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Preface

Many well-known models in the natural sciences and engineering, and today
even in economics, depend on partial differential equations. Thus the efficient
numerical solution of such equations plays an ever-increasing role in state-of-
the-art technology. This demand and the computational power available from
current computer hardware have together stimulated the rapid development
of numerical methods for partial differential equations—a development that
encompasses convergence analyses and implementational aspects of software
packages.

In 1988 we started work on the first German edition of our book, which
appeared in 1992. Our aim was to give students a textbook that contained the
basic concepts and ideas behind most numerical methods for partial differen-
tial equations. The success of this first edition and the second edition in 1994
encouraged us, ten years later, to write an almost completely new version,
taking into account comments from colleagues and students and drawing on
the enormous progress made in the numerical analysis of partial differential
equations in recent times. The present English version slightly improves the
third German edition of 2005: we have corrected some minor errors and added
additional material and references.

Our main motivation is to give mathematics students and mathematically-
inclined engineers and scientists a textbook that contains all the basic discretiza-
tion techniques for the fundamental types of partial differential equations; one
in which the reader can find analytical tools, properties of discretization tech-
niques and advice on algorithmic aspects. Nevertheless, we acknowledge that
in fewer then 600 pages it is impossible to deal comprehensively with all these
topics, so we have made some subjective choices of material. Our book is
mainly concerned with finite element methods (Chapters 4 and 5), but we also
discuss finite difference methods (Chapter 2) and finite volume techniques.
Chapter 8 presents the basic tools needed to solve the discrete problems gener-
ated by numerical methods, while Chapter 6 (singularly perturbed problems)
and Chapter 7 (variational inequalities and optimal control) are special topics
that reflect the research interests of the authors.
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As well as the above in-depth presentations, there are passing references
to spectral methods, meshless discretizations, boundary element methods,
higher-order equations and systems, hyperbolic conservation laws, wavelets
and applications in fluid mechanics and solid mechanics.

Our book sets out not only to introduce the reader to the rich and fasci-
nating world of numerical methods for partial differential equation, but also to
include recent research developments. For instance, we present detailed intro-
ductions to a posteriori error estimation, the discontinuous Galerkin method
and optimal control with partial differential equations; these areas receive
a great deal of attention in the current research literature yet are rarely
discussed in introductory textbooks. Many relevant references are given to
encourage the reader to discover the seminal original sources amidst the tor-
rent of current research papers on the numerical solution of partial differential
equations.

A large portion of Chapters 1–5 constitutes the material for a two-semester
course that has been presented several times to students in the third and
fourth year of their undergraduate studies at the Technical University of
Dresden.

We gratefully acknowledge those colleagues who improved the book by their
comments, suggestions and discussions. In particular we thank A. Felgenhauer,
S. Franz, T. Linß, B. Mulansky, A. Noack, E. Pfeifer, H. Pfeifer, H.-P. Scheffler
and F. Tröltzsch.

We are much obliged to our colleague and long standing friend Martin
Stynes for his skill and patience in translating and mathematically revising
this English edition.

Dresden, June 2007



Contents

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI

1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Classification and Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fourier’ s Method, Integral Transforms . . . . . . . . . . . . . . . . . . . . . 5
1.3 Maximum Principle, Fundamental Solution . . . . . . . . . . . . . . . . . 9

1.3.1 Elliptic Boundary Value Problems . . . . . . . . . . . . . . . . . . . 9
1.3.2 Parabolic Equations and Initial-Boundary Value

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Hyperbolic Initial and Initial-Boundary Value Problems 18

2 Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Transportation Problems and Conservation Laws . . . . . . . . . . . . 36

2.3.1 The One-Dimensional Linear Case . . . . . . . . . . . . . . . . . . . 37
2.3.2 Properties of Nonlinear Conservation Laws . . . . . . . . . . . 48
2.3.3 Difference Methods for Nonlinear Conservation Laws . . . 53

2.4 Elliptic Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.1 Elliptic Boundary Value Problems . . . . . . . . . . . . . . . . . . . 61
2.4.2 The Classical Approach to Finite Difference Methods . . 62
2.4.3 Discrete Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.4 Difference Stencils and Discretization in General

Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.4.5 Mixed Derivatives, Fourth Order Operators . . . . . . . . . . . 82
2.4.6 Local Grid Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.5 Finite Volume Methods as Finite Difference Schemes . . . . . . . . . 90
2.6 Parabolic Initial-Boundary Value Problems . . . . . . . . . . . . . . . . . 103

2.6.1 Problems in One Space Dimension . . . . . . . . . . . . . . . . . . . 104
2.6.2 Problems in Higher Space Dimensions . . . . . . . . . . . . . . . . 109
2.6.3 Semi-Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



VIII Contents

2.7 Second-Order Hyperbolic Problems . . . . . . . . . . . . . . . . . . . . . . . . 118

3 Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2 Adapted Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.3 Variational Equations and Conforming Approximation . . . . . . . 142
3.4 Weakening V-ellipticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.5 Nonlinear Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4 The Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.1 A First Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.2 Finite-Element-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.2.1 Local and Global Properties . . . . . . . . . . . . . . . . . . . . . . . . 178
4.2.2 Examples of Finite Element Spaces in R2 and R3 . . . . . . 189

4.3 Practical Aspects of the Finite Element Method . . . . . . . . . . . . . 202
4.3.1 Structure of a Finite Element Code . . . . . . . . . . . . . . . . . . 202
4.3.2 Description of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.3.3 Generation of the Discrete Problem . . . . . . . . . . . . . . . . . . 205
4.3.4 Mesh Generation and Manipulation . . . . . . . . . . . . . . . . . . 210

4.4 Convergence of Conforming Methods . . . . . . . . . . . . . . . . . . . . . . . 217
4.4.1 Interpolation and Projection Error in Sobolev Spaces . . 217
4.4.2 Hilbert Space Error Estimates . . . . . . . . . . . . . . . . . . . . . . 227
4.4.3 Inverse Inequalities and Pointwise Error Estimates . . . . . 232

4.5 Nonconforming Finite Element Methods . . . . . . . . . . . . . . . . . . . . 238
4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
4.5.2 Ansatz Spaces with Low Smoothness . . . . . . . . . . . . . . . . 239
4.5.3 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.5.4 The Finite Volume Method Analysed from a Finite

Element Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4.5.5 Remarks on Curved Boundaries . . . . . . . . . . . . . . . . . . . . . 254

4.6 Mixed Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4.6.1 Mixed Variational Equations and Saddle Points . . . . . . . 258
4.6.2 Conforming Approximation of Mixed Variational

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
4.6.3 Weaker Regularity for the Poisson and Biharmonic

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
4.6.4 Penalty Methods and Modified Lagrange Functions . . . . 277

4.7 Error Estimators and Adaptive FEM . . . . . . . . . . . . . . . . . . . . . . 287
4.7.1 The Residual Error Estimator . . . . . . . . . . . . . . . . . . . . . . . 288
4.7.2 Averaging and Goal-Oriented Estimators . . . . . . . . . . . . . 292

4.8 The Discontinuous Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . 294
4.8.1 The Primal Formulation for a Reaction-Diffusion

Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
4.8.2 First-Order Hyperbolic Problems . . . . . . . . . . . . . . . . . . . . 299
4.8.3 Error Estimates for a Convection-Diffusion Problem . . . 302



Contents IX

4.9 Further Aspects of the Finite Element Method . . . . . . . . . . . . . . 306
4.9.1 Conditioning of the Stiffness Matrix . . . . . . . . . . . . . . . . . 306
4.9.2 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
4.9.3 Superconvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
4.9.4 p- and hp-Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

5 Finite Element Methods for Unsteady Problems . . . . . . . . . . . 317
5.1 Parabolic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

5.1.1 On the Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 317
5.1.2 Semi-Discretization by Finite Elements . . . . . . . . . . . . . . . 321
5.1.3 Temporal Discretization by Standard Methods . . . . . . . . 330
5.1.4 Temporal Discretization with Discontinuous Galerkin

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
5.1.5 Rothe’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
5.1.6 Error Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

5.2 Second-Order Hyperbolic Problems . . . . . . . . . . . . . . . . . . . . . . . . 356
5.2.1 Weak Formulation of the Problem . . . . . . . . . . . . . . . . . . . 356
5.2.2 Semi-Discretization by Finite Elements . . . . . . . . . . . . . . . 358
5.2.3 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
5.2.4 Rothe’s Method for Hyperbolic Problems . . . . . . . . . . . . . 368
5.2.5 Remarks on Error Control . . . . . . . . . . . . . . . . . . . . . . . . . . 372

6 Singularly Perturbed Boundary Value Problems . . . . . . . . . . . 375
6.1 Two-Point Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . 376

6.1.1 Analytical Behaviour of the Solution . . . . . . . . . . . . . . . . . 376
6.1.2 Discretization on Standard Meshes . . . . . . . . . . . . . . . . . . 383
6.1.3 Layer-adapted Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

6.2 Parabolic Problems, One-dimensional in Space . . . . . . . . . . . . . . 399
6.2.1 The Analytical Behaviour of the Solution . . . . . . . . . . . . . 399
6.2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

6.3 Convection-Diffusion Problems in Several Dimensions . . . . . . . . 406
6.3.1 Analysis of Elliptic Convection-Diffusion Problems . . . . . 406
6.3.2 Discretization on Standard Meshes . . . . . . . . . . . . . . . . . . 412
6.3.3 Layer-adapted Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
6.3.4 Parabolic Problems, Higher-Dimensional in Space . . . . . 430

7 Variational Inequalities, Optimal Control . . . . . . . . . . . . . . . . . . 435
7.1 Analytic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
7.2 Discretization of Variational Inequalities . . . . . . . . . . . . . . . . . . . . 447
7.3 Penalty Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

7.3.1 Basic Concept of Penalty Methods . . . . . . . . . . . . . . . . . . . 457
7.3.2 Adjustment of Penalty and Discretization Parameters . . 473

7.4 Optimal Control of PDEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
7.4.1 Analysis of an Elliptic Model Problem . . . . . . . . . . . . . . . 480
7.4.2 Discretization by Finite Element Methods . . . . . . . . . . . . 489



X Contents

8 Numerical Methods for Discretized Problems . . . . . . . . . . . . . . 499
8.1 Some Particular Properties of the Problems . . . . . . . . . . . . . . . . . 499
8.2 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

8.2.1 Gaussian Elimination for Banded Matrices . . . . . . . . . . . . 502
8.2.2 Fast Solution of Discrete Poisson Equations, FFT . . . . . 504

8.3 Classical Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
8.3.1 Basic Structure and Convergence . . . . . . . . . . . . . . . . . . . . 510
8.3.2 Jacobi and Gauss-Seidel Methods . . . . . . . . . . . . . . . . . . . 514
8.3.3 Block Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
8.3.4 Relaxation and Splitting Methods . . . . . . . . . . . . . . . . . . . 524

8.4 The Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . 530
8.4.1 The Basic Idea, Convergence Properties . . . . . . . . . . . . . . 530
8.4.2 Preconditioned CG Methods . . . . . . . . . . . . . . . . . . . . . . . . 538

8.5 Multigrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
8.6 Domain Decomposition, Parallel Algorithms . . . . . . . . . . . . . . . . 560

Bibliography: Textbooks and Monographs . . . . . . . . . . . . . . . . . . . . . 571

Bibliography: Original Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585



Notation

Often used symbols:

a(·, ·) bilinear form
D+, D−, D0 difference quotients
Dα derivative of order |α|with respect to the multi-index α
I identity
IH
h , Ih

H restriction- and prolongation operator
J(·) functional
LL∗ differential operator and its adjoint
Lh difference operator
O(·), o(·) Landau symbols
Pl the set of all polynomials of degree l
Ql the set of all polynomial which are the product of polynomials

of degree l with respect to every variable
R, N real and natural numbers, respectively
V, V ∗ Banach space and its dual
dimV dimension ofV
Vh finite-dimensional finite element space
|| · ||V norm onV
(·, ·) scalar product inV , ifV is Hilbert space
f(v) or 〈f, v〉 value of the functional f ∈ V ∗ applied to v ∈ V
||f ||∗ norm of the linear functional f
→ ⇀ strong and weak convergence, respectively
⊕ direct sum
L(U, V ) space of continuous linear mappings ofU inV
L(V ) space of continuous linear mappings ofV inV
U ↪→ V continuous embedding ofU inV
Z⊥ orthogonal complement ofZ with respect to the scalar product

in a Hilbert space V



XII NOTATION

Ω given domain in space
∂Ω = Γ boundary ofΩ
intΩ interior ofΩ
measΩ measure of Ω
n outer unit normal vector with respect to ∂Ω
∂
∂n

directional derivative with respect to n

ωh, Ωh set of mesh points
Cl(Ω), Cl,α(Ω) space of differentiable and Hölder differentiable functions,

respectively
Lp(Ω) space of functions which are integrable to the power

p (1 ≤ p ≤ ∞)
|| · ||∞ norm inL∞(Ω)
D(Ω) infinitely often differentiable functions with

compact support inΩ

W l
p(Ω) Sobolev space

H l(Ω), H l
0(Ω) Sobolev spaces for p = 2

H(div;Ω) special Sobolev space
TV space of functions with finite total variation
|| · ||l norm in the Sobolev spaceH l

| · |l semi-norm in the Sobolev space H l

t, T time with t ∈ (0, T )
Q = Ω × (0, T ) given domain for time-depending problems
L2(0, T ;X) quadratically integrable functions with values in the

Banach space X

W 1
2 (0, T ;V,H) special Sobolev space for time-depending problems

supp v support of a function v
∇ or grad gradient
div divergence
� Laplacian
�h discrete Laplacian
hi, h discretization parameters with respect to space
τj , τ discretization parameters with respect to time
det(A) determinant of the matrix A
cond(A) condition of the matrix A
ρ(A) spectral radius of the matrix A
λi(A) eigenvalues of the matrix A
diag(ai) diagonal matrix with elements ai

span{ϕi} linear hull of the elements ϕi

conv{ϕi} convex hull of the elements ϕi

Π projection operator
Πh interpolation or projection operator which maps onto the

finite element space



1

Partial Differential Equations: Basics
and Explicit Representation of Solutions

1.1 Classification and Correctness

A partial differential equation is an equation that contains partial derivatives
of an unknown function u : Ω → R and that is used to define that unknown
function. Here Ω denotes an open subset of Rd with d ≥ 2 (in the case d = 1
one has a so-called ordinary differential equation).

In which applications do partial differential equations arise? Which prin-
ciples in the modelling process of some application lead us to a differential
equation?

As an example let us study the behaviour of the temperature T = T (x, t) of
a substance, where t denotes time, in a domain free of sources and sinks where
no convection in present. If the temperature is non-uniformly distributed,
some energy flux J = J(x, t) tries to balance the temperature. Fourier’s law
tells us that J is proportional to the gradient of the temperature:

J = −σ grad T.

Here σ is a material-dependent constant. The principle of conservation of
energy in every subdomain Ω̃ ⊂ Ω leads to the conservation equation

d

dt

∫
Ω̃

γ�T = −
∫

∂Ω̃

n · J =
∫

∂Ω̃

σn · grad T. (1.1)

Here ∂Ω̃ is the boundary of Ω̃, γ the heat capacity, � the density and n the
outer unit normal vector on ∂Ω̃. Using Gauss’s integral theorem, one concludes
from the validity of (1.1) on each arbitrary Ω̃ ⊂ Ω that

γ�
∂T

∂t
= div (σ grad T ). (1.2)

This resulting equation — the heat equation — is one of the basic equations
of mathematical physics and plays a fundamental role in many applications.



2 1 Basics

How does one classify partial differential equations?
In linear partial differential equations the equation depends in a linear

manner on the unknown function and its derivatives; any equation that is
not of this type is called nonlinear. Naturally, nonlinear equations are in gen-
eral more complicated than linear equations. We usually restrict ourselves in
this book to linear differential equations and discuss only a few examples of
nonlinear phenomena.

The second essential attribute of a differential equation is its order, which
is the same as the order of the highest derivative that occurs in the equation.
Three basic equations of mathematical physics, namely

the Poisson equation −Δu = f,

the heat equation ut −Δu = f and
the wave equation utt −Δu = f

are second-order equations. Second-order equations play a central role in this
book. The bi-harmonic equation (or the plate equation)

ΔΔu = 0

is a linear equation of the fourth order. Because this equation is important in
structural mechanics we shall also discuss fourth-order problems from time to
time.

Often one has to handle not just a single equation but a system of equations
for several unknown functions. In certain cases there is no difference between
numerical methods for single equations and for systems of equations. But
sometimes systems do have special properties that are taken into account also
in the discretization process. For instance, it is necessary to know the proper-
ties of the Stokes system, which plays a fundamental role in fluid mechanics,
so we shall discuss its peculiarities.

Next we discuss linear second-order differential operators of the form

Lu :=
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
with aij = aji. (1.3)

In the two-dimensional case (n = 2) we denote the independent variables
by x1, x2 or by x, y; in the three-dimensional case (n = 3) we similarly use
x1, x2, x3 or x, y, z. If, however, one of the variables represents time, it is
standard to use t. The operator L generates a quadratic form Σ that is defined
by

Σ(ξ) :=
n∑
i,j

aij(x)ξiξj .

Moreover, the properties of Σ depend on the eigenvalues of the matrix
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A :=

⎡⎢⎢⎣
a11 a12 . . . . . .
. . .

an1 . . . ann

⎤⎥⎥⎦ .

The differential operator (1.3) is elliptic at a given point if all eigenvalues of
A are non-zero and have the same sign. The parabolic case is characterized
by one zero eigenvalue with all other eigenvalues having the same sign. In
the hyperbolic case, however, the matrix A is invertible but the sign of one
eigenvalue is different from the signs of all the other eigenvalues.

Example: The Tricomi equation

x2
∂2u

∂x2
1

+
∂2u

∂x2
2

= 0

is elliptic for x2 > 0, parabolic on x2 = 0 and hyperbolic for x2 < 0.
In the case of equations with constant coefficients, however, the type of

the equation does not change from point to point: the equation is uniformly
elliptic, uniformly parabolic or uniformly hyperbolic. The most important
examples are the following:

Poisson equation — elliptic,
heat equation — parabolic,
wave equation — hyperbolic.

Why it is important to know this classification?
To describe a practical problem, in general it does not suffice to find the

corresponding partial differential equation; usually additional conditions com-
plete the description of the problem. The formulation of these supplementary
conditions requires some thought. In many cases one gets a well-posed prob-
lem, but sometimes an ill-posed problem is generated.

What is a well-posed problem? Let us assume that we study a problem in
an abstract framework of the form

Au = f .

The operator A denotes a mapping A : V → W for some Banach spaces V
and W . The problem is well-posed if small changes of f lead to small changes
in the solution u; this is reasonable if we take into consideration that f could
contain information from measurements.

Example 1.1. (an ill-posed problem of Hadamard for an elliptic equation)

Δu = 0 in (−∞,∞)× (0, δ)

u|y=0 = ϕ(x),
∂u

∂y
|y=0 = 0 with ϕ(x) =

cos x

n
.
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The solution of this problem is u(x, y) =
cos nx cosh ny

n
. For large n the

function ϕ is small, but u is not. �

Example 1.1 shows that if we add initial conditions to an elliptic equation, it
is possible to get an ill-posed problem.

Example 1.2. (an ill-posed problem for a hyperbolic equation)

Consider the equation

∂2u

∂x1 ∂x2
= 0 in Ω = (0, 1)2

with the additional boundary conditions

u|x1=0 = ϕ1(x2), u|x2=0 = ψ1(x1), u|x1=1 = ϕ2(x2), u|x2=1 = ψ2(x1).

Assume the following compatibility conditions:

ϕ1(0) = ψ1(0), ϕ2(0) = ψ1(1), ϕ1(1) = ψ2(0), ϕ2(1) = ψ2(1).

Integrating the differential equation twice we obtain

u(x1, x2) = F1(x1) + F2(x2)

with arbitrary functions F1 and F2. Now, for instance, it is possible to satisfy
the first two boundary conditions but not all four boundary conditions. In the
space of continuous functions the problem is ill-posed. �

Example 1.2 shows that boundary conditions for a hyperbolic equation can
result in an ill-posed problem. What is the reason for this behaviour ?

The first-order characteristic equation∑
i,j

aij
∂ω

∂xi

∂ω

∂xj
= 0

is associated with the differential operator (1.3). A surface (in the two-
dimensional case a curve)

ω(x1, x2, . . . , xn) = C

that satisfies this equation is called a characteristic of (1.3). For two inde-
pendent variables one has the following situation: in the elliptic case there
are no real characteristics, in the parabolic case there is exactly one char-
acteristic through any given point, and in the hyperbolic case there are two
characteristics through each point.

It is a well-known fundamental fact that it is impossible on a characteristic
Γ to prescribe arbitrary initial conditions
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u|Γ = ϕ
∂u

∂λ
|Γ = ψ

(λ is a non-tangential direction with respect to Γ ): the initial conditions must
satisfy a certain additional relation.

For instance, for the parabolic equation

ut − uxx = 0

the characteristics are lines satisfying the equation t = constant. Therefore,
it makes sense to pose only one initial condition u|t=0 = ϕ(x), because the
differential equation yields immediately ut|t=0 = ϕ′′(x).

For the hyperbolic equation

utt − uxx = 0

the characteristics are x + t = constant and x − t = constant. Therefore,
t = constant is not a characteristic and the initial conditions u|t=0 = ϕ and
ut|t=0 = ψ yield a well-posed problem.

Let us summarize: The answer to the question of whether or not a problem
for a partial differential equation is well posed depends on both the character
of the equation and the type of supplementary conditions.
The following is a rough summary of well-posed problems for second-order
partial differential equations:

elliptic equation plus boundary conditions
parabolic equation plus boundary conditions with respect to space

plus initial condition with respect to time
hyperbolic equation plus boundary conditions with respect to space

plus two initial conditions with respect to time

1.2 Fourier’s Method and Integral Transforms

In only a few cases is it possible to exactly solve problems for partial differ-
ential equations. Therefore, numerical methods are in practice the only pos-
sible way of solving most problems. Nevertheless we are interested in finding
an explicit solution representation in simple cases, because for instance in
problems where the solution is known one can then ascertain the power of a
numerical method. This is the main motivation that leads us in this chapter
to outline some methods for solving partial differential equations exactly.

First let us consider the following problem for the heat equation:

ut −Δu = f in Ω × (0, T )
u|t=0 = ϕ(x).

(2.1)

Here f and ϕ are given functions that are at least square-integrable; addi-
tionally one has boundary conditions on ∂Ω that for simplicity we take to be
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homogeneous. In most cases such boundary conditions belong to one of the
classes

a) Dirichlet conditions or boundary conditions of the first kind :

u|∂Ω = 0

b) Neumann conditions or boundary conditions of the second kind :

∂u

∂n
|∂Ω = 0

c) Robin conditions or boundary conditions of the third kind :

∂u

∂n
+ αu|∂Ω = 0.

In case c) we assume that α > 0.
Let {un}∞n=1 be a system of eigenfunctions of the elliptic operator

associated with (2.1) that are orthogonal with respect to the scalar product
in L2(Ω) and that satisfy the boundary conditions on ∂Ω that supplement
(2.1). In (2.1) the associated elliptic operator is −Δ, so we have

−Δun = λnun

for some eigenvalue λn. Typically, properties of the differential operator guar-
antee that λn ≥ 0 for all n.

Denote by ( · , · ) the L2 scalar product on Ω. Now we expand f in terms
of the eigenfunctions {un}:

f(x, t) =
∞∑

n=1

fn(t)un(x) , fn(t) = (f, un).

The ansatz
u(x, t) =

∞∑
n=1

cn(t)un(x)

with the currently unknown functions cn(·) yields

c′n(t) + λncn(t) = fn(t), cn(0) = ϕn.

Here the ϕn are the Fourier coefficients of the Fourier series of ϕ with respect to
the system {un}. The solution of that system of ordinary differential equations
results in the solution representation

u(x, t) =
∞∑

n=1

ϕnun(x)e−λnt +
∞∑

n=1

un(x)

t∫
0

e−λn(t−τ)fn(τ)dτ. (2.2)
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Remark 1.3. Analogously, one can solve the Poisson equation

−Δu = f

with homogeneous boundary conditions, assuming each λn > 0 (this holds
true except in the case of Neumann boundary conditions), in the form

u(x) =
∞∑

n=1

fn

λn
un(x) . (2.3)

Then for the wave equation with initial conditions

utt −Δu = f, u|t=0 = ϕ(x), ut|t=0 = ψ(x)

and homogeneous boundary conditions, one gets

u(x, t) =
∑∞

n=1

(
ϕnun(x) cos(

√
λn t) + ψn√

λn
un(x) sin(

√
λn t)

)
+
∑∞

n=1
1√
λn

un(x)
t∫
0

sin
√

λn(t− τ)fn(τ)dτ
(2.4)

where ϕn and ψn are the Fourier coefficients of ϕ and ψ. �

Unfortunately, the eigenfunctions required are seldom explicitly available. For
−Δ, in the one-dimensional case with Ω = (0, 1) one has, for instance,

for u(0) = u(1) = 0 : λn = π2n2, n = 1, 2, . . . ; un(x) =
√

2 sin πnx

for u′(0) = u′(1) = 0 : λ0 = 0 ; u0(x) ≡ 1

λn = π2n2, n = 1, 2, . . . ; un(x) =
√

2 cos πnx

for u(0) = 0,
u′(1) + αu(1) = 0 : λn solves α tan ξ + ξ = 0 ; un(x) = dn sin λnx.

(In the last case the dn are chosen in such a way that the L2 norm of each
eigenfunction un equals 1.)
When the space dimension is greater than 1, eigenvalues and eigenfunctions
for the Laplacian are known only for simple geometries — essentially only for
the cases of a ball and Ω = (0, 1)n. For a rectangle

Ω = {(x, y) : 0 < x < a, 0 < y < b}

for example, for homogeneous Dirichlet conditions one gets

λm,n =
(mπ

a

)2

+
(nπ

b

)2

, um,n = c sin
mπx

a
sin

nπy

b
with c =

2√
ab

.

It is possible to study carefully the convergence behaviour of the Fourier
expansions (2.2), (2.3) and (2.4) and hence to deduce conditions guaranteeing
that the expansions represent classical or generalized solutions (cf. Chapter 3).
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To summarize, we state: The applicability of Fourier’s method to prob-
lems in several space dimensions requires a domain with simple geometry and
a simple underlying elliptic operator — usually an operator with constant
coefficients, after perhaps some coordinate transformation.

Because Fourier integrals are a certain limit of Fourier expansions, it is
natural in the case Ω = Rm to replace Fourier expansions by the Fourier
transform. From time to time it is also appropriate to use the Laplace trans-
form to get solution representations. Moreover, it can be useful to apply some
integral transform only with respect to a subset of the independent variables;
for instance, only with respect to time in a parabolic problem. Nevertheless,
the applicability of integral transforms to the derivation of an explicit solution
representation requires the given problem to have a simple structure, just as
we described for Fourier’s method.

As an example we study the so-called Cauchy problem for the heat equa-
tion:

ut −Δu = 0 for x ∈ Rm, u|t=0 = ϕ(x). (2.5)

For g ∈ C∞
0 (Rm) the Fourier transform ĝ is defined by

ĝ(ξ) =
1

(2π)m/2

∫
Rm

e−ix·ξg(x) dx .

Based on the property (
∂̂kg

∂xk
j

)
(ξ) = (iξj)kĝ (ξ),

the Fourier transform of (2.5) leads to the ordinary differential equation

∂û

∂t
+ |ξ|2û = 0 with û|t=0 = ϕ̂ ,

whose solution is û(ξ, t) = ϕ̂ (ξ) e−|ξ|2t.
The backward transformation requires some elementary manipulation and

leads, finally, to the well known Poisson’s formula

u(x, t) =
1

(4πt)m/2

∫
Rm

e−
|x−y|2

4t ϕ(y) dy . (2.6)

Analogously to the convergence behaviour of Fourier series, a detailed ana-
lytical study (see [Mic78]) yields conditions under which Poisson’s formula
represents a classical or a generalized solution. Poisson’s formula leads to the
conclusion that heat spreads with infinite speed. Figure 1.1, for instance, shows
the temperature distribution for t = 0.0001, 0.01, 1 if the initial distribution
is given by

ϕ(x) =
{

1 if 0 < x < 1
0 otherwise.

Although the speed of propagation predicted by the heat equation is not
exactly correct, in many practical situations this equation models the heat
propagation process with sufficient precision.
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Figure 1.1 Solution at t = 0.0001, t = 0.01 and t = 1

1.3 Maximum Principle, Fundamental Solution,
Green’s Function and Domains of Dependency

1.3.1 Elliptic Boundary Value Problems

In this section we consider linear elliptic differential operators

Lu(x) := −
∑

aij(x)
∂2u

∂xi∂xj
+
∑

bi(x)
∂u

∂xi
+ c(x)u

in some bounded domain Ω. It is assumed that we have:

(1) symmetry and ellipticity: aij = aji, and some λ > 0 exists such that∑
aijξiξj ≥ λ

∑
ξ2
i for all x ∈ Ω and all ξ ∈ Rn (3.1)

(2) all coefficients aij , bi, c are bounded.

For elliptic differential operators of this type, maximum principles are valid;
see [PW67], [GT83] for a detailed discussion.

Theorem 1.4 (boundary maximum principle). Let c ≡ 0 and
u ∈ C2(Ω) ∩ C(Ω̄). Then

Lu(x) ≤ 0 ∀x ∈ Ω =⇒ max
x∈Ω

u(x) ≤ max
x∈∂Ω

u(x).

The following comparison principle provides an efficient tool for obtaining a
priori bounds:

Theorem 1.5 (comparison principle). Let c ≥ 0 and v, w ∈ C2(Ω)∩C(Ω̄).
Then

Lv(x) ≤ Lw(x) ∀x ∈ Ω,

v(x) ≤ w(x) ∀x ∈ ∂Ω

}
=⇒ v(x) ≤ w(x) ∀x ∈ Ω̄.
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If v, w are a pair of functions with the properties above and if w coincides with
the exact solution of a corresponding boundary value problem then v is called
a lower solution of this problem. Upper solutions are defined analogously.

Given continuous functions f and g we now consider the classical for-
mulation of the Dirichlet problem (“weak” solutions will be discussed in
Chapter 3):

Find a function u ∈ C2(Ω)∩C(Ω̄) — a so-called classical solution — such
that

Lu = f in Ω
u = g on ∂Ω .

(3.2)

Theorem 1.5 immediately implies that problem (3.2) has at most one classical
solution.

What can we say about the existence of classical solutions?
Unfortunately the existence of a classical solution is not automatically

guaranteed. Obstacles to its existence are
– the boundary Γ of the underlying domain is insufficiently smooth
– nonsmooth data of the problem
– boundary points at which the type of boundary condition changes.

To discuss these difficulties let us first give a precise characterization of
the smoothness properties of the boundary of a domain.

Definition 1.6. A bounded domain Ω belongs to the class Cm,α

(briefly, ∂Ω ∈ Cm,α) if a finite number of open balls Ki exist with:
(i) ∪Ki ⊃ ∂Ω, Ki ∩ ∂Ω �= 0;
(ii) There exists some function y = f (i)(x) that belongs to Cm,α(K̄i) and
maps the ball Ki in a one-to-one way onto a domain in Rn where the image
of the set ∂Ω ∩ K̄i lies in the hyperplane yn = 0 and Ω ∩Ki is mapped into
a simple domain in the halfspace {y : yn > 0}. The functional determinant

∂(f (i)
1 (x), ..., f (i)

n (x))
∂(x1, ..., xn)

does not vanish for x ∈ K̄i.

This slightly complicated definition describes precisely what is meant by the
assumption that the boundary is “sufficiently smooth”. The larger m is, the
smoother is the boundary. Domains that belong to the class C0,1 are rather
important; they are often called domains with regular boundary or Lipschitz
domains. For example, bounded convex domains have regular boundaries.
An important fact is that for domains with a regular boundary (i.e., for
Lipschitz domains) a uniquely defined outer normal vector exists at almost all
boundary points and functions vi ∈ C1(Ω) ∩ C(Ω̄) on such domains satisfy
Gauss’s theorem ∫

Ω

∑
i

∂vi

∂xi
dΩ =

∫
Γ

∑
i

vi ni dΓ.
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Theorem 1.7. Let c ≥ 0 and let the domain Ω have a regular boundary.
Assume also that the data of the boundary value problem (3.2) is smooth (at
least α-Hölder continuous). Then (3.2) has a unique solution.

This theorem is a special case of a general result given in [91] for problems on
“feasible” domains.

To develop a classical convergence analysis for finite difference methods,
rather strong smoothness properties of the solution (u ∈ Cm,α(Ω̄) with m ≥ 2)
are required. But even in the simplest cases such smoothness properties may
fail to hold true as the following example shows:

Example 1.8. Consider the boundary value problem

−�u = 0 in Ω = (0, 1)× (0, 1),
u = x2 on Γ.

By the above theorem this problem has a unique classical solution u. But
this solution cannot belong to C2(Ω̄) since the boundary conditions imply
that uxx(0, 0) = 2 and uyy(0, 0) = 0, which in the case where u ∈ C2(Ω̄)
contradicts the differential equation. �

Example 1.9. In the domain

Ω = {(x, y) |x2 + y2 < 1, x < 0 or y > 0},

which has a re-entrant corner, the function u(r, ϕ) = r2/3 sin((2ϕ)/3) satisfies
Laplace’s equation −�u = 0 and the (continuous) boundary condition

u = sin((2ϕ)/3) for r = 1, 0 ≤ ϕ ≤ 3π/2
u = 0 elsewhere on ∂Ω.

Despite these nice conditions the first-order derivatives of the solution are not
bounded, i.e. u /∈ C1(Ω̄). �

The phenomenon seen in Example 1.9 can be described in a more general
form in the following way. Let Γi and Γj be smooth arcs forming parts of the
boundary of a two-dimensional domain. Let r describe the distance from the
corner where Γi and Γj meet and let απ, where 0 < α < 2, denote the angle
between these two arcs. Then near that corner one must expect the following
behaviour:

u ∈ C1 for α ≤ 1,

u ∈ C1/α, ux and uy = O(r
1
α−1) for α > 1.

In Example 1.9 we have α = 3/2. Later, in connection with finite element
methods, we shall study the regularity of weak solutions in domains with
corners.
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In the case of Dirichlet boundary conditions for α ≤ 1 the solution has the C1

property. But if the Dirichlet conditions meet Neumann or Robin conditions
at some corner then this property holds true only for α < 1/2. Further details
on corner singularities can be found in e.g. [121].
If the domain has a smooth boundary and if additionally all coefficients of
the differential operator are smooth then the solution of the elliptic boundary
value problem is smooth. As a special case we have

Theorem 1.10. In (3.2) let c ≥ 0 and g ≡ 0. Let the domain Ω belong to the
class C2,α and let the data of problem (3.2) be sufficiently smooth (at least
Cα(Ω̄) for some α > 0). Then the problem has a unique solution u ∈ C2,α(Ω̄).

This theorem is a special case of a more general existence theorem given in [1].
If ∂Ω /∈ C2,α but solutions with C2,α(Ω̄) smoothness are wanted, then addi-
tional requirements — compatibility conditions — must be satisfied. For the
problem

Lu = f in Ω = (0, 1)× (0, 1),
u = 0 on Γ

these are assumptions such as f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0.
Detailed results regarding the behaviour of solutions of elliptic problems on
domains with corners can be found in [Gri85].

After this brief discussion of existence theory we return to the question
of representation of solutions. As one would expect, the task of finding an
explicit formula for the solution for (3.2) is difficult because the differential
equation and the boundary conditions must both be fulfilled. In the case where
no boundary conditions are given (Ω = Rn) and the differential operator L
has sufficiently smooth coefficients, the theory of distributions provides the
helpful concept of a fundamental solution. A fundamental solution K is a
distribution with the property

LK = δ,

where δ denotes Dirac’s δ-function (more precisely, δ-distribution). In the case
where L has constant coefficients, moreover L(S ∗K) = S, where S ∗K stands
for the convolution of the distributions S and K. For regular distributions s
and k one has

(s ∗ k)(x) =
∫

s(x− y)k(y) dy =
∫

s(y)k(x− y) dy.

For several differential operators with constant coefficients that are of practical
significance, the associated fundamental solutions are known. As a rule they
are regular distributions, i.e. they can be represented by locally integrable
functions.
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For the rest of this section we consider the example of the Laplace operator

Lu := −Δu = −
n∑

i=1

∂2u

∂x2
i

. (3.3)

For this the fundamental solution has the explicit form

K(x) =

⎧⎪⎪⎨⎪⎪⎩
− 1

2π
ln |x| for n = 2,

1
(n− 2)|wn||x|n−2

for n ≥ 3 ,

here |wn| denotes the measure of the unit sphere in Rn.
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Figure 1.2 Fundamental solution K for d = 2

If the right-hand side f of (3.2) is integrable and has compact support
then with K(x, ξ) := K(x− ξ) = K(ξ − x) we obtain the representation

u(ξ) =
∫

Rn

K(x, ξ) f(x) dx (3.4)

for the solution of Lu = f on Rn.
Is there a representation similar to (3.4) for the solution u of −Δu = f

in bounded domains? To answer this question we first observe (cf. [Hac03a])
that
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Theorem 1.11. Let Ω ⊂ Rn be bounded and have a smooth boundary Γ .
Assume that u ∈ C2(Ω̄). Then for arbitrary ξ ∈ Ω one has

u(ξ) =
∫
Ω

K(x, ξ)(−Δu(x)) dΩ

+
∫
Γ

(
u(x)

∂K(x, ξ)
∂nx

−K(x, ξ)
∂u(x)
∂nx

)
dΓ .

(3.5)

This is the fundamental relation underpinning the definition of potentials and
the conversion of boundary value problems into related boundary integral
equations.

If in (3.5) we replace K by

K(x, ξ) = G(x, ξ)− wξ(x) ,

where wξ(x) denotes a harmonic function (i.e. Δw = 0) that satisfies wξ(x) =
−K(x, ξ) for all x ∈ ∂Ω, then from (3.5) follows the representation

u(ξ) =
∫
Ω

G(x, ξ)(−Δu(x)) dΩ +
∫

∂Ω

u
∂G(x, ξ)

∂nx
dΩ . (3.6)

Here G is called the Green’s function and G satisfies the same differential
equation as K but vanishes on ∂Ω.

The Green’s function G essentially incorporates the global effect of local
perturbations in the right-hand side f or in the boundary condition g := u|∂Ω

upon the solution.
Unfortunately, the Green’s function is explicitly known only for rather

simple domains such as a half-plane, orthant or ball. For the ball |x| < a in
Rn, the Green’s function has the form

G(x, ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2π

[
ln |x− ξ| − ln

|ξ|
a
|x− ξ∗|

]
for n = 2,

K(x, ξ)−
(

a

|ξ|

)n−2

K(x, ξ∗) for n > 2,

where ξ∗ := a2ξ/|ξ|2. In particular this implies for the solution u of

Δu = 0 in |x| < a

u = g on ∂Ω

the well-known Poisson integral formula

u(ξ) =
a2 − |ξ|2

a|wn|

∫
|x|=a

g(x)
|x− ξ|n dΩ .
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While the existence of the Green’s function can be guaranteed under rather
weak assumptions, this does not imply that the representation (3.6) yields
a classical solution u ∈ C2(Ω̄) even in the case when the boundary ∂Ω is
smooth, the boundary data g is smooth and the right-hand side f ∈ C(Ω̄).
A sufficient condition for u ∈ C2(Ω̄) is the α-Hölder continuity of f ,
i.e. f ∈ Cα(Ω̄).

Let us finally remark that Green’s functions can be defined, similarly to
the case of the Laplace operator, for more general differential operators. More-
over for boundary conditions of Neumann type a representation like (3.6) is
possible; here Green’s functions of the second kind occur (see [Hac03a]).

1.3.2 Parabolic Equations and Initial-Boundary Value Problems

As a typical example of a parabolic problem, we analyze the following initial-
boundary value problem of heat conduction:

ut −Δu = f in Q = Ω × (0, T )

u = 0 on ∂Ω × (0, T )

u = g for t = 0, x ∈ Ω.

(3.7)

Here Ω is a bounded domain and ∂Qp denotes the “parabolic” boundary of
Q, i.e.

∂Qp = {(x, t) ∈ Q̄ : x ∈ ∂ Ω or t = 0}.
The proofs of the following two theorems can be found in e.g. [PW67]:

Theorem 1.12. (boundary maximum principle) Let u ∈ C2,1(Q) ∩ C(Q̄).
Then

ut −Δu ≤ 0 in Q =⇒ max
(x,t)∈Q

u(x, t) = max
(x,t)∈∂Qp

u(x, t) .

Similarly to elliptic problems, one also has

Theorem 1.13. (comparison principle) Let v, w ∈ C2,1(Q) ∩ C(Q̄). Then

vt −Δv ≤ wt −Δw in Q

v ≤ w on ∂Ω × (0, T )

v ≤ w for t = 0

⎫⎪⎪⎬⎪⎪⎭ =⇒ v ≤ w on Q.

This theorem immediately implies the uniqueness of classical solutions of (3.7).
The fundamental solution of the heat conduction operator is

K(x, t) =

⎧⎪⎨⎪⎩
1

2nπn/2tn/2
e−

|x|2
4t for t > 0, x ∈ Rn

0 for t ≤ 0, x ∈ Rn .

(3.8)
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From this we immediately see that the solution of

ut −Δu = f in Rn × (0, T ) (3.9)
u = 0 for t = 0 .

has the representation

u(x, t) =

t∫
0

∫
Rn

K(x− y, t− s)f(y, s) dy ds . (3.10)

Now in the case of a homogeneous initial-value problem

ut −Δu = 0 in Rn × (0, T ) (3.11)
u = g for t = 0

we already have a representation of its solution that was obtained via Fourier
transforms in Section 1.2), namely

u(x, t) =
∫

Rn

K(x− y, t)g(y) dy . (3.12)

Indeed, we can prove

Theorem 1.14. For the solutions of (3.9) and (3.11) we have the following:

a) Let f be sufficiently smooth and let its derivatives be bounded in Rn×(0, T )
for all T > 0. Then (3.10) defines a classical solution of problem (3.9):
u ∈ C2,1(Rn × (0,∞)) ∩ C(Rn × [0,∞)).

b) If g is continuous and bounded then (3.12) defines a classical solution of
(3.11). Further we even have u ∈ C∞ for t > 0 (the “smoothing effect”).

In part b) of this theorem the boundedness condition for g may be replaced
by

|g(x)| ≤Meα|x|2 .

Moreover, in the case of functions g with compact support the modulus of the
solution u of the homogeneous initial-value problem can be estimated by

|u(x, t)| ≤ 1
(4πt)n/2

e−
dist|x,K|2

4t

∫
K

|g(y)| dy ,

where K := supp g. Hence, |u| tends exponentially to zero as t→∞.
Nevertheless, the integrals that occur in (3.10) or in (3.12) can rarely be

evaluated explicitly. In the special case of spatially one-dimensional problems

ut − uxx = 0, u|t=0 =
{

1 x < 0
0 x > 0
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with the error function

erf(x) =
2√
π

x∫
0

e−t2dt,

substitution in (3.10) yields the representation

u(x, t) =
1
2

(1− erf(x/2
√

t)) .

Further let us point to a connection between the representations (3.10)
and (3.12) and the Duhamel principle.
If z(x, t, s) is a solution of the homogeneous initial-value problem

zt − zxx = 0, z|t=s = f(x, s),

then

u(x, t) =

t∫
0

z(x, t, s) ds

is a solution of the inhomogeneous problem

ut − uxx = f(x, t), u|t=0 = 0 .

Analogously to the case of elliptic boundary value problems, for heat con-
duction in Q = Ω × (0, T ) with a bounded domain Ω there also exist rep-
resentations of the solution in terms of Green’s functions or heat conduction
kernels. As a rule, these are rather complicated and we do not provide a
general description. In the special case where

ut − uxx = f(x, t), u|x=0 = u|x=l = 0, u|t=0 = 0 ,

we can express the solution as

u(x, t) =

t∫
0

l∫
0

f(ξ, τ)G (x, ξ, t− τ) dξ dτ

with

G(x, ξ, t) =
1
2l

[
ϑ3

(
x− ξ

2l
,

t

l2

)
− ϑ3

(
x + ξ

2l
,

t

l2

)]
.

Here ϑ3 denotes the classical Theta-function

ϑ3(z, τ) =
1√
−iτ

∞∑
n=−∞

exp [−iπ(z + n)2/τ ] .

An “elementary” representation of the solution is available only in rare cases,
e.g. for
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ut − uxx = 0 in x > 0, t > 0 with u|t=0 = 0, u|x=0 = h(t) .

In this case one obtains

u(x, t) =
1

2
√

π

t∫
0

x

(t− τ)3/2
e

−x2

4(t−τ) h(τ) dτ .

One possibility numerical treatment of elliptic boundary value problems is
based on the fact that they can be considered as the stationary limit case
of parabolic initial-boundary value problems. This application of parabolic
problems rests upon:

Theorem 1.15. Let Ω be a bounded domain with smooth boundary. Further-
more, let f and g be continuous functions. Then as t→∞ the solution of the
initial-boundary value problem

ut −Δu = 0 in Ω × (0, T )

u = g for x ∈ ∂Ω

u = f for t = 0

converges uniformly in Ω̄ to the solution of the elliptic boundary value problem

Δu = 0 in Ω

u = g on ∂Ω .

1.3.3 Hyperbolic Initial and Initial-Boundary Value Problems

The properties of hyperbolic problems differ significantly from those of elliptic
and parabolic problems. One particular phenomenon is that, unlike in elliptic
and parabolic problems, the spatial dimension plays an important role. In the
present section we discuss one-, two- and three-dimensional cases. For all three
the fundamental solution of the wave equation

utt − c2Δu = 0

is known, but for n = 3 the fundamental solution is a singular distribution
[Tri92]. Here we avoid this approach and concentrate upon “classical” repre-
sentations of solutions.

As a typical hyperbolic problem we consider the following initial-value
problem for the wave equation:

utt − c2Δu = f in Rn × (0, T )

u|t=0 = g , ut|t=0 = h .

Duhamel’s principle can also be applied here, i.e. the representation of the
solution of the homogeneous problem can be used to construct a solution of the
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inhomogeneous one. Indeed, if z(x, t, s) denotes a solution of the homogeneous
problem

ztt − c2Δz = 0, z|t=s = 0, zt|t=s = f(x, s),

then

u(x, t) =

t∫
0

z(x, t, s) ds

is a solution of the inhomogeneous problem

utt − c2Δu = f(x, t), u|t=0 = 0, ut|t=0 = 0.

Hence, we can concentrate upon the homogeneous problem

utt − c2Δu = 0 in Rn × (0, T )

u|t=0 = g , ut|t=0 = h .
(3.13)

In the one-dimensional case the representation u = F (x + ct) + G(x − ct)
of the general solution of the homogeneous equation immediately implies
d’Alembert’s formula:

u(x, t) =
1
2
(g(x + ct) + g(x− ct)) +

1
2c

x+ct∫
x−ct

h(ξ) dξ . (3.14)

Several important conclusions can be derived from this formula, e.g.

(a) If g ∈ C2 and h ∈ C1, then (3.14) defines a solution that belongs to C2,
but there is no smoothing effect like that for parabolic problems.

(b) The solution at an arbitrary point (x, t) is influenced exclusively by values
of g and of h in the interval [x− ct, x + ct] — this is the region of depen-
dence. Conversely, information given at a point ξ on the x-axis influences
the solution at the time t = t0 only in the interval [ξ−ct0, ξ+ct0]. In other
words, perturbations at the point ξ influence the solution at another point
x = x∗ only after the time t∗ = |x∗ − ξ|/C has elapsed (finite speed of
error propagation).

For the two- and three-dimensional case there exist formulas similar to
d’Alembert’s, which are often called Kirchhoff’s formulas . In particular in
the two-dimensional case one has:

u(x1, x2, t) =
1
4π

∂

∂t

⎛⎜⎝2t

∫
|ξ|<1

g(x1 + ctξ1, x2 + ctξ2)√
1− |ξ|2

⎞⎟⎠
+

t

4π

⎛⎜⎝2
∫

|ξ|<1

h√
1− |ξ|2

⎞⎟⎠ .
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Figure 1.3 Domain of dependency Domain of influence

Hence, the domain of dependency for the point (x, t) is the disc {x + ctξ with
|ξ| ≤ 1} and the domain of influence forms a cone with the vertex at the point
considered. If g ∈ C2, h ∈ C1 then the formula guarantees only u ∈ C1.

For the three-dimensional case the situation is again slightly different. Here
we have (with surface integrals of the first kind)

u(x, t) =
1
4π

∂

∂t

⎛⎜⎝t

∫
|ξ|=1

g(x + ctξ) dSξ

⎞⎟⎠+
t

4π

∫
|ξ|=1

h(x + ctξ) dSξ .

Now, the domain of dependency and the domain of influence are the surface
of a ball and the surface of a cone, respectively. This represents Huygens’
principle, which states e.g. that a perturbation in a point ξ is visible at another
point x∗ exactly at the time t∗ = |x∗ − c|/c, but not later (“sharp signals”).

If in a bounded domain boundary conditions are also given then we note:
in initial-boundary value problems the solution along characteristics may have
discontinuities. To illustrate this we consider the solution of

utt − c2uxx = 0

in a parallelogram that is bounded by characteristics.
From the representation

u(x, t) = F (x + ct) + G(x− ct) and F (A) = F (D), F (B) = F (C)

as well as from G(A) = G(B) and G(C) = G(D) we obtain immediately

u(A) + u(C) = u(B) + u(D) . (3.15)

For the initial boundary value problem

utt − uxx = 0 in 0 < x < π,

u|t=0 = 1, ut|t=0 = 0; u|x=0 = 0, u|x=π = 0

now d’Alembert’s formula yields u ≡ 1 in Q1 (see Fig. 1.4). From (3.15) it
follows that u ≡ 0 in Q2 and in Q3. Using (3.15) again leads to u ≡ −1 in Q4.
By the way, the same result is obtained by the representation
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Figure 1.4 Bounding by characteristics Inclusion of boundary conditions

u(x, t) =
4
π

∞∑
n=0

sin(2n + 1)x cos(2n + 1) t

(2n + 1)

of the solution that was analyzed in a more general form in Section 1.2 (com-
pare (2.4)).

The discontinuity observed is caused by data incompatibility; conditions
of the type

u|t=0 = g(x); u|x=0 = α(t)

are compatible with each other only if g(0) = α(0). To obtain a C2-solution
moreover for the condition ut|t=0 = h(x) one must require

α′(0) = h(0) and α′′(0) = c2g′′(0) .

Smooth solutions of hyperbolic initial-boundary value problems can be
expected only if additional compatibility conditions are satisfied.
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Finite Difference Methods

2.1 Basic Concepts of the Method of Finite Differences:
Grid Functions and Difference Operators

In Collatz’s famous 1950 monograph Numerical Treatment of Differential
Equations, the following statement can be found: The finite difference method
is a procedure generally applicable to boundary value problems. It is easily set
up and on a coarse mesh it generally supplies, after a relatively short calcula-
tion, an overview of the solution function that is often sufficient in practice.
In particular there are classes of partial differential equations where the finite
difference method is the only practical method, and where other procedures
are able to handle the boundary conditions only with difficulty or not at all.

Even today, when finite element methods are widely dominant in the nu-
merical solution of partial differential equations and their applications, this
high opinion of the finite difference method remains valid. In particular it
is straightforward to extend its basic idea from the one-dimensional case to
higher dimensions, provided that the geometry of the underlying domain is
not too complicated. The classical theoretical foundation of the method of
finite differences—which rests on consistency estimates via Taylor’s formula
and the derivation of elementary stability bounds—is relatively easy, but it
has the disadvantage of making excessive assumptions about the smoothness
of the desired solution. Non-classical approaches to difference methods, as can
be found for example in the standard book [Sam01] published 1977 in Russian
(which unfortunately for many years was not widely known in the West) en-
able a weakening of the smoothness assumptions. These ideas also appear in a
slightly concealed form in [Hac03a] and [Hei87]. When we discuss the conver-
gence analysis of finite volume methods in Section 2.5, we shall briefly sketch
how to weaken the assumptions in the analysis of finite difference methods.

When a finite difference method (FDM) is used to treat numerically a par-
tial differential equation, the differentiable solution is approximated by some
grid function, i.e., by a function that is defined only at a finite number of
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so-called grid points that lie in the underlying domain and its boundary. Each
derivative that appears in the partial differential equation has to be replaced
by a suitable divided difference of function values at the chosen grid points.
Such approximations of derivatives by difference formulas can be generated
in various ways, e.g., by a Taylor expansion, or local balancing equations, or
by an appropriate interpretation of finite difference methods as specific finite
element methods (see Chapter 4). The first two of these three approaches are
generally known in the literature as finite difference methods (in the original
sense) and finite volume methods, respectively. The related basic ideas for
finite volume methods applied to elliptic differential equations are given in
Section 2.5. The convergence of finite difference methods for parabolic and
first-order hyperbolic problems is analysed in Sections 2.6 and 2.3, respec-
tively.

As an introduction to finite difference methods, consider the following
example. We are interested in computing an approximation to a sufficiently
smooth function u that for given f satisfies Poisson’s equation in the unit
square and vanishes on its boundary:

−Δu = f in Ω := (0, 1)2 ⊂ R2,

u = 0 on Γ := ∂Ω.
(1.1)

Finite difference methods provide values ui,j that approximate the desired
function values u(xi,j) at a finite number of points, i.e., at the grid points
{xi,j}. Let the grid points in our example be

xi,j = (i h, j h)T ∈ R2, i, j = 0, 1, . . . , N.

Here h := 1/N , with N ∈ N, is the mesh size of the grid.

Figure 2.1 Grid for the discretization
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At grid points lying on the boundary Γ the given function values (which here
are homogeneous) can be immediately taken as the point values of the grid
functions. All derivatives in problem (1.1) have however to be approximated
by difference quotients. From e.g. Taylor’s theorem we obtain

∂2u
∂x2

1

(xi,j) ≈ 1
h2

( u(xi−1,j)− 2u(xi,j) + u(xi+1,j)) ,

∂2u
∂x2

2

(xi,j) ≈ 1
h2

( u(xi,j−1)− 2u(xi,j) + u(xi,j+1)) .

If these formulas are used to replace the partial derivatives at the inner grid
points and the given boundary values are taken into account, then an approx-
imate description of the original boundary value problem (1.1) is given by the
system of linear equations

4ui,j − ui−1,j − ui+1,j

−ui,j−1 − ui,j+1 = h2f(xi,j),

u0,j = uN,j = ui,0 = ui,N = 0,
i, j = 1, . . . , N − 1. (1.2)

For any N ∈ N this linear system has a unique solution ui,j . Under certain
smoothness assumptions on the desired solution u of the original problem one
has ui,j ≈ u(xi,j), as will be shown later.

In the method of finite differences one follows the precepts:
• the domain of the given differential equation must contain a sufficiently

large number of test points (grid points);
• all derivatives required at grid points will be replaced by approximating

finite differences that use values of the grid function at neighbouring grid
points.

In problems defined by partial differential equations, boundary and/or
initial conditions have to be satisfied. Unlike initial and boundary value prob-
lems in ordinary differential equations, the geometry of the underlying domain
now plays an important role. This makes the construction of finite difference
methods in domains lying in Rn, with n ≥ 2, not entirely trivial.

Let us consider the very simple domain Ω := (0, 1)n ⊂ Rn. Denote its
closure by Ω. For the discretization of Ω a set Ωh of grid points has to be
selected, e.g., we may chose an equidistant grid that is defined by the points
of intersection obtained when one translates the coordinate axes through con-
secutive equidistant steps with step size h := 1/N . Here N ∈ N denotes the
number of shifted grid lines in each coordinate direction. In the present case
we obtain

Ωh :=

⎧⎨⎩
⎛⎝ x1·
·

xn

⎞⎠ ∈ Rn :
x1 = i1 h, . . . , xn = in h,
i1, . . . , in = 0, 1, . . . , N

⎫⎬⎭ (1.3)

as the set of all grid points. We distinguish between those grid points lying in
the domain Ω and those at the boundary Γ by setting
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Ωh := Ωh ∩Ω and Γh := Ωh ∩ Γ. (1.4)

Unlike the continuous problem, whose solution u is defined on all of Ω, the
discretization leads to a discrete solution uh : Ωh → R that is defined only at a
finite number of grid points. Such mappings Ωh → R are called grid functions.
To deal properly with grid functions we introduce the discrete function spaces

Uh := {uh : Ωh → R }, U0
h := {uh ∈ Uh : uh|Γh

= 0 },
Vh := { vh : Ωh → R }.

To shorten the writing of formulas for difference quotients, let us define the
following difference operators where the discretization step size is h > 0:

(D+
j u)(x) := 1

h

(
u(x + h ej)− u(x)

)
—forward difference quotient

(D−
j u)(x) := 1

h

(
u(x)− u(x− h ej)

)
—backward difference quotient

D0
j := 1

2
(D+

j + D−
j ) —central difference quotient.

Here ej denotes the unit vector in the positive direction of the j-th coordinate
axis. Analogously, we shall also use notation such as D+

x , D+
y , D+

t etc. when
independent variables such as x, y, t, . . . are present. For grids that are gener-
ated by grid lines parallel to the coordinate axes we can easily express differ-
ence quotient approximations of partial derivatives in terms of these difference
operators.

Next we turn to the spaces of grid functions and introduce some norms
that are commonly used in these spaces—which are isomorphic to finite-
dimensional Euclidean spaces. The space U0

h of grid functions that vanish
on the discrete boundary Γh will be equipped with an appropriate norm ‖·‖h.
For the convergence analysis of finite difference methods let us define the
following norms on U0

h :

‖uh‖20,h := hn
∑

xh∈Ωh

|uh(xh)|2 ∀uh ∈ U0
h (1.5)

—the discrete L2 norm;

‖uh‖21,h := hn
∑

xh∈Ωh

n∑
j=1

|[D+
j uh](xh)|2 ∀uh ∈ U0

h (1.6)

—the discrete H1 norm; and

‖uh‖∞,h := max
xh∈Ωh

|uh(xh)| ∀uh ∈ U0
h (1.7)

—the discrete maximum norm.
Finally, we introduce the discrete scalar product in U0

h :
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(uh, vh)h := hn
∑

xh∈Ωh

uh(xh) vh(xh) ∀uh, vh ∈ U0
h . (1.8)

It is clear that

‖uh‖20,h = (uh, uh)h and ‖uh‖21,h =
n∑

j=1

(D+
j uh, D+

j uh)h ∀uh ∈ U0
h .

The definitions of the norms ‖ · ‖0,h and ‖ · ‖∞,h and of the scalar product
(·, ·)h use points xh that lie only in Ωh, so these norms and scalar product can
also be applied to functions in the space Vh. They define norms for Vh that
we shall call upon later.

In the case of non-equidistant grids the common multiplier hn must be
replaced by a weight μh(xh) at each grid point. These weights can be defined
via appropriate dual subdomains Dh(xh) related to the grid points xh by

μh(xh) := meas Dh(xh) :=
∫

Dh(xh)

dx, xh ∈ Ωh.

In the equidistant case for Ω = (0, 1)n ⊂ Rn we may for instance choose

Dh(xh) = {x ∈ Ω : ‖x− xh‖∞ < h/2 }. (1.9)

This yields μh(xh) = hn, ∀xn ∈ Ωh. Hence the general scalar product

(uh, vh)h :=
∑

xh∈Ωh

μh(xh)uh(xh) vh(xh) ∀uh, vh ∈ U0
h

coincides in the equidistant case with (1.8). Later, when presenting finite
volume methods, we shall discuss a procedure for generating dual subdomains
for arbitrary grids on rather general domains.

Analogously to norms of continuous real functions, we define discrete Lp

norms for p ∈ [1,∞) by

‖uh‖Lp,h :=

( ∑
xh∈Ωh

μh(xh) |uh(xh)|p
)1/p

.

Now for 1
p

+ 1
q

= 1 the discrete Hölder inequality

|(uh, vh)h| ≤ ‖uh‖Lp,h ‖vh‖Lq,h

is valid, even for the extreme case p = 1, q = +∞. As a complement to the
standard analysis via discrete maximum principles (see Section 2.1), Hölder’s
inequality provides a tool for the derivation of uniform error estimates, i.e.,
estimates for the discrete maximum norm ‖ · ‖∞,h.
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If we restrict functions u ∈ C(Ω ) to grid functions in a trivial way by
reusing the same function values, i.e., by setting

[rhu](xh) = u(xh), xh ∈ Ωh , (1.10)

then for the restriction operator rh one has

lim
h→0
‖rhu‖0,h = ‖u‖L2(Ω) and also lim

h→0
‖rhu‖∞,h = ‖u‖L∞(Ω).

It is well known that in finite-dimensional spaces all norms are equivalent.
Nevertheless, the constant multipliers appearing in the equivalence inequal-
ities will in general depend upon the dimension of the space. Hence for our
discrete function spaces these constants can depend upon the discretization
step size h. In particular for the norms ‖ · ‖0,h and ‖ · ‖∞,h we have

min
xh∈Ωh

μh(xh)1/2 ‖uh‖∞,h ≤ ‖uh‖0,h ≤ meas (Ω)1/2 ‖uh‖∞,h,

∀uh ∈ U0
h .

(1.11)

Since
min

xh∈Ωh

μh(xh) = hn and meas (Ω) = 1,

one infers the inequalities

hn/2 ‖uh‖∞,h ≤ ‖uh‖0,h ≤ ‖uh‖∞,h, ∀u ∈ Uh . (1.12)

Consequently it is to be expected that estimates for the error ‖rhu− uh‖h as
h → 0 in finite difference methods will depend heavily upon the norm ‖ · ‖h
that is chosen. In linear problems the error is usually measured in the discrete
L2 norm or the discrete maximum norm and, after further analysis, in the
discrete H1 norm. These norms will be used in the sequel.

How can difference approximations be generated? For sufficiently smooth
functions u : Rn → R, by a Taylor expansion one has

u(x + z) =
m∑

k=0

1

k!

⎛⎝ n∑
j=1

zj
∂

∂xj

⎞⎠k

u(x) + Rm(x, z). (1.13)

Here the remainder Rm(x, z) can be written in the Lagrange form, namely

Rm(x, z) =
1

(m + 1)!

⎛⎝ n∑
j=1

zj
∂

∂xj

⎞⎠(m+1)

u(x + θz) for some θ = θ(x, z) ∈ (0, 1).

This form is quite simple, but the alternative integral form of the remainder is
more suited to some situations. If derivatives are replaced by approximating
difference formulas that are derived from (1.13), one can deduce estimates for
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the consequent error. For example, if x ∈ Rn is fixed then a Taylor expansion
(1.13) yields∣∣∣∣∣

[
∂2u
∂x2

j

− D−
j D+

j u

]
(x)

∣∣∣∣∣ ≤ 1
12

max
|ξ|≤h

∣∣∣∣∣ ∂4u
∂ x4

j

(x + ξ)

∣∣∣∣∣ h2. (1.14)

In general Taylor’s theorem provides a systematic tool for the generation of
difference approximations for derivatives, e.g.,

∂u

∂xj

(x) =
1

2h

(
− 3u(x) + 4u(x + hej)− u(x + 2hej)

)
+ O(h2). (1.15)

Indeed, from (1.13) we obtain

u(x + h ej) = u(x) + ∂u
∂xj

(x)h + 1
2

∂2u
∂x2

j

(x)h2 + R1,

u(x + 2h ej) = u(x) + 2 ∂u
∂xj

(x)h + 2 ∂2u
∂x2

j

(x)h2 + R2

with remainders R1 = O(h3), R2 = O(h3). The difference approximation
(1.15) follows.

In general, any given partial differential equation problem, including its
boundary and/or initial conditions, can be expressed as an abstract operator
equation

F u = f (1.16)

with appropriately chosen function spaces U and V , a mapping F : U → V ,
and f ∈ V . The related discrete problem can be stated analogously as

Fh uh = fh (1.17)

with Fh : Uh → Vh, fh ∈ Vh, and discrete spaces Uh, Vh. Let rh : U → Uh

denote some restriction operator from the elements of U to grid functions.

Definition 2.1. The value ‖Fh(rhu)− fh‖Vh
is called the consistency error

relative to u ∈ U .

The remainder term in Taylor’s theorem gives a way of estimating the consis-
tency error, provided that the solution u of (1.16) is smooth enough and fh

forms an appropriate discretization of f .

Definition 2.2. A discretization of (1.16) is consistent if

‖Fh(rhu)− fh‖Vh
→ 0 as h→ 0.

If in addition the consistency error satisfies the more precise estimate

‖Fh(rhu)− fh‖Vh
= O(hp) as h→ 0,

then the discretization is said to be consistent of order p.
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Convergence of a discretization method is defined similarly:

Definition 2.3. A discretization method is convergent if the error satisfies

‖rhu− uh‖Uh
→ 0 as h→ 0

and convergent of order q if

‖rhu− uh‖Uh
= O(hq) as h→ 0.

Convergence is proved by demonstrating consistency and stability of the dis-
cretization.

Definition 2.4. A discretization method is stable if for some constant S > 0
one has

‖vh − wh‖Uh
≤ S ‖Fhvh − Fhwh‖Vh

for all vh, wh ∈ Uh. (1.18)

Stability also guarantees that rounding errors occurring in the problem will
not have an excessive effect on the final result. The definitions above imply
immediately the following abstract convergence theorem.

Theorem 2.5. Assume that both the continuous and the discrete problem
have unique solutions. If the discretization method is consistent and stable
then the method is also convergent. Furthermore, the order of convergence is
at least as large as the order of consistency of the method.

Proof: Let uh ∈ Uh be the solution of the discrete problem, i.e., Fhuh = fh.
Then stability implies

S−1 ‖rhu− uh‖Uh
≤ ‖Fh(rhu)− Fhuh‖Vh

= ‖Fh(rhu)− fh‖Vh
.

Hence, invoking consistency, we obtain convergence of the method. Further-
more, the same calculation implies that the order of convergence is at least as
large as the order of consistency.

Remark 2.6. If the discrete operators Fh are linear, then stability of the dis-
cretization is equivalent to the existence of a constant c > 0, independent of
h, such that ‖F−1

h ‖ ≤ c.
When the operators Fh are nonlinear, as a rule the validity of the stability

inequality (1.18) will be needed only in some neighbourhood of the discrete
solution uh. �

Let us remind the reader that the properties considered here, which mea-
sure the effectiveness of a discretization, depend strongly upon the spaces
chosen and their norms. In particular Definition 2.4 could more precisely be
called Uh − Vh stability, where the spaces used are named.

The above basic theory is common to all finite difference methods, yet in
practice the convergence analysis differs for various specific classes of problems
associated with partial differential equations. After a brief introduction to
some general convergence analysis we shall consider separately later the most
important classes of these problems and make use of their specific properties.
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2.2 Illustrative Examples for the Convergence Analysis

Before we analyse difference methods in detail for the cases of hyperbolic,
elliptic and parabolic problems we illustrate some of the basic ideas in the
convergence analysis of finite difference methods by two simple examples.

For simplicity let us first consider the linear two-point boundary value
problem

Lu := −u′′(x) + β u′(x) + γ u(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0 (2.1)

with constant coefficients β, γ ∈ R and γ ≥ 0. This problem has a unique
classical solution u for any f ∈ C[0, 1]. If f ∈ Ck[0, 1] for some k ∈ N,
then the solution has a certain amount of smoothness: u ∈ Ck+2[0, 1]. Hence,
under such an assumption on f , we can derive realistic discretization error
estimates from Taylor’s theorem . Let us mention here that in the case of
partial differential equations the situation is more complicated because the
smoothness of the solution u depends not only on the smoothness of the data
but also on the geometry of the underlying domain Ω ⊂ Rn.

Set Ω := (0, 1). With

Ωh := {xj = j h, j = 1, . . . , N − 1}, Ωh := {xj = j h, j = 0, 1, . . . , N}

where h := 1/N for some N ∈ N, we can discretize (2.1) by

[Lhuh](xh) :=
[(
−D−D+ + β D0 + γ

)
uh

]
(xh) = f(xh),

xh ∈ Ωh, uh ∈ U0
h .

(2.2)

From the definitions of the difference quotients this is equivalent to

− 1
h2

(uj−1 − 2uj + uj+1)

+ β

2h
(uj+1 − uj−1) + γ uj = fj , j = 1, . . . , N − 1,

u0 = uN = 0,

(2.3)

where uj := uh(xj) and fj := f(xj).

Define a restriction of the solution u of problem (2.1) to the grid Ωh by
[rhu](xj) := u(xj) . Then, using wh := uh − rhu to denote the error in uh,
from (2.3) it follows that

− 1
h2

(wj−1 − 2wj + wj+1)

+ β

2h
(wj+1 − wj−1) + γ wj = dj , j = 1, . . . , N − 1,

w0 = wN = 0.

(2.4)

Here the defect dh : Ωh → RN−1 is defined by
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dj := fj − [Lhrhu](xj), j = 1, . . . , N − 1.

Equivalently one can write (2.4) in the compact form

Lhwh = dh, wh ∈ U0
h . (2.5)

Similarly to rh, define a trivial restriction operator qh : C(Ω) → (Ωh → R).
Then

dh = qh Lu − Lhrhu, (2.6)

and invoking Taylor’s theorem we obtain for the consistency error

‖dh‖0,h ≤ c h2 and ‖dh‖∞,h ≤ c h2 (2.7)

for some constant c > 0, provided that u ∈ C4[0, 1]. That is, in this example
the discretization is second-order consistent in both of these norms.

If (as here) the discrete operator is invertible, then from (2.5)—compare
the proof of Theorem 2.5—one obtains the error estimate

‖wh‖ ≤ ‖L−1
h ‖ ‖dh‖. (2.8)

Which norm does one choose and how can the quantity ‖L−1
h ‖ be es-

timated? For L2-norm analysis in the case of constant coefficients, Fourier
expansions can be applied; this technique will now be sketched. Another L2-
norm tool, which is applicable to the general case, is the method of energy
inequalities (see Section 4). Analysis in the maximum norm will be addressed
later.

For the sake of simplicity in our introductory example (2.1), set β = 0.
Thus we deal with the two-point boundary value problem

−u′′(x) + γ u(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0, (2.9)

and consider the associated discretization

[Lhuh ]l := − 1
h2

(ul−1 − 2ul + ul+1) + γ ul = fl, l = 1, . . . , N − 1,

u0 = uN = 0.
(2.10)

To analyse the discrete problem we shall use eigenfunction expansions. This
idea is well known in the context of continuous functions; one manifestation is
Fourier series. It can be shown easily that the eigenfunctions required for the
expansion of the discrete problem are simply the restriction to the mesh of the
eigenfunctions of the continuous problem. In the present case, as the boundary
conditions are homogeneous, this restriction yields the grid functions vj

h ∈ U0
h ,

for j = 1, . . . , N − 1, defined by

[vj
h]l :=

√
2 sin(jπxl) where j = 1, . . . , N − 1, xl ∈ Ωh. (2.11)

These grid functions, or vectors, form an orthonormal basis of U0
h , i.e., one

has
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(vj
h, vk

h)h = δjk

and vj
0 = vj

N = 0. Furthermore,[
Lhvj

h

]
l

=
(

4

h2
sin2

(jπh

2

)
+ γ

)
vj

l , j, l = 1, . . . , N − 1.

That is, each vector vj
h ∈ U0

h is an eigenvector of Lh with the associated
eigenvalue

λj =
4

h2
sin2

(
jπh

2

)
+ γ, j = 1, . . . , N − 1. (2.12)

In (2.5) let us write wh and dh in terms of the basis {vj
h}, viz.,

wh =
N−1∑
j=1

ωj vj
h, dh =

N−1∑
j=1

δj vj
h,

with coefficients ωj , δj ∈ C for j = 1, . . . , N − 1. Using (2.12), equation (2.5)
becomes

N−1∑
j=1

λj ωj vj
h =

N−1∑
j=1

δj vj
h.

But the vectors vj
h are linearly independent, so this equation implies that

ωj = δj/λj , j = 1, . . . , N − 1.

By Parseval’s equality (which follows from the orthonormality of the eigen-
vectors) applied to wh and dh, and the observation that 0 < λ1 ≤ λj for all
j, one then has

‖wh‖20,h =
N−1∑
j=1

|ωj |2 =
N−1∑
j=1

∣∣∣∣∣ δj

λj

∣∣∣∣∣
2

≤ 1

λ2
1

N−1∑
j=1

|δj |2 =
1

λ2
1

‖dh‖20,h .

That is,

‖wh‖0,h ≤
1

4h−2 sin2
(

πh
2

)
+ γ
‖dh‖0,h. (2.13)

Since lim
h→0

4h−2 sin2(πh/2) = π2 > 0, we have proved stability in the L2 norm

for the discretization in the case γ ≥ 0; to be precise, ‖L−1
h ‖ ≤ k for any

k > 1/π2 if h is sufficiently small.
Stability and consistency together imply (by Theorem 2.5) the error bound

‖rhu− uh‖0,h =

(
h

N−1∑
l=1

(ul − u(xl))2
)1/2

≤ c h2 (2.14)
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for some constant c.
Next we study convergence in the discrete maximum norm. Applying the

norm equivalence inequality (1.12) to (2.14), one obtains immediately the
estimate

‖rhu−h ‖∞,h ≤ h−1/2 ‖rhu− uh‖0,h ≤ c h3/2, (2.15)

but in general the exponent of h in this bound is suboptimal.
In the case γ > 0 the coefficient matrix that represents Lh is strictly

diagonally dominant. This implies the maximum norm stability inequality
‖wh‖∞,h ≤ c‖dh‖∞,h and hence

‖rhu− uh‖∞,h ≤ c h2. (2.16)

In the more general case γ ≥ 0, stability in the discrete maximum norm
can be derived from discrete comparison principles using the theory of M -
matrices; see Section 4.

Our second example is a parabolic problem in one space dimension:

∂u
∂t

(x, t)− ∂2u
∂x2

(x, t) + γ u(x, t) = f(x, t), x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ (0, 1).

(2.17)

This problem is time-dependent with (2.9) as its stationary limit case. Once
again γ denotes a positive constant and f, u0 are given functions. As in the
boundary value problem (2.9) previously studied, the initial-boundary value
problem (2.17) possesses a unique solution u that is sufficiently smooth pro-
vided that the data f and u0 are smooth enough and certain compatibility
conditions are satisfied at the corners of the domain.

We use a grid that is equidistant in both the time and space directions. On
this grid the time derivative ∂/∂t is approximated by the backward difference
quotient D−

t and the second-order spatial derivative ∂2/∂x2 by the symmetric
difference quotient D−

x D+
x . This leads to the discrete problem

[(D−
t −D−

x D+
x + γ I)uh,τ ](xi, t

k) = fi,k, i = 1, . . . , N − 1,

k = 1, . . . , M,

u0,k = uN,k = 0, k = 1, . . . , M,

ui,0 = u0(xi), i = 1, . . . , N − 1,

(2.18)

which defines the discrete solution uh,τ = {ui,k}. Here N, M ∈ N are para-
meters that define the spatial step-size h := 1/N and the temporal step-size
τ := T/M . The points tk := k τ , for k = 0, 1, . . . , M , define the temporal grid.
Then the problem (2.18) can be written as

1
τ

(ui,k − ui,k−1)− 1
h2

(ui−1,k − 2ui,k + ui+1,k) + γ ui,k = fi,k,

u0,k = uN,k = 0,
ui,0 = u0(xi),

(2.19)
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with the same ranges for the indices as in (2.18). Let us represent the discrete
values ui,k ≈ u(xi, t

k) and fi,k := f(xi, t
k) at a fixed time level tk by vectors

uk ∈ U0
h and fk, respectively. Then, using the operators Lh and rh that were

defined for the stationary example, one can write (2.19) in the compact form

1
τ

(uk − uk−1) + Lhuk = fk, k = 1, . . . , M,

u0 = rhu0.
(2.20)

As the operator Lh is linear, the error wk := uk − rhu(·, tk) satisfies

1
τ

(wk − wk−1) + Lhwk = Rk, k = 1, . . . , M,

w0 = 0.
(2.21)

Here the norms of the defects Rk can be estimated by

‖Rk‖0,h ≤ c (τ + h2), k = 1, . . . , M,

where c > 0 is some constant, provided that the solution u of the original
problem (2.17) is sufficiently smooth. Thus (2.21) and the triangle inequality
yield

‖wk‖0,h ≤ ‖(I + τLh)−1‖0,h ‖wk−1‖0,h + τc (τ + h2), k = 1, . . . , M,

where ‖·‖0,h is as in the stationary problem. But one can repeat the argument
leading to the stability bound (2.13), with Lh replaced by I + τLh, to get
‖(I + τLh)−1‖0,h ≤ 1. Hence

‖wk‖0,h ≤ ‖wk−1‖0,h + τc (τ + h2), k = 1, . . . , M.

Now w0 = 0; consequently an inductive argument yields

‖wk‖0,h ≤ k τc (τ + h2), k = 1, . . . , M,

and since M τ = T , this is the convergence result

‖uh,τ − u‖h,τ := max
k=0,1,...,M

‖uk − rhu(·, tk)‖0,h ≤ T c (τ + h2). (2.22)

The discrete norm ‖·‖h,τ combines the Euclidean norm in the spatial direction
with the maximum norm in the temporal direction.

Given sufficient smoothness of u, discrete maximum principles can be ap-
plied to derive a uniform estimate of the form

max
k=0,1,...,M

max
i=1,...,N−1

|ui,k − u(xi, t
k)| ≤ c (τ + h2).

We shall return to this in more detail in Section 6.
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2.3 Transportation Problems and Conservation Laws

In this section, first-order partial differential equations of the type

ut(x, t) + div(F (x, t, u(x, t)) = 0, x ∈ Rn, t > 0 (3.1)

are considered on the entire space Rn. Here F : Rn × R × R → Rn is some
given differentiable mapping. We are also given the initial state u(·, 0), i.e., as
well as the differential equation (3.1) the initial condition

u(x, 0) = u0(x), x ∈ Rn, (3.2)

must be satisfied for some given function u0. The divergence operator in (3.1)
is applied only to the spatial variables, i.e.,

div q :=
n∑

j=1

∂qj

∂xj

for smooth vector fields q : Rn → Rn. Assuming appropriate differentiability,
the differential equation (3.1) is equivalent to

ut(x, t) +
n∑

j=1

(
∂Fj

∂xj

+
∂Fj

∂u

∂u

∂xj

)
= 0, x ∈ Rn, t > 0, (3.3)

which can be rearranged as

ut(x, t) + v(x, t) · ∇u(x, t) = f(x, t), x ∈ Rn, t > 0, (3.4)

where v = (v1, v2, . . . , vn) with

vj(x, t, u) :=
∂Fj

∂u
(x, t, u) for j = 1, . . . , n and f(x, t) := −

n∑
j=1

∂Fj

∂xj

(x, t).

Here the gradient operator ∇, like the divergence operator above, is with
respect to the spatial variables only.

Consider now the linear case where v in (3.4) is independent of u. Let
v : Rn × R → Rn be a continuous function that is Lipschitz-continuous with
respect to its first argument. Then Picard-Lindelöf’s Theorem guarantees that
for any (x̂, t) ∈ Rn × R the initial-value problem

x′(s) = v(x(s), s), s ∈ R, x(t) = x̂, (3.5)

has a unique solution (x, s). By varying the initial condition one obtains a fam-
ily of non-intersecting curves (x(s), s), s ∈ R+, in the (x, t)-plane. These are
called the characteristics (more precisely, the characteristic traces) of (3.4).
Along each characteristic the solution of the problem (3.1) is completely de-
fined by an initial-value problem for an ordinary differential equation, as we
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now explain. The chain rule for differentiation applied to the composite func-
tion u(x(·), ·) yields

d

ds
u(x(s), s) = ut(x(s), s) + x′(s) · ∇u(x(s), s), s ∈ R+.

Let x̂ ∈ Rn be arbitrary but fixed. Recalling the transport equation (3.4) and
the initial condition (3.2), it follows that their solution u(x, t) is explicitly
defined along the characteristic passing through (x̂, 0) by

u(x, t) = u0(x̂) +

t∫
0

f(x(s), s) ds.

In the case of constant coefficients—i.e., v ∈ Rn—one gets

x(s) = x + (s− t)v, s ∈ R,

for the solution of (3.5). Thus points (x, t) lying on the characteristic passing
through (x̂, 0) satisfy x̂ = x − v t. In particular for homogeneous problems
where f ≡ 0, the solution of (3.1) is constant along each characteristic:

u(x, t) = u0(x− v t), t ≥ 0.

Let us mention here that in the case where v is nonlinear in u, one can still
define the characteristics but, unlike the linear case, they may intersect. Even
for continuous initial data this intersection can cause discontinuities (shocks)
in the solution u at some time t > 0.

2.3.1 The One-Dimensional Linear Case

Let F have the form F (x, t, u) = a u for some constant a. Thus we are deal-
ing with a homogeneous linear transport equation with constant coefficients.
Problem (3.1) becomes

ut + a ux = 0, x ∈ R, t > 0, u(x, 0) = u0(x), (3.6)

and its exact solution is

u(x, t) = u0(x− at). (3.7)

We now discuss different discretizations of (3.6) on equidistant grids (xj , t
k)

with xj = j h and tk = k τ . Without loss of generality assume that a ≥ 0; the
case a < 0 can be handled analogously.

A typical explicit discretization of (3.6) that uses three neighbouring grid
points in the spatial direction has the form
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Figure 2.2 Characteristics of the transport equation

D+
t u = −a (ωD+

x + (1− ω)D−
x )u (3.8)

for some parameter ω ∈ [0, 1]. For the choices ω ∈ {1/2, 0, 1} we obtain
the three different stencils of Figure 2.3. Setting γ := (a τ)/h, these three
difference schemes are

(a) uk+1
j = uk

j + 1
2γ(uk

j−1 − uk
j+1),

(b) uk+1
j = (1− γ)uk

j + γuk
j−1,

(c) uk+1
j = (1 + γ)uk

j − γuk
j+1.

(3.9)

Because one-sided difference quotients are used in the schemes (b) and (c),
these schemes are called upwind schemes.

(a)

•• •

• (b)

••

•

(c)

• •

•

Figure 2.3 Difference stencils of explicit discretizations (3.9)
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A comparison of the stencils of Figure 2.3 and the characteristics of Figure 2.2
suggests that scheme (b) is preferable. This preference is also supported by
the following argument. The exact solution u of (3.6) satisfies the maximum
principle

inf
x

u(x, t) ≤ u(x, t + τ) ≤ sup
x

u(x, t), ∀x ∈ R, t ≥ 0, τ > 0. (3.10)

In terms of the norm ‖ · ‖∞ on the space of essentially bounded functions
defined on R, this principle can be expressed as

‖u(·, t + τ)‖∞ ≤ ‖u(·, t)‖∞.

To get the corresponding discrete maximum principle

inf
j

uk
j ≤ uk+1

j ≤ sup
j

uk
j , ∀j, k ∈ N, k ≥ 0, (3.11)

i.e.,
‖uk+1‖∞,h ≤ ‖uk‖∞,h ,

one can show that scheme (b) must be chosen for the discretization. For the
property (3.11) can never be guaranteed with schemes (a) and (c), while in
the case of scheme (b) the Courant-Friedrichs-Levi (CFL) condition

γ = a
τ

h
≤ 1 (3.12)

is sufficient to ensure that this scheme satisfies the discrete maximum princi-
ple. The CFL condition also implies the stability of scheme (b) in the maxi-
mum norm, as will be shown in the next theorem.

Theorem 2.7. Let the function u0 be Lipschitz-continuously differentiable.
Then the explicit upwind scheme (b) is consistent of order 1 in the maxi-
mum norm. If in addition the CFL condition (3.12) is satisfied then the dis-
crete maximum principle (3.11) holds. On arbitrary finite time intervals [0, T ],
scheme (b) is stable in the maximum norm and convergent of order 1.

Proof: First, we study the consistency of the method. For this purpose we do
not use the standard Taylor expansion argument; instead we exploit the fact
that the solution u has the form (3.7).

The fundamental theorem of integral calculus yields

u(xj , t
k+1)− u(xj , t

k) =
tk+1∫
tk

ut(xj , t) dt,

u(xj , t
k)− u(xj−1, t

k) =
xj∫

xj−1

ux(x, tk) dx.

(3.13)

As the solution u of the differential equation satisfies (3.6), we have also
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ut(xj , t
k) + a ux(xj , t

k) = 0.

This equation and (3.13) imply

u(xj , t
k+1)− u(xj , t

k)

τ
+ a

u(xj , t
k)− u(xj−1, t

k)

h

=
1

τ

tk+1∫
tk

(ut(xj , t)− ut(xj , t
k)) dt + a

1

h

xj∫
xj−1

(ux(x, tk)− ux(xj , t
k)) dx.

Set wk
j = uk

j −u(xj , t
k) for all j and k. The linearity of the difference operator

and the relations ux = u′
0, ut = −a u′

0, which follow from the representation
(3.7) of the solution, together give

wk+1
j − wk

j

τ
+ a

wk
j − wk

j−1

h
= −a

τ

tk+1∫
tk

[u′
0(xj − at)− u′

0(xj − atk)] dt

+
a

h

xj∫
xj−1

[u′
0(x− atk)− u′

0(xj − atk)] dx.

(3.14)

The Lipschitz continuity of u′
0 now implies the first-order consistency of the

difference scheme.
The validity of the discrete maximum principle (3.11) in the case γ ∈ [0, 1]

follows immediately for scheme (b) from the triangle inequality. Furthermore,
(3.14) implies that

wk+1
j = (1− γ)wk

j + γwk
j−1 + τ rk

j , j ∈ Z, k = 0, 1, . . . , M − 1, (3.15)

with

rk
j := −a

τ

tk+1∫
tk

[u′
0(xj − at)− u′

0(xj − atk)] dt

+
a

h

xj∫
xj−1

[u′
0(x− atk)− u′

0(xj − atk)] dx.

(3.16)

Here M ∈ N denotes the number of time steps in the discretization, i.e.,
τ = T/M . Now∣∣∣∣∣∣∣

tk+1∫
tk

[u′
0(xj − at)− u′

0(xj − atk)] dt

∣∣∣∣∣∣∣ ≤ aL

tk+1∫
tk

(t− tk) dt = 1
2 aL τ2,

∣∣∣∣∣∣∣
xj∫

xj−1

[u′
0(x− atk)− u′

0(xj − tk)] dx

∣∣∣∣∣∣∣ ≤ L

xj∫
xj−1

(xj − x) dx = 1
2 Lh2,
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where L is the Lipschitz constant of the function u′
0. Consequently

|rk
j | ≤

a

2
(h + a τ)L, j ∈ Z, k = 0, 1, . . . , M − 1. (3.17)

Hence, applying the CFL condition (3.12) and the triangle inequality to (3.15),
we get

‖wk+1‖∞,h ≤ ‖wk‖∞,h + τ
a

2
(h + a τ)L, k = 0, 1, . . . , M − 1.

But the initial condition here is ‖wk‖∞,h = 0. Thus an inductive argument
yields

‖wk‖∞,h ≤ k τ
a

2
(h + a τ)L, k = 1, . . . , M.

We also have

‖w‖∞,h,τ := max
k=0,1,...,M

‖wk‖∞,h ≤
aT

2
(h + a τ)L .

Remark 2.8. If u′
0 is smooth then the solution u is also smooth, and by dif-

ferentiating the differential equation (3.6) it follows that utt = a2uxx. In this
case a Taylor expansion can include higher-order terms and yields

u(x, t + τ)− u(x, t)
τ

+ a
u(x, t)− u(x− h, t)

h
=

= ut + aux +
aτ − h

2
auxx + O(h2 + τ2). �

Remark 2.9. Scheme (b) can also be generated in the following way. If γ ≤ 1
then—see Figure 2.4—the characteristic through (xj , t

k+1) intersects the
straight line t = tk at some point P ∗ between xj−1 and xj . Since u is constant
along each characteristic, it is therefore a good idea to define uk+1

j by a lin-
ear interpolation of the values uk

j−1 and uk
j . This approach is easily extended

to problems with variable coefficients, thereby allowing the discretization to
adapt to the local behaviour of the characteristics. �

As an alternative to the maximum-norm stability analysis of Theorem 2.7,
we now study the L2 stability of the difference scheme by means of a Fourier
analysis. Unlike Section 2.2, where orthonormal bases of the space of grid
functions were used, here we work in a Fourier transform setting that is used
for L2-stability analysis in, e.g., [Str04]. The basic difference from Section 2.2
is that now the spatial grid contains infinitely many grid points. Fourier stabil-
ity analyses are commonly used in discretizations of time-dependent problems,
but the technique is restricted to differential operators with constant coeffi-
cients, and boundary conditions in the spatial variable will cause additional
difficulties.
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Figure 2.4 Discretization that takes the characteristics into account

Define the complex-valued function ϕj by

ϕj(x) :=

√
h

2π
ei j x, j ∈ Z. (3.18)

These functions form a countable basis of the space L2(−π, π) that is or-
thogonal with respect to the complex scalar product (here overline denotes a
complex conjugate)

〈v, w〉 :=

π∫
−π

v(x)w(x) dx ∀v, w ∈ L2(−π, π).

More precisely,
〈ϕj , ϕl〉 = h δj,l ∀ j, l ∈ Z, (3.19)

using the Kronecker symbol δj,l. Any grid function uh = {uj}j∈Z ∈ l2 can be
mapped in a one-to-one way to a function û ∈ L2(−π, π) that is defined by

û(x) :=
∞∑

j=−∞
uj ϕj(x).

The function û ∈ L2(−π, π) is called the Fourier transform of uh. The repre-
sentation (3.19) yields the inverse transform formula

uj =
1

h

π∫
−π

û(x)ϕj(x) dx =
1√

2π h

π∫
−π

û(x) e−i j x dx, j ∈ Z,

that expresses each grid function uh in terms of its corresponding û. The
orthogonality of the basis and (3.19) also yield Parseval’s identity

‖uh‖20,h = h

∞∑
j=−∞

u2
j = 〈û, û〉 = ‖û‖20. (3.20)
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Using this foundation, L2-norm stability analyses for finite difference methods
can be carried out via Fourier transforms to prove bounds like (2.13). The
following basic property of the transform facilitates such an analysis.
Let two grid functions vh, wh be related to each other by vi = wi±1 for all i;
then their Fourier transforms are related by

v̂(x) = e∓ix ŵ(x). (3.21)

Consequently the application of a difference operator to a grid function is
manifested in the Fourier transform image space as a much simpler operation:
multiplication by a (complex) trigonometric polynomial!

Let us now return to (3.6), with t lying in a finite time domain [0, T ]. For
any chosen number M ∈ N of time intervals, the discretization time-step size
is τ = T/M . Take

‖u‖h,τ := max
0≤k≤M

‖uk‖0,h (3.22)

as the underlying norm. Note that in the present case of an unbounded spatial
domain, the Euclidean norm ‖uk‖0,h cannot in general be bounded from above
by the maximum norm ‖uk‖∞,h. To overcome this difficulty we shall assume
that u0 has compact support.

Theorem 2.10. Let the function u0 be Lipschitz-continuously differentiable
and let u′

0 have compact support. Then the explicit upwind scheme (b) is con-
sistent of order 1 in the norm ‖ · ‖h,τ defined by (3.22). If in addition the
CFL condition is satisfied, then on finite time domains [0, T ] the scheme (b)
is stable in the norm (3.22) and as a consequence is convergent of order 1.

Proof: Set wk
j := uk

j − u(xj , t
k) for all j and k. As already shown in the

proof of Theorem 2.7, one has the representation

wk+1
j = (1− γ)wk

j + γ wk
j−1 + τ rk

j j ∈ Z, k = 0, 1, . . . , M − 1, (3.23)

with rk
j defined by (3.16). First, we estimate the grid functions rk := {rk

j }j∈Z

in the discrete norm ‖ · ‖0,h. Since u′
0 has compact support there exists some

ρ > 0 such that

u′
0(x) = 0 for all x with |x| ≥ ρ.

Together with (3.16) this implies that

‖rk‖20,h = h
∑
j∈Z

|rk
j |2 ≤ h

(
2ρ

h
+ 1
)(a

2
(h + a τ)L

)2

, k = 0, 1, . . . , M−1.

Hence
‖rk‖0,h ≤ c (h + a τ), k = 0, 1, . . . , M − 1,

for some c > 0. That is, the scheme is first-order consistent in the norm ‖·‖h,τ

of (3.22).
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From (3.23 ) and (3.21), the Fourier transforms ŵ, r̂ of the grid functions
w, r satisfy

ŵk+1 = ((1− γ) + γ eix)ŵk + τ r̂k.

Thus
‖ŵk+1‖0 ≤

(
max

x∈[−π,π]
|(1− γ) + γ ei x|

)
‖ŵk‖0 + τ ‖r̂k‖0.

The CFL condition implies that max
x∈[−π,π]

|(1 − γ) + γ ei x| = 1, which with

(3.20) yields

‖wk+1‖0,h ≤ ‖wk‖0,h + τ c (h + a τ), k = 0, 1, . . . .

Taking into account the initial condition ‖wk‖∞,h = 0, this leads to

‖wk‖0,h ≤ k τ c (h + a τ), k = 1, . . . , M.

We obtain finally

‖w‖h,τ = max
k=0,1,...,M

‖wk‖0,h ≤ T c (h + a τ) .

Remark 2.11. In general, if inequalities of the type

‖ŵk+1‖0 ≤ VF ‖ŵk‖0 + τ ‖K̂F ‖0, k = 0, 1, . . . ,

are valid, then the amplification factor VF is a critical factor in the stability
behaviour of the difference scheme. The amplification factor VF is always—
as in the proof of Theorem 2.10—the maximum modulus of a (complex)
trigonometrical polynomial V (x). If on some x-subinterval of [−π, π] one has
V (x) ≥ δ > 1 for some δ independent of x and τ , then the method is unsta-
ble. The condition VF ≤ 1 is obviously sufficient for stability; in fact it can be
weakened to

VF ≤ 1 + μ τ (3.24)

because limτ→0(1 + τ)1/τ = e is finite. �

Let us continue our study of the upwind scheme (b). If γ > 1 then

|(1− γ) + γ eiπ| = 2γ − 1 > 1.

The continuity of the function eix implies that for each δ ∈ (1, 2γ − 1), there
exists σ ∈ (0, π/2) such that

|(1− γ) + γ ei x| ≥ δ ∀x ∈ [−π + σ, π − σ].

Consequently the method is unstable. Thus the CFL sufficient condition γ ≤ 1
is also necessary for stability.

Next, we investigate briefly the two methods (a) and (c). In the case of
method (a), the polynomial V (x) of Remark 2.11 satisfies
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|V (x)| =
∣∣∣∣1 +

1
2

γ (eix − e−ix)
∣∣∣∣ = 1 + γ sin x.

It follows that there exist δ > 1 and some interval [α, β] ⊂ [−π, π] such that

|V (x)| ≥ δ ∀x ∈ [α, β].

As γ > 0, this unstable situation occurs irrespective of the choices of the step
sizes h > 0 and τ > 0 in the discretization. The instability of scheme (c) can
be shown similarly.

Both these methods also fail to satisfy the discrete maximum principle and
are unstable in the maximum norm.

Remark 2.12. A heuristical motivation of the importance of the CFL condition
can be given in the following way. When discussing the consistency of scheme
(b) we obtained the relation

u(x, t + τ)− u(x, t)
τ

+ a
u(x, t)− u(x− h, t)

h
=

= ut + aux +
aτ − h

2
auxx + O(h2 + τ2).

(3.25)

Given an initial condition at t = 0, the well-posedness of the parabolic problem
for t > 0 requires uxx to have a negative coefficient, viz., aτ − h ≤ 0. This is
equivalent to the CFL condition.

When aτ − h < 0, the presence of the additional term aτ−h
2 auxx means

that, as well as the convection that appeared in the original problem, we have
introduced a diffusion term aτ−h

2 auxx. This extra term is called numerical
diffusion; it usually causes the numerical solution to contain an undesirable
smearing of any sharp layers present in the original solution. �

In the above investigations an equidistant spatial grid was assumed, i.e.,
the spatial grid is {xj}j∈Z with xj − xj−1 = h, j ∈ Z. We now outline a way
of extending the Fourier technique to more general grids. For general grids
{xj}j∈Z, set

hj := xj − xj−1 > 0 and hj+1/2 :=
1
2
(hj + hj+1), j ∈ Z.

Given a grid function uh = (uj)j∈Z, its Euclidean norm ‖·‖0,h on this arbitrary
grid is defined by

‖uh‖20,h :=
∑
j∈Z

hj+1/2 u2
j .

With the aid of modified complex basis functions

ϕj(x) :=

√
hj+1/2

2π
ei j x, j ∈ Z, (3.26)
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grid functions uh can be mapped in a one-to-one way to their û Fourier trans-
forms, just as in the equidistant case. This transform is defined by

û(x) :=
∞∑

j=−∞
uj ϕj(x).

The functions ϕj form a countable basis of the space L2(−π, π) and they are
orthogonal with respect to the complex scalar product

〈v, w〉 :=

π∫
−π

v(x)w(x) dx ∀v, w ∈ L2(−π, π).

Now
〈ϕj , ϕl〉 = hj+1/2 δj,l ∀ j, l ∈ Z, (3.27)

so Parseval’s identity is valid:

‖uh‖20,h =
∞∑

j=−∞
hj+1/2 u2

j = 〈û, û〉 = ‖û‖20.

Using these results our earlier convergence analysis can be extended to non-
equidistant grids under weak additional assumptions such as the uniform
boundedness of the quotients hj/hj+1 and hj+1/hj . Nevertheless, it should
be noted that in this more general case, quotients of neighbouring step sizes
hj will occur in the modified CFL conditions that are obtained.

Remark 2.13. Instead of three-point approximations, let us consider the gen-
eral explicit discretization scheme

uk+1
j =

m∑
l=−m

cl u
k
j+l (3.28)

where m ≥ 1. This scheme is consistent only if

m∑
l=−m

cl = 1 and
m∑

l=−m

l cl = −γ.

The first of these identities implies that we must assume cl ≥ 0 for all l
to guarantee a discrete maximum principle (3.11) for this general scheme.
It turns out that this is impossible for methods whose consistency order is
greater than 1. Thus explicit methods of type (3.28) that satisfy the discrete
maximum principle can achieve at best first-order convergence. �

Consider now transport problems on a bounded interval, i.e. problems of the
type
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ut + a ux = 0, x ∈ [c, d] ⊂ R, t > 0,

u(·, 0) = u0(·) on [c, d], u(c, ·) = g(·), t > 0,
(3.29)

where a > 0. (For bounded spatial intervals, boundary conditions for t > 0
must be imposed at one endpoint; as a > 0, on recalling the orientation
of the characteristics and how the solution u propagates along them, it is
clear that the left endpoint should be used so that on each characteristic
only one value of u is given a priori.) Now not only explicit schemes but
also implicit discretizations are feasible. Similarly to (3.8), we examine those
implicit discretizations that have three grid points in the spatial direction and
are defined by

D−
t u = a (ωD+

x + (1− ω)D−
x )u, (3.30)

where ω ∈ [0, 1] is some fixed parameter. Set γ = (a τ)/h. Then for ω = 0 and
ω = 1 we obtain the variants

(b) (1 + γ)uk
j − γuk

j−1 = uk−1
j

and
(c) (1− γ)uk

j + γuk
j+1 = uk−1

j ,

(3.31)

respectively. Figure 2.5 shows their difference stencils.

(b)

•

• • (c)

•

••

Figure 2.5 Difference stencils of the implicit discretizations (3.31)

The labelling of the implicit methods (b) and (c) corresponds to that of the
earlier explicit schemes. Stability for the implicit methods differs from our
earlier results for the explicit methods: variant (b) is stable in the L2-norm
for arbitrary step sizes h, τ > 0, but variant (c) is L2 stable only when γ ≥ 1.
Now

|1 + γ − γei x| ≥ |1 + γ| − |γei x| = 1 ∀x ∈ [−π, π]

and consequently ∣∣∣∣ 1

1 + γ − γei x

∣∣∣∣ ≤ 1 ∀x ∈ [−π, π],

which is the Fourier L2-stability condition for (b). For variant (c), under the
additional condition γ ≥ 1 we get
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|1− γ + γe−i x| ≥ |γei x| − |1− γ| = γ − (γ − 1) = 1 ∀x ∈ [−π, π].

Thus ∣∣∣∣ 1

1− γ + γe−i x

∣∣∣∣ ≤ 1 ∀x ∈ [−π, π],

which guarantees L2 stability for scheme (c) if γ ≥ 1.

2.3.2 Properties of Nonlinear Conservation Laws

Let us now consider the problem

ut + f(u)x = 0, u(·, 0) = u0(·), (3.32)

where x ∈ Rn. Throughout this section we assume that f ′′ > 0.
As in the linear case, the characteristics (x(s), s) play an important role

in the behaviour of the solution u of problem (3.32). Now

d

ds
u(x(s), s) = ut(x(s), s) +∇u · x′(s),

and we require the characteristics to satisfy

x′(s) = f ′(u(x(s), s)) (3.33)

so that, invoking (3.32), we get

d

ds
u(x(s), s) = 0.

That is, u is constant along each characteristic. It follows from (3.33) that
x′(s) is also constant there, i.e., each characteristic is a straight line. These
facts combine to yield

u(x, t) = u0(x− f ′(u(x, t))t). (3.34)

This is the nonlinear form of the solution that we discussed in the previous
section. Given sufficient smoothness of f , from the chain rule of differential
calculus for composite functions one infers that

ux = u′
0 · (1− f ′′(u)ux t) and ut = u′

0 · (−f ′(u)− f ′′(u)ut t).

Formally solving these equations for ux and ut, one gets

ux =
u′

0

1 + u′
0f

′′(u)t
and ut = − f ′(u)u′

0

1 + u′
0f

′′(u)t
. (3.35)

Recalling that f ′′ > 0, the following lemma is valid:

Lemma 2.14. If u′
0 ≥ 0, then (3.32) has a unique classical solution that is

implicitly given by (3.34).
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If u′
0 < 0 then, given two points x0 and x1 on the x-axis with x0 < x1, the

characteristics through these two points will intersect at some time t∗ > 0,
where t∗ satisfies

f ′(u0(x0))t∗ + x0 = f ′(u0(x1))t∗ + x1;

the existence of a solution t∗ follows from u0(x1) < u0(x0) and f ′′ > 0. See
Figure 2.6. Hence, even when the initial function u0 is continuous, discontinu-
ities of the solution u of (3.32) may occur after a finite time if different values
of u propagate to the same point.

�

�

xx0 x1

t

(x�, t�)

�
�

�
�

�
�

�

Figure 2.6 Intersecting characteristics

Example 2.15. The special nonlinear conservation law

ut + uux = 0

is known as Burgers’ equation and plays an important role in fluid dynamics.
Here f(u) = u2/2 and each characteristic has slope f ′(u) = u. Let us choose
the continuous initial condition

u(x, 0) =

⎧⎨⎩ 1 if x < 0,
1− x if 0 ≤ x ≤ 1,
0 if x > 1.

Then the solution for 0 ≤ t ≤ 1 is a continuous function given by

u(x, t) =

⎧⎨⎩ 1 if x < t,
(1− x)/(1− t) if t ≤ x ≤ 1,
0 if x > 1.

But for t > 1 the solution is discontinuous: u = 1 for x < 1, u = 0 for x > 1.
�

An inevitable consequence of the possible existence of discontinuous solu-
tions is that our understanding of what is meant by a solution of (3.32) has
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to be suitably modified. For this purpose we now consider weak formulations
and weak solutions. Multiplication of the differential equation by an arbitrary
C1

0 function φ (such functions have compact support in (−∞,∞) × (0,∞))
followed by integration by parts yields∫

x

∫
t

(uφt + f(u)φx) +
∫

x

u0 φ(x, 0) = 0 for all φ ∈ C1
0 . (3.36)

It turns out that this condition does not characterize weak solutions in a
unique way, as will be seen in Example 2.16; something more is needed.
Now any discontinuity in the solution travels along a smooth curve (x(t), t).
Suppose that such a curve of discontinuity divides the entire region D :=
R× (0,+∞) into the two disjoint subdomains

D1 := { (x, t) ∈ D : x < x(t) }, D2 := { (x, t) ∈ D : x > x(t) }.

Taking φ to have support equal to a rectangle R with sides parallel to the
coordinate axes and two opposite corners lying a short distance apart on the
curve (x(t), t), then integrating (3.36) by parts over R followed by shrinking
R to a point, one obtains the condition

dx

dt
=

f(uL)− f(uR)
uL − uR

(Rankine-Hugoniot condition), (3.37)

where

uL := lim
ε→0+

u(x(t)− ε, t), uR := lim
ε→0+

u(x(t) + ε, t).

Example 2.16. Consider again Burgers’ equation, but now with a discontinu-
ous initial condition:

ut + uux = 0,

u0(x) =
{

0 if x < 0,
1 if x > 0.

(3.38)

The shape of the characteristics (see Figure 2.7) leads us to expect some
unusual behaviour in the solution . Let α ∈ (0, 1) be an arbitrary parameter
and set

u(x, t) =

⎧⎨⎩0 for x < αt/2,
α for αt/2 < x < (1 + α)t/2,
1 for (1 + α)t/2 < x.

(3.39)

It is easy to verify that u(x, t) is a weak solution of Burgers’ equation, i.e., it
satisfies (3.36). But α ∈ (0, 1) can be chosen freely so there are infinitely many
solutions of (3.36). One can also verify by a straightforward calculation that
the Rankine-Hugoniot conditions are naturally satisfied along the two curves
of discontinuity x(t) = αt/2 and x(t) = (1 + α)t/2. �
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Figure 2.7 Characteristics for problem (3.38)

A physically relevant weak solution can be uniquely defined by an entropy
condition. To motivate this condition we first consider a classical solution. Let
U(·) denote some differentiable convex function and let F (·) be chosen such
that

F ′ = U ′f ′. (3.40)

The function F (u) is called an entropy flux and U(u) is called an entropy
function. (An example is U(u) = 1

2u2, F (u) =
∫ u

0
sf ′(s)ds .) If u is a classical

solution of (3.32), then for any entropy function U and its related entropy
flux F one has

U(u)t + F (u)x = 0 . (3.41)

For weak solutions of (3.36), a parabolic regularization and integration by
parts (see [Krö97]) yield the entropy condition∫

x

∫
t

[U(u)Φt + F (u)Φx] +
∫

x

U(u0)Φ(x, 0) ≥ 0, ∀Φ ∈ C1
0 , Φ ≥ 0. (3.42)

In this equation discontinuous F and U are allowed, but at any point where
these functions are differentiable, equation (3.40) must hold. Kruzkov [80]
chose (for an arbitrary parameter c) the entropy function and related entropy
flux

Uc(u) = |u− c|, (3.43)
Fc(u) = (f(u)− f(c))sign (u− c);

he then proved

Lemma 2.17. If u0 ∈ L1 ∩ TV then there exists a unique solution of the
variational equation (3.36) in the space L∞(0, T ;L1 ∩ TV ) that satisfies the
entropy condition (3.42).

The space TV used in this lemma is the space of locally integrable functions
that possess a bounded total variation
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TV (f) = ||f ||TV = sup
h�=0

∫ |f(x + h)− f(x)|
|h| .

Remark 2.18. Various other conditions in the literature are also described as
entropy conditions. For example, let (x(t), t) be a smooth curve of disconti-
nuity of u and set s = dx/dt. Then the inequality

f ′(uL) > s > f ′(uR) (3.44)

is sometimes called an entropy condition. As f ′′ > 0, clearly (3.44) implies
uL > uR. In [Lax72] it is shown that (3.44) is implied by (3.42) and some
properties of the higher-dimensional case are given there. �

If the entropy condition (3.44) is assumed, then one can construct the
complete solution of the Riemann problem

ut + uux = 0, u(x, 0) = u0(x) :=
{

uL for x < 0,
uR for x > 0,

(3.45)

with constant uL and uR.
In the case uL < uR the solution u cannot have discontinuities because

this would violate (3.44); it is given by

u(x, t) =

⎧⎨⎩uL for x < uLt,
uL + (uR − uL)(x− uLt)/((uR − uL)t) for uLt ≤ x ≤ uRt,
uR for uRt < x.

As t increases, the distance between the two constant branches uL, uR grows

�

�

x

u(x, t�)

uL

uR

uL t�

uR t�

�
�

�
�

�
�

�
�

Figure 2.8 Behaviour of the solution of problem (3.45)

(Figure 2.8). In the special case uL = 0, uR = 1 we obtain the entropy solution

u(x, t) =

⎧⎨⎩0 for x < 0,
x/t for 0 ≤ x ≤ t,
1 for t < x.
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Now we study the case uL > uR. Then by (3.37) the initial data imply
that

u(x, t) =

⎧⎪⎨⎪⎩
uL for x <

f(uL)− f(uR)
uL − uR

t,

uR for x >
f(uL)− f(uR)

uL − uR
t,

and in particular for Burgers’ equation, where f(u) = u2/2, the solution is

u(x, t) =

{
uL for x < 1

2 (uL + uR)t,

uR for x > 1
2 (uL + uR)t.

If in addition uL +uR = 0 (e.g., if uL = 1 and uR = −1), then the jump does
not move in time. This phenomenon is called a stationary shock. If uL+uR �= 0
then the shock changes its position as t increases.

Finally, we remark that for piecewise continuous solutions of conservation
laws the following properties hold (see [Lax72]):

(a) minx u(x, t) ≤ u(x, t + τ) ≤ maxx u(x, t)
(b) TV (u(·, t + τ)) ≤ TV (u(·, t))
(c) ||u(·, t + τ))||1 ≤ ||u(·, t)||1.

(3.46)

2.3.3 Difference Methods for Nonlinear Conservation Laws

In the previous Section a basic analysis of nonlinear conservation laws was
given. Now we shall use this knowledge to discuss and evaluate numerical
schemes, i.e., to investigate whether various discretization methods model
adequately the essential properties of the underlying continuous problem.

Consider again the problem

ut + f(u)x = 0, u(x, 0) = u0(x), (3.47)

under the general assumption f ′′ > 0. If f(u) = u2/2, then f ′′ > 0; thus the
Burgers’ equation problem

∂u

∂t
+ uux = 0, u(x, 0) =

{
−1 for x < 0,

1 for x ≥ 0,
(3.48)

is a particular example from the class of problems under consideration.
The obvious generalization to the nonlinear case (3.47) of the explicit

methods (3.8) based on three spatial grid points is

D+
t u + (ωD+

x + (1− ω)D−
x ) f(u) = 0, (3.49)

where ω ∈ [0, 1] denotes some fixed parameter. For example, ω = 1/2 yields
the scheme

uk+1
i − uk

i

τ
+

f(uk
i+1)− f(uk

i−1)
2h

= 0. (3.50)
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If any of the methods (3.49) is applied to problem (3.48), it produces the
solution

uk
i =

{
−1 for xi < 0,

1 for xi ≥ 0.

Thus, taking the limit as the mesh size goes to zero, the computed solu-
tion tends to a discontinuous solution that is not the uniquely determined
entropy solution that was described in the analysis of the Riemann problem
in Section 2.3.2. This simple example shows that the nonlinear case requires
careful modifications of methods used for linear problems, if one is to obtain
accurate schemes.

A fairly general formula for explicit discretization schemes for the nonlinear
conservation law (3.47) is given by

uk+1
i − uk

i

τ
+

1
h

(
g(uk

i+1, u
k
i )− g(uk

i , uk
i−1)
)

= 0, (3.51)

or equivalently by
uk+1

i = H(uk
i−1, u

k
i , uk

i+1) (3.52)

with

H(uk
i−1, u

k
i , uk

i+1) := uk
i − q

(
g(uk

i+1, u
k
i )− g(uk

i , uk
i−1)
)
, (3.53)

where q := τ/h . Here g(·, ·) denotes some appropriately chosen function that
is the numerical flux . Further, schemes of type (3.51) are called conservative.

To obtain consistency of the scheme (3.51) with (3.47), we assume that

g(s, s) = f(s) ∀s ∈ R. (3.54)

If g is differentiable then the consistency condition ∂1g +∂2g = f ′(u) follows
automatically from the chain rule of differential calculus.

Some methods that are commonly used will now be described. These meth-
ods can be obtained from the general scheme (3.51) by means of properly
selected numerical fluxes. In particular, the choice

g(v, w) :=
1
2

(
(f(v) + f(w)) − 1

q
(v − w)

)
in (3.51) yields the well-known Lax-Friedrichs scheme

uk+1
i = uk

i −
q

2
[f(uk

i+1)− f(uk
i−1)] +

uk
i+1 − 2uk

i + uk
i−1

2
. (3.55)

The underlying idea of the Lax-Friedrichs scheme is to add a discretization of
the term huxx/(2q) to the basic scheme (3.50). If the solution u is sufficiently
smooth, then the stabilization term contributes O(h/q) to the consistency
error estimate. Hence, a good recommendation here is to choose q = 1.

Another well-known choice for the numerical flux is given by
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g(v, w) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(v) if v ≥ w and f(v) ≥ f(w),
f(w) if v ≥ w and f(v) ≤ f(w),
f(v) if v ≤ w and f ′(v) ≥ 0,
f(w) if v ≤ w and f ′(w) ≤ 0,
f((f ′)−1(0)) otherwise.

With this particular numerical flux the general scheme (3.51) becomes the
well-known Godunov scheme

uk+1
i = uk

i − q
(
f(uk

i+1/2)− f(uk
i−1/2)

)
, (3.56)

where the values uk
i+1/2 are defined according to the following rules:

Set f(uk
i+1)− f(uk

i ) = f ′(ξk
i+1/2)(u

k
i+1 − uk

i ). Then we choose

uk
i+1/2 = uk

i if f ′(uk
i ) > 0 and f ′(ξk

i+1/2) > 0,

uk
i+1/2 = uk

i+1 if f ′(uk
i+1) < 0 and f ′(ξk

i+1/2) < 0,

uk
i+1/2 is a root of f ′(u) = 0 in all other cases.

If the numerical flux is specified by

g(v, w) := 1
2 [f(v) + f(w)−

∫ w

v
|f ′(s)|ds],

then (3.51) yields the Enquist-Osher scheme

uk+1
i = uk

i − q

(∫ ui

ui−1

f ′
+ds +

∫ ui+1

ui

f ′
−ds

)
, (3.57)

where f ′
+(s) := max(f ′(s), 0), f ′

−(s) := min(f ′(s), 0).
The scheme (3.52), (3.53) is called monotone if H is non-decreasing in

each argument. This is a valuable property, for monotone schemes replicate
the properties (3.46) of the continuous problem in the discrete one, and con-
vergence to the desired entropy solution can be shown.

Lemma 2.19. Monotone schemes of the form (3.52), (3.53) possess the prop-
erty

min(uk
i−1, u

k
i , uk

i+1) ≤ uk+1
i ≤ max(uk

i−1, u
k
i , uk

i+1) for all i and k. (3.58)

Proof: Let i and k be arbitrary but fixed. Set vk
j = max{uk

i−1, u
k
i , uk

i+1} for
all j. Using the scheme and the vk

j to compute all the values vk+1
j on the next

time level, monotonicity implies that vk+1
i ≥ uk+1

i . But since vk
j is constant

as j varies, (3.53) implies that we also have vk+1
j = vk

j for all j. Thus we have
shown that uk+1

i ≤ max{uk
i−1, u

k
i , uk

i+1}. The other inequality is proved in a
similar manner.
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The estimate (3.58) is the discrete analog of (3.46a). Now let us consider
the properties (3.46b) and (3.46c). Define the discrete norms

||uh||1,h :=
∑

i

h|ui| and ||uh||TV,h :=
∑

i

|ui+1 − ui|

for those grid functions uh for which these norms are finite. We say that
uh ∈ L1,h when ||uh||1,h is finite.

Lemma 2.20. Let k be arbitrary but fixed. Let uk
h, vk

h ∈ L1,h be given. Suppose
that the corresponding uk+1

h and vk+1
h are generated by a monotone scheme of

the form (3.52), (3.53). Then uk+1
h , vk+1

h ∈ L1,h and in fact

(b) ||uk+1
h − vk+1

h ||1,h ≤ ||uk
h − vk

h||1,h,

(c) ||uk+1
h ||TV,h ≤ ||uk

h||TV,h.
(3.59)

Proof: Here we show only that the estimate (b) implies (c). The proof of (b)
requires much more effort and for it we refer the reader to [39].

Let π : L1,h → L1,h denote the index-shift operator defined by

(πuh)i := ui+1 with uh = (ui)i∈Z.

Let H : L1,h → L1,h be the operator associated with the discretization scheme,
i.e.,

(H(uh))i := H(ui−1, ui, ui+1), i ∈ Z.

Then πH(uh) = H(πuh) and from this property it follows that

h||uk+1
h ||TV,h =

∑
h|uk+1

i+1 − uk+1
i | =∑h|πuk+1

i − uk+1
i | =

= ||πuk+1
h − uk+1

h ||1,h = ||H(πuk
h)−H(uk

h)||1,h

≤ ||πuk
h − uk

h||1,h = h||uk
h||TV,h,

where the inequality in this calculation is a special case of (b). This completes
the proof that (b) implies (c).

Theorem 2.21. Assume that we are given a monotone and conservative dis-
cretization scheme of the form (3.52), (3.53) with some continuous and con-
sistent numerical flux. Then this scheme generates a numerical solution that
converges to the entropy solution of the conservation law and its order of
convergence is at most one.

The proof of this theorem basically follows from Lemmas 2.19 and 2.20, but
it requires several technicalities. For the special case of the Lax-Friedrichs
scheme a nice proof is given in [81], and for the general case see [62].
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Remark 2.22. The Lax-Friedrichs, Godunov and Enquist-Osher schemes are
monotone when an additional condition is satisfied. In the case of the Lax-
Friedrichs scheme,

∂H

∂uk
i

= 0,
∂H

∂uk
i−1

=
1
2
(
1 + qf ′(uk

i−1)
)
,

∂H

∂uk
i+1

=
1
2
(
1− qf ′(uk

i )
)
.

Hence this scheme is monotone if

q max
u
|f ′(u)| ≤ 1 (CFL condition). (3.60)

In the linear case this condition coincides with the classical CFL condition
(3.12). �

A drawback of monotone schemes is that their convergence order is at most
1. To overcome this limitation one tries to relax the monotonicity condition in
some way. One possibility is the following: the scheme (3.52), (3.53) is called
TVNI (total variation nonincreasing) or TVD (total variation diminishing) if
the property

||uk+1
h ||TV,h ≤ ||uk

h||TV,h

holds for all k.
Any monotone scheme is also TVNI by Lemma 2.20. The converse is false

is general.
For schemes of the form

uk+1
i = uk

i + C+
i+1/2(u

k
i+1 − uk

i )− C−
i−1/2(u

k
i − uk

i−1) (3.61)

we have (compare [61])

Lemma 2.23. If C+
i+1/2 ≥ 0, C−

i+1/2 ≥ 0 and C−
i+1/2 + C+

i+1/2 ≤ 1 for all i,
then the scheme (3.61) is TVNI.

Proof: From

uk+1
i = uk

i + C+
i+1/2(u

k
i+1 − uk

i )− C−
i−1/2(u

k
i − uk

i−1)

and
uk+1

i+1 = uk
i+1 + C+

i+3/2(u
k
i+2 − uk

i+1)− C−
i+1/2(u

k
i+1 − uk

i )

it follows that

uk+1
i+1 − uk+1

i = (1− C−
i+1/2 − C+

i+1/2)(u
k
i+1 − uk

i )

+C−
i−1/2(u

k
i − uk

i−1) + C+
i+3/2(u

k
i+2 − uk

i+1).

Consequently, using the hypotheses of the lemma,

|uk+1
i+1 − uk+1

i | ≤ (1− C−
i+1/2 − C+

i+1/2)|uk
i+1 − uk

i |

+C−
i−1/2|uk

i − uk
i−1|+ C+

i+3/2|uk
i+2 − uk

i+1|.
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Now a summation over i completes the proof.

An important aim in the construction of TVNI schemes is the achievement
of a consistency order greater than one. The Lax-Wendroff scheme is a well-
known second-order scheme that is described by

g(v, w) =
1
2
[f(v) + f(w)]− qf ′

(
v + w

2

)
[f(v)− f(w)]. (3.62)

But if one applies the Lax-Wendroff scheme to the example

ut + sin(πu)ux = 0, u(x, 0) =
{
−1 for x < 0,

1 for x ≥ 0,

then the computed solution—compare the results for (3.8) applied to problem
(3.48)—converges to an incorrect solution.

A class of schemes that have a structure like that of (3.62) is given by

g(v, w) =
1
2

[
f(v) + f(w)− 1

q
Q(qb)(w − v)

]
, (3.63)

where

b :=
{

[f(w)− f(v)]/(w − v) for w �= v,
f ′(v) for w = v,

and qb = λ, while Q(λ) is some function that has to be chosen. Within this
class we can try to find TVNI schemes. If (3.63) is converted to the form
(3.61) then

C± =
1
2
Q(λ)∓ λ.

Hence, from Lemma 2.23 follows

Lemma 2.24. Suppose that

|x| ≤ Q(x) ≤ 1 for 0 ≤ |x| ≤ μ < 1. (3.64)

Assume that the CFL condition

q max |f ′| ≤ μ ≤ 1

is satisfied. Then the choice (3.63) yields a TVNI scheme.

Unfortunately the choice (3.63) again restricts to one the consistency order of
the scheme. Harten [61] analysed the possibility of constructing from a 3-point
TVNI scheme a related 5-point TVNI scheme of higher order. This is done by
choosing

f(vi) := f(vi) + qg(vi−1, vi, vi+1)

in (3.63), (3.53) with a properly chosen g. See [61] for details.
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A further generalization of (3.52), (3.53) is the use of discretizations of the
form

uk+1
i = H(uk

i−l, u
k
i−l+1, · · · , uk

i , · · · , uk
i+l)

where l ≥ 1 and

H(uk
i−l, u

k
i−l+1, · · · , uk

i , · · · , uk
i+l) =

= uk
i − q[g(uk

i+l, · · · , uk
i−l+1)− g(uk

i+l−1, · · · , uk
i−l)],

where g satisfies the consistency condition

g(u, u, · · · , u) = f(u).

In the literature one can find several other approaches to constructing
schemes that have the property of convergence to the entropy solution. These
include, inter alia, quasi-monotone schemes and MUSCL schemes. For further
details and a comprehensive discussion of the discretization of conservation
laws, see [Krö97].

Exercise 2.25. Two possible discretizations of the transport equation

ut + bux = 0 (constant b > 0),

with the initial condition u|t=0 = u0(x), are the following:

a)
uk+1

i − uk−1
i

2τ
+ b

uk
i+1 − uk

i−1

2h
= 0,

b)
uk+1

i − uk
i

τ
+ b

uk+1
i − uk+1

i−1

h
= 0 .

Discuss the advantages and disadvantages of each method.

Exercise 2.26. Analyse the L2 stability of the following scheme for the dis-
cretization of the transport equation of Exercise 2.25 and discuss its consis-
tency:

uk+1
i − uk

i

τ
+

b

h

[
uk+1

i + uk
i

2
− uk+1

i−1 + uk
i−1

2

]
= 0.

Exercise 2.27. Consider the multi-level approximation

uk+1
i =

∑
μ,ν

αμ
νuk+ν

i+μ ,

where μ = 0,±1,±2, · · · ,±p and ν = 1, 0,−1, · · · ,−q, for the discretization
of the transport equation.
a) Derive conditions that guarantee consistency of order K.
b) Show that within the class of explicit two-level schemes there does not exist
a method that is monotone in the sense that αμ

ν ≥ 0 for all ν and μ.
c) Construct examples of monotone multi-level schemes and discuss their or-
ders of consistency.
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Exercise 2.28. Integration of the conservation law yields the mass balance
equation

d

dt

∫ b

a

u(x, t)dx = f(u(a, t))− f(u(b, t)).

Apply an appropriate limit process to this to derive the Rankine-Hugoniot
jump condition.

Exercise 2.29. Analyse the limit lim
ε→0

u(x, t, ε) of the parabolic problem

ut − εuxx + bux = 0 in (−∞,∞)× (0,∞),
u|t=0 = u0(x),

for the case of constant b > 0.

Exercise 2.30. Consider the parabolic problem

ut − εuxx + uux = 0

with initial condition

u(x, 0) =
{

uL for x < 0,
uR for x > 0.

Investigate whether this problem possesses a solution of the form

u(x, t, ε) = U

(
x− uL + uR

2
t

)
.

If such a solution exists, examine its behaviour for small ε > 0.

Exercise 2.31. Consider Burgers’ equation

ut + uux = 0

with the initial condition

u(x, 0) =
{

1 for x < 0,
0 for x > 0.

Discretize this problem by the scheme

uk+1
i − uk

i

τ
+ uk

i

uk
i − uk

i−1

h
= 0.

a) What is the order of consistency of this method?
b) Determine the limit function to which the numerical solution converges.

Exercise 2.32. Find explicitly the consistency errors of the Lax-Friedrichs
and Enquist-Osher schemes for the discretization of the conservation law

ut + f(u)x = 0.

Examine the behaviour of each of these schemes when applied to the example
of Exercise 2.31.
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2.4 Finite Difference Methods for Elliptic Boundary
Value Problems

2.4.1 Elliptic Boundary Value Problems

In this section we deal with boundary value problems for second-order linear
differential operators L in n independent variables x = (x1, . . . , xn). These
operators take the forms

Lu := −
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi
∂u

∂xi
+ cu (4.1)

and

Lu := −
n∑

i=1

∂

∂xi

⎛⎝∑
j=1

aij(x)
∂

∂xj

⎞⎠u(x) +
n∑

i=1

bi
∂u

∂xi
+ cu. (4.2)

The nature of these differential operators is governed by the properties of their
principal parts

−
n∑

i,j=1

aij
∂2

∂xi∂xj
and −

n∑
i=1

∂

∂xi

⎛⎝∑
j=1

aij(·)
∂

∂xj

⎞⎠ .

The operator L is said to be elliptic in a domain Ω if for each x ∈ Ω there
exists α0 > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ α0

n∑
i=1

ξ2
i for arbitrary ξ ∈ Rn. (4.3)

The operator L is uniformly elliptic in Ω if (4.3) holds for some α0 > 0 that
is independent of x ∈ Ω.

The Laplace operator Δ, which occurs often in practical problems, is
clearly uniformly elliptic in the whole space Rn. Throughout Section 2.4 we
assume that condition (4.3) holds uniformly and that Ω denotes the domain in
which the differential equation holds. Let ∂Ω = Γ denote the boundary of Ω.
As a rule, boundary conditions that are appropriate for the elliptic problem
will guarantee that the entire problem is well posed.

The problem of finding a function u such that for given L, f, ϕ,Ω one has

Lu = f in Ω
and u = φ on Γ

(4.4)

is called an elliptic boundary value problem. The type of boundary condition
in this problem, where u is specified on Γ , is called a boundary condition of
the first kind or Dirichlet boundary condition.
Let the boundary be differentiable (at least piecewise) and denote by n(x) ∈
Rn the outward unit normal at each point x ∈ Γ , i.e., a unit vector that is
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orthogonal to the tangent hyperplane at x. Then, given a function ψ defined
on Γ , the equation

∂u

∂n
≡ n · ∇u = ψ on Γ

defines a boundary condition of the second kind, which is also known as a
Neumann boundary condition; finally,

∂u

∂n
+ σu = ψ (σ �= 0) on Γ

describes a boundary condition of the third kind or Robin boundary condition.
We shall concentrate on the Dirichlet problem (4.4), but in several places the
effects of other types of boundary conditions are considered.

2.4.2 The Classical Approach to Finite Difference Methods

If the main part of the operator is given in divergence form, i.e., if L is of
type (4.2), then the discretization should be applied directly—see (4.8); the
temptation (when the functions aij are smooth) to avoid the divergence form
by using differentiation to convert L to the form (4.1) should be resisted.

As a model problem for discussing finite difference methods for elliptic
boundary value problems, we consider in this section the following linear
second-order boundary value problem in divergence form:

−div(A grad u) = f in Ω := (0, 1)n ⊂ Rn,

u = 0 on Γ := ∂Ω.
(4.5)

Here A is some sufficiently smooth matrix function A : Ω → Rn×n with
entries Aij , and f : Ω → R denotes a function that is also sufficiently smooth.
We assume that A is uniformly positive definite, i.e., that a constant α0 > 0
exists such that

zT A(x) z ≥ α0 zTz, ∀x ∈ Ω, ∀z ∈ Rn. (4.6)

In the particular case A ≡ I, the problem (4.5) is simply Poisson’s equation
with homogeneous Dirichlet boundary conditions. Despite the simplicity of
the differential operator, boundary conditions and geometry of the domain Ω
in (4.5), this model problem is adequate for an exposition of the fundamental
properties of the finite difference method.

To discretize (4.5) the closure Ω of the domain has to be approximated
by a set Ωh that contains a finite number of grid points. For this purpose we
use the grid (1.3) of Section 2.1, viz., the set of points

Ωh :=

⎧⎨⎩
⎛⎝ x1·
·

xn

⎞⎠ ∈ Rn : x1 = i1 h, . . . , xn = in h, 0 ≤ ij ≤ N for all j

⎫⎬⎭ ,



2.4 Elliptic Boundary Value Problems 63

with h = 1/N . In this context recall our earlier notation

Ωh := Ωh ∩Ω, Γh := Ωh ∩ Γ,

with the related spaces of grid functions

Uh := {uh : Ωh → R }, U0
h := {uh ∈ Uh : uh|Γh

= 0 },
Vh := { vh : Ωh → R }.

The differential operator

Lu := −div (A grad u) (4.7)

of problem (4.5) can be correctly discretized by the difference operator Lh :
Uh → Vh that is defined by

Lh uh := −
n∑

i=1

D−
i (

n∑
j=1

Aij D+
j uh ). (4.8)

Thus the continuous problem (4.5) is described approximately by the finite-
dimensional problem

uh ∈ U0
h : Lh uh = fh (4.9)

where the discrete right-hand side fh ∈ Vh is defined by fh(xh) := f(xh), xh ∈
Ωh. The Taylor expansion (1.13) leads to the consistency estimate∣∣∣∣∣

[
∂2u
∂x2

j

− D−
j D+

j u

]
(xh)

∣∣∣∣∣ ≤ 1
12

∥∥∥∥∥ ∂4u
∂ x4

j

∥∥∥∥∥
C( Ω )

h2 ∀xh ∈ Ωh,

provided that u is sufficiently smooth. In the particular case of Poisson’s equa-

tion, where A = I, with I the n× n unit matrix, one has Lh = −
n∑

j=1

D−
j D+

j .

This leads to the estimate

| [(L − Lh)u](xh)| ≤ n
12
‖u‖C4( Ω ) h2 ∀xh ∈ Ωh. (4.10)

More precisely, the right-hand side of (4.10) has the form

h2

12

n∑
j=1

max
Ω̄

∣∣∣∣∣∂4u

∂x4
j

∣∣∣∣∣ .
The general case of (4.5) can be handled similarly, but one then obtains only
first-order consistency, i.e.,

| [(L − Lh)u](xh)| ≤ c ‖A‖ ‖u‖C3( Ω ) h ∀xh ∈ Ωh. (4.11)
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In the case of Poisson’s equation, the notation Δh := −Lh is often used
to indicate the discrete Laplace operator.

When n = 2 with row-wise numbering of the discrete solution
uh = (ui,j)N−1

i,j=1, i.e.,

uh = (u1,1, u2,1, . . . , uN−1,1, u1,2, . . . , uN−1,2, . . . , uN−1,N−1)T ∈ R(N−1)2 ,

the operator −Δh can be written as the block tridiagonal matrix

−Δh :=
1

h2

⎡⎢⎢⎢⎢⎢⎢⎣

T −I 0
−I T −I

−I
. . . . . . −I
. . . . . .

0 −I T

⎤⎥⎥⎥⎥⎥⎥⎦ (4.12)

where

T :=

⎡⎢⎢⎢⎢⎣
4 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 4

⎤⎥⎥⎥⎥⎦ .

Here the homogeneous boundary values have already been eliminated. In the
discretization of partial differential equations by finite difference methods,
the discrete problems generated are typically of very high dimension but they
do possess a special structure. In particular, linear problems lead to a dis-
crete system of linear equations whose system matrix is rather sparse. For
example, the matrix (4.12) that represents the discrete operator −Δh has at
most five nonzero entries in each row. In the case of nonlinear problems, the
Jacobi matrices are sparse. The specific structure of the discrete systems that
are generated by finite difference methods means one should use appropriate
methods (see Chapter 8) for their efficient numerical solution.

The discrete solution uh is defined only at each grid point. Consequently
the quality of the approximation of uh to the desired solution u can be mea-
sured naturally only on the discrete set Ωh. It is possible to extend the discrete
solution uh (e.g., by interpolation) to a function Πhuh defined on Ω and to
compare this extension Πhuh with the solution u on Ω. This approach is nat-
ural in finite element methods but is less common in finite difference analyses.
In our convergence analyses of the finite difference method we shall concen-
trate on errors at mesh points and sketch only briefly the error analysis of
Πhuh on Ω.

As in previous sections, to obtain an error estimate one starts from

Lh eh = dh (4.13)
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with eh := uh− rhu, where rhu denotes the restriction of u to a grid function.
The consistency error dh := fh − Lh rh u can, as we have seen, be estimated
by

‖dh‖∞,h ≤ c ‖u‖C3(Ω) h or in some cases ‖dh‖∞,h ≤ c ‖u‖C4(Ω) h2. (4.14)

Next, a specific technique is needed to bound the L2 convergence error ‖eh‖0,h

in terms of the L2 consistency error ‖dh‖0,h; in the same way L2 stability will
be proved. This technique was originally introduced by the Russian school and
is usually called the method of energy inequalities. (Recall that the Fourier
technique is not easily applied to problems with variable coefficients.)

To begin, we have the following technical result:

Lemma 2.33. For any wh, vh ∈ U0
h one has

(D−
j wh, vh)h = −(wh, D+

j vh)h.

That is, the operator −D+
j is the adjoint of D−

j with respect to the inner
product (·, ·)h.

Proof: The definition of D−
j gives

(D−
j wh, vh)h = hn

∑
xh∈Ωh

1
h

(
wh(xh)− wh(xh − h ej)

)
vh(xh)

= hn−1
∑

xh∈Ωh

(
wh(xh) vh(xh)− wh(xh − h ej) vh(xh)

)
.

Recalling that wh(xh) = vh(xh) = 0 for all xh ∈ Γh, after a rearrangement
we obtain

(D−
j wh, vh)h = hn−1

∑
xh∈Ωh

wh(xh)
(
vh(xh)− vh(xh + h ej)

)
= hn

∑
xh∈Ωh

wh(xh) 1
h

(
vh(xh)− vh(xh + h ej)

)
.

This completes the proof.

Remark 2.34. Lemma 2.33 can be interpreted as a discrete Green’s formula,
i.e., as an analogue for grid functions of a standard Green’s formula. �

As an immediate consequence of Lemma 2.33, the operator Lh of (4.7)
satisfies

(Lhwh, vh)h =
n∑

i,j=1

(Aij(xh)D+
j wh, D+

i vh)h ∀wh, vh ∈ U0
h . (4.15)

But A(·) is assumed to be uniformly positive definite on Ω, so it follows that



66 2 Finite Difference Methods

(Lhwh, wh)h ≥ α0

n∑
j=1

(D+
j wh, D+

j wh)h = α0 ‖wh‖21,h ∀wh ∈ U0
h . (4.16)

We now prove a discrete Friedrichs’ inequality that relates the norms ‖ · ‖0,h

and ‖ · ‖1,h.

Lemma 2.35. There is a constant c, which depends only upon the domain Ω,
such that

‖wh‖0,h ≤ c ‖wh‖1,h ∀wh ∈ U0
h . (4.17)

Proof: Let xh ∈ Ωh and j ∈ {1, . . . , n} be arbitrary but fixed. Since wh = 0
on Γh, there exists l̂ = l̂(xh) ≤ N − 1 with

|wh(xh)| =

∣∣∣∣∣∣
l̂∑

l=0

(
wh(xh + (l + 1)h ej)− wh(xh + l h ej)

) ∣∣∣∣∣∣ .
From the Cauchy-Schwarz inequality we obtain

|wh(xh)| ≤
l̂∑

l=0

|wh(xh + (l + 1)h ej)− wh(xh + l h ej)|

= h
l̂∑

l=0

|D+
j wh(xh + l h ej)|

≤ h
√

N

(
l̂∑

l=0

|D+
j wh(xh + l h ej)|2

)1/2

.

As h = N−1 this leads to

‖wh‖20,h = hn
∑

xh∈Ωh

|wh(xh)|2

≤ hn+2N
∑

xh∈Ωh

l̂(xh)∑
l=0

|D+
j wh(xh + l h ej)|2

≤ hn+2N2
∑

xh∈Ωh

|D+
j wh(xh)|2

≤ hn
n∑

j=1

∑
xh∈Ωh

|D+
j wh(xh)|2 = ‖wh‖21,h.

Thus the lemma is true, with c = 1 in the domain Ω currently under consid-
eration.

Lemma 2.35 implies that ‖ · ‖1,h defines a norm on U0
h . This property and

the positive definiteness assumption (4.16) guarantee the invertibility of the
matrix that represents Lh, and the discrete system of linear equations (4.9)
has a unique solution uh for each fh ∈ Vh.
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Theorem 2.36. Let the solution u of the model problem (4.5) satisfy the reg-
ularity assumption u ∈ C3(Ω ). Then there exist positive constants c1 and c2

such that

‖uh − rhu‖0,h ≤ c1 ‖uh − rhu‖1,h ≤ c2 ‖u‖C3( Ω ) h.

In the particular case A = I suppose that u ∈ C4(Ω ). Then there exists a
positive constant c̃2 > 0 such that the stronger estimate

‖uh − rhu‖0,h ≤ c1 ‖uh − rhu‖1,h ≤ c̃2 ‖u‖C4( Ω ) h2

is valid.

Proof: The inequality (4.16) and the Cauchy-Schwarz inequality imply that

α0 ‖eh‖21,h ≤ (Lheh, eh)h = (dh, eh)h ≤ ‖dh‖0,h ‖eh‖0,h. (4.18)

Lemma 2.35 then converts this to

α0 ‖eh‖21,h ≤ ‖eh‖1,h ‖dh‖0,h.

The assertions of the theorem for ‖uh − rhu‖1,h now follow immediately and,
by Lemma 2.35, are also true for ‖uh − rhu‖0,h.

Remark 2.37. (a second-order discretization)
It is natural to ask: why should one use the discretization

−
n∑

i=1

D−
i (

n∑
j=1

Aij D+
j uh )

instead of a

−
n∑

i=1

D+
i (

n∑
j=1

Aij D−
j uh )?

In fact there is no fundamental advantage to either form: in the general case
both forms produce stable first-order discretizations. Second-order consistency
can be achieved by the combination

Lnew
h uh := −1

2

⎛⎝ n∑
i=1

D−
i

⎛⎝ n∑
j=1

Aij D+
j uh

⎞⎠+
n∑

i=1

D+
i

⎛⎝ n∑
j=1

Aij D−
j uh

⎞⎠⎞⎠ .

The stability of Lnew
h can be verified as in our calculation for Lh. In planar

problems, i.e., in the two-dimensional case, both first-order methods are as-
sociated with 4-point schemes for the approximation of the mixed derivative
uxy but the second-order method has a 7-point stencil. �
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Remark 2.38. Convergence estimates in the discrete L2 norm ‖ · ‖0,h can also
be derived from the spectrum of the matrix Lh. If A = I and n = 2, a
complete orthogonal system of eigenfunctions of Lh in the space U0

h is given
by the vectors vk,l

h ∈ U0
h , k, l = 1, 2, . . . , N − 1, whose components are

[vk,l
h ]i,j = sin

(
k π i

N

)
sin
(

l π j

N

)
, i, j, k, l = 1, 2, . . . , N − 1. (4.19)

The eigenvalue associated with vk,l
h is

λh
k, l =

2
h2

(
sin2

(
k π

2N

)
+ sin2

(
l π

2N

))
, k, l = 1, 2, . . . , N − 1. (4.20)

With the smallest eigenvalue this immediately leads to the estimate

4

h2
sin2

(
π

2N

)
‖vh‖0,h ≤ ‖Lhvh‖0,h ∀vh ∈ U0

h .

As N ≥ 2 we obtain

π2 ‖vh‖0,h ≤ ‖Lhvh‖0,h ∀vh ∈ U0
h .

Thus in the special case A = I and n = 2, this technique gives a precise bound,
unlike the general bound of Theorem 2.36. But on more general domains or
non-equidistant meshes, the eigenvalues and eigenvectors of Lh are not usually
known; in these cases generalizations of Lemmas 2.33 and 2.35 lead to crude
lower bounds for the eigenvalues of Lh. �

Next, we derive error bounds in the maximum norm. While the inequalities
(1.11) allow one to deduce easily L∞ error bounds from the L2 bounds ‖uh−
rhu‖0,h, this approach leads however to a reduction in the estimated order
of convergence and is not sharp enough. Alternatively, the use of the discrete
Sobolev inequality [Hei87] allows to derive almost optimal L∞ rates starting
from the error estimates in the discrete H1 norm.

