigenvalue may be greater than two. So consider the gen-
eral case of

ξ̇ = Aξ , A ∈ R
n×n,
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and assume that the algebraic multiplicity of eigenvalue λi is m but that the geomet-
ric multiplicity is less than m. Motivated by the above example, clearly the approach
is to multiply exponential solutions by t to obtain additional linearly independent so-
lutions. In the example, because the system was second-order, the highest power of
t in the general solution was one; however, in the case where the algebraic multi-
plicity is greater than two, additional powers of t may be necessary. Therefore, let us
propose the following homogeneous solution corresponding to eigenvalue λi with
algebraic multiplicity m,

ξ (t) =
(

ξ̂ m + tξ̂ m−1 +
t2

2!
ξ̂ m−2 + · · ·+ tm−1

(m−1)!
ξ̂ 1
)

eλit . (6.20)

Differentiating this proposed solution gives

ξ̇ (t) = λi

(

ξ̂ m + tξ̂ m−1 +
t2

2!
ξ̂ m−2 + · · ·+ tm−1

(m−1)!
ξ̂ 1
)

eλit

+
(

ξ̂ m−1 + tξ̂ m−2 + · · ·+ tm−2

(m−2)!
ξ̂ 1
)

eλit .

(6.21)

Also,

Aξ (t) = A
(

ξ̂ m + tξ̂ m−1 + t2ξ̂ m−2 + · · ·+ tm−1ξ̂ 1
)

eλit . (6.22)

Because eλit is never zero it can be canceled from both equations and because ξ̇ = At
must hold for all t, equating the coefficients of each power of t in Equations (6.21)
and (6.22), gives

t0 : λiξ̂ m + ξ̂ m−1 = Aξ̂ m

t1 : λiξ̂ m−1 + ξ̂ m−2 = Aξ̂ m−1

t2 : λiξ̂ m−2 + ξ̂ m−2 = Aξ̂ m−2

...
...

...

tm−1 : λiξ̂ 1 = Aξ̂ 1.

Thus, the following sequence is obtained

(A−λiI) ξ̂ 1 = 0

(A−λiI) ξ̂ 2 = ξ̂ 1

(A−λiI) ξ̂ 3 = ξ̂ 2

... =
...

(A−λiI) ξ̂ m = ξ̂ m−1.

(6.23)
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The first equation is simply the equation for a regular eigenvalue. The vectors ξ̂ 2

through ξ̂ m are called generalized eigenvectors and are determined by sequentially
solving the second through mth equations.

Note that if the second line of Equation (6.23) is multiplied on the left by
(A−λiI) then

(A−λiI)(A−λiI) ξ̂ 2 = (A−λiI) ξ̂ 1,

but because
(A−λiI) ξ̂ 1 = 0

then
(A−λiI)2 ξ̂ 2 = 0.

Similarly, multiplying the jth line in Equation (6.23) by (A−λiI)
j, where 1 < j < m,

gives
(A−λiI)

j ξ̂ j = 0.

Further note that

(A−λiI)
m ξ̂ j = (A−λiI)

m− j (A−λiI)
j ξ̂ j = 0.

Hence, all the eigenvectors and generalized eigenvectors associated with λi are in
the null space of (A−λiI)m, which motivates the following definition.

Definition 6.3. The null space of (A−λiI)
m is the generalized eigenspace of A as-

sociated with λi.

The following theorem assures us that the dimension of the generalized eigenspace
associated with λi is the same as the algebraic multiplicity of λi. This fact is neces-
sary in order to ensure that enough generalized eigenvectors exist to generate a full
set of linearly independent homogeneous solutions to construct a general solution.

Theorem 6.3. The dimension of the generalized eigenspace of A associated with λi

is equal to the algebraic multiplicity of the eigenvalue λi; that is, if the algebraic
multiplicity of the eigenvalue λi is m, then

dim(N (A−λiI)m) = m.

Proof. The reader is referred to [18] and [22].

This book refers to any ξ ∈N (A−λ I)m when m > 1 as a generalized eigenvec-
tor. So the set of generalized eigenvectors also contains some “regular” eigenvectors
that satisfy ξ ∈ N (A−λ I). The following theorem gives the form of the homoge-
neous solution for any vector in generalized eigenspace of λi.

Theorem 6.4. For A ∈ R
n×n and λi an eigenvector of A with algebraic multiplicity

m, if
(A−λiI)

m ξ̂ = 0,

then
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ξ (t) =
(

ξ̂ + t (A−λiI) ξ̂ +
t2

2!
(A−λiI)

2 ξ̂ + · · ·+ tm−1

(m−1)!
(A−λiI)

m−1 ξ̂
)

eλit

(6.24)
satisfies

ξ̇ = Aξ .

Proof. This is by direct computation. Simply differentiate ξ (t) and substitute into
ξ̇ = Aξ . ��

So, finally we have the following solution technique for ξ̇ = Aξ , for A ∈ R
n×n

where λi has an algebraic multiplicity of m.

1. For the nonrepeated eigenvalues λ j the corresponding homogeneous solution is
ξ (t) = ξ̂ jeλ jt . If two of these eigenvalues are a complex conjugate pair, then con-
verting the homogeneous solution to sines and cosines as outlined in Section 6.4
is preferable.

2. For each repeated λi,

a. Find a basis for the generalized eigenspace of λi, which is m generalized
eigenvectors ξ̂ i; that is,

(A−λiI)m ξ̂ = 0.

These ξ̂ may be regular eigenvectors, generalized eigenvectors, or linear com-
binations thereof.

b. The homogeneous solution corresponding to each ξ̂ i is

ξ (t)=
(

ξ̂ + t (A−λiI) ξ̂ +
t2

2!
(A−λiI)2 ξ̂ + · · ·+ tm−1

(m−1)!
(A−λiI)m−1 ξ̂

)

eλit .

Remark 6.1. Many, if not most, texts use the sequence in Equation (6.23) for the
definition and computation of generalized eigenvectors. Such an approach suffers
from the drawback that if there is more than one solution to the first equation in
the sequence, the solution to the second may depend on choosing a specific lin-
ear combination of those solutions for the right-hand side of the second equation,
which is difficult. The approach presented here, which is to compute a basis for the
generalized eigenspace of the matrix, will always work.

A few examples help illustrate the approach.

Example 6.19. Determine the general solution to ξ̇ = Aξ where

A =

⎡

⎢
⎢
⎣

1 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2

⎤

⎥
⎥
⎦

.

The matrix is triangular, therefore the eigenvalues are the values along the diagonal.
Thus
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λ1 = 1, λ2 = 2, λ3 = 2, λ4 = 2.

Thus, λ = 2 is an eigenvalue with algebraic multiplicity of three. For λ1 = 1, the
eigenvector is

(A−λ1I) ξ̂ 1 = 0 ⇐⇒

⎡

⎢
⎢
⎣

0 0 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 0

⎤

⎥
⎥
⎦

⇐⇒ ξ̂ 1 =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

.

For λ2 = λ3 = λ4 = 2 we need to find all three vectors that satisfy (A−2I)3 ξ̂ = 0,
so we must compute

(A−2I)3 =

⎡

⎢
⎢
⎣

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

.

Hence we need to find three solutions to
⎡

⎢
⎢
⎣

−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎦

.

The free components are obviously the second, third, and fourth components.
Hence, one choice is

ξ̂ 2 =

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦

, ξ̂ 3 =

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

, ξ̂ 4 =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

.

Thus, the general solution is

ξ (t) = c1ξ̂1eλ1t

+ c2

(

ξ̂ 2 + t (A−2I) ξ̂ 2 +
t2

2!
(A−2I)2 ξ̂ 2

)

eλ2t

+ c3

(

ξ̂ 3 + t (A−2I) ξ̂ 3 +
t2

2!
(A−2I)2 ξ̂ 3

)

eλ2t

+ c4

(

ξ̂ 4 + t (A−2I) ξ̂ 4 +
t2

2!
(A−2I)2 ξ̂ 4

)

eλ2t .

Because we need them in the answer, observe that
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(A−2I) =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦

, (A−2I)2 =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

and hence

(A−2I) ξ̂ 2 =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦

, (A−2I)2 ξ̂ 2 =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦

,

(A−2I) ξ̂ 3 =

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦

, (A−2I)2 ξ̂ 3 =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦

,

(A−2I) ξ̂ 4 =

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

, (A−2I)2 ξ̂ 4 =

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦

.

So, finally, the general solution is

ξ (t) = c1

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

et + c2

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦

e2t + c3

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

+ t

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

e2t

+ c4

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

+ t

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

+
t2

2

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

e2t .

That this is a solution may be verified by directly substituting this into the original
differential equation.

Example 6.20. Determine the general solution to

ξ̇ = Aξ ,

where

A =

⎡

⎣

3 −1 0
1 1 0
0 0 2

⎤

⎦ .

Computing
∣
∣
∣
∣
∣
∣

3−λ −1 0
1 1−λ 0
0 0 2−λ

∣
∣
∣
∣
∣
∣

= 0
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using a cofactor expansion across the third row gives

(2−λ )[(3−λ )(1−λ )+ 1] =

(2−λ )
[

λ 2 −4λ + 4
]

=

(2−λ )
[

(2−λ )2
]

= 0.

Hence, λ = 2 has an algebraic multiplicity of three.
Next we must determine the vectors that span the null space of (A−λ I)3. Sub-

stituting λ = 2 gives

(A−2I) =

⎡

⎣

1 −1 0
1 −1 0
0 0 0

⎤

⎦

and a simple calculation shows that

(A−2I)2 = (A−2I)3 =

⎡

⎣

0 0 0
0 0 0
0 0 0

⎤

⎦ ,

so we may choose any three vectors that span R
3. Just for fun, we choose

ξ̂ 1 =

⎡

⎣

1
0
0

⎤

⎦ , ξ̂ 2 =

⎡

⎣

1
1
0

⎤

⎦ , ξ̂ 3 =

⎡

⎣

1
1
1

⎤

⎦ .

All that is left to do is to substitute into Equation (6.24), which gives

ξ (t) = c1

⎛

⎝

⎡

⎣

1
0
0

⎤

⎦+ t

⎡

⎣

1 −1 0
1 −1 0
0 0 0

⎤

⎦

⎡

⎣

1
0
0

⎤

⎦

⎞

⎠e2t

+ c2

⎛

⎝

⎡

⎣

1
1
0

⎤

⎦+ t

⎡

⎣

1 −1 0
1 −1 0
0 0 0

⎤

⎦

⎡

⎣

1
1
0

⎤

⎦

⎞

⎠e2t

+ c3

⎛

⎝

⎡

⎣

1
1
1

⎤

⎦+ t

⎡

⎣

1 −1 0
1 −1 0
0 0 0

⎤

⎦

⎡

⎣

1
1
1

⎤

⎦

⎞

⎠e2t

= c1

⎛

⎝

⎡

⎣

1
0
0

⎤

⎦+ t

⎡

⎣

1
1
0

⎤

⎦

⎞

⎠e2t + c2

⎡

⎣

1
1
0

⎤

⎦e2t + c3

⎡

⎣

1
1
1

⎤

⎦e2t .

Just to complete the picture, let us repeat the previous example, but choose the usual
basis for R

3 instead.

Example 6.21. Returning to Example 6.20, choose
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ξ̂ 1 =

⎡

⎣

1
0
0

⎤

⎦ , ξ̂ 2 =

⎡

⎣

0
1
0

⎤

⎦ , ξ̂ 3 =

⎡

⎣

0
0
1

⎤

⎦ .

Substituting into Equation (6.24) gives

ξ (t) = c1

⎛

⎝

⎡

⎣

1
0
0

⎤

⎦+ t

⎡

⎣

1 −1 0
1 −1 0
0 0 0

⎤

⎦

⎡

⎣

1
0
0

⎤

⎦

⎞

⎠e2t

+ c2

⎛

⎝

⎡

⎣

0
1
0

⎤

⎦+ t

⎡

⎣

1 −1 0
1 −1 0
0 0 0

⎤

⎦

⎡

⎣

0
1
0

⎤

⎦

⎞

⎠e2t

+ c3

⎛

⎝

⎡

⎣

0
0
1

⎤

⎦+ t

⎡

⎣

1 −1 0
1 −1 0
0 0 0

⎤

⎦

⎡

⎣

0
0
1

⎤

⎦

⎞

⎠e2t

= c1

⎛

⎝

⎡

⎣

1
0
0

⎤

⎦+ t

⎡

⎣

1
1
0

⎤

⎦

⎞

⎠e2t + c1

⎛

⎝

⎡

⎣

0
1
0

⎤

⎦+ t

⎡

⎣

−1
−1
0

⎤

⎦

⎞

⎠e2t + c3

⎡

⎣

0
0
1

⎤

⎦e2t .

This answer may appear to be different from the answer in Example 6.20, however,
if we let

k1 = c1, k2 = c1 + c2, k3 = c1 + c2 + c3

the answer is

ξ (t) = k1e2t

⎛

⎝

⎡

⎣

1
0
0

⎤

⎦+ t

⎡

⎣

1
1
0

⎤

⎦

⎞

⎠+ k2e2t

⎡

⎣

1
1
0

⎤

⎦+ k3e2t

⎡

⎣

1
1
1

⎤

⎦ ,

which is the same.

6.6 Diagonalization

The fundamental idea underlying this approach is to convert the system of coupled
first-order equations into decoupled equations. What this means mathematically is
apparent shortly, but the consequence of each equation (or row) can be solved in-
dividually, or one at a time. First we need to investigate the concept of converting
a matrix to diagonal form. The correct way to think of this conceptually is that the
equations are transformed to a new set of variables, and in those variables the equa-
tions are decoupled.

For a homogeneous system of the form

ξ̇ = Aξ
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we consider the easier case where A has a full set of n linearly independent eigen-
vectors, ξ̂ 1, . . . , ξ̂ n, and define the matrix T as the matrix with the eigenvectors of A
as its columns; that is,

T =
[

ξ̂ 1 ξ̂ 2 · · · ξ̂ n
]

.

The definition of an eigenvector is

Aξ̂ i = λiξ̂ i,

therefore
AT =

[

λ1ξ̂ 1 λ2ξ̂ 2 · · · λnξ̂ n
]

.

Because λi is a scalar, each term λiξ̂ i is a vector and constitutes one column of the
matrix AT .

Now, because we assumed that ξ̂ 1, ξ̂ 2, . . . , ξ̂ n were linearly independent, then T
is invertible. Note that by definition

T−1T =

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤

⎥
⎥
⎥
⎦

.

Considering this equation column-by-column, we have

T−1ξ̂ 1 =

⎡

⎢
⎢
⎢
⎣

1
0
...
0

⎤

⎥
⎥
⎥
⎦

, T−1ξ̂ 2 =

⎡

⎢
⎢
⎢
⎣

0
1
...
0

⎤

⎥
⎥
⎥
⎦

, · · · , T−1ξ̂ n =

⎡

⎢
⎢
⎢
⎣

0
0
...
1

⎤

⎥
⎥
⎥
⎦

.

Also, because Aξ̂ i = λiξ̂ i

T−1Aξ̂ 1 = T−1λ1ξ̂ 1 = λiT
−1ξ̂ 1 = λ1

⎡

⎢
⎢
⎢
⎣

1
0
...
0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

λ1

0
...
0

⎤

⎥
⎥
⎥
⎦

,

T−1Aξ̂ 2 = T−1λ2ξ̂ 2 = λiT
−1ξ̂ 2 = λ2

⎡

⎢
⎢
⎢
⎣

0
1
...
0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0
λ2
...
0

⎤

⎥
⎥
⎥
⎦

,

and so forth until
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T−1Aξ̂ n = T−1λnξ̂ n = λiT
−1ξ̂ n = λn

⎡

⎢
⎢
⎢
⎣

0
0
...
1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0
0
...

λn

⎤

⎥
⎥
⎥
⎦

.

Finally, putting it all together gives the important relation

T−1AT =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

A common notation for a diagonal matrix is

Λ = T−1AT.

The way to exploit this means to transform A into a diagonal matrix with the
eigenvalues of A on the diagonal and to consider the change of coordinates

ξ =

⎡

⎢
⎣

ξ1
...

ξn

⎤

⎥
⎦ ⇐⇒ ψ =

⎡

⎢
⎣

ψ1
...

ψn

⎤

⎥
⎦ ,

given by
ξ = T ψ ⇐⇒ ψ = T−1ξ .

We are assuming that A has n linearly independent eigenvalues, thus T is invertible.
Thus, using this change of coordinates on

ξ̇ = Aξ

gives
T ψ̇ = AT ψ .

Note that because the columns of T are eigenvectors, it is a constant matrix and thus
Ṫ = 0. Multiplying each equation on the left by T−1

ψ̇ = T−1ATψ = Λψ .

Inasmuch as Λ is diagonal, each equation is decoupled and it is possible to solve
them individually. After finding ψ(t), the answer in the original coordinates is given
by

ξ (t) = Tψ(t).

The following example illustrates the means to diagonalize a matrix to solve a sys-
tem of equations. Observe that for homogeneous solutions it does not really save any
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effort because the eigenvalues and eigenvectors are needed to diagonalize A, which
are exactly what are needed in the solution methods outlined above. However, as is
apparent subsequently, it is useful for nonhomogeneous systems.

Example 6.22. Solve the system from Example 6.4 where

A =

⎡

⎣

−4 1 0
0 −6 0
0 0 −2

⎤

⎦ .

In that example, we computed the eigenvalues and eigenvectors as λ1 = −2, λ2 =
−4, and λ3 = −6 and the corresponding eigenvectors are

ξ̂ 1 =

⎡

⎣

0
0
1

⎤

⎦ , ξ̂ 2 =

⎡

⎣

1
0
0

⎤

⎦ , ξ̂ 3 =

⎡

⎣

−1
2
0

⎤

⎦ , =⇒ T =

⎡

⎣

0 1 −1
0 0 2
1 0 0

⎤

⎦ .

Because detT = 2 and the cofactor matrix for T is

C =

⎡

⎣

0 2 0
0 1 1
2 0 0

⎤

⎦

then

T−1 =
1
2

⎡

⎣

0 0 2
2 1 0
0 1 0

⎤

⎦=

⎡

⎣

0 0 1
1 1

2 0
0 1

2 0

⎤

⎦ ,

and

Λ = T−1AT =

⎡

⎣

0 0 1
1 1

2 0
0 1

2 0

⎤

⎦

⎡

⎣

−4 1 0
0 −6 0
0 0 −2

⎤

⎦

⎡

⎣

0 1 −1
0 0 2
1 0 0

⎤

⎦=

⎡

⎣

−2 0 0
0 −4 0
0 0 −6

⎤

⎦ .

Hence,

d
dt

⎡

⎣

ψ1

ψ2

ψ3

⎤

⎦=

⎡

⎣

−2 0 0
0 −4 0
0 0 −6

⎤

⎦

⎡

⎣

ψ1

ψ2

ψ3

⎤

⎦

or

ψ̇1 = −2ψ1 =⇒ ψ1 = c1e−2t

ψ̇2 = −4ψ2 =⇒ ψ2 = c2e−4t

ψ̇3 = −6ψ3 =⇒ ψ3 = c3e−6t .

Multiplying ψ(t) by T gives ξ (t),
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ξ (t) = T ψ(t) =

⎡

⎣

0 1 −1
0 0 2
1 0 0

⎤

⎦

⎡

⎣

c1e−2t

c2e−4t

c3e−6t

⎤

⎦ =

⎡

⎣

c2e−4t − c3e−6t

2c3e−6t

c1e−2t

⎤

⎦ ,

which is the same answer as the general solution in Example 6.4.

6.7 The Matrix Exponential

Chapter 2 showed that the solution to ẋ = ax is

x(t) = eatx(0)

and this section generalizes the definition of an exponential so that we may write
the solution to ξ̇ = Aξ as

ξ (t) = eAtξ (0). (6.25)

Note that A is a matrix, so we need to define what the exponential term in Equa-
tion (6.25) means. To do so, consider the Taylor series about t = 0 in the scalar case,
which is

eat = 1 + at +
1
2

(at)2 +
1
3!

(at)3 + · · · =
∞

∑
n=0

(at)n

n!
.

Motivated by this, we can define the matrix exponential as follows.

Definition 6.4. For A ∈ R
n×n define the matrix exponential as

eAt = I + At +
1
2

A2t2 +
1
3!

A3t3 + · · · =
∞

∑
n=0

Antn

n!
, (6.26)

where I is the n×n identify matrix.

If this series converges, then it has the following useful property. Differentiating
Equation (6.26) term-by-term gives

d
dt

eAt =
d
dt

(

I + At +
1
2

A2t2 +
1
3!

A3t3 + · · ·
)

= A + A2t +
1
2

A3t2 +
1
3!

A4t3 + · · ·

= A

(

I + At +
1
2

A2t2 +
1
3!

A3t3 + · · ·
)

= AeAt ,

or using the summation notation

d
dt

eAt =
∞

∑
n=1

n
Antn−1

n!
= A

∞

∑
n=1

An−1tn−1

(n−1)!
= A

∞

∑
n=0

Antn

n!
.
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Hence, it follows the same differentiation rule as the scalar case.
In that case, if we write

ξ (t) = eAtξ (0)

then substituting into ξ̇ = Aξ gives

AeAtξ (0) = AeAtξ (0)

which shows it is a solution. Also substituting t = 0 into the solution gives

ξ (0) = eA0ξ (0) = Iξ (0) = ξ (0)

so it also satisfies the initial condition.
Although this is a very nice expression for the solution and particularly conve-

nient and intuitive given the obvious relationship with the solution in the scalar case,
the obvious difficulty is in computing the exponential because it is defined as an
infinite series. Using a computer, it would be relatively easy to get a decent approx-
imation by computing a partial sum with many terms, however, to do it “by hand”
would be very difficult.4 Fortunately, some computations related to diagonalization
are useful in this case.

Assuming A has a full set of linearly independent eigenvectors, then, as in Sec-
tion 6.6, if the columns of T are the eigenvectors of A, then

Λ = T−1AT

is diagonal with the eigenvalues along the diagonal. Solving this equation for A
gives

A = TΛT−1

and substituting this into the definition of the exponential of A gives

eAt = I +
(

TΛT−1) t +
1
2

(

TΛT−1)2
t2 +

1
3!

(

TΛT−1)3
t3 + · · · .

Observe that

(

TΛT−1)n
= TΛT−1TΛT−1 · · ·TΛT−1

= TΛ nT−t

and that

Λ =

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 0 · · · λn

⎤

⎥
⎥
⎥
⎦

=⇒ Λ n =

⎡

⎢
⎢
⎢
⎣

λ n
1 0 · · · 0

0 λ n
2 · · · 0

...
. . .

...
0 0 · · · λ n

n

⎤

⎥
⎥
⎥
⎦

.

This decouples the diagonal terms in the series and the exponential of Λ becomes

4 Both MATLAB and Octave have the expm() function to compute matrix exponentials.
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eΛt =

⎡

⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
...

. . .
...

0 0 0 1

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 0 · · · λn

⎤

⎥
⎥
⎥
⎦

t +
1
2

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 0 · · · λn

⎤

⎥
⎥
⎥
⎦

2

t2 + · · ·

=

⎡

⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
...

. . .
...

0 0 0 1

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

λ1t 0 · · · 0
0 λ2t · · · 0
...

. . .
...

0 0 · · · λn5

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

1
2 λ 2

1 t2 0 · · · 0
0 1

2 λ 2
2 t2 · · · 0

...
. . .

...
0 0 · · · 1

2 λ 2
n t2

⎤

⎥
⎥
⎥
⎦

+ · · ·

=

⎡

⎢
⎢
⎢
⎣

eλ1t 0 · · · 0
0 eλ2t · · · 0
...

. . .
...

0 0 · · · eλnt

⎤

⎥
⎥
⎥
⎦

. (6.27)

Using this fact, if A has a linearly independent set of n eigenvalues, then

eAt = I +
(

TΛT−1) t +
1
2

(

TΛT−1)2
t2 +

1
3!

(

TΛT−1)3
t3 + · · ·

= T T−1 + TΛT−1t +
1
2

TΛ 2T−1t2 +
1
3!

TΛ 3T−1t3 + · · ·

= T

(

I +Λ t +
1
2

Λ 2t2 +
1
3!

Λ 3t3 + · · ·
)

T−1

= T eΛtT−1,

which is easy to compute using Equation (6.27). Thus the solution to ξ̇ = Aξ , in a
computable form, is

ξ (t) = TeΛt T−1ξ (0). (6.28)

Remark 6.2. Observe that other than including the definition of the matrix exponen-
tial, this is equivalent to, and involves many of the same steps, as diagonalizing the
system. It just leaves out the explicit step of defining ψ , which is easily seen by
multiplying Equation (6.28) on the left by T−1.

Example 6.23. Solve ξ̇ = Aξ where

A =

⎡

⎣

−4 1 0
0 −6 0
0 0 −2

⎤

⎦ , ξ (0) =

⎡

⎣

3
4
3

⎤

⎦ .

This is the same matrix considered previously in Examples 6.4 and 6.22, so we have
from before that

T =

⎡

⎣

0 1 −1
0 0 2
1 0 0

⎤

⎦
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and

Λ = T−1AT =

⎡

⎣

−2 0 0
0 −4 0
0 0 −6

⎤

⎦ .

Hence,

eΛt =

⎡

⎣

e−2t 0 0
0 e−4t 0
0 0 e−6t

⎤

⎦

and

eAt =

⎡

⎣

0 1 −1
0 0 2
1 0 0

⎤

⎦

⎡

⎣

e−2t 0 0
0 e−4t 0
0 0 e−6t

⎤

⎦

⎡

⎣

0 0 1
1 1

2 0
0 1

2 0

⎤

⎦ =

⎡

⎣

e−4t 1
2 e−4t − 1

2 e−6t 0
0 e−6t 0
0 0 e−2t

⎤

⎦ .

Thus,

ξ (t) = eAtξ (0) =

⎡

⎣

5e−4t −2e−6t

4e−6t

3e−3t

⎤

⎦ ,

which is the same answer as was obtained in Example 6.4.

6.8 Nonhomogeneous Systems of First-Order Equations

Now we consider how to solve systems of the type

ξ̇ = Aξ + g(t), (6.29)

where A ∈ R
n×n, ξ ∈ R

n, and g(t) ∈ R
n, or in detail

d
dt

⎡

⎢
⎢
⎢
⎣

ξ1

ξ2
...

ξn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ξ1

ξ2
...

ξn

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

g1(t)
g2(t)

...
gn(t)

⎤

⎥
⎥
⎥
⎦

. (6.30)

First consider a mechanical example that gives rise to equations of this nature.

Example 6.24. As an example of a type of system that is modeled by such a set of
equations, consider again the system illustrated in Figure 6.1, but unlike before we
do not assume that F(t) = 0. As before, if

ξ1 = x1, ξ2 = ẋ1, ξ3 = x2, ξ4 = ẋ2

then the equations of motion given in Equation (6.1) are equivalent to
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d
dt

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0 1 0 0
− k1+k2

m1
− b1+b2

m1

k2
m1

b2
m1

0 0 0 1
k2
m2

b2
m2

− k2
m2

− b2
m2

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
0
0

F(t)
m2

⎤

⎥
⎥
⎦

.

The following three methods are appropriate for solving nonhomogeneous sys-
tems of first-order linear ordinary differential equations.

6.8.1 Diagonalization

This method uses the coordinate transformation that diagonalizes the differential
equations considered in Section 6.6, with the only complication that the effect of
the transformation on the inhomogeneous term must be considered. As before, if
the columns of T are the eigenvectors of A and we let

ξ = Tψ ,

then substituting into Equation (6.29) gives

T ψ̇ = AT ψ + g(t),

or
ψ̇ = T−1ATψ + T−1g(t).

This decouples the ψ equations which can be solved individually. In detail, this
looks like

d
dt

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ψ1

ψ2

ψ3
...

ψn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ψ1

ψ2

ψ3
...

ψn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ T−1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g1(t)
g2(t)
g3(t)

...
gn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ1ψ1

λ2ψ2

λ3ψ3
...

λnψn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ T−1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g1(t)
g2(t)
g3(t)

...
gn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ1ψ1

λ2ψ2

λ3ψ3
...

λnψn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

h1(t)
h2(t)
h3(t)

...
hn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(6.31)

where h(t) = T−1g(t).
The significance of Equation (6.31) is that each of the ψi equations is decoupled

and in the form of
ψ̇i = λiψi + hi(t).
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Hence, each can be solved independently using the appropriate method from Chap-
ter 2. For example, using an integrating factor

d
dt

ψi −λiψi = hi(t)

e−λit
(

d
dt

ψi −λiψi

)

= e−λit hi(t)

d
dt

(

e−λitψi

)

= e−λit hi(t).

Hence, integrating both sides gives

∫ t

0

d
dτ

(

e−λiτ ψi(τ)
)

dτ =
∫ t

0
e−λiτ hi(τ)dτ

e−λitψi(t)−ψi(0) =
∫ t

0
e−λiτ hi(τ)dτ.

Hence

ψi(t) = eλit
∫ t

0
e−λiτ hi(τ)dτ + ψi(0)eλit ,

if the initial condition is specified or

ψi(t) = eλit
∫ t

0
e−λiτ hi(τ)dτ + cieλit ,

if the general solution is desired. After solving all the ψi(t) equations, the solution
for the ξ variables is computed using the original equation ξ = T ψ .

Example 6.25. Determine the general solution to

d
dt

⎡

⎣

ξ1

ξ2

ξ3

⎤

⎦=

⎡

⎣

1 1 1
2 1 −1
−8 −5 −3

⎤

⎦

⎡

⎣

ξ1

ξ2

ξ3

⎤

⎦+

⎡

⎣

0
0

cost

⎤

⎦ .

Computing the eigenvalues and eigenvectors gives λ1 = −2, λ2 = −1, and λ3 = 2
with

ξ̂ 1 =

⎡

⎣

−4
5
7

⎤

⎦ , ξ̂ 2 =

⎡

⎣

−3
4
2

⎤

⎦ , ξ̂ 3 =

⎡

⎣

0
−1
1

⎤

⎦ .

Thus

T =

⎡

⎣

−4 −3 0
5 4 −1
7 2 1

⎤

⎦ ⇐⇒ T−1 =

⎡

⎣

1
2

1
4

1
4

−1 − 1
3 − 1

3
− 3

2 − 13
12 − 1

12

⎤

⎦ .

Computing T−1AT and T−1g(t) gives the following equations for ψ
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d
dt

⎡

⎣

ψ1

ψ2

ψ3

⎤

⎦=

⎡

⎣

−2 0 0
0 −1 0
0 0 2

⎤

⎦

⎡

⎣

ψ1

ψ2

ψ3

⎤

⎦+

⎡

⎣

1
4 cost

− 1
3 cost

− 1
12 cost

⎤

⎦ ,

or as individual equations

ψ̇1 = −2ψ1 +
1
4

cost

ψ̇2 = −ψ2 − 1
3

cost

ψ̇3 = 2ψ3 − 1
12

cost.

The solutions to these equations are

ψ1 = e−2t
∫ t

0
e2t 1

4
cosτdτ + ψ1(0)e−2t

ψ2 = −e−t
∫ t

0
et 1

3
cosτdτ + ψ2(0)e−t

ψ3 = −e2t
∫ t

0
e−2t 1

12
cosτdτ + ψ3(0)e2t ,

or

ψ1(t) = c1e−2t +
1
10

cost +
1

20
sin t

ψ2(t) = c2e−t − 1
6

cost − 1
6

sin t

ψ3(t) = c3e2t +
1

30
cost − 1

60
sin t.

The final solution is computed by determining ξ = Tψ , which is

⎡

⎣

ξ1

ξ2

ξ3

⎤

⎦=

⎡

⎣

−4 −3 0
5 4 −1
7 2 1

⎤

⎦

⎡

⎣

c1e−2t + 1
10 cost + 1

20 sin t
c2e−t − 1

6 cost − 1
6 sin t

c3e2t + 1
30 cost − 1

60 sin t

⎤

⎦=

⎡

⎣

−4ψ1(t)−3ψ2(t)
5ψ1(t)+ 4ψ2(t)−ψ3(t)
7ψ1(t)+ 2ψ2(t)+ ψ3(t)

⎤

⎦ ,

which gives
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ξ1(t) = −4c1e−2t − 2
5

cost − 1
5

sin t −3c2e−t +
1
2

cost +
1
2

sin t

ξ2(t) = 5c1e−2t +
1
2

cost +
1
4

sin t + 4c2e−t − 2
3

cost − 2
3

sin t

− c3e2t − 1
30

cost +
1

60
sin t

ξ3(t) = 7c1e−2t +
7

10
cost +

7
20

sin t + 2c2e−t − 1
3

cost − 1
3

sin t

+ c3e2t +
1

30
cost − 1

60
sin t.

6.8.2 Undetermined Coefficients

Recall that the method of undetermined coefficients from Section 3.4.1 was based
upon the fact that derivatives of linear combinations of functions of the form

1. sinωt and cosωt
2. eαt

3. α0tn + α1tn−1 + α2tn−2 + · · ·+ αn−1t + αn

4. Products or sums of them

are linear combinations of the same functions. Thus when the nonhomogeneous
term contains functions of this type, the particular solution of an ordinary differential
equation will be a combination of the same type of function. There are two slight
complications that are necessary to distinguish the approach for systems of first-
order equations from one scalar second-order system.

6.8.2.1 General Form of Particular Solution

The first complication is that even though the nonhomogeneous term may appear
in one component of the differential equation, the form of the solution must have
undetermined coefficients for all of the components, as is illustrated by the following
example.

Example 6.26. Find the general solution to

d
dt

[

ξ1

ξ2

]

=
[

2 1
0 3

][

ξ1

ξ2

]

+
[

0
cos4t

]

.

In the scalar case, the assumed form of the solution would simply be xp(t) =
acos4t + bsin4t, so for this problem we assume

ξp(t) = acos4t + bsin4t =
[

a1

a2

]

cos4t +
[

b1

b2

]

sin4t.
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Note that we are looking for cos4t and sin4t terms for both rows of the equation.
As we show, a1 and b1 are not zero, so it is incorrect only to assume the corre-
sponding terms for undetermined coefficients in the rows where they appear in the
inhomogeneous term.

The rest of the procedure is exactly as before. Substitute the assumed form of
the particular solution into the differential equations and equate the coefficients of
different functions of t. Thus,

ξ̇p(t) = −4asin4t + 4bcos4t,

and substituting gives
[−4a1 sin4t + 4b1 cos4t
−4a2 sin4t + 4b2 cos4t

]

=
[

2 1
0 3

][

a1 cos4t + b1 sin4t
a2 cos4t + b2 sin4t

]

+
[

0
cos4t

]

.

This must be true for all time, therefore the coefficients of the sine and cosine terms
in each equation must be equal. Thus, the coefficients are determined by the follow-
ing four equations,

sine term, first equation =⇒ −4a1 = 2b1 + b2

cosine term, first equation =⇒ 4b1 = 2a1 + a2

sine term, second equation =⇒ −4a2 = 3b2

cosine term, second equation =⇒ 4b2 = 3a2 + 1.

Solving these gives

a1 = − 1
50

, a2 = − 3
25

, b1 = − 1
25

, b2 =
4
25

.

Thus the particular solution is

ξp(t) =
[− 1

50
− 3

25

]

cos4t +
[− 1

25
− 4

25

]

sin4t.

To compute the general solution, the homogeneous solution, that is, the solution to
ξ̇ = Aξ , is needed. A simple computation shows that the eigenvalues and eigenvec-
tors of A are

λ1 = 3, ξ̂ 1 =
[

1
1

]

, λ2 = 2, ξ̂ 2 =
[

1
0

]

.

Thus, the general solution is

ξ (t) = c1

[

1
1

]

e3t + c2

[

1
0

]

e2t +
[− 1

50
− 3

25

]

cos4t +
[− 1

25
− 4

25

]

sin4t.

In the previous example, note that the sine and cosine terms appear in both com-
ponents of the solution even though the nonhomogeneous term contains cos4t only
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in the second term. This is due to the fact that the equations are coupled, and the
effect of the inhomogeneity is not limited to the line in which it appears.

6.8.2.2 Equivalent Homogeneous Solution and Nonhomogeneous Term

The second complication is when the nonhomogeneous term is the exponential of
an eigenvalue of the matrix A. When confronted with this problem in Chapter 3,
the approach was to multiply the assumed form of the particular solution by the
dependent variable.

Remark 6.3. An important distinction with systems of equations is that it is neces-
sary to include both the “original” form (not multiplied by t) as well as the form
multiplied by t in the assumed form for ξp. This is because the equations are cou-
pled and the form not multiplied by t may be needed by some of the equations and
the form multiplied by t may be needed for the others. Furthermore, because part of
the assumed form will be a homogeneous solution for some of the equations, it may
be that there is not a unique solution for the coefficients.

Exercise 6.11 is included to illustrate that both the original form and the form
multiplied by t must be included in xp. The following example illustrates the correct
approach.

Example 6.27. Consider

d
dt

[

ξ1

ξ2

]

=
[

2 1
0 3

][

ξ1

ξ2

]

+
[

0
e3t

]

.

Observing that λ = 3 is an eigenvalue of A we assume

ξp(t) = ate3t + be3t =
[

a1

a2

]

te3t +
[

b1

b2

]

e3t .

Thus
ξ̇p(t) = 3ate3t + ae3t + 3be3t

and substituting into the differential equation gives
(

3t

[

a1

a2

]

+
[

a1

a2

]

+ 3

[

b1

b2

])

e3t =
[

2 1
0 3

]([

a1

a2

]

t +
[

b1

b2

])

e3t +
[

0
e3t

]

.

Equating coefficients of e3t and te3t in each equation gives

a1 + 3b1 = 2b1 + b2

3a1 = 2a1 + a2

a2 + 3b2 = 3b2 + 1

3a2 = 3a2.
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Observe that the last equation is satisfied for any value of a2 so there really are only
three equations. The reason there are fewer than four equations, and hence this is
not a unique solution, is because the vector b in the assumed form of the solution
must be an eigenvector of A and hence can be combined in any linear way with one
of the homogeneous solutions. One solution to the above three equations is

a1 = 1, a2 = 1, b1 = 0, b2 = 1,

and hence

ξp(t) =
[

1
1

]

te3t +
[

0
1

]

e3t . (6.32)

This particular solution is not unique. Indeed,

a1 = 1, a2 = 1, b1 = −1, b2 = 0,

also work giving

ξp(t) =
[

1
1

]

te3t +
[−1

0

]

e3t . (6.33)

The reason both particular solutions work is that when they are combined with the
homogeneous solution, they yield the same solution. In particular, the homogeneous
solution is

ξh(t) = c1

[

1
0

]

e2t + c2

[

1
1

]

e3t .

Then the general solution using the particular solution from Equation (6.32) gives

ξ (t) = c1

[

1
0

]

e2t + c2

[

1
1

]

e3t +
[

1
1

]

te3t +
[

0
1

]

e3t ,

and the general solution using the particular solution from Equation (6.33) gives

ξ (t) = ĉ1

[

1
0

]

e2t + ĉ2

[

1
1

]

e3t +
[

1
1

]

te3t +
[−1

0

]

e3t .

For c2 from the first equation and ĉ2 from the second equation, if ĉ2 = c2 + 1 the
equations are identical.

6.8.3 Variation of Parameters

With all the complications involved in the method of undetermined coefficients, one
may be hesitant to even venture into the realm of variation of parameters because, at
least in Chapter 3 the derivation was rather complicated. Thankfully, in the case of
nonhomogeneous systems of first-order equations, variation of parameters is even
more straightforward than in the scalar second-order case.

Given
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ξ̇ = Aξ + g(t), (6.34)

where
A ∈ R

n×n, ξ ∈ R
n, g(t) ∈ R

n,

assume that ξ1h ,ξ2h , . . . ,ξnh are n linearly independent homogeneous solutions to
Equation (6.34); that is, they satisfy

ξ̇ih = Aξih .

Because it is useful subsequently, we first construct and define a matrix Ξ(t)
where the columns of Ξ(t) are the homogeneous solutions ξih(t).

Definition 6.5. Let ξ1h ,ξ2h , . . . ,ξnh satisfy

ξ̇ih = Aξih .

The fundamental matrix solution is the matrix

Ξ(t) =
[

ξ1h(t) ξ2h(t) · · · ξnh(t)
]

;

that is, the columns of Ξ(t) are the homogeneous solutions.

Example 6.28. Consider the general solution to ξ̇ = Aξ where

A =

⎡

⎢
⎢
⎣

2 0 0 0
0 2 0 0
0 0 3 1
0 0 0 3

⎤

⎥
⎥
⎦

.

Skipping the details the general solution is

ξ (t) = c1ξ̂ 1eλ1t + c2ξ̂ 2eλ1t + c3ξ̂ 3eλ3t + c4

(

ξ̂ 4 + tξ̂ 3
)

eλ3t

= c1

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

e2t + c2

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦

e2t + c3

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

e3t + c4

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

+ t

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

e3t .

Each term that is multiplied by a constant ci is a homogeneous solution, thus we can
construct a matrix with each one as a column to construct the fundamental matrix
solution
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Ξ(t) =
[

ξ̂ 1eλ1t ξ̂ 2eλ2t ξ̂ 3eλ3t
(

ξ̂ 4 + tξ̂ 3
)

eλ3t
]

=

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

e2t

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦

e2t

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

e3t

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

+ t

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

e3t

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

e2t 0 0 0
0 e2t 0 0
0 0 e3t te3t

0 0 0 e3t

⎤

⎥
⎥
⎦

.

The fundamental matrix solution has one important property that is used in the
derivation of the variation of parameters solution; namely, the whole matrix satis-
fies the homogeneous equation. In other words, if Ξ(t) is the fundamental matrix
solution to ξ̇ = Aξ then

Ξ̇ = AΞ .

This is true because each column of Ξ(t) is a homogeneous solution and is illus-
trated by the following example.

Example 6.29. From Example 6.28 we have

Ξ(t) =

⎡

⎢
⎢
⎣

e2t 0 0 0
0 e2t 0 0
0 0 e3t te3t

0 0 0 e3t

⎤

⎥
⎥
⎦

so

Ξ̇(t) =

⎡

⎢
⎢
⎣

2e2t 0 0 0
0 2e2t 0 0
0 0 3e3t 3te3t + e3t

0 0 0 3e3t

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

2 0 0 0
0 2 0 0
0 0 3 1
0 0 0 3

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

e2t 0 0 0
0 e2t 0 0
0 0 e3t te3t

0 0 0 e3t

⎤

⎥
⎥
⎦

.

Thus Ξ̇ = AΞ .

Similar to the approach for second-order equations, the approach to find the par-
ticular solution for a nonhomogeneous system of first-order equations is to assume
that the particular solution is of the form of

ξp(t) = Ξ(t)u(t),

where u(t) is a vector of unknown functions. To determine u(t), substitute into Equa-
tion (6.34). First note that (dropping the explicit dependence on t)

ξ̇p = Ξ̇u + Ξ u̇.

Substituting into Equation (6.34) gives

Ξ̇u + Ξ u̇ = AΞu + g.
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Inasmuch as
Ξ̇ = AΞ =⇒ Ξ̇u = AΞu,

so
Ξ u̇ = g.

Because Ξ contains n linearly independent solutions, it is invertible and hence

u̇ = Ξ−1g =⇒ u(t) =
∫ t

t0
Ξ−1(τ)g(τ)dτ.

Substituting into the assumed form of the particular solution gives a complete ex-
pression for the particular solution as

ξp(t) = Ξ
∫ t

t0
Ξ−1(τ)g(τ)dτ.

Note that to even compute the particular solution we need the fundamental matrix
which contains a full set of homogeneous solutions. Because any linear combination
of the homogeneous solutions can be expressed as

c1ξ1h + c2ξ2h + · · ·+ cnξnh = Ξ(t)c,

where

c =

⎡

⎢
⎢
⎢
⎣

c1

c2
...

cn

⎤

⎥
⎥
⎥
⎦

,

the general solution to Equation (6.34) is

ξ (t) = Ξ(t)c + Ξ(t)
∫ t

t0
Ξ−1(τ)g(τ)dτ. (6.35)

Finally, if the initial conditions ξ (t0) are specified, then

ξ (t0) = Ξ(t0)c

because the integral with the same upper and lower limits is zero. Hence

c = Ξ−1(t0)ξ (t0)

and substituting into the general solution gives the entire answer as

ξ (t) = Ξ(t)Ξ−1(t0)ξ (t0)+ Ξ(t)
∫ t

t0
Ξ−1(τ)g(τ)dτ. (6.36)

An example illustrates the straightforward application of this method.
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Example 6.30. Solve

d
dt

[

ξ1

ξ2

]

=
[−3 1

1 −3

][

ξ1

ξ2

]

+
[

e−4t

0

]

.

The eigenvalues and eigenvectors for the matrix are

λ1 = −4, ξ̂ 1 =
[−1

1

]

, λ2 = −2 ξ̂ 2 =
[

1
1

]

,

and thus

Ξ(t) =
[−e−4t e−2t

e−4t e−2t

]

.

A simple computation determines that

Ξ−1(t) =
1
2

[−e4t e4t

e2t e2t

]

,

and

Ξ−1(t)g(t) =
[ − 1

2
1
2 e−2t

]

.

Assuming that t0 = 0,

∫ t

0
Ξ−1(τ)g(τ)dτ =

∫ t

0

[ − 1
2

1
2 e−2τ

]

dτ =
[ − 1

2 τ
1
4

(

1− e−2t
)

]

.

Then

Ξ(t)
∫ t

0
Ξ−1(τ)g(τ)dτ =

[ 1
4

(

e−2t + 2te−4t − e−4t
)

1
4

(

e−2t −2te−4t − e−4t
)

]

.

So finally we have

ξ (t) = Ξ(t)c + Ξ(t)
∫ t

t0
Ξ−1(τ)g(τ)dτ

= c1

[−e−4t

e−4t

]

+ c2

[

e−2t

e−2t

]

+
[ 1

4

(

e−2t + 2te−4t − e−4t
)

1
4

(

e−2t −2te−4t − e−4t
)

.

]

.

6.9 Exercises

It is possible to complete all of these exercises by hand.

6.1. Each of the matrices in this problem has a full set of linearly independent eigen-
vectors. For each one,indicate whether Theorem 6.1 or 6.2 applies and find the gen-
eral solution to ξ̇ = Aξ for:
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A1 =
[

12 −3
8 2

]

, A2 =
[

12 −3
8 1

]

, A3 =
[

13 −6
16 −7

]

,

A4 =
[

7 −5
2 0

]

, A5 =
[−7 10
−4 7

]

, A6 =
[

14 −5
40 −16

]

.

6.2. Each of the matrices in this problem has a full set of linearly independent eigen-
vectors. For each one,indicate whether Theorem 6.1 or 6.2 applies and find the gen-
eral solution to ξ̇ = Aξ for:

A1 =
[

6 −4
0 2

]

, A2 =

⎡

⎣

−3 0 0
0 −3 1
0 1 −3

⎤

⎦ , A3 =

⎡

⎣

−3 0 0
−1 −3 1
−1 1 −3

⎤

⎦ ,

A4 =

⎡

⎣

−8 7 1
0 −1 1
0 0 0

⎤

⎦ , A5 =

⎡

⎢
⎢
⎣

3 2 0 0
2 3 0 0
0 0 1 4
0 0 4 1

⎤

⎥
⎥
⎦

, A6 =

⎡

⎢
⎢
⎣

−2 0 0 0
0 −2 0 0
0 0 0 2
0 0 2 0

⎤

⎥
⎥
⎦

,

A7 =

⎡

⎢
⎢
⎣

2 0 0 0
0 2 0 9
0 2 1 4
0 −4 0 14

⎤

⎥
⎥
⎦

, A8 =

⎡

⎣

−3 1 0
0 −2 0
1 1 −4

⎤

⎦ , A9 =

⎡

⎣

2 0 3
0 −5 0
3 0 2

⎤

⎦ .

6.3. For A2, A3, A4, A8, and A9 in Exercise 6.2, determine the solution if ξ1(0) = 1,
ξ2(0) = 2, and ξ3(0) = 4.

6.4. Each of the matrices in this problem has some complex eigenvalues. Determine
the general solution to ξ̇ = Aξ for:

A1 =
[−1 2
−2 −1

]

, A2 =
[ −1 1
−10 5

]

, A3 =
[−12 10
−20 16

]

,

A4 =
[

8 −10
4 −4

]

, A5 =
[

4 4
−2 0

]

, A6 =
[−2 2
−1 −4

]

.

6.5. Each of the matrices in this problem has some complex eigenvalues. Determine
the general solution to ξ̇ = Aξ for:
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A1 =

⎡

⎢
⎢
⎣

0 1 0 0
−4 4 0 0
0 0 3 2
0 0 −2 3

⎤

⎥
⎥
⎦

, A2 =

⎡

⎣

− 7
2

15
2 −3

− 3
2 − 1

2 3
0 0 1

⎤

⎦ , A3 =
[−1 −4

4 −1

]

,

A4 =

⎡

⎣

11 0 17
0 −6 0
−2 0 1

⎤

⎦ , A5 =

⎡

⎢
⎢
⎣

−5 1 0 0
−1 −3 0 0
0 0 −1 −4
0 0 2 −5

⎤

⎥
⎥
⎦

, A6 =

⎡

⎢
⎢
⎢
⎢
⎣

−5 0 0 0 0
0 −3 2 0 0
0 −4 1 0 0
0 0 0 −5 1
0 0 0 −1 −7

⎤

⎥
⎥
⎥
⎥
⎦

,

A7 =

⎡

⎣

−3 0 0
0 −5 6
0 −3 1

⎤

⎦ , A8 =

⎡

⎣

2 0 −3
0 −5 0
3 0 2

⎤

⎦ , A9 =

⎡

⎢
⎢
⎣

−1 2 0 0
−2 −1 0 0
0 0 −1 2
0 0 −2 −1

⎤

⎥
⎥
⎦

.

6.6. For A2, A4, A7, and A8 in Exercise 6.5, determine the solution if ξ1(0) = 1,
ξ2(0) = 1, and ξ3(0) = 0.

6.7. Each of the matrices in this problem has some repeated eigenvalues. Determine
the general solution to ξ̇ = Aξ for:

A1 =
[−2 1

0 −2

]

, A2 =
[−3 1
−1 −5

]

, A3 =
[−8 1
−4 −4

]

,

A4 =
[−11 1
−9 −5

]

, A5 =
[−11 1
−4 −7

]

, A6 =
[ −7 2
−81

]

.

6.8. Each of the matrices in this problem has some repeated eigenvalues. Determine
the general solution to ξ̇ = Aξ for:

A1 =

⎡

⎣

−1 0 0
0 −2 0
0 0 −2

⎤

⎦ , A2 =

⎡

⎣

−1 0 0
0 −2 1
0 0 −2

⎤

⎦ , A3 =

⎡

⎣

−2 1 0
0 −2 0
0 1 −2

⎤

⎦ ,

A4 =

⎡

⎣

6 0 0
1 5 1
1 −1 7

⎤

⎦ , A5 =

⎡

⎢
⎢
⎢
⎢
⎣

−4 1 0 0 0
0 −4 0 0 0
0 0 −4 0 0
0 0 0 −1 1
0 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎦

, A6 =

⎡

⎢
⎢
⎢
⎢
⎣

−4 1 0 0 0
0 −4 1 0 0
0 0 −4 0 0
0 0 0 −1 0
0 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎦

.

6.9. Prove Theorem 6.4 by substituting Equation (6.24) into ξ̇ = Aξ and making
use of the properties of generalized eigenvectors.

6.10. Find the general solution to

d
dt

[

ξ1

ξ2

]

=
[

2 1
0 3

][

ξ1

ξ2

]

+
[

0
e−t

]

.

6.11. Consider
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d
dt

[

ξ1

ξ2

]

=
[

2 1
0 3

][

ξ1

ξ2

]

+
[

0
e3t

]

.

• What happens when you assume

ξp(t) = ae3t =
[

a1

a2

]

e3t?

Explain why it does not work.
• What happens when you assume

ξp(t) = ate3t = t

[

a1

a2

]

e3t?

Explain why it does not work.

6.12. Determine the solution to ξ̇ = Aξ + g(t) where

A =

⎡

⎣

−3 1 0
0 −2 0
1 1 −4

⎤

⎦ , g(t) =

⎡

⎣

0
0

cost

⎤

⎦

• Using the method of undetermined coefficients
• By determining a coordinate transformation that diagonalizes A
• Using the method of variation of parameters

6.13. Determine the solution to ξ̇ = Aξ + g(t) where

A =

⎡

⎣

−3 0 1
0 −2 0
1 0 −3

⎤

⎦ , g(t) =

⎡

⎣

e−4t

0
0

⎤

⎦

• Using the method of undetermined coefficients
• By determining a coordinate transformation that diagonalizes A
• Using the method of variation of parameters.

Because A = AT , make use of the fact that T−1 = T T (as long as you normalize all
the eigenvectors to have unit length). Verify this fact by showing that T T T = I.

6.14. Compute the matrix exponential for A1, A2, and A9 from Exercise 6.2. For the
initial condition given in Exercise 6.3, A3 and A9 verify that

ξ (t) = eAtξ (0)

is the same solution as was computed in Exercise 6.3.

6.15. When an n× n matrix does not have a linearly independent set of n eigen-
vectors, the matrix cannot be diagonalized. However, it is still possible to convert
it into a simpler and useful form called Jordan canonical form. For the matrices A3

and A4 from Exercise 6.8, construct the matrix T from the generalized eigenvectors
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and compute T−1AT . Explain the manner in which the resulting matrix would be
useful to solve either a homogeneous or inhomogeneous set of differential equations
containing A.

6.16. Determine the general solution to

d
dt

⎡

⎣

ξ1

ξ2

ξ3

⎤

⎦=

⎡

⎣

−6 0 0
1 −5 1
1 −1 −7

⎤

⎦

⎡

⎣

ξ1

ξ2

ξ3

⎤

⎦+

⎡

⎣

0
t
0

⎤

⎦ .

Plot the solutions. Write a computer program to determine an approximate numeri-
cal solution and compare the answers.

6.17. Determine the solution to

ẍ + ẋ+ x− y = 0

ẏ− x + 2y = e−t ,

where x(0) = 1, ẋ(0) = −1 and y(0) = 2.

6.18. Prove that the principle of superposition holds for systems of linear first-order
ordinary differential equations; that is, if ξ1(t) and ξ2(t) both satisfy ξ̇ = Aξ , then
ξ (t) = c1ξ1(t)+ c2ξ2(t) also satisfies it.



Chapter 7
Applications of Systems of First-Order
Equations

There are many important engineering applications of systems of first-order, lin-
ear, constant-coefficient, ordinary differential equations. This chapter considers the
study of linear vibrations for systems with more than one mass and then two topics
from modern control theory are introduced, which are pole placement and the linear
quadratic regulator.

7.1 Multidegree of Freedom Vibrations

This section considers systems of the type illustrated in Figure 7.1. We first analyze
this system using the approach from classical vibrations theory and then relate it to
the material covered in Chapter 6.

x y

k1 k2 k1

m m

Fig. 7.1 Two degree of freedom mass–spring system.

A simple analysis of the free body diagrams for the two masses yields the fol-
lowing equations of motion

mẍ+(k1 + k2)x− k2y = 0

mÿ+(k1 + k2)y− k2x = 0.
(7.1)

Remark 7.1. In this book, all of the presentations concerning vibration systems with
more than one mass are without damping. Damping greatly increases the complexity
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of the algebra necessary for the analysis, but has little to add pedagogically. Based
on the results from the study of vibrations in Chapter 4, when light damping is
added the resonance frequencies will change very little, and so the results for the
undamped analysis should still apply. When the damping is significant, extra work
will be required. In exercises, light damping is usually added so that in steady-state,
it is possible to distinguish between the homogeneous and particular solutions.

7.1.1 Classical Approach

The general approach presented in this book to solve these types of problems is
to convert them to systems of first-order equations. As presented in the next sec-
tion, the eigenvalues and eigenvectors associated with the system correspond to the
frequencies of oscillation and the relative motions of the masses, respectively, for
the system. However, there is something at least somewhat dissatisfying convert-
ing some perfectly good second-order equations into first-order ones. Of course,
they are mathematically equivalent, but the second-order equations are more trans-
parently related to F = ma, and also there are no “extra” variables created for the
velocities. So, this section presents some basic results that can be obtained by keep-
ing the equations in the original, second-order, form, and is often the approach taken
in vibrations texts such as [21].

These are linear, constant coefficient, homogeneous equations, so exponential so-
lutions seem reasonable to assume. Because there are initial conditions correspond-
ing to the position and velocity of each mass, we seek four linearly independent
solutions to form a fundamental set of solutions. We need to be precise about what
we mean by the term solution in this case. The masses are connected by a spring,
therefore the solutions for the two masses are related to each other and hence, a
solution is the pair,

z(t) =
[

x(t)
y(t)

]

.

The two components of the solution, x(t) and y(t), cannot be changed indepen-
dently of each other, which makes sense because if, for example, y(t) changes, it
will change x(t).

If z1(t) and z2(t) are solutions, then a linear combination of solutions of the form

c1z1(t)+ c2z2(t) =
[

c1x1(t)+ c2x2(t)
c1y1(t)+ c2y2(t)

]

is also a solution. Inasmuch as there is no damping, we know the solutions will
be oscillatory, so we may as well just assume sine and cosine solutions from the
beginning. In particular, let
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x(t) = a1cosωt

y(t) = a2cosωt.

At this point this is nothing more than a guess. It may work out that we also need
to add in some sine functions, but let us proceed to see what happens. Observe that
there are three unknowns: the magnitudes a1 and a2 as well as the frequency ω , and
we can probably only expect to solve for two out of the three because there are only
two equations of motion.

Remark 7.2. Note that this is not the method of undetermined coefficients consid-
ered previously in this book because the equations in (7.1) are homogeneous. The
reason there are coefficients in this equation is because we do not know the relative
magnitudes of the motion of the two masses a priori. In the scalar case, the homo-
geneous solution can be multiplied by a constant and still satisfy the differential
equation. In this case, we need to determine the relationship between the magni-
tudes of the motion of the two masses. Once that is established, then they both may
be scaled by the same constant. The coefficients a1 and a2 play a role equivalent to
that of components of an eigenvector, which is only defined up to a scale multiple.

Differentiating the proposed solution a couple of times and substituting gives

−mω2a1cosωt +(k1 + k2)a1cosωt − k2a2cosωt = 0 (7.2)

for the left mass and

−mω2a2cosωt +(k1 + k2)a2cosωt − k2a1cosωt = 0 (7.3)

for the right mass. These may be written as
[

k1 + k2 −mω2 −k2

−k2 k1 + k2 −mω2

][

a1

a2

]

=
[

0
0

]

. (7.4)

This only has a nonzero solution for a1 and a2 when the determinant of the matrix
is zero, so we need

(

k1 + k2 −mω2)2 − k2
2 = 0 (7.5)

which, expanding everything gives

ω4 −2ω2 k1 + k2

m
+

k1 (k1 + 2k2)
m2 = 0.

Note this is a quartic equation in ω , which seems good because we seek four solu-
tions. Due to the absence of the odd powers of ω it may be considered a quadratic
equation in ω2, so we can use the quadratic equation to find solutions for ω2. This
has roots

ω2 =
k1 + k2

m
±
√
(

k1 + k2

m

)2

− k1 (k1 + 2k2)
m2 =

k1 + k2

m
± k2

m
,
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so there are two natural frequencies,

ω2
n1

=
k1

m
, ω2

n2
=

k1 + 2k2

m
.

Substituting ω2 = k1/m into Equation (7.4) gives

[

k2 −k2

−k2 k2

][

a1

a2

]

=
[

0
0

]

,

so, a1 = a2. Substituting ω2 = (k1 + 2k2)/m gives

[−k2 −k2

−k2 −k2

][

a1

a2

]

=
[

0
0

]

,

so, in that case, a1 = −a2.
Hence, the solution when a1 = a2 and setting a1 = 1 is

z1(t) =

⎡

⎣
cos

√
k1
m t

cos
√

k1
m t

⎤

⎦=
[

1
1

]

cosωn1t (7.6)

and the solution when a1 = −a2 and setting a1 = 1 is

z2(t) =

⎡

⎣
cos

√
k1+2k2

m t

−cos
√

k1+2k2
m t

⎤

⎦=
[

1
−1

]

cosωn2t. (7.7)

Going through the exact same exercise with sinωt gives two more solutions

z3(t) =

⎡

⎣
sin
√

k1
m t

sin
√

k1
m t

⎤

⎦=
[

1
1

]

sinωn1t (7.8)

z4(t) =

⎡

⎣
sin
√

k1+2k2
m t

−sin
√

k1+2k2
m t

⎤

⎦=
[

1
−1

]

sin ωn2t. (7.9)

If
z(t) = c1z1(t)+ c2z2(t)+ c3z3(t)+ c4z4(t), (7.10)

can satisfy any set of initial conditions, then we take it as the general solution. It is
left as an exercise to show that this is the case.

The difference between z1(t) and z3(t) is simply a phase shift, as is the difference
between z2(t) and z4(t). Hence, it suffices to study z1(t) and z2(t). The two compo-
nents of z1(t) are identical. Hence, the two masses move with the same frequency,
in the same direction with the same magnitude of oscillation, which we call mode
one, as is schematically illustrated in Figure 7.2. The two components of z2(t) have
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the same frequency, but coefficients with opposite signs. Hence, they move at the
same frequency, but in opposite directions, which we call mode two, as is illustrated
in Figure 7.3. Considering any solution for the system is made up of these solutions,
perhaps the better way to consider a solution is not as a combination of the motion
of two masses, but rather the superposition of of the two modes, as the following
example illustrates.

k1

k1

k2

k2

k1

k1

m

m

m

m

Fig. 7.2 Mode one oscillations.

k1

k1

k2

k2

k1

k1

m

m

m

m

Fig. 7.3 Mode two oscillations.

Example 7.1. Let k1 = 1, k2 = 2, m = 3, c1 = c3 = 1, and c2 = c3 = 0 in Equa-
tion (7.10). Figure 7.4 illustrates the two modes of oscillation separately for each
mass. Note that one pair of the curves is in phase and one pair is out of phase. The
combined solution, which is the superposition of the two modes, is illustrated in
Figure 7.5. The actual motion of the two masses and the relationship between them
appears rather complicated from the plots for the actual solutions in Figure 7.5,
despite the fact they arise from the superposition of two relatively simple modes.
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Fig. 7.4 The two modes of oscillation for the system in Example 7.1.
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Fig. 7.5 Superposition of the two modes for the system in Example 7.1.

7.1.2 Eigenvalue and Eigenvector Approach

Considering the equations of motion for the system illustrated in Figure 7.1, given
by Equation (7.1), if

ξ1 = x1, ξ2 = ẋ1, ξ3 = x2, ξ4 = ẋ2,
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then

ξ̇ =
d
dt

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 1 0 0
− k1+k2

m 0 k2
m 0

0 0 0 1
k2
m 0 − k1+k2

m 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

= Aξ .

The eigenvalues of A are determined by the cofactor expansion

|A−λ I|=

∣
∣
∣
∣
∣
∣
∣
∣

−λ 1 0 0
− k1+k2

m −λ k2
m 0

0 0 −λ 1
k2
m 0 − k1+k2

m −λ

∣
∣
∣
∣
∣
∣
∣
∣

= −λ

∣
∣
∣
∣
∣
∣

−λ k2
m 0

0 −λ 1
0 − k1+k2

m −λ

∣
∣
∣
∣
∣
∣

+(−1)

∣
∣
∣
∣
∣
∣

− k1+k2
m

k2
m 0

0 −λ 1
k2
m − k1+k2

m −λ

∣
∣
∣
∣
∣
∣

= λ 4 + 2
k1 + k2

m
λ 2 +

(
k1 + k2

m

)2

−
(

k2

m

)2

= 0.

Hence

λ1 = i

√

k1

m
, λ2 = −i

√

k1

m
, λ3 = i

√

k1 + 2k2

m
, λ4 = −i

√

k1 + 2k2

m
.

Now computing the eigenvectors gives

(A−λ1I) ξ̂1 = 0 ⇐⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−i
√

k1
m 1 0 0 0

− k1+k2
m −i

√
k1
m

k2
m 0 0

0 0 −i
√

k1
m 1 0

k2
m 0 − k1+k2

m −i
√

k1
m 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇐⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−i
√

k1
m 1 0 0 0

0 i k2√
k1m

k2
m 0 0

0 0 −i
√

k1
m 1 0

k2
m 0 − k1+k2

m −i
√

k1
m 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⇐⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−i
√

k1
m 1 0 0 0

0 i
√

k2
km

k2
m 0 0

0 0 −i
√

k1
m 1 0

0 −i
√

k2
k1m − k1+k2

m −i
√

k1
m 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇐⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−i
√

k1
m 1 0 0 0

0 −i
√

k2
k1m

k2
m 0 0

0 0 −i
√

k1
m 1 0

0 0 − k1
m −i

√
k1
m 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇐⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−i
√

k1
m 1 0 0 0

0 −i
√

k2
km

k2
m 0 0

0 0 −i
√

k1
m 1 0

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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Thus,

ξ̂1 =

⎡

⎢
⎢
⎢
⎢
⎣

−i
√

k1
m

−i
√

k1
m

⎤

⎥
⎥
⎥
⎥
⎦

.

Similar computations show that

ξ̂ 2 =

⎡

⎢
⎢
⎢
⎢
⎣

i
√

k1
m

i
√

k1
m

⎤

⎥
⎥
⎥
⎥
⎦

, ξ̂ 3 =

⎡

⎢
⎢
⎢
⎢
⎣

i

−
√

k1+2k2
m

−i
√

k1+2k2
m

⎤

⎥
⎥
⎥
⎥
⎦

, ξ̂ 4 =

⎡

⎢
⎢
⎢
⎢
⎣

i
√

k1+2k2
m

−i

−
√

k1+2k2
m

⎤

⎥
⎥
⎥
⎥
⎦

.

Using

λ1 = iωn1 , ξ̂ 1 =

⎡

⎢
⎢
⎣

0
ωn1

0
ωn1

⎤

⎥
⎥
⎦

+ i

⎡

⎢
⎢
⎣

−1
0
−1
0

⎤

⎥
⎥
⎦

, λ3 = iωn2 , ξ̂ 3 =

⎡

⎢
⎢
⎣

0
−ωn2

0
ωn2

⎤

⎥
⎥
⎦

+ i

⎡

⎢
⎢
⎣

1
0
−1
0

⎤

⎥
⎥
⎦

,

and substituting into Equation (6.15), the solution is

ξ (t) = c1

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0
ωn1

0
ωn1

⎤

⎥
⎥
⎦

cosωn1t +

⎡

⎢
⎢
⎣

1
0
1
0

⎤

⎥
⎥
⎦

sinωn1t

⎞

⎟
⎟
⎠

+ c2

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0
ωn1

0
ωn1

⎤

⎥
⎥
⎦

sinωn1t −

⎡

⎢
⎢
⎣

1
0
1
0

⎤

⎥
⎥
⎦

cosωn1t

⎞

⎟
⎟
⎠

+ c3

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0
−ωn2

0
ωn2

⎤

⎥
⎥
⎦

cosωn1t +

⎡

⎢
⎢
⎣

−1
0
1
0

⎤

⎥
⎥
⎦

sinωn2t

⎞

⎟
⎟
⎠

+ c4

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0
−ωn1

0
ωn2

⎤

⎥
⎥
⎦

sinωn1t +

⎡

⎢
⎢
⎣

1
0
−1
0

⎤

⎥
⎥
⎦

cosωn1t

⎞

⎟
⎟
⎠

.

The first and third rows are equivalent to a linear combination of the solutions given
in Equations (7.6) through (7.9), and the second and fourth rows are the derivatives
of the first and third rows, respectively, that is, the velocities.

The important points of this example are twofold:
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1. The magnitude of the eigenvalues are exactly the same as the frequencies com-
puted using the classical method.

2. The eigenvectors represent the modes as well; that is,

a. The first and third components of ξ̂1 and ξ̂2 are identical, which is a conse-
quence of the fact that a1 = a2 in the case where the frequency is ω =

√

k1/m.
b. The first and third components of ξ̂3 and ξ̂4 have the same magnitude but

opposite sign, which is a consequence of the fact that a1 = −a2 in the case
where the frequency is ω =

√

(k1 + 2k2)/m.

7.1.3 Forced Undamped Multidegree of Freedom Systems

Now consider the case where one of the masses is subjected to a harmonic forcing
function as is illustrated in Figure 7.6. The homogeneous solution was solved in the
preceding two sections; this section focuses on the particular solution. The equations
of motion are

mẍ +(k1 + k2)x− k2y = F cosωt

mÿ+(k1 + k2)y− k2x = 0.
(7.11)

x y

k1 k2 k1

m m

f (t) = F cosωt

Fig. 7.6 Two degrees of freedom forced mass–spring system.

Because there is no damping, we may assume a solution of the form1

xp(t) = c1cosωt, yp(t) = c2cosωt.

Note that in this case, ω is equal to the frequency of the forcing function. It is not an
unknown natural frequency that must be determined, as was the case previously in
this chapter. Differentiating, substituting, and equating the coefficients of the cosine
terms gives

−mω2c1 +(k1 + k2)c1 − k2c2 = F

−mω2c2 +(k1 + k2)c2 − k2c1 = 0,

1 If this does not work, we could always go back and add the sine term.



258 7 Applications of Systems of First-Order Equations

and solving for c1 and c2 gives

xp(t) = −F

(

mω2 − k1 − k2

(mω2 − k1 − k2)
2 − k2

2

)

cosωt = −δ

⎛

⎜
⎜
⎜
⎝

ω2

ω2
n1
−1− kr

(

ω2

ω2
n1
−1− kr

)2

− k2
r

⎞

⎟
⎟
⎟
⎠

cosωt

= δM1cosωt

and

yp(t) = F

(

k2

(mω2 − k1 − k2)
2 − k2

2

)

cosωt = δ

⎛

⎜
⎜
⎜
⎝

kr
(

ω2

ω2
n1
−1− kr

)2

− k2
r

⎞

⎟
⎟
⎟
⎠

cosωt

= δM2cosωt,

where ωn1 =
√

k1/m, δ = F/k1 is the static deflection of the first mass subjected
to a static force of magnitude F , kr = k2/k1 is the ratio of spring constants, and M1

and M2 are the magnification factors.2

Note that the denominator is equal to zero when ω2/ω1
n1

= 1 or

ω2

ω2
n1

−1 = 2r ⇐⇒ ω2 = (2r + 1)ω2
n1

=
2k2 + k1

m
= ω2

n2
.

Not surprisingly, the denominator of both coefficients has roots equal to the solu-
tions of Equation (7.5), which are the natural frequencies corresponding to the two
modes of free vibration for the system. A plot of the two magnification factors ver-
sus frequency ratio for the case where kr = 2 is is illustrated in Figure 7.7.

Figure 7.7 contains a lot of information about the particular solution. For ex-
ample, below the first resonance, the motion of the two masses is in phase with the
forcing and the magnitude of the motion of xp(t) is greater than yp(t). Slightly above
the first resonance, the motion of both masses is out of phase with the forcing, but
the magnitude of yp(t) is greater than xp(t), and so on.

Remark 7.3. Note that Figure 7.7 only holds for the rather specific case illustrated
in Figure 7.1 where the two outer springs are identical, the masses are the same, and
there is no damping. If only light damping is added, then referring to the effect of
damping in the scalar case, illustrated by Figure 4.16, it is reasonable to assume that
the figure will only be slightly altered. If any properties of the system are otherwise
changed, (e.g., unequal masses, etc.), there will still be two resonance frequencies,
but otherwise the details for the magnification factors will not be the same.

2 Note that we normalized the system using ωn1 . It is left as an exercise to normalize with respect
to ωn2 .
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Fig. 7.7 Magnification factors for two-mass system.

7.1.4 Vibration Absorbers

If a system is subjected to a harmonic force that is near its resonance, large oscil-
lations naturally result, which are often undesirable. One approach to reducing the
magnitude of the oscillations may be to remove or eliminate the force, change the
frequency of the force, or change the natural frequency of the system. Sometimes,
such approaches are not feasible, however, in which case a vibration absorber may
be the best solution.

Consider the system illustrated in Figure 7.8. The problem is to select the spring
and mass for the absorber, ma and ka, respectively, so that the magnitude of the
motion of the mass m is significantly reduced. Ideally, ma would be small.

Assuming all the displacements are measured in an inertial coordinate system,
the equations of motion for the system with the absorber are

mẍ = −kx + f (t)− ka (x− xa)
maẍa = ka (x− xa) .

Assuming f (t) = F cosωt and rearranging gives

mẍ+(k + ka)x− kaxa = F cosωt

maẍa + kaxa − kax = 0.

Exercise 7.14 verifies that the particular solutions for x and xa are
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Fig. 7.8 Original system (left) and system
with absorber (right).

kk

mm

xx

ka

ma
xa

f (t) f (t)

xp = δ

⎡

⎣

1− ω2

ω2
a

(

1− ω2

ω2
a

)(

1 + ka
k − ω2

ω2
n

)

− ka
k

⎤

⎦cosωt = δM cosωt

xap = δ

⎡

⎣
1

(

1− ω2

ω2
a

)(

1 + ka
k − ω2

ω2
n

)

− ka
k

⎤

⎦cosωt = δMa cosωt,

(7.12)

where δ is the static deflection for the original mass; that is, δ = F/k, ωn =
√

k/m,
ωa =

√

ka/ma, and M and Ma are the magnification factors for the original mass
and absorber mass, respectively.

One immediate observation is that if the natural frequency of the absorber is
designed to be equal to the forcing frequency, ωa =

√

ka/ma = ω , the motion of the
original mass is zero; that is, it is completely absorbed. It is left as an exercise to
show that the intuitively appealing interpretation that the oscillating absorber exerts
a force on the original mass that is equal and opposite to the applied force f (t).

As mentioned, the main reason for adding a vibration absorber would be when
the forcing frequency is near the resonant frequency of the original mass, so typi-
cally we design ωa = ωn, so

ka

ma
=

k
m

.

Let the ratio of the spring constants, which is also the ratio of the masses, be denoted
by

ka

k
=

ma

m
= ρ .

Then resonance for the system with the absorber added is when the denominators
of both particular solutions in Equation (7.12) are zero; that is,
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(

1− ω2

ω2
a

)(

1 +
ka

k
− ω2

ω2
a

)

− ka

k
=
(

ω2

ω2
a

)2

−
(

ω2

ω2
a

)

(2 + ρ)+ 1 = 0,

which has two solutions

(
ω2

ω2
a

)

=
2 + ρ

2
±
√

ρ (4 + ρ)
4

, (7.13)

which correspond to the two resonance frequencies (keep in mind that this equa-
tion reflects the choice of ωa = ωn). A plot of the solutions to Equation (7.13) is
illustrated in Figure 7.9, and it gives the two resonance frequencies for any value
of the mass ratio of the absorber to the original mass. For example, if the absorber
has a mass that is one-fifth of the original mass, the two resonance frequencies are
approximately 80% and 120% of the original resonance.

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

ω ω
a

ρ = ma
m

Fig. 7.9 The two resonance frequencies for a system with a vibration absorber as a function of
mass ratio.

Note that ω/ωa = ω/ωn = 1 corresponded to resonance for the original system
without an absorber. What Equation (7.13) gives is the ratio of values of the two
resonance frequencies for the system with the absorber to the original resonance
frequency as a function of ρ , which is the ratio of the mass of the absorber to the
original mass. An intuitive way to think of the operation of the absorber is that it
splits the resonance of the original system into two resonances, one of which is at a
frequency lower than the original resonance and the other of which is at a frequency
higher than the original resonance.

Figure 7.10 illustrates the magnitudes of the motion of the original mass and the
absorber mass. Note that when ω = ωn the original mass is motionless. Perhaps
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counter-intuitively, the magnitude of the absorber motion is near a local minimum
as well. Of course the “cost” of the vibration absorber is that there are now two
resonances instead of one.
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Fig. 7.10 Magnification factors for a vibration absorber with a mass equal to one fifth of the
original mass.

Example 7.2. Consider the system illustrated in Figure 7.8. Let m = 1, k = 4, and
f (t) = cos2t. Assume there is light damping with b = 0.1 and zero initial condi-
tions. Figure 7.11 illustrates an approximate numerical solution with and without
an absorber that is one-fifth the size of the original mass. Figure 7.12 illustrates the
motion of the absorber mass.

7.2 Introduction to “Modern” Control

The subject of feedback control analysis and design is a vast one. This section briefly
considers two subsets of the subject and gives a overview of state-space control,
which is often referred to as modern control. This subject is outlined in this section,
but a complete exposition requires an entire course (at least). An interested reader
is referred to [3] for a complete treatment, or for the chapters on modern control in
[13, 42] for a shorter discussion. Chapters 9 and 10 in this book cover the area of
classical control.
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Fig. 7.11 Motion of mass with and without absorber for Example 7.2.
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Fig. 7.12 Motion of absorber mass for Example 7.2.

7.2.1 State-Space Control Systems

Consider again the system from Example 6.1 illustrated in Figure 6.1. To make the
problem more interesting, let us assume that there is no damping (i.e., b1 = b2 = 0)
and that our goal is to stop the masses from oscillating by using the input force f (t).
As a system of first-order, linear, constant coefficient equations, this would be of the
form
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d
dt

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0 1 0 0
− k1+k2

m1
0 k2

m1
0

0 0 0 1
k2
m2

0 − k2
m2

0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
0
0
1

m2

⎤

⎥
⎥
⎦

f (t). (7.14)

Assume that the problem we want to solve is to stabilize the system, which simply
means to stop the masses from oscillating. This would correspond to choosing f (t)
in a way so that all four components of ξ approach zero. The general form for a
state-space control system is

ξ̇ = Aξ + Bu, (7.15)

where A ∈ R
n×n, ξ ∈ R

n, B ∈ R
n×m, and u ∈ R

m. This would be a system with n
states and m inputs, where the inputs are represented by the vector u.

It makes sense that the way, and perhaps the only way, to solve this would be to
choose f (t) as a function of the components of ξ . Furthermore, because the equation
is linear and constant coefficient, choosing f (t) in a way that does not ruin that
would, at a minimum, make it easier to solve. Based on this, consider letting

f (t) = k̂1ξ1 + k̂2ξ2 + k̂3ξ3 + k̂4ξ4,

where the constants k̂i are to be determined and are called the gains.3 This may be
written in vector form as

f (t) =
[

k̂1 k̂2 k̂3 k̂4
]

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

or more generally as u = Kξ . The number of rows of K corresponds to the number
of inputs u. Substituting this into Equation (7.15) gives

ξ̇ = Aξ + BKξ = (A + BK)ξ .

This type of feedback is called full-state feedback because all the components of ξ
are used to define the control law.

The nature of the response of the system depends on the eigenvalues of A + BK.
For example, if they all have negative real part, then the system is stable and ξ (t)→
0 as t → ∞. If any eigenvalues are complex conjugate pairs, then the solutions will
oscillate, and so on. What makes this problem difficult is that we must choose the
elements of the matrix K to make this happen.

3 In controls, gains are almost universally designated with the variable k. Unfortunately, in me-
chanical systems, spring constants are almost universally designated with the variable k. For this
example only, they are distinguished with hats on the gains, but if the problem does not also involve
springs, then the hats are dropped for variables representing the gains.
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7.2.2 Pole Placement

The pole placement problem is to pick the elements of K so that A + BK has eigen-
values at specified locations. Another more descriptive name is the eigenvalue as-
signment problem. The most basic approach to this problem is to compute the char-
acteristic equation for the system with the desired eigenvalues and the characteristic
equation for the system with the unspecified gains, and then equate the coefficients
of the powers of λ in the two characteristic polynomials. The following example
illustrates this with the problem to stabilize the two masses.

Example 7.3. Returning to Example 6.1, let b1 = b2 = 0 and m1 = m2 = k1 = k2 = 1.
The equations of motion are then

d
dt

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 1 0 0
−2 0 1 0
0 0 0 1
1 0 −1 0

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

f (t)

and if f (t) = Kξ , then

d
dt

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 1 0 0
−2 0 1 0
0 0 0 1
1 0 −1 0a

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

[

k1 k2 k3 k4
]

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 1 0 0
−2 0 1 0
0 0 0 1

k1 + 1 k2 k3 −1 k4

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

.

Computing the characteristic polynomial gives
∣
∣
∣
∣
∣
∣
∣
∣

−λ 1 0 0
−2 −λ 1 0
0 0 −λ 1

k1 + 1 k2 k3 −1 k4 −λ

∣
∣
∣
∣
∣
∣
∣
∣

= −λ
[−λ

(

λ 2 − k4λ − k3 + 1 + k2
)]− [(−2

(

λ 2 − k4λ − k3 + 1 + k2
)− k1 + 1

)]

= λ 4 − k4λ 3 +(3− k3)λ 2 − (2k4 + k2)λ +(1− k2 −2k3) = 0.
(7.16)

Fortunately, we do not have to factor this because we can decide where we want the
eigenvalues to be and then determine the characteristic polynomial corresponding
to that and equate the coefficients. If we want the eigenvalues at, for example,

λ1 = −1, λ2 = −2, λ3 = −3, λ4 = −4,

then
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(λ + 1)(λ + 2)(λ + 3)(λ + 4) = λ 4 + 10λ3 + 35λ2 + 50λ + 24, (7.17)

so we need to equate the coefficients of the powers of λ in Equations (7.16) and
(7.17) and solve

−k4 = 10, 3− k3 = 35, −k2 −2k4 = 50, 1− k1−2k3 = 24,

which gives
k1 = 41, k2 = −30, k3 = −32, k4 = −10.

A plot of the position of the two masses versus time with initial conditions

x1(0) = 1, ẋ1(0) = 0, x2(0) = −1, ẋ2(0) = 0,

is illustrated in Figure 7.13.
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Fig. 7.13 Motion of the masses in Example 7.3.

Keep in mind what was accomplished in the previous example: using one force
on one of the masses, the motion of both masses was stopped. The system itself
had no damping, yet the masses were stopped in an exponential manner. This was
because we designed the motion by specifying where we wanted the eigenvalues.
This may seem great, but a drawback to the design is that the magnitude of the
necessary force is very high, which should make some sense because part of the
solution was specified to be of the order of exp(−4t). Exercise 7.10 investigates
the magnitude of the force and the effect of poles in different locations, that is,
specifying other eigenvalues.
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This is the manner in which the simplest pole placement problems are solved.
However, if there is more than one input, or if the dimension of the problem is much
higher, then solving this problem “by hand” by equating coefficients in the char-
acteristic equation with the desired characteristic equation may become difficult.
One common method for more complicated problems is a coordinate transforma-
tion that is similar, but not identical, to diagonalization. The references mentioned
previously give a good overview of these more general approaches. In practice, of
course, numerical methods are used.4

A final remark is that not any system can have its eigenvalues arbitrarily assigned
by appropriate selections of the values for the components of the matrix K. For
example, in the previous example, if A were zero, then regardless of K, the only
component of ξ that would change would be the fourth component. The property
that A and B must have to have sufficient coupling in the dynamics of the system to
be able to arbitrarily assign the eigenvalues is called controllability.

7.2.3 The Linear Quadratic Regulator

The linear quadratic regulator (LQR) problem chooses the gains for the controller
to minimize a performance specification for the regulation problem, which is to
stabilize the system to the origin. Typically, what is minimized is

J =
∫ ∞

0

(

ξ T Qξ + uT Ru
)

dt,

where Q and R are symmetric, positive definite matrices. The matrices Q and R
provide the relative weighting of the speed at which the system is stabilized and the
amount of control effort expended, respectively. A positive definite matrix Q has the
property that

ξ T Qξ > 0

if ξ �= 0. A result we use in the following examples is that a matrix is positive
definite if all of its eigenvalues are positive. This should make some intuitive sense
in the case where Q or R is diagonalized.

For a system of the form
ξ̇ = Aξ + Bu,

the solution to this problem is given by

u = −R−1BT Pξ ,

where P is the symmetric positive definite solution to the algebraic Riccati equation

4 Both MATLAB and Octave have the function place() which solve the pole placement prob-
lem.
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AT P+ PA−PBR−1BT P+ Q = 0.

Although most subjects in this book are fully developed, this is one of the few ex-
ceptions. It is important for a student to be aware of the LQR problem, but, unfortu-
nately, the proof of the result is based on subjects that are different from the focus
of this book. The approach is illustrated with one example and the reader is referred
to [2, 30] for a more complete exposition.

Example 7.4. Consider the system illustrated in Figure 4.1 with m = k = 1 and b = 0.
The equations of motion are

d
dt

[

x
ẋ

]

=
[

0 1
−1 0

]

+
[

0
1

]

u,

where u(t) = f (t). We work out this problem for several different cases where

Q =
[

α 0
0 1

]

, R = 1.

To find the solution we need the matrix P. The Riccati equation is

[

0 −1
1 0

][

p11 p12

p12 p22

]

+
[

p11 p12

p12 p22

][

0 1
−1 0

]

−
[

p11 p12

p12 p22

][

0
1

]
[

0 1
]
[

p11 p12

p12 p22

]

+
[

α 0
0 1

]

=
[

0 0
0 0

]

.

Because P must be symmetric, the same term is placed on the off-diagonal com-
ponents. Expanding everything results in the system of equations

p2
12 + 2p12 −α = 0

p2
22 −2p12 −1 = 0

p11 − p22 − p12p22 = 0.

The first equation has two solutions for p12, which, when substituted into the second
equation gives two solutions for p22 for each value of p12, and the third equation
gives one solution for p11 for each. Hence, there are four solutions. However, P
must be positive definite. Checking the eigenvalues of P for each case gives only
one solution for each α .

• For α = 1,

P =
[

1.912 0.414
0.414 1.35

]

is the only one with positive eigenvalues. Hence,

f (t) = −R−1BT Pξ = −[0.414 1.35
]

ξ .
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• For α = 10,

P =
[

7.87 2.32
2.32 2.37

]

is the only one with positive eigenvalues. Hence,

f (t) = −R−1BT Pξ = −[2.32 2.37
]

ξ .

Plots of the responses are illustrated in Figure 7.14 and plots of the forces are illus-
trated in Figure 7.15. With α = 10 the input force has a significantly larger magni-
tude and x(t) is driven to zero more quickly.5
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Fig. 7.14 LQR response for system in Example 7.4.

7.3 Exercises

7.1. Show that
z(t) = c1z1(t)+ c2z2(t)+ c3z3(t)+ c4z4(t),

where z1(t) through z4(t) are given by Equations (7.6) through (7.9) can satisfy any
initial conditions by an appropriate choice of constants c1 through c4. To simplify
the problem, assume that the initial conditions are specified at t = 0.

5 As was the case with pole placement the system must be controllable for LQR to work. In prac-
tice, most most problems are solved numerically using the MATLAB or Octave lqr() command.
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Fig. 7.15 Control force for system in Example 7.4.

7.2. Determine the equations of motion for the system illustrated in Figure 7.16.

1. Write the equations as a set of two, second-order ordinary differential equations.
2. Write the equations as a set of four, first-order ordinary differential equations of

the form
ξ̇ = Aξ ,

where ξ ∈ R
4 and A ∈ R

4×4.
3. Determine the general solution if m1 = 1, k1 = 1, b1 = 1/10, m2 = 2, k2 = 2,

b2 = 1/20, k3 = 3, and b3 = 1/5. You may use a numerical computation package
to compute the eigenvalues and eigenvectors.

4. Using the results from previous part, on the same plot, graph the motion of the
two masses if they start from rest and x1(0) = 1 and x2(0) = −1/2.

m1

b1

k1

x1

m2

b2

k2

x2

b3

k3

Fig. 7.16 Two-mass system for Exercise 7.2.

7.3. Determine the equations of motion for the system illustrated in Figure 7.17.

1. Write the equations as a set of three, second-order ordinary differential equations.
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2. Write the equations as a set of six, first-order ordinary differential equations of
the form

ξ̇ = Aξ ,

where ξ ∈ R
6 and A ∈ R

6×6.
3. Write a computer program or use a numerical computation package for the fol-

lowing.

a. Determine the eigenvalues and eigenvectors of the system when you assign
some numerical values to the system parameters.

b. Compute an approximate numerical solution for the system when it starts with
some nonzero initial conditions.

m1

b1

k1

x1

m2

b2

k2

x2

x3

b3

k3

m3

Fig. 7.17 Three mass system for Problem 7.3.

7.4. Determine the equations of motion for the system illustrated in Figure 7.18.

1. Write the second-order differential equation which is the equation of motion for
masses 1, 2, i, and n.

2. Write the equations in the form

ξ̇ = Aξ

where ξ ∈ R
2n and A ∈ R

2n×2n. Because n is not specified, it is acceptable for
the matrix A to contain ellipses.

. . .. . .m1

b1

k1

x1

m2

b2

k2

b3

k3

x2 xi

bi

ki
mi

bi+1

ki+1

xn

kn

bn

mn

Fig. 7.18 System with n masses for Problem 7.4.
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7.5. Consider the system with ten masses illustrated in Figure 7.19. Assume that all
the masses have a mass of one and all the spring have a spring constant of one except
the spring between the second to last and last mass which has a spring constant of
five. Assume the system starts with zero initial conditions.

1. Determine the equations of motion for the system and convert them to the form

ξ̇ = Aξ + g(t).

Compute the eigenvalues and eigenvectors of the matrix A if i = 10. You may use
a computer program to do this computation.

2. Write a computer program to determine an approximate numerical solution for
the system when

f (t) = sinωt

for the cases where

ω = 0.25, ω = 1.00, ω = 1.97.

Compare the response of the system for the three different frequencies and ex-
plain any significant differences. Relate these differences to the eigenvalues and
eigenvectors of A.

k = 1k = 1 k = 1

m = 1m = 1

k = 5

f (t)

· · ·

Fig. 7.19 Ten-mass system for Exercise 7.5.

7.6. Consider the system illustrated on the left in Figure 7.20.

1. Determine the equations of motion if x1 and x2 are measured from the unstretched
position of the springs.

2. Determine the equations of motion if x1 and x2 are measured from the equilibrium
position of the masses.

7.7. Consider the structure illustrated on the right in Figure 7.20. Assume that all
the masses have a mass of one and all the springs have a spring constant of one.
Assume the system starts with zero initial conditions.

1. Determine the equations of motion for the system and convert them to the form

ξ̇ = Aξ + g(t).

Compute the eigenvalues and eigenvectors of the matrix A. You may use a com-
puter program to do this computation.
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2. Write a computer program to determine an approximate numerical solution for
the system when

f (t) = sinωt

for the cases where

ω = 0.25, ω = 1.00, ω = 1.97.

Compare the response of the system for the three different frequencies and ex-
plain any significant differences. Relate these differences to the eigenvalues and
eigenvectors of A.

7.8. Consider the mass–spring system illustrated in Figure 7.21 where m = k = 1.

1. Determine the equations of motion and convert them to the form

ξ̇ = Aξ + g(t).

2. Let the force f (t) be of the form

f (t) = k1x + k2ẋ.

Determine the values for k1 and k2 such that the eigenvalues for the resulting
system are λ1 = −2 and λ2 = −4.

3. Solve the resulting system if x(0) = 1 and ẋ(0) = 0. On the same plot sketch x
and ẋ versus t.

7.9. Plot f (t) versus time for the solution in Example 7.3 and comment on its feasi-
bility. For each of the following sets of eigenvalues, plot x1(t) and x2(t) versus time
and explain why the nature of the solutions makes sense:

λ = −.1,−.2,−.3,−.4

λ = −1± i,−1,−2

λ = 1,−2,−3,−4.

The point of this controls problem would be to stop the system, thus it typically
would be the case that the initial conditions are not known. Hence, specify your
own initial conditions. Also plot f (t) versus time for those cases. Of these, which
solution seems the best and why?

7.10. Plot the magnitude of f (t) for Example 7.3. Do the problem again, but double
the magnitude of the eigenvalues; that is, place the eigenvalues at λ1 =−2, λ2 =−4,
λ3 =−6 and λ4 =−8. What happens to the magnitude of f (t)? What happens to the
response of the system? Repeat it again, but reduce the magnitude of the eigenvalues
by a factor of two. What happens to the magnitude of f (t)? What happens to the
response? What can you say in general about the trade-off between the magnitude
of f (t) and the speed of the response?
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Fig. 7.20 Two-mass system for Exercise 7.6 (left) and structure for Exercise 7.7 (right).
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Fig. 7.21 System for Exercise 7.8.

x(t)

f (t)
k

m

7.11. Do Exercise 7.9 but have the force acting on the other mass.

7.12. Consider the system illustrated in Figure 7.19. Assume there are five masses
and that all the masses have a mass of one and all the spring constants are one.

1. Use the place() command in MATLAB or Octave to find a full state feedback
control law to place all the eigenvalues of the system with full state feedback
system for each of the following cases.

a. Place the eigenvalues at λ = −1,−1.1,−1.2,−1.3 and −1.4.
b. Place all the eigenvalues at λ = −.1,−.2, . . . ,−.5.
c. Place four of the eigenvalues at the same place as the first four eigenvalues in

part 1a and one at λ = 0.1.
d. Place three of the eigenvalues at the same place as the first three eigenvalues

in part 1a and two at −.1±2i.

Specify your own initial conditions. Plot the response of each of the five masses
and, on a separate plot, the control force. By referring to the plots, explain the
features of the solutions that are a result of the differences in the eigenvalue
assignments you selected.

2. Use the lqr() command in MATLAB or Octave to find an LQR controller for
the following cases.

a. Q is the 5×5 identity matrix and R = 1.
b. The element in the first row and first column of Q is changed to be 100, and

the rest of Q is the same as before and R = 1.
c. The element in the first row and first column of Q is changed back to 1, the

element in the fourth row and fourth column of Q is changed to be 100, and
the rest of Q is the same as before and R = 1.

d. Q is the 10×10 identity matrix and R = 100.

Specify your own initial conditions. In each case, plot the response of the five
masses and a separate plot of the control force. By referring to the plots, explain
the features of the solutions that are a result of the differences in the Q and R
matrices you specified.

7.13. If, in Example 7.4, R is dimensionless, what are the units for the four elements
of Q?

7.14. Consider the particular solution for the vibration absorber given by Equa-
tion (7.12).

1. Use the method of undetermined coefficients to derive it.
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2. As a check on the answer, if ka → ∞, then the two masses would be rigidly
coupled, which would effectively make it a system with one mass. Does this then
conform to the analysis for the particular solution for a single degree of freedom
system from Chapter 4 given as part of the solution in Equation (4.8)? What
about when ma → 0 or ka → 0?

3. When the forcing frequency ω is equal to the natural frequency of the absorber,
ωa =

√

ka/ma, what is the magnitude of the motion of the original mass and the
absorber mass?

4. When the forcing frequency is equal to the natural frequency of the absorber,
show that the force that the absorber exerts on the mass is equal and opposite to
the applied force.

7.15. Consider the two-mass system illustrated in Figure 7.1. Which of the two
modes illustrated in Figures 7.2 and 7.3 has a higher frequency? Using the phys-
ical properties of the system, explain why this makes sense.

7.16. In the derivation of the magnification factors leading to the plot in Figure 7.7,
the magnification factors were a function of ω/ωn1 and krk2/k1. Derive the mag-
nification factors in terms of ω/ωn2 and kr = k2/(k1 + 2k2). Choose a ratio for the
spring constants and construct a plot similar to Figure 7.7 by plotting the two mag-
nification factors versus frequency ratio.

7.17. Consider the two-mass system illustrated in Figure 7.6.

• Let F = 5, m = 1, k1 = 2, and k2 = 3. For these values, make a plot of the
magnification factors versus the frequency of the forcing.

• Add dampers to the system in parallel with the springs with b1 = 0.01 and b2 =
0.01. What are the equations of motion for the system? With very light damping
such as this, your plot of the magnification factors should be fairly accurate.

• Verify your plot by writing a computer program to determine an approximate
numerical solution for this system. Choose the forcing frequency to be well be-
low the first resonance, slightly below the first resonance, slightly above the first
resonance, slightly below the second resonance, slightly above the second res-
onance, and well above the second resonance. Plot x(t), y(t) and F cosωt for
an interval of time after the transient response has decayed. Verify each case by
checking whether x(t) and y(t) are in or out of phase with each other and in or
out of phase with the forcing function and how that is indicated in your plot of
the magnification factors. Also, check the relative magnitudes of x(t), y(t), and
A.

