


Applied Mathematical Sciences
Volume 127

Editors
S.S. Antman J.E. Marsden L. Sirovich

Advisors
J.K. Hale P. Holmes J. Keener
J. Keller B.J. Matkowsky A. Mielke
C.S. Peskin K.R. Sreenivasan



Applied Mathematical Sciences

1. John: Partial Differential Equations, 4th ed.
2. Sirovich: Techniques of Asymptotic Analysis.
3. Hale: Theory of Functional Differential Equations,

2nd ed.
4. Percus: Combinatorial Methods.
5. von Mises/Friedrichs: Fluid Dynamics.
6. Freiberger/Grenander: A Short Course in

Computational Probability and Statistics.
7. Pipkin: Lectures on Viscoelasticity Theory.
8. Giacaglia: Perturbation Methods in Non-linear

Systems.
9. Friedrichs: Spectral Theory of Operators in Hilbert

Space.
10. Stroud: Numerical Quadrature and Solution of

Ordinary Differential Equations.
11. Wolovich: Linear Multivariable Systems.
12. Berkovitz: Optimal Control Theory.
13. Bluman/Cole: Similarity Methods for Differential

Equations.
14. Yoshizawa: Stability Theory and the Existence of

Periodic Solution and Almost Periodic Solutions.
15. Braun: Differential Equations and Their

Applications, 3rd ed.
16. Lefschetz: Applications of Algebraic Topology.
17. Collatz/Wetterling: Optimization Problems.
18. Grenander: Pattern Synthesis: Lectures in Pattern

Theory, Vol. I.
19. Marsden/McCracken: Hopf Bifurcation and Its

Applications.
20. Driver: Ordinary and Delay Differential Equations.
21. Courant/Friedrichs: Supersonic Flow and Shock

Waves.
22. Rouche/Habets/Laloy: Stability Theory by

Liapunov’s Direct Method.
23. Lamperti: Stochastic Processes: A Survey of the

Mathematical Theory.
24. Grenander: Pattern Analysis: Lectures in Pattern

Theory, Vol. II.
25. Davies: Integral Transforms and Their

Applications, 2nd ed.
26. Kushner/Clark: Stochastic Approximation Methods

for Constrained and Unconstrained Systems.
27. de Boor: A Practical Guide to Splines: Revised

Edition.
28. Keilson: Markov Chain Models—Rarity and

Exponentiality.
29. de Veubeke: A Course in Elasticity.
30. Sniatycki: Geometric Quantization and Quantum

Mechanics.
31. Reid: Sturmian Theory for Ordinary Differential

Equations.
32. Meis/Markowitz: Numerical Solution of Partial

Differential Equations.

33. Grenander: Regular Structures: Lectures in Pattern
Theory, Vol. III.

34. Kevorkian/Cole: Perturbation Methods in Applied
Mathematics.

35. Carr: Applications of Centre Manifold Theory.
36. Bengtsson/Ghil/Källén: Dynamic Meteorology:

Data Assimilation Methods.
37. Saperstone: Semidynamical Systems in Infinite

Dimensional Spaces.
38. Lichtenberg/Lieberman: Regular and Chaotic

Dynamics, 2nd ed.
39. Piccini/Stampacchia/Vidossich: Ordinary

Differential Equations in Rn.
40. Naylor/Sell: Linear Operator Theory in

Engineering and Science.
41. Sparrow: The Lorenz Equations: Bifurcations,

Chaos, and Strange Attractors.
42. Guckenheimer/Holmes: Nonlinear Oscillations,

Dynamical Systems, and Bifurcations of Vector
Fields.

43. Ockendon/Taylor: Inviscid Fluid Flows.
44. Pazy: Semigroups of Linear Operators and

Applications to Partial Differential Equations.
45. Glashoff/Gustafson: Linear Operations and

Approximation: An Introduction to the Theoretical
Analysis and Numerical Treatment of Semi-Infinite
Programs.

46. Wilcox: Scattering Theory for Diffraction Gratings.
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To my wife Julie



Most people, if you describe a train of events to them, will tell you what the result
would be. They can put those events together in their minds, and argue from them
that something will come to pass. There are few people, however, who, if you told
them a result, would be able to evolve from their own inner consciousness what
the steps were which led up to that result. This power is what I mean when I talk
of reasoning backward, or analytically.

—Arthur Conan Doyle, A Study in Scarlet



Preface to the Second Edition

In 8 years after publication of the first version of this book, the rapidly progress-
ing field of inverse problems witnessed changes and new developments. Parts of
the book were used at several universities, and many colleagues and students as
well as myself observed several misprints and imprecisions. Some of the research
problems from the first edition have been solved. This edition serves the purposes
of reflecting these changes and making appropiate corrections. I hope that these
additions and corrections resulted in not too many new errors and misprints.

Chapters 1 and 2 contain only 2–3 pages of new material like in sections 1.5,
2.5. Chapter 3 is considerably expanded. In particular we give more convenient
definition of pseudo-convexity for second order equations and included bound-
ary terms in Carleman estimates (Theorem 3.2.1′) and Counterexample 3.2.6. We
give a new, shorter proof of Theorem 3.3.1 and new Theorems 3.3.7, 3.3.12, and
Counterexample 3.3.9. We revised section 3.4, where a new short proof of exact
observability inequality in given: proof of Theorem 3.4.1 and Theorems 3.4.3,
3.4.4, 3.4.8, 3.4.9 are new. Section 3.5 is new and it exposes recent progress on
Carleman estimates, uniqueness and stability of the continuation for systems. In
Chapter 4 we added to sections 4.5, 4.6 some new material on size evaluation of
inclusions and on small inclusions. Chapter 5 contains new results on identification
of an elliptic equation from many local boundary measurements (Theorem 5.2.2′,
Lemma 5.3.8), a counterexample to stability, a brief description of recent com-
plete results on uniqueness of conductivity in the plane case, some new results on
identification of many coefficients and of quasilinear equations insectiosn 5.5, 5.6,
and changes and most recent results on uniqueness for some important systems,
like isotropic elasticity systems. In Chapter 7 we inform about new developments
in boundary rigidity problem. Section 7.4 now exposes a complete solution of the
uniqueness problem in the attenuated plane tomography over straight lines (The-
orem 7.4.1) and an outline of relevant new methods and ideas. In section 8.2 we
give a new general scheme of obtaining uniqueness results based on Carleman es-
timates and applicable to a wide class of partial differential equations and systems
(Theorem 8.2.2) and describe recent progress on uniqueness problem for linear
isotropic elasticity system. In Chapter 9 we expanded the exposition in section 9.1

vii



viii Preface to the Second Edition

to reflect increasing importance of the final overdetermination (Theorems 9.1.1,
9.1.2) . In section 9.2 we expose new stability estimate for the heat equation trans-
form (Theorem 9.2.1’ Lemma 9.2.2). New section 9.3 is dedicated to emerging
financial applications: the inverse option pricing problem. We give more detailed
proofs in section 9.5 (Lemma 9.5.5 and proof of Theorem 9.5.2). In Chapter 10 we
added a brief description of a new efficient single layer algorithm for an imporatnt
inverse problem in acoustics in section 10.2 and a new section 10.5 on so-called
range tests for numerical solutions of overdermined inverse problems.

Many exercises have been solved by students, while most of the research prob-
lems await solutions. Chapter 7 of the final version of the manuscript have been
read by Alexander Bukhgeim, who found several misprints and suggested many
corrections. The author is grateful to him for attention and help. He also thanks
the National Science Foundation for long-term support of his research, which
stimulated his research and the writing of this revision.

Wichita, Kansas Victor Isakov



Preface to the First Edition

This book describes the contemporary state of the theory and some numerical
aspects of inverse problems in partial differential equations. The topic is of sub-
stantial and growing interest for many scientists and engineers, and accordingly to
graduate students in these areas. Mathematically, these problems are relatively new
and quite challenging due to the lack of conventional stability and to nonlinearity
and nonconvexity. Applications include recovery of inclusions from anomalies of
their gravitational fields; reconstruction of the interior of the human body from
exterior electrical, ultrasonic, and magnetic measurements, recovery of interior
structural parameters of detail of machines and of the underground from similar
data (non-destructive evaluation); and locating flying or navigated objects from
their acoustic or electromagnetic fields. Currently, there are hundreds of publica-
tions containing new and interesting results. A purpose of the book is to collect
and present many of them in a readable and informative form. Rigorous proofs
are presented whenever they are relatively short and can be demonstrated by quite
general mathematical techniques. Also, we prefer to present results that from our
point of view contain fresh and promising ideas. In some cases there is no com-
plete mathematical theory, so we give only available results. We do not assume
that a reader possesses an enormous mathematical technique. In fact, a moderate
knowledge of partial differential equations, of the Fourier transform, and of basic
functional analysis will suffice. However, some details of proofs need quite special
and sophisticated methods, but we hope that even without completely understand-
ing these details a reader will find considerable useful and stimulating material.
Moreover, we start many chapters with general information about the direct prob-
lem, where we collect, in the form of theorems, known (but not simple and not
always easy to find) results that are needed in the treatment of inverse problems.
We hope that this book (or at least most of it) can be used as a graduate text. Not
only do we present recent achievements, but we formulate basic inverse problems,
discuss regularization, give a short review of uniqueness in the Cauchy problem,
and include several exercises that sometimes substantially complement the book.
All of them can be solved by using some modification of the presented methods.

ix
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Parts of the book in a preliminary form have been presented as graduate courses at
the Johannes-Kepler University of Linz, at the University of Kyoto, and at Wichita
State University. Many exercises have been solved by students, while most of the
research problems await solutions. Parts of the final version of the manuscript have
been read by Ilya Bushuyev, Alan Elcrat, Matthias Eller, and Peter Kuchment, who
found several misprints and suggested many corrections. The author is grateful to
these colleagues for their attention and help. He also thanks the National Science
Foundation for long-term support of his research, which stimulated the writing of
this book.

Wichita, Kansas Victor Isakov
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1

Inverse Problems

In this chapter we formulate basic inverse problems and indicate their applications.
The choice of these problems is not random. We think that it represents their
interconnections and some hierarchy.

An inverse problem assumes a direct problem that is a well-posed problem of
mathematical physics. In other words, if we know completely a “physical device,”
we have a classical mathematical description of this device including uniqueness,
stability, and existence of a solution of the corresponding mathematical problem.
But if one of the (functional) parameters describing this device is to be found (from
additional boundary/experimental) data, then we arrive at an inverse problem.

1.1 The inverse problem of gravimetry

The gravitational field u, which can be measured and perceived by the gravitational
force ∇u and which is generated by the mass distribution f , is a solution to the
Poisson equation

−�u = f(1.1.1)

in R
3, where lim u(x) = 0 as |x | goes to +∞. For modeling and for computational

reasons, it is useful to consider as well the plane case (R2). Then the behavior
at infinity must be u(x) = Cln|x | + u0(x), where u0 goes to zero at infinity. One
assumes that f is zero outside a bounded domain �, which is a ball or a body
close to a ball (earth) in gravimetry. The direct problem of gravimetry is to find u
given f . This is a well-posed problem: Its solution exists for any integrable f , and
even for any distribution that is zero outside�; it is unique and stable with respect
to standard functional spaces. As a result, the boundary value problem (1.1.1) can
be solved numerically by using difference schemes, although these computations
are not very easy in the three-dimensional case. This solution is given by the
Newtonian potential

u(x) =
∫
�

k(x − y) f (y)dy, k(x) = 1/(4π |x |)(1.1.2)

1



2 1. Inverse Problems

(or k(x) = −1/(2π ) ln |x | in R
2). Practically we perceive and can measure only

the gravitational force ∇u.
The inverse problem of gravimetry is to find f given ∇u on �, which is a part

of the boundary ∂� of �.
This problem was actually formulated by Laplace, but the first (and simplest)

results were obtained only by Stokes in the 1860s and Herglotz about 1910 [Her].
We will analyze this problem in Sections 2.1–2.2 and 4.1. There is an advanced
mathematical theory of this problem presented in a book of the author [Is4]. It is
fundamental in geophysics, since it simulates recovery of the interior of the earth
from boundary measurements of the gravitational field. Unfortunately, there is a
strong nonuniqueness of f for a given gravitational potential outside�. However,
if we look for a more special type of f (like harmonic functions, functions in-
dependent of one variable, or characteristic functions χ (D) of unknown domains
D inside �), then there is uniqueness, and f can be recovered from u given out-
side �, theoretically and numerically. In particular, one can show uniqueness of
f = χ (D) when D is either star-shaped with respect to its center of gravity or
convex with respect to one of the coordinates.

An important feature of the inverse problem of gravimetry is its ill-posedness,
which creates many mathematical difficulties (absence of existence theorems due to
the fact that ranges of operators of this problem are not closed in classical functional
spaces) and numerical difficulties (stability under constraints is (logarithmically)
weak, and therefore convergence of iterative algorithms is very slow, so numerical
errors accumulate and do not allow good resolution). In fact, it was Tikhonov
who in 1944 observed that introduction of constraints can restore some stability to
this problem, and this observation was one of starting points of the contemporary
theory of ill-posed problems.

This problem is fundamental in recovering the density of the earth by interpret-
ing results of measurements of the gravitation al field (gravitational anomalies).
Another interesting application is in gravitational navigation. One can measure the
gravitational field (from satellites) with quite high precision, then possibly find the
function f that produces this field, and use these results to navigate aircrafts. To
navigate aircraft one needs to know u near the surface of the earth �, and finding
f supported in �̄ gives u everywhere outside of� by solving a much easier direct
problem of gravimetry. The advantage of this method is that the gravitational field
is the most stationary and stable of all known physical fields, so it is most suitable
for navigation. The inverse problem here is used to record and store information
about the gravitational field. This problem is quite unstable, but still manegeable.
We discuss this problem in Sections 2.2, 2.3, 3.3, 4.1, and in Chapter 10.

Inverse gravimetry is a classical example of an inverse source problem, where
one is looking for the right side of a differential equation (or a system of equations)
from extra boundary data. Let us consider a simple example: in the second-order
ordinary differential equation −u′′ = f on � = (−1, 1) in R. Let u0 = u( −1),
u1 = u′(−1); then

u(x) = u0 + u1(x + 1) −
∫ x

−1
(x − y) f (y)dy when − 1 < x < 1.
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Prescribing the Cauchy data u, u′ at t = 1 is equivalent to the prescription of two
integrals ∫

�

(1 − y) f (y)dy and
∫
�

f (y)dy.

We cannot determine more given the Cauchy data at t = −1, 1, no matter what is
the original Cauchy data. The same information about f is obtained if we prescribe
any u on ∂� and if in addition we know u′ on ∂�. In particular, nonuniqueness
is substantial: one cannot find a function from two numbers. If we add to f any
function f0 such that ∫

�

v(y) f0(y)dy = 0

for any linear function v (i.e., for any solution of the adjoint equation −v ′′ = 0),
then according to the above formulae we will not change the Cauchy data on ∂�.
The situation with partial differential equations is quite similar, although more
complicated.

If ∇u is given on �, then u can be found uniquely outside � by uniqueness in
the Cauchy problem for harmonic functions using the assumptions on the behavior
at infinity. Observe that given u on ∂� ⊂ R

3 one can solve the exterior Dirichlet
problem for u outside � and find ∂νu on ∂� ∈ Lip, so in fact we are given the
Cauchy data there.

Exercise 1.1.1. Assume that � is the unit disk {|x | < 1} in R
2.

Show that a solution f ∈ L∞(�) of the inverse gravimetry problem that satisfies
one of the following three conditions is unique. (1) It does not depend on r = |x |.
(2) It satisfies the second-order equation ∂2

2 f = 0. (3) It satisfies the Laplace
equation � f = 0 in �.

In fact, in the cases (2) and (3),� can be any bounded domain with ∂� ∈ C3 with
connected R

2\�̄. {Hint: to handle case (1) consider v = r∂r u − 2u and observe
that v is harmonic in �. Determine v in � by solving the Dirichlet problem and
then find f . In cases (2) and (3) introduce new unknown (harmonic in�) functions
v = ∂2

2 u and v = �u.}

Exercise 1.1.2. In the situation of Exercise 1.1.1 prove that a density f (r ) creates
zero exterior potential if and only if∫ 1

0
r f (r )dr = 0.

{Hint: make use of polar coordinates x = r cos θ , y = r sin θ and of the expres-
sion for the Laplacian in polar coordinates,

� = r−1(∂r (r∂r ) + ∂θ (r−1∂θ )).

Observe that for such f the potential u does not depend on θ , and perform an
analysis similar to that given above for the simplest differential equation of second
order.}
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What we discussed briefly above can be called the density problem. It is linear
with respect to f . The domain problem when one is looking for the unknown D is
apparently nonlinear and seems (and indeed is) more difficult. In this introduction
we simply illustrate it by recalling that the Newtonian potential U of the ball
D = B(a; R) ⊂ R

3 of constant density ρ is given by the formulae

U (x ; ρχ (B(a; R))) =
[

R3ρ/3|x − a|−1 when |x − a| ≥ R;
R2ρ/2 − ρ/6|x − a|2 when |x − a| < R.

]
(1.1.3)

These formulae imply that a ball and its constant density cannot be simultane-
ously determined by their exterior potential (|x − a| > R). One can only find
R3ρ. Moreover, according to (1.1.2) and (1.1.3), the exterior Newtonian poten-
tial of the annulus A(a; R1, R2) = B(a; R2)\ ¯B(a; R1) is (R3

2 − R3
1)ρ/3|x − a|2,

so only ρ(R3
2 − R3

1) can be found. In fact, in this example the cavity of an annulus
further deteriorates uniqueness. The formulae (1.1.3) can be obtained by observing
the rotational (around a) invariancy of the equation (1.1.1) when f = ρχ (B(a; R))
and using this equation in polar coordinates together with the continuity of the po-
tential and first order derivatives of the potential at ∂D.

We will give more detail on interesting and not completely resolved inverse
problem of gravimetry in Section 4.1, observing that starting from the pioneering
work of P. Novikov [No], uniqueness and stability results have been obtained by
Prilepko [Pr], [PrOV], Sretensky, Tikhonov, and the author [Is4].

There is another interesting problem of potential theory in geophysics, that of
finding the shape of the geoid D given the gravitational potential at its surface.
Mathematically, like the domain problem in gravimetry, it is a free boundary
problem that consists in finding a bounded domain D and a function u satisfying
the conditions

�u = ρ in D ⊂ R
3, �u = 0 outside D̄,

u,∇u ∈ C(R3), lim u(x) = 0 as |x | → ∞,
u = g0 on ∂D,

where g0 is a given function. To specify the boundary condition, we assume that
D is star-shaped, so it is given in polar coordinates (r, σ ) by the equation r <
d(σ ), |σ | = 1. Then the boundary condition should be understood as u(d(σ )σ ) =
g0(σ ), where g0 is a given function on the unit sphere. This problem is called
the Molodensky problem, and it was the subject of recent intensive study by
both mathematicians and geophysicists. Again, despite certain progress, there are
many challenging questions, in particular, the global uniqueness of a solution is
not known.

To describe electrical and magnetic phenomena one makes use of single- and
double-layer potentials

U (1)(x ; gd�) =
∫
�

K (x, y)g(y)d�(y)
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and

U (2)(x ; gd�) =
∫
�

∂ν(y) K (x, y)g(y)d�(y)

distributed with (measurable and bounded) density g over a piecewise-Lipschitz
bounded surface � in R

3. As in inverse gravimetry, one is looking for g and �
(or for one of them) given one of these potentials outside a reference domain �.
The inverse problem for the single-layer potential can be used, for example, in
gravitational navigation: it is probably more efficient to look for a single layer dis-
tribution g instead of the volume distribution f . As a good example of a practically
important problem about double layer potentials we mention that of exploring the
human brain to find active parts of its surface �c (cortical surface). The area of
active parts occupy not more than 0.1 of area of �c. They produce a magnetic field
that can be described as the double-layer potential distributed over �c with density
g(y), and one can (quite precisely) measure this field outside the head � of the
patient. We have the integral equation of the first kind

G(x) =
∫
�c

∂ν(y) K (x, y)g(y)d�(y), x ∈ ∂�,

where �c is a given C1-surface, �̄c ⊂ �, and g ∈ L∞(�c) is an unknown function.
In addition to its obvious ill-posedness, an intrinsic feature of this problem is the
complicated shape of �c. There have been only preliminary attempts to solve it
numerically. No doubt a rigorous mathematical analysis of the problem (asymptotic
formulae for the double-layer potential when �c is replaced by a closed smooth
surface or, say, use of homogenization) could help a lot.

In fact, it is not very difficult to prove uniqueness of g (up to a constant) with
the given exterior potential of the double layer.

We observe that in inverse source problems one is looking for a function f
entering the partial differential equation −�u = f when its solution u is known
outside �. If one allows f to be a measure or a distribution of first order, then the
inverse problems about the density g of a single or double layer can be considered
as an inverse source problem with f = d� or f = g∂ν(d�).

1.2 The inverse conductivity problem

The conductivity equation for electric (voltage) potential u is

div(a∇u) = 0 in �.(1.2.1)

For a unique determination of u one can prescribe at the boundary the Dirichlet
data

u = g0 on ∂�.(1.2.2)

Here we assume that a is a scalar function, 0 < ε0 ≤ a, that is measurable and
bounded. In this case one can show that there is a unique solution u ∈ H(1)(�) to the
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direct problem (1.2.1)–(1.2.2), provided that g0 ∈ H(1/2)(∂�) and ∂� is Lipschitz.
Moreover, there is stability of u with respect to g0 in the norms of these spaces. In
other words, we have the well-posed direct problem.

Often we can assume that a is constant near ∂�. Then, if g0 ∈ C2(∂�), the
solution u ∈ C1 near ∂�, so the following classical Neumann data are well-defined:

a∂νu = g1 on �,(1.2.3)

where� is a part of ∂� ∈ C2. In general case, ∂ν ∈ H(−1/2)(∂�), so the data (1.2.3)
are still well-defined.

The inverse conductivity problem is to find a given g1 for one g0 (one boundary
measurement) or for all g0 (many boundary measurements).

In many applied situations it is g1 that is prescribed on ∂� and g1 that is measured
on �. This makes some difference (not significant theoretically and computation-
ally) in the case of single boundary measurements but makes almost no difference
in the case of many boundary measurements when � = ∂�, since actually it is the
set of Cauchy data {g0, g1} that is given. The study of this problem was initiated
by Langer [La] as early as in the 1930s.

The inverse conductivity problem looks more difficult than the inverse gravi-
metric one: it is “more nonlinear.” On the other hand, since u is the factor of a in
the equation (1.2.1), one can anticipate that many boundary measurements pro-
vide much more information about a than one boundary measurement. We will
show later that this is true when the dimension n ≥ 2. When n = 1, the amount
of information about a from one or many boundary measurements is almost the
same.

This problem serves as a mathematical foundation to electrical impedance to-
mography, which is a new and promising method of prospecting the interior of
the human body by surface electromagnetic measurements. On the surface one
prescribes current sources (like electrodes) and measures voltage (or vice versa)
for some or all positions of those sources. The same mathematical model works
in a variety of applications, such as magnetometric methods in geophysics, mine
and rock detection, and the search for underground water.

In the following exercise it is advisable to use polar coordinates (r, θ ) in the
plane and separation of variables.

Exercise 1.2.1. Consider the inverse conductivity problem for� = {r < 1} in R
2

with many boundary measurements when a(x) = a(r ). Show that this problem is
equivalent to the determination of a from the sequence of the Neumann data w ′

k(1)
of the solutions to the ordinary differential equations −r (arw ′)′ − k2aw = 0 on
(0, 1) bounded at r = 0 and satisfying the boundary condition w(1) = 1.

We will conclude this section with a discussion of the origins of equation (1.2.1),
which we hope will illuminate possible applications of the inverse conductivity
problem.
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The first source is in Maxwell’s system for electromagnetic waves of frequency
ω:

curl E = −iωµH,

curl H = σE + iωεE,(1.2.4)

where E, H are electric and magnetic vectors and σ, ε, and µ are respectively
conductivity, electric permittivity, and magnetic permeability of the medium. In
the human body µ is small, so we neglect it and conclude that curl E = 0 in �.
Assuming that this domain is simply connected, we can claim that E is a potential
field; i.e., E = ∇u. Since it is always true that div curl H = 0, from second equation
(1.2.4) we obtain for u equation (1.2.1) with

a = σ + iωε.(1.2.5)

Observe that in medical applications σ and ε are positive functions of x and ω.
In certain important situations one can assume that ε is small and therefore obtain
equation (1.2.1) with the real-valued coefficient a = σ , which is to be found from
exterior boundary measurements. This explains what the problem has to do with
inverse conductivity. An important feature of the human body is that conductivites
of various regions occupied by basic components are known constants, and actually
one is looking for the shapes of these regions. For example, conductivities of
muscles, lungs, bones, and blood are respectively 8.0, 1.0, 0.06, and 6.7.

In geophysics the same equation is used to describe prospecting by use of
magnetic fields. Moreover, it is a steady-state equation for the temperature u. In-
deed, if at the boundary of a domain�we maintain time-independent temperature
g(x), x ∈ ∂�, then (Section 9.0) a solution of the heat equation ∂tU = div(a∇U )
in �, 0 < t , is (exponentially) rapidly convergent to a steady-state solution u to
the equation (1.2.1) with the Dirichlet boundary condition (1.2.2). The function a
then is called the thermal conductivity of the medium and is to be found in several
engineering applications.

So, the inverse conductivity problem applies to a variety of situations when
important interior characteristics of a physical body are to be found from boundary
experiments and observations of fundamental fields.

1.3 Inverse scattering

In inverse scattering one is looking for an object (an obstacle D or a medium
parameter) from results of observations of so-called field generated by (plane)
incident waves of frequency k. The field itself (acoustic, electromagnetic, or elastic)
in the simplest situation of scattering by an obstacle D is a solution u to the
Helmholtz equation

−�u − k2u = 0 in R
3\D̄(1.3.1)
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satisfying the homogeneous Dirichlet boundary condition

u = 0 on ∂D (soft obstacle)(1.3.2)

or another boundary condition, like the Neumann condition

(1.3.2h) ∂νu + bu = 0 on ∂D (hard obstacle).

This solution is assumed to be the sum of the plane incident wave ui and a scattered
wave us that is due to the presence of an obstacle

u(x) = ui (x) + us(x),(1.3.3)

where ui (x) = exp(ikξ · x). In most cases in scattering theory one assumes that
R

3\D is connected, and D is a bounded open set with Lipschitz boundary. In some
situations spherical incident waves ui (depending only on |x − a|) are more useful
and natural.

Basic examples of scattering by a medium are obtained when one replaces
equation (1.3.1) by the equation

−�u + (c − ikb0 − k2a0)u = 0 in R
3.(1.3.4)

The coefficients a0, b0, c are assumed to be in L∞(�) for a bounded domain
�, with b0, c zero outside � and a0 > ε > 0 and equal to 1 outside �. In the
representation (1.3.3) the first term in the right side is a simplest solution of the
Helmholtz equation in R

3 when there is no obstacle or perturbation of coefficients.
In the presence of obstacles u is different from ui , and the additional term us can
be interpreted as a wave scattered from an obstacle or perturbation.

It can be shown that for any incident direction ξ ∈ � there is a unique solution
u of the scattering problem (1.3.1), (1.3.2), (1.3.3) or (1.3.3), (1.3.4), where the
scattered field satisfies the Sommerfeld radiation condition

lim r (∂r us − ikus) = 0 as r goes to + ∞.(1.3.5)

This condition guarantees that the wave u(x) is outgoing. For soft obstacles if we
assume ∂D ∈ C2, then u ∈ C1(R3\D). For scattering by medium we have u ∈ C1

under the given assumptions on c, b0, a0 and u ∈ C2 when c, b0, a0 ∈ C1. We
discuss solvability in more detail in Chapter 6.

Any solution to the Helmholtz equation outside of � that satisfies condition
(1.3.5) admits the representation

us(x) = exp(ikr )/rA(σ, ξ ; k) + O(r−2),(1.3.6)

where A is called the scattering amplitude, or far field pattern.
The inverse scattering problem is to find a scatterer (obstacle or medium) from

far field pattern.
This problem is fundamental mathematical model of exploring bodies by acous-

tic or electromagnetic waves. The inverse medium problem with a0 = 1, b0 = 0
is basic in quantum mechanics, as suggested by Schrödinger in the 1930s because
quantum mechanical systems are not accessable by direct experiments, which can
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destroy them. Only far field pattern can be observed, and from this information
one has to recover the potential c of atomic interaction.

In fact, it is difficult to implement measurement of a complex-valued function
A due to oscillations of its argument, so one has to recover a scatterer from |A|.
The restricted problem is even more difficult due to partial loss of information and
additional nonlinearity. Later on we will assume that A is given.

Even at this early stage we can introduce the so-called Lippman-Schwinger
integral equation

u(x, ξ ; k) = eikξ ·x −
∫
�

eik|x−y|/(4π |x − y|)c(y)u(y, ξ ; k)dy,(1.3.7)

which is equivalent to the differential equation (1.3.4) (with a0 = 1 and b0 = 0) and
to the radiation condition (1.3.6) for the scattered wave due to the easily verifiable
properties of the radiating fundamental solution eik|x−y|/(4π |x − y|). Writing |x −
y| = |x |(1 − |x |−2x · y + O(|x |−2)) where O is uniform with respect to y ∈ �
and comparing (1.3.7) and (1.3.6), we obtain the well-known representation for
the scattering amplitude.

A(σ, ξ ; k) = −1/(4π )
∫
�

e−ikσ ·yc(y)u(y, ξ ; k)dy.(1.3.8)

By using basic Fourier analysis one can show that the second term in (1.3.7)
is uniformly (with respect to x ∈ �) convergent to zero when k → +∞, so the
scattering solution u(y, ξ ; k) behaves like eikξ ·y . These facts easily lead to the
uniqueness of c when A is given for all values of σ, ξ ∈ S2 and k ∈ R. Indeed,
let us pick up any η ∈ R

3 and let k → +∞ keeping k(ξ − σ ) = η. Then the limit
of the right side of (1.3.8) is the Fourier transformation ĉ(η) of c, which uniquely
determines c.

A similar approach was found by J. Keller in 1958 to show that the high-
frequency behavior of the scattering amplitide of a soft, strictly convex obstacle D
uniquely (and in a stable way) determines D. His crucial observation was that the
first term of A(σ,−σ ; k) for large k determines the Gaussian curvature K(y(σ ))
of ∂D at its point y(σ ) where a plane y · σ = s (with smaller s) intersects ∂D at
a point. The next step is a solution of the Minkowski problem of reconstruction
of convex D from its its Gaussian curvature, which was well understood at that
time. Unfortunately, the high-frequency approach has serious drawbacks from a
practical point of view because in many cases scattered fields decay quite rapidly
due to damping when frequency is growing.

We will try to give some explanation of the origins of the inverse scattering
problem. Our first example is the attempt to recover shapes of obstacles or impor-
tant parameters of an acoustically oscillating medium from observation at large
distances. The acoustic system linearized around the steady state (velocity v0 = 0,
pressure p = p0, density ρ = ρ0(x)) can be written as the so-called acoustic equa-
tion

a2
0∂

2
t U − ρ0 div(ρ−1

0 ∇U ) + b0∂tU = 0
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for the linear term U of the small perturbation of p = p0 + U + · · · around the
steady state. Here a0(x) is the inverse to the speed of sound and b0(x) is the damp-
ing/attenuation coefficient. The standard assumption in acoustics is that ∇ρ0 is
small relative to ρ0, so one lets ρ0 = 1. When we consider time-harmonic oscilla-
tions U (x, t) = u(x)e−ikt , we will have for the time harmonic waves u the partial
differential equation (1.3.4) with c = 0. In acoustics the waves of high frequency
decay very rapidly due to the damping factor b0, so practically, one can receive
waves only with k∗ < k < k∗ (mid frequencies). In air k∗ = 0.1 and k∗ = 30, while
in water these numbers are 0.1 and 10 (distances in meters).

In electromagnetic prospecting one starts with the time-dependent Maxwell’s
equations to arrive at equations (1.2.4) of time-harmonic oscillations of frequency
ω. We will discuss this system and the inverse problems in more detail in section
5.8. One popular assumption is that outside of the reference medium the elec-
tromagnetic parameters µ, ε, σ are constant. Right now we give values of these
parameters in a typical solution. One of used frequencies is ω = 5, 000, and then
for water, σ/(ωε) = 0.04

In inverse scattering one is looking for a domain D (whose boundary can be
described by a function of two variables) or for functions c, a0, b0 of three variables
given a functionA(σ, ξ ; k) of five variables. This is an overdetermined problem, so
mathematically and from an applied point of view it is reasonable to consider partial
scattering data. One can fix the frequency k and incident direction ξ by observing
the results of scattering for all directions σ of the receiver (this is appropriate
for the obstacle problem). When one is looking for c it makes sense to consider
either fixed k and all σ and ξ , or to use all σ = −ξ and k (backscattering). In
these restricted inverse problems it is much more difficult to prove uniqueness.
At present there are certain uniqueness theorems and many challenging questions.
It is interesting that the idea of high frequencies has been used by Sylvester and
Uhlmann for R

3 to prove uniqueness of potential c with the data given at a fixed
physical frequency. We will discuss inverse scattering in more detail in Chapter
6, and we refer to the books of Chadan and Sabatier [ChS], of Colton and Kress
[CoKr], and of Lax and Phillips [LaxP2], to the encyclopedic collection [Sc], as
well as to the paper of Faddeev [F].

1.4 Tomography and the inverse seismic problem.

The task of integral geometry, or (in applications) tomography, is to find a function
f given the integrals ∫

γ

f dγ(1.4.1)

over a family of manifolds {γ }. The case when the γ are straight lines in R
2 is quite

important because it models X-rays. Then the integrals (1.4.1) are available from
medical measurements. Uniqueness of recovery of f and an explicit reconstruction
formula were due to Radon in 1917, so often this problem is called after him.
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But the applied importance of this problem has been made clear by Cormack
and Hounsfield, who developed in the 1960s an effective numerical and medical
technique for exploring the interior of the human body for diagnostic purposes. In
1979 they received the Nobel Prize for this work.

If a seismic (elastic) wave propagates in the earth, it travels along geodesics
γ (x, y) of the Riemannian metric a2(x)|dx |2. In simplest case, a is the density of
the earth. The travel time from x to y is then the integral

τ (x, y) =
∫
γ (x,y)

dγ,(1.4.2)

which is available from geophysical measurements.
The inverse seismic problem is to find a given τ (x, y) for x, y ∈ � that is a part

of ∂�.
Seismic waves can be artificially incited by some perturbations (microexplo-

sions) on part � of the surface of the Earth, and seismic measurements can be
implemented with high precision. The spherically symmetric model of earth (� is
a ball and a depends only on the distance to its center) was considered by Herglotz
in the 1910s, who developed one of the first mathematical models in geophysical
prospecting.

We will consider the even simpler (but still interesting) case when � is the
half-space {x3 < 0} in R

3 and a = a(x3). Since a does not depend on x2, the curve
γ (x, y) will be contained in the plane {x2 = 0}, provided that both x and y are
in this plane. Later on we will drop the variable x2. It is known (and not hard to
show) that the function τ satisfies the following eikonal equation:

a2(x3)((∂1τ )2 + (∂3τ )2) − 1 = 0,

or

∂3τ +
√

a−2 − (∂1τ )2 = 0,

where ∂ j is partial differentiation with respect to x j , and √ can be with + or −
depending on the part of γ . It is clear that τ (x, y) = τ (y, x), so later on we will
fix y = (0, 0) and consider travel time only as a function of x , which we will treat
as an arrival point. The known theory of nonlinear partial differential equations of
first order [CouH, p. 106] is based on the following system of ordinary differential
equations for characteristics:

dx1

dx3
= p1(a−2 − p2

1)−1/2,
dp1

dx3
= 0,

where p1 = ∂1τ . When a is known, a solution τ to the eikonal equation in � is
uniquely determined by the initial data on the line {x3 = 0}, and according to the
known theory of differential equations of first order it is formed from characteristics
that are original geodesics. When a is an increasing function of x3 so that it goes
to zero when x3 goes −∞, these characteristics consist of two symmetric parts,
where x1 is monotone with respect to x3, which have a common point (x1m, x3m)
with the minimum of x3 over the geodesics achieved at x3m . Integrating the first
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of our differential equations for characteristics over the interval (0, x3m), we will
obtain a half–travel time along the geodesics

τ ((2x1m, 0), y) = 2
∫ x3m

0
p1(a−2(s) − p2

1)−1/2ds = 2
∫ p

α

t1/2(p − t)−1/2g′(t)dt

when we use the substitution of the inverse function t = a2(s) so that s = g(t) and
let p = p−2

1 , α = a2(0). The upper limit is p because at the point (x1m, x3m) the
geodesic is parallel to the x3-axis, and therefore the denominator in both integrals
is zero. Now, α can be considered as a known function as well as p as a function
of x1m because these quantities are measured at {x3 = 0}. So we arrive at the
following integral equation:∫ p

α

(p − t)λ−1 f (t)dt = F(p), α < p < β,(1.4.3)

λ = 1/2, with respect to f (t)(= t1/2g′(t)), which is the well-known Abel integral
equation. It arises also in other inverse problems (tomography (see Section 7.1) and
determining the shape of a hill from travel times of a heavy ball up and down (see
paper of J. Keller [Ke])). Equation (1.4.3) is one of the earliest inverse problems.
It was formulated and solved by Abel around 1820.

Exercise 1.4.1. Show that the Abel equation (1.4.3) has the unique solution

f (t) = sinπλ

π

d

dt

∫ t

α

(t − p)−λF(p)dp, α < t < β,(1.4.4)

provided that 0 < λ < 1 and f ∈ C[α, β] exists.
{Hint: Multiply both sides of (1.4.3) by (s − p)−λ, integrate over the interval

(α, s), change the order of integration in the double integral on the left side, and
make use of the known identity∫ 1

0
θ−λ(1 − θ )λ−1dθ = π

sinπλ

to calculate the interior integral with respect to p.}

More general equations of Abel type as well as their theory and applications
can be found in the book of Gorenflo and Vessella [GorV].

It is interesting and important to consider the more general problem of finding
f and a from the integrals ∫

γ (x,y)
ρ(, γ ) f dγ,(1.4.5)

where ρ is a partially unknown (weight) function that reflects diffusion (attenua-
tion) in applied problems. Not much is known about this general problem. We will
describe some results about this problem in Chapter 7.
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The problems of integral geometry are closely related to inverse problems for
the hyperbolic equation

a0∂
2
t u + b0∂t u − div(a∇u) + cu = f in �× (0, T )(1.4.6)

with zero initial data

u = ∂t u = 0 on �× {0}(1.4.7)

and the lateral Neumann boundary data

a∂νu = g1 on ∂�× (0, T ).(1.4.8)

The initial boundary value problem (1.4.6)–(1.4.8) has a unique solution u for
any (regular) boundary data, provided that a, b0, c, f are given and sufficiently
smooth.

The inverse problem is to find a, b0, c, f (or some of them) from the additional
boundary data

u = g0 on γ × (0, T ),(1.4.9)

where γ is a part of ∂�. We will discuss this problem in Chapters 7 and 8. It is far
from a complete solution in the case of one boundary measurement. But once the
lateral Neumann-to-Dirichlet map�l : g1 → g0 is given, the problem was recently
solved in several important cases. Under reasonable assumptions one can guarantee
uniqueness and stability of recovery of b0, c when T and � are sufficiently large
and g0 is given for all smooth g1. The situation with a is more complicated: it can
be uniquely determined only up to a conformal transformation of a corresponding
Riemannian manifold, and the stability of a known hypothetical reconstruction is
quite weak. In any case, if a = 1, b0 = c = 0 there is a uniqueness theorem due
to Belishev that is valid for any γ and guarantees uniqueness of recovery of a0 in
the domain that can be reached by waves initiated and observed on γ . If time T is
large enough, this domain is the whole of �.

In the isotropic case, behavior of elastic materials and elastic waves is governed
by the elasticity system for the displacement vector u = (u1, u2, u3),

ρ∂2
t u − div(A(ε(u)) = f in �× (0, T ),(1.4.10)

where ε(u) is the stress tensor with the components 1
2 (∂lum + ∂mul) and A is the

elastic tensor with the components a jklm(x). In the general case these compo-
nents satisfy the symmetry conditions a jklm = almjk = akjlm , and in the important
simplest case of classical elasticity,

a jklm = λδ jkδlm + µ(δ jlδ jk + δ jmδkl).

The system (1.4.10) is considered together with the initial conditions that pre-
scribe initial displacements and velocities and a lateral boundary condition, e.g.,
prescribing normal components of the stress tensor Aε(u) on ∂�× (0, T ). As
in electromagnetic scattering one can consider time-periodic elastic vibrations
and elastic scattering problems. Only recently has there been some progress in
understanding inverse problems in elasticity, and we report on certain results in
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Sections 5.8 and 8.2. The contemporary state of the inverse seismic problem based
on general linear system of (anisotropic) elasticity is described by de Hoop [I2]
and de Hoop and Stolk [DS].

The inverse problems for hyperbolic equations and problems of integral geom-
etry are closely related. One can show that the data of the inverse problem for the
hyperbolic equation determine the data for tomographic and seismic problems.
To do so one can use special high-frequency (beam) solutions or propagation of
singularities of nonsmooth (in particular) fundamental solutions.

Sometimes tomographic approximation is not satisfactory for applications (in
particular, it does not properly describe diffusion), while multidimensional inverse
problems for hyperbolic equations are hard to solve. As a good compromise one
can consider inverse problems for the transport equation.

∂t u + v · ∇u + b0u =
∫

W
K ( , v,w)u( ,w)dw + f(1.4.11)

in a bounded convex domain � ⊂ R
n , where u(x, t, v) is the density of particles

and K (x, v,w) is the so-called collision kernel. Let ∂�v be the “illuminated” part
{x ∈ ∂� : ν(x) · v < 0}. One can show that the initial boundary value problem
(with data on ∂�v ) for the nonstationary transport equation (1.4.11) has a stable
unique solution (in appropriate natural functional spaces) under some reasonable
assumptions. The inverse problem is to find the diffusion coefficient b0, the col-
lision kernel K , and the source term f from u given on ∂� for some or for all
possible boundary data and zero initial conditions. Not much is known about the
general problem, though there are some partial results. Quite important is a station-
ary problem when one drops t-dependence and the initial conditions. The inverse
problem is more difficult, and even the simplest questions have no answers yet.
We discuss these problems in Section 7.4. Observe that if b0 = 0, K = 0, and f is
unknown, we arrive at tomography over straight lines, which is satisfactorily un-
derstood. But when b0 ≥ 0 is not zero there are many challenging open questions
including the fundamental one about the uniqueness of f and b0 .

1.5 Inverse spectral problems

The domain problem was formulated already by Sir A. Shuster, who in 1882
introduced spectroscopy as a way “to find a shape of a bell by means of the sounds
which it is capable of sending out.” More rigorously, it has been posed by Bochner
in the 1950s and then in the well-known lecture of Marc Kac, “Can one hear the
shape of a drum?” in 1966. The mathematical question is as follows. Can a domain
D be determined by the eigenvalues λ = λk of the Dirichlet problem

−�u + λu = 0 in D, u = 0 on ∂D.(1.5.1)

Physically, eigenvalues correspond to resonance frequencies, so {λk} can be con-
sidered as natural “exterior” information (there is no need to know ∂D to prescribe
the data). It is obvious that eigenvalues do not change under isometries (rotations,
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translations, and reflections), so only the shape of D can be determined. Even
before the paper of Kac was published, John Milnor found a counterexample (a
torus in R

17). Later on, Vigneras [Vi] obtained counterexamples of nonisometric
n-dimensional compact manifolds with the same spectra, n = 2, 3, . . .. Recently,
Gordon, Webb, and Wolpert [GoWW] found two nonisometric isospectral poly-
gons giving a negative answer to the problem of Kac for domains with piecewise
smooth boundaries. At present it is unknown whether domains with smooth bound-
aries can be found from their resonances. It even unknown whether such domains
are isolated (modulo an isometry). For the most recent results we refer to the paper
of Osgood, Phillips, and Sarnak [OsPS].

After the famous paper of H. Weyl (1911) with a proof that λk ∼ cn(k/V )2/n

for large k (cn depends only on the dimension n of the space, V is volume of D),
there was intensive study of asymptotic behavior of eigenvalues. In particular, the
known Minakshisundaram-Pleijel expansion implies that

∑
exp(−λk t) (the sum is

over k = 1, 2, . . .) when t goes to 0 behaves like V (4π t)−n/2 + C/6(4π t)−n/2t +
bounded terms (provided that n = 2, 3). Here C is the integral of scalar curvature
over D. So the eigenvalues uniquely determine V and C , and therefore the Euler
characteristic in the plane case. There are similar asymptotic formulae uniquely
determining the length of ∂D in the plane case. For recent developments we refer
the reader to the papers of Guillemin [Gui] and of Guillemin and Melrose [GuM].

The problem is interesting also for other elliptic equations and systems (like the
biharmonic equations and the elasticity system) and for different boundary condi-
tions. It makes sense to collect eigenvalues for one � that correspond to different
equations and boundary conditions and use them together for identification of �.

A more general question is about the uniqueness of a compact Riemannian
manifold with given eigenvalues of the associated Laplace operator.

We will not discuss inverse spectral problems in this book any further. We rather
refer to the book of Berard [Ber] and the short review paper of Protter [Pro].

A related question is about reconstruction of the coefficient c (potential) of the
elliptic operator from eigenvalues λ of the operator

(−�+ c − λ)u = 0 in �(1.5.2)

under the Dirichlet boundary conditions u = 0 on ∂� or other boundary conditions
(e.g., Floquet periodicity conditions). In the one-dimensional case this problem is
understood quite well due to work of Ambartzumijan, Borg, Gelfand and Levitan,
Marchenko, and Krein. The answer for� = (0, l) is that eigenvalues of the Dirich-
let problem uniquely determine an even with respect to l/2 potential c, and two
sets of eigenvalues corresponding to Dirichlet and Neumann conditions uniquely
determine any potential c ∈ L∞(�).

In fact, the inverse spectral problem is quite well understood for equation (1.5.2)
in � = (0, l) with the general boundary conditions of Sturm-Liouville type

cos θ0u(0) + sin θ0u′(0) = 0, cos θlu(l) + sin θlu
′(l) = 0.

The general second-order ordinary differential equation with sufficiently regular
coefficients can be reduced to the one-dimensional equation (1.5.2) by using two



16 1. Inverse Problems

known substitutions as has been done in Section 8.1. Since the Dirichlet eigenval-
ues do not determine the potential c uniquely, one tries to use additional spectral
information. The spectral data for this boundary value problem consist of eigen-
values λ1 < · · · < λk < . . . and in addition, the L2(0, l)-norms of corresponding
normalized eigenfunctions uk(; c), which can be found from eigenvalues of two
different Sturm-Liouville-type problems. For the Neumann data the normalized
eigenfunction uk(0; c) = 1. One possible method of solution for the Neumann
boundary data (θ0 = θl = π/2) and for l = π in case of 0 ≤ λk is to form the
function

U (x, y) =
∞∑

k=1

(‖uk(; c)‖−1
2 (0, π )cos

√
λk xcos

√
λk y

− 2/πcos(k − 1)xcos(k − 1)y) + 1/π,

to solve the Volterra type integral equation (Gelfand-Levitan equation)

K (x, y) +
∫ x

0
K (x, s)U (s, y)ds + U (x, y) = 0, 0 < y < x,

and to find

c(x) = 2
d

dx
K (x, x).

For more general formulations and proofs we refer to the books of Marchenko
[Mar] and Pöschel and Trubowitz [PoT].

When n > 2 the situation is much more complicated, and not very much is
known. For the state of the art we refer to the papers of Eskin and Ralston [ER1]
and of DeTurck and Gordon [DGI], [DGII].

Other additional data are values of the normal derivatives ∂νuk( ; A) of orthonor-
mal eigenfunctions uk of the more general elliptic boundary value problem

Auk = λka0uk in �,

uk = 0 on ∂�(1.5.3)

on �, where Au = − div(a∇u) + cu. Given these data, from Green’s function

G(x, y; λ) =
∞∑

k=1

(λ− λk)−1uk(x)uk(y)

one uniquely determines the lateral Dirichlet-to-Neumann map for the elliptic
equation with parameter (A + λa0)u = 0 in� and therefore for the corresponding
hyperbolic equation (a0∂

2
t + A)u = 0 on any cylinder�× (0, T ). Indeed, writing

the solution of the Dirichlet problem for the elliptic equation with the parameter
under the boundary condition u = g on ∂� in terms of Green’s function and taking
the normal derivative, we obtain

�g = a∂νu =
∫
∂�

∞∑
k=1

(λ− λk)−1∂νu(x)∂νu(y)g(y)d�(y).
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This argument is applicable only to self-adjoint elliptic operators. Then one can
benefit from inverse hyperbolic problems, at least in the one-dimensional case,
where they are relatively simple and well understood. We give a complete treat-
ment in Section 8.1. In the many-dimensional case substantial progress has been
achieved by Belishev using methods of boundary control, and we report on it in
Section 8.4.

The goal of this book is to describe recent results about uniqueness and stability
of recovery of coefficients of partial differential equations from (overdetermined)
boundary data. These problems are nonlinear, and most of them are not well posed
in the sense of Hadamard. However, they represent the most popular mathematical
model of recovery of unknown physical, geophysical, or medical objects from ex-
terior observations and provide new, challenging mathematical questions that are
attracting more and more researchers in many fields. In these problems uniqueness
plays a very important role, since such a requirement implies that we have enough
data to determine an object. Also, uniqueness implies stability under some natural
constraints. The theory of stable numerical solutions of ill-posed problems us-
ing regularization (approximation by well-posed problems) was developed in the
1950–1960s by John and Tikhonov (for references see the books of Engl, Hanke,
and Neubauer [EnHN], the author [Is4], Lavrentiev, Romanov, and Shishatskij
[LaRS], Louis [Lou], and Tikhonov and Arsenin [TiA]). Stability is crucial for the
convergence of solutions of regularized problems to the solutions sought. We fo-
cus on uniqueness and stability, and only in Chapter 10 we discuss new interesting
numerical algorithms.

This book consists of ten chapters dealing with regularization of ill-posed prob-
lems, uniqueness and stability in the Cauchy problem, inverse problems for elliptic
equations, scattering problems, and hyperbolic and parabolic equations. We for-
mulate many results, and in many cases we give ideas or short outlines of proofs.
In some important cases proofs are complete and sometimes new. In this way we
are attempting to demonstrate methods that can be used in a variety of inverse
problems. In addition, we give many exercises, ranging from illuminating and sur-
prising examples to substantial additions to the main text; so not all of them are
easy to solve. Besides, we formulate many unsolved problems that in our opinion
are of importance for theory and applications.

Uniqueness and stability of the continuation of solutions of partial differential
equations and systems plays a fundamental role in theory and applications of
inverse problems, especially in case of single boundary measurements and obstacle
problems. The key idea in this area was conceived by Carleman in 1938. Since his
groundbreaking work on uniqueness in the Cauchy problem for first order systems
in R

2 with simple characteristics so called Carleman estimates are the basic tool
used in hundreds of interesting papers. We review the contemporary state of this
theory and give some new positive results and counterexamples.

Also in 1938 there was another new deep result due to P. Novikov who proved
uniqueness of a star-shaped plane domain with given exterior gravitational po-
tential. His uniqueness theorem still is one of best in inverse problems and his
orthogonality method is widely used in inverse problems for elliptic and parabolic
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equations with maximum principle. We demonstrate the orthogonality method in
different sections of the book.

More recent source of ideas is the fundamental paper of Sylvester and Uhlmann
[SyU2] on the uniqueness of the Schrödinger equation with given Dirichlet-to-
Neumann map in the three-dimensional case, where they resolved the question
posed by Calderon [C] and generated hundreds of theoretical and applied pub-
lications on different aspects of the subject and on challenging and important
problems concerning uniqueness and stability of a differential equation with given
many boundary measurements. We discuss these problems for elliptic, parabolic,
and hyperbolic equations and establish a connection with inverse scattering. The
property of completeness of products of solutions of partial differential equations
plays an important role in this theory, and we suggest quite a general scheme
of proof of this property for equations with constant leading coefficients. Al-
most simulteneously with [SyU2] Belishev [Be3] suggested new powerful method
of boundary control to demonstrate uniqueness in several important inverse hy-
perbolic problems with many lateral boundary data. His method combines some
previous ideas from inverse spectral theory due to Gelfand, Levitan, M. Krein,
and Marchenko with sharp uniqueness of the continuation results for hyperbolic
equations of second order with time independent coefficients due to Tataru and
based on new Carleman estimates. We expose some fragments of this theory as
well as new developments in chapters 3 and 8.

Of obvious interest is the inverse conductivity problem with one boundary mea-
surement, where there are preliminary theoretical results, but more questions than
answers. That is why we start with this to some extent typical problem. Applica-
tions include not only electrical exploration, but magnetic, acoustic, and seismic
exploration as well. This problem deals with the recovery of an unknown domain
whose physical properties are quite different from those of the reference medium
(different conductivity, permeability, density, etc.). Even linearizations of this in-
verse problem are highly nontrivial (say, the nonelliptic oblique derivative problem
for the Laplace equation), and they appear to be quite challenging.

In Chapter 6 we collect many recent results about inverse scattering and try
to reduce them to problems in finite domains. It is known that for any compact
scatterer the scattering amplitude is an entire function, so operators that map scat-
terers into standard scattering data are highly smoothing operators, and the inverse
to them must be quite unstable. Probably it is preferable to deal with the near
field. We study stability of recovery of this field from the far field. Then we give
a reduction of scattering problems to the Dirichlet-to-Neumann map and describe
some recent results that cannot be obtained by this scheme. Besides, we discuss
what inverse scattering can do for problems in finite domains (recall the ∂̄-method,
whose power was recently demonstrated by Astala, Nachman, and Päivärinta in
their solution of the two-dimensional inverse conductivity problem).

Scattering is certainly related to hyperbolic equations, where integral geometry
and uniqueness in the lateral Cauchy problem are also quite important. We discuss
the interaction of all three topics in Chapters 3, 7, and 8. This Cauchy problem
turns out to be quite stable as soon as the size of the surface with the Cauchy
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data and time are large enough; and when on the rest of the lateral boundary
one prescribes a classical boundary value condition, the only remaining problem
is with existence theorems. We feel that these stability estimates can be used
in many problems, including identification of coefficients and integral geometry.
Also, we should mention recent important results of Tataru [Tat2], who obtained
an exact description of the uniqueness domain in the lateral Cauchy problem when
the coefficients of a second-order hyperbolic equation are time-independent. In
Chapter 7 we collect certain results of integral geometry, which are used in Chapter
8, and also discuss inverse problems for the transport equation. Chapter 8 is devoted
to various inverse hyperbolic problems; in particular, we consider in some detail
the one-dimensional case, the use of beam solutions, and methods of boundary
control theory.

In Chapter 9 we are concerned with similar questions for parabolic equations.
However, there is one specific problem (with final overdetermination) that we treat
in more detail and that is in fact well-posed. This problem is crucial for the inverse
option pricing problem which is discussed in section 9.3.

In Chapter 10 we collect promising and widely used numerical techniques, in
particular relaxation and linear sampling methods.

The reader can find additional information in the books of Anger [Ang], Colton
and Kress [CoK], Katchalov, Kurylev and Lassas [KKL], Sharafutdinov [Sh],
recent conference proceedings [I1], [I2], [I3], [Ne] and in the review papers of
Payne [P] (with an extensive bibliography up to 1975), and of Uhlmann [U1],
[U2].

We use standard notation, but we recall some notation here for the convenience
of the reader.