Instead, discrete comparison principles, which are valid for many dis-
cretizations of elliptic boundary value problems, yield bounds for ‖uh −
rhu‖∞,h that are sharp with respect to the order of convergence. To simplify
the representation here, we consider only the case A = I, i.e., the discrete
Laplace operator. Then a discrete boundary maximum principle and a dis-
crete comparison principle are valid; the situation is completely analogous to
the continuous case.

Lemma 2.39. (discrete boundary maximum principle) Let vh be a grid func-
tion. Then

−[Δhvh](xh) ≤ 0 ∀xh ∈ Ωh =⇒ max
xh∈Ωh

vh(xh) ≤ max
xh∈Γh

vh(xh). (4.21)
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Proof: There exists at least one point x̃h ∈ Ωh such that

vh(x̃h) ≥ vh(xh) ∀xh ∈ Ωh.

Assume that −[Δhvh](xh) ≤ 0 ∀xh ∈ Ωh but suppose that the conclusion of
(4.21) does not hold. Then x̃h ∈ Ωh can be chosen such that for at least one
immediately neighbouring point x∗

h ∈ Ωh one has vh(x̃h) > vh(x̃∗
h). But

−[Δhvh](xh) =
1
h2

[
2n vh(xh)−

n∑
j=1

(
vh(xh + h ej) + vh(xh − h ej)

) ]
then gives −[Δhvh](x̃h) > 0, contradicting the hypothesis of (4.21). Thus the
implication (4.21) is valid.

Lemma 2.40. (discrete comparison principle) Let vh and wh be grid func-
tions. Then

−[Δhvh](xh) ≤ −[Δhwh](xh) ∀xh ∈ Ωh

vh(xh) ≤ wh(xh) ∀xh ∈ Γh

}
=⇒ vh(xh) ≤ wh(xh) ∀xh ∈ Ωh.

Proof: By linearity of the operator Lh, the statement of the lemma is equiv-
alent to

−[Δhzh](xh) ≤ 0 ∀xh ∈ Ωh

zh(xh) ≤ 0 ∀xh ∈ Γh

}
=⇒ zh(xh) ≤ 0 ∀xh ∈ Ωh (4.22)

for zh := vh − wh. The validity of (4.22) is immediate from Lemma 2.39.

Theorem 2.41. Let u be the solution of the Poisson problem with homoge-
neous Dirichlet conditions in the n-dimensional unit cube, i.e., problem (4.5)
with A = I. Assume that u ∈ C4(Ω ). Then the maximum norm error of the
finite difference solution (4.9) satisfies the bound

‖uh − rhu‖∞,h ≤
n

96
‖u‖C4( Ω ) h2. (4.23)

Proof: The argument uses an appropriate comparison function and the dis-
crete comparison principle of Lemma 2.40. Let us define vh ∈ Uh by

vh(xh) := σ x1 (1− x1), for each xh = (x1, . . . , xn) ∈ Ωh,

where σ ∈ R is some parameter that is not yet specified. Then

−[Δhvh](xh) = 2σ ∀xh ∈ Ωh. (4.24)

Choose σ = n
24
‖u‖C4( Ω ) h2. Then (4.10) and (4.24) imply that
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−[Δh(uh − rhu)](xh) ≤ −[Δhvh](xh) ∀xh ∈ Ωh.

As σ ≥ 0, we also have uh− rhu ≤ vh on Γh. Thus we can apply Lemma 2.40,
obtaining

[uh − rhu](xh) ≤ vh(xh) ≤ 1

4
σ ∀xh ∈ Ωh,

since maxΩh
vh(xh) = σ/4. In a similar way, using −vh, one can show that

[uh − rhu](xh) ≤ vh(xh) ≥ −1

4
σ ∀xh ∈ Ωh.

Recalling that σ > 0, the proof is complete.

The proof of Theorem 2.41 depends on a discrete comparison principle
and the construction of some appropriate comparison function vh. Using these
tools it was shown that ‖L−1

h ‖∞,h ≤ c for a constant c > 0 that is independent
of the mesh size h of the discretization. This technique is related to the theory
of M -matrices, which we now describe.

The following definitions depend on the distribution of negative and posi-
tive entries in a matrix A = (aij); below, matrix inequalities are understood
component-wise.

Definition 2.42. (a) The matrix A is called an L0-matrix if aij ≤ 0 for i �= j.
(b) The matrix A is called an L-matrix if aii > 0 for all i and aij ≤ 0

for i �= j.
(c) An L0-matrix A that is invertible and satisfies A−1 ≥ 0 is called an

M -matrix.

Furthermore, a matrix A is inverse monotone if

Ax ≤ Ay =⇒ x ≤ y.

This property is equivalent to:

A−1 exists with A−1 ≥ 0.

Thus one could define an M -matrix as an inverse monotone L0-matrix. One
can impose other conditions on L0 or L-matrices that will imply they are
M -matrices.

When M -matrices A appear in the discretization of differential equations,
one generally needs to estimate ‖A−1‖, where ‖ ·‖ is the matrix norm induced
by the discrete maximum norm. In this connection the following M -criterion
can often be applied.

Theorem 2.43. (M-criterion) Let A be an L0-Matrix. Then A is inverse
monotone if and only if there exists a vector e > 0 such that Ae > 0. Further-
more, in this case one has

‖A−1‖ ≤ ‖e‖
min

k
(Ae)k

. (4.25)
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Proof:
(⇒) If A is inverse monotone then one can choose e = A−1(1, 1, · · · , 1)T .
(⇐) Let e > 0 be some vector with Ae > 0, i.e.,∑

j

aijej > 0 for each i.

Now aij ≤ 0 for i �= j implies that aii > 0. Thus the matrix AD := diag(aii)
is invertible. We set

P := A−1
D (AD −A), so A = AD(I − P ).

By construction P ≥ 0. Also, we have

(I − P )e = A−1
D Ae > 0, hence Pe < e.

Define the special norm

||x||e := max
i

|xi|
ei

and let || · ||e denote the induced matrix norm. From

||P ||e = sup
||x||e=1

||Px||e

and P ≥ 0 it follows that ||P ||e = ||Pe||e. Now

||Pe||e = max
i

(Pe)i

ei
;

recalling that Pe < e we obtain ||P ||e < 1. Hence (I − P )−1 exists with

(I − P )−1 =
∞∑

j=0

P j .

Since A = AD(I −P ), we see that A−1 exists, and furthermore P ≥ 0 implies
A−1 ≥ 0.

To prove the stability bound (4.25), suppose that Aw = f . Then

±w = ±A−1f ≤ ‖f‖∞A−1(1, ..., 1)T .

The inequality Ae ≥ min
k

(Ae)k (1, ..., 1)T yields

A−1(1, · · · , 1)T ≤ e

min
k

(Ae)k
.

Merging these inequalities, we obtain
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‖w‖∞ ≤
‖e‖∞

min
k

(Ae)k
‖f‖∞,

which implies (4.25).

In many cases one can find a vector e that satisfies the hypotheses of
Theorem 2.43. Such a vector is called a majoring element of the matrix A.

Theorem 2.43 uses M -matrices to provide an estimate for ‖A−1‖. This
circle of ideas can also be invoked via strict diagonal dominance or weak di-
agonal dominance combined with the irreducibility of A, as we now outline.

Definition 2.44. (a) A matrix A is strictly diagonally dominant if

|aii| >
n∑

j=1,j �=i

|aij | for all i

and weakly diagonally dominant if

|aii| ≥
n∑

j=1,j �=i

|aij | for all i.

(b) A matrix A is irreducible if no permutation matrix P exists such that

PAPT =
[

B11 B12

0 B22

]
.

(c) A matrix A has the chain property if for each pair of indices i, j there is
a sequence of the form

ai,i1 , ai1,i2 , · · · , aim,j

of non-vanishing entries of A.
(d) A matrix A is irreducibly diagonally dominant if A is weakly diagonally

dominant with strict inequality in at least one row of A, and A is irreducible.

The chain property and irreducibility are equivalent. In [OR70] the follow-
ing result is proved.

Theorem 2.45. Let A be an L-matrix. If A is either strictly diagonally dom-
inant or diagonally dominant and irreducible, then A is an M -matrix.

If A is strictly diagonally dominant then the vector e = (1, · · · , 1)T is a
majoring element of A and by Theorem 2.43 we have

‖A−1‖ ≤ 1

min
k

(
akk −

∑
j �=k

|ajk|
) .
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In proving stability for suitable discretizations of differential equations,
either demonstrating strict diagonal dominance or constructing a suitable
majoring element will yield a bound on ‖A−1‖.

As a simple example let us sketch how Theorem 2.41 can be proved in the
framework of M -matrices. The discrete operator −Δh corresponds to a matrix
A that is an L-matrix, and this matrix is weakly diagonally dominant and
irreducible. Theorem 2.45 now tells us that A is an M -matrix. The comparison
function vh constructed in the proof of Theorem 2.41 plays the role of the
vector e and is a majoring element with Ae = (2, 2, . . . , 2)T and ‖e‖ = 1/4.
Now ‖A−1‖ ≤ 1/8 by Theorem 2.43, and from (4.10) we obtain the estimate
(4.23).

The derivation of consistency results from Taylor’s theorem, which is an
essential component in the convergence analysis of finite differences methods
for second-order differential equations, requires the solution u to have the
regularity property u ∈ C2,α(Ω̄) for some α ∈ (0, 1]. One can then show
that convergence of order O(hα) is obtained. A natural question is whether
one can also show convergence of order 2 for the standard difference method
under weaker assumptions. In fact this is possible if, e.g., in the analysis of
the difference method one uses discrete Sobolev spaces and arguments typical
of finite element analysis. Another way of weakening the assumptions needed
on u is available for certain finite difference methods using techniques from
the analysis of finite volume methods.

There are computational experiments that indicate second-order conver-
gence under weak assumptions. Consider the following problem:

−�u = 1 in Ω = (0, 1)2,
u = 0 on Γ.

The solution u does not lie in C2,α(Ω̄) for any positive α.
In practice, to evaluate the rate of convergence of a numerical method one
often computes the numerical convergence rate. Suppose that at a given point
P ∈ Ωh the value u(P ) of the exact solution is known. Assume that

|u(P )− uh(P )| ∼ Chβ ,

for some unknown β that we wish to determine experimentally. Then for the
finer step size h/2 one has

|u(P )− uh/2(P )| ∼ C

(
h

2

)β

.

Dividing the first equation by the second then taking a logarithm yields the
numerical convergence rate

β = [ln |u(P )− uh(P )| − ln |u(P )− uh/2(P )|]/(ln 2). (4.26)

This is just a illustration to present the idea. Of course, the numerical con-
vergence rate can be determined analogously for other ratios between two
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different step sizes. Furthermore, instead of a comparison of function values
at some point P , one can instead compare the norms of global errors provided
that the exact solution u is known. If the exact solution is not available then
one could use some highly accurate numerical approximation instead of the
exact solution.
Returning to the example above, let us take P = (1

2 , 1
2 ). The solution u of the

original problem can be written in closed from using the standard method of
separation of variables and Fourier series; this yields u(1

2 , 1
2 ) = 0.0736713....

A comparison of this value with the results computed by the standard finite
difference method gives

h uh(P ) u(P )− uh(P ) β

1/8 0.0727826 8.89 · 10−4 -
1/16 0.0734457 2.26 · 10−4 1.976
1/32 0.0736147373 5.66 · 10−5 1.997
1/64 0.0736571855 1.41 · 10−5 2.005

Thus the numerical convergence rate obtained for the chosen test point
indicates second-order convergence despite the fact that u /∈ C2,α(Ω̄) for any
α > 0.

2.4.3 Discrete Green’s Function

The discretization of a linear elliptic boundary value problem leads to a finite-
dimensional problem

[Lh uh](xh) = fh(xh) ∀xh ∈ Ωh, uh = 0 on Γh. (4.27)

If the original problem is well posed then the matrix of the discrete linear
system is invertible. Let us define the discrete Green’s function
Gh(·, ·) : Ωh ×Ωh → R by

LhGh(xh, ξh) =

{
1/μh(xh) if xh = ξh,

0 otherwise,
(4.28)

where the μh(xh) are the weights in the scalar product (·, ·)h. Then the solu-
tion of the discrete problem (4.27) can be expressed as

uh(ξh) =
∑

xh∈Ωh

μh(xh)Gh(xh, ξh) fh(xh) ∀ξh ∈ Ωh,

or, in terms of the discrete scalar product, as

uh(ξh) =
(
Gh(·, ξh), fh

)
h

∀ξh ∈ Ωh. (4.29)
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As well as the formal analogy to the continuous case, this representation
can lead to stability bounds and consequent convergence results for the dis-
cretization method. With some restriction operator rh, the defect dh is given
by dh := Lhrhu− fh, and for the discrete solution uh we obtain

Lh (rhu− uh) = dh

since Lh is linear. Now (4.27) and (4.29) yield

[rhu− uh](ξh) =
(
Gh(·, ξh), dh

)
h

∀ξh ∈ Ωh.

Hence for any p, q > 0 with 1
p + 1

q = 1 we have

|[rhu− uh](ξh)| ≤ ‖Gh(·, ξh)‖Lp,h ‖dh‖Lq,h, ξh ∈ Ωh.

From this inequality one immediately obtains the maximum norm error bound

‖rhu− uh‖∞,h ≤ max
ξh∈Ωh

‖Gh(·, ξh)‖Lp,h ‖dh‖Lq,h, (4.30)

provided one can bound max
ξh∈Ωh

‖Gh(·, ξh)‖Lp,h independently of h.

Remark 2.46. In the one-dimensional case n = 1 the discrete Green’s function
is bounded in the maximum norm, independently of h. Then (4.30) implies
that the error in the maximum norm is bounded, up to a constant multiplier,
by the L1 norm of the consistency error. In particular, this shows that second-
order convergence is preserved in the maximum norm even if the local order of
consistency reduces to one at a finite number of points, e.g., at certain points
near the boundary. �

It can be shown that in the higher-dimensional case n > 1 the discrete
Green’s function is no longer bounded uniformly in h. To gain some insight
into its behaviour we consider the discrete Green’s function for the discrete
Laplace operator with an equidistant grid of step size h on the unit square.

The eigenfunctions and eigenvalues are known in this simple example, so
Gh can be explicitly written as

Gh(x, ξ) =
∑

k,l=1,··· ,N−1

vkl
h (x) vkl

h (ξ)
λkl

h

,

where the functions vkl
h are defined in (4.19). From Remark 2.38 we deduce

that
0 ≤ Gh(x, ξ) ≤ c

∑
k,l=1,··· ,N−1

1
k2 + l2

.

The sum on the right-hand side can be estimated in terms of the integral of
1/r2 over a quarter of the disk with centre (0, 0) and radius

√
2/h. In polar

coordinates this integral equals
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π

2

∫ √
2/h

1

dr

r
=

π

2
ln(
√

2/h).

Hence
0 ≤ Gh(x, ξ) ≤ c ln

1
h

. (4.31)

In several standard situations the boundedness property in one dimension
also holds in one direction in two-dimensional problems, i.e., one has

max
ξh

‖Gh(·, ξh)‖L1,h ≤ c, (4.32)

with c independent of h. This inequality enables us to show that order of con-
vergence in the maximum norm is at least as large as the order of consistency
in the maximum norm. We sketch a proof of (4.32) for the simple model case
of the discrete Laplace operator in the unit square, with an equidistant grid
of step size h in both the x- and y-directions.

Let us set
GΣ

h (xi, ξk, ηl) = h
∑
yj

Gh(xi, yj , ξk, ηl).

Since Gh is non-negative, the expression GΣ
h coincides with the discrete L1

norm of Gh(xi, ·, ξk, ηl). Multiplying (4.28) by h and summing over yj yields
a one-dimensional discrete difference equation for GΣ

h . Invoking the uniform
boundedness of one-dimensional discrete Green’s functions, we get

max
xi,ξk,ηl

‖Gh(xi, ·, ξk, ηl)‖L1,h ≤ C.

This anisotropic bound implies (4.32).
In many papers V.B. Andreev has studied the behaviour of discrete funda-
mental solutions, which are closely related to discrete Green’s functions.

2.4.4 Difference Stencils and Discretization in General Domains

Each difference operator appearing in a finite difference method is often char-
acterized by its difference stencil, which is also called a difference star. For
any grid point, this describes the neighbouring nodes that are included in the
discrete operator and the weights that are applied to them there. For exam-
ple, the stencil in Figure 2.9 describes the standard five-point discretization
of the Laplace operator on an equidistant grid. The more general stencil in
Figure 2.10 represents the local difference operator

h−2
1∑

i,j=−1

ci,juh(x + ih, y + jh).
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� � �

�

�

4−1 −1

−1

−1

� � �
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c−1,0 c0,0 c1,0

c−1,−1 c0,−1 c1,−1

c−1,1 c0,1 c1,1

Figure 2.9 Five-point stencil Figure 2.10 Nine-point stencil

In general the order of consistency of a difference operator can be increased
by including extra grid points in the discretization. From the algorithmic
point of view one is naturally in favour of discretizations that include only
neighbouring grid points. Difference stencils for such discretizations are said
to be compact, i.e., for compact stencils that discretize the Laplacian one has
cα,β �= 0 only for −1 ≤ α, β ≤ 1 (see Figure 2.11).

� � �

� � �

� � �

c−1,0 c0,0 c1,0

c−1,−1 c0,−1 c1,−1

c−1,1 c0,1 c1,1

� � �

� � �

� � �

ν μ ν

δ ν δ

δ ν δ

Figure 2.11 Compact nine-point stencil Consistent nine-point stencil

From a Taylor expansion of the solution u it follows that second-order
nine-point discretizations of the Laplace operator whose weights are as in
Figure 2.11 must satisfy

μ + 4ν + 4δ = 0, ν + 2δ = −1.

The choice δ = 0, ν = −1 produces the standard five-point formula, while
the choice ν = δ = −1/3 results in the particular nine-point stencil shown in
Figure 2.12. It is straightforward to verify that consistency of order 3 cannot
be achieved for any choice of the parameters ν and δ. Hence, third-order
discretization methods that use compact nine-point schemes could, if at all,
be obtained only if the right hand side fh includes information from more
discretization points.
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1/12 −4/3 5 −4/3 1/12
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Figure 2.12 Particular nine-point stencil Non-compact nine-point stencil

If one takes ν = − 2
3 , δ = − 1

6 and defines the discrete right-hand side fh

by

fh :=
1
12

[f(x− h, y) + f(x + h, y) + f(x, y − h) + f(x, y + h) + 8f(x, y)],

then a fourth-order method for Poisson’s equation is obtained. This result
can be proved using Taylor expansions analogously to the argument for the
usual second-order discretization by the standard five-point formula. It does
however require that the solution u satisfies the rather restrictive regularity
condition u ∈ C6(Ω̄).
If non-compact schemes are considered, then the construction of difference
stencils of higher order of consistency is possible. One example of a fourth-
order discretization is given by the stencil shown in Figure 2.12. But since
the stencil includes points that are not immediate neighbours of the central
point, the matrix associated with the discrete problem has a wider band of
non-zero entries than a matrix associated with a compact scheme. There are
also difficulties applying the discretization at grid points close to the boundary
Γh and as a consequence such formulas are rarely used in practice. Instead, to
get higher-order convergence, second-order difference methods are combined
with extrapolation or defect correction techniques (see [MS83]).

Let consider now the boundary value problem

−�u = f in Ω, (4.33)
u = ϕ on Γ

on some arbitrary connected domain Ω with a regular boundary Γ . Similarly
to (1.4), we cover the domain with an axi-parallel grid on R2 and define the set
of inner grid points (x, y) ∈ Ωh ⊂ Ω. Then at each inner grid point (x, y) for
which all four neighbours (x+h, y), (x−h, y), (x, y+h), (x, y−h) and the line
segments joining them to (x, y) lie in Ω, the standard five-point discretization
can be used. In other cases the stencil has to be modified. If for example (x, y)
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Figure 2.13 Curved boundary

is an inner grid point but (x−h, y) �∈ Ω, then there exists some s ∈ (0,1] such
that (x − sh, y) ∈ Γ . In this way each inner grid point may generate “left”,
“right”, “upper” and “lower” neighbouring boundary points that do not lie
on the original axi-parallel grid but are nevertheless in Γh; two such points
are shown on Figure 2.13.

An inner grid point is said to be close to the boundary if at least one of
its neighbours belongs to Γh. We denote the set of all such points by Ω∗

h, and
let Ω

′
h = Ωh \ Ω∗

h be the set of remaining points (these are inner grid points
“far from the boundary”). Note that in case of non-convex domains an inner
grid point may be close to the boundary even when (x ± h, y), (x, y ± h) all
lie in Ω; see Figure 2.14. At grid points that are far from the boundary, the
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Figure 2.14 Boundary of a non-convex domain

usual five-point discretization of the Laplace operator can be applied. At grid
points close to the boundary, the discretization

2
hk + hk+1

(
uk − uk+1

hk+1
+

uk − uk−1

hk

)
of the second-order derivative −u′′ on non-equidistant grids will now be ap-
plied to each component of −Δu in the two-dimensional case. This discretiza-
tion is however only first-order consistent in the maximum norm, because—
unlike the case of equidistant grids—the O(hk+1 − hk) term in the Taylor
expansion does not vanish. Denote the four grid points neighbouring (x, y) by
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(x−swh, y), (x+seh, y), (x, y−ssh), (x, y+snh) with 0 < s ≤ 1 in each case,

where w, e, s, n stand for the directions west, east, south and north, according
to the direction in the stencil. This gives the following discretization of the
Laplace operator:

(�hu)(x, y) :=
2
h2

[
1

se(se + sw)
u(x + seh, y)

+
1

sw(se + sw)
u(x− swh, y) +

1
sn(sn + ss)

u(x, y + snh)

+
1

ss(sn + ss)
u(x, y − snh) −

(
1

swse
+

1
snss

)
u(x, y)

]
.

(4.34)

At inner grid points the difference formula (4.34) coincides with the standard
five-point stencil. Discretizing (4.33) through (4.34), we obtain

−�huh = fh in Ωh, (4.35)
uh = ϕh on Γh.

We have already seen that the order of consistency in the maximum norm
is only 1 owing to the reduced order at mesh points close to the border.
The stability result used in the proof of Theorem 2.41 carries over directly
to the current problem. The discretization clearly generates an L0-matrix
and a majoring element is obtained by a restriction of the quadratic function
(x− x0)(x0 + d− x)/2 to the grid, provided that Ω is contained in the strip
(x0, x0 + d). The M -criterion leads to ‖�−1

h ‖ ≤ d2/8.
To prove convergence of the second order following [Sam01], we split the

consistency error at grid points into two parts,

ch = c1
h + c2

h,

here c1
h is equal to the consistency error in the interior mesh points close to the

border and zero otherwise. Analogously we decompose the error: eh = e1
h + e2

h

with
−�he1

h = c1
h, −�he2

h = c2
h.

It is easy to estimate e2
h because the consistency component c2

h is already of
the second order:

‖e2
h‖∞ ≤

d2

8
‖c2

h‖∞.

To estimate e1
h we apply a special barrier function ( c1

h is only of the first
order with respect to the maximum norm). Consider, for instance, an interior
point close to the border with sr = s0 = su = 1 and sl < 1. Then, the barrier
function

vh =
{

αh2 inΩh

0 on Γh
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yields

−�hvh ≥ α(
2
sl
− 2

1 + sl
) ≥ α

and the discrete comparison principle with an appropriate chosen constant α
leads us to

‖e1
h‖∞ ≤ h2‖c1

h‖∞.

Summarizing, it follows

|u(x, y)− uh(x, y)| ≤ h2

(
1
48

d2‖u‖C3,1(Ω̄) +
2
3
‖u‖C2,1(Ω̄)h

)
, (4.36)

i.e., second-order convergence is obtained for our discretization of problem
(4.35) in a rather arbitrary domain.

Remark 2.47. In the method we have just described for handling grid points
that are close to the boundary, the differential equation is discretized by a
modification of the standard difference quotient formula for equidistant grids.
An alternative approach at such grid points is to modify the discrete equation
by linear interpolation of the values at two neighbouring points. This technique
also yields a second-order method; see [Hac03a]. �

Exercise 2.48. Consider the boundary value problem

−�u(x, y) = 1 in Ω = (0, 1)× (0, 1) ,

u(x, y) = 0 on Γ = ∂Ω.

a) Apply the method of finite differences and determine an approximation for
u(1/2, 1/2).
b) Use separation of variables and Fourier series to evaluate u(1/2, 1/2) correct
to 6 digits and compare this with the result obtained in part a).

Exercise 2.49. Consider the Dirichlet problem

−�u = 0 in (−1,−1)2 \ (−1, 0)2

with the boundary conditions

u(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1− 6x2 + x4 on y = 1 and y = −1,
1− 6y2 + y4 on x = 1 and x = −1,
x4 on y = 0 with − 1 ≤ x ≤ 0,
y4 on x = 0 with − 1 ≤ y ≤ 0.

a) Show that the exact solution is symmetric about the straight line y = x.
b) Use the finite difference method to find an approximate solution of the
problem and compare your computed solution with the exact solution.
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Exercise 2.50. Set Ω = {(x, y) : 1 < |x|+ |y| < 2.5 }.
Solve the boundary value problem

−�u = 0 in Ω

with

u =
{

0 for |x|+ |y| = 2.5,
1 for |x|+ |y| = 1,

using the method of finite differences with a rectangular grid and step size
h = 1/2 (make use of the symmetries that occur).

Exercise 2.51. Consider the Dirichlet problem

−�u = f in (0, 1)2,
u|Γ = 0,

and its discretization by the difference scheme

1
6h2

⎡⎣−1 −4 −1
−4 20 −4
−1 −4 −1

⎤⎦uh =
1
12

⎡⎣0 1 0
1 8 1
0 1 0

⎤⎦ fh

on a rectangular grid with step size h = 1/(N + 1).
a) Prove that

fh,1 ≤ fh,2 and uh,1|Γ ≤ uh,2|Γ together imply that uh,1 ≤ uh,2.

b) Prove that the scheme is stable in L∞, i.e., verify that

‖uh‖∞ ≤ C‖fh‖∞,

and determine the constant C in this estimate as accurately as possible.
c) Solve the discrete problem that is generated for N = 1, 3, 5 in the two cases

α) f(x, y) = sinπx sin πy,

β) f(x, y) = 2(x + y − x2 − y2).

Hint: it is helpful to exploit the symmetry of the solution.

Exercise 2.52. Show that there does not exist any compact nine-point
scheme that approximates the Laplace operator with third-order consistency.

2.4.5 Mixed Derivatives, Fourth-Order Operators and Boundary
Conditions of the Second and Third Kinds

Mixed Derivatives

In Section 2.4.2 second-order elliptic equations in divergence form were dis-
cussed and in particular the L2 stability of our discretization was proved.
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Next, we investigate the maximum-norm stability properties possessed by dis-
cretizations when mixed derivatives are present—up to now we have derived
stability results in the maximum norm only for Poisson’s equation.

In the two-dimensional case with the simple domain Ω := (0, 1)2, let us
consider the linear boundary value problem

−
(

a11
∂2u
∂x2

+ 2a12
∂2u
∂x∂y

+ a22
∂2u
∂y2

)
+ b1

∂u
∂x

+ b2
∂u
∂y

+ cu = f in Ω,

u = ϕ on ∂Ω.
(4.37)

All the data are assumed to be continuous (at least). Furthermore, we assume
that the main part of the differential operator is elliptic as defined in (4.3) and
that c ≥ 0. For the sake of simplicity in the present section, we work mainly
on a rectangular equidistant grid with step size h.

To discretize uxx, uyy, ux and uy it is quite common to use the standard
second-order central difference quotients that we have met already. But how
does one approximate the mixed derivative uxy accurately and stably?
An obvious idea would be to first approximate ux by (u(x + h, y)−
u(x− h, y))/(2h), then take a central difference quotient in the y-direction to
yield an approximation of uxy. This generates the difference formula

∂2u
∂x∂y ≈ 1

4h2 [u(x + h, y + h)− u(x− h, y + h)

−u(x + h, y − h) + u(x− h, y − h)],
(4.38)

which corresponds to the difference stencil of Figure 2.15. All the points that

Figure 2.15 A particular four-point stencil for the mixed derivative

are used in this discretization of uxy do not appear in the discretizations
of the other derivatives of the differential operator; hence the sign pattern
of the weights involved in (4.38) imply that the complete discretization of
the differential operator produces a discrete problem whose system matrix
cannot be an M -matrix. But it is advantageous to generate M -matrices for
the following pair of reasons: the stability analysis is simplified and, if the
given second-order elliptic differential operator satisfies a comparison theorem
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or maximum principle, then the discrete problem also has this property. The
latter reason is the main motivation for our desire to have M -matrices in our
difference schemes.

It is easy to show by a Taylor expansion that any consistent compact
nine-point discretization of uxy must have the stencil

1
4

⎡⎣−1− α− β + γ 2(α− γ) 1− α + β + γ
2(α + β) −4α 2(α− β)
1− α− β − γ 2(α + γ) −1− α + β − γ

⎤⎦
with arbitrary parameters α, β, γ ∈ R. The choice α = β = γ = 0 generates
the scheme (4.38). One can verify that no choice of the parameters α, β, γ
yields a discretization where all off-diagonal entries have the same sign.

Nevertheless, among the considered stencils with β = γ = 0 are discretiza-
tions where all four coefficients c11, c1,−1, c−1,−1, c−1,1 in Figure 2.11 have the
same sign. In particular the choices α = ±1 then give the difference stencils

1
2

⎡⎣−1 1 0
1 −2 1
0 1 −1

⎤⎦ and
1
2

⎡⎣ 0 −1 1
−1 2 −1

1 −1 0

⎤⎦ .

The first stencil should be used in the case −a12 > 0, while the second is
suitable when −a12 < 0. Combining these with the standard discretizations
of uxx and uyy yields the following complete discretization of the main part
of the differential operator:

1
h2

⎡⎣ a−
12 −(a22 − |a12|) −a+

12

−(a11 − |a12|) 2(a11 + a22 − |a12|) −(a11 − |a12|)
−a+

12 −(a22 − |a12|) a−
12

⎤⎦ , (4.39)

where a+
12 := max{a12, 0} ≥ 0 and a−

12 := min{a12, 0} ≤ 0. To discretize the
lower-order terms b1ux + b2uy + c, let us use the approximation

1
2h

⎡⎣ 0 b2 0
−b1 2hc b1

0 −b2 0

⎤⎦ . (4.40)

Then the finite difference discretization of (4.37) that is generated is consistent
of order 2. Under the assumption that

aii > |a12|+
h

2
|bi| (i = 1, 2)

the discretization gives an M -matrix. Consequently a maximum norm con-
vergence analysis can be carried out along the same lines as before.

Theorem 2.53. If aii > |a12| + h
2 |bi| for i = 1, 2 and u ∈ C3,1(Ω̄), then for

the difference method (4.39),(4.40) we have the error estimate

|u(x, y)− uh(x, y)| ≤ Ch2 for all (x, y) ∈ Ω̄h .
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Remark 2.54. If |b| is not very large then the condition aii > |a12| + h
2 |bi|

does not usually place a serious restriction on the choice of mesh size h be-
cause ellipticity implies already that a11a22 > a2

12. If however |b| is large—the
case of dominant convection—then this condition forces a very fine mesh size,
which results in a large number of discrete unknowns and cannot be used in
practical computations. To avoid this restriction in the convection-dominated
case, special discretizations are necessary. �

Remark 2.55. The discussion of the difficulties that arise in the discretization
of the mixed derivative uxy underlines strongly the recommendation that dif-
ferential operators that are given in divergence form, i.e., operators of the
type L = −div(A grad), should always be treated directly by (4.8) and not by
differentiation and conversion to the form (4.37). Such differentiation should
be avoided even for smooth matrix functions A. With a direct discretization
of the divergence form of the operator, the positive definiteness of A induces
positive definiteness in the corresponding discretized term. �

Fourth-Order Operators

A simple but important example of a fourth-order elliptic boundary value
problem is given by

ΔΔu = f in Ω,

u = 0, ∂u
∂n

= 0 on Γ.
(4.41)

Problems of this type occur in the modelling of plate bending. The boundary
conditions in (4.41) represent the case of a clamped plate because of the
prescribed normal derivatives. In the case of a plate that rests on some support
but is not clamped, one uses the boundary conditions

u = 0, ∂2u
∂n2

= 0 on Γ, (4.42)

i.e., the second-order derivatives in the direction of the normal at the boundary
will vanish. Taking into account the fact that in this case the second-order
derivatives will also vanish in the tangential direction at the boundary, the
boundary conditions can also be written in the form

u = 0, Δu = 0 on Γ. (4.43)

With these boundary conditions and with the differential operator from (4.41)
some boundary maximum principle holds.

The differential operator
L := ΔΔ

of problem (4.41) is called the biharmonic operator. In Euclidean coordinates
in two dimensions it has the form



86 2 Finite Difference Methods

Lu =
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4
.

Consider an equidistant rectangular grid with mesh size h. If the standard
discretization

[−Δuh]i,j =
1

h2
(4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1)

is applied recursively twice to discretize L = −Δ(−Δ), then this yields

[ΔΔuh]i,j = 1
h4

(
20ui,j − 8(ui−1,j + ui+1,j + ui,j−1 + ui,j+1)

+ 2(ui−1,j−1 + ui−1,j+1 + ui+1,j−1 + ui+1,j+1)

+ui−2,j + ui+2,j + ui,j−2 + ui,j+2

)
.

This difference stencil is displayed in Figure 2.16.

Figure 2.16 Difference stencil for the biharmonic operator

The fourth-order boundary value problem

ΔΔu = f in Ω,

u = 0, Δu = 0 on Γ,
(4.44)

can be written as a system of two second-order differential equations as follows:

−Δu = v in Ω,

−Δv = f in Ω,

u = 0, v = 0 on Γ.

(4.45)
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If the solution u is sufficiently smooth, then the consistency analysis of the
standard discretization of this system is the same as the analysis of the dis-
cretization of Poisson’s equation. Furthermore, inverse monotonicity guaran-
tees the stability of the standard discretization in the maximum norm and
leads directly to a proof that the method is second-order convergent.

Boundary Conditions of the Second and Third Kinds

Consider the boundary condition

ν · �u + μu = ϕ on Γ. (4.46)

Here ν is some unit vector that is not tangential to the boundary Γ . In the
special case that ν is a normal vector, then for μ = 0 condition (4.46) is simply
the classical boundary condition of the second kind, and if μ �= 0 then it is
a boundary condition of the third kind. Boundary conditions of the second
and third kinds are often respectively called Neumann and Robin boundary
conditions.

◦ ◦
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Figure 2.17 Particular boundary condition

Setting ν = (ν1, ν2), the straight line

y − y∗ =
ν2

ν1
(x− x∗) i.e., ν2(x− x∗)− ν1(y − y∗) = 0,

passes through the point P = (x∗, y∗) and is parallel to ν. Let this line have
its first intersection with our grid lines at the point P ′ (see Figure 2.17). Then
a first-order approximation of the directional derivative ν ·�u that is required
in the boundary condition is given by

∂u

∂ν
≈ u(P )− u(P ′)

|PP ′| . (4.47)

If P ′ happens to be a grid point then (4.47) can be used in (4.46) and leads
directly to a discretization of the boundary condition at P . If P ′ is not a
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grid point, let P1 and P2 be neighbouring grid points that lie on the grid
line through P ′. Then the value u(P ′) in (4.47) can be approximated by
linear interpolation through u(P1) and u(P2); this will again give a first-order
discretization of (4.46) at P .

Exercise 2.56. Show that any compact nine-point stencil that consistently
discretizes ∂2/(∂x∂y) must have the form

1
4

⎡⎣−1− α− β + γ 2(α− γ) 1− α + β + γ
2(α + β) −4α 2(α− β)

1− α− β − γ 2(α + γ) −1− α + β − γ

⎤⎦ .

Discuss the possibility of selecting the parameters α, β, γ in such a way that
the discretization is consistent and all off-diagonal entries have the same sign.

Exercise 2.57. The domain

Ω =
{(

x
y

)
∈ R2

+ : 1 < x2 + y2 < 4
}

is a sector of an annulus. Consider the boundary value problem

Δu = 0 in Ω

with boundary conditions

u(x, 0) = x for x ∈ [1, 2], u(0, y) = y for y ∈ [1, 2],
u(x, y) = 1 for x, y > 0, x2 + y2 = 1, u(x, y) = 2 for x, y > 0, x2 + y2 = 4.

a) Express the Laplace operator in polar coordinates.
b) Write down the difference approximation of this operator that is obtained

by the application of the standard discretization on a grid adapted to polar
coordinates.

c) Solve the given boundary value problem numerically on the grid that con-
sists of all points that lie on the intersection of the circles

x2 + y2 = 1, x2 + y2 = 2.25, x2 + y2 = 4

with the straight lines

y = 0, y =
1
3

√
3x, y =

√
3x, x = 0.

d) Determine an approximate solution for the potential equation Δu = 0
using the technique from c), but with the boundary conditions

u(x, 0) = lnx for x ∈ [1, 2], u(0, y) = ln y for y ∈ [1, 2],
u(x, y) = 0 for x, y > 0, x2 + y2 = 1,
u(x, y) = ln 2 for x, y > 0, x2 + y2 = 4.

The exact solution is u(x, y) = 1
2 ln(x2 + y2).
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2.4.6 Local Grid Refinements

The local consistency error of the discretization of a derivative depends
strongly upon the behaviour of the higher-order derivatives that appear in
the error terms. Thus it is reasonable to use this information to influence the
choice of discretization grid. In certain situations—for example the convection-
diffusion problems considered in Chapter 6—one has a priori some knowledge
of the principal behaviour of the solution. This enables us to construct a grid
suited to the solution; in the case of convection-diffusion, where the solution
typically contains layers (narrow regions where the solution changes rapidly),
one can avoid excessively large errors using layer-adapted grids, which are
discussed in detail in Chapter 6. Alternatively, instead of using a priori in-
formation to construct the grid, an idea that is frequently used is to refine
the grid adaptively using information obtained in the course of the numerical
computation. This approach requires reliable local error indicators or accu-
rate local error estimates. Furthermore, grid refinement techniques must be
developed to make proper use of the local error information in constructing a
high-quality grid suited to the problem in hand. In Chapter 4 we shall discuss
in detail some error indicators and grid refinement strategies in the context
of finite element methods.

In what follows here we describe a strategy for grid refinement that uses
hanging knots in R2 for the discretization of the operator −Δ. This idea could
also be invoked in adaptive finite element discretizations. In contrast to finite
element methods, where for example global continuity may be required for
the piecewise-defined computed solution, the finite difference method has the
advantage that simple difference stencils can be widely used for the discretiza-
tion.

Consider a plane rectangular grid. Suppose that by means of an error
indicator or error estimate we have marked a cell in the grid that must be
refined. This is done by adding five new grid points: the mid-points of the
cell’s four sides and its centre. At the central point a regular stencil can be
applied, but this is not the case at the mid-points of the sides—these knots are
called hanging knots. Here the original grid lines end; by extending these lines
as far as the centroids of the neighbouring cells one generates further knots
called slave knots. Using these slave knots one can apply a standard five-
point stencil at the four mid-points that were added to the grid; the function
value required at each slave knot is determined by an interpolation of the
function values at the vertices of the cell whose centroid is the slave knot. If
interpolation formulas with positive weights are used, then the system matrix
of the new discrete problem is an M -matrix. Figure 2.18 illustrates this way
of refining a grid with hanging knots and slave knots, and also shows how a
similar refinement technique can be centred on an existing grid point.

Exercise 2.58. Let the domain Ω and the set of grid points Ωh be defined
by Figure 2.19.
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regular knots hanging knots slave knots

Figure 2.18 Refinement of a cell Refinement near a grid point
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Figure 2.19 Refinement of a rectangle

Use this grid to solve approximately the boundary value problem

−Δu = 1 in Ω,

u = 0 on Γ = ∂Ω

by the standard finite difference discretization. Here the centroids of neigh-
bouring squares are to be used as slave knots, with the function values at
these points determined by bilinear interpolation. Use the symmetries that
appear in the problem to reduce the size of the discrete problem generated.

2.5 Finite Volume Methods as Finite Difference Schemes

Finite volume methods form a relatively general class of discretizations for cer-
tain types of partial differential equations. These methods start from balance



2.5 Finite Volume Methods as Finite Difference Schemes 91

equations over local control volumes, e.g., the conservation of mass in diffu-
sion problems. When these conservation equations are integrated by parts over
each control volume, certain terms yield integrals over the boundary of the
control volume. For example, mass conservation can be written as a combina-
tion of source terms inside the control volume and fluxes across its boundary.
Of course the fluxes between neighbouring control volumes are coupled. If this
natural coupling of boundary fluxes is included in the discretization, then the
local conservation laws satisfied by the continuous problem are guaranteed
to hold locally also for the discrete problem. This is an important aspect of
finite volume methods that makes them suitable for the numerical treatment
of, e.g., problems in fluid dynamics. Another valuable property is that when
finite volume methods are applied to elliptic problems that satisfy a boundary
maximum principle, they yield discretizations that satisfy a discrete boundary
maximum principle (see Lemma 2.60) even on fairly general grids.

Finite volume methods (FVMs) were proposed originally as a means of
generating finite difference methods on general grids (see [Hei87]). Today,
however, while FVMs can be interpreted as finite difference schemes, their
convergence analysis is usually facilitated by the construction of a related
finite element method and a study of its convergence properties [Bey98]. It
seems that no FVM convergence analysis exists that is completely independent
of the finite difference and finite element methods.

As we have already mentioned, FVMs preserve local conservation proper-
ties; consequently they play a major role in the discretization of conservation
laws. For this important application we refer to [Krö97].

The fundamental idea of the finite volume method can be implemented
in various ways in the construction of the control volumes, in the localiza-
tion of the degrees of freedom (i.e., the free parameters of the method), and
in the discretization of the fluxes through the boundaries of the control vol-
umes. There are basically two classes of FVM. First, in cell-centred methods
each control volume that surrounds a grid point has no vertices of the origi-
nal triangulation lying on its boundary. The second approach, vertex-centred
methods, uses vertices of the underlying triangulation as vertices of control
volumes.
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Figure 2.20 cell-centred vertex-centred

In the present section we discuss a particular cell-centred method that
uses Voronoi boxes. The convergence of this method will be analysed in the
discrete maximum norm. In Chapter 4 a connection between FVM and finite
element methods will be described and the derivation of error estimates in
other norms will be sketched.

As a model problem here we consider the elliptic boundary value problem

−Δu = f in Ω, u = g on Γ := ∂Ω, (5.1)

where the domain Ω ⊂ Rn is assumed to be a bounded convex polyhedron.
Let

xi ∈ Ω, i = 1, . . . , N and xi ∈ Γ, i = N + 1, . . . , N

be the interior discretization points and boundary discretization points, re-
spectively. Define the corresponding index sets

J := {1, . . . , N}, J := J ∪ {N + 1, . . . , N}.

For each interior grid point xi define the related subdomain Ωi (see Fig-
ure 2.21) by

Ωi :=
⋂

j∈Ji

Bi,j with Ji := J \{i} and

Bi,j := {x ∈ Ω : |x− xi| < |x− xj | }.
(5.2)

Then Ωi is called a Voronoi box. By its construction and the properties of Ω,
each Ωi is a convex polyhedron. We shall assume that μn−1(Ωi ∩ Γ ) = 0 for
all i ∈ J , where μn−1 denotes Lebesgue measure in Rn−1. This condition will
be satisfied if sufficiently many boundary grid points xj ∈ Γ are used and if
these points are distributed properly over Γ . Let Ni denote the set of indices
of essential neighbours of xi, i.e.,

Ni := { j ∈ Ji : μn−1(Ωj ∩Ωi) > 0}.

Set
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Figure 2.21 Voronoi box

Γi,j := Ωi ∩Ωj for i ∈ J and j ∈ Ni, and Γi =
⋃

j∈Ni

Γij for i ∈ J.

Under suitable regularity assumptions the model problem (5.1) has a
unique classical solution u, which of course satisfies

−
∫
Ωi

ΔudΩi =
∫
Ωi

f dΩi, i ∈ J.

Recalling the above partition of the boundary of the subdomain Ωi, integra-
tion by parts (Gauss’s Theorem) yields

−
∑
j∈Ni

∫
Γi,j

∂u

∂ni,j

dΓi,j =
∫
Ωi

f dΩi, i ∈ J, (5.3)

where the terms ∂u
∂ni,j

are fluxes. Here ni,j denotes the outer unit normal

vector on Γi,j . The construction (5.2) of the subdomains Ωi implies that the
line segment [xi, xj ] is bisected by its intersection with Γi,j . Denote this in-
tersection point by xi,j := [xi, xj ] ∩ Γi,j . Write | · | for the Euclidean norm in
Rn. As ni,j = (xj − xi)/|xj − xi|, we obtain

∂u

∂ni,j

(xi,j) =
u(xj)− u(xi)

|xj − xi|
+ O

(
|xj − xi|2

)
, j ∈ Ni, i ∈ J,

for sufficiently smooth u. Applying this approximation of the normal deriva-
tive to the identity (5.3) leads to the discretization
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−
∑
j∈Ni

mi,j

di,j

(uj − ui) =
∫
Ωi

f dΩi, i ∈ J, (5.4)

where
mi,j := μn−1(Γi,j) and di,j := |xj − xi|.

If in addition the boundary conditions are included by setting

ui = g(xi), i ∈ J \J, (5.5)

then we obtain a linear system

Ah uh = fh. (5.6)

This system defines the vector uh = (ui)i∈J ∈ RN that approximates the true
solution u(xi), i ∈ J . Here the entries of the system matrix Ah = (ai,j) and
of the right-hand side fh ∈ RN of (5.6) are defined from (5.4) by

ai,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
l∈Ni

mi,l

di,l

if j = i,

−mi,j

di,j

if j ∈ Ni ∩ J,

0 otherwise,

and fi =
∫
Ωi

f dΩi +
∑

l∈Ni\J

mi,l

di,l

g(xl).

Remark 2.59. Consider the two-dimensional case where Poisson’s equation is
discretized over the unit square using a grid that is equidistant and axiparallel.
Then the above FVM generates the usual 5-point stencil, but with a scaling
different from the standard finite difference method. Furthermore, integral
mean values are used on the right-hand side of (5.6) instead of point values
of f . Nevertheless, our example shows that the FVM can be considered as a
generalization of the finite difference method to unstructured grids. �

Lemma 2.60. The discrete problem (5.6) is inverse monotone, i.e., it satis-
fies the discrete comparison principle

− ∑
j∈Ni

mi,j

di,j

(uj − ui) ≤ 0, i ∈ J,

ui ≤ 0, i ∈ J \J

}
=⇒ ui ≤ 0, i ∈ J.

Proof: Let k ∈ J be some index with

uk ≥ uj ∀ j ∈ J. (5.7)

The proof is by contradiction, i.e., we suppose that uk > 0. Then the discrete
boundary conditions ui ≤ 0 for i ∈ J \J imply that k ∈ J . Furthermore, as
there is a chain of subdomains linking each subdomain to the boundary Γ on
which all ui ≤ 0, the index k ∈ J can be chosen such that for at least one
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l ∈ Nk one has uk > ul. By (5.7), it follows that
∑

j∈Nk

mk,j

dk,j

uk >
∑

j∈Nk

mk,j

dk,j

uj .

That is,
−
∑

j∈Nk

mk,j

dk,j

(uj − uk) > 0

which contradicts the hypotheses of the lemma. Hence, our supposition that
uk > 0 is false and the lemma is proved.

Remark 2.61. Lemmas 2.60 and 2.39 are proved by means of the same argu-
ment. This is a consequence of the fact that the finite volume discretization
described above generates an M -matrix. As already mentioned, this is one
of the basic advantages of the FVM for elliptic problems in divergence form.
�

Invoking Lemma 2.60 with an appropriate comparison function, an error
estimate for the FVM in the maximum norm can be derived, provided that
the solution u is sufficiently smooth. The next lemma gives us some insight
into how such comparison functions might be constructed.

Lemma 2.62. Define v : Rn → R by v(x) = −α
2 |x|2 + β with parameters

α, β ∈ R. Then

−
∑
j∈Ni

mi,j

di,j

(v(xj)− v(xi)) = nα

∫
Ωi

dΩi, i ∈ J.

Proof: The definition of the function v implies that

∇v(x) = −α x and −Δv(x) = nα ∀x ∈ Rn. (5.8)

Using Gauss’s Theorem we obtain

−
∑
j∈Ni

∫
Γi,j

∂v

∂ni,j

dΓi,j = −
∫
Ωi

Δv dΩi = nα

∫
Ωi

dΩi, i ∈ J. (5.9)

Since v is a quadratic function, its difference quotient over a line segment
equals its derivative at the midpoint of the segment. In particular, at the
point xi,j ∈ Γi,j for each i and j, we have

− 1

di,j

(v(xj)− v(xi)) = − ∂v

∂ni,j

(xi,j) = −∇v(xi,j)T ni,j .

Recalling (5.8) and the orthogonality of ni,j and Γi,j , this formula can be
written as
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− 1
di,j

(v(xj)− v(xi)) = α xT
i,j ni,j = α xT ni,j + α (xi,j − x)T ni,j

= α xT ni,j = − ∂v
∂ni,j

(x) ∀x ∈ Γi,j .

Hence

− ∑
j∈Ni

mi,j

di,j

(v(xj)− v(xi)) = − ∑
j∈Ni

∫
Γi,j

∂v
∂ni,j

dΓi,j

= −
∫
Ωi

Δv dΩi = nα
∫
Ωi

dΩi, i ∈ J,

by (5.9).

Next we investigate the consistency error of the FVM discretization in the
maximum norm. Let us define the discretization parameter h by

hi :=
(

max
j∈Ni

μn−1(Γi,j)
)1/(n−1)

, h := max
i∈J

hi. (5.10)

In addition to our previous assumptions, we suppose that for h ≤ h0 (some
h0 > 0) the family of Voronoi boxes satisfies the following conditions:

• (V1) The number of essential neighbours of each xi remains uniformly
bounded, i.e., max

i∈J
{card Ni} ≤ m∗ for some m∗ ∈ N;

• (V2) Each point xi,j = [xi, xj ]∩Γi,j lies at the geometric centre of gravity
of Γi,j .

The definition of hi and the assumption (V1) together imply that the diameter
of each Ωi is of order O(hi). The assumption (V2) is rather restrictive and
will hold only for rather regular (uniform) grids; we make it here for the sake
of simplicity in the subsequent proofs.

Lemma 2.63. Assume conditions (V1) and (V2). Let the solution u of the
original problem (5.1) belong to C4(Ω). Then there exists some constant c > 0
such that ∣∣∣∣∣∣

∑
j∈Ni

mi,j

di,j

(u(xj)− u(xi)) +
∫
Ωi

f dΩi

∣∣∣∣∣∣ ≤ c hn+1
i , i ∈ J.

Proof: From the derivation of our FVM, we must analyse the local discretiza-
tion errors

σi,j :=

∣∣∣∣∣∣∣
mi,j

di,j

(u(xj)− u(xi))−
∫

Γi,j

∂u

∂ni,j

dΓi,j

∣∣∣∣∣∣∣
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on the components Γi,j of the boundaries of the control volumes. Now
1

di,j

(u(xj)− u(xi)) is a difference quotient that approximates the directional

derivative ∂u
∂ni,j

(xi,j); since xi,j is the midpoint of the line segment [xi, xj ]

and u ∈ C4(Ω), there exists c > 0 such that∣∣∣∣∣ 1

di,j

(u(xj)− u(xi))−
∂u

∂ni,j

(xi,j)

∣∣∣∣∣ ≤ c d 2
i,j ≤ c h2

i , i ∈ J, j ∈ Ni, (5.11)

where the diameter of Ωi being O(hi) implies the second inequality.
To avoid additional indices here and below, c will always denote a generic

constant that can take different values at different places in the argument.
By the Cauchy-Schwarz inequality,∣∣∣∣∣∣
∑
j∈Ni

mi,j

di,j
(u(xj)− u(xi))−

∑
j∈Ni

mi,j
∂u

∂ni,j
(xi,j)

∣∣∣∣∣∣
≤

⎛⎝∑
j∈Ni

m2
i,j

⎞⎠1/2⎛⎝∑
j∈Ni

∣∣∣∣ 1
di,j

(u(xj)− u(xi))−
∂u

∂ni,j
(xi,j)

∣∣∣∣2
⎞⎠1/2

≤ c hn+1
i , i ∈ J, (5.12)

where we used (V1), the definition (5.10), and (5.11).
For each i ∈ J define a continuous linear functional Ti on C3(Ωi) by

Tiu :=
∑
j∈Ni

⎛⎜⎝ ∫
Γi,j

∂u

∂ni,j

−mi,j
∂u

∂ni,j

(xi,j)

⎞⎟⎠ .

Then
|Tiu| ≤ c μn−1(Γi) max

|α|=1
max
x∈Γi

|[Dαu](x)| (5.13)

for some constant c. By assumption (V2) we have∫
Γi,j

z dΓi,j = mi,j z(xi,j) for all z ∈ P1, (5.14)

where Pr denotes the space of all polynomials of degree at most r defined on
Ωi. It then follows that

Tiz = 0 for all z ∈ P2.

From (5.13), the linearity of the operator Ti, and the triangle inequality we
get
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|Tiu| ≤ |Ti(u− z)|+ |Tiz| ≤ |Ti(u− z)|
≤ c μn−1(Γi) max

|α|=1
max
x∈Γi

|[Dα(u− z)](x)| for all z ∈ P2.
(5.15)

Let zi denote the quadratic Taylor polynomial of u expanded about xi, i.e.,

zi(x) = u(xi) +∇u(xi)T (x− xi) +
1
2
(x− xi)T H(xi)(x− xi) for x ∈ Ωi,

where we introduced the Hessian matrix H(x) :=
(

∂2u
∂xr ∂xs

(x)
)

. Then there

exists c > 0 such that

|[Dα(u− zi)](x)| ≤ c |x− xi|2 ∀x ∈ Ωi , |α| = 1.

This inequality and (5.15) imply that

|Tiu| ≤ c μn−1(Γi)h2
i ≤ c hn+1

i , i ∈ J, (5.16)

for some constant c > 0. Invoking (5.12) and (5.16), we obtain∣∣∣∣∣ ∑j∈Ni

mi,j

di,j

(u(xj)− u(xi)) +
∫
Ωi

f dΩi

∣∣∣∣∣
≤
∣∣∣∣∣ ∑j∈Ni

mi,j

di,j

(u(xj)− u(xi))−
∑

j∈Ni

mi,j
∂u
ni,j

(xi,j)

∣∣∣∣∣
+

∣∣∣∣∣ ∑j∈Ni

mi,j
∂u
ni,j

(xi,j)−
∫
Γi

∂u
∂ni

dΓi

∣∣∣∣∣+
∣∣∣∣∣ ∫Ωi

ΔudΩi +
∫
Ωi

f dΩi

∣∣∣∣∣
≤ c hn+1

i , i ∈ J.

Remark 2.64. The central idea in the proof of Lemma 2.63 is the introduction
of the operators Ti. This is essentially equivalent to an application of the
Bramble-Hilbert Lemma, which is frequently used in the convergence analysis
of finite element methods, and which we shall discuss in detail in Chapter 4.
�

Theorem 2.65. Let all the assumptions of Lemma 2.63 be satisfied. Assume
also that the division of Ω into subdomains {Ωi}i∈J is such that a constant
c1 > 0 exists for which

μn(Ωi) ≥ c1 hn
i for all i ∈ J. (5.17)

Then the error in the solution computed by the FVM can be bounded by

‖uh − rhu‖∞,h ≤ c h. (5.18)
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Proof: We prove this theorem with the aid of the discrete comparison
principle of Lemma 2.60, by using the comparison functions introduced in
Lemma 2.62 to bound the consistency error given by Lemma 2.63.

Set wh := uh − rhu, with

wi := ui − u(xi), i ∈ J.

As the Dirichlet boundary conditions are incorporated exactly in the FVM,

wi = ui − u(xi) = 0, i ∈ J\J. (5.19)

The definition of the FVM and Lemma 2.63 yield∣∣∣∣∣∣
∑
j∈Ni

mi,j

di,j

(wj − wi)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j∈Ni

mi,j

di,j

(uj − ui)−
∑
j∈Ni

mi,j

di,j

(u(xj)− u(xi))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
j∈Ni

mi,j

di,j

(uj − ui) +
∫
Ωi

f dΩi

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈Ni

mi,j

di,j

(u(xj)− u(xi)) +
∫
Ωi

f dΩi

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈Ni

mi,j

di,j

(u(xj)− u(xi)) +
∫
Ωi

f dΩi

∣∣∣∣∣∣
≤ c hn+1

i . (5.20)

Consider the comparison function v(x) := −α
2 ‖x‖2 + β.

With zi := wi − v(xi), i ∈ J , we see from Lemma 2.62 and (5.20) that

−
∑
j∈Ni

mi,j

di,j

(zj − zi) ≤ c hn+1
i − nα

∫
Ωi

dΩi, i ∈ J.

Now choose α = c∗ h for some sufficiently large c∗ and

β :=
α

2
max
i∈J\J

‖xi‖2.

Then, recalling (5.17), we get

−
∑
j∈Ni

mi,j

di,j

(zj − zi) ≤ 0, i ∈ J, and zi ≤ 0, i ∈ J\J.

The discrete boundary maximum principle of Lemma 2.60 now tells us that
zi ≤ 0 for all i ∈ J . Hence
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wi ≤ vi ≤ c h, i ∈ J.

One can prove similarly the existence of some c > 0 with

wi ≥ −c h, i ∈ J.

This pair of inequalities together complete the proof of the lemma.

Remark 2.66. The assumptions made in the convergence proof for the FVM
are rather restrictive. In particular, the point xi,j (which is merely the inter-
section of the line segment [xi, xj ] with the component Γi,j of the subdomain
boundary Γi) is presumed to coincide with the centre of gravity of Γi,j . This
condition seriously restricts the choice of subdomains Ωi. We nevertheless
made this strong assumption for convenience in the convergence proof, which
reveals the structure of the analysis of finite volume methods considered as fi-
nite difference methods. An alternative analysis of the FVM that relaxes these
assumptions can be achieved by constructing an appropriate non-conforming
finite element method that generates the same discrete problem; in this way
convergence results for FVM in the H1 or L2 norms can be proved under mild
assumptions. We will sketch this approach to the FVM in Chapter 4 and refer
also, e.g., to [Hac95], [117]. �

Remark 2.67. The finite volume method was introduced for the model prob-
lem (5.1), and can be extended easily to other related types of problem. Con-
sider for example the following problem with an inhomogeneous isotropic ma-
terial:

−div
(
k(·) grad u

)
= f in Ω, u = g on Γ := ∂Ω, (5.21)

where the function k ∈ C(Ω) is given. If the FVM is applied to this problem
then, instead of (5.4), the local balance identities

−
∑
j∈Ni

mi,j k(xi,j)

di,j

(uj − ui) =
∫
Ωi

f dΩi, i ∈ J,

are obtained. �

Remark 2.68. The key idea of the FVM is to use Gauss’s Theorem to convert
conservation laws to local boundary integrals of fluxes. This technique can
be applied to any differential operator that is given in divergence form. As a
further example we consider the conservation law

ut + f(u)x = 0.

Suppose that we use axiparallel boxes
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Ωi,k := (xi − h/2, xi + h/2)× (tk − τ/2, tk + τ/2)

centred on the grid points (xi, t
k). Then the local balance law∫

Ωi,k

[ut + f(u)x ] dx dt = 0,

reformulated via Gauss’s Theorem, becomes

xi+1/2∫
xi−1/2

[u(x, tk+1/2) − u(x, tk−1/2)] dx +

tk+1/2∫
tk−1/2

[ f(xi+1/2, t) − f(xi−1/2, t)] dt = 0.

Now a further approximation of the fluxes through the boundary of the boxes
directly yields a difference scheme; cf. (3.51). �

Treatment of Neumann Boundary Conditions in FVMs

In finite volume methods the boundary integrals that are obtained via Gauss’s
Theorem allow us to include Neumann conditions directly. Thus no discretiza-
tion points are needed in those parts of the boundary where Neumann condi-
tions are imposed; the related boundary integrals of fluxes can be evaluated
directly from the given boundary data. The following simple example illus-
trates this treatment of Neumann boundary conditions: find u such that

−Δu(x, y) = f(x, y), (x, y) ∈ (0, 1)2,
u(x, 0) = u(x, 1) = 0, x ∈ [0, 1],

−∂u
∂x

(0, y) = g1(y), ∂u
∂x

(1, y) = g2(y), y ∈ (0, 1),
(5.22)

with given functions f, g1, g2. We use double indices to mark the grid points;
this enables us to take advantage of the simple structure of the problem. For
the discretization step size we set h := 1/M for some M ∈ N and choose

xl := −h

2
+ l h, l = 1, . . . , M and ym := mh, m = 0, 1, . . . , M.

In total there are N = M(M +1) grid points. To distinguish between Dirichlet
and Neumann data, introduce the index sets

J = {1, . . . , M} × {1, . . . , M − 1} ⊂ N2 and
J = {1, . . . , M} × {0, 1, . . . , M} ⊂ N2.

For each (xi, yj) ∈ (0, 1)2, the corresponding Voronoi box is

Ωi,j =
{(

x
y

)
∈ Ω : |x− xi| <

h

2
, |y − yj | <

h

2

}
.
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Figure 2.22 Voronoi boxes for Neumann conditions on parts of the boundary

Our finite volume method leads to the following system of linear equations:

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 =
∫

Ωi,j

f(x, y) dx dy,

i = 2, . . . , M − 1, j = 1, . . . , M − 1,

(5.23)

3u1,j − u2,j − u1,j−1 − u1,j+1 =
∫

Ω1,j

f(x, y) dx dy +

yj+h/2∫
yj−h/2

g1(y) dy,

j = 1, . . . , M − 1,

(5.24)

3uM,j − uM−1,j − uM,j−1 − uM,j+1 =
∫

ΩM,j

f(x, y) dx dy +

yj+h/2∫
yj−h/2

g2(y) dy,

j = 1, . . . , M − 1,

(5.25)

and ui,j = 0, (i, j) ∈ J\J. (5.26)

Remark 2.69. In practical implementations of finite volume methods, the in-
tegrals that occur must usually be approximated by appropriate quadrature
formulas. When this happens our convergence proof still works; the only mod-
ification is that now the errors caused by quadrature have to be included in
the consistency estimates. �

Exercise 2.70. Discretize the problem

−�u = f in (0, 1)× (0, 1),
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with homogeneous Dirichlet boundary conditions, using an equidistant rec-
tangular grid and the finite volume method of this section. Here the points of
the grid are used as discretization points. Compare the discrete system that
is generated with the classical finite difference method on the same grid.

Exercise 2.71. Apply the FVM to derive a discretization of the Laplace op-
erator over a grid comprising equilateral triangles with side length h. The
vertices of the triangles are to be used as grid points. Express the FVM as a
finite difference method and analyse the consistency error.

Exercise 2.72. Consider the elliptic boundary value problem

−div
(
(1 + x2 + y2) gradu(x, y)

)
= ex+y in Ω := (0, 1)2,

u(x, y) = 0 on ΓD,

∂
∂n

u(x, y) = 0 on ΓN ,

with
ΓD := { (x, y) ∈ Γ : x y = 0 }, ΓN := Γ\ΓD.

Discretize this problem by the finite volume method using an equidistant
rectangular grid with step size h = 1/N . The Voronoi boxes are

Ωij := { (x, y) ∈ Ω : |x− xi| < h/2, |y − yj | < h/2 }, i, j = 0, 1, . . . , N.

Determine explicitly the discrete equations generated by the FVM.

2.6 Parabolic Initial-Boundary Value Problems

Let Ω ⊂ Rn be a bounded domain with boundary Γ . Let L denote a differ-
ential operator on the spatial variables that is uniformly elliptic. The partial
differential equation

∂

∂t
u(x, t) + [Lu](x, t) = f(x, t), x ∈ Ω, t ∈ (0, T ],

with the respective boundary and initial conditions

u(x, t) = g(x, t), (x, t) ∈ Γ × (0, T ] and u(x, 0) = u0(x), x ∈ Ω,

form a parabolic initial-boundary value problem. Here f, g, u0 are given data.
Once again we shall concentrate on the case of Dirichlet boundary conditions;
Neumann or Robin boundary conditions can be treated in a similar way.

When a parabolic problem is treated numerically using some finite differ-
ence method, then the temporal derivative and the spatial derivatives have
to be approximated by difference quotients. The discretization of the elliptic
operator L can be carried out by the techniques described in the preceding
sections.
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2.6.1 Problems in One Space Dimension

In this section we examine the initial-boundary value problem

∂u
∂t
− ∂2u

∂x2
= f(x, t) in (0, 1)× (0, T ],

u(0, t) = g1(t), u(1, t) = g2(t), u(x, 0) = u0(x).
(6.1)

Here Ω = (0, 1) and Γ = {0, 1} ⊂ R. For simplicity we use an equidistant grid
in both the spatial and temporal directions. Write this grid as

xi = ih, i = 0, 1, . . . , N, and tk = kτ, k = 0, 1, . . . , M,
with h := 1/N, τ := T/M.

Denote by uk
i the computed numerical approximation of the value u(xi, t

k) of
the exact solution at the grid point (xi, t

k).
The derivatives appearing in (6.1) must be replaced by difference approx-

imations. As the differential equation contains only a first-order time deriva-
tive, the simplest approximation of this term is a two-point approximation in
the t-direction. This leads to so-called two-layer schemes. In the x-direction,
to discretize the second-order derivative at least three discretization points
are required, but these points may lie at either of the two time levels used
in the approximation of ∂u/∂t. Thus we obtain schemes lying in the class of
six-point schemes (see Figure 2.23) for the discretization of (6.1).

If the second-order spatial partial derivative is discretized by

D−D+uk
i :=

1
h2

(
uk

i−1 − 2uk
i + uk

i+1

)
,

then using a freely-chosen parameter σ ∈ [0, 1] we can describe a six-point
scheme in the general form

uk+1
i − uk

i

τ
= D−D+

(
σuk+1

i + (1− σ)uk
i

)
+f̃k

i ,
i = 1, . . . , N − 1,
k = 1, . . . , M − 1,

(6.2)

with the discrete initial and boundary conditions

u0
i = u0(xi), uk

0 = g1(tk), uk
N = g2(tk). (6.3)

In (6.2) the quantity f̃k
i denotes an appropriate approximation for f(xi, t

k)
that will be written down later.

For certain values of the parameter σ we obtain the following cases that
are often used in practice:

• The explicit (Euler) scheme for σ = 0:

uk+1
i = (1− 2γ)uk

i + γ(uk
i−1 + uk

i+1) + τ f(xi, t
k); (6.4)
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• the purely implicit (Euler) scheme for σ = 1:

(1 + 2γ)uk+1
i − γ(uk+1

i+1 + uk+1
i−1 ) = uk

i + τf(xi, t
k+1); (6.5)

• the Crank-Nicolson scheme for σ = 1
2 :

2(γ + 1)uk+1
i − γ(uk+1

i+1 + uk+1
i−1 ) = 2(1− γ)uk

i + γ(uk
i+1 + uk

i−1)

+ 2τf(xi, t
k + τ

2 ).
(6.6)

In these formulas γ := τ/h2. An explicit method is obtained only in the
case σ = 0: the values uk+1

i of the numerical solution at the time level t =
tk+1 are defined directly, i.e., without solving a discrete linear system, by the
values at the previous time level t = tk. In the remaining cases (6.5) and
(6.6) the methods are implicit: a system of discrete linear equations must
be solved to compute the numerical solution at the new time level. For the
problem and schemes that we are considering, these linear systems have a
tridiagonal coefficient matrix, so they can be solved very efficiently by fast
Gauss elimination (which is also known as the Thomas algorithm).
The different methods that correspond to specific choices of the parameter σ

Figure 2.23 Difference stencils for the schemes (6.4) - (6.6)

possess different consistency and stability properties. Set Q = Ω× (0, T ), i.e.,
in the case of problem (6.1) we have Q = (0, 1)× (0, T ).

Lemma 2.73. The general scheme (6.2), (6.3) has the following order of con-
sistency in the maximum norm:

(a) O (h2 + τ) for any σ ∈ [0, 1] and f̃k
i = f(xi, t

k), provided u ∈ C4,2(Q)
(b) O (h2 + τ2) for σ = 1

2 and f̃k
i = f(xi, t

k + τ
2 ), provided u ∈ C4,3(Q).

Here Cl,m(Q) denotes the space of functions that in the domain Q are l times
continuously differentiable with respect to x and m times continuously dif-
ferentiable with respect to t, where all these derivatives can be continuously
extended to Q.



106 2 Finite Difference Methods

Proof: We prove only part (b) and leave the proof of (a) to the reader. Taylor’s
theorem yields

u(x, t + τ)− u(x, t)
τ

= ut +
1
2
uttτ + O(τ2).

(To simplify the notation we omit the argument (x, t) if no misunderstanding
is likely.) Similarly

1
2

(
u(x− h, t + τ)− 2u(x, t + τ) + u(x + h, t + τ)

h2

+
u(x− h, t)− 2u(x, t) + u(x + h, t)

h2

)
=

1
2
(2uxx + uxxtτ) + O(τ2 + h2),

f(x, t +
τ

2
) = f(x, t) +

τ

2
ft + O(τ2).

Combining these formulas, the consistency error econs can be written as

econs = ut − uxx − f +
1
2
τ(utt − uxxt − ft) + O(τ2 + h2). (6.7)

But u satisfies the given parabolic differential equation and by differentiating
this we obtain utt − uxxt = ft. Thus several terms in (6.7) cancel, and we see
that the Crank-Nicolson scheme has consistency O(τ2 + h2).

Like our earlier discussion in the context of elliptic boundary value prob-
lems, it has to be noted that the assumption that u ∈ C4,2(Q) is highly
restrictive and rarely holds for practical problems since it implies that several
compatibility conditions are satisfied at the corners of Q. Nevertheless this
does not imply that this class of discretization methods has to be abandoned:
the unrealistic assumption arose because we used a simple classical conver-
gence analysis, invoking consistency and stability. We chose this approach so
that the reader could easily follow the basic ideas and grasp the principal
concepts in finite difference analysis.

We now turn our attention to stability properties of the schemes, starting
with stability in the maximum norm. For simplicity we assume homogeneous
boundary conditions in (6.1).

Let us write (6.2) in the form

−σγuk+1
i−1 + (2σγ + 1)uk+1

i − σγ uk+1
i+1 = F k

i

with

F k
i = (1− σ)γuk

i−1 + (1− 2(1− σ)γ)uk
i + (1− σ)γuk

i+1 + τ f̃k
i .

Strict diagonal dominance gives immediately

max
i
|uk+1

i | ≤ max
i
|F k

i |.
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If as well as 0 ≤ σ ≤ 1 we assume that 1− 2(1− σ)γ ≥ 0, then we obtain

max
i
|uk+1

i | ≤ max
i
|F k

i | ≤ max
i
|uk

i |+ τ max
i
|f̃k

i |.

Applying this inequality iteratively from each time level to the next, we get

max
k

max
i
|uk+1

i | ≤ max |u0(x)|+ τ

k∑
j=0

max
i
|f̃ j

i |. (6.8)

The estimate (6.8) simply means that the scheme is stable in the discrete
maximum norm. The assumption 1 − 2(1 − σ)γ ≥ 0 is equivalent to the
inequality

(1− σ)τ/h2 ≤ 1/2. (6.9)

This inequality is automatically true if σ = 1 (the implicit method), but when
σ ∈ [0, 1) the condition (6.9) is a restriction on the ratio between the temporal
and spatial step sizes. More precisely, it states that the temporal step size has
to be much smaller than the spatial step size. A condition of the type (6.9)
is essential for the stability of the related method in the maximum norm:
numerical experiments show this clearly by producing spurious oscillations if
(6.9) is violated. This instability does not occur in the L2 norm, where the
Crank-Nicolson scheme is stable for any step sizes τ > 0 and h > 0.

Consistency and stability in the maximum norm lead immediately to the
following convergence theorem:

Theorem 2.74. Choose f̃k
i = f(xi, t

k) for all i, k. Assume that (1−σ)τ/h2 ≤
1/2 in (6.2), (6.3) and u ∈ C4,2(Q). Then there exists a constant C > 0 such
that

max
i,k
|u(xi, t

k)− uk
i | ≤ C (h2 + τ).

Furthermore, for the Crank-Nicolson scheme (where σ = 1
2), assuming that

τ/h2 ≤ 1, one has

max
i,k
|u(xi, t

k)− uk
i | ≤ C (h2 + τ2)

provided that u ∈ C4,3(Q).

A similar stability analysis in the discrete maximum norm can be carried out
for more general parabolic problems with variable coefficients of the form

c(x, t)
∂u

∂t
−
[

∂

∂x

(
a(x, t)

∂u

∂x

)
+ r(x, t)

∂u

∂x
− q(x, t)u

]
= f(x, t)

with a(x, t) ≥ α0 > 0, q(x, t) ≥ 0; see, e.g., [Sam01].
We now move on to an examination of stability properties in the L2 norm.
For simplicity of presentation, assume that f ≡ 0 and the boundary con-

ditions are homogeneous in the problem (6.1). Then the general scheme (6.2),
(6.3) has the form
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uk+1
i − uk

i

τ
= D−D+(σuk+1

i + (1− σ)uk
i ), uk

0 = uk
N = 0,

u0
i = u0(xi).

(6.10)

The L2 stability of the explicit scheme (i.e., the case σ = 0) was already
investigated in Section 2.2, where we exploited the fact that the system of
functions vj defined by

[vj ]l =
√

2 sin(jπlh), j = 1, . . . , N − 1, l = 0, 1, . . . , N,

forms a complete discrete eigensystem of the operator Lh = −D−D+ in the
space U0

h . The associated eigenvalues are given by (2.12):

λj =
4

h2
sin2

(
jπh

2

)
, j = 1, . . . , N − 1. (6.11)

Furthermore, the system {vj} is orthogonal with respect to the scalar product
(·, ·)h. We express the discrete solutions uk = (uk

i ) ∈ U0
h , k = 0, 1, . . . M, in

terms of this basis of eigenfunctions:

uk =
N−1∑
j=1

ωk
j vj , k = 0, 1, . . . M,

where the coefficients ωk
j ∈ R are uniquely determined. Since the vj are eigen-

functions of D−D+, equation (6.10) can be simplified to

ωk+1
j − ωk

j

τ
= −λj (σ ωk+1

j + (1− σ)ωk
j ),

j = 1, . . . , N − 1,
k = 0, 1, . . . , M − 1.

Here the {ω0
j } are the Fourier coefficients of the given function u0, viz.,

ω0
j = (u0, v

j)h, j = 1, . . . , N − 1.

Thus the coefficients at each time level satisfy

ωk+1
j = q(τλj)ωk

j , j = 1, . . . , N − 1, k = 0, 1, . . . , M − 1, (6.12)

where the amplification factor q(·) is defined by

q(s) :=
1− (1− σ) s

1 + σ s
. (6.13)

Our three main schemes have

q(s) = 1− s for σ = 0 (explicit Euler method),

q(s) =
1− 1

2s

1 + 1
2s

for σ = 1
2 (Crank-Nicolson method),

q(s) = 1
1 + s

for σ = 1 (purely implicit method).

(6.14)
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A discretization scheme is said to be stable for all harmonic oscillations if

|q(τλj)| ≤ 1 for all eigenvalues λj . (6.15)

For schemes that are stable in this sense, Parseval’s equation implies that

||uk|| ≤ ||u0||, k = 0, 1, . . . , M,

and such methods are stable in the discrete L2 norm. This stability is weaker
than stability in the discrete maximum norm, as the next lemma shows.

Lemma 2.75. The implicit scheme and the Crank-Nicolson scheme are L2

stable for all values of h and τ . The explicit scheme is L2 stable if τ/h2 ≤ 1/2.

Proof: Since all eigenvalues λj of the operator −D−D+ are positive by (6.11),
the L2 stability of the implicit and the Crank-Nicolson schemes is immediate
from (6.14). For the explicit scheme, for each j we have |q(τλj)| ≤ 1 if and
only if τλj ≤ 2. Again invoking (6.11), this condition is satisfied if τ/h2 ≤ 1/2.

The above Fourier analysis for the special one-dimensional problem (6.1) is
simple and can in principle be extended to much more general cases even when
the eigenfunctions and eigenvalues are not explicitly known. Its limitations
are that it provides only L2 stability and is applicable only to linear problems
with constant coefficients. Furthermore, to carry out this analysis one must
be able to establish bounds on the eigenvalues of the discrete spatial operator
Lh associated with L. On the other hand, while the earlier maximum-norm
stability analysis via inverse monotonicity seems restrictive at first sight, it can
be extended to linear problems with variable coefficients and even to certain
nonlinear problems.

2.6.2 Problems in Higher Space Dimensions

For simplicity we take Ω = (0, 1)2 ⊂ R2 and a problem of the form

∂u
∂t
− Δu = f in Ω × (0, T ],

u = 0 on Γ × (0, T ],

u(·, 0) = g(·) on Ω.

Consider the implicit method

1

τ
(uk − uk−1) − Δhuk = fk, k = 1, . . . , M. (6.16)

Here Δh is some discretization of the Laplace operator Δ on the spatial
grid; all discretization methods for elliptic problems that were discussed in
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Section 2.4 may be used to generate Δh. By solving the system of linear
equations (6.16) iteratively, one can compute the grid functions uk ∈ U0

h for
k = 1, . . . , M , starting from the discrete initial function u0. At each time step
the linear system that has to be solved is usually of high dimension, but the
system matrix is sparse and the locations of its non-zero entries have a certain
structure that can be exploited efficiently.

Unlike the above implicit scheme, the explicit method

1

τ
(uk − uk−1) − Δhuk−1 = fk−1, k = 1, . . . , M, (6.17)

gives the new time level solution uk ∈ U0
h directly. No system of equations

needs to be solved, but stability requires us to limit the time step size by

τ ≤ 1
2
h2.

The Crank-Nicolson method

1

τ
(uk−uk−1) − 1

2
(Δhuk + Δhuk−1) =

1
2
(fk +fk−1), k = 1, . . . , M, (6.18)

is L2 stable for any step sizes h, τ > 0. But this is not the case in the L∞
norm: in particular, if the data of the problem are not smooth and the condi-
tion τ/h2 ≤ 1 is violated, then the solution computed by the Crank-Nicolson
scheme may contain spurious oscillations—these cannot occur in the original
problem because of the boundary maximum principle. This limits the applica-
bility of the Crank-Nicolson method, especially for problems where the true
solution u is not sufficiently smooth.

Further methods for the discretization of parabolic problems posed in
higher spatial dimensions will be discussed later in the framework of finite
element methods.

Semi-discretization (Section 2.6.3) provides a general framework for the
construction of difference schemes for higher-dimensional problems; this tech-
nique leads to a reduction to problems of lower dimension.

We shall now discuss a modification of the implicit method that generates
systems of linear equations which are easier to treat numerically than those
generated by the original version of this method. That is, we consider alternat-
ing direction implicit (ADI) methods, which are based on an approximation
of the implicit scheme for problems posed in domains of spatial dimension
greater than one. First, we observe for the standard discretization Δh of Δ
that

I − τΔh = I − τ (D−
x D+

x + D−
y D+

y )
= (I − τ D−

x D+
x )(I − τ D−

y D+
y )− τ2 D−

x D+
x D−

y D+
y .

Now given sufficient smoothness of the solution u, the term D−
x D+

x D−
y D+

y u
is bounded. Hence, if we replace (6.16) by the scheme
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(I − τ D−
x D+

x )(I − τ D−
y D+

y )uk = uk−1 + τ fk, k = 1, . . . , M, (6.19)

then this discretization has the same order of consistency as the original im-
plicit method (6.16). Furthermore, since

(I − τ D−
x D+

x )−1 ≥ 0 and (I − τ D−
y D+

y )−1 ≥ 0,

this scheme (6.19) satisfies the discrete boundary maximum principle. Under
smoothness assumptions that preserve the order of consistency, the maximum
principle implies the convergence of the method (6.19) in the maximum norm
with error O(h2 + τ).

An advantage of (6.19) over (6.16) is that the discrete operators (I −
τ D−

x D+
x ) and (I − τ D−

y D+
y ) each generate a tridiagonal matrix. Thus at each

time step the linear system that appears in (6.19) can be solved rapidly by two
successive applications of fast Gaussian elimination (the Thomas algorithm).

The idea of the ADI splitting can be applied easily also to parabolic prob-
lems in higher space dimensions and on general domains and with other types
of boundary conditions. The scheme (6.19) can be described equivalently by

(I − τ D−
x D+

x )uk−1/2 = uk−1 + τ fk,

(I − τ D−
y D+

y )uk = uk−1/2 .
k = 1, . . . , M (6.20)

For this reason such methods are sometimes called half-step schemes in the
literature.

Exercise 2.76. The temperature distribution in a rod of length 1 satisfies
the heat equation

ut = uxx,

where t and x are the temporal and spatial coordinates (length), respectively.
Assume that the temperature u at the end-points of the rod is time-dependent
and given by

u(0, t) = u(1, t) = 12 sin 12πt for t ≥ 0,

while the initial temperature u(·, 0) should be zero.
Use the explicit Euler method with spatial step size h = 1/6 and tempo-

ral step size τ = 1/72 to compute approximately the temperature as far as
t = 1/3.

Exercise 2.77. Boundary conditions of the form

ux(0, t) = f(t)

can be handled in the numerical solution of the heat equation

ut = uxx

by means of the approximation
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u(0, t + τ) ≈ u(0, t) +
2τ

h2
[u(h, t)− u(0, t)− hf(t)].

Give a justification of this technique and apply it to the discretization of the
initial-boundary value problem

ut − uxx = 0 in (0, 1)× (0, 1),
u(x, 0) = 0,
ux(0, t) = 0, u(1, t) = 106t,

using the explicit Euler scheme. Compute the solution as far as time t = 0.08,
using (i) the step sizes h = 0.2, τ = 0.01 and (ii) h = 0.1, τ = 0.01. Compare
the two sets of numerical results obtained.

Exercise 2.78. Derive an explicit difference approximation for the partial
differential equation

∂u

∂t
=

∂

∂x

(
(1 + x2)

∂u

∂x

)
.

Let the initial and boundary conditions be

u(x, 0) = 1000− |1000x|,
u(−1, t) = u(1, t) = 0.

Solve this initial-boundary value problem approximately in the time interval
0 ≤ t ≤ 0.2 using discretization step sizes h = 0.4 and τ = 0.04.

Exercise 2.79. Examine the consistency and stability of the leapfrog scheme

uk+1
i − uk−1

i − 2γ(uk
i−1 + uk

i+1) + 4γuk
i = 0,

where γ = τ/h2, for the discretization of the homogeneous heat equation
ut − uxx = 0.

Exercise 2.80. A modification of the leapfrog scheme of Exercise 2.79 is the
du Fort-Frankel scheme

uk+1
i − uk−1

i − 2γ
[
uk

i−1 − (uk+1
i + uk−1

i ) + uk
i+1

]
= 0.

Analyse its stability and consistency.

Exercise 2.81. Consider the initial-boundary value problem

ut − uxx = x + t in (0, 1)× (0, 1),
u(x, 0) = φ(x),

u(0, t) = u(1, t) = 0,

where φ is some continuous function that satisfies φ(0) = φ(1) = 0 and
|φ(x)| ≤ α for some small positive constant α. Show that
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uk
i = α

(
− 2r −

√
4r2 + 1

)k

sin
πi

2
with r = τ/h2

is a solution of the following difference scheme obtained by discretizing this
problem:

uk+1
i = uk−1

i +
2τ

h2
(uk

i+1 − 2uk
i + uk

i−1),

uk
0 = uk

N = 0, |u0
i | ≤ α,

for i = 0, 1, . . . , N , where h = 1/N and N is taken to be even.
As h→ 0 and τ → 0 with τ/h2 held fixed, does this solution converge to the
solution of the continuous problem?

Exercise 2.82. Prove that the operators that appear in the ADI scheme
(6.19) satisfy the discrete Euclidean norm estimates

‖(I − τ D−
x D+

x )−1‖ ≤ 1 and ‖(I − τ D−
y D+

y )−1‖ ≤ 1.

What do these bounds tell us about the stability of the method in the L2

norm?

Exercise 2.83. Consider the initial-boundary value problem

ut(x, t)− uxx(x, t) = x + t in (0, 1)× (0, 1),

u(0, t) = u(1, t) = 0 for t ∈ [0, 1] ,

u(x, 0) = sinπx for x ∈ [0, 1] .

Show that 0 < u(0.5, 0.5) ≤ 0.75.

Exercise 2.84. Analyse the consistency and stability of the scheme

1
2τ

(ui,k+1 − ui,k−1) −
1
h2

(ui−1,k − 2ui,k + ui+1,k) = 0

for the discretization of the homogeneous heat equation ut − uxx = 0.

2.6.3 Semi-Discretization

Method of Lines (vertical)

Parabolic initial-boundary value problems can be treated numerically as de-
scribed previously, where we discretized the space and time derivatives simul-
taneously. For a better theoretical understanding and more structured ap-
proach, however, it is often preferable to separate these two discretizations. In
the present section we will first discretize only the spatial derivatives. Since
only part of the differential equation is discretized this technique is a type
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of semi-discretization. The version we deal with here is called the (vertical)
method of lines (MOL).

Let us consider the initial-boundary value problem

∂u
∂t

+ Lu = f in Ω × (0, T ],

u = 0 on ∂Ω × (0, T ],
u(·, 0) = u0(x) on Ω,

(6.21)

where L is some uniformly elliptic differential operator. The domain Ω ⊂ Rn is
assumed to be bounded and have a smooth boundary. Similarly to Section 2.4,
we could also consider other types of boundary conditions if the boundary is
sufficiently regular.

Suppose that the spatial derivatives of (6.21) are discretized by some
method—finite differences, finite volumes, finite elements, or any other method.
Then this semi-discretization generates an initial value problem for a system
of ordinary differential equations.

Example 2.85. Consider the initial-boundary value problem

ut − uxx = f in (0, 1)× (0, T ),
u(0, ·) = u(1, ·) = 0,

u(·, 0) = u0(·).

To discretize the spatial derivatives we apply the classical difference method
on an equidistant grid in the x-direction. Let this grid have step size h.
Let ui(t) denote the resulting computed approximation of u(xi, t) and set
fi(t) := f(xi, t). Then the semi-discretization produces the following system
of ordinary differential equations:

dui

dt
=

ui−1 − 2ui + ui+1

h2
+ fi, u0 = uN = 0, i = 1, . . . , N − 1,

with the initial conditions ui(0) = u0(xi) for i = 1, . . . , N − 1. This system
defines the unknown functions ui(t). To finish the numerical solution of the
original problem, an ordinary differential equation solver is applied to this
system. �

The properties of any semi-discretization technique depend upon the dis-
cretization method used for the spatial derivatives (finite difference method,
FEM, . . . ) and on the numerical method applied to the initial value problem
for the system of ordinary differential equations that is generated. If we use
the standard finite difference method for the discretization in space (as in the
example above), and subsequently choose the explicit Euler or implicit Euler
or trapezoidal rule linear one-step method for the integration in time, then
we obtain the discretization formulas discussed in the preceding section.

In the chapter on finite element methods for time-dependent problems we
shall analyse semi-discretizations based on finite elements in more detail.
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Figure 2.24 Vertical method of lines

A generic property of the systems of ordinary differential equations that
are generated by semi-discretization is that they become arbitrarily stiff as
h → 0. Consequently their accurate numerical integration requires special
techniques.

Rothe’s Method (Horizontal Method of Lines)

An alternative semi-discretization is to discretize only the temporal derivatives
in the parabolic differential equation. This is called Rothe’s method. These
temporal derivatives are usually discretized by means of the implicit Euler
method.
Consider again problem (6.21) and let uk denote the approximation of the
true solution u(·, tk) at the time level t = tk. Then semi-discretization in time
by the implicit Euler method yields the semi-discrete problem

uk − uk−1

τk

+ Luk = fk in Ω,

uk = 0 on Γ.
k = 1, . . . , M. (6.22)

Here τk := tk − tk−1 denotes the local time step. Problem (6.22) is a system
of elliptic boundary value problems, which can be solved iteratively for k =
1, . . . , M starting from the given function u0. See Figure 2.25. When small time
steps are used these elliptic problems are singularly perturbed problems of
reaction-diffusion type, but under suitable regularity assumptions the solution
uk−1 at the previous time level provides a very good initial approximation for
uk.

We illustrate Rothe’s method for the simple initial-boundary value prob-
lem
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∂u
∂t
− ∂2u

∂x2
= sin x, x ∈ (0, π), t ∈ (0, T ],

u(0, t) = u(π, t) = 0, t ∈ (0, T ],
u(x, 0) = 0, x ∈ [0, π].

The exact solution of this problem is u(x, t) = (1−e−t) sin x. Let us subdivide
the time interval [0, T ] using a fixed step size τ . Then the approximate solution
uk(x) at the time level t = tk that is generated by Rothe’s method satisfies

uk(x)− uk−1(x)
τ

− d2

dx2
uk(x) = sinx for x ∈ (0, π), uk(0) = uk(π) = 0.

In this example one can solve analytically to get

uk(x) =
[
1− 1

(1 + τ)k

]
sin x, k = 0, 1, . . . , M.

If we set

uτ (x, t) := uk−1(x) +
t− tk−1

τ

(
uk(x))− uk−1(x)

)
for t ∈ [tk−1, tk ],

then we obtain a solution uτ (x, t) that approximates u(x, t) at each (x, t) ∈
[0, π]× [0, T ]. For each fixed time t∗ ∈ [0, T ] we have

lim
τ→0

1
(1 + τ)t∗/τ

= e−t∗ , which implies that lim
τ→0
‖uτ − u‖∞ = 0.

That is, the semi-discrete solution converges in the maximum norm to the
exact solution as τ → 0.

�

�

x

10

t
T = tM

t1

...

0 = t0

Figure 2.25 Horizontal method of lines
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Besides its usefulness as a numerical semi-discretization scheme, Rothe’s
method is often applied also in existence proofs for time-dependent problems
by reducing them to a sequence of stationary problems. Furthermore, other
concepts originally developed for stationary problem (e.g., grid generation
algorithms) can be transferred via Rothe’s method to the time-dependent case.
Let us repeat our earlier observation that the elliptic problems that appear in
Rothe’s method have the main part of the differential operator multiplied by
the small parameter τ ; thus these stationary problems are singularly perturbed
and their analysis requires additional care.

The version of Rothe’s method described above can be generalized by
replacing the implicit Euler method by more general methods for time dis-
cretization. For example, one-step methods can be applied with error control
of the discretization error in time (and also in space). In [96] Runge-Kutta
methods are studied, including the problem of order reduction.

Exercise 2.86. The rotationally symmetric temperature distribution w(r, t)
in an infinitely long circular cylinder of radius R satisfies the parabolic differ-
ential equation

∂w

∂t
(r, t) = α2 1

r

∂

∂r

(
r

∂

∂r
w

)
(r, t) for r ∈ (0, R) , t ∈ (0,∞),

with the initial and boundary conditions

w(r, 0) = h(r), w(R, t) = 0 .

Here α is a given non-zero constant.

(a) Determine the analytical solution w(r, t) using separation of variables.

(b) Apply the method of (vertical) lines to this problem, using equidistant
discretization in space. Determine the system of ordinary differential equations
and the initial value problem that are obtained.

Exercise 2.87. Consider the initial-boundary value problem

ut(x, t)−Δu(x, t) = 1 in Ω × (0, T ],

u(x, t) = 0 in Γ × (0, T ],

u(x, 0) = 0 for x ∈ Ω̄,

(6.23)

with Ω := (0, 1)× (0, 1) ⊂ R2, Γ := ∂Ω and fixed T > 0.

(a) Discuss semi-discretization of this problem via Rothe’s method, using the
step size τ := T/M in the temporal direction. Determine the boundary value
problems that are generated.

(b) Apply the ADI method to (6.23) using equidistant discretization in both
spatial directions with step size h := 1/N . As step size in time use τ := T/M .
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How can the matrix factorizations required be implemented efficiently? Find
numerically the approximate solution of (6.23) for N = 10 and M = 5 with
T = 2.

Exercise 2.88. Discretize the initial-boundary value problem

∂u

∂t
− ∂2u

∂x2
= sin x in (0, π/2)× (0, T ),

with the conditions

u|t=0 = 0, u|x=0 = 0, ux|x=π/2 = 0,

using Rothe’s method. Compare the computed approximate solution with the
exact solution.

2.7 Second-Order Hyperbolic Problems

Let Ω ⊂ Rn be a bounded domain with boundary Γ , and L a second-order
differential operator on the spatial derivatives that is uniformly elliptic. The
partial differential equation

∂2

∂t2
u(x, t) + [Lu](x, t) = f(x, t), x ∈ Ω, t ∈ (0, T ] (7.1)

with the boundary and initial conditions

u(x, t) = 0, (x, t) ∈ Γ × (0, T ]

u(x, 0) = p(x), ∂
∂t

u(x, 0) = q(x), x ∈ Ω
(7.2)

defines a second-order hyperbolic initial-boundary value problem. Here the
data f, g, p and q are given.

Let Lh be some discretization of the elliptic differential operator L on
a spatial grid Ωh. Subdivide the time interval [0, T ] by the equidistant grid
points tk := k τ, k = 0, 1, . . . , M , where τ := T/M is the step size in the

temporal direction. To approximate the second-order temporal derivative ∂2

∂t2

we use the standard discretization D−
t D+

t , which is second-order consistent.
In what follows we consider two basic types of difference methods:

D−
t D+

t uk + Lh uk = fk, k = 1, . . . , M − 1, (7.3)

and

D−
t D+

t uk +
1
2
Lh (uk+1 + uk−1) = fk, k = 1, . . . , M − 1. (7.4)
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Figure 2.26 Difference stencils related to (7.3), (7.4)

Here uk ∈ U0
h denotes a grid function defined on the spatial grid Ωh at the

discrete time level t = tk. This grid function approximates u(x, tk), x ∈ Ωh.
When n = 1 (i.e., in one space dimension) and Lh is a three-point scheme,
the discretization methods (7.3) and (7.4) are represented by the difference
stencils of Figure 2.26. The discretization (7.3) is an explicit scheme: it is
equivalent to

uk+1 = (2I − τ2 Lh )uk − uk−1 + τ2fk, k = 1, . . . , M − 1,

so the new grid function uk+1 is obtained without solving a system of equa-
tions. On the other hand, the discretization (7.4) is an implicit scheme. Here
uk+1 ∈ U0

h is determined by the linear system

(I +
1
2
τ2 Lh )uk+1 = 2uk − (I +

1
2
τ2 Lh )uk−1 + τ2fk, k = 1, . . . , M − 1.

Both methods are used iteratively starting from the two grid functions
u0, u1 ∈ Uh. While u0 is given immediately by the initial condition

u0 = ph, (7.5)

the grid function u1 is determined from a discretization of the second initial
condition, e.g., by its approximation (u1 − u0)/τ = qh . Taking (7.5) into
account this yields

u1 = ph + τ qh . (7.6)

Here ph, qh ∈ Uh denote pointwise restrictions of the initial functions p and q
to the spatial grid Ωh.

We now analyse the L2-stability of the methods (7.3) and (7.4). To do
this, the discrete solutions uk ∈ Uh will be expanded in terms of eigenvectors
of the discrete elliptic operator Lh. To ensure that Lh possesses a complete
system of eigenvectors, we want Lh to be self-adjoint. Thus assume that L =
−div(A grad) for some symmetric positive-definite matrix A = (aij), then
define Lh by

Lh = −
∑

j

D−
i

∑
j

aij D+
j
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(cf. Section 2.4). Then Lh has in U0
h a complete system of eigenvectors vj

h, j =
1, . . . , N , that is orthonormal with respect to the inner product (·, ·)h. That
is,

Lh vj
h = λj vj

h, (vj
h, vl

h)h = δjl, j, l = 1, . . . , N. (7.7)

Since A is symmetric and positive definite all the eigenvalues λj are real and
positive. Under mild additional conditions on the spatial grid, there exist
constants c0, c1 > 0 such that

c0 ≤ λj ≤ c1 h−2, j = 1, . . . , N. (7.8)

Here h > 0 is an appropriate measure of the fineness of the discretization. In
particular, for the one-dimensional case Ω = (0, 1) ⊂ R and two-dimensional
case Ω = (0, 1)2 ⊂ R2 with equidistant grids, the eigenvalues of the discrete
Laplace operator are

λj =
4

h2
sin2

(
j π h

2

)
, j = 1, . . . , N,

and

λj, l =
4

h2

[
sin2

(
j π h

2

)
+ sin2

(
l π h

2

)]
, j, l = 1, . . . , N, (7.9)

respectively, with step size h = 1/(N + 1). Hence (7.8) holds in these two
cases with c0 = π2, c1 = 4 and c0 = 2π2, c1 = 8, respectively.

Lemma 2.89. The implicit method (7.4) applied to the homogeneous problem
is stable in the discrete L2 norm for all step sizes h, τ > 0. If for the spatial
grid the estimate (7.8) holds with constants c0, c1 > 0, then the explicit scheme
(7.3) is stable in the discrete L2 norm provided that the temporal and spatial
step sizes satisfy τ ≤ 2 c

−1/2
1 h.

Proof: Let wk ∈ U0
h arbritrarily chosen. Since {vj

h} is a basis for U0
h , there

are unique ξk
j ∈ R such that

wk =
N∑

j=1

ξk
j vj

h. (7.10)

From (7.7) the homogeneous difference equations associated with (7.3) and
(7.4) yield

1

τ2

(
ξk+1
j − 2ξk

j + ξk−1
j

)
+ λj ξk

j = 0, j = 1, . . . , N, k = 1, . . . , M − 1

and

1

τ2

(
ξk+1
j − 2ξk

j + ξk−1
j

)
+

λj

2
(ξk+1

j + ξk−1
j ) = 0,

j = 1, . . . , N,
k = 1, . . . , M − 1,
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respectively. Thus for each fixed j ∈ {1, . . . , N} we have in each case
a second-order difference equation with constant coefficients that defines
ξk
j , k = 1, . . . , M . The related characteristic equations are, writing λ for λj ,

κ2 − (2− τ2λ)κ + 1 = 0 and
(

1 +
τ2 λ

2

)
κ2 − 2κ + 1 +

τ2 λ

2
= 0,

respectively. In the first of these a calculation shows that the characteristic
roots κ1 and κ2 satisfy

|κ1,2| ≤ 1 ⇐⇒ 1− τ2λ

2
≥ −1.

Here in the extreme case τ2λ = 4 the characteristic polynomial has a double
root κ = 1. Hence the explicit scheme (7.3) is stable in the L2 norm if and
only if for the time step size τ and for all eigenvalues λ (which depend upon
the step size h) one has

1− τ2λ

2
> −1.

Recalling the bounds (7.8) on the eigenvalues, we obtain the sufficient stability
condition

τ ≤ 2 c
−1/2
1 h. (7.11)

In the case of the implicit scheme, the characteristic equation above has two
different conjugate complex zeros κ1, κ2 for any step sizes h, τ > 0. These
zeros satisfy |κ1,2| = 1. Hence the implicit method is L2 stable for any step
sizes.

Remark 2.90. Let us draw the reader’s attention to the fact that the step size
restriction for the explicit scheme for hyperbolic problems is significantly less
demanding than the corresponding restriction in the case of parabolic prob-
lems (compare Theorem 2.74). This difference is caused by the qualitatively
different ways in which the solutions of hyperbolic and parabolic problems
develop as time progresses: hyperbolic problems have only a limited speed of
propagation while parabolic problems have theoretically an infinite speed of
propagation. �
Stability and consistency together imply convergence. We now study this for
a simple two-dimensional model problem. For more general cases see, e.g.,
[Sam01, Str04] and also the analysis of finite element methods for time-
dependent problems that will be given in Chapter 5.

Theorem 2.91. Let Ω = (0, 1)2 ⊂ R2 with boundary Γ . Suppose that the
hyperbolic initial-boundary value problem

utt −Δu = f in Ω × (0, T ],

u = g on Γ × (0, T ], u = p, ut = q on Ω,
(7.12)
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has a sufficiently smooth solution u. If this problem is discretized on an equidis-
tant spatial grid where the initial conditions are handled by (7.5) and (7.6),
then for the implicit scheme (7.4) one has the error estimate

max
0≤k≤M

‖uk − rhu(·, tk)‖2,h = O(h2 + τ2). (7.13)

If the temporal step size and the spatial step size are coupled by the condition
τ ≤ 4

√
2 h, then the estimate (7.13) is also valid for the explicit scheme

(7.3).

Proof: We first examine the consistency error. Now u0 = rhp = rhu(·, t0) so

‖u0 − rhu(·, t0)‖2,h = 0.

Next, u(xh, τ) = u(xh, 0) + τ ut(xh, 0) + O(τ2) for all xh ∈ Ωh, t1 = τ and
(7.6) yield

‖u1 − rh u(·, t1)‖2,h = O(τ2).

Setting wk := uk − rhu(·, tk) for k = 0, 1, . . . , M , we have

‖w0‖2,h = 0, ‖w1‖2,h = O(τ2). (7.14)

For subsequent time levels, a Taylor expansion gives

1

τ2

(
wk+1 − 2wk + wk−1

)
+

1
2
Lh(wk+1 + wk−1) = O(τ2 + h2)

for the implicit scheme (7.4) and

1

τ2

(
wk+1 − 2wk + wk−1

)
+ Lhwk = O(τ2 + h2)

for the explicit scheme (7.3).
The stability of both these numerical methods is dealt with by Lemma

2.89, since one can take c1 = 8 from (7.9). The desired error estimates follow.

Remark 2.92. An alternative way of discretizing the initial condition ut(·, 0) =

q is to use the central difference quotient u1 − u−1

2τ
= qh. In this case the

auxiliary grid function u−1 can be eliminated by introducing the additional
condition

D−
t D+

t u0 + Lh u0 = f0,

which implies that

u−1 = 2u0 − u1 + τ2 (f0 − Lh u0 ).
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Substituting this into the central difference quotient above and setting u0 =
ph, we get

u1 = ph +
τ2

2
(f0 − Lh ph ) + τ qh. (7.15)

�

Semi-discretization (the method of lines) can also be applied to second-
order hyperbolic problems, as was done for parabolic initial-boundary value
problems in Section 2.6.3. The spatial discretization required can be got from
finite difference or finite element methods. Using finite differences, we sketch
the semi-discretization for the model problem (7.1), (7.2). Let Ωh = {xi}Ni=1

denote some grid in Ω, with Lh some discretization on Ωh of the elliptic
operator L. Let ui : [0, T ]→ R, i = 1, . . . , N , denote functions

ui(t) ≈ u(xi, t), t ∈ [0, T ],

that are associated with the grid points xi ∈ Ωh. In (7.1), (7.2) replace the
operator L by Lh and set fi := f(xi, ·). We then obtain an approximation
of the original problem by the following initial-value problem for a system of
ordinary differential equations:

üi + [Lhuh]i = fi,

ui(0) = p(xi),
u̇i(0) = q(xi),

⎫⎪⎬⎪⎭ i = 1, . . . , N, (7.16)

where uh(t) := (u1(t), . . . , uN (t)). If the ODE system (7.16) is solved numeri-
cally by some suitable integration method (e.g., a BDF method), one has then
a complete discretization of the original problem.

Unlike the parabolic case, semi-discretization of second-order hyperbolic
problems leads to a system of second-order ordinary differential equations.
This could be transformed in the usual way into a first-order system with
twice the number of unknown functions then solved by some standard code,
but we do not recommend this. Instead one should solve (7.16) using meth-
ods that make use of the specific structure of this second-order problem. One
such method (compare Exercise 2.93), which could be used for the complete
discretization via (7.16), is the Newmark method (see [JL01]), which was orig-
inally developed in the engineering literature.

If constant time steps τ > 0 are taken, then the Newmark method applied
to (7.16) is defined as follows:

zk+1
h + Lhuk+1

h = fk+1
h ,

vk+1
h = vk

h + τ
(
(1− γ) zk

h + γ zk+1
h

)
,

uk+1
h = uk

h + τ vk
h + τ2

2

(
(1− 2β) zk

h + 2β zk+1
h

)
.

(7.17)
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Here uk
h, vk

h and zk
h denote the approximations for uh(tk), the semi-discrete

velocity u̇h(tk) and the acceleration üh(tk), respectively. The real-valued quan-
tities γ and β are parameters of the method. If 2β ≥ γ ≥ 1

2 then the Newmark
method is stable for all step sizes τ, h > 0 in time and space.

Exercise 2.93. Consider the following initial-boundary problem for the one-
dimensional wave equation:

utt − α2uxx = f, x ∈ (0, 1), t ∈ (0, T ],
u(0, t) = u(1, t) = 0,

u(x, 0) = p(x),
ut(x, 0) = q(x).

Determine the order of consistency of the discretization

1
τ2

(
uk+1 − 2uk + uk−1

)
− α2

12
(
Δhuk+1 + 10Δhuk + Δhuk−1

)
=

1
12
(
fk+1 + 10fk + fk−1

) (7.18)

of the wave equation. Here uk = (uk
i ) ∈ IRN−1,

[
Δhuk

]
i
:=

1
h2

(
uk

i+1 − 2uk
i + uk

i−1

)
, i = 1, . . . , N − 1,

denotes the central difference quotient approximation of uxx, and h, τ > 0
are the spatial and temporal step sizes.

Investigate the L2 stability of the scheme (7.18).

Exercise 2.94. Analogously to the parabolic case, develop an ADI version of
the implicit method (7.4) and analyse its order of consistency.
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Weak Solutions, Elliptic Problems
and Sobolev Spaces

3.1 Introduction

In Chapter 2 we discussed difference methods for the numerical treatment of
partial differential equations. The basic idea of these methods was to use infor-
mation from a discrete set of points to approximate derivatives by difference
quotients.

Now we start to discuss a different class of discretization methods: the
so-called ansatz methods. An ansatz method is characterized by prescribing
some approximate solution in a certain form. In general, this is done by deter-
mining the coefficients in a linear combination of a set of functions chosen
by the numerical analyst. One cannot then expect to get an exact solution of
the differential equation in all cases. Thus a possible strategy is to determine
the coefficients in a way that approximately satisfies the differential equation
(and perhaps some additional conditions).

For instance, one can require that the differential equation be satisfied
at a specified discrete set of points; this method is called collocation. It is,
however, much more popular to use methods that are based on a weak for-
mulation of the given problem. Methods of this type do not assume that the
differential equation holds at every point. Instead, they are based on a related
variational problem or variational equation. The linear forms defined by the
integrals in the variational formulation require the use of appropriate func-
tion spaces to guarantee, for instance, the existence of weak solutions. It turns
out that existence theorems for weak solutions are valid under assumptions
that are much more realistic than in the corresponding theorems for classical
solutions. Moreover, ansatz functions can have much less smoothness than,
e.g., functions used in collocation methods where the pointwise validity of the
differential equation is required.

As a first simple example let us consider the two-point boundary value
problem

−u′′(x) + b(x)u′(x) + c(x)u(x) = f(x) in Ω := (0, 1) , (1.1)
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u(0) = u(1) = 0 . (1.2)

Let b, c and f be given continuous functions. Assume that a classical solution
exists, i.e., a twice continuously differentiable function u that satisfies (1.1)
and (1.2). Then for an arbitrary continuous function v we have∫

Ω

(−u′′ + bu′ + cu)v dx =
∫
Ω

fv dx. (1.3)

The reverse implication is also valid: if a function u ∈ C2(Ω̄) satisfies equation
(1.3) for all v ∈ C(Ω̄), then u is a classical solution of the differential equation
(1.1).

If v ∈ C1(Ω̄), then we can integrate by parts in (1.3) and obtain

−u′v |1x=0 +
∫
Ω

u′v′ dx +
∫
Ω

(bu′ + cu)v dx =
∫
Ω

fv dx.

Under the additional condition v(0) = v(1) = 0 this is equivalent to∫
Ω

u′v′ dx +
∫
Ω

(bu′ + cu)v dx =
∫
Ω

fv dx. (1.4)

Unlike (1.1) or (1.3), equation (1.4) still makes sense if we know only that
u ∈ C1(Ω̄). But we have not yet specified a topological space in which map-
pings implicitly defined by a weak form of (1.1) such as (1.4) have desirable
properties like continuity, boundedness, etc. It turns out that Sobolev spaces,
which generalize Lp spaces to spaces of functions whose generalized derivatives
also lie in Lp, are the correct setting in which to examine weak formulations
of differential equations. The book [Ada75] presents an excellent general sur-
vey of Sobolev spaces. In Section 3.2 we shall give some basic properties of
Sobolev spaces that will allow us to analyse discretization methods—at least
in standard situations.

But first we explain the relationship of the simple model problem (1.1),
(1.2) to variational problems. Assume that b(x) ≡ 0 and c(x) ≥ 0. Define a
functional J by

J(u) :=
1
2

∫
Ω

(u′2 + cu2) dx−
∫
Ω

fu dx. (1.5)

Consider now the following problem: Find a function u ∈ C1(Ω̄) with u(0) =
u(1) = 0 such that

J(u) ≤ J(v) for all v ∈ C1(Ω̄) with v(0) = v(1) = 0 . (1.6)

For such problems a necessary condition for optimality is well known: the first
variation δJ(u, v) must vanish for arbitrarily admissible directions v (see, for
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instance, [Zei90]). This first variation is defined by δJ(u, v) := Φ′(0) where
Φ(t) := J(u + tv) for fixed u, v and real t.

For the functional J(·) defined by (1.5), one has

J(u + tv) =
1
2

∫
Ω

[(u′ + tv′)2 + c(u + tv)2] dx−
∫
Ω

f · (u + tv) dx ,

and consequently

Φ′(0) =
∫
Ω

u′v′ dx +
∫
Ω

c uv dx−
∫
Ω

fv dx.

Thus in the case b(x) ≡ 0, the condition δJ(u, v) = 0 necessary for optimality
in (1.6) is equivalent to the variational equation (1.4). This equivalence estab-
lishes a close connection between boundary value problems and variational
problems. The differential equation (1.1) is described as the Euler equation of
the variational problem (1.6). The derivation of Euler equations for general
variational problems that are related to boundary value problems is discussed
in [Zei90]. Later we shall discuss in more detail the role played by the condition
v(0) = v(1) = 0 in the formulation of (1.4).

Variational problems often appear when modelling applied problems in
the natural and technical sciences because in many situations nature follows
minimum or maximum laws such as the principle of minimum energy.

Next we consider a simple elliptic model problem in two dimensions. Let
Ω ⊂ R2 be a simply connected open set with a (piecewise) smooth boundary
Γ . Let f : Ω̄ → R be a given function. We seek a twice differentiable function
u that satisfies

−Δu(ξ, η) = f(ξ, η) in Ω , (1.7)
u|Γ = 0. (1.8)

To derive a variational equation, we again take a continuous function v, mul-
tiply (1.7) by v and integrate:

−
∫
Ω

Δuv dx =
∫
Ω

fv dx.

If v ∈ C1(Ω̄) with v|Γ = 0, the application of an integral theorem (the two-
dimensional analogue of integration by parts—see the next section for details)
yields ∫

Ω

(
∂u

∂ξ

∂v

∂ξ
+

∂u

∂η

∂v

∂η

)
dx =

∫
Ω

fv dx. (1.9)

This is the variational equation derived from the boundary value problem
(1.7), (1.8). In the opposite direction, assuming u ∈ C2(Ω), we can infer from
(1.9) that u satisfies the Poisson equation (1.7).
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So far we have said nothing about the existence and uniqueness of solutions
in our new variational formulation of boundary value problems, because to
deal adequately with these topics it is necessary to work in the framework
of Sobolev spaces. In the following sections we introduce these spaces and
discuss not only existence and uniqueness of solutions to variational problems
but also the numerical approximation of these solutions by means of certain
ansatz functions.

3.2 Function Spaces for the Variational Formulation
of Boundary Value Problems

In the classical treatment of differential equations, the solution and certain of
its derivatives are required to be continuous functions. One therefore works
in the spaces Ck(Ω̄) that contain functions with continuous derivatives up
to order k on the given domain Ω, or in spaces where these derivatives are
Hölder continuous.

When the strong form (e.g. (1.7)) of a differential equation is replaced
by a variational formulation, then instead of pointwise differentiability we
need only ensure the existence of some integrals that contain the unknown
function as certain derivatives. Thus it makes sense to use function spaces
that are specially suited to this situation.

We start with some basic facts from functional analysis.
Let U be a linear (vector) space. A mapping ‖ · ‖ : U → R is called a norm

if it has the following properties:

i) ‖u‖ ≥ 0 for all u ∈ U, ‖u‖ = 0 ⇔ u = 0,

ii) ‖λu‖ = | λ | ‖u‖ for all u ∈ U, λ ∈ R,

iii) ‖u + v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ U.

A linear space U endowed with a norm is called a normed space. A sequence
{uk} in a normed space is a Cauchy sequence if for each ε > 0 there exists a
number N(ε) such that

‖uk − ul‖ ≤ ε for all k, l ≥ N(ε) .

The next property is of fundamental importance both in existence the-
orems for solutions of variational problems and in proofs of convergence of
numerical methods. A normed space is called complete if every Cauchy se-
quence {uk} ⊂ U converges in U , i.e., there exists a u ∈ U with

lim
k→∞

‖uk − u‖ = 0.

Equivalently,
u = lim

k→∞
uk.
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Complete normed spaces are often called Banach spaces.
Let U , V be two normed spaces with norms ‖ · ‖U and ‖ · ‖V respectively.

A mapping P : U → V is continuous at u ∈ U if for any sequence {uk} ⊂ U
converging to u one has

lim
k→∞

Puk = Pu,

i.e.,
lim

k→∞
‖uk − u‖U = 0 ⇒ lim

k→∞
‖Puk − Pu‖V = 0.

A mapping is continuous if it is continuous at every point u ∈ U .
A mapping P : U → V is called linear if

P (λu + μv) = λPu + μPv for all u, v ∈ U, λ, μ ∈ R.

A linear mapping is continuous if there exists a constant M ≥ 0 such that

‖Pu‖ ≤M‖u‖ for all u ∈ U.

A mapping f : U → R is usually called a functional. Consider the set of
all continuous linear functionals f : U → R. These form a normed space with
norm defined by

‖f‖∗ := sup
v �=0

|f(v)|
‖v‖ .

This space is in fact a Banach space. It is the dual space U∗ of U . When
f ∈ U∗ and u ∈ U we shall sometimes write 〈f, u〉 instead of f(u).

Occasionally it is useful to replace convergence in the normed space by
convergence in a weaker sense: if

lim
k→∞

〈f, uk〉 = 〈f, u〉 for all f ∈ U∗

for a sequence {uk} ⊂ U and u ∈ U , then we say that the sequence {uk}
converges weakly to u. It is standard to use the notation

uk ⇀ u for k →∞

to denote weak convergence. If u = limk→∞ uk then uk ⇀ u, i.e. convergence
implies weak convergence, but the converse is false: a weakly convergent se-
quence is not necessarily convergent.

It is particularly convenient to work in linear spaces that are endowed with
a scalar product. A mapping (·, ·) : U ×U → R is called a (real-valued) scalar
product if U has the following properties:

i) (u, u) ≥ 0 for all u ∈ U, (u, u) = 0 ⇔ u = 0,

ii) (λu, v) = λ(u, v) for all u, v ∈ U, λ ∈ R,

iii) (u, v) = (v, u) for all u, v ∈ U,

iv) (u + v, w) = (u,w) + (v, w) for all u, v, w ∈ U.
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Given a scalar product, one can define an induced norm by ‖u‖ :=
√

(u, u).
But not all norms are induced by related scalar products.

A Banach space in which the norm is induced by a scalar product is called
a (real) Hilbert space. From the properties of the scalar product one can
deduce the useful Cauchy-Schwarz inequality:

|(u, v)| ≤ ‖u‖ ‖v‖ for all u, v ∈ U.

Continuous linear functionals on Hilbert spaces have a relatively simple struc-
ture that is important in many applications. It is stated in the next result.

Theorem 3.1 (Riesz). Let f : V → R be a continuous linear functional on
a Hilbert space V . Then there exists a unique w ∈ V such that

(w, v) = f(v) for all v ∈ V.

Moreover, one has ‖f‖∗ = ‖w‖.
The Lebesgue spaces of integrable functions are the starting point for the

construction of the Sobolev spaces. Let Ω ⊂ Rn (for n = 1, 2, 3) be a bounded
domain (i.e., open and connected) with boundary Γ := ∂Ω. Let p ∈ [1,+∞).
The class of all functions whose p-th power is integrable on Ω is denoted by

Lp(Ω) :=
{

v :
∫
Ω

|v(x)|p dx < +∞
}

.

Furthermore

‖v‖Lp(Ω) :=
[ ∫

Ω

|v(x)|p dx

]1/p

is a norm on Lp. It is important to remember that we work with Lebesgue
integrals (see, e.g., [Wlo87]), so all functions that differ only on a set of measure
zero are identified. It is in this sense that ‖v‖ = 0 implies v = 0. Moreover,
the space Lp(Ω) is complete, i.e., is a Banach space.

In the case p = 2 the integral

(u, v) :=
∫
Ω

u(x) v(x) dx

defines a scalar product, so L2(Ω) is a Hilbert space.
The definition of these spaces can be extended to the case p =∞ with

L∞(Ω) :=
{

v : ess sup
x∈Ω

|v(x)| < +∞
}

and associated norm

‖v‖L∞(Ω) := ess sup
x∈Ω

|v(x)|.
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Here ess sup denotes the essential supremum, i.e., the lowest upper bound
over Ω excluding subsets of Ω of Lebesgue measure zero.

To treat differential equations, the next step is to introduce derivatives
into the definitions of suitable spaces. In extending the Lebesgue spaces to
Sobolev spaces one needs generalized derivatives, which we now describe. For
the reader familiar with derivatives in the sense of distributions this introduc-
tion will be straightforward.

Denote by clV A the closure of a subset A ⊂ V with respect to the topology
of the space V . For v ∈ C(Ω̄) the support of v is then defined by

supp v := clRn {x ∈ Ω : v(x) �= 0}.

For our bounded domain Ω, set

C∞
0 (Ω) := {v ∈ C∞(Ω) : supp v ⊂ Ω }.

In our further considerations the role of integration by parts in several dimen-
sions is very important. For instance, for arbitrary u ∈ C1(Ω̄) and v ∈ C∞

0 (Ω)
one has ∫

Ω

∂u

∂xi
v dx =

∫
Γ

uv cos(n, ei) ds−
∫
Ω

u
∂v

∂xi
dx

where ei is the unit vector in the ith coordinate direction and n is the outward-
pointing unit vector normal to Γ . Taking into account that v|Γ = 0 we get∫

Ω

u
∂v

∂xi
dx = −

∫
Ω

∂u

∂xi
v dx. (2.1)

This identity is the starting point for the generalization of standard derivatives
on Lebesgue spaces.

First we need more notation. To describe partial derivatives one uses a
multi-index α := (α1, . . . , αn) where each αi is a non-negative integer. Set
|α| =∑i αi. We introduce

Dαu :=
∂|α|

∂xα1
1 · · ·xαn

n
u

for the derivative of order |α| with respect to the multi-index α.
Now, recalling (2.1), we say that an integrable function u is in a general-

ized sense differentiable with respect to the multi-index α if there exists an
integrable function w with∫

Ω

uDαv dx = (−1)|α|
∫
Ω

wv dx for all v ∈ C∞
0 (Ω). (2.2)

The function Dαu := w is called the generalized derivative of u with respect
to the multi-index α.
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Applying this definition to each first-order coordinate derivative, we obtain
a generalized gradient ∇u. Furthermore, if for a componentwise integrable
vector-valued function u there exists a integrable function z with∫

Ω

u∇v dx = −
∫
Ω

zv dx for all v ∈ C∞
0 (Ω),

then we call z the generalized divergence of u and we write divu := z.
Now we are ready to define the Sobolev spaces. Let l be a non-negative

integer. Let p ∈ [2,∞). Consider the subspace of all functions from Lp(Ω)
whose generalized derivatives up to order l exist and belong to Lp(Ω). This
subspace is called the Sobolev space W l

p(Ω) (Sobolev, 1938). The norm in
W l

p(Ω) is chosen to be

‖u‖W l
p(Ω) :=

[ ∫
Ω

∑
|α|≤l

|[Dαu](x)|p dx

]1/p

. (2.3)

Starting from L∞(Ω), the Sobolev space W l
∞(Ω) is defined analogously.

Today it is known that Sobolev spaces can be defined in several other
equivalent ways. For instance, Meyers and Serrin (1964) proved the following
(see [Ada75]):

For 1 ≤ p <∞ the space C∞(Ω) ∩W l
p(Ω) is dense in W l

p(Ω). (2.4)

That is, for these values of p the space W l
p(Ω) can be generated by completing

the space C∞(Ω) with respect to the norm defined by (2.3). In other words,

W l
p(Ω) = clW l

p(Ω) C∞(Ω).

This result makes clear that one can approximate functions in Sobolev spaces
by functions that are differentiable in the classical sense. Hence, various de-
sirable properties of Sobolev spaces can be proved by first verifying them for
classical functions and then using the above density identity to extend them
to Sobolev spaces.

When p = 2 the spaces W l
p(Ω) are Hilbert spaces with scalar product

(u, v) =
∫
Ω

( ∑
|α|≤l

DαuDαv
)

dx. (2.5)

It is standard to use the notation H l(Ω) in this case, i.e., H l(Ω) = W l
2(Ω). In

the treatment of second-order elliptic boundary value problems the Sobolev
spaces H1(Ω) play a fundamental role, while for fourth-order elliptic problems
one uses the spaces H2(Ω).

If additional boundary conditions come into the game, then additional
information concerning certain subspaces of these Sobolev spaces is required.
Let us first introduce the spaces



3.2 Adapted Function Spaces 133

o
W l

p(Ω) := clW l
p(Ω)C

∞
0 (Ω).

In the case p = 2 these spaces are Hilbert spaces with the same scalar product
as in (2.5), and they are denoted by H l

0(Ω). When l = 1 this space can be
considered as a subspace of H1(Ω) comprising those functions that vanish (in
a certain sense) on the boundary Γ ; we shall explain this in detail later in our
discussion of traces following following Lemma 3.3. The standard notation for
the dual spaces of the Sobolev spaces H l

0(Ω) is

H−l(Ω) :=
(
H l

0(Ω)
)∗

. (2.6)

In some types of variational inequalities—for instance, in mixed formula-
tions of numerical methods—we shall also need special spaces of vector-valued
functions. As an example we introduce

H(div;Ω) := {u ∈ L2(Ω)n : divu ∈ L2(Ω) } (2.7)

with

‖u‖2div,Ω := ‖u‖2H(div;Ω) :=
n∑

i=1

‖ui‖2L2(Ω) + ‖divu‖2L2(Ω). (2.8)

Now we begin to use Sobolev spaces in the weak formulation of boundary
value problems. Our first example is the Poisson equation (1.7) with homo-
geneous Dirichlet boundary conditions (1.8). The variational problem related
to that example can be stated precisely in the following way:
Find u ∈ H1

0 (Ω) such that∫
Ω

( ∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂v

∂x2

)
dx =

∫
Ω

fv dx for all v ∈ H1
0 (Ω). (2.9)

The derivatives here are generalized derivatives and the choice of spaces is
made to ensure the existence of all integrals. Every classical solution of the
Dirichlet problem (1.7), (1.8) satisfies the variational equation (2.9), as we
already saw in (1.9), using integration by parts. But is a weak solution in
the sense of (2.9) also a classical solution? To answer this question we need
further properties of Sobolev spaces. In particular we need to investigate the
following:

• What classical differentiability properties does the weak solution of the
variational problem (2.9) possess?

• In what sense does the weak solution satisfy the boundary conditions?

To address these issues one needs theorems on regularity, embedding and
traces for Sobolev spaces, which we now discuss.

The validity of embedding and trace theorems depends strongly on the
properties of the boundary of the given domain. It is not our aim to discuss
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here minimal boundary assumptions for these theorems, as this is a delicate
task; results in many cases can be found in [Ada75].

Here we assume generally—as already described in Chapter 1.3—that for
every point of the boundary ∂Ω there exists a local coordinate system in which
the boundary corresponds to some hypersurface with the domain Ω lying on
one side of that surface. The regularity class of the boundary (and domain)
is defined by the smoothness of the boundary’s parametrization in this coor-
dinate system: we distinguish between Lipschitz, Ck and C∞ boundaries and
domains.
Many other characterizations of boundaries are also possible.

In most practical applications it is sufficient to consider Lipschitz domains.
In two dimensions, a polygonal domain is Lipschitz if all its interior angles
are less than 2π, i.e., if the domain contains no slits.

Let U , V be normed spaces with norms ‖ · ‖U and ‖ · ‖V . We say the space
U is continuously embedded into V if u ∈ V for all u ∈ U and moreover there
exists a constant c > 0 such that

‖u‖V ≤ c ‖u‖U for all u ∈ U. (2.10)

Symbolically, we write U ↪→ V for the continuous embedding of U into V .
The constant c in inequality (2.10) is called the embedding constant .

The obvious embedding

W l
p(Ω) ↪→ Lp(Ω) for every integer l ≥ 0

is a direct consequence of the definitions of the spaces W l
p(Ω) and Lp(Ω) and

their norms. It is more interesting to study the imbedding relations between
different Sobolev spaces or between Sobolev spaces and the classical spaces
Ck(Ω̄) and Ck,β(Ω̄) with β ∈ (0, 1). The corresponding norms are

||v||Ck(Ω̄) =
∑

|α|≤k

max
x∈Ω̄
|[Dαv](x)|,

||v||Ck,β(Ω̄) = ||v||Ck(Ω̄) +
∑

|α|=k

|Dαv|Cβ(Ω̄)

with the Hölder seminorm

|v|Cβ(Ω̄) = inf{ c : |v(x)− v(y)| ≤ c|x− y|β for all x, y ∈ Ω̄ }.

Then one has the following important theorem (see [Ada75, Wlo87]):

Theorem 3.2 (Embedding theorem). Let Ω ⊂ Rn be a bounded domain
with Lipschitz boundary. Assume that 0 ≤ j ≤ k, 1 ≤ p, q < +∞ and 0 <
β < 1.

i) For k − j ≥ n
(1
p − 1

q
)

one has the continuous embeddings

W k
p (Ω) ↪→W j

q (Ω),
o

W k
p (Ω) ↪→ o

W j
q (Ω).
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ii) For k − j − β > n
p one has the continuous embeddings

W k
p (Ω) ↪→ Cj,β(Ω̄).

Note that the definition of the Hölder spaces Cj,β(Ω̄) shows that they are
continuously embedded into Cj(Ω̄), i.e.,

Cj,β(Ω̄) ↪→ Cj(Ω̄).

Next we study the behaviour of restrictions of functions u ∈W l
p(Ω) to the

boundary Γ , which is a key step in understanding the treatment of boundary
conditions in weak formulations. The following lemma from [Ada75] is the
basic tool.

Lemma 3.3 (Trace lemma). Let Ω be a bounded domain with Lipschitz
boundary Γ . Then there exists a constant c > 0 such that

‖u‖Lp(Γ ) ≤ c‖u‖W 1
p (Ω) for all u ∈ C1(Ω̄).

Lemma 3.3 guarantees the existence of a linear continuous mapping

γ : W 1
p (Ω)→ Lp(Γ )

which is called the trace mapping. The image of W 1
p (Ω) under this mapping

is a subspace of Lp(Γ ) that is a new function space defined on the boundary
Γ . For us the case p = 2 is particularly important; we then obtain

H1/2(Γ ) := {w ∈ L2(Γ ) : there exists a v ∈ H1(Ω) with w = γv }.

It is possible to define a norm on H1/2(Γ ) by

‖w‖H1/2(Γ ) = inf{ ‖v‖H1(Ω) : v ∈ H1(Ω), w = γv }.

The space dual to H1/2(Γ ) is denoted by H−1/2(Γ ), and its norm is given by

‖g‖H−1/2(Γ ) = sup
w∈H1/2(Γ )

|g(w)|
‖w‖H1/2(Γ )

.

The relationship between the spaces H1(Ω) and H1/2(Γ ) allows a character-
ization of the norms in H1/2(Γ ) and H−1/2(Γ ) by means of suitably defined
variational inequalities; see [BF91].

Taking into account the definition of the spaces
o

W l
p(Ω), Lemma 3.3 implies

that
γu = 0 for all u ∈ o

W 1
p (Ω)

and
γDαu = 0 for all u ∈ o

W l
p(Ω) and |α| ≤ l − 1.
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In handling boundary value problems, we usually need not only the norms
‖ · ‖W l

p(Ω) defined by (2.3) but also the associated seminorms

|u|W s
p (Ω) :=

[ ∫
Ω

∑
|α| =s

|[Dαu](x)|pdx

]1/p

.

It is clear that these seminorms can be estimated by the foregoing norms:

|v|W s
p (Ω) ≤ ‖v‖W l

p(Ω for all v ∈W l
p(Ω) and 0 ≤ s ≤ l. (2.11)

Is a converse inequality true (at least for certain v)? Here the following
result plays a fundamental role.

Lemma 3.4. Let Ω ⊂ Rn be a bounded domain. Then there exists a constant
c > 0 such that

‖v‖L2(Ω) ≤ c|v|W 1
2 (Ω) for all v ∈ H1

0 (Ω). (2.12)

Inequality (2.12) is known as the Friedrichs inequality. Once again a proof is
in [Ada75].

Remark 3.5. The smallest constant c in Friedrichs’ inequality can be charac-
terized as the reciprocal of the minimal eigenvalue λ of the problem

−Δu = λu on Ω, u|∂Ω=0.

For parallelepipeds Ω the value of this eigenvalue is known. Furthermore, the
eigenvalue does not increase in value if the domain is enlarged. Consequently
in many cases one can compute satisfactory bounds for the constant in (2.12).

A detailed discussion of the values of constants in many fundamental in-
equalities related to Sobolev spaces can be found in the book [Mik86]. �
From Lemma 3.4 and (2.11) it follows that

c1‖v‖W 1
2 (Ω) ≤ |v|W 1

2 (Ω) ≤ ‖v‖W 1
2 (Ω) for all v ∈ H1

0 (Ω) (2.13)

for some constant c1 > 0. Therefore the definition

‖v‖ := |v|W 1
2 (Ω)

is a new norm on H1
0 (Ω), which is equivalent to the H1 norm. This norm is

often used as the natural norm on H1
0 (Ω). It is induced by the scalar product

(u, v) :=
∫
Ω

∑
|α|=1

DαuDαv dx.

Using this scalar product, the unique solvability of the weak formulation of the
Poisson equation with homogeneous boundary conditions follows immediately
from Riesz’s theorem if the linear functional defined by
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v �→
∫
Ω

fv dx

is continuous on H1
0 (Ω). This is true when f ∈ L2(Ω), for instance.

Based on the following inequalities it is possible ([GGZ74], Lemma 1.36)
to define other norms that are equivalent to ‖ · ‖W 1

2 (Ω):

Lemma 3.6. Let Ω ⊂ Rn be a bounded Lipschitz domain. Assume also that
Ω1 is a subset of Ω with positive measure and Γ1 a subset of Γ with positive
(n− 1)-dimensional measure. Then for u ∈ H1(Ω) one has

‖u‖2L2(Ω) ≤ c

⎧⎨⎩|u|21,Ω +
( ∫

Ω1

u

)2
⎫⎬⎭ ,

‖u‖2L2(Ω) ≤ c

⎧⎨⎩|u|21,Ω +
( ∫

Γ1

u

)2
⎫⎬⎭ .

These types of inequalities are proved for the more general W 1,p(Ω) case in
[GGZ74]. In the special case Ω1 = Ω the first inequality is called the Poincaré
inequality. The second inequality generalizes Friedrichs’ inequality.

To simplify the notation, we shall write in future

|v|l,p,Ω := |v|W l
p(Ω) and |v|l,Ω := |v|W l

2(Ω).

Next we consider the technique of integration by parts and study its ap-
plication to the weak formulation of boundary value problems.

Lemma 3.7 (integration by parts). Let Ω ⊂ Rn be a bounded Lipschitz
domain. Then one has∫

Ω

∂u

∂xi
v dx =

∫
Γ

uv cos(n, ei) ds−
∫
Ω

u
∂v

∂xi
dx

for arbitrary u, v ∈ C1(Ω̄). Here n is the outward-pointing unit vector normal
to Γ and ei is the unit vector in the ith coordinate direction.

Hence one obtains Green’s formula:∫
Ω

Δuv dx =
∫
Γ

∂u

∂n
v ds−

∫
Ω

∇u∇v dx for all u ∈ H2(Ω), v ∈ H1(Ω) (2.14)

—first apply integration by parts to classical differentiable functions then
extend the result to u ∈ H2(Ω) and v ∈ H1(Ω) by a density argument based
on (2.4).

Here and subsequently the term ∇u∇v denotes a scalar product of two
vectors; it could be written more precisely as (∇u)T∇v. In general we tend
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to use the simplified form, returning to the precise form only if the simplified
version could lead to confusion.

The validity of Green’s formula depends strongly on the geometry of Ω.
In general we shall consider only bounded Lipschitz domains so that (2.14)
holds. For its validity on more general domains, see [Wlo87].

Now we resume our exploration of Poisson’s equation with homogeneous
Dirichlet boundary conditions:

−Δu = f in Ω, u|Γ = 0 . (2.15)

Every classical solution u of (2.15) satisfies, as we have seen, the variational
equation ∫

Ω

∇u∇v dx =
∫
Ω

fv dx for all v ∈ H1
0 (Ω). (2.16)

If one defines the mapping a(·, ·) : H1
0 (Ω)×H1

0 (Ω)→ R by

a(u, v) :=
∫
Ω

∇u∇v dx,

then Lemma 3.4 ensures the existence of a constant γ > 0 such that

a(v, v) ≥ γ‖v‖2H1
0 (Ω) for all u, v ∈ H1

0 (Ω).

This inequality is of fundamental importance in proving the existence of a
unique solution u ∈ H1

0 (Ω) of the variational equation (2.16) for each f ∈
L2(Ω). In the next section we shall present a general existence theory for
variational equations and discuss conditions sufficient for guaranteeing that
weak solutions are also classical solutions.

If one reformulates a boundary value problem as a variational equation
in order to define a weak solution, the type of boundary condition plays an
important role. To explain this basic fact, we consider the following example:

−Δu + cu = f in Ω ,
u = g on Γ1 ,

∂u
∂n

+ pu = q on Γ2.
(2.17)

Here Γ1 and Γ2 are subsets of the boundary with Γ1 ∩ Γ2 = ∅, Γ1 ∪ Γ2 = Γ
and the given functions c, f , g, p, q are continuous (say) with c ≥ 0 in Ω. As
usual, multiply the differential equation by an arbitrary function v ∈ H1(Ω),
then integrate over Ω and apply integration by parts to get∫

Ω

(∇u∇v + c uv) dx−
∫
Γ

∂u

∂n
v ds =

∫
Ω

fv dx.

Taking into account the boundary conditions for u we have
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Ω

(∇u∇v + c uv) dx +
∫
Γ2

(pu− q)v ds−
∫
Γ1

∂u

∂n
v ds =

∫
Ω

fv dx.

On Γ1 we have no information about the normal derivative of u. Therefore
we restrict v to lie in V := { v ∈ H1(Ω) : v|Γ1 = 0 }. Then we obtain the
variational equation∫

Ω

(∇u∇v + c uv) dx +
∫
Γ2

(pu− q)v ds =
∫
Ω

fv dx for all v ∈ V . (2.18)

Of course, we require u to satisfy u ∈ H1(Ω) and u|Γ1 = g. The variational
equation (2.18) then defines weak solutions of our example (2.17). If the weak
solution has some additional smoothness, then it is also a classical solution:

Theorem 3.8. Let u ∈ H1(Ω) with u|Γ1 = g be a solution of the variational
equation (2.18). Moreover, let u be smooth: u ∈ C2(Ω̄). Then u is a solution
of the boundary value problem (2.17).

Proof: Taking v|Γ1 = 0 into account, Green’s formula applied to (2.18) yields∫
Ω

(Δu+c u)v dx+
∫
Γ2

(
∂u

∂n
+ pu− q

)
v ds =

∫
Ω

fv dx for all v ∈ V. (2.19)

Because H1
0 (Ω) ⊂ V it follows that∫

Ω

(Δu + c u)v dx =
∫
Ω

fv dx for all v ∈ H1
0 (Ω).

Hence, using a well-known lemma of de la Vallée-Poussin, one obtains

−Δu + cu = f in Ω.

Now (2.19) implies that∫
Γ2

(
∂u

∂n
+ pu− q

)
v ds = 0 for all v ∈ V.

Again we can conclude that

∂u

∂n
+ pu = q on Γ2. (2.20)

The remaining condition u|Γ1 = g is already satisfied by hypothesis. This is
a so-called essential boundary condition that does not affect the variational
equation but must be imposed directly on the solution itself.
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Remark 3.9. In contrast to the essential boundary condition, the condition
(2.20) follows from the variational equation (2.18) so it is not necessary to
impose it explicitly on u in the variational formulation of the problem. Observe
that the weak form of the boundary value problem was influenced by (2.20).
Boundary conditions such as (2.20) are called natural boundary conditions.
�

Remark 3.10. Let A be a positive definite matrix. Consider the differential
equation

−div (A grad u) = f in Ω.

Integration by parts gives

−
∫
Ω

div (A grad u) v dx = −
∫
Γ

n · (A grad u) v ds +
∫
Ω

grad v · (A grad u) dx.

In this case the natural boundary conditions contain the so-called conormal
derivative n · (A grad u) instead of the normal derivative ∂u

∂n
that we met in

the special case of the Laplacian (where A is the identity matrix). �

As we saw in Chapter 2, maximum principles play an important role in
second-order elliptic boundary value problems. Here we mention briefly that
even for weak solutions one can have maximum principles. For instance, the
following weak maximum principle (see [GT83]) holds:

Lemma 3.11. Let Ω ⊂ Rn be a bounded Lipschitz domain. If u ∈ H1
0 (Ω)

satisfies the variational inequality∫
Ω

∇u∇v dx ≥ 0 for all v ∈ H1
0 (Ω) with v ≥ 0,

then u ≥ 0.

Here u ≥ 0 and v ≥ 0 are to be understood in the L2 sense, i.e., almost
everywhere in Ω.

Exercise 3.12. Let Ω = {x ∈ Rn : |xi| < 1 , i = 1, . . . , n }. Prove:
a) The function defined by f(x) = |x1| has on Ω the generalized derivatives

∂f

∂x1
= sign(x1),

∂f

∂xj
= 0 (j �= 1).

b) The function defined by f(x) = sign(x1) does not have a generalized
derivative ∂f/∂x1 in L2.

Exercise 3.13. Prove: If u : Ω → R has the generalized derivatives v =
Dαu ∈ L2(Ω) and v the generalized derivatives w = Dβv ∈ L2(Ω), then
w = Dα+βu.
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Exercise 3.14. Let Ω ⊂ Rn be a bounded domain with 0 ∈ Ω. Prove that
the function defined by u(x) = ||x||σ2 has first-order generalized derivatives in
L2(Ω) if σ = 0 or 2σ + n > 2.

Exercise 3.15. Let Ω = (a, b) ∈ R. Prove that every function u ∈ H1(Ω) is
continuous, and moreover u belongs to the Hölder space C1/2(Ω).

Exercise 3.16. Let Ω = { (x, y) ∈ R2 : x2 + y2 < r2
0 } with r0 < 1 . Deter-

mine if the function

f(x, y) =

(
ln

1√
x2 + y2

)k

, where k < 1/2,

is continuous in Ω. Is f ∈ H1(Ω)?

Exercise 3.17. Consider the space of all continuous functions on the interval
[a, b]. Prove that the norms

||f ||1 = max
x∈[a,b]

|f(x)| and ||f ||2 =
∫ b

a

|f(x)|dx

are not equivalent.

Exercise 3.18. Let Ω ⊂ [a1, b1] × · · · × [an, bn] be a convex domain. Let
v ∈ H1

0 (Ω). Prove the Friedrichs inequality∫
Ω

v2 ≤ γ

∫
Ω

|∇v|2 with γ =
n∑

k=1

(bk − ak)2 .

Exercise 3.19. Let Ω ⊂ Rn. Let u ∈ Hk(Ω) for some integer k. For which
dimensions n does Sobolev’s embedding theorem guarantee that (i) u (ii) ∇u
is continuous?