7.18. Write a computer program that determines an approximate numerical solution
for the equations given by (7.1) with the parameter values given by Example 7.1.
Pick initial conditions so that the solution is composed of only one of the two modes
of oscillation. Pick a different set of initial conditions so that the solution is com-
posed only of the other mode.

7.19. Consider the system illustrated in Figure 7.22. What are the natural frequen-
cies for the system?
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x y

k1 k2 k3

m1 m2

Fig. 7.22 System for Exercise 7.19.

7.20. Consider the system illustrated in Figure 7.23 where k1 = 1, k2 = 2, k3 =
3, m1 = 4, and m2 = 5. Determine the particular solutions and write them in the
form xp(t) = Mx cosωt and yp(t) = My cosωt. Plot Mx and My versus ω . If you did
Exercise 7.19, do the peaks of Mx and My correspond to the natural frequencies?

x y

k1 k2 k3

m1 m2

f (t) = F cosωt

Fig. 7.23 System for Exercise 7.20.

7.21. Using the solutions to the vibration absorber problem given in Equation (7.12),
show that if ω = ωa, then the force exerted by the absorber on the original mass is
exactly equal and opposite to the applied force.

7.22. Consider a mass–spring–damper system with m = 2, k = 32, b = 0.05, and a
forcing function f (t) = cos4t. What should ka and ma be if you want the absorber
mass to be one-eighth of the original mass? Write a computer program to compute
an approximate numerical solution for this system.

1. Compare the vibration of the mass with and without the absorber.
2. Plot the motion of the absorber mass.
3. Use Figure 7.9 to predict the two resonance frequencies and verify it by changing

the forcing frequency to those values.



Chapter 8
The Laplace Transform

The Laplace transform is an integral transformation that converts solving ordinary
differential equations into solving a system of algebraic equations. Various types of
integral transform methods exist, but due to its central role in control theory, this
text focuses on Laplace transforms.

8.1 Motivational Example

Integral transform methods are sufficiently abstract that it may be useful to demon-
strate their utility up front. The steps involved with the following example are not
the obvious ones to the uninitiated, but nonetheless are intended to illustrate the
following.

1. They may be used to solve linear, constant-coefficient ordinary differential equa-
tions.

2. If one can tolerate the “overhead” of computing the transforms, it converts solv-
ing a differential equation into algebra.

Example 8.1. Consider
ẋ+ 2x = 6e4t ,

where x(0) = 2. Let us start the exercise by presenting two integrals, both of which
have some unstated assumptions that are addressed subsequently:

∫ ∞

0
e−ate−stdt =

1
s+ a

, (8.1)

and ∫ ∞

0

dx
dt

(t)e−stdt = s
∫ ∞

0
x(t)e−stdt − x(0). (8.2)

Both of these facts can be verified by simply evaluating the integrals.

279B. Goodwine, Engineering Differential Equations: Theory and Applications, 
DOI 10.1007/978-1-4419-7919-3_8, © Springer Science+Business Media, LLC 2011
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Returning to the problem at hand, multiply each side of the differential equation
by e−st and integrate from 0 to ∞ with respect to t,

∫ ∞

0
e−st

(
dx
dt

(t)+ 2x(t)
)

dt =
∫ ∞

0

dx
dt

(t)e−stdt + 2
∫ ∞

0
x(t)e−stdt

=6
∫ ∞

0
e4te−stdt.

Clearly, the whole point of the exercise is to find x(t), so there is not too much that
can be done with the right-hand side of the first equation except to get rid of the
derivative of x(t) in the first integral by making use of Equation (8.2). Also, because
we do not know what x(t) is, for the time being, let

X(s) =
∫ ∞

0
x(t)e−stdt.

Note that the second equation can be evaluated using Equation (8.1), so

6
∫ ∞

0
e4te−stdt =

6
s−4

.

Substituting these into the original differential equation gives

sX(s)− x(0)+ 2X(s) =
6

s−4
(8.3)

and substituting for x(0) and solving for X(s) gives

X(s) =
1

s+ 2

(
6

s−4
+ 2

)

=
2s−2

(s−4)(s+ 2)
=

1
s+ 2

+
1

s−4
. (8.4)

Referring to Equation (8.1) it is clear that the right-hand side of this equation is
simply the same transform (multiply by e−st and integrate) that was originally used
on the differential equation of the sum of two exponentials. Hence, it is reasonable
to assume that

x(t) = e−2t + e4t

is the solution to the differential equation. A quick substitution shows that indeed it
satisfies the differential equation as well as the initial condition.

There are a few important details added subsequently, but for purposes of this
example take note that the integral

F(s) =
∫ ∞

0
f (t)e−stdt

is called the Laplace transform of f (t).
Observe the following.
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1. Much as with Equation (8.1), for a given function f (t), the Laplace transform
only needs to be computed once. Hence, tables of Laplace transforms may be
compiled that essentially eliminate the need for actually evaluating the integrals
most of the time.

2. Once the equation was fully transformed, which is represented in Equation (8.3),
solving for X(s) is simply algebra!

3. Converting from X(s) back to x(t) required determining which functions trans-
formed to x(t), so this step can also usually be handled by tables.

4. The initial condition was handled automatically.
5. The answer is only valid for t ≥ 0 because the integrals used in the transform

have 0 for the lower limit. Any information for t < 0 is lost.

So, it is clearly justified to conclude that as long as the work involved in appro-
priately transforming the differential equation and then inverting the transform at
the end is not too great, this is a handy way to solve some types of differential equa-
tions. The general manner in which to do this is outlined subsequently. However,
before that a short review of a related concept, Fourier transforms, is in order.

8.2 Fourier Transforms

This section presents a brief description of the Fourier transform. This is not strictly
necessary for the Laplace transform material that follows, but inasmuch as many
students may already be familiar with it, and it is a bit easier to understand than the
Laplace transform, it is included here.

First, recall the definition of an improper integral

∫ ∞

a
f (t)dt = lim

b→∞

∫ b

a
f (t)dt.

Similarly for the lower limit of integration

∫ b

−∞
f (t)dt = lim

a→−∞

∫ b

a
f (t)dt,

and
∫ ∞

−∞
f (t)dt = lim

a→−∞
lim
b→∞

∫ b

a
f (t)dt.

Definition 8.1. For a function f (t), the Fourier transform is given by

F(ω) =
∫ ∞

−∞
f (t)eiωt dt

if the integral converges.

Note, by Euler’s formula, the Fourier transform may also be written as
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F(ω) =
∫ ∞

−∞
f (t)(cosωt + i sinωt)dt.

Using this expression, the usual interpretation of the Fourier transform as providing
the “frequency content” of the signal f (t) is obvious. For a given ω , the cosine and
sine functions are in phase with the components of the signal of f (t) that have the
same frequency and thus integrate to some nonzero value. For a given ω if there is
no component of the signal f (t) with that frequency, the integral is zero. The relative
contribution of the real and imaginary components of the transform gives the phase
of a given frequency in the signal f (t).

Just for completeness, the inverse Fourier transform is given by

f (t) =
1

2π

∫ ∞

−∞
F(ω)eiωtdω .

8.3 Laplace Transforms

This section defines the Laplace transform and considers some of its properties.

Definition 8.2. Define the Laplace transform of a function f (t) to be

F(s) =
∫ ∞

0−
f (t)e−stdt,

where s ∈ C; that is, s is a complex number.

First, we clarify some notation. With respect to the limits of integration of the
Laplace transform, define an integral of a function with lower limit 0− and upper
limit ∞ to be ∫ ∞

0−
f (t)dt = lim

ε↑0

∫ ∞

ε
f (t)dt,

where the notation limε↑0 means that the limit approaches 0 from below. The reason
for having the lower limit be 0− instead of simply 0 is because sometimes something
that can affect the value of the integral, such as an impulse, occurs exactly at t = 0,
having the lower limit equal to 0 is ambiguous as to whether that effect is included
in the integral.

Second, with respect to the variable s, because it is a complex number it has a
real and imaginary part. If it is denoted by s = σ + iω , then the Laplace transform
becomes

F(s) =
∫ ∞

0−
f (t)e−σt (cosωt + i sinωt)dt.

So, one way to interpret the Laplace transform is that it is similar to the Fourier
transform in that it provides some information about the frequency content of f (t),
but has, for positive values of σ , a multiplicative decaying exponential term.

The Laplace transform is a transform, thus we frequently use an operator notation
to represent it. If we are considering the function f (t), the Laplace transform is
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denoted by L; that is,

F(s) = L( f (t)) =
∫ ∞

0−
e−st f (t)dt.

The fundamental concept to keep in mind regarding the transformation is that it
transforms the function from the time domain t to the frequency domain s.

The Laplace transform has an inverse. This is important because it guarantees
that there is one and only one F(s) corresponding to L( f (t)), so if we use the
Laplace transform of a function to solve a differential equation, it will correspond
to the unique solution.1

Definition 8.3. The inverse Laplace transform is given by

f (t) = L−1 (F(s)) =
1

2π i

∫ σ+i∞

σ−i∞
F(s)estds,

where σ is a real number such that F(s) converges. Typically this requires that σ be
larger than the real part of all values of s for which the denominator of F(s) is equal
to zero.

As is made clear subsequently, the values of s for which the denominator and
numerator of F(s) are zero provide almost all the essential information we need re-
garding the properties of the time domain function f (t) = L−1 (F(s)). For example,
referring back to Example 8.1, observe that the values for which the denominator of
X(s) in Equation (8.4) is equal to zero are s = −2 and s = 4. It is no coincidence
that these are exactly the values of the coefficients of t in the exponents of the time
domain answer

x(t) = e−2t + e4t.

Because we refer to these values frequently, they are given names.

Definition 8.4. The values of s for which the denominator of F(s) is equal to zero
are called the poles of F(s).

Definition 8.5. The values of s for which the numerator of F(s) is equal to zero are
called the zeros of F(s).

Example 8.2. The frequency domain function

F(s) =
s+ 2

(s−3)(s+ 10)

has one zero at s = −2 and two poles, one at s = 3 and one at s = −10.

1 This is not completely correct. For example, two functions that are the same but are different at
only isolated points will have the same Laplace transfer because the isolated differences will not
change the integral. If, however, we look for continuous functions when computing inverse Laplace
transforms, the inverse will be unique. See [9] for a discussion.
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Of course, the poles and zeros may occur at values where s is complex, as is
illustrated by the following example.

Example 8.3. The function

F(s) =
s+ a

(s+ a)2 + b2

has a zero at s = −a and two poles that comprise a complex-conjugate pair at s =
−a± ib.

8.3.1 The Laplace Transform of Some Common Functions

This section computes the Laplace transform of some functions common in engi-
neering. Unless otherwise stated, we make the following assumption for all compu-
tations regarding Laplace transforms.

Assumption 8.1. In this book, whenever a Laplace transform or inverse Laplace
transform is computed, the values for s are assumed to be such that all the required
integrals converge.

Example 8.4. The Laplace transform of f (t) = eat is

L(eat)=
∫ ∞

0−
e−steatdt =

∫ ∞

0−
e(a−s)tdt =

1
a− s

e(a−s)t
∣
∣
∣
∣

∞

0
=

1
a− s

(0−1) =
1

s−a
.

Hence

L(eat)=
1

s−a
.

With regard to Assumption 8.1, note that the upper limit of integration only con-
verges if the real part of s is greater than a. Although this is a mathematical necessity,
it is one that fortunately rarely concerns us in application and, consistent with the
assumption, in this example we assume that the values of s are appropriately re-
stricted. Henceforth, we always implicitly assume whatever restriction is necessary
for convergence of any integral involved in computations associated with Laplace
transforms.

Example 8.5. Compute the Laplace transform of f (t) = sinωt. We want to evaluate

L(sin ωt) =
∫ ∞

0−
e−stsin(ωt)dt.

Integrating once by parts gives
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∫ ∞

0−
e−stsin(ωt)dt =

(

− 1
ω

e−stcos(ωt)
)∣
∣
∣
∣

∞

0−
− s

ω

∫ ∞

0−
e−stcos(ωt)dt

=
1
ω

− s
ω

∫ ∞

0−
e−stcos(ωt)dt. (8.5)

Integrating the last term by parts gives

∫ ∞

0−
e−stcosωtdt =

(
1
ω

e−stsin(ωt)
)∣
∣
∣
∣

∞

0−
+

s
ω

∫ ∞

0−
e−stsin (ωt)dt

=
s
ω

∫ ∞

0−
e−stsin(ωt)dt.

Substituting this into Equation (8.5) gives

∫ ∞

0−
e−stsin(ωt)dt =

1
ω

− s2

ω2

∫ ∞

0−
e−stsin(ωt)dt,

and solving for the original integral, L(sinωt) gives

∫ ∞

0−
e−stsin(ωt)dt =

1
ω

1 + s2

ω2

=
ω

ω2 + s2 .

One set of functions that may appear in differential equations for which the
Laplace transform is particularly useful are those with discontinuities. So next we
consider step functions and impulses.

Definition 8.6. The function

1(t) =

{

0, t < 0

1, t ≥ 0,

is called the step function.

The step function is illustrated in Figure 8.1. It is useful in two ways. First, it
is very common in controls because it represents the situation when some control
command is activated; that is, at t = 0 the control command switches from “off” to
“on.” Second, it allows us to easily piece together some discontinuous functions.

Example 8.6. Compute the Laplace transform of the step function. Evaluating the
transform gives

∫ ∞

0−
e−st1(t)dt =

∫ ∞

0−
e−stdt =

1
−s

(

e−st)
∣
∣
∞
0− =

1
−s

(0−1) =
1
s
.

We occasionally need step functions where the discontinuity does not occur at
zero. Note that the function 1(t − τ) has the discontinuity occur at time t = τ . A
plot of 1(t −1.5) is also illustrated in Figure 8.1. Note that the proper interpretation
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Fig. 8.1 The step functions 1(t) and 1(t −1.5).

of 1(t − τ) is that the function 1(t) is shifted by an amount τ . We consider time
shifts of arbitrary functions in Section 8.3.2.

Example 8.7. Compute the Laplace transform of f (t) = 1(t − τ). Assuming τ ≥ 0
substituting into the definition of the Laplace transform gives

∫ ∞

0−
e−st1(t − τ)dt =

∫ τ

0−
0e−stdt +

∫ ∞

τ
1e−stdt =

1
−s

(

e−st)
∣
∣
∞
τ

=
1
−s

(0− esτ) = e−sτ 1
s
.

Another object that is elegantly handled by the Laplace transform is the impulse.
It provides a manner to model, for example, extremely large forces that occur over
a very short period of time. An example of an impulse would be the force exerted
by a bat on a ball.

Definition 8.7. Consider the function

δε(t) =

{
1

2ε , |t| ≤ ε,

0, |t| > ε,

which is illustrated in Figure 8.2 for various values of ε . Define

δ (t) = lim
ε→0

δε(t).
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Note that although δ (t)2 is zero everywhere except at the origin, it still satisfies
∫ ∞

−∞
δ (t)dt = 1,

and then furthermore for any function f (t),
∫ ∞

−∞
δ (t) f (t)dt = f (0),

and similarly if shifted
∫ ∞

−∞
δ (t − τ) f (t)dt = f (τ).
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Fig. 8.2 Series of functions leading to the definition of an impulse.

Example 8.8. Compute the Laplace transform of f (t) = δ (t). Substituting into the
definition of the Laplace transform gives

∫ ∞

0−
e−stδ (t)dt = e0 = 1.

The reason that the lower limit of the integral in the definition of the Laplace
transform is 0− is so that it is clear whether to include impulses that occur at t = 0.

2 Although δ (t) is commonly called the delta function or Dirac delta function, it is not a function.
This is because it is zero everywhere except precisely at the point where we care about it, which is
t = 0. It is actually a distribution and a reader interested in pursuing the matter further is referred
to [48].
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Because the impulse has zero width, if the lower limit were simply 0, then whether
the impulse is included in the integral would be ambiguous.

Example 8.9. Compute the Laplace transform of f (t) = δ (t − τ). Substituting into
the definition of the Laplace transform gives

∫ ∞

0−
e−stδ (t − τ)dt = e−sτ .

Table 8.1 summarizes the Laplace transform of some common functions in engi-
neering.

f (t), t ≥ 0 F(s)
δ (t) 1
1(t) 1/s
t 1/s2

t2 2!/s3

t3 3!/s4

tm m!/sm+1

e−at 1/(s+a)
te−at 1/(s+a)2

1
2! t2e−at 1/(s+a)3

1
(m−1)! t

m−1e−at 1/(s+a)m

1− e−at a/(s(s+a))
1
a (at −1+ e−at) a/

(

s2 (s+a)
)

e−at − e−bt (b−a)/((s+a) (s+b))
(1−at)e−at s/(s+a)2

1− e−at(1+at) a2/
(

s(s+a)2
)

be−bt −ae−at ((b−a)s)/((s+a) (s+b))
sinat a/

(

s2 +a2
)

cosat s/
(

s2 +a2
)

e−at cosbt (s+a)/
(

(s+a)2 +b2
)

e−at sinbt b/
(

(s+a)2 +b2
)

t sinat 2as/
(

s2 +a2
)2

t cosat
(

s2 −a2
)

/
(

s2 +a2
)2

1− eat
(

cosbt + a
b sinbt

) (

a2 +b2
)

/
(

s
[

(s+a)2 +b2
])

Table 8.1 Table of Laplace transform pairs for functions common in engineering

8.3.2 Properties of the Laplace Transform

It is useful to study the definition of the Laplace transform to determine some of its
generic properties that we may exploit when using it. The first property we consider
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is how the derivative of a function acts under a Laplace transform. It turns out that
it is very simple and extremely useful. It is simple in that the Laplace transform
of a derivative of a function is algebraically related to the Laplace transform of
the function itself. In particular, it is simply multiplication of F(s) by s. So, in the
frequency domain, differentiation by t is replaced by multiplication by s. This is
also its utility in that the Laplace transform then transforms differential equations
into algebraic equations.

Theorem 8.1. If the Laplace transform of a function f (t) is L( f (t)) = F(s), then

L
(

d f
dt

(t)
)

= sF(s)− f (0).

Proof. The proof is simply evaluating the integral by the following,

∫ ∞

0−
d f
dt

(t)e−stdt =
(

e−st f (t)
)∣
∣
∞
0− + s

∫ ∞

0−
f (t)e−stdt

=
(

e−st f (t)
)∣
∣
∞
0− + sF(s)

= (0− f (0))+ sF(s)
= sF(s)− f (0).

��
The second property we consider is called the final value theorem. It is useful

because it allows us to determine the steady-state values of a solution to a differential
equation without having to determine the inverse Laplace transform.

Theorem 8.2. If all the poles of sF(s) are in the left half of the complex plane, then

lim
t→∞

f (t) = lim
s→0

sF(s). (8.6)

Proof. Consider

lim
s→0

∫ ∞

0−
e−st d f

dt
(t)dt =

∫ ∞

0−

(

lim
s→0

e−st d f
dt

(t)
)

dt =
∫ ∞

0−
d f
dt

(t)dt = lim
t→∞

f (t)− f (0).

(8.7)
Also, by Theorem 8.1

lim
s→0

∫ ∞

0−
e−st d f

dt
(t)dt = lim

s→0
(sF(s)− f (0)) . (8.8)

Setting Equation (8.7) equal to Equation (8.8) gives

lim
t→∞

f (t)− f (0) = lim
s→0

(sF(s)− f (0)) =⇒ lim
t→∞

f (t) = lim
s→0

(sF(s)) .

��
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Another very useful property of Laplace transforms is that shifts in time have a
very simple form.

Theorem 8.3. If L( f (t)) = F(s), then the Laplace transform of a function shifted
in time satisfies

L( f (t − τ)1(t − τ)) = e−sτF(s)

for τ ≥ 0.

Proof. The proof is based upon a change of variables. If we let t̂ = t − τ , then

L( f (t − τ)1(t − τ)) =
∫ ∞

0−
e−st f (t − τ)1(t − τ)dt =

∫ ∞

−τ−
e−s(t̂+τ) f (t̂)1(t̂)dt̂

= e−sτ

(
∫ 0−

−τ−
e−st̂ f (t̂)1(t̂)dt̂ +

∫ ∞

0−
e−st̂ f (t̂)1(t̂)dt̂

)

= e−sτ
∫ ∞

0−
e−st̂ f (t̂)1(t̂)dt̂ = e−sτ F(s).

��
The proper interpretation of Theorem 8.3 takes some care, especially with respect

to the step function appearing in it. Figure 8.3 illustrates a function as well as that
function shifted by an amount τ = 3/4. Because the lower limit of the Laplace
transform is t = 0−, the values for f (t) for t < 0 do not affect the Laplace transform.
Mathematically, L( f (t)1(t)) = L( f (t)) .
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t

f (t)
f (t − τ)

Fig. 8.3 A function f (t) compared to f (t − τ).

When f (t) is shifted by a positive τ , then we need to either account for the part
of f (t) that originally corresponded to t < 0 that was shifted into positive times,
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or exclude it. If we want to include it, then we must reevaluate the integral in the
transform, because F(s) only contains information about f (t) for positive time. If
we do want to use F(s) and not evaluate the integral, then we must exclude the part
of f (t) shifted into positive time. This is accomplished by multiplying f (t − τ) by
1(t − τ) because the step function will be zero for t < τ , which corresponds exactly
to the part of f (t) that F(s) does not represent.

So, the functions to which Theorem 8.3 applies are illustrated in Figure 8.4. The
portion of f (t) for t ≥ 0 is shifted by an amount τ , but for t < τ , the shifted function
must be zero. This fact appears in the proof of Theorem 8.3 in the line where the
integral with lower limit τ− and upper limit 0− is evaluated to zero.
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Fig. 8.4 A function f (t)1(t) compared to f (t − τ)1(t − τ) for which L ( f (t)) =
L ( f (t − τ)1(t − τ)) and Theorem 8.3 properly applies.

Finally we consider units. From the definition of the Laplace transform of a func-
tion f (t),

F(s) =
∫ ∞

0−
f (t)e−stdt,

inasmuch as t has units of seconds, F(s) will have the units of f (t) times seconds.
Inasmuch as the exponent of e must be dimensionless, s must have units of one
divided by seconds, hence the term frequency domain.

Example 8.10. Let x(t) denote the position of something, with units m. Then

X(s) = L{x(t)}

will have units m · s.

The derivative works as expected as an operator.
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Name Time Function Laplace Transform
Transform pair f (t) F(s)
Superposition α f1(t)+β f2(t) αF1(s)+β F2(s)
Differentiation dm

dtm f (t) smF(s)− sm−1 f (0)− sm−2 ḟ (0)−
·· ·− s dm−2

dtm−2 f (0)− dm−1

dtm−1 f (0)
Time delay (τ ≥ 0) f (t − τ)1(t − τ) F(s)e−sτ

Time scaling f (at) F (s/a)/|a|
Frequency shift e−at f (t) F(s+a)
Integration

∫

f (ξ )dξ F(s)/s
Convolution f1(t)∗ f2(t) F1(s)F2(s)
Initial value theorem f (0+) lims→∞ sF(s)
Final value theorem limt→∞ f (t) lims→0 sF(s)
Time product f1(t) f2(t) 1/(2π i)

∫ c+i∞
c−i∞ F1(ξ )Fs(s−ξ )dξ

Multiplication by time t f (t) − d
ds F(s)

Table 8.2 Properties of the Laplace transform

Example 8.11. Let x(t) denote the position of something, with units m. Then

sX(s)− x(0) = L{ẋ(t)}

will have units m · s/s = m, and

s2X(s)− sx(0)− ẋ(0) = L{ẍ(t)}

will have units m · s/s2 = m/s.

Just as d/dt alters the units of x(t) by dividing by s, the manner in which the
Laplace transform of a derivative works is by dividing the units of L{x(t)} by s.

8.4 Initial Value Problems and Discontinuous Forcing

Laplace transforms may be used to solve initial value problems for linear, constant-
coefficient ordinary differential equations. There are two attributes worth noting.
First, there is no need to separate the solution method into homogeneous and par-
ticular solutions. Second, the method works particularly well for system where the
inhomogeneous term is discontinuous. In such a case the methods from Chapters 2
and 3 would require that we “piece together” solutions, which potentially could be
arduous.

We illustrate the means to use Laplace transforms to solve initial value problems
with a few examples. The procedure is the same as in Example 8.1, which is to
take the Laplace transform of each side of the equation, algebraically solve for the
dependent variable, and then determine the inverse Laplace transform to find the
time domain function for the dependent variable.

Example 8.12. Find the solution to
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ẍ + 4ẋ+ 13x = 20cos5t −12sin5t,

where x(0) = 1 and ẋ(0) = 15. Taking the Laplace transform gives

(

s2X(s)− sx(0)− ẋ(0)
)

+ 4(sX(s)− x(0))+ 13X(s) = 20
s

s2 + 25
−12

5
s2 + 25

.

Substituting the initial conditions gives

(

s2X(s)− s−15
)

+ 4(sX(s)−1)+ 13X(s) = 20
s

s2 + 25
−12

5
s2 + 25

.

Rearranging some gives

X(s)
(

s2 + 4s+ 13
)

=
20s−60
s2 + 25

+ s+ 19,

or

X(s) =
20s−60

(s2 + 25)(s2 + 4s+ 13)
+

s+ 19
s2 + 4s+ 13

.

Now we want to convert the right-hand side into a combination of terms that appear
in Table 8.1. Attempting to factor the denominator s2 + 4s + 13 will show that it
has the complex roots, s = −2±3i, and is, by completing the square, equivalent to
(s+ 2)2 + 9, which is of the form of a denominator in the table. So

X(s) =
20s−60

(s2 + 25)
(

(s+ 2)2 + 9
) +

s+ 19

(s+ 2)2 + 9
.

A partial fraction expansion3 of the first term gives

X(s) =
as+ b
s2 + 25

+
cs+ d

(s+ 2)2 + 9
+

s+ 19

(s+ 2)2 + 9

=
(as+ b)

(

s2 + 4s+ 13
)

+(cs+ d)
(

s2 + 25
)

(s2 + 25)
(

(s+ 2)2 + 9
) +

s+ 19

(s+ 2)2 + 9
.

Equating numerators in the first term gives

(a + c)s3 +(4a + b + d)s2 +(13a + 4b + 25c)s+(13b + 25d) = 20s−60,

and some tedious algebra gives a = 0, b = 5, c = 0, and d = −5. So,

3 Readers not familiar with partial fractions are referred to Appendix A.3.
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X(s) =
5

s2 + 25
− 5

(s+ 2)2 + 9
+

s+ 19

(s+ 2)2 + 9

=
5

s2 + 25
+

s+ 14

(s+ 2)2 + 9
.

Referring to the table, we want either s+2 or 3 in the numerator of the second term,
so we split the second term into two terms as follows,

X(s) =
5

s2 + 25
+

s+ 2

(s+ 2)2 + 9
+

12

(s+ 2)2 + 9

=
5

s2 + 25
+

s+ 2

(s+ 2)2 + 9
+ 4

3

(s+ 2)2 + 9
.

Now all the terms are entries in Table 8.1 and the solution is

x(t) = sin5t + e−2tcos3t + 4e−2tsin3t, t ≥ 0.

Remark 8.1. The Laplace transform only accounts for events for t ≥ 0, therefore
any solution to a differential equation using them is only valid for t ≥ 0 also. Some
texts denote this by multiplying the solutions by 1(t). Rather than adopt the extra
notation for this, this text simply remarks on it this one time and leaves it clear from
the context that if a Laplace transform was used, the solutions are only valid for
t ≥ 0.

Step functions and time shifts may be combined in useful ways to easily evaluate
differential equations that have inhomogeneous terms with discontinuities.

Example 8.13. Determine the solution to

ẋ + x = f (t), (8.9)

where x(0) = 0 and

f (t) =

{

1, 2 ≤ t < 3,

0, otherwise.

The function f (t) is illustrated in Figure 8.5.
For purposes of using the tools at our disposal to solve this differential equation,

the critical observation is that we may write

f (t) = 1(t −2)−1(t−3),

which is illustrated in Figure 8.6.
So, now we take the Laplace transform of

ẋ+ x = 1(t −2)−1(t−3)

with x(0) = 0 to get
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Fig. 8.5 Function for Example 8.13.
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Fig. 8.6 Two-step function combined to give f (t) in Figure 8.5 from Example 8.13.

sX(s)+ X(s) =
e−2s

s
− e−3s

s
,

and solving for X(s) gives

X(s) =
1

s(s+ 1)
(

e−2s − e−3s) .



296 8 The Laplace Transform

If needed we could use partial fractions to convert the fraction into terms appearing
in a table; however, in this case the term itself is in Table 8.1. In particular

L−1
(

1
s(s+ 1)

)

= 1− e−t.

Hence,

X(s) = L(1− e−t)(e−2s − e−3s)

= e−2sL(1− e−t)− e−3sL(1− e−t) .

So, referring to Theorem 8.3 (or the corresponding entry in Table 8.2), each term that
is multiplied by e−τs must have t shifted by τ , and must be multiplied by 1(t − τ).
Hence

x(t) =
(

1− e−(t−2)
)

1(t −2)−
(

1− e−(t−3)
)

1(t −3), (8.10)

is the solution to Equation (8.9). A plot of Equation (8.10) is illustrated in Figure 8.7.
Written in another form this solution is

x(t) =

⎧

⎪⎨

⎪⎩

0, t < 2,

1− e−(t−2), 2 ≤ t < 3,

e−(t−3) − e−(t−2), t ≥ 3.
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Fig. 8.7 Solution for Example 8.13.

At this point we can recognize that if we are able to piece together step functions
to be either one (or negative one) for specific ranges in time, then we can use such
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a structure to multiply other functions to have them appear for only a limited period
of time. The next example illustrates that fact.

Example 8.14. Find the solution to

ẋ + x =

⎧

⎪⎨

⎪⎩

0, t < 1,

3t2, 1 ≤ t < 2,

0, t ≥ 2,

with x(0) = 0. We can write the inhomogeneous term as a combination of step
functions as

ẋ+ x = 3t2 [1(t −1)−1(t −2)] = 3t21(t −1)−3t21(t −2) .

If we denote f (t) = t2, neither of the two terms on the right-hand side is in the
appropriate form to use Theorem 8.3. For the first one, we need

f (t −1) = (t −1)2 = t2 −2t + 1

and for the second one we need

f (t −2) = (t −2)2 = t2 −4t + 4.

So, to make the equation amenable for use by Theorem 8.3, write

ẋ + x = 3
[

t21(t −1)− t21(t −2)
]

= 3
[(

(t −1)2 + 2t −1
)

1(t −1)− ((t −2)2 + 4t −4
)

1(t −2)
]

= 3
[

(t −1)21(t −1)− (t−2)21(t −2)
+ (2t −1)1(t −1)− (4t −4)1(t −2)] .

The first two terms may make use of Theorem 8.3, but now we need to take care of
the terms that were added, that is, the 2t −1 and 4t −4 terms. So, write

2t −1 = 2(t −1)+ 1

and
4t −4 = 4(t −2)+ 4

and substituting gives

ẋ + x =
[

(t −1)21(t −1)− (t−2)21(t −2)
+ (2(t −1)+ 1)1(t −1)− (4(t −2)+ 4)1(t −2)] .

Let us consider this term by term using the relationship

L( f (t − τ)1(t − τ)) = e−τsL( f (t)) .
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1. For the first term

L
(

(t −1)2
1(t −1)

)

= e−sL(t2)= e−s 2
s3 .

2. For the second term

L
(

(t −2)2
1(t −2)

)

= e−2sL(t2)= e−2s 2
s3 .

3. For the third term

L((2(t −1)+ 1)1(t −1)) = e−sL(2t + 1) = e−s
(

2
s2 +

1
s

)

.

4. For the last term

L((4(t −2)+ 4)1(t −2)) = e−2sL(4t + 4) = e−2s
(

4
s2 +

4
s

)

.

Taking the Laplace transform of the entire equation gives

sX(s)+ X(s) = e−s 2
s3 − e−2s 2

s3 + e−s
(

2
s2 +

1
s

)

− e−2s
(

4
s2 +

4
s

)

.

So

X(s) = e−s
(

2
s3 (s+ 1)

+
2

s2 (s+ 1)
+

1
s(s+ 1)

)

− e−2s
(

2
s3 (s+ 1)

+
4

s2 (s+ 1)
+

4
s(s+ 1)

)

.

From Table 8.1 we can find the inverse Laplace transform of the second two terms

L−1
(

1
s(s+ 1)

)

= 1− e−t, L−1
(

1
s2 (s+ 1)

)

= t −1 + e−t.

It is left as an exercise to show that

L−1
(

1
s3 (s+ 1)

)

=
1
2

t2 − t + 1− e−t.

Finally, remembering to replace t by t − 1 or t − 2 depending on whether the
Laplace transform is multiplied by e−s or e−2s, respectively,
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x(t) = 2

(
1
2
(t −1)2 − (t −1)+ 1− e−(t−1)

)

1(t −1)

+ 2
(

(t −1)−1 + e−(t−1)
)

1(t −1)+
(

1− e−(t−1)
)

1(t −1)

−2

(
1
2
(t −2)2 − (t −2)+ 1− e−(t−2)

)

1(t −2)

−4
(

(t −2)−1 + e−(t−2)
)

1(t −2)−4
(

1− e−(t−2)
)

1(t −2) ,

which simplifies to

x(t) =
[

(t −1)2 + 1− e−(t−1)
]

1(t −1)

−
[

(t −2)2 + 2(t −2)+ 2−2e−(t−2)
]

1(t −2) .

Finally, another example involves some trigonometric functions.

Example 8.15. Find the solution to

ẋ+ 2x = f (t), (8.11)

where x(0) = 1 and

f (t) =

⎧

⎪⎨

⎪⎩

1, t < π ,

cos2t, π ≤ t < 7π
2 ,

−e−(t−7π/2), t > 7π
2 .

This function is illustrated in Figure 8.8.
To express f (t) in a manner that is convenient to compute the Laplace transform,

we may write f (t) as the sum of three functions, f (t) = f1(t)+ f2(t)+ f3(t), where

f1(t) =

{

1, 0 ≤ t < π ,

0, otherwise,

f2(t) =

{

cos2t, π ≤ t < 7π
2 ,

0, otherwise,

f3(t) =

{

−e−(t−7π/2), t ≥ 7π
2 ,

0, otherwise.

Each of these functions may be written as a single expression using step functions
as
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Fig. 8.8 Inhomogeneous term for Equation (8.11) in Example 8.15.

f1(t) = 1(t)−1(t −π)

f2(t) = 1(t −π)cos2t −1

(

t − 7π
2

)

cos2t

f3(t) = −1

(

t − 7π
2

)

e−(t−7π/2).

The second function f2(t) is not in a form that allows us to use Theorem 8.3 because
the arguments to the step functions and the cosine function do not match. What we
need is to convert cos2t to a function of t − π and t − 7π/2 for each of the step
functions. Observing that

cos(2(t −π)) = cos2t

cos

(

2

(

t − 7π
2

))

= −cos2t

we then have

f2(t) = 1(t −π)cos2(t −π)+1

(

t − 7π
2

)

cos2

(

t − 7π
2

)

.

So,

L( f (t)) =
(

1− e−πs) 1
s

+
(

e−πs + e−(7π/2)s
) s

s2 + 4
− e−(7π/2)s 1

s+ 1

Computing the Laplace transform of both sides of Equation (8.11) gives
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(sX(s)−1)+ 2X(s) = L( f (t))

=
(

1− e−πs) 1
s

+
(

e−πs + e−(7π/2)s
) s

s2 + 4
− e−(7π/2)s 1

s+ 1

and solving for X(s) gives

X(s) =
(
(

1− e−πs) 1
s

+
(

e−πs + e−(7π/2)s
) s

s2 + 4
− e−(7π/2)s 1

s+ 1
+ 1

)
1

s+ 2
.

Considering the inverse Laplace transform term-by-term gives

1. Rearranging the first term

(

1− e−πs) 1
s(s+ 2)

=
1
2

(

1− e−πs) 2
s(s+ 2)

so

L−1
(

1
2

(

1− e−πs) 1
s(s+ 2)

)

=
1
2

[(

1− e−2t)1(t)−
(

1− e−2(t−π)
)

1(t −π)
]

.

2. The product in the second term needs to be expanded as

s
s2 + 4

1
s+ 2

=
as+ b
s2 + 4

+
c

s+ 2
=

(a + c)s2 +(2a + b)s+(2b + 4c)
(s2 + 4)(s+ 2)

,

Equating numerators gives

(a + c)s2 +(2a + b)s+(2b + 4c) = s.

Because this must be true for arbitrary s, the coefficients of different powers of s
must be equal, so

a + c = 0, 2a + b = 1, 2b + 4c = 0,

and solving for a, b, and c and substituting gives

s
s2 + 4

1
s+ 2

=
1
4 s+ 1

2

s2 + 4
+

− 1
4

s+ 2
=

1
4

(
s+ 2
s2 + 4

− 1
s+ 2

)

=
1
4

(
s

s2 + 4
+

2
s2 + 4

− 1
s+ 2

)

,

where each term appears in Table 8.1. Hence
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L−1
((

e−πs + e−
7π
2 s
) s

s2 + 4
1

s+ 2

)

= L−1
(

1
4

(

e−πs + e−
7π
2 s
)( s

s2 + 4
+

2
s2 + 4

− 1
s+ 2

))

=
1
4

[

1(t −π)
(

cos2(t −π)+ sin2(t −π)− e−2(t−π)
)

+ 1

(

t − 7π
2

)(

cos2

(

t − 7π
2

)

+ sin2

(

t − 7π
2

)

− e−2(t− 7π
s )
)]

.

3. The product in the next term can be expanded as

1
s+ 1

1
s+ 2

=
a

s+ 1
+

b
s+ 2

=
a(s+ 2)+ b(s+ 1)

(s+ 1)(s+ 2)
=

(a + b)s+(2a + b)
(s+ 1)(s+ 2)

.

Equating powers of s in the numerator gives

1
s+ 1

1
s+ 2

=
1

s+ 1
− 1

s+ 2

both of which are in Table 8.1. Hence

L−1
(

−e−(7π/2)s 1
s+ 1

1
s+ 2

)

= 1

(

t − 7π
s

)(

e−(t−7π/2)− e−2(t−7π/2)
)

.

4. Finally, the last term gives

L−1
(

1
s+ 2

)

= e−2t .

The entire solution is, of course, the sum of these four terms and is

x(t) =
1
2

[(

1− e−2t)1(t)−
(

1− e−2(t−π)
)

1(t −π)
]

+
1
4

[

1(t −π)
(

cos2(t −π)+ sin2(t −π)− e−2(t−π)
)

+ 1

(

t − 7π
2

)(

cos2

(

t − 7π
2

)

+ sin2

(

t − 7π
2

)

− e−2(t−7π/2)
)]

−1

(

t − 7π
s

)(

e−(t−7π/2)− e−2(t−7π/2)
)

+ e−2t .

We can check the solution by evaluating it in each of the regions in which f (t)
has a different form. In particular

1. For 0 ≤ t < π ,

x(t) =
1
2

(

1− e−2t)+ e−2t (8.12)

and
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ẋ(t) = −e−2t . (8.13)

Hence, substituting into Equation (8.11) gives

ẋ + 2x = −e−2t + 2

(
1
2

(

1− e−2t)+ e−2t
)

= 1.

Also checking the initial condition gives

x(0) =
1
2

(

1− e0)+ e0 = 1.

2. For π ≤ t < 7π/2, x(t) is the same as in Equation (8.12) with the addition of the
terms multiplied by 1(t −π),

x(t) =
1
2

(

1− e−2t)+ e−2t − 1
2

(

1− e−2(t−π)
)

+
1
4

(

cos2(t −π)+ sin2(t −π)− e−2(t−π)
) (8.14)

and

ẋ(t) = −1
2

e−2t − e−2(t−π) +
1
2

(

−sin(2(t −π))+ cos(2(t −π))− e−2(t−π)
)

.

Substituting into Equation (8.11) gives

ẋ+ 2x = cos(2(t −π)) = cos2t.

Also, the solutions in Equations (8.12) and (8.14) must match at t = π . Substi-
tuting t = π into Equation (8.12) gives

x(π) =
1
2

(

1− e−2π)+ e−2π =
1
2

(

1 + e−2π) .

Substituting t = π into Equation (8.14) gives

x(π) =
1
2

(

1− e−2π)+ e−2π − 1
2

(

1 + e−2(π−π)
)

+
1
4

(

cos2(π −π)+ sin2(π −π)− e−2(π−π)
)

=
1
2

(

1− e−2π)+
1
4

(1 + 0−1)

=
1
2

(

1− e−2π) ,

so the two solutions match at t = π .
3. Verifying for t ≥ 7π/2 is left as an exercise.
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8.5 Transfer Functions

The notion of a transfer function is particularly useful in engineering because it
is a concise representation of the relationship between the input and output of a
system. In order to determine transfer functions in engineering a student must have
basic abilities to model engineering components. If that is not something that comes
naturally, perhaps a review of the material from Section 1.5 would be useful before
proceeding. A simple example helps illustrate the concept of a transfer function.

Example 8.16. Consider the task of controlling the system illustrated in Figure 8.9.
What is desired is to control the position of mass two with the input force f (t).
Exactly how to control it is addressed subsequently. Now we consider the task of
determining a convenient way to express its behavior mathematically.

x1(t) x2(t)

m1 m2

k
f (t)

Fig. 8.9 System to control for Example 8.16.

The equations of motion are simple to determine:

m1ẍ1 = k (x2 − x1)+ f (t) (8.15)

m2ẍ2 = k (x1 − x2) . (8.16)

Clearly these are coupled and, in the present form it is impossible to determine x2(t)
without simultaneously solving for x1(t). The same is true if we represent it as a
system of first-order equations by setting

ξ1 = x1, ξ2 = ẋ1, ξ3 = x2, ξ4 = ẋ2

which gives

d
dt

⎡

⎢
⎢
⎣

ξ1

ξ2

ξ3

ξ4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 1 0 0
− k

m1
0 k

m1
0

0 0 0 1
k

m2
0 − k

m2
0

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
1

m1

0
0

⎤

⎥
⎥
⎦

f (t).

Solving these equations is no problem, however, it would be especially conve-
nient if we could have a more concise representation of the relationship between the
input f (t) and the output x2(t). Recalling that a main feature of Laplace transforms
is that, once transformed, solving the differential equations is reduced to algebra, if
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we compute the Laplace transform of the equations of motion, it may be possible to
algebraically eliminate the intermediate variable(s).

Assuming that the initial conditions are all zero, that is,

x1(0) = 0, ẋ1(0) = 0, x2(0) = 0, ẋ2(0) = 0,

and computing the Laplace transform of Equations (8.15) and (8.16) gives

m1s2X1(s) = k (X2(s)−X1(s))+ F(s) (8.17)

m2s2X2(s) = k (X1(s)−X2(s)) . (8.18)

These are two equations that are linear in three functions, X1(s), X2(s) and F(s).
Hence, we may use one of the equations to eliminate one of the variables. Since we
are interested in the relationship between the input force, f (t) and the position of
mass two, x2(t), it makes sense to solve one equation for X1(s) and substitute into
the other equation. Solving Equation (8.18) for X1(s) gives

X1(s) =
m2s2 + k

k
X2(s).

Substituting this into Equation (8.17) and rearranging gives

X2(s) =
k

s2 (m1m2s2 + k (m1 + m2))
F(s). (8.19)

Because it directly relates the effect of the input force on the position of the
output mass, call the function

X2(s)
F(s)

=
k

s2 (m1m2s2 + k (m1 + m2))

the transfer function from the input F(s) to the output X2(s).
Observe the following about Equation (8.19).

1. This is a concise relationship between the input force and the position of mass
two. In fact, the variable representing the position of mass one does not explicitly
appear in the equation at all.

2. Given an input force f (t), we could compute its Laplace transform F(s) =
L( f (t)), substitute F(s) into Equation (8.19) and compute the inverse Laplace
transform of X2(s) to find the motion of x2(t).

3. Although the variable X1(s) does not explicitly appear in the equation, it is im-
plicitly in the equation in the terms in the denominator of the transfer function.
In fact, it should be obvious that it cannot be eliminated in some complete sense.
After all, the only way mass two moves is by the force accelerating mass one,
and the motion of mass one affecting mass two through the spring.
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In light of the usefulness of the formulation of the relationship between the force
and position of the mass represented by Equation (8.19), we may define a transfer
function in the following manner.

Definition 8.8. A transfer function is the ratio of the Laplace transform of the output
to the input of some system assuming all the initial conditions are zero.

What exactly the input and output of a system are depends on the problem and
either must be stated or should be clear from the context of the problem. Subse-
quently it is apparent that the output of one system may be the input to another. For
example, the output of a motor, which may be the torque or position of the motor
shaft, is the input to whatever it is driving.

As is clear subsequently, the denominator of the transfer function is of particular
importance.

Definition 8.9. Let

G(s) =
N(s)
D(s)

be a transfer function.

• The equation
D(s) = 0,

that is, setting the denominator equal to zero, is called the characteristic equa-
tion.

• The lowest power of s in the polynomial in the denominator is called the system
type.

• If the order of the polynomial in the denominator is greater than the order of the
polynomial in the numerator, the transfer function is called proper.

Unless otherwise specified, all transfer functions in this text are proper. Also, for
this chapter system type is just something to define and observe. It is of importance
in Chapter 10 with respect to the steady-state error of the response of a control
system.

Now, we make the problem in Example 8.16 more complicated by replacing the
general forcing function f (t) with something more realistic.

Example 8.17. Consider the same system as in Example 8.16 but where the force is
generated by a belt attached to a pulley attached to a dc motor which is driven by an
electric circuit, as illustrated in Figures 8.10 and 8.11. In Figure 8.10, the first mass
is attached to a belt that driven by a pulley. The pulley on the left is attached to a
dc motor that is driven by the circuit illustrated in Figure 8.11. The pulley on the
right is identical to the pulley on the left except it is not driven and is free to rotate.
Each pulley has a radius r and moment of inertia J about its center. Assume that the
belt is light so that its mass may be ignored and that it does not slip on the pulleys.
The motor circuit is comprised of an ideal current source, a resistor, and a dc motor
attached to the output. The dc motor has a torque constant of kτ and a back emf
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x1(t) x2(t)

m1 m2

k

τ(t)

r

J

Fig. 8.10 System to control for example 8.17.

Fig. 8.11 Motor driving circuit for Ex-
ample 8.17.

iin

R

ke,kτ

constant of ke. We wish to determine the transfer function from the input current to
the circuit to the position of the mass on the right.

The Laplace transform of the differential equations for the two masses are given
in Example 8.16 in Equations (8.17) and (8.18). So what is left is to model the belt
and pulley system as well as the circuit. Free body diagrams of the two pulleys are
illustrated in Figure 8.12. The bottom portion of the belt is attached to the mass, thus
if the mass is accelerating the tension on each side of the mass must be different.
Because there is no mechanical component between the pulleys on the top, the ten-
sion in the top belt is constant along its length. Denote the tension in the top portion
of the belt by T1(t), and the tension in the bottom of the belt to the left and right of
the mass by T2(t) and T3(t), respectively.

Fig. 8.12 Free body diagrams of the
pulleys from Example 8.17.

T1T1

T2 T3

τ

r

J

If we denote the angular position of both pulleys by θ , because the belt does not
slip, θ is related to the position of the mass by rθ = x1. Newton’s law on the right
pulley gives

J
ẍ1

r
= r (T1 −T3)

and on the left pulley gives
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J
ẍ1

r
= r (T2 −T1)+ τ.

The force on mass two is
f = T2 −T3.

Computing the Laplace transform of both sides of these three equations with zero
initial conditions gives

Js2X1(s) = r2 (T1(s)−T3(s))

Js2X1(s) = r2 (T2(s)−T1(s))+ rT (s)
F(s) = T2(s)−T3(s).

Adding the first two equations gives

2Js2X1(s) = r2 (T2(s)−T3(s))+ rT (s)

and using the last equation

2Js2X1(s) = r2F(s)+ rT (s). (8.20)

Inasmuch as the circuit has a current source, the torque produced by the motor is

τ = kτ i =⇒ T (s) = kτ I(s).

Substituting into Equation (8.20) gives

2Js2X1(s) = r2F(s)+ rkτ I(s),

and eliminating X1(s) and F(s) from this equation and Equations (8.17) and (8.18)
gives

X2(s)
Iin(s)

=
kτ kr

s2 [2J (m2s2 + k)− r2 (k (m1 + m2)+ m1m2s2)]
.

This system is type 2 because the lowest power of s in the denominator is two.

Let us consider one more example which probably qualifies as rocket science.

Example 8.18. Consider the rocket illustrated in Figure 8.13. The velocity of the
center of mass (com) of the rocket is at an angle θr with respect to the axis of
symmetry of the rocket body. The point through which all aerodynamic forces may
be resolved is called the center of pressure (cop). The component of the aerodynamic
force along the axis of symmetry of the rocket body is called the drag and the
component orthogonal to the drag is called the lift. The lift force is denoted by fl .
The mass moment of inertia of the rocket about its center of mass is denoted by Jr.
Assume the distance between the center of mass and center of pressure is l1 and the
distance between the center of mass and the location in the rocket nozzle where the
thrust force acts is l2.
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The rocket is controlled by thrust vectoring, which means that the nozzle of the
rocket engine is gimballed and can pivot. The thrust of the rocket engine is denoted
by ft and the angle of the nozzle with respect to the center-line of the rocket body is
denoted by θn.

This is rocket is unstable because the center of pressure is above the center of
mass. This would typically be considered a poor design; however, if we want the
rocket to be highly maneuverable, then perhaps it is a good feature. The problem
is to find the transfer function from the nozzle angle to the angle of attack, θr of
the rocket. To simplify the analysis, we assume that the velocity of the rocket is
constant.

Fig. 8.13 Rocket for Example 8.18.

θr

fl

v

ft

θn

com

cop

Jr

l1

l2

Basic aerodynamics provides a formula for the lift force, which is

fl = Cl
ρ‖v‖2A

2
,

where Cl is the coefficient of lift, ρ is the density of the air, ‖v‖ is the magnitude
of the velocity of the rocket, and A is the reference area, which is a function of the
lateral area of the rocket exposed to the sideways flow due to a nonzero angle of
attack. Because A is proportional to the angle of attack θr, then

A = Arefsinθr

and then

fl =
1
2

ρCl‖v‖2Arefsinθr
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and for θr � 1, then

fl ≈ 1
2

ρCl‖v‖2Arefθr.

Assuming θr � 1 is reasonable; otherwise the rocket would essentially be flying
“sideways.”

Newton’s law for the rotation of the rocket body gives

Jrθ̈r = ft l2sin θn +
1
2

ρCl‖v‖2Arefl1θr.

For small θn,

Jrθ̈r = ft l2θn +
1
2

ρCl‖v‖2Arefl1θr.

Computing the Laplace transform and assuming zero initial conditions gives

Jrs2Θr(s) = ft l2Θn(s)+
1
2

ρCl‖v‖2Arefl1Θr(s) (8.21)

and solving for the transfer function gives

Θr(s)
Θn(s)

=
ft l2

Jrs2 − 1
2 ρCl‖v‖2Arefl1

.

Let us extend the example now to include some sort of actuation. We assume that
the thrust vectoring is achieved by attaching a dc motor to the axis of rotation of
the rocket engine nozzle. For very large rocket engines, such as the main engines on
space launch vehicles, the actuation for the thrust vectoring is achieved by hydraulic
systems. For smaller systems, such as the maneuvering thrusters for the space shuttle
orbiter, the actuation is achieved by dc servo motors.4

Example 8.19. Figure 8.14 is a schematic of the nozzle actuation system. The nozzle
has moment of inertia Jn about its pivot point and there are two springs with spring
constant kn/2 attached to the nozzle a length l3 from the pivot point. A dc motor
with torque constant Kτ and back emf constant ke is attached to the pivot point that
rotates the nozzle and provides a torque τ . The circuit driving the motor is illustrated
in Figure 8.15. Find the transfer function from the input voltage to the circuit to the
angle of the nozzle, and then find the transfer function from the input voltage to the
angle of attack of the rocket. Assume that the overall rotation of the nozzle is small.

If θn � 1, then the restoring torque about the pivot point due to the displacement
of the springs is approximately

τs = l2
3k sinθn ≈ l2

3knθn.

4 A servo motor is a unit where the angle of the motor is controlled. A signal to the servo mo-
tor, typically a pulse width modulated signal indicates what the angle of the shaft of the motor
should be, and internal feedback control circuitry controls the output angle of the shaft so that
it is accomplished. The means to do this is covered when we consider feedback in the following
sections.
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Fig. 8.14 Vectored thrust rocket nozzle
for Example 8.19.

τ
kn
2

kn
2

l3

Jn

θnft

The only torques about the pivot point are τs from the springs and τ from the dc
motor. Hence, Newton’s law about the pivot point is

Jnθ̈n = τ − τs = τ − l2
3knθn.

Computing the Laplace transform with zero initial conditions gives

s2JnΘn(s) = T (s)− l2
3knΘn(s),

where T (s) = L(τ(t)). Thus the transfer function from the motor torque to the noz-
zle angle is

Θn(s)
T (s)

=
1

Jns2 + l2
3kn

. (8.22)

Returning to Equation (8.21), the torque required to pivot the nozzle has an equal
and opposite effect on the rocket body. In particular, Equation (8.21) is now

Jrs2Θr(s) = ft l2Θn(s)+
Cl‖v‖2Aref

2
l1Θr(s)+ T (s). (8.23)

Fig. 8.15 Actuator circuit for vector
thrust nozzle in Example 8.19.

+

−

vin

R

kτ ,ke

i

Now considering the circuit, Kirchhoff’s voltage law around the circuit gives

vin = iR + keθ̇n

or
Vin(s) = I(s)R + skeΘn(s) (8.24)
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and the torque property of the motor gives τ = ikτ or

T (s) = kτ I(s). (8.25)

So we have four equations, (8.22) to (8.25) and five variables, Θr(s), Θn(s), T (s),
Vin(s), and I(s). A few lines of algebra gives

Θr(s)
Vin(s)

=
kτ
(

Jns2 +
(

knl2
3 + ft l2

))

(

Jrs2 − Cl‖v‖2Aref
2 l1

)(

JnRs2 + kekτ s+ knl2
3R
) .

This expression is rather complicated, but it is not surprising: the effect of a
voltage through a circuit with a motor attached to a nozzle that directs the angle of
attack of a rocket is not necessarily very simple.

Many systems have more than one input and more than one output. Even for
control systems where we want to control a single variable with one input, there
will often be external disturbances. The following example illustrates this fact.

Example 8.20. Consider the mechanical system illustrated in Figure 8.16, which is
the same as the system in Example 8.16 except now an external disturbance force
d(t) is acting on the second mass. The equations of motion for each mass are

m1ẍ1(t) = k (x2(t)− x1(t))+ f (t), m2ẍ2(t) = k (x1(t)− x2(t))−d(t),

so
(

m1s2 + k
)

X1(s) = kX2(s)+ F(s),
(

m2s2 + k
)

X2(s) = kX1(s)+ D(s).

Eliminating X1(s) gives

X2(s) =
k

(m1s2 + k)(m2s2 + k)− k2 F(s)+
m1s2 + k

(m1s2 + k)(m2s2 + k)− k2 D(s).

The term multiplying F(s) is the transfer function from F(s) to X2(s) and the term
multiplying D(s) is the transfer function from D(s) to X2(s). Clearly, both from the
equation as well as intuition, the response x2(t) is a linear combination of the two
terms. A lot of the purpose of controls is to specify f (t) as a function of either
or both x1(t) and x2(t) so that x2(t) maintains a desired value, regardless of the
disturbance d(t).

8.6 Block Diagram Representation and Algebra

Block diagrams are a graphical means to represent transfer functions and feedback
control systems. They are particularly convenient because they represent feedback
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x1(t) x2(t)

m1 m2

k
f (t) d(t)

Fig. 8.16 System to control for Example 8.20.

in a visually intuitive manner, the various components are often isolated and the
overall representation is simpler. The salient point to keep in mind is that they are
simply an alternative representation, and that this alternative representation is as
rigorous as the algebraic representation.

Block diagrams are comprised of four types of components.

1. A block represents a transfer function describing the relationship between some
input and output. It is usually graphically represented by a rectangle. The output
is equal to the input times the transfer function inside the block.

2. Arrows represent signals, which are the Laplace transform of some time domain
function. Arrows directed into blocks represent input signals and arrows directed
out of blocks represent output signals from that transfer function. A block with
an input and output arrow is illustrated in Figure 8.17.

X(s) G(s) G(s)X(s)

Fig. 8.17 A block with an input and output arrow.

3. Comparators add or subtract multiple signals, as illustrated in Figure 8.18. The
sign associated with any signal is indicated near the corresponding arrow where
it enters the comparator.

−

++

+

X1(s) X1(s)

X2(s) X2(s)

X1(s)+X2(s) X1(s)−X2(s)

Fig. 8.18 A block diagram comparator.

4. Branch points distribute a signal concurrently to multiple arrows, as illustrated
in Figure 8.19. They do not “split” or “divide” the signal.

Because the elements of a block diagram are defined with mathematical preci-
sion it is important to keep in mind that they are an exact representation of a system.
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X(s) X(s)

X(s)

Fig. 8.19 A block diagram branch point.

In other words, there is a one-to-one correspondence between a block diagram rep-
resentation and an equation that represents the differential equation governing the
system.

Components of a block diagram have explicit algebraic meaning, thus just as it
is possible to algebraically manipulate an equation, it is possible to algebraically
manipulate a block diagram. All of these are relatively straightforward and a few
examples should help elucidate the concept.

Example 8.21. A branch point carries a signal concurrently along multiple arrows.
If a signal is multiplied by a transfer function in a block before a branch point, the
arrows out of the branch point are both multiplied by the transfer function inside the
block. In order to move a branch point from the output side of a block to the input
side, both arrows must then have the transfer function inside a block so that they
carry the same signal. This is represented in Figure 8.20.

B(s)

B(s)

B(s)A(s)

B(s)A(s)

B(s)A(s)

B(s)A(s)

A(s)

A(s)

A(s)⇐⇒

Fig. 8.20 Moving a branch point to the input side of a block.

Similarly, the manner in which to move a branch point from the input side of a
block to the output side of the block is illustrated in Figure 8.21.

B(s)

B(s)

B(s)

B(s)

B(s)A(s)

B(s)A(s)

A(s)

A(s)

1
A(s)

⇐⇒

Fig. 8.21 Moving a branch point to the output side of a block.

Example 8.22. The previous example illustrated how to move a branch point to an-
other side of a block. Mathematically it represents the algebraic property of distri-
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bution. The algebraic property that multiplication distributes over is represented by
the equality

D(s) =
(

B(s)+C(s)
)

A(s) = B(s)A(s)+C(s)A(s).

In a block diagram, it is represented by the fact that the two block diagrams in
Figure 8.22 are equivalent.

+

+

+

+

B(s)
B(s)

C(s)

C(s)

A(s)
A(s)

A(s)

D(S)
D(s)

⇐⇒

Fig. 8.22 Equivalent block diagrams representing the fact that multiplication distributes over ad-
dition.

Similarly, the relationship

D(s) = B(s)A(s)+C(s) =
(

B(s)+
C(s)
A(s)

)

A(s)

is represented in Figure 8.23.

+

+

+

+

B(s)

B(s)

C(s)

C(s)

A(s)

A(s)
D(S)

D(s)

1
A(s)

⇐⇒

Fig. 8.23 Equivalent block diagrams based on factoring out a transfer function A(s).

So, we now have a rule to move a comparator to either side of a block. If a com-
parator is moved to the output side of a block, each arrow entering the comparator
must multiply the block. If a comparator is moved to the input side of the block, the
arrow that originally did not multiply the block must have a block that inverts the
multiplication of the block.

The next example illustrates what is perhaps the most important block diagram
manipulation that we commonly utilize.

Example 8.23. Consider the feedback system illustrated on the left in Figure 8.24.
We show that it is equivalent to the block diagram on the right.
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+

−

R(s)R(s) Y (s)Y (s)
G(s)

H(s)

⇐⇒
G(s)

1+H(s)G(s)

Fig. 8.24 Feedback transfer function.

To show these are equivalent, write

Y (s) =
(

R(s)−H(s)Y (s)
)

G(s)

and solve for Y (s), which gives

Y (s) =
G(s)

1 + H(s)G(s)
R(s).

As the next example shows, the order of branch points may be switched as long
as there is no component between them. However, in general switching the order of
a comparator and branch point will require some care.

Example 8.24. The two block diagrams in Figure 8.25 are equivalent.

R(s) R(s)

R(s)B(s)

R(s)B(s) R(s)B(s)

R(s)B(s)

R(s)B(s)R(s)B(s)
B(s) B(s)⇐⇒

Fig. 8.25 Switching the order of branch points in a block diagram.

Switching a comparator and branch point in a similar manner results in a block
diagram that is generally not equivalent, as is illustrated in Figure 8.26.

+

+

+

+R(s)R(s)

R(s)B(s)+C(s) R(s)B(s)+C(s)

R(s)B(s)+C(s)

B(s)B(s)

C(s)C(s)

R(s)B(s)

�⇐⇒

Fig. 8.26 Switching the order of a branch point and comparator in a block diagram.

These and a few other manipulations are summarized in Table 8.3.
The canonical form for a feedback block diagram is the form on the left in Fig-

ure 8.24, where there is one feedforward block leading from the input to output and
one feedback block. This form is convenient because it is natural minimal represen-
tation for a feedback system, and many analysis and design methods in controls start
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Cascade elements

 

R G1 G2
Y R

G1G2
Y

Parallel elements

  

+
+

R
G1

G2

Y R
G1 +G2

Y

Moving comparator

+

+

R1

R2

GG Y

 

+

+

R1

R2

G

GG Y

Moving comparator

+

+

R1

R2

GG Y

 

+

+

R1

R2

G Y

1
G

Moving branch point

R Y

Y

GG

 

R Y

Y

G

G

Moving branch point

 

R

R YGG

 

R

R YG

1
G

Eliminating feedback loop

 
+

−

R Y
G1

G2

R YG1
1+G1G2

Table 8.3 Summary of block diagram algebraic manipulations
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with this canonical form. In particular, the root locus design method in Section 9.6
and the frequency response methods from Section 9.7 both start with this canonical
form.

Just as a sequence of algebraic steps may be used to simplify a complicated
algebraic expression, a sequence of corresponding manipulations in a block diagram
may be used to determine an alternative block diagram. According to [32], a good
recipe for simplifying block diagrams is the following.

1. Combine cascade blocks.
2. Combine parallel blocks.
3. Eliminate interior feedback loops.
4. Shift comparators to the left.
5. Shift branch points to the right.
6. Iterate until a canonical form is obtained.

The following example illustrates block diagram manipulations for a reasonably
complicated block diagram.

Example 8.25. Consider the block diagram illustrated in Figure 8.27. Determine the
transfer function from the input to the output.

+
− −

−
+ +A(s)

B(s)

C(s)

D(s)

R(s) Y (s)

Fig. 8.27 Block diagram for Example 8.25.

In Figure 8.28, the block diagram has been modified by moving the branch point
that was between the comparator and block containing C(s) to the output side of
C(s). The block containing the transfer function B(s) was modified by dividing by
C(s). Also, because the order of adjacent branch points does not matter, the branch
point was moved to be the middle of the three on the right side of Figure 8.28. Now
the result from Example 8.23 may be used to simplify the portion outlined by the
dotted box. The result is illustrated in Figure 8.29.

Because the two blocks in the top are adjacent, they are simply multiplied, so they
may be combined as illustrated in Figure 8.30. After combining them, the portion of
the block diagram in the dotted line is exactly of the form from Example 8.23. The
simplified result is illustrated in Figure 8.31 after the simplification of

A(s)C(s)
1+C(s)D(s)

1 + B(s)
C(s)

A(s)C(s)
1+C(s)D(s)

=
A(s)C(s)

1 +C(s)D(s)+ A(s)B(s)
.
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+
−

+ +
− −

A(s) C(s)

D(s)

R(s) Y (s)

B(s)
C(s)

Fig. 8.28 Block diagram for Example 8.25.

+
−

+
−

A(s)
R(s) Y (s)

B(s)
C(s)

C(s)
1+C(s)D(s)

Fig. 8.29 Block diagram for Example 8.25.

+
−−

+R(s) Y (s)

B(s)
C(s)

A(s)C(s)
1+C(s)D(s)

Fig. 8.30 Block diagram for Example 8.25.

Fig. 8.31 Block diagram for Exam-
ple 8.25.

+
−

R(s) Y (s)A(s)C(s)
1+C(s)D(s)+A(s)B(s)

Finally, all of Figure 8.31 is of the form of the feedback loop from Example 8.23,
so this would be the usual stopping point for this problem. Just for completeness we
take it one step further and reduce it to one block with one transfer function which,
after some simplification, is illustrated in Figure 8.32.



320 8 The Laplace Transform

Fig. 8.32 Block diagram for Exam-
ple 8.25.

R(s) Y (s)A(s)C(s)
1+C(s)D(s)+A(s)B(s)+A(s)C(s)

8.7 Computational Tools

Both MATLAB and Octave have many functions useful for the analysis of transfer
functions. This section presents an overview of commonly used functions.

Four MATLAB functions are particularly useful and are highlighted here. Be-
cause we are dealing with polynomials in s, a function that multiplies polynomials
is handy, which is what conv() does. The function pzmap() computes and plots
the poles and zeros of a transfer function. The functions step() and impulse()
compute and plot an approximate numerical solution for the step and impulse re-
sponses, respectively.

The conv() function takes two vectors as arguments. The elements of the
vectors are the coefficients of the powers of s in a polynomial. For example,
(

s2 + 3s+ 5
)(

7s4 + 11s2
)

is computed as follows.

>> conv([1 3 5],[7 0 11 0])
ans =

7 21 46 33 55 0

which tells us that
(

s2 + 3s+ 5
)(

7s4 + 11s2)= 7s5 + 21s4 + 46s3 + 33s2 + 55s.

Note that the 0s are necessary, both in the vectors entered into conv() as well as
in the answer, to determine to what power of s the coefficient belongs.

The step() function computes an approximate numerical solution to the step
response of a transfer function. If G(s) is a transfer function, then the step response
is given by

y(t) = L−1
(

G(s)
1
s

)

.

In its simplest implementation, the arguments to step() are vectors whose compo-
nents are the coefficients of the polynomials in s in the numerator and denominator
of G(s), respectively. For example, to compute and plot the step response for

G(s) =
s+ 2

s2 + 5s+ 10

which is

y(t) = L−1
(

G(s)
1
s

)

enter

>> step([1 2],[1 5 10])
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at the command prompt. If there is a need to record the response, enter

>> [y,t] = step([1 2],[1 5 10])

and then the vector y would contain the step response, and each element of y would
correspond to the time contained in the corresponding element of t.

The impulse() function is the same as step() except it determines a numer-
ical solution for the impulse response. The pzmap() function takes the input in the
same format as step() and impulse(), but it plots the location of the poles and
zeros of the transfer function. This is useful for transfer functions with polynomials
that are of higher order than can be factored by hand.

The syntax for Octave is very similar to MATLAB, with the only exception that
the step() and impulse() functions require that the transfer function be desig-
nated as such with the tf() function. The conv() are the same as for MATLAB.

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

x(
t)

t

Fig. 8.33 The step response of G(s) = (s + 2)/(s2 + 5s + 10) produced by the Octave command
step(tf([1 2],[1 5 10])).

The step() function computes an approximate numerical solution to the step
response of a transfer function. For the same system as was illustrated in the pre-
ceding section for MATLAB, enter

octave:> step(tf([1 2],[1 5 10]))

at the command prompt. The output to this function is illustrated in Figure 8.33. If
there is a need to record the response, enter

octave:> [y,t] = step(tf([1 2],[1 5 10]))
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and then the vector y would contain the step response, and each element of y would
correspond to the time contained in the corresponding element of t.

As would be expected the impulse() function is the same as step() except
it determines a numerical solution for the impulse response. Similar to step() in
Octave, it needs the transfer function to be expressed inside the tf() function.

8.8 Exercises

8.1. Compute the Laplace transform of the following functions using the definition
of the Laplace transform; that is, evaluate the integral in Definition 8.2.

1. cosωt
2. t2 + 2t + 2
3. tn

4. te2t

5. eat cosbt

8.2. Determine the inverse Laplace transform of

F(s) =
a

s3 (s+ a)
.

Use the tables and partial fractions, not the definition of the inverse transform.

8.3. For each of the following initial value problems determine the solution using
Laplace transforms and verify your answer by writing a computer program to deter-
mine an approximate numerical solution and comparing the answers.

1. 2ẋ+ 3x = cos2t, where x(0) = 0.
2. 2ẋ+ 3x = cos2t, where x(0) = 2.
3. 2ẋ+ 3x = e−3t , where x(0) = 0.
4. 2ẋ+ 3x = e−3t + t, where x(0) = 0.
5. 2ẋ−3x = 0, where x(0) = −1.
6. 2ẋ− 3x = 1, where x(0) = −1.
7. ẍ+ 9x = cos2t, where x(0) = 1 and ẋ(0) = 1.
8. ẍ+ 4x = cos5t, where x(0) = 1 and ẋ(0) = 1.
9. ẍ+ 16x = 0, where x(0) = 1 and ẋ(0) = 0.

10. ẍ+ 16x = 0, where x(0) = 1 and ẋ(0) = 1.
11. ẍ+ 16x = cos4t, where x(0) = 1 and ẋ(0) = 1.
12. ẍ+ 6ẋ+ 9x = e−3t , where x(0) = 0 and ẋ(0) = 0.
13. ẍ+ x = sin t, where x(0) = 1 and ẋ(0) = 0.
14. ẍ+ 5ẋ+ 6x = 0, where x(0) = 2 and ẋ(0) = −5.
15. ẍ−5ẋ+ 4x = e3t , where x(0) = 1 and ẋ(0) = −1.
16. 2ẍ+ ẋ− x = e4t , where x(0) = 3 and ẋ(0) = 0.
17. ẍ = 0, where x(0) = 0 and ẋ(0) = 1.
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18. ẍ+ 2ẋ+ 5x = 6cos3t −4sin3t, where x(0) = 0 and ẋ(0) = 5.

8.4. Consider number 11 of Exercise 8.3. Explain any complications that would
arise if this problem were solved using the method of undetermined coefficients.
Using Laplace transforms, does one need to be careful if the inhomogeneous terms
contain a homogeneous solution?

8.5. For each of the following initial value problems determine the solution using
Laplace transforms and verify your answer by writing a computer program to deter-
mine an approximate numerical solution and comparing the answers.

1. ẍ+ 16x = δ (t), where x(0) = 0 and ẋ(0) = 0.
2. ẍ+ 16x = δ (t), where x(0) = 1 and ẋ(0) = 0.
3. ẍ+ 16x = δ (t), where x(0) = 0 and ẋ(0) = 1.
4. ẍ+ 16x = δ (t −2), where x(0) = 0 and ẋ(0) = 0.
5. ẍ+ 9x = 1(t), where x(0) = 0 and ẋ(0) = 0.
6. ẍ+ 9x = 1(t −3), where x(0) = 1 and ẋ(0) = 0.

8.6. Determine the solution to each of the following differential equations.

1. ẋ−5x = f (t) where x(0) = 0 and

f (t) =

⎧

⎪⎨

⎪⎩

0, t < 3,

t, 3 ≤ t < 4,

0, 4 ≤ t.

2. ẍ+ 4x = f (t) where x(0) = 0, ẋ(0) = 0 and

f (t) =

{

cost, 0 ≤ t < π ,

−1, π ≤ t.

3. ẍ+ 4x = f (t) where x(0) = 1, ẋ(0) = 0 and

f (t) =

{

sin2t, 0 ≤ t < 4π ,

0, 4π ≤ t.

4. ẋ+ 2x = f (t) where x(0) = 1 and

f (t) =

⎧

⎪⎨

⎪⎩

0, 0 < t ≤ 1,

2, 1 < t ≤ 2,

0, 2 ≤ t.

5. ẋ+ x = f (t), where x(0) = 1 and

f (t) =

{

0, 0 < t ≤ 2,

t, t > 2.
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In each case, plot your answer. Compare your answer with an approximate numeri-
cal solution for the differential equation obtained by writing a computer program or
using a computer package.

8.7. Determine the solution to using Laplace transforms.

8.8. Determine the solution to where x(0) = 0 and ẋ(0) = 0 using Laplace trans-
forms. Plot your answer. Compare your answer with an approximate numerical so-
lution for the differential equation obtained by writing a computer program or using
a computer package.

8.9. Determine the solution to

ẍ + 25x =

{

t, 0 ≤ t < 1,

cos(t −1), 1 ≤ t,

where x(0) = 0 and ẋ(0) = 0 using Laplace transforms. Plot your answer. Compare
your answer with an approximate numerical solution for the differential equation
obtained by writing a computer program or using a computer package.

8.10. Determine the solution to

ẍ + ẋ+ x =

{

sin t, 0 ≤ t < π
2 ,

1, π
2 ≤ t,

where x(0) = 0 and ẋ(0) = 0 using Laplace transforms. Plot your answer. Compare
your answer with an approximate numerical solution for the differential equation
obtained by writing a computer program or using a computer package.

8.11. Because differentiation in the time domain corresponds to multiplication by s
in the frequency domain, and

L{sin2t} =
2

s2 + 4

why does

L{cos2t} �= 2s
s2 + 4

?

8.12. We have glossed over some technical issues with respect to Laplace trans-
forms. Specifically, not all functions have a Laplace transform because the integral
may not converge. What is required for a function f (t) to have a Laplace transform
is:

1. It must be piece-wise continuous.
2. It must be of exponential order, which means there exist constants M and c such

that
| f (t)| ≤ Mect , 0 ≤ t < ∞.
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Show that the function tn is of exponential order, and hence has a Laplace transform,
but that et2

is not of exponential order, and hence does not have a Laplace transform.
See [9] for a more complete discussion.

8.13. Laplace transforms have “built into them” the fact that initial conditions oc-
cur at t = 0. If the initial conditions are not specified at t = 0, a simple change of
variables with a time shift may be used so employ the method. For example, to solve

ẍ+ 3ẋ+ 2x = e−t ,

where x(3) = 1 and ẋ(3) = 0, let y(t) = x(t −3). Solve this equation using Laplace
transforms with that change of variables, and compare the answer to a solution ob-
tained using a different method from Chapter 3.

8.14. Prove that if L{ f (t)} = F(s), then

L{−t f (t)} =
d
ds

F(s).

Hint: The right hand side of the equality is the derivative of F(s) with respect to s,
thus differentiate the definition of the Laplace transform with respect to s.

8.15. This problem is going to find the transfer function for a loudspeaker. From
physics, if a wire of length l carries a current of i amperes and is arranged at a right
angle to a magnetic field of strength B tesla, then the force (in newtons) on the wire
is at a right angle to the plane of the wire and magnetic field and has a magnitude

f = Bli. (8.26)

In a speaker, the wire is usually coiled to fit a longer length in a small space.
This is illustrated schematically in Figure 8.34. A current i through the coil c

causes a force f on the mass (which, in this exercise, is the magnet) in the direction
shown with a magnitude given by Equation (8.26).

Fig. 8.34 Speaker model for Exer-
cise 8.15.

i

i

c
f

m

x

1. Find the transfer function from the current through the speaker coil i to the loca-
tion of the speaker mass x.
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2. Now we attach a highpass filter to the speaker. The circuit is illustrated in Fig-
ure 8.35. An analysis of the properties of highpass filters is presented subse-
quently in Section 10.4.

Fig. 8.35 Speaker model for Exer-
cise 8.15.

f
m

x

vin

C

R

L

esp

Everything in the circuit should be obvious except the circle labeled esp. Just as in
a dc motor, there is a voltage drop across the speaker due to the speaker moving.
It is given by esp = Blẋ. Find the transfer function from vin to x.

8.16. Consider the inverted pendulum illustrated on the left in Figure 8.36.

1. Determine the equation of motion for the system. Is it linear or nonlinear?
2. Assume that θ � 1, for which sin θ ≈ θ and cosθ ≈ 1. If you substitute these

approximations, is the equation linear or nonlinear?
3. Using the approximation, determine the transfer function from the input torque,

τ to the angle of the pendulum θ .
4. Determine the transfer function from the input torque to the angular velocity of

the pendulum.
5. Assume the torque is produced by a dc motor that is driven by the circuit illus-

trated on the right in Figure 8.36. Determine the transfer function from the input
voltage to the circuit to the pendulum angle θ .

6. Assume the torque is produced by a dc motor that is driven by the circuit illus-
trated on the right in Figure 8.36. Determine the transfer function from the input
voltage to the circuit to the pendulum angle angular velocity.

8.17. Consider the system illustrated on the right in Figure 8.8. A pulley with a mass
moment of inertia J1 and r1 is subjected to a torque τ . A light belt connects the first
pulley to a second pulley with an inner and outer spool. The mass moment of inertia
of the pulley is J2. The inner spool has radius r1 and the outer spool has a radius
r2. A belt around the outer spool of the second pulley is attached to a third pulley
and mass. The third pulley has radius r2 and mass moment of inertia J3. The mass
has a mass m and is attached to a linear spring with spring constant k. The variable
x(t) represents the displacement of the mass and the variables θ1(t), θ2(t), and θ3(t)
represent the angular displacements of the pulleys.

1. Determine the transfer function from τ(t) to x(t).
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g

m

τ

θ

+

−

vin(t)

R L

ke,kτ

Fig. 8.36 System for Problem 8.16.

2. Assume the torque τ is imposed on the first pulley by a dc motor driven by the
circuit illustrated on the left in Figure 8.8. Find the transfer function from the
input voltage of the circuit vin(t) to x(t).

+

−

vin(t)

R L

C

ke,kτ

J1, r1,τ

J2, r2

J3, r2

x(t)

k

m

Fig. 8.37 System for Exercise 8.17.

8.18. Consider the block diagram illustrated in Figure 8.38. Determine the transfer
function G(s) = Y (s)/R(s).

8.19. Consider the block diagram illustrated in Figure 8.39. Determine the transfer
function G(s) = Y (s)/R(s).

8.20. Consider the block diagram illustrated in Figure 8.40. Determine the transfer
function G(s) = Y (s)/R(s).
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+ +

−−

R(s) Y (s)
A(s) B(s) C(s)

D(s)

Fig. 8.38 Block diagram for Exercise 8.18.

+ +

+ +

R(s) Y (s)
A(s) B(s) C(s)

D(s)

Fig. 8.39 Block diagram for Exercise 8.19.

+

−−

++R(s) Y (s)
A(s) B(s) C(s)

D(s)

Fig. 8.40 Block diagram for Exercise 8.20.

8.21. Consider the system illustrated in Figure 8.41. If G(s) = 2/(s+ 3) determine
the transfer function from R(s) to Y (s). If r(t) = sin2t, and k = 10, what is y(t)?

Fig. 8.41 Closed loop system for Exer-
cise 8.21.

+

−

R(s) Y (s)
k G(s)



Chapter 9
Classical Control Theory: Analysis

The exploitation of feedback was fundamental to many engineering breakthroughs
of the twentieth century. Although feedback was certainly manifested well before
that, such as in Watt’s steam engine governor, it was the need for and development
of feedback amplifiers in the first half of the century that drove the development of
the theory and analysis that made the use of feedback of general utility.

The utility of feedback has several aspects.

1. It may stabilize an otherwise unstable system.
2. It may improve the performance of a system.
3. It may make a system operate similarly regardless of variability in the compo-

nents or operating conditions.
4. It may increase the bandwidth of the response of a system.

This chapter presents the basic analysis tools common to classical control theory,
which is mainly concerned with problems formulated in the frequency domain with
only one input and one output. The subject of feedback control is certainly much
broader than that, extending to linear multi-input, multi-output systems (“modern
control”), nonlinear systems, and so on.

In order to develop some intuition regarding feedback and because it is ubiqui-
tous, Section 9.1 presents an introduction to proportional–derivative–integral con-
trol. It is intended as an introduction to this very common control methodology and
as an introduction to the concept of feedback. Section 9.2 provides the definition of
various quantities that are commonly used to specify desired control system behav-
ior. The most critical section is Section 9.3 which discusses how system response is
a function of the location in the complex plane of the poles of a transfer function.
Section 9.4 presents a computational tool that is useful for determining the number
of roots of a polynomial that are in the right-half of the complex plane. Right-half
plane poles correspond to unstable responses, thus this is essentially a stability test.
Section 9.5 considers the special case of second-order control systems. These are
useful because many aspects of the system response for a second-order system can
be exactly quantified based on the pole locations of the transfer function. Higher-
order systems can also be approximated by second-order systems, so these results

329B. Goodwine, Engineering Differential Equations: Theory and Applications, 
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may extend to those cases as well. The root locus method is the subject of Sec-
tion 9.6, which is a systematic way to plot how the pole locations of a transfer
function change as a gain is changed, which is useful as the most basic controller
design tool. Finally, Section 9.7 presents the frequency response analysis methods.

9.1 PID Control

It is accurate to say that the vast majority of feedback control, particularly of me-
chanical systems, in industry is the so-called proportional plus integral plus deriva-
tive (PID) control. Designing PID controllers is usually somewhat ad hoc, however,
this section will be devoted to the analysis of the features of these controllers as well
as presenting a few “rules of thumb” with respect to designing them. The approach
is by way of an exhaustive example.

Example 9.1. Consider the simple “robot arm” illustrated in Figure 9.1. The arm is
a rigid link constrained to rotate about the fixed point A. The arm has a moment of
inertia J and a center of mass located at a length l from the point A. The arm has a
mass m and is subjected to gravity. The robot is fitted with a sensor that is able to
determine the angle θ , which is measured from the horizontal position as indicated.
Finally, a motor provides a torque τ about the point A.

Fig. 9.1 Robot arm mechanism. mg

θ
τ

A

l

The purpose of feedback control is to determine a control law that makes the arm
move to a desired angle, say θd , and either stay there if it is constant, or track it if it
varies with time, despite any variable forces that may be applied to the arm (say by
manipulating different objects of different masses). The idea of feedback is that the
sensor measures θ which is then used (fed back) to determine a good value for the
torque τ .

Using Newton’s law, the equation of motion for the system is

Jθ̈ = τ −mgl cosθ .

This is an ordinary, second-order, nonlinear differential equation. In order to make
it much more amenable to analysis, we assume that θ � 1 so that cosθ ≈ 1. In such
a case, then the equation of motion is
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Jθ̈ = τ −mgl. (9.1)

9.1.1 Proportional Control

The idea of proportional control is simple and has an obvious intuitive appeal: have
the control input be proportional to the error in the system.

Example 9.2. Returning to the system in Example 9.1, using proportional control
would be to specify that

τ(t) = kp (θd(t)−θ (t)) , (9.2)

where, as stated previously, θd(t) is the desired position of the arm at time t. Thus,
the torque τ is proportional to the error θd(t)− θ (t). The proportionality constant
kp is called the proportional gain.

Depending upon the system, sometimes proportional control suffices. However,
in the case at hand, it is straightforward to illustrate that the approach has several
drawbacks. Substituting the control law from Equation (9.3) into Equation (9.1)
gives

Jθ̈ = kp (θd −θ )−mgl

or
Jθ̈ + kpθ = kpθd −mgl, (9.3)

which is an ordinary, second-order, constant-coefficient, linear, inhomogeneous dif-
ferential equation. The rest of this example analyzes this system using the tools and
methods from Chapter 3. Obviously the homogeneous solution is

θh(t) = c1cos

(√

kp

J
t

)

+ c2sin

(√

kp

J
t

)

and the particular solution depends upon the form of θd(t).
In order to proceed with the analysis, let θd be a specified constant. In that case,

θp(t) = θd − mgl
kp

,

and the general solution is

θ (t) = c1cos

(√

kp

J
t

)

+ c2sin

(√

kp

J
t

)

+ θd − mgl
kp

.

In order to proceed further and plot some solutions, let us specify some numerical
values for the initial conditions and all parameter values except for kp; namely,

J = 1, mgl = 1, θ (0) = 0, θ̇ (0) = 0, θd = 1,



332 9 Classical Control Theory: Analysis

in which case

θ (t) =
(

1
kp

−1

)

cos
√

kpt + 1− 1
kp

. (9.4)

Although θd = 1 violates the assumption that θ is small, because Equation (9.2) is
linear, the nature of the solutions will be qualitatively the same as the case when the
assumption is satisfied. In other words, due to linearity, the shape of the response
will be the same regardless of whether the desired value is one or 0.01. The value of
one is used simply to have the equations in a somewhat “normalized” form.
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Fig. 9.2 Response of robot arm under proportional control.

A plot of the movement of the robot arm for various values of kp is illustrated in
Figure 9.2. Note the following features of proportional control.

1. The solutions are oscillatory and are not decaying.
2. As kp increases the frequency of oscillation increases.
3. As kp increases the average value of the oscillation approaches θd = 1.
4. As kp increases, the earliest time at which θ = θd decreases.

Clearly, using proportional control for this example is not adequate if we desire that
the robot arm approach θd and not oscillate about it.

Now, the same analysis is repeated using Laplace transforms and block diagrams.

Example 9.3. Referring back to Example 9.2, the equation of motion for propor-
tional feedback is

Jθ̈ + kpθ = kpθd −mgl.

Assuming zero initial conditions, the Laplace transform of the above equation is



9.1 PID Control 333

Js2Θ(s)+ kpΘ(s) = kpΘd(s)− mgl
s

.

and

Θ(s) =
kpΘds−mgl
s(Js2 + kp)

. (9.5)

Assuming, as before, mgl = J = 1 and θd = 1 so Θd(s) = 1/s, then

Θ(s) =
kp −1

s(s2 + kp)
. (9.6)

The inverse Laplace transform for Equation (9.6) is exactly the same as Equa-
tion (9.4), and for various kp values must give the same response curves as are
illustrated in Figure 9.2

Figure 9.3 illustrates a block diagram for proportional control. Using the rules
for the block diagram representation of transfer functions we verify that this is the
same representation as determined in Equation (9.6).

−
+ +

−

Θd(s)
kp

mgl
s

1
Js2

Θ(s)

Fig. 9.3 Proportional control of a robot arm in Example 9.3.

The signal coming out of the first comparator is the error E(s) = Θd(s) −
Θ(s). Then it is multiplied by the proportional gain to give the torque T (s) =
kp (Θd(s)−Θ(s)). Figure 9.4 illustrates the same block diagram with these two sig-
nals labeled. Then it is added to the gravity term and finally multiplied by the robot
dynamics to give Θ(s). Mathematically,

Θ(s) =
[

kp (Θd(s)−Θ(s))− mgl
s

]
1

Js2 .

Solving for the arm angle gives

Θ(s) =
kpΘds−mgl

s(Js2 + kp)
,

which is the same as Equation (9.5).
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−

+Θd(s)
kp

mgl
s

1
Js2

Θ(s)E(s) T (s)
controller robot

Fig. 9.4 Proportional control of a robot arm in Example 9.3.

9.1.2 Proportional plus Derivative Control

The idea of proportional plus derivative control is that, in contrast to proportional
control, the control law should also reflect the derivative of the error. The intuition
is that although the error may be positive or negative, how large the control input
should be should also depend upon whether the error is increasing or decreasing.

Referring to Figure 9.2, the idea is that, for example, for the case of kp = 8 and
0 < t < 0.6 where the error, θd − θ > 0, because the error is decreasing, reducing
τ relative to what it is for just proportional control should reduce the amount by
which the response “overshoots” during the time interval from approximately 0.6 <
t < 1.6.

Example 9.4. Returning to the system in Examples 9.1 and 9.2, using proportional
plus derivative control (PD control) would be to specify that

τ(t) = kp (θd(t)−θ (t))+ kd
(

θ̇d(t)− θ̇(t)
)

,

where, as stated previously, θd(t) is the desired position of the arm at time t. Thus,
the torque τ is not simply proportional to the error, but also includes a term propor-
tional to the derivative of the error. The proportionality constant for the derivative
term kd is called the derivative gain.

Substituting this into the equation of motion and rearranging gives

Jθ̈ + kdθ̇ + kpθ = kpθd + kdθ̇d −mgl. (9.7)

In this case, the homogeneous solution is

θh = e−kdt/2J

⎛

⎝c1cos

⎛

⎝

√

4kpJ− k2
d

2J
t

⎞

⎠+ c2 sin

⎛

⎝

√

4kpJ− k2
d

2J
t

⎞

⎠

⎞

⎠ .

Note that the oscillations due to the homogeneous solution decay with time as long
as kp,kd ,J > 0, so this potentially improves the performance over proportional con-
trol because the continued oscillations present in proportional control decay with
derivative control. Thus, the steady-state solution depends only upon the form of
the particular solution, which, of course, depends upon the exact nature of θd(t).

In order to continue the analysis as before, let us consider the case where θd is a
constant. In that case, inasmuch as θ̇d = 0, the particular solution is the same as in
the proportional control case in Example 9.2 and hence
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θ (t) = e−kdt/2J

⎡

⎣c1cos

⎛

⎝

√

4kpJ− k2
d

2J
t

⎞

⎠+ c2sin

⎛

⎝

√

4kpJ − k2
d

2J
t

⎞

⎠

⎤

⎦+ θd − mgl
kp

.

Clearly, because the homogeneous solution decays for positive kd , kp, and J, the
steady-state solution is

θss(t) = θd − mgl
kp

.

Before plotting some solutions with numerical values, note for the steady state re-
sponse, a very large kp is desirable because it makes θss → θd . Also, if kd increases,
any oscillations should decay more quickly.

To plot a solution, let J = 1, mgl = 1, θd = 1, θ (0) = 0, and θ̇ (0) = 0 in which
case

θ (t) = e−kdt/2

⎡

⎣

(
1
kp

−1

)

cos

⎛

⎝

√

4kp − k2
d

2
t

⎞

⎠

+

⎛

⎝
kd (1− kp)

kp

√

4kp− k2
d

⎞

⎠sin

⎛

⎝

√

4kp − k2
d

2
t

⎞

⎠

⎤

⎦+ 1− 1
kp

.

(9.8)

Figure 9.5 illustrates the response for a fixed kp = 8.0 and various kd values. Note
that as kd is increased, the oscillations decay more quickly and the value of the first
maximum (near t = 1.0) is decreased. Also note that changing kd does not affect the
steady-state value of θ (t) and that the steady-state error is nonzero.
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Fig. 9.5 Response of robot arm under PD control with fixed kp = 8 and various kd .
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Fig. 9.6 Response of robot arm under PD control with fixed kd = 1 and various kp.

Figure 9.6 illustrates the response for a fixed kd = 1.0 and various kp values. Note
that as kp is increased, the final steady-state error decreases (recall θd = 1), but that
the initial overshoot is greatly increased and the frequency of oscillation increases.

Now, the same analysis is repeated using Laplace transforms.

Example 9.5. Returning to Equation (9.7) from Example 9.4, the equation of motion
for proportional plus derivative control is

Jθ̈ + kdθ̇ + kpθ = kpθd + kdθ̇d −mgl.

Assuming zero initial conditions and computing the Laplace transform gives

Js2Θ(s)+ kdsΘ(s)+ kpΘ(s) = kpΘd(s)+ kdsΘd(s)− mgl
s

which gives

Θ(s) =
kdΘd(s)s2 + kpΘd(s)s−mgl

s(Js2 + kds+ kp)
.

As before, the nature of the solution depends upon Θd(s). Assuming θd = J =
mgl = 1, then Θd(s) = 1/s and

Θ(s) =
kds+ kp−1

s(s2 + kds+ kp)
,

and the inverse Laplace transform is the same as the solution from Example 9.4
given by Equation (9.8) and plotted in Figures 9.5 and 9.6 for various gain values.
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Also, using the final value theorem (Theorem 8.2),

lim
t→∞

θ (t) = lim
s→0

sΘ(s) = lim
s→0

s
kp −1

s(s2 + kds+ kp)
= 1− 1

kp
,

which shows that as kp is increased, the steady-state error decreases.

9.1.3 Proportional plus Integral plus Derivative Control

With proportional plus derivative plus integral control, a third term is added to pro-
portional plus derivative control that is, naturally, proportional to the integral of the
error. In Examples 9.2–9.5 there was always a steady-state error, limt→∞ θ (t) �= θd ,
and the effect of integral control is to reduce or, in the case of a second-order system,
completely eliminate that error.

The idea behind integral control is that as time increases, if there is a consistent
error, the input to the system will increase with time to compensate for the error.
The need for integral control in many problems is obvious considering the robot arm
from these examples because a robot is not very useful if it does not end up where
we want it to be, and in the case of proportional and proportional plus derivative
control considered previously, there was a steady-state error.

To see why this is the case, for both proportional and proportional plus derivative
control, if there is no error, that is, θ = θd then τ = 0. If the torque is zero, then
there is nothing to offset the torque caused by gravity and the arm cannot stay at
the desired location. The steady-state value in the case of PD control is the angle at
which the error is great enough to cause an error that will result in a torque that will
offset the torque due to gravity.

The following example illustrates the the efficacy of integral control with respect
to eliminating steady-state error.

Example 9.6. Returning yet again to the system from Example 9.1, adding integral
control yields an expression for the torque of the form

τ = kp (θd −θ )+ kd
(

θ̇d − θ̇
)

+ ki

∫ t

0
θd(t̂)−θ (t̂)dt̂

so the equation of motion for the robot arm becomes

Jθ̈ + kdθ̇ + kpθ = kpθd + kdθ̇d + ki

∫ t

0
θd(t̂)−θ (t̂)dt̂ −mgl. (9.9)

This is a second-order integral-differential equation and there are various ways to
handle the integral term.

One approach to solving Equation (9.9) is to convert the system into a coupled
set of ordinary differential equations. Note that because
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d
dt

∫ t

0
θd(t̂)−θ (t̂)dt̂ = θd(t)−θ (t),

if we define a new variable, Î (I for “integral”), then Equation (9.9) is equivalent to
the two ordinary differential equations

Jθ̈ + kdθ̇ + kpθ = kpθd + kdθ̇d + kiÎ−mgl

˙̂I = θd −θ .

If
x1 = θ , x2 = θ̇ , x3 = Î,

then

d
dt

⎡

⎣

x1

x2

x3

⎤

⎦=

⎡

⎣

x2
kpθd+kd θ̇d+kix3−kd x2−kpx1−mgl

J
θd − x1

⎤

⎦ ,

which can be solved using the methods from Chapter 6 or, perhaps more conve-
niently, can be solved numerically using the methods from Chapter 12.
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Fig. 9.7 Response of robot arm under PID control for fixed kp = 24 and kd = 8 and various ki.

Figure 9.7 illustrates the response of the arm (computed numerically) for fixed
values of kp, kd and various ki with J = mgl = 1. Note that any nonzero value for ki

eliminates the steady-state error; however, increasing ki increases the magnitude and
duration of the transient oscillations, and, if large enough, destabilizes the system
(ki = 200).
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Finally, for completeness, we determine the PID control equations using Laplace
transforms.

Example 9.7. The equation of motion for the robot arm under PID control was given
in Equation (9.9) and is

Jθ̈ + kdθ̇ + kpθ = kpθd + kdθ̇d + ki

∫ t

0
θd(t̂)−θ (t̂)dt̂ −mgl.

Computing the Laplace transform with zero initial conditions gives
(

Js2 + kds+ kp +
ki

s

)

Θ(s) =
(

kp + kds+
ki

s

)

Θd(s)− mgl
s

or

Θ(s) =
kds2 + kps+ ki

Js3 + kds2 + kps+ ki
Θd(s)− mgl

Js3 + kds2 + kps+ ki
. (9.10)

Using Theorem 8.2 and assuming Θd(s) = 1/s, that is, θd is a unit step input

lim
t→∞

θ (t) = lim
s→0

sΘ(s) = lim
s→0

s
kds2 + kps+ ki

Js3 + kds2 + kps+ ki

1
s
− s

mgl
Js3 + kds2 + kps+ ki

= 1;

that is, there is no steady-state error.

9.2 Time Domain Specifications

The qualitative discussions regarding the effect of altering controller gains in Sec-
tion 9.1 practically beg us to be more precise and quantitative about the nature of
the response of a system. Consider a generic system response to a unit step input
illustrated in Figure 9.8.