B(x ; R) is the ball of radius R centered at a point x .
Sn−1 is the unit sphere ∂B(0; 1) in the n-dimensional space R

n .
χ (D) is the characteristic function of a set D (1 on D, 0 outside D).
By dist between sets we understand the Hausdorff distance.
ν is the unit exterior normal to the boundary of a domain.
measn stands for the n-dimensional Lebesgue measure.
L p(�) is the space of functions with the finite norm ‖u‖p(�) = (∫

�
|u|p

)1/p
,

1 ≤ p.
Hk,p(�) is the Sobolev space of functions on � (domain or Ck-smooth mani-

fold) with partial derivatives of order ≤ k in L p(�). The norm is denoted by
‖ ‖k,p(�). H(k) = H 2

k . This space is defined also for negative k by duality and
for fractional k by interpolation. We let ‖ ‖(k) = ‖ ‖k,2.

Ck(�̄) is the space of functions with continuous partial derivatives of order ≤ k
in �̄, Hölder continuous of order k − {k} when k is fractional. The norm in
this space is denoted by | |k(�).

∂α = ∂α1
1 . . . ∂

αn
n when α is a multiindex (α1, . . . , αn), ∂ j = ∂/∂x j , |α| = α1 +

· · · + αn .
A∗ is the differential operator (formally) adjoint of A.
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Ill-Posed Problems and Regularization

In this chapter we consider the equation

(2.0) Ax = y

where A is a (not necessarily linear) continuous operator acting from a subset X of
a Banach space into a subset Y of another Banach space, and x ∈ X is to be found
given y. We discuss solvability of this equation when A−1 does not exist by outlin-
ing basic results of the theory created in the 1960s by Ivanov, John, Lavrent’ev, and
Tikhonov. In Section 2.1 we give definitions of well- and ill-posedness, together
with important illustrational examples. In Section 2.2 we describe a class of equa-
tions (2.0) that can be numerically solved in a stable way. Section 2.3 is devoted
to the variational construction of algorithms of solutions by minimizing Tikhonov
stabilizing functionals. In Section 2.4 we show that stability estimates for equation
(2.0) imply convergence rates for numerical algorithms and discuss the relation
between convergence of these algorithms and the existence of a solution to (2.0).
The final section, Section 2.5, describes some iterative regularization algorithms.

2.1 Well- and ill-posed problems

We say that equation (2.0) represents a well-posed problem in the sense of
Hadamard if the operator A has a continuous inverse from Y onto X , where X
and Y are open subsets of the classical spaces Ck(�̄), Hk,p(�), or their finite-
codimensional subspaces. In other words, we require that

(2.1.1) for any y ∈ Y there is no more than one x ∈ X satisfying (2.0) (uniqueness
of a solution);

(2.1.2) for any y ∈ Y there exists a solution x ∈ X (existence of a solution);
(2.1.3) ‖x − x•‖X goes to 0 when ‖y − y•‖Y goes to 0 (stability of a solution).

The condition that X and Y be subspaces of classical functional spaces is due to
the fact that those spaces are quite natural for partial differential equations and

20
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mathematical physics. They reflect physical reality and serve as a basis for stable
computational algorithms.

If one of the conditions (2.1.1)–(2.1.3) is not satisfied, the problem (2.0) is called
ill-posed (in the sense of Hadamard).

We observe that these conditions are of quite different degrees of importance. If
one cannot guarantee the uniqueness of a solution under any reasonable choice of
X , then the problem does not make much sense and there is no hope of handling
it. The condition (2.1.2) appears not as restrictive, because it shows only that we
cannot describe conditions that guarantee existence. In fact, as shown later, even
without this condition one can produce a stable numerical algorithm for finding x
given Ax . Moreover, in many important inverse problems mentioned in Chapter 1
it is not realistic to describe {Ax}. It looks as though without condition (2.1.3)
problem (2.0) is not physical (as suggested by Hadamard in the 1920s) and is
uncomputable, because practically, we never know exact data due to errors in
measurement and computation. However, a reasonable use of convergence and a
change of X can fix this situation.

Now we consider examples of important and still not completely understood
ill-posed problems.

EXAMPLE 2.1.1 (BACKWARD HEAT EQUATION). In the simplest case the problem
is to find a function u(x, t) satisfying the heat equation and the homogeneous
lateral boundary conditions

∂t u − ∂2
x u = 0 in �× (0, T ), u = 0 on ∂�× (0, T ),

where � is the unit interval (0, 1), from the final data

u(x, T ) = uT (x), x ∈ (0, 1).

By using separation of variables we can see that the functions uk(x, t) =
e−π2k2t sin(πkx) satisfy the heat equation and the boundary conditions. The ini-
tial data are uk(x, 0) = sin(πkx). They have C0-norm equal to 1 and L2-norm
(1/2)

1
2 . The final data have C0-norm e−π2k2T and H(m)-norm e−π2k2T ((1 + · · · +

(πk)2m)/2)1/2. If we define Au0 = uT , then the estimate ‖u0‖X ≤ C‖uT ‖Y is im-
possible when X , Y are classical functional spaces: the norms of uT k go to zero
exponentially when the norms of the u0k are greater than 1/2. Therefore, the prob-
lem of finding the initial data from the final data is exponentially unstable in all
classical functional spaces. This phenomenon is quite typical for many important
inverse problems in partial differential equations.

The eigenfunctions ak(x) = 21/2 sinπkx of the operator −∂2
x with eigenvalues

π2k2 form a complete orthonormal basis in the space L2(0, 1), so we can write

u(x, t) =
∑

u0ke−π2k2t ak(x),

where u0k is the Fourier coefficient of the initial data. In particular, we can see that
the operator A is continuous from L2(�) into L2(�). It is clear that existence of
a solution with final data uT (x) = ∑

uT kak(x) is equivalent to the very restrictive
condition of the convergence of the series

∑
u2

T keπ
2k2T , which cannot be expressed
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in terms of the classical functional spaces defined via power growth of the Fourier
coefficients uT k (but not exponential!) with respect to k. A useful description of
the range of the operator parabolic equations (see Section 3.1); so we have no
existence theorem; and condition (2.1.2) is not satisfied.

In fact, conditions (2.1.)–(2.1.3) are not independent. For linear closed operators
A in Banach spaces, the conditions (2.1.1) and (2.1.2) imply condition (2.1.3) due to
the Banach closed graph theorem, which implies that if a continuous linear operator
maps a Banach space onto another Banach space and is one-to-one, then the inverse
is continuous. Indeed, if A maps an open subset X of a subspace X1 of a Banach
space onto an open subset Y of a subspace Y1 (codim X1 + codim Y1 <∞), then
A maps X1 onto Y1, both of which are Banach spaces. So by the Banach theorem
the inverse A−1 is continuous from Y1 into X1 with respect to the norms in X and
Y , and we have (2.1.3).

Exercise 2.1.2 (A Nonhyperbolic Cauchy Problem for the Wave Equation).
Show that the Cauchy problem

∂2
t u − ∂2

1 u − ∂2
2 u = 0 in (0, T ) ×�, u = g0, ∂2u = g1 on (0, T ) × �,

where � = {0 < x1 < 1, 0 < x2 < H} and � is the part {0 < x1 < 1, 0 = x3} of
its boundary, is ill-posed in the sense of Hadamard.

{Hint: Make use of separation of variables to construct a sequence of solu-
tions that are bounded (with a finite number of derivatives) on � while growing
exponentially at a distance from �.}

In fact, there is exponential instability as in Example 2.1.1.
This problem was analyzed initially by Hadamard in his famous book [H],

pp. 26, 33, 254–261, where there is an interesting description of the pairs {g0, g1}
that are the Cauchy data for some solution u.

EXAMPLE 2.1.3 (INTEGRAL EQUATIONS OF THE FIRST KIND). Consider equation
(2.0) (with x replaced by a function f defined on � and y replaced by a function
F defined on �1, �,�1 ⊂ R

n) when

A f (x) =
∫
�

K (x, y) f (y)dy,(2.1.4)

with the kernel K continuous on �̄× �̄1. The operator A is completely continuous
from L2(�) into L2(�1).

An important example of such equations is obtained with the Riesz kernels
K (x, y) = |x − y|β when �̄ does not intersect �̄1. When n = 3 and β = −1, we
have the inverse problem of gravimetry, which is discussed in Section 4.1, and
when β = −2, we will have the integral equation related to the linearized inverse
conductivity problem (see Section 4.5) and to some inverse problems of scattering
theory.
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Exercise 2.1.4. Assume that� is the unit ball |y| < 1 in R
3 and�1 is the annular

domain {2 < |y| < 3}. Show that the integral equation A f = F with the Riesz
kernel represents an ill-posed problem.

{Hint: show that the operator A maps the space L2(�) into the space of functions
that are real-analytic in some neighborhood of �̄1 in R

3 (and even in C
3). This space

is not a subspace of finite codimension of any of spaces Hk,p(�1), so (2.1.2) is not
satisfied. Actually, A maps distributions supported in �̄ into analytic functions.}

Another important example is that of convolution equations. We let � = �1 =
R

n , X = Y = L2(�), and K (x, y) = k(x − y). Then equation (2.0) takes the form∫
Rn

K (x − y) f (y)dy = F(x), x ∈ R
n.(2.1.5)

To study and solve such equations one can use the Fourier (or Laplace) transform
f → f̂ , which transforms equation (2.1.5) into its multiplicative form

k̂(ξ ) f̂ (ξ ) = F̂(ξ ).

Exercise 2.1.5. Show that this equation is ill-posed if and only if for any natural
number l the function k̂−1(ξ )(1 + |ξ |)−l is (essentially) unbounded on R

n .

In particular, this equation is ill-posed for k(x) = exp(−|x |2/(2T )), which re-
flects the ill-posedness of the backward initial problem for the heat equation
in the domain R

n × (0, T ). Indeed, it is known ([Hö2], sec.7.6) that k̂(ξ ) =
C exp(−T |ξ |2/2). Equation (2.1.5) or (2.0) then is equivalent to the well-known
representation of the solution at a moment of time T in terms of the initial data u0.

2.2 Conditional correctness: Regularization

The equation (2.0) is called conditionally correct in a correctness class X M ⊂ X
if it does satisfy the following conditions.

(2.2.1) A solution x is unique in X M ; i.e., x = x• as soon as Ax = Ax• and x ,
x• ∈ X M (uniqueness of a solution in X M ).

(2.2.2) A solution x ∈ X M is stable on X M ; i.e., ‖x − x•‖X goes to zero as soon
as ‖Ax − Ax•‖Y goes to zero and x• ∈ X M (conditional stability).

Sometimes we say also that a solution is unique and stable under a constraint,
and X M is called a set of constraints.

We observe that the existence condition is completely eliminated. A reason is
that in important applied problems it is almost never satisfied. Moreover, a stable
numerical solution of the problem (2.0) can be obtained only under conditions
(2.2.1) and (2.2.2), provided that a solution x to equation (2.0) does exist. Certainly,
a choice of the correctness class is crucial: it must not be so narrow as to reflect
only some natural a priori information about a solution.



24 2. Ill-Posed Problems and Regularization

A function ω such that ‖x − x•‖X ≤ ω(‖Ax − Ax•‖Y ) is called a stability es-
timate. In (2.2.2) this function may depend on a point x . In some cases it does
not depend on x ∈ X M , and then it is particularly interesting. We give stability
estimates in Chapters 3–9 for some sets X M and for important inverse problems.
A stability estimate must satisfy the condition limω(τ ) = 0 as τ goes to 0. It can
and will be assumed monotone.

We make the simple but important observation that if X M is compact, then con-
dition (2.2.1) implies condition (2.2.2) (uniqueness guarantees stability). Indeed,
A is continuous, by (2.2.1) it is one-to-one, and then the well-known topological
lemma gives that A−1 is continuous from A(X M ) into X with respect to the norms
on Y and X . Moreover, there is a stability estimate on X M . This observation ap-
plied to the inverse problem of gravimetry by Tikhonov in 1943 was one of the
ideas initiating the contemporary theory of stable solutions of ill-posed problems.
Also, it emphasizes the mathematical role of uniqueness.

Let us consider the examples of Section 2.1. A solution of the backward heat
equation is unique, so we can expect some stability. As shown in Section 3.1 (Ex-
ercise 3.1.2), there is a logarithmic stability estimate ‖u0‖ ≤ ω(ε) = −Cε1 ln(ε1),
where ε1 = −1/ ln ε, ε = ‖uT ‖, and C depends on M , provided that

‖u0‖2 + ‖∂2
x u0‖2 ≤ M.(2.2.3)

Here we let X = Y = L2(0, 1), and the operator Au0 = uT .

Exercise 2.2.1. Show that the set of functions u0 satisfying condition (2.2.3) is
compact in X .

We consider another operator Auτ = uT defined on solutions of the heat equa-
tions at the moment of time t = τ > 0. Then we have a much better estimate
‖uτ‖ ≤ Mετ/T under the weaker constraint ‖u0‖ ≤ M , as shown in Section 3.1.

Exercise 2.2.2. Let� = (0, 1). Show that the set of functions u(τ ), τ > 0, where
u solves the heat equation in �× (0, T ), ‖u0‖0(�) ≤ M when 0 < t < T , and u
is zero on ∂�× (0, T ), is compact in X = L2(0, 1).

The situation is more complicated if we consider Example 2.1.2. Then a solu-
tion u is not unique in the domain Q = �× (0, T ) but only in a subdomain Q0

described in Lemma 3.4.6 or in Exercise 3.4.7. The best-known stability estimate
will be only of logarithmic type.

The basic idea in solving (2.0) is to use regularization, i.e., to replace this
equation by a “close” equation involving a small parameter α, so that the changed
equation can be solved in a stable way and its solution is close to the solution of
the original equation (2.0) when α is small.

In the following definition we need many-valued operators R that map elements
y of Y into subsets X of X . We denote all closed subsets of X by A(X ). The distance
d between two subsets X and X# is defined as supx infv ‖x − v‖X + supv infx ‖x −
v‖X where in the first term we take inf with respect to v ∈ X# and then sup with
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respect to x ∈ X and in the second term change x and v . A many-valued operator
R is continuous at y if d(Ry•, Ry) goes to zero as ‖y• − y‖Y goes to zero.

A family of continuous operators Rα from a neighborhood of AX M in Y into
A(X ) is called a regularizer to the equation (2.0) on X M when

lim
α→0

RαAx = x for any x ∈ X M .(2.2.4)

The positive parameter α is called the regularization parameter.
Many-valued regularizers are necessary to treat nonlinear equations, while for

linear A we can normally build single-valued regularizers that are the usual con-
tinuous operators from Y and X .

We observe that at least for linear A that have no continuous inverse and for
one-to-one Rα (examples are in Section 2.3), convergence in (2.2.4) is not uniform
with respect to x if X M contains an open subset of X . Indeed, assuming the
contrary and using translations and scaling, we can obtain uniform convergence
on {x : ‖x‖X = 1}. In particular, there is α such that ‖RαAx − x‖X ≤ 1/2‖x‖X .
Let us consider the equation x + (RαAx − x) = Rα y. By the Banach contraction
theorem it has a unique solution x = By. Moreover, by using the triangle inequality
we obtain

‖x‖X ≤ ‖RαAx − x‖X + ‖Rα y‖X ≤ 1

2
‖x‖X + C‖y‖Y

because Rα is continuous. Therefore, ‖By‖X ≤ 2C‖y‖Y . We have RαAx = Rα y,
and consequently Ax = y, so A has the continuous inverse B, which is a contra-
diction. This shows that convergence in (2.2.4) is generally only pointwise, i.e., at
any fixed x .

Exercise 2.2.3. Let x ∈ X M and y = Ax . Let Rα be a single-valued regularizer.
Show that for any ε > 0 there are δ > 0 and α > 0 such that if ‖y• − y‖Y < δ,
then ‖Rα y• − x‖X < ε.

We observe that in this exercise δ and α generally depend on x .
The result of Exercise 2.2.3 is valid also for many-valued regularizers.
So in principle, given a regularizer, we can solve equation (2.0) in a stable way.

We are left with two important questions: how to construct regularizers and how
to estimate the convergence rate. In the next section we will show a variational
method for finding Rα for many correctness sets X M , and then we prove that a
stability estimate for the initial equation (2.0) implies some convergence rate for
regularization algorithms.

Let us consider Example 2.1.3. In a general situation we cannot expect unique-
ness of a solution. For many particular kernels we obtain important equations, and
then it is possible to show uniqueness and (which is normally more difficult) to
find a stability estimate. If we consider the operators of convolution then in terms
of the Fourier transforms uniqueness means that k̂ is not zero on any subset of
nonzero measure, which is the case when this function is real-analytic on R

n .
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For equations with the Riesz type kernels and nonintersecting �̄, �̄1, there is
uniqueness in X = L2(�), provided that β �= 2k, β �= 2k + 2 − n for any k =
0, 1, . . ., where n is the dimension of the space (see the book [Is4], p. 79).

If n = 3 and β = −1, then there is nonuniqueness even in C∞
0 (�).

Exercise 2.2.4. Show that if f = �φ, where φ is a C2-function, φ = 0 outside�,
then A f (x) = 0 when x is not in�, provided that n = 3 and K (x, y) = |x − y|−1.

Since in this case the problem has very important applications (inverse gravime-
try), it is interesting to find X M where a solution is unique. This is not a simple
(and not completely resolved) question. Referring to Section 4.1 and to the book
[Is4], sections 3.1–3.3, we claim that a solution f is unique at least in the following
two cases: (1) when ∂n f = 0 on � or (2) f is the characteristic function χ (D) of
a star-shaped (or xn-convex) subdomain of�. We will discuss uniqueness in more
detail in Section 4.1. Stability is an even more complicated topic. It is quite well
understood for the inverse gravimetric problem, and there are some results for the
Riesz-type potentials in the paper of Djatlov [Dj].

A convolution equation (2.1.5) can be studied in terms of the function kC , which
is defined as inf |k̂(ξ )| over |ξ | < C .

Exercise 2.2.5. Assume that ‖ f ‖(1) ≤ M . Show that a solution f to the convolu-
tion equation (2.1.5) satisfies the following estimate: ‖ f ‖2 ≤ ‖F‖2/kC + M/C .
By minimizing the right side with respect to C , derive from this estimate the
logarithmic-type estimate

‖ f ‖2 ≤ M(3T/2 ln B)−1/2(3(2 ln B)−1 + 1) where B = 1/3(M2‖F‖−2
2 T −1)1/3

for the Gaussian kernel k(x) = exp(−x2T/2).
{Hint: Solve the equation for the minimum point, and bound this point from

below using the inequality tet < e2t .}

The result of this exercise gives a stability estimate for a solution to the backward
heat equation. When ‖F‖2 goes to zero, B goes to +∞, and ‖ f ‖2 converges to
zero at a logarithmic rate.

2.3 Construction of regularizers

We describe a quite general method of a so-called stabilizing functional suggested
by Tikhonov [TiA].

We call M a stabilizing functional for the correctness class X M if

(2.3.1) M is a lower-semicontinuous (on X ) nonnegative functional defined
on X M ;

(2.3.2) the set X M,τ = {x ∈ X M : M(x) ≤ τ } is bounded in X for any number τ .
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We construct a regularizer by using the following minimization problem:

min(‖Av − y‖2
Y + αM(v)) over v ∈ X M .(2.3.3)

Lemma 2.3.1. Under the additional condition that X M,τ is compact in X for
any τ , a solution Rα(y) to the minimization problem (2.3.3) exists, and Rα is a
regularizer.

PROOF. Let x• ∈ X M . We define τ = ‖Ax• − y‖2
Y + αM(x•). According to the

condition (2.3.2), the set X• = {M(v) ≤ τ/α} ∩ X M is compact, so the lower-
semicontinuous functional�(v; y) = ‖Av − y‖2

Y + αM(v) has a minimum point
x∗ on X•. The value �(x∗) is minimal over X M because if �(v) ≤ �(x•), then
v ∈ X•. The set of all minimum points is closed in X due to the semicontinuity of
�. We denote this set by x(α) or by Rα(y).

The next step is a proof of continuity of Rα for any fixed α. Let us assume
that it is not continuous at y. Then there is a sequence yk converging to y and
ε > 0 such that d(Rα yk, Rα y) > ε. According to the definition of the distance,
we have xk ∈ Rα yk such that ‖xk − x‖X > ε for any x ∈ Rα y. Let x• ∈ X M . We
define τ as sup�(x•; yk) with respect to k. Since the yk are convergent and �
is continuous with respect to y, this sup is finite. As above, we have xk ∈ X•,
which is a compact set, so by extracting a subsequence we can assume that the
xk converge to some x∞ ∈ X M . We have �(xk ; yk) ≤ �(v; yk) for any v ∈ X M .
Since � is lower semicontinuous with respect to xk and continuous with respect
to yk , we can pass to the limit and obtain the same inequality with y instead of yk ,
and x∞ instead of x . This means that x∞ is a minimum point for � on X M , so it
is contained in Rα y. On the other hand, ‖x∞ − x‖X ≥ ε for any x ∈ Rα y, and we
arrived at a contradiction.

Now we will show that the x(α) converge to x when y = Ax , provided thatα goes
to 0. Assuming the opposite, we can find a sequence of points xk ∈ x(αk), αk < 1/k
whose distances to x are greater than some ε. Since y = Ax and ‖A(xk) − y‖2

Y +
αkM(xk) ≤ αkM(x), we conclude that the xk are contained in the set X∗, defined as
{v : v ∈ X M ,M(v) ≤ M(x)}. Since X∗ is compact, by extracting a subsequence
we can assume that the xk converge to x∗. By continuity of the distance function
we have x �= x∗. On the other hand, by the definition of minimizers we have

‖Axk − Ax‖2
Y ≤ αkM(x) ≤ (1/k)M(x),

so using continuity of A and passing to the limit we obtain Ax∗ = Ax . By the
uniqueness property we get x∗ = x , which is a contradiction. Our initial assumption
was wrong, and the convergence of x(α) to x is proven. �

We observe that for linear operators A, convex sets X M , and strongly convex
functionals M the variational regularizers are single-valued operators, so every-
thing above can be understood in a more traditional sense. Indeed, under these
more restrictive assumptions the functional (2.3.3) to be minimized is convex, so
a minimum point is unique. The variational construction is not only possible way
to find regilarizers, and there is a very important question about an optimal and
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natural choice of regularization that agrees with intuition and that allows one to
improve convergence by using more information about the problem (in the form
of constraints).

For linear operators A and Hilbert spaces X and Y we have a somehow stronger
result. For references about convex functionals and weak convergence we refer to
the book of Ekeland and Temam [ET]. For example, we will make use of the fact
that a convex lower-semicontinuous function in X is lower semicontinuous with
respect to weak convergence in X .

Lemma 2.3.2. If X, Y are Hilbert spaces, x0 ∈ X, and M(v) = ‖v − x0‖2
X , then

the minimization problem (2.3.3) has a unique solution Rα(y) that is a regularizer
of equation (2.0).

PROOF. The functional �(x) = ‖Ax − y‖2
Y + αM(x) is convex and continuous

in X .
Let xm be a minimizing sequence such that �(xm) → �∗, which is an infi-

mum over X . Then α‖xm − x0‖X ≤ C , so {xm} is bounded. In any Hilbert space
bounded closed sets are weakly compact, so we can assume that {xm} is weakly
convergent to x . It is known [ET] that � is lower semicontinuous with respect to
weak convergence, hence we have�∗ = lim inf�(xm) ≥ �(x). Since�∗ is inf�
over X , we have �(x) = �∗.

The uniqueness of x as well as continuity will follow form the next example,
where we will show that Rα(x) is given by the right side of (2.3.4), which is a
linear continuous operator in X .

The proof that x(α) (strongly) converges to x when α → 0 is the subject of
Exercise 2.3.4.

The proof is complete. �

EXAMPLE 2.3.3. Let X , Y be Hilbert spaces with the scalar products ( , )X , ( , )Y .
Assume that A is a linear compact operator from X to Y . Let M(x) = ‖x − x0‖2

X .
We let X = X M . In this case a necessary condition for a minimum point x(α)
of the quadratic functional q(v) = (Av − y, Av − y)Y + α(v − x0, v − x0)X is
d/dt(q(x(α) + tu)) = 0 at t = 0 for any u ∈ X . Calculating this derivative, we
obtain

2(Au, Ax(α) − y)Y + 2α(u, x(α) − x0)X = 2(u, A∗ A + αx(α) − αx0 − A∗y)

by the definition of the adjoint operator A∗. Since this derivative must be zero for
all u ∈ X , we conclude that x(α) is a solution to the equation

(A∗ A + α)x(α) = A∗y + αx0.(2.3.4)

Lemma 2.3.2 guarantees the convergence of x(α) to a solution x of equation (2.0)
when α → 0, provided that y is convergent to Ax . It is easy to observe that the
operator A∗ A is positive and self-adjoint in X , so we have uniqueness of a solution
x(α) of equation (2.3.4) and therefore uniqueness of the minimizer obtained in
Lemma 2.3.3.



2.3. Construction of regularizers 29

Exercise 2.3.4. Show that a solution x(α) to the equation (2.3.4) exists and is
unique. Show that Rα y defined as x(α) is a regularizer to equation (2.0) on X =
X M , provided that the equation Ax = 0 has only the zero solution.

{Hint: to show that Rα is a regularizer, first consider compact A and make use
of eigenfunctions of A∗ A. The general case can be studied by using more general
results about spectral representation of self adjoint operators in a Hilbert space.}

Singular value decomposition is a useful theoretical and computational tool in
general, and in solving ill-posed problems in particular. We recall that if A is a com-
pact linear operator from a Hilbert space X into a Hilbert space Y , then the operator
A∗ A is compact self-adjoint, and therefore it has a complete orthonormal system
ak of eigenvectors (functions) corresponding to (nonnegative) eigenvalues λ2

k ,

λ1 ≥ λ2 ≥ . . . ≥ λk ≥ λk+1 > 0.

We assume here that the equation Ax = 0 has only the zero solution. We let
bk = ‖Aak‖−1

Y AaK . From these definitions we have

A∗ Aak = λ2
kak, AA∗bk = λ2

kbk, A∗bk = λkak, Aak = λkbk .(2.3.5)

Observe that the system {bk} is orthonormal. Indeed,

(bk, bm)Y = ‖Aak‖−1
Y ‖Aam‖−1

Y (Aak, Aam)Y ,

and the last factor is equal to (A∗ Aak, am)X = λ2
k(ak, am)X = 0 when k �= m. It is

obvious that the Y -norm of any bk is equal to 1.

Lemma 2.3.5. A necessary and sufficient condition of existence of a solution to
equation (2.0) is given by the following Picard test:

∞∑
k=1

λ−2
k |(y, bk)Y |2 <∞.(2.3.6)

PROOF. Assume that a solution x to (2.0) exists. Then A∗ Ax = A∗y. Let us calcu-
late the scalar product of both parts of this equality and ak . We obtain

(A∗ Ax, ak)X = (A∗y, ak)X = (y, Aak)Y = λk(y, bk)Y

from the definitions of bk and of the adjoint operator. Since {ak} is an orthonormal
basis in X , we can write x as the sum of the convergent series of (x, ak)X ak and

‖x‖2
X =

∞∑
k=1

|(x, ak)X |2 =
∞∑

k=1

λ−4
k |(x, A∗ Aak)X |2 =

∞∑
k=1

λ−2
k |(Ax, bk)Y |2,

where we used (2.3.5) and again the definition of the adjoint operator. Since Ax =
y, we obtain (2.3.6).

On the other hand, let us assume (2.3.6). Let

x =
∞∑

k=1

‖Aak‖−1
Y (y, bk)Y ak .
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The convergence of the series

‖Aak‖−2
Y |(y, bk)Y |2

follows from condition (2.3.6) and the equality

‖Aak‖2
Y = (Aak, Aak)Y = (A∗ Aak, ak)X = λ2

k .

Therefore, x ∈ X . By using the definition of bk , it is not difficult to understand
that Ax = y.

The proof is complete. �

Due to significant increase of computational power computation of the singular-
value decomposition for an interesting operator is now quite realistic task, the
Picard test is currently becoming a tool for practical solution of inverse problems.
Particular numerical methods include range tests which are described in section
10.5. The main difficulty with with this test for strongly ill-posed problems is the
very fast (exponential) decay of singular values when k goes to infinity combined
with errors in data.

Exercise 2.3.6. By using the singular value decomposition, show that for any
compact operator A we have ‖x(α)‖X ≤ 2−1α−1/2‖y‖Y for any solution x(α) to
the regularized equation (2.3.4).

If A itself is positive and self-adjoint, then equation (2.0) can be regularized by
the similar equation

(A + α)x(α) = y.(2.3.7)

Exercise 2.3.7. Prove that a solution x(α) to equation (2.3.7) exists for any y ∈ Y ,
is unique, and ‖x(α)‖X ≤ α−1‖y‖X .

To be more particular, we consider the integral operator from Example 2.1.3.
We let X = L2(�) and Y = L2(�1). Then the adjoint operator

A∗F(y) =
∫
�1

K (x, y)F(x)dx

and the regularization of the first kind integral equation is the Fredholm integral
equation

α f (z) +
∫
�1

K (x, z)
∫
�

K (x, y) f (y)dy dx =
∫
�1

K (x, z)F(x)dx, z ∈ �,

which has a unique solution f = f ( , α) for any α > 0 according to Exercise 2.3.3.
When � = �1 and K (x, y) = K (y, x), the integral operator is self-adjoint in

X , and one can use the simpler regularization (2.3.7).
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EXAMPLE 2.3.8 (SMOOTHING STABILIZERS). Let � = �1 = (a, b) be an interval
of the real axis R, and X = Y = L2(a, b). Let us consider

M f =
∫
�

( f 2 + f ′2).

From the well-known results about L2-norms and about compactness in Lebesgue
spaces (see, e.g., the book of Yosida [Yo], ch. X., sect 1) we derive the properties
(2.3.1) and (2.3.2). This functional justifies the term stabilizing functional, because
for any α we are looking for solutions of our equation with bounded first-order
derivatives, which makes the solution stable by smoothing cusps of its graph.

For a smoothing stabilizer, the regularized equation is more complicated. To
derive it we can repeat the argument from Example 2.3.3, letting x(α) = f and
replacing the new stabilizing term v by f + tu. Then, instead of the term (u, f )x ,
we obtain ∫

�

2 f u + 2 f ′u′ = 2
∫
�

( f u − f ′′u) + · · · ,

where . . . denotes boundary integrals containing f ′u that are the result of integra-
tion by parts. Using all u that are zero on ∂�, we conclude as above that the factor
of u in these integrals must be zero, or

−α f ′′(z) + α f (z) +
∫
�

K (x, z)
∫
�

K (x, y) f (y)dy dx

=
∫
�

K (x, z)F(x) dx, z ∈ �,

which is an integrodifferential equation for f .
In the many-dimensional case one can similarly make use of the regularizer

M f =
∫
�

(| f |2 + ∇ f · ∇ f ),

which is known to improve numerics when a solution to be found is smooth.
As we already noted, the simpler regularizer (2.3.4) works quite well for linear

problems, so the smoothing stabilizer is more appropriate for nonlinear problems,
which we will not discuss here in detail, referring rather to the books of Engl,
Hanke, and Neubauer [EnHN] and of Tikhonov and Arsenin [TiA].

EXAMPLE 2.3.9 (MAXIMAL ENTROPY REGULARIZER). Quite useful are regulariz-
ers of physical origin. When one is solving the integral equation from Example
2.1.3 in the class of positive functions f , a regularized variational method to solve
the equation A f = F is to minimize

‖A f − yδ‖2
Y + αE( f ), where E( f ) =

∫
�

f ln( f/m),

where m is some positive function reflecting a priori information about f . When
n = 1 and � = (0, l), one often chooses m(x) = 1/x . The functional −E( f ) is
known as Shannon entropy, which is a measure of the informational content of f .
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While this functional looks different from the L2-norm, it can be transformed into
this norm by a (nonlinear) Nemytsky operator f → f∗ defined by the pointwise
relation f log( f/m)(x) = f 2

∗ (x), so that the above regularization theory can be
applied.

Another important example of regularazing functional is given by the bounded
variation described in more detail in section 10.1.

Quasi-solutions
Let X• be a compact set in X . An element x• of this set is called a quasi-solution
to the equation (2.0) with respect to X• if x• is a solution to the minimization
problem

min ‖Av − y‖Y over v ∈ X•.(2.3.8)

Since X• is a compact set, there is a solution to this problem.

Exercise 2.3.10. Let X(y) be the set of all solutions to (2.3.8). Prove that X(y) is
continuous with respect to y in the sense of the distance defined in Section 2.2.

Now we consider a regularization method based on approximation of X M by
compact subsets and first suggested by V. Ivanov (see the book of Ivanov, Vasin,
and Tanana [IvVT]).

Let X (k) be compact subsets of X M . Assume that X (k + 1) �= X (k) ⊂ X (k + 1)
and that closure of the union of X (k) over k is X M . A typical example of X (k) is
the intersection of X M and of the ball of radius k of the finite-dimensional space
span {x(1), . . . , x(k)} generated by vectors x(1), . . . , x(k) in X .

We will show that the sets X(yδ, k) that consist of all quasi-solutions with respect
to X (k) are convergent to {x} when ‖yδ − y‖Y < δ, δ → 0 and k → ∞. Indeed,
let xk ∈ X(yδ, k). Since the X (k) approximate X M in the above sense, there are
x•

k ∈ X (k) such that ‖x•
k − x‖X = ωX (k, x) converge to zero as k → ∞. By the

minimizing property,

‖Axk − yδ‖Y ≤ ‖Ax•
k − yδ‖Y ≤ ‖Ax•

k − Ax‖Y + ‖Ax − yδ‖Y ≤ ωA(k, x) + δ,
where ωA(k, x) = ‖Ax•

k − Ax‖Y goes to zero as k → ∞ by continuity of A. By
the triangle inequality,

‖Axk − Ax‖Y ≤ ‖Axk − yδ‖Y + ‖yδ − y‖Y < 2δ + ωA(k, x).

By property (2.2.2) of X M , we have

‖xk − x‖X ≤ ω(2δ + ωA(k, x)),(2.3.9)

where ω is a stability estimate for (2.0) at the point x . Since xk is an arbitrary point
of X(yδ, k), we have an estimate of the distance between this set and the exact
solution x .
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Summing up, we have a regularization algorithm Rα y = X(y, k), where α is
1/k. Here X(k, y) is the set of all solutions to the minimization problem (2.3.8)
with X• = X (k).

This regularization can be used practically for a numerical solution of equation
(2.0). Normally, one uses as {x(k)} trigonometric or polynomial bases in standard
spaces. At each step of the algorithm one has to solve a complicated (as a rule
nonconvex) optimization problem (2.3.8).

Exercise 2.3.11. Formulate the minimization problem for the solution of equation
(2.0) where A is the operator from Example 2.1.1 (backward heat equation at the
initial moment of time) by using the given basis. From the estimate in this example
derive an estimate (2.3.0) for this particular problem with a particular function ω.

2.4 Convergence of regularization algorithms

Let ω be a stability estimate for equation (2.0) on the compact set X•, which is
defined as X M ∩ {M(x) ≤ τ/α}, where τ = ‖Ax• − y‖2

Y + αM(x•) for certain
x• ∈ X M ,M(x) ≤ M(x•). Such a stability estimate exists as soon as we have
uniqueness of a solution in X M . We observe that any stability estimate on X M will
be a stability estimate on its subset X•, but for the set X• we can expect a better
stability.

Lemma 2.4.1. If Rα is a variational regularization algorithm from Section 2.3,
then

‖x•(α) − x‖X ≤ ω(2‖Ax − y‖Y + (αM(x))1/2)(2.4.1)

for any x•(α) in the minimizing set x(α).

PROOF. We have

‖Ax•(α) − y‖2
Y ≤ ‖Ax•(α) − y‖2

Y + αM(x•(α)) ≤ ‖Ax − y‖2
Y + αM(x)

according to the definition of x(α) by minimization. Therefore,

‖Ax•(α) − y‖Y ≤ ‖Ax − y‖Y + (αM(x))1/2.

By the triangle inequality,

‖Ax•(α) − Ax‖Y ≤ ‖Ax•(α) − y‖Y + ‖Ax − y‖Y ≤ 2‖Ax − y‖Y + (αM(x))1/2,

and inequality (2.4.1) follows from the definition of the stability estimate ω. �

The estimate (2.4.1) suggests the following choice of the regularization param-
eter. Suppose our data yδ are given with the error δ : ‖Ax − yδ‖Y ≤ δ and we have
the a priori information

M(x) ≤ M.(2.4.2)
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Then we can choose α(δ) = δ2/M and obtain the estimate

‖x•(α) − x‖X ≤ ω(3δ).(2.4.3)

Since the stability of minimization procedure (2.3.4) deteriorates when α → 0, we
cannot tell whether this estimate reflects the actual complexity of the problem or
whether the choice of the regularization parameter is optimal. Examples of stability
estimates from Section 2.2 suggest that in many cases one can expect logarithmic
convergence rates.

What is missing in this discussion is how to solve the minimization problem
(2.3.3). A constructive way to do it in the linear case is to solve equation (2.3.4). We
discuss this problem in more detail assuming that A is a compact linear operator
in a Hilbert space X .

First, let A be a self-adjoint, positive, and compact operator. We write the equa-
tion (2.3.7) as

(α + A)(x + xα + xδ) = y + (yδ − y), y = Ax, ‖yδ − y‖Y < δ,(2.4.4)

where xδ solves the equation (α + A)xδ = yδ − y. It is easy to see that

‖xδ‖X ≤ δ/α(2.4.5)

and that (α + A)(x + xα) = y, or (α + A)xα = −αx . The self-adjoint, compact
operator A has an orthonormal basis of eigenvectors ak corresponding to eigen-
values λk . We can assume λk ≥ λk+1. Moreover, let X be the uniqueness set, so
λk > 0. We set xk = (x, ak)X . Then the equation for xα is (α + λk)xαk = −αxk ,
and we have

‖xα‖2
X ≤

∑
k≤K

α2(α + λk)−2x2
k +

∑
K<k

x2
k ≤ α2λ−2

K ‖x‖2
X +

∑
K<k

x2
k .(2.4.6)

This estimate and the estimate (2.4.5) in principle guarantee convergence of our
regularization procedure at this particular x . Indeed, choose K large enough to
make the sum over k > K small; then choose α small to make the first term small,
and then choose small δ.

To obtain estimates, we consider the set X M defined by the inequalities

|xk | ≤ mk(2.4.7)

and let MK be
(∑

K<k m2
k

)1/2
. We assume that the series is convergent. Then MK

goes to zero as K goes to infinity. From (2.4.6) we have ‖xα‖2
X ≤ α2λ−2

K M2
1 + M2

K ,
so ‖xα‖X ≤ αλ−1

K M1 + MK . Now, from (2.4.5) we have the following estimate:

‖x(α) − x‖X ≤ αM1/λK + MK + δ/α,(2.4.8)

and then the optimal choice of α depends on our constraint (2.4.7).
We consider Example 2.1.1 again. If we let X = L2(0, 1), replace x by u0, and

assume ‖u0‖2
X + ‖∂x u0‖2

X ≤ C1, then by using the Fourier expansion with respect
to the trigonometric basis, we conclude that |xk | ≤ Ck−1, so we let mk = Ck−1.
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Exercise 2.4.2. Show that for the solution u(α) to the regularized equation (α +
A)u(α) = uT δ to the backward heat equation Au0 = uT , u0 ∈ X M , we have the
error estimate

‖h(α) − h‖X ≤ α1/2C1eπ
2 K 2T + C K −1/2 + δ/α.

Show that by an appropriate choice of K and α one can achieve the logarithmic
estimate

C2/(− ln δ)

of the error with respect to δ.
{Hint: as in Exercise 2.2.5, minimize with the respect to K and then with respect

to α.}

A similar scheme can be developed for the regularized equation (2.3.4). Cheng
and Yamamoto [CheY1] proposed to replace a minimizer x(α) of the regular-
ized discrepancy functional (2.3.2) by any element x(α, ε) which a ε-approximate
minimizer, i.e.

‖Ax(α, ε) − y‖2
Y + αM(x(α, ε) ≤ in f (‖Ax − y‖2

Y + αM(x)) + ε2

where inf is over x ∈ X M . They showed that a stability estimate on X M implies a
convergence rate similar to rate of Lemma 2.4.1. Although, theoretically compact-
ness assumption is removed, in practical numerical solutions it does not remove
the question about how to find an approximate infimum.

An important issue is the choice of the regularization parameter α. There is the
well-known discrepancy principle suggested by Morozov: let

‖Ax(α(δ)) − yδ‖Y = δ.(2.4.9)

This is an a posteriori method because it only says that the parameter α we have
chosen was consistent with the accuracy δ of the data y.

Lemma 2.4.3. Equation (2.4.9) has a unique solutionα(δ), and x(α(δ)) converges
to x in X when δ → 0.

PROOF. We will show that the left side of (2.4.9) is increasing with respect to α.
Observe that using the expansion yδ = ∑

yδk bk and the relations (2.3.5) we obtain

Ax(α) =
∑

A(α + A∗ A)−1 A∗(yδk bk) =
∑

A(α + A∗ A)−1 yδkλkak

=
∑
λk(α + λ2

k)−1 yδk Aak =
∑
λ2

k(α + λ2
k)−1 yδk bk .

It suffices to prove monotonicity for the squared norm, which is

(Ax(α) − yδ, Ax(α) − yδ)Y =
∞∑

k=1

α2(α + λ2
k)−2 yδ2k .

It is clear that any term of the last series is increasing with respect to α unless it is
zero.
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To prove convergence we can use the variational formulation (2.3.3) of equation
(2.3.4). Then

‖Ax(α) − yδ‖2
Y + α‖x(α)‖2

X ≤ ‖Ax − yδ‖2
Y + α‖x‖2

X = δ2 + α‖x‖2
X .

Since due to our choice of α in (2.4.9) the first term is δ2, we conclude that
‖x(α)‖2

X ≤ ‖x‖2
X . Hence

‖x(α) − x‖2
X = ‖x(α)‖2

X − 2(x(α), x)X + ‖x‖2
X

≤ 2‖x‖2
X − 2(x(α), x)X ,

and convergence x(α) → x in X follows from convergence of the second term to
2‖x‖2

X . We will show this convergence.
According to (2.3.4) and the equality Ax = y, we have

x(α) − x = (α + A∗ A)−1 A∗(yδ − y) − α(α + A∗ A)−1x,

or in coordinates as above,

(x(α) − x)k = λk(α + λ2
k)−1(yδ − y)k − α(α + λ2

k)−1xk .

For any fixed k the eigenvalue λk > 0. Besides, α(δ) → 0 when δ → 0, so (x(α) −
x)k → 0. It suffices to show convergence to 0 of

(x(α) − x, x)X =
K∑

(x(α) − x)k xk +
∑
K+1

(x(α) − x)k xk .(2.4.10)

Let ε > 0. Fix K such that ∑
K+1

x2
k ≤ ε2(16‖x‖2

X )−1.

By the Cauchy-Schwarz inequality the second term on the right side of (2.4.10) is
not greater than

‖x(α) − x‖X

(∑
K+1

x2
k

)1/2

≤ (‖x(α)‖X + ‖x‖X )ε(4‖x‖X )−1 ≤ ε/2

due to the inequality ‖x(α)‖X ≤ ‖x‖X . Since K is fixed, the first term on the right
side of (2.4.10) goes to 0 when δ goes to 0 because of convergence of coordinates.

The proof is complete. �

One cannot obtain convergence rates without using stability estimates for the
original equation (2.0).

Maslov [Mas] first observed that for some regularization algorithms, conver-
gence is equivalent to the existence of a solution to equation (2.0). Consider the
regularizer (2.3.4). Assume that R(A) is dense in Y and ker A = {0} (i.e., we have
uniqueness of a solution). These assumptions are quite realistic and are satisfied
in many applications.

Let δ → 0 (so the yδ converge to y) and α(δ) → 0 and assume that the x(α)
converge to x•. Since all operators in (2.3.4) are continuous, we can pass to the
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limit and obtain A∗ Ax• = A∗y. Since R(A) is dense in Y , we have ker A∗ = {0},
so Ax• = y, and we have a solution to equation (2.0). On the other hand, if a
solution to (2.0) exists, then Exercises 2.3.3 and 2.2.3 guarantee convergence of
this regularization algorithm.

In the paper of Maslov [Mas] the same result is obtained for the “adjoint”
regularization x∗(α) = A∗(α + AA∗)−1 y(δ).

Exercise 2.4.4. Show that for this regularization, convergence of x∗(α) when α
and δ go to 0 implies that the original equation (2.0) has a solution x ∈ X , provided
that the solution is unique and the range of A is dense in Y .

2.5 Iterative algorithms

To solve the regularized equations of the previous section in practice, one uses
various iterative methods. At any step of such an algorithm one solves a well-posed
problem, and if this algorithm is convergent, one obtains an approximate solution
of the original problem, avoiding long and expensive minimization procedures
like (2.3.3), which are even more complicated by the nonconvexity of functional,
which is typical for inverse problems in partial differential equations.

We start with a short description of these algorithms with iterative solutions of
the linear regularized equation (2.3.4). The most minimization algorithms make
use of the gradient methods, which require that one minimizes the functional
�(v) = ‖Av − y‖2

X + αM(v) by iterations:

x(m + 1) = x(m) − 1/2τ (m)�′(x(m)),(2.5.1)

where τ (m) is a parameter that may not depend on m, and �′(x) is a gradient of
the functional � at x . We will start with the simplest case of a linear operator
A in a Hilbert space X and the functional M(v) = ‖v − x0‖2

X . Then �′(x) =
2(A∗ Ax − A∗y + α(x − x0)), and the relations (2.5.1) are

x(m + 1) = x(m) − τ (m)((A∗ A + α I )x(m) − A∗y − αx0).(2.5.2)

To analyze the expected convergence we will assume that τ (m) = τ and make use
of the singular-value decomposition (2.3.5), denoting by xk the kth coordinate of
x in the basis {ak} and similarly for yk in the basis {bk}.

Lemma 2.5.1. Let ‖yδ − Ax‖Y ≤ δ. Let x(1), x0 ∈ X. Then under the condition

0 < τ (‖A‖2 + α) < 1(2.5.3)

we have the following estimate:

‖x(m + 1) − x‖2
X ≤ 4(1 − τλ2

K )2m(‖x(1)‖2
X + ‖x‖2

X + ‖x0‖2
X )

+ δ2α−1 + 4α2λ−4
K ‖x − x0‖2

X + R(K ),(2.5.4)

where R(K ) = 4
∑

K<k(x2
k (1) + x2

k + x02
k + (x − x0)2

k).
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PROOF. From (2.5.2) we have

xk(m + 1) = qk xk(m) + τ (A∗yδ + αx0)k, qk = 1 − τ (λ2
k + α).

By induction it is easy to check that

xk(m + 1) = qm
k xk(1) + (qm−1

k + · · · + 1)τ (A∗yδ + αx0)k

= qm
k xk(1) + (1 − qm

k )/(1 − qk)τ (λ2
k xk + λkw δk + αx0

k ),

because A∗yδ = A∗ Ax + A∗w δ,w δ = yδ − y and because of the relations (2.3.5).
Using the definition of qk we obtain

xk(m + 1) − xk = qm
k xk(1) + (1 − qm

k )λk(λ2
k + α)−1w δk

− qm
k (λ2

k + α)−1(λ2
k xk + αx0

k ) + α(λ2
k + α)−1(x0 − x)k,(2.5.5)

where w δk are coefficients with respect to bk and by using the inequalities

(a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2),

(λ2
k + α)−2(λ2

k xk + αx0
k )2 ≤ max{x2

k , x02
k } ≤ x2

k + x02
k

we conclude that

(xk(m + 1) − xk)2 ≤ 4q2m
k x2

k (1) + α−1w δ2k

+ 4q2m
k (x2

k + x02
k ) + 4α2(λ2

k + α)−2(x − x0)2
k,

where we have utilized that λk(λ2
k + α)−1 ≤ 2−1α−1/2. Summing over k and using

(2.5.3) we obtain

‖x(m + 1) − x‖2
X

≤ 4

(∑
k≤K

q2m
k (x2

k (1) + x2
k + x02

k ) +
∑
K<k

(x2
k (1) + x2

k + x02
k )

)

+α−1δ2 + 4
∑
k≤K

α2λ−4
k (x − x0)2

k + 4
∑
K<k

(x − x0)2
k,

which gives the bound (2.5.4). �

Lemma 2.5.1 implies convergence of the iterations (2.5.2), provided that δ → 0.
Indeed, since the series for the coordinates of x, x(1), and x0 are convergent, for
any ε > 0 we can find K such that R(K ) < ε/4. Fix this K and then fix α > 0
such that the third term on the right side of (2.5.4) is less than ε/4. After that,
find δ such that the second term is less than ε/4, and m such that the first term is
less than ε/4. In many applied problems e−C K < λK < e−cK , while a smoothness
assumption on x, x(1), x0 implies that R(K ) < C K −1. Then we have to choose
K ∼ ε−1 and then λK ∼ e−Cε−1

, so we must let α ∼ e−Cε−1
and δ ∼ e−Cε−1

. Since
the iterations (2.5.2) constitute a gradient method for minimization of a (coercive
for fixed α) convex functional, it is natural that for any fixed α they converge.
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Exercise 2.5.2. Show that for fixed α > 0 the iterations x(m) determined by
(2.5.2) converge in X to (α + A∗ A)−1(A∗y + αx0).

Sometimes (2.5.2) with α = 0 and x0 = 0 is called the Landweber method:

x(m + 1) = (I − τ A∗ A)x(m) + τ A∗y.

The biggest advantage of iterative algorithms shows up in solving nonlinear
equations, because in this case variational regularization as a rule leads to a non-
convex optimization problem with many possible minima and local minima.

A natural analogy of the Landweber method for the nonlinear equation (2.0) is
the iterative method

x(m + 1) = x(m) + τ A′∗(x(m))(y − A(x(m))),

where A′(x) is the Fréchet derivative of the operator A at a point x . There are
convergence proofs, provided that the initial guess x(1) is sufficiently close to a
solution x .

Another type of iterative algorithm suitable for ill-posed problems is the conju-
gate gradients method

x(m + 1) = x(m) + (w(m), v(m))X (v(m), v∗(m))−1
X v(m),

w(m) = A∗y − A∗ Ax(m), v∗(m) = A∗ Av(m),

v(m + 1) = −w(m) − (w(m), v∗(m))X (v(m), v∗(m))−1
X v(m),

with some choice of x(1) and v(1) = y − A∗ Ax(1).
There are proofs of convergence of the conjugate gradient method as well.
These gradient-type methods have the advantage that no inversion of A′, A′∗

is needed. This is especially important when solving ill-posed problems, because
this inversion is not stable and is computationally expensive. However, gradient
methods are relatively slow, and sometimes one makes use of Newton type methods
like

x(m + 1) = x(m) − (α(m) + A′∗ A′)−1)

× (A′∗(Ax(m) − y) + α(m)(x(m) − x0)).(2.5.6)

We refer for convergence results and other iterative algorithms to the book of
Engl, Hanke, and Neubauer [EnHN]. Besides a need for a good initial guess, the
fundamental difficulty with convergence of the Newton type algorithms (2.5.6) is
that the Frechet derivative A′ is not invertible in standard functional spaces when
the equation (2.0) represents severely ill-posed problem. We call the problem rep-
resented by the equation (2.0) mild ill-posed if A′ is invertible from one Sobolev
space into another. In case of mild ill-posedness there is a deep and interesting
method of Nash-Moser which guarantees local convergence by combining itera-
tions with some smoothing operators [CN], [Ham]. This method is not applicable
to severely ill-posed problems. The best result about convergence of the iterations
(2.5.6) is due to Hohage [Ho] and we briefly decribe his findings.
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To guarantee convergence it was assumed in [EnHN], [Ho] that the initial guess
x(0) satisfies the source type condition

x(0) − x = f (A′∗(x)A′(x))v,(2.5.7)

where v ∈ X has “small” norm and f is some continuous function on the spectrum
of A′∗(x)A′(x). For mildly ill-posed problems f (λ) = λκ, 0 < κ < 1 and for typi-
cal severely ill-posed inverse problem in partial differential equations one expects
only logarithmic stability and then it is more natural to choose f (λ) = (−lnλ)−p.
Since the operator A (and hence A′) is highly smoothing the source condition
(2.5.7) is much stronger that standard “smallness” condition for convergence of
Newton type methods. Replacing power by logarithm is certainly less restrictive.
Another condition in [Ho] for convergence of (2.5.6) is the assumption that the
range of the A′(x) is not changing dramatically with x . More precisely, one as-
sumes that for x1, x2 which are close to x there are continuous linear operators
R(x1, x2), Q(x1, x2) from Y into itself and from X into Y and constants C(R),C(Q)
such that

A′(x1) = R(x1, x2)A′(x2) + Q(x1, x2)(2.5.8)

with

‖R(x1, x2)‖ ≤ C(R), ‖Q(x1, x2)‖ ≤ C(Q)‖A′(x)(x1 − x2)‖Y .

So far the both conditions could not be checked for important severely ill-posed
problems, like the inverse gravimetry problem or inverse scattering problem for
obstacles which are domains. The condition (2.5.8) seems to be especially deli-
cate since singularities of solutions dictating range of A′(x) depend on shape of
unknown domain. It looks that there is a better chance to satisfy conditions (2.5.7),
(2.5.8) in problems of determining coefficients of boundary conditions for elliptic
problems when distance to singularities is given.
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Uniqueness and Stability in the
Cauchy Problem

In this chapter we formulate and in many cases prove results on uniqueness and
stability of solutions of the Cauchy problem for general partial differential equa-
tions. One of the basic tools is Carleman-type estimates. In Section 3.1 we de-
scribe the results for a simplest problem of this kind (the backward parabolic
equation), where a choice of the weight function in Carleman estimates is ob-
vious, and the method is equivalent to that of logarithmic convexity. In Section
3.2 we formulate general conditional Carleman estimates and their simplifica-
tions to second order equations, and we apply the results to the general Cauchy
problem and give numerous counterexamples showing that the assumptions of
positive results are quite sharp. We also formulate a global version of Holmgren’s
theorem and the recent result of Tataru on nonanalytic equations. In Section 3.3
we consider elliptic and parabolic equations of second order, construct for them
pseudo-convex weight functions and obtain complete and general uniqueness and
stability results for the Cauchy problem. Section 3.4 is devoted to substantially
less understood hyperbolic equations and Schrödinger-type equations. Here, for
some particular but interesting domains we also give appropriate weight functions
and obtain a quite explicit description of uniqueness domains for lateral Cauchy
problems. We analyse the increased stability in the Cauchy problem which could
has important consequences for numerical algorithms. Additional information to
Sections 3.2–3.4 can be found in the book of Zuily [Z]. In section 3.5 we ex-
pose recent results on Carleman estimates, uniqueness and stability in the Cauchy
problem for systems of partial differential equations, obtaining relatively com-
plete results for isotropic Maxwell’s and linear elasticity systems. We emphasize
that these quesitons for more general anisotropic systems are barely touched in
research, except probably some “generic” cases of Cauchy problems with simple
characteristics.

By C we denote generic constants depending only on A,A, �, �, ϕ which
are introduced later at appropriate sections. Any additional dependence will be
specified in parentheses.