Exercise 3.20. a) Let Ω = (0, 1) , u(x) = xα. Use this example to show that
it is impossible to improve the continuous embedding H1(Ω) ↪→ C1/2(Ω) to
H1(Ω) ↪→ Cλ(Ω) with λ > 1/2.
b) Investigate for Ω ⊂ R2 whether or not the embedding H1(Ω) ↪→ L∞(Ω)
holds.

Exercise 3.21. Let Ω ⊂ Rn with 0 ∈ Ω. Does the mapping

g �→ 〈f, g〉 = g(0) for g ∈ H1
0 (Ω)

define a continuous linear functional f on H1
0 (Ω)? If yes, determine ||f ||∗.

Exercise 3.22. Consider the boundary value problem

−u′′ = f on (0, 1), u(−1) = u(1) = 0

with f the δ distribution. How one can define the problem correctly in a weak
sense? Determine the exact solution!
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Exercise 3.23. Consider the boundary value problem

−(a(x)u′)′ = 0 on (0, 1), u(−1) = 3 , u(1) = 0

with

a(x) =
{

1 for − 1 ≤ x < 0,
0.5 for 0 ≤ x ≤ 1.

Formulate the related variational equation and solve the problem exactly.

3.3 Variational Equations and Conforming
Approximation

In the previous section we described the relationship between an elliptic
boundary value problem and its variational formulation in the case of the
Poisson equation with homogeneous Dirichlet boundary conditions. Before we
present an abstract framework for the analysis of general variational equa-
tions, we give weak formulations for some other standard model problems.

Let Ω ⊂ R2 with Γ = ∂Ω. We consider, for a given sufficiently smooth
function f , the boundary value problem

∂4

∂x4 u(x, y) + 2 ∂4

∂x2 ∂y2 u(x, y) + ∂4

∂y4 u(x, y) = f(x, y) in Ω

u|Γ = ∂
∂n

u|Γ = 0 .

(3.1)

This problem models the behaviour of a horizontally clamped plate under
some given load distribution. Thus the differential equation in (3.1) is often
called the plate equation. In terms of the Laplacian we have equivalently

Δ2u = f in Ω,

u|Γ = ∂
∂n

u|Γ = 0.

Now we formulate this problem weakly. Taking into account the boundary
conditions, we apply Green’s formula twice to obtain∫

Ω

Δ2u v dx =
∫
Γ

∂

∂n
(Δu) v ds −

∫
Ω

∇(Δu)∇v dx

= −
∫
Γ

Δu
∂v

∂n
ds +

∫
Ω

ΔuΔv dx

=
∫
Ω

ΔuΔv dx for all u ∈ H4(Ω), v ∈ H2
0 (Ω).

Therefore, the weak formulation of the given problem (3.1) reads as follows:
Find u ∈ H2

0 (Ω) such that
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Ω

ΔuΔv dx =
∫
Ω

fv dx for all v ∈ H2
0 (Ω). (3.2)

With the abbreviations V := H2
0 (Ω) and

a(u, v) :=
∫
Ω

ΔuΔv dx, (f, v) :=
∫
Ω

fv dx for all u, v ∈ V,

the variational equation (3.2) can be written in the abstract form

a(u, v) = (f, v) for all v ∈ V.

Using Friedrichs’ inequality one can show that there exists some constant
c > 0 such that

c ‖v‖2H2(Ω) ≤ a(v, v) for all v ∈ H2
0 (Ω).

This property is critical in the general existence theory for the weak solution
of (3.2), as we shall see shortly in the Lax-Milgram lemma.

Remark 3.24. Up to this point in the plate problem, we considered the bound-
ary conditions

u|Γ =
∂

∂n
u|Γ = 0 ,

which correspond to a clamped plate. Both of these conditions are essential
boundary conditions. If instead we study a simply supported plate, whose
boundary conditions are

u|Γ = 0 and Δu|Γ = φ ,

then the standard technique produces the weak formulation

a(u, v) = (f, v) +
∫

Γ

φ
∂v

∂n

with u, v ∈ H2(Ω) ∩H1
0 (Ω). This means that the first boundary condition is

essential but the second is natural. Of course, in practical applications still
other boundary conditions are important and in each case a careful study is
required to classify each condition. �

Our last model problem plays an important role in fluid mechanics. Con-
sider a domain Ω ⊂ Rn for n = 2 or 3 and given functions fi : Ω → R, i =
1, . . . , n. We seek solutions of the following system of partial differential equa-
tions with unknowns ui : Ω → R for i = 1, . . . , n and p : Ω → R:

−Δui + ∂p
∂xi

= fi in Ω, i = 1, . . . , n,

n∑
i=1

∂ui
∂xi

= 0,

ui|Γ = 0, i = 1, . . . , n.

(3.3)
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This is the so-called Stokes problem. In fluid mechanics, the quantities ui

denote the components of the velocity field while p represents the pressure.
Let u = (u1, .., un) denote a vector-valued function. Let us choose the

function space

V = {u ∈ H1
0 (Ω)n : divu = 0 } ⊂ H(div;Ω).

Then applying our standard technique (multiplication, integration, integration
by parts) and adding all the resulting equations yields the following weak
formulation of (3.3):
Find some u ∈ V with

n∑
i=1

∫
Ω

∇ui∇vi dx =
n∑

i=1

∫
Ω

fivi dx for all v ∈ V. (3.4)

It is remarkable that the pressure p has disappeared: integration by parts in
the corresponding term gives 0 because div v = 0. In the theory of mixed
methods the pressure can be interpreted as a dual quantity; see Chapter 4.6.
Alternative weak formulations of the Stokes problem are also possible.

If we introduce

a(u, v) :=
n∑

i=1

∫
Ω

∇ui∇vi dx and f(v) :=
n∑

i=1

∫
Ω

fivi dx for all u, v ∈ V,

then the weak formulation (3.4) of the Stokes problem can also be written in
the form

a(u, v) = f(v) for all v ∈ V. (3.5)

Now we are ready to present an abstract theory encompassing (2.16), (3.2)
and (3.5). The abstract setting allows us to characterize clearly those proper-
ties of variational equations that guarantee the existence of a unique solution.
Then in every concrete situation one has only to check these properties.

Let V be a given Hilbert space with scalar product (·, ·) and corresponding
norm ‖ · ‖. Furthermore, let there be given a mapping a : V × V → R with
the following properties:

i) for arbitrary u ∈ V , both a(u, ·) and a(·, u) define linear functionals on V ;
ii) there exists a constant M > 0 such that

|a(u, v)| ≤ M‖u‖‖v‖ for all u, v ∈ V ;

iii) there exists a constant γ > 0 such that

a(u, u) ≥ γ‖u‖2 for all u ∈ V.

A mapping a(·, ·) satisfying i) and ii) is called a continuous bilinear form on
V . Property ii) guarantees the boundedness of the bilinear form. The essential
property iii) is called V -ellipticity.

The existence of solutions of variational equations is ensured by the
following fundamental result.
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Lemma 3.25 (Lax-Milgram). Let a(·, ·) : V × V → R be a continuous,
V -elliptic bilinear form. Then for each f ∈ V ∗ the variational equation

a(u, v) = f(v) for all v ∈ V (3.6)

has a unique solution u ∈ V . Furthermore, the a priori estimate

‖u‖ ≤ 1
γ
‖f‖∗. (3.7)

is valid.

Proof: First we show that the solution of (3.6) is unique. Suppose that
u ∈ V and ũ ∈ V are both solutions. Then the linearity of a(·, v) implies that

a(ũ− u, v) = 0 for all v ∈ V.

Choosing v := ũ−u we get a(v, v) = 0, which by V -ellipticity implies that v =
0, as desired. Note that V -ellipticity, however, is stronger than the condition
“a(v, v) = 0 implies v = 0”.

To prove the existence of a solution to (3.6) we use Banach’s fixed-point
theorem. Therefore, we need to choose a contractive mapping that has as a
fixed point a solution of (3.6).

For each y ∈ V the assumptions i) and ii) for the bilinear form guarantee
that

a(y, ·)− f ∈ V ∗.

Hence, Riesz’s theorem ensures the existence of a solution z ∈ V of

(z, v) = (y, v)− r[a(y, v)− f(v)] for all v ∈ V (3.8)

for each real r > 0. Now we define the mapping Tr : V → V by

Try := z

and study its properties—especially contractivity. The relation (3.8) implies

(Try − Trw, v) = (y − w, v)− r a(y − w, v) for all v, w ∈ V. (3.9)

Given p ∈ V , by applying Riesz’s theorem again we define an auxiliary linear
operator S : V → V by

(Sp, v) = a(p, v) for all v ∈ V. (3.10)

Property ii) of the bilinear form implies that

‖Sp‖ ≤ M ‖p‖ for all p ∈ V. (3.11)

The definition of the operator S means that (3.9) can be rewritten as
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(Try − Trw, v) = (y − w − rS(y − w), v) for all v, w ∈ V.

This allows us to investigate whether Tr is contractive:

‖Try − Trw‖2 = (Try − Trw, Try − Trw)

= (y − w − rS(y − w), y − w − rS(y − w))

= ‖y − w‖2 − 2r(S(y − w), y − w) + r2(S(y − w), S(y − w)).

By (3.10) and (3.11) this yields

‖Try − Trw‖2 ≤ ‖y − w‖2 − 2ra(y − w, y − w) + r2M2‖y − w‖2.

Finally, invoking the V -ellipticity of a(·, ·) we get

‖Try − Trw‖2 ≤ (1− 2rγ + r2M2)‖y − w‖2 for all y, w ∈ V.

Consequently the operator Tr : V → V is contractive if 0 < r < 2γ/M2.
Choose r = γ/M2. Now Banach’s fixed-point theorem tells us that there

exists u ∈ V with Tru = u. Since r > 0, the definition (3.8) of Tr then implies
that

a(u, v) = f(v) for all v ∈ V. (3.12)

The a priori estimate (3.7) is an immediate consequence of the ellipticity
of a(·, ·): choose v = u in (3.6).

We remark that in the case where a(·, ·) is symmetric, the existence of
u in the Lax-Milgram lemma follows directly from Riesz’s theorem. In the
symmetric case, moreover, there is a close relationship between variational
equations and variational problems:

Lemma 3.26. In addition to the assumptions of Lemma 3.25, suppose that
a(·, ·) is symmetric, i.e.,

a(v, w) = a(w, v) for all v, w ∈ V.

Then u ∈ V is a solution of the variational problem

min
v∈V

J(v), where J(v) :=
1
2
a(v, v)− f(v) for v ∈ V, (3.13)

if and only if u is a solution of the variational equation (3.6).

Proof: The symmetry of the bilinear form a(·, ·) implies that

a(w,w)− a(u, u) = a(w + u,w − u)

= 2a(u,w − u) + a(w − u,w − u) for u,w ∈ V.
(3.14)
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First we shall show that (3.6) is a sufficient condition for the optimality of u
in the variational problem (3.13). From (3.14) one has

J(w) = 1
2a(w,w)− f(w)

= 1
2a(u, u)− f(u) + a(u,w − u)

− f(w − u) + 1
2a(w − u,w − u).

(3.15)

Taking v := w − u in (3.6) and using property iii) of the bilinear form a(·, ·)
leads to

J(w) ≥ J(u) for all w ∈ V ;

that is, u is a solution of the variational problem (3.13).

We prove the converse implication indirectly. Given some u ∈ V , assume
that there exists v ∈ V with

a(u, v) �= f(v).

Because V is a linear space we can assume without loss of generality that in
fact

a(u, v) < f(v). (3.16)

Now set w := u + tv with a real parameter t > 0.
Definition (3.13) implies, using standard properties of a(·, ·) and f , that

J(w) = J(u) + t[a(u, v)− f(v)] + t2
1
2
a(v, v).

By (3.16) we can choose t > 0 in such a way that

J(w) < J(u).

That is, u cannot be an optimal solution of the variational problem. Conse-
quently (3.6) is a necessary optimality condition for the variational problem
(3.13).

Lemma 3.26 can be applied to our familiar example of the Poisson equation
with homogeneous Dirichlet boundary conditions:

−Δu = f on Ω, u|Γ = 0.

We proved already in Section 3.1 that the corresponding bilinear form is V -
elliptic:

a(v, v) ≥ γ‖v‖21.
The boundedness of the bilinear form is obvious. Therefore, the Lax-Milgram
lemma tells us that there exists a unique weak solution if we assume only that



148 3 Weak Solutions

f ∈ H−1(Ω). Because the bilinear form is symmetric, this weak solution is
also a solution of the variational problem

min
v∈H1

0 (Ω)

[
1
2

∫
Ω

(∇v)2 − f(v)
]

.

Next we study the nonsymmetric convection-diffusion problem

−Δu + b · ∇u + cu = f on Ω, u|Γ = 0.

The associated bilinear form

a(u, v) := (∇u,∇v) + (b · ∇u + c u, v)

is not necessarily H1
0 -elliptic. Integration by parts of the term (b ·∇v, v) shows

that the condition
c− 1

2
div b ≥ 0

is sufficient for H1
0 -ellipticity.

Remark 3.27 (Neumann boundary conditions). Consider the boundary value
problem

−Δu + cu = f on Ω,
∂u

∂n
|Γ = 0.

If c(x) ≥ c0 > 0, then the bilinear form

a(u, v) := (∇u,∇v) + (c u, v)

is V -elliptic on V = H1(Ω). The Lax-Milgram lemma can now be readily
applied to the weak formulation of the problem, which shows that it has a
unique solution in H1(Ω).

If instead c = 0, then any classical solution of the Neumann problem above
has the property that adding a constant to the solution yields a new solution.
How does one handle the weak formulation in this case? Is it possible to apply
the Lax-Milgram lemma?

To deal with this case we set V = {v ∈ H1(Ω) :
∫

Γ
v = 0}. Then

Lemma 3.6 implies that the bilinear form a(u, v) = (∇u,∇v) is V -elliptic
with respect to the space V . It is easy to see that the bilinear form is bounded
on V × V . Therefore, surprisingly, our weak formulation for the Neumann
problem with c = 0 is

a(u, v) = (f, v) for all v ∈ V, (3.17)

and this equation has a unique solution u ∈ V for each f ∈ L2(Ω).
But in the case c = 0 if one wants for smooth u to return from the varia-

tional equation (3.17) to the classical formulation of the problem, then (3.17)
must be valid for all v ∈ H1(Ω). On choosing v = 1, this implies the condition
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Ω

f = 0.

In this way we get the well-known solvability condition for classical solutions,
which alternatively follows from the classical formulation by invoking Gauss’s
integral theorem. A detailed discussion of the consequences for the finite ele-
ment method applied to this case can be found in [17]. �

Classical solutions of boundary value problems are also weak solutions. For
the converse implication, weak solutions must have sufficient smoothness to
be classical solutions. We now begin to discuss regularity theorems that give
sufficient conditions for additional regularity of weak solutions. Embedding
theorems are also useful in deducing smoothness in the classical sense from
smoothness in Sobolev spaces.

From [Gri85] we quote

Lemma 3.28. Let Ω be a domain with Ck boundary. If f ∈ Hk(Ω) for some
k ≥ 0, then the solution u of (2.16) has the regularity property

u ∈ Hk+2(Ω) ∩H1
0 (Ω).

Furthermore, there exists a constant C such that

‖u‖k+2 ≤ C‖f‖k .

A result of this type—where a certain regularity of f yields a higher degree
of regularity in u—is called a shift theorem.

Corollary 3.29. Let Ω ⊂ Rn have Ck boundary. Let f ∈ Hk(Ω) with k > n
2 .

Then the solution u of (2.16) satisfies

u ∈ C2(Ω̄) ∩H1
0 (Ω).

Thus u is a solution of the boundary value problem (2.15) in the classical
sense.

Proof: Lemma 3.28 implies that u ∈ Hk+2(Ω). Then the continuous embed-
ding W k+2

2 (Ω) ↪→ C2(Ω̄) for k > n/2 yields the result.

The assumption of Lemma 3.28 that the domain Ω possesses a Ck bound-
ary is very restrictive, for in many practical examples the domain has corners.
Thus it is more realistic to assume only that the boundary is piecewise smooth.

What regularity does the solution have at a corner of the domain? To
answer this question, we shall study the Laplace equation in the model domain

Ω =
{(

x
y

)
∈ R2 : x = r cos ϕ, y = r sin ϕ, r ∈ (0, 1), ϕ ∈ (0, ω)

}
(3.18)
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Figure 3.1 Example: corner singularity

for some parameter ω ∈ (0, 2π); see Figure 3.1. This domain has a piecewise

smooth boundary Γ with corners at the points
(

0
0

)
,

(
1
0

)
and

(
cos ω
sin ω

)
.

We decompose Γ into the three smooth pieces

Γ1 =
{(

x
y

)
: x ∈ [0, 1], y = 0

}
,

Γ2 =
{(

x
y

)
: x = r cos ω, y = r sin ω, r ∈ (0, 1)

}
,

Γ3 =
{(

x
y

)
: x = cos ϕ, y = sinϕ, ϕ ∈ (0, ω]

}
.

Then Γ = Γ1 ∪ Γ2 ∪ Γ3. Now consider the following Dirichlet problem for the
Laplacian:

−Δu = 0 in Ω,
u|Γ1∪Γ2 = 0,

u|Γ3 = sin(π
ωϕ).

(3.19)

The problem has the unique solution

u(r, ϕ) = rπ/ω sin
(π

ω
ϕ
)

.

Consequently u ∈ H2(Ω) if and only if ω ∈ (0, π]. We infer that the solutions of
Dirichlet problems in non-convex domains do not in general have the regularity
property u ∈ H2(Ω).

Next, consider instead of (3.19) the boundary value problem
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−Δu = 0 in Ω,
u|Γ1 = 0,

∂u
∂n
|Γ2 = 0,

u|Γ3 = sin( π
2ωϕ).

(3.20)

Its solution is
u(r, ϕ) = rπ/2ω sin

( π

2ω
ϕ
)

.

For this problem with mixed boundary conditions one has u �∈ H2(Ω) if
ω > π/2. In the case ω = π, for instance, the solution has a corner singularity
of the type r1/2.

These examples show clearly that the regularity of the solution of a bound-
ary value problem depends not only on the smoothness of the data but also
on the geometry of the domain and on the type of boundary conditions. It is
important to remember this dependence to guard against proving convergence
results for discretization methods under unrealistic assumptions. Lemma 3.28,
for instance, is powerful and elegant but it does treat an ideal situation because
of the smoothness of the boundary and the homogeneous Dirichlet boundary
conditions.

In the books of Dauge [Dau88] and Grisvard [Gri85, Gri92] the reader
will find many detailed results regarding the behaviour of solutions of elliptic
boundary value problems in domains with corners. We shall quote only the
following theorem, which ensures H2-regularity for convex domains.

Theorem 3.30. Let Ω be a convex domain. Set V = H1
0 (Ω). Let a(·, ·) be a

V -elliptic bilinear form that is generated by a second-order elliptic differential
operator with smooth coefficients. Then for each f ∈ L2(Ω), the solution u of
the Dirichlet problem

a(u, v) = (f, v) for all v ∈ V

lies in the space H2(Ω). Furthermore, there exists a constant C such that

‖u‖2 ≤ C‖f‖0 .

A similar result holds for elliptic second-order boundary value problems in
convex domains if the boundary conditions are of a different type—but not
mixed as the example above has shown us. For fourth-order boundary value
problems, however, a convex domain is not sufficient in general to guarantee
u ∈ H4(Ω).

Now we start to discuss the approximation of solutions of variational equa-
tions.

First we describe Ritz’s method. It is a technique for approximately solving
variational problems such as (3.13). Instead of solving the given problem in
the space V , which is in general a infinite-dimensional space, one chooses a
finite-dimensional subspace Vh ⊂ V and solves
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min
vh∈Vh

J(vh), where J(vh) =
1
2
a(vh, vh)− f(vh). (3.21)

As Vh is finite-dimensional, it is a closed subspace of V and therefore a Hilbert
space endowed with the same scalar product (·, ·). Consequently the bilinear
form a(·, ·) has the same properties on Vh as on V . Thus our abstract theory
applies to the problem (3.21). Hence (3.21) has a unique solution uh ∈ Vh,
and uh satisfies the necessary and sufficient optimality condition

a(uh, vh) = f(vh) for all vh ∈ Vh. (3.22)

Ritz’s method assumes that the bilinear form a(·, ·) is symmetric. Never-
theless in the nonsymmetric case it is an obvious idea to go directly from the
variational equation

a(u, v) = f(v) for all v ∈ V

to its finite-dimensional counterpart (3.22). The discretization of the vari-
ational equation by (3.22) is called the Galerkin method . Because in the
symmetric case the Ritz method and the Galerkin method coincide, we also
use the terminology Ritz-Galerkin method.

The following result, often called Cea’s lemma, is the basis for most con-
vergence results for Ritz-Galerkin methods:

Theorem 3.31 (Cea). Let a(·, ·) be a continuous, V -elliptic bilinear form.
Then for each f ∈ V ∗ the continuous problem (3.6) has a unique solution
u ∈ V and the discrete problem (3.22) has a unique solution uh ∈ Vh. The
error u− uh satisfies the inequality

‖u− uh‖ ≤
M

γ
inf

vh∈Vh

‖u− vh‖. (3.23)

Proof: Existence and uniqueness of u and uh are immediate consequences of
the Lax-Milgram lemma.

As Vh ⊂ V , it follows from (3.6) that

a(u, vh) = f(vh) for all vh ∈ Vh.

By the linearity of the bilinear form and (3.22) we then get

a(u− uh, vh) = 0 for all vh ∈ Vh.

This identity and linearity yield

a(u− uh, u− uh) = a(u− uh, u− vh) for all vh ∈ Vh.

The V -ellipticity and boundedness of a(·, ·) now imply

γ‖u− uh‖2 ≤ M‖u− uh‖‖u− vh‖ for all vh ∈ Vh.
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The estimate (3.23) follows since vh is an arbitrary element of Vh .

The property
a(u− uh, vh) = 0 for all vh ∈ Vh

that we met in the above proof tells us that the error u−uh is “orthogonal” in
a certain sense to the space Vh of ansatz functions. Galerkin used this idea in
formulating his method in 1915. We call the property Galerkin orthogonality.

Remark 3.32. Cea’s lemma relates the discretization error to the best approx-
imation error

inf
vh∈Vh

‖u− vh‖. (3.24)

Because the two errors differ only by a fixed multiplicative constant, the Ritz-
Galerkin method is described as quasi-optimal.

If as (say) h→ 0 the best approximation error goes to zero, then it follows
that

lim
h→0
‖u− uh‖ = 0.

It is often difficult to compute the best approximation error. Then we
choose an easily-computed projector Πh : V → Vh, e.g. an interpolation
operator, and estimate the approximation error by

inf
vh∈Vh

‖u− vh‖ ≤ ‖u−Πhu‖.

In Section 4.4 we shall estimate ‖u − Πhu‖ explicitly for specially chosen
spaces Vh used in finite element methods. �

Remark 3.33. If the bilinear form a(·, ·) is symmetric, then instead of (3.23)
one can prove that

‖u− uh‖ ≤
√

M

γ
inf

vh∈Vh

‖u− vh‖.

�

Remark 3.34. The assumption that Vh ⊂ V guarantees that certain properties
valid on V remain valid on the finite-dimensional space Vh. If we do not
require Vh ⊂ V , then we have to overcome some technical difficulties (see
Chapter 4). Methods with Vh ⊂ V that use the same bilinear form a(·, ·)
and functional f(·) in both the continuous and discrete problems are called
conforming methods. �

Remark 3.35. For the practical implementation of the Galerkin method one
needs a suitably chosen space of ansatz functions Vh ⊂ V and one must
compute a(w, v) and f(v) for given v, w ∈ Vh. The exact computation of the
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integrals involved is often impossible, so quadrature formulas are used. But
the introduction of such formulas is equivalent to changing a(·, ·) and f(·), so
it makes the method nonconforming; see Chapter 4. �

Remark 3.36. The dimension of Vh is finite. Thus this space has a basis, i.e.,
a finite number of linearly independent functions ϕi ∈ Vh, for i = 1, . . . , N ,
that span Vh:

Vh =

{
v : v(x) =

N∑
i=1

diϕi(x)

}
.

Because a(·, ·) and f(·) are linear, the relation (3.22) is equivalent to

a(uh, ϕi) = f(ϕi), i = 1, . . . , N.

Writing the unknown uh ∈ Vh as

uh(x) =
N∑

j=1

sjϕj(x), x ∈ Ω,

the unknown coefficients sj ∈ R (j = 1, . . . , N) satisfy the linear system of
equations

N∑
j=1

a(ϕj , ϕi)sj = f(ϕi), i = 1, . . . , N. (3.25)

We call the system (3.25) the Galerkin equations. In Chapter 8 we shall discuss
its properties in detail, including practical effective methods for its solution.
For the moment we remark only that the V -ellipticity of a(·, ·) implies that
the coefficient matrix of (3.25) is invertible: let z = (z1, . . . , zN ) ∈ RN be a
solution of the homogeneous system

N∑
j=1

a(ϕj , ϕi)zj = 0, i = 1, . . . , N. (3.26)

Then
N∑

i=1

N∑
j=1

a(ϕj , ϕi)zjzi = 0.

By the linearity of a(·, ·) this is the same as

a

⎛⎝ N∑
j=1

zjϕj ,

N∑
i=1

ziϕi

⎞⎠ = 0,

which by V -ellipticity forces

N∑
j=1

zjϕj = 0.
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Because the functions ϕj are linearly independent, we get z = 0. That is, the
homogeneous system (3.26) has only the trivial solution. Consequently the
coefficient matrix of (3.25) is nonsingular. �

In the derivation of the Galerkin equations (3.25) we used the same basis
functions {ϕi}Ni=1 of Vh for both the ansatz and the test functions. This guar-
antees that the stiffness matrix Ah = (aij) = (a(ϕj , ϕi)) has nice properties;
in the case of a symmetric bilinear form the stiffness matrix is symmetric and
positive definite.

Alternatively, one can use different spaces Vh and Wh for the ansatz and
the test functions, but they must have the same dimension. Let us denote by
{ϕi}Ni=1 and {ψi}Ni=1 the basis functions of Vh and Wh, i.e.,

Vh = span{ϕi}Ni=1 , Wh = span{ψi}Ni=1 .

Setting

uh(x) =
N∑

j=1

sj ϕj(x),

the discrete variational equation

a(uh, vh) = f(vh) for all vh ∈Wh (3.27)

is equivalent to

N∑
j=1

a(ϕj , ψi) sj = f(ψi), i = 1, . . . , N. (3.28)

This generalization of the Galerkin method, where the ansatz functions differ
from the test functions, is called the Petrov-Galerkin method .

One could choose Vh and Wh with the aim of imposing certain properties
on the discrete problem (3.28), but Petrov-Galerkin methods are more usually
the result of a weak formulation that is based on different ansatz and test
spaces: see the next Section. For instance, they are often used in the treatment
of first-order hyperbolic problems and singularly perturbed problems.

Setting J(v) = 1
2a(v, v)− f(v), here is a summary of our basic discretiza-

tions for variational equations:
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variational equation

a(u, v) = f(v)

for all v ∈ V

variational problem

min
v∈V

J(v)

Galerkin method

a(uh, vh) = f(vh)

for all vh ∈ Vh

Ritz method

min
vh∈Vh

J(vh)

Galerkin equations

N∑
j=1

a(ϕj , ϕi)sj = f(ϕi)

i = 1, . . . , N

Petrov-Galerkin
equations

N∑
j=1

a(ϕj , ψi)sj = f(ψi)

i = 1, . . . , N

� �

� �

⇐⇒
by

symmetry

⇐⇒
by

symmetry

Before continuing our study of the properties of the Ritz-Galerkin method,
we illustrate it by some simple examples.

Example 3.37. Let us study the two-point boundary value problem

−u′′ = f in (0, 1),
u(0) = u(1) = 0.

(3.29)

We choose V = H1
0 (0, 1). As the Dirichlet boundary conditions are homoge-

neous, integration by parts generates the bilinear form
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a(u, v) =

1∫
0

u′(x)v′(x) dx. (3.30)

Next we choose as ansatz functions

ϕj(x) = sin(jπx), j = 1, . . . , N,

and set h := 1/N . Then Vh ⊂ V is defined by

Vh := span{ϕj}Nj=1 :=
{

v : v(x) =
N∑

j=1

cjϕj(x)
}

.

It is possible to show (see, e.g., [Rek80]) that

lim
h→0

[
inf

v∈Vh

‖u− v‖
]

= 0

for any given u ∈ V . The estimate (3.23) proves convergence of the Galerkin
method in this case. Now

a(ϕi, ϕj) = π2
1∫
0

ij cos(iπx) cos(jπx) dx

=
{

π2j2/2 if i = j,
0 if i �= j.

Setting

qi :=

1∫
0

f(x)ϕi(x) dx,

the solution of the Galerkin equations (3.25) is easily seen to be

sj =
2qj

π2j2
, j = 1, . . . , N. (3.31)

The Galerkin approximation uh for the solution of (3.22) is then

uh(x) =
N∑

j=1

sj sin(jπx).

Why was it possible to derive an explicit formula for the Galerkin approxi-
mation? The reason is that our ansatz functions were the eigenfunctions of the
differential operator of (3.29). This is an exceptional situation, since in general
the differential operator’s eigenfunctions are not known. Consequently, we do
not usually have the orthogonality relation

a(ϕi, ϕj) = 0 for i �= j.

�
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Example 3.38. Let us modify problem (3.29) by considering instead the
problem

−u′′ = f in (0, 1),
u(0) = u′(1) = 0. (3.32)

The condition u′(1) = 0 is a natural boundary condition. In the weak for-

mulation we get a(u, v) =
1∫
0

u′(x)v′(x) dx as before but now the underlying

function space is
V = { v ∈ H1(0, 1) : v(0) = 0}.

We choose Vh to be the polynomial subspace

Vh = span
{

1
i
xi

}N

i=1

. (3.33)

The Galerkin method generates a linear system of equations

As = b (3.34)

for the unknown coefficients si ∈ R, i = 1, . . . , N , in the representation

uh(x) =
N∑

i=1

si

i
xi.

The entries in the coefficient matrix A = (aij) are

aij = a(ϕj , ϕi) =
1

i + j − 1
, i, j = 1, . . . , N.

This particular matrix A is called the Hilbert matrix. It is well known to be
extremely ill-conditioned. For example, when N = 10 the condition number
cond(A) is approximately 1013.

The example reveals that the choice of the ansatz functions is very
important—the Galerkin method with ansatz (3.33) for the boundary value
problem (3.37) is impracticable because the linear system generated is numer-
ically unstable and cannot be solved satisfactorily owing to rounding errors.
�

Example 3.39. Consider again the boundary value problem (3.29) with V =
H1

0 (0, 1). Now we choose the discrete space Vh = span{ϕj}Nj=1 to be the span
of the piecewise linear functions

ϕj(x) =

⎧⎪⎪⎨⎪⎪⎩
x− xj−1

h
if x ∈ (xj−1, xj ],

xj+1 − x
h

if x ∈ (xj , xj+1),
0 otherwise.

(3.35)
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where j = 1, . . . , N − 1. Here {xj}Nj=0 is an equidistant mesh on the given
interval (0, 1), i.e., xj = j · h for j = 0, 1, . . . , N with h = 1/N . The best
approximation error (3.24) from this discrete space will be studied in detail
in Chapter 4.

From (3.30) and (3.35) it follows that

a(ϕi, ϕj) =

⎧⎪⎨⎪⎩
2
h

if i = j,

− 1
h

if |i− j| = 1,
0 otherwise.

(3.36)

The Galerkin equations (3.23) yield in this case the linear tridiagonal system

−si−1 + 2si − si+1 = h
1∫
0

f(x)ϕi(x) dx , i = 1, . . . , N − 1,

s0 = sN = 0,
(3.37)

for the unknown coefficients si in the representation uh(x) =
N−1∑
i=1

siϕi(x)

of the approximate solution. Because ϕi(xj) = δij , we have the important
property si = uh(xi) for all i.

For smooth f there exists a constant L such that∣∣∣∣∣∣ f(xi)−
1
h

1∫
0

f(x)ϕi(x) dx

∣∣∣∣∣∣ ≤ 2
3

Lh2 for i = 1, . . . , N − 1.

This observation reveals the affinity of (3.37) with the standard central differ-
ence scheme for the boundary value problem (3.29). More precisely, (3.37) is a
difference scheme where each function value f(xi) is replaced by the integral

mean 1
h

1∫
0

f(x)ϕi(x) dx. �

We hope that the examples discussed above make clear the importance of
choosing a good discrete space Vh in the Galerkin method.

The finite element method, which we shall discuss in great detail in Chap-
ter 4, generalizes the choice of ansatz functions in Example 3.39: one uses
ansatz functions—often piecewise polynomials—with a relatively small sup-
port

suppϕi := clRn{x ∈ Ω : ϕi(x) �= 0 },
and one aims to ensure that the quantity

N∑
i=1

card{ j ∈ {1, ..., N} : (suppϕi ∩ suppϕj) �= ∅ }

is not too large since it is an upper bound for the number of nonzero elements
in the stiffness matrix A = (a(ϕj , ϕi))N

i,j=1 of the Galerkin system (3.25).
Let us go through the details of the method for a simple example in 2D:
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Example 3.40. Let Ω = (0, 1) × (0, 1) ⊂ R2. Consider the boundary value
problem

−Δu = f in Ω,
u|Γ = 0. (3.38)

We choose V = H1
0 (Ω) for the weak formulation and decompose Ω into a

uniform triangular mesh as in Figure 3.2:
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Figure 3.2 uniform triangular mesh

The decomposition of Ω is generated by a uniform mesh of mesh size
h = 1/N in each of the coordinate directions ξ and η, then the resulting
squares are bisected by drawing diagonals as in Figure 3.2.

Denote the inner mesh points by xi =
(

ξi

ηi

)
for i = 1, . . . , M with M =

(N − 1)2, and the points on the boundary by xi for i = M + 1, . . . , N2.
Analogously to Example 3.39 we define the piecewise linear ansatz functions
ϕi ∈ C(Ω) indirectly by the property

ϕi(xj) := δij , i = 1, . . . , M, j = 1, . . . , N. (3.39)

Then for the support of each basis function ϕi we have

supp ϕi =
{(

ξ
η

)
∈ Ω̄ : |ξ − ξi|+ |η − ηi|+ |ξ − η − ξi + ηi| ≤ 2h

}
.

Using the bilinear form

a(u, v) =
∫
Ω

∇u∇v dx,

the Galerkin method generates the linear system
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As = b (3.40)

with stiffness matrix A = (aij)M
i,j=1 and right-hand side vector b = (bi)M

i=1.
A direct computation yields

aij =

⎧⎨⎩ 4 if i = j,
−1 if |ξi − ξj |+ |ηi − ηj | = h,

0 otherwise,

and
bi =

∫
Ω

f(x)ϕi(x) dx.

The small support of each basis function results in only five nonzero elements
in each row of the stiffness matrix. Similarly to Example 3.39, we recognize the
affinity of this method with the five-point difference scheme for the boundary
value problem (3.38) that appeared in Chapter 2. �

The examples and model problems we have just studied, though they
are relatively simple, nevertheless demonstrate some essential features of the
Galerkin method:

• It is necessary to choose a discrete space that has good approximation
properties and generates linear systems that can be solved efficiently.

• When using piecewise-defined ansatz functions one has to ensure that the
discrete space satisfies Vh ⊂ V . As we shall see, this is not a problem for
elliptic second-order problems but difficulties can arise with, e.g., fourth-
order problems where globally smooth functions are needed and for the
Stokes problem where some care is needed to satisfy the divergence con-
dition.

• The computation of the stiffness matrix A = (aij)ij with aij = a(ϕj , ϕi)
and the vector b of the Galerkin equations both require, in general, the
application of numerical integration.

These and other requirements have lead to intensive work on several man-
ifestations of the Galerkin method. The most popular variants are spec-
tral methods, where (usually) orthogonal polynomials are used as ansatz
functions—for an excellent overview of spectral methods see [QV94]and the
recent [CHQZ06]—and the finite element method where splines as used as
ansatz functions. In Chapter 4 we shall examine the finite element method
in detail; as well as presenting the basic facts and techniques, we also discuss
advances in the method and its practical implementation.

Exercise 3.41. Approximately solve the boundary value problem

Lu := u′′ − (1 + x2)u = 1 on (−1, 1), u(−1) = u(1) = 0,

using the ansatz
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ũ(x) = c1ϕ1(x) + c2ϕ2(x) with ϕ1(x) = 1− x2 , ϕ2(x) = 1− x4.

Determine c1 and c2

a) by means of the Ritz-Galerkin technique;
b) using the “Galerkin equations”

(Lũ− 1, ϕ1) = 0, (Lũ− 1, ϕ2) = 0;

c) by computing

min
ũ

∫ 1

−1

[
(ũ′)2 + (1 + x2)ũ2 + 2ũ

]
dx.

Exercise 3.42. Consider the boundary value problem

−�u(x, y) = π2 cos πx in Ω = (0, 1)× (0, 1) ,

∂u

∂n
= 0 on ∂Ω .

a) Construct the weak formulation and compute a Ritz-Galerkin approxima-
tion ũ using the basis

ϕ1(x, y) = x− 1/2 , ϕ2(x, y) = (x− 1/2)3 .

b) Verify that the problem formulated in a) has a unique solution in

W =
{

v ∈ H1(Ω) :
∫

Ω

v = 0
}

and that ũ ∈W .
c) Verify that the problem formulated in a) does not have a unique classical
solution in C2(Ω). Determine the solution u in C2(Ω) ∩W . For the approxi-
mation ũ, determine
– the pointwise error at x = 0.25
– the defect (i.e., amount by which it is in error) in the differential equation

at x = 0.25
– the defect in the boundary condition at x = 0.

Exercise 3.43. Let Ω = { (x, y) ∈ R2 : x > 0, y > 0, x + y < 1 }. Approxi-
mately determine the minimal eigenvalue in the eigenvalue problem

�u + λu = 0 inΩ , u = 0 on ∂Ω

by using the ansatz function ũ(x, y) = xy(1 − x − y) and computing λ̃ from
the Galerkin orthogonality property∫

Ω

(�ũ + λ̃ũ)ũ = 0.
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Exercise 3.44. Let Ω ⊂ RN be a bounded domain.
a) Verify that

||u||2Ω,c =
∫

Ω

[|grad u|2 + c(x)u2]dx

defines a norm on V = H1
0 (Ω) if the function c ∈ L∞(Ω) is nonnegative al-

most everywhere.
b) Prove the coercivity over V of the bilinear form associated with the Lapla-
cian and discuss the dependence of the coercivity constant on the norm used.

In the remaining sections of this chapter we shall present some generaliza-
tions of the earlier theory that include certain nonlinear features.

3.4 Weakening V-ellipticity

In Section 3.3 we investigated elliptic variational equations and used the
Lax-Milgram lemma to ensure existence and uniqueness of solutions for both
the continuous problem and its conforming Galerkin approximation. The V -
ellipticity of the underlying bilinear form a(·, ·) was a key ingredient in the
proofs of the Lax-Milgram and Cea lemmas.

In the present section we weaken the V -ellipticity assumption. This is
important, for example, when analysing finite element methods for first-order
hyperbolic problems or mixed finite element methods.

First we study variational equations that satisfy some stability condition
and hence derive results similar to the Lax-Milgram lemma.

Let V be a Hilbert space and a : V × V → R a continuous bilinear form.
Then there exists a constant M > 0 such that

|a(u, v)| ≤ M ‖u‖ ‖v‖ for all u, v ∈ V. (4.1)

Now we assume that the variational equation

a(u, v) = f(v) for all v ∈ V (4.2)

has for each f ∈ V ∗ a solution u ∈ V that satisfies the stability condition

‖u‖ ≤ σ ‖f‖∗ (4.3)

for some constant σ > 0. This stability condition implies uniqueness of the
solution of the variational equation (4.2): for if two elements ũ, û ∈ V are
solutions of (4.2), then the linearity of a(·, ·) leads to

a(ũ− û, v) = 0 for all v ∈ V,

and now the estimate (4.3) yields

0 ≤ ‖ũ− û‖ ≤ (σ) (0) ,
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whence ũ = û.
Consider a conforming Ritz-Galerkin approximation of the problem (4.2).

Thus with Vh ⊂ V we seek uh ∈ Vh such that

a(uh, vh) = f(vh) for all vh ∈ Vh. (4.4)

Analogously to the continuous problem, we require that for each f ∈ V ∗ the
discrete problem (4.4) is solvable and that its solution uh ∈ Vh satisfies

‖uh‖ ≤ σh ‖f‖∗,h (4.5)

for some constant σh > 0. Here we used

‖f‖∗,h := sup
vh∈Vh

|f(vh)|
‖vh‖

.

Then, similarly to Cea’s lemma, we obtain:

Lemma 3.45. Assume that the bilinear form a(·, ·) is continuous on V ×
V , with M defined in (4.1). Assume that both the continuous problem (4.2)
and the discrete problem (4.4) have solutions, and that the solution uh of the
discrete problem satisfies the stability estimate (4.5). Then the error of the
Ritz-Galerkin approximation satisfies the inequality

‖u− uh‖ ≤ (1 + σhM) inf
vh∈Vh

‖u− vh‖.

Proof: Since u ∈ V and uh ∈ Vh satisfy (4.2) and (4.4) respectively and
Vh ⊂ V , we get

a(u− uh, vh) = 0 for all vh ∈ Vh.

Hence, for arbitrary yh ∈ Vh one has

a(uh − yh, vh) = a(u− yh, vh) for all vh ∈ Vh.

But a(u− yh, ·) ∈ V ∗ so the stability estimate (4.5) implies that

‖uh − yh‖ ≤ σh ‖a(u− yh, ·)‖∗,h.

The continuity of a(·, ·) and the property Vh ⊂ V then lead to

‖uh − yh‖ ≤ σh M ‖u− yh‖.

An application of the triangle inequality yields

‖u− uh‖ ≤ ‖u− yh‖ + ‖yh − uh‖ ≤ (1 + σhM) ‖u− yh‖.

As yh ∈ Vh is arbitrary, the statement of the lemma follows.
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Remark 3.46. If for a family of discretizations the variational equations (4.4)
are uniformly stable, i.e., there exists a constant σ̃ > 0 with

σh ≤ σ̃ for all h < h0,

with some h0 > 0 then, like Cea’s lemma in the case of V -ellipticity, our
Lemma 3.45 guarantees the quasi-optimalitity of the Ritz-Galerkin method.
�

In Section 4.6 we shall apply these results to extended variational equations
that correspond to so-called mixed formulations. Special conditions there will
ensure existence of solutions and the uniform stability of the discrete problem.

Next we consider a different weakening of V -ellipticity. Recall that in Sec-
tion 3.3 we already met Petrov-Galerkin methods, where it can be useful to
choose differing ansatz and test spaces. This is of interest in various situa-
tions such as first-order hyperbolic problems, singularly perturbed problems,
and error estimates in norms other than the norm on V (e.g. for second-order
problems the norm on V is typically an “energy norm”, but one might desire
an error estimate in the L∞ norm).

Example 3.47. Let us consider the first-order hyperbolic convection problem

b · ∇u + cu = f inΩ, u = 0 on Γ−.

Here the inflow boundary of Ω is defined by Γ− = {x ∈ Γ : b · n < 0}, where
n is as usual an outer-pointing unit vector that is normal to the boundary Γ .
Setting

W = L2(Ω), V = H1(Ω)

and
a(u, v) = −

∫
Ω

u div(bv) +
∫

Γ\Γ−
(b · n)uv +

∫
Ω

cuv,

a standard weak formulation of the problem reads as follows:
Find u ∈W such that

a(u, v) = f(v) for all v ∈ V.

It turns out that for this problem it is useful to work with different ansatz
and test spaces. �

Analogously to this example, consider the general problem: Find u ∈ W
such that

a(u, v) = (f, v) for all v ∈ V, (4.6)

where W and V are Hilbert spaces that are not necessarily identical. The
following generalization of the Lax-Milgram lemma goes back to Nečas (1962);
its proof is similar to our earlier proof of Lax-Milgram. (see also [EG04])
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Theorem 3.48. Let W and V be two Hilbert spaces with norms ‖ ·‖W and ‖ ·
‖V . Assume that the bilinear form a(·, ·) on W×V has the following properties
(with constants C and γ > 0):

|a(w, v)| ≤ C‖w‖W ‖v‖V for all v ∈ V, w ∈W,

sup
v∈V

a(w, v)
‖v‖V

≥ γ‖w‖W for all w ∈W,

and

sup
w∈W

a(w, v) > 0 for all v ∈ V.

Then (4.6) has for each f ∈ V ∗ a unique solution u with

‖u‖W ≤
1
γ
‖f‖∗.

Babus̆ka (see [8]) formulated the corresponding generalization of Cea’s lemma
using the discrete condition

sup
vh

a(wh, vh)
‖vh‖Vh

≥ γh‖wh‖Wh
for all wh ∈Wh, (4.7)

for some constant γh > 0. It is important to note that the discrete condi-
tion (4.7) does not in general follow from its continuous counterpart. Never-
theless there are several techniques available to investigate its validity—see
Chapter 4.6.

Babus̆ka proved the error estimate

‖u− uh‖ ≤ (1 + C/γh) inf
vh∈Vh

‖u− vh‖. (4.8)

Recently it was shown in [124] that one can remove the constant 1 from this
estimate.

Finally, as a third extension of V -ellipticity, we discuss V -coercivity.
Let V ⊂ H1(Ω) be a space related to the weak formulation of a problem

based on a second-order differential operator. We say that a bilinear form
a(·, ·) is V -coercive if there exist constants β and γ > 0 such that

a(v, v) + β‖v‖20 ≥ γ‖v‖21 for all v ∈ V.

In this situation the operator A : V �→ V ∗ defined by

〈Av,w〉 := a(v, w),

still satisfies the so-called Riesz-Schauder theory. With some further assump-
tions, one has (see Chapter 8 of [Hac03a]) the following error estimate for the
Ritz-Galerkin method:
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Theorem 3.49. Assume that the variational equation

a(u, v) = f(v) for all v ∈ V,

where the bilinear form is V -coercive, has a solution u. If the bilinear form
a(·, ·) is moreover continuous and satisfies

inf
{

sup{|a(u, v)| : v ∈ Vh, ‖v‖ = 1} : u ∈ Vh, ‖u‖ = 1
}

= γh > 0,

then the Ritz-Galerkin discrete problem has a solution uh whose error is
bounded by

‖u− uh‖ ≤ (1 + C/γh) inf
w∈Vh

‖u− w‖.

In [Hac03a] the validity of the inf-sup condition used in this theorem is
discussed.

3.5 Extensions to Nonlinear Boundary Value Problems

In the previous sections we discussed abstract variational equations that
treated only linear boundary value problems. Under certain conditions it
is possible, however, to extend the technique used in the proof of the Lax-
Milgram lemma—the construction of a suitably chosen contractive mapping—
to more general differential operators. In this context monotone operators play
an essential role; see [GGZ74, Zei90, ET76]. A different approach to proving
the existence of solutions of nonlinear boundary value problems is to combine
monotone iteration schemes with compactness arguments. To use this tech-
nique one needs assumptions that guarantee the monotonicity of the iteration
process and carefully chosen starting points for the iteration; see [LLV85].

We now sketch the basic facts of the theory of monotone operators. This
will enable us to apply the Galerkin method to some nonlinear elliptic bound-
ary value problems.

Let V be a Hilbert space with scalar product (·, ·) and let B : V → V be
an operator with the following properties:

i) There exists a constant γ > 0 such that

(Bu−Bv, u− v) ≥ γ‖u− v‖2 for all u, v ∈ V.

ii) There exists a constant M > 0 such that

‖Bu−Bv‖ ≤ M‖u− v‖ for all u, v ∈ V.

Property (i) is called strong monotonicity, and (ii) Lipschitz continuity of the
operator B.

Consider the abstract operator equation: find u ∈ V with

Bu = 0. (5.1)
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This is equivalent to the nonlinear variational equation

(Bu, v) = 0 for all v ∈ V. (5.2)

The next statement generalizes the Lax-Milgram lemma:

Lemma 3.50. Assume that B is monotone and Lipschitz continuous. Then
equation (5.1) has a unique solution u ∈ V . This solution is a fixed point of
the auxiliary operator Tr : V → V defined by

Trv := v − rBv , v ∈ V,

which is contractive when the parameter r lies in
(
0,

2γ
M2

)
.

Proof: As in the proof of the Lax-Milgram lemma we check whether Tr is
contractive:

‖Try − Trv‖2 = ‖y − rBy − [v − rBv]‖2

= ‖y − v‖2 − 2r(By −Bv, y − v) + r2‖By −Bv‖2

≤ (1− 2γr + r2M2)‖y − v‖2 for all y, v ∈ V.

Hence Tr is indeed a contraction mapping for r ∈ (0, 2γ
M2 ). Consequently Tr

possesses a unique fixed point u ∈ V , i.e.,

u = Tru = u− rBu.

That is, u is a solution of the operator equation (5.1).
Uniqueness of the solution follows immediately from the strong monotonic-

ity property using the same argument as in the proof of the Lax-Milgram
lemma.

Next we consider operators A : V → V ∗. Here V ∗ denotes the dual space
of V and 〈·, ·〉 the dual pairing, i.e., 〈l, v〉 denotes the value of the continuous
linear functional l ∈ V ∗ applied to v ∈ V . We assume that A has the following
properties:

i) The operator A is strongly monotone, i.e, there exists a constant γ > 0 such
that

〈Au−Av, u− v〉 ≥ γ‖u− v‖2 for all u, v ∈ V.

ii) The operator A is Lipschitz continuous, i.e., there exists a constant M > 0
such that

‖Au−Av‖∗ ≤ M‖u− v‖ for all u, v ∈ V.

Then the problem
Au = f (5.3)
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has for each f ∈ V ∗ a unique solution u ∈ V .
This statement follows immediately from Lemma 3.50 using the auxiliary

operator B : V → V defined by

Bv := J(Av − f), v ∈ V.

Here J : V ∗ → V denotes the Riesz operator that maps each continuous linear
functional g ∈ V ∗ to an element Jg ∈ V such that

〈g, v〉 = (Jg, v) for all v ∈ V.

Problem (5.3) is equivalent to the nonlinear variational equation

〈Au, v〉 = 〈f, v〉 for all v ∈ V. (5.4)

Existence and uniqueness of solutions hold not only for the case of a Hilbert
space V , as in fact it is sufficient that V be a reflexive Banach space—see
[Zei90].

We now discuss two examples of nonlinear elliptic boundary value prob-
lems that can be treated with the theory of this section. Note however that
some important practical problems cannot be dealt with using monotone and
Lipschitz continuous operators; then more sophisticated techniques are nec-
essary. First we present a semi-linear problem and then a special quasi-linear
boundary value problem.

Example 3.51. Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ .
Consider the weakly nonlinear problem

−div (M gradu) + F (x, u(x)) = 0 in Ω,
u|Γ = 0. (5.5)

Here M = M(x) = (mij(x)) is a matrix-valued function satisfying the esti-
mate

σ‖z‖2 ≥ zT M(x)z ≥ σ‖z‖2 for all x ∈ Ω, z ∈ R2, (5.6)

for some constants σ ≥ σ > 0. Furthermore, let F : Ω × R −→ R be a
continuous function with the properties

|F (x, s)− F (x, t)| ≤ L |s− t|
(F (x, s)− F (x, t))(s− t) ≥ 0

}
for all x ∈ Ω, s, t ∈ R, (5.7)

where L is some constant. Choose V = H1
0 (Ω). Define a mapping a(·, ·) :

V × V → R by

a(u, v) :=
∫
Ω

[
(∇u)T MT∇v + F (x, u(x))v

]
dx , u, v ∈ V.
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For fixed u ∈ V our assumptions guarantee that a(u, ·) ∈ V ∗. We define the
related operator A : V → V ∗ by Au := a(u, ·) and study its properties.

First we obtain

|〈Au, v〉 − 〈Ay, v〉|

=

∣∣∣∣∣∣
∫
Ω

[
(∇u−∇y)T MT∇v + (F (x, u(x))− F (x, y(x)))v(x)

]
dx

∣∣∣∣∣∣
≤
∫
Ω

(σ‖∇u−∇v‖ ‖∇v‖+ L ‖u− y‖ ‖v‖) dx

≤ c ‖u− y‖ ‖v‖.

Hence the operator A is Lipschitz continuous.
Friedrichs’ inequality, (5.6) and (5.7) give the following estimates:

〈Au−Av, u− v〉 =
∫
Ω

∇(u− v)T MT∇(u− v) dx

+
∫
Ω

(F (x, u(x))− F (x, v(x)))(u(x)− v(x)) dx

≥ σ

∫
Ω

∇(u− v)∇(u− v) dx

≥ σγ ‖u− v‖2 for all u, v ∈ V.

Thus A is strongly monotone as well and our earlier theory is applicable. �

The next example sketches the analysis of a quasi-linear boundary value
problem. This is more difficult to handle than Example 3.51, so we omit the
details which can be found in [Zei90].

Example 3.52. Consider the following equation, where a nonlinearity appears
in the main part of the differential operator:

−
∑

i

∂

∂xi

(
ϕ(x, |Du|) ∂u

∂xi

)
= f(x) in Ω.

Assume homogeneous Dirichlet boundary conditions for u, and that ϕ is a
continuous function satisfying the following conditions:

(i) ϕ(x, t)t− ϕ(x, s)s ≥ m(t− s) for all x ∈ Ω, t ≥ s ≥ 0, m > 0;

(ii) |ϕ(x, t)t− ϕ(x, s)s| ≤M |t− s| for all x ∈ Ω, t, s ≥ 0, M > 0.

If, for instance, ϕ(x, t) = g(t)/t and g is differentiable, then both these con-
ditions are satisfied if

0 < m ≤ g′(t) ≤M.
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Under these hypotheses one can show that the theory of monotone and
Lipschitz continuous operators is applicable, and deduce the existence of weak
solutions for this nonlinear boundary value problem. Of course, the conditions
(i) and (ii) are fairly restrictive. �

If one has both strong monotonicity and Lipschitz continuity, then it is
not difficult to generalize Cea’s lemma:

Lemma 3.53. Let A : V → V ∗ be a strongly monotone, Lipschitz continuous
operator. Let f ∈ V ∗. If Vh ⊂ V is a finite-dimensional subspace of V , then
there exists a unique uh ∈ Vh satisfying the discrete variational equation

〈Auh, vh〉 = 〈f, vh〉 for all vh ∈ Vh. (5.8)

Moreover, the error u−uh of the Galerkin method satisfies the quasi-optimality
estimate

‖u− uh‖ ≤
M

γ
inf

vh∈Vh

‖u− vh‖.

Proof: The finite dimensionality of Vh implies that it is a closed subspace
of V and therefore it too is a Hilbert space with the same inner product as
V . Clearly A is strongly monotone and Lipschitz continuous on Vh. These
properties yield existence and uniqueness of a solution uh ∈ Vh of the discrete
problem (5.8).

From (5.4), (5.8), Vh ⊂ V and uh ∈ Vh we have

〈Au−Auh, vh − uh〉 = 0 for all vh ∈ Vh.

This identity, strong monotonicity and Lipschitz continuity together imply

γ ‖u− uh‖2 ≤ 〈Au−Auh, u− uh〉
= 〈Au−Auh, u− vh〉
≤ M ‖u− uh‖ ‖u− vh‖ for all vh ∈ Vh,

and the desired result follows.

Unlike the case of linear boundary value problems, the Galerkin equations
(5.8) are now a set of nonlinear equations. With the ansatz

uh(x) =
N∑

j=1

sj ϕj(x),

the Galerkin equations are equivalent to the nonlinear system

〈A(
n∑

j=1

sjϕj), ϕi〉 = 〈f, ϕi〉, i = 1, . . . , N.
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In principle, this nonlinear system can be solved by standard techniques
such as Newton’s method; see [Sch78, OR70]. But because the number of
unknowns is in general large and the conditioning of the problem is bad, one
should take advantage of the special structure of the system.

Moreover, one can systematically use information from discretizations on
coarser meshes to obtain good starting points for iterative solution of the
system on finer meshes. In [4] a variant of Newton’s method exploits properties
of the discretization on coarse and finer meshes. In [OR70] Newton’s method
is combined with other iterative methods suited to the discretization of partial
differential equations.

Alternatively, one could deal with a nonlinear problem at the continuous
level by some successive linearization technique (such as Newton’s method)
applied in an infinite-dimensional function space. The application of Newton’s
method does however demand strong regularity assumptions because differ-
entiation is required.

A further linearization technique at the continuous level is the method of
frozen coefficients. To explain this technique we consider the boundary value
problem

−div (D(x, u,∇u) grad u) = f in Ω,
u|Γ = 0, (5.9)

with a symmetric positive-definite matrix-valued function D(·, ·, ·). Let u0 ∈
V = H1

0 (Ω) be a suitably chosen starting point for the iteration. Then a
sequence {uk} ⊂ V of approximate solutions for (5.9) is generated, where
(given uk) the function uk+1 is a solution of the linear problem∫

Ω

∇uk+1D(x, uk,∇uk)∇v dx =
∫
Ω

fv dx for all v ∈ V.

This technique is also known as the secant modulus method or Kačanov
method. Its convergence properties are examined in [Neč83] and [Zei90].
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The Finite Element Method

4.1 A First Example

In Chapter 3 we pointed out that for the Ritz-Galerkin method the choices
of the ansatz and test functions are crucial because they strongly influence
whether or not the method can be implemented in an effective manner. Classi-
cal ansatz functions such as orthogonal polynomials lead to spectral methods,
which we shall not discuss; we prefer functions that are defined piecewise, and
in particular piecewise polynomials. Then the Ritz-Galerkin method generates
discrete problems that have a special structure: the coefficient matrix of the
linear system is sparse. This structure allows us to design and apply pertinent
numerical techniques that solve the discrete problem efficiently.

The discrete spaces constructed in the finite element method have the
following typical features:

• decomposition of the given domain into geometrically simple subdomains
using, in general, triangles and quadrilaterals in 2D and tetrahedra and
parallelepipeds in 3D;

• definition of local spaces—usually polynomials—on these subdomains;
• fulfilment of inter-subdomain conditions that guarantee certain global

properties of the discrete spaces, such as Vh ⊂ V .

Of course these three points are closely related. For instance, with a suit-
ably chosen decomposition and reasonable local spaces one can formulate fairly
simple sufficient conditions for the global properties of the discrete spaces, as
we shall see.

Let us first consider an introductory example. Denote by Ω ⊂ R2 the
triangular domain

Ω =
{(

x
y

)
: x > 0, y > 0, x + y < 1

}
.

Let f be a given continuous function on Ω. We consider the following problem:
Find u ∈ H1

0 (Ω) such that
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Ω

∇u∇v dΩ =
∫
Ω

fv dΩ for all v ∈ H1
0 (Ω). (1.1)

In Chapter 3 we saw that this is the weak formulation of the Poisson problem

−Δu = f in Ω,
u = 0 on Γ = ∂Ω,

(1.2)

and the starting point for its Ritz-Galerkin discretization.
We decompose Ω into rectangles and triangles, denoting the subdomains

by Ωj for j = 1, . . . , m. It is natural to assume the following conditions for
the decomposition Z = {Ωj }mj=1:

Ω =
m⋃

j=1

Ωj and int Ωi ∩ int Ωj = ∅ if i �= j. (1.3)

To be precise, consider the decomposition of Ω given by Figure 4.1 into the
quadrilaterals Ω1, Ω2, . . . , Ω10 and triangles Ω11, . . . , Ω15. These are generated
by equidistant lines parallel to the axes at a distance h = 0.2 apart.
Next, we choose a space of functions uh defined by:

i) uh ∈ C(Ω);
ii) u|Ωi

is bilinear on Ωi for i = 1, . . . , 10;
iii) u|Ωi

is linear on Ωi for i = 11, . . . , 15.

Figure 4.1 Decomposition of Ω

Set ui(x, y) := uh|Ωi
(x, y). Then by ii) and iii) we can write
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ui(x, y) = aixy + bix + ciy + di for
(

x
y

)
∈ Ωi , i = 1, . . . , 15 (1.4)

where ai = 0 for i = 11, . . . , 15. The parameters ai, bi, ci, di of the ansatz (1.4)
are restricted by the boundary condition in (1.2) and the continuity condition
i); in the next section we shall prove that i) guarantees that our discrete space
is a subspace of H1

0 (Ω).
Let Ωh denote the set of all interior mesh points and Ωh the set of all mesh
points of the decomposition of Ω. Define

I(p) := { i : p ∈ Ωi }, p ∈ Ωh.

Then the condition uh ∈ C(Ω) reduces to

ui(p) = uj(p) for i, j ∈ I(p), p ∈ Ωh, (1.5)

because the functions (1.4) are linear on each edge of each subdomain. Simi-
larly, the boundary condition in (1.2) is satisfied if

ui(p) = 0 for i ∈ I(p), p ∈ Ωh \Ωh. (1.6)

The conditions (1.5) and (1.6) constrain our chosen discrete space and must
be satisfied when implementing the Galerkin method.

With this subdomain-oriented approach to the formulation of the discrete
problem, the equations (1.4)–(1.6) and the Galerkin equations corresponding
to (1.2) form a relatively large system of equations for the unknowns: in the
above example one has 55 equations for the 55 parameters ai, bi, ci, di, i =
1, . . . , 15. It is possible however to reduce significantly the number of unknowns
by replacing the ansatz (1.4) by a better one that is mesh-point oriented.

Denote the interior mesh points by pj for j = 1, . . . , N and all mesh points
by pj for j = 1, . . . , N . Thus we have

Ωh = {pj}Nj=1 and Ωh = {pj}Nj=1.

Define a function ϕj ∈ C(Ω), which is piecewise linear or bilinear respectively
on each subdomain, by

ϕj(pk) = δjk , j, k = 1, . . . , N. (1.7)

Now choose the ansatz

uh(x, y) =
N∑

j=1

ujϕj(x, y) . (1.8)

Then conditions i), ii) and iii) and the homogeneous Dirichlet boundary con-
dition in (1.2) are all satisfied. Using (1.8), the Ritz-Galerkin method yields
the linear system
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Ω

N∑
j=1

uj∇ϕi∇ϕj dΩ =
∫
Ω

fϕi dΩ , i = 1, . . . , N, (1.9)

for the unknown coefficients {uj}Nj=1 in (1.8). Setting

Ah := (aij)
N
i,j=1 , aij :=

∫
Ω

∇ϕi∇ϕj dΩ,

fh := (fi)
N
i=1 , fi :=

∫
Ω

fϕi dΩ, and uh := (uj)
N
j=1 ,

(1.10)

we can write (1.9) in the matrix form

Ahuh = fh. (1.11)

The matrix Ah is called the stiffness matrix . As the functions ϕj are piecewise
linear or bilinear, from (1.7) each has support

supp ϕj =
⋃

k∈I(pj)

Ωk . (1.12)

Hence, by (1.10) we have

I(pi) ∩ I(pj) = ∅ implies aij = 0. (1.13)

If the decomposition of the domain Ω is fine then the method generates a very
large matrix Ah, but this matrix is sparse. Consequently not much space is
needed to store the matrix Ah and it is possible to solve the discrete problem
efficiently using specially tailored techniques—see Chapter 8. These two fea-
tures are significant advantages of the finite element method over other com-
peting methods. There are further advantages of the finite element method,
such as its flexibility with respect to general geometries of the given domain
and the powerful and well-developed tools for its analysis, but the two prop-
erties first enunciated are the main reasons that the finite element method
is the most popular and widely-used discretization method for the numerical
solution of partial differential equations.

We resume the study of our concrete example. As in Figure 4.2, number
the inner mesh points p1, p2, . . . , p6 . Let pj have coordinates (xj , yj) for j =
1, . . . , 6. The basis functions then have the following explicit formulas, which
depend on the location of pj :

ϕj(x, y) =

{
1
h2 (h− |x− xj |)(h− |y − yj |) if max{|x− xj |, |y − yj |} ≤ h,

0 otherwise,

in the cases j = 1, 2, 4;
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Figure 4.2 Numbering of the interior mesh points

ϕj(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
h2 (h− |x− xj |)(h− |y − yj |)

if max{|x− xj |, |y − yj |} ≤ h
and min{x− xj , y − yj} ≤ 0,

1
h (h− (x− xj)− (y − yj))

if |x− xj |+ |y − yj | ≤ h
and min{x− xj , y − yj} ≥ 0,

0 otherwise,

in the cases j = 3, 5, 6.
Figure 4.3 shows such piecewise bilinear and piecewise linear basis func-

tions.

Figure 4.3 Basis functions ϕj

In the special case f ≡ 1 we can compute all integrals in (1.10) and obtain
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Ah =
1
3

⎛⎜⎜⎜⎜⎜⎜⎝
8 −1 0 −1 −1 0
−1 8 −1 −1 −1 0

0 −1 9 0 −1 0
−1 −1 0 8 −1 −1
−1 −1 −1 −1 9 −1

0 0 0 −1 −1 9

⎞⎟⎟⎟⎟⎟⎟⎠ , fh = h2

⎛⎜⎜⎜⎜⎜⎜⎝
1
1

11/12
1

11/12
11/12

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then on solving (1.11), the values uj = uh(pj) computed at the interior mesh
points pj for j = 1, . . . , 6 are as follows:

u1 = 2.4821E − 2 u2 = 2.6818E − 2 u3 = 1.7972E − 2
u4 = 2.6818E − 2 u5 = 2.4934E − 2 u6 = 1.7972E − 2.

These values are approximations of the exact solution u of the problem. As we
do not know u, we postpone until later a discussion of how one can evaluate
the quality of the approximation.

4.2 Finite Element Spaces

4.2.1 Local and Global Properties

In the introductory example of Section 4.1 we have explained already the
typical features of the finite element method. In particular the ansatz functions
are chosen in a piecewise manner, unlike the classical Ritz method. Given a
problem whose solution lies in V , if one discretizes it with a conforming Ritz-
Galerkin technique then one has to ensure that the discrete space of ansatz
functions Vh is a subspace of V .

In practice we often have to handle second-order elliptic boundary prob-
lems and V is then a certain subspace of the Sobolev space H1(Ω) whose
precise specification depends on the given boundary conditions. Sometimes
fourth-order elliptic boundary problems arise and V is then a subspace of
H2(Ω).

The following two lemmata provide us with easily-applied sufficient con-
ditions that guarantee the global property Vh ⊂ V . Assume that the given
domain Ω ⊂ Rn is decomposed into subdomains Ωj (for j = 1, . . . , m) hav-
ing the property (1.3). Moreover we assume that each subdomain Ωj has a
Lipschitz boundary.

Lemma 4.1. Let z : Ω → R be a function that satisfies the condition z|Ωj
∈

C1(Ωj) for j = 1, . . . , m. Then

z ∈ C(Ω) =⇒ z ∈ H1(Ω).

Proof: The hypothesis z ∈ C1(Ωj) implies that there exist constants ckj ,
for k = 0, 1, . . . , n and j = 1, . . . , m, such that
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|z(x)| ≤ c0j for all x ∈ Ωj

| ∂
∂xk

z(x)| ≤ ckj for all x ∈ Ωj , k = 1, . . . , n

}
j = 1, . . . , m. (2.1)

From (1.3) it follows that∫
Ω

z2(x) dx =
m∑

j=1

∫
Ωj

z2(x) dx ≤
m∑

j=1

c2
0j meas(Ωj) < +∞.

That is, z ∈ L2(Ω). For k = 1, . . . , n define the function wk piecewise by

wk|Ωj
:=

∂

∂xk
z|Ωj

, j = 1, . . . , m.

Analogously to the above calculation for the function z, we conclude from (2.1)
that wk ∈ L2(Ω) for each k. It remains to show that wk is the generalized
derivative of z with respect to xk, i.e., that∫

Ω

z(x)
∂

∂xk
ϕ(x) dx = −

∫
Ω

wk(x)ϕ(x) dx for all ϕ ∈ D(Ω), (2.2)

where we use the abbreviation D(Ω) := C∞
0 (Ω). Let us introduce the notation

Γj := ∂Ωj ,

Γjl := Ωj ∩Ωl and Γj0 := Γj\
{ ⋃

l �=j, l �=0

Γjl

}
.

Integration by parts results in∫
Ω

z(x)
∂

∂xk
ϕ(x) dx =

m∑
j=1

∫
Ωj

z(x)
∂

∂xk
ϕ(x) dx

=
m∑

j=1

⎛⎜⎝∫
Γj

z(x)ϕ(x) cos(nj , ek) dx−
∫
Ωj

ϕ(x)
∂

∂xk
z(x) dx

⎞⎟⎠ ;

here nj denotes the outer unit normal vector on Γj and ek is the unit vector
associated with xk. From the decomposition of the boundary of Ωj we then
get∫

Ω

z(x)
∂

∂xk
ϕ(x) dx =

m∑
j=1

∑
l �=j

∫
Γjl

z(x)ϕ(x) cos(nj , ek) dx

−
∫
Ω

wk(x)ϕ(x) dx for all ϕ ∈ D(Ω).
(2.3)

It now remains only to verify that
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m∑
j=1

∑
l �=j

∫
Γjl

z(x)ϕ(x) cos(nj , ek) dx = 0. (2.4)

First, ϕ ∈ D(Ω) implies that∫
Γj0

z(x)ϕ(x) cos(nj , ek) dx = 0 , j = 1, . . . , m. (2.5)

The remaining terms in (2.4) appear in pairs of the form∫
Γjl

z(x)ϕ(x) cos(nj , ek) dx +
∫

Γlj

z(x)ϕ(x) cos(nl, ek) dx

on adjacent subdomains Ωj and Ωl. For the normal vectors we have nl = −nj

on Ωj ∩Ωl. Because z is assumed continuous across Γjl = Γlj , we infer that∫
Γjl

z(x)ϕ(x) cos(nj , ek) dx +
∫

Γlj

z(x)ϕ(x) cos(nl, ek) dx

=
∫

Γjl

z(x)ϕ(x) cos(nj , ek) dx −
∫

Γlj

z(x)ϕ(x) cos(nj , ek) dx = 0

for all ϕ ∈ D(Ω).

This identity together with (2.5) yields (2.4). Hence (2.3) shows that wk sat-
isfies the identity∫

Ω

z(x)
∂

∂xk
ϕ(x) dx = −

∫
Ω

wk(x)ϕ(x) dx for all ϕ ∈ D(Ω).

We have proved that wk is the generalized derivative of z with respect to xk.
As wk ∈ L2(Ω) it follows that z ∈ H1(Ω).

Lemma 4.2. Let z : Ω → R be a function satisfying the condition z|Ωj
∈

C2(Ωj) for j = 1, . . . , m. Then

z ∈ C1(Ω) =⇒ z ∈ H2(Ω).

Proof: Set vl = ∂
∂xl

z for l = 1, . . . , n. By definition z ∈ C1(Ω) implies

that vl ∈ C0(Ω). The functions vl satisfy the assumptions of Lemma 4.1, so
vl ∈ H1(Ω). That is, there exist wlk ∈ L2(Ω) for l, k = 1, . . . , n such that∫

Ω

vl(x)
∂

∂xk
ϕ(x) dx = −

∫
Ω

wlk(x)ϕ(x) dx for all ϕ ∈ D(Ω). (2.6)

On the other hand
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Ω

z(x)
∂

∂xl
ψ(x) dx = −

∫
Ω

vl(x)ψ(x) dx for all ψ ∈ D(Ω). (2.7)

For arbitrary ϕ ∈ D(Ω) one also has ∂
∂xk

ϕ ∈ D(Ω).
Thus from (2.6) and (2.7) it follows that∫

Ω

z(x)
∂2

∂xl∂xk
ϕ(x) dx = −

∫
Ω

wlk(x)ϕ(x) dx for all ϕ ∈ D(Ω),

l, k = 1, . . . , n.

In summary, we have z ∈ L2(Ω), and the generalized derivatives of z up to
the second order are also in L2(Ω). That means z ∈ H2(Ω).

The construction of the trace of H1-functions on the boundary immedi-
ately implies

z ∈ C(Ω), z|Ωj
∈ C1(Ω)

z|Γ = 0

}
=⇒ z ∈ H1

0 (Ω).

Analogously,

z ∈ C1(Ω), z|Ωj
∈ C2(Ω)

z|Γ = ∂
∂nz = 0

}
=⇒ z ∈ H2

0 (Ω).

The following statement is useful in the construction of conforming ap-
proximations of the space H(div;Ω).

Lemma 4.3. Let z : Ω → Rn be a vector-valued mapping. Assume that zj ∈
C1(Ωj)n for j = 1, . . . , M , where zj := z|Ωj

.
If additionally on every interior edge Γjk := Ωj ∩ Ωk (with unit normal njk

pointing from Ωj to Ωk) one has

zj · njk = zk · njk, j, k = 1, . . . , M, (2.8)

then z ∈ H(div;Ω).

Proof: Our assumptions immediately give z ∈ L2(Ω)n.
We have to verify that a generalized divergence of z exists with div z ∈ L2(Ω).
To do that we define piecewise

q(x) := (div zj)(x) for all x ∈ Ωj . (2.9)

It is clear that q ∈ L2(Ω). Using integration by parts, from (2.9) it follows
that
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Ω

ϕq dx =
M∑

j=1

∫
Ωj

ϕ div zj dx

=
M∑

j=1

∫
Γj

ϕzj · nj dx −
M∑

j=1

∫
Ωj

zj · ∇ϕdx for all ϕ ∈ D(Ω);

here nj denotes the outer unit normal on Γj := ∂Ωj . Taking into consideration
the decomposition of Γj into Γjk, the relation njk = −nkj for k �= j, and
ϕ|Γ = 0 for ϕ ∈ D(Ω), we obtain∫
Ω

ϕq dx =
1
2

M∑
j=1

M∑
k=1

∫
Γjk

ϕ (zj−zk) ·njk ds −
∫
Ω

z ·∇ϕdx for all ϕ ∈ D(Ω).

The hypothesis (2.8) simplifies this to∫
Ω

ϕ q dx = −
∫
Ω

z · ∇ϕdx for all ϕ ∈ D(Ω).

That is, q = div z as we wanted to prove.

Next we describe simple examples of the construction of finite elements.
We concentrate on the two-dimensional case, i.e., Ω ⊂ R2. Since the one-
dimensional case is the simplest we also explain some basic facts in 1D; often
the three-dimensional case can be handled by using the basic ideas from 2D.

Let Ω = (a, b) ⊂ R1. Decompose Ω into subdomains Ωj using the mesh
{xi}Ni=0:

a = x0 < x1 < x2 < · · · < xN−1 < xN = b.

Set Ωi = (xi−1, xi) for i = 1, . . . , N . Furthermore, we introduce the local step
size notation hi := xi − xi−1 for i = 1, . . . , N .

The space of piecewise linear and globally continuous functions is defined
to be Vh = span{ϕi}Ni=0 where the basis functions are

ϕi(x) =

⎧⎪⎪⎨⎪⎪⎩
1
hi

(x− xi−1) for x ∈ Ωi,

1
hi+1

(xi+1 − x) for x ∈ Ωi+1,

0 otherwise.

(2.10)

By construction ϕi ∈ C(Ω) and ϕi|Ωj
∈ C1(Ωj). Therefore Lemma 4.1 ensures

that ϕi ∈ H1(Ω).
Moreover, Lemma 4.1 and (2.10) yield, for x �= xj , the representation

ϕ′
i(x) =

⎧⎪⎪⎨⎪⎪⎩
1
hi

for x ∈ Ωi,

− 1
hi+1

for x ∈ Ωi+1,

0 otherwise
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for the generalized derivative of ϕi. Figure 4.4 shows the graph of the function
ϕi. It is clear why it is often called a “hat function”.

Figure 4.4 piecewise linear basis functions ϕi

The basis functions of (2.10) satisfy ϕi(xk) = δik for i, k = 0, 1, . . . , N .
Thus in the representation

v(x) =
N∑

i=0

viϕi(x), (2.11)

each parameter vi ∈ R is the value of the function v at the mesh point xi.
We now move on to piecewise quadratic and globally continuous functions

defined on the same mesh. Similarly to the linear case, these functions can be
described by the representation

v(x) =
N∑

i=0

viψi(x) +
N∑

i=1

vi−1/2ψi−1/2(x) (2.12)

where the globally continuous basis functions ψi and ψi−1/2 are defined by
the following conditions:

i) ψi|Ωj
and ψi−1/2|Ωj

are quadratic polynomials,
ii) ψi(xk) = δik and ψi(xk−1/2) = 0,
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iii) ψi−1/2(xk) = 0 and ψi−1/2(xk−1/2) = δik.

Here xi−1/2 := 1
2 (xi−1 + xi) denotes the midpoint of the subinterval Ωi for

i = 1, . . . , N .
These basis functions are given explicitly by:

ψi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
h2

i

(x− xi−1)(x− xi−1/2) for x ∈ Ω̄i,

2
h2

i+1

(xi+1 − x)(xi+1/2 − x) for x ∈ Ωi+1,

0 otherwise,

(2.13)

and

ψi−1/2(x) =

{ 4
h2

i

(x− xi−1)(xi − x) for x ∈ Ωi,

0 otherwise.
(2.14)

A function of the type ψi−1/2, which vanishes at xi−1 and xi, is called a bubble
function. Figure 4.5 shows the graphs of the quadratic basis functions ψi and
ψi−1/2.

xxi−1 xi xi+1xi− 1
2

xi+ 1
2

y = i(x)

y = ψ

ψ

i− 1
2
(x)

Figure 4.5 The quadratic basis functions ψi and ψi− 1
2

The ansatz (2.12) with basis functions (2.13) and (2.14) is a continuous
function v for any choice of the coefficients vi and vi−1/2. The conditions ii)
and iii) imply that the parameters vi and vi−1/2 are the values of v at the
points x0, x1/2, x1, · · · , xN−1/2, xN . Consequently this basis is called a
nodal basis.

It is possible to choose a different basis for the space of piecewise quadratic
and globally continuous functions. Let us define

v(x) =
N∑

i=0

viϕi(x) +
N∑

i=1

wi−1/2ψi−1/2(x). (2.15)
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Then it is not difficult to see that

span{ψi}Ni=0 ⊕ span{ψi−1/2}Ni=1 = span{ϕi}Ni=0 ⊕ span{ψi−1/2}Ni=1.

The basis in the representation (2.15) of the piecewise quadratic and globally
continuous functions is generated from the basis {ϕi}Ni=0 of the piecewise
linear and globally continuous functions by adding to it the basis functions
{ψi−1/2}Ni=1; consequently the basis of (2.15) is a so-called hierarchical basis.
One can increase the polynomial degree still further and describe spaces of
piecewise polynomials of degree p that are globally continuous, but we shall
do this later in 2D.

In numerical analysis cubic splines that are globally C2 are commonly used,
but the application of the finite element method to fourth-order differential
equations requires only the global C1 property. Thus we next describe a set of
basis functions that are piecewise cubic and globally C1. Let ζi and ηi ∈ C1(Ω)
be piecewise cubic polynomials with the following properties:

ζi(xk) = δik, ζ ′i(xk) = 0,

ηi(xk) = 0, η′
i(xk) = δik.

(2.16)

It is easy to calculate these functions explicitly:

ηi(x) =

⎧⎪⎪⎨⎪⎪⎩
1
h2

i

(x− xi)(x− xi−1)2 for x ∈ Ω̄i,

1
h2

i+1

(x− xi)(x− xi+1)2 for x ∈ Ωi+1,

0 otherwise,

(2.17)

and

ζi(x) =

⎧⎪⎪⎨⎪⎪⎩
ϕi(x)− 1

hi
[ηi−1(x) + ηi(x)] for x ∈ Ω̄i,

ϕi(x) + 1
hi+1

[ηi(x) + ηi+1(x)] for x ∈ Ωi+1,

0 otherwise,

(2.18)

with ϕi as in (2.10). Figure 4.6 shows the graphs of the basis functions defined
by (2.17) and (2.18).

Every piecewise cubic and globally C1 function has a representation

v(x) =
N∑

i=0

viζi(x) +
N∑

i=0

wiηi(x)

with the Hermite basis ηi, ζi. The parameters vi and wi are now the values of
the function v and its derivative v′ at the mesh points xi.

Consider the two-dimensional case where Ω ⊂ R2. It is clear that in con-
trast to the one-dimensional case the geometry of the given domain Ω now
plays an essential role. How should one decompose Ω into simple subdomains?
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Figure 4.6 Hermite basis functions ηi and ζi

In finite element codes there are special algorithms called mesh generators that
do this job. For the moment we simply assume that we have such a decom-
position of Ω; we shall examine some aspects of mesh generation in Section
4.3.

For simplicity, let Ω be polygonal: that is, the boundary of Ω consists
of straight line segments. We decompose Ω in such a way that all its sub-
domains are triangles or quadrilaterals. These subdomains (which are also
called elements) are denoted by Ωj for j = 1, . . . , M . We assume that the
decomposition satisfies (1.3), viz.,

Ω =
M⋃

j=1

Ωj , int Ωi ∩ intΩj = ∅ if i �= j. (2.19)

We use the terms decomposition and triangulation interchangeably irrespective
of whether triangles or quadrilaterals are used. Figure 4.7 shows an example
of a triangulation.

As we shall see, the ansatz functions over each element will be defined by
function values and/or values of function derivatives at some points of that
element. As we also require global properties of the ansatz functions—such
as global continuity—it is more or less necessary that adjacent elements fit
together neatly so that the triangulation of the given domain Ω is admissible:

A triangulation is admissible if for each pair of subdomains Ωi and Ωj

exactly one of the following four cases occurs:

• Ωi = Ωj ,
• Ωi ∩Ωj is a complete edge of both Ωi and Ωj ,
• Ωi ∩Ωj is a nodal point of the triangulation,
• Ωi ∩Ωj = ∅.
Thus we exclude situations where an edge of some subdomain Ωi is a proper
subset of an edge of some other subdomain Ωj , as in Figure 4.8. In other
words, we exclude hanging nodes.
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Figure 4.7 Example: admissible triangulation

From now on our triangulations are always assumed to be admissible.

Figure 4.8 Hanging node in a non-admissible triangulation

Let a triangulation Z of the domain Ω be given by subdomains

Ωi , i = 1, . . . , M,

that satisfy (2.19). Now any convex polygon Ω∗
i can be described in the fol-

lowing way. If the vertices of Ω∗
i are pj , for j in some index set Ji, then Ω

∗
i is

the convex hull of those vertices:

Ω
∗
i = conv{pj}j∈Ji

:=
{

x =
∑
j∈Ji

λjp
j : λj ≥ 0 ,

∑
j∈Ji

λj = 1
}

. (2.20)

As previously mentioned, we shall use mainly triangles and convex quadri-
laterals in each triangulation; this corresponds to the cases |Ji| = 3 and
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|Ji| = 4. The representation (2.20) is a standard parameterization of a convex
domain, which we use often, especially for triangles. Then the local coordi-
nates λj (for j ∈ Ji) are called barycentric coordinates.

Let us consider the common edge of two adjacent triangles:

Ωi ∩Ωk = conv{pj , pl},

say. Then this edge has the representation

Ωi ∩Ωk =
{

x = λjp
j + λlp

l : λj , λl ≥ 0, λj + λl = 1
}

.

This observation is important when studying the global continuity of ansatz
functions that are defined piecewise on triangles.

Now let the element K ⊂ Z be a non-degenerate triangle with vertices p1,
p2, p3. Each point x ∈ K has unique nonnegative barycentric coordinates λ1,
λ2 and λ3 that are the solution of

x =
3∑

i=1

λip
i and 1 =

3∑
i=1

λi. (2.21)

If we introduce λ :=

⎛⎝λ1

λ2

λ3

⎞⎠ ∈ R3, then there exists an affine mapping corre-

sponding to (2.21) that is of the form

λ = Bx + b. (2.22)

This way of representing points in K enables us to define local ansatz
functions on triangles using λ1, λ2 and λ3. For instance, the affine functions
ϕj , j = 1, 2, 3, with ϕj(pk) = δjk on K, can now be described as follows:

ϕj(x) = λj(x) , j = 1, 2, 3. (2.23)

In the next subsection we specify the local ansatz functions for polyno-
mials of higher degree. It is important that the interpolation points for these
polynomials can easily be described in barycentric coordinates. Triangular
elements of type (l) use the points

pα =
3∑

j=1

αj

|α|p
j (2.24)

where α = (α1, α2, α3) is a multi-index with |α| := Σ3
j=1αj = l.

In principle, the case Ω ⊂ Rn for n ≥ 3 can be handled similarly to the two-
dimensional case: if one uses simplices and convex hyper-quadrilaterals for the
triangulation, then one has analogous principles. For instance, a simplex K ⊂
R3 with vertices p1, p2, p3 and p4 can be described in barycentric coordinates
by
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K =
{

x ∈ R3 : x =
4∑

i=1

λip
i , λi ≥ 0 ,

4∑
i=1

λi = 1
}

.

See, e.g., [Cia78] for more details in the higher-dimensional case.
Nevertheless in the higher-dimensional case additional tools are sometimes

necessary. In particular the validity of embedding theorems depends on the
dimension; for n = 4 the embedding of H2(Ω) in C(Ω) does not hold, unlike
the cases n = 2, 3.

4.2.2 Examples of Finite Element Spaces in R2 and R3

Now we describe some finite element spaces that are often used in practice in
two and three dimensions.

Let K ⊂ Zh denote an element of the triangulation Zh of the given domain
Ω ⊂ Rn where n = 2 or 3. As we have seen, K can be represented as a convex
combination of the vertices p1, p2, ..., ps:

K =
{

x ∈ Rn : x =
s∑

i=1

λip
i , λi ≥ 0 ,

s∑
i=1

λi = 1
}

.

If K is a regular simplex in Rn, then there is a one-to-one and onto mapping
between points x ∈ K and barycentric coordinates λ1, λ2, ...,λn+1.
If K is not a simplex then additional conditions are necessary. For rectangles
or quadrilaterals tensor product ideas are often used. For a rectangle with
vertices p1, p2, p3 and p4, a special parameterization is given by

λ1 = (1− ξ)(1− η), λ2 = ξ(1− η),
λ3 = ξη, λ4 = (1− ξ)η.

(2.25)

Here ξ, η ∈ [0, 1] are free parameters. From (2.25) one has immediately

λi ≥ 0, i = 1, . . . , 4,

4∑
i=1

λi = 1 for all ξ, η ∈ [0, 1].

In general, every finite element is characterized by:

• the geometry of the subdomain K,
• the concrete form of the ansatz functions on K
• a set of unisolvent linear functionals (which defines the ansatz function

uniquely)

The abstract triple (K,PK , ΣK) is called a finite element. Here PK is the
space of local ansatz functions on K and ΣK the set of given unisolvent linear
functionals. If only function values are used in ΣK then we call the finite
element a Lagrange element. If derivatives evaluated at certain points in K
are used also, we call this a Hermite element. Integral means on K or its edges
can also be used as functionals in ΣK .
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In engineering mechanics the linear functionals are also called degrees of
freedom. Furthermore, the local ansatz functions are commonly known as
shape functions.

While a finite element is defined locally, one must also investigate its global
properties, often by invoking Lemmas 4.1 and 4.2. Thus it is necessary to study
the behaviour of the shape functions on the shared boundary of two adjacent
elements.

Let Pl(K) be the set of all polynomials on K of degree at most l. The space
Pl is often used as the space of shape functions on triangles or simplices.

For a rectangle K ⊂ R2 or parallelepiped K ⊂ R3, the set Ql(K) of
polynomials on K plays an important role. A polynomial belongs to Ql if it
is the product of polynomials of degree at most l in each single variable—for
a rectangle K ⊂ R2 we have p ∈ Ql(K) if

p(x) = pl(ξ)ql(η)

with polynomials pl(·), ql(·) ∈ Pl(R1). It is easy to see that in general

Pl(K) ⊂ Ql(K) ⊂ Pnl(K).

To define an element concretely, we have next to fix its degrees of freedom
or, equivalently, to specify its unisolvent set of linear functionals.

As already mentioned, for Lagrange elements on simplices the function
values at the interpolation points

pα =
s∑

j=1

αj

|α|p
j

are important. Here p1, ..., ps are the vertices of K.
We now characterize several special elements by their shape functions and

degrees of freedom. In the corresponding figures each degree of freedom at a
point is symbolized as follows:

• - function value
o - first order derivatives
O - second order derivatives
| - normal derivative

To ensure unisolvence the number of degrees of freedom has to be equal
to the dimension of the space of shape functions; this number is denoted by
d. For Lagrange elements we also include the shape functions associated with
some typical interpolation points pα.
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Triangular Elements

i) linear C0 element
Lagrange shape function for pα:

Ψα(λ) =
3∑

j=1

αjλj

d = 3.

ii) discontinuous linear element (Crouzeix-Raviart element)

Lagrange shape function for pα:

Ψα(λ) =
3∑

j=1

(1− αj)λj

d = 3.

iii) quadratic C0 element

Lagrange shape functions for the
points p200 and p110:

Ψ200(λ) = λ1(2λ1 − 1)
Ψ110(λ) = λ1λ2

d = 6.

iv) cubic C0 element
Lagrange shape functions for the
points p300, p210 and p111:

Ψ300(λ) = 1
2λ1(3λ1 − 1)(3λ1 − 2)

Ψ210(λ) = 9
2λ1λ2(3λ1 − 1)

Ψ111(λ) = 27λ1λ2λ3

d = 10.
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v) cubic C0 Hermite element

d = 10.

vi) quintic C1 element (Argyris element)

d = 21.

vii) reduced quintic C1 element (Bell element)

d = 18.

Rectangular Elements

viii) bilinear C0 element
Lagrange shape function for the
point p1000:

Ψ1000(λ) = (1− ξ)(1− η),

where the parameters ξ, η and λ1,
..., λ4 are chosen corresponding to
(2.25).

d = 4.
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ix) biquadratic C0 element
Lagrange shape function for the
points p4000, p2200 and p1111:

Ψ4000(λ) = (1− ξ)(2ξ − 1)(1− η)(2η − 1)
Ψ2200(λ) = 4(1− ξ)ξ(1− η)(1− 2η)
Ψ1111(λ) = 16ξ(1− ξ)η(1− η)

d = 9.

The following figures give an impression of the shape functions viii) and
ix).

Figure 4.9.a Shape functions for viii) and ix)

Figure 4.9.b Shape functions for ix)
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x) biquadratic serendipity element
(the word “serendipity” was coined in 1754; it means a lucky find and
is derived from a tale of three princes of Sri Lanka, which was formerly
Serendip)

Lagrange shape function for the
points p4000 and p2200:

Ψ̃4000(λ) = Ψ4000(λ)− 1
4Ψ1111(λ)

Ψ̃2200(λ) = Ψ2200(λ) + 1
2Ψ1111(λ)

—here Ψα are the biquadratic
shape functions from ix)

d = 8.

xi) Bogner-Fox-Schmit C1 element

Here means that one uses the

mixed derivative
∂2u

∂ξ∂η
as a degree of

freedom at the corresponding mesh
point.

d = 16.

Tetrahedral Elements

xii) linear C0 element

Lagrange shape function for p1000:

Ψ1000(λ) = λ1,

d = 4.

xiii) quadratic C0 element
Lagrange shape functions for p2000

and p1100:

Ψ2000(λ) = λ1(2λ1 − 1)
Ψ1100(λ) = 4λ1λ2,

d = 10.
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Elements on a Parallelepiped in 3D

xiv) trilinear C0 element
Lagrange shape function for
p10000000:

Ψ10000000(λ) = (1− ξ)(1− η)(1− ζ),

with a transformation analogous to
(2.25).

d = 8.

xv) triquadratic C0 element

d = 27.

xvi) triquadratic serendipity element

d = 20.

For the C0 elements in each concrete example one must verify the global
continuity property—equivalently, the continuity of the shape functions across
edges of adjacent elements. Let us take as an example the cubic triangular
element of example iv) above:

Lemma 4.4. Let K̂ and K̃ ⊂ R2 be two adjacent triangles of a triangulation
with a common edge. Then the cubic functions û and ũ defined on K̂ and K̃
respectively are identical when restricted to the joint edge. Consequently the
piecewise cubic function that is defined by û on K̂ and ũ on K̃ is globally
continuous on K := K̂ ∪ K̃.

Proof: The functions û and ũ are cubic. Hence, the restriction of such a func-
tion to an edge yields a cubic polynomial in one variable. But these two cubic
polynomials in one variable must coincide at the four interpolation points on
the edge common to K̂ and K̃, so these polynomials are identical, i.e.,

û(x) = ũ(x) for all x ∈ K̂ ∩ K̃.

Clearly û ∈ C(K̂) and ũ ∈ C(K̃). Thus the piecewise-defined function
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u(x) =
{
û(x) for x ∈ K̂,
ũ(x) for x ∈ K̃,

is continuous on K.

In many textbooks on finite elements (e.g., [Cia78]) the continuity of the
C0 elements listed in our overview is verified in detail. Do not forget that
the admissibility of the triangulation is an important assumption in drawing
these conclusions.

Next we shall motivate the serendipity elements, which are obtained by
eliminating a degree of freedom in the interior of the element.

Suppose that, starting from biquadratic elements (i.e., Q2), we want to
eliminate the interior degree of freedom while requiring that the polynomial
obtained has at most degree 3. With the biquadratic shape functions of ix)
we obtain

p(ξ, η) = u4000(1− ξ)(2ξ − 1)(1− η)(2η − 1) + u0400ξ(1− 2ξ)(1− η)(2η − 1)

+u0040ξ(1− 2ξ)η(1− 2η) + u0004(1− ξ)(2ξ − 1)η(1− 2η)

+4(u2200(1− ξ)ξ(1− η)(2η − 1) + u0220(1− ξ)(2ξ − 1)η(1− η)
+u0022(1− ξ)ξη(2η − 1) + u2002(1− ξ)(2ξ − 1)η(1− η)
+16u1111ξ(1− ξ)η(1− η).

Gathering the various powers of ξ and η, we get

p(ξ, η) = u4000 + u0400 + u0040 + u0004 + · · ·
+
[
16u1111 + 4(u4000 + u0400 + u0040 + u0004)

−8(u2200 + u0220 + u0022 + u2002)
]
ξ2η2.

Thus p|K ∈ P3(K) if and only if

4u1111+u4000+u0400+u0040+u0004 = 2(u2200+u0220+u0022+u2002). (2.26)

The shape functions Ψ̃α of the serendipity element x) are such that condition
(2.26) is satisfied.
The biquadratic serendipity element has, moreover, the following property:

Lemma 4.5. Let Q̃2(K) be the class of all shape functions belonging to the
serendipity element x). Then

P2(K) ⊂ Q̃2(K) ⊂ P3(K).

Proof: The second set inclusion is immediate from the facts that the shape
functions Ψ̃α of x) lie in Q2(K) and satisfy (2.26).
Now let u be an arbitrary polynomial in P2(K). Then
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u(ξ, η) = a0 + a10(2ξ − 1) + a01(2η − 1)

+a20(2ξ − 1)2 + a11(2ξ − 1)(2η − 1) + a02(2η − 1)2.

where the coefficients a0, a10, · · · , a02 are arbitrary. Hence, for the values uα

of the function u(·) at the points pα we get

u4000 = a0 −a10 −a01 +a20 +a11 +a02

u0400 = a0 +a10 −a01 +a20 −a11 +a02

u0040 = a0 +a10 +a01 +a20 +a11 +a02

u0004 = a0 −a10 +a01 +a20 −a11 +a02

u2200 = a0 −a01 +a02

u0220 = a0 +a10 +a20

u0022 = a0 +a01 +a02

u2002 = a0 −a10 +a20

u1111 = a0 .

(2.27)

Because u ∈ P2(K) and P2(K) ⊂ Q2(K), the polynomial u will be exactly
represented in the space of biquadratic functions ix). We already know that bi-
quadratic functions can be exactly represented in Q̃2(K) if and only if (2.26)
is valid. But by combining the equations (2.27) one sees easily that (2.26)
holds. Thus u will be exactly represented in Q̃2(K), i.e., P2(K) ⊂ Q̃2(K).

Compared with C0 elements, the construction of C1 elements is relatively
complicated.

For triangular elements and polynomial shape functions, Zenisek [126]
proved that the minimal number of degrees of freedom needed to ensure the
global C1 property is d = 18. This number is attained by the Bell element;
for Argyris’s triangle the dimension is slightly larger. Even for rectangular
elements the dimension of the space of shape functions is relatively large for
C1 elements; for instance, it is 16 for the Bogner-Fox-Schmit element xi). Of
course a finite element method based on shape function spaces of locally high
dimension leads to a much larger number of Galerkin equations that must be
solved numerically.

Accordingly, in practice often one avoids using C1 elements and instead
embraces nonconforming methods or mixed methods that require only C0

elements; see Sections 4.5 and 4.6. Here we now discuss the possibility of
reducing the number of degrees of freedom by eliminating those degrees of
freedom associated with interior nodes. On triangles, well-known elements
of this type are the Powell-Sabin element and the Clough-Tocher element;
see [Cia78]. In these two elements the local ansatz functions are, respectively,
piecewise quadratics and piecewise cubics. For the Clough-Tocher element the
dimension of the local space is 12. The verification of global differentiability
properties of such composite elements on triangulations can be simplified if one
uses the so-called Bézier-Bernstein representation of polynomials on triangles.

We describe some principles of composite C1 elements in a simple one-
dimensional example.
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Let K = [xi−1, xi] be a closed subinterval of the decomposition Z of Ω ⊂
R1. If we prescribe values of the function and its first-order derivative at both
endpoints of K, then there exists a unique cubic polynomial interpolating to
these. We have already met the corresponding Hermite element.

Instead we choose the intermediate point xi−1/2 := (xi−1 + xi)/2 and
aim to determine a quadratic polynomial on [xi−1, xi−1/2] and a quadratic
polynomial on [xi−1/2, xi] in such a way that the composite function is in
C1(K).

Transform K to the reference interval K ′ = [0, 1], i.e., represent K in the
form

K = { x = (1− ξ)xi−1 + ξxi : ξ ∈ [0, 1]} .
Every globally continuous and piecewise quadratic function on K can now be
written as

u(x) =

{
ui−1ϕ(ξ) + hiu

′
i−1ψ(ξ) + ui−1/2σ(ξ) for ξ ∈ [0, 0.5],

uiϕ(1− ξ) + hiu
′
iψ(1− ξ) + ui−1/2σ(1− ξ) for ξ ∈ [0.5, 1].

(2.28)

Here ui−1/2 is the function value at the midpoint xi−1/2 while ui−1, u′i−1,
ui and u′i are the values of the function and its derivatives at the boundary
points. Furthermore, hi := xi − xi−1 and

ϕ(ξ) = (1− 2ξ)(1 + 2ξ), ψ(ξ) = ξ(1− 2ξ), σ(ξ) = 4ξ2. (2.29)

These functions are the Hermite-Lagrange shape functions with respect to the
interval [0, 0.5]: they satisfy

ϕ(0) = 1, ϕ′(0) = 0, ϕ(0.5) = 0,
ψ(0) = 0, ψ′(0) = 1, ψ(0.5) = 0,
σ(0) = 0, σ′(0) = 0, σ(0.5) = 1.

(2.30)

Now we can evaluate the derivatives at our intermediate point xi−1/2. Observe
that ξ = (x− xi−1)/hi. Then (2.28) and (2.30) yield

u′(xi−1/2 − 0) = ui−1

hi
ϕ′(0.5) + u′i−1ψ

′(0.5) +
ui−1/2

hi
σ′(0.5),

u′(xi−1/2 + 0) = −ui
hi
ϕ′(0.5)− u′iψ′(0.5)− ui−1/2

hi
σ′(0.5).

Therefore, our piecewise quadratic function (2.28) is differentiable at xi−1/2

for arbitrarily chosen ui−1, u′i−1, ui, and u′i if and only if

(ui−1 + ui)ϕ′(0.5) + hi(u′i−1 + u′i)ψ
′(0.5) + 2ui−1/2σ

′(0.5) = 0.

Recalling (2.29), this equation produces the condition for u ∈ C1(K):

ui−1/2 =
1
2
(ui−1 + ui) +

1
8
hi(u′i−1 + u′i). (2.31)

Therefore, eliminating the artificial degree of freedom ui−1/2 by means of
(2.31) yields a composite element in C1(K).
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Exercise 4.6. Consider the boundary value problem

−(pu′)′ + qu = f, u(0) = u(1) = 0.

Assume that p and q are piecewise constant on the given mesh: p(x) ≡ pi−1/2,
q(x) ≡ qi−1/2 when x ∈ (xi−1, xi) for i = 1, . . . , N , where x0 = 0, xN = 1.
Compute the coefficient matrix of the linear system that is generated by the
application of the finite element method with linear elements.

Exercise 4.7. Let the differential operator

− d

dx

(
k
dT

dx

)
+ a

dT

dx
(k, a constants)

be discretized by quadratic finite elements on an equidistant mesh. What
approximation of the operator is generated?

Exercise 4.8. Consider a uniform triangular mesh that is derived from a
mesh of squares by drawing one diagonal in each square. Now discretize the

partial derivative ∂u(x, y)
∂x

on that mesh using linear finite elements. What
difference stencil is generated?

Exercise 4.9. Let us decompose the domain Ω = (0, 1) × (0, 1) into squares
of equal size and discretize −�u on this mesh using bilinear elements. Verify
that the difference stencil generated is

1
3

⎡⎣−1 −1 −1
−1 8 −1
−1 −1 −1

⎤⎦ .
Exercise 4.10. If one starts with biquadratic elements and deletes the term
x2y2, one obtains an element of the serendipity family. Discuss possible choices
of basis functions for this element.

Exercise 4.11. Assume that a polygonal domain in 2D is decomposed into
triangles in such a way that no obtuse angle appears (we call such a triangula-
tion weakly acute). Discretize −�u on this mesh using linear finite elements.
Prove that the stiffness matrix for the Dirichlet problem

−�u = f in Ω, u|Γ = 0

is an M -matrix.

Exercise 4.12. Let us consider the weak formulation of the boundary value
problem

Lu = −u′′ + c(x)u = f(x) in (0, 1),
u(0) = 0, u′(1) = β,

(2.32)



200 4 The Finite Element Method

in V = {v ∈ H1(0, 1) : v(0) = 0}, where we assume that c ∈ L∞(0, 1) and
f ∈ V ∗.
a) Verify that the embedding V ↪→ H = H∗ ↪→ V ∗ with H = L2(0, 1) implies

〈Lu, v〉 =
∫ 1

0

[u′v′ + c(x)uv]dx− βv(1).

b) Verify that Vh = {ϕk}Nk=1 with

ϕk(t) = max{0, 1− |Nt− k|}, 0 ≤ t ≤ 1, k = 1, . . . , N,

where h = 1/N , is an N -dimensional subspace of V .
c) Show that every vh ∈ Vh can be represented as

vh(x) =
N∑

k=1

vkϕk(x) with vk = vh(kh).

d) Compute the quantities

aik =
∫ 1

0

ϕ′
iϕ

′
kdx and bik =

∫ 1

0

ϕiϕkdx.

e) Discretize problem (2.32) using the Galerkin method with discrete space
Vh ⊂ V . What difference scheme is generated in the case

c(x) = ck when kh < x ≤ (k + 1)h ?

Exercise 4.13. Suppose we are given d + 1 points ai = (aij)d
j=1, i =

1, ..., d+1, each lying in the n-dimensional space Rd, and having the property

V = V (a1, ..., ad+1) =

∣∣∣∣∣∣∣
1 a11 a12 . . . a1d

...
...

...
...

1 ad+11,1 ad+1,2 . . . ad+1,d

∣∣∣∣∣∣∣ �= 0.

a) Verify that the ai are the vertices of a non-degenerate simplex S ⊂ Rd.
b) Prove that the equations

x =
d+1∑
i=1

λiai and
d+1∑
i=1

λi = 1

define a one-to-one mapping from x ∈ Rd onto the numbers λi = λi(x;S) —
these are the barycentric coordinates of x.
c) Let l : Rd → Rd be an affine mapping. Prove that
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λi(x;S) = λi(l(x); l(S)).

d) Define l = (li)d
i=1 by li(x) = λi(x;S). Prove that l is an affine mapping.

Characterize Ŝ = l(S), the image of the simplex S under l, and formulate an
algorithm for computing Â and b̂ in

x = Âl(x) + b̂.

e) Use the result of d) to prove that the volume of the simplex generated by the
points ai is V/d!. What geometric interpretation can you give the barycentric
coordinates?

Exercise 4.14. Let T be a triangle with vertices a1, a2, a3. Given k ∈ N ,
consider the following set of points:

Lk(T ) =
{
x : x =

∑3
i=1 λiai,

∑3
i=1 λi = 1,

λi ∈ {0, 1
k , · · · , k−1

k , 1} for i = 1, 2, 3
}
.

Now we take polynomials of degree k as shape functions and wish to use the
function values at the points of Lk(T ) as degrees of freedom.
Prove Pk-unisolvence, perhaps first for k = 2 and then for general k.

Exercise 4.15. Let T be a triangle with vertices a1, a2, a3. We want to use
the following degrees of freedom:
– at each vertex: function value and directional derivatives along the edges
– at the centre of the triangle: function value.
a) prove P3-unisolvence for this set of degrees of freedom.
b) construct a basis for this element for an equilateral triangle T .

Exercise 4.16. Consider an admissible triangulation of a polygonal domain
Ω. Let Xh be the finite element space associated with the Argyris element.
Verify that Xh ⊂ C1(Ω̄).

Exercise 4.17. Consider a given triangle T . Denote by aijk the points of the
triangle T with the barycentric coordinates ( i

3 ,
j
3 ,

k
3 ) where i+ j + k = 3 and

i, j, k ∈ {0, 1, 2, 3}.
Define a functional on P3 by

ϕ(p) = 3
∑

i+j+k=3

p(aijk)− 15p(a111)− 5[p(a300) + p(a030) + p(a003)]

and define a subspace of P3:

P
′
3 = {p ∈ P3 : ϕ(p) = 0}.

Prove that P2 ⊂ P
′
3.
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4.3 Practical Aspects of the Finite Element Method

4.3.1 Structure of a Finite Element Code

If one uses a finite element method to solve a boundary value problem for a
partial differential equation on a domain Ω ⊂ Rn, then the precise choice of
method depends mainly on the given differential equation but the geometry
of Ω and the type of boundary conditions also play an essential role.

Consequently, in the implementation of the finite element method one
must store geometric information about the boundary of the given domain Ω
as well as information regarding the differential equation and the boundary
conditions.

The finite element method is based on a decomposition of the given domain
Ω into subdomains Ωj , j = 1, . . . ,M . The details of this decomposition are
needed in the execution of the finite element method, as are the precise shape
functions and the types of degrees of freedom involved. This data is used
to generate the discrete problem from the Ritz-Galerkin equations, and is
also used later to extract information from the approximate solution via its
representation in terms of a basis in the discrete space.

Typically, three steps are evident in the development of a finite element
code:

1. Description of the given problem, generation of an initial mesh;
2. Generation of the discrete problem, solution of the discrete problem, a

posteriori error estimation, mesh refinement;
3. Postprocessing of the results obtained, graphical presentation.

Step 1 is sometimes called pre-processing in terminology resembling the post-
processing of step 3. If at the end of step 2 the estimated error is too large, the
current mesh is refined and step 2 is repeated. (This is the strategy followed
in the h-version of the finite element method, which is the most widely used;
in the p- and hp-versions a slightly different approach is used—see Section
4.9.4.)

In this Section we shall discuss three aspects of the implementation of the
program just described: the description of the given problem, the generation
of the discrete problem, and questions related to mesh generation and mesh
refinement.

In a finite element code several very different subproblems have to be
solved, which explains why every code contains a large number of special
algorithms. Furthermore, for each of these subproblems, many different algo-
rithms are available. For instance, every code uses an algorithm to generate
an initial mesh, but if one searches for mesh generation algorithms using the
internet, one gets a flood of information about codes dealing only with that
subject. Thus it is unsurprising that there does not exist a universal finite
element code. Nevertheless there are many fairly well-developed codes that
solve relatively large classes of problems.
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In the following discussion our attention is mainly focused on the code
PLTMG [Ban98] (piecewise linear triangle multi grid). This code was one of
the first to use adaptive grid generation (see Section 4.7) and multigrid to
solve the discrete problems efficiently. Let us also mention ALBERTA [SS05]
and the very compact description of a finite element code using MATLAB in
[3].

4.3.2 Description of the Problem

The first step in the implementation of a finite element method is the descrip-
tion of the given problem by data structures in a computer. Here one must
describe the domain, the differential equation and the boundary conditions.

Because the finite element method is based on a decomposition of the given
domain Ω into subdomains Ωj , j = 1, . . . ,M , one also needs information
about these subdomains. Let us assume, for simplicity, that the subdomains
are convex polyedra and the degrees of freedom of the shape functions used
are associated with the vertices of these polyedra. (Points with which the
degrees of freedom are associated are called knots.) Then one needs at least
two lists to store the necessary information: a list of the geometrical locations
of the polyedra, i.e., the coordinates of their vertices, and a second list that
associates certain vertices in the first list with each subdomain.

We give some details for our example from Section 4.1. Number the sub-
domains and the N = 21 mesh points as in Figure 4.10.

Figure 4.10 Enumeration of subdomains and knots

Then we obtain the following list for the coordinates of the vertices or
knots pi, i = 1, . . . , 21:
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i xi yi

1 0.2 0.2
2 0.4 0.2
3 0.6 0.2
4 0.2 0.4
5 0.4 0.4
6 0.2 0.6
7 0.0 0.0

i xi yi

8 0.2 0.0
9 0.4 0.0

10 0.6 0.0
11 0.8 0.0
12 1.0 0.0
13 0.0 0.2
14 0.8 0.2

i xi yi

15 0.0 0.4
16 0.6 0.4
17 0.0 0.6
18 0.4 0.6
19 0.0 0.8
20 0.2 0.8
21 0.0 1.0

Next, we store the indices of the vertices appearing in each subdomain. Here
each group of vertices is taken in a counter-clockwise order.

j Index of the vertices

1 7 8 1 13
2 8 9 2 1
3 9 10 3 2
4 10 11 14 3
5 13 1 4 15

j Index of the vertices

6 1 2 5 4
7 2 3 16 5
8 15 4 6 17
9 4 5 18 6

10 17 6 20 19

j Index of the vertices

11 11 12 14
12 3 14 16
13 5 16 18
14 6 18 20
15 19 20 21

As the given domain is polygonal and the decomposition has the property

Ω =
M⋃

j=1

Ωj , no additional description of the domain is necessary.

If one uses degrees of freedom that are not located at the vertices of the
subdomains or if, for instance, so-called isoparametric finite elements are used
(see Section 4.5), then one has to store additional information.

When the boundary conditions are of Dirichlet type and are homogeneous,
if one enumerates the vertices in such a way that the interior vertices are
numbered before the boundary vertices, then it is easy to handle the boundary
conditions. When more complicated boundary conditions are encountered, one
has to store segments of the boundary and the type of boundary condition
corresponding to each segment.

Our example has 15 boundary segments. One could work with the following
list which shows the vertices belonging to each segment:

k Index of the vertices

1 7 8
2 8 9
3 9 10
4 10 11
5 11 12

k Index of the vertices

6 12 14
7 14 16
8 16 18
9 18 20

10 20 21

k Index of the vertices

11 21 19
12 19 17
13 17 15
14 15 13
15 13 7

Given different boundary conditions on various parts of the boundary, we
could complete this list by an indicator of the type of boundary condition,
say 1 for Dirichlet, 2 for Neumann and 3 for Robin boundary conditions.

Sometimes it is appropriate to store additional information, such as the
numbering of the vertices of adjacent elements. This can be used effectively
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if for instance in an adaptive algorithm one has to implement local mesh
refinement.

If a large amount of information is stored then it is often possible to use
that information algorithmically in a specific way. On the other hand, it may
be more effective to compute desired data several times instead of permanently
storing all available information. Thus one has to decide on a compromise
between storage restrictions and a comprehensive structured modular finite
element code.

It is clear that a complete description of the given problem contains pro-
grams to compute the coefficients of the given differential equation, its right-
hand side and the functions determining the boundary conditions.

If the given problem has a complicated structure—for instance if one has
a system of partial differential equations, or different differential equations in
different subdomains coupled by some conditions on the interface between the
subdomains—then, of course, additional tools are needed to describe this.

4.3.3 Generation of the Discrete Problem

Let us describe the generation of the discrete problem for the abstract varia-
tional equation whose theory we have already studied:
Find u ∈ V such that

a(u, v) = f(v) for all v ∈ V.

For the discretization we use a conforming version of the Ritz-Galerkin method
that is based on a subspace Vh ⊂ V . Then the discrete problem is
Find uh ∈ Vh such that

a(uh, vh) = f(vh) for all vh ∈ Vh.

Let {ϕi}N̂i=1 be a basis for Vh. The discrete problem is equivalent to the linear
system

Ah uh = fh

with Ah = (a(ϕk, ϕi))N̂
i,k=1 and fh = (f(ϕi))N̂

i=1. The solution of this linear

system produces the coefficients (ui)N̂
i=1 in the representation

uh(x) =
N̂∑

i=1

ui ϕi(x)

of the approximate solution.
Unlike spectral methods based on the Ritz-Galerkin method, the finite

element method uses ansatz functions with small local support. Consequently
the stiffness matrix Ah is sparse, i.e., relatively few entries of Ah are non-zero.

How is the stiffness matrix generated?
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Typically, one computes the contributions of each element to the stiffness
matrix, then the full matrix is got by summing these contributions. The same
procedure is used to compute the vector on the right-hand side. The contribu-
tion of a single element to the stiffness matrix is called the element stiffness
matrix. There are two ways of computing the entries of the element stiffness
matrix: one can compute the desired integrals directly over the element or
transform it to a reference element where the integrals are computed. The
process of generating the stiffness matrix and right-hand-side vector is known
as assembling.

We sketch the assembly of the stiffness matrix for the example of Section
4.1. There the bilinear form a(·, ·) and right hand side f(·) were given by

a(u, v) =
∫
Ω

∇u∇v dx and f(v) =
∫
Ω

fv dx.

Then the element stiffness matrix associated with each element Ωj has the
form

Aj
h = (aj

ik)i,k∈Ij

where

aj
ik :=

∫
Ωj

∇ϕi∇ϕk dx and Ij := { i : suppϕi ∩Ωj �= ∅ }.

Analogously,

f j = (f j
i )i∈Ij

, with f j
i :=

∫
Ωj

fϕi dx,

gives the contribution of Ωj to the right-hand side. The additivity of the
integrals clearly leads to

Ah = (aik)N̂
i,k=1 with aik =

M∑
j=1, i∈Ij , k∈Ij

aj
ik

and

fh = (fi)N̂
i=1 with fi =

M∑
j=1, i∈Ij

f j
i .

Next we explicitly compute these element stiffness matrices. In our special case
of linear and bilinear elements, the number N̂ equals the number of mesh
points N . Moreover, our earlier list on page 204, which shows the vertices
appearing in each subdomain, provides us with the index set Ij of vertices of
each element Ωj .

Let us first compute the element stiffness matrix related to the bilinear
form above for a conforming linear triangular element and a given triangle
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K = Ωj . For simplicity assume that the indices of the vertices of this triangle
are 1, 2, 3. As previously mentioned, the required integrals are often computed
after transforming onto a reference element. This transformation is also used
to estimate projection errors; see the next section.
The transformation(

x
y

)
= Fj

(
ξ
η

)
:=
(
x1

y1

)
+ ξ

(
x2 − x1

y2 − y1

)
+ η

(
x3 − x1

y3 − y1

)
,

(
ξ
η

)
∈ K ′,

(3.1)

maps the reference triangle

K ′ =
{(

ξ
η

)
: ξ ≥ 0, η ≥ 0, ξ + η ≤ 1

}
onto K. The functional determinant of this transformation is given by

Dj =

∣∣∣∣∣x2 − x1 x3 − x1

y2 − y1 y3 − y1

∣∣∣∣∣ . (3.2)

Note the connection with the area T of triangle K given by 2T = |Dj |.
Now derivatives with respect to x and y can be replaced by derivatives with
respect to the new variables ξ and η:⎛⎝ ∂

∂x
∂
∂y

⎞⎠ =

⎛⎜⎝ ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

⎞⎟⎠
⎛⎝ ∂
∂ξ
∂
∂η

⎞⎠ . (3.3)

By differentiating (3.1) with respect to x and y, we get

(
1
0

)
=
(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)⎛⎝ ∂ξ
∂x
∂η
∂x

⎞⎠ , ( 0
1

)
=
(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)⎛⎜⎝ ∂ξ
∂y
∂η
∂y

⎞⎟⎠ .
Hence

∂ξ
∂x

= (y3 − y1)
Dj

,
∂η
∂x

= (y1 − y2)
Dj

,

∂ξ
∂y

= (x1 − x3)
Dj

,
∂η
∂y

= (x2 − x1)
Dj

.

Thus (3.3) becomes⎛⎝ ∂
∂x
∂
∂y

⎞⎠ =
1
Dj

(
y3 − y1 y1 − y2
x1 − x3 x2 − x1

)⎛⎝ ∂
∂ξ
∂
∂η

⎞⎠ .
The three nodal basis functions on the reference triangle are
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ϕ̃1(ξ, η) = 1− ξ − η, ϕ̃2(ξ, η) = ξ, ϕ̃3(ξ, η) = η.

Transforming the integrals
∫
K

∇ϕi∇ϕk dx to the reference triangle K ′ yields

eventually the element stiffness matrix

Aj
h =

1
2|Dj |

⎛⎝ y2 − y3 x3 − x2

y3 − y1 x1 − x3

y1 − y2 x2 − x1

⎞⎠( y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1

)
.

For a general triangle Ωj with vertices pi, pk and pl, i.e., Ij = {i, k, l},
the entries of the element stiffness matrix for linear elements are given by

aj
ik =

1
2|Dj |

[(xi − xl)(xl − xk) + (yi − yl)(yl − yk)] if i �= k

and
aj

ii =
1

2|Dj |
[(xk − xl)2 + (yk − yl)2].

If the vertices {i, k, l} are oriented in a positive way then Dj > 0.

Remark 4.18. (linear FEM, maximum principle and FVM)
An elementary manipulation of the above results shows the following:
If a triangle K has vertices pi, pj and pk, then∫

K

∇ϕi∇ϕk = −1
2

cot γik, (3.4)

where γik denotes the angle opposite the edge pipk. Moreover, the formula

cotα+ cotβ =
sin(α+ β)
sinα sinβ

implies that if a triangulation has the property that the sum of the two angles
opposite each interior edge is always less than π and the angles opposite the
boundary edges are not obtuse, and the triangulation is not degenerate due
to occurring narrow strips as part of the original domain, then the discretiza-
tion of the Laplacian generated by linear finite elements satisfies a maximum
principle.
We recall that in Chapter 2 this property was shown for the discretization of
the Laplacian using a finite volume method based on Voronoi boxes. Exploit-
ing (3.4) to compare the discretizations, one finds in fact that linear finite
elements and finite volumes based on Voronoi boxes generate the same stiff-
ness matrix for the discrete problem. �

The element stiffness matrix for rectangular elements with bilinear shape
functions can be computed analogously.

In our example we have rectangles with edges parallel to the coordinate
axes. Set
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Ωj = conv {p1, p2, p3, p4} = [x1, x2]× [y2, y3],
Δxj : = x2 − x1 and Δyj := y3 − y2.

Then nodal basis functions lead to

Aj
h =

1
6ΔxjΔyj

⎛⎜⎜⎜⎜⎝
2Δx2

j + 2Δy2
j Δx2

j − 2Δy2
j −Δx2

j − Δy2
j −2Δx2

j + Δy2
j

Δx2
j − 2Δy2

j 2Δx2
j + 2Δy2

j −2Δx2
j + Δy2

j −Δx2
j − Δy2

j

−Δx2
j − Δy2

j −2Δx2
j + Δy2

j 2Δx2
j + 2Δy2

j Δx2
j − 2Δy2

j

−2Δx2
j + Δy2

j −Δx2
j − Δy2

j Δx2
j − 2Δy2

j 2Δx2
j + 2Δy2

j

⎞⎟⎟⎟⎟⎠ .
For the computation of element stiffness matrices for other types of ele-

ments, see [Sch88] and [GRT93].
Boundary conditions of Neumann or Robin type directly influence the

structure of the weak formulation. In simple cases Dirichlet boundary con-
ditions can however be immediately taken into consideration: assuming that
function values are the degrees of freedom of the shape functions used, one
assigns those degrees of freedom associated with boundary knots the cor-
responding values from the Dirichlet data. The remaining unknowns in the
discrete equations correspond to the degrees of freedom at the interior mesh
points.

The computation of the right-hand side vector fh requires, in general,
the application of numerical quadrature. The same is, of course, usually true
for the element stiffness matrix if the given differential operator has non-
constant coefficients or if one has inhomogeneous Neumann or Robin boundary
conditions. We shall discuss numerical quadrature in Section 4.5.

If the mesh has a regular structure one can, alternatively to our descrip-
tion above, assemble the stiffness matrix in a mesh-point oriented way. This is
possible because for such meshes information on adjacent elements and adja-
cent mesh points is easily made available. For unstructured meshes, however,
one has to store such information during the mesh generation process.

The stiffness matrix generated by finite elements is sparse. Its structure
depends on the geometry of the decomposition of the domain and on the
shape functions used. If this decomposition is very regular, then for differential
operators with constant coefficients the discrete problems generated by finite
elements using several standard shape functions turn out to coincide with
well-known finite difference methods discussed in Chapter 2.

When any finite-dimensional space Vh is combined with the finite element
method for the discretization, then the choice of basis in Vh will influence
the structure and conditioning of the discrete problem generated. One often
wishes to use the multigrid method (see Chapter 8) to solve this discrete
problem. Now multigrid uses a family of meshes. Therefore in this situation
it makes sense to define the shape functions first on the coarsest mesh and
then to add local shape functions related to the new mesh points that arise
in the mesh refinement process. As we mentioned previously, we call this
a hierarchical basis. Hierarchical basis functions play an important role in
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both adaptive finite element methods and the preconditioning process for the
discrete problem.

4.3.4 Mesh Generation and Manipulation

The implementation of the finite element method requires a suitable decom-
position of the given domain Ω ⊂ Rn into subdomains Ωj , for j = 1, . . . ,M ,
that have a geometrically simple shape: triangles and quadrilaterals in 2D,
tetrahedra and parallelepipeds in 3D.

A significant advantage of the finite element method over the finite dif-
ference method is that on every mesh the discrete problem can be generated
in a relatively simple and systematic way. Consequently problems with fairly
complicated geometry can be readily handled by finite elements. Information
about the solution—such as knowledge of corner singularities or boundary
layers—can be used to create a suitable locally adapted mesh. For finite el-
ement methods, moreover, the theory of a posteriori error estimation is well
developed; this allows judicious local mesh refinement in regions where the
error in the computed solution is still too large.

In a typical finite element code the following three factors determine the
construction of the final mesh used to compute the approximate solution:

1. Generation of the initial mesh;
2. Local evaluation of the current mesh using the current computed solution;
3. Mesh refinement.

We shall discuss item 2—a posteriori error estimation—in detail in Section
4.7.
Here we first examine initial mesh generation and subsequent mesh refine-
ment. Note that many adaptive codes use mesh coarsening as well as mesh
refinement. Furthermore, we shall not discuss the so-called r-method where the
knots are moved to optimal positions while preserving the number of mesh
points.

Generation of an Initial Mesh

Initial decompositions of a given domain are constructed using a mesh gener-
ator, which is a natural component of any finite element package. Each mesh
generator is a compromise between universality, simple applicability, trans-
parency of data structures and robustness of code. Mesh generators often
incorporate heuristic features as well.

In what follows we sketch some basic principles of mesh generation for the
two-dimensional case, using triangles for the decomposition. The following
three strategies are often used to generate initial meshes:

Strategy 1: The given domainΩ is first covered by a uniform quadrilateral
mesh and then triangulated. Then it is locally adapted to the boundary of
Ω by shifting mesh points near that boundary. Figure 4.11 illustrates the
technique; in this example mesh points are moved only in the y-direction.
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Figure 4.11 Shifting of mesh points near the boundary

Strategy 2: The given domain Ω or parts of the given domain are trans-
formed onto a reference triangle or rectangle. The reference element is uni-
formly decomposed into triangles. Then the inverse transformation yields a
decomposition of Ω whose subdomains have in general curved boundaries. In
the final step the curved elements are replaced by triangles.
Figure 4.12 demonstrates the technique. The first figure shows the given do-
main, the second one the triangulated reference element. Back transformation
yields the third figure, and the final figure shows the triangulation obtained.
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Figure 4.12 Mesh generation by transformation

Strategy 3: We begin by generating a set of points in Ω that are the vertices
of the initial triangulation (this set could be generated using strategies 1 or 2).
Then an algorithm to construct a Delaunay triangulation is launched. Here it
is necessary to fix sufficiently many points on the boundary of Ω.

A Delaunay triangulation triangulates the convex hull of a given set of
points in such a way that every triangle has the following property: no other
mesh point lies in the circumcircle passing through the three vertices of the
triangle.

In 2D a Delaunay triangulation has the following additional attribute:
among all triangulations of the given set of points, it maximizes the smallest
angle appearing in any triangle. This is a valuable property in the convergence
theory for finite element methods; see Section 4.4.

Figure 4.13 shows a Delaunay triangulation of the points in the final dia-
gram of Figure 4.12.

Figure 4.13 Delaunay triangulation

If one has a priori knowledge about the solution of the differential
equation—for example the presence of corner singularities or boundary
layers—this information can be used to define a locally adapted mesh in the
corresponding regions. When carefully chosen, such meshes allow one to prove
error estimates for problems with singularities that are similar to those for
problems without singularities on standard meshes. In Chapter 6 we shall
discuss in detail layer-adapted meshes for singularly perturbed problems.

Here we now turn to the case of a corner singularity for an elliptic boundary
value problem. Let us assume that for a given second-order problem, the origin
is a corner of a domain whose geometry is as in Figure 3.1 of Chapter 3. Then
typically one has

u− λ rπ/ω sin
πθ

ω
∈ H2(Ω).

Assume that the angle ω satisfies ω ∈ (π, 2π). Then the solution u does not
lie in the Sobolev space H2(Ω).
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Now the convergence theory for linear finite elements (which will be pre-
sented in Section 4.4) tells us that we cannot expect the method to be first-
order convergent when measured in the H1(Ω) norm. But if u ∈ H2(Ω)
were true, then one would have first-order convergence on standard meshes.
Therefore we ask: can one construct a special mesh that preserves first-order
convergence in H1(Ω)?

From the theoretical point of view, problems with corner singularities
are more difficult to handle because one uses the weighted Soboloev space
H2,α(Ω), which is the set of all functions w ∈ H1(Ω) that satisfy

rαDβ w ∈ L2(Ω) for |β| = 2.

It can be shown for our corner singularity problem that

u ∈ H2,α(Ω) for α > 1− π/ω.

Based on this analytical behaviour near the corner we construct a special
mesh. Triangles that have the origin as a vertex are decomposed using subdi-
vision points chosen according to the following recipe:(

i

n

)γ

, with γ = 1/(1− α), for i = 0, 1, . . . , n.

(Observe that γ = 1 defines a standard mesh.) Figure 4.14 shows such a local
mesh with γ = 2 (i.e., α = 1/2) and n = 4. This is a sensible choice if ω < 2π.

Figure 4.14 geometrically graded mesh

A mesh like this that is successively refined as one goes deeper into the region
of difficulty is called a graded mesh.
Interpolation error estimates in weighted Sobolev spaces can be used to prove
error estimates on geometrically graded meshes along the lines of the stan-
dard results in Section 4.4. For our example, linear finite elements on the
above geometrically graded mesh will indeed yield first-order convergence in
the H1(Ω) norm; see [Gri85].
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Mesh Refinement

(I) Global uniform refinement

The given domain Ω is covered with a coarse admissible initial mesh and then
uniformly refined. Each triangle is decomposed into 4 congruent subtriangles
and each quadrilateral into 4 congruent subquadrilaterals. Near the bound-
ary some local variation of this rule may be needed. This type of refinement
automatically guarantees the admissibility of the finer meshes generated. Fig-
ure 4.15 shows two refinement levels starting from a coarse mesh.

Figure 4.15 global uniform refinement

(II) Local refinement

Suppose that we want to refine locally a given triangular mesh.
First we present the technique that is used in the mesh generation process

of the code PLTMG [Ban98]. A triangle can be decomposed into subtriangles
in the following two ways:

1. Decomposition of a triangle into four congruent subtriangles using the
midpoints of the edges. These triangles are called red triangles.

2. Decomposition of a triangle into two triangles using a midpoint of one
edge. These triangles are called green triangles, and they appear in pairs.
In the following figures this second type of decomposition is indicated by
a dotted line.

As a rule, triangles that need to be refined are decomposed using red
refinement; green refinement is invoked only to ensure the admissibility of the
resulting triangulation. Figure 4.16 shows the need for green refinement if one
triangle is decomposed into four red ones.
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Figure 4.16 red-green refinement

To avoid degeneration of the triangles (i.e., large maximum angles), a further
direct refinement of a green pair is not allowed. If it becomes necessary later
to decompose one of the green pair in order to guarantee admissibility, then
the green pair are first reunited to form one triangle after which that triangle
is decomposed into 4 congruent red triangles. Figure 4.17 shows a typical
example of red-green refinement in a sequence of diagrams.

Figure 4.17 Decomposition of a green triangle

The above strategy ensures that on the sequence of locally refined meshes the
minimal angle of all triangles is uniformly bounded below away from zero. On
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the other hand, the possibility of birth and death of green triangles means
that successive meshes are not automatically nested. If nested meshes are
algorithmically necessary, then more complicated refinement rules will achieve
this; see [Ban98].

There are alternatives to red-green refinement. One important strategy
is bisection. Here, in the two-dimensional case, each triangle is decomposed
into two triangles by using the midpoint of its longest edge. This technique
is implemented in, for example, the code ALBERTA [SS05]. Of course, one
must still consider strategies to guarantee mesh admissibility and to avoid
geometrical degeneration; see [10] for both the 2D and 3D cases.

Exercise 4.19. Let A be a linear, formally selfadjoint, positive semidefinite
second-order differential operator and (T, PT ,

∑
T ) a finite element.

a) Verify that the element stiffness matrix ET generated by A is symmetric
and positive semidefinite.
b) Prove that ET is invariant with respect to translation and rotation of T
if the operator A is isotropic, i.e., invariant with respect to a congruence
transformation.
c) Let the operator A be isotropic and homogeneous of degree q. Let the
element T ′ be geometrically similar to the element T . What is the relationship
between the corresponding element matrices?
Remark: The operator A is homogeneous of degree q if under the similarity
transformation λt = x, λ ∈ R, one has Au(x) = λqAiv(t), where v(t) := u(λt)
and Ai denotes the operator A formally written in terms of the variables
t = (t1, t2, · · · , tN ) instead of x = (x1, x2, · · · , xN ).
d) Discuss problems b) and c) for the case that A is the sum of the Laplacian
and the identity operator.

Exercise 4.20. Compute the element stiffness matrix for the Laplacian oper-
ator using the so-called Hermite T10-triangle: cubic shape functions with ten
degrees of freedom—function values at the vertices and centroid, and values
of the first-order derivatives at the vertices.
Hence solve the problem{

−�u = 1 in Ω = (0, 1)2,
u = 0 on ∂Ω,

for a criss-cross triangulation (i.e., both diagonals are drawn) of a uniform
mesh of squares.

Exercise 4.21. Consider solving the problem −�u + cu = f on a rec-
tangular mesh parallel to the axes, using the reference finite element

T̂ = [−1, 1]2, P = Q1(T ),
∑

= {σi : σi(u) = u(±1,±1), i = 1, · · · , 4}.

What difference method is generated?
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Exercise 4.22. Compute a basis for the Bogner-Fox-Schmit element on the
reference element T̂ = [0, 1]2. Deduce the element stiffness matrix for the
Laplacian.

4.4 Convergence Theory of Conforming Finite Elements

4.4.1 Interpolation and Projection Error in Sobolev Spaces

For a conforming finite element method with Vh ⊂ V , the lemmata of Lax-
Milgram and Cea have given us already the following information: if the given
variational equation satisfies the assumptions of the Lax-Milgram lemma, then
the continuous and discrete problems each have a unique solution (u, uh re-
spectively) and the error (measured in the norm of the underlying space V )
satisfies the estimate

‖u− uh‖ ≤ c inf
vh∈Vh

‖u− vh‖

for some positive constant c.
But for a given space Vh, it is often troublesome to estimate the error of the
best approximation on the right-hand side here. If instead we choose some
arbitrary projection Π∗u ∈ Vh of the exact solution, then

‖u− uh‖ ≤ c inf
vh∈Vh

‖u− vh‖ ≤ c ‖u−Π∗u‖.

This bound enables us to concentrate on estimating the projection error, for
it turns out that in general the results obtained are asymptotically optimal,
i.e., the error of the best approximation and the error of some suitably chosen
projection differ only by a multiplicative constant. As a projection one often
takes for convenience some interpolant of the exact solution. To pursue this
analysis, we have to address the following central questions:
Given u in some Sobolev space, how is its interpolant or projection in Vh

defined? What estimates can then be proved for the interpolation or projection
error?

In this Section we shall study conforming methods, which are character-
ized by the assumptions that Vh ⊂ V , the boundary of the given domain is
polygonal, and all integrals arising in the method are computed exactly. If any
of these three assumptions is not satisfied then we can no longer appeal to the
conforming theory, and in that case the nonconforming feature will contribute
an additional error that will be discussed in Section 4.5.

Assume that we have a Lagrange element with knots p1, ..., pM and nodal
basis ϕ1, ..., ϕM . Then the mapping Π : V �→ Vh

Πu :=
M∑
i=1

u(pj)ϕj ∈ Vh
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is an interpolation operator that is well defined provided that the function
values u(pj) are well defined for a given u. For example, if u lies in H2(Ω)
where Ω is a two- or three-dimensional domain, then Sobolev embedding
theory implies that one can immediately define an interpolant of u in Vh, given
a nodal Lagrange basis in Vh. If u is less smooth but we need a projection of
u into Vh, then quasi-interpolants can be used; see Section 4.7.

Now let us assume that Vh is a finite element space of Lagrange elements of
type Pk on a triangulation of a given domain. Such elements are an important
example of an affine family of finite elements: the shape functions and degrees
of freedom on an arbitrary element can be defined by an affine-linear mapping
of the shape functions and degrees of freedom on a reference element. Let ΠZu
be a linear continuous projector into Vh, which is first defined on the reference
element and then transformed to each element by an affine-linear mapping.
We want to estimate the projection error

‖u−ΠZu‖.
This is done in three steps:

• transformation onto the reference element;
• estimation on the reference element, often using the Bramble-Hilbert

lemma;
• inverse transformation to the finite element.

Before studying the general case, we carry out these three steps for a simple
example. Let K be a triangle whose vertices are

(x0, y0), (x0 + h, y0), (x0, y0 + h).

Given a function u ∈ H2, we want to estimate the interpolation error in the
H1-seminorm if its interpolant uI is linear on K and coincides with u at the
vertices.
The transformation

ξ =
x− x0

h
, η =

y − x0

h
maps K onto the reference triangle E whose vertices are (0, 0), (1, 0) and
(0, 1). Transforming the integrals and using the chain rule yields

|u− uI |21,K = 2|K| 1
h2
|u− uI |21,E , (4.1)

where |K| denotes the measure of K.
We estimate the interpolation error on the reference triangle E:

(u− uI)x(x, y) = ux(x, y)− (u(1, 0)− u(0, 0))

=
∫ 1

0

[ux(x, y)− ux(ξ, y) + ux(ξ, y)− ux(ξ, 0)] dξ

=
∫ 1

0

(∫ x

ξ

uxx(μ, y) dμ+
∫ y

0

uxy(ξ, ν) dν)
)
dξ.
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Hence
‖(u− uI)x‖20,E ≤ C |ux|21,E (4.2)

and consequently
|u− uI |21,E ≤ C|u|22,E .

Transforming this back to K and recalling (4.1) yields the desired result

|u− uI |21,K ≤ C h2 |u|22,K .

In this simple example a direct estimate on K would also have been possible,
but in general it is often simpler to transform to a reference element.

Now we start to investigate the general case in 2D. Let the reference ele-
ment be the triangle

K ′ =
{(

ξ
η

)
: ξ ≥ 0, η ≥ 0, ξ + η ≤ 1

}
. (4.3)

It is clear that each triangle K = Ωj is the image of a one-to-one affine
mapping of the reference triangle, Fj : K ′ −→ K, where

x = Fj(p) = Bjp+ bj , p =
(
ξ
η

)
. (4.4)

To simplify the notation we drop the index j from Fj , the matrix Bj and the
vector bj .

If the given triangle has vertices
(
x1

y1

)
,
(
x2

y2

)
and

(
x3

y3

)
, then

(
x
y

)
= F (p) =

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)(
ξ
η

)
+
(
x1

y1

)
. (4.5)

Figure 4.18 illustrates the mappings F and F−1.

Setting
v(p) = u(F (p)), p ∈ K ′, (4.6)

we see that each function u(x), for x ∈ K, is mapped to a function v(p) defined
on the reference element. If F is differentiable, then the chain rule yields

∇pv(p) = F ′(p)∇xu(F (p)). (4.7)

Let h be the maximum length of the edges of the triangles in the triangulation
of the given domain Ω. Then there exists a constant c > 0 such that

‖F ′(p)‖ ≤ ch for all p ∈ K ′. (4.8)

To transform Sobolev norms on K to Sobolev norms on K ′ we need the
functional determinant
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Figure 4.18 Transformation on the reference element

s(p) := det F ′(p).

We assume that
s(p) > 0 for all p ∈ K ′.

The change-of-variable rules for transforming integrals yield∫
K

u2(x) dx =
∫
K′

v2(p)s(p) dp. (4.9)

Then (4.9) implies the following estimate for u ∈ L2(K):{
inf

p∈K′
s(p)
}1/2

‖v‖0,K′ ≤ ‖u‖0,K ≤
{

sup
p∈K′

s(p)
}1/2

‖v‖0,K′ .

When transforming norms that involve derivatives, the situation becomes
more complicated because of (4.7)). We first restrict ourselves to the linear-
affine mapping (4.4) and write ‖B‖ for the norm on B induced by the maxi-
mum norm ‖ · ‖ on R2.

Lemma 4.23. Let

x = F (p) = Bp+ b , p ∈ K ′, (4.10)

be a one-to-one affine mapping from the reference element K ′ onto K. The
following relations hold between functions defined on K and the corresponding
functions (4.6) defined on K ′: for l = 0, 1, ...,

i) u ∈ H l(K) ⇐⇒ v ∈ H l(K ′),
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ii) |v|l,K′ ≤ c ‖B‖l |detB|−1/2 |u|l,K ,

|u|l,K ≤ c ‖B−1‖l |detB|1/2 |v|l,K′ .

Proof: First we verify the validity of the estimate ii) for smooth functions u.
The function v is then smooth as well.

From (4.6) we get
∂v

∂pj
=

2∑
i=1

∂u

∂xi

∂xi

∂pj

and then (4.10) yields ∣∣∣∣ ∂v∂pj

∣∣∣∣ ≤ ‖B‖max
i

∣∣∣∣ ∂u∂xi

∣∣∣∣ .
For any multi-index α, this estimate used recursively implies

|[Dαv](p)| ≤ ‖B‖|α| max
β, |β|=|α|

|[Dβu](x(p))|, p ∈ K ′.

Taking into account the equivalence of the maximum and L2 norms in the
finite-dimensional space Rl+1 (there are l+1 various derivatives of order l for
functions of 2 variables), it follows that there exists a constant c such that∑

|α|=l

|[Dαv](p)|2 ≤ c ‖B‖2l
∑
|β|=l

|[Dβu](x(p))|2, p ∈ K ′. (4.11)

The value of the constant c depends on l and on the dimension n of the space
in which K lies (we are dealing here with n = 2). Using (4.11), the standard
rules for transforming integrals yield

|v|2l,K′ =
∫
K′

∑
|α|=l

|[Dαv|(p)|2 dp ≤ c‖B‖2l

∫
K′

∑
|β|=l

|[Dβu](x(p))|2 dp

≤ c‖B‖2l|det B|−1

∫
K

∑
|β|=l

|[Dβu](x)|2 dx

= c‖B‖2l|det B|−1|u|2l,K .

This proves the first inequality in ii); the second is handled similarly starting
from

p = B−1x−B−1b.

Thus ii) is proved for sufficiently smooth functions u and v. The density of
the space Cl(K) in H l(K) then implies ii) for functions in H l(K).

Finally, the equivalence i) follows immediately from ii).

Next we estimate ‖B‖ and ‖B−1‖.
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Lemma 4.24. Let the assumptions of Lemma 4.23 be satisfied with K ′ our
fixed reference element. Let ρ denote the radius of the largest ball one can
inscribe in K, and R the radius of the smallest ball that contains K. Then
there exists a constant c such that

‖B‖ ≤ cR, ‖B−1‖ ≤ c ρ−1.

