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Preface

The title gives a reasonable first-order approximation to what this book is
about. To explain why, let’s start with the expression “differential equations.”
These are essential in science and engineering, because the laws of nature typ-
ically result in equations relating spatial and temporal changes in one or more
variables. To develop an understanding of what is involved in finding solutions,
the book begins with problems involving derivatives for only one independent
variable, and these give rise to ordinary differential equations. Specifically,
the first chapter considers initial value problems (time derivatives), and the
second concentrates on boundary value problems (space derivatives). In the
succeeding four chapters problems involving both time and space derivatives,
partial differential equations, are investigated.

This brings us to the next expression in the title: “numerical methods.”
This is a book about how to transform differential equations into problems
that can be solved using a computer. The fact is that computers are only
able to solve discrete problems and generally do this using finite-precision
arithmetic. What this means is that in deriving and then using a numerical
algorithm the correctness of the discrete approximation must be considered, as
must the consequences of round-off error in using floating-point arithmetic to
calculate the answer. One of the interesting aspects of the subject is that what
appears to be an obviously correct numerical method can result in complete
failure. Consequently, although the book concentrates on the derivation and
use of numerical methods, the theoretical underpinnings are also presented
and used in the development.

This brings us to the remaining principal word in the title: “introduc-
tion.” This has several meanings for this book, and one is that the material
is directed to those who are first learning the subject. Typically this includes
upper-division undergraduates and beginning graduate students. The objec-
tive is to learn the fundamental ideas of what is involved in deriving a nu-
merical method, including the role of truncation error, and the importance
of stability. It is also essential that you actually use the methods to solve
problems. In other words, you run code and see for yourself just how success-
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ful, or unsuccessful, the method is for solving the problem. In conjunction
with this it is essential that those who do computations develop the ability
to effectively communicate the results to others. The only way to learn this
is to do it. Consequently, homework assignments that involve an appreciable
amount of computing are important to learning the material in this book.
To help with this, a library of sample code for the topics covered is available
at www.holmes.rpi.edu. Speaking of which, many of the problems considered
in the book result in solutions that are time-dependent. To help visualize the
dynamical nature of the solution, movies are provided for some of the example
problems. These are identified in the book with an (M) in the caption of the
associated figure.

Another meaning for “introduction” as concerns this textbook is that the
subject of each chapter can easily produce one or more volumes in its own
right. The intent here is to provide an introduction to the subject, and that
means certain topics are either not discussed or they are presented in an
abbreviated form. All told, the material included should fill a semester course.
For those who might want a more in-depth presentation on a specific topic,
references are provided throughout the text.

The prerequisites for this text include an introductory undergraduate
course in differential equations and a basic course in numerical computing.
The latter would include using LU to solve matrix equations, polynomial
interpolation, and numerical differentiation and integration. Some degree of
computing capability is also required to use the methods that are derived.
Although no specific language or program is required to read this book, the
codes provided at www.holmes.rpi.edu use mostly MATLAB, and the movies
provided require QuickTime.

I would like to express my gratitude to the many students who took my
course in numerical methods for differential equations at Rensselaer. They
helped me immeasurably in understanding the subject and provided much-
needed encouragement to write this book. It is also a pleasure to acknowledge
the suggestions of Yuri Lvov, who read an early version of the manuscript.

Troy, New York Mark H. Holmes
January, 2006
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1

Initial Value Problems

1.1 Introduction

Even from casual observation it is apparent that most physical phenomena
vary both in space and time. For example, the temperature of the atmosphere
changes continuously at any given location and it varies significantly from
point to point over the surface of the Earth. A consequence of this is that
mathematical models of the real world almost inevitably involve both time
and space derivatives. The objective of this book is to examine how to solve
such problems using a computer; but to begin, we first consider more simplified
situations. In this chapter we study problems involving only time derivatives
and then in the next chapter we examine spatial problems. The remaining
chapters then examine what happens when both time and space derivatives
are present together in the problem.

A general form of the type of problem we consider is

y′(t) = f(t,y), for 0 < t, (1.1)

where the initial condition is y(0) = a. The differential equation along with
the initial condition form what is known as an initial value problem (IVP). It
is assumed throughout the chapter that the IVP is well posed (i.e., there is
a unique solution that is a smooth function of time). By smooth it is meant
that y(t) and its various derivatives are defined and continuous.

It is the sad fact that most real-world problems are so complicated that
there is no hope of finding an analytical solution. An example is shown in
Figure 1.1. To study molecular machinery such as nanogears it is necessary
to solve a system involving thousands of equations with a very complicated
nonlinear function f in (1.1). The consequence of this is that numerical so-
lutions are required. This brings us to the objective of this chapter, which is
to develop an understanding of how to derive finite difference approximations
for solving initial value problems (IVPs). In anticipation of this we identify a
few IVPs that are used as test problems in this chapter.
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Figure 1.1. (M) These nanogears are composed of carbon (the grey spheres) and
hydrogen (the white spheres) atoms. The rotation of the tubes, and the resulting
meshing of the gear teeth, was carried out by solving a large system of IVPs (Han
et al. [1997])

.

1.1.1 Examples of IVPs

Radioactive Decay

According to the law of radioactive decay, the mass of a radioactive substance
decays at a rate that is proportional to the amount present. To express this in
mathematical terms, let y(t) designate the amount present at time t. In this
case the decay law can be expressed as

dy

dt
= −ry, for 0 < t. (1.2)

If we start out with an amount α of the substance then the corresponding
initial condition is

y(0) = α. (1.3)

In the decay law (1.2), r is the proportionally constant and it is assumed to be
positive. Because the largest derivative in the problem is first order, this is an
example of a first-order IVP for y(t). It is also linear, homogeneous, and has
constant coefficients. Using an integrating factor, or separation of variables,
one finds that the solution is

y(t) = αe−rt. (1.4)

Consequently, the solution starts at α and decays exponentially to zero as
time increases.

To put a slightly different spin on this, recall that y = Y is an equilibrium,
or steady-state, solution if it is constant and satisfies the differential equation.
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Also, a steady-state Y is stable if any solution that starts near Y stays near it.
If, in addition, initial conditions starting near Y actually result in the solution
converging to Y as t → ∞, then y = Y is said to be asymptotically stable.
With the solution in (1.4) we conclude that y = 0 is an asymptotically stable
equilibrium solution for (1.2).

Logistic Equation

In the study of populations limited by competition for food one obtains the
logistic equation, which is

dy

dt
= λy(1 − y), for 0 < t, (1.5)

where
y(0) = α. (1.6)

It is assumed that λ and α are positive. As with radioactive decay, this IVP
involves a first-order equation for y(t). However, because of the y2 term, this
equation is nonlinear. It is possible to find the solution using separation of
variables, and the result is

y(t) =
α

α + (1 − α)e−λt
. (1.7)

Now, the equilibrium solutions for this equation are y = 1 and y = 0. Because
λ > 0, the solution approaches y = 1 as t increases. Consequently, y = 1 is an
asymptotically stable equilibrium solution, whereas y = 0 is not.

Newton’s Second Law

The reason for the prominence of differential equations in science and engi-
neering is that they are the foundation for the laws of nature. The most well
known of these laws is Newton’s second, which states that F = ma. Letting
y(t) designate position then this law takes the form

m
d2y

dt2
= F (t, y, y′), for 0 < t. (1.8)

The above equation allows for the possibility that the force F varies in time
as well as depends on position and velocity. Assuming that the initial position
and velocity are specified, then the initial conditions for this problem take the
form

y(0) = α and y′(0) = β. (1.9)

This IVP is second order and it is nonlinear if the force depends nonlinearly
on either y or y′.



4 1 Initial Value Problems

It is possible to write the problem as a first-order system by introducing
the variables

y1 = y, (1.10)
y2 = y′. (1.11)

Differentiating each of these equations, and using the original differential equa-
tion (1.8), we obtain the following

y′
1 = y2,

y′
2 =

1
m

F (t, y1, y2).

By introducing the vector y(t), defined as

y =
(

y1

y2

)
, (1.12)

the IVP can be written as

y′(t) = f(t,y), for 0 < t, (1.13)

where the initial conditions (1.9) take the form

y(0) =
(

α
β

)
. (1.14)

The function f(t,y) appearing in (1.13) is

f(t,y) =
(

y2
1
mF (t, y1, y2)

)
. (1.15)

What is significant is that the change of variables has transformed the second-
order problem for y(t) into a first-order IVP for y(t). Like the original, (1.13)
is nonlinear if F depends nonlinearly on either y1 or y2.

As an illustration of this transformation, for a linear mass–spring–dashpot
system the force consists of a contribution from a spring (−ky) and from a
dashpot (−cy′). The resulting equation of motion is

my′′ = −cy′ − ky. (1.16)

This can be written as a first-order system as in (1.13), where

f(t,y) =
(

y2
1
m (−cy2 − ky1)

)
. (1.17)
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1.2 Methods Obtained from Numerical Differentiation

The task we now undertake is to approximate the differential equation, and its
accompanying initial condition, with a problem we can solve using a computer.
To explain how this is done we consider the problem of solving

dy

dt
= f(t, y), for 0 < t, (1.18)

where
y(0) = α. (1.19)

The function f(t, y) in assumed to be given. For example, with radioactive
decay f(t, y) = −ry and for the logistic problem f(t, y) = λy(1 − y). The
question is, can we accurately compute the solution directly from the problem
without first finding an analytical solution? As it turns out, most realistic
mathematical models of physical and biological systems cannot be solved by
hand, so having the ability to find accurate numerical solutions directly from
the original equations is an invaluable tool.

1.2.1 The Five Steps

To explain how we will construct a numerical algorithm that can be used to
solve (1.18) it should be noted that the variables in this problem, t and y,
are continuous. Our objective is to replace these with discrete variables so
that the resulting problem is algebraic and therefore solvable using standard
numerical methods. Great care must be taken in making this replacement,
because the computed solution must accurately approximate the solution of
the original IVP. The approach we take proceeds in a sequence of five steps,
and these steps will serve as a template used throughout this book.

One point to make before beginning is that the computer cannot run
forever. Therefore, we must specify just how large a time interval will be used
in computing the solution. It is assumed in what follows that the interval is
0 ≤ t ≤ T .

Step 1. We first introduce the time points at which we will compute the solu-
tion. These points are labeled sequentially as t0, t1, t2, . . . , tM and a schematic
drawing indicating their location along the time axis is shown in Figure 1.2.
We confine our attention to a uniform grid with step size k, so, the formula
for the time points is

tj = jk, for j = 0, 1, 2, . . . , M. (1.20)

Because the time interval is 0 ≤ t ≤ T we require tM = T . Therefore, k and
M are connected through the equation

k =
T

M
. (1.21)
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Figure 1.2. Grid system used to derive a finite difference approximation of the
initial value problem. The points are equally spaced and tM = T .

Step 2. Evaluate the differential equation at the time point t = tj to obtain

y′(tj) = f(tj , y(tj)). (1.22)

Step 3. Replace the derivative term in Step 2 with a finite difference formula
using the values of y at one or more of the grid points in a neighborhood of
tj . This is where things get a bit interesting, because numerous choices can
be made, a few of which are listed in Table 1.1. Different choices result in
different numerical procedures, and as it turns out, not all choices will work.
To start we take the first entry listed in Table 1.1, which means we use the
following expression for the first derivative:

y′(tj) =
y(tj+1) − y(tj)

k
+ τj , (1.23)

where
τj = −k

2
y′′(ηj) (1.24)

and ηj is a point between tj and tj+1. Introducing this into (1.22) we obtain

y(tj+1) − y(tj)
k

+ τj = f(tj , y(tj)), (1.25)

or equivalently,
y(tj+1) − y(tj) + kτj = kf(tj , y(tj)). (1.26)

A couple of pithy comments are in order here. First, the difference formula
in (1.23) uses a value of t ahead of the current position. For this reason it is
referred to as a forward difference formula for the first derivative. Second, the
term τj , as it appears in (1.25), represents how well we have approximated
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Type Difference Formula Truncation Term

Forward f ′(xi) =
f(xi+1)−f(xi)

h + τi τi = −h
2 f ′′(ηi)

Backward f ′(xi) =
f(xi)−f(xi−1)

h + τi τi = h
2 f ′′(ηi)

Centered f ′(xi) =
f(xi+1)−f(xi−1)

2h + τi τi = −h2

6 f ′′′(ηi)

One-sided f ′(xi) =
−f(xi+2)+4f(xi+1)−3f(xi)

2h +τi τi = h2

3 f ′′′(ηi)

One-sided f ′(xi) =
3f(xi)−4f(xi−1)+f(xi−2)

2h + τi τi = h2

3 f ′′′(ηi)

Centered f ′′(xi) =
f(xi+1)−2f(xi)+f(xi−1)

h2 + τi τi = −h2

12 f ′′′′(ηi)

Table 1.1. Numerical differentiation formulas. The points x1, x2, x3, . . . are equally
spaced with step size h = xi+1 − xi. The point ηi is located between the left- and
rightmost points used in the formula.

the original problem. For this reason it is the truncation error for the method,
and from (1.24) it is seen that it is O(k). It is essential that whatever ap-
proximations we use, the truncation error goes to zero as k goes to zero. This
means that, at least in theory, we can approximate the original problem as
accurately as we wish by making the time step k small enough. It is said in
this case that the approximation is consistent. Unfortunately, as we demon-
strate shortly, consistency is not enough to guarantee an accurate numerical
solution.

Step 4. Drop the truncation error. This is the step where we go from an exact
problem to one that is, hopefully, an accurate approximation of the original.
After dropping τj in (1.26) the resulting equation is

yj+1 − yj = kf(tj , yj), (1.27)

or equivalently,

yj+1 = yj + kf(tj , yj), for j = 0, 1, 2, . . . , M − 1. (1.28)

From the initial condition (1.19) we have that the starting value is

y0 = α. (1.29)

The finite difference equation (1.28) is known as the Euler method for solving
(1.18). It is a recursive algorithm in which one starts with j = 0 and then uses
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(1.28) to determine the solution at j = 1, then j = 2, then j = 3, etc. Because
(1.28) gives the unknown yj+1 explicitly in terms of known quantities, it is an
explicit method.

Example
Let’s see how well Euler’s method does with the logistic equation (1.5). Specif-
ically, suppose the IVP is

dy

dt
= 10y(1 − y), for 0 < t, (1.30)

where
y(0) = 0.01. (1.31)

We will use the Euler method to calculate the solution for 0 ≤ t ≤ 1. In this
case, using (1.21), k and M are connected through the equation

k =
1
M

. (1.32)

For this example, the finite difference equation in (1.28) takes the form

yj+1 = yj + 10kyj(1 − yj), for j = 0, 1, 2, . . . , M − 1. (1.33)

Taking M = 6, so k = 1
6 , the first few steps using the Euler method are shown

in Table 1.2. For a more graphical picture of the situation, the exact solution,
given in (1.7), and computed solutions are also shown in Figure 1.3 using
successively smaller values of the time step k or, equivalently, larger values
of M . It is seen that the numerical solution with M = 4 is not so good, but
the situation improves considerably as more time points are used. In fact, it
would appear that if we keep increasing the number of time points that the
numerical solution converges to the exact solution. Does this actually happen?
Answering this question brings us to the very important concept of error.

Error

As illustrated in Table 1.2, at each time point we have three different solutions,
and they are

y(tj) ≡ exact solution of the IVP at t = tj ; (1.34)
yj ≡ exact solution of finite difference equation at t = tj ; (1.35)
yj ≡ solution of difference equation at t = tj calculated

by the computer. (1.36)

We are interested in the difference between the exact solution of the IVP and
the values we actually end up computing using our algorithm. Therefore, we
are interested in the error ej = |y(tj)− yj |. The question we are going to ask
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Figure 1.3. Solution of the logistic equation (1.30) using the Euler method (1.33) for
three values of M . Also shown is the exact solution. The symbols are the computed
values, and the dashed lines are drawn by the plotting program simply to connect
the values.

is, if we increase M in (1.33) will eM = |y(T ) − yM | converge to zero or at
least decrease down to the level of the round-off? We want the answer to this
question to be yes and, moreover, that it is true no matter what choice we
make for t = T . If this holds then the method is convergent.

To help make it more apparent what is contributing to the error we rewrite
it as follows

eM = |y(T ) − yM + yM − yM |. (1.37)

From this the error can be considered as coming from the following two
sources:

y(T ) − yM : This is the difference, at t = T , between the exact solution of the
IVP and the exact solution of the problem we use as its approximation.
As occurs in Table 1.2, this should be the major contributor to the error
until k is small enough that this difference gets down to approximately
that of the round-off.

yM − yM : This is the error at t = T that originates from round-off when one
uses floating-point calculations to compute the solution of the difference
equation. The last column of Table 1.2 gives the values of this error at the
first few time points. Getting values of 10−15 or smaller, as occur in this
calculation, is about as good as can be expected using double precision.

For the logistic equation example considered earlier, the error eM = |y(T ) −
yM | from the Euler method is plotted in Figure 1.4 as a function of the number
of time points used to reach T = 1. It is seen that the error decreases linearly
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Figure 1.4. The difference between the exact and computed solutions, as a function
of the number of time steps, M , used in solving the logistic equation (1.30) with
the Euler method (1.33). Shown is the error |y(T ) − yM | at t = 1 as well as the
maximum error as determined using (1.38).

in the log-log plot in such a way that increasing M by a factor of 10 decreases
the error by the same factor. In other words, the error decreases as kn, with
n = 1. It is not a coincidence that this is the same order as for the truncation
error (1.24). At first glance, because the term that is neglected in (1.26) is
kτj = O(k2), one might expect that the error in Figure 1.4 would decrease as
k2. However, kτj is the error we generate at each time step. To get to T we
take M = 1/k time steps so the accumulated error we generate in getting to
T is reduced by a factor of k. Therefore, with a convergent method the order
of the truncation error determines the order of the error.

We are using the error at t = T to help determine how the approximation
improves as the number of time steps increases. In many applications, however,
one is interested in how well the numerical solution approximates the solution
throughout the entire interval 0 ≤ t ≤ T . For this it is more appropriate
to consider using a vector norm to define the error. For example, using the
maximum norm the error function takes the form

e∞ = max
j=0,1,...,M

|y(tj) − yj |. (1.38)

To indicate how this differs from the error eM used earlier, (1.38) is plotted in
Figure 1.4 for the logistic equation example. As expected, e∞ is larger than
eM but its dependence on M is still O(k).

Example
The earlier example (1.30) is typical of what occurs in most applications.
Namely, using the laws of physics or some other principles one obtains one or
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more differential equations to solve, and the numerical method is constructed
directly from them. It is informative to see whether the steps can be reversed.
Specifically, suppose we start with (1.28) and ask whether it is based on a
consistent approximation of (1.18). This is determined by plugging the exact
solution into (1.28) and seeing how close it comes to satisfying this finite
difference equation. In preparation for this we use Taylor’s theorem to obtain

y(tj+1) = y(tj + k)

= y(tj) + ky′(tj) +
1
2
k2y′′(tj) + . . .

= y(tj) + kf(tj , y(tj)) +
1
2
k2y′′(tj) + . . . . (1.39)

Now, substituting y(tj) for yj in (1.28) yields

y(tj+1)
?= y(tj) + kf(tj , y(tj)). (1.40)

A question mark is put above the equal sign here, because we are investigating
whether y(t) satisfies (1.28) or, more precisely, how close it comes to satisfying
this equation. With (1.39) the question of whether (1.40) is satisfied can be
written as

y(tj) + kf(tj , y(tj)) +
1
2
k2y′′(tj) + . . .

?= y(tj) + kf(tj , y(tj)),

or equivalently,
1
2
k2y′′(tj) + . . .

?= 0. (1.41)

The conclusion from this last step is that y(tj) misses satisfying (1.28) by
a term that is O(k2), and from this it follows that the truncation error is
O(k). Because the truncation error goes to zero with k it follows that the
method is consistent. Of course we already knew this, but the above calcula-
tion shows that if necessary, it is possible to determine this directly from the
finite difference equation.

Stability

Step 5. It is not unreasonable to think that as long as the problem is approx-
imated consistently, then the numerical solution will converge to the exact
solution as the time step is refined. Unfortunately, as demonstrated shortly
using the leapfrog method, consistency is not enough. To explain what is
missing, the approximation that produced Euler’s method means that even
though y0 is known exactly, the method computes a value for y1 that differs a
bit from the exact value y(t1). Moreover, this difference affects the values of
all the yj ’s that come afterwards. It is essential that the method not magnify
these differences as tj increases, and this is true irrespective of the time step
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at which the error is produced. This is the idea underlying the concept of
stability. There are various ways to express this condition and we will use one
of the stronger forms, something known as A-stability. This is determined by
using the method to solve the radioactive decay equation

dy

dt
= −ry, (1.42)

where
y(0) = α. (1.43)

As before, it is assumed that r is positive. For this equation the Euler method
(1.28) reduces to

yj+1 = (1 − rk)yj . (1.44)

The solution of this that satisfies the initial condition is

yj = α(1 − rk)j . (1.45)

In comparison, the exact solution to the IVP is y(t) = αe−rt, and this function
approaches zero as t increases. It is required at the very least that the numer-
ical solution of this problem not grow, and this is the basis for the following
definition.

Definition 1.1. If the method, when applied to (1.42), produces a bounded
solution irrespective of the (positive) value of r and k, then the method is said
to be A-stable. If boundedness occurs only when k is small then the method is
conditionally A-stable. Otherwise, the method is unstable.

The Euler solution in (1.45) remains bounded as j increases only as long as
|1 − rk| ≤ 1. This occurs if the step size is chosen to satisfy the condition
k ≤ 2/r. Therefore, the Euler method is conditionally A-stable. It is worth
looking at what happens in the unstable case. If we take a step size that does
not satisfy the stability condition, say k = 3/r, then yj = α(−2)j . The solution
in this case oscillates with an amplitude that increases as tj increases. This is
similar to what was seen when the Tacoma bridge collapsed, where relatively
small oscillations grew and eventually became so large the bridge came apart.
Whenever such growing oscillatory behavior appears in a numerical solution
one should seriously consider whether one has been unfortunate enough to
have picked a step size that falls in the instability region.

One last point to make here is that one of the central questions arising
when using any numerical method to solve a differential equation concerns
what properties of the problem the numerical method is able to preserve. For
example, if energy is conserved in the original problem then it is natural to
ask whether the numerical method does the same. As we will see, preserving
particular properties, such as energy conservation or the monotonicity of the
solution, can have profound consequences on how well the method works.
It is within this context that the requirement of A-stability is introduced.
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The radioactive decay problem possesses an asymptotically stable equilibrium
solution y = 0. A-stability is nothing more than the requirement that y = 0 be
at least a stable equilibrium solution for the method (i.e., any solution starting
near y = 0 will remain near this solution as time increases). As we found
earlier, the stability interval for Euler’s method is k ≤ 2/r. On the interior
of this interval, so k < 2/r, the equilibrium solution y = 0 is asymptotically
stable because yj → 0 as tj → ∞. This observation accounts for why you
will occasionally see a requirement of strict A-stability, where boundedness is
replaced with the requirement that yj → 0 as tj → ∞. The reason is that
a strictly A-stable method preserves asymptotic stability. Our conclusion in
this case would be that Euler is strictly A-stable when strict inequality holds,
namely, k < 2/r.

End Notes

One might wonder why the radioactive decay problem is used as the arbiter for
deciding whether a method is A-stable. To explain how this happens suppose
the differential equation is a bit simpler than the one in (1.18) and has the
form y′ = f(y). Also, suppose y = Y is an asymptotically stable equilibrium
solution. This means that the constant Y is a solution of the equation and any
initial condition y(0) = α chosen close to Y will result in the solution of the
IVP converging to Y as t → ∞. Now, to determine how the solution behaves
near y = Y let v(t) = y(t) − Y . Substituting this into the equation, one gets
that v′ = f(Y + v). With α close to Y we have that v(t) starts out relatively
small. Consequently, using Taylor’s theorem, f(Y + v) = f(Y ) + vf ′(Y ) +
O(v2) ≈ f(Y ) + vf ′(Y ). Because f(Y ) = 0 we conclude that v′ = −rv, where
r = −f ′(Y ). Therefore the solution near y = Y is governed by the radioactive
decay equation, and that is why it is used to determine A-stability. For the
earlier example using the logistic equation, f = λy(1−y) and r = λ(−1+2Y ).
Because Y = 1, so r = λ, then the stability requirement when using the Euler
method to solve the logistic equation is k ≤ 2/λ. Taking λ = 10, then the
stability condition is k ≤ 1

5 . This helps explain the rather poor showing of the
M = 4 curve in Figure 1.3.

Another observation to make is that even though the discussion has cen-
tered on problems involving one differential equation, the ideas are easily
extended to systems of equations. For example, assuming that the equation is
y′ = f(t,y), then the vector version of the forward difference used in (1.23) is

y′(tj) =
y(tj+1) − y(tj)

k
+ O(k). (1.46)

Substituting this into the differential equation and dropping the truncation
error produces the vector form of the Euler method given in Table 1.3. This
formula can be obtained directly from the single-variable version in (1.28)
by simply converting the appropriate variables to vectors. The same is true
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for most of the other methods considered in this chapter, the exception aris-
ing with Runge–Kutta methods and this is discussed later. A limitation of
approximating vector derivatives in this way is that every equation is approx-
imated the same way. For example, in (1.46) each component of the vector
y′(tj) is approximated using the Euler formula. There are situations in which
it is better to use different approximations on different components, and an
example of this is explored in Section 1.6.

One last comment to make concerns A-stability for systems. The general-
ization of (1.42) for systems is the equation y′ = −Ay, where A is a matrix
with constant coefficients. Similar to what occurred earlier, this matrix can be
thought of as derived from a local approximation of the Jacobian matrix ∂fi

∂yj
.

The requirement for A-stability remains the same, namely that the method
produces bounded solutions for any A that results in y = 0 being an asymp-
totically stable equilibrium solution of the original problem. To illustrate what
is involved, if A is diagonalizable with eigenvalues λ1, λ2, . . . , λn then y = 0
is an asymptotically stable equilibrium solution if Re(λi) > 0,∀i. Now, Euler
applied to y′ = −Ay yields the finite difference equation yj+1 = (I− kA)yj ,
where I is the identity matrix. Using the diagonalizablity of A it is possible
to reduce this to scalar equations of the form zj+1 = (1 − kr)zj , where r is
an eigenvalue of A. Consequently, the problem has been reduced to (1.44),
except that r is now complex-valued with Re(r) > 0. The conclusion is there-
fore the same, namely that Euler is conditionally A-stable. This example also
demonstrates that the scalar equation in (1.42) serves as an adequate test
problem for A-stability, and it is the one we use throughout this chapter.
Those interested in a more extensive development of A-stability for systems
should consult the text by Deuflhard et al. [2002].

1.2.2 Additional Difference Methods

The steps used to derive the Euler method can be employed to obtain a host
of other finite difference approximations. The point in the derivation that
separates one method from another is Step 3, where one makes a choice
for the difference formula. Most of the formulas used in this book are listed
in Table 1.1. It is interesting to see what sort of numerical methods can be
derived using these expressions, and a few of the possibilities are discussed
below.

Backward Euler

If one uses the backward difference formula in Table 1.1, then in place of
(1.23), we get

y′(tj) =
y(tj) − y(tj−1)

k
+ τj , (1.47)

where
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Methods for solving the differential equation

d
dty(t) = f(t,y)

Method Difference Formula τj Properties

Euler yj+1 = yj + kfj O(k) Explicit;
Conditionally
A-stable

Backward
Euler

yj+1 = yj + kfj+1 O(k) Implicit;
A-stable

Trapezoidal yj+1 = yj + k
2
(fj + fj+1) O(k2) Implicit;

A-stable

Heun
(RK2)

yj+1 = yj + 1
2
(k1 + k2)

where
k1 = kfj

k2 = kf(tj+1,yj + k1)

O(k2) Explicit;
Conditionally
A-stable

Classical
Runge–
Kutta
(RK4)

yj+1 = yj + 1
6
(k1 + 2k2 + 2k3 + k4)

where
k1 = kfj

k2 = kf(tj + k
2
,yj + 1

2
k1)

k3 = kf(tj + k
2
,yj + 1

2
k2)

k4 = kf(tj+1,yj + k3)

O(k4) Explicit;
Conditionally
A-stable

Table 1.3. Finite difference methods for solving an IVP. The points t1, t2, t3, . . .
are equally spaced with step size k = tj+1 − tj . Also, fj = f(tj ,yj) and τj is the
truncation error for the method.

τj =
k

2
y′′(ηj). (1.48)

Introducing this into (1.26), we obtain

y(tj) − y(tj−1) + kτj = kf(tj , y(tj)). (1.49)

Dropping the truncation error τj , the resulting finite difference approximation
is

yj = yj−1 + kf(tj , yj), for j = 1, 2, . . . , M. (1.50)

From the initial condition (1.19) we have that the starting value is

y0 = α. (1.51)

The difference equation in (1.50) is the backward Euler method. It has the
same order of truncation error as the Euler method. However, because of
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Figure 1.5. The animation of deformable objects using physically based modeling
involves solving differential equations in which A-stability is an essential property
of the numerical scheme. The example shown here uses backward Euler, and the
trapezoidal method, to simulate the motion of clothing on a woman model (Hauth
and Etzmuß [2001]).

the f(tj , yj) term this method is implicit. This is both good and bad. It is
good because it helps make the method A-stable (see below). However, it
is bad because it can make finding yj computationally difficult. Unless the
problem is simple enough that the difference equation can be solved by hand,
it is necessary to use something like Newton’s method to solve (1.50), and
this must be done for each time step. Some of the issues that arise with this
situation are developed in Exercise 1.33.

As for stability (Step 5), for the radioactive decay equation (1.42) one
finds that (1.50) reduces to

yj+1 =
1

1 + rk
yj . (1.52)

Assuming y0 = α, then the solution of this finite difference equation is yj =
α(1 + rk)−j . This goes to zero as j increases irrespective of the value of k.
Consequently, this method is A-stable. Another point to its credit is that the
solution decays monotonically to zero, just as does the exact solution. For this
reason backward Euler is said to be a monotone method. In contrast, recall
that for Euler’s method the solution is yj = α(1 − rk)j . If −1 < 1 − rk < 0,
which is part of the stability interval for the method, the resulting solution
goes to zero, but it oscillates as it does so. In other words, Euler’s method is
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monotone only if 0 < 1− rk < 1 (i.e., it is conditionally monotone). The fact
that backward Euler preserves the monotonicity of the solution is, for some
problems, important, and this is explored in more depth in Exercises 1.11 and
1.12. We will return to this issue of a monotone scheme in Chapter 4, when
we investigate how to solve wave propagation problems.

Leapfrog Method

It is natural to expect that a more accurate approximation of the derivative
will improve the resulting finite difference approximation of the differential
equation. In looking over Table 1.1, the centered difference formula would
appear to be a good choice for such an improvement because it has quadratic
error (versus linear for the first two formulas listed). Introducing this into
(1.18) we obtain

y(tj+1) − y(tj−1) + 2kτj = 2kf(tj , y(tj)), (1.53)

where τj = O(k2). Dropping the truncation error τj , the resulting finite dif-
ference approximation is

yj+1 = yj−1 + 2kf(tj , yj), for j = 1, 2, . . . , M − 1. (1.54)

This is known as the leapfrog, or explicit midpoint, method. Because this
equation uses information from two previous time steps it is an example of
a two-step method. In contrast, both Euler methods use information from
a single time step back, so they are one-step methods. What this means is
that the initial condition (1.19) is not enough information to get leapfrog
started, because we also need y1. This is a relatively minor inconvenience
that will be addressed later. It is more interesting right now to concentrate
on the truncation error. It would seem that the leapfrog method, with its
O(k2) truncation error, will produce a more accurate numerical solution than
either of the two Euler methods. As it turns out, this apparently obvious
conclusion could not be farther from the truth. This becomes evident from our
stability test. Applying (1.54) to the radioactive decay equation (1.42) yields
yj+1 = yj−1 − 2rkyj . This second-order difference equation can be solved by
assuming a solution of the form yj = sj . By doing this it is found that the
general solution has the form yj = α0s

j
++α1s

j
−, where s± = −kr±√

1 + k2r2

and α0, α1 are arbitrary constants(see Exercise 1.31). Because |s−| > 1, it is
impossible to find a step size k to satisfy the stability condition. Therefore,
the leapfrog method is unstable.

1.3 Methods Obtained from Numerical Quadrature

Another approach to deriving a finite difference approximation of an IVP is
to integrate the differential equation and then use a numerical integration



1.3 Methods Obtained from Numerical Quadrature 19

Rule Integration Formula

Right Box
∫ xi+1

xi
f(x)dx = hf(xi+1) + O(h2)

Left Box
∫ xi+1

xi
f(x)dx = hf(xi) + O(h2)

Midpoint
∫ xi+1

xi−1
f(x)dx = 2hf(xi) + h3

3 f ′′(ηi)

Trapezoidal
∫ xi+1

xi
f(x)dx = h

2 (f(xi) + f(xi+1)) − h3

12 f ′′(ηi)

Simpson
∫ xi+1

xi−1
f(x)dx = h

3 (f(xi+1) + 4f(xi) + f(xi−1)) − h5

90 f ′′′′(ηi)

Table 1.4. Numerical integration formulas. The points x1, x2, x3, . . . are equally
spaced with step size h = xi+1 − xi. The point ηi is located within the interval of
integration.

rule. This is a very useful idea that is best explained by working through an
example. To get started, a time grid must be introduced, and so Step 1 is the
same as before. However, Step 2 and Step 3 differ from what we did earlier.

Step 2. Integrate the differential equation between two time points. We will
take tj and tj+1, and so from (1.18) we have

∫ tj+1

tj

dy

dt
dt =

∫ tj+1

tj

f(t, y(t))dt. (1.55)

Using the Fundamental Theorem of Calculus we obtain

y(tj+1) − y(tj) =
∫ tj+1

tj

f(t, y(t))dt. (1.56)

Step 3. Replace the integral in Step 2 with a finite difference approximation.
This is where things get a bit interesting, because there are numerous choices,
and they produce different numerical procedures. A few of the most often
used possibilities are listed in Table 1.4. We will use the trapezoidal rule, and
introducing this into (1.56) yields

y(tj+1) − y(tj) =
k

2
[f(tj+1, y(tj+1)) + f(tj , y(tj))] + O(k3). (1.57)

Step 4. Drop the big-O term. After dropping the O(k3) term in (1.57) the
resulting equation is

yj+1 = yj +
k

2
(fj+1 + fj), for j = 0, 1, 2, . . . , M − 1, (1.58)
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where fj = f(tj , yj). From the initial condition (1.19) we have that the start-
ing value is

y0 = α. (1.59)

The finite difference equation (1.58) is known as the trapezoidal method for
solving (1.18). Because of the fj+1 term this method is implicit, and it is not
hard to show that it is A-stable. To determine the truncation error for the
method note that in (1.57) the error at each time step is O(k3). In taking M
time steps to reach t = T the resulting error is therefore M ×O(k3) = O(k2).
In other words, the truncation error is τj = O(k2).

One of the attractive features of the quadrature approach is that it in-
volves multiple decision points that can be varied to produce different numer-
ical methods. For example, the integration interval can be changed to, say,
tj−1 ≤ t ≤ tj+1 and then Simpson’s rule used on the resulting integral (see
Exercise 1.7). Another option is to not use a quadrature rule but instead re-
place the function f in the integral in (1.56) with an approximation that can
be integrated exactly. The most often used approximations involve interpo-
lating polynomials, and these give rise to what are called Adams methods. As
an example, the linear function that interpolates f at tj and tj+1 is

f(t, y(t)) = − t − tj+1

k
f(tj , y(tj)) +

t − tj
k

f(tj+1, y(tj+1)) + O(k2). (1.60)

Introducing this into (1.56) produces, not unexpectedly, the trapezoidal
method (1.58). Because the result is implicit it is an example of what is called
an Adams–Moulton method. To obtain something not listed in Table 1.3 one
could use a linear function that interpolates f at tj−1 and tj . Working out
the details (see Exercise 1.8), one obtains

yj+1 = yj +
k

2
(3fj − fj−1), for j = 1, 2, . . . , M − 1.

This is explicit, and for this reason it is an example of an Adams–Bashforth
method. It is not the purpose of this book to develop an exhaustive catalogue
of methods, so the particulars of each of these variations of the quadrature
approach are left for the exercises.

Example
We have derived several methods for solving IVPs, including the Euler, back-
ward Euler, leapfrog, and trapezoidal methods. It is worth taking them out
for a test drive to see how they compare, and the logistic equation (1.5) is a
good candidate for this. The equation that is solved is

dy

dt
= 10y(1 − y), for 0 < t, (1.61)

where y(0) = 0.1. As before, we take T = 1, so the time points are determined
from the expression tj = jk, for j = 0, 1, 2, . . . , M and k = 1/M . Because
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Figure 1.6. Solution of the logistic equation (1.61) using different numerical
schemes. The leapfrog method is shown in the lower plot, and the two Euler schemes
and the trapezoidal method are in the upper graph.

f(t, y) = 10y(1 − y) our methods reduce to the finite difference equations
listed below:

Euler: yj+1 = yj + 10kyj(1 − yj),
Backward Euler: yj+1 = yj + 10kyj+1(1 − yj+1),

Leapfrog: yj+1 = yj−1 + 20kyj(1 − yj),
Trapezoidal: yj+1 = yj + 5k (yj(1 − yj) + yj+1(1 − yj+1)) .

The initial condition is y0 = 0.1, and for the leapfrog method it is assumed
that y1 = y(k) (i.e., the exact value at t = t1 is used). Just how well these
four expressions do is shown in Figure 1.6 for the case M = 10. The first
thing one notices is just how badly the leapfrog method does (it had to be
given its own graph because it behaves so badly). This is not unexpected,
because we know that the method is not A-stable. The other three solution
curves also behave as expected. In particular, the two Euler methods are not
as accurate as the trapezoidal method and are approximately equal in how
far each differs from the exact solution. To quantify just how accurately each
method does in solving the problem, in Figure 1.7 the error (1.37) is plotted as
a function of the number of grid points used to reach T . Because of its stability
problems the leapfrog method is omitted in this figure, and in its place the
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Figure 1.7. Error at t = 1 as a function of the number of time steps used to solve
the logistic equation (1.61). Each curve decreases as O(kn), where n is determined
from the truncation error for the method.

error obtained using the RK4 method, which is considered in the next section,
is included. As predicted, all decrease according to their respective truncation
errors. For example, the trapezoidal method decreases as O(k2) and the two
Euler methods as O(k). The only exception to this is RK4, which shows a
break from O(k4) once M gets up above 104. The reason for this is that the
error has started to reach the level of round-off, and so it is not expected to
continue its linear decrease past this point.

1.4 Runge–Kutta Methods

An extraordinarily successful family of numerical approximations for IVPs
comes under the general classification of Runge–Kutta (RK) methods. The
derivation is based on the question of whether it is possible to determine
an explicit method for finding yj+1 that only uses the value of the solution
at tj and has a predetermined truncation error. The secret in getting this
to work is making a good guess as to what such a formula might look like.
To demonstrate, the best single-step explicit method we have so far has a
truncation error of O(k). So, suppose we are interested in obtaining one that
is O(k2). We have been able to derive an implicit scheme with this error,
and this is the trapezoidal method (1.58). The reason it is implicit is the
term f(tj+1, yj+1). Suppose we experiment a little and use Euler’s method to
approximate yj+1 in this term with yj + kfj . The resulting finite difference
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approximation is

yj+1 = yj +
k

2
[f(tj , yj) + f(tj + k, yj + kfj)]. (1.62)

It is not clear whether this explicit method has the desired truncation er-
ror. However, it is useful, because it provides insight into what a O(k2) ex-
plicit might look like. Based on this, the Runge–Kutta assumption is that the
method has the form

yj+1 = yj + k[af(tj , yj) + bf(tj + αk, yj + βkfj)], (1.63)

where the constants a, b, α, β are chosen to achieve the stated truncation error.
To accomplish this the exact solution is substituted into (1.63) and Taylor’s
theorem is then used to reduce the expression, much as was done in reducing
(1.40) to (1.41). Carrying out the calculations, one finds that a + b = 1, β = α,
and 2bα = 1 (see Exercise 1.10). These three equations are called the order
conditions, and interestingly, the values for a, b, α, β are not unique. A simple
choice is a = b, and this yields what is known as Heun’s method, which is
given in (1.62) and also listed in Table 1.3. To its credit, Heun is explicit
and has a truncation error as good as the trapezoidal method. What is lost,
however, is unconditional stability.

The one method from the Runge–Kutta family that deserves special at-
tention is RK4, which is listed in Table 1.3. This is used in so many computer
codes that it has become the workhorse of IVP solvers. The derivation of RK4
requires a generalization of the assumption in (1.63) and involves considerable
more work in reducing the resulting expressions. To motivate how the formula
is obtained, suppose the differential equation is y′ = f(t). Integrating this as
in (1.56) and then using Simpson’s rule yields

y(tj+1) − y(tj) =
k

6
[f(tj) + 4f(tj + 0.5k) + f(tj+1)] + O(k5)

=
k

6

[
f(tj) + 2f

(
tj +

k

2

)
+ 2f

(
tj +

k

2

)
+ f(tj+1)

]
+ O(k5).

The O(k5) term is dropped from this expression and in doing so it should
be understood that this is the error that is made in progressing from tj to
tj+1. As explained earlier for the quadrature methods, the total number of
steps taken is M = O(1/k) and therefore the resulting truncation error is
τj = M × O(k5) = O(k4). With this we obtain the RK4 formula given in
Table 1.3, as applied to this particular differential equation.

Example
For the logistic example considered earlier, the RK4 formulas given in Table
1.3 are
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k1 = 10kyj(1 − yj),

k2 = 10k

(
yj +

1
2
k1

) (
1 − yj − 1

2
k1

)
,

k3 = 10k

(
yj +

1
2
k2

) (
1 − yj − 1

2
k2

)
,

k4 = 10k(yj + k3)(1 − yj − k3).

The resulting numerical accuracy of the method is shown in Figure 1.7. RK4
is clearly superior to the others listed, to the point that it achieves an error on
the order of round-off far ahead of the others. Given this, you might wonder
why the other methods are even discussed, much less used by anyone. Well,
there are several reasons for considering other methods, and one is that RK4
is only conditionally A-stable. This is true of all explicit Runge–Kutta meth-
ods, and as we will see later, this limits their use for solving partial differential
equations such as those considered in Chapter 3. Another reason is that RK4
does not do well in preserving certain properties of the solution, and an im-
portant example of this is discussed in Section 1.6.

The ideas developed here can be generalized to produce higher-order RK
methods, although the complexity of the derivation can be enormous. For ex-
ample, in celestial mechanics you occasionally see people use twelfth-order RK
methods. Such a scheme is not easy to derive, because it results in 5972 order
conditions, and, as occurred earlier, these form an underdetermined nonlinear
system. This situation is further complicated by the somewhat unexpected
problem that Runge–Kutta methods that are O(kp) for the scalar equation
y′ = f(t, y) are not necessarily O(kp) for the system y′(t) = f(t,y) if p ≥ 5. In
other words, to derive a higher order Runge–Kutta method for systems you
are not able to simply use a scalar equation and then convert the variables to
vectors when you are done. Those interested in deriving higher-order meth-
ods, or in a more systematic derivation of RK4, should consult the texts by
Butcher [1987] and Lambert [1991].

1.5 Extensions and Ghost Points

The ideas developed in this chapter can be embellished without much difficulty
to handle more complex problems, including partial differential equations.
To illustrate how this is done, consider the following nonlinear second-order
equation

d

dt

[
(1 + e−3t)

du

dt

]
+ u3 = sin(t), for 0 < t, (1.64)

where the initial conditions are

u(0) = 2, u′(0) = −5. (1.65)
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Our objective is to derive a O(k2) finite difference approximation for this IVP.
One option is to rewrite the problem as a first-order system and then use one
or more of the methods listed in Table 1.3 (see Exercise 1.19). A variation of
this approach is used in the next section, but here we work with the equation
directly. To get things started we expand the derivative to obtain

(1 + e−3t)
d2u

dt2
− 3e−3t du

dt
+ u3 = sin(t).

We are now in position to carry out Step 2, which means we evaluate the
differential equation at the time point t = tj to obtain

(1 + e−3tj )
d2u

dt2
(tj) − 3e−3tj

du

dt
(tj) + u(tj)3 = sin(tj). (1.66)

To carry out Step 3, approximations for the derivatives must be selected,
and we use the centered O(k2) approximations listed in Table 1.1. Doing this
and then dropping the truncation error term (Step 4) gives us

(1 + e−3tj )
uj+1 − 2uj + uj−1

k2
− 3e−3tj

uj+1 − uj−1

2k
+ u3

j = sin(tj). (1.67)

This simplifies to an explicit formula for uj+1 that has the form

uj+1 = ajuj + bju
3
j + cjuj−1 + dj , for j = 1, 2, 3, . . . , (1.68)

where aj , bj , cj , dj depend on tj but not on the uj ’s. To use this expression we
need u0 and u1. From the initial condition u(0) = 2 we have that u0 = 2. To
determine u1 we must replace the initial condition u′(0) = −5 with a finite
difference approximation. As always, there are options, and one is to use a
one-sided difference (see Exercise 1.17). There is, however, another approach,
which introduces a useful idea we will have need of occasionally. It starts by
introducing the centered difference approximation

u′(0) =
u(t1) − u(t−1)

2k
+ O(k2). (1.69)

At first glance it would seem that we are not able to use this approximation,
because it requires a value of the solution outside the original interval for the
problem. However, it is possible to extend the solution into this region as long
as the solution and its derivatives are continuous at t = 0. Assuming this is
the case, then t = t−1 is called a ghost point, and the resulting finite difference
approximation of the initial condition is

u−1 = 10k + u1. (1.70)

To use this in our algorithm, the differential equation (1.64) is extended to
include t = 0. This allows us to let j = 0 in (1.68), and from this we obtain
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u1 = a0u0 + b0u
3
0 + c0u−1 + d0.

Using (1.70), this reduces to

u−1 = (1 − c0)−1(a0u0 + b0u
3
0 + d0 + 10k).

Now that we know u−1 and u0, the algorithm is complete.
Aside from introducing the idea of a ghost point, the above example looks

to be a routine application of what was developed earlier for first-order equa-
tions. However, note that the requirement of consistency had a broader impact
here, because it was necessary to introduce approximations into the initial
conditions as well as the differential equation. This has repercussions for the
truncation error. To produce a O(k2) method it is necessary to use O(k2) ap-
proximations. If any one of the derivatives in either the differential equation or
initial condition were to have been approximated using a O(k) formula, then
the best we could guarantee is that the method is O(k). A demonstration of
this can be found in Exercise 1.18.

1.6 Conservative Methods

In this section we take up the study of equations obtained from Newton’s
second law, but without the dependence of the force on time or velocity. In
this case (1.8) reduces to

m
d2y

dt2
= F (y). (1.71)

Now, we could proceed as in the previous section and introduce a finite dif-
ference approximation for the second derivative. Alternatively, we could use
the system version given in (1.13) and simply plug into one of the formulas
in Table 1.3. However, with the objective of pushing the envelope a bit and
maybe learning something in the process, we try a different approach.

Given that this example concerns Newtonian mechanics, and the impor-
tance of energy in mechanics, it is worth introducing this into the formulation.
For (1.71) the energy is

H(t) =
m

2
(y′)2 + V, (1.72)

where the function V (y) satisfies dV
dy = −F (y). The function H is called the

Hamiltonian for the system, and it is the sum of the kinetic and potential
energies. By multiplying (1.71) by y′ and integrating, it is found that H is a
constant for this problem, which means that energy is conserved. If the initial
conditions are y(0) = α and y′(0) = β, then H = m

2 β2 + V (α). Our goal is to
obtain a finite difference approximation that comes very close to keeping the
energy in the problem conserved.
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1.6.1 Velocity Verlet

To start things off we write (1.71) in system form as

y′ = v, (1.73)

v′ =
1
m

F (y), (1.74)

where we have introduced the velocity v = y′. It is not hard to show that even
in the simplest case of when F = −y, the only method listed in Table 1.3 that
conserves energy is the trapezoidal method (see Exercise 1.24). Using this in
(1.73) and (1.74) we obtain

yj+1 = yj +
k

2
(vj+1 + vj), (1.75)

vj+1 = vj +
k

2m
(F (yj+1) + F (yj)). (1.76)

As is always the case with the trapezoidal method, the resulting equations
are implicit. For a large system such as the one that produced Figure 1.1,
implicit methods are computationally intensive and can take excessive cpu
time to use. The question therefore arises as to whether it might be possible
to tweak the above equations so they are explicit yet still do reasonably well
with conserving energy. With this in mind, note that one of the culprits for
the implicitness is the vj+1 term in (1.75). Can we find an approximation for
this term that uses information at earlier time steps? One possibility is to use
the Euler method on (1.74), which gives us vj+1 = vj + k

mF (yj). Introducing
this into (1.75) yields

yj+1 = yj + kvj +
1

2m
k2F (yj), (1.77)

vj+1 = vj +
k

2m
(F (yj+1) + F (yj)) . (1.78)

Assuming we first use (1.77) to calculate yj+1 and then use (1.78) to find
vj+1, the procedure is explicit. It is known as the velocity Verlet method for
solving (1.71) and it is used extensively in molecular dynamics and anima-
tion applications where real-time computer simulation of objects is required.
The reason for its popularity is not just that it is explicit, O(k2) accurate,
and requires only one force evaluation per step. The same is true for other
methods. It is the method of choice because it does a better job than most
in approximating the energy over long time intervals. The latter is the rea-
son it, or methods similar to Verlet, are used in such areas as computational
astrophysics, as illustrated in Figure 1.8.