41
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3.1 The backward parabolic equation

We are interested in finding a solution u to the evolution equation

∂t u + Au = 0 on �× (0, T ),(3.1.1)

u = 0 on ∂�× (0, T )(3.1.2)

given the final data

u = uT on �× {T }.(3.1.3)

Method of eigenfunctions
To illustrate the basic ideas and methods, we first consider the simple case of
A = − div(a∇) + c, where a, c are measurable bounded functions on�, 0 < ε ≤
a, 0 ≤ c. The results, however, are not trivial, even for the one-dimensional heat
equation ∂t u − ∂2

x u = 0 when � = (0, 1).
The operator A with the Dirichlet boundary conditions (3.1.2) is self-adjoint

in the Hilbert space L2(�) with the domain H(2) ∩ H̊(1)(�) when we assume in
addition that a ∈ C1(�), so there is a complete orthonormal system of eigenfunc-
tions ek(x) of A with eigenvalues λk+1 ≥ λk ≥ 0, k = 1, 2 . . . . For any solution
of (3.1.1), (3.1.2) we have

u(t, x) =
∑

uk(t)ek(x).(3.1.4)

This function solves (3.1.1), (3.1.2) if and only if the coefficients uk satisfy the
following ordinary differential equations:

∂t uk + λkuk = 0 when 0 < t < T, uk(0) = u0k,

where u0 = u(0). Solving them, we obtain uk(t) = u0ke−λk t , so

u(t, x) =
∑

u0ke−λk t ek(x).(3.1.5)

The backward uniqueness easily follows from this representation, because the
coefficients u0k are uniquely determined from the relations u0ke−λk T = uT k , which
follow from (3.1.3) and (3.1.5). Since the λk behave like Ck p with some p > 0 for
large k (e.g., for the one-dimensional heat equation and� = (0, 1) we have ek(x) =√

2 sin(kπx) and λk = π2k2). These relations show that for any uT ∈ L2(�) (and
even H(m)(�)) a solution u does not exist, and when it does, it is exponentially
unstable: for u that is the kth term of the sum (3.1.5) with u0k = εeλk T we have
‖u0‖2(�) = εeλk T , while ‖uT ‖2(�) = ε.

The next natural question is how to compute u (or u0), provided that it exists.
The first answer was obtained in the pioneering paper of Fritz John [Jo1]. We
describe a couple of more recent algorithms.
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Quasi-reversibility
The method of quasi-reversibility has been suggested in the book of Lattes and
Lions [LL].

We replace (3.1.1) by the regularized “higher”-order equation

∂t u(;α) + Au(;α) − αA2u(;α) = 0.(3.1.6)

Again, by using eigenfunctions we obtain for the coefficients uk(;α) the ordinary
differential equations

∂t uk(;αk) + (λk − αλ2
k)uk(;αk) = 0, 0 < t < T, uk(T ;α) = uT k .

Solving them we get

u(t ;α) =
∑

uT ke(λk−αλ2
k )(T −t)ek(x).(3.1.7)

Since the λk go to infinity as k increases, this series is convergent in L2(�) for any
uT in this space and for any t < T . Moreover, when α goes to 0, the regularized
solutions uα are convergent to the solution u (in L2(�) for any t ∈ (0, T )), provided
that u exists.

Regularization by pseudo-parabolic equations
Another example of a (weakly) convergent numerical algorithm is due to Gajewski
and Zacharias [GZ]. They suggested regularizing equation (3.1.1) by the equation

∂t (uα − αAuα) + Auα = 0.

Exercise 3.1.1. Prove the existence of solutions of the pseudo-parabolic regular-
ization and their convergence to u when u exists.

Method of logarithmic convexity
The next natural question is about stability in the backward evolutionary equations
and about the rate of convergence of numerical algorithms. It is not a simple
question unless one makes use of a priori bounds and logarithmic convexity.

To show that the logarithm F(t) of the squared norm of a solution f (t) =
‖u(t)‖2

2(�) is a convex function, we use again the simple but important example
of A = − div(a∇) + c assuming that a, c,−∂t a,−∂t c are measurable, bounded,
and nonnegative, and that a ≥ ε0 > 0.

Now we will prove that

F ′′ ≥ 0.(3.1.8)

We have

F ′ = f ′/ f, F ′′ = ( f f ′′ − ( f ′)2)/ f 2.
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By using the definition of the L2-norm and the differential equation (3.1.1) we
obtain

f ′ = 2
∫
�

u∂t u = 2
∫
�

u(div(a∇u) − cu) = 2
∫
�

(−a|∇u|2 − cu2),

where we have used integration by parts and the boundary condition (3.1.2). Fur-
ther,

f ′′ = 2
∫
�

(−2a∇u · ∂t∇u − ∂t a|∇u|2 − 2cu∂t u − ∂t cu2)

≥
∫
�

(4 div(a∇u)∂t u − 4cu∂t u) = 4
∫
�

(∂t u)2 = 4‖∂t u‖2
2,

where we integrated by parts again, used the conditions on a, c, and expressed
∂t u from the differential equation (3.1.1). Sometimes we will drop, for brevity, the
symbol � in norms and scalar products. Now, we have

( f ′′ f − ( f ′)2) ≥ 4‖∂t u‖2
2‖u‖2

2 − (2(u, ∂t u)2)2 ≥ 0

according to the Schwarz inequality.
We have proved that F is convex. Therefore, F(t) ≤ (1 − t/T )F(0) +

t/T F(T ), ork

f (t) ≤ f (0)1−t/T f (T )t/T when 0 ≤ t ≤ T .

Using the definition of f and the final data, we get

‖u(t)‖2(�) ≤ M1−t/T ‖uT ‖t/T
2 (�)(3.1.9)

under the constraint ‖u(t)‖2(�) ≤ M . It is easy to understand that this estimate
is sharp. It can be considered a conditional stability estimate (under the a priori
bound ‖u(t)‖2 ≤ M).

Exercise 3.1.2. Prove that under the additional constraint ‖∂t u‖2(�) ≤ M1 on
(0, T ) one has

‖u(0)‖2
2(�) ≤ −M M1T (1 − ln(−M1T/(M ln ε))/ ln ε,

where ε = ‖uT ‖2(�)/M.

{Hint: use Taylor’s formula for ‖u(t)‖2
2 around t = 0; then bound ‖u(0)‖2

2 by
using (3.1.9) and the constraint on ∂t u. Minimize the bound with respect to t .}

Now we will prove a quite general result on logarithmic convexity and therefore
stability in the backward evolution equations. This result is a weaker version of
the theorem of Agmon and Nirenberg [AN].

Let A = A(t) be a linear operator in the (complex) Hilbert space H with domain
D(t). By ‖ ‖, ( , ) we denote respectively the norm and the scalar product in H .
We consider the following generalization of equation (3.1.1):

‖∂t u + Au‖ ≤ α‖u‖ on (0, T ).(3.1.10)
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We assume that

A = A+ + A−,(3.1.11)

where A+ is a linear symmetric operator in H with domain D(t) and A− is a
skew-symmetric operator. Moreover, they satisfy the following conditions:

‖A−u‖2 ≤ α(‖A+u‖‖u‖ + ‖u‖2)(3.1.12)

and

∂t (A+u, u) ≤ 2R(A+u, ∂t u) + α(‖A+u‖‖u‖ + ‖u‖2)(3.1.13)

for some constant α.

Theorem 3.1.3. Let u(t) ∈ D(t), u ∈ C1([0, T ]; H ) be a solution of the differen-
tial inequality (3.1.10), where A satisfies the conditions (3.1.11) – (3.1.13).

Then

‖u(t)‖ ≤ C1‖u(0)‖1−λ‖u(T )‖λ

with C1 ≤ exp((2α + 2)T + 2eCT /C) and λ = (1 − e−Ct )/(1 − e−CT ) or
(eC(t−T ) − e−CT )/(1 − e−CT ) with C depending on α. In addition, when α = 0
we can take C1 = 1 and λ = t/T .

In the proof we will use two elementary lemmas. We set q = ‖u‖2, ψ =
2R( f, u)/q , and l = ln q − ∫ t

0 ψ .

Lemma 3.1.4. There is a constant C ≥ 0 depending onα such that ∂2
t l + C |∂t l| +

C > 0 on (0, T ). In addition, C can be taken as 0 when α = 0.

PROOF. Let f = ∂t u + Au.
We have

∂t q = 2R(u, ∂t u) = −2R(A+u, u) + 2R( f, u) = −2R(A+u, u) + ψq,

where ψ = 2R( f, u)/q , and we have used that due to skew-symmetry,
R(A−u, u) = 0. Observe also that for a symmetric operator A+ we have
I(A+u, u) = 0. So

∂t l = ∂t q/q − ψ = −2(A+u, u)/q

and

∂2
t l = −2∂t (A+u, u)/q + 2(A+u, u)(−2(A+u, u) + ψq)/q2

≥ − 4R(A+u, ∂t u)/q − 2α‖A+u‖‖u‖/q − 2α

− 4(A+u, u)2/q2 + 2(A+u, u)ψ/q

= 4(‖A+u‖2 − (A+u, u)2/q)/q + 4R(A+u, A−u)/q

− 4R(A+u, f )/q − 2α‖A+u‖/‖u‖ − 2α

+ 4(A+u, u)R( f, u)/q2.
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To obtain the inequality we have used condition (3.1.13) and then condition
(3.1.11).

We set (A+u, u) = ‖A+u‖‖u‖θ . We represent A+u as βu + u⊥, where u⊥ is
orthogonal to u. By scalar multiplication, we find β = (A+u, u)/‖u‖2, and then by
the Pythagorean theorem we get ‖u⊥‖2 = ‖A+u‖2(1 − θ2). Since R(A−u, u) = 0
due to skew-symmetry, we conclude that

−4R(A+u, A−u) = −4R(u⊥, A−u) ≤ 4‖u⊥‖‖A−u‖
≤ 2(‖u⊥‖2 + ‖A−u‖2)

≤ 2(‖A+u‖2(1 − θ2) + α‖A+u‖‖u‖ + α‖u‖2)

due to the Schwarz inequality, our formula for u⊥, and condition (3.1.12). Summing
up and using the Schwarz inequality and the inequality ‖ f ‖ ≤ α‖u‖ several times,
we obtain

∂2
t l ≥ 4‖A+u‖2q−1(1 − θ2) − 2‖A+u‖2q−1(1 − θ2) − 2α‖A+u‖/‖u‖

− 2α − 4α‖A+u‖/‖u‖ − 2α‖A+u‖/‖u‖ − 2α − 4α‖A+u‖/‖u‖
= 2σ 2(1 − θ2) − 12ασ − 4α

when we set σ = ‖A+u‖/‖u‖.
Observe that |∂t l| = 2|θ |σ . If θ2 < 1

4 , then

∂2
t l ≥ σ 2 − 12ασ + 36α2 − 36α2 − 4α ≥ −36α2 − 4α.

If 1
4 ≤ θ2 ≤ 1, then |∂t l| ≥ |σ | and

∂2
t l ≥ −12ασ − 4α, so ∂2

t l + 12α|∂t l| + 4α ≥ 0.

In the both cases we have the required inequality with C = max{36α2 + 4α, 12α}.
The proof is complete. �

Lemma 3.1.5. Under the conditions of Theorem 3.1.3 we have

ln ‖u(t)‖ ≤ ln ‖u(0)‖(e−γ t − e−γ T )/(1 − eγ T )

+ ln ‖u(T )‖(1 − e−γ t )/(1 − e−γ T ) + C2,

where γ is either C or −C, C2 ≤ (2α + 2)T + 2eCT /C, and C2 = 0 when α = 0.

PROOF. Let L be a solution to the differential equation ∂2
t L + C |∂t L| + C = 0 on

(0, T ) coinciding with l at the endpoints 0, T . The existence of L can be proven
by using a priori estimates on L , ∂t L that follow from the observation that L
satisfies the linear differential equation with the coefficient C sign ∂t L of ∂t L . By
subtracting the equation for L from the inequality for l given by Lemma 3.1.4,
we conclude that ∂2

t (l − L) + C |∂t (l − L)| ≥ 0. Then l − L ≤ 0 by maximum
principles, and it suffices to bound L . From extremum principles it follows that the
function L(t) cannot achieve a (local) minimum on (0, T ), so ∂t L > 0 on (0, τ ),
and ∂t L < 0 on (τ, T ) for some τ between 0 and T . Therefore, L satisfies the
linear differential equation ∂2

t L + Cτ ∂t L + C = 0, where Cτ is C on (0, τ ) and
−C outside the interval.
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We will first bound the solution v to the differential equation ∂2
t v + Cτ ∂t v = 0

on (0, T ) coinciding with l at the endpoints. Then w = L − v solves the inhomo-
geneous equation and has zero boundary data.

Since ∂t v solves a linear first-order homogeneous ODE, it does not change its
sign. Let l(0) ≤ l(T ). Then ∂t v ≥ 0. Consider the solution V to the ODE ∂2

t V +
C∂t V = 0 with the same boundary data. We have

∂2
t (v − V ) + C∂t (v − V ) = (C − Cτ )∂t v ≥ 0,

and v − V is zero at the endpoints. By the maximum principles, v ≤ V . The
function V is easy to calculate by solving the linear ordinary differential equation
with constant coefficients and satisfying the boundary conditions. It is

l(0)(e−Ct − e−CT )/(1 − e−CT ) + l(T )(1 − e−Ct )/(1 − e−CT ).

When l(0) > l(T ) we obtain a similar bound with C replaced by −C .
To bound w we will solve the two ODE for w : ∂2

t w + C∂t w + C = 0 on (0, τ )
and ∂2

t w − C∂t w + C = 0 on (τ, T ) and we will satisfy zero boundary data at
0, T and the continuity conditions for w, ∂t w at t = τ from the left and from the
right. After standard calculations we obtain

w(t) = (2τ − T + 2C−1− 2C−1eCτ )(eCt − eCT )/(eCT − 2eCτ+ e2Cτ )

− T + t when τ < t,

w(t) = (T − 2τ + 2C−1− 2C−1eC(T −τ ))(1 − e−Ct )/(−eC(T −2τ )+ 2e−Cτ− 1)

− t when t < τ.

The numerator and denominator of w in the first case increase in τ , replacing the
first one by its maximal absolute value 2

C (eCT − 1) − T and the second one by
its minimal absolute value eCT − 1, we bound w on (τ, T ) by 2eCT /C − T + t .
Similarly, on (0, τ ) we have the bound 2eCT /C − t . Replacing these two functions
by their maximal values (at t = 0 and t = T ) we obtain the same bound 2eCT /C).

In sum, we have

l ≤ L = v + w ≤ l(0)(e−γ t − e−γ T )/(1 − e−γ T )

+ l(T )(1 − e−γ t )/(1 − e−γ T ) + 2eCT /C,

where γ is C or −C . From the definitions of l and f we have ln q ≤ l + 2Tα and
l ≤ ln q + 2Tα. In addition, the factors of l(0) and of l(T ) in the above inequality
are between 0 and 1. In sum, we conclude that ln q(t) ≤ l(t) + 2Tα ≤ · · · + 4Tα,
where . . . denotes the terms with l(0), l(T ) replaced by ln q(0), ln q(T ), and the
first claim follows.

When α = 0, the function l is ln q and it is convex by Lemma 3.1.4. This
completes the proof. �

PROOF OF THEOREM 3.1.3. The needed estimate follows from the inequality of
Lemma 3.1.5 by taking exponents of both parts. When α = 0 this lemma also
implies that C1 = exp C2 is 1. Letting α go to 0, we conclude from Lemma 3.1.4
that C goes to 0, and calculating the limit of λ, we conclude the proof. �
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This theorem can be applied to a second-order parabolic equation with the
Dirichlet or Neumann lateral boundary data and even to “parabolic” equation
changing direction of time.

EXAMPLE 3.1.6 (A PARABOLIC EQUATION OF SECOND ORDER). Let � be a
bounded domain in R

n , ∂� ∈ C2. Let

Au = −
∑
∂k(a jk∂ j u) +

∑
b j∂ j u + cu(3.1.14)

with the domain D(t) = H̊(1)(�) ∩ H(2)(�). We assume that a jk, ∂t a jk, b, div b ∈
C1(�× [0, T ]), c, ∂t c ∈ L∞(�× [0, T ]). Here b = (b1, . . . , bn).

We will check conditions (3.1.11) – (3.1.13) with

A+u = −
∑
∂k(a jk∂ j u) +

(
−1

2
div b + c

)
u,

A−u =
∑
∂ j (b j u) − 1

2
(div b)u.

It is obvious that A = A+ + A−. Integrating by parts and using the boundary
condition u = 0 on ∂�, we conclude that A+ is symmetric and A− is skew-
symmetric.

Let us consider condition (3.1.12). The left side is the sum of integrals of
B∂ j u∂ku, B∂ j uu, Bu2 over �, where B is the product of either b j and bk or
of div b and b j . Letting ‖ ‖ = ‖ ‖2(�), we obtain the bound in the first case∫

�

B∂ j u∂ku = −
∫
�

∂k(B∂ j u)u ≤ C(‖∂k∂ j u‖‖u‖ + ‖∂ j u‖‖u‖)

by using the Schwarz inequality. Here C depends on |B|1. Since the operator A+
is a second-order elliptic operator and u satisfies zero Dirichlet conditions on ∂�,
the Schauder-type a priori estimates (Theorem 4.1) imply that ‖∂k∂ j u‖ + ‖∂ku‖ ≤
C(‖A+u‖ + ‖u‖), and we obtain (3.1.12).

To prove (3.1.13) it is sufficient by using the symmetry of a jk and integration
by parts to observe that

∂t

∫
�

A+uu =
∑ ∫

�

∂t (a jk∂ j u∂ku) =
∫
�

(∑
∂t a jk∂ j u∂ku + 2A+u∂t u

)
and to bound ∫

�

∂t a jk∂ j∂kuu,

which can be done as before.

Exercise 3.1.7 (The Third Boundary Value Condition). Under the assump-
tions of Example 3.1.6 with respect to the coefficients of A, prove uniqueness
of a solution u of the backward initial problem with the lateral boundary condi-
tions ∑

a jk∂ j uνk + bu = 0 on ∂�× (0, T )
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under the regularity assumptions that ∂t u, ∂ j∂ku, ∂2
t u, ∂ j∂k∂t u ∈ L2(�) at any

t ∈ (0, T ) and that the corresponding norms are bounded uniformly with respect
to t .

From the proof of Theorem 3.1.3 and from Example 3.1.6 one can see that to
satisfy conditions (3.1.11) – (3.1.13), the operator A must be subordinated to its
symmetric part A+. At present it is not clear whether backward uniqueness holds
without this assumption when A depends on t .

EXAMPLE 3.1.8 (FORWARD-BACKWARD PARABOLIC EQUATION). Let � be the
unit interval (0, 1) in R, and A = −∂x (a∂x u). Let a, ∂t a ∈ C1(�× [0, T ]). We
assume that

for any t either ∂t a ≤ 0 on � or a ≥ ε on �(3.1.15)

for some positive ε. Then the conditions of Theorem 3.1.3 are satisfied, and there-
fore we have uniqueness and conditional stability of a solution u to the differential
equation ∂t u = ∂x (a∂x u) on Q = �× (0, T ) given zero lateral boundary data
u = 0 on ∂�× (0, T ) and the final data. We consider u with ∂2

x u ∈ L2(Q).
We check conditions (3.1.11) – (3.1.13) with the obvious choice A+ = A. Then

condition (3.1.12) is satisfied with any α. We will check condition (3.1.13). Let us
consider

∂t (A+u, u) = ∂t

∫
�

(−∂x (a∂x u))u =
∫
�

∂t (a∂x u∂x u)

=
∫
�

(∂t a(∂x u)2 + 2a∂x u∂t∂x u)

≤
∫
�

((∂t a(∂x u)2 − 2(∂x (a∂x u))∂t u),

where we integrated by parts with respect to x using the zero lateral boundary
conditions. The term with ∂t a is nonpositive together with ∂t a. If ∂t a is positive
at a point of � for some t , we integrate by parts in the first integral again and we
obtain that this integral is

−
∫
�

∂x (∂t a∂x u)u ≤ C‖u‖(2)(�)‖u‖ ≤ α‖Au‖‖u‖

due to the Cauchy-Schwarz inequality and condition (3.1.15), because then a ≥ ε,
the operator A is uniformly elliptic, and ‖u‖(2)(�) ≤ α‖Au‖ is the standard elliptic
estimate. The second term is 2(Au, ∂t u).

So we have condition (3.1.13)
It is quite interesting that this equation can change type from a forward parabolic

equation to a backward parabolic equation at any point of �. For simplicity, we
considered the one-dimensional case, but nothing will change for equation (3.1.14)
with b = 0 if in condition (3.1.15) we request nonpositivity of the matrix (∂t a jk).
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Use of semigroups
The idea of using semigroups was systematically developed by Krein and
Prozorovskaya [Kre], pp. 73, 81, and we present some results of their theory.

Let us consider the differential equation

∂t u + ζ Au = 0 on (0, T ),(3.1.16)

where A is a linear closed operator in a Banach Space X with domain D(A) that
is dense in X , and ‖ ‖X denotes the norm in X . A solution u(t ; ζ ) of this equation
satisfying the initial data u(0) = u0 is a function continuous from [0, T ] into X
that is differentiable on (0, T ), u(t ; ζ ) ∈ D(A), and such that (3.1.16) holds. The
basic assumption is that there exists a sector S = {| arg ζ | < φ} of the complex
plane such that for any ζ ∈ S and for any initial data u0 ∈ X there is a solution to
this initial problem that is complex-analytic with respect to ζ ∈ S and that satisfies
the following estimate:

‖u(1; ζ )‖X ≤ Cφeσ t‖u0‖X , t = Rζ.(3.1.17)

This estimate follows from the following bound on the operator norm of the re-
solvent of the operator A : ‖(A − ζ I )−1‖ ≤ C/|ζ − σ | when Rζ > σ for some C
andσ . The last condition is possible to check when A corresponds to several elliptic
boundary value problems, including the first boundary value problem for higher-
order elliptic equations and the elliptic oblique derivative problem for second-order
equations. This is not easy analytical work. The most recent reference is to the
paper of Colombo and Vespri [CoV], where they considered operators A corre-
sponding to general elliptic boundary value problems for higher-order operators
satisfying the complementing and normality conditions under the assumptions
that the coefficients of the differential operators are merely continuous and of
those the boundary conditions are accordingly Ck(�)-smooth with natural choice
of k.

Under condition (3.1.17) and under the a priori constraint ‖u(t ; 1)‖X ≤ M , the
following stability estimate is valid:

‖u(t)‖X ≤ C M1−µ(t)eσ t‖uT ‖µ(t)
X ,(3.1.18)

where µ(ζ ) is the harmonic measure of the cut [T,∞) in S with respect to the
point ζ . This function is defined as a bounded harmonic function of ζ in ST =
S\[T,+∞) with the boundary values 0 on ∂S and 1 on the cut. By using conformal
mappings onto standard domains and Giraud’s extremum principle as in Section
9.3, it is possible to show that µ exists, is unique, and satisfies the following
estimates: t2φ/π/C < µ(t) when 0 < t < τ , and 1 − (T − t)1/2/C < µ(t) when
T − τ < t < T for some τ .

To obtain (3.1.18) we observe that the function s(ζ ) = ln ‖e−σζu(; ζ )‖X is sub-
harmonic in ST as the norm of an analytic function with values in X . From (3.1.17)
it follows that s(t) ≤ ln Cφ‖uT ‖X when T < t < +∞. So we have lim inf s(ζ ) ≤
(1 − µ(ζ )) ln CφM + µ(ζ ) ln ‖uT ‖X when ζ ∈ ∂ST . By the maximum principle
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this inequality holds when ζ ∈ ST , in particular when ζ = t ∈ (0, T ). Taking ex-
ponents of both parts and multiplying by eσ t we arrive at (3.1.18).

One-dimensional case was considered in some detail by Watanabe [W].

3.2 General Carleman estimates and the Cauchy problem

Let m be a multi-index with positive integer components m j satisfying
the following condition: m1 = · · · = mq > mq+1 ≥ . . . . We define ∇q as
(∂1, . . . , ∂q , 0, . . . , 0).

We consider the differential operator

A(x ; ∂) =
∑

aα∂
α (the sum is over |α : m| ≤ 1),

where |α : m| = α1/m1 + · · · + αn/mn . We define its m-principal part Am as the
sum of the same terms with |α : m| = 1. We introduce the m-principal symbol of
this operator

A(x ; ζ ) =
∑

aαi |α|ζ α, |α : m| = 1.

We will assume that the aα are in L∞(�) and the coefficients of the m-principal
part are in C1(�). In sections 3.2–3.5, � is a bounded domain in R

n .
Let a function ϕ be in C2(�) and ∇qϕ �= 0 on �. We introduce the exponential

weight function w(x) = exp(τϕ(x)).
We remind that by C we denote generic constants depending only on

A,A, �, �, ϕ. Any additional dependence will be specified in parentheses.

Theorem 3.2.1. Suppose that either (a) Am(x ; ξ ) �= 0 for all ξ ∈ R
n\{0} or (b)

the coefficients of Am are real-valued.
If the conditions

Am(x ; ζ ) = 0, ζ = ξ + iτ∇qϕ, τ �= 0(3.2.1)

imply that∑
j,k≤q

(∂ j∂kϕ(∂Am/∂ζ j )(∂Am/∂ζk) + τ−1I∂k Am(∂Am/∂ζk)) > δ(3.2.2)

in � for some positive number δ, then there is a constant C such that

τ

∫
�

|∂αu|2w2dx ≤ C
∫
�

|Au|2w2dx, |α : m| < 1(3.2.3)

when C < τ for all functions u in C∞
0 (�).

The conditions of this theorem on the function ϕ are called strong pseudo-
convexity conditions. When A is the Laplace operator (A(ζ ) = ζ 2

1 + · · · + ζ 2
n ),

then these conditions are certainly satisfied for strictly convex functions ϕ, but not
only for them. When A is the wave operator (A(ζ ) = ζ 2

1 + · · · + ζ 2
n − ζ 2

n+1), this
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convexity concept is adjusted to space-time geometry, which is discussed in more
detail in Section 3.4.

A proof of Theorem 3.2.1 is quite long and technical. General ideas are to use
differential quadratic forms and to utilize a energy integrals methods of Friedrichs,
Leray, and Lewy from the theory of hyperbolic partial differential equations of
higher order. In the isotropic case (m1 = . . .mn), a proof is given by Hörmander
in his book [Hö1], section 8.4, and in the general case by Isakov in the paper [Is12].
Further development of Carleman estimates in the isotropic case can be found in
the paper of Nirenberg [Ni]. More recently, Tataru [Tat3] included boundary terms
in the isotropic case. There are several applications of Carleman estimates, for
example to solvability of the equation Au = f for any (regular) f , to uniqueness of
propagation of singularities, and to exact and approximate boundary controllability
for partial differential equations. In this section we will derive from them a theorem
about uniqueness and stability in the general Cauchy problem. These estimates
were introduced in 1938 by Carleman [Ca] exactly for this purpose (in a particular
case of first order systems in the plane with simple characteristics).

In case of second order operators the conditions of Theorem 3.2.1 can be relaxed.

Theorem 3.2.1′. Let us assume that A is a partial differential operator of second
order with real-valued principal coefficients (m = (2, . . . , 2)).

Let a function ψ ∈ C2(�) and the conditions

(3.2.1′) Am(x ; ξ ) = 0,
∑

(∂Am/∂ξ j )∂ jψ = 0, ξ �= 0,

imply that∑
(∂ j∂kψ)(∂Am/∂ξ j )(∂Am/∂ξk)

(3.2.2′) +
∑

((∂k∂Am/∂ξ j )∂Am/∂ξk − ∂k Am∂
2 Am/∂ξ j∂ξk)∂ jψ > 0

in �. Moreover, let us assume that

A(x ; ∇ψ(x)) �= 0, x ∈ �,
and let us introduce

ϕ = eσψ .(3.2.4)

Then there are constants C1(σ ),C2 such that

(3.2.3′) τ 3−2|α|
∫
�

|∂αu|2w2 ≤ C

(∫
�

|Au|2w2 +
∫
∂�

(τ |∇u|2 + τ 3|u|2)w2

)
when C2 < σ,C1 < τ, |α| ≤ 1, for all functions u ∈ H(2)(�).

The conditions of Theorem 3.2.1′ on functionψ are called the pseudo-convexity
conditions.

We will show that for second order operators A = ∑
a jk∂ j∂k pseudo-convexity

of ψ implies strong pseudo-convexity of ϕ given by (3.2.4) for large σ . Then
Theorem 3.2.1′ follows from results of Tataru [Tat3].
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Indeed, from (3.2.4) we have

∂ jϕ = σϕ∂ jψ, ∂ j∂kϕ = σϕ(∂ j∂kψ + σ∂ jψ∂kψ).

From these formulae by standard calculations the left side in (3.2.2), m =
(2, . . . , 2), q = n, is

4
∑
σϕ(∂ j∂kψ + σ∂ jψ∂kψ)a jlζlakpζ p + 2/τI

∑
∂ka jlζ jζlakpζ p

= 4σϕ
∑

(∂ j∂kψ + σ∂ jψ∂kψ)a jkakp(ξlξp + τ 2σ 2ϕ2∂lψ∂pψ)

+ 2/τI
∑
∂ka jlakp(ξ j + iτσϕ∂ jψ)(ξl + iτσϕ∂lψ)(ξp − iτσϕ∂pψ)

= 2σϕ

(
2

∑
(∂ j∂kψ + σ∂ jψ∂kψ)a jlakp(ξlξp + τ 2σ 2ϕ2∂lψ∂pψ)

+
∑
∂ka jlakp(−∂pψξ jξk + 2∂lψξ jξp + τ 2σ 2ϕ2∂ jψ∂lψ∂pψ)

)
.

We will denote the last expression by H.
To achieve positivity of H we can use homogeneity with respect (ξ, τσϕ) and

assume that |ξ |2 + τ 2σ 2ϕ2 = 1. First we consider τ = 0. Passing to the limit in
(3.2.1) as τ goes to zero we obtain the equalities (3.2.1′). Moreover, standard
calculations show that H becomes the sum of the left side in (3.2.2′) and of

2σ 2ϕ
∑
∂ jψ∂kψa jlakpξlξp = 2σ 2ϕ

(∑
a jl∂ jψξl

)2
.

Hence H is positive for any x ∈ � and ξ �= 0. By compactness and continuity
arguments C−1σϕ < H when στϕ < C−1. Now we consider C−1 < στϕ. The
sum of the terms of H containing the highest power of σ is

σ
∑
∂ jψ∂kψa jlakp(ξlξp + σ 2τ 2ϕ2∂lψ∂pψ)

= σ
⎛
⎝(∑

jl

∂ jψξl

)2

+ σ 2τ 2ϕ2
(∑

a jl∂ jψ∂lψ
)2

⎞
⎠ ≥ C−1σ 3τ 2ϕ2,

because by the conditions of Theorem 3.2.1′ A(x,∇ψ(x)) �= 0 and because of
compactness and continuity reasons. The modulus of the remaining terms in H is
bounded by Cσϕ(|ξ |2 + σ 2τ 2ϕ2). Summing up the above inequalities and using
that |ξ |2 + σ 2τ 2ϕ2 = 1 we conclude that

H > σϕ(C−1σ 3τ 2ϕ2 − C(|ξ |2 + σ 2τ 2ϕ2)) > σϕ(C−3σ − C) > 0,

provided σ > C4.
We mention that for elliptic, parabolic, and hyperbolic operators of second order

there are Carleman estimates in Sobolev spaces of negative order H(−1) which are
useful when handling equations in the divergent form with reduced regularity of
solutions [Im], [IIY], [IY2]. In [IIY] these estimates are derived from the Carleman
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FIGURE 3.1.

estimate (3.2.1) replacing u by a cut-off function multiplied by a negative power
of the Laplacian with the parameter τ and using appropriate commutators bounds
for pseudo-differential operators.

As a first application of Carleman estimates we obtain uniqueness and stability
results for the following Cauchy problem:

Au = f on �, ∂ j
ν u = g j , j ≤ m1 − 1 on �,

∂αu ∈ L2(�) when |α : m| < 1.(3.2.5)

Here � is a part of ∂� of the class Cm1 that is open in ∂�. We define �ε as
� ∩ {ϕ > ε}. We illustrate our problem in Figure 3.1

Theorem 3.2.2 (Uniqueness and Stability). Let ϕ be a function satisfying the
conditions of Theorem 3.2.1. Let us assume that ϕ < 0 on ∂� \ �.

Then there are constants C, κ ∈ (0, 1) depending on�,�, ϕ and ε such that for
a solution u to the Cauchy problem (3.2.5) we have

‖∂αu‖2(�ε) ≤ C(F + M1−κFκ ) when |α : m| < 1,(3.2.6)

where F is ‖ f ‖2(�) + ∑ ‖g j‖(m1− j−1/2)(�) (the sum is over j ≤ m1 − 1), and M
is the sum of ‖∂αu‖2(�) over α with |α : m| < 1.

This theorem guarantees uniqueness of u on �0, provided that we are able to
find a strongly pseudo-convex function ϕ that agrees with � and �: ϕ < 0 on
∂� \ �.

PROOF. By using extension theorems we can find a function u∗ with the Cauchy
data (3.2.5) such that the norms from the left side of (3.2.6) are bounded by C F .
By subtracting this function from u, we may assume that its Cauchy data on � are
zero.

Let χ be a C∞ function that is 1 on �ε/2 and 0 near ∂�\�, 0 ≤ χ ≤ 1. Then v
defined as χu is contained in H̊(m1)(�0).
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Using Leibniz’s formula for the differentiation of the product we conclude
that A(χu) = χ Au + Am−1u, where the last operator involves only ∂αu with
|α : m| < 1. Observe that the bound (3.2.3) stated for infinitely smooth compactly
supported functions by approximation can be extended onto u ∈ H̊(m1)(�). By
applying to v this estimate, we get

τ
∑

‖w∂αv‖2
2(�ε/2) ≤ C

(
‖w f ‖2

2(�) +
∑

‖w∂αu‖2
2(�)

)
.

Since v = u on�ε/2, we can replace v by u, provided that we replace� by�ε/2
on the left side. By choosing τ > 2C and subtracting from both sides the integrals
over �ε/2 multiplied by C , we can shrink � to �\�ε/2 on the right side. Since
�ε ⊂ �ε/2, we obtain∑

‖w∂αu‖2
2(�ε) ≤ C(‖w f ‖2

2(�) +
∑

‖w∂αu‖2
2(�\�ε/2)).

We have exp(τε) < w on �ε, w < exp(τ�) where � is supϕ over �, and
1 ≤ w ≤ exp(τε/2) on�\�ε/2. Replacing w by its minimum on the left side and
by its maximum over closures of the integration domains on the right side and
dividing both sides by exp(2τε), we get

‖∂αu‖2(�ε) ≤ C exp(τ (�− ε))F + C exp(−τε/2)M.

Let us choose

τ = max{(�− ε/2)−1 ln(M/F),C(ε)},
where C(ε) > 0 is needed to ensure that τ > 2C . Due to this choice, the second
term on the right side does not exceed the first one. After substituting the above
expression τ , we obtain (3.2.6) with λ = ε/(2�− ε).

The proof is complete. �

In many interesting situations the pseudo-convexity condition is not satisfied,
but one can still prove uniqueness in the Cauchy problem. A classical example is
Holmgren’s theorem.

We recall that a surface� given by the equation {γ (x) = 0, x ∈ �}, γ ∈ C1(�),
is called noncharacteristic with respect to the operator A if for the principal symbol
Am(x ; ζ )(m1 = · · · = mn) of this operator we have Am(x ; ∇γ (x)) �= 0 when x ∈
�.

Theorem 3.2.3. Let us assume that the coefficients of the operator A are (real)
analytic in a neighborhood of �.

If a surface� is noncharacteristic with respect to A, then there is a neighborhood
V of � such that a solution u to the Cauchy problem (3.2.5) is unique in �0 =
� ∩ V .

For a proof of this classical result we refer to the book of Fritz John [Jo4]. It
is based on solvability of the noncharacteristic Cauchy problem for the adjoint
operator in analytic classes of functions, on the density of such functions in Ck



56 3. Uniqueness and Stability in the Cauchy Problem

and Hp,k spaces, and on Green’s formula. An immediate corollary is the following
global version of this result.

Let�τ be a family of noncharacteristic surfaces in a neighborhood of� given by
the equations {γ (x, t) = 0}, 0 ≤ τ ≤ 1, where γ ∈ C1(Q) for some open set Q in
R

n+1 containing �τ × {τ }. We assume that the boundary of �τ does not intersect
�. We introduce �1−τ = ∪(�σ ∩�) over 0 < σ < τ .

Corollary 3.2.4. Let us assume that A has real-analytic coefficients in � and the
surfaces �τ , 0 ≤ τ ≤ 1, are noncharacteristic with respect to A. Let us assume
that the �τ do not intersect ∂�\� and that �0 ∩� ⊂ �.

Then a solution u to the Cauchy problem (3.2.5) is unique in �0.

This result follows from Theorem 3.2.3 by a standard compactness argument.
Indeed, by this theorem u = 0 on �1−ε(0), and if u = 0 on �τ , then it is zero
on �τ−ε(τ ) for some (small) positive ε(τ ). The intervals (τ − ε(τ ), τ ) form an
open covering of the compact interval [δ, 1 − δ] for any δ < ε(0). There is a finite
subcovering (τ1 − ε1, τ1), . . . , (τk − εk, τk) of this interval, and one can assume
that τ j − ε j < τ j+1 < τ j . Moving from j to j + 1, we conclude that u = 0 on�δ
for any δ, and therefore on �0.

For a discussion of these classical results and for an explicit construction of
the uniqueness domains �0 we refer to the books of Courant and Hilbert [CouH],
pp. 238, and John [Jo4]. We observe that uniqueness domain in Corollary 3.2.4 is
sharp, while uniqueness results of Theorem 3.2.2 are typically not sharp.

The assumption of analyticity of the coefficients is too restrictive for many
applications, so the following result of Tataru [Tat2] is quite important.

Let x = (x ′, x ′′) where x ′ ∈ R
k, x ′′ ∈ R

n−k . We say that a function ϕ ∈ C2(�)
is strongly ′ pseudo-convex with respect to the operator A(m = (m1, . . . ,m1)) if
∇ϕ(x) �= 0 and conditions (3.2.1) are satisfied for any ξ = (ξ ′, 0) at any point
x ∈ �.

Theorem 3.2.5. Let us assume that A is a differential operator with x ′′-
independent coefficients. Let ϕ be a strongly′ pseudo-convex function in �,
�ε = � ∩ {ε < ϕ}, and �0 ⊂ � ∪ �.

Then a solution u to the Cauchy problem (3.2.5) is unique in �0.

In fact, Tataru proved a stronger result assuming analytic dependence of the
coefficients on x ′′. A crucial idea of his proof is to apply to u the pseudodifferential
operator

e(∂ ′′)2/τ ,(3.2.7)

which is the convolution with the Gaussian kernel in x ′′-variables

(τ/(2π ))(n−k)/2e−τ |x ′′−y′′|2/2,

while using Carleman estimates in x ′. This idea brought weaker results, which
appeared earlier in the paper of Robbiano [Ro]. In Section 3.4 we will show that
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Theorem 3.2.5 gives a sharp description of the uniqueness domain in the lateral
Cauchy problem for second-order hyperbolic equations with time-independent
coefficients.

We observe that in the situations covered by Theorems 3.2.3, 3.2.5 one can
generally expect only stability estimates of logarithmic type, and indeed, for a
solution u to the Cauchy problem (3.2.5) the estimates

‖u‖2(�0) ≤ C/| ln F |,
where C = C(M) and a priori ‖∂αu‖2(�) ≤ M, |α : m| ≤ 1, have been obtained
by Fritz John [Jo2] in the situation of Corollary 3.2.4. So Theorem 3.2.2 is very
important due to the much better Hölder-type stability obtained.

Observe that Metivier [Me] found analytic nonlinear equations such that a non-
characteristic Cauchy problem has several smooth solutions. A surface is nonchar-
acteristic at a solution of a nonlinear partial differential equation if is is nonchar-
acteristic with respect to a linearization of this equation at this solution.

COUNTEREXAMPLE 3.2.6 (METIVIER [ME]). For the semilinear equation of a third
order

(∂4 + ∂3)(∂2
4 u + ∂2

1 u − ∂2
2 u + (∂4u)2 + (∂1u)2 − (∂2u)2) = 0

in R
4 there are two different C∞-solutions in the neighborhood of the origin which

coincide when x4 < 0. Obviously, the surface {x4 = 0} is noncharacteristic at any
smooth solution to this equation.

It is instructive to mention also the simple 2 × 2 system found in [Me]

∂3u + v∂1u = 0,

∂3v − ∂2v = 0

in R
3 with a similar property. Indeed, according to [Me] there are two different

C∞-solutions (u, v) to this system in a neighborhood of the origin in R
3 which

coincide when x3 < 0. Again, the surface {x3 = 0} is noncharacteristic at any
smooth solution to this system.

The Cauchy problem for some nonlinear (elliptic) partial differential equations
is of applied importance. In particular, we mention the continuation of the wave
field beyond caustics [MT].

3.3 Elliptic and parabolic equations

Now we derive from Theorem 3.2.2 and Theorem 3.5.2 (which is obtained in-
dependently on section 3.3) particular and more precise results for elliptic and
parabolic equations of second order.

We consider the elliptic operator Au = ∑
a jk∂ j∂ku + ∑

b j∂ j u + cu with real-
valued a jk ∈ C1(�) and b j , c ∈ L∞(�). Here the sums are over j, k = 1, . . . , n.
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Theorem 3.3.1. For any domain�ε with�ε ⊂ � ∪ �, a solution u to the Cauchy
problem (3.2.5) satisfies the following estimate:

‖u‖(1)(�ε) ≤ C(F + ‖u‖1−κ
(1) (�)Fκ ),(3.3.1)

where C and κ ∈ (0, 1) depend only on �ε, and F = ‖ f ‖2(�) + ‖g0‖(1)(�) +
‖g1‖(0)(�).

PROOF. Let x ∈ � ∪ �. Then there is a function ψ ∈ C2(�) with nonvanishing
gradient in � such that 0 < ψ(x) and ψ < 0 on ∂�\�. This function is pseudo-
convex in� with respect to A, hence by Theorem 3.5.2 we have the bound (3.3.1)
where �ε is replaced by a neighborhood V (x) of x in �. V (x), x ∈ �ε form an
open covering of compact �ε, so there is a finite subcovering V1, . . . , VJ . By the
choice,

‖u‖(1)(Vj ) ≤ C(F + ‖u‖1−κ j

(1) (�)Fκ j ) ≤ C(F + ‖u‖1−κ
(1) (�)Fκ )

where κ = min(κ1, . . . , κJ ). The last inequality can be easily obatined by con-
sidering the cases F ≤ ‖u‖(1)(�) and ‖u‖(1)(�) ≤ F . From the definition of the
L2-norm we have

‖u‖2(�ε) ≤ ‖u‖2(V1) + · · · + ‖u‖2(VJ )

and using the above bounds in Vj we complete the proof of (3.3.1). �

Corollary 3.3.2. For any domain�ε with�ε ⊂ � ∪ �, a solution u to the Cauchy
problem (3.2.5) satisfies the following estimate:

‖u‖(1)(�ε) ≤ C(F + ‖u‖1−κ
2 (�)Fκ ),(3.3.2)

where C and κ ∈ (0, 1) depend only on �ε, and F = ‖ f ‖2(�) + ‖g0‖(1)(�) +
‖g1‖(0)(�).

This corollary follows from Theorem 3.3.1 and known interior Schauder-type
estimates for elliptic boundary value problems. Indeed, let �0 be a subdomain of
� containing�ε with�0 ⊂ � ∪ �. From known interior Schauder-type estimates
(Theorem 4.1) ‖u‖(1)(�0) ≤ C(F + ‖u‖2(�)). Using this inequality in the bound
(3.3.1) with � replaced by �0 we yield

‖u‖(1)(�ε) ≤ C(F + (F + ‖u‖2(�))1−κFκ ).

Now Corollary 3.3.2 follows by applying the inequality (a + b)1−κ ≤ a1−κ +
b1−κ , which is valid for all positive a, b.

Under additional regularity assumptions on � one can similarly obtain (3.3.2)
for ‖u‖(2)(�ε) by using higher order interior Schauder-type estimates and (3.3.1).

In particular, Theorem 3.3.1 implies uniqueness of a solution to the Cauchy
problem (3.2.5) for such equations: when F = 0, a solution u is zero as well.
Uniqueness is valid even under less restrictive assumptions that the coefficients
a jk are Lipschitz (and not necessarily real-valued) (see the book of Hörmander
[Hö2], section 17.2). An optimal assumption on c(∈ Ln/2) is made in the paper of
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Jerison and Kenig [JK], where they considered the stationary Schrödinger operator
�u + cu = 0.

These results show that an elliptic equation of second order with Lipschitz prin-
cipal coefficients possesses the so-called uniqueness of the continuation property
for their solutions: if a solution u is zero on a subdomain �0 of a domain �, then
u = 0 on�. To deduce it from Theorem 3.3.1, we introduce a ball B with closure
in �0. Then u satisfies the homogeneous equation in the domain �\B and has
zero Cauchy data on the part ∂B of its boundary, so by Theorem 3.3.1 u is zero in
�\B.

We mention some important and surprising counterexamples.

COUNTEREXAMPLE 3.3.3 (Plis̆ [Pl2]). There is an elliptic equation

a11(x3)∂2
1 u + ∂2

2 u + ∂2
3 u + b1(x)∂1u + b2(x)∂2u + c(x)u = 0

with real-valued coefficients a11 ∈ Cλ(R) for any λ < 1, b1, b2, c ∈ C(R3), that
has a C∞(R3)-solution u such that u = 0 when x3 ≤ 0, but it is nonzero in any
neighborhood of any point of {x3 = 0}.

There are nonzero solutions of similar equations with compact supports.

Another interesting question is about the minimal size of the set � where on
prescribes the Cauchy data. In the two-dimensional case uniqueness and stability
hold for �, which is closed and of positive measure on ∂� ∈ C1. We will show
this by using the harmonic measure and some results of potential theory.

First we consider harmonic functions u ∈ C1(� ∪ �). We assume that |∇u| < F
on� and |∇u| < M on�. We recall that the harmonic measureµ(x ;�) of a closed
set � ⊂ ∂� with respect to a point x ∈ � is a harmonic function of x that can be
defined as follows. Let a sequence of functions g+

k ∈ C(∂�) be monotonically
convergent to the characteristic function χ (�) of the set �, g+

k ≥ g+
k+1, and µ+

k
are harmonic functions with the boundary Dirichlet data g+

k . Then the µ+
k are

monotonically convergent toµ. We observe that if meas1 � > 0, thenµ(x ;�) > 0
for any x ∈ �. This follows from the standard representation of a solution µ+

k to
the Dirichlet problem via Green’s kernel G(x, y), which is positive and continuous
when x ∈ �, y ∈ ∂�. We have

µ+
k (x) =

∫
∂�

G(x, y)g+
k (y)d�(y) ≥

∫
�

G(x, y)d�(y) > 0

because g+
k ≥ 1 on �.

The function s(x) = ln |∇u(x)| is a subharmonic function in �. When x ∈
∂�, we have lim inf(s(y) − (1 − µ(y)) ln M − µ(y) ln F) ≤ 0 as y → x ∈ ∂�.
Indeed, when x ∈ �, the left side is not greater than

lim inf(ln F − (1 − µ(y) ln M − µ(y) ln F)

≤ lim inf(1 − µ(y))(ln F − ln M)) ≤ 0,

because µ(y) ≤ 1 by the maximum principle, and F ≤ M . When x ∈ ∂�\�,
the function µ is continuous at x and equal to 0 there, so the left side under
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consideration is equal to lim inf(s(y) − ln M) ≤ 0. Since the function s(x) − (1 −
µ(x)) ln M − µ(x) ln F is subharmonic and its upper limit on ∂� is ≤ 0 by the
maximum principle, s(x) ≤ (1 − µ(x)) ln M − µ(x) ln F for all x ∈ �. Taking
exponents of both parts, we will have

|∇u(x)| ≤ M1−µ(x) Fµ(x).

Since 0 < µ(x) < 1, we have a conditional stability estimate that implies unique-
ness (when F → 0).

For recent results on minimal requirements on the uniqueness set � we refer
to the review paper of Aleksandrov, Bourgain, Gieseke, Havin, and Vymenetz
[AlBGHV], where they give a particular answer to the question, for what � do
both uniqueness and existence for the Cauchy problem hold. As far as we know,
even in R

2 it is still an unresolved question.
In the three-dimensional case the assumption meas2 � > 0 is not sufficient. Re-

cently, Wolff [Wo] (see also the paper of Bourgain and Wolff) [BoW] found a strong
counterexample that disproves an old conjecture of Bers and M.A. Lavrentiev that
this assumption is sufficient. We will formulate Wolff’s counterexample.

COUNTEREXAMPLE 3.3.4. There is a nonzero C1(R
3
+)-function, u harmonic in

the half-space R
3
+ = {x3 > 0}, and a closed subset � ⊂ ∂R3

+ of positive two-
dimensional measure such that u = |∇u| = 0 on �.

Observe however, that a counterexample with u ∈ C2(R
3
+) is not known.

Returning to equations of second-order in the plane, we observe that any elliptic
equation

(a11∂
2
1 + 2a12∂1∂2 + a22∂

2
2 + b1∂1 + b2∂2 + c)u = 0(3.3.3)

with measurable and bounded coefficients a jk, b j , c in a bounded plane domain
� can be reduced to the particular case of these equations with c = 0 by the
substitution u = u+v . Here u+ ∈ H2,p(�), p > 1, is a positive solution to the
initial equation. The existence of u+ can be shown for � of small volume by
using standard elliptic theory. The equation with c = 0 can be reduced to an el-
liptic system for the vector function w1 = ∂1u,w2 = ∂2u. By the Bers-Nirenberg
theory, any solution w = w1 + iw2 of such a system admits the representation
w(z) = es(z) f (χ (z)), where the functions s, χ are Hölder continuous on �, χ
is one-to-one there, and f is a complex-analytic function of z = x1 + i x2 on
χ (�). Since the zeros of an analytic function f are isolated, so are the zeros of
w = ∇u.

There is another useful concept for the uniqueness of the continuation. A point
a ∈ � is called a zero of infinite order of a function u ∈ L1(�) if for any natural
number N there is a constant C(N ) such that

∫
B(a;r ) |u| ≤ C(N )r N . If u ∈ C∞(�),

this definition is equivalent to the claim that all partial derivatives of u are zero at
a. From the above results it follows that if a is a zero of infinite order for u − u(a)
for a solution u to equation (3.3.3), then u is constant in�. Alessandrini observed
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that the same property holds for solutions to the important elliptic equation

∂1(a11∂1u + a12∂2u) + ∂2(a21∂1u + a22∂2u) = 0.

Indeed, this equation is the integrability condition for the overdetermined system
∂1v = −a21∂1u − a22∂2u, ∂2v = a11∂1u + a12∂2u with respect to v . So our equa-
tion implies the existence of a solution v to this system. This system with respect
to u and v is again elliptic and satisfies all the conditions of the Bers-Nirenberg
representation theorem, and we can repeat the above argument. In particular, all
zeros of gradients of nonconstant solutions to the equation div(a∇u) = 0 are of
finite order if a is merely bounded and measurable.

For higher-order equations the situation is quite complicated. In fact, there are
very convincing examples of nonuniqueness.

COUNTEREXAMPLE 3.3.5 (Plis̆ [Pl1]). There is a fourth-order elliptic equation

((∂2
1 + ∂2

2 + ∂2
3 )2 + x3(∂2

1 + ∂2
2 )2 − 1/2∂2

1 + b1∂1 + c)u = 0

with C∞(R3) coefficients b1, c and solution u with supp u = {0 ≤ x3}. There are
similar equations with compactly supported solutions. In the same paper there
are examples of sixth-order elliptic equations with complex-valued smooth co-
efficients in the plane that moreover do not have the property of uniqueness of
continuation.

On the other hand, in some important cases from elasticity theory one has
uniqueness and stability.

Exercise 3.3.6. Let A1, A2 be second-order elliptic operators with C2(�)-
coefficients. Let � be a bounded domain in R

n , and � a C4-smooth part of its
boundary ∂�. Show that an H(4)(�)-solution u to the Cauchy problem

A1 A2u = 0 in �, ∂ j
ν u = g j on �, j = 0, . . . , 3,

for any subdomain �ε ⊂ �ε ⊂ � ∪ � satisfies the following estimate:

‖u‖(4)(�ε) ≤ C(F + ‖u‖1−κ
2 (�)Fκ ),

where C, κ depend on �ε, 0 < κ < 1, and F = ‖g0‖(4)(�) + · · · + ‖g3‖(1)(�).

We observe that Theorem 3.2.1 cannot be applied to the operator A = ��
because strong pseudo-convexity condition (3.2.2) is not satisfied for any func-
tion φ. Indeed, the equality A(ζ ) = 0 implies that the left side of (3.2.2) is
zero.

More general equations can be considered by using Carleman estimates with a
second large parameter σ . In next result we consider ψ(x) = |x − b|2 and we let
�ε = � ∩ {ε < ψ}, ϕ = eσψ .
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Theorem 3.3.7. For a second order elliptic operator A and a bounded domain�
there are constants C1 = C1(ε),C2 = C2(ε, σ ) such that

σ

∫
�

(στϕ)3−2|α|e2τϕ|∂αu|2 ≤ C1

∫
�

e2τϕ|Au|2

for all u ∈ C2
0 (�) and |α| ≤ 2 provided C1 < σ,C2 < τ .

This result is obtained in [ElI] by careful examining how constants in the proof
in [Hö1] depend on σ . Using Theorem 3.3.6 one can handle arbitrary third order
perturbations of the product of two elliptic operators of second order.

Exercise 3.3.8. Let A1, A2 be second-order elliptic operators with C2(�)-
coefficients. Let A3 be a third-order linear partial differential operator with bounded
and measurable coefficients in �. Let � be a bounded domain in R

n , and � a C4-
smooth part of its boundary ∂�.

Show that an H(4)(�)-solution u to the Cauchy problem

A1 A2u + A3u = 0 in �, ∂ j
ν u = g j on �, j = 0, . . . , 3,

for any subdomain �ε ⊂ �ε ⊂ � ∪ � satisfies the following estimate:

‖u‖(4)(�ε) ≤ C(F + ‖u‖1−κ
2 (�)Fκ ),

where C, κ depend on �ε, 0 < κ < 1, and F = ‖ f ‖(0)(�) + ‖g0‖(4)(�) + · · · +
‖g3‖(1)(�).

To solve Exercise 3.3.8 we recommend first to cover �ε by a finite number
of C4-diffeomorphic images of the subset �∗ = {x : |x | < 1, xn < −1/2} of the
unit ball such that the same diffeomorphic image of �∗ = {x : |x | = 1, xn < 0} is
contained in �. Since the form of the fourth order equation from Corollary 3.3.8
does not change under these diffeomorphisms, it suffices to assume that �ε =
�∗ and � = �∗. Then choose b = (0, . . . , 0, 1), apply Theorem 3.3.7 twice (to
A1(A2u)) to derive a Carleman estimate for A1 A2 with the second large parameter
σ , and repeat the proof of Theorem 3.2.2 by using this new Carleman estimate.

COUNTEREXAMPLE 3.3.9. For fourth order equations prescribing three boundary
conditions is not sufficient for uniqueness. By the Cauchy-Kovalevsky theorem for
analytic � and coefficients there many solutions near �. The following example
gives global solutions in � when � = ∂�.

Indeed, let� be the unit ball in R
3, let k2

1, k1 = π be the first (smallest) Dirichlet
eigenvalue and u1 be a corresponding eigenfunction

(�+ k2
1)u1 = 0, in �, u1 = 0 on ∂�.

Observe that we can assume u1(x) = sin(πr )/r , where r = |x |. Let k2 = 2π and

u(x) =
∫
�

K (x − y)u1(y)dy
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where K (x) = −eik2|x |/(4π |x |) is the radiating fundamental solution to the
Helmholtz operator �+ k2

2. We have

(�+ k2
2)u = χ (�)u1 in R

3.

Then (�+ k2
1)(�+ k2

2)u = 0 in �, u = ∂νu = ∂2
νu = 0 on ∂�, but u is not zero

almost everywhere in �.
To prove this statement it suffices to show that u = ∂νu = ∂2

νu = 0 on ∂�.
Since u1 = 0 on ∂�, the function χ (�)u1 ∈ H2,p(R3) for any p > 1. From known
regularity properties of potentials, u ∈ C2(R3). Hence to complete the proof it is
sufficient to show that u(x) = 0 when |x | > 1.