In the diagram, the following quantities are defined.

1. The rise time tr is the time at which the response is first equal to the magnitude
of the input. For a unit step input, it is the time at which the response is first equal
to one. If the system is overdamped, then the response may only asymptotically
approach the desired value. In that case the rise time may be defined to be the
time it takes to achieve 90% of the steady-state value. Unless otherwise specified,
in this book the rise time refers to the second definition.

2. The peak time tp is the time at which the response reaches its maximum value.
3. The settling time ts is the time after which the response always stays within a

specified range of its steady-state value. In Figure 9.8, this is illustrated as 0.9±
0.05, but other ranges may be specified as a certain percentage, such as, “the 3%
settling time.”

4. The maximum percentage overshoot O is defined to be the percentage that the
peak value yp exceeds the desired value, yd ; that is,
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Fig. 9.8 Time domain specifications definitions for a unit step input.

O =
xp − xss

xss
.

Collectively these terms are referred to as the transient response because they de-
scribe how the system transitions from the initial conditions to the steady-state be-
havior, but do not describe the steady-state behavior. With regard to the steady state,
the steady-state error is the difference between the steady-state value of the response
and the desired value; that is,

ess = xd − xss.

The tools used to determine the nature of the transient response are discussed
subsequently in Section 9.3. The usual tool used to compute the steady-state error
is Theorem 8.2, the final value theorem.

These time domain specifications may be used to specify the manner in which a
control system should respond. For example, it may be desired that a control sur-
face on an airplane wing, say an aileron, respond with less than one second rise
time, less than 1% overshoot, and a settling time less than three seconds. As is the
case with many design problems, it may or may not be possible to meet all the spec-
ifications. Whether it is possible depends, among other things, upon the dynamics
of the system and the nature of the actuation.
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9.3 Response Versus Pole Location

This section considers the mathematical basis for the rest of this chapter. Under-
standing this section is critical for a fundamental understanding of what follows.
The main concept is that the nature of the response of a system is governed by the
location in the complex plane of the poles of the transfer function describing the
system.

If we consider a generic transfer function G(s) and the relationship between the
reference signal for the system R(s) and the output Y (s), we have

Y (s) = G(s)R(s).

If we were to solve this for the time domain response of the system y(t), we would
need to know the input R(s) and then would compute a partial fraction expansion of
G(s)R(s) to algebraically manipulate the expression to be a combination of terms
that appear in a Laplace transform table.

Example 9.8. To solve

Y (s) = − 6s+ 5
(s+ 3)(s2 + 4)

(9.11)

for y(t), we would convert

Y (s) = − 6s+ 5
(s+ 3)(s2 + 4)

=
c1

s+ 3
+

c2s+ c3

s2 + 4
=

1
s+ 3

− s+ 3
s2 + 4

=
1

s+ 3
− s

s2 + 4
− 3

2
2

s2 + 4
,

which corresponds to

y(t) = e−3t − cos2t − 3
2

sin 2t. (9.12)

Now, if we look at the original transfer function in Equation (9.11), the poles
(the values of s for which the denominator is equal to zero; see Definition 8.4),
are s = −3 and s = ±2i. It is no coincidence that the solution in Equation (9.12)
is a linear combination of an exponential with a negative three in the exponent,
corresponding to the pole at s = −3 and sine and cosine functions with a frequency
of two, corresponding to the complex conjugate pair of poles at s = ±2i.

Because they are commonly used to characterize the nature of a transfer function,
the time domain solution of the output for two specific inputs are given names.

Definition 9.1. For a transfer function G(s), input R(s), and output Y (s), where

Y (s) = G(s)R(s),

the unit impulse response, or simply the impulse response is the inverse Laplace
transform of the output when the input is an impulse. Because L(δ (t)) = 1, the
impulse response is given by the inverse Laplace transform of the transfer function
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yδ (t) = L−1 (G(s)) .

Definition 9.2. For a transfer function G(s), input R(s), and output Y (s), where

Y (s) = G(s)R(s),

the unit step response, or simply the step response is the inverse Laplace transform
of the output when the input is a unit step function. Because L(1(t)) = 1/s, the
impulse response is given by

y1(t) = L−1
(

G(s)
s

)

.

A detailed study of Table 8.1 makes it clear that what differentiates the funda-
mental nature of the response of a system is the location of the poles. We consider
the various possible cases that depend upon whether the pole is real, zero, purely
imaginary, or complex.

9.3.1 Real Poles

First we consider the case where a transfer function has a pole that is real. Consider

Y (s) =
1

s− p
R(s). (9.13)

Note that Y (s) has a pole at s = p. Regardless of the nature of R(s), a partial fraction
expansion of Equation (9.13) is of the form

Y (s) =
c1

s− p
+∑ R̂(s),

where ∑ R̂(s) are the terms in the partial fraction expansion due to the input.
So, regardless of the input, if p is real, y(t) will contain a term of the form ept ;

that is,
y(t) = c1ept + other terms.

Hence, we have the following proposition.

Proposition 9.1. If a transfer function has a pole that is a real at s = p, it will
have an exponential term in the time domain solution and that exponential term will
decay to zero if p < 0, will grow unbounded if p > 0, and will be a constant if p = 0.

Example 9.9. Predict the unit step response of the two transfer functions

G1(s) =
2

s+ 2
, G2(s) =

4
s+ 4
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without actually computing the inverse Laplace transform.
We want to compare

Y1(s) = G1(s)R(s) =
2

s+ 2
1
s
, Y2(s) = G2(s)R(s) =

4
s+ 4

1
s
.

Using Theorem 8.2,

lim
t→∞

y1(t) = lim
s→0

s
2

s+ 2
1
s

= 1,

and

lim
t→∞

y2(t) = lim
s→0

s
4

s+ 4
1
s

= 1.

The final value theorem may be applied to both of these because all the poles of
both sG1(s)R(s) and sG2(s)R(s) are in the left half-plane if R(s) is a step function.
If we were to compute them, the partial fraction expansions would be of the form

Y1(s) =
c1

s+ 2
+

c2

s
,

and
Y2(s) =

c1

s+ 4
+

c2

s
.

Observe that in both cases the first term gives an exponential solution with a negative
coefficient in the exponent and the second term gives a constant value. Because
G1(s) has a pole at s = −2 and G2(s) has a pole at s = −4, as is illustrated in
Figure 9.9, the exponential part of the solution in Y2(s) decays more quickly than
the exponential part in Y1(s). Hence we may conclude that y2(t) converges more
quickly to the steady state value than y1(t). This is verified in Figure 9.10 which
compares the two solutions.

The association between pole locations, Figure 9.9, and the nature of the re-
sponse, Figure 9.10, cannot be emphasized enough. In this particular example, if
another system were compared that had a pole farther to the left, then its response
would be even faster, and if another system had a pole farther to the right (but still
less than zero), its response would be slower. If any system has a pole to the right of
the imaginary axis, the solution will blow up; that is, the system will be unstable.

For comparison, the impulse responses of two transfer functions with pole loca-
tions at s = −2 and s = −4 are illustrated in Figure 9.11. Again, the system with the
pole farther to the left has a faster decaying transient response.

9.3.2 Poles at the Origin

Now we consider some poles at the origin. Consider

Y (s) =
1
s

R(s). (9.14)
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Fig. 9.9 Pole locations for G1(s) = 2/(s+2) and G2(s) = 4/(s+4).
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Fig. 9.10 Step response for G1(s) = 2/(s+2) and G2(s) = 4/(s+4).

Note that Y (s) has a pole at s = 0. Regardless of the nature of R(s), a partial fraction
expansion of Equation (9.14) will be of the form

Y (s) =
c0

s
+∑ R̂(s),

where ∑ R̂(s) are the terms in the partial fraction expansion due to the input.
So, regardless of the input, y(t) will contain a term of the form c0; that is,
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Fig. 9.11 Impulse response for G1(s) = 1/(s+2) and G2(s) = 1/(s+4).

y(t) = c0 + other terms.

We may conclude from that, in general, if a transfer function has a pole at the origin
it will have a constant term in the solution.

If the transfer function has multiple poles at the origin; that is,

Y (s) =
1
sn R(s),

then the partial fraction expansion will be of the form

Y (s) =
c0sn−1 + c1sn−2 + · · ·+ cn−1

sn +∑ R̂(s) =
c0

s
+

c1

s2 + · · ·+ cn−1

sn +∑ R̂(s).

So, regardless of the input, y(t) will contain an (n−1)th-order polynomial in t; that
is,

y(t) = c0 + c1t +
c2

2
t2 + · · ·+ cn−1

(n−1)!
tn−1 + other terms.

Hence, we have the following.

Proposition 9.2. If a transfer function has multiple poles at the origin, it will have
a polynomial term in the solution that has an order one less than the multiplicity of
the pole at the origin.
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9.3.3 Purely Imaginary Poles

Now we consider a complex conjugate pair of purely imaginary poles. Consider

Y (s) =
1

s2 + ω2 R(s),

which has poles at s = ±iω . The partial fraction expansion will be of the form

Y (s) = c1
s

s2 + ω2 +
c2

ω
ω

s2 + ω2 +∑ R̂(s)

and the solution will be of the form

y(t) = c1 cosωt +
c2

ω
sinωt + other terms.

So, we have shown the following.

Proposition 9.3. If a transfer function has a purely imaginary complex conjugate
pair of poles, it will have sine and cosine terms in the solution. The distance from
the real axis to the pole is equal to the frequency of oscillation.

Example 9.10. The poles of

G1(s) =
2

s2 + 4

and

G2(s) =
8

s2 + 16

are plotted in Figure 9.12. The corresponding step responses are plotted in Fig-
ure 9.13. Note as the poles move farther from the real axis, the frequency of oscilla-
tion increases. For comparison, the impulse response, when R(s) = 1, for both cases
is illustrated in Figure 9.14.

9.3.4 Complex Conjugate Poles

Finally, the last case to consider is when a transfer function contains a complex
conjugate pair of poles with nonzero real and imaginary parts. Consider

Y (s) =
1

(s+ a)2 + b2
R(s)

which has a complex conjugate pair of poles at s = −a± bi. The partial fraction
expansion is of the form

Y (s) = c1
s+ a

(s+ a)2 + b2
+ c2

b

(s+ a)2 + b2
+∑ R̂(s)



9.3 Response Versus Pole Location 347

-4

-2

0

2

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Im
(s

)

Re(s)

Fig. 9.12 Pole locations for G1(s) = 2/(s2 +4) and G2(s) = 8/(s2 +16).
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Fig. 9.13 Step response for G1(s) = 2/(s2 +4) and G2(s) = 8/(s2 +16).

and hence the solution is of the form

y(t) = c1e−atcosbt + c2e−atsinbt + other terms.

This shows the following.

Proposition 9.4. If a transfer function contains a complex conjugate pair of poles
with nonzero real part, it will have exponentially decaying or growing sine and
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Fig. 9.14 Impulse response for G1(s) = 2/(s2 +4) and G2(s) = 4/(s2 +16).

cosine terms in the solution. Whether the terms are decaying or growing depend
upon whether the real part of the pair of poles is negative or positive, respectively.

Example 9.11. The poles of

G1(s) =
1

s2 + 2s+ 5
=

1

(s+ 1)2 + 4

and

G2(s) =
1

s2 + 2s+ 10
=

1

(s+ 1)2 + 9

are plotted in Figure 9.15. The corresponding step responses are plotted in Fig-
ure 9.16 and the impulse responses are plotted in Figure 9.17. Because the analysis
of the response is a bit more complicated due to the fact that both the real and imag-
inary parts of the poles need to be considered and also because the response of a
second-order system of this type is the basis for many control design methods, a
complete analysis of a system with complex conjugate poles is discussed subse-
quently, in Section 9.5.

A summary of these results is illustrated in Figure 9.18. Any poles in the right
half-plane lead to instabilities. Complex conjugate purely imaginary poles con-
tribute harmonic solutions. Poles at the origin contribute polynomial solutions. Neg-
ative real poles contribute to decaying exponential terms and complex conjugate
poles with negative real part contribute decaying sine and cosine terms.

Also, because the real part of any pole corresponds exactly to the coefficient of
time in an exponential, we may talk about “fast” and “slow” poles. In particular, for
poles with negative real part, the farther the pole is to the left, the faster it decays.
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All poles with positive real part are unstable; however, the larger the magnitude of
the real part of the positive pole, the faster the instability grows. This is qualitatively
summarized in Figure 9.19.

Based upon what we know so far, we can state the following important result.

Proposition 9.5. Given a transfer function G(s), the impulse and step responses are
stable if and only if all the poles of



350 9 Classical Control Theory: Analysis

-1

-0.5

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

y(
t)

t

poles at s = −1±2i
poles at s = −1±3i

Fig. 9.17 Impulse response for G1(s) = 1/
(

(s+1)2 +4
)

and G2(s) = 1/
(

(s+1)2 +9
)

.

unstable
terms

polynomials in t

decaying
exponentials

decaying

decaying

oscillations

oscillations

non-decaying
oscillations

Re(s)

Im(s)

Fig. 9.18 Contributions of poles at various locations to the response of a system.

Y (s) = G(s)R(s)

are in the left half of the complex plane, where the input R(s) = 1 or R(s) = 1/s, in
the case of the impulse and step responses, respectively.
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Fig. 9.19 The effect of the magnitude of the real part of a pole on the nature of its contribution to
the solution.

9.4 Stability

From Section 9.3 it is clear that if a transfer function has any poles in the right
half complex plane then corresponding components of the solution will grow un-
bounded. Hence, it is desirable to know if a transfer function has any poles in the
right half of the complex plane. In such a case, regardless of the input, the effect
of the initial conditions will persist and grow exponentially in magnitude, that is,
“blow up.” Poles with zero real part on the imaginary axis correspond to sinusoidal
solutions that do not decay. However, for engineering systems it is arguably impos-
sible to determine if the poles are exactly on the imaginary axis, and if we are not
able to tell on which side of the axis a pole is, then caution would dictate treating it
as unstable. Most of the focus in classical control theory is concerned with altering
a system through feedback to be stable with only left half-plane poles.

Hence, what we want is a means to determine if all the poles of a transfer function
are in the left half of the complex plane. For first- and second-order systems, this
is easy to do because the polynomial can be easily factored, but for higher-order
systems that are difficult to factor by hand, it is not. There are various methods
to determine when a system has any right half-plane poles,1 but the one typically
covered in undergraduate controls courses is the so-called Routh criterion.

The method is based upon constructing an array and examining the signs of the
elements in the first column of the array. First we define the array and then we
present the stability test. Consider an nth-order polynomial of the form

D(s) = a0sn + a1sn−1 + · · ·+ an−1s+ an,

and consider the nature of the solutions to

a0sn + a1sn−1 + · · ·+ an−1s+ an = 0.

1 The Hurwitz criterion, the Hermite criterion, the Liénard–Chipart criterion, and the Kharitonov
test are all examples of such stability tests.
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Assume that a0 > 0. If it is not, multiply the entire equation (all the coefficients) by
−1. Our interest is the case when this polynomial is the denominator of a transfer
function. The Routh array is constructed as follows,

sn a0 a2 a4 a6 · · · 0
sn−1 a1 a3 a5 a7 · · · 0
sn−2 b1 b2 b3 · · · 0
sn−3 c1 c2 c3 · · · 0 0
sn−4 d1 d2 d3 · · · 0 0

...
...

s0 e1 0 0 0 0 0

and where the ai terms are the coefficients of the characteristic polynomial and the
other terms are computed as

b1 = −

∣
∣
∣
∣

a0 a2

a1 a3

∣
∣
∣
∣

a1
c1 = −

∣
∣
∣
∣

a1 a3

b1 b2

∣
∣
∣
∣

b1
d1 = −

∣
∣
∣
∣

b1 b2

c1 c2

∣
∣
∣
∣

c1

b2 = −

∣
∣
∣
∣

a0 a4

a1 a5

∣
∣
∣
∣

a1
c2 = −

∣
∣
∣
∣

a1 a5

b1 b3

∣
∣
∣
∣

b1
d2 = −

∣
∣
∣
∣

b1 b3

c1 c3

∣
∣
∣
∣

c1

b3 = −

∣
∣
∣
∣

a0 a6

a1 a7

∣
∣
∣
∣

a1
c3 = −

∣
∣
∣
∣

a1 a7

b1 b4

∣
∣
∣
∣

b1
d3 = −

∣
∣
∣
∣

b1 b4

c1 c4

∣
∣
∣
∣

c1

...
...

...

where any term that is not defined is zero.
Finally, the point of all of this is the following theorem that provides necessary

and sufficient conditions for stability of a transfer function.

Theorem 9.1. All the solutions to

a0sn + a1sn−1 + · · ·+ an−1s+ an = 0

are in the left half of the complex plane if and only if all the elements of the first
column of the corresponding Routh array are positive.2

A proof is not presented inasmuch as it depends on results that are generally
outside the main focus of this text. An interested reader is referred to some of the
original work of Routh [46].

Before we present any examples, a necessary condition for stability is presented.

2 In fact, the Routh array gives even more information. The number of sign changes in the first
column is equal to the number of roots in the right half-plane.



9.4 Stability 353

Proposition 9.6. If a0 > 0, and if any of the coefficients in

D(s) = a0sn + a1sn−1 + · · ·+ an−1s+ an.

are not positive, then D(s) will have at least one root that is not in the left half of
the complex plane.

The proof is left as an exercise.3 Note this is a necessary condition, meaning that
if any of the coefficients are zero or negative, then we know there is at least one root
that is not in the left half-plane; however, if they are all positive we cannot conclude
anything.

Example 9.12. Determine if all the poles of

G(s) =
s+ 6

s4 + 7s3 + 18s2 + 22s+ 12

are in the left half of the complex plane. This is, of course, equivalent to determining
if all the solutions to

s4 + 7s3 + 18s2 + 22s+ 12 = 0 (9.15)

have a negative real part.
So, the start of the Routh array is

s4 1 18 12 0
s3 7 22 0 0

.

Computing the next row,

b1 =
(7)(18)−22

7
=

104
7

b2 =
(7)(12)−0

7
= 12

so the array is
s4 1 18 12 0
s3 7 22 0 0
s2 104

7 12 0 0
.

Computing the next row,

3 Basically all that is necessary is to show that if factors with negative real parts are multiplied
together to construct the polynomial, all the coefficients are positive.
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c1 =
22 104

7 − (7)(12)
104

7

=
425
26

c2 = 0,

so the array is
s4 1 18 12 0
s3 7 22 0 0
s2 104 12 0 0
s1 425

26 0 0 0

.

Finally,
d1 = 12,

so the complete array is
s4 1 18 12 0
s3 7 22 0 0
s2 104 12 0 0
s1 425

26 0 0 0
s0 12

.

Because there are no sign changes in the first row, all the solutions to Equation (9.15)
are in the left half-plane.

We can use this to accomplish a bit more than simply determine whether poles are
in the right half-plane. After all, with a modern computer, it is easy to numerically
factor polynomials, such as with the roots() command in MATLAB or Octave.
In particular, the Routh array allows us to determine ranges of parameter values for
which a transfer function is stable.

Example 9.13. Determine the values of k for which

G(s) =
k s+2

s2−2s+2

1 + k s+2
s2−2s+2

is stable.
Simplifying the denominator gives

D(s) = s2 +(k−2)s+(2 + 2k) .

Constructing the Routh array gives

s2 1 2 + 2k 0
s1 k−2 0 0

.

Computing the last row gives the complete array
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s2 1 2 + 2k 0
s1 k−2 0 0
s0 2k + 2 0 0

.

In order for there to be no sign change from the s2 row to the s1 row, we need
that k > 2. In order for the first element s0 to be greater than zero we need k > −1.
In order to satisfy both, we need k > 2.

A final example illustrates the obvious fact that there will not necessarily be any
values for k to make some transfer functions stable.

Example 9.14. Determine the values of k for which

G(s) =
k s−2

s2−2s+2

1 + k s−2
s2−2s+2

is stable.
In this case the characteristic polynomial is

D(s) = s2 +(k−2)s+(2−2k) ,

and the Routh array is
s2 1 2−2k 0
s1 k−2 0 0
s0 2−2k 0 0

.

In order for the first element in the s1 row to be positive we need that k > 2. In order
for the first element in the s0 row to be positive we need k < 1. There are no values
of k that can satisfy both.

9.5 Response of a Second-Order System

Because second-order systems are common and easy to solve, it is easy to develop
some rules regarding the relationship between the time domain specifications for
the response of a system and the pole locations for a second-order system. Even
when a system is not second-order, it is sometimes possible to approximate it by a
second-order system by ensuring that the response is dominated by a pair of complex
conjugate poles that are closer to the imaginary axis than the other poles. Finally, in
the case where there is only one more pole or zero added to a second-order system,
it is possible to determine some rules of thumb regarding the nature of the response.

Recall that the canonical form for a generic second-order system from Sec-
tion 3.3.0.1 is

mẍ + bẋ+ kx = f (t) ⇐⇒ ẍ+ 2ζωnẋ + ωnx =
f (t)
m

,
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where

ωn =

√

k
m

, ζ =
b

2
√

mk
.

Computing the Laplace transform with zero initial conditions gives

X(s) =
1

s2 + 2ζωns+ ω2
n

F(s)
m

= G(s)R(s).

If 0 ≤ ζ < 1, the poles of G(s) are

s = −ζωn ± iωn

√

1− ζ 2 = ωn

(

−ζ ± i
√

1− ζ 2
)

= −ζωn ± iωd,

where
ωd = ωn

√

1− ζ 2.

Using the notation from Table 8.1, the poles are located at

s = −a± ib = ωn

(

−ζ ± i
√

1− ζ 2
)

.

As is illustrated in Figure 9.20, the relationship between the pole location and the
parameters in the canonical second-order system are as follows.

1. The length of the vector from the origin to the pole is ωn.
2. If the angle from the imaginary axis to the vector from the origin to the pole is

denoted by θ , then
ζ = sinθ .

3. The damped natural frequency ωd is the imaginary component of the pole,

ωd = b = ωn

√

1− ζ 2.

Fig. 9.20 Relationship between the loca-
tion of complex conjugate poles and ωn,
ζ , and ωd .

Im(s)

Re(s)−a = −ζ ωn

b = ωn

√

1−ζ 2 = ωd

θ

ωn
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From the discussion in the previous section regarding the response when a trans-
fer function contains a complex conjugate pole, we can deduce that the solution will
have terms of the form e−ζωnt sin ωdt and e−ζωnt cosωdt. Hence, the effects of mov-
ing the location of a complex conjugate pole with negative real part are as follows.

1. If the imaginary part of the pole is increased and the real part is held constant,
then the frequency of the response will increase and the damping ratio will de-
crease.

2. If the real part of the pole is decreased and the imaginary part is held constant,
then the damping ratio is increased and the frequency of the response will be
constant.

3. If the angle between the imaginary axis and the vector from the origin to the pole
is held constant and the magnitude of the vector is increased, then the damping
remains constant and the frequency of the response increases.

All three of these cases are illustrated in Figure 9.21.

increased frequency,
decreased dampingincreased frequency,

constant damping

increased damping,
constant frequency ωd

−ζ ωn

θ

Im(s)

Re(s)

Fig. 9.21 Effect of moving the location of a complex conjugate pole.

9.5.1 Second-Order System Step Response

Now let us relate the location of the poles for a second-order system to the time
domain specifications defined in Section 9.2 for a unit step input. Consider

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n
.

For a step input to this transfer function, we have
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Y (s) =
ω2

n

s2 + 2ζωns+ ω2
n

1
s

= − s+ 2ζωn

s2 + 2ζωns+ ω2
n

+
1
s

= − s+ 2ζωn

(s+ ζωn)
2 + ω2

d

+
1
s

= − s+ ζωn

(s+ ζωn)
2 + ω2

d

− ζωn

ωd

ωd

(s+ ζωn)
2 + ω2

d

+
1
s

= − s+ ζωn

(s+ ζωn)
2 + ω2

d

− ζ
√

1− ζ 2

ωd

(s+ ζωn)
2 + ω2

d

+
1
s

so

y(t) = −e−ζωnt

(

cosωdt +
ζ

√

1− ζ 2
sinωdt

)

+ 1. (9.16)

Plots of the step response for various ζ and various ωn are illustrated in Fig-
ures 9.22 and 9.23.
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Fig. 9.22 Step response of second-order system with ωn = 1 and for various ζ .
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Fig. 9.23 Step response of second-order system with ζ = 0.2 and for various ωn.

9.5.1.1 Peak Time

The peak time is determined by finding the time when the derivative of Equa-
tion (9.16) is zero. Hence

d
dt

y(t) = ζωne−ζωnt

(

cosωdt +
ζ

√

1− ζ 2
sinωdt

)

− e−ζωnt

(

−sinωdt +
ζωd

√

1− ζ 2
cosωdt

)

= ζωne−ζωnt

(

cosωdt +
ζ

√

1− ζ 2
sinωdt

)

− e−ζωnt (−sinωdt + ζωncosωdt)

=

(

ζ 2ωn
√

1− ζ 2
+ 1

)

sinωdt

= 0.

The first positive time for which this is zero is the peak time and is

tp =
π

ωd
.
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Observe that the peak time depends only upon the damped natural frequency, which
is the imaginary component of the pole.

9.5.1.2 Overshoot

The overshoot is determined by substituting the peak time into Equation (9.16):

yp = y

(
π

ωd

)

= −e−ζωnπ/ωd

(

cosπ +
ζ

√

1− ζ 2
sinπ

)

+ 1

= 1 + e−ζωnπ/ωd .

Hence, the percentage overshoot is given by the exponential term. Substituting for
the definition of ωd gives

O = exp

(

− πζ
√

1− ζ 2

)

. (9.17)

Observe that the percentage overshoot depends only upon the damping ratio. A plot
of O versus ζ is given in Figure 9.24. The maximum overshoot is a function of only
the damping ratio, thus there is a simple geometric interpretation for second-order
poles that will meet an overshoot specification, as is illustrated by the following
example.

Example 9.15. Determine the region in the complex plane where the poles should
be located in order for a second-order system to have a maximum overshoot of less
than 10%. Either referring to Figure 9.24 or solving Equation (9.17) gives

O < 0.1 ⇐⇒ ζ > 0.6.

Because sinθ = ζ if θ is measured from the imaginary axis, we need θ > 36.9◦. So,
the region in the complex plane where a pair of second-order poles must be located
to satisfy this specification is illustrated in Figure 9.25.

9.5.1.3 Settling Time

To determine the settling time, note that the rate at which the transient response
decays is governed by the exponential term e−ζωnt . Hence, for the 5% settling time,

0.05 = e−ζωnts ⇐⇒ ts = − ln(0.05)
ζωn

≈ 3
ζωn

.
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Fig. 9.24 Percentage overshoot O versus damping ratio ζ and angle between imaginary axis and
the pole θ .

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Im
(s

)

Re(s)

Fig. 9.25 Hatched region corresponds to pole locations for a second-order system with less than
10% overshoot.
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Inasmuch as ζωn is the real component of the pole, the settling time is given by the
distance from the imaginary axis. Similarly, if we were interested in the x% settling
time, it would be given by

ts = − ln( x
100)

ζωn
.

Example 9.16. Determine the region in the complex plane where the poles should
be located in order for a second-order system to have a 2% settling time of less than
3 seconds. Thus

− ln0.02
ζωn

< 3

which gives
1.3 < ζωn.

Inasmuch as ζωn is the real component of the pole, the region in the complex plane
where the 2% settling time is less than 3 seconds is illustrated in Figure 9.26.
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Fig. 9.26 Hatched region corresponds to pole locations for a second-order system with a settling
time of less than 3 seconds.

9.5.1.4 Rise Time

Unlike the overshoot and settling time, only an approximation for the rise time is
available with a simple geometric interpretation. Different approximations for the
rise time appear in different texts. For example, [17] gives
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tr ≈ 1.8
ωn

, (9.18)

and [28] gives

tr ≈ 0.8 + 2.5ζ
ωn

or tr ≈ 1−0.4167ζ + 2.917ζ 2

ωn
.

One reason for the different formulae is because of different definitions of the rise
time. For example, in [28] it is defined as the time to go from 10% to 90% of the
final value. We use the approximation in Equation (9.18), because it only depends
on ωn, which is easily related to pole locations because it is the distance from the
origin to the pole. For example, the region in the complex plane corresponding to a
rise time of less than 1.8 seconds is illustrated in Figure 9.27, because

1.8
ωn

< 1.8 ⇐⇒ 1 < ωn,

and ωn is the distance from the origin.
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Fig. 9.27 Hatched region corresponds to pole locations for a second-order system with an approx-
imate rise time of less than 1.8 seconds.

We can now combine these specifications to determine pole locations that satisfy
more than one specification.

Example 9.17. To determine the region in the complex plane where the poles should
be located in order for a second-order system to have a 2% settling time of less than
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3 seconds and a maximum overshoot less than 10% we can take the intersection of
the regions in Figures 9.25 and 9.26. This region is illustrated in Figure 9.28.
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Fig. 9.28 Hatched region corresponds to second-order pole locations with a 2% settling time less
than 3 seconds and less than 10% overshoot.

Example 9.18. Returning to Example 9.17, assume that, in addition to the overshoot
and settling time specifications, we require a rise time of less than 1 second, which
would require that ωn ≥ 1.8. Pole locations for a second-order system that satisfies
all three requirements are illustrated in Figure 9.29.

As a check, the step response for a unit step input is illustrated in Figure 9.30,
and it is apparent that all three specifications are satisfied. In this case the poles were
located at s = −2±2i.

9.5.2 Additional Poles and Zeros

At this point we have the correspondence between the time domain specifications
and pole locations for a second-order system. Unfortunately, the world is not com-
posed entirely of second-order systems, so it is useful to relate, when possible, the
response of a system that is not second order to the second-order response we know
so well. We consider several ways in which a system may deviate from a canonical
second-order system.
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Fig. 9.29 Hatched region corresponds to second-order pole locations with a 2% settling time less
than 3 seconds, less than 10% overshoot, and less than a 1 second rise time.
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Fig. 9.30 Step response of G(s) = 8/
(

(s+2)2 +22
)

, which has poles within the region satisfying
all three specifications in Example 9.18.
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9.5.2.1 Dominant Second-Order Poles

If a transfer function has multiple poles in the left half-plane and none in the right
half-plane, then the poles far to the left will contribute less to the transient response
because they decay relatively quickly compared to the poles close to the imaginary
axis, as is illustrated in the following example.

Example 9.19. Consider the step response of

G(s) =
5

1
10 (s+ 10) 1

8 (s+ 8)
(

(s+ 1)2 + 4
) ;

that is,

y(t) = L−1
(

G(s)
1
s

)

= L−1

⎛

⎝
5

s 1
10 (s+ 10) 1

8 (s+ 8)
(

(s+ 1)2 + 4
)

⎞

⎠ .

Before we solve this, we observe that two poles are pretty far to the left and two
are relatively close to the imaginary axis as illustrated in Figure 9.31. Because the
effect of the two poles far to the left should decay rapidly, the solution should be
rather close to that of the system where they are ignored; that is, the step response
of

G1(s) =
5

(

(s+ 1)2 + 4
)

should be a good approximation to the step response to

G(s) =
5

1
10 (s+ 10) 1

8 (s+ 8)
(

(s+ 1)2 + 4
) .

Skipping many of the details, for

Y (s) = G(s)
1
s

the time domain response is

y(t) = 1 +
4

17
e−10t − 25

53
e−8t − 688

901
e−t cos2t − 984

901
e−t sin2t

and for

Y1(s) = G1(s)
1
s

(9.19)

the time domain response is

y1(t) = 1− e−t
(

cos2t +
1
2

sin2t

)

. (9.20)
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The two step responses are plotted in Figure 9.32. Clearly, the step response of G1(s)
is a fairly good approximation of the step response of G(s). The reason for this is
because the e−10t and e−8t terms decay so rapidly. It is not at all clear, however,
from a casual observation of the time domain solutions given in Equations (9.19)
and (9.20) that the solutions are approximately the same. In fact, even ignoring
the decaying exponentials corresponding to the fast poles, the coefficients of the
sine and cosine terms are not approximately equal. However, with a conceptual
understanding of the fact that the poles at s =−10 and s =−8 decay very quickly, it
is obvious from the location of the poles illustrated in Figure 9.31 that the complex
conjugate pair will dominate the response.
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Fig. 9.31 Pole locations for transfer function in Example 9.19. The two poles near the imaginary
axis should dominate the response.

Because it may not always be the case that there is a dominant pair of poles
for a system that is higher than second-order, we next determine the effect of one
additional pole or zero, regardless of whether it is far to the left.

9.5.2.2 Additional Real Zero

If a transfer function has a complex conjugate pair of poles and one real zero, the
effect of the zero on the response will depend on the location of the zero. This
section draws some conclusions based upon inference from an example. The proof
of the conclusions is left to Exercise 9.10.

Example 9.20. Consider
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Fig. 9.32 Comparison of step responses of the transfer function with four poles G(s), and the
transfer function with only the two dominant poles G1(s) from Example 9.19.

G(s) =
5

s2 + 2s+ 5

and

G1(s) =
5
r (s+ r)

s2 + 2s+ 5
,

where r = 10,1,−1, and 10, corresponding to the zero being far to the left, in the left
half-plane but near the imaginary axis, in the right half-plane and near the imaginary
axis and far to the right. The step responses are illustrated in Figure 9.33.

From this example we may infer the following general rules.

• If the zero is far from the imaginary axis, then it has little effect on the step
response.

• If the zero is in the left half plane and close to the imaginary axis, it will decrease
the rise time and increase the overshoot.

• If the zero is in the right half plane and close to the imaginary axis, it will increase
the rise time, perhaps increase the overshoot, and perhaps the system will initially
move in the “wrong direction.”

Systems with left half-plane zeros are called nonminimum phase and are discussed
subsequently in Section 9.7. One common characteristic of nonminimum phase sys-
tems is that they may initially start in the “wrong” direction, as illustrated in the
example.
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Fig. 9.33 The effect of an additional real zero on the second-order step response: the step response
of G1(s) =

(

5(s+ r)
)

/
(

r
(

s2 +2s+5
))

for various zero locations (various r).

9.5.2.3 Additional Real Pole

Consider

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n

and

G1(s) =
ω2

n

(s2 + 2ζωns+ ω2
n) 1

r (s+ r)
.

From Equation (9.16), the partial fraction expansion for Y (s) = G(s)/s is

Y (s) = − s+ 2ζωn

(s+ ζωn)
2 + ω2

d

+
1
s

(9.21)

and the step response is

y(t) = −e−ζωnt

(

cosωdt +
ζ

√

1− ζ 2
sinωdt

)

+ 1.

Computing the partial fraction expansion for Y (s) = G(s)/s gives
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Y (s) =
ω2

n r
(s2 + 2ζωns+ ω2

n) (s+ r)
1
s

=−
(

ω2
n

r2 −2ωnζ r + ω2
n

)
1

s+ r
+

1
s

(9.22)

+

(

−r2 (s+ 2ωnζ )− r
(

ω2
n −4ω2

n ζ 2 −2sωnζ
)

(r2 −2ωnζ r + ω2
n )

)

1
(s2 + 2ωnζ s+ ω2

n )
.

As r → ∞ we expect this to approach Equation (9.21), which it does. Because of the
r2 in the denominator of the first term, it approaches zero, and in the last term the r2

terms in the numerator and denominator would dominate, giving the same second-
order term as in Equation (9.21). At least for one additional pole, this verifies our
intuition that poles far to the left will have little effect on the response.

If r is positive and small, which corresponds to a pole close to the imaginary
axis in the left half-plane, then the exponential term will dominate the solution.
Mathematically

lim
r↓0

Y (s) = − 1
s+ r

+
1
s
,

so for small r,
y(t) ≈ 1− e−rt ,

which has no overshoot and a large rise time. Inasmuch as r is small, the exponen-
tial terms decay very slowly and hence y(t) approaches the steady-state value very
slowly.

Conceptually interpolating between these two extremes we can conclude that if
a second-order system has an additional pole in the left half-plane then is is charac-
terized by the following features.

• If the additional pole is far to the left, it will have little effect on the response.
• If the additional pole is very close to the imaginary axis compared to the second-

order poles, it will dominate the response and the solution will slowly asymptot-
ically approach the steady-state value.

• If the additional pole is of the same order as the second-order poles it should
increase the rise time and decrease the overshoot.

• If the additional pole is anywhere in the right half plane, then the solution will be
unstable.

Example 9.21. Consider

G(s) =
5

s2 + 2s+ 5

and

G1(s) =
5r

(s+ r)(s2 + 2s+ 5),

where r = 10,1,0.1, and −1, corresponding to the pole being far to the left, in the
left half-plane of the same order of magnitude as the complex conjugate pair of
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poles, very near the imaginary axis and in the right half-plane. The step responses
are illustrated in Figure 9.34.
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Fig. 9.34 The effect of an additional real pole on the second-order step response: the step response
of G1(s) = (5r)/

(

(s+ r)
(

s2 +2s+5
))

for various pole locations (various r).

9.5.2.4 Poles and Zeros Close Together

If a pole and zero are close together, algebraically they nearly cancel. It is natural to
expect, then, that their effect in the solution would nearly cancel as well. In fact, this
is true which we demonstrate with one zero and one pole located near each other.

Consider

G(s) =
ω2

n

(s2 + 2ζωns+ ω2
n )

s+ r̂
s+ r

.

A partial fraction expansion gives

G(s) =
c1s+ c2

s2 + 2ζωns+ ω2
n

+
c3

s+ r
,

where
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c1 =
ω2

n

(

1− r̂
r

)

r−2ζωn + ω2
n

r

c2 =
ω2

n

r

[

r̂ +
ω2

n

r

(

1− r̂
r

r−2ζωn + ω2
n

r

)]

c3 = − ω2
n

(

1− r̂
r

)

r−2ζωn + ω2
n

r

.

If the pole and zero are located at the same point, then r = r̂ and c1 = c3 = 0 and
c2 = ω2

n , as we would expect.
Furthermore, if the pole and zero are close together, then r ≈ r̂, so c1,c3 � 1, and

c2 ≈ ω2
n . The effect of the magnitude of the coefficients will depend upon whether

the pole and zero are in the left or right half-plane. If they are in the left half-plane,
then the coefficient of the exponential term will be small, so the solution will be
approximately the same as the second-order system. If it is in the right half-plane,
even though the coefficient is small, the exponential term will grow unbounded and
the system will be unstable.

Example 9.22. Consider

G(s) =
5

s2 + 2s+ 5
,

G1(s) =
5

s2 + 2s+ 5

(

s+ 1
1

.95 (s+ 0.95)

)

,

G2(s) =
5

s2 + 2s+ 5

(

s+ 1
1
2 (s+ 2)

)

,

and

G3(s) =
5

s2 + 2s+ 5

(

s−1
1

.95 (s−0.95)

)

.

The first transfer function G(s) only has a complex conjugate pair of poles. The
second G1(s) has an additional pole at s = −.95 and an additional zero at s = −1.
The third has a pole and zero that are not close together and finally, the fourth G3(s)
has a pole and zero that are close, but in the right half-plane.

The step responses are illustrated in Figure 9.35. Observe that if the pole and
zero are in the left half-plane and are close together, then they almost cancel and the
step response is much like that of G(s). If they are not close together then they have
a substantial effect on the response. If they are in the right half-plane, then even if
they are close together the system is unstable.

Remark 9.1. It is true that mathematically if there are a pole and zero in the right
half plane that exactly cancel, then they will have no effect on the response of the
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Fig. 9.35 Effect of additional poles and zeros that are close together from Example 9.22.

system. However, for a real engineering system, if there is a pole in the right half-
plane attempting to cancel it with a zero will not work because it is impossible to
characterize any real system exactly.

9.6 Root Locus Analysis

The root locus design method is probably the most basic feedback control design
methodology. This section develops the rules for constructing root locus plots and
presents examples illustrating the utility of the method for control design.

9.6.1 Motivational Example

From Section 9.3 it should be clear that the nature of the response of a system is
dictated by the pole locations of the transfer function that describes it. A root locus
plot is a plot of how the poles of a transfer function change as some parameter in
the system is varied. This is useful because it may give us a means to determine the
value of such a parameter that gives the system some desired response such as a
specified rise time, maximum overshoot, settling time, and so on. We motivate this
by a particular example and then in the following sections develop the rules that
allow us to sketch a root locus plot by hand.
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Example 9.23. Consider the system illustrated in Figure 9.36 and assume the task
is to control the position of the mass so that it stays at some desired location xd(t).
Assume that there is some way to measure x(t).

Fig. 9.36 System for Example 9.23.

k

b

m f (t)

x(t)

The equation of motion is

mẍ + bẋ+ kx = f (t).

To simplify the following equations, let f̂ (t) = f (t)/k so the equation of motion can
be written

ẍ+
b
m

ẋ +
k
m

x =
k
m

f̂ (t)

and the transfer function from the input force to the position of the mass is given by

X(s)
F̂(s)

=
k
m

s2 + b
m s+ k

m

=
ω2

n

s2 + 2ζωns+ ω2
n
.

We use proportional control so that

f̂ (t) = kp (xd − x(t))

or
F̂(s) = kp (Xd(s)−X(s)) .

A block diagram representation of the system with proportional control is illustrated
in Figure 9.37. Included in the figure are labels for the error signal E(s) and the
force F̂(s). The transfer function from the desired position of the mass to the actual
position is given by

X(s)
Xd(s)

=
kpω2

n

s2 + 2ζωns+ ω2
n (kp + 1)

. (9.23)

The nature of the transient response is easy to determine from the poles of Equa-
tion (9.23), which are simply given by the quadratic equation

p = −ζωn ±ωn

√

ζ 2 − (kp + 1).

To proceed, let us assume some numerical values for the system parameters. If ωn =
1 and ζ = 2, then
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+

−

Xd X
ω2

n
s2+2ζ ωns+ω2

n
kp

F̂E

Fig. 9.37 Block diagram for proportional control for Example 9.23.

p = −2±
√

4− (kp + 1),

so if kp < 3 the solutions are exponentials and if kp > 3 the solutions are damped
oscillations. A plot of the pole locations for various kp is illustrated in Figure 9.38.
Observe that for very small kp there will be two real poles. One will be near the
origin and the other will be near s = −4. As kp increases the poles move toward
each other along the real axis and at kp = 3 they will both be at s = −2. Further
increasing kp will result in complex conjugate poles. The real part of the poles for
kp ≥ 3 is fixed at s = −2 and the imaginary part increases as kp increases.

Before we solve for the step responses we can observe the following regarding
the nature of the step response.

1. For kp ≥ 3 the settling time will not be changed by altering kp. For kp < 3 the
settling time will be larger than for kp ≥ 3 because one of the poles will have a
real part to the right of s = −2. Thus, the best we can do for settling time is at
kp ≥ 3.

2. There will be no overshoot for kp ≤ 3 because the solutions will be exponentials.
For kp > 3 increasing kp will increase the overshoot because it will decrease the
angle between the pole and the imaginary axis.

3. For kp > 3 the rise time will decrease as kp increases. Note that it may be the case
that it will be possible to satisfy either a rise time or an overshoot specification,
but not both, because one gets worse with increasing kp and the other gets better.

To verify our analysis, the corresponding step responses are illustrated in Fig-
ure 9.39. Note that for each value of k there are two solutions. This makes sense
because the equation is second order. Subsequently, we construct continuous curves
for the infinite number of possible k values, and the number of branches is equal to
the order of the characteristic polynomial.

At least in one respect our attempt to control the location of the mass in Ex-
ample 9.23 is deficient because the steady-state value of x depends on kp and the
steady-state error is not zero. The way to remedy this should be obvious from Sec-
tion 9.1, which is to add integral control. In the following example we do just that.
As expected, this eliminates the steady-state error. The larger point of the example,
though, is that once integral control is added, plotting the pole locations will not be
easy because the denominator of the transfer function will be a third-order polyno-
mial, so a method to plot how the poles move as a parameter is varied that works for
higher-order polynomials is needed.
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Fig. 9.38 Pole locations for various kp (kp = 4 not labeled) for Example 9.23.
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Fig. 9.39 Step response for various kp for Example 9.23.
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Example 9.24. In this example we add integral control to try to control the location
of the mass in Figure 9.36. Let

f̂ (t) = kp (xd − x(t))+ ki

∫ t

0
xd(τ)− x(τ)dτ.

In general, it is necessary to consider how altering both kp and ki affect the nature
of the solution. Because we are considering how the system responds when one
parameter is varied, we fix the relationship between kp and ki and if a satisfactory
result is not obtained, change the relationship between them and start over.

Somewhat arbitrarily let ki = kp/2, so

f̂ (t) = k

(

(xd(t)− x(t))+
1
2

∫ t

0
xd(τ)− x(τ)dτ

)

,

where kp = k and ki = k/2. The Laplace transform of the control law is

F̂(s) = k

(

(Xd(s)−X(s))+
1
2s

)

(Xd(s)−X(s)) = k

(

1 +
1
2s

)

(Xd(s)−X(s))

and the block diagram representation of this system is illustrated in Figure 9.40.

+

−

Xd X
ω2

n
s2+2ζ ωns+ω2

n
k
(

1+ 1
2s

) F̂E

Fig. 9.40 Block diagram for proportional plus integral control for Example 9.24.

Using this control law, the transfer function, after a bit of algebra, is

X(s)
Xd(s)

=
kω2

n

(

s+ 1
2

)

s3 + 2ζωns2 + ω2
n (1 + k)s+ kω2

n
2

and if ωn = 1 and ζ = 2

X(s)
Xd(s)

=
k
(

s+ 1
2

)

s3 + 4s2 +(1 + k)s+ k
2

=
2ks+ k

2s3 + 8s2 + 2(1 + k)s+ k
.

A critical point regarding the preceding equation is that, in contrast to the system in
Example 9.23, a tool as simple as the quadratic equation is not available to check
how the poles of the transfer function vary as the parameter k is varied. Of course it
may be done numerically, but having methods available to do the analysis by hand
is extremely important because it allows us to gain insight into such systems. We
return to this example subsequently after we develop a method for doing exactly
that.
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9.6.2 A Quick Review of Functions of a Complex Variable

A more detailed review of complex variable theory is contained in Appendix A. This
section highlights the just results necessary for sketching root locus plots.

Consider a transfer function of the form

G(s) =
N(s)
D(s)

.

Regardless of whether we can do it by hand, we may write the numerator and de-
nominator in factored form. In particular, we may write

G(s) =
N(s)
D(s)

= k̂
∏nz

i=1 (s− zi)

∏np
i=1 (s− pi)

, (9.24)

where N(s) and D(s) are polynomials and the zi are the zeros, the pi are the poles,
nz is the number of zeros, and np is the number of poles of G(s).

Example 9.25. The transfer function

G(s) =
5(s+ 3)

s4 + 11s3 + 40s2 + 58s+ 40

may be written in the form

G(s) = 5
s+ 3

(s+ 4)(s+ 5)(s+(1 + i))(s+(1− i))
.

A fundamental property of complex numbers is that they may be represented in
a Cartesian manner, which is typically of the form s = a + ib where a is the real
component and b is the imaginary component of s. An alternative representation is
in polar coordinates where s is represented by a magnitude and phase which are the
usual Euclidean norm and phase if the number is plotted in its Cartesian coordi-
nates.4 Referring to Figure 9.41, if s = a + ib, then

r =
√

a2 + b2 = |s|

and

θ = tan−1
(

b
a

)

= ∠s.

The Cartesian form is easy for addition and subtraction because if s1 = a1 + ib1

and s2 = a2 + ib2, then

s1 + s2 = (a1 + a2)+ i(b1 + b2) .

4 The usual name for the angle, or phase, of a complex number in the mathematics literature, is the
argument. We typically use the more colloquial terms angle or phase.
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Fig. 9.41 Cartesian, s = a+ ib, and polar,
s = (r,θ), forms of a complex number s.
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Re(s)

Im(s)

However, multiplication is easier in polar form. In particular, if s1 = (r1,θ1) and
s2 = (r2,θ2), then the product is

s1s2 = (r1r2,θ1 + θ2)

and the quotient is
s1

s2
=
(

r1

r2
,θ1 −θ2

)

.

Proving these two results is simple and is left as an exercise.
The critical concept in this section relates how to evaluate a transfer function in

terms of the location in the complex plane of s and the location of its poles and
zeros. Returning to Equation (9.24),

G(s) = k̂
∏nz

i=1 (s− zi)

∏np
i=1 (s− pi)

= k̂
(s− z1)(s− z2) · · ·

(

s− znz

)

(s− p1) (s− p2) · · ·
(

s− pnp

) ,

note that the numerator is simply the product of the difference between s and all
of the zeros of G(s). Similarly, the denominator is the product of the difference
between s and each of the poles of G(s).

This concept is critical to understanding the development that follows. If it is still
not clear after the following example, the reader is strongly encouraged to reread it
before proceeding to the next section.

Example 9.26. Returning to the transfer function from Example 9.25 let

G(s) = 5
s+ 3

(s+ 4)(s+ 5)(s+(1 + i))(s+(1− i))
.

If we wish to determine G(s) at a particular value for s the easiest thing would be
just to substitute it into G. For example,

G(0) = 5
3

(4)(5)(1 + i)(1− i)
=

3
8
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and

G(i) = 5
3 + i

(4 + i)(5 + i)(1 + 2i)(1)
= 5

3 + i
1 + 47i

= 5
3 + i

1 + 47i
1−47i
1−47i

=
50−140i

442
.

Note that in polar coordinates

G(0) =
(

3
8
,0

)

and
G(i) ≈ 0.11312−0.31674i= (0.33634,−70.346◦) .

“Plugging and chugging” may be best to evaluate the Cartesian form of G(s). In
polar form there is a geometric interpretation as well. Figure 9.42 plots the poles and
zeros of G(s) and marks s = i with a +. Now consider each term in the numerator
and denominator of G(s). Each is of the form s− z or s− p and one way to interpret
s − z or s − p is that it is the vector from z or p, respectively, to the point s, as
illustrated in Figure 9.43.

So, an alternative way to evaluate G(s) is to consider the vectors from all the
zeros and poles of G(s) to the point s. The magnitude of G(s) will be k̂ times the
product of the magnitudes of all the vectors from the zeros of G(s) to s divided
by the product of the magnitudes of all the vectors from the poles of G(s) to s.
Mathematically,

|G(s)| = k̂
∏nz

i=1 |s− zi|
∏np

i=1 |s− pi|
= k̂

|s− z1| |s− z2| · · ·
∣
∣s− znz

∣
∣

|s− p1| |s− p2| · · ·
∣
∣s− pnp

∣
∣
.

In words, we may graphically measure the length of all the arrows from the poles
and zeros of G(s) to s and multiply them for zeros and divide by them for poles
to determine the magnitude of G(s). In all cases, the phase is measured counter-
clockwise from the horizontal, as is illustrated in Figure 9.41.

Because the angles of complex numbers add when they are multiplied, then the
angle of G(s) is determined by summing the angles from all the zeros to s and by
subtracting the angle from all the poles to s. Mathematically,

∠G(s) =
nz

∑
i=1

∠(s− zi)−
np

∑
i=1

∠(s− pi)

= ∠(s− z1)+∠(s− z2)+ · · ·+∠
(

s− znz

)

−∠(s− p1)−∠(s− p2)−·· ·−∠
(

s− pnp

)

.

In words, we can measure the angle from all the zeros and poles to s and sum the
angles from the zeros and subtract the angles from the poles.

Now evaluating G(s) using this graphical interpretation
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|G(i)| = 5

∣
∣
√

10
∣
∣

|1|
∣
∣
∣

√
5
∣
∣
∣

∣
∣
√

17
∣
∣

∣
∣
∣

√
26
∣
∣
∣

≈ 0.33634,

and

∠G(i) = tan−1
(

1
3

)

− tan−1
(

0
1

)

− tan−1
(

2
1

)

− tan−1
(

1
4

)

− tan−1
(

1
5

)

≈−70.346◦.

Observe that with an even scale on the graph, a ruler, and protractor, one could
evaluate G(s) with pretty decent accuracy.
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Fig. 9.42 The poles and zeros of G(s) =
(

5(s+3)
)

/
(

(s+4)(s+5) (s+(1+ i))(s+(1− i))
)

and
the point s = i (+) for Example 9.26.

9.6.3 Root Locus Plotting Rules

Consider the transfer function described by the block diagram illustrated in Fig-
ure 9.44. This is a typical cascade compensation configuration where Gp(s) is the
plant transfer function, Gc(s) is the compensator, k is a gain, and Gs(s) represents
the transfer function for the sensor that is measuring the output. Often sensor dy-
namics are negligible compared to the rest of the system, in which case Gs(s) = 1
and the system is referred to as unity feedback. The transfer function for this system
is
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Fig. 9.43 The vector (s− p) from p to s.

Im(s)

Re(s)

p

s

s− p

θ = ∠(s− p)

Y (s)
R(s)

=
kGc(s)Gp(s)

1 + kGc(s)Gp(s)Gs(s)
.

If we let G(s) = Gc(s)Gp(s)Gs(s), and Ĝ(s) = Gc(s)Gp(s), then the transfer func-
tion is

Y (s)
R(s)

=
kĜ(s)

1 + kG(s)
. (9.25)

+

−

R(s) Y (s)
kGc(s) Gp(s)

Gs(s)

Fig. 9.44 Feedback configuration.

We wish to study how the poles of kĜ(s)/(1 + kG(s)) change as k is varied, so
we need to know the poles change with k. A pole is a value of s that satisfied

1 + kG(s) = 0.

Hence, s is a pole if

G(s) = −1
k
.

We limit our attention to k values that are zero or real and positive. As k goes from 0
to +∞, −1/k will go from −∞ to the origin along the negative real axis as illustrated
in Figure 9.45. We assume that the transfer function G(s) is of the form

G(s) = k̂
(s− z1)(s− z2) · · ·

(

s− znz

)

(s− p1) (s− p2) · · ·
(

s− pnp

) .
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Fig. 9.45 The relationship on the com-
plex plane of k and G(s) if 1+ kG(s) = 0.

k → 0+

G →−∞
k → +∞
G → 0− Re(s)

Im(s)

Inasmuch as −1/k is a negative real number that has an angle of ±180◦, if we
can determine all s values for which ∠G(s) = 180◦, we will have plotted all the
solutions to 1 + kG(s) = 0 for positive k values. In the process we can determine
how the poles of the transfer function in Equation (9.25) change with k, and hence
will be able to determine properties of the response of Equation (9.25) such as the
percent overshoot, settling time, rise time, and so on. This is the root locus plot for
the transfer function Y (s)/R(s).

First let us consider the two limiting cases where k = 0 and k → +∞. In the case
where k = 0, the only way for 1 + kG(s) to be zero is if G(s) is unbounded. So we
can state the following rule.

Rule 9.1. If the denominator of G(s) is nth order, then at k = 0, one of each of the n
branches of the root locus will start at one of the poles of G(s).

As k → +∞, the only way for 1 + kG(s) to equal zero is for G(s) → 0. We are
considering only proper transfer functions where the order of the denominator is
greater than the numerator, therefore the only way for |G(s)| → ∞ is for s to ap-
proach a pole. In contrast, there are two ways that |G(s)| may approach 0. The first,
obviously, is if s approaches a zero. Also, if s grows unbounded in any direction,
G(s) will approach 0 because the transfer function is proper and the order of the
denominator is greater than the order of the numerator. So, we can state the second
rule.

Rule 9.2. As k → +∞, the root locus either approaches a zero of G(s) or grows
unbounded.

An example may be useful at this point. Because we only have two rules so far,
many of the features of the root locus unrelated to these two rules are not obvious.

Example 9.27. The solid lines in Figure 9.46 illustrate the solutions of

1 + k
s+ 3

(s+ 4)(s+ 5)(s2 + 2s+ 3)
= 0

as k goes from 0 to +∞ and the poles and zeros are marked as usual. Because, if
the denominator is cleared, this is a fourth-order polynomial, for any k value, there
will be four solutions to the equation. In this particular case, there is one solution
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on each of the four separate branches in the plot. As is clear from the figure, the
branches of the root locus start at each pole of G(s) and one of them approaches the
one zero of G(s) and the other three grow unbounded as k → +∞.
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Fig. 9.46 The root locus plot for Example 9.27. The poles of G(s) are marked with a × and the
zeros of G(s) are marked with a ◦.

Before we determine exactly how the solutions to 1+kG(s) = 0 grow unbounded
as k →+∞, observe that the root locus is comprised of branches. For a transfer func-
tion with a characteristic equation of order n, the fundamental theorem of algebra
requires that there be n solutions. Indeed, in the previous example, it appears that for
any given value of k, there are four solutions and as k varies, these solutions move
along continuous lines in the complex plane. The fact that these lines are continu-
ous should make sense. If k is only slightly altered, then the n solutions will only be
slightly altered as well. Hence, as k varies continuously from 0 to +∞, the solutions
to 1+ kG(s) = 0 will vary continuously as well. The root locus starts at k = 0 at the
poles of G(s), thus each branch that corresponds to one of the solutions will start at
one of the poles. We need to refer back to it, therefore we restate this argument as a
proposition.

Proposition 9.7. The solutions to 1 + kG(s) = 0 depend continuously on k.

Referring to Figure 9.46 with the root locus for Example 9.27, it is clear that
the three branches that grow unbounded do so along specific asymptotes. Specifi-
cally, the branch of the locus that leaves pole p1 = −1+

√
2i grows unbounded in a

manner where both the real and imaginary parts of s approach +∞. The branch that
leaves p2 = −1−√

2i has an imaginary part that grows to −∞ whereas the real part
approaches +∞. This branch also appears symmetric to the first branch about the
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real axis. In fact this must be so because if a complex number is a root of a poly-
nomial, its complex conjugate must also be a root. Finally, the third branch grows
unbounded with a zero imaginary part and a real part that approaches −∞.

In order to determine these asymptotes, consider a map of the poles and zeros of
G(s) that has a very large scale, such as is illustrated in Figure 9.47 for the transfer
function in the previous examples. If we desire to determine whether a point, indi-
cated by a cross in the figure is on one of the branches of the root locus, we use the
fact that it will be on the root locus only if ∠G(s) = ±180◦.

-40

-20

0

20

40

-40 -20 0 20 40

Im
(s

)

Re(s)

Fig. 9.47 The poles and zeros of a transfer function with a large scale appear in a small cluster.

Recall that

∠G(s) =
nz

∑
i=1

∠(s− zi)−
np

∑
i=1

∠(s− pi) .

For very large s, the angle from all the poles and zeros is approximately the same.
Hence if θ is this angle then

∠G(s) = θ (nz −np)

and s will be on the root locus if

θ (nz −np) = ±180◦.

We can always add or subtract 360◦ from the angle. Doing so and solving for θ
gives

θ =
(180◦+ n360◦)

(nz −np)
n = 0,1, . . .(np −nz) .
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Rule 9.3. The branches of the root locus that grow unbounded do so along asymp-
totes with angles

θn =
(180◦+ n360◦)

(nz −np)
.

Let us verify this rule on the previous example.

Example 9.28. Because G(s) from Example 9.27 had four poles and one zero, these
asymptotes will have angles

θ0 = −60◦, θ1 = −180◦, θ2 = −300◦ = 60◦.

Rule 9.3 gives an angle of the asymptote, but not the point at which the asymp-
totes intersect the real axis.

Rule 9.4. The asymptotes intersect the real axis at the point

sint =
∑nz

i=1 zi −∑np
i=1 pi

nz −np
. (9.26)

See [17] for a derivation.

A particularly easy set of points on the locus to plot are those on the real axis. The
critical fact to consider is that for a point s on the real axis, the angle of the point
will not be affected by either complex conjugate poles or zeros. In each case the
contribution to the angle from each part of the complex conjugate pair will cancel.
This is illustrated in the following example.

Example 9.29. Consider once again

1 + k
s+ 3

(s+ 5)(s+ 5)(s2 + 2s+ 2)
= 0

and let s = −2.5. The poles and zeros of G(s) are plotted in Figure 9.48 and the
point s is illustrated by the cross. Observe that the contribution to the angle of G(s)
by the complex conjugate pair of poles in this example is 360◦, which is equivalent
to 0◦. Hence, when evaluating

∠G(s) =
nz

∑
i=1

∠(s− zi)−
np

∑
i=1

∠(s− pi)

they do not matter.

From the preceding example it is, one hopes, obvious that all complex conjugate
pairs of poles or zeros will contribute nothing to ∠G(s). Hence, for real s only the
poles and zeros on the real axis affect ∠G(s). Furthermore, if s is real and the only
poles and zeros that matter are real, all of the angles in the sum
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Fig. 9.48 Evaluating ∠G(s) = 0◦ by considering the geometry of s relative to the poles and zeros
of G(s) on the complex plane.

∠G(s) =
nz

∑
i=1

∠(s− zi)−
np

∑
i=1

∠(s− pi)

will either be 0◦ or 180◦ depending upon whether the point s is to the right or left,
respectively, of the pole or zero in question.

In fact, if s is to the right of all the real poles and zeros of G(s), then ∠G(s) = 0
because the angle from each of them is zero. If s is decreased and crosses to the left
of the first pole or zero, then ∠G(s) = ±180◦ where the sign of the angle depends
upon whether it was a pole or a zero.

Example 9.30. Returning to the previous series of examples, if s = −3.5, as illus-
trated in Figure 9.49, then ∠G(s) = 180◦. This should be clear from the figure be-
cause s is to the left of z1, so ∠(s− z1) = 180◦. Because s is to the right of p2 and
p3, ∠(s− p2) = ∠(s− p3) = 0.

If we continue to decrease s so that it passes another pole or zero, then the angle
of G(s) will increase or decrease by 180◦. Regardless, ∠G(s) = 0◦ because it will
either algebraically sum to zero or it will be 360◦, which is equivalent to zero. Once
it passes another one, ∠G(s) =±180◦ and then when it passes the next, ∠G(s) = 0,
and so on. Hence, we have the following rule.

Rule 9.5. On the real axis, the root locus is to the left of an odd number of zeros and
poles.

This rule certainly holds in the example case we have been considering if we
refer back to Figure 9.46.
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Fig. 9.49 Evaluating ∠G(s) = 180◦ by considering the geometry of s relative to the poles and
zeros of G(s) on the complex plane.

At this point we have considered every feature of the root locus in Figure 9.46
except one, which is the angle where the locus departs the complex conjugate pair
of poles. The loci appear to depart p1 at approximately 90◦ and depart p2 at approx-
imately −90◦. Instead of zooming out to consider a very large s as we did to find
the asymptote angles, we zoom in and consider a point s very close to a pole. We
should be able to determine, for example, that a point s very close to p1 must be at
an angle approximately equal to 90◦ from p1.

In fact, in order to determine the departure angle from a pole or zero, all we must
do is consider a point very close to it. If s is very close to a pole pi, or zero zi, the
angle from all the other poles and zeros to it is approximately the same as the angle
from the other poles and zeros to the pole or zero to which s is close, and all we
must do is solve

∠G(s) =
nz

∑
i=1

∠(s− zi)−
np

∑
i=1

∠(s− pi)

for the term (s− pi) or (s− zi) and substitute pi or zi for s in all the terms except the
one to which s is adjacent.

Rule 9.6. The angle at which a branch of the root locus leaves a pole p j is given by

∠(s− p j) =
nz

∑
i=1

∠(p j − zi)−
np

∑
i=1,i�= j

∠(p j − pi)−180◦

and the angle at which it approaches a zero z j is given by
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∠(s− z j) = 180◦−
nz

∑
i=1,i�= j

∠(z j − zi)+
np

∑
i=1,i�= j

∠(z j − pi) .

Rule 9.6 works for real as well as complex poles and zeros. However, there is no
point in doing the computation for the real poles and zeros because Rule 9.5 gives
the appropriate angle.

The final rule addresses a feature not present in Figure 9.46, so we present an-
other example that reviews a couple of the rules we know so far and introduces the
need for the final rule.

Example 9.31. Consider

G(s) =
s+ 6

(s+ 1)(s+ 3)
.

The poles and zeros of G(s) are illustrated in Figure 9.50. The first rule we apply is
Rule 9.5, so we know the root locus will be between the two poles and then to the
left of the zero. If we compute the asymptote angles, we get only one asymptote at
θ0 = 180◦, which coincides with the part to the left of the zero already completed
by Rule 9.5. This part of the root locus is illustrated in Figure 9.51.

Now, consider Rules 9.1 and 9.2, which require that the branches of the root locus
start at the poles of G(s) and end at either zeros of G(s) or grow unbounded. So far
the root locus does have branches that start at the poles and it does end at the zero
and does grow unbounded.

However, recall Proposition 9.7 which states that the root locus must be continu-
ous. Therefore there must be a way that the branches which start from the poles are
connected to the branches that go to the zero or infinity. They cannot connect along
the real axis because between the middle pole and the zero ∠G(s) = 0◦. Hence, the
only way it may happen is that they “break away” from the real axis between the
poles and “break in” to the real axis to the left of the zero. The root locus, computed
numerically, is illustrated in Figure 9.52.

This example is actually quite interesting. For small k, the poles are both real,
then as k is increased they are a complex conjugate pair, and as k is even further in-
creased they become real again, which corresponds to starting as exponential solu-
tions for small k, sine and cosine solutions for intermediate k values, and exponential
solutions again for large k values.

First we determine the rule to compute exactly where the root locus will break
in and away from the real axis. Then we present an argument as to why the curve
between the break-in and away points is a rather nice near-circle, as opposed to
being, for example, very wavy between the break in and away points.

The root locus starts at the poles, therefore the point at which the locus will break
away corresponds to the maximum value that k attains on the real axis. Correspond-
ingly, the branches will break in at a minimum value for k. Hence the break-away
and break-in points can be determined by solving 1+kG(s) = 0 for k and determin-
ing the points on the part of the locus on the real axis for which the derivative of
k = −1/G(s) with respect to s is zero. Inasmuch as we are searching for where the
derivative is zero, we can drop the minus sign for simplicity.
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Fig. 9.50 Poles and zeros of G(s) = (s+6)/
(

(s+1)(s+3)
)

for Example 9.31.
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Fig. 9.51 A partial root locus plot for Example 9.31.

Rule 9.7. For the part of the root locus on the real axis (determined by Rule 9.5),
the locus breaks in or breaks away at points where

d
ds

(
1

G(s)

)

= 0. (9.27)
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Fig. 9.52 The root locus plot for G(s) = (s+6)/((s+1)(s+3)) .

Note that there may be other points at which the derivative in Equation (9.27) are
zero, but if they are not on the real axis to the left of an odd number of poles and
zeros they are not relevant. The reason these may occur includes, for example, an
extremum for k that corresponds to a negative value for k.

Example 9.32. Returning to Example 9.31, solving 1 + kG(s) = 0 for k gives

k =
(s+ 1)(s+ 3)

s+ 6
.

Differentiating with respect to s gives

dk
ds

=
(2s+ 4)(s+ 6)− (1)

(

s2 + 4s+ 3
)

(s+ 6)2 =
s2 + 12s+ 21

(s+ 6)2 .

Hence,
dk
ds

= 0 =⇒ s = −6±
√

15

or
s ≈−2.1270, s ≈−9.8730,

which conforms to Figure 9.52.

Let us revisit the very first motivational example.

Example 9.33. The transfer function from Example 9.23 was

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n
,
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or using the numerical values ωn = 1 and ζ = 2,

G(s) =
1

s2 + 4s+ 1
.

We reconstruct the whole root locus subsequently, but for now observe that solving
1 + kG(s) = 0 for k gives

k = s2 + 4s+ 1

and hence
dk
ds

= 0 =⇒ s = −2,

which is where the poles break away from the real axis in Figure 9.38.

A summary of the root locus plotting rules, reordered in a manner that is most
useful for sketching the root locus by hand, appears in Table 9.1.

Rules to plot the solutions of 1+ kG(s) = 0 for k ∈ [0,∞) .

1. Plot the poles and zeros of G(s). There will be np − nz branches and each branch of the root
locus starts at one of the poles. If G(s) has np poles and nz zeros, nz of the branches will end at
the zeros (Rules 9.1 and 9.2)

2. Draw the root locus on the real axis to the left of an odd number of poles plus zeros. (Rule 9.5)
3. Compute the asymptote angles using

θn =
(180◦ +n360◦)

(nz −np)
.

Sketch the asymptotes, which intersect the real axis at

sint =
∑nz

i=1 zi −∑
np
i=1 pi

nz −np
.

(Rules 9.3 and 9.4)
4. If G(s) has any complex conjugate pairs of poles or zeros, compute the departure or arrival

angles, respectively, by taking a point very close to one of them and computing the angle from
the pole or zero that would be necessary to ensure ∠G(s) = 180◦. (Rule 9.6)

5. Compute the break-away or break-in points from the real axis, if any, by computing the values
for which

d
ds

(
1

G(s)

)

= 0.

(Rule 9.7)
6. Complete the root locus keeping in mind that the branch connecting two sections cannot be too

complicated if the order of the numerator and denominator of G(s) is not too large.

Table 9.1 Root locus plotting rules
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9.6.4 Examples

This section presents a few examples that illustrate the application of the root locus
plotting rules in Table 9.1.

Example 9.34. Let us return to the PI control problem from Example 9.24. In that
problem the transfer function was expressed in the block diagram in Figure 9.40. If
ωn = 1 and ζ = 2, the transfer function is

X(s)
Xd(s)

=
k

1+ 1
2s

s2+4s+1

1 + k
1+ 1

2s
s2+4s+1

(9.28)

Hence, the transfer function to use in all the plotting rules is

G(s) =
1 + 1

2s

s2 + 4s+ 1
=

s+ 1
2

s(s2 + 4s+ 1)
.

Recall that when we added integral control in Example 9.24 we could not proceed
any further than determining the transfer function because the denominator was third
order. Now, after all the work in the preceding section, we can accomplish what we
wanted, which was to see how the poles of the transfer function in Equation (9.28)
vary as the gain k is varied from 0 to +∞.

Let us follow the steps exactly as they appear in Table 9.1.

1. G(s) has a zero at s = −1/2 and three poles at s = 0, s ≈ −3.73205 and s ≈
−0.26795, all of which are easy to determine by hand. A plot of the poles and
zeros for G(s) appears in Figure 9.53.

2. Now filling in to the left of an odd number of zeros plus poles results in the partial
root locus plot illustrated in Figure 9.54.

3. There are three poles and one zero, so nz − np = −2. Hence the two asymptote
angles are

θ0 = −90◦, θ1 = 90◦,

and the intersection with the real axis is at

sint =
(−1/2)− (0−3.73205−0.26795)

1−3
= −1.75.

The asymptotes are sketched on the root locus diagram by the vertical line in
Figure 9.55.

4. Step 4 does not apply because there are no complex conjugate poles and zeros.
5. Differentiating k = 1/G(s) with respect to s gives
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Fig. 9.53 Partial root locus plot for G(s) = (s+1/2)/
(
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after step 1.
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Fig. 9.54 Partial root locus plot for G(s) = (s+1/2)/
(

s
(

s2 +4s+1
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after step 2.

d
ds

(
1

G(s)

)

=
d
ds

s
(

s2 + 4s+ 1
)

s+ 1
2

=

(

3s2 + 8s+ 1
)(

s+ 1
2

)− (s3 + 4s2 + s
)

(

s+ 1
s

)2

=
2s3 + 11

2 s2 + 4s+ 1
2

(

s+ 1
2

)2 .
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Fig. 9.55 Partial root locus plot for G(s) = (s+1/2)/
(

s
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s2 +4s+1
))

after Step 3.

Finding the zeros of the cubic polynomial in the numerator unfortunately is a bit
hard to do by hand. Hence, we just give the answer computed numerically. The
derivative is zero, dk/ds = 0, at the values

s = −1.59, s = −1.00, s = −0.157.

The root locus must break out from the point s = −0.157 inasmuch as it is be-
tween two poles. The other two points are also on the root locus on the real line,
so one must be a break-in point and one a break-away point for the loci to grow
unbounded along the asymptotes.

6. The completed root locus is illustrated in Figure 9.56.

Example 9.35. Sketch the root locus plot for

G(s) =
s+ 3

(s+ 1)(s+ 2)
.

1. The poles are at s = −1 and s = −2. There is one zero at s = −3.
2. The root locus on the real axis is to the left of an odd number of zeros plus poles,

as is illustrated in Figure 9.57.
3. There are two poles and one zero, so the only asymptote is at θ = 180◦, which

has already been plotted by the step dealing with the root locus on the real axis.
4. There are no complex conjugate poles or zeros of G(s), so this step does not

apply.
5. The break-in and break-away points are where

dk
ds

= 0
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Fig. 9.56 The completed root locus plot for G(s) = (s+1/2)/
(

s
(

s2 +4s+1
))

.

or

dk
ds

=
d
ds

1
G(s)

=
d
ds

(
(s+ 1)(s+ 2)

s+ 3

)

=
d
ds

(
s2 + 3s+ 2

s+ 3

)

=
(2s+ 3)(s+ 3)− (s2 + 3s+ 2

)

(s+ 3)2 =
s2 + 6s+ 7

(s+ 3)2 ,

which is equal to zero at s ≈ −4.4142 and s ≈ −1.5858. The first must be a
break-in point and the latter a break-away point.

6. Because the root locus must break out between the poles and break in to the left
of the zero, the root locus must be comprised of complex conjugate pairs between
the two. Because we are sketching the roots of a relatively low-order polynomial,
the path between the break-away and break-in points must be relatively low-
order. The completed root locus is illustrated in Figure 9.58.

Example 9.36. Sketch the root locus for

G(s) = 7
s−1

s2 + 2s+ 5
.

1. There is a zero at s = 1 and two poles at s = −1±2i.
2. On the real axis, the root locus will be to the left of the zero, as is illustrated in

Figure 9.60.
3. There are two poles and one zero, so the only asymptote is at 180◦, which has

already been completed by the rule for the locus on the real axis.
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Fig. 9.57 Partial root locus for Example 9.35.
.

-1.5

-1

-0.5

0

0.5

1

1.5

-5 -4 -3 -2 -1 0 1

Im
(s

)

Re(s)

Fig. 9.58 Root locus for Example 9.35.
.
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4. Considering a point near the upper complex conjugate pole and determining
∠G(s), we have

135◦−90◦−θ = ±180◦

which gives the departure angle as

θ = 225◦.

The angle of departure for the bottom pole is symmetric, and thus is equal to
135◦.

5. The locus must break in to the real axis at some point because it ends at the zero
and along the asymptote going to −∞. Compute

dk
ds

=
d
ds

(
1

G(s)

)

=
d
ds

(
s2 + 2s+ 5

s−1

)

=
(2s+ 2)(s−1)− (s2 + 2s+ 5

)

(s−1)2

=
s2 −2s−7

(s−1)2 ,

which gives
dk
ds

= 0 =⇒ s ≈ 3.8284,−1.8284.

Because the first solution is not on the root locus on the real axis, we may ignore
it. The second solution gives the break-in point.

6. The complete root locus plot is illustrated in Figure 9.60.
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Fig. 9.59 Partial root locus for Example 9.36.
.
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Fig. 9.60 Root locus for Example 9.36.
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9.6.5 Determining the Gain

Although they make for some pretty pictures, the real reason to sketch a root locus
plot is that it serves as a tool to determine a good value, if any, for k. Once the root
locus plot has been sketched, if it appears that it passes through a region where it
will have the desired response characteristics, then it will be necessary to determine
the gain k value that corresponds to a point on the locus in that region. Fortunately,
this is relatively easy.

Points on the root locus satisfy

1 + kG(s) = 0

thus

|k| =
∣
∣
∣
∣
− 1

G(s)

∣
∣
∣
∣
=

1
|G(s)| .

Also, because

|G(s)| =
∣
∣
∣
∣
∣
k̂

∏nz
i=1 (s− zi)

∏np
i=1 (s− pi)

∣
∣
∣
∣
∣
=
∣
∣k̂
∣
∣
|s− z1| |s− z2| · · ·

∣
∣s− znz

∣
∣

|s− p1| |s− p2| · · ·
∣
∣s− pnp

∣
∣
,

we have

k =
|s− p1| |s− p2| · · ·

∣
∣s− pnp

∣
∣

∣
∣k̂
∣
∣ |s− z1| |s− z2| · · ·

∣
∣s− znz

∣
∣
. (9.29)
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In words, the value of k is simply the product of the distance from the point on the
locus to all the poles divided by the product of the distance from the point on the
locus to all the zeros, and also divided by the magnitude of k̂.

Example 9.37. The root locus plot for

G(s) = 2
s+ 2

(s+ 1)(s+ 3)

is illustrated in Figure 9.58.
If we wish to determine the gain corresponding to the top and bottoms of the

“circle” portion of the locus, we measure the distance from the two poles and zero
to the point, as illustrated in Figure 9.61 and substitute into Equation (9.29). The
three distances are approximately, 2.4495, 1.7321, and 1.4142

k ≈ (2.4495)(1.7321)
2(1.4142)

≈ 3
2
.
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Fig. 9.61 Measuring the distance from the poles and zeros of G(s) to the point of interest to
determine the gain for Example 9.37.

.

9.6.6 Computational Tools

Both MATLAB and Octave have functions to graph root locus plots.
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The MATLAB command to plot a root locus is rlocus(). As the reader prob-
ably expects, it takes the numerator and denominator of G(s) as arguments and then
plots the solutions to 1 + kG(s) = 0 for k ∈ [0,+∞)

Example 9.38. To use MATLAB to plot the root locus for the system in Exam-
ple 9.31 where

G(s) =
s+ 6

(s+ 1)(s+ 3)
,

enter

>> rlocus([1 6],conv([1 1],[1 3]))

or equivalently

>> rlocus([1 6],[1 4 3])

to create the plot.

The Octave command to plot a root locus is also rlocus(), but the transfer
function must be specified with the tf() function.

Example 9.39. To use Octave to plot the root locus for the system in Example 9.31
where

G(s) =
s+ 6

(s+ 1)(s+ 3)
,

enter

octave:> rlocus(tf([1 6],conv([1 1],[1 3])))

or equivalently

octave:> rlocus(tf([1 6],[1 4 3]))

to create the plot.

9.7 Frequency Response Analysis

Frequency response analysis of a system focuses upon analyzing the relationship
between the input and output of a transfer function when the input is a purely si-
nusoidal signal. As shown subsequently, if an input to a transfer function is a pure
sinusoid, r(t) = sinωt, the output will be a sinusoid of the same frequency, but with
a magnitude and phase shift that depend on the frequency of the input.

An advantage of frequency response methods is that the data necessary for the
analyses based on them may be determined experimentally. For a very complicated
system, it may be very difficult to determine the equations governing the system
based on first principles, so these approaches that are amenable to experimental
system identification are very useful for real-world control problems.



402 9 Classical Control Theory: Analysis

Example 9.40. Consider
R(s)
Y (s)

=
2

s+ 2

and two input signals
r1(t) = sin t, r2(t) = sin3t,

or

R1(s) =
1

s2 + 1
, R2(s) =

3
s2 + 9

.

Solving either

y1(t) = L−1
(

2
s+ 2

1
s2 + 1

)

, y2(t) = L−1
(

2
s+ 2

3
s2 + 9

)

or
ẏ1 + 2y = 2sin t, ẏ2 + 2y = 2sin3t

(the latter with zero initial conditions) gives

y1(t) =
2
5

(

e−2t + 2sint − cost
)

, y2(t) =
2

13

(

3e−2t + 2sin3t −3cos3t
)

.

Hence, for large t, the steady state solutions are

y1,ss(t) =
2
5

(2sin t − cost) , y2,ss(t) =
2

13
(2sin3t −3cos3t) .

Using the relationship

sin(ωt + φ) = cosφ sinωt + sinφ cosωt

these may be written as

y1,ss(t) =
2
5

√
5sin(t + φ1) , φ1 = tan−1

(−1
2

)

y2,ss(t) =
2

13

√
13sin(3t + φ2) , φ2 = tan−1

(−3
2

)

.

Observe that the steady-state solution is a sinusoid of the same frequency as the
input, but the magnitude is scaled and there may be a phase shift, both of which may
change as the forcing frequency ω changes. Foreshadowing what is to come, note
that if we substitute s = iω into G(s), we get for each case, respectively,

G(i) =
2

i+ 2
=

4−2i
5

G(3i) =
2

3i+ 2
=

4−6i
13

.

The magnitude of these is
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|G(i)| = 1
5

√
20 =

2√
5

|G(3i)| = 1
13

√
52 =

2√
13

.

So, it appears that if we simply substitute s = iω into G(s) and determine its mag-
nitude, it gives the magnitude of the response.

Similarly, if we compute

∠G(i) = tan−1
(−2

4

)

= tan−1
(−1

2

)

∠G(3i) = tan−1
(−6

4

)

= tan−1
(−3

2

)

,

it appears that the phase shift in the steady-state response is given by the angle of
G(iω).

The next proposition shows that if a transfer function is stable, then if the input
is Asinωt the steady-state solution will be scaled by |G(iω)| and have a phase shift
of φ = tan−1 (Im(iω)/Re (iω)).

Proposition 9.8. If all the poles of G(s) are in the left half-plane, and if

y(t) = L−1
(

G(s)
Aω

s2 + ω2

)

as t becomes large, the steady-state solution is given by

yss(t) = A |G(iω)|sin(ωt + φ) ,

where

φ = tan−1
(

Im(iω)
Re(iω)

)

.

Proof. Let

G(s) =
N(s)
D(s)

;

then one form of a partial fraction expansion will be

G(s)
Aω

s2 + ω2 =
N(s)
D(s)

Aω
s2 + ω2 =

C1(s)
D(s)

+
Aω (c1s+ c2)

s2 + ω2 .

Using the method from Appendix A.3, to determine C2(s), multiply both sides of
this equation by

(

s2 + ω2
)

and take the limit as s → iω ; that is,
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lim
s→iω

(

G(s)
Aω

s2 + ω2

(

s2 + ω2)
)

= lim
s→iω

(
AC1(s)
D(s)

(

s2 + ω2)+
Aω (c1s+ c2)

s2 + ω2

(

s2 + ω2)
)

which gives
c1iω + c2 = G(iω) ,

so

c1 =
1
ω

Im(G(iω)) , c2 = Re(G(iω)) .

Referring to Table 8.1, the c1 term corresponds to the cosine component in the steady
state solution and the c2 term corresponds to the sine component.

Hence,

yss(t) = A(Re (G(iω))sinωt + Im(G(iω))cosωt)

=
√

[Re (G(iω))]2 +[Im(G(iω))]2sin(ωt + φ)

= |G(iω)|sin(ωt + φ) ,

where

φ = tan−1
(

Im(G(iω))
Re (G(iω))

)

.

��
It turns out that it is relatively easy to sketch |G(iω)| and φ = tan−1 (Im(G(iω))/Re(G(iω)))

by hand, so it is not too difficult to obtain information about the steady-state re-
sponse of the system to sinusoidal inputs. It is more important that very useful in-
formation regarding the stability of a system under unity feedback and information
on designing feedback controllers may be obtained by graphs of the magnitude and
phase of the steady-state response to a sinusoidal input. This type of analysis is
referred to as a frequency response analysis and is common in control theory, par-
ticularly in electrical engineering.

9.7.1 Bode Plots

A Bode plot is a log–log plot of the magnitude and phase of G(iω) versus ω . It is
conventional to plot the magnitude on a log scale and it is conventional to do so in
decibels. For our purposes the definition of a decibel is

|G(iω)|dB = 20log10 |G(iω)| .

Because the plot is on a logarithmic scale, we may construct the plot for individual
terms in the product of a transfer function and then add (or subtract) them to con-
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struct the overall plot. In order to do this, we need to have handy the plot for the
typical components of a transfer function.

Example 9.41. Consider

G(s) =
10

s+ 10
.

A computer-generated Bode plot of G(s) is illustrated in Figure 9.62.
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Fig. 9.62 Bode plot for G(s) = 10/(s+10).

Let us first rewrite G(iω) in a way that subsequently helps with our analysis,

G(iω) =
10

iω + 10
=

10
iω + 10

10− iω
10− iω

=
100−10iω
100 + ω2 .

For ω � 10,
G(iω) ≈ 1, =⇒ |G(iω)| ≈ 1 = 0 dB

and
∠G(iω) ≈ 0◦.

For small frequencies, the Bode plot in Figure 9.62 corresponds to this.
For ω � 10

G(iω) ≈−10i
ω

, =⇒ |G(iω)| ≈ 10
ω

.

As ω increases, |G(iω)| decreases, and in particular whenever ω increases by a
factor of 10, |G(iω)| decreases by a factor of 10. A decrease by a factor of 10
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corresponds to a decrease of 20 dB, thus the slope of the magnitude curve at high ω
should be −20 dB/decade (−20 dB for every increase in order of magnitude of ω).
Also, for ω � 10, G(iω) is almost a purely negative imaginary number, so

∠G(iω) ≈−90◦.

For large frequencies, the Bode plot in Figure 9.62 corresponds to this.
Because of the manner in which the logarithmic scale presents the data, a fairly

accurate approximation to the magnitude and phase plots may be constructed by
straight lines. The top plot in Figure 9.63 shows the computer-generated magnitude
plot as well as a plot that is a straight line up to the frequency ω = 10 followed by
a straight line with a slope of −20 dB/decade. The frequency, ω = 10 is called the
breakpoint. The maximum error is at ω = 10. At ω = 10,

|G(10i)| =
∣
∣
∣
∣

10
10 + 10i

∣
∣
∣
∣
=
∣
∣
∣
∣

10(10−10i)
(10 + 10i)(10−10i)

∣
∣
∣
∣
=
∣
∣
∣
∣

100−100i
200

∣
∣
∣
∣
=

1√
2

which in decibels is
|G(10i)|dB = −3.0103.

Thus, the difference between the straight lines and exact magnitude at ω = 10 is
only 3 dB, and, especially when sketching the plots by hand, using the straight line
approximation should suffice.

Similarly, for the phase plot, we can approximate the phase of |G(iω)| by 0◦
for low frequencies, by 90◦ for high frequencies, and a straight line from 0◦ to 90◦
starting an order of magnitude below 10 up to an order of magnitude above 10, that
is, from 1 to 100. The bottom plot in Figure 9.63 illustrates the approximation and
the computer-generated phase.

The beauty of logarithms is that multiplication is reduced to addition. Also, recall
that when complex numbers are multiplied, the phases add. We may exploit this fact
when sketching Bode plots by sketching each term in a transfer function individually
and then adding them, as the following example illustrates.

Example 9.42. Sketch the Bode plot for

G(s) =
100

s(10s+ 1)
.

Explicitly writing all three terms we have

G(s) = 100 · 1
s
· 1

10s+ 1

so

|G(iω)| =
∣
∣
∣
∣
100 · 1

iω
· 1

10ω i+ 1

∣
∣
∣
∣
= |100| ·

∣
∣
∣
∣

1
iω

∣
∣
∣
∣
·
∣
∣
∣
∣

1
10ω i+ 1

∣
∣
∣
∣

or, in decibels and making use of the fact that the logarithm of a product is the sum
of the logarithms
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Fig. 9.63 Approximations in a Bode plot for a real pole.

|G(iω)|dB = |100|dB +
∣
∣
∣
∣

1
iω

∣
∣
∣
∣
dB

+
∣
∣
∣
∣

1
10ω i+ 1

∣
∣
∣
∣
dB

. (9.30)

Similarly, because in polar coordinates the phase of complex numbers add when
complex numbers are multiplied we have

∠G(iω) = ∠
(

100 · 1
iω

· 1
10ω i+ 10

)

= ∠100 +∠ 1
iω

+∠ 1
10ω i+ 1

. (9.31)

Consider each term in Equation (9.30).

1. |100|dB = 40 and does not depend on ω . Because it is a positive real number,
∠100 = 0◦.

2. |1/(iω)|dB has a slope of −20 dB/decade and has a value of 0 dB at ω = 1.
Because

1
iω

= − i
ω

it is a negative imaginary number, and hence

∠ 1
iω

= −90◦.



408 9 Classical Control Theory: Analysis

3. The analysis for 1/(10iω + 1) is exactly like that of Example 9.41 except that
the breakpoint frequency is ω = 0.1. Hence, the magnitude is 0 dB for ω < 0.1,
and decreases with a slope of −20 dB/decade for ω > 20. The phase is zero for
small ω and −90◦ for large ω . It may be approximated by a straight line between
0◦ and −90◦ corresponding to the frequencies ω = 0.01 and ω = 1, respectively.

The magnitudes of these three terms are plotted separately in Figure 9.64, and the
sum and an accurate magnitude plot are illustrated in Figure 9.65. The individual
approximate phase plots are illustrated in the bottom plot in Figure 9.64, and the
sum of the three approximations compared with the exact phase plot is illustrated in
the bottom plot in Figure 9.65.
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Fig. 9.64 Straight-line approximations for the three terms in the Bode magnitude plot for Exam-
ple 9.42: 100 is the solid line, 1/s is the dashed line, and 1/(10s+1) is the dotted line.

9.7.1.1 Sketching Bode Plots

Bode plots are relatively straightforward to sketch by hand. This section develops a
procedure to do so for the types of terms in transfer functions; namely, a constant
gain, poles, zeros, and complex conjugate pairs of poles and zeros.

For a constant transfer function

G(s) = k̂,
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Fig. 9.65 Sum of the straight-line approximations for the three terms in the Bode phase plot for
Example 9.42 compared to the accurate plot.

the Bode plot is simple because the constant does not depend on ω . In particular,
the magnitude in decibels is simply

|G(iω)|dB = 20log10 k̂.

If k̂ > 0, then ∠k̂ = 0◦. If k̂ < 0, then ∠k̂ = ±180◦.

Example 9.43. The Bode plot for

G(s) = 75

is illustrated in Figure 9.66.

For a real zero,
G(s) =

s
ωz + 1

then
G(iω) = 1 + i

ω
ωz .

For the case where ω � ωz, then

G(iω) ≈ 1

and hence for ω � ωz,
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Fig. 9.66 Bode plot for G(s) = 75.

|G(iω)|dB ≈ 0

and
∠G(iω) ≈ 0◦.

For the case where ω � ωz, then

G(iω) ≈ i
ω
ωz

and hence for ω � ωz, if ω increases by a factor of 10, then |G(iω)| will increase
by a factor of 10 and 20log10 |G(iω)|dB will increase by 20 dB. Hence, for ω � ωz,
the magnitude plot will have a slope of 20 dB/decade. Also, for ω � ωz,

∠G(iω) ≈ 90◦.

These are illustrated in Figure 9.67.

Example 9.44. The Bode plot for

G(s) = s+ 100

is illustrated in Figure 9.68. It may be sketched simply by considering small and
large ω relative to 100, or by rewriting the transfer function as

G(s) = 100
( s

100
+ 1

)

.
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Fig. 9.67 Bode plot for G(s) = s/ωz +1.
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Fig. 9.68 Bode plot for G(s) = s/100+1.
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From the example, it is apparent that a good approximation to the magnitude
plot will be zero for frequencies below ωz and a straight line with a slope of 20
dB/decade for frequencies above ωz. In addition, the phase may be approximated
by 0◦ for frequencies below ωz/10, by 90◦ for frequencies above 10ωz, and by a
straight line connecting 0◦ to 90◦ between them.

For a real pole,

G(s) =
1

s
ω p + 1

=
ω p

s+ ω p

then

G(iω) =
1

1 + i ω
ω p

.

For the case where ω � ω p, then

G(iω) ≈ 1

and hence for ω � ω p,
|G(iω)|dB ≈ 0

and
∠G(iω) ≈ 0◦.

For the case where ω � ω p, then

G(iω) ≈ 1
i ω

ω p
= −i

ω p

ω
,

and hence for ω � ω p, if ω increases by a factor of 10, then |G(iω)| will decrease
by a factor of 10 and 20log10 |G(iω)|dB will decrease by 20. Hence, for ω � ω p,
the magnitude plot has a slope of −20 dB/decade. Also, for ω � ω p,

∠G(iω) ≈−90◦.

These are illustrated in Figure 9.69.
Consider a transfer function with a complex conjugate pair of poles of the form

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n

=
1

(
s

ωn

)2
+ 2ζ s

ωn
+ 1

,

so

G(iω) =
1

(

1−
(

ω
ωn

)2
)

+ i2ζ ω
ωn

.

For the case where ω � ωn,
G(iω) ≈ 1

so if ω � ωn,
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Fig. 9.69 Bode plot for G(s) = 1/(s/ω p +1).

|G(iω)|dB ≈ 0

and
∠G(iω) ≈ 0◦.

At the other extreme where ω � ωn

G(iω) ≈−
(ωn

ω

)2
.

Hence, when ω increases by a factor of 10, the magnitude of G(iω) decreases by a
factor of 100. Hence, in decibels, the slope of the magnitude plot for ω � ωn will
have a slope of −40 dB/decade. Also, for ω � ωn

∠G(iω) = −180◦.

In the complex conjugate case, we also need to consider the case where ω ≈ ωn.
In that case

G(iω) ≈ 1
i2ζ

= − i
2ζ

.

Hence, when ω ≈ ωn

|G(iω)|dB ≈ 20log10

(
1

2ζ

)

.

Table 9.2 presents values of the magnitude of G(iωn) for various values of ζ .
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ζ |G(iωn)|dB
0.05 20
0.1 14
0.2 8
0.3 4.4
0.4 2
0.5 0
0.75 −3.5

1 −6

Table 9.2 |G(iωn)|dB for various ζ

A Bode plot of

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n

for various values of ζ is illustrated in Figure 9.70.
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Fig. 9.70 Bode plot for G(s) = ω2
n /
(

s2 +2ζ ωns+ω2
n

)

for various ζ .

Similarly, for a transfer function with a complex conjugate pair of zeros, the Bode
plot of

G(s) =
(

s
ωn

)2

+
2ζ s
ωn

+ 1

for various values of ζ is illustrated in Figure 9.71.
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Fig. 9.71 Bode plot for G(s) = (s/ωn)
2 +2ζ s/ωn +1 for various ζ .

9.7.1.2 Gain and Phase Margins

It is possible to determine stability of a system under unity feedback, such as the one
illustrated in Figure 9.72, using Bode plots. A system is on the boundary between
stable and unstable when it has a pole (or poles) that are exactly on the imaginary
axis on the complex plane. Because the root locus plot is a plot of all the points that
satisfy

1 + kG(s) = 0

when a branch crosses the imaginary axis, s is a purely imaginary number, that is,
s = iω , and hence for the gain value corresponding to that point G(s) satisfies

1 + kG(iω) = 0

or
kG(iω) = −1.

In terms of magnitude and phase, then at the point between stable and unstable G(s)
satisfies

|kG(iω)| = 1 ⇐⇒ |kG(iω)|dB = 0

and
∠kG(iω) = ±180◦,

or because k only affects the magnitude, but not the phase
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∠G(iω) = ±180◦.

Fig. 9.72 Unity feedback system.

−

+ G(s)R(s) Y (s)

A Bode plot is a plot of magnitude and phase versus frequency, therefore if the
magnitude plot passes through 0 dB at the same frequency as the phase passes
through ±180◦, then the system is exactly on the boundary between stable and un-
stable, that is, neutrally stable. The following example illustrates this fact.

Example 9.45. Consider

G(s) =
1

(s+ 1)(s+ 2)(s+ 3)
.

The root locus plot for this transfer function is illustrated in Figure 9.73. The gain
value where the branches cross the imaginary axis may be determined geometrically
from the root locus plot or by using the Routh criterion from Section 9.4. In either
case, k = 60 corresponds to the point where the branches cross the imaginary axis.
For k > 60 the system is unstable and for k < 60 the system is stable.
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Fig. 9.73 Root locus plot for system in Example 9.45.

Next consider the Bode plot for
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kG(s) = 60
1

(s+ 1)(s+ 2)(s+ 3)
,

which is illustrated in Figure 9.74. In the figure, the magnitude plot crosses 0 dB at
the same frequency where the phase passes through −180◦, which must be the case
from our analysis above.
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Fig. 9.74 Bode plot for neutrally stable system in Example 9.45.