Example
To demonstrate the effectiveness of velocity Verlet we solve the linear har-
monic oscillator problem when F = −y and H = 1

2 (y′)2 + 1
2y2. Assuming that
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the initial conditions are y(0) = 1 and y′(0) = 0, then the exact solution is
y(t) = cos(t) and v(t) = − sin(t). In this case, H(t) = 1

2 and the solution, for
any value of t, lies on the circle y2 + v2 = 1. The results of the calculation are
shown in Figure 1.9. For comparison, the values obtained using RK4 are also
shown. Both methods produce an accurate solution for small values of t, but
for larger values the two methods start to differ significantly. For example,
the energy decay using RK4 is substantial, whereas Verlet produces a value
of H that oscillates but remains very near the exact value over the entire
time period. The frequency of this oscillation is such that the Verlet result in
Figure 1.9(a) looks to be a solid bar running across the upper portion of the
plot. However, over a shorter time interval, as in Figure 1.9(b), the oscillatory
nature of the curve is evident. It is also apparent in Figure 1.9(c) that the
position and velocity obtained from Verlet, even for large values of t, are very
nearly on the circle followed by the exact solution, whereas RK4 provides a
very poor approximation. However, all is not perfect with Verlet. Although
the computed (y, v) values follow the right path, they move along the path a
bit faster than the exact solution. For example, for 0 ≤ t ≤ 4000 the exact
solution makes 636 complete circuits around this circle while the velocity Ver-
let solution makes 643 trips. So, we have a situation in which the computed
solution is very close to being on the right path but is just a little ahead of
where it is supposed to be. One last point to make is that the computing time
for Verlet is significantly less than it is for RK4, and the reason is that Verlet
requires fewer function evaluations per time step than RK4.
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Figure 1.8. The study of the stability of the planetary orbits in the solar system
requires accurate energy calculations over very large time intervals (with or without
Pluto). One of the more successful approaches uses a symplectic method to study
the orbits over 1.1 billion years using a time step of one year (Wisdom and Holman
[1991]).
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Figure 1.9. In (a) the energy, or Hamiltonian, H computed for the linear harmonic
oscillator using the velocity Verlet and RK4 methods are shown. The energy over
the smaller time interval 3987 ≤ t ≤ 4000 is shown in (b). The corresponding values
of (y, v), for 3987 ≤ t ≤ 4000, are shown in (c).

1.6.2 Symplectic Methods

It is apparent from the last example that for this problem the velocity Verlet
method is better than RK4 even though the latter has a much better trun-
cation error. The question is, did we just get lucky or is it possible to find
other methods with properties similar to those of Verlet? To address this,
recall that we started out looking for a method that conserves energy. This
was the reason for selecting the trapezoidal method, but when Euler’s method
was used to transform (1.75) into (1.77) we lost energy conservation. The fact
that H is not constant using velocity Verlet is evident in Figure 1.9, but it is
also clear that the method does a respectable job in determining the energy.
The reason is that velocity Verlet possesses a special property connected with
preserving area, and orientation, in the phase plane. To explain what this is,
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Figure 1.10. Phase plane parallelograms used to introduce a symplectic approxi-
mation. Using the method, in one time step, a → A, b → B, and c → C.

suppose that with the initial condition ya = (ya, va)T the method takes one
time step and produces the value yA = (yA, vA)T . For example, using (1.77),
yA = ya + kva + 1

2mk2F (ya). In a similar manner, assume using the initial
conditions yb,yc that the method takes one time step and produces the values
yB ,yC , respectively. The special property we are looking for has to do with
the parallelogram formed by ya,yb,yc as compared to the transformed par-
allelogram formed by yA,yB ,yC (see Figure 1.10). It is enough to consider
the situation of when yb,yc are close to ya, and so it is assumed that both
points are within a distance h of ya, where h is small. In this case, if the two
parallelograms in Figure 1.10 have the same area to first order in h2 and have
the same orientation, then the method is said to be symplectic. By carrying
out the calculations one can obtain a rather simple test for whether a method
has this property.

Theorem 1.1. Suppose

yj+1 = f(yj , vi),
vj+1 = g(yj , vj),

is a finite difference approximation of (1.73), (1.74). The method is symplectic
if and only if fygv − fvgy = 1, ∀y, v.

It is a bit easier to remember the equation in this theorem if it is written in
matrix form as

det

(
fy fv

gy gv

)
= 1, ∀y, v. (1.79)

Example
As an example, for the velocity Verlet scheme in (1.75), (1.76), we have that
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f(y, v) = y + kv +
k2

2m
F (y),

g(y, v) = v +
k

2m

[
F

(
y + kv +

k2

2m
F (y)

)
+ F (y)

]
.

With this, fy = 1+ 1
2mk2F ′(y) and gv = 1+ 1

2mk2F ′(f). After calculating the
other two derivatives one finds that fygv − fvgy = 1, and therefore velocity
Verlet is a symplectic method.

There are multiple reasons for introducing symplecticity. The first is that
the original problem is symplectic, and so we are simply requiring our numer-
ical method to preserve this property. A second reason is that it is easier to
find symplectic methods than it is to find methods that conserve energy. For
example, it is possible to tweak even the Euler method so it is symplectic (see
Exercise 1.23). The third, and most important, reason for introducing this
idea is that even though a symplectic method does not necessarily produce a
Hamiltonian that is constant, it does come very close to the exact result. The
energy computed by velocity Verlet, which is shown in Figure 1.9, is a typical
example. In fact, it is possible to prove that as long as the function H(y, v)
is smooth, then a symplectic method provides an accurate approximation of
the energy over an exponentially long time interval. Therefore, transferring
our objective from energy conservation to symplecticity is worthwhile. The
fly in the ointment here is that determining whether a method is symplectic
when there are more than two equations is rather involved. There has been
considerable research over the last few years for finding methods that preserve
geometrical properties of the solution, including first integrals such as energy,
and an in-depth discussion of this can be found in Stuart and Humphries
[1998] and Hairer et al. [2003].

1.7 Next Steps

The approach that has been taken in this chapter is similar to what often
occurs in applied mathematics. Namely, one has a problem to solve and it is
difficult enough that analytical methods do not work. For this reason a nu-
merical solution is sought, and to do this an algorithm is derived and then
implemented. In the process one pays close attention that the method is con-
sistent and stable, the two cornerstones for convergence. The development has
been introductory and leaves open numerous questions and topics for discus-
sion.

One aspect that deserves more attention relates to the theory underlying
the methods. Typically, the starting point for this is to generalize the finite
difference formulas that have been obtained and consider the general linear
p-step formula

yj+p +ap−1yj+p−1 + . . .+a0yj = k(bpfj+p + bp−1fj+p−1 + . . .+ b0fj), (1.80)
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where fj = f(tj ,yj) and the aj ’s, bj ’s are constants with either a0 or b0

nonzero. The formula in (1.80) is linear because it involves only linear com-
binations of the yj ’s and fj ’s. It results in an explicit method if bp = 0 or if f
does not depend on y, otherwise it is implicit. The question of convergence in
this case introduces a form of stability determined using something called the
root condition. This is the requirement that the method produces bounded
solutions to the problem when f = 0. With this one can prove the following
result.

Theorem 1.2. (Dahlquist Equivalence Theorem) If the approximations for
the starting values y0, y1, . . . , yp−1 are consistent then the p-step formula
in (1.80) is convergent if and only if it is consistent and satisfies the root
condition.

The question of the order of the error when using (1.80) can be worked out
using Taylor’s theorem, as was done for the example involving (1.40). The
result is contained in the following theorem.

Theorem 1.3. The p-step formula in (1.80) has order O(kn) if and only if

p∑
i=0

ai = 0,

p∑
i=0

imai = m

p∑
i=0

im−1bi, for m = 1, 2, . . . , n.

It should be remembered that the above theorem applies to (1.80). If one
wants the method to have order O(kn) then the starting values must also be
approximated with order O(kn). Also, both theorems require f to be suffi-
ciently smooth. A analysis of these two theorems can be found in Isaacson
and Keller [1966] and Deuflhard et al. [2002].

In constructing a numerical algorithm it is natural to ask just what is
possible in terms of the order of the error using a formula like the one in
(1.80). For example, one of the criticisms of the trapezoidal method is that it
is implicit and this makes it hard to use. So, one might ask if it is possible
to find an explicit method with the same truncation error as the trapezoidal
method. This is the same question used when introducing the Runge–Kutta
methods, but now we are considering methods that have the form given in
(1.80). The answer is contained in the two Dahlquist barrier theorems. The
first theorem states that the maximal order of a convergent p-step method is
at most p if the method is explicit. If it is implicit then the maximal order is
p + 1 if p is odd and it is p + 2 if p is even. This means there are no one-step
explicit methods with a better truncation error than Euler, and there are no
one-step implicit methods better than the trapezoidal method. The second
barrier theorem states that if a p-step is A-stable then it must be implicit.
Moreover, the maximal order for an A-stable method is just two. In other
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words, the trapezoidal method is as good as it gets for A-stable methods. An
extended discussion of these theorems can be found in Hairer et al. [2002].

Another topic that was only partially investigated concerns methods for
stiff equations. To explain what these are, one has to look no farther than the
logistic equation (1.5). As shown in Figure 1.3, the solution starts near zero,
gradually increases, and then levels off at one. If the value of λ is increased the
transition from zero to one occurs much faster, and for large values of λ it looks
almost vertical. Such rapid changes in the solution are characteristic of stiff
equations, and what this means is that the logistic equation becomes stiffer
as λ increases. Such problems can be quite challenging to solve numerically.
Certainly A-stability and monotone methods play an important role, but other
forms of stability are sometimes needed. An example is L-stability, which is
introduced in Chapter 3. Another tool for such problems involves using an
adaptive procedure, where the time step is modified during the computation
to account for the changes in the solution. This requires good ways to estimate
how the solution is changing to be able to adjust the time step appropriately,
and this goes under the general classification of a posteriori estimates. A
discussion of this can be found in Shampine [1994]. A third approach that
is often used for such problems is to use an implicit Runge–Kutta method.
The derivation of these, as with their explicit counterparts, is most commonly
done using a graph-theoretic approach and in some cases collocation is used.
A good introduction to this can be found in Lambert [1991] and Hairer and
Wanner [2004].

One of the more interesting applications involving IVPs arises with com-
putational nonlinear dynamics. For such problems the conservation of energy
and symplecticity play an essential role and these were investigated in this
chapter. A topic that was not covered is bifurcation phenomena, where one
is interested in the change in the behavior of the solution as one or more
parameters are changed. As an example, the flow of water in a pipe will be
smooth and laminar if the pressure is not very large. However, if the pres-
sure is increased there is a value pcr at which the flow will become irregular
and turbulent. In this case pcr is a bifurcation point and the structure of the
solution changes dramatically as the pressure passes through pcr. Developing
numerical methods for such situations is challenging and one of the more com-
mon approaches is to use a continuation method. This is discussed in Govaerts
[2000].

Exercises

1.1. Determine whether the following produce consistent approximations (i.e.,
the truncation term τj → 0 as k → 0). For those that are consistent give the
order of the truncation term.
(a) y(tj) = 1

2 (y(tj+1) + y(tj−1)) + τj .
(b) y′(tj) = 1

3k [y(tj+1) + y(tj) − 2y(tj−1)] + τj .
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(c) y′(tj) = y(tj+1) − 2y(tj) + τj .
(d) y′(tj) = 1

2k [(α − 3)y(tj) + 2(2 − α)y(tj+1) − (1 − α)y(tj+2)] + τj .

1.2. Assuming that the following are used to solve y′ = f(t, y), determine the
order of the truncation error.
(a) yj+1 = yj + k

2 (3fj − fj−1).
(b) yj+1 = −yj + 2yj−1 + 3kfj .
(c) yj+1 = 4

3yj − 1
3yj−1 + 2k

3 fj .
(d) yj+1 = yj + kf(tj + (1 − α)k, αyj + (1 − α)yj+1), where 0 ≤ α ≤ 1.

1.3. Determine whether the methods in Exercise 1.2 are A-stable or condi-
tionally A-stable.

1.4. Find a finite difference approximation of the following problems using a
method that is, at least conditionally, A-stable and has a truncation error of
O(k2). If a method other than one listed in Table 1.3 is used then the stability
and truncation error requirements must be justified.
(a) y′ = 1 + 2e−ty − y3, where y(0) = 3.
(b) d

dt

(
1

t+y

)
= sin(y), where y(0) = 5.

(c) 2y′ = −1 − √
y2 + (y′)2, where y(0) = 1.

(d) y′ = e−y′
+ t, where y(0) = 1.

(e) y′ = y − e−2tv and v′ = y2 + 3v, where y(0) = 1, v(0) = −2.
(f) y′′ + (1 − y2)y′ + y = cos(t), where y(0) = 1, y′(0) = 0.

(g) d
dt

(
y′√

1+(y′)2

)
+ y′ + y = 0, where y(0) = 0, y′(0) = 1.

(h) θ′′1 = −µθ1 + λθ2 and θ′′2 = λθ1 − µθ2, where θ1(0) = 1, θ′1(0) = θ2(0) =
θ′2(0) = 0.

(i) yey = t for t ≥ 0.
(j) y(t) = (1 + t2)

∫ t

0
(y(s) − sin(s2))ds for t ≥ 0.

(k) y′ = a(t) − y3, where a(t) =
∫ t

0
e2(t−s)y(s)ds and y(0) = −1.

(l) Calculating the value of y(t) =
∑∞

n=0
1

2nn! t
2n, for t ≥ 0.

1.5. The θ-method for solving (1.18) involves picking a value of θ satisfying
0 ≤ θ ≤ 1 and then using the difference equation

yj+1 = yj + kθfj+1 + k(1 − θ)fj .

(a) What method is obtained if θ = 0, or θ = 1
2 , or θ = 1?

(b) Explain how this method can be obtained using the Euler and backward
Euler methods.

(c) Show how this method can be derived using numerical quadrature.
(d) For what values of θ is the method A-stable?
(e) For what values of θ is the method implicit?
(f) Determine whether the method is monotone or conditionally monotone

(see Exercise 1.11).
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1.6. This is a problem about the A-stability of some of the methods discussed
in this chapter.
(a) Show that the leapfrog method is not A-stable.
(b) Show that the trapezoidal method is A-stable.
(c) Show that RK2 is conditionally A-stable. Is the k interval for stability

larger or smaller than it is for the Euler method?
(d) Show that RK4 is conditionally A-stable and the k interval for stability

is somewhat larger than it is for the Euler method.

1.7. This problem uses the integration method to derive various finite differ-
ence approximations.
(a) Using a one-point integration rule for the integral in (1.56) derive the

Euler method and the order of the truncation error.
(b) Using a one-point integration rule for the integral in (1.56) derive the

backward Euler method and the order of the truncation error.
(c) In Step 2 of the integration method, suppose one integrates the equation

from tj−1 to tj+1. It is possible in this case to use Simpson’s rule to
approximate the integral. What finite difference equation results from this
and what is the order of the truncation error?

1.8. As an approximation suppose the function f(t, y(t)) in the integral in
(1.56) is replaced with the linear function of t that interpolates the function
at the two points (tj−1, f(tj−1, y(tj−1))), (tj , f(tj , y(tj))).
(a) Integrate the approximation for f(t, y) to obtain the finite difference equa-

tion
yj+1 = yj +

k

2
(3fj − fj−1), for j = 1, 2, . . . , M − 1.

Because this is explicit it is an example of an Adams–Bashforth method.
(b) Is the method A-stable?
(c) What is the order of the error of the linear approximation for f for tj ≤

t ≤ tj+1? What is the order of the truncation error for the finite difference
method in (a)?

1.9. As an approximation suppose the function f(t, y(t)) in the integral
in (1.56) is replaced with the quadratic polynomial that interpolates the
function at the three points (tj−1, f(tj−1, y(tj−1))), (tj , f(tj , y(tj))), and
(tj+1, f(tj+1, y(tj+1))).
(a) Integrate the approximation for f(t, y) to obtain the finite difference equa-

tion

yj+1 = yj +
k

12
(5fj+1 + 8fj − fj−1), for j = 1, 2, . . . , M − 1.

Because this is implicit it is an example of an Adams–Moulton method.
(b) Is the method A-stable?
(c) What is the order of the error of the quadratic approximation for f for

tj ≤ t ≤ tj+1? What is the order of the truncation error for the finite
difference method in (a)?
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1.10. This problem develops a systematic approach for deriving Runge–Kutta
methods, with error O(k2), for solving y′ = f(t, y). The start-off assumption
is that the method has the general form given in (1.63), and the goal is to
determine the constants a, b, α, β that produce the best truncation error.
(a) Assuming small k show that

f(t + αk, y + βkf) = f + αkft + βkffy

+
1
2
(αk)2ftt + αβk2ffty +

1
2
(βk)2f2fyy + O(k3),

where f = f(t, y).
(b) Substitute the exact solution y(t) into (1.63) and then expand the result

for small k using part (a). Use this to show that the best truncation error
is O(k2) and this is obtained by taking a + b = 1, β = α, 2bα = 1. These
are the order conditions for the method.

(c) Show how Heun’s method is obtained from the result from part (b).
(d) There is one undetermined constant in the solution in part (b). Can this

constant be determined by finding which value produces the largest stabil-
ity region? What about using a requirement of computational simplicity
to determine the constant?

(e) Can monotonicity (see Exercise 1.11) be used to determine the undeter-
mined constant in (b)?

1.11. It is desirable that if the exact solution is monotonically increasing (or
decreasing) then the numerical solution does the same thing. The test case
for this property is the usual radioactive decay IVP given in (1.2) and (1.3),
where α > 0. A numerical method is said to be monotone if it produces a
monotonically decreasing solution to this problem. An example demonstrating
the importance of monotonicity is given in Exercise 1.15.
(a) Show that backward Euler is monotone.
(b) Show that Euler, trapezoidal, and RK4 are conditionally monotone (i.e.,

they are monotone only if the step size is small enough) and that RK4
has the largest monotone interval of the three.

1.12. Backward difference methods (BDFs) use one-sided backward differ-
ences to derive finite difference approximations. An example is the backward
Euler method, which is a one-step BDF. The reason for considering such an
approximation is that BDFs usually have better monotone properties.
(a) Derive a two-step BDF for (1.18). What is the truncation error for the

method?
(b) Determine whether the method is A-stable.
(c) Determine whether the method is monotone or conditionally monotone

(see Exercise 1.11).

1.13. This problem concerns the IVP involving the Bernoulli equation

y′ + y3 =
y

a + t
, for t > 0,
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where y(0) = 1. You are to solve this problem using the backward Euler,
trapezoidal, and RK4 methods.
(a) Verify that the exact solution is

y =
a + t√

β + 2
3 (a + t)3

.

(b) Assuming a = 0.01, on the same axes plot the exact and the three numer-
ical solutions for 0 ≤ t ≤ 3 in the case M = 80.

(c) Redo (b) for M = 20, M = 40, and M = 160. If one or more of the
methods is unstable you can exclude it from the plot (for that value of
M) but make sure to state this in your write-up.

(d) Plot the max error e∞ as a function of M for each method, using M =
40, 80, 160, 320, 640. The four curves should be in the same log-log plot.

(e) Compare the four methods based on your results from parts (a)–(d). This
includes ease of use, speed of calculation, accuracy of results, and apparent
stability. Also comment on the sensitivity of the two implicit methods to
the stopping condition used in the nonlinear equation solver (e.g., could
you use a relatively large tolerance without affecting accuracy and that
enables the calculation go faster?).

1.14. This problem concerns the equation

y′ = α(h(t) − y) + h′(t), for t > 0,

where y(0) = β. You are to solve this problem using the backward Euler,
trapezoidal, and RK4 methods.
(a) Assuming h(0) = 0, show that y = h(t) + βe−αt is the solution of the

problem.
(b) Assume α = 20, β = 1, and h(t) = sin(t). On the same axes plot the exact

and the three numerical solutions for 0 ≤ t ≤ 3 in the case M = 40.
(c) Redo (b) for M = 80 and for M = 20. If one or more of the methods is

unstable for either case you can exclude it from the plot (for that value
of M) but make sure to state this in your write-up.

(d) Based on your results from (a)–(c) explain why a better measure of the
error in this problem is e∞ rather than eM . Plot e∞ as a function of M
for each method, using M = 80, 160, 320, 640, 1280, 2560. The three curves
should be in the same log-log plot.

(e) Compare the three methods based on your results from (a)–(d). This
includes ease of use, speed of calculation, accuracy of results, and apparent
stability.

1.15. This problem concerns the deceptively simple equation

εy′ = (1 − t)y − y2, for t > 0,

where y(0) = 1. You are to solve this problem using the backward Euler,
trapezoidal, and RK4 methods in the case ε = 0.01 and T = 2.
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(a) On the same axes plot the exact and four numerical solutions for 0 ≤ t ≤ T
in the case M = 60.

(b) Redo (a) for M = 30 and for M = 120. If one or more of the methods is
unstable you can exclude it from the plot for that M value but make sure
to state this in your write-up.

(c) Compare the three methods based on your results from parts (a) and (b).
This includes ease of use, speed of calculation, accuracy of results, and
apparent stability.

1.16. This problem concerns solving the Lane–Emden equation

y′′ +
2
t
y′ + yn = 0, for t > 0,

where n is a nonnegative integer. Assume that the initial conditions are y(0) =
1 and y′(0) = 0. This equation arises in studying the temperature distribution
within a star.
(a) Verify that (i) y = sin(t)

t is the solution when n = 1, and (ii) y = (1 +
1
3 t2)−1/2 is the solution when n = 5.

(b) Derive a second-order method for this problem.
(c) Assuming n = 1, on the same axes plot the exact and numerical solutions

for 0 ≤ t ≤ 10 in the case M = 40.
(d) Assuming n = 5, on the same axes plot the exact and numerical solutions

for 0 ≤ t ≤ 10 in the case M = 40.

1.17. This problem investigates using a one-sided approximation of an initial
condition rather than a ghost point.
(a) Derive a one-sided difference approximation of the initial condition in

(1.65) that has truncation error O(k2).
(b) With the approximation from part (a) and the finite difference equation

(1.68), state what problem must be solved to find u1 and u2. Also, explain
why the method is no longer explicit.

1.18. This problem investigates how the approximation of the initial condi-
tions can affect the accuracy of the entire calculation. The equation is

y′′ + 2αy′ + α2y = 0, for 0 < t,

where the initial conditions are y(0) = 0, y′(0) = 1. The exact solution in this
case is y = te−αt.
(a) Using centered differences, derive a second-order accurate approximation

for the differential equation.
(b) Use the fourth formula in Table 1.1 to derive a second-order accurate

approximation for the initial conditions.
(c) Use the first formula in Table 1.1 to derive a first-order accurate approx-

imation for the initial conditions.
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(d) Let T = 0.5 and α = 2. Plot the error |y(T )− yM | as a function of M , for
10 ≤ M ≤ 104, using the methods from (a) and (b).

(e) Redo (d) using the methods from (a) and (c).
(f) What is the consequence of using a lower-order approximation at just one

point?

1.19. This problem explores using the system formulation of the IVP given
in (1.64), (1.65).
(a) Write the IVP as a first-order system.
(b) Derive an explicit finite difference approximation of the system in part (a)

that has truncation error O(k2).
(c) Comment on the differences between the system and direct approaches for

solving the problem (e.g., ease of use, computational complexity, satisfying
the initial conditions, etc.).

1.20. Write the following IVPs as first-order systems.
(a) The van der Pol equation y′′ + a(1 − y2)y′ + y = 0, assuming y(0) =

1, y′(0) = 0.
(b) d

dt (e
y dy

dt ) − ty = 0, where y(0) = 3, y′(0) = −1.
(c) y′′′′−y′′+µ(t)y = t+1, where y(0) = 0, y′(0) = −1, y′′(0) = 4, y′′′(0) = 1.
(d) A reduced form of the equations for planetary motion is

r′′ − rθ′ = −K

r
,

rθ′′ + 2r′θ′ = 0.

Assume r(0) = a, r′(0) = b, θ(0) = c, θ′(0) = d.

1.21. There are various ways to rewrite equations in system form, and this
exercise demonstrates this for the problem

y′′ + g(y)y′ + y = 0, where y(0) = 1, y′(0) = 0.

(a) Rewrite this in system form using the change of variables in (1.10), (1.11).
(b) Suppose it is possible to find a function G(y) such that dG

dy = g(y). In this
case the Lienard transform is u = y, v = y′ + G(y). What is the resulting
first-order system for u = (u, v)T ?

(c) Explain why there is no significant difference between the systems in (a)
and (b) if the problem is linear as in the mass–spring–dashpot equation
(1.16). Can the same be said if the equation is nonlinear as it is for the
van der Pol equation y′′ + a(1 − y2)y′ + y = 0?

1.22. This problem examines different ways to derive, and express, the veloc-
ity Verlet method.
(a) Derive (1.77) directly from (1.73), (1.74) by using Taylor’s theorem on

y(tj + k).
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(b) The Verlet method is obtained by using a centered O(k2) approximation
in (1.71). What is the resulting finite difference approximation?

(c) Show that velocity Verlet can be reduced to the Verlet method derived in
(b).

1.23. A symplectic Euler method for solving (1.71) is

yj+1 = yj + kvj ,

vj+1 = vj +
k

m
F (yj+1).

(a) Derive this method and show that it is first order. Also show that the
method is symplectic.

(b) Use this method to solve the problem used for Figure 1.9. Also solve the
problem using the standard Euler method. With this, on the same axes
in the yv-plane, plot the computed points (y, v) for 0 ≤ t ≤ 18 using
M = 180. Also plot the exact solution on the same axes.

(c) Plot the computed energy H obtained from the two methods in (b), for
0 ≤ t ≤ 18 using M = 180.

(d) Based on your results from (b) and (c) comment on the effectiveness of
the two methods.

1.24. The equation for a linear harmonic oscillator can be written in system
form as y′ = v, v′ = −y, and the Hamiltonian is H(t) = 1

2y2 + 1
2v2.

(a) If the θ-method is used (see Exercise 1.5) what are the resulting finite
difference equations for y and v? The same θ should be used in each
equation.

(b) Letting Hj = 1
2y2

j + 1
2v2

j , show that the θ-method results in Hj+1 = γHj ,
where γ = 1 + k2(1− 2θ)/(k2θ + 1). From this explain why the only value
of θ that conserves energy corresponds to the trapezoidal method. Also,
compare this with what happens to the energy as j increases using Euler
or backward Euler.

(c) What if RK2 is used on both equations, is energy conserved?

1.25. This problem considers the equation for a pendulum 	d2θ
dt2 = −g sin(θ),

where θ(0) = π
4 , θ′(0) = 0, and 	, g are positive constants

(a) By introducing the angular velocity θ′ write the equation as a first-order
system.

(b) Write down the velocity Verlet method for the resulting system.
(c) The Hamiltonian for the pendulum is H = 1

2	(θ′)2 − g cos(θ). Show that
this is constant and determine its value.

(d) Use RK4 on the system in (a) and the Verlet method from (b) to solve
the problem for 0 ≤ t ≤ 100. Use these methods to plot, on the same axes,
H as a function of t. Use M = 200 and take 	 = g = 1.

(e) In comparison to the exact result, how do the two methods do in ap-
proximating the Hamiltonian over this time interval? What if one uses
M = 400 or M = 100?



Exercises 41

1.26. Suppose to solve (1.71) one uses an implicit scheme of the form

yj+1 = p(yj , vj , yj+1, vj+1),
vj+1 = q(yj , vj , yj+1, vj+1).

Assume that these can be solved at least implicitly with the result that yj+1 =
f(yj , vj), vj+1 = g(yj , vj).
(a) Writing p = p(y, v, r, s), q = q(y, v, r, s) show that the method is symplec-

tic if and only if pyqv − pvqy + psqr − prqs + pr + qs = 1, ∀y, v, r, s.
(b) Suppose backward Euler is used to solve both (1.73) and (1.74). Show

that this produces a method that is not symplectic.
(c) Show that the trapezoidal method (1.75) and (1.76) is not symplectic.
(d) The implicit midpoint method applied to (1.73), (1.74) is yj+1 = yj +

1
2k(vj + vj+1), vj+1 = vj + 1

mkF ((yj + yj+1)/2). Show that this method
is symplectic.

(e) Show that the method in part (d) has truncation error O(k2).

1.27. Show that yj+1 = −yj , vj+1 = vj conserves area. Explain in geometric
terms why it is not symplectic.

1.28. The equations of motion (1.73), (1.74) are time reversible. To de-
fine this for a numerical method, suppose that with the initial condition
y = (ya, va)T the method takes one time step and produces the value
y = (yA, vA)T . The method is time reversible if it will then take the initial con-
dition y = (yA,−vA)T and in one time step produce the value y = (ya,−va)T .
The idea here is that you can get back to your original position ya by simply
reversing your velocity.
(a) Show that Verlet is time reversible.
(b) Show that Euler is not time reversible.
(c) Is the symplectic Euler method in Exercise 1.23 time reversible?

1.29. On several occasions in this book we end up having to solve a first-order
system of the form

Ay′(t) = By(t),

where the n × n matrix A is invertible. Neither A nor B depends on t.
(a) Show that the Euler, trapezoidal, and RK4 methods reduce to solving one

or more matrix equations at each time step.
(b) Discuss the differences in the computational effort per time step in the

three methods.

1.30. Suppose in Table 1.1 that the grid points are not necessarily equally
spaced and that hi = xi − xi−1 and hi+1 = xi+1 − xi.
(a) Show that the centered difference formula for the first derivative becomes

f ′(xi) =
f(xi+1) − f(xi−1)

hi+1 + hi
+ O

(
h2

i+1

hi+1 + hi

)
+ O

(
h2

i

hi+1 + hi

)
.
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(b) Show that the centered difference formula for the second derivative be-
comes

f ′′(xi) = 2
hif(xi+1) − (hi+1 + hi)f(xi) + hi+1f(xi−1)

hi+1hi(hi+1 + hi)

+ O

(
h2

i+1

hi+1 + hi

)
+ O

(
h2

i

hi+1 + hi

)
.

1.31. Consider the second-order difference equation yj+1 +2αyj +βyj−1 = 0,
where α, β are known constants with β 	= α2.
(a) By assuming a solution of the form yj = rj , show that the general solution

of the equation has the form yj = Arj
+ + Brj

−, where A,B are arbitrary
constants and r± = −α ±

√
α2 − β.

(b) Show that if α2 < β then the solution in (a) can be written as yj =
Asj cos(ωj + a), where A, a are arbitrary constants and s, ω depend on
α, β.

(c) Show that if α2 = β then the solution has the form yj = (A + Bj)rj .
(d) What is the solution if the equation is yj + 2αyj−1 + βyj−2 = 0?

1.32. This problem considers how to check to see whether a numerical algo-
rithm is correct. The equation to be solved is

y′ + f(t)y = g(t), for 0 < t,

where the initial condition is y(0) = a.
(a) Derive a second-order accurate approximation for the IVP.
(b) Usually one is given f and g and then is expected to solve for y. However,

suppose one were to identify, or pick, the solution first. Explain how to
determine f or g in this case along with a.

(c) Explain how to use the idea in (b) to test that the computer code for your
algorithm in (a) is correct. Your numerical test(s) should include check(s)
on the rate of convergence, on correctly coding the functions f and g, as
well as handling the initial condition correctly.

(d) Are your tests in (c) extendable to more complicated equations? For ex-
ample, are they extendable to a nonlinear equation such as y′ + f(t)y +
h(t)y3 = g(t)?

1.33. This problem considers how to solve the nonlinear equation obtained
in going from tj to tj+1 using an implicit method. The trapezoidal method is
used as a prototype for this situation.
(a) For the trapezoidal method show that finding yj+1, given yj , is the same

as finding z = yj+1 that satisfies g(z) = 0, where g(z) ≡ kf(tj+1, z) −
2z + 2yj + kfj .

(b) Newton’s method for solving g(z) = 0 involves picking z0 and then letting

zi+1 = zi − g(zi)
g′(zi)

, for i = 0, 1, 2, 3, . . . .
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Assume that the stopping condition for this iteration is |zi+1 − zi| ≤ ε,
where ε is given. What is g′(zi)?

(c) For convergence, z0 should be close to yj+1. Explain how to pick z0. Also,
explain how ε should be chosen in relation to k and why one should not
pick ε too small.

(d) What are g(z) and g′(zi) when using the backward Euler method?

1.34. The idea of A-stability was introduced by Dahlquist [1963]. Write a
short essay explaining why he used the letter A in the name of this property.
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Two-Point Boundary Value Problems

2.1 Introduction

In this chapter we investigate how to find the numerical solution of what are
called two-point boundary value problems (BVPs). The most apparent differ-
ence between these problems and the IVPs studied in the previous chapter
is that BVPs involve only spatial derivatives. What this means is that we
consider how to solve a differential equation in an interval 0 < x < 	, where
the solution is required to satisfy conditions at the two endpoints x = 0, 	.
Examples of such problems are below.

2.1.1 Birds on a Wire

A string, or cord, strung between two points is what effectively occurs with
telephone wires running between two telephone poles. The cord deflects due to
its weight and other forces it is subjected to (e.g., birds sitting on the wire as
in Figure 2.1). Assuming that the poles are located at x = 0, 	 and letting y(x)
designate the vertical deflection of the cord, then the mathematical problem
has the form

d2y

dx2
= f(x), for 0 < x < 	, (2.1)

where
y(0) = y(	) = 0. (2.2)

In the differential equation (2.1), the function f(x) accounts for the various
forces on the cord. The two boundary conditions in (2.2) represent the fact
that the cord is held fixed at the left and right ends.

2.1.2 Chemical Kinetics

In the study of reactions of certain chemical mixtures one comes across the
following problem
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Figure 2.1. Animated example demonstrating the vertical deflection of a string due
to loading (Pixar Animation Studios [2000]). Note the asymmetry in the loading
function in this example.

d2y

dx2
= −γey, for 0 < x < 	, (2.3)

where y(0) = y(	) = 0. This is known as Bratu’s equation, and one of its
distinguishing features is that it is nonlinear. A consequence of this is that
the problem has no solution if γ > γc, where γc ≈ 3.5. On the other hand, if
γ = γc then it has one solution, and if γ < γc then it has exactly two solutions.
This situation is interesting from a numerical point of view. For example, one
question that arises is whether it is possible to construct an algorithm that is
capable of finding both solutions if γ < γc. This is not easy to answer and we
return to this issue later in the chapter.

2.2 Derivative Approximation Methods

To introduce the ideas we start with the problem of finding the function y(x)
that satisfies

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = f(x), for 0 < x < 	, (2.4)

where
y(0) = α and y(	) = β. (2.5)

In this BVP, the functions p(x), q(x), f(x) are given, as are the constants
	, α, β. One can prove that if the functions p(x), q(x), f(x) are continuous,
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with q(x) ≤ 0, for 0 ≤ x ≤ 	, then this problem has a unique solution (Keller
[1992]). It is assumed throughout this chapter that this holds.

We will drive a numerical approximation for the BVP in (2.4), (2.5) using
a sequence of steps much like what we used for IVPs. There are, however,
significant differences that will be apparent once the finite difference approx-
imation has been completed.

Step 1. We first introduce the spatial points where we will compute the
solution. These points are labeled sequentially as x0, x1, x2, . . . , xN+1, and a
schematic drawing indicating their location along the x-axis is shown in Figure
2.2. We confine our attention to a uniform grid with step size h, so we have
the following formula for the grid points

xi = ih, for i = 0, 1, 2, . . . , N + 1. (2.6)

The labeling system used here has x0 = 0 and xN+1 = 	, with step size
h = 	/(N + 1).

Step 2. Evaluate the differential equation at the grid point x = xi to obtain

y′′(xi) + p(xi)y′(xi) + q(xi)y(xi) = f(xi). (2.7)

Step 3. Replace the derivative terms in Step 2 with finite difference approx-
imations. As with IVPs, there are numerous choices and a few are listed in
Table 1.1. We choose the centered difference formulas, which means we use
the following expressions

�

�

��

α

β

�� �� �
� �

Figure 2.2. Grid system used to derive a finite difference approximation of the
BVP.
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y′(xi) =
y(xi+1) − y(xi−1)

2h
− 1

6
h2y′′′(ηi), (2.8)

y′′(xi) =
y(xi+1) − 2y(xi) + y(xi−1)

h2
− 1

12
h2y′′′′(η̄i), (2.9)

where ηi and η̄i are between xi−1 and xi+1. Introducing these into (2.7), we
obtain

y(xi+1) − 2y(xi) + y(xi−1)
h2

+p(xi)
y(xi+1) − y(xi−1)

2h
+q(xi)y(xi)+τi = f(xi).

(2.10)
The truncation error appearing in the above equation is

τi = − 1
12

h2y′′′′(η̄i) − 1
6
h2p(xi)y′′′(ηi)

= O(h2). (2.11)

Simplifying (2.10) yields

ciy(xi+1) + aiy(xi) + biy(xi−1) + h2τi = h2f(xi), (2.12)

where

ai = −2 + h2q(xi), (2.13)

bi = 1 − h

2
p(xi), (2.14)

ci = 1 +
h

2
p(xi). (2.15)

Step 4. Drop the truncation error. This is the step where we go from an exact
problem to one that is, hopefully, an accurate approximation of the original.
After dropping τi in (2.12), the resulting finite difference equation is

ciyi+1 + aiyi + biyi−1 = h2f(xi), for i = 1, 2, . . . , N. (2.16)

From the boundary conditions (2.5) we also have that

y0 = α and yN+1 = β. (2.17)

We have completed the derivation of the finite difference approximation for
the BVP. One important question left unanswered is, how accurate is this
approximation? For example, to derive (2.16) from (2.12) we dropped a term
that is O(h4). Does this mean that we can expect yi to be within O(h4) of y(xi)
or is it the truncation error that determines this difference? This question will
be answered shortly.



2.2 Derivative Approximation Methods 49

2.2.1 Matrix Problem

With the finite difference equation in (2.16) we have ended up with N equa-
tions in N unknowns. This system can be written in matrix form by collecting
the unknowns into a vector as follows

y =

⎛
⎜⎜⎜⎝

y1

y2

...
yN

⎞
⎟⎟⎟⎠ . (2.18)

In this case, (2.16) and (2.17) combine to give the matrix equation

Ay = z, (2.19)

where

z =

⎛
⎜⎜⎜⎜⎜⎝

h2f1 − αb1

h2f2

...
h2fN−1

h2fN − βcN

⎞
⎟⎟⎟⎟⎟⎠ (2.20)

and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 c1

b2 a2 c2 0
b3 a3 c3

. . . . . . . . .
0 cN−1

bN aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.21)

The matrix A is tridiagonal, with the superdiagonal formed from the ci’s and
the subdiagonal formed from the bi’s.

Our task is now to solve the matrix equation (2.19). The tridiagonal
structure of A can be used to advantage to reduce the computational ef-
fort needed to solve the problem. If one carries out an LU factorization of A
and keeps track of the zeros in the matrix, a particularly simple algorithm
is produced (Isaacson and Keller [1966]). The procedure, given in Table 2.1,
takes 8N − 7 flops (floating-point operations), which is significantly less than
the 2

3N3 + O(N2) flop count one gets with a full LU factorization. Another
advantage is that it requires substantially less storage, needing approximately
six N -vectors. The question left open, however, is whether the matrix equation
even has a solution. For this we need a bit of theory.
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Set: w = a1, y1 =
z1

w
For i = 2, 3, . . . , N

vi =
ci−1

w
w = ai − bivi

yi =
zi − biyi−1

w
End

For j = N − 1, N − 2, . . . , 1

yj = yj − vj+1yj+1

End

Table 2.1. Algorithm for solving Ay = z when A is the tridiagonal matrix given
in (2.21).

2.2.2 Tridiagonal Matrices

Two issues that need to be addressed before running off and coding the method
are whether the matrix equation (2.19) has a unique solution and even if it
does whether the algorithm in Table 2.1 can be used to find the solution of
the BVP. With this in mind, we introduce the row sums ri for A, defined as

ri =

⎧⎨
⎩

|bi| + |ci| if i 	= 1, N,
|c1| if i = 1,
|bN | if i = N.

(2.22)

The reason for considering ri is that one of the more popular, and easier, tests
for invertibility of a matrix is to compare ri with the value of the corresponding
diagonal entry ai. This idea gives rise to the following definition.

Definition 2.1. The tridiagonal matrix A in (2.21) is diagonally dominant
if |ai| ≥ ri, ∀i. It is strict diagonally dominant if strict inequality holds ∀i.

As an example consider the following tridiagonal matrices

A1 =

⎛
⎝2 1 0

1 1 1
0 1 4

⎞
⎠ , A2 =

⎛
⎝2 1 0

1 -2 1
0 1 4

⎞
⎠ , A3 =

⎛
⎝2 1 0

1 3 1
0 1 4

⎞
⎠ .

In this case, A1 is not diagonally dominant, A2 is diagonally dominant but it
is not strict diagonally dominant, and A3 is strict diagonally dominant.

It is shown in most books on numerical linear algebra that a strict diago-
nally dominant matrix is invertible. Unfortunately, our matrix does not qualify
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(e.g., let p = q = 0), and so we need a more refined test. What is needed is a
condition that guarantees that the variable w in Table 2.1 is always nonzero.
The theorem below identifies when this happens.

Theorem 2.1. The tridiagonal matrix A in (2.21) is invertible, and the al-
gorithm in Table 2.1 can be used to solve Ay = z if either one of the following
holds:
1. A is strict diagonally dominant,
2. A is diagonally dominant, ci 	= 0 ∀i, and |bN | < |aN |.

The second condition is the one we will use and it is therefore worth under-
standing why the stated conditions are needed. As mentioned earlier, the only
operation of concern in the algorithm is the division by w, and so the majority
of the proof consists of showing this cannot happen. The first thing to notice
is that for i = 2, |v2| = |c1/a1| ≤ 1, where the inequality holds because the
matrix is diagonally dominant. With this |w| = |a2 − b2v2| ≥ |a2| − |b2v2| ≥
|a2| − |b2| > 0, where the last inequality holds because the matrix is diago-
nally dominant and c2 	= 0. Continuing this argument, using induction, it is
not hard to show that |vi| ≤ 1 and |w| ≥ |ai| − |bi| > 0. As before, the last
inequality holds, except for the last row of the matrix, because we are assum-
ing |ai| ≥ |bi|+ |ci| and ci 	= 0. The fact that it holds for i = N is because we
have explicitly assumed that |bN | < |aN |. Therefore, w is never zero and the
algorithm can be used to solve the matrix equation. The proof for the first
condition is similar and can be found in Süli and Mayers [2003].

The above theorem will be used to establish conditions that ensure that
(2.19) has a unique solution. Before doing this, however, there is another
useful bit of information from linear algebra related to the eigenvalues of a
tridiagonal matrix. For this it is assumed that the entries of A are constant,
that is, it has the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a c

b a c 0
b a c

. . . . . . . . .
0 b a c

b a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.23)

Given the formulas in (2.14) and (2.15), for smaller values of h the coefficients
satisfy bc > 0. In this case one finds that the eigenvalues λi of (2.23) are given
as (see Exercise 2.28)

λi = a + 2
√

bc cos
(

iπ

N + 1

)
, for i = 1, 2, . . . , N. (2.24)

The usefulness of this result comes from the fact that the condition number
cond2(A) of the matrix, using the Euclidean norm, is the ratio of the largest
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and smallest eigenvalues (in absolute value). To determine these values note
that for small values of h it follows from Taylor’s theorem, and the formulas
in (2.13)–(2.15), that a + 2

√
bc = (q − 1

4p2)h2 + O(h4). Given our assumption
that q ≤ 0 then a + 2

√
bc ≤ 0 for small values h. Assuming this holds then,

using (2.24), we have that maxi=1,...,N |λi| = |λN | and mini=1,...,N |λi| = |λ1|.
Consequently,

cond2(A) =

∣∣∣∣∣∣
a + 2

√
bc cos

(
Nπ

N+1

)
a + 2

√
bc cos

(
π

N+1

)
∣∣∣∣∣∣ . (2.25)

2.2.3 Matrix Problem Revisited

We now return to the question of whether the finite difference approximation
for the BVP has a unique solution. To answer this we use the second option
in Theorem 2.1. Because we are assuming q(x) ≤ 0, to use this theorem we
need 2 − h2qi ≥ |1 + hpi/2| + |1 − hpi/2| and 1 + hpi/2 	= 0. As it turns out,
both of these conditions will hold if |hp(xi)| < 2, ∀i. With this we obtain the
following theorem.

Theorem 2.2. If the functions p(x), q(x), f(x) are continuous for 0 ≤ x ≤
	, with q(x) ≤ 0, then the finite difference approximation as expressed in
(2.19) has a unique solution if the step size satisfies hp∞ < 2, where p∞ =
max0≤x≤� |p(x)|.
With the question of existence of a solution out of the way, the next issue is
whether round-off error is a problem. For this we limit the conversation to
the special case of when p and q are constants. To make use of the formula in
(2.25), from Taylor’s theorem, if N is large,

cos
(

Nπ

N + 1

)
= −1 +

π2

2N2
+ O

(
1

N3

)
,

cos
(

π

N + 1

)
= 1 − π2

2N2
+ O

(
1

N3

)
.

With these and the formulas for the coefficients in (2.13)–(2.15), we have that
as the number of grid points increases,

cond2(A) =
16N2

4π2 + (p2 − 4q)	2
+ O(N). (2.26)

For many of the problems we consider, N is usually no larger than about 102,
and so the condition number of the matrix is not particularly large. In other
words, the problems are reasonably well conditioned. Even so, (2.26) shows
that the condition number of the problem increases quickly with N, and it is
necessary to keep this in mind if a large number of grid points are needed to
solve the problem.
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A result such as Theorem 2.2 increases a person’s comfort level when
calculating the numerical solution in the sense that one knows what conditions
are needed to guarantee that a solution exists. However, there are certainly
step sizes and functions p(x), q(x), f(x) that don’t satisfy these conditions, yet
the code, and BVP, are just fine. More important, what the theorem does not
address is just how accurately the computed solution approximates the exact
solution of the BVP. One approach to answering this question involves using
the method to actually solve a problem, and that brings us to the following
examples.

Example 1
Consider the following BVP

y′′ − y = − sin(2πx), for 0 < x < 1, (2.27)

where y(0) = y(1) = 0. The exact solution in this case is

y =
sin(2πx)
1 + 4π2

. (2.28)

The finite difference equation in (2.16) takes the form

yi+1 − (2 + h2)yi + yi−1 = −h2 sin(2πxi), for i = 1, 2, . . . , N, (2.29)

where y0 = yN+1 = 0. The exact solution is shown in Figure 2.3 along with
two solutions computed using (2.29). The computed solution is shown for a
coarse grid, N = 2, and a somewhat finer grid, N = 6. Given the improve-
ment obtained by increasing N , it would appear that the method does indeed
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Figure 2.3. Exact solution of (2.27) along with the numerical solution obtained
using (2.29) when N = 2, 6. The symbols are the computed values, and the dashed
lines are drawn by the plotting program simply to connect the points.
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Figure 2.4. The data from Figure 2.3 are replotted using spline interpolation to
connect the computed values.

converge to the exact solution. Whether this actually happens is considered
shortly. The reason for the postponement is that there is something unsatis-
factory about the computed solutions in Figure 2.3. It is not unreasonable to
want to know the solution throughout the interval, and not just at the few
points used in the calculation. For example, even for the birds on a wire in
Figure 2.1, the entire curve is needed to draw the picture. One option is to
simply use piecewise linear interpolation, as was done by the plotting program
used to draw Figure 2.3. This is marginally OK, but this generally means that
a relatively large number of grid points will be needed so that the resulting
curve appears smooth. Another option is to use a method such as spline in-
terpolation to connect the computed values. This is fairly painless, because
most plotting programs have this capability, and to illustrate what results, the
data are replotted using spline interpolation in Figure 2.4. The N = 2 curve
is not so great but the N = 6 result is a respectable reproduction of the exact
solution. A third option for connecting the points is to incorporate splines at
the beginning and use them when deriving the approximation of the BVP. A
variation of this idea is explored later in the chapter when we discuss residual
methods.

Example 2
As a second example we consider the problem of solving

εy′′ − x2y′ − y = 0, for 0 < x < 1, (2.30)

where y(0) = y(1) = 1 and ε = 10−2. It is possible to solve this equation using
hypergeometric functions, but a simple closed-form expression is not avail-
able (Holmes [1995]). So, turning to a numerical solution, the finite difference
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approximation is given in (2.16), where ai = −2 − h2/ε, bi = 1 + hx2
i /(2ε),

ci = 1 − hx2
i /(2ε), and f(xi) = 0. According to Theorem 2.2 we should pick

a step size that satisfies h < 2ε. However, ignoring this useful piece of infor-
mation, various attempts at finding a numerical solution are shown in Figure
2.5. The plots for N = 10 and N = 20 show that the method has difficulty
computing the solution in the vicinity of x = 1. The reason is the rapid change
in the solution in this region, which is an example of what is called a bound-
ary layer. It is necessary to have at least a couple of grid points within this
layer before the numerical solution is capable of giving a reasonable answer,
and that is why N = 120 is successful. It is possible to derive finite difference
approximations for layer problems that do not require such a small step size
and an example can be found in Exercise 2.3. There are also much more so-
phisticated methods, and the book by Miller et al. [1996] should be consulted
for more information about this.