Proof: Because K ′ is fixed, there are fixed positive numbers ρ′ and R′ that
represent the corresponding radii of balls for K ′. Then there exists a p0 ∈ K ′

such that
p0 + p ∈ K ′

for arbitrary p with ‖p‖ = ρ′. For the corresponding points

x0 = Bp0 + b and x = B(p0 + p) + b

assigned by (4.10), one has x0, x ∈ K. Our hypotheses imply that

‖x− x0‖ ≤ 2R.

Hence
‖B‖ =

1
ρ′

sup
‖p‖=ρ′

‖Bp‖ ≤ 1
ρ′
‖x− x0‖ ≤ 2

R

ρ′
.

If we interchange the roles of K and K ′, the second estimate follows sim-
ilarly.

When Lemma 4.24 is invoked in finite element analyses, we obtain esti-
mates that contain the diameter hK of the element K as well as the radius
of its inscribed ball ρK . The result of the lemma can be simplified in such
a way that hK appears instead of ρK in the final estimate if the class of
triangulations satisfies

hK

ρK
≤ σ (4.12)

for some fixed constant σ. A family of triangulations Z that satisfies (4.12)
for all elements K of the family with a single fixed constant σ is called quasi-
uniform. (We remark that in the literature a variety of terminology is used
for (4.12): the terms regular triangulation and shape-regular triangulation are
common.)

For a triangular mesh in 2D, the condition (4.12) is equivalent to the
minimal angle condition of Zlamal [128]:

minα ≥ α > 0, (4.13)

where α is an arbitrary angle of a triangle from the family of triangulations
under consideration and α > 0 is a fixed lower bound for the angles in that
class.
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It should be noted that for a single triangulation with a finite number
of elements (4.12) and (4.13) are trivially satisfied; the point is that these
conditions must hold for a family of triangulations with h := maxhK → 0
because we want to prove convergence results as h→ 0, and on such a family
the conditions are not trivial.

So far we have studied an affine family of finite elements and used affine
transformations between the elements and a reference element. But for quadri-
lateral elements one needs more general mappings, as otherwise one could
study only meshes consisting of parallelograms. Moreover, for curved domains
more general elements require more general classes of transformations: see Sec-
tion 4.5.5. Here we simply mention that for some classes of nonlinear trans-
formations one can prove results similar to those for affine mappings.

Let
x = F (p), p ∈ K ′, (4.14)

be a nonlinear transformation between a reference element K ′ and an element
K of a triangulation Z of the given domain. We say that F is regular if there
exist constants c0, c1, c2 such that for all u ∈ Hr(K) one has

|v|r,K′ ≤ c1
{

inf
p∈K′

s(p)
}−1/2

hr‖u‖r,K , (4.15)

|v|r,K′ ≥ c2
{

sup
p∈K′

s(p)
}−1/2

hr|u|r,K , (4.16)

0 <
1
c0
≤

sup
p∈K′

s(p)

inf
p∈K′

s(p)
≤ c0; (4.17)

here s(p) = det F ′(p). In the case of an affine transformation (4.5) the func-
tional determinant s(p) is constant, so affine transformations on quasi-uniform
meshes are always regular, and in fact (4.15) can then be sharpened to

|v|r,K′ ≤ c1
{

inf
p∈K′

s(p)
}−1/2

hr|u|r,K . (4.18)

A detailed discussion of regular transformations can be found in [MW77].
On the reference element the projection error is often estimated using the

following lemma. We say that a functional q on the space V is sublinear and
bounded if

|q(u1 + u2)| ≤ |q(u1)|+ |q(u2)| and |q(u)| ≤ C ‖u‖

for all u1, u2, u ∈ V and some constant C.
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Lemma 4.25 (Bramble/Hilbert). Let B ⊂ Rn be a domain with Lipschitz
boundary and let q be a bounded sublinear functional on Hk+1(B). Assume
that

q(w) = 0 for all w ∈ Pk. (4.19)

Then there exists a constant c = c(B) > 0, which depends on B, such that

|q(v)| ≤ c |v|k+1,B for all v ∈ Hk+1(B). (4.20)

Proof: Let v ∈ Hk+1(B) be an arbitrary function. We claim that one can
construct a polynomial w ∈ Pk such that∫

B

Dα(v + w) dx = 0 for all |α| ≤ k. (4.21)

To justify this assertion, observe that any polynomial of degree k can be
written as

w(x) =
∑
|β|≤k

cβx
β

with coefficients cβ ∈ R. Here β = (β1, ..., βn) denotes a multi-index and

xβ :=
n∏

i=1

xβi

i .

The linearity of the generalized derivative Dα and (4.21) mean that we require∑
|β|≤k

cβ

∫
B

Dαxβ dx = −
∫
B

Dαv dx, |α| ≤ k. (4.22)

This is a linear set of equations for the unknown coefficients cβ , |β| ≤ k, of
our polynomial w. As Dαxβ = 0 for all multi-indices α, β with αi > βi for
at least one i ∈ {1, ..., n}, the linear system (4.22) is triangular. It can be
solved recursively, starting with those indices β for which βj = k for some
j ∈ {1, ..., n}: for these β one gets

cβ = − 1
k!meas(B)

∫
B

Dβv dx.

The other coefficients then follow recursively from (4.22). We have now verified
that for each v there is a polynomial w ∈ Pk satisfying (4.21).

By Poincaré’s inequality,

‖u‖2k+1,B ≤ c

{
|u|2k+1,B +

∑
|α|≤k

∣∣∣∣ ∫
B

Dαu dx

∣∣∣∣2} for all u ∈ Hk+1(B).

Setting u = v + k and invoking (4.20) yields

‖v + w‖2k+1,B ≤ c |v + w|2k+1,B = c |v|2k+1,B
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because w ∈ Pk. The sublinearity of q implies

|q(v)| ≤ |q(v + w)|+ |q(w)| = |q(v + w)|

by (4.19). As q is bounded we get finally

|q(v)| ≤ c ‖v + w‖k+1,B ≤ c |v|k+1,B

as desired.

Remark 4.26. The Bramble-Hilbert lemma is usually proved for bounded lin-
ear functionals. It is occasionally useful to know a variant of it for continuous
bilinear forms S : Hk+1(B)×Hr+1(B) −→ R that satisfy

i) S(u, v) = 0 for all u ∈ Hk+1(B), v ∈ Pr ,
ii) S(u, v) = 0 for all u ∈ Pk, v ∈ Hr+1(B).

For such S one can prove that

|S(u, v)| ≤ c |u|k+1,B |v|r+1,B for all u ∈ Hk+1(B), v ∈ Hr+1(B). (4.23)

Next we apply the Bramble-Hilbert lemma to estimate the difference be-
tween a given function and its projection onto polynomials of degree k.

Lemma 4.27. Let k ≥ r and Π : Hk+1(B) −→ Pk ⊂ Hr(B) a continuous
linear projector. Then there exists a constant c > 0 such that

‖v −Πv‖r,B ≤ c |v|k+1,B for all v ∈ Hk+1(B).

This result follows immediately from the Bramble-Hilbert lemma because ‖·‖r
is a bounded sublinear functional.

We are now ready to estimate the projection error for an affine family of
finite elements. For 0 ≤ r ≤ k + 1 set

‖v‖2r,h,Ω =
m∑

j=1

‖v‖2r,Ωj
.

Theorem 4.28. Consider an affine family of finite elements of type Pk on
a quasi-uniform triangulation Z. Let ΠZ : Hk+1(Ω) −→ PZ,k(Ω), which is
defined piecewise on the triangulation Z of Ω, be a projector onto piecewise
polynomials of degree at most k. Then there exists a constant c > 0 such that

‖u−ΠZu‖r,h,Ω ≤ c hk+1−r|u|k+1,Ω for 0 ≤ r ≤ k + 1. (4.24)

Proof: Let Ωj , j = 1, . . . ,m, be the elements of the triangulation Z. Clearly

‖u−ΠZu‖2r,h,Ω =
m∑

j=1

‖u−ΠΩj
u‖2r,Ωj

. (4.25)
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We estimate the error on the subdomain Ωj = K. Transforming to the refer-
ence element K ′, we compute as follows:
Step 1: Lemmas 4.23 and 4.24 yield

‖u−Πu‖r,K ≤ c |det B|1/2ρ−r
K ‖u−Πu|r,K′ .

Step 2: An application of Lemma 4.27 on the reference element gives

‖u−Πu‖r,K′ ≤ c |u|k+1,K′ .

Step 3: Transforming back to K, one has

|u|k+1,K′ ≤ c |det B|−1/2hk+1
K |u|k+1,K .

Combining these inequalities we get (4.24) since the triangulation is quasi-
uniform.

If ΠZu ∈ Hr(Ω), one can replace the piecewise-defined norm of (4.25) by
the standard norm. Suppose, for instance, that u ∈ H2(Ω) and we consider its
linear interpolantΠu on a quasi-uniform triangular mesh. Then Theorem 4.28
tells us that

‖u−Πu‖1 ≤ ch1|u|2, ‖u−Πu‖0 ≤ ch2|u|2.

A result similar to Theorem 4.28 can be proved for regular transformations,
but in practice it may be demanding to verify that a transformation is regular.

Finally we mention that, as well as the isotropic result of Theorem 4.28,
anisotropic results are known. What is the difference between isotropic and
anisotropic elements? If we consider a triangle or a rectangle in 2D and char-
acterize its geometry only by its diameter then we have an isotropic view,
because we ignore the possibility that the length of the element in the per-
pendicular direction can be much smaller. Of course triangles that satisfy the
minimal angle condition cannot degenerate in this sense. It turns out that
for problems with edge singularities or boundary layers the application of
anisotropic elements can be advantageous; see Chapter 6.

For simplicity, let us study bilinear elements on a rectangular mesh of
lines parallel to the axes. We do not assume that on our family of meshes the
lengths h1 and h2 of the edges of a rectangle have the property that h1/h2

is bounded. Thus long thin rectangles—anisotropic ones—are allowed. For
isotropic bilinear elements one can prove interpolation error estimates similar
to the estimates above for linear elements if u ∈ H2. What happens in the
anisotropic case?

The transformation technique gives

‖(u−Πu)y‖20 ≤ C
(
h2

1 + h2
2 +
(h2

1

h2

)2
)
|u|22.
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It seems anisotropic elements are bad if h1  h2. But this is not the best
result available. A better result is obtained if on the reference element we
discard the estimate

‖(u−Πu)y‖20 ≤ C|u|22
in favour of the sharper estimate (see [6] or [KN96]; for linear elements com-
pare (4.2))

‖(u−Πu)y‖20 ≤ C|uy|21.
Then the transformation technique yields

‖u−Πu‖21 ≤ C(h2
1|ux|21 + h2

2|uy|21).

This estimate shows that anisotropic elements can be useful if the derivatives
of the given function in different directions—here the x- and y-directions—
have very dissimilar magnitudes.

A similar result for linear elements on anisotropic triangles in 2D shows
that one can replace the minimal angle condition by the maximal angle con-
dition:

α ≤ ᾱ with a constant ᾱ < π.

For the general theory of anisotropic elements in 2D and 3D, see [6] and
[Ape99].

4.4.2 Hilbert Space Error Estimates

Cea’s lemma and our bounds on the Sobolev space interpolation error can now
be combined to give error estimates for conforming finite element methods.

Let Ω ⊂ Rn be a given polygonal domain. For some subspace V of Hm(Ω)
consider the following weak formulation of an elliptic boundary value problem:
Find u ∈ V such that

a(u, v) = f(v) for all v ∈ V. (4.26)

Here f : V → R is a continuous linear functional and a : V × V → R is a
V -elliptic continuous bilinear form.

Let the finite element space Vh be a space of polynomial shape functions
on a quasi-uniform triangulation Z that is defined by affine mappings from a
reference element K ′. Let h denote the maximum diameter of the elements of
the triangulation. We assume that PZ,k(Ω) ⊂ Vh ⊂ V for some k ≥ 0.

Theorem 4.29. Assume that the solution u of the given problem (4.26) sat-
isfies the regularity condition u ∈ V ∩Hk+1(Ω) with k ≥ m.
Then the discrete problem

a(uh, vh) = f(vh) for all vh ∈ Vh (4.27)
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has a unique solution uh ∈ Vh. The error in the solution of the finite element
method satisfies the following bound:

‖u− uh‖m,Ω ≤ c hk+1−m|u|k+1,Ω , (4.28)

where c is a positive constant.

Proof: Because Vh ⊂ V , the Lax-Milgram lemma implies existence and
uniqueness of the discrete solution uh ∈ Vh of (4.27).
Then Cea’s lemma yields

‖u− uh‖m,Ω ≤ c inf
vh∈Vh

‖u− vh‖m,Ω ≤ c ‖u−ΠZu‖m,h,Ω .

Apply Theorem 4.28 to get the final estimate (4.28).

We are mainly interested in elliptic boundary value problems that are
second order, i.e., m = 1 and V ⊂ H1(Ω), so we restate Theorem 4.29 for the
special case of homogeneous Dirichlet boundary conditions.

Corollary 4.30. Let V = H1
0 (Ω) and let the solution u of (4.26) satisfy the

regularity condition u ∈ V ∩Hk+1(Ω) with k ≥ 1.
Moreover, let the assumptions of Theorem 4.28 be valid.
Then the discrete problem

a(uh, vh) = f(vh) for all vh ∈ Vh

has a unique solution uh ∈ Vh and the error of this solution satisfies the bound

‖u− uh‖1,Ω ≤ c hk|u|k+1,Ω . (4.29)

Let us go further and consider the discretization of Poisson’s equation with
homogeneous Dirichlet boundary conditions using linear finite elements:

Corollary 4.31. Let Ω ⊂ Rn be polygonal. Let u ∈ V ∩ H2(Ω), where V =
H1

0 (Ω), be the weak solution of

−Δu = f in Ω, u|Γ = 0,

i.e., the solution of the variational equation∫
Ω

∇u∇v dx =
∫
Ω

fv dx for all v ∈ V.

Let this problem be discretized by a conforming finite element method, namely
linear elements on a triangulation that satisfies the maximal angle condition.
Then the error in the finite element solution satisfies

‖u− uh‖1,Ω ≤ c h |u|2,Ω . (4.30)
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Remark 4.32. It is possible to compute the values of the constants in the
error estimates of Corollaries 4.30 and 4.31, but the effort required for this
computation increases with k. For linear finite elements, see [82].
Even if these constants are known, the a priori error estimates of the corollaries
only indicate the asymptotic behaviour of the error as h → 0 and do not
provide an explicit bound because in most cases it is also difficult to compute
a bound for |u|k+1,Ω . �

Remark 4.33. In Chapter 3 we discussed in detail the principal techniques used
to incorporate the given boundary conditions: natural boundary conditions
influence the weak formulation of the problem while in principle one should
satisfy the essential boundary conditions by the chosen ansatz.

If it is difficult to satisfy the essential boundary conditions in this way,
then alternative approaches are available. Some examples of such techniques
are

• weakly imposed boundary conditions and nonconforming methods;
• mixed finite elements;
• penalty methods.

We shall discuss the basic principles of these methods in Sections 4.5, 4.6 and
4.8. �

Theorem 4.29 provides a discretization error estimate only in the norm of
the given space V . But the projection error estimates in Theorem 4.28 tell us
that for fixed k the asymptotic behaviour of the projection error depends on
r, i.e., on the maximal order of the derivatives appearing in the Sobolev space
norm in which the error is measured. Does the discretization error have the
same property?

Let us take as an example the situation of Corollary 4.30. Is it possible to
prove not only the error estimate (4.29) in the H1 norm, but also the bound

‖u− uh‖0,Ω ≤ c hk+1|u|k+1,Ω? (4.31)

(We conjecture that this bound is valid because it is the bound for the inter-
polation error in L2.) Note that one cannot derive this estimate directly from
Theorem 4.29 by setting V = L2(Ω), because then the bilinear form a(·, ·) is
unbounded.

Aubin and Nitsche devised a technique for proving error estimates in L2

that is based on a duality argument (it is sometimes called Nitsche’s trick).
The key idea is to introduce an auxiliary function w ∈ V that is the solution
of

a(u− uh, w) = (u− uh, u− uh). (4.32)

Here, as usual, (·, ·) denotes the scalar product in L2(Ω). The L2 norm that
we want to estimate appears on the right-hand side of (4.32).

More generally, we consider the following variational equation:
Find w ∈ V such that for a given g ∈ L2(Ω) one has
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a(v, w) = (g, v) for all v ∈ V. (4.33)

This variational equation is the adjoint or dual problem of the original problem
(4.26).

One can easily verify that the bilinearity, continuity and V -ellipticity prop-
erties of the bilinear form a(·, ·) will also be valid for the bilinear form a∗(·, ·)
defined by interchanging the arguments:

a∗(u, v) := a(v, u) for all u, v ∈ V.

Furthermore,

|(g, v)| ≤ ‖g‖0,Ω‖v‖0,Ω ≤ c ‖g‖0,Ω‖v‖ for all v ∈ V

implies that (g, ·) ∈ V ∗ for g ∈ L2(Ω. Thus we can apply the Lax-Milgram
lemma to deduce that the adjoint problem (4.33) has a unique solution.

In addition we assume that w ∈ H2(Ω) with

|w|2,Ω ≤ c ‖g‖0,Ω (4.34)

with some positive constant c. The validity of this regularity assumption and
a priori estimate depends on the properties of the differential operator, the
geometry of the given domain Ω and the given boundary conditions.

Theorem 4.34. Let V ⊂ H1(Ω). Assume that the solution u of the given
problem (4.26) satisfies u ∈ V ∩ Hk+1(Ω), where k ≥ 1. Moreover, let the
assumptions of Theorem 4.28 be satisfied.
Given g ∈ L2(Ω), assume that the solution w of the adjoint problem (4.33)
lies in H2(Ω) and satisfies the a priori estimate (4.34).
Then the L2-error of the finite element method can be estimated by

‖u− uh‖0,Ω ≤ c hk+1 |u|k+1,Ω . (4.35)

Proof: As Vh ⊂ V , by Galerkin orthogonality we have

a(u− uh, vh) = 0 for all vh ∈ Vh. (4.36)

Now Vh ⊂ V ↪→ L2(Ω), so u− uh ∈ L2(Ω). The adjoint problem

a(v, w) = (u− uh, v) for all v ∈ V (4.37)

has a unique solution w ∈ V . By our hypotheses

|w|2,Ω ≤ c ‖u− uh‖0,Ω . (4.38)

Choose v = u− uh in (4.37). Recalling (4.36) also, it follows that

‖u− uh‖20,Ω = (u− uh, u− uh) = a(u− uh, w) = a(u− uh, w − vh)

≤M ‖u− uh‖1,Ω‖w − vh‖1,Ω for all vh ∈ Vh. (4.39)
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Corollary 4.30 tells us that for the H1 error one has

‖u− uh‖1,Ω ≤ c hk |u|k+1,Ω . (4.40)

But Theorem 4.28 and (4.38) imply that the projection error of w satisfies

‖w −Πhw‖1,Ω ≤ c h |w|2,Ω ≤ c h ‖u− uh‖0,Ω .

Setting vh = Πhw in (4.39) and taking (4.40) into account, we obtain finally

‖u− uh‖0,Ω ≤ c hk+1 |u|k+1,Ω .

The convergence results presented for finite elements based on piecewise
polynomials of degree k yield optimal orders of convergence only if the so-
lution of the given problem is relatively smooth, i.e., u ∈ Hk+1(Ω). As we
saw in Chapter 3, very smooth solutions are not to be expected in domains
with corners and for problems with mixed boundary conditions. In cases like
this, graded meshes as discussed in Section 4.3.4 are one possible means of
preventing a degradation of the convergence order.

If one knows only that u ∈ H1(Ω), then convergence of the finite element
method can often still be proved, as the next result shows:

Theorem 4.35. Let Ω ⊂ R2 be a polygonal domain, with V ⊂ H1(Ω), and
let H2(Ω) be dense in V with respect to the norm ‖ · ‖1,Ω.
Consider piecewise linear finite elements on a quasi-uniform triangulation.
Let uh denote the discrete solution. Then

lim
h→0
‖u− uh‖1,Ω = 0.

Proof: Let ε > 0 be arbitrary. AsH2(Ω) is dense in V , there exists w ∈ H2(Ω)
such that

‖u− w‖1,Ω ≤ ε.

By Theorem 4.28 the projection error satisfies

‖w −Πhw‖1,Ω ≤ c h |w|2,Ω .

Choosing h > 0 sufficiently small, it follows that

‖w −Πhw‖1,Ω ≤ ε.

The triangle inequality now gives

‖u−Πhw‖1,Ω ≤ ‖u− w‖1,Ω + ‖w −Πhw‖1,Ω ≤ 2ε.

Finally, applying Cea’s lemma we get

‖u− uh‖1,Ω ≤ c ε.

This proves the theorem because ε is an arbitrarily small positive number.



232 4 The Finite Element Method

Remark 4.36. (Optimal approximation and finite element methods)
Let A be a subset of a normed space X. In approximation theory the N -width
of A in X is defined by

dN (A,X) = inf
EN

sup
f∈A

inf
g∈EN

‖f − g‖X ,

where the first infimum is over all N -dimensional subspaces EN of X.
The quantity dN (A,X) measures how well A can be approximated by N -
dimensional subspaces of X.
In [73] it is proved that if X = H1

0 (Ω) and

A :=
{
u ∈ X : −�u+ cu = f, f ∈ Hs, ‖f‖s = 1

}
,

then for d-dimensional Ω, the N -width dN (A,X) satisfies the bound

dN ≥ CN−(s−1)/d.

This tells us for example that when s = 0, linear finite elements yield asymp-
totically optimal rates in the H1 norm; thus from this point of view there
is no reason to consider more complicated finite-dimensional approximation
spaces. �

Remark 4.37. (Interpolants or polynomial approximation)
For Lagrange elements and u ∈ H2 one often uses standard interpolation to
define projections into the given finite element space. Other approaches are
also possible: see, for instance, Chapter 4 in [BS94]. We shall discuss other
projectors when we present a posteriori error estimators in Section 4.7.

In analyzing meshless discretizations, Melenk [88] describes those proper-
ties of general systems of ansatz functions that are needed to prove optimal
approximation results. This characterization is also based on polynomial ap-
proximation in Sobolev spaces. �

4.4.3 Inverse Inequalities and Pointwise Error Estimates

If instead of H1 and L2 one is interested in the error of a finite element
approximation at a specific point or measured in the L∞ norm, then the
interpolation or projection error hints at what best one can expect.
For instance, for linear elements on a quasi-uniform triangulation one can
derive, analogously to Theorem 4.28, the interpolation error bounds

||u−Πu||∞ ≤
{
Ch for u ∈ H2,
Ch2 for u ∈W 2

∞.

The question now is: can one prove a similar result for the finite element error
||u− uh||∞?

The proof of optimal L∞ error estimates is much more difficult than the
arguments we have seen for error estimates in the H1 or L2 norms. Therefore
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we first present a simple approach based on inverse inequalities, which gives
first-order convergence under restrictive assumptions, and later sketch a more
complicated approach that leads to optimal convergence rates.

Inverse inequalities relate different norms or seminorms in finite element
spaces; in these inequalities, surprisingly, stronger norms are bounded by mul-
tiples of weaker norms. This can be done because every finite element space is
finite-dimensional and in a finite-dimensional space all norms are equivalent.
But the constants in such inequalities will depend on the dimension, and be-
cause the dimension of a finite element space Vh is related to h the constants
in inverse inequalities also depend on h.
As an example of an inverse inequality we prove:

Lemma 4.38. Let Vh be the space of piecewise linear finite elements on a
quasi-uniform triangulation of a two-dimensional polygonal domain. Assume
that the family of triangulations satisfies the inverse assumption

h

hK
≤ ν for all elements K,

where ν is some positive constant. Then there exists a constant C such that

||vh||∞ ≤
C

h
||vh||0 for all vh ∈ Vh.

Proof: Denote by vi,K the values of the linear function vh|K at the knots, by
vij,K the values at the midpoints of the edges, and by v111,K the value at the
centroid. Then a calculation yields

||vh||20,K =
1
60

⎛⎝3
∑

i

v2
i,K + 8

∑
i<j

v2
ij,K + 27v2

111,K

⎞⎠ (measK)

≥ ch2
K(maxi |vi,K |)2,

where the quasi-uniformity of the triangulation was used. But

||vh||∞,K = max
i
|vi,K |,

so we have proved the local inverse inequality

||vh||∞,K ≤
C

hK
||vh||0,K for all vh ∈ Vh.

The inverse assumption now implies the global inverse inequality.

We follow the phrasing of some publications that call triangulations that
satisfy the inverse assumption uniform. Of course, this does not mean that all
mesh elements are identical. It should be noticed that uniform meshes do not
allow arbitrarily fine local refinements.



234 4 The Finite Element Method

Local inverse inequalities are often proved similarly to our derivation of
estimates for the projection error in finite element spaces: first one maps the
element onto a reference element, then the equivalence of norms in a finite-
dimensional space on that element is used, and finally one maps back to the
given element.

The following inverse inequalities are frequently invoked:

||vh||∞ ≤
C

hn/2
||vh||0 for all vh ∈ Vh (where the domain lies in Rn)

and
|vh|1 ≤

C

h
||vh||0 for all vh ∈ Vh.

See Theorem 17.2 in [CL91] for a much more general result.
In general, one tries to avoid using global inverse inequalities because the

inverse assumption seriously restricts the class of possible triangulations: in
particular, local grid refinement is excluded. There are many special results
concerning the validity of inverse inequalities under weaker assumptions; see
for instance [41].

Now we set out to prove pointwise (i.e., L∞) error estimates for linear
elements. Writing u for the true solution and uh for the computed solution,
Lemma 4.38 implies the following inequalities:

||u− uh||∞ ≤ ||u−Πu||∞ + ||uh −Πu||∞
≤ ||u−Πu||∞ +

C

h
||uh −Πu||0

≤ ||u−Πu||∞ +
C

h
[||u−Πu||0 + ||u− uh||0] .

Our previous results for the interpolation error immediately imply

Theorem 4.39. If u ∈ H2(Ω), Ω ⊂ Rn, n ≤ 3 and ‖u − uh‖0 ≤ Ch2‖u‖2,
then for linear finite elements on a uniform triangulation one has

||u− uh||∞ ≤ Ch||u||2 .

Remark 4.40. If the solution u lies only in H2(Ω), then this first-order L∞
error bound is optimal, as is demonstrated by an example in [Ran04]. �

A possible way of avoiding the inverse assumption is to instead invoke
the discrete Sobolev inequality. In the two-dimensional case with linear finite
elements on an arbitrary triangulation, this inequality states that

||vh||∞ ≤ C| lnhmin|1/2||vh||1 for all vh ∈ Vh.

See [79] for the proof of this result; in [Xu89] one finds the corresponding
result in n space dimensions assuming quasi-uniformity of the triangulation.
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If one wants to prove pointwise convergence of order greater than one
for linear elements while assuming more regularity, say u ∈ W 2,∞, then the
analysis becomes deeper. One can for example use a Green’s function.

Fix x0 ∈ Ω. Then the Green’s function G ∈ W 1,1(Ω) with respect to x0

satisfies the variational equation

a(v,G) = v(x0) for all v ∈W 1,∞(Ω).

Consequently the error at the point x0 has the representation

(u− uh)(x0) = a(u− uh, G).

Next we introduce the finite element approximation Gh ∈ Vh of G; this is
defined by

a(vh, Gh) = vh(x0) for all vh ∈ Vh.

Then by definition of uh we have

(u− uh)(x0) = a(u− uh, G−Gh) = a(u− vh, G−Gh)

for arbitrary vh ∈ Vh, where the definitions of G and Gh were used in the
second equality. It follows that

||u− uh||∞ ≤ ||G−Gh||W 1
1

inf
vh∈Vh

||u− vh||W 1∞ .

The estimation of
||G−Gh||W 1

1

is technically difficult.

Remark 4.41. For triangular elements of type k, Scott [108] proved that

||G−Gh||W 1
1
≤ C

{
h| lnh| for k = 1,
h for k ≥ 2.

Together with the interpolation error estimates

||u−Πu||W 1∞ ≤ Ch
k|u|W k+1

∞
(k ≥ 1),

this yields

||u− uh||∞ ≤ C
{
h2| lnh| for u ∈W 2

∞ and k = 1,

hk+1 for u ∈W k+1
∞ and k ≥ 2.

Note that there is no logarithmic factor for k ≥ 2. �

We now sketch a modification of Scott’s technique for the case k = 1 that
slightly reduces the technical difficulties and is due to Frehse and Rannacher
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[50]. The basic idea is a regularization of the Green’s function. We define a
regularised Green’s function g as follows: Find g ∈ V = H1

0 (Ω) such that

a(v, g) = (v, δh) for all v ∈ V.

Here δh is some approximation of the δ-distribution and it can be chosen in
various ways. We follow the approach of [75]. If x0 ∈ K, where K is an element
of the triangulation, define δh ∈ P1(K) by

q(x0) =
∫

K

δh q for all q ∈ P1(K). (4.41)

It follows that ∫
K

δh = 1 and max
K
|δh| ≤ C

measK
.

By (4.41) we have

(u− uh)(x0) = (u− uI)(x0) + (uI − uh)(x0) = (u− uI)(x0) +
∫

K

(uI − uh)δh.

Hence
‖u− uh‖∞ ≤ C‖u− uI‖∞ + |(u− uh, δ

h)|.
From the definition of g,

(u− uh, δ
h) = a(u− uh, g).

Introducing the finite element approximation gh of g, we obtain

|(u− uh, δ
h| ≤ ||g − gh||W 1

1
inf

vh∈Vh

||u− vh||W 1∞ .

At first sight the final estimate now seems to be simple because g ∈ H2.
But it is not possible to deduce immediately that ||g − gh||1 = O(h) (and
consequently ||g − gh||W 1

1
= O(h)) because g depends on h and one must

study this dependence carefully!
After a precise analysis one gets the following results:

|g|∞ ≤ C(| lnh|+ 1),

||∇g||0 ≤ C| lnh|1/2,

||g||W 2
1
≤ C(| lnh|+ 1),

||g||2 ≤ Ch−1.

The last estimate shows that a deeper study is necessary to estimate ‖g −
gh‖W 1

1
. To do this one introduces a carefully chosen weight function σ and

uses
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||g − gh||W 1
1
≤ ||σ−1||0 · ||σ∇(g − gh)||0 .

An optimal choice of σ finally leads to

||g − gh||W 1
1
≤ Ch| lnh|;

see [Ran04] for details.

Remark 4.42. A precise analysis of an example [65] shows that the estimate

||u− uh||∞ ≤ Ch2| lnh|
for linear elements cannot be improved: the factor lnh is indeed necessary.
�
Remark 4.43. On certain equidistant triangular meshes the finite element
method with linear elements generates a discrete problem that is equivalent
to the familiar five-point difference scheme. The error estimate for the finite
element method in the L∞ norm is consequently an error estimate for the
pointwise error of the five-point difference scheme. But in contrast to the
standard analysis of finite difference methods, the analysis of finite element
methods requires less smoothness of the exact solution. �
Exercise 4.44. Let u be a sufficiently smooth function on [0, 1] and uI the
piecewise linear continuous interpolant to u on a given mesh.
a) Prove the following representation of the interpolation error:

u(x)− uI(x) =
1

xi − xi−1

∫ x

xi−1

∫ xi

xi−1

∫ ζ

η

u′′(ξ) dξ dη dζ

for all x ∈ (xi−1, xi).
b) Estimate the interpolation error in terms of the properties of u′′, assuming
for instance that u ∈ H2(0, 1).

Exercise 4.45. Fix ξ ∈ (0, 1). Consider the boundary value problem

−au′′ = 1 in (0, ξ) ∪ (ξ, 1),
u(0) = u(1) = 0,

u′(ξ − 0) = 2u′(ξ + 0),

with

a =
{

1 in (0, ξ),
2 in (ξ, 1).

Using, e.g., the weak formulation, it is not difficult to compute the exact
solution.
Choose ξ = (1 + h)/2 and discretize the problem with linear elements on an
equidistant uniform mesh with mesh width h. What does one obtain for the
discretization error? Compare with the general theory.

Exercise 4.46. Consider the function f(t) = sin t on the interval [0, π/2].
Compute the best approximation of f in the space L2(0, π/2) by piecewise
linear continuous functions on an equidistant mesh.
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4.5 Nonconforming Finite Element Methods

4.5.1 Introduction

Consider the continuous problem: Find u ∈ V such that

a(u, v) = f(v) for all v ∈ V. (5.1)

A conforming discretization of this variational problem using finite elements is
characterized by two properties. First, the finite element space Vh is a subset
of V ; second, the variational equation for the discrete solution uses the same
bilinear form a(·, ·) and the same linear form f(·) as the continuous problem.
Consequently, the discrete solution satisfies

a(uh, vh) = f(vh) for all vh ∈ Vh. (5.2)

In certain circumstances it turns out that these requirements are too rigorous,
e.g., in each of the following situations:

• it is difficult to construct a finite dimensional space with Vh ⊂ V (for
example for differential operators of higher order);

• it is not possible to compute the necessary integrals based on a(·, ·) or f(·)
exactly, so one must use quadrature rules;

• it is difficult to incorporate the essential inhomogeneous boundary condi-
tions or it is vital to describe precisely the non-polygonal boundary of the
domain.

Any finite element method that is not directly based on the discretization of
(5.1) by (5.2) with Vh ⊂ V is called a nonconforming finite element method.
This terminology is used sometimes in the literature only for the case Vh �⊂ V ,
but we want to consider all nonconforming aspects that we have described.
Thus to solve approximately the given problem (5.1) we consider the discrete
problem

ah(uh, vh) = fh(vh) for all vh ∈ Vh. (5.3)

Here Vh is a finite-dimensional Hilbert space with norm ‖ · ‖h, while ah(·, ·) :
Vh × Vh −→ R is a continuous bilinear form that is uniformly Vh-elliptic, i.e.,
there exists a constant γ̃ > 0 independent of h such that

γ̃ ‖vh‖2h ≤ ah(vh, vh) for all vh ∈ Vh, (5.4)

and fh : Vh −→ R is a continuous linear functional.
For a nonconforming method with Vh �⊂ V it is not clear if ah(·, ·) is

defined on V × V or fh is defined on V . Since Vh �⊂ V is possible, in addition
to problem (5.1) in the space V and the discrete problem (5.3) in Vh we
consider two larger spaces Z, Zh with

V ↪→ Z and Vh ↪→ Zh ↪→ Z .
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We assume that ah(·, ·) and fh are defined on Zh × Zh and Zh, respectively.
These imbeddings of spaces allows one to estimate the distance between the
discrete solution uh ∈ Vh and the exact solution u ∈ V in the norm ||| · ||| of
the space Z.

Our assumptions mean that the Lax-Milgram lemma can be applied to
the discrete problem (5.3). Hence (5.3) has a unique solution. Analogously to
Cea’s lemma we now derive an abstract error estimate. Choose an arbitrary
zh ∈ Vh. Then the properties of the bilinear form ah(·, ·) and the variational
equation (5.3) yield

ah(uh − zh, vh) = fh(vh)− ah(zh, vh) for all vh ∈ Vh. (5.5)

As fh(·)− ah(zh, ·) ∈ V ∗
h , by taking vh = uh − zh it follows that

γ̃ ‖uh − zh‖2h ≤ ‖fh(·)− ah(zh, ·)‖∗,h‖uh − zh‖h.

That is,

‖uh − zh‖h ≤
1
γ̃
‖fh(·)− ah(zh, ·)‖∗,h for all zh ∈ Vh.

In this calculation ‖ · ‖∗,h denotes the usual norm in the dual space V ∗
h , viz.,

‖w‖∗,h := sup
vh∈Vh

|w(vh)|
‖vh‖h

for w ∈ V ∗
h . (5.6)

The assumption Vh ↪→ Z and the triangle inequality yield

|||u− uh||| ≤ |||u− zh|||+
1
γ̃
‖fh(·)− ah(zh, ·)‖∗,h for all zh ∈ Vh. (5.7)

Thus we have proved the following abstract estimate for nonconforming meth-
ods:

Lemma 4.47. For the abstract nonconforming method described above, the
discretization error u− uh is bounded by

|||u− uh||| ≤ inf
zh∈Vh

{
|||u− zh|||+

1
γ̃
‖fh(·)− ah(zh, ·)‖∗,h

}
.

In the following subsections we shall consider specific cases and derive
particular results from this general theory.

4.5.2 Ansatz Spaces with Low Smoothness

To obtain vh ∈ H1(Ω) in a conforming method one uses globally continu-
ous finite elements; to have vh ∈ H2(Ω) one needs finite elements that are
continuously differentiable on Ω ⊂ Rn when n = 2. Nonconforming methods
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have the advantage that it is possible to use ansatz functions with less global
regularity.

Let us set Zh = V + Vh := { z = v + vh : v ∈ V, vh ∈ Vh }. Let ah be a
symmetric, non-negative bilinear form on Zh × Zh that satisfies

|ah(zh, wh)| ≤ M0 |||zh|||h |||wh|||h for all zh, wh ∈ Zh

with a constantM0 that is independent of h. Here |||·|||h denotes the seminorm
defined by

|||z|||h := ah(z, z)1/2 for all z ∈ Zh.

Define
‖vh‖h = |||vh|||h for all vh ∈ Vh.

These assumptions imply the following well-known result:

Lemma 4.48 (Second Lemma of Strang). There exists a constant c > 0
such that

|||u− uh|||h ≤ c

{
inf

zh∈Vh

|||u− zh|||h + ‖fh(·)− ah(u, ·)‖∗,h

}
.

Proof: From (5.5) and the bilinearity of ah(·, ·) we obtain

ah(uh − zh, vh) = ah(u− zh, vh) + fh(vh)− ah(u, vh) for all zh, vh ∈ Vh.

Choosing vh = uh − zh, it follows that

|||uh − zh|||h ≤ M0 |||u− zh|||h + ‖fh(·)− ah(u, ·)‖∗,h.

Now the triangle inequality yields

|||u−uh|||h ≤ (1+M0)|||u−zh|||h + ‖fh(·)−ah(u, ·)‖∗,h for all zh ∈ Vh

and the result of the lemma follows.

The first term in this estimate is, as in Cea’s lemma, the approximation
error; the second term in Lemma 4.48 is called the consistency error. This
error arises because the identity

ah(u, vh) = fh(vh) for all vh ∈ Vh (5.8)

is not necessarily true for nonconforming methods. If, however, (5.8) does
hold, we say that the finite element method is consistent. Consistency implies
the Galerkin orthogonality property

ah(u− uh, vh) = 0 for all vh ∈ Vh.

Remark 4.49. In many concrete situations ||| · |||h is even a norm on Zh. �
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Next we study a special nonconforming element, apply Lemma 4.48 and
investigate the consistency error.

Example 4.50. (Crouzeix-Raviart element) Let Ω ⊂ R2 be a polygonal do-
main. We consider the boundary value problem

−Δu = f in Ω, u|Γ = 0, (5.9)

which we assume has a unique solution u ∈ H2(Ω).
We decompose Ω using a family of triangles Zh = {Ωi}Mi=1 that we assume

is admissible and quasi-uniform. Let the finite element space Vh be the set of
all piecewise linear functions that are continuous at every midpoint of every
interior edge of the triangulation and zero at the midpoints of the edges on
the boundary Γ . In general Vh �⊂ H1(Ω) and the method is nonconforming.

The Crouzeix-Raviart element has important applications in fluid dynam-
ics: see [BF91, GR89]. Using it to solve (5.9) is somewhat artificial but allows
us to examine the basic features of a nonconforming method in a simple set-
ting.

Denote the midpoints of the interior edges by pj ∈ Ω, j = 1, . . . , N , and
the midpoints of the boundary edges by pj ∈ Γ , j = N + 1, . . . , N . The finite
element space is then

Vh =

⎧⎨⎩vh ∈ L2(Ω) :
vh|Ωi

∈ P1(Ωi)∀i, vh continuous at pj , j = 1, . . . , N,

vh(pj) = 0, j = N + 1, . . . , N

⎫⎬⎭ .

It is clear that functions vh ∈ Vh fail, in general, to be continuous on Ω.
Moreover it is not difficult to check that

Vh �⊂ H1(Ω).

Figure 4.19 shows the typical behaviour of a function vh ∈ Vh on two adjacent
triangles.

Figure 4.19 the nonconforming P1-element
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Furthermore, any function in Vh does not necessarily satisfy the homogeneous
Dirichlet boundary condition of (5.9).
The bilinear form associated with (5.9) is

a(u, v) =
∫
Ω

∇u∇v dx for all u, v ∈ V := H1
0 (Ω).

This can be extended to Vh×Vh by a piecewise definition of the integral, i.e.,
set

ah(uh, vh) =
M∑
i=1

∫
Ωi

∇uh∇vh dx for all uh, vh ∈ Vh.

The bilinear form ah is well defined on V × V , and in fact

ah(u, v) = a(u, v) for all u, v ∈ V.

There is no reason to change the definition of the linear form associated with
f :

fh(v) := f(v) :=
∫
Ω

fv dx for all v ∈ Vh + V.

We analyse the nonconforming method using the piecewise H1 seminorm
induced by our symmetric bilinear form ah. Strang’s second lemma shows
that the main problem is an investigation of the consistency error ‖fh(·) −
ah(u, ·)‖∗,h, where u ∈ H2(Ω) is the solution of (5.9). The differential equation
(5.9) yields

fh(vh)− ah(u, vh) =
M∑
i=1

⎧⎨⎩
∫
Ωi

fvh dx −
∫
Ωi

∇u∇vh dx

⎫⎬⎭
= −

M∑
i=1

⎧⎨⎩
∫
Ωi

Δuvh dx +
∫
Ωi

∇u∇vh dx

⎫⎬⎭ .

(5.10)

Let us introduce the notation vi(·) = vh|Ωi
, i = 1, . . . ,M . Green’s formula

yields ∫
Ωi

∇u∇vh dx =
∫
Γi

∂u

∂ni
vi ds −

∫
Ωi

Δuvh dx, (5.11)

where vi is defined on the boundary Γi = ∂Ωi by continuous extension and
ni denotes the outward-pointing unit normal vector on Γi. From (5.10) and
(5.11) one gets

fh(vh)− ah(u, vh) = −
M∑
i=1

∫
Γi

∂u

∂ni
vi(s) ds. (5.12)
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In the following we bring the mean values along edges into the game. For each
edge e ⊂ Γi define v̄i|e ∈ R by∫

e

(vi − v̄i)ds = 0.

The linearity of vi on each e means that v̄i is the value of vi at the midpoint
of e. The midpoint continuity imposed on each Crouzeix-Raviart element and
(5.12) then imply that

fh(vh)− ah(u, vh) = −
M∑
i=1

∫
Γi

∂u

∂ni
(vi − v̄i) ds,

since the midpoint contributions to each edge e from the two triangles sharing
e cancel owing to the opposing directions of their outward-pointing normals.
Now define the continuous piecewise linear function uI on each triangle by
linear interpolation at the vertices. Then ∂uI/∂ni is constant on each edge of
Γi so

fh(vh)− ah(u, vh) = −
M∑
i=1

∫
Γi

∂(u− uI)
∂ni

(vi − v̄i) ds. (5.13)

Next we apply the Cauchy-Schwarz inequality to (5.13) and need information
on both the integrals that emerge. A trace theorem and the Bramble-Hilbert
lemma yield ∫

Γi

|∇(u− uI)|2ds ≤ c h |u|22,Ωi
. (5.14)

Similarly ∫
Γi

|vi − v̄i|2ds ≤ c h |vh|21,Ωi
. (5.15)

Invoking this pair of inequalities, we get the consistency error estimate

|fh(vh)− ah(u, vh)| ≤ c h |u|2 ‖vh‖h

because ‖vh‖2h =
∑

i |vh|21,Ωi
.

The approximation error causes no trouble. The space Vh contains the
piecewise linear globally continuous C0 elements, and ||| · |||2h =

∑
i | · |21,Ωi

, so
one gets easily

inf
zh∈Vh

|||u− zh|||h ≤ c h ‖u‖H2(Ω).

By Lemma 4.48 the final error estimate for the Crouzeix-Raviart element now
follows:

|||u− uh|||h ≤ c h ‖u‖H2(Ω).

We recognize the same order of convergence as that attained by the globally
continuous P1 element. �
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This convergence analysis is a typical example of the analysis of non-
conforming elements and can extended to many other concrete examples:
see [Cia78, GR89]. In [Sch97] Schieweck discusses a class of nonconforming
elements on quadrilateral domains that includes the well-known Rannacher-
Turek element [98]. Moreover in [Sch97] and [GR89] the application of non-
conforming elements to the numerical solution of the Navier-Stokes equations
is discussed in detail.

Remark 4.51. During the early stages of the development of the analysis of
nonconforming methods with Vh �⊂ V , several authors introduced as sufficient
conditions—on a more or less heuristic basis—local Patch test conditions on
neighbouring elements. But later it turned out that these tests were insuffi-
cient to guarantee convergence of nonconforming methods. In [113, 110] this
problem was systematically investigated and generalized patch tests were de-
veloped that guarantee convergence. �

4.5.3 Numerical Integration

In this subsection we consider the setting where the finite element space sat-
isfies Vh ⊂ V but the Galerkin equations are formulated using a modified
bilinear form ah(·, ·) and a linear form fh that are not necessarily defined on
V × V and V respectively. This situation often arises when integrals are ap-
proximated by quadrature rules. In our abstract theory we then choose Z = V
and ||| · ||| = ‖ · ‖, the norm in V . Lemma 4.47 yields the estimate

‖u− uh‖ ≤ c inf
zh∈Vh

{ ‖u− zh‖ + ‖fh(·)− ah(u, ·)‖∗,h } .

Alternatively, one can prove

Lemma 4.52 (First Lemma of Strang). Let Vh ⊂ V and let the bilinear
form ah(·, ·) be uniformly Vh-elliptic. Then there exists a constant c > 0 such
that

‖u− uh‖ ≤ c
[

inf
zh∈Vh

{
‖u− zh‖+ ‖a(zh, ·)− ah(zh, ·)‖∗,h

}
+ ‖f − fh‖∗,h

]
.

Proof: Combining (5.5) and (5.1) and using Vh ⊂ V , for all vh and zh ∈ Vh

we get

ah(uh − zh, vh) = a(u, vh)− ah(zh, vh) + fh(vh)− f(vh)
= a(u− zh, vh) + a(zh, vh)− ah(zh, vh) + fh(vh)− f(vh).

Setting vh = uh − zh and invoking Vh-ellipticity yields

γ̃ ‖uh − zh‖2 ≤M‖u− zh‖ ‖uh − zh‖+ ‖a(zh, ·)− ah(zh, ·)‖∗,h ‖uh − zh‖

+ ‖fh − f‖∗,h ‖uh − zh‖.
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The Lemma now follows from a triangle inequality.

As an example of the application of quadrature rules we consider the el-
liptic boundary value problem

−div(A(x) gradu) = f in Ω, u|Γ = 0.

We assume that A : Ω̄ → R is sufficiently smooth and

A(x) ≥ α > 0 for all x ∈ Ω,

where α > 0 is some constant. The corresponding variational equation is

a(u, v) = f(v) for all v ∈ H1
0 (Ω)

with

a(u, v) =
∫
Ω

A(x)∇u(x)∇v(x) dx, (5.16)

f(v) =
∫
Ω

f(x)v(x) dx. (5.17)

Without numerical integration the discrete solution uh is a solution of

a(uh, vh) = f(vh) for all vh ∈ Vh,

but, in general, it is impossible to compute exactly the stiffness matrix and
the right-hand side of this linear system.

The finite element method yields only an approximation of the exact solu-
tion; thus it makes no sense to demand quadrature rules that approximate the
integrals with extremely high precision. The quadrature rule used should be
suitable for the finite element method, in the sense that both quadrature and
finite element errors are of the same order. (We shall not discuss the alterna-
tive approach of applying techniques of symbolic computation; see [Bel90].)

We now study concrete quadrature rules for approximating integrals of the
form ∫

Ω

z(x) dx =
M∑
i=1

∫
Ωi

z(x) dx

with globally continuous functions z that are smooth on each subdomain Ωi.
Recalling that the generation of the discrete problem uses transformations
to a reference element, we follow this basic principle and first describe the
quadrature rule on the reference element. Then the transformation mapping
will induce a quadrature formula on each element.
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Suppose that the element K = Ωi is mapped onto the reference element
K ′. Then in the two-dimensional case we have to study quadrature rules for
a reference triangle and a reference quadrilateral, i.e., for

K ′ =
{(

ξ
η

)
: ξ ≥ 0, η ≥ 0, ξ + η ≤ 1

}
and

K ′ =
{(

ξ
η

)
: ξ ∈ [0, 1], η ∈ [0, 1]

}
.

On a rectangle, the construction of quadrature rules uses a tensor product
structure. Because Gauss-Legendre quadrature is both popular and accurate,
one simply takes the Gauss-Legendre points in each coordinate direction.

The construction of quadrature rules on triangles is more complicated.
One often applies the strategy of fixing a set of functions (usually polynomi-
als) for which the quadrature rule is required to be exact, then deriving the
quadrature formula by integrating an interpolating polynomial from this set.
Let us demonstrate this technique for a quadratic polynomial on a triangle.
We use the same notation as in the definition of the quadratic triangular finite
element of subsection 4.2.2.

Lemma 4.53. Let zh denote the quadratic function uniquely defined by its
values zα at the points pα where |α| = 2, i.e.,

zh(pα) = zα , |α| = 2,

on the triangle K = conv{p1, p2, p3}. Then∫
K

zh(x) dx =
1
3

(measK) (z110 + z011 + z101). (5.18)

Proof: In barycentric coordinates on K ′ one can write

zh(λ) = z200λ1(2λ1 − 1) + z020λ2(2λ2 − 1) + z002λ3(2λ3 − 1)

+z110 4λ1λ2 + z011 4λ2λ3 + z101 4λ1λ3.

Taking the symmetries here into account, we have only to compute the inte-
grals

I200 :=

1∫
0

1−ξ∫
0

ξ(2ξ − 1) dξdη and I110 := 4

1∫
0

1−ξ∫
0

ξη dξdη.

One gets I200 = I020 = I002 = 0 and I110 = I011 = I101 = 1/6. Observe that
measK ′ = 1/2; the transformation back to K produces the formula (5.18).



4.5 Nonconforming Finite Element Methods 247

Lemma 4.53 yields the following quadrature rule for approximating the
integral (5.17). Let us denote by qij , i = 1, 2, 3, the midpoints of the edges of
the triangles Ωj , j = 1, . . . ,M , in the decomposition of the domain Ω. Then
(5.18) leads to the definition

fh(vh) :=
1
3

M∑
j=1

{
(measΩj)

3∑
i=1

f(qij)vh(qij)

}
. (5.19)

One can define ah(·, ·) analogously.
To deduce from Lemma 4.52 an error estimate for the finite element

method with quadrature, one must prove the Vh-ellipticity of the bilinear form
ah(·, ·) and bound the quadrature errors. In the present case of quadratic ele-
ments, Vh-ellipticity is easy: first use a(x) ≥ α, then the remaining integral is
integrated exactly by the quadrature rule because the product of linear func-
tions is quadratic. There still remains the quadrature error and as an example
we estimate this when (5.17) is approximated by (5.19).

Let Eh : C(Ω) −→ R denote the error functional associated with (5.19),
i.e.,

Eh(z) :=
∫
Ω

z(x) dx − 1
3

M∑
j=1

{
(measΩj)

3∑
i=1

qij

}
for z ∈ C(Ω). (5.20)

Then
Eh(z) = 0 for all z ∈ P2,h(Ω),

where P2,h(Ω) is the space of globally continuous, piecewise quadratic polyno-
mials on the given triangulation. The Bramble-Hilbert lemma will be used to
estimate the continuous linear functional Eh. Let Ωj ∈ Zh be a fixed triangle
of the triangulation. The standard mapping of K := Ωj onto the reference
element K ′, combined with an application of the Bramble-Hilbert lemma on
K ′, yields ∣∣∣∣∣∣∣

∫
Ωj

z(x) dx − 1
3

3∑
i=1

z(qij)

∣∣∣∣∣∣∣ ≤ c |z|3,Ωj
h3.

Now a triangle inequality implies

|Eh(z)| ≤
M∑

j=1

∣∣∣ ∫
Ωj

z(x) dx − 1
3

(measΩj)
3∑

i=1

z(qij)
∣∣∣

≤ c h3
M∑

j=1

|z|3,Ωj
.

Assume that the finite element space consists of piecewise linears, i.e., vh ∈
Vh = P1,h(Ω). We replace z by the product fvh. Now



248 4 The Finite Element Method

|f vh|l,Ωj
≤ c

l∑
s=0

|f |s,∞,Ωj
|vh|l−s,Ωj

and
|vh|m,Ωj

= 0, m ≥ 2,

so
|f vh|3,Ωj

≤ c ‖f‖3,∞,Ω ‖vh‖1,Ωj
.

Applying a Cauchy-Schwarz inequality, it follows that

|Eh(fvh)| ≤ c h3‖f‖3,∞,Ω

√
M

⎛⎝ M∑
j=1

‖vh‖21,Ωj

⎞⎠1/2

.

Hence, assuming the triangulation is quasi-uniform, one has

|Eh(fvh)| ≤ c h2 ‖f‖3,∞,Ω‖vh‖1,Ω for all vh ∈ Vh. (5.21)

Now (5.19)–(5.21) give immediately

|f(vh)− fh(vh)| = |Eh(fvh)| ≤ c h2 ‖f‖3,∞,Ω ‖vh‖1,Ω .

Thus we get finally

‖f(·)− fh(·)‖∗,h ≤ c h2 ‖f‖3,∞,Ω . (5.22)

A similar estimate for the application of the quadrature rule (5.18) to
the bilinear form a(·, ·) and a standard interpolation error estimate lead via
Lemma 4.52 to the following error estimate for linear elements:

‖u− uh‖1 ≤ c
(
|u|2,Ω h + ‖f‖3,∞,Ω h

2
)
.

It is evident from the mismatch in powers of h that the interplay between the
quadrature rule used and the finite element error is not optimal in this esti-
mate. A more sophisticated analysis shows that for piecewise linear elements
any quadrature rule that integrates constants exactly will produce an error
estimate that includes the term |u|2,Ω h, and that our quadrature rule (5.18)
with quadratic finite elements yields in fact

‖u− uh‖1 ≤ c ( |u|3,Ω + ‖f‖2,∞,Ω ) h2. (5.23)

More generally, the following result can be found in [Cia78]:
Assume that triangular Pk-elements are used with a quadrature rule that has
positive weights and integrates polynomials of degree 2k − 2 exactly. Then

‖u− uh‖1 ≤ c ( |u|k+1,Ω + ‖f‖k,∞,Ω ) hk.

In the following table we present some quadrature rules for triangles that are
exact for polynomials up to degree 5:
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position of the
nodes coordinates weights

exact for
polynomials of

degree

( 1
3 , 1

3 ) 1
2 1

(0,0), (1,0), (0,1) 1
6 , 1

6 , 1
6 1

( 1
2 ,0), ( 1

2 , 1
2 ), (0, 1

2 ) 1
6 , 1

6 , 1
6 2

( 1
6 , 1

6 ), ( 4
6 , 1

6 ), ( 1
6 , 4

6 ) 1
6 , 1

6 , 1
6 2

(0,0), (1,0), (0,1)

( 1
2 ,0), ( 1

2 , 1
2 ), (0, 1

2 )

( 1
3 , 1

3 )

3
120 , 3

120 , 3
120

8
120 , 8

120 , 8
120

27
120

3

(0,0), (1,0), (0,1)

(0, 3+
√

3
6 ), (0, 3−√

3
6 )

( 3+
√

3
6 ,0), ( 3−√

3
6 ,0)

( 3+
√

3
6 , 3−√

3
6 )

( 3−√
3

6 , 3+
√

3
6 )

( 1
3 , 1

3 )

− 1
120 , − 1

120 , − 1
120

1
20 , 1

20

1
20 , 1

20

1
20

1
20

9
40

4
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position of the
nodes coordinates weights

exact for
polynomials of

degree

( 6−√
15

21 , 6−√
15

21 )

( 9+2
√

15
21 , 6−√

15
21 )

( 6−√
15

21 , 9+2
√

15
21 )

( 6+
√

15
21 , 6+

√
15

21 )

( 9−2
√

15
21 , 6+

√
15

21 )

( 6+
√

15
21 , 9−2

√
15

21 )

( 1
3 , 1

3 )

155−√
15

2400

155−√
15

2400

155−√
15

2400

155+
√

15
2400

155+
√

15
2400

155+
√

15
2400

9
80

5

For rectangular Qk-elements the situation is slightly different. One gets
(5.23) if the quadrature weights are positive, the set of quadrature nodes con-
tains a subset on which Qk ∩ P2k−1 is unisolvent, and the quadrature rule is
exact on Q2k−1.

On rectangles one prefers to use Gauss-Legendre or Gauss-Lobatto quadra-
ture rules. These formulas are usually described on the interval [−1, 1]. In the
following table we present their weights, nodes and degree of exactness for the
one-dimensional integral

1∫
−1

ζ(x) dx ≈
q∑

j=1

cj ζ(ξj) ;

on rectangles a simple tensor product of these formulas is used.
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Gauss-Legendre formulas

q ξj cj exactness degree
1 0 2 1

2 ± 1
3

√
3 1 3

3 ± 1
5

√
5 5/9 5

0 8/9

4 ±
√

(15 + 2
√

30)/35 1/2−
√

30/36 7

±
√

(15− 2
√

30)/35 1/2 +
√

30/36

Gauss-Lobatto formulas

q ξj cj exactness degree
2 ±1 1 1
3 ±1 1/3 3

0 4/3
4 ±1 1/6 5

± 1
5

√
5 5/6

5 ±1 1/10 7
± 1

7

√
21 49/90

0 32/45

The analysis of finite element methods combined with numerical integra-
tion is given in full in [Cia78], and the book of Engels [Eng80] discusses in
detail the construction of quadrature formulas.

4.5.4 The Finite Volume Method Analysed from a Finite Element
Viewpoint

Consider the two-dimensional boundary value problem

−Δu+ cu = f in Ω ⊂ R2, u|Γ = 0, (5.24)

where the domain Ω is polygonal.
As we saw in Chapter 2, Section 5, the finite volume discretization of (5.24)

based on Voronoi boxes is given by

−
∑
j∈Ni

mij

dij
(uj − ui) +

(∫
Ωi

c

)
ui =

∫
Ωi

f. (5.25)

This subsection addresses the following question: can (5.25) be interpreted
as a finite element method and consequently be analysed using finite element
techniques?



252 4 The Finite Element Method

Assume that a weakly acute triangulation ofΩ is given. This is automatically a
Delaunay triangulation, so one can construct Voronoi boxes using the vertices
of the triangulation and the perpendiculars at the midpoints of the edges.
Thus the given triangulation {Ωj} yields a dual decomposition of the domain
Ω that comprises Voronoi boxes Di. Figure 4.20 shows a typical configuration.

Figure 4.20 Dual decomposition into Voronoi boxes

Remark 4.54. (General dual boxes)
In [59] the author introduces a general class of boxes—Donald boxes—that we
shall not discuss in detail. Nevertheless it is important to note that these are
a viable alternative to Voronoi boxes. In contrast to Voronoi boxes, which are
of circumcentric type, Donald boxes are of barycentric type: the line segments
connecting the barycenter of a triangle with the midpoints of its edges are
combined to form the boundary of each box. Thus each line segment on the
boundary of a Voronoi box is in general replaced by two line segments on the
boundary of a Donald box.
Donald boxes have the following property:
For each triangle T with vertex pi surrounded by the Donald box Ωi, one has
the

equilibrium condition : meas(Ωi ∩ T ) =
1
3
meas(T ). (5.26)

When dual boxes satisfy the equilibrium condition it turns out that the corre-
sponding finite volume method has certain improved convergence properties.
�

Let Vh ⊂ H1
0 (Ω) be the space of piecewise linear finite elements on the

given Delaunay triangulation. We aim to formulate a finite element method
that is equivalent to the finite volume method on the dual mesh of Voronoi
boxes. First, for each wh ∈ Vh we have the property wh(pi) = wi. With the
notation

g
i
:=

1
meas Ωi

∫
Ωi

g, and mi = meas Ωi,
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one can write (5.25) in the form

∑
i

vi

⎡⎣⎛⎝−∑
j∈Ni

mij

dij
(uj − ui)

⎞⎠+ ciuimi

⎤⎦ =
∑

i

f
i
vimi.

Now define

ah(uh, vh) :=
∑

i

vi

⎡⎣⎛⎝−∑
j∈Ni

mij

dij
(uj − ui)

⎞⎠+ ciuimi

⎤⎦ , (5.27)

fh(vh) :=
∑

i

f
i
vimi. (5.28)

Then the FVM can be written as a finite element method:
Find uh ∈ Vh such that

ah(uh, vh) = fh(vh) for all vh ∈ Vh.

For problems that contain convection it is also possible to write down a cor-
responding finite element discretization: see Chapter 6.

Remark 4.55. We observed in Remark 4.18 that in our formulation the dis-
cretizations of the Laplace operator by the finite volume method and by linear
finite elements are identical. The discretizations of the reaction and source
terms are different, however.

The finite element discretization of the reaction term cu has the disad-
vantage that the mass matrix generated has, in general, positive off-diagonal
elements. On the other hand for c ≥ 0 the finite volume method preserves the
M -matrix property on any mesh. If in the finite element method with linear
elements one replaces the FEM discretization of the reaction term by its FVM
discretization, this modification is called mass lumping. See also Chapter 5.
�
Now we can analyse the error of the finite volume method in the H1 norm,
using Lemma 4.52. The formula

(∇uh,∇vh) =
∑

i

vi

⎛⎝−∑
j∈Ni

mij

dij
(uj − ui)

⎞⎠
implies that the bilinear form ah(·, ·) is Vh-elliptic on Vh × Vh. Thus we need
only estimate the consistency errors arising in the reaction and source terms,
viz., ∣∣∣(f, vh)−

∑
i

f
i
vimi

∣∣∣ and
∣∣∣(cuh, vh)−

∑
i

ci ui vimi

∣∣∣.
Consider the first term. Let us define w̄h by

w̄h|Ωi
= wi for wh ∈ Vh.

Then one has
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Lemma 4.56.
‖vh − v̄h‖0 ≤ Ch|vh|1 for vh ∈ Vh.

Proof: The result follows immediately from

(vh − v̄h)(x) = ∇vh (x− xi) for x ∈ Ωi ∩ T

and the Cauchy-Schwarz inequality.

Next,

|(f, vh)− fh(vh)| = |(f, vh)− (f, v̄h)| ≤ |(f, vh − v̄h)|+ |(f − f, v̄h)|.

Lemma 4.56 then gives

|(f, vh)− fh(vh)| ≤ Ch‖f‖1‖vh‖1.

A similar estimate for the reaction term cu yields

Theorem 4.57. Consider the finite volume method (5.25) with dual Voronoi
boxes based on a weakly acute triangulation of a convex polygonal domain Ω.
If the triangulation satisfies the minimal angle condition, then the H1-norm
error of the finite volume method satisfies

‖u− uh‖1 ≤ C h ‖f‖1. (5.29)

For the finite element method one can prove second-order convergence
of the error in the L2 norm. To obtain the same result for a finite volume
method, one uses the equilibrium condition—see [Bey98] and [CL00], which
contain many detailed results for finite volume methods. An introduction to
finite volume methods is also given in [KA03].

4.5.5 Remarks on Curved Boundaries

If the given domain Ω is two-dimensional but not polygonal then it is impos-
sible to decompose it exactly into triangles and rectangles. What should one
do?

The simplest approach is to use a polygonal domain to approximate Ω.
This procedure is efficient for linear elements, in the sense that in the H1(Ω)
norm one gets first-order convergence, just like the case where Ω is polygonal.
But for quadratic elements this approximation leads to convergence of order
only 3/2 in H1(Ω) instead of the second-order convergence that is attained
when the domain is polygonal.

For better convergence properties with higher-order elements one must
improve the approximation of the boundary by introducing curved elements.
To achieve this there are two main approaches: one can approximate the
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boundary (in this context most works consider curved isoparametric elements)
or work with more general curved elements that fit the boundary exactly.

In what follows we explain the basic concepts of isoparametric approxima-
tion of the boundary for quadratic triangular elements. For the multi-index
α = (α1, α2, α3) with |α| = 2, fix interpolation points pα on the boundary
of the curved triangle Ωj that forms part of the decomposition of the given
domain.

Figure 4.21 curved triangular element

Denote by Ψα(λ) = Ψα(λ1, λ2, λ3) the local basis functions that satisfy
Ψα(β/2) = δαβ , where as usual λ1, λ2 and λ3 are the barycentric coordinates
in Ωj . Then K = Ωj can be approximately represented by

x =
∑
|α|=2

Ψα(λ)pα,

3∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , 3 . (5.30)

Eliminating (for instance) λ3 and setting λ1 = ξ and λ2 = η yields

x =
∑
|α|=2

Ψα(ξ, η, 1− ξ − η)pα, (5.31)

which defines a nonlinear mapping Fj : K ′ → K̃ of the reference triangle

K ′ =
{(

ξ
η

)
: ξ ≥ 0, η ≥ 0, ξ + η ≤ 1

}
onto some approximation K̃ of K = Ωj .

For quadratic interpolation we know already the local basis functions Ψα:

Ψ200(λ) = λ1(2λ1 − 1), Ψ110(λ) = 4λ1λ2,

Ψ020(λ) = λ2(2λ2 − 1), Ψ011(λ) = 4λ2λ3,

Ψ002(λ) = λ3(2λ3 − 1), Ψ101(λ) = 4λ1λ3.

Thus the functions used for the transformation of the reference element belong
to the same class as the functions used in the quadratic finite element; we
therefore say that this approach is isoparametric.
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The mapping (5.31) maps the reference triangle K ′ onto a “triangle” K
that in general has three curved edges; see Figure 4.22. Note that for the
approximation of the boundary it usually suffices to have one curved edge.

Figure 4.22 Isoparametric element K

Consider for example the curved edge with vertices p200 and p020. This edge
can be described by

C =
{
x(ξ) = ξ(2ξ − 1)p200 + 4ξ(1− ξ)p110 + (1− ξ)(1− 2ξ)p020 : ξ ∈ [0, 1]

}
.

How does one choose p200, p020 and p110? The points p200 and p020 are the
vertices of where Ωj (say) intersects the boundary Γ of Ω. One way to select
p110 is to take the point where the perpendicular bisector of the line segment
joining the vertices p200 and p020 intersects Γ .

Let us assume that the mapping Fj of the reference triangle K ′ onto each
element Ωj is defined. Then, using the local basis functions v on K ′, the basis
functions u on Ωj are defined by

u(x) = v(F−1
j (x)), x ∈ Ωj .

The basis functions on Ωj do have a complicated structure (if, e.g., one has two
quadratic equations in two unknowns, then solving for these unknowns does
not yield a simple formula); furthermore, these expressions must apparently be
inserted in the local basis functions on the reference element. But an explicit
knowledge of these basis functions is not necessary: basis functions on the
reference element and the mapping Fj allow us to compute the quantities
that we need.

For the theory of isoparametric finite elements, see [Cia78] and the work
of Lenoir [83]. Lenoir describes a practical procedure for the triangulation of
n-dimensional domains by isoparametric simplicial elements that preserve the
optimal order of accuracy. See also [14], where a general interpolation theory
is presented that includes curved elements that fit the boundary exactly.
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Exercise 4.58. Consider an admissible triangulation {T} of a two-dimensional
polygonal domain Ω with h = maxT∈h{diam T}.
Let Qh(u) be a quadrature rule for J(u) =

∫
Ω
udx that is elementwise exact

for piecewise polynomials Pl of degree l. Assume that u ∈ Cm(Ω̄).
Estimate the quadrature error |J(u)−Qh(u)| as a function of l and m.

Exercise 4.59. Construct as simple as possible a quadrature rule that is P2-
exact on quadrilaterals
a) under the condition that the vertices of the quadrilateral are nodes of the
rule
b) without condition a).

Exercise 4.60. Discretize the boundary value problem

−u′′ + a(x)u′ + b(x)u = 0 in (0, 1), u(0) = α, u(1) = β,

using linear finite elements on an equidistant mesh. Discuss the structure,
consistency and stability of the resulting difference scheme if the integrals are
computed using each of the following quadrature formulas:

a) midpoint rule
∫ 1

0
u(t)dt ≈ u(0.5),

b) one-sided rectangular rule
∫ 1

0
u(t)dt ≈ u(0),

c) trapezoidal rule
∫ 1

0
u(t)dt ≈ [u(0) + u(1)]/2,

d) Simpson’s rule
∫ 1

0
u(t)dt ≈ [u(0) + 4u(0.5) + u(1)]/6 .

Exercise 4.61. Assume that f ∈ W k+1
q (Ω) ⊂ C(Ω̄). Let

∑
ω̂ν f̂(b̂ν) be a

quadrature rule for
∫

T̂
f̂(x̂)dx̂ that is exact on Pk(T̂ ). Then by affine trans-

formations we have also the quadrature rule Jh(f) =
∑

T

∑
ν ωTνf(bTν) on a

given triangular mesh {T}. Use the Bramble-Hilbert lemma to prove that∣∣∣∣∫
Ω

f(x)dx− Jh(f)
∣∣∣∣ ≤ Chk+1|f |k+1,q.

Exercise 4.62. On a given triangular mesh, begin with the quadrature rule
that uses the vertices of a triangle then improve it by on subdividing each
triangle into four congruent subtriangles, applying the quadrature rule on
each, then performing one extrapolation step. What new quadrature rule is
generated?

Exercise 4.63. Consider the L2 error when taking account of numerical in-
tegration in our standard problem: find u ∈ V ⊂ H such that a(u, v) = f(v).
a) Prove: If ϕg is defined by a(v, ϕg) = (g, v)H with H = L2(Ω), then

|u− uh|0 ≤ sup
g∈H

1
|g|0

inf
ϕh∈Vh

{M ||u− uh|| ||ϕg − ϕh||

+ |a(uh, ϕh)− ah(uh, ϕh)|+ |f(ϕh)− fh(ϕh)|},



258 4 The Finite Element Method

where uh ∈ Vh is the discrete solution obtained using ah(·, ·) and fh(·).
b) Consider the boundary value problem

−�u = f in Ω, u|Γ = 0,

in a convex polygonal domain. Suppose that we use a finite element discretiza-
tion with numerical integration. What quadrature rules guarantee an optimal
order of convergence in the L2 norm?

Exercise 4.64. A domain Ω with a curved smooth boundary is approximated
by a polygonal domain Ω̃h. Prove that this procedure is efficient for linear ele-
ments in the sense that in the H1 norm one gets the same order of convergence
as when the original domain is polygonal.

Exercise 4.65. Compute the local basis functions for the isoparametric quad-
ratic triangular element whose knots are {(0, 0), (0, 1), (1, 0), (1

2 ,
1
2 ), (1

4 , 0),
(0, 1

4 )}.

Exercise 4.66. Discretize −�u = 1 in the unit circle with a homogeneous
natural boundary condition, using only one isoparametric quadratic quadri-
lateral element.

4.6 Mixed Finite Elements

4.6.1 Mixed Variational Equations and Saddle Points

The finite element method for the numerical treatment of elliptic boundary
value problems is based on the variational formulation of the given problem.
This variational problem is discretized by the Ritz-Galerkin technique. In the
standard approach, essential boundary conditions (and additional conditions
such as the incompressibility requirement in the Navier-Stokes equations) are
treated explicitly as restrictions. These restrictions influence the definition of
the underlying space V and consequently have to be taken into account when
constructing the discrete space Vh if the method is conforming.

The theory of optimization problems in functional analysis opens the way
to a different technique: restrictions can be taken into account by introducing
Lagrange multipliers. Convex analysis, and in particular duality theory, pro-
vide us with the necessary tools; see [ET76], and for a detailed discussion of
mixed methods [BF91].

To explain the basic ideas, let us consider an abstract model problem. Let
V and W be two real Hilbert spaces with respective scalar products (·, ·)V

and (·, ·)W and induced norms ‖ · ‖V and ‖ · ‖W . When there is no danger of
misunderstanding we shall omit these subscripts.

Assume that a(·, ·) : V × V → R and b(·, ·) : V × W → R are given
continuous bilinear forms such that



4.6 Mixed Finite Elements 259

|a(u, v)| ≤ α ‖u‖ ‖v‖ for all u, v ∈ V,
|b(v, w)| ≤ β ‖v‖ ‖w‖ for all v ∈ V, w ∈W,

(6.1)

with some constants α > 0 and β > 0. Let us set

Z = { v ∈ V : b(v, w) = 0 for all w ∈W }. (6.2)

As b(·, ·) is a continuous bilinear form, it follows that Z ⊂ V is a closed linear
subspace of V . Consequently, equipped with the scalar product (·, ·)V , the set
Z is itself a Hilbert space. Assume that the bilinear form a(·, ·) is Z-elliptic,
i.e., that there exists a constant γ > 0 such that

γ‖z‖2V ≤ a(z, z) for all z ∈ Z. (6.3)

Let f ∈ V ∗ and g ∈W ∗ be two linear functionals. Set

G = { v ∈ V : b(v, w) = g(w) for all w ∈W }. (6.4)

Now we are able to formulate our abstract model problem:
Find u ∈ G such that

a(u, z) = f(z) for all z ∈ Z . (6.5)

We say that this problem is a variational equation with constraints.
First we present an existence result:

Lemma 4.67. Assume that G is nonempty. Then the model problem (6.5)
has a unique solution u ∈ G, and this solution satisfies the bound

‖u‖ ≤ 1
γ
‖f‖V ∗ +

(
α

γ
+ 1
)
‖v‖V for all v ∈ G. (6.6)

Proof: Fix an arbitrary element v ∈ G. The bilinearity of b(·, ·), (6.2) and
(6.4) imply that

v + z ∈ G for all z ∈ Z.
On the other hand, any u ∈ G can be written as

u = v + z̃ (6.7)

for some z̃ ∈ Z. Hence problem (6.5) is equivalent to: find z̃ ∈ Z such that

a(z̃, z) = f(z)− a(v, z) for all z ∈ Z. (6.8)

Our assumptions allow us to apply the Lax-Milgram lemma to (6.8). Conse-
quently (6.8) has a unique solution z̃ and the same is true of problem (6.5).

Taking z = z̃ in (6.8), it follows from (6.1) and (6.3) that

‖z̃‖ ≤ 1
γ

( ‖f‖V ∗ + α‖v‖V ).

By (6.7) and the triangle inequality we then get (6.6).
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Example 4.68. Let us consider the elliptic boundary value problem

−Δu = f in Ω, u|Γ = g, (6.9)

where as usual Γ denotes the boundary of Ω. Setting V = H1(Ω) and W =
L2(Γ ), define the following forms:

a(u, v) =
∫
Ω

∇u∇v dx, f(v) =
∫
Ω

fv dx,

b(v, w) =
∫
Γ

vw ds, g(w) =
∫
Γ

gw ds.

Then Z = H1
0 (Ω) and

G =
{
v ∈ H1(Ω) :

∫
Γ

vw ds =
∫
Γ

gw ds for all w ∈ L2(Γ )
}
.

The Dirichlet conditions in problem (6.9) can also be written as

u ∈ V, Tu = g,

where T : V → H1/2(Γ ) ⊂ L2(Γ ) is the trace operator of Section 3.2. The
condition G �= ∅ of Lemma 4.67 is equivalent to g ∈ H1/2(Γ ). Thus it is more
appropriate to choose W = H−1/2(Γ ) instead of W = L2(Γ ). �

Next, we associate our constrained variational equation with the following
extended variational equation without constraints:
Find a pair (u, p) ∈ V ×W such that

a(u, v) + b(v, p) = f(v) for all v ∈ V,
b(u,w) = g(w) for all w ∈W.

(6.10)

This system is also known as the mixed variational equation. To clarify the
relationship between the constrained problem and the mixed formulation, we
first have

Lemma 4.69. If (u, p) ∈ V ×W is a solution of the mixed variational problem
(6.10), then u is a solution of the constrained variational equation (6.5).

Proof: The second part of the variational equation (6.10) is equivalent to
u ∈ G.

If we choose v ∈ Z ⊂ V , then by (6.2) one obtains b(v, p) = 0 for all
p ∈W . The first part of (6.10) therefore yields

a(u, v) = f(v) for all v ∈ Z.

In summary, u is a solution of (6.5).
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To gain more insight, we now investigate the following question: given a
solution u ∈ G of the constrained problem (6.5), must there exist p ∈W such
that the pair (u, p) ∈ V ×W is a solution of (6.10)?

The orthogonal complement Z⊥ of Z with respect to the scalar product
in V is

Z⊥ := { v ∈ V : (v, z) = 0 for all z ∈ Z }.
Now Z⊥ is a closed linear subspace of V , and the Hilbert space V can be
decomposed as a direct sum:

V = Z ⊕ Z⊥ .

But u ∈ G and (6.5) holds, so (u, p) ∈ U ×W is a solution of the system
(6.10) if and only if

b(v, p) = f(v)− a(u, v) for all v ∈ Z⊥ . (6.11)

As b(v, ·) ∈ W ∗ for each v ∈ V , we can define a linear continuous operator
B : V →W ∗ by setting

〈Bv,w〉 = b(v, w) for all v ∈ V, w ∈W. (6.12)

In terms of B we have the following existence result for (6.11):

Lemma 4.70. Suppose that for some constant δ > 0 the operator B satisfies
the bound

‖Bv‖W∗ ≥ δ ‖v‖V for all v ∈ Z⊥. (6.13)

Then there exists a solution p ∈W of the variational problem (6.11).

Proof: Let j : W ∗ → W denote the Riesz representation operator. Then we
define a continuous symmetric bilinear form d : V × V → R by

d(s, v) := 〈Bs, jBv〉 = (jBs, jBv) for all s, v ∈ V. (6.14)

The hypothesis (6.13) implies that

d(v, v) = ‖jBv‖2W = ‖Bv‖2W∗ ≥ δ2‖v‖2 for all v ∈ Z⊥,

i.e., d(·, ·) is Z⊥-elliptic. By the Lax-Milgram lemma there exists y ∈ Z⊥ such
that

d(y, v) = f(v)− a(u, v) for all v ∈ Z⊥.

Hence p ∈ W defined by p := jBy is a solution of (6.11), as can be seen by
combining the relationships already established.
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Remark 4.71. The condition (6.13) requires the operator B : V → W ∗ to
have closed range. The well-known closed range theorem for linear operators
(see [Yos66]) is the abstract basis for the investigation above. It can be shown
that condition (6.13) is equivalent to

sup
v∈V

b(v, w)
‖v‖ ≥ δ ‖w‖ for all w ∈ Y ⊥ (6.15)

and some constant δ > 0, where Y ⊥ is the orthogonal complement of

Y := { z ∈W : b(v, z) = 0 for all v ∈ V } .

�

Next we present an important existence and stability result for the system
of variational equations (6.10).

Theorem 4.72. Let G be nonempty. Assume that the condition (6.15) is sat-
isfied. Then the pair of variational equations (6.10) has at least one solution
(u, p) ∈ V ×W . The first component u ∈ V is uniquely determined, and the
following estimates are valid:

‖u‖V ≤
1
γ
‖f‖V ∗ +

1
δ

( α
γ

+ 1
)
‖g‖W∗ (6.16)

and

inf
y∈Y
‖p+ y‖W ≤ 1

δ

( α
γ

+ 1
)
‖f‖V ∗ +

α

δ2

( α
γ

+ 1
)
‖g‖W∗ . (6.17)

Proof: From Lemma 4.67 we know that the constrained variational equation
(6.5) has a unique solution u ∈ G. As the conditions (6.13) and (6.15) are
equivalent, Lemma 4.70 implies existence of a p ∈ W such that the pair
(u, p) ∈ V ×W is a solution of the system (6.10).

By Lemma 4.69 the first component of any solution pair of (6.10) is also
a solution of (6.5), so u is uniquely determined.

Now u ∈ V can be written in a unique way as

u = z̃ + ṽ

with z̃ ∈ Z and ṽ ∈ Z⊥. From the bilinearity of b(·, ·) and (6.2), (6.12) and
(6.13), one sees that

‖g‖W∗ = ‖Bu‖W∗ = ‖Bṽ‖W∗ ≥ δ ‖ṽ‖V .

That is, ‖ṽ‖ ≤ 1
δ ‖g‖W∗ . But u ∈ G implies ṽ ∈ G, so Lemma 4.67 yields the

estimate
‖u‖ ≤ 1

γ
‖f‖V ∗ +

1
δ

(α
γ

+ 1
)
‖g‖W∗ .
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Next, consider the second component p ∈ W , which satisfies the variational
equation (6.11). The definition of Z⊥ implies that

|b(v, p)| ≤ |f(v)| + |a(u, v)| ≤ (‖f‖V ∗ + α‖u‖) ‖v‖ for all v ∈ Z⊥.

Consequently, using the definition of Y and recalling that V = Z ⊕ Z⊥, for
all y ∈ Y we get

sup
v∈V

b(v, p+ y)
‖v‖ = sup

v∈V

b(v, p)
‖v‖ ≤ ‖f‖V ∗ + α‖u‖.

Hence (6.15) gives

inf
y∈Y
‖p+ y‖W ≤ 1

δ
‖f‖∗ +

α

δ
‖u‖.

The earlier estimate (6.16) now yields (6.17).

Remark 4.73. When Y = {0}, the solution (u, p) ∈ V ×W of (6.10) is unique.
In this case both (6.16) and (6.17) are stability estimates that exhibit the
influence of perturbations of f and g on the solution pair (u, p). �

In the case of a Z-elliptic symmetric bilinear form a(·, ·) condition (6.5)
is a necessary and sufficient condition to guarantee that u ∈ G solves the
variational problem

min
v∈G

J(v), where J(v) :=
1
2
a(v, v) − f(v). (6.18)

Recalling (6.4) and taking into account the reflexivity property W ∗∗ = W
enjoyed by Hilbert spaces, the Lagrange functional associated with (6.18) is

L(v, w) = J(v) + b(v, w)− g(w) for all v ∈ V, w ∈W. (6.19)

This functional allows us to state a sufficient condition for optimality in the
form of a saddle point criterion. A pair (u, p) ∈ V ×W is called a saddle point
of the Lagrange functional L(·, ·) if

L(u,w) ≤ L(u, p) ≤ L(v, p) for all v ∈ V, w ∈W . (6.20)

Saddle points are related to the solution of problem (6.18) in the following
way.

Lemma 4.74. Let (u, p) ∈ V ×W be a saddle point of the Lagrange functional
L(·, ·). Then u ∈ V is a solution of (6.18).
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Proof: First we verify that u ∈ G. The first inequality in (6.20) implies that

b(u,w)− g(w) ≤ b(u, p)− g(p) for all w ∈W. (6.21)

As W is a linear space it follows that

w := p+ y ∈W for all y ∈W.

Now (6.21) and the linearity of b(u, ·) and g(·) yield the inequality

b(u, y)− g(y) ≤ 0 for all y ∈W.

But y ∈W implies −y ∈W , so again appealing to linearity we must have

b(u, y)− g(y) = 0 for all y ∈W,

i.e., u ∈ G.
The second inequality in the saddle point definition (6.20) and the speci-

fication (6.4) of the set G of admissible solutions give us

J(u) = J(u) + b(u, p)− g(u) = L(u, p)

≤ L(v, p)

= J(v) + b(v, p)− g(p) = J(v) for all v ∈ G.

That is, u is a solution of (6.18).

Using (6.20) and the inequality

sup
w∈W

inf
v∈V

L(v, w) ≤ inf
v∈V

sup
w∈W

L(v, w) (6.22)

one can associate a further variational problem with (6.18). Let us define

L(w) := inf
v∈V

L(v, w) for all w ∈W (6.23)

and
L(v) := sup

w∈W
L(v, w) for all v ∈ V. (6.24)

The functionals L : W → R and L : V → R defined in this way are permitted
to take the values “−∞” and “+∞”. Thus it is necessary to use as image
space the extended real numbers R := R ∪ {−∞} ∪ {+∞} instead of R. It is
not a problem to equip R with an appropriate arithmetic; see [ET76, Zei90],
where the interested reader will also find detailed results on the duality theory
in general.

The definitions of L(·), L(·, ·) and G imply that

L(v) =

{
J(v) if v ∈ G,
∞ otherwise.
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Consequently the formally unconstrained variational problem

inf
v∈V

L(v) (6.25)

is equivalent to (6.18). We associate with (6.25) the optimization problem

sup
w∈W

L(w), (6.26)

which we call the dual variational problem of (6.25)—and hence, also of (6.18).

When (6.25) and (6.26) are discretized with a conforming finite element
method, inequality (6.22) immediately yields

Lemma 4.75. Let Vh ⊂ V and Wh ⊂W . Then

sup
wh∈Wh

L(wh) ≤ sup
w∈W

L(w) ≤ inf
v∈V

L(v) ≤ inf
vh∈Vh

L(vh).

In the particular case of the Poisson equation, Trefftz [114] proposed a
conforming discretization method for the dual problem (6.26) in which the
computation of the functional L(·) was based on the Green’s function of the
given problem. The use here of Ritz’s method and the bounds of Lemma 4.75
allow one to enclose the error to a desired degree of exactness.

An interesting application of the bounds provided by Lemma 4.75 for the
optimal value of the variational problem (6.18) is their use in defining error
estimators for the Ritz method in the case of symmetric bilinear forms (in
Section 4.7 we shall discuss the general case of bilinear forms that are not
necessarily symmetric). Chapter 11.4 of [NH81] contains a detailed discussion
of this technique, which originated with Synge in 1957 and is sometimes called
the “hypercircle”.

4.6.2 Conforming Approximation of Mixed Variational Equations

We now discuss the Galerkin finite element method discretization of the mixed
variational equation (6.10), which is restated here:

a(u, v) + b(v, p) = f(v) for all v ∈ V,
b(u,w) = g(w) for all w ∈W .

Choose finite element spaces Vh ⊂ V and Wh ⊂W . Then the discrete problem
is:
Find (uh, ph) ∈ Vh ×Wh such that

a(uh, vh) + b(vh, ph) = f(vh) for all vh ∈ Vh,

b(uh, wh) = g(wh) for all wh ∈Wh.
(6.27)
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This finite element method for (6.10), which is also a finite element method
for (6.5), is called the mixed finite element method.

We study the solvability of (6.27) and the stability of its solutions, as was
done already in the continuous case. Set

Gh = { vh ∈ Vh : b(vh, wh) = g(wh) for all wh ∈Wh }

and
Zh = { vh ∈ Vh : b(vh, wh) = 0 for all wh ∈Wh }.

Note that although one has Vh ⊂ V and Wh ⊂W , nevertheless in general

Gh �⊂ G and Zh �⊂ Z.

Consequently the Z-ellipticity of a(·, ·) does not automatically imply its Zh-
ellipticity. We therefore assume that a constant γh > 0 exists such that

γh ‖vh‖2 ≤ a(vh, vh) for all vh ∈ Zh, (6.28)

and that a constant δh > 0 exists with

sup
vh∈Vh

b(vh, wh)
‖vh‖

≥ δh ‖wh‖ for all wh ∈ Y ⊥
h (6.29)

where Yh is defined by

Yh := { zh ∈Wh : b(vh, zh) = 0 for all vh ∈ Vh }.

Under these assumptions it is clear that the argument of Theorem 4.72 can
be carried over to the discrete problem (6.27), yielding

Theorem 4.76. Let Gh be nonempty and assume that conditions (6.28) and
(6.29) are satisfied. Then the mixed finite element discretization (6.27) has at
least one solution (uh, ph) ∈ Vh×Wh. The first component uh ∈ Vh is uniquely
determined, and the following estimates are valid:

‖uh‖ ≤
1
γh
‖f‖∗ +

1
δh

( α
γh

+ 1
)
‖g‖∗, (6.30)

inf
yh∈Yh

‖ph + yh‖ ≤
1
δh

( α
γh

+ 1
)
‖f‖∗ +

α

δ2h

( α
γh

+ 1
)
‖g‖∗. (6.31)

To simplify the arguments we next study the convergence behaviour of the
mixed finite element method in the case Yh = {0}. Then one can apply the
methodology of Section 3.4 to analyse the Ritz-Galerkin method, obtaining
the following result:

Theorem 4.77. Assume that the continuous problem (6.10) and the discrete
problem (6.27) satisfy the assumptions of Theorem 4.72 and 4.76, respectively.
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Moreover, let the conditions (6.28) and (6.29) hold uniformly with respect to
h, i.e., there exist constants γ̃ > 0 and δ̃ > 0 such that

γ̃‖vh‖2 ≤ a(vh, vh) for all vh ∈ Zh (6.32)

and

sup
vh∈Vh

b(vh, wh)
‖vh‖

≥ δ̃ ‖wh‖ for all wh ∈Wh. (6.33)

Then the mixed finite element method satisfies the following error estimate:
there exists a constant c > 0 such that

max{‖u−uh‖, ‖p−ph‖} ≤ c

{
inf

vh∈Vh

‖u− vh‖ + inf
wh∈Wh

‖p− wh‖
}
. (6.34)

Proof: To begin, observe that the hypothesis (6.33) guarantees that Yh = {0}.
Analogously to the proof of Lemma 3.45, for arbitrary ṽh ∈ Vh and w̃h ∈Wh

one gets

a(uh − ṽh, vh) + b(vh, ph − w̃h) = a(u− ṽh, vh) + b(vh, p− w̃h) ∀vh ∈ Vh,

b(uh − ṽh, wh) = b(u− ṽh, wh) ∀wh ∈Wh.

Theorem 4.76 then implies, since Yh = {0}, that

‖uh − ṽh‖ ≤
α

δ̃
‖u− ṽh‖ +

β

δ̃

(α
γ̃

+ 1
)
‖p− w̃h‖

and

‖ph − w̃h‖ ≤
α

δ̃

(α
γ̃

+ 1
)
‖u− ṽh‖ +

αβ

δ̃2

(α
γ̃

+ 1
)
‖p− w̃h‖

for arbitrary ṽh ∈ Vh and w̃h ∈Wh. The triangle inequalities

‖u− uh‖ ≤ ‖u− ṽh‖ + ‖uh − ṽh‖

and
‖p− ph‖ ≤ ‖p− w̃h‖ + ‖ph − w̃h‖,

now give us the estimate (6.34).

Remark 4.78. The constant c in (6.34) can easily be determined explicitly in
terms of the constants α, β, γ̃ and δ̃ > 0 by tracing this dependence through
the the proof. �
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Remark 4.79. The condition (6.33) is called the Babuška-Brezzi condition or
LBB condition (where LBB stands for Ladyshenskaja-Babuška-Brezzi). It
plays a fundamental role in the convergence analysis of mixed finite element
methods. The Babuška-Brezzi condition requires the discrete spaces Vh and
Wh to be compatible with respect to the bilinear form b(·, ·). Roughly speak-
ing, (6.33) says that the space Vh (for the primal variables) has to be suffi-
ciently rich while the space Wh (for the dual variables) should not be so large
that it imposes too many constraints.

In particular (6.33) guarantees that Gh �= ∅. �

Remark 4.80. If instead of the Babuška-Brezzi condition (6.33) one has only

sup
vh∈Vh

b(vh, wh)
‖vh‖

≥ δh ‖wh‖ for all wh ∈Wh

for some δh > 0 with lim
h→0

δh = 0, then the proof of Theorem 4.77 shows that

the primal component uh converges to u if

lim
h→0

[
1
δh

inf
wh∈Wh

‖p− wh‖
]

= 0 .

The stronger condition

lim
h→0

1
δh

[
inf

vh∈Vh

‖u− vh‖ +
1
δh

inf
wh∈Wh

‖p− wh‖
]

= 0

implies the convergence of both components, viz.,

lim
h→0
‖u− uh‖ = 0 and lim

h→0
‖p− ph‖ = 0.

�

Next we apply our theory to the important example of the Stokes problem,
examining its mixed finite element discretization and making a special choice
of the spaces Vh and Wh in order to satisfy the Babuška-Brezzi condition.

Let Ω ⊂ R2 be a given polygonal domain. Set

V = H1
0 (Ω)×H1

0 (Ω) and W =
{
w ∈ L2(Ω) :

∫
Ω

w dx = 0
}
,

with ‖v‖V = ‖v1‖1 + ‖v2‖1 for v = (v1, v2) ∈ V and ‖ · ‖W = ‖ · ‖0. Then W
is a closed subspace of L2(Ω) and is itself a Hilbert space. We introduce

a(u, v) :=
2∑

i=1

∫
Ω

∇ui∇vi dx for all u, v ∈ V, (6.35)

where u = (u1, u2) and v = (v1, v2). Set
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b(v, w) := −
∫
Ω

w div v dx for all v ∈ V, w ∈W.

Then

G :=
{
v ∈ V :

∫
Ω

w div v dx = 0 for all w ∈W
}
. (6.36)

The homogeneity of the constraints implies that Z = G. Finally, given func-
tions f1 and f2 ∈ L2(Ω), define the functional f : V → R by

f(v) =
2∑

i=1

∫
Ω

fivi dx for all v ∈ V.

The Stokes problem can now be formulated as a constrained variational equa-
tion:
Find u ∈ G such that

a(u, v) = f(v) for all v ∈ Z. (6.37)

Written out in full, the mixed formulation of (6.37) is

2∑
i=1

∫
Ω

∇ui∇vi dx −
∫
Ω

pdiv v dx =
2∑

i=1

∫
Ω

fivi dx for all v ∈ V,

−
∫
Ω

w divu dx = 0 for all w ∈W.

If the solution is sufficiently regular so that we can integrate by parts, then it
is not difficult to return to the classical formulation of the Stokes problem:

−Δu + ∇p = f in Ω,

divu = 0 in Ω,

u|Γ = 0.

Here the primal variables u = (u1, u1) correspond to the velocity, while the
dual variable p is simply the pressure. Thus the mixed formulation is not
merely a mathematical construct but reflects a physically natural model; in
particular the dual variable has a concrete physical interpretation.

Now assume, for simplicity, that the given domain is rectangular so we can
use a uniform rectangular mesh Zh = {Ωi : i = 1, . . . ,M} with mesh width h.
Choose piecewise biquadratic functions for the approximation of the velocity
u and piecewise constant functions for the pressure p, i.e.,

Vh :=
{
vh ∈ C(Ω)2 : vh|Ωi

∈ [Q2(Ωi)]2, Ωi ∈ Zh

}
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and
Wh :=

{
wh ∈W : wh|Ωi

∈ P0(Ωi), Ωi ∈ Zh

}
.

For brevity, this element pair is referred to as the Q2 − P0 element .
Prior to verifying the validity of the discrete Babuška-Brezzi condition

(6.33), we show that condition (6.15) is satisfied for the continuous problem
(6.37).

Let w ∈W be arbitrary but fixed. Using regularity it can be shown [Tem79,
GR89] that there exists ṽ ∈ V such that

−div ṽ = w and ‖ṽ‖V ≤ c ‖w‖W (6.38)

for some constant c > 0. It follows that

sup
v∈V

b(v, w)
‖v‖V

≥ b(ṽ, w)
‖ṽ‖V

=
‖w‖2W
‖ṽ‖V

≥ 1
c
‖w‖W .

Thus (6.15) is valid. Next we study the discrete Babuška-Brezzi condition for
our chosen pair of finite element spaces.

Let wh ∈Wh be arbitrary but fixed. As Wh ⊂W , there exists ṽ ∈ V with

−div ṽ = wh and ‖ṽ‖ ≤ c ‖wh‖. (6.39)

The bilinear form a : V × V → R is V -elliptic and Vh ⊂ V , so there exists a
unique ṽh ∈ Vh defined by

a(ṽh, vh) = a(ṽ, vh) for all vh ∈ Vh.

By Cea’s lemma
‖ṽh‖ ≤ c ‖ṽ‖,

where the positive constant c is independent of ṽh and ṽ. It follows that

‖ṽh‖ ≤ c ‖wh‖. (6.40)

Next we define a special “interpolant” v̂h ∈ Vh by

v̂h(xi) = ṽh(xi), i = 1, . . . , N,∫
Ωj

v̂h dx =
∫
Ωj

ṽ dx, j = 1, . . . ,M,∫
Γjk

v̂h ds =
∫

Γjk

ṽ ds, j, k = 1, . . . ,M.

(6.41)

Here xi, i = 1, . . . N denote all grid points and Γjk = Ωj

⋂
Ωk denotes

any interior edge of our decomposition Zh. Remark that it is not difficult
to show that the used nine degrees of freedom over each of the rectangles
define uniquely the interpolant.
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Thus, we have

‖wh‖2 =
∫
Ω

wh div ṽ dx =
M∑

j=1

∫
Ωj

wh div ṽ dx. (6.42)

Now wh ∈ Wh is constant on each subdomain Ωj , so integration by parts
yields ∫

Ωj

wh div ṽ dx =
∫
Γj

wh ṽ · nj ds, j = 1, . . . ,M, (6.43)

where nj is the outer unit normal vector on Γj := ∂Ωj . But the trace of wh

on the boundary Γj is also constant; thus (6.41) implies that∫
Γj

wh ṽ · nj ds =
∫
Γj

wh ṽh · nj ds, j = 1, . . . ,M.

Recalling (6.43), integration by parts yields∫
Ωj

wh div ṽ dx =
∫
Ωj

wh div ṽh dx, j = 1, . . . ,M.

Hence (6.42) gives us

‖wh‖2 =
M∑

j=1

∫
Ωj

wh div ṽh dx.

Invoking (6.39) and (6.40), we finally conclude that

sup
vh∈Vh

b(vh, wh)
‖vh‖

≥ b(ṽh, wh)
‖ṽh‖

=
‖wh‖2
‖ṽh‖

≥ c ‖wh‖ for all wh ∈Wh

with some constant c > 0. That is, for the Q2−P0 pair of spaces the Babuška-
Brezzi condition is satisfied.

One should be aware that on the other hand the Q1 − P0 element is un-
stable; see, e.g., [Bra01].

The above discussion of the Q2−P0 element is fairly representative: first, it
is not trivial to verify the Babuška-Brezzi condition for a given pair of spaces,
and second, this verification is often carried out with the tools used here for
the Q2−P0 element. For more details and other pairs of finite element spaces,
see [BF91, Bra01, Sch97].
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4.6.3 Weaker Regularity for the Poisson and Biharmonic
Equations

The formulation of certain problems as mixed variational equations has two
significant advantages: it permits a weakening of the smoothness requirements
in the underlying function spaces (this is essential for higher-order differential
equations), and sometimes the new variables introduced in the mixed formu-
lation are just as important as the original variables and can be approximated
better in the mixed formulation because they are treated as independent vari-
ables.

In this subsection we discuss two typical examples, the Poisson and bihar-
monic equations.

We start with the following boundary value problem for the Poisson equa-
tion:

−Δz = f in Ω, z|Γ = 0, (6.44)

where Ω ⊂ Rn is bounded and has boundary Γ . Let us assume that its unique
weak solution lies in H1

0 (Ω) ∩H2(Ω). Then

−
∫
Ω

wΔz dx =
∫
Ω

fw dx for all w ∈ L2(Ω). (6.45)

Setting u := ∇z it follows that u ∈ H(div;Ω).
For the mixed formulation we choose V := H(div;Ω) and W := L2(Ω). The
norm in V is defined by

‖v‖2V :=
n∑

i=1

‖vi‖20,Ω + ‖div v ‖20,Ω , (6.46)

where v = (v1, . . . , vn). Next, introduce the continuous bilinear mapping b :
V ×W → R defined by

b(v, w) :=
∫
Ω

w div v dx for all v ∈ V, w ∈W. (6.47)

Let us define

G :=
{
v ∈ V : b(v, w) = −

∫
Ω

fw dx for all w ∈W
}

and, correspondingly,

Z := { v ∈ V : b(v, w) = 0 for all w ∈W }.

From the assumptions of the problem we see that if z is the solution of problem
(6.44) then ∇z ∈ G. Finally, the continuous bilinear form a : V × V → R is
given by
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a(u, v) :=
n∑

i=1

∫
Ω

uivi dx for all u, v ∈ V.

The definitions (6.46) and (6.48) clearly imply that the bilinear form a(·, ·) is
Z-elliptic.

Now we consider the constrained variational equation:
Find u ∈ G such that

a(u, v) = 0 for all v ∈ Z. (6.48)

To clarify the relationship between problems (6.44) and (6.48) we prove

Lemma 4.81. If the solution z of problem (6.44) satisfies z ∈ H1
0 (Ω)∩H2(Ω)

then u := ∇z is a solution of the constrained variational equality (6.48).
Moreover, u is the only solution of (6.48) in G.

Proof: We saw already that ∇z ∈ G. We show that u := ∇z is a solution of
the variational equation (6.48). For integration by parts yields

a(u, v) =
∫
Ω

v · ∇z dx =
∫
Γ

z v · nds −
∫
Ω

z div v dx for all v ∈ Z.

But z ∈ H1
0 (Ω) forces ∫

Γ

z v · nds = 0

and the definition of the space Z also gives∫
Ω

z div v dx = 0.

That is, u = ∇z is a solution of (6.48). Uniqueness of this solution follows
from Lemma 4.67.

The space V = H(div;Ω) and the constrained variational equation (6.48)
allow the use of solutions of (6.44) that are weaker than their classical coun-
terparts. Written out explicitly, the mixed form (6.48) is

n∑
i=1

∫
Ω

uivi dx +
∫
Ω

z div v dx = 0 for all v ∈ H(div;Ω),

∫
Ω

w divu dx = −
∫
Ω

fw dx for all w ∈ L2(Ω).
(6.49)

Remark 4.82. The essential boundary condition z|Γ = 0 of the given problem
(6.44) is not explicitly stated in the mixed formulation (6.49). In the mixed
approach this boundary condition is a natural boundary condition. �
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Next we discuss a finite element method for the discretization of (6.49),
assuming that the given domain Ω ⊂ R2 is polygonal. For the characterization
of finite element spaces with Vh ⊂ V = H(div;Ω) we recall Lemma 4.3. Let
Zh = {Ωj}Mj=1 be an admissible decomposition of Ω into triangles. Setting
vj := v|Ωj

, condition (2.8) of Lemma 4.3, viz.,

(vj − vk) · njk = 0 for all j, k = 1, . . . ,M with Γjk �= ∅, (6.50)

is sufficient for v ∈ H(div;Ω). For the components v1 and v2 of the ansatz
functions vh on the triangulation Zh we choose piecewise polynomials of de-
gree l. Then the projection vh · n on any edge is a polynomial of degree l.
The ansatz functions are determined by prescribing corresponding values at
interior points of the edges. For instance, for piecewise linear functions one
fixes two degrees of freedom on every edge. The corresponding Lagrange basis
functions can be computed; see, e.g., [GRT93].

We now describe simple ansatz functions ϕ : R2 → R2 of the form

ϕ(x) = (ϕ1(x), ϕ2(x)) = (a+ bx1, c+ bx2) (6.51)

with coefficients a, b, c ∈ R. If

G := {x ∈ R2 : αx1 + βx2 = γ }

denotes an arbitrary straight line, then its normal is n =
(
α
β

)
, so

n · ϕ(x) = α(a+ bx1) + β(c+ bx2) = constant for all x ∈ G.

That is, the projection of the special ansatz (6.51) on any edge is a constant.
Denote by yi, i = 1, . . . , s, the midpoints of the edges of our triangulation

Zh.Let ni, i = 1, . . . , s, be a unit vector normal to the edge containing yi.
Define the ansatz functions ϕ

k
: Ω → R2 by the following conditions:

i) ϕ
k
|Ωj

has the form (6.51)

ii) [ϕ
k
·ni] is continuous at yi and it holds [ϕ

k
·ni](yi) = δik for i, k = 1, . . . , s.

For example, consider the triangle K = {x ∈ R2
+ : x1 + x2 ≤ 1 } with the

midpoints of its edges denoted by y1, y2, y3. Then the basis functions just
defined are given by

ϕ
1
(x) = (x1,−1 + x2)

ϕ
2
(x) = (

√
2x1,
√

2x2) for all x ∈ intK.
ϕ

3
(x) = (−1 + x1, x2)

It is easy to verify that

ϕ
k
∈ H(div;Ω), k = 1, . . . , s.
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Consequently,
Vh = span{ϕ

k
}sk=1 (6.52)

is a reasonable finite element space for the discretization (6.49) as Vh ⊂ V .
The degrees of freedom are vh · n(yi), i = 1, . . . , s. To approximate the space
W we simply set

Wh := {wh ∈ L2(Ω) : wh|Ωj
∈ P0(Ωj) }, (6.53)

i.e., W is approximated by piecewise constants.
When the spaces Vh and Wh from (6.52) and (6.53) are used in the mixed

finite element method for the problem (6.49), one can prove: if the solution is
sufficiently smooth and the mesh is quasi-uniform, then the errors in the L2

norm are bounded by

‖u− uh‖ ≤ c h and ‖z − zh‖ ≤ c h.

If instead standard piecewise linear approximations are used for both com-
ponents of the vector functions in Vh, one can then prove that

‖u− uh‖ ≤ c h2 and ‖z − zh‖ ≤ c h.

For the proof of these error estimates and further examples of related finite
element spaces see [BF91].

Remark 4.83. The latter convergence result is remarkable because it shows
that the direct discretization of u = ∇z by the mixed finite element method
yields a better approximation for the derivative ∇z than for the function z
itself. When a standard finite element method is used to solve (6.44), the ap-
proximation of the solution z is usually more accurate than the approximation
of the derivatives of z. �

Next we consider, as an example of a higher-order differential equation,
the following boundary value problem for the biharmonic equation:

Δ2z = f in Ω, z|Γ =
∂z

∂n
|Γ = 0. (6.54)

The standard weak formulation (see Chapter 3.3) of this problem is based on
the space H2(Ω); thus any standard conforming finite element method must
use elements in C1(Ω) which are complicated to construct. Consequently it is
preferable to apply nonconforming or mixed methods when solving (6.54).

The substitution u := Δz transforms this fourth-order problem into a
system of two second-order problems:

Δz = u

Δu = f
in Ω, z|Γ =

∂z

∂n
|Γ = 0.
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The usual integration by parts of the first equation yields∫
Γ

v
∂z

∂n
ds −

∫
Ω

∇v∇z dx =
∫
Ω

uv dx for all v ∈ H1(Ω).

Now the homogenous Neumann boundary condition for z implies that∫
Ω

uv dx +
∫
Ω

∇v∇z dx = 0 for all v ∈ H1(Ω).

At the next step, the second equation is also written in a weak form. Then,
denoting the dual variable by p as in the abstract problem (6.10), the weakend
mixed formulation of (6.54) is

Find a pair (u, p) ∈ H1(Ω)×H1
0 (Ω) such that∫

Ω

uv dx +
∫
Ω

∇v∇p dx = 0 for all v ∈ H1(Ω),∫
Ω

∇u∇w dx = −
∫
Ω

fw dx for all w ∈ H1
0 (Ω).

(6.55)

If V := H1(Ω), W := H1
0 (Ω) and the bilinear forms a : V × V → R and

b : V ×W → R are defined by

a(u, v) :=
∫
Ω

uv dx for all u, v ∈ V

and
b(v, w) :=

∫
Ω

∇v∇w dx for all v ∈ V, w ∈W,

then (6.55) is a special case of the abstract mixed variational equation (6.10).
Using the above transformation from (6.54) to (6.55) it is easy to prove

Lemma 4.84. Let z ∈ H2
0 (Ω) ∩H3(Ω). Then (u, p) := (Δz, z) ∈ V ×W . If

in addition z is a solution of the variational equation∫
Ω

ΔzΔy dx =
∫
Ω

fy dx for all y ∈ H2
0 (Ω),

which is related to (6.54), then (u, p) is a solution of the mixed variational
equation (6.55).

Unfortunately the bilinear form a(·, ·) fails to be Z-elliptic on the subspace

Z :=
{
v ∈ V :

∫
Ω

∇v∇w dx = 0 for all w ∈W
}
.
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Consequently our general theory, which assumes uniform Zh-ellipticity, is in-
applicable. Nevertheless, the invocation of inverse inequalities for specific finite
element spaces allows one to prove

γh‖vh‖2 ≤ a(vh, vh) for all vh ∈ Zh

and some γh > 0, but lim
h→0

γh = 0. This leads to suboptimal error estimates,

which can be improved using special techniques: see, e.g., [105]. The property
lim
h→0

γh = 0 means that the discrete problem is ill-posed and will require special

solution strategies.
It is interesting to observe that the verification of the Babuška-Brezzi

conditions for (6.55) is trivial: for W ↪→ V and b(w,w) induces an equivalent
norm on W , which yields

sup
v∈V

b(v, w)
‖v‖ ≥ b(w,w)

‖w‖ ≥ c
‖w‖2
‖w‖ = c ‖w‖ for all w ∈W,

and the related discrete problem can be analysed analogously.
Plate problem models based on Kirchhoff’s hypothesis lead also to bound-

ary value problems for fourth-order differential equations. In [Bra01] the au-
thor discusses in detail both Kirchhoff and Mindlin-Reissner plates and, for
example, the relationship between mixed finite element methods and the pop-
ular nonconforming DKT-elements for Kirchhoff plates.

4.6.4 Penalty Methods and Modified Lagrange Functions

The agreeable properties of elliptic problems often come from their close re-
lationship to convex variational problems. For instance, in the case of a sym-
metric bilinear form a(·, ·) the associated variational equation is equivalent to
a convex minimization problem. On the other hand, mixed variational equa-
tions usually lead to a saddle-point problem (see (6.20)) with convex-concave
behaviour.

The resulting difficulties that arise in solving mixed variational equations
can be handled by applying special elimination techniques that are closely
related to traditional approaches—such as penalty methods—for handling
classical optimization problems with constraints. We now present some ba-
sic results for penalty methods.

Let a : V ×V → R and b : V ×W → R be given continuous bilinear forms
where a(·, ·) is symmetric and |a(u, v)| ≤ α‖u‖ ‖v‖ for all u, v ∈ V . Given
f ∈ V ∗ and g ∈W ∗, consider the variational problem (6.18), i.e.,

find min
v∈G

J(v), where J(v) :=
1
2
a(v, v) − f(v) (6.56)

and
G := { v ∈ V : b(v, w) = g(w) for all w ∈W }.
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We assume that the bilinear form a(·, ·) is Z-elliptic on

Z := { v ∈ V : b(v, w) = 0 for all w ∈W }

with ellipticity constant γ > 0. The operator B : V → W ∗ defined by (6.12)
allows us to rewrite the constraint of problem (6.56) in the equivalent form
Bv = g.

A penalty method modifies the functional J that is to be minimized by
adding to it an extra term that becomes large when the constraints are vio-
lated. Here the modified unconstrained problem can be written as

min
v∈V

Jρ(v), where Jρ(v) := J(v) +
ρ

2
‖Bv − g‖2∗. (6.57)

Here ρ > 0 is the penalty parameter.
To simplify the notation we identify W ∗ with W . Then

‖Bv − g‖2∗ = (Bv − g,Bv − g) = (Bv,Bv)− 2(Bv, g) + (g, g).

Consequently, the objective functional Jρ(·) of (6.57) has the form

Jρ(v) =
1
2
a(v, v) +

ρ

2
(Bv,Bv) − f(v) − ρ(Bv, g) +

ρ

2
(g, g). (6.58)

Now consider the associated bilinear form aρ : V × V → R defined by

aρ(u, v) := a(u, v) + ρ(Bu,Bv) for all u, v ∈ V . (6.59)

To analyse this we shall decompose the space V into a direct sum of subspaces.
First, Z �= ∅ because 0 ∈ Z. For each v ∈ V , Lemma 4.67 (with G replaced
by Z) implies the existence of a unique ṽ ∈ Z such that

a(ṽ, z) = a(v, z) for all z ∈ Z. (6.60)

Hence one can define a projector P : V → Z by Pv := ṽ. Now every element
v ∈ V can be decomposed as

v = Pv + (I − P )v.

In other words, the space V can be written as the direct sum V = Z ⊕ Z̃
where

Z̃ := { y ∈ V : y = (I − P )v for some v ∈ V }.
Choosing z = Pv in (6.60), one then gets immediately

a((I − P )v, Pv) = 0 for all v ∈ V. (6.61)

Lemma 4.85. Assume that there exists σ > 0 such that

‖Bv‖ ≥ σ ‖v‖ for all v ∈ Z̃.

Then the bilinear form aρ(·, ·) defined in (6.59) is uniformly V -elliptic for all
ρ with ρ ≥ ρ, where ρ := (α+ γ)/σ > 0.
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Proof: From (6.59), (6.61), and the definition of Z, one has

aρ(v, v) = aρ(Pv + (I − P )v, Pv + (I − P )v)

= a(Pv, Pv) + a((I − P )v, (I − P )v) + ρ(B(I − P )v,B(I − P )v)

≥ γ ‖Pv‖2 + (ρσ − α) ‖(I − P )v‖2.
Here we recall that γ > 0 is the ellipticity constant of a(·, ·) on Z while α is
an upper bound for the norm of this bilinear form. Assume that ρ ≥ ρ. Then

aρ(v, v) ≥ γ
[
‖Pv‖2 + ‖(I − P )v‖2

]
for all v ∈ V.

The equivalence of norms in R2 and the triangle inequality yield

aρ(v, v) ≥ γ
2 [‖Pv‖+ ‖(I − P )v‖]2

≥ γ
2 ‖Pv + (I − P )v‖2 = γ

2 ‖v‖2 for all v ∈ V.

Next we present sufficient conditions for the convergence of this penalty
method.

Theorem 4.86. Assume that the assumptions of Lemma 4.85 are fulfilled,
that G �= ∅ and choose ρ > 0 as in Lemma 4.85. Then for each ρ ≥ ρ the
penalty problem (6.57) has a unique solution uρ ∈ V . As ρ→∞, the function
uρ converges to the solution u of the constrained variational problem (6.56).

Proof: By virtue of Lemma 4.67 and G �= ∅, problem (6.56) has a unique
solution u. The objective functional Jρ(·) of (6.57) is convex for ρ ≥ ρ, so
uρ ∈ V is a solution of (6.57) if and only if

〈J ′
ρ(uρ), v〉 = 0 for all v ∈ V,

which is equivalent to the variational equation

aρ(uρ, v) = f(v) + ρ(Bv, g) for all v ∈ V. (6.62)

By construction the bilinear form aρ(·, ·) is continuous. When ρ ≥ ρ,
Lemma 4.85 guarantees that the bilinear form aρ(·, ·) is V -elliptic. There-
fore the Lax-Milgram lemma ensures existence and uniqueness of the solution
uρ of (6.62).

The optimality of uρ for (6.57) and Bu = g imply that

J(u) = Jρ(u) ≥ Jρ(uρ).

That is,
1
2
a(u, u) − f(u) ≥ J(uρ) +

ρ

2
‖Buρ −Bu‖2∗

=
1
2
a(uρ, uρ) +

ρ

2
(B(uρ − u), B(uρ − u)) − f(uρ).



280 4 The Finite Element Method

Rearranging, we get

f(uρ − u) − a(u, uρ − u) ≥
1
2
aρ(uρ − u, uρ − u) ≥

γ

2
‖uρ − u‖2, (6.63)

where the last inequality holds since uρ− u ∈ Z. The continuity of a(·, ·) now
gives

γ

2
‖uρ − u‖2 ≤ (‖f‖∗ + α ‖u‖) ‖uρ − u‖.

Thus the sequence {uρ}ρ≥ρ is bounded. The reflexivity of the Hilbert space
V then implies that {uρ}ρ≥ρ is weakly compact.

The functional Jρ(·) is convex and continuous. It is hence weakly lower
semicontinuous; see [Zei90]. Therefore the weak compactness of {uρ}ρ≥ρ im-
plies the existence of μ ∈ R such that

Jρ(uρ) ≥ μ for all ρ ≥ ρ.

Recalling the optimality of uρ for problem (6.57) and the structure of Jρ(·),
we get

J(u) = Jρ(u) ≥ Jρ(uρ) = Jρ(uρ) + ρ− ρ
2 ‖Buρ − g‖2

≥ μ + ρ− ρ
2 ‖Buρ − g‖2.

(6.64)

It follows that
lim

ρ→∞
‖Buρ − g‖ = 0,

i.e.,
lim

ρ→∞
[b(uρ, w)− g(w)] = 0 for each w ∈W.

Associate with b : V ×W → R the operator B∗ : W → V ∗ defined by

〈B∗w, v〉V = b(v, w) for all v ∈ V, w ∈W.

Then
lim

ρ→∞
[〈B∗w, uρ〉 − g(w)] = 0 for each w ∈W.

Let u be an arbitrary weak accumulation point of {uρ}ρ≥ρ. We obtain

〈B∗w, u〉 − g(w) = 0 for all w ∈W.

This is equivalent to

b(u,w) = g(w) for all w ∈W ;

that is, u ∈ G. Furthermore

J(u) = Jρ(u) ≥ Jρ(uρ) = Jρ(uρ) + ρ− ρ
2 ‖Buρ − g‖2

≥ Jρ(uρ) for all ρ ≥ ρ.
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The lower semicontinuity of Jρ(·) then yields

J(u) ≥ Jρ(u) ≥ J(u).

We have now shown that u is a solution of the constrained problem (6.56).
But this problem has a unique solution u. The weak compactness of {uρ}ρ≥ρ

therefore gives us uρ ⇀ u for ρ→∞. Combining this weak convergence with
(6.63), we see that in fact ‖uρ − u‖ → 0 as ρ→∞.

In practice one approximates the solution of the penalty method using a
finite element space Vh. Then one needs to solve the finite-dimensional penalty
problem

min
vh∈Vh

Jρ(vh). (6.65)

In the conforming case Vh ⊂ V , although Lemma 4.85 ensures the existence
of a unique solution uρh ∈ Vh for each ρ ≥ ρ, it turns out that for large values
of the parameter ρ the problem (6.65) is ill conditioned. Thus it becomes
necessary to consider a good choice of the parameter ρ, which will also depend
on the discretization parameter in the finite element method. We shall deal
with this question in Chapter 7 when we examine variational inequalities; see
also [57].

A way of avoiding large penalty parameters in the problems (6.57) and
(6.65) is to apply an iterative technique based on modified Lagrange function-
als. For the original problem (6.56) the standard Lagrange functional L(·, ·)
was defined in (6.19). The modified Lagrange functional Lρ : V ×W → R is
defined by

Lρ(v, w) := L(v, w) +
ρ

2
‖Bv − g‖2∗

= J(v) + (Bv − g, w) +
ρ

2
(Bv − g,Bv − g), (6.66)

v ∈ V, w ∈W.

The saddle points of L(·, ·) and Lρ(·, ·) are closely related:

Lemma 4.87. Every saddle point of the Lagrange functional L(·, ·) is also a
saddle point of the modified Lagrange functional Lρ(·, ·) for each positive value
of the parameter ρ.

Proof: Let (u, p) ∈ V ×W be a saddle point of L(·, ·). By Lemma 4.74, u is a
solution of the variational problem (6.56). In particular Bu = g. The saddle
point inequality for L(·, ·) yields

Lρ(u,w) = L(u,w) + ρ
2 ‖Bu− g‖

2
∗ = L(u,w)

≤ L(u, p) = Lρ(u, p) ≤ L(v, p)

≤ L(v, p) + ρ
2 ‖Bv − g‖

2
∗ = Lρ(v, p) for all v ∈ V, w ∈W.
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That is, the pair (u, p) ∈ V ×W is also a saddle point of Lρ(·, ·).

The Uzawa algorithm (see [BF91]), which was originally formulated for
the Lagrange functional L(·, ·), alternately minimizes over V and computes
a gradient step to maximize over W . This technique can also be applied to
the modified Lagrange functional Lρ(·, ·) and yields the modified Lagrange
method:

Step 1: Choose p0 ∈W and ρ > 0. Set k = 0.

Step 2: Find uk ∈ V such that

Lρ(uk, pk) = min
v∈V

Lρ(v, pk). (6.67)

Step 3: Set
pk+1 := pk + ρ (Buk − g), (6.68)

increment k to k + 1 and go to step 2.

Remark 4.88. If one chooses ρ ≥ ρ with ρ as in Lemma 4.85, then the varia-
tional problem (6.67) has a unique solution uk, and this solution satisfies the
equation

a(uk, v) + ρ (Buk, Bv) + (Bv, pk) = f(v) + ρ (Bv, g) for all v ∈ V. (6.69)

Equation (6.68) can be written in the alternative form

(pk+1, w) = (pk, w) + ρ [b(uk, w)− g(w)] for all w ∈W. � (6.70)

Both the penalty method and the modified Lagrange method can be in-
terpreted as regularized mixed variational equations. Let us first consider the
penalty method. Assume that (uρ, pρ) ∈ V ×W is a solution of the mixed
variational equation

a(uρ, v) + b(v, pρ) = f(v) for all v ∈ V,
b(uρ, w) − 1

ρ (pρ, w) = g(w) for all w ∈W .
(6.71)

Recalling the definition of B, and making the identification W ∗ = W , we can
solve the second equation to get

pρ = ρ (Buρ − g). (6.72)

Substituting this result into the first equation of (6.71) yields

a(uρ, v) + ρ ((Buρ − g), Bv) = f(v) for all v ∈ V.

This equation for uρ ∈ V is equivalent to (6.62). Alternatively, starting from
(6.62), one can define pρ by (6.72) and derive (6.71). Thus the penalty method
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(6.57) is equivalent to the regularized mixed variational equation (6.71). We
remark that this regularization is simply the standard Tychonov regularization
for ill-posed problems.

The modified Lagrange method described above can also be derived from
a regularized mixed variational equation. Unlike the penalty method, we now
use a sequential Prox regularization (see [BF91], [Mar70]). Then the modified
Lagrange method is equivalent to the following iteration:

a(uk, v) + b(v, pk+1) = f(v) for all v ∈ V,
b(uk, w) − 1

ρ (pk+1 − pk, w) = g(w) for all w ∈W.

Elimination of pk+1 from the second equation gives (6.68). Substituting this
result into the first equation we get (6.69), which is a necessary and sufficient
condition for achievement of the minimum in (6.67).

From Theorem 4.86 we know that the penalty method converges as ρ →
∞. Now we investigate its precise convergence behaviour. This analysis uses
the equivalence of the penalty method and the mixed variational formulation
(6.71).

Lemma 4.89. Assume that the hypotheses of Lemma 4.85 are satisfied, and
that

sup
v∈V

b(v, w)
‖v‖ ≥ δ ‖w‖ for all w ∈W

and some constant δ > 0. Then the difference between the solution uρ of the
penalty problem (6.57) and the solution u of the original problem (6.56) is
bounded by

‖u− uρ‖ ≤ c ρ−1 and ‖p− pρ‖ ≤ c ρ−1 for all ρ ≥ ρ,

where p and pρ are defined in (6.10) and (6.71) respectively, while ρ is defined
in Lemma 4.85.

Proof: By Theorem 4.72, the mixed variational equation (6.10) has at least
one solution (u, p) ∈ V ×W and the component u is uniquely determined.
Lemma 4.69 shows that u is a solution of the original problem (6.56).

Assume that ρ ≥ ρ where ρ is specified in Lemma 4.85. By Theorem 4.86
the regularized mixed problem (6.71) has a solution (uρ, pρ) where the penal-
ized solution uρ is unique. The argument following (6.71) shows that uρ is a
solution of (6.57).

Subtraction of (6.10) from (6.71) yields

a(uρ − u, v) + b(v, pρ − p) = 0 for all v ∈ V,

b(uρ − u,w) = 1
ρ (pρ, w) for all w ∈W.

Applying Theorem 4.72 to this system, we get
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‖u− uρ‖ ≤ c ρ−1 ‖pρ‖ (6.73)

and
‖p− pρ‖ ≤ c ρ−1 ‖pρ‖ (6.74)

for some constant c > 0.
In the proof of Theorem 4.86 we demonstrated the existence of a constant

c∗ > 0 such that
‖u− uρ‖ ≤ c∗.

Now (6.72) yields
‖pρ‖ ≤ c.

The desired estimates are now immediate from (6.73) and (6.74).

The previous lemma tells us the convergence behaviour of the penalty
method for the continuous problem, but in practice we need information about
the discrete version. Choose some finite element space Vh and discretize (6.57);
this means that we have to study the finite-dimensional variational problem

min
vh∈Vh

Jρ(vh), where Jρ(vh) = J(vh) +
ρ

2
‖Bvh − g‖2∗. (6.75)

If ρ ≥ ρ then this problem has a unique solution uρh ∈ Vh.

Lemma 4.90. Let ρ ≥ ρ and Vh ⊂ V . Assume the hypotheses of Lemma 4.85.
For the solutions of (6.57) and (6.75) one has

‖uρ − uρh‖ ≤ c ρ1/2 inf
vh∈Vh

‖uρ − vh‖

for some constant c > 0.

Proof: By Lemma 4.85 the bilinear form aρ(·, ·) associated with Jρ(·) is uni-
formly V -elliptic. Since Vh ⊂ V , it is also Vh-elliptic, with the same ellipticity
constant γ/2. The definition (6.59) of aρ(·, ·) implies that

|aρ(u, v)| ≤ α ‖u‖ ‖v‖ + ρ β2 ‖u‖ ‖v‖

where the constants α and β are upper bounds on the norms of the bilinear
forms a(·, ·) and b(·, ·). The improved version of Cea’s lemma for symmetric
problems now yields

‖uρ − uρh‖ ≤
√

2(α+ ρβ2)
γ

inf
vh∈Vh

‖uρ − vh‖ for all ρ ≥ ρ.

Combining Lemmas 4.89 and 4.90, we have a result that shows the depen-
dence of the error in the discretized penalty method on both ρ and h.
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Theorem 4.91. Let the hypotheses of Lemma 4.89 and Lemma 4.90 be ful-
filled. Then there exist positive constants c1 and c2 > 0 such that the error
of the discretized penalty method (6.75) for the solution of (6.56) satisfies the
estimate

‖u− uρh‖ ≤ c1 ρ
−1/2 + c2 ρ

1/2 inf
vh∈Vh

‖u− vh‖ for all ρ ≥ ρ.

Proof: Two triangle inequalities and Lemmas 4.89 and 4.90 give

‖u− uρh‖ ≤ ‖u− uρ‖ + ‖uρ − uρh‖
≤ c ρ−1 + c ρ1/2 inf

vh∈Vh

‖uρ − u+ u− vh‖

≤ c ρ−1 + c ρ1/2 ρ−1 + c ρ1/2 inf
vh∈Vh

‖u− vh‖ for all ρ ≥ ρ.

The estimate is proved.

Remark 4.92. Theorem 4.91 indicates a reduced convergence order for the
penalty method, compared with the Ritz finite element method applied with-
out constraints. If, for instance,

inf
vh∈Vh

‖u− vh‖ = O(hp),

then the choice ρ = ρ(h) = h−p (in order to optimize the bound of Theo-
rem 4.91) yields only the convergence rate

‖u− uρh‖ = O(hp/2).

This is a well-known disadvantage of the penalty method which can be ob-
served numerically. It is a result of the asymptotic ill-posedness of the penalty
method as ρ→∞.

As we shall see shortly, one can avoid this order reduction by discretizing
the mixed formulation (6.71) using a pair of spaces that satisfy the Babuška-
Brezzi condition. �
Choose Vh ⊂ V and Wh ⊂ W . Denote by (uρh, pρh) ∈ Vh ×Wh the solution
of the regularized mixed variational equation

a(uρh, vh) + b(vh, pρh) = f(vh) for all vh ∈ Vh,

b(uρh, wh) − 1
ρ (pρh, wh)h = g(wh) for all wh ∈Wh.

(6.76)

Here let (·, ·)h : Wh ×Wh → R be a continuous bilinear form that satisfies
the condition

σ ‖wh‖2 ≤ (wh, wh)h ≤ σ ‖wh‖2 for all wh ∈Wh (6.77)

for some constants σ ≥ σ > 0 that are independent of h.



286 4 The Finite Element Method

Theorem 4.93. Let the pair of spaces Vh ⊂ V and Wh ⊂ W satisfy the
Babuška-Brezzi condition. Assume that (6.77) holds.
Then the error between the solution (uρh, pρh) ∈ Vh ×Wh of (6.76) and the
solution (u, p) ∈ V ×W of the mixed variational equation (6.10) is bounded
as follows:

max{ ‖u− uρh‖, ‖p− pρh‖ } ≤ c { ρ−1 + inf
vh∈Vh

‖u− vh‖ + inf
wh∈Wh

‖p−wh‖ }

for all ρ ≥ ρ̂, where ρ̂ ≥ ρ.
Proof: Let us denote by (uh, ph) ∈ Vh×Wh the solution of the discrete mixed
variational equation (6.27). Theorem 4.77 yields

max{ ‖u− ph‖, ‖p− ph‖ } ≤ c { inf
vh∈Vh

‖u− vh‖ + inf
wh∈Wh

‖p− wh‖ }. (6.78)

Subtracting (6.27) and (6.76), one gets

a(uh − uρh, vh) + b(vh, ph − pρh) = 0 for all vh ∈ Vh,

b(uh − uρh, wh) = −1
ρ (pρh, wh)h for all wh ∈Wh.

Then the Babuška-Brezzi condition, Theorem 4.76 and (6.77) deliver the es-
timate

max{ ‖uh − uρh‖, ‖ph − pρh‖ } ≤ c ρ−1 ‖pρh‖ (6.79)

for some c > 0.
It remains only to verify that ‖pρh‖ is bounded. Choose ρ̂ ≥ ρ such that

cρ̂−1 < 1 for the constant c > 0 from (6.79). Then (6.79) implies

‖pρh‖ − ‖ph‖ ≤ c ρ̂−1 ‖pρh‖ for all ρ ≥ ρ̂.

Consequently
‖pρh‖ ≤ c ‖ph‖ for all ρ ≥ ρ̂

and some constant c > 0. Invoking (6.78), we see that for some constant c∗

one has
‖pρh‖ ≤ c∗ for all h > 0, ρ ≥ ρ̂.

The theorem now follows from (6.78), (6.79) and a triangle inequality.

Remark 4.94. Unlike Theorem 4.91 for the discretized penalty method (6.75),
the terms in the error estimate of Theorem 4.93 for the method (6.76) separate
the effects of the discretization error and the penalty parameter. If we choose

ρ−1 = O
(

inf
vh∈Vh

‖u− vh‖+ inf
wh∈Wh

‖p− wh‖
)
,

then the penalty method (6.76) has the same order of convergence as the
discretization of the mixed variational equation (6.10) by (6.27); no reduction
in order occurs. �
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Remark 4.95. Condition (6.77) ensures that the second equation of (6.76) can
be solved for pρh ∈ Wh, and this solution is unique. Consequently (6.76) can
be interpreted as the penalty method

min
vh∈Vh

Jρh(vh), where Jρh(vh) := J(vh) +
ρ

2
‖Bvh − g‖2h ,

and ‖ · ‖h can be viewed as an approximation of ‖ · ‖∗. �

4.7 Error Estimators and Adaptive FEM

The error estimates of Section 4.4, which are of the form

||u− uh|| ≤ Chp |||u|||,
have several disadvantages:

• their proofs often assume that h ≤ h0, but h0 is not explicitly known so
it is not clear whether the estimate is valid for any specific mesh used in
practice;

• the constant C is in general unknown and can be computed explicitly
without great effort only for simple elements;

• the norm |||u||| of the exact solution is unknown;
• discretization with piecewise polynomials of degree k assumes that for

optimal convergence rates in, e.g., the H1 norm, one has u ∈ Hk+1(Ω),
but this degree of regularity of u is often unrealistic.

Beginning with the pioneering work of Babuška and Rheinboldt at the end
of the 1970s, much work has gone into constructing estimates of the error
‖u− uh‖ of the finite element approximation uh that are bounded by a local
quantity η that is computable from uh:

‖u− uh‖ ≤ Dη. (7.1)

While the error estimates from Section 4.4 are known as a priori bounds,
inequalities like (7.1) are called a posteriori error estimates. The quantity η
is called an error estimator . If η satisfies

D1 η ≤ ‖u− uh‖ ≤ D2η (7.2)

for some constants D1 and D2, then the error estimator is called efficient and
reliable—these terms refer to the first and second inequalities respectively.
This basic idea was later modified by replacing ‖u − uh‖ by an objective
functional J(u− uh) which has to be controlled. Here J represents the main
quantity of interest in the practical problem that is being solved by the finite
element method; see Section 4.7.2.

In an adaptive FEM an error estimator is used to control the computational
process. For the h-version FEM based on grid refinement (see Section 4.9.4 for
the p-and hp-versions of the FEM) the basic steps of an adaptive algorithm
are:
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(1) Solve the problem on the current mesh;
(2) Estimate the contribution to the error on each element K using the local

error estimator ηK ;
(3) Modify the mesh using the information of Step 2 and return to Step 1.

Grid refinement is the standard tool in Step 3, but coarsening procedures and
movement of nodes can also be used. If one desires to refine those elements
having a relatively large error contribution, there are several strategies for
the selection of these elements. A widely-used strategy is the following bulk
criterion:
Choose a parameter θ with 0 < θ < 1, then determine a subset T ∗ of the
current triangulation T for which( ∑

K∈T ∗
η2

K

)1/2

≥ Θ η, where η =
( ∑

K∈T
η2

K

)1/2

. (7.3)

We shall not describe the full technical details of several adaptive finite ele-
ment methods. Instead we examine in depth the most important component
of every adaptive algorithm: the error estimator.

Many different error estimators are currently in use. We begin in Sec-
tion 4.7.1 with the classical residual estimator. In Section 4.7.2 the popular
averaging technique and the basic concepts of goal-oriented error estimation
are discussed. Further estimators and detailed statements concerning the re-
lationships between them can be found in [Ver96, AO00, BR03].

For simplicity, we restrict ourselves to the model problem

−Δu = f in Ω, u = 0 on ∂Ω, (7.4)

in a two-dimensional polygonal domainΩ, and consider its discretization using
piecewise linear finite elements.

4.7.1 Residual Estimators

If x̃ is a known approximate solution of the linear system Ax = b, then to
control the error x− x̃ it is reasonable to start from the equation

A(x− x̃) = b−Ax̃,

where one can compute the residual b−Ax̃. To proceed further, we need some
information about ‖A−1‖. Turning to the finite element method, it is our aim
to develop an analogous approach for its a posteriori analysis.

Let uh ∈ Vh be the finite element approximation of u in (7.4). Then for
arbitrary v ∈ V := H1

0 (Ω) one has

(∇(u− uh),∇ v) = (f, v)− (∇uh,∇ v) =: 〈R(uh), v〉. (7.5)

The residual R(uh) is unfortunately an element of the dual space V ∗ =
H−1(Ω) of V . Clearly (7.5) implies
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|u− uh|21 ≤ ‖R(uh)‖−1 ‖u− uh‖1,

but the computation of theH−1 norm of the residual is difficult. One therefore
tries to prove an estimate

|〈R(uh), v〉| ≤ C η ‖v‖1 , (7.6)

because Friedrich’s inequality then yields

‖u− uh‖1 ≤ C η.

The first step towards proving (7.6) is a transformation of the equation defin-
ing the residual by means of integration by parts:

〈R(uh), v〉 =
∑
K

∫
K

(f +Δuh)v −
∑
K

∫
∂K

(n · ∇uh)v,

where Ω is partitioned into elements K and n is the outward-pointing unit
normal to ∂K. (For linear elements one has, of course, Δuh = 0; we include
this term nevertheless because it plays a role when higher-order elements are
used.) Next, we introduce the element-oriented and edge-oriented residuals
defined by

rK(uh) := (f +Δuh)|K and rE(uh) := [nE · ∇uh]E ,

where E is a generic edge of the triangulation, and [·] denotes the jump of
the (discontinuous) normal derivative of uh across the edge E. In this new
notation we have

〈R(uh), v〉 =
∑
K

∫
K

rK v −
∑
E

∫
E

rE v. (7.7)

The error orthogonality of the Galerkin method allows us to replace v on the
left-hand side of (7.5) by v − vh, for arbitrary vh ∈ Vh, and then we have

〈R(uh), v〉 =
∑
K

∫
K

rK (v − vh)−
∑
E

∫
E

rE (v − vh).

Hence

|〈R(uh), v〉| ≤
∑
K

‖rK‖0,K‖v − vh‖0,K +
∑
E

‖rE‖0,E‖v − vh‖0,E . (7.8)

To continue, we would like to choose vh in such a way that we can bound
v − vh for any v ∈ V , but we cannot use a standard interpolant because it
is not in general defined for v ∈ V . This is a technical difficulty that can be
handled by the introduction of generalized interpolants or quasi-interpolants;
see [EG04] for a detailed discussion of quasi-interpolants.

To define such an interpolant and to formulate approximation error esti-
mates, let us define the following notation:
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• ωK : the set of all elements that share at least one vertex with the element
K

• ωE : the set of all elements that share at least one vertex with the edge E.

We assume that the triangulation is quasi-uniform, which implies that the
number of elements in ωK or ωE is bounded by a fixed constant. Let hK

denote the diameter of K and hE the length of the edge E.

Lemma 4.96. Let the triangulation be quasi-uniform. Then to each v ∈ V
corresponds a quasi-interpolant Ihv ∈ Vh such that

‖v − Ihv‖0,K ≤ ChK |v|1,ωK
and ‖v − Ihv‖0,E ≤ Ch1/2

E |v|1,ωE

Proof: Let v ∈ V . The construction of Ih v is achieved in two steps:

(1) Given a vertex xj , let ωxj
denote the set of all elements for which xj is a

vertex. Let Pj denote the L2 projector from V to the constant functions
on ωxj

.
(2) Set Ih v :=

∑
j(Pj v)(xj)ϕj , where {ϕj} is the usual nodal basis of Vh.

Now the desired estimates are easy consequences of the Bramble-Hilbert
lemma.

Returning to (7.8), choose vh to be our quasi-interpolant and invoke the esti-
mates of Lemma 4.96; this gives

|〈R(uh), v〉| ≤ C
{∑

K

h2
K‖rK‖20,K +

∑
E

hE‖rE‖20,E

}1/2

‖v‖1.

This bound is of the desired form (7.6). Thus, define the residual error esti-
mator

η :=

[∑
K

η2
K

]1/2

, where η2
K := h2

K‖rK‖20,K +
1
2

∑
E⊂K

hE‖rE‖20,E .

The error estimator η is computable, local and—by its construction—reliable.
It remains to investigate its efficiency.

The proof of efficiency of η is based on a technique of Verfürth [Ver96].
Assume for simplicity (as otherwise additional terms arise) that f is elemen-
twise constant. Then both residuals are bounded above by the error; we give
the details of the this analysis only for the element residual.

Consider the bubble function bK = 27λ1 λ2 λ3 (where the λi are, as usual,
barycentric coordinates on K). Then bK vanishes on the boundary of K. In
(7.5) and (7.7) choose v by setting

v|K := vK = rKbK = fKrK ;
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this yields ∫
K

∇(u− uh)∇vK =
∫

K

rK vK .

But (rK , vK) = c‖rK‖20,K so it follows that

c‖rK‖20,K ≤ |u− uh|1,K |rK bK |1,K .

In the second factor on the right-hand side, replace the H1 seminorm by
‖rKbK‖0 via a local inverse inequality. Then we obtain the desired estimate

hK‖rK‖0,K ≤ C |u− uh|1,K . (7.9)

An edge bubble function can be used in a similar way to prove an analogous
estimate for the edge residual:

h
1/2
E ‖rE‖0,E ≤ C |u− uh|1,ωE

.

In summary, the efficiency of the residual error estimator is proved.

Remark 4.97. The values of the constants in Lemma 4.96 are stated in [33].
In [34] it is proved that for lower-order elements the edge residuals are the
dominant terms in the error estimator η. �

Remark 4.98. (Convergence of adaptive FEM)
For a long time a proof of convergence of an adaptive algorithm remained an
open problem. The first proof of such a result is due to Dörfler [46], who used
a residual error estimator and the bulk criterion (7.3). His analysis assumes
that the initial mesh is already sufficiently fine to control data oscillations,
which are defined by

osc(f, Th) :=

{∑
T∈Th

‖h(f − fT )‖20,T

}1/2

,

where fT is the mean value of f on an element T .
Later it became clear that error reduction requires conditions on the re-

finement; moreover, an extended bulk criterion also takes data oscillations
into account; see [93]. Examples in [93] show the significance for the conver-
gence behaviour of generating new interior mesh points during the refinement
process.