Because the magnitude plot is a plot of the magnitude of a transfer function, the
effect of changing k on the Bode plot of kG(s) will be to shift the magnitude curve
up or down, as the k is increased or decreased, respectively, because if k is increased,
|kG(s)| increases. Also, because

∠kG(s) = tan−1
(

RekG(s)
ImkG(s)

)

= tan−1
(

k ReG(s)
k ImG(s)

)

= tan−1
(

ReG(s)
ImG(s)

)

,

the phase plot is unaffected by changes in k.
Consider the system in Example 9.45: if k is increased the system will become

unstable because, from the root locus plot, the poles will move into the right half
of the complex plane. The effect of increasing k on the Bode plot will be to shift
the magnitude curve up, which will make the magnitude cross through 0 dB after
the phase crosses through −180◦. Conversely, if k is decreased, the system will
be stable. On the Bode plot, if k is decreased, then the magnitude curve will pass
through 0 dB before the phase goes through −180◦.
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Example 9.46. Considering again

G(s) =
1

(s+ 1)(s+ 2)(s+ 3)

from Example 9.45, Figure 9.75 illustrates the Bode plot for the cases where k = 6,
k = 60, and k = 600. For k = 6, the magnitude is always below 0 dB. For k = 600,
the magnitude plot crosses through 0 dB at a higher frequency than the phase passes
through −180◦.
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Fig. 9.75 Bode plot for Example 9.46.

Hence, we have the situation that if G(s) is of the nature that increasing k in
Figure 9.72 destabilizes the system, we may use the Bode plot to check for stability.
One type of system that can go unstable only as k is increased is when all the poles
and zeros of G(s) are in the left half-plane. Such a system is described as minimum
phase.

Definition 9.3. A transfer function G(s) is minimum phase if all the poles and zeros
of G(s) are in the left half of the complex plane.5

So, for a minimum phase system, we have the following proposition.

5 Note that some texts define minimum phase to have no right half-plane zeros, but have no restric-
tion on the poles, such as [13]; others, such as [5] require that there are no right half-plane poles
or zeros.
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Proposition 9.9. For a minimum phase proper transfer function, G(s), the unity
feedback closed-loop transfer function

Y (s)
R(s)

=
kG(s)

1 + kG(s)

is stable if |G(iω)|dB = 0 at a lower frequency than ∠G(iω) = ±180◦. Also, if
∠G(iω) never passes through ±180◦, the system is stable and if |G(iω)|dB is always
less than zero the system is stable.

An observant reader will recognize that up until this point in this book a system
has been either unstable, neutrally stable, or stable. It would be desirable to have a
measure of stability, which are the concepts of gain margin and phase margin.

Definition 9.4. For a minimum phase system, the gain margin, denoted by gm, is the
difference between 0 dB and |kG(iω)| where ω is the frequency at which ∠G(iω)=
−180◦.

Definition 9.5. For a minimum phase system, the phase margin, denoted by φm,
is the difference between ∠G(iω) and −180◦ where ω is the frequency at which
|G(iω)|dB = 0.

When the gain and phase margins are positive, they provide a measure of stability.
If the phase never passes through −180◦ then the gain margin is infinite, which
means that the gain can be increased to an arbitrarily large value and still remain
stable. The following example illustrates these concepts.

Example 9.47. Figure 9.76 illustrates the gain and phase margins for

G(s) =
3000

(s+ 10)(s2 + 20s+ 200)
.

Because the gain margin is 10.45 dB, that means if G(s) is placed in the unity
feedback loop illustrated in Figure 9.72, it will be stable as long as the gain k satisfies

k < 10.45 dB = 1010.45/20 ≈ 3.35.

In the next chapter, we often use the phase margin as a measure of stability. In
such cases, the design objective would normally be to increase the phase margin.

9.7.1.3 Bode Plots and System Type

Recall that the system type is the lowest power of s in the denominator of a transfer
function. The system type is straightforward to determine from the low frequency
portion of the magnitude plot of Bode plot, which is illustrated with a couple of
examples.
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Fig. 9.76 Gain and phase margins for system in Example 9.47.

Example 9.48. Consider the type 1 system

G(s) = 10000
s+ 10

s(s+ 100)(s+ 1000)

= 10000

(
1
s

)

(s+ 10)
(

1
s+ 100

)(
1

s+ 1000

)

.

The last three terms in the product are a zero and two poles, respectively. Consider-
ing the term that is a pole at the origin, 1/s, substituting s = iω gives

1
iω

= −i
1
ω

,

which has a constant phase of −90◦. On the Bode plot, the magnitude curve is a
straight line with slope of −20 dB/decade, which can be seen because as ω increases
by a factor of 10, the magnitude decreases by a factor of 10 which corresponds to
a change of −20 dB. Unlike poles and zeros away from the origin, this magnitude
curve is a straight line for all frequencies, and persists at low frequencies. Thus, if
the slope of the magnitude curve is −20 dB/decade at frequencies below all other
poles and zeros, the system is type 1. The Bode plot for this system is illustrated in
Figure 9.77.
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Fig. 9.77 Bode plot of the type 1 system from Example 9.48.

A similar analysis shows that type 0 systems have a slope of zero and type 2 sys-
tems have a slope of −40 dB/decade on the low frequency portion of the magnitude
curves on Bode plots, as indicated in Table 9.3.

System Type Low Frequency Slope
type 0 0 dB/decade
type 1 −20 dB/decade
type 2 −40 dB/decade

Table 9.3 Relationship between system type and magnitude curves for low frequencies on Bode
magnitude plots

9.7.2 Nyquist Plots

A Nyquist plot basically combines both plots in a Bode plot into one plot. As is out-
lined subsequently, unlike Bode plots, it may be used to determine the stability of
a system regardless of whether it is minimum phase. The concept behind a Nyquist
plot is that if a transfer function is evaluated along a closed contour in the com-
plex plane, it is possible to determine information about the poles and zeros inside
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the contour. Hence if the contour encloses the entire right half-plane, we can infer
something about the stability of the system.

9.7.2.1 Contours in the Complex Plane

To develop some understanding about Nyquist plots, we first consider a simpler
situation. This is meant both to illustrate how a function is evaluated along a contour
and what happens when the contour encircles a pole or zero of a transfer function.

Example 9.49. Consider the transfer function

G(s) =
1

s+ 2

and the contour that traverses the unit circle in the complex plane in the clockwise
direction. The idea is to plot G(s) as the values of s go along the circle, which is
simple enough to do by tabulating s values and the corresponding G(s), and even
easier to do on a computer. Because it is the unit circle traversed in the clockwise
direction, we can let θ go from 0 to 2π and let

s = cosθ − i sinθ .

Incrementing θ by π/4 produces the data in Table 9.4 and a plot of the s-contour and
the G(s)-contour is illustrated in Figure 9.78. The points from the table are indicated
by markers on the plot. Observe from the table although the s contour is clockwise,
the resulting contour for G(s) is counterclockwise.

θ s G(s) (Exact) G(s) (Decimal)
0 1 1

3 0.33
π
4

1√
2
(1− i) 1

34

[(

16−3
√

2
)

+ i
(

5
√

2−4
)]

0.35 + 0.09i
π
2 −i 1

5 (2+ i) 0.40 + 0.20i
3π
4 − 1√

2
(1+ i) 1

34

[(

16+3
√

2
)

+ i
(

4+5
√

2
)]

0.60 + 0.33i

π −1 1 1.00
5π
4 − 1√

2
(1− i) 1

34

[(

16+3
√

2
)

− i
(

4+5
√

2
)]

0.60 - 0.33i
3π
2 i 1

5 (2− i) 0.40 - 0.20i
7π
4

1√
2
(1+ i) 1

34

[(

16−3
√

2
)

+ i
(

4−5
√

2
)]

0.35 - 0.09i

2π 1 1
3 0.33

Table 9.4 Evaluating G(s) = 1/(s + 2) for discrete points as s traverses the unit circle in the
clockwise direction.

Now we increase the radius of the contour of s so that the pole of G(s) is inside it.
The plot of the two contours is illustrated in Figure 9.79. The important consequence
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Fig. 9.78 A plot of s as it traverses the unit circle and G(s) = 1/(s+2) evaluated along the contour
of s. The values for s from Table 9.4 are indicated with a + and the values of G(s) from the table
are indicated by a ◦.

is that when the pole is in the interior of the s-contour, the resulting G(s)-contour
encircles the origin.
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Fig. 9.79 A plot of s as it traverses a circle centered at the origin that encircles the pole of G(s) =
1/(s+2). The resulting plot of G(s) then encircles the origin.
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The reason that the G(s)-contour encircles the origin when the s-contour encir-
cles the pole of G(s) is illustrated in Figure 9.80. Recall that the phase of G(s) as
a complex number is equal to the sum of the angles from all the zeros of G(s) to s
minus the sum of the angles from all the poles. As s traverses the contour, if it starts
and ends at the same point, all the angles from the zeros and poles of G(s) will start
and end at the same point as well. If there is a pole or zero inside the contour, then,
although the angle from that point to s starts and ends at the same angle, it will in-
crease or decrease by 2π . Conversely, for a pole or zero outside the contour, it will
start and end at the same value, but not increase by 2π .

If there is a zero in the interior of the s-contour, because its angle increases by 2π ,
then the angle of G(s) also increases by 2π . If there is a pole in the interior of the s-
contour, then the angle of G(s) decreases by 2π because the angles from the poles of
G(s) are subtracted from the angle of G(s). Therefore, if the s-contour is clockwise
and there is a zero of G(s) in the interior, the G(s)-contour will encircle the origin
in the clockwise direction; conversely, if there is a pole in the interior, the G(s)-
contour will encircle the origin in the counterclockwise direction. Furthermore, the
rule generalizes to multiple poles and zeros in the interior of the contour as we
would expect, as is presented in the following proposition, which these arguments
have proved.

Proposition 9.10. If C is a closed contour in the complex plane, and if s traverses
C in the clockwise direction, the number of times that the contour of G(s) encircles
the origin in the clockwise direction is equal to the number of zeros of G(s) minus
the number of poles of G(s) in the interior of C.

C
C

Fig. 9.80 A contour with no poles or zeros in the interior (left) and with a pole in the interior
(right).

9.7.2.2 The Nyquist Stability Criterion

The Nyquist criterion is to encircle the entire right half complex plane to check
if there are any poles of a transfer function there, that would correspond to the
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transfer function being unstable. We are primarily concerned with feedback systems,
therefore we consider the common case where the denominator of the closed-loop
transfer function can be put in the form, D(s) = 1+ kG(s). This is the denominator,
thus we look for zeros of 1 + kG(s) that are in the right half-plane. Finally, observe
that the effect of the one that is added to kG(s) is to shift the contour to the right
by one; hence, we can drop the one and instead of focusing on encirclements of the
origin, check for encirclements of the point s = −1.

Thus, to determine stability, if we evaluate kG(s) as s encircles the entire right
half of the complex plane, the number of zeros of kG(s) in the right half-plane minus
the number of poles of G(s) in the right half-plane will be equal to the number of
clockwise encirclements of the point s = −1. The contour that is commonly used
starts at the origin, goes “up” along the positive imaginary axis to s = +i∞, then
proceeds clockwise at s = ∞ around the right half-plane to the negative imaginary
axis and finally returns to the origin from s = −i∞, as is illustrated schematically in
Figure 9.81. If G(s) is proper, then the part of the contour at infinity does not need
to be considered, because at all of those points G(s) will be zero. The result of all
of this is the famous Nyquist stability criterion, that is restated as follows.

Fig. 9.81 Contour for the Nyquist stabil-
ity criterion.

Re(s)

Im(s)

s = i∞

s = −i∞

C

Proposition 9.11. If kG(s) is proper, has no poles or zeros on the imaginary axis and
if kG(s) has p poles in the right half-plane, then the number of zeros of 1+kG(s) in
the right half-plane is equal to the number of times the kG(s)-contour encircles the
point s = −1 in the clockwise direction minus p.

So, for stability then, we have the following.

Corollary 9.1. If kG(s) is proper, has no poles or zeros on the imaginary axis, and
if kG(s) has p poles in the right half-plane, then there will be no zeros of 1 + kG(s)
in the right half-plane if the kG(s)-contour encircles the point s =−1 p times in the
counterclockwise direction.
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Plotting Nyquist plots is relatively straightforward and is illustrated with a few
examples.

Example 9.50. Plot the Nyquist plot for

G(s) =
1

s+ 1
.

Inasmuch as

G(iω) =
1

iω + 1
=

1− iω
1 + ω2 , (9.32)

we can see that for very small ω , the plot starts at the point s = 1 and initially will
have a negative imaginary component. Because of the ω2 term in the denominator,
as ω becomes large, the plot will approach the origin. Furthermore, for very large
ω ,

ω � 1 =⇒ G(iω) ≈− i
ω

,

the plot will approach the origin tangent to the negative imaginary axis. From the
form of G(iω) in Equation (9.32), it is clear that neither the real nor the imaginary
component of G(iω) will switch signs for ω > 0. Hence, the segment of the contour
for G(s) corresponding to the segment of the s-contour corresponding to the positive
imaginary axis is the bottom half of the contour plotted in Figure 9.82. Because the
stability analysis depends on whether the plot for G(s) encircles the point s = −1 in
the clockwise or counterclockwise direction, we must keep track of orientation. In
this example, remember that the plot for G(s) started at the point s = 1 and went to
the origin in the bottom half of the complex plane.
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Fig. 9.82 Nyquist plot for Example 9.50.



9.7 Frequency Response Analysis 427

The transfer function is proper, therefore the whole G(s)-contour corresponding
to the s-contour that is at infinity is at the origin. Referring to Equation (9.32),
the plot corresponding to the s-contour on the negative imaginary axis will be a
reflection about the real axis of the first part of the plot because the only difference
is that ω changed sign. Hence, the segment of the contour for G(s) corresponding
to the segment of the s-contour corresponding to the negative imaginary axis is the
top half of the contour plotted in Figure 9.82.

Remark 9.2. For a proper transfer function, it is always the case that the Nyquist
plot is symmetric about the real axis. This is because, for s = iω the real part of
G(s) is determined by the even powers of s and the imaginary part by the odd pow-
ers. Hence, the difference between the segments of the s-contour corresponding to
the positive and negative imaginary axes will only affect the imaginary part of the
contour for G(s). Hence, as a practical matter, we only need to plot the part of the
Nyquist plot corresponding to s = +iω .

Example 9.51. Plot the Nyquist plot for

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n
.

Substituting s = iω gives

G(iω) =
ω2

n

(ω2
n −ω2)+ i(2ζωnω)

.

Note the following.

• For ω = 0, the contour for G(s) starts at s = 1.
• The plot for G(iω) will have a negative imaginary component initially. If it is

necessary to see this, multiply G(iω) by the complex conjugate of the denomi-
nator.

• The imaginary component will always be negative for ω > 0.
• As ω → +∞, the real part dominates, and hence the plot approaches the origin

tangent to the real axis.
• The real part of G(iω) will switch signs by crossing the negative imaginary axis

when ω passes the value of ωn.

The Nyquist plot for

G(s) =
1

s2 + s+ 1

is illustrated in Figure 9.83, showing those features.

The following example demonstrates that the Nyquist analysis works for a sys-
tem with left half-plane poles.

Example 9.52. The Nyquist plot for
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Fig. 9.83 Nyquist plot for a second-order system in Example 9.51.

G(s) = k
1

s−2

with k = 1 and k = 3 is illustrated in Figure 9.84. Because k scales G(s), the larger
contour corresponds to the larger k.

Because

G(iω) =
k

iω −2
= k

−2− iω
4 + ω2

the plot starts at s = k/2 and initially has a negative imaginary component. For
very large ω it approaches the origin. Hence the contour has a counterclockwise
orientation. The number of right half plane zeros of 1+kG(s) is equal to the number
of counterclockwise encirclements of s = −1 minus the number of right half-plane
poles of G(s), of which there is one, therefore there is one right half-plane zero of
1+ kG(s) for k = 1 and zero for k = 3. Hence the system is unstable for the smaller
k and stable for the larger k.

A third-order system is one where the system may actually go unstable even if
the open loop transfer function has all left half-plane poles.

Example 9.53. Plot the Nyquist plot for

G(s) =
k

s3 + 6s2 + 11s+ 6
(9.33)

and determine the value for k at which the system goes unstable under unity feed-
back.

Setting k = 1 and substituting s = iω gives
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Fig. 9.84 Nyquist plot for system in Example 9.52.

G(iω) =
1

6(1−ω2)+ iω (11−ω2)
.

• Substituting s = 0, shows that the plot starts at G(0) = 1/6.
• For ω � 1, G(iω) has a negative imaginary component, so the contour of G(s)

starts downward.
• The real part will switch signs at ω = 1, and hence the contour of G(s) will cross

the imaginary axis.
• The imaginary part will switch signs at ω =

√
11 and hence cross the real axis.

• For ω � 1, the contour of G(iω) will approach the origin.
• For s = −iω the contour of G(s) will be the same as the contour when s = iω ,

except the imaginary part will have the opposite sign. Hence, it is a reflection
about the real axis of the contour when s = iω .

The plot is illustrated in Figure 9.85. Because the contour crosses the real axis when
ω =

√
11, this occurs at

G
(

i
√

11
)

=
1

6(1−11)
=

1
60

.

Hence, the magnitude of G(s) can be increased by a factor of 60 before it encircles
s = −1. Because G(s) has no right half-plane poles, this corresponds to the value of
k where the closed-loop system is neutrally stable.
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Fig. 9.85 Nyquist plot for system in Example 9.53.

9.7.2.3 Stability Margins and Nyquist Plots

The same stability margins as were defined with Bode plots may be obtained from a
Nyquist plot. The gain margin is the amount that the open-loop gain can be increased
before the closed-loop system becomes unstable, thus it is related to the point where
the Nyquist plot crosses the real axis between the points s = 0 and s = −1. In par-
ticular, the point at which it crosses is the reciprocal of the gain margin. Also, the
angle measured from the negative imaginary axis to the point at which the contour
for G(s) has a magnitude of one is the phase margin. Both concepts are illustrated
in Figure 9.86, which shows the portion of the Nyquist plot for

G(s) =
10

s3 + 4s2 + 6s+ 6

corresponding to the portion of the s-contour along the positive imaginary axis, that
is, +iω .

A single stability measure that has features superior to those of the gain and phase
margins is the minimum distance in the complex plane that the Nyquist contour
passes to the critical point s = −1. This is superior in the sense that it is one metric
instead of two. Furthermore, although perhaps unusual, it is possible for a system to
have large gain and phase margins and still respond in a manner that characterizes
neutral stability. Such a system is explored in Exercise 9.38. For the transfer function
in Equation (9.33), Figure 9.87 also illustrates a circle of radius r = 0.3 centered at
s = −1. Because the circle is tangent to the Nyquist plot, that is the closest the plot
passes to the point s = −1, and hence the stability margin is sm = 0.3.
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Fig. 9.86 Gain and phase margins from a Nyquist plot.
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Fig. 9.87 The circle centered at s = −1 has a radius of 0.3; hence, the minimum distance the
Nyquist contour passes to the point s = −1 is sm = 0.3.
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Definition 9.6. For a closed-loop stable system, the stability margin, denoted by sm,
is the minimum distance in the complex plane that the associated Nyquist contour
passes to the point s = −1.

9.7.2.4 Poles of G(s) on the Imaginary Axis

If there is a pole of G(s) on the imaginary axis, the s-contour must be modified be-
cause otherwise the s-contour would pass through a point where G(s) is not defined.
The approach is simply to take a small deviation around the pole and take the limit
as the deviation goes to zero. This is illustrated in Figure 9.88. It is conventional to
deviate into the right half-plane because doing so does not include the pole on the
imaginary axis in the interior of the s-contour; however, it is acceptable to deviate
into the left half-plane, but in that case because the pole would be in the interior of
the s-contour, it needs to be considered as one of the right half-plane poles of G(s)
when interpreting the number of encirclements of s = −1 for stability.

Fig. 9.88 Contour for the Nyquist stabil-
ity criterion with imaginary poles.

Re(s)

Im(s)

s = i∞

s = −i∞

C

Example 9.54. Consider

G(s) =
1

s(s+ 2)
. (9.34)

Because G(s) is not defined at the origin the contour must deviate around the pole
at the origin. Inasmuch as we normally started the plot by beginning with ω = 0 and
proceeding up the positive imaginary axis, we still simply start at a small positive
value and deal with the deviation about the origin at the end.

Substituting s = iω gives

G(iω) =
1

−ω2 + 2ω i
=

−ω2 −2ω i
ω2 (ω2 + 4)

= − 1
ω2 + 4

− i
2

ω (ω2 + 4)
.
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Thus for 0 < ω � 1, G(iω) ≈ −1/4− i/(2ω). So, in words, it is coming from
minus imaginary infinity along a real value of −1/4. Neither the real nor imaginary
parts of the G(s)-contour will change sign as the s-contour proceeds up the positive
imaginary axis, and it will approach the origin as ω → ∞. The segment correspond-
ing to the s-contour at infinity is all at the origin, and the segment for the portion
of the s-contour up the negative imaginary axis from negative infinity up close to,
but not including the origin, will be a reflection across the real axis of the portion of
the G(s)-contour corresponding to the positive iω segment. We have not yet dealt
with the deviation about the origin, but the Nyquist contour constructed so far is
illustrated in Figure 9.89.
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Fig. 9.89 Partial Nyquist contour for Example 9.54.

The very small deviation about the origin has large consequences. Because in
that detour, s is very small, the magnitude of G(s) will be very large. This portion
of the G(s) contour will connect the segment of the G(s)-contour that is going up to
positive i∞ to the one that is coming up from −i∞. Numerically computing a semi-
circular contour that deviates about the origin in a circle with radius 1/10 results in
the contour illustrated in Figure 9.90. Note that the point s = −1 is not encircled,
but it would have been if the G(s)-contour corresponding to the deviation about the
origin had “wrapped around” to the left instead of to the right, as can happen. The
way to interpret Figure 9.90 is that, as the deviation about the origin approaches
zero, the semicircular part of the G(s)-contour will increase in magnitude to be a
contour at infinity.

The final issue to resolve is to verify theoretically, as opposed to simply numeri-
cally for a single example, that the semicircular portion of the contour in Figure 9.90
is guaranteed to be a semi-circle (180◦) connecting the other two branches of the
G(s)-contour, as opposed to, say, a circle and a half (540◦). Figure 9.91 illustrates
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Fig. 9.90 Nyquist contour for Example 9.54.

the pole at the origin and the detour about it with a small radius r = ε . Assume that
detour is very small compared to the magnitude of all the other poles and zeros, so
in the scale of the figure, all the other poles and zeros are far away.

Fig. 9.91 Small deviation of the contour
about a pole at the origin.

Re

Im c

ε

−ε

Observe that as the values for s traverse the detour, the angle from the pole at the
origin to s changes by 180◦. If all the other poles and zeros are far away, the angle
from them to s changes negligibly. Hence, G(s) must undergo a net change in the
angle of 180◦, meaning that it can only be a semicircle.

Remark 9.3. Based on the analysis in the last paragraph of the preceding example,
if there are two poles at the origin, then G(s) undergoes a net change in angle of
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approximately 360◦ as the s-contour detours the origin. Similarly, if there are three
poles, the net change is 540◦, and so on. Hence, it is easy to determine the system
type from a Nyquist plot.

9.8 Exercises

9.1. Write a computer program that determines an approximate numerical solution
to the equations of motion for the robot arm from Example 9.1. Assuming zero
initial conditions and a small desired angle, use your program to verify the following
“rules of thumb” for PID control for a step input.

Your program should be for the original nonlinear model, not the linearized one
where we assumed |θ | � 1. The idea is to verify that what we determined using the
linearized version works for the nonlinear case as well, as long as the desired angle
of the robot arm is small.

1. For proportional control, that is, kp > 0, kd = 0, and ki = 0, the solutions are
oscillatory, and increasing kp increases the frequency of oscillation (which de-
creases the rise time and peak time) but decreases the mean steady-state error.
The settling time is infinite. Hint: Pick a starting value of kp = 5.

2. Add derivative control the proportional controller (i.e., kp > 0, kd > 0, and ki = 0)
and verify the following.

a. For small kd the solutions are decaying oscillations.
b. Increasing kd decreases the settling time.
c. Increasing kd to a sufficiently large value eliminates the oscillatory behav-

ior completely, resulting in an solution that exponentially decays to the final
steady-state value.

d. Increasing kp decreases the final steady state error.
e. Increasing kp decreases the rise time.

Hint: Pick a starting value of about kd = 0.5.
3. Add integral control (PID control) and verify the following.

a. PID control eliminates the steady-state error, even for small values of kp.
b. Increasing ki generally increases the overshoot and settling time.
c. Increasing kp decreases rise time, but may increase overshoot.
d. Increasing kd increases damping and stability.

Hint: Pick a starting value of about ki = 0.5.
4. Choose a set of gain values from the above simulations that seems to work well.

Use those for an attempt to have the desired angle be large. Does it still work
well?

9.2. Consider the robot arm from Example 9.1 where the torque is from a dc motor,
as is illustrated in Figure 9.92. Let m = 1, J = 2, l = 2, g = 9.81, ke = 4, kτ = 5,
R = 10, and the initial conditions be zero. Write a computer program to determine an
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approximate numerical solution for the system. Use the nonlinear equations and do
not assume that θ � 1. Use proportional control to specify the voltage supplied to
the motor to investigate its efficacy. If necessary add derivative and integral control.
Experiment to find good values for the gains such that the transient response has
what you consider a good response (low rise time, low overshoot, and fast settling
time) and very small or zero steady-state error. Consider each of the following cases.

1. θd is small and constant.
2. θd ≈ 1 and constant.
3. θd ≈−1 and constant.
4. π/2 < θd < π and constant.
5. −π < θd < −π/2 and constant.
6. θd(t) = sin t.

When θd(t) varies with time, the problem is usually called tracking.

9.3. This problem investigates the relationship between pole locations and the sta-
bility of the response for the robot arm example with PID control. Using the transfer
function from Θd(s) to Θ(s) given by Equation (9.10), let J = mgl = 1, kp = 24, and
kd = 8. The denominator is a third-order polynomial, thus it is difficult to factor by
hand, so use the pzmap() function in MATLAB or Octave, or something equiva-
lent, to determine the pole locations for the cases illustrated in Figure 9.7. What is
the difference between the pole locations for the stable responses and the unstable
response?

Fig. 9.92 DC motor for Exercises 9.2 and
9.12.

+

−

vin

R

kτ ,ke

9.4. Verify the results in Figure 9.21 by using a computer to compute a numerical
solution to the step response to

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n

and by appropriately choosing and varying ωn and ζ so that the poles move in the
three directions indicated in the figure. Create plots illustrating the pole locations
and corresponding step responses and whether the change in the step response when
the pole is moved in one of the three directions indicated is as predicted.
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9.5. If s1 = a1 + ib1 and s2 = a2 + ib2, and s1s2 = (a1a2 −b1b2)+ i(a1b2 + a2b1)
use the fact that r =

√
a2 + b2 and

θ = tan−1
(

b
a

)

to show that in polar coordinates

s1s2 = (r1r2,θ1 + θ2) ,
s1

s2
=
(

r1

r2
,θ1 −θ2

)

.

9.6. Show that if the transfer function has multiple poles at the origin; that is

Y (s) =
1
sn R(s)

then regardless of the input, y(t) will contain an (n−1)th-order polynomial in t; that
is,

y(t) = c0 + c1t +
c2

2
t2 + · · ·+ cn−1

(n−1)!
tn−1 + other terms.

9.7. Use a partial fraction expansion to compute x(t) when

X(s) =
4

s2 + 2s+ 4

(
1
s

)

.

Use a partial fraction expansion to compute x(t) when

X(s) =
4

(s2 + 2s+ 4)(s+ 20)

(
1
s

)

.

Are the responses similar? Explain whether this was expected or unexpected.

9.8. Consider

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n
.

Referring to Figure 9.28, choose ζ and ωn such that the poles are

1. In the hatched region where both the settling time and the overshoot specifica-
tions are satisfied

2. Where the settling time specification is satisfied but the overshoot specification
is not

3. Where the overshoot specification is satisfied but the settling time specification
is not

4. Where neither specification is satisfied

Use the MATLAB or Octave step() command, or something equivalent, to verify
the relationship between the pole location and step response characteristics.
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9.9. Figure 9.93 contains six plots of poles and zeros for different transfer functions.
Figure 9.94 contains step responses. Match the pole–zero maps with the correspond-
ing step responses. Sketch them next to each other and indicate on the figures the
attributes of the pole and zero locations that correspond to attributes in the step
responses.
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Fig. 9.93 Pole and zero locations for Exercise 3.29.

9.10. The step response of

G(s) =
ω2

n

s2 + 2ζωns+ ω2
n
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Fig. 9.94 Step responses for Exercise 3.29.

is given by Equation (9.16). Now consider

G(s) =
ω2

n
r (s+ r)

s2 + 2ζωns+ ω2
n
.

Compute the partial fraction expansion of the step response of G(s), and using the
resulting time function, explain why the rules for an additional real zero added to a
second-order system are true.

9.11. The root locus plots we considered in Section 9.6 considered only the case
where k ∈ [0,+∞) and is often called the 180◦ root locus. Determine each of the
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rules (Rule 9.1 through Rule 9.7) for the case where k ∈ (−∞,0] , called the 0◦ root
locus.

9.12. Consider a dc motor connected to the circuit illustrated in Figure 9.92. Assume
that the shaft of the motor has a moment of inertia J.

1. If the block diagram in Figure 9.95, represents this system, determine G(s).

Fig. 9.95 Block diagram for dc motor in
Exercise 9.12.

Vin(s) Θ(s)
G(s)

2. Consider the block diagram illustrated in Figure 9.96. Determine the transfer
function, C(s) in the controller block for

a. Proportional control
b. Proportional plus derivative control
c. Proportional plus integral control
d. Proportional plus derivative plus integral control

Fig. 9.96 Feedback control loop for
Exercise 9.12.

+

−

Θd(s) Θ(s)
G(s)C(s)

3. Determine the transfer function from the desired angular position of the motor to
the actual position, Θd(s)/Θ(s) (do not substitute for C(s) or G(s)).

4. If ω = θ̇ , determine the transfer function Ω(s)/Ωd(s).
5. If

ke = 1, kτ = 2, R = 3, J = 4

and we use proportional control, use the root locus plotting rules to sketch, by
hand, how the poles of Θ(s)/Θd(s) vary as the proportional gain is varied from 0
to +∞. Determine the approximate gain value, if any, that gives a damping ratio
of approximately 1/2.

6. For the same parameter values as above, use PD control and fix the ratio between
the proportional gain and the derivative gain to be 1/2; that is,

vin = kp (θd −θ )+ kd
(

θ̇d − θ̇
)

= k

[

(θd −θ )+
1
2

(

θ̇d − θ̇
)
]

,

sketch the root locus plot for the system. Discuss qualitatively what will happen
to the rise time, the percentage overshoot, and the settling time as k increases.
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9.13. In this problem we design a servo motor. Consider the circuit illustrated in
Figure 9.97 which is comprised of a voltage source, a resistor, and a dc motor.

The mass moment of inertia of the load on the motor is J, the torque and back
emf constants of the motor are kτ and ke, respectively, the angular position of the
motor is θ , and the other parameters are as indicated in the figure.

All the physical parameters have values greater than zero.

+

−

vin(t)

J

θ(t)

R

ke,kτ

Fig. 9.97 Servo motor for Exercise 9.13.

1. Determine the transfer function from the input voltage to the angular position of
the motor shaft.

2. Draw a block diagram for the system if proportional control is used where the
input to the block diagram is the desired position of the servo and the output is
the actual position. (You don’t need this for the problem, but proportional control
is easy to implement for this circuit by attaching a potentiometer to the output of
the motor.)

3. If proportional control is used, what will be the steady-state error to a unit step
input. Does the steady-state error depend on the gain used in proportional control
or the physical parameters of the motor and circuit?

4. Without using any numerical values, sketch what the root locus for this system
would look like.

5. If a load is increased so that J increases, sketch how the root locus would change.
If k is such that 0 < ζ < 1 for the first case before the load was increased and k
is not changed when J increases, what will be the effect on the response charac-
teristics; specifically,

a. rise time (use tr ≈ 1.8/ωn)
b. overshoot
c. settling time
d. steady-state error

Justify your answer by referring to the root locus plots.

9.14. Consider

G(s) =
4

(s+ 1)(s+ 3)
.



442 9 Classical Control Theory: Analysis

1. Sketch the root locus plot for this transfer function.
2. If this transfer function is placed in a feedback loop as illustrated in Figure 9.96,

with C(s) = k, what will happen to the overshoot of the step response as k gets
large? Explain your answer.

3. Determine the maximum value for k so that the percentage overshoot remains
under 20%.

9.15. Consider

G(s) =
s+ 5

(s+ 1)(s+ 3)
.

1. Sketch the root locus plot for this transfer function.
2. If this transfer function is placed in a feedback loop as illustrated in Figure 9.96,

with C(s) = k, what will happen to the overshoot of the step response as k gets
large? Explain your answer.

9.16. Consider

G(s) =
1

(s+ 1)(s+ 3)(s+ 5)
.

1. Sketch the root locus plot for this transfer function.
2. What can you say about the stability of the response of the system under unity

feedback as k gets large?

9.17. Consider

G(s) =
4

(s+ 2)(s2 + 2s+ 2)
.

1. Sketch the root locus plot for this transfer function.
2. From the root locus plot, determine the range of positive gain values for which

the transfer function under unity feedback will be stable.
3. Verify your answer in the previous part by using the Routh array.
4. Sketch the Bode plot for this transfer function.
5. By referring to the Bode plot, is it possible to place a lead compensator of the

form
Gc(s) =

s− z
s− p

in series with the plant so that it is stable for all positive gains? Explain your
answer.

9.18. Consider

Gp(s) =
1

(s−1)(s+ 1)
, Gc(s) =

s+ 2
s+ 3

, Gs(s) = 1

in the block diagram illustrated in Figure 9.44. Sketch the root locus plot for the
system and by referring to the plot, determine the range of k values for which the
system is stable.
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9.19. A minor complication occurs if a transfer function has two more poles or zeros
at the same location. The root locus plot for

G(s) =
s+ 3

s2 (s+ 2)
,

which has a double pole at the origin is illustrated in Figure 9.98 and the root locus
for

G(s) =
s+ 3

s(s+ 2)2 ,

which has a double pole at s = −2 is illustrated in Figure 9.99.
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Fig. 9.98 Root locus plot for G(s) = (s+3)/
(

s2 (s+2)
)

for Exercise 9.19 with a double pole at
the origin.

Do all the rules summarized in Table 9.1 still apply? Explain your answer for
each of the rules by specifically referring to the features of Figures 9.98 and 9.99.

9.20. In order to do this problem, you must understand how to deal with multiple
poles in the same location, which was considered in Exercise 9.19. Consider the
system illustrated in Figure 9.100.

1. Determine the transfer function from the applied force f (t) to the position of the
mass x(t).

2. Sketch the root locus plot for this transfer functions if m = 1.
3. What does the root locus plot tell you about using proportional control to control

the position of the mass? Specifically,

a. Will it be stable, unstable, or on the margin
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Fig. 9.99 Root locus plot for G(s) = (s+3)/
(

s(s+2)2
)

for Exercise 9.19 with a double pole at

s = −2.

b. For the step response, by changing the proportional gain can you affect
i. The rise time

ii. The settling time
iii. The percent overshoot

Fig. 9.100 System for Exercise 9.20.

m

x(t)

f (t)

9.21. Consider again the system illustrated in Figure 9.100.

1. Determine the transfer function from the applied force f (t) to the velocity of the
mass ẋ(t).

2. Sketch the root locus plot for this transfer function.
3. Discuss the use of proportional control for this system. What characteristics of

the response of the system can you affect by altering the proportional gain?

9.22. Sketch the root locus plot for

Y (s)
R(s)

=
kG(s)

1 + kG(s)
,
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where

G(s) =
1

s2 + 4s+ 5
.

1. Indicate on your root locus plot the region on the complex plan where the the
maximum percent overshoot for the step response for a complex conjugate pair
of poles is less than 16%. Label any angles that you use in this determination.

2. Compute and then indicate on the root locus plot the region on the complex plan
where the the rise time for the step response for a complex conjugate pair of poles
is less than .65 seconds. Use the approximation tr ≈ 1.8/ωn. Label any angles or
distances that you used in this determination.

3. Use the root locus plot to determine the approximate range of values for the
parameter k that satisfy both the rise time and overshoot specifications.

9.23. Sketch the root locus plot for

Y (s)
R(s)

=
kG(s)

1 + kG(s)
,

where

G(s) =
1

(s+ 3)(s2 + 4s+ 5)
.

Be sure to include the details of all your computations.

1. Use your sketch on the previous page to determine the approximate value for k
at which the root locus crosses the imaginary axis.

2. Use the Routh array to determine the exact value of k at which the root locus
crosses the imaginary axis.

9.24. Sketch the root locus plot for

G(s) =
20

s2 + s+ 10
.

A phase lead compensator, which is considered in the next chapter, is of the form

C(s) =
s+ 10
s+ 20

.

Sketch the root locus plot for C(s)G(s) and explain why this phase lead compensator
increases the stability of the system under unity feedback.

9.25. Consider

G(s) =
1

s(s+ 2)(s+ 4)
.

1. Sketch the root locus plot for this transfer function.
2. Determine the closed-loop transfer function (i.e., Y (s)/R(s)) if G(s) is in the

block diagram illustrated in Figure 9.101. Use the Routh array to determine the
values for k for which the closed-loop transfer function is stable.
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Fig. 9.101 Closed loop system for Exer-
cise 9.25.

+

−

R(s) Y (s)
k G(s)

3. Verify your computation from the previous step by using the root locus plot to
determine the values for k for which the closed-loop transfer function is stable.

4. Sketch the Bode diagram for gain values much smaller, equal to, and much larger
than the gain values you determined in the previous steps and determine the gain
and phase margins in each case.

9.26. Sketch the Bode plot for

G(s) =
100

(s+ 10)(s+ 100)
.

9.27. Sketch the Bode plot for

G(s) =
100

(s+ 10)(s+ 100)(s+ 1000)
.

9.28. Sketch the Bode plot for

G(s) =
s

(s+ 10)(s+ 100)(s+ 1000)
.

9.29. Sketch the Bode plot for

G(s) =
s+ 100

(s+ 10)(s+ 10000)
.

9.30. A Bode plot that was determined experimentally for a system that has all of its
poles and zeros in the left half of the complex plane is illustrated in Figure 9.102.

1. If this system were placed under unity feedback sketch what the unit step re-
sponse would look like for k = 1, k = 10, and k = 20. Explain your answer.

2. For the k = 1 case, what is the steady-state value to a unit step response under
unity feedback? Explain your answer.

9.31. Consider the lowpass filter illustrated in Figure 9.103. Determine the transfer
function from the input voltage to the output voltage. Sketch the Bode plot for this
circuit if RHP = 100 and CHP = 100 and explain why it is called a lowpass filter.

9.32. Consider the highpass filter illustrated in Figure 9.104. Determine the transfer
function from the input voltage to the output voltage. Sketch the Bode plot for this
circuit if RHP = 10 and CHP = 10 and explain why it is called a highpass filter.

9.33. Sketch the Bode plot for
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Fig. 9.102 Bode plot for Exercise 9.30.

Fig. 9.103 Lowpass filter for Exer-
cise 9.31.

+

−

Vin Vout

RLP

CLP

Fig. 9.104 Highpass filter for Exer-
cise 9.32.

+

−

Vin VoutRHP

CHP

G(s) =
20000

(s+ 10)(s+ 1000)
.

9.34. Sketch the Bode plot for

G(s) =
1

(s+ 10)(s−1)
.
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Be careful to treat the (s−1) term properly. For this plot, what would be the gain
and phase margins? Would they indicate that the system is stable? Also sketch the
root locus plot and determine the gain where the system crosses the imaginary axis.
Is it crossing from unstable to stable, or vice versa? If you were to attempt to infer
stability information from the Bode plot using the gain and phase margins, would
you get the right answer? Explain your reasoning.

9.35. Sketch the Bode and Nyquist plots for

G(s) =
s+ 5

(s+ 1)(s+ 10)
, G(s) =

1
s(s+ 1)(s+ 10)

, G(s) =
100

s2 (s+ 1)(s+ 100)
.

9.36. Repeat Exercise 9.34 with

G(s) =
s−2

(s+ 1)(s+ 10)
.

9.37. Plot the Nyquist plot for

G(s) =
k

(s−1)(s+ 3)(s+ 4)

when k = 1, k = 15, and k = 60. Determine the stability of the system under unity
feedback for each value of k. Verify your Nyquist analysis using a root locus plot.

9.38. This exercise is from [5]. Consider

G(s) =
0.38

(

s2 + 0.1s+ 0.55
)

s(s+ 1)(s2 + 0.06s+ 0.5)
.

• Sketch the Bode plot and determine the gain and phase margins. Verify your plot
using a computer software package.

• Sketch the Nyquist plot and determine the gain and phase margins. Verify your
plot using a computer software package.

• Plot the closed-loop step response of the system under unity feedback using a
computer software package. Describe whether the response of the system seems
to be consistent with large gain and phase margins. Explain your answer by re-
ferring to the Nyquist plot.

9.39. Plot the Nyquist contour and determine the range of gains for stability under
unity feedback for the open-loop transfer function

G(s) =
1

s−2
.



Chapter 10
Classical Control Theory: Design

This chapter considers some standard methods to design controllers. As is the case
with design in engineering in general, there are many different ways to do this, but
this book is limited to two types. This chapter focuses on lead–lag control. A lead
compensator generally enhances the stability of a system and is designed to meet
the transient response specifications for the system. A lag compensator generally
decreases the steady-state error without significantly altering the transient response
characteristics of the system. The previous chapter, by way of introduction to con-
trols, developed the usual rules for design of PID controllers.

Various configurations are possible for feedback compensation. This book par-
ticularly focuses on compensation added in a feedback loop in the configuration
illustrated in Figure 10.1 which is commonly called cascade compensation. In Fig-
ure 10.1, the block with Gp(s) represents the plant dynamics, the output of which
we desire to control. The block Gc(s) is the compensator block, which must be de-
signed based upon the performance specifications for the system. The block with
Gs(s) represents the sensor dynamics. In this text, this is often idealized as the iden-
tity; however, in most applications the dynamics (or, at a minimum, the gain) of the
sensors must be considered.

+

−

R(s) Y (s)
Gc(s) Gp(s)

Gs(s)

Fig. 10.1 Cascade compensation configuration.

449B. Goodwine, Engineering Differential Equations: Theory and Applications, 
DOI 10.1007/978-1-4419-7919-3_10, © Springer Science+Business Media, LLC 2011
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10.1 System Type and Steady-State Error

There is a very simple relationship between system type and steady-state error for
different types of inputs. Consider the unity feedback system in Figure 10.2. If the
error is defined as the signal out of the comparator, then

E(s) = R(s)−Y(s) =
(

1− Y (s)
R(s)

)

R(s) =
(

1− kGc(s)Gp(s)
1 + kGc(s)Gp(s)

)

R(s)

=
1

1 + kGc(s)Gp(s)
R(s).

+

−
k Gc(s) Gp(s)

R(s) Y (s)E(s)

Fig. 10.2 Unity feedback system.

Recall the system type is the lowest power of s in the polynomial in the denomi-
nator of the system. We focus on the open-loop compensated system, so this depends
on the denominator of Gc(s)Gp(s). The types of inputs considered are step inputs,
ramp inputs, and parabolic inputs. The details are simple, so a couple of examples
should suffice to elucidate the concept. For an input R(s), the steady-state error is
given by the final value theorem

ess(t) = lim
s→0

s
1

1 + kGc(s)Gp(s)
R(s).

Example 10.1. Consider

kGc(s)Gp(s) =
k

s(s2 + 3s+ 4)
,

which is a type 1 system. The steady-state error is

ess = lim
s→0

s
1

1 + k
s(s2+3s+4)

R(s) =
s
(

s2 + 3s+ 4
)

s(s2 + 3s+ 4)+ k
sR(s).

Observe the following.

1. If the input is a step (i.e., R(s) = 1/s), then ess = 0.
2. If the input is a ramp (i.e., R(s) = 1/s2), then ess = 4/k.
3. If the input is a parabola (i.e., R(s) = 1/s3), then ess → ∞.
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These all follow from the fact that the system is type 1, which results in one being
the lowest power of s in the numerator of E(s). Combining this with the s in the
final value theorem, and the various powers of s in the denominator of R(s) for a
step, ramp, and so on, the result follows. Finally, observe that in the case where the
steady-state error is finite and nonzero, the error is decreased when the gain k is
increased.

A plot illustrating the closed-loop response of the system to a ramp input with
two different values of k appears in Figure 10.3. Note that because the system is type
1, the closed-loop steady-state error is nonzero and finite, and when k is increased,
the error is decreased.
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r(t)
x(t), k = 1
x(t), k = 4

Fig. 10.3 The response of the type 1 system from Example 10.1 to a ramp input illustrating that
the finite steady-state error decreases as the gain is increased.

Following exactly the same analysis as Example 10.1 gives the results summa-
rized in Table 10.1. If there is also a block in the feedback loop, Gs(s) will appear
in these formulae (Exercise 10.9).

R(s) = 1/s R(s) = 1/s2 R(s) = 1/s3

Type 0: 1/(1+ kGc(0)Gp(0)) ∞ ∞
Type 1: 0 1/(kGc(0)Gp(0)) ∞
Type 2: 0 0 1/(kGc(0)Gp(0))

Table 10.1 Steady-state errors versus system type.
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10.2 Controller Design Using a Root Locus Plot

Root locus plots are very useful for control design because they present pole loca-
tions for every positive value of the gain.

10.2.1 Proportional Control

Root locus plots may be used to determine a “good” value for the feedback gain if
it happens that the root locus plot goes through the region in the complex plane cor-
responding to the desired response characteristics. Because typically it would only
be fortuitous for this to occur, the following sections present methods of dynamic
compensation that alter the shape of the root locus plot to make it pass through a
desired region of the complex plane. This section deals with the case where the only
issue is to determine a good value for the closed-loop gain.

Example 10.2. Consider again the system illustrated in Figure 9.36 with the transfer
function

X(s)
F̂(s)

=
k
m

s2 + b
m s+ k

m

,

which is a type 0 system. If m = k = 1 and b = 4 then

X(s)
F̂(s)

=
1

s2 + 4s+ 1
.

The root locus plot is relatively simple. The open-loop transfer function has two
poles, one at s ≈ −3.73205 and the other at s ≈ −0.26795. On the real axis, the
locus is between the two poles. The asymptote angles are ±90◦ and the asymptotes
intersect the real axis at s = −2. The break-away point is at s = −2. The complete
root locus plot is illustrated in Figure 10.4.

Focusing on the transient response for the moment, assume it is desired that
the percentage overshoot be less than 10%. From Figure 9.24, the damping ratio
must be greater than 0.6. Because sin−1 0.6 ≈ 37◦, we need that k be in the re-
gion between the lines of constant damping illustrated in Figure 10.5. Picking the
point s = −2± 2.5i to locate the poles of the closed-loop transfer function, we
may determine k from the distance from the two poles of the open-loop transfer
function. By Equation (9.29), we need to know the distance from all of the open-
loop poles and zeros to the desired pole location of the closed-loop transfer func-
tion. Figure 10.6 indicates the two relevant distances, both of which are equal to√

1.72 + 2.52 ≈ 3.0414. Hence we use k = 9.25.
To verify the answer, we compute the step response of the closed-loop system

using the computed gain. The closed-loop transfer function is
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Fig. 10.4 Root locus plot for the system from Example 10.2.
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Fig. 10.5 Pole locations that result in less than a 10% overshoot for Example 10.2.

Y (s)
R(s)

=
k 1

s2+4s+1

1 + k 1
s2+4s+1

=
k

s2 + 4s+ 1 + k
,

and for k = 4,
Y (s)
R(s)

=
4

s2 + 4s+ 5
.
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Fig. 10.6 Distances to determine the gain for Example 10.2.

The step response is illustrated in Figure 10.7, and the overshoot appears to be
slightly less than 10%.
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Fig. 10.7 Step response demonstrating the desired overshoot for Example 10.2.

Let us make the preceding example more difficult by adding a rise time specifi-
cation to the problem as well.
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Example 10.3. For the system in Example 10.2, in addition to requiring the closed-
loop step response to have less than a 10% overshoot, assume also that we desire
the rise time to be less than 0.5 seconds. Use the approximation tr ≈ 1.8/ωn. If we
require

tr ≤ 0.5

then
1.8
ωn

≤ 0.5 =⇒ ωn ≥ 3.6.

The region in the complex plane where the closed-loop system will satisfy this re-
quirement is outside the semicircle illustrated in Figure 10.8. Also plotted are the
lines corresponding to the damping ratio that satisfy the overshoot requirement.
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Fig. 10.8 Complex plane regions satisfying the overshoot and rise time requirements for Exam-
ple 10.3.

Observe that it is impossible to choose a gain value that corresponds to a point
on the root locus that is between the lines that indicate the overshoot specification
and outside the semicircle that indicates the rise time specification. This is true even
for the part of the root locus on the real axis. If we choose a point that is outside
the semicircle on the root locus on the real axis there is another pole on the branch
that is coming from the other pole, which does not satisfy the specifications. For
example, if we place a closed-loop pole at s = −3.65, which seemingly satisfies the
specification, this corresponds to a k value determined by

k ≈ 0.2775.
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For k = 0.2775 the closed-loop poles are located at s = −3.36 and s = −0.35, as is
illustrated in Figure 10.9, and the latter does not satisfy the rise time specification.
Hoping it will anyway, we can compute the step response, which is illustrated in
Figure 10.10. Clearly, it does not work.
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Fig. 10.9 Closed-loop poles indicated by a + (very close to the poles) for k = 0.2775 for Exam-
ple 10.3.

The next example considers how to use the root locus analysis to design a good
controller to stabilize an unstable system.

Example 10.4. Consider the inverted pendulum illustrated in Figure 10.11. Assume
the bar has a length l, is light with negligible inertia, and that the mass moves under
the influence of gravity and a torque τ that is applied about the point of rotation of
the pendulum. Assume that we require an overshoot less than 25% and a rise time
less than 0.6 seconds.

Using Newton’s second law for a planar system rotating about a point, the equa-
tion of motion is

ml2θ̈ = mgl sinθ + τ.

This is a nonlinear equation due to the sinθ term. For small θ , sinθ ≈ θ , and making
this approximation we have

ml2θ̈ −mglθ = τ.

For computational purposes, let mgl = ml2 = 1. Using proportional feedback for τ ,
the transfer function from a specified desired angle Θd(s) to the actual angle Θ(s)
is illustrated in Figure 10.12 where the controller Gc(s) = kp.
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Fig. 10.10 Closed-loop step response for k = 0.2775 for Example 10.3.

Fig. 10.11 Inverted pendulum system for
Example 10.4.

mg

l

θ

τ

Fig. 10.12 Block diagram for feedback
control of the inverted pendulum in
Example 10.4.

+

−

Θd(s)
Gc(s) 1

s2−1

Θ(s)

The root locus plot for the open-loop transfer function

G(s) =
1

s2 −1

is illustrated in Figure 10.13. From the root locus plot we can conclude that for
kp ≤ 1, the system will be unstable and for kp > 1 the system will be neutrally
stable because kp = 1 corresponds to the break-away point at the origin. In other
words, the linearized equation will have nondecaying sinusoidal solutions. The step
responses of the linearized system with kp = 0.1, kp = 1, and kp = 2 are illustrated
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in Figure 10.14. In this case it is impossible to meet the overshoot specification. If
kp ≤ 1 the system is unstable and for kp > 1 there is zero damping, independent of
kp.

For any real engineering system, predicting an exactly neutrally stable response is
impossible because any modeling errors will keep the system from either behaving
in an exactly linear manner or, for that matter, being exactly on the imaginary axis.
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Fig. 10.13 Root locus plot for linearized inverted pendulum for Example 10.4.

The obvious thing to do to add some extra stability, and hence to pull the branches
of the root locus to the left, is to add some derivative control. If we specify

C(s) = k

(
1
2

s+ 1

)

which fixes kd = 1/2kp, then the open-loop transfer function is

G(s) =
1
2 s+ 1

s2 −1
,

which is illustrated in Figure 10.15.
The regions in the complex plane where the overshoot and rise time specifications

are met are illustrated in Figure 10.16. From Figure 9.24, an overshoot of less than
25% corresponds to a damping ratio of greater than 0.4, which corresponds to a pole
location at an angle of sin−1 (0.4) ≈ 25◦. Using the relationship tr ≈ 1.8/ωn a rise
time less than 0.6 seconds requires a natural frequency greater than 3. Inasmuch
as the closed-loop poles start at the open-loop poles, an analysis of the root locus
plot shows that any gain that meets the rise time specification will also meet the
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Fig. 10.14 Step responses for various proportional gains for unity feedback for the linearized in-
verted pendulum in Example 10.4.
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Fig. 10.15 Root locus plot for linearized inverted pendulum for Example 10.4 with PD control.



460 10 Classical Control Theory: Design

overshoot specification. Using a rough approximation, if we desire to place the poles
at s ≈−3.5± i then

k ≈
√

4.52 + 12
√

2.52 + 12
√

1.52 + 12
= 12.

A plot of the closed-loop poles with k = 12 is illustrated in Figure 10.17. The
closed-loop step response for k = 12 is illustrated in Figure 10.18.
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Fig. 10.16 Pole locations satisfying the overshoot and rise time specifications for Example 10.4.

10.2.2 Lead–Lag Compensation

Section 9.1 introduced the notion of PID control and presented the usual effects of
each type of feedback on a second-order system (e.g., introducing or increasing the
gain for derivative control increases damping). The mathematical analysis is useful
and the proper point to initially consider the tool, however, what was missing was
the means by which one could actually implement it in a real engineering system.

Lead and lag filters are easy to implement with analog circuits and are hence
economical and effective means for control. As demonstrated subsequently, a lead
compensator is a means to approximate PD control and a lag compensator is a means
to approximate PI control. Combining them, obviously, results in an approximate
manner to implement PID control. As a practical matter, lead compensation has the
advantage over derivative control because high-frequency noise may have a very
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Fig. 10.17 Closed-loop pole locations for PD control with k = 12 for Example 10.4.
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Fig. 10.18 Closed-loop step response with k = 12 and PD control for the linearized inverted pen-
dulum in Example 10.4.
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small magnitude, but very large derivative, and hence the effects of the noise are
amplified by derivative control, whereas, these effects are alleviated somewhat in a
lead compensator, as is investigated subsequently.

10.2.2.1 Lead Compensation

Consider the circuit illustrated in Figure 10.19. It is left as an exercise (10.1) to show
that the transfer function for this circuit is

Vout

Vin
=
(

R2

R1 + R2

)
R1Cs+ 1

(
R2

R1+R2

)

R1Cs+ 1
. (10.1)

Fig. 10.19 Lead compensator circuit.

Vin Vout

R1

R2

C

In Equation (10.1), because the coefficient of s in the denominator is less than the
coefficient of s in the numerator, it is the case that the pole for a lead compensator
will always be to the left of the zero. Furthermore, because the physical parameters
corresponding to the elements of the circuit must be positive, both the pole and zero
are in the left half-plane. From Equation (9.26) in Rule 9.4, the effect of adding a
lead compensator in series with a transfer function is to shift the intersection point of
the asymptotes to the left. This has the effect of pulling all the branches of the root
locus that are off the real axis farther to the left, which has the effect of increasing
stability. The following example illustrates this effect and also demonstrates how to
design a lead compensator by hand.

Example 10.5. Consider the system illustrated in Figure 10.1 and assume

Gp(s) =
1

s(s+ 2)
, Gs(s) = 1, Gc(s) = k,

which is just proportional control for the system. The root locus plot for this system
is illustrated in Figure 10.20.

Assume the approximate desired specifications are as follows.

• A maximum percent overshoot of 15% or less
• A rise time of 0.5 seconds or less
• A 5% settling time of 1 second or less
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Fig. 10.20 Root locus plot for G(s) in Example 10.5.

For a second-order system, Figure 9.24 indicates that the damping ratio should be
approximately 0.55 or more, which corresponds to an angle measured from the
imaginary axis of 33.4◦. Referring to the Figure 10.20, this fixes a maximum value
for k that corresponds to the point on the root locus that passes through s = −1±2i.
Because the distance from each of the poles is

√
5, we have that k = 5 corre-

sponds to this point on the root locus. At this point, the rise time is approximately
1.8/

√
5 ≈ 0.8 seconds, so this criterion can be met too. However, the 5% settling

time is approximately three seconds, so that criterion cannot be met.
First we use a lead compensation of the form

Gc(s) =
s+ z
s+ p

and determine the pole and zero locations to meet the performance specifications.
After that we determine values for the components of the circuit.

Observe that if we hold the angle from the imaginary axis fixed, but move far-
ther from the origin, we simultaneously decrease the rise and settling times without
altering the percentage overshoot. If we can add a lead compensator so that the root
locus passes through the points s = −3± 3i, then both specifications are met. To
attempt to offset the increased overshoot due to the zero of the compensator, we
attempt to make the root locus pass through s = −3±2i. To attempt to do this, we
place the zero of the compensator under the desired point (i.e., z = −3) and then
use the ∠G(s) = 180◦ rule to compute the location of the pole for the compensator.
The only reason to place the zero at = −3 is to make the computations easier, and
of course it is possible to do the converse; fix the location of the pole and compute
the necessary location of the zero.
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Remark 10.1. There is a complication associated with this method for designing
the lead compensator. If the zero for the compensator is placed exactly between
the desired location for the complex poles, it will influence the transient response.
Recall that an additional zero will decrease the rise time and increase the overshoot.
If the overshoot specification must be satisfied, this needs to be considered and the
angle from the imaginary axis to the complex-conjugate poles must be increased.

Figure 10.21 illustrates the two poles of Gp(s), the zero of the compensator at
s = −3, the pole farther to the left, the exact location of which is to be determined,
and the point we want on the root locus. Because points on the root locus satisfy
∠G(s) = −180◦, we can use the angles from the two poles and one zero to the
desired point to compute what the angle from the compensator pole must be. In
particular,

∠G(s) = θz −θp1 −θp2 −θp3 = 90◦−135◦−108◦−θp = −180◦

gives that the angle from the compensator pole must be θp = 27◦, or p ≈−9. Refer-
ring to Equation (10.1), we need that R1C = 1/3 and R2/(R1 + R2) = 1/3. Picking
R2 = 1, then R1 = 2 and C = 1/6. Substituting those values into the transfer function
for the circuit gives

Vout

Vin
=

1
3

s
3 + 1

1
3

1
3 + 1

=
s+ 3
s+ 9

.

The root locus plot for

G(s) = Gc(s)Gp(s) =
s+ 3
s+ 9

1
s(s+ 2)

is illustrated in Figure 10.22. Measuring the distance from all the poles and the zero
to the desired point, gives

k =

√
33 + 33

√
1 + 32

√
5.92 + 32

3
≈ 30.

The step response is illustrated in Figure 10.23, illustrating that the three specifi-
cations are approximately met for the compensated system with k = 30 and is com-
pared to the system with proportional control and k = 2. The rise time and settling
time have decreased significantly. The overshoot has actually increased somewhat,
due to the presence of the zero from the compensator. If this were problematic, then
we would iterate on the design, probably by moving the pole to the left.

10.2.2.2 Lag Compensation

A lag compensator may be used to approximate integral control to reduce the steady-
state error of the system response. The idea is that a pole and zero can be placed
close to each other, so that their effect on the transient response cancels. However,
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Fig. 10.21 Computations for lead compensator in Example 10.5.
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Fig. 10.22 Root locus plot for Gc(s)Gp(s) in Example 10.5.

if they are placed near the origin, then the ratio of the magnitude of the zero to the
pole can be large, which may significantly reduce the steady-state error.

Consider the circuit illustrated in Figure 10.24. It is left as an exercise (10.7) to
show that the transfer function for this circuit is

Vout

Vin
=

CR2s+ 1
(R1 + R2)Cs+ 1

. (10.2)
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Fig. 10.23 Step response for compensated system in Example 10.5.

Note that the pole is to the right of the zero. The use of a lag compensator is illus-
trated with the following example.

Fig. 10.24 Lag compensator circuit.

Vin Vout

R1

R2

C

Example 10.6. Consider the system illustrated in Figure 10.1 and assume

Gp(s) =
1

(s+ 1)(s+ 3)
, Gs(s) = 1, Gc(s) = k,

which is just proportional control for the system. The closed-loop transfer function
is given by

Y (s)
R(s)

=
k 1

(s+1)(s+3)

1 + k 1
(s+1)(s+3)

=
k

s2 + 4s+ 3 + k
,
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and the steady state value for y(t) for a unit step input is given by the final value
theorem

yss = lim
s→0

s
k 1

(s+1)(s+3)

1 + k 1
(s+1)(s+3)

=
k

s2 + 4s+ 3 + k
1
s

=
k

3 + k
,

and hence the steady-state error is ess = 3/(3 + k). For example, for k = 5, the
steady-state error is ess = 3/8.

Without yet worrying about computing the circuit parameter values, consider

Gc =
s+ 1

10

s+ 1
100

.

Using this compensator, the closed-loop transfer function is

Y (s)
R(s)

=
k

s+ 1
10

s+ 1
100

1
(s+1)(s+3)

1 + k
s+ 1

10
s+ 1

100

1
(s+1)(s+3)

and the steady-state error is

ess = 1−
k

1
10
1

100

1
3

1 + k
1

10
1

100

1
3

= 1− 10k
3 + 10k

=
3

3 + 10k
.

For k = 5, ess = 3/53 which is significantly reduced.

The next example uses the robot arm considered in Section 9.1 and uses both
a lead and lag compensator to meet both transient and steady-state time domain
specifications.

Example 10.7. If the robot arm is near the vertical position and J = mgl = 1, then

Gp(s) =
Θ(s)
T (s)

=
1

s2 −1
, Gs(s) = 1, Gc(s) = k,

where T (s) is the Laplace transform of the torque signal. Design a compensator so
that for a unit step input the system satisfies the following.

• The percentage overshoot is less than 60%.
• The rise time is less than 1 second.
• The settling time is less than 4 seconds.
• The steady-state error is less than 5%.

The root locus plot for Gp(s) is illustrated in Figure 10.25. The root locus is
entirely on the imaginary axis, so regardless of the proportional feedback gain the
system always oscillates. In order to meet the transient response requirements, con-
sider making the root locus pass through the point s = −1 + 3i. At that point the
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damping ratio will be 0.32 which corresponds to a percentage overshoot slightly
less than 40%. The rise time will be approximately tr ≈ 1.8/

√
10 ≈ 0.56 and the

settling time will be three seconds.
Placing the zero of the lead compensator at s = −2, it is easy to compute and

verify that the pole should be located at approximately s = −6, as is illustrated in
Figure 10.26 and the gain corresponding to the point s =−1+3i is k = 17. The step
response of the closed-loop system with this compensator and gain is illustrated in
Figure 10.28. All the transient response specifications are met; however, the steady-
state error is too large.
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Fig. 10.25 Root locus for proportional control of the robot arm from Example 10.7.

The root locus plot for the system with a lag compensator with a zero at s =
−0.3 and a pole at s = −0.03 in addition to the lead compensator designed above
is in Figure 10.27. Because the pole and zero for the lag compensator are close
together, the shape of the rest of the root locus plot is not significantly altered. The
step response is illustrated in Figure 10.28. Compared with the response with lead
compensation only, the steady-state error is significantly reduced.

10.3 Frequency Response Design

Compensator design can also be carried out using frequency response tools. These
are particularly useful when dealing with a very complex system in which the trans-
fer function is only known through experimental data in the form of a Nyquist or
Bode plot. The frequency response characteristics of lead and lag compensators are
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Fig. 10.26 Root locus for control of the robot arm with lead compensation from Example 10.7.
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Fig. 10.27 Root locus plot for control of the robot arm with lead–lag compensation from Exam-
ple 10.7.
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Fig. 10.28 Step response for closed-loop control of the robot arm with lead–lag compensation
from Example 10.7.

straightforward and their consequent effects on system effects similarly straight-
forward.

10.3.1 Lead Compensation

For a generic lead compensator of the form

Gc(s) =
s
z + 1
s
p + 1

it is the case that z < p, which, on a root locus plot, puts the pole to the left of the
zero which is stabilizing and is manifested by moving the asymptotes to the left. In a
frequency response analysis, because the magnitude of the zero is less than the pole,
its effect is manifested at lower frequencies on a Bode plot. At frequencies between
the zero and the pole, closer to the zero the effect of the zero will dominate and closer
to the pole the effect of the pole will more nearly cancel the effect of the zero. A
zero has a frequency response phase curve that has positive phase, therefore between
the zero and the pole a lead compensator will have positive phase. When placed in
series, then, with another transfer function, a lead compensator will increase the
phase between the zero and pole. Thus with the zero and pole placed properly, the
phase margin may be increased.

Example 10.8. The Bode plot for



10.3 Frequency Response Design 471

Gc(s) =
s

10 + 1
s

100 + 1

is illustrated in Figure 10.29. Note that the maximum value of the phase is half way
between the 10 and 100 on the log scale, and hence

logωm =
1
2

(log10+ log100) = log
√

1000 ≈ log31.5,

where the notation ωm indicates for a lead compensator the frequency at which the
maximum phase value occurs.
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Fig. 10.29 Bode plot for a lead compensator.

In general, the maximum phase contribution of the lead compensator will occur
at the geometric mean of the zero and pole frequencies; that is,

ωm =
√

zp.

Substituting this frequency into the transfer function for the lead compensator gives

|Gc (i
√

zp)| =
√

p
z + 1

√
z
p + 1

(10.3)
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and (Exercise 10.11)

∠Gc (i
√

zp) = sin−1 p− z
p + z

.

In order to facilitate the steps used to design the compensator developed subse-
quently, let

α =
p
z
.

Then

∠Gc (i
√

zp) = sin−1 α −1
α + 1

. (10.4)

A plot of the phase of the lead compensator at ωm =
√

pz versus α is illustrated in
Figure 10.30.

1
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0 10 20 30 40 50 60 70 80

α

sin−1 α−1
α+1

Fig. 10.30 Maximum phase contribution from a lead compensator versus α .

The value of α clearly establishes the ratio of the pole and zero values. The other
step to design the compensator is to fix the value of ωm such that the maximum phase
contributed by the compensator occurs at a desirable value. The steps in designing
a lead compensator used in a cascade configuration using a Bode plot thus are as
follows.

1. Determine α based on how much additional phase margin is desired. As shown
subsequently, the value for α must be increased beyond the exact amount by
which the phase margin should be increased. If the desired amount is substantial,
more than one lead compensator in series may be necessary.
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2. Place ωm so that the maximum phase added by the compensator is at the fre-
quency where the compensated magnitude plot crosses through 0 dB, which will
increase the phase margin by the maximum possible amount.

As shown in the examples, the second step is not as trivial as it may initially seem
because the lead compensator also modifies the magnitude plot, so the crossover
point for the compensated system will not be the same as for the uncompensated
system. Also, because of this fact, the amount of phase that must be added in the
first step is not exactly the amount by which the phase margin must be increased
because the phase of the original system at the compensated crossover point will be,
in general, less than at the original crossover point, which necessitates increasing α .

To determine ωm note that Equation (10.3) gives the gain of the compensator at
ωm =

√
zp, which in terms of α is

|Gc (i
√

zp)|dB = 20log

(√
α + 1

1√
α + 1

)

.

Hence, if we select ωm =
√

zp to be at the frequency where the uncompensated gain
is

|G(i
√

zp)|dB = −20log

(√
α + 1

1√
α + 1

)

(10.5)

(note the minus sign) then the compensated gain will pass through 0 dB right at
the point where the maximum phase is contributed by the lead compensator. At this
point it is possible to check if the value for α is sufficient because the phase of the
uncompensated system at ωn is then known. If α is not great enough, then it must
be increased, which will then change ωn, thus possibly necessitating iteration.

Example 10.9. Consider a system that is unknown1 other than the plant having
the frequency response characteristics illustrated in Figure 10.31. Assume that the
steady-state error to a step input must be less than 1/4 and the phase margin must be
greater than 20◦. For simplicity, it would be desirable to meet these specifications
with only a lead compensator and op-amp.

From the Bode plot, because the slope of the magnitude curve for low frequencies
is zero, we may infer it is a type 0 system and also lims→0 Gp(s) ≈ −20dB ≈ 1/10.
Inasmuch as, for a type 0 system

ess =
1

1 + kGp(0)
,

1 If the reader wants to reproduce this example, the transfer function used was

Gp(s) =
s+1

(s2 +2s+2)(2s2 +5s+4)
,

but we do not use any specific information from the plant transfer function Gp(s) other than its
frequency response.
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Fig. 10.31 Frequency response of the plant for Example 10.9.

a gain of k = 30 would meet the steady-state error specification.
Referring back to Figure 10.31, because in k = 30, converting to dB gives

k = 10 log 30 ≈ 29.5 dB,

it is very close to the gain margin for the system and hence, is unacceptable. We use
a lead compensator to increase the stability margin without having to alter the gain
which provides satisfactory steady-state performance.

Figure 10.30 may be used to determine α , to which, noting the logarithmic scale,
α = 3 corresponds approximately to an maximum phase for the lead compensator
of 25◦. To account for the additional phase needed as described above, we select
α = 5. Substituting α = 5 into the right-hand side of Equation (10.5) gives

G(i
√

zp) ≈−7.

We are using k = 30 and 20log30 = 29.5, therefore we need the frequency in
Figure 10.31 where the uncompensated gain is approximately −37 dB, which is√

zp = 3. From the phase plot at ω = 3, the phase for the uncompensated system
is approximately −210◦, which is 30◦ below the crossover phase of −180◦, so the
phase added by the compensator must be at least 50◦. Referring to Figure 10.30,
α = 5 is not enough. A value of α = 9 seems necessary.

Iterating, then, and substituting α = 9 into the right-hand side of Equation (10.5)
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G(i
√

zp) ≈−9.5.

Referring to Figure 10.31 where the uncompensated gain is approximately −40 dB,
is closer to

√
zp = 4.

Solving α = p/z = 9 and
√

zp = 4 for p and z gives z = 4/3 and p = 12. Hence

Gc(s) =
4s
3 + 1
s

12 + 1
.

Figure 10.32 contains three Bode plots. In the magnitude plot, the lowest curve
is the original uncompensated system. The middle curve is the system multiplied
by a gain of k = 30 to reduce the steady-state error. The top curve is with the lead
compensator. The gain and phase margins indicated are for the fully compensated
system. In the phase plot, the system with the lead compensator is the top curve and
the other two systems are the same and are the bottom curve. The step response of
the compensated system is illustrated in Figure 10.33.
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Fig. 10.32 Comparison of compensated and uncompensated Bode plots for the system from Ex-
ample 10.9. The two small vertical lines indicate the gain and phase margins.

The Nyquist plot corresponding to the positive iω segment of the s-contour for
the system multiplied by the gain of k = 30 and the system with the gain of k =
30 and the lead compensator are illustrated in Figure 10.34. The effect of the lead
compensator is to add phase, which rotates the middle portion of the Nyquist plot
counterclockwise, which increases the stability margin.
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Fig. 10.33 Step response of compensated system from Example 10.9.
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Fig. 10.34 Nyquist plot illustrating the effect of lead compensation for the system from Exam-
ple 10.9.
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10.3.2 Lag Compensation

A lag compensator works by increasing the magnitude of the transfer function for
low frequencies. If the frequencies of the pole and zero of the lag compensator
are significantly lower than the crossover frequency for the system, the stability
properties will not be altered. This is demonstrated by a simple example.

Example 10.10. Modify the compensated system from Example 10.9 to further de-
crease the steady-state error to be 1/13. Using a lag compensator with the zero at
s = 1/10 and the pole at s = 1/100 in series with the lead compensator from Exam-
ple 10.9 gives

Gc(s) =
s+ 1

10

s+ 1
100

3s
4 + 1
s

12 + 1
.

Inasmuch as, for a type 0 system, the steady-state error to a step is given by

ess(t) =
1

1 + kGc(0)Gp(0)
,

and adding the lag term increases Gc(0) by an order of magnitude, then

ess =
1

1 + 30
=

1
31

.

The Bode plot for the system with this lag compensator is illustrated in Fig-
ures 10.35. Note that the very low frequency portion of the magnitude plot is in-
creased by 20 dB, which correspondingly decreases the steady-state error by an
order of magnitude.

10.4 Filters

This section considers the characteristics of low- and highpass filters. There are
many types of filters, some of which are explored in the exercises, and this section
only provides the most basic overview. In control engineering, filters are often used
to eliminate frequency components of inputs that are undesirable. For example, the
resonant frequency of a system should not be excited by a control signal, so it may
be desirable to filter the input to reduce the effect of that frequency.

10.4.1 Lowpass Filters

Consider the circuit illustrated in Figure 10.36. For reasons that are addressed sub-
sequently, this is called a lowpass filter. Kirchhoff’s voltage law around the circuit
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Fig. 10.35 Bode plot for system from Example 10.10 illustrating the increase in the low frequency
gain.

gives
vin = vR + vC = vr + vout ,

where vR and vC are the voltage drops across the resistor and capacitor, respectively.
Because

vR = iR, i = C
dvC

dt

in the frequency domain we have

VR(s) = I(s)R, I(s) = CsVC(s) = CsVout(s)

and substituting into the voltage equation gives

Vin(s) = (CRs+ 1)Vout(s).

So the transfer function is
Vout

Vin
=

1
CRs+ 1

.

Clearly, this circuit has a pole at s = −1/(CR). The frequency ω = 1/(CR) is called
the cutoff frequency. For the case where C = R = 10, the Bode plot is illustrated in
Figure 10.37. Frequencies below ω ≈ 0.01 are passed through the filter without any
amplification or attenuation; in contrast, frequencies above ω ≈ 0.01 are attenuated.
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Fig. 10.36 Lowpass filter circuit.
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Fig. 10.37 Frequency response of a lowpass filter with C = 10 and R = 10.

10.4.2 Highpass Filters

If the output voltage is measured across the resistor instead of the capacitor, the cir-
cuit is a highpass filter, which is illustrated in Figure 10.38. An easy circuit analysis
gives the transfer function as

Vout

Vin
=

CRs
CRs+ 1

and the frequency response is illustrated in Figure 10.39. Frequencies above ω ≈
0.01 are passed through the filter without any amplification or attenuation; in con-
trast, frequencies below ω ≈ 0.01 are attenuated.
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Fig. 10.38 Highpass filter circuit.
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Fig. 10.39 Frequency response of a highpass filter with C = 10 and R = 10.

10.5 Exercises

10.1. Determine the transfer function from the input voltage to the output voltage
for the circuit illustrated in Figure 10.19. Show that for this circuit the pole and zero
are in the left half-plane and that the pole is always to the left of the zero.

10.2. Write a computer program to simulate proportional control on the nonlinear
dynamics of robot arm in Example 9.1 about the vertical position. Is the result stable
or unstable?

10.3. Write a computer program to simulate PD control for the inverted pendulum
system from Example 10.4. Remember that the root locus plot is based on the lin-
ear equation. Compare the response of the linear model to the nonlinear one with
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increasingly large step inputs. At what point, if any, does the linear solution deviate
significantly from the nonlinear one?

10.4. Verify the magnitude and phase plots in Figure 9.71 for

G(s) =
s2 + 2ζωns+ ω2

n

ω2
n

for the cases where ω � ωn and ω � ωn. Verify the magnitude plot for when ω =
ωn.

10.5. Show that the transfer function for the notch filter illustrated in Figure 10.40
is given by

Vout

Vin
=

(CLRH + 1)(CHRL + 1)
CLCHRLRHs2 +(CHRL +CLRH +CLRL) s+ 1

.

Fig. 10.40 Notch filter circuit for Exer-
cise 10.4.
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10.6. Consider connecting a lowpass filter and highpass filter together in series, as
is illustrated in Figure 10.41.

1. Determine the transfer function from the input voltage to the output voltage. Is
the transfer for the circuits in series equal to the product of the individual transfer
functions? Explain the answer.

2. If RHP = 10, RLP = 100, CHP = 10, and CLP = 100 sketch the Bode plot for this
transfer function. Explain why this may be called a bandpass filter.

3. How would you modify the circuit to make the bandpass region either narrower
or wider? Do so and either sketch or use a computer package to generate the
Bode diagram.

4. How would you make the transitions in the bandpass filter sharper, that is, steeper
transitions? Do so and either sketch or use a computer package to generate the
Bode diagram.
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Fig. 10.41 Bandpass filter for Exer-
cise 10.6.
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Vin VoutRHP
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10.7. Show that the circuit in Figure 10.24 has the transfer function given in Equa-
tion (10.2).

10.8. Using the notation and configuration from Figure 10.2, consider

1. Gc(s) = 1/(s+ 2), Gp(s) = 10/
(

s2 + 5s+ 10
)

, Gs(s) = 1.
2. Gc(s) = 1/(s+ 2), Gp(s) = 10/

(

s2 + 5s
)

, Gs(s) = 1.
3. Gc(s) = 1/

(

s2 + 2s
)

, Gp(s) = 10/
(

s3 + 5s2 + 10s
)

, Gs(s) = 1.

For each case, determine the system type and the steady-state error for a step, ramp,
and parabolic input for the cases where k = 1 and k = 10. Verify your answer by
using a computer package to plot the responses for each case.

10.9. Table 10.1 lists the steady-state errors in the case of unity feedback only. Com-
plete the same table where there is a transfer function Gs(s) in the feedback loop, as
is illustrated in Figure 10.2.

10.10. Using the notation and configuration from Figure 10.2, and your result from
Exercise 10.9 consider

1. Gc(s) = 1/(s+ 2), Gp(s) = 10/
(

s2 + 5s+ 10
)

, Gs(s) = 10000/(s+ 10000).
2. Gc(s) = 2/(s+ 2), Gp(s) = 10/

(

s2 + 5s
)

, Gs(s) = 1000/(s+ 10000).
3. Gc(s) = (s+ 10)/(s+ 2), Gp(s) = 10/

(

s3 + 5s2 + 10s
)

, Gs(s) = 1/s.

For each case, determine the system type and the steady-state error for a step, ramp
and parabolic input for the cases where k = 1 and k = 10. Verify your answer by
using a computer package to plot the responses for each case.

10.11. Evaluate the phase of

Gc(s) =
s
p + 1
s
p + 1

at the frequency where the phase is maximum to verify Equation (10.4).

10.12. Referring to Figure 10.16, what will happen to the rise time if k is increased
significantly beyond k = 12?

10.13. Sketch the Nyquist plot for each of the following transfer functions and de-
termine the gain and phase margins.

1. G(s) = 1/
(

(s+ 1)(s+ 5)
)

.
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2. G(s) = 1/
(

(s+ 1)(s+ 2)(s+ 3)
)

.
3. G(s) = 1/

(

s2 + 3s+ 5
)

.
4. G(s) = 1/

(

s3 + s2 + 3s+ 1
)

.

10.14. For each of the following transfer functions design a lead compensator so
that the root locus for the compensated system passes through the indicated point.

1. G(s) = 1/
(

s(s+ 2)
)

, s = −3 + 3i.
2. G(s) = 1/

(

s2 + s+ 2
)

, s = −2 + 3i.
3. G(s) = (s+ 1)/

(

(s+ 2)
(

s2 + 2s+ 2
))

, s = −3 + 3i.
4. G(s) = 1/

(

s2 + 4
)

, s = −1 + 3i.

For each problem,

• Plot both the uncompensated and compensated root locus plot.
• Determine the gain that places the poles of the closed-loop system at the indicated

pole location.
• Plot the closed-loop step response with the gain determined in the previous step

and indicate whether or not the transient response characteristics are what you
expect based on the pole and zero locations for the closed-loop system.

10.15. Design a lead compensator to satisfy the stated specifications for each of the
following transfer functions under unity feedback.

1. G(s) = 1/
(

s(s+ 1)
)

, O < 5%, tr < 0.7 seconds.
2. G(s) = 1/

(

s(s+ 1)
)

, O < 25%, 5% settling time satisfying ts < 1 second.
3. G(s) = 1/

(

s(s+ 1)(s+ 2)
)

, tr < 1.8 seconds and O < 50%.
4. G(s) = 1/

(

s2 + 2s+ 2
)

, tr < 0.6, O < 10%,
5. G(s) = 1/

(

(s+ 1)
(

s2 + 2s+ 2
))

, ζ ≈ 0.3 and 5% settling time satisfying ts <
5.5 second.

6. G(s) = 1/
(

s2 + 2s+ 2
)

, no overshoot and tr < 1.8/8.

In each case,

• Sketch the root locus plot for the uncompensated system.
• Choose a point that the root locus should pass through to meet the specifications

and design a lead compensator to meet the indicated specifications and plot the
compensated root locus plot.

• Determine the gain needed to satisfy the specifications.
• Verify the specifications are met by plotting the step response.

Note that because the rise time relationship to the natural frequency is an approxi-
mation and also because the compensator adds a zero, if the specifications include
rise time or overshoot specifications, it may be necessary to iterate on the design.
Also, as with any set of design specifications, sometimes it just is not possible to
meet them all, in which case determine a suitable compromise.
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10.16. For each of the systems in Exercise 10.15, determine the steady-state error
to a unit step input using the final value theorem and verify your computation using
the MATLAB or Octave step() command or something similar. If the steady-
state error is not zero, design a lag compensator to be placed in series with the lead
compensator that reduces the steady-state error by an order of magnitude but that
does not significantly alter the transient response that was the result of the lead com-
pensator. Verify the compensator works by plotting the step response for the system
without and with the lag compensator using the MATLAB or Octave step() com-
mand.

10.17. Design a lead compensator for G(s) = 1/
(

s(s+ 1)
)

so that O < 10% and tr <
1 seconds. Verify your design using the MATLAB or Octave step() command.
What is the system type? What will be the steady-state error to a step input and a
ramp input? Design a lag compensator that reduces the steady-state error to a ramp
input by a factor of five. Determine how to use the MATLAB or Octave step()
command to plot the response to a unit ramp input, and verify your lag compensator
reduces the steady-state error by the desired amount.

10.18. For each of the following transfer functions and gains, design a lead com-
pensator that increases the phase margin by 10◦.

1. G(s) = 1/
(

s(s+ 1)
)

, k = 1.
2. G(s) = 1/

(

s(s+ 1)
)

, k = 10.
3. G(s) = 1/

(

(s+ 2)(s+ 1)
)

, k = 100.
4. G(s) = 10000/

(

(s+ 1)(s+ 10)(s+ 100)
)

, k = 1.
5. G(s) = 10000/

(

(s+ 1)(s+ 10)(s+ 100)
)

, k = 10.

For each one

• Plot the Bode plot for the uncompensated and uncompensated systems.
• Compare the unit step response for the uncompensated and compensated sys-

tems.
• Plot the Nyquist plots for the uncompensated and compensated systems and ex-

plain the manner in which the compensator changes the Nyquist plot and the
reason why it has that effect.

10.19. Predict the difference in the output of a lead compensator and a compensator
with derivative control when the signal into the compensator has a noise component
given by

n(t) =
1

100
sin200t.

Plot the output signal for each with n(t) as the input.



Chapter 11
Partial Differential Equations

This chapter considers techniques for solving some types of partial differential equa-
tions. The solution method that is considered in this book is the separation of vari-
ables method. Linear partial differential equations can be categorized by type, sim-
ilar to categorizing ordinary differential equations. However, in contrast to ordinary
differential equations, for the limited number of partial differential equations consid-
ered in this book, the categorization does not affect the solution method, but rather
is a reflection of the properties of the resulting solution, which itself is a result of
the underlying physics.

The outline of this chapter is first to present three common engineering problems
that lead to different types of partial differential equations. As is apparent, there are
some broad commonalities with respect to the solution technique. An extension of
the theory developed by the engineering problems is investigated later in the chapter
in Section 11.6.

11.1 The One-Dimensional Wave Equation

The so-called wave equation describes many different physical wavelike phenom-
ena. It is motivated and initially solved using the example of a vibrating string.

11.1.1 Derivation of the Wave Equation

Consider the elastic string illustrated in Figure 11.1. Let x denote the location along
a straight line between the endpoints, u denote the displacement of the string, and L
denote the length between the endpoints. The function u is a function of the position
along the string x as well as time, that is, u(x,t). Solving the wave equation amounts
to determining the function u(x,t) that gives the displacement of the string at time
t and location x. Let the tension in the string be denoted by τ and the mass per unit
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length be denoted by ρ . The string is assumed to be elastic, which means it may
have an internal tension τ but no moment is needed to bend it.

x

u(x, t) u(x, t)

x = L

Fig. 11.1 Vibrating string.

The derivation of the wave equation is simply using Newton’s law on a infinites-
imal segment of the string. Consider the small section illustrated in Figure 11.2.
Newton’s law on the element in the vertical direction gives

ρΔx
∂ 2u
∂ t2

(

x +
Δx
2

,t

)

= τ (x + Δx,t)sin(θ (x + Δx,t))− τ (x,t)sin(θ (x,t)) .

(11.1)
Expanding each of the terms in a Taylor series individually gives

∂ 2u
∂ t2

(

x +
Δx
2

,t

)

=
∂ 2u
∂ t2 (x,t)+

∂ 3u
∂ 2t∂x

(x,t)
Δx
2

+ · · ·

τ(x + Δx,t) = τ(x,t)+
∂τ
∂x

(x,t)Δx + · · ·

sin(θ (x + Δx,t)) = sin(θ (x,t))+
d

dθ
sin(θ )

∂θ
∂x

(x,t)Δx + · · ·

= sin(θ (x,t))+ cos(θ (x,t))
∂θ
∂x

(x,t)Δx + · · · .

Substituting into Equation (11.1) and keeping terms only up to Δx, that is, assuming
Δx � 1, gives

ρΔx
∂ 2u
∂ t2 (x,t) = τ(x,t)cos(θ (x,t))

∂θ
∂x

(x,t)Δx + sin(θ (x,t))
∂τ
∂x

(x,t)Δx,

or

ρ
∂ 2u
∂ t2 = τ cosθ

∂θ
∂x

+ sinθ
∂τ
∂x

(11.2)

where all the terms are evaluated at (x,t).
To proceed any further, we need some assumptions. Assume that the string only

undergoes small displacements; that is, u(x,t)� 1 and furthermore that the slope of
the string is small; that is, ∂u/∂x � 1. This would imply immediately that
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Fig. 11.2 Infinitesimal element of the
string. x x+Δx

θ(x, t) θ(x+Δx, t)
τ(x, t)

τ(x+Δx, t)

sin(θ (x,t)) ≈ θ (x,t), cos(θ (x,t)) ≈ 1, θ (x,t) ≈ tan(θ (x,t)) =
∂u
∂x

(x,t).

Also, express the tension in the string as

τ(x,t) = τ + τ̂(x,t),

where τ is a constant and is the tension in the string when it is still (u(x,t) = 0). For
small motions, it is the case that τ̂(x,t) � 1 and ∂τ/∂x � 1.

Both terms in the second term of the sum on the right-hand side of Equa-
tion (11.2) are small, thus

ρ
∂ 2u
∂ t2 (x,t) = τ

∂θ
∂x

(x,t), (11.3)

and so

ρ
∂ 2u
∂ t2 (x,t) = τ

∂ 2u
∂x2 (x,t) (11.4)

is the usual expression for the one-dimensional wave equation. This has the inter-
pretation that the net force is proportional to the curvature in the string (right-hand
side of the equation). The left-hand side is mass times acceleration.

11.1.2 Boundary Conditions

In general, the wave equation is of the form

∂ 2u
∂ t2 = α2 ∂ 2u

∂x2 .

Analogous to ordinary differential equations, in order to solve this equation condi-
tions on u(x,t) at the initial time for the problem, usually t = 0 as well as conditions
on u(x,t) on the physical boundaries of the problem must be specified. The latter
are normally called boundary conditions and play a fundamental role in the solution
of the problem.

To proceed, assume the ends of the string are fixed, that is,
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u(0,t) = u(L,t) = 0.

Also, assume that the initial shape and velocity of the string are known, that is,

u(x,0) = f (x) ,
∂u
∂ t

(x,0) = g(x) ,

so the function f (x) is the initial shape profile of the string and g(x) is the initial
velocity profile.

11.1.3 Separation of Variables

The basic idea behind the method of separation of variables is that the solution to
the wave equation can be expressed in the form

u(x,t) = X(x)T (t);

that is, the solution is the product of two functions, where one of the functions
only depends on the spatial variable x, and the other function only depends on the
temporal variable t. Note that due to the assumed form of u(x,t)

∂ 2u
∂ t2 (x,t) = X(x)

d2T
dt2 (t) = X(x)T ′′(t)

∂ 2u
∂x2 (x,t) =

d2X
dx2 (x)T (t) = X ′′(x)T (t).

So, substituting into the wave equation gives

X(x)T ′′(t) = α2X ′′(x)T (t).

or
X ′′(x)
X(x)

=
1

α2

T ′′(t)
T (t)

. (11.5)

The critical feature of Equation (11.5) is that the left-hand side depends only upon x,
the right-hand side depends only upon t, and they are equal. The only way a function
of x can equal a function of t for arbitrary x and t is for both sides to be equal to
a constant. One way to think of this is that because x and t are the independent
variables, we can choose them arbitrarily. Hence, for example, we can hold x fixed,
which holds X(x) fixed and hence the ratio X ′(x)/X(x) fixed, but we could choose
to vary t. Hence, T ′(t)/T (t) must be fixed, or a constant, even if t varies because
it is equal to X ′(x)/X(x). Note, this does not mean X(x) is a constant and T (t) is
a constant; rather, the ratios X ′′(x)/X(x) and T ′′(t)/T (t) must be constant. That
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constant is denoted by −λ , and is called an eigenvalue.1 Thus

X ′′(x)
X(x)

=
1

α2

T ′′(t)
T (t)

= −λ

which actually represents two equations

d2X
dx2 (x)+ λ X(x) = 0

d2T
dt2 (t)+ α2λ T (t) = 0.

Solutions to these two equations are, it is hoped, obvious from inspection:

X(x) = c1sin
√

λ x + c2cos
√

λ x (11.6)

T (t) = c3sinα
√

λ t + c4cosα
√

λ t, (11.7)

if λ > 0,

X(x) = c1e
√−λx + c2e−

√−λx (11.8)

T (t) = c3eα
√−λ t + c4e−α

√−λ t , (11.9)

if λ < 0, and

X(x) = c1 + c2x (11.10)

T (t) = c3 + c4t,

if λ = 0. At this point we have to consider all three possibilities for λ inasmuch as
we do not know anything about it other than it is a constant. However, only one of
the three will be able to satisfy the boundary conditions.

If we consider the boundary conditions

u(0,t) = 0, u(L,t) = 0.

Substituting u(x,t) = X(x)T (t) into the left boundary condition gives

X(0)T (t) = X(L)T (t) = 0,

which gives
X(0) = X(L) = 0,

because otherwise T (t) would have to be zero for all time, which would then make
u(x,t) zero for all time.

1 The negative sign appears in front of the eigenvalue only because of some foresight that it will
make some of the notation easier. It could be positive too with no complications other than some
messier equations subsequently.
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Substituting x = 0 into Equation (11.6) gives that c2 = 0. Then substituting x = L
gives

c1sin
√

λ L = 0,

which requires either c1 = 0 or

√
λ L = nπ , n = 1,2, . . . .

Note that c1 = 0 leads to the trivial solution (u(x,t) = X(x)T (t) = 0T (t) = 0) which
is not able to satisfy any initial shape and velocity profiles (unless they are also zero,
which is a pretty boring vibrating string). Hence, the constant λ is determined by
the boundary conditions and must be

λ =
(nπ

L

)2
, n = 1,2, . . . . (11.11)

Note also that there are an infinite number of solutions, one for each n = 1,2, . . ..
The role of λ is to scale the frequency of the sine function so that it passes through
zero at x = L. This is illustrated subsequently in Figure 11.4.

Substituting x = 0 into Equation (11.8) gives that c1 = −c2. Then substituting
x = L gives

c1

(

e−
√−λL − e

√−λL
)

= 0

which has no solutions for λ < 0 and L �= 0.
Substituting x = 0 into Equation (11.10) gives that c1 = 0. Then substituting x = L

gives c2 = 0, which results in the trivial solution, which, as mentioned above, is not
able to satisfy nonzero initial conditions.

Hence, by considering the boundary conditions, it is clear that the constant λ
must be positive and furthermore, must have one of the values given in Equa-
tion (11.11). Substituting those values for λ into u(x,t) = X(x)T (t) gives an infinite
number of solutions

un(x,t) = c1sin
nπx

L

(

c3,nsin
αnπt

L
+ c4,ncos

αnπt
L

)

, n = 1,2, . . .

or

un(x,t) = sin
nπx

L

(

ansin
αnπt

L
+ bncos

αnπt
L

)

, n = 1,2, . . . (11.12)

where the constants were combined into an and bn.
Observe the following very important point. Any of the un(x,t) satisfies the wave

equation as well as the two boundary conditions, as does any linear combination of
the un(x,t) because the wave equation is linear and homogeneous.

The last task is to satisfy the initial conditions, which were

u(x,0) = f (x),
∂u
∂ t

(x,0) = g(x).
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This may seem like an impossible task at first, but perhaps the availability of an
infinite number of solutions will be of some help. In fact, let us just go for it and try
to combine all the infinite number of solutions together in the form

u(x,t) =
∞

∑
n=1

sin
nπx

L

(

ansin
αnπt

L
+ bncos

αnπt
L

)

. (11.13)

Note that in this form, the initial conditions are

u(x,0) =
∞

∑
n=1

bnsin
nπx

L
= f (x) (11.14)

∂u
∂ t

(x,0) =
∞

∑
n=1

an
αnπ

L
sin

nπx
L

= g(x). (11.15)

Finally, what at first probably seems like a trick, but is ultimately shown to be
pretty general and useful, is to multiply Equation (11.14) by sin(mπx/L) and inte-
grate from 0 to L

∫ L

0
sin

mπx
L

(
∞

∑
n=1

bn sin
nπx

L

)

dx =
∞

∑
n=1

bn

∫ L

0
sin

mπx
L

sin
nπx

L
dx

=
∫ L

0
sin

mπx
L

f (x)dx.

(11.16)

An amazing fact, the details of which are in Appendix C.1, is that if m and n are
integers, then

∫ L

0
sin

mπx
L

sin
nπx

L
dx =

{

0, m �= n
L
2 , m = n;

that is, every single term in the series is zero except for m = n, which nicely kills off
all but one of the infinite number of terms in the series.2 Hence

bn

∫ L

0

(

sin
nπx

L

)2
dx =

∫ L

0
sin

nπx
L

f (x)dx,

or

bn =
2
L

∫ L

0
f (x)sin

nπx
L

dx. (11.17)

Using these values for bn, Equation (11.14) is called the Fourier sine series for
f (x). The following example illustrates the computations involved in computing the
Fourier sine series as well as gives an indication of the convergence properties of
such a series.

Example 11.1. Let L = 3 and

2 Note that switching the order if the integration and summation is not necessarily valid of the
series does not converge. In this case, it is allowable. The reader is referred to [38] for a more
complete justification of the theory underlying this topic.
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f (x) =
{

x x < 1
3−x

2 1 ≤ x ≤ 3
(11.18)

which is illustrated in Figure 11.3. Keep in mind that the task is to combine an
infinite number of sine functions to be equal to this triangle. Computing the Fourier
coefficients,

bn =
2
3

∫ 3

0
f (x)sin

nπx
3

dx

=
2
3

[∫ 1

0
xsin

nπx
3

dx +
∫ 3

1

3− x
2

sin
nπx

3
dx

]

=
2
3

[

− 3x
nπ

cos
nπx

3

∣
∣
∣
∣

1

0
+
∫ 1

0

3
nπ

cos
nπx

3
dx +

3
2

∫ 3

1
sin

nπx
3

dx

+
3x

2nπ
cos

nπx
3

∣
∣
∣
∣

3

1
− 1

2

∫ 3

1

3
nπ

cos
nπx

3
dx

]

=
2
3

[

− 3x
nπ

cos
nπx

3

∣
∣
∣
∣

1

0
+

9
n2π2 sin

nπx
3

∣
∣
∣
∣

1

0
− 9

2nπ
cos

nπx
3

∣
∣
∣
∣

3

1

+
3x

2nπ
cos

nπx
3

∣
∣
∣
∣

3

1
− 9

2n2π2 sin
nπx

3

∣
∣
∣
∣

3

1

]

=
2
3

[

− 3
nπ

cos
nπ
3

+
9

n2π2 sin
nπ
3

− 9
2nπ

(

cosnπ − cos
nπ
3

)

+
(

9
2nπ

cosnπ − 3
2nπ

cos
nπ
3

)

+
9

2n2π2 sin
nπ
3

]

=
9

n2π2 sin
nπ
3

.