2.2.4 Error Analysis

The above examples demonstrate the effectiveness of the method, and so it is
now time to determine how the accuracy depends on the spatial step size h.
To examine this issue we introduce the usual three solutions, which are

y(xi) ≡ exact solution of the BVP at x = xi; (2.31)
yi ≡ exact solution of finite difference equation at x = xi; (2.32)
yi ≡ solution of difference equation at x = xi calculated

by the computer. (2.33)

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

x−axis

S
o

lu
ti

o
n

 N = 10
 N = 20
 N = 120

Figure 2.5. Computed solution of (2.30) when N = 10, 20, 120. The steep rise in
the solution near x = 1 is known as a boundary layer.
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We are interested in the difference between the exact solution of the BVP
and the values we end up computing using our algorithm. Therefore, we are
interested in the error ei = |y(xi) − yi|. The question we are going to ask is,
if we increase N in (2.19) will ei converge to zero or at least decrease down
to the level of the round-off? We want the answer to this question to be yes
and that it is true no matter what choice we make for i. If this holds then the
method is convergent. To help make it more apparent what is contributing to
the error we rewrite it as follows

ei = |y(xi) − yi + yi − yi|. (2.34)

From this the error can be considered as coming from the following two
sources:

y(xi) − yi: This is the error, at x = xi, arising from approximating the BVP
with a finite difference equation. As with IVPs, we should be able to
estimate its size using the truncation error, and this is demonstrated in
the next example.

yi − yi: This is the error, at x = xi, due to round-off when using floating-
point calculations to compute the solution of the matrix equation. As
shown in numerical linear algebra, a matrix with a large condition number
cond(A) can be so sensitive to round-off that it is impossible to calculate
the solution using floating-point arithmetic (Demmel [1997]). To quantify
what this means, when using double-precision, if cond(A) ≈ 10n, then
a rule of thumb is that one should not expect yi to be correct to any
more than about 15−n digits. From our earlier estimate for the condition
number given in (2.26) we have that round-off is not of particular concern
certainly if N is no more than 102 or even 103.

From the above discussion, we see that the remaining mystery surround-
ing the accuracy of the computation concerns how the difference y(xi) − yi

depends on the truncation error. This is the topic of the next example.

Example 3
Suppose the BVP is

d2y

dx2
− γy = f(x), for 0 < x < 	, (2.35)

where y(0) = α and y(	) = β. It is also assumed that γ > 0. To investigate how
the error depends on the accuracy of the approximation let Ei = y(xi) − yi.
From (2.12) and (2.16) one finds that

Ei+1 − (2 + γh2)Ei + Ei−1 = −h2τi, for i = 1, 2, . . . , N, (2.36)

where E0 = 0 and EN+1 = 0. From this we get (2 + γh2)Ei = Ei+1 + Ei−1 +
h2τi. Letting E∞ = max |Ei| and τ∞ = max |τi|, we have that
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|(2 + γh2)Ei| = |Ei+1 + Ei−1 + h2τi|
≤ |Ei+1| + |Ei−1| + h2|τi|
≤ E∞ + E∞ + h2τ∞
= 2E∞ + h2τ∞.

Because this holds ∀i, then (2 + γh2)E∞ ≤ 2E∞ + h2τ∞, and from this we
conclude that γE∞ ≤ τ∞. Recalling that τ∞ = O(h2), it follows that the
maximum error satisfies E∞ = O(h2). Therefore, the pointwise error satisfies
y(xi) − yi = O(h2).

It is possible to extend the argument used in the above example and prove
the following theorem.

Theorem 2.3. In addition to the conditions assumed in Theorem 2.2, if
q(x) ≤ −γ < 0 for 0 ≤ x ≤ 	 then

|y(xi) − yi| ≤ C [τ∞ + max {|E0|, |EN+1|}] , (2.37)

where C = max {1, 1/γ}.
With the approximation in (2.16), we have τ∞ = O(h2) and E0 = EN+1 = 0.
Therefore, from the above theorem we can conclude that the approximate
solution yi converges to the exact solution y(xi) as h → 0 and the rate of
convergence is O(h2). Another useful conclusion we can derive from this the-
orem concerns situations in which we do not satisfy the boundary conditions
exactly but end up with either E0 = O(h) or EN+1 = O(h). In this case,
even though we have O(h2) approximations everywhere else, we end up with
|y(xi) − yi| = O(h). This same observation was made for IVPs, as demon-
strated in Exercise 1.18.

Armed with this new information we return to the two examples considered
earlier.

Example 1 (cont’d.)
To demonstrate that the convergence is quadratic for this example, in Figure
2.6 the error is plotted as a function of the number of grid points used in the
calculation. Actually, two different measures of the error are plotted. One is
the pointwise error ei = |y(xi) − yi| at xi = 1

3 and the other is the maximum
error e∞ = max |y(xi) − yi|. Both graphs show that by increasing N from 10
to 102, the error decreases from about 10−3 to about 10−5, and this rate of
decrease continues as N increases. In other words, the method does indeed
converge quadratically.

Example 2 (cont’d.)
It is of interest to note that Theorem 2.2 states that the finite difference equa-
tion has a well-defined solution if h < 2ε. Because h = 1/(N+1) and ε = 10−2,
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the requirement for this problem is N > 49. Perhaps more telling is Theorem
2.3, which for this problem gives us that |y(xi) − yi| ≤ τ∞/ε. Consequently,
the fact that ε is small has an impact on what we would use as an estimate
for guaranteeing that yi is close to y(xi).

To recap what we have learned about the error, as shown in (2.34), the
difference between the exact and computed solutions depends on y(xi)−yi as
well as on the error arising from round-off. The latter, however, is relatively
small if A is well conditioned. In this case the computed solution will converge
to the exact solution as h is decreased at a rate equal to the truncation error.
This holds until the error gets down to the level of the error coming from
round-off, with the exact level depending on the condition number of A.

2.2.5 Extensions

The ideas used to construct the finite difference approximation to the linear
BVP are easily extended to more complex problems.

Boundary Conditions

It is not uncommon to find real-world situations in which the boundary con-
ditions involve specifying a flux or stress condition. A consequence of this for
the mathematical problem is that one or more of the boundary conditions in-
volve derivatives. To demonstrate how to handle such situations suppose the
condition at x = 0 is replaced with
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ay(0) + by′(0) = α. (2.38)

Proceeding as before, we still obtain (2.16). The difference is that we must
now introduce a finite difference approximation into the boundary condition.
Our objective is an approximation of the BVP that has an error that is O(h2),
so this limits our choices for what to use to approximate y′(0). One possibility
is to introduce a ghost point x−1, and this is explored in Exercise 2.4. Another
approach is to use a one-sided approximation that is O(h2). One is listed in
Table 1.1, and substituting it into (2.38) leads to the equation

ay0 +
b

2h
(−y2 + 4y1 − 3y0) = α, (2.39)

or equivalently

y0 =
b

2ah − 3b
(y2 − 4y1) +

2αh

2ah − 3b
. (2.40)

The resulting finite difference approximation for the BVP is given by the
tridiagonal matrix equation in (2.19), except that the first row is modified.
In particular, a1 is replaced with a1 − 4b1b/(2ah − 3b), c1 is replaced with
c1 + b1b/(2ah− 3b), and z1 is replaced with h2f1 − 2αhb1/(2ah− 3b). This is
assuming, of course, that 2ah 	= 3b.

Nonlinear BVPs

The extension of the finite difference method to nonlinear BVPs is relatively
straightforward. The difficulty is solving the resulting system of nonlinear
algebraic equations. To demonstrate what is involved, suppose the differential
equation is

y′′ = f(x, y, y′), for 0 < x < 	, (2.41)

where
y(0) = α and y(	) = β. (2.42)

This problem includes the linear equation in (2.4), with f(x, y, y′) = −p(x)y′−
q(x)y + f(x). It also includes nonlinear equations such as f(x, y, y′) = 1 + y3

and f(x, y, y′) = yy′ + x, as well as the chemical kinetics problem in (2.3). In
formulating nonlinear BVPs, the question of the existence and uniqueness of
the solution becomes challenging. The usual theorem quoted to guarantee that
this occurs requires the function f(x, y, z) to be smooth with ∂f

∂z bounded and
∂f
∂y bounded and positive. As it turns out, it is not uncommon for applications
to produce smooth f ’s that do not satisfy one or more of these conditions,
and an example is the chemical kinetics equation given in (2.3). It is beyond
the scope of this text to pursue the theory underlying nonlinear BVPs, and
the reader is referred to Keller [1992] for a detailed discussion of this topic.
The point of view taken here is that there are one or more smooth solutions
of the problem and we are going to derive a method for calculating them.
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Using the centered O(h2) approximations in (2.8), (2.9) we obtain the
following nonlinear finite difference equation

yi+1 − 2yi + yi−1 = h2f

(
xi, yi,

yi+1 − yi−1

2h

)
, for i = 1, 2, . . . , N, (2.43)

where
y0 = α and yN+1 = β. (2.44)

By setting

y =

⎛
⎜⎜⎜⎝

y1

y2

...
yN

⎞
⎟⎟⎟⎠ , (2.45)

the equations in (2.43) can be written in vector form as F(y) = 0, where

Fi ≡ yi+1 − 2yi + yi−1 − h2f

(
xi, yi,

yi+1 − yi−1

2h

)
. (2.46)

We are now faced with solving a nonlinear system of equations, and the con-
ventional approach is to use Newton’s method. To explain what this entails,
recall that Newton’s method starts with a user-specified approximation z0

of the solution and then constructs a sequence z1, z2, z3, . . . that hopefully
converges to a solution of the equation. The word “hopefully” is used here
because one is usually not sure whether the proximity requirement that z0

be close to the solution is actually satisfied. We won’t worry about this right
now and instead concentrate on what form the method takes for this example.
Using Newton’s method, the zk’s are determined using the equation

zk+1 = zk − J−1
k Fk, for k = 0, 1, 2, . . . , (2.47)

where Jk is the Jacobian of F evaluated at zk and Fk = F(zk). For the
problem at hand, as seen in (2.46), Fi depends only on three components
of y, so Jk contains mostly zeros. Carrying out the needed calculations, one
finds, in fact, that the Jacobian is the tridiagonal matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ā1 c̄1

b̄2 ā2 c̄2 0
b̄3 ā3 c̄3

. . . . . . . . .
0 c̄N−1

b̄N āN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.48)

where
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āi = −2 − h2 ∂f

∂y
(xi, yi, zi) , (2.49)

b̄i = 1 − h

2
∂f

∂z
(xi, yi, zi) , (2.50)

c̄i = 1 +
h

2
∂f

∂z
(xi, yi, zi) , (2.51)

zi =
yi+1 − yi−1

2h
. (2.52)

In the above equation, the z derivative indicates differentiation with respect
to the third component of f , i.e., ∂f

∂z = ∂f
∂z (x, y, z). With this (2.47) can be

written as the matrix equation

Jkzk+1 = bk, for k = 0, 1, 2, . . . , (2.53)

where bk = Jkzk − Fk. To use this it is necessary to select a start-off vector
z0. Although it is not uncommon to see people simply take z0 = 0, it is
generally better to try to pick something that contains a bit more information
about the solution. With this in mind, remember that z0 serves as the initial
approximation of the solution vector y. For this reason, it is worth having this
approximation satisfy at least the boundary conditions, and one possibility is
to use a linear function. Other approximations are certainly worth considering,
and this is demonstrated in the example below.

In looking at (2.53) it is seen that Newton’s method for this problem re-
duces to solving a tridiagonal matrix equation that must be solved multiple
times to find the solution of the BVP. There is no doubt that this is more
computational work than is needed for the linear problem, but it is not over-
whelming because of the efficiency of the tridiagonal solver.

Example 4
As an example consider Bratu’s equation (2.3). Taking γ = 1 the problem
becomes

y′′ = −ey, for 0 < x < 1, (2.54)

where y(0) = y(1) = 0. For this BVP, f(x, y, z) = −ey. From this one finds
that the entries in the Jacobian (2.48) are āi = −2 + h2eyi and b̄i = c̄i = 1.
As stated earlier, there are two solutions of this problem. The general form
for each solution is

y = −2 ln
[
cosh(c(1 − 2x))

cosh(c)

]
, (2.55)

where c satisfies cosh(c) = 2
√

2c. There are two solutions of this equation, and
they are c1 = 0.379 · · · and c2 = 2.73 · · · . These give rise to the two solutions
of the BVP, and our algorithm is capable of computing either of them. This
is done by picking z0 in an appropriate way. In deciding what choice to make,
note that the linear function connecting the two boundary conditions leads
only to z0 = 0. To find a better z0 it is seen from (2.54) that the solution must
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Figure 2.7. Numerical solution of (2.54) obtained using the finite difference ap-
proximation in (2.43), with N = 6, and the exact solution (2.55), when c = c1.
Also shown is the maximum error e∞ = max |y(xi) − yi|, which shows the decrease
expected from a O(h2) approximation.

be concave down. The simplest such function that also satisfies the boundary
conditions is the quadratic µx(1 − x), where µ is a positive constant. Taking
µ = 1 leads to a choice for z0 that converges to the solution corresponding
to c = c1 in (2.55). Similarly, µ = 16 leads to the solution with c = c2. To
demonstrate the effectiveness of the method the computed and exact solutions
are shown in Figure 2.7 in the case c = c1. Also shown is the maximum error
as a function of the number of grid points used, and the O(h2) convergence is
clearly seen in this figure.

2.3 Residual Methods

There are several interesting, and effective, alternatives to the derivative ap-
proximation method for finding approximate solutions of BVPs. It is easier to
explain what the possibilities are by using an example problem, so we return
to the linear BVP in (2.4). Our approach using finite differences was first to
find an accurate approximation of the problem. After that, the resulting finite
difference equation was solved, and from this we obtained the approximate
solution. We now reverse this approach and start off by approximating the
solution using a function, or functions, of our choosing. With this we then
attempt to have the approximation solve the BVP as accurately as possible.
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The first step is to select a function Y (x) to serve as the approximation. To
keep our options open for the moment we write this approximating function
as

Y (x) =
N+1∑
k=0

akφk(x), (2.56)

where the φk’s are basis functions that we will specify shortly. The ak’s are
“fitting coefficients” that we will use so Y comes as close to solving the BVP
as we can make it. In the same way, N can be thought of as the “quality”
parameter, the idea being that as N increases, the error in the approximation
is reduced.

There is enough flexibility in this idea to allow for a wide variety of meth-
ods. For example, there are various ways the solution can be approximated
and there are different ways we can require them to satisfy the BVP. Before
getting into the details of how this might be done, it is worth introducing a
few examples of basis functions.

2.3.1 Basis Functions

Polynomial Approximation. One of the simplest choices for an approximating
function is a polynomial, which can be obtained by taking φk(x) = xk. The
result is Y (x) = a0 + a1x + . . . + aN+1x

N+1. This certainly produces a
smooth function, but it suffers the same limitations as Lagrange interpolation.
A particularly significant flaw is that this choice need not converge to y(x) as
N increases.

B-Splines Approximation. One way to avoid the difficulties of Lagrange in-
terpolation is to use piecewise polynomial functions. The simplest example in
this category is piecewise linear interpolation. The difficulty with this is that
we will eventually substitute Y (x) into the BVP, and this will require that
Y ′′ exist and be continuous. Unfortunately, piecewise linear interpolation pro-
duces corners, which means it is not differentiable. To avoid this one can use
an approximation function Y (x) that is piecewise cubic. There are a couple
of ways to construct such functions and the most straightforward is to start
by subdividing the interval using grid points just as we did in Step 1 for the
finite difference approximation. Between adjacent grid points xi and xi+1 the
solution is approximated with a cubic, each subinterval in this way getting
its own cubic polynomial. The coefficients of the cubics are determined from
the requirement that at the grid points Y is smooth, which means Y and its
first two derivatives are continuous. This construction is what the plotting
program did when it produced Figure 2.4. To be able to use this type of func-
tion to solve a BVP it is convenient to express it in terms of what are called
cubic B-splines Bk(x). As defined, Bk is a piecewise cubic that is centered
at the grid point xk, is zero everywhere except if xk−2 < x < xk+2, and
has a continuous second derivative. The graph of Bk(x) is shown in Figure
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2.8. These conditions mean that Bk(x) consists of a cubic between xk−2 and
xk−1, another cubic between xk−1 and xk, another between xk and xk+1, and
then another between xk+1 and xk+2. The transition between cubics must be
smooth and this limits what form they can have. Working out the details it
is found that

Bk(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ xk−2,

1
6h3

(x − xk−2)3 if xk−2 ≤ x ≤ xk−1,

1
6

+
1
2h

(x − xk−1)

+
1

2h2
(x − xk−1)2 − 1

2h3
(x − xk−1)3

if xk−1 ≤ x ≤ xk,

1
6
− 1

2h
(x − xk+1)

+
1

2h2
(x − xk+1)2 +

1
2h3

(x − xk+1)3
if xk ≤ x ≤ xk+1,

− 1
6h3

(x − xk+2)3 if xk+1 ≤ x ≤ xk+2,

0 if xk+2 ≤ x.

(2.57)
At first glance the above expression looks complicated, but it should be re-
membered that Bk is just a piecewise cubic that produces the simple-looking
curve in Figure 2.8.
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Figure 2.8. Plot of cubic B-splines Bk−2(x), Bk−1(x), Bk(x), Bk+1(x), Bk+2(x).
The solid curve is Bk(x). On the x-axis, the point xk is labeled as k (and the
same holds for the other xi’s).
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xk−1 xk xk+1 xk±m for m > 1

Bk
1
6

2
3

1
6

0

B′
k

1
2h

0 − 1
2h

0

B′′
k

1
h2 − 2

h2
1
h2 0

Table 2.2. Values of the B-spline Bk(x), as defined in (2.57), at the grid points
used in its construction.

The approximating function in this case is

Y (x) =
N+2∑
k=−1

akBk(x), for 0 ≤ x ≤ 	, (2.58)

where the basis function Bk(x) is given in (2.57). In terms of solving BVPs, it
is significant that the nonzero part of Bk is localized to a small neighborhood
of xk, namely the interval xk−2 < x < xk+2. Because of this, out of all the
terms in (2.58), only Bi−1, Bi, and Bi+1 contribute to the value of Y at
x = xi. In particular, using the values given in Table 2.2 one finds that

Y (xi) =
1
6
(ai−1 + 4ai + ai+1), (2.59)

Y ′(xi) =
1
2h

(ai−1 − ai+1), (2.60)

Y ′′(xi) =
1
h2

(ai−1 − 2ai + ai+1). (2.61)

This is also the reason for including k = −1 and k = N + 2 in (2.58). For
example, B−1 contributes to the solution at x = 0 and it therefore needs to
be included in the summation.

Fourier Approximation. Another often used set of approximation methods is
based on Fourier series. An example is a sine series, given as

Y (x) =
N+1∑
k=1

akSk(x), (2.62)

where Sk(x) = sin(πkx/	). Because Sk(0) = Sk(	) = 0, this expansion requires
the boundary conditions y(0) = y(	) = 0. This is not much of a restriction,
because one can always make the change of variables y(x) = u(x) + α + (β−
α)x/	. The transformed BVP for u(x) has homogeneous boundary conditions,
as required when using (2.62).
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2.3.2 Residual

Now that we have identified various choices for an approximating function,
the next question is how we can use it to satisfy the BVP. We want Y to
come as close to satisfying the BVP as possible, and with this goal in mind
we introduce the residual r(x), defined as

r(x) ≡ Y ′′ + p(x)Y ′ + q(x)Y − f(x). (2.63)

It is assumed that Y satisfies the two boundary conditions, so how well we do
in solving the BVP translates into how close to zero we can get r(x). Now,
up to two of the ak’s in (2.56) are needed to satisfy the boundary conditions.
Therefore, the remaining ak’s are used to get r(x) close to zero. Two of the
more commonly used methods for producing a small residual are presented
below.

Collocation

The idea in collocation is simply to select points in the interval and then re-
quire the residual to be zero at those locations. The number of collocation
points selected corresponds to the number of free parameters in the approx-
imating function. For example, to use the B-spline expansion in (2.58) it is
necessary to select N + 2 points from the interval. The easiest choice is to
pick the same points used to construct the B-splines, and this means we set
r(xi) = 0. Using the formulas in (2.59)–(2.61), this results in the equations
(see Exercise 2.18)

(6 + 3hpi + h2qi)ai+1 + 4(−3 + h2qi)ai + (6 − 3hpi + h2qi)ai−1

= 6h2fi, for i = 0, 1, . . . , N + 1.
(2.64)

In addition, from the boundary conditions it is required that a−1 +4a0 +a1 =
6α and aN +4aN+1 +aN+2 = 6β. Therefore, the method reduces to solving a
matrix equation Ba = w, where B is an (N +2)× (N +2) tridiagonal matrix
of the form

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g0 h0

d1 g1 h1 0
d2 g2 h2

. . . . . . . . .
0 hN

dN+1 gN+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.65)

In this expression g0 = 2(−3 +hp0), h0 = hp0, gN+1 = −2(3 + hpN+1), dN+1 =
−hpN+1. For the other entries, di = 6 − 3hpi + h2qi, gi = 4(−3 + h2qi), hi =
(6 + 3hpi + h2qi). The vectors in this equation are
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a =

⎛
⎜⎜⎜⎜⎜⎝

a0

a1

...
aN

aN+1

⎞
⎟⎟⎟⎟⎟⎠ and w =

⎛
⎜⎜⎜⎜⎜⎝

h2f0 − α(6 − 3hp0 + h2q0)
6h2f1

...
6h2fN

h2fN+1 − β(6 + 3hpN+1 + h2qN+1)

⎞
⎟⎟⎟⎟⎟⎠ . (2.66)

In terms of error one can show that Y (x)− y(x) = O(h2), and so the method
is comparable in terms of accuracy and computational effort to the finite
difference approximation in (2.16).

Least Squares

Another approach to reducing the residual is to introduce the least squares
error function

E =
∫ �

0

r2(x)dx. (2.67)

The value of E depends on the ai’s, and the requirement is that the coefficients
minimize E. This gives us the equations

∂E

∂ai
= 0. (2.68)

Assuming that Y (x) is given in (2.58), then (2.68) reduces to

N+1∑
k=0

αikak = βi, (2.69)

where αik =
∫ �

0
χiχkdx, βi =

∫ �

0
χif(x)dx, and χi(x) = φ′′

i + p(x)φ′
i + q(x)φi.

This is where the computational cost of this method starts to become evident.
Unless the basis functions φi have very special properties, the matrix equation
that comes from (2.69) for the ai’s will involve a full matrix. Even for the B-
splines, which are zero over most of the interval, the matrix has a bandwidth
of three, compared to a bandwidth of one that is obtained using collocation.
Nevertheless, there are reasons why this method is used, as shown in the next
example.

Example 5
To compare the various versions of the residual method that have been dis-
cussed suppose the approximating function is Y (x) = a0 + a1x + a2x

2. Also,
suppose p(x) = q(x) = 0, so the BVP is y′′ = f(x) with y(0) = α and y(	) = β.
The residual in this case is r(x) = 2a2 −f(x). To determine the coefficients of
the approximating function note that the boundary conditions give us a0 = α
and a1	 + a2	

2 = β − α. To use the collocation method to find a2 we need to
select a point from the interval, and the choice is x1 = 	/2. Setting r(x1) = 0
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gives us a2 = 1
2f(x1). On the other hand, using the least squares approach we

find that

E = 4	a2
2 − 4a2

∫ �

0

fdx +
∫ �

0

f2dx. (2.70)

Setting ∂E
∂a2

= 0 it follows that a2 = 1
2�

∫ �

0
fdx. The resulting approximations

are shown in Figure 2.9 in the case f(x) = 4(x − 1)e−2x. The exact solution
of the BVP is y(x) = xe−2x and this is also shown in the figure. In terms of
the pros and cons of these two methods, the least squares approach produces
a more stable answer. For example, the collocation method depends entirely
on the value of f at one point, whereas the least squares value involves the
average of the function over the interval. On the other hand, the possibility of
picking different points gives the collocation method a useful flexibility (see
Exercise 2.21). As a final comment it might seem that both methods are flawed
given the rather large differences in the curves in Figure 2.9. However, only
three points were used here, and as demonstrated in the next example, when
more points are used the accuracy improves significantly.

Example 6
As a second example, suppose the problem is y′′ + y′ − 2y = −3e−2x, for
0 < x < 1, with y(0) = 0 and y(1) = e−2. The solution in this case is y(x) =
xe−2x. We use the B-spline expansion in (2.58) as the approximating function
and collocation is used to determine the coefficients. The problem in this case
reduces to solving (2.64). The resulting solution is shown in Figure 2.10 for
various values of N . It is apparent from this plot that the method converges as
N increases. This observation is supported by the lower graph in Figure 2.10,
which gives the maximum error as a function of N . For comparison the error
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Figure 2.9. Comparison of the collocation and least squares methods when a
quadratic approximation function is used.
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curve using the finite difference approximation (2.16) is also shown. They have
the same rate of convergence, O(h2), and produce comparable results for this
problem.

2.4 Shooting Methods

Even though the steps used to derive finite difference approximations for IVPs
and BVPs are similar, they produce different mathematical problems to solve.
With IVPs we obtained an algorithm in which the solution is calculated one
time step at a time. For BVPs, on the other hand, we ended up with an
algorithm in which all the unknowns are calculated at once. As it turns out,
there are numerical methods for BVPs that resemble those obtained for IVPs.
To explain how this is done we start with the nonlinear BVP in (2.41), (2.42).
By introducing the vector y(x) = (y1, y2)T , where y1 = y and y2 = y′, the
differential equation can be written as a first-order system

y′ = f(x,y), (2.71)

where
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Figure 2.10. In the upper graph the solution obtained using cubic B-splines, with
collocation, is shown along with the exact solution. In the lower graph the maximum
error using B-splines is plotted as a function of the number of points used. For
comparison the values obtained using a centered finite difference approximation is
also shown.
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f(x,y) =
(

y2

f(x, y1, y2)

)
. (2.72)

To use IVP methods to solve (2.71) we need to have initial conditions that
are equivalent to the original boundary conditions. From the information we
currently have,

y(0) =
(

α
s

)
, (2.73)

where s = y′(0) is unknown. So the question is, can we find the value of s
for which the solution of the resulting IVP is identical to the solution of the
BVP? Put another way, what value of s results in the solution of the IVP
satisfying y(	) = β? The idea underlying shooting is to pick a value of s, then
use an IVP method to march over to x = 	 and see whether y(	) = β. If not,
then adjust the value of s and use the IVP method again and see how much
closer y(	) is to β. This is continued until |y(	) − β| is sufficiently small. The
convergence of this procedure is similar to what was obtained for the matrix
method as given in Theorem 2.3. Namely, if the IVP solver has truncation
error O(hp), then |y(xi) − yi| = O(hp) + O(|y(	) − β|). It is assumed in this
case that the step size satisfies the solver’s stability condition and fy ≥ 0.
The proof of this result can be found in Keller [1992]. It is important to point
out that this says nothing about how sensitive the method is to the condition
of the problem. As shown in one of the examples to follow, shooting is more
prone to having problems with this than the matrix method.

Perhaps the most pressing question in this procedure is how to adjust s
so y(	) ends up close to β. To address this set g(s) = y(	) − β. This function
enables us to express the question of getting y(	) close to β in terms of finding
the value of s such that g = 0. Put this way, then, we can use something such
as the secant or Newton’s method to improve the value of s. For example, to
use the secant method we need to specify two values for s, say s1 and s2. In
this case the subsequent values for s are determined using the secant formula

sj+1 = sj − g(sj)
g(sj) − g(sj−1)

(sj − sj−1), for j = 2, 3, 4, . . . . (2.74)

As usual for iterative methods, for this to work the start-off values s1 and
s2 need to be close to the exact solution. One last point to make is that
the method developed here for finding s works whether (2.71) is linear or
nonlinear. It is possible to simplify the procedure a bit for linear problems,
and this is explored in Exercise 2.22.

By opening the door to IVP solvers we have the opportunity to use a
higher-order method such as RK4. To see how well this works we solve the
BVPs used earlier when we were investigating the matrix approach.

Example 1 (cont’d.)
The exact solution of the BVP from Example 1, given in (2.27), is shown
in Figure 2.11 along with two solutions computed using shooting with RK4.
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Figure 2.11. Exact solution of (2.27) along with the numerical solution obtained
using shooting with RK4 when N = 2, 6.

Comparing this result with Figure 2.3, it is clear that shooting with RK4
produces a more accurate result, at least for the number of grid points used
in this example.

Example 2 (cont’d.)
The BVP from Example 2, given in (2.30), is a more challenging test. Our
shooting algorithm requires start values s1 and s2, and so suppose we take
s1 = 0. In this case the shooting method using RK4, with N = 120, calculates
the value at x = 1 to be y = 1.86×1015, which misses the exact value y(1) = 1
by a rather large margin. Similarly, if s2 = 1 then one obtains y = 2.06×1015.
The magnitudes of these two values are a concern, and a hint that there might
be a problem with ill-conditioning. Nevertheless, going ahead with the pro-
cedure one finds that the method concludes that y(1) = 0.7509. If one tries
to improve the result and takes N = 1200, the method finds y(1) = 2.5145.
Making N larger makes things even worse; for example, N = 2400 yields
y(1) = 3.5509. Due to this ill-conditioning, shooting is not competitive with
the matrix approach on this problem.

The last example demonstrates the limitation of using a simple shoot-
ing method when rapid changes are present in the solution. Namely, the ill-
conditioned nature of the procedure makes it unusable on such problems. It
is possible in some cases to makes modifications so it can be used, and one
such approach involves multiple shooting over subintervals. This is beyond the
scope of this text, and the interested reader is referred to Stoer and Bulirsch
[2002] and Ascher et al. [1995] for a discussion of this topic.
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2.5 Next Steps

With the chapter coming to an end it is worth taking a few moments to identify
some of the topics not covered. As usual, the theoretical underpinnings of the
methods were considered in the development but not to the extent found in
a typical numerical analysis text. To expand on this comment, consider the
problem of solving

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = −λy, for 0 < x < 	, (2.75)

with the boundary conditions in (2.2). Certainly y = 0 is a solution, and
so the question is whether there are values of λ for which there are nonzero
solutions. In other words, this is an eigenvalue problem and λ is the eigenvalue.
In conjunction with this there is the associated inhomogeneous problem, which
consists of the same boundary conditions but the differential equation is

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = −λy + f(x), for 0 < x < 	. (2.76)

The above equation reduces to the one we studied by taking λ = 0. In fact,
the question is whether λ = 0 yields a well-posed mathematical problem. The
theorem below contains the answer.

Theorem 2.4. If p, q, and f are continuous, for 0 ≤ x ≤ 	, then the following
hold:
1. There are an infinite number of eigenvalues λ1 < λ2 < λ3 < . . ., each

corresponding to an eigenfunction y1(x), y2(x), y3(x), . . ..
2. If λ is not equal to one of the eigenvalues then the solution of (2.76) is

unique.
3. If λ is equal to one of the eigenvalues, say λ = λj, then (2.76) has a

solution only if ∫ �

0

f(x)yj(x)e
R x
0 p(s)dsdx = 0.

For example, if p and q are constant then the eigenvalues are

λj = −q +
1
4

[
p2 +

(
jπ

	

)2
]

.

It follows from this that if q ≤ 0 then the eigenvalues are positive. In other
words, λ = 0 is not an eigenvalue and from Conclusion 2 of the theorem this
means it produces a problem with a unique solution. This helps explain why
it was assumed in the formulation of the BVP in (2.4), (2.5) that q(x) ≤ 0,
for 0 ≤ x ≤ 	. The study of eigenvalues and their role for solving linear BVPs
is part of Sturm–Liouville theory, and an introduction of this material can be
found in Boyce and DiPrima [2004] and Haberman [2003].
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From a theoretical viewpoint, knowing the eigenvalues determines when
and if the BVP has a solution. With this comes the natural question of whether
it is possible to compute these values. There has been considerable work on
this problem and a survey of this topic can be found in Pryce [1994]. This
question is also addressed in Exercise 2.27. In applications an interesting twist
to this problem often arises. The eigenvalues typically correspond to the nat-
ural frequencies of a physical object, such as the vibrational modes of a gui-
tar string. As such they are easily obtained experimentally and are therefore
known. The question that then arises is, what is the object made of that causes
it to generate these particular eigenvalues? In other words, if you know the
λj ’s in (2.75) can you use this information to determine the coefficients p and
q? This is an example of an inverse problem and it raises several numerical
challenges on how to approximate and then compute these functions. This is
an active area of research and an introduction can be found in Vogel [2002].
As an aside, the question of whether you can use the eigenvalues in this way
was the reason Marc Kac [1966] wrote the paper, “Can you hear the shape
of a drum?” The history of this interesting question and its solution can be
found in Cipra [1993].

As with IVPs, one of the topics only briefly considered concerns stiff equa-
tions. The solution in Figure 2.5 is a typical example, where the solution
changes very rapidly over a small spatial interval. Because of the prominence
of such problems in applications, numerical methods for stiff equations have
been studied extensively. The most widely used approach involves nonuniform
grids, with the mesh spacing adjusted according to how rapidly the solution
changes. For example, in Figure 2.5 when using N = 10 the jump in the so-
lution between successive grid points is rather large at the right end of the
interval. An algorithm that uses an automated refinement scheme would no-
tice this and respond by placing a few more grid points in this region and
then proceed to recalculate the solution. This refinement process would be
continued until the jumps were sufficiently small and the rapid changes in the
solution were well resolved. This is a fairly simple idea but it requires some
care in deciding when and where to refine, or to unrefine, the grid. A survey
of the basic ideas for finite difference approximations, and collocation, can be
found in Ascher et al. [1995].

A topic that did not receive any consideration is finite element methods.
These are based on rewriting the differential equation in integral form and
then using an approximation much like the one in (2.56) developed for resid-
ual methods. There are various ways to transform the problem into integral
form and one is used in Exercise 2.15, where the BVP is transformed into
finding the function that minimizes an energy integral. Having a minimiza-
tion formulation such as this opens up a number of interesting possibilities on
constructing a numerical solution. This idea is used, for example, in Chapter
6 to solve the matrix equations that are obtained when approximating multi-
dimensional BVPs. An introduction to how this is used for finite elements is
nicely described in Hughes [2000].
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Exercises

2.1. Consider the BVP

y′′ − α(2x − 1)y′ − 2αy = 0, for 0 < x < 1,

where y(0) = y(1) = 1.
(a) Verify that y = e−αx(1−x) is the exact solution.
(b) Write down the finite difference equation (2.16) and the corresponding

matrix equation (2.19) for this problem. What is the limitation on the
step size according to Theorem 2.2?

(c) Plot, on the same axes, the numerical and exact solutions for N = 10 and
α = 10.

(d) Graph, using a log-log plot, the maximum error as a function of N for N =
10, 20, 40, 80 and α = 10. Explain the result in terms of the truncation
error.

2.2. Consider the BVP

x2y′′ + xy′ − 4y = 20x3, for 1 < x < 2,

where y(1) = 0 and y(2) = 31.
(a) Verify that y = 4(x3 − 1/x2) is the exact solution.
(b) Write down the finite difference equation (2.16) and the corresponding

matrix equation (2.19) for this problem. What is the limitation on the
step size according to Theorem 2.2?

(c) Plot, on the same axes, the numerical and exact solutions for N = 3.
(d) Graph, using a log-log plot, the maximum error as a function of N for

N = 3, 6, 12, 24, 48. Explain the result in terms of the truncation error.

2.3. This problem concerns the problem

εy′′ − y′ = −1, for 0 < x < 1,

where y(0) = 1, y(1) = 3.
(a) Verify that y = 1+x+β(ex/ε −1), where β = (e1/ε −1)−1 is the solution.
(b) Suppose (2.9) is used to approximate the second derivative but the back-

ward difference y′(xi) = 1
h (y(xi) − y(xi−1)) + O(h) is used for the first

derivative. What is the resulting finite difference equation? What is the
matrix form of the equation? What is the truncation error for the method?

(c) Show that the matrix in part (b) is invertible irrespective of the value of
h. According to Theorem 2.2, what is the limitation on h if (2.16) is used?

(d) Suppose ε = 0.1. For N = 10 plot, on the same axes, the solution obtained
using the method from (b), the exact solution, and the solution using
(2.16). Do the same thing for N = 20 and for N = 40.

(e) Redo (d) for ε = 0.01.
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(f) Discuss the merits of the two methods for this problem. Which do you
recommend if ε becomes even smaller?

2.4. Instead of using one-sided approximations to handle derivatives in the
boundary conditions one can introduce ghost points that are located outside
the interval of the original problem. To investigate this idea suppose that the
BVP is given in (2.4), (2.5) except that the condition at x = 0 is replaced
with ay(0) + by′(0) = α, where b 	= 0.
(a) Use (2.8) to derive a finite difference approximation of the boundary con-

dition at x = 0. This will require you to introduce a ghost point x = x−1

and the corresponding solution at this location.
(b) A consequence of introducing a ghost point is that for the finite difference

equation (2.16) the index range is i = 0, 1, 2, . . . , N . Using the result from
part (a) what is the i = 0 equation? How is the matrix equation (2.19)
changed? In the remainder of the problem assume p = 4, q = −1, a =
1, b = 1, 	 = 1, and the exact solution is y(x) = e−2x cos

(
3π
2 x

)
.

(c) Graph, using a log-log plot, the maximum error as a function of N for
N = 5, 25, 625, 3125. On the same axes plot the error when the problem
is solved using (2.40).

(d) Are there any advantages, or disadvantages, of using a ghost point rather
than the one-sided approximation in (2.40)?

2.5. This problem considers how to handle different boundary conditions when
solving (2.4). You are to find a finite difference approximation of the prob-
lem that has truncation error O(h2), and you should express the difference
equation in matrix form.
(a) Suppose the boundary conditions are y(0) = α and y(	) + γy′(	) = β,

where γ is nonzero.
(b) Suppose one uses periodic boundary conditions of the form y(0) = y(	)

and y′(0) = y′(	).

2.6. Consider the problem of solving y′′ = λ2y, for −1 < x < 1, where
y(−1) = y(1) = 1 and λ > 0.
(a) Show that the exact solution is

y(x) =
cosh(λx)
cosh(λ)

.

(b) Assuming that the difference formula in (2.9) is used, what is the resulting
finite difference equation for the BVP? Show that the exact solution of
this equation is

yi =
cosh(µxi)
cosh(µ)

,

where µ = 1
h cosh−1(1 + 1

2h2λ2).
(c) Using (a) and (b) prove that y(xi) − yi = O(h2).
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2.7. This problem shows how to obtain a O(h4) accurate approximation of
the solution of particular BVPs.
(a) Use Taylor’s theorem to show that y(xi+1)− 2y(xi) + y(xi−1) = h2y′′(xi) +

1
12h4y′′′′(xi)+O(h6) and from this show that y(xi+1)−2y(xi)+y(xi−1) =
1
12h2[y′′(xi+1) + 10y′′(xi) + y′′(xi−1)] + O(h6).

(b) Assuming that y(x) satisfies the differential equation y′′ = F (x, y), use
the result from (a) to derive the finite difference approximation

yi+1 − 2yi + yi+1 =
h2

12
(Fi+1 + 10Fi + Fi−1).

This is known as Numerov’s method.
(c) What does the approximation in (b) reduce to when F (x, t) = f(x) −

q(x)y? Express the result in matrix form.
(d) Show that the change of variables y = u(x) exp(− 1

2

∫ x
p dx) transforms

(2.4) into an equation of the form considered in (b). Are there any condi-
tions that would limit using the method in (b) to solve (2.4)?

2.8. Consider the following problem

d

dx

(
D(x)

dy

dx

)
− y = f(x), for 0 < x < 	,

where
y(0) = α and y(	) = β.

The functions D(x), f(x) are assumed to be smooth and D(x) is positive. This
is a symmetric, or self-adjoint, BVP, and the question is, should we make an
effort to make sure the finite difference approximation also is symmetric?
(a) By expanding the derivative term reduce the equation to the form in (2.4).

From this write down the resulting matrix equation that comes from the
finite difference approximation of this problem. Is the matrix symmetric?

(b) As another approach integrate the equation from x = xi−1/2 to x = xi+1/2

and show that

D(xi+1/2)y′(xi+1/2) − D(xi−1/2)y′(xi−1/2) −
∫ xi+1/2

xi−1/2

y(x)dx

=
∫ xi+1/2

xi−1/2

f(x)dx.

In this expression xi±1/2 = xi ± h
2 = (i ± 1

2 )h. Use centered differences
to approximate the two derivates in the above expression and use the
midpoint rule to approximate the two integrals. This will produce a finite
difference equation involving yi−1, yi, yi+1 (although D(x) will be evalu-
ated at xi±1/2 ). What is the resulting matrix equation? Is it symmetric?
What is the order of the truncation error?
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(c) Suppose D(x) = ε(1 + x)ex/ε and f(x) = 1 − e−x/ε, with α = β = 1 and
ε = 1/20. Plot the computed solution using the methods from (a) and (b)
when 20 grid points are used along the x-axis. Also plot the two solutions
when 40 points are used. Which method appears to produce the most
accurate results? Comment: before doing part (c) it is recommended you
test your code on a known solution to make sure it is working correctly
(e.g., if D = 1 + x and f = x(6 + 9x − x2), with 	 = 1, α = 0, and β = 1,
then y = x3).

2.9. This problem derives what is known as the box scheme for the BVP in
(2.4).
(a) Using the system form of the differential equation given in (2.71), evaluate

the system at x = xi+1/2 and use a centered difference for y′(xi+1/2). Note
that xi±1/2 = (i ± 1

2 )h.
(b) Show that y(xi+1/2) = 1

2 (y(xi+1) + y(xi)) + O(h2).
(c) Use part (b) to rewrite the result from (a) in terms of y(xi+1) and y(xi).
(d) Express the result in (c) as a finite difference equation for yi. What is the

truncation error for this approximation?

2.10. This problem concerns the nonlinear problem 2y′′ + (y′)2 + a2y2 = 2a2,
for 0 < x < 1, where y(0) = 1, y(1) = 0. Assume a = 5π

2 .
(a) Verify that y = 1 − sin(ax) is the solution.
(b) In (2.47) and (2.53) what are J and F for this problem?
(c) Plot the exact and numerical solutions on the same axes in the case N = 4.

Do the same thing for N = 9. Make sure to explain how you pick z0.
(d) Graph, using a log-log plot, the maximum error as a function of N , taking

N = 10, 20, 40, 80, 160. Does the error behave as expected?

2.11. The vertical displacement of a cable satisfies

d2y

dx2
= µ

√
1 +

(
dy

dx

)2

, for 0 < x < 	,

where µ is a positive constant and the boundary conditions are y(0) =
α, y(1) = β.
(a) In (2.47) and (2.53) what are J and F for this problem?
(b) The method requires a guess for the solution. Write down a function that

you believe is a reasonable choice and explain your reasoning why this
should satisfy Newton’s proximity requirement.

(c) Plot the numerical solution in the case N = 9. In this case take µ = 9, α =
8, β = 6, 	 = 1.

(d) The exact solution has the form y(x) = B + 1
µ cosh(µx + A), where A,B

are determined from the boundary conditions. With this, plot the exact
solution and the numerical solution from part (c) on the same axes.

(e) Graph, using a log-log plot, the maximum error as a function of N , taking
N = 10, 20, 40, 80, 160. Does the error behave as expected?
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2.12. In fluid dynamics one comes across having to solve the Falkner–Skan
equation

y′′′ + yy′ + β[1 − (y′)2] = 0, for 0 < x < 	,

where y(0) = y′(0) = 0 and y′(	) = 1. Derive a finite difference approximation
of this BVP that has O(h2) truncation error.

2.13. In the example shown in Figure 2.9 the collocation point was selected
to be the midpoint of the interval. Assuming y(x) = xe−2x, is there a better
choice for x1?

2.14. Consider the BVP given by y′′ = f(x), with y(0) = α and y(	) = β, and
assume that the approximating function is Y (x) = a0 + a1x + a2x

2 + a3x
3.

(a) What are the coefficients of Y if collocation is used?
(b) What are the coefficients of Y if least squares is used?
(c) Compare the two approximations from (a), (b) in the case where the

exact solution is y(x) = xe−2x. Make sure to explain how you select the
two collocation points.

2.15. Another approach for finding the approximation function involves min-
imizing the energy. For the BVP given by y′′ = f(x), with y(0) = y(1) = 0,
it can be shown that the solution is the one and only function that both
minimizes the energy integral F (y) =

∫ 1

0
( 1
2y2

x + yf)dx and also satisfies the
given boundary conditions. Assume the approximating function is Y (x) =
a0 + a1x + a2x

2.
(a) Find the coefficients so that Y satisfies the boundary conditions and also

minimizes the energy integral.
(b) What are the coefficients of Y if collocation is used?
(c) What are the coefficients of Y if least squares is used?
(d) Suppose the exact solution is y(x) = x(1 − x)e2x. On the same axes plot

y(x) and the approximations from (a)–(c). Does any method appear to do
better than the others?

2.16. Consider the BVP given by y′′ = f(x), with y(0) = α and y(1) = β,
and assume that the approximating function is Y (x) =

∑2
k=−1 akBk(x). In

this case x−1 = −1, x0 = 0, x1 = 1, and x2 = 2.
(a) On the same axes sketch the four B-splines in this sum.
(b) Assuming that 0 ≤ x ≤ 1, show the residual is r(x) = a−1(1 − x) +

a0(3x − 2) + a1(−3x + 1) + a2x − f(x).
(c) Assuming that the two collocation points are x = 0 and x = 	, write down

the equations that uniquely determine the coefficients of Y .
(d) Redo (c) for the equally spaced collocation points x = 1

3 and x = 2
3 .

(e) Redo (c) for the Gaussian collocation points x = 1
2 (1 − 1√

3
) and x =

1
2 (1 + 1√

3
).

(f) Suppose the exact solution is y(x) = xe−2x. On the same axes plot y(x)
and the approximations from (c)–(e). Which method is best?
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2.17. Explain how to use B-splines and collocation to solve (2.4) when the
boundary conditions are ay(0) + by′(0) = α, y(	) = β.

2.18. This problem develops some of the properties of cubic B-splines.
(a) Show that (2.58) can be written as

Y (x) =
N+2∑
k=−1

akB

(
x − xk

h

)
, for 0 ≤ x ≤ 	,

where

B(x) =

⎧⎪⎨
⎪⎩

0 if 2 ≤ |x|,
1
6 (2 − |x|)3 if 1 < |x| < 2,
1
6 (4 − 6x2 + 3|x|3) if 0 ≤ |x| ≤ 1.

(b) Show that Bk(xk) = 2/3, Bk(xk±1) = 1/6, and Bk(xj) = 0 if j 	= k, k±1.
(c) Show that B′

k(xk) = 0, B′
k(xk±1) = ∓1/2h, and B′

k(xj) = 0 if j 	= k, k±1.
(d) Show that B′′

k (xk) = −2/h2, B′′
k (xk±1) = 1/h2, and B′′

k (xj) = 0 if j 	=
k, k ± 1.

(e) Use the results from (b)–(d) to derive (2.64).

2.19. A natural question to ask is why a simpler piecewise cubic is not used to
define the B-spline basis function (2.57). For example, a potential candidate
is the piecewise cubic

Bk(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ xk−1,
a1 + b1x + c1x

2 + d1x
3 if xk−1 ≤ x ≤ xk,

a2 + b2x + c2x
2 + d2x

3 if xk ≤ x ≤ xk+1,
0 if xk+1 ≤ x.

Explain why the required continuity of Bk, B
′
k, and B

′′
k at the points

xk−1, xk, xk+1 makes this choice untenable.

2.20. Although the B-spline method, with collocation, has the same O(h2)
convergence rate as the centered finite difference approximation, some people
feel it is a better method. In this problem you are to see whether there is any
merit to this opinion using the BVP in (2.4), (2.5) when p, q are constant,
f = 0, 	 = 1, α = 0, and β = 1. Assuming p2 > 4q, then the exact solution is

y(x) =
eax − ebx

ea − eb
,

where a = (−p +
√

p2 − 4q)/2 and b = (−p −
√

p2 − 4q)/2.
(a) Compare the two numerical methods when p = 1 and q = −2. Do this by

plotting the error and, if possible, the computing time for each method as
a function of N .
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(b) Compare the two numerical methods for the BVP for two or three other
choices of p, q. Pick something interesting (i.e., something that challenges
the codes), such as p = 100, q = −1000 or p = −2, q = −8.

(c) What is your conclusion? Does the B-spline method appear to do better
than the finite difference method?

2.21. It is not necessary to select the collocation points to be the same points
used to construct the B-splines, as was done to obtain (2.64). Instead, suppose
the points selected are x̄i for i = 0, 1, 2, . . . , N + 1, where x̄i < x̄i+1, x̄0 = 0,
and x̄N+1 = 	. What does r(x̄i) = 0 reduce to in this case? Is the resulting
matrix still tridiagonal?

2.22. This problem develops a version of the shooting method that works on
the linear BVPs given in (2.4).
(a) Assume f = 0. Suppose ya(x) is the solution of (2.4) with ya(0) = 1 and

y′
a(0) = 0. Similarly, let yb(x) be the solution of (2.4) with yb(0) = 0 and

y′
b(0) = 1. Show how the solution of (2.4), (2.5) can be written in terms

of ya(x) and yb(x).
(b) Still assuming f = 0, explain how to use the result in part (a), and

shooting, to solve (2.4), (2.5). Your method should not require numerically
solving g(s) = 0 as in (2.74).