Binev, Dahmen and DeVore [16] proved optimal convergence rates for an
adaptive algorithm with optimal complexity. In their algorithm both mesh-
coarsening and mesh-refinement steps are taken into account. Stevenson [112]
simplified the algorithm by combining [16] and [93] in such a way that—at
least for our linear model problem—coarsening steps are unnecessary. �



292 4 The Finite Element Method

4.7.2 Averaging and Goal-Oriented Estimators

In an extensive numerical comparison [9] of several error estimators, the so-
called ZZ-error estimator of Zienkiewicz and Zhu worked surprisingly well.
Its basic idea is to replace the gradient of the exact solution u in the error
term ∇u − ∇uh by a computable reconstruction or recovery Ruh. Then the
local error estimator can be defined by

ηK := ‖Rhuh −∇uh‖0,K . (7.10)

If Ruh ∈ Vh and, analogously to the proof of Lemma 4.96, we set

Ruh :=
∑

j

(Puh)(xj)ϕj

for some projector P , then there are various choices for P . Let us, for example,
take the L2 projection of ∇uh on ωxj

. Then

(Puh)(xj) =
1

meas(ωxj
)

∑
K⊂ωxj

∇uh|K meas(K)

and we obtain the ZZ-error estimator.
It turns out that this particular Ruh has the property of yielding a super-

convergent approximation of ∇u on certain meshes (see also Section 4.8.3).
Chapter 4 of [AO00] contains a detailed discussion of those properties a recov-
ery operator should have and shows how one can analyse the resulting error
estimators if additional superconvergence results are available.

In [31, 32] it emerged that it is not necessary to have superconvergence
properties to prove, for instance, reliability of the ZZ-error estimator. In fact,
every averaging yields reliable a posteriori error control. To explain the un-
derlying idea, let us define an error estimator by best approximation of the
discrete gradient:

η := min
qh∈Vh

‖∇uh − qh‖0.

In practice it is important to note that the estimate (7.11) of the next Lemma
trivially remains true if the best approximation is replaced by some averaging
process.

Lemma 4.99. Assume that the L2 projector into Vh is H1 stable on the given
triangulation. Then

‖∇(u− uh)‖0 ≤ c η +HOT, (7.11)

where η is the above discrete gradient best approximation estimator and HOT
represents higher-order terms.

Proof: Let P denote the L2 projector into Vh. Set e := u − uh. The error
orthogonality of the Galerkin method implies the identity
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‖∇e‖20 = (∇u− qh,∇(e− Pe)) + (qh −∇uh,∇(e− Pe)) (7.12)

for all qh ∈ Vh. Now choose qh such that η = ‖∇uh − qh‖. The second term
on the right-hand side of (7.12) is estimated using the assumed H1-stability
and Cauchy-Schwarz:

|(qh −∇uh,∇(e− Pe))| ≤ c η ‖∇e‖0.

To estimate the first term we integrate ∇u by parts and introduce Δuh, which
equals zero locally:

(∇u− qh,∇(e− Pe)) = (f, e− Pe) +
∑
K

∫
K

∇ · (qh −∇uh)(e− Pe)

= (f − Pf, e− Pe) +
∑
K

∫
K

∇ · (qh −∇uh)(e− Pe).

Now the application of an local inverse inequality and a standard approxima-
tion error estimate ‖e− Pe‖0,K ≤ c hK |e|1,K together yield

|(∇u− qh,∇(e− Pe))| ≤ ‖f − Pf‖0 ‖e− Pe‖0 + c ‖qh −∇uh‖0 |e|1.

Combining our estimates, we are done.

Conditions for the H1 stability of the L2-projection are found in, e.g., [29].
Roughly speaking, standard meshes have this property. A detailed discussion
of specific averaging operators appears in [31, 32, 30].

Up to this point we have discussed error estimators for the H1 seminorm
of the error in the context of elliptic second-order boundary value problems.
Error estimators also exist for other norms, especially L2 and L∞: see [Ver96,
AO00, BR03].

The goal of a numerical simulation is often the effective and accurate
computation of a target quantity that can be described as a functional of the
solution of a given boundary value problem. For instance, consider a viscous
incompressible flow around a body, modelled by the Navier-Stokes equations.
If the goal of the computation is an accurate approximation of the drag (or
lift) coefficient, then

J(v, p) = cdrag = a

∫
S

nT (2ντ − pI)b ds

supplies a target functional (which is a surface integral over the boundary S
of the given body) and it does not make much sense to ignore this and control
the error in a global norm of the velocity or pressure. Instead, the error control
should guarantee that the quantity J of interest is computed accurately. Such
error estimators are called goal-oriented.

Consider thus the variational problem
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a(u, v) = f(v) for all v ∈ V (7.13)

and its finite element discretization under standard assumptions. Given a
target functional J(·), we seek a reliable a posteriori estimator for |J(u) −
J(uh)|. Let us introduce the auxiliary problem:
Find w ∈ V such that

a(v, w) = J(v) for all v ∈ V.

This is a dual or adjoint problem that is auxiliary to (7.13)—compare the
Nitsche technique for L2 error estimates or the approach sketched in Sec-
tion 4.4.3 for deriving pointwise error estimates. Now

J(u− uh) = a(u− uh, w),

and for arbitrary wh ∈ Vh, it follows that

J(u− uh) = a(u− uh, w − wh). (7.14)

For our example (7.1), analogously to Section 4.7.1, we can bound the right-
hand side by

|J(u− uh)| ≤
∑
K

‖rK‖0,K ‖w − wh‖0,K +
∑
E

‖rE‖0,E ‖w − wh‖0,E .

Now, depending on the precise problem under consideration, there are sev-
eral possible ways of computing (approximately) or estimating ‖w−wh‖; see
[BR03] for some examples. But in some cases the numerical approximation of
the solution of this dual problem requires meshes different from those used in
the original problem, and one has to balance carefully all terms that contribute
to the error.

The method sketched here is the dual weighted residual method (DWR).
The first convergence results for an adaptive scheme based on this method
are in [42].

4.8 The Discontinuous Galerkin Method

In 1973 Reed and Hill [99] introduced the discontinuous Galerkin method for
first-order hyperbolic problems. In the following years many researchers used
this idea not only for first-order hyperbolic equations but also for the time
discretization of unsteady problems. Independently of this work, in the 1970s
the first versions of the discontinuous Galerkin method for elliptic problems
appeared, using discontinuous ansatz functions and inadmissible meshes. In
recent years more advanced versions of the discontinuous Galerkin finite ele-
ment method (dGFEM) have become popular.
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The main advantages of the dGFEM over the standard FEM are its flexi-
bility with respect to the mesh and the local ansatz functions used, especially
in combination with hp-methods (higher-order ansatz functions can be used
in subdomains where the solution of the given problem is smooth). The possi-
bilities of incorporating boundary conditions and the treatment of convective
terms also favour the dGFEM. Furthermore, the local nature of the dGFEM
simplifies the parallelization of dGFEM codes. A disadvantage is the large
number of degrees of freedom present compared with a conventional FEM.

We shall give an introduction to the method that includes a typical con-
vergence analysis, restricting ourselves to simple ansatz functions (piecewise
linears and bilinears) on an admissible mesh. More general results appear, for
instance, in [7, 11, 38, 71].

It is our intention to explain also the advantages of the dGFEM for prob-
lems with dominant convection, so we introduce a small parameter ε > 0 that
multiplies the Laplacian in the given boundary value problem. In this chapter
we shall investigate only how the constants arising in the error estimates vary
with ε, while ignoring the dependence of the solution u on ε; the consequences
of this solution dependence will be revealed in Chapter 6.

4.8.1 The Primal Formulation for a Reaction-Diffusion Problem

Let us consider the linear reaction-diffusion problem

−ε�u+ cu = f in Ω , (8.1a)

u = 0 on Γ , (8.1b)

while assuming that c ≥ c∗ > 0 and Ω is a two-dimensional polygonal domain.
Let T be an admissible decomposition of Ω into triangles or parallelograms

κ with
Ω̄ =

⋃
κ∈T

κ .

(In general, it is not necessary to assume admissibility of the decomposition;
in [71], for instance, one can have one hanging node per edge.)

To each element κ ∈ T we assign a nonnegative integer sκ and define the
composite Sobolev space of the order s = {sκ : κ ∈ T } by

Hs(Ω, T ) =
{
v ∈ L2(Ω) : v|κ ∈ Hsκ(κ)∀κ ∈ T

}
.

The associated norm and semi-norm are

‖v‖s,T =

(∑
κ∈T
‖v‖2Hsκ (κ)

) 1
2

, |v|s,T =

(∑
κ∈T
|v|2Hsκ (κ)

) 1
2

.

If sκ = s for all κ ∈ T , we write instead Hs(Ω, T ), ‖v‖s,T and |v|s,T . If
v ∈ H1(Ω, T ) then the composite gradient ∇T v of a function v is defined by
(∇T v)|κ = ∇(v|κ), κ ∈ T .
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We assume that each element κ ∈ T is the affine image of a reference
element κ̂, viz., κ = Fκ(κ̂). One could use two reference elements but for
simplicity we just study the case of a reference triangle.

The finite element space is defined by

S(Ω, T ,F) =
{
v ∈ L2(Ω) : v|κ ◦ Fκ ∈ P1(κ̂)

}
; (8.2)

here F = {Fκ : κ ∈ T } and P1(κ̂) is as usual the space of linear polynomials on
κ̂. Note that the functions in S(Ω, T ,F) may be discontinuous across element
edges.

Let E be the set of all edges of the given triangulation T , with Eint ⊂ E the
set of all interior edges e ∈ E in Ω. Set Γint = {x ∈ Ω : x ∈ e for some e ∈
Eint}. Let the elements of T be numbered sequentially: κ1, κ2, . . . . Then for
each e ∈ Eint there exist indices i and j such that i > j and e = κ̄i ∩ κ̄2. Set
κ := κi and κ′ := κj . Define the jump (which depends on the enumeration of
the triangulation) and average of each function v ∈ H1(Ω, T ) on e ∈ Eint by

[v]e = v|∂κ∩e − v|∂κ′∩e , 〈v〉e =
1
2

(v|∂κ∩e + v|∂κ′∩e) .

Furthermore, to each edge e ∈ Eint we assign a unit normal vector ν directed
from κ to κ′; if instead e ⊂ Γ then we take the outward-pointing unit normal
vector μ on Γ . When there is no danger of misinterpretation we omit the
indices in [v]e and 〈v〉e.

We shall assume that the solution u of (8.1) lies in H2(Ω) ⊂ H2(Ω, T ).
(For more general problems it is standard to assume that u ∈ H2(Ω, T ) and
that both u and ∇u · ν are continuous across all interior edges, where ν is a
normal to the edge.) In particular we have

[u]e = 0 , 〈u〉e = u , e ∈ Eint , κ ∈ T .

Multiply the differential equation (8.1) by a (possibly discontinuous) test
function v ∈ H1(Ω, T ) and integrate over Ω:∫

Ω

(−εΔu+ cu) v dx =
∫

Ω

fv dx . (8.3)

First we consider the contribution of −εΔu to (8.3). Let μκ denote the
outward-pointing unit normal to ∂κ for each κ ∈ T . Integration by parts and
elementary transformations give us∫

Ω

(−εΔu) v dx =
∑
κ∈T

ε

∫
κ

∇u · ∇v dx−
∑
κ∈T

ε

∫
∂κ

(∇u · μκ) v ds

=
∑
κ∈T

ε

∫
κ

∇u · ∇v dx−
∑

e∈E∩Γ

ε

∫
e

(∇u · μ) v ds

−
∑

e∈Eint

ε

∫
e

(
((∇u · μκ)v)|∂κ∩e + ((∇u · μκ′)v)|∂κ′∩e

)
ds .
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The sum of the integrals over Eint can be written as∑
e∈Eint

ε

∫
e

(
((∇u · μκ)v)|∂κ∩e + ((∇u · μκ′)v)|∂κ′∩e

)
ds

=
∑

e∈Eint

ε

∫
e

(
((∇u · ν)v)|∂κ∩e − ((∇u · ν)v)|∂κ′∩e

)
ds

=
∑

e∈Eint

ε

∫
e

(
〈∇u · ν〉e[v]e + [∇u · ν]e〈v〉e

)
ds

=
∑

e∈Eint

ε

∫
e

〈∇u · ν〉e[v]e ds.

With the abbreviations∑
e∈Eint

ε

∫
e

〈∇u · ν〉e[v]e ds = ε

∫
Γint

〈∇u · ν〉[v] ds

and ∑
e∈E∩Γ

ε

∫
e

(∇u · μ) v ds = ε

∫
Γ

(∇u · μ) v ds ,

we get∫
Ω

(−εΔu) v dx =
∑
κ∈T

ε

∫
κ

∇u · ∇v dx

− ε
∫

Γ

(∇u · μ) v ds− ε
∫

Γint

〈∇u · ν〉[v] ds . (8.4)

Finally, add or subtract to the right-hand side the terms

ε

∫
Γ

u(∇v · μ) ds and ε

∫
Γint

[u]〈∇v · ν〉 ds

and the penalty terms∫
Γ

σuv ds and
∫

Γint

σ[u][v] ds .

All these terms vanish for the exact solution u. The penalty parameter σ is
piecewise constant:

σ|e = σe , e ∈ E .
We now have
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Ω

(−εΔu) v dx =
∑
κ∈T

ε

∫
κ

∇u · ∇v dx

+ ε

∫
Γ

(±u(∇v · μ)− (∇u · μ)v) ds+
∫

Γ

σuv ds

+ ε

∫
Γint

(±[u]〈∇v · ν〉 − 〈∇u · ν〉[v]) ds+
∫

Γint

σ[u][v] ds .

This ends the rearrangement of (8.3). We can now give the primal formulation
of the discontinuous Galerkin methods with interior penalties:{

Find uh ∈ S(Ω, T ,F) such that

B±(uh, vh) = L(vh) for all vh ∈ S(Ω, T ,F) ,
(8.5)

where
L(w) =

∑
κ∈T

∫
κ

fw dx

and the underlying bilinear forms are

B±(v, w) =
∑
κ∈T

(
ε

∫
κ

∇v · ∇w dx+
∫

κ

cvw dx

)
(8.6)

+ ε

∫
Γ

(±v(∇w · μ)− (∇v · μ)w) ds+
∫

Γ

σvw ds

+ ε

∫
Γint

(±[v]〈∇w · ν〉 − 〈∇v · ν〉[w]) ds+
∫

Γint

σ[v][w] ds ,

If one chooses B− here, then the bilinear form is symmetric and one has
the SIP (symmetric with interior penalties) method. With B+ one obtains a
nonsymmetric bilinear form—the NIP method. Later we discuss the pros and
cons of these methods.

Example 4.100. Let us consider the simple problem

−u′′ + cu = f, u(0) = u(1) = 0,

with constant c. Discretize this using NIP with piecewise linear elements on
an equidistant mesh of diameter h, taking σ = 1/h.

Our approximation is discontinuous; we denote by u−i and u+
i the discrete

values at the mesh point xi. After some computation the following difference
stencil like representation emerges (where the vertical lines separate the +
and - components):

− 1
h2

− 2
h2

∣∣∣ 4
h2

+
2c
3

− 2
h2

+
c

3

∣∣∣+ 1
h2

− 1
h2

∣∣∣ − 2
h2

+
c

3
4
h2

+
2c
3

∣∣∣− 2
h2

− 1
h2
.
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To explain this notation, the full version of the first line is the expression

− 1
h2
u+

i−1 −
2
h2
u−i +

( 4
h2

+
2c
3

)
u+

i +
(
− 2
h2

+
c

3

)
u−i+1 +

1
h2
u+

i+1.

If the approximation were continuous then the stencil would simplify to the
standard central difference scheme.
For the dGFEM and linear elements, a vector (u−i , u

+
i ) is assigned to every

mesh point, so the discontinuous Galerkin method generates a vector-valued
difference scheme. �

Remark 4.101. (The flux formulation of dGFEM)
As well as the primal formulation of the dGFEM, one can use the so-called
flux formulation. Like mixed finite element methods, the starting point (for
our problem) is

θ = ∇u, −ε∇ · θ + cu = f.

The element-based variational form of this is∫
κ

θ · τ = −
∫

κ

u ∇ · τ +
∫

∂κ

uμκ · τ,

−ε
∫

κ

θ · ∇v +
∫

κ

cuv =
∫

κ

fv +
∫

∂κ

θ · μκ v.

Introducing discrete discontinuous finite element spaces, we get the flux for-
mulation of the dGFEM: Find uh, θh such that∫

κ

θh · τh = −
∫

κ

uh ∇ · τh +
∫

∂κ

ûκ μκ · τh,

−ε
∫

κ

θh · ∇vh +
∫

κ

cuhvh =
∫

κ

fvh +
∫

∂κ

θ̂κ · μκ vh.

This formulation depends on the numerical fluxes θ̂κ and ûκ that approximate
θ = ∇u and u on ∂κ. Their definitions are of critical importance. In [7], nine
variants of the dGFEM are discussed based on various choices of θ̂κ and
ûκ; for each variant the corresponding primal formulation is derived and the
properties of the different methods are discussed. �

Only the primal form of the dGFEM will be examined here. Next we turn
to the treatment of convective terms.

4.8.2 First-Order Hyperbolic Problems

Let us consider the pure convection problem

b · ∇u+ cu = f in Ω , (8.7a)

u = g on Γ− , (8.7b)
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under the assumption that c− (div b)/2 ≥ ω > 0. Here Γ− denotes the inflow
part of the boundary Γ of Ω, which is characterized by b · μ < 0 where μ is
the outward-pointing unit normal to Γ .

For more than 20 years it has been recognised that standard finite elements
for the discretization of (8.7) are unsatisfactory [74]: their stability properties
are poor and the convergence rates obtained are, in general, suboptimal. For
instance, with piecewise linear elements the L2 error is typically only O(h).

Thus to solve (8.7) with a finite element method, one needs to modify
the standard method. Two effective mechanisms for this are the streamline
diffusion finite element method (SDFEM) that will be discussed in Chapter 6
and the dGFEM.

First we establish some notation. Denote the inflow and the outflow parts
of the boundary of an element ∂κ by

∂−κ = {x ∈ ∂κ : b(x) · μκ(x) < 0} , ∂+κ = {x ∈ ∂κ : b(x) · μκ(x) ≥ 0} .

Here μκ(x) is the outward-pointing unit vector normal to ∂κ at the point
x ∈ ∂κ.

For each element κ ∈ T and v ∈ H1(κ), denote by v+
κ the interior trace of

v|κ on ∂κ. If ∂−κ\Γ �= ∅ for some κ ∈ T then for each x ∈ ∂−κ\Γ there exists
a unique κ′ ∈ T such that x ∈ ∂+κ

′. In this way ∂−κ \ Γ is partitioned into
segments, each of which is the intersection of κ̄ with the outflow boundary of
a unique κ′. Given a function v ∈ H1(Ω, T ) and a κ ∈ T with the property
∂−κ \Γ �= ∅, define the outer trace v−κ of v with respect to κ on each segment
of ∂−κ \ Γ to be the interior trace of v+

κ′ with respect to that κ′ for which
∂+κ

′ intersects that segment of ∂−κ. The jump of v across ∂−κ \ Γ is defined
by

!v"κ = v+
κ − v−κ .

Note that the jump !·" depends on the vector b ; this is not the case for the
jump [·].

Integration by parts yields the identity∫
κ

(b · ∇u) v dx

=
∫

∂κ

(b · μκ)u v ds−
∫

κ

u∇ · (b v) dx

=
∫

∂κ−
(b · μκ)uv ds+

∫
∂κ+

(b · μκ)uv ds−
∫

κ

u∇ · (b v) dx.

For a continuous function it is irrelevant whether we use u, u+ or u−, but
for a discontinuous function these are significantly different. On the inflow
boundary u is replaced by u− then the last term is again integrated by parts.
The ∂κ+ terms cancel and we get
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κ

(b · ∇u) v dx

=
∫

∂κ−
(b · μκ)u−v+ ds+

∫
∂κ+

(b · μκ)u v+ ds−
∫

κ

u∇ · (b v) dx

=
∫

κ

(b · ∇u) v dx−
∫

∂−κ∩Γ−
(b · μκ)u+v+ ds−

∫
∂−κ\Γ

(b · μκ)!u"v+ ds.

This is the motivation for the following weak formulation of (8.7):

B0(u, v) :=
∑
κ∈T

(∫
κ

(b · ∇u+ cu) v dx

−
∫

∂−κ∩Γ

(b · μκ)u+v+ ds−
∫

∂−κ\Γ

(b · μκ)!u"v+ ds

)

=
∑
κ∈T

(∫
κ

fv dx−
∫

∂−κ∩Γ−
(b · μκ)gv+ ds

)
. (8.8)

As usual the corresponding finite element method—here the dGFEM—is
obtained by a restriction of (8.8) to the discrete spaces.

Example 4.102. Let us consider the simple test problem

ux + u = f, u(0) = A in (0, 1),

and discretize using dGFEM on a mesh {xi} with a piecewise constant ap-
proximation ui on every subinterval. This generates the discrete problem

ui − ui−1

hi
+ ui =

1
hi

∫ xi

xi−1

f dx.

where hi = xi − xi−1. We have here a clear improvement on the standard
Galerkin method, which for piecewise linears generates a central differencing
scheme which is unstable for this problem: dGFEM generates a stable approx-
imation that is one-sided (the choice of side depends on the sign of b in (8.7)).
�

Why isB0(·, ·) superior to the bilinear form of the standard Galerkin FEM?
It is not difficult to verify (with c20 := c− (∇ · b)/2) that

B0(v, v) =
∑

κ∈T

(
‖c0v‖2L2(κ) + 1

2

(
‖v+‖2∂−κ∩Γ

+ ‖v+ − v−‖2∂−κ\Γ + ‖v+‖2∂+κ∩Γ

))
.

Here we used the notation

‖v‖2τ = (v, v)τ where (v, w)τ =
∫

τ

|b · μκ|vw ds , τ ⊂ ∂κ. (8.9)
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Thus, compared with the standard Galerkin FEM, the dGFEM has improved
stability properties: we control not only the L2 norm—the additional terms
in B0(·, ·) deliver more stability. As a consequence, one also obtains error
estimates in a stronger norm.

The Galerkin orthogonality property

B0(u− uh, vh) = 0 ∀vh ∈ Vh

of the dGFEM means that we can carry out error estimates by following the
familiar pattern of finite element analyses. In the next subsection this analysis
will be sketched for convection-diffusion problems.

Remark 4.103. (jump-stabilization)
The discretization above can also be derived from the standard weak formu-
lation by the addition of certain jump-penalty terms [38]. Consequently, the
dGFEM for problem (8.7) is a kind of stabilized FEM. In [27] the advantages
of this approach are discussed. �

4.8.3 Error Estimates for a Convection-Diffusion Problem

The ideas of the previous two subsections will now be combined in a discussion
of the dGFEM for the convection-diffusion problem

−ε�u+ b · ∇u+ cu = f in Ω , (8.10a)
u = 0 on Γ . (8.10b)

We assume the following hypotheses, which we call assumption (A):

1. c− (∇ · b)/2 ≥ c0 > 0 and Ω is polygonal
2. u ∈ H2(Ω)
3. the triangulation of Ω is admissible and quasi-uniform.

The bilinear form associated with problem (8.10) is

B±(v, w) =
∑
κ∈T

(
ε

∫
κ

∇v · ∇w dx+
∫

κ

(b · ∇v + cv)w dx

−
∫

∂−κ∩Γ

(b · μ)v+w+ ds−
∫

∂−κ\Γ

(b · μκ)!v"w+ ds

)

+ ε

∫
Γ

(±v(∇w · μ)− (∇v · μ)w) ds+
∫

Γ

σvw ds

+ ε

∫
Γint

(±[v]〈∇w · ν〉 − 〈∇v · ν〉[w]) ds+
∫

Γint

σ[v][w] ds ,

for v, w ∈ V := H1(Ω, T ). Then the dGFEM is:
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Find uh ∈ S(Ω, T ,F) such that
B±(uh, vh) = L(vh) for all vh ∈ S(Ω, T ,F) , (8.11)

where
L(w) =

∑
κ∈T

∫
κ

fw dx .

For the error analysis it is important to observe that the dGFEM satisfies the
Galerkin orthogonality condition

B±(u− uh, v) = 0 , for all v ∈ S(Ω, T ,F) . (8.12)

Define the dG norm by

‖v‖2dG =
∑
κ∈T

(
ε‖∇v‖2L2(κ) + ‖c0v‖2L2(κ)

)
+
∫

Γ

σv2 ds+
∫

Γint

σ[v]2 ds

+
1
2

∑
κ∈T

(
‖v+‖2∂−κ∩Γ + ‖v+ − v−‖2∂−κ\Γ + ‖v+‖2∂+κ∩Γ

)
, (8.13)

where we recall the notation defined in (8.9). A crucial question is whether
B±(·, ·) is elliptic on the discrete finite element space. One can see easily that

B+(v, v) ≥ c‖v‖2dG ∀v ∈ S(Ω, T ,F)

for the nonsymmetric version on every triangulation and all σ > 0 (quasi-
uniformity is not needed). For the symmetric version, however, to obtain el-
lipticity over S(Ω, T ,F) on a quasi-uniform triangulation one should choose

σ =
ε

h
σ0 (8.14)

with some sufficiently large constant σ0. Once ellipticity is established, the
derivation of error estimates is more or less identical for the NIP and SIP
methods. We shall present error estimates for NIP because with this method
anisotropic meshes can be used without difficulties; this is important for prob-
lems whose solutions exhibit layers. With SIP on anisotropic meshes it is more
demanding to obtain accurate numerical results: see [52].

Remark 4.104. If one wishes to prove optimal L2 error estimates or to apply
the DWR method to control the error, it is important that the method have
the so-called adjoint consistency property. The SIP form is adjoint consistent,
but NIP does not have this property; see [60] for details. �

Now we analyse the error in the nonsymmetric dGFEM, using piecewise
linear (discontinuous) elements. The error is

u− uh = (u−Πu) + (Πu− uh) ≡ η + ξ;



304 4 The Finite Element Method

here Π is for the moment an arbitrary projector into the finite element space.
As usual, Galerkin orthogonality implies

‖ξ‖2dG = B+(ξ, ξ) = −B+(η, ξ) .

We shall estimate |B+(η, ξ)| in a way that shows how the error depends only
on the projection error with respect to different norms.

Choose the projection Π to be the L2 projection onto the finite element
space. Then by standard arguments for linear elements on a quasi-uniform
triangulation we have

‖η‖L2 ≤ C h2 ‖u‖H2(Ω) and ‖η‖H1(Ω,T ) ≤ C h ‖u‖H2(Ω).

Applying the Cauchy-Schwarz inequality to estimate the contribution |B0(η, ξ)|
from the convective part, one can see that it remains only to bound∑

κ∈T
‖η‖L2(κ) + ‖η−‖∂−κ\Γ + ‖η+‖∂+κ∩Γ

and ∑
κ∈T

∫
κ

η(b · ∇ξ) dx . (8.15)

To estimate the terms ‖η−‖∂−κ\Γ and ‖η+‖∂+κ∩Γ one can use the multiplica-
tive trace inequality [44]

‖v‖2L2(∂κ) ≤ C
(
‖v‖L2(κ)|v|H1(κ) +

1
hκ
‖v‖2L2(κ)

)
, v ∈ H1(κ). (8.16)

The choice of Π implies that the term (8.15) will vanish if

b · ∇T v ∈ S(Ω, T ,F) ∀v ∈ S(Ω, T ,F) . (8.17)

This condition is satisfied if b is piecewise linear. Otherwise, we approximate
b by piecewise linears, then apply a triangle inequality and a local inverse
inequality to obtain the estimate (for b ∈W 1,∞)∣∣∣ ∑

κ∈T

∫
κ

η(b · ∇ξ) dx
∣∣∣ ≤ C h2‖u‖H2‖ξ‖L2 .

Let us summarize the error analysis up to this point:

Lemma 4.105. Consider the pure convection problem (8.7) under the as-
sumption that c−(∇·b)/2 ≥ c0 > 0. Suppose that this problem is discretized on
a quasi-uniform triangulation using the discontinuous Galerkin method with
piecewise linear (discontinuous) elements. Then the error in the dG-norm re-
lated to B0(·, ·) can be estimated by

‖u− uh‖dG0 ≤ C h3/2‖u‖H2(Ω).
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The O(h3/2) error in L2 is an improvement over the O(h) attained by the
standard Galerkin FEM.

To continue the analysis and get an error estimate for the convection-
diffusion problem (8.10), we have to estimate the remaining terms of B(η, ξ).
For the first term and the penalty terms one simply applies the Cauchy-
Schwarz inequality. The remaining integrals on Γ and Γint are handled using
the same technique, which will now be demonstrated for the integrals on Γ .

To estimate the expression

Z =
∫

Γ

ε (η(∇ξ · ν)− (∇η · ν)ξ) ds,

introduce an auxiliary positive parameter γ and then by the Cauchy-Schwarz
inequality one gets

|Z| ≤
(∑

κ∈T

ε

γ
‖η‖2L2(∂κ∩Γ )

)1/2(∑
κ∈T

ε γ‖∇ξ‖2L2(∂κ∩Γ )

)1/2

+

(∑
κ∈T

ε2

σ
‖∇η‖2L2(∂κ∩Γ )

)1/2(∑
κ∈T

σ‖ξ‖2L2(∂κ∩Γ )

)1/2

.

The second term here can be directly estimated by ‖ξ‖dG. In the first term
we replace the integrals on ∂κ by integrals on κ via a local inverse inequality.
To compensate for the powers of h that arise we choose γ = O(h). Then

|Z| ≤

⎛⎝(∑
κ∈T

ε

hκ
‖η‖2L2(∂κ∩Γ )

)1/2

+

(∑
κ∈T

ε2

σ
‖∇η‖2L2(∂κ∩Γ )

)1/2
⎞⎠ ‖ξ‖dG.

These terms contribute O(ε1/2h) and O(ε h1/2/(σ1/2)) respectively to the
error estimate. On the other hand, the estimates of the penalty terms are
O(σ1/2h3/2). Balancing the influence of the various terms on σ, we conclude
that the choice σ = σ0ε/h for some positive constant σ0 leads to the best rate
of convergence.

Theorem 4.106. Consider the convection-diffusion problem (8.10) under as-
sumption (A). Suppose that this problem is discretized using the nonsymmetric
discontinuous Galerkin method NIP and (discontinuous) piecewise linear ele-
ments. If one chooses the penalty parameter to be

σ = σ0
ε

h
(8.18)

for some constant σ0 > 0, then the following error bound holds:

‖u− uh‖2DG ≤ C
(
εh2 + h3

)
‖u‖2H2(Ω) . (8.19)
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The same error estimate can be proved for the symmetric version SIP but one
has to choose σ0 sufficiently large so that the bilinear form is V -elliptic. More
general error estimates for the hp-version of the method appear in [71] and
[60]. The results of several numerical tests are described in [36].

Remark 4.107. (SIP and SDFEM)
In Chapter 6 we will meet an error estimate for the SDFEM that looks su-
perficially like the above error estimate for dGFEM, but on closer inspection
one sees that different norms are used to estimate the error.
It is therefore natural to ask whether one can, for instance, prove an error
estimate for the dGFEM in a norm that is typical of the SDFEM. Indeed, in
[53] the authors prove a sharpened version of (8.19): for the symmetric version
SIP that is based on the bilinear form B−(v, w), they introduce the norm

|||v|||2 = B−(v, v) +
∑
κ∈T

diam(κ) ‖b · ∇v‖2L2(κ)

then prove that

|||u− uh|||2 ≤ Cmax{εh2 + h3}‖u‖2H2(Ω) .

This result is remarkable because ||| · ||| contains a term that is typical of the
SDFEM. �

Remark 4.108. (L∞-norm error estimates)
Error estimates in the L∞ norm are proved in [75] for the symmetric version
(SIP) of the dGFEM, but only the Poisson equation is studied. �

4.9 Further Aspects of the Finite Element Method

4.9.1 Conditioning of the Stiffness Matrix

Consider the simplest stiffness matrix that arises in the finite element method:
for the one-dimensional differential expression− d2

dx2 with homogeneous Dirich-
let conditions, using piecewise linear finite elements on an equidistant mesh,
the stiffness matrix is

A =
1
h

⎡⎢⎢⎢⎢⎣
2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 −1 · · · 0
· · · . . . · · · .
0 0 · · · 0 −1 2

⎤⎥⎥⎥⎥⎦ .
Let its dimension be (N − 1)× (N − 1), where Nh = 1. The eigenvalues of A
are

λk =
4
h

sin2 kπh

2
for k = 1, · · · , N − 1.
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Consequently the smallest eigenvalue λ1 satisfies λ1 ≈ π2 h and the largest
eigenvalue is λN−1 ≈ 4/h. Thus A has (spectral) condition number κ(A) =
O(1/h2).

We shall show that κ(A) typically has this magnitude when one discretizes
symmetric H1-elliptic bilinear forms with piecewise linear finite elements in
the two-dimensional case. For simplicity we assume the triangulation to be
both quasi-uniform and uniform.

Let us write an arbitrary vh ∈ Vh (the piecewise linear space) in terms of
the nodal basis {ϕi} of Vh:

vh =
∑

i

ηiϕi .

Then substituting vh into the bilinear form generates a quadratic form:

a(vh, vh) = ηT Aη.

We estimate the eigenvalues of A using a Rayleigh quotient. First, setting
‖η‖2 =

∑
i η

2
i , the application of a global inverse inequality yields

ηT Aη

‖η‖2 =
a(vh, vh)
‖η‖2 ≤ C h−2 ‖vh‖20

‖η‖2 ≤ C.

The last inequality holds because on Vh the continuous L2 norm ‖vh‖20 is
equivalent to the discrete norm h2‖η‖2.
Second, by V -ellipticity we have

ηT Aη

‖η‖2 =
a(vh, vh)
‖η‖2 ≥ α‖vh‖21

‖η‖2 ≥ α
‖vh‖20
‖η‖2 ≥ C h

2.

That is, λmax ≤ C and λmin ≥ C h2; hence κ(A) is O(1/h2).
In general: The discretization of boundary value problems of order 2m by

finite elements leads under the above assumptions on the triangulation to a
stiffness matrix whose condition number κ(A) is O(1/h2m).

Nevertheless note that the choice of basis in the finite element space Vh

significantly influences the conditioning. For instance, hierarchical or wavelet
bases are better behaved than nodal bases; see [Osw94, Chapter 4.2].

4.9.2 Eigenvalue Problems

Consider the following eigenvalue problem:
Find u ∈ H1

0 (Ω) = V and λ ∈ R such that

a(u, v) = λ (u, v) for all v ∈ V. (9.1)

Here a(·, ·) is a given symmetric V -elliptic bilinear form.
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As a(·, ·) is symmetric it is well known that its eigenvalues are real and,
owing to the V -ellipticity, positive. Moreover they can be enumerated and
have no finite accumulation point. Ordering the eigenvalues by

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ λk+1 ≤ · · · ,

the Rayleigh quotient R allows the characterization

λk = min
v⊥Ek−1

R(v) = min
v⊥Ek−1

a(v, v)
‖v‖20

,

where Ek is the space spanned by the first k eigenfunctions.
The eigenvalues can also be characterized by the min-max principle

λk = min
Mk⊂V

{
max
v∈Mk

a(v, v)
‖v‖20

, dimMk = k.

}
Let us now discretize the eigenvalue problem (9.1) using continuous piece-

wise linear finite elements: Find uh ∈ Vh and λh ∈ R such that

a(uh, vh) = λh (uh, vh) for all vh ∈ Vh.

This is equivalent to a standard matrix eigenvalue problem. Setting N =
dimVh, we enumerate the discrete eigenvalues:

0 < λh
1 ≤ λh

2 ≤ · · · ≤ λh
N .

Then one has

Theorem 4.109. If u ∈ H2(Ω) and the triangulation used is quasi-uniform,
then the discrete eigenvalues λh

k satisfy the estimate

λk ≤ λh
k ≤ λk + C(λk h)2.

For the proof observe first that the inequality λk ≤ λh
k follows immediately

from the min-max principle above for dimVh ≥ k (i.e., for h sufficiently small).
It is much more complicated to verify the second inequality. We start from

λh
k ≤ max

v∈Mk

a(v, v)
‖v‖20

for any subspace Mk of Vh with dim Mk = k. Let E0
k be the k-dimensional

subspace spanned by the first k eigenfunctions of a(·, ·). Choose Mk to be the
Ritz projection of E0

k into Vh. Later we shall show that dimMk = k also.
Denoting the Ritz projector by P , it follows that

λh
k ≤ max

w∈E0
k

a(Pw,Pw)
‖Pw‖20

.
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One can write the numerator as

a(Pw,Pw) = a(w,w)− 2a(w − Pw,Pw)− a(w − Pw,w − Pw).

The central term on the right-hand side vanishes by Galerkin orthogonality,
so

a(Pw,Pw) ≤ a(w,w) ≤ λk since w ∈ E0
k.

For the denominator we have

‖Pw‖20 = ‖w‖20 − 2(w,w − Pw) + ‖w − Pw‖20. (9.2)

We shall prove below that

σh
k := max

w∈E0
k

∣∣2(w,w − Pw)− ‖w − Pw‖20
∣∣ (9.3)

satisfies
0 ≤ σh

k ≤ Cλk h
2 <

1
2

(9.4)

for sufficiently small h. Incorporating this bound into (9.2) yields

‖Pw‖20 ≥ 1− σh
k .

The desired estimate
λh

k ≤ λk(1 + 2Cλk h
2)

now follows from the inequality 1/(1 − x) ≤ 1 + 2x for x ∈ [0, 1/2] because
σh

k < 1/2. The key ingredient of our proof is the inequality (9.4), which we
now verify. Denote the normalised eigenfunctions of a(·, ·) by {wi}. Let

w =
k∑

i=1

αiwi

be an arbitrary member of E0
k. Then

|(w,w − Pw)| =
∣∣∣∣∣∑

i

(αiwi, w − Pw)

∣∣∣∣∣
=

∣∣∣∣∣∑
i

αiλ
−1
i a(wi, w − Pw)

∣∣∣∣∣
=

∣∣∣∣∣∑
i

αiλ
−1
i a(wi − Pwi, w − Pw)

∣∣∣∣∣
≤ Ch2

∥∥∥∥∥∑
i

αiλ
−1
i wi

∥∥∥∥∥
2

‖w‖2.

The assumed H2 regularity of u implies ‖w‖2 ≤ Cλk and
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i

αiλ
−1
i wi

∥∥∥
2
≤ C

follows from V -coercivity and

a
(∑

i

αiλ
−1
i wi, v

)
=
(∑

i

αiwi, v
)

for all v ∈ V.

Consequently, we have

|(w,w − Pw)| ≤ Cλk h
2 for all w ∈ E0

k.

On the other hand, the error of the Ritz projection in the L2 norm yields

‖w − Pw‖20 ≤ Ch4‖w‖22 ≤ Cλ2
k h

4.

Combining these bounds with (9.3), we have proved (9.4).
It remains only to show that the dimension of Mk is indeed k. For suppose

that there exists w∗ ∈ E0
k with Pw∗ = 0. Without loss of generality ‖w∗‖ = 1

and it then follows that

1 = ‖w∗‖20 =
∣∣2(w∗, w∗ − Pw∗)− ‖w∗ − Pw∗‖20

∣∣ ≤ σh
k <

1
2
.

This contradiction proves the bijectivity of the mapping from E0
k to Mk.

The finite element method with polynomials of local degree m gives the
bound

λh
k ≤ λk + Cλm+1

k h2m;

see [Hac03a]. This reference also estimates the accuracy with which the eigen-
functions are approximated:

‖wk − wh
k‖1 ≤ Cλ

(m+1)/2
k hm

and
‖wk − wh

k‖0 ≤ Cλ
(m+1)/2
k hm+1.

4.9.3 Superconvergence

The term superconvergence is used in the literature to describe various phe-
nomena that are characterized by improved convergence rates. For instance,
we say we have superconvergence when

(i) at special points xi one has better convergence rates for (u−uh)(xi) than
for ‖u− uh‖∞. Similar effects can be detected for derivatives.

(ii) for some projector P into the finite element space, the convergence rates
for the difference ‖uh − Pu‖ are better than for the finite element error
‖uh − u‖;
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(iii) there exists a recovery operator R—e.g., for the gradient—such that the
approximation of ∇u by Ruh is of higher order than its approximation by
∇uh.

Further examples of superconvergence phenomena are given in [Wah95]
and [KNS98]. In what follows we prove some special results related to the
classes (i) and (ii) above. Recovery is discussed in detail in [AO00, Chapter
4]; see also the recent polynomial recovery technique of [127]. As we mentioned
in Section 4.7, the construction of a posteriori error estimators can be based
on recovery techniques.

We begin with an examination of superconvergence points for the deriva-
tive of the solution in the one-dimensional case. Consider the boundary value
problem

−(u′ + bu)′ = f, u(0) = u(1) = 0,

and its finite element discretization by the space Vh of piecewise polynomials
of degree at most k ≥ 1 on an equidistant mesh {xi} of diameter h. We know
that for sufficiently smooth solutions one has the error estimate

‖(uh − u)′‖∞ ≤ C hk

and our interest is the identification of points with an improved convergence
rate.
First we prove :

Lemma 4.110. Let ũh ∈ Vh be the projection of u′ into Vh induced by the
scalar product associated with the H1 seminorm. Then

‖(uh − ũh)′‖∞ ≤ C hk+1.

Proof: Set θ = ũh − uh. Then

(θ′, v′h) = ((ũh − u)′, v′h)− ((uh − u)′, v′h) = (b(u− uh), v′h) for all vh ∈ Vh.

Hence

|(θ′, v′h)| ≤ C‖u− uh‖∞‖vh‖W 1,1 ≤ C hk+1 ‖vh‖W 1,1 for all vh ∈ Vh. (9.5)

This estimate will be used to control ‖θ′‖∞ via the well-known L∞-norm
characterization

‖θ′‖∞ = sup
‖ψ‖L1=1

(θ′, ψ) . (9.6)

Let P denote the L2 projection onto the space of (not necessarily globally
continuous) piecewise polynomials of degree at most k − 1. Let ψ ∈ L1[0, 1]
be arbitrary. Then

(θ′, ψ) = (θ′, Pψ).

Define the auxiliary function ϕ ∈ Vh by
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ϕ(x) :=
∫ x

0

Pψ − x
∫ 1

0

Pψ for 0 ≤ x ≤ 1.

This function has the property that

(θ′, ψ) = (θ′, Pψ) = (θ′, ϕ′ +
∫ 1

0

Pψ) = (θ′, ϕ′).

But
‖ϕ‖W 1,1 ≤ C‖Pψ‖L1 ≤ C‖ψ‖L1 . (9.7)

By combining (9.5), (9.6) and (9.7) the proof is complete.

In fact for piecewise linear elements ũh is the nodal interpolant of u.
Lemma 4.110 enables us to identify superconvergence points for the deriv-

ative of the discrete solution.

Theorem 4.111. Let the points ηj be the zeros of the kth Legendre polynomial
Lk on the element (xi, xi+1). Then

|(u− uh)′(ηj)| ≤ C hk+1.

Proof: The definition of ũh in Lemma 4.110 implies that if ψ is some arbitrary
polynomial of degree k − 1 on (xi, xi+1) then∫ xi+1

xi

(ũh − u)′ψ = 0. (9.8)

Now expand (ũh − u)′ in a Taylor series about the point (xi + xi+1)/2. This
yields a polynomial of degree k, which we express as a linear combination of
Legendre polynomials, and a remainder:

(ũh − u)′(x) =
k∑

l=0

clLl(x) +O(hk+1).

Evaluating the coefficients cl for l ≤ k − 1 by means of the orthogonality
property of Legendre polynomials, the identity (9.8) tells us that each cl is
O(hk+1). Since by definition Lk(ηi) = 0, one therefore obtains

(ũh − u)′(ηi) =
k−1∑
l=0

clLl(ηi) +O(hk+1) = O(hk+1). (9.9)

This estimate and Lemma 4.110 together give the desired result.

One can show similarly that the zeros of L′
k are superconvergence points

for u− uh.
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For more details, including a generalization of these results to the higher-
dimensional tensor product case, see [Wah95, Chapter 6]. On simplices (e.g.,
triangles in 2D) the situation is more complicated.

Next we move on to Lin’s technique of integral identities for the verification
of superconvergence results of type (ii). This material appears in several books
from the 1980s and 1990s but unfortunately these books are available only in
Chinese with one recent exception [LL06].

Let Vh be the space of piecewise bilinear finite elements on a two-
dimensional rectangular mesh of diameter h. Denote by uI ∈ Vh the bilinear
nodal interpolant of u.

Theorem 4.112. Let u ∈ H1
0 (Ω) ∩H3(Ω). Then

|((u− uI)x, vx)|+ |((u− uI)y, vy)| ≤ C h2 ‖u‖3 ‖v‖1 for all v ∈ Vh. (9.10)

Proof: Let us first remark that a direct application of the Cauchy-Schwarz
inequality and an invocation of standard interpolation error estimates (which
assume only u ∈ H2) yield a multiplicative factor h but not h2.

We prove (9.10) for ((u − uI)x, vx). Consider a mesh rectangle R with
midpoint (xr, yr) and edge lengths 2hr and 2kr. Define the auxiliary function

F (y) :=
1
2
[
(y − yr)2 − k2

r

]
.

Then the following Lin identity is valid:∫
R

(u− uI)x vx =
∫

R

[
Fuxyy vx −

1
3
(F 2)′uxyy vxy

]
. (9.11)

Now, observing that F = O(k2
r) and (F 2)′ = O(kr)3, the inequality (9.10) fol-

lows immediately from the Lin identity by applying a local inverse inequality
to vxy (this can be done since v ∈ Vh).

How does one verify (9.11)? We use the abbreviation e := u− uI . As v is
bilinear one gets∫

R

(exvx)(x, y) dx dy =
∫

R

ex(x, y) [vx(xr, yr) + (y − yr)vxy] dx dy

=
(∫

R

ex

)
vx(xr, yr) +

(∫
R

(y − yr)ex(x, y) dx dy
)
vxy.

Repeated integrations by parts give∫
R

Fexyy = −
∫

R

F ′exy =
∫

R

F ′′ex =
∫

R

ex

because F vanishes identically and
∫
ex = 0 along the top and bottom of R.

Similarly
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R

(y − yr)ex(x, y) =
1
6

∫
R

(F 2)′exyy.

Consequently∫
R

exvx =
∫

R

F (y)exyy(x, y)[vx(x, y)− (y− yr)vxy] dx dy+
1
6

∫
R

(F 2)′exyyvxy.

But (F 2)′(y) = 2(y − yr)F (y) so (9.11) follows.

Why is Theorem 4.112 valuable?
Consider, for instance, the Poisson equation with homogeneous Dirichlet con-
ditions in a rectangular domain and discretized with bilinear finite elements.
Since a(v, w) = (∇v,∇w), Theorem 4.112 yields

α‖uh − uI‖21 ≤ (∇(uh − uI),∇(uh − uI))
= (∇(u− uI),∇(uh − uI)) ≤ C h2 ‖u‖3‖uh − uI‖1.

Now, assuming that u ∈ H1
0 (Ω) ∩H3(Ω), we have the interesting supercon-

vergence estimate (compare with ‖u− uI‖1 = O(h) and ‖u− uh‖1 = O(h))

‖uh − uI‖1 ≤ C h2.

Similar Lin identities can be proved for certain other types of integrals, and
some results can be extended to higher-order rectangular elements provided
special interpolants are used; see, e.g., [84]. On triangular meshes the situation
is more complicated but some results are known [KNS98].

4.9.4 p- and hp-Versions

The accuracy of a finite element approximation can be improved in several
ways. If the mesh is refined while the structure of the local basis functions is
unchanged, one has the h-version of the finite element method. Alternatively,
one can work on a fixed mesh and increase the polynomial degree of the local
basis functions used; this is the p-version. The hp-version is a combination of
these strategies.

Even in the one-dimensional case the difference between the asymptotic
convergence rates of the h-version and the p-version is evident. Let Ω = (a, b)
and subdivide Ω into equidistant subintervals of diameter h. On this mesh let
V p

h ⊂ H1 be the finite element space of piecewise polynomials of degree at
most p. Then the following approximation error estimates hold true [106]:
For each u ∈ Hk+1(Ω) there exists a vp

h ∈ V
p
h such that

|u− vp
h|1 ≤ C

hmin(p,k)

pk
|u|k+1,

‖u− vp
h‖0 ≤ C

hmin(p,k)+1

pk+1
|u|k+1.
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We deduce that if k is large—i.e., the solution u is very smooth—then it is
more advantageous to increase the polynomial degree (p→∞) than to refine
the mesh (h→ 0)!
Using standard analytical techniques these approximation rates can be con-
verted into convergence rates and the convergence behaviour is called spectral
convergence as p→∞.
If the solution u is analytic, then there exists r > 0 with

|u− vp
h|21 ≤ C(r) p r−2p,

‖u− vp
h‖20 ≤ C(r) p−1 r−2p.

That is, one witnesses exponential convergence.
Often one deals with solutions u that are at least piecewise analytic. More-

over for singular solutions of the type |x−x0|α, it can be shown that geometric
mesh refinement near the singularity at x = x0 combined with a judicious in-
crease of the polynomial degree leads to good convergence rates; see [106].

Up to now not much is known about the stiffness matrices generated by the
p-version of the FEM. Most of the existing results concentrate on the tensor
product case. It seems to be typical that the condition number behaves like
p4 (in 2D) and p6 (in 3D); see [89] and its references. In the two-dimensional
case it is also proved that static condensation is a good preconditioner.



5

Finite Element Methods for Unsteady
Problems

In this chapter we deal with the discretization of second-order initial-boundary
value problems of parabolic and hyperbolic types. Unlike Chapter 2, the space
discretization is handled by finite element methods. We shall begin with some
basic properties that are used later to derive appropriate weak formulations
of the problems considered. Then, moving on to numerical methods, vari-
ous temporal discretizations are discussed for parabolic problems: one-step
methods (Runge-Kutta), linear multi-step methods (BDF) and the discon-
tinuous Galerkin method. An examination of similar topics for second-order
hyperbolic problems follows. The initial value problems that are generated
by semi-discretization methods are very stiff, which demands a careful choice
of the time integration codes for such problems. Finally, at the end of the
chapter some results on error control are given.

For first-order hyperbolic equations, see the variants of the finite element
method that are presented in Chapters 4 (the discontinuous Galerkin method)
and 6 (the streamline diffusion FEM).

Throughout this chapter differential operators such as ∇ and Δ involve
only spatial derivatives.

5.1 Parabolic Problems

5.1.1 On the Weak Formulation

As a model problem we consider the initial-boundary value problem

∂u
∂t −�u = f in Ω × (0, T ),

u(·, 0) = u0 on Ω,
u = 0 on ∂Ω × (0, T ),

(1.1)

where Ω is a bounded domain in Rn for some n ≥ 1, with piecewise smooth
boundary ∂Ω, and T is a positive constant. Multiplication of the differential
equation by an arbitrary v ∈ C∞

0 (Ω) then integration by parts yields
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d

dt

∫
Ω

u(x, t)v(x) dx+
∫
Ω

∇u · ∇v dx =
∫
Ω

fv dx. (1.2)

Set V = H1
0 (Ω) and H = L2(Ω). For each fixed t the mapping x �→ u(x, t)

is considered as an element of the space V , and is denoted by u(t) ∈ V . Then
for variable t the mapping t �→ u(t) ∈ V is defined. Now (1.2) can be written
in the following form:
Find u(t) ∈ V that satisfies u(0) = u0 and

d

dt
(u(t), v) + a(u(t), v) = (f(t), v) for all v ∈ V. (1.3)

Here (·, ·) is the L2(Ω) inner product and a(u(t), v) := (∇u(t),∇v).
To give a precise statement of an existence theorem for problems of type

(1.3), some analysis on spaces of vector-valued functions (like our u(t) ∈ V )
is required. Here we present some results from the literature and for further
reading refer to, e.g., [Zei90].

Let us consider a simple but important example. Let X be an arbitrary
Banach space with norm ‖ · ‖X . Then L2(0, T ;X) denotes the space of all
functions u : (0, T )→ X for which the norm

‖u‖L2(0,T ;X) :=

⎛⎝ T∫
0

‖u(t)‖2Xdt

⎞⎠1/2

is finite. Equipped with the norm ‖·‖L2(0,T ;X), the space L2(0, T ;X) is in fact
a Banach space. Set Q = Ω × (0, T ). If f ∈ L2(Q), then f ∈ L2(0, T ; L2(Ω)).
Indeed, Fubini’s theorem applied to such f implies that

‖f‖2L2(Q) =

T∫
0

⎛⎝∫
Ω

f2(x, t) dx

⎞⎠ dt.
Hence, for each t ∈ [0, 1], the function x �→ f(x, t) is an element of L2(Ω).
Equivalently, f(·, t) ∈ L2(Ω). It is in this sense that we understand the con-
nection between the right-hand side of the original problem (1.1) and the
right-hand side of its weak formulation (1.3).

If X is reflexive and separable then L2(0, T ;X∗) is the dual space of
L2(0, T ;X), where X∗ denotes the dual space of X.

An evolution triple (or Gelfand triple) is a pair of imbeddings

V ⊂ H ⊂ V ∗

such that

• V is a separable and reflexive Banach space;
• H is a separable Hilbert space;
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• V is dense in H and continuously embedded in H, i.e.,

‖v‖H ≤ constant ‖v‖V for all v ∈ V .

In the context of unsteady problems, the typical example of such a triple is

V = H1
0 (Ω), H = L2(Ω), V ∗ = H−1(Ω).

Assuming in the sequel that (V,H, V ∗) is a Gelfand triple, a mapping u ∈
L2(0, T ;V ) has a generalized derivative w ∈ L2(0, T ;V ∗) if∫ T

0

ϕ′(t)u(t)dt = −
∫ T

0

ϕ(t)w(t)dt for all ϕ ∈ C∞
0 (0, T ) .

These are Bochner integrals for function-valued mappings; see [Zei90].
Armed with this definition of generalized derivatives, we define (similarly

to the standard Sobolev spaces of functions) the Sobolev space W 1
2 (0, T ;V,H)

of function-valued mappings to be the space of u ∈ L2(0, T ;V ) that possess
generalized derivatives u′ ∈ L2(0, T ;V ∗). The norm on this space is

‖u‖W 1
2

:= ‖u‖L2(0,T ;V ) + ‖u′‖L2(0,T ;V ∗).

An important property is that the mapping u : [0, T ] → H is continuous
(with possible exceptions only on sets of measure zero). Consequently the
initial condition u(0) ∈ H that appears in parabolic problems is well defined.

Furthermore, the following integration by parts formula holds:

(u(t), v(t))− (u(s), v(s)) =
∫ t

s

[〈u′(τ), v(τ)〉+ 〈v′(τ), u(τ)〉]dτ,

where 〈·, ·〉 : V ∗ × V → R denotes the duality pairing.
Now we are able to state more precisely the generalized or weak formula-

tion of a linear parabolic initial-boundary value problem. Let V be a Sobolev
space, with H1

0 (Ω) ⊂ V ⊂ H1(Ω), that encompasses the boundary conditions
of the given problem. Set H = L2(Ω). Assume that we are given a bounded
V -elliptic bilinear form a(·, ·) : V × V → R and f ∈ L2(0, T ;V ∗). The weak
formulation of the related parabolic problem is:
Find u ∈W 1

2 (0, T ;V,H), with u(0) = u0 ∈ H, such that

d

dt
(u(t), v) + a(u(t), v) = 〈f(t), v〉 for all v ∈ V . (1.4)

This problem has a unique solution; see, e.g., [Zei90].
In particular for example (1.1) we have:

Given any f ∈ L2(Q) and u0 ∈ L2(Ω), there exists a unique solution u ∈
L2(0, T ;H1

0 (Ω)) with u′ ∈ L2(0, T ;H−1(Ω)).
Choosing v = u(t) in (1.4), we obtain
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1
2
d

dt
‖u(t)‖2 + a(u(t), u(t)) = (f(t), u(t)),

where ‖ · ‖ = ‖ · ‖L2(Ω). Hence the V -ellipticity (with coercivity constant α in
the H1-norm) of the bilinear form a(·, ·) and the Cauchy-Schwarz inequality
yield

d

dt
‖u(t)‖+ α‖u(t)‖ ≤ ‖f(t)‖ .

Integrating in time leads to the a priori estimate

‖u(t)‖ ≤ ‖u0‖e−αt +
∫ t

0

e−α(t−s)‖f(s)‖ds for 0 ≤ t ≤ T. (1.5)

As we already saw in the case of elliptic boundary value problems, an
optimal rate of convergence of the solution obtained from a discretization
method can be achieved only under the hypothesis of higher-order regularity of
the solution u. Parabolic initial-boundary value problems have the smoothing
property that the solution becomes more regular with increasing t.

Example 5.1. Consider the initial-boundary value problem

ut − uxx = 0 , u(0, t) = u(π, t) = 0,

u(x, 0) = u0(x).

The separation of variables technique yields the following representation of
the solution:

u(x, t) =
∞∑

j=1

uj e
−j2t sin(jx) with uj =

√
2
π

∫ π

0

u0(x) sin(jx)dx .

By Parseval’s identity the behaviour of ‖ut‖2 (higher-order derivatives can be
studied in a similar manner) is directly related to the convergence behaviour
of the series ∞∑

j=1

u2
j j

4 e−j2t.

For t ≥ σ, where σ is any fixed positive constant, the terms in the series
are damped strongly by the exponential function. This implies the uniform
boundedness of ‖ut‖ (and also higher-order temporal derivatives) as a function
of t ∈ [σ, T ]. But in the neighbourhood of t = 0 no such uniform boundedness
property can be expected.
For example, if u0(x) = π − x then uj = c/j. In this case we have

‖ut‖ ∼ c t−
3
4 , since

∞∑
j=1

u2
j j

4e−j2t = c2

( ∞∑
j=1

1
j

(
jt

1
2

)3

e−j2t

)
· t− 3

2 .

Only if u0(·) is sufficiently smooth with u0(0) = u0(π) = 0 will the Fourier
coefficients uj decrease more rapidly, and in such cases the solution is better
behaved near t = 0. �
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As a sample regularity result we state [Tho97, Chapter 3, Lemma 2]. Con-
sider the initial-boundary value problem

∂u
∂t −�u = 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),
u = u0 for t = 0 .

(1.6)

Lemma 5.2. If u0 ∈ L2(Ω), then for t ≥ δ > 0 and any natural k the Hk(Ω)
norm of u(t) is bounded; more precisely,

‖u(t)‖Hk(Ω) ≤ C t−
1
2 k ‖u0‖ for t > 0 . (1.7)

Further results on the regularity of solutions are given in [Tho97].

5.1.2 Semi-Discretization by Finite Elements

The discretization of parabolic initial-boundary value problems by the method
of finite elements could be done directly for both the spatial and temporal vari-
ables, just like the finite difference approach discussed in Chapter 2. Neverthe-
less there are certain advantages if, to begin with, only the spatial variables or
only time is discretized. That is, we prefer to use semi-discretization and this
technique will be analysed below. In the present section we first discretize the
spatial variables; this type of semi-discretization is called the (vertical) method
of lines (MOL). The alternative approach of first discretizing the temporal
variable—Rothe’s method—will be discussed later.

We consider the initial-boundary value problem

∂u
∂t + Lu = f in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),
u = u0(x) for t = 0 and x ∈ Ω,

(1.8)

where L is some uniformly elliptic differential operator in the spatial variables.
Here Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω. Other types
of boundary conditions can be treated similarly.

When the spatial variables in problem (1.8) are discretized by any dis-
cretization method (finite differences, finite volumes, finite elements, . . . ), this
semi-discretization yields a system of ordinary differential equations.

Example 5.3. Let us consider the initial-boundary value problem

ut − uxx = f(x, t) in (0, 1)× (0, T ),
u|x=0 = u|x=1 = 0,
u|t=0 = u0(x).

We discretize in x on an equidistant grid {xi : i = 0, . . . , N} of diameter h by
applying finite differences as described in Chapter 2. For each i let ui(t) denote
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an approximation of u(xi, t) and set fi(t) = f(xi, t). Then semi-discretization
yields the ODE system

dui

dt
=
ui−1 − 2ui + ui+1

h2
+ fi(t), i = 1, . . . , N − 1, u0 = uN = 0,

with the initial condition ui(0) = u0(xi) for all i. �

�

�

x

xN = 10 = x0 x1 ...

t
T

0

Figure 5.1 Vertical method of lines

Next consider a semi-discretization where a finite element method is used
to discretize the spatial variables. To do this we use a weak formulation of
(1.8). As in subsection 5.1.1, choose V = H1

0 (Ω), H = L2(Ω) and u0 ∈ H.
Then the weak formulation of the problem is: find u ∈ W 1

2 (0, T ;V,H) with
u(0) = u0 such that

d

dt
(u(t), v) + a(u(t), v) = 〈f(t), v〉 for all v ∈ V. (1.9)

Here f ∈ L2(0, T ;V ∗) and a(·, ·) is a continuous V -elliptic bilinear form on V ×
V . Let Vh ⊂ V be a conforming finite element space. (Semi-discretizations by
non-conforming methods are not discussed here.) The semi-discrete analogue
of (1.9) is:
Find uh(t) ∈ Vh with

d

dt
(uh(t), vh) + a(uh(t), vh) = 〈f(t), vh〉 for all vh ∈ Vh (1.10)

and uh(0) = u0
h ∈ Vh. Here u0

h ∈ Vh is some approximation of the initial
condition u0 in Vh, e.g., an interpolant to u0 from Vh provided this is well
defined. An alternative choice of u0

h is the L2 projection into Vh defined by
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(u0
h, vh) = (u0, vh) for all vh ∈ Vh.

Let {ϕ1, · · · , ϕM} be a basis for Vh. Then the numerical solution is

uh(x, t) =
M∑
i=1

ui(t)ϕi(x)

for some functions {ui(t)}. When this is substituted into (1.10) one obtains
the following system of ordinary differential equations:

M∑
i=1

u′i(t)(ϕi, ϕj) +
M∑
i=1

ui(t)a(ϕi, ϕj) = 〈f(t), ϕj〉, j = 1, . . . ,M.

For notational convenience we introduce the matrices and vectors

D = (dij), dij = (ϕj , ϕi),

A = (aij), aij = a(ϕj , ϕi),

f̂(t) = (fj), fj = 〈f, ϕj〉, û(t) = (uj).

Then the above system of ordinary differential equations can be expressed as

D(û(t))′ +Aû(t) = f̂(t). (1.11)

The initial condition for û(0) must also be taken into account. If its L2 pro-
jection into Vh is used, then in the finite element method this initial condition
becomes

Dû(0) = u∗0 with u∗0 = (u0,j), u0,j = (u0, ϕj).

Example 5.4. Consider again the initial-boundary value problem of Example
5.3. For the spatial discretization, suppose that we use piecewise linear finite
elements on an equidistant mesh of diameter h with the usual hat function
basis. Then the matrices D and A are

D =
h

6

⎡⎢⎢⎢⎢⎢⎢⎣

4 1 · · · 0
1 4 · · ·

...
... · · ·
· · · 4

0 · · · 1 4

⎤⎥⎥⎥⎥⎥⎥⎦ , A =
1
h

⎡⎢⎢⎢⎢⎣
2 −1 · · · 0

−1 2 · · ·
...

... · · · 2
0 · · · −1 2

⎤⎥⎥⎥⎥⎦ .

After this is normalized by dividing by h, the finite element discretization
of the term uxx is identical with its finite difference discretization. But the
matrix D is no longer the unit matrix, unlike the semi-discretization by finite
differences. In general semi-discretization by finite elements produces a linear
system (1.11) where D is not diagonal. If instead for semi-discretization one
uses the finite volume method, then D is a diagonal matrix. �
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Remark 5.5. When more than one spatial variable is present, the advantages
of finite element semi-discretizations over other methods negate the failing
that D is not in general a diagonal matrix. The matrix D is diagonal only if
the basis for the finite element space is orthogonal with respect to the L2(Ω)
scalar product. This is the case, e.g., for the non-conforming Crouzeix-Raviart
element. Wavelet-based methods that have been intensively studied recently
also have this property (see [Urb02]). For piecewise linear finite elements, mass
lumping provides a means of diagonalizing the mass matrix D; this technique
will be discussed later. �

We now derive an error estimate for our finite element semi-discretization.
Assume that the chosen finite element space Vh possesses the following ap-
proximation property for some r > 1:

‖v −Πhv‖+ h‖∇(v −Πhv)‖ ≤ Chs‖v‖s, 1 ≤ s ≤ r, v ∈ Hs(Ω), (1.12)

where Πh : V → Vh is an interpolation operator, h is the mesh diameter, and
‖ · ‖ = ‖ · ‖L2(Ω). In the case of conforming linear finite elements this estimate
is valid with r = 2.

Let Rh : u → Vh denote the Ritz projection operator, i.e., Rhu ∈ Vh is
defined by

a(Rhu, vh) = a(u, vh) for all vh ∈ Vh. (1.13)

A common device in error estimates is to split the error u − uh into two
components as

u− uh = (u−Rhu) + (Rhu− uh)

then to estimate each part separately.

Lemma 5.6. For the Ritz projection we have

‖∇(v −Rhv)‖ ≤ Chs−1‖v‖s for 1 ≤ s ≤ r, v ∈ Hs(Ω).

If the solution w of the variational equation

a(w, v) = (f, v) for all v ∈ V

is in H2(Ω) for all f ∈ L2(Ω), then

‖v −Rhv‖ ≤ Chs‖v‖s for 1 ≤ s ≤ r, v ∈ Hs(Ω).

Proof: The first inequality follows immediately from

a(v −Rhv, v −Rhv) = a(v −Rhv, v − vh) for all vh ∈ Vh,

on invoking coercivity, continuity and the usual H1(Ω) interpolation error
estimates (see Chapter 4).

The second part is simply the standard L2 error estimate for elliptic
problems.
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Set ρ = Rhu− uh. Then

(ρt, vh) + a(ρ, vh) = ((Rhu)t, vh) + a(Rhu, vh)− ((uh)t, vh)− a(uh, vh)

= ((Rhu)t, vh) + a(u, vh)− 〈f(t), vh〉

by (1.10) and (1.13). Hence

(ρt, vh) + a(ρ, vh) = ((Rhu− u)t, vh) for all vh ∈ Vh. (1.14)

But ρ ∈ Vh, so we can take vh = ρ here. By virtue of a(ρ, ρ) ≥ α‖ρ‖2 and the
Cauchy-Schwarz inequality, this yields

1
2
d

dt
‖ρ‖2 + α‖ρ‖2 ≤ ‖(u−Rhu)t‖ · ‖ρ‖

whence
d

dt
‖ρ‖+ α‖ρ‖ ≤ ‖(u−Rhu)t‖.

Integration in time now leads to

‖ρ(t)‖ ≤ e−αt‖ρ(0)‖+
∫ t

0

e−α(t−s)‖(u−Rhu)t‖ds.

To clarify this we invoke

‖ρ(0)‖ ≤ ‖u0 − u0
h‖+ Chr‖u0‖r

and, by Lemma 5.6, for each t one has

‖u(t)−Rhu(t)‖ ≤ Chr‖u(t)‖r .

Then we get

‖ρ(t)‖ ≤ e−αt‖u0 − u0
h‖+ Chr

{
e−αt‖u0‖r +

∫ t

0

e−α(t−s)‖ut(s)‖r ds
}
.

Finally, the triangle inequality and Lemma 5.6 yield the following theorem.

Theorem 5.7. If the solution u is sufficiently regular, then the L2(Ω) error
for the semi-discrete solution obtained using finite elements that satisfy (1.12)
can be estimated for 0 ≤ t ≤ T by

‖u(t)− uh(t)‖ ≤ Ce−αt hr‖u0‖r

+Chr

{
‖u(t)‖r +

∫ t

0

e−α(t−s)‖ut(s)‖r ds
}
.

(1.15)
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This result produces the expected order of convergence (e.g., O(h2) in the case
of conforming linear finite elements) under suitable regularity hypotheses and
also shows that the error in the initial approximation (u0 may not be smooth)
will be exponentially damped in time.

Naturally error estimates in the H1(Ω) norm and (under appropriate as-
sumptions) in the L∞(Ω) norm can also be proved, as we shall now demon-
strate.

Let us consider the special case a(v1, v2) =
∫
Ω

∇v1∇v2 dΩ. Then taking

vh = ρt in (1.14) yields

‖ρt‖2 +
1
2
d

dt
‖∇ρ‖2 ≤ 1

2
‖(Rhu− u)t‖2 +

1
2
‖ρt‖2,

and consequently
d

dt
‖∇ρ‖2 ≤ ‖(Rhu− u)t‖2. (1.16)

Integration of this estimate gives immediately a H1(Ω) error bound. Choose
uh(0) = Rhu0; then ∇ρ(0) = 0, and for piecewise linear finite elements it
follows that

‖∇ρ‖ ≤ Ch2

(∫ t

0

‖ut(s)‖22 ds
)1/2

. (1.17)

This is a superconvergence result. It will now be used to derive an L∞(Ω)
error estimate via the discrete Sobolev inequality [79]. In the case Ω ⊂ R2 we
obtain

‖vh‖∞ := ‖vh‖L∞(Ω) ≤ C| lnh|1/2‖∇vh‖ for all vh ∈ Vh. (1.18)

Since ρ = Rhu− uh ∈ Vh, (1.17) and (1.18) yield

‖ρ‖∞ ≤ Ch2| lnh|1/2

(∫ t

0

‖ut(s)‖22 ds
)1/2

.

As shown in Chapter 4, the Ritz projection satisfies

‖u−Rhu‖∞ ≤ Ch2| lnh| ‖u‖W 2∞ .

Now a triangle inequality gives

‖u− uh‖∞ ≤ Ch2| lnh| ‖u‖W 2∞ + Ch2| lnh|1/2

(∫ t

0

‖ut(s)‖22 ds
)1/2

. (1.19)

Other approaches to L∞(Ω) error estimates can be found in [Ike83, Dob78].

Remark 5.8. The above error estimates do not explain satisfactorily how any
reduced regularity of the exact solution (in particular near the initial time
t = 0) can affect the convergence of the method. In fact a lack of smoothness
near t = 0 may lead to difficulties there, but a more precise analysis reveals
that this does not affect the discretization error for t ≥ δ > 0; see [Tho97].
�
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To finish this section we deal with the technique of mass lumping, which
was briefly mentioned in Remark 5.5. We start from the semi-discrete problem,
written as a system of ordinary differential equations in the form

D(û(t))′ +Aû(t) = f̂(t),

where the matrix D is not a diagonal matrix (see Example 5.4). In the case of
conforming linear finite elements mass lumping is a standard way of diagonal-
izing D, but for other finite elements almost no analytical results are known
when the original mass matrix is replaced by a diagonal one.

In mass lumping, the matrix D is replaced by a diagonal matrix D̄ = (d̄ij)
where each non-zero entry d̄ii is obtained by summing the elements of the ith
row of D, viz.,

d̄ii =
∑

k

dik . (1.20)

We analyse this theoretically for the case n = 2 where each finite element is a
triangle. Now D = (dij) with dij = (ϕj , ϕi) for all i and j, where the {ϕi} are
the usual nodal basis for the finite element space. We shall show first that the
replacement of D by D̄ is equivalent to the approximate evaluation of each
integral (ϕj , ϕi) by applying on each triangle K of the triangulation Th the
quadrature formula ∫

K

fdx ≈ 1
3

(measK)
3∑

k=1

f(PKk
).

where the points PKk
are the vertices of K. Define

(v, w)h =
∑

K∈Th

1
3

(measK)
3∑

k=1

(vw)(PKk
). (1.21)

Clearly (ϕj , ϕi)h = 0 for i �= j since the product ϕjϕi then vanishes at each
vertex. On the other hand, suppose that ϕi = 1 at vertex Pi; then

(ϕi, ϕi)h =
1
3
meas Di,

where Di is the union of all triangles that contain Pi as a vertex. Meanwhile,∫
K

ϕjϕi =
1
12
measK if j �= i and

∫
K

ϕ2
i =

1
6
measK

when ϕj and ϕi do not vanish on triangle K. Hence (ϕi, ϕi)h =
∑

j(ϕj , ϕi).
That is, the application of the quadrature formula to the entries (ϕj , ϕi) of D
is equivalent to the diagonalization of D by mass lumping.

Thus mass lumping is equivalent to a modification of (1.10) to

d

dt
(uh(t), vh)h + a(uh(t), vh) = 〈f(t), vh〉 forall vh ∈ Vh . (1.22)

To derive an error estimate for this modification, the next lemma is useful.



328 5 Finite Element Methods for Unsteady Problems

Lemma 5.9. The norms defined by v �→ (v, v)
1
2 and v �→ (v, v)

1
2
h are equiva-

lent on the discrete space Vh. Furthermore,

|(v, w)h − (v, w)| ≤ Ch2‖∇v‖ · ‖∇w‖ for all v, w ∈ Vh . (1.23)

Proof: First we show the equivalence of the two norms on Vh. Let vh ∈ Vh

be arbitrary. Let K be an arbitrary mesh triangle. On this triangle one can
decompose vh as

vh = v1,Kϕ1,K + v2,Kϕ2,K + v3,Kϕ3,K ,

where the basis function ϕi,K is associated with vertex i of K. Then a calcu-
lation gives (to simplify the notation we omit the index K)

‖vh‖2K =
1
6

(measK)(v2
1 + v2

2 + v2
3 + v1v2 + v2v3 + v3v1),

‖vh‖2h,K =
1
3

(measK)(v2
1 + v2

2 + v2
3),

where the subscript K on the left-hand sides means that the norms are com-
puted only over K. By summing over K one can explicitly evaluate the norms
‖ · ‖ and ‖ · ‖h in the space Vh. The norm equivalence follows immediately; it
is even uniform in h, the discretization parameter.

To prove the bound (1.23) we apply the usual techniques for estimates of
quadrature errors. Our quadrature rule is exact when restricted to a triangle
K and applied to linear polynomials on K, so the Bramble-Hilbert lemma
applied to f ∈ H2(K) yields the bound∣∣∣∣∣∣13(meas K)

3∑
j=1

f(PKj
)−
∫

K

fdx

∣∣∣∣∣∣ ≤ Ch2|f |2 .

Now choose f = vw for arbitrary v, w ∈ Vh, so v|K and w|K are linear. We
get

|(v, w)h,K − (v, w)K | ≤ Ch2|vw|2,K ≤ Ch2‖∇v‖K‖∇w‖K .

Applying the Cauchy-Schwarz inequality for sums, inequality (1.23) follows.

The semi-discrete problem with mass lumping satisfies a convergence result
similar to Theorem 5.7 for the non-lumped method. We prove such a bound
here with α in Theorem 5.7 replaced by zero, and of course r = 2.

Theorem 5.10. If the solution u is sufficiently regular then the L2 error for
the semi-discrete solution with conforming linear finite elements and mass
lumping can be estimated for 0 ≤ t ≤ T by

‖u(t)−uh(t)‖ ≤ Ch2 ‖u0‖2+Ch2

{
‖u(t)‖2 +

(∫ t

0

‖ut(s)‖22 ds
)1/2

}
. (1.24)
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Proof: The argument imitates the proof of Theorem 5.7. Set ρ = Rhu− uh.
Then

(ρt, vh)h + a(ρ, vh) = ((Rhu)t, vh)h + a(Rhu, vh)
− ((uh)t, vh)h − a(uh, vh)

= ((Rhu)t, vh)h + a(u, vh)− (f, vh)
= ((Rhu)t, vh)h − (ut, vh),

i.e., (ρt, vh)h + a(ρ, vh) = ((Rhu)t, vh)h − ((Rhu)t, vh) + ((Rhu− u)t, vh) .

Choose ρ = vh. Then (1.23) and a Cauchy-Schwarz inequality give

1
2
d

dt
‖ρ‖2h + α‖∇ρ‖2 ≤ Ch2‖∇(Rhu)t‖ · ‖∇ρ‖+ ‖(Rhu− u)t‖ · ‖ρ‖ .

Next, we make use of
‖u−Rhu‖ ≤ Ch2‖u‖2

and
‖∇u−∇(Rhu)‖ ≤ Ch‖u‖2.

Invoking ab ≤ εa2/2 + b2/(2ε) and a Poincaré inequality, these inequalities
yield

1
2
d

dt
‖ρ‖2h + α‖∇ρ‖2 ≤ Ch4‖ut‖22 + α‖∇ρ‖2 .

Hence
1
2
d

dt
‖ρ‖2h ≤ Ch4‖ut‖22,

For 0 ≤ t ≤ T this implies

‖ρ(t)‖2h ≤ ‖ρ(0)‖2h + Ch4

∫ t

0

‖ut(s)‖22 ds.

Now

‖ρ(0)‖ = ‖uh(0)−Rhu(0)‖ ≤ ‖uh(0)− u0‖+ ‖u0 −Rhu(0)‖
≤ ‖u0

h − u0‖+ Ch2‖u0‖2 .

Recalling the equivalence of the norms proved in Lemma 5.9, we are done.

It is also possible to derive error estimates in other norms.
An alternative approach to the analysis of errors of solutions obtained by

mass-lumping is via the finite volume method. In one version of the finite
volume method, starting from a given triangulation of the domain we con-
structed a dual grid comprising Donald boxes Ωi that satisfy the equilibrium
condition

meas(Ωi ∩ T ) =
1
3

(meas T ) for all boxes Ωi and triangles T.
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Define a lumping operator ∼ : C(Ω)→ L∞(Ω) by

w �→ ∼
w:=

∑
i

w(Pi)
∼
φi,h ,

where
∼
φi,h is the characteristic function of the Donald box Ωi. Then

(
∼
ϕj ,

∼
ϕk) = 0 for j �= k

and
(
∼
ϕj ,

∼
ϕj) =

1
3
meas Ωj .

It follows that the semi-discrete lumped problem (1.22) is equivalent to

d

dt

( ∼
uh (t),

∼
vh

)
+ a(uh(t), vh) = 〈f(t), vh〉 for all vh ∈ Vh . (1.25)

An error analysis can also be derived in this finite volume framework.

5.1.3 Temporal Discretization by Standard Methods

Semi-discretization of linear parabolic initial-boundary value problems pro-
duces an initial value problem for a system of ordinary differential equations
(o.d.e.s), in the form

duh

dt
= Bhuh + f̂h(t), uh(0) = u0. (1.26)

Similarly, the semi-discretization of non-linear parabolic differential operators
generates systems of the form

duh

dt
= Fh(t, uh), uh(0) = u0. (1.27)

To discretize (1.26) and (1.27), a naive approach is to apply some standard nu-
merical method (e.g., as described in [HNW87]) for solving initial value prob-
lems. But the o.d.e. systems generated by semi-discretization are extremely
stiff systems. This happens because—to take as an example the symmetric
case—the matrix Bh has negative real eigenvalues, some of moderate size
but others of very large absolute value (typically O(1/h2) in the case where
the spatial elliptic component of the parabolic problem is second-order). Stiff
o.d.e.s are discussed in detail in [HW91]. To avoid the enforced use of ex-
tremely small time step sizes, one must discretize stiff systems through numer-
ical methods that have particular stability properties. Furthermore, formally
higher-order discretization methods often suffer order reductions if applied to
(1.26) or (1.27).

We begin our study of numerical methods for solving (1.26) or (1.27) by
discussing A-stability and related basic properties of discretizations of initial
value problems
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du

dt
= f(t, u(t)), u(0) = u0 (1.28)

on a mesh {tn} where tn = nτ for n = 0, 1, . . . and some step size τ > 0.
First, consider one-step methods (OSM) for the temporal discretization. These
methods have the form

un+1 = un + τφ(τ, un, un+1). (1.29)

Here un denotes the computed numerical approximation for u(tn) and the
function φ defines the specific method.

A discretization method is numerically contractive if one always has

‖ũn+1 − un+1‖ ≤ κ‖ũn − un‖ (1.30)

for some constant κ ∈ [0, 1] when ũn and un are generated by the same method
from different initial values.

A discretization method is A-stable if it is contractive when applied to all test
problems

u′ = λu where λ ∈ C with Reλ ≤ 0.

If a one-step method is used to discretize u′ = λu then

un+1 = R(τλ)un

for some stability function R(·). Clearly A-stability is equivalent to the con-
dition

|R(z)| ≤ 1 for all z ∈ C with Re z ≤ 0. (1.31)

Example 5.11. Consider

– the explicit Euler method un+1 = un + τf(tn, un),

– the implicit Euler method un+1 = un + τf(tn+1, un+1),

– the midpoint rule un+1 = un + τf
(

tn+tn+1
2 , un+un+1

2

)
.

When applied to the test differential equation u′ = λu, these methods yield
respectively

un+1 = (1 + τλ)un with R(z) = 1 + z,

un+1 = [1/(1− τλ)]un with R(z) = 1/(1− z),

un+1 = [(2 + τλ)/(2− τλ)]un with R(z) = (2 + z)/(2− z).

On considering the complex z-plane it is not difficult to see that the implicit
Euler and midpoint methods are A-stable, but the explicit Euler method is
not. �
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Figure 5.2 Stability regions

The stability region of any method is the set of all z ∈ C for which (1.31)
holds. Stability regions for the three one-step methods considered above are
drawn in Figure 5.2.

For certain applications it is not necessary that the stability region coin-
cides with {z ∈ C : Re z ≤ 0}, the left half of the complex plane. This leads
to other forms of stability. For example, a method is called A0-stable if

|R(z)| ≤ 1 for all real z < 0.

Remark 5.12. Some further stability notions are as follows. A method is

• L-stable if it is A-stable and in addition lim
z→∞

R(z) = 0;
• strongly A0-stable if
|R(z)| < 1 for z < 0 and R(∞) < 1 both hold;

• strongly Aδ-stable for some δ ∈ (0, π/2) if
|R(z)| < 1 on the set { z ∈ C : |arg z − π| ≤ δ } and |R(∞)| < 1 both
hold,

• Lδ-stable if it is Aδ-stable and R(∞) = 0. �
For the discretization of stiff linear systems of differential equation, it is

preferable to use methods whose stability properties lie between A0-stability
and A-stability. Explicit one-step methods do not have this stability behav-
iour.

Within the class of implicit Runge-Kutta methods one finds A-stable meth-
ods of arbitrarily high order. The Gauss methods, Radau I A-method and
Radau II A-method, and the Lobatto III C-methods have such properties.
The s-stage versions of these methods have orders 2s, 2s − 1 and 2s − 2, re-
spectively. For further reading see [HNW87] and [HW91]; here we shall sketch
only some basic ideas of Runge-Kutta methods.

An s-stage Runge-Kutta method is characterized by the Butcher array
c A

b
. This array of parameter data corresponds to the scheme

un+1 = un + τ

s∑
j=1

biki with ki = f
(
tn + ciτ, un + τ

s∑
j=1

aijkj

)
. (1.32)
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In the methods named above, the parameters ci are the roots of polynomials
that are obtained in a certain way from Legendre polynomials. For example,
in the case of the s-stage Gauss method,

P ∗
s (ci) = 0

where P ∗
s (x) := Ps(2x − 1) and Ps is the Legendre polynomial of degree s,

while setting
C = diag (ci),
S = diag (1, 1/2, · · · , 1/s),

V =

⎡⎢⎢⎢⎢⎣
1 c1 · · · cs−1

1

1
·
·
1 cs · · · cs−1

s

⎤⎥⎥⎥⎥⎦ ,
one also has

b = (V T )−1S(1, · · · , 1)T and A = CV SV −1.

The s-stage Gauss method has order 2s, as already mentioned. This method
is described for the values s = 1 and s = 2 by the respective Butcher arrays

1
2

1
2

1
and

1
2 − 1

6

√
3 1

4
1
4 − 1

6

√
3

1
2 + 1

6

√
3 1

4 + 1
6

√
3 1

4

1
2

1
2

.

In the stability analysis of Runge-Kutta methods one can make use of the
fact that the stability function R(·) is now given explicitly by

R(z) = 1 + bT (z−1I −A)−1e, where e = (1, · · · , 1)T .

In the case of non-linear initial value problems, any implicit Runge-Kutta
scheme requires the solution of systems of non-linear discrete equations. To
avoid this imposition, linearly implicit methods have been introduced. The
Rosenbrock methods form an important class of this type; they have the struc-
ture

un+1 = un + τ

s∑
j=1

bik
∗
i ,

k∗i = f
(
tn + αiτ, un + τ

i−1∑
j=1

αijk
∗
j

)
+ τ fu(tn, un)

i∑
j=1

γijk
∗
j + τ γi ft(tn, un),

with
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αi =
i−1∑
j=1

αij , γi =
i∑

j=1

γij .

At each step only a linear systems of equations needs to be solved, but the
partial derivatives fu and ft (in the case of systems, their Jacobians) must
be evaluated. The class of Rosenbrock methods contains Lδ-stable schemes of
order p ≤ s.

Multi-step methods (MSM) are another important class of o.d.e. solvers.
They have the general form

1
τ

k∑
j=0

αjum+j =
k∑

j=0

βjf(tm+j , um+j). (1.33)

Dahlquist has proved (see [HW91]) that no explicit MSM (i.e., with βk = 0)
is A-stable. Furthermore, the maximal order of any A-stable MSM is only 2.

The implicit Euler method

um+1 − um

τ
= f(tm+1, um+1)

is A-stable as we have seen. The second-order BDF-method

3um+2 − 4um+1 + um

2τ
= f(tm+2, um+2).

ia also A-stable. The abbreviation BDF stands for backward differentiation
formula. Higher-order k-step BDF-methods can be written in the form

k∑
l=1

1
l
�lum+k = τ f(tm+k, um+k).

They have order k and for 2 < k ≤ 6 they are Aδ-stable, but not A-stable.
If simple temporal discretization schemes are used, then the total dis-

cretization error can be directly estimated without any splitting into spatial
and temporal discretization errors. This avoids some difficulties in proving
error bounds that are caused by the stiffness of the semi-discrete system. We
sketch this direct estimate for the example of the discretization of the prob-
lem (1.10) by finite elements in space and a simple OSM for the temporal
discretization: the θ scheme.

Let τ again denote the discretization step size in time. Let Uk ∈ Vh be the
approximation of u(·) at time level tk = k · τ . The approximation Uk+1 ∈ Vh

at time tk+1 is defined by(
Uk+1 − Uk

τ
, vh

)
+ a(θUk+1 + (1− θ)Uk, vh) = 〈f̂k, vh〉 ∀ vh ∈ Vh, (1.34)

U0 = u0
h,
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where f̂k := θfk+1+(1−θ)fk. The parameter θ that characterizes the method
satisfies 0 ≤ θ ≤ 1. If θ = 0 we get the explicit Euler method, while θ = 1
gives the implicit Euler method.

For each k, problem (1.34) is a discrete elliptic boundary value problem
that by the Lax-Milgram lemma has a unique solution Uk+1 ∈ Vh. The matrix
of the linear system that must be solved at each time level has the form
D+ τ θ A where D denotes the mass matrix of the FEM and A is the stiffness
matrix.

Similarly to the splitting

u− uh = (u−Rhu) + (Rhu− uh)

that was used in the analysis of semi-discretization by finite elements, we write

u(tk)− Uk = (u(tk)−Rhu(tk)) + (Rhu(tk)− Uk)

and define ρk := Rhu(tk)− Uk. For the projection error one has

‖u(tk)−Rhu(tk)‖ ≤ Chr‖u(tk)‖r ≤ Chτ

[
‖u0‖r +

∫ tk

0

‖ut(s)‖r ds
]
. (1.35)

Next, an appropriate equation for ρk will be derived. By the definition of
the continuous and discrete problems, and by exploiting properties of the Ritz
projection, after some elementary transformations we obtain(

ρk+1 − ρk

τ
, vh

)
+ a(θρk+1 + (1− θ)ρk, vh) = (wk, vh), (1.36)

where

wk :=
Rhu(tk+1)−Rhu(tk)

τ
− [θ ut(tk+1) + (1− θ)ut(tk)] .

Rewriting this in a more convenient form for analysis,

wk =
(
Rhu(tk+1)−Rhu(tk)

τ
− u(tk+1)− u(tk)

τ

)
+
(
u(tk+1)− u(tk)

τ
− [θ ut(tk+1) + (1− θ)ut(tk)]

)
.

(1.37)

To bound the second term here use a Taylor expansion, while the first term
can be treated by reformulating it as

1
τ

∫ tk+1

tk

[(Rh − I)u(s)]′ ds

since the Ritz projection and temporal derivative commute.
To estimate ρk+1 in (1.36), choose vh = θρk+1 + (1− θ)ρk then bound the

term a(·, ·) from below by zero. Assume that θ ≥ 1/2. Then
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(ρk+1 − ρk, θρk+1 + (1− θ)ρk) = θ‖ρk+1‖2 + (1− 2θ)(ρk+1, ρk)
− (1− θ)‖ρk‖2

≥ θ‖ρk+1‖2 + (1− 2θ)‖ρk+1‖ ‖ρk‖
− (1− θ)‖ρk‖2

= (‖ρk+1‖ − ‖ρk‖)(θ‖ρk+1‖+ (1− θ)‖ρk‖).

A Cauchy-Schwarz inequality now yields

‖ρk+1‖ − ‖ρk‖ ≤ τ‖wk‖,

i.e.,
‖ρk+1‖ ≤ ‖ρk‖+ τ‖wk‖ for each k.

This implies that

‖ρk+1‖ ≤ ‖ρ0‖+ τ

k∑
l=1

‖wl‖. (1.38)

From these calculations we infer

Theorem 5.13. Let the exact solution u be sufficiently regular. Consider the
complete discretization by finite elements in space and the θ scheme with θ ≥
1/2 in time, where the finite elements satisfy (1.12). Then the L2(Ω) error is
bounded for k = 1, 2, . . . by

‖u(tk)− Uk‖ ≤ ‖u0
h − u0‖+ Chr

(
‖u0‖r +

∫ tk

0

‖ut(s)‖r ds
)

+ τ

∫ tk

0

‖utt(s)‖ ds.
(1.39)

In the case of piecewise linear finite elements, r = 2. If θ = 1
2 (the Crank-

Nicolson method) then τ can be replaced by τ2 in Theorem 5.13 provided
that the exact solution has sufficient regularity.

Remark 5.14. The estimate (1.38) reflects the L2-stability of the method.
Analyses of finite difference methods also show that the restriction θ ≥ 1/2 is
a natural.

In [QV94] stability and convergence results are given for the case 0 < θ <
1/2, under the step size restriction τ ≤ c h2.

For θ > 1/2, but not θ = 1/2, a stronger form of stability holds. Here the
damping influence of the a(·, ·) term has to be used to reduce the influence of
the initial condition; cf. Theorem 5.7.

An analysis of the combination of the implicit Euler method with linear
finite elements in [Ran04] includes the fairly general case where variable time
steps and changes of the spatial grid from each time step to the next are
permitted. �
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What about higher-order methods for the temporal discretization?
In [Tho97, Chapters 7,8,9] one finds sufficient conditions for the property that
a one-step temporal discretization method of order p lead to a bound

‖u(tk)− Uk‖ ≤ C(hr + τp)

for the total error. The stability functions for stiff problems must satisfy some
typical additional conditions; in [Tho97, Chapter 10] this question is addressed
for BDF methods. These conditions are restrictive; in general, order reductions
in higher-order methods are to be expected—see [95].

The construction of schemes based on linear finite elements for which dis-
crete maximum principles are valid is examined in detail in [Ike83]. For an
elliptic differential operator −Δ (negative Laplace operator), if the triangu-
lation is of weakly acute type then the stiffness matrix A generated is an
M -matrix. This may however not be the case for the matrix τσA + D that
appears in the discrete parabolic problem. In each triangle the perpendicular
bisectors of edges meet at a point; if k̂ denotes the minimal length of such
bisectors in the triangulation, then for problems of the form

∂u

∂t
− ε� u = f,

an M -matrix analysis shows that one has L∞-stability if

6ε(1− θ)τ ≤ k̂2.

For the θ method, only the fully implicit case θ = 1 satisfies this condition
automatically. If mass lumping is applied then the stability condition changes
slightly to

3ε(1− θ)τ ≤ k̂2.

Further variations including different versions of the discrete maximum prin-
ciple and the addition of convective terms (i.e., problems of the form ∂u/∂t−
ε� u+ b∇u = f) are considered in the analysis of [Ike83].

5.1.4 Temporal Discretization with Discontinuous Galerkin
Methods

One-step and multi-step methods are not the only class of methods for the
temporal discretization of the problem

d

dt
(uh(t), vh) + a(uh(t), vh) = 〈f(t), vh〉 for all vh ∈ Vh. (1.40)

Alternatively, one could apply a Galerkin method in time to this semi-discrete
problem.

Let
0 = t0 < t1 < · · · < tM = T
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be some grid on the time interval [0, T ] with the associated time steps τn :=
tn−tn−1 for n = 1, . . . ,M . Let Wh,t denote the space of piecewise polynomials
of degree q in t that are defined on this grid with values in Vh. Then (1.40)
could be discretized by finding U ∈Wh,t such that∫ tm

tm−1

[(U ′, v∗) + a(U, v∗)] dt =
∫ tm

tm−1

〈f, v∗〉 dt (1.41)

for some set of suitable test functions v∗ ∈Wh,t and m = 1, . . . ,M .
Now q+1 independent conditions are needed to determine the polynomial

U of degree q on [tm−1, tm]. For each m and suitable functions w set

wm
+ = lim

s→0+
w(tm + s), wm

− = lim
s→0−

w(tm + s),

If one imposes continuity between neighbouring time intervals, i.e., one re-
quires that Um

+ = Um
− for m = 1, . . . ,M − 1, then one could in theory

choose v∗ to be an arbitrary polynomial of degree q − 1. But such contin-
uous Galerkin methods—which we abbreviate as cG(q)—are unsuitable be-
cause they treat space and time similarly, and continuous space-time elements
should be avoided as illustrated by the next remark.

Remark 5.15. For q = 1 one obtains(
Um − Um−1

τm
, v

)
+

1
2
a(Um + Um−1, v) =

1
τm

∫ tm

tm−1

〈f, v〉dt

for all v ∈ Vh.

(1.42)

Thus the cG(1) method is closely related to the Crank-Nicolson scheme, i.e.,
the θ scheme with θ = 1/2. Its solutions are known to often exhibit unpleasant
oscillatory behaviour as a consequence of the absence of a discrete maximum
principle when the restrictive condition τ = O(h2) is violated. �

In the discontinuous Galerkin method , to couple the computed solution U
between adjacent time intervals, continuity in t is relaxed by imposing it only
weakly. Let

[vm] = vm
+ − vm

−

denote the jump in v at time tm for m = 1, . . . ,M − 1. Set

A(w, v) :=
M∑

m=1

∫ tm

tm−1

((w′, v) + a(w, v))dt+
M∑

m=2

([
wm−1

]
, vm−1

+

)
+ (w0

+, v
0
+),

L(v) :=
∫ T

0

〈f, v〉dt+ (u0, v
0
+).

Then the numerical solution U ∈Wh,t is defined by the variational equation

A(U, v) = L(v) for all v ∈Wh,t. (1.43)
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The restrictions of the functions v ∈Wh,t to the different temporal subin-
tervals are independent so (1.43) can be equivalently expressed as:
On each interval (tm−1, tm), a polynomial U of degree q in t with values in
Vh (i.e., U ∈Wh,t) satisfies∫ tm

tm−1

[(U ′, v) + a(U, v)] dt+
(
Um−1

+ , vm−1
+

)
=
∫ tm

tm−1

〈f, v〉dt+
(
Um−1
− , vm−1

+

)
(1.44)

for all polynomials v ∈Wh,t. Also, U0
− = u0. We denote this method by dG(q).

The existence and uniqueness of a solution of (1.44) will now be demon-
strated. The problem is linear and finite-dimensional. The corresponding ho-
mogeneous problem with f = 0 and Um−1

− = 0 is∫ tm

tm−1

[(U ′, v) + a(U, v)]dt+ (Um−1
+ , vm−1

+ ) = 0 for all v ∈Wh,t.

Choose v = U . Since∫ tm

tm−1

(U ′, U)dt =
1
2
(
‖Um

− ‖2 − ‖Um−1
+ ‖2

)
we obtain

1
2
(
‖Um

− ‖2 + ‖Um−1
+ ‖2

)
+
∫ tm

tm−1

a(U,U)dt = 0.

This implies U = 0. That is, the homogeneous problem has only the trivial
solution. It follows that the inhomogeneous problem (1.44) has exactly one
solution.

We now consider in detail the special cases q = 0 and q = 1 in dG(q). If
q = 0 (piecewise constant polynomials in t) let Um denote the restriction of
U to the subinterval (tm−1, tm). Then (1.44) has the form

τma(Um, v) + (Um, v) =
∫ tm

tm−1

〈f, v〉 dt+ (Um−1, v),

i.e.,(
Um − Um−1

τm
, v

)
+ a(Um, v) =

1
τm

∫ tm

tm−1

〈f, v〉 dt for all v ∈ Vh. (1.45)

A comparison of (1.45) with the θ scheme reveals that the discontinuous
Galerkin method dG(0), i.e., the case of piecewise constant approximation, is
a modified implicit Euler method applied to the semi-discrete problem. An
error estimate similar to Theorem 5.13 can be proved.

Now consider q = 1. For t ∈ (tm−1, tm), write U(t) = Um
0 + (t −

tm−1)Um
1 /τm; then Um

− = Um
0 + Um

1 and Um−1
+ = Um

0 . Substituting this
into (1.44) yields
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tm−1

[
1
τm

(Um
1 , v)

]
+ a

(
Um

0 +
1
τm

(t− tm−1)Um
1 , v

)
dt+

(
Um

0 , v
m−1
+

)
=
∫ tm

tm−1

〈f, v〉dt+
(
Um−1

0 + Um−1
1 , vm−1

+

)
.

This identity holds for all linear polynomials in t with values in Vh, so we
obtain two sets of variational equations—the first by the choice of v as constant
in time and the second by taking v as linear in time, i.e., v(t) := (t−tm−1)v/τm
for an arbitrary v ∈ Vh. The pair of equations is, for arbitrary v ∈ Vh,

(Um
1 , v) + τma(Um

0 , v) + 1
2τma(U

m
1 , v) + (Um

0 , v) =

=
∫ tm

tm−1

〈f, v〉 dt+
(
Um−1

0 + Um−1
1 , v

)
and

1
2
(Um

1 , v) +
1
2
τma(Um

0 , v) +
1
3
τma(Um

1 , v) =
1
τm

∫ tm

tm−1

(τ − tm−1)〈f(τ), v〉 dτ.

Discontinuous Galerkin methods provide a systematic means of generating
high-order temporal discretization schemes through Galerkin techniques. In
[Joh88] the relationship of discontinuous Galerkin methods to certain implicit
Runge-Kutta methods is discussed; see also Exercise 5.22 below.

To end this subsection, we analyse the error in the discontinuous Galerkin
method for the temporal discretization of (1.9), which we recall is the problem

d

dt
(u(t), v) + a(u(t), v) = 〈f(t), v〉 for all v ∈ V.

In each interval (tm−1, tm) one seeks a polynomial U of degree q in t with
values in V such that∫ tm

tm−1

[(U ′, v) + a(U, v)] dt+
(
Um−1

+ , vm−1
+

)
=

=
∫ tm

tm−1

〈f, v〉dt+
(
Um−1
− , vm−1

+

) (1.46)

holds for all polynomials v of degree q in t with values in V ; furthermore U0
− =

u0. Because no spatial discretization is applied here, the dG(0) method—i.e.,
(1.46)—can be considered as a generalization of Rothe’s method, which will
be discussed in Section 5.1.5.

This time we decompose the error as

U − u = ρ+ η with ρ := U − ũ and η := ũ− u,

where ũ is some interpolant of u that will be defined later. Then
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tm−1

[(ρ′, v) + a(ρ, v)] dt+
(
[ρm−1], vm−1

+

)
=

= −
∫ tm

tm−1

[(η′, v) + a(η, v)] dt−
(
[ηm−1], vm−1

+

)
.

If ũ is chosen to be the polynomial of degree q in t specified by

ũ(tm−1) = u(tm−1) and
∫ tm

tm−1

tlũ(t) dt =
∫ tm

tm−1

tlu(t) dt

for l = 0, 1, . . . , q − 1,

then the previous equation simplifies to∫ tm

tm−1

[(ρ′, v) + a(ρ, v)] dt+
(
[ρm−1], vm−1

+

)
= −

∫ tm

tm−1

a(η, v)dt.

Take v = ρ here. Invoking the easily-verified inequality∫ tm

tm−1

d

dt
‖ρ‖2 + 2([ρm−1], ρm−1

+ ) ≥ ‖ρm
−‖2 − ‖ρm−1

+ ‖2,

one gets

‖ρm
−‖2 + 2

∫ tm

tm−1

a(ρ, ρ) dt ≤ ‖ρm−1
+ ‖2 + 2

∫ tm

tm−1

|a(ρ, η)| dt.

This implies

‖ρm
−‖2 ≤ ‖ρm−1

+ ‖2 + c

∫ tm

tm−1

‖η(s)‖21 ds.

Since ρ0 = 0 can be assumed, standard interpolation error bounds now yield

‖Um − u(tm)‖ ≤ C τ q+1

(∫ tm

0

|u(q+1)(s)|21 ds
)1/2

. (1.47)

Error estimates for the case of complete discretization, i.e., discretization in
both time and space, can be found in [Tho97].

Exercise 5.16. Consider the initial-boundary value problem

ut − uxx = sinx in (0, π/2)× (0, 3),
u(x, 0) = 0,
u|x=0 = 0, ux|x=π/2 = 0.

Discretize this problem using piecewise linear finite elements in the x-direction
and the Crank-Nicolson method for the temporal derivative. Find the system
of linear equations that must be solved at each time level. Determine the
discrete solutions for the particular discretization parameters h = π/(2m)
for m = 8, 16, 32 and τ = 0.2, 0.1, 0.05 and compare these with the exact
solution.
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Exercise 5.17. Consider the initial-boundary value problem

ut − α�u = f in Ω × (0, T ),
u(x, 0) = u0(x),

u = 0 on ∂Ω × (0, T )

with some α > 0. Assume that the domain Ω is polygonal. For some weakly
acute triangulation of Ω, let Vh be the space of conforming piecewise linear
finite elements. The discretization is defined by the variational equation(
Uk+1 − Uk

τ
, vh

)
+α(σ∇Uk+1+(1−σ)∇Uk,∇vh) = (σfk+1+(1−σ)fk, vh)

for all vh ∈ Vh, where 0 ≤ σ ≤ 1; this defines the numerical solution Uk+1 ∈ Vh

at tk+1. Prove that the scheme is stable in the L∞ norm if the condition

6a(1− σ)τ ≤ k̂2

holds, where k̂ denotes the minimal length of all perpendicular bisectors of
the sides of edges of triangles in the triangulation.

Exercise 5.18. Assume that 0 < τ << 1. Find upper and lower bounds for
the eigenvalues of the matrix

A =
1
τ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0
−1 2 −1 0 · · · 0

0
. . . . . . . . . 0

0 · · · −1 2 −1 0
0 · · · 0 −1 2 −1
0 · · · 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
of dimension (N − 1)× (N − 1), where τN = 1.

Exercise 5.19. Discuss the order of consistency of all
a) explicit
b) diagonally-implicit
two-stage Runge-Kutta methods for the initial value problem

u′(t) = f(t, u), u(t0) = u0.

Exercise 5.20. Construct a two-stage implicit Runge-Kutta scheme by means
of the collocation principle, using the collocation points tk,i = tk + ciτ for
i = 1, 2 where c1 = 0 and c2 is arbitrary. What value of c2 produces the
maximal order of convergence and what order can be achieved?

Exercise 5.21. Determine whether the following Runge-Kutta methods are
A-stable:
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a) the implicit mid point rule
1/2 1/2

1
b) the two-stage Gauss method

(3−
√

3)/6) 1/4 (3−
√

3)/12
(3 +

√
3)/6 (3 + 2

√
3)/12 1/4

1/2 1/2

Exercise 5.22. Apply the discontinuous Galerkin method with q = 1 to dis-
cretize

u′ = λu.

Find the associated stability function.

5.1.5 Rothe’s Method (Horizontal Method of Lines)

In Rothe’s method one applies a temporal semi-discretization to approximate a
given parabolic initial-boundary value problem by a finite sequence of elliptic
boundary value problems.

Example 5.23. Consider the initial-boundary value problem

∂u

∂t
− ∂2u

∂x2
= sinx in (0, π)× (0, T ),

u(x, 0) = 0, u(0, t) = u(π, t) = 0.

The exact solution is u(x, t) = (1− e−t) sinx. Let us divide the interval [0, T ]
by an equidistant mesh of step size τ = T/M . Let zj(x) denote the computed
approximation of u(x, tj) at each time level tj := jτ, j = 0, . . . ,M . These
approximations will be defined iteratively by

zj(x)− zj−1(x)
τ

− z′′
j (x) = sinx, zj(0) = zj(π) = 0, z0(x) = 0.

In this simple example we can solve for zj(x) explicitly, obtaining

zj(x) =
[
1− 1

(1 + τ)j

]
sinx.

This approximate solution can be extended from its values at the grid points
tj to all t ∈ [0, T ] by setting

uτ (x, t) = zj−1(x) +
t− tj−1

τ
[zj(x)− zj−1(x)] on [tj−1, tj ] for j = 1, . . . ,M.

Since

lim
τ→0

1
(1 + τ)tj/τ

= e−tj it follows that lim
τ→0

uτ (x, t) = u(x, t),

i.e., the approximate solution converges pointwise to the known exact solution
as the step size tends to zero. �
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Figure 5.3 Horizontal Method of Lines

For the general description of Rothe’s method, we consider the following weak
formulation of a parabolic problem:

d

dt
(u(t), v) + a(u(t), v) = 〈f(t), v〉 for all v ∈ V (1.48)

with
u(0) = u0 ∈ H and u ∈W 1

2 (0, T ;V,H).

The time interval [0, T ] will be split into M subintervals [ti−1, ti] with ti = τ i,
where the step size is τ = T/M . See Figure 5.3.

Define piecewise linear functions ϕi(·) by

ϕi(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(t− ti−1)/τ for t ∈ [ti−1, ti],

(ti+1 − t)/τ for t ∈ [ti, ti+1],

0 otherwise.

An approximation of u(x, t) is given by the Rothe function

uτ (x, t) :=
M∑
i=0

zi(x)ϕi(t),

where the approximations zi(x) of u(x, ti) are defined iteratively for i =
1, . . . ,M by (

zi − zi−1

τ
, v

)
+ a(zi, v) = 〈fi, v〉 for all v ∈ V. (1.49)
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Remark 5.24. It’s interesting to compare (1.49) with the temporal discretiza-
tion by the implicit Euler scheme of the semi-discrete problems generated by
the method of finite elements in space, which yields(

Uk+1 − Uk

τ
, vh

)
+ a(Uk+1, vh) = 〈fk+1, vh〉 for all vh ∈ Vh .

Hence Rothe’s method (1.49) can be considered as a continuous analogue of
this other method where the spatial variables have not been discretized. �

If the bilinear form a(·, ·) : V × V → R is V -elliptic then the Lax-Milgram
lemma implies immediately that (1.49) has a unique solution zi+1 ∈ V for all
τ > 0.

In [Rek82] Rothe’s method is used mainly to derive existence theorems
for the original parabolic problem. As well as existence and uniqueness of
the solution of (1.49), a priori estimates for zi+1 and for related functions
are obtained to ensure certain limit behaviour as the time step size tends to
zero. While these results are important in the theory of partial differential
equations, they do not lie in our sphere of interest.

Following Rektorys [Rek82] we now sketch how bounds on the discretiza-
tion error may be obtained. For simplicity let us assume that:
a) V = H1

0 (Ω)

b) a(·, ·) is V -elliptic

c) u0 = 0

d) f ∈ V ∩H2(Ω) is independent of time

e) |a(f, v)| ≤ C‖f‖2‖v‖ .

Fix i ∈ {1, . . . ,M}. A calculation shows that the error in the interval (ti−1, ti)
satisfies

d

dt
(uτ − u, v) + a(uτ − u, v) = τ

(
zi − 2zi−1 + zi−2

τ2
· ti − t

τ
, v

)
.

We shall estimate the L2 norm of the error uτ − u by invoking the a priori
estimate (1.5) of Section 5.1. To do this some information about the magnitude
of (zi − 2zi−1 + zi−2)/τ2 is needed. This information will be derived step by
step. Set

Zi =
zi − zi−1

τ
and si =

Zi − Zi−1

τ
.

We begin with a priori estimates for Zi and si. Now

a(z1, v) +
1
τ

(z1, v) = (f, v) for all v ∈ V,

so on taking v = z1 one gets the bound
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‖z1‖ ≤ τγ with γ = ‖f‖.

Subtracting (1.49) for two consecutive indices yields

a(zj − zj−1, v) +
1
τ

(zj − zj−1, v) =
1
τ

(zj−1 − zj−2, v) for all v ∈ V.

Choose v = zj − zj−1; this gives

‖zj − zj−1‖ ≤ ‖zj−1 − zj−2‖ ,

and by induction we get

‖zj − zj−1‖ ≤ τγ and ‖Zj‖ ≤ γ for j = 1, . . . ,M.

Next we analyse Zj − Zj−1 in a similar manner. From

a(Zj − Zj−1, v) +
1
τ

(Zj − Zj−1, v) =
1
τ

(Zj−1 − Zj−2, v) for all v ∈ V

we obtain

‖Zj − Zj−1‖ ≤ ‖Zj−1 − Zj−2‖ for j = 3, . . . ,M.

The identity

a(Z2 − Z1, v) +
1
τ

(Z2 − Z1, v) =
1
τ

(Z1 − f, v)

leads to
‖Z2 − Z1‖ ≤ ‖Z1 − f‖.

Now induction yields

‖Zj − Zj−1‖ ≤ ‖Z1 − f‖ for j = 2, . . . ,M.

Since
a(Z1 − f, v) +

1
τ

(Z1 − f, v) = −a(f, v),

on taking v = Z1 − v our hypotheses imply that

‖Z1 − f‖ ≤ τ‖f‖2.

Consequently

‖sj‖ =
∥∥∥∥Zj − Zj−1

τ

∥∥∥∥ ≤ ‖f‖2 for j = 2, . . . ,M.

Combining these bounds with (1.5), we arrive at the following theorem.

Theorem 5.25. Under our hypotheses the error of Rothe’s method satisfies

‖(u− uτ )(t)‖ ≤ Cτ for all t.
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The assumptions made here are unnecessarily restrictive; they were im-
posed to simplify the analysis. Similar estimates can be derived under weaker
hypotheses. For a detailed study of this task we refer to [Rek82, Kač85]. In
these monographs error estimates in other norms are also derived.

To obtain a complete discretization the elliptic boundary value problems
generated by (1.49) must be discretized, e.g., by means of some finite ele-
ment method. Convergence results for this situation are derived in [Rek82]
but no estimates for the rates of convergence are given. We have seen in Re-
mark 5.24 that Rothe’s method combined with a finite element discretization
coincides with the application of the implicit Euler scheme to a finite element
semi-discretization. Hence the error estimate of Theorem 5.13 is also valid for
Rothe’s method combined with a spatial finite element discretization.

As was mentioned already, Rothe’s method provides an elegant tool for
the derivation of existence results for time-dependent problems by their re-
duction to a sequence of stationary problems. Furthermore, other techniques
applicable to stationary problems can in this way be carried over to unsteady
problems. Nevertheless it should be noted that elliptic problems of the type

τa(zi, v) + (zi − zi−1, v) = τ(fi, v) for all v ∈ V

require a special analysis and appropriate numerical treatment because of the
small parameter τ multiplying the highest-order term; such problems can be
classified as singularly perturbed (see Chapter 6).

In generalizations of Rothe’s method the usual implicit Euler scheme is
replaced by other implicit schemes for the temporal discretization of (1.48).
Special attention has been paid in the literature to the Rothe-Rosenbrock (see
[Lan01]) and discontinuous Galerkin methods that we have discussed previ-
ously. Lang [Lan01] proved error estimates for Rothe-Rosenbrock methods
and also for the case of a complete discretization by finite elements of the el-
liptic problems generated by Rosenbrock methods. In this context reductions
of order of convergence may occur.

Exercise 5.26. Use Rothe’s method to discretize the initial-boundary value
problem

∂u

∂t
− ∂2u

∂x2
= sinx in (0, π/2)× (0, T )

with
u|t=0 = 0, u|x=0 = 0, ux|x=π/2 = 0.

Compare the computed approximate solution with the exact solution.

5.1.6 Error Control

It is desirable that in the discretization of parabolic initial-boundary value
problems the discretization error should be controlled efficiently, and prefer-
ably in an adaptive way. This would enable the automatic distribution of the
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discrete degrees of freedom for the purpose of minimizing the overall error.
Various strategies for error control are used in the discretization of parabolic
problems, and three of them will be described here. First, a variant of the
residual-based estimator measured in a norm appropriate to the parabolic
problem; second, a technique based on temporal discretization via a general-
ized Rothe’s method; third, a goal-oriented estimator that uses information
from an adjoint problem.

Let us consider the model problem

∂u

∂t
−�u = f in Ω × (0, T ), (1.50)

u = 0 on ∂Ω × (0, T ),
u = u0 for t = 0, x ∈ Ω.

In the notation of Section 5.1.1, its weak formulation is:

Find u ∈ W 1
2 (0, T ;V,H) such that

d

dt
(u(t), v) + (∇u,∇v) = (f, v) for all v ∈ V := H1

0 (Ω)

with u(0) = u0 ∈ H := L2(Ω).
First we modify the a priori estimate (1.5). Assume that f ∈ L2(0, T ;H−1).

We shall derive a relationship between the norm of f in this space and the
solution u. Taking v = u as in the proof of (1.5) leads to

1
2
d

dt
‖u(t)‖20 + |u(t)|21 ≤

1
2
‖f(t)‖2−1 +

1
2
|u(t)|21.

Integration then yields

‖u(t)‖20 +
∫ t

0

|u(s)|21ds ≤ ‖u(0)‖20 +
∫ t

0

‖f(s)‖2−1ds for 0 ≤ t ≤ T,

which implies the a priori bound

|||u||| := ‖u‖L∞(0,T ;L2) + ‖u‖L2(0,T ;H1
0 )

≤
√

2
(
‖u(0)‖20 + ‖f‖L2(0,T ;H−1)

)1/2
. (1.51)

This inequality motivates us to search for a residual estimator for the norm
||| · |||.

Consider the discretization of (1.50) by finite elements in space and by the
implicit Euler scheme in time (the θ scheme with θ ≥ 1/2 could be studied in
a similar manner):(

Un
h − Un−1

h

τn
, vh

)
+ (∇Un

h ,∇vh) = (fn, vh) for all vh ∈ Vh,n, (1.52)

U0
h = πu0,
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where πu0 is the L2(Ω) projection of u0. As this notation indicates, we shall
apply a variable temporal grid; furthermore, the finite element space Vh,n used
at the time level tn may vary with n as the spatial grid may change.

Let Uh,τ be piecewise linear in t with Uh,τ (tn) = Un
h , so Uh,τ is an extension

of the discrete solution to all of Ω̄ × [0, T ]. Now let us define the residual of
Uh,τ in V ∗ by

〈R(Uh,τ ), v〉 := (f, v)− (∂tUh,τ , v)− (∇Uh,τ ,∇v). (1.53)

We shall exploit (1.51) to show that the error up to time tn can be estimated
using ‖u0 − πu0‖0 and the norm of the residual in L2(0, tn;H−1), yielding a
residual estimator that estimates the norm of the error from above. A lower
bound on this norm and details of the following argument can be found in
[119].

Define the piecewise constant function f̃ by f̃ = fn on each interval
(tn−1, tn). Let fh,τ denote the L2(Ω) projection of f̃ on the finite element
space Vh,n.

First we split the residual into spatial and temporal components. This will
enable us to control adaptively but separately the grids in space and time. Set

〈Rτ (Uh,τ ), v〉 = (∇(Un
h − Uh,τ ),∇v) on (tn−1, tn)

and

〈Rh(Uh,τ ), v〉 = (fh,τ , v)−
(
Un

h − Un−1
h

τn
, v

)
− (∇Un

h ,∇v) on (tn−1, tn).

Then
R(Uh,τ ) = f − fh,τ +Rτ (Uh,τ ) +Rh(Uh,τ ). (1.54)

Clearly
‖Rτ (Uh,τ )‖−1 = |Un

h − Uh,τ |1
and it follows that the norm of Rτ (Uh,τ ) in L2(0, tn;H−1(Ω)) is explicitly
given by

‖Rτ (Uh,τ )‖2L2(tn−1,tn;H−1) =
∫ tn

tn−1

( tn − s
τn

)2

|Un
h − Un−1

h |21 ds

=
1
3
τn|Un

h − Un−1
h |21.

(1.55)

The spatial residual satisfies the Galerkin orthogonality relation

〈Rh(Uh,τ ), vh〉 = 0 for all vh ∈ Vh,n.

Consequently bounds for the H−1(Ω) norm of Rh(Uh,τ ) can be obtained
through the techniques of Chapter 4 and Section 7.1. For simplicity we omit
the technicalities caused by the change of triangulation Th,n from each time
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step to the next. Next, we briefly sketch results from [119] and refer for fur-
ther details to this paper. Assume as usual that the triangulation Th,n is
quasi-uniform. We also suppose that the refinement T̃h,n of the grid Th,n

sup
n

sup
K∈T̃h,n

sup
K′∈Th,n,K′⊂K

hK′

hK
<∞. (1.56)

This condition excludes any abrupt change of grid. It can then be shown that

‖Rh(Uh,τ )‖−1 ≤ c ηn
h (1.57)

with
(ηn

h)2 =
∑

K∈T̃h,n

h2
K‖RK‖20,K +

∑
E∈T̃h,n

hE‖RE‖20,E ,

where the residuals RK , RE are defined by

RK := fh,τ −
Un

h − Un−1
h

τn
+�Un

h , RE := [nE · ∇Un
h ]E .

Now from (1.55) and (1.57) we get

Theorem 5.27. Suppose that (1.56) is satisfied. Then in (0, tn) one has

|||u− Uh,τ ||| ≤ c
(

n∑
1

(ηm)2 + ‖f − fh,τ‖L2(0,tn;H−1) + ‖u0 − πu0‖20

)1/2

(1.58)

where
(ηm)2 := τm(ηm

h )2 +
∑

K∈T̃h,m

τm|Um
h − Um−1

h |21,K . (1.59)

Our second error estimator for error control comes from from [18, 19, 20]
and [Lan01]. The generalized Rothe method is its starting point. Assume that
f ∈ L2(Ω × [0, T ]) and u0 ∈ L2(Ω). An abstract formulation of (1.50) is
an ordinary differential equation posed in some Banach space. For the case
considered here, the space L2(Ω) can be taken as this Banach space (see
[Tho97]) and the abstract differential equation has the form:
Find u(t) ∈ L2(Ω) such that

u′ −Au = f, (1.60)
u(0) = u0 .

Rothe’s method can be regarded as a discretization of the abstract ordinary
differential equation (1.60) via the implicit Euler method; it determines the
approximation uj+1 at each time level tj+1 from

uj+1 − uj

τ
−Auj+1 = fj+1. (1.61)
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Discretization methods for initial value problems have fully-developed strate-
gies for error control; see [HNW87]. Here we shall concentrate on one-step
methods. One tool for deriving error estimates (and hence step size control)
is to apply simultaneously at each time step two separate one-step methods
of different orders. Consider the step from tj to tj + τ . Denote by
uk+1 the numerical approximation generated by the method of order k+ 1,

and by
uk the numerical approximation generated by the method of order k

for u(tj + τ). Then
εk := ‖uk+1 − uk‖

is an error estimator. For a given tolerance tol the step size is controlled by

τnew := τold

(
tol

εk

)1/(k+1)

and the order of the method is chosen in such a way that the effort to perform
the temporal integration is minimized. A rigorous analytical justification of
this strategy for the case of the abstract initial value problem (1.50) appears
in [18, 19, 20].

To apply the above strategy to the abstract ordinary differential equation
(1.50), we need to find suitable one-step methods to generalize the standard
Rothe method (1.61). Towards this end we appeal first to the stability function
R(·) of one-step methods. Given a stability function R, define a related one-
step method for the discretization of (1.60) with step size τ by

uj+1 := R(τA)uj +
(
− I +R(τA)

)
A−1f. (1.62)

We assume that R is selected in such a way that the method generated by
(1.62) has appropriate stability properties.

Remark 5.28. It is easy to verify that the choice R(z) = 1/(1 − z) in (1.62)
yields (1.61). Similarly R(z) = 1 + z yields the explicit Euler method

uj+1 − uj

τ
−Auj = fj

and R(z) = (2 + z)/(2− z) produces the Crank-Nicolson method

uj+1 − uj

τ
−Auj + uj+1

2
=
fj + fj+1

2
. �

The one-step method (1.62) has formal order p if

ez −R(z) = czp+1 +O(zp+2) as z → 0.

An appropriate choice of R(·) depends not only on the temporal discretiza-
tion but also on the discretization error in space. If (as is widely preferred) an
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implicit one-step method is used for the temporal integration, then at each
time level an elliptic boundary value problem must be solved. Finite element
methods give a reasonable discretization of these elliptic problems. Many er-
ror estimators for the temporal discretization involve uk and uk+1, but these
quantities cannot be computed exactly; thus in particular the quantity

εk = ‖uk+1 − uk‖

is unreliable and should not be used as an estimate for the expected error.
Bornemann [18, 19, 20] recommends the use of stability functions and asso-

ciated one-step methods that allow a direct evaluation of some error estimator
‖ηk‖ for the temporal discretization; then uk+1 is computed as

uk+1 = uk + ηk.

In [19] it is shown that the iterative definition of a stability function RL
k by

RL
1 (z) =

1
1− z ,

ρL
1 (z) = − z2

2(1− z)2 R
L
1 (z),

RL
i+1(z) = RL

i (z) + ρL
i (z),

ρL
i+1(z) = −γL

i+1

z

1− z ρ
L
i (z)

gives an L0-stable method of order k. The parameters γL
k here are defined by

γL
k :=

Lk+1(1)
Lk(1)

where Lk(·) is the Laguerre polynomial of degree k.
Consider a fixed time level tj where the solution uj has already been

computed. If the approximations uk+1
j+1 and uk

j+1 at the (j+1)th time level are
determined by methods of order k + 1 and order k, respectively, that satisfy
(1.62), then

uk+1
j+1 − uk

j+1 = (RL
k+1 −RL

k )(τA)uj + (RL
k+1 −RL

k )(τA)A−1f.

Hence the above iterative definition of RL
k+1 shows that

ηk = ρL
k (τA)

(
uj +A−1f

)
.

Similarly
ηk+1 = ρL

k+1(τA)
(
uj +A−1f

)
.

But
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ρL
k+1(z) = −γL

k+1

z

1− z ρ
L
k (z)

so
ηk+1 = −γL

k+1

τA

1− τA ηk . (1.63)

This relation is the cornerstone of the error estimate. Namely, starting
from u1 the first error estimate η1 is evaluated. If this is too large then the
estimator η2 is computed from (1.63) then added to u1 to get u2, and so on.
The initial approximation u1 and all the ηk are solutions of elliptic boundary
value problems of the form

w − τAw = g. (1.64)

The basic philosophy of the discretization in [Lan01] is similar to that dis-
cussed above, except that Lang [Lan01] uses embedded Rosenbrock methods
instead of one-step methods.

For our model problem (1.64) is equivalent to:
Find w ∈ V = H1

0 (Ω) with

τ(∇w,∇v) + (w, v) = (g, v) for all v ∈ V, (1.65)

where (·, ·) is the L2(Ω) inner product. Error estimators for the spatial dis-
cretization error must take into account the dependence of the elliptic problem
(1.65) upon the time step parameter τ . The use of a τ -weighted H1 norm ‖·‖τ
defined by

‖v‖2τ := τ |v|21 + ‖v‖20
is important. Error estimators for the spatial discretization should be based
upon this norm.

One integral component of the computer package KARDOS (Konrad-Zuse-
Zentrum, Berlin) is a hierarchical error estimator. Variants of hierarchical esti-
mators and their relationship to error estimators of different types are studied
in detail in [Ver96]. The robustness of such error estimators for problems of
the type (1.65) seems however to be not yet entirely clear. In [2] and [118] two
other robust estimators for reaction-diffusion problems are analysed.

Here we sketch briefly the basic idea of hierarchical estimators. Let

V 2
h = V 1

h ⊕ Zh

be some hierarchical splitting of the finite element space V 2
h that was generated

from the original discrete space V 1
h by the inclusion of extra basis functions.

One could hope that the difference w1
h − w2

h of the finite element approxima-
tions wi

h of the solution w of (1.65) that are generated by the spaces V i
h for

i = 1, 2 might provide some information about the accuracy of w1
h. Indeed,

one has
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Lemma 5.29. Assume that on the discretization grids one has

‖w − w2
h‖τ ≤ β‖w − w1

h‖τ with β ∈ (0, 1) (1.66)

for some constant β that is independent of τ and h (in fact β depends on the
approximation properties of the V i

h). Then there exists a constant γ, which
depends only on β, such that

‖w1
h − w2

h‖τ ≤ ‖w − w1
h‖τ ≤ γ‖w1

h − w2
h‖τ . (1.67)

Proof: Set
aτ (v, u) := τ(∇u,∇v) + (u, v).

Clearly
aτ (v, v) = ‖v‖2τ .

Now

‖w − w1
h‖2τ = aτ (w − w1

h, w − w1
h)

= aτ (w − w2
h + w2

h − w1
h, w − w2

h + w2
h − w1

h)

= ‖w − w2
h‖2τ + 2aτ (w − w2

h, w
2
h − w1

h) + ‖w2
h − w1

h‖2τ ,

but aτ (w − w2
h, w

2
h − w1

h) = 0. Thus

‖w − w1
h‖2τ = ‖w − w2

h‖2τ + ‖w2
h − w1

h‖2τ . (1.68)

The first inequality in (1.67) follows immediately. For the second, (1.66) and
(1.68) give

‖w − w1
h‖2τ ≤ β2‖w − w1

h‖2τ + ‖w2
h − w1

h‖2τ ,
whence

‖w − w1
h‖2τ ≤

1
1− β2

‖w2
h − w1

h‖2τ .

Lemma 5.29 says that the computable quantity ‖w1
h−w2

h‖τ is a reliable and
robust error estimator, uniformly in τ , in the τ -weighted H1 norm provided
that the β-approximation inequality (1.66) holds. Unfortunately this inequal-
ity is not easily satisfied. Details of this approach can be found in [18, 19, 20]
and [Lan01]. In the last of these references numerical tests are carried out and
interesting practical applications are described.

The third method for error control that we examine is the use of goal-
oriented indicators for the model problem (1.50). Here the starting point is
the discretization by the discontinuous Galerkin method dG(0).

If u is the solution of (1.50) then for any test function v(·, t) ∈ V = H1
0 (Ω)

one gets

A(u, v) =
∫ T

0

(f, v)dt+ (u0, v+(0))

with
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A(u, v) :=
M∑

m=1

∫ tm

tm−1

[(ut, v) + (∇u,∇v)]+
M∑

m=2

([um−1], vm−1
+ )+(u(0), v+(0)).

The goal-oriented error estimator is based on a dual problem that is based on
an integration by parts. In the case of piecewise differentiable v, integration
by parts and the continuity of u yield

A(u, v) =
M∑

m=1

∫ tm

tm−1

[−(u, vt) + (∇u,∇v)]

−
M∑

m=2

(um−1
+ , [vm−1]) + (u(tM ), v−(tM )).

(1.69)

The discontinuous Galerkin method dG(0) uses piecewise constant approxi-
mations in t. Let Un

h ∈ Vh,n be constant on (tn−1, tn). Then we obtain

(
Un

h − Un−1
h , vh

)
+ τn(∇Un

h ,∇vh) =
∫ tn

tn−1

(f, vh) for all vh ∈ Vh,n. (1.70)

Suppose that the goal of the adaptive method is control of the L2(Ω) error
at the terminal time t = tM = T . Set e := u − uh,τ , where uh,τ denotes the
piecewise constant function that coincides on (tm−1, tm) with Um

h . Define the
error functional J by

J(ϕ) :=
(ϕM

− , e
M
− )

‖eM
− ‖0

, so J(e) = ‖eM
− ‖0.

The associated dual problem is

−∂z
∂t
−�z = 0 in Ω × (0, T ), (1.71)

z = 0 on ∂Ω × (0, T ),

z =
eM
−

‖eM
− ‖0

for t = tM .

From (1.69) one has the error functional representation

J(e) = A(e, z). (1.72)

The Galerkin orthogonality of the method allows us to subtract any piecewise
constant function vh with values in Vh,m on (tm−1, tm), i.e., we have also

J(e) = A(e, z − zh) =
M∑

m=1

∫ tm

tm−1

[(et, z − zh) + (∇e,∇(z − zh))]

+
M∑

m=2

([em−1], (z − zh)m−1
+ ) + (e(0), (z − zh)+(0)).
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Now integrate by parts in the usual way to introduce the element residual
R(Uh) := f − (Uh)t + �Uh and the edge residuals. Then, setting Qm,l =
Km,l × (tm−1, tm), by the Cauchy-Schwarz inequality we obtain

‖eM
− ‖0 ≤

M∑
m=1

∑
Km,l∈Th,m

{
‖R(Um

h )‖Qm,l
ρ1

ml

+
1
2
‖[∂nR(Um

h )]‖∂Qm,l
ρ2

ml + ‖[Um−1
h ]‖Km,l

ρ3
ml

}
with the weights

ρ1
ml = ‖z − zh‖Qm,l

, ρ2
ml = ‖z − zh‖∂Qm,l

, ρ3
ml = ‖(z − zh)m−1

+ ‖Km,l
;

all norms in these formulas are L2(Ω) norms.
If zh is chosen to be a suitable interpolant then we get a result like Theo-

rem 5.27. Alternatively, the weights ρk
ml can be evaluated approximately by a

numerical treatment of the dual problem (1.71). This is done in [BR03], which
contains a wide range of results for different applications of goal-oriented error
indicators to several model problems.

5.2 Second-Order Hyperbolic Problems

5.2.1 Weak Formulation of the Problem

In this section we examine the numerical treatment of second-order linear
hyperbolic initial-boundary value problems by the finite element method. Our
presentation largely follows the approach of [LT03], [15]. We shall concentrate
our attention on the model problem

utt − Δu = f in Ω × (0, T ],
u = 0 in Γ × (0, T ],

u(·, 0) = u0, ut(·, 0) = v0 on Ω,
(2.1)

and give only an outline of extensions to more general problems. In (2.1) the
domain Ω lies in Rn and is assumed bounded with smooth boundary Γ , while
T > 0 is a given constant. The functions u0, v0 : Ω → R are given. The
regularity of Ω guarantees that integration by parts can be applied in the
spatial direction. We set QT = Ω × (0, T ] and ΓT = Γ × (0, T ]. As for elliptic
and for parabolic problems, a function u ∈ C2,1(QT ) ∩ C0,1(QT ) is called
a classical solution of (2.1) if all equations of (2.1) are satisfied. Derivatives
at boundary points of the domain are understood as continuous extensions
from inside QT . It should be noted that existence results for classical solutions
require further assumptions on the domain Ω and on the functions u0 and v0.



5.2 Second-Order Hyperbolic Problems 357

The application of the finite element method is based on a weak form of
(2.1). To obtain this weak form, as in the parabolic case we set V = H1

0 (Ω)
and H = L2(Ω). Together with the space V ∗ = H−1(Ω) that is dual to V
and making the identification H∗ = H, these spaces form a Gelfand triple
(see page 318)

V ↪→ H ↪→ V ∗.

Integrating by parts in V , the operator −Δ can be related to the bilinear form

a(u,w) :=
∫
Ω

∇u · ∇w for all u, w ∈ V.

Hence (2.1) has the weak formulation(
d2u
dt2

, w

)
+ a(u,w) = (f, w) for all w ∈ V,

u(0) = u0, du
dt

(0) = v0,

(2.2)

where (·, ·) is the L2(Ω) inner product. Here one wishes to find a u ∈
L2(0, T ;V ), with du

dt
∈ L2(0, T ;H) and d2u

dt2
∈ L2(0, T ;V ∗), that satisfies

the variational equation and the initial conditions of (2.2).
Define a continuous linear operator L : V → V ∗ by

a(u,w) = 〈Lu,w〉 for all u, w ∈ V,

where 〈·, ·〉 : V ∗ × V → R denotes the duality pairing. Then the weak formu-
lation (2.2) can be interpreted as the operator differential equation

d2u

dt2
+ Lu = f, u(0) = u0,

du

dt
(0) = v0 (2.3)

in the space L2(0, T ;V ∗). For the general analysis of such operator equations
we refer to [GGZ74]. In the particular case considered here we have the fol-
lowing theorem (see, e.g., [Wlo87, Theorem 29.1]):

Theorem 5.30. Let f ∈ L2(0, T ;H), u0 ∈ V and v0 ∈ H. Then the problem
(2.2) has a unique solution u ∈ L2(0, T ;V ) with du

dt
∈ L2(0, T ;H). Further-

more, the mapping {
f, u0, v0

}
→
{
u,
du

dt

}
from L2(0, T ;H)×V ×H to L2(0, T ;V )×L2(0, T ;V ∗) is linear and continuous.

Introduce v := ut as an auxiliary function in L2(0, T ;H). Then (2.2) can be
written as an equivalent first-order system, either in the weak form
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(ut, z) − (v, z) = 0 for all z ∈ H,
(vt, w) + a(u,w) = (f, w) for all w ∈ V, (2.4)

or in the classical form(
ut

vt

)
=
(

0 I
Δ 0

)(
u
v

)
+
(

0
f

)
in QT with u|Γ = 0,

(
u
v

)
(·, 0) =

(
u0(·)
v0(·)

)
.

This problem can be treated numerically by an appropriate discretization
method such as the implicit Euler scheme for a system of ordinary differential
equations in function spaces; compare (2.59).

As in Section 5.1 for parabolic problems, a complete numerical treatment
of hyperbolic initial-boundary value problems requires discretizations in space
and time. In Section 2.7 we examined complete discretizations of (2.1) in both
types of variable through difference schemes. Semi-discretization in space (the
method of lines) or in time (Rothe’s method) provides a better way of struc-
turing the analysis. In the next subsection we focus on spatial discretization
by finite element methods.

Before we analyse the discretization the following stability estimate is
given.

Lemma 5.31. Let (u, v) be the solution of the system

(ut, z) − (v, z) = (g, z) for all z ∈ H,
(vt, w) + a(u,w) = (f, w) for all w ∈ V, (2.5)

which is perturbed by some g ∈ L2(0, T ;V ). Then for each t ∈ [0, T ] one has
the estimate(

a(u(t), u(t)) + (v(t), v(t))
)1/2

≤
(
a(u0, u0) + (v0, v0)

)1/2

+
t∫
0

(‖f(s)‖ + ‖∇g(s)‖) ds.
(2.6)

In the particular case f ≡ 0 and g ≡ 0 one has the identity

a(u(t), u(t)) + (v(t), v(t)) = a(u0, u0) + (v0, v0). (2.7)

Under additional smoothness assumptions one can prove this result by consid-
ering the derivative of the function Φ(t) := a(u(t), u(t))+(v(t), v(t)); compare
the proof of Lemma 5.33. Equation (2.7) is a statement of the principle of con-
servation of energy for the solution of the homogeneous wave equation.

5.2.2 Semi-Discretization by Finite Elements

As for the parabolic problems considered in Section 5.1, a conforming semi-
discretization in space replaces V by some finite-dimensional subspace Vh :=
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span {ϕj}Nj=1 with appropriately-chosen linearly independent basis functions
ϕj ∈ V, j = 1, . . . , N . The semi-discrete solution uh ∈ Vh, written in terms of
coefficient functions uj : [0, T ]→ R, is

uh(t) :=
N∑

j=1

uj(t)ϕj . (2.8)

Here the unknown functions uj are determined by the system of differential
equations(

d2

dt2
uh(t), wh

)
+ a(uh(t), wh) = (f(·, t), wh) ∀ wh ∈ Vh, t ∈ (0, T ] (2.9)

and the initial conditions

uh(0) = u0
h,

d

dt
uh(0) = v0

h, (2.10)

where u0
h and v0

h ∈ Vh are appropriate approximations of the initial data
u0 and v0. Taking (2.8) and the structure of Vh into consideration, the
semi-discrete problem (2.9) and (2.10) is—similarly to the parabolic case—
equivalent to the initial value problem

D û′′(t) + A û(t) = f̂(t), t ∈ (0, T ] and û(0) = u0
h, û

′(0) = v0
h (2.11)

for a system of ordinary differential equations. Here û = (uj) denotes the
unknown vector function with components uj , j = 1, . . . , N . The mass matrix
D, the stiffness matrix A and the right-hand side f̂ are defined by

D = (dij), dij = (ϕj , ϕi),
A = (aij), aij = a(ϕj , ϕi),

f̂(t) = (fi), fi = (f, ϕi).

The linear independence of the basis ϕj ensures the invertibility of the
matrix D.

Example 5.32. As a simple example we consider the problem

utt(x, t)− σ2 uxx(x, t) = e−t for x ∈ (0, 1), t > 0,
u(0, t) = u(1, t) = 0 for t > 0,

u(x, 0) = ut(x, 0) = 0 for x ∈ [0, 1],
(2.12)

where σ > 0 is a constant. Let us choose the ansatz functions ϕj(x) =
sin(j π x), j = 1, . . . , N , which correspond to the classical discrete Fourier
analysis in space. Now
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a(u, y) =

1∫
0

u′(x) y′(x) dx

and the orthogonality of the ϕj yields

D =
1
2
I, A = (aij) =

1
2

diag(j2 π2)

and fj(t) = e−t

1∫
0

sin(j π x) dx, j = 1, . . . , N.

Suppose that N is even, i.e., N = 2Ñ for some Ñ ∈ N. Then we obtain the
uncoupled system of differential equations

u′′2j−1(t) + (2j − 1)2π2 u2j−1(t) = 4 e−t,

u′′2j(t) + (2j)2π2 u2j(t) = 0
j = 1, 2, .., Ñ . (2.13)

Solving these and applying the homogeneous initial conditions gives

ul(t) =

⎧⎨⎩ 4
1 + l2π2

(
− cos(l π t) + 1

lπ
sin(l π t) + e−t

)
sin(lπx) for l = 2j − 1,

0 for l = 2j,

with j = 1, 2, . . . , Ñ . �

Unlike (1.11), problem (2.11) is a system of second-order differential equa-
tions. Its solution is significantly different from the solution of the system
(1.11): in the case where f ≡ 0, the solution of the parabolic problem de-
cays exponentially (see (1.5)), but the solution of (2.11) has the following
semi-discrete analogue of the conservation of energy property (2.7):

Lemma 5.33. Let f ≡ 0. Then the function uh that is the solution of (2.9)
and (2.10) satisfies for each t ∈ [0, T ] the relation

a(uh(t), uh(t)) + (u′h(t), u′h(t)) = a(u0
h, u

0
h) + (v0

h, v
0
h). (2.14)

Proof: Set

Φ(t) = a(uh(t), uh(t)) + (u′h(t), u′h(t)) for 0 ≤ t ≤ T.

Then
Φ′(t) = 2 a(uh(t), u′h(t)) + 2 (u′h(t), u′′h(t)).

Choosing wh = u′h(t) in (2.9), we obtain Φ′(t) = 0 for all t ∈ (0, T ]. Thus Φ(t)
is constant, and the result follows from the initial data of the problem.

The next result is a useful tool in estimating the growth of functions that
satisfy an integral inequality.
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Lemma 5.34 (Gronwall). Let σ and ρ be continuous real functions with
σ ≥ 0. Let c be a non-negative constant. Assume that

σ(t) ≤ ρ(t) + c

t∫
0

σ(s) ds for all t ∈ [0, T ].

Then
σ(t) ≤ ec t ρ(t) for all t ∈ [0, T ].

Proof: See, e.g., [GGZ74].

Let Rh : V → Vh again denote the Ritz projection defined by (1.13).

Theorem 5.35. Assume that the solution u ∈ L2(0, T ;V ) of (2.2) has a
second-order derivative u′′ ∈ L2(0, T ;H) and that u(t) ∈ V ∩ H2(Ω) for
each t ∈ [0, T ]. For the spatial discretization suppose that piecewise linear C0

elements are used. Then there exists a constant c > 0 such that the solution uh

of the semi-discrete problem (2.9) and (2.10) satisfies the following estimate
for all t ∈ [0, T ]:

‖uh(t)− u(t)‖0 + h |uh(t)− u(t)|1 + ‖u′h(t)− u′(t)‖0
≤ c
(
|u0

h −Rhu
0|1 + ‖v0

h −Rhv
0‖0
)

+ c h2

(
‖u(t)‖0 + ‖u′(t)‖0 +

(
t∫
0

‖u′′(s)‖20 ds
)1/2

)
.