Figure 11.4 is a plot of the first four terms in the Fourier series; namely,

f1(x) =
9

π2 sin
π
3

sin
πx
3

=
9
√

3
2π2 sin

πx
3

f2(x) =
9

22π2 sin
2π
3

sin
2πx

3
=

9
√

3
8π2 sin

2πx
3

f3(x) =
9

32π2 sin
3π
3

sin
3πx

3
= 0

f4(x) =
9

42π2 sin
4π
3

sin
4πx

3
= − 9

√
3

32π2 sin
4πx

3
.

The series is given by

f (x) =
∞

∑
n=1

(
9

n2π2 sin
nπ
3

)

sin
nπx

L
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Fig. 11.3 Function for the Fourier series for Example 11.1.

and Figure 11.5 illustrates the sum of the first 3, 10, and 20 components. Note that
the curve converges to f (x) as the number of components increases.
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Fig. 11.4 First four Fourier sine components of Equation (11.18).

Now return to the solution for the vibrating string in Equation (11.13). The bn

coefficients have already been determined by Equation (11.17) and the an coeffi-
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Fig. 11.5 Truncated Fourier sine series converging to f (x) from Equation (11.18).

cients are computed similarly; that is, multiply each side of Equation (11.15) by
sin(mπx/L) and integrate from 0 to L which gives

an =
2

αnπ

∫ L

0
g(x)sin

nπx
L

dx. (11.19)

11.1.4 Summary and Examples of the Solution to the Wave
Equation

For small displacements u(x,t), and α2 = τ/ρ , the vibration of a string of length L
fixed at each endpoint is described by solutions to

∂ 2u
∂ t2 = α2 ∂ 2u

∂x2

with u(0,t) = 0 and u(L,t) = 0 as boundary conditions and

u(x,0) = f (x),
∂u
∂ t

(x,0) = g(x),

as initial conditions, where f (x) and g(x) are the initial shape of the string and initial
velocity profile, respectively.

From the preceding analysis, the solution for the vibrating string problem is
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u(x,t) =
∞

∑
n=1

[

sin
nπx

L

(

an sin
αnπt

L
+ bn cos

αnπt
L

)]

(11.20)

where

an =
2

αnπ

∫ L

0
g(x)sin

nπx
L

dx (11.21)

and

bn =
2
L

∫ L

0
f (x)sin

nπx
L

dx. (11.22)

In physical terms this answer makes sense for the following reasons.

1. If the tension τ is increased, α increases, which increases the frequency of oscil-
lation.

2. If the mass per unit length ρ is increased, α decreases, which decreases the fre-
quency of oscillation.

3. If the length L is increased, the frequency decreases.

Example 11.2. Solve
∂ 2u
∂ t2 = α2 ∂ 2u

∂x2 ,

where L = 3 and α = 2 subjected to the boundary conditions u(0,t) = 0, u(L,t) = 0,
and initial conditions

u(x,0) =

{

x, x < 1,
3−x

2 , 1 ≤ x ≤ 3,

∂u
∂ t

(x,0) = 0.

This represents a string plucked 1/3 of the way along its length with zero initial
velocity.

All the computations for this problem have already been carried out. Substituting
for bn from Example 11.1 and an = 0 (because the initial velocity is zero) into
Equation (11.13) gives

u(x,t) =
∞

∑
n=1

bnsin
nπx

3
cos

2nπt
3

=
∞

∑
n=1

(
9

n2π2 sin
nπ
3

)

sin
nπx

3
cos

2nπt
3

.

A plot of the motion of the string for various t values including the first 20 terms
in the Fourier series is illustrated in Figure 11.6. A plot of the magnitude of the
coefficient bn versus frequency αnπ/L is illustrated in Figure 11.7. This is called
the spectrum of the response and is an illustration of the contribution of each mode
to the overall response of the system. Typically the lowest frequency is called the
fundamental frequency and the higher modes are called harmonics. Note that not
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only do the higher modes have a different shape, as was illustrated in Figure 11.4,
the higher modes have higher frequencies as well.
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Fig. 11.6 Response of a plucked string from Example 11.2.
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Fig. 11.7 Spectrum for plucked string in Example 11.2.



11.2 Fourier Series 497

Example 11.3. Consider the same string as in Example 11.2 but instead of having
the string plucked, like a guitar or banjo, consider it being impacted by a small
hammer over a small segment of its length, like a piano. Thus, solve

∂ 2u
∂ t2 = α2 ∂ 2u

∂x2

where L = 3 and α = 2 subjected to the boundary conditions u(0,t) = 0, u(L,t) = 0
and initial conditions

u(x,0) = 0

∂u
∂ t

(x,0) =

⎧

⎪⎨

⎪⎩

0, 0 < x ≤ 3
4 ,

1, 3
4 < x ≤ 1,

0, 1 < x ≤ 3.

Substituting into Equation (11.21) gives

an =
1

nπ

∫ 3

0
g(x)sin

nπx
3

dx =
1

nπ

∫ 1

3
4

sin
nπx

3
dx = − 3

n2π2 cos
nπx

3

∣
∣
∣
∣

1

3
4

=
3

n2π2

(

cos
nπ
4

− cos
nπ
3

)

and Equation (11.22) gives that bn = 0. Hence, from Equation (11.20)

u(x,t) =
∞

∑
n=1

3
n2π2

(

cos
nπ
4

− cos
nπ
3

)

sin
nπx

3
sin

2nπt
3

A plot of the spectrum, that is, the magnitude of the coefficient bn versus fre-
quency αnπ/L, is illustrated in Figure 11.8. Note that the relative contributions
of the harmonics in this example are different from the plucked example (Exam-
ple 11.2). This explains why a plucked and struck string do not sound the same,
even if they are the same note.

11.2 Fourier Series

Motivated by our apparent ability to use an infinite series of sine and cosine func-
tions to match any initial conditions for the wave equation defined on the length of
the string (Equations 911.17) and (11.19)), we now consider the general problem of
representing an arbitrary periodic function as a trigonometric series.

Motivated by the form of the solution to the wave equation, consider the series

f (x) =
∞

∑
n=0

[

an sin
nπx

L
+ bn cos

nπx
L

]

. (11.23)
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Fig. 11.8 Spectrum for hammered string in Example 11.3.

The question to consider is under what conditions will we be able to compute the
infinite number of coefficients an and bn so that this series converges to a specified
function? There are a variety of reasons to pursue this, not the least of which are the
following.

• We may be forced to represent a function in this manner, as was the case for
satisfying the initial conditions for the wave equation.

• Even though it is an infinite series, sine and cosine functions are generally pretty
easy to deal with, so, in the right context, it may be worth the effort to represent
some given function as a trigonometric series of this nature because it may be
more expedient elsewhere in a problem.

An example of the second case is considered in the exercises.

11.2.1 Periodic Functions

As an initial observation, it is worth noting that because of the periodic nature of the
trigonometric functions, it will probably not be possible to represent any function
by a series of the form of Equation (11.23). In particular, observe that
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f (x + 2L) =
∞

∑
n=0

[

an sin
nπ (x + 2L)

L
+ bn cos

nπ (x + 2L)
L

]

=
∞

∑
n=0

[

an sin
(nπx

L
+ 2nπ

)

+ bn cos
(nπx

L
+ 2nπ

)]

=
∞

∑
n=0

(

an sin
nπx

L
+ bn cos

nπx
L

)

= f (x).

Of course, mathematically what this represents is that the series repeats itself over
every interval of 2L. Observe that similarly

f (x) = f (x + 2L) = f (x + 4L) = f (x + 6L) = · · · = f (x + 2mL)

where m is a natural number (positive integer). Motivated by this we define a peri-
odic function as follows.

Definition 11.1. A function f (x) is periodic with period T , if T is the smallest num-
ber such that f (x) = f (x + T ).

Having defined a periodic function and observed that the series we are consider-
ing is periodic with period 2L, it is obvious to conclude that the class of functions
for which the series converges must be periodic. In the case of the wave equation
and other partial differential equations considered subsequently, the initial shape of
the string was not periodic; however, we were only interested in its shape over the
length of the string. If we had plotted the Fourier series for the initial condition out-
side the domain of x = 0 to x = L we would have observed that, in fact, the function
was periodic, but we were only interested in it over the length of one half of its
period.

If we wish to consider the properties of the series for general periodic functions,
because the length L was one half of the period, we could substitute L = T/2 in the
sine and cosine functions in the series to put it in the form

f (x) =
∞

∑
n=0

[

ansin
2nπx

T
+ bncos

2nπx
T

]

, (11.24)

that is, in terms of the period T rather than the length L.

11.2.2 Inner Products

Not surprisingly, the “trick” (Equation (11.16)) that allowed us to compute the in-
finite number of coefficients in the Fourier series is used in a similar manner here.
However, instead of simply considering it to be a trick whose only redeeming fea-
ture is one of mathematical manipulation, we investigate things a bit further to see
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that, in fact, it is nothing more than using the usual dot product to project one vector
onto another. In the rest of this section we consider the generic properties of the
dot product and its geometric interpretation which include the important concept of
orthogonality.

Recall from vector algebra that the dot product between two vectors is defined as

x ·y =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3
...

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1

y2

y3
...

yn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= x1y1 + x2y2 + · · ·+ xnyn =
n

∑
i=1

xiyi.

So, in words, the dot product is simply the sum of the product of all of the corre-
sponding components of the vectors x and y.

To generalize this idea to functions, first note that, loosely speaking, one may
think of a function as a vector by “sampling” its values at various points (perhaps
an infinite number of points) along its domain; that is,

f (x) =

⎡

⎢
⎢
⎢
⎣

f (x0)
f (x1)
f (x2)

...

⎤

⎥
⎥
⎥
⎦

.

Now, considering the dot product between two functions f (x) and g(x) over an
interval of −L < x < L and taking the values of each at many points we may write

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f (−L)
f (−L+ dx)
f (−L+ 2dx)

...
f (L)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g(−L)
g(−L+ dx)

g(−L+ 2dx)
...

g(L)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
2L/dx

∑
n=0

f (−L+ ndx)g(−L+ ndx).

Now clearly our goal is going to be to take the limit as dx → 0; however in this limit
this sum will typically not converge for nonzero f (x) and g(x) because it will be the
infinite sum of finite values. However, if we modify it slightly by multiplying the
product of f and g by dx, and taking the limit as dx → 0 we have

lim
dx→0

2L/dx

∑
n=0

f (−L+ ndx)g(−L+ ndx)dx =
∫ L

−L
f (x)g(x)dx.

Motivated by this we define the inner product between two periodic functions
with period 2L.

Definition 11.2. Let f (x) and g(x) be periodic functions with period 2L. The inner
product of f and g, denoted by 〈 f ,g〉 is
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〈 f ,g〉 =
∫ L

−L
f (x)g(x)dx.

With this definition, it is clear that all the usual properties of the dot product
generalize to this inner product.

1. 〈 f1 + f2,g〉 = 〈 f1,g〉+ 〈 f2,g〉.
2. 〈α f ,g〉 = α〈 f ,g〉.
3. 〈 f ,g〉 = 〈g, f 〉 (for real f and g).
4. 〈 f , f 〉 �= 0 unless f = 0.

Also observe that the integral may be evaluated over any interval of length 2L
because the functions are periodic with period 2L. In addition to the usual properties
of a dot product holding for the generalization of the inner product to functions, the
main intuitive idea also holds: the inner product gives a measure of the degree of
“alignment” of the functions.

Example 11.4. Consider the three functions

f1(x) = sinx

f2(x) = sin2x

f3(x) =

⎧

⎪⎨

⎪⎩

x, 0 ≤ x ≤ π
2 ,

π − x, π
2 < x ≤ 3π

2 ,

x−2π 3π
2 < x ≤ 2π .

These three functions are plotted in Figure 11.9. Observe that f1(x) and f3(s) are
well aligned over the interval, whereas f2(x) is not aligned with f1(x) or f3(x).
In fact, careful inspection of Figure 11.9 makes it clear that for every value for x
where f2(x) and the other two functions have the same sign, there is a point where
they have the same magnitudes, but opposite signs. Thus, if the interpretation of the
inner product is that it is a measure of alignment of the functions, we would expect
that 〈 f1(x), f3(x)〉 would be positive and that both 〈 f2(x), f1(x)〉 and 〈 f2(x), f3(x)〉
would be zero.

Computing the three inner products on the interval [0,2π ] gives

〈 f1(x), f2(x)〉 =
∫ 2π

0
(sin x)(sin2x)dx = 0

by Proposition C.1. Computing

〈 f1(x), f3(x)〉 =
∫ 2π

0
(sinx) f3(x)dx

=
∫ π

2

0
xsin xdx +

∫ 3π/2

π/2
(π − x)(sinx)dx

+
∫ 2π

3π/2
(x−2π)(sin x)dx = 4,
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Fig. 11.9 Three functions from Example 11.4.

which makes sense that it is nonzero inasmuch as, by Figure 11.9, the functions are
somewhat aligned. Also,

〈 f2(x), f3(x)〉 =
∫ 2π

0
f3(x)sin 2xdx

=
∫ π

2

0
xsin2xdx +

∫ 3π/2

π/2
(π − x)(sin2x)dx

+
∫ 2π

3π/2
(x−2π)(sin2x)dx = 0.

11.2.3 Orthogonality

Recall from vector algebra that two vectors are orthogonal if their dot product is
zero. In Euclidean space this corresponds to the angle between the vectors being
90◦. Given two vectors with varying orientation, the magnitude of the dot product
will be maximum when they are perfectly aligned (colinear) and zero when they
are perfectly “unaligned,” that is, orthogonal. Using a similar notion, we define two
functions to be orthogonal when their inner product is zero; that is, the functions f
and g are orthogonal if 〈 f ,g〉 = 0.

For the present case, the most important class of functions that are orthogonal are
trigonometric and have already been used. In particular
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〈sin
nπx

L
,sin

mπx
L

〉 =
∫ L

−L
sin

nπx
L

sin
mπx

L
dx =

{

0, m �= n,

L, m = n,

〈cos
nπx

L
,cos

mπx
L

〉 =
∫ L

−L
cos

nπx
L

cos
mπx

L
dx =

{

0, m �= n,

L, m = n,

〈sin
nπx

L
,cos

mπx
L

〉 =
∫ L

−L
sin

nπx
L

cos
mπx

L
dx = 0 ∀m,n.

Now we consider a fundamental role of the inner product, which is in the pro-
jection of one vector (or function) onto another. Consider the vector z illustrated in
Figure 11.10. Its projection onto the other two vectors x and y are given by the dot
product, that is, x · y and x · z, or using the inner product notation, 〈x,z〉 and 〈x,z〉.
The important point to observe is that it is only in the case of an orthogonal basis
that the sum of the projections of a vector onto the basis elements is equal to the
vector. In the right figure, with orthogonal basis vectors x and y, if z is projected
onto each one, then z is equal to the sum of the projections. In the left figure, where
the basis elements are not orthogonal, the sum of the projections is not equal to the
original vector.

x x

y
y

z z

〈z,x〉 〈z,x〉

〈z,y〉

〈z,y〉 〈z,x〉+ 〈z,y〉

〈z,x〉+ 〈z,y〉

Fig. 11.10 Projection of a vector onto other vectors.

Now, we apply these concepts to periodic functions. The set of functions com-
posed of sin(nπx/L) and cos(nπx/L) for n = 0,1,2, . . . is a basis for the set of
periodic functions.3 By defining the inner product as in Definition 11.2, the basis
is orthogonal. That fact allows us to project any function onto the basis elements
using the inner product to determine the components of that function in terms of
that basis.

3 There are subtleties associated with infinite-dimensional vector spaces that are not at all obvious
to a reader with a background in basic linear algebra limited to finite-dimensional vector spaces.
All of the computations and manipulations herein are valid, but one must exercise caution when
applying all intuition based on finite-dimensional vector spaces to the infinite-dimensional case.
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11.2.4 The General Fourier Series

Given a function f (x), with period T = 2L, we now have all the tools to be able to
express it as a Fourier series of the form

f (x) =
∞

∑
n=0

ansin
nπx

L
+ bncos

nπx
L

.

In order to find the coefficients, multiply by sin(mπx/L) for the an and multiply
by cos(mπx/L) for the bn and integrate from −L to L with respect to x. Due to
the orthogonality of the sine and cosine functions, all the terms in the series vanish
except for one of them, which allows us to solve for the coefficient. In particular,

∫ L

−L
sin

mπx
L

(
∞

∑
n=0

ansin
nπx

L
+ bncos

nπx
L

)

dx =
∫ L

−L
f (x)sin

mπx
L

dx,

which gives

Lam =
∫ L

−L
f (x)sin

mπx
L

dx

or

am =
1
L

∫ L

−L
f (x)sin

mπx
L

dx.

Similarly,

bm =
1
L

∫ L

−L
f (x)cos

mπx
L

dx.

Note that because sin0 = 0, a0 will always be equal to zero (which is why all the
Fourier series for the wave equation started at n = 1). However, the same is not true
for b0, which has to be evaluated for each series. In particular,

∫ L

−L
cos

0πx
L

(
∞

∑
n=0

ansin
nπx

L
+ bncos

nπx
L

)

dx =
∫ L

−L
b0dx = 2Lb0 =

∫ L

−L
f (x)dx,

which gives

b0 =
1

2L

∫ L

−L
f (x)dx.

Note that this expression has a factor of one-half that is not present in the equation
for bn for n > 0. Hence, it is conventional to write

f (x) =
b0

2
+

∞

∑
n=1

an sin
nπx

L
+ bn cos

nπx
L

, (11.25)

where
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an =
1
L

∫ L

−L
f (x)sin

nπx
L

dx, n = 1,2,3, . . . (11.26)

and

bn =
1
L

∫ L

−L
f (x)cos

nπx
L

dx, n = 0,1,2,3, . . . (11.27)

which allows us to use the same formula for b0 as the rest of the cosine coefficients.

Remark 11.1. Because all the functions involved are periodic, the integrals in Equa-
tions (11.26) and (11.27) may have any limits as long as the interval over which the
integrals are evaluated has a length of T = 2L.

11.2.5 Examples of Fourier Series

Now we consider a few examples.

Example 11.5. Determine the Fourier series representation for the square wave func-
tion, given by

f (x) =

{

1, 0 < x ≤ 1,

−1, 1 < x ≤ 2,

for x ∈ (0,2] and with f (x + 2) = f (x) which is illustrated in Figure 11.11.

-1.5
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-0.5

0

0.5

1

1.5

-4 -2 0 2 4

f(
x)

x

square wave

Fig. 11.11 Square wave function for Example 11.5.

Computing the Fourier coefficients,
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an =
∫ 2

0
f (x)sin

2nπx
2

dx

=
∫ 1

0
(1)sin(nπx)dx +

∫ 2

1
(−1)sin(nπx)dx

=
1

nπ

[

−cos(nπx)|10 − −cos(nπx)|21
]

=
1

nπ
[−cos(nπ)+ 1 + cos(2nπ)− cos(nπ)]

=
2

nπ
[1− cos(nπ)] .

and

bn =
∫ 2

0
f (x)cos

2nπx
2

dx

=
∫ 1

0
(1)cos(nπx)dx +

∫ 2

1
(−1)cos(nπx)dx

=
1

nπ

[

sin(nπx)|10 − sin(nπx)|21
]

= 0.

Also,

b0 =
∫ 2

0
f (x)dx =

∫ 1

0
1dx−

∫ 2

1
dx = x|10 − x|21 = 0.

Hence,

f (x) =
∞

∑
n=1

2
nπ

(1− cos(nπ))sin (nπx) .

Plots comparing the exact square wave to the sum of the first 5, 10 and 50 terms
in the series, respectively, are illustrated in Figures 11.12 through 11.14.

Example 11.6. Determine the Fourier series representation for the sawtooth wave
function given by

f (x) =
x
2

for x ∈ (0,2] and f (x + 2) = f (x). This function is illustrated in Figure 11.15.
Computing the Fourier coefficients and noting that T = 2 so L = 1

an =
1
1

∫ 2

0
f (x)sin

nπx
1

dx =
∫ 2

0

x
2

sin(nπx)dx = −cos2nπ
nπ

and

bn =
1
1

∫ 2

0
f (x)cos

nπx
1

dx = 0

for n �= 0. For n = 0,
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Fig. 11.12 The first 5 terms in the Fourier series for the square wave in Example 11.5.
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Fig. 11.13 The first 10 terms in the Fourier series for the square wave in Example 11.5.

b0 =
1
1

∫ 2

0

x
2

dx = 1.

Hence

f (x) =
1
2

+
∞

∑
n=1

−cos(2nπ)
nπ

sin(nπx) .

A plot of the first 5 and 10 terms of the series is illustrated in Figure 11.16.
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Fig. 11.14 The first 50 terms in the Fourier series for the square wave in Example 11.5.
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Fig. 11.15 Sawtooth wave for Example 11.6.

Example 11.7. Compute the Fourier series for the function

f (x) =

{

x, 0 < x ≤ 1,

1, 1 < x ≤ 2,

where f (x + 2) = f (x).
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Fig. 11.16 First 5 and 10 terms in the Fourier series for the sawtooth function in Example 11.6.

The function is periodic with period T = 2; hence, L = 1. The coefficients are
given by

an =
1
1

∫ 1

−1
f (x)sin

nπx
1

dx

=
∫ 0

−1
1sin(nπx)dx +

∫ 1

0
xsin(nπx)dx

= − 1
nπ

cos(nπx)
∣
∣
∣
∣

0

−1
−
(

1
nπ

xcos(nπx)
)∣
∣
∣
∣

1

0
+

1
nπ

∫ 1

0
cos(nπx)dx

= − 1
nπ

cos(nπx)
∣
∣
∣
∣

0

−1
−
(

1
nπ

xcos(nπx)
)∣
∣
∣
∣

1

0
+

1
n2π2 sin(nπx)

∣
∣
∣
∣

1

0

= − 1
nπ

(1− cos(−nπ))− 1
nπ

(cos(nπ)−0)+
1

n2π2 (0−0)

= − 1
nπ

and
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bn =
1
1

∫ 1

−1
f (x)cos

nπx
1

dx

=
∫ 0

−1
1cos(nπx)dx +

∫ 1

0
xcos(nπx)dx

=
1

nπ
sin(nπx)

∣
∣
∣
∣

0

−1
+

1
nπ

xsin(nπx)
∣
∣
∣
∣

1

0
− 1

nπ

∫ 1

0
sin(nπx)dx

=
1

nπ
sin(nπx)

∣
∣
∣
∣

0

−1
+

1
nπ

xsin(nπx)
∣
∣
∣
∣

1

0
+

1
n2π2 cos(nπx)

∣
∣
∣
∣

1

0

=
1

n2π2 (cos(nπ)−1) .

The b0 coefficient must be computed separately,

b0 =
∫ 0

−1
(1)(1)dx +

∫ 1

0
xdx = x|0−1 +

1
2

x2

∣
∣
∣
∣

1

0
= 0− (−1)+

1
2

=
3
2
.

Hence,

f (x) =
3
4

+
∞

∑
n=1

(

− 1
nπ

sin(nπx)+
cos(nπ)−1

n2π2 cos(nπx)
)

.

A plot of f (x) as well as partial sums of the series including the first 10 and 20 terms
of the series is illustrated in Figure 11.17.
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Fig. 11.17 Fourier series for Example 11.7.
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11.2.6 Summary Remarks and Theory

Fourier series have been developed in the context of using a series of sine and cosine
functions to represent a periodic function, however, recall in Section 11.1 that it
originally arose in the context of representing a function in a finite interval, which
in the case of the string, was along its length. A reader may initially be confused
about the fact that for satisfying the initial conditions for the wave equation, the
integrals were on the interval from 0 to L and for Fourier series in this section they
were from −L to L. Nothing is fundamentally different between the two problems.
If we were to plot the solution to the wave equation outside the interval from 0 to
L, it would be apparent that the solution over the larger domain is, in fact, periodic
along the spatial dimension x.

We end this section with a theorem that provides some conditions on a function
f (x) to guarantee that the Fourier series will converge to f (x). It is from [9] and
the reader is referred to that text for a proof. The theorem states that the Fourier
series converges to f (x) where it is continuous and, where there is a discontinuity,
it converges to the average of the values before and after the jumps.

Theorem 11.1. Let f and f ′ be piecewise continuous on the interval −L ≤ x ≤ L.
The series given by Equation (11.25) with coefficients give by Equations (11.26) and
(11.27) converges to f (x) if f is continuous at x and converges to ( f (x+)− f (x−))/2,
the average of the values of the limits of f as x is approached from above and below,
respectively, if f is discontinuous at x.

The observant reader may question the convergence result in this theorem. Fig-
ures 11.11 and 11.17 show clear “overshoots” in the Fourier series at points of dis-
continuity of the function f (x). These cannot be eliminated and their existence is
called Gibb’s phenomenon. The nature of the convergence of the series to f (x) is
one of pointwise versus uniform convergence and is beyond the scope of this text.
An interested reader is referred to [38] for a more complete exposition. In the case
of the Gibbs phenomenon, pointwise convergence may be considered by observing
that for any point x, except for the value of the actual discontinuity, if enough terms
are included in the series, then the series converges to f (x). If x is moved closer to
the discontinuity, then the overshoot similarly shifts closer to the discontinuity as
well. In contrast, if the Fourier series converged uniformly, which it does not at a
discontinuity, then there would be no Gibbs phenomenon.

11.3 The One-Dimensional Heat Equation

Heat conduction is also a common phenomenon described by a partial differential
equation. Consider the temperature distribution along a slender beam that is insu-
lated everywhere except for the two ends, which have specified temperatures, as
is illustrated on the left in Figure 11.18. Because the sides are insulated, the only
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mechanism by which the temperature is changed at any point along the beam is by
heat conduction through the beam itself.

T0 TL

u(x, t)x = 0 x = L

q(x+dx, t)q(x, t)

x x+dx

Fig. 11.18 One-dimensional heat conduction along a slender beam (left) and a small segment of
the beam (right).

The physical principle upon which heat conduction is based is Fourier’s law,
which states that the rate of thermal energy transfer in the form of heat in the x-
direction is proportional to the temperature gradient at that point; that is,

q(x,t) = −kA
∂u
∂x

(x,t), (11.28)

where the heat rate q has units of W.4 The proportionality constant k is called the
thermal conductivity which has units W/(m ·K) and is a property of the material.
This law makes perfect sense in that energy in the form of heat is conducted from
hot to cold sections of the material.

Considering a small segment of the beam with length dx, as is illustrated on the
right in Figure 11.18, the rate at which energy will accumulate in a small segment
of length dx is the difference between the heat rate in and the heat rate out, which,
for small dx is given by

q(x,t)−q(x + dx,t) = q(x,t)−
(

q(x,t)+
∂q
∂x

(x,t)dx + · · ·
)

≈−∂q
∂x

(x,t)dx.

(11.29)
A basic property of any material is that the rate at which the temperature changes
at a point is related to the rate at which thermal energy is added at that point. Using
the Equation (11.29), this is expressed as

−∂q
∂x

dx = ρcpA
∂u
∂ t

dx.

Inasmuch as the heat rate is proportional to the temperature gradient, using Equa-
tion (11.28), we have

kA
∂ 2u
∂x2 dx = ρcp

∂u
∂ t

Adx

which can be expressed as

4 Typically, Fourier’s law is formulated in terms of the heat flux, which is the rate of energy transfer
per unit area. In this development, because the temperature is assumed to be uniform on a cross-
section, the heat rate is a more convenient representation.
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α2 ∂ 2u
∂x2 (x,t) =

∂u
∂ t

(x,t). (11.30)

The coefficient α = k/ρcp is called the thermal diffusivity. Note that if α increases,
then the rate at which the temperature changes increases, and vice-versa. Elaborating
on this by relating it to the material properties is left as an exercise.

Fourier’s law is apparent in an interpretation of the heat equation that the tem-
perature at a given point x will change if the curvature of the temperature profile is
nonzero. Figure 11.19 contains two temperature profiles. In the one with no curva-
ture, the rate of heat conduction along the entire bar will be constant. In the case
where the temperature profile has a nonzero, there will be a higher rate of heat con-
duction where the gradient is steep and a lower rate where it is less steep. Thus, for
the curved temperature profile, there will be more heat conduction from the right to
the center than there will be from the center to the left boundary, the consequence
of which will be that the temperature in the center of the bar will increase. In fact,
as is shown subsequently, the steady-state solution is the solution with no curvature,
that is, a straight line. Hence, the curved solution will approach the straight solution
as t → ∞.
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Fig. 11.19 Heat conduction with zero and nonzero temperature curvature.
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11.3.1 Solution to the Heat Conduction Equation with
Homogeneous Boundary Conditions

The usual approach to solve the heat equation is to solve it with homogeneous
boundary conditions and then solve it with nonhomogeneous boundary conditions.
Homogeneous boundary conditions are where boundary conditions are

u(0,t) = u(L,t) = 0;

that is, the temperature at both ends is zero. This is not a very realistic situation, but
we use the solution for the homogeneous boundary conditions as part of the solution
to the more realistic nonhomogeneous case.

The complete problem statement includes the differential equation and the bound-
ary conditions as well as an initial temperature profile:

α2 ∂ 2u
∂x2 =

∂u
∂ t

(11.31)

and
u(0,t) = 0, u(L,t) = 0, u(x,0) = f (x).

The approach is exactly the same as for the wave equation. Assuming

u(x,t) = X(x)T (t)

and substituting into Equation (11.31) gives

α2X ′′(x)T (t) = X(x)T ′(t).

As before, this is separable, so

X ′′(x)
X(x)

=
1

α2

T ′(t)
T (t)

,

and because the left-hand side is a function only of x and the right-hand side is
only a function of t, and x and t are independent, then each side must be equal to a
constant. Hence,

X ′′(x)
X(x)

=
1

α2

T ′(t)
T (t)

= −λ

or
X ′′(x)+ λ X(x) = 0, T ′(t)+ α2λ T (t) = 0.

This is similar to the wave equation except that the equation for T (t) is a first-
order equation instead of second-order. This should make sense inasmuch as we
would not expect that the temperature profile in a bar would exhibit solutions that
are oscillatory, which may be the case for a second-order equation.
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We proceed as before by applying the boundary conditions to determine λ , which
gives an infinite number of solutions for X(x). We may then use the infinite number
of solutions to satisfy the initial temperature profile by using a Fourier series. In
fact, the homogeneous boundary conditions give rise to exactly the same case as for
the wave equation. In particular, the general solution for X(x) is

X(x) = c1sin
√

λ x + c2cos
√

λ x

and the boundary conditions require

u(0,t) = 0 =⇒ X(0) = 0 =⇒ c2 = 0,

and

u(L,t) = 0 =⇒ X(L) = 0 =⇒ λ =
n2π2

L2 , n = 1,2,3, . . . .

So, we have

Xn(x) = cn sin
nπx

L
.

Because the general solution for T (t) is then

T (t) = e−α2λ t = e−α2n2π2t/L2

the general solution to Equation (11.31) is

u(x,t) =
∞

∑
n=1

cnsin
nπx

L
e−(αnπ/L)2t . (11.32)

Given some initial temperature profile, at t = 0 the exponential term is one and the
initial profile may be satisfied by a Fourier series; that is,

u(x,0) =
∞

∑
n=1

cn sin
nπx

L
e−(α2nπ/L)2

0 =
∞

∑
n=1

cn sin
nπx

L
= f (x).

The coefficients are determined by exploiting orthogonality as before. In particular,
multiplying by sin(mπx/L) and integrating from 0 to L with respect to x gives

∫ L

0
sin

mπx
L

∞

∑
n=1

cnsin
nπx

L
dx =

∫ L

0
sin

mπx
L

f (x)dx.

The sine functions are orthogonal except for the case where n = m, therefore the
infinite series reduces to one term, which gives

cn

∫ L

0
sin

nπx
L

sin
nπx

L
dx =

∫ L

0
sin

nπx
L

f (x)dx.
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Evaluating the integral on the left-hand side gives what is exactly the same answer
as before for the wave equation; namely,

cn =
2
L

∫ L

0
sin

nπx
L

f (x)dx. (11.33)

Hence, for homogeneous boundary conditions

u(0,t) = u(L,t) = 0

and initial condition
u(x,0) = f (x)

we have the general solution

u(x,t) =
∞

∑
n=1

cnsin
(nπx

L

)

exp

(

−
(αnπ

L

)2
t

)

, (11.34)

where the coefficients cn are given by Equation (11.33).

Example 11.8. Determine the solution to

4
∂ 2u
∂x2 =

∂u
∂ t

with
u(0,t) = u(10,t) = 0

and

u(x,0) =

{

x, 0 < x ≤ 5,

10− x, 5 < x ≤ 10.

This is the case where α = 2 and L = 10 and u(x,0) is as illustrated in Fig-
ure 11.20, and the solution is simply given by substituting into Equation (11.34).

The only work is to determine the coefficients in the Fourier series to satisfy the
initial condition,

cn =
2
L

∫ L

0
sin

nπx
L

f (x)dx

=
2

10

[∫ 5

0
xsin

nπx
10

dx +
∫ 10

5
(10− x)sin

nπx
L

dx

]

.

Using the fact that

∫ b

a
xsin cxdx = −1

c
xcoscx

∣
∣
∣
∣

b

a
+

1
c2 sincx

∣
∣
∣
∣

b

a
,

which can easily be verified by integrating by parts, the coefficients are
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Fig. 11.20 Initial temperature profile for Example 11.8.

cn =
1
5

⎡

⎣− 10
nπ

xcos
nπx
10

∣
∣
∣
∣

5

0
+
(

10
nπ

)2

sin
nπx
10

∣
∣
∣
∣
∣

5

0

−10
10
nπ

cos
nπx
10

∣
∣
∣
∣

10

5

10
nπ

xcos
nπx
10

∣
∣
∣
∣

10

5
−
(

10
nπ

)2

sin
nπx
10

∣
∣
∣
∣
∣

10

5

⎤

⎦

=
2

nπ

[

−5cos
nπ
2

−0 +
10
nπ

(

sin
nπ
2

−0
)

− 10
(

cosnπ − cos
nπ
2

)

+ 10cosnπ −5cos
nπ
2

− 10
nπ

(

0− sin
nπ
2

)]

=
40

n2π2 sin
nπ
2

.

Hence, by Equation (11.34), the solution is given by

u(x,t) =
∞

∑
n=1

(
40

n2π2 sin
nπ
2

)

sin
(nπx

10

)

exp

(

−
(

2nπ
10

)2

t

)

.

A plot of the partial sum of the solution through the tenth mode (n = 10) for various
times is illustrated in Figure 11.21.
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Fig. 11.21 Solution for the heat equation including the first 10 terms in the partial sum of the series
solution in Example 11.8 for various times.

11.3.2 Solution to the Heat Equation with Inhomogeneous
Boundary Conditions

Of course, the boundary conditions for the heat conduction equation are seldom
both zero. Let us now consider the case where

u(0,t) = TL, u(L,t) = TR.

From Section 11.3, the steady-state solution will be

lim
t→∞

u(x,t) =
TR −TL

L
x + TL = uss(x) (11.35)

which is simply a straight line from u(0,t) = TL at x = 0 to u(L,t) = TR at x = L.
Because there is no curvature, this solution satisfies the heat equation inasmuch as
it is constant in time. It also satisfies the boundary conditions.

The complement to the steady-state solution is the transient solution which, in
fact, is related to the solution determined in Section 11.3.1 given by

utr(x,t) =
∞

∑
n=1

cn sin
(nπx

L

)

e−(αnπ/L)2t

and the steady-state solution from Equation (11.35). It makes sense to try to add
them to find the complete solution. Along these lines, let
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u(x,t) = utr(x,t)+ uss(x)

=
TR −TL

L
x + TL +

∞

∑
n=1

cnsin
nπx

L
e−(αnπ/L)2t .

To finish this problem we need to do the following.

1. Check that it satisfies the heat equation.
2. Check that it satisfies the boundary conditions.
3. Find equations for the cn so that it satisfies the initial conditions.

For the coefficients, substituting t = 0 into the general solution gives

u(x,0) =
∞

∑
n=1

cn sin
nπx

L
e−(αnπ/L)20 +

TR −TL

L
x + TL

=
∞

∑
n=1

cn sin
nπx

L
+

TR −TL

L
x + TL

= f (x).

Thus, at t = 0 we may write

∞

∑
n=1

cn sin
nπx

L
= f (x)− TR −TL

L
x−TL.

If we let

f̂ (x) = f (x)− TR −TL

L
x−TL

we may compute the Fourier coefficients in the usual manner:

cn =
2
L

∫ L

0
f̂ (x)sin

nπx
L

dx. (11.36)

Example 11.9. Solve the heat equation with L = α = 1, TL = 0, TR = 1, and

u(x,0) = 0.

Substituting into Equation (11.36) gives

cn = 2
∫ 1

0
xsin nπxdx = − 2

nπ
(−xcosnπx)|10 =

2
nπ

cosnπ .

Plots of the solution for various times are illustrated in Figure 11.22.
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Fig. 11.22 Solution from Example 11.9 for various t .

11.3.3 Solution to the Heat Equation with an Insulated End

Because the rate of heat transfer is proportional to the derivative of the temperature,
if an end is insulated the boundary condition at that end will be that the derivative
must be zero. It is left as an exercise to show that the solution to

α2 ∂ 2u
∂x2 =

∂u
∂ t

(11.37)

with boundary conditions

u(0,t) = 0,
∂u
∂x

(L,t) = 0 (11.38)

with
u(x,0) = f (x)

is given by

u(x,t) =
∞

∑
n=0

cn

(

sin
(2n + 1)πx

2L

)(

exp
−α2 (2n + 1)2 π2t

4L2

)

, (11.39)

where

cn =
2
L

∫ L

0
f (x) sin

(2n + 1)πx
2L

dx. (11.40)
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Example 11.10. The solution to Equation (11.37) with boundary conditions given
by Equation (11.38), α = L = 1 and

u(x,0) = 1

is obtained by substituting into the equation for the coefficients. In particular,

cn = 2
∫ 1

0
sin

(2n + 1)πx
2

dx

=
4

(2n + 1)π

(

−cos
(2n + 1)πx

2

)∣
∣
∣
∣

1

0

=
4

(2n + 1)π

(

1− cos
(2n + 1)π

2

)

.

Hence, the solution is

u(x,t) =
∞

∑
n=0

4
(2n + 1)π

(

1− cos
(2n + 1)π

2

)(

sin
(2n + 1)πx

2

)

·
(

exp
−(2n + 1)2 π2t

4

)

.

Plots of the solution for various times are illustrated in Figure 11.23.
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Fig. 11.23 Solution from Example 11.10 for various t .
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11.4 Heat Conduction in Two Dimensions

The heat conduction equation has a relatively simple extension to higher dimen-
sions. It is left as an exercise to show that the heat conduction equation in Cartesian
coordinates in three dimensions is

∂ 2u
∂x2 (x,y,z,t)+

∂ 2u
∂y2 (x,y,z,t)+

∂ 2u
∂ z2 (x,y,z,t) =

ρcp

k
∂u
∂ t

(x,y,z,t).

11.4.1 Laplace’s Equation: Steady-State Temperature Distribution

In steady state, the temperature is constant, so the term in the heat conduction equa-
tion that is the derivative with respect to t is zero. This is called Laplace’s equation,
and in two dimensions is

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0. (11.41)

Various combinations of boundary conditions are possible and are fully explored in
the exercises. In this section we consider

u(0,y) = 0, u(Lx,y) = 0, u(x,0) = 0, u(x,Ly) = f (x).

The exercises explore the solution method when the nonzero boundary condition is
on one of the other three boundaries.

Assuming u(x,y) = X(x)Y (y) and substituting into Equation (11.41) gives

X ′′(x)Y (y)+ X(x)Y ′′(y) = 0 ⇐⇒ X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

.

The left-hand side is only a function of x and the right-hand side is only a function
of y and x and y are independent variables, therefore each side must be equal to the
same constant; that is,

X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

= −λ .

At this point we do not know whether λ must be positive or negative. We will
assume that it is real because it is a coefficient in the ordinary differential equations
for X(x) and Y (y) and we are seeking real solutions to Equation (11.41).

Based upon our experience with the wave and heat conduction equation, it is
reasonable to expect that we will have to use a Fourier series to satisfy the boundary
condition u(x,Ly) = f (x). Hence, we consider the X(x) equation first. Specifically,
we have

X ′′ + λ X(x) = 0 (11.42)

with
X(0) = 0, X(Lx) = 0.
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Regardless of the value of λ , the general solution to Equation (11.42) is

X(x) = c1e
√−λx + c2e−

√−λx.

The boundary condition at x = 0 gives

X(0) = c1 + c2 = 0 ⇐⇒ c1 = −c2.

Hence,
X(x) = c1

(

e
√−λx − e−

√−λx
)

.

The boundary condition at x = Lx requires that

X(a) = c1

(

e
√−λLx − e−

√−λLx
)

= 0.

If λ < 0, then
√−λ is real. Hence, either c1 = 0 or e

√−λLx = e−
√−λLx . If c1 = 0,

then u(x,y) = 0 and the solution cannot satisfy the boundary condition at y = Ly

unless it happens that f (x) = 0. Furthermore, it is not possible for e
√−λLx = e−

√−λLx

if λ < 0. So, then either λ = 0 or λ > 0.
In the case where λ = 0, Equation (11.42) is of the form

X ′′(x) = 0

which has a general solution

X(x) = c1x + c2.

Using the boundary conditions gives

X(0) = 0 =⇒ c1 = 0

X(Lx) = 0 =⇒ c2 = 0.

Again, unless f (x) = 0, this will not work.
Rapidly running out of options, consider the case where λ > 0. In that case

X(x) = c1e
√−λx + c2e−

√−λx

= c1ei
√

λx + c2e−i
√

λx

= (c1 + c2)cos
√

λ x + i(c1 − c2)sin
√

λ x

= ĉ1cos
√

λ x + ĉ2sin
√

λ x.

Applying the boundary condition at x = 0 gives

X(0) = 0 =⇒ ĉ1 = 0.

At x = Lx the boundary condition requires that either ĉ2 = 0 or
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sin
√

λ Lx = nπ n = 1,2,3, . . . .

As before if ĉ2 = 0, then u(x,y) = 0 which can not satisfy the boundary condition at
y = Ly unless f (x) = 0. So, finally we have that

λ =
(

nπ
Lx

)2

, n = 1,2,3, · · · .

Now, substituting the value of λ into the equation for Y (y) gives

Y ′′(y)−
(

nπ
Lx

)2

Y (y) = 0,

which has a general solution

Y (y) = k1enπy/Lx + k2e−nπy/Lx.

Applying the boundary condition at y = 0 gives

Y (0) = k1 + k2 = 0 =⇒ k1 = −k2.

Hence,

Y (y) = k1

(

enπy/Lx − e−nπy/Lx
)

.

We have an infinite number of general solutions for X(x) and one solution for
Y (y). Combining them gives

u(x,y) =
∞

∑
n=1

cnsin
nπx
Lx

(

enπy/Lx − e−nπy/Lx
)

.

To satisfy the boundary condition at y = Ly we need that

u(x,Ly) =
∞

∑
n=1

cnsin
nπx
Lx

(

enπLy/Lx − e−nπLy/Lx
)

= f (x).

At this point, one hopes, it is obvious what must be done: multiply by sin(mπx/Lx)
and integrate from 0 to Lx with respect to x. Doing so gives

∫ Lx

0

(
∞

∑
n=1

cn sin
nπx
Lx

(

enπLy/Lx − e−nπLy/Lx
)
)

sin
mπx
Lx

dx =
∫ Lx

0
f (x)sin

mπx
Lx

dx.

Rearranging the left hand side gives

∞

∑
n=1

cn

(

enπLy/Lx − e−nπLy/Lx
)∫ Lx

0
sin

nπx
Lx

sin
mπx
Lx

dx =
∫ Lx

0
f (x)sin

mπx
Lx

dx,
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and due to the orthogonality of the sine functions the only nonzero term in the
infinite series is the case where n = m, so

cm

(

emπLy/Lx − e−mπLy/Lx
) Lx

2
=
∫ Lx

0
f (x)sin

mπx
Lx

dx

or, finally,

cn =
2
Lx

1

enπLy/Lx − e−nπLy/Lx

∫ Lx

0
f (x)sin

nπx
Lx

dx.

So, in summary, the solution to

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0

with boundary conditions

u(0,y) = 0, u(Lx,y) = 0, u(x,0) = 0, u(x,Ly) = f (x).

is

u(x,y) =
∞

∑
n=1

cn sin
nπx
Lx

(

enπy/Ly − e−nπy/Lx
)

. (11.43)

where

cn =
2

L
(

enπLy/Lx − e−nπLy/Lx
)

∫ Lx

0
f (x)sin

nπx
Lx

dx. (11.44)

Example 11.11. Find the solution to Laplace’s equation in a rectangular domain
where Lx = 4 and Ly = 2 and

u(x,2) =

{

x, 0 < x ≤ 2

4− x, 2 < x ≤ 4.

Evaluating the integrals for the Fourier coefficients gives

cn =
64enπ/2 cos

(
nπ
4

)

sin3
(

nπ
4

)

(−1 + enπ)n2π2

A plot of the solution containing the first ten terms of the series is illustrated in
Figure 11.24.

11.4.2 Unsteady Two-Dimensional Heat Conduction with
Homogeneous Boundary Conditions

The two-dimensional heat conduction equation is given by
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Fig. 11.24 Approximate solution to Laplace’s equation from Example 11.11 using a partial sum
containing the first ten terms.

∂ 2u
∂x2 +

∂ 2u
∂y2 =

1
α2

∂u
∂ t

. (11.45)

Homogeneous boundary conditions are given by

u(0,y,t) = 0, u(Lx,y,t) = 0, u(x,0,t) = 0, u(x,Ly,t) = 0.

The initial condition is given by

u(x,y,0) = f (x,y) , (11.46)

where f (x,y) is the initial temperature profile of the plate.
In a manner similar to the one-dimensional problem, due to the fact that the heat

conduction equation is linear, we are able to combine the solution to Laplace’s equa-
tion to the unsteady solution with homogeneous boundary conditions to determine
the solution to the unsteady problem with inhomogeneous boundary conditions.

To solve this problem, assume a solution of the form

u(x,y,t) = X(x)Y (y)T (t).

Substituting into the differential equation gives

X ′′(x)Y (y)T (t)+ X(x)Y ′′(y)T (t) =
1

α2 X(x)Y (y)T ′(t)

and dividing by X(x)Y (y)T (t) and dropping the arguments gives
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X ′′

X
+

Y ′′

Y
=

1
α2

T ′

T
. (11.47)

The right-hand side of Equation (11.47) depends only on t and the left-hand side
only depends on x and y and these variables are independent, thus each side must be
equal to a constant. Hence,

X ′′

X
+

Y ′′

Y
=

1
α2

T ′

T
= −λ

which gives the two equations

X ′′

X
+

Y ′′

Y
= −λ (11.48)

and
1

α2

T ′

T
= −λ .

Until now, the systems considered had only two independent variables and we
were able to find the general solution for each one from the corresponding ordinary
differential equation, use the boundary conditions from one to determine the values
for λ , and from there construct the general solution. That is not possible for this
problem at this point because the equation with X and Y is not an ordinary differ-
ential equation because it has two independent variables. The equation for T is an
ordinary differential equation, but the boundary conditions cannot be expressed in
terms of T (t).

This is resolved by taking the procedure one step further. Rearranging Equa-
tion (11.48) gives

X ′′

X
+ λ = −Y ′′

Y
and in this equation the left-hand side only depends on x and the right-hand side
only depends on y, and hence both ratios must be a constant. Hence

X ′′

X
+ λ = −Y ′′

Y
= γ,

which gives the two ordinary differential equations

Y ′′ + γY = 0, X ′′ +(λ − γ)X = 0.

As the reader might suspect, even though there are two constants to determine, λ
and γ , due to the fact that there are boundary conditions in two dimensions, x and y,
it will be possible to use the boundary conditions to determine the constants.

In terms of the functions X(x) and Y (y) the boundary conditions are
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u(0,y,t) = X(0)Y (y)T (t) = 0 =⇒ X(0) = 0

u(Lx,y,t) = X(Lx)Y (y)T (t) = 0 =⇒ X(Lx) = 0

u(x,0,t) = X(x)Y (0)T (t) = 0 =⇒ Y (0) = 0

u(x,Ly,t) = X(x)Y (Ly)T (t) = 0 =⇒ Y (Ly) = 0.

A similar argument as before requires that both γ and λ −γ must be positive in order
to possibly satisfy the boundary condition and hence the general solutions are

Y (y) = c1 cos
√

γy + c2 sin
√

γy

X(x) = d1 cos
√

λ − γx + d2

√

λ − γx.

The boundary conditions on both X and Y at zero require that both c1 and d1 be
zero. The boundary condition on Y (Ly) requires that

γ =
m2π2

L2
y

, m = 1,2,3, . . . .

The boundary condition on X(Lx) requires that

√

λ − γLx = nπ , =⇒ λ =
n2π2

L2
x

+
m2π2

L2
y

, n = 1,2,3, . . . .

Both ordinary differential equations for X(x) and Y (y) are linear, thus the linear
combination of solutions for all the possible values for m and n are also solutions.
Hence,

X(x) =
∞

∑
n=1

dn sin
nπx
Lx

, n = 1,2,3, . . .

Y (y) =
∞

∑
n=1

cm sin
mπy
Ly

, m = 1,2,3, . . . .

Finally, using λ , a solution to the T (t) equation is

T (t) = e−αλ t = e−α2((n2π2/L2
x)+(m2π2/L2

y ))t .

Observe that the the solution for T (t) is different for each combination of values
of n and m. Substituting the solutions for X(x), Y (y), and T (t) into u(x,y,t) =
X(x)Y (y)T (t) gives the general solution

u(x,y,t) =
∞

∑
n=1

∞

∑
m=1

[

an,m

(

sin
nπx
Lx

)(

sin
mπy
Ly

)

e−α2((n2π2/L2
x)+(m2π2/L2

y ))t
]

,

(11.49)
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where the coefficient an,m is the combination of coefficients cm and dn when the
series for X and Y are multiplied.

Equation (11.49) is the general solution to Equation (11.45) with homogeneous
boundary conditions. To satisfy the initial condition, the orthogonality of the sine
functions is exploited. Substituting t = 0 into the solution and equating it with the
initial condition gives

∞

∑
n=1

∞

∑
m=1

an,m sin
nπx
Lx

sin
mπy
Ly

= f (x,y) .

Multiplying by sin(m̂πy/Ly) and integrating from 0 to Ly with respect to y gives

∫ Ly

0

∞

∑
n=1

∞

∑
m=1

an,m sin
nπx
Lx

sin
mπy
Ly

sin
m̂πy
Ly

dy =
∫ Ly

0
f (x,y) sin

m̂πy
Ly

dy.

Because the sine functions are orthogonal, every term in the series indexed by m is
zero except for when m̂ = m. Hence

Ly

2

∞

∑
n=1

an,m sin
nπx
Lx

=
∫ Ly

0
f (x,y)sin

mπy
Ly

dy.

Similarly multiplying by sin(n̂πx/Lx) and integrating from 0 to Lx with respect to
x eliminates all but one term in the remaining series. Doing so and solving for the
coefficient gives

an,m =
4

LxLy

∫ Lx

0

∫ Ly

0
f (x,y)sin

nπx
Lx

sin
mπy
Ly

dydx. (11.50)

Together, Equations (11.49) and (11.50) are the solution to Equation (11.45) with
homogeneous boundary conditions and initial temperature distribution given by
Equation (11.46).

Example 11.12. Solve the two-dimensional unsteady heat conduction equation with
homogeneous boundary conditions with Lx = 2, Ly = 1, α = 2, and

f (x,y) =

{

1, 0.9 < x < 1.1, 0.4 < y < 0.6

0, otherwise.

The solution is obtained by substituting everything into Equation (11.50) to deter-
mine the coefficients, and then substituting the coefficients into the solution given
by Equation (11.49). Doing so gives
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an,m =
4
2

∫ 1.1

0.9

∫ 0.6

0.4
sin

nπx
2

sin(mπy)dydx

= 2

(

− 2
nπ

cos
nπx

2

)∣
∣
∣
∣

1.1

0.9

(

− 1
mπ

cosmπy

)∣
∣
∣
∣

0.6

0.4

=
4

nπ
(cos(0.45nπ)− cos(0.55nπ))

1
mπ

(cos(0.4mπ)− cos(0.6mπ)) .

Plots of a partial sum solution including up to 50 terms in both series are illustrated
in Figures 11.25 through 11.27.
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Fig. 11.25 Solution from Example 11.12 at t = 0.05.

11.4.3 Unsteady Two-Dimensional Heat Conduction with
Inhomogeneous Boundary Conditions

The approach to solving the two-dimensional conduction equation with inhomoge-
neous boundary conditions is the same as in the one-dimensional case. If the so-
lution is expressed as a transient solution plus a steady-state solution, the transient
solution will satisfy the same differential equation and have homogeneous bound-
ary conditions. The approach is illustrated by an example that basically combines
Example 11.12 with Example 11.11.

Example 11.13. Find the solution to
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Fig. 11.26 Solution from Example 11.12 at t = 0.15.
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Fig. 11.27 Solution from Example 11.12 at t = 0.25.

∂ 2u
∂x2 +

∂ 2u
∂y2 =

∂u
∂ t

subject to

u(0,y,t) = 0, u(Lx,y,t) = 0, u(x,0,t) = 0, u(x,Ly,t) = f (x),

where
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u(x,1) =

{

x, 0 < x ≤ 1,

2− x, 1 < x ≤ 2.

and

u(x,y,0) =

{

1, 0.9 < x < 1.1, and 0.4 < y < 0.6

0, otherwise.

The solution can be expressed as the sum of the transient solution and the steady-
state solution

u(x,y,t) = utr (x,y,t)+ uss (x,y,t) .

Inasmuch as u satisfies
∂ 2u
∂x2 +

∂ 2u
∂y2 =

∂u
∂ t

,

substituting u = utr + uss gives

∂ 2

∂x2 (utr + uss)+
∂ 2

∂y2 (utr + uss) =
∂
∂ t

(utr + uss) .

This may be written as

∂ 2utr

∂x2 +
∂ 2uss

∂x2 +
∂ 2utr

∂y2 +
∂ 2uss

∂y2 =
∂utr

∂ t
+

∂utr

∂ t
.

Because uss does not depend on t, the last term is zero. Rearranging gives

∂ 2utr

∂x2 +
∂ 2utr

∂y2 +
∂ 2uss

∂x2 +
∂ 2uss

∂y2 =
∂utr

∂ t
.

Because uss satisfies Laplace’s equation, the last two terms on the left-hand side add
to zero, and hence

∂ 2utr

∂x2 +
∂ 2utr

∂y2 =
∂utr

∂ t
,

which shows that the transient solution satisfies exactly the same differential equa-
tion as u(x,y,t).

Expressing the boundary conditions in terms of the transient and steady-state
solutions gives

u(0,y,t) = utr(0,y,t)+ uss(0,y,t) = 0

u(Lx,y,t) = utr(Lx,y,t)+ uss(Lx,y,t) = 0

u(x,0,t) = utr(x,0,t)+ uss(x,0,t) = 0

u(x,Ly,t) = utr(x,Ly,t)+ uss(x,Ly,t) = f (x).

The steady state solution must satisfy the boundary conditions, therefore it must
be the case that the boundary conditions for the transient solution are zero, that is,
homogeneous.
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Finally, for the initial condition

u(x,y,0) = utr(x,y,0)+ uss(x,y,0) = f (x,y)

so the initial condition for the transient solution is

utr(x,y,0) = f (x,y)−uss(x,y,0).

Because uss is the steady-state solution, it is the solution to Laplace’s equation.
Evaluating the coefficient given by Equation (11.44) gives

cn =
32enπ/2 cos nπ

4 sin3 nπ
4

(enπ −1)n2π2 ,

so, substituting into Equation (11.43) gives

uss(x,y,t) =
∞

∑
n=1

(

32enπ/2 cos nπ
4 sin3 nπ

4

(enπ −1)n2π2

)

sin
nπx
Lx

(

enπy/Ly − e−(nπy/Lx)
)

.

Evaluating the coefficients for the transient solution gives

an,m =
∫ Lx

0

∫ Ly

0
utr (x,y,0)sin

nπx
Lx

sin
mπy
Ly

dxdy

=
∫ Lx

0

∫ Ly

0
f (x,y)dxdy−

∫ Lx

0

∫ Ly

0
uss (x,y,t)dxdy

=
∫ 1.1

0.9

∫ 0.6

0.4
sin

nπx
2

sin(mπy)dxdy

−
∫ 2

0

∫ 1

0

∞

∑̂
n=1

(

32en̂π/2 cos n̂π
4 sin3 n̂π

4

(en̂π −1) n̂2π2

)

sin
n̂πx
Lx

(

e(n̂πy/Ly) − e−(n̂πy/Lx)
)

· sin
nπx

2
sin(mπy)dxdy.

The first integral has already been evaluated in Example 11.12. In the second inte-
gral, due to the orthogonality of the sine functions, the only term that survives from
the infinite series is the one when n̂ = n, and hence

an,m =
4

nπ
(cos(0.45nπ)− cos(0.55nπ))

1
mπ

(cos(0.4mπ)− cos(0.6mπ))

−
∫ 2

0

∫ 1

0

(

32enπ/2 cos nπ
4 sin3 nπ

4

(enπ −1)n2π2

)

sin
nπx

2

(

enπy − e−(nπy/2)
)

· sin
nπx

2
sin(mπy)dxdy

=
32nπenπ/2

(

enπ/2 −1
)

cos nπ
4 sin2 nπ

4

n4π4
(

enπ/2 + 1
)
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11.5 Vibrating Membranes

This section considers vibrating membranes, both with rectangular geometries as
well as circular geometries. The latter are more commonly considered as drum
heads.

11.5.1 The Two-Dimensional Wave Equation in Rectangular
Coordinates

The two-dimensional wave equation is given by

∂ 2u
∂y2 +

∂ 2u
∂y2 =

1
α2

∂ 2u
∂ t2 , (11.51)

with boundary conditions

u(0,y,t) = 0, u(Lx,y,t) = 0, u(x,0,t) = 0, u(x,Ly,t) = 0

and initial conditions

u(x,y,0) = f (x,y) ,
∂u
∂ t

(x,y,0) = g(x,y) .

Equation (11.51) describes small vibrations of a thin membrane on a rectangular
domain with a length Lx in the x-direction and Ly in the y-direction. Recall that for
the one-dimensional wave equation the net force on a small segment of the string
was proportional to the curvature of the string. It makes intuitive sense that for
the two-dimensional wave equation, the net force is proportional to the sum of the
curvatures in the x- and y-directions.

It is left as an exercise to show that the general solution to Equation (11.51) with
homogeneous boundary conditions is given by

u(x,y,t) =
∞

∑
n=1

∞

∑
m=1

sin

(
nπx
Lx

)

sin

(
mπy
Ly

)

(an,m sinωn,m + bn,m cosωn,m) ,

(11.52)
where

ωn,m = απ

√

n2

L2
x

+
m2

L2
y

and
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an,m =
4

LxLy

∫ Ly

0

∫ Lx

o
f (x,y)sin

(
nπx
Lx

)

sin

(
mπy
Ly

)

dxdy

bn,m =
4

LxLyωn,m

∫ Ly

0

∫ Lx

0
g(x,y)sin

(
nπx
Lx

)

sin

(
mπy
Ly

)

dxdy.

The modes for this solution are exactly the same as for the two-dimensional heat
equation. The only difference in the solution is that they oscillate in time instead of
decaying.

11.5.2 The Two-Dimensional Wave Equation in Polar Coordinates

For a circular membrane, like a drum, because the boundary condition will hold at
a fixed radius, as opposed to fixed values of x and y, it is much more convenient to
solve it in polar coordinates.

The relationship between polar and Cartesian coordinates is given, as usual, by

x = r cosθ , y = r sinθ

and the inverse transformation is given by

r =
√

x2 + y2, θ = tan−1
(y

x

)

.

We need to relate derivatives with respect to the variables x and y to derivatives
with respect to the variables r and θ . Because we know the expressions for the
change of coordinates, we can write the function as u(r,θ ,t) = u(r (x,y) ,θ (x,y) ,t).
By the chain rule

∂u
∂x

=
∂u
∂ r

∂ r
∂x

+
∂u
∂θ

∂θ
∂x

=
∂u
∂ r

x
√

x2 + y2
+

∂u
∂θ

(

− y
x2 + y2

)

= cosθ
∂u
∂ r

− sinθ
r

∂u
∂θ

.

Evaluating the derivative again gives
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∂ 2u
∂x2 =

∂
∂x

(
∂u
∂x

)

=
∂
∂ r

(
∂u
∂x

)
∂ r
∂x

+
∂

∂θ

(
∂u
∂x

)
∂θ
∂x

=
∂
∂ r

(

cosθ
∂u
∂ r

− sinθ
r

∂u
∂θ

)
∂ r
∂x

+
∂

∂θ

(

cosθ
∂u
∂ r

− sinθ
r

∂u
∂θ

)
∂θ
∂x

=
∂
∂ r

(

cosθ
∂u
∂ r

− sinθ
r

∂u
∂θ

)

cosθ +
∂

∂θ

(

cosθ
∂u
∂ r

− sinθ
r

∂u
∂θ

)(

− sinθ
r

)

=
(

cosθ
∂ 2u
∂ r2 +

sinθ
r2

∂u
∂θ

− sinθ
r

∂ 2u
∂ r∂θ

)

cosθ

+
(

−sinθ
∂u
∂ r

+ cosθ
∂ 2u

∂θ∂ r
− cosθ

r
∂u
∂θ

− sinθ
r

∂ 2u
∂θ 2

)(

− sinθ
r

)

A similar computation gives

∂ 2u
∂y2 =

(

sinθ
∂ 2u
∂ r2 − cosθ

r2

∂u
∂θ

+
cosθ

r
∂ 2u

∂ r∂θ

)

sinθ

+
(

cosθ
∂u
∂ r

+ sinθ
∂ 2u

∂ r∂θ
− sin θ

r
∂u
∂θ

+
cosθ

r
∂ 2u
∂θ 2

)
cosθ

r
.

Substituting these expressions into the right-hand side of Equation (11.51) gives
the wave equation in polar coordinates.

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 =

1
α2

∂ 2u
∂ t2 . (11.53)

For a circular drum, the boundary condition is

u(r̂,θ ,t) = 0 (11.54)

and the initial conditions are

u(r,θ ,0) = f (r,θ ),
∂u
∂ t

(r,θ ,0) = g(r,θ ). (11.55)

Assuming a solution of the form

u(r,θ ,t) = R(r)Θ(θ )T (t)

and substituting into Equation (11.53) gives

R′′(r)Θ(θ )T (t)+
1
r

R′(r)Θ(θ )T (t)+
1
r2 R(r)Θ ′′(θ )T (t) =

1
α2 R(r)Θ(θ )T ′′(t)
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and dividing by R(r)Θ(θ )T (t) gives

R′′(r)
R(r)

+
1
r

R′(r)
R(r)

+
1
r2

Θ ′′(θ )
Θ(θ )

=
1

α2

T ′′(t)
T (t)

.

The right side of the equation only depends on t and the left side depends only on r
and θ , and all three variables are independent, therefore both sides must be constant;
hence,

R′′(r)
R(r)

+
1
r

R′(r)
R(r)

+
1
r2

Θ ′′(θ )
Θ(θ )

=
1

α2

T ′′(t)
T (t)

= −λ ,

where λ is a yet to be determined constant. Hence,

T ′′(t)+ α2λ T (t) = 0 (11.56)

and
R′′(r)
R(r)

+
1
r

R′(r)
R(r)

+
1
r2

Θ ′′(θ )
Θ(θ )

= −λ .

Multiplying by r2 and rearranging gives

r2 R′′(r)
R(r)

+ r
R′(r)
R(r)

+ r2λ = −Θ ′′(θ )
Θ(θ )

.

The left side of this equation only depends on r and the right side only depends on θ
and the variables are independent, therefore these also must be equal to a constant,
which is not necessarily the same as λ . Calling this constant γ , we have

r2 R′′(r)
R(r)

+ r
R′(r)
R(r)

+ r2λ = −Θ ′′(θ )
Θ(θ )

= γ.

Hence,
Θ ′′(θ )+ γΘ(θ ) = 0 (11.57)

and
r2R′′(r)+ rR′(r)+

(

r2λ − γ
)

R(r) = 0. (11.58)

If we determine the solutions to Equations (11.56)–(11.58), we have a solution to
Equation (11.53).

We proceed as we have done before by finding the general solutions to the or-
dinary differential equations for R(r), Θ(θ ), and T (t) and applying the boundary
conditions. Although is appears that we only have one boundary condition given by
Equation (11.54), there is also the fact that the solution for Θ(θ ) must be periodic,
that is, Θ(θ ) = Θ(θ + 2π). Thus, γ must be positive and

Θ(θ ) = c1sin
√

γθ + c2cos
√

γθ .

In order for Θ (θ + 2π) = Θ (θ ),
√γ must be an integer, or
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√
γ = m = 0,1,2, . . . ,

so
Θm (θ ) = c1sinmθ + c2cosmθ , m = 1,2,3, . . . .

Because
√γ = m, and letting x =

√
λ r, Equation (11.58) becomes

x2R′′(x)+ xR′(x)+
(

x2 −m2)R(x) = 0,

which is the standard form for the Bessel equation. In the special case where m is
an integer, which is the present case, the general solution may be written as

R(x) = c1Jm (x)+ c2Ym (x) (11.59)

or
R(r) = c1Jm

(√
λ r
)

+ c2Ym

(√
λ r
)

, (11.60)

where

Jm

(√
λr
)

=
∞

∑
n=0

(−1)n

n!(n−m)!

(√
λ r
2

)2n−k

(11.61)

and

Ym

(√
λ r
)

= ln
(√

λ r
)

Jm

(√
λ r
)

− 1
2

m−1

∑
n=0

(m−n−1)!
n!

(√
λ r
2

)2n−m

− 1
2

∞

∑
n=0

(−1)n ((1 + 1
2 + 1

3 + · · ·+ 1
n

)

+
(

1 + 1
2 + · · ·+ 1

n+m

))

n!(n + m)!

(√
λ r
2

)2n+m

.

The functions Jm and Ym are the Bessel functions of the first and second kind, re-
spectively, or order m. Note that as r → 0, Ym (r) →−∞, and hence we assume the
motion of the center of the drum is bounded; then we must have c2 = 0.

Hence,
R(r) = c1Jm

(√
λr
)

,

and because the boundary condition u(r̂,θ ,t) = 0, requires that R(r̂) = 0, either
c1 = 0, which would give the trivial solution or

Jm

(√
λ r̂
)

= 0.

Referring to Figure 5.8, it is apparent that Bessel functions of the first kind of var-
ious orders are equal to zero for multiple values of r. In fact, they are tabulated in
Table 5.2. Let zm,n denote the nth zero of the Bessel function of the first kind of
order m. Hence,

√
λ r̂ = zm,n =⇒ λ =

( zm,n

r̂

)2
, n = 1,2,3, . . . ,
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and
R(r) = c1Jm

( zm,nr
r̂

)

, n = 1,2,3, . . . .

The way to intuitively think of the role of zm,n is that it scales r in such a way that
it will go through zero at the radius of the drum.5 Figures 11.28 and 11.29 illustrate
the Bessel functions of the first kind of order zero and one, respectively, with r̂ = 5
and zm,n equal to the first three zeros for each one. The feature to observe is that
scaling the argument to be zm,nr/r̂ makes all the functions go through zero at r̂ = 5,
which is what is necessary to match the boundary condition at the radius of the
drum.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

J 0
(z

1,
n
r/

5)

r

n = 1
n = 2
n = 3

Fig. 11.28 Bessel function of the first kind of order zero, J0(z0,nr/5) plotted for n = 1,2, and 3.

At this point, both γ and λ have been determined. Returning to Equation (11.56),
and substituting for λ gives

T ′′(t)+
(αzm,n

r̂

)2
T (t) = 0,

and hence
T (t) = d1cos

αzm,nt
r̂

+ d2sin
αzm,nt

r̂
.

For fixed integers, m and n,

5 This is exactly the same as before in the one-dimensional wave equation where we determined
that λ = n2π2/L2, which scaled the argument to the sine function so that it passed through zero at
x−L.
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0
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Fig. 11.29 Bessel function of the first kind of order one, J1(z1,nr/5) plotted for n = 1,2, and 3.

u(r,θ ,t) = R(r)Θ(θ )T (t)

= Jm

(√
λ r
)

(am,n cosmθ + bm,n sinmθ )
(

d1 cos
αzm,nt

r̂
+ d2 sin

αzm,nt
r̂

)

.

Because Equation (11.53) is linear, any linear combination of these solutions is also
a solution. Summing over both m and n and combining some of the constants gives

u(r,θ ,t) =
∞

∑
m=0

∞

∑
n=1

Jm

( zm,nr
r̂

)[

(am,n cosmθ + bm,n sinmθ )cos
αzm,nt

r̂

+ (cm,n cosmθ + dm,n sinmθ ) sin
αzm,nt

r̂

]

.

(11.62)

This solution satisfies both Equation (11.53), the wave equation in polar coordi-
nates, as well as Equation (11.54), the boundary condition. The initial conditions,
given in Equation (11.55), still need to be satisfied. Substituting t = 0 into the solu-
tion in Equation (11.62) gives

u(r,θ ,0) =
∞

∑
m=0

∞

∑
n=1

Jm

(zm,nr
r̂

)

(am,n cosmθ + bm,n sinmθ ) = f (r,θ ) .

To determine the coefficients, we make use of orthogonality of the sine and cosine
functions, as well as the following fact,

∫ r̂

0
rJm

( zm,nr
r̂

)

Jm

(zm,n̂r
r̂

)

dr =

⎧

⎨

⎩

0, n �= n̂

1
2

(
dJk
dr (zm,n)

)2
, n = n̂.

(11.63)
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This should seem quite remarkable. The fact that sine and cosine functions are or-
thogonal over the right interval makes some sense because the positive and negative
parts will “cancel” in some way or another. At least a priori it may seem unexpected
that Bessel functions have a similar property, but in fact they do.6 Observe that the
integral is weighted by r and also the Bessel function is the same kind and also the
same order. The difference between the two Bessel functions in the integral is that a
different zm,n appears in the argument to the function. The two terms in the integrand
would be two of the curves in either Figure 11.28 or 11.29.

Hence, to determine the coefficients am,n that satisfy

∞

∑
m=0

∞

∑
n=1

Jm

(zm,nr
r̂

)

(am,n cosmθ + bm,n sinmθ ) = f (r,θ ) ,

multiply both sides of the equation by cos m̂θ and integrating from 0 to 2π gives

∞

∑
m=0

∞

∑
n=1

∫ 2π

0
Jm

(zm,nr
r̂

)

(am,n cosmθ + bm,n sinmθ )cosm̂θdθ

=
∫ 2π

0
cosm̂θ f (r,θ )dθ .

Because of the orthogonality of the sine and cosine functions, every term in the
series indexed by m is zero except for when m̂ = m, and hence

∞

∑
n=1

Jm

(zm,nr
r̂

)∫ 2π

0
am,n cos2 mθdθ =

∫ 2π

0
f (r,θ )cosmθdθ ,

or
∞

∑
n=1

am,nJm

(zm,nr
r̂

)

=
∫ 2π

0 f (r,θ )cosmθdθ
∫ 2π

0 am,n cos2 mθdθ
.

Now, multiplying by rJ(zm,n̂r/r̂) and integrating from 0 to r̂ gives

∞

∑
n=1

∫ r̂

0
am,nrJm

(zm,nr
r̂

)

Jm

( zm,n̂r
r̂

)

dr =
∫ r̂

0
rJm

( zm,n̂r
r̂

)
∫ 2π

0 f (r,θ )cosmθdθ
∫ 2π

0 am,n cos2 mθdθ
dr,

or

am,n =
∫ r̂

0

∫ 2π
0 r f (r,θ )cosmθJm

( zm,nr
r̂

)

dθdr
(
∫ 2π

0 cos2 mθdθ
)(

∫ r̂
0 J2

m

( zm,nr
r̂ dr

)) .

An analogous computation gives

bm,n =
∫ r̂

0

∫ 2π
0 r f (r,θ )sinmθJm

( zm,nr
r̂

)

dθdr
(
∫ 2π

0 sin2 mθdθ
)(

∫ r̂
0 J2

m

( zm,nr
r̂

)

dr
) .

6 In Section 11.6 we show they must be orthogonal.
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To determine cm,n and dm,n, differentiate Equation (11.62) with respect to time,
substitute t = 0, and follow the same procedure, which gives

cm,n =
r̂

αzm,n

∫ r̂
0

∫ 2π
0 r f (r,θ )cosmθJm

( zm,nr
r̂

)

dθdr
(
∫ 2π

0 cos2 mθdθ
)(

∫ r̂
0 J2

m

( zm,nr
r̂

)

dr
)

and

dm,n =
r̂

αzm,n

∫ r̂
0

∫ 2π
0 r f (r,θ )cosmθJm

( zm,nr
r̂

)

dθdr
(
∫ 2π

0 cos2 mθdθ
)(

∫ r̂
0 J2

m

( zm,nr
r̂

)

dr
) ,

and with that, we have solved the two-dimensional wave equation in polar coordi-
nates.

11.5.3 Summary of the Solution to the Wave Equation in Polar
Coordinates

The solution to
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 =

1
α2

∂ 2u
∂ t2 ,

with

u(r̂,θ ,t) = 0, u(r,θ ,0) = f (r,θ ) ,
∂u
∂ t

(r,θ ,0) = g(r,θ )

is

u(r,θ ,t) =
∞

∑
m=0

∞

∑
n=1

Jm

(zm,nr
r̂

)[

(am,n cosmθ + bm,n sinmθ )cos
αzm,nt

r̂

+ (cm,n cosmθ + dm,n sinmθ )sin
αzm,nt

r̂

]
(11.64)

where

am,n =
∫ r̂

0

∫ 2π
0 r f (r,θ )cosmθJm

( zm,nr
r̂

)

dθdr
(
∫ 2π

0 cos2 mθdθ
)(

∫ r̂
0 J2

m

( zm,nr
r̂

)

dr
)

bm,n =
∫ r̂

0

∫ 2π
0 r f (r,θ )sinmθJm

( zm,nr
r̂

)

dθdr
(
∫ 2π

0 sin2 mθdθ
)(

∫ r̂
0 J2

m

( zm,nr
r̂

)

dr
)

cm,n =
r̂

αzm,n

∫ r̂
0

∫ 2π
0 r f (r,θ )cosmθJm

( zm,nr
r̂

)

dθdr
(
∫ 2π

0 cos2 mθdθ
)(

∫ r̂
0 J2

m

( zm,nr
r̂

)

dr
)

dm,n =
r̂

αzm,n

∫ r̂
0

∫ 2π
0 r f (r,θ )cosmθJm

( zm,nr
r̂

)

dθdr
(
∫ 2π

0 sin2 mθdθ
)(

∫ r̂
0 J2

m

( zm,nr
r̂

)

dr
) .
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11.5.4 Modes of Vibration of a Circular Drum Head

By fixing m and n in Equation (11.64) the individual modes of vibration of the drum
head can be isolated. Figure 11.30 illustrated several of the lower-order modes for
the vibrating drum head. It is a plot of Jm (zm,nr)cosmθ for various m and n. Modes
with the sine term would be rotated by 90 degrees relative to the modes illustrated.
Any vibration of the drum head is a linear combination of these modes and the
exact composition of the combination is determined by the initial conditions for the
problem.

n = 1 n = 2 n = 3

m = 0

m = 1

m = 2

m = 3

Fig. 11.30 Plots of Jm (zm,nr)cosmθ for various m and n, which are the modes of vibration for a
circular drum head.
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11.6 Sturm–Liouville Theory

In the previous sections of this chapter when using the method of separation of vari-
ables, for every problem we considered it was the case that there were an infinite
number of solutions to the ordinary differential equation with boundary value con-
ditions that arose from the partial differential equation. Furthermore, in each case
it was possible to represent the functions that described the initial conditions in
the form of a series of these solutions, and even more remarkably, the coefficients
in this series were obtained by relatively simple computations. In the cases of the
wave and heat equations, these solutions were sine and cosine functions, and the
initial conditions were expressed as a Fourier series in those functions. In the case
of the circular drum head, the solutions were Bessel functions, and again, the initial
conditions were expressed as a series of those functions.

The theory underlying the remarkable parallel of the orthogonality of the sine and
cosine functions, expressed in Propositions C.1 through C.3, and the orthogonality
of Bessel functions, expressed in Equation (11.63) is the subject of this section.
This theory is called Sturm–Liouville theory and the associate problems are typically
called Sturm–Liouville boundary value problems.

Definition 11.3. The linear, second-order, homogeneous differential equation

(

p(x)u′(x)
)′ −q(x)u(x)+ λ r(x)u(x) = 0 (11.65)

is called the Sturm–Liouville equation.

Each of the problems considered previously in this chapter gave rise to a Sturm–
Liouville equation.

Example 11.14. Using separation of variables for the vibrating string problem

∂ 2u
∂x2 =

ρ
τ

∂ 2u
∂ t2

gives rise to
X ′′(x)+ λ X(x) = 0.

This is a Sturm–Liouville equation with p(x) = 1, q(x) = 0, and r(x) = −1.

Example 11.15. The wave equation in polar coordinates gave rise to

r2R′′(r)+ rR′(r)+
(

r2 −m2)R(r) = 0,

which can be rewritten as

rR′′(r)+ R′(r)+ rR(r) =
m2

r
R(r),

or
(

rR′(r)
)′ + rR(r) =

m2

r
R(r).
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This is a Sturm–Liouville equation with λ = m2, p(r) = r, q(r) = r, and r(r) = 1/r.

The critical feature of the Sturm–Liouville equation is that it is a generalization
of an eigenvalue problem. Recall (Definition B.4) for an n× n matrix A, λ is an
eigenvalue, and ξ̂ is an eigenvector if

Aξ̂ = λ ξ .

Now, if we define the linear operator,

L [u] =
1

r(x)

(

− d
dx

(

p(x)
du
dx

)

+ q(x)u
)

, (11.66)

then Equation (11.65) is of the form

L [u] = λ u,

and hence determining solutions to this equation is clearly a generalization of deter-
mining the eigenvalues and eigenvectors of a matrix.

In Chapter 6, it was shown that Hermitian matrices had real eigenvalues and
a full set of orthogonal eigenvectors. The simplest type of Hermitian matrix is a
symmetric matrix, where A = AT . To generalize this, consider the matrix product,
inner product, and the dot product between two vectors. Specifically, for two vectors
u and v, the dot product, matrix product, and inner product are all related by

u · v = uT v = 〈u,v〉.

If we multiply v by A, then
〈u,Av〉 = uT Av.

Correspondingly,
〈Au,v〉 = uT AT v.

Recall that (Au)T = uT AT . Hence, one way to define a matrix to be symmetric would
be to require that, in an inner product,

〈Au,v〉 = 〈u,Av〉

for all vectors u and v in R
n. The name for an operator that is a generalization of a

symmetric matrix is a self-adjoint operator.

Definition 11.4. The linear operator L, is self-adjoint if

〈L [u] ,v〉 = 〈u,L [v]〉.

For the types of problems considered in this text, the inner product is defined as

〈u,v〉 =
∫ L

0
r(x)u(x)v(x)dx.
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As shown, a self-adjoint linear operator has properties similar to that of a symmetric
matrix.

Definition 11.5. A Sturm–Liouville equation with boundary conditions

α1u(0)+ α2u′(0) = 0 (11.67)

α3u(L)+ α4u′(L) = 0, (11.68)

is called a Sturm–Liouville boundary value problem.
The most important fact at this point is the following.

Proposition 11.1. If the operator L is defined by Equation (11.66) and the functions
u and v satisfy homogeneous boundary conditions, then

〈L[u],v〉 = 〈u,L[v]〉;

that is, L is self-adjoint.

Furthermore, if

1. r(x) > 0 and p(x) > 0 for x ∈ [0,L]
2. p(x), p′(x), q(x) and r(x) are continuous on [0,L]
3. The interval [0,L] is finite

then the problem is called a regular Sturm–Liouville problem.

The foundation of the theory, and its main utility, is given by the following the-
orem. The reader is referred to [8, 9] for a slightly more comprehensive treatment,
and the references therein for further study. The basic idea is a generalization of the
fact that a symmetric matrix has real eigenvalues with orthogonal eigenvectors to
the Sturm–Liouville operator.

Theorem 11.2. For a regular Sturm–Liouville boundary value problem:

1. All of the eigenvalues are real.
2. All of the eigenvalues are simple, meaning that to each eigenvalue there is one

and only one linearly independent eigenfunction, and there is a countable infinity
of eigenvalues and corresponding eigenfunctions.

3. The eigenfunctions corresponding to different eigenvalues are orthogonal, that
is, if u and v satisfy Equation (11.65) for different λ , then

〈u,v〉 =
∫ L

0
r(x)u(x)v(x)dx = 0.

4. If f (x) is continuously differentiable on the interval [0,L] and u1(x),u2(x), . . .
are the eigenfunctions, then f (x) can be expressed as a convergent series of the
eigenfunctions; that is,

f (x) =
∞

∑
n=0

anun(x),
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where

an =
∫ L

0 r(x) f (x)un(x)dx
∫ L

0 r(x)u2
n(x)dx

.

The last item in the theorem is perhaps the most important. The set of solutions
to regular Sturm–Liouville problems forms a basis for sets of functions. In the con-
text of solving partial differential equations using separation of variables, it is the
mechanism that allows us to satisfy the initial conditions for the problem in terms of
the functions which for the solution. In the more general context, they provide dif-
ferent sets of functions that may be convenient series representations for different
functions over different intervals.

Example 11.16. The problem arising from the the vibrating string with fixed end-
points

X ′′(x)+ λ X(x) = 0

with X(0) = 0, and X(L) = 0, is a regular Sturm–Liouville boundary value problem
with p(x) = 1, q(x) = 0, r(x) = −1, α1 = α3 = 1, and α2 = α4 = 0.

Example 11.17. The problem arising from the vibrating circular drum head with
radius r = 1,

r2R′′(r)+ rR′(r)+
(

r2λ − γ
)

= 0

with R(1) = 0 is not a regular Sturm–Liouville boundary value problem.

11.7 The Euler–Bernoulli Beam Equation

The Euler–Bernoulli beam equation is a partial differential equation describing
small vibrations of beams. In contrast to strings, beams can support bending loads,
which results in a higher-order partial differential equation describing its motion.

11.7.1 Derivation of the Beam Equation

Consider the cantilever beam illustrated in Figure 11.31. Assume that the beam is
subjected to a distributed load that may vary in time f (x,t), where the units of f (x,t)
are force per unit length. We make the following assumptions about the manner in
which the beam deflects.

Assumption 11.1. Assume the following.

1. The beam deflects in the vertical direction only and the deflection of the beam in
the vertical direction is small.

2. The slope is also small.
3. Any planar cross-section of the beam remains planar when it is deflected.
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Consider the coordinate axes illustrated in Figure 11.31 with the y-axis directed
into the page. Because the beam deflects in the z-direction only, all deflections re-
main within the plane of the page. Define the neutral plane to be the plane before de-
formation whose length is not changed when the beam is deformed. In Figure 11.32
the top of the beam is extended and the bottom of the beam is compressed. The
neutral plane is illustrated by a dashed line. Let u(x,t) represent the deflection of
the beam’s neutral plane in the negative z-direction at location x at time t from its
unloaded equilibrium position, as is illustrated in Figure 11.32.

Now we may restate the assumption that the deformations are small with the
expression u(x,t) � 1 and the assumption that the slope is small by ∂u/∂x � 1.
Having defined the neutral plane and coordinate axes we state another assumption.

Assumption 11.2.
Assume that a cross-section normal to the neutral plane does not change in height
or width when the beam is deflected.

x = 0 x = L

z f (x, t)

Fig. 11.31 Loaded beam.

x = 0 x = L

z

u(x, t) u(L, t)

Fig. 11.32 Deflected beam.

To derive the equation of motion, consider a small segment of the beam, as is
illustrated in Figure 11.33. Recall that u is defined to be positive in the downward
direction and define the positive directions for the loading, shear, and moments to
be as indicated in the figure. Let A be the cross-sectional area of the beam and ρ the
density. Newton’s law in the vertical direction for the segment gives
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ρA
∂ 2u
∂ t2 (x +

1
2

dx,t)dx = V (x + dx,t)−V(x,t)+
1
2

( f (x,t)+ f (x + dx,t))dx,

(11.69)
where the total applied load is computed as the average of f (x,t) and f (x + dx,t)
times the length of the segment dx. Expanding ∂ 2u/∂ t2

(

x + 1
2 dx,t

)

, V (x + dx,t),
and f (x + dx,t) in a Taylor series about x gives

∂ 2u
∂ t2

(

x +
1
2

dx,t

)

=
∂ 2u
∂ t2 (x,t)+

∂ 3u
∂ t2∂x

(x,t)
(

1
2

dx

)

+ · · ·

V (x + dx,t) = V (x,t)+
∂V
∂x

(x,t)dx + · · ·

f (x + dx,t) = f (x,t)+
∂ f
∂x

(x,t)dx + · · · .

Substituting into Equation (11.69) and ignoring the higher-order terms gives

ρA

(
∂ 2u
∂ t2 (x,t)+

∂ 3u
∂ t2∂x

(x,t)
(

1
2

dx

))

dx =
∂V
∂x

(x,t)dx

+
1
2

(

2 f (x,t)+
∂ f
∂x

(x,t)dx

)

dx,

or

ρA

(
∂ 2u
∂ t2 (x,t)+

∂ 3u
∂ t2∂x

(x,t)
(

1
2

dx

))

=
∂V
∂x

(x,t)+
1
2

(

2 f (x,t)+
∂ f
∂x

(x,t)dx

)

.

(11.70)
Taking the limit as dx → 0 gives

ρA
∂ 2u
∂ t2 (x,t) =

∂V
∂x

(x,t)+ f (x,t). (11.71)

Fig. 11.33 Small segment of a beam. x

f (x, t)

f (x+dx, t)

x+dx

M(x, t) M(x+dx, t)

V (x, t) V (x+dx, t)

Inasmuch as we are assuming the motion is only vertical, there is no angular
acceleration, so the sum of the moments about any point must be zero. Computing
the moments about the center of the right end of the beam segment in Figure 11.33
gives
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−M(x,t)+ M(x + dx,t)−V(x,t)dx +
1
2

( f (x,t)+ f (x + dx,t))
dx2

2
= 0,

where the moment due to the loading is approximated as the average load with an
average moment arm of dx/2.

Using a Taylor series expansion for M and f ,

M(x + dx) = M(x,t)+
∂M
∂x

(x,t)dx + · · ·

f (x + dx,t) = f (x,t)+
∂ f
∂x

(x,t)dx + · · ·

and ignoring the higher-order terms gives

∂M
∂x

(x,t)dx−V(x,t)dx +
1
2

(

2 f (x,t)+
∂ f
∂x

(x,t)dx

)
dx2

2
= 0

or
∂M
∂x

(x,t)−V (x,t)+
1
2

(

2 f (x,t)+
∂ f
∂x

(x,t)dx

)
dx
2

= 0.

Taking the limit as dx → 0 gives

∂M
∂x

(x,t) = V (x,t), (11.72)

or, substituting into Equation (11.71) gives

ρA
∂ 2u
∂ t2 (x,t) =

∂ 2M
∂x2 (x,t)+ f (x,t). (11.73)

If we consider the normal stress over a small area of a cross-section, as illustrated
in Figure 11.34, the moment due to the total force acting on that area is

−dM = zσ(x,z,t)dA,

where σ(x,z,t) is the normal stress in the direction indicated in Figure 11.34. Inte-
grating over the whole surface of the cross-section

−M(x,t) =
∫∫

zσ(x,z,t)dzdy, (11.74)

where the limits of integration are determined by the geometry of the cross-section
and the negative sign on the left-hand side is due to the definition of a positive M,
defined in Figure 11.33.

The basic constitutive law from solid mechanics is that normal stress and strain
are related by

σ(x,z,t) = Eε(x,z,t), (11.75)
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Fig. 11.34 Moment due to normal stress
over a small area.

σ (x,y, z, t)z

dA = dxdy

where E is the modulus of elasticity and has units of pascals, denoted by Pa where
1Pa = 1N/m2 and ε(x,z,t) is the strain, which is dimensionless. Finally, to relate the
strain to the deformation of the beam, consider the deflection of a small segment of
the beam illustrated in Figure 11.35. Because the slope is small, θ ≈ ∂u/∂x. Strain
is defined as the displacement per unit length, therefore we have for the location z
on the right face of the segment

ε(x,z,t) =
z(sinθ (x + dx,t)− sinθ (x,t))

dx

=
z
(

∂u
∂x (x + dx,t)− ∂u

∂x (x,t)
)

dx

=
z
((

∂u
∂x (x,t)+

(
∂ 2u
∂x2 (x,t)

)

dx
)

− ∂u
∂x (x,t)

)

dx
(x,t)

= z
∂ 2u
∂x2 (x,t).

Fig. 11.35 Strain relationship for small
beam segment.

θ(x+dx, t)

θ(x, t)

x x+dx

Substituting this into Equation (11.75), and using that in Equation (11.74) gives

−M(x,t) =
∫∫

z2E
∂ 2u
∂x

(x,t)dydz = E
∂ 2u
∂x2 (x,t)

∫∫

z2dydz.
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The integral is the definition of the area moment of inertia, thus if we let

I(x) =
∫∫

z2dydz

we have

M(x,t) = −EI(x)
∂ 2u
∂x2 (x,t) (11.76)

and substituting this into Equation (11.73) gives

ρA
∂ 2u
∂ t2 (x,t) = − ∂ 2

∂x2

(

EI(x)
∂ 2u
∂x2 (x,t)

)

+ f (x,t).

Finally, if the cross-section of the beam is uniform along its length, then we have

ρA
∂ 2u
∂ t2 (x,t) = −EI

∂ 4u
∂x4 (x,t)+ f (x,t). (11.77)

If the beam is not loaded, then this may be written as

∂ 2u
∂ t2 (x,t)+ α2 ∂ 4u

∂x4 (x,t) = 0 (11.78)

and α2 = EI/ρA.

11.7.2 Boundary Conditions for the Beam Equation

Because the beam is fourth-order in the spatial dimension four boundary conditions
are needed to solve it. Possible boundary conditions include terms up to the third
derivative in x, and the key to interpreting the higher derivative terms appear in the
derivation. Equation (11.76) relates the bending moment and second derivative of
u, so if a boundary is such that there is no applied moment, then ∂ 2u/∂x2 = 0.
Equation (11.72) equates the internal shear force to the derivative of the moment, so
at a boundary if there is no possible shear force, then ∂ 3u/∂x3 = 0.

Possible types of boundary conditions include the following.

• A free boundary condition is illustrated on the right end of the beam in Fig-
ure 11.36. Because it is free, the position and slope are not fixed, but no moment
is applied so the second derivative is zero and no force is applied so the third
derivative is zero; that is,

∂ 2u
∂x2 (L,t) = 0,

∂ 3u
∂x3 (L,t) = 0.
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• A cantilevered boundary condition fixes both the position and the slope, such as
a flagpole, and is illustrated on the left end of the beam in Figure 11.36. Because
the position and slope are fixed geometrically, the boundary conditions are

u(0,t) = 0,
∂u
∂x

(0,t) = 0.

• A simply supported boundary condition fixes the position of the support but al-
lows it to freely rotate so that there is no applied moment at the attachment point.
Conceptually, it is a pinned attachment as is illustrated on the right end of the
beam in Figure 11.37 and is specified by

u(L,t) = 0,
∂ 2u
∂x2 (L,t) = 0.

• The left side of Figure 11.37 illustrates a type of boundary condition where the
the slope and shear are zero, but the position and moment are unconstrained; that
is,

∂u
∂x

(0,t) = 0,
∂ 2u
∂x2 (0,t) = 0.

x = 0 x = L

u(0, t) = 0
∂u
∂x (0, t) = 0

∂ 2u
∂x2 (L, t) = 0
∂ 3u
∂x2 (L, t) = 0

Fig. 11.36 Beam with cantilever boundary condition (x = 0) and free boundary condition (x = L).

x = 0 x = L

u(L, t) = 0

∂ 2u
∂x2 (L, t) = 0

∂u
∂x (0, t) = 0
∂ 3u
∂x2 (0, t) = 0

Fig. 11.37 Beam with a simply supported boundary condition at (x = L) and a boundary condition
with fixed slope and shear (x = 0).
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11.7.3 Solutions to the Beam Equation

Because the beam equation is fourth-order in the spatial dimension, even the static
case is of interest. First a few static cases are solved, and then the time-varying case
is addressed.

11.7.3.1 Static Deflection

Let us consider the case where

∂ 2u
∂ t2 (x,t) = 0.

First, we consider the case where the beam is cantilever and subjected to a static
force at the end, as illustrated in Figure 11.38. Because there is no acceleration and
the solution does not depend upon time, the beam equation reduces to

EI
d4u
dx4 (x) = 0. (11.79)

Fig. 11.38 Cantilever beam subjected to
a force at the end. x = 0 x = L

F

The four boundary conditions are as follows.

1. The beam is fixed at zero, thus u(0) = 0.
2. The beam is a cantilever beam, the slope at zero is zero, thus (du/dx)(0) = 0.
3. There is a point load at x = L, thus the shear force at x = L must equal F , and

using Equation (11.72) gives EI
(

d3u/dx2
)

(L) = F .
4. There is no moment applied at x = L, thus

(

d2u/dx2
)

(L) = 0.

Clearly, the general solution to Equation (11.79) is a third-order polynomial in x,

u(x) = c1x3 + c2x2 + c3x + c4.

Applying the boundary conditions gives

1. Fixed at zero:
u(0) = 0 =⇒ c4 = 0;
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2. Cantilever:
du
dx

(0) = 0 =⇒ c3 = 0;

3. Shear at end:

6EIc1 = F =⇒ c1 =
F

6EI
;

and
4. No moment at end:

F
6EI

6L+ 2c2 = 0 =⇒ c2 = − FL
2EI

.

Hence

u(x) =
F

6EI
x3 − FL

2EI
x2

and at x = L, an applied force of F produces a displacement of

u(L) =
FL3

6EI
− FL

2EI
L2 = − L3

3EI
F.

Because the displacement is proportional to the applied force and the proportionality
constant is L3/6EI, we can conclude that a cantilever spring will have a spring
constant of

k =
3EI
L3 .

In the case of a rectangular beam with width w and height h,

I =
∫∫

z2dzdy =
1
12

wh3

so

k =
Ewh3

4L3 .

11.7.3.2 Dynamic Solutions for the Cantilever–Free Beam

Only the simply supported beam has a straightforward solution procedure, so that
one is left as an exercise. This section partially solves for the dynamic response of
the cantilever beam illustrated in Figure 11.36 by determining the mode shapes and
corresponding frequencies that make up the solution. Satisfying the initial condi-
tions is beyond the scope of this book.

If the applied load is zero, then the beam equation can be expressed as

∂ 2u
∂ 2t

+ α2 ∂ 4u
∂x4 = 0, (11.80)

where
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α2 =
EI
ρA

,

and the boundary conditions are

u(0,t) = 0,
∂u
∂x

(0,t) = 0,
∂ 2u
∂x2 (L,t) = 0,

∂ 3u
∂x3 (L,t) = 0.

Using separation of variables, assuming

u(x,t) = X(x)T (t)

and substituting gives

X(x)T ′′(t)+ α2X ′′′′(x)T (t) = 0 =⇒ 1
α2

T ′′(t)
T (t)

= −X ′′′′(x)
X(x)

= −λ 2 (11.81)

which gives the two ordinary differential equations

X ′′′′(x)−λ 2X(x) = 0, T ′′(t)+ α2λ 2T (t) = 0.