(c) Show how to modify the ideas in parts (a) and (b) to solve the BVP when
f 	= 0.

(d) There is not much advantage in using the procedure in part (b) as com-
pared to using the method based on (2.74). Why not?

2.23. This problem examines shooting for particular linear BVPs. Assume
that ω is positive.
(a) Solve the IVP y′′ − ω2y = 0, where y(0) = α and y′(0) = s.
(b) Show if ω is large that a small change in the value of s results in a relatively

large change in the value of the solution at x = 	. This means that the
procedure is ill-conditioned for such problems.

(c) What does s have to be so that the solution satisfies the BVP y′′ − ω2y =
0, for 0 < x < 	, where y(0) = α and y(	) = β?

(d) Redo (a) and (c) for the BVP y′′ + ω2y = 0, for 0 < x < 	, where y(0) = α
and y(	) = β. Also explain why the procedure is not ill-conditioned in this
case.

2.24. This problem examines extensions of the shooting method.
(a) Explain how to use shooting to solve y′′ = f(x, y, y′) when the boundary

conditions are y′(0) = α and y(	) = β.
(b) Explain how to use shooting to solve y′′ = f(x, y, y′) when the boundary

conditions are y(0) = α and y′(	) = β.
(c) Explain how to use shooting to solve the Falkner–Skan problem given in

Exercise 2.12.



Exercises 81

���� ���

����

Figure 2.12. Nonuniform grid used in Exercise 2.25.

2.25. For some situations a nonuniform step size is useful and this problem
examines how such an approximation is derived.
(a) Suppose a nonuniform step size is used (see Figure 2.12). Find a finite

difference approximation for the first and second derivatives at xi and give
the truncation error for each. Your approximations must be consistent,
which means that if hi and hi+1 both go to zero, the truncation error also
approaches zero.

(b) Using your results in part (a) find the matrix equation that comes from
the difference equation corresponding to the BVP in (2.4), (2.5).

2.26. Consider the problem

d2y

dx2
+ q(x)y = f(x), for 0 < x < 1,

where, instead of the usual boundary conditions, it is required that∫ 1

0

y dx = α and
∫ 1

0

xy dx = β.

(a) Find a finite difference approximation for this problem that has a trunca-
tion error of O(h2). Write the difference equation in matrix form.

(b) If q(x) = −1, f(x) = −100x, α = 0, and β = 1, then the exact solution
has the form y = 100x + aex + be−x. Find the coefficients a, b. These
values are to be used in parts (c) and (d).

(c) Plot the numerical and exact solutions using a step size of h = 1
4 , h = 1

8 ,
and h = 1

16 .
(d) Plot the error E0 = |y(0)− y0|, which is the difference between the exact

and computed solutions at x = 0, as a function of N . Does the curve show
the expected O(h2) convergence?

2.27. An often occurring problem is to find the eigenvalues λ in the BVP

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = −λr(x)y, for 0 < x < 	,

where y(0) = y(	) = 0. The functions p, q, r are given and the question is what
values of λ, if any, result in a nonzero solution of this BVP.
(a) Use finite differences to transform this into a matrix eigenvalue problem

of the form Ay = λDy, where D is a diagonal matrix. The truncation
error should be O(h2).
In the remainder of the problem assume p = q = 0, r = 1, and 	 = 1.
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(b) What does the matrix equation in (a) reduce to in this case?
(c) Verify that the eigenvalues of the matrix equation are 2

(
1 − cos

(
pπ

N+1

))
for p = 1, 2, 3, . . . , N . What are the corresponding eigenvectors?

(d) Find the eigenvalues, and corresponding eigenfunctions, of the BVP.
(e) Show that the difference between the smallest eigenvalue from (c) and the

smallest eigenvalue from (d) is O(h2).
(f) Show that the truncation error for the pth eigenfunction is O(p4h2). From

this, comment on how many grid points should be used to calculate, say,
the first ten eigenvalues using the approximation in (b). Could you an-
ticipate the number of grid points simply from the graph of the first ten
eigenfunctions?

2.28. For the matrix in (2.23), where bc > 0, write the eigenvalue equation
Ax = λx in component form. Solve the resulting difference equation by as-
suming xi = ri and from this show that the eigenvalues are given in (2.24).

2.29. This problem considers whether there are any computational benefits
to being able to solve a BVP exactly. The equation is

y′′ + cy′ = f(x), for 0 < x < 1,

where y(0) = y(1) = 0.
(a) Show that

u(x) =
g(x)
g(1)

∫ 1

0

f(s)g(1 − s)ds −
∫ x

0

f(s)g(x − s)ds,

where g(x) = (e−cx − 1)/c, is the solution of the above BVP.
(b) Assuming that f(x) is not an elementary function, it will be necessary

to use numerical integration to evaluate the formula in (a). Derive an
algorithm that evaluates the solution at the grid points in (2.6). Your
method should calculate each y(xi) with an error that is at least O(h2).

(c) Write down a finite difference approximation for the BVP that has trun-
cation error O(h2).

(d) Compare the two methods in (b) and (c), and this includes differences in
flops, accuracy, and ease of use.
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Diffusion Problems

3.1 Introduction

To begin the study of finding numerical solutions of partial differential equa-
tions we begin with diffusion problems. In physical terms these are problems
that involve motion or transport of particles (ions, molecules, etc.) from ar-
eas of higher concentration to areas of lower concentration. Simple examples
are the spread of a drop of ink dropped into water and the melting of an ice
cube. Diffusion is also a key component in the formation of dendrites when
liquid metal cools, as well as in the chemical signals responsible for pattern
formation (Figure 3.1). Other interesting applications of diffusion arise in the
study of financial assets as expressed by the Black–Scholes theory for op-
tions pricing and in the spread of infectious diseases (Ross [2002], Brauer and
Castillo-Chavez [2001]).

Given a diffusion problem as in the above examples, how should one pro-
ceed to calculate the solution? To address this question we consider linear
diffusion equations that have the form

a(x, t)
∂2u

∂x2
+ b(x, t)

∂u

∂x
+ c(x, t)u =

∂u

∂t
+ f(x, t), for

{
0 < x < 	,
0 < t.

(3.1)

It is assumed that the coefficient functions a, b, c, f are smooth with a > 0
and c ≤ 0. To complete the formulation of the problem, boundary and initial
conditions need to be specified. These are given when we study particular
examples.

3.1.1 Heat Equation

The study of heat conduction in a rod produces the prototypical diffusion
equation. To state the mathematical problem that arises, consider the situa-
tion of a straight rod oriented so that x = 0 and x = 	 designate its two ends.
Assuming that the lateral surface is insulated, then the temperature u(x, t) in
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Figure 3.1. Examples where diffusion plays a significant role. On the left are den-
drites that appear during the solidification of liquid medal (David et al. [2003]).
The picture on the right shows the stripe patterns formed on a zebra obtained from
numerically solving nonlinear diffusion equations (Turk [1991]).

the rod depends on the spatial location x and time t. The resulting equation
that determines the temperature in the rod is the heat equation, given as

D
∂2u

∂x2
=

∂u

∂t
, for

{
0 < x < 	,
0 < t.

(3.2)

In this equation, the positive constant D is the thermal diffusivity, and its
value depends on what material the rod is composed of. To complete the
problem we assume that the left end is at a prescribed temperature uL(t) and
the right end is at a prescribed temperature uR(t). Together these produce
the boundary conditions

u(0, t) = uL(t) and u(	, t) = uR(t), for 0 < t. (3.3)

We also need information about the starting temperature, and the initial
condition we use is

u(x, 0) = g(x), for 0 ≤ x ≤ 	. (3.4)

With (3.2)–(3.4) we have a complete heat conduction problem. The objective
of this chapter is to develop and analyze numerical methods that can be used
to solve this problem as well as others like it. In preparation for this it is worth
examining the properties of the solution and to do this by working through a
couple of examples.

Example
Suppose the temperature at the two ends is held constant, and in fact, suppose
uL(t) = uR(t) = 0. To simplify things we also take D = 1 and 	 = 1. Using
the method of separation of variables one finds that the solution is
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u(x, t) =
∞∑

n=1

Ane−λ2
nt sin(λnx), (3.5)

where λn = nπ and

An = 2
∫ 1

0

g(x) sin(λnx)dx. (3.6)

There are two special cases that will be used in deciding how well the numerical
solutions fare in solving this problem.

Case 1: If g(x) = sin(2πx) then the series in (3.5) reduces to

u(x, t) = e−4π2t sin(2πx). (3.7)

This solution is shown in Figure 3.2, both as time slices and as the solution
surface for 0 ≤ t ≤ 0.1.
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Figure 3.2. (M) Solution of the heat equation when g(x) = sin(2πx). Shown is the
solution surface as well as the solution profiles at specific time values.
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Case 2: The second example of interest is when g(x) contains jumps, such as
the function

g(x) =
{

1 if a ≤ x ≤ b,
0 otherwise, (3.8)

where 0 ≤ a < b ≤ 1. In this case the solution is given in (3.5) with

An =
2

πn
(cos(aπn) − cos(bπn)). (3.9)

The solution (3.5) is shown in Figure 3.3 in the case of when a = 1
4 and b = 3

4
for 0 ≤ t ≤ 0.1.

There are properties of the solution evident in Figures 3.2–3.3 that play
important roles in analyzing the numerical methods we will use to solve the
problem. Of particular importance are the following:
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Figure 3.3. (M) Solution of the heat equation when g(x) is given in (3.8), with
a = 1

4
and b = 3

4
. Shown is the solution surface as well as the solution profiles at

specific time values.
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Smoothness: As seen in Figure 3.3, even with an initial condition that contains
jumps, the solution on the interior of the domain (where 0 < x < 1 and 0 < t)
is smooth. Certainly one can question whether this apparent smoothness is
due to the inability of the plotting program to resolve rough spots in the
solution. However, one can prove that even with a finite number of jumps in
the initial or boundary conditions, the solution of the heat equation, or its
generalization in (3.1), is smooth on the interior of the solution domain.

Maximum and Minimum Principles: In looking at the solutions in Figures
3.2 and 3.3 it is evident that the maximum and minimum values of the solu-
tion occur on the boundary. Again, this is not an artifact of the plots but a
property of the solution of the heat equation. The precise statement is that
the maximum and minimum values of the solution u(x, t) over the region
0 ≤ x ≤ 1, 0 ≤ t ≤ T occur on the outer boundary of the region, where either
t = 0, x = 0, or x = 	. One consequence of this is that the heat equation
problem is stable in the sense that if small changes are made in the bound-
ary or initial conditions then the resulting changes in the solution are small
over the entire domain. This follows because if u1 and u2 are solutions of the
heat equation then their difference u1 − u2 is also a solution. Therefore, the
maximum and minimum values of u1 − u2 are determined by the differences
between u1 and u2 around the outer boundary of the region. If these two
functions differ by only a small amount around the outer boundary then their
difference u1 − u2 will be small throughout the entire domain.

Instant Messaging: In Figure 3.3 the solution is zero at t = 0 in the intervals
0 < x < 1

4 and 3
4 < x < 1. One might expect that at a point where the

solution is initially zero (e.g., x = 7
8 ), it will remain zero for a short time. The

expectation here is that it should take a few moments for the nonzero por-
tion of the solution to move through the interval, and the farther away one is
from the nonzero region the longer it takes. However, this is not true. For this
problem the solution is nonzero for 0 < x < 1 once t > 0. What this means is
that the heat equation transmits information instantly. This property might
cause one to question how such an equation could ever describe any real-world
situation. After all, the temperature in Denver would not seem to be instantly
affected by the temperature in, say, London. However, as seen in Figure 3.3,
the degree to which the nonzero part of g(x) affects the initially zero inter-
vals decreases rapidly with distance. So, even though information propagates
infinitely fast, the degree, or strength, of the signal drops very quickly with
distance from the source. Just how fast is investigated in Exercise 3.26.

The value of the above three observations is more qualitative than quan-
titative when computing the solution of a diffusion problem. For example, if
the computed solution does not obey the maximum principle then we should
seriously question whether the answer is correct. Similarly, if during the deriva-
tion of a finite difference approximation of the heat equation it is seen that



88 3 Diffusion Problems

the instant messaging property does not hold, then one should be concerned
about how well the method will work. Such observational tests are easy and
can prove invaluable when developing and testing a numerical method.

3.2 Derivative Approximation Methods

To introduce the ideas we start with the problem of finding the function u(x, t)
that satisfies the inhomogeneous heat equation, given as

∂2u

∂x2
=

∂u

∂t
+ f(x, t), for

{
0 < x < 	,
0 < t,

(3.10)

where the boundary conditions are

u(0, t) = 0 and u(	, t) = 0, for 0 < t, (3.11)

and the initial condition is

u(x, 0) = g(x), for 0 < x < 	. (3.12)

In this problem, the functions f(x, t), g(x) are assumed to be given, as is the
constant 	. Our approach to solving this problem will not appear to be very
innovative, since it will closely follow the steps used for IVPs and BVPs. More
specifically, we will replace the derivatives with approximations chosen from
Table 1.1 and then solve the resulting finite difference equation. Complications
do arise, and we will address them when they do. One point to make before
beginning is that the computer cannot run forever, so we must decide just
how large a time interval to take over which the solution will be computed. It
is assumed in what follows that the interval is 0 ≤ t ≤ T .

Step 1. As usual, we first introduce the points where we will compute the
solution. Unlike the situation with either IVPs or BVPs, the region over which
we solve the problem is two-dimensional. So our points have the form (xi, tj),
and together they form a lattice as shown in Figure 3.4. We use the formulas
introduced earlier, namely,

tj = jk, for j = 0, 1, 2, . . . , M, (3.13)
xi = ih, for i = 0, 1, 2, . . . , N + 1. (3.14)

As before, the step sizes are h = 	/(N +1) and k = T/M . For the moment we
assume that h and k can be chosen independently. As shown later, there are
a few situations in which they must be related to each other for the method
to work, but these are dealt with as they arise.

Step 2. Evaluate the differential equation at the grid point (x, t) = (xi, tj)
to obtain
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Figure 3.4. Example of the grid system used to find the numerical solution of the
heat equation. As shown there are 12 points, the hollow dots, where the solution
is to be computed. The values of the solution at the grid points marked with solid
dots are known from the given initial and boundary conditions. As shown, N = 3
and M = 4.

uxx(xi, tj) = ut(xi, tj) + f(xi, tj). (3.15)

We also need to evaluate the boundary and initial conditions at their respec-
tive grid points, but this will be done later once we have taken care of the
differential equation.

Step 3. Replace the derivative terms in Step 2 with finite difference ap-
proximations. A few possibilities are listed in Table 1.1, and different choices
result in different numerical procedures. Also, as before, not all choices will
work. It goes without saying that whatever approximations are used, they
are consistent, which means that the truncation error goes to zero as k and
h approach zero. To start we use a forward difference for the time derivative
and a centered difference for the spatial derivative. This gives us

ut(xi, tj) =
u(xi, tj+1) − u(xi, tj)

k
− 1

2
kutt(xi, ηj) (3.16)

and

uxx(xi, tj) =
u(xi+1, tj) − 2u(xi, tj) + u(xi−1, tj)

h2
− 1

12
h2uxxxx(η̄i, tj), (3.17)

where ηj is between tj and tj+1 and η̄i is between xi−1 and xi+1. Substituting
these into (3.15) yields
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u(xi+1, tj) − 2u(xi, tj) + u(xi−1, tj)
h2

+ τij

=
u(xi, tj+1) − u(xi, tj)

k
+ f(xi, tj),

(3.18)

where the truncation error is

τij =
1
2
kutt(xi, ηj) − 1

12
h2uxxxx(η̄i, tj)

= O(k) + O(h2). (3.19)

The above equation can be rewritten as

u(xi, tj+1) =λu(xi+1, tj) + (1 − 2λ)u(xi, tj)
+ λu(xi−1, tj) − kf(xi, tj) + kτij ,

(3.20)

where
λ =

k

h2
. (3.21)

The grid points used in (3.20) are shown in Figure 3.5. A diagram such as
this is called the stencil for the method.

Step 4. Drop the truncation error. This is the step where we go from an exact
problem to one that is, hopefully, an accurate approximation of the original.
After dropping τij in (3.20) the resulting equation is

ui,j+1 = λui+1,j +(1− 2λ)uij +λui−1,j − kfij , for
{

i = 1, 2, . . . , N,
j = 0, 1, 2, . . . , M − 1.

(3.22)
The understanding here is that the solution at the previous time step (t = tj)
has been determined and the formula in (3.22) is used to calculate the solution
at the most advanced time level (t = tj+1). To complete the derivation we need
to consider the boundary and initial conditions. From the boundary condition
u(0, t) = 0 we get that

u0,j = 0, for j = 0, 1, 2, . . . , M. (3.23)

Similarly, the boundary condition u(	, t) = 0 gives us

uN+1,j = 0, for j = 0, 1, 2, . . . , M. (3.24)

Finally, from the initial condition (3.4) we have

ui,0 = gi, for i = 0, 1, 2, . . . , N + 1. (3.25)

The derivation of the finite difference approximation of the heat equation
problem is now complete. As written in (3.22) the method is explicit in the
sense that ui,j+1 is given explicitly in terms of known quantities, or said
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Figure 3.5. Stencil for the explicit method (3.22) indicating the grid points con-
tributing in the formula. The convention used here is that a solid dot indicates a
point where the solution has already been determined and a hollow dot indicates a
point where the solution is going to be calculated using the given method.

another way, ui,j+1 does not depend on the other unknowns at time level
tj+1. Although there are certainly other explicit methods, (3.22) is referred
to as the explicit method for the heat equation.

It is convenient to rewrite the difference equation in (3.22) in matrix form.
This can be done by collecting all the unknowns at time level t = tj into a
vector as follows

uj =

⎛
⎜⎜⎜⎝

u1,j

u2,j

...
uN,j

⎞
⎟⎟⎟⎠ . (3.26)

In this case, (3.22) can be written as

uj+1 = Auj − kfj , for j = 0, 1, 2, . . . , M − 1, (3.27)

where u0 = g. In this equation A is the N ×N symmetric tridiagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − 2λ λ
λ 1 − 2λ λ 0

λ 1 − 2λ λ
. . . . . . . . .

0 λ
λ 1 − 2λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.28)

and the two vectors are

fj =

⎛
⎜⎜⎜⎝

f1,j

f2,j

...
fN,j

⎞
⎟⎟⎟⎠ and g =

⎛
⎜⎜⎜⎝

g1

g2

...
gN

⎞
⎟⎟⎟⎠ . (3.29)

With (3.22), or (3.27), we have produced an explicit method with trunca-
tion error τij = O(h2)+O(k). One can think of it as Euler’s method extended



92 3 Diffusion Problems

to the heat equation in the sense that a forward difference approximation is
used for the time derivative. How well does it do in solving the problem? Well,
we will look at a few examples and do a little analysis to address this question.
First, though, a question for you to think about. Earlier we saw that the heat
equation has an instant messaging property. From the stencil in Figure 3.5,
however, it can be seen that the numerical solution at (xi, tj+1) is determined
using only three points from time level t = tj . This means, for example, the
value of the solution at x = xi+2 (t = tj) contributes to the exact solution at
(xi, tj+1), but it is incapable of doing so in our numerical method. Is this bad?
Is this going to mean that this particular method won’t work? As it turns out,
this observation does have repercussions for the effectiveness of the method,
and this will be evident in the example below. Determining mathematically
what the repercussions are will come later.

Example
Our first example is the case f(x, t) = 0 and g(x) = sin(2πx). The exact
solution is u(x, t) = e−4π2t sin(2πx), and this function is plotted in Figure 3.2.
This surface is drawn using 22 points along the x-axis and 11 on the t-axis.
This is brought up because to employ the explicit method we need to decide on
how many grid points to use. A reasonable place to start is with the boundary
and initial conditions. For example, the initial condition u(x, 0) = sin(2πx)
can be described reasonably well using 22 points along the x-axis, and so, we
take N = 20. It is not clear how many points to take along the t-axis, and so
we try different values. In particular, taking T = 0.1, we try M = 5, 10, 20.
The resulting numerical solutions at t = 0.02, t = 0.04, and t = 0.1 are shown
in Figure 3.6. At t = 0.02 and t = 0.04 the situation is what we might expect.
For example, the computed solution using M = 20 is more accurate than when
M = 10, and the latter is better than when M = 5. However, something is
horribly wrong at t = 0.1. The large-amplitude oscillation obtained at this
time level is the sort of behavior seen with unstable methods, which means
we should look into this before going any further. One last observation is that
it is interesting that the value of M that produces the most accurate solution
at t = 0.02 and t = 0.04 is the one that causes problems at t = 0.1. Any idea
why?

Convergence

The last example demonstrates that we need to spend some time investigating
what is needed to guarantee that the method works. As with IVPs, the issue
is stability and how the error depends on the step sizes.

Stability
We start with stability. For IVPs stability was determined by examining how
the method fared on a test problem, which happened to correspond to the
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Figure 3.6. (M) Solution of the heat equation obtained using the explicit method
(3.27) in the case where the initial condition is u(x, 0) = sin(2πx). The method is
conditionally stable and problems with stability are evident at t = 0.1. For compar-
ison the exact solution is given at each time level.
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Euler’s Formula eIθ = cos(θ) + I sin(θ)

Trig Form cos(θ) = 1
2 (eIθ + e−Iθ) sin(θ) = 1

2I (eIθ − e−Iθ)

Half-Angle 1 + cos(θ) = 2 cos2
(

1
2θ

)
1 − cos(θ) = 2 sin2

(
1
2θ

)
Table 3.1. Useful identities for stability analysis. In these expressions, I =

√−1.

equation that arises for radioactive decay. The approach used for partial dif-
ferential equations is different, and instead we investigate how the method
does with a test solution. The problem considered is the homogeneous version
of the differential equation. So, in (3.10) we set f(x, t) = 0. To explain how
the test solution is selected, one sees in (3.5) that the separation of variables
solution consists of the superposition of functions that are oscillatory in x.
In deciding whether a numerical method is stable we determine how well the
method does with such solutions. In particular, the start-off assumption to
decide on stability is that the solution of the finite difference equation has the
form

ui,j = wje
rxiI , (3.30)

where I =
√−1. The constant r is used here in place of the λn appearing

in (3.5). It is understood that r, like λn, can take on values over the entire
positive real axis. The function wj is determined from the difference equation
by substituting (3.30) into (3.22). Keeping in mind the identities in Table 3.1,
we obtain

wj+1e
rxiI = λwje

rxi+1I + (1 − 2λ)wje
rxiI + λwje

rxi−1I

= λwje
r(xi+h)I + (1 − 2λ)wje

rxiI + λwje
r(xi−h)I

= (λerhI + 1 − 2λ + λe−rhI)wje
rxiI

= (1 − 2λ + 2λ cos(rh))wje
rxiI

=
[
1 − 4λ sin2

(
rh

2

)]
wje

rxiI . (3.31)

Canceling the exponential term, we have that wj+1 = κwj , where

κ = 1 − 4λ sin2

(
rh

2

)
(3.32)

is known as the amplification factor for the method. The solution is therefore
wj = κjw0. What is important is how wj depends on the time index j. If
the method is to be stable, wj must remain bounded as j increases no matter
what the value of r. In other words, the stability requirement is |κ| ≤ 1. With
(3.32) this breaks down into the inequalities −1 ≤ 1 − 4λ sin2(rh/2) ≤ 1.
The upper inequality holds because λ is positive, so stability is determined by
whether or not 2λ sin2(rh/2) ≤ 1. This holds, irrespective of the value of r, if
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Figure 3.7. (M) Solution of the heat equation using the explicit method (3.27)
when the stability condition is satisfied. For this calculation, λ = 0.49 and g(x) =
sin(2πx).

λ ≤ 1
2
, (3.33)

or equivalently,
2k ≤ h2. (3.34)

Therefore, this explicit method is conditionally stable and the stability con-
dition is given in (3.33).

Example
Armed with this new information we return to the last example, the results
of which are shown in Figure 3.6. The corresponding values of λ are given in
this figure. Clearly, we did not make good choices for M when it comes to
satisfying the stability condition. As it turns out, with T = 0.1 and N = 20,
to satisfy (3.33) we need M > 88.2. To verify that all is well, the computed
solution is shown in Figure 3.7 when M = 90, and it is seen that the oscillatory
response obtained earlier is no longer present.

Example
As a second demonstration of the importance of the stability condition sup-
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Figure 3.8. Solution of the heat equation at t = 0.1 using the explicit method (3.27).
The differences in the λ = 0.499 and λ = 0.506 plots demonstrate the importance of
the stability condition λ ≤ 1

2
. The initial condition is the same one used to produce

the solution in Figure 3.3.

pose the initial condition contains jumps as in (3.8). Let’s see how well the
explicit method does in reproducing the solution curve shown in Figure 3.3
when t = 0.1. In the calculations, N = 26, so the stability condition in (3.33)
gives us the requirement that M > 145.8. The computed solution is shown
in Figure 3.8 when M = 144 (λ = 0.506), M = 145 (λ = 0.503), and
M = 146 (λ = 0.499). Without the condition in (3.33) it would be very
difficult to explain why in the world the method fails when one uses 145 time
steps to go from t = 0 to t = 0.1 but it works just fine when one uses 147 steps.

It’s nice that we have resolved the stability problem, but in the above
examples it has required us to take more time steps than should really be
necessary for this problem. This situation becomes even worse if we need to
resolve the spatial direction any more finely. For example, if the initial con-
dition is g(x) = sin(20πx) then something on the order of about 200 points
would be needed along the x-axis. The stability condition in this case would
require at least 7,900 points in the time direction. Given such a formidable
computing effort it is worth our time to find another way to solve this prob-
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lem. Before doing so, however, we have to take care of one detail. Namely, we
need to determine how the error depends on the truncation error.

Error Analysis
Based on the above examples we might postulate that as long as the stability
condition is satisfied, the numerical solution will converge to the exact solution
as the step sizes are reduced. Of course, it is understood that when using
floating-point arithmetic, we cannot expect to get closer than round-off. To
investigate the situation we introduce the usual three solutions at (x, t) =
(xi, tj), which are

u(xi, tj) ≡ exact solution of the problem at (xi, tj); (3.35)
ui,j ≡ exact solution of finite difference equation at (xi, tj); (3.36)
ui,j ≡ solution of difference equation at (xi, tj) calculated

by the computer. (3.37)

We are interested in the difference between the exact solution of the problem
and the values we end up computing using our algorithm. Therefore, we are
interested in the error ei,j = |u(xi, tj) − ui,j |. To help make it more apparent
what is contributing to the error we rewrite it as follows

ei,j = |u(xi, tj) − ui,j + ui,j − ui,j |. (3.38)

From this the error can be considered as coming from the following two
sources:

u(xi, tj) − ui,j : This is the error at (xi, tj) between the exact solution of the
problem and the exact solution of the finite difference equation. This
should be the major contributor to the error until k and h are small
enough that this difference gets down to approximately that of the round-
off.

ui,j − ui,j : This is the error at (xi, tj) that originates from round-off when
floating-point calculations are used to compute the solution of the differ-
ence equation. Getting values of 10−15 or 10−16 is about as good as can
be expected using double precision.

Given our experience with IVPs and BVPs, it is expected that u(xi, tj)−ui,j

is determined by the truncation error. To see if this happens with the heat
equation let Ei,j = u(xi, tj) − ui,j . From (3.20) and (3.22) one finds that

Ei,j+1 = λEi+1,j + (1 − 2λ)Ei,j + λEi−1,j + kτi,j , (3.39)

where E0,j = 0, EN+1,j = 0, and Ei,0 = 0. Assuming 2λ ≤ 1, setting Ej =
maxi=0,1,2,...,N+1 |Ei,j | and τ∞ = maxi,j |τi,j |, we have the following
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Figure 3.9. Error function τ∞ = 0.1h2 + k as a function of the number of time
points used in the calculation.

|Ei,j+1| = |λEi+1,j + (1 − 2λ)Ei,j + λEi−1,j + kτi,j |
≤ λ|Ei+1,j | + (1 − 2λ)|Ei,j | + λ|Ei−1,j | + k|τi,j |
≤ λEj + (1 − 2λ)Ej + λEj + kτ∞
= Ej + kτ∞.

This holds ∀i, and so it must be that Ej+1 ≤ Ej + kτ∞. Iterating back
to j = 0, we conclude Ej+1 ≤ E0 + (j + 1)kτ∞. Because Ei,0 = 0 and
(j + 1)k = tj+1 ≤ T it follows that Ej+1 ≤ τ∞T . Therefore, since τ∞ =
O(h2) + O(k) it follows that u(xi, tj) − ui,j = O(h2) + O(k). In other words,
if the stability condition holds then the explicit method converges and the
difference u(xi, tj) − ui,j is bounded by the truncation error. This conclusion
is why consistency and stability are both required to guarantee convergence
of the method.

To translate the above discussion into what is expected from a computation
using the explicit method suppose it is found that τ∞ = 0.1h2 + k. This
expression is plotted in Figure 3.9 as a function of the number of time points,
for two different values of N . The smallest value of M used for each curve is
determined by the stability condition, that is, the value of M where k = 1

2h2.
Both curves decrease linearly with M and then level off for large values of M
at a value determined by the spatial error term 0.1h2. This can be checked by
noting that the limiting (large M) values for the two curves differ by a factor
of 4, which they should given the quadratic dependence on h. Is this what is
seen in an actual computation? As the next example demonstrates, the real
world is a bit more interesting.

Example
To demonstrate the connection between the truncation error and convergence
rate we return to our first example, as shown in Figure 3.6. We will determine
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Figure 3.10. Error in the numerical solution at t = T when the explicit method
(3.27) is used to solve the heat equation. In the lower graph the error is given for
two values of N , and in upper graph the error is given for two values of λ. The initial
condition is u(x, 0) = sin(2πx), and in the calculation, T = 0.1 and � = 1.

EM , which is the error at time level t = T . This variable depends on the
number of points used in the space and time directions, and we are interested
in how quickly it decreases as these numbers are increased. In the lower graph
in Figure 3.10, EM is plotted as a function of the number of time points, for
two different values of N . You don’t have to look at these curves too long to
decide that they are not exactly what was seen earlier in Figure 3.9. The error
term is O(h2) + O(k), so it would be expected that the error decreases like
O(k) until EM gets down to the level of O(h2). Because h is fixed, the curves
in Figure 3.10 should level off for large M at a value determined by the O(h2)
contribution. The leveling off occurs, but the nice O(k) decrease does not.
What actually happens is that the error drops much faster than expected.
This does not contradict our expectation that the error is O(h2) + O(k),
but rather, it is an indication that for this particular problem our worst-case
estimate is too pessimistic. The reason for this is that the O(k) and O(h2)
terms are of opposite signs and almost cancel each other when k = h2/6
(see Exercise 3.19). The fact that you can find such an optimal grid spacing
is interesting but secondary to our objective of developing the basic ideas.
With this in mind, for another perspective, in the upper graph in Figure
3.10 the error is plotted as a function of M for fixed λ. Since λ is fixed and
h2 = k/λ = O(k), the truncation error is O(k). This indicates that for every
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power of ten increase in M the error should be reduced by a factor of ten,
and this is clearly evident in both curves in Figure 3.10.

End Notes

We have completed the derivation and analysis of the explicit method. The
approach we used is employed repeatedly in this and the following chapters,
and so it is worth commenting on some of the steps taken. The stability ar-
gument, which is based on the test solution in (3.30), is called the Fourier,
or von Neumann, stability method. It is relatively easy to use but it effec-
tively ignores the boundary conditions. This is not an issue in the problem
we studied, since the boundary conditions do not affect the finite difference
equation other than as an inhomogeneous term on the right-hand side of the
equation. In situations where approximations must be used on the boundary
conditions, the requirement from the Fourier method is necessary but not suf-
ficient to guarantee stability. If there is concern that the boundary conditions
are affecting stability then another approach can be tried. One possibility is
the matrix method, which uses the eigenvalues of the matrix A in (3.28) to
determine stability. This is not pursued here, because the matrix approach
is limited in its applicability to other types of partial differential equations,
specifically, wave equations, and an interesting discussion of this can be found
in Iserles [1996]. There is a third approach one can use for establishing stabil-
ity, which involves a perturbation argument, and this is explored in Exercise
3.20.

The concept of stability and what it represents for the heat equation is
similar to what we found for IVPs. However, the methods used to determine
stability, and the subsequent conclusions that are made, differ between these
two types of problems. For example, after determining that the trapezoidal
method is A-stable we then expect it to work for a broad range of IVPs, such as
problems involving y′ = −y or y′ = −y − y3. In contrast, the conclusions made
about stability for the heat equation apply only to that particular equation.
If the equation is changed, say to uxx = ut + u, then it is necessary to
rederive the stability condition. In this sense stability for a finite difference
approximation of a partial differential equation is a more specific property
than it is for IVPs.

3.2.1 Implicit Method

In Step 3, instead of a forward difference one can use a backward difference
approximation in time. The stencil for this choice is shown in Figure 3.11.
The result is that the equation in Step 3 now takes the form

u(xi+1, tj) − 2u(xi, tj) + u(xi−1, tj)
h2

+ τi,j

=
u(xi, tj) − u(xi, tj−1)

k
+ f(xi, tj),

(3.40)
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Figure 3.11. Stencil for the implicit method.

where the truncation error is τi,j = O(h2) + O(k). This can be rewritten as

λu(xi+1, tj) − (1 + 2λ)u(xi, tj) + λu(xi−1, tj)
= −u(xi, tj−1) + kf(xi, tj) + kτi,j ,

(3.41)

where
λ =

k

h2
. (3.42)

Dropping the truncation error, we obtain

λui+1,j − (1 + 2λ)ui,j + λui−1,j = −ui,j−1 + kfi,j , for
{

i = 1, 2, . . . , N,
j = 1, 2, . . . , M.

(3.43)
The boundary and initial conditions are the same as for the explicit method,
given in (3.23)–(3.25). In comparison to what occurred earlier, the unknowns,
which are the values at time level tj in the above equation, are coupled, and
for this reason the method is implicit.

Collecting the unknowns at time level t = tj into a vector uj we can
rewrite (3.43) in matrix form as

Buj = uj−1 − kfj , for j = 1, 2, . . . , M, (3.44)

where u0 = g and B is the N × N symmetric tridiagonal matrix given as

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2λ −λ
−λ 1 + 2λ −λ 0

−λ 1 + 2λ −λ
. . . . . . . . .

0 −λ
−λ 1 + 2λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.45)

With (3.43), or (3.44), we have produced an implicit method with trun-
cation error τi,j = O(h2) + O(k). Moreover, using Theorem 2.1 it is not hard
to prove that (3.44) has a unique solution. One can think of the method as
backward Euler extended to the heat equation in the sense that a backward
difference approximation is used for the time derivative. What about instant
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messaging? From (3.44), and a little algebra, one can show that uj depends
on every component of uj−1. In other words, this method has the instant
messaging property. The question is, does this give it any significant advan-
tage over the explicit method derived earlier? One way to answer this is to
check the stability condition. As before, the start-off assumption is given in
(3.30). Substituting this into (3.43), and setting f(x, t) = 0, one finds that
wj+1 = κwj , where the amplification factor for this method is

κ =
1

1 + 4λ sin2( rh
2 )

. (3.46)

The solution in this case is wj = κjw0. Therefore, the stability requirement is
|κ| ≤ 1, and it is not hard to show that this always holds for the amplification
factor in (3.46). In other words, this implicit method is stable.

Example
To begin we consider the example used for the explicit method, where f(x, t) =
0 and g(x) = sin(2πx). The exact solution is u(x, t) = e−4π2t sin(2πx), and
this function is plotted in Figure 3.2. Taking N = 20 and T = 0.1, the
numerical solutions at t = 0.02, t = 0.04, and t = 0.1 are shown in Figure 3.12
using M = 5, 10, 20. It is seen that as the time step is reduced, the numerical
solution at all three time levels approaches the exact solution. In other words,
it is responding as we would expect a convergent method to behave.

Example
The second example involves the step function in (3.8) and f(x, t) = 0. We
take a = 1

4 and b = 3
4 , in which case the solution (3.5) is shown in Figure

3.3. Taking N = 30 and T = 0.1, the numerical solutions at t = 0.02, t =
0.04, and t = 0.1 are shown in Figure 3.13 using M = 5, 20. The numerical
method does reasonably well in reproducing the exact solution, and this has
been accomplished using far fewer time points than were used for the explicit
method.

3.2.2 Theta Method

In looking at the numerical solutions in Figures 3.6 and 3.12 it would appear
that the exact solution lies between the curves obtained for the explicit and
implicit methods. This raises the question of whether we can combine the two
to produce a method with a bit more accuracy. We can, and the starting point
is to note that both can be rewritten as

explicit: ui,j+1 − ui,j = Hi,j , (3.47)
implicit: ui,j+1 − ui,j = Hi,j+1, (3.48)

where
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Figure 3.12. (M) Solution of the heat equation using the implicit method (3.44)
in the case where the initial condition is u(x, 0) = sin(2πx). Also shown is the exact
solution.
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Figure 3.13. Solution of the heat equation using the implicit method (3.44) in the
case where the initial condition is given in (3.5), with a = 1

4
and b = 3

4
. Also shown

is the exact solution.

Hi,j = λ (ui+1,j − 2ui,j + ui−1,j) − kfi,j . (3.49)

Now, we could simply add the explicit and implicit terms together, but per-
haps it would be better to take, say, 1

3 of the explicit and 2
3 of the implicit.

Trying to keep our options open for the moment, we use a convex combination
and do the following

ui,j+1 − ui,j = θ(ui,j+1 − ui,j) + (1 − θ)(ui,j+1 − ui,j)
= θHi,j + (1 − θ)Hi,j+1, (3.50)

or, more expansively,

ui,j+1 − ui,j = (1 − θ)[λui+1,j+1 − 2λui,j+1 + λui−1,j+1 − kfi,j+1]
+ θ[λui+1,j − 2λui,j + λui−1,j − kfi,j ],

(3.51)

where 0 ≤ θ ≤ 1. This is called the θ-method. It is explicit only when θ = 1,
in which case it reduces to the explicit method introduced earlier. As for the
truncation error, it should be at least O(h2) + O(k) since the two methods
used to produce (3.51) have this as their truncation error. This assumption
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is correct, but the error is better than expected when θ = 1
2 . This particular

value of θ produces what is known as the Crank–Nicolson method, and the
truncation error is O(h2) + O(k2). The proof of this statement is presented
in the next section.

Before blindly going out and coding the θ-method, it is worth our time to
determine its stability properties. The procedure is the same as before, which
means we set f(x, t) = 0 and assume ui,j = wje

rxiI . Substituting this into
(3.51), and using the identities in Table 3.1, one finds that wj+1 = κwj , where
the amplification factor is

κ =
1 − 4λθ sin2( rh

2 )
1 + 4λ(1 − θ) sin2( rh

2 )
. (3.52)

From this it follows that wj = κjw0. To obtain a bounded solution, the
stability requirement is |κ| ≤ 1 and it is not hard to show that this reduces
to the single inequality λ(2θ − 1) ≤ 1

2 . The conclusion is therefore that if
0 ≤ θ ≤ 1

2 then the resulting method is stable. If, however, 1
2 < θ ≤ 1, then

the method is conditionally stable and the stability condition is

λ ≤ 1
2(2θ − 1)

. (3.53)

It is interesting that θ = 1
2 separates stable from conditionally stable. This

is the value used for the Crank–Nicolson method, and it produces the best
truncation error among the θ-methods. Is it a problem that this value happens
to be the stability boundary? We will look into this once we work out that
the truncation error is actually as good as advertised, which is done in the
next section.

As a final comment, from the above conclusions it is not uncommon to
assume that the only stable methods are implicit. This is not true, and an
example of a stable explicit method can be found in Exercise 3.8.

3.3 Methods Obtained from Numerical Quadrature

In Chapter 1 we found that numerical integration can be used to derive finite
difference approximations for IVPs. This can be done with the heat equation
in much the same way. To explain how, it is convenient to collect the terms
without a time derivative and write the equation as

ut = F (x, t), (3.54)

where F (x, t) = uxx − f(x, t). The next step is to integrate the differential
equation between two time points. We take tj and tj+1, and so from (3.54)
we have ∫ tj+1

tj

ut dt =
∫ tj+1

tj

F (x, t)dt. (3.55)
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Using the Fundamental Theorem of Calculus yields

u(x, tj+1) − u(x, tj) =
∫ tj+1

tj

F (x, t)dt. (3.56)

3.3.1 Crank–Nicolson Method

The next choice to make is what integration method to use, and we take the
trapezoidal rule (Table 1.4). This gives us

u(x, tj+1) − u(x, tj)

=
k

2
(F (x, tj+1) + F (x, tj)) + O(k3)

=
k

2
(uxx(x, tj+1) − f(x, tj+1) + uxx(x, tj) − f(x, tj)) + O(k3).

(3.57)

We will replace the uxx terms with centered difference approximations. Before
doing this it is of interest to determine the truncation error for the time
variable. From (3.57) one might expect that the error is O(k3). However, this
is the error we generate at each time step. To get to T we take M = T/k
time steps, so the accumulated error we generate in getting to T is reduced
by a factor of k. Therefore, the truncation error for the time approximation
is O(k2).

We need to complete the derivation, and this means we need to take care
of the uxx terms in the equation. This will be accomplished by setting x = xi

in (3.57) and then introducing centered difference approximations for the uxx

terms. Dropping the truncation error, and rearranging things slightly, one
finds that

λui+1,j+1 − 2(1 + λ)ui,j+1+λui−1,j+1

= −λui+1,j − 2(1−λ)ui,j − λui−1,j + k(fi,j + fi,j+1) (3.58)

for
{

i = 1, 2, . . . , N,
j = 0, 1, . . . , M − 1.

The boundary and initial conditions are the same as for the explicit method,
and are given in (3.23)–(3.25). Collecting everything together, this method
can be expressed in matrix form as

(B + I)uj+1 = (A + I)uj − k(fj+1 + fj), for j = 0, 1, 2, . . . , M − 1, (3.59)

where B is given in (3.45) and A is given in (3.28).
The difference equation (3.58), or its matrix version in (3.59), is the Crank–

Nicolson method, and its truncation error is O(h2) + O(k2). It is implicit,
and as shown in the previous section, it is stable. The stencil for this method
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Figure 3.14. Stencil for the Crank–Nicolson method.

is shown in Figure 3.14. In terms of finding numerical solutions to diffusion
equations, Crank–Nicolson is probably the most widely used finite difference
method. Given its wide popularity it will be interesting to see how well it does
on a couple of example problems.

Example
We first see how Crank–Nicolson does when f(x, t) = 0 and g(x) = sin(2πx).
The exact solution is u(x, t) = e−4π2t sin(2πx), and this function is plotted in
Figure 3.2. Taking N = 20 and T = 0.1, the numerical solutions at t = 0.02,
t = 0.04, and t = 0.1 are shown in Figure 3.15 using M = 5, 20. These values
were used in Figures 3.6 and 3.12 for the explicit and implicit methods, respec-
tively. In comparison to these other two methods, Crank–Nicolson produces a
much more accurate solution. For example, the numerical solution in Figure
3.15 for M = 20 is not easily distinguished from the exact solution, something
not occurring in Figures 3.6 and 3.12. To further support this conclusion, the
error at t = T is plotted in Figure 3.16. The results for k/h fixed, given in the
upper plot, show the expected second-order convergence (i.e., increasing M
by a factor of 10 decreases the error by a factor of 102). In the case N is fixed,
which is the situation for the lower plot in Figure 3.16, we would expect the
error to decrease as O(k2) and then plateau at a O(h2) level. This is seen in
Figure 3.16, but there is also the appearance of an optimal M value where the
error is better than predicted. For N = 20 it appears that M = 12 is the best
choice, and for N = 20 it is M = 25. This is not a property of the method but,
rather, something that happens for this particular problem. For example, as
shown shortly, this does not happen when one uses an initial condition that
contains one or more step functions.

That Crank–Nicolson does so much better than either the explicit or im-
plicit method is not unexpected, given its better truncation error. It is, how-
ever, not perfect, and this is made evident in the next example.

Example
For a second example we use the step function in (3.8) and also set f(x, t) = 0.
Taking a = 1

4 and b = 3
4 , the solution calculated using the Fourier series (3.5)

is shown in Figure 3.3. Taking N = 30 and T = 0.1, the numerical solutions
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Figure 3.15. (M) Solution of the heat equation using the Crank–Nicolson method
(3.58) in the case where the initial condition is u(x, 0) = sin(2πx). Also shown is
the exact solution.



3.3 Methods Obtained from Numerical Quadrature 109

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

Number of Time Points

E
rr

o
r

 N = 20
 N = 40

10
0

10
1

10
2

10
3

10
4

10
−7

10
−5

10
−3

10
−1

Number of Time Points

E
rr

o
r

 k/h = 0.4
 k/h = 0.04

Figure 3.16. Error in the numerical solution at t = T when using the Crank–
Nicolson method (3.58) to solve the heat equation in the case where the initial
condition is u(x, 0) = sin(2πx). In the lower plot the error is given for two values of
N, and in the upper plot the error is given for two values of k/n.

at t = 0.02, t = 0.04, and t = 0.1 are shown in Figure 3.17 using M =
5, 10, 20. Clearly, something bad is happening with the numerical solution
in a neighborhood of the jumps. Looking closely at these curves, it appears
that the problem decreases with larger M . The strength of the jumps also
appears to decrease, albeit slowly, as time increases. However, this still leaves
the question of what is causing this to happen in the first place, and this is
addressed next.

3.3.2 L-Stability

The last example indicates that the favorite finite difference method for solving
diffusion problems needs to be thought about a bit more. What causes Crank–
Nicolson to behave so badly near the jumps in Figure 3.17? One might argue
that the good truncation error is actually a disadvantage for this example. The
reason is that the higher the truncation error, the higher the derivative in the
error term. In looking at the entries in Table 1.1 it is seen that the higher the
power of h, the higher the derivative term in the error. At times this is an
issue, and one should use a lower-order method to resolve jumps. However,
the heat equation produces only smooth solutions, and as demonstrated in
Figure 3.13, the implicit method has no difficulty with this example using the
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Figure 3.17. (M) Solution of the heat equation using the Crank–Nicolson method
(3.58) in the case where the initial condition is given in (3.5), with a = 1

4
and b = 3

4
.

Also shown is the exact solution.
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Figure 3.18. Sketch of the amplification factor for the Crank–Nicolson (3.60) and
implicit (3.61) methods.

same spatial approximations Crank–Nicolson uses. Therefore, the problem is
somewhere else. The place to look is at the stability analysis and the resulting
amplification factor. It was shown earlier that for the Crank–Nicolson method
the assumption ui,j = wje

Irxi leads to the conclusion that wj = w0κ
j , where

κ =
1 − q

1 + q
(3.60)

and q = 2λ sin2( rh
2 ). The values of κ are shown in Figure 3.18, and it is seen

that for large values of q that κ is close to −1. This means that wj decays
with j, but it does so very slowly if q is large. This observation provides
a hint as to why the problem in Figure 3.17 occurs, namely, the decay the
Crank–Nicolson method is able to produce with jumps is not enough, and a
residual of the jumps persists much longer than it should. To explain this in
more depth, there are two aspects of this problem that come together to cause
the problem. First, the Fourier series for the jumps converges slowly, and this
means there are important terms in the series with large λn = nπ/	 values.
Given that r = λn and

rh

2
=

π

2
n

n + 1
,

then for these terms sin2(rh/2) ≈ 1. Second, to obtain a reasonable numerical
approximation of the jumps it is necessary to use a small value of h, and this
produces a large value for λ unless k is also very small. Together these two
properties cause the value of q to increase, and the consequence of this is that
the decay is slower than expected near the jumps. This also explains why the
persistence problem is reduced by increasing M in Figure 3.17.

Why didn’t this happen with the implicit method, as demonstrated in
Figure 3.13? Well, the amplification factor for it, in terms of q, is
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κ =
1

1 + q
. (3.61)

In this case, κ decreases monotonically to zero as q → ∞ (see Figure 3.18).
The result is that there is no significant persistence in the jumps even if q is
quite large. In fact, the larger q becomes, the faster the solution wj = w0κ

j

decays as time increases.
This situation is what motivates the introduction of a stronger form of sta-

bility, something known as L-stability. The requirement is that if the method
is stable and wj → 0 as q → ∞, then the method is L-stable. With this, the
implicit method is L-stable but Crank–Nicolson is not.

3.4 Methods of Lines

Another often-used method for solving diffusion equations is to reduce the
problem to an IVP. This is done by introducing approximations for the x-
derivatives, and then using an IVP method on the resulting problem. To
illustrate the procedure we carry out the steps for the inhomogeneous heat
equation, where the boundary conditions are u(0, t) = u(1, t) = 0. The first
step is to evaluate the equation at x = xi, giving us

uxx(xi, t) = ut(xi, t) + f(xi, t). (3.62)

Introducing the centered difference approximation for the spatial derivative,
we obtain

ut(xi, t) =
u(xi+1, t) − 2u(xi, t) + u(xi−1, t)

h2
− f(xi, t) + O(h2). (3.63)

Dropping the truncation error term yields

d

dt
ui(t) =

ui+1(t) − 2ui(t) + ui−1(t)
h2

− fi(t), (3.64)

where ui(t) is the resulting approximation for u(xi, t) and fi(t) = f(xi, t).
Collecting the ui’s together, this last equation can be written in vector form
as

d

dt
u(t) = Cu − f(t), for 0 < t, (3.65)

where

u(t) =

⎛
⎜⎜⎜⎝

u1(t)
u2(t)

...
uN (t)

⎞
⎟⎟⎟⎠ , (3.66)
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C =
1
h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1 0

1 −2 1
. . . . . . . . .