As known from the theory of the Helmholtz equation [CoKr], Theorem 2.10,

K (x − y) =
∑

cn,m(x) jn(k2|y|)Y m
n (y/|y|)

where the sum is over n = 0, 1, 2, . . . ,m = −n, . . . , n, the jn is the spherical
Bessel function and Y m

n are standard spherical harmonics, and the series is uni-
formly convergent on � when |x | > 1. Combining this series representation with
the integral formula for u, we complete the proof if we show that∫

�

u1(y) jn(2π |y|)Y m
n (y/|y|)dy = 0

for all n = 0, 1, 2, . . . ,m = −n, . . . , n. Since u1, jn(2π |y|) do not depend on
spherical angles, by using polar coordinates this equality follows from basic or-
thogonality property of spherical harmonics when n = 1, 2, . . .. When n = 0,
Y 0

0 is constant and by using again polar coordinates and the formulas u1(y) =
sin(πr )/r, j0(r ) = sinr/r , the needed equality is reduced to∫ 1

0
sin(πr )sin(2πr )dr = 0

which follows by elementary integration.

In the remaining part of this section we consider the second-order parabolic op-
erator Au = ∂t u + A′u, where A′ is the second-order elliptic operator considered
above with coefficients a jk ∈ C1(�); b j , c ∈ L∞(�). We let t = xn+1 and choose
m = (2, . . . , 2, 1).

Theorem 3.3.10. Let � = G × I and � = γ × I , where G is a domain in R
n, γ

is a C2-smooth part of its boundary, and I = (0, T ).
Then for any domain �ε with closure in � ∪ �, a solution u to the Cauchy

problem (3.2.5) satisfies the following estimate:

‖∂αu‖2(�ε) ≤ C(F + ‖u‖1−κ
2 (�)Fκ ) when |α : m| ≤ 1,(3.3.4)

where C and κ ∈ (0, 1) depend on �ε, and F is given in Theorem 3.3.1.

PROOF. We first consider �, which is the half-ball {|x | < 1, xn < 0} in
R

n+1. We will make use of the weight function ϕ(x) = exp(−σ xn). Then
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ζ = (ξ1, . . . , ξn−1, ξn − iτσ exp(−σ xn), ξn+1). The equality Am(x ; ζ ) = 0 is
equivalent to the equalities∑

a jkξ jξk = annτ
2σ 2exp(−2σ xn), ξn+1 − 2

∑
a jnξ jτσ exp(−σ xn) = 0.

(3.3.5)

The left side of (3.2.1) is

σ 2 exp(−σ xn)

(
4

(∑
a jnξ j

)2
+ 4(ann)2τ 2σ 2 exp(−2σ xn)

)
+ 2/τ�

∑
(∂ka jl)akqζ jζlζ q .

Standard calculations show that the last sum consists of terms σbξ jξl exp(−2σ xn),
σ 3bτ 2exp(−3σ xn) where b are bounded functions. The first equality (3.3.5) and
ellipticity of A′ imply that |ξ | ≤ Cτσexp(−σ xn). Observing powers of σ and
choosing σ large we achieve positivity of the left side of (3.2.2). We can as-
sume that�ε is {|x | < 1, xn < −ε}. Now from Theorem 3.2.2 we have the bound
(3.3.4) with M instead of ‖u‖2(�). To obtain (3.3.4) from this bound we can use the
known Schauder-type estimates for second-order parabolic boundary value prob-
lems [LSU] ‖∂αu‖2(�ε/2) ≤ C(F + ‖u‖2(�ε/4)) when |α : m| ≤ 1 and argue as
in the proof of Corollary 3.3.2.

By using the substitution y1 = x1, . . . , yn−1 = xn−1, yn = xn +
g(x1, . . . , xn−1, xn+1), yn+1 = xn+1 making � parallel to the t-axis, one re-
duces any cylindrical domain B− × I (B is the unit half-ball in R

n) to the
half-ball in R

n+1. Observe that parabolicity of the equation is preserved under
this substitution. To reduce G to B−, one can argue now as in the elliptic case.

The proof is complete. �

As in the elliptic case, a minor reduction of the regularity assumptions on the
coefficients is possible. In particular, we mention the paper of Knabner and Ves-
sella [KnV], in which they consider the one-dimensional case (n = 1) and obtain
stability estimates assuming only that a11, ∂1a11 are continuous. Similar results are
unknown in higher dimensions.

Also, as for elliptic equations, we can claim that under these regularity assump-
tions on the coefficients we have the following lateral uniqueness continuation
property: if u = 0 on G0 × I for some nonempty open subset G0 of G, then u = 0
on �.

An interesting consequence of Theorem 3.3.10 and of t-analyticity of solu-
tions of parabolic boundary value problems with t-independent coefficients is the
following result generalizing the backward uniqueness property.

Corollary 3.3.11 (Local backward uniqueness). Let u be a solution to the evo-
lution equation (3.1.1), where A is an elliptic partial differential operator of second
order in G (with t-independent coefficients) satisfying the regularity assumptions
of Theorem 3.3.10. The domain of A is H 0

(1)(G) ∩ H(2)(G).



3.4. Hyperbolic and Schrödinger equations 65

If u = 0 on G0 × {T }, where G0 is a nonempty open subset of G, then u = 0
on �.

PROOF. It is known that a solution u(x, t) of a parabolic boundary problem with
zero boundary data and time-independent coefficients is analytic with respect to t ∈
(0, T ) for any x ∈ G. Since u = 0 on G0 × {T }, we have ∂t u = −Au = 0 on this
set. Since the coefficients of A are t-independent, ∂t u satisfies the same equation
and lateral boundary conditions, so we can repeat the argument and conclude that
all t-derivatives of u are zero at (x, T ) when x ∈ G0. Due to analyticity, u = 0 on
G0 × I . Then u = 0 on� by the lateral uniqueness of continuation guaranteed by
Theorem 3.3.10. �

This corollary is a simple consequence of t-analyticity of solutions of parabolic
boundary value problems and of Theorem 3.3.10 on uniqueness of continuation for
parabolic equations. On the other hand, quite recently Alessandrini, Escauriaza,
Fernandez, and Vessella [AlVe], [F] obtained a uniqueness result that justifies the
uniqueness of the continuation for solutions of a wide class of parabolic equations
of second order under minimal assumptions. They proved that if a solution u(x, t)
of such a parabolic equation in the divergent form (with C1(�)-principal and
L∞(�) other (time-dependent) coefficients) is 0 on G0 × {T } for some nonempty
open subset of G, then u = 0 on G × {T }.

As for elliptic equations there is a Carleman type estimate with a second large
parameter σ where we let ψ(x) = |x − b|2, ϕ = eσψ .

Theorem 3.3.12. For a second order parabolic operator A and a bounded domain
� there are constants C1 = C1(ε),C2 = C2(ε, σ ) such that

σ

∫
�

(στϕ)3−2|α|e2τϕ|∂αu|2 ≤ C1

∫
�

e2τϕ|Au|2

for all u ∈ C2
0 (�) and |α| ≤ 2, αn+1 ≤ 1 provided C1 < σ,C2 < τ .

This result is obtained by Eller and Isakov [ElI], and in section 3.5 we show
how to use it to study the thermoelasticity system.

3.4 Hyperbolic and Schrödinger equations

In this section we consider the most challenging hyperbolic equations, where the
uniqueness for the lateral Cauchy problem is much less understood.

Unless explicitly mentioned, in this section we consider the isotropic wave
operator

A(x, t ; ∂)u = a2
0∂

2
t u −�u +

∑
b j∂ j u + cu,

where t = xn+1 and the sum is over j = 1, . . . , n + 1, in the cylindrical domain
� = G × (−T, T ) in R

n+1. We assume that a0 ∈ C1(�), a0 > 0, b j , c ∈ L∞(�).
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We will use the following weight function:

ϕ(x, t) = exp((σ/2)ψ(x, t))(3.4.1)

with the two choices of ψ :

ψ1(x, t) = x2
1 + · · · + x2

n−1 + (xn − βn)2 − θ2t2 − s

or

ψ2(x, t) = −x2
1 − · · · − x2

n−1 − θn(xn − βn)2 − θ2t2 + r2 + θnβ
2
n .

In contrast to Section 3.2, we set �ε = � ∩ {ψ > ε}. We let x ′ =
(x1, . . . , xn−1, 0, 0).

Theorem 3.4.1. Let G be a domain in R
n and γ ∈ C2 be a part of its boundary

such that one of the following three conditions is satisfied:

The origin belongs to G; γ = ∂G.(3.4.2)

G is a subset of {−h < xn < 0, |x ′| < r}; γ = ∂G ∩ {xn < 0}.(3.4.3)

G is {−h < xn < 0, |x ′| < r}; γ = ∂G ∩ {xn = 0}.(3.4.4)

Let us suppose that in the cases (3.4.2) and (3.4.3)

θ2a2
0(a0 + t∂t a0 + 2a−1

0 |t∇a0|) < a0 + x · ∇a0 − βn∂na0, θa0 ≤ 1,(3.4.5)

and in addition, G ⊂ B(0; θT ), β = s = 0 in case (3.4.2) and h(h + 2βn) <
θ2T 2, s = β2

n + r2 in case (3.4.3). In case (3.4.4) we suppose that

a0 + ∇′a0 · x + θn∂na0xn + δ0 < βnθn∂na0,

θ2(a3
0 + 2a0|t∇a0| − a2

0 t∂t a0) < δ0, a0θr < βnθ
2
n , r < θT on �.(3.4.6)

Let ψ be ψ1 in cases (3.4.2) and (3.4.3) and ψ2 in case (3.4.4).
Then a solution u to the Cauchy problem (3.2.5) admits the following bound:

‖u‖(1)(�ε) ≤ C(F + ‖u‖(1)(�)1−κFκ )

where C, κ ∈ (0, 1) depend on ε, and F = ‖ f ‖2(�) + ‖g0‖(1)(�) + ‖g1‖(0)(�),
� = γ × (−T, T ).

We illustrate case (3.4.2) in Figure 3.2 and case (3.4.3) in Figure 3.3.

PROOF. Let us consider cases (3.4.2) and (3.4.3). We let β = (0, . . . 0, βn). By
standard calculations we obtain that the left side of (3.2.2′) is

8ξ 2
1 + · · · + 8ξ 2

n − 8θ2a4
0ξ

2
n+1

−8a3
0∂t a0tθ2ξ 2

n+1 + 16
∑

a0∂ka0ξn+1ξkθ
2t

+8
∑

a0∂ j a0(x j − β j )ξ
2
n+1 = 8(1 + a−1

0 ∇a0 · (x − β)

+θ2(−a2
0 − a0t∂t a0 + 2a0t∇a0 · ξξn+1)

≥ 8(1 + a−1
0 ∇a0 · (x − β) − θ2(a2

0 + a0t∂t a0 + 2|t∇a0|))
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where by homogeneity reasons we let ξ 2
1 + · · · + ξ 2

n = 1, used that then for a
characteristic ξ we have a2

0ξ
2
n+1 = 1 and applied the Schwarz inequality. So the

first condition (3.4.5) guarantees the inequality (3.2.2′). The second condition
(3.4.5) implies that ∇ψ is noncharacteristic on �0. Hence the inequalities (3.4.5)
guarantee pseudo-convexity of ψ .

Now we consider case (3.4.4). As above, the left side in (3.2.2′) is

−8(ξ 2
1 + · · · + ξ 2

n−1 + θ2
n ξ

2
n ) − 8θ2a4

0ξ
2
n+1 + 16θ2ta0ξn+1∇a0 · ξ

−16θ2a3
0 t∂t a0ξ

2
n+1 − 8a0∇′a0 · xξ 2

n+1 − 8θna0∂na0xnξ
2
n+1 + 8θna0∂na0βξ

2
n+1

= −8 + 8(1 − θ2
n )ξ 2

n − 8θ2a2
0 − 16θ2ta0ξn+1∇a0 · ξ − 16θ2a0t∂t a08a−1

0 ∇′a0 · x

− 8θna−1
0 ∂na0xn + 8θna−1

0 ∂na0β + 8θ2a0t∂t a0

≥ 8θna−1
0 ∂na0βn − 8 − 8a−1

0 ∇′a0 · x − 8θna−1
0 ∂na0xn

− 8θ2(a2
0 + 2|t∇a0| − 8a0t∂t a0),

where we assumed that ξ 2
1 + · · · + ξ 2

n = 1 and used that due to the condition
A(, ξ ) = 0 we have a2

0ξ
2
n+1 = 1. The first two conditions (3.4.6) imply that the

left side in (3.2.2′) is positive. The third inequality (3.4.6) implies that ∇ψ is
noncharacteristic, and the fourth condition guarantees that ψ(, T ) < 0 on G.

More detail in case (3.4.4) is given in [Is2].
In all cases, the conditions of Theorem 3.5.2 is satisfied, and Theorem 3.4.1

follows. �

Now we discuss conditions (3.4.5) and (3.4.6). Condition (3.4.5) is required
for pseudo-convexity. If a0 + x · ∇a0 is positive, it can achieved by choosing θ to
be small and βn = 0. If this quantity is arbitrary but ∂na0 < 0, we can guarantee
(3.4.5) when βn is large. The condition G ⊂ B(0; θT ) is needed to ensure that
ψ < 0 on ∂� \ �. The same role is played by the condition h(h + 2βn) < θ2T 2

in case (3.4.3) and by the conditions θ = r/T, r2 < 2h(h + βn), which is easy to
discover by elementary analytic geometry. This means that the observation time
must be sufficiently large.

In case (3.4.2) with constant a0, condition (3.4.5) is satisfied for any θ < 1/a0,
and we obtain a sharp description of the uniqueness region �0 in the Cauchy
problem with the data on the whole lateral surface ∂G × (−T, T ) when G is the
ball B(0; θT ). In cases (3.4.3) and (3.4.4), the descriptions of the uniqueness region
are not sharp. It is interesting to obtain more information about these regions.
In case (3.4.3), the minimum x∗ of xn on ∂G0 can be found from the equation
(x∗ − βn)2 = β2

n + r2. It is clear that G ∩�0 ∩ {t = 0} contains G ∩ {xn < x∗}.
We have

x∗ = −βn((1 + (r/βn)2)1/2 − 1) ≥ −r2/(2βn).

So, by choosing βn large, we can guarantee uniqueness and stability in G ∩ {xn <

x∗} for any negative x∗.
Now we will comment on a choice of β, θ, T to satisfy conditions (3.4.5) and

the inequalities h(h + 2βn) < θ2T 2. We first chooseβn so that 0 < a0 + x · ∇a0 −
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βn∂na0. It is possible if 0 < a0 + x · ∇a0, in addition, when ∂na0 ≤ 0, βn be arbi-
trarily large. Then we choose (large) T so that

h(h + βn)/T 2 < (a0 + x · a0 − βn∂na0)(a3
0 + a2

0 t∂t a + a0|t∇a0|)−1.

After that we let θ2 to be any number in between the left and the right side of the
last inequality. Finally, it suffices for a0 has to be monotone in some direction, and
T needs to be large. In more detail case (3.4.4) is discussed in [Is2].

For general (anisotropic) hyperbolic operator

A(x, t ; ∂) = ∂2
t u −

∑
a jk(x)∂ j∂ku +

∑
b j∂ j u + cu

with C1-coefficients the natural canididate for pseudo-convex function is

ϕ(x, t) = d(x) − θ t2

where d is strictly convex in the Riemannian metric
∑

a jk(x)dx j dxk (a jk is the
inverse of a jk) and ∇d �= 0 on G. Indeed, Lasiecka, Triggiani, and Yao [LaTY] and
Triggiani and Yao [TrY] obtained Carleman type estimates similar to (3.2.3′) with
this weight function and with semi-explicit boundary terms. They used tools from
Riemannian geometry and some pointwise inequalities for differential quadratic
forms which trace back to theory of energy estimates for general hyperbolic equa-
tions and which are in simplest case outlined after Exercise 3.4.5. Of course, it is
a problem to construct such d for a particular choice of a jk,G, �, but it can be
done in some intersting cases.

COUNTEREXAMPLE 3.4.2. Fritz John [Jo2] showed that the Hölder-type stability
on compact subsets stated in Theorem 3.4.1 is impossible when one considers
the Cauchy problem for the wave operator Au = ∂2

t u −�u in� = G × (−T, T )
with G = {x : |x | > 1} in R

2. John found that the solutions to the wave equation

uk(x, t) = k1/3 jk(kr )eik(t+φ),

(x1 = r cosφ, x2 = r sinφ, jk is the Bessel function of order k) satisfy the follow-
ing conditions:

‖uk‖∞(�1/2) ≤ qk, 1/C ≤ ‖uk‖∞(�1), |uk |0(R3) ≤ C,

provided C < k where �1/2 is the cylinder {|x | < 1/2, t ∈ R}, �1 is the cylinder
{|x | < 1, t ∈ R}, and q, C are constants independent of k, 0 < q < 1. These so-
lutions do not satisfy the estimate (3.2.6) (with any κ ∈ (0, 1)). In fact, they show
that the best possible estimate is of logarithmic type. This estimate is obtained in
the same paper of John. Using the known recursion formulae 2 j ′

k = jk+1 + jk−1

one can replace the upper bound on uk in C(R3) by a similar upper bound in any
Ck(R3).

Since the functions

vk(x) = k1/3 jk(kr )eikφ

satisfy the Helmholtz equation (�+ k2)vk = 0 in R
2 and vk(x) = e−ikt uk(x, t) the

John’s example also shows that the bound (3.2.6) or the conditional Hölder-type
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stability with constants independent on k for general geometry is not possible for
the Cauchy problem for the Helmholtz equation.

By using John’s construction, Kumano-Go [KuG] found the operator
Au = ∂2

t u −�u + b∂t u + cu = 0 with time-dependent, real-valued C∞(R3)-
coefficients b, c such that the equation Au = 0 has a C∞-solution u in R

3 that
is zero for |x | < 1 and not identically zero. So we have very convincing examples
showing that conditions (3.4.5) and (3.4.6) are essential.

Considering x and y as elements of the field C, introducing the conformal
substitution x = 1/(1 − y) − 1/2, and using the equality�y = |x + 1/2|4�x , we
transform Kumano-Go’s equation into our hyperbolic equation with a0 = 1/(x2

1 +
(x2 + 1/2)2) having a nonzero solution near the origin with zero Cauchy data on
the plane x2 = 0. Here ∂2a0 < 0, so condition (3.4.6) is not satisfied.

If one allows complex-valued coefficients, then there are even counterexam-
ples when the principal part has constant coefficients and � = {x2 = 0}. If in
Corollary 13.6.7 of Hörmander’s book [Hö2] one sets the operator Q(x, t ; ∂) =
∂2

1 + ∂2
2 − ∂2

t , ψ = x2 + t , and φ = x1, then one gets complex-valued C∞-
functions u(x, t), c(t + x2, x1) such that (∂2

t − ∂2
1 + c(∂2 + ∂t ))u = 0 on R

3 and
supp u = {0 ≤ x1}.

The following result is obtained in [ElI], [Is1] and it can be used when studying
higher order equations and systems.

Theorem 3.4.3. Let a0θ < 1 on � and the condition (3.4.5) be satisfied.
Then there are constants C1 = C1(ε),C2 = C2(ε, σ ) such that∫

�

(στϕ)3−|α|e2τα|∂αu|2 ≤ C1

∫
�

e2τϕ|Au|2

for all u ∈ C2
0 (�) provided |α| ≤ 1, C1 < σ,C2 < τ .

Conditional Hölder and moreover logarithmic stability are reasons of poor res-
olution in numerical solution of many inverse problems which severely restricts
applications. So better stability is very valuable in inverse problems. The above ex-
ample of John shows that in a general case in the Cauchy problem for the Helmholtz
equation stability is deteriorating when wave frequency k grows. However, under
natural convexity conditions the opposite is true, i.e. stability is improving. We will
give one of the first results in this direction obtained by Hrycak and Isakov [HrI].

Theorem 3.4.4. Let �(d) = � ∩ {d < xn} and � = ∂� ∩ {d < xn}.
Then there are constants C and κ ∈ (0, 1), κ = κ(d), such that for any solution

u to the Cauchy problem (3.2.5) with A = −�− k2 we have

‖u‖(0)(�(d)) ≤ C(F + (k + 1)−1d−2‖u‖1−κ
(1) (�)F(k)κ )

where

F(k) = ‖ f ‖(0)(�) + (kd−0.5 + d−1.5)‖u‖(0)(�) + ‖∇u‖(0)(�).
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This result is proven in [HI] by splitting u into a “low” and “high” frequency
zones in the horizontal directions x ′ by using the Fourier transformation with re-
spect to x ′. The “low” frequency component where |ξ ′| < k solves the hyperbolic
differential equation with respect to xn and the Lipschitz stability bound C F can
be obtained by using standard energy estimates. To handle the “high” frequency
component one observes that by elementary properties of the Fourier transforma-
tion the H(0)-norm of this component is bounded by (k + 1)−1 times H(1)-norm.
To bound this higher order norm one can use Theorem 3.2.2 for A with C which
does not depend on k. This k-independent bound can be obtained by repeating the
proof of Theorem 3.2.2 where instead of Theorem 3.2.1 (or 3.2.1′) one uses the
following Carleman estimate.

Exercise 3.4.5. Let ϕ(x) = |x − β|2 and � be a bounded Lipschitz domain.
Show that there is a constant C which does not depend on k such that∫
�

e2τϕ(τ 3|u|2 + τ |∇u|2) ≤ C(
∫
�

e2τϕ|(�+ k2)u|2 +
∫
∂�

e2τϕ(τ 3|u|2 + τ |∇u|2))

for C < τ , all real k, and all u ∈ H(2)(�).

To solve exercise 3.4.5 we recommend to use the basic ideas from theory of
Carleman estimates. First, remove the exponential weight by using the substitution
u = e−τϕv . Then A(, ∂) will be replaced by A(, ∂ − τ∇ϕ). To get the L2-bound
for v use the obvious inequality

|A(, ∂ − τ∇ϕ)v|2 ≥ |A(, ∂ − τ∇ϕ)v|2 − |A(, ∂ + τ∇ϕ)v|2.
Standard calculations show that for A = −�− k2 and ϕ(x) = |x − β|2 the last
expression is

−16τ (�v)(x − β) · ∇v − 8τnv�v

−16τ (4τ 2|x − β|2 + k2)v(x − β) · ∇v − 8τn(4τ 2|x − β|2 + k2)v2.

One can complete the proof integrating by parts terms involving�v∂ j v, v�v, v∂ j v
and using that v∂ j v = 1/2∂ j (v2).

Now we give a sharp uniqueness result for equations with time-independent
coefficients that will be derived from Theorem 3.2.5.

Corollary 3.4.6. Let the coefficients of the operator A be independent of t , let
the coefficients of the principal part a jk ∈ C1(Rn), and let other coefficients be in
L∞(Rn). Let � ⊂ � be a C2-surface that is noncharacteristic with respect to A.
Let us assume that u ∈ H(1)(�), Au = 0 in �.

If u = ∂νu = 0 on �, then u = 0 in � near �.

PROOF. Since uniqueness in the Cauchy problem with the data on a space-like
surface is well known, we will assume that � is time-like. Let (x0, t0) be any point
of � and let � be given by the equation {ψ(x, t) = 0} near this point. We check
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the strong ′-pseudo-convexity of the function ϕ = exp(σψ) for large σ , where we
let x ′ = x and x ′′ = t . We can assume that |ζ | = 1. When τ = 0, this condition is
satisfied because at ξ = ξ ′ the symbol is elliptic. By continuity it is satisfied also
for |τ | < ε0. Let |τ | ≥ ε0. Calculating as above, we conclude that the form (3.2.1)
is H1 + H2, where H1 ≥ −Cσφ and

H2 ≥ σ 2φ3τ 2|∂1ψ∂1ψ + · · · + ∂nψ∂nψ − a2
0∂tψ∂tψ | ≥ σ 2φ/C

because the surface � is noncharacteristic and because from |ζ | = 1, |τ | ≥ ε0 we
have |τσφ| > 1/C . By choosing σ large, we obtain the ′-pseudo-convexity, which
will be preserved for the small quadratic perturbation φε,r = ϕ − ϕ(x0, t0) −
ε(ρ2 − r2) of this function, where ρ is the distance to the point (x0, t0). The
perturbed function is equal to εr2 > 0 at the point (x0, t0), so it does satisfy the
conditions of Theorem 3.2.5. So u = 0 on the set {φε,r > 0} ∩� (on one side of
� near the point (x0, t0)). If needed, we similarly consider the other side. Since
this is an arbitrary point of �, the proof is complete. �

Lemma 3.4.7. Let T r be the triangle in the (xn, t)-plane with vertices (0, 0),
(−R, T ), (−R,−T ). Let �0 be the cylindrical domain {|x ′| < ε} × T r. Assume
that a∗ R < T , where a∗ = sup a0 over �0. Let � be ∂�0 ∩ {xn = −R}.

Then any solution u ∈ H(2)(�0) to the hyperbolic equation Au = 0 in �0 with
zero Cauchy data on � is zero on �0.

PROOF. We will derive this result from Corollary 3.4.6
Let δ > 0. Let us consider the triangle T rδ with vertices at (−δ, 0), (−R,−T ),

(−R, T ). This triangle is contained in T r , and it is close to it when δ is small. Let
�δ be {|x ′| < ε1} × T rδ , where ε1 depends only on ε and δ and is defined below.
We will show that u = 0 on any �δ .

Let us assume the opposite. We define the number δ∗ as − sup{x∗
n : u = 0 on

�δ ∩ {xn < x∗
n }}. Then δ∗ > δ. To obtain a contradiction we will make use of the

uniqueness of the continuation for the domain Con defined as the intersection of
the two cones {|x | < |a−1

∗ t − ε|, t < εa∗} and {|x | < |a−1
∗ t + ε|, t > −εa∗}. We

claim that if Au = 0 in Con and u = 0 on Con ∩ {|x | < ε1} for some ε1, then
u = 0 on Con.

To prove this we consider any compact set K in Con. We find a smooth function
k(t) such that |k ′| < a−1

∗ , k is positive on the interval I = (−εa∗, εa∗) and is zero
at its endpoints, and K is contained in the set {|x | < k(t)}. We introduce the family
of domains�θ defined as {|x | < θk(t), t ∈ I }. Their boundaries are time-like due
to the definition and to the condition |k ′| < a−1

∗ . In addition,�θ ⊂ {|x | < ε} when
θ is small and positive, so then u = 0 on �θ . From Corollary 3.4.6 it follows that
if u = 0 on �1, then in particular, u = 0 on K , and we have our claim.

Now we go to the basic step of the proof. By extending u as zero on {xn ≤ −R}
we preserve the differential equation, because the Cauchy data are zero on �. Let
us consider the translation of the set Con by δ∗ + ε/2 in the negative direction of
the xn-axis. Denote by Con∗ any translation of the new set in the t-direction such
that its upper and lower vertices do not intersect ∂�δ . We have Au = 0 on Con∗,
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and moreover, due to our choice of this cone, u = 0 near the t-axis of Con∗ are less
steep than those of�δ , we conclude that u = 0 on�δ ∩ {|x ′| < ε1, xn < −δ∗ + ε1}
for some ε1 that depends only on ε and δ. We have a contradiction with the choice
of δ∗, which shows that u = 0 on �δ . In particular, u = 0 on {x ′ = 0} × T rδ for
any δ > 0, so u = 0 on {x ′ = 0} × T r .

By using translations by a′, |a′| < ε, and applying the same argument to
the domain {|x ′ − a′| < ε − |a′|} × T r , we conclude that u = 0 on {x ′ = a′} ×
T r . Since the union of these sets over a′ is {|x ′| < ε} × T r , the proof is
complete. �

It is quite interesting that when the Cauchy data are prescribed on a “large”
part � of the lateral boundary while on the remaining part we have one classical
boundary condition, then one can show that the operator mapping the initial data
into the lateral Cauchy data is isometric with respect to standard energy norms.
So under reasonable conditions, the lateral Cauchy problem is as stable as any
classical problem of mathematical physics. However, it seems impossible to obtain
an existence theorem (to describe the set of Cauchy data) because in decreasing �
slightly we still will have uniqueness. We start with the case of� = ∂G × (−T, T ).

We consider a solution u to the boundary value problem

Au = f in � = G × (−T, T ), u = 0 on ∂G × (−T, T ), ∂G ∈ C2.(3.4.7)

We define the energy integral for the hyperbolic equation (3.2.3) as

E(t) = 1/2
∫

G
((∂t u)2 + |∇u|2 + u2)( ·, t).

We have the standard energy integral, provided that u = 0 on ∂G (Theorem 8.1).
This can be proven by multiplying the equation Au = 0 by eτ t∂t u, integrating over
G × (0, t), and using elementary integral inequalities.

Theorem 3.4.8. Let γ = ∂�. Let A be a t-hyperbolic partial differential operator
of second order. Let ψ be pseudo-convex with respect to A,

ψ < 0 on G × {−T, T }, and 0 < ψ on G × {0}.(3.4.8)

Then there is a constant C such that for any solution u to (3.4.7)

E(t) ≤ C

(∫
γ×(−T,T )

(∂νu)2 +
∫

G×(−T,T )
f 2

)
(3.4.9)

when −T < t < T .

To prove the theorem we will use Carleman estimate (3.2.2′) and the argument
of Klibanov and Malinskii [KlM] and of Tataru [Tat1]. Another approach is called
the multiplier method which is motivated by the work of Morawetz on mixed-type
equations and Friedrich’s abc-method. We will demonstrate it later.

PROOF. By using Theorem 8.1 and subtracting from u the solution of the boundary
value problem (3.4.7) augmented by th zero initial conditions we can assume that
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f = 0. By the Carleman estimate (3.2.2′)∫
�

e2τϕ(|u|2 + |∇u|2) ≤ C(
∫
∂G×(−T,T )

e2τϕ|∂νu|2

+
∫

G×{−T,T }
e2τϕ(τ 3|u|2 + τ |∇u|2))

Since ϕ = eσψ from the condition (3.4.8) it follows that

1 + ε1 < ϕ, on G × (−T1, T1) and that ϕ ≤ 1 on G × {−T, T }
for some small positive ε1, T1. Shrinking the integration domain in the left side of
the previous inequality, replacing ϕ in the left side by 1 + ε1, by its supremum �
over the lateral boundary and by 1 in the integrals remaining part of the boundary,
and dividing the both sides by e2τ (1+ε1) we obtain∫

G×(−T1,T1)
(|u|2 + |∇u|2) ≤ C(e2τ�

∫
∂G×(−T,T )

|∂νu|2 + e−0.5τε1

×
∫

G×{−T,T }
(|u|2 + |∇u|2)).(3.4.10)

where we also used that τ 3e−0.5τε1 < C .
The conservation of energy for the hyperbolic problem (Theorem 8.1) implies

that

C−1 E(0) ≤ E(t) ≤ C E(t) when t ∈ (−T, T ).

Using these inequalities and the obvious fact that∫
G×(−T,T )

(|∂2
t u|2 + |∇u|2 + |u|2) =

∫
(−T,T )

E(t)dt

we derive from (3.4.10) the bound

2T1C−1 E(0) ≤ C(e2τ�
∫
∂G×(−T,T )

|∂νu|2 + 2Ce−0.5ε1 E(0)).

Choosing τ so large that 2T1/C > 2Ce−0.5τε1 we eliminate E(0) from the right
side and complete the proof. �

In Carleman estimates (3.2.3′) of Theorem 3.2.1′ one does not need to include
all boundary terms. In the papers of Imanuvilov [Im], Tataru [Tat3] the following
form of (3.2.3′) was obtained.

Theorem 3.4.9. Let A be a t-hyperbolic operator of second order in � = G ×
(−T, T ). Let a function ψ be pseudo-convex with respect to A on � and

∂νψ < 0 on �0.(3.4.11)
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FIGURE 3.4.

Then there are constants C1(σ ),C2 such that

τ 3−2|α|
∫
�

|∂αu|2w2 ≤ C1(
∫
�

|Au|2w2 +
∫
∂�\�0

τ |∂νu|2w2)

when C2 < σ,C1 < τ , for all functions u ∈ H(2)(�) for which u = 0 on ∂�, u =
∂t u = 0 on G × {−T, T }.

Using Theorem 3.4.10 instead of Theorem 3.2.1’ in the proof of Theorem 3.4.8
one can obtain the bound (3.4.9) with γ = ∂G \ γ0. Now we will obtain a similar
result by a different method which can be used for some hyperbolic systems.

Let β be a point in R
n . Let l(x) = x − β. Let γ be ∂G ∩ {l · ν > 0}. The geom-

etry of the problem is illustrated by Figure 3.4

Exercise 3.4.10. Let

Ea(t) = 1/2
∫

G
(a2

0(∂t u)2(, t) + |∇u|2(, t)).

Prove that when b j = 0, we have

Ea(0) ≤ Ea(t) + ε
∫

G×(0,t)
(∂t u)2 + C(ε)

∫
G×(0,t)

(u2 + f 2)

for any solution u to a2
0∂

2
t u −�u = f satisfying the zero Dirichlet lateral

boundary conditions u = 0 on ∂G × (0, t). Here ε is any positive number. Show
that the inequality is valid with E(0) and E(t) interchanged, and moreover when
c = 0 and a0 does not depend on t one can let ε = C(ε) = 0.

To solve this exercise we recommend to multiply the equation Au = f by
eτ t∂t u, integrate by parts over G × (0, t), and use the elementary inequality 2ab ≤
εa2 + ε−1b2, as in the proof of next Theorem.

The following result in a particular case by the multiplier method was first
obtained by Lop Fat Ho [Lo].
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Theorem 3.4.11. Let A be a hyperbolic partial differential operator of second
order. Let L be sup |l| over G. Let us assume that

a0L < T and 0 ≤ l · ∇a0 on G.(3.4.12)

Then there is a constant C such that for any solution u to (3.4.7)

E(t) ≤ C(
∫
γ×(−T,T )

(∂νu)2 +
∫

G×(−T,T )
f 2)(3.4.13)

when −T < t < T .

We will give a proof extending the original argument of Lop Fat Ho [Lo] for the
wave equation with constant coefficients.

PROOF. We multiply the equation Au = f by the nonstandard factor l · ∇u, inte-
grate by parts using the zero lateral boundary data, and make simple transforma-
tions:

0 =
∫

G
lk∂ku(a2

0∂
2
t u −�u + cu − f )

= ∂t

∫
G

lk∂kua2
0∂t u − 1/2

∫
G

lka2
0∂k(∂t u)2

−
∫

G
lk∂ku∂ j∂ j u +

∫
G

lk(cu − f )∂ku

= · · · + 1/2
∫

G
a2

0∂klk(∂t u)2 +
∫

G
a0(∂t u)2lk∂ka0 −

∫
∂G

lkν j∂ku∂ j u

+ 1/2
∫

G
lk∂k(∂ j u)2 +

∫
G

|∇u|2 + · · · ≥ ∂t

∫
G

l · ∇ua2
0∂t u

+ n/2
∫

G
a2

0(∂t u)2 − 1/2
∫
∂G

lkνkν jν j (∂νu)2

− ((n − 2)/2)
∫

G
|∇u|2 +

∫
G

(cu − f )l · ∇u,

where we denote by . . . the unchanged terms and use that ∂ku = νk∂νu on ∂G
due to the lateral boundary condition u = 0. We adopt the summation convention
over the repeated indices j, k from 1 to n. In the last inequality we have used the
second condition (3.4.12) and dropped the corresponding nonpositive term. Now,
from the definition of γ we get

n/2
∫

G
a2

0(∂t u)2 − ((n − 2)/2)
∫

G
|∇u|2 ≤ −∂t

∫
G

a2
0l · ∇u∂t u

+ 1/2
∫
γ

l · ν(∂νu)2 + ε
∫

G
|∇u|2 + C(ε)

∫
G

u2 + C(ε)
∫

G
f 2,(3.4.14)

where the last two terms bound the integral of cul · ∇u via the Schwarz inequality
and the elementary fact that 2wv ≤ εw2 + (1/ε)v2.



3.4. Hyperbolic and Schrödinger equations 77

We also need a more traditional relation. To obtain it we multiply the hyperbolic
equation by u and integrate by parts as above:

0 =
∫

G
u(a2

0∂
2
t u −�u + cu − f )

= ∂t

∫
G

a2
0u∂t u −

∫
G

a2
0(∂t u)2 +

∫
G

|∇u|2 +
∫

G
cu2 −

∫
G

u f.

Multiplying this relation by (n − 1)/2 and subtracting from inequality (3.4.14)
we obtain

E(t) ≤ −∂t

∫
G

a2
0(lk∂ku + ((n − 1)/2)u)∂t u + 1/2

∫
γ

l · ν(∂νu)2

+ ε
∫

G
|∇u|2 + C(ε)

∫
G

(u2 + f 2).

We bound E(t) from below using the result of Exercise 3.4.10 and integrate with
respect to the time variable over (−T, T ) to obtain

2T E(0) ≤
∫

G
a2

0l · (∂t u∇u(−T ) − ∂t u∇u(T )) + ε
∫

G×{−T,T }
(∂t u)2

+ C(ε)
∫

G×{−T,T }
u2 + 1/2

∫
γ×(−T,T )

l · ν(∂νu)2

+ ε
∫

G×(−T,T )
(|∇u|2 + (∂t u)2) + C(ε)

∫
G×(−T,T )

(u2 + f 2).

By using the inequality

a2
0l · ∂t u∇u ≤ a0(L/2)(a2

0(∂t u)2 + |∇u|2),

letting a∗ be sup a0 over G, and bounding E(t) by E(0) as above we obtain

2T E(0) ≤ (2a∗L + 2ε)E(0) + 1/2
∫
γ×(−T,T )

l · ν(∂νu)2

+ εC E(0) + C(ε)

(∫
G×{−T,T }

u2 +
∫

G×(−T,T )
(u2 + f 2)

)
.

By using the simplest trace inequality,

u2( , T ) ≤ ε1

∫
(0,T )

(∂t u)2 + C(ε1)
∫

(0,T )
u2,

we eliminate the integral over G × {−T, T } possibly increasing ε. Finally, using
the first condition (3.4.6), choosing ε, ε1 so small that T − a0L − (2 + C)ε −
2ε1C(ε) > 0, and putting all terms with E(0) into the left side of the previous
inequality for E(0) we arrive at the inequality

E(0) ≤ C
∫
γ×(−T,T )

(∂νu)2 + C
∫

G×(−T,T )
(u2 + f 2).(3.4.15)
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The estimate (3.4.13) will follow if we eliminate the last term. We will do it by
a standard compactness-uniqueness argument.

Let us assume that the estimate (3.4.12) is not true. Then there is sequence of
functions uk ∈ H(2)(�), Auk = fk such that

E(0; uk) ≥ k(
∫
γ×(−T,T )

(∂νuk)2 +
∫

G×(−T,T )
f 2
k ).(3.4.16)

Dividing uk by constants E(0; uk) we can assume that their energies are equal to
1. From the bound (3.4.14) it follows now that

C−1 ≤
∫
�

u2
k .(3.4.17)

Due to the assumption that E(0; uk) = 1 and conservation of the energy, ‖uk‖(1) ≤
C , so by using compactness of the embedding of H(1) into L2 (Theorem A2) we
can extract a subsequence of uk which is convergent in L2(�) to u∗. We will
denote this subsequence by the same symbol uk . Applying (3.4.15) to uk − um

and using (3.4.16), (3.4.17) we conclude that uk is convergent also in H(1)(�). By
the definiton (8.0.5) of a weak solution∫

�

(−a2
0∂t uk∂∂tφ + ∇uk · ∇φ) +

∫
γ×(−T,T )

∂νukϕ =
∫
�

fkφ

for any test function φ ∈ C2(�) which is zero on G × {−T, T } and on (∂G \ γ ) ×
(−T, T ). We pass to the limit as k goes to infinity and we obtain the same identity
with integral over γ × (−T, T ) and fk replaced by zeros.

To conclude that u∗ = 0 and to get a contradiction we need Lemma 3.4.7 where
a solution is more regular. To achieve this regularity we will use convolution u∗

θ of
u∗ with respect to t with the standard mollifying kernel supported in (−θ, θ). The
functions u∗

θ are well-defined on �(θ ) = G × (−T + θ, T − θ ), they satisfy the
above integral identity, they are zero on ∂G × (−T, T ), and ∂2

t u∗
θ ∈ L2(�(θ )). The

integral identity can be viewed as the definition (4.0.3) of a weak solution u∗
θ to the

elliptic equation −a2
0∂

2
t u∗
θ −�u∗

θ = f in�(θ ) where f = −2a2
0∂

2
t u∗
θ ∈ L2(�(θ )).

Since u∗
θ = 0 on ∂G × (−T + θ, T − θ ) by elliptic boundary regularity (Theorem

4.1) u∗
θ ∈ H(2)(�(2θ )). This function solves the hyperbolic equation Au∗

θ = 0 in
�(2θ ) and it has zero Cauchy data on γ × (−T + 2θ, T − 2θ ). Using condition
(3.4.12) and choosing θ small we can satisfy conditions of Lemma 3.4.7. By this
lemma u∗

θ = 0 is zero on G × (−t0, t0) for small positive t0. Since u∗
θ = 0 on

∂G × (−T + 2θ, T − 2θ ) by theory of hyperbolic problems (section 8.1) it is zero
on�(2θ ). Letting θ go to 0 we conclude that u∗ = 0 on�. This is a contradiction,
because due to (3.4.17) and to the L2(�)-convergence of uk to u∗ the limit is not
zero.

The contradiction shows that the estimate (3.4.13) holds. �

Exercise 3.4.12. Assume that γ is an open (nonempty) part of ∂G. Let Lγ be
sup inf |l(x)|(inf over l and sup over x ∈ G), where l(x) is a smooth curve in G
joining x and a point of γ . (In other words, Lγ is the “interior” distance from γ to
G. It coincides with the Hausdorff distance when G is convex.)
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Prove that if a0Lγ < T , then any solution u ∈ H(2)(�) to the equation Au = 0
in � with zero Cauchy data on γ × (−T, T ) is zero on G × {0}.

Observability inequality (3.4.9), its implications for stabilization of solutions of
hyperbolic initial boundary value problems and to exact controllabity also in more
difficult case of zero Neumann boundary data on ∂G as well as many references to
control theory and the multiplier method are given in papers of Imanuvilov [Im],
Lasiecka, Triggiani, Yao and Zhang [LaTZ1], [LaTY], [TrY].

By using methods of geometrical optics and Fourier analysis and assuming some
nondegeneracy condition about ∂G, Bardos, Lebeau, and Rauch [BarLR] obtained
necessary and sufficient conditions for the set � when Lipschitz stability in the
Cauchy problem holds.

Now we prove and formulate similar results for the Schrödinger-type equation,
which possesses properties of the both parabolic and hyperbolic equations.

In Theorem 3.4.13 we consider the operator Au = ia0∂t u − ∂2
1 u − · · · − ∂2

n u +∑
b j∂ j u + cu.

Theorem 3.4.13. Let us consider a domain G and a surface γ satisfying condi-
tions (3.4.3). Suppose that

−2a0 < x · ∇a0, ∂na0 ≤ 0 on �,� = G × (−T, T ).(3.4.18)

Then for any domain�ε with closure in� ∪ � we have uniqueness of a solution
u to the Cauchy problem (3.2.5) and the estimate

‖∂ j u‖2(�ε) ≤ C(F + M1−κFκ ), j = 1, . . . , n,

where C, κ ∈ (0, 1) depend on �ε, M is ‖ ∑
∂ku‖2(�) + ‖u‖2(�), and F is as

defined in Theorem 3.2.2.

PROOF. Due to the assumptions, �ε ⊂ {|t | < T − τ } for some positive τ . Let us
choose a C∞-function ω(t) that is 0 when |t | < T − τ , 0 ≤ ω ≤ h everywhere,
and ω(T ) = ω(−T ) = h. The substitution

x1 = y1, . . . , xn−1 = yn−1, xn = yn − ω(t), t = s

does not change the principal part of the operator A and the second condition
(3.4.18), while the first one is replaced by −2a0 < y · ∇a0 − ω∂na0. In the new
variables,� contains ∂� ∩ {yn < 0} and�ε is a subset of {|y′| < r,−h < yn < 0}.
Later on we will switch to the notation x again, keeping in mind the change in
condition (3.4.18).

We will use again the weight function ϕ = exp(σ/2ψ) with

ψ(x, t) = x2
1 + · · · + x2

n−1 + (xn − βn)2 − β2
n − r2, h2 + 2hβn > r2

and check for this function the strong pseudo-convexity condition (3.2.2) with
m = (2, . . . , 2, 1) and q = n.

The equality Am(ζ ) = 0 for ζ = ξ + iτ∇nϕ, ∇nϕ = σ/2ϕ∇ψ is equivalent to
the relations for its real and imaginary parts:

−a0ξn+1 +
∑
ξ 2

j = τ 2σ 24−1ϕ2|∇ψ |2, 0 = ξ · ∇ψ.(3.4.19)
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The left side of (3.2.2) is the sum of

H1 = 4σϕ(|ζ1|2 + · · · + |ζn|2) + τ−1I(∂1a0ξn+12ζ1 + · · · + ∂na0ξn+12ζn)

and of

H2 = σ 2ϕ|∂1ψζ1 + · · · + ∂nψζn|2.
By using the formula for ζ and the relations (3.4.19), one can see that

H1 = σϕ(4|ξ |2 + τ 2σ 2φ2|∇ψ |2 − 2ξn+1x · ∇a0 + 2ξn+1βn∂na0)

= σφ(2a−1
0 (2a0 + x · ∇a0 − βn∂na0)|ξ |2

+ a−1
0 (2a0 − x · ∇a0 + βn∂na0)2−1τ 2σ 2ϕ2|∇ψ |2),

H2 = σ 4ϕ2τ 2|∇ψ |2.
Using homogeneity and assuming |ζ | = 1 and considering τ = 0 we conclude

that condition (3.4.18) and the first relation (3.4.19) guarantee that H1 > 0 when
βn is large enough, and then H > 0. At this point we fix βn . This inequality is
preserved by continuity when |τ | < ε0. When |τ | ≥ ε0 we can achieve positivity
again by choosing σ large. So ϕ is strongly pseudo-convex, and one can apply
Theorem 3.2.2. To do so we define �∗

δ as � ∩ {ψ > δ}. By choosing βn large we
can achieve that �ε is contained in �∗

δ for some small δ. Our choice of ψ and
the conditions on βn guarantee that ψ < 0 on ∂�\�. Now the claim follows from
Theorem 3.2.2. �

Observe that positive T can be arbitrarily small. Conditions (3.4.18) are satisfied
when a0 is constant. When γ = ∂G, we can use a translation in the xn-direction
and achieve that G ⊂ {xn < 0}, so the conditions of this theorem will be satisfied,
and we have uniqueness and stability of the continuation from the whole lateral
boundary ∂G × (−T, T ) for any (small) T . Carleman estimates with semi-explicit
boundary terms and their applications to observability with Dirichlet or Neumann
boundary conditions are obtained in the recent paper by Lasiecka, Triggiani, and
Zhang [LaTZ2].

A general scheme of deriving controllabity/observability from Carleman esti-
mates, conservation of energy, and propagation of singularities is given by Littman
and Taylor [LitT].

3.5 Systems of partial differential equations

The results of sections 3.2-3.4 are valid for the Cauchy problem for principally
diagonal systems

Au = f in �, (A = A(d) + A1) u = g0, ∂νu = g1 on �(3.5.1)

where A(d) is a diagonal second-order matrix partial differential operator with
C1(�)-coefficients and A1 is a matrix first-order operator with L∞(�)-coefficients.
First we observe that Theorem 3.2.1′ implies
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Corollary 3.5.1. Let a function ψ be pseudo-convex with respect to all scalar
operators forming A(d).

Then there are constants C1(σ ) and C2 such that for σ > C2, τ > C1(σ ) and
all vector-functions u ∈ H(1)(�)∫

�

e2τϕ(τ 3|u|2 + τ |u|2) ≤ C2(
∫
�

e2τϕ|Au|2 +
∫
∂�

e2τϕ(τ 3|u|2 + τ |u|2)).

Using Corollary 3.5.1 in the proof of Theorem 3.2.2 instead of Theorem 3.2.1
one obtains

Theorem 3.5.2. Let a function ψ be pseudo-convex with respect to all scalar
operators forming the principal part of A. Let ψ < 0 on ∂� \ �.

Then there are constants C, κ depending on �,�,A, ϕ, ε such that a solution
u to the Cauchy problem (3.5.1) satisfies the bound

‖u‖(1)(�ε) ≤ C(F + ‖u‖1−κ
(1) (�0)Fκ )(3.5.2)

where F = ‖f‖(0)(�0) + ‖u‖(0)(�) + ‖∇u‖(0)(�)).

This result gives better stability estimate compared with Theorem 5.3.2 gaining
0.5 in indices of boundary norms.

Theorem 3.5.3. Let A be a principally diagonal t-hyperbolic system with time
independent coefficients. Let the surface � be non-characteristic with respect to
all scalar operators forming the principal part of A.

Then there is an open subset �(0) of � whose closure contains � such that a
solution to the Cauchy problem (3.5.1) is unique in �(0).

Complete proofs of Theorems 3.5.2, 3.5.3 are given in the paper of Eller, Isakov,
Nakamura, and Tataru [EINT]. It was also observed in this paper that Theorems
3.5.2, 3.5.3 imply uniqueness results in the lateral Cauchy problem for the classical
isotropic Maxwell’s and elasticity systems.

First we consider the dynamical Maxwell’s system

∂t (εE) = curl H + j,

∂t (µH) = curl E,

div(εE) = 4πρ, div(µH) = 0(3.5.3)

for the electric and magnetic fields E = (E1, E2, E3),H = (H1, H2, H3) in the
medium with electric permittivity and magnetic permeability ε, µ ∈ C2(�), the
density of electrical current j(x, t), and the electrical charge density ρ(x, t). Here
� is a bounded domain in R

4.
Differentiating the first equation (3.5.3) with respect to t , applying the curl to

the second equation and using it to replace ∂t curlH in the first equation we obtain

∂2
t (εE) + 1/µ(curlcurlE + ∂tµcurlH + ∂t (∇µ× H)) = ∂t j.
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Similarly,

∂2
t (µH) + 1/ε(curlcurlH − ∂tεcurlE − ∂t (∇ε × E) + curlj) = 0.

Using that curl curl = −�+ ∇div and utilizing the last two equations in (3.5.3)
to substitute

divE = 1/ε(4πρ − ∇ε · E), divH = −1/µ(∇µ · H),

we conclude that the Maxwell’s system (3.5.3) implies the following 6 × 6 prin-
cipally diagonal system

εµ∂2
t E −�E + AE,1 = µ∂t j − ∇((4πρ)/ε),

εµ∂2
t H −�H + AH,1 = −curlj,(3.5.4)

where we introduced the matrix operators of first order

AE,1(E,H) = 2µ∂tε∂t E + µ∂2
t εE + ∂t (∇µ× H) + ∂tµcurlH − ∇(1/ε∇ε · E),

AH,1(E,H) = 2ε∂tµ∂t H + ε∂2
t µH − ∇(µ∇µ · H) − ∂tεcurlE − ∂t (∇ε × E).

Specifying Theorems 3.5.2, 3.5.3 to the system (3.5.4) we obtain two uniqueness of
the continuation results for the Cauchy problem for the Maxwell’s system (3.5.3).

Corollary 3.5.4. Let a function ψ be pseudo-convex with respect to the wave
operator εµ∂2

t −� in �. Let ψ < 0 on ∂� \ � where � is a C2- (hyper)surface
in R

4.
Then there are constants C, κ ∈ (0, 1) depending on �, ε, µ,ψ, δ such that for

any solution (E,H) to the Maxwell’s system (3.5.3) we have

‖E‖(1)(�δ) + ‖H‖(1)(�δ) ≤ C(F + M1−κFκ )(3.5.5)

whereF = ‖E‖(1)(�) + ‖H‖(1)(�) + ‖j‖(1)(�) + ‖ρ‖(1)(�) and M = ‖E‖(1)(�)+
‖H‖(1)(�).

Observe that to get the Cauchy data on �, one has to use E,H and the equations
(3.5.3) to obtain normal components of ∇E,∇H on �.

Corollary 3.5.5. Let the coefficients ε, µ be time independent. Let a surface � be
non-characteristic with respect to the wave operator εµ∂2

t −�, j = 0, ρ = 0 in
�, and E = H = 0 on �.

Then there is a neighborhood V of � such that E = H = 0 in � ∩ V .

Exercise 3.5.6. By using first two equations (3.5.3) to substitute curlH, ∂t H onto
the first equation (3.5.4) show that any solution to (3.5.3) satisfies

εµ∂2
t E −�E + 2µ∂tε∂t E + µ∂2

t εE − ∇(1/ε∇ε · E) + ∂tµ∂t (εE)

+ 1/µ∇µ× curlE + 1/(2µ)∂t (∇µ2) × H)

= ∂t (µj) − ∇((4πρ)/ε)
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In particular, when µ does not depend on time the equations for E do not involve
H, i.e. the system is uncoupled.

A similar equation holds for H.
Now we will consider the dynamical isotropic elasticity system

ρ∂2
t u − µ�u − µ∇divu − ∇(λdivu) −

3∑
j=1

∇µ · (∇u j + ∂ j u)e j = F(3.5.6)

for the displacement vector u = (u1, u3, u3) of an elastic medium � of density
ρ ∈ C1(�) with the Lame parametersλ,µ ∈ C2(�). For results on initial boundary
value problems for the system (3.5.6) we refer to Ciarlet [Ci].

To principally diagonalize the system (3.5.6) so we introduce the functions

divu = v, curlu = w.(3.5.7)

Dividing the equations (3.5.5) by ρ and applying the operator div to the both parts
of the resulting equality we obtain

∂2
t v − (λ+ 2µ)/ρ�v − ∇(µ/ρ) ·�u − ∇(µ/ρ) · ∇v − 2/ρ∇λ · ∇v −�λ/ρv−

∇1/ρ · ∇(λv) −
3∑

j=1

∂ j (∇µ)/ρ · (∇u j + ∂ j u) − ∇µ/ρ · (∇v +�u) = div(F/ρ)

and using the known identity � = ∇div − curlcurl we obtain the equation

∂2
t v − (λ+ 2µ)/ρ�v + A1;4U = div(F/ρ)(3.5.8)

where U = (u, v,w) and

A4;1U = −2(∇(µ/ρ) + (∇(λ+ µ))/ρ) · ∇v − ∇(1/ρ) · (λv)

+ (∇(µ/ρ) + ∇µ/ρ) · curlw

−
3∑

j=1

∂ j (∇µ/ρ) · (∇u j + ∂ j u) −�λ/ρv .

Similarly, applying the curl and using that curl( f u) = f curlu + ∇ f × u after
relatively lenghty but standard computations we obtain

∂2
t w − µ/ρ�w + A5;1U = curl(F/ρ),(3.5.9)

where

A5;1 = −2∇(µ/ρ) × ∇v + ∇(µ/ρ) × curlw − ∇(1/ρ) × ∇(λv)

− (∂2(∇µ/ρ) · (∇u3 + ∂3u) − ∂3(∇µ/ρ) · (∇u2 + ∂2u) − ∇µ/ρ · ∇w1)e1

− (∂3(∇µ/ρ) · (∇u1 + ∂1u) − ∂1(∇µ/ρ) · (∇u3 + ∂3u) − ∇µ/ρ · ∇w2)e2

− (∂1(∇µ/ρ) · (∇u2 + ∂2u) − ∂2(∇µ/ρ) · (∇u1 + ∂1u) − ∇µ/ρ · ∇w3)e3.
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So we have for U = (u1, u2, u3, v,w1,w2,w3) the principally diagonal system
(3.5.5), (3.5.8), (3.5.9) where the diagonal entries of the diagonal of the principal
part are the isotropic wave operators ∂2

t − µ/ρ� except for the equation (3.5.7)
where the principal part is the wave operator ∂2

t − (λ+ 2µ)/ρ�.
The principal diagonalization (3.5.6), (3.5.8), (3.5.9) of the isotropic elasticity

system and Theorem 3.5.2 imply

Corollary 3.5.7. Let a function ψ be pseudo-convex with respect to the wave
operators ρ/µ∂2

t −�,ρ/(λ+ 2µ)∂2
t −� in �. Let ψ < 0 on ∂� \ �.