We used a little foresight in Equation (11.81) by setting the ratios equal to −λ 2.
This makes some sense because the form of the ordinary differential equation for
T (t) will give oscillatory solutions, but at this point it is not necessarily guaranteed
to work until we check what form the solutions to the X(x) equations have and
whether they can satisfy the boundary conditions.

The equation for X(x) is linear, therefore it has solutions of the form

X(x) = erx.

Substituting and assuming λ > 0 gives

r4 = λ 2 =⇒ r2 = ±λ =⇒ r = ±
√

λ ,±i
√

λ

or
X(x) = k1e

√
λx + k2e−

√
λ x + k3cos

(√
λ x
)

+ k4sin
(√

λ x
)

.

It turns out that regrouping the solutions makes determining the coefficients that
satisfy the boundary conditions easier. Recall the hyperbolic functions

coshx =
1
2

(

ex + e−x) , sinhx =
1
2

(

ex − e−x) .

Note with these definitions, cosh(0) = 1, sinh(0) = 0,

d
dx

cosh
√

λx =
√

λ sinhx,
d
dx

sinh
√

λx =
√

λ coshx.

Using the hyperbolic trigonometric functions, X(x) may be written as
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X(x) = c1

(

cos
√

λ x + cosh
√

λ x
)

+ c2

(

cos
√

λx− cosh
√

λx
)

+ c3

(

sin
√

λ x + sinh
√

λ x
)

+ c4

(

sin
√

λx− sinh
√

λ x
)

,
(11.82)

and also

X ′(x) =
√

λ
[

c1

(

−sin
√

λ x + sinh
√

λx
)

+ c2

(

−sin
√

λ x− sinh
√

λ x
)

+ c3

(

cos
√

λ x + cosh
√

λ x
)

+ c4

(

cos
√

λ x− cosh
√

λ x
)]

.

Applying the boundary conditions at x = 0 gives the simple results

u(0,t) = 0 =⇒ c1 = 0

∂u
∂x

(0,t) = 0 =⇒ c3 = 0.

For the boundary conditions at x = L we need the second and third derivatives,
which, when c1 = c3 = 0 are given by

X ′′(x) =λ
[

c2

(

−cos
√

λ x− cosh
√

λ x
)

+ c4

(

−sin
√

λ x− sinh
√

λx
)]

X ′′′(x) =λ
√

λ
[

c2

(

sin
√

λ x− sinh
√

λ x
)

+ c4

(

−cos
√

λx− cosh
√

λx
)]

.

Applying the boundary conditions gives

λ
[

c2

(

−cos
√

λL− cosh
√

λ L
)

+ c4

(

−sin
√

λ L− sinh
√

λ L
)]

=0 (11.83)

λ
√

λ
[

c2

(

sin
√

λ L− sinh
√

λ L
)

+ c4

(

−cos
√

λ L− cosh
√

λ L
)]

=0. (11.84)

Because λ = 0 would give a constant solution, λ �= 0. Solving Equation (11.83) for
c2 gives

c2 = −c4
sin

√
λ L+ sinh

√
λ L

cos
√

λ L+ cosh
√

λ L
(11.85)

and substituting into Equation (11.84) gives

(

cos
√

λL+ cosh
√

λ L
)

+
(

sin
√

λ L− sinh
√

λ L
) sin

√
λ L+ sinh

√
λ L

cos
√

λ L+ cosh
√

λL
= 0.

(11.86)
A plot of the left-hand side of Equation (11.86) is illustrated in Figure 11.39. Each
point where the curve passes through zero corresponds to a value for λ that satisfies
Equation (11.86). Call this increasing sequence of values λ1,λ2, . . . ,λn, . . .. Numer-
ically solving for the first seven eigenvalues for L = 1 gives the frequencies listed in
Table 11.1.

For a given λn value, the solution to
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Eigenvalue Frequency s−1 Frequency Hz
λ1 3.51 0.56
λ2 22.03 3.51
λ3 61.70 9.82
λ4 120.90 19.24
λ5 199.86 31.81
λ6 298.56 47.52
λ7 416.99 66.37

Table 11.1 Frequencies for cantilever beam
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Fig. 11.39 Solutions to Equation (11.86) for L = 1 correspond to values of λ where the curve
passes through zero.

X ′′′′(x)−λ X(x) = 0

that satisfies all four boundary conditions is given substituting for c2 from Equa-
tion (11.85) and for λn to give

Xn(x) = − sin
√

λnL+ sinh
√

λnL

cos
√

λnL+ cosh
√

λnL

(

cos
√

λnx− cosh
√

λnx
)

+
(

sin
√

λnx− sinh
√

λnx
)

. (11.87)

A plot of the shapes of the first three modes is illustrated in Figure 11.40.
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Fig. 11.40 First three mode shapes for an oscillating cantilever beam.

11.8 A Musical Interlude

Because the wave equation describes many phenomena related to music, this section
gives a brief overview of some of the fundamentals of music. It does not address
much of what should be considered music theory, meaning the structure of musical
compositions, how they are composed, and the emotional impact on the listener,
but rather the fundamental aspects of sound and its relationship to notes and music.
Specifically, it outlines the structure of musical scales and then considers some of
the mathematical details of why some notes sound good together and others do
not. Interested readers are referred to [49] and [6] for a more detailed mathematical
treatment and a historical treatment, respectively, of tuning and timbre, and [31] for
a cognitive and psychological overview of music. Most of this section is an overview
of material from [49].

As was illustrated by the solution to the wave equation, typically when a musical
instrument plays a “note” it is actually made up of acoustic waves at many frequen-
cies. This was manifested mathematically by the fact that when the string was set
in motion, the motion of the string was the combination of an infinite number of
modes. When the string was fixed at each end, each mode was sinusoidal in shape
(dictated by the boundary conditions) with a different temporal frequency. In Equa-
tion (11.20), the shape of the mode was described by the sin(nπx/L) term and the
motion in time was described by the sin(αnπt/L) and cos(αnπt/L) terms, where
the frequency of motion is (αn)/(2L) = (τn)/(2ρL) Hz, where τ is the tension in
the string, ρ is the mass per unit length, and L is the overall length of the string.

From Examples 11.2 and 11.3, a string will have different solutions depend-
ing upon the manner in which it is set in motion. In Example 11.2, the string was
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plucked, and in Example 11.3 it was set in motion with an initial velocity over a por-
tion of its length, which could model it being impacted by a hammer. The critical
observation to take away from these examples is that the same string will produce a
different sound because the combination of modes in each case will be different, as
illustrated in Figures 11.7 and 11.8. Although the frequency of each of the modes
is the same, the sound will be different because combination of the magnitudes of
many of the modes will be different.

For the rest of this section, the struck string in Example 11.3 will be the proto-
typical example and is meant to serve as a rough model for a piano. The reader is
cautioned that, obviously, a real musical instrument is much more complicated and
the resulting sound is not only from the vibrating string, but also from the interaction
of the string and acoustics with the structure of the piano, nonlinearities, and so on.
However, as shown, even the simple vibrating string model describes much of what
contributes to what we consider music. The sound that a note makes is made up of
all the frequencies of all the different modes, and the amount that a different mode
contributes to a note depends on the coefficients an and bn in Equation (11.20). The
“frequency” of a note is the fundamental frequency, which is the frequency of the
lowest mode. Due to the fact that an and bn decrease in magnitude as n gets large,
which is necessary for the series to converge, the fundamental frequency usually has
the largest magnitude, which means it is the loudest.

A basic feature of almost all music across all cultures is that if the frequency of
a musical note is doubled or halved, the note sounds “the same,” even to the point
of being interchangeable. A manifestation of this fact is that when an adult and
child sing a song together, although they are singing the same song with the same
notes, the child sings the notes at a frequency that is, for example, double that of the
adult. In music, the interval between two frequencies where the higher frequency
is double that of the lower frequency is called an octave. A scale is a selection of
which frequencies in an octave will be used as musical notes.

In modern western music, 12 frequencies (notes) are selected to make up an
octave.7 Other cultures have selected a different number of notes. After deciding the
number of notes in an octave, the exact frequencies of the notes must be decided.
If it were left to engineers, the frequency ratio between two adjacent notes would
be 21/12, so that whenever the 12 pitches in an octave are traversed the resulting
frequency ratio would be

(

21/12
)12

= 2.

However, even if the number of pitches between octaves is settled at 12, it is not nec-
essarily the case that all adjacent notes having the same frequency ratio results in
music that sounds the best. To address this, we need to consider the concepts of the
pair of antonyms consonance and dissonance. Roughly, two sounds are consonant
when they qualitatively sound “good” together, and are dissonant when they sound
“bad” together.8 Although doing complete justice to neither concept, the following

7 One would think there would be eight notes.
8 Note that even at this basic level, not all music should be composed with consonant sounds
because some music is supposed to sound dissonant. A famous example is the so-called “Tristan
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two subsection are based on consonance and dissonance, respectively. First, using
a very simple notion of consonance, a discussion of the complexity and history of
determining which notes should be in an octave is presented. Then, a mathemati-
cal model of dissonance is presented and related to our simplified impacted string
model. As shown, this captures much of the essence of why some chords (combina-
tions of notes) sound good and others sound bad.

As a reference, a portion of the standard piano keyboard is illustrated in Fig-
ure 11.41 with each key labeled with the standard note name. The white keys cor-
respond to notes named with the letters A through G. The black keys are “sharps”
and “flats,” indicated by � and �, respectively. Counting both the black and white
keys, there are 12 pitches from any given note until it repeats. A repeating note
corresponds to an octave and will have a frequency twice as large as the frequency
corresponding to the note an octave lower.

CC DD EE FF GG AA BB

F �F �

G�G�
G�G�

A�A�
A�A�

B� B�
C�C�

D�D�
D�D�

E�E�

Fig. 11.41 Portion of a standard piano keyboard.

11.8.1 Defining Scales

Independent of the issue of frequency ratios, if more than one musical instrument is
played at the same time, an absolute standard for some note must be established. A
common standard is Concert A, which is the A note above middle C9 which is set at

chord,” which is the first chord in the opera Tristan und Isolde, by Richard Wagner, which sets the
tone, literally, for the tragic plot of the opera.
9 On a piano, middle C is the fourth C, and in the usual western musical notation, middle C is
located between the two staves in printed music.
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440 Hz. As mentioned, an octave is a frequency interval where the higher frequency
is twice that of the lower frequency, so the next A (an octave higher) will have a
frequency of 880 Hz, the A above that will be at 1760 Hz, and so on.

If it is accepted that there should be 12 pitches in an octave, the next issue to re-
solve is what the frequency ratio between any of the pitches should be. In the math-
ematically appealing equal temperament the ratio of the pitches between adjacent
notes is 21/12. The names of the notes and the frequencies for equal temperament
are listed in Table 11.2 in the first and second columns, respectively.

Note name Frequency Hz Frequency Hz Frequency Hz
(equal temperament) (perfect fifths) (wolf at F�)

A 440 440 440
A�/B� 466.16 469.86 463.54

B 493.88 495 495
C 523.25 528.60 521.48

C�/D� 554.37 556.88 549.38
D 587.33 594.67 586.67

D�/E� 622.25 626.48 618.05
E 659.26 660 660
F 698.46 704.79 695.31

F�/G� 739.99 742.5 742.5
G 783.99 792.89 782.22

G�/A� 830.61 835.31 824.07
A 880 892 880

Table 11.2 Frequencies for an octave with equal temperament

There are two issues with equal temperament, however. The first is related to
the notion of consonance. Consonance and dissonance are clearly psychoacoustic
phenomena related to perceptual mechanisms in the auditory system and brain,
however, the simplest explanation of consonance is that notes sound good when
they are played together when the frequency intervals are ratios of small numbers.
In other words, an octave (2/1), or a perfect fifth10 (3/2) are consonant and sound
good; whereas, the ratio of two adjacent notes (21/12 ≈ 2119/2000), in the words of
Galileo, “keep the eardrums in perpetual torment” (quoted by [49]).

Referring to the second column in Table 11.2, the notes A and E are nearly, but
not quite, in the 3/2 ratio. If E were tuned to 660 Hz instead of 659.26, it would
presumably sound better with the A. Furthermore, it seems reasonable that before
instrumentation existed to accurately measure frequency, tuning the E to be a perfect
fifth above the A would be relatively easy to do simply by listening to the two notes
together. Furthermore, because most instruments create notes that can be related to
a geometric length, physically measuring a length that is 2/3 as long as the lower

10 Note that a perfect fifth is the note that is seven notes above the fundamental.
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note is also relatively easy to do.11 Given that it is easy to hear an octave and perfect
fifth, as well as to measure lengths that would produce such frequency ratios, it is
not surprising that methods of tuning were developed that were based upon the fact
that it is possible to work up and down successively by fifths to define the 12 notes
in an octave. This is called the Pythagorean scale.

To build a scale using perfect fifths and octaves, consider starting with A at 440
Hz. The perfect fifth seven pitches above A is at E , which should be 660 Hz. The
fifth above that will be the B above the octave, so dividing 660 by 2 to get 330 Hz
and then determining the perfect fifth, gives the frequency for B in this octave which
should be at 330(3/2) = 495 Hz. The F� is a fifth above the B, which should have
a frequency of 495(3/2) = 742.5 Hz, and so on. So, an algorithm to implement this
to define the notes in an octave would be to start with A at 440 Hz and to do the
following recursively.

• If seven pitches above the current note are within the octave of interest, then set
that note to be 3/2 of the frequency of the current note.

• If seven pitches above the current note are outside the octave, then divide the
frequency by 2 and then multiply by 3/2 to give the frequency of that note within
the octave.

This results in the frequencies illustrated in the third column in Table 11.2. The ratio
of any notes separated by a fifth will be exactly 3/2. The obvious problem with this
method is that the octave is no longer right! This should not be too surprising; if 12
equal pitches in an octave did not exactly give a perfect fifth, then building up the
notes for perfect fifths should not be expected to give an exact octave. The amount
by which the octave is off is called the Pythagorean comma.

One way to reconcile perfect fifths and the octave would be to make only one of
the fifths not be exact, and to have it be off by an amount that will make the octave
be the desired double frequency. This was commonly done and the note that did not
have a perfect fifth above it was called the wolf. The fourth column in Table 11.2 is
the Pythagorean scale with the wolf at F�. To see that this is indeed the wolf, take
the frequency corresponding to any note in the fourth column and multiply it by
3/2 and if the result is greater than 880, then divide the result by 2. The resulting
frequency will correspond to the note seven pitches above (or five pitches below)
the starting note, except for F �.

One way to compare the equal-tempered scale and the Pythagorean scale with a
wolf, is that the former takes the Pythagorean comma, and instead of allocating all
of it to the wolf, it spreads 1/12 of the comma across all the notes. It seems that this
would not be too bad, and indeed, the frequency for E is only 0.74 Hz lower than
what would be a perfect fifth above the A. Unfortunately, some of the other intervals
are not as close. For example, the just minor third has a ratio of 6/5, and for a scale
starting at 440 Hz, this would correspond to 528 Hz. In the equal-tempered scale in
column two, the C is the closest note and this is off by a relatively large amount,

11 According to [49], Pythagoras, of the a2 +b2 = c2 fame, was the first to observe that the pitch of
a string is related to its length. When the length is halved, the pitch increases by an octave. When
the length is reduced by 2/3, a fifth results; similarly, reducing the length by 3/4 results in a fourth.
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4.75 Hz. Similarly, the just major third (5/4), the just minor sixth (8/5), and the just
major sixth (5/3) do not fare well either.

There are many other ways to define the 12 notes in an octave, and mathemati-
cally one way to consider them would be the means by which the wolf is allocated
across the notes, and each method would have corresponding benefits and detri-
ments. For example, just intonation is designed to make many of the thirds and
fifths perfect, at the expense of the other thirds and fifths being worse. The draw-
back to this approach is that, depending on the composition, different just intonation
tunings would be necessary to get the thirds and fifths that appear in the composition
to be the ones that are perfectly tuned. Meantone temperaments can be considered
ways to systematically spread the wolf through parts of the scale. For example, the
wolf can be cut into four pieces and put in four different places, and so on. Even
attempting a complete listing of ways that the 12 notes in an octave have been de-
fined in western music is beyond the scope of this text and the interested reader is
referred to the references listed at the beginning of this section.

Finally, regardless of the exact definition of the frequencies of the notes, the scale
considered so far has 12 notes. This is called the chromatic scale. A reader that has
studied Western music may be more familiar with scales that have seven notes (“do,
re, me, fa, so, la, ti” and “do”). The common ones are called diatonic scales, which
are made of of five steps that skip a note and two steps that do not. Because such
scales are so common, the steps that skip a note are called whole steps, and the steps
that do not are called half steps, and in the diatonic scales the half steps are placed
as far apart as possible, meaning there are either two or three whole steps between
each of the half steps.

The distinction between major and minor scales is the placement of the half
steps. The C major is easy to read from the keyboard in Figure 11.41 because it
starts with C and includes only the white keys up to the next C. So, the steps are
whole, whole, half, whole, whole, whole and half. All 12 major scales have the
same sequence of whole and half steps, but start with different notes. The A natural
minor scale starts with an A and includes all the white keys to the next A, so the step
are whole, half, whole, whole, half, whole and whole. The natural minor scales have
the same sequence of steps.12 Musical compositions are often composed primarily
from the seven notes in a key, and because of the relationship between the notes in
a key, music can have a qualitatively different sound in different keys.

11.8.2 A Simple Model for Dissonance

In our study of vibrations we have already encountered a basic phenomenon related
to music and acoustics, which is commonly called beating. Figure 4.12 illustrated
the solution to a mass–spring system forced near resonance from Example 4.6. The
solution was the superposition of two cosines with slightly different frequencies

12 There are also melodic and harmonic minor scales.
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(approximately 0.16711 and 0.15915 Hz, respectively) and because the frequencies
were close, the two solutions would slowly alternate between being in and out of
phase, resulting in an obvious structure to the solution that is related to the difference
between the two frequencies. In this example, 1/(0.16711− 0.15915) = 125.63,
which is the time in seconds it takes the “beat” to repeat.

In acoustics, when two instruments play notes that differ by a small amount, say
1 Hz, this beating is easily perceptible. To model the unpleasantness of two tones,
one experiment would be to play two sine waves at difference frequencies and ask
listeners to indicate a level of unpleasantness. In [49], a mathematical model for
dissonance was presented that is given by

d ( f1, f2, l1, l2) = l12

(

e−3.5s( f2− f1)− e−5.75s( f2− f1)
)

(11.88)

where f1 is the lower frequency, f2 is the higher frequency, l1 and l2 are the am-
plitudes of the two frequencies, and l12 is the minimum of the two amplitudes. The
parameter s is given by

s =
0.24

0.021 f1 + 19
. (11.89)

All the numerical values in Equations (11.88) and (11.89) are from least-squares
optimization of the assumed form of the curves to experimental data based upon
people listening to the two frequencies played at the same time and indicating the
degree of pleasantness or unpleasantness of the sound. Using Concert A as a base
frequency, f1 = 440 and l1 = l2 = 1, a plot of the dissonance curve for frequencies
from Concert A over an octave is illustrated in Figure 11.42. A sinusoid at 440 Hz
sounds good with itself, so the measure of dissonance starts at zero. The peak seems
to be near 470 Hz, and then tapers back to zero. This represents the phenomenon
that beating is not necessarily a completely unpleasant sound (unless your goal is to
tune two instruments, presumably), but somewhere between two notes being nearly
the same and very distinct, there is a region of maximum dissonance.

Figure 11.42 measures the dissonance of pure sinusoids. However, any note from
the simple piano model is made up of an infinite number of modes (but only a fi-
nite number are within the auditory range for humans), so for real instruments any
measure of dissonance must take into account all the modes and the relationship
between them. For example, on a piano two notes may be played where the fun-
damental frequencies are separated enough that the dissonance function for them
would be relatively small. However, if some of the harmonics are related in a way
where there is high dissonance, then as notes on the piano they will clash. To extend
the dissonance model to the vibrating string example, we simply add the measure of
dissonance for all the modes for each note.

Example 11.18. This example constructs the dissonance function for one octave
starting at Concert A for our model of a piano. The frequency for the nth mode
of the wave equation is αnπ/L in radians per second, thus if α and L are picked
so that α/(2L) = 440, the string will have a fundamental frequency of 440 Hz. If
we set L = 1, which would be realistic for a piano, then α = 880. We model the
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Fig. 11.42 Plot of the empirical dissonance function.

impact of the hammer as an initial condition where 1/100 of the string is given an
initial velocity of a magnitude of 100 over the segment of the string from x = 0.09
to x = 0.1.

Referring to the summary of the solution to the wave equation and using the
parameter values from above, the solution is

u(x,t) =
∞

∑
n=1

200
880n2π2 [cos(0.1nπ)− cos(0.09nπ)]sin(nπx)sin(880nπt).

Setting

l1,n =
200

880n2π2 [cos(0.1nπ)− cos(0.09nπ)]

l2,m =
200

2 f2n2π2 [cos(0.1nπ)− cos(0.09nπ)]

and f1 = 440, then the sum of the dissonance for each pair of modes for each note
is given by

d ( f2) =
∞

∑
n=1

∞

∑
m=1

d ((2nπ) f1,(2mπ) f2, l1,n, l2.m) .

A plot of d ( f2) versus f2 is illustrated in Figure 11.43. Because the upper thresh-
old of hearing for humans is near 20,000 Hz, d ( f2) was only computed through
the 46th mode, which has a frequency of approximately 20,240 Hz. Because of the
very small segment of length over which the impact occurred, the magnitude of the
higher modes decays very slowly, as illustrated in Figure 11.44, which makes the
harmonics very important in computing the dissonance function. Note that many of
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the minima in the dissonance curve occur at ratios of the fundamental frequencies
that are ratios of small integers.

• The minor third is at (6/5)440 = 528 Hz.
• The major third is at (5/4)440 = 550 Hz.
• The perfect fourth is at (4/3)440 = 586.67 Hz.
• The tritone is at (7/5)440 = 616 Hz.
• The perfect fifth is at (3/2)440 = 660 Hz.
• The major sixth is at (5/3)440 = 733.33 Hz.

This is because the harmonics are of similar ratios, and hence are unlikely to occur
at intervals with high dissonance values.
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Fig. 11.43 The dissipation function for the piano mode in Example 11.18.

11.8.3 Percussion Instruments

The dynamics of a few percussion instruments have been studied, either in the main
text or in the exercises at the end of the chapter. One feature to observe in many per-
cussion instruments such as vibrating circular drum heads and oscillating beams is
that the frequencies of the higher-order modes are not integer multiples of the funda-
mental frequency. In contrast, the harmonics of the one-dimensional wave equation,
which models many wind instruments, pianos, guitars, and other stringed instru-
ments, are integer multiples of the fundamental frequency.

For example, when a piano or guitar plays the note corresponding to Concert
A, the fundamental frequency is at 440 Hz and all the harmonics are at 880 Hz,
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Fig. 11.44 The magnitude of the modes (Fourier series coefficients) for the piano from Exam-
ple 11.18.

1320 Hz, and higher multiples of 440 Hz, that is, 440n Hz, n = 1,2,3, . . .. The pri-
mary contribution to what makes the instruments sound different is different relative
magnitudes of the harmonics.

In contrast, the frequencies of the higher modes of the circular drum head are
given by the zeros of the Bessel functions, enumerated in normalized form in Ta-
ble 5.2. Observe that the higher-order zeros are not integer multiples of the first zero.
Similarly, the cantilever beam had frequencies enumerated in Table 11.1, and again
the higher frequencies were not integer multiples of the fundamental. Exercise 11.26
considers the details of musical chimes (or perhaps a glockenspiel or xylophone),
which have a similar characteristic. It is perhaps the nature of this relationship be-
tween the fundamental frequency and the harmonics that makes percussion instru-
ments sound qualitatively different, and even less musical or more primitive, than
other instruments.

11.9 Additional Topics

This chapter only considered solving the simplest types of partial differential equa-
tions and one approach to solving them, namely, separation of variables. The reader
is cautioned not to conclude this is the only solution method for partial differential
equations, and, in fact, entire courses exist that focus on subsets of the solution meth-
ods which exist for partial differential equations. A list of some other approaches,
adapted from [14], is as follows.
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1. Integral transforms may be used to reduce the number of independent variables
by one. This would be useful in the case where there are two independent vari-
ables, because the transform would reduce the number of independent variables
to one, which would then make the equation an ordinary differential equation.

2. A change of coordinates may be used to convert the partial differential equation
to either a simpler partial differential equation or an ordinary differential equa-
tion.

3. A transformation of the dependent variable may also simplify the equation.
4. Numerical methods, the most basic approach of which is presented in Sec-

tion 12.6.
5. Perturbation methods can transform a single nonlinear equation with a small non-

linearity into a sequence of linear equations.
6. Impulse-response methods may decompose initial and boundary conditions into

a set of simple responses, which are then combined to form the solution.
7. A partial differential equation can sometimes be converted into an integral equa-

tion which may have known solution methods.
8. Calculus of variations may be used if the solution to the partial differential equa-

tion can be reformulated into an optimization problem.

11.10 Exercises

11.1. Compute the Fourier series for each of the following functions.

1. f (x) = f (x + 8π) and

f (x) =

⎧

⎪⎨

⎪⎩

1, 0 < x ≤ π ,

0, π < x ≤ 7π ,

−1, 7π < x ≤ 8π .

2. f (x) = f (x + 3) and

f (x) =

⎧

⎪⎨

⎪⎩

0, 0 < x ≤ 1,

1, 1 < x ≤ 2,

2, 2 < x ≤ 3.

3. f (x) = f (x + 2) and

f (x) =

{

−2, 0 < x ≤ 1,

8, 1 < x ≤ 2.

4. f (x) = f (x + 6) and

f (x) =

⎧

⎪⎨

⎪⎩

−1, −3 < x ≤−1,

1, −1 < x ≤ 1,

−1, 1 < x ≤ 3.
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5. f (x) = f (x + 2) and

f (x) =

{

x, −1 < x ≤ 0,

x + 1, 0 < x ≤ 1.

In each case, check your answer by plotting partial sums of the Fourier series to
compare with the given function.

11.2. Consider the mass–spring–damper system illustrated in Figure 4.1. Let

f (t) =

{

1, 0 ≤ t < 1

0, 1 ≤ t < 2,

and f (t + 2) = f (t). Also let x(0) = ẋ(0) = 0.

1. Determine the solution by considering each interval of time tn ≤ t ≤ tn +1, where
tn = 0,1,2, . . . separately. Find the solution for 0 ≤ t < 1. Then using the value
of that solution at t = 1 for the initial conditions for the next interval, determine
the solution for 1 ≤ t < 2. Do this for the first several intervals.

2. Write a computer program to determine an approximate numerical solution for
this system and compare the answer to the answer from part 1.

3. Expand f (t) in a Fourier series and use the method of undetermined coefficients
to find the solution. Hint: The solution will be a series. Plot the solution for
including various numbers of terms in the series solution and compare it to the
numerical solution in part 2.

11.3. Determine the solution to the one-dimensional wave equation with u(0,t) =
u(L,t) = 0 and with the specified parameter values and initial conditions.

1. α = 2, L = 20, ∂u/∂ t(x,0) = 0, and

u(x,0) =

{
x

20 ,0 < x ≤ 10,
20−x

20 ,10 < x ≤ 20.

2. α = 3, L = 10, ∂u/∂ t(x,0) = 0, and

u(x,0) =

{
x
3 ,0 < x ≤ 3,
10−x

7 ,3 < x ≤ 10.

3. α = 1, L = 10, u(x,0) = 0, and

∂u
∂ t

(x,0) =

⎧

⎪⎨

⎪⎩

0,0 < x ≤ 3,

1,3 < x ≤ 4,

0,4 < x ≤ 10.

4. α = 2, L = 20, u(x,0) = 0, and
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∂u
∂ t

(x,0) =

⎧

⎪⎨

⎪⎩

0,0 < x ≤ 3,

sin2πx,3 < x ≤ 7
2 ,

0, 7
2 < x ≤ 20.

In each case, plot a partial sum of the solution including enough terms so that it is
accurate for various times. Alternatively, make a movie.

11.4. Determine the solution to the one-dimensional heat condition equation with
homogeneous boundary conditions and with the specified parameter values and ini-
tial condition.

1. α = 1, L = 4, and

u(x,0) =

{
x
2 ,0 < x ≤ 2,
4−x

2 ,2 < x ≤ 4.

2. α = 3, L = 10, and

u(x,0) =

{
x
3 ,0 < x ≤ 3,
10−x

7 ,3 < x ≤ 10.

3. α = 5, L = 3, and

u(x,0) =

⎧

⎪⎨

⎪⎩

0,0 < x ≤ 1,

1,1 < x ≤ 2,

0,2 < x ≤ 3.

4. α = 2, L = 20, u(x,0) = 0, and

∂u
∂ t

(x,0) =

⎧

⎪⎨

⎪⎩

0,0 < x ≤ 3,

sin2πx,3 < x ≤ 7
2 ,

0, 7
2 < x ≤ 20.

In each case, plot a partial sum of the solution including enough terms to that it is
accurate for various times. Alternatively, make a movie.

11.5. Repeat Exercise 11.4, but assume the following nonhomogeneous boundary
conditions for the corresponding part from Exercise 11.4.

1. u(0,t) = 100 and u(L,t) = 200
2. u(0,t) = 0 and the end at x = L insulated.
3. u(0,t) = 10 and u(L,t) = 2.
4. End at x = 0 insulated and u(L,t) = 3.

11.6. Show that the the eigenvalue for the one-dimensional heat conduction equation
with homogeneous boundary conditions must be positive.

11.7. Referring to the one-dimensional heat equation given in Equation (11.30), ex-
plain what the effects of changing the thermal conductivity, the specific heat, and
the density will have on the rate at which the temperature at a point will change and
why those effects make sense.
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11.8. Derive the solution given at the beginning of Section 11.3.3 for the one-
dimensional heat equation with an insulated end.

11.9. Determine the solution to Laplace’s equation

∂ 2u
∂ 2x

+
∂ 2u
∂ 2y

= 0

where

1. u(0,y) = f (y), u(Lx,y) = 0, u(x,0) = 0, and u(x,Ly) = 0
2. u(0,y) = 0, u(Lx,y) = f (y), u(x,0) = 0, and u(x,Ly) = 0
3. u(0,y) = 0, u(Lx,y) = 0, u(x,0) = f (x), and u(x,Ly) = 0

11.10. Derive the heat conduction equation in three dimensions in Cartesian coor-
dinates.

11.11. Show that if the thermal conductivity is not uniform throughout the body,
then the heat conduction equation in Cartesian coordinates in three dimensions is

∂
∂x

(

k
∂u
∂x

)

+
∂
∂y

(

k
∂u
∂y

)

+
∂
∂ z

(

k
∂u
∂ z

)

= ρcp
∂u
∂ t

.

11.12. Determine the solution to

α2 ∂ 2u
∂x2 −α2u =

∂ 2u
∂ t2 ,

where
u(0,t) = u(L,t) = 0,

and

u(x,0) = f (x),
∂u
∂ t

(x,0) = 0.

11.13. Show that Equation (11.52) is the solution to the wave equation in Cartesian
coordinates in two dimensions.

11.14. By starting with the two-dimensional heat condition equation in Cartesian
coordinates, show that the two-dimensional heat equation in polar coordinates is
given by

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 =

ρcp

k
∂u
∂ t

.

11.15. Determine the solution to the two-dimensional heat equation on a rectangular
domain x∈ [0,3] and y∈ [0,4], with homogeneous boundary conditions where α = 4
and the initial temperature everywhere is zero except for the rectangle 1 < x < 2 and
1 < y < 2 where the temperature is one. Plot the solution for various times.
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11.16. Determine the solution to the two-dimensional wave equation on a rectangu-
lar domain x ∈ [0,3] and y ∈ [0,4], with homogeneous boundary conditions where
α = 4 and the initial displacement that is everywhere zero and an initial velocity
that is everywhere zero except for the rectangle 1 < x < 2 and 1 < y < 2 where the
velocity is one. Plot the solution for various times.

11.17. Model a drumstick impacting a drum by solving the two-dimensional wave
equations in polar coordinates. Make up your own physical parameters for the sys-
tem that seem realistic. For the initial conditions, let the initial displacement be
zero, and make up an initial velocity profile that would be a reasonable model for
the effect of a drumstick impacting the drum, such as having zero initial velocity
everywhere except in a small region where the stick impacts the drum head. Plot the
solution for various times, or alternatively, make a movie.

11.18. Drummers typically do not hit a drum head right in the center, but rather
somewhat offset from the center. On a tympani, the mallet typically impacts the
drum head near the edge. Repeat the previous problem, but solve it two times, once
with an initial velocity profile that is zero everywhere except in a region in the center,
and once with the velocity zero everywhere except a region offset from the center.
Compare the solutions and spectrum of the response.

11.19. In this problem solve what is known as the interior Dirichlet problem for a
circle. Use separation of variables to show that the solution to

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0

u(1,θ ) = g(θ )

is

u(r,θ ) =
∞

∑
n=0

rn (an cosnθ + bn sinnθ ) .

Do not substitute this solution into the partial differential equation to show it is a
solution (it is). Go through the separation of variables process to construct it. Also,
provide formulae for the coefficients an and bn.

11.20. Explain in words the physical interpretation of Equation (11.71).

11.21. Show that for the static deflection for the beam illustrated in Figure 11.45,
the equivalent spring force is

k =
12EI

L3 ,

or in the case of a rectangular cross-section,

k =
Ewh3

L3 .
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Fig. 11.45 A deflecting column.

F

L
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11.22. When solving the static deflection problem for beams, note that because
the equation is fourth-order, resulting in four coefficients in the solution, only four
boundary conditions can be satisfied. Consider the simply-supported beam subjected
to a point force at x = xF illustrated in Figure 11.46. The boundary conditions at
x = 0 and x = L require

u(0) = 0, u′′(0) = 0, u(L) = 0, u′′(L) = 0.

Because a point force at location x is related to u′′′(x) this imposes another condi-
tion similar to a boundary condition. This gives a total of five conditions, which, in
general, cannot be satisfied by a fourth-order equation.

The way to solve this problem is to determine two solutions, one, u1(x), from
x = 0 to x = xF , and the other, u2(x), from x = xF to x = L. In this case the boundary
conditions are

u1(0) = 0, u′′1(0) = 0, u2(L) = 0, u′′2(L) = 0.

The point force at x = x f requires

EIu1(xF) = F(L− xF)/L, EIu2(xF) = −FxF/L.

Finally, because the beam is continuous, there are two matching conditions, namely,

u1(xF) = u2(xF), u′1(xF) = u′2(xF).

1. Explain why the matching conditions do not include equating the second deriva-
tives of the two solutions.

2. Determine the two solutions.
3. Use some reasonable numerical values for the parameters of the system and plot

the solution to check that your answer is reasonable. Plot it for xL = L/2 and
for an off-center force as well. Hint: for a point force of magnitude F at the
midpoint of the beam, the relationship between the amount of static deflection of
the midpoint and the applied force is given by
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F =
48EI

L3 u(L/2)

Fig. 11.46 Simply supported beam for
Exercise 11.22.

F

x = 0 x = L

xF

11.23. Show that for a beam cantilevered at both ends, the relationship between a
force applied at the midpoint of the beam and the static displacement at the midpoint
is given by F = 192u(L/2)EI/L3.

11.24. Work through the whole separation of variables process to show that vibra-
tions of a simply supported beam of length L = 1 which are solutions to

∂ 2u
∂ t2 +

∂ 4u
∂x4 = 0

(α = 1) with boundary conditions

u(0,t) = 0,
∂ 2u
∂x2 (0,t) = 0, u(L,t) = 0,

∂ 2u
∂x2 (L,t) = 0

and initial conditions given by

u(x,0) = f (x),
∂u
∂ t

(x,0) = g(x)

are described by

u(x,t) =
∞

∑
n=1

sin(nπx)
[

an sin
(

(nπ)2t
)

+ bn cos
(

(nπ)2t
)]

,

where

an =
2

(nπ)2

∫ 1

0
g(x)sin(nπx)dx, bn = 2

∫ 1

0
f (x)sin (nπx)dx.

Hint: Use

X(x) = c1cos
√

λx + c2sin
√

λ x + c3cosh
√

λ x + c4sinh
√

λx.

Be sure to verify those four functions form a linearly independent set.

11.25. Verify the set made up of the four functions used in Equation (11.82),
cos

√
λ x+cosh

√
λ x, cos

√
λ x−cosh

√
λ x, sin

√
λ x+sinh

√
λ x, sin

√
λx−sinh

√
λx,

is linearly independent.
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11.26. A chime is a musical instrument that may be modeled as beams with free
ends. Consider the case where α = L = 1.

• Determine an expression for the frequencies of the modes.
• Determine the numerical values for the first five modes.
• Plot the mode shapes for the first five modes.

If both ends are free, then the boundary conditions are

∂ 2u
∂x2 (0,t) = 0,

∂ 3u
∂x3 (0,t) = 0,

∂ 2u
∂x2 (L,t) = 0,

∂ 3u
∂x3 (L,t) = 0.

11.27. In this exercise design your own six-string guitar. Assume that the length of
all six strings is L = 0.65 m, and that the mass per unit length of each string is 0.1
kg/m (this is not realistic because most guitars have strings with different thickness
and therefore mass per unit lengths). For each string on the guitar, determine the
tension and location of the frets so that each string will play the notes indicated in
Table 11.3 using equal temperament. Note that the frets go straight across the neck
of the guitar, so the location of the frets that work for one string should work for
them all.

Open Open Fret 1 Fret 2 Fret 3 Fret 4 Fret 5 Fret 6 Fret 7
String Frequency (Hz) Note Note Note Note Note Note Note Note

1 329.60 E F F� G G� A A� B
2 246.90 B C C� D D� E F F�

3 196.00 G G� A A� B C C� D
4 146.80 D D� E F F� G G� A
5 110.00 A A� B C C� D D� E
6 82.40 E F F� G G� A A� B

Table 11.3 Table of frequencies and notes for Exercise 11.27



Chapter 12
Numerical Methods

This chapter deals with numerical methods for determining approximate solu-
tions for differential equations. Unfortunately, most differential equations cannot
be solved “by hand” to determine a solution that is expressed in terms of elementary
functions. For example, most nonlinear differential equations are of this nature.

This chapter presents the derivation of the methods as well as analyses of the
types of errors that are inherent in the methods. Section 12.1 presents Euler’s method
with more mathematical rigor than was considered in Section 1.6. Section 12.2
presents a method based upon Taylor series, which, actually, is the basis for all
the methods we consider. The material in the section is not presented in many ex-
positions on numerical methods, but is included for pedagogical purposes because
it provides the theoretical foundation for the higher-order methods. Section 12.3
presents the ubiquitous Runge–Kutta method. Section 12.4 presents a derivation
for an expression on the bound of the error for Euler’s method with rather obvi-
ous extensions to higher-order methods. All the methods presented in Sections 12.1
through Section 12.3 work for a single, first-order ordinary differential equation.
Section 12.5 extends these methods to systems of coupled first-order ordinary dif-
ferential equations. Finally, Section 12.6 presents some basic techniques for deter-
mining approximate numerical solutions for partial differential equations.

12.1 Another Look at Euler’s Method

In Section 1.6, Euler’s method was derived as an approximation to the usual defini-
tion of the derivative. In particular, for a first-order, ordinary differential equation of
the form

ẋ = f (x,t) (12.1)

the derivative with respect to time is approximated by

ẋ(t) ≈ x(t + Δ t)− x(t)
Δ t

577B. Goodwine, Engineering Differential Equations: Theory and Applications, 
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for Δ t � 1. Consequently, solving for x(t + Δ t) gives

x(t + Δ t) ≈ x(t)+ f (x(t),t)Δ t (12.2)

for Δ t � 1.
In this section a slightly more sophisticated analysis is undertaken that allows

for easy extensions to higher-order methods and error analyses. In particular, the
analysis is based upon a Taylor series expansion of the form

x(t + Δ t) = x(t)+ Δ t
dx
dt

(t)+
(Δ t)2

2!
d2x
dt2 (t)+

(Δ t)3

3!
d3x
dt3 (t)+ · · · . (12.3)

Because the problem statement includes the fact that

ẋ(t) = f (x(t),t),

substituting this into Equation (12.3) gives

x(t + Δ t) = x(t)+ Δ t f (x(t),t)+
(Δ t)2

2!
d f
dt

(x(t),t)+
(Δ t)3

3!
d2 f
dt2 (x(t),t)+ · · · .

(12.4)
Clearly, Euler’s method amounts to only using the first two terms in the series to
approximate x(t +Δ t), and if Δ t � 1, the local truncation error due to the fact that
only a finite number of terms is used is proportional to (Δ t)2. In other words, if the
time step is cut in half, the truncation error is reduced by (1/2)2 = 1/4 and if Δ t
is reduced by an order of magnitude, the truncation error is reduced by (1/10)2 =
1/100.

The following example illustrates the method as well as the effect of the time
step on the error.

Example 12.1. Use Euler’s method to determine an approximate solution to

ẋ = 5x,

where x(0) = 1 for 0 < t ≤ 2.
Note that the exact solution is easy to compute and is x(t) = e5t . At a given time,

the equation to compute the value of the solution at the next time step is given by

x(t + Δ t) = x(t)+ f (x(t),t)Δ t = x(t)+ 5x(t)Δ t.

A program listing in the C programming language for this problem appears in Ap-
pendix E.1.0.4. A program listing in FORTRAN for this problem appears in Ap-
pendix E.2.0.19. A plot of the solutions for two time steps as well as the exact
solution is illustrated in Figure 12.1.

Remark 12.1. Until Section 12.4 which contains a detailed error analysis, when we
refer to “overall error” it simply means an approximate measure of the error aver-
aged over all the time considered in the problem.
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Fig. 12.1 Solution to Example 12.1 illustrating the fact that for Euler’s method the overall error is
proportional to Δt .

The first few steps of the results of the computations for the case where Δ t = 0.1
are listed in Table 12.1. The first few steps of the results of the computations for the
case where Δ t = 0.05 are listed in Table 12.2.

t x(t) e5t

0.000000 1.000000 1.000000
0.100000 1.500000 1.648721
0.200000 2.250000 2.718282

Table 12.1 First three steps in Euler’s method for Example 12.1 with Δt = 0.1

t x(t) e5t

0.000000 1.000000 1.000000
0.050000 1.250000 1.284025
0.100000 1.562500 1.648721

Table 12.2 First three steps in Euler’s method for Example 12.1 with Δt = 0.05

After the first step when Δ t = 0.1, the error in the approximate solution is
1.648721− 1.5000000 = 0.14872. When Δ t = 0.05 the error after the first step
is 1.284025− 1.250000 = 0.034025. The critical observation is that when the time
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step was cut by a factor of two, after the first step of the algorithm the error was
decreased by approximately a factor of four, illustrating the fact that the error in
Euler’s method is proportional to (Δ t)2. Note that the reduction in the error is not
exactly by a factor of four for two reasons. First, that measure comes only from the
leading-order term in the truncated part of the series, and the higher-order terms will
have some effect. Also, the powers of Δ t in the series have coefficients, and those
are different as well if Δ t is changed.

However, referring to Figure 12.1 it appears that at any given value of t, the
error is not decreased by a factor of four, but rather simply cut in half; that is, it
appears that the error at a specified time is proportional to Δ t. This is because the
error at each time step may be decreased in proportion to (Δ t)2 but the number of
time steps necessary to cover a specified time interval is inversely proportional to
Δ t. Specifically in this example, if Δ t is reduced by a factor of two, the number of
time steps necessary to go from t = 0 to t = 1 is doubled. Because of this, even
though the error introduced at each time step is proportional to (Δ t)2, if the number
of steps needed to reach time t is proportional to 1/Δ t, so the error at any time
t will be proportional to Δ t. This intuitive analysis of the error properties of the
method is generally correct as we show in the more rigorous analysis developed in
Section 12.4.

Another example helps flesh out the relationship between the changes in step size
and the resultant error.

Example 12.2. Determine an approximate solution to

ẋ = −sin t,

where x(0) = 1 using Euler’s method. Not too much thought (or even less work)
gives the exact solution as x(t) = −cost. A plot of the approximate solutions for
Δ t = 1.0 and Δ t = 0.5 as well as the exact solution is illustrated in Figure 12.2.

Note that, as was the case in the previous example, decreasing the time step by a
factor of two generally decreases the overall error by a factor of two as well. In other
words, the overall error is proportional to the time step. A program listing in the C
programming language for this problem appears in Appendix E.1.0.5. A program
listing in FORTRAN for this problem appears in Appendix E.2.0.20.

12.2 Taylor Series Methods

If it is necessary to increase the accuracy of the approximate solution without the
computational burden of an excessively small step size, the relatively obvious thing
to do is to start including higher-order terms from the Taylor series expansion for
x(t + Δ t) in Equation (12.4). Upon initially considering this notion, it may appear
to be a rather trivial exercise. Although it is manageable to include the (Δ t)2 term,
and even possibly the (Δ t)3 term, a quick review of multivariable calculus illustrates
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Fig. 12.2 Solution to Example 12.2 illustrating the fact that for Euler’s method the overall error is
proportional to Δt .

that the complexity of such an endeavor quickly becomes rather burdensome. This
is because the function f depends upon both x and t, but x also depends upon t, and
determining exactly that dependence of x on t is the whole point of the problem, that
is, determining x(t). From Equation (12.4), we need to compute the derivatives of f
with respect to t.

From the chain rule, we have

d f
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂ t

=
∂ f
∂x

f +
∂ f
∂ t

.

or, including the dependence

d f
dt

(x(t),t) =
(

∂ f
∂x

dx
dt

+
∂ f
∂ t

)∣
∣
∣
∣
(x(t),t)

=
(

∂ f
∂x

f +
∂ f
∂ t

)∣
∣
∣
∣
(x(t),t)

, (12.5)

where the notation
∂ f
∂x

∣
∣
∣
∣
(x(t),t)

means, as usual, to compute the partial derivative of f with respect to x and then
evaluate it at the values of x(t) and t.1

1 In this chapter, the manner in which the dependent variables are presented varies, depending
on which way provides the most clarity. In fact, in Equation (12.5) two different ways are used;
furthermore, the notation with the vertical bar used outside a group of terms with parentheses
means that every term inside is evaluated at the indicated points.
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Again, the crux of the matter is that the problem statement specifies how ẋ de-
pends on x and t, but not how x depends on t. Thus, one cannot simply compute the
derivative of f (x(t),t) with respect to t because x(t) is not known; rather, one must
resort to the chain rule as expressed in the equations above.

12.2.1 Second-Order Taylor Series Expansion

Returning to the Taylor series expansion and including all the terms through (Δ t)2

gives

x(t + Δ t) = x(t)+ f (x(t),t)Δ t +
1
2

d f
dt

∣
∣
∣
∣
(x(t),t)

(Δ t)2 + · · ·

= x(t)+ f (x(t),t)Δ t +
1
2

(
∂ f
∂x

f +
∂ f
∂ t

)∣
∣
∣
∣
(x(t),t)

(Δ t)2 + · · · .
(12.6)

Hence, keeping all terms through (Δ t)2, which should produce a step truncation
error proportional to (Δ t)3 and an overall error proportional to (Δ t)2 is given by

x(t + Δ t) = x(t)+ f (x(t),t)Δ t +
(Δ t)2

2

(
∂ f
∂x

f +
∂ f
∂ t

)∣
∣
∣
∣
(x(t),t)

.

Returning to Example 12.1 illustrates the fact that the error is indeed as would be
expected.

Example 12.3. Use a second-order Taylor series expansion to determine an approx-
imate solution to

ẋ = 5x,

where x(0) = 1 for 0 < t ≤ 2.
Because f (x(t),t) = 5x(t),

∂ f
∂x

= 5,
∂ f
∂ t

= 0.

Hence,

x(t + Δ t) = x(t)+ 5x(t)Δ t +
25
2

x(t)(Δ t)2 . (12.7)

A program listing in the C programming language for this problem appears in Ap-
pendix E.1.0.6. A program listing in FORTRAN for this problem appears in Ap-
pendix E.2.0.21.

The first few steps of the results of the computations for the case where Δ t = 0.1
are given in Table 12.3 and and first few steps of the results of the computations
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for the case where Δ t = 0.05 are given in Table 12.4. Plots of the two approximate
solutions and the exact solution are illustrated in Figure 12.3.

t x(t) e5t

0.000000 1.000000 1.000000
0.100000 1.625000 1.648721
0.200000 2.640625 2.718282

Table 12.3 The first three time steps for the second-order Taylor series method for Example 12.3
with Δt = 0.1.

t x(t) e5t

0.000000 1.000000 1.000000
0.050000 1.281250 1.284025
0.100000 1.641602 1.648721

Table 12.4 The first three time steps for the second-order Taylor series method for Example 12.3
with Δt = 0.05.
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Fig. 12.3 Solution to Example 12.3. Note that for the second-order Taylor series, the error is
generally proportional to (Δt)2.

Observe that after the first time step, the error for Δ t = 0.1 is 1.648721−
1.625000 = 0.023721, and the error for Δ t = 0.05 is 1.284025 − 1.281250 =
0.0027750. Because 0.023721/0.0027750 = 8.5 ≈ 8 it is clear that the error is pro-
portional to (Δ t)3, which is the order of the first term truncated in the Taylor series,



584 12 Numerical Methods

because the step size was reduced by a factor of two and the error was reduced by a
factor of eight. With respect to the overall error, referring to Figure 12.3, it is clear
that the overall error is proportional to (Δ t)2 inasmuch as the Δ t = 0.05 curve has
approximately 1/4 the error of the Δ t = 0.1 curve.

Also, when comparing the two methods, observe that for the case of Δ t = 0.1 in
Figures 12.1 and 12.3, the overall error decreases by an order of magnitude, which is
consistent with the second-order Taylor series in the latter case including the (Δ t)2

in the expansion.

Because of the form of the partial derivatives in Equation (12.6), an example with
the function f (x,t) that includes both x and t may be helpful.

Example 12.4. Determine an approximate solution to

ẋ = −x3 + sin(tx),

where x(0) = 1 using a second-order Taylor series expansion.
In this problem

f (x,t) = −x3 + sin(tx)

Hence,
∂ f
∂x

(x(t),t) = −3x2 + t cos(tx),
∂ f
∂ t

(x(t),t) = xcos(tx).

Thus, the equation for x(t + Δ t) using a second-order Taylor series expansion is

x(t + Δ t) =x(t)+ f (x(t),t)Δ t +
1
2

(
∂ f
∂x

f +
∂ f
∂ t

)∣
∣
∣
∣
(x(t),t)

(Δ t)2

=x(t)+
(−x3(t)+ sin(tx(t))

)

Δ t

+
1
2

{[−3x2(t)+ t cos(tx(t))
][−x3(t)+ sin(tx(t))

]

+ x(t)cos(tx(t))}(Δ t)2 .

The solution is illustrated (along with another solution generated by another method)
in Figure 12.6 for the cases where Δ t = 0.4 and Δ t = 0.2. A program listing in the
C programming language for this problem appears in Appendix E.1.0.7. A program
listing in FORTRAN for this problem appears in Appendix E.2.0.22.

12.2.2 Third-Order Taylor Series Expansion

The obvious thing to do at this point to improve the accuracy of the method is to try
to include the third-order terms in the expansion, so, let us go for it. Starting with
Equation (12.4),
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x(t + Δ t) = x(t)+ f (x(t),t)Δ t +
1
2!

d f
dt

(x(t),t)(Δ t)2 +
1
3!

d2 f
dt2 (x(t),t)(Δ t)3 + · · · .

(12.8)
As has already been stated, the dependence of f on x and t is specified, but not the
dependence of x on t. Hence, as in the case of the second-order Taylor series, the
chain rule must be used to expand the derivatives in terms of known quantities. In
particular, as above

d f
dt

=
∂ f
∂x

f +
∂ f
∂ t

. (12.9)

So, to start to compute the next higher-order term,

d2 f
dt2 =

d
dt

(
d f
dt

)

=
d
dt

(
∂ f
∂x

f +
∂ f
∂ t

)

=
d
dt

(
∂ f
∂x

)

f +
∂ f
∂x

d
dt

( f )+
d
dt

(
∂ f
∂ t

)

, (12.10)

where the second line is using the product rule for differentiating the (∂ f/∂x) f
term. Recall that the need for the expansion in Equation (12.9) was the fact that f
depended on both x and t, but x also depended on t, but only the derivative of x with
respect to t is known. Similarly, ∂ f/∂x and ∂ f/∂ t can depend on both x and t as
well, so must be expanded similarly. Hence,

d
dt

(
∂ f
∂x

)

=
∂ 2 f
∂x2 f +

∂ 2 f
∂x∂ t

,
d
dt

(
∂ f
∂ t

)

=
∂ 2 f
∂x∂ t

f +
∂ 2 f
∂ t2 .

Using these two expressions as well as the one for d f/dt in Equation (12.9) in
Equation (12.10) gives

d2 f
dt2 =

(
∂ 2 f
∂x2 f +

∂ 2 f
∂x∂ t

)

f +
∂ f
∂x

(
∂ f
∂x

f +
∂ f
∂ t

)

+
∂ 2 f
∂x∂ t

f +
∂ 2 f
∂ t2 . (12.11)

Finally, substituting the terms from Equations (12.11) and (12.9) gives

x(t + Δ t) = x(t)+ f (x(t),t)Δ t +
(Δ t)2

2

(
∂ f
∂x

f +
∂ f
∂ t

)∣
∣
∣
∣
(x(t),t)

+
(Δ t)3

6

[(
∂ 2 f
∂x2 f +

∂ 2 f
∂x∂ t

)

f +
∂ f
∂x

(
∂ f
∂x

f +
∂ f
∂ t

)

+
∂ 2 f
∂x∂ t

f +
∂ 2 f
∂ t2

]∣
∣
∣
∣
(x(t),t)

.

(12.12)

Remark 12.2.

1. It is theoretically possible to use Equation (12.12), however, as a practical matter
it would be arduous to compute correctly all the partial derivatives, products, and
the like.



586 12 Numerical Methods

2. If even greater accuracy is needed, including the fourth-order terms in Δ t will
result in an absolutely huge expansion because every term in Equation (12.12)
depends on f , which will result in two partial derivative terms when expanded, as
will all the terms that are products of two terms, which is every term except one.
Clearly, an approach that gives higher-order accuracy without the hassle of such
computations would be useful, which is exactly the point of the Runge–Kutta
method in the next section.

Example 12.5. Use the first-, second-, and third-order Taylor series methods to de-
termine an approximate numerical solution to

ẋ = 10x(1− x)

x(−1) =
1

1 + e10

and compare it to the exact solution, which is

x(t) =
1

1 + e−10t .

For this problem,
ẋ = f (x,t) = 10x(1− x)

so for the second- and third-order methods we need to compute

∂ f
∂x

= 10−20x,
∂ f
∂ t

= 0,
∂ 2 f
∂x2 = −20,

∂ 2 f
∂ t2 = 0,

∂ 2 f
∂ t∂x

= 0.

Thus, the equation for the first-order method (or Euler’s method) is

x(t + Δ t) = x(t)+ f (x,t)Δ t = x(t)+ 10x(1− x)Δ t.

The equation for the second-order method is

x(t + Δ t) = x(t)+ f (x,t)Δ t +
1
2

d f
dt

(Δ t)2

= x(t)+ f (x,t)Δ t +
1
2

[
∂ f
∂x

f +
∂ f
∂ t

]

(Δ t)2

= x(t)+ (10x(1− x))Δ t +
1
2

[(10−20x)(10x(1− x))](Δ t)2 .

The equation for the third-order method is
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x(t + Δ t) = x(t)+ f (x,t)Δ t +
1
2

d f
dt

(Δ t)2 +
1
6

d2 f
dt2 (Δ t)3

= x(t)+ f (x,t)Δ t +
1
2

(
∂ f
∂x

f +
∂ f
∂ t

)

(Δ t)2

+
1
6

[(
∂ 2 f
∂x2 f +

∂ 2

∂x∂ t

)

+
∂ f
∂x

(
∂ f
∂x

f +
∂ f
∂ t

)

+
∂ 2 f
∂x∂ t

f +
∂ 2 f
∂ t2

]

(Δ t)3

= x(t)+ (10x(1− x))Δ t

+
1
2

[(10−20x)(10x(1− x))](Δ t)2

+
1
6

[

−20(10x(1− x))+ (10−20x)2 (10x(1− x))
]

(Δ t)3 .

Clearly, as the order of the method increases, so does the complexity of the expres-
sion for x(t + Δ t) .

12.3 The Runge–Kutta Method

The main idea behind the so-called Runge–Kutta methods is, instead of evaluating
all the partial derivatives necessary in the Taylor series computations, to approxi-
mate the derivatives to the same order of accuracy using combinations of the func-
tion f (x,t) evaluated not only at x(t) and t, but other x and t values as well.

Consider the function x(t) illustrated in Figure 12.4. The curve represents the
unknown function x(t). Assume that x(t) is known exactly at two points, say at
t = 1.5 and t = 2.0, so

ẋ ≈ x(t + Δ t)− x(t)
Δ t

=
x(2.0)− x(1.5)

0.5
.

In the figure, it is clear that the derivative of x(t) at t = 1.5, which is the slope of
the tangent line at that point, is approximately the same as the slope of the line
connecting the values of x(1.5) and x(2.0) at times t = 1.5 and t = 2.0. Similarly,
for that matter, the slope at t = 2.0 is approximately the same as well, as is the slope
at any point between t = 1.5 and t = 2.0. Furthermore, the smaller the difference
between the two points in time is, the better the approximation will be.

Now, consider the task of computing an approximation to the second derivative
of x with respect to t. The second derivative is the derivative of the derivative, thus
it is necessary to have an approximate computation for the derivative at two values
for t. Hence, assume that the exact values for x(t) are known for three points, say
t = 1.5, t = 2.0, and t = 2.5, as is illustrated in Figure 12.5. The second derivative,
then, is approximated by
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Fig. 12.4 Approximating derivatives of a function x(t) by computing the slope of a line connecting
two points.

ẍ ≈ ẋ(t + Δ t)− ẋ(t)
Δ t

≈ ẋ(2.0)− ẋ(1.5)
0.5

≈
(

x(2.5)−x(2.0)
0.5

)

−
(

x(2.0)−x(1.5)
0.5

)

0.5

=
x(2.5)−2x(1.5)+ x(1.5)

(0.5)2

where the second to last term was obtained by substituting the equation for the
approximate value of the derivative for each of t = 1.5 and t = 2.0. The main point
is that the computation for an approximation for the second derivative of x with
respect to t required that three points of x(t) be known, which should make sense
because, for a curve, the second derivative is a measure of the curvature, which
cannot be captured by only two points.

So, to summarize, in order to approximate the derivative of x we needed to eval-
uate x(t) at two points in time. In order to approximate the second derivative, we
needed to compute x(t) at three points in time. Clearly, to compute an approximate
for the nth derivative, we need to evaluate x(t) at n + 1 points in time.

The main approach of the Runge–Kutta methods in this section is, in order to
avoid all the complications associated with expanding the derivatives of f (x(t),t)
in a Taylor series, the higher-order derivatives are approximated by evaluating
f (x(t),t) at different x and t values to approximate the higher-order terms in the
Taylor series.

So, in the case of attempting to compute approximate solutions to

ẋ = f (x(t),t)
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Fig. 12.5 Approximating derivatives of a function x(t) by computing the slope of a line connecting
two points.

there is a slight twist, which is that the first derivative of x is already given by the
problem; namely, f (x(t),t). So, the picture gets a little more abstract because the
approximate derivatives that we are computing will not be for x(t), but rather for
f (x(t),t); that is, we approximate the terms in Equation (12.4) instead of Equa-
tion (12.3). The one final conceptual complication is that the whole point of the
problem is to determine x(t); hence, these approximations for derivatives are not
simple to compute because the x(t) to plug into f (x(t),t) is not known.

The approach is to approximate the x(t + Δ t) value that is used to evaluate the
f
(

x(t + Δ t),t + Δ t
)

values, that is used to determine approximations to the deriva-
tives of f (x(t),t) that appear in the Taylor series expansion of x(t + Δ t) in order to
compute an approximation for x(t + Δ t).

12.3.1 The First-Order Runge–Kutta Method

Approximating

x(t + Δ t) = x(t)+ Δ t f (x(t),t)+
(Δ t)2

2!
d f
dt

(x(t),t)+
(Δ t)3

3!
d2 f
dt2 (x(t),t)+ · · ·

through the Δ t term requires no derivative computations for f (x(t),t). Hence, it is
just Euler’s method,

x(t + Δ t) ≈ x(t)+ f (x(t),t)Δ t.
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12.3.2 The Second-Order Runge–Kutta Method

The goal is to compute

x(t + Δ t) = x(t)+ Δ t f (x(t),t)+
(Δ t)2

2!
d f
dt

(x(t),t)+ · · ·

= x(t)+ Δ t f (x(t),t)+
(Δ t)2

2

(
∂ f
∂x

f +
∂ f
∂ t

)∣
∣
∣
∣
(x(t),t)

+ · · ·
(12.13)

through the (Δ t)2 term without computing the derivatives of f (x(t),t), but rather by
evaluating f (x(t),t) at different values of x(t) and t to approximate those derivatives.
With that in mind, consider the task of determining the values of c1, . . . ,c4 in the
following

x(t + Δ t) = x(t)+ c1 f (x(t),t)Δ t + c2 f
(

x(t)+ c3 f (x(t),t)Δ t,t + c4Δ t
)

Δ t (12.14)

that makes it exactly equal to Equation (12.13) up to the (Δ t)2 term. Careful scrutiny
of the second f term shows that this is the term where f (x(t),t) is evaluated at
different values for x(t) and t; namely, x(t)+ c3 f (x(t),t)Δ t for the x-value and t +
c4Δ t for the t-value.

Although it is understandable that by this point the reader may be inclined to quit
Taylor series for life, the way to determine the c3 and c4 constants is, obviously, to
expand f

(

x(t)+ c2 f (x(t),t)Δ t,t + c4Δ t
)

in a Taylor series (be careful to match the
parentheses correctly and identify what the two arguments to the function f are). In
particular,

f
(

x(t)+ c3 f (x(t),t)Δ t,t + c4Δ t
)

=

f (x(t),t)+
∂ f
∂x

∣
∣
∣
∣
(x(t),t)

[c3 f (x(t),t)Δ t]+
∂ f
∂ t

∣
∣
∣
∣
(x(t),t)

c4Δ t + · · · .

Substituting this into Equation (12.14) gives

x(t + Δ t) = x(t)+ c1 f (x(t),t)Δ t

+ c2

(

f (x(t),t)+
∂ f
∂x

∣
∣
∣
∣
(x(t),t)

(c3 f (x(t),t)Δ t)+
∂ f
∂ t

∣
∣
∣
∣
(x(t),t)

c4Δ t + · · ·
)

= x(t)+ (c1 + c2) f (x(t),t)Δ t

+

(

c2c3

(
∂ f
∂x

f

)∣
∣
∣
∣
(x(t),t)

+ c2c4
∂ f
∂ t

∣
∣
∣
∣
(x(t),t)

)

(Δ t)2 + · · · . (12.15)

Equating coefficients in Equations (12.13) and (12.15) gives

c1 + c2 = 1, c2c3 =
1
2
, c2c4 =

1
2
.
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Clearly, there are multiple solutions, but

c1 =
1
2
, c2 =

1
2
, c3 = 1, c4 = 1

is perhaps the most commonly used. Hence, substituting these values into Equa-
tion (12.14) gives

x(t + Δ t)≈ x(t)+
Δ t
2

[

f
(

x(t),t
)

+ f
(

x(t)+ f (x(t),t)Δ t,t + Δ t
)]

, (12.16)

which is known as either the improved Euler formula or second-order Runge–Kutta
formula. It is worth emphasizing the following.

• The method summarized in Equation (12.16) holds for any f (x,t) as long as the
steps in the derivation are not violated, which basically require differentiability
in both x and t.

• The main value is that the equation only involves f , and none of the derivatives
of f , so very generic programs may be written where the only change needed for
different problems is to change the line for f .

The following example illustrates a simple implementation of the method.

Example 12.6. Determine an approximate solution to

ẋ = 5x,

where x(0) = 1 for 0 < t ≤ 2 using the second-order Runge–Kutta method.
Because f (x(t),t) = 5x, then

f (x(t)+ f (x(t),t)Δ t,t + Δ t) = 5(x(t)+ f (x(t),t)Δ t) .

Hence, the second-order Runge–Kutta formula is

x(t + Δ t) = x(t)+
Δ t
2

[5(x(t))+ 5(x(t)+ f (x(t),t)Δ t)]

= x(t)+
Δ t
2

[5(x(t))+ 5(x(t)+ 5x(t)Δ t)] .

= x(t)+ 5x(t)Δ t +
25
2

x(t)(Δ t)2 ,

which happens to be identical to Equation (12.7). Hence, any computer program
that computes an approximate solution will be the same as for Example 12.3. A
program listing in the C programming language for this problem appears in Ap-
pendix E.1.0.8. A program listing in FORTRAN for this problem appears in Ap-
pendix E.2.0.23.

Because of the rather complicated form of f (x(t)+ f (x(t),t)Δ t,t +Δ t), a slightly
more complicated example is in order.
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Example 12.7. Determine an approximate solution to

ẋ = −x3 + sin(tx),

where x(0) = 1 using the second-order Runge–Kutta formula (the improved Euler
formula). This is the initial value problem from Example 12.4. Inasmuch as

f (x,t) = −x3 + sin(tx)

substituting x(t)+ f (x(t),t)Δ t for x and t + Δ t for t gives

f
(

x(t)+ f (x(t),t)Δ t,t + Δ t
)

= −(x(t)+ f (x(t),t)Δ t
)3

+ sin
(

(t + Δ t)(x(t)+ f (x(t),t)Δ t)
)

(verify this yourself; it is critical!). Hence, substituting for f (x(t),t) and f (x(t)+
f (x(t),t)Δ t,x + Δ t) into Equation (12.16) gives

x(t + Δ t)≈ x(t)+
Δ t
2

[(

x3(t)+ sin(tx(t))
)

+
(

(x(t)+ f (x(t),t)Δ t)3 + sin((t + Δ t)(x(t)+ f (x(t),t)Δ t))
)]

.

Figure 12.6 illustrates the approximate solution for the cases where Δ t = 0.2 and
Δ t = 0.4. A program listing in the C programming language for this problem ap-
pears in Appendix E.1.0.8. A program listing in FORTRAN for this problem appears
in Appendix E.2.0.23.

12.3.2.1 Comparison of Second-Order Runge–Kutta and Taylor Series
Methods

As is clear by comparing the formulae in Examples 12.4 and 12.7, the second-order
Taylor series method and the second-order Runge–Kutta method do not result in
exactly the same approximate solution. However, both methods are accurate to the
same order. Figure 12.6 illustrates an accurate solution (generated with a very small
time step) and solutions from the two second-order approximate methods for two
different time steps. Clearly, the two approximate solutions are not identical; how-
ever, they both demonstrated second-order accuracy.

12.3.2.2 Interpretation of the Second-Order Runge–Kutta Formula

Although the next two subsequent sections present the results of exactly this same
approach carried out to third and fourth order, respectively, this approach yields a
rather easy interpretation beyond the fact that it is the result of the above mathemat-
ical manipulations.
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Fig. 12.6 A comparison of the solutions from different second-order methods from Examples 12.4
and 12.7. The second-order Taylor series and second-order Runge–Kutta do not give the same
approximate solutions; however, both methods have the same order of accuracy.

One way to think of the second-order Runge–Kutta formula is that it is simply
Euler’s method using the average of the slopes of x(t) at the two endpoints of the
time interval, that is, the average of the slope at x(t) and the slope at x(t + Δ t).
Mathematically, this formula would be

x(t + Δ t) = x(t)+
1
2

[ f (x(t),t)+ f (x(t + Δ t),t + Δ t)]Δ t.

However, the term x(t + Δ t) appears on both sides of the equation and is exactly
the term that is unknown. Also, unless the function f (x(t),t) is of a very special
form, it will generally be impossible to solve this equation for x(t + Δ t). The idea
is to replace the x(t +Δ t) term that is on the right-hand side of the equation with an
approximation for it, particularly, simply using Euler’s formula for it on the right-
hand side. Hence,

x(t + Δ t) = x(t)+
1
2

[

f
(

x(t),t)+ f (x(t)+ f (x(t),t)Δ t),t + Δ t
)]

Δ t.

Initially, this approach may intuitively be no better than Euler’s method because
Euler’s method was used on the right-hand side of the equation. However, inasmuch
as it was used in a term already multiplied by Δ t, the overall order of that term will
be (Δ t)2 and hence an order better in accuracy.

This is conceptually illustrated in Figure 12.7 which illustrates the same function,
x(t) that was illustrated in Figures 12.4 and 12.5, but plotted over a much shorter
time interval. In this figure, t = 1.5, Δ t = 0.5, and t + Δ t = 2.0. The slope of x(t)
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Fig. 12.7 Interpretation of the improved Euler method. It uses the average of the slopes at the
values at the beginning of the time step and at the end of the time step, but with an x(t +Δt) value
computed using a first-order approximation.

is known and is f (x(t),t). The value of x(t + Δ t) is not known, and hence f (x(t +
Δ t),t + Δ t) cannot be directly computed. However, if Δ t is small, then x(t + Δ t) ≈
x(t)+ f (x(t),t)Δ t and also then

f (x(t + Δ t),t + Δ t) ≈ f (x(t)+ f (x(t),t)Δ t,t + Δ t),

which is illustrated graphically in Figure 12.7.

12.3.3 The Third-Order Runge–Kutta Method

The third-order Runge–Kutta method (as well as the fourth-order method in the
following subsection) is derived in exactly the same manner as the second-order
Runge–Kutta method, except to third and fourth orders, respectively. Hence the goal
is to compute Equation (12.12) through the (Δ t)3 term without explicitly computing
the derivatives of f (x(t),t) but rather approximating those derivatives to third order
by evaluating f (x(t),t) at different x and t values. In particular, equating
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x(t + Δ t) = x(t)+ f (x(t),t)Δ t +
1
2

(
∂ f
∂x

f +
∂ f
∂ t

)∣
∣
∣
∣
(x(t),t)

(Δ t)2

+
1
6

[(
∂ 2 f
∂x2 f +

∂ 2 f
∂x∂ t

)

f +
∂ f
∂x

(
∂ f
∂x

f +
∂ f
∂ t

)

+
∂ 2 f
∂x∂ t

f +
∂ 2 f
∂ t2

]∣
∣
∣
∣
(x(t),t)

(Δ t)3 + · · ·

and

x(t + Δ t) = x(t)+ [c1 f + c2 f (x + c3 f Δ t,t + c4Δ t)
+ c5 f (x + c6 f Δ t + c7 f (x + c8 f Δ t,t + c9Δ t)Δ t,t + c10Δ t)]Δ t

(if no arguments to f are specified, it is evaluated at (x(t),t)) to third order gives

c1 =
1
6
, c2 =

2
3
, c3 =

1
2
, c4 =

1
2
, c5 =

1
6
,

c6 = −1, c7 = 2, c8 =
1
2
, c9 =

1
2
, c10 = 1.

See [26] for more details and a general derivation for the Runge–Kutta methods for
various orders.

A more standard expression of this solution is

x(t + Δ t) = x(t)+
1
6

(v1 + 4v2 + v3) , (12.17)

where
v1 = f (x(t),t)Δ t

v2 = f

(

x(t)+
1
2

v1,t +
1
2

Δ t

)

Δ t

v3 = f
(

x(t)+ 2v2 − v1,t + Δ t
)

Δ t.

(12.18)

Example 12.8. Determine an approximate solution to

ẋ = −x3 + sin(tx)

where x(0) = 1 using the third-order Runge–Kutta method.
This is simply a matter of substituting into Equations (12.17) and (12.18) as

follows,

x(t + Δ t) = x(t)+
1
6

(v1 + 4v2 + v3) ,

where
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v1 =
(

−(x(t))3 + sin(tx(t))
)

Δ t

v2 =

(

−
(

x(t)+
1
2

v1

)3

+ sin

((

t +
1
2

Δ t

)(

x(t)+
1
2

v1

)))

Δ t

v3 =
(

−(x(t)+ 2v2− v1)
3 + sin((t + Δ t)(x(t)+ 2v2 − v1))

)

Δ t.
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Fig. 12.8 Accurate and approximate solutions for Example 12.8. The third-order Runge–Kutta has
a local truncation error proportional to (Δt)4 and an overall error proportional to (Δt)3.

An accurate solution determined with a very small time step as well as approx-
imate solutions for Δ t = 0.5 and Δ t = 0.25 are illustrated in Figure 12.8. Note the
substantial increase in accuracy when the time step is cut by a factor of two. A
program listing in the C programming language for this problem appears in Ap-
pendix E.1.0.10. A program listing in FORTRAN for this problem appears in Ap-
pendix E.2.0.25.

12.3.4 The Fourth-Order Runge–Kutta Method

Again, the idea is exactly the same as the previous Runge–Kutta derivations. The
famous fourth-order Runge–Kutta formula is

x(t + Δ t) = x(t)+
1
6

(k1 + 2k2 + 2k3 + k4) , (12.19)
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where
k1 = f (x(t),t)Δ t

k2 = f

(

x(t)+
1
2

k1,t +
1
2

Δ t

)

Δ t

k3 = f

(

x(t)+
1
2

k2,t +
1
2

Δ t

)

Δ t

k4 = f (x(t)+ k3,t + Δ t)Δ t.

(12.20)

Example 12.9. Determine an approximate solution to

ẋ = −x3 + sin(tx) ,

where x(0) = 1 using the fourth-order Runge–Kutta method.
This is simply a matter of substituting into Equations (12.19) and (12.20) as

follows,

x(t + Δ t) = x(t)+
1
6

(k1 + 2k2 + 2k3 + k4) ,

where

k1 =
(

−(x(t))3 + sin(tx(t))
)

Δ t

k2 =

(

−
(

x(t)+
1
2

k1

)3

+ sin

((

t +
1
2

Δ t

)(

x(t)+
1
2

k1

)))

Δ t

k3 =

(

−
(

x(t)+
1
2

k2

)3

+ sin

((

t +
1
2

Δ t

)(

x(t)+
1
2

k2

)))

Δ t

k4 =
(

−(x(t)+ k3)
3 + sin((t + Δ t)(x(t)+ k3))

)

Δ t.

An accurate solution determined with a very small time step as well as approx-
imate solutions for Δ t = 0.5 and Δ t = 0.25 is illustrated in Figure 12.9. Note the
substantial increase in accuracy when the time step is cut by a factor of two and
the generally better accuracy than the lower-order methods for the same time steps.
A program listing in the C programming language for this problem appears in Ap-
pendix E.1.0.11. A program listing in FORTRAN for this problem appears in Ap-
pendix E.2.0.26.

12.4 Error Analysis

In each of the methods we have considered, we have explicitly accounted for a
certain number of terms in the Taylor series expansion

x(t + Δ t) = x(t)+ Δ t f (x(t),t)+
(Δ t)2

2!
d f
dt

(x(t),t)+
(Δ t)3

3!
d2 f
dt2 (x(t),t)+ · · · .
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Fig. 12.9 Accurate and approximate solutions for Example 12.9. The fourth-order Runge–Kutta
has a local truncation error proportional to (Δt)5 and an overall error proportional to (Δt)4.

The local truncation error is the error introduced at each time step that arises because
only a finite number of terms in the Taylor series expansion are used, and we have
dealt with that in a relatively intuitive manner so far. This section considers the issue
of convergence of the numerical solution to the actual solution and considers two
types of errors: the truncation error already considered as well as roundoff error.
The latter is due to the fact that only a finite number of bits are used in a computer
to represent a number, and whenever a computer makes a computation, error is
introduced because of this fact. The analysis focuses on Euler’s method, but the
fundamental result, which is that there is a trade-off between truncation and roundoff
error, holds generally.

Up to this point, x(t) has been used to denote both the actual solution as well
as for a representation of a numerical solution. In order to determine the error, we
have to distinguish the two. In particular, for ẋ = f (x,t), where an initial condition
is specified at t0, let x(t) denote the actual solution and xn(t) denote the approximate
solution2 determined numerically.

At time t + Δ t, the actual solution is given by

x(t + Δ t) = x(t)+ f (x(t),t)Δ t +
(Δ t)2

2
d f
dt

∣
∣
∣
∣
t̂
,

2 In actuality, xn(t) is an abuse of notation because the numerical solution is only defined at a
sequence of times; however, inasmuch as we only use it at the times at which it is defined, this is
used to make it convenient to compare with the real solution.
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where, by Taylor’s theorem, t ≤ t̂ ≤ t + Δ t. Note that this expression is exact, not
truncated, but it can not be practically evaluated because the value for t̂ is not known
other than it belongs to the specified interval. For Euler’s method, the numerical
approximation is given by

xn (t + Δ t) = xn (t)+ Δ t f (xn(t),t)+ ρ ,

where ρ is the total roundoff error due to evaluating the expression.
Hence, an expression for the error at time t + Δ t is given by the difference be-

tween these two equations

err (t + Δ t) = x(t + Δ t)− xn (t + Δ t)

=

[

x(t)+ Δ t f (x(t),t)+
(Δ t)2

2
d f
dt

∣
∣
∣
∣
t̂

]

− [xn (t)+ Δ t f (xn(t),t)+ ρ ]

= [x(t)− xn(t)]+ Δ t [ f (x(t),t)− f (xn(t),t)]+
(Δ t)2

2
d f
dt

∣
∣
∣
∣
t̂
−ρ

= err(t)+ Δ t [ f (x(t),t)− f (xn(t),t)]+
(Δ t)2

2
d f
dt

∣
∣
∣
∣
t̂
−ρ .

By the mean value theorem, the second term in the last line can be written as

f (x(t),t)− f (xn(t),t) =
∂ f
∂x

∣
∣
∣
∣
x̂
(x(t)− xn(t)) ,

where x̂ is a value between x(t) and xn(t). Hence,

x(t + Δ t) = err(t)+ err(t)Δ t
∂ f
∂x

∣
∣
∣
∣
x̂
+

(Δ t)2

2
d f
dt

∣
∣
∣
∣
t̂
−ρ

=
(

1 +
∂ f
∂x

∣
∣
∣
∣
x̂
Δ t

)

err(t)+
(Δ t)2

2
d f
dt

∣
∣
∣
∣
t̂
−ρ .

Where this is headed is next to replace err(t) on the right-hand side with
err (t −Δ t) and recursively work back to t0. However, each time this is done the
points x̂ and t̂ will belong to different ranges. Hence, define the region S = (x,t) to
be the domain of x and t in which we are interested in knowing whether the numer-
ical solution converges to the actual solution. Then define M1 and M2 to be bounds
on the terms in the expression for err (t + Δ t); that is,

M1 ≥
∣
∣
∣
∣

∂ f
∂x

(x(t),t)
∣
∣
∣
∣
, (x,t) ∈ S

M2 ≥
∣
∣
∣
∣

∂ f
∂ t

(x(t),t)
∣
∣
∣
∣
, (x,t) ∈ S.
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Because these are bounds on these terms, our error expression becomes an inequality
of the form

|err (t + Δ t)| ≤ (1 + M1Δ t) |err(t)|+ 1
2

M2 (Δ t)2 + |ρ | . (12.21)

Replacing t with t −Δ t in the above expression gives

|err (t)| ≤ (1 + M1Δ t) |err (t −Δ t)|+ 1
2

M2 (Δ t)2 + |ρ | , (12.22)

and substituting this into the err(t) term in Equation (12.21) and rearranging gives

|err (t + Δ t)| ≤ (1 + M1Δ t)2 |err (t −Δ t)|+[1 +(1 + M1Δ t)]
(

1
2

M2 (Δ t)2 + |ρ |
)

.

Determining an expression for err (t −2Δ t) similar to the process for Equation (12.22)
and substituting into this equation gives

|err (t + Δ t)| ≤ (1 + M1Δ t)3 |err (t −Δ t)|

+
[

1 +(1 + M1Δ t)+ (t + M1Δ t)2
](1

2
M2 (Δ t)2 + |ρ |

)

.

Let n be such that t − t0 = (n−1)Δ t. Then

|err (t + Δ t)| ≤ (1 + M1Δ t)n |err (t0)|

+
[

1 +(1 + M1Δ t)+ · · ·+(t + M1Δ t)n−1
](1

2
M2 (Δ t)2 + |ρ |

)

.

Inasmuch as

[

1 +(1 + M1Δ t)+ · · ·+(1 + M1Δ t)n−1
] 1− (1 + M1Δ t)

1− (1 + M1Δ t)
=

(1 + M1Δ t)n −1
M1Δ t

then

|err (t + Δ t)| ≤ (1 + M1Δ t)n |err (t0)|

+
(1 + M1Δ t)n −1

M1Δ t

(
1
2

M2 (Δ t)2 + |ρ |
)

≤ (1 + M1Δ t)n |err (t0)|+[(1 + M1Δ t)n −1]
(

M2

2M1
Δ t +

|ρ |
M1Δ t

)

≤ (1 + M1Δ t)n
(

|err (t0)|+ M2

2M1
Δ t +

|ρ |
M1Δ t

)

.

Finally,

eM1Δ t = 1 +(M1Δ t)+
∞

∑
i=2

(M1Δ t)i

i!
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and because M1Δ t is positive every term in the summation is positive, and hence

eM1Δ t ≥ 1 + M1Δ t =⇒ enM1Δ t ≥ (1 + M1Δ t)n .

Using this, the definition of n, and assuming |err (t0)| = 0, finally gives

|err (t + Δ t)| ≤ eM1(t+Δ t−t0)
(

M2

2M1
Δ t +

|ρ |
M1Δ t

)

. (12.23)

The error bound given by Equation (12.23) has three terms. The exponential term
represents the fact that as time increases, the bound on the error grows exponentially.
This exponential term also depends on f (x,t) because the term M1 appears in the
exponent. The first term it multiplies depends on f (x,t) as represented by M1 and
M2 and is proportional to Δ t. As the time step in increased, the contribution of this
term to the error bound increases, which represents the fact that the truncation error
at each step will be greater if the time step increases. The second term is due to the
roundoff error and is inversely proportional to Δ t. If the time step is decreased, then
more steps are required to reach a given time, which accumulates more roundoff
error. Figure 12.10 illustrates the qualitative relationship among the truncation error,
the roundoff error, and the sum of them. An example which shows that the error
does, in fact, increase if the step size is too small appears in the exercises.

er
ro

r

Δt

truncation error
roundoff error

sum

Fig. 12.10 Truncation error, roundoff error, and the sum of them as a function of the time step for
Euler’s method.
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The analysis presented for Euler’s method extends to higher-order methods as
well. The results are listed in Table 12.5 for the different methods considered in this
book.

Method Local Truncation Error Overall Error
Euler O (Δt)2 O (Δt)
First-order Taylor Series
First-order Runge–Kutta
Second-order Taylor Series O (Δt)3 O (Δt)2

Second-order Runge–Kutta O (Δt)3 O (Δt)2

Improved Euler
Third-order Taylor Series O (Δt)4 O (Δt)3

Third-order Runge–Kutta O (Δt)4 O (Δt)3

Fourth-order Runge–Kutta O (Δt)5 O (Δt)4

Table 12.5 Local truncation error and overall error for various numerical method schemes for
Δt � 1. Equivalent methods are listed in the same row

It is worth emphasizing that the analysis presented is true in general, but that does
not preclude the existence of somewhat pathological cases that seemingly defy the
rules, such as the following example.

Example 12.10. Consider

ẋ + 3x = 15(cos3t + sin3t)

with x(0) = 0. It is straightforward to verify that

x(t) = 5sin3t

is the solution to this initial value problem. The first three steps of the output of the
algorithm for the case where Δ t = 0.25 are presented in Table 12.6 and the first three
time steps when Δ t = 0.125 are presented in Table 12.6. Comparing the error after
the first time step in each case, because the error has been reduced by approximately
a factor of eight, it is tempting to conclude that the method used must be a second-
order method, that is, the improved Euler method, second-order Runge–Kutta or
a second-order Taylor series method. However, Figure 12.11 is a plot of the two
approximate solutions and the exact solution for the time interval 0 < t ≤ 1. Note
that the overall error has been reduced by a factor of two, rather than a factor of four
as would be expected by a second-order method.

This apparent contradiction is resolved by studying the exact solution. Because

x(t) = 5sin3t

the Taylor series for x(t) is
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t x(t) 5sin3t 5sin3t − x(t)
0.000000 0.000000 0.000000 0.000000
0.250000 3.750000 3.408194 −0.341806
0.500000 6.237479 4.987475 −1.250004

Table 12.6 The first three time steps for Example 12.10 with Δt = 0.25

t x(t) 5sin3t 5sin3t − x(t)
0.000000 0.000000 0.000000 0.000000
0.125000 1.875000 1.831363 −0.043637
0.250000 3.603338 3.408194 −0.195144

Table 12.7 The first three time steps for Example 12.10 with Δt = 0.125
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Fig. 12.11 Exact and approximate solutions for Example 12.10 exhibiting an overall error propor-
tional to Δt .

x(t + Δ t) = x(t)+ Δ t
dx
dt

∣
∣
∣
∣
t
+

(Δ t)2

2
d2x
dt2

∣
∣
∣
∣
t
+ · · ·

= 5sin3t + 15cos3t (Δ t)− 45
2

sin 3t (Δ t)2 + · · · .

Every other term contains sin3t, at t = 0, thus every other term is zero. Thus when
comparing the local truncation error by examining the error after the first time step,
a first-order method will look like a second-order method due to the fact that the
coefficient of the (Δ t)2 term in the Taylor series is zero. Similarly, a third-order
method will look like a fourth-order one, and so on. After the first time step, how-
ever, the relevant coefficients are nonzero, and hence the overall error behaves as
expected. A program listing in the C programming language for this problem imple-
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menting Euler, second-order Runge–Kutta, a second-order Taylor series expansion,
and fourth-order Runge–Kutta appears in Appendix E.1.0.12.

12.5 Numerical Methods for Higher-Order Systems

All the examples so far have been for first-order ordinary differential equations.
This section presents the relatively easy extension to systems of first-order equations
and higher-order ordinary differential equations and highlights the one subtlety with
respect to computer implementation of the algorithms.

12.5.1 Systems of First-Order Ordinary Differential Equations

As a matter of notation, the extension of each of the numerical methods presented in
Sections 12.1 through 12.3 to systems of differential equations is simply a matter of
converting the equations to vector notation. As a matter of substance, it is a matter of
considering multivariable Taylor series expansions. This section presents the details
of Euler’s method for systems of equations and then present the results for the other
methods because providing the details would be rather cumbersome with little added
pedagogical insight.

12.5.2 Higher-Order Ordinary Differential Equations

Consider the system of first-order differential equations

ẋ1 = f1(x1(t),x2(t), . . . ,xn(t),t)
ẋ2 = f2(x1(t),x2(t), . . . ,xn(t),t)

... =
...

ẋn = f1(x1(t),x2(t), . . . ,xn(t),t).

(12.24)

Expanding each of the xi in a Taylor series gives
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x1(t + Δ t) = x1(t)+ Δ t
dx1

dt
(t)+

(Δ t)2

2
d2x1

dt2 (t)+ · · ·

x2(t + Δ t) = x2(t)+ Δ t
dx2

dt
(t)+

(Δ t)2

2
d2x2

dt2 (t)+ · · ·
... =

...

xn(t + Δ t) = xn(t)+ Δ t
dxn

dt
(t)+

(Δ t)2

2
d2xn

dt2 (t)+ · · · ,

or expressing the derivatives in terms of the functions fi gives

x1(t + Δ t) = x1(t)+ Δ t f1
(

x1(t),x2(t), . . . ,xn(t),t
)

+
(Δ t)2

2
d f1

dt
(t)+ · · ·

x2(t + Δ t) = x2(t)+ Δ t f2
(

x1(t),x2(t), . . . ,xn(t),t
)

+
(Δ t)2

2
d f2

dt
(t)+ · · ·

... =
...

xn(t + Δ t) = xn(t)+ Δ t fn
(

x1(t),x2(t), . . . ,xn(t),t
)

+
(Δ t)2

2
d fn

dt
(t)+ · · · .

12.5.3 Euler’s Method

Euler’s method for a single first-order equation was based upon keeping the terms
in the Taylor series of x(t) up through the Δ t term, and the same is easily done in
the case of a system of equations. In particular, Euler’s method is

x1(t + Δ t) = x1(t)+ Δ t f1
(

x1(t),x2(t), . . . ,xn(t),t
)

x2(t + Δ t) = x2(t)+ Δ t f2
(

x1(t),x2(t), . . . ,xn(t),t
)

... =
...

xn(t + Δ t) = xn(t)+ Δ t fn
(

x1(t),x2(t), . . . ,xn(t),t
)

.

(12.25)

Rewriting all of this in vector notation simplifies the expressions and furthermore
makes the relationship between the methods for systems of equations and for a
single first-order equation transparent. Let

x(t) =

⎡

⎢
⎢
⎢
⎣

x1(t)
x2(t)

...
xn(t)

⎤

⎥
⎥
⎥
⎦

(12.26)

and
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f(x1(t),x2(t), . . . ,xn(t),t) =

⎡

⎢
⎢
⎢
⎣

f1
(

x1(t),x2(t), . . . ,xn(t),t
)

f2
(

x1(t),x2(t), . . . ,xn(t),t
)

...
fn
(

x1(t),x2(t), . . . ,xn(t),t
)

⎤

⎥
⎥
⎥
⎦

or substituting the vector notation for x(t) from Equation (12.26)

f(x(t),t) =

⎡

⎢
⎢
⎢
⎣

f1(x(t),t)
f2(x(t),t)

...
fn(x(t),t)

⎤

⎥
⎥
⎥
⎦

.

Then the original system of equations expressed in Equation (12.24) becomes

ẋ = f(x(t),t),

which looks remarkably like Equation (12.1) with a few of the terms in bold face
font. Furthermore, expressing Equation (12.25) in this notation reduces the expres-
sion to

x(t + Δ t) = x(t)+ f(x(t),t)Δ t, (12.27)

which, again, is exactly the same as the equation for Euler’s method for a single
first-order equation with the vector terms in boldface.

Example 12.11. Determine an approximate numerical solution to

ẋ = y

ẏ = (1− x2)y− x,

where x(0) = 0.02 and y(0) = 0.0 using Euler’s method. Substituting into Equa-
tion (12.27) gives the system of equations

x(t + Δ t) = x(t)+ y(t)Δ t

y(t + Δ t) = y(t)+
((

1− (x(t))2
)

y(t)− x(t)
)

Δ t.

Figure 12.12 illustrates both components of the solution for 0 < t < 20. A
program listing in the C programming language for this problem appears in Ap-
pendix E.1.0.13. A program listing in FORTRAN for this problem appears in Ap-
pendix E.2.0.27.

Observe that the right-hand side of Equation (12.27) is evaluated at time t. It is
very easy to write a computer program that does not quite do that, as the following
example illustrates.

Example 12.12. Consider the system from Example 12.11 and the following lines
of code:
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Fig. 12.12 Numerical solutions for the system of equations in Example 12.11 using Euler’s
method.

x = x + y*dt;
y = y + ((1.0 - x*x)*y - x)*dt;

This seemingly incorrectly implements Euler’s method because the value for x,
which appears on the right-hand side of the second y equation has already been
changed from x(t) to x(t + Δ t) by the first line.

Although this approach deviates from the exact expression for Euler’s method
(and does indeed result in a different approximate solution because the second equa-
tion uses the x(t + Δ t) values instead of x(t)), it is inconsequential with respect to
the accuracy of the method. To see this consider the second equation using the “in-
correct” method:

y(t) = y(t)+ ((1− x(t + Δ t)x(t + Δ t))y(t)− x(t + Δ t))Δ t

= y(t)+ [(1− (x(t)+ f (x,y,t)Δ t)(x(t)+ f (x,y,t)Δ t))y(t)
− (x(t)+ f (x,y,t)Δ t)]Δ t

= y(t)+ [(1− x(t)x(t))y(t)− x(t)]Δ t +O
(

(Δ t)2
)

,

where the notation O
(

(Δ t)2
)

means a collection of terms that multiply (Δ t)2.

The bottom line is that although this approach modifies the second equation and
adds some extra terms to the expression for y(t + Δ t), these added terms are of a
higher order than the accuracy of the method, and hence do not affect the order of
accuracy of the approach. As shown subsequently, more care must be taken when
using higher-order methods.
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12.5.4 Second-Order Taylor Series

Extending Equation (12.25) to the (Δ t)2 term gives

x1(t + Δ t) = x1(t)+ Δ t f1
(

x1(t),x2(t), . . . ,xn(t),t
)

+
(Δ t)2

2
d f1

dt
(t)

x2(t + Δ t) = x2(t)+ Δ t f2
(

x1(t),x2(t), . . . ,xn(t),t
)

+
(Δ t)2

2
d f2

dt
(t)

... =
...

xn(t + Δ t) = xn(t)+ Δ t fn
(

x1(t),x2(t), . . . ,xn(t),t
)

Δ t +
(Δ t)2

2
d fn

dt
(t).

(12.28)

Each component of f possibly depends on each xi as well as t, and each of the xi

depends on t, therefore we have

d fi

dt
=

∂ fi

∂x1
f1 +

∂ fi

∂x2
f2 + · · ·+ ∂ fi

∂xn
fn +

∂ fi

∂ t
.

Expanding each derivative term in Equation (12.28) would be cumbersome, so
to use a more compact notation, recall the definition of the Jacobian

∂ f
∂x

=

⎡

⎢
⎢
⎢
⎢
⎣

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
. . .

...
∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

⎤

⎥
⎥
⎥
⎥
⎦

.

Using this, the Taylor series to second-order may be written in vector form as

x(t + Δ t) = x(t)+ f(x,t)Δ t +
(Δ t)2

2

(
∂ f
∂x

f+
∂ f
∂ t

)

. (12.29)

Obviously, computing all the n2 partial derivatives would be a hassle. There is not
much point to doing so because the same accuracy may be obtained by using the
Runge–Kutta methods, as outlined subsequently.

12.5.5 Fourth-Order Runge–Kutta

Rather than provide the details for every method, this section skips right to the
fourth-order Runge–Kutta method. From it, the generalizations necessary to imple-
ment the other methods for systems of equations should be obvious. Similar to the
manner in which Euler’s method generalized to the case of a system of equations,
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fourth-order Runge–Kutta may be expressed as the following. For

ẋ = f(x(t),t)

let

x(t + Δ t) = x(t)+
1
6

(k1 + 2k2 + 2k3 + k4) , (12.30)

where
k1 = f(x(t),t)Δ t

k2 = f
(

x(t)+
1
2

k1,t +
1
2

Δ t

)

Δ t

k3 = f
(

x(t)+
1
2

k2,t +
1
2

Δ t

)

Δ t

k4 = f(x(t)+ k3,t + Δ t)Δ t.

(12.31)

Note that k1 through k4 are vector quantities because f(x(t),t) is a vector.

Example 12.13. Determine an approximate solution to

ẋ = y

ẏ = (1− x2)y− xsin t,

where x(0) = 0.02 and y(0) = 0.0 using the fourth-order Runge–Kutta method.
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Fig. 12.13 Approximate numerical solutions for the system of equations from Example 12.13
using the fourth-order Runge–Kutta method.
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Let

x(t) =
[

x(t)
y(t)

]

=
[

x1(t)
x2(t)

]

and

f(x(t),t) =

[

x2(t)(

1− (x1(t))
2
)

x2(t)− x1(t)sin t

]

.

Then

k1 =
[

k11

k21

]

=

[

x2(

1− (x1)
2
)

x2 − x1 sin t

]

Δ t

k2 =
[

k12

k22

]

=

[

x2 + 1
2 k21(

1− (x1 + 1
2 k11

)2
)(

x2 + 1
2 k21

)− (x1 + 1
2 k11

)

sin
(

t + 1
2 Δ t

)

]

Δ t

k3 =
[

k13

k23

]

=

[

x2 + 1
2 k22(

1− (x1 + 1
2 k12

)2
)(

x2 + 1
2 k22

)− (x1 + 1
2 k12

)

sin
(

t + 1
2 Δ t

)

]

Δ t

k4 =
[

k14

k24

]

=

[

x2 + k23(

1− (x1 + k13)
2
)

(x2 + k23)− (x1 + k13) sin(t + Δ t)

]

Δ t,

where all of the xi terms are evaluated at t. Then finally

x(t + Δ t) = x(t)+
1
6

(k1 + 2k2 + 2k3 + k4) .