0 1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, and f(t) =

⎛
⎜⎜⎜⎝

f1(t)
f2(t)

...
fN (t)

⎞
⎟⎟⎟⎠ . (3.67)

The initial condition u(x, 0) = g(x) now takes the form

u(0) =

⎛
⎜⎜⎜⎝

g1

g2

...
gN

⎞
⎟⎟⎟⎠ . (3.68)

With (3.65) and (3.68) we have a standard IVP, and this opens the door to
using a wide variety of IVP solvers. Let’s try something different from what we
have done so far in this chapter and use RK4 (see Table 1.3). Calling this the
L-RK4 method, then it is explicit with truncation error O(h2) + O(k4). It is
also conditionally stable, but determining the exact stability condition is not
so easy with L-RK4, even on a simple heat equation problem. Nevertheless,
it is interesting to see how well this method works, and this brings us to the
next example.

Example
We solve the heat equation using L-RK4 in the case where the initial condition
is u(x, 0) = sin(2πx). Taking N = 18 and T = 0.1 the numerical solution
at various time slices is shown in Figure 3.19 using M = 5, 10, 20. At the
first time slice (t = 0.02), L-RK4 demonstrates its ability to describe the
solution very accurately compared to the other methods considered in this
chapter. It does so well that the three numerical solutions at this time level are
indistinguishable from the exact result. However, at t = 0.1 it demonstrates
its problems with stability. In fact, if you look closely, there is also evidence
of instability when t = 0.04. To compare this method with Crank–Nicolson,
the error at t = 0.1 is shown in Figure 3.20 for two values of N . It is seen that
once M is large enough, L-RK4 is stable and the error very quickly plateaus
to the level determined by the O(h2) term in the truncation error. This is
very good, but the value of M needed to get into the stability region is rather
large, and this is one of the criticisms of using L-RK4 on the heat equation.

3.5 Collocation

Another approach to solving the heat equation can be developed using collo-
cation. The first step is to introduce an approximation function, and we will
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Figure 3.19. Solution of the heat equation using L-RK4, which is the method of
lines using RK4, in the case where the initial condition is u(x, 0) = sin(2πx). The
method is conditionally stable and problems with stability are evident at t = 0.1.
For comparison, the exact solution is given at each time level.
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Figure 3.20. Error in the numerical solution at t = T when using the L-RK4
and the Crank–Nicolson methods to solve the heat equation. In the calculation,
u(x, 0) = sin(2πx).

use B-splines. Adapting the formulas given in the last chapter, the solution of
the heat equation is approximated with the function

U(x, t) =
N+2∑
k=−1

ak(t)Bk(x), for 0 ≤ x ≤ 	, (3.69)

where Bk(x) is the cubic B-spline centered at x = xk. The formula for Bk,
and its properties, are given in Section 2.3.1. As illustrated in Figure 2.8, two
properties that are particularly notable are that Bk has a continuous second
derivative and that it is zero everywhere except if xk−2 < x < xk+2. In fact,
the only difference between what was done earlier for BVPs and (3.69) is that
the N + 4 coefficients ak now depend on t.

As usual in collocation, the approximation function in (3.69) is required
to satisfy the heat equation at N +2 points selected from the spatial interval,
and it must also satisfy the two boundary conditions. The simplest choice is
to select the collocation points to be the same as the grid points used in the
construction of the B-splines. Also, to simplify things a bit it is assumed that
f = 0. In this case, substituting (3.69) into the heat equation (3.10) and then
evaluating the result at x = xi gives us the following

N+2∑
k=−1

a′
k(t)Bk(xi) =

N+2∑
k=−1

ak(t)B′′
k (xi), for i = 0, 1, 2, . . . , N + 1. (3.70)

Using the properties of B-splines (see Table 2.2), this can be written as
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a′
i−1(t) + 4a′

i(t) + a′
i+1(t) =

6
h2

(ai−1(t) − 2ai(t) + ai+1(t)),

for i = 0, 1, 2, . . . , N + 1.
(3.71)

From the boundary condition at x = 0 one finds that a−1 = −4a0 − a1. With
this, and the i = 0 equation in (3.71), it follows that a0 = 0 and a−1 = −a1.
Similarly, at x = 	 one finds that aN+1 = 0 and aN+2 = −aN .

To summarize what we have done, the problem that needs to be solved to
find the coefficients in (3.69) is

Aa′ = Ba, (3.72)

where A and B are symmetric tridiagonal N × N matrices given as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 1
1 4 1 0

1 4 1
. . . . . . . . .

0 1 4 1
1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B =
6
h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1 0

1 −2 1
. . . . . . . . .

0 1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.73)

Also, a = (a1(t), a2(t), . . . , aN (t))T . From the initial condition it is required
that U(xi, 0) = g(xi), and so the initial condition for the collocation approx-
imation is

Aa(0) = 6g, (3.74)

where g = (g(x1), g(x2), . . . , g(xN ))T .
The problem that remains is to solve the IVP consisting of (3.72) and

(3.74). We will, of course, solve this problem numerically. Using either for-
ward or backward Euler would give us a method similar to the explicit and
implicit methods studied earlier. It is more interesting to try something that
can compete with Crank–Nicolson, which means we need a method with trun-
cation error O(k2) and that is stable. The natural choice is the trapezoidal
method. In regard to the formula for the trapezoidal method in Table 1.3,
for this problem f = A−1Ba. From this it follows that the finite difference
equation to solve (3.72) is

Figure 3.21. Cubic B-splines are used to solve the diffusion problem that arises in
the study of vortex transport. This figure shows the formation of eddies in the flow
of fluid as it moves through a small narrow chamber (Kudela [1999]).
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A − k

2
B

)
aj+1 =

(
A +

k

2
B

)
aj , for j = 0, 1, 2, . . . , M − 1, (3.75)

where Aa0 = 6g. At first sight this method might look to be more compli-
cated than some of the other implicit methods we have used to solve the heat
equation, but it really isn’t. The equation in (3.75) involves tridiagonal ma-
trices, so the computational effort is comparable to Crank–Nicolson. It does,
however, have the somewhat unusual feature of requiring us to solve an equa-
tion to satisfy the initial condition. Anyway, let’s take it for a test drive to
see how well it does.

Example
Using one of our standard examples, we consider the case where g(x) is the
function given in (3.8). Taking a = 1

4 and b = 3
4 , then the solution (3.5) is

shown in Figure 3.3. We will determine the error using the B-spline method at
time level t = 0.1. As discussed earlier, this depends on the number of points
used in the space and time directions, and in Figure 3.22 it is plotted as a
function of the number of time points used in the calculation. The B-spline
curve behaves as expected in the sense that it drops like O(k2) and then levels
off at a level determined by the O(h2) term in the error. Also, when the spatial
points are doubled, the O(h2) component drops by about a factor of 4, as it
should. From this calculation it appears that Crank–Nicolson does slightly
better than the B-spline method with this problem, but they are comparable
in terms of accuracy and convergence.
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Figure 3.22. Error in the numerical solution at t = 0.1 using the B-spline and
Crank–Nicolson methods to solve the heat equation in the case where the initial
condition is given in (3.8), with a = 1
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and b = 3
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3.6 Next Steps

The centerpiece for the theory of convergence of linear difference approxima-
tions of time-dependent partial differential equations is the Lax Equivalence
Theorem. To state this result suppose that to solve the heat equation prob-
lem (3.10)–(3.12), an approximation of the form Auj+1 = Buj + fj is used.
In this expression uj is given in (3.26) and fj contains the contributions of
the boundary conditions and forcing function. Using ideas from functional
analysis it is possible to establish the next result.

Theorem 3.1. (Lax Equivalence Theorem) The finite difference approxima-
tion converges if and only if it is consistent and stable.

A proof of this, along with an introduction to some of the background ma-
terial necessary for the proof, can be found in Atkinson and Han [2005] and
Richtmyer and Morton [1994]. This result resembles the Dahlquist Equivalence
Theorem for IVPs as it reaffirms the necessity, and sufficiency, of stability and
consistency for convergence. What is different is the specific form for stability.
In both cases stability is a requirement of boundedness, but how this is ex-
pressed differs in the formulation of the two types of problems. With stability
playing such a prominent role one might ask how it arises when using collo-
cation. Combining a finite difference approximation, in time, with a function
approximation, in space, requires a special set of functional analytic tools to
analyze stability. This is beyond the scope of this text and an introduction to
this can be found in Prenter [1989].

In terms of applications one of the more important generalizations of (3.1)
concerns problems involving multiple spatial dimensions. The complications
in such situations center on handling large matrix equations and how to de-
velop approximations for complicated boundaries. These topics are taken up
in Chapter 6.

Another generalization that is of interest concerns nonlinear diffusion prob-
lems. Two well-studied examples are Burger’s equation ut+uux = uxx and the
porous media equation ∂x(D(u)ux) = ut. The differences in these two equa-
tions are a small hint of the differences in their solutions, which are substantial.
Nevertheless, a few comments can be made. We found that stable methods
for the heat equation are implicit whereas the explicit methods are, at best,
conditionally stable. It is not unreasonable to assume this also holds for non-
linear heat equations. The computational difficulty with nonlinear problems
is that an implicit method does not result in a simple matrix equation but in
a nonlinear problem for uj that must be solved at each time step. An explicit
method does not suffer this complication and this makes them a bit more
attractive than in the linear case, although they can still suffer from a se-
vere step size requirement to achieve stability. What this means is that some
thought must be invested into deciding what method to use and how to solve
the resulting equation effectively. Another question is how to determine if a
method is stable as the methods normally used for linear problems are not
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easily extendable to nonlinear problems. In such cases the usual approach is
to use an energy method. The idea is to introduce an energy function in such
a way that stability corresponds to the difference approximation keeping the
energy bounded. The analysis can become quite involved and those interested
in investigating this might start with Iserles [1996].

Exercises

3.1. Suppose it is proposed to use ui,j+1 = λui+1,j +(1−2λ−βk)uij +λui−1,j

to solve the heat equation (3.2) with D = 1. Assume that β is nonnegative.
(a) Is the method explicit or implicit?
(b) Is the method stable (or conditionally stable)?
(c) For what values of β, if any, is the method consistent?

3.2. This problem explores a consequence of consistency.
(a) If the constant function ui,j ≡ 1 does not satisfy the finite difference

approximation of the heat equation (3.10), then the approximation is not
consistent. Explain why. Also explain why ui,j ≡ 1 satisfying the finite
difference equation does not necessarily mean that the approximation is
consistent.

(b) Can the following be used to solve the heat equation?
(i) ui,j+1 = λui+1,j + (1 − 2λ − k)uij + λui−1,j .
(ii) λui+1,j+1−2(1+λ)uij+1+λui−1,j+1 = −λui+1,j−2(1+λ)uij−λui−1,j .

(c) Will the observation in (a) work on the equation Duxx = ut, where D is
a positive constant? What about Duxx = ut + u?

3.3. Assuming that the finite difference equation for solving the heat equation
is linear (i.e., it depends linearly on the uij ’s), answer the following.
(a) If the stencil is given in Figure 3.5 does the method have to be explicit?
(b) If the stencil is given in Figure 3.11 does the method have to be implicit?

3.4. This problem concerns the error curves in Figure 3.10.
(a) In regard to the lower graph, without solving the problem, sketch the error

curve for N = 80. Explain your reasoning for the curve drawn.
(b) In regard to the upper graph, without solving the problem, sketch the

error curve for λ = 0.1225. Explain your reasoning for the curve drawn.

3.5. This problem concerns the error curves in Figure 3.16.
(a) In regard to the lower graph, without solving the problem, sketch the error

curve for N = 80. Explain your reasoning for the curve drawn.
(b) In regard to the upper graph, without solving the problem, sketch the

error curve for k
h = 0.004. Explain your reasoning for the curve drawn.

3.6. Use centered difference approximations in space and time to derive a
finite difference approximation of the heat equation (3.10) with truncation
error that is O(h2)+O(k2). Is the method explicit or implicit? Is the method
stable (or conditionally stable)?
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Figure 3.23. Stencil for solving the heat equation.

3.7. Consider the heat equation (3.10), with initial condition (3.12), and
boundary conditions ux(0, t) = α and u(	, t) = 0.
(a) Derive an explicit finite difference approximation to this problem that has

truncation error O(h2) + O(k). Express the result in matrix form.
(b) Derive a finite difference approximation to this problem that has trunca-

tion error O(h2) + O(k2). Express the result in matrix form.

3.8. The Dufort–Frankel method for solving the heat equation (3.10) is

ui+1,j − ui,j+1 − ui,j−1 + ui−1,j

h2
=

ui,j+1 − ui,j−1

2k
.

(a) What is the stencil and what are the limits on i, j for this method?
(b) Show that the truncation error is O(k2) + O(h2) + O(k2/h2). If you are

unfamiliar with how to do this you might want to look at Exercise 3.19(a).
Explain why this result shows that the method is only conditionally con-
sistent.

(c) Is the method explicit or implicit?
(d) Show that the method is stable.
(e) Show that the method is not L-stable.
(f) Explain how to derive this method directly from the heat equation.

3.9. Consider the stencil shown in Figure 3.23.
(a) Derive a consistent finite difference approximation of the heat equation

(3.10) that has this as its stencil.
(b) What is the truncation error?
(c) Is the method explicit or implicit?
(d) Is the method stable (or conditionally stable)?

3.10. Consider the stencil shown in Figure 3.24.
(a) Derive a consistent finite difference approximation of the heat equation

(3.10) that has this as its stencil.
(b) What is the truncation error?
(c) Is the method explicit or implicit?
(d) Is the method stable (or conditionally stable)?
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Figure 3.24. Stencil for solving the heat equation.

3.11. This problem considers whether there is any point to introducing the
θ-method.
(a) For what values of θ is the θ-method L-stable?
(b) Assuming 0 ≤ θ < 1

2 , is there a value θ that is best? For example, is there
any reason it would be better to take, say, θ = 0 rather than θ = 1

10? Your
answer should address stability, convergence, computational complexity,
etc.

(c) Assuming 1
2 ≤ θ ≤ 1, is there a value θ that is best?

(d) If you were writing a textbook chapter on solving the heat equation would
you include a separate section on the θ-method? Explain your reasoning.

3.12. Using the numerical quadrature approach, derive the method stated
below. Make sure to keep track of the truncation error in the derivation.
(a) The explicit method (3.22).
(b) The implicit method (3.43).
(c) The θ-method (3.51).

3.13. Using the numerical quadrature approach, and integrating from tj−1 to
tj+1, determine what finite difference approximation is obtained from (3.10)
when using the stated integration rule. Make sure to keep track of the trun-
cation error in the derivation. Also, determine whether the resulting method
is stable.
(a) Simpson’s rule.
(b) Midpoint rule.

3.14. This problem concerns the diffusion equation

Duxx = ut + bu, for
{

0 < x < 1,
0 < t,

where u(0, t) = u(1, t) = 0 and u(x, 0) = g(x). Also, D, b are positive con-
stants.
(a) Show that the exact solution is
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u(x, t) =
∞∑

n=1

Ane−(b+Dλ2
n)t sin(λnx),

where λn = nπ and An = 2
∫ 1

0
g(x) sin(λnx)dx.

(b) What is the solution if g(x) = sin(mπx) where m is a positive integer?
(c) Derive an implicit finite difference approximation to this problem that has

truncation error O(h2) + O(k). Express the result in matrix form.
(d) Determine if the method in (c) is stable. If it is conditionally stable make

sure to state the stability condition.
(e) Assuming g(x) = sin(πx), D = 1

10 , b = 1, and T = 1, use the method in
(c) to calculate the solution at t = 1 using M = 4, 8, 16. On the same axes
plot the exact solution at t = 1 and the three numerical solutions. Make
sure to state how you decide on how many points to use along the x-axis.

(f) Assuming g(x) = sin(πx), D = 1
10 , b = 1, plot the maximum error at t = 1

as a function of M for M = 4, 8, 16, 32 and N = 10. On the same axes also
plot the maximum error at t = 1 for M = 4, 8, 16, 32 and N = 20. Explain
the behavior of these two curves using the stated truncation error.

(g) Explain why the exact solution is bounded as t → ∞, irrespective of the
initial condition, as long as b ≥ −Dπ2. Is the method stable if −Dπ2 <
b < 0, where D is still assumed positive?

3.15. This problem concerns the advection–diffusion equation

Duxx − aux = ut, for
{

0 < x < 1,
0 < t,

where u(0, t) = u(1, t) = 0 and u(x, 0) = g(x). Also, D, a are constant and D
is positive.
(a) Show that the exact solution is

u(x, t) =
∞∑

n=1

Ane−αnt+βx sin(λnx),

where An = 2
∫ 1

0
g(x)e−βx sin(λnx)dx, λn = nπ, αn = D(λ2

n + β2), and
β = a

2D .
(b) Show that the function

u(x, t) =
1√

1 + 4cDt
e−c(x−at−b)2/(1+4cDt)

satisfies the differential equation, assuming that b, c are constant with
c nonnegative. What initial and boundary conditions does this solution
satisfy?

(c) Derive an implicit finite difference approximation to this problem that has
truncation error O(h2) + O(k2). Express the result in matrix form.
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(d) Determine if the method in (c) is stable. If it is conditionally stable make
sure to state the stability condition.

(e) Assume g(x) = e−c(x−b)2 , where c = 100, b = 1
3 , D = 0.01, a = 1, and

T = 0.2. Use the method in (c) to calculate the solution at t = 0.2 using
M = 4, 8, 16. On the same axes plot the exact solution at t = 0.2 and
the three numerical solutions. Make sure to state how you decide on how
many points to use along the x-axis. Also, you can use the function from
(b) in place of the exact solution but you need to explain why this is
possible.

(f) Assuming g(x) = e−c(x−b)2 , c = 100, b = 1
3 , D = 0.01, a = 1, and

T = 0.2, plot the maximum error at t = 0.2 as a function of M for
M = 4, 8, 16, 32, 64, 128 and N = 30. On the same axes also plot the
maximum error at t = 0.2 for M = 4, 8, 16, 32, 64, 128 and N = 60.
Explain the behavior of these two curves using the stated truncation error.

3.16. This problem concerns the advection–diffusion equation

uxx + µ(x)ux = ut, for
{

0 < x < 	,
0 < t,

where u(0, t) = u(	, t) = 0 and u(x, 0) = g(x).
(a) Derive an explicit finite difference approximation of this problem that has

truncation error O(h2) + O(k). Express the result in matrix form.
(b) Assuming that µ is a positive constant, find the amplification factor κ

obtained from the stability analysis for the method in (a). Use this to
determine if the method is stable when µ is a positive constant (as a
suggestion, you might see if |κ|2 can be written as a quadratic function of
s, where s = cos(rh)). If it is conditionally stable make sure to state the
stability condition.

(c) Suppose µ(x) = 1 + cos(2πx), 	 = 1, and g(x) = x(1 − x)2. Use the
method in (a) to calculate and then plot the solution at t = 1 using
M = 60, 70, 80 and N = 20. Explain the results using information from
(a) and (b).

(d) The exact solution for the problem in (c) is unknown. Even so, give a
convincing argument for why your computed solutions are correct. Your
answer should address both the correctness of the algorithm and the com-
puter program itself.

3.17. This problem concerns the diffusion equation

uxx = ut + b(x)u, for
{

0 < x < 1,
0 < t,

where u(0, t) = h(t), u(1, t) = 0, and u(x, 0) = 0.
(a) Derive an implicit finite difference approximation of this problem that has

truncation error O(h2) + O(k2). Express the result in matrix form.
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(b) Determine if the method in (a) is stable in the case where b is a posi-
tive constant. If it is conditionally stable make sure to state the stability
condition.

(c) Suppose h(t) = sin(3πt) and b(x) = x. Use the method in (a) to plot
the solution for 0 ≤ x ≤ 1, 0 ≤ t ≤ 1. Make sure to pick a step size that
produces a reasonably smooth surface. Does your result from part (b) help
here?

(d) The exact solution for the problem in (c) is unknown. Even so give a
convincing argument for why your computed solutions are correct. Your
answer should address both the correctness of the algorithm and the com-
puter program itself.

3.18. This problem concerns the diffusion equation

∂

∂x

(
D(x)

∂u

∂x

)
=

∂u

∂t
, for

{
0 < x < 	
0 < t,

where u(0, t) = u(	, t) = 0 and u(x, 0) = g(x).
(a) Derive an implicit finite difference approximation to this problem that has

truncation error O(h2) + O(k). Express the result in matrix form.
(b) Determine if the method in (a) is stable in the case where D is a posi-

tive constant. If it is conditionally stable make sure to state the stability
condition.

(c) Suppose D(x) = 1
100 (2 + sin(8πx)), 	 = 1, and g(x) is given in (3.8) with

a = 0.5 and b = 0.75. Use the method from (a) to plot the solution for
0 ≤ x ≤ 1, 0 ≤ t ≤ 1. Make sure to pick a step size that produces a
reasonably smooth surface. Does your result from part (b) help here?

3.19. This problem examines the better-than-expected error seen in Figure
3.10 for the explicit method.
(a) The truncation error can be determined by substituting the exact solution

into the finite difference equation (3.22) and then using Taylor’s theorem
to express terms evaluated at (xi±1, tj) or (xi, tj+1) in terms of the solution
at (xi, tj). Doing this, show that the first term in the truncation error is
τi,j = k

2utt(xi, tj) − h2

12 uxxxx(xi, tj), which is the expected O(h2) + O(k)
result.

(b) Show that by taking 6k = h2 the truncation error term in (a) is zero.
(c) If 6k = h2 then by examining the higher-order terms in the Taylor expan-

sion show that u(xi, tj) − ui,j = O(h4).
(d) Is it possible for this better-than-expected situation to arise with the θ-

method?
(e) Because λ = k

h2 , the error for the explicit method can be written as
O( k

λ ) + O(k). Consequently, for a given value of k, decreasing λ should
increase the error. This does not happen in Figure 3.10. Why?



Exercises 125

3.20. Another approach for determining stability is based on a perturbation
argument. It starts with the homogeneous version of the problem, so u = 0
is the solution. With this, suppose ui,j = ε at one grid point, where ε is
small but nonzero. It is assumed that the solution is zero at all other grid
points at this time level and earlier. However, it is not necessarily zero at
t = tj+1, tj+2, tj+3, . . ., and the question is what happens to the solution at
these later time levels. Answer this question for the explicit method by finding
the solutions at t = tj+1, tj+2, tj+3. Given that the stability requirement is
that the solution not grow with j, what is your conclusion about the stability
of the explicit method using the perturbation method?

3.21. Let L-Euler designate the method of lines when the Euler method is
used to solve (3.65).
(a) In the case f(x, t) = 0 show that L-Euler reduces to an equation of the

form uj+1 = Auj . What is the truncation error for L-Euler?
(b) Write the method as a finite difference equation involving the ui,j ’s. What

is the stencil for L-Euler? How does this method differ from the explicit
method?

3.22. Let L-Trap designate the method of lines when the trapezoidal method
is used to solve (3.65).
(a) In the case f(x, t) = 0 show that L-Trap reduces to an equation of the

form Auj+1 = Buj . What is the truncation error for L-Trap?
(b) Write the method as a finite difference equation involving the ui,j ’s. What

is the stencil for L-Trap? How does this method differ from the Crank–
Nicolson method?

3.23. This exercise examines what happens to the method of lines if the prob-
lem is changed in various ways.
(a) Suppose the boundary conditions are changed to ux(0, t) = 0 and u(1, t) =

t. How is (3.65) affected? Your spatial truncation error should be O(h2).
(b) Suppose the problem is ut = uxx + e−tux, where u(0, t) = u(1, t) = 0.

How is (3.65) affected? Your spatial truncation error should be O(h2).
(c) Suppose the problem is ut = (Dux)x − u, where u(0, t) = u(1, t) = 0 and

D = D(x) is a smooth positive function. How is (3.65) affected? Your
spatial truncation error should be O(h2).

3.24. This exercise examines what happens to the collocation method using
cubic B-splines if the problem is changed in various ways.
(a) Suppose the boundary conditions are changed to ux(0, t) = 0 and u(1, t) =

t. How is (3.72) affected? Your spatial truncation error should be O(h2).
(b) Suppose the problem is ut = uxx + e−tux, where u(0, t) = u(1, t) = 0.

How is (3.72) affected?
(c) Suppose the problem is ut = (Dux)x − u, where u(0, t) = u(1, t) = 0 and

D = D(x) is a smooth positive function. How is (3.72) affected?
(d) Assuming that backward Euler is used to solve (3.72), how is (3.75)

changed?
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(e) Assuming that RK4 is used to solve (3.72), how is (3.75) changed?

3.25. Consider the nonlinear diffusion problem

uxx =
∂

∂t
(u + u3), for

{
0 < x < 1,
0 < t,

where
u(0, t) = sin(t), u(1, t) = 0, and u(x, 0) = 0.

Derive a finite difference approximation for this equation that has a truncation
error of O(h2)+O(k2) and that uses values of the solution only at time levels
tj and tj+1. Make sure to identify how the boundary and initial conditions
are used in your approximation.

3.26. This problem investigates how fast the strength of the heat signal moves
along the x-axis. The spatial region is assumed semi-infinite, so 	 = ∞ in
(3.2). The imposed conditions are u(x, 0) = 0, u(0, t) = 1, and u(x, t) → 0 as
x → ∞.
(a) The solution has the form u(x, t) = v(η), where η = x√

t
. Rewrite the heat

equation along with the boundary and initial conditions in terms of v(η).
You should find that v(η) satisfies a BVP on a semi-infinite interval.

(b) Solve the BVP from (a) for v(η) and express your answer in terms of the
complementary error function, defined as

erfc(r) =
2√
π

∫ ∞

r

e−s2
ds.

(c) Show that the solution has the instant messaging property. In particular,
even though the solution is zero at t = 0, it is nonzero for all x once t > 0.

(d) Taking D = 1, plot v(η) for 0 ≤ η ≤ 10. Also, evaluate v(1), v(3), and
v(10). Explain why this demonstrates that the strength of the signal far
from the left end is rather weak and stays that way for some time.

(e) Suppose one introduces a threshold condition that states that at whatever
x location is chosen, the solution must reach a particular level before it is
considered to have effectively reached that location. If the threshold value
is u(x, t) = 0.31731050786291410283, find t in terms of x for this to hold.
For the mildly curious, this value is connected with the stability condition
for the explicit method.
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Advection Equation

4.1 Introduction

We now begin the study of numerical wave propagation. Everyone has expe-
rience with traveling waves, whether it is waves on a lake, sound waves, or
perhaps an earthquake or two. It is not particularly difficult to write down a
reasonable-looking finite difference approximation to a wave equation. Most
of the effort is invested in trying to determine whether the method actually
works. There are unique complications for numerical wave propagation, and
so to introduce the ideas we use one of the simplest mathematical equations
that produces traveling waves. This is the advection equation, given as

∂u

∂t
+ a

∂u

∂x
= 0, for

{−∞ < x < ∞,
0 < t,

(4.1)

where u(x, 0) = g(x). It is assumed that a is a positive constant.
The mathematical simplicity of (4.1) should not belie that fact that it

plays an important role in a wide range of applications. For example, the
momentum equation for the motion of a gas is an inhomogeneous version
of (4.1) except that a depends on u. This is why a nonlinear version of the
advection equation arises in the mathematical model of interstellar gas and
its motion due to the solar wind (Figure 4.1). Another application arises in
the study of the movement of traffic along a highway (Figure 4.1). In this case
u(x, t) represents the density of cars along the road and a is their speed.

4.1.1 Method of Characteristics

The solution of the advection equation can be found if one notes that it can
be written as (

∂

∂t
+ a

∂

∂x

)
u = 0. (4.2)

The idea is to transform x, t to new variables r, s in such a way that the
derivatives transform as
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Figure 4.1. A nonlinear advection problem describes the Earth’s bow shock associ-
ated with the solar wind (upper figure) as well as the flow of traffic along a highway
(lower figure).

∂

∂r
=

∂

∂t
+ a

∂

∂x
. (4.3)

If this is possible then (4.2) becomes ∂u
∂r = 0, and this equation is very easy

to solve. With this goal in mind let x = x(r, s), t = t(r, s), in which case using
the chain rule, the r-derivative transforms as

∂

∂r
=

∂x

∂r

∂

∂x
+

∂t

∂r

∂

∂t
. (4.4)

Comparing this with (4.2), we require ∂x
∂r = a and ∂t

∂r = 1. Integrating these
equations yields x = ar + q(s) and t = r + p(s). To determine the s depen-
dence recall that the initial condition specifies the solution along the x-axis.
To make it easy to apply the initial condition in the transformed coordinates
we ask that the x-axis (t = 0) transform onto the s-axis (r = 0). Specifically,
we require that r = 0 imply that t = 0 and x = s. Setting r = 0 and t = 0, we
conclude q(s) = s and p(s) = 0, and so the change of variables we are looking
for is

x = ar + s, t = r. (4.5)
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Inverting this transformation, one obtains r = t and s = x − at. We are now
able to write (4.1) as ∂u

∂r = 0, which means that u = u(s) = u(x − at). With
the initial condition we therefore conclude that the solution of the advection
problem is

u(x, t) = g(x − at). (4.6)

This is a traveling wave that moves with speed a. It is also seen that the
solution is constant along lines of the form x − at = constant. These lines
are called characteristics for the equation and the method we used to find the
solution is known as the method of characteristics.

Example
Suppose the initial condition is the square bump shown in Figure 4.2. In
mathematical terms,

g(x) =
{

1 if 0 ≤ x ≤ 1,
0 otherwise. (4.7)

From (4.6) the solution is

u(x, t) =
{

1 if 0 ≤ x − at ≤ 1,
0 otherwise,

or equivalently,

u(x, t) =
{

1 if at ≤ x ≤ 1 + at,
0 otherwise. (4.8)
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Figure 4.2. (M) Solution of the advection equation. The top figure is the initial
condition, as given in (4.7). The bottom figure is the solution at a later time, as
given in (4.8).
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Figure 4.3. The solution of the advection equation, as given in (4.6), is constant
along the characteristic lines x−at = constant. The value on each line is determined
by the initial condition.

A typical solution profile is also shown in Figure 4.2, and it is apparent that
at any given time t, the solution is simply the original square bump that has
moved over to occupy the interval at ≤ x ≤ 1 + at. A different perspective of
the solution is given in Figure 4.3, which shows a few of the characteristics
x − at = constant along with the value of the solution on each line. As can
be seen, the solution is constant along each of these curves, and its value is
determined by where the characteristic intersects the x-axis.

4.1.2 Solution Properties

The solution in Figure 4.2 is typical of what is seen in wave problems, and a
few observations and comments that are helpful when finding the numerical
solution appear below.

1. The initial shape is preserved, jumps and all. This is in marked contrast
to the heat equation, where the solutions decay and any corners or jumps
in the initial condition are immediately smoothed out. Because of this,
one might question whether (4.8) is actually a solution since ux is not
defined at the jumps located at x = at, 1 + at. The short answer is that
everything is fine. What is necessary is to introduce the concept of a
weak solution, and the interested reader is referred to Evans [2002] for an
extended discussion of this subject.

2. Information travels at speed a. This is discussed in detail later and it differs
sharply with the heat equation, where information is instantly transmit-
ted throughout the entire spatial domain. Also, waves travel in only one
direction in this problem, and for this reason (4.1) is sometimes called a
one-way wave equation.

3. The solution at a given spatial position x = x and time t = t is determined
entirely by the value of the initial condition at x = x − at. This situation
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Figure 4.4. Domain of dependence. The solution at (x, t) is u = g(x − at). Conse-
quently, it is determined by the value of the initial condition at x = x− at. For this
reason (x − at, 0) is the domain of dependence for u(x, t).

is indicated schematically in Figure 4.4. This turns out to be a very im-
portant property for wave problems and it is the reason for introducing
what is known as the domain of dependence. The domain of dependence
for the solution at (x, t) consists of all the points on the x-axis (t = 0)
that contribute to the solution at (x, t). For the advection equation, the
domain of dependence for u(x, t) is the single point (x − at, 0).

4.1.3 Boundary Conditions

The unbounded spatial interval used in (4.1) is not going to make it into our
numerical algorithms. To compute the solution we need to specify left (xL)
and right (xR) endpoints for the spatial grid. In this case the grid points are
xi = xL + ih, where i = 0, 1, 2, . . . , N + 1 and xN+1 = xR. This gives rise to
the question as to what can, or should, be specified for boundary conditions
at x = xL, xR. For example, suppose we wanted to compute the solution for
0 < t ≤ 10, where the initial condition is the square bump in Figure 4.2 with
a = 1. The spatial interval that contains the nonzero portion of the solution
during this time period is 0 ≤ x ≤ 11. One option for our numerical algorithm
is to choose the computational interval large enough so it includes this nonzero
region, and a reasonable choice for the given time interval is xL = −1 and
xR = 12. Because information in this problem is moving from left to right, a
boundary condition consistent with the problem is u(xL, t) = 0. For the same
reason, we should not have to specify anything at x = xR. The exact solution
at this point is determined from the information flowing in from the left.
Indeed, as shown in Exercise 4.19, attempting to specify a condition at x = xR

almost certainly leads to a conflict with the initial condition. The unfortunate
reality is, however, that some numerical methods for the advection equation
require the boundary conditions at both ends to be specified. There are ways
to deal with such situations and they will be discussed when the issue arises.



132 4 Advection Equation

4.2 First-Order Methods

We have solved enough differential equations in this book that constructing a
finite difference approximation is routine. We will compute the solution over
the two-dimensional region xL < x < xR, 0 < t ≤ T , where xL, xR, T are
specified at the time the computation is carried out. We confine our attention
to a uniform grid and use the formulas introduced earlier, namely,

tj = jk, for j = 0, 1, 2, . . . , M, (4.9)
xi = xL + ih, for i = 0, 1, 2, . . . , N + 1, (4.10)

where k = T/M and h = (xR − xL)/(N + 1). In preparation for introducing
approximations for the derivatives we evaluate the differential equation at the
grid point (x, t) = (xi, tj) to obtain

ut(xi, tj) + aux(xi, tj) = 0. (4.11)

Now, what approximations should be used? For a little variety, we consider
several, and two are listed below.

4.2.1 Upwind Scheme

Using a forward difference in time and a backward difference in space we have

u(xi, tj+1) − u(xi, tj)
k

+ a
u(xi, tj) − u(xi−1, tj)

h
+ τij = 0, (4.12)

where τij = O(h)+O(k). The stencil for this choice is given in the upper grid
in Figure 4.5. Dropping the truncation error and rearranging the terms we
obtain what is known as the upwind scheme

ui,j+1 = (1 − λ)uij + λui−1,j , for
{

i = 1, 2, . . . , N + 1,
j = 0, 1, 2, . . . , M − 1,

(4.13)

where
λ =

ak

h
. (4.14)

The initial condition is ui,0 = gi. To use (4.13) we need u0,j , which is the
solution at x = xL, for 0 < t. There are various ways to handle this, depending
on the exact formulation of the problem, and this will be discussed later when
we work out a few examples.

4.2.2 Downwind Scheme

Using forward differences in space and time we have

u(xi, tj+1) − u(xi, tj)
k

+ a
u(xi+1, tj) − u(xi, tj)

h
+ τij = 0, (4.15)
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Figure 4.5. Stencils for the upwind (4.13) and downwind (4.16) schemes. The
convention used here is that a solid dot indicates a point where the solution has
already been determined, and a hollow dot indicates a point where the solution is
going to be calculated using the given method.

where τij = O(h) + O(k). The stencil for this choice is given in the lower grid
in Figure 4.5. Dropping the truncation error and rearranging the terms, one
obtains the downwind scheme, given as

ui,j+1 = (1 + λ)uij − λui+1,j , for
{

i = 0, 1, 2, . . . , N,
j = 0, 1, 2, . . . , M − 1.

(4.16)

The initial condition is ui,0 = gi. To use (4.16), uN+1,j must be specified, and
how this might be done is discussed later.

The two methods, at first glance, seem to be more or less equal, because
they are both explicit and have the same truncation error. As it turns out,
they produce very different results. We will take the experimental approach
and try them without determining ahead of time whether they actually work.
Afterwards, we will do a little analysis to see if we can explain what happens.

Example
Suppose the initial condition is the square bump given in (4.7). The solution
is given in (4.8) and it is sketched in Figure 4.2. We will compute the solution
for −10 ≤ x ≤ 10 and 0 ≤ t ≤ 7 with a = 1. The upwind scheme requires
information, or a boundary condition, at x = −10 and we take u0,j = 0. The
downwind scheme requires a condition at x = 10 and in the calculations we
take uN+1,j = 0. To do a fair job in describing the initial condition we use
203 points along the x-axis. It is not clear how many time points to use, so
we try a few values. The results are shown in Figure 4.6, and the outcomes
are strikingly different. The solution computed using the downwind scheme in
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(4.16) shows the overly oscillatory behavior associated with instability. More-
over, the nonzero part of the solution is moving in the wrong direction! The
latter is a particularly serious flaw and the reason we will not use this scheme
to solve the advection equation (when a > 0). The upwind scheme, on the
other hand, also shows instability when M = 50. It redeems itself, to a small
degree, by at least sending the unstable solution in the right direction. If the
number of time points is increased, to M = 72, the upwind method actually
does a decent job solving the problem. In the hope of possibly improving the
accuracy, the number of time points is increased to M = 100. Oddly, the com-
puted solution gets worse. In particular, the method produces an amplitude
that is too small, a bump that is too spread out, and a bump that looks to be
traveling faster than it should. To its credit, however, the solution does not
show unstable behavior.

Now comes the part where we explain what happened in the last example.
For example, why is it that using fewer time points (M = 72 versus M =
100) actually produces a better numerical solution? This is different from
the difficulty we had with the heat equation, where increasing the number of
spatial points had the potential of causing the method to violate its stability
condition. That is not happening here, because the M = 100 solution looks
stable, it just isn’t very accurate. To help with these questions we return to
the idea of the domain of dependence.

4.2.3 Numerical Domain of Dependence

Given a spatial location x = xi, and time t = tj , the grid points along the
x-axis that contribute to the solution at (xi, tj) form what is known as the
numerical domain of dependence for the solution at (xi, tj). It is easy to de-
termine this, because one simply has to identify what points are used in the
previous time steps to calculate the solution. This is illustrated in Figures
4.7 and 4.8 for the downwind and upwind methods, respectively. Recall that
for the advection equation the domain of dependence for (xi, tj) is the single
point (x0, 0), where x0 = xi−atj . In other words, the exact solution at (xi, tj)
is determined solely by the value of the initial condition at x0 = xi − atj . If
the computed solution is to have any hope of producing the correct answer,
it is essential that the numerical domain of dependence bound the domain of
dependence. This gives rise to the following principle.

CFL (Courant–Friedrichs–Lewy) Condition: The numerical domain
of dependence must bound, or contain, the domain of dependence for the
problem.

In looking at the situation in Figure 4.7 it is evident why the downwind
scheme in (4.16) does so badly. For this method, information starting at, say,
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Figure 4.6. (M) Numerical solution of the advection equation at t = 7 when the
initial condition is the square bump given in (4.7). The bottom three graphs use
the upwind scheme (4.13), and the top one uses the downwind scheme (4.16). The
number of time steps M used to reach t = 7 is given in each graph, as is the exact
solution.



136 4 Advection Equation

M
et

h
o
d
s

fo
r

S
o
lv

in
g

∂
u ∂
t

+
a

∂
u

∂
x

=
0

U
si

n
g

u
i,

j
+

1
=

A
u

i+
1
,j

+
B

u
i,

j
+

C
u

i−
1
,j

M
et

h
o
d

C
o
effi

ci
en

ts
T
ru

n
ca

ti
o
n

E
rr

o
r

C
F
L

C
o
n
d
it

io
n

S
ta

b
il
it
y

M
o
n
o
to

n
e

U
p
w

in
d

A
=

0
B

=
1
−

λ
C

=
λ

O
(h

)
+

O
(k

)
λ
≤

1
C

o
n
d
it

io
n
a
l:

λ
≤

1
Y

es

L
a
x
–

F
ri

ed
ri

ch
s

A
=

1 2
(1

−
λ
)

B
=

0
C

=
1 2
(1

+
λ
)

O
(

h
2 k
)
+

O
(k

)
+

O
(h

2
)

λ
≤

1
C

o
n
d
it

io
n
a
l:

λ
≤

1
Y

es

L
a
x
–

W
en

d
ro

ff
A

=
−

λ 2
(1

−
λ
)

B
=

1
−

λ
2

C
=

λ 2
(1

+
λ
)

O
(h

2
)
+

O
(k

2
)

λ
≤

1
C

o
n
d
it

io
n
a
l:

λ
≤

1
N

o

C
en

te
re

d
A

=
−

λ 2

B
=

1
C

=
λ 2

O
(h

2
)
+

O
(k

)
λ
≤

1
U

n
st

a
b
le

N
o

T
a
b
le

4
.1

.
E

x
p
li
ci

t
fi
n
it

e
d
iff

er
en

ce
m

et
h
o
d
s

fo
r

so
lv

in
g

th
e

a
d
v
ec

ti
o
n

eq
u
a
ti

o
n
,
a
ss

u
m

in
g

a
>

0
a
n
d

λ
=

a
k
/
h
.



4.2 First-Order Methods 137

��

�

�

��

���

Figure 4.7. Grid points used to calculate the solution at (xi, tj) using the downwind
scheme (4.16). The points on the x-axis, {xi, xi +h, . . . , xi +jh}, form the numerical
domain of dependence for (xi, tj).

x = xi + jh affects points to the left as time increases. In other words, in-
formation moves only leftward and this explains why the wave goes in the
wrong direction in Figure 4.6 for the downwind scheme. As for the CFL con-
dition, with this method the numerical domain of dependence for (xi, tj) is
{xi, xi+h, . . . , xi+jh}. It is impossible for x0 to fall within the region bounded
by these points, that is, for xi ≤ x0 ≤ xi + jh. Therefore, this method does
not satisfy the CFL condition.

As for the upwind scheme in (4.13), as seen in Figure 4.8, information
moves to the right. All that is necessary is to make sure the numerical domain
of dependence {xi − jh, . . . , xi − h, xi} is large enough that it overlies the
domain of dependence. This translates into the requirement that xi−jh ≤ x0.
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Figure 4.8. Grid points used to calculate the solution at (xi, tj) using the upwind
scheme (4.13). The points on the x-axis, {xi−jh, . . . , xi−h, xi}, form the numerical
domain of dependence for (xi, tj).
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Since tj = jk, the CFL condition for this method is

λ ≤ 1, (4.17)

where λ = ak/h. In Figure 4.6, when M = 50, λ = 1.4, and consequently the
CFL condition is not satisfied. This correlates with the bad result, although
a complete explanation will need to wait until the stability test is completed.
The other two cases, M = 72 (λ = 0.98) and M = 100 (λ = 0.7), both satisfy
the CFL condition. This still leaves the question as to why the one with the
fewer time steps produces a better answer. The culprit is the truncation error.
Numerical methods for the advection equation, like other wave equations, are
sensitive to the form of the error term. We will investigate this shortly, and in
the next chapter tools are developed that make it relatively easy to determine
the wave properties of numerical methods.

The CFL condition is a valuable tool that we will routinely use for help-
ing to develop effective numerical methods for solving wave problems. It is
not perfect and comes with limitations and qualifications. These include the
following:

• The CFL condition is, by itself, not enough to guarantee a stable method.
An example of this will be given shortly. However, it does provide a quick
and relatively painless way to determine whether there is any hope that
such a method will work on a wave problem.

• The CFL condition is limited to wave problems. For example, with the
heat equation the domain of dependence for any point is the entire x-
axis. If the CFL condition were to apply, one would make the erroneous
conclusion that the explicit method will fail for the heat equation.

• The CFL condition makes no statement about accuracy.

4.2.4 Stability

The stability analysis developed in the last chapter for the heat equation
applies directly to the methods used to solve the advection equation. The
start-off assumption is exactly the same, which is

uij = wje
rxiI , (4.18)

where I =
√−1. The function wj is determined from the difference equation,

and the requirement for stability is that wj remain bounded as j increases.

Example 1
For the upwind method in (4.13) one finds that wj = κjw0, where κ =
1 − λ + λ cos(rh) − Iλ sin(rh). In this case, |κ|2 = 1 − 4λ(1 − λ) sin2(rh/2).
To guarantee that wj remains bounded we require |κ|2 ≤ 1 (see Figure 4.9).
From this we obtain the condition 0 ≤ λ(1 − λ) sin2(rh/2). This holds, ir-
respective of the value of r, if λ ≤ 1, and this is the stability condition for
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Figure 4.9. For stability of the upwind method it is required that the value of κ
be on, or within, the unit circle.

the upwind method. Interestingly, this is exactly what was obtained from the
CFL condition.

Example 2
Suppose one wants to do a better job with the x derivative and uses a O(h2)
centered difference approximation. In this case the finite difference approxi-
mation is

ui,j+1 = −λ

2
ui+1,j + ui,j +

λ

2
ui−1,j . (4.19)

It is not hard to show that the CFL condition for this method is λ ≤ 1.
Carrying out the stability analysis, one finds that wj = κjw0, where κ =
1−λI sin(rh). From this we conclude that |κ|2 = 1+λ2 sin2(rh), which means
that |κ| > 1. Therefore, the method is unstable. This is an example that
demonstrates that the CFL condition, by itself, does not guarantee stability.
It also reinforces something seen earlier. Namely, what appears to be a better
approximation can actually lead to a much worse computational result.

4.3 Improvements

Although the upwind method does a reasonable job solving the advection
equation, it is worth our time looking for a more accurate method. Our usual
approach for this is to introduce higher-order difference approximations for the
derivatives in the equation. This time, however, we try something different.
In particular, given the form of the finite difference equations that have been
obtained so far, we simply hypothesize that the form of the approximation is

ui,j+1 = Aui+1,j + Buij + Cui−1,j . (4.20)

The coefficients A,B,C are determined by requiring that the truncation error
associated with this approximation be small. To calculate the error note that
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ut = −aux, utt = −auxt = −a(ut)x = a2uxx, and uttt = −a3uxxx. With this
and Taylor’s theorem, one finds that

u(xi,tj + k)

= u(xi, tj) + kut(xi, tj) +
1
2
k2utt(xi, tj) +

1
6
k3uttt(xi, tj) + . . .

= u(xi, tj) − akux(xi, tj) +
1
2
a2k2uxx(xi, tj) − 1

6
a3k3uxxx(xi, tj) + . . . .

(4.21)

Similarly,

u(xi ± h, tj) = u(xi, tj)± hux(xi, tj) +
1
2
h2uxx(xi, tj)± 1

6
h3uxxx(xi, tj) + . . . .

(4.22)
Now, as seen in (4.15) and (4.12), when u(xi, tj) and the truncation error τij

are in the difference equation, the form of the equation is

u(xi, tj + k) = Au(xi + h, tj) + Bu(xi, tj) + Cu(xi − h, tj) + kτij . (4.23)

The question is, how do we pick A,B,C such that τij is small? Well, using
(4.21) and (4.22) in (4.23) we have

τij =
1
k

(u(xi, tj + k) − Au(xi + h, tj) − Bu(xi, tj) − Cu(xi − h, tj))

=
1
k

(1 − A − B − C)u(xi, tj) − h

k
(A − C + λ)ux(xi, tj)

− 1
2

h2

k
(A + C − λ2)uxx(xi, tj) − 1

6
h3

k
(A − C + λ3)uxxx(xi, tj) + . . . .

(4.24)

It is mandatory that A,B, C be selected so that the approximation is consis-
tent (i.e., τij must go to zero as h and k go to zero). This still leaves numerous
ways to pick A,B,C, and this freedom gives rise to different methods.

4.3.1 Lax–Wendroff Method

Perhaps the most natural choice to make is simply to set as many coefficients
to zero in (4.24) as possible. Working our way through the terms in (4.24)
gives

u : 1 − A − B − C = 0,
ux : λ + A − C = 0,

uxx : −λ2 + A + C = 0.

Solving these equations, we obtain what is known as the Lax–Wendroff method

ui,j+1 = −1
2
λ(1 − λ)ui+1,j + (1 − λ2)uij +

1
2
λ(1 + λ)ui−1,j . (4.25)
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The truncation error in this case is

τij = −1
6

h3

k
(A − C + λ3)uxxx(xi, tj) + . . .

=
1
6
(−k2a2 + ah2)uxxx(xi, tj) + . . .

= O(k2) + O(h2). (4.26)

This looks to be an improvement over the upwind scheme, but it remains to
carry out the stability analysis. Before doing so, however, we determine the
CFL condition for the method. The grid points that contribute to the solution
at (xi, tj) are shown in Figure 4.10. From this it is seen that the numerical
domain of dependence for Lax–Wendroff is {xi − jh, xi − (j − 1)h, . . . , xi +
(j − 1)h, xi + jh}. For x0 = xi − atj to be bounded by this set of points it is
required that λ ≤ 1 and this is the CFL condition for Lax–Wendroff. There
is another useful piece of information contained in Figure 4.10. Given that
x = xi − jh (t = 0) contributes to the solution at (xi, tj) then information
moves to the right using Lax–Wendroff. By the same token, x = xi+jh (t = 0)
contributes to the solution at (xi, tj) and this means information moves to the
left. In other words, the Lax–Wendroff method propagates information in both
directions. This is a bit of a concern as the advection equation produces waves
that travel in only one direction. As will be demonstrated below, however, this
property of Lax–Wendroff will not affect its accuracy.