Then there are constants C, κ ∈ (0, 1), depending on δ such that for any solution
u to the elasicity system (3.5.6)

‖u‖(1)(�δ) ≤ C(F + ‖u‖(2)(�0)1−κFκ )(3.5.10)

where F = ‖f‖(0)(�0) + ‖u‖(2)(�) + ‖∂νu‖(1)(�)

Similarly, Theorem 3.5.3 implies

Corollary 3.5.8. Let the coefficients ρ,µ, λ be time independent. Let a surface
� be non-characteristic with respect to the wave operators ρ/µ∂2

t −�,ρ/(λ+
2µ)∂2

t −�.
Then a solution to the Cauchy problem for the elasticity system with the Cauchy

data on � is unique in � near �.

This sharp uniqueness of the continuation result was used by McLaughlin and
Yoon [McLY] to get first uniqueness result for µ, λ in the so-called elastic sonog-
raphy, when one recovers elastic parameters from a complete knowledge of the
displacement u inside Q.

Recently, Imanuvilov, Isakov and Yamamoto [IIY] obtained a most natural Car-
leman estimate for the elasticity system on compactly supported functions.

Theorem 3.5.9. Let the functionψ ∈ C3(�) be pseudo-convex with respect to the
wave operators ρ/µ∂2

t −�,ρ/(λ+ 2µ)∂2
t −� in �.

Then there are constants C1(σ ),C2 such that for C2 < σ and C1 < τ∫
�

e2τϕ(τ 2|u|2 + τ (| div u|2 + | curl u|2)) ≤ C
∫
�

e2τϕ|Aeu|2(3.5.11)

for all functions u ∈ C2
0 (�). Here Aeu is the left side in (3.5.6).

By using the same new unknown functions v,w (3.5.7) and Carleman estimates
for the Laplace operator given in section 3.3 one can obtain uniqueness of the
continuation results for time independent solutions to the elasticity system (3.5.6)
under the same regularity assumptions on its coefficients [AITY].

There are important systems which can not be principally diagonalized but have
a special “upper triangular” principal part. As an example we consider the system
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of thermoelasticity

Aeu + A1;1(u, v) = 0,

∂t v −
3∑

j,k=1

a jk∂ j∂kv + A2;1(divu, curlu,u, v) = 0(3.5.12)

for the displacement vector u and the temperature v . Here A1;1 is a linear matrix
partial differential operator of first order with respect to v an of zero order with
respect to u with C1(�)-coefficients, the symmetric matrix (a jk) ∈ C1(�) and
is positive in �, and A2;1 is a first order linear partial differential operator with
L∞(�)-coefficients. Here � is a bounded domain in R

4. Other examples include
von Karman system and systems for elastic plates [Is13], [Is14 ].

Theorem 3.5.10. Let a function ψ be pseudo-convex with respect to the wave op-
erators ρ/µ∂2

t −�,ρ/(λ+ 2µ)∂2
t −� in�. Let� ⊂ ∂� be a C2-(hyper)surface

and ψ < 0 on ∂� \ �.
Then there are constants C, κ , depending on δ such that for any solution (u, v)

to the thermoelasicity system (3.5.12)

‖u‖(1)(�δ) + ‖v‖(�δ) ≤ C(F + ‖u‖(2)(�0)1−κFκ )

where F = ‖f‖(0)(�0) + ‖u‖(2.5)(�) + ‖∂νu‖(1.5)(�) + ‖v‖(1.5)(�) +
‖∇v‖(0.5)(�).

A proof is given in [ElI]. We will outline basic ideas of this proof.
Using (3.5.12), from (3.5.6),(3.5.8), (3.5.9) with F = −A1;1(u, v) we have

A(d)U = A1U + A2v in �(3.5.13)

where A(d) is a diagonal 7 × 7 matrix linear partial differential operator with
diagonal operators ρ/µ∂2

t −� or ρ/(λ+ 2µ)∂2
t −�, U = (u, divu, curlu), and

A1,A2 are linear partial differential operators of first and second order with L∞(�)-
coefficients.

Let us introduce a cut-off function χ ∈ C∞(R4), χ = 1 on �2ε, χ = 0 on � \
�ε. Defining U0 = χU, v0 = χv and using the Leibniz’ formula we derive from
(3.5.12), (3.5.13) that

A(d)U0 = χA2v0 + A2;1(U, v)

∂t v
0 −

∑
A jk∂ j∂kv0 = A3;1(U, v)(3.5.14)

where A2;1, A3;1 are (matrix) linear partial differential operators with L∞(�)-
coefficients. Moreover, A2;1 is of second order but it does not involve ∂2

t v and
second order derivatives of U, and A3;1 is of first order and does not involve ∂t v .
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Using the Carleman estimate of Theorem 3.4.3 for each of the seven first equa-
tions of (3.5.14) and summing the results over components we yield∫

�

(στϕ)3−2|α|e2τϕ|∂αU0|2

≤ C
∫
�

e2τϕ(
∑
|α|≤1

|∂αU|2 +
∑

|β|≤2,βn+1≤1

|∂βv0|2 +
∑

|α|≤1,αn+1=0

|∂αv|2).

Similarly, from Theorem 3.3.12 (applied to (στϕ)1/2v0) and from the last equation
(3.5.14) we have

σ

∫
�

(στϕ)4−2|α|e2τϕ|∂αv0|2

≤ C
∫
�

(στϕ)e2τϕ(
∑
|α|≤1

|∂αU|2 +
∑

|β|≤1,βn+1=0

|∂βv|2).

We can choose τ large and use the choice of χ to eliminate the integrals over �2ε

in the right sides. Denoting by . . . terms bounded by e4τε and bounding the terms
with U in the right side of the previous inequality by preceding inequality we yield

σ

∫
�2ε

∑
|α|≤2,αn+1≤1

(στϕ)4−2|α|e2τϕ|∂αv|2 ≤ C
∫
�2ε

e2τϕ
∑

|α|≤2,αn+1≤1

|∂αv|2 + · · ·

Dividing the both parts by e4τε and choosing σ and τ large we conclude that v = 0
in �2ε. Similarly, U = 0 in �2ε for any positive ε. This completes the proof of
uniqueness of (u, v) in �0. Stability estimate can be obtained as in the proof of
Theorem 3.2.2.

Uniqueness of the continuation results for the thermoelasticity system are used
in control theory. For some generalisations and applications we refer to the paper
of Eller, Lasiecka, and Triggiani [ElLT].

3.6 Open problems

Problem 3.1. Prove backward uniqueness of a (regular) solution to the general
parabolic equation of second order in Q with the oblique derivative lateral boundary
condition ∑

l j∂ j u + bu = 0 on ∂�× (0, T ),

where l j , b ∈ C2(∂�× [0, T ]) and the vector field l is not tangent on ∂� : l · ν >
ε > 0.

If l = ν (Neumann type condition), then uniqueness follows from Theorem
3.3.1. If the coefficients of A and of the boundary condition do not depend on
t , uniqueness can be derived by methods of analytic semigroups as described
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in Section 3.1. In Theorem 3.1.3 one assumes “essential self-adjointness” of the
operator A, which is wrong in the case of an oblique derivative boundary condition.

There is another aspect of the uniqueness problem related to parabolic equations
with changing direction of time as in Example 3.1.8.

Problem 3.2. Prove that a smooth (C2,1(�)) solution to the equation

∂t u − div(a∇u) = 0 in Q

satisfying zero initial and lateral boundary conditions

u = 0 on �× {0}, u = 0 on ∂�× (0, T )

is zero in Q, provided that ∇a �= 0 when a = 0, a ∈ C1(�).

The counterexamples to the uniqueness of the continuation for hyperbolic equa-
tions described in Section 3.4 do not cover the simplest perturbation of the wave
equation, and the next problem is related to this situation.

Problem 3.3. Find real-valued functions u and c in C∞(R3) such that

∂2
t u −�u + cu = 0 in R

3

and supp u = {x2 ≤ 0}.

When c does not depend on t such a counterexample is impossible due to
the recent results of Tataru: According to Corollary 3.4.6, if u = ∂2u = 0 when
x2 = 0, then u = 0 near the time-like plane {x2 = 0}. On the other hand, there are
counterexamples with complex first-order perturbations mentioned in Section 3.4
and even (recent) counterexamples with complex-valued zero-order perturbations
c(x, t)u given by Alinhac and Baouendi [AliB]. Complex-valued coefficients gen-
erate multiple characteristics that could cause nonuniqueness, and it is not clear
how crucial is high multiplicity. The real-valued case looks like a harder one, and
we are aware only of the counterexample mentioned in Section 3.4.

Problem 3.4. Prove that a C2-smooth solution u to the nonlinear wave equation
∂2

t u −�u + u3 = 0 in a domain � ⊂ R
n(n ≥ 3) is uniquely determined near �

by its Cauchy data on a smooth noncharacteristic surface � ⊂ �.

Uniqueness follows from the results for linear equations, because subtracting
two nonlinear equations (for u2 and u1), we obtain for the difference u = u2 −
u1 the linear hyperbolic equation ∂2

t u −�u + cu = 0 with c = u2
2 + u2u1 + u2

1,
which depends on t . Due to t-dependence, Corollary 3.4.3 cannot be applied. On
the other hand, uniqueness of the continuation across � holds for pseudo-convex
� (e.g., as described in Theorem 3.4.1).

There are serious difficulties in trying to generalize Theorem 3.2.1 onto systems
of equations, and the main tool is reduction to a system with diagonal principal part
and then application of Theorem 3.2.1 or of similar results for scalar differential
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operators. Even for classical systems of mathematical physics there are challenging
open questions.

Problem 3.5. Obtain Carleman estimates in the anisotropic case (see Theorem
3.2.1) for not necessarily compactly supported functions (with boundary terms).
In particular, the question is interesting for equations of second order.

Most likely this problem can be resolved by combining methods and results of
the papers [Is12] and [Tat3].

Problem 3.6. By using Carleman estimates obtain uniqueness and stability results
for some interesting anisotropic (linear) systems of mathematical physics.

There is some progress in this direction. In particular, the paper of Isakov,
Nakamura, and Wang in [I3] handles the isotropic elasticity with residual stress.
A particular interesting case is the transversally isotropic elasticity. It is possible
that Carleman-type estimates, like (3.5.11), for such systems can be obtained
directly, and then one can expect optimal regularity assumptions on coefficients
and boundary of the domain. It is also interesting to obtain the Carleman estimate
(3.5.11) with boundary terms (i.e. for arbitrary vector-functions U ∈ H(2)(�)). At
present it is not even known that a Carleman estimate for a system implies a
Carleman estimate for a (principally) perturbed system.

It seems that the fundamental ideas of Friedrichs [Fri] properly adjusted to the
problem can be of great use. In particular, one can try to combine them with the
scheme of Hörmander [Hö1] partially outlined after Excercise 3.4.4. We think that
a promising direction is to utilize and rethink the results of Lax [Lax] about the
Cauchy problem and geometrical optics.



4

Elliptic Equations: Single Boundary
Measurements

4.0 Results on elliptic boundary value problems

In this chapter we consider the elliptic second-order differential equation

Au = f in �, f = f0 −
n∑

j=1

∂ j f j(4.0.1)

with the Dirichlet boundary data

u = g0 on ∂�.(4.0.2)

We assume that A = div(−a∇) + b · ∇ + c with bounded and measurable coef-
ficients a (symmetric real-valued (n × n) matrix) and complex-valued b and c in
L∞(�). Another assumption is that A is an elliptic operator; i.e., there is ε0 > 0
such that a(x)ξ · ξ ≥ ε0|ξ |2 for any vector ξ ∈ R

n and any x ∈ �. Unless specified
otherwise, we assume that� is a bounded domain in R

n with the boundary of class
C2. However, most of the results are valid for Lipschitz boundaries. We recall that
for any u ∈ H(1)(�) there are boundary values u,∇u on ∂� that are contained in
H(1/2)(∂�), H(−1/2)(∂�). These boundary values can be understood via approxi-
mations as follows. One can approximate u in H(1)(�) by functions um ∈ C∞(�̄),
and then boundary values are understood as the limits. From trace theorems it
follows that ‖um‖(1/2)(∂�), ‖∇um‖(−1/2)(∂�) are bounded by C‖um‖(1)(�). In
particular, ‖φm∂ j um‖2(∂�) ≤ C‖φm‖(1)(�)‖um‖(1)(�). Since approximations are
convergent in H(1)(�), they are fundamental in this space, and so limit of their
boundary traces is the needed trace of u. A (weak) solution u ∈ H(1)(�) is defined
in the sense of the integral identity∫

�

(a∇u · ∇φ + b · ∇uφ + cuφ) −
∫
∂�

∂ν(a)uφ

=
∫
�

(
f0φ +

n∑
j=1

f j∂ jφ

)
(4.0.3)

89
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for any test function φ ∈ H(1)(�), provided that the boundary Dirichlet condition
(4.0.2) is satisfied and supp f j ⊂ �.

We will formulate basic results about solvability and regularity of the Dirichlet
problem (4.0.1), (4.0.2).

Theorem 4.1. Let ∂� be Lipschitz, g0 ∈ H(1/2)(∂�), and f = f0 + ∑
j≤n ∂ j f j

with f j ∈ L2(�). Let us replace c by c + λ.
Then for all λ �∈ E, where E is a set of points converging to ∞, there is a

unique generalized solution u ∈ H(1)(�) to the Dirichlet problem (4.0.1), (4.0.2).
Moreover,

‖u‖(1)(�) ≤ C

(
‖g0‖(1/2)(∂�) +

∑
0≤ j≤n

‖ f j‖2(�) + ‖u‖2(�)

)
,(4.0.4)

where C depends only on�, λ and the mentioned bounds on the coefficients of A.
If a solution is unique, then it does exist. Moreover, one can drop the last term

in the previous bound. In particular, if c ≥ 0, Ib = 0, or if b = 0,Rc ≥ 0, then a
solution exists and is unique.

If f j ∈ L∞(�0) for some �0 ⊂ �, then u ∈ Cµ(�0) for some µ ∈ (0, 1). In
addition, when �̄0 ⊂ � and p > n, there is constant C depending on the same
parameters as above such that

‖u‖(1)(�01) + ‖u‖∞(�01) ≤ C

(
n∑

j=0

‖ f j‖p(�0) + ‖u‖2(�0)

)
.

Here and below �01 ⊂ �0 is any domain with positive distance to ∂�0.
If a, b, c ∈ Cγ (�̄0), f j ∈ Cγ (�̄0), g0 ∈ C1+γ (∂�0), ∂�0 ∈ C2+γ , then for any

domain �01 with positive distance to ∂�0 ∩� there is a constant C depending
only on �01 and on the norms of a, b, c in Cγ (�0) such that

|u|1+γ (�01) ≤ C

( ∑
0≤ j≤n

| f j |γ (�0) + |g0|1+γ (∂�0 ∩ ∂�) + |u|0(�0)

)
.(4.0.5)

If ∇a ∈ L∞(�0), f1 = · · · = fn = 0 in �0, f ∈ L∞(�0), ∂�0 ∈ C2, g0 ∈
H(3/2)(∂�0 ∩ ∂�), then u ∈ H(2)(�01) for any �01 mentioned above.

If f1 = · · · = fn = 0; a,∇a ∈ C(�̄); b, c ∈ L∞(�); f ∈ L p(�0), and g0 ∈
C2(∂�0 ∩ ∂�), then u ∈ Hp;k(�01), and there is C depending on�01, p, the norms
of the coefficients in the above-mentioned spaces, and the ellipticity constant of A
such that

‖u‖2,p(�01) ≤ C(‖ f ‖p(�0) + |g0|2(∂� ∩ ∂�0) + ‖u‖2(�0)).

If f1 = · · · = fn = 0; a,∇a, b, c, f ∈ Cγ (�̄ j ∩�0); ∂� j ∩ �̄0 ∈ C2; �̄ =
∪�̄ j , where � j are some disjoint subdomains of �, then u ∈ C1(�̄ j ∩ �̄01). If
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in addition, ∂� j ∩ �̄0 ∈ C2+γ , then u ∈ C2+γ (�̄ j ∩ �̄01) and

|u|2+γ (�01 ∩ �̄ j )

≤ C

(∑
j

| f |γ (�0 ∩� j ) + |g0|2+γ (∂� ∩ ∂�0) + ‖u‖∞(�0)

)
,

where C depends on �01, γ , the norms of coefficients in the above-mentioned
Hölder spaces, and the ellipticity constant of A.

A proof of this result can be found in the book of Ladyzhenskaya and Ural’tseva
[LU], pp. 149, 189, 202, 222, except of the bound (4.0.5) and the subsequent
H2,p(�01)-bound, which are obtained by Agmon, Douglis, and Nirenberg [ADN],
and the L∞-bound in the case of divergent equations with measurable and bounded
coefficients given by Kinderlehrer and Stampacchia [KinS]. Theorem 4.1 is in fact
a formulation of several results of the available theory of elliptic boundary value
problems for equations of second order that are sufficient for considering the
inverse problems in this book. Of course, it is neither comprehensive nor most
general. The domain �0 is needed to formulate local results when the data of the
problem are regular only in a subdomain of �. When � = �0 = �01, the results
are more transparent. Observe that for Lipschitz � a solution to the Dirichlet
problem with smooth data can be not in H(2)(�).

Theorem 4.2 (Comparison Principle). Assume that Ib = 0, c ≥ 0 in �.
If f1 ≤ f2 in� and g01 ≤ g02, then for solutions u1, u2 to the Dirichlet problem

(4.0.1), (4.0.2) with the data f1, g01 and f2, g02 we have u1 ≤ u2.

(Hopf Maximum Principle) If a solution u to equation (4.0.1) with f = 0 is in
C(�̄) then ‖u‖∞(�) ≤ sup |g0| over ∂�. If f ≥ 0 in �, then inf� u ≥ inf∂� g0.

(Giraud Maximum Principle) Assume in addition that ∂� ∈ C1+λ and that a ∈
C1+λ(�̄), b, c ∈ Cλ(�̄). Let l be any nontangential outward direction at x ∈ ∂�.
Assume that c ≥ 0, f ≥ 0 in �.

If x is a maximum point of u ∈ C(�̄) in � and u(x) > 0, then there is ε > 0
such that

εt < u(x + tl) − u(x)

when 0 < t < ε. When there is ∂lu(x), then ∂lu(x) > 0.

A proof of the Hopf maximum principle for a ∈ C1(�̄) and for u ∈ C2(�̄) can be
found in the book of Miranda [Mi], p. 6. In the slightly more general case we con-
sider, it follows by using the approximation results in [LU], p. 158, which claims
that if the coefficients of (4.0.1) are convergent almost everywhere, uniformly
satisfying boundedness and ellipticity conditions, and if the source terms and the
boundary conditions are convergent correspondingly in H(−1)(�) and H(1/2)(∂�),
the solutions to the Dirichlet problem (4.0.1), (4.0.2) are convergent in H(1)(�).
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The inequality u ≥ 0 for functions in H(1) is understood in the sense that such
functions can be H(1)-approximated by nonnegative smooth functions. For maxi-
mum principles for weak solutions we refer also to the book of Kinderlehrer and
Stampacchia [KinS], p. 38.

It is easy to see that the Hopf maximum principle implies the comparison
principle. To see this, observe that u = u2 − u1 satisfies equation (4.0.1) with
f = f2 − f1 ≥ 0, so by the second part of the Hopf principle we conclude that
u ≥ g02 − g01 ≥ 0.

We are interested in finding a, b, c given the additional boundary data

∂ν(a)u = g1 on �,(4.0.6)

which is a part of ∂�. According to Theorem 4.0.1, if a, b, c, f are C1-smooth
near ∂� ∈ C2+λ and g0 ∈ C1+λ(�), then ∇u is continuous near ∂� and has a
continuous extension onto � ∪ �, so the Neumann data can be understood in the
classical sense.

4.1 Inverse gravimetry

One is looking for a domain D from its exterior gravitational (Newtonian) potential
u, which is a solution to the Poisson equation

−�u = kχ (D) in R
3, lim

|x |→∞
u(x) = 0.(4.1.1)

Let u j be the gravitational potential that corresponds to a domain D j ⊂ �. Here
� is a known bounded domain. We call a domain D j star-shaped with respect to
a point x if any ray originating at x intersects ∂D j at exactly one point, and we
call D j convex in xn if the intersection of any straight line parallel to the xn-axis
with D j is an interval. The center of gravity of D is the point

(vol D)−1
∫

D
xd D.

Theorem 4.1.1 (Uniqueness of a domain). Suppose that either (i) D j are star-
shaped with respect to their centers of gravity or (ii) D j are convex in xn.

If u1 = u2 (or ∇u1 = ∇u2) on ∂� and k is a positive constant, then D1 = D2.

A complete proof of this result is available from the book [Is4], section 3.1. We
will give a short proof under the additional assumption that ∂D j is the graph of a
Lipschitz function in the polar coordinates with the origin at the center of gravity
of D j . This proof is based on the following lemma.

Lemma 4.1.2 (Orthogonality Relations). Let −�u = f near �̄, f ∈ L p(�), 1 <
p, f = 0 outside �. Then ∫

�

f v =
∫
∂�

(∂νvu − ∂νuv)

for any solution v to the equation −�v = 0 near �̄.
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PROOF. By Theorem 4.1 we have u ∈ H2,p(�). So we can apply integration by
parts to obtain∫

�

u(−�v) +
∫
∂�

u∂νv −
∫
∂�

∂νuv =
∫
�

∇u · ∇v −
∫
∂�

∂νuv =
∫
�

f v

according to the definition (4.0.3) of a (generalized) solution to the equation
−�u = f in�. The first term in the above equalities is zero because v is harmonic
in �. The proof is complete. �

By using Lemma 4.1.2 with particular harmonic functions v , one can obtain
some information about f , like the integral of f over � when v = 1.

PARTIAL PROOF OF THEOREM 4.1.1. We will give a proof for star-shaped domains
that are defined by Lipschitz functions in the polar-coordinate systems originating
at domains centers of gravity.

Assume that we have two domains D1 and D2 with the same potential on ∂�.
By subtracting equations (4.1.1) for u2 and u1 and letting u = u2 − u1, we obtain

−�u = k(χ (D2) − χ (D1)).

The function u is harmonic outside �, zero on its boundary, and goes to zero at
infinity. By using the maximum principle we conclude that u = 0 outside �, and
by Lemma 4.1.2 with f = k(χ (D2) − χ (D1)) we obtain∫

D1

v =
∫

D2

v(4.1.2)

for any function v harmonic near �̄. By letting v(x) be 1 and x j , we conclude that
the domains D1, D2 have the same volumes and first moments. Therefore, they
have the same centers of gravity. Further on we assume that their center of gravity
is the origin.

We make an important observation that if v is harmonic, then so is x · ∇v . Using
x · ∇v + 3v in (4.1.2) instead of v and integrating by parts, we obtain

I (v) =
∫
�1e∪�1i

vx · νd� −
∫
�2e∪�2i

vx · νd� = 0,(4.1.3)

where �1e = ∂D1\D2, �2e = ∂D2\D1, �1i = ∂D2 ∩ D1, �2i = ∂D1 ∩ D2 are
various parts of the boundaries of the D j . Here ν is the unit normal exterior
with respect to D1\D2 on �1e ∪ �1i and with respect to D2\D1 on the remaining
parts of the boundaries.

By using the theory of (uniform) harmonic approximation and stability of the
Dirichlet problem in the Lipschitz domain D1 ∪ D2 (see, e.g., [Is4], sections 1.7
and 1.8) we can transfer the relation (4.1.3) onto any function v that is harmonic
in this union and continuous on its closure. The Dirichlet problem for the Laplace
equation in a Lipschitz domain is solvable for any continuous boundary data g. If
0 ≤ g ≤ 1, then 0 ≤ v ≤ 1 on D1 ∪ D2 by the maximum principle. Due to star-
shapedness we have x · ν ≥ 0 on �2e and on �1e and x · ν ≤ 0 on �2i and on �1i ,
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so from (4.1.3) we obtain

0 = I (v) ≥
∫
�1e

gx · νd� +
∫
�1i

x · νd� −
∫
�2e

gx · νd�.

We can L1(�1e ∪ �2e)-approximate by such g the function that is 1 on �1e and 0
on �2e\�1e. Therefore, we get

0 ≥
∫
�1e∪�1i

x · νd� = 3
∫

D1\D2

1

The last equality follows from Green’s formula when we observe that the boundary
of D1\D2 is �1e ∪ �1i . This inequality implies that D1 ⊂ D2.

Similarly, D2 ⊂ D1. The proof is complete. �

The basic idea of the proof, to use the function x · ∇v + 3v instead of v in the
orthogonality relations (4.1.2) and to prescribe the Dirichlet boundary data as 0 or
1, belongs to P. Novikov [No], who partially implemented it in 1938 for the inverse
gravitational problem in the plane case. We call this technique the orthogonality
method of Novikov. Later, Prilepko [Pr], [PrOV] and Sretensky contributed to this
method, in the 1950s to 1970s.

Lemma 4.1.2 gives necessary and sufficient conditions for potentials u to be
zero outside �.

Exercise 4.1.3. Let −�u = f in R
3, f ∈ L p(�), 1 < p, f = 0 outside �, and

u(x) → 0 when |x | → ∞. Show that the orthogonality relation∫
�

f v = 0

for any function v which is harmonic near � is necessary and sufficient for u to
be zero outside �.

Using this result, show that the Newtonian potential of the ball {|x | < R} of
density f (x) = ψ(|x |) is zero if and only if

∫ R
0 r2ψ(r )dr = 0.

Another observation is that when � is a ball, we can prescribe u only on a part
of ∂�.

Exercise 4.1.4. Let � be a nonempty open part of the sphere ∂�.
(1) Prove that when the potential of a density f supported in � is zero on �,

then u = 0 outside �.
(2) Prove that if for two potentials u1, u2 of nonnegative volume densities f1, f2

supported in � one has |∇u1| = |∇u2| on �, then u1 = u2 outside �.

To solve the part (2) consider the difference u = u2 − u1, conclude that the
equality of absolute values of gradients (of gravity forces) on � implies by ana-
lyticity the equality on ∂� and the homogeneous oblique derivative condition for
u, then make use of Theorem 4.2 and of behaviour of potentials at infinity.
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Uniqueness is not valid without geometrical assumptions or for a positive vari-
able k ([Is4], section 3.4). In particular, there are two (and even a continuum of)
simply connected domains of unit density with the same exterior potential. When
the density k is not constant but only smooth and positive, one can give two xn-
convex domains with the same exterior potentials. However, solutions D ∈ C1+λ

are isolated for positive given k ∈ Cλ.
As observed in Section 2.1, the inverse problem of gravimetry is not well posed

by Hadamard, so the following logarithmic-type stability estimate is quite natural.
Let D j be a star-shaped domain {|x | < d j (σ )}, where d j satisfies the following

conditions: 0 < ρ < d j < R − ρ, |d j |2+λ(�) ≤ M . We assume that � is the ball
B(0; R).

Theorem 4.1.5 (Stability Estimate). There is a constant C depending only on ρ
and M such that if ‖∇u2| − |∇u1‖ < ε on ∂�, then |d2 − d1| < C | ln ε|−1/C .

For a proof we refer to the book [Is4], section 3.6.
Now we discuss a simpler linear inverse source problem.
Let � be a bounded Lipschitz domain. Let us consider the Dirichlet problem

Au = f in �, u ∈ H(2)(�), u = g0 on ∂�,(4.1.4)

where A = ∂ j (a∂ j ) + c. Let U be the differential operator ∂k(αk∂k) + β. We adopt
the summation convention over the repeated indices j, k from 1 to n.

Theorem 4.1.6 (Uniqueness of Density). Let us assume that one of the three con-
ditions (4.1.5), (4.1.6), (4.1.7) is satisfied:

A = U;(4.1.5)

aα j ≥ ε j j ,

− (∂k(αk∂ka) + ∂k(a∂kα j ) + 2cα j + 2aβ)ξ 2
j + ∂ jαk∂kaξ jξk

≥ ε1ξ
2
1 + · · · + εnξ

2
n ,

∂k(αk∂kc + α∂kβ) + 2cβ ≥ 0;(4.1.6)

where ε j j , ε j are nonnegative numbers with positive sum;

f = α f1 + f2, where ∂n f j = 0, ∂nα ≥ 0 on �,(4.1.7)

and α is given.
If f ∈ L2(�) and

U f = 0 in �(4.1.8)

in the cases (4.1.5), (4.1.6), then f entering the Dirichlet problem is uniquely
determined by the additional Neumann data a∂νu = g1 on ∂�.

In case (4.1.7), f is uniquely identified by the Neumann data if the coefficients
of A do not depend on xn, and c ≥ 0.
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PROOF. Since the problem is linear with respect to u, f , it is sufficient to show
that u = 0 on � when g = h = 0. From the definition (4.0.3) of weak solutions
to the equation (4.1.8) we have ( f,U∗φ)2(�) = 0 for any function φ ∈ C∞

0 (�).
Since u ∈ H̊(2)(�), this equality holds with φ = u. Since U∗ = U, we have

(Au,Uu)2(�) = 0.(4.1.9)

When A = U, we conclude that Au = 0 in�. Since A is elliptic and u has zero
Cauchy data on ∂�, we obtain u = 0 in �, and f = 0 on � as well.

We consider condition (4.1.6). Integrating by parts and using zero boundary
data for u, ∂νu, we obtain that the left side of (4.1.9) is

(∂ j (a∂ j u), ∂k(αk∂ku))2 + (cu, ∂k(αk∂ku))2 + (∂ j (a∂ j u), βu)2 + (cβu, u)2

= (∂k(a∂ j u), ∂ j (αk∂ku))2 − (∂k(cu), αk∂ku)2 − (a∂ j u, ∂ j (βu))2 + (cβu, u)2

= (aαk, ∂ j∂ku∂ j∂ku)2 + ((∂ka)αk, 2
−1∂k(∂ j u)2)2 + (a∂ jαk, 2

−1∂ j (∂ku)2)2

+ (∂ jαk∂ka, ∂ j u∂ku)2 − (cαk + aβ, ∂ku∂ku)2

−2−1(αk∂kc, ∂ku2)2 − 2−1(a∂ jβ, ∂ j u
2)2 + (cβ, u2)2.

If we integrate by parts once more and interchange notations of some repeated
indices, we finally conclude that the left side of (4.1.9) is

(aαk, ∂ j∂ku∂ j∂ku)2 − 2−1(∂k(αk∂ka) + ∂k(a∂kα j )

+ 2cα j + 2aβ, ∂ j u∂ j u)2 + (∂ jαk∂ka, ∂ j u∂ku)2

+ (0.5∂ j (a∂ jβ) + 0.5∂k(αk∂kc) + cβ, u2)2.

Since this sum is zero, conditions (4.1.6) imply that ∂ku is constant for some
k. This constant is zero because ∂ku = 0 on ∂�. Then u = 0 because it does not
depend on xk in �, and u = 0 on ∂�. Finally, f = Au = 0 on � as well.

The proof under condition (4.1.7) is based on the orthogonality method, and it
is given in the book [Is4], Theorem 3.3.1. �

When proving uniqueness in the linear inverse problem, we have to show that
the relations Au = f in �, u = ∂νu = 0 on ∂� imply that f = 0. So it does not
make any difference whether we use one or another set of Dirichlet data g0. The
situation will be completely different for the identification of coefficients, which
is discussed in Sections 4.2 and 4.3.

Observe that if a = −1, c = β = 0, and α1 = · · · = αn−1 = 0, conditions
(4.1.6) are simplified to αn ≤ 0 and 0 ≤ �αn . Moreover, one of these functions
must be nonzero on �. Observe, that condition (4.1.5) is satisfied for any elliptic
operator A, including the Helmholtz operator, that gives certain conditions for
uniqueness of density in absense of maximum principles.

In fact, under minor additional assumptions one can obtain quite strong stability
estimates for this problem and even existence results.

Exercise 4.1.7. Let ∂� ∈ C4. Prove the following stability estimate:

‖u‖2(�) ≤ C(‖g0‖(4)(�) + ‖g1‖(3)(�)),
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where C depends only on � and on the numbers ε j j , ε j . When A = U, obtain the
better (and optimal) estimate

‖ f ‖2(�) ≤ C(‖g0‖(3/2)(∂�) + ‖g1‖(1/2)(∂�)).

{Hint: By using extension theorems find a function v bounded by the given
norms of the boundary value data for u that has the same boundary data as u,
subtract v from u and repeat the uniqueness proof with (Au, Av)2(�) in the right
side of (4.1.9) instead of zero, and make use of the Schwarz inequality.}

Existence and stability of the solution (u, f ) to the inverse source problem in
case (4.1.5), (4.1.8) follows from the relations

A2u = 0 in �, u = g0, ∂νu = g1 on ∂�,

which constitute the first boundary value problem for the fourth-order elliptic
equation. This problem is known to be Fredholm, so uniqueness of its solution
implies its existence and Lipschitz stability estimate in both the Hölder and Sobolev
classes. We refer to the book of Morrey [Mor], Theorems 6.5.3, 6.4.8.

The elliptic equation A(U − ε�)u = 0 (with small positive ε) can be used for
finding an approximation fε of a solution f when some of the ε j j are zero.

4.2 Reconstruction of lower-order terms

Now we give an example of an inverse problem that is well-posed. We consider
equation (4.0.1) with coefficients that do not depend on xn in the domain� = G ×
(−H, 0), where G is a bounded domain in R

n−1 with C2+λ-boundary (0 < λ < 1)
and H is a positive number. We assume that Au = A′u − ∂2u/∂x2

n , where A′ does
not involve derivatives with respect to xn .

We let � = G × {0}, and we are looking for the coefficient c ≥ 0 of equation
(4.0.1) whose solution u satisfies the Dirichlet boundary data (4.0.2) and the addi-
tional Neumann data (4.0.6). Let u j be a solution to the Dirichlet problem (4.0.1),
(4.0.2) with c = c j and g1, j the corresponding Neumann data (4.0.6), j = 1, 2.

We assume that g0 ∈ C2+λ(∂�), 0 ≤ g0, on ∂�; g0 = 0 on G × {−H}; ∂ng0 ≥ 0
and ∂2g0/∂x2

n = 0 on ∂G × {−H}; 0 ≤ A′g0 on �; and Ag0 = 0 on ∂�. About
the coefficients of A we assume that a, b ∈ C1+λ(�); c ∈ Cλ(�).

Observe that the elliptic theory briefly described by Theorem 4.1 guarantees
uniqueness and existence of a solution u ∈ C2+λ(�). Indeed, we have a unique
solution u ∈ H(1)(�) that is in C2+λ(�\V ), where V is some neighborhood of the
corner points ∂� × {0,−H}. To show that u is C2+λ-smooth in� near � × {−H}
one can use the even extension with respect to (xn + H ), obtaining an H(1)-solution
in the extended domain �, and then apply the local regularity claim of Theorem
4.1. To show smoothness near � × {0} one can solve the Dirichlet problem for
(smoothly extended) A in a C2+λ-domain containing �, with C2+λ-extended data
g0; subtract this C2+λ(�)-solution from u; and apply to the difference the odd
extension with respect to xn together with the previous argument.
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Theorem 4.2.1. Under the given assumptions on g0 the following stability esti-
mate holds:

|c2 − c1|λ(G) ≤ C |g1,2 − g1,1|1+λ(�),(4.2.1)

where C depends only on |c j |λ(G), |a|1+λ(G), |b|λ(G), |g0|2+λ(∂�), and on the
ellipticity constant of A.

In particular, we have uniqueness of recovery of c from the additional Neumann
data.

This result follows from uniqueness and stability in the inverse source problem

(A + c2)u = α f, ∂n f = 0 in �,

u = 0 on ∂�,

∂νu = g1 on �,(4.2.2)

where α = u1 and f = c1 − c2. The relations (4.2.2) are the results of subtraction
of the equations for u1 from the equations for u2. It is interesting to observe that
nowα depends on the boundary data g0 for the direct problem, so unlike the inverse
source problem with fixed α, by changing g0 we obtain more information about f .
This observation will be essential in Chapter 5, which is devoted to many boundary
measurements.

The idea of the proof of (4.2.1) given in the paper of Khaidarov [Kh1] is first to
establish Schauder-type estimates for the inverse source problem (4.2.2). This can
be done by “freezing coefficients,” differentiating the equation with respect to xn ,
and applying standard elliptic estimates. We explain this idea referring for details
to the cited paper.

Let x0 ∈ � and ε small and positive. We write equation (4.2.2) in� ∩ B(x0; 2ε)
as α−1 A0u = α−1(A0 − (A + c2))u + f , where A0 is the operator A with the co-
efficients at the point x0. Differentiating this equation gives the following boundary
value problem:

∂n(α−1 A0u) = ∂n(α−1(A0 − A − c2))u in � ∩ B(x0; 2ε), ∂nu

= g1 on � ∩ B(x0; 2ε).

Schauder-type estimates of Theorem 4.1 for equations in variational form give

|∂nu|1+λ(� ∩ B(x0; ε)) ≤ C(|α−1(A0 − A)u|λ(� ∩ B(x0; 2ε)) + |g1|1+λ(�)

+ |u|1+λ(� ∩ B(x0; 2ε))

≤ C(ελ|u|2+λ(�) + |g1|1+λ(�) + C(ε)|u|0(�)).

Using this estimate and the Dirichlet boundary condition on� from relation (4.2.2)
on �, we then obtain that | f |λ(� ∩ B(x0; ε)) is bounded by the right side of this
inequality. Since this is true for any x0 ∈ � and does not depend on xn on the
whole of � we bound the norm of f on �. Hence the Schauder-type estimates
for the problem (4.2.2) bound by the same quantity the norm |u|2+λ(�). Choosing
ε small we eliminate the term with |u|2+λ(�) on the right side and obtain the
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Schauder-type estimate |u|2+λ(�) ≤ C(|g1|1+λ(�) + |u|0(�)). The term |u|0(�)
can be eliminated by using compactness-uniqueness arguments as in the proof of
Theorem 3.4.11, provided that we have uniqueness of a solution.

Under the assumptions that the coefficients of A are xn-independent and the
weight function α is monotone with respect to xn , one proves uniqueness in the
inverse source problem by a modification of Novikov’s orthogonality method,
which we describe briefly below. We will set �H = � × {−H}, �0 = ∂�\(� ∪
�H ).

Lemma 4.2.2. If the coefficients of A do not depend on xn, and ∂nα > 0 on �,
then f = 0 on �.

PROOF. We multiply equation (4.2.2) by v ∈ H(2)(�) and apply Green’s formula.
We obtain ∫

�∪�0∪�H

(∂ν(A)vu − v∂ν(A)u) d� +
∫
�

u A∗v =
∫
�

α f v .

If A∗v = 0 on � and v = 0 on �0, then using the boundary conditions (4.2.2)
where h = 0, we yield ∫

�

α f v = −
∫
�H

v∂νu.

By using the odd extension with respect to xn we conclude that finite differences
(which satisfy the same equation as v because the coefficients are xn-independent)
of v with respect to xn can be used instead of v . Passing to the limit in finite
differences, we conclude that we can replace v by ∂nv . When in addition, ∂nv = 0
on �H , we conclude that the integral of α f ∂nv over� is zero. Integrating by parts
with respect to xn , we obtain∫

�

vα f −
∫
�

v f ∂nα = 0.(4.2.3)

Intending to show as in the proof of Theorems 4.1.1 and 4.1.6 that the left side is
positive for some v , we introduce the set�+ = { f > 0} and the set�− = { f < 0}.
Since f does not depend on xn , these sets are cylinders �+ × (−H, 0), �− ×
(−H, 0). We can assume that both �+ and �− have nonvoid interiors; otherwise,
α f is nonnegative (or nonpositive), and we will obtain a contradiction by using
Giraud’s maximum principle on �.

Let v be a solution to the mixed problem

A∗v = 0 in �, v = 0 on �0, ∂νv = 0 on �H ,

v = g0 on �.

Let us assume that g0 ∈ C2
0 (�), 0 ≤ g0 ≤ 1, on �, and g0 = 0 on an open subset

�0− of �− that does not depend on g0. By using comparison with a fixed solution
to the same boundary value problem one can show that v(x) ≤ 1 − ε(x), where ε
is a positive continuous function on� that does not depend on g0. Indeed, let v0 be
the solution to the above mixed problem for the operator A∗ in � with boundary
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data g00 ∈ C2(�) that are 1 outside �0− and 0 on an open nonvoid subset of �0−.
As shown above, this solution exists and is in C1(�̄). By the maximum principles,
0 < v0(x) < 1 on �. Again by maximum principles (in the form of comparison),
v ≤ v0, so we can let ε(x) = 1 − v0(x). By maximum principles we also have
0 ≤ v on �. Since ∂nα > 0 on �, the left side of (4.2.3) is not less than∫

�

gα f −
∫
�+

(1 − ε) f ∂nα.

We can approximate in L1(�) by such g0 the function that is 1 on �+ and zero on
�\�+, and conclude that

0 ≥
∫
�+
α f −

∫
�+

f ∂nα +
∫
�+
ε f ∂nα =

∫
�+
ε f ∂nα > 0.

In the last equality we used that the integral over �+ combined with the first
integral over�+ is zero because α = u1 = 0 on �H due to the Dirichlet boundary
condition. The contradiction shows that the initial assumption was wrong, and so
f = 0.

The proof is complete. �

Theorem 4.2.1 will follow from Schauder estimates and from Lemma 4.2.2 if we
show that ∂nα = ∂nu1 > 0 on �. Differentiating the equation for u1 with respect
to xn and using that the coefficients of A and the coefficient c1 do not depend on
xn , we obtain the equation (A + c1)∂nu1 = 0 in �. Differentiating the boundary
condition on ∂G × (−H, 0) gives ∂nu1 = ∂ng0 ≥ 0 there. On G × {−H} we have
from the differential equation,

∂n(∂nu1) = A′u1 + c1u1 = A′g0 + c1g0 = 0,

and similarly, on G × {0}, ∂n(∂nu1) ≥ 0, due to the conditions on g and c1. By
applying maximum principles, we conclude that ∂nu1 > 0 in �. Indeed, ∂nu1

attains its minimum on �̄. If this minimum is negative, then it cannot be achieved
either inside � or on G × {−H}, ∂G × (−H, 0). So it must be achieved at some
point G × {0}. At this point, by Giraud’s maximum principle (Theorem 4.2), we
have ∂n(∂nu1) < 0, which contradicts the properties of this function.

A similar problem for parabolic equations (with final overdetermination) is
discussed in more detail in Section 9.1, where there are some existence results and
monotone iterative algorithms suitable also for numerical solution of the inverse
problem. Similar results can be obtained for the elliptic inverse problem under
consideration.

In this problem the unknown term does not depend on one of the space variables,
which is not quite natural in many applications.

If one has additional boundary data on G × {−H}, it is possible to recover in
a stable way two terms (e.g., a and the right side f , which do not depend on xn).
For proofs and further information we refer to the paper of Khaidarov [Kh1].

When c (and other coefficients of A) does not depend on x1, and ∂G ∩ V ⊂
{x1 = 0}, where V is a ball centered at a point of ∂G, then uniqueness of c on the set



4.2. Reconstruction of lower-order terms 101

{x ∈ � : (0, x2, . . . , xn−1) ∈ V } can be obtained by the method of Carleman-type
estimates originated by Bukhgeim and Klibanov [BuK]. The essential condition
is that g0 ≥ 0 on ∂� and > 0 on � ∩ V . This inverse problem is not well-posed,
in contrast to the problem with xn-independent c. One can obtain only conditional
Hölder-type stability estimates as in the Cauchy problem for elliptic equations. Due
to space limitations we will not discuss this here in detail, referring to the review
paper of Klibanov [K1] and to the recent book [KlT]. For hyperbolic equations the
method of Carleman estimates is demonstrated in Section 8.2.

Identification of the coefficient c is of interest for theory of semiconductor
devices. We refer to more detail to the paper of Burger, Engl, Markovich, and Pietra
[BuEMP]. One of accepted mathematical models for semiconductors is represented
by a system of three quasilinear elliptic partial differential equations of second
order. In particular, it is of interest [BuEMP], p.1777, to identify the so-called
doping profile c∗ ∈ L∞(�) from the elliptic equation div(a∇v) = 0 in � with
c∗ = −�loga + a − a−1. The well known substitution v = a−1/2u transforms
the equation for v into −�u + cu = 0 with c = a−1/2�a1/2. The additional data
for determining c can be few sets of the Cauchy for u or all possible Cauchy data
on a part of ∂�.

The coefficient c which is a function of all space variables can not be uniquely
determined from few sets of the boundary data. The assumiption that c does not
depend on one of space variables leads to a nice theory described above, but it is
artificial in many applications. Another option ( piecewise constant doping profiles
of importance for semiconductors theory) is to consider the equation

−�u + kχ (D)u = 0 in �,(4.2.4)

where a domain D is to be found from few sets of the boundary Cauchy data
for u. Global uniqueness results for this inverse problem are still not available.
Linearizations around k = 0 lead to the inverse source problem with the unknown
source term u0χ (D) where u0 is the harmonic function, u0 = u on ∂�. For an
appropriate choice of the Dirichlet data for u one can derive global uniqueness
results for D within star-shaped or xn-convex domains. When D is close to a fixed
domain D0, one can obtain uniqueness results by using a device from the theory
of variational inequalities like in [Is4], Corollary 5.1.4.

Turning to inverse problems for nonlinear elliptic equations

−�u + c(u) = 0 in �,(4.2.5)

we observe that at present there are only local uniqueness results for (small) c
when in addition to the Dirichlet data g0 we prescribe the Neumann data on ∂�
as well. We refer to the paper of Pilant and Rundell [PiR2], where an essential
assumption is that g0 is in a certain sense monotone on ∂�.

However, there is an important inverse problem for equation (4.2.5) originating
in magnetohydrodynamics where u is constant on ∂�. Equation (4.2.5) with these
boundary data describes the plasma in equilibrium. This inverse problem was
studied by Beretta and Vogelius [BerVo]. For natural configurations (� is a ball or a
torus) there are examples of nonuniqueness. Indeed, when� is a ball known results
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for nonlinear elliptic equations imply that u depends only on the distance to the
center of the ball. In resulting ordinary differential equation (in polar coordinates)
one can not find a function c(u) from one additional number ( the derivative of
solution at the endpoint) even assuming that c is analytic. Uniqueness is shown in
[BerVo] for analytic c when � has an analytic corner whose interior angle is not
π/2 or π . Their proof consists in demonstrating that compatibility conditions and
additional Neumann data determine all derivatives of c at a corner point. For recent
results about this problem and for another approach based on complex variables
we refer to Demidov and Moussaoui [DM].

4.3 The inverse conductivity problem

Of special interest is the so-called conductivity equation

div(a∇u) = 0, in �, a ∈ L∞(�).(4.3.1)

First we give a simple global uniqueness result due to Alessandrini [Al2]. Let
u1, u2 be solutions to the Dirichlet problem (4.3.1), (4.0.2) with scalar a = a1,
a = a2, which are equal to 1 near ∂� and nonconstant g. If a1 ≤ a2 in � and
∂νu1 = ∂νu2 on �, then a1 = a2 on �. Here � is any nonvoid open part of
∂�.

In fact, u1, u2 are harmonic near ∂�, and they have the same Cauchy data on
�. Therefore, they coincide near ∂�. By the definition (4.0.3) of a weak solution,∫

�

a1|∇u1|2 =
∫
∂�

u1∂νu1 =
∫
∂�

u2∂νu2 =
∫
�

a2|∇u2|2 ≥
∫
�

a1|∇u2|2.

By the Dirichlet principle, u1 is the unique minimizer of the first integral (the
energy integral), so we conclude that u1 = u2 on �, and therefore a1 = a2.

Now we consider

a = 1 + kχ (D), D̄ ⊂ �(4.3.2)

where D is a subdomain of � to be found with C1-piecewise smooth boundary.
Unless specified, in this section we assume that k is a given nonzero constant.

We discuss the direct problem in more detail. By Theorem 4.1, if g0 ∈ C2+λ(∂�)
and ∂� ∈ C2+λ, then a solution u to the Dirichlet problem (4.0.1), (4.0.2) belongs
to C2+λ(� ∩ V ), where V is a neighborhood of ∂�. Denote u on �\D by ue

and u on D by ui . When ∂D is only Lipschitz, then u is continuous in �̄ and
∇ue(∇ui ) has nontangential limits at almost every point of ∂D. Moreover, these
limits belong to L2(∂D), and for any sequence of ν-approximating D domains
Dm+1 ⊂ Dm , we have ‖∇ue‖2(∂Dm) < C (property B). These results are con-
tained or directly follow from the paper of Escauriaza, Fabes, and Verchota [EsFV].
ν-approximation means that in a local coordinate system where D is given by the in-
equality {xn < d(x ′)} with a Lipschitz d , domains Dm are defined as {xn < fm(x ′)}
where fm satisfy the conditions: d + (m + 1)−1 < fm ≤ d + m−1,∇ fm → ∇d al-
most everywhere and |∇ fm | ≤ C . The estimate on the boundaries of approximating
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domains follows from the estimate of the maximal functions in the paper [EsFV].
When ∂D ∈ C1+λ, the classical method of simple layer potentials described in
the book of Miranda [Mi] (compare with the proof of Lemma 4.3.8) gives solu-
tions with ∇ue(∇ui ) continuous up to ∂D. When ∂D ∈ C2+λ, then by Theorem
4.1 ue ∈ C2+λ(�\D) and ui ∈ C2+λ(D). Equation (4.3.1) is then equivalent to the
following equations and refraction conditions on ∂D:

�ue = 0 on �\D, �ui = 0 on D,

ue = ui , ∂νu
e = (1 + k)∂νu

i on ∂D.(4.3.3)

Exercise 4.3.1. Let u ∈ H(1)(�), ∇ue have nontangential limits almost every-
where on ∂D and possess the property B, and so are ∇ui . Prove that the differential
equations (4.3.3) and the refraction conditions are equivalent to the differential
equation (4.3.1) with the coefficient a given by (4.3.2).

{Hint: In the definition (4.0.3) of a solution to equation (4.3.1) first consider
test functions φ in C∞

0 (D) and in C∞
0 (�\D) and conclude that the differential

equations are satisfied; then integrate by parts in this definition in D and �\D,
transferring derivatives onto ue, ui , and use the density of the test functions in
L2(∂D). When integrating by parts in Lipschitz D use ν-approximations, integrate
in the approximating domains, and pass to the limit with respect to these domains.}

Domains D1, D2 are called i-contact domains if the sets �\D j , �\(D1 ∪
D2), D1 ∩ D2 are connected; the sets ∂D1 ∩ ∂D2, int(D1 ∩ D2) are disjoint, and
there is a nonempty C2-surface that belongs to the boundaries of both�\(D1 ∪ D2)
and D1 ∩ D2. In other words, these domains have a common piece of the bound-
aries. They are located on “one side” of this piece, and they satisfy some natural
topological restrictions. In particular, two domains are i-contact when they are
xn-convex, their boundaries have a common part, and these domains overlap.

Theorem 4.3.2. Let D1, D2 be i-contact Lipschitz solutions to the inverse con-
ductivity problem (4.3.1), (4.3.2), (4.0.2), (4.0.6) with nonconstant Dirichlet data.

Then D1 = D2.

PROOF. Let �0 be the common piece of ∂D1 and ∂D2. The functions ue
1 and ue

2
are harmonic on �\(D1 ∪ D2), and they have the same Cauchy data on �. By
uniqueness in the Cauchy problem they coincide there. Using (4.3.3) we conclude
that ui

1 = ui
2 and ∂νui

1 = ∂νui
2 on �0. Again by uniqueness in the Cauchy problem,

ui
1 = ui

2 on D1 ∩ D2.
Let us assume that D1\D2 is not empty. The functions ui

1 and ue
2 are harmonic in

D1\D2. Due to our assumptions on D1, D2, the boundary of D1\D2 consists only
of points of ∂(D1 ∪ D2) or of ∂(D1 ∩ D2). In the first case, by using the refraction
conditions (4.3.3), we have ui

1 = ue
1 = ue

2, and in the second case, ui
1 = ui

2 = ue
2.

So the functions ui
1 and ue

2 are harmonic in D1\D2 and coincide on its boundary.
By the maximum principles they are equal in D1\D2. Therefore, they have the
same normal derivatives on ∂(D1\D2).
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We consider ∂D1\D2. On this set we have ∂νui
1 = ∂νue

2 = ∂νue
1 because ue

1 = ue
2

near this set. On the other hand, the refraction conditions give (1 + k)∂νui
1 = ∂νue

1
on the same set, which implies that ∂νui

1 = 0 on ∂D1\D2. Similarly, ∂νui
1 = 0 on

the remaining part of ∂(D1\D2). By uniqueness in the Neumann problem, ui
1 is

constant, and therefore ue
2 is constant, which contradicts our assumptions about

the Dirichlet data for u.
This contradiction shows that D1 ⊂ D2. Similarly, D2 ⊂ D1.
The proof is complete. �

Exercise 4.3.3. Prove that if ∂νui
1 = 0 on ∂(D1\D2), then ui

1 is constant on D1\D2.
{Hint: make use of integration by parts and of ν-approximation of D1\D2 by

their open subsets with smooth boundaries.}

Exercise 4.3.4. Let� be the cylinder G × (−H, 0), where G is a bounded C2+λ-
domain in R

n−1. Let D be its subdomain {−H < xn < d(x ′), x ′ ∈ G}, where d
is a Lipschitz function, −H < d < 0. Let � be the union of two nonempty open
parts of G × {−H} and of G × {0}.

Show that D is uniquely identified by the data of the inverse problem (4.3.1),
(4.3.2), (4.0.2), (4.0.6), provided that g0 = 0 on ∂G × (−H, 0).

We observe that these two exercises are interesting for D with piecewise smooth
and even with C2+λ-boundaries, and proofs for general Lipschitz domains are only
slightly more difficult, because one has to use some approximation.

Now we turn to noncontact domains. Not as much is known here. We are able
to give only the following global uniqueness result.

Theorem 4.3.5. Let us assume that D1, D2 are either (i) two convex polyhedra or
(ii) two bounded cylinders with strictly convex bases. Let

diam D j < dist(D j , ∂�).(4.3.4)

If the solutions u j of (4.3.1), (4.3.2), (4.0.2) with nonconstant g0 and with
D = D j satisfy the condition ∂νu1 = ∂νu2 on �, then D1 = D2.

It is observed in the paper of Friedman and Isakov [FrI] that condition (4.3.4)
can be dropped when � is a half-space. Theorems 4.3.2, 4.3.5 are from [FrI].

We mention that global uniqueness is known for unions of a finite numbers of
discs in the plane and for balls D in the three-dimensional space (see the papers of
Isakov and Powell [IsP] and of Kang and Seo [KS1], [KS2]), but it is not known
for ellipses or ellipsoids.

Outline of a proof for n = 2. First we prove the following Lemma.

Lemma 4.3.6. Let the origin be a vertex of a convex polygon D and let ue have
a harmonic continuation onto a ball B(0; ε). Then there is a rotation of the plane
such that ue on this ball is invariant with respect to this rotation.
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PROOF. We can assume that Dε = D ∩ B(0; ε) is {0 < σ < θ, 0 < r < ε}. Ac-
cording to relations (4.3.3), the function ui solves the following Cauchy prob-
lem:�ui = 0 in Dε, ui = ue, ∂νui = (1 + k)−1∂νue on {0 < x1 < ε, x2 = 0}. We
can consider the same extended Cauchy problem with the data on the interval
{−ε < x1 < ε}. Since its data ue are analytic near the origin, for some ε there
is a solution ui that is analytic on B(0; ε) (e.g., see the book of John [Jo4]). A
solution is unique on Dε, so ui has an analytic continuation onto B(0; ε) for some
positive ε.