A program listing in the C programming language for this problem appears in
Appendix E.1.0.14. A program listing in FORTRAN for this problem appears in
Appendix E.2.0.28.

Note that when writing a program for the system in Example 12.13, it may be
tempting to compute all the k values for the x term first, followed by all the k val-
ues for the y term. However, note that inasmuch as the equations are coupled, the
k12 term (the “second” x term), for example, depends upon k21 (the “first” y term).
Hence, it is necessary to compute all the components of the vector k1 first, followed
by all the components of k2, and so on. This error is difficult to catch because the
solution typically will converge, just not at the appropriate order. The following
example illustrates this fact.

Example 12.14. Compute an approximate numerical solution for
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ẋ = y

ẏ = −x,

where x(0) = 0 and y(0) = 1 using the fourth-order Runge–Kutta method. Com-
pare the approximate solution when the terms in the algorithm are computed in the
correct and incorrect order.
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Fig. 12.14 Comparison of approximate solutions from Example 12.14 when making a common er-
ror in implementing the fourth-order Runge–Kutta algorithm for systems of first-order differential
equations.

Using the notation from Example 12.13, the correct order of computation for the
k values is

k11,k21,k12,k22,k13,k23,k14,k24.

By comparison, the incorrect, but tempting, order is

k11,k12,k13,k14,k21,k22,k23,k24.

Figure 12.14 illustrates an accurate solution and compares the approximate solutions
for x(t) for both cases when Δ t = 0.4. Clearly, the correct approach produces a much
more accurate approximate solution.

12.6 Numerical Methods for Partial Differential Equations

This section considers the so-called finite difference method for partial differential
equations. The main idea is (similar to the manner in which time was discretized for
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determining a numerical approximation to the time derivative for ordinary differen-
tial equations) that the spatial dimension(s) must be similarly discretized for partial
differential equations with an independent variable corresponding to the spatial di-
rection. Doing so results in a system of coupled ordinary differential equations. It
would be tempting to think that it would then be a simple matter to use the methods
covered previously in this chapter to solve the resulting system of ordinary differen-
tial equations, but unfortunately, doing so is not always so simple.

The subject of numerical methods for partial differential equations is an advanced
one, with many approaches to solve such problems. The finite difference method is
only one of many methods, and even within the domain of finite differences the
subject of this section only considers explicit methods for parabolic and hyperbolic
equations. The main lesson to take away from this section is the relative simplicity
of the finite difference method and its implementation.

The reader is cautioned that the methods presented work for the equations consid-
ered in this text, Laplace’s equation, the one-dimensional heat conduction equation,
and the one-dimensional wave equation, but that the subject has many subtleties
and extending these approaches to higher dimensions or other equations requires
caution. In particular, numerical instabilities, which can arise from the coupling be-
tween the spatial and time grid dimensions, is an issue that must be addressed. An
interested reader is referred to [14] as starting points to the literature on this subject,
and to [26, 29, 45] for more advanced treatments.

12.6.1 Finite Difference Approximation

Consider, for example, the function u(x,t) that describes the solution to the wave
equation

α2 ∂ 2u
∂x2 =

∂ 2u
∂ t2 . (12.32)

Consider the fixed x values, mΔx where m = 0,1,2, . . . ,M (so L = MΔx) and Δx �
1. In a manner analogous to the situation for ordinary differential equations where an
approximate solution is determined only at a finite number of discrete times, x(nΔ t),
for a partial differential equation with one spatial dimension and one time dimension
the approximate solution is determined at a set of discrete points in space and in
time, that is, u(mΔx,nΔ t) .3 To clarify the presentation, u(m,n) is written instead of
u(mΔx,nΔ t). This is illustrated in Figure 12.15 for the string equation. The purpose
of the finite difference method is to approximate the second-order spatial derivative
on the left-hand side of Equation (12.32) with values of u(x,t) at other fixed values
of x.

3 Writing u(mΔx,nΔt) is actually an abuse of notation because it may imply that u is a function
of x and t and the numerical approximation is only defined at discrete points in time. However
this is adopted for purposes of clarity over rigor because using a more standard notation such as
un

m, although technically more correct, may be confusing for those learning the subject for the first
time.
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(

(m+1)Δx,nΔt
)

u
(

(m−1)Δx,nΔt
)

u
(

(m)Δx,nΔt
)

Fig. 12.15 Vibrating string.

In particular, consider approximating the first partial derivative with respect to x
at x = mΔx. This is simple enough using the definition of the derivative

∂u
∂x

(mΔx,t) ≈ u(mΔx,t)−u
(

(m−1)Δx,t
)

Δx

if Δx � 1. Now, because the second derivative is the derivative of the derivative,
then

∂ 2u(mΔx,t)
∂x2 ≈

∂u
(

(m+1)Δx,t
)

∂x − ∂u(mΔx,t)
∂x

Δx

≈

(
u
(

(m+1)Δx,t
)

−u(mΔx,t)
Δx

)

−
(

u(mΔx,t)−u
(

(n−1)Δx,t
)

Δx

)

Δx

=
u
(

(m+ 1)Δx,t
)−2u(mΔx,t)+ u

(

(m−1)Δx,t
)

(Δx)2 .

Finally, substituting this approximation back into Equation (12.32), using the
same finite difference for the second-order time derivative, and dropping the explicit
dependence on Δx and Δ t terms u gives

α2 u(m+ 1,n)−2u(m,n)+ u(m−1,n)

(Δx)2 =
u(m,n + 1)−2u(m,n)+ u(m,n−1)

(Δ t)2 .

(12.33)
The boundary conditions are expressed as fixed values at u(0,t) and u(MΔx,t). The
initial conditions, which need a little more consideration are incorporated into the
method as specified values for u(m,0) and u̇(m,0) for all m ∈ {1, . . . ,M}.

The following sections implement the finite difference method on all three
classes of linear partial differential equations: namely, Laplace’s equation (elliptic),
the one-dimensional heat conduction equation (parabolic), and the one-dimensional
wave equation (hyperbolic).
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12.6.2 Finite Differences: Laplace’s Equation

Consider Laplace’s equation in a rectangular domain, x ∈ [0,a], y ∈ [0,b]

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0

with boundary conditions

u(0,y) = f1(y), u(a,y) = f2(y), u(x,0) = g1(x), u(x,b) = g2(x).

In Section 11.4.1 separation of variables was used to solve this equation where three
of the four boundary conditions were zero. First we implement the finite difference
method to solve this equation and compare it to the solutions obtained previously
in Section 11.4.1. Of course, the real value in a numerical method is the fact it can
easily deal with complex geometry, so a second example implements the method on
a problem that would be very difficult to solve by hand.

The finite difference approximation to Laplace’s equation is

u
(

(m−1)Δx,nΔy
)−2u(mΔx,nΔy)+ u

((

m+ 1
)

Δx,nΔy
)

(Δx)2

+
u(mΔx,(n−1)Δy)−2u(mΔx,nΔy)+ u(mΔx,(n + 1)Δy)

(Δy)2 = 0,

or dropping the cumbersome Δx and Δy terms

u(m−1,n)−2u(m,n)+ u(m+ 1,n)
(Δx)2

+
u(m,n−1)−2u(m,n)+ u(m,n + 1)

(Δy)2 = 0.

If Δx = Δy = h, then solving for u(m,n) gives

u(m,n) =
1
4

[u(m−1,n)+ u(m+ 1,n)+ u(m,n−1)+u(m,n +1)] (12.34)

which has the very simple interpretation that the value for a grid point is the aver-
age of its four neighbors. This also makes complete intuitive physical sense when
considering the fact that the solution to Laplace’s equation can be interpreted as the
steady-state temperature distribution in a two-dimensional solid.

A reasonable algorithm which would be the first way to attempt to find a solution
would be to assign all the interior points a starting value, such as the average of all
the boundary points, and then systematically working through all the interior points
and setting the value of a grid point to the average of its neighbors. Such an approach
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does not have the fastest convergence, however, it is still workable, as the following
two examples illustrate.

Example 12.15. This example uses the finite difference method to find an approxi-
mate solution to

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0

on the domain x ∈ [0,4], y ∈ [0,2] where

u(0,y) =0, u(4,y) =0,

u(x,0) =0, u(x,2) =

{

x, 0 < x ≤ 2,

4− x, 2 < x ≤ 4.

A grid size of Δx = Δy = 0.1 is used. All the interior grid points are set to a value of
1/3 initially. A FORTRAN program implementing the finite difference method for
this problem appears in Appendix E.2.0.29. Plots of the numerical solution after 1,
10, 20 and 100 iterations appear in Figures 12.16, 12.17, and 12.18 respectively.

Note, these plots are not a depiction of the evolution of the system in time.
Laplace’s equation does not have time as an independent variable. The figures illus-
trate how the method converges. Hence, the first plots do not represent the solution,
and the last one only does approximately.
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Fig. 12.16 Numerical solution for Laplace’s equation in Example 12.15 after 1 iteration.

Of course, the real value in a numerical method is in determining a solution
that would be difficult or impossible to find by hand. The following example has a
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Fig. 12.17 Numerical solution for Laplace’s equation in Example 12.15 after 20 iterations.
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Fig. 12.18 Numerical solution for Laplace’s equation in Example 12.15 after 100 iterations.
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relatively complicated boundary, and the only realistic approach to finding a solution
would be a numerical method.

Example 12.16. Determine an approximate numerical solution to Laplace’s equa-
tion on the interior of the H-shaped domain illustrated in Figure 12.19 where all the
“vertical” boundaries (constant x-value) have a value of zero and the “horizontal”
boundaries (constant y-value) on the top have a value of one and on the bottom have
a value of zero. The initial value for the interior points were set at u = 0.5. The so-
lution after 100 iterations is illustrated in Figure 12.20. A FORTRAN program for
this example is in Appendix E.2.0.30.

0
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4

5

0 1 2 3 4 5

y

x

Fig. 12.19 Domain for Laplace’s equation in Example 12.16.

12.6.3 Finite Differences: Heat Equation

Using finite differences for the spatial derivative in the heat equation

∂u
∂ t

= α2 ∂ 2u
∂x2

gives at the point x = mΔx,

∂u
∂ t

(mΔx,t) = α2 u((m+ 1)Δx,t)−2u(mΔx,t)+ u((m−1)Δx,t)

(Δx)2 .
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Fig. 12.20 Numerical solution for Laplace’s equation in Example 12.16.

Using Euler’s method, which is a finite difference in time, for the time derivative
gives

u(mΔx,(n + 1)Δ t)− (mΔx,nΔ t)
Δ t

= α2 u((m+ 1)Δx,nΔ t)−2u(mΔx,nΔ t)+ u((m−1)Δx,nΔ t)

(Δx)2 .

Dropping the Δx and Δ t terms as arguments to u and solving for u(m,n + 1) gives

u(m,n + 1) = u(m,n)+ α2 u(m+ 1,n)−2u(m,n)+ u(m−1,n)

(Δx)2 Δ t. (12.35)

Example 12.17. Use the finite-difference method to determine an approximate solu-
tion to

4
∂ 2u
∂x2 =

∂u
∂ t

with
u(0,t) = u(10,t) = 0

and

u(x,0) =

{

x, 0 < x ≤ 5,

10− x, 5 < x ≤ 10.

This is the same problem that was considered in Example 11.8.
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Using Δx = 0.5, the numerical solution with Δ t = 0.31 is illustrated in Fig-
ure 12.21. A FORTRAN program that implements the method for this problem ap-
pears in Appendix E.2.0.31. Observe that the only significant difference between the
numerical solution and the one obtained by separation of variables is due to the error
in the series solution that was plotted because only the first 10 terms were included
in the partial sum for the plot.
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Fig. 12.21 Numerical solution (with ∗) compared with the partial sum solution using the first 10
terms obtained in Example 11.8, for the one-dimensional heat equation in Example 12.17 with
Δt = 0.031 and Δx = 0.5.

At this point, everything seems rather straightforward. In the previous example,
with a rather coarse grid and large time step, the numerical solution was very ac-
curate. However, there is a subtlety lurking beneath the surface. With the finite dif-
ference method the spatial and temporal derivative approximations can interact in a
manner that makes the numerical algorithm unstable. To illustrate this, the previous
example is repeated with a slightly larger time step that will make the numerical
solution unstable. The relationship between Δ t and Δx for the algorithm to be stable
is presented after the example.

Example 12.18. The approximate solution to the equation in Example 12.17 with
Δ t = 0.32 is illustrated in Figure 12.22, where obviously the solution no longer
converges to the accurate solution. This instability is purely numerical, meaning
that there is something in the relationship between the spatial and time derivative
approximations that causes the approximate solution to diverge.

To develop some insight into the nature of this numerical instability, let us con-
sider the heat equation with homogeneous boundary conditions
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Fig. 12.22 Numerical solution (with ∗) for the one-dimensional heat equation in Example 12.17
with Δt = 0.032.

∂u
∂ t

= α2 ∂ 2u
∂x2 , u(0,t) = 0, u(L,t) = 0, u(x,0) = f (x).

From Section 11.3, the exact solution is given by

u(x,t) =
∞

∑
n=1

cne−(α2n2π2t/L2) sin
nπx

L
, cn =

2
L

∫ L

0
f (x)sin

nπx
L

dx.

The solution for u(x,t) is the superposition of an infinite number of modes, there-
fore let us consider what happens to an individual mode when it is used in the finite-
difference method. In particular, consider

u(x,t) = cne−(α2n2π2t/L2) sin
nπx

L

for some integer n. Substituting this solution into Equation (12.35) gives

u(x,t + Δ t) = u(x,t)+
( α

Δx

)2
(u(x + Δx,t)−2u(x,t)+ u(x−Δx,t))Δ t

= cne−(α2n2π2t/L2) sin
nπx

L
+
( α

Δx

)2
cne−(α2n2π2t/L2)·

(

sin
nπ (x + Δx)

L
−2sin

nπx
L

+ sin
nπ (x−Δx)

L

)

Δ t.

Expanding the sin(nπ (x + Δx)/L) and sin(nπ (x−Δx)/L) terms reduces this to
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u(x,t + Δ t) =cne−(α2n2π2t/L2) sin
nπx

L
+
( α

Δx

)2
cne−(α2n2π2t/L2)·

(

2sin
nπx

L
cos

nπΔx
L

−2sin
nπx

L

)

Δ t

=cne−(α2n2π2t/L2) sin
nπx

L

[

1 + 2Δ t
( α

Δx

)2
(

cos
nπΔx

L
−1

)]

.

(12.36)

Keeping in mind that this analysis is looking at the effect of the algorithm on
one of the modes out of many in the solution, it makes sense to consider whether
the magnitude of the mode will increase or decrease in the time step. If n = M, the
number of discretization points, then MΔx = L and

cos
nπΔx

L
−1 = cos

MπΔx
L

−1 = cos
Lπ
L

−1 = −2,

which is the maximum magnitude that term can obtain. Then, if Δ t is selected such
that

2Δ t
( α

Δx

)2
< 1

then the term in the square brackets in Equation (12.36) will have a magnitude less
than one, which means that mode in the numerical solution will decrease in magni-
tude rather than increase that mode. In other words, the structure of the numerical
solution method will excite the Mth mode if Δ t is too large in relation to Δx, and it
is purely an artifact of the numerical method, not the physics of the problem.

Referring to Figure 12.22, it is exactly the Mth mode that is going unstable. This
may perhaps be seen the best on the second, t = 1.60, curve where the points are
alternating above and below the actual solution. Recall that M is the number of
discretization points, and hence the Mth mode in the series solution is the one that
oscillates M times between x = 0 and x = L.

The above is intended to give some insight into the nature of the instability, but
the reader is cautioned that it does not amount to a proof. The references at the
beginning of this section provide a more rigorous treatment. Nonetheless, it is the
case that the finite difference method for the one-dimensional heat equation requires
that

Δ t <
1
2

(
Δx
α

)2

(12.37)

for numerical stability. The difference between Examples 12.17 and 12.18 was that
the former satisfied this stability bound and the latter did not.
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12.6.4 Finite Differences: The Wave Equation

Normally, spending a lot of time discussing the wrong way to solve a problem is
not of much value. However, in the case of the wave equation, the finite difference
method, the way that is probably the most natural to use to solve it actually is prob-
lematic, so we will dispense with that first.

Because the wave equation is second order in time compared to the heat conduc-
tion equation which is first order, it is tempting to write

u̇(1,t) = v(1,t)

v̇(1,t) = (u(2,t)−2u(1,t)+ u(0,t))
(

α2

Δx

)2

... =
...

u̇(M−1,t) = v(M −1,t)

v̇(M−1,t) = (u(M,t)−2u(M−1,t)+ u(M−2,t))
(

α2

Δx

)2

(12.38)

and use some standard method from earlier in the chapter to solve these. Motivated
by the derivation of the stability condition for the heat equation given by Equa-
tion (12.37), let us consider what happens when the Mth mode of the solution to
the wave equation is substituted into Equation (12.38). Recall M is selected so that
MΔx = L.

The Mth mode of the solution to the wave equation is given by Equation (11.20),

uM (x,t) = sin
Mπx

L

(

aM sin
αMπt

L
+ bM cos

αMπt
L

)

.

For simplicity we let bM = 0. Computing the derivative with respect to time gives

v(x,t) = aM
Mπt

L
sin

Mπx
L

cos
αMπt

L
, (12.39)

where v(x,t) = u̇(x,t). Using Euler’s method and Equation (12.38) gives

v(x,t + Δ t) = v(x,t)+
( α

Δx

)2
[u(x−Δx,t)−2u(x,t)+ u(x−Δx,t)]Δ t.

Substituting for v(x,t) from Equation (12.39) and using trigonometric identities to
simplify the terms in the square brackets in a manner identical to what was done for
the heat equation gives
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v(x,t + Δ t) =aM
αMπ

L
sin

Mπx
L

cos
αMπt

L

[

1 + 2Δ t
( α

Δx

)2
(

cos
MπΔx

L
−1

)]

=aM
αMπ

L
sin

Mπx
L

cos
αMπt

L

[

1−4Δ t
( α

Δx

)2
]

.

Now, we use this to compute u(x,t + 2Δ t). Euler’s method is

uM (x,t + 2Δ t) = uM (x,t + Δ t)+ v(x,t + Δ t)Δ t,

and substituting for uM (x,t + Δ t) and v(x,t + Δ t) gives

uM (x,t + 2Δ t) = aM sin
Mπx

L
sin

αMπ (t + Δ t)
L

+ aM
αMπ

L
sin

Mπx
L

cos
αMπt

L

[

1−4Δ t
( α

Δx

)2
]

Δ t. (12.40)

Using the usual trigonometric identity

sin
αMπ (t + Δ t)

L
= sin

αMπt
L

cos
αMπΔ t

L
+ sin

αMπΔ t
L

cos
αMπt)

L

and assuming a small Δ t, which is reasonable inasmuch as we are considering con-
vergence, gives

sin
αMπ (t + Δ t)

L
≈ sin

αMπt
L

+
αMπΔ t

L
cos

αMπt
L

.

Substituting this into Equation (12.40) and collecting terms results in

uM (x,t + 2Δ t) = aM sin
Mπx

L
sin

αMπt
L

+ aM
αMπ

L
sin

Mπx
L

cos
αMπt

L

[

2−4Δ t
( α

Δx

)2
]

Δ t.

The magnitude of this solution is

|uM (x,t + 2Δ t)| = aM sin
Mπx

L

√

1 +
(

αMπ
L

[

2−4Δ t
( α

Δx

)2
]

Δ t

)2

which is increasing, regardless of the relationship between Δx and Δ t.
The proper way to use finite differences for the wave equation is to treat the time

variable much like the spatial one and write

α2 u(m+ 1,n)−2u(m,n)+ u(m−1,n)

(Δx)2 =
u(m,n + 1)−2u(m,n)+ u(m,n−1)

(Δ t)2 .
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Thus, the value of u at time t = (m+ 1)Δ t depends not only on the value at the
previous time step, but the time step before that as well. The only issue is at the
initial time step, but because the initial velocity is also part of the problem specifi-
cation, the first step can be approximated by the product of the velocity and the time
step (basically ignoring the string physics for that one step). Then, starting with the
second time step,

u(m,n + 1) =
(

αΔ t
Δx

)2

[u(m+ 1,n)−2u(m,n)+u(m−1,n)]

+ 2u(m,n)−u(m,n−1).
(12.41)

Example 12.19. Use the finite-difference method and Euler’s method to determine
an approximate solution to

α2 ∂ 2u
∂x2 =

∂ 2u
∂ t2 ,

where L = 3 and α = 2, subjected to the boundary conditions

u(0,t) = 0, u(L,t) = 0

and initial conditions

u(x,0) =

{

x, x ≤ 1,
3−x

2 , 1 < x ≤ 3,

∂u
∂ t

∣
∣
∣
∣
t=0

=0.

This is the same system that was solved using separation of variables in Exam-
ple 11.2. A plot of the approximate numerical solution is illustrated in Figure 12.23.
This approximate solution is very close to the one obtained using separation of
variables illustrated in Figure 11.6. A program listing in the C programming lan-
guage for this problem which implements the finite difference method is in Ap-
pendix E.1.0.15.

12.7 Exercises

12.1. For each of the following initial value problems, write a computer program
that uses Euler’s method to determine an approximate numerical solution.

1. ẋ+ 5x = 0, x(0) = 1.
2. ẋ+ 5x = 5, x(0) = 0.
3. ẋ+ 5x = sin t, x(0) = 0.
4. ẋ = t2 + x, x(0) = 0.
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Fig. 12.23 Approximate numerical solution to the wave equation for Example 12.19. For compar-
ison, the solution obtained using separation of variables is illustrated in Figure 11.6.

5. ẍ+ x = 0, x(0) = 1, ẋ(0) = −1.
6. ẍ+ 5x = sin t, x(0) = 1, ẋ(0) = 0.
7. ẋ+ x + x3 = 0, x(0) = 1, ẋ(0) = 1.
8. ξ̇ = Aξ , where

A =

⎡

⎣

−3 2 0
−1 −1 1
4 −6 1

⎤

⎦ , ξ (0) =

⎡

⎣

1
3
5

⎤

⎦ .

In every case be sure to reduce the time step until the solution seems to converge.
In the cases where it is possible to determine the exact solution using methods from
this book, do so and compare the exact and approximate solutions, and in these
cases, if the time step is reduced, does the error decrease as expected?

12.2. For each of the following initial value problems, write a computer program
that uses the second-order Taylor series method to determine an approximate nu-
merical solution.

1. ẋ+ 5x = 0, x(0) = 1.
2. ẋ+ 5x = 5, x(0) = 0.
3. ẋ+ 5x = sin t, x(0) = 0.
4. ẍ+ tx = 0, x(0) = 1, ẋ(0) = −1.
5. ẍ+ 5x = sin t, x(0) = 1, ẋ(0) = 0.
6. ẋ+ x + x3 = 0, x(0) = 1, ẋ(0) = 1.
7. ξ̇ = Aξ , where
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A =

⎡

⎣

−3 2 0
−1 −1 1
4 −6 1

⎤

⎦ , ξ (0) =

⎡

⎣

1
3
5

⎤

⎦ .

In every case be sure to reduce the time step until the solution seems to converge.
In the cases where it is possible to determine the exact solution using methods from
this book, do so and compare the exact and approximate solutions, and in these
cases, if the time step is reduced, does the error decrease as expected?

12.3. For each of the following initial value problems, write a computer program
that uses the fourth-order Runge–Kutta method to determine an approximate nu-
merical solution.

1. ẋ+ 5x = 0, x(0) = 1.
2. ẋ+ 5x = 5, x(0) = 0.
3. ẋ+ 5x = sin t, x(0) = 0.
4. ẍ+ tx = 0, x(0) = 1, ẋ(0) = −1.
5. ẍ+ 5x = sin t, x(0) = 1, ẋ(0) = 0.
6. ẋ+ x + x3 = 0, x(0) = 1, ẋ(0) = 1.
7. ξ̇ = Aξ , where

A =

⎡

⎣

−3 2 0
−1 −1 1
4 −6 1

⎤

⎦ , ξ (0) =

⎡

⎣

1
3
5

⎤

⎦ .

In every case be sure to reduce the time step until the solution seems to converge.
In the cases where it is possible to determine the exact solution using methods from
this book, do so and compare the exact and approximate solutions, and in these
cases, if the time step is reduced, does the error decrease as expected?

12.4. Consider
ẍ+ 5x = sin t,

where x(0) = 1 and ẋ(0) = 0. If you completed Exercises 12.1–12.3 you have al-
ready written the programs for this problem. What is the largest time step that gives
reasonable accuracy for 0 ≤ t ≤ 50 for Euler’s method, for the second-order Taylor
series method and for the fourth-order Runge–Kutta method? If the answers are not
the same, explain the reason why.

12.5. This problem considers some nonlinear differential equations that we en-
counter in the next chapter. Write a program that uses the fourth-order Runge–Kutta
method to determine approximate numerical solutions for

1. ẍ+ 0.2ẋ− x + x2 = 0, x(0) = −1, ẋ(0) = 10.
2. ẍ+ 0.2ẋ− x + x2 = 0.3cost, x(0) = 0, ẋ(0) = 0.
3. ẍ+ ẋ−2x + x2 = 0, x(0) = 1, ẋ(0) = 1.

For each problem do the following.

• Continue to reduce the time step until the solution appears to converge.
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• Plot the solutions versus t for a period of time that is sufficient to provide an
accurate representation of the qualitative nature of the solution.

• Plot the solutions on a plot where the axes are x(t) and ẋ(t).

You may want to be sure to save your programs for the next chapter.

12.6. Consider
ẍ+ ẋ+ x = sin t

and
ẍ+ ẋ+ x = sin 30t,

where x(0) = 0 and ẋ(0) = 0. Write computer programs that use Euler’s method to
compute approximate numerical solutions for each one and run it using the follow-
ing time steps, Δ t = 0.2, Δ t = 0.175, Δ t = 0.15,Δ t = 0.125, Δ t = 0.1, Δ t = 0.05,
Δ t = 0.025, Δ t = 0.0125. Continue to reduce the time step until the numerical solu-
tion is a good approximation for the exact solution. Explain any unusual aspects of
this problem. Would using a higher-order method eliminate these unusual aspects?

12.7. Consider ẋ+ x = sin t where x(0) = −1.

1. Write a computer program to compute an approximate numerical solution for
this differential equation using

a. Euler’s method
b. The second-order Taylor series method
c. The fourth-order Runge–Kutta method

You may decide to write three separate programs or include all three methods in
one program. Your program should also compute the exact solution for compari-
son purposes.

2. For each of the following time steps

a. Δ t = 0.5
b. Δ t = 0.25
c. Δ t = 0.125
d. Δ t = 0.01

plot the exact solution and the approximate solution using each of the three meth-
ods for the time interval t = 0 to t = 10. Thus, there should be four plots and each
plot should have four curves.

3. Plot the difference between the exact solution and the numerically computed
solutions for the same time steps and time interval as in part 2 above. In each case
indicate the factor by which the overall error changes as the time step changes
and indicate whether such a factor would be expected for the global truncation
error for the corresponding method.

4. What is the difference between the exact solution and the numerically computed
solutions after the first time step for each method and time step size above? De-
termine the factor by which this error (the local truncation error) changes as the
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time step changes and indicate whether such a factor corresponds to what is the-
oretically expected.

12.8. Write a computer program using a programming language that supports single
precision to determine an approximate numerical solution for ẋ = 2x where x(0) = 1
using Euler’s method. For Δ t = 0.1 compare the numerical solution to the exact
solution at t = 1. Repeatedly run the program and reduce Δ t and plot the error at
t = 1 versus Δ t. Continue to reduce the time step until the error at t = 1 begins to
increase for several different values of Δ t and explain the cause of this.

12.9. Write a computer program that determines an approximate numerical solution
to

ẍ + ẋ+ 9x = cos3t

where x(0) = 0 and ẋ(0) = 0 using the fourth-order Runge–Kutta method. Plot the
solution and exact solution for 0 ≤ t ≤ 15. On a different plot, plot the error for the
same range of time. Cut the time step in half and plot the error on the same plot as
the error with the larger time step. By what factor was the error generally reduced?
By what factor did you expect it to be reduced?

12.10. Consider ẋ = 1 where x(0) = 0. Of the three methods,

1. Euler’s method
2. the third-order Taylor series method
3. the fourth-order Runge–Kutta method

for a given Δ t � 1, which would determine an approximate numerical solution with
the least error? Explain your answer.

12.11. Consider ẋ = t where x(0) = 1. Write two computer programs to deter-
mine an approximate numerical solution for this equation. One program should use
the second-order Runge–Kutta method and the other should use the fourth-order
Runge–Kutta method. Compare each answer to the exact solution at t = 3. Then
decrease the time step and compare to the exact answer again. Did the error in each
case decrease by the factor that you expected? Explain any discrepancies you ob-
serve.

12.12. Write a computer program that uses the fourth-order Runge–Kutta method
to solve the famous Lorenz equations:

dx
dt

= σ (y− x) ,
dy
dt

= x(ρ − z)− y,
dz
dt

= xy−β z.

where σ = 10, β = 8/3, and ρ = 28 and the initial conditions are x(0) = 10, y(0) =
10, and z(0) = 10. Are these equations linear or nonlinear? When you do not have an
exact solution to which to compare your numerical solution, you need to decrease
the time step until the approximate numerical solutions converge to one solution.
Create a three-dimensional plot of (x,y,z) parametrized by t where 0 ≤ t ≤ 50. Also
create a three-dimensional plot of (x,y,z) parametrized by t when the other values
are the same except for ρ = 99.96.
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12.13. Consider ẍ+ sin
(

xt2
)

ẋ+x3 = cos(3ẋt) where x(0) = 2 and ẋ (0) = 3. Write
a computer program that uses the fourth-order Runge–Kutta method to determine
an approximate numerical solution to this differential equation.

12.14. Reproduce the results from Example 12.14 for the initial value problem

ẍ + 9x = 5,

where x(0) = 0 and ẋ(0) = 0. By reducing Δ t, what order does the incorrect method
seem to be?

12.15. Write a general-purpose computer program that computes an approximate
numerical solution for

ẋ = f (x,t),

where x(0) = x0. Write the program so that all you would have to change for a
different problem would be the line that defines f (x,t), the line that specifies the
initial condition, and the line that specifies the time step.

12.16. Write a general-purpose computer program that computes an approximate
numerical solution for

ẋ1 = f1(x1,x2,t)
ẋ2 = f2(x1,x2,t).

Write the program so that all you would have to change for a different problem
would be the line that defines f1(x1,x2,t), the line that defines f2(x1,x2,t), the lines
that specify the initial conditions, and the line that specifies the time step.

12.17. Write a computer program that uses the finite-difference method to determine
an approximate solution to Laplace’s equation given in part 1 of Exercise 11.9,
where Lx = 3, Ly = 4, and f (y) = sinπy.

12.18. Write a computer program that uses finite-differences to compute the solution
to Laplace’s equation on the L-shaped domain illustrated in Figure 12.24. Choose
one of the boundary segments to have a value of one and the rest zero.

12.19. Write a computer program that uses the finite difference method to compute
an approximate solution to the one-dimensional heat conduction equation given in
part 3 of Exercise 11.5 (which incorporates part 3 from Exercise 11.4). Compare
the approximate answer to that obtained using the separation of variables method.
Be sure to reduce Δx and Δ t until the solution appears to converge. Also, verify the
stability condition given in Equation (12.37) by using a time step slightly too large.

12.20. Determine how to implement the finite difference for the one-dimensional
heat conduction equation where the end at x = L is insulated. Use it to determine an
approximate numerical solution to the system from Example 11.10.
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Fig. 12.24 Domain for Exercise 12.18.

12.21. Write computer programs to determine approximate numerical solutions to
the one-dimensional wave given in parts 2 and 3 of Exercise 11.3. Compare the
numerical answers to that obtained by using the separation of variables method.

12.22. Use the finite-difference method to determine an approximate numerical so-
lution to

α2 ∂ 2u
∂x2 −α2u =

∂ 2u
∂ t2 ,

where α = 3,
u(0,t) = u(10,t) = 0,

and

u(x,0) = f (x) = sinπx,
∂u
∂ t

(x,0) = 0.



Chapter 13
Introduction to Nonlinear Systems

A quick review of the subject matter of this book up to this point confirms the fact
that, with the exception of some specific first-order, ordinary differential equations
which happen to be exact or separable, all the solution methods covered so far, other
than numerical methods, have only been applicable to linear differential equations.
Although the study of nonlinear differential equations is extremely interesting, it is
also substantively difficult and rather advanced. The purpose of this chapter is to
introduce some of the reasons why nonlinear systems are important, and why they
are interesting, and to present a couple of the more basic analysis tools.

13.1 Motivation and Introduction

This section presents a couple of aspects of nonlinear systems which are features
that are not present in linear systems. It also presents two of the most basic analysis
tools; namely, the phase plane and Poincaré sections. The former are used exten-
sively.

13.1.1 Multiple Equilibria and Chaos

By way of one example, this section illustrates the complexity of nonlinear systems
and introduces the phase plane, which is one specific tool that is useful for two-
dimensional systems. The example is the famous Duffing’s equation, and both the
forced and unforced cases are considered.

Example 13.1. Consider
ẍ + bẋ− x + x3 = 0. (13.1)

This equation is nonlinear in x, thus none of the methods considered previously in
this text are applicable to determine a solution, so this example solves it numerically.

631B. Goodwine, Engineering Differential Equations: Theory and Applications, 
DOI 10.1007/978-1-4419-7919-3_13, © Springer Science+Business Media, LLC 2011
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Using the fourth-order Runge–Kutta method with Δ t = 0.00001 to determine an
approximate solution to this equation with b = 0.2, x(0) = −1, and ẋ(0) equal to
10.2 and 10.3, the solutions are illustrated in Figure 13.1.1
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ẋ(0) = 10.2
ẋ(0) = 10.3

Fig. 13.1 Solutions for Equation (13.1) from Example 13.1 for two slightly different initial condi-
tions.

The obvious feature of these two solutions is that although the initial condition
was changed very slightly, and indeed the two solutions were nearly indistinguish-
able up until approximately t = 20, near that time the solutions rather radically di-
verged and ultimately appeared to approach different steady-state values. Although
it is the case that such features are very sensitive to numerical errors, it is hoped to
be clear subsequently that such a feature is inherent in this system and is actually
fundamental feature of it.

This example illustrates the fact that solutions to nonlinear differential equations
may be sensitive to initial conditions and furthermore may have multiple equilib-
ria. In this case, the equilibria illustrated are the two steady-state solutions in Fig-
ure 13.1; namely, (x(t), ẋ(t)) = (1,0) and (x(t), ẋ(t)) = (−1,0).

The following example illustrates the fact that an additional complexity, namely,
a time-varying inhomogeneous term, may result in a chaotic solution.

Example 13.2. Consider

ẍ+ bẋ− x + x3 = γ cosωt, (13.2)

1 A reader is encouraged to reproduce these results. If the exact same method with the same time
step is not used, however, the initial conditions which cause the solutions to diverge to different
steady-state values may be slightly different and may require some trial and error to determine.
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where
b = 0.2, γ = 0.3, ω = 1.0.

A plot of a numerical solution to this equation with x(0) = 0 and ẋ(0) = 0 computed
using the fourth-order Runge–Kutta method with a time step of Δ t = 0.0000001 is
illustrated in Figure 13.2.
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Fig. 13.2 Chaotic solution to Equation (13.2) from Example 13.2.

Although any precise definition of the term chaos is beyond the scope of this
book, it is clear from the solution illustrated in Figure 13.2 that the numerical solu-
tion is “chaotic” at least in the sense of the common use of the term. At least for the
time interval plotted, the solution does not appear to repeat; that is, it is nonperiodic,
and seems to evolve in a rather unpredictable way.

13.1.2 The Phase Plane

For a second-order system, the phase portrait is a plot of the solution x(t) versus
ẋ(t). The domain upon which the solution is plotted is often referred to as the phase
plane.

Example 13.3. The phase portraits for the solutions from Examples 13.1 and 13.2
are illustrated in Figures 13.3 and 13.4, respectively.

Although arguably there is not much to be gained from the second figure, Fig-
ure 13.4, the first figure, Figure 13.3, is somewhat enlightening. Judging from the
point where the two solutions diverge after closely tracking each other for quite a
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Fig. 13.3 Phase portraits for solutions to Equation (13.1) from Example 13.1.
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Fig. 13.4 Phase portrait for solutions to Equation (13.2).

long time, it is reasonable to infer that the geometric structure of the origin in the
phase plane may be significant. In fact, as is developed subsequently, this is indeed
the case.
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13.1.3 Poincaré Sections

As indicated in Example 13.3, other than the chaotic nature of the solution, there is
not much to observe from the solution to Equation (13.2) illustrated in Figure 13.4.
However, one slight modification of the manner in which the data are illustrated
reveals some very interesting structure to the solution. In particular, instead of plot-
ting the complete solution curves x(t) versus ẋ(t), Figure 13.5 illustrates the discrete
values of x(t) versus ẋ(t) for t = 0,2π ,4π . . ..

Example 13.4. Considering again the system in Equation (13.2) and computing an
approximate numerical solution for the same parameter values and initial conditions,
but for a much larger time range 0 ≤ t < 10000π , a plot of the discrete values of
x(t) versus ẋ(t) for the t = 2mπ is illustrated in Figure 13.5.
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Fig. 13.5 Poincaré section for the forced Duffing equation in Example 13.2.

Note that a rather coherent structure becomes apparent when the data are pre-
sented in this manner. This topic is not pursued further in this text, but the reader
should be at least made aware of its existence and its name: a strange attractor.

13.1.4 Limit Cycles

Another feature of nonlinear systems not present in solutions to linear differential
equations is a limit cycle. Second-order linear systems can have periodic solutions
either as homogeneous solutions when there is no damping, or as particular solutions
when there is a periodic inhomogeneous term.



636 13 Introduction to Nonlinear Systems

Similarly, for a nonlinear system, a limit cycle is a periodic solution to the non-
linear equation. In contrast to periodic solutions for linear systems, the limit cycle
is independent of the initial conditions, which is not the case for the undamped
homogeneous solutions. Furthermore, they are unforced. The following example
illustrates a system with a limit cycle solution.

Example 13.5. Consider the van der Pol equation given by

ẍ+
(

x2 −1
)

ẋ+ x = 0. (13.3)

One way to gain some insight into this equation is to observe that if |x| < 1, the
system has negative damping and when |x| > 1, the system has positive damping.
Hence, in the former case, solutions should increase in magnitude and in the latter
case should decrease.

Figures 13.6 and 13.7 illustrate two solutions to Equation (13.3) with different
initial conditions. Note that, in contrast to periodic solutions to linear equations, the
solutions are unforced and independent of the initial conditions, except for a phase
shift. Because these oscillations can grow even from very small initial conditions,
sometimes they are referred to as self-excited oscillations.
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x(0) = 3.0, ẋ(0) = 3.0

Fig. 13.6 Limit cycle solutions to the van der Pol equation from Example 13.5.
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Fig. 13.7 Limit cycle solutions in the phase plane to the van der Pol equation from Example 13.5.

13.2 Linearization

One obvious approach to attempt to determine at least the basic features of a non-
linear differential equation is to determine a differential equation that we can solve
that is a good approximation to it. In the case where the nonlinear equation is ho-
mogeneous and has constant coefficients, if a good linear approximation can be
determined, then, because it can be solved, at least some of the features of the so-
lution of the nonlinear equation may be determined from the solution to the linear
one.

The initial approach presented is simply to compute a Taylor series for all of
the nonlinear terms about some point and keep only the first two terms from the
Taylor series, which results in a linear differential equation. The following example
illustrates this approach.

Example 13.6. Consider
ẍ + ẋ−2x + x3 = 0. (13.4)

Determine a linear approximation for this equation by substituting a Taylor series
for the x3 term, where the Taylor series is computed about x =

√
2. The Taylor series

for x3 about x = x0 is

x3 = x3
0 + 3x2

0(x− x0)+ 6x0(x− x0)2 + · · ·

thus keeping only the first two terms gives
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ẍ + ẋ−2x +
(

x3
0 + 3x2

0 (x− x0)
)

= 0

ẍ+ ẋ+
(

3x2
0 −2

)

x = 2x3
0 (13.5)

which is a constant-coefficient, linear, inhomogeneous differential equation that we
know how to solve.

Substituting x0 =
√

2 Equation (13.5) gives

ẍ+ ẋ+ 4x = 4
√

2. (13.6)

The particular solution is xp =
√

2 and substituting eλ t into the homogeneous equa-
tion gives

λ 2 + λ + 4 = 0 ⇐⇒ λ =
−1
2

± i

√
15
2

,

so the general solution to the linear approximation is

x(t) = c1e−(1/2)t cos

√
15
2

t + c2e−(1/2)t sin

√
15
2

t +
√

2. (13.7)

Intuitively, in Example 13.6, the solutions to the linear approximation, Equa-
tion (13.6) are approximately the same as the solutions to Equation (13.4) as long
as x ≈ √

2. Only the first two terms of the Taylor series were used, therefore the
neglected terms, which were the higher powers of (x− x0) are only small if x stays
near

√
2. The following example illustrates this fact.

Example 13.7. Figure 13.8 illustrates the solutions to Equation (13.4) and (13.6) for
x(0) = 1.4 and ẋ(0) = 0.2. Note that the approximate solution closely tracks the
solution to the nonlinear equation.

If the initial conditions are moved farther away from the point of linearization,
say x(0) = 1.0 and ẋ(0) = 0.2, as is illustrated in Figure 13.9 the linear solution is
not as good an approximation to the nonlinear solution as was the case illustrated in
Figure 13.8.

If the initial conditions are even farther away from x =
√

2, say x(0) =−1, ẋ(0)=
0.0, then the two solutions are as illustrated in Figure 13.10. The solution is not near
the point of linearization, thus the solution to the linearized differential equation is
not even remotely a good approximation to the solution to the nonlinear equation.

Now, let us investigate what is happening near the origin.

Example 13.8. Determine the best linear approximation to

ẍ+ ẋ−2x + x3 = 0

for values of x near 0. Substituting x0 = 0 into Equation (13.5) gives

ẍ + ẋ−2x = 0,

which is linear, constant-coefficient, homogeneous, and ordinary, so solutions are of
the form x = eλ t . Substituting gives the characteristic equation
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Fig. 13.8 Comparison of solutions of Equation (13.4) (nonlinear) with Equation (13.6) (linear
approximation) with initial conditions near x =

√
2.
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Fig. 13.9 Comparison of solutions of Equation (13.4) (nonlinear) with Equation (13.6) (linear
approximation) with initial conditions slightly farther from x =

√
2 than in Figure 13.8.
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Fig. 13.10 Comparison of solutions of Equation (13.4) (nonlinear) with Equation (13.6) (linear
approximation) with initial conditions far from x =

√
2.

λ 2 + λ −2 = 0 ⇐⇒ λ = 1,−2.

Hence, the general solution is of the form

x(t) = c1et + c2e−2t .

Note that this solution is unstable unless c1 = 0. Computing ẋ(t) gives

ẋ(t) = c1et −2c2e−2t .

Expressing this in vector form gives
[

x(t)
ẋ(t)

]

= c1

[

1
1

]

et + c2

[

1
−2

]

e−2t . (13.8)

Considering the solution in this manner indicates that in the phase plane, any initial
condition which is exactly a multiple of the vector

[

x(0)
ẋ(0)

]

= α
[

1
−2

]

results in c1 = 0 and hence is stable; that is,

lim
t→∞

[

x(t)
ẋ(t)

]

=
[

0
0

]

.
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Any other initial condition will have a nonzero c1 and hence will be unstable. If the
initial condition is very close to the

[

x(0)
ẋ(0)

]

= α
[

1
−2

]

vector, then c1 may be very small and the stable solution may initially dominate;
however, due to the exponential term the solution will ultimately be unstable.
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Fig. 13.11 Solution of the linear approximation to Equation (13.4) near the origin.

In Figure 13.11 of the six solutions plotted, three start in the upper left portion
of the plot and initially move toward the origin. Similarly, the other three solutions
start in the lower right portion of the graph and initially head to the origin as well.
However, eventually the et term dominates and all six solutions ultimately move
away from the origin and grow unbounded. Note that the solutions grow unbounded
along the vector multiplying et in the vector form of the solution.

Figure 13.12 illustrates the solutions to the linear approximation near the origin
(Equation (13.5) with x0 = 0) and the solution to the nonlinear equation (Equa-
tion (13.4)) with the same initial conditions near the origin. Although initially the
solutions are similar in nature, due to the instability of both solutions they both ul-
timately leave the domain in which the linear equation is a good approximation to
the nonlinear equation.

In principle, it is appropriate to compute a Taylor series approximation for any
nonlinear terms in a differential equation and keep only the linear terms to determine
some of the features of the solution of the nonlinear equation near the point about
which the linearization was computed. However, the main utility of linearization is
to determine a linear approximation to a differential equation near an equilibrium
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Fig. 13.12 Comparison of solutions of linear approximation and nonlinear solution for initial con-
ditions near the origin.

point because that will provide information about the stability of the equilibrium
point. An equilibrium point is a solution to the differential equation that is a con-
stant, and how to compute them is described subsequently. Furthermore, if the equi-
librium point is indeed stable, then the solutions to the linear approximation will be
close to the solutions to the nonlinear equation. The following example illustrates
the fact that whereas a linear approximation computed near a nonequilibrium point
gives some information about the nonlinear solution, it is only transiently valid and
furthermore, information regarding an equilibrium point of the linearized equation
has nothing to do with the nonlinear system.

Example 13.9. Determine a linear approximation to

ẍ+ ẋ−2x + x3 = 0 (13.9)

near x0 = 4. Substituting x0 = 4 into Equation (13.5) gives

ẍ + ẋ+−2x(64 + 48(x−4)) = 0

ẍ + ẋ+ 46x = 128 (13.10)

which has the general solution

x(t) = c1e−(1/2)t cos

√
183
2

t + c2e−(1/2)t sin

√
183
2

t +
64
23

.

A plot of the the solution to the nonlinear equation and the linear approximation is
illustrated in Figure 13.13.
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Fig. 13.13 Solutions to Equations (13.9) and (13.10).

Note that although the solutions stay near x = 4, they are nearly identical. How-
ever, as expected, as they diverge from x = 4 the linear approximation is increasingly
less valid. Also note that the linearized equation has an equilibrium at x = 64/23
which is not an equilibrium for the nonlinear equation. The stability of the equi-
librium point for the linearized equation at x = 64/23 has nothing to do with the
stability or instability of the nonlinear equation near that point.

Typically, linear approximations to nonlinear differential equations are only com-
puted about equilibrium points. This is due to the fact that the linear approximation
about a nonequilibrium point in general will have an equilibrium that is not the
same as the nonlinear equation. Furthermore, in applications such as feedback con-
trol, stabilizing a system to an equilibrium is typically the desired goal and hence
it is desirable for the linearized approximation of the nonlinear equation to have an
equilibrium in common.

The next section considers the more standard and systematic approach to doing
this; namely, if necessary, converting a system of higher-order differential equations
to a system of first-order equations and computing the Jacobian.

13.3 Jacobian Linearization

This is initially developed by mirroring the example from the previous section, Ex-
ample 13.6.

Example 13.10. Convert
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ẍ+ ẋ−2x + x3 = 0 (13.11)

into a system of two first-order equations. Using the standard approach of letting

x1 = x, x2 = ẋ

the following is equivalent to Equation (13.11)

d
dt

[

x1

x2

]

=
[

x2

−x2 + 2x1 − x3
1

]

. (13.12)

Adopting a notation that mirrors that of Chapter 6, let

ξ =
[

x1

x2

]

and

f (ξ ) = f (x1,x2) =
[

x2

−x2 + 2x1 − x3
1

]

.

Observe carefully that in Example 13.10, both ξ and f (ξ ) are vectors and that
the whole system may be represented by

ξ̇ = f (ξ ).

Because it may be represented so compactly, even though it is, in general, a sys-
tem of differential equations, it may simply be referred to as a or the differential
equation.

Definition 13.1. A point ξ0 is an equilibrium point of

ξ̇ = f (ξ )

if
f (ξ0) = 0,

where the 0 on the right-hand side of the equation is a vector of zeros that is the
same dimension as ξ and f (ξ ).

Note, that if ξ0 is an equilibrium point, then

ξ̇ = f (ξ0) = 0

so
ξ (t) = ξ0

is a solution to
ξ̇ = f (ξ )

if
ξ (0) = ξ0.
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Example 13.11. Determine the equilibrium points for Equation (13.12). Clearly,
x2 = 0 is necessary to make the first component vanish. For the second component
any of the three x1 = 0 or x1 = ±√

2. So, any of the three vectors

ξ0 =
[

0
0

]

,

[√
2

0

]

,

[−√
2

0

]

when substituted into Equation (13.12) results in

f (ξ0) =
[

0
0

]

.

First we define the Jacobian, and then by referring to the previous examples show
that it may be used to determine an equivalent linear approximation to a nonlinear
equation near an equilibrium point.

Definition 13.2. For a vector-valued function, f of a vector

ξ =

⎡

⎢
⎢
⎢
⎣

ξ1

ξ2
...

ξn

⎤

⎥
⎥
⎥
⎦

,

denoted by

f (ξ ) =

⎡

⎢
⎢
⎢
⎣

f1 (ξ1,ξ2, . . . ,ξn)
f2 (ξ1,ξ2, . . . ,ξn)

...
fm (ξ1,ξ2, . . . ,ξn)

⎤

⎥
⎥
⎥
⎦

,

the Jacobian matrix for f (ξ ) is given by

∂ f
∂ξ

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ f1
∂ξ1

∂ f1
∂ξ2

· · · ∂ f1
∂ξn

∂ f2
∂ξ1

∂ f2
∂ξ2

· · · ∂ f2
∂ξn

...
...

...
...

∂ fm
∂ξ1

∂ fm
∂ξ2

· · · ∂ fm
∂ξn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where f (ξ ) ∈ R
m; that is, f is m elements “tall” and ξ ∈ R

n; that is, ξ is n elements
tall.

For a system of n first-order differential equations, the equations themselves typi-
cally only depend on the n state variables; hence, for systems of first-order equations
that we consider in this book, the Jacobian matrix is always square. Now, we can
define a linearization that is equivalent to the Taylor series method outlined previ-
ously.

Definition 13.3. For the system of n first-order, homogeneous differential equations
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ξ̇ = f (ξ ), (13.13)

where f (ξ0) = 0, the linear approximation to Equation (13.13) about ξ0 is given by

ξ̇ =
∂ f
∂ξ

∣
∣
∣
∣
ξ0

(ξ − ξ0) . (13.14)

Let us compare the results of using this linearization method with the lineariza-
tion approximations determined using Taylor series in the previous examples.

Example 13.12. Consider
ẍ + ẋ−2x + x3 = 0,

which, when converted to two first-order equations is given by

d
dt

[

x1

x2

]

=
[

x2

−x2 + 2x1 − x3
1

]

,

where

ξ =
[

x1

x2

]

=
[

x
ẋ

]

.

The Jacobian for this system of equations is

d f
dξ

=

[
∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

]

=
[

0 1
2−3x2

1 −1

]

.

Evaluated at the equilibrium point

ξ0 =
[

0
0

]

and substituting into Equation (13.14) gives

ξ̇ =
d
dt

[

x1

x2

]

=
[

0 1
2 −1

][

x1

x2

]

.

From Example 13.8, the Taylor series linearization about x0 = 0 was

ẍ + ẋ−2x = 0,

which, when converted to two first-order equations, gives the same result.
Similarly, at

ξ0 =
[√

2
0

]

the linearization is

d
dt

[

x1

x2

]

=
[

0 1
−4 −1

]([

x1

x2

]

−
[√

2
0

])

.
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Referring back to Example 13.6, the Taylor series linearization resulted in

ẍ+ ẋ+ 4x = 4
√

2,

which is the same.

It is worth remarking that the general equation for the Taylor series of a vector
valued function of several variables about the point ξ0 is of the form

f (ξ ) = f (ξ0)+
∂ f
∂ξ

∣
∣
∣
∣
ξ0

(ξ − ξ0)+ · · · .

Because ξ0 was assumed to be an equilibrium point in the above development, what
is obviously happening is that f (ξ ) is replaced by the first two terms in its Taylor
series, but the first term f (ξ0) happens to be zero.

Finally, although there is nothing wrong with Equation (13.14), the inhomoge-
neous term resulting from the “−ξ0” term in (ξ − ξ0) adds a bit of extra work that
is easily avoided. By letting

η = ξ − ξ0

then, because ξ0 is a constant, η̇ = ξ̇ and hence the linear approximation can be
expressed simply as

η̇ =
∂ f
∂ξ

∣
∣
∣
∣
ξ0

η . (13.15)

Clearly, the origin for η is the fixed point ξ0, and the constant inhomogeneous term
is eliminated by the coordinate transformation.

Example 13.13. Referring back to Example 13.12, determine the homogeneous lin-
ear approximation to

ẍ+ ẋ−2x + x3 = 0

about the fixed point

ξ0 =
[√

2
0

]

.

Letting

η =
[

y1

y2

]

=
[

x1

x2

]

−
[√

2
0

]

and using Equation (13.15), then

d
dt

[

y1

y2

]

=
[

0 1
−4 −1

][

y1

y2

]

.
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13.4 Geometry and Stability of Equilibrium Points in the Phase
Plane

This section first outlines the procedure to solve systems of two first-order, linear,
homogeneous differential equations. This material is a bit of a review of the methods
from Chapter 6, but is developed with the ultimate goal of gaining some insight to
the relationship between the linear algebra (i.e., eigenvalue and eigenvectors), and
the nature and geometry of solutions of systems near equilibrium points.

Examples 13.6 and 13.8 from Section 13.2 determined linear approximations to
the nonlinear Duffing equation and solved them. In the case of Example 13.6, the
solution to the linear approximation near the point x0 =

√
2 is

x(t) = c1e−(1/2)t cos

√
15
2

t + c2e−(1/2)t sin

√
15
2

t +
√

2,

and in the case of Example 13.8, the solution to the linear approximation near the
point x0 = 0 is

x(t) = c1et + c2e−2t . (13.16)

Note that both of these solutions are easily differentiated. In particular, for the solu-
tion of the linearization about the origin, we can write

d
dt

[

x1(t)
x2(t)

]

= c1

[

1
1

]

et + c2

[

1
−2

]

e−2t , (13.17)

where x1(t) = x(t) and x2(t) = ẋ(t) = ẋ1(t) as usual. The second line is computed
by simply differentiating the solution from Equation (13.16).

Observing the form of Equation (13.17), rather than computing it from the solu-
tion of the original scalar equation, it seems reasonable that an alternative solution
method designed to determine the solution directly from the vector form of the equa-
tion would be reasonably useful.

In particular, note that Equation (13.15) is a system of first-order, homogeneous
differential equations, which may be expressed in the form

η̇ = Aη ,

where A ∈ R
2×2 and

A =
∂ f
∂ξ

∣
∣
∣
∣
ξ0

.

Referring to Equation (13.17), it seems reasonable simply to assume a solution of
the form

η(t) = η̂eλ t ,

where η ∈ R
2; that is, it is a vector. Note that η̇ = λ ηeλ t . Substituting this into the

differential equation gives
λ η̂eλ t = Aη̂ .
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Rearranging gives

Aη̂eλ t −λ η̂eλ t = 0

Aη̂eλ t −λ Iη̂eλ t = 0

(A−λ I)η̂eλ t = 0

(A−λ I)η̂ = 0, (13.18)

where I is the 2× 2 identity matrix. Canceling the eλ t terms is justified because it
may never be zero.

Hence, solutions of
η̇ = Aη

are of the form
η(t) = η̂eλ t

where η̂ and λ satisfy Equation (13.18). It is not a coincidence that Equation (13.18)
is the equation for the eigenvalues and eigenvectors of the matrix A; in fact, one of
the primary uses of eigenvalue and eigenvector computations is to solve systems of
first-order, linear, constant-coefficient differential equations.

Recall that the procedure is to compute the λ values that satisfy Equation (13.18)
by observing that the equation only has solutions for nonzero η if

det(A−λ I) = 0.

Once the values for λ are determined, each value is substituted into Equation (13.18)
and the corresponding eigenvector η̂ is computed. Various procedures are necessary
depending upon whether the eigenvalues are real or complex and whether they are
repeated. A compete consideration of all these cases appears in Chapter 6, a sum-
mary of which is as follows.

Theorem 13.1. For the linear, homogeneous, constant-coefficient system of n first-
order ordinary differential equations

ξ̇ = Aξ ,

if λi are the eigenvalues of A and ξ̂ i are the corresponding eigenvectors, then the
general solution ξ (t) depends upon the nature of the eigenvalues as follows.

1. If the eigenvalues are distinct, then

ξ (t) = c1ξ̂ 1eλ1t + c1ξ̂ 2eλ2t + · · ·cnξ̂ neλnt .

2. If there are any complex eigenvalues, say λi and λi+1 = λ i with complex conju-

gate eigenvectors ξ̂ i and ξ̂ i+1 = ξ̂ i, respectively, then the two terms in the general
solution corresponding to λi and λi+1 satisfy
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ciξ̂ ieλit + ci+1ξ̂ i+1eλi+1t

= k1eμt
(

ξ̂ i
r cosωt − ξ̂ i

i sinωt
)

+ k2eμt
(

ξ̂ i
r sinωt + ξ̂ i

i cosωt
)

,
(13.19)

where λi = μ + iω and ξ̂ i = ξ̂ i
r + iξ̂ i

i . It is usually more convenient to have terms
in the general solution to be in terms of the trigonometric functions instead of
the complex exponentials; hence, it is preferable to replace the left-hand side
of Equation (13.19) with the right-hand side for the corresponding terms in the
general solution.

3. For any repeated eigenvalues, if λi is repeated m times, then there will be m
solutions to

(A−λiI)m ξ̂ = 0. (13.20)

Then for each of the m solutions to Equation (13.20), a term of the form

ξ (t) =
(

ξ̂ + t (A−λiI) ξ̂ +
t2

2!
(A−λiI)2 ξ̂ + · · ·+ tm−1

(m−1)!
(A−λiI)m−1 ξ̂

)

eλit

will appear in the general solution and the general solution will be a linear
combination of these.

Considering the special case where the system is two-dimensional, we have a
limited number of possible combinations for the eigenvalues and can enumerate
the possible forms of the solutions in the phase plane. For inferring the nature of
solutions for nonlinear systems near an equilibrium point, the following are the cases
that are useful.

1. If both eigenvalues are real, the equilibrium point is called a node.

a. If both eigenvalues are real and negative, then all of the solutions are attracted
to the equilibrium point, which is called a stable node.

b. If both eigenvalues are real and positive, then all of the solutions are repelled
by the equilibrium point, which is called a unstable node.

c. If both eigenvalues are real and one is positive and one is negative, almost
all solutions are repelled from the equilibrium point, which is called a saddle
node.

2. If either of the eigenvalues is complex, then they both must be and they must be
a complex-conjugate pair. Because the solutions contain sine and cosine terms,
the solutions are characterized by spirals.

a. If the real part of the eigenvalues is negative, then the solutions spiral into the
equilibrium point, which is called a stable spiral.

b. If the real part of the eigenvalues is positive, then the solutions spiral away
from the equilibrium point, which is called an unstable spiral.

Remark 13.1. The only remaining possibilities for the two-dimensional case are
where the real part of some or all of the eigenvalues is zero. These correspond to
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neutrally stable systems and in such a case it is not surprising that the linear approx-
imation does not provide any useful information regarding whether the equilibrium
is stable. This is because it is the higher-order nonlinear terms that dictate the sta-
bility, even near the equilibrium. These are explored further in the exercises. An
interested reader is referred to center manifold theory, for example, in [54], which
is a systematic way to convert a system with eigenvalues with zero real part into a
form where an analysis of the nonlinear terms and their effect on stability is often
possible. An equilibrium point that has a nonzero real part is called hyperbolic.

It is beyond the scope of this book to prove it, but what would be expected is true.
Namely, sufficiently close to a hyperbolic fixed point, the solutions to the linear
equation approximate the solutions to the nonlinear equation. If the fixed point is
nonhyperbolic, then we cannot infer anything from the linearization.

Thus, in order to be able to qualitatively describe the nature of the nonlinear
solutions near equilibria, we need to investigate the nature of the linear solutions for
the possible combinations of eigenvalues for hyperbolic fixed points. Either in the
following examples or the exercises, each of the possible cases is considered.

Example 13.14. This is an example of a stable node. Consider

ẍ + 3ẋ+ 2x = 0.

Converting to two first-order equations gives

d
dt

[

x
ẋ

]

=
[

0 1
−2 −3

][

x
ẋ

]

which has eigenvalues λ1 = −1 and λ2 = −2 and associated eigenvectors

ξ̂ 1 =
[

1
−1

]

, ξ̂ 2 =
[−1

2

]

,

so [

x(t)
ẋ(t)

]

= c1

[

1
−1

]

e−t + c2

[−1
2

]

e−2t .

Observe the following.

1. If the initial conditions are exactly along one of the eigenvectors, then the con-
stant in the general solution corresponding to the other one will be zero, and
hence the trajectory in the phase plane will stay on that eigenvector and go
straight to the origin.

2. If the initial conditions are not exactly along one of the eigenvectors, then both
c1 and c2 will be nonzero, and the solution will be a combination of the two
terms. Considering the two eigenvectors are basis elements, then c1 and c2 can
be thought of as how far off the other eigenvector the solution is. Because e−2t

decays faster than e−t , the component of the solution corresponding to the eigen-
vector for λ2 = −2 will shrink faster, and hence the solutions in the phase plane
are curved toward the eigenvalue with the smaller magnitude.
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These observations are both illustrated in the phase plane for the system, illustrated
in Figure 13.14. An unstable node would have a similar geometry, but with the
trajectories moving in the opposite direction, away from the origin.
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1

-1 -0.5 0 0.5 1

ẋ(
t)

x(t)

Fig. 13.14 Phase plane for the stable node in Example 13.14. The thicker lines are the eigenvectors.

Example 13.15. This is an example of a system with a saddle node at the origin.
Consider

ẍ + ẋ−2x = 0,

which is equivalent to
d
dt

[

x
ẋ

]

=
[

0 1
2−1

][

x
ẋ

]

which has eigenvalues of λ1 = 1 and λ2 = −2 and associated eigenvectors

ξ̂ 1 =
[

1
1

]

, ξ̂ 2 =
[−1

2

]

.

Hence the solution is
[

x(t)
ẋ(t)

]

= c1

[

1
1

]

et + c2

[−1
2

]

e−2t .

If the initial condition is exactly on the second eigenvector, then c1 = 0 and the
solution will go to the origin. For any other initial condition, c1 �= 0 and, due to the
et term, that component will increase in magnitude. The phase plot is illustrated in
Figure 13.15.
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Fig. 13.15 Phase plane for the saddle node in Example 13.15. The thicker lines are the eigenvec-
tors.

Example 13.16. This is an example of a stable spiral. Consider

ẍ + 2ẋ+ 17x = 0

which is equivalent to
d
dt

[

x
ẋ

]

=
[

0 1
−17 −2

][

x
ẋ

]

,

which has eigenvalues λ1 = −1 + 4i and λ2 = λ 1 = −1−4i. Because the real part
is negative, the solutions in the phase plane are stable spirals, as is illustrated in
Figure 13.16. If the real part were positive, the spirals would still be oriented in the
clockwise direction, but would spiral out from the origin instead of into it.

Now we can put all this to use to predict the behavior of a nonlinear system near
its equilibrium points in the phase plane.

Example 13.17. Consider the second-order, nonlinear differential equation

ẍ + ẋ−2x + x2 = 0, (13.21)

which is equivalent to
d
dt

[

x
ẋ

]

=
[

ẋ
−ẋ+ 2x− x2

]

. (13.22)

The equilibrium points are where the right-hand side of Equation (13.22) is zero.
In particular
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Fig. 13.16 Phase plane for a stable spiral in Example 13.16.

[

ẋ
−ẋ+ 2x− x2

]

=
[

0
0

]

⇐⇒
[

x
ẋ

]

=
[

0
0

]

,

[

0
2

]

. (13.23)

The Jacobian is
∂ f
∂x

=
[

0 1
2−2x −1

]

.

Near (x, ẋ) = (0,0),
d
dt

[

x
ẋ

]

=
[

0 1
2 −1

][

x
ẋ

]

which has eigenvalues λ1 = 1 and λ2 = −2 and associated eigenvectors

ξ̂ 1 =
[

1
1

]

, ξ̂ 2 =
[−1

2

]

.

Thus, near the equilibrium point, near the vectors ±ξ̂ 1 the trajectories will be mov-
ing away from the origin and near the vectors ±ξ̂ 2 the trajectories will be moving
toward the origin.

Near (x, ẋ) = (2,0)
d
dt

[

x
ẋ

]

=
[

0 1
−2 −1

][

x
ẋ

]

which has eigenvalues λ = −1/2± i
√

7/2. Because the real part is negative, trajec-
tories are clockwise spirals that spiral into the point (x, ẋ) = (2,0).

The phase portrait for the nonlinear system is illustrated in Figure 13.17, which
is characterized by the features described above that are based on the linearization.
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Fig. 13.17 Phase portrait for nonlinear system in Example 13.17.

13.5 Harmonic Balance and Describing Functions

The previous sections simplified nonlinear ordinary differential equations by deter-
mining a linear differential equation that approximated the nonlinear equation. The
linear equation, of course, can be solved, which provided a means to determine cer-
tain aspects of the structure of the solution to the nonlinear equation, particularly
near equilibrium points. The linearized equation was equivalent to considering a
Taylor series for the nonlinear terms, and truncating the series after the linear terms.

In contrast, this section focuses on a similar idea, which is to consider a Fourier
series for a potential periodic solution, but limiting the analysis to the first term, or
fundamental frequency term, in the Fourier series. Because it is based on an analysis
tool that is primarily applicable to periodic functions, this method is particularly
useful for computing approximations to periodic solutions, which, in the case of
nonlinear equations with no forcing, are limit cycles.

13.5.1 Harmonic Balance

The basic idea is to approximate a limit cycle solution with a harmonic solution.
Referring back to Example 13.5 and the solutions illustrated in Figure 13.6, this
method would be to use a function of the form

x(t) = Acosωt
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and finding the amplitude A and frequency ω that provide the best approximation
to the steady-state periodic solution. From Figure 13.6, by inspection, we would
expect such an analysis to yield A ≈ 2 and ω ≈ 1. The means by which this is done
is to substitute a solution of the form x(t) = Acosωt into the nonlinear equation,
compute the Fourier series for the nonlinear terms,2 and equate the coefficients of
the fundamental frequency terms. This is called harmonic balance and the following
example illustrates this approach.

Example 13.18. To find an approximation to the frequency and amplitude of the
limit cycle solution to the van der Pol equation

ẍ +
(

x2 −1
)

ẋ + x = 0 (13.24)

assume a solution of the form

x(t) = Acosωt

and substitute to determine A and ω . Differentiating the assumed solution gives

ẋ +−ωAsinωt, ẍ = −ω2Acosωt

and substituting into Equation (13.24) gives

−ω2Acosωt +
(

(Acosωt)2 −1
)

(−ωAsinωt)+ Acosωt = 0,

and rearranging

A
(

1−ω2)cosωt + ωAsinωt = −ωA3 (cos2 ωt
)

sinωt. (13.25)

If we are interested in harmonic solutions in terms of the fundamental frequency,
the term on the right-hand side can be expanded in a Fourier series to express it as a
linear combination of individual harmonic functions. In other words, if we express

−ωA3 (cos2 ωt
)

sinωt = a1cosωt +b1sinωt +a2cos2ωt +b2sin2ωt + · · · (13.26)

then, because cosωt and sinωt are linearly independent functions, we can equate
the coefficients of the cosωt and sinωt terms to obtain expressions for A and ω .

To proceed, follow the usual approach for computing a Fourier series by mul-
tiplying both sides of Equation (13.26) by cosωt and integrating from 0 to 2π/ω
with respect to t to find the ai coefficients and similarly by multiplying by sinωt
and integrating to find the bi. In detail, making use of the orthogonality property of
sine and cosine functions, and hence dropping all terms in the Fourier series except

2 Alternatively, and much more popular in nonlinear analysis texts, is to use trigonometric identities
to manipulate the nonlinear terms to be of a form containing terms with the fundamental frequency
and higher modes. This approach is not systematic and also does not apply to the types of nonlin-
earities we consider subsequently for typical nonlinear elements in control systems, therefore we
use the Fourier series approach.
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cosωt, the left-hand side is

∫ 2π
ω

0
cosωt

[−ωA3 (cos2 ωt
)

sinωt
]

dt = 0

and the right-hand side is

∫ 2π
ω

0
a1cos2 ωtdt = a1

π
ω

.

Hence, a1 = 0. Similarly, multiplying each side by sinωt and integrating gives, for
the left-hand side

∫ 2π
ω

0
sinωt

[−ωA3 (cos2 ωt
)

sin ωt
]

dt = A3 π
4

,

and for the left-hand side

∫ 2π
ω

0
b1sin2 ωtdt = b1

π
ω

.

Hence, b1 = A3ω/4.
Returning to Equation (13.25), and substituting the Fourier series for the right-

hand side gives

A
(

1−ω2)cosωt + ωAsinωt

= A3 ω
4

sinωt + a2 cos2ωt + b2 sin2ωt + a3 cos3ωt + b3 sinωt + · · ·

or dropping the higher harmonics

A
(

1−ω2)cosωt + ωAsinωt ≈ A3 ω
4

sinωt

which gives the two equations

A
(

1−ω2)= 0, ωA = A3 ω
4

,

which yield for ω and A,
ω = 1, A = 2,

which are exactly what we determined by inspection.
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13.5.2 Describing Functions

In the chapters on controls, all the analysis was focused on systems composed en-
tirely of linear components. In addition to plants that are nonlinear in nature, typical
control components, especially actuators, may also be nonlinear. An example would
be a control surface, such as an aileron, on an aircraft. Due to physical limitations,
there is a limit on how far it may be deflected. Another example would be a motor
that has a limit on the amount of torque it can produce, perhaps due to a limit on the
current that may be provided by the circuit that drives it. Both of these are examples
of saturation, which is a nonlinear phenomenon. Figure 13.18 illustrates a satura-
tion function where the output is equal to the input for small values of the input, but
is limited to some maximum value, which can be described by

sat(x,r) =

⎧

⎪⎨

⎪⎩

r, x ≥ r

x, −r < x < r

−r, x ≤−r

for a positive limit, r > 0.
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Fig. 13.18 Saturation function, sat(x, r), with r = 3.

Another type of common nonlinearity would be a dead zone where there is a
region around zero with no output. A simple example would be a force pushing on
a mass that is resting on a surface, where forces with small magnitudes are less than
the friction between the mass and the surface. A dead zone function would be of the
form



13.5 Harmonic Balance and Describing Functions 659

dead(x,r) =

⎧

⎪⎨

⎪⎩

0, |x| < r,

x− r, r ≤ x,

x + r, x ≤−r,

for a positive limit, r > 0, and is illustrated in Figure 13.19 for r = .2.
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Fig. 13.19 Dead zone function, dead(x, r), with r = 0.2.

A final type of nonlinearity we consider is illustrated in Figure 13.20. Consid-
ering the aileron example again, this could model the fact that when the desired
position of the aileron is very close to zero, the input moving the aileron becomes
very small, and is unable to overcome the internal friction in the mechanism. The
function is given by

f riction(x,r) =

{

x + r, x ≥ 0,

x− r, x < 0,

for a positive limit, r > 0.
By way of example, let us now consider the effect of such a nonlinearity in a

feedback system.

Example 13.19. Let us consider attempting to control the position of the mass il-
lustrated in Figure 13.21 using PI control. Assume that the desired location xd is a
constant, and hence

f (t) = kp (xd − x(t))+ ki

∫ t

0
(xd − x(τ))dτ.

Assume m = 10, k = 4, b = 3 and that a controller has already been designed with
kp = 0.5 and ki = 0.5. Assume that the unit step response, illustrated in Figure 13.22
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Fig. 13.20 Coulomb or viscous friction, f riction(x, r), with r = 0.4.

is deemed satisfactory. In addition to keeping that mass at xd = 1, it often is neces-
sary for the controller to operate at xd = 0. The response of the system with x(0) = 1
and ẋ(0) = 0 is also illustrated in Figure 13.22, and is also deemed satisfactory.

Fig. 13.21 System for Example 13.19.

m

b

k

f (t)

x(t)

However, now assume that the real system has an actuator with a response like
that illustrated in Figure 13.20. If r = 0.5, then the unit step response and regulation
to xd = 0 are illustrated in Figure 13.23. The unit step response appears nearly iden-
tical; however, there are persistent steady-state oscillations about xd = 0, which for
nearly any application would be undesirable. This is a limit cycle, and we can use
the method of harmonic balance to attempt to predict when such oscillations will
exist.

Without the nonlinear friction element, the system in the previous example could
be represented by the block diagram illustrated in Figure 13.24, where it is assumed
that the actuator can provide whatever force is commanded by the controller. It
is tempting to put a block between the controller kGc(s) and the plant Gp(s) to
represent the nonlinearity. However, if the definition and properties of the elements
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Fig. 13.22 Unit step response and regulation to zero for system in Example 13.19.
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Fig. 13.23 Unit step response and regulation to zero for system in Example 13.19.

of block diagrams, which were developed in Section 8.6 are not to be violated, then
we cannot do that, at least without a lot more work. At this point, consider the
question of what is required for sustained oscillations, that is, a limit cycle solution,
to exist when the input R(s) = 0 and there are some nonlinear actuator dynamics.

We have already considered this problem in the harmonic balance analysis above.
Assume the plant is stable and the output to the plant has a limit cycle solution when
the reference input R(s) = 0. The only way for the plant with all left half-plane poles
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Fig. 13.24 Feedback block diagram.

to exhibit steady-state oscillations is for its input to be harmonic. Hence, assume the
input to the plant is given by

F(s) =
Aω

s2 + ω2 ⇐⇒ f (t) = Asinωt.

In Section 9.7, we studied the nature of the steady-state solution of a transfer func-
tion with a sinusoidal input. Specifically, for X(s) = F(s)Gp(s), the Laplace trans-
form of the steady-state solution is completely specified by the real and imaginary
components of Gp (iω). Specifically,

Gp(s) = A

(

Im(Gp(iω))
ω

s2 + ω2 + Re(Gp(iω))
s

s2 + ω2

)

+ other stable terms.

and in the time domain

xss(t) = A
∣
∣Gp(iω)

∣
∣sin(ωt + φ) , tanφ =

ImGp(iω)
ReGp(iω)

.

If the input is zero, then the error is −X(s), and because in steady-state X(s)
is harmonic, then the same thing holds for the output of the controller, namely in
steady-state

fcss(t) = −A
∣
∣Gp (iω)

∣
∣ |Gc (iω)| sin(ωt + φ) , tanφ =

Im(−Gp(iω)Gc(iω))
Re(−Gp(iω)Gc(iω))

.

(13.27)
Now we must consider the effect of the nonlinearity and what we must have for

harmonic balance is that that the first mode of the output of the nonlinearity with an
input given by Equation (13.27) be equal to what we started with; namely,

f (t) = Asinωt.

To proceed, we could compute the first mode with these specific inputs; alternatively
and more generally, we compute the magnitude and phase of the fundamental mode
of the output of the nonlinearity to an input of arbitrary magnitude and phase, and
then match those to the properties of the system, which are manifested in the product
Gp (iω)Gc (iω) in the input.

Definition 13.4. For a nonlinear element, f (x), if a1 and b1 are the coefficients of
the fundamental cosine and sine terms, respectively, in the Fourier series of the
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output of f (x) to a harmonic input with magnitude M and frequency, ω , that is,

f (M sinωt) = a1cosωt + b1sinωt + a2cos2ωt + b2sin 2ωt + · · ·

then the describing function N is given by

|N| =
√

a2
1 + b2

1

M
, ∠N = tan−1 a1

b1
.

Of course, the describing function, in general, depends on both M and ω . How-
ever, for all the nonlinearities considered in this text, the describing function only
depends on M. The text, [42] contains an excellent exposition on describing func-
tions and is recommended for further reading.3 Thus, henceforth we write N(M) to
indicate the dependence of the describing function on the magnitude of the input.

Based on the discussion preceding the definition of a describing function, in order
to have harmonic balance, we simply need

∣
∣Gp (iω)Gc (iω)

∣
∣=

1
|N(M)|

and
∠(Gp (iω)Gc (iω)) = −∠N(M),

which is identical to requiring that

Gp (iω)Gc (iω) = − 1
N(M)

as complex numbers. Finally, observe that a Nyquist contour is a plot of the left-
hand side of this equation. If we plot −1/N on the same plot, then the terms are
equal where the curves intersect. The magnitude of the limit cycle will be the value
of M so that N(M) is at the intersection point and the frequency is the value of ω so
that the product Gp (iω)Gc (iω) is at the intersection point.

Example 13.20. Consider the friction nonlinearity with r = 0.5, and fc(t)= M cosωt.
Then

f riction( fc(t)) = f riction(M sinωt)

when M = 0.25, 0.5 and 1 with ω = 1 is illustrated in Figure 13.25.
The input to the friction nonlinearity is

fc(t) = M sinωt

and we represent the output by the Fourier series

3 Note that the citation is for the first edition of the text. Unfortunately, that material was apparently
removed from subsequent editions.
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Fig. 13.25 Output of the friction function with r = 0.5 for various magnitude inputs and fixed
frequency.

f riction(sinωt) = a1 cosωt + b1 sinωt + a2 cos2ωt + b2 sin2ωt + · · · .

Multiplying both sides of the equation by cosωt and integrating with respect to t
from 0 to 2π/ω gives then

a1
ω
π

=
∫ 2π

ω

0
(cosωt) f riction(M sin ωt)dt

=
∫ π

ω

0
(cosωt)(r + M sin ωt)dt +

∫ 2π
ω

π
ω

(cosωt)(−r + M sinωt)dt

= 0.

Similarly

b1
ω
π

=
∫ 2π

ω

0
(M sin ωt) f riction(sin ωt)dt

=
∫ π

ω

0
(sinωt)(r + M sin ωt)dt +

∫ 2π
ω

π
ω

(sinωt)(−r + M sinωt)dt

=
4r + Mπ

ω
.

Hence,

a1 = 0, b1 = M +
4r
π

.

Also,
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∠N(M) = tan−1 0

M + 4r
π

= 0.

Hence, the describing function is

N(M) = 1 +
4r

Mπ
,

which is a positive real number, so ∠N(M) = 0.

It is left as an exercise to show that the describing functions for the other nonlin-
earities are as follows.

• Saturation:

N =
2
π

(

sin−1 r
M

+
r
M

√

1−
( r

M

)2
)

, (13.28)

• Dead zone:

N = 1− 2
π

(

sin−1 r
M

+
r
M

√

1−
( r

M

)2
)

. (13.29)

See [41] for more nonlinearities with slightly more general formulations.
Using the result from the previous example, we can plot the Nyquist contour for

the plant and controller and find the intersection, if any, with −1/N(M) to determine
an approximate magnitude and frequency for the limit cycle.

Example 13.21. Returning to Example 13.19, the transfer function for the plant and
controller are

Gp(s) =
1

10s2 + 3s+ 4
, Gc(s) = 0.5

(

s+
1
s

)

.

The Nyquist contour for Gp(s)Gc(s) is illustrated in Figure 13.26, along with the
describing function, which is a straight line starting at the origin and ending at s =
−1 as M → ∞.

Because the curves intersect, there is a limit cycle. From the Nyquist contour,
we need the frequency where Gp (iω)Gc (iω) is negative and real, which can be
determined by setting the imaginary component to zero

Gp (iω)Gc (iω) = 0.5
iω + 1

−10(iω)3 + 3(iω)2 + 4iω

= 0.5
iω + 1

−3ω2 + iω (4−10ω2)

(

−3ω2 − iω
(

4−10ω2
)

−3ω2 − iω (4−10ω2)

)

=
ω
(

ω −10ω3 + i
(

7ω2 −4
))

2(−3ω2 − iω (4−10ω2))2 .

Hence, for the imaginary part to be negative
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7ω2 −4 = 0 =⇒ ω =

√

4
7
≈ 0.76,

which is the frequency of the limit cycle in Figure 13.23.
To determine the amplitude, note that the curves intersect at approximately s =

−0.3. Hence, we need to compute the magnitude, M where −1/N(M) =−0.3. Thus

− 1

1 + 4(0.5)
πM

= 0.3 =⇒ M ≈ 0.27,

which is the magnitude of the limit cycle in Figure 13.23.
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Fig. 13.26 Nyquist plot and describing function for Example 13.21.

13.6 Introduction to Local Bifurcation Analysis

Another phenomenon characteristic of nonlinear systems is that of a bifurcation
which is a qualitative change in the nature of the solution to a differential equation
as some parameter is varied. This section presents a catalog of typical bifurcations
by way of examples. It is not intended to be a complete exposition on the subject;
for that, interested readers are referred to [22, 54]. The examples are of the simplest
type: namely, first-order and generally solvable.
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13.6.1 Saddle-Node Bifurcations

Consider the first-order differential equation

ẋ = −x2 + μ . (13.30)

The equilibria for this equation are x0 =
√μ if μ ≥ 0. If μ < 0 there are no equi-

libria. These equilibrium values are plotted as a function of μ in Figure 13.27. The
parameter μ is commonly called the bifurcation parameter.
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Fig. 13.27 Equilibrium values for Equation (13.30).

About x0 the linear approximation is

ẋ +
(

x2
0 + 2x0 (x− x0)

)− μ = 0.

Substituting x0 = ±√μ gives

ẋ±2
√

μx = 2μ ,

which has the general solution

x(t) = ce∓2
√μt +

√
μ ,

which is stable for +
√μ and unstable for −√μ . These are indicated in Figure 13.27

with a solid line for the stable upper branch and a dashed line for the unstable lower
branch.

Solutions for various initial conditions and μ = −0.1 are illustrated in Fig-
ure 13.28. From Equation (13.30), if μ < 0, ẋ is always negative. Solutions for
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Fig. 13.28 Solutions to Equation (13.30) for μ = −0.1 and for x(0) = −0.1,−0.01,0.01,0.1
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Fig. 13.29 Solutions to Equation (13.30) for μ = 0.5 and for x(0) = 2.0,0.5,0.0,−0.9,−1.1.

various initial conditions and μ = 0.5 are illustrated in Figure 13.29. Note that so-
lutions that start with x(0) > −√μ are attracted to the upper stable equilibrium.
Solutions with x(0) < −√μ are unstable.

Of course the main point of much of mathematics is generalization, and for the
case at hand we would like to determine conditions on an equation of the form

ẋ = f (x,μ) (13.31)
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that would guarantee the existence of a saddle-node bifurcation, which are as fol-
lows.

• The curve of equilibrium points in Figure 13.27 passed through the origin. This
would require that

f (0,0) = 0. (13.32)

• Referring to Figure 13.27, if we are able to solve for μ as a function of x, because
the curve is tangent to the x-axis at the origin,

dμ
dx

= 0. (13.33)

Also, because the curve is entirely to one side of the x-axis, it is not an inflection
point, which requires that

d2μ
dx2 �= 0. (13.34)

In the simple example above, we were able to solve for μ as a function of x;
however, if the equation is more complicated with many more higher-order terms,
this may not be possible. Hence, we derive conditions on f (x,μ) that will ensure
that the two conditions in Equations (13.33) and (13.34) are met. If we let μ =
μ(x) along the curve of equilibrium points, then

f (x,μ (x)) = 0,

and
d f
dx

=
∂ f
∂x

+
∂ f
∂ μ

dμ
dx

. (13.35)

This is zero inasmuch as f (x,μ (x)) = 0, and solving for dμ/dx gives

dμ
dx

= −
∂ f
∂x
∂ f
∂ μ

.

Evaluating this at (x,μ) = (0,0) gives

dμ
dx

(0) = −
∂ f
∂x (0,0)
∂ f
∂ μ (0,0)

.

For this to be zero, we need

∂ f
∂x

(0,0) = 0, (13.36)

and
∂ f
∂ μ

(0,0) �= 0. (13.37)
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• Differentiating Equation (13.35) again lets us satisfy Equation (13.34). In partic-
ular,

d2 f
dx2 =

∂ 2 f
∂x2 + 2

∂ 2 f
∂x∂ μ

dμ
dx

+
∂ 2 f
∂ μ2

(
dμ
dx

)2

+
∂ f
∂ μ

d2μ
dx2 = 0. (13.38)

Because
dμ
dx

(0) = 0,

if we evaluate Equation (13.38) at (x,μ) = (0,0), we get

∂ 2 f
∂x2 (0,0)+

∂ f
∂ μ

(0,0)
d2μ
dx2 (0) = 0.

Hence,

d2μ
dx2 (0) = −

∂ 2 f
∂x2 (0,0)
∂ f
∂ μ (0,0)

which we need to be nonzero. Hence for a saddle-node bifurcation

∂ 2 f
∂x2 (0,0) �= 0. (13.39)

The denominator was previously required to be nonzero.

Hence, any first order ordinary differential equation of the form of Equation (13.31)
that satisfies Equations (13.32), (13.36), (13.37), and (13.39) will have the following
features near the origin.

1. For one sign of μ all solutions will be unstable.
2. For the other sign of μ the parabola of equilibrium points will exist one of which

will be stable and the other unstable. Between the branches the solutions will be
attracted to the stable branch. Outside the branches, for values of x on the stable
side, the solutions will be attracted to the stable branch; conversely, for values of
x outside the unstable branch, solutions will be unstable.

The application of this result is shown in the following example.

Example 13.22. Consider the one-dimensional system

ẋ = 3μ + 2x2 + 6μx + x4 + x5. (13.40)

We check each of the conditions for a saddle-node bifurcation.

• By direct substitution f (0,0) = 0, Equation (13.32) is satisfied.
• Checking Equation (13.36) gives

∂ f
∂x

= 4x + 6μ + 4x3 + 5x4, =⇒ ∂ f
∂x

(0,0) = 0.
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• Checking Equation (13.37) gives

∂ f
∂ μ

= 3 + 6x, =⇒ ∂ f
∂ μ

(0,0) = 3 �= 0.

• And finally, checking Equation (13.39) gives

∂ 2 f
∂x2 = 4 + 12x2 + 20x3, =⇒ ∂ 2 f

∂x2 (0,0) = 4 �= 0.

Hence, we know that near the origin when μ switches sign on one side the system
will have no fixed point and on the other it will have two fixed points, one stable and
one unstable. Numerically solving Equation (13.40) for μ < 0 for various initial
conditions is illustrated in Figure 13.30. Note that the stable branch is negative and
the unstable branch is positive. Figure 13.31 illustrates that all solutions for μ > 0
are unstable. Note that both the sign for μ corresponding to the parabola of fixed
points and the stable and unstable branches of fixed points are different from those
in the example used to introduce the saddle-node bifurcation, which is permissible
because nothing in the derivation of the conditions for the existence of this bifur-
cation required them to be one way or the other. Also, because of the higher-order
terms, the structure is not exactly symmetric about x = 0.
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Fig. 13.30 Solutions for Example 13.22 for μ = −0.05.
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Fig. 13.31 Solutions for Example 13.22 for μ = 0.05.

13.6.2 Pitchfork Bifurcations

Consider the first-order differential equation

ẋ + x3 − μx = 0. (13.41)

This equation is actually separable, but the solution is not in a convenient form for
analysis. Also, the solution is not even needed for present purposes.

The way we proceed is to determine the equilibrium point(s) and compute a linear
approximation about each one. For Equation (13.41), the equilibrium points satisfy

x3
0 − μx0 = 0 ⇐⇒ x0 = 0,±√

μ .

So, if μ ≤ 0 there is one equilibrium at x0 = 0, and if μ > 0 there are three equilibria:
x0 = 0, x0 =

√μ , and x0 = −√μ . A plot of these equilibrium values versus μ is
illustrated in Figure 13.32.

This type of bifurcation, for an obvious reason, is called a pitchfork bifurcation.
The bifurcation aspect arises from the fact that as μ changes from negative to posi-
tive values, the number of equilibria changes from one to three.

Now consider the stability of these equilibria. For any value of μ the linear ap-
proximation about the x0 = 0 equilibrium is

ẋ− μx = 0,

which has solutions of the form
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Fig. 13.32 Equilibrium values for Equation (13.41) versus μ .

x(t) = ceμt .

Clearly, for μ < 0 these solutions are stable and for μ > 0 these solutions are unsta-
ble. About x0 = ±√μ for μ > 0 the linearization is

ẋ +
(

±μ
3
2 + 3μ (x∓√

μ)
)

− μx = 0 =⇒ ẋ+ 2μx = ±2μ3/2. (13.42)

Note the solution to Equation (13.42) is

x(t) = ce−2μ ± 1
2
√

μ

which is stable regardless of the sign of ±√μ . Hence, referring back to Fig-
ure 13.32, the branches of the equilibrium solutions which are stable are indicated
by solid lines and the unstable branch is indicated by dashed lines. Observe that the
stability of the x0 = 0 equilibrium switches from stable to unstable as μ switches
from negative to positive. The two outer branches for positive μ are stable.

Plots of solutions of Equation (13.41) for μ =−0.5 and for various initial condi-
tions are illustrated in Figure 13.33. Note that the x0 = 0 equilibrium point is stable.
Solutions for μ = 0.5 are illustrated in Figure 13.34. Note that the x0 = 0 equilibrium
point is unstable, whereas, the x0 = ±1/

√
2 equilibria are stable.

A process that is similar to what we did for the saddle-node bifurcation gives the
list of conditions for a general system of the form of Equation (13.31) to have a local
pitchfork bifurcation.

1. f (0,0) = 0.
2. ∂ f

∂x (0,0) = 0.



674 13 Introduction to Nonlinear Systems

-1

-0.5

0

0.5

1

0 2 4 6 8 10

x(
t)

t

Fig. 13.33 Solutions to Equation (13.41) for μ = −0.5 and for various initial conditions.
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Fig. 13.34 Solutions to Equation (13.41) for μ = 0.5 and for various initial conditions.

3. ∂ f
∂ μ (0,0) = 0.

4. ∂ 2 f
∂x2 (0,0) = 0.

5. ∂ 2 f
∂x∂ μ (0,0) �= 0.

6. ∂ 3 f
∂x3 (0,0) �= 0.
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13.6.3 Concluding Comments

Another type of one-dimensional bifurcation is called the transcritical bifurcation,
which is characterized by two branches of equilibrium points, both of which exist for
positive and negative values of the bifurcation parameter. One branch is stable and
the other is unstable, and the stability properties switch as the bifurcation parameter
changes sign. This type of bifurcation is explored in the exercises.

Observe that a condition for both the saddle-node bifurcation and the pitchfork
bifurcation is that ∂ f/∂x = 0 when evaluated at (x,μ) = (0,0). For a single, first
order differential equation, this term is essentially the 1×1 Jacobian for the system,
and its value is the eigenvalue.4 It should make some sense that an eigenvalue must
be approaching zero as the bifurcation parameter crosses zero, or else there would
not be any qualitative change in the stability properties of the system. Considering
this as a generic feature of bifurcations introduces the generic feature of Hopf bi-
furcations, which may occur when a complex conjugate pair of eigenvalues crosses
the imaginary axis, which corresponds to having a zero real part at that point. Not
surprisingly due to the nature of complex-conjugate eigenvalues, Hopf bifurcations
are characterized by the existence of small-amplitude limit cycles.

13.7 Exercises

13.1. Consider ẍ+ x− x3 = 0.

1. Write this as two first-order ordinary differential equations.
2. Determine all the equilibrium points.
3. Using the Jacobian, determine the differential equation that is the best linear

approximation about the equilibrium that is farthest to the right, that is, about the
equilibrium point that has the largest value.

4. Determine the general solution to the linear approximation.
5. Sketch the phase portrait near the equilibrium point. Include the eigenvectors of

the Jacobian matrix evaluated at the equilibrium point in the sketch.

13.2. Consider

1. ẍ+ ẋ− x + x3 = 0.
2. ẍ+ ẋ+ x− x3 = 0.
3. ẍ+ ẋ−2x− x2 + x3 = 0.
4. ẍ+ ẋ+ 2x + x2− x3 = 0.

For each equation do the following.

• Find the equilibrium points.

4 For a 1×1 matrix, the value in the matrix is also the eigenvalue because, when there is only one
equation, A−λ I must be zero for there to be a nonzero term such that (A−λ I) ξ̂ = 0.



676 13 Introduction to Nonlinear Systems

• Determine the stability and nature of the solutions near each equilibrium point by
computing the linear differential equations that approximate each equation near
each equilibrium.

• Based on the analysis of the linear equations, sketch the phase plane for the
system.

• Verify your sketch by using a computer package or program to compute approxi-
mate numerical solutions for various initial conditions for the nonlinear equation
and plotting them on the phase plane. Note that some of the solutions may be un-
stable, and hence for those you may have to limit the time period that the solution
method runs if the package does not automatically stop when a large number is
reached.

• Plot x(t) versus t for the nonlinear solution and the best linear approximation
near x0 = 1 for x(0) = 0.75, x(0) = 0.5, x(0) = 0.25, x(0) = 0, x(0) =−0.25, and
ẋ(0) = 1 for all the cases. Make a different plot for each set of initial conditions.
Each plot should contain two solutions, the nonlinear solution and the solution to
the linear approximation, such as in Figure 13.9.

13.3. Repeat Exercise 13.2 for

ẍ + ẋ+ x(x−2)(x−1)(x + 1)(x + 2) = 0.

13.4. Consider
ẍ + 0.2ẋ− x + x2 = 0. (13.43)

1. Determine a linear differential equation that is the best linear approximation to
Equation (13.43) near an arbitrary point x = x0.

2. For x0 = 1 determine the general solution to the linear approximation. Make a
plot in the phase plane for comparing the solution to the linear approximation and
the nonlinear equation for various initial conditions. Include plots of solutions
with initial conditions for which the solution to the linear equation is near the
solution to the nonlinear equation as well as plots where the solution to the linear
equation is not near the solution to the nonlinear equation.

3. Near x0 = 0, determine the solution to the linear approximation. Write it in the
form of

d
dt

[

x1(t)
x2(t)

]

= c1ξ̂1eλ 1t + c2ξ̂2eλ 2t ,

where ξ̂ 1 and ξ̂ 2 are vectors. Plot the two vectors on the phase plane and also
plot −ξ̂ 1 and −ξ̂ 1. Compare the solution to the linear approximation and the
nonlinear approximation for initial conditions on either side of these vectors,
that is, for initial conditions that are like the ×s illustrated in Figure 13.35.

a. Plot all the solutions where the range for the axes is x ∈ [−.5, .5] and ẋ ∈
[−.5, .5].

b. Plot all the solutions where the range for the axes is x ∈ [−2,2] and ẋ ∈ [2,2].

Note: The solutions in this problem are unstable. You may need to adjust the total
time for the numerical solution for the nonlinear equation so that the solution
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does not exceed the maximum value allowable for the simulation and plotting
program.

Fig. 13.35 Initial conditions for Exer-
cise 13.4.

ξ̂1
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x

ẋ

××

×
×

×
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×
×

13.5. Consider ẍ− sin(x) = 0.

1. Determine the equilibrium points for this equation.
2. Determine a linear differential equation that is an approximation for this nonlin-

ear equation near the equilibrium that is closest to the origin.
3. Determine the solution to the best linear approximation.
4. On the phase plane sketch the solutions near the equilibrium that is closest to the

origin.

13.6. This exercise illustrates that when there is an eigenvalue of a system that is
zero, the equilibrium may be stable, unstable, or neutrally stable.

1. Consider
ẍ + ẋ3 + x = 0.

By using either a Jacobian or a Taylor series for the ẋ3 term, determine a linear
approximation to this system near ẋ = 0. Does the linear approximation grow,
decay, or is it neutrally stable? For x(0) = 0.25 and ẋ(0) = 0, plot the solution
to the linear approximation and a numerical solution determined using a com-
puter package. Does the equilibrium point at (x, ẋ) = (0,0) appear to be stable,
unstable, or neutrally stable for the nonlinear system?