(2.15)

Proof: As in the parabolic problem, we use the Ritz projector Rh to write
the error u− uh as a sum

u− uh = p+ q with p := u−Rhu, q := Rhu− uh, (2.16)

then estimate separately the norm of each part.
The regularity hypotheses and Lemma 5.6 imply that

‖p(t)‖0 ≤ c h2 ‖u(t)‖2 and ‖∇p(t)‖0 ≤ c h ‖u(t)‖2
for some constant c > 0. Hence

‖p(t)‖0 + h |p(t)|1 ≤ c h2 ‖u(t)‖2. (2.17)

Similarly we have

‖p′(t)‖0 ≤ c h2 ‖u′(t)‖2 and ‖p′′(t)‖0 ≤ c h2 ‖u′′(t)‖2, (2.18)

where p′ and p′′ denote temporal derivatives.
Now we turn to estimating q. Since u and uh satisfy the variational equa-

tions (2.2) and (2.9) respectively, and Vh ⊂ V , one obtains the Galerkin
orthogonality relation
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(u′′ − u′′h, wh) + a(u− uh, wh) = 0 for all wh ∈ Vh. (2.19)

The definition of the Ritz projection yields

a(q, wh) = a(Rhu−uh, wh) = a(u−uh, wh) for all wh ∈ Vh. (2.20)

Furthermore,

(q′′, wh) = ((Rhu)′′ − u′′h, wh) = ((Rhu− u)′′ + u′′ − u′′h, wh)

= (p′′, wh) + (u′′ − u′′h, wh) for all wh ∈ Vh.

Combining this equation with (2.19) and (2.20), we see that q satisfies the
variational equation

(q′′, wh) + a(q, wh) = −(p′′, wh) for all wh ∈ Vh. (2.21)

To proceed further we use the superposition principle for linear problems. Set
q = q̂ + q̄, where the functions q̂ and q̄ in Vh are defined by the initial value
problems

(q̂′′, wh) + a(q̂, wh) = 0 for all wh ∈ Vh,

q̂(0) = Rhu
0
h − u0, q̂′(0) = Rhv

0
h − v0

(2.22)

and

(q̄′′, wh) + a(q̄, wh) = −(p′′, wh) for all wh ∈ Vh, q̄(0) = q̄′(0) = 0. (2.23)

By Lemma 5.31, the definition (2.22) of q̂ implies that

|q̂(t)|21 + ‖q̂′(t)‖20 = a(q̂(t), q̂) + (q̂′(t), q̂′(t))

= a(q̂(0), q̂(0)) + (q̂′(0), q̂′(0)) = |q̂(0)|21 + ‖q̂′(0)‖20.

Now the equivalence of norms in R2 and the initial conditions of (2.22) give
us

|q̂(t)|1 + ‖q̂′(t)‖0 ≤ c
(
|u0

h −Rhu
0|1 + ‖v0

h −Rhv
0‖0
)
. (2.24)

On taking wh = 2q̄′(t) in (2.23), for each t ∈ [0, T ] we get

d

dt
(a(q̄(t), q̄(t)) + (q̄′(t), q̄′(t))) = −2 (p′′(t), q̄′(t)).

But −2 (p′′, q̄′) ≤ ‖p′′‖20 + ‖q̄′‖20. Integrating and recalling the homogeneous
initial data of (2.23) leads to

a(q̄(t), q̄(t)) + (q̄′(t), q̄′(t)) ≤
t∫

0

‖p′′(s)‖20 ds +

t∫
0

‖q̄′(s)‖20 ds. (2.25)
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Taking into account the homogeneous initial conditions in (2.23), from Lemma
5.34 (Gronwall’s inequality) and (2.18) it follows that

|q̄(t)|21 +‖q̄′(t)‖2 = a(q̄(t), q̄(t))+(q̄′(t), q̄′(t)) ≤ et

t∫
0

‖p′′(s)‖2 ds ∀ t ∈ [0, T ].

Hence

|q̄(t)|1 + ‖q̄′(t)‖0 ≤ c h2

⎛⎝ t∫
0

‖u′′(s)‖2 ds

⎞⎠1/2

for all t ∈ [0, T ], (2.26)

by (2.18). As u − uh = p + q̂ + q̄, the bounds (2.17), (2.24) and (2.26) and
the triangle inequality deliver the desired estimate for two of the summands
in (2.15).The third summand can be handled similarly

5.2.3 Temporal Discretization

The initial value problem (2.9) for the system of ordinary differential equations
that is generated by the spatial semi-discretization must now be discretized
in time for its numerical implementation. In Section 5.1.3 this task was dis-
cussed in detail for parabolic problems. For wave-type problems like (2.1), the
important attributes that the temporal discretization should possess include
not only consistency and stability—as was shown for parabolic problems in
Section 5.1.3—but also conservation of energy in the discrete problem. An
example of such a discretization is given below by (2.27).

For constant step size τ := T/M with M ∈ N, we define the equidistant
grid tk := k τ, k = 0, 1, . . . ,M , which subdivides [0, T ]. Let uk

h ∈ Vh denote
the approximation of the spatially semi-discrete solution uh(tk). Set tk+1/2 =
1
2 (tk + tk+1) and u

k+1/2
h = 1

2 (uk
h + uk+1

h ). As an example of a suitable finite
difference method we study the scheme (see [LT03])

(D+
τ D

−
τ u

k
h, wh) + a

(
1
2 (uk+1/2

h + u
k−1/2
h ), wh

)
= (f(tk), wh)

for all wh ∈ Vh, k = 1, . . . ,M − 1.
(2.27)

This scheme defines iteratively approximations uk
h ∈ Vh of uh(tk), provided

that one has initial discrete functions u0
h, u

1
h ∈ Vh.

Recall (see Chapter 2) that under sufficient regularity assumptions one has

D+
τ D

−
τ uh(t) =

1

τ2

(
uh(t+ τ)− 2uh(t) + uh(t− τ)

)
= uh(t) + O(τ2).

The scheme (2.27) is explicitly



364 5 Finite Element Methods for Unsteady Problems

τ−2 (uk+1
h − 2uk

h + uk−1
h , wh) + a

(
1
2 (uk+1/2

h + u
k−1/2
h ), wh

)
= (f(tk), wh) for all wh ∈ Vh, k = 1, . . . ,M − 1.

(2.28)

The bilinearity of both components of the left-hand side enables us to rewrite
this as

τ−2 (uk+1
h , wh) + 1

4a(u
k+1
h , wh) = (bkh, wh)

for all wh ∈ Vh, k = 1, . . . ,M − 1.
(2.29)

Here bkh ∈ V ∗
h is defined by

(bkh, wh) :=(f(tk), wh) + τ−2(2uk
h − uk−1

h , wh)− a
(

1
4 (2uk

h + uk−1
h ), wh

)
for all wh ∈ Vh.

(2.30)

As in the preceding section let {ϕj} be a basis for Vh, set ûk+1 = (uj(tk+1))
where uk+1

h =
∑N

j=1 uj(tk+1)ϕj , and let b̂k be the corresponding right-hand
side of (2.30); then in the notation of that section we can write (2.29) in the
matrix-vector form(

1
4
A + τ−2D

)
ûk+1 = b̂k, k = 1, . . . ,M − 1. (2.31)

This system can be solved to find iteratively ûk+1 (and hence also uk+1
h ) from

the discrete initial values û0 and û1. The matrix of the linear system (2.31)
is symmetric and positive definite, and is independent of the index k of the
recursion. It is typically of high dimension, but in finite element methods the
number of non-zero entries is relatively small. Thus the sparse system (2.31)
requires specific numerical methods for its efficient treatment; we shall discuss
this in Chapter 8.

Analogously to (2.7), the following discrete conservation of energy principle
is valid.

Lemma 5.36. Assume that f ≡ 0. Then the discrete solutions uk
h ∈ Vh iter-

atively defined by (2.27) satisfy

a(uk+1/2
h , u

k+1/2
h ) + (D+

τ u
k
h, D

+
τ u

k
h) = a(u1/2

h , u
1/2
h ) + (D+

τ u
0
h, D

+
τ u

0
h)

for k = 1, . . . ,M − 1.
(2.32)

Proof: In (2.27), as test function choose wh = 1
2τ (uk+1

h − uk−1
h ). Then

wh =
1
2
(
D+

τ u
k
h +D+

τ u
k−1
h

)
=

1
τ

(
u

k+1/2
h − uk−1/2

h

)
and



5.2 Second-Order Hyperbolic Problems 365

(D+
τ D

−
τ u

k
h, wh) =

1
2τ
(
D+

τ u
k
h −D+

τ u
k−1
h , D+

τ u
k
h +D+

τ u
k−1
h

)
=

1
2
D−

τ ‖D+
τ u

k
h‖2. (2.33)

We also have

a
(1

2
(uk+1/2

h + u
k−1/2
h ), wh

)
=

1
2τ
a
(
u

k+1/2
h + u

k−1/2
h , u

k+1/2
h − uk−1/2

h

)
.

The bilinearity and symmetry of a(·, ·) reduce this to

a
(1

2
(uk+1/2

h + u
k−1/2
h ), wh

)
=

1
2
D−

τ a(u
k+1/2
h , u

k+1/2
h ).

Adding this identity to (2.33), then setting f ≡ 0 in (2.27), we get

D−
τ

(
a(uk+1/2

h , u
k+1/2
h ) + (D+

τ u
k
h, D

+
τ u

k
h)
)

= 0, k = 1, . . . ,M − 1.

The iterative application of this formula yields (2.32).

Now we turn to the convergence analysis of the completely discretized
method (2.27).

Theorem 5.37. Let the solution u of (2.1) satisfy the regularity assumptions
made in Theorem 5.35. Let Vh be the space of C0 piecewise linear elements.
Assume that τ ≤ 1. Then there exists a constant c > 0 such that the solution
{uk

h} of the discrete problem (2.27) satisfies:

‖uk+1/2
h − u(tk+1/2)‖0 + h |uk+1/2

h − u(tk+1/2)|1 + ‖D+
τ u

k
h − ut(tk+1/2)‖0

≤ c
(
|Rhu(t0)− u0

h|1 + |Rhu(t1)− u1
h|1 + ‖D+

τ (Rhu(t0)− u0
h)‖0

)
+ c (h2 + τ2), for k = 1, . . . ,M − 1. (2.34)

Proof: Like the semi-discrete case, we use the Ritz projection Rh : V → Vh

to decompose the error u(tk)− uk
h as the sum

u(tk)− uk
h = pk + qk (2.35)

where
pk := u(tk)−Rhu(tk) and qk := Rhu(tk)− uk

h. (2.36)

We estimate separately the norms of pk and qk. As in the proof of Theo-
rem 5.35, for pk we have

‖pk‖0 + h |pk|1 ≤ c h2 ‖u(tk)‖2 (2.37)
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and

‖(pk)′′‖0 ≤ c h2 ‖u′′(tk)‖2 and ‖(pk)′‖0 ≤ c h2 ‖u′(tk)‖2. (2.38)

Next, consider qk. At each time level tk, since u is a solution of (2.1) it
satisfies

(utt(tk), wh) + a(u(tk), wh) = (f(tk), wh) for all wh ∈ Vh.

Thus

([Rhu]′′(tk), wh) + a([Rhu](tk), wh) = (f(tk), wh) + (([Rhu]′′ − utt)(tk), wh)

= (f(tk), wh)− ((pk)′′, wh)

for all wh ∈ Vh.

Under suitable regularity assumptions on the t-derivatives of u, this gives us

(D+
τ D

−
τ [Rhu](tk), wh) + 1

2a([Rhu](tk+1/2), wh) + 1
2a([Rhu](tk−1/2), wh)

= (f(tk), wh)− ((pk)′′, wh) + (rk, wh) for all wh ∈ Vh,

with
‖rk‖0 ≤ c τ2. (2.39)

Hence, recalling the discretization (2.27) and setting qk+1/2 = Rhu(tk+1/2)−
u

k+1/2
h , one gets

(D+
τ D

−
τ q

k), wh) + a( 1
2q

k+1/2 + 1
2q

k−1/2, wh)

= −((pk)′′, wh) + (rk, wh) for all wh ∈ Vh.
(2.40)

As in the proof of Theorem 5.35 we now apply a superposition principle,
writing qk = q̂k + q̄k and qk+1/2 = q̂k+1/2 + q̄k+1/2 where these terms are
defined by

(D+
τ D

−
τ q̂

k), wh) + a( 1
2 q̂

k+1/2 + 1
2 q̂

k−1/2, wh) = 0 for all wh ∈ Vh,

q̂0 = Rhu(t0)− u0
h, q̂1 = Rhu(t1)− u1

h,
(2.41)

and

(D+
τ D

−
τ q̄

k), wh) + a( 1
2 q̄

k+1/2 + 1
2 q̄

k−1/2, wh)

= −((pk)′′, wh) + (rk, wh) for all wh ∈ Vh,

q̄0 = q̄1 = 0,

(2.42)

with q̂
k+1/2
h = 1

2 (q̂k
h + q̂k+1

h ) and q̄
k+1/2
h = 1

2 (q̄k
h + q̄k+1

h ). An application of
Lemma 5.36 to (2.41) yields
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|q̂k+1/2 |21 + ‖D+
τ q̂

k‖20 = |q̂1/2 |21 + ‖D+
τ q̂

0‖20, k = 1, . . . ,M − 1.

From the equivalence of norms in finite-dimensional spaces and the initial
conditions in (2.41), there exists a constant c > 0 such that

|q̂k+1/2 |1 + ‖D+
τ q̂

k‖0 ≤ c
(
|Rhu(t0)− u0

h|1 + |Rhu(t1)− u1
h|1

+ ‖D+
τ (Rhu(t0)− u0

h)‖0
)
, k = 1, . . . ,M − 1.

(2.43)

To estimate q̄, as in the proof of Lemma 5.36 we choose the particular test
function

wh =
1
2
(D+

τ q̄
k +D+

τ q̄
k−1) =

1
τ

(q̄k+1/2 − q̄k−1/2)

in (2.42). This gives

D−
τ

(
|q̄k+1/2 |21 + ‖D+

τ q̄
k‖2
)

= (rk, D+
τ q̄

k) + (rk, D+
τ q̄

k−1)

−
(
(pk)′′, D+

τ q̄
k
)
−
(
(pk)′′, D+

τ q̄
k−1
)
.

(2.44)

Set
αk = |q̄k+1/2 |21 + ‖D+

τ q̄
k‖20

for all k. Then by the Cauchy-Schwarz inequality and ab ≤ a2 + b2/4,

αk − αk−1 ≤ τ
(
‖(pk)′′‖20 + ‖rk‖20

)
+
τ

2
αk +

τ

2
αk−1, k = 1, . . . ,M.

That is,(
1− τ

2

)
αk ≤

(
1+

τ

2

)
αk−1 + τ

(
‖(pk)′′‖20 + ‖rk‖20

)
, k = 1, . . . ,M. (2.45)

As τ ≤ 1 we can choose a number δ such that(
1− τ

2

)
δ ≥ ‖(pk)′′‖20 + ‖rk‖20, k = 1, . . . ,M.

Then (2.45) implies that

αk ≤ β αk−1 + τ δ, k = 1, . . . ,M (2.46)

with β := (1 + τ
2 )/(1− τ

2 ). By induction we obtain

αk ≤ βkα0 + τ δ

k−1∑
j=0

βj .

But
k−1∑
j=0

βj =
βk − 1

β − 1
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and

βk =

(
1 + τ

2

1− τ
2

)k

=

(
1 +

τ

1− τ
2

)k

≤ exp

(
τ

1− τ
2

k

)
so

αk ≤ exp

(
τ

1− τ
2

k

)
α0 + δ

(
1− τ

2

) [
exp

(
τ

1− τ
2

k

)
− 1

]
.

As k τ ≤ T for k = 0, 1, . . . ,M and τ ≤ 1, there exists a constant c > 0 such
that

αk ≤ c
[
α0 + δ

(
1− τ

2

)]
, k = 1, . . . ,M. (2.47)

Hence, recalling the definitions of αk and δ and the bounds of (2.38) and
(2.39) for ‖(pk)′′‖0 and ‖rk‖0, the equivalence of norms on finite-dimensional
spaces guarantees that some c > 0 exists with

|q̄k+1/2 |1 + ‖D+
τ q̄

k‖0 ≤ c
(
|Rhu(t0)− u0

h|1 + |Rhu(t1)− u1
h|1

+ ‖D+
τ (Rhu(t0)− u0

h)‖0 + τ2 + h2
)
, k = 1, . . . ,M − 1.

(2.48)

Finally, a triangle inequality together with (2.36) and (2.43) gives the desired
bound on the first terms in (2.34).

A bound on ‖D+
τ u

k
h − ut(tk+1/2)‖0 can be shown similarly using the as-

sumed regularity of u.

Remark 5.38. To obtain the optimal bound of convergence of O(h2 + τ2) for
this method, the discrete initial values u0

h, u
1
h have to be chosen in such a way

that one has

|Rhu(t0)−u0
h|1+|Rhu(t1)−u1

h|1+‖D+
τ (Rhu(t0)−u0

h)‖0 = O(h2+τ2). (2.49)

A constructive way to ensure this condition is described in Exercise 5.42. �

5.2.4 Rothe’s Method for Hyperbolic Problems

The classical Rothe method (see Section 5.1.5) is a semi-discretization in
time of initial-boundary value problems, i.e., the temporal derivatives are
discretized but not the spatial derivatives. It is simply the application of the
implicit Euler scheme to a first-order system of differential equations in an
appropriate function space. In the present subsection we examine first a gen-
eralized Rothe’s method based on the temporal discretization studied in Sec-
tion 5.2.3; later we move on to the classical Rothe method.

Our starting point is once again the weak formulation of the wave equation
(2.1):
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d2u
dt2

, w

)
+ a(u,w) = (f, w) for all w ∈ V,

u(0) = u0, du
dt

(0) = v0.
(2.50)

Here u0 ∈ V = H1
0 (Ω) and v0 ∈ H = L2(Ω) are given.

We select a fixed time step size τ := T/M with M ∈ N and define an
equidistant grid tk := k τ, k = 0, 1, . . . ,M over [0, T ]. Let uk ∈ V denote the
computed numerical approximation of the desired solution u(tk) at each grid
point tk. Once again set tk+1/2 = 1

2 (tk + tk+1) and uk+1/2 = 1
2 (uk + uk+1).

We analyse the following finite difference method [LT03]:

(D+
τ D

−
τ u

k, w) + a( 1
2 (uk+1/2 + uk−1/2), w) = (f(tk), w)

for all w ∈ V, k = 1, . . . ,M − 1.
(2.51)

Starting from two initial functions u0, u1 ∈ V this scheme defines iteratively
an approximation uk ∈ V of u(tk) for each k. The variant (2.51) of Rothe’s
method is the spatially continuous analogue of (2.27). Once uk−1 ∈ V and
uk ∈ V are known, uk+1 ∈ V is defined by the elliptic boundary value problem

τ−2 (uk+1, w) + 1
4a(u

k+1, w) = (bk, w)

for all w ∈ V, k = 1, . . . ,M − 1.
(2.52)

Here bk ∈ V ∗ is given by

(bk, w) := (f(tk), w) + τ−2 (2uk − uk−1, w)− a
(

1
4 (2uk + uk−1), w

)
for all w ∈ V.

(2.53)

Lax-Milgram’s lemma guarantees that the variational equation (2.52) has a
unique solution, but it should be noted that as τ is small, (2.52) is a singularly
perturbed reaction-diffusion problem (compare Chapter 6).

The convergence analysis of (2.51) is very similar to the analysis of the
completely discretized method in Section 5.2.3. This can be seen for instance
in the proof of the next lemma.

Lemma 5.39. Assume that f ≡ 0. Then the functions uk ∈ V defined itera-
tively by (2.51) satisfy the identity

a(uk+1/2, uk+1/2) + (D+
τ u

k, D+
τ u

k) = a(u1/2, u1/2) + (D+
τ u

0, D+
τ u

0),

k = 1, . . . ,M − 1.
(2.54)

Proof: In (2.51) choose as test function w = 1
2τ (uk+1 − uk−1). We also have

w =
1
2
(
D+

τ u
k +D+

τ u
k−1
)

=
1
τ

(
uk+1/2 − uk−1/2

)
.
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Then the bilinearity and the symmetry of the scalar product imply that

(D+
τ D

−
τ u

k, w) =
1
2τ
(
D+

τ u
k −D+

τ u
k−1, D+

τ u
k +D+

τ u
k−1
)

=
1
2
D−

τ ‖D+
τ u

k‖20. (2.55)

Next,

a
(1

2
(uk+1/2 + uk−1/2), w

)
=

1
2τ
a
(
uk+1/2 + uk−1/2, uk+1/2 − uk−1/2

)
.

The bilinearity and symmetry of a(·, ·) therefore give

a
(1

2
(uk+1/2 + uk−1/2), w

)
=

1
2
D−

τ a(u
k+1/2, uk+1/2)

Substituting this identity and (2.55) into (2.51) with f ≡ 0, we get

D−
τ

(
a(uk+1/2, uk+1/2) + (D+

τ u
k, D+

τ u
k)
)

= 0, k = 1, . . . ,M − 1.

Finally, the iterative application of this relation proves (2.54).

Theorem 5.40. Assume that the solution u of (2.50) is sufficiently regular.
Then there exists a constant c > 0 such that the solution {uk} of the semi-
discrete problem (2.51) generated by the generalized Rothe’s method satisfies
the following bound:

‖uk+1/2 − u(tk+1/2)‖0+|uk+1/2 − u(tk+1/2)|1+‖D+
τ u

k − ut(tk+1/2)‖0

≤ c
(
‖D+

τ (u(t0)− u0)‖0 + τ2
)
, k = 1, . . . ,M − 1.

(2.56)

The proof of this theorem is similar to the proof of Theorem 5.37, but shorter
because Rothe’s method does not include a spatial discretization. In particular
no intermediate Ritz projection is required and the error uk − u(tk) can be
estimated by Lemma 5.39, like our handling of the summand qk in the proof
of Theorem 5.37.

Now we turn to the classical Rothe’s method (compare Section 5.1.5).
This is simply the application of the implicit Euler scheme to the temporal
derivative in parabolic initial-boundary problems. To invoke this approach in
the context of second-order hyperbolic problems, we consider instead of (2.50)
the formulation (2.4) as a system of first-order (in time) differential equations.
Unlike the preceding analysis we allow variable step sizes τk+1 := tk+1 − tk.
When the implicit Euler scheme is applied to

(ut, z) − (v, z) = 0 for all z ∈ H,
(vt, w) + a(u,w) = (f, w) for all w ∈ V, (2.57)
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we obtain the semi-discrete problems

(D−
τk+1

uk+1, z) − (vk+1, z) = 0 for all z ∈ H,
(D−

τk+1
vk+1, w) + a(uk+1, w) = (f(tk+1), w) for all w ∈ V. (2.58)

This corresponds to the classical formulation

1
τk+1

(uk+1 − uk) − vk+1 = 0,

1
τk+1

(vk+1 − vk) − Δuk+1 = f(tk+1), k = 1, . . . ,M − 1.

Eliminating vk and vk+1 gives the scheme

1
τk+1

(
1

τk+1

(uk+1 − uk)− 1
τk

(uk − uk−1)
)
−Δuk+1 = f(tk+1),

k = 1, . . . ,M − 1.

The continuous embedding V ↪→ H means that (2.58) implies also the weak
formulation(

D+
τk+1

D−
τk
uk, w

)
+ a(uk+1, w) = (f(tk+1), w) for all w ∈ V, (2.59)

i.e.,

(uk+1, w) + τ2
k+1 a(u

k+1, w) =
(
uk + τk+1

τk
(uk − uk−1), w

)
for all w ∈ V, k = 1, . . . ,M − 1.

(2.60)

Given uk−1, uk ∈ V , the Lax-Milgram lemma guarantees that (2.60) has a
unique solution uk+1 ∈ V . Thus, given u0 and u1 ∈ V , the semi-discrete
method (2.60) defines the approximating functions uk ∈ V for k = 2, . . . ,M .
This scheme has an important stability property—see the following energy
estimate—that is similar to the one stated in Lemma 5.39 for the generalized
Rothe’s scheme.

Lemma 5.41. Assume that f ≡ 0. Then the functions uk ∈ V iteratively
defined by (2.60) satisfy the following bound:

‖D+
τk+1

uk‖2 + a(uk+1, uk+1) ≤ ‖D+
τ1
u0‖2 + a(u1, u1),

k = 1, . . . ,M − 1.
(2.61)

Proof: At the kth time step choose w = uk+1−uk as test function. Then the
variational equation (2.59), which is equivalent to (2.60), implies the identity

1

τk+1

(
1

τk+1

(uk+1 − uk)− 1

τk
(uk − uk−1), uk+1 − uk

)
+ a(uk+1, uk+1 − uk) = 0.
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That is,

(D+
τk+1

uk, D+
τk+1

uk) + a(uk+1, uk+1) = (D+
τk+1

uk, D+
τk
uk−1) + a(uk+1, uk).

Hence, by the Cauchy-Schwarz inequality,

(D+
τk+1

uk, D+
τk+1

uk) + a(uk+1, uk+1) ≤ ‖D+
τk+1

uk‖ ‖D+
τk
uk−1‖

+ a(uk+1, uk+1)1/2a(uk, uk)1/2

≤ 1

2

(
‖D+

τk+1
uk‖2 + ‖D+

τk
uk−1‖2

)
+

1

2

[
a(uk+1, uk+1) + a(uk, uk)

]
.

Rearranging, this inequality becomes

‖D+
τk+1

uk‖2 + a(uk+1, uk+1) ≤ ‖D+
τk
uk−1‖2 + a(uk, uk),

k = 1, . . . ,M − 1.
(2.62)

Finally, an iterative application of (2.62) proves (2.61).

For a complete convergence analysis of the method (2.60) that includes
adaptive grid generation see [15].

5.2.5 Remarks on Error Control

For simplicity in the preceding sections, with the exception of the analysis
of (2.60), we assumed that the temporal grid was equidistant and the spatial
discretization was fixed independently of time. But one can use appropriate
error indicators to generate a complete discretization of the hyperbolic prob-
lem (2.2) that is adaptive in both space and time. This adaptivity permits a
non-equidistant temporal grid and different finite element discretizations can
be used at different time levels. That is, the fixed discrete space Vh ⊂ V is
replaced by spaces Vk ⊂ V for k = 2, . . . ,M , e.g., spaces generated by piece-
wise linear C0 elements over varying triangulations Tk of Ω. If one starts from
the underlying temporal semi-discretization (2.59), then spatial discretization
generates the variational equations(
D+

τk+1
D−

τk
uk, wh

)
+ a(uk+1, wh) = (f(tk+1), wh) for all wh ∈ Vk+1. (2.63)

Since Vk+1 ⊂ V , the Lax-Milgram lemma guarantees that each problem (2.63)
has a unique solution uk+1 ∈ Vk+1. Error indicators that can be used to
control independently the spatial and temporal grids are described in [15] and
analysed in detail. See also [BR03].
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Exercise 5.42. Show that if the solution u and the initial functions u0 and
v0 are sufficiently regular, then when solving the problem (2.1), the choices

u0
h := Rhu

0, u1
h := Rh

(
u0 + τv0 +

1
2
((Δu)(0) + f(0))

)
ensure that the requirement (2.49) is fulfilled.

Exercise 5.43. Prove the bound (2.56) by invoking Lemma 5.39.



6

Singular Perturbations

In this chapter we consider linear boundary value problems for differential
equations of the form

−ε�u+ b∇u+ cu = f

and initial-boundary value problems for differential equations of the form

∂u

∂t
− ε�u+ b∇u+ cu = f,

where the data are scaled in such a way that ‖f‖∞, ‖c‖∞ and ‖b‖∞ are
all O(1) while 0 < ε # 1. Problems such as these are said to be singularly
perturbed because as ε → 0, in general their solutions u = u(·, ε) do not
converge pointwise to the solution of the related problem obtained when ε = 0
in the differential equation (combined with some appropriate subset of the
boundary or initial-boundary conditions).

Difficulties arise in discretizing singularly perturbed problems because the
stabilizing term −ε�u becomes less influential as ε→ 0. Moreover, the struc-
ture of the solution u(·, ε) causes the consistency errors of difference schemes
and the approximation error of finite element schemes on standard meshes to
increase as ε→ 0 .

In this chapter we begin with one-dimensional boundary value problems,
then move on to parabolic problems in one space dimension, and finally exam-
ine elliptic and parabolic problems in several space dimensions. To understand
why it is difficult to solve singularly perturbed problems accurately we shall
discuss the asymptotic structure of the solution and the types of layers that
may occur in the solution of the problem. Our survey includes finite difference,
finite volume and finite element methods.

Of course in a single chapter we can give only an introduction to the nu-
merical solution of singularly perturbed problems. The monograph [RST96]
presents a comprehensive survey of research in this area; a revised and ex-
tended second edition of this book is planned for 2007.
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6.1 Two-Point Boundary Value Problems

6.1.1 Analytical Behaviour of the Solution

Consider the boundary value problem

Lu :≡ −εu′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0, (1.1)

with 0 < ε# 1. Assume that c(x) ≥ 0, which ensures that (1.1) has a unique
solution u. Although u = u(x, ε), we shall often write u(x) for brevity and u′

denotes differentiation with respect to x.
Even very simple examples show how standard discretization methods have

difficulty in solving (1.1). The exact solution of the boundary value problem

−εu′′ − u′ = 0, u(0) = 0, u(1) = 1,

is
u(x, ε) =

(
1− exp

(
− x

ε

))/(
1− exp

(
− 1
ε

))
.

Apply central differencing on an equidistant mesh of diameter h:

−εD+D−ui −D0ui = 0, u0 = 0, uN = 1.

Then the computed solution is

ui =
1− ri

1− rN
where r =

2ε− h
2ε+ h

.

If ε is very small relative to the mesh so that h > 2ε, then it follows from
the formula for ui that the discrete solution oscillates. But even if one takes
very small step sizes (which is impractical in higher dimensions) that satisfy
h < 2ε, strange things can happen. For instance, if ε = h, then

lim
h→0

u1 =
2
3
�= lim

h→0
u(x1) = 1− 1

e
.

This surprising behaviour occurs because of the structure of the solution
u(x, ε). For

lim
ε→0

u(x, ε) = 1 for any arbitrary but fixed x ∈ (0, 1], but u(0, ε) = 0.

Thus the solution u(x, ε) has a boundary layer at x = 0; this is a narrow
region in which the solution changes rapidly if ε is very small. See Figure 6.1.
Moreover, the derivatives of the solution are unbounded as ε → 0: in our
example, near x = 0 one gets

u(k) ∼ Cε−k.
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1

1

0,5

0
0,50

u(x, ε)

x

Figure 6.1 Boundary layer at x = 0 for ε = 0.1

Next we show that the behaviour of the solution outlined for our example
is in fact typical of the class of boundary value problems (1.1) when b(x) �= 0
for all x ∈ [0, 1]. We assume for simplicity that b, c and f are sufficiently
smooth.

The following localization rule describes the location of the boundary layer
in the solution of (1.1):

If b is positive, there is in general a layer at x = 1.
If b is negative, there is in general a layer at x = 0.

To verify this rule we consider the case b(x) ≥ β > 0. Let u0 be the solution
of the reduced problem

b(x)u′(x) + c(x)u(x) = f(x), u(0) = 0. (1.2)

The reduced problem comprises the reduced differential equation (which is
got by setting ε = 0 in the original differential equation) and a suitable subset
of the original boundary conditions. To choose this subset correctly is critical
in defining the reduced problem. For several classes of problems—including
our problem (1.1)—localization rules can be specified. When using the correct
definition of the reduced problem, one has

lim
ε→0

u(x, ε) = u0(x) (1.3)

for almost all x lying in the original domain. Neighbourhoods of points (or
two- and three-dimensional manifolds in later problems) in the domain at
which (1.3) does not hold are called layer regions.

Lemma 6.1. Let b(x) ≥ β > 0 on [0, 1]. Let x0 ∈ (0, 1) be arbitrary but fixed.
Then for all x ∈ [0, x0] one has

lim
ε→0

u(x, ε) = u0(x).
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Proof: Our differential operator satisfies a comparison principle on [0, 1].
Set v1(x) = γ exp(βx), where γ > 0 is constant. Recall that c(x) ≥ 0. Then

Lv1(x) ≥ γ(−β2ε+ bβ) exp(βx) ≥ 1 for x ∈ [0, 1]

provided γ is chosen suitably.
Moreover, if v2(x) := exp(−β(1− x)/ε) then

Lv2(x) ≥
β

ε
(b− β) exp

(
−β 1− x

ε

)
≥ 0.

Set v = M1εv1 +M2v2, where the positive constants M1 and M2 are chosen
such that

Lv(x) ≥M1ε ≥ |L(u− u0)| = ε|u′′0(x)|,
v(0) ≥ |(u− u0)(0)| = 0,

and v(1) = M1εv1(1) +M2 ≥ |(u− u0)(1)| = |u0(1)|.

By the comparison principle,

|(u− u0)(x)| ≤ v(x) = M1ε+M2 exp
(
−β 1− x

ε

)
.

The assertion of the Lemma follows. Moreover we see that

|(u− u0)(x)| ≤M∗ε for x ∈ [0, x0],

for some constant M∗. That is, the solution u0 of the reduced problem is a
good approximation of the exact solution u outside the layer region.

Looking again at the proof of Lemma 6.1, one discovers why for positive b
the layer is located at x = 1. Suppose that for b(x) ≥ β > 0 we try to prove a
similar result in [x0, 1] with the reduced problem required to satisfy u(1) = 0.
Then one needs the barrier function v∗2(x) := exp(−βx/ε), but we have the
wrong sign in

Lv∗2(x) ≥ −β
ε
(b+ β) exp

(
−βx
ε

)
,

so something is amiss!
To improve the outcome of Lemma 6.1 by approximating u(x, ε) pointwise

for all x ∈ [0, 1], one must add a correction term to the solution u0 of the
reduced problem. Now u0 satisfies

Lu0 = f − εu′′0 ∼ f,
u0(0) = 0, u0(1) = u0(1),

so the correction v0 should satisfy the homogeneous equation Lv0 = 0, the
boundary condition v0(1) = −u0(1) and decrease exponentially in the interior
of [0, 1]. We call v0 a boundary layer correction.
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If a layer is located at x = x1 say, then in the theory of matched asymptotic
expansions one introduces local coordinates to describe the layer correction:
define ξ = ±(x − x1)/εα, where α > 0 is a constant. The parameter α is
chosen such that in the new coordinates the main part of the transformed
differential operator L∗ has (exponentially, in general) decreasing solutions as
ξ → ∞. Here “main” means the term(s) with the largest coefficient(s) when
ε is small.

In our example the choice ξ = (1− x)/εαleads to

L∗ = −ε1−2α d2

dξ2
− ε−αb(1− εαξ)

d

dξ
+ c(1− εαξ).

Hence the main part of the transformed operator is as follows:

L∗ ∼ −ε−1
( d2

dξ2
+ b(1)

d

dξ

)
for α = 1,

L∗ ∼ −ε1−2α d2

dξ2
for α > 1,

L∗ ∼ −ε−α b(1)
d

dξ
for 0 < α < 1.

Exponentially decreasing solutions are possible only in the first case here so
we choose α = 1. The solution of the layer correction problem

d2v

dξ2
+ b(1)

dv

dξ
= 0, v|ξ=0 = −u0(1), v|ξ=∞ = 0

is
v0(x) = −u0(1) exp

(
− b(1)

1− x
ε

)
.

Such a layer is called an exponential boundary layer.
Similarly to Lemma 6.1, one can prove:

Lemma 6.2. Assume that b(x) ≥ β > 0 on [0, 1]. Then there exists a constant
C, which is independent of x and ε, such that the solution of the boundary
value problem (1.1) satisfies∣∣∣∣u(x, ε)− [u0(x)− u0(1) exp

(
− b(1)

1− x
ε

)]∣∣∣∣ ≤ Cε. (1.4)

For the analysis of numerical methods it is important to have precise in-
formation about the behaviour of derivatives of the solution of (1.1).

Lemma 6.3. Let b(x) ≥ β > 0 on [0, 1]. Then the first-order derivative of the
solution of (1.1) satisfies the bound

|u′(x, ε)| ≤ C
(

1 + ε−1 exp
(
− β 1− x

ε

))
for 0 ≤ x ≤ 1. (1.5)

Here C is once again a generic constant independent of x and ε.



380 6 Singularly Perturbed Boundary Value Problems

Proof: Apply integration by parts to

−εu′′ + bu′ = h := f − cu.

Setting B(x) =
∫ x

0
b, one obtains (for some constants of integration K1,K2)

u(x) = up(x) +K1 +K2

∫ 1

x

exp[−ε−1(B(1)−B(t))] dt,

where

up(x) := −
∫ 1

x

z(t) dt, z(x) :=
∫ 1

x

ε−1h(t) exp[−ε−1(B(t)−B(x))] dt.

Since u′(1) = −K2 we must estimate K2.
The boundary conditions imply that K1 = 0 and

K2

∫ 1

0

exp[−ε−1(B(1)−B(t))] dt = −up(0).

Clearly
|up(0)| ≤ max

[0,1]
|z(x)|.

One can use a comparison principle to show that |u(x)| ≤ Cx ≤ C and it
follows that

|z(x)| ≤ Cε−1

∫ 1

x

exp[−ε−1(B(t)−B(x))] dt.

Now B(t)−B(x) =
∫ t

x
b(τ)dτ , so

exp[−ε−1(B(t)−B(x))] ≤ exp[−βε−1(t− x)] for x ≤ t.

Consequently

|z(x)| ≤ Cε−1

∫ 1

x

exp(−βε−1(t− x)) dt ≤ C,

which yields |up(0)| ≤ C. Also∫ 1

0

exp(−ε−1(B(1)−B(t))) dt ≥ Cε

and it follows that
|K2| = |u′(1)| ≤ Cε−1.

Finally,
u′(x) = z(x) +K2 exp[−ε−1(B(1)−B(x))]

gives the desired estimate

|u′(x)| ≤ C
(
1 + ε−1 exp(−β 1− x

ε

))
.
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Corollary 6.4. Assume that b(x) ≥ β > 0 on [0, 1]. Then for the solution of
(1.1) one has ∫ 1

0

|u′(x)| dx ≤ C

for some constant C that is independent of ε.

This inequality is significant because the L1 norm plays an important role in
stability estimates.

One can use mathematical induction to prove the following extension of
Lemma 6.3:

Lemma 6.5. Assume that b(x) ≥ β > 0 on [0, 1]. Then for 0 ≤ x ≤ 1, the
derivatives of the solution of the boundary value problem (1.1) satisfy

|u(i)(x, ε)| ≤ C[1 + ε−i exp(−βε−1(1− x))]
for i = 0, 1, ..., q and 0 ≤ x ≤ 1 ,

(1.6)

where q depends on the regularity of the data of the problem.

Remark 6.6. In the analysis of numerical methods it is sometimes advanta-
geous to use, instead of Lemma 6.5, the following decomposition of the solu-
tion (which is in fact equivalent to Lemma 6.5):
The solution u of the boundary value problem (1.1) can be decomposed as

u = S + E, (1.7a)

where S is the smooth part and E is a layer component, with

|S(k)(x)| ≤ C, |E(k)(x)| ≤ Cε−k exp(−β(1− x)/ε) (1.7b)

for k = 0, 1, ..., q and 0 ≤ x ≤ 1, where q depends on the regularity of the
data of (1.1); moreover,

LS = f and LE = 0 (1.7c)

(see [85]). We call such a decomposition an S-decomposition because it was
introduced by Shishkin to analyse upwind finite difference schemes.

Remark 6.7. A strong layer is characterized by a first-order derivative that is
not bounded as ε → 0. If the first-order derivative happens to be bounded,
we have a weak layer if the second-order derivative is not bounded as ε→ 0.
Here the types of boundary conditions play an essential role.
For instance, assuming b(x) > 0 on [0, 1], the conditions

u(0) = 0 and u′(1) = α
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imply that the layer component E satisfies |E′(x)| ≤ C on [0, 1], but |E′′(x)|
is not uniformly bounded in ε. With the boundary conditions

u(0) = 0 and b(1)u′(1) = f(1),

the situation is different: the first-order and second-order derivatives are uni-
formly bounded in ε and the layer is very weak.
To summarize: the strength of a layer depends on the boundary conditions!
�

The structure of the solution becomes more complicated if the coefficient
b vanishes at any point in [0, 1]. Let x0 ∈ (0, 1) be a zero of b. Then x0 is
called a turning point. We assume that b has only one turning point.

In this case, the localization role for layers tells us:
If b′(x0) > 0 (implying b(0) < 0 and b(1) > 0), then, in general, there are
boundary layers at both x = 0 and x = 1.
If b′(x0) < 0 (implying b(0) > 0 and b(1) < 0), then layers at x = 0 or x = 1
are impossible.
Consequently, the solution u0 of the reduced problem is defined as follows:

Case A: b′(x0) > 0: u0 is the solution of
b(x)u′ + c(x)u = f without boundary conditions!

Case B: b′(x0) < 0: u0 is the solution of
b(x)u′ + c(x)u = f on (0, x0 − δ) with u0(0) = 0,
b(x)u′ + c(x)u = f on (x0 + δ, 1) with u0(1) = 0, for some δ > 0.

In Case A, u0 is the smooth solution of bu′ + cu = f that exists if c(x0) �= 0.
If one assumes c(x0) �= 0, then an analogue of Lemma 6.1 is valid in (0, 1).
Adding two boundary corrections at x = 0 and x = 1 yields analogues of
Lemmas 6.2 and 6.3.
Case B is more difficult than case A. Let us consider the particular but typical
example b(x) = bx with b and c constant and f(x) = bxk, x0 = 0. Then

u0(x) =
1

ρ− k

{
−xρ + xk for x > 0,
−((−x)ρ) + (−x)k for x < 0,

if ρ := c/b is not equal to k. The solution u0 of the reduced problem is
continuous but not continuous differentiable; u has a cusp layer.
Finally we consider the case where b(x) = (x − x0)b∗(x) with b∗(x) �= 0 and
ρ = c(0)/b∗(0) is an integer. Consider the example

−εu′′ − xu′ = x in (−1, 1),
u(−1) = u(1) = 0.

Then the solution of the reduced problem is discontinuous:

u0(x) =
{

1− x in (δ, 1),
−1− x in (−1,−δ).
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Figure 6.2 Interior layer with ε = 0.01

The solution u has an interior layer at x = 0. See Figure 6.2. This is
clearly demonstrated analytically by the behaviour of the derivative of the
exact solution:

u′(x) = α(ε)e−x2/(2ε) − 1
with

α(ε) =
(∫ 1

0

e−y2/(2ε)dy
)−1

≥
(∫ ∞

0

e−y2/(2ε)dy
)−1

=

√
2
πε

,

so u′(0)→∞ for ε→ 0.
Many books on the analysis of singular perturbation problems discuss turning
point problems in detail; see for instance [dJF96].

6.1.2 Discretization on Standard Meshes

We first discuss finite difference methods, then later finite element methods
for solving the boundary value problem (1.1):

−εu′′ + b(x)u′ + c(x)u = f(x), u(0) = u(1) = 0,

while assuming that b(x) > β > 0. In this subsection we discuss the behaviour
of several methods on standard meshes; for simplicity only equidistant meshes
with mesh size h are examined.
We saw already in an example in Section 6.1.1 that the central difference
method

−εD+D−ui + biD
0ui + ciui = fi, u0 = uN = 0,
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can yield unrealistic oscillations in the computed solution if the mesh size is
not small enough.

There is a simple connection between this phenomenon and the M -matrix
properties of the coefficient matrix of the linear system that corresponds to
central differencing. We know from Chapter 2 that the M -matrix property
guarantees stability and the validity of a discrete maximum principle; this
excludes oscillations in the discrete solution.

Each row of the central differencing coefficient matrix has the form

0 · · · 0 − ε

h2
− bi

2h
2ε
h2

+ ci − ε

h2
+
bi
2h

0 · · · 0.

Consequently nonpositivity of the off-diagonal elements is equivalent to the
condition

h ≤ 2ε
max |b| . (1.8)

One can show that the discrete maximum principle is indeed violated if (1.8)
does not hold. But if ε is extremely small, it is impractical to satisfy condition
(1.8) in numerical computation in 2D or 3D.
To ensure the validity of the discrete maximum principle, a very simple old
idea is to replace the central difference quotient for the first-order derivative
by a one-sided difference quotient in order to generate the correct sign in the
off-diagonal elements. That means, depending on the sign of b, we choose

D+ui =
ui+1 − ui

h
if b < 0,

D−ui =
ui − ui−1

h
if b > 0.

This upwind method corresponds to our rule for the localization of layers: in
the case ε = 0 and b > 0, we discretize

bu′ + cu = f, u(0) = 0

with
bD−ui + ciui = fi, u0 = 0

so that we move with the flow towards the layer.
Summarizing: The simple upwind method for discretizing (1.1) when b > 0

is
−εD+D−ui + biD

−ui + ciui = fi, u0 = uN = 0. (1.9)

With this method a typical row of the associated coefficient matrix looks like

0 · · · 0 − ε

h2
− bi
h

2ε
h2

+
bi
h

+ ci − ε

h2
0 · · · 0 ,

so we have a L-Matrix without any restriction on the mesh size. Moreover,
the matrix is irreducibly diagonally dominant and hence an M -matrix.
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Lemma 6.8. The simple upwind finite difference scheme is stable, uniformly
with respect to ε, i.e.,

||uh||∞,h ≤ C||fh||∞,h

with a stability constant C that is independent of ε.

Proof: We apply the M -criterion.
Let us define e(x) := (1+x)/2, and let the vector e := (e(x1), ..., e(xN−1)) be
the restriction of e(x) to the mesh points. Then, writing Lh for the discrete
linear operator defined by the left-hand side of (1.9), we have

(Lhe)i ≥ β/2.

It follows that the coefficient matrix A of the linear system associated with
(1.9) satisfies

||A−1|| ≤ 1
β/2

.

This bound is independent of ε.

A numerical method is said to be uniformly convergent of order p with
respect to the perturbation parameter ε in the L∞ norm ‖ · ‖∞, if one has a
bound of the form

||u− uh||∞ ≤ Chp (constant p > 0) (1.10)

with a constant C independent of ε. Here u is the solution of the boundary
value problem and uh the computed solution, while h is the mesh diameter. In
the case of a finite difference method, the maximum norm should be replaced
by its discrete analogue.
Although the simple upwind scheme is uniformly stable, it is not uniformly
convergent (for any constant p > 0) on an equidistant mesh. To show this, we
consider the example

−εu′′ − u′ = 0, u(0) = 0, u(1) = 1.

The discrete solution using simple upwinding on an equidistant mesh is given
by

ui =
1− ri

1− rN
with r =

ε

ε+ h
.

It follows that for ε = h

lim
h→0

u1 =
1
2
�= lim

h→0
u(x1) = 1− 1

e
.

The missing adaption to the behaviour of the exact solution causes the scheme
to be not uniformly convergent.
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If one desires uniformly convergent or robust schemes that work well for
all values of ε, there are two principal means of achieving this aim: one can
use a standard method on a special mesh, or use a standard mesh and look for
a special method (i.e., an adapted scheme). First we discuss adapted schemes
on equidistant meshes and in Section 6.1.3 special meshes will be considered.

We choose central differencing as the starting point for our discussion. One
could instead begin with the simple upwind scheme (1.9).

If b(x) ≡ b = constant and c ≡ 0, then integration of the differential
equation over the interval (xi, xi+1) yields

ε = b
u(xi+1)− u(xi)
u′(xi+1)− u′(xi)

.

Every numerical method will approximate the right-hand side of this equation,
so instead of ε some approximation of it is generated. Conversely, one can hope
to generate a numerical method with good properties by replacing ε by some
clever approximation, followed by a discretization using a standard scheme.
This is one way of motivating schemes of the form

−εσiD
+D−ui + biD

0ui + ciui = fi, (1.11)

which have artificial diffusion. It turns out that it is fruitful to choose σi =
σ(ρi) with ρi = bih/(2ε). Now D+D− = 1

h (D+−D−) and D0 = 1
2 (D++D−),

so the scheme (1.11) can be written as

−εD+D−ui + bi[(1/2− αi)D+ + (1/2 + αi)D−]ui + ciui = fi, (1.12)

where

αi :=
σ(ρi)− 1

2ρi
. (1.13)

This shows that the choice σ(ρ) = 1 + ρ generates the simple upwind scheme
(1.9).
The coefficients in (1.12) make it natural to require 0 ≤ αi ≤ 1

2 ; this implies
the condition

1 ≤ σ(ρ) ≤ 1 + ρ. (1.14)

Now let us consider the coefficient matrix of the linear system corresponding
to (1.11). The ith row has the form

0 · · · 0 − ε

h2
σi −

bi
2h

2ε
h2
σi − ε

h2
σi +

bi
2h

0 · · · 0.

Therefore, one can prove the M -matrix property if

σ(ρ) > σ or equivalently αi >
1
2
− 1

2ρi
. (1.15)

Analogously to Lemma 6.8, the scheme (1.11) with artificial diffusion is uni-
formly stable when the condition (1.15) is satisfied.
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So far we need only satisfy the conditions 1 + ρ ≥ σ(ρ) > ρ. What is the
best way now to choose σ(ρ)?

If one wants to generate a uniformly convergent scheme, then additional
necessary convergence conditions can be derived. Fix h/ε = ρ∗, fix i, and let
h→ 0. Then Lemma 6.2 implies that

lim
h→0

u(1− ih) = u0(1)− u0(1) exp(−ib(1)ρ∗). (1.16)

The scheme (1.11) can be written as

−σ(ρ∗bi/2)
ρ∗

(ui−1 − 2ui + ui+1) +
1
2
(ui+1 − ui−1)bi = h(fi − ciui).

We wish to calculate the limit approached by this equation as h → 0. The
assumption of uniform convergence justifies our replacing each uj by the true
solution u evaluated at the same mesh point; then, replacing i by N − i and
recalling (1.16), we obtain

lim
h→0

σ(ρ∗bN−i/2)
ρ∗

=
1
2
b(1) coth

1
2
ρ∗b(1). (1.17)

The choice
σ(ρ) = ρ coth ρ (1.18)

clearly satisfies (1.17), and in fact also satisfies the conditions (1.14) and
(1.15)—see Figure 6.3.
The resulting scheme,

−h
2
bi coth

( h
2ε
bi

)
D+D−ui + biD

0ui + ciui = fi, (1.19)

is the famous Iljin scheme or Iljin-Allen-Southwell scheme.
The literature contains many different techniques for analysing the Iljin

and related schemes for two-point boundary value problems. Among these,
the most important are (cf. [RST96], [101]):

• a classical finite difference analysis, based on uniform stability and consis-
tency, that may also use an asymptotic expansion of the exact solution

• the approximation of the exact difference scheme for the given problem
• the construction of so-called compact difference schemes that require the

scheme to be exact for certain polynomials and for exponential functions
related to the layer structure of the solution u

• collocation with exponential splines
• approximation of the given problem by a related problem with piecewise

polynomial coefficients, then the exact solution of this new problem
• Petrov-Galerkin methods with exponential splines.

In the following we sketch first the classical finite difference analysis; later
we shall discuss in detail Petrov-Galerkin methods with exponential splines.
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Figure 6.3 σ(ρ) for the Iljin scheme

Theorem 6.9. The Iljin scheme is first-order uniformly convergent in the
discrete maximum norm, i.e.,

max
i
|u(xi)− ui| ≤ Ch (1.20)

with a constant C that is independent of ε and h.

Proof: Using the bounds ‖u(k)‖∞ ≤ Cε−k, a standard consistency analysis
combined with uniform stability (cf. Lemma 6.8) yields after some calculation

|u(xi)− ui| ≤ C
(h2

ε3
+
h3

ε4

)
.

In the case ε ≥ h1/3 it follows immediately that

|u(xi)− ui| ≤ Ch.
Thus consider the case ε ≤ h1/3. One can construct an asymptotic approxi-
mation ψ = u0+εu1+ε2u2+v0+εv1+ε2v2 (cf. Lemma 6.2) with the property
that

|u− ψ| ≤ Cε3.
Here u0, u1, u2 are smooth in the sense that their derivatives are bounded,
uniformly in ε, and v0, v1, v2 are explicitly known functions that can be written
as products of polynomials and decaying exponentials. Carefully estimating
the “consistency error” Lh(ψi − ui) and invoking uniform stability leads to

|ui − ψ(xi)| ≤ Ch.

But ε3 ≤ h, so the triangle inequality
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|u(xi)− ui| ≤ |u(xi)− ψ(xi)|+ |ui − ψ(xi)|
yields the desired estimate.

Remark 6.10. In the significant paper [77] the reader will find a precise analysis
of three schemes: the simple upwind scheme, the modified upwind scheme of
Samarskij with σ(ρ) = 1+ρ2/(1+ρ), and the Iljin scheme. The analysis begins
by using the estimates of Lemma 6.5 to investigate the consistency error. The
next step uses special discrete barrier functions to yield the following:
For the simple upwind scheme (1.9) one has

|u(xi)− ui| ≤
{
Ch[1 + ε−1 exp(−β̄ε−1(1− xi))] for h ≤ ε,
Ch[h+ exp(−β(1− xi)/(βh+ ε))] for h ≥ ε;

here β̄ is a constant depending on β such that exp(β̄t) ≤ 1 + βt for t ∈ [0, 1].
For the Iljin scheme, it is shown in [77] that the error satisfies

|u(xi)− ui| ≤ C
[ h2

h+ ε
+
h2

ε
exp(−β(1− xi)/ε)

]
.

The estimates for simple upwinding show that the method is not uniformly
convergent in the layer region, as we expect. In the interval [0, 1− δ] for any
fixed δ > 0, however, one has uniform convergence of order 1.
For the Iljin scheme one has convergence of order 2 if ε ≥ ε0 > 0; the order
of uniform convergence is 1, and this is true in the entire interval [0, 1] ! It is
not difficult to verify that this is true for the example

−εu′′ + u′ = x, u(0) = u(1) = 0

and its discretization by the Iljin scheme. �

Next we move on to finite element techniques on equidistant meshes. Nat-
urally the practical arguments in favour of using finite elements are stronger in
two or three space dimensions, but when finite element techniques are applied
to singularly perturbed problems in 1D, we gain valuable information about
the difficulties that arise if the singular perturbation parameter is extremely
small.

Standard versions of finite elements on equidistant meshes have the same
difficulties as standard finite difference methods: a lack of stability can gen-
erate oscillations in the discrete solution. For instance, using linear finite ele-
ments to discretize (1.1) on the mesh {xi : i = 0, . . . , N} and evaluating the
integrals by the midpoint quadrature rule generates the scheme

−εD+D−ui + 1/2(b(xi+1/2)D+ui + b(xi−1/2)D−ui)
+(1/2)(c(xi−1/2) + c(xi+1/2))ui = (1/2)(f(xi−1/2) + f(xi+1/2)).
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We see the similarity to central differencing, and as in central differencing the
discrete solution oscillates strongly (see Figure 6.13 for the two-dimensional
case).

Is there some finite element analogue of the simple upwind scheme? An old
idea from the 1970s is to generate an upwind effect by choosing the test func-
tions differently from the ansatz functions. Then the finite element method is
said to be of Petrov-Galerkin type. For instance, let us consider linear ansatz
functions combined with test functions of the type

ψi(x) = φi(x) + αi− 1
2
σi− 1

2
(x)− αi+ 1

2
σi+ 1

2
(x)

where

φi(x) =

⎧⎨⎩ (x− xi−1)/h x ∈ [xi−1, xi],
(xi+1 − x)/h x ∈ [xi, xi+1],
0 otherwise,

with quadratic bubble functions σi+ 1
2
; the parameters αi+ 1

2
are not yet cho-

sen. This Petrov-Galerkin method generates the scheme (again applying the
midpoint rule)

−εD+D−ui + b̄i+1/2D
+ui + b̄i−1/2D

−ui + [c̄i+1/2 + c̄i−1/2]ui

= f̄i+1/2 + f̄i−1/2

with q̄i±1/2 := (1/2∓ αi±1/2)qi±1/2 for q = b, c, f .
This bears some resemblance to the upwind scheme (1.9): for constant co-
efficients and αi±1/2 = 1/2 the schemes coincide. In general the parameters
αi±1/2 can be chosen using criteria similar to those used for difference schemes.

Petrov-Galerkin methods of this type are no longer used for 2D problems;
alternative techniques are used to generate an upwind effect.

To take a more general view, let us assume that the ansatz functions are
given and ask: which test functions are then optimal? To study this question,
consider the abstract variational problem: find u ∈ S such that

a(u, v) = (f, v) for all v ∈ T.

Its Petrov-Galerkin discretization is: find uh ∈ Sh ⊂ S (so Sh is the space of
ansatz functions) such that

a(uh, vh) = (f, vh)

for all vh ∈ Th ⊂ T (i.e., Th is the test space).
Given a point x∗ in the domain of u, define the Green’s function G ∈ T by

a(w,G) = w(x∗) for all w ∈ S.

Let us for a moment assume that G ∈ Th. Then the error of the Petrov-
Galerkin method at the point x∗ is given by
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(u− uh)(x∗) = a(u− uh, G) = a(u,G)− a(uh, G)
= (f,G)− (f,G) = 0

because G ∈ Th. That is, when G ∈ Th, the error at the point x∗ is zero and
the method is exact there! This is an attractive property—but in general we
cannot guarantee that G ∈ Th. Nevertheless there is one nontrivial situation
where this occurs: for the problem −u′′ = f with u(0) = u(1) = 0, using linear
elements and Sh = Th, if x∗ is a mesh point then G ∈ Th. Consequently, the
finite element solution of this problem is exact at all mesh points (assuming
all integrals are evaluated exactly).

Now let ā(·, ·) be a bilinear form that approximates a(·, ·). Using this form
we define G ∈ T by

ā(w,G) = w(x∗) for all w ∈ S.

Furthermore, assume that the numerical approximation uh is a solution of

ā(uh, vh) = (f, vh) for all vh ∈ Th.

If we again assume that G ∈ Th, then we obtain

(u− uh)(x∗) = ā(u− uh, G)
= (ā− a)(u,G) + (f,G)− ā(uh, G) ,

i.e.,
(u− uh)(x∗) = (ā− a)(u,G). (1.21)

Therefore we conclude:
It is desirable to choose a test space that contains Green’s functions for an
approximating adjoint problem.

Remark 6.11. For arbitrary vh ∈ Th one has

(u− uh)(x∗) = a(u− uh, G) = a(u− uh, G− vh).

Hence
|(u− uh)(x∗)| ≤ inf

vh∈Th

|a(u− uh, G− vh)|.

Again this reveals the importance of choosing a test space that is related to
some Green’s function. �

Now we apply this idea to our singularly perturbed boundary value prob-
lem (1.1), whose bilinear form is (writing (·, ·) for the L2(0, 1) inner product)

a(u, v) := ε(u′, v′) + (bu′ + cu, v). (1.22)

We seek u ∈ S := H1
0 (0, 1) such that a(u, v) = (f, v) for all v ∈ S. Define

ā(u, v) := ε(u′, v′) + (b̄u′ + c̄u, v), (1.23)



392 6 Singularly Perturbed Boundary Value Problems

where b̄ and c̄ are piecewise constant approximations of b and c.
Let Gj ∈ S be the Green’s function related to ā and associated with the

mesh point xj . Then

ε(w′, G′
j) + (b̄w′ + c̄w,Gj) = w(xj) for all w ∈ S. (1.24)

Alternatively, one can characterize Gj in the classical way:

(a) on the interior of each mesh interval Gj satisfies

−εG′′
j − b̄G′

j + c̄Gj = 0 and Gj(0) = Gj(1) = 0.

(b) Gj is continuous on [0, 1].

(c) lim
x→xi−0

(εG′
j − b̄Gj)− lim

x→xi+0
(εG′

j − b̄Gj) = −δij for i = 1, . . . ,N− 1

—here δij is the Kronecker delta.

The typical jump condition (c) for a Green’s function follows from (a) and
(1.24).

This motivates the following choice of test space: Th is spanned by the
N − 1 functions ψk that satisfy

−εψ′′
k − b̄ψ′

k + c̄ψk = 0 on each mesh interval, (1.25a)
ψk(xj) = δkj . (1.25b)

It is obvious that each basis function ψk is non-zero only on the interval
(xk−1, xk+1). These basis functions are exponential splines.

Next, choose some space of linearly independent ansatz functions φi with
the property that φi(xj) = δij and look for a numerical approximation of the
given boundary value problem in the form

uh(x) =
N−1∑
i=1

uiφi(x) for x ∈ [0, 1]. (1.26)

The Petrov-Galerkin method with exponential splines as test functions is: find
uh ∈ Vh with

ā(uh, ψ) = (f̄ , ψ) for all ψ ∈ Th. (1.27)

This is a linear system of equations in the unknowns {ui}. We shall com-
pute the elements of the coefficient matrix of this linear system and verify
that Gj ∈ Th. Consider the contribution of uk−1φk−1(x) to (1.27). Setting
ψ = ψk and invoking the property (1.25), the coefficient of uk−1 is seen to be∫ xk

xk−1

(εφ′k−1ψ
′
k + bk−1φ

′
k−1ψk + ck−1φk−1ψk)dx = −εψ′

k(xk−1).
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Analogously, the coefficient of uk+1 is εψ′
k(xk+1), while the coefficient of uk is

ε[ψ′
k(xk − 0)− ψ′

k(xk + 0)]. Now the definition of ψk implies that

ψ′
k(xk−1) > 0, ψ′

k(xk − 0) > 0, ψ′
k(xk + 0) < 0, ψ′

k(xk+1) < 0;

let us verify, for instance, that ψ′
k(xk−1) > 0. For if ψ′

k(xk−1) < 0, then ψk has
a local minimum at some point x̃, at which one must have ψ′

k(x̃) = 0, ψk(x̃) <
0, ψ′′

k (x̃) ≥ 0, and this contradicts (1.25).
Thus the coefficient matrix of our linear system is an M -matrix. Hence

the discrete problem has a unique solution.
To check that Gj ∈ Th, we must show that parameters {αk} can be chosen

such that

Gj =
N−1∑
k=1

αkψk.

For any choice of the αk one has properties (a) and (b), so only the jump
condition (c) needs to be satisfied. A calculation shows that this is equivalent
to a linear system whose coefficient matrix is the transpose of the matrix just
studied, and is therefore an M -matrix. Consequently we do have Gj ∈ Th.

It is now straightforward to prove

Theorem 6.12. If b̄, c̄, f̄ are piecewise constant first-order approximations of
b, c, f , then the Petrov-Galerkin method with exponential test functions (1.27)
has a unique solution. Independently of the choice of the ansatz functions, the
error in the mesh points satisfies

max
i
|u(xi)− ui| ≤ Ch (1.28)

with a constant C that is independent of ε and h.

Proof: It remains only to prove (1.28). The properties of Gj and the definition
of ā imply that

(u− uh)(xj) = (f − f̄ , Gj) + (u′, (−b+ b̄)Gj) + (u, (−c+ c̄)Gj).

Since Gj is uniformly bounded and moreover
∫
|u′| ≤ C by Corollary 6.4, it

follows that
|(u− uh)(xj)| ≤ Ch .

We close this subsection with some remarks related to Theorem 6.12.

Remark 6.13. The choice

q̄ = [q(xi−1) + q(xi)]/2 for q = b, c, f in each interval (xi−1, xi)

implies second-order uniform convergence at each mesh point:

|u(xi)− ui| ≤ Ch2 for all i.

See [RST96]. �
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Remark 6.14. The definition of the test functions ψk via (1.25) is called com-
plete exponential fitting. More simply, one can define the basis functions by

−ψ′′
k − b̄ψ′

k = 0 on each mesh interval, ψk(xj) = δkj .

Then gives a method with exponential fitting which can be further simplified
using lumping: define

ā(v, ψi) := (b̄v′, εψ′
i + ψ̄i) + h c(xi)v(xi).

It should be noticed that the analysis of this scheme is technically delicate.
�

What influence do the ansatz functions have on the method? If one is
satisfied with uniform convergence at the mesh points, then standard piecewise
linear ansatz functions are fine. The stronger requirement that one obtain
uniform convergence for all x in [0, 1], i.e., that ||u − uh||∞ ≤ Ch, forces the
use of exponential splines as ansatz functions—but in contrast to the test
functions, these exponentials are related to the original differential operator
and not to its adjoint. For instance, the following basis functions φk for the
trial space are suitable:

−εφ′′k + b̄φ′k = 0, φk(xi) = δik.

A study of the interpolation error for these exponential splines shows that the
uniform O(h) estimate is optimal.

6.1.3 Layer-adapted Meshes

Now we consider the alternative approach where standard discretization meth-
ods are used on special meshes that yield robust convergence with respect to
the singular perturbation parameter. There is a wide range of publications
that deal with layer adapted meshes. Since in the thesis [Lin07] a rather com-
plete overview is given we refer the interested reader to it and omit widely to
cite the original papers.

To simplify the notation we assume that the layer is located at x = 0 (if
the layer is at x = 1, make the change of variable x �→ 1 − x) and study the
boundary value problem

Lu := −εu′′ − bu′ + cu = f, u(0) = u(1) = 0, (1.29)

with b(x) > β > 0. Assume that b, c and f are sufficiently smooth and c(x) ≥
0.

As early as 1969, Bakhvalov proposed a special mesh 0 = x0 < x1 < · · · <
xN = 1 that is adapted to the nature of the boundary layer. He chooses mesh
points near x = 0 that satisfy
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q

[
1− exp

(
−βxi

σε

)]
= ξi :=

i

N
.

Here q ∈ (0, 1) and σ > 0 are parameters as yet undefined; q determines how
many mesh points are in the layer and σ controls how fine the mesh is there.
Outside the layer an equidistant mesh is used.

To be precise, Bakhvalov’s mesh is specified by xi = φ(i/N), i= 0, 1, . . . , N ,
where

φ(ξ) =

{
χ(ξ) := −σε

β ln(1− ξ/q) for ξ ∈ [0, τ ],

χ(τ) + χ′(τ)(ξ − τ) for ξ ∈ [τ, 1].

and τ is a transition point between the fine and coarse meshes. This point τ
is a solution of the nonlinear equation

χ(τ) + χ′(τ)(1− τ) = 1, (1.30)

which ensures that the mesh generating function φ lies in C1[0, 1] in this
original B-mesh. An analysis shows that

τ =
γε

β
| ln ε| (1.31)

for some γ that is bounded by a constant independent of ε. Much later it
emerged that the C1 property of φ is unnecessary. Instead of solving (1.30),
one can choose a value for γ then define τ by (1.31) and describe the layer-
adapted part of the mesh by

φ(ξ) = −γε
β

ln(1− 2(1− ε)ξ) for ξ = i/N, i = 0, 1, ..., N/2.

At the transition point τ for these B-type meshes one has

exp
(
− βx

ε

)∣∣∣
x=τ

= εγ . (1.32)

From the numerical point of view when choosing the transition point, it seems
better to replace smallness of the layer term with respect to ε by smallness
with respect to the discretization error. If we desire a discretization error
proportional to N−σ, then the equation

exp
(
− βx

ε

)∣∣∣
x=τ

= N−σ (1.33)

leads to the choice τ = (σε/β) lnN for the transition point between the fine
and the coarse mesh. We call a mesh an S-type mesh if it is generated by

φ(ξ) =

{ σε

β
φ̂(ξ) with φ̂(1/2) = lnN for ξ ∈ [0, 1/2]

1− (1− σε
β lnN)2(1− ξ) for ξ ∈ [1/2, 1].

In particular when φ̂(ξ) = 2(lnN) ξ, the mesh generated is piecewise equidis-
tant; this S-mesh was introduced by Shishkin in 1988.
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Remark 6.15. At first sight a comparison of B-type and S-type meshes favours
B-type meshes because it seems reasonable to choose the transition point
from the coarse to the fine mesh depending only on the boundary layer and
independently of N . But S-meshes have a much simpler structure, and if
one uses a piecewise equidistant B-type mesh, then one has a logarithmic
factor ln ε in the L∞ error estimate and therefore no uniform convergence.
Consequently, in what follows we concentrate on S-meshes. It is in most cases
straightforward to generalize the results to S-type meshes. For S-type meshes,
special mesh-generating functions allow us to avoid the factor lnN in the error
estimates. �

If one wants to include also the non-singularly perturbed case, one defines
the transition point for S-type meshes by

τ = min {q, (σε/β) lnN} . (1.34)

We assume, for simplicity, that convection dominates and use the choice τ =
(σε/β) lnN for the transition point of our S-meshes.

Let us begin by analysing simple upwinding on an S-mesh.

Theorem 6.16. The error of simple upwinding on an S-mesh with σ = 1
satisfies

max
i
|u(xi)− uN

i | ≤ CN−1 lnN, (1.35)

where C is a constant independent of ε and N .

Proof: Recall the S-decomposition of the exact solution from Remark 6.6 and
decompose the discrete solution analogously, viz.,

uN
i = SN

i + EN
i

with (for i = 1, . . . , N − 1)

LNSN
i = fi, S

N
0 = S(0), SN

N = S(1) and

LNEN
i = 0, EN

0 = E(0), SN
N = E(1).

For the smooth part S, uniform stability and uniform consistency lead imme-
diately to

max
i
|S(xi)− SN

i | ≤ CN−1.

The consistency error of the layer part is in general not bounded pointwise
uniformly in ε: one gets

|LN (E(xi)− EN
i )| ≤ C ε−1(N−1 lnN)e−βxi/ε. (1.36)

Nevertheless one can prove (1.35). There are several ways of doing this. We
shall use a discrete maximum principle and a special barrier function. Let us
define
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wi = C

i∏
k=1

(
1 +

βhk

ε

)−1

for i = 0, . . . , N.

After a short computation one finds that one can choose C such that LNwi ≥
|LNEN

i | for i = 1, . . . , N − 1 with w0 ≥ |E0| and wN ≥ |EN |. Hence, in the
region outside the layer,

|EN
i | ≤ wi ≤ wN/2 ≤ C N−1 for i ≥ N/2,

where the bound on wN/2 can be deduced using hk = (εN−1/β) lnN for
k = 1, . . . , N/2. One also has |Ei| ≤ CN−1 for i ≥ N/2 from Remark 6.6.

Inside the layer region, one combines (1.36) with a discrete maximum
principle and the barrier function

C N−1 + wi(N−1 lnN)

to get

|E(xi)− EN
i | ≤ C N−1 + wi(N−1 lnN) ≤ C N−1 lnN.

Remark 6.17. Alternatively, one can convert the consistency error bound to a
convergence result by applying (L∞, L1) stability or the (L∞,W−1,∞) stability
of the upwind operator which is valid on any mesh. Note that the consistency
error on an S-mesh is uniformly bounded in the L1 norm by C N−1 lnN .

The improved stability properties of the upwind operator can be inferred
from a detailed study of the related Green’s function; see [86]. �

Similarly, for simple upwinding on the more sophisticated B-mesh one obtains

|u(xi)− uN
i | ≤ CN−1 for all i.

What about central differencing on a layer-adapted mesh?
The behaviour of the solution on such a mesh is not as bad as on an

equidistant mesh: while oscillations are present, they are small and decrease as
N increases. Under special assumptions on the mesh, the central differencing
operator is uniformly stable in (L∞, L1). This leads to the following bounds
for central differencing:

max
i
|u(xi)− uN

i | ≤
{
C N−2 on B-type meshes,
C (N−1 lnN)2 on S-meshes.

Next we analyse linear finite elements on an S-mesh with σ = 2. First we
consider the interpolation error uI −u. On each subinterval (xi−1, xi) one has

(uI − u)(x) =
xi − x
hi

∫ xi−1

xi

u′′(ξ)(xi−1 − ξ) dξ −
∫ x

xi

u′′(ξ)(x− ξ) dξ.
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This implies that

|(uI − u)(x)| ≤ 2
∫ xi

xi−1

|u′′(ξ)|(ξ − xi−1) dξ.

Now any positive, monotonically decreasing function g satisfies the inequality

∫ xi

xi−1

g(ξ)(ξ − xi−1) dξ ≤
1
2

{∫ xi

xi−1

g1/2(ξ) dξ

}2

,

as can be seen by regarding both sides as a function of xi, then differentiating.
Hence

|(uI − u)(x)| ≤ C
{∫ xi

xi−1

(1 + ε−1 exp(−βξ/(2ε)) dξ
}2

.

For an S-mesh it follows immediately that

|(uI − u)(x)| ≤
{
C N−2 in [τ, 1],
C (N−1 lnN)2 in [0, τ ].

(1.37)

As well as pointwise estimates of the interpolation error, we also need
estimates in the H1 semi-norm. Integration by parts yields

|uI − u|21 = −
∫ 1

0

(uI − u)u′′dx ≤ Cε−1‖uI − u‖∞,

so
ε1/2|uI − u|21 ≤ C N−1 lnN. (1.38)

Since |u|1 is not bounded uniformly with respect to ε, it seems appropriate
to analyse the error in the ε-weighted norm

‖v‖ε :=
√
ε|v|21 + |v|20.

Let us assume that c+b′/2 ≥ α > 0. As previously stated, this can be ensured
by a change of variable using our assumption that b(x) > β > 0. Then the
bilinear form

a(v, w) := ε(v′, w′) + (cv − bv′, w)

is, with respect to ε, uniformly V-elliptic in the norm ‖ · ‖ε one does not have

|a(v, w)| ≤ C ‖v‖ε‖w‖ε

with a constant C that is independent of ε. Consequently it is impossible to
deduce an error bound in ‖ · ‖ε directly from the above interpolation error
estimates.
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We therefore take the structure of our mesh into consideration and es-
timate separately on the fine mesh on [0, τ ] and the coarse mesh on [τ, 1].
Setting γ = min{1, α} and ẽ = uI − uN , we obtain

γ‖ẽ‖ε = γ‖uI − uN‖ε ≤ a(uI − uN , uI − uN ) = a(uI − u, uI − uN )
= ε((uI − u)′, (uI − uN )′) + (b(uI − u), (uI − uN )′)

+ ((c+ b′)(uI − u), uI − uN )
≤ C‖uI − u‖ε‖uI − uN‖ε + C

[
‖uI − u‖∞,(0,τ)‖(uI − uN )′‖L1(0,τ)

+ ‖uI − u‖0,(0,τ)‖(uI − uN )′‖0,(0,τ)

]
.

On the coarse mesh we apply an inverse inequality, and on the fine mesh a
Cauchy-Schwarz inequality yields

‖(uI − uN )′‖L1(0,τ) ≤ C (lnN)1/2‖uI − uN‖ε.

Combining these estimates we have

‖uI − uN‖ε ≤ C
{
‖uI − u‖ε + (lnN)1/2‖uI − u‖∞,(0,τ) +N ‖uI − u‖0,(τ,1)

}
.

This inequality, our earlier bounds and a triangle inequality yield the following
result:

Theorem 6.18. Consider the discretization of the boundary value problem
(1.29) using linear finite elements on an S-mesh with σ = 2. Then the error
satisfies

‖u− uN‖ε ≤ C N−1 lnN. (1.39)

Higher-order finite elements can be analysed in a similar way provided that
one has adequate information about the behaviour of the requisite derivatives
of the smooth and layer parts of the solution.

6.2 Parabolic Problems, One-dimensional in Space

6.2.1 The Analytical Behaviour of the Solution

Let us consider the initial-boundary value problem

∂u

∂t
− ε∂

2u

∂x2
+ b(x)

∂u

∂x
= f(x, t) in Q = (0, 1)× (0, T ), (2.1a)

u(0, t) = u(1, t) = 0, (2.1b)
u(x, 0) = g(x). (2.1c)

In general this problem has a unique solution whose smoothness depends on
the smoothness of the data and on compatibility conditions at the corners of
the domain.
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The asymptotic behaviour of the solution of (2.1) as ε → 0 depends
strongly on the properties of the convection coefficient b. Let us define the
function X(t; ξ, τ) to be the solution of

dX

dt
= b(X, t) with X(τ ; ξ, τ) = ξ.

The reduced equation is

∂u

∂t
+ b(x)

∂u

∂x
= f(x, t).

Let Q∗ be the domain comprising all points (x, t) with t ≥ 0 that lie on the
characteristics of the reduced operator and pass through the side t = 0 of Q̄.
Then the solution of the reduced problem

∂u0

∂t
+ b(x)

∂u0

∂x
= f(x, t), (2.2a)

u0(x, 0) = g(x) forx ∈ (0, 1), (2.2b)

can be written in terms of the function X:

u0(x, t) = g(X(0;x, t)) +
∫ t

0

f(X(σ;x, t), σ)dσ .

Now we have essentially three different cases (see Figure 6.4):
Case A: b(0) < 0 , b(1) > 0 (the characteristics leave the domain).

Then Q∗ � Q.

Case B: b(0) > 0 , b(1) < 0 (the characteristics enter the domain).
Then Q∗ � Q.

Case C: b(0) = 0 , b(1) = 0 (characteristics tangential to the boundary).
Then Q∗ = Q.

In case B one can define the reduced problem by the reduced equation
and all the initial-boundary conditions. Difficulties may arise along the char-
acteristics through the points (0, 0) and (1, 0); depending on the compatibility
of the data, the solution of the reduced problem (or its derivatives) can be
discontinuous.

In case A one expects layers at x = 0 and x = 1 similar to those appearing
in stationary 1D problems—exponential boundary layers. In case C the layer
correction turns out to be the solution of an associated parabolic problem, so
the layer is called a parabolic boundary layer .

As in Section 6.1 let us assume in general that b satisfies b(x) > 0. Then
it is appropriate to define the reduced problem by

∂u0

∂t
+ b(x)

∂u0

∂x
= f(x, t), (2.3a)

u0(x, 0) = g(x) for x ∈ (0, 1). (2.3b)
u0(0, t) = 0. (2.3c)
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Case A Case B Case C
Figure 6.4 Characteristics

At the boundary x = 1 the solution to (2.1) has an exponential boundary
layer. Setting ζ = (1 − x)/ε, the layer correction v(ζ) associated with the
point (1, t) is defined by

d2v

dζ2
+ b(1)

dv

dζ
= 0 with v(0) = u0(1, t).

One expects that u0(x, t) + v(ζ, t) is a uniform asymptotic approximation of
the solution of the given problem. Indeed, if the second-order derivatives of
u0 are bounded then the maximum principle allows us to prove that

|u(x, t)− [u0(x, t) + v(ζ, t)]| ≤ Cε on Q.

Assuming still more compatibility conditions, pointwise estimates for deriva-
tive approximations can also be derived.

Without compatibility one can only prove (using a weak maximum prin-
ciple) that

|u(x, t)− [u0(x, t) + v(ζ, t)]| ≤ Cε1/2.

In this case it is difficult to prove pointwise bounds for derivatives.
In summary, the parabolic case, though one-dimensional in space, turns out

to be more complicated than stationary one-dimensional problems: parabolic
boundary layers may be present, and even in the case b > 0 the interior layer
that may arise along the characteristic through the corner (0, 0) is a source of
difficulty.

6.2.2 Discretization

First we discuss a standard difference scheme for the discretization of the
initial-boundary value problem (2.1). On the mesh nodes {(xi, t

k)} given by
xi = ih, tk = kτ , consider the difference scheme
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Figure 6.5 the case b(x) > 0

uk+1
i − uk

i
τ + (1− θ)

[
− εσi

uk
i−1 − 2uk

i + uk
i+1

h2 + bi
uk

i+1 − uk
i−1

2h

]
+

+θ
[
− εσi

uk+1
i−1 − 2uk+1

i + uk+1
i+1

h2 + bi
uk+1

i+1 − uk+1
i−1

2h

]
= (1− θ)fk

i + θfk+1
i ,

(2.4)

where the user-chosen parameter θ lies in [0, 1] and uk
i is the solution computed

at (xi, t
k). The value of θ determines whether the scheme is explicit (θ = 0) or

implicit (θ > 0). The user-chosen parameter σi allows us to introduce artificial
diffusion. Rearranging, we have

uk+1
i (1 + 2θτμi) + uk+1

i−1 θτ
(
− bi

2h
− μi

)
+ uk+1

i+1 θτ
( bi

2h
− μi

)
= uk

i (1− 2(1− θ)τμi) + uk
i−1(1− θ)τ

( bi
2h

+ μi

)
+

uk
i+1(1− θ)τ

(
− bi

2h
+ μi

)
+ τ [(1− θ)fk

i + θfk+1
i ]

with μi := ε σi/h
2.

The stability of this scheme in the discrete maximum norm is easily
analysed. Assuming b(x) > β > 0, one can establish

Lemma 6.19. Set σi = σ(ρi), where ρi := h bi/(2ε). Assume that σ(ρ) > ρ.
Then
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(i) the implicit scheme (2.4) with θ = 1 is stable in the discrete maximum
norm, uniformly with respect to ε;

(ii) if 2τ ε σ/h2 ≤ 1, then the explicit scheme with θ = 0 is also uniformly
stable.

For the implicit scheme, central differencing is again unsuitable because sta-
bility requires

ρ < 1, i.e., h <
2
εbi

.

On the other hand, the implicit scheme combined with (for instance) simple
upwinding, so σ(ρ) = 1+ρ, restricts neither the spatial mesh width h nor the
time step τ .

In what follows, at first we continue the discussion of the case b > 0,
then at the end of this subsection we sketch some difficulties associated with
parabolic boundary layers.

When b > 0 we expect an exponential boundary layer at x = 1. There-
fore, on standard (e.g., equidistant) meshes in space we can expect uniform
convergence only if we choose σ carefully. Assuming for the moment constant
coefficients (i.e., constant b) and equidistant mesh sizes in space and time, let
us study the 6-point scheme∑

m=0,1

∑
n=−1,0,1

αnm uj+m
i+n = hf j

i .

Using an asymptotic approximation of the solution, we can derive neces-
sary conditions for uniform convergence just as in the stationary case—recall
(1.17). In this way one obtains∑

m

∑
n

αnm = 0 (2.5)

and, setting ρ = bh/(2ε),

(α−1,0 + α−1,1) exp(2ρ) + (α0,0 + α0,1) + (α1,0 + α1,1) exp(−2ρ) = 0. (2.6)

Now our special scheme (2.4) has

α−1,0 = τ(1− θ)(−b/(2h)− μ), α−1,1 = τθ(−b/(2h)− μ),
α0,0 = −1 + 2τ(1− θ)μ, α0,1 = 1 + 2τθμ,
α1,0 = τ(1− θ)(b/(2h)− μ), α1,1 = τθ(b/(2h)− μ).

Clearly (2.5) is automatically satisfied. Condition (2.6) places no restriction
on θ and τ and yields the formula

σ(ρ) = ρ coth(ρ).

Recalling Lemma 6.19, we conclude that our favorite scheme on equidistant
meshes in the class (2.4) is an implicit scheme that is of Iljin type in space,
i.e., is characterized by
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σi = ρi coth(ρi) with ρi = hbi/(2ε).

If one now assumes sufficient compatibility of the data at the corners ofQ, then
one can prove that this scheme is first-order uniformly convergent; without
compatibility the analysis is difficult.

Alternatively—again assuming sufficient compatibility—it is possible to
generate and analyse a related scheme by exponential fitting in a Petrov-
Galerkin framework. Let us start from the weak formulation of the initial-
boundary value problem (2.1):

(ut, v) + ε(ux, vx) + (bux, v) = (f, v),

where (·, ·) is the L2(Q) inner product. For each k > 0, we seek a numerical
solution uh at time t = tk, setting

uh(x, tk) =
∑

i

uk
i φi(x, tk).

As in Section 6.1, approximate b by a piecewise constant b̄ on every subinterval
of [0, 1] and define a modified bilinear form ā by

ā(v, w) := ε(vx, wx) + (b̄vx, w).

Then implicit discretization in time combined with a Petrov-Galerkin method
in space can be described as follows:

uk+1
i − uk

i

τ
+ ā
(
uh(·, tk+1), ψi

)
= (fk+1, ψi).

As in Section 6.1 we choose exponential splines ψi as test functions; these test
functions are the solutions of

−εψ′′
i − b̄ψ

′
i = 0 on every mesh interval,

ψi(xj) = δi,j .

More details are in [RST96]. Assuming compatibility, the error satisfies the
uniform estimate

max
i,j
|u(xi, t

k)− uk
i | ≤ C(h+ τ)

at the mesh points.
Instead of using exponential splines on an equidistant mesh, one could use

standard splines on a mesh that is layer-adapted in the x direction.
Next we give some hints regarding the treatment of parabolic bound-

ary layers, which are an important phenomenon. These appear in reaction-
diffusion problems of the following type:

ut − εuxx + c(x, t)u = f(x, t) in Q = (0, 1)× (0, T ), (2.7a)
u(0, t) = u(1, t) = 0, u(x, 0) = g(x). (2.7b)
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Without any restriction we can assume that c(x, t) ≥ c0 > 0.
Here the solution u0 of the reduced problem satisfies only the initial condition,
and in general boundary layers are present along the sides x = 0 and x = 1
of Q. Let us study the structure of the solution at x = 0: introduce the local
variable ζ = x/ε1/2. Then at x = 0 the local layer correction v(ζ, t) satisfies

vt − vζζ + c(0, t)v = 0, v(ζ, 0) = 0, v(0, t) = −u0(0, t).

This is a parabolic differential operator, which explains the descriptive termi-
nology “parabolic boundary layer” for v. One can estimate v and its deriv-
atives using an explicit but complicated representation of v in terms of the
complementary error function, or one can proceed indirectly using maximum
principles and carefully chosen barrier functions. Again assuming sufficient
compatibility, a non-trivial analysis yields∣∣∣ ∂l+m

∂xl∂tm
v(x, t)

∣∣∣ ≤ C ε−l/2e−γx/ε1/2
, (2.8)

where the constant γ ∈ (0, c0) is arbitrary. This estimate might lead us to
hope that one could successfully apply some form of exponential fitting on
equidistant meshes to deal with parabolic boundary layers, but blocking this
road is the following remarkable result of Shishkin [111]:

For problems with parabolic boundary layers there does not exist a
scheme on standard meshes whose solution can be guaranteed to con-
verge to the solution u in the maximum norm, uniformly with respect to
the perturbation parameter ε.

We try to give a heuristic explanation of this deep result. First, in certain
cases the boundary layer problem has a relatively simple explicit solution. For
instance, the solution of

vt − vζζ = 0, v(ζ, 0) = 0, v(0, t) = t2,

is given by

v(ζ, t) = 2
∫ t

0

∫ τ

0

erfc(ζ/(2μ1/2)) dμ dτ, (2.9)

where erfc is the complementary error function. There are analogous formulae
when instead one has v(0, t) = tm for integer m > 2. Now for problems with
constant coefficients the necessary conditions for uniform convergence turn
out to be of the form

AVi−1 +BVi +DVi+1 = 0.

Such conditions are not satisfied by functions of the form e−di2 , but the layer
functions appearing in (2.9) and its analogues for v(0, t) = tm are of exactly
this type, as can be seen from properties of the complementary error function.
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Therefore we conclude:

For a problem with parabolic boundary layers, if one wants to construct a
scheme which is guaranteed to converge uniformly in the maximum norm,
then one has to use layer-adapted meshes! Furthermore, this is true not only
for reaction-diffusion problems such as (2.7) but also for convection-diffusion
problems whose solutions have parabolic boundary layers.

It is possible to define a suitable S-mesh based on the estimates (2.8). Set

ρ = min
{

1/4,
ε1/2

γ
lnN

}
.

Subdivide the three subintervals [0, ρ], [ρ, 1 − ρ] and [1 − ρ, 1] of [0, 1] by
equidistant meshes containing N/4, N/2 and N/4 subintervals respectively.
Use an equidistant mesh in time. On this space-time mesh we discretize (2.7)
implicitly:

uk+1
i − uk

i

τ
− εD+D−uk+1

i + c(xi, t
k+1)uk+1

i = fk+1
i .

Then (see [Shi92]) one can prove the uniform error estimate

|u(xi, t
k+1)− uk+1

i | ≤ C
(
(N−1 lnN)2 + τ

)
. (2.10)

Similar results are valid for problems of the type (2.1) where convection is
present. The order of convergence with respect to the time step can be im-
proved by defect correction or by a time discretization of Crank-Nicolson type
[78].

6.3 Convection-Diffusion Problems in Several
Dimensions

6.3.1 Analysis of Elliptic Convection-Diffusion Problems

Convection-diffusion equations of the form

∂u

∂t
− ν�u+ b · ∇u+ cu = f

play an important role in many applications such as fluid mechanics. We
mention explicitly

• the computation of temperature in compressible flows;
• the equations for the concentration of pollutants in fluids;
• the momentum relation of the Navier-Stokes equations

(here three difficulties overlap: the convective character, the nonlinearity
and the divergence-free condition on the flow).
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Numerical methods for singularly perturbed problems of the form

−εu′′ + bu′ + cu = f

with 0 < ε # 1 are frequently motivated by referring to the Navier-Stokes
equations in the regime of large Reynolds numbers, but it is a long road from
the analysis of discretization methods for one-dimensional linear problems
to the Navier-Stokes equations. Even today there are many open problems
concerning the numerical solution of the Navier-Stokes equations for large
Reynolds numbers.

In this subsection we discuss stationary problems of the form

−ε�u+ b · ∇u+ cu = f in Ω ⊂ R2, (3.1a)
u = 0 on Γ := ∂Ω, (3.1b)

with 0 < ε # 1. We restrict ourselves to the two-dimensional case and as-
sume, for simplicity, homogeneous Dirichlet boundary conditions. In (3.1) the
quantity b is, of course, a vector function. If there is no possibility of misun-
derstanding we write b∇ to mean the scalar product b · ∇.

First we consider the asymptotic behaviour of the solution of the bound-
ary value problem (3.1) as ε → 0. Typically we suppose that c ≥ 0 or
c − (1/2) div b ≥ ω > 0 so that a unique classical or weak solution exists.
Setting ε = 0 in the differential equation yields the reduced equation

L0u := b∇u+ cu = f.

From the one-dimensional case we know already that one cannot satisfy the
boundary conditions on the whole boundary. Therefore, we try to define the
reduced problem by

L0u = f, (3.2a)
u|Σ = 0, (3.2b)

and ask for which subset Σ of the boundary Γ the problem is well posed. It
is clear that the characteristics of (3.2) should play an important role. These
are the solutions of

dξ

dτ
= b(ξ(τ)). (3.3)

To define Σ, the behaviour of the characteristics near Γ is critical. Assume
that we can define a function F in a strip near the boundary in such a way
that F |Γ = 0 and F < 0 on the interior of Ω. Then define

Γ+ = {x ∈ Γ | b∇F > 0 } “outflow boundary”
Γ− = {x ∈ Γ | b∇F < 0 } “inflow boundary”
Γ0 = {x ∈ Γ | b∇F = 0 } “characteristic boundary”.
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On Γ−∪Γ+ the characteristics of (3.2) intersect the boundary, while at points
in Γ0 the characteristic is a tangent to the boundary. If Γ is smooth then
Γ = Γ+ ∪ Γ− ∪ Γ0.

The standard method of characteristics tells us that we obtain a well-posed
problem on setting Σ = Γ̄+ or Σ = Γ̄−. To decide which of these to use in
(3.2), one must find (as in the one-dimensional case) which choice permits
decreasing solutions for the local layer correction. It turns out—compare the
1D situation—that the correct choice is Σ = Γ̄−. Thus the reduced problem
is defined by

L0u = f, (3.4a)
u|Γ̄− = 0. (3.4b)

We expect a boundary layer in the neighbourhood of the outflow boundary
Γ+. Let us classify that layer. Near Γ+ we introduce local variables by setting

x1 = x1(ρ, φ),
x2 = x2(ρ, φ),

where ρ(x) = dist (x, Γ ), 0 < ρ < ρ0 (some positive constant ρ0) and φ
is associated with position along the boundary. Applying the transformation
ζ = ρ/ε and expanding in ε, it turns out that the ordinary differential equation
(with coefficients B0(0, φ), A2,0(0, φ)) determining the layer correction has the
solution

v = −u0

∣∣
Γ+

exp
(
− B0(0, φ)
A2,0(0, φ)

ζ
)

with The ellipticity of (3.1) enables us to show that A2,0 is negative, and
B0(0, φ) = b∇ρ|ρ=0 < 0 from the definition of Γ+. We recognize an exponential
boundary layer.

When the geometrical behaviour of the characteristics is complicated the
solution of the reduced problem may also be complicated. In fact, even in
geometrically simple situations the solution of the reduced problem may still
fail to be straightforward.

Figure 6.6 shows a situation which often occurs in practice and corresponds
to a channel flow. The solution has exponential layers on Γ+ and parabolic
layers on Γ0. In the neighbourhood of the points A and B there may be
additional difficulties.

In Figure 6.7 no parabolic boundary layers appear in the solution. But,
depending on the boundary conditions, there could be an interior parabolic
layer along the characteristic through the point P owing to a discontinuity in
the solution of the reduced problem.

The characteristics are quite complicated in the example

−ε�u+ (x2 − 1)ux + (y2 − 1)uy + cu = f in Ω = {(x, y) : x2 + y2 < 3},
u = 0 on Γ = ∂Ω;
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Γ−
Γ+

Γ0

Γ0

B

A

Figure 6.6 Standard situation

Γ−
Γ+

Γ−

Γ+

P

Figure 6.7 A problem without parabolic boundary layers

see Figure 6.8.
Finally, if the domain is not simply connected, then a simple structure to

the characteristics does not necessarily imply a simple asymptotic structure to
the solution. In Figure 6.9, for example, interior layers will arise along CD and
EF. For a detailed description of this complicated topic see [GFL+83]; many
other textbooks on singular perturbation problems give at least a discussion
of simple situations.

In a nutshell, singularly perturbed convection-diffusion problems in 2D
are much more complicated than in 1D. As a consequence, it is also more
complicated to generate and analyse robust discretization methods.
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Figure 6.8 A problem with complicated behaviour of the characteristics

C E

D F

Γ0 Γ0

Γ+

Γ+

Γ−

Γ−

Figure 6.9 A non-simply connected domain: interior layers

As in the one-dimensional case, it is extremely helpful for the numerical
analyst to have a decomposition of the solution into a sum of a smooth part
(where the required derivatives are uniformly bounded with respect to ε) and
layer parts—without the usual remainder term of an asymptotic expansion.
Unfortunately, so far there exist complete proofs of the existence of such
decompositions in only a few cases.

Let us consider a standard problem with exponential layers, namely

−ε�u+ b · ∇u+ cu = f in Ω = (0, 1)2, (3.5a)
u = 0 on ∂Ω, (3.5b)

assuming b1(x, y) > β1 > 0, b2(x, y) > β2 > 0. If we assume some smoothness
of the coefficients and moreover the compatibility condition
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f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0,

then this problem has a unique classical solution u ∈ C3,α(Ω̄). This solution
has exponential layers along the sides x = 1 and y = 1 of Ω. One can prove
the S-type decomposition [87]

u = S + E1 + E2 + E3 (3.6)

with ∣∣∣ ∂i+j

∂xi∂yj
S
∣∣∣ ≤ C, (3.7a)

∣∣∣ ∂i+j

∂xi∂yj
E1(x, y)

∣∣∣ ≤ Cε−ie−β1(1−x)/ε, (3.7b)

∣∣∣ ∂i+j

∂xi∂yj
E2(x, y)

∣∣∣ ≤ Cε−je−β2(1−y)/ε, (3.7c)

∣∣∣ ∂i+j

∂xi∂yj
E3(x, y)

∣∣∣ ≤ Cε−(i+j)e−(β1(1−x)/ε+β2(1−y)/ε). (3.7d)

These estimates are valid for i + j ≤ 1 without any additional assumptions;
to extend them to higher-order derivatives, sufficient conditions on the data
are given in [87].

Remark 6.20. For reaction-diffusion problems Melenk’s book [Mel02] presents
a complete theory for solution decompositions, including corner singularities,
in polygonal domains. Transport phenomena mean that the corresponding
convection-diffusion problems are more complicated. Some results for prob-
lems with parabolic boundary layers can be found in [Shi92], [76]. �

It is very instructive to look at a graph of the Green’s function of a
convection-diffusion problem in 2D because the difficulties encountered in its
numerical solution are then obvious. Let us consider problem (3.5) with con-
stant coefficients b1 > 0, b2 > 0, c > 0 and let G be the Green’s function
associated with an arbitrary but fixed point (x, y) ∈ Ω for this problem. If
G̃ is the Green’s function associated with (x, y) and the same differential
operator but on the domain R2 (the “free-space Green’s function”), then a
maximum principle implies that

0 ≤ G ≤ G̃.

Now G̃ can be computed explicitly, using e.g. Fourier transforms. One gets

G̃(x, y; ξ, η) =
1

2πε
exp [(b1(ξ − x) + b2(η − y)/(2ε))]K0(λ r)

where
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r2 = (ξ − x)2 + (η − y)2, (2ελ)2 = b21 + b22 + 4εc,

and K0 is a modified Bessel function. Of course, G̃ has a logarithmic singu-
larity at (x, y). Figure 6.10 shows the typical behaviour of G̃ for small ε. It
shows convincingly how upwind data strongly influences the solution at (x, y).
A direct estimate yields

‖G‖Lp
≤ C ε−(p−1)/p for 1 ≤ p <∞.
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Figure 6.10 The Green’s function (excluding the neighbourhood of the
singularity) for x = y = c = 0, b1 = 1, b2 = 0 with ε = 0.1 (left)

and ε = 0.01 (right)

6.3.2 Discretization on Standard Meshes

When discretizing the given convection-diffusion problem it is natural to ask:
what qualities do we expect in our discretization method?
Some possible aims are:

(V1): Simple methods that work for h ≤ h0 with h0 independent of ε, are
stable and produce good results in those subdomains of Ω where one can
neglect the influence of layers and singularities;

(V2): Higher-order methods having the same properties as the methods
of (V1);

(V3): Methods that are robust with respect to the parameter ε and can resolve
layers; for instance, methods that are uniformly convergent with respect
to a sufficiently strong norm.

When discussing uniform convergence, the choice of norm to measure the error
is of fundamental importance. For instance, the layer term e−x/ε is O(1) when
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measured in the maximum norm, but if one uses the L1 norm then this term
is only O(ε) and consequently extremely small for small ε.
Methods typical of the class V1 are upwind difference schemes and the corre-
sponding upwind methods used in finite volume methods. Important methods
belonging to class V2 are the streamline diffusion finite element method, meth-
ods with edge stabilization (see [28]) and the discontinuous Galerkin method.
We know already from the one-dimensional case that we can try to achieve
uniform convergence using exponential fitting or layer-adapted meshes; these
meshes will be discussed in the next subsection.

We begin with upwind finite difference schemes. Consider the model prob-
lem (see Figure 6.10)

−ε�u+ b∇u+ cu = f in Ω = (0, 1)× (0, 1), (3.8a)
u = 0 on Γ, (3.8b)

where we assume that

(a) b = (b1, b2) > (β1, β2) > 0, (3.9a)
(b) c ≥ 0. (3.9b)

Γ−
Γ+

Γ−

Γ+

Figure 6.11 Characteristics of (3.8) and (3.9)

Both classical and weak solutions of (3.8) satisfy maximum principles:
f ≥ 0 implies u ≥ 0. Often this property is very important: for example, the
unknown u may correspond to a chemical concentration which must be non-
negative. In such cases it is desirable to have the maximum principle for the
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discrete problem also. The methods of class (V1) frequently satisfy a discrete
maximum principle, in contrast to higher-order methods. As we know from
Chapter 2, inverse-monotone matrices (in particular M -matrices) do satisfy
maximum principles. This property of the matrix of the discrete problem also
allows us to prove stability of the method in many cases.

It is not difficult to generalise the simple upwind difference scheme from
one dimension to the two-dimensional case. For problem (3.8) on a equidistant
square mesh with mesh spacing h in each coordinate direction, the simple
upwind scheme (written as a difference stencil) is

− ε

h2

⎡⎣ · 1 ·
1 −4 1
· 1 ·

⎤⎦+
1
h
bh1

⎡⎣ · · ·−1 1 ·
· · ·

⎤⎦+
1
h
bh2

⎡⎣ · · ·· 1 ·
· −1 ·

⎤⎦+ ch

⎡⎣ · · ·· 1 ·
· · ·

⎤⎦ = fh. (3.10)

Here bhi = bi at each mesh point.

Lemma 6.21. The upwind scheme (3.10) for the boundary value problem
(3.8), (3.9) is inverse monotone and uniformly stable with respect to ε in
the discrete maximum norm.

Proof: It is easy to check that the coefficient matrix of the linear system
associated with (3.10) is an L-matrix. Using b1 > 0 and c ≥ 0, the restriction
of the function e(x) = (1 + x)/2 to the mesh yields a majorising element for
the discrete problem. Now the usual M -criterion delivers both the M -matrix
property and the desired stability estimate.

When treating more general domains, the finite element method is more
flexible than finite differencing. We therefore ask for an upwind version of
the finite element method. Consider again (3.8),(3.9) and discretize this using
linear finite elements. Assume that the underlying triangulation comes from
an equidistant square mesh where one draws a diagonal in the same direction
in each square. If b1, b2 are constants and c ≡ 0, then the finite element method
generates the difference stencil

− ε
h

⎡⎣ · 1 ·
1 −4 1
· 1 ·

⎤⎦+
b1
6

⎡⎣ · −1 1
−2 · 2
−1 1 ·

⎤⎦+
b2
6

⎡⎣ · 2 1
1 · −1
−1 −2 ·

⎤⎦ .
It is clearly impossible to have the M -matrix property here. In the 1970s sev-
eral strategies were proposed to modify this approach to yield M -matrices;
for instance, Petrov-Galerkin techniques with linear ansatz functions and
quadratic test functions were used—see [RST96]. Eventually it turned out
that in the framework of finite elements there is no true analogue of the sim-
ple upwind finite difference method!

Among finite element methods for convection-diffusion problems, the most
frequently used methods today are streamline diffusion and its modifications
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and the discontinuous Galerkin methods that we met already in Chapter 4.
If one desires inverse monotonicity in the discrete problem, this can be got
using finite volume methods.

To describe the upwind finite volume method, we leave the model problem
(3.8),(3.9) and instead consider the more general boundary value problem

−ε�u+ b∇u+ cu = f in Ω ⊂ R2, (3.11a)
u = 0 on Γ (3.11b)

in a polygonal domain. Assume that

c− 1
2

div b ≥ 0. (3.12)

Figure 6.12 Voronoi box

We start from an admissible decomposition of the given domain into
weakly acute triangles. Next, construct a dual mesh based on Voronoi boxes
(recall Chapter 2); see Figure 6.12. We shall use the notation of Figure 6.12
and also set lij = |PiPj |.

As discussed in Chapter 2 and Chapter 4, the discretization of −�u on this
mesh using either the finite volume method or linear finite elements generates
the same difference scheme, namely∑

j∈Λi

mij

lij
(u(Pi)− u(Pj)). (3.13)

The corresponding matrix is an M -matrix as it is an L-matrix, irreducible
and diagonally dominant.
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The discretization of the convective term is important in preserving theM -
matrix property. While remaining in the finite volume framework, we describe
the discretization in finite element terms. Start from the splitting

(b∇uh, wh) = (div(uhb), wh)− ((div b)uh, wh).

Approximating the first term here,

(div(uhb), wh) =
∑

i

∫
Di

div(uhb)wh dx

≈
∑

i

wh(Pi)
∫

Di

div(uhb) dx,

and Gauss’s integral theorem yields

(div(uhb), wh) ≈
∑

i

wh(Pi)
∫

∂Di

(b · ν)uh dΓi

=
∑

i

wh(Pi)
∑
j∈Λi

∫
Γij

(b · νij)uh dΓij .

Next we apply the quadrature rule∫
Γij

(b · νij)uhdΓij = (b(Pij) · νij)(measΓij)[λijuh(Pi) + (1− λij)uh(Pj)]

where the weights λij are not yet specified. We now have

(div(uhb), wh) ≈
∑

i

wh(Pi)
∑
j∈Λi

(b(Pij) · νij)mij [λijuh(Pi) + (1− λij)uh(Pj)].

The second term is approximated in a similar manner:

((div b)uh, wh) =
∑

i

∫
Di

(div b)uhwh dx

≈
∑

i

uh(Pi)wh(Pi)
∫

Di

div b dx,

so

((div b)uh, wh) ≈
∑

i

uh(Pi)wh(Pi)
∑
j∈Λi

(b(Pij) · νij)mij .

Collecting terms, we have derived the following discretization of the convective
term:

(b∇uh, wh) ≈
∑

i

wh(Pi)
∑
j∈Λi

(b(Pij)·νij)mij [(λij−1)uh(Pi)+(1−λij)uh(Pj)].
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The corresponding matrix Bh has the following entries:

(Bh)kk =
∑
j∈Λk

(b(Pkj) · νkj)mkj(λkj − 1),

(Bh)kl = (b(Pkl) · νkl)mkl(1− λkl) if l ∈ Λk,

(Bh)kl = 0 otherwise.

Therefore we conclude that the choice

λkl =
{

1 if b(Pkl) · νkl ≥ 0,
0 if b(Pkl) · νkl < 0, (3.14)

will guarantee that Bh is an L-matrix.

Remark 6.22. The choice of λkl in (3.14) is the natural extension of the up-
wind strategy from the one-dimensional to the two-dimensional case. On an
equidistant mesh, the discretization of the model problem (3.8),(3.9) then
yields the upwind scheme (3.10). �

To complete the discretization, we discretize cu − f analogously to the
second term in the splitting above; this technique was already described in
Chapter 4, Section 4.5.4.
An examination of the matrix generated by the full discretization shows that
the choice (3.14) is sufficient but not necessary for an M -matrix; there is still
some freedom in choosing λij .
Let us write the full discrete problem as

al(uh, vh) = (f, vh)l for all vh ∈ Vh.

To analyse the method we introduce the norm

‖vh‖ε :=
{
ε|vh|21 + ‖vh‖2l

}1/2

with
||vh||2l =

∑
i

v2
h(Pi) · (measDi).

Then from [5] we have the following result:

Theorem 6.23. Assume that the triangulation is weakly acute. Then the up-
wind finite volume method has the following properties:
(a) The discrete problem is inverse monotone for h ≤ h0, where h0 is inde-
pendent of the perturbation parameter ε.
(b) The error satisfies

‖u− uh‖ε ≤ Cε−1/2h(‖u‖2 + ‖f‖W 1
q
).

(c) Furthermore, ‖u− uh‖ε ≤ Ch(‖u‖2 + ‖f‖W 1
q
) if the triangulation is uni-

form.
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Here we say that the triangulation is uniform if the mesh is three-directional.
The estimates of the theorem do not appear useful because in general ‖u‖2

is large when ε is small, but in [100] localized results tell us that in subdomains
that exclude layers the method works well. Thus the upwind finite volume
method belongs to the class V1.

If one is interested in a higher-order method of type (V2), then it is
not realistic to insist on the inverse monotonicity of the discrete problem.
It is well known that the discretization of −� by quadratic finite elements
does not in general give inverse monotonicity; some special geometric sit-
uations are an exception. The very popular streamline diffusion finite ele-
ment method (SDFEM)—also called the streamline upwind Petrov-Galerkin
method (SUPG)—is a higher-order method that is not inverse monotone
but has improved stability properties compared with the standard Galerkin
method.

Consider again the boundary value problem (3.11) under the assumption
(3.12). To introduce the SDFEM, we take the general Petrov-Galerkin method
on a standard quasi-uniform mesh:
Find uh ∈ Vh such that

ε(∇uh,∇wh) + (b∇uh + cuh, wh) = (f, wh)

for all wh from the test space Wh, where (·, ·) is the L2(Ω) inner product.
The basic idea of streamline diffusion is to choose test functions of the type

wh := vh + β b∇vh for vh ∈ Vh

with a parameter β that can be specified element by element.

Example 6.24. The discretization of the convection-diffusion operator

−ε�− p ∂
∂x
− q ∂

∂y

with constant coefficients p, q on a uniform mesh of Friedrichs-Keller type
(squares with one diagonal drawn) by linear finite elements and SDFEM gen-
erates the difference stencil

ε

⎡⎣ · −1 ·
−1 4 −1
· −1 ·

⎤⎦ +
h

6

⎡⎣ · −p+ 2q p+ q
−2p+ q · 2p− q
−(p+ q) p− 2q ·

⎤⎦+

+β

⎡⎣ · pq − q2 −pq
pq − q2 2(p2 + q2 − pq) pq − q2
−pq pq − q2 ·

⎤⎦ .
Is this related to stabilization by artificial diffusion?
In 2D it turns out that adding isotropic artificial diffusion by modifying ε to
ε+γ for some parameter γ yields poor results: layers are excessively smeared.
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A better idea, based on the characteristics of the reduced equation, is to
transform the differential operator to the form

−ε�+
∂

∂ξ

and then to add artificial diffusion only in the flow direction; that means, to
replace

ε
∂2

∂ξ2
by (ε+ β∗)

∂2

∂ξ2
.

Then transform back to the original variables and discretize the new differen-
tial operator by linear finite elements. The surprising result is: the difference
stencil above is generated!
That is, the SDFEM is closely related to the addition of artificial diffusion in
the streamline direction. �

For C0 elements one does not have

vh + βb∇vh ∈ H1,

so the streamline diffusion method has a certain nonconforming character and
it is necessary to define it carefully.
Let us define the bilinear form

A(w, v) := ε(∇w,∇v) + (b∇w + cw, v) +
∑
K

βK(−ε�w + b∇w + cw, b∇v)K ,

where (·, ·)K is the L2(K) inner product on each mesh element K and the
parameter βK is specified element-wise, and the linear form

F (v) := (f, v) +
∑
K

βK(f, b∇v)K .

Then the SDFEM is defined by: Find uh ∈ Vh such that

A(uh, vh) = F (vh) for all vh ∈ Vh. (3.15)

If βK = 0 for all K, the SDFEM reduces to the standard Galerkin method;
for βK > 0 the additional terms yield improved stability, as we shall see. This
method is consistent if u ∈ H2(Ω) because then

A(u, vh) = F (vh) for all vh ∈ Vh.

This implies the Galerkin-orthogonality property

A(u− uh, vh) = 0 for all vh ∈ Vh,

which is very useful in the error analysis of the SDFEM.
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We now analyse the streamline diffusion finite element method for linear
elements while assuming for simplicity that

βK = β ∀K, c = constant > 0, div b = 0. (3.16)

Let us denote by e := u − uh the error of the method and by η := Πhu − u
the difference between the exact solution and some projection of u into the
finite element space Vh. Then A(e, vh) = 0 for all vh ∈ Vh and it follows as
usual that

A(e, e) = A(e, η). (3.17)

The definition of the bilinear form yields

A(e, e) = −ε(�u, β∇e) + ε‖∇e‖2 + β‖b∇e‖2 + (1 + βc)(b∇e, e) + c(e, e)

= −ε(�u, β∇e) + ε‖∇e‖2 + β‖b∇e‖2 + c‖e‖2 (3.18)

because div b = 0 implies that (b∇e, e) = 0. On the other hand we have

A(e, η) = −ε(�u, βb∇η) + ε(∇e,∇η) + (b∇e, βb∇η) + (b∇e, η)
+(ce, βb∇η) + (ce, η).

Now we apply several times the inequality

ab ≤ α

2
a2 +

1
2α
b2

with an appropriate chosen positive α:

A(e, η) ≤ −ε(�u, βb∇η) +
α1

2
ε‖∇e‖2 +

α2

2
β‖b∇e‖2 +

α3

2
‖b∇e‖2

+
α4 + α5

2
c‖e‖2 +

1
2α1

ε‖∇η‖2 +
1

2α2
β‖b∇η‖2 +

1
2α3
‖η‖2

+
β2

2α4
‖b∇η‖2 +

1
2α5

c‖η‖2 .

The choices α1 = 1, α2 = 1/2, α3 = β/2 and α4 = α5 = 1/2 yield in the
interesting case β ≤ 1

A(e, η) ≤ −ε(�u, βb∇η) +
1
2

(
ε‖∇e‖2 + β‖b∇e‖2 + c‖e‖2

)
+

+
ε

2
‖∇η‖2 + 2β‖b∇η‖2 +

(
c+

1
β

)
‖η‖2.

Recalling (3.17) and (3.18), we obtain

ε‖∇e‖2 + β‖b∇e‖2 + c‖e‖2 ≤ 2ε(�u, βb∇e)− 2ε(�u, βb∇η)+

+ ε‖∇η‖2 + 4β‖b∇η‖2 + 2
(
c+

1
β

)
‖η‖2.
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Now assume that u ∈ H2(Ω), so we can apply standard estimates for the
interpolation error for linear elements:

‖η‖ ≤ Ch2‖u‖2, ‖∇η‖ ≤ C h‖u‖2.

This gives us

ε‖∇e‖2 + β‖b∇e‖2 + c‖e‖2 ≤ C
[
εβ‖u‖2‖b∇e‖+ εβh‖u‖22+

+ εh2‖u‖22 + 4βh2‖u‖22 + 2
(
c+

1
β

)
h4‖u‖22

]
.

The estimate
εβ‖u‖2‖b∇e‖ ≤

β

2
‖b∇e‖2 +

β

2
ε2‖u‖22

leads finally to

ε‖∇e‖2 + β‖b∇e‖2 + c‖e‖2 ≤ C‖u‖22
[
βε(ε+ h) + h2(ε+ β) +

(
c+

1
β

)
h4
]
.

Setting β = β∗h for some constant β∗, we get

Theorem 6.25. Assume that the solution of (3.11) lies in H2(Ω) and that
we are in the convection-dominated case ε < Ch.
Then the choice β = β∗h of the streamline diffusion parameter β leads to the
following error estimates for the SDFEM with linear elements:

‖u− uh‖0 ≤ Ch3/2‖u‖2,

ε1/2‖u− uh‖1 ≤ Ch3/2‖u‖2,

‖b∇(u− uh)‖0 ≤ Ch‖u‖2.

Here the constants C are independent of ε and h.

These estimates clearly demonstrate the success of the SDFEM stabilization
because it is impossible to prove such estimates, with constants independent
of ε, for a Galerkin method on a standard mesh. A comparison with the
upwind method (see Theorem 6.23) shows that the SDFEM has improved
convergence rates for the derivative in the streamline direction. On the other
hand, as already pointed out, the matrix of the discrete SDFEM problem is
not inverse monotone.

Note that the results of Theorem 6.25 can be generalized to higher-order
elements. If Vh contains all polynomials of degree k, then [RST96] one has

‖u− uh‖0 ≤ Chk+ 1
2 ‖u‖k+1,

ε1/2‖u− uh‖1 ≤ Chk+ 1
2 ‖u‖k+1

and ‖b∇(u− uh)‖0 ≤ Chk‖u‖k+1.
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These error estimates for SDFEM contain the factor ‖u‖k+1 which depends
badly on ε in the sense that ‖u‖k+1 → ∞ as ε → 0. Thus the method is not
uniformly convergent. But a more sophisticated analysis yields local estimates
of the form

|||u− uh|||Ω′ ≤ Chk+ 1
2 ‖u‖k+1,Ω′′

on subdomains Ω′ ⊂ Ω′′ away from layers, with

|||w|||2 := ‖w‖20 + ε|w|21 + h‖b∇w‖20.

These local estimates guarantee uniform convergence in subdomains on which
certain derivatives of the exact solution are bounded, uniformly with respect
to ε.

From the mathematical point of view it is interesting to ask: in the two-
dimensional case, are there uniformly convergent methods (in the maximum
norm) on standard meshes?
Just like the situation for parabolic problems that are 1D in space and have
parabolic boundary layers in their solutions, for elliptic problems with par-
abolic boundary layers in their solutions it is impossible to devise a method on
standard meshes that attains uniform convergence in the discrete maximum
norm. Nevertheless, for some problems with exponential layers exponential
fitting can be generalized to the two-dimensional case, as we now outline.

Let us consider the model problem

−ε�u+ b∇u+ cu = f in Ω = (0, 1)2, (3.19a)
u = 0 on Γ, (3.19b)

with constant coefficients b = (b1, b2) and c, with c > 0. We choose a uniform
mesh of squares with mesh width h and aim to achieve uniform convergence via
a Petrov-Galerkin method. The crucial question is how to choose the ansatz
and test functions.

As we observed in the one-dimensional case, it seems helpful to use as test
functions exponential splines that solve some adjoint problem. Therefore we
define φi(x) to be the solution of

−εφ′′i − b1φ′i = 0 in (0, 1) with the exception of the mesh points,
φi(xj) = δi,j ,

and define ψk(y) to be the solution of

−εψ′′
k − b2ψ′

k = 0 in (0, 1) with the exception of the mesh points,
ψi(yk) = δk,j .

The test space is finally defined to be the span of the basis functions {φiψk}
obtained by multiplying the above 1-dimensional test functions. We call this
test space the space of L∗-splines.
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Remark 6.26. In the case of variable coefficients it is a little more complicated
to define a suitable basis for the test space. Suppose that the south-west
corner of each rectangular element Ri,j has coordinates (xi, yj). We define
one-dimensional exponential splines by freezing coefficients at the midpoints
of edges. For instance, the spline ψi+1/2,j , for x ∈ (xi, xi+1) and y = yj , is a
solution of the equation

−εψ′′ − b1(xi+1/2, yj)ψ′ + c(xi+1/2, yj)ψ = 0.

Using splines of this type, let the function ψ0
i+1/2,j satisfy ψ(xi) = 1 and

ψ(xi+1) = 0, while the function ψ1
i+1/2,j satisfies ψ(xi) = 0 and ψ(xi+1) = 1.

Then define the basis functions for our two-dimensional exponentially fitted
spline space by

ϕij(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ1

i−1/2,j(x)ψ
1
i,j−1/2(y) in Ri−1,j−1,

ψ0
i+1/2,j(x)ψ

1
i,j−1/2(y) in Ri,j−1,

ψ0
i+1/2,j(x)ψ

0
i,j+1/2(y) in Ri,j ,

ψ1
i−1/2,j(x)ψ

0
i,j+1/2(y) in Ri−1,j .

The construction of exponential splines on triangular meshes is, for instance,
described in [104], [120]. �

Analogously to the above L∗-Splines, one can define L-splines using the orig-
inal differential operator. Surprisingly, unlike the one-dimensional case, the
analysis of the discrete problem for the Petrov-Galerkin method with L-splines
as ansatz functions and L∗-Splines as test functions shows that the discrete
problem is unstable. Thus possible choices of ansatz and test functions that
may yield uniform convergence are the following:

ansatz functions test functions
L-splines L-splines
bilinear L∗-splines

Equivalent combinations are (L∗-splines, L∗-splines) and (L∗-splines, bilinear
elements). In [66] the reader can find the result of numerical experiments for
these methods that indicate uniform convergence. But at present a complete
analysis in a strong norm is known only for the Galerkin method with L-
splines; the analysis of Petrov-Galerkin methods is more difficult and remains
more or less open.

Let us sketch the derivation of an error estimate for the Galerkin method
with exponential L-splines φi(x)ψj(y). We study the error in the ε-weighted
norm

‖u‖2ε := ε|u|21 + ‖u‖20 .
Set V = H1

0 (Ω). The bilinear form

a(u, v) := ε(∇u,∇v) + (b∇u+ cu, v) (3.20)
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is uniformly V -elliptic with respect to this norm:

a(u, u) ≥ α‖u‖2ε (constant α > 0, independent of ε), (3.21)

provided c− (1/2) div b > 0 on Ω̄. For simplicity we take b to be constant in
what follows.

As we saw in the one-dimensional case, the bilinear form is not uniformly
bounded with respect to the ε-weighted norm. Consequently a convergence
bound does not follow immediately from the interpolation error; a more so-
phisticated approach is needed.

We start from the inequality

α‖u− uh‖2ε ≤ a(u− uh, u− uh) = a(u− uh, u− uI). (3.22)

Here the nodal interpolant uI is defined by

uI(x, y) :=
∑

i

∑
j

u(xi, yj)φi(x)ψj(y). (3.23)

To proceed further, we need estimates of the interpolation error; in fact one
can prove

Lemma 6.27. Assume that f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0. Then
the error between the solution u of (3.19) and its nodal interpolant by L-splines
is bounded by

‖u− uI‖∞ ≤ Ch, (3.24a)
‖u− uI‖ε ≤ Ch1/2. (3.24b)

Sketch of the proof: First we prove the corresponding statement in the
one-dimensional case where −εu′′ + bu′ + cu = f . On the interval (xi−1, xi),
let us define

Mz := −ε d
2z

dx2
+ b

dz

dx
.

Then Mφ = 0 for each of our splines, so

|M(u− uI)| = |f − cu| ≤ C

and
(u− uI)|xi−1 = (u− uI)|xi

= 0.

Hence, invoking a comparison principle with the barrier function Φ1(x) =
C(x− xi−1) and a sufficiently large C yields

|(u− uI)(x)| ≤ Ch for x ∈ [xi−1, xi].

The more elaborate barrier function Φ2(x) = C(x − xi−1)(1 − e−b(xi−x)/ε)
gives the sharper bound
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|(u− uI)(x)| ≤ C(x− xi−1)(1− e−b(xi−x)/ε).

To estimate the interpolation error in the ‖ · ‖ε norm we start from

α‖u− uI‖2ε ≤ a(u− uI , u− uI)

= ε((u− uI)
′
, (u− uI)

′
) + (b(u− uI)

′
, u− uI)

+ (c(u− uI), u− uI).

After integration by parts, we have

α‖u− uI‖2ε ≤
∑

i

∫ xi

xi−1

[−ε(u− uI)
′′

+ b(u− uI)
′
](u− uI) + (c(u− uI), u− uI).

But −ε(u−uI)
′′

+ b(u−uI)
′
= f − cu and ‖u−uI‖∞ ≤ Ch, so it follows that

‖u− uI‖ε ≤ Ch1/2.

The proof for the two-dimensional case is similar; see [94]. An extra difficulty
here is that additional terms along the edges of rectangles arise from integra-
tion by parts and must be estimated. To do this one needs a priori information
about the derivatives of the solution u of (3.19), and the compatibility condi-
tions assumed enable us to derive this information.

Remark 6.28. The above estimate for the interpolation error in the ε-weighted
H1 norm is of optimal order. For consider the problem

−εz′′ + bz′ = w , z(0) = z(1) = 0

with constant b and w. Then one can calculate the interpolation error exactly,
obtaining

‖z − zI‖ε =
w

b
ε1/2
[bh
2ε

coth
(bh

2ε
− 1
)]1/2

.

Set ρ = bh/2ε. For small ρ the interpolation error behaves like ε1/2ρ1/2, i.e.,
like h1/2. �

To estimate the discretization error, we need still a technical result—an inverse
inequality that relates the L1 and L2 norms of the derivative of any function
from our discrete space of L-splines. This is given in [94]:

Lemma 6.29. For every function vh ∈ Vh one has∥∥∥ d
dx
vh

∥∥∥
L1

≤ Ch−1/2ε1/2
∥∥∥ d
dx
vh

∥∥∥
L2

,

where the constant C is independent of vh, h and ε.
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All the ingredients for estimating the discretization error are now in our
possession. We start from (3.22) and

a(u− uh, u− uI) = ε(∇(u− uh),∇(u− uI)) + (b∇(u− uh), u− uI)
+ (c(u− uh), u− uI).

The first and third terms on the right-hand side are estimated as follows. First
we apply a Cauchy-Schwarz inequality and obtain, for instance,

|ε(∇(u− uh),∇(u− uI))| ≤ ε1/2|u− uh|1 ε1/2|u− uI |1 ≤ ε1/2|u− uh|1 Ch1/2.

Then the inequality

α1α2 ≤
γ1α

2
1

2
+
α2

2

2γ1

gives
|ε(∇(u− uh),∇(u− uI))| ≤ C(γ, α)h+ γαε|u− uh|21.

Provided γ is small enough, we can move the term ε|u−uh|21 to the left-hand
side of (3.22).

It is more troublesome to estimate (b∇(u− uh), u− uI). First we have

(b∇(u− uh), u− uI) = (b∇(u− uI), u− uI) + (b∇(uI − uh), u− uI).

Integrating, one sees that (b∇(u− uI), u− uI) = 0, so

(b∇(u− uh), u− uI) = (b∇(uI − uh), u− uI).

Now the application of Lemmas 6.27 and 6.29 yields

|(b∇(u− uh), u− uI)| ≤ Ch−1/2ε1/2‖uI − uh‖1‖u− uI‖∞
≤ Ch1/2ε1/2(‖uI − u‖1 + ‖u− uh‖1)
≤ Ch+ Ch1/2ε1/2‖u− uh‖1
≤ Ch+ C(γ, α)h+ γαε‖u− uh‖21.

Assembling our calculations, we have proved

Theorem 6.30. Let u be a solution of the boundary value problem (3.19) that
has only exponential boundary layers, assuming the compatibility conditions
of Lemma 6.27. Then the error of the Galerkin method with L-splines on a
standard rectangular mesh satisfies the uniform convergence estimate

‖u− uh‖ε ≤ Ch1/2,

where the constant C is independent of h and ε.
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Detailed proofs for problems with variable coefficients and exponential
boundary layers can be found in [102] and [Dör98]. In the latter paper there
is also the estimate

‖u− uh‖∞ ≤ Ch,
but its derivation uses an inf-sup inequality whose proof is still open. This
paper also describes some ideas for increasing the order of convergence of
exponentially fitted methods in the two-dimensional case.

At present the analysis of exponentially fitted methods on triangular
meshes is not as well developed as on rectangular meshes. As there is the
additional drawback that for problems with strong parabolic boundary lay-
ers it is impossible to have a fitted method that is uniformly convergent in
the maximum norm, we terminate our discussion of exponential fitting in 2D.
From the practical point of view, it is more attractive to use adapted meshes
and standard finite element spaces.

6.3.3 Layer-adapted Meshes

Consider the following model problem, which has exponential boundary layers
at x = 0 and y = 0:

−ε�u− b · ∇u+ cu = f in Ω = (0, 1)2, u = 0 on Γ = ∂Ω (3.25)

with
(b1, b2) > (β1, β2) > 0 and c+ (div b)/2 ≥ ω > 0.

We assume that one can obtain an S-type decomposition (3.6) of u into smooth
and exponential layer components that satisfy the bounds (3.7). Problems
with parabolic boundary layers can be handled analogously if we assume the
existence of an suitable S-type decomposition.

Let us use a piecewise constant layer-adapted S-mesh. As Ω = (0, 1)2,
its construction is simple: the mesh is a tensor product of one-dimensional
S-meshes in the x and y-directions with transition points τx and τy defined
by (1.34) with β = β1 in the x-direction and β = β2 in the y-direction.

Remark 6.31. If the geometry of the given domain is more complicated, then it
is more difficult to construct layer-adapted meshes. But if the layer structure is
known then the construction of layer-adapted meshes is possible; see [Mel02],
for instance. �

For the upwind difference scheme whose solution is {uij} on an S-mesh
with N subintervals in each coordinate direction, one can prove, similarly to
the one-dimensional case, that

|u(xi, yj)− uN
ij | ≤ C N−1 lnN.

The same error bound is valid for the upwind finite volume method on an
S-mesh [86].

We shall study in detail linear and bilinear finite elements on an S-mesh.
First consider the interpolation error.
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Lemma 6.32. For the solution u of problem (3.25), the interpolation error
for nodal linear or bilinear interpolants uI on an S-mesh with σ = 2 in (1.34)
satisfies

‖u− uI‖∞ ≤ C(N−1 lnN)2, ‖u− uI‖0 ≤ CN−2, (3.26a)
ε1/2|u− uI |1 ≤ CN−1 lnN. (3.26b)

All constants here are independent of ε and N .

Proof: We use the solution decomposition (3.6) and study separately the
interpolation error for the smooth and layer parts. Moreover, we split Ω into
several subdomains: Ωg := [τx, 1] × [τy, 1] is characterized by a mesh width
of order O(N−1) in both coordinate directions, Ωf := [0, τx] × [0, τy] has
the extremely small mesh width O(εN−1 lnN) in both directions, and the
remainder of the domain, Ωa := Ω\(Ωg∪Ωf ), has highly anisotropic elements
where the length/width ratio in each element is not uniformly bounded in ε.

On the anisotropic elements it is vital to use the anisotropic interpolation
error estimates that we described in Chapter 4, Section 4.4:

‖w − wI‖Lp(τ) ≤ C
{
h2

x‖wxx‖Lp(τ) + hxhy‖wxy‖Lp(τ)

+h2
y‖wyy‖Lp(τ)

}
, (3.27a)

‖(w − wI)x‖0 ≤ C {hx‖wxx‖0 + hy‖wxy‖0} . (3.27b)

The estimation of the interpolation error is easy for the smooth part of
the solution decomposition. Thus we take as an example one of the layer
components, namely E1(x, y), which satisfies∣∣∣∣ ∂i+j

∂xi∂yj
E1(x, y)

∣∣∣∣ ≤ C ε−i exp(−β1x/ε).

In the region x ≤ τx we apply (3.27a):

‖E1 − EI
1‖∞ ≤ C

{
(εN−1 lnN)2 ε−2 + (εN−2 lnN) ε−1 +N−2

}
≤ C(N−1 lnN)2,

‖E1 − EI
1‖0 ≤ C

{
(εN−1 lnN)2 ε−3/2 + (εN−2 lnN) ε−1/2 +N−2

}
≤ C N−2,

where we made the reasonable assumption that ε ≤ N−1. For x ≥ τx, the
choice σ = 2 ensures that the layer term E1 is sufficiently small:

‖E1 − EI
1‖0 ≤ ‖E1 − EI

1‖∞ ≤ 2 ‖E1‖∞ ≤ C N−2.

The other layer components are handled analogously. The error in the | · |1
norm can be derived by imitating the analysis leading to (1.38).
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Given these interpolation error estimates, it is straightforward to transfer
the ideas of the proof of Theorem 6.18 from the one-dimensional case to the
two-dimensional case. One thereby obtains

Theorem 6.33. Suppose that the boundary value problem (3.25) is discretized
using a Galerkin finite element method with linear or bilinear finite elements
on an S-mesh with N subintervals in each coordinate direction and σ = 2.
Then one gets the ε-uniform error estimate

‖u− uN‖ε ≤ C N−1 lnN,

where the constant C is independent of ε and N .

When treating parabolic boundary layers one can prove a similar result for
an appropriate S-mesh.

Figure 6.13 shows the numerical solution for a test problem with expo-
nential boundary layers. On the left is the solution produced by the Galerkin
finite element method with bilinears on a standard mesh—large oscillations
are clearly visible—and on the right we solved the same problem using the
same method but on an S-mesh.
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Figure 6.13 Numerical solution of a problem with exponential layers

Optimal L∞ norm error estimates have not been proved for the linear
and bilinear methods of Theorem 6.33. Numerical experiments support the
conjecture that one obtains second-order convergence in the subdomain Ωg

defined in the proof of Lemma 6.32. But in the layer region the numerical
convergence rate observed for bilinear elements (approximately second order)
is twice the rate for linear elements! This surprising fact can be explained
through superconvergence properties of bilinear elements [86].

We have proved uniform convergence of the Galerkin method on layer-
adapted meshes. It is clear that layer-adapted meshes improve the stability
properties of the discretization, compared with standard meshes. Neverthe-
less in general we do not recommend the use of the pure Galerkin method
because the associated stiffness matrix has some undesirable properties: it
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has eigenvalues with very large imaginary parts so standard iterative meth-
ods for solving linear systems of equations have great difficulty in efficiently
computing the discrete solution.

In principle, one can combine every stabilization method (e.g., streamline
diffusion or discontinuous Galerkin) with layer-adapted meshes, but optimal
error estimates for such combinations are few and far between.

6.3.4 Parabolic Problems, Higher-Dimensional in Space

To finish this Chapter on singularly perturbed problems we give a brief dis-
cussion of non-stationary problems where the space dimension is greater than
one. Let Ω ⊂ Rn with n ≥ 2 and consider the initial-boundary value problem

∂u

∂t
− ε�u+ b∇u+ cu = f in Ω × (0, T ), (3.28a)

u = 0 on ∂Ω × (0, T ), (3.28b)
u = u0(x) for t = 0. (3.28c)

The streamline diffusion finite element method is often used to discretize prob-
lems like this. Writing (·, ·) for the inner product in L2(Ω), let us define the
bilinear form

A(w, v) : = (wt, v) + ε(∇w,∇v) + (b∇w + cw, v)

+δ
∑
K

(wt − ε�w + b∇w + cw, vt + b∇v)K

with, for simplicity, a globally constant streamline diffusion stabilization pa-
rameter δ.

Partition [0, T ] by the temporal grid 0 = t0 < t1 < · · · < tM = T where
tm = mτ for some time-step τ . A first possibility is to use continuous space-
time elements as ansatz functions. Then the discrete problem is generated
by ∫ tm

tm−1

A(u, v) dt =
∫ tm

tm−1

(f, v + δ(vt + b∇v)) dt for m = 1, 2, . . . ,M.

It seems more natural to follow the standard philosophy of initial-value
problems by time-stepping in the discretization of (3.28). The discontinu-
ous Galerkin method in time allows to implement this strategy. Let Vh be a
finite element space of functions defined on Ω and let U be a polynomial in t
with values in Vh on the time interval (tm−1, tm). Then we can use streamline
diffusion in space, combined with discontinuous Galerkin in time, as follows:
Find U such that for all v ∈ Vh and m = 1, 2, . . . ,M we have
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tm−1

A(U, v) dt+ (Um−1
+ , vm−1

+ ) =

=
∫ tm

tm−1

(f, v + δ(vt + b∇v)) dt+ (Um−1
− , vm−1

+ ).
(3.29)

where wm−1
− (wm−1

+ ) means the limit reached as we approach t = tm−1 from
below (above). When m = 1 one takes Um−1

− ≡ 0 and Um−1
+ to be some

approximation of the initial data u0. This method allows solutions to be dis-
continuous across each time level tm so it is possible to change the spatial
mesh when moving from the strip (tm−1, tm) to the strip (tm, tm+1). Nävert
[Näv82] proved error estimates for (3.29) like those for the stationary case.

The combination of a discontinuous Galerkin discretization in space with
the above discontinuous Galerkin approach in time was recently analysed in
[49].

Another popular method in the non-stationary case is based on the behav-
iour of the characteristics of the reduced problem. It discretizes the so-called
total (first-order) derivative and is called the Lagrange-Galerkin method .

Let us define the vector field X = X(x, s, t) by

dX(x, s, t)
dt

= b(X(x, s, t), t), X(x, s, t)|t=s = x. (3.30)

Then setting u∗(x, t) = u(X(x, s, t), t), the chain rule yields

∂u∗

∂t
− ε�u∗ + c u∗ = f.

Thus in the strip (tm−1, tm), with x = X(x, tm, tm), it is reasonable to use
the following approximation:

∂u∗

∂t
≈ u∗(x, tm)− u∗(x, tm−1)

τ
=

1
τ

[u(x, tm)− u(X(x, tm, tm−1), tm−1)] .

Finally, the Lagrange-Galerkin method can be written as:
For m = 1, 2, . . . ,M , find Um ∈ Vh such that for all vh ∈ Vh

1
τ

(
(Um − Um−1(X(·, tm, tm−1), tm−1)), vh

)
+ε(∇Um,∇vh) + (cUm, vh) = (fm, vh).

Error estimates for this method can be found for example in [12]. It is possible
to weaken the requirement that the system (3.30) must be solved exactly for
the characteristics.

The analysis of discretization methods on layer-adapted meshes for the
problem (3.28) is still in its infancy. So far results are available only for com-
binations of the upwind finite difference method with low-order methods in
time that make it possible to apply a discrete maximum principle [Shi92].
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Exercise 6.34. Consider the singularly perturbed boundary value problem

−εu′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0,

with 0 < ε# 1, b(x) > 0.
On an equidistant mesh, for the discretization of u′′ we use the standard dif-
ference stencil and for u′ a one-sided stencil (which one?). Investigate stability
and consistency while monitoring the dependence on the parameter ε of any
constants appearing in the analysis.

Exercise 6.35. Consider the singularly perturbed boundary value problem

−εu′′ + bu′ = f on (0, 1), u(0) = u(1) = 0,

with constant b and f . Construct the exact difference scheme on an equidistant
mesh and compare it with the Iljin scheme.

Exercise 6.36. Construct a three-point scheme of the form

r−ui−1 + rcui + r+ui+1 = fi

on an equidistant mesh to discretize the singularly perturbed boundary value
problem

−εu′′ + bu′ = f on (0, 1), u(0) = u(1) = 0,

with b > 0, subject to the requirement that the functions 1, x and exp(−b(1−
x)/ε) are discretized exactly. Compare your result with the Iljin scheme.

Exercise 6.37. Consider the singularly perturbed boundary value problem

−εu′′ + bu′ = f on (0, 1), u(0) = u(1) = 0,

with constant b and f . To discretize this problem use a Petrov-Galerkin
method on an equidistant mesh with linear ansatz and quadratic test func-
tions. Write down the discrete problem generated. Discuss the properties of
the scheme.

Exercise 6.38. Apply a Petrov-Galerkin method on an equidistant mesh with
L-splines as ansatz functions and L∗-splines as test functions to discretize the
boundary value problem

−εu′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0.

Compute the discrete problem if the coefficients of the given problem are
approximated by piecewise constants on your mesh.

Exercise 6.39. Consider the elliptic boundary value problem

−ε�u+ b∇u = f in Ω ⊂ R2,

u = 0 on Γ.
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Discretize the problem using a finite volume method based on Voronoi boxes
dual to a given triangulation.
a) Let Ω be polygonal and the triangulation weakly acute. Under which con-
ditions on the free parameters λkl of the quadrature rule is the coefficient
matrix of the discrete problem an M -matrix?
b) Let Ω = (0, 1)2. We triangulate Ω with a uniform three-directional mesh
based on the straight lines x = 0, y = 0, x = y. Compare explicitly the dis-
crete problem generated by the finite volume approach with upwind finite
differencing.

Exercise 6.40. Consider the boundary value problem

−ε�u− pux − quy = f in Ω = (0, 1)2,
u = 0 on Γ,

and its discretization on an equidistant mesh of squares using the streamline
diffusion method with bilinear elements. Here p and q are positive constants.
a) What difference star is generated?
b) Examine whether or not it is possible to choose the streamline diffusion
parameter in such a way that the coefficient matrix of the discrete problem
generated is an M -matrix.

Exercise 6.41. Discretize the boundary value problem

ε�u+ b∇u = f in Ω = (0, 1)2,
u = 0 on Γ,

for constant b = (b1, b2) on a uniform mesh of squares, using a Petrov-Galerkin
method with L-Splines φ as the ansatz functions. The test functions ψ have
the tensor-product form

ψi,j(x, y) = ψi(x)ψj(y)

with
ψi(xj) = δij , ψi(yj) = δij

and
supp (ψi,j) = [xi−1, xi]× [yj−1, yj ]

but are otherwise arbitrary. Verify that the difference stencil generated has
the form

ε

h2

i+1∑
r=i−1

j+1∑
q=j−1

αrqurq

with

[αij ] =

⎡⎢⎣R
−
x S

+
y +R+

y S
−
x Rc

xS
+
y +R+

y S
c
x R

+
x S

+
y +R+

y S
+
x

R−
x S

c
y +Rc

yS
−
x Rc

xS
c
y +Rc

yS
c
x R+

x S
c
y +Rc

yS
+
x

R−
x S

−
y +R−

y S
−
x Rc

xS
−
y +R−

y S
c
x R

+
x S

−
y +R−

y S
+
x

⎤⎥⎦
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and
R+

x = σ(ρx), R−
x = σ(−ρx), Rc

x = −(R−
x +R+

x ),
ρx = b1h/ε, ρy = b2h/ε, σ(x) = x/(1− exp(−x)),

with
hS+

x = (φi+1, ψi), hSc
x = (φi, ψi), hS−

x = (φi−1, ψi),
hS+

y = (φj+1, ψj), hSc
y = (φj , ψj), hS−

y = (φj−1, ψj).

Exercise 6.42. Discretize the boundary value problem

−εu′′ + bu′ = f on (0, 1), u(0) = u(1) = 0,

with constant b and f by central differencing on an S-mesh. Does the obtained
numerical solution oscillate?



7

Numerical Methods for Variational Inequalities
and Optimal Control

7.1 The Problem and its Analytical Properties

Weak formulations of partial differential equations can, as shown in Chapter 3,
be written as variational equations. They also give necessary and sufficient op-
timality conditions for the minimization of convex functionals on some linear
subspace or linear manifold in an appropriate function space. In models that
lead to variational problems, the constraints that appear have often a struc-
ture that does not produce problems posed on subspaces. Then optimality
conditions do not lead automatically to variational equations, but may in-
stead be formulated as variational inequalities. In the present section, several
important properties of variational inequalities are collected and we sketch
their connection to the problems of convex analysis.

Let (V, ‖·‖) be a real Hilbert space and G a nonempty closed convex subset
of V . Suppose we are given a mapping F : G → V ∗, where V ∗ is the dual
space of V . We consider the following abstract problem:
Find u ∈ G such that

〈Fu, v − u〉 ≥ 0 for all v ∈ G. (1.1)

Here 〈s, v〉 denotes the value of the functional s ∈ V ∗ applied to v ∈ V .
The relation (1.1) is called a variational inequality and u is a solution of this
variational inequality.