The functions ui , ue are harmonic near the origin, so they admit the expan-
sions u(x) = ∑

(am cos mσ + bm sin mσ )rm(m = 0, 1, . . .) with the coefficients
ai

m, a
e
m, . . . for ui , ue. From the refraction conditions (4.3.3) at σ = 0 we ob-

tain ae
m = ai

m and be
m = (1 + k)bi

m . The same conditions at σ = θ then give
(be

m − bi
m) sin mθ = 0 and (ae

m − (1 + k)ai
m) sin mθ = 0. Summing up, we obtain

be
m sin mθ = ae

m sin mθ = 0.
If θ/π is irrational, then be

m = ae
m = 0 for all m = 1, . . .. Therefore, the function

ue is constant, which contradicts the assumption that the Dirichlet data g are not
constant. If θ/π is p/q, q ≥ 1 and (p, q) = 1, then for all nonzero coefficients we
must have sin mpπ/q = 0, which means that mp/q is an integer; so m = lq, l =
. . . ,−1, 0, 1, . . .. Returning to the representation of ue by the series, we conclude
that this function is invariant with respect to rotation by 2π/q.

The proof is complete. �

We return to the proof of Theorem 4.3.5. Let us assume that D1 is not D2. Then
we may assume that the origin is a vertex of D1 which is not contained in the
convex hull of D1 ∪ D2. Since ue

1, u
e
2 are harmonic on the domain �\(D1 ∪ D2)

and have the same Cauchy data on �, they are equal on this domain; and since ue
2

has a harmonic continuation onto a neighborhood of the origin, ue
1 has a harmonic

continuation as well. By condition (4.3.4) there is a sector S of the disk B(0; R),
where R > diam D1, with angle greater thanπ that is contained in�\D1. Rotating
this sector q times by the angle 2π/q , one can obtain the harmonic continuation
of ue

1 onto the whole disk that contains D1 and therefore onto �. Indeed, let O
be this rotation. Then u(O(x)) = u(x) when |x | < ε by Lemma 4.3.6. Since both
functions are harmonic, they agree also on the intersection of S and O(S), so
u(O(x)) is the harmonic continuation of u onto O(S), and we can proceed with
rotations. The functions ue

1 and ui
1 are harmonic in D1, and they coincide on its

boundary. Therefore, they are equal in D1. Using the second refraction condition
(4.3.3), we conclude that ∂νue

1 = 0 on ∂D1. By uniqueness in the Neumann problem
for harmonic functions, ue

1 is constant on D1 , and by uniqueness of the harmonic
continuation, it is constant on�, which contradicts the assumption that the Dirichlet
data g0 are not constant. So the initial assumption that D1 is not D2 is wrong, and
the proof is complete.

The proof for three-dimensional space and when � is a half-space is given for
polyhedra in the paper of Friedman and Isakov [FrI] and for cylindrical D in the
paper of Isakov and Powell [IsP]. Recently, Seo in the paper [Se] showed that two
boundary measurements uniquely determine a (not necessarily convex) polygon D
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and k. We observe that these proofs heavily use properties of harmonic functions,
and so far they are not extended to solutions of the Helmholtz equation. This
extension is quite desirable since many inverse problems use prospecting by time
harmonic waves.

While there are no global uniqueness results for general convex D in the absence
of interior sources, we can prove uniqueness of such D when a field is generated
by a source inside D.

We consider the conductivity equation

div(−a∇u) = f in R
3, lim

|x |→∞
u(x) = 0.(4.3.5)

Let D be a subdomain of a bounded domain �, and � a C1-surface in R
3\�. We

assume that f and k are given. For the inverse conductivity problem we consider
the additional data

u = g0, ∂νu = g1 on �.(4.3.6)

Theorem 4.3.7. Let us assume that f ≥ 0, f ∈ L1(�); f = 0 outside D, f �≡ 0.
Let D be a convex domain and a = kχ (D) where

k > 0 on �.(4.3.7)

Then D is uniquely determined by the data (4.3.6).

In the proof we make use of the following results.

Lemma 4.3.8. If two domains D1 and D2 produce the same data (4.3.6), then∫
∂D1

v∂νu
i
1 =

∫
∂D2

v∂νu
i
2

for all functions v harmonic near D1 ∪ D2.

PROOF. From the definition (4.0.3) of the equality div(a1∇u1) = div(a2∇u2) in R
3

we get ∫
∂�0

∂νu1v −
∫
�0

a1∇u1 · ∇v =
∫
∂�0

∂νu2v −
∫
�0

a2∇u2 · ∇v

for any function v ∈ C1(�0), where �0 is a smooth domain containing D1 ∪ D2.
As above, the equality (4.3.6) implies that u1 = u2 on�\(D1 ∪ D2). Let us choose
�0 to be contained a neighborhood of D1 ∪ D2 where v is harmonic. Then the
boundary integrals are equal, and using (4.3.2), we conclude that∫

�0

∇u1∇v + k
∫

D1

∇u1 · ∇v =
∫
�0

∇u2 · ∇v + k
∫

D2

∇u2 · ∇v .

Integrating by parts in the integrals over � and using the harmonicity of v and
the equality u1 = u2 outside D1 ∪ D2, we conclude that these integrals are equal.
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Then similarly, integrating by parts in the integrals over D1, D2, we arrive at the
conclusion of this lemma. �

Lemma 4.3.9. Under the conditions of Theorem 4.3.7 we have ∂νui < 0 on ∂D.

PROOF. Let

h(x) = (1 + k)
∫

D
f (y)G(x, y) dy,

where G(x, y) = 1/ (4π |x − y|) is the standard fundamental solution of the
Laplace operator. We have div(−a∇h) = f in D, and h is harmonic outside D.
Since D is convex, we have

∂ν(x)G(x, y) = −(4π |x − y|3)−1ν(x) · (x − y) ≤ 0

when x ∈ ∂D and y ∈ D, so ∂νh < 0 on ∂D. When u solves the direct problem,
then the function w = u − h is harmonic in D, and outside D, it goes to zero at
infinity, is continuous in R

3, and satisfies the refraction condition

∂νw
e − (1 + k)∂νw

i = k∂νh on ∂D.(4.3.8)

Moreover, any such w generates a solution to the original problem for u. To find
w one can make use of the classical single layer potential

w(x) = U1(x ; ρ) =
∫
∂D
ρ(y)G(x, y)d�(y),

with densityρ to be found. The well-known jump relations for first order derivatives
of this potential ∂νwe = −ρ/2 + ∂νU1, ∂νwi = ρ/2 + ∂νU1 on ∂D (e.g., [Is4],
section 1.6, [Mi], p. 35, for smooth D and [EsFV] for Lipschitz D) where ∂νU1

denotes the potential on ∂D with the kernel ∂νG transform the refraction condition
(4.3.8) into the integral equation

−ρ/2 − (1 + k)ρ/2 − k∂νU1 = k∂νh on ∂D

or

(I − K )ρ = −k/(1 + k/2)∂νh(4.3.9)

where I is the identity operator and Kρ = −k/(1 + k/2)∂νU1.
The right side of the equation (4.3.9) is positive on ∂D. Since the kernel ∂νG

of the operator ∂νU1 is non positive the operator K maps nonnegative functions
into nonnegative functions. According to the results of Escauriaza, Fabes, and
Verchota the eigenvalues of the operator ρ → ∂νU1 are contained in (−1/2, 1/2].
Due to the convexity assumptions, this operator has non-positive kernel, so its
spectral radius in L2 does not exceed 1/2, the spectral radius of K in L2 is less
than 1, and a solution ρ to equation (4.3.9) is the sum of the Neumann series
(I + K + K 2 + . . .)h1, where h1 is the right side of (4.3.9). Since h1 is positive,
so is ρ.

The proof will be complete when we write

∂νu
e = ∂νh + ∂νwe = ∂νh − ρ/2 + ∂νU1
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and express ∂νU1 from (4.3.9) to conclude that ∂νue = −(1/k + 1)ρ < 0. �

PROOF OF THEOREM 4.3.7. We will modify the orthogonality method used to prove
Theorem 4.1.1.

Assume that there are two different domains D1, D2 producing the same exterior
data. If one of them is contained in another, then we obtain a contradiction by
using the argument from the beginning of Section 4.3. So we can assume that both
D1\D2 and D2\D1 are nonempty. We denote by �1e, �1i , �2e, �2i the exterior
and interior parts ∂D1\D2, ∂D2 ∩ D1, ∂D2\D1, ∂D1 ∩ D2 of their boundaries. By
using harmonic approximation and stability of the Dirichlet problem with respect
to a domain (see, e.g., [Is4]) we can extend the orthogonality relation of Lemma
4.3.8 onto functions v harmonic in D1 ∪ D2 and continuous on the closure of this
star-shaped domain. Let g0 be any continuous function on ∂(D1 ∪ D2), 0 ≤ g0 ≤ 1,
and v a solution of the Dirichlet problem in D1 ∪ D2 with the data g0. We choose
g0 = 0 on some open part of �2e. By using the comparison principle one can show
then that v < 1 − ε(F) for any compact set F in D1 ∪ D2 (see, e.g., [Is4], Lemma
1.7.4). By maximum principles 0 ≤ v .

From Lemma 4.3.8 we have∫
�1e

g0∂νu
i
1 +

∫
�2i

v∂νu
i
1 =

∫
�2e

g0∂νu
i
2 +

∫
�1i

v∂νu
i
2.

By using the inequalities for v and Lemma 3.4.8 we bound the left side from above
and the right side from below to obtain∫

�1e

g0∂νu
i
1 ≥

∫
�2e

g0∂νu
i
2 +

∫
�1i

∂νu
i
2 + ε,

where ε does not depend on g0. We can approximate in L1(�2e ∪ �1e) by such g0

the function that is 1 on �1e and 0 on �2e, which give the inequality∫
�1e

∂νu
i
1 −

∫
�1i

∂νu
i
2 > 0.

Observe that according to the refraction conditions (4.3.3) we have

∂νu
i
1 = (1 + k)−1∂νu

e
1 = (1 + k)−1∂νu

e
2 on �1e

because ue
1 = ue

2 outside D1 ∪ D2, and similarly, ∂νui
2 = (1 + k)−1∂νue

2 on �1i ,
so we can replace ui

1 and ui
2 by ue

2 in the above integral. Since ue
2 is harmonic in

D1\D2 and ν is the interior normal on �1i , the integral must be zero.
We have a contradiction, which shows that the initial assumption D1 �= D2 was

wrong.
The proof is complete. �

The orthogonality relations can also be used to estimate some functionals of the
conductivity coefficient a. Indeed, from the definition of a weak solution (4.0.3)
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we have ∫
�

a∇u · ∇φ =
∫
∂�

g1φ,

and the right side is known from the data (4.0.6). In particular, when a has the
form (4.3.2),∫

�

∇u · ∇φ + k
∫

D
∇u · ∇φ =

∫
∂�

g1φ

∫
�

∇u0 · ∇φ =
∫
∂�

∂νu0φ,(4.3.10)

if u0 is a harmonic function.

Exercise 4.3.10. Prove that the data (4.0.2), (4.0.6) of the inverse conductivity
problem with a of the form (4.3.2) in a unique and stable way determine the
integrals

k
∫
∂D

u∂νv

for any harmonic function v in �.

Now we will show how to use the orthogonality relations (4.3.10) to evaluate size
of D. The most recent and advanced paper on this subject is written of Alessandrini,
Rosset, and Seo [AlRS] where one can find more general and detailed results
as well as references to previous work. The idea is to compare solutions of the
problems with a = 1 + kχ (D) and with a = 1. We will assume that u = u0 = g0

on ∂�. Choosing in (4.3.10) the test function φ = u − u0, subtracting the integral
equalities (4.3.10) and utilizing that φ = 0 on ∂� we yield∫

�

|∇u − ∇u0|2 + k
∫

D
∇u · ∇(u − u0) = 0.

From the first equality (4.3.10) with φ = u0,

k
∫

D
∇u · ∇u0 =

∫
∂�

∂νuu −
∫
�

∇u · ∇u0 =
∫
∂�

(∂νu − ∂νu0)g0

where we also used the second equality (4.3.10) with φ = u0. With the aid of the
last integral identity we finally arive at the relation∫

�

|∇u − ∇u0|2 + k
∫

D
∇u · ∇u =

∫
∂�

(∂νu − ∂νu0)g0.(4.3.11)

If 0 < k then the both terms on the left side are nonnegative and therefore bounded
by the known integral over ∂�. By using the elementary inequality b2 ≤ 2(|b −
c|2 + c2) we can eliminate unknown term with u in the integral (4.3.11) over �:

k
∫

D
|∇u0|2 ≤ 2k(

∫
D

|∇(u − u0)|2 +
∫

D
|∇u|2) ≤ 2(k + 1)

∫
∂�

(∂νu − ∂νu0)g0.
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This inequality can be used in the estimation of size of D. For example, letting
u0(x) = x j we will have

k/2(k + 1)vol D ≤
∫
∂�

(∂νu(; j) − ν j )x j

where u(; j) solves the Dirichlet problem with the data u(x ; j) = x j , x ∈ ∂�.
Similarly one obtains the integral identity∫

�

(1 + kχ (D))|∇(u − u0)|2 − k
∫

D
|∇u0|2 =

∫
∂�

(∂νu0 − ∂νu)g0,

which can be used to evaluate vol D when −1 < k < 0 and also for bounding the
right side of (4.3.11) by the integral over D to conclude that

1/k
∫
�

(∂νu − ∂νu0)g0 ≤
∫

D
|∇u0|2 ≤ 2(1 + 1/k)

∫
�

(∂νu − ∂νu0)g0(4.3.12)

In [AlRS] they considered more general elliptic equations and by using so-called
doubling inequalitites to bound the inner integral in (4.3.12) by vol D obtained
two-sided estimates of vol D for arbitrary nonzero Neumann boundary data with
constants depending on this data. A good review of available results on size estima-
tion (including evaluation of elastic cavities) is given in the paper of Alessandrini,
Morassi, and Rosset in [I3].

We observe that for nonlinear conductivity equation (4.3.1) with a = a(u) there
is a global uniqueness and certain existence results due to Pilant and Rundell
[PiR3]. We demonstrate their method in a slightly more general many-dimensional
situation. We consider a domain� ⊂ R

n with the C2+λ-boundary. Let � be a C1-
curve on ∂�. We prescribe the following boundary value data:

a(u)∂νu = g1 on ∂�, g1 ∈ C1+λ,
∫
∂�

g1 = 0

and the additional boundary data for determination of a,

u = g0 on �.

Let b be a point of ∂� and

v(x) =
∫ u(x)

u(b)
a(s)ds.

Then equation (4.3.1) and the Neumann boundary conditions (4.0.6) are trans-
formed into the following equation and boundary conditions:

−�v = 0 in �,

∂νv = g1 on ∂�;(4.3.13)

and the additional boundary data give∫ g0(x)

g0(b)
a = v(x) when x ∈ �.(4.3.14)
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Since v(b) = 0, equations (4.3.10) uniquely determine v , and then one can deter-
mine a on the range of g0 from the last equation.

One can prescribe the Dirichlet data g0 ∈ C2+λ in the direct problem and the
additional Neumann data on � that are transformed into the boundary relations
(4.3.14) on ∂� and (4.3.13) on �. Uniqueness of a on the range of g0 when the
maximum and minimum of g0 are achieved on � still holds, as shown below.

Let a1, a2 be two conductivity coefficients and v1, v2 the corresponding functions
v . Let a = a2 − a1,w = v2 − v1. Then subtracting the relations (4.3.13), (4.3.14),
we obtain

�w = 0 in �,

∂νw = 0 on �,
∫ g0(x)

g0(b)
a = w(x) on ∂�.

By Giraud’s extremum principle, a nonconstant w cannot attain its maximum or
minimum over � at a point of � ∪ �, so they are attained on ∂�\�. Since a is
positive, this means that the maximum and minimum of g0 are on ∂�\� as well,
which contradicts the choice of g0. Therefore, w is constant on �, which must be
zero because w(b) = 0. Then a1 = a2 on the range of g0.

The choice of the Dirichlet data for the direct problem has advantages, because
then the range of g0 is under control.

4.4 Methods of the theory of one complex variable

In the plane case one can enjoy additional opportunities of the theory of functions
of one complex variable. In particular, conformal mappings and Riemann-Hilbert
type boundary value problems are very useful when studying the free boundary
problems where a domain D is to be found from certain exterior data.

We introduce the complex variables z = x1 + i x2, z = x1 − i x2 and the related
complex differentiations

∂ = 2−1(∂1 − i∂2), ∂̄ = 2−1(∂1 + i∂2).(4.4.1)

The function ∂̄u then is one-half of the gradient of u. It is easy to show that
� = 4∂∂̄ . For references on theory of one complex variable we refer to the book
of Ahlfors [Ah].

Lemma 4.4.1. Let D be a bounded simply connected domain in R
2 with rec-

tifiable boundary. Let f ∈ L∞(D). Let u be a function that is harmonic in
R

2\D, is C ln |x | + u0, where u0 goes to zero at infinity and u0 ∈ C1(R2\D).
Let U (; f χ (D)) be the logarithmic potential of D with density f .

Then the equality

U (; f χ (D)) = u outside D(4.4.2)
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is equivalent to the equality

∂u = F + φ+ on ∂D,(4.4.3)

where F is a solution to the equation −4∂̄F = f in D, F ∈ C(D), andφ+ ∈ C(D)
is a complex analytic function on D.

PROOF. The potential U (; f χ (D)) is contained in C1(R2), and −4∂∂̄U
(; f χ (D)) = f χ (D). Since u and the potential are equal outside D, their anti-
gradients ∂ are equal on ∂D. Let φ+ = ∂U (; f χ (D)) − F . Then ∂̄φ+ = 0 on D,
and we have the equality (4.4.3).

Now let us start with (4.4.3). Define the function V as ∂U (; f χ (D)) − ∂u on
R

2\D and as ∂U (; f χD)) − F − φ+ in D. Both functions outside and inside of
D are analytic functions, continuous up to ∂D and equal on ∂D. By the continuity
principle, V is complex analytic in C. In addition, gradients of u and of the potential
go to zero at infinity, so V is bounded. By Liouville’s theorem, it is constant, which
must be zero due to the behavior at infinity. Since the gradient of the difference of
u and the potential is zero, this difference is constant outside D, which turns out
to be zero if we remember the behavior at infinity.

The proof is complete. �

Let z(t) be a conformal mapping of the unit disk B(0; 1) onto D. Since D is
Jordan, z(t) is continuous on the closure of the unit disk. Letting U = ∂u and
transplanting the relation (4.4.3) onto the boundary of this disk, we obtain

U (z(t)) = F(z(t), z(t)) + φ+(t) when |t | = 1,

where φ+ is a function that is complex analytic in the unit disk and continuous on
its closure. In particular, when f is constant, we may choose F(z, z) = − f z/4,
which gives the useful relation

U (z(t)) = − f z(1/t)/4 + φ+(t) when t t = |t |2 = 1,(4.4.4)

which helps, say, to analyze the connection between regular points of the exterior
potential ∂u and the conformal map z(t). The relation (4.4.4) has been obtained
by V. Ivanov [Iv].

Indeed, let D• be a domain containing C\D, � the part of ∂D inside D•, and
γ,G• be the inverse images of �, D ∩ D• under the mapping z(t). The exterior
potential U (; f χ (D)) has a harmonic continuation from C\D onto D• if and only
if z(t) has an analytic continuation onto the interior of B(0; 1) ∪ γ ∪ G∗

•, where
G∗

• is the image of G• under the inversion t → 1/t .
If the exterior potential u has a continuation, then the left side of (4.4.4) is

complex analytic in G•. z(1/t) is complex analytic outside of the unit disk and
continuous up to its boundary. Since it is equal on γ to the function 4/ f (φ+(t) −
U (z(t)), which is complex analytic on G• and continuous up to γ , by the continuity
principle we conclude that z(1/t) has an analytic continuation onto G•. Applying
inversions, we obtain the claim for z(t).
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If the conformal mapping has a continuation, then we can use the same argument
to show that U has an analytic continuation onto D•, and therefore u has a harmonic
continuation.

The relation (4.4.4) can be considered as a nonlinear boundary value problem
for analytic functions z(t), φ+(t) in the unit disk. This problem can be solved at
least locally, which gives also some constructive method of finding D given the
exterior potential u.

We refer for the corresponding results and details to the book of Cherednichenko
[Cher] and of Isakov [Is4] and the references given there.

A similar technique is even more useful when studying the inverse conductivity
problem.

Let D be a simply connected subdomain of � with the Lipschitz boundary. Let
u be a solution to the conductivity problem (4.3.3) with the Dirichlet data u = g on
∂�. By using the refraction condition on ∂D it is easy to observe that the integral
of ∂νue over ∂D is (1 + k) times the integral of ∂νui , which is zero because the
function ui is harmonic inside D. Therefore, we can find the harmonic conjugate
ve of ue in�\D. Since D is simply connected, there is the harmonic conjugate vi

to ui in D. We can assume that both ve and vi are equal to zero at some point of ∂D.
We assume that the pair (τ, ν), where τ is a unit tangent to ∂D, is oriented as the
coordinate vectors e1, e2, and we recall the following form of the Cauchy-Riemann
equation for u, v:

∂τu = ∂νv, ∂τ v = −∂νu,(4.4.5)

where u should be replaced by ue outside D and by ui inside D and so is v . We
introduce the complex analytic functions U e = ue + ive and U i = ui + ivi . Since
we are given the Cauchy data for ue on �, this function can be considered as given.

Let z(t) be the conformal mapping of the unit disk onto D normalized in the
standard way: z(0) = 0, z′(0) > 0.

Lemma 4.4.2. A domain D is a solution to the inverse conductivity problem with
the exterior data ue if and only if

ψ+(t) = (2 + k)U e(z(t)) + kU
e
(z(t)) when |t | = 1(4.4.6)

for some function ψ+ that is complex analytic in B(0; 1) and whose first-order
derivatives are in L2(∂B(0; 1)).

PROOF. Let D be a solution to the inverse conductivity problem. From the Cauchy-
Riemann conditions (4.4.5) and from the refraction conditions (4.3.3) we conclude
that ∂τ ve = (1 + k)∂τ vi on ∂D. Integrating along ∂D and using the special choice
of ve, vi , we conclude that ve = (1 + k)vi on ∂D. This relation and the continuity
of the function u yield

U e + U
e = U i + U

i
, (U e − U

e
) = (1 + k)(U i − U

i
) on ∂D.

By substituting U
i
from the first relation into the second one we obtain the equality

(4.4.6) with ψ+(t) = (2 + 2k)U i (z(t)).
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Now let the relation (4.4.6) be valid, where z(t) is the normalized conformal map
of the unit disk onto D. Let U e

D be the exterior analytic function constructed for
the exterior part of the solution of the direct conductivity problem. Then we have
the relation (4.4.6) for UD with ψ+ replaced by (2 + 2k)U i

D(z(t)). Let U i (z) =
ψ+(t(z))/(2 + 2k). Subtracting the relations (4.4.6) for U and UD and letting
U• be their difference, we obtain the equality (2 + 2k)U i

• = (2 + k)U e
• + kU

e
• on

∂D. Since RU e and RU e
D have the same Dirichlet data on ∂�, we conclude that

RU e
• = 0 on ∂�. Subtracting the boundary relation for U• and its complex adjoint

as well as adding these relations, we arrive at the equalities

U e
• − U

e
• = (1 + k)(U i

• − U
i
•), U e

• + U
e
• = U i

• + U
i
•,

or

ue
• = ui

•, v
e
• = (1 + k)ve

• on ∂D.

Differentiating the second relation in the tangential direction and using once more
the Cauchy-Riemann conditions (4.4.5), we conclude that ∂νue

• = (1 + k)∂νui
• on

∂D. So u• is a solution to the direct conductivity problem with zero Dirichlet data
on ∂�, and it follows that ue

• = 0 outside D. Therefore, ue = ue
D , and the proof is

complete. �

The relation (4.4.6) can be considered as a nonlinear boundary value problem for
analytic functions ψ+, z in the unit disk whose solution (with given U e) produces
a solution D to the inverse conductivity problem. In particular, one can obtain
analyticity results similar to those for inverse gravimetry, provided that ∂U e �= 0
on ∂D (or ∇ue �= 0, which is the same). This condition is controlled by the index
(winding number) of the vector field ∇ue, and it plays a crucial role in Theorem
4.4.3.

In proving analyticity and even uniqueness results similar to Theorem 4.3.5
one can use the Schwarz function and complete regularity results for domains
having such a function that were obtained by Sakai [Sa]. Let γ be a portion of
∂D for an open set D ⊂ C. Let the origin be a point of �. A function S defined
on D ∪ � is called a Schwarz function of D ∪ � if S is complex analytic in D,
continuous in D ∪ �, and S(z) = z on �. Sakai showed that loosely speaking, �
near the origin is either a regular analytic curve or the union of two such curves or
a regular analytic cusp directed into D. If the exterior potential U has a complex
analytic continuation across�, then letting t = t(z) in (4.4.4), we obtain the relation
z = 4(φ+(z) − U (z)) on �, so the right side is a Schwarz function, and we obtain
analyticity of �. Similarly, if we can resolve equation (4.4.6) with respect to z, we
obtain the same claim. This equation can be locally resolved when ∂U �= 0 on �,
which can be guaranteed by index theory, as we will show later.

We will assume that D = Dσ is close to a C1+λ-domain D0 in the
following sense. Let � be a family of complex analytic functions σ on
B(0; 1), |σ |1+λ(B(0; 1)) ≤ M , such that z(t) + σ (t) is the normalized conformal
mapping of B(0; 1) onto some simply connected domain Dσ . A sufficient condition
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is that σ (0) = 0, Iσ ′(0) = 0, and M is small. We will assume that � is closed in
C1+λ(B(0; 1)).

Theorem 4.4.3. Let ∂D0 be C1+λ. Let us assume that the boundary data g0 ∈
C2(∂�) have a unique local maximum and unique local minimum on ∂�.

For the family� there is a number ε� such that if Dσ is a solution to the inverse
conductivity problem and |σ |0(B(0; 1)) < ε, then Dσ = D0.

A complete proof of this result is given in the papers of Alessandrini, Isakov,
and Powell [AlIP] and of Powell [Pow]. It is based on linearization of the boundary
condition (4.4.6), the study of the corresponding linear problem A(ψ, σ ) = ψ1,
and the contracting remainder B. The linearization is represented by the boundary
value problem for complex analytic functions ψ, σ in the unit disk B(0; 1) with
the nonlinear boundary condition

A(ψ, σ )(t) = Bσ (t) when |t | = 1,(4.4.7)

where

A(ψ, σ ) = ψ − (2 + k)aσ − kaσ , a(t) = ∂u(z(t))

and

Bσ = (2 + k)B1σ + B1σ , B1σ = U e(z + σ ) − U e(z) − ∂ue(z)σ.

Here A is considered as an operator from � ×� into Cλ(∂B(0; 1)). We define �
as the space of functions complex analytic in B(0; 1) and Hölder in its closure, and
� as the space of functions σ ∈ � such that σ (0) = 0, Iσ ′(0) = 0. The operator
A is continuous from � ×� onto its range R ⊂ Cλ(B(0; 1)), which is known
to be finite-codimensional. The main claim about A is that under the conditions
of Theorem 4.4.3 its kernel is zero, and therefore this Fredholm operator is in-
vertible from R into � ×�. A proof of this claim given in [AlIP] is based on
Muskhelishvili’s [Mus] theory of one-dimensional singular integral equations (as
suggested and proven in the paper of Bellout, Friedman, and Isakov [BelFI] for
analytic ∂D0). The crucial step is to show that the index (winding number) of the
vector field a is well-defined on ∂B(0; 1) and is zero. We observe that the boundary
value problem for the conformal map was derived and used by Cherednichenko
[Cher].

First, we observe that a solution to the elliptic differential equation (4.3.1)
in R

2 cannot have a zero of infinite order unless this solution is constant (see
Section 3.3). This observation implies that all zeros of the gradient of a nonconstant
solution u to the equation div((1 + kχ (D))∇u) = 0 in� are isolated, and u near a
zero admits the following representation: u(x) − u(x0) = HN (x − x0) + O(|x −
x0|N+λ), where HN is a homogeneous function of degree N ([AlIP], Theorem
4). the geometric interpretations of the index of ∇u around zero gradient given
in the papers of Alessandrini and Magnanini [AIM] and of Alessandrini, Isakov,
and Powell [AlIP] as the multiplicity N of a zero of the gradient and homotopic
invariance of the index show that the sum of indices of all critical points of u inside
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� is equal to the index of ∇u over ∂�. From the conditions of Theorem 4.4.3 on
the boundary data we obtain that the index of ∇u over ∂� is 0. So there is no zero
of ∇ue in �\D0 and of ∇ui in D. Hence the index of a = ∂u over ∂D is zero.
Another way to understand why the conditions on g0 imply the absence of zeros
of ∇u inside � is to use level curves of u. If there is a zero inside, then more than
two level curves are entering ∂�, which contradicts the condition on g.

It is interesting that the linearized problem for analytic functions can be trans-
formed into the oblique derivative problem for harmonic functions v in D0 with
the boundary condition ∇ue · ∇v = 0 on ∂D0, as observed by Bellout, Fried-
man, Isakov [BelFI]. Our conditions guarantee that this problem is elliptic in the
two-dimensional case, but it is always nonelliptic in higher dimensions. This is
a partial explanation why even local uniqueness results are not available in the
three-dimensional case. There are expectations of obtaining local uniqueness re-
sults from three special boundary measurements.

One can anticipate conditional logarithmic (local) stability in the situation of
Theorem 4.4.3 which probably can be obtained by using sharp stability results
for analytic/harmonic continuation up to the boundary of D (like in [AlBRV],
[Ron] for different problems) and standard elliptic theory which implies that the
inverse of the linearized operator A in (4.4.7) is continuos from C1+λ into itself.
Logarithmic stability should be optimal as suggested by the general theory in Di
Christo, Rondi [DR].

Exercise 4.4.4. Prove that if g0 is chosen as in Theorem 4.4.3, then Theorem 4.3.5
about convex polygons is valid without the assumption (4.3.4).

{Hint: Use that the index of ∇u over ∂� is zero and that from the proof of Lemma
4.3.6 one can conclude that if ue has a harmonic continuation onto a neighborhood
of a vertex, then this vertex must be a zero of ∇ue.}

4.5 Linearization of the coefficients problem

The problems of identification of coefficients are quite complicated, in particular
due to their nonlinearity. In practical computations one often linearizes these in-
verse problems, and the results of reconstruction via linearization are sometimes
very useful. The linearization of the coefficients problem is an inverse source prob-
lem. In this section we justify linearization in two important cases: for smooth and
for special discontinuous perturbations. We discuss the linearized problems in this
section and later.

Let us consider the Dirichlet problem

div(−a∇u) + b · ∇u + cu = f in �,

u = g0 on ∂�.(4.5.1)

We assume that a = a0 + aδ, . . . , c = c0 + cδ are some perturbations of the coef-
ficients of the equation such that it remains uniformly elliptic under these pertur-
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bations. Let u0 be a solution to (4.5.1) with aδ = 0, . . . , cδ = 0, uδ a solution to
(4.5.1), and vδ equal to uδ − u0. We are interested in comparing vδ with a solution
v to the problem

div(−a0∇v) + b0 · ∇v + c0v = div(aδ∇u0) − bδ · ∇u0 − cδu0 in �,

v = 0 on ∂�.(4.5.2)

Lemma 4.5.1. Let

‖aδ‖∞(�) + ‖bδ‖∞(�) + ‖cδ‖∞(�) = δ.
Then ‖vδ‖(1)(�) ≤ Cδ‖g0‖(1/2)(∂�) and ‖v − vδ‖(1)(�) ≤ Cδ2‖g‖(1/2)(∂�).

If in addition bδ = 0, and either cδ = 0 and |∇u0| > ε0 on � or aδ = 0 and
|u0| > ε0 on � for some fixed g, then

‖aδ‖(0)(�) + ‖cδ‖(0)(�) ≤ C‖vδ‖(1)(�).

PROOF. By subtracting equations (4.5.1) for uδ and u0 we obtain

div(−a∇vδ) + b · ∇vδ + cvδ
= div(aδ∇u0) − bδ · ∇u0 − cδu0 in �,

uδ = 0 on ∂�.

From Theorem 4.1 and our assumptions on aδ, bδ , and cδ it follows that

‖aδ∇u0‖(0)(�+ ‖bδ∇u0‖(0)(�) + ‖cδu0‖(0)(�) ≤ Cδ,

so the estimates of Theorem 4.1 imply the first estimate of this lemma. By sub-
tracting the equation for vδ and v we get

div(−a0∇(vδ − v)) + b0 · ∇(vδ − v) + c0(vδ − v)

= div(aδ∇vδ) − bδ · ∇vδ − cδvδ in �,

vδ = 0 on ∂�.

Now the appropriate norms (‖aδ∇vδ‖(0)(�) + · · ·) of the right sides are bounded
by Cδ2 which follows from the first estimate; and arguing as above, we obtain the
second estimate.

Let cδ = 0. From the equation for vδ it follows that ‖aδ∇u0‖(0)(�) ≤
C‖vδ‖(1)(�). Due to our conditions on u0 this implies the bound of ‖aδ‖(0)(�).
The proof when aδ = 0 is similar.

The proof is complete. �

The results of Lemma 4.5.1 somehow justify the linearization (replacement
of vδ by v) in the inverse coefficient problem when perturbations are δ-small
in the uniform norm and perturbations are a priori bounded in, say, Lipschitz
norm, because in this case the L1-norm bounds the L∞-norm. The conditions of
Lemma 5.4.1 on u0 can be guaranteed by an index-type argument or by maximum
principles for some choice of the Dirichlet data g0 (say, g0 > 0 on ∂�). In fact,
we neglect terms of magnitude δ2 when the data are of magnitude δ. However,
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it is not a genuine justification, because while we can guarantee that for the data
∂νu of the inverse problem we have ‖∂ν(vδ − v)‖(−1/2)(∂�) ≤ Cδ2 we cannot
tell that ‖∂νv‖(−1/2) ≥ δ/C . Moreover, the last bound is generally wrong, due
to nonuniqueness and ill-posedness of the linearized inverse problem, when in
addition to (4.5.2) we prescribe

a0∂νv = g1 on ∂�.(4.5.3)

A complete justification requires much more delicate analysis, and we will not do
it in this book.

Exercise 4.5.2. Consider the linearized inverse problem (4.5.2), (4.5.3) when
a0 = 1, aδ = kχ (D), b0 = bδ = 0, c0 = cδ = 0. Assume that u0(x) = xn and k
is constant and known. Prove the uniqueness of the unknown xn-convex D.

{Hint: Make use of the methods of the proofs of Theorem 4.3.7.}

Now we consider more special perturbations that are not uniformly small and
that are more natural in those applications one is looking for shapes of unknown
inclusions of relatively small volume.

We assume that b = c = 0 and aδ = kχ (D), where D is an open set and k is a
function that is piecewise C2-smooth on D. The linearization will be considered
under the assumptions

area(∂D) ≤ C, ‖k‖2,∞(�) ≤ C,

vol(D) = δ is small, and dist(D, ∂�) ≥ 1/C.(4.5.4)

When δ is small, so is ‖aδ∇u0‖(0)(�). From now on we assume that a0 ∈
C2(�), ∂� ∈ C2 and g0 ∈ C2(∂�). Then the known elliptic theory (Theorem 4.1)
and embedding theorems give that u0 ∈ C1(�).

Exercise 4.5.3. In the notation above prove that ‖vδ‖(1)(�) ≤ Cδ1/2.

Let G(x, y) be Green’s function of the Dirichlet problem for the Laplace operator
in �. As above, the equations for vδ read

−�vδ = div(kχ (D)∇u0) + div(kχ (D)∇vδ) in �, vδ = 0 on ∂�.(4.5.5)

Green’s representation and integration by parts give

vδ(x) =
∫

D
k∇G(x, ) · (∇u0 + ∇vδ)

=
∫
∂D

k∂νG(x, )(u0 + vδ)d� −
∫

D
∇k · ∇G(x, )(u0 + vδ),(4.5.6)

provided that x ∈ �\D. Considering equation (4.5.5) for vδ as an elliptic
equation with the discontinuous coefficient 1 + kχ (D) and with the right
side div(kχ (D)∇u0), and using the inequality ‖k∇u0‖p(D) ≤ Cδ1/p with p >
n, we deduce from the results of Exercise 4.5.2 and from known interior
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Schauder-type estimates for equations in the divergent form given in Theorem
4.1 that ‖vδ‖∞(D) ≤ Cδ1/p. When we choose the Dirichlet data g0 > 0 on ∂�,
the maximum principle for harmonic functions gives u0 > ε > 0 on �, so the in-
tegrals on the right side of (4.5.6) involving vδ are much smaller than the integrals
involving u0, provided that x ∈ ∂�. This is a partial justification of the lineariza-
tion that consists in replacing the nonlinear inverse problem (4.5.5) by the linear
one

−�v = div(kχ (D)∇u0) in �, v = 0 on ∂�,

with the additional Neumann data ∂νv = h on ∂�. The corresponding linearized
inverse problem is easier to analyse. In particular, when k is a known constant
and u0 is a linear function one can show uniqueness of D which is convex in the
direction of ∇u0. However, the remainder vδ is not o(δ). A more detailed analysis
shows that the genuine linearization is more complicated. To explain difficulities
we mention the recent result of Beretta, Francini, and Vogelius [BerFV].

Let σ be an orientable hypersurface in R
n of class C3 with σ ⊂ � with a

fixed C2-smooth unit normal ν. Let a0 be a constant, aδ = kχ (Dδ) where Dδ =
{y : dist(y, σ ) < δ}. Let b0 = bδ = 0, c0 = cδ = 0. Let (τ1, . . . , τn−1, ν) be an
orthonormal basis in R

n , with τ1, . . . , τn−1 tangent to σ . We define A(; σ, a0, k) as a
symmetric matrix with eigenvectors τ1, . . . , τn−1, ν and corresponding eigenvalues
1, . . . , 1, a0/(a0 + k). One can assume that A ∈ C2(σ ). It was shown in [BerFV]
that

u(x) − u0(x) = 2δ
∫
σ

k A(y; σ )∇u0(y) · ∇yG(x, y)dσ (y) + r (x ; δ)

where |r (; δ)| ≤ Cδ1+κ‖g‖(1/2)(∂�), κ ∈ (0, 1) depends on n and C depends on
n, �, a0/(a0 + k), σ . Most likely the result of the linearization depends on ap-
proximating domains Dδ , which are chosen to be “uniformly thin” in [BerFV].

While the methods of section 4.4 are quite sharp and powerful they are restricted
to the plane case. In any dimension linearization at fixed domains can be obtained
by using the theory of domain derivatives exposed, for example, in the book of
Sokolowski and Zolesio [SoZ].

4.6 Some problems of detection of defects

Locating defects inside of material, in particular, locating cracks, is a fundamental
importance in (airplane and automotive) engineering. The mathematical study of
this problem originated in the paper of Friedman and Vogelius [FV]. We will
formulate some recent results.

Let uσ be a solution to the following boundary value problem:

(�+ k2)u = 0 in �\σ, ∂νu = g1 on ∂�;

u = C on σ (insulating crack) or ∂νu = 0 on σ (conducting crack).(4.6.1)
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Here� is a bounded Lipschitz domain in R
n , n = 2, 3; C is a (unknown) constant

at each connected component of σ , and σ is a Lipschitz curve in�with connected
�\σ in R

2 or a Lipschitz surface in R
3. When k = 0, by minimizing the Dirichlet

integral or by using conformal mapping of�\σ onto an annulus, one can secure the
existence and uniqueness of u ∈ H(1)(�\σ ), provided that natural orthogonality
relations are satisfied (the integrals of g1, u over ∂� are zero). By standard elliptic
theory this solvability result will hold for all real k except of some set accumulating
to infinity.

First, we consider buried cracks; i.e., σ̄ ⊂ �.
When k = 0, in the plane case there is a quite complete result on uniqueness due

to Alessandrini and Valenzuela [A1V] and to Kim and Seo [KiS]. Let �1, . . . , �3

be three connected curves with disjoint interiors whose union is ∂�. Let φ j be
L2(∂�)-functions, φ j ≥ 0, and suppφ j ⊂ � j and let the integral of φ j over ∂�
be 1. Define g1, j = φ3 − φ j , j = 1, 2. In the next Theorem a buried crack σm

is assumed to be the union of finitely many connected nonintersecting Lipschitz
curves. Let u jm be the solution to the boundary value problem (4.6.1) with σ = σm

and g1 = g1, j , j,m = 1, 2.

Theorem 4.6.1. Let k = 0. Let � be a simply connected bounded domain in R
2

with C2-piecewise smooth Lipschitz boundary.
If for solutions u jm to the boundary value problem (4.6.1) one has

u j1 = u j2 on � ⊂ ∂�, j = 1, 2,(4.6.2)

then σ1 = σ2.

We will not prove this result, referring instead to the above-mentioned papers.
We observe only that in those proofs based on study of level-lines solutions of
elliptic equations, it is used that due to the particular choice of the Neumann
boundary data, solutions have no critical points inside �, and that level curves
corresponding to two boundary data form a global coordinates in �.

We emphasize that one boundary measurement (g1 = g1,1) is not sufficient. A
simple counterexample ( Friedman and Vogelius [FV]) is given by level curves
of a harmonic function in �. In particular, when u(x) = x1 all interval of vertical
straight lines can be viewed as insulating cracks and all intervals of horizontal
lines as conducting cracks. A conditional logarithmic type stability estimate for
σ ∈ C1+λ in terms of differences of the boundary data uσ (1) − uσ (2) and under
additional natural a priori constraints on σ (and �) was obtained by Alessandrini
and more generality by Rondi [Ro].

An useful orthogonality relation that helps to identify linear cracks in R
2 and

planar cracks in R
3 was found and exploited by Andrieux and Ben Abda [AnB].

We illustrate this relation in the following exericise.

Exercise 4.6.2. Show that for any H(1)(�) solution v to the Helmholtz equation
�v + k2v = 0 in � and a solution u ∈ H(1)(�) to the boundary value problem
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(4.6.1) (for insulating cracks) one has the following integral relation

∫
σ

[u]∂νvdσ =
∫
∂�

(vg1 − u∂νv)d�

where [u] (“opening gap”) is the difference of limits of u on σ from the “negative”
and the “positive” sides of σ determined by the unit normal ν.

To derive the identity of this exercise surround σ by “thin” domains and pass to
the limit when “thinness” goes to zero.

The integral relation from Exercise 4.6.2 can be used to evaluate size of σ
by taking as v particular explicit solutions to the Helmholtz equation in �. For
example, when k = 0 one can exploit the coordinate harmonic functions v(x) = x j

Of course, when the “opening gap” is zero this relation is useless, so it is an
important (and largely open) problem to find sets of boundary data g1 so that one
of this sets maximises this gap.
∂σ (end points in the plane case) are expected to be branch points of solutions

to the equation (4.6.1), moreover, the solution near these points in a generic case
should have special singular behavior (for example, ∇u(x) near crack tip x0 is most
likely c|x − x0|−1/2 + · · · where . . . is bounded terms). For an effective solution
of the inverse problem it would be very helpful to use the boundary data g1 which
maximize c. Again, finding such boundary data is an quite interesting, but open
problem. In the plane case for k = 0 one can probably utilize index (winding
number) of gradient of a harmonic function as in [AlIP], [AlM].

A iterative computational algorithm to find an interval σ was suggested and
tested by Santosa and Vogelius [SaV2], who actually used results of many boundary
measurements with the boundary data updated on each iteration of their method.

We observe that the methods of all mentioned papers do not work for the
Helmholtz equation, which models prospecting cracks by (ultrasonic or elastic)
waves, and uniqueness results are unknown in the case of single or finitely many
measurements. Kress [Kres] proved uniqueness of σ from many boundary mea-
surements (i.e., from the operator g1 → g0 on �) in the plane case by the methods
described in Section 3.3. He also designed an effective numerical algorithm.

In the three-dimensional case quite complete uniqueness results for insulat-
ing cracks with two boundary measurements were reported by Alessandrini and
DiBenedetto [A1D]. They also proved uniqueness of planar conducting cracks.
Eller [Ell] proved uniqueness of a general conducting crack in R

3 from many
boundary measurements.

Another type of cracks quite important in applications is surface cracks σ con-
sisting of finitely many connected Lipschitz components intersecting ∂�. Elcrat,
Isakov, and Neculoiu [ElcIN] proved uniqueness of such insulated cracks from
one boundary measurement in a quite general situation, in particular for finitely
multiconnected domains, and suggested an efficient numerical algorithm based
on Schwarz-Christoffel transformations. We will formulate one result from their
paper and outline its proof.
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Let � be a bounded domain in R
2 with the C2-piecewise smooth Lipschitz

boundary ∂�. Let�0 be the connected component of ∂� that is also the boundary of
the unbounded component of R

2\�. We break�0 into three components,�,�1, and
�2. We will consider cracks σ satisfying the same conditions as in Theorem 4.6.1,
but in contrast assuming that any component of σ has an endpoint on ∂�\(� ∪ �1).
Also, in the boundary value problem (4.6.1) we will replace the Neumann condition
on ∂� by the Dirichlet condition u = g on ∂�.

Theorem 4.6.3. Let the Dirichlet data g0 ≥ 0 on ∂� be not identically zero, and
supp g0 ⊂ �1.

Then the additional Neumann data ∂νu on � uniquely determine σ .

PROOF. Let us assume the opposite. Let σ1, σ2 be two collections of Lipschitz
curves σ11, . . . , σ1k, σ21, . . . , σ2m generating the same Neumann data on �.

Let �\(σ1 ∪ σ2) be not connected. Take the connected component �0 of this
set whose boundary contains �. Since the two solutions u1, u2 for σ1, σ2 have the
same Cauchy data on �, by uniqueness in the Cauchy problem for the Laplace
equation they are equal on�0. We consider�1 = (�\σ1)\�0. We have�u1 = 0,
and we will show that u1 = 0 on ∂�1, provided that �1 is disjoint from ∂�1.

Let x ∈ ∂�1. If x ∈ ∂(�\σ1), then u1(x) = 0. If not, then near x there are points
of �0 where u1 = u2; so u1(x) = 0, because x ∈ σ2 where u2 = 0.

By the maximum principle, u = 0 in�1. Due to connectedness of�\σ we have
u = 0 in �\σ , which contradicts our assumption about g.

If �1 intersects ∂�1, then it does not intersect ∂�0, and we can repeat the
previous argument with �0 instead of �1.

This contradiction shows that the set �\(σ1 ∪ σ2) is connected. By uniqueness
in the Cauchy problem u1 = u2, so σ1 must coincide with σ2 because u j = 0 on
σ j and u j > 0 on �\σ j by the maximum principle.

The proof is complete. �

This proof is valid in three-dimensional space. In R
2, by using harmonic con-

jugates, one can obtain uniqueness for conducting surface cracks.
A solution u to the above direct problem can be represented by a single or double

layer potential with some density distributed over σ . When this density is given,
there are uniqueness and (logarithmic type) stability results for σ . We refer to the
book [Is4] and to the paper by Beretta and Vessella [BerV], where this problem is
related to the inverse problem of cardiology.

The boundary value problem (4.6.1) is a simplest mathematical model of a crack.
A way to derive it is to approximate σ by slender domains Dδ surrounding crack,
prescribing a natural boundary condition on ∂Dδ and finding the limit of solutions
for Dδ as δ goes to 0. In section 4.5 it was mentioned that limits of solutions can
be different from what one expects. It is obvious that this limit depends on the
choice of approximations Dδ and it is not obvious that the choice in section 4.5
was natural. Indeed, probably this approximation process repeats dynamics of the
growth of crack, so it is hard to believe that Dδ must be a “uniform” layer used in
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section 4.5. However, it is not obvious that uniform layers are the most appropriate
ones. Due to these ambiguities a more appropriate model of a stationary wave in
a domain � with crack σ is given by the boundary value problem

(A + k2)u = 0 in � \ σ, ∂ν(a)u = g1 on ∂�(4.6.3)

with the general transmission conditions

u+ = b0u−, ∂νu+ = b1∂νu
− + b00u+ on σ(4.6.4)

where u+, u− are limits of u from different sides of σ and b0, b1, b00 are some
coefficients which are to be found together with σ from certain collection of
boundary measurements. Here A is a general elliptic operator of second order.
While this general formulation is physically motivated, the particular case of A =
� is far from understanding. In particular, it is not known whether the Neumann-to
Dirichlet operator ( i.e. all possible Cauchy data for solutions u to (4.6.3), (4.6.4))
uniquely determines σ and coefficients of the transmission condition.

Few large cracks considered above hypothetically result from a collection of
many microcracks. Evaluation of amount of these microcracks is quite important
engineering problem. However, there are only first mathematical results available.
To illustrate difficulties and features of this problem we briefly decribe the findinds
of Bryan and Vogelius [BrV] for a very particular case of a periodic array of simplest
possible cracks in the plane.

Let σ be an interval in the unit square Y = (0, 1) × (0, 1) in the plane R
2. Let σ

has the end points (s, s), (1 − s, 1 − s), 0 < s < 1/2. Let� be a bounded domain
in R

2 with C2-boundary. We denote by σ (ε) the union of ε-scaled translations
ε((n1, n2) + σ ) of σ over all integer n1, n2. Let �(ε) = � \ σ (ε). An electric
potential u(; ε) in the domain �(ε) with periodic array of small insulating cracks
σ (ε) solves the following Neumann problem for the Laplace equation:

�u(; ε) = 0 in �(ε), ∂νu(; ε) = 0 on σ (ε) ∩�, ∂νu(; ε) = g1 on ∂�,

where we assume that the total flux ( the integral of g1 over ∂�) is zero and
for uniqueness of u(; ε) we request one of standard normalization conditions, for
example assuming that the integral of u(; ε) over � is zero. Because of expected
complex behavior of u(; ε) as ε goes to zero one would be interested in finding
the limit (in some sense) of u(; ε). The most suitable available technique is the so-
called homogenization, also used in [BrV]. Homogenization is rather complicated
procedure and it is not quite clear how to effectively utilize it to solve inverse
problems.

To continue with results of [BrV] we introduce the (y1, y2)-periodic ( with
periods (1, 0), (0, 1)) solution χk(y) to the boundary value problem

�χk = 0 in R
2 \ σ (1), ∂νχk = −νk on σ (1)

which is unique up to an additive constant. Let a be the positive symmetric matrix

a jk =
∫

Y
(δ jk + ∂χ j/∂yk)



124 4. Elliptic Equations: Single Boundary Measurements

and let u be the normalized solution to the Neumann problem

div(a∇u) = 0, in �, ∂ν(a)u = g1 on ∂�.

One of typical results obtained by homogenization methods (use of two-scale test
oscillating test function) claims that in certain sense u(; ε) converges to u as ε goes
to 0.

Another related problem is about prospecting corrosion on inaccessible parts
of surfaces. A model of electric prospecting is described by the elliptic boundary
value problem

�u = 0 in �γ ,

(∫
�

u = 0, when b = 0

)

∂νu + bu = g1 on ∂�,

(∫
�

g1 = 0, when b = 0

)
,

where�γ is the domain {x : 0 < x1 < 1, . . . , 0 < xn−1 < 1, 0 < xn < γ (x ′)} and
�0 is the part ∂� ∩ {xn = 0} of its boundary. It is assumed that g1 = 0 on ∂�\�0,
0 ≤ b, and b = 0 outside ∂� ∩ {xn = γ (x ′)} (the possibly corroded boundary
part). One is looking for functions γ and b (or a more general nonlinear boundary
condition) from the additional Dirichlet data

u = g0 on �0.

When g1 is not identically zero and b = 0 is given, the uniqueness of γ can be
shown as for obstacles in Section 6.3. One boundary measurement is obviously
not sufficient to determine both γ and b, so it makes sense to consider two mea-
surements (or even the local Neumann-to-Dirichlet map on �0 especially when
one tries to determine a nonlinear boundary condition (b = b(x, u)). While this
inverse corrosion problem is mathematically largely open, there are preliminary
uniqueness theorems and numerical reconstruction algorithms.

We will conclude with a quite explicit counterexample of Alessandrini [Al4]
which shows exponential instability of the inverse problem about determination γ
from one set of remote data on �0

COUNTEREXAMPLE 4.6.4. Let Sm be the strip in R
2 bounded by the x1-axis �0

and the curve γm given by the parametric equations x1 = t + 1/(2m)sinmt, x2 =
1 + 1/(2m)(1 − e−2m)/(1 + e2m)cosmt, t ∈ R,m = 1, 2, . . .. Let S0 be the strip
bounded by the curves �0 and γ = {x2 = 1}. For the (Hausdorff) distance
dist(γm, γ ) between the curves γm and γ we have

1/(4m) ≤ dist(γm, γ ) ≤ 1/(2m).

These inequalities can be derived by using the definition of the Hausdorff distance
and minimization and maximization of functions of one variable. We will consider
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the solutions um to the following Neumann problem

�um = 0 in Sm

∂νum = 0 on γm ∩ �0(4.6.5)

with the source type condition at infinity

um(x) − x1 = O(1)

where O(1) is bounded as |x | goes to infinity. We are interested in finding γ from
the Dirichlet data

um = g0,m on�0.

We will use complex variable z = x1 + i x2. The complex analytic function

zm(w) = w + 1/(2mcoshm)sinmw

is a conformal mapping of the strip S0 onto Sm . Let wm(z) be the inverse mapping.
One can check that the function

um(z) = �(wm(z))

solves the Neumann problem (4.6.5) and satisfies the conditions at infinity. It
is obvious that u0(z) = x1 solves the same problem in S0. Let gm, g0 be the
Dirichlet data for um, u0 on �0. From the definitons, g0,m((x1, 0)) + 1/(m(em +
e−m)sin(g0,m(x1, 0))) = x1, g0,0((x1, 0)) = x1. Hence,

‖g0,m − g0,0‖∞(�0) ≤ e−m

while the distance between curves γm and γ is not less than 1/(4m). This shows
exponential instability for this inverse problem. Given any l by small modification
one can obtain similar examples when γm are the graphs of functions with bounded
Cl(R)-norms.

To obtain a counterexample with bounded domains �m, �0 instead of Sm, S0

one tranplants the Neumann problem with the aid of the conformal mapping

z(w) = (eπ/2w − 1)/(eπ/2w + 1)

transforming the strip S0 in the w-plane into the unit upper half-disk �0 in the
z-plane, and Sm into small perturbations �m of �0. Observe that the image of �0

is the interval �∗
0 with the endpoints −1, 1. The Neumann problems (4.6.5) will be

transformed into the Neumann problems in�m and the the condition at in infinity
will take the form

∂νum = δ(1) − δ(−1) on �0.

4.7 Open problems

We list some quite important and difficult questions with few comments.
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Problem 4.1. Prove uniqueness in the inverse problem of gravimetry for star-
shaped D when k is given, positive, and Lipschitz.

There is a counterexample in [Is4], section 3.4, for xn-convex D when k is given,
positive, and Hölder continuous.

Problem 4.2. Prove the uniqueness of convex (better, star-shaped D) entering the
Dirichlet problem

−�u + χ (D)u = 0 in �, u = g on ∂�

with the given additional Neumann data ∂νu on ∂�.

A part of this problem is to determine sufficient conditions on � and g. As
mentioned above, this problem has applications in semiconductor theory.

Problem 4.3. Obtain a global existence theorem for an unknown coefficient c that
does not depend on xn in the situation described in Section 4.2.

To solve this problem one can try to modify the argument for the inverse parabolic
problem, with the final overdetermination considered in Section 9.1.

Problem 4.4. Obtain a local uniqueness result similar to Theorem 4.4.3 in the
three-dimensional case.

In this case conformal mappings technique is not available. In addition, the
linearized problem (oblique derivative problem when the boundary differentiation
direction is tangent to the boundary) is not elliptic, so it would be extremely difficult
to use only one set of boundary data. One suggestion is to use two or three sets to
secure ellipticity of the resulting linearized problem. Another idea is to consider
unknown symmetric (with respect to a plane or a point) domains.