In remains to analyze the stability properties of the method. Assuming
uij = wj exp(Irxi) one finds from (4.25) that wj = κjw0, where

κ = 1 − 2λ2 sin2

(
rh

2

)
− λI sin(rh). (4.27)
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Figure 4.10. Grid points used to calculate the solution at (xi, tj) using the Lax–
Wendroff method, (4.25). The points on the x-axis, {xi − jh, xi − (j − 1)h, . . . , xi +
(j − 1)h, xi + jh}, form the numerical domain of dependence for (xi, tj).
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Using the half-angle formula one can show that sin2(rh) = 4 sin2(rh/2) −
4 sin4(rh/2). With this, we obtain

|κ|2 = 1 − 4λ2(1 − λ2) sin4

(
rh

2

)
. (4.28)

For stability it is required that |κ| ≤ 1. From (4.28) this happens, irrespective
of the value of r, when λ ≤ 1. Therefore, Lax–Wendroff is a conditionally
stable second-order method. This has made it one of the more prominent
methods for solving routine advection problems. However, it is not perfect,
and we will explore this below.

There are two Lax methods listed in Table 4.1, and the derivation of the
second, Lax–Friedrichs, is explored in the exercises. The method differs from
the others listed since it is not consistent unless h2/k → 0 as h, k → 0. This
is not a limitation as this condition holds as long as the stability condition is
satisfied.

The Lax methods introduce an interesting complication into the develop-
ment. In coding these schemes one is faced with having to specify boundary
conditions at both ends. As discussed earlier, this is not an issue at x = xL

because the original advection problem on a finite interval also requires this
information. Therefore the correct boundary condition should be part of the
problem formulation. The question is what to do at x = xR. One of the easiest
ways to handle this is to use the upwind method to determine the solution at
xR. This is simple to implement, but the upwind scheme is first order, while
Lax–Wendroff is a second-order method. This is an issue, since Lax–Wendroff
allows information to propagate both left and right, so the inaccuracy at xR

has the potential to affect the solution over the entire interval. Fortunately, as
shown in the next chapter, Lax–Wendroff forces the left-moving information to
decay rapidly, so using a first-order approximation at xR is not a particularly
significant problem. It is possible to develop second-order-accurate conditions,
but this is not pursued here. This subject, which falls into the more general
topic of artificial boundary conditions, is discussed in depth in Durran [1998]
and Colonius [2004].

Example
Returning to the problem solved in Figure 4.6, we use the Lax–Wendroff
method to compute the solution for 0 ≤ x ≤ 10, 0 ≤ t ≤ 7 with a = 1.
The spatial grid is the same as used earlier. For boundary conditions we
take u0,j = 0 and uN+1,j = 0. For the number of time points we will try
M = 70 (λ = 1.01), M = 72 (λ = 0.99), M = 74 (λ = 0.96), and M =
100 (λ = 0.7). The results are shown in Figure 4.11. Not unexpectedly, the
method has serious problems when 70 time steps are used, but not for 72.
In comparison to the upwind results in Figure 4.6, the two methods appear
comparable when M = 72. This is consistent with the fact that both methods
produce the exact solution when λ = 1 (Exercise 4.2). Also, the Lax–Wendroff
method does a better job when M = 100, and this is a consequence of its better
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Figure 4.11. (M) Solution of the advection equation at t = 7 using the Lax–
Wendroff method with various values of the time step. The initial condition is the
square bump given in (4.7). The number of time steps M used to reach t = 7 is
given in each graph, as is the exact solution.
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truncation error. However, the Lax–Wendroff solution overshoots (u > 1) the
transition from u = 0 to u = 1 and undershoots (u < 0) it when going from
u = 1 to u = 0. This behavior is due to the method not being monotone, and
this observation brings us to our next topic.

4.3.2 Monotone Methods

A numerical scheme is said to be monotone if it preserves monotonicity in
the solution. For example, if g(x) = tanh(10x) then the solution u(x, t) =
tanh(10(x − at)) is a monotonically increasing function of x at any time t. A
monotone scheme, in this case, will produce a solution that is a monotonically
increasing function of xi at any time step tj . The precise definition is given
below.

Definition 4.1. A finite difference approximation is monotone if uij ≥ ui+1,j,
∀i implies that ui,j+1 ≥ ui+1,j+1, ∀i.

One benefit of a monotone scheme is that it will not create new max/min
points. Because of this the over- and undershoots such as those in Figure
4.11 will not occur when a monotone scheme is used. Even though these
max/min points can have small amplitude, they do affect the accuracy and
interpretation of the solution. For example, if u(x, t) represents a mass variable
then having negative undershoots is not particularly desirable.

It is not difficult to determine if an explicit scheme is monotone when
the method involves a single time step like those in Table 4.1. To state the
condition, suppose ui,j+1 is determined using a linear combination of the
values of the solution at tj . Writing ui,j+1 =

∑
p Apup,j , then the method is

monotone if all the coefficients Ap are nonnegative (see Exercise 4.22). This
makes checking for monotonicity very easy, since one simply looks to see if the
coefficients are nonnegative. So, in the stability region, the upwind scheme is
monotone, and for this reason you do not see over- or undershoots in Figure
4.6. For the Lax–Wendroff method, A < 0 for 0 < λ < 1. Therefore, unless
λ = 1, the method is not monotone. For this reason it is not surprising there
are over- and undershoots in Figure 4.11.

In looking at Table 4.1 it is natural to ask whether it is possible to have a
monotone scheme that is more accurate than the upwind method. The answer
to this is contained in Godunov’s theorem, which states that except for isolated
values of λ, a linear monotonic scheme is no greater than first-order accurate.
In other words, there is no easy fix or adjustment to get Lax–Wendroff to
be monotone. This is unfortunate and has repercussions beyond the simple
advection equation we are studying. In many applications the equations are
nonlinear, and an example that often arises is ut+q(u)ux = 0. Deriving a finite
difference approximation for this is relatively easy. The hard part is proving
stability, since the methods we have been using no longer work. Consequently,
some other measure of stability must be introduced and it has been found that
monotonicity can be used. This observation, in conjunction with Godunov’s
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Figure 4.12. (M) Simulation of advection-dominated transport in an unsteady flow
obtained by solving the Navier-Stokes equations using a monotone scheme (Denaro
et al. [1995]).

theorem, has generated a good deal of research on nonlinear schemes, with
one well-known example being the total variation diminishing (TVD) family
of methods. This is beyond the scope of this text, and an extended discussion
of this topic can be found in Toro [1999] and LeVeque [2003].

4.3.3 Upwind Revisited

We still have not explained why, in Figure 4.6, increasing the number of time
points to M = 100 causes the results actually to get worse. The answer is
contained in (4.24). Using the A,B, C values for the upwind method, the first
term in the truncation error is

τij = −1
2
ah(1 − λ)uxx(xi, tj) + . . . . (4.29)

This shows that the strength of the error is determined by the value of h(1−λ).
In Figure 4.6, when going from M = 72 to M = 100, the value of λ changed
from 0.99 to 0.7, while h stayed fixed. Consequently, the error is increased
when reducing k, and this is the reason for the relatively poor M = 100
result. Another worthwhile observation to make is that the error involves the
spatial term found in the heat equation. One way to look at this is that the
method is actually solving ut + aux = εuxx, where ε = 1

2ah(1 − λ). Now,
h(1 − λ) is supposed to be small and positive, so the contribution of the uxx

term is relatively small. However, over time this term does make itself felt, and
it does what all good diffusion equations do: it causes the solution to decay.
This behavior is evident in the M = 100 curve in Figure 4.6. Interestingly, this
is not seen in the M = 100 curve for Lax–Wendroff given in Figure 4.11. The
reason is that the error in this case involves uxxx, and this term introduces
an effect known as dispersion. In the next chapter the method of plane waves
is developed to help explain what is happening in situations such as this.
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4.4 Implicit Methods

Implicit methods played a central role in solving the diffusion problems of
the last chapter. They were unconditionally stable, and this gave them an
advantage over the conditionally stable explicit methods because it was not
necessary to use an unreasonably small time step to compute the solution. This
is not the situation with wave problems, because the stability requirement is
not as severe. For the advection equation, with a = 1, it is required only that
k ≤ h, while for the heat equation we needed 2k ≤ h2. So for the advection
equation, doubling the number of spatial points results in having to double
the number of time points. For the heat equation one would have to increase
the time points by a factor of four. Consequently, for the heat equation the
computational overhead of using an implicit method is worth the investment,
but not so with the advection equation.

To illustrate some of the differences, suppose in (4.11) one uses a back-
ward difference in time and a centered difference in space. The resulting finite
difference equation is

λui+1,j + 2ui,j − λui−1,j = 2ui,j−1. (4.30)

This method is stable. Also, the implicit nature of the approximation means
that the numerical solutions at time level t = tj depend on all values at
t = tj−1. Consequently, the numerical domain of dependence of (xi, tj) is the
entire x-axis, and this clearly satisfies the CFL condition. However, a larger
numerical domain of dependence is not necessarily a good thing, and this
becomes crystal clear from numerical experiments.

Example
Returning to the problem solved in Figure 4.6, we use the implicit method
to compute the solution for 0 ≤ x ≤ 10, 0 ≤ t ≤ 7 with a = 1. As before,
we use 100 points along the x-axis. For the number of time points we try
M = 72 (λ = 0.98), M = 100 (λ = 0.7), M = 200, and M = 400. The results
are shown in Figure 4.13, and a reasonable description is that the method
does a mediocre job solving the problem. For example, the M = 72 solution
in Figure 4.13 in nowhere near as accurate as the corresponding result in Fig-
ure 4.6. This can be explained, in part, by looking at the truncation error,
which for this method is τij = −ahλuxx(xi, tj)+ . . .. The error for the upwind
scheme is given in (4.29). Comparing these expressions, it is seen that unlike
the case for the upwind scheme, this implicit scheme does not benefit from
taking λ close to one.

There are implicit methods that are competitive with their explicit coun-
terparts, although more care is needed in their derivation. One example is the
box scheme in Exercise 4.5. However, overall implicit methods have not found
widespread use in numerical wave problems.
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Figure 4.13. Solution of the advection equation at t = 7 obtained using the implicit
method (4.30) for various values of the time step. The initial condition is the square
bump given in (4.7). The exact solution is shown in each case.
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Figure 4.14. Stencils for Exercise 4.4.

Exercises

4.1. Suppose a < 0 in (4.1). The schemes in (4.13) and (4.16) are still valid
although they can no longer be called the upwind and downwind schemes.
What happens to the CFL and stability conditions in this case?

4.2. Show that the upwind and Lax–Wendroff methods give the exact solution
if λ = 1.

4.3. This problem explores a consequence of consistency.
(a) If the constant function ui,j ≡ 1 does not satisfy the finite difference

approximation of the advection equation (4.1) then the approximation
is not consistent. Explain why. Also explain why ui,j ≡ 1 satisfying the
finite difference equation does not necessarily mean the approximation is
consistent.

(b) Can either of the following be used to solve the advection equation?
(i) ui,j+1 = ui,j−1 − 1

2λ(ui+1,j + ui−1,j)
(ii) (1 + λ)ui,j+1 + (1 − λ)ui−1,j+1 = 2(1 − λ)ui,j + (1 + λ)ui−1,j

(c) Will the observation in (a) work on the equation ut + ux + u = 0?

4.4. Suppose that for a wave problem the domain of dependence of the so-
lution at (x, t) is the interval x ≤ x ≤ x + 2t. The stencils for various finite
difference approximations are given in Figure 4.14. Identify which should not
be used and explain why. For those that can be used, determine the CFL
condition.

4.5. The box method for solving the advection equation (4.1) is

(1 + λ)ui,j+1 + (1 − λ)ui−1,j+1 = (1 − λ)ui,j + (1 + λ)ui−1,j .

(a) What is the stencil for the method?
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(b) Derive this method by first integrating the advection equation in both
x and t and then using the appropriate quadrature rules. In the process
show that the truncation error is O(h2) + O(k2).

(c) What is the CFL condition? Is the method stable?
(d) Suppose the solution at the left endpoint is specified, so u0,j+1 is known.

Explain why the scheme is implicit but ui,j+1 can be computed as if it
were an explicit method.

4.6. The leapfrog method for solving the advection equation (4.1) is

ui,j+1 = ui,j−1 − λ(ui+1,j − ui−1,j).

(a) Derive this method using the derivative approximation method and in the
process show that the truncation error is O(h2) + O(k2).

(b) What is the stencil for the method?
(c) What is the CFL condition?
(d) Show that the method is stable if λ < 1 and unstable if 1 ≤ λ.
(e) Explain why the odd and even numbered grid points along the x-axis do

not communicate with each other, depending on the time level. This can
lead to problems computationally.

4.7. The Fromm method for solving the advection equation (4.1) is

ui,j+1 =
1
4
λ(λ−1)ui−2,j+

1
4
λ(5−λ)ui−1,j−1

4
(λ−1)(λ+4)ui,j+

1
4
λ(λ−1)ui+1,j .

(a) What is the stencil for the method?
(b) What is the CFL condition? Is the method stable? Is it monotone?
(c) What is the truncation error?

4.8. This problem explores using Runge–Kutta methods to solve the advection
equation using the method of lines.
(a) Reduce the advection equation to an IVP by using a O(h2) approximation

of the spatial derivative. With this use Heun’s method (Table 1.3) to derive
a finite difference equation for solving the problem.

(b) What is the stencil and CFL condition of the method in (a)? Is the method
monotone?

(c) Is the method stable?
(d) Based on what occurred in (a), what will be the stencil if RK4 is used in

place of Heun?

4.9. Consider the stencil shown in Figure 4.15.
(a) Assuming λ ≤ 1, derive a consistent finite difference approximation of the

advection equation (4.1) that has this as its stencil and a truncation error
that is O(h2).

(b) Is the method explicit or implicit?
(c) What is the CFL condition?
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Figure 4.15. Stencil for solving the advection equation.

(d) Is the method stable?

4.10. Consider the stencil shown in Figure 4.16.
(a) Derive a consistent finite difference approximation of the advection equa-

tion (4.1) that has this as its stencil and a truncation error that is
O(h2) + O(k2).

(b) Is the method explicit or implicit?
(c) What is the CFL condition?
(d) Is the method stable?

4.11. Assume a = 1 and

g(x) =
{−4(x + 8)(x + 9) if − 9 ≤ x ≤ −8,

0 otherwise.

(a) What is the exact solution of the resulting advection problem?
(b) Use the upwind and Lax–Wendroff methods to solve the problem for

−10 ≤ x ≤ 10 using a grid where λ is approximately 0.95. With this
plot, on the same axes, the numerical and exact solutions at t = 6.

(c) Using the grid from (b), plot, on the same axes, the solution at t = 18.
(d) Redo (b) and (c) using a grid where λ is approximately 0.5.
(e) Comment on the effectiveness of the two methods, including how they do

with amplitude decay, spreading of the bump, speed of the bump, and
smoothness of the bump in comparison to the exact solution.

4.12. Consider the equation ut + aux + bu = 0, where a, b are positive con-
stants and u(x, 0) = g(x).

�
�� �


�
��

�
���

�
�

Figure 4.16. Stencil for solving the advection equation.
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(a) By making the change of variables u(x, t) = v(x, t)e−bt find the solution
of this problem. What is the domain of dependence for a point (x, t)?

(b) Derive an upwind scheme for this equation (it should have the same stencil
as the upwind scheme).

(c) Determine the CFL condition, numerical domain of dependence, and sta-
bility condition for the method in part (b).

(d) Use the method from (b) to solve the problem for 0 ≤ t ≤ 7 in the case
a = 1, b = 1/7, and

g(x) =

{
1
2 (1 − cos(2πx)) if 0 ≤ x ≤ 1,

0 otherwise.

Use a grid where λ is approximately 0.99 (but λ < 1), and another where
λ is about 0.5. Comment on the effectiveness of the method, including
how it does with amplitude decay, spreading of the bump, and the speed
of the bump in comparison to the exact solution.

4.13. Consider the equation ut + aux + bu = 0, where a, b are positive con-
stants and u(x, 0) = g(x).
(a) Derive a Lax–Wendroff scheme for this equation (it should reduce to the

Lax–Wendroff scheme when b = 0).
(b) Determine the CFL condition, numerical domain of dependence, and sta-

bility condition for the method in part (b).
(c) Use the method from (b) to solve the problem for 0 ≤ t ≤ 7 in the case

a = 1, b = 1/7, and

g(x) =

{
1
2 (1 − cos(2πx)) if 0 ≤ x ≤ 1,

0 otherwise.

Use a grid where λ is approximately 0.99 (but λ < 1), and another where
λ is about 0.5. Comment on the effectiveness of the method, including
how it does with amplitude decay, spreading of the bump, and the speed
of the bump in comparison to the exact solution.

4.14. Consider the problem of solving xut + ux = x, for x > 0 and t > 0,
where u(0, t) = 0 and u(x, 0) = 0.
(a) Use the method of characteristics to show that u(x, t) = t − (t −

1
2x2)H(t − 1

2x2), where H is the Heaviside step function.
(b) Derive an upwind scheme for this equation (it should have the same stencil

as the upwind scheme).
(c) Using the method from (b), plot the solution at t = 10 for 0 ≤ x ≤ 10.

Also plot the exact solution on the same axes. In the calculation use 50
points along the x-axis, and state how many time points you used (and
why).

(d) Redo (c) but use 100 points along the x-axis.
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(e) Is there any truth to the rumor that for stability one must require k < 2h2?
Explain clearly how you come to your conclusion.

4.15. Consider the problem of solving ut + (x + t)ux = 0, where the initial
condition is u(x, 0) = g(x).
(a) Use the method of characteristics to show that u(x, t) = g((1 + x + t)e−t−

1).
(b) Derive an upwind scheme for this equation (it should have the same stencil

as the upwind scheme).
(c) Assuming that g(x) is the square bump in (4.7), use the method from (b)

to plot the numerical solution at t = 10 for 0 ≤ x ≤ 10. Also plot the
exact solution on the same axes. In the calculation use 50 points along
the x-axis, and state how many time points you used (and why).

(d) Redo (c) but use 100 points along the x-axis.

4.16. This problem concerns the derivation of the Lax–Friedrichs method (Ta-
ble 4.1).
(a) Show that y(xi) = 1

2 (y(xi+1) + y(xi−1)) + O(h2).
(b) Using a forward difference in time, a centered difference in space, and

the result from part (a), derive the Lax–Friedrichs method. Make sure to
include the truncation error in the derivation.

(c) Derive the stability condition for this method.

4.17. One might argue that the wrong three spatial points are used in (4.20)
to solve the advection equation. If a > 0 then it would be better to hypothesize
that

ui,j+1 = Auij + Bui−1,j + Cui−2,j .

(a) Using an argument similar to what was used to derive the Lax–Wendroff
scheme, find the coefficients for this method. Make sure to state the re-
sulting truncation error. This is known as the Beam–Warming method.

(b) What is the CFL condition? Is the method stable? Is it monotone?
(c) Solve the same problem that produced Figures 4.6, 4.11.
(d) Based on your results from (a)–(c), discuss the benefits and drawbacks of

this method in comparison to the upwind and Lax–Wendroff methods.

4.18. In this problem assume that u(x, t) is a solution of the advection prob-
lem with u = 0 at x = xL, xR.
(a) Show that M(t) =

∫ xR

xL
u(x, t)dx is conserved, that is, d

dtM = 0.

(b) Show that the upwind method conserves Mj =
∑N+1

i=0 uij , that is, Mj =
Mj+1.

(c) Show that the Lax–Wendroff method conserves Mj .
(d) The sum in (b) is obtained from the trapezoidal approximation of the

integral in (a). Does the conclusion in (b) hold if Simpson’s rule is used
for the integral?
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4.19. This exercise examines the effects of boundary conditions when the
advection equation is solved over a finite interval. The problem to solve is

∂u

∂t
+

∂u

∂x
= 0, for

{
0 < x < 1,
0 < t,

where u(x, 0) = x(1 − x). The key to this exercise is the observation that the
solution is constant along any line of the form x − t = constant.
(a) Explain why the equation and initial condition determine only the solution

in a triangular region in the xt-plane, given as 0 ≤ t ≤ x for 0 ≤ x ≤ 1.
(b) What is the solution of the problem if the boundary condition is u(0, t) =

sin(πt)?
(c) Instead of the boundary condition in (b), suppose one tried to use u(1, t) =

sin(πt). Explain why there is no solution of this problem.
(d) Another approach is to use a periodic boundary condition, which for this

problem is u(0, t) = u(1, t). This uses the known value at x = 1 as the
boundary condition at x = 0. What is the resulting solution?

4.20. This problem concerns using the method of characteristics to solve first-
order wave equations.
(a) Using the method of characteristics to solve

ut + aux + bu = f(x, t),

where u(x, 0) = g(x), show that

u(x, t) = g(x − at)e−bt +
∫ t

0

f(x − a(t − s), s)e−b(t−s)ds.

(b) Use the method of characteristics to solve ut + eαxux = 0, where u(x, 0) =
g(x). Explain why the solution is well defined if α ≥ 0 but is not if α < 0.

4.21. This problem explores how the method of characteristics can be used
to derive finite difference approximations.
(a) Show that the exact solution of the advection equation satisfies u(xi +

ak, tj+1) = u(xi, tj).
(b) Using the result from part (a), the solution at (xi−1, tj) determines the

solution at a point (x̄, tj+1). Similarly, the solution at (xi+1, tj) determines
the solution at (¯̄x, tj+1). Find x̄ and ¯̄x.

(c) Find an approximation of the solution at x = xi (t = tj+1) using linear
interpolation on the solutions found in part (b) at the points x̄ and ¯̄x.
Explain why this approximation for u(xi, tj+1) is equivalent to one listed
in Table 4.1.

(d) Redo (b) and (c), but use three points (xi−1, tj), (xi, tj), and (xi+1, tj).

4.22. This exercise examines the importance of a scheme being monotone.
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(a) Suppose that for a given value of j, uij is monotone increasing in space
(i.e., ui+1,j ≥ uij ,∀i). Using the general formula in (4.20) show that ui,j+1

will also be monotone increasing in space if A,B,C are nonnegative.
(b) In part (a) suppose one of the coefficients A,B,C is negative. Explain

why an initial condition that contains a jump is almost certain to result
in loss of monotonicity.

(c) Suppose the initial condition is g(x) = tanh(10(x + 8)). Solve the re-
sulting advection problem for −10 ≤ x ≤ 10, 0 ≤ t ≤ 15 using
the first three methods listed in Table 4.1. The boundary condition is
u(−10, t) = tanh(10(−t + 8)) and a = 1. Use a grid where λ is approxi-
mately 0.99.

(d) Redo (b) but use a λ that is approximately 0.8, and another that is about
0.5.

(e) Based on your results from (b) and (c), are there any advantages to having
a monotone scheme? Does it make any difference on what the value of λ
is?

4.23. It might be argued that the conclusion about implicit methods coming
from Figure 4.13 is unfair and that one should really use another approxima-
tion. This exercise explores that option.
(a) What implicit method is obtained using first-order backward differences

in space and time? Make sure to state the truncation error.
(b) Use quadrature in time to derive a second-order implicit method for the

advection equation.
(c) Solve the same problem that produced Figures 4.6, 4.11 using the methods

from (a) and (b).
(d) Based on your results from (c), what is your opinion of implicit methods

for the advection equation? Make sure to explain why you come to the
conclusion you do.

4.24. This problem considers how to use the Lax–Wendroff method to solve
the inhomogeneous advection equation ut + aux = f(x, t).
(a) Explain how the hypothesis in (4.20) should be modified for this equation.
(b) Use your result from (a) to derive a Lax–Wendroff method for this equa-

tion.
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Numerical Wave Propagation

5.1 Introduction

In studying phenomena in such diverse areas as electrodynamics, fluid dynam-
ics, and acoustics, it is almost inevitable to come across what is known as the
wave equation. This ubiquitous equation is a prototype for many of the waves
seen in nature, and it is the subject of this chapter. The specific problem we
start with is the wave equation

c2 ∂2u

∂x2
=

∂2u

∂t2
, for

{
0 < x < 	,
0 < t,

(5.1)

where c is a positive constant. The boundary conditions are

u(0, t) = u(	, t) = 0, (5.2)

and the initial conditions are

u(x, 0) = f(x), ut(x, 0) = g(x). (5.3)

A simple example of where this problem arises is in the study of the motion
of an elastic string. An everyday instance of this is a string on a guitar. In this
case u(x, t) represents the vertical deflection of the string where, at rest, the
string occupies the interval 0 ≤ x ≤ 	. Assuming that the string is held fixed
at both ends, we get the boundary conditions in (5.2). The initial conditions
correspond to specifying the initial deflection, f(x), and the initial velocity,
g(x).

5.1.1 Solution Methods

There are various ways to express the solution of the wave problem, and those
that we will find useful in this chapter are described below.



156 5 Numerical Wave Propagation

Fourier Series Representation

Just as with the heat equation, it is possible to solve the wave equation prob-
lem using separation of variables. One finds that

u(x, t) =
∞∑

n=1

[an cos(cλnt) + bn sin(cλnt)] sin(λnx), (5.4)

where λn = nπ/	, and the Fourier coefficients are

an =
2
	

∫ �

0

f(x) sin(λnx)dx, (5.5)

bn =
2

cπn

∫ �

0

g(x) sin(λnx)dx. (5.6)

Comparing this with the series solution (3.5) for the heat equation, it is seen
that both consist of the superposition of terms of the form wn(t) sin(λnx).
The difference, however, is that for the heat equation wn(t) is a decaying
exponential, whereas for the wave equation it is oscillatory. The latter produce
standing waves and in this sense (5.4) consists of the superposition of standing
waves. As a simple example, suppose f(x) = sin(2πx) and g(x) = 0. Assuming
that c = 	 = 1, then (5.4) reduces to the standing wave solution u(x, t) =
cos(2πt) sin(2πx).

d’Alembert Representation

The Fourier series representation of the solution (5.4) is an important re-
sult, but it is rather difficult to extract information about the traveling wave
properties of the solution from this expression. Fortunately, there is another
form that is particularly useful, and to derive it assume for the moment that
the spatial interval is infinite, that is, −∞ < x < ∞. The first step in the
derivation is to note that the wave equation can be written as(

c
∂

∂x
+

∂

∂t

) (
c

∂

∂x
− ∂

∂t

)
u = 0. (5.7)

This type of factorization was used to solve the advection equation. As be-
fore, we change variables from x, t to r, s in such a way that the derivatives
transform as

c
∂

∂x
+

∂

∂t
=

∂

∂r
, (5.8)

c
∂

∂x
− ∂

∂t
=

∂

∂s
. (5.9)

A change of variables that will accomplish this, up to a constant multiplicative
factor, is r = x + ct, s = x − ct. In this case, from (5.7), the wave equation
transforms into
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∂

∂r

(
∂

∂s
u

)
= 0. (5.10)

Integrating this, we obtain

u(x, t) = F (x + ct) + G(x − ct), (5.11)

where the functions F,G are determined from the initial conditions. This form
of the solution is interesting, because it clearly shows the traveling waves
forming the solution. One, with profile F , moves to the left with speed c, and
the other, with profile G, moves to the right with speed c. It remains to satisfy
the initial conditions, and in doing so one finds that the solution of the wave
equation is

u(x, t) =
1
2
f(x − ct) +

1
2
f(x + ct) +

1
2c

∫ x+ct

x−ct

g(z)dz. (5.12)

This is the d’Alembert form of the solution. The procedure used to obtain this
result is known as the method of characteristics, and the lines x± ct = const
are the characteristics. In the derivation it was assumed that −∞ < x < ∞,
but as will be seen shortly, in certain circumstances it is possible to adapt the
solution to a finite interval.

Example
As an example, suppose the initial conditions are g(x) = 0 and f(x) is the
rectangular bump

f(x) =

{
1 if − 1 ≤ x ≤ 1,

0 otherwise.
(5.13)

From (5.12) one finds that the solution in this case is

u(x, t) =
1
2
f(x − ct) +

1
2
f(x + ct). (5.14)

This is shown in Figure 5.1, and it is seen that the solution consists of two
rectangular bumps, half the height of the original, traveling to the left and
right with speed c.

In certain cases it is possible to adjust the d’Alembert solution so that it
works with problems that have boundary conditions. To explain how this is
done, suppose that in the above example the interval is −10 ≤ x ≤ 10 and
the boundary conditions are u = 0 at x = ±10. In this case the solution in
(5.14) applies up until the bumps reach the boundaries. When they arrive at
x = ±10 the boundary conditions are no longer satisfied, and the formula for
the solution must be modified. To correct the situation at x = 10 we add a
left-traveling wave that exactly cancels 1

2f(x − ct) as it crosses x = 10. This
is accomplished using symmetry (see Figure 5.2). In particular, a rectangular
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Figure 5.1. (M) Schematic of the solution of the wave equation in the case where
the initial profile is a rectangular bump and g(x) = 0.

bump is added in that starts out centered at x = 20 and has height − 1
2 . Using

(5.13) this is equivalent to adding in a term of the form − 1
2f(20 − x − ct). A

similar correction is needed for the boundary condition at x = −10. This fix
works until the new bumps cross the interval and reach the opposite boundary,
and this occurs when ct = 29. Up to that point, the resulting solution can be
written as

�	

�

�

�


�


��


��


Figure 5.2. To extend the d’Alembert representation so that it satisfies the
boundary conditions one can use reflections. As shown, the original interval is
−10 ≤ x ≤ 10, and so virtual waves are placed at x = ±20.
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u(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2f(x − ct) + 1

2f(x + ct) if 0 ≤ t < 9/c,

1
2f(x − ct) − 1

2f(20 − x − ct)

+ 1
2f(x + ct) − 1

2f(−20 − x + ct) if 9/c ≤ t < 29/c.

(5.15)

This process of adding in reflected bumps can be continued indefinitely, al-
though we do not have need of such situations in this book.

The properties of the solution discussed in the above example are remi-
niscent of those obtained for the advection equation. For example, the initial
jumps in the solution result in jumps in the solution for all time and infor-
mation travels at finite speed. There are also differences with the advection
equation, and the most obvious one is that waves are now able to propagate
in both directions. This has a consequence for the domain of dependence.
As seen in (5.12), the solution at a given spatial position x = x and time
t = t is determined by the values of the initial conditions over the interval
x − ct ≤ x ≤ x + ct. Consequently, this interval is the domain of dependence
for (x, t), and this situation is indicated schematically in Figure 5.3.

The domain of dependence (DoD) played an important role in developing
numerical methods for the advection equation, and the same will be true for
higher-order wave equations. However, to be able to use the CFL condition
we need to know what points make up the DoD. This has been determined for
the wave question, but what if we want to solve the Klein–Gordon equation
uxx = utt +u? To answer this, consider the equation c2uxx = utt +α(x, t)ut +
β(x, t)ux + γ(x, t)u, where α, β, γ are continuous functions. One can prove
that this has the same DoD as the wave equation, which is given in Figure 5.3
(see Courant and Hilbert [1989] for a proof of this statement). An equation
with a different DoD is αuxx + βuxt + utt = 0, and this is investigated in
Exercise 5.2.

�
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����� �
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����	����
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Figure 5.3. Domain of dependence. As shown in (5.12), the solution of the wave
equation at (x, t) depends of the values of the initial conditions from the interval
x − ct ≤ x ≤ x + ct. This interval forms the domain of dependence for (x, t).
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5.1.2 Plane Wave Solutions

In developing and testing numerical methods it is very helpful to have rela-
tively simple solutions that can be used to check on how well the methods
work. An important tool for analyzing wave problems involves the use of plane
wave solutions, and these have the form

u(x, t) = eI(kx−ωt), (5.16)

where I =
√−1. In this expression k is the wave number and it is related to

the wavelength λ of the wave through the equation λ = 2π/k. In what follows
it is assumed that 0 < k < ∞. To determine the plane wave solutions we
substitute (5.16) into (5.1), and the result is the algebraic equation

ω2 = c2k
2
. (5.17)

This is the dispersion relation for the wave equation, and it determines the
frequency ω in terms of k for there to be plane wave solutions. Solving this
quadratic equation, one obtains ω = ±ck. Consequently, for each wave number
there are two plane waves, traveling in opposite directions. The directions and
speed of these waves agree with what we found earlier using the d’Alembert
solution.

Although it did not happen above, it is possible that the solutions of the
dispersion relation are complex-valued. In such situations the general solution
will have the form ω = ωr + I ωi, where ωr, ωi are the real and imaginary
components of the (complex) frequency. With this, after substituting ω back
into (5.16) we obtain the solution

u(x, t) = eωiteI(kx−ωrt). (5.18)

Written this way, there is a traveling wave component (the second exponential
term) and an amplitude that is time-dependent if ωi 	= 0. This solution is
used to define various properties of the problem, and in preparation for this
we introduce the phase velocity vph, defined as

vph ≡ ωr

k
. (5.19)

With this we have the following plane wave properties:

• An equation is stable if ωi ≤ 0 ∀ k; otherwise, it is unstable. It is assumed
in what follows that the equation is stable.

• An equation is dispersive if vph depends on k; otherwise, it is nondispersive.
• An equation is dissipative if ωi is not identically zero; otherwise, it is

nondissipative.

For the wave equation we found that vph = ±c. Because vph does not depend
on k, it follows that the equation is nondispersive. Consequently, long waves
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Figure 5.4. The dashed curves are the initial profiles and the solid curves are the
profiles of the wave after a fixed amount of time. The situation is shown where the
equation is (a) nondispersive and nondissipative, (b) dispersive and nondissipative,
(c) nondispersive and dissipative, and (d) dispersive and dissipative.

(k small) and short waves (k large) all travel at the same speed. Moreover,
since ωi = 0, the equation is nondissipative. This means that all waves travel
without decaying. An example of this situation is illustrated in Figure 5.4(a).
In this figure a portion of the initial profiles of both a short and long wave are
shown with dashed curves. The solid curves on the same axes are the respective
positions of the waves after a given amount of time has passed. As shown,
the short and long waves travel the same distance (because the equation is
nondispersive) and neither decays (because the equation is nondissipative).

An example of a dispersive, and nondissipative, equation is the Klein–
Gordon equation (see Table 5.1). From the phase velocity it is seen that the
shorter the wavelength, the slower the wave moves. This situation is illus-
trated in Figure 5.4(b), where the long wave travels farther than the shorter
wave over the given time interval and neither decays (because the equation is
nondissipative). A consequence of this is that a waveform composed of mul-
tiple plane waves will spread out as it moves, with the longer waves out in
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front. A somewhat different situation arises with the beam equation, which is
also dispersive, but the shorter waves travel faster than longer ones.

An example of a dissipative equation is the advection–diffusion equation
(see Table 5.1). Because it is nondispersive, one would expect that a waveform
made up of multiple waves would keep its overall shape as it moves but that
it would decay as it proceeds. In fact, the shorter the waves, the faster the
decay. An example of this situation is illustrated in Figure 5.4(c).

Group Velocity

For nondissipative equations there is a second velocity that is derived from
the dispersion relation that will prove useful when studying waveforms made
up of multiple plane waves. This is the group velocity, and it is defined as

vg ≡ d ω

d k
. (5.20)

To explain why vg is important, consider the situation in which two waves of
slightly different wavelengths are added together. Let the wave numbers of the
two waves be k1 and k2 = k1 + ∆k. In this case, from the dispersion relation
the corresponding frequencies are ω1 = ω(k1) and

ω2 = ω(k2)

= ω
(
k1 + ∆k

)
≈ ω

(
k1

)
+ ∆k

d ω

d k

(
k1

)
= ω1 + ∆ω, (5.21)

where
∆ω = ∆k

d ω

d k
. (5.22)

Adding the waves together, we obtain

u = cos
(
k1x − ω1t

)
+ cos

(
k2x − ω2t

)
= A(x, t) cos

(
kax − ωat

)
, (5.23)

where

A(x, t) = 2 cos
(

1
2
∆k x − 1

2
∆ω t

)
, (5.24)

ka = k1 + 1
2∆k, and ωa = ω1 + 1

2∆ω. As given in (5.23), the two waves com-
bine to form a single wave with wave number ka, frequency ωa, and (signed)
amplitude A(x, t). A typical example is shown in Figure 5.5. Now, the energy
in a wave is determined by its envelope, indicated with the dashed curves in
Figure 5.5. In looking at the formula for A(x, t) in (5.24), it is seen that for
this example the amplitude is moving with velocity ∆ω/∆k. From (5.20) and
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Figure 5.5. (M) Adding two plane waves with slightly different frequencies and
wave numbers produces a single wave with an envelope that moves with the group
velocity. The two dashed curves are the functions ±A(x, t), where A(x, t) is given in
(5.24). Also, k∗ = 1.1 and ω∗ = 1.05.

(5.22) it follows that the envelope is moving at the group velocity. This differs
from the phase velocity ωa/ka, which is the speed of the wave formed by the
solid curve in Figure 5.5. For example, depending on the slope of ω(k) the
group velocity can be greater than, equal to, or less than the phase velocity.

It is possible to generalize this example and show that when waveforms
are localized disturbances, such as a wave packet, that the energy moves with
the group velocity. This is investigated in more detail later in the chapter.
It can also be used at times to estimate the domain of dependence and an
example of this is examined in Exercise 5.11.

5.2 Explicit Method

As with most problems, there is a variety of ways to find the numerical solution
of a second-order equation such as (5.1). In many situations the easiest ap-
proach is to reduce the problem to one that has already been solved. Based on
this, given our work on the advection equation in the last chapter, one might
try rewriting (5.1) as a first-order system and then use one or more of the
methods discussed earlier. It is certainly easy to convert the equation to sys-
tem form, and an example is to let u = (u, v)T , where ut = cvx and vt = cux.
In this case one produces an advection equation of the form ut + Aux = 0.
Although this approach works, there are reasons not to do it. For example,
the boundary conditions complicate the development. There are ways around
these difficulties, but instead we keep the problem as it is and simply intro-
duce finite difference approximations directly into the original problem. This
is undertaken using the same five steps employed in the earlier chapters.
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Step 1. We will compute the solution of the wave equation problem for 0 ≤
x ≤ 	, 0 ≤ t ≤ T using a uniform grid. The usual formulas are used, namely,

tj = jk, for j = 0, 1, 2, . . . , M, (5.25)
xi = ih, for i = 0, 1, 2, . . . , N + 1, (5.26)

where k = T/M and h = 	/(N + 1).

Step 2. In preparation for introducing finite difference approximations we
evaluate the differential equation at the grid point (x, t) = (xi, tj) to obtain

c2uxx(xi, tj) = utt(xi, tj). (5.27)

Step 3. Using centered differences to approximate the derivatives gives us

c2 u(xi+1, tj) − 2u(xi, tj) + u(xi−1, tj)
h2

+ O(h2)

=
u(xi, tj+1) − 2u(xi, tj) + u(xi, tj−1)

k2
+ O(k2). (5.28)

This can be rewritten as

u(xi, tj+1) =λ2u(xi+1, tj) + 2(1 − λ2)u(xi, tj)

+ λ2u(xi−1, tj) − u(xi, tj−1) + k2τij , (5.29)

where τij = O(h2) + O(k2) is the truncation error and

λ =
ck

h
. (5.30)

Step 4. Dropping the truncation error gives us the following finite difference
approximation to the wave equation

ui,j+1 = λ2ui+1,j + 2(1 − λ2)uij + λ2ui−1,j − ui,j−1, for
i = 1, . . . , N,
j = 1, . . . , M − 1.

(5.31)
The stencil for this method is given in Figure 5.6. From the boundary con-
ditions we get that u0,j = uN+1,j = 0, and the first initial condition in (5.3)
translates into ui,0 = fi. To be able to use (5.31) also requires ui,1, and this
can be determined using the second initial condition. It is important to pre-
serve the quadratic truncation error, and possibilities include introducing a
ghost point or to use a higher-order one-sided difference (see Exercise 5.3).
However, for this particular problem there is a more direct approach using
Taylor’s theorem. Keeping in mind that utt = c2uxx then, for k small,
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Figure 5.6. Stencil for the explicit method in (5.31).

u(xi, t1) = u(xi, k)

= u(xi, 0) + kut(xi, 0) +
1
2
k2utt(xi, 0) + O(k3)

= u(xi, 0) + kut(xi, 0) +
1
2
k2c2uxx(xi, 0) + O(k3)

= f(xi) + kg(xi) +
1
2
k2c2f ′′(xi) + O(k3). (5.32)

With this, we have that

ui,1 = fi + kgi +
λ2

2
(fi+1 − 2fi + fi−1), for i = 1, . . . , N. (5.33)

Together (5.31) and (5.33) produce a O(k2) + O(h2) approximation of the
wave equation problem. There are, however, a couple of oddities in (5.32)
and (5.33). One question is, why is the Taylor series not stopped at the O(k2)
term since that is the overall order of truncation error we are trying to obtain?
The answer is that (5.32) is being used to construct an approximation of the
second initial condition. This means that we should solve (5.32) for ut(xi, 0),
and that requires a division by k. This is the reason for carrying the expan-
sion up to O(k3). The second oddity is that f ′′(xi) has been replaced with a
finite difference approximation. This is odd, because we can calculate f ′′(xi)
directly, so it would seem to be unnecessary to introduce another approxi-
mation. The reason has to do with the domain of dependence requirement.
As will be shown below, without using the approximation for f ′′(xi) it is not
possible to satisfy the CFL condition.

This completes the derivation of the finite difference approximation. In the
previous chapter, when studying explicit methods for the advection equation,
we found that the stability requirement limited what could be used for the
step sizes. It is worth knowing this before running any numerical experiments,
and this brings us to the next topic.
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5.2.1 Diagnostics

With the development of a new finite difference approximation we apply our
diagnostic tests to see whether it actually might work. This is, in effect, Step
5 of our derivation.

CFL Condition and Grid Velocity

The first, and easiest, test is to see if the numerical domain of dependence
contains, or bounds, the domain of dependence of the wave equation. Recall
that given a spatial location x = xi, and time t = tj , the grid points along the
x-axis that potentially contribute to the solution at (xi, tj) form the numerical
domain of dependence for (xi, tj). Given the stencil in Figure 5.6, along with
the initial condition approximation in (5.33), the numerical domain of depen-
dence consists of the points {xi − jh, xi − (j − 1)h, . . . , xi + (j − 1)h, xi + jh}.
Recalling that the domain of dependence for the wave equation in this case
is xi − ctj ≤ x ≤ xi + ctj , then to guarantee that the numerical points bound
this interval we need xi − jh ≤ xi − ctj and xi + ctj ≤ xi + jh. Both of these
reduce to

ck

h
≤ 1, (5.34)

and this is the CFL condition for this method. One can look at this as simply
a requirement that if one picks a certain h value then it is necessary to use
a time step k small enough to satisfy the given inequality. However, one can
also think of the CFL as a requirement on the grid velocity h/k. As seen in
the stencil in Figure 5.6, with each time step the solution at any spatial grid
point xi can affect the solution at only those grid points to the immediate left
and right. In this sense, information for the explicit method moves through
the grid with speed h/k. Consequently, the CFL condition means that the
grid speed cannot be smaller than the speed of the waves for the equation.
This connection between the wave speed and the CFL is investigated further
in Exercise 5.11.

Stability

As usual, to start the stability analysis we assume

ui,j = wje
rxiI , (5.35)

where I =
√−1. The function wj is determined from the difference equation.

Plugging (5.35) into (5.31) and then simplifying the resulting expression, one
finds that the problem reduces to

wj+1 − 2swj + wj−1 = 0, (5.36)

where s = 1 − 2λ2 sin2(rh/2). This second-order difference equation can be
solved by assuming wj = κj . Substituting this into (5.36) and simplifying a
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bit one finds that κ2 − 2sκ + 1 = 0. Assuming for the moment that s 	= ±1,
the two solutions are

κ± = s ±
√

s2 − 1. (5.37)

Therefore, the general solution of (5.36) is

wj = ακj
+ + βκj

−, (5.38)

where α, β are constants. For stability we require that wj remain bounded,
and this means we must have |κ±| ≤ 1. To determine when and where this
occurs note that s ≤ 1. Now, if s < −1 then κ− = s −√

s2 − 1 < −1, and in
this case the solution is unbounded. On the other hand, if −1 < s < 1 then
κ± = s±I

√
1 − s2. With this, |κ±|2 = 1, and so for these s values wj remains

bounded. This leaves us with having to determine what happens when s = ±1.
For these values there is a repeated root of (5.36), and the resulting general
solution has the form wj = (α + βj)sj . Although the linear growth of jsj , for
s = ±1, is nowhere near as significant as the geometric growth obtained when
we get roots that satisfy |κ| > 1, it does nevertheless result in an unbounded
solution.

Based on the above analysis we have that the method is stable if −1 <
s < 1, or equivalently, if the following holds

0 < λ2 sin2

(
rh

2

)
< 1. (5.39)

To translate this into a requirement independent of r we need to look a little
closer at the stability test. The assumption in (5.35) is based on the fact
that the general solution (5.4) is composed of such functions with r = λn,
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Figure 5.7. To study the detonation of a gas due to the impulsive motion of a
cylinder, finite difference methods that conserve energy are used to solve the reactive
Euler equations (Henshaw and Schwendeman [2007]).



5.2 Explicit Method 169

where λn = nπ/	. When carrying out the stability test we make it easy on
ourselves and simply assume that r is an arbitrary positive constant. Normally,
extending the interval for r in this way is not an issue, but this opens up the
possibility that sin2(rh/2) = 0 in (5.39). To determine whether this happens,
for the given r values in this problem,

hr

2
=

h

2
λn

=
h

2
nπ

	

=
π

2
n

n + 1
.

Consequently, for each value of r we have 0 < sin2(rh/2) < 1. Given this,
then (5.39) will hold if λ ≤ 1, or equivalently,

ck

h
≤ 1. (5.40)

This is the sought-after stability condition for the method.

5.2.2 Numerical Experiments

To see how well the explicit method does we solve the problem using the initial
conditions

f(x) =

{
1
2 (1 − cos( 2πx

a )) if 0 ≤ x ≤ a,

0 otherwise,
(5.41)

and g(x) = −cf ′(x). It is assumed that 0 < a < 1. These initial conditions give
rise to what we will affectionately refer to as the cosine bump. Note that they
have been rigged so the solution starts out as a right-traveling wave f(x− ct).
However, eventually the bump reaches x = 1, in which case it is necessary to
include its reflection, as illustrated in Figure 5.2. Up to the second reflection
the formula for the solution is

u(x, t) =

{
f(x − ct) if 0 ≤ t < 1

c (1 − a),
f(x − ct) − f(2 − x − ct) if 1

c (1 − a) ≤ t < 1
c (2 − a).

(5.42)

We will compute the solution up to T = 1.8, assuming c = 1 and a = 0.09.
To decide on what to use for the spatial step size, 15 or so points will do
a reasonable job resolving one period of the cosine. Based on this we take
N = 150. With this, to satisfy the stability requirement, we need M ≥ 272.
We will take M = 272 (λ = 0.999) and M = 546 (λ = 0.498). The results
from the computations are shown in Figure 5.8. Some observations about the
computed solutions are these:
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1. The M = 272 results are quite good over the entire time interval. The
amplitude, speed, and spread of the bump are computed very accurately,
because there are no visible differences between the numerical and exact
solutions. If we were to let the computation continue, generating multiple
reflections of the bump off the boundaries, whatever differences there are
between the exact and computed solutions would become more evident.
However, over the time interval used in Figure 5.8 the two are in close
agreement.

2. If the time step is reduced (M = 546) then the computed results are rather
poor. The computed bump is too small, a little too wide, and too slow.
This is a lot of negative toos. Moreover, it is unclear why this happens,
because according to everything we know about the order of the truncation
error, stability, and the CFL, there is no reason for this to occur. We saw
the same thing when we used the upwind method to solve the advection
equation in the last chapter. As before, the culprit is the specific form of
the truncation error.

Based on this one example, the answer to the question posed in Figure 5.8
is that accuracy of the explicit method does depend on the relative size of h
and k. Given a spatial resolution (h), then, the number of time points used to
reach T should be chosen such that λ is close to one, but also satisfies λ ≤ 1.
A method that can be used to help support this conclusion involves plane
waves, and this is the subject of the next section.

5.3 Numerical Plane Waves

The plane waves introduced earlier provide an effective tool in determining the
wave properties of the solution of the wave equation. It is worth investigating
what insights they can provide about the numerical solution. To start we
assume a solution of the form

uij = eI(kxi−ωtj). (5.43)

Substituting this discrete plane wave into (5.31), one finds that

e−Ikω = λ2eIhk + 2(1 − λ2) + λ2e−Ihk − eIkω. (5.44)

Combining the exponentials, and using the identity 2 sin2( θ
2 ) = 1 − cos(θ),

yields

sin
(

ωk

2

)
= ±λ sin

(
kh

2

)
. (5.45)

This is the numerical dispersion relation for the explicit method. It differs
markedly from the actual dispersion relation for the wave equation, which
is simply ω = ±ck. For one thing, given k there are an infinite number of
solutions of (5.45) for ω. We are primarily interested in the case where h is
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small, and so it is assumed in what follows that 0 ≤ kh ≤ π. Also, we confine
our attention to the case −π ≤ ωk ≤ π. With this, (5.45) can be written as

ω = ±2
k

sin−1

(
λ sin

(
kh

2

))
. (5.46)

The question is, how well do the waves determined by (5.46) mimic the prop-
erties of the plane wave solutions? Numerical dispersion relations tend to be
rather messy expressions, so to make things a bit more tractable we answer
this by addressing a sequence of related, but simpler, questions.