If G is a linear subspace of V then v := u± z is in G for each z ∈ G. This
fact and the linearity of 〈Fu, ·〉 together imply that the variational inequality
(1.1) is then equivalent to

〈Fu, z〉 = 0 for all z ∈ G.
Thus variational equations can be considered as particular examples of vari-
ational inequalities and (1.1) generalizes the variational equation problem in
a natural way.

In what follows we consider two simple examples of physical models that
lead directly to variational inequalities.
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Example 7.1. A membrane is stretched over some domain Ω ⊂ R2 and is
deflected by some force having pointwise density f(x). At the boundary Γ
the membrane is fixed and in the interior of Ω the deflection is assumed to be
bounded from below by a given function g (an obstacle). Then the deflection
u = u(x) is the solution of the variational inequality

find u ∈ G such that
∫
Ω

∇u∇(v − u) dx ≥
∫
Ω

f (v − u) dx

for all v ∈ G
(1.2a)

where
G := { v ∈ H1

0 (Ω) : v ≥ g a.e. in Ω }. (1.2b)

In this example the operator F : G → V ∗ that appears in the abstract
problem (1.1) is defined on the whole space V = H1

0 (Ω) by

〈Fu, v〉 =
∫
Ω

∇u∇v dx −
∫
Ω

fv dx for all u, v ∈ V . (1.3)

Similarly to the relationship between differential equations and variational
equations, (1.2) can be considered as a weak formulation of a system of dif-
ferential inequalities. If the solution u of (1.2) has the additional regularity
property that u ∈ H2(Ω), then from (1.2) we can show that u satisfies the
conditions

−Δu ≥ f
u ≥ g

(Δu+ f)(u− g) = 0

⎫⎬⎭ in Ω ,

u|Γ = 0 .

(1.4)

Conversely, any function u ∈ H2(Ω) that satisfies (1.4) is also a solution of
the variational inequality problem (1.2). The system (1.4) can be interpreted
as follows: depending on the solution u, the domain Ω can be partitioned
into a subset D1 in which the differential equation −Δu = f holds and its
complement D2—the contact zone—in which the solution u touches the given
obstacle g, i.e.,

D2 = {x ∈ Ω : u(x) = g(x) }.
Figure 7.1 illustrates this situation.

Under this interpretation the problem (1.2) is known in the literature
as an obstacle problem. As a rule, the differential equation is valid only in
some subdomain D1 that depends upon the solution; the inner boundary
Γ∗ := ∂D1∩∂D2 and the conditions that u has to satisfy there are not known
a priori. For this reason such problems are also called free boundary value
problems. From the matching conditions for piecewise-defined functions we
have the equations

u|Γ∗ = g|Γ∗ and
∂u

∂n

∣∣∣∣
Γ∗

=
∂g

∂n

∣∣∣∣
Γ∗

,
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••
 D

2

 u(x)

 g(x)

Figure 7.1 Obstacle problem

where n is a unit normal to Γ∗. A detailed and extensive analysis of various
models that lead to free boundary value problems can be found in [Fri82].
�

Example 7.2. Once again we start from a physical model and give a weak
formulation of the problem as a variational inequality. Consider a domain Ω
with boundary Γ . In Ω let u(x) be the difference between the concentration
of some substance and a given reference value. Changes in the concentration
in the interior of Ω are caused by sources (or sinks) with intensity f and
at the boundary by diffusion. The boundary Γ is divided into two disjoint
parts Γ1 and Γ2. On Γ1 one has homogeneous Dirichlet boundary conditions
while the portion Γ2 of the boundary is assumed to be semi-permeable. This
means that on Γ2 only a flux directed from outside to inside Ω is possible and
this flux occurs only if the concentration just inside the boundary is lower
than the given reference concentration. If additional transition phenomena
at the boundary are ignored, then this model leads to the following system
(see [DL72]):

−Δu = f in Ω ,

u = 0 on Γ1 ,

u ≥ 0

∂u
∂n
≥ 0

∂u
∂n

u = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ on Γ2 .

(1.5)

Here, as described above, we have Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅, while n is
the outward-pointing unit normal to subdomain D1, but the inward-pointing
unit normal to D2.

To formulate this model as a variational inequality, we choose the space
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V = { v ∈ H1(Ω) : v|Γ1 = 0 } (1.6)

and define
G = { v ∈ V : v|Γ2 ≥ 0 }. (1.7)

Any solution u ∈ H2(Ω) of (1.5) will also satisfy the variational inequality∫
Ω

∇u∇(v − u) dx ≥
∫
Ω

f (v − u) dx for all v ∈ G . (1.8)

On the other hand, problem (1.8) has a unique solution u ∈ G. Thus this
variational inequality provides a weak formulation of (1.5). Problem (1.5),
and its weak formulation (1.8), are known as Signorini’s problem. Since this
model can be characterized by an obstacle condition at the boundary it is
often described as a problem with a “thin” obstacle. �

For our further abstract analysis we assume that the operator F of (1.1)
has the following properties:

• The operator F is strongly monotone over G, i.e., there exists a constant
γ > 0 such that

γ ‖u− v‖2 ≤ 〈Fu− Fv, u− v〉 for all u, v ∈ G; (1.9)

• F is Lipschitz continuous in the sense that for some non-decreasing func-
tion ν : R+ → R+ one has

‖Fu− Fv‖∗ ≤ ν(δ)‖u− v‖ for all u, v ∈ Gδ, (1.10a)

where Gδ is defined by

Gδ : = { v ∈ G : ‖v‖ ≤ δ }. (1.10b)

We make these relatively strong assumptions to simplify our presentation,
but they could be relaxed in various ways. For the analysis of variational
inequalities under weaker conditions we refer the reader to, e.g., [HHNL88,
KS80]. Our aim here is to present the basic principles and ideas that are used
in the analysis of (1.1); this will help us later to develop numerical methods
and investigate their convergence properties.

First, some useful lemmas are given.

Lemma 7.3. Under our previous assumptions, there exists a non-decreasing
function μ : R+ → R+ such that

| 〈Fu, v〉 | ≤ μ(‖u‖)‖v‖ for all u, v ∈ G. (1.11)
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Proof: Since G �= ∅, we can choose ṽ ∈ G. From (1.10) and the definition of
the norm ‖ · ‖∗ in the dual space V ∗ it follows that

|〈Fu− F ṽ, v〉| ≤ ν(max{‖u‖, ‖ṽ‖})‖u− ṽ‖ ‖v‖.

Hence

|〈Fu, v〉| ≤ ν(max{‖u‖, ‖ṽ‖})(‖u‖ + ‖ṽ‖) ‖v‖ + |〈F ṽ, v〉|.

Now set
μ(s) := ν(max{s, ‖ṽ‖})(s + ‖ṽ‖) + ‖F ṽ‖∗.

This function satisfies the desired inequality (1.11).

Let (·, ·) denote the inner product in V .

Lemma 7.4. Let Q ⊂ V be nonempty, convex and closed. Then for each
y ∈ V there exists a unique u ∈ Q such that

(u− y, v − u) ≥ 0 for all v ∈ Q. (1.12)

The associated projector P : V → Q defined by Py := u is non-expansive, i.e.

‖Py − P ỹ‖ ≤ ‖y − ỹ‖ for all y, ỹ ∈ V. (1.13)

Proof: For fixed but arbitrary y ∈ V we consider the variational problem

min
v∈Q

J(v) := (v − y, v − y). (1.14)

Now
Q �= ∅ and J(v) ≥ 0 for all v ∈ V,

so inf
v∈Q

J(v) ≥ 0. Let {εk} be a monotone sequence that satisfies

εk > 0 for k = 1, 2, . . . and lim
k→+∞

εk = 0.

The definition of the infimum implies that we can choose a sequence {vk} ⊂ Q
with

J(vk) ≤ inf
v∈Q

J(v) + εk , for k = 1, 2, . . . (1.15)

It follows that

‖vk − y‖2 ≤ ‖z − y‖2 + εk , k = 1, 2, . . . ,

for any z ∈ Q. Thus the sequence {vk} is bounded. Now the reflexivity of
V implies that {vk} is weakly compact. Without loss of generality we may
suppose that the entire sequence {vk} is weakly convergent to some v̂ ∈ V .
Since Q is convex and closed, Q is also weakly closed. Hence v̂ ∈ Q. The
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convexity and continuity of the functional J(·) imply that it is weakly lower
semi-continuous (see, e.g., [Zei90]). Putting all these facts together, we obtain

J(v̂) ≤ lim inf
k∈K

J(vk)

where K = {1, 2, . . . }. Recalling (1.15), we see that v̂ is a solution of the vari-
ational problem (1.14). Taking into account the properties of the functionals
J(·) leads to

(v̂ − y, v − v̂) ≥ 0 for all v ∈ Q, (1.16)

which proves (1.12).
Next, we prove the uniqueness of the solution v̂. Suppose that ṽ ∈ Q

satisfies
(ṽ − y, v − ṽ) ≥ 0 for all v ∈ Q.

Taking v = v̂ here and v = ṽ in (1.16), then adding, we get

(v̂ − ṽ, ṽ − v̂) ≥ 0,

which implies that ṽ = v̂. That is, the mapping P : V → Q is uniquely
defined.

Finally, let y, ỹ ∈ V be arbitrary. Then

(Py − y, v − Py) ≥ 0 for all v ∈ Q,
(P ỹ − ỹ, v − P ỹ) ≥ 0 for all v ∈ Q.

Taking v = P ỹ in the first inequality and v = Py in the second, then adding,
we arrive at

(Py − P ỹ − (y − ỹ), P ỹ − Py) ≥ 0.

That is,
(y − ỹ, Py − P ỹ) ≥ (Py − P ỹ, Py − P ỹ).

A Cauchy-Schwarz inequality now gives the bound (1.13).

Remark 7.5. The argument used in the proof of Lemma 7.4 can also be used
to prove the Riesz representation theorem. See Exercise 7.13. �

Lemma 7.6. Let Q ⊂ V be nonempty, convex and closed. Assume that
the operator F is strongly monotone and Lipschitz continuous on Q, with
monotonicity and Lipschitz constants γ > 0 and L > 0, respectively. Let
PQ : V → Q denote the projector onto Q and j : V ∗ → V the Riesz represen-

tation operator. Then for any fixed parameter r in the interval
(

0, 2 γ
L2

)
, the

mapping T : V → Q defined by

T (v) := PQ(I − r j F )v for all v ∈ V (1.17)

is contractive on Q.
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Proof: We have (compare the proof of the Lax-Milgram Lemma)

‖(I − rjF )v − (I − rjF )ṽ‖2 =

= (v − ṽ − rj(Fv − F ṽ), v − ṽ − rj(Fv − F ṽ))
= ‖v − ṽ‖2 − 2r 〈Fv − F ṽ, v − ṽ〉 + r2 ‖Fv − F ṽ‖2

≤ (1− 2rγ + r2 L2) ‖v − ṽ‖2 for all v, ṽ ∈ Q .

This inequality (1.13) shows that TQ is for r ∈
(

0, 2γ
L2

)
contractive on Q.

Next we turn our attention to existence and uniqueness results for the
solution of the variational inequality (1.1).

Theorem 7.7. The variational inequality (1.1) has a unique solution u ∈ G,
with

‖u‖ ≤ 1
γ
μ(‖v̂‖) + ‖v̂‖ for any v̂ ∈ G,

where the function μ : R+ → R+ is defined in Lemma 7.3.

Proof: We shall use Lemma 7.6 to construct an suitable contraction mapping,
but unlike the proof of the Lax-Milgram lemma, the mapping F may be not
globally Lipschitz continuous. To deal with this inconvenience we introduce
an additional restriction that depends on a parameter δ > 0. Then using an
a priori bound we shall show that this restriction is inessential and can be
omitted provided that δ is sufficiently large.

Choose δ > 0 such that the set Gδ defined by (1.10b) is nonempty. As it is
the intersection of two closed and convex sets, Gδ is also convex and closed.
By Lemma 7.6 the mapping TGδ

: Gδ → Gδ defined by (1.17) is contractive
for each r ∈ (2γ/ν(δ)2). Hence Banach’s fixed point theorem guarantees the
existence of a unique urδ ∈ Gδ that satisfies

urδ = TGδ
urδ . (1.18)

The characterization (1.12) of projections given in Lemma 7.4, the definition
(1.17) of TGδ

and (1.18) together yield the inequality

(urδ − (I − rjF )urδ, v − urδ) ≥ 0 for all v ∈ Gδ.

That is,
r (jFurδ, v − urδ) ≥ 0 for all v ∈ Gδ .

But j : V ∗ → V is the Riesz representation operator and r > 0, so this is
equivalent to

〈Furδ, v − urδ〉 ≥ 0 for all v ∈ Gδ . (1.19)
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Thus urδ ∈ Gδ is the solution of the variational inequality subject to the
additional constraint ‖v‖ ≤ δ.

Let v̂ ∈ Gδ be arbitrary but fixed. Then (1.19) implies that

〈Furδ − F v̂ + F v̂, v̂ − urδ〉 ≥ 0 .

Hence, invoking the strong monotonicity assumption (1.9) and Lemma 7.3,
we get

‖urδ − v̂‖ ≤
1
γ
μ(‖v̂‖).

Consequently

‖urδ‖ ≤
1
γ
μ(‖v̂‖) + ‖v̂‖ . (1.20)

If the parameter δ is increased we can nevertheless use the same v̂ ∈ Gδ. Thus
δ > 0 can be chosen such that

δ >
1
γ
μ(‖v̂‖) + ‖v̂‖.

Now (1.20) gives
‖urδ‖ < δ.

Next we show that this inequality and(1.19) together imply

〈Furδ, v − urδ〉 ≥ 0 for all v ∈ G . (1.21)

For suppose that (1.21) does not hold. Then there exists v ∈ G such that

〈Furδ, v − urδ〉 < 0 . (1.22)

Inequality (1.19) tells us that v �∈ Gδ, i.e., that ‖v‖ > δ. We select

ṽ := (1− λ)urδ + λv (1.23)

where

λ :=
δ − ‖urδ‖
‖v‖ − ‖urδ‖

.

Now ‖urδ‖ < δ < ‖v‖ implies that λ ∈ (0, 1). That is, ṽ lies on the line
segment joining urδ and v, and

‖ṽ‖ ≤ (1− λ)‖urδ‖ + λ‖v‖ = δ.

The convexity of G then yields ṽ ∈ Gδ. But (1.22) and (1.23) give

〈Furδ, ṽ − urδ〉 = λ 〈Furδ, v − urδ〉 < 0,

which contradicts (1.19). This contradiction shows that (1.21) does hold, i.e.,
urδ is a solution of the variational inequality (1.1).

Uniqueness follows in the usual way from the monotonicity property (1.9).
Finally, the a priori bound of the theorem has already been proved in (1.20).
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The proof of Lemma 7.4 exploited the relationship between variational
problems with constraints and variational inequalities. A generalization of
this is also valid (see [KS80], [ET76]):

Lemma 7.8. Assume that the functional J : G→ R is Fréchet differentiable
on G. If u ∈ G is a solution of the variational problem

min
v∈G

J(v), (1.24)

then u satisfies the variational inequality

〈J ′(u), v − u〉 ≥ 0 for all v ∈ G . (1.25)

If in addition J is convex, then (1.25) is a sufficient condition for u ∈ G to
be a solution of the variational problem (1.24).

Figure 7.2 Characterization of the optimal solution u

In the finite-dimensional case, Lemma 7.8 has a geometric interpretation that
is sketched in Figure 7.2.

In what follows, where in particular we seek to generate an approximation
Gh of the set G, a further specification of the representation of G is required,
e.g., in the form (1.2b) that occurs in obstacle problems. An equivalent de-
scription is given by
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G =

⎧⎨⎩v ∈ H1
0 (Ω) :

∫
Ω

vw dx ≥
∫
Ω

gw dx for all w ∈ L2(Ω), w ≥ 0

⎫⎬⎭ . (1.26)

Here in L2(Ω) the natural (almost everywhere) partial ordering is applied.
Let W be another real Hilbert space. A set K ⊂W is said to be a cone if

and only if the implication

w ∈ K =⇒ λw ∈ K for all λ ≥ 0

is valid. Let K ⊂ W be a closed convex cone in W . Furthermore, let b :
V ×W → R be a continuous bilinear form. As a generalization of (1.26), let
us assume that the set G ⊂ V has the representation

G = { v ∈ V : b(v, w) ≤ g(w) for all w ∈ K} (1.27)

for some g ∈ W ∗. As for mixed variational equations (compare Section 4.7)
one has

Lemma 7.9. Let G ⊂ V be defined by (1.27). Suppose that (u, p) ∈ V × K
satisfies the mixed variational inequalities

〈Fu, v〉 + b(v, p) = 0 for all v ∈ V, (1.28a)

b(u,w − p) ≤ g(w − p) for all w ∈ K . (1.28b)

Then u is a solution of the variational inequality (1.1).

Proof: Since K is convex and p ∈ K, for any y ∈ K we have

w := p+ y ∈ K .

Now (1.28b) gives
b(u, y) ≤ g(y) for all y ∈ K .

By the representation (1.27) we get u ∈ G.
Since K is a cone, we can take w = 2p and w = p/2 in (1.28b). With

these choices, the bilinearity of b and linearity of g give b(u, p) ≤ g(p) and
b(u, p) ≥ g(p), respectively. That is, b(u, p) = g(p). Hence, invoking (1.28a),
we obtain

〈Fu, v − u〉 + b(v, p) − g(p) = 0 for all v ∈ V .

Then p ∈ K and (1.27) deliver the inequality

〈Fu, v − u〉 ≥ 0 for all v ∈ G .

We see that u is a solution of the variational inequality (1.1).
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The subsequent Theorem 7.11 that ensures the existence of a solution
(u, p) ∈ V ×K of the mixed problem in the case of variational equalities rests
upon an extension of the bipolar theorem (see [Goh02]) of closed convex cones.
For a given cone K ⊂W we apply the continuous bilinear form b : V ×W → R
instead of the usual scalar product to define the modified polar and bipolar
cone by

K∗ := { v ∈ V : b(v, w) ≤ 0 ∀w ∈ K} (1.29)

and
K∗∗ := {w ∈W : b(v, w) ≤ 0 ∀ v ∈ K∗ }, (1.30)

respectively. The definitions (1.29), (1.30) together with the continuity of the
bilinear form b(·, ·) imply that K∗∗ is a closed convex cone. Further we have

K ⊂ K∗∗. (1.31)

To be able to prove K = K∗∗ we assume that the Babuška-Brezzi conditions
are fulfilled. In particular, it is assumed that for some δ > 0 we have

sup
v∈V

b(v, w)
‖v‖ ≥ δ ‖w‖ for all w ∈W . (1.32)

Lemma 7.10. The bipolar cone K∗∗ defined by (1.29), (1.30) equals the orig-
inal cone K if and only if K is closed and convex.

Proof: Since K∗∗ is a closed convex cone and (1.31) holds we have only to
show that for any closed convex cone K ⊂W the inclusion K∗∗ ⊂ K holds.

Assume this is not true. Then there exists some element w∗∗ ∈ K∗∗\K.
Because K is closed and convex it can be strictly separated from w∗∗ by some
hyperplane, i.e. there exists some q ∈W ∗ such that

q(w) ≤ 0 for all w ∈ K and q(w∗∗) > 0. (1.33)

The supposed Babuška-Brezzi condition (1.32) guarantee that some v̄ ∈ V
exists such that

b(v̄, w) = q(w) for all w ∈W.
(see Theorem 3.48) Thus (1.33) is equivalent to

b(v̄, w) ≤ 0 for all w ∈ K and b(v̄, w∗∗) > 0. (1.34)

The first part implies
v̄ ∈ K∗

Hence the second part yields w∗∗ �∈ K∗∗ which contradicts our assumption.

Theorem 7.11. Let G �= ∅ be defined by (1.27). Assume that (1.32) is satis-
fied. Then the mixed formulation (1.28) has a solution (u, p) ∈ V ×K.
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Proof: From G �= ∅ and Theorem 7.7, the variational inequality (1.1) has a
unique solution u ∈ G. We set

Z = { v ∈ V : b(v, w) = 0 for all w ∈W } .

Clearly u + z ∈ G for all z ∈ Z. Since Z ⊂ V is a linear subspace, the
variational inequality (1.1) implies that

〈Fu, z〉 = 0 for all z ∈ Z .

As the Babuška-Brezzi condition (1.32) is valid, there exists p ∈W such that
(see Theorem 3.48, compare also [BF91])

〈Fu, v〉 + b(v, p) = 0 for all v ∈ V . (1.35)

Furthermore, there exists ũ ∈ Z⊥ such that

b(ũ, w) = g(w) for all w ∈W . (1.36)

With (1.29) we obtain

v ∈ G ⇐⇒ v − ũ ∈ K∗. (1.37)

In addition, (1.36) together with the definition (1.27) of G and K ⊂W imply
ũ ∈ G and 2u− ũ ∈ G. Now the variational inequality (1.1) with the choices
v = ũ and v = 2u− ũ yields

〈Fu, ũ− u〉 ≥ 0 and 〈Fu, u− ũ〉 ≥ 0 .

Hence we have
〈Fu, ũ− u〉 = 0 .

Taking v = ũ− u in (1.35) now gives

b(ũ− u, p) = 0 .

Then in (1.36) set w = p and we get

b(ũ, p) = g(p) . (1.38)

Consequently, using u ∈ G and (1.27), one has

b(u,w − p) ≤ g(w − p) for all w ∈ K .

It remains only to show that p ∈ K. From (1.27) and (1.38) we see that

b(v − ũ, p) ≤ 0 for all v ∈ G

and because of (1.37) we have q ∈ K∗∗. Now, Lemma 7.10 completes the proof.
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Like mixed variational equations, saddle-point results can be derived for
the problems considered here. IfG is given by (1.27), then the related Lagrange
functional can be defined as before by

L(v, w) := J(v) + b(v, w) − g(w) for all v ∈ V, w ∈ K. (1.39)

Unlike the case of a variational equation, the cone K is used here instead of
the whole space W . For this situation a pair (u, p) ∈ V ×K is called a saddle
point of the Lagrange functional defined by (1.39) if

L(u,w) ≤ L(u, p) ≤ L(v, p) for all v ∈ V, w ∈ K. (1.40)

By means of the arguments used in the proof of Lemma 7.9 we can prove,
analogously to saddle-point results for variational equations, the following
lemma:

Lemma 7.12. Let (u, p) ∈ V ×K be a saddle point of the Lagrange functional
L(·, ·). Then u is a solution of the variational problem (1.24).

Proof: As Exercise 7.14.

Exercise 7.13. Use the arguments of Lemma 7.4 to prove the Riesz repre-
sentation theorem: For each f ∈ V ∗ there is a unique g ∈ V such that

〈f, v〉 = (g, v) for all v ∈ V.

Exercise 7.14. Prove Lemma 7.12.

7.2 Discretization of Variational Inequalities

In this section we shall discuss the discretization of variational inequalities by
finite element methods. For the numerical treatment of variational inequal-
ities by finite difference methods and an investigation of their convergence
properties, the reader can consult [45], for example.

As a test problem we shall consider the variational inequality (1.1), where
the general assumptions made in Section 7.1 are presumed to be satisfied.

Let Vh be a finite-dimensional subspace of V and letGh ⊂ Vh be nonempty,
closed and convex. To discretize the problem (1.1) we consider the method:
Find some uh ∈ Gh such that

〈Fuh, vh − uh〉 ≥ 0 for all vh ∈ Gh. (2.1)

At first sight this problem seems to be a conforming finite element discretiza-
tion of (1.1), but a closer look shows that Vh ⊂ V and Gh ⊂ Vh do not
necessarily imply Gh ⊂ G. In fact this property is inappropriate in many



448 7 Variational Inequalities, Optimal Control

cases: for obstacle problems, the set G defined by (1.2b) will not in general
be approximated well by

G̃h := { vh ∈ Vh : vh(x) ≥ g(x) a.e. in Ω }

—instead one should use

Gh := { vh ∈ Vh : vh(pi) ≥ g(pi) , i = 1, . . . , N } . (2.2)

Here the pi, i = 1, . . . , N , are the interior grid points in the partition of the
domain Ω that is used in the finite element discretization Vh.

As Gh �⊂ G is possible, the properties (1.9) and (1.10) are not automati-
cally true on Gh. To compensate for this, one can place additional hypotheses
on F . Suppose that F : V → V ∗, i.e., F is defined on the whole space V . We
also assume property (1.10) in the extended form

‖Fu−Fv‖∗ ≤ ν(δ)‖u− v‖ for all u, v ∈ V with ‖u‖ ≤ δ, ‖v‖ ≤ δ , (2.3)

and we suppose that there exists a constant γh > 0 that is independent of the
discretization and is such that

γh‖uh − vh‖2 ≤ 〈Fuh − Fvh, uh − vh〉 for all uh, vh ∈ Gh . (2.4)

Under all these assumptions Theorem 7.7 can be immediately extended to the
discrete problem and we get

Theorem 7.15. The discrete variational inequality (2.1) has a unique solu-
tion uh ∈ Gh. Furthermore,

‖uh‖ ≤
1
γh
μ(‖v̂h‖) + ‖v̂h‖ for all v̂h ∈ Gh,

where the function μ is defined as in Lemma 7.3 with G replaced by Gh.

Before we proceed with the analysis of the variational inequality (2.1) and
consider the convergence behaviour of the solutions uh of the discrete problems
(2.1) to the solution u of the continuous problem (1.1) as h→ 0, we study in
more detail the structure of the finite-dimensional problems generated.

Let Vh = span{ϕi}Ni=1, i.e., each vh ∈ Vh has the representation

vh(x) =
N∑

i=1

viϕi(x) .

In particular uh(x) =
N∑

j=1

ujϕj(x). Then (2.1) is equivalent to the system

〈
F
( N∑

j=1

ujϕj

)
,

n∑
i=1

(vi − ui)ϕi

〉
≥ 0 for all vh =

N∑
i=1

viϕi ∈ Gh . (2.5)
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In the case of a linear mapping F and variational equations, the inequalities
(2.5) are equivalent to the Galerkin equations, but in the context of variational
inequalities a further characterization of Gh is needed to relate (2.5) to a
system that can be handled efficiently.

The discretization (2.2) of the obstacle problem (1.2) yields the following
complementarity problem:

N∑
j=1

a(ϕj , ϕi)uj ≥ fi,

ui ≥ gi,(
N∑

j=1

a(ϕj , ϕi)uj − fi

)
(ui − gi) = 0,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
for i = 1, . . . , N, (2.6)

with a(ϕj , ϕi) :=
∫
Ω

∇ϕj∇ϕi dx, fi :=
∫
Ω

fϕi dx and gi := g(pi). We emphasize

that complementarity problems require special algorithms for their efficient
numerical treatment. In addition, the finite element discretization of vari-
ational inequalities generates large sparse matrices whose special structure
should be taken into account when designing numerical algorithms for their
solution.

If the variational inequality (1.1) can by Lemma 7.8 be considered as
an optimality criterion for a certain constrained variational problem, then
the discrete variational inequality (2.1) can similarly be interpreted as the
optimality criterion

〈J ′(uh), vh − uh〉 ≥ 0 for all vh ∈ Gh (2.7)

for the discrete problem
min

vh∈Gh

J(vh). (2.8)

In the case of the obstacle problem (1.2) this becomes

min J(vh) :=
1
2
a(vh, vh) − f(vh), (2.9)

where the minimum is taken over the set of vh ∈ Vh such that vh(pi) ≥
g(pi) for i = 1, . . . , N . Writing Ah := (a(ϕj , ϕi)) for the stiffness matrix and
setting fh := (f(ϕi)), g := (g(pi)) and v := (v1, ..., vN ), the problem (2.9) is
equivalent to the quadratic programming problem

min
vh∈Gh

z(v) :=
1
2
vTAhv − fT

h v, where Gh := {v ∈ RN , v ≥ g}. (2.10)

As in the case of the general complementarity problems previously considered,
the discrete optimization problems generated by the finite element method
have a high dimension and a special structure. Their numerical treatment
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requires special methods. Penalty methods are a means of approximating
variational inequalities by variational equations, which can then be treated
efficiently by special methods. This topic will be discussed in more detail in
Section 7.3.

As an intermediate result for the present, we estimate the error ‖u− uh‖
for fixed discretizations. We have

Lemma 7.16. Let the operator F : V → V ∗ satisfy the conditions (1.9),
(1.10), (2.3) and (2.4). Also assume the overlapping monotonicity property

γ‖v − vh‖2 ≤ 〈Fv − Fvh, v − vh〉 for all v ∈ G, vh ∈ Gh. (2.11)

Then the variational inequalities (1.1) and (2.1) have solutions u ∈ G and
uh ∈ Gh respectively, and these solutions are unique. Furthermore, one has
the estimate

γ

2
‖u−uh‖2 ≤ inf

v∈G
〈Fu, v−uh〉+ inf

vh∈Gh

{
〈Fu, vh−u〉+

σ2

2γ
‖vh−u‖2

}
(2.12)

with σ := ν(max{‖u‖, ‖uh‖}).
Proof: Existence and uniqueness of the solutions u and uh of the problems
(1.1) and (2.1) are guaranteed by Theorems 7.7 and 7.15. Thus we need only
estimate ‖u− uh‖. By (2.11) we have

γ‖u− uh‖2 ≤ 〈Fu− Fuh, u− uh〉
= 〈Fu, u〉 − 〈Fu, uh〉+ 〈Fuh, uh〉 − 〈Fuh, u〉
= 〈Fu, u− v〉 − 〈Fu, uh − v〉+ 〈Fuh, uh − vh〉
−〈Fuh, u− vh〉 for all v ∈ G, vh ∈ Gh .

But u and uh are solutions of the variational inequalities (1.1) and (2.1),
respectively, and it follows that

γ‖u− uh‖2 ≤ 〈Fu, v − uh〉+ 〈Fu, vh − u〉+ 〈Fuh − Fu, vh − u〉 .
Hence, the definition of σ and property (2.3) give

γ‖u− uh‖2 ≤ 〈Fu, v − uh〉+ 〈Fu, vh − u〉+ σ‖uh − u‖ ‖vh − u‖ .
The standard inequality

‖uh − u‖ ‖vh − u‖ ≤
1
2

(
γ

σ
‖u− uh‖2 +

σ

γ
‖vh − u‖2

)
then yields

γ

2
‖u− uh‖2 ≤ 〈Fu, v − uh〉+ 〈Fu, vh − u〉+

σ2

2γ
‖vh − u‖2 .

As v ∈ G and vh ∈ Gh are arbitrary, this proves the desired estimate.
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Remark 7.17. If G = V , then condition (1.1) is equivalent to

〈Fu, v〉 = 0 for all v ∈ V.

Thus in this case (2.12) becomes the estimate

‖u− uh‖ ≤
σ

γ
inf

vh∈Vh

‖vh − u‖ (2.13)

and we see that Lemma 7.16 is a generalization of Cea’s Lemma. �

Next, we study the convergence of a sequence of solutions uh for a family
of discretizations (2.1). For this purpose we make the following assumptions
about the approximability of G by Gh (compare [GLT81]):

• For each v ∈ G there exists a sequence {vh}, with each vh ∈ Gh, such that

lim
h→0

vh = v ;

• vh ∈ Gh with vh ⇀ v as h→ 0 implies that v ∈ G.

Theorem 7.18. Make the same assumptions as in Lemma 7.16 and let the
approximation Gh of the set G fulfill the two conditions stated above. Further-
more, assume that the property (2.4) holds uniformly, i.e., for some γ0 > 0
one has γh ≥ γ0 for all h > 0. Then

lim
h→0
‖u− uh‖ = 0 .

Proof: The first approximation property of Gh guarantees that

lim
h→0

inf
vh∈Gh

‖vh − u‖ = 0 . (2.14)

Hence there exists v̂h ∈ Gh and r > 0 such that

‖v̂h‖ ≤ r for all h > 0 . (2.15)

Theorem 7.15, (2.15), and the assumption γh ≥ γ0 > 0 for all h > 0 give the
estimate

‖uh‖ ≤
1
γ0
μ(r) + r .

It follows that the sequence {uh} is weakly compact. Let {ũh} ⊂ {uh} be a
subsequence that converges weakly to some ũ ∈ V . Then the second approxi-
mation property of Gh yields ũ ∈ G. Thus

inf
v∈G
〈Fu, v − ũh〉 ≤ 〈Fu, ũ− ũh〉 .

But now applying this inequality, ũh ⇀ ũ and (2.12) in Lemma 7.16 gives
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lim
h→0
‖ũ− ũh‖ = 0 .

As the solution u ∈ G of (1.1) is unique and the sequence {uh} is weakly
compact, the convergence of the full sequence {uh} to u follows.

Before we start to investigate quantitative convergence estimates, it should
be noted that solutions of variational inequalities have in general only lim-
ited regularity. It is thus unrealistic to assume higher-order regularity. Unlike
the case of variational equations, the smoothness of the solution u does not
depend solely on the underlying domain Ω and the regularity properties of
the operator F . In the case of obstacle problems, one may have u ∈ H2(Ω)
under additional assumptions (see [KS80]), but in general no higher-order
regularity can be expected. Consequently higher-order finite element meth-
ods cannot be recommended. In the case of second-order elliptic variational
inequalities, appropriate convergence results (first-order convergence) can al-
ready be achieved using piecewise linear C0 elements on triangular grids. In
special situations the order of approximation can be improved to O(h3/2) by
the use of piecewise quadratic elements; see [26].

Recall (2.12). In this inequality we study the terms

inf
v∈G
〈Fu, v − uh〉 and inf

vh∈Gh

〈Fu, vh − u〉.

Set V = H1
0 (Ω). Then we have the continuous embedding

V = H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) = V ∗. (2.16)

As an additional regularity hypothesis on the solution u of the variational
inequality (1.1), we assume that there exists F̃ u ∈ L2(Ω) such that

〈Fu, v〉 = (F̃ u, v)0,Ω for all v ∈ V . (2.17)

In particular, this implies that

|〈Fu, v − uh〉| ≤ ‖F̃ u‖0,Ω ‖v − uh‖0,Ω (2.18)

and
|〈Fu, vh − u〉| ≤ ‖F̃ u‖0,Ω ‖vh − u‖0,Ω . (2.19)

Now approximation results in L2(Ω), which yield a higher order of convergence
than can be got in H1(Ω), are feasible in the analysis.

Theorem 7.19. Let Ω ⊂ R2 be a polyhedron with boundary Γ . Assume that
f ∈ L2(Ω) and g ∈ H2(Ω) with g|Γ ≤ 0. Furthermore, assume that the solu-
tion u of the associated obstacle problem (1.2) satisfies the regularity require-
ment u ∈ H2(Ω). Suppose that we approximate this problem using piecewise
linear C0 elements and approximate solutions uh defined by (2.2). Then there
exists a constant C > 0, which is independent of h, such that

‖u− uh‖ ≤ C h.
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Proof: The property u ∈ H2(Ω) allows us to integrate by parts in (1.3),
obtaining

〈Fu, v〉 = −
∫
Ω

(Δu+ f)v dx for all v ∈ V .

Thus (2.17) is satisfied with F̃ u = −(Δu + f) and the estimates (2.18) and
(2.19) can be applied. Let Πh : V → Vh denote the operator defined by
interpolation at the grid points. Since u ∈ G, by (1.2b) and (2.2) we have
Πhu ∈ Gh. Interpolation theory yields

‖u−Πhu‖ ≤ C h and ‖u−Πhu‖0,Ω ≤ C h2

for some C > 0. Consequently

inf
vh∈Gh

{
〈Fu, vh − u〉 +

σ2

2γ
‖vh − u‖2

}
≤ C h2

for the second summand in the right-hand side of (2.12).
Next, we estimate inf

v∈G
〈Fu, v − uh〉. Define pointwise

ũh := max{uh, g} .

It can be shown (see, e.g., [KS80]) that ũh ∈ V . By (1.2b) we clearly have
ũh ∈ Gh. From (2.2) the property uh ∈ Gh holds if and only if uh ≥ Πhg. We
have only the two possibilities

ũh(x) = uh(x) or ũh(x) = g(x).

In the second case with uh ≥ Πhg we have ũh(x)− uh(x) ≤ g(x)− (Πhg)(x).
Thus, we get

0 ≤ (ũh − uh)(x) ≤ |(g −Πhg)(x)| for all x ∈ Ω .
Using (2.18), this yields

inf
v∈G
〈Fu, v − uh〉 ≤ |〈Fu, ũh − uh〉|

≤ ‖Δu+ f‖0,Ω‖ũh − uh‖0,Ω

≤ ‖Δu+ f‖0,Ω‖g̃ −Πhg‖0,Ω .

By general approximation results we therefore have

inf
v∈G
〈Fu, v − uh〉 ≤ C h2

since g ∈ H2(Ω). Now an appeal to Lemma 7.16 completes the proof.
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Next, we consider a mixed finite element discretization of the variational
inequality (1.1). Recall (1.27):

G = { v ∈ V : b(v, w) ≤ g(w) for all w ∈ K}

where W is a Hilbert space, K ⊂ W is a closed convex cone, b : V ×W → R
is a continuous bilinear form, and g ∈W ∗. We choose some finite-dimensional
subspace Wh ⊂ W and a closed convex cone Kh ⊂ Wh. Then a natural
discretization of G is

Gh := { vh ∈ Vh : b(vh, wh) ≤ g(wh) for all wh ∈ Kh } . (2.20)

If Kh is a convex polyhedral cone, i.e.,

Kh =
{
vh =

L∑
l=1

λlsl : λl ≥ 0, l = 1, . . . , L
}

(2.21)

where the elements sl ∈ Wh, l = 1, . . . , L are finite in number, then the
linearity of g(·) and the bilinearity of b(·, ·) imply that

vh ∈ Gh ⇐⇒
N∑

i=1

b(ϕi, sl)vi ≤ g(sl), l = 1, . . . , L.

That is, the property that vh ∈ Vh lies in the set Gh is characterized by a
system of a finite number of linear inequalities.

Lemmas 7.9 and 7.12 can be immediately extended to the case of general
discrete problems (2.1) with feasible sets Gh defined by (2.20).

Lemma 7.20. Let Gh ⊂ Vh be defined by (2.20). Let (uh, ph) ∈ Vh × Kh

satisfy the mixed variational inequalities

〈Fuh, vh〉 + b(vh, ph) = 0 for all vh ∈ Vh,

b(uh, wh − ph) ≤ g(wh − ph) for all wh ∈ Kh .
(2.22)

Then uh is a solution of the variational inequality (2.1).

Lemma 7.21. Let the original problem be given as a restricted variational
problem (1.24) with a feasible set G described by (1.27). If the pair (uh, ph) ∈
Vh×Kh is a discrete saddle point of the Lagrange functional defined by (1.39),
i.e.,

L(uh, wh) ≤ L(uh, ph) ≤ L(vh, ph) for all vh ∈ Vh, wh ∈ Kh , (2.23)

then uh is a solution of the finite-dimensional quadratic programming problem
(2.10).

We now analyse the convergence of the mixed finite element discretization
(2.22) of the variational inequality (1.1), following the approach developed
in [63].
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Theorem 7.22. Consider the problem (1.1) with G defined by (1.27). Assume
that the operator F : V → V ∗ satisfies (2.3) and is strongly monotone on the
whole space V , i.e., there exists a constant γ > 0 such that

γ ‖y − v‖2 ≤ 〈Fy − Fv, y − v〉 for all y, v ∈ V . (2.24)

Furthermore, assume that the corresponding mixed formulation (1.28) has a
solution (u, p) ∈ V ×K.

Suppose that (1.28) is discretized by the mixed finite element method (2.22)
with Vh ⊂ V , Wh ⊂ W and Kh ⊂ K, where the discretization satisfies, uni-
formly in h, the Babuška-Brezzi condition

δ ‖wh‖ ≤ sup
vh∈Vh

b(vh, wh)
‖vh‖

for all wh ∈Wh (2.25)

—here δ > 0 is some constant. Suppose that there exists a constant c0 > 0
such that for each h > 0 there is a ṽh ∈ Gh with ‖ṽh‖ ≤ c0. Then the discrete
mixed formulation (2.22) has a solution (uh, ph) ∈ Vh × Kh for each h > 0.
Furthermore, the following estimates are valid:

‖u− uh‖2 ≤ c1{‖u− vh‖2 + ‖p− wh‖2}
+ c2(g(wh − p)− b(u,wh − p))

for all vh ∈ Vh, wh ∈ Kh,

(2.26)

‖p− ph‖ ≤ c (‖u− uh‖+ ‖p− wh‖)
for all wh ∈Wh,

(2.27)

for some constants c, c1, c2 > 0 that are independent of h.

Proof: By hypothesis there exists ṽh ∈ Gh with ‖ṽh‖ ≤ c0. We know that
the set Gh is convex and closed. Thus by Theorem 7.7 the discrete variational
inequality

〈Fuh, vh − uh〉 ≥ 0 for all vh ∈ Gh

has a unique solution uh ∈ Gh, and uh is uniformly bounded as h → 0.
Invoking (2.25), it follows that the mixed formulation (2.22) has a solution
(uh, ph) ∈ Gh ×Kh. From (1.28a) and (2.22) we have

〈Fu, v〉 + b(v, p) = 0 for all v ∈ V,
〈Fuh, vh〉 + b(vh, ph) = 0 for all vh ∈ Vh ⊂ V.

(2.28)

Now for arbitrary vh ∈ Vh and wh ∈Wh one gets

b(vh, wh − ph) = b(vh, wh) − b(vh, ph) = b(vh, wh) + 〈Fuh, vh〉
= b(vh, wh) + 〈Fuh, vh〉 − 〈Fu, vh〉 − b(vh, p)

= b(vh, wh − p) + 〈Fuh − Fu, vh〉
≤ (β‖wh − p‖ + ‖Fuh − Fu‖∗) ‖vh‖,
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where β denotes the continuity constant of the bilinear form b. Again appealing
to (2.25), we see that

δ ‖wh − ph‖ ≤ β ‖wh − p‖ + ‖Fuh − Fu‖∗ . (2.29)

Now the bound (2.27) follows from the uniform boundedness of uh combined
with the local Lipschitz continuity of the operator F given in (2.3) and a
triangle inequality.

Next, we turn to the proof of (2.26). Clearly (1.28b), (2.22) and Kh ⊂ K
give

b(u, ph−p) ≤ g(ph−p) and b(uh, wh−ph) ≤ g(wh−ph) for all wh ∈ Kh .

This implies

b(u− uh, ph − p) ≤ g(wh − p) − b(uh, wh − p) for all wh ∈ Kh . (2.30)

On the other hand, setting v = u− uh and vh = uh − u+ u in (2.28) yields

〈Fu− Fuh, u− uh〉 + b(u− uh, p− ph) + 〈Fuh, u〉 + b(u, ph) = 0.

From this inequality and (2.24), (2.28) and (2.30) by straight forward calcu-
lations we get

γ ‖u− uh‖2 ≤ g(wh − p) − b(u,wh − p) + b(u− uh, wh − p)
−〈Fu− Fuh, u− vh〉 − b(u− vh, p− ph)

≤ g(wh − p) − b(u,wh − p) + β ‖u− uh‖ ‖wh − p‖
+L ‖u− uh‖ ‖u− vh‖ + β ‖u− vh‖ ‖p− ph‖.

for all vh ∈ Vh and wh ∈ Kh. By (2.27) this implies

γ ‖u− uh‖2 ≤ g(wh − p) − b(u,wh − p) + β ‖u− uh‖ ‖wh − p‖
+ (L+ cβ) ‖u− uh‖ ‖u− vh‖ + cβ ‖u− vh‖ ‖wh − p‖.

Using the standard inequality 2st ≤ εs2 + 1
ε t

2 for arbitrary ε > 0 and s, t ∈ R,
we obtain

γ ‖u− uh‖2 ≤ g(wh − p) − b(u,wh − p) + ε
2((1 + c)β + L) ‖u− uh‖2

+ β
2ε ‖wh − p‖2 + L+ cβ

2ε ‖u− vh‖2 + cβ
2 (‖u− vh‖2 + ‖wh − p‖2)

for all vh ∈ Vh, wh ∈ Kh . If ε > 0 is chosen sufficiently small then (2.26)
follows.
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Remark 7.23. The assumption of Theorem 7.22—that for each h > 0 there
exists ṽh ∈ Gh with ‖ṽh‖ ≤ c0—can be justified in several special models
that lead to variational inequalities. For instance, in the case of the obstacle
problem (1.2) with g ≤ 0, one can make the trivial choice ṽh = 0 independently
of the discretization. Instead of (2.25) it is also possible to use the condition

δ ‖vh‖ ≤ sup
wh∈Wh

b(vh, wh)
‖wh‖

for all vh ∈ Vh (2.31)

for some δ > 0. This inequality is known in the context of mixed variational
equations (see [BF91]) and in a sense complements (2.25). �

7.3 Penalty Methods and the Generalized Lagrange
Functional for Variational Inequalities

7.3.1 Basic Concept of Penalty Methods

The penalty method, which uses penalty functions, is a standard technique in
constrained nonlinear programming (see [GLT81], [56]). Its basic principle is to
guarantee—in an asymptotic sense—the fulfillment of constraints by including
in the objective function an additional term (the penalty) that acts against the
optimization goal if constraints are violated. In this way the given constrained
programming problem is embedded in a family of variational problems that
depend upon some parameter appearing in the penalty term and contain no
restrictions, i.e., are unconstrained.

If the given variational inequality (1.1) is associated via Lemma 7.4 with
the optimization problem (1.24) as an optimality condition, then an appro-
priate penalty method can be applied directly to (1.24). The unconstrained
auxiliary problems that are generated can be discretized by, e.g., a finite el-
ement method. A similar discrete problem is obtained if initially a finite el-
ement method is applied to problem (1.24) to generate a finite-dimensional
optimization problem that is then treated using a penalty method.

If the given problem (1.1) is not derived from a variational problem (1.24),
then an analogue of the penalty method of Section 4.7 can be applied to the
regularization of the mixed variational formulation (1.28) and its discretiza-
tion (2.22). We now consider this approach in more detail. Suppose we are
given a mapping F : V → V ∗ and a continuous bilinear form b : V ×W → R.
Let the set G ⊂ V be defined by (1.27) for some g ∈ W ∗. Corresponding to
the mixed variational formulation (1.28), we consider the following problem:
Find (uρ, pρ) ∈ V ×K such that

〈Fuρ, v〉+ b(v, pρ) = 0 for all v ∈ V, (3.1a)

b(uρ, w − pρ)−
1
ρ

(pρ, w − pρ) ≤ g(w − pρ) for all w ∈ K. (3.1b)
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Here (·, ·) denotes the scalar product in W and ρ > 0 is some fixed parameter.
To simplify the notation we again identify W ∗ with W . Let B : V → W ∗ be
defined by

(Bv,w) = b(v, w) for all v ∈ V, w ∈W . (3.2)

Then (3.1b) can be described equivalently by

(pρ − ρ(Buρ − g), w − pρ) ≥ 0 for all w ∈ K . (3.3)

Let PK : W → K denote the projection defined in Lemma 7.4 from W onto
the closed convex cone K ⊂W . Using the property that K is a cone, inequality
(3.3) and the representation of PK given in Lemma 7.4 imply that

pρ = ρPK(Buρ − g). (3.4)

Thus (3.1) is equivalent to (3.4) and

〈Fuρ, v〉 + ρ (PK(Buρ − g), Bv) = 0 for all v ∈ V. (3.5)

This forms a penalty problem that corresponds to (1.1) and (1.27). Thus we
have transformed the original variational inequality (1.1) to an auxiliary prob-
lem in the form of a variational equation. The positive number ρ is called the
penalty parameter. Later we shall discuss the existence and the convergence
behaviour of uρ as ρ→ +∞, but we begin by discussing a simple example to
illustrate the use of (3.5).

Example 7.24. Consider the obstacle problem (1.2). Setting W = L2(Ω), the
cone K here has the particular form

K = {w ∈ L2(Ω) : w ≥ 0 } .

From the definition of G in (1.2b), the mapping B : V = H1
0 (Ω) → W =

L2(Ω) is the identity operator. Let [·]+ : W → K be defined by

[w]+(x) := max{w(x), 0} a.e. in Ω. (3.6)

Then the projection operator can be described by

PKw = [w]+ for all w ∈W.

Hence the penalty problem (3.5) has the form (see, e.g., [GLT81])∫
Ω

∇uρ∇v dx− ρ
∫
Ω

[g−uρ]+v dx =
∫
Ω

fv dx for all v ∈ H1
0 (Ω). � (3.7)

The next lemma gives an existence result for problem (3.5).
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Lemma 7.25. Assume that the mapping F : V → V ∗ is strongly monotone
on the full space V . Then for each ρ > 0, the penalty problem (3.5) has a
unique solution uρ ∈ V .

Proof: We define an operator S : V → V ∗ by

〈Su, v〉 := (PK(Bu− g), Bv) for all u, v ∈ V . (3.8)

Then the penalty problem (3.5) can be written as

〈(F + ρS)uρ, v〉 = 0 for all v ∈ V. (3.9)

First we show that S is Lipschitz continuous. From (3.8) it is clear that

〈Su− Sũ, v〉 = (PK(Bu− g)− PK(Bũ− g), Bv) for all u, ũ, v ∈ V .

Now the Cauchy-Schwarz inequality, the linearity of B and Lemma 7.4 give

|〈Su− Sũ, v〉| ≤ ‖PK(Bu− g)− PK(Bũ− g)‖ ‖Bv‖
≤ ‖B(u− ũ)‖ ‖Bv‖ for all u, ũ, v ∈ V.

By hypothesis the bilinear form b(·, ·) is continuous, so (3.2) implies the exis-
tence of some constant β > 0 such that ‖Bv‖ ≤ β‖v‖ for all v ∈ V . It follows
that

|〈Su− Sũ, v〉| ≤ β2 ‖u− ũ‖ ‖v‖ for all u, ũ, v ∈ V,
which yields

‖Su− Sũ‖∗ ≤ β2 ‖u− ũ‖ for all u, ũ ∈ V ,

i.e., the mapping S is Lipschitz continuous.
Next, we investigate the monotonicity properties of S. The definition of

the projector PK in (1.12) clearly implies that

(PK(a+ c)− (a+ c), w − PK(a+ c)) ≥ 0 for all w ∈ K ,
(PK(b+ c)− (b+ c), w − PK(b+ c)) ≥ 0 for all w ∈ K,

for any a, b, c ∈ W . Choose w = PK(b + c) in the first inequality and w =
PK(a+ c) in the second, then add; one then obtains

(PK(a+ c)− PK(b+ c)− (a− b), PK(b+ c)− PK(a+ c)) ≥ 0 .

Rearranging,

PK(a+ c)− PK(b+ c), a− b) ≥
≥ (PK(b+ c)− PK(a+ c), PK(b+ c)− PK(a+ c)) ≥ 0.

(3.10)

Let u, ũ ∈ V be arbitrary. Taking a = Bu, b = Bũ and c = −g in (3.10), then
(3.8) gives
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〈Su− Sũ, u− ũ〉 ≥ 0.

Recalling (2.24), we conclude that

〈(F + ρS)u− (F + ρS)ũ, u− ũ〉 ≥ γ ‖u− ũ‖2 for all u, ũ ∈ V. (3.11)

Then Theorem 7.7 (with G = V ) guarantees that (3.5) has a unique solution.

Now we investigate the convergence behaviour of the penalty method (3.5)
applied to variational inequalities. In this study we assume that the Babuška-
Brezzi conditions (1.32) are satisfied; we shall see later that alternative criteria
could be applied to penalty methods applied to optimization problems, but
it is then difficult to derive sharp bounds for the rate of convergence of uρ

independently of the penalty parameter ρ > 0.

Theorem 7.26. Let G be nonempty. Assume that the Babuška-Brezzi condi-
tions (1.32) are satisfied. Let F : V → V ∗ be strongly monotone. Then the
solution uρ of the penalty problem (3.5) converges as ρ→ +∞ to the solution
u of the original problem. Furthermore, as ρ → +∞ the elements pρ ∈ K
defined by (3.1) converge to the component p of the solution of the mixed
formulation (1.28). There exists a constant c > 0 such that

‖u− uρ‖ ≤ c ρ−1 and ‖p− pρ‖ ≤ c ρ−1 . (3.12)

Proof: First we show that the uρ are bounded for all ρ > 0. Our hypotheses
justify the application of Lemma 7.25, which tells us that for each ρ > 0 the
penalty problem has a unique solution uρ. By (3.5) we have

〈Fuρ, v〉 + ρ (PK(Buρ − g), Bv) = 0 for all v ∈ V.

From Theorem 7.11 it follows that there exists p ∈ K such that

〈Fu, v〉 + b(v, p) = 0 for all v ∈ V.

Recalling the definition of B : V →W ∗ in (3.2), subtraction yields

〈Fuρ − Fu, v〉 + (ρPK(Buρ − g)− p,Bv) = 0 for all v ∈ V .

Setting v = uρ − u, we obtain

〈Fuρ − Fu, uρ − u〉+ ρ(PK(Buρ − g)− PK(Bu− g), B(uρ − u))
= (p− ρPK(Bu− g), B(uρ − u)) .

(3.13)

Now u ∈ G, so we have

b(u,w) ≤ g(w) for all w ∈ K
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and consequently

(0 − (Bu− g), w − 0) ≥ 0 for all w ∈ K.

Hence Lemma 7.4 implies that PK(Bu− g) = 0. Substituting this into (3.13)
and invoking the monotonicity inequality (3.11) that was derived during the
proof of Lemma 7.25, we arrive at the inequality

γ ‖uρ − u‖2 ≤ β ‖p‖ ‖uρ − u‖.

That is,

‖uρ − u‖ ≤ β

γ
‖p‖.

It follows that the family {uρ}ρ>0 is bounded.
Next,

〈Fuρ, v〉 + b(v, pρ) = 0 for all v ∈ V
and the Babuška-Brezzi condition (1.32) then gives

δ ‖pρ‖ ≤ sup
v∈V

b(v, pρ)
‖v‖ = ‖Fuρ‖∗ .

The boundedness of {uρ}ρ>0 and the continuity of F now show that the set
{pρ}ρ>0 is also bounded.

After these preliminary results we turn to the convergence estimates. From

〈Fuρ, v〉 + b(v, pρ) = 0 for all v ∈ V,
〈Fu, v〉 + b(v, p) = 0 for all v ∈ V,

the linearity of b(v, ·) gives

〈Fu− Fuρ, v〉 + b(v, p− pρ) = 0 for all v ∈ V . (3.14)

Taking v = u− uρ, we get

〈Fu− Fuρ, u− uρ〉 = b(uρ − u, p− pρ) . (3.15)

Inequalities (3.1b) and (1.28) give

b(uρ, w − pρ) −
1
ρ

(pρ, w − pρ) ≤ g(w − pρ) for all w ∈ K

and
b(u,w − p) ≤ g(w − p) for all w ∈ K.

Choosing w = p in the first inequality and w = pρ in the second, then adding,
we obtain

b(uρ − u, p− pρ) ≤
1
ρ

(pρ, p− pρ) .
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Then the boundedness of {pρ}ρ>0 implies that

b(uρ − u, p− pρ) ≤ c ρ−1 ‖p− pρ‖;

here and subsequently c denotes a generic positive constant which can take
different values in different places. Now the strong monotonicity of F and
(3.15) give

γ ‖u− uρ‖2 ≤ c ρ−1 ‖p− pρ‖ . (3.16)

Applying the Babuška-Brezzi condition (1.32) to (3.14), we get

‖p− pρ‖ ≤
1
δ
‖Fu− Fuρ‖∗ .

As {uρ}ρ>0 is bounded, we infer from (1.10) that

‖p− pρ‖ ≤ c ‖u− uρ‖ .

This inequality and (3.16) yield the bounds

‖u− uρ‖ ≤ c ρ−1

and
‖p− pρ‖ ≤ c ρ−1

for some constant c > 0.

Remark 7.27. The Babuška-Brezzi condition (1.32) guarantees that the mixed
variational inequality system (1.28) has a unique solution and ensures its
stability. This condition was crucial in the proof of Theorem 7.26. Under
weaker assumptions we shall now study the convergence of penalty methods
for variational inequalities that come from convex optimization problems. �

Now we transfer our attention to the convergence analysis of a penalty
method for the approximate solution of the constrained variational problem
(1.24). The objective functional J : V → R is assumed to be convex and
continuous. In particular this implies that there exist q0 ∈ R and q ∈ V ∗ such
that

J(v) ≥ q0 + 〈q, v〉 for all v ∈ V . (3.17)

To deal with the constraint v ∈ G, we introduce a continuous convex penalty
functional Ψ : V → R that increases an augmented objective functional when-
ever the constraint is violated. The (exterior) penalty property is described
by

Ψ(v)

{
> 0 if v �∈ G,
= 0 if v ∈ G.

(3.18)
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In the penalty method the original problem (1.24) is replaced by an uncon-
strained auxiliary problem of the form

min
v∈V

[J(v) + ρΨ(v)]. (3.19)

Here ρ > 0 is a fixed penalty parameter, just like in (3.5).

Theorem 7.28. Let {uρ}ρ>0 be a family of solutions of the augmented prob-
lems (3.19). Then any weak accumulation point of this family as ρ→ +∞ is
a solution of the original problem (1.24).

Proof: The optimality of uρ for the augmented problem (3.19) and the prop-
erty (3.18) imply that for each ρ > 0 we have

J(uρ) ≤ J(uρ)+ρΨ(uρ) ≤ J(v)+ρΨ(v) = J(v) for all v ∈ G . (3.20)

The functional J is convex and continuous, and consequently weakly lower
semi-continuous; see, e.g., [Zei90]. Hence (3.20) implies that

J(u) ≤ inf
v∈V

J(v) (3.21)

for any weak accumulation point u of {uρ}ρ>0.
From (3.17) and (3.20) we have

q0 + 〈q, uρ〉 + ρΨ(uρ) ≤ J(v) for all v ∈ G and ρ > 0. (3.22)

Let {uρk
} ⊂ {uρ} be some subsequence that converges weakly to u. As G is

nonempty and limk→∞ ρk = ∞, we see from (3.22) that

lim
k→∞

Ψ(uρk
) = 0 .

But Ψ is convex and continuous, so uρk
⇀ u as k →∞ implies that

Ψ(u) ≤ 0 .

Now (3.18) tells us that u ∈ G. Recalling (3.21), we are done.

Remark 7.29. To show existence and boundedness of the sequence {uρ}ρ>0,
additional assumptions are needed. In the case of the weakly coercive Signorini
problem (1.5), (1.8), this can be guaranteed by assuming for example that
f < 0. An alternative possibility is to regularize the original problem in an
appropriate way: see [KT94]. �

Remark 7.30. In order to implement a penalty method, one must specify the
penalty functional Ψ . In the case of an obstacle condition of the form

G = { v ∈ H1
0 (Ω) : v ≥ g},
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the functional used in (3.7) could be used. The simple type of the considered
constraints allow to express this functional also by

Ψ(v) =
ρ

2

∫
Ω

[g − v]2+(x) dx. (3.23)

For constraints of the type (1.7), the analogous penalty functional

Ψ(v) =
ρ

2

∫
Γ2

[−v]2+(s) ds (3.24)

can be applied. Finally, the pure penalty property (3.18) can be relaxed by
introducing an asymptotic dependence on the penalty parameter as ρ → ∞;
an example of this technique will be presented in Section 7.4. �

Next we derive an L∞ convergence estimate for the penalty method (3.5)
applied to the obstacle problem (1.2).

Theorem 7.31. Let Ω ⊂ R2 be a convex polyhedron with boundary Γ . Let
f ∈ L∞(Ω) and g ∈W 2

∞(Ω) with g|Γ ≤ 0 in the sense of traces. Consider the
obstacle problem (1.2), viz., find u ∈ G such that∫

Ω

∇u∇(v − u) dx ≥
∫
Ω

f (v − u) dx for all v ∈ G (3.25a)

where

G := { v ∈ H1
0 (Ω) : v ≥ g a.e. in Ω }. (3.25b)

Suppose that this problem is treated by the following penalty method: find uρ ∈
H1

0 (Ω) such that∫
Ω

∇uρ∇v dx − ρ

∫
Ω

[g − uρ]+v dx =
∫
Ω

f v dx for all v ∈ H1
0 (Ω). (3.26)

Then the variational equation (3.26) has a unique solution uρ ∈ H1
0 (Ω) for

each ρ > 0 and

‖u− uρ‖0,∞ ≤ ρ−1(‖g‖2,∞ + ‖f‖0,∞). (3.27)

Proof: Our hypotheses imply that the given problem (3.25) has a unique
solution u ∈ H1

0 (Ω) ∩H2(Ω); see, e.g., [KS80]. Let

Ω0 := {x ∈ Ω : u(x) = g(x) }

be the contact zone of this solution. Then the optimal Lagrange multiplier p
of (3.25) is given by
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p(x) =

{
−Δg − f a.e. in Ω0,

0 elsewhere.
(3.28)

As g ∈W 2
∞(Ω) and f ∈ L∞(Ω) we see that p ∈ L∞(Ω). We define a bilinear

form by

a(u, v) =
∫
Ω

∇u∇v dx for all u, v ∈ H1(Ω)

and write (·, ·) for the scalar product in L2(Ω). The particular form of the
constraint (3.25b), (3.28) and the mixed formulation equation (1.28a) yield

a(u, v) − (f, v) = (p, v) for all v ∈ H1
0 (Ω)

where u is the solution of (3.25). Now p > 0 (compare (1.4)) so we obtain

a(u, v) − (f, v) ≥ 0 for all v ∈ H1
0 (Ω) such that v ≥ 0.

But u ∈ G means that this inequality is equivalent to

a(u, v) − (f, v) − ρ

∫
Ω

[g−u]+v dx ≥ 0 for all v ∈ H1
0 (Ω) such that v ≥ 0.

On the other hand, from (3.26) we have

a(uρ, v) − (f, v) − ρ

∫
Ω

[g − uρ]+v dx = 0 for all v ∈ H1
0 (Ω). (3.29)

Hence, as u|Γ = uρ|Γ = 0, a comparison theorem (compare Section 3.2) based
on the weak boundary maximum principle implies that

uρ ≤ u a.e. in Ω. (3.30)

We continue by constructing a lower bound for the solution uρ of the
auxiliary problem (3.26). Towards this aim let us set

u(x) = u(x) − δ a.e. in Ω (3.31)

for some δ > 0. The definition of a(·, ·) gives immediately

a(u, v) = a(u, v) for all v ∈ H1
0 (Ω).

Thus

a(u, v) − (f, v) − ρ

∫
Ω

[g − u]+v dx =

= a(u, v) − (f, v) − ρ

∫
Ω

[g − u]+v dx

= (p, v) − ρ

∫
Ω

[g − u]+v dx

≤
∫
Ω0

(p − ρδ)v dx for all v ∈ H1
0 (Ω) with v ≥ 0.
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Now take δ = ‖p‖0,∞ ρ−1. Then we get

a(u, v) − (f, v) − ρ

∫
Ω

[g − u]+v dx ≤ 0 for all v ∈ H1
0 (Ω) with v ≥ 0.

By (3.29) and the previously-mentioned comparison theorem it follows that

u ≤ uρ a.e. in Ω .

Recalling (3.30) and (3.31), we have now shown that ‖u−uρ‖0,∞ ≤ δ. Our
choice δ = ‖p‖0,∞ ρ−1 and (3.28) then give (3.27).

A well-known drawback of penalty methods is that the auxiliary problem
generated is often ill-conditioned when the penalty parameter ρ is large. The
selection of this parameter should be in harmony with the mesh size h of
the discretization. For example, for certain finite element discretizations and
specific problems one can make a tuned parameter selection such that the
overall conditioning of the discrete penalty problem has the same order as the
related discrete elliptic variational equation. For this we refer to Section 7.4.

An alternative way of relating unconstrained auxiliary problems to vari-
ational inequalities is through augmented Lagrangians. The basic principle
here, as in the case of variational equations, can be obtained from a for-
mulation based on PROX-regularization. If the mixed formulation (1.28) is
used, then the associated augmented Lagrangian method is: find uk ∈ V and
pk ∈W such that

〈Fuk, v〉+ b(v, pk) = 0 for all v ∈ V, (3.32a)

b(uk, w − pk)− 1
ρ

(pk − pk−1, w − pk) ≤ g(w − pk) for all w ∈ K, (3.32b)

for k = 1, 2, . . . Here ρ is some fixed positive parameter and p0 ∈ K is a
user-chosen starting iterate. Write (3.32b) in the form

(pk − (pk−1 + ρ(Buk − g)), w − pk) ≥ 0 for all w ∈ K, (3.33)

where, as in (3.2), we set (Bv,w) = b(v, w) for all v ∈ V and w ∈ W .
Then, using the projector PK defined in Lemma 7.4, equation (3.32a) can be
formulated as: Find uk ∈ V such that

〈Fuk, v〉 + (PK[pk−1 + ρ(Buk − g)], Bv) = 0 for all v ∈ V.

Thus, given pk−1 ∈ K, the associated component uk ∈ V is obtained as
the solution of an unconstrained variational equation. Then the next iterate
pk ∈ K ⊂W is got from

pk = PK[pk−1 + ρ(Buk − g)] . (3.34)
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In the particular case of the obstacle problem (1.2), one then sees that
(compare Example 7.24) the projector PK : W → K is simply

PKw = [w]+ for all w ∈W,

and the iterative scheme of the augmented Lagrange method has the form:
Determine uk ∈ V := H1

0 (Ω) such that∫
Ω

∇uk∇v dx −
∫
Ω

[pk−1 + ρ(g − uk)]+v dx =
∫
Ω

fv dx for all v ∈ V

holds, then define pk ∈ K by

pk = [pk−1 + ρ(g − uk)]+ .

A convergence analysis for the augmented Lagrangian method (3.32) is
our next target. For this we have

Theorem 7.32. Assume that the mixed variational formulation (1.28) has
a solution (u, p) ∈ V × K and that the mapping F : V → V ∗ is strongly
monotone. Then for any initial iterate p0 ∈ K, the scheme (3.32) is well
defined and

lim
k→∞

‖uk − u‖ = 0.

Under the additional assumption that the Babuška-Brezzi condition (1.32) is
satisfied, we also have

lim
k→∞

‖pk − p‖ = 0

and the estimates
‖pk − p‖ ≤ 1

1 + c1ρ
‖pk−1 − p‖,

‖uk − u‖ ≤ c2 ρ
−1 ‖pk−1 − p‖

(3.35)

are valid for k = 1, 2, . . . with some positive constants c1 and c2.

Proof: Recall the mixed formulation (1.28):

〈Fu, v〉 + b(v, p) = 0 for all v ∈ V,
b(u,w − p) ≤ g(w − p) for all w ∈ K.

From this and (3.32) we infer that

〈Fuk − Fu, v〉 + b(v, pk − p) = 0 for all v ∈ V (3.36a)

and

b(uk − u, p− pk) − 1
ρ

(pk − pk−1, p− pk) ≤ 0. (3.36b)
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Choosing v = uk − u in (3.36) and invoking (2.24), we get

γ ‖uk −u‖2 ≤ 1
ρ

(pk − pk−1, p− pk) =
1
ρ

[(pk − p, p− pk) + (p− pk−1, p− pk)].

Rearranging, then appealing to the Cauchy-Schwarz inequality, one has

γρ ‖uk − u‖2 + ‖pk − p‖2 ≤ ‖pk − p‖ ‖pk−1 − p‖ . (3.37)

In particular,
‖pk − p‖ ≤ ‖pk−1 − p‖ for k = 1, 2, . . .

Hence the sequence of non-negative real numbers {‖pk − p‖} must be conver-
gent, and from (3.37) it then follows that

lim
k→∞

‖uk − u‖ = 0. (3.38)

If the Babuška-Brezzi condition (1.32) is satisfied, then (3.36a) implies
that

‖pk − p‖ ≤ 1
δ
‖Fuk − Fu‖ . (3.39)

Hence, since F is continuous, (3.38) forces convergence of {pk} to p. We see
from (3.38) that the sequence {uk} is bounded. Thus the local Lipschitz con-
tinuity of F stated in (1.10) yields

‖Fuk − Fu‖ ≤ L ‖uk − u‖ for k = 1, 2, . . . (3.40)

for some constant L. Invoking (3.39) and (3.40) in (3.37), we get

δγρ

L
‖uk − u‖ + ‖pk − p‖ ≤ ‖pk−1 − p‖ for k = 1, 2, . . . (3.41)

Using (3.39) and (3.40) again yields(
δ2 γ ρ

L2 + 1
)
‖pk − p‖ ≤ ‖pk−1 − p‖ for k = 1, 2, . . .

This proves the first bound in (3.35). The second inequality there is immedi-
ate from (3.41).

The penalty methods and augmented Lagrangian methods considered up
to this point can be interpreted as regularizations of the second component
(1.28b) of the mixed variational formulation. We shall now apply these regular-
ization techniques directly to the original problem with the aim of embedding
each convex variational problem into a family of strongly convex problems.

In Tychonoff regularization the basic idea is to associate the given varia-
tional problem
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min
v∈G

J(v) (3.42)

with auxiliary problems of the form

min
v∈G

[J(v) + ε ‖v‖2] (3.43)

where ε > 0 is some fixed regularization parameter. As before, we assume that
the feasible set G ⊂ V of the original problem (3.42) is nonempty, convex and
bounded. We also assume that (3.42) has an optimal solution that is not
necessarily unique. The objective functional of the auxiliary problem (3.43)
is strongly convex because ε > 0 and J is convex. Hence for each ε > 0
there exists a unique solution uε ∈ G of (3.43). Convergence of the Tychonoff
regularization is described by

Theorem 7.33. Under the above assumptions, the solutions uε of the auxil-
iary problems (3.43) converge as ε → 0 to the solution û ∈ G of (3.42) that
satisfies

‖û‖ ≤ ‖u‖ for all u ∈ Gopt,

where Gopt is the set of all optimal solutions of (3.42).

Proof: For each ε > 0, the functional J(·)+ ε‖ · ‖2 is continuous and strongly
convex and the nonempty set G is convex and bounded; consequently there
exists a unique uε ∈ G such that

J(uε) + ε ‖uε‖2 ≤ J(v) + ε ‖v‖2 for all v ∈ G. (3.44)

By our hypotheses the original problem (3.42) has a solution. Choose u ∈ Gopt.
Then u is an arbitrary solution of the problem (3.42) and we have

J(u) ≤ J(v) for all v ∈ G. (3.45)

Taking v = u and v = uε in (3.44) and (3.45) respectively, we get

‖uε‖ ≤ ‖u‖ for all u ∈ Gopt, ε > 0. (3.46)

Thus {uε}ε>0 is bounded and consequently weakly compact in the Hilbert
space V . Hence one can choose a sequence {εk} with lim

k→∞
εk = 0 and {uεk

}
weakly convergent to û for some û ∈ V . But uεk

∈ G for k = 1, 2, . . . and G is
convex and closed so we must have û ∈ G. The convexity and continuity of the
mapping v �→ ‖v‖ implies its weak lower semi-continuity. From the inequality
(3.46) we therefore have

‖û‖ ≤ ‖u‖ for all u ∈ Gopt. (3.47)

Again appealing to (3.44), we obtain

J(uεk
) ≤ J(u) + εk ‖u‖2 for all u ∈ Gopt.
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The continuity and convexity of J and lim
k→∞

εk = 0 then give

J(û) ≤ J(u) for all u ∈ Gopt.

That is, û is a solution of (3.42). In addition, from (3.47) we see that û is
an element of the solution set Gopt that has minimal norm—which, since
Gopt is closed and convex, implies that û is uniquely determined. The weak
compactness of {uε}ε>0 now implies the weak convergence property uεk

⇀ û
as k →∞ for any sequence {εk} with εk → 0. The weak lower semi-continuity
of the functional ‖ · ‖ then gives

lim inf
ε→0

‖uε‖ ≥ ‖û‖,

and recalling (3.46) we get finally

lim
ε→0
‖uε‖ = ‖û‖. (3.48)

Exploiting the scalar product, we write

‖uε − û‖2 = (uε − û, uε + û− 2û) = ‖uε‖2 − ‖û‖2 − 2(û, uε − û).

The weak convergence property uε ⇀ û and (3.48) imply that limε→0 ‖uε −
û‖ = 0. That is, as ε → 0, uε converges to that solution û of (3.42) that has
minimal norm.

By means of Tychonoff regularization one can embed both weakly ellip-
tic variational inequalities and variational equations in a family of V -elliptic
problems, but as the regularization parameter ε approaches 0, the positive
ellipticity constant γ = γ(ε) also tends to zero. To cope with this drawback
when solving the regularized problems numerically, the regularization para-
meter and the discretization step size have to be adjusted together in some
appropriate way.

An alternative form of sequential regularization is provided by PROX-
regularization. This is based on the application of augmented Lagrangian
methods to the original problem (3.42). It leads to a sequence of auxiliary
problems

min
v∈G

[
J(v) + ε ‖v − uk−1‖2

]
for k = 1, 2, . . . (3.49)

Here one must select an initial guess u0 ∈ G and a fixed ε > 0, then each uk

is iteratively defined as the unique solution of the variational problem (3.49).
For a discussion of the convergence of this method we refer to, e.g., [Mar70],
[58].

These regularization methods can be combined with penalty methods or
with augmented Lagrangian methods; see [KT94].
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To close this section we study finite element discretizations of penalty
problems and of penalty techniques for discrete elliptic variational inequali-
ties. In both cases one obtains parameter-dependent finite-dimensional vari-
ational equations, which can be treated by efficient numerical methods (see
Chapter 5). Note that the type of problem generated depends on the order in
which one applies the discretization and the penalization.

We begin with conforming discretizations of the variational equations (3.5)
generated by penalty methods, i.e., the discretization of the problems

〈Fuρ, v〉 + ρ (PK(Buρ − g), Bv) = 0 for all v ∈ V. (3.50)

Define the operator Tρ : V → V ∗ by

〈Tρu, v〉 := 〈Fu, v〉 + ρ (PK(Bu− g), Bv) for all u, v ∈ V, (3.51)

where ρ > 0 is a fixed parameter. Under the assumptions of Lemma 7.25, by
(3.11) we have

γ ‖u− v‖2 ≤ 〈Tρu− Tρv, u− v〉 for all u, v ∈ V (3.52)

and

‖Tρu− Tρv‖∗ ≤
(
L(σ) + ρβ2

)
‖u− v‖

for all u, v ∈ V, ‖u‖ ≤ σ, ‖v‖ ≤ σ.
(3.53)

Here L(·) is the local Lipschitz constant of F and β is the boundedness
constant of the bilinear form b(·, ·). The operator Tρ is also V -elliptic and
bounded. Thus all the standard conditions for the application of finite ele-
ment methods are fulfilled.

Let Vh be a finite-dimensional subspace of V . Then (3.50) is discretized
by the finite-dimensional problem

Find uhρ ∈ Vh such that

〈Fuhρ, vh〉 + ρ (PK(Buhρ − g), Bvh) = 0 for all vh ∈ Vh . (3.54)

We write this problem as

〈Thρuhρ, vh〉 = 0 for all vh ∈ Vh;

this notation is used in Section 7.3.2. The convergence of this discrete penalty
method is dealt with in the next theorem.

Theorem 7.34. Let the assumptions of Theorem 7.26 be satisfied. Then for
each ρ > 0 the discrete penalty problem (3.54) has a unique solution uhρ ∈ Vh,
and

‖uρ − uhρ‖ ≤ (c1 + c2ρ) inf
vh∈Vh

‖uρ − vh‖ (3.55)

for some positive constants c1 and c2. Here uρ ∈ V denotes the solution of
the underlying continuous penalty problem (3.5).
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Proof: The properties (3.52) and (3.53) allow us to apply Lemma 7.16 with
G and Gh replaced by V and Vh. The conforming nature of the discretization
(i.e., Vh ⊂ V ) means that the conclusion of Lemma 7.16 simplifies to (2.13)
by Remark 7.17. This gives (3.55) immediately.

The bound of Theorem 7.34 illustrates a well-known phenomenon that
occurs when finite element methods are applied to penalty methods, namely
that the order of convergence of the finite element method can be reduced
when ρ is large. The loss of accuracy is caused by the asymptotic singularity
of the penalty problem as ρ → +∞. This theoretical drawback of penalty
methods is also observed in computational experiments. It can be avoided by
using a penalty method obtained from the regularization of a discrete mixed
formulation that satisfies a uniform Babuška-Brezzi condition, i.e., with a
constant δ > 0 that is independent of the discretization parameter h > 0.
Such a penalty method leads to the following discrete problem:

Find (uhρ, phρ) ∈ Vh ×Kh such that

〈Fuhρ, vh〉+ b(vh, phρ) = 0 for all vh ∈ Vh, (3.56a)

b(uhρ, wh − phρ)−
1
ρ

(phρ, wh − phρ) ≤ g(wh − phρ) (3.56b)

for all wh ∈ Kh.

Like the continuous problem (3.1), inequality (3.56b) can be represented by
a projector PKh

: Wh → Kh that is defined using Lemma 7.4. Then (3.56)
yields the penalty method

〈Fuhρ, vh〉 + ρ (PKh
(Buhρ − g), Bvh) = 0 for all vh ∈ Vh . (3.57)

To keep the notation simple we have written uhρ for the solutions of both
(3.57) and (3.54), but in general these functions are not identical.

The convergence of the method (3.57) can be shown using convergence re-
sults for mixed finite elements for variational equations that appear in [BF91].

Theorem 7.35. Let uhρ ∈ Vh be the solution of (3.57). Assume that the mixed
finite element discretizations satisfy the Babuška-Brezzi condition uniformly,
i.e., that there exists δ > 0, which is independent of h, such that

sup
vh∈Vh

b(vh, wh)
‖vh‖

≥ δ ‖wh‖ for all wh ∈Wh . (3.58)

Then there is a positive constant c such that

‖uh − uhρ‖ ≤ c ρ−1. (3.59)

Here uh ∈ Gh denotes the solution of the discrete problem (1.28).
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Remark 7.36. Unlike the penalty method (3.54), in the mixed finite element
penalty method (3.57) the penalty parameter ρ = ρ(h) > 0 can be selected as
a function of the discretization mesh size h > 0 in such a way that the overall
method retains the same order of convergence as the underlying mixed finite
element discretization (see, e.g., Theorem 7.32). �

Remark 7.37. The evaluation of the projection PKh
can be simplified if a non-

conforming implementation of (3.56) such as mass lumping (see Section 4.6)
is used. In this case we obtain

〈Fuhρ, vh〉+ bh(vh, phρ) = 0 for all vh ∈ Vh, (3.60a)

bh(uhρ, wh − phρ)−
1
ρ

(phρ, wh − phρ)h ≤ gh(wh − phρ) (3.60b)

for all wh ∈ Kh

instead of (3.56). If the obstacle problem (1.2) is discretized with piecewise
linear C0 elements for Vh and piecewise constant elements for Wh, then with
the mass lumping

(wh, zh) :=
N∑

j=1

meas(Dj)wjzj

and setting

bh(vh, zh)− gh(zh) :=
N∑

j=1

meas(Dj)(gj − vj)zj

we obtain the mixed finite element penalty problem

N∑
j=1

a(ϕi, ϕj)uj − fi− ρ meas(Di)max{0, gi−ui} = 0 , i = 1, . . . , N. (3.61)

Here the Dj are the elements of the dual subdivision (see Section 4.6) and
we set uhρ = (uj)N

j=1, fi =
∫

Ω
fϕ dx and gi = g(xi). Our weighting of each

ansatz function ϕi by the measure of the associated dual subdomain Di is
reasonable. The method (3.61) can be interpreted as the application of the
well-known quadratic loss penalty function to the discrete problem (2.6). �

7.3.2 Adjustment of Penalty and Discretization Parameters

When variational inequalities are discretized using penalty methods then, as
we have seen, the following problems are relevant (the arrows in the diagram
show the effects of penalization and discretization):
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〈Fu, v − u〉 ≥ 0

for all v ∈ G
〈Fhuh, vh − uh〉 ≥ 0

for all vh ∈ Gh

〈Tρu, v〉 = 0

for all v ∈ V
〈Thρuhρ, vh〉 = 0

for all vh ∈ Vh

�

�

� �

The penalization and finite element discretization each provide only an ap-
proximation of the original problem. Furthermore, in these methods the
amount of computational work becomes greater as one increases the penalty
parameter ρ and refines the mesh in the discretization. The first of these ef-
fects is caused by the ill-conditioning of penalty problems when ρ is large.
Thus the parameters in the discretization scheme and penalty method should
be selected together in such a way that

• the order of convergence of the discretization method is preserved in the
full numerical method;

• the conditioning of the penalty problem is asymptotically no worse than
the conditioning of a comparable discrete variational equation.

These goals can be achieved by the parameter adjustment strategy derived in
[57] for a specific penalty method, which we now describe.

Consider the obstacle problem (1.2) with piecewise linear C0 elements and
with the discretization (2.2) for Gh. Unlike [57], we shall proceed here via the
discretization of a continuous penalty problem. The given obstacle problem
(1.2) leads first to the associated unconstrained variational problem

min
v∈V :=H1

0 (Ω)
Jρ(v) (3.62)

where

Jρ(v) :=
1
2
a(v, v)− (f, v) + s

∫
Ω

[
g(x)− v(x) +

√
(g(x)− v(x))2 + ρ−1

]
dx.

Here a(·, ·) and (f, ·) are again defined by
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a(u, v) =
∫
Ω

∇u∇v dx and (f, v) =
∫
Ω

fv dx.

The quantities s > 0 and ρ > 0 are parameters of the specific penalty method
used in (3.62). Our study of the convergence behaviour of the method will be
for an appropriately chosen but fixed s > 0 and for ρ→ +∞, so we write the
solution as uρ (i.e., we do not make explicit the dependence on s).

The strong convexity and continuity of Jρ(·) imply that for each ρ > 0
the auxiliary problem (3.62) has a unique solution uρ ∈ V . This solution is
characterized by the necessary and sufficient condition

〈Tρuρ, v〉 := a(uρ, v)− (f, v)− s
∫
Ω

(
1 +

g − uρ√
(g − uρ)2 + ρ−1

)
v dx

= 0 ∀v ∈ V.
(3.63)

Let Vh be a finite element space based on piecewise linear C0 elements over
some quasi-uniform triangulation of Ω ⊂ R2. To avoid additional boundary
approximations, for simplicity in our analysis we assume that the domain Ω
is polygonal. Assume also that the triangulation is of weakly acute type, i.e.,
all inner angles of the triangles of the subdivision do not exceed π/2.

Using partial mass lumping we discretize the variational equation (3.63)
by

〈Thρuhρ, vh〉 = 0 for all vh ∈ Vh. (3.64)

Here the operator Thρuhρ is defined by

〈Thρyh, vh〉 := a(yh, vh)−(f, vh)−s
N∑

i=1

meas(Di)

(
1 +

gi − yi√
(gi − yi)2 + ρ−1

)
vi

with

yi := yh(xi), vi := vh(xi), gi := g(xi) and uhρ
i := uhρ(xi) for i = 1, . . . , N.

Here the xi, for i = 1, . . . , N , are the inner grid points of the mesh (i.e., triangle
vertices that lie inside Ω), and each Di is the dual subdomain associated with
xi (see Section 4.6). The Ritz-Galerkin equations equivalent to (3.64) are

N∑
j=1

aiju
hρ
j − fi −meas(Di)

(
1 + gi − uhρ

i√
(gi − uhρ

i )2 + ρ−1

)
= 0,

i = 1, . . . , N,

(3.65)

with aij := a(ϕj , ϕi) and fi := (f, ϕi). The variational equations (3.64) and
the Ritz-Galerkin equations (3.65) each give a necessary and sufficient opti-
mality criterion for the variational problem

min
vh∈Vh

Jhρ(vh) (3.66)
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with

Jhρ(vh) := J(vh) + s
N∑

i=1

meas(Di)
(
gi − vi +

√
(gi − vi)2 + ρ−1

)
. (3.67)

We now analyse the convergence of the discretization (3.65), while assum-
ing that all the hypotheses of Theorem 7.19 for the problem (1.2) are satisfied.

Lemma 7.38. There exists a constant c0 > 0, which is independent of the
discretization, such that uhρ ∈ Gh for

s ≥ c0 > 0 and ρ > 0.

Proof: First, recall the discrete problem (2.6) associated with (1.2). Using

the discrete solution uh(x) =
N∑

j=1

ujϕj(x) we define

pi :=
1

meas(Di)
[a(uh, ϕi)− (f, ϕi)], i = 1, . . . , N. (3.68)

From the complementarity condition in (2.6) we get

pi = 0 when ui > gi.

Now consider any vertex xi with ui = gi, i.e., where the obstacle is active. We
have uj ≥ gj for all j by (2.6), and a(ϕi, ϕj) ≤ 0 for i �= j follows from the
assumption that the triangulation is weakly acute, so

0 ≤ pi ≤
1

meas(Di)
[a(gh, ϕi)− (f, ϕi)],

where gh is the piecewise linear interpolant of the obstacle function g over the
triangulation. Rewrite this inequality as

0 ≤ pi ≤
1

meas(Di)
[a(g, ϕi)− (f, ϕi) + a(gh − g, ϕi)].

By hypothesis g ∈W 2
∞(Ω) and f ∈ L∞(Ω). Because of meas(suppϕi) = O(h2)

consequently there exists a constant c1 > 0 such that

| a(g, ϕi)− (f, ϕi) | ≤ c1 h
2, i = 1, . . . , N,

where h is the mesh diameter. Furthermore, for an arbitrary triangle Δ of the
triangulation with Δ ∈ supp ϕi, we have∣∣∣ ∫

Δ

∇(gh − g)∇ϕi dx
∣∣∣ =

∣∣∣ ∫
∂Δ

(gh − g)
∂ϕi

∂n
ds
∣∣∣ ≤ c2 h

−1

∫
∂Δ

|gh − g| ds
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for some constant c2 > 0. Hence

| a(gh − g, ϕi) | ≤ c3 h
2

for some constant c3 > 0. But meas(Di) ≥ c4h2 for some positive constant c4,
and combining our bounds we obtain

0 ≤ pi ≤ c0, i = 1, . . . , N,

for some constant c0 > 0 that is independent of the triangulation.
Suppose that s ≥ c0. The definition (3.68) of pi gives

a(uh, ϕi)− (f, ϕi) = meas(Di) pi, i = 1, . . . , N.

Using the notation of (3.65) and recalling that gi ≤ ui for all i, then this
yields

N∑
j=1

aijuj − fi − smeas(Di)
(
1 + gi − ui√

(gi − ui)2 + ρ−1

)
≤ meas(Di) (pi − s) ≤ 0, i = 1, . . . , N,

(3.69)

where we used pi ≤ c0 ≤ s. As we mentioned already, aij ≤ 0 for i �= j. The
function

t �→ smeas(Di)
(
1 +

t√
(gi − t)2 + ρ−1

)
, i = 1, . . . , N

is monotonically increasing for t ∈ R. Thus a discrete comparison principle
can be applied and (3.69) this yields

uj ≤ uhρ
j , j = 1, . . . , N.

But uh = (uj)N
j=1 ∈ Gh and it follows that uhρ ∈ Gh also.

Lemma 7.39. Suppose that the parameter s is chosen such that s ≥ c0 as in
Lemma 7.38. Let uh be the solution of the discrete problem (2.6). Then

‖uh − uhρ‖ ≤ c ρ−1/4,

where the constant c is independent of the discretization.

Proof: We have
Jhρ(uhρ) ≤ Jhρ(uh)

since the function uhρ is the optimal solution of the auxiliary problem (3.66).
From (3.67) it is clear that Jhρ(vh) ≥ J(vh) for all vh ∈ Vh and

Jhρ(vh) ≤ J(vh) + smeas(Ω) ρ−1/2 for all vh ∈ Gh.
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Taking vh = uh and invoking the previous inequalities, we deduce that

J(uhρ) ≤ J(uh) + smeas(Ω) ρ−1/2 for all vh ∈ Gh. (3.70)

On the other hand, the optimality of uh implies that

〈J ′(uh), vh − uh〉 ≥ 0 for all vh ∈ Gh.

Lemma 7.38 enables us to take vh = uhρ here and the strong convexity of J
then yields

J(uhρ) ≥ J(uh)+ 〈J ′(uh), uhρ−uh〉+ γ ‖uhρ−uh‖2 ≥ J(uh)+ γ‖uhρ−uh‖2.

Recalling (3.70), we infer that

γ ‖uhρ − uh‖2 ≤ smeas(Ω) ρ−1/2.

The desired result follows.

To ensure that the O(h) rate of convergence demonstrated in Theorem 7.19
is retained for the complete method, one should select the parameter s ac-
cording to Lemma 7.38 and set

ρ = ρ(h) = h−4. (3.71)

We are also interested in the conditioning of the discretized penalty prob-
lem. For this purpose we introduce the mapping Φhρ : RN → R defined by

Φhρ(v) := s

N∑
i=1

meas(Di)
(
gi−vi +

√
(gi − Vi)2 + ρ−1

)
for all v = (vi)N

i=1.

Theorem 7.40. Let s ≥ c0, where c0 is the constant of Lemma 7.38. Choose
the penalty parameter ρ = ρ(h) according to (3.71). Then there exists a con-
stant c > 0 such that

‖u− uhρ‖ ≤ c h,

where u denotes the solution of the original problem (1.2). Furthermore, the
matrices Ah + Φ′′(uhρ), with uhρ = (uhρ

i )N
i=1, have asymptotically the same

conditioning behaviour as the stiffness matrix Ah of the elliptic problem with-
out the obstacle condition.

Proof: By Theorem 7.19, Lemmas 7.38 and 7.39, and (3.71) we have

‖u− uhρ‖ ≤ ‖u− uh‖ + ‖uh − uhρ‖ ≤ c h

for some constant c > 0. Thus we need only analyse the conditioning of
Ah +Φ′′(uhρ). Using Rayleigh quotients to compute the extremal eigenvalues
of this matrix, one has
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λmin(Ah + Φ′′(uhρ)) = min
z∈Rn, z �=0

zT (Ah + Φ′′(uhρ))z
zT z

≥ min
z∈Rn, z �=0

zTAhz
zT z

+ min
z∈Rn, z �=0

zTΦ′′(uhρ)z
zT z

≥ min
z∈Rn, z �=0

zTAhz
zT z

≥ mh2

for some constant m > 0. Similarly,

λmax(Ah + Φ′′(uhρ)) = max
z∈Rn, z �=0

zT (Ah + Φ′′(uhρ))z
zT z

≤ max
z∈Rn, z �=0

zTAhz
zT z

+ max
z∈Rn, z �=0

zTΦ′′(uhρ)z
zT z

≤ max
z∈Rn, z �=0

zTAhz
zT z

≤ M + max
1≤i≤N

{smeas(Di) ρ1/2}

for some constant M > 0. Hence, for our choice of the parameters s and ρ we
get

cond(Ah + Φ′′(uhρ)) =
λmax(Ah + Φ′′(uhρ))
λmin(Ah + Φ′′(uhρ))

≤ c h−2

for some c > 0.

In many application it is important to find not only an approximate solu-
tion uhρ ∈ Vh but also an approximation of the contact zone

Ω0 := {x ∈ Ω : u(x) = g(x) }.

We shall discuss perturbations of Ω0. For this we need the notation

Ω[τ ] := {x ∈ Ω : u(x) ≤ g(x) + τ }

for each τ ≥ 0, and the set Ωβ
h ⊂ R2 defined for any fixed parameter σ > 0 by

Ωβ
h := {x ∈ Ω : uhρ(x) ≤ gh(x) + σ hβ }

for β ∈ (0, 1). Finally, let

d(A,B) := max
{

sup
y∈A

inf
x∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖

}
denote the Hausdorff distance from the set A to the set B, where both sets
lie in R2. The next result, which is taken from [57], gives some idea of how
well Ω0 is approximated.

Theorem 7.41. Under the hypotheses of Theorem 7.40, there exist constants
c > 0 and h > 0 such that

d(Ωβ
h , Ω0) ≤ max

{
h; d(Ω[chβ ], Ω0)

}
for all h ∈ (0, h ].
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To conclude this section, we look at the example of elastic-plastic torsion of
a cylindrical rod; see [GLT81], [Fri82]. Consider a cylindrical rod made from
an ideal elastoplastic material with cross-section Ω ⊂ R2. If the constant
angle of torsion per unit length is denoted by C, then this model leads to the
variational problem

min J(v) := 1
2a(v, v)− C

∫
Ω

v(x) dx

where v ∈ H1
0 (Ω) and |∇v| ≤ 1 a.e. in Ω.

(3.72)

It can be shown that this problem is equivalent to

min J(v) := 1
2a(v, v)− C

∫
Ω

v(x) dx

where v ∈ H1
0 (Ω) and |v(x)| ≤ δ(x, ∂Ω) in Ω;

(3.73)

here δ(x, ∂Ω) denotes the distance from the point x ∈ Ω to the boundary ∂Ω.
In the case C < 0 we obtain an obstacle problem of the type (1.2) and our
previous analysis can be applied under some mild weakening of the assump-
tions made on the obstacle function g that are described in [57]. Numerical
approximations of the boundaries of the elastoplastic behaviour of the rod are
given in [57] for the sets

Ω = (0, 1)× (0, 1) and Ω = ((0, 1)× (0.5, 1)) ∪ ((0.25, 0.75)× (0, 1)).

7.4 Optimal Control of Partial Differential Equations

The availability of highly efficient numerical methods for the approximate
solution of partial differential equations has lead increasingly to the consider-
ation of problems of optimal control whose state equations are partial differ-
ential equations. Among examples of this type of problem are optimal control
of temperature ([115], [92]), optimization in fluid dynamics ([51], [43]) and the
construction of optimal design ([64], [70]). As well as numerous publications in
scientific journals, monographs such as [Lio71] and [NT94] study various as-
pects of the analysis and numerical solution of optimal control problems based
on partial differential equations. Now in Tröltzsch’s recent book [Trö05] we
have an advanced textbook that succinctly discusses the principal problems
of the theory of these problems, their applications, and numerical methods
for their solution. As this topic is today the subject of much research and
has a close mathematical relationship to the variational inequalities we have
already discussed, we now present a brief introduction to optimal control with
partial differential equations and the efficient solution of these problems by
finite element methods.

7.4.1 Analysis of an Elliptic Model Problem

LetΩ ⊂ Rn be a bounded domain with a regular boundary Γ . Let V := H1
0 (Ω)

be the usual Sobolev space and set U = L2(Ω). Let
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a(w, v) :=
∫
Ω

∇w · ∇v for all w, v ∈ V

be the bilinear form associated with the Laplace operator −Δ. In the current
section we often use the L2 norm; thus we shall write ‖ · ‖ for this norm,
instead of the notation ‖ · ‖0 that appears widely in the rest of this book.

As a model problem we consider

minw,u J(w, u) := 1
2
‖w − z‖2 + ρ

2
‖u‖2

where w ∈ V, a(w, v) = (u, v) for all v ∈ V,
and u ∈ Uad := {u ∈ U : α ≤ u ≤ β } .

(4.1)

Here z ∈ L2(Ω) is a given target state and α, β ∈ R are given constants with
α < β. These constants are bounds on the control u. The semi-ordering “≤”
in (4.1) is the almost-everywhere pointwise one on Ω and the bounds defining
Uad are identified with the constant functions α, β ∈ L2(Ω). Finally, ρ > 0 is
some regularization constant or cost factor for the control.

In the model problem (4.1) the control u acts as a source term in the
entire domain Ω; this is called a problem with a distributed control. Often
instead problems with boundary control are considered (see [Trö05]) where,
unlike (4.1), the control u acts only via a boundary condition.

The classical formulation of (4.1) is

minw,u J(w, u) := 1
2

∫
Ω

[w(x)− z(x)]2 dx + ρ

2

∫
Ω

u(x)2 dx

where −Δw =u in Ω and w = 0 on Γ,

u ∈ L2(Ω), α ≤ u ≤ β in Ω.

(4.2)

In the optimal control literature it is standard to use u to denote the
control. We follow this practice in this section and (unlike the rest of the
book) write w for the solution of the variational equation that appears in
(4.1) and the solution of the Poisson equation in (4.2). The occurring Poisson
equation is called the state equation of the original control problem and its
solution is briefly called the state. By the Lax-Milgram Lemma, for each u ∈ U
there exists a unique w ∈ V such that

a(w, v) = (u, v) for all v ∈ V

and for some c > 0 one has ‖w‖ ≤ c ‖u‖. Hence the definition

a(Su, v) := (u, v) for all v ∈ V (4.3)

specifies a continuous linear operator S : U → V . In terms of this operator
and the scalar product (·, ·) in U = L2(Ω), problem (4.1) can be written in
the form
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min
u

J(u) :=
1

2
(Su− z, Su− z) +

ρ

2
(u, u) where u ∈ G := Uad. (4.4)

Here we have identified G with Uad to simplify the notation and to underline
the connection with the preceding section. Because there is no danger of con-
fusion we use the same notation J for the objective functionals in (4.4) and
(4.1).

The problem (4.4) is called the reduced problem associated with (4.1).

Lemma 7.42. The functional J defined in (4.4) is continuously differentiable
and strongly convex on U . One has

〈J ′(u), d〉 = (Su− z, Sd) + ρ (u, d) for all u, d ∈ U. (4.5)

Proof: By expanding J(u+ d) we get

J(u+ d) = J(u) + (Su− z, Sd) + ρ (u, d) +
1

2
(Sd, Sd) +

ρ

2
(d, d)

for all u, d ∈ U.
(4.6)

Now S is linear and continuous and hence there exists a constant cS > 0 such
that

‖Sd ‖ ≤ cS ‖d‖ for all d ∈ U. (4.7)

Consequently

1

2
(Sd, Sd) +

ρ

2
(d, d) =

1

2
‖Sd‖2 +

ρ

2
‖d‖2 ≤ 1

2
(c2S + ρ) ‖d‖2 for all d ∈ U.

This estimate and the identity (4.6) imply that J is continuously differentiable
and one has the representation (4.5). Furthermore, (4.6) yields

J(u+d) = J(u)+〈J ′(u), d〉+1

2
(Sd, Sd)+

ρ

2
(d, d) ≥ J(u)+〈J ′(u), d〉+ρ

2
‖d‖2

It follows that J is strongly convex.

Let S∗ : U → V denote the operator adjoint to S, i.e.,

(u, S∗v) = (Su, v) for all u ∈ U, v ∈ V.

Then the Fréchet derivative J ′(u) of the cost functional can be represented as
an element in U = L2(Ω) by

J ′(u) = S∗(Su− z) + ρ u. (4.8)

Theorem 7.43. The problem (4.4) has a unique optimal solution ū. The con-
dition

〈J ′(ū), u− ū〉 ≥ 0 for all u ∈ G (4.9)

is a necessary and sufficient criterion for ū ∈ G to be the optimal solution of
(4.4).
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Proof: The set G = Uad ⊂ U is convex and bounded (see Exercise 7.66),
and since α < β it is clear that G �= ∅. The proof of existence of an optimal
solution of (4.4) resembles the proof of Lemma 7.4 (recall problem (1.14)): to
show that J is bounded from below, from (4.4) and (4.7) we have

J(u) =
1
2
(Su, Su)− (Su, z) +

1
2
(z, z) +

ρ

2
(u, u)

≥ 1
2
‖z‖2 − cS‖u‖ ‖z‖+

ρ

2
‖u‖2

=
1
2
‖z‖2 − c2S

2ρ
‖z‖2 +

(
cS√
2ρ
‖z‖ −

√
ρ

2
‖u‖
)2

≥ 1
2
(1− c2S) ‖z‖2 for all u ∈ U,

provided that ρ ≥ 1, which is not a restriction. Lemma 7.42 establishes
the strong convexity of J . Hence the optimal solution is unique and from
Lemma 7.8 the optimality criterion (4.9) is valid.

Let us return to the original form (4.1) of the control problem. This is an
abstract optimization problem in a function space with inequality constraints,
and these constraints are fairly simple because they restrict only the controls.
In what follows we shall retain these inequalities as constraints in the problem
and do not include them in the Lagrange functional. That is, to treat the state
equation we apply the Lagrange functional defined by

L(w, u, v) := J(w, u) − a(w, v) + (u, v) for all w, v ∈ V, u ∈ U. (4.10)

The structure of the problem (4.1) ensures the existence of all partial deriva-
tives of L. These derivatives have the representations

〈Lw(w, u, v), ψ〉 = (w − z, ψ)− a(ψ, v) for all ψ ∈ V, (4.11)

〈Lv(w, u, v), ξ〉 = a(w, ξ)− (u, ξ) for all ξ ∈ V, (4.12)

〈Lu(w, u, v), μ〉 = ρ(u, μ) + (v, μ) for all μ ∈ U, (4.13)

for all w, v ∈ V and u ∈ U . We then get the following result:

Theorem 7.44. A pair (w̄, ū) ∈ V × G is a solution of (4.1) if and only if
there exists v̄ ∈ V such that

〈Lw(w̄, ū, v̄), w〉 = 0 for all w ∈ V, (4.14)

〈Lv(w̄, ū, v̄), v〉 = 0 for all v ∈ V, (4.15)

〈Lu(w̄, ū, v̄), u− ū〉 ≥ 0 for all u ∈ G. (4.16)
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Proof: We shall use (4.11)–(4.13) to show that (4.14)–(4.16) are equivalent
to (4.9). Then by Theorem 7.43 we are done.

First, assume that (4.14)–(4.16) are valid for some triple (w̄, ū, v̄). Now
(4.12) and (4.15) imply that

w̄ = Sū.

From (4.11) and (4.14) we then have

(Sū− z, w) = a(w, v̄) for all w ∈ V.

Choosing w = Sd here for an arbitrary d ∈ U , the definition (4.3) of the
operator S yields

(Sū− z, Sd) = a(Sd, v̄) = (d, v̄) for all d ∈ U.

Hence v̄ = S∗(Sū− z). But then (4.8), (4.13) and (4.16) give

〈J ′(ū), u− ū〉 = (S∗(Sū− z) + ρ ū, u− ū) ≥ 0 for all u ∈ G.

That is, (4.9) is satisfied.
The converse argument is similar; one chooses w̄ := Sū and v̄ := S∗(Sū−

z).

Remark 7.45. The relations that constitute the optimality conditions of The-
orem 7.44 can be characterized as follows: the identity (4.15) is simply the
given state equation, the relation (4.14) is the associated adjoint equation and
(4.16) is the feasible direction characterization for the objective functional J
that was established in Theorem 7.43. �

Remark 7.46. The proofs above reveal that the derivative J ′(u) ∈ U has the
representation

J ′(u) = v + ρ u,

where v ∈ V is defined iteratively by the variational equations

a(w, ξ) = (u, ξ) for all ξ ∈ V, (4.17a)

a(ψ, v) = (w − z, ψ) for all ψ ∈ V. (4.17b)

As we already stated, (4.17a) is a weak formulation of the state equation and
(4.17b) is the related adjoint equation. The Lax-Milgram lemma guarantees
existence and uniqueness of a solution of (4.17a) and of (4.17b), i.e., to the
state and adjoint state equations, respectively. Written as a boundary value
problem, (4.17a) describes the classical state equation

−Δw = u in Ω, w = 0 on Γ.

Similarly (4.17b) corresponds to the classical adjoint equation
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−Δv = w − z in Ω, w = 0 on Γ.

In this example the differential operator with its homogeneous boundary con-
dition is selfadjoint. Consequently the gradient of the objective functional can
be evaluated by solving two Poisson equations. If the underlying differential
operator is not selfadjoint then of course the adjoint equation will not coincide
with the state equation. �

The set G ⊂ U is nonempty, convex and bounded. Thus, given u ∈ U , we can
define the L2 projector P : U → G onto the feasible set G by Pu := ũ ∈ G
where

(ũ− u, ũ− u) ≤ (v − u, v − u) for all v ∈ G.
By Lemma 7.4 the operator P is non-expansive, i.e.,

‖Pu− Pv‖ ≤ ‖u− v‖ for all u, v ∈ U.

The optimality condition can be reformulated in terms of the projector P :

Lemma 7.47. For each σ > 0 the optimality condition (4.9) is equivalent to
the fixed point equation

ū = P
(
ū − σ J ′(ū)

)
. (4.18)

In particular if σ = 1/ρ then the element ū ∈ G minimizes J in (4.4) if and
only if, with the adjoint state v̄ defined by (4.17), one has

ū = P

(
−1

ρ
v̄

)
. (4.19)

Proof: This is left to the reader as Exercise 7.67.

Remark 7.48. In the case G = Uad that we have considered, it is easy to
evaluate the projector P . Indeed, the following representation holds almost
everywhere in Ω:

[Pu](x) =

⎧⎪⎨⎪⎩
β if u(x) > β,

u(x) if α ≤ u(x) ≤ β,
α if u(x) < α. �

(4.20)

Lemma 7.49. Consider the case of functions α, β and assume that α, β ∈
H1(Ω). Then the optimal solution ū also lies in the space H1(Ω).

Proof: The optimal adjoint state v̄ automatically lies in V = H1
0 (Ω). Now

(4.19), the representation (4.20) of the projector P , and the property (see
[KS80]) that
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ψ, ζ ∈ H1(Ω) =⇒ max{ψ, ζ} ∈ H1(Ω)

together prove the assertion.

Remark 7.50. In the case ρ = 0 which we excluded, where no regularization
is made, then ū ∈ H1(Ω) cannot be guaranteed. Moreover, the characteri-
zation (4.19) is then no longer valid. When ρ = 0, one typically encounters
discontinuous optimal solutions (the bang-bang principle; see [Trö05]). �

Lemma 7.47 tells us that the problem (4.4) can be reformulated as a fixed
point problem. Then one can generate a sequence {uk}∞k=1 ⊂ G via the fixed
point iteration

uk+1 = T (uk) := P
(
uk − σ J ′(uk)

)
, k = 0, 1, . . . (4.21)

with some step-size parameter σ > 0 and any starting element u0 ∈ V . This is
the method of projected gradients and for it we have the following convergence
result:

Theorem 7.51. Consider the projected gradient method defined by (4.21) for
a sufficiently small step size parameter σ > 0 and an arbitrary u0 ∈ V . Then
the method generates a sequence {uk}∞k=1 ⊂ G that converges to the optimal
solution ū of problem (4.4).

Proof: Since J is strongly convex, the operator J ′ is strongly monotone. Fur-
thermore, the quadratic structure of J ensures that J ′ is Lipschitz continuous.
Lemma 7.6 (cf. Exercise 7.68) implies that for any sufficiently small parameter
σ > 0 the sequence {uk} ⊂ G converges to the fixed point ū of the operator T
defined by (4.21). Then, by Lemma 7.47, the element ū is an optimal solution
of (4.4).

Remark 7.52. To accelerate the convergence of the projected gradient method,
the step size should be changed adaptively at each iteration. That is, (4.21)
is modified to

uk+1 = T (uk) := P
(
uk − σk J

′(uk)
)
, k = 0, 1, . . .

with appropriate σk > 0. �

The projected gradient method (4.21) is defined directly in the space U .
If the Fréchet derivative J ′ is expressed via the adjoint state and the simple
evaluation (4.20) of the projection P is taken into account, then each step of
(4.21) can be implemented in the following way:
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• Determine wk ∈ V as the solution of the state equation

a(wk, v) = (uk, v) for all v ∈ V.

• Determine vk ∈ V as the solution of the adjoint equation

a(v, vk) = (v, wk − z) for all v ∈ V.

• Set uk+1/2 = uk − σ(vk + ρuk) then compute uk+1 ∈ G by projection into
G, i.e., according to the rule

uk+1(x) :=

⎧⎪⎨⎪⎩
β if uk+1/2(x) > β,

uk+1/2(x) if α ≤ uk+1/2(x) ≤ β,
α if uk+1/2(x) < α.

for x ∈ Ω

The first two steps here require the solution of elliptic boundary value prob-
lems, which will be done numerically by some appropriate discretization. We
will consider this aspect in Section 7.4.2.

In the Lagrange functional (4.10) we included the state equations but
omitted the restrictions that define the set Uad of admissible states—these
constraints were treated directly. We now study briefly an extended form of
the Lagrange functional that includes the control restrictions as well as the
state equations. For this purpose, the underlying semi-ordering will be defined
by means of the closed convex cone

K := {u ∈ U : u ≥ 0 a.e. in Ω }. (4.22)

The set K coincides with its dual cone, viz.,

K = K+ := {u ∈ U : (u, z) ≥ 0 ∀ z ∈ K }.

Now the set of admissible controls can be described equivalently by

Uad = {u ∈ U : (α, z) ≤ (u, z) ≤ (β, z) ∀ z ∈ K }. (4.23)

Recalling (4.10), we arrive at the extended Lagrange functional

L(w, u, v, ζ, η) := J(w, u) − a(w, v) + (u, v)

+ (α− u, ζ) + (u− β, η)
for all w, v ∈ V, ζ, η ∈ K, u ∈ U

(4.24)

that also includes terms from the control constraints. We use our previous
notation L for this extended Lagrange functional also as there is no danger of
confusion.

Analogously to Theorem 7.44, we have the following characterization (see
also Exercise 7.69):
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Theorem 7.53. A pair (w̄, ū) ∈ V ×G is a solution of problem (4.1) if and
only if there exist v̄ ∈ V and ζ̄, η̄ ∈ K such that

〈Lw(w̄, ū, v̄, η̄, ζ̄), w〉 = 0 for all w ∈ V, (4.25a)

〈Lv(w̄, ū, v̄, v̄, η̄, ζ̄), v〉 = 0 for all v ∈ V, (4.25b)

〈Lu(w̄, ū, v̄, v̄, η̄, ζ̄), u〉 = 0 for all w ∈ U, (4.25c)

〈Lη(w̄, ū, v̄, v̄, η̄, ζ̄), η〉 ≤ 0 for all η ∈ K, (4.25d)

〈Lη(w̄, ū, v̄, v̄, η̄, ζ̄), η̄〉 = 0 (4.25e)

〈Lζ(w̄, ū, v̄, v̄, η̄, ζ̄), ζ〉 ≤ 0 for all ζ ∈ K, (4.25f)

〈Lζ(w̄, ū, v̄, v̄, η̄, ζ̄), ζ̄〉 = 0. (4.25g)

Remark 7.54. The system (4.25a)–(4.25d) are the Karush-Kuhn-Tucker condi-
tions for the problem (4.1). Primal-dual methods, such as primal-dual penalty
methods, can be constructed using these conditions. Furthermore, the system
(4.25a)–(4.25d) gives a way of controlling active set strategies in algorithms
of this type; see, e.g., [68]. �

At several points in the current section we have emphasized the close con-
nection between variational inequalities and optimal control problems. Before
we move on to study discretization techniques, an optimal control problem
from [72] that contains elliptic variational inequalities as constraints will be
considered. In particular, the definition of the feasible domain in this problem
involves a variational inequality.

In addition to the previously-known data in the model problem (4.1), let
us now be given a function Ψ ∈ U such that at least one v ∈ V exists with
v ≤ Ψ . In the case of functions Ψ that are continuous on Ω, this assumption
is equivalent to Ψ(x) ≥ 0 for all x ∈ Γ . Setting

Q := { v ∈ V : v ≤ Ψ }, (4.26)

we consider the following optimal control problem with variational inequali-
ties:

min
w,u

J(w, u) :=
1

2
‖w − z‖2 +

ρ

2
‖u‖2 (4.27a)

where w ∈ Q, a(w, v − w) ≥ (u, v − w) for all v ∈ Q, (4.27b)
u ∈ Uad := {u ∈ U : a ≤ u ≤ b } . (4.27c)

The bilinear form a(·, ·) here is slightly simpler than the one appearing in [72].
Our bilinear form induces a mapping F : V → V ∗ defined by

〈Fw, v〉 = a(w, v) for all w, v ∈ V.



7.4 Optimal Control of PDEs 489

Then F satisfies the assumptions of Section 7.1 and Theorem 7.7 guarantees
that for each u ∈ U there is a unique w ∈ Q that satisfies the variational
inequality (4.27b). Thus, taking S̃u = w, we can define an operator S̃ : U → Q
by

S̃u ∈ Q, a(S̃u, v − S̃u) ≥ (u, v − S̃u) for all v ∈ Q. (4.28)

Unlike the operator S of (4.3), S̃ is nonlinear. Nevertheless we have

Lemma 7.55. The operator S̃ is Lipschitz continuous and

(S̃u− S̃ũ, u− ũ) ≥ 0 for all u, ũ ∈ U. (4.29)

Proof: Setting w := S̃u and w̃ := S̃ũ in (4.28), we get

a(w, v − w) ≥ (u, v − w) and a(w̃, v − w̃) ≥ (u, v − w̃) for all v ∈ Q.

Choose v = w̃ and v = w, respectively, in these inequalities then add them.
The bilinearity of a(·, ·) yields

a(w − w̃, w − w̃) ≤ (u− ũ, w − w̃). (4.30)

But a(v, v) ≥ 0 for all v ∈ V , and (4.29) follows. Applying the Cauchy-Schwarz
inequality to (4.30), then invoking the ellipticity of a(·, ·) and the continuous
embedding V ↪→ U , we infer the Lipschitz continuity of S̃.

Compared with (4.4), we now use S̃ instead of S and obtain the reduced
control problem

min
u

J̃(u) :=
1

2
(S̃u− z, S̃u− z) +

ρ

2
(u, u) where u ∈ G. (4.31)

One can prove results for this J̃ that are analogues of Lemma 7.42 and The-
orem 7.43, and thereby obtain existence of an optimal solution.

Theorem 7.56. The problem (4.31) has a unique optimal solution ū.

Remark 7.57. Unlike the functional J of (4.4), in general the objective func-
tional J̃ fails to be differentiable. Thus non-smooth methods are required for
the numerical treatment of (4.31); see, e.g., [72] and [97]. �

7.4.2 Discretization by Finite Element Methods

In the model problem (4.1), the spaces V = H1
0 (Ω) and U = L2(Ω) that

occur naturally are infinite dimensional. In the numerical solution of optimal
control problems with partial differential equations, a common approach is
to discretize both spaces by, e.g., finite element methods and to approximate
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the set Uad of admissible controls by a suitable set comprising finitely many
conditions. One then has a complete discretization.

An alternative approach to discretization has been proposed by Hinze [69].
It is based directly on the optimality condition (4.19). Here the states, the
state equation, the associated adjoint states and adjoint equation are dis-
cretized, but the space U that contains the controls is not. One can then
achieve optimal-order convergence estimates because, unlike complete dis-
cretization, the discretization of control is not linked to a finite element space
Uh that is chosen a priori. At the end of this section Hinze’s technique will be
briefly discussed, but we first describe complete discretization in detail and
provide a convergence analysis for it.

Let Vh ⊂ V be a conforming finite element space with a basis of functions
ϕj ∈ V where j = 1, . . . , N , i.e.,

Vh = span
{
ϕj

}N

j=1
.

We likewise select
UH := span

{
ψl

}M

l=1

for linearly independent functions ψl ∈ U, l = 1, . . . ,M lying in U . Here
h, H > 0 denote the mesh sizes of the associated underlying grids (e.g., tri-
angulations).

The choices of trial spaces Vh ⊂ V and UH ⊂ U that we make in dis-
cretizing the states vh and controls uh could in principle be independent, but
to obtain good error estimates these discretizations should be related. For
instance, it is wasteful to solve the state equations to a very high degree of
accuracy while simultaneously computing only a rough approximation UH of
U . In practical applications the same triangulation is often used for the con-
struction of both Vh and UH . Compared with the general case of independent
discretizations of V and U , one then gets a simplified evaluation of the inte-
grals that define a(w, v) and (u, v). Here we shall restrict ourselves to the case
where the grids coincide and index both discrete spaces by h, i.e., we write
Uh instead of UH .

We consider the following discretization of the model problem (4.1):

min
wh,uh

J(wh, uh) :=
1

2
‖wh − z‖2 +

ρ

2
‖uh‖2 (4.32a)

where wh ∈ Vh, a(wh, vh) = (uh, vh) for all vh ∈ Vh (4.32b)
uh ∈ Gh ⊂ Uh. (4.32c)

Here Gh := Uh,ad is some discretization of the set of admissible controls. In
the literature the discretization

Gh : = Uh,ad := {uh ∈ Uh : α ≤ uh ≤ β a.e. in Ω }
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is frequently used, and if Uh comprises piecewise linear C0 elements one then
has

uh ∈ Uh,ad ⇐⇒ α ≤ u(xh) ≤ β ∀xh ∈ Ωh,

where Ωh denotes the set of all inner vertices of the triangulation. That is, in
this case the set Gh is defined by a finite number of pointwise conditions.

The representation (4.23) inspires an alternative discretion of Uad given
by

Gh := Uh,ad := {uh ∈ Uh : (α, zh) ≤ (uh, zh) ≤ (β, zh) ∀zh ∈ Uh, zh ≥ 0 }.

This is a type of mixed discretization where for simplicity we have used the
same discrete space Uh as a dual space to approximate the constraints, i.e.,
the spaces of trial functions and test functions here are identical.

In what follows we concentrate on the case where Ω ⊂ Rn is a polyhedral
set and piecewise linear C0 elements on a regular triangulation of Ω are used
to discretize both state and adjoint equations. For the discretization of the
controls we work with piecewise constant functions over the same triangula-
tion. Let Th = {Ωj}Mj=1 be our triangulation with mesh size h > 0. Then

Vh := { vh ∈ C(Ω) : vh|Ωj
∈ P1(Ωj), j = 1, . . . ,M },

Uh := {uh ∈ L2(Ω) : uh|Ωj
∈ P0(Ωj), j = 1, . . . ,M }.

We assume that all vertices of the polyhedron Ω are also vertices of our
triangulation; thus no additional errors arise from boundary approximations.
For the numerical treatment of more general domains Ω in optimal control
problems, see [35] and [90].

Analogously to the solution operator S : U → V of the state equation in
the original problem, we set Shu = wh where wh ∈ Vh is the unique solution
of the discrete variational equation

a(wh, vh) = (u, vh) for all vh ∈ Vh. (4.33)

The operator Sh : U → Vh is linear and continuous. Clearly (4.33) is simply
the application of the finite element method to the state equation (4.3). Since
Vh ⊂ V and the same bilinear form was used in both the continuous and
discrete cases, (4.33) is a conforming discretization. Consequently the Lax-
Milgram lemma guarantees existence and uniqueness of a solution wh ∈ Vh

for each u ∈ U . Furthermore,

‖Shd ‖ ≤ cS ‖d‖ for all d ∈ U (4.34)

where cs is the same constant as in (4.7). In terms of the operator Sh, a
reduced discrete control problem associated with (4.32) is given by

min
uh

Jh(uh) :=
1

2
(Shuh− z, Shuh− z) +

ρ

2
(uh, uh) where uh ∈ Gh. (4.35)

For this problem we have
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Theorem 7.58. The reduced discrete problem (4.35) has a unique optimal
solution ūh ∈ Gh. The condition

〈J ′
h(ūh), uh − ūh〉 ≥ 0 for all uh ∈ Gh (4.36)

is a necessary and sufficient criterion for ūh ∈ Gh to be a solution of (4.35).

Proof: The proof of Theorem 7.43 can easily be modified for the discrete case.

Define the operator S∗
h : Uh → Vh by

(uh, S
∗
hvh) = (Shuh, vh) for all uh ∈ Uh, vh ∈ Vh,

i.e., S∗
h is the adjoint of Sh. Then the derivative J ′

h(u) of the discrete objective
functional can be expressed as an element of Uh by

J ′
h(uh) = S∗

h(Shuh − z) + ρ uh. (4.37)

Similarly to Lemma 7.47, we have

Lemma 7.59. Let Ph : U → Gh denote the L2(Ω) projection onto Gh. For
each σ > 0 the optimality condition (4.36) is equivalent to the fixed point
equation

ūh = Ph

(
ūh − σ J ′

h(ūh)
)
. (4.38)

In particular if σ = 1/ρ the element ūh minimizes Jh in (4.35) if and only if,
with the associated discrete adjoint state v̄h, one has

ūh = Ph

(
−1

ρ
v̄h

)
. (4.39)

Before proving convergence of the discrete optimal solution ūh to the so-
lution ū of the original problem, we briefly discuss the finite-dimensional rep-
resentation of the discrete problem (4.35). In terms of our basis functions,
elements wh ∈ Vh and uh ∈ Uh are given by

wh =
N∑

j=1

ŵj ϕj and uh =
M∑

j=1

ûj ψj ,

for some ŵh = (wj) ∈ RN and ûh = (uj) ∈ RM . Thus the discrete state
equation (4.33) is equivalent to the Galerkin system of equations

N∑
j=1

a(ϕj , ϕi)wj =
M∑

j=1

(ψj , ϕi)uj , i = 1, . . . , N.

Defining the stiffness matrix Ah = (aij) where aij := a(ϕj , ϕi) and the mass
matrix Bh = (bij) where bij := (ψj , ϕi), we can write the Galerkin system as
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Ahŵ = Bh û. (4.40)

Hence ŵ = A−1
h Bhû, but in practice computation of the matrix inverse must

of course be avoided. Instead, ŵ ∈ RN should be found using some efficient so-
lution technique for the discrete elliptic system (4.40). To clarify this, observe
that the finite-dimensional representation of the complete discrete system is

min
wh,uh

Jh(wh, uh) =
1
2
ŵTChŵ − dT

h ŵ +
ρ

2
ûTEhû (4.41a)

where Ahŵ = Bhû, α ≤ uj ≤ β, j = 1, . . . ,M, (4.41b)

and the matrices Ch = (cij) and Eh = (eij), and dh = (di) ∈ RN , are defined
by

cij := (ϕi, ϕj), eij := (ψ,ψj) and di := (z, ϕi).

Although the problem (4.41) is a quadratic optimization problem with rather
simple constraints—namely box constraints—its numerical solution requires
special solution techniques based on its special structure because of the very
high dimensions of the discrete spaces involved. In this regard, (4.37) enables
efficient evaluation of the gradient of the reduced objective function, which
motivates the application of gradient-based minimization methods. Other nu-
merical techniques that are suitable for this problem make successful use of
active set strategies [13] or non-smooth Newton methods [116]. Also, the
penalty methods discussed in Section 7 with a modified parameter-selection
rule can be used to solve (4.41).

Next, we analyse the convergence of the solution ūh of the discrete problem
(4.35) to the solution ū of the continuous problem (4.4) as the mesh size h
approaches zero. We shall use techniques developed in [35] for the semi-discrete
case.

Let Πh : U → Uh denote the orthogonal projector in L2(Ω) defined by

Πhu ∈ Uh with ‖Πhu− u‖ ≤ ‖uh − u‖ for all uh ∈ Uh.

In our case, where Uh is the space of piecewise constant functions, this pro-
jector is explicitly given by

[Πhu](x) =
1

measΩj

∫
Ωj

u(ξ) dξ for all x ∈ Ωj , j = 1, . . . ,M (4.42)

where measΩj is the measure of the element Ωj .

Lemma 7.60. For the projector Πh defined in (4.42), one has

u ∈ G =⇒ Πhu ∈ Gh, (4.43)

(Πhu− u, vh) = 0 for all vh ∈ Uh, (4.44)

and there exists a constant c > 0 such that

‖Πhv − v‖ ≤ c h ‖v‖1 for all v ∈ H1(Ω). (4.45)
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Proof: From the definition of G we have

α ≤ u(x) ≤ β for almost all x ∈ Ω.

By (4.42) this yields α ≤ uj ≤ β for j = 1, . . . ,M , where uj :=
1

measΩj

∫
Ωj

u(ξ) dξ. Thus uh ∈ Gh.

As Uh is a linear subspace of U , the identity (4.44) is a standard character-
ization of Πh by means of necessary and sufficient conditions for attainment
of the minimal distance in our definition.

Finally, the estimate (4.45) is a consequence of the Bramble-Hilbert
Lemma.

Theorem 7.61. As h → 0, the solution ūh ∈ Gh of the discrete problem
(4.35) converges in the norm ‖ · ‖ to the solution ū ∈ G of the original contin-
uous problem (4.4). Furthermore, if Ω is convex, then there exists a constant
c > 0 such that

‖ūh − ū‖ ≤ c h. (4.46)

Proof: First, we show that ‖ūh‖ is bounded as h → 0. The function ûh ≡ α
belongs to Uh and α ≤ ûh ≤ β. That is, ûh ∈ Gh for each h > 0. The
optimality of ūh in the discrete problem (4.35) then implies that Jh(ūh) ≤
Jh(ûh). The properties of Jh yield

Jh(ūh) ≥ Jh(ûh) + 〈J ′
h(ûh), ūh − ûh〉 + ρ ‖ûh − ūh‖2

≥ Jh(ūh) + 〈J ′
h(ûh), ūh − ûh〉 + ρ ‖ûh − ūh‖2

and as J ′
h(ûh) ∈ L2(Ω) one infers that

‖J ′
h(ûh)‖ ‖ūh − ûh‖ ≥ |〈J ′

h(ûh), ūh − ûh〉| ≥ ρ ‖ûh − ūh‖2.

Hence
‖ūh‖ ≤ ‖ûh‖ +

1
ρ
‖J ′

h(ûh)‖.

But ûh ≡ α is constant so this bound on ‖ūh‖ is independent of h.
Now we study the convergence. From the representations of the gradients

of J and Jh given in (4.8) and (4.37), and the optimality characterizations of
Theorems 7.43 and 7.58, we see that

(S∗(Sū− z) + ρ ū, v − ū) ≥ 0 for all v ∈ G,
(S∗

h(Shūh − z) + ρ ūh, vh − ūh) ≥ 0 for all vh ∈ Gh .

Choose here the particular test functions v = ūh and vh := Πhū. (The former
selection is permissible since Gh ⊂ G.) This yields
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(S∗(Sū− z) + ρ ū, ūh − ū) ≥ 0,

(S∗
h(Shūh − z)− (S∗(Sūh − z),Πhū− ūh)+

+ ((S∗(Sūh − z) + ρ ūh,Πhū− ūh) ≥ 0.

Adding these inequalities and invoking the monotonicity of the operator S∗S
yields

((S∗
hSh − S∗S)ūh,Πhū− ūh) + ((S∗ − S∗

h)z,Πhū− ūh)
+ ((S∗(Sūh − z) + ρ ūh,Πhū− ū)
≥ ((S∗S(ūh − ū) + ρ (ūh − ū), ūh − ū) ≥ ρ ‖ūh − ū‖2. (4.47)

The convergence properties of the finite element method and of the projector
Πh ensure that

lim
h→0
‖S∗

hSh − S∗S‖ = 0, lim
h→0
‖S∗

h − S∗‖ = 0

and lim
h→0
‖Πhū− ū‖ = 0.

(4.48)

As we have already shown that ‖ūh‖ is bounded, the left-hand side of (4.47)
tends to zero as h→ 0. Consequently

lim
h→0
‖ūh − ū‖ = 0,

as desired.
Suppose now that Ω is convex. Then Su ∈ V ∩H2(Ω) and there exists a

constant c > 0 such that

‖(Sh−S)u‖ ≤ c h2 ‖u‖ and ‖(S∗
h−S∗)u‖ ≤ c h2 ‖u‖ for all u ∈ U. (4.49)

In particular
‖(S∗ − S∗

h) z‖ ≤ c h2 ‖z‖ (4.50)

because z ∈ L2(Ω) by hypothesis, and the boundedness of ūh and the estimate
(4.49) yield with

S∗
hSh − S∗S = (S∗

h − S∗)Sh + S∗(Sh − S)

the bound
‖(S∗

hSh − S∗S)ūh‖ ≤ c h2. (4.51)

Hence we have

|((S∗
hSh − S∗S)ūh,Πhū− ūh) + ((S∗ − S∗

h)z,Πhū− ūh)| ≤ c h2. (4.52)

Finally, the third summand in the left-hand side of (4.47) will be estimated.
First consider the identity
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(S∗(Sūh − z) + ρ ūh,Πhū− ū) =

= (S∗(Sūh − z)−ΠhS
∗(Sūh − z) +ΠhS

∗(Sūh − z) + ρ ūh,Πhū− ū).

Here ΠhS
∗(Sūh − z) + ρ ūh ∈ Uh and the error orthogonality property (4.44)

of the projector Πh then gives immediately

(ΠhS
∗(Sūh − z) + ρ ūh,Πhū− ū) = 0.

From the convexity of Ω we have S∗(Sūh − z) ∈ V ∩ H2(Ω) and invoking
Lemma 7.60 we get

|(S∗(Sūh − z),Πhū− ū)| ≤ c h2 ‖S∗(Sūh − z)‖2 ‖ū‖2. (4.53)

The convexity of Ω implies that for some constant c > 0 one has

‖S∗v‖2 ≤ c ‖v‖ for all v ∈ L2(Ω).

Combining this with the previously-shown boundedness of ūh, we see that the
right-hand side of (4.53) is bounded by ch2. Now recalling (4.52) and (4.47),
we get

ρ ‖ūh − ū‖2 ≤ c h2.

Then inequality (4.46) follows.

Remark 7.62. Replacing the piecewise constant discretization of the control by
a piecewise linear discretization will usually improve the order of convergence.
Note however that the property (4.43), which was critical in our convergence
proof, is no longer valid for the analogous projector Π̃h : U → Vh in the
piecewise linear case. For the complete discretization of states and controls
with piecewise linear C0 elements it can be shown that ‖ūh − ū‖ = O(h3/2);
see [103].

Remark 7.63. As well as complete discretization (i.e., the discretization of the
state equation, the adjoint equation and of the controls) semi-discretization
techniques are also proposed and analysed in the literature. In [35] the con-
trols are discretized but the state equation is not. Our proof of Theorem 7.61
is a modification of an argument from [35]. In that proof, when a complete dis-
cretization is used, some additional terms will appear in (4.50)–(4.52). In [69]
Hinze proposes an alternative approach that discretizes the state and adjoint
equations but not the controls. This simplifies the analysis substantially be-
cause then in both the continuous and semi-discrete cases one projects onto the
same set of feasible controls. As a consequence of the projection that occurs in
the optimality criterion, the optimal control usually has reduced smoothness
compared with the solution of the state equation. Hence any discretization of
the control that is chosen a priori can guarantee only a lower order of approx-
imation. Unlike an explicit discretization, an implicit discretization via the
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projection can handle the specific behaviour of the piecewise representation
of the projection. This leads to an overall discretization error that is derived
only from the state equation and its adjoint, and thereby leads to an optimal
order of convergence.

Analogously to the characterization (4.19), in the semi-discrete case a fea-
sible control ũh is optimal if and only if

ũh = P

(
−1

ρ
ṽh

)
, (4.54)

where ṽh ∈ Vh denotes the discrete adjoint state associated with ũh ∈ U . This
is indeed a semi-discretization because no a priori selection of the discrete
space Uh is required. It is shown in [69] under relatively mild assumptions
that

‖ũh − ū‖ ≤ c h2.

A fundamental property of the semi-discretization proposed in [69] is that,
unlike in (4.39), the projector P appears but Ph does not. The method can

be implemented numerically using the specific structure of P
(
−1
ρ
v̄h

)
. �

Remark 7.64. An alternative approach to improving the order of convergence
appears in [90]. Here the optimal solution ūh obtained by full discretization
is post-processed to yield an improved discretization ûh ∈ U . Writing v̄h

for the discrete adjoint associated with ūh, in a variant of (4.54) the new
approximation ûh ∈ U is defined by

ûh = P

(
−1

ρ
v̄h

)
.

One then has (see [90])
‖ûh − ū‖ ≤ c h2. �

Remark 7.65. The DWR method mentioned in Chapter 4 can also be used to
adaptively solve control problems; see [BR03, Chapter 8]. �

In closing, let us remind the reader of the necessity of using suitably
adapted solution techniques that exploit sparsity and special structure in any
efficient numerical treatment of discrete control problems. As previously men-
tioned, active set strategies, non-smooth Newton methods or penalty methods
can be applied. In the present book we shall not pursue these ideas but in-
stead refer to the literature and point to the general aspects of efficient solution
techniques for discrete variational equations that were presented in Chapter 8;
some of these basic principles are relevant to control problems.

Exercise 7.66. Show that the set Uad ⊂ L2(Ω) defined in (4.1) is convex and
closed.
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Exercise 7.67. Prove Lemma 7.47.

Exercise 7.68. Use the norms of the operators S and S∗ and properties of
the bilinear form a(·, ·) to determine as large a constant σmax > 0 as possible
such that the projected gradient method converges for any σ ∈ (0, σmax).

Exercise 7.69. Using the fact that K is a convex cone, show that the re-
lations (4.25d), (4.25e) and (4.25f), (4.25g) are equivalent to the variational
inequalities

〈Lη(w̄, ū, v̄, v̄, η̄, ζ̄), η − η̄〉 ≤ 0 for all η ∈ K
and 〈Lζ(w̄, ū, v̄, v̄, η̄, ζ̄), ζ − ζ̄〉 ≤ 0 for all ζ ∈ K.

Exercise 7.70. Show by means of a simple example that for the L2 projector
Π̃h into the space of piecewise linear functions one does not always have
(cf. Remark 7.62)

u ∈ G =⇒ Π̃hu ∈ Gh.
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Numerical Methods for Discretized Problems

8.1 Some Particular Properties of the Problems

When a partial differential equation is discretized, the given infinite-
dimensional problem —which implicitly determines a function—is trans-
formed approximately into a finite-dimensional system of algebraic equations
whose unknowns are the degrees of freedom of the discretization method. For
example, the method of finite differences leads to a system of equations in the
approximate values vi of the desired continuous solution v(·) at the chosen
grid points xi, i = 1, . . . , N . Similarly, the finite element method generates
the Ritz-Galerkin system of equations whose unknowns are the coefficients of
the finite-dimensional basis in the ansatz space. In both these techniques a lin-
ear differential equation is converted approximately into a finite-dimensional
system of linear equations. This system typically has the following properties:

• an extremely high dimension;
• a sparse coefficient matrix;
• a bad condition number.

Because of these properties, standard methods of linear algebra such as
Gaussian elimination are at best inefficient if they are applied to solve the
linear systems that arise in the discretization of partial differential equations;
in fact sometimes they cannot be used at all because of their excessive memory
requirements or high computational time demands. For some linear systems
that have a particular structure one can use instead appropriate fast direct
solvers (see Section 8.2), while for general systems of equations special itera-
tive methods can be recommended.

To illustrate the situation we consider as a sample problem a discretization
of the Dirichlet problem

−Δu = f in Ω := (0, 1)2,
u|Γ = 0, (1.1)
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by piecewise linear finite elements on a uniform mesh, as sketched in Fig-
ure 8.1.

Figure 8.1 Uniform triangulation

Then (1.1) is replaced by the linear system

Ahvh = fh. (1.2)

If we number the inner grid points row by row, as shown in Figure 8.1, then
the induced system matrix Ah has the structure displayed in Figure 8.2 where
all remaining entries of the matrix are zero.

Figure 8.2 Stiffness matrix



8.1 Some Particular Properties of the Problems 501

A discretization with step size h = 1/6 already yields a 25 × 25 matrix, yet
this matrix contains only 105 non-zero entries. The uniformity of the trian-
gulation and the systematic numbering of the grid points (and consequently
of the components ui of uh = (ui)) imply that the positions of the non-zero
entries of the matrix Ah and their values can easily be determined. Conse-
quently with this discretization the stiffness matrix Ah is not usually stored
explicitly: instead, its entries are evaluated directly when they are needed in
the calculation.

Figure 8.3 Irregular grid

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 8.4 Stiffness matrix induced

by the discretization of Fig. 8.3

The situation is very different if irregular grids are used. For example, let us
consider the triangulation of Figure 8.3 with the numbering of the nodes given
there. In this case a piecewise linear finite element discretization yields a stiff-
ness matrix whose non-zero entries are denoted by ∗ in Figure 8.4; compare
this with the regular pattern visible in Figure 8.2.

In the cases that we consider, the properties of the underlying continuous
problem and of the triangulation generate a system matrix that is positive
definite, weakly diagonally dominant and irreducible. Hence Gaussian elim-
ination without pivoting can be applied to factor Ah into lower and upper
triangular matrices L and U such that

A = LU . (1.3)

To simplify the notation here and in what follows, the index h that is asso-
ciated with the discretization is omitted when the properties of a fixed dis-
cretization are studied. The LU decomposition (1.3) of A generally produces
non-zero entries at positions where the original matrix A had zero entries;
this unwelcome property is called fill-in. It can be reduced by appropriate
pivoting strategies—see, e.g., [HY81]. It is easy to see that without pivoting
no fill-in occurs beyond the maximal bandwidth of the non-sparse entries of
A. To reduce the computational effort, LU decomposition can be adapted to
the banded structure of A (see Section 8.2).
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An important attribute of the discretized problems is that from consistency
one can deduce that asymptotically, as the mesh diameter tends to zero, the
discrete problem inherits certain properties of the underlying boundary value
problem. This attribute is the theoretical basis for multigrid methods and for
the construction of optimal preconditioners; it leads to highly efficient solution
techniques.

8.2 Direct Solution Techniques

8.2.1 Gaussian Elimination for Banded Matrices

Consider the system
Au = b (2.1)

of linear equations where A = (aij) is an N ×N matrix of bandwidth m, i.e.,

aij = 0 for |i− j| > m. (2.2)

Suppose that m# N . Furthermore, for simplicity we assume that the system
matrix A is strictly diagonally dominant, i.e., that

|aii| >
∑
j �=i

|aij |, i = 1, . . . , N. (2.3)

Under this condition, Gaussian elimination without pivoting shows that A
can be factored as

A = LU (2.4)

for some lower triangular matrix L and upper triangular matrix U . By matrix
multiplication, taking into account the triangular structure of L and U , it
follows that

min{i,k}∑
j=1

lij ujk = aik, i, k = 1, . . . , N. (2.5)

If the diagonal elements of either L or U are given (e.g., one could set lii = 1
for all i), then successive evaluations of (2.5) for min{i, k} = 1, . . . , N that
alternate between the rows and columns of A can be solved easily to yield all
entries of L and U . Here the triangular natures of L and U and the banded
structure of A imply additionally that

lij = 0 if j > i or j < i−m (2.6)

and
uij = 0 if j < i or j > i+m. (2.7)

Combining (2.5)–(2.7), we get
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aik =
min{i,k}∑

j=max{i,k}−m

lijujk for i, k = 1, . . . , N. (2.8)

Thus when lii = 1 for all i, the previously-mentioned iterative elimination
applied to (2.8) for min{i, k} = 1, . . . , N becomes

uik = aik −
i−1∑

j=max{1,k−m}
lij ujk, k = i, . . . , i+m, (2.9a)

lik =
1
ukk

⎡⎣ aik −
k−1∑

j=max{1,i−m}
lij ujk

⎤⎦ , i = k + 1, . . . , k +m. (2.9b)

If A is symmetric and positive definite, then a further reduction of memory
requirements and computing time is made possible by using a symmetric tri-
angular decomposition, which is obtained from the general formula by setting
lii = uii instead of lii = 1. Then the formulas (2.9a) and (2.9b) imply that
U = LT , i.e., we obtain

A = LLT , (2.10)

which is called the Cholesky decomposition. Positive definiteness of A (and
consequently the invertibility of L) often follow from the properties of the
underlying continuous problem. As an alternative to (2.10) one can use the
modified form

A = LDLT , (2.11)

where D is a diagonal matrix and L is lower triangular with lii = 1, i =
1, . . . , N . Under additional conditions the splitting (2.11) can also be used
when dealing with indefinite matrices.

The discretization of partial differential equations leads as a rule to systems
of linear equations with a sparse system matrix A. The efficient implementa-
tion of Gaussian elimination in this setting requires a suitable management
of memory storage for the relatively few non-zero entries present. In addition,
special renumbering techniques (see, e.g., [HY81]) should be used a priori to
reduce the amount of fill-in generated in the LU decomposition by Gaussian
elimination. Another approach to the efficient treatment of the linear system
is the construction of an approximate LU decomposition and its use as a
preconditioner in iterative methods; see Section 8.4.

Finally we discuss a special case that often appears as a subproblem in the
numerical treatment of discretizations of differential equations. If the system
matrix A satisfies (2.2) withm = 1 (i.e., A is tridiagonal), then the elimination
procedure (2.9) can be greatly simplified: set u11 = a11 and uNN = aNN −
lN,N−1uN−1,N , then compute

uii = aii − li,i−1ui−1,i, ui,i+1 = ai,i+1, li+1,i = ai+1,i/uii,

i = 2, . . . , N − 1.
(2.12)
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This special form of Gaussian elimination is often called the Thomas algo-
rithm. It can be used very efficiently in the ADI-method (see Section 8.3) to
solve the subproblems generated there.

Remark 8.1. In implementing the finite element method one might expect to
assemble the entire stiffness matrix A before applying some solution method
to the finite-dimensional system of linear equations, but in case of a fine
mesh the linear system has such a high dimension that the amount of storage
needed may exceed the available memory capacity. To reduce the quantity
of data needed in memory, one can combine the assembling process with the
generation of the LU decomposition of A. For if we have computed the first p
rows and p columns of A, then by (2.5) the LU decomposition can already be
started and the corresponding elements of L and U can be determined. This
technique is called the frontal solution method (see [37], [48]). Its efficiency
rests also on the evaluation of the stiffness matrix via element stiffness matri-
ces. For consider some grid point xi. If the element stiffness matrix associated
with each subdomain that contains xi is evaluated, then the sum of the entries
in these matrices yields not only aii but also all remaining non-zero elements
of the ith row and ith column of the stiffness matrix A. In this way the LU
decomposition can be carried out simultaneously with the generation of the
stiffness matrix over successive subdomains. A simple example to demonstrate
the frontal solution method appears in [GRT93].