Problem 4.5. Prove global uniqueness of convex D in the inverse conductivity
problem with no interior source.

A difficulty of this problem is illuminated in comments to problem 4.4. One can
not repeat the proof of Theorem 4.3.7 (where the field is generated by an interior
source), because any experior generation implies that the integral of ∂νu over ∂D
is zero, so we do not have positivity of the normal derivative. Uniqueness of balls
from one boundary measurement was proven by Kang and Seo [KS1], [KS2] who
used single layer representation.

Problem 4.6. Prove (global) uniqueness of both γ and b = b(x) in the inverse
corrosion problem.

A part of the problem is to find two Dirichlet (or Neumann) data which guarantee
uniqueness of the recovery of the surface and of the boundary coefficient. In a sense,
these data must be independent.



5

Elliptic Equations: Many Boundary
Measurements

5.0 The Dirichlet-to-Neumann map

We consider the Dirichlet problem (4.0.1), (4.0.2). We assume that for any Dirich-
let data g we are given the Neumann data h; in other words, we know the results of
all possible boundary measurements, or the so-called Dirichlet-to-Neumann op-
erator � : H(1/2)(∂�) → H(−1/2)(∂�), which maps the Dirichlet data g0 into the
Neumann data g1. From Theorem 4.1 the operator� is well-defined and continu-
ous, provided that� is a bounded domain with Lipschitz ∂�. In Sections 5.1, 5.4,
5.7 we consider scalar a, b = 0, c = 0. The study of this problem was initiated by
the paper of Calderon [C], who studied the inverse problem linearized around a
constant and suggested a fruitful approach, which was extended by Sylvester and
Uhlmann in their fundamental paper [SyU2], where the uniqueness problem was
completely solved in the three-dimensional case.

We will consider two equations with the coefficients a1, b1, c1 and a2, b2, c2.
We will denote the corresponding Dirichlet-to-Neumann maps by �1,�2, and
solutions of these equations by u1, u2. Due to substantial use of complex-valued
solutions and further relations with scattering theory, we recall the definition of a
weak solution in the complex case, considering complex-valued coefficients b, c
(but only real-valued a).

The definition (4.0.3) of a generalized solution u ∈ H(1)(�) of the equation
− div(a∇u) + b · ∇u + cu = 0 in � reads

∫
�

(
a∇u · φ + b · ∇uφ + cuφ

) =
∫
∂�

�uφ(5.0.1)

for any test function φ ∈ H(1)(�). Letting φ = u∗ in (5.0.1), where u∗ is a solution
to the adjoint equation

− div(a∇u∗) − b · ∇u∗ + (c − div b)u∗ = 0 in �

127
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and taking the complex conjugate of this integral relation, we obtain∫
�

(a∇u · ∇u∗ + b · ∇uu∗ + cuu∗) =
∫
∂�

�uu∗.

Using that for the symmetric matrix a we have a∇u · ∇u∗ = a∇u∗ · ∇u and inte-
grating by parts to refer ∇ to u∗, we get∫

�

(
a∇u∗ · ∇u − b · ∇u∗u + (c − div b)u∗u

) =
∫
∂�

u∗(�u − b · νu).

On the other hand, the definition (5.0.1) of a generalized solution u∗ to the adjoint
equation with the test function u gives that the left side is equal to the integral over
∂� of �∗u∗u, where �∗ denotes the Dirichlet-to-Neumann map of the adjoint
equation. Recalling that

(g0, g1)2(∂�) =
∫
∂�

g0ḡ1

denotes the scalar product in the Hilbert space of complex-valued functions
L2(∂�), we obtain

(u∗,�u − b · νu)2(∂�) = (�∗u∗, u)2(∂�)

for any solution u to the first equation and any solution u∗ to its adjoint. Due to
our assumptions, the Dirichlet problem for these equations is uniquely solvable
for any boundary data in H(1/2)(∂�). Since this space is dense in L2, we conclude
that

�∗ = �∗ − b · ν(5.0.2)

Observe that when Rb = 0, div b = 0 and Ic = 0, our equation is self-adjoint, so
when in addition b · ν = 0 on ∂�, one can conclude that the Dirichlet-to-Neumann
operator � is self-adjoint.

The definition (5.0.1) and the relation (5.0.2) imply a fundamental orthogonality
relation as follows. The definition (5.0.1) of a solution u1 to the first equation with
the test function u∗

2 is∫
�

(
a1∇u1 · ∇u∗

2 + b1 · ∇u1u∗
2 + c1u1u∗

2

) =
∫
∂�

(�1u1)u∗
2,

and the same definition for the adjoint of the second equation with the test function
u1 gives ∫

�

(
a2∇u∗

2 · ∇u1 − b2 · ∇u∗
2u1 + (c2 − div b2)u∗

2u1
)

=
∫
∂�

(�2∗u∗
2)u1.

Subtracting the first equality from the complex adjoint of the second equality, and
using integration by parts∫

�

−b2 · ∇u∗
2u1 =

∫
∂�

−b2 · νu∗
2u1 +

∫
�

(b2 · ∇u1u∗
2 + div b2u1u∗

2),
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relation (5.0.2) for � = �2, and the definition of the adjoint operator in L2(∂�),
we obtain ∫

�

((a2 − a1)∇u1 · ∇u∗
2 + (b2 − b1) · ∇u1u∗

2) + (c2 − c1)u1u∗
2

=
∫
∂�

(�2 −�1)u1u∗
2(5.0.3)

for any solution u1 ∈ H(1)(�) to the first equation and for any solution u∗
2 to

the adjoint to the second equation. When Rb2 = 0, div b2 = 0, and Ic2 = 0, the
second equation is self-adjoint, so we can drop * over u2. When b1 = b2 = 0,
then u∗

2 solves the equation div(a2∇u2) + c2u2 = 0, and from (5.0.3) we have
the identity first established and used by Alessandrini [Al1] under the additional
assumption Ic j = 0.∫

�

(a2 − a1)∇u1 · ∇u2 + (c2 − c1)u1u2 =
∫
∂�

((�2 −�1)u1)u2(5.0.4)

for all solutions u1, u2 in H(1)(�).

Exercise 5.0. Prove the identity∫
�

((a − 1)∇u · ∇v + b∇u · v + cuv) =
∫
∂�

((−�0 +�( f ))u)v +
∫
�

f v

for any solution u ∈ H(1)(�) to the inhomogeneous equation − div(a∇u) + b ·
∇u + cu = f in � and any harmonic function v ∈ H (1)(�). Here �( f ) is the
Dirichlet-to-Neumann map for the inhomogeneous differential equation with right
side f .

Consider the case a = 1, b = 0. Letting v = 1 and approximating by f the
Dirac-delta function with the pole at x ∈ �, derive that∫

�

cG(x, ) = F(x) + 1,(5.0.5)

where G is Green’s function of the Dirichlet problem for the equation −�u + cu =
0 and

F(x) =
∫
∂�

∂νG(x, )

is uniquely determined in a stable way by ∂νu on ∂� given for all f . Applying the
operator −�+ c to both sides of (5.0.5), prove that

c(x) = �F(x)/F(x),(5.0.6)

provided that c ≥ 0 in �.
{Hint: to derive the initial formula, repeat the proof of formula (5.0.3) for the

inhomogeneous first equation. Let a2 = 1, b2 = 0, c2 = 0. Make use of the as-
sumption c ≥ 0 and of Giraud’s maximum principle to guarantee that F < 0 when
x ∈ �.}
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5.1 Boundary reconstruction

The first (and simplest) step in the reconstruction of a is finding a on ∂�. In this
section we consider the scalar conductivity coefficient a.

Theorem 5.1.1 (Uniqueness). Assume that a1, a2 ∈ Ck(V ), where V is a neigh-
borhood of a boundary point of �.

If �1 = �2, then ∂αa1 = ∂αa2 on ∂� ∩ V when |α| ≤ k.

A first version of this result was obtained by Kohn and Vogelius in their paper
[KoV1], where they assumed that a j ∈ C∞ and first used rapidly oscillating solu-
tions in the so-called orthogonality relations (see below). A constructive method
was suggested by Nachman ([N1], Theorem 1.5). He proved that 2e−i x ·ξ S�aeix ·ξ

converges to a(x) when |ξ | goes to +∞. Here S is the classical single layer poten-
tial operator (for the Laplace equation). The version above belongs to Alessandrini
[Al3]. In this section we consider scalar a and real-valued solutions u.

PROOF OF THEOREM 5.1.1 FOR k = 0, 1. We first apply the formula (5.0.4) and
obtain the orthogonality relations

∫
�

(a2 − a1)∇u1 · ∇u2 = 0(5.1.1)

for all solutions u1, u2 to the equations div(a j∇u j ) = 0 near �. For any m =
0, 1, 2 . . . Alessandrini [Al3] constructed the so-called singular solutions u j (x, y)
to equation (4.0.1) with a ∈ C1 with a pole at x having the following properties:

u j (x, y) = K (x∗ − y∗)Sm((x∗ − y∗)/|x∗ − y∗|) + w(x, y)(5.1.2)

when x �= y, where K (x) is ln |x | when n = 2, m = 0, and |x − y|2−n−m oth-
erwise; z∗ = A∗(x)z, where A∗(x) is a linear operator in R

n transforming the
principal part of A into the Laplacian at a point x ; Sm is the spherical harmonic
of degree m, and |w | + |x − y‖∇yw | ≤ C |x − y|5/2−n−m . It is easy to observe
that K (x)Sm(x/|x |) is a partial derivative of order m of the classical fundamental
solution K (x) of the Laplace operator. When m = 0, 1 and a ∈ C1+λ, existence of
such singular solutions follows from the classical construction of fundamental so-
lutions of second-order elliptic equations described in the book of Miranda ([Mi],
sections 8, 15, 19).

To show that a1 = a2 on ∂� ∩ V we assume the opposite. Then we may assume
that the point 0 ∈ ∂� ∩ V and a1(0) < a2(0). Letting m = 0 we obtain singular
solutions u1, u2 such that |∇yu1 · ∇yu2| ≥ ε|x − y|2−2n when x , y are contained in
a ball B of small radius centered at the origin. We may assume also that a2 − a1 > ε

on B. When x ∈ B\�, the function u j (x, ) is a solution to equation div a j∇u = 0,
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so from the orthogonality relations (5.1.1) we have

−
∫
�\B

(a2 − a1)∇u1(x, ) · ∇u2(x, ) =
∫

B∩�
(a2 − a1)∇u1(x, ) · ∇u2(x, )

≥ ε2
∫

B∩�
|x − y|2−2ndy.

Since the singularity x is in B, the left-side integral is bounded when x goes to the
origin. On other hand, it is easy to see that the right-side integral is unbounded for
these x . We have obtained a contradiction, which shows that our assumption was
wrong. So a1 = a2 on ∂� ∩ V .

Let us consider the case k = 1. As shown, a1 = a2 on ∂� ∩ V . Let us assume
that the first derivatives of a1, a2 do not agree on this set. Observe that a Lipschitz
surface ∂� ∩ V has a tangential hyperplane almost everywhere (see the book of
Morrey [Mor], Theorem 3.1.6). Since the coefficients agree on the boundary, their
tangential derivatives agree, so due to our conjecture, we can assume that the point
0 ∈ ∂� ∩ V and ∂ν(a2 − a1)(0) > ε > 0. We can then assume that the direction of
the interior normal to ∂� at 0 coincides with the direction of the x1-coordinate axis.
Since ∂� is Lipschitz, the angles between the interior normals and the x1-directions
are smaller than π/2 − ε1. Using that tangential components of ∇a j agree and that
these gradients are continuous at 0, we conclude that ∂1(a2 − a1)(x) > 0 for all
x ∈ ∂� near the origin. Since a2 − a1 = 0 on ∂� near 0, from Taylor’s formula
we conclude that a2 − a1 > 0 on � near 0.

If n ≥ 3 let u j (y) = K (x − y) + w j in (5.1.2) (m = 0). Then direct calculations
show that ∇y K (x − y) · ∇y K (x − y) = C |x − y|2−2n , so from the estimates for
w j we have

∇u1 · ∇u2 ≥ ε|x − y|2−2n when |x − y| < ε
If n = 2, we let m = 1 in (5.1.2) and u j (y) = C∂2 K (x − y) + w j . Direct calcu-
lations show that

∇∂2 K (x − y) · ∇∂2 K (x − y) = |x − y|−8(x4
1 − x2

1 x2
2 + x4

2 ) ≥ 2−1|x − y|−4.

So as above, ∇u1 · ∇u2 ≥ ε|x − y|−4 when |x − y| < ε.
Now we use the scheme of proof with k = 0. Let B be the ball B(0; ε/2) and let

x = (−τ, 0, . . . , 0), where 0 < τ < ε/4. Since the hyperplane {x1 = 0} is tangent
to ∂� at 0, there is a solid cone C = {|y/|y| − e1| < ε, |y| < ε} that is contained
in � when ε is small. Observe that |x − y| ≥ ε/4 when y ∈ �\B.

Putting all this together, we obtain

−
∫
�\B

(a2 − a1)∇u1 · ∇u2 =
∫
�∩B

(a2 − a1)∇u1 · ∇u2

≥ ε
∫
C

y1|x − y|−ldy,
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where l = 2n − 2 when n ≥ 3 and l = 4 when n = 2. As above, the left integral
is bounded with respect to x , so the integral∫

C
y1|x − y|−ldy

must be bounded as well. Then, by using the Lebesgue dominated convergence
theorem, we obtain that the integral of |y|1−l over C is convergent, which is false
(make use of polar coordinates). The contradiction shows that the gradients of a1

and a2 coincide on ∂� ∩ V .
Similarly, by using singular solutions with larger m one can complete the proof

for all k. �

We observe that this proof is valid when k = 0, 1, and also for the more general
equation with b1 = b2 = 0.

The claim is generally false for the anisotropic case.

Exercise 5.1.2. Show that∫
C
|x − y|−kdy ≥

{( −ε ln |x | when k = n,
ε|x |n−k when k > n.

)

{Hint: Make use of polar coordinates, the triangle inequality, and substitutions.}

Practically, the results of measurements are not always available for the whole
boundary, so the following local version of the inverse problem is interesting.

Let � be an open part of ∂�. Denote by �� the local Dirichlet-to-Neumann
map that is defined for functions g ∈ H(1/2)(∂�) that are zero on �\� and that
maps them into the conormal derivative of the solution a∇u · ν on �.

Exercise 5.1.3. Prove that if a ∈ Ck(V ), where V is a neighborhood of �, then
even �� uniquely determines ∂αa on � when |α| ≤ k.

{Hint: In the proof of Theorem 5.1.1 use as u(x, ) Green’s function of the
Dirichlet problem for the elliptic equation in the domain�∗ that contains�, such
that ∂�\� is in ∂�∗. Let x ∈ �∗\�}

Exercise 5.1.4. Derive the relation

a
∫
∂�

uν1 =
∫
∂�

(�u)v,

where u is a solution of the conductivity equation with the constant coefficient a
and v(x) = x1.

When the integral of uν1 over ∂� is not zero (say, u > 0 when ν1 > 0 and u < 0
when ν1 < 0), one can use this formula for determination of the constant a.

Singular solutions allowed Alessandrini [Al3] to obtain the following estimate
as well.
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Theorem 5.1.5. Let |a j |k+1(�) < M and δ = 1 when k = 0, and (1 +
2)−1 . . . (1 + 2k)−1 when k = 1, 2, . . ..

Then

|a2 − a1|k(∂�) ≤ C‖�2 −�1‖δ,
where C depends only on�,M, k and inf a j over�, and ‖‖ is the operator norm
of �2 −�1 considered from H(1/2)(∂�) into H(−1/2)(∂�).

PROOF FOR k = 0, n ≥ 3. Since the a j are continuous, we can assume that ‖a2 −
a1‖∞(∂�) is (a2 − a1)(x0) > 0 at a point x0 ∈ ∂�. Since ∂� is Lipschitz, in any
neighborhood of x0 there are points of ∂� where there is a tangential hyperplane.
By using continuity we can find such a point where a2 − a1 is greater than one-
half of the value at x0. Finally, we can assume that this point is the origin, that the
coordinate system is chosen as in the proof of Theorem 5.1.1, and that

‖a2 − a1‖∞(∂�) ≤ 2(a2 − a1)(0) ≤ 2(a2 − a1)(x) + o(|x |).
Using the identity (5.0.4) and splitting the integral of (a2 − a1)∇u2 · ∇u2 as in the
proof of Theorem 5.1.1, we obtain

‖a2 − a1‖∞(∂�)
∫
C
|x − y|2−2ndy

≤ C

( ∫
B

|x − y|2−2no(|y|)dy +
∫
�\B

|∇u1 · ∇u2|

+ ‖�2 −�1‖‖u1‖(1/2)(∂�)‖u2‖(1/2)(∂�)

)
.(5.1.3)

We evaluate the integral over the cone C. Observe that

|x − y|2 = ((y1 + τ )2 + y2
2 + · · · + y2

n ) ≤ 2(|y|2 + τ 2)

and make use of polar coordinates centered at 0, ρ = |y|. Then∫
C
|x − y|2−2ndy ≥ ε1

∫ ε

0
(ρ2 + τ 2)1−nρn−1dρ

= ε1n−1
∫ εn

0
(σ 2/n + τ 2)1−ndσ ≥ ε2

∫ εn

0
(σ + τ n)2/n−2dσ,

where we used the substitution ρn = σ and the inequality (σ 2/n + τ 2) ≤ C(σ +
τ n)2/n . Calculating the last integral, we obtain∫

C
|x − y|2−2ndy ≥ ε3τ

2−n − C(ε).(5.1.4)

Similarly, we conclude that the first integral on the right side of (5.1.3) is less than
o(ε)ε3τ

2−n . The second integral is bounded by C(ε).
To complete the proof we bound ‖u j‖(1/2)(∂�) ≤ C‖u j‖(1)(�) by using trace

theorems. It suffices to bound ‖∇u j‖2(�). From the construction (5.1.2) we
have |∇u j | ≤ C |x − y|1−n . Arguing as for the integral over C, we conclude that



134 5. Elliptic Equations: Many Boundary Measurements

‖∇u j‖2
2(�) ≤ Cτ 2−n . Therefore, the factor of ‖�2 −�1‖ in (5.1.3) is bounded

by Cτ 2−n .
Using the bound (5.1.4) and upper bounds for other terms in (5.1.3), we get

‖a2 − a1‖∞(∂�)(1 − τ n−2C(ε)) ≤ (o(ε) + τ n−2C(ε) + C‖�2 −�1‖).

Choosing ε so small that o(ε) < ‖�2 −�1‖ and then letting τ → 0, we complete
the proof. �

The proof for n = 2 needs minor modifications, and the result for k ≥ 1 can be
obtained from the result for k = 0 by using interpolation.

Exercise 5.1.6. Let |c j |1(�) < M . Show that

|c2 − c1|0(∂�) ≤ C‖�2 −�1‖1/3

where C depends only on �,M and ‖�2 −�1‖ is the operator norm from
H(1/2)(∂�) into H(−1/2)(�). Here � j is the Dirichlet-to Neumann operator for
the equation (−�+ c j ) = 0 in �.

{Hint: Repeat the proof of Theorem 5.1.5 with an appropriate choice of singular
solutions u1, u2 (e.g. some first order derivatives of the Green’s function) and at
the end of the proof select τ as a power of ‖�2 −�1‖.}

Sylvester and Uhlmann [SyU3] combined methods of multiple layer potentials
and pseudodifferential operators to obtain these estimates for k = 0, 1 under min-
imal assumptions on a j but under additional smoothness assumptions on ∂�. Say,
when k = 0, they assume only that the a j are continuous, and then constants on
their estimates depend only on upper and lower uniform bounds of a j in �.

5.2 Reconstruction in �

The most interesting and difficult part of the inverse problem is reconstruction of
a inside �. We have the following global uniqueness result.

Theorem 5.2.1. Let n ≥ 3. Let the conductivity coefficient a be in H2,∞(�).
Then a is uniquely determined by Dirichlet-to-Neumann map for the conductivity

equation div(a∇u) = 0 in �.

PROOF. Suppose we have two conductivity coefficients a1, a2 with equal Dirichlet-
to-Neumann maps. First, one reduces conductivity equation (4.3.1) to the
Schrödinger equation

−�u∗ + c j u
∗
j = 0 in �, c j = a−1/2

j �a1/2
j(5.2.1)

by the well-known substitution u j = a−1/2
j u∗

j , which makes sense when a ∈
H2,∞(�). By Theorems 5.1.1 we have a1 = a2, ∇a1 = ∇a2 on ∂�. So the equality
of the Dirichlet-to-Neumann maps for conductivity equations (4.3.1) will imply
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the equality for equations (5.2.1). By Theorem 5.2.2 we have c1 = c2. The sec-
ond relation (5.2.1) is an elliptic differential equation with respect to a1/2

j with

bounded measurable coefficient c j . Since a1/2
1 , a1/2

2 satisfy the same equation in
�, and a1 = a2, ∇a1 = ∇a2 on ∂�, we conclude that a1 = a2 in� by uniqueness
in the Cauchy problem (Section 3.3). The proof is complete. �

From now on we will consider equation (5.2.1) with complex-valued c j and we
drop the sign*.

Theorem 5.2.2. Let n ≥ 3. Let c j ∈ L∞(�).
If equations (5.2.1) have the same Dirichlet-to-Neumann maps, then c1 = c2.

This result (under the assumption that c j ∈ C∞(�)) was obtained in the funda-
mental paper of Sylvester and Uhlmann [SyU2]. In fact, the results and methods of
this paper are valid for c j ∈ L∞(�). Nachman [N2] announced uniqueness when
c j ∈ Ln/2(�). So Theorem 5.2.1 is valid when a ∈ H2,n/2(�). Greenleaf, Lassas,
and Uhlmann [GLU] showed uniqueness for potentials c which are some conor-
mal distributions (to smooth surfaces), however these distributions do not include
for example single layer distributions. Recently, Bukhgeim and Uhlmann [BuU]
proved that for uniqueness in Theorems 5.2.1, 5.2.2 it suffices to know�g0 on any
nonvoid open part � of ∂� however for all g0 ∈ H(1/2)(∂�). In their proof they
combined the theory which will be exposed in section 5.3 with use of Carleman
type estimates (to “switch-off” ∂� \ �).

To prove Theorem 5.2.2 when c j ∈ L∞(�), we again make use of the relations
(5.0.4) and obtain ∫

�

(c2 − c1)u1u2 = 0(5.2.2)

for all solutions u1, u2 to equations (5.2.1) near �. Later on we will prove that
span{u1u2} is dense in L1(�) (Corollary 5.3.5), which implies that c1 = c2.

So in the available theory, completeness of products of solutions of PDE plays
a crucial role, which has been observed by many researchers, but the property
of completeness for operators with variable coefficients was first established by
Sylvester and Uhlmann in [SyU2]. We consider this property in Section 5.3 in
more detail and generalize results of [SyU2].

Bukhgeim and Uhlmann [BuU] showed that one can use less boundary data in
Theorems 5.2.1, 5.2.2. To formulate their result we fix a unit vector e ∈ R

n and
define the following subsets of ∂�: �+,ε = ∂� ∩ {ε < ν · e}, �−,ε = ∂� ∩ {ν ·
e < ε}. Let�c j ,�,p be the partial Dirichlet-to Neumann map mapping the Dirichlet
data g0 on ∂� into the Neumann data ∂νu on � where u solves the Schrödinger
equation (5.2.1) in �. Bukhgeim and Uhlmann proved

Theorem 5.2.2′. Let n ≥ 3. Let c j ∈ L∞(�). Let 0 < ε.
If equations (5.2.1) have the same partial Dirichlet-to-Neumann maps�c j ,�−,ε ,p,

then c1 = c2.
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The proof repeats the proof of Theorem 5.2.2 if instead of Corollary 5.3.5 one
uses Corollary 5.3.5′.

Now we give a stability result due to Alessandrini ([Al1], [Al3], Corollary 1.2).

Theorem 5.2.3. Let n ≥ 3. Let a1, a2 or c1, c2 satisfy the conditions

‖a j‖3,∞(�) ≤ M, 1/E ≤ a j ≤ E,

‖c j‖1,∞(�) ≤ M.(5.2.3)

Then

‖a2 − a1‖2(�) ≤ ω(‖�2 −�1‖)

or

‖c2 − c1‖2(�) ≤ ω(‖�2 −�1‖),

where ω(t) = C M | ln t/C |−2/(n+1) and C depends only on n, �, E.

PROOF. To prove Theorem 5.2.3 we use the substitution (5.2.1) and Theorem 5.1.5
and reduce the conductivity equation to the Schrödinger equation. We give the
further argument for this equation. By using the identity (5.0.4), where a j = 1, for
the solutions u j constructed in Theorem 5.3.4 we obtain∫

�

(c1 − c2) exp(iξ · x)dx

= −
∫
�

(c1 − c2) exp(iξ · x)(w1 + w2 + w1w2) +
∫
∂�

u1(�1 −�2)u2.

From Theorem 5.3.4 and the proof of Corollary 5.3.5 we have ‖w j‖2(�) ≤
C M/(|ξ | + R), where R is a large number. From Lemma 5.3.1, from (5.3.3) and
from Theorem 4.1 we have also that ‖u j‖(1)(�) ≤ C M exp(R + |ξ |). So by trace
theorems we can similarly bound ‖u j‖(1/2)(∂�). Letting c be (c1 − c2)χ (�) we
obtain for its Fourier transformation

|ĉ|(ξ ) ≤ C((R + |ξ |)−1 + exp(C R + C |ξ |)‖�1 −�2‖).

Letting ρ = R + |ξ | and δ = ‖�1 −�2‖ we will minimize the right side with
respect to ρ > 0. The minimum point ρ∗ exists and satisfies the equality

−ρ−2
∗ + Cδ exp(Cρ∗) = 0, or δ−1 = Cρ2

∗ exp(Cρ∗) ≤ C exp(Cρ∗),

so ρ∗ ≥ −(ln δ + ln C)/C . This estimate and the relation for the minimum point
imply that

|ĉ|(ξ ) ≤ Cρ−1
∗ (1 + ρ−1

∗ ).

We can assume that δ < 1/C and drop the second term on the right side, obtaining

|ĉ|(ξ | ≤ −C/(ln δ + ln C)
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and ∫
|ξ |<ρ1

|ĉ(ξ )|2 ≤ Cδ2
1ρ

n−1
1 , δ1 = −1/(ln δ + ln C).(5.2.4)

This bound controls “lower frequencies” ξ , and to complete the proof we need
to bound higher ones. The function c is not smooth, but by using Exercise 5.1.6
and extension theorems we can replace it by a smooth function c∗ which is close
to c.

Indeed, let E be a standard extension operator from H(1/2)(∂�) into H(1)(Rn).
We can assume that Eg is supported in some ball B. For f ∈ H(1)(�) we let g = f
on ∂� and we define f ∗ as f on � and as Eg on R

n \�. We have

‖c∗ − c‖(0)(R
n) = ‖c∗‖(0)(B \�) ≤ Cδ2, δ2 = ‖c2 − c1‖(1/2)(∂�)(5.2.5)

by continuity of E . From Exercise 5.1.6 and interpolation inequalities for functions
on ∂� (Theorem A4) we have δ2 ≤ C M‖�2 −�1‖1/6 = C Mδ1/6. On the other
hand, since c∗ = c on �,

‖c∗‖2
(1)(R

n) = ‖c‖2
(1)(�) + ‖c∗‖2

(1)(B \�) ≤ C M.

Hence, ∫
|ξ |2|ĉ∗(ξ )|2dξ ≤ C2 M2,

so the integral of |ĉ∗|2 over |ξ | > ρ1 is not greater than M2/ρ2
1 . Using the Parseval

identity ∫
ρ1<|ξ |

|ĉ(ξ )|2dξ ≤ 2
∫

|ĉ(ξ ) − ĉ∗(ξ )|2dξ + 2
∫
ρ1<|ξ |

|ĉ∗(ξ )|2dξ

2‖c − c∗‖2
2(Rn) + 2M2/ρ2

1 .

Using again the Parseval identity and combining this inequality with (5.2.4) and
(5.2.5) we yield

‖c‖2
2(�) = C‖ĉ‖2

2 ≤ C(δ2
1ρ

n−1
1 + M2/ρ2

1 + δ2)

Again minimizing the right side with respect to ρ1 we obtain for the minimum
point ρ• : (n − 1)δ2

1ρ
n−2
• − 2M2ρ−3

• = 0. Letting ρ = ρ• and using that δ2
1ρ

n−1
• =

2M2/((n − 1)ρ2
• ), we finally conclude that

‖c‖2
2(�) ≤ C M2(n−1)/(n+1)δ

4/(n+1)
1 + C M2δ1/3,

and by using the definition of δ1 in (5.2.4) the estimate for c follows. �

Recently Mandache [Ma] showed that logarithmic type stability estimate is
optimal in the sense that one cannot replace the logarithmic function by a power.
Let � be the unit ball in R

n, 2 ≤ n. Mandache combined properties of harmonic
functions with an argument based on enthropy of functional spaces to prove that
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for any natural m > 0 and any there is a constant C such that for any ε one can
find (real-valued) coefficients c1, c2 with the properties

‖�2 −�1‖ ≤ exp(−ε−n/(M(2n−1))) ‖c2 − c1‖∞(�) = ε and |c j |m < C,

where � j is the Dirichlet-to Neumann operator corresponding to the coefficient
c j of the Scrödinger equation, ‖�‖ is the norm of the operator � from L2 into
L2. For complex-valued c he found an explicit following counterexample. Let χ ∈
C∞

0 (R2) be a function supported in {x ∈ R
2 : |x | < 1/2, 1/4 < x1} with ‖χ‖∞ =

1 and c(x) = n−menφχ (x). Here φ is the polar angle. It is shown in [Ma] that
|c|m < C(m) and ‖�c −�0‖ ≤ C(m)2−n/2 while obviously ‖c − 0‖∞ = 1. By
using ideas of [Ma] Di Christo and Rondi replaced operator norms by more natural
from H(1/2)(∂�) into H(−1/2)(∂�).

5.3 Completeness of products of solutions of PDE

The property of completeness of products for harmonic function in R
n , n ≥ 2, was

observed by Calderon [C]. Apparently, it is not valid in R
1 (linear combinations

of linear functions are not dense). Since it plays a fundamental role in the thoery
of inverse problems, we discuss its connection to potential theory (uniqueness
theorems for Riesz potentials).

Let � be a bounded domain in R
n , n ≥ 2. Let us consider functions u1, u2

that are harmonic near �. We will show that span{u1u2} is dense in L1(�), for
n ≥ 3. Assume that it is not so. Then by Hahn-Banach Theorem there is a nonzero
measureµ supported in� such that

∫
u1(y)u2(y)dµ(y) = 0 for all such u1, u2. The

functions u1(y) = |x − y|2−n = u2(y) are harmonic near � when x is outside �,
so the Riesz potential

∫ |x − y|αdµ(y) = 0 (α = −2) when x is outside�. It was
proven using asymptotic behavior of this potential at infinity by M. Riesz [Ri] or
using the Fourier transformation by Isakov [Is4], p. 79, that when α �= 2k, α + n �=
2k + 2, the exterior Riesz potential determines a measure µ in a unique way, so
we have µ = 0, which is a contradiction.

Now we will demonstrate the Calderon’s approach, which turned out to be
fruitful for some equations with variable coefficients.

First we give some auxiliary results.

Lemma 5.3.1. Let ξ (0) ∈ R
n\{0}, n ≥ 2. Then there are ζ (1), ζ (2) ∈ C

n such that

ζ (1) · ζ (1) = 0 = ζ (2) · ζ (2), ζ (1) + ζ (2) = ξ (0).(5.3.1)

If n ≥ 3, then for any R > 0 there are such ζ (1), ζ (2) with the additional property

R + |ξ (0)|/2 ≤ |ζ ( j)|, |Iζ ( j)| ≤ |ξ (0)|/2 + R.(5.3.2)

PROOF. Let ζ (1) = ξ + iη. Then ζ (2) = ξ (0) − ξ − iη, where ξ, η are vectors
in R

n to be found. The relations (5.3.1) are equivalent to the equalities ξ · ξ =
η · η, ξ · η = 0, |ξ (0)|2 = 2ξ · ξ (0), ξ (0) · η = 0.
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If n = 2, let ξ (0) = te1, and e1, e2 be an orthonormal basis in R
2. When the

ξ j are coordinates of ξ in this basis then all solutions to the above system of the
equations for ξ, η are ξ1 = t/2, ξ2 = 0, η1 = 0, η2 = t/2 or −t/2.

If n ≥ 3, then we similarly have the solutions

ξ1 = t/2, ξ2 = 0, ξ3 = R, η1 = 0, η2 = (t2/4 + R2)1/2, η3 = 0.

Observing that |Iζ ( j)| = |η| = (|ξ (0)|2/4 + R2)1/2 and using the inequality a2 +
b2 ≤ (a + b)2 for nonnegative a, b, we complete the proof. �

Now we are ready to demonstrate Calderon’s proof of completeness of products
of harmonic functions.

Since linear combinations of exponential functions exp(iξ (0) · x), ξ (0) ∈
R

n\{0} are dense (in L2(�)), it suffices to find two harmonic functions whose
product is this exponential function. We let u1(x) = exp(iζ (1) · x), u2(x) =
exp(iζ (2) · x), where the ζ ( j) satisfy conditions (5.3.1), which guarantee that
u1, u2 are harmonic. Such ζ ( j) exist by Lemma 5.3.1. By multiplying the expo-
nential functions and using condition (5.3.1) again, we obtain exp(iξ (0) · x).

This approach was transferred by Sylvester and Uhlmann [SyU2] onto solutions
of the multidimensional Schrödinger equation (5.2.1). Motivated by the Calderon’s
idea and by geometrical optics, they suggested using almost exponential solutions
to this equation,

u j (x) = exp(iζ ( j) · x)(1 + w j (x)),(5.3.3)

with the property that w j goes to zero (in L2(�)) when R (from Lemma 5.3.1)
goes to infinity. We will extend their method to the more general equations

(Pj (−i∂) + c j )u j = 0(5.3.4)

(which include parabolic and hyperbolic equations with constant leading coeffi-
cients) by using the following auxiliary result.

Lemma 5.3.2. Let P be a linear partial differential operator of order m in R
n

with constant coefficients. Then there is a bounded linear operator E from L2(�)
into itself such that

P(−i∂)E f = f for all f ∈ L2(�)(5.3.5)

and

‖QE f ‖2(�) ≤ C sup(Q̃(ξ )/P̃(ξ ))‖ f ‖2(�),(5.3.6)

where C depends only on m, n, diam�, and sup is over ξ ∈ R
n.

Here P̃(ξ ) =
(∑

|α|≤m |∂αξ P(ξ )|2
)1/2

.

Actually, this result was obtained by Ehrenpreis and Malgrange in the 1950s.
For complete proofs we refer to the book of Hörmander [Hö2] and to the paper of
Isakov [Is7].
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Theorem 5.3.3. Let �0 be an open nonvoid subset of R
n. Suppose that for any

ξ (0) ∈ �0 and for any number R there are solutions ζ ( j) to the algebraic equations

ζ (1) + ζ (2) = ξ (0), Pj (ζ ( j)) = 0 with |ζ ( j)| > R.(5.3.7)

and there is a positive number C such that for these ζ ( j) we have

|ζ ( j)| ≤ C P̃j (ξ + ζ ( j)) for all ξ ∈ R
n.(5.3.8)

If f ∈ L∞(�) and ∫
�

f u1u2 = 0(5.3.9)

for all L2-solutions u j to the equations (5.3.4) near �, then f = 0.

This theorem claims that linear combinations of products of solutions of these
equations are dense in L1(�). It easily follows from the following construction of
almost exponential solutions to the equations (5.3.4).

Theorem 5.3.4. Suppose that conditions (5.3.7), (5.3.8) are satisfied.
Then for any ξ (0) ∈ �0 there are solutions to equations (5.3.4) near � of the

form (5.3.3), where ‖w j‖2(�) ≤ C/|ζ ( j)| and C depends only on ‖c j‖∞(�) and
on diam�.

PROOF. From Leibniz’s formula we have

P(−i∂)(uv) =
∑
α

P (α)(−i∂)u(−i∂)αv/α!.

Letting u = exp(iζ · x), v = 1 + w j and using the relations P (α)(−i∂)u =
P (α)(ζ ) exp(iζ · x) as well as the equality Pj (ζ ( j)) = 0, we conclude that u j in
(5.3.3) solves equation (5.3.4) if and only if

Pj (−i∂ + ζ ( j))w j =
∑
α

P (α)
j (ζ ( j))(−i∂)αw j/α! = −c j (1 + w j ).(5.3.10)

Let E be the operator of Lemma 5.3.2 for P(−i∂) = Pj (−i∂ + ζ ( j)). Then any
solution w j to the equation

w j = −E(c j (1 + w j )) in L2(�)(5.3.11)

is a solution to (5.3.4). From condition (5.3.7) and from the estimate (5.3.6)
with Q(∂) = |ζ ( j)| we have ‖E f ‖2(�) ≤ C |ζ ( j)|−1‖ f ‖2(�). So using condi-
tions (5.3.7), (5.3.8) we can choose |ζ ( j)| so large that the operator from the right
side of equation (5.3.11) is a contraction of the ball {‖w‖2(�) ≤ 2C‖c j‖∞(�)
(measn �)1/2/|ζ ( j)|} in L2(�) into itself. By the Banach contraction theorem there
is a solution w j to the equation (5.3.11) in this ball. This proves Theorem 5.3.4. �

PROOF OF THEOREM 5.3.3. Let ξ (0) ∈ �0 and let u1, u2 be solutions constructed
in Theorem 5.3.4. Then ζ (1) + ζ (2) = ξ (0), and functions u1u2(x) = exp(iξ (0) ·
x)(1 + w1 + w2 + w1w2) converge to exp(iξ (0) · x) in L1(�) as the |ζ ( j)| go to
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infinity. So the Fourier transform of f (extended as zero outside�) is zero on�0.
Since f is compactly supported, its Fourier transform is analytic on R

n . Therefore
it is zero everywhere, and so is f . This completes the proof. �

Corollary 5.3.5. Let n ≥ 3. If (5.3.9) is valid for all solutions u j to the equations
−�u j + c j u j = 0, j = 1, 2, near �, then f = 0.

PROOF. To prove this result we check the conditions of Theorem 5.3.3 for Pj (ζ ) =
ζ 2

1 + · · · + ζ 2
n . Let ξ (0) ∈ R

n . Due to rotational invariancy we may assume ξ (0) =
(ξ1(0), 0, . . . , 0). The vectors

ζ (1) = (ξ1(0)/2, i(ξ 2
1 (0)/4 + R2)1/2, R, 0, . . . , 0),

ζ (2) = (ξ1(0)/2,−i(ξ 2
1 (0)/4 + R2)1/2,−R, 0, . . . , 0)

are solutions to the equation ζ · ζ = 0 with the absolute values greater than R, so
condition (5.3.7) is satisfied. To check condition (5.3.8) we observe that

P̃2(ξ + ζ ) ≥ |2ζ1 + 2ξ1|2 + · · · + |2ζn + 2ξn|2 + 12

≥ 4
(|Iζ1|2 + · · · + |Iζn|2

) ≥ |ζ |2,
provided that ζ · ζ = 0, because then |Rζ | = |Iζ |. This completes the proof. �

In the paper [SyU2] the authors used the more standard fundamental solution
E (the Faddeev Green’s function) of the operator �+ 2iζ · ∇, and they obtained
estimates (5.3.6) in the Sobolev spaces H m

δ (Rn), which are constructed from the
weighted L2;δ(Rn)-spaces with the norm ‖ f (x)(1 + |x |2)δ/2‖2(Rn). They showed
also that E is invertible in these weighted spaces. Hähner [Ha] observed that in the
Sylvester-Uhlmann scheme it suffices to use periodic solutions of the Schrödinger
equation, because c is compactly supported. To explain his idea we let �R =
(−R, R) × · · · × (−R, R) be the cube in Rn and we consider functions f (x) which
are 2R-periodic with respect to all variables x1, . . . , xn . Hähner proved that there
is a periodic fundamental solution E p of the operator �+ 2iζ · ∇ satisfying the
bound

‖E p f ‖2(�R) ≤ R/(π |�ζ |)‖ f ‖2(�R).

The bound on the norm of this operator is explicit and one can use it instead of E
in the proof of Theorem 5.3.4 obtaining explicit bounds on constants C . A proof
of this estimate is straightforward if one uses Fourier series representations for f .

Exercise 5.3.6. Let P = −�− 2ζ · ∇, ζ · ζ = 0, and E be its regular funda-
mental solution. Prove the estimate ‖Ew‖(1)(�) ≤ C‖w‖(0)(�) for all functions
w ∈ L2(�) that are zero outside � with C depending only on diam� and the
dimension n of the space. Using this result prove that there are solutions u j to the
Schrödinger equation (−�+ c j )u j = 0 f the form (5.3.3) with

|ζ ( j)|‖w j‖2(�) + ‖w j‖(1)(�) ≤ C.

{Hint: make use of Lemma 5.3.2 and of the proof of Corollary 5.3.5.}
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Exercise 5.3.7. Let P = −�− 2ζ · ∇, ζ · ζ = λ2, λ ∈ R+, and E be its regular
fundamental solution. Prove the estimate ‖Ew‖(0)(�) ≤ C/λ‖w‖(0)(�) for all w
from Exercise 5.3.6 with C depending on the same parameters as in that exercise.

Now we will demonstrate an approach of Bukhgeim and Uhlmann [BuU] based
on Carleman estimates which leads to uniqueness of the coefficient c (and hence
of scalar principal coefficient a) from some partial boundary data. We will use
notation �+, �− from section 5.2.

Lemma 5.3.8. Let e be a unit vector in R
n and ϕ(x) = −e · x.

Then there is a constant C depending only on �, ‖c‖∞(�) such that

τ 2/C
∫
�

|u|2e2τϕ + 2τ
∫
�+

e · ν|∂ν |2e2τϕ

≤
∫
�

| −�u + cu|2e2τϕ − 2τ
∫
�−

e · ν|∂νu|2e2τϕ

for all functions u ∈ H(2)(�) with u = 0 on ∂�.

A proof can be obtained following advices to solve Exercise 3.4.5. Lemma
5.3.8 and the standard scheme from functional analysis (similar to proofs of Lax-
Milgram theorem) lead to the following

Corollary 5.3.9. There is an operator E� from L2(�) into H(2)(�) and a constant
C depending only on�and‖c‖∞(�) such that v = E� f solves the boundary value
problem

−�v + cv = f in �, v = 0 on �−

and ∫
�

|v|2e2τϕ ≤ C/τ 2
∫
�

| f |2e2τϕ.

Corollary 5.3.9 is an analogue of Lemma 5.3.2 for a bounded domain and E�
can be viewed as a special fundamental solution satisfying a partial boundary
condition. Using this corollary in the proof of Theorem 5.3.3 instead of Lemma
5.3.2 one can construct almost exponential solutions (5.3.3) to the Schrödinger
equation in � which satisfy partial boundary conditions.

Now we give an outline of a proof of Theorem 5.2.2′. Let ξ ∈ R
n be orthogonal

to e, |ξ | < τ , andη ∈ R
n be orthogonal to both e and ξ with |η|2 = τ 2 − |ξ |2. Let us

define ζ (1) = −τe − i(ξ + η), ζ (2) = τe − i(ξ − η). By Theorem 5.3.4 there is
an almost exponential solution u∗

1(x) = eζ (1)·x (1 + w∗
1(x)) with ‖w∗

1‖2(�) ≤ C/τ .
Using Corollary 5.3.9 instead of theorem 5.3.3 and repeating the proof of Theorem
5.3.4 one can construct a solution u2(x) = eζ (2)·x (1 + w2(x)) with w2 = 0 on �−
and ‖w2‖2(�) ≤ C/τ with ‖w2‖2(�) ≤ C/τ . Let u1 solve the Dirichlet problem
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−�u1 + c1u1 = 0 in�with the Dirichlet data u1 = u2 on ∂�. We let u = u2 − u1.
Then

−�u + c1u = f u2 in �, u = 0 on ∂�

and since the partial Dirichlet-to Neumann maps for both equations coincide we
have ∂νu = 0 on �−. From the Green’s formula∫

�

f u2u∗
1 =

∫
�+,ε
∂νuu∗

1.(5.3.12)

The crucial step of the proof is to show that for our particular choice of u2, u∗
1, u

the right side goes to zero as τ goes to infinity. Suppose it is true, then as in the
proof of Theorem 5.3.3 the left side converges to the Fourier transformation f̂ (ξ )
and hence f̂ (ξ ) = 0 for all ξ which are orthogonal to e. Since 0 < ε the conditions
of Theorem 5.2.2’ are satisfied for small perturbations of e and hence f̂ (ξ ) = 0 for
ξ in an open (conical) subset of R

n . The Fourier transformation is analytic because
f is compactly supported, so it is zero for all ξ and f = 0 by applying the inverse
Fourier transformation.

To complete the proof it suffices to show that the right side in (5.3.12) goes to
zero as τ goes to infinity. Using the form of u∗

1 and the Hölder inequality we yield

|
∫
�+,ε
∂νuu∗

1| ≤ (
∫
�+,ε

|1 + w∗
1 |2)1/2(

∫
�+,ε

|∂νu|2e2τϕ)1/2

By Exercise 5.3.6, we have ‖w∗
1‖(1)(�) ≤ C and hence by trace theorems the

boundary integral of |1 + w∗
1 |2 is bounded (with respect to τ ). The second boundary

integral is bounded by C/τ due to Lemma 5.3.8, because −�u + c2u = f u1 in
� and u = 0 on ∂�, ∂νu = 0 on �−.

5.4 Recovery of several coefficients

First, we observe that generally one cannot expect to find all coefficients of the
second-order elliptic equation

div(−a∇u) + b · ∇u + cu = 0 in �(5.4.1)

from its Dirichlet-to-Neumann map due to the invariancy of this map with respect
to multiplication of u by a smooth positive function that is 1 near ∂�. Even when
b = 0 one can transform (5.4.1) into the equation −�v + c∗v = 0 by using the
substitution u = a−1/2v as in (5.2.1) without changing �. One way to assure
uniqueness is to use several frequencies in the scattering situation, which will be
considered below. However, some uniqueness results can be obtained.

In the following result we consider two equations (5.4.1) with a = 1, b = b j ∈
H2,∞(�), and c = c j ∈ L∞(�), j = 1, 2.

Theorem 5.4.1. Assume that �1 = �2 and b j , c j are compactly supported in a
simply connected �. Let (n = 3).
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There exists a positive ε(�) such that if ‖b j‖∞(�) < ε, then one has

curl b1 = curl b2 and 4c1 + b1 · b1 − 2 div b1 = 4c2 + b2 · b2 − 2 div b2 on �.
(5.4.2)

If b j , c j ∈ C∞(�) and Rb j = 0, Ic j = 0, then (5.4.2) holds without the small-
ness assumption

Proofs are available from the papers of Sun [Su1], and of Nakamura, Sun,
and Uhlmann [NaSU] (global uniqueness of smooth b, c in the three-dimensional
case). Local uniqueness in the three-dimensional case was also obtained by Sun
[Su1] under the additional assumption Rb j = 0, Ic j = 0. This type of conditions
guarantees that the elliptic operator is self adjoint. Eskin and Ralston and in general
case of systems Eskin [Es1] obtained global uniqueness for the corresponding
scattering problem, which implies (5.4.2) under the self-adjointness assumption
and under the regularity assumptions b ∈ C6(�), c ∈ C5(�) when� is a domain in
R

3. We give a proof of the local uniqueness result for b j , c j (assuming ‖b j‖∞(�) <
ε and not assuming self-adjointness) in the three-dimensional case.

The substitution u = eφv transforms equation (5.4.1) for u into the equation

−�v + (b − 2∇φ) · ∇v + (c + b · ∇φ −�φ − ∇φ · ∇φ)v = 0.

When φ = 0, ∂νφ = 0 on ∂�, the Dirichlet-to-Neumann operator for the new
equation will be the same as for the old one and we cannot expect complete
recovery of b.

PROOF OF THEOREM 5.4.1, local part.
We will make use of almost exponential solutions

u1(x) = exp(iζ (1) · x + φ1)(1 + w1), u∗
2(x) = exp(iζ (2) · x + φ2)(1 + w2)

(5.4.3)

of the equations

−�u1 + b1 · ∇u1 + c1u1 = 0, −�u∗
2 − b2 · ∇u∗

2 + (c − div b2)u∗
2 = 0.

As in the proof of Theorem 5.3.4, the equation for u1 is equivalent to the equation

−�w1 − 2iζ (1) · ∇w1

= (∇φ1 − b1) · ∇w1 + (2iζ (1) · ∇φ1 + |∇φ1|2
+�φ1 − iζ (1) · b1 − c1)(1 + w1).

This equation will follow from the equality

w1 = −E(b•1 · ∇w1 + c•1(1 + w1)) in L2(�),(5.4.4)

where b•1 = ∇φ1 − b1, c•1 = −c1 + |∇φ1|2 +�φ1 + · · ·. Here ‖b•1‖∞(�) ≤
C‖b1‖∞(�), ‖c•1‖∞(�) ≤ C (independent of ζ (1)), provided that φ1 =
φ1(x, ζ (1)) satisfies the “transport equation”

2ζ (1) · ∇φ1 = ζ (1) · b1 + · · · ,(5.4.5)
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where . . . denotes terms uniformly bounded (with respect to ζ (1)), and in addition,

‖φ1‖∞(�) ≤ C‖b1‖∞(�), ‖φ1‖2,∞(�) ≤ C.

We have a similar equation for w2.
Referring to the proof of Corollary 5.3.5 and to Exercise 5.3.6, we claim that the

operator E from L2(�) into L2(�) and into H(1)(�) has operator norms bounded
by C/|ζ ( j)| and by C .

We claim that the operator from the right side of (5.4.4) maps the convex compact
set in L2(�)

W1 = {w ∈ L2(�) : ‖w‖2(�) ≤ C1/|ζ (1)|, ‖w‖(1)(�) ≤ C1},C1

= 2C2 vol�1/2,

into itself, provided that

‖b1‖∞(�) < 1/(4C2), |ζ (1)| > 4C2.(5.4.6)

Indeed,

‖E(b•1 · ∇w + c•1 (1 + w))‖2(�)

≤ C |ζ (1)|−1(‖b•1‖∞(�)‖w‖(1)(�) + ‖c•1‖∞(�)(vol�1/2 + ‖w‖2(�)))

≤ C |ζ (1)|−1(‖b•1‖∞(�)C1 + ‖c•1‖∞(�)(vol�1/2 + C1|ζ (1)|−1))

≤ (C1/4 + C2 vol�1/2 + C1C2|ζ (1)|−1)|ζ (1)|−1 ≤ C1/|ζ (1)|,
due to conditions (5.4.6). Similarly, one can check that

‖E(b•1 · ∇w + c•1 (1 + w))‖(1)(�) ≤ C1.

By the Schauder-Tikhonov theorem there is a solution w1 to equation (5.4.4) in
W1. We treat w2 in the same way. So we have the exponential solutions (5.4.3),
where

‖w j‖2(�) ≤ C/|ζ ( j)|, ‖w j‖(1)(�) ≤ C.(5.4.7)

Since �1 = �2, the relation (5.0.3) gives

0 =
∫
�

((b2 − b1) · ∇u1u∗
2 + (c2 − c1)u1u∗

2)

=
∫
�

((b2 − b1) · (iζ (1) + ∇φ1)(1 + w1) + ∇w1)(1 + w2)

+ (c2 − c1)(1 + w1)(1 + w2)) exp(iξ (0) · x + φ1 + φ2)dx,(5.4.8)

where ζ (1) = (|ξ (0)|/2, i(R2 + |ξ (0)|2/4)1/2, R) (see the proof of Corollary 5.3.5).
Here R is any real number, and the orthonormal coordinate system is chosen in
such a way that its first basis vector is parallel to ξ (0). Observe that for large R
we have ζ (1) = (0, i |R|, R) + · · · and ζ (2) = −ζ (1) + · · ·, where . . . denotes
terms bounded with respect to R. We have the condition (5.4.5) for φ1 and a similar
condition for φ2,

2ζ (2) · ∇φ2 = −ζ (2) · b2 + · · · .(5.4.9)
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We claim that there are functions φ1, φ2 satisfying conditions (5.4.5), (5.4.9) with
the bounds ‖φ j‖2,∞(�) ≤ C . Indeed, we can take as φ1 the solution to the Cauchy-
Riemann equations

2i∂2φ1 + 2∂3φ1 = ib12 + b13

given by the Cauchy integral in the plane {e2, e3}. Then the bounds on φ1 follow
from the regularity assumptions about b j . Here b1k is the kth component of the
vector b1 in the basis e1, e2, e3. We constructφ2 similarly. Observe that theφ j do not
depend on R. Adding (5.4.9) to (5.4.5), we derive that 2ζ (1) · ∇(φ1 + φ1) = ζ (1) ·
(b1 − b2) + . . .. Dividing both parts by R, setting φ = φ1 + φ2, b = b1 − b2, and
letting R → +∞, we obtain

2i∂2φ + 2∂3φ = ib2 + b3.(5.4.10)

Using, in addition, the bounds (5.4.7) on w1,w2, dividing (5.4.8) by R, and
letting R → +∞, we conclude that∫

�

(( ib2 + b3) exp(φ)) exp(iξ (0) · x)dx = 0.

Taking ξ (0) = te1, and using that the factor of the integrand in the parentheses
does not depend on t , by uniqueness of the Fourier transformation in x1 we obtain
that ∫

{x1=t}
( ib2 + b3) exp(φ) dx = 0

for all t . According to equation (5.4.10) the integrand is 2( i∂2 + ∂3) exp(φ), so
we can integrate by parts and obtain the equality

0 =
∫

{x1=t}∩∂B
exp(φ)( iν2 + ν3)dσ = i

∫
{x1=t}∩∂B

exp(φ)(−dx2 + idx3)

(5.4.11)

for any ball B containing �. Since b = 0 outside �, from equation (5.4.10) we
conclude that φ (and therefore exp(φ)) is an analytic function of z = x3 + i x2.
By the construction, φ goes to zero as z → ∞, so φ(z) = az−1 + O(z−2). From
(5.4.11) it follows that the residue of exp(φ) at ∞ is zero, so a = 0. Since φ is the
Cauchy potential of ib2 + b3, it is equivalent to the relation∫

{x1=t}
( ib2 + b3) dx2 dx3 = 0.

Repeating the same argument when R → −∞, we obtain the same relation with
−ib2 instead of ib2. So the integral of any tangential component τb of b (with
respect to the plane {x · e1 = t}) is zero:∫

{x ·e1=t}
τb = 0.
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The last step of the proof of uniqueness of b j is to show that the last equality
implies that ∫

{x ·e1<t}
curl b = 0.(5.4.12)

Indeed, write all vectors and integrals in the coordinates x1, x2, x3 corresponding
to the orthonormal basis e1, e2, e3. Then b = (b1, b2, b3),

curl b = (∂2b3 − ∂3b2, ∂1b3 − ∂3b1, ∂1b2 − ∂2b1),

and the integral (5.4.12) is over the half space {x1 < t}. Since b is compactly
supported, we conclude that the integrals of the partial derivatives in the tangential
directions ∂2, ∂3 are zero, and the integral (5.4.12) is equal to∫

{x1<t}
(0, ∂1b3, ∂1b2) =

∫
{x1=t}

(0, b3, b2)d S

according to the integration by parts formula. The components b2, b3 are tangential
components of b, so as observed in the preceding item, the last integral is zero.
Finally, we have the equality (5.4.12) for any unit vector e1 and any real number t .
Differentiating (5.4.12) with respect to t , we obtain that the integrals of curl b over
all planes {x · e1 = t} are zero. In other words, the function curl b has zero Radon
transform. The known results (Corollary 7.1.3) imply then that this function is
zero.