1. Are there special values?
Note that if λ > 1 in (5.46) then there are values of k for which
λ sin(kh/2) > 1, and in such cases ω is complex-valued. On the other
hand, ω is real-valued if λ ≤ 1. Significantly, if λ = 1 then ω = ±ck, and
this is in exact agreement with the dispersion for the wave equation.

2. Is the numerical method nondissipative?
As pointed out above, ω is real-valued for all k only if λ ≤ 1. What this
means is that in the stability region the numerical method has the same
nondissipative property as the wave equation.

3. Is the numerical method nondispersive?
To answer this question, we confine our attention to the stable region and
assume λ ≤ 1. In this case ω is real-valued and therefore the numerical
phase velocity is

vnph =
ω

k

= ± 2
kk

sin−1

(
λ sin

(
kh

2

))
. (5.47)

Assuming that h is small, and λ and k are fixed, then Taylor’s theorem
applied to (5.47) yields

vnph ≈ ±c

(
1 − 1

12
(1 − λ2)(kh)2

)
. (5.48)

Now, to be nondispersive, vnph must be independent of k, and the only
time this happens in (5.47) and (5.48) is when λ = 1. Consequently, the
numerical method is dispersive if λ < 1.

Is the fact that the explicit method is generally dispersive, yet the wave
equation is nondispersive, significant? To answer this it is enough to consider
only right-moving waves. From (5.48) we see that, except when λ = 1, the
numerical phase velocity is less than the phase velocity for the wave equation.
Therefore the numerical waves will lag behind the exact solution, and the
shorter the wavelength, the more pronounced this will become. This obser-
vation is derived from the Taylor approximation in (5.48), but it applies to
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Figure 5.9. Numerical phase (5.45) and group (5.49) velocities for the explicit
method when 0 ≤ k ≤ π/h. For comparison, for the wave equation vph = vg = 1.

(5.47), as demonstrated in Figure 5.9. This explains the earlier calculations
for the cosine bump in Figure 5.8. The waves needed to construct this bump
all travel at different speeds. The fact that they all travel more slowly than
they should, and when λ = 0.498 they are a lot slower, is why you see the
bump coming apart at the later times and why the components are trailing
the exact solution. This separation is not particularly evident in the computed
solution curves for λ = 0.999, but this is not unexpected given the accuracy
of the numerical phase velocity for λ values so close to one. However, if the
calculation were allowed to continue, then eventually the differences would
become apparent.

It is worth discussing the curves in Figure 5.9 a bit more. As already
pointed out, the explicit method generally produces plane waves that travel
more slowly than those for the wave equation. The curves in Figure 5.9 show
that the numerical phase velocity for either M provides an accurate approx-
imation only for smaller wave numbers. The implication of this, and the ap-
proximation in (5.48), is that the method is accurate only for longer wave-
lengths, and if we need to account accurately for short waves then it is neces-
sary to use smaller values for h. This conclusion is not surprising because it
is consistent with the idea that it takes more spatial points to describe sine
or cosine curves with shorter wavelengths.
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Figure 5.10. (M) Solution of the wave equation in the case where the initial profile
is a wave packet as given in (5.51). Shown is the solution at the start and later at
t = 0.75. In the calculation, γ = 100π, κ = 500, x0 = 0.1, N = 500, and M = 700.

5.3.1 Numerical Group Velocity

Nothing has been said so far about the group velocity. To address this, note
that the numerical group velocity can be determined using implicit differen-
tiation on the numerical dispersion relation (5.45). The result is

vng =
dω

dk

= ±c
cos(kh

2 )√
1 − λ2 sin2(kh

2 )
. (5.49)

Assuming that h is small, and λ and k are fixed, then Taylor’s theorem applied
to (5.49) yields

vng ≈ ±c

(
1 − 1

8
(1 − λ2)(kh)2

)
. (5.50)

As happened with vnph, the group velocity for the numerical method depends
on both the wave number and the grid. The exception is when λ = 1, in
which case vng = ±c. Moreover, from the Taylor approximations in (5.48)
and (5.50) it is seen that for small h, the numerical group velocity is less than
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Figure 5.11. The wave packet from Figure 5.10 at t = 0.75 obtained using the
explicit method. In the upper graph the exact envelope and the envelope predicted
using the numerical phase velocity are shown. In the lower graph the exact envelope
and the envelope predicted using the numerical group velocity are shown.

the numerical phase velocity and they are both smaller than the exact value.
Again, the one exception to this is when λ = 1. As a final comment, note that
the first wave number where vng = 0, which is kh = π, is the same upper limit
we introduced earlier when solving the dispersion relation to produce (5.46).

The numerical group velocity is shown in Figure 5.9 for M = 273 and
M = 546 when the positive values are taken in (5.49). It is apparent that
M = 273 does fairly well in producing the exact expression vg = 1, while the
M = 547 result is about as bad as it was for the phase velocity.

It is not particularly evident in the previous example why the group ve-
locity is important. To address this suppose the initial condition is

f(x) = e−κ(x−x0)
2
sin(γx). (5.51)

Also, assume g(x) = −cf ′(x) and that the boundary conditions are u(0, t) =
f(−ct) and u(1, t) = f(1− ct). In this case the solution is u(x, t) = f(x− ct),
which is nothing more than the initial profile moving to the right and centered
at x = x0 + ct. This solution is an example of a wave packet, where the
exponential portion is the envelope, or pulse, and the sine term is the carrier
wave. So, here is a question: presumably, the explicit method will produce a
wave packet, and given what happened in the last example, it will probably
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be located a little bit behind the exact position. To demonstrate that this is
indeed what happens, the numerical solution is shown in Figure 5.10, and as
expected, the numerical packet lags the exact result when t = 0.75. Now, if we
attempt to predict where the packet is located, should we use the numerical
phase velocity or the numerical group velocity? The latter would predict it
centered at x = x0 + vngt and the former would predict x = x0 + vnpht, where
k = γ. The results of these predictions are shown in Figure 5.11, and it is
clear that the numerical group velocity is the winner. The reason it wins is
that the group velocity is associated with the energy of the solution, and the
envelope of the wave packet determines its energy.

5.4 Next Steps

The theoretical foundations for analyzing the numerical approximations for
wave, or what are called hyperbolic, problems presents some interesting math-
ematical challenges. The conventional approach is to express the equation(s)
in system form and then to use functional analytic methods to establish con-
vergence. An introduction to this subject is given in ?. In terms of ideas for
constructing an approximation to hyperbolic problems, one that is currently
used by numerous codes involves finite volume methods. The derivation begins
by expressing the problem in integral form, and then constructing approxima-
tions of the resulting integrals. The problems that arise in nature are usually
nonlinear and multidimensional. As such they are very challenging and in
many cases they are still active areas of research. A survey of finite volume
methods can be found in LeVeque [2002].

Exercises

5.1. Find the dispersion relation, phase velocity, and group velocity for the
plane wave solutions of the following equations. Also, state whether the equa-
tion is dispersive or dissipative.
(a) ut + gux + µuxxx = 0, where g, µ are positive constants. This equation

describes the waves on a deep ocean.
(b) c2uxx = utt + µuxxxx, where c, µ are positive constants. This equation

describes an elastic beam with an axial load. Also show that v2
ph < v2

g <

4v2
ph.

(c) I�ut = − �
2

2muxx + V u, where �, m, V are positive constants. This is
Schrödinger’s equation, which arises in quantum mechanics.

5.2. Consider the problem of solving αuxx + βuxt + utt = 0, where u(x, 0) =
f(x) and ut(x, 0) = g(x). Assume that α, β are constants, with α nonzero and
β2 > 4α. Also, the spatial interval is −∞ < x < ∞.
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(a) By factoring the equation in a manner similar to (5.7) solve the problem
and show that the solution has the form

u(x, t) =
b

a + b
f(x + at) +

a

a + b
f(x − bt) +

1
a + b

∫ x+at

x−bt

g(z)dz,

where a and b are constants. From this determine the domain of depen-
dence for (x, t).

(b) Find the dispersion relation, the phase velocity, and the group velocity for
the equation. Is the equation dispersive or dissipative?

(c) What is the effect of a ux term? In particular, is αuxx+βuxt+utt+γux = 0
dispersive or dissipative?

(d) What is the effect of a ut term? In particular, is αuxx+βuxt+utt+γut = 0
dispersive or dissipative?

(e) What is the effect of a u term? In particular, is αuxx +βuxt +utt +γu = 0
dispersive or dissipative?

5.3. This problem investigates some of the consequences of using different
approximations of the initial condition ut(x, 0) = g(x).
(a) Use a one-sided O(k2) finite difference approximation of ut(x, 0) to derive

an approximation of the initial condition.
(b) The approximation from (a) involves ui,1 and ui,2. Explain how they are

computed in conjunction with the finite difference equation for the wave
equation.

(c) Does the approximation in (a) satisfy the CFL condition? Would an addi-
tional approximation, such as y(xi) = 1

2

(
y(xi+1) + y(xi−1)) + O(h2

)
, be

of any help?
(d) Derive a O(k2) approximation of the initial condition by introducing a

ghost point t−1. Explain how this is used with the explicit method to
compute the solution and also state whether the approximation is consis-
tent with the CFL condition.

5.4. Consider the damped wave equation problem utt + ut = uxx, where the
initial and boundary conditions are given in (5.2) and (5.3).
(a) Find an explicit finite difference approximation for this problem. Make

sure to explain carefully how you approximate the initial conditions. All
approximations must be O(h2)+O(k2) and satisfy the CFL condition for
this equation.

(b) What conditions, if any, are there on h and k so your scheme is stable?
(c) In the stability region, is your scheme dispersive or dissipative? Is the

equation dispersive or dissipative?

5.5. The equation for the longitudinal motion in an elastic bar is

∂

∂x

(
E(x)

∂u

∂x

)
=

∂2u

∂t2
,
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where the initial and boundary conditions are given in (5.2) and (5.3). Assume
that E(x) is a smooth positive function. Find an explicit finite difference
approximation for this problem that has truncation error O(h2) + O(k2).
Make sure to explain carefully how you approximate the initial conditions.

5.6. Consider the Klein–Gordon equation c2uxx = utt + bu, where the initial
and boundary conditions are given in (5.2) and (5.3) with g(x) = 0. Here c, b
are positive constants. The exact solution is

u(x, t) =
∞∑

n=1

an sin(λnx) cos
(
t
√

b + λ2
nc2

)
,

where λn = nπ and an = 2
∫ 1

0
f(x) sin(λnx) dx.

(a) Find an explicit finite difference approximation for this problem. Make
sure to explain carefully how you approximate the initial conditions. All
approximations must be O(h2)+O(k2) and satisfy the CFL condition for
this equation.

(b) What conditions, if any, are there on h and k so your scheme is stable?
(c) In the stability region, is your scheme dispersive or dissipative?

In the remainder of the problem assume c = 1, b = 4, and

f(x) =

{
1
2 (1 − cos

(
2πx
a )

)
if 0 ≤ x ≤ a,

0 otherwise,

where a = 0.09. Pick a value for the number of spatial points you feel is
adequate for the spatial resolution of the solution (it must be greater than
150). This is to be used in (d) and (e).

(d) Pick a value for k that satisfies the stability condition (pick one close to
the stability boundary). Calculate both the numerical and exact solutions
up to t = 1.8, for 0 ≤ x ≤ 1, and use this to plot profiles similar to those
in Figure 5.8.

(e) Redo (d) but use twice the number of time points.
(f) On the same axes, plot vph for part (d) and for part (e).
(g) On the same axes, plot vg for part (d) and for part (e).
(h) Explain the results in (d) and (e) using your results from (c), (f), (g)

and anything else about the problem you think is relevant (e.g., is the
numerical solution ahead of, or behind, the exact solution and why and
how does this vary with k; what about the amplitude?).

5.7. This problem concerns the advection equation ut + aux = 0, where a is
a positive constant.
(a) What are the dispersion relation and resulting phase and group velocities?

Is the equation dissipative or dispersive?
(b) For the upwind method find the numerical dispersion relation and then

solve this equation for ω.
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(c) Assuming that h is small, and λ and k are fixed, find the first two terms
in the Taylor approximation of ωr and the first term for ωi. With this
determine the corresponding approximations for the numerical phase and
group velocities.

(d) Based on the Taylor approximations in (c), under what conditions will the
upwind method be nondissipative? When will it be nondispersive? Will
the numerical plane waves lead or lag their counterparts for the exact
equation? Will long or short waves propagate further using this numerical
method before they effectively dissipate?

(e) The square bump in Figure 4.2 is composed of waves covering a broad
range of wavelengths. Use this, and your results from (c) and (d), to
explain the properties of the computed solution when M = 72 and M =
100 in Figure 4.6.

(f) Suppose the upwind method is used to calculate the solution at t = 3
4 in

the case where the initial condition is

u(x, 0) = e−α(x−x0)
2
sin(γx), for 0 ≤ x ≤ 1,

where α = 500, x0 = 1
10 , and γ = 100π. Also, assume c = 1 and h = 1

500 .
Use your results from (c) and (d) to estimate what k (or λ) must be so
that the computed amplitude is within 90% of the exact value. What is
the answer if γ is smaller, say γ = 10π?

5.8. Redo Exercise 5.7 for the Lax–Wendroff method, where Figure 4.11 is
used for part (e).

5.9. A numerical approximation of the advection equation can produce an
inaccurate result if the method is either dispersive or dissipative.
(a) Use the result of Exercise 5.8(c) to explain why, for small h, the domi-

nate contribution to the error for the Lax–Wendroff method is dispersion
(assume λ < 1).

(b) Use the result of Exercise 5.7(c) to explain why, for small h, dispersion
and dissipation are generally of equal importance for the upwind method
(assume λ < 1). However, show that there is a value of λ for which the
dominate affect is dissipation.

(c) Suppose you could select between a method with no dispersion, or a
method with no dissipation. Which one would you pick? Make sure to
explain, in detail, why.

5.10. Suppose that to solve the advection equation one uses the finite differ-
ence equation

ui,j+1 = ui−1,j .

(a) Is the method stable? Is it monotone?
(b) Show that the method is not dissipative but it is dispersive.
(c) What is the CFL condition?
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(d) Is the method consistent? If so, what is the truncation error?

5.11. The domain of dependence (DoD) is connected with the speed at which
information travels in the problem. Assume there are velocities vm and vM

such that the DoD can be written as x − vmt ≤ x ≤ x + vM t. For example,
for the wave equation, vm = vM = c. Using the Klein–Gordon equation as
the test case, develop a hypothesis on how vm and vM depend on either the
phase or group velocity.

5.12. This problem concerns the conservation of energy for the wave equation
and its finite difference approximation.
(a) The energy is defined as

E(t) =
1
2

∫ �

0

(
(ut)2 + (ux)2

)
dx.

Show that E(t) is constant.
(b) Using an approximation of the spatial derivative derive the following finite

difference approximation of the wave equation

u′
i(t) =

1
h2

(ui+1(t) − 2ui(t) + ui−1(t)) .

With this show that the discrete energy

Eh(t) =
1
4h

(
u2

1 + u2
N

)
+

h

2

N∑
i=1

[
(u′

i)
2 +

(ui+1 − ui)2 + (ui − ui−1)2

2h2

]

is constant.
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Elliptic Problems

6.1 Introduction

One might title this chapter “The Challenges of Dimensionality,” or perhaps
“Why One-Dimensional Models Aren’t So Bad After All.” The reason is that
we address how to solve boundary value problems with more than one spatial
variable, and this will require us to consider some unique challenges. To intro-
duce the ideas we will limit the development to two dimensions and consider
how to find the function u(x, y) that satisfies

∇ · (a∇u) + b · ∇u + cu = f, for (x, y) ∈ D, (6.1)

where
∇ ≡ (

∂

∂x
,

∂

∂y
) (6.2)

is the gradient and D is a bounded domain in the xy-plane, as indicated in
Figure 6.1. Also, the functions a,b, c, f are smooth with a > 0 and c ≤ 0
on D = D ∪ ∂D, where ∂D is the boundary of D. We will use a Dirichlet
boundary condition, which means that the solution is specified around the
boundary, and the general form is

u = g(x, y), for (x, y) ∈ ∂D, (6.3)

where g is given. The particular case of a = 1,b = 0, c = 0 produces Poisson’s
equation. If, in addition, f = 0, one obtains Laplace’s equation given as

∇2u = 0, for (x, y) ∈ D, (6.4)

where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
(6.5)

is the Laplacian.
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�

�

�

Figure 6.1. Schematic of the planar domain D and its boundary ∂D used for
Laplace’s equation.

The problem we are considering is so fundamental that it arises in most
areas of science and engineering. For example, it plays a central role in elec-
trostatics, where u represents the electrostatic potential and g is the surface
charge. An interesting application of this arises in tomography, when elec-
tric current is used to determine location and shape information inside an
object, such as in the human body as shown in Figure 6.2. It also arises in
incompressible fluid dynamics, where u is the fluid potential. A novel use of
this arises in robotics, when one tries to determine the motion, or path, of a
robot through complex terrain using virtual potential theory (Figure 6.2). As
a third example, the equation for multidimensional heat flow is ∇2u = ∂u

∂t and
when studying the steady-state problem (where ∂u

∂t = 0) one obtains Laplace’s
equation.

Figure 6.2. Examples where Laplace’s equation arises. The picture on the left comes
from electrical impedance tomography used to create images inside the human body
(Isaacson et al. [2004]). Another application is path planning for robots, such as the
robotic hovercraft pictured on the right (Connolly and Grupen [1993], Waydo and
Murray [2003]).
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The objective of this chapter is to develop some of the numerical methods
necessary to deal with the additional spatial dimension. At the beginning the
presentation follows the steps used for the one-dimensional boundary value
problems in Chapter 2. We derive a finite difference approximation without
much difficulty and then assemble the result into a matrix equation. The next
step is the one that introduces new ideas. The additional dimension makes the
algebraic problem rather large, and this will cause us to reconsider how best
to find the solution. For this reason a large portion of this chapter is dedicated
to deriving and then implementing effective methods for the large algebraic
systems coming from the finite difference approximations of Laplace’s equa-
tion.

6.1.1 Solutions

Given the diverse areas where Laplace’s equation is found, and the centuries
scientists have had to study it, one should not be too surprised to discover
that there are numerous ways to find the solution. Our objective is to have a
representation that can easily be used to compare with the numerical results,
and for this, old-fashioned separation of variables will do nicely.

Suppose D is the rectangular domain shown in Figure 6.3 along with the
indicated boundary conditions. Using separation of variables one finds that

u(x, y) =
∞∑

n=1

an sinh(λny) sin(λnx), (6.6)

where λn = nπ/a, and the Fourier coefficients are

an =
2

a sinh(λnb)

∫ a

0

g(x) sin(λnx)dx. (6.7)

To investigate the properties of the solution we consider three examples.
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Figure 6.3. Rectangular domain and corresponding boundary conditions used to
obtain (6.6).
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Figure 6.4. Solution of Laplace’s equation as given in (6.8).

1. g(x) = sin(λ5x)

This corresponds to one of the modes in the series, and the solution in
this case reduces to the single term

u(x, y) =
sinh(λ5y)
sinh(λ5b)

sin(λ5x). (6.8)

This function is shown in Figure 6.4 in the case a = b = 1. It is interest-
ing how localized the solution appears in the sense that the oscillations
in the boundary condition at y = 1 are almost nonexistent over much of
the domain. Although the oscillations are present everywhere, the sinh
term results in exponential decay away from y = 1, and this produces the
localization seen in the figure. This effect is even more pronounced for
the higher modes because of the larger value of λn in the sinh function.
Another point to make is that to generate this plot 40 points were used
along the x-axis and this number does reasonably well in rendering the
sine function. For a higher mode it would be necessary to use a propor-
tionally larger number of grid points. For example, for g(x) = sin(λ50x),
then 400 points would be used along the x-axis.

2. g(x) = x(1 − x)( 4
5 − x)e6x

Assuming a = b = 1, the Fourier coefficient (6.7) is given as
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Figure 6.5. Solution of Laplace’s equation calculated from the Fourier series (6.6)
using the coefficients given in (6.9).

an =
12λn

(
4γn(λ2

n − 36)(λ2
n + 6) − 672 λ2

n − 5 λ4
n − 26352

)
5 sinh(λn) (λ2

n + 36)4
, (6.9)

where γn = (−1)n
e6. The solution in this case is shown in Figure 6.5.

This particular example makes for a good test case when evaluating how
well a numerical method does in solving Laplace’s equation. The reason is
that it represents a typical problem with a smooth solution but it requires
multiple modes in the series to accurately calculate the solution. As an
example, to compute g(x) with an error of less than 10−4 requires using
up to about 400 terms in the series.

3. g(x) =

{
1 if 1

4 ≤ x ≤ 3
4 ,

0 otherwise

Assuming 3
4 < a, the Fourier coefficient is given as

an =
2

aλn sinh(λnb)
(cos(λn/4) − cos(3λn/4)) . (6.10)

The solution is shown in Figure 6.6 in the case a = b = 1. It is interesting
how similar this looks compared to the analogous problem for the heat
equation, as given in Figure 3.3.



186 6 Elliptic Problems

0

0.5

1 0

0.5

1

0

0.2

0.4

0.6

0.8

1

y−axis
x−axis

S
o

lu
ti

o
n

Figure 6.6. Solution of Laplace’s equation calculated from the Fourier series (6.6)
using the coefficients given in (6.10).

6.1.2 Properties of the Solution

The examples in Figures 6.4 to 6.6, along with the Fourier series solution (6.6),
demonstrate several important properties of the solutions of Laplace’s equa-
tion, when using a Dirichlet boundary condition, that are worth remembering
when finding numerical solutions. Of particular importance are the following:

Smoothness: Even with a boundary condition containing jumps as in Figure
6.6, the solution away from the boundary is smooth.

Maximum and Minimum Principles: The maximum and minimum of the so-
lution occur on the boundary. One consequence of this is that the problem
is stable in the sense that if small changes are made in the boundary con-
dition then the resulting changes in the solution over the entire domain are
small. This follows because if u1 and u2 are solutions of Laplace’s equation,
then their difference u1 − u2 is also a solution. Therefore, the maximum and
minimum values of u1 − u2 are determined by the differences between u1 and
u2 on the boundary. If these two functions differ by only a small amount on
the boundary then their difference u1−u2 will be small throughout the entire
domain.
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Global Dependence: Changing the solution in a continuous manner anywhere
in D or along the boundary will affect the solution throughout D. This can
be seen in the Fourier series solution in (6.6). Because the coefficients in (6.7)
depend on the value of g(x) over the entire interval, changing this boundary
condition over even a small portion of the boundary potentially affects every
term in the series. This is important from a numerical point of view because
if the method incorrectly calculates the solution at even one grid point, the
effect of this will be felt everywhere. Fortunately, as seen in Figure 6.4, there
is a certain amount of spatial localization if the imperfection involves shorter
wavelengths. The latter occurs, for example, with round-off error (e.g., see
Figure A.1).

The value of the above three observations is more qualitative than quanti-
tative when one is computing the solution of Laplace’s equation. For example,
if the computed solution does not obey the maximum principle then we should
seriously question whether the answer is correct. As we have seen earlier, such
observational tests are easy and can prove invaluable when one is developing
and testing a numerical method.

6.2 Finite Difference Approximation

We will derive a finite difference approximation for Laplace’s equation when
the domain is rectangular. The domain and boundary conditions are shown
in Figure 6.7. As usual, we use a rectangular grid (xi, yj), where

xi = ih, for i = 0, 1, 2, . . . , N + 1, (6.11)
yj = jk, for j = 0, 1, 2, . . . , M + 1. (6.12)
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Figure 6.7. Rectangular domain and boundary conditions used to derive the finite
difference approximation of Laplace’s equation.
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Figure 6.8. Example of the grid system used to find the numerical solution of
Laplace’s equation. As shown there are nine points, the hollow dots, where the
solution is to be computed. The values of the solution at the grid points marked with
solid dots are known from the given boundary conditions. As shown, N = M = 3.

The step sizes are h = a/(N + 1) and k = b/(M + 1). An illustration of the
grid system we are using, in the particular case N = M = 3, is shown in
Figure 6.8.

In preparation for introducing finite difference approximations, we evaluate
the equation at (xi, yj) to obtain

uxx(xi, yj) + uyy(xi, yj) = 0. (6.13)

We use centered differences to approximate the derivatives and this gives us

u(xi+1, yj) − 2u(xi, yj) + u(xi−1, yj)
h2

+
u(xi, yj+1) − 2u(xi, yj) + u(xi, yj−1)

k2
+ τij = 0, (6.14)

where τij = O(h2) + O(k2) is the truncation error. The stencil for this ap-
proximation is shown in Figure 6.9. Rearranging things in (6.14), we have

−λ2u(xi+1, yj) + 2(1 + λ2)u(xi, yj) − λ2u(xi−1, yj)

− u(xi, yj+1) − u(xi, yj−1) − k2τij = 0, (6.15)

where
λ =

k

h
. (6.16)

Dropping the truncation error gives us the following finite difference approx-
imation to the Laplace’s equation
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Figure 6.9. Stencil for the five-point finite difference approximation (6.17) of
Laplace’s equation.

−λ2ui+1,j +2(1+λ2)uij −λ2ui−1,j −ui,j+1 −ui,j−1 = 0, for
i = 1, . . . , N,
j = 1, . . . , M.

(6.17)
The boundary conditions are

(i) x = 0: u0,j = gL(yj), for j = 1, . . . , M,

(ii) x = a: uN+1,j = gR(yj), for j = 1, . . . , M,

(iii) y = 0: ui,0 = gB(xi), for i = 1, . . . , N,

(iv) y = b: ui,M+1 = gT (xi), for i = 1, . . . , N.

The finite difference equation in (6.17) is known as the five-point scheme
for Laplace’s equation. Note that there are as many equations as there are
points (xi, yj) within D. In our case, there are n = N×M equations. Also, it is
interesting to observe that because of the shape of the stencil the values of the
solution at the vertices of the domain do not contribute to the approximation.
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Figure 6.10. Grid and renumbering of the points to construct the vector v in the
case N = M = 3.



190 6 Elliptic Problems

0
BBBBBBBBBBBBBBBBBBBBB@

β −λ2 0 −1 0 0 0 0 0

−λ2 β −λ2 0 −1 0 0 0 0

0 −λ2 β 0 0 −1 0 0 0

−1 0 0 β −λ2 0 −1 0 0

0 −1 0 −λ2 β −λ2 0 −1 0

0 0 −1 0 −λ2 β 0 0 −1

0 0 0 −1 0 0 β −λ2 0

0 0 0 0 −1 0 −λ2 β −λ2

0 0 0 0 0 −1 0 −λ2 β

1
CCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBB@

v1

v2

v3

v4

v5

v6

v7

v8

v9

1
CCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBB@

gB(x1) + λ2gL(y1)

gB(x2)

gB(x3) + λ2gR(y1)

λ2gL(y2)

0

λ2gR(y2)

gT (x1) + λ2gL(y3)

gT (x2)

gT (x3) + λ2gR(y3)

1
CCCCCCCCCCCCCCCCCCCCCA

Table 6.1. Matrix equation coming from the five-point scheme for Laplace’s equa-
tion in the case N = M = 3. In the matrix, β = 2(1 + λ2).

6.2.1 Building the Matrix

The next step is to assemble all n equations into a matrix equation Av = b,
where A is an n × n matrix. The vector v contains the unknowns, and we
need to linearly order the uij ’s to construct this vector. To explain how this
will be done, the grid for the case N = M = 3 is shown in Figure 6.10. We
will use what is known as a lexicographic ordering, which yields

v1 = u11, v2 = u21, v3 = u31,

v4 = u12, v5 = u22, v6 = u32,

v7 = u13, v8 = u23, v9 = u33.

In general, the formula connecting v� with uij is

v� = uij , for 	 = (j − 1)N + i. (6.18)

It should be remembered that this formula applies to the grid points in D and
not to those on the boundary.

With the given ordering of the grid points, the finite difference equation
(6.17) now becomes

−λ2v�+1 + 2(1 + λ2)v� − λ2v�−1 − v�+N − v�−N = 0, (6.19)

which can be written in matrix form as

Av = b. (6.20)

The finite difference equation in (6.19) provides the 	th row in (6.20) for those
grid points that are not next to the boundary (e.g., the point for v5 in Figure
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Figure 6.11. Schematic representation of the coefficient matrix obtained from
(6.17) and (6.19).

6.10). At points next to a boundary one or more of the terms v�±1 and v�±N

must be modified to account for the boundary conditions. As an example,
in the case N = M = 3 one obtains the grid in Figure 6.10 and the matrix
equation given in Table 6.1. Both in this example and in general each row of
the matrix A has 2(1 + λ2) on the diagonal and −1 in the 	 ± N positions
(when in range). On the sub- and superdiagonals there is −λ2, except when the
point is next to the boundary, in which case the entry is zero. For example, in
Table 6.1 there is a zero in the (4, 3) position of the matrix, and this gives rise
to the λ2gL(y2) term on the right-hand side. For the general case the matrix
A has the structure shown in Figure 6.11. It is evident from this schematic
representation that A has a block structure. Each block is an N×N symmetric
matrix, and together they give A the following form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

T D
D T D 0

D T D
. . . . . . . . .

0 D T D
D T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6.21)

In this expression T is an N ×N symmetric tridiagonal matrix with 2(1+λ2)
on the diagonal and −λ2 on the sub- and superdiagonals. The matrix D is an
N × N diagonal matrix with −1 on the diagonal.

The matrix A plays such an important role in what follows that it is
worthwhile to make a few observations about some of its properties that will
have an impact on how we solve the matrix equation:

1. It is symmetric and positive definite (this will be shown later).
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2. It is banded. This means that the entries of the matrix are zero outside
a band along the diagonal. For A, all entries more than N spaces away
from the diagonal are zero. In the parlance of numerical linear algebra, it
has bandwidth N .

3. It is sparse. This means that the number of nonzero entries is much less
than the number of zero entries. For A there are fewer than 5n nonzero
entries out of a total of n2.

4. It has the potential to be quite large. For example, if we decide that 100
interior grid points should be used along each axis then A will be of size
104 × 104.

The last observation will force us to think very seriously about how to solve
Av = b. In the earlier chapters, when faced with solving matrix equations
we used a standard LU factorization method. However, this is not necessarily
the best choice here, because the matrix can easily become so large that it
is not possible even to store it in the computer’s memory. One possibility is
to make use of Observations (1) and (2) from above, and employ a banded
version of the Cholesky factorization. This is a reasonable approach but one
that will not be pursued here. Rather, we will investigate methods that take
maximum advantage of the sparseness of A. This will lead us into the world of
iterative methods. There are numerous iterative solvers to choose from, having
names such as Jacobi and Gauss–Seidel. For large spare systems, however,
two stand out in terms of their computational effectiveness. These are the
conjugate gradient method and the multigrid method. The former is based on
a relatively simple idea that produces an extremely effective solver, and it is
the one we will pursue here.

The remainder of the chapter concentrates on the matrix problem. The
reason is that constructing a finite difference approximation to other elliptic
equations, such as the one in (6.1), is straightforward and uses ideas that
have been employed repeatedly in this text. So, the real question is not how
to construct a finite difference approximation, but what to do with it once it is
derived. Certainly complications arise, such as with variable boundaries, and
these will be brought up later in the chapter. Before working on the matrix
equation there are a few details to complete that are connected with proving
that a matrix is positive definite.

6.2.2 Positive Definite Matrices

The methods to be used to solve the matrix equation will require A to be
positive definite. It is therefore imperative that we have a way to determine
whether the matrix has this property. In the discussion to follow it is assumed
that A is symmetric. One consequence of this assumption is that A has only
real eigenvalues.

There are various ways to define what it means to be positive definite. For
example, the following statements are equivalent if A is a symmetric matrix:
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PD1: A is positive definite,

PD2: vT Av > 0, ∀ v 	= 0,

PD3: A has only positive eigenvalues.

What this means is that we can use either PD2 or PD3 to establish whether a
matrix is positive definite. The problem is that neither is particularly easy to
use. Fortunately, there are special cases that will be sufficient for our problems
and that can be used almost by inspection.

The first special case is actually a negative result in the sense that it can
be used to determine when a matrix is not positive definite.

Test 1: A matrix A is not positive definite if any diagonal entry is negative
or zero.

The proof of this is outlined in Exercise 6.1. As an example of its usefulness,
the matrix

A =
(

4 1
1 −1

)
(6.22)

is not positive definite because it has a negative diagonal entry. On the other
hand, we can make no conclusion about the matrix in Table 6.1 or the one in
(6.20). What we can say, however, is that if one does not like all the minus
signs in this matrix and multiplies the equation by −1, the resulting matrix
will not be positive definite. So, in terms of constructing matrix equations to
solve elliptic problems, Test 1 can be thought of as a minus sign adjuster.

To produce a test that can determine whether a matrix is positive definite
we will use the Gershgorin–Taussky theorem. The statement of this result
introduces a requirement about the location of the nonzero entries in the
matrix, particularly those off the diagonal. The specific condition is that the
matrix must be irreducible. There is a relatively easy test for this that involves
a paper-and-pencil like construction. To explain, suppose we are given an n×n
matrix A with entries aij . The first step in the construction is to place n points
P1, P2, . . . , Pn along a line as in Figure 6.12. For each nonzero entry aij in the
matrix that is not on the diagonal, draw a directed curve from Pi to Pj (the
curves can cross over each other but they are not considered to intersect when
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Figure 6.12. To test whether an n × n matrix is irreducible place n points
P1, P2, . . . , Pn along a line and then connect them with directed line segments ac-
cording to whether aij is nonzero.
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they do). The set of curves obtained in this way is called the directed graph
for the matrix.

Examples
Below are two matrices and their associated directed graphs.

A1 =

⎛
⎜⎜⎝

2 0 0 1
1 1 0 0
0 3 0 0
0 0 1 0

⎞
⎟⎟⎠ ��

�� ��

��

A2 =

⎛
⎜⎜⎝

2 0 1 0
1 1 0 0
0 3 0 0
0 0 1 0

⎞
⎟⎟⎠ �� �� ��

��

With the directed graph, A is said to be irreducible if it is possible to start
at any point Pi and then follow the directed curves and arrive at any other
point Pj . Based on this, in the above example A1 is irreducible but A2 is not
because it is not possible to go from P3 to P4. It might seem strange that
this graphical procedure can be of any help for what we are trying to do, but
the connectivity of the path is actually saying something important about the
location of the nonzero entries in the matrix. Those who are interested in the
theory underlying this method should consult Varga [2000]. One last comment
is that this definition does not require, in contrast to the other results in this
section, that the matrix be symmetric.

To state the theorem we will also need to introduce the row sums

ri =
n∑

j=1

j �=i

|aij |, (6.23)

and the intervals Ii = [aii−ri, aii +ri]. So, Ii is the closed interval centered at
the diagonal value of the ith row, with radius equal to the sum of the remaining
row entries (in absolute value). Gershgorin–Taussky states the following:

GT1: Every eigenvalue of A is in at least one of the intervals Ii.
GT2: If an eigenvalue of A is on the boundary of one of the intervals, and if

A is irreducible, then the eigenvalue is on the boundary of all the intervals.

The proof of this result can be found in Varga [2000]. As an example of its
usefulness consider the following two symmetric 3 × 3 matrices, and their
corresponding Gershgorin intervals.



6.2 Finite Difference Approximation 195

A3 =

⎛
⎝2 1 -2

1 7 2
-2 2 12

⎞
⎠ ⇒

I1 = [−1, 5],
I2 = [4, 10],
I3 = [8, 16],

A4 =

⎛
⎝2 1 0

1 7 2
0 2 12

⎞
⎠ ⇒

I1 = [1, 3],
I2 = [4, 10],
I3 = [10, 14].

The three intervals for A4 are positive, but this is not the case for A3. There-
fore, using GT1, of the two matrices only A4 is guaranteed to have positive
eigenvalues. This observation can be used to check on positive definiteness
using PD3. In particular, if all the intervals are positive then the eigenvalues
are positive, and this gives rise to the following result.

Test 2: A matrix A is positive definite if ri < aii ∀ i.

Matrices that satisfy the inequality in this test are strict diagonally dominant.
This was introduced earlier, in Chapter 2, when we were studying tridiagonal
matrices. Unfortunately, this test does not work on the matrix in (6.20) for
larger values of N and M , because there are one or more rows where ri =
aii. For example, this happens for the fifth row in the matrix in Table 6.1.
Consequently, we need a slightly stronger test, and this comes from combining
GT1 and GT2 to produce the following result.

Test 3: A matrix A is positive definite if the following hold: (i) ri ≤ aii ∀ i,
(ii) 0 < aii ∀ i, (iii) there is at least one row where ri < aii, and (iv) A is
irreducible.

In this test, conditions (i) and (ii) guarantee that the Gershgorin intervals
are at least nonnegative. This still leaves open the possibility that zero is an
eigenvalue, but conditions (iii) and (iv) prevent this from happening. It is not
hard to show that the matrix in (6.20) satisfies the conditions of this test, and
it is therefore positive definite.

There is an additional piece of useful information concerning the eigenval-
ues of A that will come in handy later in the chapter. If the domain in Figure
6.7 is the unit square, and if h = k, then the eigenvectors of A can be deter-
mined from the eigenfunctions of the Laplacian. To explain how, recall that
the eigenvalue problem for the Laplacian is ∇2w = λ̄w, where w = 0 around
the boundary. Using separation of variables one finds that the eigenfunctions
are w(x, y) = sin(pπx) sin(qπy), where p, q = 1, 2, 3, . . .. For any given p, q
satisfying p, q ≤ N one can show that the vector w, formed from evaluating
w at the grid points, is an eigenvector for A. The corresponding eigenvalues
for A are

λ̄pq = 4
[
sin2

(
pπh

2

)
+ sin2

(
qπh

2

)]
, for

p = 1, 2, . . . , N,
q = 1, 2, . . . , N.

(6.24)
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From this we get that the smallest eigenvalue of A is λm = 8 sin2(πh/2) and
the largest is λM = 8 sin2(Nπh/2). This is potentially useful information,
because using the Euclidean norm, the condition number cond2(A) for A
is the ratio of these two eigenvalues. What we have found is that for large
systems,

cond2(A) =
λM

λm
≈ 4N2

π2
. (6.25)

Consequently, as the number of grid points increases the matrix becomes more
ill-conditioned.

6.3 Descent Methods

The objective of this section is to develop an effective method for solving
matrix equations involving large sparse matrices. The first step in this effort
is to rewrite the equation as a minimization problem. To explore how this
might be done suppose we start with the n = 1 case, where the equation is
simply av = b. We want to find a function F (v) that has a minimum exactly
when av = b. One possibility is to use a least-squares formulation and take
F (v) = (av − b)2. Another approach is to recall that at a minimum of F (v)
one solves F ′(v) = 0. If av−b = 0 corresponds to the equation F ′(v) = 0 then
we need F ′(v) = av − b. Integrating gives us F (v) = 1

2av2 − bv. For this to
correspond to a minimum problem the quadratic must open upward, which
means we have the positivity requirement a > 0. To see what happens when
there are more variables, let n = 2, so the equations have the form

a11v1 + a12v2 = b1,

a21v1 + a22v2 = b2.

We want to find a smooth function F (v) that has a minimum exactly when
Av = b. To achieve this we require that F satisfy

∂F

∂v1
= a11v1 + a12v2 − b1, (6.26)

∂F

∂v2
= a21v1 + a22v2 − b2. (6.27)

For F to be smooth we need

∂2F

∂v1∂v2
=

∂2F

∂v2∂v1
,

and so from (6.26), (6.27) we conclude a12 = a21. In other words, our con-
struction requires that the matrix A be symmetric. Assuming this holds, then
integrating (6.26) and (6.27) it follows that
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F (v) =
1
2
vT Av − b · v. (6.28)

To guarantee that this has a minimum there is a positivity requirement on
A, namely, it must be positive definite (as well as symmetric). Although this
result has been derived in the particular case of n = 2, the quadratic form
in (6.28) is what is obtained for general n and is the function used in what
follows.

The quadratic form in (6.28) will be used to solve the matrix equation
coming from the finite difference approximation of Laplace’s equation. By
doing this we have transformed the equation into a minimization problem. Is
this an improvement? Is this going to help us deal with the large sparse system
we obtained from (6.17)? The answer to both questions is yes. Rewriting the
problem in this way opens up new avenues for finding the solution and we are
going to explore some of them.

The objective now is to find the vector v = vm that minimizes the function
F (v) given in (6.28). This will be done using an iteration method in which we
pick a starting vector v1 and then construct a sequence v2, v3, v4, . . . that
converges to vm. In doing this we will require the value of F to decrease with
each step. The idea underlying how we will determine vk+1 from vk is fairly
simple. As an analogy, if you were standing on a hillside and wanted to go to
the bottom of the valley you would pick a direction of descent and then start
walking downhill. This is basically what we will do to solve the minimization
problem. Starting at vk we will identify a direction of descent dk and then
“walk” a distance αk in that direction to reach a minimum value. If this point
is not the global minimum vm then it will be necessary to select a direction
of descent at this new point and repeat the procedure. In mathematical terms
we have the following formula

vk+1 = vk + αkdk, for k = 1, 2, 3, . . . . (6.29)

In this expression, αk is the value of α that minimizes q(α) = F (vk + αdk).
This can be found in the usual way by solving the equation q′(α) = 0. Carrying
out the calculations, one finds that

αk =
dk · rk

dk · qk
, (6.30)

where qk = Adk and
rk = b − Avk. (6.31)

To avoid the matrix multiplication in (6.31) one can use (6.29) to rewrite
(6.31) as

rk = rk−1 − αk−1qk−1, for k = 2, 3, . . . . (6.32)

With (6.29), (6.30), and (6.32) we have the basic template for our descent
algorithm. It remains to specify the descent directions, and we will consider
various possibilities below.
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In this construction the vector rk is the residual at vk and it provides a
measure of the error. If we are fortunate enough to have rk = 0, then the
problem is solved and vm = vk. Since ‖rk‖ = 0 only when vk is the solution,
having ‖rk‖ small can be used as a stopping condition for the iteration. This
works as long as A is not ill-conditioned, and we will return to this topic later.

6.3.1 Steepest Descent Method

Our descent algorithm is coming along nicely. The only thing left to do is
decide on what to use for a descent direction. With the objective of getting the
algorithm to converge as quickly as possible, the most obvious choice is to pick
the direction of steepest descent. In other words, we pick dk to be the negative
of the gradient of F at v = vk. From (6.28) one finds that ∇F = Av−b, and
therefore the direction of steepest descent at vk is determined by the residual
(6.31). The resulting iteration formula is

vk+1 = vk + αkrk, for k = 1, 2, 3, . . . , (6.33)

where rk is given in (6.31) and αk is given in (6.30). This is known as the
method of steepest descents (SDM).

Because the only significant operations involved with SDM are vector and
matrix multiplication it is very easy to code the method. Moreover, it is ca-
pable of taking maximum advantage of the sparseness of A. For example, to
calculate qk = Adk we need to store, and use, only the nonzero entries in A.
Also, there is only one matrix multiplication per iteration, and this multipli-
cation involves approximately 9n operations versus the usual 2n2 operations
for full matrix multiplication.

How effective is SDM in solving matrix equations? Let’s find out by trying
a couple of examples.
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Figure 6.13. Contours of F (v1, v2) and the first few steps taken by the method of
steepest descent in the two example problems.
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Examples
In the two examples below, the starting vector is v1 = (1, 1)T and the stop-
ping condition is ‖vk+1 − vk‖ < 10−4. Once the SDM has stopped, then the
error ‖vm − v̄k‖, which is the difference between the exact and computed
solutions, is computed as a check to see how well the method has worked.

1.
(

2 2
2 3

) (
v1

v2

)
=

(
1
−1

)
The first few steps produced with SDM are shown in the contour plot on
the left in Figure 6.13. It is found that the method takes 16 iterations and
the resulting error is 1.3×10−4. For later reference, the eigenvalues of the
matrix are, approximately, λm = 0.4 and λM = 4.6.

2.
(

5 4.99
4.99 5

) (
v1

v2

)
=

(
1
−1

)
The first few steps produced with SDM are shown in the contour plot on
the right in Figure 6.13. The contours are so elongated in this example
that the elliptical curves around the minimum are not evident (as they are
in the contour plot to the left). It is found that the method takes a whop-
ping 200 iteration steps and the resulting error is a mediocre 9×10−3. For
the record, the eigenvalues of the matrix are, approximately, λm = 0.01
and λM = 10.

In reviewing the results from the above examples one might wonder why
anyone would ever consider using SDM because the method can be painfully
slow to converge. As seen in Figure 6.13, the more elongated the contours,
the slower the convergence. To state this in more mathematical terms, from
the Principal Axis Theorem it is known that the ratio of the semimajor to
semiminor axes of the elliptical contours in the above two examples equals√

λM/λm, where λm, λM designate the smallest and largest eigenvalues, re-
spectively. Therefore, the larger the ratio λM/λm, the more elongated the
contours. As an illustration of this, in the first example λM/λm ≈ 10, and
in the second example λM/λm ≈ 1000. Our results indicate that the larger
the ratio λM/λm, the slower SDM converges. This observation is important
because the condition number of a symmetric positive definite matrix, using
the Euclidean norm, is λM/λm. Therefore, if the above examples are any indi-
cation, it would appear that SGM can converge painfully slowly for matrices
usually considered well conditioned and is probably worthless for matrices
with moderately large condition numbers.

6.3.2 Conjugate Gradient Method

To improve the convergence of SDM we need to modify the direction of de-
scent. In looking at Figure 6.13 it appears that the search path is almost in the
right direction, but the method continually makes small adjustments (every
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other step) to keep heading toward the minimum. To improve on this, when
picking dk we will still use the steepest descent direction rk but modify it
slightly to reduce this readjustment. Our choice will still be to start off with
d1 = r1 but from then on take

dk = rk + βk−1dk−1, for k = 2, 3, . . . . (6.34)

The βk−1 in this formula will be used to prevent the problem seen in the last
example. The choice is based on the observation that in the SDM the direction
of steepest descent at v2 is orthogonal to the steepest descent direction at v1;
that is, r1 · r2 = 0. Similarly, one finds that r2 · r3 = 0, but that it is not
necessarily true that r1 · r3 = 0. In fact, in the earlier example it turns out
that r3 is parallel to r1. This can be seen in Figure 6.13, where the corners in
the path form right angles but the path from v1 to v2 is parallel to the path
from v3 to v4. Consequently, in this example, SDM ends up using only two
distinct directions of descent and produces a sequence of alternating parallel
lines forming the search path. It is this parallelism in the residual vectors that
will be avoided using βk−1.

The way we will prevent r3 from being parallel to r1 is to select β1 so that
r3 is actually orthogonal to r1. To determine how this can be accomplished,
note that no matter how dk is selected, the formula for the residual in (6.32)
gives us r2 = r1 − α1q1, and r3 = r2 − α2q2. We know that r1 · r2 = 0,
and as for the other possible inner products, a short calculation shows that
r1 · r3 = −α2 r1 · q2 and r2 · r3 = (const) r1 · q2. Therefore, if we take β1 such
that r1 ·q2 = 0, we will end up with the residuals being mutually orthogonal.
Working out the details, one finds that β1 = r2 · r2/r1 · r1. Continuing in this
way yields the following formula

βk =
rk+1 · rk+1

rk · rk
, for k = 1, 2, 3, . . . . (6.35)

It is assumed here that rk · rk 	= 0, but if this were not the case we would
have solved the equation exactly at the previous step and there would be no
need to calculate βk. This choice of βk, along with the descent direction in
(6.34), produces what is known as the conjugate gradient method (CGM),
and the steps involved are summarized in Table 6.2. In terms of operations
per iteration step it is not much more than SDM. To calculate βk and then
construct dk adds about 4n flops per step.

The CGM has a remarkable property that has profound consequences for
how well it works. By construction rk is orthogonal to all of the previous
residuals. In other words, r1, r2, r3, . . . are mutually orthogonal, which means
that ri · rj = 0, ∀i 	= j. In n dimensions, the only way for n + 1 vectors to be
mutually orthogonal is that one of them is the zero vector. If a residual is zero
we have found the exact solution and therefore the conjugate gradient method
produces the exact solution in no more than n iteration steps. For this reason
CGM is not an iteration method in the traditional sense. To demonstrate the



6.3 Descent Methods 201

(1) picking x1, set r1 = b − Ax1 and d1 = r1

(2) for k = 1, 2, 3, . . .

xk+1 = xk + αkdk

rk+1 = rk − αkqk

dk+1 = rk+1 + βkdk

where

qk = Adk

αk =
rk · rk

dk · qk

βk =
rk+1 · rk+1

rk · rk

Table 6.2. Outline of the conjugate gradient method (CGM) used to solve the
linear system Ax = b, where A is an n × n symmetric positive definite matrix.

significance of this finite termination property we return to the examples used
for SDM.

Examples
In the two examples below, the starting vector is v1 = (1, 1)T and the stopping
condition for the CGM iteration is ‖vk+1 − vk‖ < 10−4.