The frontal solution technique presented in [47] is the basis for the program
package MUMPS (MUltifrontal Massively Parallel sparse direct Solver), which
gains further efficiency from parallelization;
see http://graal.ens-lyon.fr/MUMPS �

8.2.2 Fast Solution of Discrete Poisson Equations, FFT

Let A be a symmetric invertible (N − 1) × (N − 1) matrix and assume that
we know a complete system {vl}N−1

l=1 ⊂ RN−1 of eigenvectors of A that are
mutually orthogonal with respect to some inner product (·, ·) - as a rule the
usual Euclidean inner product. Denote the associated eigenvalues by {λl}N−1

l=1 .
Consider the linear system

Au = b. (2.13)

Then the solution u of (2.13) can be written as

u =
N−1∑
l=1

cl v
l where cl =

1
λl
· (b, vl)

(vl, vl)
, l = 1, . . . , N − 1. (2.14)

In certain cases symmetries can be used in the evaluation of (2.14) to accel-
erate the calculation. This phenomenon will be illustrated in the following
important one-dimensional example.

Suppose that (2.13) is generated by the discretization of the two-point
boundary value problem
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−u′′ = f in Ω = (0, 1), u(0) = u(1) = 0,

using the standard finite difference method on an equidistant grid with step
size h = 1/N . That is, we consider the linear system

−uj−1 + 2uj − uj+1 = h2 fj , j = 1, . . . , N − 1,

u0 = uN = 0.
(2.15)

The eigenvectors vl = (vl
j)

N
j=0 that correspond to this system matrix satisfy

the homogeneous difference equation

−vl
j−1 + 2vl

j − vl
j+1 = λl v

l
j , j = 1, . . . , N − 1,

vl
0 = vl

N = 0.
(2.16)

For simplicity in the presentation of (2.15) and (2.16), the 0th and N th com-
ponents of the vectors have been included. Using the ansatz vl

j = eiρlj , we
obtain from the difference equation

2 (1− cos ρl) eiρlj = λl e
iρlj .

Linear combinations of such functions with the boundary conditions v0 =
vN = 0 lead to

sin(ρlN) = 0, l = 1, 2, . . .

Hence ρl = ±lπ/N, l = 1, 2, . . . From above we then obtain

λl = 2
(

1− cos
lπ

N

)
= 4 sin2 lπ

2N
, l = 1, . . . , N − 1,

for the eigenvalues λl of (2.16). The related real eigenvectors vl ∈ RN−1 have
the form

vl
j = − i

2
(eiρlj − e−iρlj) = sin(ρlj) = sin

lπj

N
, l, j = 1, . . . , N − 1. (2.17)

Finally one can verify

(vl, vm) =
{

0 if l �= m,
N
2 if l = m.

Substituting these results into (2.14) yields

cl =
(

2N sin2 lπ

2N

)−1 N−1∑
j=1

bj sin
lπj

N
, l = 1, . . . , N − 1.

Thus one must evaluate sums of the form
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cl =
N−1∑
j=1

b̃j sin
lπj

N
, l = 1, . . . , N − 1, (2.18)

with b̃j := (2N sin2 lπ
2N )−1bj , to determine the coefficients cl. A similar com-

putation is needed to find the components uj of the desired discrete solution
uh = (uj)N−1

j=1 , because from (2.14) and (2.17) we have

uj =
N−1∑
l=1

cl sin
lπj

N
, j = 1, . . . , N − 1. (2.19)

If one exploits the symmetries of the trigonometric functions and computes
simultaneously all components uj , j = 1, . . . , N−1, then the sums (2.18) and
(2.19) can be calculated in a highly efficient manner by using the fast Fourier
transform (FFT). We now describe the basic principles of this technique by
means of the complete discrete Fourier transform. The sine transform corre-
sponding to (2.19) could be used instead but one then needs to distinguish
four cases instead of the division into even and odd indices in our discussion
below.

Setting a := exp( i 2πN ), we consider as a generic case the evaluation of the
matrix-vector product whose individual components are sums of the form

zj =
N−1∑
l=0

βl a
lj , j = 0, 1, . . . , N − 1. (2.20)

This apparently entails a total of N2 arithmetic operations, but as we shall
see the FFT significantly reduces that number. To simplify the analysis we
assume that N = 2n for some positive integer n; for more general cases see,
e.g., [107].

Clearly aN = 1. Hence in (2.20) only linear combinations of 1, a, a2, ..., aN−1

can occur. Set Ñ = N/2. We split and rewrite the sum (2.20) as

zj =
Ñ−1∑
l=0

βl a
lj +

N−1∑
l=Ñ

βl a
lj

=
Ñ−1∑
l=0

(
βl + βÑ+la

Ñj
)
alj , j = 0, 1, . . . , N − 1.

(2.21)

Recall that 1 = aN = a2Ñ . Set ã = a2. Then when j = 2k is even we obtain

z2k =
Ñ−1∑
l=0

(
βl + βÑ+l a

2Ñk
)
a2lk

=
Ñ−1∑
l=0

(
βl + βÑ+l

)
ãlk , k = 0, 1, . . . , Ñ − 1.

(2.22)
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When j = 2k + 1 is odd, by (2.21) and aÑ = −1 one has the representation

z2k+1 =
Ñ−1∑
l=0

(
βl + βÑ+l a

Ñ (2k+1)
)
al (2k+1)

=
Ñ−1∑
l=0

(
βl − βÑ+l

)
al ãlk , k = 0, 1, . . . , Ñ − 1.

(2.23)

Setting

z̃k = z2k, β̃l = βl + βÑ+l,

ẑk = z2k+1, β̂l = (βl − βÑ+l) a
l,

k, l = 0, 1, . . . , Ñ − 1, (2.24)

then for the even and odd indices we obtain the respective representations

z̃k =
Ñ−1∑
l=0

β̃l ã
lk and ẑk =

Ñ−1∑
l=0

β̂l ã
lk , k = 0, 1, . . . , Ñ − 1.

In each case—this is the key observation—one has again the original form
(2.20) but with ãÑ = 1 and only half the number of summands. We can
use this idea recursively until only a single summand remains, since N = 2n.
That is, we obtain a fast realization of the discrete Fourier transform (2.20)
where the evaluation of the desired matrix-vector product can be carried out
using only O(N logN) operations instead of the N2 that were needed in the
initial formulation. Figure 8.5 sketches schematically the structure of a single
recursive step of the algorithm.

Figure 8.5 One step of an FFT scheme
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In the representation (2.19) the discrete sine expansion leads to a similar
method (see, e.g., [VL92]) for an efficient implementation of the discrete
boundary value problem (2.15). We remark that algorithms for fast Fourier
transforms are widely available as standard software (see MATLAB [Dav04]
and the NAG Library [NAG05]) and are even supported on some computers
by hardware components.

The Fourier transform can be extended to higher-dimensional cases pro-
vided that separation of variables can be applied to the given partial differen-
tial equation—then the above one-dimensional algorithm is applied separately
in each coordinate direction.

Let us consider the model problem

−Δu = f in Ω = (0, 1)× (0, 1),
u|Γ = 0.

Using an equidistant mesh with step size h := 1/N in each coordinate direc-
tion, the standard discretization by finite differences (see Chapter 2) generates
the discrete problem

4ujk − uj−1,k − uj,k−1

−uj+1,k − uj,k+1 = h2 fjk

u0k = uNk = uj0 = ujN = 0

⎫⎪⎬⎪⎭ j, k = 1, . . . , N − 1. (2.25)

The associated eigenvectors vlm = {vlm
jk } can be written in terms of the one-

dimensional eigenvectors vl, vk ∈ RN−1 for l, k = 1, . . . , N − 1:

vlm
jk = vl

j v
m
k = sin

lπj

N
sin

mπk

N
. (2.26)

The eigenvalues are

λlm = 4
(

sin2 lπ

2N
+ sin2 mπ

2N

)
, l, m = 1, . . . , N − 1. (2.27)

The eigenvectors are mutually orthogonal with respect to the Euclidean inner
product in R2(N−1): one has

(vlm, vrs) =
N−1∑
j,k=1

vlm
jk v

rs
jk =

N−1∑
j,k=1

vl
j v

m
k vr

j v
s
k =

=
N−1∑
j=1

vl
j v

r
j

N−1∑
k=1

vm
k vs

k =
N2

4
δlr δms .

Instead of (2.18) and (2.19) one must now evaluate sums of the form

ujk =
N−1∑

l,m=0

clm sin
lπj

N
sin

mπk

N
.
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One can rewrite this as

ujk =
N−1∑
m=0

(
N−1∑
l=0

clm sin
lπj

N

)
sin

mπk

N
,

which shows that once again we are dealing with one-dimensional problems
that can be treated efficiently by FFT techniques.

Remark 8.2. The fast Fourier transform is directly applicable only to particu-
lar types of problem. Other fast solvers for discretizations of partial differential
equations, such as the cyclic reduction method (see [SN89]), also suffer from
restricted applicability. Domain decomposition techniques are a way of gen-
erating specific problems suited to fast solvers as subproblems of the original
larger problem; in this way the range of applicability of the FFT can be ex-
tended. Another application of fast solvers is their use as preconditioners in
iterative methods. �

Remark 8.3. The treatment sketched above of a high-dimensional problem
could be modified by using eigenfunctions only in some directions while in
the remaining directions other discretization techniques such as finite element
methods are applied. One important application of this approach is to prob-
lems posed in three-dimensional domains that have rotational symmetry, e.g.,
pistons; see [67]. �

Exercise 8.4. Let A be a block matrix of the form

A =

⎛⎜⎜⎝
A11 A12 · · A1m

A21 A22 · · A2m

· · · · ·
Am1 · · · Amm

⎞⎟⎟⎠ ,
with Ni × Nj matrices Aij ∈ L(RNj ,RNi), where the Aii are invertible and∑m

i=1Ni = N . Assume that the condition (cf. 3.39) below)

‖A−1
ii ‖
∑
j �=i

‖Aij‖ < 1, i = 1, . . . ,m,

is satisfied, where ‖ · ‖ denotes any matrix norm. Find a block LU decompo-
sition analogue of standard LU decomposition and give a construction proce-
dure for the sub-blocks occurring in it.

Exercise 8.5. Show that the vectors

vlm = (vlm
jk )N−1

j,k=1 ∈ R(N−1)2

defined by (2.26) are mutually orthogonal.
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Exercise 8.6. Consider the problem

∂2

∂x2u(x, y) − ∂
∂y

(a(y) ∂
∂y
u(x, y)) = 1 in Ω := (0, 1)× (0, 1),

u|Γ = 0
(2.28)

with some continuously differentiable function a. Discretize this problem using
finite differences over an equidistant grid with step size h = 1/N in both coor-
dinate directions. Find a solution technique for the ensuing discrete problem
that uses the discrete Fourier transform in the x-direction.

8.3 Classical Iterative Methods

8.3.1 Basic Structure and Convergence

Consider again the problem
Au = b (3.1)

where the N ×N system matrix A is invertible and b ∈ RN is given. For any
invertible N ×N matrix B, the problem (3.1) is equivalent to

Bu = (B −A)u + b.

This inspires the fixed-point iteration

Buk+1 = (B −A)uk + b , k = 0, 1, . . . , (3.2)

which provides a general model for the iterative treatment of (3.1). In (3.2)
the starting vector u0 ∈ RN has to be chosen. Defining the defect dk in the
kth iterate uk by dk := b − Auk, the procedure (3.2) is equivalent to

uk+1 = uk + B−1dk.

Introducing a step-size parameter αk > 0 to give us added flexibility, we
examine the iteration

uk+1 = uk + αk B
−1dk, k = 0, 1, . . . (3.3)

If B = I this becomes the classical Richardson method. If we choose B �= I
then (3.3) is a preconditioned version of Richardson’s method and B is called
the related preconditioner. When A is symmetric and positive definite, (3.3)
is a preconditioned gradient method for the minimization of

F (u) :=
1
2
uTAu− bTu.

In the case of constant step-size parameters, viz., αk = α > 0, k = 0, 1, . . . ,
the method (3.3) belongs to the general class of iterative methods of the type
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uk+1 = T uk + t, k = 0, 1, . . . ,

where T is some matrix and the vector t lies in RN : for Richardson’s method

T = T (α) = I − αB−1A.

Let ‖ · ‖ an arbitrary vector norm in RN . To discuss the convergence of
iterative methods for the solution of the finite-dimensional problem (3.1), one
generally uses one of the following vector norms: (the notation here follows
the traditional finite dimensional ones but differs from the previous chapters)

‖y‖∞ := max
1≤i≤N

|yi| ( maximum norm )

‖y‖2 :=
(

N∑
i=1

y2
i

)1/2

( Euclidean norm )

‖y‖1 :=
N∑

i=1

|yi| ( discrete L1 norm )

‖y‖A :=
(
yT Ay

)1/2 ( energy norm ) .

In the case of the energy norm, it is assumed that the matrix A is symmetric
and positive definite. When our analysis is independent of the norm used, we
shall omit the subscript that identifies each norm in the list above. In finite-
dimensional spaces all norms are equivalent so in theory one can work with any
norm, but it is important to note that each change in the mesh size h of the
discretization also changes the dimension of the finite-dimensional space where
the computed solution lies and consequently the multiplicative factors that
relate equivalent norms will usually change with h. Thus when convergence
results are expressed in terms of h, the power of h can depend on the finite-
dimensional norm used. Furthermore, the norms used in discretizations are
often weighted to ensure consistency with continuous norms (cf. Section 2.1).

Whenever we do not explicitly specify the norm of an N × N matrix C,
the reader can assume that we are using the norm

‖C‖ := sup
y∈RN , y �=0

‖Cy‖
‖y‖ (3.4)

induced by the underlying vector norm ‖·‖. Clearly this induced matrix norm
satisfies the standard inequality

‖Cy‖ ≤ ‖C‖ ‖y‖ for all y ∈ RN , C ∈ L(RN ),

where L(RN ) denotes the space of N ×N matrices.
The matrix B that one must select to implement the iterative method

(3.2) should satisfy the following requirements:
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• The linear systems
By = c (3.5)

are relatively easy to solve;
• For each y ∈ RN the vector c := (B −A)y + b can be easily evaluated;
• The norm ‖B−1(B −A)‖ is small.

These three conditions cannot all be satisfied simultaneously; one must find
some compromise.

The convergence behaviour of (3.2) follows from Banach’s fixed point the-
orem for the simpler iteration

uk+1 = Tuk + t, k = 0, 1, . . . , (3.6)

with T := B−1(B −A) and t := B−1b. For (3.6) we have

Lemma 8.7. Assume that T ∈ L(RN ) with ‖T‖ < 1. Then the fixed point
problem

u = Tu + t

has a unique solution u ∈ RN and for any starting vector u0 ∈ RN and any
t ∈ RN the iteration (3.6) defines a sequence {uk} ⊂ RN that converges to u
as k →∞. In fact

‖uk+1 − u‖ ≤ ‖T‖ ‖uk − u‖ , k = 0, 1, . . .

and

‖uk − u‖ ≤ ‖T‖k
1− ‖T‖ ‖u

1 − u0‖ , k = 1, 2, . . . . (3.7)

Remark 8.8. Inequality (3.7) provides an a priori bound for the quality of the
approximation of the desired solution u by the iterate uk. Replacing u0 and
u1 by uk−1 and uk respectively, (3.7) also yields the a posteriori bound

‖uk − u‖ ≤ ‖T‖
1− ‖T‖ ‖u

k − uk−1‖ . (3.8)

This bound is usually sharper than (3.7) but it is applicable only if uk−1 and
uk have already been evaluated. �

The value of ‖T‖ depends upon the norm chosen, so Lemma 8.7 gives a
sufficient but not necessary condition for convergence of the iteration (3.6).
Let

ρ(T ) := max
i
{ |λi| : λi an eigenvalue of T }

denote the spectral radius of the iteration matrix T . Then we obtain the fol-
lowing necessary and sufficient criterion:
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Lemma 8.9. The sequence {uk} defined by (3.6) converges for all t ∈ RN

and all u0 ∈ RN if and only if

ρ(T ) < 1. (3.9)

Proof: We consider only the case of a symmetric matrix T ; in the general
case, complex eigenvalues and eigenvectors must also be taken into account.

Since T is symmetric there exists an orthogonal matrix C such that

CTCT = diag(λi) =: Λ .

The property CTC = I implies that (3.6) is equivalent to the iteration

ũk+1 = Λũk + t̃ , k = 0, 1, . . . , (3.10)

with ũk := Cuk, t̃ := Ct. As Λ is a diagonal matrix the iteration (3.10) can
be performed component by component, i.e., one can compute

ũk+1
i = λiũ

k
i + t̃i , i = 1, . . . , N, k = 0, 1, . . . (3.11)

By definition of the spectral radius ρ(T ), the condition (3.9) implies that the
sequence {ũk} converges as k →∞. But {uk} is related to {ũk} by uk = CT ũk,
and the convergence of the sequence {uk} follows.

If ρ(T ) ≥ 1 then (3.11) implies that the sequence {ũk} is divergent, pro-
vided that for some index i with |λi| ≥ 1 one has ũ0

i �= 0 and t̃i �= 0. It follows
that {uk} is also divergent.

In the discretization of boundary value problems for partial differential
equations, the dimension of the discrete system of equations and the properties
of the matrices A = Ah and B = Bh both depend strongly upon the step size h
of the discretization. Writing ‖ · ‖h for the mesh-dependent vector and matrix
norms, the number of steps required to guarantee a given accuracy ε > 0 in
the above stationary preconditioned Richardson iterative method is heavily
influenced by the value

σh := ‖Th‖h where Th := Ih − αhB
−1
h Ah. (3.12)

Lemma 8.7 provides the a priori bound

‖uk
h − u‖h ≤

(σh)k

1− σh

‖u1
h − u0

h‖h, k = 0, 1, . . .

Hence the required accuracy ε is achieved after at most kh(ε) iteration steps,
where

kh(ε) := min
{
j ∈ N : j ≥ 1

lnσh

[
ln ε+ ln(1− σh)− ln ‖u1

h − u0
h‖h
]}

. (3.13)

In the next subsection we shall analyse this formula in detail in the context
of the Gauss-Seidel and Jacobi iterative methods.
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8.3.2 Jacobi and Gauss-Seidel Methods

In the original system (3.1), let us successively use the ith equation to elimi-
nate xi from the other equations for i = 1, 2, . . . , N . This easily-implemented
approach yields the two iterative methods discussed in this subsection. If each
newly-obtained approximation of a variable is used immediately in the subse-
quent computation we obtain the Gauss-Seidel scheme (single step iteration),
while if the new iterates are only used after a full sweep has been performed,
this is the Jacobi scheme (complete step iteration). These schemes are simple
iterative methods for the numerical solution of (3.1). Consider the (k + 1)st

sweep of the iterative method that evaluates uk+1 ∈ RN ; in this sweep, the
ith sub-step of the Gauss-Seidel scheme has the form

i−1∑
j=1

aiju
k+1
j + aiiu

k+1
i +

N∑
j=i+1

aiju
k
j = bi , i = 1, . . . , N (3.14)

while for the Jacobi scheme it takes the form

i−1∑
j=1

aiju
k
j + aiiu

k+1
i +

N∑
j=i+1

aiju
k
j = bi , i = 1, . . . , N. (3.15)

Let us split the matrix A = (aij) of (3.1) into the sum of its proper lower
triangular constituent L, its diagonal part D and its proper upper triangular
part R, viz.,

A = L + D + R (3.16)

with

L =

⎛⎜⎜⎜⎜⎝
0 · · · 0
a21 0 · · 0
· · ·
· · ·
aN1 · · aN,N−1 0

⎞⎟⎟⎟⎟⎠ , R =

⎛⎜⎜⎜⎜⎝
0 a12 · · a1N

0 0 a23 · a2N

· · ·
· · aN−1,N

0 · · · 0

⎞⎟⎟⎟⎟⎠
and D = diag(aii). Then the methods (3.14) and (3.15) are the particular
cases of the general iterative scheme (3.2) obtained when

B = L + D and B = D, (3.17)

respectively. In both these cases the matrices B are either triangular or diag-
onal. Hence the system of equations (3.5) can be solved very simply.

We must still study the convergence behaviour of these two schemes by
estimating ‖B−1(B − A)‖ in each case. In the Jacobi scheme, the entries tij
of the iteration matrix T := B−1(B −A) are

tij = (δij − 1)
aij

aii
, i, j = 1, . . . , N, (3.18)
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where δij is the Kronecker delta. We shall use the maximum norm ‖ · ‖∞ as
our vector norm. Then the matrix norm induced by (3.4) is well known to be

‖T‖ = max
1≤i≤N

N∑
j=1

|tij | .

Recalling (3.18), we see that

‖T‖ = max
1≤i≤N

μi (3.19)

with

μi :=
1
|aii|

N∑
j=1

|aij | , i = 1, . . . , N. (3.20)

We recall that A is strictly diagonally dominant (see Chapter 2) if one has

μi < 1 , i = 1, . . . , N. (3.21)

Lemma 8.10. Let A be strictly diagonally dominant. Then for the Gauss-
Seidel and Jacobi schemes we have the estimate

‖B−1(B −A)‖ ≤ max
1≤i≤N

μi < 1,

where the values μi are defined by (3.20) and ‖ · ‖ is induced by the vector
norm ‖ · ‖∞.

Proof: Suppose that
Bz = (B −A)y

for some y, z ∈ RN . From (3.16) and (3.17) we get

zi = − 1
aii

⎛⎝ i−1∑
j=1

aij zj +
N∑

j=i+1

aij yj

⎞⎠ , i = 1, . . . , N

and

zi = − 1
aii

⎛⎝ i−1∑
j=1

aij yj +
N∑

j=i+1

aij yj

⎞⎠ , i = 1, . . . , N,

for the Gauss-Seidel and Jacobi schemes respectively. In the first of these,
inequality (3.21) and the maximum norm can be used to prove inductively
that

|zi| ≤
1
|aii|

∑
j �=i

|aij | ‖y‖ < ‖y‖ for i = 1, . . . , N

and hence
‖z‖ ≤ max

1≤i≤N
μi ‖y‖. (3.22)



516 8 Numerical Methods for Discretized Problems

In the Jacobi case, (3.22) is obtained immediately.
The desired estimate now follows from the matrix norm definition (3.4).

The discretization of elliptic problems like Poisson’s equation often gener-
ates matrices A that are, however, only weakly diagonally dominant; that is,
(see Chapter 2) the μi defined in (3.20) satisfy

μi ≤ 1 , i = 1, . . . , N. (3.23)

The matrix A in such elliptic discretizations generally has the chain property
(compare Chapter 2), viz., for each pair of indices i, j ∈ {1, . . . , N} with i �= j
one can find l = l(i, j) ∈ {1, . . . , N} and a finite sequence {ik}lk=0 of indices
such that

i0 = i , il = j ;
is �= it for s �= t ;
aik−1ik

�= 0 , for k = 1, . . . , l .

In the language of graph theory, such a sequence of indices describes a directed
path of length l from node i to node j, where two nodes are joined by an arc
of the directed graph if the corresponding matrix entry is non-zero.

To keep the presentation simple we consider only the Jacobi scheme when
we now analyse the convergence behaviour of our iterative method for weakly
diagonal dominant matrices A.

Lemma 8.11. Let A be a weakly diagonally dominant matrix that has the
chain property. Assume also that for some index m ∈ {1, . . . , N} one has

|amm| >
∑
j �=m

|amj | . (3.24)

Then for the Jacobi scheme the estimate

‖(B−1(B −A))N‖ < 1 (3.25)

is valid in the maximum norm.

Proof: Let y ∈ RN , y �= 0, be an arbitrary vector. Setting y0 = y, compute

yk+1 := B−1(B −A) yk , k = 0, 1, . . .

As we are dealing with the Jacobi scheme, this is simply

yk+1
i = − 1

aii

∑
j �=i

aij y
k
j , i = 1, . . . , N, k = 0, 1, . . . (3.26)

The weak diagonal dominance of A yields

|yk+1
i | ≤ 1

|aii|
∑
j �=i

|aij | |yk
j | ≤ ‖yk‖ , i = 1, . . . , N, k = 0, 1, . . . ,
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and hence
‖yk+1‖ ≤ ‖yk‖ ≤ ‖y‖ , k = 0, 1, . . . (3.27)

Recalling the index m of (3.24), let us define

Ik := { i : there exists a directed path of length k from i to m}

and set I0 = {m}. We shall show by induction that

|yk+1
i | < ‖y‖ for all i ∈ Ik, k = 0, 1, . . . (3.28)

First, (3.24) implies that
|y1

m| < ‖y‖.
But I0 = {m}, so we have verified (3.28) for k = 0. We move on to the
inductive step “k true ⇒ k + 1 true”:
Let i ∈ Ik+1\{m}. By the definition of Ik+1, there exists s ∈ Ik with ais �= 0.
From (3.26) we have

|yk+2
i | ≤ 1

aii

∑
j �=i, j �=s

|aij | |yk+1
j | +

|ais|
|aii|

|yk+1
s | .

But ais �= 0, s ∈ Ik, and taking into account (3.27) and the inductive hypoth-
esis (3.28) we deduce that

|yk+2
i | <

⎛⎝ 1
aii

∑
j �=i

|aij |

⎞⎠ ‖y‖ ≤ ‖y‖ .
That is, (3.28) is valid, with k replaced by k+1, for all indices j ∈ Ik+1\{m}.
For the index m, from (3.24) and (3.27) we get

|yk+2
m | ≤

⎛⎝ 1
amm

∑
j �=m

|amj |

⎞⎠ ‖y‖ < ‖y‖ .
Thus the estimate (3.28) is valid in all cases.

The finite dimensionality of the problem (3.1) and the chain property of
A imply that

IN−1 = {1, . . . , N}.
The bound (3.25) now follows from (3.4) and (3.28).

For the Gauss-Seidel scheme one has the following result (see [GR94]):

Lemma 8.12. Let A be a symmetric and positive definite matrix. Then for
the Gauss-Seidel scheme the estimate

‖B−1(B −A)‖ < 1

is valid in the energy norm induced by A.
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Lemmas 8.10 and 8.12 give sufficient conditions for

‖B−1(B −A)‖ < 1, (3.29)

while Lemma 8.11 gives a sufficient condition for ‖(B−1(B − A))N‖ < 1. By
Lemma 8.7 and a well-known generalization of it, either of these conditions
is sufficient to guarantee the convergence of the associated iterative method
(3.2). The smaller the value of ‖B−1(B − A)‖, the faster the convergence of
the iteration. But for the schemes (3.14) and (3.15) one usually obtains

lim
h→0
‖B−1

h (Bh −Ah)‖ = 1 ,

where Ah and Bh denote the matrices associated with the discretization for
mesh size h. For if for instance the standard method of finite differences with
an equidistant grid is applied to

−Δu = f in Ω = (0, 1)× (0, 1),
u|Γ = 0, (3.30)

then, using a double indexing that is appropriate to the structure of the two-
dimensional problem, the discrete problem Ahuh = fh that is generated has
the form

4uii − ui−1,j − ui,j−1

−ui+1,j − ui,j+1 = h2fij

u0j = unj = ui0 = uin = 0

⎫⎪⎬⎪⎭ i, j = 1, . . . , n− 1. (3.31)

Then the Gauss-Seidel scheme with a natural ordering of the sub-steps is

4uk+1
ii − uk+1

i−1j − uk+1
ij−1

−uk
i+1j − uk

ij+1 = h2fi,j

uk+1
0j = uk+1

nj = uk+1
i0 = uk+1

in = 0

⎫⎪⎪⎬⎪⎪⎭
i, j = 1, . . . , n− 1,
k = 0, 1, . . .

(3.32)

It turns out that for the matrices Ah and Bh associated with the Gauss-
Seidel method (and also for the matrices in the Jacobi iteration) one has the
asymptotic property (see, e.g., [SN89])

‖B−1
h (Bh −Ah)‖ = 1 − O(h2). (3.33)

In both methods the computational effort for a complete sweep is O(N),
where N is the total number of degrees of freedom. This is a consequence
of the fact that each row of Ah contains a fixed number of non-zero entries
(i.e., this number is independent of the mesh size h). Under mild additional
assumptions, the same property holds for quite general discretizations and for
problems posed in domains Ω that lie in any spatial dimension d.

From (3.33) we obtain the estimate



8.3 Classical Iterative Methods 519

‖uk
h − uh‖ ≤

(
1−O(h2)

)k ‖u0
h − uh‖.

To ensure ‖uk
h − uh‖ ≤ ε ‖u0

h − uh‖ one takes

k ≥ ln(ε)
ln(1−O(h2))

sweeps of the Gauss-Seidel or Jacobi method. With ln(1 − O(h2)) = O(h2)
this leads to an expected number of k = O(h−2| ln(ε)| steps. Now with N =
O(h−d) we obtain the complexity

O
(
h−(2+d) | ln(ε)|

)
. (3.34)

of the Gauss-Seidel and Jacobi methods. In particular for problems posed
in the plane the complexity is O(N2 ln ε). Therefore when the mesh size h is
small these methods require a large amount of computational effort to achieve
a given accuracy; thus for very fine discretizations it is impractical to use the
Gauss-Seidel or Jacobi method to solve the discrete problem. Nevertheless
the good spatially local character of their iteration steps means that these
schemes are very useful as smoothers in multigrid methods.

Before moving on to the investigation of some simple improvements of
these iterative methods in the next section, we make a few further remarks.

The elimination process of the Gauss-Seidel iterative method in its natural
ordering depends upon the chosen numbering of the variables and therefore
upon the labelling of the grid points. If the Gauss-Seidel method (3.14) is
applied to a problem (3.1) whose solution u has some symmetry property then
the iteration will not in general preserve this symmetry even if the starting
vector u0 and the matrix A are symmetric. This undesirable behaviour may be
eliminated or at least damped if methods that use a different ordering in the
elimination are combined. If for example a forward version is coupled with a
backward version, then one obtains the symmetric Gauss-Seidel method where
each iteration uses two half-steps and has the form

(L+D)uk+1/2 + Ruk = b ,

Luk+1/2 + (D +R)uk+1 = b .
(3.35)

On the other hand, the asymmetric behaviour of the standard Gauss-Seidel
method makes it a suitable smoother in multi-grid methods for convection-
diffusion problems if the order of elimination corresponds to the expected
flow.

In the case of a two-dimensional grid, another way of constructing a sym-
metric version of the Gauss-Seidel method is through a chessboard-like elim-
ination of the variables. This variant of the Gauss-Seidel method is called
red-black iteration and will be discussed later as a particular block Gauss-
Seidel method.
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8.3.3 Block Iterative Methods

Often discretizations lead to a discrete system of linear equations (3.1) with
a special block structure. Consider linear systems of the form

m∑
j=1

Aijuj = bi , i = 1, . . . ,m, (3.36)

with

bi, ui ∈ RNi , Aij ∈ L(RNj ,RNi),
m∑

i=1

Ni = N ,

and invertible matrices Aii, where L(RNj ,RNi) is the space of Ni × Nj ma-
trices. Then block-oriented versions of the Gauss-Seidel and Jacobi methods
are described by

i∑
j=1

Aiju
k+1
j +

m∑
j=i+1

Aiju
k
j = bi , i = 1, . . . ,m (3.37)

and
Aiiu

k+1
i +

∑
j �=i

Aiju
k
j = bi , i = 1, . . . ,m, (3.38)

respectively. The convergence analysis of the original methods transfers readily
to their block analogues. For example, the condition

‖A−1
ii ‖

m∑
j �=i

‖Aij‖ < 1 , i = 1, . . . ,m (3.39)

is a sufficient condition for convergence of the iterative methods (3.37) and
(3.38). This condition is a straightforward generalization of strong diagonal
dominance.

To apply the block Gauss-Seidel method (3.37) to the discrete Poisson
equation (3.31), we first collect the discrete variables uij in each column by
setting

ui = (uij)n−1
j=1 ∈ Rn−1, i = 1, . . . , n− 1.

Then the linear system (3.31), with m = n − 1 and Nj = m, j = 1, . . . ,m,
can be written (see Figure 8.2) in the form

−Ai,i−1ui−1 + Aiiui − Ai,i+1ui+1 = h2fi, i = 1, . . . ,m, (3.40)

with

Aii =

⎛⎜⎜⎜⎜⎝
4 −1 0 · 0
−1 4 −1 0 ·

0 −1 4 −1 0
· · · · ·
0 · 0 −1 4

⎞⎟⎟⎟⎟⎠ , Ai,i−1 = Ai,i+1 = I , fi = (fij)m
j=1.
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This leads to the following block version of the Gauss-Seidel method:

−Ai,i−1u
k+1
i−1 + Aiiu

k+1
i − Ai,i+1u

k
i+1 = h2fi, i = 1, . . . , n− 1,

uk+1
0 = uk+1

n = 0.
(3.41)

At the ith sub-step of the Gauss-Seidel method the vector uk+1
i is defined to

be the solution of the system of linear equations

Aii u
k+1
i = bki with bki := h2fi +Ai,i−1u

k+1
i−1 +Ai,i+1u

k
i+1.

The system matrices Aii here are strictly diagonally dominant and the fast
Gauss elimination (the Thomas algorithm) of Section 8.2 can be applied to
compute the solution uk+1

i ∈ Rn−1 of the linear system (3.41).
Alternatively, if in the discretization (3.31) the indices are split into two

groups I• and I◦ according to Figure 8.6, then the ith equation for any i ∈ I•
depends only on variables uj with j ∈ I◦ and on ui.

Figure 8.6 Red-black marking of the stiffness matrix

Thus we can eliminate independently all variables in each of the two groups
while keeping all variables in the other group fixed. In this way parallel com-
putation is possible and symmetries are preserved. The only drawback is that
slowly decreasing oscillations may occur in components of the iterates in the
case of certain starting vectors. The Gauss-Seidel method combined with this
elimination strategy is called chessboard iteration or red-black iteration. If the
variables are combined into two associated vectors u• and u◦, then the original
system Au = b can be written as(

A• • A• ◦

A◦ • A◦ ◦

)(
u•

u◦

)
=

(
b•

b◦

)
(3.42)

and the red-black iteration has the form

A• •u
k+1
• = b• − A• ◦u

k
◦, A◦ ◦u

k+1
◦ = b◦ − A◦ •u

k+1
• . (3.43)
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It is thus a particular case of the block Gauss-Seidel method. Here A• • and
A◦ ◦ are diagonal matrices. If uk+1

• is eliminated from the first equation in
(3.43) then substituted into the second equation, we see that uk+1

◦ is defined
by

A◦ ◦u
k+1
◦ = b◦ − A◦ •A

−1
• •b• + A◦ •A

−1
• •A• ◦u

k
◦ .

Similarly for uk+1
• we obtain the iterative procedure

A• •u
k+1
• = b• − A• ◦A

−1
◦ ◦b◦ + A• ◦A

−1
◦ ◦A◦ •u

k
• .

These iterations coincide with the Picard iterative method for the solution of
the associated reduced system(

A◦ ◦ −A◦ •A−1
• •A• ◦

)
u◦ = b◦ − A◦ •A−1

• •b•
and (

A• • −A• ◦A−1
◦ ◦A◦ •

)
u• = b• − A• ◦A−1

◦ ◦b◦.

The matrices A◦ ◦−A◦ •A−1
• •A• ◦ and A• •−A• ◦A−1

◦ ◦A◦ • that appear here are
the Schur complements obtained from partial elimination of variables in the
original linear system.

Similarly, by an appropriate subdivision of the indices into two comple-
mentary sets I• and I◦, one can also define certain domain decomposition
methods (DD methods). We shall sketch this idea here for the particular
case of the discrete Dirichlet problem (2.25). More general aspects of domain
decomposition methods will be discussed in Section 8.6.

In one domain decomposition method the set I◦ contains all indices that
refer to grid points along an interior boundary (see Figure 8.7) and I• contains
the remaining indices. Splitting the degrees of freedom in the same way, the
linear subsystem

A• •u
k+1
• = b• − A• ◦u

k
◦

is assembled from two independent discrete Poisson equations that are defined
on the inner grid points on the opposite sides of the inner discrete boundary.
Additionally, at each iteration one must solve the linear system

A◦ ◦u
k+1
◦ = b◦ − A◦ •u

k+1
• ,

which couples the degrees of freedom on the discrete inner boundary with the
Poisson subproblems mentioned above; this sub-step of the block Gauss-Seidel
scheme requires only the solution of a tridiagonal linear system.
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Figure 8.7 Discrete domain decomposition

The domain decomposition not only reduces the computational effort com-
pared with a direct solution of the original discrete problem, but also permits
the efficient use of parallel computing. The splitting of the domain in Fig-
ure 8.7 corresponds to the splitting of the matrix A given in Figure 8.8. The
convergence analysis of the iterative method follows the approach used for
standard Gauss-Seidel methods. The expected acceleration of the convergence
of the block method, compared with the original pointwise method, will be
discussed in the framework of more general domain decomposition methods
in Section 8.6.

(
A• • A• ◦

A◦ • A◦ ◦

)
=

Figure 8.8 Rearranged matrix

Exercise 8.13. For the vector norms ‖ · ‖1 and ‖ · ‖2, show that the induced
matrix norms defined by (3.4) can be given explicitly by
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‖A‖1 = max
j

∑
i

|aij | and ‖A‖2 = ρ(ATA)1/2.

In terms of ‖A‖1 find a simple criterion that is sufficient for convergence of
the Gauss-Seidel method.

Exercise 8.14. Prove that in a finite-dimensional vector space all norms are
equivalent. Find sharp constants c and c such that

c ‖u‖∞ ≤ ‖u‖2 ≤ c ‖u‖∞ for all u ∈ RN .

Exercise 8.15. Suppose that Jacobi’s method is applied to the model prob-
lem (3.31). Use eigenvectors to find the value ‖B−1

h (Ah −Bh)‖2 that charac-
terizes the convergence behaviour of the method.

8.3.4 Relaxation and Splitting Methods

Simple iterative methods like Gauss-Seidel or Jacobi suffer severely from the
asymptotically slow convergence implied by (3.33). It is possible to acceler-
ate this convergence by means of relaxation, i.e., by modifying the method
through the introduction of a user-chosen multiplier for the correction at each
step of the iteration; cf. (3.3). Here we shall consider only the Gauss-Seidel
method. Our analysis can easily be extended to the Jacobi method.

In the relaxation method the iterative step (3.14) is modified as follows:

i−1∑
j=1

aiju
k+1
j + aiiũ

k+1
i +

N∑
j=i+1

aiju
k
j = bi , i = 1, . . . , N,

uk+1
i = uk

i + ω (ũk+1
i − uk

i ) .

(3.44)

Here ω > 0 is a so-called relaxation parameter. After the elimination of the
intermediate iterates ũk+1

i from (3.44) using the splitting A = L+D+R, we
reach the representation(

L+
1
ω
D

)
uk+1 +

(
R+

(
1− 1

ω

)
D

)
uk = b , k = 0, 1, . . . (3.45)

In explicit form this is

uk+1 = T (ω)uk + t(ω), k = 0, 1, . . . , (3.46)

where

T (ω) :=
(
L+

1
ω
D

)−1((
L+

1
ω
D
)
−A
)
,

t(ω) :=
(
L+

1
ω
D

)−1

b .

(3.47)



8.3 Classical Iterative Methods 525

Bearing Lemma 8.9 in mind, our goal is to choose the relaxation parameter
ω > 0 in such a way that the spectral radius ρ(T (ω)) of the iteration matrix of
(3.46) is minimized. As we shall show later, in many situations it is desirable to
choose ω ∈ (1, 2). Because ω > 1 the method (3.45) is often called successive
over-relaxation (SOR) .

Like the symmetric Gauss-Seidel method (3.35), in the SOR method al-
ternating forward and backward sweeps can symmetrize the procedure. This
leads to the following symmetric iteration which is known as the SSOR
method: (

L+ 1
ωD
)
uk+1/2 +

(
R+ (1− 1

ω )D
)
uk = b,(

L+ (1− 1
ω )D

)
uk+1/2 +

(
R+ 1

ωD
)
uk+1 = b,

k = 0, 1, . . . (3.48)

The next lemma relates the relaxation parameter ω to the spectral radius
of T (ω).

Lemma 8.16. For the iteration matrix T (ω) of the SOR method one has

ρ(T (ω)) ≥ |1− ω| for all ω > 0.

Proof: The matrix T (ρ) defined by (3.47) can be written in the form

T (ω) = (I + ωD−1L)−1((1− ω)I − ωD−1R).

As D−1L and D−1R are strictly lower and strictly upper triangular matrices,
we have

det (T (ω)) = det ((I + ωD−1L)−1) det ((1− ω)I − ωD−1R)
= 1 · (1− ω)N .

(3.49)

The determinant of a matrix equals the product of its eigenvalues. Let the
eigenvalues of T (ω) be λj , j = 1, . . . , N . From (3.49) we get

(1 − ω)N =
N∏

j=1

λj . (3.50)

By definition of the spectral radius, |λj | ≤ ρ(T (ω)) for j = 1, . . . , N . The
assertion of the lemma now follows from (3.50).

Lemmas 8.16 and 8.9 imply that the condition

ω ∈ (0, 2)

is necessary for convergence of the SOR method.
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Under additional assumptions on the system matrix A, the spectral radius
ρ(T (ω)) of the iteration matrix of the SOR method can be determined explic-
itly. We say that the system matrix of (3.1) has property A (see [Axe96]) if
there exists a permutation matrix P such that (after a simultaneous exchange
of rows and columns) one has

PTAP =

⎛⎜⎜⎜⎜⎝
D1 R1

L2 D2 R2

· · ·
· · Rm−1

Lm Dm

⎞⎟⎟⎟⎟⎠ , (3.51)

where the Dj , j = 1, . . . ,m, are invertible diagonal matrices. For matrices
with property A, the SOR method is convergent; see [HY81], [Axe96].

Lemma 8.17. Assume that the system matrix A has property A. Then the
spectral radius of the iteration matrix T (ω) of the SOR method is given ex-
plicitly by

ρ(T (ω)) =

⎧⎨⎩1− ω + ω2ρ(J)2

2 + ωρ(J)
√

ω2ρ(J)2

4 − ω + 1 if ω ∈ (0, ωopt],

ω − 1 if ω ∈ (ωopt, 2),

where
ωopt :=

2
ρ(J)2

(
1 −

√
1− ρ(J)2

)
(3.52)

and J is the iteration matrix of the standard Jacobi method. In particular

ρ(T (ωopt) ≤ ρ(T (ω)) for all ω ∈ (0, 2).

If one uses the optimal value ω = ωopt of the relaxation parameter ω, then
the SOR method applied to the model problem (3.31) has, as the mesh size
h approaches zero, the asymptotic behaviour

ρ(Th(ωopt)) = 1 − O(h).

Remark 8.18. To determine ωopt exactly from (3.52), one does need to know
explicitly the spectral radius ρ(J) of the standard Jacobi method. For any
fixed relaxation parameter ω, an estimate ρ̃(J) of ρ(J) can be obtained from
an approximation ρ̃(T (ω)) of ρ(T (ω)) via

ρ̃(J) =
ρ̃(T (ω)) + ω − 1
ω ρ̃(T (ω))1/2

.

Then (3.52) will yield an approximation of the optimal relaxation parameter
ωopt. �



8.3 Classical Iterative Methods 527

For a detailed analysis of the SOR method we refer to [HY81].
Next, we discuss splitting methods. Consider the problem

Au = b (3.53)

for some positive definite system matrix A. Suppose that we have two positive
definite matrices P and Q such that

A = P + Q . (3.54)

Then the system (3.53) is equivalent to either of the two formulations

(σI + P )u = (σI − Q)u + b

and
(σI + Q)u = (σI − P )u + b

where σ > 0 is an arbitrary real parameter. The basic idea of the splitting
method is to exploit this equivalence by the two-stage iterative procedure

(σI + P )uk+1/2 = (σI − Q)uk + b,

(σI + Q)uk+1 = (σI − P )uk+1/2 + b,
k = 0, 1, . . . . (3.55)

After eliminating the intermediate step (which is sometimes called the half
step) we obtain the iteration

uk+1 = T (σ)uk + t(σ) (3.56)

with
T (σ) := (σI +Q)−1(σI − P )(σI + P )−1(σI −Q) (3.57)

and a corresponding vector t(σ) ∈ RN .
For the model problem (3.31), one can find suitable matrices P and Q in

a natural way directly from the discretizations of ∂
2u
∂x2 and ∂2u

∂y2 . Substituting

this choice into (3.55) yields the iteration scheme

(2 + σ)uk+1/2
ij − uk+1/2

i−1,j − u
k+1/2
i+1,j + (2− σ)uk

ij − uk
i,j−1 − uk

i,j+1 = h2fij ,

(2− σ)uk+1/2
ij − uk+1/2

i−1,j − u
k+1/2
i+1,j + (2 + σ)uk+1

ij − uk+1
i,j−1 − uk+1

i,j+1 = h2fij ,

for i, j = 1, . . . , n − 1, k = 0, 1, . . . Peaceman and Rachford proposed this
scheme in the context of implicit time discretizations of parabolic problems.
Because of the alternation between discretization directions that appears in
the iteration, this method is called the alternating direction implicit scheme
or ADI method.

The convergence analysis of splitting methods is based on following lemma
which is often called Kellogg’s Lemma.
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Lemma 8.19. Let C ∈ L(RN ) be a symmetric and positive definite matrix.
Then for any σ > 0, the estimate

‖ (σI − C)(σI + C)−1 ‖ ≤ ρ((σI − C)(σI + C)−1) < 1 (3.58)

is valid in the Euclidean norm.

Proof: The matrix C is symmetric and consequently has an orthonormal
system {vi}Ni=1 of eigenvectors with associated eigenvalues μi. Thus

(σI − C)(σI + C)−1vi =
σ − μi

σ + μi
vi, i = 1, . . . , N. (3.59)

That is, the vectors {vi}Ni=1 are also an orthonormal eigensystem for the ma-
trix (σI − C)(σI + C)−1. As C is positive definite and σ > 0, one has

ρ((σI − C)(σI + C)−1) = max
1≤i≤N

∣∣∣∣σ − μi

σ + μi

∣∣∣∣ < 1. (3.60)

To prove the other inequality in (3.58), let y ∈ RN be an arbitrary vector.
Then y has the unique representation

y =
N∑

i=1

ηiv
i

in terms of the basis {vi}. Define z ∈ Rn by

z := (σI − C)(σI + C)−1)y.

Then (3.59) implies that

z =
N∑

i=1

σ − μi

σ + μi
ηiv

i.

The vectors {vi} are orthonormal and it follows that

‖z‖2 =
N∑

i=1

(
σ − μi

σ + μi

)2

η2
i ≤

[
max

1≤i≤N

(
σ − μi

σ + μi

)2
]

N∑
i=1

η2
i

= max
1≤i≤N

(
σ − μi

σ + μi

)2

‖y‖2.

Recalling (3.60), we therefore have

‖z‖ ≤ ρ((σI − C)(σI + C)−1) ‖y‖.

As y ∈ Rn was arbitrary, the definition (3.4) now implies that

‖(σI − C)(σI + C)−1‖ ≤ ρ((σI − C)(σI + C)−1).
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Remark 8.20. If one is interested only in the norm estimate

‖ (σI − C)(σI + C)−1 ‖ < 1,

then this can be obtained also for the nonsymmetric case from the definition
(3.4). �

For the convergence of the splitting method (3.55), we have

Theorem 8.21. Assume that the system matrix A has the representation
(3.54) for symmetric positive definite matrices P and Q. Then for any σ > 0
and any starting vector u0 ∈ RN , the successive iterates of the method (3.55)
converge to the solution u of (3.53).

Proof: We estimate the spectral radius of the iteration matrix T (σ) that was
defined in (3.57). Because of the underlying similarity transformation, this
matrix has the same spectrum as the matrix

(σI − P )(σI + P )−1(σI −Q)(σI +Q)−1.

Now Lemma 8.19 implies that

ρ(T (σ)) ≤ ‖(σI − P )(σI + P )−1‖ ‖(σI −Q)(σI +Q)−1‖ < 1.

in the Euclidean norm. By Lemma 8.9 the successive iterates converge and
the result then follows from (3.55).

Finally we mention that under the additional hypothesis that the matrices
P and Q commute, the spectral radius of the iteration matrix ρ(T (σ)) can
be minimized via the estimate (3.60) by an appropriately chosen parameter
σ (see [HY81]).

Exercise 8.22. Express the SOR method (3.48) in the form

uk+1 = Tuk + t, k = 1, 2, . . .

and describe the matrix T . Write down T in the particular case of the sym-
metric Gauss-Seidel scheme (3.35).

Exercise 8.23. Apply Lemma 8.17 to find the behaviour of the spectral ra-
dius ρ(T (ω)) as ω → ωopt. What recommendation follows from this for an
approximate evaluation of ωopt?

Exercise 8.24. Determine the value of the parameter σ that minimizes

max
1≤i≤2

∣∣∣∣σ − μi

σ + μi

∣∣∣∣
for any given positive μ1 and μ2.
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8.4 The Conjugate Gradient Method

8.4.1 The Basic Idea, Convergence Properties

In this section we examine the linear system

Au = b (4.1)

where the system matrix A is positive definite. Let (·, ·) denote a scalar product
in RN . We assume that A is self-adjoint with respect to this scalar product,
i.e., that

(Ay, z) = (y,Az) for all y, z ∈ RN . (4.2)

In the special case of the Euclidean scalar product (x, y) = xT y, the matrix
A is self-adjoint if and only if A is symmetric, i.e., A = AT .

The computational effort required for the numerical solution of the linear
system (4.1) will be significantly reduced if we can find a basis {pj}Nj=1 in
RN that is related to the matrix A in a special way: suppose that this basis
{pj}Nj=1 has the properties

(Api, pj) = 0 if i �= j (4.3a)

and

(Api, pi) �= 0 for i = 1, . . . , N. (4.3b)

Vectors {pj} with the properties (4.3) are said to be conjugate or A-
orthogonal. Expanding the solution u of (4.1) in terms of the basis {pj}Nj=1,
we have

u =
N∑

j=1

ηj p
j (4.4)

for some {ηj} ⊂ R. Then (4.3) implies that the coefficients ηj , j = 1, . . . , N ,
are given by

ηj =
(b, pj)

(Apj , pj)
, j = 1, . . . , N.

The conjugate directions pj are not usually known a priori except in spe-
cial cases such as those considered in Section 8.2. The basic idea of the con-
jugate gradient (CG) method is to apply Gram-Schmidt orthogonalization
to construct the pj iteratively: when the iterate uk+1 is found, its defect is
dk+1 := b−Auk+1, and the new direction pk+1 is

pk+1 = dk+1 +
k∑

j=1

βkj p
j ,
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where the unknown coefficients βkj ∈ R are specified by the general orthogo-
nality condition (Apk+1, pj) = 0, j = 1, . . . , k. This is Step 2 in the basic CG
algorithm described below.

The defect dk+1 points in the direction opposite to the gradient of the
function

F (u) =
1
2

(Au, u) − (b, u)

at the point uk+1. Thus the method is called the conjugate gradient (CG)
method . In terms of F , the problem (4.1) is equivalent to

gradF (u) = 0.

The Basic CG Method

Step 0: Select some starting vector u1 ∈ RN . Set k = 1 and

p1 = d1 = b − Au1. (4.5)

Step 1: Find
vk ∈ Vk := span

{
pj
}k

j=1
(4.6)

such that
(Avk, v) = (dk, v) for all v ∈ Vk, (4.7)

then set
uk+1 = uk + vk, (4.8)

dk+1 = b − Auk+1. (4.9)

Step 2: If dk+1 = 0, then stop. Otherwise find qk ∈ Vk such that

(Aqk, v) = −(Adk+1, v) for all v ∈ Vk. (4.10)

Set
pk+1 = dk+1 + qk. (4.11)

Increment k to k + 1 then return to Step 1.

Remark 8.25. The positive definiteness of A and the Lax-Milgram Lemma
guarantee that the subproblems (4.7) and (4.10) each have a unique solution
vk ∈ Vk and qk ∈ Vk respectively. �

Remark 8.26. The basic approach of the CG method can in principle also
be applied to symmetric elliptic problems without any discretization. This
infinite-dimensional version of the CG method has been analysed in [55]. �

In our discussions we shall exclude the trivial case d1 = 0, i.e., we assume that
the initial guess u1 is not a solution of the given system (4.1).
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Lemma 8.27. The {pj}kj=1 generated by the basic CG method are conjugate
directions, i.e., one has

(Api, pj) = 0, i, j = 1, . . . , k, i �= j,

(Api, pi) �= 0, i = 1, . . . , k.
(4.12)

Proof: We use induction on k. When k = 1, the assumption p1 = d1 �= 0 and
the positive definiteness of A imply immediately that (4.12) holds.

Assume that the result is true for the value k ≥ 1; we wish to deduce its
truth for the value k + 1. By (4.10) and (4.11) we have

(Apk+1, v) = 0 for all v ∈ Vk.

In particular this implies that

(Apk+1, pj) = 0, j = 1, . . . , k.

The self-adjointness of A with respect to (·, ·) then gives

(Apj , pk+1) = 0, j = 1, . . . , k.

Combining this result with the inductive hypothesis that the {pj}kj=1 are
already adjoint directions yields

(Api, pj) = 0, i, j = 1, . . . , k + 1, i �= j.

It remains only to show that

(Apk+1, pk+1) �= 0. (4.13)

Suppose that (4.13) is false. Then the positive definiteness of A implies that
pk+1 = 0. From (4.11) we get

dk+1 = −qk ∈ Vk. (4.14)

On the other hand (4.7)–(4.9) yield

(dk+1, v) = (b−Auk−Avk, v) = (dk−Avk, v) = 0 for all v ∈ Vk. (4.15)

By (4.14) we can choose v = dk+1 in (4.15), which implies dk+1 = 0. This
contradicts Step 2 of the basic CG method. Hence the supposition that (4.13)
is false must be incorrect; that is, (4.13) holds.

Lemma 8.28. The linear subspaces Vk ⊂ RN generated by the basic CG
method satisfy

Vk = span
{
dj
}k

j=1
and dimVk = k. (4.16)



8.4 The Conjugate Gradient Method 533

Proof: We use induction on k. The identity p1 = d1 and the definition (4.6)
of Vk imply that (4.16) holds trivially when k = 1.

Assume that the result is true for the value k ≥ 1; we wish to deduce its
truth for the value k+1. By (4.10), (4.11) and the definition (4.6) of Vk+1 we
obtain

Vk+1 ⊂ span
{
dj
}k+1

j=1
. (4.17)

Now Lemma 8.27 implies in particular that the {pj}k+1
j=1 are linearly indepen-

dent. Hence
dim Vk+1 = k + 1 , (4.18)

and (4.17) then gives

Vk+1 = span {dj}k+1
j=1 .

Next, we show that the sub-steps (4.7) and (4.10) of the basic CG method
can be simplified by using the fact that the pj , j = 1, . . . , k, are conjugate.

Lemma 8.29. Write the vectors vk ∈ Vk and qk ∈ Vk of (4.7) and (4.10)
respectively in terms of the basis {pj}kj=1 as

vk =
k∑

j=1

αkj p
j , qk =

k∑
j=1

βkj p
j . (4.19)

Then
αkj = βkj = 0 for j = 1, . . . , k − 1

and

αkk =
(dk, dk)

(Apk, pk)
, βkk =

(dk+1, dk+1)
(dk, dk)

. (4.20)

Proof: The relation (4.15) shown in the proof of Lemma 8.27 implies that

(dk+1, pj) = 0, j = 1, . . . , k, (4.21)

and, also appealing to Lemma 8.28, we have

(dk+1, dj) = 0, j = 1, . . . , k. (4.22)

By (4.19) and (4.7) we get

k∑
i=1

αki (Api, v) = (dk, v) for all v ∈ Vk. (4.23)

Choosing v = pj here, then (4.12) and (4.21) yield

αkj = 0 , j = 1, . . . , k − 1, (4.24)
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and

αkk =
(dk, pk)

(Apk, pk)
. (4.25)

Replacing k+1 by k in (4.11) and (4.21) shows that (dk, pk) = (dk, dk). Thus

αkk =
(dk, dk)

(Apk, pk)
, (4.26)

as desired. Observe that αkk �= 0 since dk �= 0.
Consider now the coefficients βkj . By (4.11) and (4.19) we have

pk+1 = dk+1 +
k∑

j=1

βkj p
j .

This identity and the conjugacy of the directions {pj}k+1
j=1 give

0 = (Api, dk+1) +
k∑

j=1

βkj (Api, pj), i = 1, . . . , k,

and hence

βkj =
(Apj , dk+1)
(Apj , pj)

, j = 1, . . . , k. (4.27)

The first part of the proof and (4.8) show that

uj+1 = uj + αjj p
j , j = 1, . . . , k,

with coefficients αjj �= 0. Consequently

Apj =
1
αjj

A(uj+1 − uj) =
1
αjj

(dj − dj+1).

Substituting this into (4.27) we obtain

βkj =
1
αjj
· (dk+1, dj+1 − dj)

(Apj , pj)
, j = 1, . . . , k.

Appealing now to (4.21) and Lemma 8.28, we see that βkj = 0, j = 1, . . . , k−
1, and

βkk =
(dk+1, dk+1)

(dk, pk)
.

When (4.11) and (4.21) are taken into account this gives the formula for βkk

in (4.20).
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Lemma 8.29 means that we can simplify (4.19) to vk = αk p
k, qk = βk p

k,
where (4.20) gives explicit formulas for αk := αkk and βk := βkk.

These results enable us to simplify the basic CG algorithm as follows.

CG method

Select some starting vector u1 ∈ RN . Set

p1 = d1 = b − Au1. (4.28)

For k = 1, 2, . . . , while dk �= 0 define iteratively the coefficients and vectors

αk :=
(dk, dk)

(Apk, pk)
, (4.29)

uk+1 := uk + αk p
k, (4.30)

dk+1 := b − Auk+1, (4.31)

βk :=
(dk+1, dk+1)

(dk, dk)
, (4.32)

pk+1 := dk+1 + βk p
k. (4.33)

By Lemma 8.28, (4.6) and (4.7) we obtain

Theorem 8.30. After at most N steps, the CG method finds the solution u
of the given problem (4.1) provided that all calculations are exact, i.e., are
carried out without rounding errors.

The discretization of partial differential equations leads generally to linear
systems of extremely high dimension. In this context CG methods, despite
the finite termination property of Theorem 8.30, are often used as iterative
methods that are terminated before the exact solution is obtained. Further-
more, in the case of high dimensions, rounding errors in the calculation cannot
be neglected and consequently only approximate solutions of (4.1) are gener-
ated. Thus the iterative convergence behaviour of the CG method must be
investigated. For this we have:

Theorem 8.31. The iterates uk generated by the CG method converge to the
solution u of the system (4.1) subject to the bound

‖uk+1 − u‖2A ≤ 2
(√

μ−√ν
√
μ+
√
ν

)k

‖u1 − u‖2A , (4.34)

where μ ≥ ν > 0 are real numbers such that

ν (y, y) ≤ (Ay, y) ≤ μ (y, y) for all y ∈ RN . (4.35)
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Proof: Set ej = uj − u for j = 1, 2, . . . First we show by induction on j that
there exist polynomials rj(·) of degree j, with rj(0) = 1, such that

ej+1 = rj(A) e1, j = 0, 1, . . . , k. (4.36)

This is trivially true for j = 0 on taking r0 ≡ 1. For fixed but arbitrary m ≥ 1
assume that (4.36) is true, rj has degree j, and rj(0) = 1 for j = 0, 1, . . . ,m−1
(“strong induction”); we wish to deduce (4.36) and the other two properties
for the value j = m.

The definition of em+1 and (4.30) together imply that

em+1 = um+1 − u = um+1 − um + um − u = αm pm + em. (4.37)

By (4.33) we get, setting β0 = 0,

pm = dm + βm−1p
m−1 = b−Aum +

βm−1

αm−1
(um − um−1)

= −A(um − u) +
βm−1

αm−1
(um − u+ u− um−1).

That is,

pm =
( βm−1

αm−1
I − A

)
em − βm−1

αm−1
em−1.

The inductive hypothesis then yields

pm =
( βm−1

αm−1
I − A

)
rm−1(A)e1 − βm−1

αm−1
rm−2(A)e1.

Substituting this into (4.37) leads to the intermediate result

em+1 = rm(A) e1

with

rm(A) :=
[(

1 +
αmβm−1

αm−1

)
I − αmA

]
rm−1(A) − αmβm−1

αm−1
rm−2(A),

completing our induction argument—it is easy to deduce from this formula
and the inductive hypothesis that rm has degree m and rm(0) = 1.

Next, (ek+1, Aek+1) will be studied in detail. Now dj = −Aej for each j
and by (4.22) we have

(ek+1, Aek+1) = − (ek+1, dk+1) = − (ek+1 +
k∑

j=1

σjd
j , dk+1)

for any σ1, . . . , σk ∈ R. Recalling (4.36) and again appealing to dj = −Aej ,
this yields
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(ek+1, Aek+1) =
(

(rk(A) +
k∑

j=1

σj Arj−1(A))e1, Aek+1

)
.

Let qk(·) be an arbitrary polynomial of degree k that satisfies qk(0) = 1.
Then the properties that we have proved above for rk imply that there exist
uniquely defined real numbers σ̃1, . . . , σ̃k such that

qk(ξ) = rk(ξ) +
k∑

j=1

σ̃j ξ rj−1(ξ) for all ξ ∈ R.

Combining this with the previous identity, we see that

(ek+1, Aek+1) = (qk(A)e1, Aek+1) (4.38)

for any polynomial qk of degree k for which qk(0) = 1. As A is self-adjoint
and positive definite, one can define a scalar product 〈·, ·〉 on RN × RN by

〈y, z〉 := (y,Az) for all y, z ∈ RN .

The Cauchy-Schwarz inequality associated with 〈·, ·〉, when applied to (4.38),
yields the estimate

(ek+1, Aek+1) ≤ (qk(A)e1, A qk(A)e1)1/2(ek+1, Aek+1)1/2.

That is,
(ek+1, Aek+1) ≤ (qk(A)e1, A qk(A)e1). (4.39)

Since A is self-adjoint with respect to the scalar product (·, ·), there exists an
orthonormal system {wj}Nj=1 of eigenvectors of A such that

(Awj , v) = λj (wj , v) for all v ∈ RN .

Now (4.35) implies that

λj ∈ [ν, μ], j = 1, . . . , N. (4.40)

Expanding in terms of the eigensystem {wj}, by (4.40) we get

(qk(A)e1, A qk(A)e1) ≤ max
λ∈[ν,μ]

|qk(λ)|2 (e1, Ae1). (4.41)

We minimize the multiplier max
λ∈[ν,μ]

|qk(λ)|2 by an appropriate choice of the

polynomial qk(·). Using Tschebyscheff polynomials, it can be shown (see
[Str04]) that there exists a polynomial q̃k(·) of degree k with q̃k(0) = 1 such
that

max
λ∈[ν,μ]

|q̃k(λ)| ≤ 2
(√

μ−√ν
√
μ+
√
ν

)k

.

Recalling (4.39) and (4.41), we get the convergence estimate (4.34).
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Remark 8.32. In the CG method it is essential that the system matrix A be
self-adjoint. This property implies that (A·, ·) defines a scalar product and the
problem Au = b can be interpreted as a projection problem. When dealing
with matrices that are not self-adjoint, one can use the Krylov spaces defined
by

Uk(A, u1) := span
{
d1, Ad1, a2d1, . . . , Ak−1d1

}
(4.42)

(see Exercise 8.39). A common numerical technique that is based on Krylov
spaces is the GMRES method. In the kth step of this method a correction
vk ∈ Uk(A, u1) is chosen such that

‖dk −Avk‖ = min
v∈Uk(A,u1)

‖dk −Av‖

and the update is defined by uk+1 := uk + vk. Unlike the CG method, each
iteration in GMRES cannot be performed using only the last two directions:
instead one must use the complete Krylov space generated so far, i.e., all
spanning vectors are needed. For a detailed discussion of the GMRES method
we refer, e.g., to [Axe96]. �

8.4.2 Preconditioned CG Methods

In the case of the Euclidean scalar product, self-adjointness is equivalent to
A = AT and the constants ν and μ in Theorem 8.31 are determined by the
minimal and maximal eigenvalues of A. The estimate (4.34) of that Theorem
then reads

‖uk+1 − u‖2A ≤ 2
(√

λmax −
√
λmin√

λmax +
√
λmin

)k

‖u1 − u‖2A , k = 1, 2, . . .

For the discrete Poisson-Problem (2.25) the eigenvalues of A are explicitly
known and λmax/λmin = O(h−2). This behaviour is also typical in other
cases (see Section 4.9.1). The CG method has therefore a contraction factor
that is 1−O(h), which is unsatisfactory. Every preconditioning of the method
aims to improve this situation.

Let A, B be two positive definite matrices that are self-adjoint with respect
to the scalar product (·, ·). Instead of the given problem (4.1) we consider the
equivalent problem

Ã u = b̃ with Ã := B−1A, b̃ := B−1b. (4.43)

The properties of B imply that

(x, y)B := (Bx, y) for all x, y ∈ RN (4.44)

defines a new scalar product (·, ·)B on RN . The matrix Ã is self-adjoint with
respect to the new scalar product because
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(Ãx, y)B = (BÃx, y) = (BB−1Ax, y) = (Ax, y) = (x,Ay)

= (x,BÃy) = (Bx, Ãy) = (x, Ãy)B for all x, y ∈ RN .

We now apply the CG method on the transformed problem (4.43), using the
scalar product (·, ·)B . Then one can write the steps (4.29)–(4.33) in the form
(using the original scalar product (·, ·) and the non-transformed variables)

α̃k :=
(B−1dk, dk)
(Apk, pk)

, (4.45)

uk+1 := uk + α̃k p
k, (4.46)

dk+1 := b − Auk+1, (4.47)

β̃k :=
(B−1dk+1, dk+1)

(B−1dk, dk)
, (4.48)

pk+1 := B−1dk+1 + β̃k p
k. (4.49)

The method (4.45)–(4.49), which uses the unspecified matrix B to solve (4.1),
is called the preconditioned CG method or PCG method. Of course, the vectors
sk := B−1dk needed in (4.45) and (4.48) are computed by solving the linear
system

B sk = dk . (4.50)

Consequently B must be chosen in such a way that the efficient solution of
(4.50) is possible and this choice decides the effectiveness of the PCG method.
The matrix B in (4.50) is called a preconditioner.

We are interested only in problems that arise from the discretization of
differential equations. Both the given problem (4.1) and the auxiliary problem
(4.50) depend on this discretization. We therefore write Ah, Bh and νh, μh

instead of A, B and ν, μ. In the preconditioned setting the estimate (4.35),
written in terms of the scalar product (·, ·)B , becomes

νh (y, y)Bh
≤ (B−1

h Ahy, y)Bh
≤ μh (y, y)Bh

for all y ∈ RN .

This is equivalent to the condition

νh (Bhy, y) ≤ (Ahy, y) ≤ μh (Bhy, y) for all y ∈ RN (4.51)

if the original scalar product (·, ·) is used. If (4.51) holds then Ah, Bh are
called spectrally equivalent.

When two-sided spectral bounds are available for both Ah and Bh, one
can derive estimates of the type (4.51):

Lemma 8.33. Assume that there are constants μA ≥ νA > 0 and μB ≥ νB >
0 such that the matrices Ah and Bh satisfy the bounds
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νA(y, y) ≤ (Ahy, y) ≤ μA(y, y)
and νB(y, y) ≤ (Bhy, y) ≤ μB(y, y) for all y ∈ RN .

Then (4.51) is valid with νh = νA

μB

and μh = μA

νB

.

Proof: This is immediate from the hypotheses.

It should be noticed that the bounds given by Lemma 8.33 are often not
optimal. Better is a direct estimate.

To treat discretized elliptic variational equations, special preconditioners
have been developed to guarantee that the quotient μh/νh of (4.51) is ei-
ther uniformly bounded with respect to h (then PCG works with optimal
complexity) or increases very slowly as h → 0. We now discuss some of the
preconditioners in current use.

Assume that A can be written in the form

A = LLT + R, (4.52)

where the matrix L is lower triangular and the matrix R has a small norm.
If R = 0, then (4.52) is the Cholesky decomposition of A, and in this case
Theorem 8.31 tells us that we get the solution of (4.1) in one step. When one
computes a Cholesky decomposition, the lower triangular matrix L has, in
general, many more nonzero elements than the lower triangular part of A.

The Cholesky decomposition is often modified in the following way: if the
absolute value of an entry of L is smaller than some user-specified threshold
δ, it is simply set equal to zero. This modification is known as an incomplete
Cholesky decomposition. If δ = 0 we obtain the exact Cholesky decomposi-
tion, and on the other hand for sufficiently large δ we generate a decomposition
whose matrix L has the same pattern of nonzero entries as A. The precon-
ditioned conjugate method based on incomplete Cholesky decomposition is
called the ICCG method.

An alternative way of constructing preconditioners for (4.1) uses discretiza-
tions on adjacent meshes. Let us denote the underlying discrete spaces of two
discretizations of some given problem by Uh and UH . We write the corre-
sponding linear systems as

Ah uh = bh (4.53)

and
AH uH = bH . (4.54)

To transform between Uh and UH , assume that we have linear continuous
mappings

IH
h : Uh → UH and Ih

H : UH → Uh. (4.55)

For instance, these mappings could be defined using interpolation.
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If the given problem (4.1) coincides with (4.53), then under certain condi-
tions the quantity

Ih
H A−1

H IH
h bh (4.56)

is an approximate solution of (4.53). Consequently the matrix

B−1
h := Ih

HA
−1
H IH

h

is a reasonable candidate as a preconditioner of (4.53). Preconditioners related
to multigrid methods (see Section 8.5 for a detailed discussion) are carefully
investigated in [Osw94], [125]. One can prove that these preconditioners have
an almost optimal asymptotic convergence behaviour.

As an example we study a preconditioner proposed by Bramble, Pasciak
and Xu [25] that is based on the use of a hierarchical mesh structure. We
consider this BPX preconditioner in the context of the weak formulation of
the model problem

−Δu = f in Ω, u = 0 on Γ := ∂Ω, (4.57)

and analyze the spectral property (4.51). Let f ∈ H−1(Ω) and let Ω ⊂ R2

be a polygonal domain. Denote by Z0 a first (coarse) admissible triangulation
of Ω and refine the mesh iteratively by the decomposition of every triangle
into 4 congruent triangles as in Figure 8.9. Thus, starting from Z0, we get a
dyadic refinement which we denote by Z1, Z2, . . . ,Zm.

Figure 8.9 Dyadic refinement of a triangulation

Let hl denote the mesh diameter of Zl. Then the dyadic refinement implies
that

hl−1 = 2hl, l = 1, . . . ,m. (4.58)

On each triangulation Zl let Ul denote the space of piecewise linear elements
in C(Ω). These spaces have the nested property

U0 ⊂ U1 ⊂ · · · ⊂ Um−1 ⊂ Um ⊂ H1
0 (Ω).

We denote the Lagrange basis functions of Ul by ϕl,j , j ∈ Jl, l = 0, 1, . . . ,m,
where Jl is the corresponding index set. Then

Ul = span{ϕl,j}j∈Jl
, l = 0, 1, . . . ,m.
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Moreover we let

Ul,j = span{ϕl,j}, j ∈ Jl, l = 0, 1, . . . ,m,

denote the one-dimensional subspace spanned by the function ϕl,j . The dis-
crete problem that we wish to solve is formulated on the finest triangulation
Zm, i.e., Um corresponds to the finite element space Vh with h = hm. This
discrete problem is, as usual,

find uh ∈ Vh such that a(uh, vh) = f(vh) for all vh ∈ Vh, (4.59)

where
a(u, v) :=

∫
Ω

∇u · ∇v dx for all u, v ∈ H1
0 (Ω) .

BPX preconditioners can be interpreted as additive Schwarz method (see
[TW05], [125, 54]). We follow [54] in the presentation and analysis of this
technique.

To simplify the notation and to avoid introducing a double index we put
V = Vh and write {Vi}Mi=0 for the subspaces U0, Ul,j , j ∈ Jl, l = 1, . . . ,m.

Here M :=
m∑

l=1

|Jl| denotes the number of one-dimensional subspaces Vi that

occur.
For i = 0, 1, . . . ,M we assume that we have symmetric, continuous, Vi-

elliptic bilinear forms bi : Vi×Vi → R. Using these forms we define projectors
Pi : V → Vi and Qi : H−1(Ω)→ Vi, i = 0, 1, . . . ,M , by

bi(Piv, vi) = a(v, vi) and bi(Qif, vi) = f(vi) for all vi ∈ Vi. (4.60)

The Lax-Milgram lemma guarantees that for arbitrary v ∈ V and f ∈ H−1(Ω)
the projections Piv and Qif ∈ Vi are well defined. Define the operators P :

V → V and Q : H−1(Ω)→ V by P :=
M∑
i=0

Pi and Q :=
M∑
i=0

Qi respectively.

Lemma 8.34. The operator P is positive definite and self-adjoint with respect
to the scalar product a(·, ·). Moreover, u ∈ V is a solution of the discrete
problem (4.59) if and only if u ∈ V is a solution of the equation

P u = Qf. (4.61)

Proof: For arbitrary u, v ∈ V one has

a(Pu, v) = a
( M∑

i=0

Piu, v
)

=
M∑
i=0

a(Piu, v) =
M∑
i=0

a(v, Piu)

=
M∑
i=0

bi(Piv, Piu) =
M∑
i=0

bi(Piu, Piv) =
M∑
i=0

a(u, Piv)

= a
(
u,

M∑
i=0

Piv
)

= a(u, Pv).
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Therefore P is self-adjoint with respect to a(·, ·).
Next we show that P is positive definite. The Vi-ellipticity of the bilinear

forms bi and the definition of the projectors Pi imply that

a(Pu, u) =
M∑
i=0

a(Piu, u) =
M∑
i=0

bi(Piu, Piu) ≥ 0 for all u ∈ V.

Furthermore, bi(Piu, Piu) ≥ 0 for i = 0, . . . ,M and Vi-ellipticity yield

a(Pu, u) = 0 ⇐⇒ Piu = 0, i = 0, . . . ,M.

In other words, u is orthogonal to all subspaces Vi, i = 0, . . . ,M and conse-
quently u = 0 if a(Pu, u) = 0. Thus we have shown that a(Pu, u) > 0 for
arbitrary u �= 0.

Suppose that u ∈ V is a solution of (4.59). For arbitrary vi ∈ Vi, i =

0, 1, . . . ,M , set v =
M∑
i=0

vi. Then the bilinearity of a(·, ·) and the definition of

the projectors Pi lead to

a(u, v) = a
(
u,

M∑
i=0

vi

)
=

M∑
i=0

a(u, vi) =
M∑
i=0

bi(Piu, vi).

Analogously

a(u, v) = f(v) =
M∑
i=0

f(vi) =
M∑
i=0

bi(Qif, vi).

Hence u is a solution of (4.61). Conversely, because P is positive definite the
solution of (4.61) is uniquely determined.

To solve the problem (4.59), we now apply the CG method to the equiv-
alent problem (4.61). The underlying scalar product in this CG method is
chosen to be a(·, ·) so that P is symmetric and positive definite, as promised
by Lemma 8.34.

The dominant effort in each iteration step is the evaluation of the residuals
dk = Qf − Puk. One therefore needs an effective way of computing Qif
and Piu

k for i = 0, 1, . . . ,M . The definitions (4.60) tell us that we have to
solve two discrete variational equations on each subspace Vi. But each space
Vi = span{ϕi} (say) is one-dimensional! Thus the solutions are simply

Pi u
k =

a(uk, ϕi)

bi(ϕi, ϕi)
ϕi and Qi f =

f(ϕi)

bi(ϕi, ϕi)
ϕi, i = 1, . . . ,M. (4.62)

We assume that on the coarsest mesh Z0, the solution of the Galerkin equa-
tions
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j∈J0

b0(ϕj , ϕi) ζk
j = f(ϕi)−

∑
j∈J0

a(ϕj , ϕi)uk
j (4.63)

is available. Consequently we have

Q0 f − P0 u
k =

∑
j∈J0

ζk
j ϕj .

Hence

dk = Qf − Puk =
∑
j∈J0

ζk
j ϕj +

m∑
l=1

∑
j∈Jl

f(ϕj)− a(uk, ϕj)

bl,j(ϕj , ϕj)
ϕj , (4.64)

where the bl,j are those bi for which Vi is associated with Ul,j . If one chooses

bl,j(u, v) := h−2
l (u, v)0,Ω for u, v ∈ Ul,j , (4.65)

this yields the BPX preconditioner (see [25])

dk = Qf − Puk =
∑
j∈J0

ζk
j ϕj +

m∑
l=1

∑
j∈Jl

2−2l f(ϕj)− a(uk, ϕj)

(ϕj , ϕj)0,Ω

ϕj . (4.66)

Alternatively, the choice bi(·, ·) = a(·, ·) leads to the following version of (4.64):

dk = Qf − Puk =
∑
j∈J0

ζk
j ϕj +

m∑
l=1

∑
j∈Jl

f(ϕj)− a(uk, ϕj)

a(ϕj , ϕj)
ϕj . (4.67)

Recall that ζk is the solution of (4.63) on the coarsest mesh Z0. In (4.66) and
(4.67) the residual dk is represented as an element of the finite-dimensional
space Uh. The scalar products required in the CG method can be directly
evaluated—see [125]—the storage of intermediate values employs representa-
tions that use the basis {ϕj}j∈Jm

of the space Uh.
The two preconditioners (4.67) and (4.66) are spectrally equivalent with

constants independent of h, as we now explain. Note first that for our piecewise
linear finite elements one has

c h−2
l (ϕj , ϕj)0,Ω ≤ a(ϕj , ϕj) ≤ C h−2

l (ϕj , ϕj)0,Ω

for all j ∈ Jl, l = 1, . . . ,m.
(4.68)

The right-hand inequality here follows from an inverse inequality, while the
left-hand inequality is a consequence of Friedrich’s inequality where one takes
into account the diameter of the support of each Lagrange basis function on
the corresponding refinement level. The dyadic refinement guarantees that the
constants c and C in (4.68) are independent of the refinement level. Conse-
quently (4.58) implies the spectral equivalence of (4.67) and (4.66).

Next we study the convergence behaviour of the CG method with the
scalar product a(·, ·) applied to problem (4.61), which is equivalent to the
original problem (4.59). We shall use Theorem 8.31.



8.4 The Conjugate Gradient Method 545

By Lemma 8.34, the operator P is self-adjoint and positive definite. We
aim to find constants μ ≥ ν > 0 such that

ν (v, v) ≤ (Pv, v) ≤ μ (v, v) for all v ∈ V. (4.69)

Towards this end, let us introduce the new norm

|||v||| := min

⎧⎨⎩
(

M∑
i=0

bi(vi, vi)

)1/2

: v =
M∑
i=0

vi, vi ∈ Vi

⎫⎬⎭ .

Lemma 8.35. One has

a(P−1v, v) = |||v|||2 for all v ∈ V. (4.70)

Proof: Let v ∈ V be arbitrary with v =
M∑
i=0

vi for vi ∈ Vi, i = 0, 1, . . . ,M .

The bilinearity of a(·, ·) and the definition of the projectors Pi give

a(P−1v, v) =
M∑
i=0

a(P−1v, vi) =
M∑
i=0

bi(PiP
−1v, vi) =

M∑
i=0

bi(wi, vi) (4.71)

with wi := PiP
−1v, i = 0, 1, . . . ,M . Our previous assumptions ensure that

bi(·, ·) defines a scalar product in Vi. Then a Cauchy-Schwarz inequality yields

|bi(wi, vi)| ≤ bi(wi, wi)1/2 bi(vi, vi)1/2.

A further application of the Cauchy-Schwarz inequality to the Euclidean scalar
product in RM+1 and (4.71) gives

a(P−1v, v) =
M∑
i=0

bi(wi, vi) ≤
M∑
i=0

bi(wi, wi)1/2bi(vi, vi)1/2

≤
(

M∑
i=0

bi(wi, wi)

)1/2 ( M∑
i=0

bi(vi, vi)

)1/2

.

(4.72)

On the other hand the definition of wi and of the projectors yields

M∑
i=0

bi(wi, wi) =
M∑
i=0

bi(PiP
−1v, wi) =

M∑
i=0

a(P−1v, wi) = a

(
P−1v,

M∑
i=0

wi

)

= a

(
P−1v,

M∑
i=0

PiP
−1v

)
= a(P−1v, v);

now invoking (4.72) we get
∑M

i=0 bi(wi, wi) ≤
∑M

i=0 bi(vi, vi), i.e.,
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a(P−1v, v) ≤
M∑
i=0

bi(vi, vi) for every representation v =
M∑
i=0

vi, vi ∈ Vi.

But if we choose vi = PiP
−1v, i.e., vi = wi, i = 0, 1, . . . ,M , then, as we saw

above, our final inequality becomes an equation. This proves (4.70).

To clarify the relationship between the norm ||| · |||, the norm ‖ · ‖ induced
by a(·, ·), and (4.69) we have the following result:

Lemma 8.36. Assume that there exist constants c ≥ c > 0 such that

c ‖v‖ ≤ |||v||| ≤ c ‖v‖ for all v ∈ V. (4.73)

Then the estimate (4.69) is valid with ν = c−2, μ = c−2.

Proof: By Lemma 8.35, the inequality (4.73) is equivalent to

c2 ‖v‖2 ≤ a(P−1v, v) ≤ c2 ‖v‖2 for all v ∈ V. (4.74)

As P is positive definite and symmetric with respect to a(·, ·), the operator
P−1 has the same properties. Let λmax(P ) and λmin(P ) be the maximal and
minimal eigenvalues for the eigenvalue problem

a(Pv,w) = λ (v, w) for all w ∈ V.

Then
λmin (v, v) ≤ a(Pv, v) ≤ λmax(P ) (v, v),

λ−1
max (v, v) ≤ a(P−1v, v) ≤ λ−1

min(P ) (v, v),
for all v ∈ V.

Hence (4.74) implies that c2 ≤ λ−1
max and c2 ≥ λ−1

min, and the conclusion of the
lemma follows.

To complete our study of the convergence behaviour of the CG method
combined with the BPX preconditioner, we state the following result: For the
BPX preconditioner, the constants in (4.73) are independent of the refinement
level and of the mesh diameter (see [Osw94, Theorem 19]).

Summary: in the CG method combined with the BPX preconditioner, the
contraction factor at each iteration of CG is independent of the mesh size,
and the simple structure (4.66) of the preconditioner allows its efficient im-
plementation.

For a detailed discussion of effective preconditioners see [Axe96, AB84,
Bra01, Osw94].
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Remark 8.37. (Wavelets)
Consider the problem

a(u, v) = f(v) for all v ∈ V,

which satisfies the standard assumptions of the Lax-Milgram Lemma. Using
wavelets, Dahmen [40] (see also [Urb02]) proposes to transform the problem
to an (infinite) matrix equation over the space l2. Let us suppose that we
know a wavelet basis {ψλ, λ ∈ J} for the space V with

c ‖(vλ)‖l2 ≤
∥∥∥∑

λ

vλψλ

∥∥∥
V
≤ C ‖(vλ)‖l2 for all (vλ) ∈ l2.

Set
Ã = (a(ψν , ψλ))ν,λ∈J and f̃ := (f(ψλ)λ∈J ).

Then the matrix equation
Ãw = f̃

is equivalent to the given problem and is well-conditioned: There exist con-
stants c1, c2 such that

c1‖w‖l2 ≤ ‖Ãw‖l2 ≤ c2‖w‖l2 for all w ∈ l2.

This observation is also the basis for adaptive wavelet methods; see the refer-
ences cited above for the practical details. �

Exercise 8.38. Verify that the iterates uk+1 generated by the CG method
are solutions of the variational problem

min
u∈Vk

F (u) =
1
2
(u,Au)− (b, u).

Exercise 8.39. Prove that the CG method is an example of a Krylov-space
method, viz., one has uk ∈ u1 + Uk−1(A, u1), k = 2, 3, . . . , where the Krylov
space Uk(A, u1) was defined in (4.42). See [DH03].

Exercise 8.40. Verify that the parameters βk of the CG method can also be
written as

βk =
(dk+1, dk+1 − dk)

(dk, dk)
.

Remark: this representation, which is due to Polak and Ribiére, allows the
generalization of the CG method to nonlinear problems.

Exercise 8.41. Consider the two-point boundary value problem

−((1 + x)u′)′ = f in (0, 1), u(0) = u(1) = 0

and its discretization using piecewise linear finite elements on an equidistant
mesh.
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Use the CG method to solve the discrete problem (i) directly (ii) with pre-
conditioning based on the matrix

Bh =

⎛⎜⎜⎜⎜⎜⎜⎝
2 −1 0 · · ·
−1 2 −1 · · ·
· −1 2 −1 · ·
· · · · · ·
· · · −1 2 −1
· · · · −1 2

⎞⎟⎟⎟⎟⎟⎟⎠ .

Estimate the convergence behaviour of the method in each case.

Exercise 8.42. Consider the Dirichlet problem

−Δu = f in Ω := (0, 1)× (0, 1),
u|Γ = 0,

and its discretization by linear finite elements on an arbitrary nonuniform
triangular mesh. Assume that a uniform mesh is available that approximates
in some sense the given nonuniform mesh. Describe how in practice one would
use the exact solution on the uniform mesh with the fast Fourier transform
as a preconditioner for the discrete problem on the nonuniform mesh.

8.5 Multigrid Methods

When a discretized elliptic boundary value problem is solved using a classical
iterative method, the convergence of the iterates uk

h to the discrete solution
uh is typically governed by the contractive property that

‖uk+1
h − uh‖ ≤ ‖Th‖ ‖uk

h − uh‖, k = 1, 2, . . . ,

but (unfortunately) one also has

lim
h→0
‖Th‖ = 1.

Now if one has two mesh sizes h and H and considers the associated
discrete problems

Ah uh = bh and AH uH = bH ,

then the solution of either of these problems is a good approximation to the
solution of the other problem. Multigrid methods exploit this attribute and
also certain useful properties of classical iterative methods such as Gauss-
Seidel; they aim to achieve contractivity with a contractivity constant that is
less than one and is independent of h. That is, they aspire to estimates of the
form
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‖uk+1
h − uh‖ ≤ γ ‖uk

h − uh‖ , k = 1, 2, . . . (5.1)

with a constant γ ∈ (0, 1) that is independent of the mesh.
Let us first consider a two-grid method. Suppose that some finite element

method (or finite difference or finite volume method) generates the discrete
problem

Ah uh = bh (5.2)

on a mesh of diameter h, and that there is a second discretization

AH uH = bH (5.3)

available that is based on a mesh of diameter H. Assume that h < H. We
denote the discrete finite-dimensional spaces associated with (5.2) and (5.3)
by Uh and UH . Assume that there are linear continuous mappings

IH
h : Uh → UH and Ih

H : UH → Uh

that allow us to move from a mesh function on one mesh to one on the other
mesh. These mapping IH

h is called a restriction operator and Ih
H a prolongation

operator. The choice of restriction and prolongation operators can influence
significantly the convergence rate of the method.

Rewrite (5.2) in the equivalent fixed-point form

uh = Th uh + th, (5.4)

for which one can use a classical fixed-point iterative method such as Gauss-
Seidel or SOR (see Sections 5.3 and 5.4). As was already mentioned, one
typically has ‖Th‖ ≤ γh with γh ∈ (0, 1).

We first apply n1 steps of our classical iterative method on the fine mesh.
Then the restriction operator is used to transfer the defect to the coarse mesh
and one solves for the correction on the coarse mesh. We then map the dis-
crete approximation back to the fine mesh and apply n2 steps of the iterative
method. To summarize, a two-grid method has the following structure:

Two-grid method

zk,l+1
h := Thz

k,l
h + th, l = 0, 1, . . . , n1 − 1 with zk,0

h := uk
h, (5.5)

dk
h := bh − Ahz

k,n1
h , (5.6)

dk
H := IH

h dk
h. (5.7)

Determine vk
H ∈ UH , the exact solution of

AH vk
H = dk

H . (5.8)

Set
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wk,0
h := zk,n1

h + Ih
H vk

h, (5.9)

wk,l+1
h := Th w

k,l
h + th, l = 0, 1, . . . , n2 − 1, (5.10)

uk+1
h := wk,n2

h . (5.11)

The steps (5.5) and (5.10) are known as pre-smoothing and post-smoothing ,
while (5.6)–(5.9) is called the coarse-grid correction.

Coalescing all the intermediate steps of the two-grid method, the algorithm
defined by (5.5)–(5.11) can be written in the form

uk+1
h := Sh u

k
h + sh , k = 1, 2, . . . (5.12)

with
Sh := Tn2

h (I − Ih
HA

−1
H IH

h Ah)Tn1
h (5.13)

and some sh ∈ Uh.
If, as well as the restriction and prolongation operators, the pre-smoothing

and post-smoothing steps are adequately chosen, then in many concrete cases
one can prove (see, for instance, [Hac03b]) that there exists a constant γ ∈
(0, 1), which is independent of the mesh width h, such that ‖Sh‖ ≤ γ. At the
end of this section we sketch two underlying ideas of the many proofs of this
result.

Before doing this we describe the principle of the multigrid method. In
the two-grid method we observe that on the coarse mesh one has to solve a
problem having the same structure as the original problem (with, of course,
a smaller number of unknowns). It is therefore natural to apply again the
two-grid method when solving the coarse mesh problem (5.8). Moreover, zero
is a possible starting vector because ‖dk

H‖ vanishes asymptotically as H → 0.
Thus from a two-grid method we have derived a three-grid method. Proceeding
recursively, one obtains finally the multigrid method. It is always assumed that
on the coarsest mesh the discrete equations generated are solved exactly.

In practice there are several variants of this basic idea. If on each level, for
the approximate solution of the coarse grid correction just one multigrid step
on the remaining grids is used, then we call the strategy a V-cycle multigrid;
otherwise it is a W-cycle multigrid. This terminology is derived from the
graphical representation of the transfer from grid to grid—see Figure 8.10.

Let
h0 > h1 > · · · > hl−1 > hl > 0

denote the mesh sizes of l grids used in an l-grid method. The corresponding
discrete spaces and the restriction and prolongation operators are denoted by

Uj := Uhj
, j = 1, . . . , l, Ij

j+1 : Uj+1 → Uj and Ij+1
j : Uj → Uj+1.

In the figure we see a three-grid method and the different use of the underlying
meshes in a V-cycle and a W-cycle.
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In the first case we use one two-grid step (based on the spaces U2 and U1) to

U2

U1

U0

Figure 8.10 V- and W-cycle

compute the coarse mesh correction on U2. In the second case the two-grid
method is applied twice, once on U2 and once on U1.

Now we consider the convergence behaviour of a multigrid method. For
this we first need some information about the structure of the method. We
assume that the multigrid method is based on a two-grid method that uses
the spaces Uj , Uj−1 to solve the problem

Aj wj = qj .

For qj ∈ Uj let the two-grid method be given by

wi+1
j = Sj,j−1 w

i
j + Cj,j−1 qj , i = 0, 1, . . . , (5.14)

with, as in (5.13), an operator defined by

Sj,j−1 := Tn2
j (I − Ij

j−1A
−1
j−1I

j−1
j Aj)Tn1

j (5.15)

and a related matrix Cj,j−1.
Next we describe a three-grid method on Uj , Uj−1, Uj−2. Assume that

in solving the coarse mesh equations on Uj−1 we apply σ steps of the two-
grid method on Uj−1, Uj−2 with zero as initial vector. Then the three-grid
operator can be written as

Sj,j−2 := Tn2
j (I − Ij

j−1Ã
−1
j−1I

j−1
j Aj)Tn1

j , (5.16)

where Ã−1
j−1 denotes the two-grid approximation of A−1

j−1 on Uj−1, Uj−2. It-
eratively applying (5.14) we see that

wσ
j−1 = Sσ

j−1,j−2 w
0
j−1 + pj−1 (5.17)

for σ = 1, 2, . . . and some pj−1 ∈ Uj−1. But the solution wj−1 of

Aj−1 wj−1 = qj−1

is a fixed point of (5.17), so

A−1
j−1qj−1 = Sσ

j−1,j−2A
−1
j−1qj−1 + pj−1

and consequently



552 8 Numerical Methods for Discretized Problems

pj−1 = (I − Sσ
j−1,j−1)A

−1
j−1qj−1 .

As we take w0
j−1 = 0 in the algorithm, (5.17) becomes

wσ
j−1 = (I − Sσ

j−1,j−1)A
−1
j−1qj−1 .

Using this representation of the approximation Ã−1
j−1 in (5.16), one gets finally

Sj,j−2 = Tn2
j (I − Ij

j−1(I − Sσ
j−1,j−2)A

−1
j−1I

j−1
j Aj)Tn1

j . (5.18)

We shall use this formula to analyse the convergence behaviour of the three-
grid method. Knowing the form of the two-grid and three-grid operators we
conclude, recursively, that the (m+ 1)-grid operator has the form

Sj,j−m = Tn2
j (I − Ij

j−1(I − Sσ
j−1,j−m)A−1

j−1I
j−1
j Aj)Tn1

j . (5.19)

Next we prove that the mesh-independent convergence of the two-grid
method implies (under certain conditions) the mesh-independent convergence
of a multigrid method.

Theorem 8.43. Assume that the two-grid operators Sj,j−1 defined in (5.15)
satisfy the inequality

‖Sj,j−1‖ ≤ c1 , j = 2, . . . , l

for some constant c1 ∈ (0, 1). Furthermore, assume that

‖Tn2
j Ij

j−1‖ ‖A−1
j−1I

j−1
j AjT

n1
j ‖ ≤ c2 , j = 2, . . . , l

for some constant c2 > 0. Then there exists a positive integer σ such that the
multigrid operator defined by (5.19) satisfies the estimate

‖Sj,1‖ ≤ c , j = 2, . . . , l

with a constant c ∈ (0, 1) that is independent of l.

Proof: From (5.15) and (5.19) we obtain

Sj,j−m = Sj,j−1 + Tn2
j Ij

j−1 S
σ
j−1,j−mA−1

j−1 I
j−1
j Aj T

n1
j .

Hence

‖Sj,j−m‖ ≤ ‖Sj,j−1‖ + ‖Tn2
j Ij

j−1‖ ‖Sj−1,j−m‖σ ‖A−1
j−1I

j−1
j AjT

n1
j ‖

≤ c1 + c2 ‖Sj−1,j−m‖σ.
(5.20)

But c1 ∈ (0, 1), so there exists a positive integer σ such that the equation

c1 + c2 α
σ = α
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has a solution α ∈ (0, 1). Clearly c1 ≤ α. From (5.20) and ‖Sj,j−1‖ ≤ c1 ≤ α
it follows inductively that ‖Sj,1‖ ≤ α.

Theorem 8.43 demonstrates the existence of a mesh-independent contrac-
tion number γ ∈ (0, 1) such that the estimate (5.1) is valid. For simplicity, we
studied only the W-cycle with a adequately chosen number of inner steps. For
the analysis of the V-cycle, which corresponds to the choice σ = 1, we refer
the reader to [24].

We now analyse the convergence behaviour of a specific two-grid method.
Let us consider the boundary value problem

−Δu = f in Ω := (0, 1)× (0, 1),
u|Γ = 0.

(5.21)

As usual, a(·, ·) denotes the bilinear form associated with (5.21), i.e.,

a(u, v) =
∫
Ω

∇u∇v dx,

and
a(u, v) = (f, v) for all v ∈ U := H1

0 (Ω) (5.22)

is the weak formulation of (5.21).
We discretize this problem using piecewise linear finite elements on the

uniform mesh of Figure 8.11, which is our “fine” mesh.

Figure 8.11 The mesh of the two-grid method

The space Uh on the fine mesh is spanned by the set of basis functions
associated with the interior mesh points. As indicated on Figure 8.11, there
are two classes of basis functions, each characterized by its different support.
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The basis functions of these two classes span the subspaces U1,h (generated
by the basis functions associated with the black vertices) and U2,h (from the
basis functions of the white vertices). Then the space Uh is a direct sum:

Uh = U1,h ⊕ U2,h .

In particular U1,h ∩U2,h = {0}. The splitting of the space Uh considered here
does not directly correspond to the classical geometric concept of a coarse and
a fine mesh.

In [22] a two-grid method was defined by alternating the solution of the
variational equation between the two subspaces:

u
k+1/2
h := uk

h + vk
1,h with vk

1,h ∈ U1,h which solves (5.23)

a(vk
1,h, v) = (f, v)− a(uk

h, v) for all v ∈ U1,h. (5.24)

uk+1
h := u

k+1/2
h + vk

2,h with vk
2,h ∈ U2,h which solves (5.25)

a(vk
2,h, v) = (f, v)− a(uk+1/2

h , v) for all v ∈ U2,h. (5.26)

Remark 8.44. Let {ϕi : i ∈ I1,h} be a list of the basis functions in U1,h. From
Figure 8.11 and the definition of U1,h, we see immediately that

int supp ϕi ∩ int supp ϕj = ∅ , i, j ∈ I1,h, i �= j. (5.27)

Consequently the Ritz-Galerkin equations (5.24) decouple into a simple sys-
tem of scalar equations. The solution is equivalent to a half step of a red-black
iteration. On the other hand, the variational equation (5.26) represents the
discretized problem on the coarse mesh.

To summarize, the method (5.23)–(5.26) is a particular example of a two-
grid method. �

There exist well-defined continuous linear projections S1 : Uh → U1,h and
S2 : Uh → U2,h with S1 + S2 = I because Uh = U1,h ⊕ U2,h. Let us write
‖ · ‖ for the energy norm generated by the bilinear form a(·, ·), i.e.,

‖u‖2 = a(u, u) for all u ∈ U.

Define a hypernorm [| · |] : Uh → R2 by

[|u|] :=
(
‖S1u‖
‖S2u‖

)
for all u ∈ Uh. (5.28)

This induces a hypernorm on the space of bounded linear operators Q : Uh →
Uh, which is defined by

[|Q|] : =
(
‖Q‖11 ‖Q‖12
‖Q‖21 ‖Q‖22

)
(5.29a)
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with

‖Q‖ij : = sup
v∈Uj,h, v �=0

‖SiQv‖
‖v‖ , i, j = 1, 2. (5.29b)

From the definition one sees immediately that

[|Qu|] ≤ [|Q|][|u|],

where the product on the right-hand side is matrix-vector multiplication. Sim-
ilarly, one can easily verify the property

[|Q1Q2|] ≤ [|Q1|] [|Q2|] (5.30)

for the hypernorms of two arbitrary bounded linear operators Q1, Q2 : Uh →
Uh.
In [22] (see also [Her87]) the following statement is proved.

Lemma 8.45. The strengthened Cauchy-Schwarz inequality

| a(u, v) | ≤ 1√
2
‖u‖ ‖v‖ for all u ∈ U1,h, v ∈ U2,h

is valid.

For j = 1, 2, define Ritz projectors Pj : Uh → Uj,h by

Pju ∈ Uj,h satisfies a(Pju, v) = a(u, v) for all v ∈ Uj,h. (5.31)

Then we have

Lemma 8.46. The hypernorms of the mappings I − Pj , j = 1, 2, satisfy

[|I − P1|] ≤
(

0 1√
2

0 1

)
, [|I − P2|] ≤

(
1 0
1√
2

0

)
,

where the inequalities hold entry by entry in the 2× 2 matrices.

Proof: From (5.31) we get

P1 u = u for all u ∈ U1,h, (5.32)

and consequently

(I − P1)u = 0 for all u ∈ U1,h. (5.33)

These two identities imply that

P 2
1 = P1 and (I − P1)2 = I − P1 . (5.34)
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Suppose that u ∈ U2,h satisfies (I − P1)u = 0. That is, u = P1u. But U1,h ∩
U2,h = {0}, so

(I − P1)u = 0, u ∈ U2,h =⇒ u = 0. (5.35)

Consider the hypernorm of (I − P1). The identity (5.33) and the linearity
of the Sj show that

Sj (I − P1)u = 0 for all u ∈ U1,h, j = 1, 2. (5.36)

Suppose instead that u ∈ U2,h. Now

(I − P1)u = S1 (I − P1)u + S2 (I − P1)u (5.37)

and appealing to (5.33) and (5.34) we get

(I − P1)u = (I − P1)2u = (I − P1)S2 (I − P1)u.

That is,

(I − P1) (I − S2(I − P1))u = 0 for all u ∈ U2,h.

Then (5.35) forces

S2 (I − P1)u = u for all u ∈ U2,h. (5.38)

Hence (5.37) simplifies to

S1 (I − P1)u = −P1 u for all u ∈ U2,h. (5.39)

Lemma 8.45 and (5.31) yield the estimate

‖P1u‖2 = a(P1u, P1u) = a(u, P1u) ≤
1√
2
‖u‖ ‖P1u‖ for all u ∈ U2,h,

and from (5.39) we then conclude that

‖S1(I − P1)u‖ ≤
1√
2
‖u‖ for all u ∈ U2,h. (5.40)

The definition (5.29) of the hypernorm and the results (5.36), (5.38) and (5.40)
give immediately the estimate

[|I − P1|] ≤
(

0 1√
2

0 1

)
.

The bound on (I − P2) is proved similarly.

As well as the hypernorm (5.28), one can define a new norm ||| · |||

|||u||| := max { ‖S1u‖, ‖S2u‖ } (5.41)

which is equivalent to the energy norm. We prove the mesh-independent con-
vergence of the two-grid method with respect to the norm ||| · |||:
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Theorem 8.47. For any starting value u1
h ∈ Uh, the two-grid method (5.23)–

(5.26) generates a sequence {uk
h} that converges as k → ∞ to the solution

uh ∈ Uh of the discrete problem

a(uh, vh) = (f, vh) for all vh ∈ Uh, (5.42)

with (independently of the mesh size h)

|||uk+1
h − uh||| ≤

1√
2
|||uk

h − uh|||, k = 1, 2, . . . . (5.43)

Proof: Recall from (5.24) that vk
1,h ∈ U1,h is defined by

a(vk
1,h, v) = a(uh − uk

h, v) for all v ∈ U1,h.

Consequently,
vk
1,h = −P1 (uk

h − uh).

Hence (5.23) implies that

u
k+1/2
h − uh = (I − P1) (uk

h − uh).

Analogously, one has

uk+1
h − uh = (I − P2) (uk+1/2

h − uh).

Lemma 8.46 then yields the estimate

[|uk+1
h − uh|] ≤

(
1 0
1√
2

0

) (
0 1√

2

0 1

)
[|uk

h − uh|] =
(

0 1√
2

0 1
2

)
[|uk

h − uh|],

which gives (5.43). The convergence of {uk
h} to uh follows.

Remark 8.48. This method can formally be augmented by an additional half-
step (see [22]), i.e., by setting

ũk+1
h − uh := (I − P1) (I − P2) (I − P1) (ũk

h − uh),

but in practice it is unnecessary to apply the red-black step (I − P1) twice
because (I − P1)2 = (I − P1). �

Remark 8.49. The method (5.23)–(5.26) can be generalized to other types of
meshes and to general elliptic differential operators: see [Her87]. Nevertheless
the mesh decomposition must still satisfy condition (5.27) and ensure the
validity of the strengthened Cauchy-Schwarz inequality

|a(u, v)| ≤ μij‖u‖ ‖v‖ for all u ∈ Ui,h, v ∈ Uj,h

with μ12 μ21 < 1. Condition (5.27) again allows us to solve the subproblem
(5.24) in a trivial way. �
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Remark 8.50. Alternatively, we sketch the basic idea of a general framework
due to Hackbusch which brakes the convergence proof of a two-grid method
into two separate parts.

Let us assume to consider a finite element space Vh on the fine mesh and a
second space V2h on the coarse mesh. For some starting value uk

h ∈ Vh to solve
the Galerkin equation on the fine mesh we first realize ν smoothing steps:

uk,1
h = Sνuk

h .

Then, we compute on the coarse mesh v̂2h ∈ V2h which solves

a(v̂2h, w) = (f, w)− a(uk,1, w) for all w ∈ V2h

and set
uk+1

h = uk,1
h + v̂2h .

With some adequately chosen norm ||| · ||| we assume for a convergence proof
with respect to the L2 norm the following:
It holds the

smoothing property |||Sνvh||| ≤ ch−2 1
νγ
‖vh‖0 (5.44)

and the

approximation property ‖u∗h −Ru∗h‖ ≤ ch2|||u∗h|||. (5.45)

Here for given u∗h ∈ Vh its Ritz projection in V2h is denoted by Ru∗h.
Smoothing property and approximation property are combined in the fol-

lowing way. First, with the solution uh on the fine mesh it holds

|||uk,1
h − uh||| ≤ ch−2 1

νγ
‖uk

h − uh‖0 . (5.46)

Further we have

a(uk,1
h − uh + v̂2h, w) = 0 for all w ∈ V2h.

That means, v̂2h is the Ritz projection of uh − uk,1
h and the approximation

property yields

‖uk+1
h − uh‖0 = ‖uh − uk,1

h − v̂2h‖0 ≤ ch2|||uh − uk,1
h |||. (5.47)

Combining (5.46) and (5.47) we obtain

‖uk+1
h − uh‖0 ≤

c

νγ
‖uk

h − uh‖0 .

Thus we have contractivity uniformly with respect to h if the number of
smoothing steps is sufficiently large.
Remark that the verification of the approximation property is closely related
to Nitsche’s technique of proving L2 error estimates. �
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As well as classical multigrid methods, cascadic multigrid methods have
been developed and theoretically analysed in the last decade. See, for instance,
[21, 109]. Like classical multigrid, cascadic methods use a nested sequence of
discrete spaces, for example,

U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Ul ⊂ H1
0 (Ω).

But unlike classical multigrid, where coarse and fine meshes are used alter-
nately in the iteration, cascadic methods start on the coarse mesh and in the
iteration process use only finer meshes. Let us denote by Bj : Vj → Vj the
underlying standard iteration scheme (for instance, CG) used to solve the dis-
crete problem

Aj wj = qj .

Then the fundamental approach of a cascadic method is: Apply mj iterations
of the iteration scheme on Uj and use the result as the starting point ũj for
mj+1 iterations on the finer mesh, i.e., on the space Uj+1. Thus on the space
Uh = Ul that corresponds to the finest mesh, the approximate solution ũh is
given by

ũh = Bml

l B
ml−1
l−1 · · ·Bm1

1 Bm0
0 ũ0.

Here ũ0 is the starting point in the discrete space U0 defined on the coarsest
mesh.

The convergence of cascadic multigrid requires that the given meshes are
already sufficiently fine, and in addition the approximation of the solution
u0 on the coarsest mesh by the iteration Bm0

0 ũ0 in U0 has to be sufficiently
good. See [21] and [109] for concrete variants of cascadic methods and its
convergence analysis.

Exercise 8.51. Verify that one can choose restriction and prolongation op-
erators for symmetric problems in such a way that

IH
h = (Ih

H)T .

Exercise 8.52. Consider the two-point boundary value problem

−(α(x)y′)′ = f in Ω := (0, 1), y(0) = y(1) = 0. (5.48)

Assume that α ∈ C1(Ω) and min
x∈Ω

α(x) > 0. This problem is discretized using

piecewise linear finite elements on an equidistant mesh

xi := ih, i = 0, 1, . . . , N,

where h = 1/N and N > 0 is an even integer. The standard basis functions
are

ϕh
i (x) :=

{
1− |x− xi|/h if x ∈ (xi − h, xi + h),
0 otherwise.
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a) Verify that the space Uh := span{ϕh
i }i=1,...,N−1 can be written as a direct

sum

Uh = U1,h ⊕ U2,h with

U1,h := span{ϕh
i }i=1,3,5,...,N−1 , and U2,h := span{ϕ2h

i }i=2,4,...,N−2 .

b) Compute the stiffness matrix for the discretization of problem (5.48) using
the representation Uh = U1,h ⊕ U2,h.
c) Set

a(u, v) :=

1∫
0

αu′v′ dx.

For the related energy norm ‖ · ‖, prove the strengthened Cauchy-Schwarz
inequality

|a(u, v)| ≤ μh ‖u‖ ‖v‖ for all u ∈ U1,h, v ∈ U2,h (5.49)

with some μh ∈ [0, 1). What happens to μh as h→ 0 ?
d) Compute μh in (5.49) for the special case α(x) ≡ 1 and interpret the result
(hint: consider the Green’s function of problem (5.48)).

8.6 Domain Decomposition, Parallel Algorithms

Suppose that we are given a boundary value problem for a partial differential
equation that is posed on a geometrically complicated domain. When com-
puting a numerical solution the domain is often decomposed into subdomains,
each of which is separately discretized. Of course one then needs some means
of recovering the properties of the global problem, typically by transmission
conditions where the subdomains overlap (or on their common boundary when
they do not overlap).

This technique is called domain decomposition. It allows us to split a dis-
cretized problem of very high dimension into subproblems, and often within
the solution process one has to solve independently the discrete problems (of
lower dimension) on the subdomains. This facilitates the parallelization of a
large part of the computational effort needed to solve numerically the given
problem; thus the problem can be solved effectively in a parallel environment.
A second important attribute of the domain decomposition technique is its
usefulness as a preconditioner for some iterative method that is used to solve
the full discrete problem.

In this section we shall present some basic ideas of domain decomposition.
As a model problem we consider the discretization of the Poisson problem
with piecewise linear finite elements. For a detailed description of the theory
and applications of domain decomposition methods we refer to [TW05] and
[QV99].



8.6 Domain Decomposition, Parallel Algorithms 561

Let us consider the problem

−Δu = f in Ω, u = 0 on Γ.

As usual, Ω ⊂ R2 is a bounded polygonal domain with boundary Γ . We use
the weak formulation

find u ∈ V := H1
0 (Ω) such that a(u, v) = (f, v) for all v ∈ V (6.1)

and discretize with piecewise linear C(Ω) elements on a quasi-uniform mesh
Zh of mesh width h. Denote the triangles of the triangulation by Tj , j ∈ J
for some index set J , i.e., Zh = {Tl}l∈J . Let the points xi ∈ Ω, i ∈ I and
xi ∈ Γ, i ∈ Î be the interior mesh points and the mesh points on the boundary,
respectively. Denote the Lagrange basis functions of the finite element space
Vh by ϕi, so that

Vh = span {ϕi}i∈I .

The finite element discretization of (6.1) is:

find uh ∈ Vh such that a(uh, vh) = (f, vh) for all vh ∈ Vh. (6.2)

Now we choose m subdomains Ωj := int (
⋃

l∈Jj

Tl) of Ω such that

Ωj ∩Ωl = ∅ if j �= l, and
m⋃

j=1

Ωj = Ω.

Let Γj = ∂Ωj denote the boundary of the jth subdomain. Each subdomain
Ωj is characterized by an index set Jj ⊂ J . We denote by Ij the set of all
indices related to mesh points that are interior to Ωj , i.e., Ij = { i ∈ I : xi ∈
Ωj }, j = 1, . . . ,m.

Figure 8.12 Decomposition into subdomains
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To simplify the notation we omit h in what follows.
Analogously to the decomposition of Ω into subdomains Ωj , we decompose

the discrete space V as the direct sum

V = W ⊕ Z with W =
m⊕

j=1

Wj , (6.3)

where the spaces Wj and Z are defined by

Wj = span
{
ϕi

}
i∈Ij

, j = 1, . . . ,m and Z = span
{
ϕi

}
i∈I\
( m⋃

j=1

Ij

) . (6.4)

Then the discrete problem (6.2) is equivalent to (remember that we omit h):
Find u = w + z, w ∈W, z ∈ Z such that

a(w + z, ω + ζ) = (f, ω + ζ) for all ω ∈W, ζ ∈ Z. (6.5)

Because a(·, ·) is bilinear and (f, ·) is linear, this is equivalent to

a(w,ω) + a(z, ω) = (f, ω) for all ω ∈W, (6.6a)

a(w, ζ) + a(z, ζ) = (f, ζ) for all ζ ∈ Z. (6.6b)

Consider (6.6a). For each z ∈ Z there exists a unique w = w(z) ∈ W such
that

a(w(z), ω) + a(z, ω) = (f, ω) for all ω ∈W. (6.7a)

Then substituting this into (6.6b) yields the reduced problem

a(w(z), ζ) + a(z, ζ) = (f, ζ) for all ζ ∈ Z (6.7b)

for the computation of z ∈ Z and, consequently, the solution u of the full
discrete problem because u = w(z) + z. Written in matrix form, (6.7) is a
linear system with the following block structure:

Aww w + Awz z = fw, (6.8a)

Azw w + Azz z = fz. (6.8b)

For simplicity, in (6.8) we used the same notation for the unknown coordinate
vectors w and z as for the functions w and v that were used in (6.7), which
are formed from these coordinate vectors and the basis functions {ϕi}. Block
elimination gives

w = w(z) = A−1
ww(fw −Awz z),

and we get the reduced problem
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S z = q with S = Azz−Azw A
−1
ww Awz, q = fz−Azw A

−1
ww fw. (6.9)

The matrix S is the Schur complement of the block Aww.
In general it is not possible to compute the Schur complement explicitly

for practical problems because of the presence of the term A−1
ww . Nevertheless,

the matrix-vector product Sz for a given z ∈ Z can be computed effectively
due to the structure the sub-matrices. The main ingredient in this is the
determination of w(z) from (6.7a) and (6.8a). Let us introduce the notation

aj(u, v) =
∫
Ωj

∇u · ∇v dx, (f, v)j =
∫
Ωj

f v dx, 〈λ, v〉j =
∫
Γj

λ v dx.

Now int( suppwj) ⊂ Ωj for each wj ∈ Wj , so (6.7a) is equivalent to w(z) =
m∑

j=1

wj(z) with

wj(z) ∈Wj and aj(wj(z), ωj) = (f, ωj)j − aj(z, ωj)

for all ωj ∈Wj , j = 1, . . . ,m.

These m sub-problems are independent discrete elliptic problems which can
be solved in parallel. For an implementation of this strategy and a general
discussion of parallel algorithms applied to partial differential equations, see
[Haa99].

Next we return to the second sub-system (6.7b). In the continuous prob-
lem, Green’s formula gives

−
∫
Ω

Δuv dx = −
m∑

j=1

∫
Ωj

Δuv dx = −
m∑

j=1

∫
Γj

∂u

∂n
v ds +

m∑
j=1

∫
Ωj

∇u · ∇v dx,

where n denotes a unit normal on each Γj that points out from Ωj . Analo-
gously to this formula, one can in the discrete case define for each v ∈ V its
outward-pointing normal derivative λj on each Γj by the equation

〈λj , ζ〉j = aj(wj , ζ) + aj(z, ζ) − (f, ζ)j for all ζ ∈ Z, j = 1, . . . ,m, (6.10)

where v = w + z with z ∈ Z and w =
m∑

j=1

wj with wj ∈ Wj , j = 1, . . . ,m. In

terms of the normal derivatives or fluxes λj we can write (6.7b) equivalently
as

m∑
j=1

〈λj , ζ〉j = 0 for all ζ ∈ Z. (6.11)

The interior boundary of each subdomain Ωj is defined to be Γj \ Γ . Thus
(6.7b) and (6.11) are discrete analogues of the continuity across interior
boundaries property that the fluxes of the solution of the original problem
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clearly enjoy. Note that the continuity of the discrete solution on all of Ω is
automatically guaranteed by our choice of the discrete space.

Consider again the reduced system (6.9), viz.,

S z = q . (6.12)

We have already seen that the direct solution and computation of w ∈W from
(6.7a) (or equivalently from (6.8a)) corresponds to a block elimination proce-
dure. In domain decomposition however, one seeks to solve (6.12) iteratively
while taking into account its underlying structure.

Let us apply a block Gauss-Seidel method to (6.7). Given zk ∈ Z, we

compute wk+1 =
m∑

j=1

wk+1
j with wk+1

j ∈ Wj , j = 1, . . . ,m, by solving the m

independent subproblems

aj(wk+1
j , ωj) + aj(zk, ωj) = (f, ωj)j for all ωj ∈Wj , j = 1, . . . ,m, (6.13a)

then on the interior boundaries we solve the flux continuity problem

a(wk+1, ζ) + a(zk+1, ζ) = (f, ζ) for all ζ ∈ Z. (6.13b)

The method (6.13) generalizes the red-black iteration of Section 8.3 (which can
be interpreted as a particular example of a domain decomposition technique)
to more than two subdomains while using finite elements as the underlying
method of discretization.

Let us mention that the Schur complement S is symmetric (Exercise 8.56).
It is therefore possible to use the CG method (in combination with an effi-
cient method of computation of Sz for any given z ∈ Z) to solve the discrete
problem (6.12). In general S is badly conditioned and this must be accommo-
dated by using suitable preconditioners to accelerate the convergence of the
CG method.

Like solution strategies for domain decomposition techniques on the con-
tinuous level (see [QV99]), the preconditioner constructed will depend on the
choice of the discrete boundary values for the local subproblems and on the
updating of the coupling variables. We now describe, as an example of this
process, the basic approach of the Neumann-Neumann iteration.

The Neumann-Neumann algorithm modifies the block Gauss-Seidel iter-
ation (6.13) by replacing (6.13b) by an approximating subproblem that, like
(6.13a), can be described on each subdomain Ωj independently and conse-
quently can be solved in parallel.

The computation of the new approximation zk+1 ∈ Z to the solution of
(6.12), given zk ∈ Z, is carried out in two steps. First, let wk+1/2

j ∈ Wj be
the solution of the discrete Dirichlet problems

aj(w
k+1/2
j , ωj) + aj(zk, ωj) = (f, ωj)j for all ωj ∈Wj , j = 1, . . . ,m. (6.14)
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Then corrections vk ∈W and yk ∈ Z are computed from

aj(vk
j , ωj) + a(yk

j , ωj) = 0 for all ωj ∈W, (6.15a)

aj(vk
j , ζj) + aj(yk

j , ζj) = (f, ζj)− a(wk+1/2, ζj)− a(zk, ζj) (6.15b)

for all ζj ∈ Zj .

Here

Zj = span{ϕi}i∈Îj
with Îj = { i ∈ I : xi ∈ Γj}, j = 1, . . . ,m,

denotes the subspace of C(Ωj) that contributes to Z. That is, the index set Îj
characterizes mesh points that lie on on the interior boundary of Ωj . Finally,
the new iterate is computed from

zk+1 = zk + θ
m∑

j=1

yk
j (6.16)

with some relaxation parameter θ > 0.
The problems (6.15) are Neumann problems on the subdomains Ωj when
Γj ∩ Γ = ∅. In this case the solution of (6.15) is defined using, e.g., the
pseudo-inverse of the related coefficient matrix, which gives the least-squares
solution with minimal norm. For more details and a proof of the convergence
of the Neumann-Neumann algorithm see [TW05].

Remark 8.53. The problems (6.15) approximate the correction equations

a(wk+1/2 + ṽk, ω) + a(zk + ỹk, ω) = (f, ω) for all ω ∈W, (6.17a)

a(wk+1/2 + ṽk, ζ) + a(zk + ỹk, ζ) = (f, ζ) for all ζ ∈ Z, (6.17b)

which, setting z = zk + ṽk, yield the solution of (6.12). Using (6.10) and
(6.17b) the evalation of the remaining correction is often written in the form

(f, ζj)− a(wk+1/2, ζj) − a(zk, ζj) = −
m∑

j=1

〈λk+1/2, ζj〉j

with the fluxes λk+1/2 to be determined; see [QV99, TW05]. �

Within the Neumann-Neumann algorithm, the choice of the discrete spaces
automatically guarantees the continuity of the discrete solution but not the
continuity of its fluxes. Finite element tearing and integrating (FETI) algo-
rithms, on the other hand, relax the continuity requirement; then a local space
can be chosen in each subdomain independently, and continuity of the discrete
solution is ensured by an additional constraint.

Let us introduce the notation
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Vj = Wj + span {ϕjl}l∈Ĩj

with
ϕjl(x) =

{
ϕl(x) if x ∈ Ωj ,

0 otherwise,
and Ĩj := { l ∈ I : xl ∈ Γj }.

For the broken space Ṽh :=
m∑

j=1

Vj (compare the discontinuous Galerkin meth-

ods of Section 4.8) one has

Ṽh ⊂ L2(Ω) and Vh ⊂ Ṽh .

If vh is a function from Ṽh, then

vh ∈ Vh ⇐⇒ vh ∈ C(Ω).

The discrete problem (6.2) is equivalent to

min
vh∈Ṽh∩C(Ω)

J(vh) :=
1
2

m∑
j=1

(
aj(vj , vj) − (f, vj)j

)
. (6.18)

Of course, the condition vh ∈ C(Ω) can be reformulated as a system of linear
restrictions; for instance, by∫
Γij

vi z =
∫

Γji

vj z for all z ∈ Z, and for all Γij := Γi∩Γj , Γij �= ∅. (6.19)

Remark 8.54. The domain decomposition techniques considered here can be
considered as additive Schwarz methods and analysed within this framework.
See [TW05]. �

Remark 8.55. In the literature (see [TW05]), instead of (6.19) one usually re-
quires continuity of vh at the interior mesh points that lie on interior bound-

aries, i.e., at mesh points xi ∈
( m⋃

j=1

Γj

)
\Γ . With this requirement at all such

points, one obtains redundant restrictions at any mesh point where more than
two subdomains meet. �

Let us define the forms ã : Ṽ × Ṽ → R and b̃ : Z × Ṽ → R by

ã(vh, νh) :=
m∑

j=1

aj(vj , νj) and b̃(zh, νh) :=
m∑

i,j=1

∫
Γij

z · (vi − vj),

where νh =
∑m

j=1 vj with vj ∈ Vj for each j. Then vh ∈ Ṽ is a solution of the
problem (6.18) if and only if there exists a zh ∈ Z such that
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ã(vh, νh) + b̃(zh, νh) = (f, νh) for all νh ∈ Ṽ ,
b̃(ζh, vh) = 0 for all ζh ∈ Z.

Thus we have a mixed formulation which has the advantage that it is applica-
ble even if the meshes used do not coincide on any interior boundary. In this
case the space Z of Lagrange multipliers is not automatically defined by the
decomposition of the subdomains as in the conforming case where the meshes
do coincide on interior boundaries. Instead, as is usual in mixed formulations,
one has to choose carefully the discrete space Z; in particular, the choice
of Z has to be compatible with the space Ṽ insofar as the Babuška-Brezzi
conditions must be satisfied.

A standard approach to defining Z is the mortar technique; see [TW05],
[23, 123]). The technique prescribes the discrete values on one side of the
interior boundary—the non-mortar side—and defines the basis functions on
the other (mortar) side by a balance that is applied in a weak sense. The
precise choice of basis functions on the mortar side depends on the discrete
space used for the Lagrange multipliers; see [122].

We illustrate the mortar technique with a simple example. Decompose the
domain Ω := (−1, 1)× (0, 1) ⊂ R2 into the subdomains (see Figure 8.13)

Ω1 := (−1, 0)× (0, 1), Ω2 := (0, 1)× (0, 1).

These subdomains are independently triangulated (with a view to applying a
finite element method with piecewise linear elements). As a result, the mesh
points of Ω1 and Ω2 do not coincide on the interior boundary.

At the interior boundary Γ1∩Γ2, we choose the Ω2 side as the non-mortar
side and write Γ21 for Γ1 ∩ Γ2 regarded as part of Γ2. On the mortar side, we
write Γ12 for Γ1 ∩ Γ2 regarded as part of Γ1.

Figure 8.13 Non-matching grids

Let xi ∈ Ω, i ∈ I := {1, . . . , N} be the interior grid points, and define
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I1 := { i ∈ I : xi ∈ Ω1}, Ī1 := { i ∈ I : xi ∈ Γ1,2},
I2 := { i ∈ I : xi ∈ Ω2}, Ī2 := { i ∈ I : xi ∈ Γ2,1}.

Let ϕ̃i ∈ C(Ωj), i ∈ Ij ∪ Īj , j = 1, 2, be the Lagrange basis functions for
piecewise linears on the corresponding subdomains. For i ∈ I1 ∪ I2 it is easy
to extend each function ϕi to the other subdomain by

ϕi(x) :=
{
ϕ̃i(x) if x ∈ Ωj ,
0 if x �∈ Ωj ,

i ∈ Ij , j = 1, 2.

The functions ϕ̃i, i ∈ Ī2, of the non-mortar side are extended to Ω1 by using
the mortar-side functions ϕ̃i, i ∈ Ī1 in the following way:

ϕi(x) :=

⎧⎨⎩
ϕ̃i(x) if x ∈ Ω2,∑

j∈Ī1

σij ϕ̃j(x) if x ∈ Ω1,
i ∈ Ī2, (6.20)

where the coefficients σij ∈ R, i ∈ Ī2, j ∈ Ī1, are computed from a balance
equation in a weak form, i.e.,∑

j∈Ī1

σij b̃(ϕ̃j , z) = b̃(ϕ̃i, z) for all z ∈ Z and all i ∈ Ī2.

Choosing Z = span{ϕ̃j}j∈Ī1
, one obtains the linear system∑

j∈Ī1

σij b̃(ϕ̃j , ϕ̃k) = b̃(ϕ̃i, ϕ̃k), k ∈ Ī1, i ∈ Ī2, (6.21)

for the computation of the unknown coefficients σij . This gives, for instance,
the extension shown in Figure 8.14 of a basis function from the non-mortar
side to the mortar side of the interior boundary.

1

1

1

1

mortar side non-mortar side

Figure 8.14 Extension of a non-mortar basis element

In this example of an extension, oscillations appear because of the properties
of the matrix of the system (6.21). It is possible both to avoid such oscil-
lations and to minimize the support of the basis functions generated by a
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suitable choice of test functions (Lagrange multipliers), e.g., by the use of a
bi-orthogonal basis. Thus for linear elements, if one chooses

ψi(η) =

⎧⎨⎩
− 1

3 if η ∈ (yi−1, yi−1/2) ∪ (yi+1/2, yi+1),
1 if η ∈ [yi−1/2, yi+1/2],
0 otherwise,

then the resulting coefficient matrix is diagonal.
There are several other ways of choosing Z and of determining the coeffi-

cients σij ; see [122].

Exercise 8.56. Verify that for the discrete problem (6.2) the Schur comple-
ment S is symmetric.

Exercise 8.57. Show that the block Gauss-Seidel iteration (6.13) is a special
case of the method (5.23)–(5.26). How then should one choose the subspaces
U1,h and U2,h?

Exercise 8.58. For the decomposition of Figure 8.13, determine all mortar
extensions (6.20) if piecewise constant test functions (Lagrange multipliers)
are used.
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[Trö05] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen.

Vieweg, Wiesbaden, 2005.
[TW05] A. Toselli and O. Widlund. Domain decomposition methods – algorithms

and theory. Springer, Berlin, 2005.
[Urb02] K. Urban. Wavelets in numerical simulation. Springer, 2002.
[Ver96] V. Verfürth. A review of a posteriori error estimation and adaptive mesh-

refinement techniques. Wiley/Teubner, Stuttgart, 1996.
[VL92] C.F. Van Loan. Computational frameworks for the Fast Fourier Trans-

form. SIAM, Philadelphia, 1992.
[Wah95] L.S. Wahlbin. Superconvergence in Galerkin finite element methods.

Springer, 1995.
[Wlo87] J. Wloka. Partial differential equations. Cambridge Univ. Press, 1987.
[Xu89] J. Xu. Theory of multilevel methods. PhD thesis, Cornell University,

1989.
[Yos66] K. Yosida. Functional analysis. Springer, Berlin, 1966.
[Zei90] E. Zeidler. Nonlinear functional analysis and its applications I-IV.

Springer, Berlin, 1985-90.



Bibliography: Original Papers

1. S. Agmon, A. Douglis, and N. Nirenberg. Estimates near the boundary for
solutions of elliptic partial differential equations satisfying general boundary
conditions. Comm. Pure Appl. Math., 12: 623–727, 1959.

2. M. Ainsworth and I. Babuska. Reliable and robust a posteriori error estimation
for singularly perturbed reaction-diffusion problems. SIAM Journal Numerical
Analysis, 36: 331–353, 1999.

3. J. Alberty, C. Carstensen, and S. Funken. Remarks around 50 lines of MAT-
LAB. Numerical Algorithms, 20: 117–137, 1999.
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0 -

Projektionen. Workshop, Bad Honnef, 1983.
66. Alan F. Hegarty, Eugene O’Riordan, and Martin Stynes. A comparison of uni-

formly convergent difference schemes for two-dimensional convection-diffusion
problems. J. Comput. Phys., 105:24–32, 1993.

67. B. Heinrich. The Fourier-finite-element method for Poisson’s equation in
axisymmetric domains with edges. SIAM Journal Numerical Analysis, 33:
1885–1911, 1996.

68. M. Hintermüller. A primal-dual active set algorithm for bilaterally control
constrained optimal control problems. Q. Appl. Math., 61:131–160, 2003.

69. M. Hinze. A variational discretization concept in control constrained optimiza-
tion: The linear-quadratic case. Comput. Optim. Appl., 30:45–61, 2005.

70. M. Hinze and R. Pinnau. An optimal control approach to semiconductor design.
Math. Models Methods Appl. Sci., 12:89–107, 2002.



Bibliography: Original Papers 581
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115. F. Tröltzsch. An SQP method for the optimal control of a nonlinear heat
equation. Control Cybern., 23:267–288, 1994.

116. M. Ulbrich. On a nonsmooth Newton method for nonlinear complemen-
tarity problems in function space with applications to optimal control. In
M. et al. Ferris, editor, Complementarity: applications, algorithms and exten-
sions., pages 341–360, Madison, USA, 2001. Kluwer, Dordrecht.

117. R. Vanselow and H.-P. Scheffler. Convergence analysis of a finite volume
method via a new nonconforming finite element method. Numer. Methods
Partial Differ. Equations, 14:213–231, 1998.

118. V. Verfürth. Robust a posteriori error estimators for a singularly perturbed
reaction-diffusion equation. Numer. Math., 78: 479–493, 1998.

119. V. Verfürth. A posteriori error estimates for finite element discretizations of
the heat equation. Calcolo, 40: 195–212, 2003.

120. S. Wang. A novel exponentially fitted triangular finite element method.
J. Comput. Physics, 134: 253–260, 1997.

121. N.M. Wigley. Mixed boundary value problems in plane domains with corners.
Math. Z., 115: 33–52, 1970.

122. B. Wohlmuth. A comparison of dual Lagrange multiplier spaces for mortar
finite element discretizations. Math. Model. Numer. Anal., 36:995–1012, 2002.

123. B. Wohlmuth and R.H. Krause. A multigrid method based on the uncon-
strained product space for mortar finite element discretizations. SIAM Journal
Numerical Analysis, 39: 192–213, 2001.

124. J. Xu and L. Zikatanov. Some observations on Babuška and Brezzi theories.
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Green’s function, 14, 17, 235
Green’s funktion

regularised, 236
grid functions, 26
grid points, 25
Gronwall’s inequality, 361

hanging knots, 89
hanging node, 186
heat equation, 2
Hermite element, 189
hierarchical error estimator, 353
Hilbert space, 130
hyperbolic, 3
hyperbolic first order problems, 299
hypercircle, 265
hypernorm, 554

ICCG method, 540
Iljin scheme, 387
implicit method, 105
incomplete Cholesky, 540
inequality

discrete Hölder, 27
Cauchy-Schwarz, 130
Friedrichs, 136
Gronwall, 361
Poincaré, 137

integral formula
Poisson’s, 14

interpolant, 218
inverse inequality, 233
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isoparametric finite element, 255

Jacobi scheme, 514

Kačanov method, 172
Karush-Kuhn-Tucker conditions, 488
Kellogg’s Lemma, 527
Krylov spaces, 538
Krylov-space method, 547

Lagrange element, 189
Lagrange functional, 263
Lagrange multiplier, 258
Lagrange-Galerkin method, 431
Lagrangian method, 468
Lax-Friedrichs scheme, 54
Lax-Milgram lemma, 145
Lax-Wendroff scheme, 58
layer

interior, 383, 408
layer region, 377
LBB-condition, 268
leapfrog scheme, 112
Lemma

Bramble-Hilbert, 224
Strang, 240, 244

lemma
Cea, 152
Lax-Milgram, 145

Lin identity, 313
Lipschitz domain, 134
Lipschitz domains, 10
localization rule, 377

M-matrix, 337
majoring element, 72
mapping

linear, 129
mass lumping, 253, 324, 327
mass matrix, 359
matrix

element stiffness, 206
inverse monotone, 70
irreducible, 72
irreducibly diagonally dominant, 72
L-matrix, 70
L0-matrix, 70
M-matrix, 70
stiffness, 155, 159, 176

strictly diagonally dominant, 72
waekly diagonally dominant, 72
with chain property, 72
with property A, 526

maximal angle condition, 227
maximum principle, 9, 15

discrete, 337
diskrete, 35
for transport equations, 39
weak, 140

mesh
graded, 213

mesh generator, 210
meshless discretizations, 232
method

A-stable, 331
A0-stable, 332
Lagrange-Galerkin, 431
BDF, 334
block Gauss-Seidel, 520
cascadic multigrid, 559
complete exponential fitting, 394
conforming, 153
discontinuous Galerkin, 294, 413
domain decomposition, 522
DWR, 294
edge stabilization, 413
explicit, 104
frozen coefficients, 172
Galerkin, 152
implicit, 105
mixed finite element, 266
nonconforming, 238
numerically contractive, 331
of energetic inequalities, 65
Petrov-Galerkin, 155
preconditioned CG, 539
Richardson’s, 510
Ritz, 151
Ritz-Galerkin, 152
Rosenbrock, 333
Runge-Kutta, 332
spectral, 161
streamline diffusion (SDFEM), 413,

418
Trefftz, 265
uniformly convergent, 385
upwind, 384, 413, 414
upwind FVM, 417
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method of lines
horizontal, 343
vertical, 114, 321

methods
ADI, 110

minimal angle condition, 222
mixed variational equation, 260
modified Lagrange functional, 281
modified Lagrange method, 282
MOL, 114
monotonicity

strong, 167
Mortar-technique, 567
multi-step methods, 334
multigrid method, 550
MUMPS, 504

N-width, 232
Neumann condition, 62
Neumann-Neumann algorithm, 564
Newmark method, 123
NIP, 298
Nitsche’s trick, 229
nonconforming finite element method,

238
norm, 128

discrete H1-, 26
discrete L2-, 26
discrete maximum-, 26

normed space, 128
numerical convergence rate, 73
numerical diffusion, 45
numerical flux, 54

obstacle problem, 436
one-step method, 331
operator

Lipschitz continuous, 168
strongly monotone, 168
uniformly elliptic, 61

optimal approximation, 232
optimal control, 480
order of consistency, 29
order reduction, 337

parabolic, 3
parallel algorithms, 560
parallel computing, 523
parallelization, 504

PCG method, 539
penalty method, 278, 457
Petrov-Galerkin equations, 156
Petrov-Galerkin method, 155
plate equation, 142
plate problem, 277
Poincaré inequality, 137
pointwise error estimates, 232
Poisson equation, 2
Poisson’s integral formula, 14
post-processing, 202
post-smoothing, 550
pre-processing, 202
pre-smoothing, 550
preconditioner, 510, 539
preservation of energy, 358
preservation of nergy

semi-discrete, 360
primal formulation, 295
projected gradient method, 486
projector, 485
prolongation operator, 549
PROX-regularization, 470

quadrature error estimates, 328
quadrature errors, 102
quadrature formula, 327
quadrature rule, 245
quasi-interpolant, 289
quasi-optimality of Ritz-Galerkin, 153

Rankine-Hugoniot condition, 50
reaction-diffusion problem, 295, 404
red-black iteration, 521
red-green-refinement, 216
reduced problem, 377
reference element, 206
refinement

bisection, 216
red-green, 216

region of dependence, 19
regularization method, 470
relaxation method, 524
restriction operator, 549
Richardson’s method, 510
Riemann problem, 52
Riesz theorem, 130
Ritz method, 151, 156
Ritz projection, 324
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Ritz-Galerkin method, 152
Robin condition, 62
Rosenbrock’s methods, 333
Rothe function, 344
Rothe method, 368
Rothe’s method, 115, 343
Rothe-Rosenbrock methods, 347
Runge-Kutta method, 332

S-mesh, 395
S-type decomposition, 411
saddle point, 263, 447
scalar product, 129
Schema

Enquist-Osher scheme, 55
scheme

conservative, 54
du Fort-Frankel scheme, 112
Godunov scheme, 55
Iljin scheme, 387
Lax-Friedrichs scheme, 54
Lax-Wendroff scheme, 58
leapfrog scheme, 112
monotone, 55
TVNI-, TVD-scheme, 57

Schur complement, 522, 563
Schwarz method, 542
SDFEM, 418
secant modulus, 172
semi-discretization, 114, 321, 358
sequences

weakly convergent, 129
shape function, 190
shift theorem, 149
Signorini’s problem, 438
singularly perturbed problem, 375
SIP, 298
six-point scheme, 104
Sobolev space, 132
solution

classical, 10
SOR method, 525
spaces

Banach space, 129
complete, 128
continuously embedded, 134
Hilbert space, 130
normed, 128
Sobolev, 132

spectral method, 161
spectral radius, 512
spectrally equivalent, 539
splitting method , 527
SSOR method, 525
stability

for all harmonic oscillations, 109
in the discrete L2-norm, 41
in the discrete maximum norm, 34,

107
stability function, 331
state, 481

adjoint, 484
state equation, 481
stationary shock, 53
stiff systems, 330
stiffness matrix, 155, 159, 176, 205
Stokes, 144
Stokes problem, 268
Strang-Lemma, 240, 244
Superconvergence, 310
SUPG, 418

test functions, 155
theorem

Riesz, 130
trace inequality, 304
trace lemma, 135
trace mapping, 135
triangulation, 186

admissible, 186
Delaunay, 212
quasi-uniform, 222
shape-regular, 222
uniform, 233
weakly acute, 199

turning point, 382
two-grid method, 549
two-layer schemes, 104
Tychonoff regularization, 468

uniform convergence, 387, 393, 396, 426,
429

unisolvence, 189
upwind FVM, 417
upwind method, 384, 413
upwind-scheme, 38
Uzawa algorithm, 282
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V-coercivity, 166
V-cycle, 550
V-ellipticity, 144
variational equation, 127, 156

constrained, 259
nonlinear, 168

variational inequality, 435
variational problem, 156

dual, 265
Verfahren

PCG-, 539
vertex-centred, 91
Voronoi box, 92, 251

W-cycle, 550
wave equation, 2, 358
wavelet, 324, 547
weak maximum principle, 140
weak solution, 133
well posed problem, 5
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Börger, E.; Grädel, E.; Gurevich, Y.: The
Classical Decision Problem
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Bühlmann, H.; Gisler, A.: A Course in Cred-
ibility Theory and its Applications
Carleson, L.; Gamelin, T. W.: Complex
Dynamics
Cecil, T. E.: Lie Sphere Geometry: With
Applications of Submanifolds

Chae, S. B.: Lebesgue Integration
Chandrasekharan, K.: Classical Fourier
Transform
Charlap, L. S.: Bieberbach Groups and Flat
Manifolds
Chern, S.: Complex Manifolds without
Potential Theory
Chorin, A. J.; Marsden, J. E.: Mathematical
Introduction to Fluid Mechanics
Cohn, H.: A Classical Invitation to Alge-
braic Numbers and Class Fields
Curtis, M. L.: Abstract Linear Algebra
Curtis, M. L.: Matrix Groups
Cyganowski, S.; Kloeden, P.; Ombach, J.:
From Elementary Probability to Stochastic
Differential Equations with MAPLE
Da Prato, G.: An Introduction to Infinite
Dimensional Analysis
Dalen, D. van: Logic and Structure
Das, A.: The Special Theory of Relativity:
A Mathematical Exposition

Bhattacharya, R.; Waymire, E.C.:
A Basic Course in Probability Theory



Debarre, O.: Higher-Dimensional Algebraic
Geometry

Deitmar, A.: A First Course in Harmonic
Analysis

Demazure, M.: Bifurcations and Cata-
strophes

Devlin, K. J.: Fundamentals of Contempo-
rary Set Theory

DiBenedetto, E.: Degenerate Parabolic
Equations

Diener, F.; Diener, M.(Eds.): Nonstandard
Analysis in Practice

Dimca, A.: Sheaves in Topology

Dimca, A.: Singularities and Topology of
Hypersurfaces

DoCarmo, M. P.: Differential Forms and
Applications

Duistermaat, J. J.; Kolk, J. A. C.: Lie Groups

Dumortier.: Qualitative Theory of Planar
Differential Systems

Dundas, B. I.; Levine, M.; Østvaer, P. A.;
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