2. Repeat the previous step for

ẍ + ẋ2 + x = 0.

13.7. A feature of nonlinear equations that is not possible for a linear equation is a
limit cycle. The Van der Pol equation,

ẍ +
(

x2 −1
)

ẋ + x = 0 (13.44)
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exhibits a limit cycle. This exercise investigates that nature of limit cycles by nu-
merically solving the nonlinear equation. Note that one way to interpret Equa-
tion (13.44) is if |x| < 1 the system has negative damping; conversely, if |x| > 1
it has positive damping. Hence, in the phase plane for small initial conditions so-
lutions should spiral out from the origin. For larger initial conditions, with positive
damping, solutions should spiral inward. Where they meet is a solution called the
limit cycle.

1. Compute approximate numerical solutions and plot them in the phase plane for
(x(0), ẋ(0)) = (0.1,0.1) and (x(0), ẋ(0)) = (3,3) and plot these solutions versus
t.

2. Now consider
ẍ +

(

1− x2) ẋ + x = 0.

Based on the interpretation of Equation (13.44) above, predict the nature of the
solutions for this equation and verify it by computing approximate numerical
solutions and plotting them on the phase plane.

13.8. Another cool feature of nonlinear equations is the possibility of subharmonic
and superharmonic responses. For a linear constant-coefficient ordinary differential
equation, if the inhomogeneous term is harmonic, then the solution of the system
has a component at the same frequency. Explain why this should be the case by
considering the method of undetermined coefficients. A nonlinear system may have
a harmonic solution that is at a different frequency than the inhomogeneous (forcing)
term.

1. Determine an approximate numerical solution to

ẍ + x + x3 = 2cos6t

with x(0) = 2 and ẋ(0) = 0. Plot the solution versus t and on the same plot, plot
the forcing term 2cos6t. Explain why this is called the subharmonic response.
Be sure to choose an appropriate interval of time over which to plot the response
to clearly illustrate the nature of the phenomenon.

2. Determine an approximate numerical solution to

ẍ+ 0.005ẋ+ x + 0.0025x3 = 6cos0.38t

with x(0) = 0 and ẋ(0) = 0. Plot the solution versus t and on the same plot,
plot the forcing term 2cos0.38t. Explain why this is called the superharmonic
response.

13.9. For some systems, it may be obvious that one or more of the variables are
strongly stable, meaning that close to an equilibrium they decay to zero quickly. For
example,

ẋ = x2y− x5

ẏ = −y + x2.
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For these equations, as long as |x| � 1, then the linear approximation for the y
equation is ẏ = −y, which has exponentially decaying solutions.

Because y(t)→ 0 quickly, it would be tempting to set y = 0 in the x equation and
study ẋ = −x5. This would lead us to conclude that x(t) → 0 also because if x > 0,
ẋ < 0 and vice versa. Such a simple approach is, unfortunately, incorrect. By using
a computer package to compute an approximate numerical solution, verify that the
origin is not a stable equilibrium point. Explain why the argument we made above
that the origin is stable is incorrect.

13.10. Consider the system illustrated in Figure 13.21.

• Pick parameter values for m, b, and k. Design a controller that has a rise time less
than one second, a 5% settling time less than one second, a percentage overshoot
less than 25%, and steady-state error less than 0.05 for a unit step input.

• Assume that the spring is not exactly linear. In fact, assume that the spring is
hardening in that the force required to compress the spring by an amount x is
actually fs(x) = k

(

x + x3/10
)

. Use your controller on this nonlinear system and
try step inputs with large and small magnitudes. Is the effect of the nonlinearity
significant? Does it affect whether the specifications are still met?

13.11. Derive the describing functions for the dead zone and saturation nonlineari-
ties provided by Equations (13.29) and (13.28), respectively.

13.12. For each of the following transfer functions

1. kGc(s)Gp(s) = 50
(s+1)(s+2)(s+3) ,

2. 100
s2+2s+4

,

3. kGc(s)Gp(s) = 5
s3+6s2+11s

,

in each case for each of the saturation, dead zone, and friction nonlinearities, use a
Nyquist plot and describing function to predict the existence of limit cycles. If there
is a limit cycle, predict its magnitude and frequency. Verify your result numerically.
For the saturation nonlinearity let r = 0.5, for the dead zone let r = 0.25, and for
friction let r = 0.33.

13.13. The equation
ẋ = μx− x2

exhibits a transcritical bifurcation. Construct the bifurcation diagram for this equa-
tion by plotting the fixed point(s) of the system versus μ . Also, analyze the stability
of the fixed points and indicate the stable portions with solid lines and the unstable
portions with dashed lines.

13.14. For each of the following first-order differential equations,

1. ẋ = 3μ + 2x2 + 6μx + x4 + x5;
2. ẋ = 3μx + 2x3 + x3 sin x + x5;
3. ẋ = 3μx + 2x3 + x3 sin x + x5 + 1;
4. ẋ = 3μx2 + 2x3 + x3 sinx + x5;



680 13 Introduction to Nonlinear Systems

5. ẋ = −3μ + 2x2 + 6μx + x4 + x5;
6. ẋ = −3μ −2x2 −6μx + x4 + x5;
7. ẋ = 3μ2 + 2x + 6μx + x4 + x5; and,
8. ẋ = 3μ −3x3 + 6x5;

determine whether the solutions exhibit the characteristics of a saddle-node bifur-
cation, pitchfork bifurcation, or neither as the parameter μ is varied. Verify your
analysis by numerically solving the equations for different initial conditions and
plotting the solutions. Remember that bifurcations are local so that you need to use
small initial conditions and small values of μ for your numerical verifications.

13.15. This problem numerically investigates a Hopf bifurcation. Consider

ẋ = −x− y + εx− z3

ẏ = 2x + y + εy− z3

ż = x + 2y− z.

1. For ε = 0.01 and ε = −0.01, and small nonzero initial conditions, make a three-
dimensional plot of an approximate numerical solution to show that the origin is
an unstable equilibrium for one case and a stable equilibrium for the other.

2. For ε = 0.01, slowly increase the initial conditions until the solution no longer
converges to the origin. Plot this solution on the same plot as for the second part
of this problem. Print the plot and sketch by hand where you think the unstable
limit cycle is. Keep the range for the plot to be between ±0.4 for all three axes.

13.16. Rayleigh’s equation

ẍ +
(

1
3

ẋ2 −1

)

ẋ + x = 0

originated in the study of violin strings. Write a computer program to determine an
approximate numerical solution for various initial conditions to show there is a limit
cycle. Use the method of harmonic balance to determine the approximate magnitude
and frequency of the limit cycle. Plot the limit cycle for the nonlinear equation on
the phase plane as well as the approximation.

13.17. Consider
ẍ+

(

x2 + ẋ2 −1
)

ẋ + x = 0.

Write a computer program to determine an approximate numerical solution for var-
ious initial conditions to show there is a limit cycle. Verify your answer using the
method of harmonic balance.

13.18. If the van der Pol equation is changed to

ẍ +
1

100

(

1− x2) ẋ + x = 0
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it has negative damping for large |x| and positive damping for small |x|, and so
it should have an unstable limit cycle. Write a computer program to determine an
approximate numerical solution for this system. Choose various initial conditions
and try to pick some very close to the limit cycle. Note that because outside the limit
cycle the system is unstable, it would be convenient to put a check in the program
that makes it terminate once x2 + ẋ2 is large.

13.19. The equation of motion for a pendulum is

θ̈ +
g
l

sinθ = 0

if θ = 0 when the pendulum is straight down.

1. Unlike a linear oscillator, the frequency of oscillation of the pendulum depends
on its amplitude. Verify this by writing a computer program to determine an
approximate numerical solution for this system and comparing the frequency of
solutions for various initial conditions. Plot solutions to demonstrate that as the
amplitude increases, the frequency decreases.

2. The method of harmonic balance can be used to find an approximate relationship
between the magnitude of the oscillations and the frequency. If we assume θ (t)=
cosωt, which, when substituted gives a term of the form sin(cosωt), therefore it
is easier to express

sinθ ≈ θ − 1
6

θ 3.

Hence, use the method of harmonic balance on the equation

θ̈ +
g
l

(

θ − 1
6

θ 3
)

= 0

to show that an approximate relationship between the frequency ω and amplitude
A is

ω ≈
√

g
l

(

1− A2

8

)

.

3. Compare this relationship with the results from your numerical simulations. Is
it better or worse than the frequency that would be obtained if the system were
linearized about θ = 0?



Appendix A
Some Complex Variable Theory

This appendix presents a very short overview of complex variable theory. An inter-
ested reader is referred to [10] for a complete exposition.

A.1 Complex Numbers

Historically, of course, imaginary numbers have a natural association with the
square root of negative numbers. We develop the definitions of complex numbers
in a more deductive manner and then show that the approach is consistent with the
more historical view.

All readers should be familiar with the usual notion that a complex number has
a real and imaginary component, where we may write

s = σ + iω ,

where s is the complex number, σ is its real part and ω is the imaginary part. A
complex number has two components, therefore it may naturally be considered an
ordered pair of numbers. The only twist is to ensure that we define multiplication
correctly.

Definition A.1. A complex number is an ordered pair of real numbers,

s = (a,b) ,

where for s1 = (a1,b1) and s2 = (a2,b2) addition is defined by

s1 + s2 = (a1 + a2,b1 + b2)

and multiplication is defined by

s1s2 = (a1a2 −b1b2,a1b2 + a2b1) .

683B. Goodwine, Engineering Differential Equations: Theory and Applications, 
DOI 10.1007/978-1-4419-7919-3, © Springer Science+Business Media, LLC 2011
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This definition is consistent with the idea of using i because if we write s1 =
a1 + ib1 and s2 = a2 + ib2 then

s1 + s2 = a1 + ib1 + a2 + ib2 = (a1 + a2)+ i(b1 + b2)

and

s1s2 = (a1 + ib1)(a2 + ib2)
= a1a2 + ib1a2 + a1ib2 + ib1ib2

= (a1a2 −b1b2)+ i(a1b2 + b1a2) .

It follows from the definition of addition and multiplication that the additive in-
verse of s = a + ib is −s = −a− ib and the multiplicative inverse is

s−1 =
(

a
a2 + b2 ,− b

a2 + b2

)

.

Using the multiplicative inverse, division may be defined as

s1

s2
= s1s−1

2 .

An alternative representation is in polar coordinates where s is represented by a
magnitude and phase which are the usual Euclidean norm and angle if the number
is plotted in its Cartesian coordinates. Referring to Figure A.1, if s = a + ib, then

r =
√

a2 + b2 = |s|

and

θ = tan−1
(

b
a

)

= ∠s,

where the inverse tangent function is able to distinguish between quadrants. The
number (angle) θ is called an argument of the complex number s. There are an
infinite number of arguments that differ by a multiple of 2π . The principal value of
the arguments is the unique value θ ∈ (−π ,π ].

The previous two equations relate the Cartesian to polar form. Going from polar
to Cartesian form is simple geometry and is given by

s = r (cosθ + i sinθ ) .

The Cartesian form is easy to use for addition and subtraction because if s1 =
a1 + ib1 and s2 = a2 + ib2, then

s1 + s2 = (a1 + a2)+ i(b1 + b2) .

However, multiplication is easier in polar form. In particular, if s1 = (r1,θ1) and
s2 = (r2,θ2), then the product is
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Fig. A.1 Cartesian, s = a+ ib and polar,
s = (r,θ) forms of a complex number s.

a

b

r

θ

Re(s)

Im(s)

s1s2 = (r1r2,θ1 + θ2)

and the quotient is
s1

s2
=
(

r1

r2
,θ1 −θ2

)

.

This multiplication rule is easily seen by writing s1 = r1 (cosθ1 + i sinθ1) and s2 =
r2 (cosθ2 + i sinθ2). Taking the product

s1s2 = r1 (cosθ1 + i sinθ1) r2 (cosθ2 + i sinθ2)
= r1r2 [cosθ1 cosθ2 − sinθ1 sinθ2 + i(sinθ1 cosθ2 + sinθ2 cosθ1)]
= r1r2 [cos(θ1 + θ2)+ i sin(θ1 + θ2)]

so
s1s2 = (r1r2,θ1 + θ2) .

A.2 Functions of a Complex Variable

The most important function of a complex variable is the exponential function due to
the fact that exponentials are solutions to homogeneous, linear, constant-coefficient,
ordinary differential equations.

Definition A.2. If s = a + ib, define

es = ea (cosb + i sinb) .

Remark A.1. Note that this is a definition, which we choose to adopt. It remains to
determine whether it is a useful definition or whether it reduces to the usual form
when the imaginary part of s is zero.
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Developing calculus for functions of a complex variable is beyond the scope of
this book. However, if we have a complex-valued function of a real variable,

f (t) = fr(t)+ i fi(t)

then it makes sense to define

d f
dt

(t) =
d fr

dt
(t)+ i

d fi

dt
(t).

The property that we must verify for exponentials is

d
dt

est =
d
dt

e(a+ib)t

=
d
dt

(

eat (cosbt + i sinbt)
)

= aeat (cosbt + i sinbt)+ beat (−sinbt + icosbt)
= aeat (cosbt + i sinbt)+ ibeat (cosbt + i sinbt)

= (a + ib)
(

eat (cosbt + i sinbt)
)

,

so the usual rule for differentiating an exponential function holds.

A.3 Partial Fraction Decomposition

This subject is not limited to the field of complex variables, but because it appears
in the process of solving for inverse Laplace transforms, it is included with the
supplemental material, which is primarily complex-variable in nature.

The use of the partial fraction decomposition in this text is exclusively for the
means of decomposing a rational function1 into a linear combination of terms that
appear in a Laplace transform table (Table 8.1). If it is possible to do this, then
it completely avoids the rather arduous exercise of evaluating the inverse Laplace
transform, which is given by Definition 8.3.

We use a partial fraction decomposition to reduce the degree of the polynomial
appearing in the denominator of a rational function, which we always assume to
be proper.2 Reducing the degree of the denominator is useful because, referring
to Table 8.1, the distinguishing features of different elements of the table are the
denominators of the functions.

The approach is to express a rational function in the form

N(s)
D(s)

=
N1(s)
D1(s)

+
N2(s)
D2(s)

+ · · ·+ Nn(s)
Dn(s)

,

1 A rational function is a function that may be written as a ratio of polynomials.
2 A rational function is proper if the degree of the numerator is less than the degree of the denom-
inator.
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where the denominators satisfy

D(s) = D1(s)D2(s) · · ·Dn(s)

and are of a desired form, that is, for our purposes of the form of the denominator
of elements in Table 8.1. The Ni(s), then are simply polynomials in s that make the
equality hold. First we state a proposition that is helpful for computing the Ni(s).

Proposition A.1. If the function is proper, then the order of each Ni(s) will be less
than the order of the corresponding Di(s).

Proof. If P(s) is a polynomial in s, let O (P(s)) denote the order of P(s). Writing
the decomposition and then putting it over a common denominator gives

N(s)
D(s)

=
N1(s)
D1(s)

+
N2(s)
D2(s)

+ · · ·+ Nn(s)
Dn(s)

=
(N1(s)D2(s)D3(s) · · ·Dn(s))+ (N2(s)D1(s)D3(s) · · ·Dn(s))+ · · ·

D1(s)D2(s) · · ·Dn(s)

=
∑n

i=1 ∏n
j=1, j �=i Ni(s)D j(s)

∏n
i=1 Di(s)

. (A.1)

At least one term in the sum in the numerator on the right in Equation (A.1) must
have the same order as N(s). Because O (N(s)) < O (D(s)), then each term in the
sum in the numerator on the left hand side of Equation (A.1) has lower order than
D(s). Because

O (P1(s)P2(s)) = O (P1(s))+O (P2(s))

then

O (D(s)) =
n

∑
j=1

O (D j(s)) .

Then, for any i ∈ {1, . . .n},

O (D(s)) > O (Ni(s)D1(s)D2(s) · · ·Di−1(s)Di+1(s) · · ·Dn(s))
= O (Ni(s))+O (D1(s))+ · · ·O (Di−1(s))

+O (Di+1(s))+ · · ·+O (Dn(s))
= O (Ni(s))+O (D(s))−O (Di(s)) .

Hence
O (Di(s)) > O (Ni(s)) .

The proof was a bit detailed, but what it tells us is that if we need to assume a
form for the numerator of one of the fractions Ni(s), the largest its order can be is
one less than the order of the denominator Di(s).

Example A.1. Compute the partial fraction decomposition for



688 A Some Complex Variable Theory

G(s) =
s+ 1

(s+ 2)(s+ 3)

so the result is a linear combination of terms appearing in Table 8.1.
Because they correspond to an entry in Table 8.1, we pick the two denominators

to be D1(s) = s + 2 and D2(s) = s + 3. Both of these have order 1 in s, thus then
each numerator must be of order 0, that is, a constant. Hence

s+ 1
(s+ 2)(s+ 3)

=
c1

s+ 2
+

c2

s+ 3
.

The task now is to determine c1 and c2 so that the equality holds. We present two
ways to do this.

1. One way would be to put the right hand side over the common denominator and
equate the resulting numerators:

s+ 1
(s+ 2)(s+ 3)

=
c1

s+ 2
+

c2

s+ 3
=

c1 (s+ 3)+ c2 (s+ 2)
(s+ 2)(s+ 3)

.

Because the equality must hold, the numerators must be equal. So

s+ 1 = c1 (s+ 3)+ c2 (s+ 2) .

Also, for this to hold for any s, the coefficient of each power of s must be equal
so

s+ 1 = (c1 + c2)s+(3c1 + 2c2)

requires
c1 + c2 = 1, 3c1 + 2c2 = 1

which gives c1 = −1 and c2 = 2. Hence,

s+ 1
(s+ 2)(s+ 3)

=
−1

s+ 2
+

2
s+ 3

.

2. Another way to determine an equation to compute the numerators is to multiply
each side of the expression by the denominator corresponding to the numerator
we want to compute and then take the limit as s approaches the value of the pole
location for that term. So for

s+ 1
(s+ 2)(s+ 3)

=
c1

s+ 2
+

c2

s+ 3

to determine c1, multiply both sides by (s+ 2) and let s →−2; that is,

s+ 1
(s+ 2)(s+ 3)

(s+ 2) =
c1

s+ 2
(s+ 2)+

c2

s+ 3
(s+ 2)

or
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s+ 1
s+ 3

= c1 +
c2

s+ 3
(s+ 2) .

Evaluating this as s →−2, then

−2 + 1
−2 + 3

= c1 +
c2

−2 + 3
(−2 + 2).

The last term is zero, therefore c1 = −1. Similarly,

s+ 1
(s+ 2)(s+ 3)

(s+ 3) =
c1

s+ 2
(s+ 3)+

c2

s+ 3
(s+ 3)

or
s+ 1

(s+ 2)
=

c1

s+ 2
(s+ 3)+ c2.

Evaluating this as s →−3 gives c2 = 2. Hence

s+ 1
(s+ 2)(s+ 3)

=
−1

s+ 2
+

2
s+ 3

.

Either approach works for complex conjugate poles as well.

Example A.2. Compute the partial fraction decomposition for

G(s) =
1

(s+ 2)(s2 + 2s+ 2)

so the result is a linear combination of terms appearing in Table 8.1. The roots for
the second term in the denominator are s = −1± i. We could factor it, but the form
(s+ 1)2 +1 is what appears in Table 8.1. Hence we wish to determine c1,c2, and c3

such that
1

(s+ 2)(s2 + 2s+ 2)
=

c1

s+ 2
+

c2s+ c3

(s+ 1)2 + 1
. (A.2)

1. Combining the terms on the right-hand side gives

1
(s+ 2)(s2 + 2s+ 2)

=
c1

[

(s+ 1)2 + 1
]

+(c2s+ c3)(s+ 2)

(s+ 2)(s2 + 2s+ 2)
,

and equating the numerators gives

1 = c1
(

s2 + 2s+ 2
)

+(c2s+ c3) (s+ 2)

= (c1 + c2)s2 +(2c1 + 2c2 + c3)s+(2c1 + 2c3) .

This equality must hold for all s, thus the coefficients of each power of s must be
equal so

c1 + c2 = 0, 2c1 + 2c2 + c3 = 0, 2c1 + 2c3 = 1,

which gives
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c1 =
1
2
, c2 = −1

2
, c3 = 0.

Hence,
1

(s+ 2)(s2 + 2s+ 2)
=

1
2(s+ 2)

− s

2
[

(s+ 1)2 + 1
] .

2. Alternatively, multiplying both sides of Equation (A.2) by s + 2 and computing
the limit as s →−2 gives

c1 = lim
s→−2

1
s2 + 2s+ 2

=
1
2
.

Similarly multiplying both sides of Equation (A.2) by s2 +2s+2 and computing
the limit as s →−1 + i gives

lim
s→−1+i

(c2s+ c3) = lim
s→−1+i

1
s+ 2

which gives

c2 (−1 + i)+ c3 =
1

−1 + i+ 2
=

1
1 + i

1− i
1− i

=
1− i

2
.

Equating the real and imaginary parts gives

−c2 + c3 =
1
2
, c2 = −1

2
,

and hence c3 = 0, which is the same answer as before.

The only real complication is when there are repeated factors in the denominator.
In that case, the assumed form for the decomposition must include separate terms
for that factor of all orders up to its multiplicity, as is illustrated in the following
example.

Example A.3. To compute a partial fraction decomposition for

G(s) =
1

(s+ 1)(s2 + 2)3 ,

we must assume

G(s) =
c1

s+ 1
+

c2s+ c3

(s2 + 2)
+

c4s+ c5

(s2 + 2)2 +
c5s+ c6

(s2 + 2)3 .

Computing all the coefficients gives

G(s) =
1

27
1

s+ 1
− 1

27
s−1

(s2 + 2)
− 1

9
s−1

(s2 + 2)2 − 1
3

s−1

(s2 + 2)3 .



Appendix B
Linear Algebra Review

This appendix reviews some basic concepts from linear algebra. In particular, the
definition of a linear vector space and transformations between them are considered.

B.1 Linear Vector Spaces

The most fundamental object in linear algebra is a vector space. A vector space is
a generalization of the usual notion of a collection of vectors in Euclidean space
and is useful too because such a generalized space will have all the properties that
the set of vectors has. Instead of simply defining a vector space, let us present a list
of those so-called useful properties and give examples of sets of objects other than
vectors that also exhibit them or examples of objects that do not satisfy them.

B.1.1 Properties of Vector Operations in the Euclidean Plane

The notation is abandoned subsequently, however, for this introductory section the
common practice of denoting vectors with bold letters is used. Although a vector
space is fundamentally a set, the important properties that define it as a vector space
are related to operations on these vectors, particularly, how they add and how they
are scaled. Specifically, define vector addition in the usual “head to tail” manner
(illustrated in Figure B.1) and define

Property B.1. Vector addition is commutative; that is, for vectors x1 and x2,

x1 + x2 = x2 + x1.

This property is illustrated in the usual way in Figure B.1.

691
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Fig. B.1 Vector addition is commutative.

x1

x1

x2

x2
x1 +x2

Example B.1. An example of an operation that is not commutative is rigid body
rotation. Consider the book illustrated on the left in Figure B.2 where the front cover
is shaded and the top is indicated by arrows. If the book is first rotated about axis x1

by an angle of 90◦ and then about axis x2 by an amount 90◦, the final orientation is
illustrated in the middle in Figure B.2. Positive directions of rotation are given by
the right-hand rule. In contrast, if the body is rotated about axis x2 by an amount 90◦
followed by a rotation about x1 by an amount 90◦, the final orientation is illustrated
on the right in Figure B.2.

x1

x2

θ1

θ2

x1

x2

x2

Fig. B.2 Two rotations of a book starting in the orientation in the left figure. The middle figure is
after a rotation about x1 and then x2 by 90◦ each time. The right figure is a rotation about x2 first
and then x1, which results in the book being in a different orientation.

If we use some sort of mathematical operation to represent these rotations, it
may not commute, because one rotation followed by another rotation is, in general,
not equal to the reverse order of rotations. It should not come as a surprise that
rigid body rotations are often represented by matrices, and one rotation followed by
another is represented by matrix multiplication, which does not commute.1 An in-
terested reader is referred to [12] for a complete exposition on rigid body kinematics
and [35] for a more advanced treatment.

1 Another popular representation for rotations is quaternions [53].
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Property B.2. Vector addition is associative; that is, if x1, x2, and x3 are vectors,
then

x1+(x2 + x3) = (x1 + x2)+x3.

An example of a nonassociative operation is the cross-product in R
3.

Example B.2. Let i, j, and k denote the usual coordinate axes in R
3. Then observing

that
i× j = k

and
i× i = 0,

then
i× (i× j) = i×k = −j.

However,
(i× i)× j = 0×k = 0.

Property B.3. Vector addition has an identity element; that is, there is a zero vector
0 such that for any vector x,

x + 0 = x.

In the case of vectors in Euclidean space, the zero vector has no length.

Property B.4. Vector addition has an inverse; that is, for each vector x, there exists
another vector denoted by −x such that

x+(−x) = 0.

In the case of vectors in Euclidean space, the additive inverse of a vector is a
vector with the same length, but with the opposite orientation.

Property B.5. Scalar multiplication distributes over vector addition. So, for vectors
x1 and x2, and a real number α ,

α (x1 + x2) = αx1 + αx2.

Example B.3. Considering the two vectors in Figure B.1 again, if we double the
sum, it is equal to doubling the length of each vector first, and then adding them.
This is illustrated on the left in Figure B.3.

Property B.6. Addition of two real numbers, a and b, distributes; that is,

(a + b)x = ax+ bx.

In other words, it does not matter if you add a and b first and then scale the vector,
or if you multiply the vector individually by a and b and take the sum.
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2x1

2x2

x1

x2

2(x1 +x2)

x1 +x2

x

3x

1.5x

1.5x

Fig. B.3 Distributive properties of vectors.

Example B.4. Considering the vector x illustrated on the right in Figure B.3, and the
scalars a = 1.5 and b = 1.5, it is the case that

(1.5 + 1.5)x = 3x,

as is illustrated on the right in Figure B.3.

Property B.7. Scalar multiplication of a vector is compatible with multiplication of
real numbers; that is, for real numbers a and b

(ab)x = a(bx) .

In other words, it does not matter if you multiply a and b together first and then
scale the vector x or if you scale the vector by one of them followed by scaling by
the other.

B.1.2 Definition and Examples of Vector Spaces

A vector space is simply any set where it is possible to add elements and scale them,
as long as the manner in which they are added and scaled have properties similar to
vector addition and scaling in Euclidean space. To add some degree of generality,
we allow the vectors to be scaled by either real or complex numbers.

Definition B.1. Let the set2 F be either R or C and let V be a set with

1. A mapping V ×V →V called vector addition and denoted by x1 + x2 for x1 and
x2 ∈V

2 The set F is generally a field, but for the purposes of this book it is always the real or complex
numbers.
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2. A mapping F×V →V called scalar multiplication and denoted by ax for a ∈ F

and x ∈V

where the mappings satisfy the following.

1. x1 + x2 = x2 + x1.
2. (x1 + x2)+ x3 = x1 +(x2 + x3).
3. there exists a 0 ∈V such that 0 + x = x for all x ∈V .
4. for each x ∈V , there exists a −x such that x+(−x) = 0.
5. (ab)x = a(bx) for all a,b ∈ F and for all x ∈V .
6. 1x = x for all x ∈V .
7. 0x = 0 for all x ∈V .
8. a(x1 + x2) = ax1+bx2 for all a ∈ F and for all x1,x2 ∈V .
9. (a + b)x = ax+bx for all a,b ∈ F and for all x ∈V .

Example B.5. Consider the set of polynomials of the independent variable t with
real coefficients and degree less than or equal to n. Denote this set by P(t,n). Any
element of P(t,n) may be expressed as

αntn + αn−1tn−1 + · · ·+ α1t + α0 ∈ P(t,n).

If addition and scalar multiplication are defined in the usual manner, that is,

(

αntn + αn−1tn−1 + · · ·+ α1t + α0
)

+
(

βntn + βn−1tn−1 + · · ·+ β1t + β0
)

= (αn + βn) tn + · · ·+(α1 + β1) t +(α0 + β0)
(B.1)

and

β
(

αntn + αn−1tn−1 + · · ·+ α1t + α0
)

= (β αn)tn + · · ·+(β α1)t +(β α0) , (B.2)

then P(t,n) is a vector space.
To actually prove this, we must verify each of the properties. This is generally a

somewhat arduous exercise, but it is worth doing at least a few times.

1. For
p1 = αntn + αn−1tn−1 + · · ·+ α1t + α0

and
p2 = βntn + βn−1tn−1 + · · ·+ β1t + β0

we may write

p1 + p2 = (αntn + · · ·+ α0)+ (βntn + · · ·+ β0) (B.3)

= (αn + βn) tn + · · ·+(α1 + β1) t +(α0 + β0) (B.4)

= (βn + αn) tn + · · ·+(β1 + α1) t +(β0 + α0) (B.5)

= (βntn + · · ·+ β0)+ (αntn + · · ·+ α0) (B.6)

= p2 + p1. (B.7)

These steps are justified as follows.
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a. The step from Equation (B.3) to (B.4) is by the definition of vector addition
in P(t,n) given by Equation (B.1).

b. The step from Equation (B.4) to (B.5) is justified because the coefficients in
the polynomial are real and real addition commutes.

c. The step from Equation (B.5) to (B.6) is by the definition of addition in P(t,n).

Observe that, basically, addition of elements in P(t,n) is defined in such a man-
ner that the commutative property of addition of real numbers gives rise to the
property that addition of two polynomials is also commutative.

2. For p1, p2, p3 ∈ P(t,n), where

p1 = αntn + · · ·+ α1t + α0

p2 = βntn + · · ·+ β1t + β0

p3 = γntn + · · ·+ γ1t + γ0

we have already that

(p1 + p2) = (αn + βn)tn + · · ·+(α1 + β1)t +(α0 + β0)

and
(p2 + p3) = (βn + γn)tn + · · ·+(β1 + γ1) t +(β0 + γ0) .

Hence,

(p1 + p2)+ p3 = ((αn + βn)+ γn) tn + · · ·+((α0 + β0)+ γ0)
= (αn +(βn + γn)) tn + · · ·+(α0 +(β0 + γ0))
= p1 +(p2 + p3) .

Again, the associative property of vector addition basically follows from the def-
inition of addition and the fact that real number addition is associative.

3. Define the zero polynomial as

p0 = 0tn + · · ·+ 0t + 0.

Then for any other
p = αntn + · · ·+ α1t + α0

we have

p0 + p = (0 + αn) tn + · · ·+(0 + α1)t +(0 + α0)
= αntn + · · ·+ α1t + α0

= p.

4. Because for any α ∈ R there exists −α ∈ R, then for any

p = αntn + · · ·+ α1t + α0 ∈ P(t,n)
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there exists a

(−p) = (−αn) tn + · · ·+(−α1)t +(−α0) ∈ P(t,n)

such that

p +(−p) = (αntn + · · ·+ α1t + α0)+ ((−αn)tn + · · ·+(−α1) t +(−α0))
= (αn −αn)tn + · · ·+(α1 −α1)t +(α0 −α0)
= 0tn + · · ·+ 0t + 0

= p0.

5. For
p = αntn + · · ·+ α1t + α0 ∈ P(t,n)

we have

(ab) p = (ab)(αntn + · · ·+ α1t + α0) (B.8)

= ((ab)αn)tn + · · ·+((ab)α1)t +((ab)α0) (B.9)

= (a(bαn))tn + · · ·+(a(bα1))t +(a(bα0)) (B.10)

= a((bαn)tn + · · ·+(bα1) t +(bα0)) (B.11)

= (a)(bp) . (B.12)

The justification for each step is as follows.

a. The step from Equation (B.8) to (B.9) is the definition of scalar multiplication
in P(t,n) given by Equation (B.2).

b. The step from Equation (B.9) to (B.10) is justified because multiplication of
real numbers is associative.

c. The step from Equation (B.10) to (B.11) is the definition of scalar multiplica-
tion in P(t,n).

6. For
p = αntn + · · ·+ α1t + α0 ∈ P(t,n)

we have

1p = 1(αntn + · · ·+ α1t + α0)
= (1αn)+ · · ·+(1α1)t +(1α0)
= αntn + · · ·+ α1t + α0

= p.

7. For
p = αntn + · · ·+ α1t + α0 ∈ P(t,n)

we have
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0p = 0(αntn + · · ·+ α1t + α0)
= (0αn)+ · · ·+(0α1)t +(0α0)
= 0tn + · · ·+ 0t + 0

= 0.

8. For
p1 = αntn + · · ·+ α1t + α0, p2 = βntn + · · ·+ β1t + β0

we have

a(p1 + p2) = a [(αntn + · · ·+ α1t + α0)+ (βntn + · · ·+ β1t + β0)] (B.13)

= a [(αn + βn)tn + · · ·+(α0 + β0)] (B.14)

= [a(αn + βn)tn + · · ·+ a(α0 + β0)] (B.15)

= [(aαn + aβn) tn + · · ·+(aα0 + aβ0)] (B.16)

= ((aαn)tn + · · ·+(aα1) t +(aα0)+ (aβn)tn + · · ·
+ (aβ1) t +(aβ0)) (B.17)

= ap1 + ap2. (B.18)

Each step is justified as follows.

a. The step from Equation (B.13) to (B.14) is justified by the definition of addi-
tion in P(t,n) given by Equation (B.1).

b. The step from Equation (B.14) to (B.15) is justified by the definition of scalar
multiplication in P(t,n) given by Equation (B.2).

c. The step from Equation (B.15) to (B.16) is justified by the fact that multipli-
cation of real numbers distributes over addition of real numbers.

d. The step from Equation (B.16) to (B.17) is justified by the definition of addi-
tion in P(t,n).

9. For
p = αntn + · · ·+ α1t + α0 ∈ P(t,n)

and a,b ∈ R, we have

(a + b) p = (a + b)(αntn + · · ·+ α1t + α0) (B.19)

= ((a + b)αn) tn + · · ·+((a + b)α0) (B.20)

= (aαn + bαn)tn + · · ·+(aα0 + bα0) (B.21)

= (aαn)tn + · · ·+(aα0)+ (bαn)tn + · · ·+(bα0) (B.22)

= ap + bp. (B.23)

Each step is justified as follows.

a. The step from Equation (B.19) to (B.20) is justified by the definition of scalar
multiplication in P(t,n) given by Equation (B.2).
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b. The step from Equation (B.20) to (B.21) is justified by the fact that multipli-
cation of real numbers distributes over addition of real numbers.

c. The step from Equation (B.21) to (B.22) is justified by the definition of vector
addition in P(t,n) given by Equation (B.1).

B.1.3 Linear Independence

Consider the set of vectors
{

ξ 1, . . . ,ξ k
} ∈ R

n, that is, k vectors that are n elements
“tall” such as

ξ i =

⎡

⎢
⎢
⎢
⎣

ξ i
1

ξ i
2
...

ξ i
n

⎤

⎥
⎥
⎥
⎦

.

Definition B.2 (Linear (in)dependence). The set
{

ξ 1, . . . ,ξ k
}

is linearly depen-
dent if there exist scalars α1, . . . ,αk, where at least one αi �= 0 such that

α1ξ 1 + α2ξ 2 + · · ·+ αkξ k =
k

∑
i=1

αiξ i = 0.

If the set is not linearly dependent, then it is linearly independent.

A simple example is in order.

Example B.6. Let n = 3 and

ξ 1 =

⎡

⎣

1
2
3

⎤

⎦ ξ 2 =

⎡

⎣

1
1
1

⎤

⎦ ξ 3 =

⎡

⎣

5
7
9

⎤

⎦ .

Clearly, determining linear dependence or independence by inspection is not easy.
So we try to solve

α1

⎡

⎣

1
2
3

⎤

⎦+ α2

⎡

⎣

1
1
1

⎤

⎦+ α3

⎡

⎣

5
7
9

⎤

⎦=

⎡

⎣

0
0
0

⎤

⎦

or, as three scalar equations

α1 + α2 + 5α3 = 0

2α1 + α2 + 7α3 = 0

3α1 + α2 + 9α3 = 0.

A tedious calculation gives α1 = 2, α2 = 3, and α3 = 1, which determines that the
set of vectors {ξ 1,ξ 2,ξ 3} is linearly dependent.
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An easier approach is to recall the following basic result from linear algebra [18].

Proposition B.1. If A ∈ R
n×n and if det(A) = 0 then the set of vectors that are the

columns of A are linearly dependent. Also, the set of vectors that are the rows of
A are linearly dependent. If det(A) �= 0 then the columns and rows are linearly
independent.

Example B.7. Considering the system in Example B.6, an easy computation gives
∣
∣
∣
∣
∣
∣

1 1 5
2 1 7
3 1 9

∣
∣
∣
∣
∣
∣

= 0,

thus confirming the result from Example B.6 that the vectors are linearly dependent.

The primary utility of the notion of linear independence is that in an n-dimensional
vector space, a set of n linearly independent vectors, {ξ 1, . . . ,ξ n}, forms a basis for
the vector space. Thus any vector in that space can be written as a linear combina-
tion: ξ = ∑n

i=1 αiξ i.

B.1.4 Eigenvalues and Eigenvectors

Given a matrix A ∈R
n×n and a vector ξ ∈ R

n, the product y = Aξ is simply another
vector in R

n. However, there are two classes of the vectors x that give a special result
when multiplied into A. The first special case is then the resulting vector is all zeros
and the second special case is when the resulting vector is just a scaled version of x.
The following two definitions elaborate upon this.

Definition B.3. The null space of a matrix A ∈ R
n×n, denoted by N (A), is the set

of all vectors ξ ∈ R
n such that

Aξ = 0.

In this case 0 is the vector in R
n full of n zeros.

Definition B.4. An eigenvector of a matrix A∈R
n×n is a nonzero vector ξ̂ such that

Aξ̂ = λ ξ̂ .

The number λ , which may be real or complex, is the associated eigenvalue.

To compute eigenvalues and eigenvectors, note that

Aξ̂ = λ ξ̂ =⇒ Aξ̂ −λ ξ̂ = (A−λ I) ξ̂ = 0, (B.24)

where I is the n×n identity matrix. By Cramer’s rule, Equation (B.24) has a solution
if and only if

det(A−λ I) = 0. (B.25)
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Equation (B.25) is an nth-degree polynomial in λ with n solutions, and is called
the characteristic equation. Thus, A ∈ R

n×n has n eigenvalues. At this point, all we
know is that there are n eigenvalues. Note that the eigenvalues may be all real and
distinct, or some of them may be repeated or complex conjugate pairs.

To compute the eigenvalue associated with a particular eigenvalue λ , substitute
the value for λ into Equation (B.24) and solve for each component of ξ̂ . As the
following example illustrates, the eigenvector can only be determined up to a unique
scaling factor.

Example B.8. Compute the eigenvalues and eigenvectors of

A =
[

1 2
1 3

]

.

First, to compute the eigenvalues,

det(A−λ I) = det

([

1 2
1 3

]

−λ
[

1 0
0 1

])

= det

([

1−λ 2
1 3−λ

])

= (1−λ )(3−λ )−2 = λ 2 −4λ + 1 = 0.

Thus,
λ = 2±

√
3.

To compute the eigenvectors, substituting the two values for λ into Equation (B.25)
gives

(

A−
(

2 +
√

3
)

I
)

=
[

1−2−√
3 2

1 3−2−√
3

][

ξ1

ξ2

]

which gives
(

−1−
√

3
)

ξ1 + 2ξ2 = 0, ξ1 +
(

1−
√

3
)

ξ2 = 0.

A quick computation shows that if we try to solve for one variable, say ξ2, from
one of the equations and substitute into the other equation, we will end up with the
degenerate equation 0 = 0. This is precisely due to the fact that we are trying to
solve a system of linearly dependent equations. Thus there are an infinite number of
solutions.

The most straightforward approach may be to set one of the variables equal to one
and solve for the others. So, in this example, arbitrarily let ξ2 = 1. Both equations
then give ξ1 =

√
3− 1, and hence the eigenvector corresponding to the eigenvalue

λ = 2 +
√

3 is

ξ̂ =
[√

3−1
1

]

.

Note that any vector of the form

ξ̂ = α
[√

3−1
1

]

,
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where α is a real or complex number is also an eigenvector corresponding to the
eigenvalue λ = 2 +

√
3.

A similar computation (and again arbitrarily setting ξ2 = 1) gives

ξ̂ =
[−√

3−1
1

]

as an eigenvector corresponding to the eigenvalue λ = 2−√
3.

In order to be more systematic in the approach to computing eigenvectors recall
that to solve a set of linear equations

Ax = b,

where A ∈ R
n×n, b,x ∈ R

n where A and b are given and x is to be determined, one
approach is to construct the augmented matrix

[

A b
]

and use row reduction operations to convert the left part of the augmented matrix to a
convenient form (typically triangular form). In the case of determining eigenvectors,
b will be a column of zeros, so the problem will be somewhat simpler. The details
of the approach are illustrated by the following example.

Example B.9. Determine the eigenvalues and eigenvectors of

A =

⎡

⎢
⎢
⎣

1 0 0 0
−1 2 0 0
−1 0 1 1
−1 0 −1 3

⎤

⎥
⎥
⎦

.

We have

det(A−λ I) = (1−λ )

∣
∣
∣
∣
∣
∣

2−λ 0 0
0 1−λ 1
0 −1 3−λ

∣
∣
∣
∣
∣
∣

= (1−λ )(2−λ )
∣
∣
∣
∣

1−λ 1
−1 3−λ

∣
∣
∣
∣

= (1−λ )(2−λ )((1−λ )(3−λ )+ 1)

= (1−λ )(2−λ )
(

λ 2 −4λ + 4
)

= (1−λ )(2−λ )
(

λ 2 −4λ + 4
)

= (1−λ )(2−λ )3 .

So, λ = 1 is an eigenvalue and λ = 2 is an eigenvalue that is repeated three times.
Note that, in general, for matrices larger than two by two we are not able to do

such computations by hand. It was only due to the particular structure of the way
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the zeros were arranged in A that allowed us to do it in this example. In general, for
matrices larger than 2×2 using a computer program or calculator will be necessary
to compute the eigenvalues, which are the roots of the characteristic equation.

Now, to compute the eigenvectors, substituting λ = 1 into (A−λ I) ξ̂ 1 = 0 gives

⎡

⎢
⎢
⎣

0 0 0 0
−1 1 0 0
−1 0 0 1
−1 0 −1 2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ξ̂ 1
1

ξ 1
2

ξ 1
3

ξ 1
4

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦

which, in augmented matrix form is
⎡

⎢
⎢
⎣

0 0 0 0 0
−1 1 0 0 0
−1 0 0 1 0
−1 0 −1 2 0

⎤

⎥
⎥
⎦

.

Interchanging the first and fourth rows gives
⎡

⎢
⎢
⎣

−1 0 −1 2 0
−1 1 0 0 0
−1 0 0 1 0
0 0 0 0 0

⎤

⎥
⎥
⎦

and subtracting the first row from the second and third rows gives
⎡

⎢
⎢
⎣

−1 0 −1 2 0
0 1 1 −2 0
0 0 1 −1 0
0 0 0 0 0

⎤

⎥
⎥
⎦

which is in upper triangular form. If we choose ξ̂ 1
4 = 1, then from the third row we

have ξ̂ 1
3 = 1. Substituting both of these values into the second row gives ξ̂ 1

2 = 1 and
finally the first row gives ξ̂ 1

1 = 1. Hence

ξ̂ 1 =

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

.

Now, for λ = 2 we have det(A−2I) ξ̂ = 0 as

⎡

⎢
⎢
⎣

−1 0 0 0
−1 0 0 0
−1 0 −1 1
−1 0 −1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ξ̂ 2
1

ξ̂ 2
2

ξ̂ 2
3

ξ̂ 2
4

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦

,
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or, without elaborating on all the details, the row reductions give

⎡

⎢
⎢
⎣

−1 0 0 0 0
−1 0 0 0 0
−1 0 −1 1 0
−1 0 −1 1 0

⎤

⎥
⎥
⎦
⇐⇒

⎡

⎢
⎢
⎣

−1 0 0 0 0
0 0 0 0 0
−1 0 −1 1 0
0 0 0 0 0

⎤

⎥
⎥
⎦
⇐⇒

⎡

⎢
⎢
⎣

−1 0 0 0 0
−1 0 −1 1 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎦

⇐⇒

⎡

⎢
⎢
⎣

−1 0 0 0 0
0 0 −1 1 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎦

. (B.26)

The procedure we adopt is the following.

1. Inspecting each row in the reduced matrix, we identify the variables as not free
if they are the first nonzero term in any row. So, in the preceding matrix, the
components ξ̂1 and ξ̂3 are not free.

2. The remaining variables are free. Choose one of the free variables to be equal
to one and the rest of the free variables to be equal to zero and compute the
remaining components. This gives one eigenvector.

3. To compute another linearly independent eigenvector, choose another of the free
variables to be one and the rest to be zero, and compute the remaining compo-
nents. Continue through the entire list of free variables. This results in a linearly
independent set of eigenvectors.

Returning to the example, ξ̂ 2
4 and ξ̂ 2

2 are free. Choosing ξ̂ 2
4 = 1, ξ̂ 2

2 = 0, ξ̂ 3
4 = 0, and

ξ̂ 3
2 = 1 gives

ξ̂ 2 =

⎡

⎢
⎢
⎣

0
0
1
1

⎤

⎥
⎥
⎦

, ξ̂ 3 =

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦

.

B.2 Matrix Computations

It is necessary to be able to compute matrix determinants and inverses. This section
reviews how to do so. It is the way to do it by hand and is also the way that a
computer program does it.

B.2.1 Computing Determinants

Define the determinant of a 2×2 matrix
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A =
[

a11 a12

a21 a22

]

by
detA = a11a22 −a12a21.

For matrices larger than 2×2, we use the following theorem from [18].

Theorem B.1. Let A = (ai j) be an n×n matrix, where n≥ 2. Let Ai j be the (n−1)×
(n−1) matrix formed by deleting row i and column j from A. Defining the cofactor

ci j = (−1)i+ j detAi j

we then have the expansion by row i:

detA = ai1ci1 + ai2ci2 + · · ·+ aincin

and we have the expansion by column j:

detA = a1 jc1 j + a2 jc2 j + · · ·+ an jcn j.

The 3×3 case should probably be memorized.

Corollary B.1. For

A =

⎡

⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦

applying Theorem B.1 gives

detA = a11 (a22a33 −a23a32)−a12 (a21a33 −a23a31)+ a13 (a21a32 −a22a31) .

Example B.10. Compute the determinant of

A =

⎡

⎢
⎢
⎣

−2 0 1 −3
−1 −1 1 −3
2 −2 −3 −1
0 0 0 −4

⎤

⎥
⎥
⎦

.

Clearly, it is best to expand on a row or column with the most zeros. Expanding
across the fourth row gives

detA = 0(−1)4+1 detA41 + 0(−1)4+2 detA42 + 0(−1)4+3 detA43

+−4(−1)4+4 detA44

= −4

∣
∣
∣
∣
∣
∣

−2 0 1
−1 −1 1
2 −2 −3

∣
∣
∣
∣
∣
∣

= −4 [−2(3 + 2)−0(4−2)+ 1(2 + 2)] = 24.
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B.2.2 Computing a Matrix Inverse

The following theorem is from [18] and is useful to compute matrix inverses by
hand.

Theorem B.2. Let A be an n×n matrix, with n > 1. Let Ai j be the (n−1)× (n−1)
matrix formed by deleting row i and column j from A. Define the cofactor matrix

cofA = C =
[

(−1)i+ j detAi j

]

(i, j = 1, . . . ,n) .

Let Δ = detA. Then if Δ �= 0

A−1 =
1
Δ

CT .

Example B.11. Compute the inverse of

A =

⎡

⎢
⎢
⎣

−2 0 1 −3
−1 −1 1 −3
2 −2 −3 −1
0 0 0 −4

⎤

⎥
⎥
⎦

.

From Example B.10 we know that Δ = 24. The terms in the cofactor matrix are

C11 = (−1)1+1

∣
∣
∣
∣
∣
∣

−1 1 −3
−2 −3 −1
0 0 −4

∣
∣
∣
∣
∣
∣

= (−1)1+1 (−1)3+3 [−4(3 + 2)] = −20,

C12 = (−1)1+2

∣
∣
∣
∣
∣
∣

−1 1−3
2 −3 −1
0 0 −4

∣
∣
∣
∣
∣
∣

= −1 [−1(12)−1(−8)−3(0)] = 4,

C13 = (−1)1+3

∣
∣
∣
∣
∣
∣

−1 −1 −3
2 −2 −1
0 0 −4

∣
∣
∣
∣
∣
∣

= (1) [−1(8)− (−1)(−8)+ 0] = −16,

C14 = (−1)1+4

∣
∣
∣
∣
∣
∣

−1 −1 1
2 −2 3
0 0 0

∣
∣
∣
∣
∣
∣

= 0,

and so on. Completing the tedious calculations gives

A−1 =
1

24

⎡

⎢
⎢
⎣

−20 4 −16 0
8 −16 16 0
−4 −4 −8 0
22 −14 26 −6

⎤

⎥
⎥
⎦

.



Appendix C
Detailed Computations

This appendix contains some of the important, but detailed or cumbersome compu-
tations, inclusion of which in the main text perhaps would be distracting.

C.1 Computations Related to Fourier Series

Proposition C.1. The integral

∫ L

0
sin
(nπx

L

)

sin
(mπx

L

)

dx =

{

0, m �= n,
L
2 , m = n,

m,n ∈ N.

Proof. The case for n �= m is shown simply by integration by parts.

∫ L

0
sin
(nπx

L

)

sin
(mπx

L

)

dx

= − L
mπ

sin
(nπx

L

)

cos
(mπx

L

)
∣
∣
∣
∣

L

0
+

n
m

∫ L

0
cos

(nπx
L

)

cos
(mπx

L

)

dx

=
n
m

∫ L

0
cos

(nπx
L

)

cos
(mπx

L

)

dx,

which is clearly asking us to integrate by parts again. So

n
m

∫ L

0
cos

(nπx
L

)

cos
(mπx

L

)

dx

=
n
m

L
mπ

cos
(nπx

L

)

sin
(mπx

L

)
∣
∣
∣
∣

L

0
+
( n

m

)2 ∫ L

0
sin
(mπx

L

)

sin
(nπx

L

)

dx.

Thus
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∫ L

0
sin
(nπx

L

)

sin
(mπx

L

)

dx =
( n

m

)2 ∫ L

0
sin
(nπx

L

)

sin
(mπx

L

)

dx,

and if n �= m the integral must be zero.
The case where n = m is simply done by a trigonometric substitution. Recall that

cos2θ = cosθ cosθ − sinθ sin θ = cos2 θ − sin2 θ =
(

1− sin2 θ
)− sin2 θ

= 1−2sin2 θ ,

so sin2 θ = (1− cos2θ )/2. Hence

∫ L

0
sin2

(nπx
L

)

dx =
1
2

∫ L

0
1− cos

(
2nπx

L

)

dx =
x
2

∣
∣
∣

L

0
− L

4nπ
sin

(
2nπx

L

)∣
∣
∣
∣

L

0
=

L
2
.

��
Note that N is the set of natural numbers, N = {1,2,3, . . .}. The following two

results are proved similarly.

Proposition C.2. The integral

∫ L

0
cos
(nπx

L

)

cos
(mπx

L

)

dx =

{

0, m �= n,
L
2 , m = n.

Proposition C.3. The integral

∫ L

0
sin
(nπx

L

)

cos
(mπx

L

)

dx = 0

for all m,n ∈ N.

Proof. The proofs to these two propositions obviously mirror the proof to Proposi-
tion C.1.



Appendix D
Some Theorems

D.1 Existence and Uniqueness Theorems

This section presents the basic theorem for first-order, ordinary differential equa-
tions which is adapted from [47]. As one would expect, for the first-order ordinary
differential equation

dx
dt

(t) = f (x(t) ,t)

whether a solution exists and is unique depends on the properties of the function f ,
and as long as f is not too crazy a unique solution probably exists. In fact, as the
following theorem shows, this is the case.

Theorem D.1. For the first-order ordinary differential equation with initial condi-
tion

ẋ = f (x,t) , x(0) = x0 (D.1)

assume f (x,t) is a piecewise continuous function of t and for each T ∈ [0,∞) there
exist finite constants kT and hT such that for all t ∈ [0,T ],

| f (x,t)− f (x,t)| ≤ kT |x− x|
| f (x0,t)| ≤ hT .

(D.2)

Then Equation (D.1) has exactly one solution on the interval [0,T ] for all T < ∞.

Equation (D.2) is called the Lipschitz condition. The Lipschitz condition may not
always be easy to check, so the following lemma is useful.

Lemma D.1. A function that is continuously differentiable with a bounded first
derivative satisfies the Lipschitz condition.

Example D.1. Consider
ẋ = x2 + 35t + sint

with x(0) = 6. For this equation
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f (x,t) = x2 + 35t + sint

and inasmuch as
∂ f
∂x

= 2x

is bounded, then this system has a unique solution.

Example D.2. Consider

ẋ = 3x
2
3 , x(0) = 0. (D.3)

Because near the origin, the graph of x2/3 is vertical it does not satisfy the Lips-
chitz condition. Hence we are not able to conclude that Equation (D.3) has a unique
solution.

Be careful to properly interpret the theorem. It says that if certain properties on
the right-hand side of the differential equation hold, then a unique solution exists.
In other words it provides a sufficient condition for existence and uniqueness. How-
ever, the conditions are not necessary; in other words, even if the conditions are not
satisfied it may be the case that a unique solution exists.

D.2 Series Solutions About a Singular Point

The following two theorems are from [8]. Theorem D.2 gives all the solutions to Eu-
ler’s equation and Theorem D.3 gives solutions for all the cases for series solutions
about a regular singular point.

Theorem D.2. To determine the general solution to

x2 d2y
dx2 (x)+ p0x

dy
dx

(x)+ q0y(x) = 0 (D.4)

for x > 0, assume a solution of the form

y(x) = xm,

and substitute it into Equation (D.4). This results in a quadratic equation for m, with
roots m1 and m2.

• If the values determined for m are real and unequal, then the general solution is

y(x) = c1xm1 + c2xm2 .

• If the values determined for m are real and equal, m1 = m2 = m, then the general
solution is

y(x) = c1xm + c2xm lnx.
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• If the values determined for m are complex conjugates given by m = μ ± iω , then
the general solution is given by

y(x) = c1xμcos(ω ln(x))+ c2xμsin(ω ln(x)) .

Theorem D.3. Let x = 0 be a regular singular point of

x2 d2y
dx2 (x)+ xp̂(x)

dy
dx

(x)+ q̂(x)y(x) = 0, (D.5)

where p̂(x) and q̂(x) have Taylor series

p̂(x) = p0 + p1x +
∞

∑
n=2

pn

n!
xn, q̂(x) = q0 + q1x +

∞

∑
n=2

qn

n!
xn,

that converge for |x| < ρ and let m1 and m2 be the solutions to

m(m−1)+ p0m+ q0 = 0.

Then, for either −ρ < x < 0 or 0 < x < ρ , Equation (D.5) has two linearly
independent solutions, y1(x) and y2(x) of the form:

1. If m1 −m2 is neither an integer nor zero, then

y1(x) = |x|m1

(

1 +
∞

∑
n=1

an(m1)xn

)

, y2(x) = |x|m2

(

1 +
∞

∑
n=1

an(m2)xn

)

;

2. If m1 = m2, then

y1(x) = |x|m1

(

1 +
∞

∑
n=1

an(m1)xn

)

,

y2(x) = y1(x) ln |x|+ |x|m1
∞

∑
n=1

bn (m1)xn;

3. If m1 −m2 is a positive integer, then

y1(x) = |x|m1

(

1 +
∞

∑
n=1

an(m1)xn

)

,

y2(x) = ay1(x) ln |x|+ |x|m2

(

1 +
∞

∑
n=1

cn (m2)xn

)

.

The coefficients an(m1), an(m2), bn(m1), cn(m2), and a can be determined by sub-
stituting the form of the series solutions for y into Equation (D.5) and equating the
coefficients of the powers of x.



Appendix E
Example Programs

E.1 C Programs

Typically to compile a C program on a UNIX or LINUX platform, type gcc
example.c -lm in a terminal and then type a.out to execute the program. In
a terminal on a Windows or MacOS platform, the syntax is similar. In an integrated
development environment, there are typically user-interface buttons to compile and
execute the program.

E.1.0.1 Program for Example 1.28

/* Example C program to determine an approximate solution to

*
* x’ = sin(2 t), x(0) = 3

*
* using Euler’s method.

*/

#include<stdio.h>
#include<math.h>

int main() {

int n;
float x,t,dt,f;
FILE *fp;

fp = fopen("eulerexample05.d","w");

n = 0;
dt = 0.5;
x = 3.0;

for(t=0;t<10;t+=dt) {
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f = sin(2.0*t);
fprintf(fp,"%f \t %d \t %f \t %f \t ",t,n,x,f);
x += f*dt;
fprintf(fp,"%f \t %f\n",x,7.0/2.0 - cos(2.0*(t+dt))/2.0);
n++;

}
fclose(fp);

return 0;
}

E.1.0.2 Program for Example 1.29

/* Example C program to determine an approximate solution to

*
* x’ = 75 x (1 - x)

*
* using Euler’s method.

*/

#include<stdio.h>
#include<math.h>

int main() {

int n,points=1000,count=1;
double x,t,dt,f,limit;
FILE *fp;

fp = fopen("output00001.d","w");

n = 0;
dt = 0.0001;
limit = 1/dt/points;
x = 1.0/(1.0+exp(75.0));

for(t=-1;t<=1;t+=dt) {
f = 75.0*x*(1-x);
if(count > limit) {

fprintf(fp,"%f\t%d\t%f\t%f\t%f\n ",t,n,x,f,x+f*dt);
count = 1;

} else {
count++;

}
x += f*dt;
n++;

}
fclose(fp);

return 0;
}
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E.1.0.3 Program for Example 1.30

/* Example C program to determine an approximate solution to

*
* x’’ + sin(t) x’ + cos(t) x = exp(-5*t)

*
* using Euler’s method.

*/

#include<stdio.h>
#include<math.h>

int main() {

int n;
float x[2],t,dt,f[2];
FILE *fp;

fp = fopen("output.d","w");

n = 0;
dt = 0.01;
x[0] = 2;
x[1] = 5;

for(t=0;t<30;t+=dt) {
f[0] = x[1];
f[1] = exp(-5*t) - sin(t) * x[1] - cos(t)*x[0];
fprintf(fp,"%f\t%d\t%f\t%f\t%f\t%f\t%f\t%f\n ",t,n,
x[0],f[0],x[1],f[1],x[0]+f[0]*dt,x[1]+f[1]*dt);
x[0] += f[0]*dt;
x[1] += f[1]*dt;
n++;

}
fclose(fp);

return 0;
}

E.1.0.4 Program for Example 12.1

/* Example C program to determine an approximate solution to

*
* x’ = 5 x, x(0) = 1

*
* using Euler’s method. The exact solution is also printed to the

* data file for comparison purposes.

*/

#include<stdio.h>
#include<math.h>
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int main() {

float x,t,dt;
FILE *fp;

fp = fopen("data.d","w");

dt = 0.1;
x = 1.0;

for(t=0;t<=1;t+=dt) {
fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));
x += 5.0*x*dt;

}
fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));
fclose(fp);

return 0;
}

E.1.0.5 Program for Example 12.2

/* Example C program to determine an approximate solution to

*
* x’ = -sin t, x(0) = 1

*
* using Euler’s method. The exact solution is also printed to the

* data file for comparison purposes.

*/

#include<stdio.h>
#include<math.h>

int main() {

float x,t,dt;
FILE *fp;

fp = fopen("eulererroranalysis2.d","w");

dt = 1.0;
x = 1.0;

for(t=0;t<30;t+=dt) {
fprintf(fp,"%f\t%f\t%f\n",t,x,cos(t));
x += -sin(t)*dt;

}
fprintf(fp,"%f\t%f\t%f\n",t,x,cos(t));
fclose(fp);
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return 0;
}

E.1.0.6 Program for Example 12.3

/* Example C program to determine an approximate solution to

*
* x’ = 5 x, x(0) = 1

*
* using a second order Taylor series expansion. The exact solution

* is also printed to the data file for comparison purposes.

*/

#include<stdio.h>
#include<math.h>

int main() {

float x,t,dt;
FILE *fp;

fp = fopen("secondordertaylor.d","w");

dt = 0.1;
x = 1.0;

for(t=0;t<=1;t+=dt) {
fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));
x += 5.0*x*dt + 25.0/2.0*x*pow(dt,2);

}
fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));
fclose(fp);

return 0;
}

E.1.0.7 Program for Example 12.4

/* Example C program to determine an approximate solution to

*
* x’ = -xˆ3 + sin(t x), x(0) = 1

*
* using a second order Taylor series expansion.

*/

#include<stdio.h>
#include<math.h>

int main() {
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float x,t,dt;
FILE *fp;

fp = fopen("secondordertaylor2.d","w");

dt = 0.4;
x = 1.0;

for(t=0;t<5;t+=dt) {
fprintf(fp,"%f\t%f\n",t,x);
x += (-pow(x,3) + sin(t*x))*dt

+ 1.0/2.0*((-3*pow(x,2) + t*cos(t*x))*(-pow(x,3) + sin(t*x))
+ x*cos(t*x))*pow(dt,2);
}
fprintf(fp,"%f\t%f\n",t,x);
fclose(fp);

return 0;
}

E.1.0.8 Program for Example 12.6

/* Example C program to determine an approximate solution to

*
* x’ = -xˆ3 + sin(t x), x(0) = 1

*
* using the second order Runge-Kutta (or improved Euler) method. The

* exact solution is also printed to the data file for comparison

* purposes

*/

#include<stdio.h>
#include<math.h>

int main() {

float x,t,dt;
FILE *fp;

fp = fopen("rk2.d","w");

dt = 0.1;
x = 1.0;

for(t=0;t<=1;t+=dt) {
fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));
x += 5.0*x*dt;

}
fprintf(fp,"%f\t%f\t%f\n",t,x,exp(5.0*t));
fclose(fp);
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return 0;
}

E.1.0.9 Program for Example 12.7

/* Example C program to determine an approximate solution to

*
* x’ = -xˆ3 + sin(t x), x(0) = 1

*
* using the second-order Runge-Kutta method.

*/

#include<stdio.h>
#include<math.h>

double f(double x, double t);

int main() {

double x,t,dt;
FILE *fp;

fp = fopen("secondorderrk2.d","w");

dt = 0.4;
x = 1.0;

for(t=0;t<5;t+=dt) {
fprintf(fp,"%f\t%f\n",t,x);
x += dt/2*(f(x,t) + f(x+f(x,t)*dt,t+dt));

}
fprintf(fp,"%f\t%f\n",t,x);
fclose(fp);

return 0;
}

double f(double x, double t) {
return -pow(x,3) + sin(t*x);

}

E.1.0.10 Program for Example 12.8

/* Example C program to determine an approximate solution to

*
* x’ = -xˆ3 + sin(t x), x(0) = 1

*
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* using the third-order Runge-Kutta method.

*/

#include<stdio.h>
#include<math.h>

double f(double x, double t);

int main() {

double x,t,dt;
double v1,v2,v3;
FILE *fp;

fp = fopen("rk3.d","w");

dt = 0.5;
x = 1.0;

for(t=0;t<5;t+=dt) {
fprintf(fp,"%f\t%f\n",t,x);
v1 = f(x,t)*dt;
v2 = f(x+v1/2.0,t+dt/2.0)*dt;
v3 = f(x+2.0*v2-v1,t+dt)*dt;
x += 1.0/6.0*(v1+4.0*v2+v3);

}
fprintf(fp,"%f\t%f\n",t,x);
fclose(fp);

return 0;
}

double f(double x, double t) {
return -pow(x,3) + sin(t*x);

}

E.1.0.11 Program for Example 12.9

/* Example C program to determine an approximate solution to

*
* x’ = -xˆ3 + sin(t x), x(0) = 1

*
* using the fourth-order Runge-Kutta method.

*/

#include<stdio.h>
#include<math.h>

double f(double x, double t);
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int main() {

double x,t,dt;
double k1,k2,k3,k4;
FILE *fp;

fp = fopen("rk4.d","w");

dt = 0.5;
x = 1.0;

for(t=0;t<5;t+=dt) {
fprintf(fp,"%f\t%f\n",t,x);
k1 = f(x,t)*dt;
k2 = f(x+k1/2.0,t+dt/2.0)*dt;
k3 = f(x+k2/2.0,t+dt/2.0)*dt;
k4 = f(x+k3,t+dt)*dt;

x += 1.0/6.0*(k1 + 2.0*k2 + 2.0*k3 + k4);
}
fprintf(fp,"%f\t%f\n",t,x);
fclose(fp);

return 0;
}

double f(double x, double t) {
return -pow(x,3) + sin(t*x);

}

E.1.0.12 Program for Example 12.10

/* This is from the file C/subtleerror.c

*
* Example C program to determine an approximate solution to

*
* x’ + 3 x = 15(cos(3 t) + sin(3 t)), x(0) = 1

*
* using Euler’s method, 2nd order RK, a 2nd order Taylor series

* expansion, and 4th order RK. The exact solution is also printed to

* the data file for comparison purposes.

*/

#include<stdio.h>
#include<math.h>

double f(double x, double t);

main() {
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double xe,xie,t,dt=0.25;
double xts,x4rk;
double w1,w2,w3,w4;
double t_final=5;
double exact;
FILE *fp;

fp = fopen("subtledata.d","w");
xe = 0.0; /* euler’s method */
xie = 0.0; /* 2nd order RK */
xts = 0.0; /* 2nd order TS */
x4rk = 0.0; /* 4th order RK */
exact = 0.0;

for(t=0;t<=t_final;t+=dt) {
fprintf(fp,"%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n",
t,xe,xie,xts,x4rk,exact,exact-xe,exact-xie,exact-xts,exact-x4rk);

xe += f(xe,t)*dt;
xie += (f(xie,t)+f(xie+f(xie,t)*dt,t+dt))*dt/2.0;
xts += f(xts,t)*dt + pow(dt,2)/2.0*

(-3.0*f(xts,t)+45.0*(-sin(3.0*t) + cos(3.0*t)));
w1 = f(x4rk,t)*dt;
w2 = f(x4rk+w1/2.0,t+dt/2.0)*dt;
w3 = f(x4rk+w2/2.0,t+dt/2.0)*dt;
w4 = f(x4rk+w3,t+dt)*dt;
x4rk += 1.0/6.0*(w1 + 2.0*w2 + 2.0*w3 + w4);
exact = 5.0*sin(3.0*(t+dt));

}
fclose(fp);

}

double f(double x, double t) {
return 15.0*(cos(3.0*t)+sin(3.0*t)) - 3.0*x;

}

E.1.0.13 Program for Example 12.11

/* Example C program to determine an approximate solution to

*
* x’ = y, y’ = (1 - xˆ2)y - x

* x(0) = 0.0 2, y(0) = 0.0

*
* using Euler’s method.

*/

#include<stdio.h>
#include<math.h>

int main() {
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double x[2],t,dt;
int i;
FILE *fp;

fp = fopen("systemeuler.d","w");

dt = 0.001;
x[0] = 0.02;
x[1] = 0.0;

for(t=0;t<=20;t+=dt) {
fprintf(fp,"%f\t%f\t%f\n",t,x[0],x[1]);
x[0] += x[1]*dt;
x[1] += ((1.0-pow(x[0],2))*x[1]-x[0])*dt;

}
fclose(fp);

return 0;
}

E.1.0.14 Program for Example 12.13

/* Example C program to determine an approximate solution to

*
* x’ = y, y’ = (1 - xˆ2)y - x sin(t)

* x(0) = 0.02, y(0) = 0.0

*
* using the fourth order Runge-Kutta method.

*/

#include<stdio.h>
#include<math.h>

double f(double x, double y, double t);
double g(double x, double y, double t);

int main() {

double x,y,t,dt;
double v1,v2,v3,v4,w1,w2,w3,w4;
FILE *fp;

fp = fopen("systemrk4.d","w");

dt = 0.01;
x = 0.02;
y = 0.0;

for(t=0;t<=20;t+=dt) {
fprintf(fp,"%f\t%f\t%f\n",t,x,y);
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v1 = f(x, y, t)*dt;
w1 = g(x, y, t)*dt;
v2 = f(x+v1/2.0, y+w1/2.0, t+dt/2.0)*dt;
w2 = g(x+v1/2.0, y+w1/2.0, t+dt/2.0)*dt;
v3 = f(x+v2/2.0, y+w2/2.0, t+dt/2.0)*dt;
w3 = g(x+v2/2.0, y+w2/2.0, t+dt/2.0)*dt;
v4 = f(x+v3, y+w3, t+dt)*dt;
w4 = g(x+v3, y+w3, t+dt)*dt;

x += (v1 + 2.0*v2 + 2.0*v3 + v4)/6.0;
y += (w1 + 2.0*w2 + 2.0*w3 + w4)/6.0;

}
fclose(fp);

return 0;
}

double f(double x, double y, double t) {
return y;

}

double g(double x, double y, double t) {
return (1.0 - pow(x,2))*y - x*sin(t);

}

E.1.0.15 Program for Example 12.19

#include<stdio.h>
#include<math.h>

#define N 100

main() {

double u[N+1][3],udic[N+1];
double t,dt,dx,L=3.0,alpha=2.0;
double tfinal=2.0*2.0*L/alpha; /* gives two cycles for first mode */
int i,j,n,m;
FILE *fp;

fp = fopen("wavedata.d","w");

dx = L/N;
dt = 0.01;
printf("%f\t%f\n",dx,dt);

/* initial conditions */
for(n=0;n<=N+1;n++) {
if(n < N/3) {
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u[n][0] = dx*n;
} else {

u[n][0] = (3.0-dx*n)/2.0;
}

udic[n] = 0.0;
}

for(n=0;n<=N;n++) {
fprintf(fp,"%f\t",u[n][0]);

}
fprintf(fp,"\n");

/* use the initial condition for velocity to compute u[1] */

for(n=0;n<=N;n++) {
u[n][1] = u[n][0] + udic[n]*dt;

}
for(n=0;n<=N;n++) {
fprintf(fp,"%f\t",u[n][1]);

}
fprintf(fp,"\n");

u[0][2] = 0.0;
u[N][2] = 0.0;
for(t=0;t<tfinal;t+=dt) {
printf("t = %f\n",t);
fprintf(fp,"%f\t",u[0][2]);
for(n=1;n<N;n++) {

u[n][2] = pow(alpha*dt/dx,2)*(u[n+1][1] - 2.0*u[n][1] + u[n-1][1])
+ 2.0*u[n][1] - u[n][0];

fprintf(fp,"%f\t",u[n][2]);
}
fprintf(fp,"%f\n",u[N][2]);

for(n=0;n<=N;n++) {
u[n][0] = u[n][1];
u[n][1] = u[n][2];

}
}

fclose(fp);
}

E.2 FORTRAN Programs

To compile FORTRAN programs on a UNIX or LINUX machine, typef77 eulerexample.f
in a terminal and then type a.out to execute it. The syntax is similar on Windows
and MacOS terminals. If an integrated development environment is used, a user
must consult the documentation.
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E.2.0.16 Program for Example 1.28

program eulerexample

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = sin(2*t)
c
c using Euler’s method.

real x,t,dt,f
integer n

open(unit=13,file="output.d")

n = 0
dt = 0.01
x = 3.0

c 100 format(f3.5,i4,f3.5,f3.5,f3.5,f3.5)
do 10 t = 0, 10, dt

f = sin(2.0*t)
write(13,*) t,n,x,f,x+f*dt, 7.0/2.0 - cos(2.0*(t+dt))/2.0
x = x + f*dt
n = n + 1

10 continue
stop
end

E.2.0.17 Program for Example 1.29

program eulerexample

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = 1/(1 + exp(-10*(t-5)))
c
c using Euler’s method.

double precision x,t,dt,f
integer n

open(unit=13,file="output.d")

n = 0
dt = 0.00001
x = 1/(1+exp(75.0))
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do 10 t = -1, 1, dt
f = 75*x*(1-x)
write(13,*) t,n,x,f,x+f*dt
x = x + f*dt
n = n + 1

10 continue
stop
end

E.2.0.18 Program for Example 1.30

program eulerexample

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’’ + sin(t) x’ + cos(t) x = exp(-5*t)
c x(0) = 2, x’(0) = 5
c
c using Euler’s method.

double precision x(2),t,dt,f(2)
integer n

open(unit=13,file="output.d")

n = 0
dt = 0.02
x(1) = 2.0
x(2) = 5.0

do 10 t = 0, 30, dt
f(1) = x(2)
f(2) = exp(-5.0*t) - sin(t)*x(2) - cos(t)*x(1)
write(13,*) t,x(1),x(2)
x(1) = x(1) + f(1)*dt
x(2) = x(2) + f(2)*dt
n = n + 1

10 continue
stop
end

E.2.0.19 Program for Example 12.1

program eulererroranalysis

c This is a sample FORTRAN program that solves the differential
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c equation
c
c x’ = 5 x, x(0) = 1
c
c using Euler’s method.

double precision x,t,dt

open(unit=13,file="fortrandata.d")

dt = 0.1
x = 1.0

do 10 t = 0, 1, dt
write(13,*) t,x,exp(5*t)
x = x + 5*x*dt

10 continue
write(13,*) t,x,exp(5*t)
stop
end

E.2.0.20 Program for Example 12.2

program eulererroranalysis2

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = -sin(t), x(0) = 1
c
c using Euler’s method.

double precision x,t,dt;

open(unit=13,file="fortrandata.d")

dt = 1
x = 1.0

do 10 t = 0, 30, dt
write(13,*) t,x,cos(t)
x = x - sin(t)*dt

10 continue
write(13,*) t,x,cos(t)
stop
end
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E.2.0.21 Program for Example 12.3

program secondordertaylor

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = 5 x, x(0) = 1
c
c using a second order Taylor series expansion

double precision x,t,dt;

open(unit=13,file="secondordertaylor.d")

dt = 0.1
x = 1.0

do 10 t = 0, 1, dt
write(13,*) t,x,exp(5*t)
x = x + 5*x*dt + 25/2*x*dt**2

10 continue
write(13,*) t,x,exp(5*t)
stop
end

E.2.0.22 Program for Example 12.4

program secondordertaylor2

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = -xˆ3 + sin(t x), x(0) = 1
c
c using a second order Taylor series expansion

double precision x,t,dt;

open(unit=13,file="secondordertaylor2a.d")

dt = 0.2
x = 1.0

do 10 t = 0, 5, dt
write(13,*) t,x
x = x + (-x**3 + sin(t*x))*dt

c + 1.0/2.0*((-3*x**2 + t*cos(t*x))*(-x**3 + sin(t*x)) +
c x*cos(t*x))*dt**2

10 continue
write(13,*) t,x
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stop
end

E.2.0.23 Program for Example 12.6

program rk2

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = 5*x, x(0) = 1
c
c using the second order Runge-Kutta method.

double precision x,t,dt;

open(unit=13,file="secondorderrk.d")

dt = 0.1
x = 1.0

do 10 t = 0, 1, dt
write(13,*) t,x,exp(5.0*t)
x = x + dt/2.0*(f(x,t) + f(x+f(x,t)*dt,t+dt))

10 continue
write(13,*) t,x,exp(5.0*t)
stop
end

double precision function f(x,t)
double precision x,t

f = 5*x

return
end

E.2.0.24 Program for Example 12.7

program secondorderrk

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = -xˆ3 + sin(t x), x(0) = 1
c
c using the second order Runge-Kutta method.

double precision x,t,dt;
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open(unit=13,file="secondorderrk2a.d")

dt = 0.2
x = 1.0

do 10 t = 0, 5, dt
write(13,*) t,x
x = x + dt/2.0*(f(x,t) + f(x+f(x,t)*dt,t+dt))

10 continue
write(13,*) t,x
stop
end

double precision function f(x,t)
double precision x,t

f = -x**3 + sin(t*x)

return
end

E.2.0.25 Program for Example 12.8

program rk3

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = -xˆ3 + sin(t x), x(0) = 1
c
c using the third order Runge-Kutta method.

double precision x,t,dt;
double precision v1,v2,v3;

open(unit=13,file="rk3.d")

dt = 0.25
x = 1.0

do 10 t = 0, 5, dt
write(13,*) t,x
v1 = f(x,t)*dt
v2 = f(x+0.5*v1,t+0.5*dt)*dt
v3 = f(x+2.0*v2-v1,t+dt)*dt
x = x + (v1 + 4*v2 + v3)/6.0

10 continue
write(13,*) t,x
stop
end
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double precision function f(x,t)
double precision x,t

f = -x**3 + sin(t*x)

return
end

E.2.0.26 Program for Example 12.9

program rk4

c This is from the file FORTRAN/rk4.f
c
c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = -xˆ3 + sin(t x), x(0) = 1
c
c using the fourth order Runge-Kutta method.

double precision x,t,dt;
double precision k1,k2,k3,k4

open(unit=13,file="rk4.d")

dt = 0.25
x = 1.0

do 10 t = 0, 5, dt
write(13,*) t,x
k1 = f(x,t)*dt
k2 = f(x+k1/2.0,t+dt/2.0)*dt
k3 = f(x+k2/2.0,t+dt/2.0)*dt
k4 = f(x+k3,t+dt)*dt
x = x + (k1 + 2.0*k2 + 2.0*k3 + k4)/6.0

10 continue
write(13,*) t,x
stop
end

double precision function f(x,t)
double precision x,t

f = -x**3 + sin(t*x)

return
end
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E.2.0.27 Program for Example 12.11

program systemeuler

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = y, y’ = (1 - xˆ2)y - x
c x(0) = 0.02, y(0) = 0.0
c
c using Euler’s method.

double precision x(2),t,dt
double precision copy(2)

open(unit=13,file="systemfortran.d")

dt = 0.001
x(1) = 0.02
x(2) = 0.0

do 10 t = 0, 20, dt
write(13,*) t,x(1),x(2)
copy(1) = x(1)
copy(2) = x(2)
x(1) = x(1) + (copy(2))*dt
x(2) = x(2) + ((1.0 - copy(1)**2)*x(2) - x(1))*dt

10 continue
stop
end

E.2.0.28 Program for Example 12.13

program systemrk4

c This is a sample FORTRAN program that solves the differential
c equation
c
c x’ = y, y’ = (1 - xˆ2)y - x sin(t)
c x(0) = 0.02, y(0) = 0.0
c
c using the fourth order Runge-Kutta method.

double precision x,y,t,dt
double precision v1,v2,v3,v4,w1,w2,w3,w4

open(unit=13,file="systemrk4f.d")

dt = 0.001
x = 0.02
y = 0.0



734 E Example Programs

do 10 t = 0, 20, dt
write(13,*) t,x,y

v1 = f(x, y, t)*dt
w1 = g(x, y, t)*dt

v2 = f(x+v1/2.0, y+w1/2.0, t+dt/2.0)*dt
w2 = g(x+v1/2.0, y+w1/2.0, t+dt/2.0)*dt

v3 = f(x+v2/2.0, y+w2/2.0, t+dt/2.0)*dt
w3 = g(x+v2/2.0, y+w2/2.0, t+dt/2.0)*dt

v4 = f(x+v3, y+w3, t+dt)*dt
w4 = g(x+v3, y+w3, t+dt)*dt

x = x + (v1 + 2.0*v2 + 2.0*v3 + v4)/6.0
y = y + (w1 + 2.0*w2 + 2.0*w3 + w4)/6.0

10 continue
stop
end

double precision function f(x,y,t)
double precision x,y,t

f = y

return
end

double precision function g(x,y,t)
double precision x,y,t

g = (1.0-x**2)*y - x*sin(t)

return
end

E.2.0.29 Program for Example 12.15

program laplace
implicit none

c This is an example FORTRAN program that solves Laplace’s equation
c on a rectangular domain using the finite difference method.

double precision u(0:40,0:20)
integer i,j,n,m

c set the initial values
data u /861*0.3/
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open(unit=13,file="output.d")

c set the boundary conditions
do 10 m=0,20

u(0,m)=0
u(40,m)=0

10 continue

do 20 n=0,40
u(n,0)=0
if(n .LE. 20) then

u(n,20) = n/10.0
else

u(n,20) = (40-n)/10.0
endif

20 continue

c iterate
do 30 i=1,100

do 40 n=1,39
do 50 m=1,19

u(n,m) = (u(n-1,m)+u(n+1,m)+u(n,m-1)+u(n,m+1))/4.0
50 continue
40 continue
30 continue

write(13,100) ((u(i,j),j=0,20),i=0,40)
100 format (41(21(F6.3, 1X),/))

stop
end

E.2.0.30 Program for Example 12.16

program laplace2
implicit none

c This is an example FORTRAN program that solves Laplace’s equation
c on an H-shaped domain using the finite difference method.

double precision u(0:90,0:90)
integer i,j,n,m,whereami,iteration

c set the initial values
data u /8281*0.5/

open(unit=13,file="output.d")
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c set the boundary conditions

do 10 n=0,90
do 20 m=0,90

if(whereami(n,m).EQ.0) THEN
u(n,m) = 0

elseif(whereami(n,m).EQ.1) THEN
u(n,m) = 0.5

elseif(whereami(n,m).EQ.3) THEN
u(n,m) = 0

else
u(n,m) = 1

endif
20 continue
10 continue

write(*,100) ((u(i,j),j=0,90),i=0,90)
do 30 iteration=1,100

do 40 n=1,89
do 50 m=1,89

if(whereami(n,m).EQ.1) THEN
u(n,m) = (u(n-1,m)+u(n+1,m)+u(n,m-1)+u(n,m+1))/4.0

endif
50 continue
40 continue
30 continue

write(13,100) ((u(i,j),j=0,90),i=0,90)
write(*,100) ((u(i,j),j=0,90),i=0,90)

100 format (91(91(F5.1, 1X),/))

stop
end

c 0 = exterior
c 1 = interior
c 2 = constant boundary points with u=1
c 3 = constant boundary points with u=0

integer function whereami(n,m)
integer n,m

if(((n.GT.30).AND.(n.LT.60)).AND.((m.GT.60).OR.(m.LT.30)))THEN
whereami = 0

elseif((n.GT.0).AND.(n.LT.30).AND.((m.gt.0).AND.(m.lt.90))) THEN
whereami = 1

elseif((n.GT.60.AND.n.LT.90).AND.((m.gt.0).AND.(m.lt.90))) THEN
whereami = 1

elseif((n.GE.30.AND.n.LE.60).AND.(m.gt.30.AND.m.lt.60))THEN
whereami = 1

elseif(((n.LE.30).OR.(n.GE.60)).AND.(m.EQ.90)) THEN
whereami = 2

elseif(((n.GT.30).AND.(n.LT.60)).AND.(m.EQ.60)) THEN
whereami = 2

elseif(((n.EQ.30).OR.(n.EQ.60)).AND.(m.GE.60)) THEN
whereami = 2
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else
whereami = 3

endif
end

E.2.0.31 Program for Example 12.16

program heat
implicit none

c This program solves the one-dimensional heat conduction equation
c with alpha=2, L=10. The initial heat distribution is triangular
c with a maximum at x=5 and a maximum value of 5.

integer i,j,k,steps,dim
parameter(dim=20)
double precision u(0:dim),un(0:dim),t,dt,dx,alpha

open(unit=13,file="heathomogeneous.d")

dx = 10.0/dim
dt = 0.031
alpha=2
steps=8/dt+1
write(*,*) ’dt should be less than ’,0.5*(dx/alpha)**2
write(*,*) ’dt is ’,dt

c set the initial conditions
t=0
do 10 i=0,dim

if(i .LT. dim/2) then
u(i) = 2.0*5.0*i/dim

else
u(i) = 5.0-2.0*5.0*(i-dim/2.0)/dim

endif
10 continue

write(13,100) (u(i),i=0,dim)

do 20 k=1,steps
do 30 j=1,dim-1

un(j) = u(j)+alpha**2*((u(j-1)-2*u(j)+u(j+1))/dx**2)*dt
30 continue

do 40 j=1,dim-1
u(j)=un(j)

40 continue
t=t+dt

if(abs(t-1.6).LT.dt/2) then
write(*,*) t
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write(13,100) (u(i),i=0,dim)
elseif(abs(t-3.2).LT.dt/2) then

write(*,*) t
write(13,100) (u(i),i=0,dim)

elseif(abs(t-4.8).LT.dt/2) then
write(*,*) t
write(13,100) (u(i),i=0,dim)

elseif(abs(t-6.4).LT.dt/2) then
write(*,*) t
write(13,100) (u(i),i=0,dim)

elseif(abs(t-8).LT.dt/2) then
write(*,*) t
write(13,100) (u(i),i=0,dim)

endif
20 continue

if(abs(t-8).LT.dt/2) then
write(*,*) t
write(13,100) (u(i),i=0,dim)

endif
write(*,*) t

100 format(201(F10.3, 1X))

stop
end
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A

Airy equation 182
Airy functions 183
algebraic multiplicity 212,

213
algebraic Riccati equation

267
ampere 19
analytic 166
analytic function 169
angular momentum 22
argument 378, 684
arrow 313
associative 693

B

bandpass filter 481
basis 700
beam equation 547
beating 134, 564
Bessel equation 186, 191,

538
Bessel function

first kind 186, 538
second kind 186, 538

Bessel functions 538
bifurcation 666

pitchfork 672
saddle-node 667
transcritical 675, 679

bifurcation parameter 667
block 313
block diagram 312

algebra 312
Bode plot 401, 404

Boit number 59
boundary condition

cantilever 553
free 552
simply supported 553

boundary conditions 16,
487

homogeneous 514
boundary value problem 17
branch point 313
breakpoint 406

C

candela 19
cantilever boundary condition

553
capacitor 35
Cartesian product 3
cascade compensation 449
center manifold theory 651
center of mass 23
center of pressure 308
chaos 633
characteristic equation 93,

306, 701
characteristic polynomial

196
Chebychev equation 183,

189
Chebychev polynomial 185
chime 576
chromatic scale 564
closed interval 3
commutative 691
comparator 313

complementary functions
18

complex number 3, 683
Concert A 561
conduction 512
conduction heat transfer

coefficient 58
conservation of momentum

21
consonance 560
constant coefficients 13
controllability 267
conv() 320, 321
coordinate system

inertial 22
Coulomb (electric charge)

20
Coulomb friction 160
cross-product 22
current source 36
cutoff frequency 478

D

damped natural frequency
100, 124

damper 33
damping ratio 100, 124
dashpot 33
dc motor 36

back emf constant 37
torque constant 37

dead zone 658
decibel 404
delta “function” 286
dependent variable 4, 5
derivative 5
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partial 5
derivative control 334
derivative gain 334
diagonal matrix 226
diagonalization 226
differential equation

constant-coefficient 13,
61, 63, 74, 75

homogeneous 12
inhomogeneous 12
linear 11
nonhomogeneous 12
nonlinear 11, 77
order 10
ordinary 9
partial 9
solutions of 14
system 9
time invariant 13
types 8
variable-coefficient 13,

74, 75
Dirac delta 286
direct current motor 36
Dirichlet problem 573
discontinuous forcing

function 294
displacement transmissibility

146, 154
dissonance 560
domain 4
dot product 500
drag 308
Duffing’s equation 631
dynamic compensation 452

E

eigenvalue 196, 489, 649,
700

eigenvector 196, 649, 700
generalized 221

elastic modulus 551
element 3
elliptic equation 14
equal temperament 562
equilibrium point 642, 644
Euler’s equation 115, 178,

710
Euler’s formula 94
Euler’s method 39, 577
Euler–Bernoulli beam

equation 547
exact 79

exact equation 77
explicit methods 612
explicit solution 15
exponential, matrix 230

F

Farad 20
feedback 316, 329
feedforward 316
field 694
final value theorem 289
finite difference method

611
first-order

exact 79
separable 77

first-order Runge–Kutta
method 589

forced vibrations 124
Fourier transform 281
Fourier series 497
Fourier sine series 491
Fourier transform 281

inverse 282
fourth-order Runge–Kutta

method 596
free body diagram 27, 34
free boundary condition

552
free vibrations 124
frequency domain 283, 291
frequency response 401,

404
full-state feedback 264
function 4

implicit 7
multivariable 5

fundamental frequency
495, 560

fundamental matrix solution
241

fundamental set of solutions
97

fundamental theorem of
algebra 384

fuzzy logic 3

G

gain 264
gain margin 419, 430
Galileo 562
general solution 16

generalized eigenvectors
221

generalized eigenspace 221
geometric multiplicity 212,

213
Gibb’s phenomenon 511
glockenspiel 568

H

harmonic 139
harmonic balance 656
harmonics 495
heat capacity 20
Henry 20
Hermite equation 185, 190
Hermite polynomials 185
Hermitian matrix 199, 545
Hertz 20
highpass filter 479
homogeneous boundary

conditions 514
homogeneous differential

equation 12
homogeneous equation 87
homogeneous function 87
homogeneous solution 17
Hopf bifurcation 675
hovercraft model 31
hyperbolic equation 14
hyperbolic fixed point 651
hyperbolic functions 556

I

ideal gas law 48
identity element 693
imaginary part 683
implicit function 7
implicit function theorem 7
improved Euler method

591
impulse 286
impulse response 341
impulse() 321, 322
independent variable 4, 5
inductive learning viii
inductor 36
inertial coordinate system

22
inhomogeneous differential

equation 12
initial conditions 16
initial value problem 17
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inner product 499, 500
integral control 337
integrating factor 81
interior Dirichlet problem

50, 573
internal forces 24
interval 3

closed 3
open 3

inverse 693
inverse Fourier transform

282
inverse Laplace transform

definition of 283

J

Jacobian 608, 643
Jacobian matrix 645
Jordan canonical form 247
just intonation 564
just major third 564
just minor sixth 564
just minor third 563

K

kelvin 19
kilogram 19
Kirchhoff

current law 34
voltage law 34

L

Laplace transform 279, 282
definition of 282
derivative 289
table of Laplace transform

pairs 288
time shift 290

Laplace’s equation 522
lead compensation 462
Legendre equation 186,

190
Legendre polynomials 186
lift 308
limit cycle 635, 677

unstable 681
linear dependence 65, 699
linear differential equation

11
linear independence 65, 96,

699

linear momentum 22
linear quadratic regulator

267
linear spring 32
Lipschitz condition 709
local truncation error 578
logarithmic decrement 150
lowpass filter 477
LQR 267
lqr() 269
lsode() 47
lumped capacitance method

59
lumped thermal capacitance

59

M

magnification factor 128
mass moment of inertia 26
MATLAB 45

conv() 320
impulse() 321
pzmap() 321
step() 320
expm() 231
lqr() 269
ode45() 45
place() 267
rlocus() 401
roots() 215, 354

matrix
diagonal 226
Hermitian 199

matrix exponential 230
meantone temperament 564
mechanics 21
meter 19
Michaelis–Menton equation

59
middle C 561
minimum phase 418
modern control 262
modulus of elasticity 551
mole 19
moment of inertia, mass 26
multiplicity

algebraic 212
geometric 212

multivariable function 5
music 559

N

n-tuple 3

natural frequency 94, 124
natural minor 564
neutral plane 548
neutral stability 416
Newton (force) 20
Newton, Isaac 21

first law 21
second law 21
third law 21

node 650
nonhomogeneous differential

equation 12
nonlinear differential

equation 11
nonminimum phase 368
null space 700
numerical methods

higher-order equations
44

Nyquist plot 421

O

Octave 47
conv() 321
impulse() 322
step() 321
tf() 321
expm() 231
lqr() 269
lsode() 47
place() 267
rlocus() 401
roots() 215, 354

octave (music) 560
ode45() 45
ohm 20
open interval 3
operational amplifier 37
order of a differential

equation 10
ordinary differential equation

9
ordinary point 171

P

parabolic equation 14
parabolic input 450
partial derivative 5
partial differential equation

9
second-order linear 14

partial sum 163
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particle 22
particular solution 16
pascal 551
peak time 339
percentage overshoot 339
perfect fifth 562
periodic function 499
phase portrait 633
phase margin 419, 430
phase plane 631, 633
piano 560
PID control 330
pitchfork bifurcation 672
Poincaré section 635
pole 283
pole placement 265
principal value 684
Principia 21
principle of superposition

95
proper transfer function

306, 686
proportional control 331
proportional gain 331
pulse width modulation

310
Pythagoras 563
Pythagorean comma 563
Pythagorean scale 563
pzmap() 321

Q

quaternion 692

R

ramp inputs 450
range 4
ratio test 168
rational function 169, 686
Rayleigh equation 680
real analytic 166
real numbers 3
real part 683
rectilinear motion 26
recurrence relation 163
regular singular point 176
relation 4
resistor 35
resonance 107, 132
rigid body 22, 24
rise time 339
rlocus() 401

rocket science 308
root locus plot 373
roots() 215
Routh array 352
Routh stability criterion

351
Runge–Kutta method 587

S

saddle node 650
saddle-node bifurcation

667
scalar multiplication 695
scale 559

major 564
minor 564

second 19
second-order Runge–Kutta

method 590, 591
second-order Taylor series

method 582
self-adjoint operator 545
separable 77
separation of variables 485
separation of variables 488
set 2

element 3
settling time 339
simply supported boundary

condition 553
singular point 175

regular 176
solution

explicit 15
general 16
homogeneous 17
particular 16
steady state 143

solutions 14
specific heat 58
spectrum 495
spring 32

hardening 679
stability margin 432
stable node 650
stable spiral 650
state-space control 262
static deflection 128
steady-state error 340
steady-state response 143,

159
step function 285
step input 450

step response 342
step size 40, 43
step() 320, 321
strange attractor 635
Sturm–Liouville

boundary value problems
544

theory 544
subharmonic response 678
superharmonic response

678
superposition 95
system 9
system identification 147
system type 306, 419, 450

T

telegraph equation 50
temperature 58
terminal velocity 90
tf() 321
thermal conductivity 20, 59
thermal diffusivity 513
third-order Runge–Kutta

method 594
third-order Taylor series

method 584
thrust vectoring 309
time domain 283
time domain specifications

339
time invariant 13
time shift 290
tracking 436
trajectory problems 87
transcritical bifurcation

675, 679
transfer function 305, 306

zero of 283
pole of 283
proper 306

transfer functions 304
transient response 159, 340
transmissibility

displacement 146, 154
Tristan chord 561
truncation error 578

U

undamped 124
undetermined coefficients

63, 106, 678
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unit impulse response 341
unit step response 342
units 19
unity feedback 381
unstable node 650
unstable spiral 650

V

Van der Pol equation 677
variable-coefficient 13
variation of parameters 74,

109
vector addition 694
vector space 691

vibration
modes 559

vibration absorber 259
viscous damper 33
viscous dashpot 33
volt 20
voltage source 36

W

Wagner, Richard 561
Watt 20
wave equation 485, 559
wolf 563

Wronskian 66, 98, 101,
102, 179, 217

X

xylophone 568

Y

Young’s modulus 551

Z

zero 283


	Engineering Differential Equations
	Preface
	Contents
	Chapter 1 Introduction and Preliminaries
	Chapter 2 First-Order Ordinary Differential Equations
	Chapter 3 Second-Order Linear Constant-CoefficientOrdinary Differential Equations
	Chapter 4 Single Degree of Freedom Vibrations
	Chapter 5 Variable-Coefficient Linear OrdinaryDifferential Equations
	Chapter 6 Systems of First-Order LinearConstant-Coefficient Ordinary DifferentialEquations
	Chapter 7 Applications of Systems of First-OrderEquations
	Chapter 8 The Laplace Transform
	Chapter 9 Classical Control Theory: Analysis
	Chapter 10 Classical Control Theory: Design
	Chapter 11 Partial Differential Equations
	Chapter 12 Numerical Methods
	Chapter 13 Introduction to Nonlinear Systems
	Appendix A Some Complex Variable Theory
	Appendix B Linear Algebra Review
	Appendix C Detailed Computations
	Appendix D Some Theorems
	Appendix E Example Programs
	References
	Index