1.
(
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=
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−1

)
All of the steps produced with CGM are shown in the contour plot on
the left in Figure 6.14. It is found that the method takes two iteration
steps and the resulting error is 4 × 10−16, which is as accurate as can be
expected using double precision.

2.
(

5 4.99
4.99 5

) (
v1

v2

)
=

(
1
−1

)
All of the steps produced with CGM are shown in the contour plot on the
right in Figure 6.14. It is found that the method takes two iteration steps
and the resulting error is 7 × 10−12.

In comparing the search paths in Figures 6.13 and 6.14, the contrast be-
tween SDM and CGM is striking. As advertised, the CGM took two steps
to solve the 2 × 2 matrix equations, and in doing so it showed itself to be
far superior to SGM. However, the reality is that round-off generally prevents
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Figure 6.14. Contours of F (v1, v2) and the paths taken by the conjugate gradient
method in the two example problems.

CGM from producing the exact result. This is not unexpected, nor a criti-
cism of the method, because as with all floating-point computations we can
only get as close as round-off permits. The issue with CGM is that it is built
on the assumption of exact orthogonality of the residuals at each step. With
round-off, however, this will not happen. For well-conditioned matrices this is
not an issue, and the above examples demonstrate this fact. However, if the
condition number of the matrix gets too large then it is an issue and CGM will
lose its finite termination property. We will discuss later how this situation
can be corrected, but it is not a pressing problem for the matrices coming
from Laplace’s equation.

Convergence of CGM

To investigate the effectiveness of the CGM for larger systems we will solve
Av = b, where A is the same matrix as in (6.20) but in the special case that
we know the solution vm. This will be done by specifying vm and then setting
b = Avm. This way we can observe the accuracy, and rate of convergence,
of the CGM as it progresses. With the intention of picking a representative
solution for Laplace’s equation, the vector vm is taken from the series solution
in (6.6) when the Fourier coefficients are as given in (6.9). Now, there are
various ways to measure error, and for this example we will consider the
following

Error: Ek = ‖vk − vm‖, (6.36)
Iteration Error: Ik = ‖vk − vk−1‖, (6.37)
Residual Error: Rk = ‖rk‖. (6.38)

The reason for considering Ik and Rk is that we will usually not know vm and
consequently we would like to have some idea of whether Ik or Rk can be used
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Figure 6.15. Error obtained at each iteration step of CGM to solve a matrix
equation involving (6.21), for various sizes n of the matrix. The errors are defined
in (6.36)–(6.38).

as a reasonable substitute for Ek. In any case, taking h = k, the results when
N = M = 25 (n = 625), N = M = 50 (n = 2500), N = M = 100 (n = 10000)
are shown in Figure 6.15. From these plots one sees that for this example the
residual and iteration errors are effectively equivalent in their estimation of Ek.
Both consistently underestimate the error and neither decreases monotonically
(the latter is not easy to see in the plot, but if you look closely at the curves
near the 10−2 level there are multiple local maximum and minimum points
on the two curves). There are also two stages in the convergence. In the first
the error reduction is modest. For example, with n = 10000 there is not
much improvement in the solution for the first 100 steps. Shortly after that
things change, and CGM converges relatively quickly. This acceleration in the
convergence rate as the iteration proceeds is called superlinear convergence.
Accurate predictions of where in the calculation this begins to become evident
require information about the distribution of the eigenvalues of A and are
therefore not easy to obtain. However, a useful and well-known upper bound
on how fast the method converges is the following
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‖vk − vm‖ ≤ 2‖v1 − vm‖√κ

(√
κ − 1√
κ + 1

)k−1

, (6.39)

where κ = λM/λm (a proof of this can be found in Luenberger [2002]). This
result shows that the better the conditioning of the matrix (i.e., the closer
κ gets to one), the faster the convergence. However, as shown in Exercise
6.22, this inequality does not give a very accurate estimate of the rate of
convergence, so its use as a predictive tool is a bit limited.

Another important point to make about Figure 6.15 concerns the number
of iterations. The CGM has produced a reasonably accurate solution of the
matrix equation in significantly fewer than n iterations. It is interesting to
note that the point in the iteration where the error reaches, say, 10−6 scales
approximately with N (and M) and not with n. For example, when going
from N = 25 (so n = 625) to N = 50 (so n = 2500) the number of iterations
increases from 63 to 125. In other words, if N and M are doubled the number
of iterations needed to reach 10−6 increases by about a factor of two. This
observation is consistent with (6.39). This inequality indicates that the rate of
convergence depends on

√
κ, and from (6.25), for larger matrices,

√
κ = O(N).

To conclude the development of CGM we consider the question of how it
compares with a direct solver when n is large. In terms of memory, CGM re-
quires storage of only the nonzero entries of A along with five n-vectors. Direct
solvers cannot do better than this. For example, the usual banded Cholesky
algorithm ends up storing an N × n array along with a handful of n-vectors.
In terms of computational effort, calculating vk+1 takes approximately 19n
flops. The stopping condition on the iteration can raise this total, although
using the residual adds an insignificant amount of effort. For direct solvers
that make use of the banded structure of the matrix, the flop total is approxi-
mately 2N2n. In round numbers, for the case M = N , this means that if CGM
takes approximately n/10 iterations then the computational effort is close to
what it would take a direct solver. Based on this estimate the advantage of
using CGM is clearly evident in Figure 6.15 as n increases. This is the point
where one is supposed to say “your mileage might vary.” In other words, a
lot of assumptions have gone into this estimate, and everything from efficient
coding to chip design can significantly affect the actual result. Nevertheless,
it is useful to have some quantitative measure of computational effort when
testing the CGM and the flop count will be used in this role.

6.4 Numerical Solution of Laplace’s Equation

It is time to reap the rewards of all the hard work we have invested in deriving
the CGM and now actually solve Laplace’s equation. The domain and bound-
ary conditions of the first example are shown in Figure 6.3, where a = b = 1
and g(x) = x(1 − x)(4

5 − x)e6x. The solution as obtained using a Fourier se-
ries solution is shown in Figure 6.5. We already know what the solution looks



6.4 Numerical Solution of Laplace’s Equation 205

0
0.5

1 0
0.5

1

0

0.01

0.02

0.03

0.04

y−axis
x−axis

E
rr

o
r

0
0.5

1 0
0.5

1

−2

0

2

y−axis
x−axis

S
o

lu
ti

o
n

Figure 6.16. Numerical solution of Laplace’s equation and the resulting spatial
distribution of the pointwise error. The five-point scheme (6.17) and the CGM were
used in the calculation.

like, and so the suspense here centers on how accurately the finite difference
approximation and the CGM solve the problem. In other words, we are inter-
ested in the error. Because the solution varies more in the x direction, in the
calculations to follow we take M = N/2. The stopping condition used with
the CGM is ‖vk+1 − vk‖ ≤ 10−6. In Figure 6.16 the numerical solution and
the pointwise error E(xi, yj) are shown in the case N = 40. The error in this
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case is simply the difference between the numerical and Fourier series solu-
tions, in absolute value. Specifically, E(xi, yj) = |u(xi, yj) − ūij |, where ūij

is the computed value of the solution at (xi, yj). As can be seen, the spatial
distribution of the error corresponds to the variation in the solution.

Very little has been said so far about the rate of convergence of the nu-
merical approximation. As shown in Exercise 6.14, the error in the solution is
determined by the truncation error. To verify this numerically, the maximum
error Emax = maxi,j |u(xi, yj) − ūij | is plotted as a function of N in Figure
6.17. For a little variety, the errors when M = N and when M = N/2 are
shown. The fact that this is a second-order method is clearly seen in both
curves.

Although it is nice that CGM has this finite termination property, it is our
hope not to have to rely on this property to solve our matrix equation. We saw
that n can easily be 104 or larger, and we certainly do not want to carry out
this many iterations to solve the problem. It is more important for us that the
method converge quickly. For example, if n = 104 then it is our hope that a
reasonably accurate solution is obtained in, say, 102 iterations. The question is,
what is meant by accurate? We need to solve the problem only to an accuracy
that is consistent with how well we are approximating Laplace’s equation. This
is another advantage of using an iterative method. It makes little sense to push
the CGM to generate an answer correct to 12 digits if the step size used in the
finite difference approximation is capable of getting us to within only 4 digits
of the solution of Laplace’s equation. Based on this observation, it would seem
we have overcomputed the solution in Figure 6.16. The reason is that the plot
shows that the maximum error in the finite difference approximation is about

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Number of Points Along x−Axis

E
rr

o
r

 M = N
 M = N/2
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10−2. Consequently, the stated stopping condition that ‖vk+1 − vk‖ ≤ 10−6

is overly restrictive. Based on the information in Figure 6.15 it would have
been sufficient to use ‖vk+1 − vk‖ ≤ 10−4.

6.5 Preconditioned Conjugate Gradient Method

With CGM we have a fairly robust method for solving the matrix equation
coming from Laplace’s equation. With an eye on improving things a bit, the
results in Figure 6.15 indicate that as n increases, the number of iterations
increases. This is due, in part, to the matrix becoming less well conditioned
with increasing n. Said another way, the method slows down as the ratio
λM/λm of the largest to smallest eigenvalues of A increases. It is possible to
quantify this observation in the particular case where D is the unit square
and h = k. The eigenvalue ratio in this case is given in (6.25), where for large
N ,

λM

λm
≈ 4N2

π2
. (6.40)

The N2 term in this result indicates that larger matrices will almost invariably
lead to problems for CGM.

The question considered here is, can we do anything to the matrix equation
to improve the convergence of CGM? As an example, for the symmetric and
positive definite matrix

C =
(

1 3 − s
3 − s 9

)
, (6.41)

where s = 10−10, one finds that λM/λm ≈ 2 × 1011. Given the rather large
value of this ratio, the matrix is ill-conditioned. However, setting

B =
(

9 s − 3
s − 3 1

)
,

then the product C = BC has λM/λm = 1 and this certainly qualifies as a
well-conditioned matrix. Therefore, the original matrix has been made more
tractable by simply multiplying it by a well-chosen matrix. So the question
arises as to whether it might be possible to improve the convergence of CGM
by multiplying the equation by a well-chosen matrix B. What B is supposed
to do is keep the resulting condition number λM/λm from getting too large.
To see whether this can work we simply multiply Av = b by B and obtain
Av = b̄, where A = BA and b̄ = Bb. Unfortunately, A is not necessarily
symmetric unless we severely restrict B. The needed remedy is to note that

BAv = (BA)(BT B−T )v

= (BABT )B−T v,



208 6 Elliptic Problems

where B−T =
(
BT

)−1. Therefore, we can transform Av = b into Av̄ = b̄,
where A = BABT , v̄ = B−T v, and b̄ = Bb. In this case A is symmetric and
it is also positive definite if B is invertible.

At the moment we do not have a clue what to select for B, but assuming
that good choices are available, we need to determine what happens to the
steps making up the CGM. The algorithm is still given in Table 6.2, but the
equation to be solved is Av̄ = b̄. If one writes out the CGM algorithm for
Av̄ = b̄ and then expresses the variables in terms of the original (A,v,b), one
obtains the algorithm in Table 6.3, where M = B−1B−T . This is known as
the preconditioned conjugate gradient method (PCGM) and M is the precon-
ditioner. In terms of flops, the only significant difference between CGM and
PCGM is the need to solve Mz = r at each iteration step. It is interesting
that B appears in this procedure only through the matrix M. Therefore to
use this algorithm we need only the preconditioner M and not the matrix B.

We now turn our attention to specifying the preconditioner. There are a
few general rules to keep in mind while doing so, and they are as follows:

1. M must be symmetric and positive definite.
2. Solving Mz = r must not add significant computational time or storage

to the iteration step.
3. PCGM takes less computing time than CGM.

These requirements are listed in their order of difficulty, and the first two can
be determined more or less immediately. The third requirement is paramount
and is the very reason for introducing PCGM in the first place. The reality
is, however, that it is usually difficult to determine whether a particular M
reduces the total computational time until the algorithm is coded and run on
a few example problems. This is exactly the approach we will take here as
well.

The matrix M is derived from A, but exactly how is a topic that needs
some discussion. One can think of Mz = r as a reduced version of Av = b,
and the better M approximates A, the fewer the iteration steps that will be
needed. For example, if M = A then PGCM produces the exact solution in
one step. This is useful information, because it indicates that if we carefully
select entries from A when constructing M, we might be able to significantly
reduce the computational difficulty of the problem. As a first attempt, M
could be taken to be diagonal with its diagonal entries equal to those from
A, something known as the Jacobi preconditioner. This is not such a great
choice for our problem, and the reasons are investigated in Exercise 6.20. An
improvement on this idea is to use the tridiagonal entries from A, and some
of the consequences of this choice this will be examined in the example below.

There is another approach for selecting M that is based on the observation
that if M = A, then, because M = B−1B−T , we have A = CCT , where
C = B−1. This formula for A is the same sort of expression obtained when
solving Ax = b using a Cholesky factorization. It is possible to take advantage
of this observation by noting that if we can find an approximate factorization
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(0) pick a symmetric positive definite matrix M

(1) picking x1, set r1 = b − Ax1, solve

Mz1 = r1 and then let d1 = z1

(2) for k = 1, 2, 3, . . .

xk+1 = xk + αkdk

rk+1 = rk − αkqk

Mzk+1 = rk+1

dk+1 = zk+1 + βkdk

where

qk = Adk

αk =
zk · rk

dk · qk

βk =
rk+1 · zk+1

rk · zk

Table 6.3. Outline of the preconditioned conjugate gradient method (PCGM) used
to solve the linear system Ax = b, where A is an n× n symmetric positive definite
matrix.

A ≈ CCT then M = CCT is a candidate for a preconditioner. The reason
this is worth pursuing is that we do not need to find an exact factorization
as must be done using Cholesky but only something that approximates the
exact result and that is easy to calculate. In the jargon of the subject, this
type of preconditioner is said to be an incomplete Cholesky factorization of
the matrix. This idea will be demonstrated in the examples below.

Examples
For the matrix in (6.21) the following are possibilities for a preconditioner:

1. M = M1 where M1 is tridiagonal

The tridiagonal entries for M1 are taken directly from A. This particular
choice is a variant of what is called a block Jacobi preconditioner. It
satisfies Condition (1), and with the tridiagonal solver in Table 2.1 this
choice increases the operational count by about 8n per iteration step. This
would seem to satisfy Condition (2). The only way to determine whether
Condition (3) holds is to actually compute the solution. However, to obtain
at least an approximate idea of how well this choice works we will consider
the flops. Since the flop count for CGM is 19n, we want this version of
PCGM to reduce the number of iteration steps by more than a factor of



210 6 Elliptic Problems

19/27. Simplifying this, we are looking for a reduction of the number of
iteration steps of at least 5/7 of the original.

2. M = M2, where M2 = (D + L)D−1(D + LT )

The matrices in this expression come from writing A = D + L + LT ,
where D is diagonal and L is strictly lower triangular (so it has zeros on
the diagonal). Since M2 = A + LLT , this choice for the preconditioner
assumes that LLT can be dropped and a reasonable approximation of A
remains. It is possible to write this preconditioner as M2 = CCT , where
C is lower triangular, which means that it is an example of an incomplete
Cholesky factorization. However, for computational purposes it is better
to leave it as is or, even better, write it as M2 = (D + L)(I + D−1LT ),
where I is the identity matrix. The flops needed to solve Mz = r are
approximately 10n, which brings the per iteration total to 29n. For this
version of PCGM we look for a reduction of the number of iteration steps
to be at least 2/3 of CGM. For the record, this particular choice for M is
called the symmetric successive overrelaxation (SSOR) preconditioner.

The first set of computational results using these two preconditioners is given
in Figure 6.18. In these calculations, to be able to evaluate the effectiveness of
the methods, the solution vm is specified and b = Avm. As was done for Fig-
ure 6.15, with the intention of picking a representative solution for Laplace’s
equation, the vector vm is taken from the series solution in (6.6) when the
Fourier coefficients are given in (6.10). In looking at the curves in Figures
6.18 it is apparent that both preconditioners succeed in reducing the error.
However, it is unclear from this graph whether there is any real improvement
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Figure 6.18. Error Ek = ‖vm − vk‖ in the computed solution during each step
of the iteration for CGM and PCGM. The matrix is given in (6.21) with n = 104

(N = M = 100). PCGM1 uses preconditioner M1 and PCGM2 uses M2.
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Figure 6.19. Number of iteration steps required to achieve an error of 10−6 as the
size of the matrix increases using CGM and PCGM. Also shown is the time it takes
PCGM to achieve this result in comparison to CGM. The matrix is given in (6.21);
PCGM1 uses preconditioner M1 and PCGM2 uses M2.

in the amount of time it takes to compute the solution. For example, a rea-
sonable question to ask is, just how long does it take each method to achieve
an error of, say, 10−6? The answer is given in Figure 6.19, which shows the
number of iteration steps required to achieve an error of 10−6 as the size n
of the matrix increases. Also shown is the normalized time it takes using the
preconditioner, which is determined by taking the computing time for PCGM
and dividing it by the time taken by CGM. It is evident from these graphs that
M = M1 results in PCGM taking fewer iteration steps but it requires more
computing time. It is interesting to note that the number of iteration steps
using M1 comes close to what was hoped for using a simple flop count. For
example, if n = 104, the number of iteration steps for CGM is 234, while with
PCGM1 it is 172. Based on the flop count, we were looking for the number
of steps to be less than 167. The fact that the PCGM1 number is so close to
the break-even point means that other factors, such as the time necessary to
simply run through the loops in the preconditioner algorithm when such large
vectors are involved, will affect the outcome. This also clearly demonstrates
the pitfalls of using flops as a timing benchmark, particularly when the pre-
dicted improvement is as modest as it is with this version of the PCGM. In
contrast to this situation, when the preconditioner M = M2 is used the total
number of iterations for n = 104 is reduced to 100, and this is significantly less
than 156, which is the number required using a flop count (156 = 2

3 ×234). In
conjunction with this, the overall computing time for this version of PCGM is
reasonably faster than CGM and improves as the matrix gets larger. There-
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fore, it is easy to recommend this as a choice for a preconditioner for this
problem.

With PCGM we have an effective method for solving Laplace’s equation.
It is straightforward to extend what we did to the more general problem given
in (6.1), and this is explored in the exercises.

6.6 Next Steps

When studying multidimensional problems it is common to have complicated
domains, something similar to what is shown in Figure 6.1. One way to handle
such situations is to find a change of variables that transforms the region into
one that is rectangular. Generally this produces equations with nonconstant
coefficients, but from a numerical point of view dealing with this is easy. An
example of this is explored in Exercise 6.15, and a more sophisticated example
that involves determining the flow of air over an airplane wing can be found
in Cole and Cook [1986]. The limitation is that it can be difficult, if not
impossible, to find such a change of variables. An alternative is to just solve
the problem using the original domain. The issue in this case is how to satisfy
the boundary condition when the grid points do not lie on the boundary.
The situation is illustrated in Figure 6.20. To construct an approximation
for uxx at, say, point C one can use points L, C, and R′. The formula that
applies in the case is given in Exercise 1.30. Another option is to extend the
boundary condition to R and then use a standard centered difference formula
for uxx. Both methods are only O(h) accurate, but there are ways to construct
approximate boundary conditions that produce a O(h2) truncation error. The
theory underlying this requires assumptions related to the connectivity of the
grid and is beyond the scope of this text. An introduction to the material can
be found in Morton and Mayers [2005].

The long history of solving elliptic equations has resulted in several inno-
vative methods for constructing a numerical approximation besides the finite
difference approach examined in this chapter. As an example, it is possible

() �

�

Figure 6.20. Grid and boundary when solving a problem with a nonrectangular
domain. In this figure, the grid points in D have solid dots and those outside D
have hollow dots. Also, R′ is the point where the boundary curve intersects the grid
between C and R.
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to use the Divergence Theorem and write the solution of Laplace’s equation,
with the boundary condition in (6.3), as

u(x) =
∫

∂D

v(y) Φ(x − y)dsy −
∫

∂D

g(y)
∂Φ

∂n
(x − y)dsy, for x ∈ D, (6.42)

where n is the unit outward normal, v = ∂u
∂n , and Φ is a fundamental solution

of Laplace’s equation and is known. The function v, however, is not known.
If it can be determined then the problem is solved and the solution is given
in (6.42). With the goal of finding v, we evaluate (6.42) on the boundary and
obtain

1
2
g(x) =

∫
∂D

v(y) Φ(x − y)dsy −
∫

∂D

g(y)
∂Φ

∂n
(x − y)dsy, for x ∈ ∂D.

(6.43)
The factor 1

2 in this expression is not a mistake; it is due to a singularity in
the function Φ. The derivation requires a certain smoothness in the bound-
ary and an extended discussion of this is given in Colton [2004]. With (6.43),
we have a Fredholm integral equation of the first kind for the function v. It
is interesting as it replaces the differential equation over a two-dimensional
domain with a one-dimensional integral equation. In other words, all of the
issues discussed in the previous paragraph that arise when approximating a
complicated two-dimensional domain have disappeared. The resulting prob-
lem involves integrals, and so constructing an approximation appears to be
relatively straightforward. However, as is usually the case, there is a conser-
vation of difficulty. The complication is that Φ is singular on the boundary,
so constructing an approximation requires some care. Another issue is that
integral equations of the first kind are susceptible to ill-conditioning. Never-
theless, the idea is workable and is the basis for what are called boundary
integral methods. An introduction to this subject and its applications can be
found in Bonnet [1999], Sloan [1992], and McLean [2000].

Another interesting alternative for solving elliptic equations is multigrid,
which can be used in conjunction with the finite difference approximation.
The idea underlying this method starts with the observation that when using
an iterative matrix solver such as Gauss–Seidel, the initial iterations reduce
the error a lot but the later iterations show a much slower reduction. Also,
the error depends strongly on what is used as the starting value for the iter-
ative solver. Multigrid takes advantage of these two observations by using a
hierarchy of grids, from coarse to fine. The procedure begins by running the
solver for a few iterations on the coarse grid and then using the computed
solution to build a starting value for the successively finer grids. During the
process one cycles back and forth between coarse and fine grids in such a way
that the error is reduced very quickly. A nice discussion of the method and
its applications can be found in Wesseling [2004].

One of the more frequent methods used for solving elliptic equations is
finite elements. This generally uses an integral formulation of the problem
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in conjunction with an approximation similar to the one used for residual
methods in Chapter 2. One of the strengths of finite elements is the ability of
building accurate approximations for very complicated geometries. An intro-
duction to this subject can be found in Ciarlet [2002] and Brenner and Scott
[2002]. Finite difference approximations also work on complicated geometries
and an introduction to this is given in Petersson [1999] and Henshaw [2005].

Exercises

6.1. This problem examines some of the properties of symmetric positive def-
inite matrices.
(a) Using the coordinate vectors ei, where eij = 0 if i 	= j and eii = 1, and

PD2 show that if A is positive definite then aii > 0 ∀ i. From this establish
Test 1.

(b) Show that Test 2 cannot be reversed by giving an example of a positive
definite matrix that is not strict diagonally dominant.

(c) Suppose A,B are symmetric and positive definite. Show that if they have
the same dimension and if α, β are positive constants then αA + βB is
symmetric positive definite.

(d) Show that if A,B are symmetric positive definite then the block matrix(
A 0
0 B

)

is symmetric positive definite.

6.2. This problem considers some of the properties of the matrix equation
(6.20).
(a) What contributions, if any, do the boundary conditions have to the matrix

being positive definite?
(b) What contributions, if any, do the step sizes h and k have to the matrix

being positive definite?
(c) What contributions, if any, do the size and location of the domain have

to the matrix being positive definite?

6.3. This problem concerns the equation

uxx + uyy + αux + βuy + γu = 0,

where α, β, γ are constant. The domain and boundary conditions are given in
Figure 6.3.
(a) Derive a finite difference approximation of this problem that has trun-

cation error O(h2) + O(k2) and express the result in matrix form. The
matrix must reduce to the one in (6.20) when α = β = γ = 0.
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Figure 6.21. Domain for Exercise 6.4.

(b) Suppose α = β = 0. Using the tests listed in Section 6.2.2, what condi-
tion(s), if any, must be imposed on γ so the CGM can be used to solve
the matrix equation in part (a)?

(c) Suppose γ = 0. Using the tests listed in Section 6.2.2, what condition(s),
if any, must be imposed on α, β so the CGM can be used to solve the
matrix equation in part (a)?

(d) Combine the results from (b) and (c) to determine condition(s), if any, on
α, β, γ so the CGM can be used to solve the matrix equation in part (a).

6.4. This problem considers Laplace’s equation using the domain and bound-
ary conditions shown in Figure 6.21. The issue is how best to treat the deriva-
tive boundary condition.
(a) One option is to use a O(k2) centered difference to approximate the condi-

tion at y = 0. In this case (6.17) is extended to j = 0 with an appropriate
substitution for ui,−1. Write the result in matrix form. Is the matrix sym-
metric and positive definite?

(b) A second option is to use a O(k2) one-sided difference to approximate
the condition at y = 0. In this case (6.17) applies with an appropriate
substitution for ui,0. Explain why the resulting matrix is not symmetric.

6.5. This problem concerns the equation

∂

∂x

(
P

∂u

∂x

)
+

∂

∂y

(
Q

∂u

∂y

)
= 0,

where P (x, y) and Q(x, y) are given smooth positive functions. Use the rect-
angular domain and boundary conditions in Figure 6.3.
(a) After expanding the derivatives using the product rule, derive a finite

difference approximation of this problem that has truncation error O(h2)+
O(k2).

(b) Write the result from part (a) in matrix form Av = b, where the diagonals
of the matrix are positive.
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(c) Use the integration method to derive a finite difference approximation by
integrating the differential equation over the rectangular region xi−h/2 ≤
x ≤ xi + h/2, yj − k/2 ≤ y ≤ yj + k/2. Each term in the equation should
reduce to an expression involving a single derivative and a single integra-
tion. Using the midpoint rule for the integrals and a centered difference for
the derivatives derive a finite difference approximation for the equation.
Does this have the same truncation error as in part (a)?

(d) Write the result from part (c) in matrix form Av = b, where the diagonals
of the matrix are positive.

(e) The differential equation, and boundary conditions, form a self-adjoint
(symmetric) and positive definite problem. Does either of the matrix equa-
tions in (b) or (d) have these properties?

6.6. This problem considers Laplace’s equation using the domain and bound-
ary conditions shown in Figure 6.22.
(a) For the grid shown in the figure, determine the entries in the matrix

equation (6.20).
(b) Suppose someone solves the equation in part (a) using the CGM and they

claim it took 204 iteration steps. Why would you question this assertion?

6.7. This problem examines special cases for the descent methods.
(a) If A is a diagonal matrix and the diagonals are positive, show that A is

positive definite.
(b) For a matrix as in part (a), explain why SDM produces the exact solution

in one iteration step.
(c) Explain why if the SDM converges in one step then the CGM must con-

verge in one step (for any symmetric positive definite matrix).

6.8. This problem considers the example matrix given in Table 6.1 that is
obtained from the finite difference approximation of Laplace’s equation.
(a) Construct the directed graph for this matrix and then explain why the

matrix is irreducible.
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Figure 6.22. Domain for Exercise 6.6.
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Figure 6.23. Domain for Exercise 6.10.

(b) Use the Gershgorin–Taussky theorem to find positive numbers λL and
λR such that given any eigenvalue λ of the matrix you have the bounds
λL ≤ λ ≤ λR.

6.9. This problem considers some of the properties of irreducible matrices.
The matrices are not necessarily symmetric.
(a) What is the minimum number of nonzero entries in an n × n irreducible

matrix?
(b) If A is irreducible explain why AT and αA are irreducible (assuming

α 	= 0).
(c) Show that a tridiagonal matrix is irreducible if the super- and subdiagonal

entries are all nonzero.
(d) Explain why if A and B are irreducible, it is not necessarily true that

A + B is irreducible.
(e) Show that if a matrix has either a row or column in which all the nondi-

agonal entries are zero, then the matrix cannot be irreducible.

6.10. This problem considers Laplace’s equation using the domain and bound-
ary conditions shown in Figure 6.23.
(a) Explain how to rewrite the problem to effectively reduce the computa-

tional cost to approximately half of what it takes to solve the original
problem.

(b) What assumptions on a, b, and f(y) are needed to be able to rewrite the
problem to effectively reduce the computational cost by approximately
one-quarter of the original problem?

(c) Suppose the boundary conditions at y = 0 and y = b are not zero but
functions of x. What is required of these two functions so the reduction
in (a) still works?

6.11. Some care is needed when manipulating a finite difference approxima-
tion, because it is possible that the matrix A ends up losing some of its more
important properties. This problem demonstrates this for the following system
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4v1 − v2 = b1,

−v1 + 5v2 = b2.

(a) Show that the coefficient matrix is symmetric and positive definite.
(b) Show that by multiplying the first equation by a nonzero constant, the

resulting matrix can be nonsymmetric and not positive definite. What if
both equations are multiplied by the same nonzero constant? Is it guar-
anteed that the coefficient matrix is symmetric and positive definite?

(c) Show that if the equations are interchanged, the resulting coefficient ma-
trix is nonsymmetric and not positive definite.

(d) What consequences do (b) and (c) have for solving Laplace’s equation?
Specifically, in regard to the symmetry and positive definiteness of A,
does it make any difference (i) how the nodes are numbered to form v,
(ii) what order the v� equations in (6.19) are put into the matrix A, or
(iii) by what constant (6.19) is multiplied?

6.12. Suppose Laplace’s equation is to be solved in the region shown in Figure
6.24, using the boundary conditions shown in the figure.
(a) In the case a = b = 1 explain why it is a good idea to take N = M . Your

reason should also explain why N = M + 1 and N = M − 1 are not such
great ideas.

(b) Write down the resulting matrix equation in part (a) when N = M = 3.
(c) If a 	= b does your reason for taking N = M in part (a) still apply?

6.13. This problem examines the error eij = u(xi, yj)−uij and its connection
with the truncation error τij .
(a) Write the errors in vector form by taking e� = eij and τ� = τij and then

showing that Ae = k2τ .
(b) Using the Euclidean norm show that ‖e‖ ≤ k2‖A−1‖ · ‖τ‖ and from this

conclude that ‖e‖ ≤ k2‖τ‖ 1
λm

.
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Figure 6.24. Domain D and boundary conditions for Exercise 6.12.
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Figure 6.25. Domain for Exercise 6.15.

(c) Use the inequality 2
π θ ≤ sin(θ), when 0 ≤ θ ≤ π

2 , to show that ‖e‖ ≤ 1
8‖τ‖

when D is the unit square with h = k. From this conclude that the
truncation error determines the convergence rate of the finite difference
approximation (assuming round-off is not significant).

6.14. This exercise addresses the “Are we there yet?” question, because it
examines the error and how it is estimated in the CGM. In this problem vm

is the exact solution and ek = vm−vk is the error vector for the kth iteration
step.
(a) Show that ek = A−1rk and from this conclude that ‖ek‖ ≤ ‖A−1‖ · ‖rk‖.
(b) Explain why ‖rk‖ small does not necessarily mean that ‖ek‖ is small.
(c) What must be assumed about A or A−1 for it to be possible to conclude

that ‖ek‖ is small if ‖rk‖ is small?
(d) When implementing the algorithm for the CGM it is necessary to specify

a stopping tolerance tol. If n is large, is it better to use rk·rk

n ≤ tol rather
than rk · rk ≤ tol?

(e) The underlying assumption of any descent method is that F (vk+1) <
F (vk). Can this fact be used in some way to develop a stopping condition
on the method?

6.15. This problem examines solving Laplace’s equation in the region shown
in Figure 6.25, using the boundary conditions shown in the figure.
(a) Rewrite the problem in polar coordinates and sketch the rectangular do-

main in the rθ-plane where the problem is to be solved.
(b) Derive a finite difference approximation of the polar coordinate problem

in part (a) that is second-order accurate.
(c) Sketch D and the grid system used in part (b) in the xy-plane.
(d) Write the result from (b) in matrix form Av = b, where the matrix is

positive definite (you need to explain why it has this property).

6.16. Show that the CGM algorithm can be used, without change, to solve
Av = b when A is symmetric and negative definite (A is negative definite if
−A is positive definite).
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6.17. The Fourier series solution associated with Figures 6.16 and 6.17 is given
in (6.6) with the coefficients given in (6.9). To compute g(x) with an error of
10−6 requires using 300 terms in the series, whereas an error of 10−2 requires
using 30 terms. It is reasonable to assume that it takes at least 7n spatial
points to resolve sin(λnx). In this case one would predict having to use about
200 spatial points to achieve an error of 10−2 and 2100 points for an error of
10−6. How do these estimates line up with the results in Figure 6.17? Is there
any connection between the number of modes needed in the series solution
and the number of points needed in the numerical approximation?

6.18. This problem concerns Poisson’s equation

∇2u = f(x, y), for (x, y) ∈ D,

where D is the unit square 0 < x < 1, 0 < y < 1. The boundary condition is
that u = 0 around the boundary of the square.
(a) Write down a finite difference approximation of this problem that has a

truncation error of O(h2) + O(k2). Your final answer should be in the
form of a matrix equation, where the matrix is positive definite (you need
to explain why it has this property).

(b) If the exact solution is u(x, y) = sin(3πx) sin(2πy) then what is f(x, y)?
Assume that this is the function f(x, y) in the remainder of the problem.

(c) Taking N = M = 40, plot both the numerical solution obtained using
the CGM and the resulting pointwise error as a function of x and y (as
is done in Figure 6.16). The error in this case is defined as E(xi, yj) =
|u(xi, yj) − ūij |, where ūij is the computed solution. Is there anything
distinctive, or unusual, about where the maximum error occurs in D? Is
there anything distinctive, or unusual, about how the error is distributed
over D?

(d) Letting Emax = maxi,jE(xi, yj) be the maximum error, use your code to
complete the entries in Table 6.4. Does the error improve as expected?
What about the change in the number of iteration steps for the CGM?
Does the number change the way you would expect as the size of the
problem increases? What about the amount of cpu time? Does it increase
as expected?

(e) Using the PCGM, redo (d). Make sure to state what preconditioner you
use (it cannot be a diagonal matrix).

6.19. This problem concerns Helmholtz’s equation ∇2u + ωu = 0, where ω
is a constant. Assuming that the domain and boundary conditions are as in
Figure 6.3, with a = b = 1 and ω < π, then the exact solution is

u(x, y) =
∞∑

n=1

an sinh(γny) sin(λnx),

where λn = nπ, γn =
√

λ2
n − ω, and
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N EM Total Iterations Total Time

20

40

80

160

320

Table 6.4. Table used for Exercises 6.18 and 6.19.

an =
2

sinh(γn)

∫ 1

0

g(x) sin(λnx)dx.

(a) Find a finite difference approximation of this problem that has a trun-
cation error of O(h2) + O(k2). Your final answer should be in the form
of a matrix equation, where the matrix is positive definite (you need to
explain why it has this property).
In the rest of the problem assume ω = 2, g(x) = sin(3πx), and M = N .

(b) Taking N = 40, plot both the numerical solution obtained using the CGM
and the resulting pointwise error as a function of x and y (as is done in
Figure 6.16). The error in this case is defined as E(xi, yj) = |u(xi, yj) −
ūij |, where ūij is the computed solution. Is there anything distinctive, or
unusual, about where the maximum error occurs in D? Is there anything
distinctive, or unusual, about how the error is distributed over D?

(c) Letting Emax = maxi,jE(xi, yj) be the maximum error, use your code to
complete the entries in Table 6.4. Does the error improve as expected?
What about the change in the number of iteration steps for the CGM?
Does the number change the way you would expect as the size of the
problem increases? What about the amount of cpu time? Does it increase
as expected? For example, do the error, number of iteration steps, and
cpu time appear to be determined by some property of the problem (N ,
n = N ×M , flops/iteration, etc.) that would enable you to approximately
predict their values for N = 640?

(d) Using the PCGM, redo (c). Make sure to state what preconditioner you
use (it cannot be a diagonal matrix).

6.20. Suppose for a preconditioner for Laplace’s equation one takes M to be
diagonal and the diagonal entries to be the same as those in the matrix A. If
the diagonals are equal, as they are for this matrix, this preconditioner does
absolutely nothing to improve the convergence rate of CGM. Explain why.

6.21. This problem investigates variations of the preconditioner M2.
(a) Suppose M3 = (D + L)(D + LT ). (i) Is this matrix symmetric and

positive definite? (ii) What is the approximate flop count to solve Mz = r?
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(iii) Plot the error as a function of the iteration step for the example in
Figure 6.18. How does this preconditioner compare with M2?

(b) Suppose M4 = (I+LD−1)D(I+D−1LT ), where I is the identity. (i) Is this
matrix symmetric and positive definite? (ii) What is the approximate flop
count to solve Mz = r? (iii) Plot the error as a function of the iteration
step for the example in Figure 6.18. How does this preconditioner compare
with M2?

6.22. Given the upper bound in (6.39) it is worth considering how accurately
it predicts the convergence rate. Using (6.24) to determine λM and λm, answer
the following questions.
(a) In Figure 6.15, E1 ≈ 6 when n = 625. What is the upper bound in (6.39)

when k = 10 and when k = 100? How do these values compare to the
values in Figure 6.15?

(b) In Figure 6.15, E1 ≈ 13 when n = 2500 and E1 ≈ 26 when n = 10000. For
each, what is the upper bound in (6.39) when k = 10 and when k = 100?
How do these values compare to the values in Figure 6.15?

(c) Using your results from (a) and (b) discuss the limitations of using (6.24)
to predict the convergence rate of CGM.

6.23. According to the tests given in Section 6.2.2, for what values of a, b, c
can the following tridiagonal matrix be used as a preconditioner?⎛

⎜⎜⎜⎜⎜⎜⎜⎝

4 a

b 4 1 0
1 4 1

. . . . . . . . .
0 1 4 1

1 c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Appendix

A.1 Order Symbols

One of the central questions arising when one is deriving a numerical method
concerns the accuracy of the approximation. It is almost inevitable that the
answer to this question involves order symbols in one form or another. As an
example, a standard difference formula for the first derivative is

f ′(xi) =
f(xi+1) − f(xi)

h
+ τi, (A.1)

where τi = −hf ′′(ηi)/2 is the truncation error for this approximation. To
emphasize how the error depends on the step size h, we write τi = O(h). In
words, one says that τi is big-O of h. The precise definition of what this means
is given below.

Definition A.1. The statement that τ = O(hn) as h ↓ 0 means that there are
constants A, h0 such that |τ | ≤ Ahn for 0 < h < h0.

Usually this notation will be used in conjunction with Taylor’s theorem, in
which case the order is determined by simply looking for the smallest exponent
in the expression.

Examples

1. If τ = −3h5 + 2h8 then τ = O(h5). It is also true that τ = O(h) and
τ = O(h3).

2. Letting τ1 = O(h) and τ2 = O(h3) set τ = ατ1 + βτ2, where α, β are
independent of h. As long as α is nonzero, the conclusion is τ = O(h). For
example, −50τ1 + τ2 = O(h) and τ1 + 314τ2 = O(h).

3. Letting τ1 = h − 3h2 and τ2 = −h3, set τ = τ1τ2. In this case τ =
O(τ1)O(τ2) = O(h4).
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4. In the text there are numerous occasions when τ depends on a step size
h in addition to depending on a second step size k. An example of this
situation, reminiscent of what is found for the heat equation, is τ = k −
5h2. In this case τ = O(k) + O(h2).

5. If τ = k + k3 − h2 + kh2 then τ = O(k) + O(h2). However, if we link the
step sizes and take k = h2, then τ = O(h4), or equivalently, τ = O(k2).

A.2 Taylor’s Theorem

The single most important result needed to develop finite difference approx-
imations is Taylor’s theorem. Given its role, it is odd, or at least the author
thinks it is odd, that web sites listing the top 100 theorems in mathematics al-
most inevitably have Taylor’s theorem toward the middle of the list. This is a
serious misjudgment, because it should easily make anyone’s top 10! Anyway,
the statement of the theorem is below.

Theorem A.1. Given a function f(x) assume that its (n + 1)st derivative
f (n+1)(x) is continuous for xL < x < xR. In this case, if x and x + h are
points in the interval (xL, xR) then

f(x + h) = f(x) + hf ′(x) +
1
2
h2f ′′(x) + · · · + 1

n!
hnf (n)(x) + Rn+1, (A.2)

where the remainder is

Rn+1 =
1

(n + 1)!
hn+1f (n+1)(η), (A.3)

and η is a point between x and x + h.

The two-variable version of the expansion in (A.2) is

f(x + h, t + k) = f(x, t) + hfx(x, t) + kft(x, t)

+
1
2
h2fxx(x, t) + hkfxt(x, t) +

1
2
k2ftt(x, t) + · · · .

(A.4)

As an example of how this theorem is used, note that we get

f(x + 2h) = f(x) + 2hf ′(x) + 2h2f ′′(x) +
4
3
h3f ′′′(η2)

and
f(x + h) = f(x) + hf ′(x) +

1
2
h2f ′′(x) +

1
6
h3f ′′′(η1).

Multiplying the last equation by −4 and adding the result to the first equation,
we obtain

f ′(x) =
−f(x + 2h) + 4f(x + h) − 3f(x)

2h
− 1

3
h2f ′′′(η1) +

2
3
h2f ′′′(η2)

=
−f(x + 2h) + 4f(x + h) − 3f(x)

2h
+ O(h2).

Other differentiation formulas can be derived in a similar manner.
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A.3 Round-Off Error

Round-off error arises in scientific computation because most computer sys-
tems use a finite number of digits when representing real numbers. The po-
tential consequences of this are demonstrated below.

A.3.1 Function Evaluation

Even simple-looking expressions can cause numerical problems, and an exam-
ple is the power function

f(x) = (x − 1)8. (A.5)

This can be multiplied out to yield the expanded form

g(x) = x8 − 8x7 + 28x6 − 56x5 + 70x4 − 56x3 + 28x2 − 8x + 1. (A.6)

One might ask why g(x) is used to designate the expanded version of the
function when it is nothing more than f(x). As it turns out, g(x) is not the
same as f(x) when one attempts to evaluate the function using a computer.
To demonstrate this, both functions are shown in the upper plot in Figure A.1,
and as expected, there are no apparent differences between the two curves. If
the interval is reduced, as in the middle plot in Figure A.1, one starts to notice
small differences between the curves. If the interval is reduced further, as in the
lower plot, then significant differences exist between the two functions. This
brings up several observations and questions related to function evaluation on
a computer:

• The curves for f(x) behave as expected, in particular, they are smooth,
have a minimum at x = 1, are never negative, and are symmetric about
x = 1.

• The curves for g(x), at least in the lower two plots, are not smooth, have
multiple minimum points, are sometimes negative, and are not symmetric
about x = 1.

Mathematically the functions f(x) and g(x) are equivalent, but according
to the computer they are not. What is so bad about the formula for g(x)
that these problems arise, and is it possible to tell this before attempting to
evaluate it? As once stated by Yogi Berra, “In theory, theory and practice are
the same. In practice they aren’t.” This bit of wisdom, apparently, applies to
scientific computation. A hint on what might be the source of the problem is
found by noticing the small function values in the lower two plots. The values
are close to the numerical resolution of the computer when double precision
is used, which generally is accurate to 15 or 16 digits (this is discussed later).
Consequently, the repeated adds/multiplies/exponentiations in the formula
for g(x) combine to cause the computer difficulty in accurately calculating
the function in this range of values.
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Figure A.1. Evaluation of (A.5) and (A.6) over progressively smaller intervals on
the x-axis. Even though f(x) and g(x) are equal, due to the finite number of digits
used in double precision the computer produces different values for the two functions.

A.3.2 Numerical Differentiation

Another interesting example of not getting what you might expect from a
computer arises when a finite difference approximation is used to calculate a
derivative. Two used extensively in this book are

Forward Difference: f ′(x) =
f(x + h) − f(x)

h
+ O(h), (A.7)

Centered Difference: f ′(x) =
f(x + h) − f(x − h)

2h
+ O(h2). (A.8)

If we take f(x) =
√

x and x = 1 then the forward difference approximation
of the derivative is (

√
1 + h− 1)/h and the centered difference approximation

is (
√

1 + h − √
1 − h)/(2h). The differences between these expressions and

the exact value f ′(1) = 1
2 are shown in Figure A.2(a). What is seen is that
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starting at h = 10−1 the error decreases as expected as h decreases based
on the truncation terms in the above difference formulas. However, for small
values of h the error actually gets worse. The reason is that the values of
h drop below the resolution of the computer’s number system and it rounds√

1 + h−1 to zero. This fact is seen in Figure A.2(b), which gives the values of√
1 + h−1 over a portion of the h interval used earlier. The staircasing in this

plot is due to the finite set of numbers the computer has to work with, and it
rounds the function to the closest value it has available. For h < 10−16 this
value is zero, and in this case the computer calculates the forward difference
formula to be zero (instead of a value very close to 1

2 ). It is for this reason that
the error in Figure A.2(a) is constant for h < 10−16, because the computer is
calculating the error to be 1

2 .

A.4 Floating-Point Numbers

Nonzero floating-point numbers have the normalized form

xf = ±m × 2E , for Em ≤ E ≤ EM , (A.9)
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Figure A.2. In (a) the difference between the values of the difference approxima-
tions of the derivative as calculated by the computer and the exact value are given.
The function is f(x) =

√
x and x = 1. In (b) the values of the numerator for the

forward difference formula over a portion of the h interval are shown.
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where
m = 1 +

b1

2
+

b2

22
+ · · · + bN−1

2N−1
.

In the above expressions, E is the exponent, m is the significand, or mantissa,
and the bi’s make up the fractional part of m. Note that E is an integer and
the upper and lower limits on the exponent are given as EM = 2M−1 − 1
and Em = −EM − 1. The bi’s are either zero or one, which means that the
significand is a real number satisfying 1 ≤ m < 2. In addition to the nor-
malized numbers given above, the floating-point system includes 0,±∞, and
NaN (not a number). Including something called NaN might seem odd, but
it is very useful, because the computer uses this in response to expressions
that are undefined. For example, a NaN is produced for 0 ×∞, 0/0,∞−∞,
etc. A few other mileposts for the number system are discussed below. A more
in-depth presentation of the properties and limitations of IEEE floating-point
arithmetic can be found in Overton [2001].

Machine Epsilon
A particularly important number in scientific computation is machine ε. This
is defined as the distance between x = 1 and the next-largest machine num-
ber. Using the representation in (A.9), it follows that ε = 1/2N−1. The reason
this is important is that it is used to determine the numerical resolution that
is possible with the particular computer system being used. For example, in
MATLAB machine ε is assigned to the variable eps. Since MATLAB uses
double precision, one finds that ε = 2.22 · · · × 10−16.

Largest Floating-Point Number and Overflow
The largest positive floating-point number is xM = (1 − 2−N ) × 2EM+1.
Generally, when a computer encounters a number larger than xM it as-
signs it the value ∞. As with NaNs, this indicates that there is a prob-
lem with the calculation. With MATLAB, because it uses double precision,
xM = 1.796 · · · × 10308. If one enters y = 1.790 × 10308 then y + 100 is com-
puted with no problem but the computer calculates 2y to be ∞.

Smallest Floating-Point Number and Underflow
Based on the representation in (A.9), the smallest positive floating-point num-
ber is xm = 2Em . The expectation therefore is that the computer will round
1
10xm to be either zero or xm. However, most computer systems include what
are known as subnormal numbers that are located between zero and xm. These
are designed to allow for what is called gradual underflow, but they do not
provide the accuracy of regular floating-point numbers. For example, using
double precision, xm = 2.2 · · · × 10−308. One finds that 10−nxm is calculated
correctly for n = 0 but the answer becomes progressively worse as n is in-
creased. To illustrate, when n = 15 the answer is 1.976 · · · × 10−323, whereas
if n = 16 then it calculates the result to be simply zero.
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incomplete Cholesky, 209
Jacobi, 208
SSOR, 210

Principal Axis Theorem, 199

radioactive decay, 2, 13
residual, 66, 198
residual methods, 62
RK4, 16, 23, 113, 149
root condition, 32
round-off error, 10, 56, 97, 225
row sums, 50, 194
Runge–Kutta methods, 22

implicit, 33
method of lines, 113
order conditions, 23, 24, 36

Schrödinger’s equation, 176
secant method, 70
shooting method, 69
sparse matrix, 192
stability

advection equation, 136, 138, 141
energy method, 119
heat equation, 92, 98, 102, 105, 111
IVPs, 12, 13, 17, 20
wave equation, 167

steepest descent method, 198
stencil, 90, 132, 189
stiff equations

BVPs, 73
IVPs, 33

strict A-stability, 14
strict diagonally dominant, 50, 195
Sturm–Liouville theory, 72
superlinear convergence, 203
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symplectic Euler method, 40
symplectic method, 29

Taylor’s theorem, 224
theta method, 34, 40, 104, 121
time reversible method, 41
total variation diminishing methods,
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trapezoidal method, 16, 20, 35, 36,

40–42, 116, 125
tridiagonal matrix, 49

algorithm, 50
condition number, 51
diagonally dominant, 50
eigenvalues, 51
invertibility, 51
preconditioner, 209

truncation error
BVPs, 48, 56

IVPs, 7, 12, 16, 20
PDEs, 90, 98, 101, 106, 132, 140, 188,
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predetermined, 22, 140
quadrature approach, 20, 23, 106

two-step method, 18

upwind scheme, 132, 136, 137, 178
stability, 138

van der Pol equation, 39
velocity Verlet, 27, 39
vortex transport, 116

wave equation, 155
wave number, 160
wave packet, 174, 175
wavelength, 160
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