We have proved that curl b1 = curl b2.
Since� is simply connected and curl b = 0, there is a solution φ to the equation

2∇φ = −b = b2 − b1 in �. We can assume that φ is 0 at a boundary point. Then
φ = 0 on ∂� due to the condition b = 0 on ∂� and connectedness of ∂�. As
observed in Section 5.4 earlier, the substitution u2 = eφv2 transforms the equation
for u2 into the equation

−�v2 + (b2 − 2∇φ) · ∇v2 + (c2 + b2 · ∇φ −�φ − ∇φ · ∇φ) v2 = 0

with the coefficient b2 − 2∇φ = b1 due to the choice ofφ. Sinceφ = 0 and∇φ = 0
on ∂�, this equation and the equation for u2 have the same Dirichlet-to-Neumann
maps, and so do the equations for u1 and v2. Let c•2 be the coefficient of v2 of
the transformed equation. Arguing as above, we obtain the orthogonality relation
(5.4.8) with v∗

2 instead of u∗
2 and without the terms with b j , so∫

�

(c1 − c•2 )(1 + w1)(1 + w2) exp(iξ (0) · x + φ1 + φ2) = 0,(5.4.13)

where the w j satisfy the estimates (5.4.7) and the phase functions φ1, φ2 satisfy the
relations 2ζ (1) · ∇φ1 = ζ (1) · b1 + · · · and 2ζ (2) · ∇φ2 = −ζ (2) · b1 + · · ·. We
recall that as above, . . . denotes the terms bounded with respect to R, and ζ (1) =
−ζ (2) + · · ·. Choosing φ1, φ2 as before, we get φ1 = −φ2, so we have the relation
(5.4.13) without φ j . Letting R go to +∞, we conclude that the Fourier transform
of c1 − c•2 is zero, so c1 = c•2 .

The proof is complete. �
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Now we consider an important and interesting case of anisotropic conductivity,
i.e., equation (5.4.1) where a is an n × n-matrix (a jk), b = 0, c = 0. It has been
observed by Luc Tartar (see the description in the paper of Kohn and Vogelius
[KoV3]) that if� ∈ C1(�) is a diffeomorphism of� onto itself that is the identity
on ∂�, then the new matrix

a•(x) = | det� ′|−1 t� ′a� ′(�−1(x)),(5.4.14)

where � ′ is the differential of �, produces the same Dirichlet-to-Neumann map.
To prove this we change variables x = x(y) = �−1(y) in the definition of a gen-
eralized solution to the equation div(a∇u) = 0:

0 =
∫
�

a(x) ∇u(x) · ∇φ(x)dx

=
∫
�

a∗(y)� ′(y)∇yu∗ ·� ′(y)∇yφ
∗| det� ′|−1dy

=
∫
�

| det� ′|−1t� ′a∗� ′∇yu∗ · ∇yφ
∗dy, φ ∈ C1

0 (�),

where a∗(y) = a(�−1(y)). So u∗(y) is a solution to the anisotropic conductivity
equation with the conductivity matrix given by (5.4.14). If the diffeomorphism �
is identical at the boundary and its differential is the identity matrix at the boundary,
then a and a∗ produce the same Dirichlet-to-Neumann maps.

A natural question is whether all matrices with the same map are related
as above, via some diffeomorphism identical at the boundary. This question is
generally open, but there are some positive answers. We will mention these an-
swers in the multidimensional case, where they are obtained for real-analytic a.
Now there are some complete answers in the two-dimensional case described in
section 5.5.

Lee and Uhlmann [LeU] proved this conjecture for analytic a j in the multidi-
mensional case under additional “convexity” assumptions.

Theorem 5.4.2. Let n ≥ 3. Let a1, a2 be two real analytic (in �) conductivity
matrices. Let � be simply connected and ∂� analytic and strongly convex with
respect to the Riemannian metrics generated by these matrices.

If�1 = �2, then there is a real analytic diffeomorphism� of� onto itself such
that a1 and a2 are related by the formula (5.4.14).

The proof of Lee and Uhlmann relies on calculation of the full symbol of
the pseudo-differential operator� j in boundary normal coordinates {y1, . . . , yn},
where the first n − 1 components are (local) coordinates on ∂�, and yn is the
Riemannian distance to ∂�. In these coordinates the Laplace-Beltrami operator
(−i∂2

n + i E(x)(−i∂n) + Q(x,−i∂ ′)) corresponding to the metric a jkdx j dxk ad-
mits the factorization

(−i∂n + i E(x) − i A(x,−i∂ ′))(−i∂n + i A(x,−i∂ ′)),
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and the restriction of A at ∂� and the Dirichlet-to-Neumann operator are equal
up to a natural scalar factor (modulo a smoothing operator). So it is possible to
express the full Taylor coefficients of a at ∂�. Now, when a1 and a2 produce
the same �1,�2, they are equal near ∂� up to diffeomorphism, which changes
normal coordinates corresponding to a1 to normal coordinates corresponding to
a2. By using a convexity condition, it is possible to extend this diffeomorphism
onto �.

We observe that the complete asymptotic expansion of the symbol of � in the
anisotropic case given by Lee and Uhlmann [LeU] generalizes the results of Kohn
and Vogelius [KoV1] for isotropic conductivities.

Finally we will discuss identification of a Riemannian manifold (�, g) with the
metric g. This manifold posesses the Laplace-Beltrami operator −�g . In local co-
ordinates the Riemannian metric g is related to the elliptic (conductivity) equation
via the equality g jk = (deta)1/(2−n)a jk . The Laplace-Beltrami operator −�g in
these coordinates is defined as

�gu = det(g)−1/2
∑
∂ j ((detg)1/2g jk∂ku).

The (local) Dirichlet-to Neumann operator ��(g) ( at g) of this manifold from
the part � of its boundary is defined as the operator mapping the solution to the
Laplace-Beltrami equation −�gu = 0 in� with the Dirichlet data u = g0 on ∂�,
g0 = 0 outside � into the conormal derivative ∂ν(g)u on �.

Theorem 5.4.3. Let 3 ≤ n and� be a real-analytic manifold with a real-analytic
Riemannian metric g with compact nonempty boundary.

Then the partial Dirichlet-to Neumann map uniquely identifies the Riemannian
manifold (�, g) up to an isometry.

This result belongs to Lassas and Uhlmann [LaU] (compact �) and in more
generality to Lassas, Taylor, and Uhlmann [LaTU]. As above, in their proofs they
utilize boundary normal coordinates near � and the analytic continuation from �.
A new tool in [LaU], [LaTU] is an use of Green function, of its symmetry and of
its singularities.

5.5 The plane case

In this section we assume that all coefficients are real-valued.

Theorem 5.5.1. Let� be a bounded Lipschitz domain in R
2 with connected com-

plement R
2\�. Let a1, a2 be scalar functions in L∞(�).

If �1 = �2, then a1 = a2 on �.

In this generality this result was obtained in the recent paper of Astala and
Päivärinta [AsP]. For more regular conductivities a j H2,p(�), 1 < p it was proven
by Adrian Nachman [N3].
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The both proofs use methods of the inverse scattering pioneered by Beals and
Coifman [BC1], [BC2]. We give more detail in Chapter 6, and we refer for the
complete proof to the papers [AsP], [N3] (see also [N1]). We will assume that
a j = 1 near ∂�, which is not a restrictive assumption because as shown in Section
5.1 the conductivity coefficient can be in a stable way determined at the boundary.

The Nachman’s proof contains some constructive elements and it is worth of out-
lining his argument. We define c = a−1/2�(a1/2). Introduce the functions ψ(x, ζ )
as the solutions to the Schrödinger equation

(−�+ c)ψ = 0 on R
2, e−x ·ζψ − 1 ∈ H1,q , 1/q = 1/p − 1/2,

where ζ · ζ = 0, ζ �= 0. For the reconstruction procedure one needs only the re-
strictions of these functions onto ∂�, which can be obtained by solving the fol-
lowing Fredholm integral equation:

ψ(, k) = eizk − Sk(�c −�0)ψ(, k) on ∂�

in the space H(1/2)(∂�). Here Sk is the single layer potential operator

Skψ(x) =
∫
∂�

Gk(x − y)ψ(y)d�(y)

with respect to the Faddeev Green’s function

Gk(x) = eizk(2π )−2
∫

eix ·ξ (|ξ |2 + 2k(ξ1 + iξ2))−1dξ.

Let us define

t(k) =
∫
∂�

eizk(�c −�0)ψ(, k)d�.

Solve the differential equation

∂µ/∂k = (4πk)−1e−k(x)µ, k �= 0 where ek(z) = exp(2iRz)

or equivalently, the integral equation

µ(x, k) = 1 + (8π2i)−1
∫

t(κ)(κ − k)−1κ−1e−x (κ)µ(x, κ)dk dκ.

Finally, the conductivity coefficient a can be found from the integral formula

a1/2(x) = 1 + (8π2i)−1
∫

t(k)|k|−2e−x (k)µ(x, k)dkdk

or from the formula

a(x) = lim
k→0
µ2(x, k).

The result of Astala and Päivärinta [AsP] which completes solution of the
uniqueness problem for the real-valued conductivity from the Dirichlet-to-
Neumann map at the whole boundary makes use of some further ideas combining
inverse scattering and theory of generalized analytic functions. By using conformal
mappings we can assume that � is the unit disk B1. To reduce regularity they use
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the device used by Alessandrini to study zeros of gradients of solutions of elliptic
equations in the plane and outlined in section 3.3. Indeed, if u ∈ H(1)(�) solves
the conductivity equation div(a∇u) = 0 in�, then there is a function v ∈ H(1)(�)
such that f = u + iv satisfies the Beltrami equation

∂/(∂z) f = µ∂ f/∂z where µ = (1 − a)/(1 + a).(5.5.1)

We extend a outside� as 1, accordinglyµ is extended as 0. In [AsP] they construct
analogues of almost exponential solutions of (5.5.1)

fµ(z, ζ ) = eζ z(1 + O(z−1)) as |z| → ∞.
Let

h+ = 1/2( fµ + f−µ), h− = 1/2( f̄µ − f̄−µ)

and

u1 = h+ − ih−, u2 = i(h+ + ih−).

For z0 outside � we can write

u1(z, ζ ) = t11u1(z0, ζ ) + t12u2(z0, ζ ),

u2(z, ζ ) = t21u1(z0, ζ ) + t22u2(z0, ζ ).

A crucial step of proofs in [AsP] is to use the Beals-Coifman method to show that
� uniquely determines so- called transition matrix (t jk). It can be shown that �
uniquely determines fµ, f−µ outside �. Now uniqueness of the transition matrix
guarantees that almost exponential solutions (5.5.1) and hence the coefficient µ
are uniquely determined inside �.

Completeness of products of the two-dimensional Schrödinger equation is still
unproven, and so is uniqueness of c entering the equation (4.0.1) with the given
Dirichlet-to-Neumann map. However, there are partial answers due to work of
Isakov and Nachman [IsN] and Sun and Uhlmann [SuU1], [SuU2].

We denote by λ1 the first eigenvalue of the Dirichlet problem for the Laplace
operator in �.

Corollary 5.5.2. Let c ∈ L p(�). Assume that ∂� ∈ C2 and

c > −λ1 on �.(5.5.2)

Then the Dirichlet-to-Neumann map � for −�+ c uniquely determines c.

PROOF. Let w be a solution to the Dirichlet problem

−�w + cw = 0 in w = 1 on ∂�.

Because of condition (5.5.2) this solution exists, is unique, and according to The-
orem 4.1 is in H1,p(�). In addition, by embedding theorems, w ∈ C(�), and as
follows from the above remarks, w > 0 in �. Let us define a = w2. By using
embedding theorems again we find that a ∈ H2,p(�) as well.
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We introduce v as u/w . Then the Schrödinger equation is transformed into the
conductivity equation div(a∇v) = 0 in�. The Dirichlet-to-Neumann map for this
equation is uniquely determined by the map for the original Schrödinger equation.
Indeed, let v = g on ∂�. Since w = 1 on ∂�, we have u = g on ∂�. In addition,

a∂νv = a/w∂νu − a/w2∂νwu = ∂νu − ∂νwu on ∂�.

The equation for w coincides with the equation for u, so the Dirichlet-to-Neumann
map for the Schrödinger equation uniquely determines ∂νw . In sum, we conclude
that a∂νv is uniquely determined, and we are given the Dirichlet-to-Neumann map
for the conductivity equation. Then a is uniquely determined by Theorem 5.5.1,
and so is w = a1/2. Then c = �w/w .

The proof is complete. �

We believe that there is global uniqueness for c without the assumption (5.5.2).
At present there are several ideas how to prove it, but no proof is available. We
give only the following partial result of Sun and Uhlmann [SuU1] for real-valued
c.

Theorem 5.5.3 (Generic Uniqueness). There exists an open and dense set C in
H1,∞(�) × H1,∞(�) such that if (c1, c2) ∈ C and �1 = �2, then c1 = c2.

An idea of a proof (for equation (5.2.1) is again to use almost exponential
solutions (5.3.3) with the choice ζ (1) = 1/2(ξ + iη), ζ (2) = 1/2(ξ − iη), where
η ∈ R

2 is orthogonal to ξ and has the same length as ξ . In the plane case these
solutions are well-defined only when |ξ | > C(‖c j‖∞(�)). Observe that Sylvester
and Uhlmann [SyU1] proved that

(5.5.3) w(x ; ζ ( j)) = a(x ; j)/(η2 + iη1) + b(x ; η, j),

where |b| ≤ C |η|−2. Let us define the operator

A(c1, c2)c(x) = F
∫
�

c(x)eix ·ξ (1 + w(x ; ξ ))dx,(5.5.4)

where F is the inverse Fourier transformation and w = w1 + w2 + w1w2 when
|ζ | > C and w = −1 otherwise. Here w j is the solution to equation (5.3.11).
Observe that it depends on c j analytically. By using the representation (5.5.3) it is
not difficult to show that

A(c1, c2)c = c + K c,(5.5.5)

where K is a compact (smoothing) operator in H1,∞(�).
Letting c = c2 − c1 and using the orthogonality relations (5.2.2) with u j =

exp(i x · ζ ( j))(1 + w j ) as well as the definition (5.5.4) of the operator A, we obtain
that c + K c = 0. Now one can employ the analytic Fredholm theory to conclude
that I + K is invertible for “almost all” c1, c2 in the sense of Theorem 5.5.3.

Another global result of Sun and Uhlmann is about uniqueness of recovery of
discontinuities [SuU2].
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Theorem 5.5.4. Let c j ∈ L∞(�). If�1 = �2, then c2 − c1 ∈ Cα(�) for any α ∈
[0, 1).

We will explain the basic idea of the proof. Arguing as above, we obtain c = K c,
where c = c2 − c1. By (5.5.3), K is a smoothing operator. More careful study
shows that it is smoothing in Hölder spaces, and this completes the proof. We
observe that we only tried to explain an idea of the proof in [SuU2] that is quite
ingenious and that uses in fact a different approach based on a special operator
from scattering theory.

Now we turn to identification of several coefficients. We are considering the
general elliptic equation (5.4.1).

Theorem 5.5.5. Let two equations (5.4.1) with the coefficients a j = 1, b j , c j , j =
1, 2 posess the same Dirichlet-to Neumann maps.

a) Let b j ∈ H3,∞(�), Rb j = 0, Ic j = 0, and c j ∈ H1,∞(�).
There exists an open and dense setC in H1,∞(�) such that for any c ∈ C one has a

neighborhood V and a positive number ε(c, �) such that when ‖ curl b j‖2,∞(�) <
ε and c j ∈ V , then

curl b1 = curl b2 and 4c1 + b1 · b1 − 2 div b1 = 4c2 + b2 · b2 − 2 div b2 on �.

(5.5.6)

b) Let b j ∈ L p(�) for some p > 2 and c j = 0.
Then b1 = b2 in �.

Part a) of this theorem is due to Sun and the global uniqueness of part b) is
proved by Cheng and Yamamoto [CheY2]. Cheng and Yamamoto also use theory
of Beals and Coifman [BC1] with additions of Sung [Sun].

Now we discuss anisotropic equations div(a∇u) = 0.

Theorem 5.5.6. Let � be a simply connected domain in R
2, ∂� ∈ C3. Let a1, a2

be two (symmetric) L∞(�) conductivity matrices.
If �1 = �2, then there is a H1,2(�)-diffeomorphism � identical on ∂� such

that a2 is related to a1 via (5.4.14).

The proof of Sylvester [Sy1] (given under the assumption that | ln(det a j )|3(�)
is small) is based on introducing isothermal coordinates by mapping � onto the
unit disk so that the conductivity matrix a j is proportional to the identity (isotropic
case). The next and crucial step of the proof is to show that the first mapping
composed with the inverse to the second one is conformal on the unit disk. The
application of the uniqueness theorem 5.5.1 makes Sylvester’s argument a global
one. In this most general and natural form of Theorem 5.5.5 was proven by Astala,
Lassas, and Päivärinta [AsLP]. We cannot go into further detail, referring rather to
[AsLP], [N3] and [Sy1]. We emphasize only that this proof is “two-dimensional.”
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Now we turn to identification of two-dimensional Riemannian manifolds (�, g)
with boundaries from their Dirichlet-to Neumann map �

Theorem 5.5.7. A two-dimensional C∞-smooth Riemannian compact manifold
is uniquely identified up to an isometry by its local Dirichlet-to Neumann map.

The first proof of this result belongs to Lassas and Uhlmann [LaU] who based
it on use of special conformal coordinates and on uniqueness of the continuation
for harmonic functions. The more recent proof of Belishev [Be4] uses completely
different ideas from the Gelfand theory of Banach Algebras of complex analytic
functions and ideals of these algebras.

5.6 Nonlinear equations

The results of Sylvester and Uhlmann on the Schrödinger equation have been
extended onto the semilinear elliptic equations

−�u + c(x, u) = 0 in �.(5.6.1)

Let us introduce the following Caratheodory type conditions:

|c(, u)| + |∂uc(, u)| ≤ φ when |u| < U, where φ ∈ L p(�);

p = +∞ when n ≥ 3, p > 1 when n = 2;

∂uc(x, u) is continuous with respect to u for any x ∈ �;(5.6.2)

and the semipositivity condition

∂uc > −λ1 + ε(5.6.3)

for some positive ε, where λ1 is the first eigenvalue to the Dirichlet problem for
the Laplace operator in �.

First, we will discuss solvability of the Dirichlet problem for the semilinear
equation (5.6.1). This is easier to do under the condition ∂uc ≥ 0, but we think that
condition (5.6.3) is much more useful in applications, because it allows solutions
that can be small near ∂� and large inside �. Exactly in this situation it is very
interesting to use boundary measurements, because the interior is not accessible
for measurements.

Let us consider the linear Dirichlet problem −�w + (−λ1 + ε/2)w = 0 in a
slightly larger C∞-domain �•, w = 1 on ∂�•. We choose �• so that it contains
� and that the first eigenvalue for −� in �• is greater than λ1 − ε/2. There is a
unique solution w ∈ C∞(�•) to this problem, and this solution is positive on �•.
To prove positivity one can consider the family of the same Dirichlet problems
with −λ1 replaced by −τλ1, τ ∈ [0, 1]. By the definition of the first eigenvalue,
all these problems have unique solutions. By the maximum principle a solution
is positive on �• when τ = 0. If it is not positive for τ = 1, then by continuity
reasons there is τ0 such that the corresponding solution is nonnegative on �• and
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is zero at some point of�•. Since the boundary data are 1, this point is in�•, and
we have a contradiction because a nonnegative solution to an elliptic equation that
is zero at a point of a domain must be zero by the Harnack inequality. To solve the
semilinear problem we will make use of the substitution u = wv . Then, for the
new function v to be found, we obtain the differential equation

(5.6.1+) Lv + c+(x, v) = 0 in �,

where L = −w�− 2∇w · ∇ and c+(x, v) = (λ1 − ε/2)wv + c(x,wv). From
condition (5.6.3) it follows that ∂v c+ ≥ 0.

Now we will prove that for any Dirichlet boundary data g0 ∈ C2(∂�) there is a
unique solution u(; g0) ∈ C1(�) to the Dirichlet problem (5.6.1), (4.0.2), so again
we have the well-defined Dirichlet-to-Neumann map. It suffices to prove this for
equation (5.6.1+) instead of the original equation.

Since g0 is continuous on ∂�, it is bounded (|g0| ≤ C) there. We change c+(x, v)
for |v| > 2C , preserving all its properties but so that in addition ‖c+(, v)‖p(�)
is bounded uniformly with respect to v . The linear Dirichlet problem Lv = c
in �, u = g on ∂� has a unique solution L−1c for any c ∈ L p(�). Moreover,
L−1 is a compact operator from L p(�) into L∞(�). To deduce the solvability
(of the linear Dirichlet problem) from the standard elliptic theory, we fix a ball
B containing �, extend c+ as zero outside �, and let v0 be the solution be the
solution to the Dirichlet problem Lv0 = c in B, v0 = 0 on ∂B. By the Schauder-
type estimates of Theorem 4.1, we have ‖v0‖2,p(B) ≤ C‖c‖p(�). The Sobolev
embedding theorems and conditions (5.6.2) guarantee that the operator c → v0 is
compact from L p(�) into L∞(�). Let v1 be a solution to the new Dirichlet problem
Lv1 = 0 in �, v1 = g − v0 on ∂�. By maximum principles the operator v0 → v1

is continuous from L∞(�) into the same space, so the operator c → v1 from L p(�)
into L∞(�) is compact as the composition of compact and continuous operators.
Since v = v0 + v1, the resulting operator is compact as well. Let us consider the
equation v = −L−1c+(, v) in the ball ‖v‖∞(�) ≤ C1. When C1 is large enough,
the operator from the left side of the equation maps this ball into itself. Moreover,
this mapping is compact. By the Schauder-Tikhonov fixed point theorem there
is a solution v to this equation. By the construction, v solves equation (5.6.1+)
with changed c+. By the comparison principle, which is valid due to the condition
∂v c+ ≥ 0 for the changed equation, we have |v| ≤ C , and for such v we have the
old equation. Our solution v will be in H(1)(�), as follows from the linear theory
when we consider c+ as the right side of the elliptic differential equation.

There are several other ways to prove solvability of the Dirichlet problem for
the semilinear equation (5.6.1), for example the continuity method.

When one has two solutions v1, v2 to equation (5.6.1+) with the Dirichlet data
g+

0,1, g
+
0,2, then subtracting the equation for v1 from the equation for v2 and using that

c+(x, v2) − c+(x, v1) = c∗(x)(v2 − v1),

c∗(x) =
∫ 1

0
∂v c+(x, (v1 + s(v2 − v2))(x))ds,
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one obtains for the difference a linear elliptic equation with maximum principle
because ∂v c ≥ 0, and therefore c∗ ≥ 0. Hence, we have uniqueness of a solution
of the Dirichlet problem.

Our substitution and the maximum principle for v imply that

C min g0 ≤ u ≤ C max g0(5.6.4)

for a solution to the Dirichlet problem for the original equation (5.6.1) with the
Dirichlet data g0 on ∂�, provided that min g0 ≤ 0 ≤ max g0.

We will need the following notation E = {(x, u) : u∗(x) < u < u∗(x)}, where
u∗(x) is the infimum and u∗(x) is the supremum of u(x ; θ ) over θ ∈ R. The follow-
ing result was obtained by Isakov and Sylvester [IsSy] when n ≥ 3 and by Isakov
and Nachman [IsN] when n = 2.

Theorem 5.6.1. Let c satisfy the assumptions (5.6.2), (5.6.3) and moreover,

c(x, 0) = 0.(5.6.5)

Then c on E is uniquely identified by the Dirichlet-to-Neumann map of equation
(5.6.1).

PROOF. Let c∗(x ; θ ) = ∂uc(x ; u(x ; θ )). Let us consider the linear differential equa-
tion

−�v + c∗v = 0 in �(5.6.6)

and its Dirichlet-to-Neumann map�∗. In fact, this equation is the linearization of
equation (5.6.1) around the solution u(; θ ). �

Lemma 5.6.2. � uniquely determines�∗ for any θ . Moreover, v = ∂θu(; θ ) exists
and it satisfies equation (5.6.6) and has the Dirichlet data

∂θu(; θ ) = 1 on ∂�.(5.6.7)

PROOF. The regularity assumptions (5.6.2) and Taylor’s formula in the integral
form yield

c(, θ1 + τ1) − c(, θ1) − ∂uc(, θ1)τ1 = r (; θ1, τ1)τ1,

with

r (x ; θ1, τ1) =
∫ 1

0
(∂uc(x, θ1 + sτ1) − ∂uc(x, θ1))ds.

Let us consider any Dirichlet data g∗
0 ∈ H(1/2)(∂�) ∩ C(∂�). By subtracting

two equations (5.6.1) for u(; θ + τg∗
0 ) and for u(; θ ), dividing the result by τ ,

and denoting by v(; τ ) the finite difference (u; θ + τg∗
0 ) − u(; θ ))/τ , we obtain the

linear differential equation

−�v(; τ ) + (c∗(; θ ) + r∗(; θ, τ ))v(; τ ) = 0 on �(5.6.8)
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with r∗(x ; θ, τ ) = r (x ; u(x ; θ ), u(x ; θ + τg∗
0 ) − u(x ; θ )) and the Dirichlet bound-

ary condition

v(; τ ) = g∗
0 on ∂�.(5.6.9)

As observed above, this Dirichlet problem is uniquely solvable, and moreover,
the known energy estimates and maximum principles (Theorems 4.1 and 4.2)
combined with (5.6.4) give

‖v(; τ )‖(1)(�) + ‖v(; τ )‖∞(�) ≤ C.

Let v(; 0) be a solution to the Dirichlet problem (5.6.8), (5.6.9) with r∗ = 0.
Subtracting the equations for v(; τ ) and for v(; 0) and referring r∗v into the right
side, we obtain the Dirichlet problem for v(; τ ) − v(; 0),

−�(v(; τ ) − v(; 0)) + c∗(; θ )(v(; τ ) − v(; 0)) = −r∗(; θ, τ )v(; τ ) in �,

v(; τ ) − v(; 0) = 0 on ∂�.

From the above estimate of v(; τ ) and the definition of r∗, it follows by Theorem
4.1 that the norm ‖ ‖p(�) of the right side goes to zero. Indeed, ‖r∗‖p(�) → 0
by the formulae for r, r∗, conditions (5.6.2), the uniform bound on v(; τ ) and the
Lebesgue dominated convergence theorem. Again from Theorem 4.1 we conclude
that v(; τ ) converges to v(; 0) in H(1)(�) as τ → 0, so ∂νv(; τ ) goes to ∂νv(; τ ) in
H(−1/2)(∂�). Since� is given, ∂νv(; τ ) on ∂� is given as well, and so is their limit.
We can pass to the limit as well in equation (5.6.8), obtaining equation (5.6.6) for
v(; 0).

Summing up, for any admissible Dirichlet data g∗ we are given the Neumann
data for the solution b to the corresponding Dirichlet problem for (5.6.6), so we
are given the Dirichlet-to-Neumann map for this equation.

Letting in particular g∗ = 1, we obtain the remaining conclusion of this
lemma. �

END OF THE PROOF OF THEOREM 5.6.1. From Theorems 5.2.1 and 5.5.2 and
Lemma 5.6.2 it follows that the coefficient c∗ of the differential equation (5.6.6)
with the given Dirichlet-to-Neumann map is uniquely determined. Since the linear
Dirichlet problem (5.6.6), (5.6.7) is uniquely solvable, we can find the function
∂θu(; θ ). Using that u(; 0) = 0 due to condition (5.6.5), we obtain

u(x ; θ ) =
∫ θ

0
∂τu(x ; τ )dτ(5.6.10)

As observed in the discussion of the Dirichlet problem, under condition (5.6.3) the
solution ∂θu(; θ ) to the Dirichlet problem (5.6.6), (5.6.7) satisfies the inequality
∂θu > ε > 0 with ε depending only on �, provided that |θ | ≤ �. So for any
x ∈ � and any u ∈ (u∗(x), u∗(x)) we can find unique θ such that u = u(x ; θ ). Then
∂uc(x, u) = ∂uc(x, u(x, θ )) is known, and so is c(x, u) due to condition (5.6.5).

The proof is complete. �
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Corollary 5.6.3. Assume that in addition to the conditions of Theorem 5.6.1 we
have ∂uc ≤ C.

Then c on �× R is uniquely determined by �.

PROOF. It suffices to observe that under the conditions of Corollary 5.6.3 we have
E = �× R. The function v = ∂θu(; θ ) solves the Dirichlet problem (5.6.6), (5.6.7)
with the coefficient c∗ bounded from below by −λ1 + ε and from above by C . By
using the remarks on elliptic equations under condition (5.6.3) and comparison
theorems for solutions of the Dirichlet problem (Theorem 4.2), we conclude that
u• ≤ ∂θu(x ; θ ), where u• is a solution to the Dirichlet problem

−�u• + Cu• = 0 in �, u• = 1 on ∂�.

By maximum principles ε < u•, so ∂θu > ε (which does not depend on θ ) as well.
This implies that u∗(x) = −∞ and u∗(x) = +∞. The proof is complete. �

We observe that for the equation −�u + u2k+1 = 0 the range of a solution at
an interior point of� is bounded from above and below uniformly with respect to
Dirichlet boundary data, so one cannot expect recovery of a(x, u) for x ∈ �, u ∈ R

without the second condition ∂ua ≤ C . Indeed, consider the Dirichlet problem

−u′′ + u2k+1 = 0 in � = (−1, 1), u(−1) = u(1) = θ > 0.(5.6.11)

As shown above, a solution u(; θ ) to this problem exists and is unique. Since the
problem is invariant with respect to the substitution x → −x , so is its solution. In
other words, u(x) = u(−x). In particular, u′(0) = 0. Multiplying the differential
equation (5.6.11) by u′ and integrating over the interval (0, x), we find that (k +
1)u′2(x) = u2k+2(x) − u2k+2(0), so u(x) > u(0) when x > 0. Solving for u′ and
integrating this ODE of first order by separating variables, we find

x = (k + 1)1/2/u(0)
∫ u(x)/u(0)

1

(
s2k+2 − 1

)−1/2
ds.

From this relation we conclude that u(x) is a monotone function of x on (0, 1), so
u(0) ≤ u(x). Letting x = 1, we obtain

u(0) = (k + 1)1/2
∫ θ/u(0)

1
(s2k+2 − 1)−1/2ds

< (k + 1)1/2
∫ +∞

1
(s2k+2 − 1)−1/2ds < +∞.

So for this differential equation u∗(0) < +∞, and E is not �× R.
That global uniqueness holds for the nonlinear conductivity equations

div(a(, u)∇u) = 0 in �(5.6.12)

was shown by Sun [Su2].

Theorem 5.6.4. Assume that a nonlinear conductivity coefficient a(x, u) ∈
C2(�× (−U,U )) for any number U.
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Then the Dirichlet-to-Neumann map for the nonlinear elliptic equation (5.6.12)
uniquely determines a on �× R.

The proof in [Su2] uses the linearization scheme described above. Observe
that equation (5.6.12) has constant solutions u = θ , so one can linearize at these
solutions. As suggested by (formal) differentiation of equation (5.6.12) with respect
to the parameter θ (we have ∇θ = 0), the linearized equations will be the linear
conductivity equations with the coefficients a(x, θ ). As in the proof of Theorem
5.6.1, one can show that the initial Dirichlet-to-Neumann map uniquely determines
the Dirichlet-to-Neumann map for the linearized equation. So Theorems 5.2.1 and
5.4.1 guarantee that a(x, θ ) is uniquely determined.

Some partial results are available for anisotropic case, i.e. when a = a(x, u) in
the equation (5.6.12) is a symmetric positive matrix.

Theorem 5.6.5. Let � be a bounded domain in R
n of class C3+λ. Let a1, a2 be

quasilinear coefficient matrices in C2+λ(�) with 0 < λ < 1 such that the quasi-
linear equations (5.6.12) with these matrix coefficients have the same Dirichlet-to
Neumann maps.

a) If n = 2, then there is a C3+λ-diffeomorphism � of � onto itself which is
the identity on ∂� such that two quasilinear matrix coefficients are related via
(5.4.14).

b) If 3 ≤ n, ∂� and a j (x, u) are (real-) analytic, then there is an (real-) analytic
diffeomorphism � of � onto itself which is the identity on ∂� such that two
quasilinear matrix coefficients are related via (5.4.14).

This result is due to Sun and Uhlmann [SuU3]. It is obtained by combining
available results from theory of linear equations with the linearization method.
Linearizing at constant solutions u = θ and considering the Dirichlet-to Neumann
map for the linearized equations

div(a j (x, θ )∇v) = 0 in �

we obtain then that two coefficients can be obtained from each other by the for-
mula (5.4.14) with a diffeomorphism �(x, u) and the basic step of the proof is to
show that � does not depend on u. For this goal they used in [SuU3] the second
linearization.

Finally we report some recent result on identification of the term c(u, p) of the
quasilinear equation

−�u + c(u,∇u) = 0 in �

from its local Dirichlet-to-Neumann map �� from a part � of ∂� ∈ C3. It was
mentioned in section 5.4 that the term c(x, u,∇u) can not be uniquely identified
even for linear equations. In our case there is a complete uniqueness result [Is15].

Theorem 5.6.6. Let n = 3. Let c ∈ C3(R4) satisfy the conditions

0 ≤ ∂uc(u, p),
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and

|c(u, p)| + |∂uc(u, p)| ≤ C(U )(1 + |p|)2−δ, |∇pc(u, p)| ≤ C(U )(1 + |p|)
for some δ > 0.

Then the local Dirichlet-to-Neumann map �� uniquely determines c on R
4.

A proof in [Is15] is based on boundary reconstruction which is stable as observed
in section 5.1 and on the linearization method. So one can expect a very strong
(conditional Hölder or Lipschitz stability) in this problem and hence very efficient
reconstruction algorithms.

5.7 Discontinuous conductivities

In this section we will use the results of measurements implemented on a open
nonempty part � of the boundary of �. We introduce the local Dirichlet-to-
Neumann map �� , which is defined on Dirichlet data g ∈ H(1/2)(∂�) that are
0 on ∂�\� and maps them into the Neumann data only on �. In other words, we
initiate our solution from � and measure the response only on � as well. In this
section we consider equation (4.0.1) with b = 0, c = 0, f = 0 in R

n , n ≥ 2.
The piecewise smooth conductivity a is quite interesting from both theoretical

and practical points of view. We call a piecewise C2-smooth (analytic) when there
is a subdivision of � into a finite number of its mutually disjoint subdomains
�(k; a), k = 1, . . . , K (a) with piecewise C1-smooth boundaries such that a has a
C2-(analytic) continuation onto a neighborhood of any �(k; a).

Theorem 5.7.1. Let a1, a2 satisfy one of the following three conditions (1) They
are piecewise analytic in� and their analyticity domains�(k; a j ) have piecewise
analytic boundaries. (2) They are constant on �(k; a j ). (3) a j = a0 + χ (D j )a•

j ,

where a0 is a given and the a•
j are unknown C2(�)-functions, a•

j �= 0 on ∂D j

and D j is an unknown open subset of � with Lipschitz boundary and with con-
nected �\D j . Let � j,�) be the local Dirichlet-to Neumann map for the equation
div(a j∇u) = 0 in �.

Let �1,� = �2,� . Then in the all three cases we have a1 = a2.

Case (1) has been considered by Kohn and Vogelius in the paper [KoV2], where
the basic idea is to use Theorem 5.1.1 or Exercise 5.1.3 and analyticity of a j in
subdomains to determine coefficients in subdomains adjacent to ∂�, then to exploit
the Runge property to conclude that the Dirichlet-to-Neumann maps coincide for
smaller subdomains, and then to repeat the first step.

Case (2) follows from the results of the paper of Druskin [Dr1]. The basic tool
there is the relation

a−1(x) = 4π lim
y→x

|x − y|G(x, y), n = 3(5.7.1)
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where a(x) is (a(x ; k) + a(x ; m))/2 when x is on a smooth part of ∂�(k) ∩
∂�(m)(a(x ; k) is the limit of a(y) when y goes to x from inside of �(k)) and
is just a(x) otherwise. Here G(x, y) is a fundamental solution to equation (4.0.1)
with the pole at y.

Case (3) is considered in the paper [Is3]. The idea there is to use singular solutions
to the differential equations (4.0.1) in the orthogonality relations (5.0.4) to obtain
a contradiction when one assumes that a point 0 ∈ D2\D1. The implementation is
similar to the outline of the proof of Theorem 5.1.1. However, it is more complicated
because one has to use the Runge property and the topological assumptions on D j .
The result is unknown without these assumptions (say, for annular D j ).

We describe the basic steps of this proof.
Generally, it is possible that the set �\(D1 ∪ D2) is not connected, so there is

more than one connected component of it. Let�0 be those connected components
whose boundary contains �. Let D0 be �\�0.

Lemma 5.7.2. Under the conditions of Theorem 5.7.1 we have∫
D1

a•
1∇v1 · ∇v2 =

∫
D2

a•
2∇v1 · ∇v2(5.7.2)

for all solutions v1, v2 to equations (4.0.1) near D0.

PROOF. Since the solutions u1, u2 to equations (4.0.1) satisfy the same elliptic
differential equation on �0 and they have the same Cauchy data on �, by the
uniqueness in the Cauchy problem (Theorem 3.3.1) we have u1 = u2 on �0. Let
V ⊂ � be any neighborhood of D0 and v2 a solution to equation (4.0.1) in this
neighborhood. By shrinking V when necessary, we can assume that v2 ∈ H(1)(V ).
Subtracting the equations for u2 and u1 and letting u = u2 − u1, we obtain

div(a2∇u) = div((χ (D1)a•
1 − χ (D2)a•

2)∇u1) in V,

so the definition (4.0.3) of a (weak) solution to this equation with the test function
v2 gives ∫

�

a2∇u · ∇v2 =
∫
�

(χ (D1)a•
1 − χ (D2)a•

2)∇u1 · ∇v2

because u = 0 near ∂V . On the other hand, from the same definition of a solution
v2 to the second equation with the test function u, we conclude that the left integral
is zero, so we have the relation (5.7.2) with v1 = u1.

To complete the proof it suffices to extend the equality (5.7.2) onto solutions v1

near D0. We denote the space of such solutions by H , letting H� be the space of
solution to the Dirichlet problem (4.0.1), (4.0.2) with g = 0 on ∂�\�. If H� is not
dense in H with respect to the norm in L2(D0), then by the Hahn-Banach theorem,
there is f ∈ L2(D0) that is not zero such that ( f, u1)2(D0) = 0 for any u1 ∈ H� , but
( f, v1)2(D0) �= 0 for some v1 ∈ H . We can assume that V has a smooth boundary
and v1 is a solution in a neighborhood of V . Let�• be a Lipschitz bounded domain
containing � that is not equal to � but such that ∂�\� ⊂ ∂�•. Let G(x, y) be
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Green’s function of the Dirichlet problem for the operator div(a1∇) in �•. Then
by the single layer potential representation we have

v1(y) =
∫
∂V

G(x, y)σ (x)d�(x), x ∈ V

for some σ ∈ L1(∂V ). Since u1 = G(x, ) ∈ H� when x ∈ �•\�, we have
( f,G(x, ))2(D0) = 0. The last function U1(x) is the volume potential with density
f supported in D0, so it is a solution to the elliptic equation div(a1∇U1) = 0 in
�•\D0. Since it is zero on �•\� and a1 ∈ C1 outside D0, we can use uniqueness
of the continuation and conclude that U1 = 0 in particular on ∂V . By using the
above representation and the Fubini theorem, we obtain

( f, v1)2(D0) =
∫
∂V
σ (x)

(∫
D0

f (y)G(x, y)dy

)
d�(x)

=
∫
∂V
σ (x)U1(x)d�(x)

= 0,

which contradicts the choice of v1. So we can claim that any solution near D0

can be approximated by solutions u1 in L2(D0). Applying this result to a domain
D•0 containing the closure of D0 and using interior Schauder-type estimates for
elliptic equations in the divergent form (L2-convergence of solutions in D•0 implies
H(1)-convergence in D0, by Theorem 4.1), we complete the proof. �

We return to the proof of Theorem 5.7.1.
First we will show that D1 = D2. Let us assume the opposite: D2 is not contained

in D1. By using that the�\D j are connected we can find a point of D2\D1 that is
in ∂D0. We may assume that this point is the origin. We choose the ball B so that
its closure is contained in � and does not intersect D1. By the extension theorem
there is a function a4 ∈ C1(B ∪ D2) that agrees with a2 on D2. Let us extend a4

on the rest of � as a0. We claim that∫
D1

a•
1∇v1 · ∇v4 =

∫
D2

a•
2∇v1 · ∇v4(5.7.3)

for any solution v4 to the equation div(a4∇v4) = 0 near D0. To prove this we
approximate v4 in H(1)(D0) by functions v4k solving the equation div(a4k∇v4k) = 0
near D0. The volumes of the sets Bk = {y ∈ B\D0 : dist(y, D0) < 1/k} go to zero
when k → ∞ because ∂D0 ∩ B is Lipschitz. We define a4k to be a4 on�\Bk and
a2 on Bk . As above, we can assume that v4 solves the differential equation near
V (a neighborhood of D0) with the smooth boundary. We define v4k as a solution
to the Dirichlet problem div(a4k∇v4k) = 0 in V , v4k = v4 on ∂V . By subtracting
the differential equations for v4k and v4 we obtain div(a4k∇(v4k − v4)) = − div fk ,
where fk is the vector field (a4k − a4)∇v4. In addition, v4k − v4 ∈ H̊(1)(V ). Since
∇v4 ∈ L2(V ), we have fk → 0 in L2(V ), so the well-known estimates for the
elliptic equations in the divergent form of Theorem 4.1 imply that v4k → v4 in
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H(1)(D0). On the other hand, the v4k solve the equation div(a2∇v4k) = 0 near D0,
so by Lemma 5.7.2 we have the relation (5.7.3) with v4 replaced by v4k . As shown
above, we can pass to the limit as k goes to ∞ and obtain (5.7.3).

We write the relation (5.7.3) as∫
D1

a•
1∇v1 · ∇v4 −

∫
D2\B

a•
2∇v1 · ∇v4 =

∫
D2∩B

a•
2∇v1 · ∇v4.

We can assume that |a•
2 | > ε > 0 on B. Taking as v1, v4 singular solutions to the

elliptic differential equations div(a j∇v j ) = 0 with poles located close to the origin
and outside D2 as in the proofs of Theorems 5.1.1 and 5.1.2, we conclude that the
right side is unbounded with respect to these poles, while the left side is bounded.
This contradiction shows that D1 = D2.

The next step is to prove that a•
1 = a•

2 on ∂D1. As above, let us assume the
opposite. Then we can assume that |a•

2(0) − a•
1(0)| > 0. We choose a ball B inside

� such that |a•
2 − a•

1 | > 0 on B. Let us replace the coefficient a1 by a3 by extending
it from D1 as a C1-function. Repeating the previous approximation argument, from
the relation (5.7.3) we obtain∫

D1

(a4 − a3)∇v3 · ∇v4 = 0(5.7.4)

for all solutions v j to the equations div(a j∇v j ) = 0 near D1. Then we can repeat
the proof of Theorem 5.1.1 starting with the relation (5.1.1) and conclude that
a3 = a4 and ∇a3 = ∇a4 on ∂D1.

Lemma 5.7.3. Let two conductivity coefficients a1, a2 ∈ H2,∞(V ), where V is a
neighborhood of ∂�.

Then a1, a2 produce the same Dirichlet-to-Neumann maps if and only if a1 = a2,
∇a1 = ∇a2 on ∂� and∫

�

a1∇u1 · ∇u2 =
∫
�

a2∇u1 · ∇u2

for all solutions u j ∈ H(1)(�) to the equations div(a j∇u j ) = 0 in �.

PROOF. If a1, a2 produce the same Dirichlet-to-Neumann maps, then Theorem
5.1.1 claims that they and their gradients are equal on ∂�. From (5.0.4) we obtain
the orthogonality relations.

If we have the orthogonality relations and a1, a2 and their gradients are equal
on ∂�, then formula (5.0.4) gives∫

∂�

((�1 −�2)u2)u1 = 0

for all solutions u1, u2 of the corresponding equations in H(1)(�). Since u1 on ∂�
can be any smooth function (say, in H(1/2)(∂�)) we have (�1 −�2)u2 = 0 again
for all smooth u2. So �1 = �2.

The proof is complete. �
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From the equalities (5.7.4) and Lemma 5.7.3 we conclude that the coefficients
a3, a4 ∈ H2,∞(D1) produce equal Dirichlet-to-Neumann maps. By Theorems 5.2.1
and 5.4.1 they are equal. So a1 = a2 on D1.

The proof is complete.
Uniqueness can be obtained for all piecewise analytic a j by using the methods

described above. Also, we conjecture a logarithmic stability estimate for domains
D j (or �(k; a j )).

Most general results on uniqueness of inclusion D in anisotropic case are given
by Kwon [Kw] who detalized the method of singular solutions exposed in the
proof of Theorem 5.7.1. The main assumption in [Kw] is that deta• �= 0 on ∂D.
Stability of logarithmic type was recently proven by Alessandrini and Di Christo
[AC].

Exercise 5.7.4. Show that for the equations div(a∇u) = 0 and −�u + cu = 0
with a ∈ H2,∞(�), c ∈ L∞(�) the local Dirichlet-to-Neumann maps uniquely
determine a and c, provided that these coefficients are known near ∂�.

{Hint: Let V be a smooth subdomain of � such that a or c is known outside V .
By using approximation arguments from the proof of Theorem 5.7.1 and Lemma
5.7.3 prove that the local Dirichlet-to-Neumann map on � uniquely determines
the complete Dirichlet-to-Neumann map on V and apply known results.}

In so-called resistivity logging in geophysics one considers the local Dirichlet-
to-Neumann from the part � of � which inside � and another additional data on
� which are hard to interpret as a complete Dirichlet-to-Neumann map. For some
uniqueness results for piecewise constant conductivity from these data we refer to
Druskin [Dr2]. In some other applications (like magnetic prospecting) one uses a
slightly different set of data, which are generated by exterior sources.

Let us consider the boundary value problem

− div(a∇u) = δ(x∗) in R
n;

u(x) tends to 0 as |x | tends to + ∞ when n ≥ 3;

u(x) = C ln |x | + u0(x),

where u0 goes to zero at infinity when n = 2.(5.7.5)

We assume that a is constant outside a bounded set. Then by using potential theory
or the Lax-Phillips device (see Section 6.1) one can prove existence and uniqueness
of a solution u(x, y) of the problem (5.7.5), which is actually Green’s function of
equation (5.7.5) in the whole space. Let � be a domain with analytic boundary
that contains this bounded set. When n = 2 we assume that � is a half-plane. Let
�,�∗ be two open nonempty subsurfaces of ∂�. To identify a we need additional
data, and we consider the following:

u(x, x∗) = g(x, x∗) when x ∈ �, x∗ ∈ �∗.(5.7.6)
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Exercise 5.7.5. Prove the uniqueness of a entering the problem (5.7.5) from the
data (5.7.6) in one of the following two cases: (1) a ∈ C2(Rn), (2) a satisfies the
conditions of Theorem 5.7.1.

{Hint: By using that u(x, y) is analytic when x �= y ∈ ∂� and symmetric with
respect to x, y, show that u(x, y) is uniquely determined for all x, y ∈ ∂� and also
(by uniqueness of solutions of exterior Dirichlet problems) for all x, y outside �.
Obtain the orthogonality relations for solutions u1(x, y), u2(y) with x outside �.
By using the argument form the proof of Lemma 5.7.2 extend these relations onto
all solutions u1(y), u2(y) of two possible equations in�. Apply Lemma 5.7.3 and
Theorems 5.2.1, 5.5.1.}

In practical computations one is making use of linearization of inverse problems
around the constant a. One interesting case is discussed by Engl and Isakov [EnI]
in connection with identification of steel reinforcement bars in concrete from mea-
surements of the exterior magnetic field of these bars. In Section 4.5 we somehow
justified the linearization when vol D (and not ‖a•‖∞) is small and area ∂D is
bounded.

Let u0 be a solution to the problem (5.7.5) with a = 1 and let u1 be u − u0.
Then

−�u1 = div(a•χ (D)∇u0) + div(a•χ (D)∇u1) in R
n

and u1 has the same behavior at infinity as u. Observe that u0(x, y) is−1/2π ln |x −
y| when n = 2, and 1/(4π |x − y|) when n = 3. In Section 4.5 it was shown that
(for bounded �) u1 − u0 can be approximately replaced by the solution v to the
following problem:

−�u = div(a•χ (D)∇u0) in �, v = 0 on ∂�.

A similar argument is valid for the whole R
n , so we replace u1 − u0 by v satisfying

the equation

�v = − div(a•χ (D)∇u0 in R
n(5.7.7)

and behaving at infinity as u in (5.7.5). The well-known representation of v by
potentials gives

v(x, x∗) = cn

∫
a•(y)χ (D)(y)|x∗ − y|1−n|x − y|1−n(x∗ − y) · (x − y)dy,

where x, x∗ stand for the positions of the receiver and of the field generator,
c2 = 1/(2π )2, c3 = 1/(4π )2.

By letting x = x∗ ∈ B∗ (a ball outside D), we reduce our original nonlinear
inverse problem to the linear integral equation with the Riesz-type kernel∫

�

f (y)|x − y|2−2ndy = F(x), x ∈ B∗,(5.7.8)

where f = cna•χ (D).
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5.8 Maxwell’s and elasticity systems

Recently, uniqueness results for the Schrödinger equation were generalized onto
two classical systems of mathematical physics, which was not a simple task because
the available proofs for the scalar equations made a substantial use of substitution
(5.2.1). This substitution relies on commutativity properties of scalar differential
operator that are not valid for most matrix differential operators, in particular for the
classical elasticity system. Maxwell’s system is not elliptic, so there are additional
difficulties in this case.

The stationary electromagnetic field (E, H ) of frequency ω in the medium� of
permittivity ε, conductivity σ , and magnetic permeability µ satisfies Maxwell’s
equations

curl E = iωµH, curl H = −iω(ε + iσ/ω)E in �.(5.8.1)

We assume that ε, µ, and σ are in C3(�) ∩ C(�), all of them are nonnegative,
and ε, µ are strictly positive on �. It is known that with the exception of some
discrete set of values of ω with accumulation point at infinity, for any func-
tion g0 ∈ T H(1/2)(∂�) (the space of tangential vector fields on ∂� with com-
ponents in H(1/2)(∂�)) there is a unique (weak) solution (E,H) ∈ L2(�) × L2(�)
to Maxwell’s system with prescribed tangential component γτE = g0 on ∂�, so we
have the well-defined map � : g0 → γτH from T H(1/2)(∂�) into T H(−1/2)(∂�).
We refer for proofs and definitions to the paper of Ola, Päivärinta, and Somersalo
[OPS].

Theorem 5.8.1. Assume that a frequency ω is not in the exceptional set. Assume
that ε, µ are constants ε0, µ0 on ∂�, and σ is zero on ∂�.

Then the operator � uniquely determines the coefficients ε, σ , and µ.

This result in an important particular case has been obtained by Colton and
Päivärinta [CoP] and in the general case by Ola, Päivärinta, and Somersalo [OPS].

Their proofs are quite ingenious. They are based on appropriate orthogonality
relations that claim that � uniquely determines the integrals

I =
∫
�

((µ− µ0)H · H0 − (ε + iσ/ω − ε0)E · E0)

for all solutions E,H to Maxwell’s system and all solutions E0,H0 to this sys-
tem with µ = µ0, ε = ε0, and σ = 0 with given boundary data. The next step is
constructing the special almost exponential solutions

E = eiζ ·(ζ (E) + W (E)), H = eiζ ·(ζ (H) + W (H))

similar to functions (5.3.3) containing a large parameter (“frequency”) |ζ |, which
is a delicate part since our system is not elliptic. We assume that

ζ ∧ ζ (E) = ωµ0ζ (H), ζ ∧ ζ (H) = −ωε0ζ (E),

ζ · ζ = k2 with k = ωµ0ε0.
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Then E and H with W (E) = W (H) = 0 solve Maxwell’s system with constant
parameters µ = µ0, . . ..

Let G be a fundamental solution for the operator −�− k2, α = ∇ ln γ, β =
∇ lnµ, γ = ε + iσ/ω. Then one can show that a solution (E,H) to the (vector)
equation(

E
H

)
= eiζ ·

(
ζ (E)
ζ (H)

)
+ G

(
k2γ •E + ∇α · E + iωµ0∇ ∧ (µ•H)
k2µ•H + ∇β · H − iωε0∇ ∧ (γ •E)

)
with γ • = (γ − ε0)/ε0, µ

• = (µ− µ0)/µ0 is a solution to Maxwell’s system. This
equation can be written as(

E
H

)
= eiζ ·

(
ζ (E)
ζ (H)

)
+ G(V + S)

(
E
H

)
,(5.8.2)

where

V =
(
ω2(µγ − µ0ε0) +t (∇α) iω/γ∇(µγ )∧

−iω/µ∇(µγ )∧ ω2(µγ − µ0ε0) +t (∇β)

)
and

S =
(
α · ∇ 0

0 β · ∇
)
.

to solve equation (5.8.2) by contraction arguments as in Section 5.3 it is crucial to
use the following matrix identity discovered by Colton and Päivärinta:

[�,M] = M(S + Q)

with

M =
(
γ 1/2 0

0 µ1/2

)
, Q =

(
�(γ 1/2)/γ 1/2 0

0 �(µ1/2)/µ1/2

)
.

By using this identity and applying the operators −(�+ k2) and M to (5.8.2), one
obtains the following analogue to equation (5.3.11):(

W (E)
W (H)

)
= (M−1 M0 − I )

(
ζ (E)
ζ (H)

)

+ M−1GζM(V − Q)

(
W (E)
W (H)

)
,(5.8.3)

where Gζ is the regular fundamental solution for the operator −(�+ 2iζ · +k2),
which can be solved by a contraction argument like that in Section 5.3.

Choosing ζ = (τ, i(τ 2 + R2)1/2, (R2 + k2)1/2) and

ζ (E) = (1, 1,−(ζ1 + ζ2)/ζ3), ζ (H) = (ωµ0)−1ζ ∧ ζ (E),

we satisfy all the conditions above. We define the free space solutions E0, H0,
replacing ζ, ζ (E), ζ (H) in the formulae for E,H by

ζ 0 = τ ∗ − ζ, ζ 0(E) = (1,−1, (ζ1 + ζ2)/ζ3), ζ 0(H) = (ωµ0)−1ζ 0�ζ 0(E)

and letting W = 0.
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Finally, studying the asymptotic behavior of I as the parameter R goes to
∞ by means of equation (5.8.3), one obtains the partial differential equation
�u + F(u, v) = pu. Then interchanging ζ (E) and ζ (H) one gets the equa-
tion �v + F(v, u) = qv . Here u = (µ/µ0)1/2 and v = (ε + iσ/k)1/2, where
F(x, y) = C(1/2 − x3 y − x2/2 + x/y + x) and p, q are functions determined
by the data of the inverse problem. Moreover, u, v are given outside �, so by
applying uniqueness of continuation for elliptic equations we conclude that they
are uniquely determined inside �.

This outline can only illuminate the proof but not explain it in sufficient detail
given in the original paper [OPS] or in the paper [OS].

For second order systems the situation is more complicated. Eskin [Es1] obtained
necessary and sufficient conditions for elliptic matrix equations with the diagonal
principal part −�:

−�u + B∇u + Cu = 0 in �(5.8.4)

where u = (u1, . . . , um), B = (B1, . . . ,Bn), B j are m × m-matrices with entries
in C∞(�), C is a m × m matrix with entries in L∞(�). The pair (B,C) is gauge
equivalent to the pair (B•,C•) if there is a m × m invertible matrix G ∈ C∞(�)
such that

A• = G−1AG + 1/2G−1∇G,

∑
(1/4B2

j,• − 1/2∂ j B j,•) + C•) = G−1(
∑

(1/4B2
j − 1/2∂ j B j ) + C)G on �

where the sums are over j = 1, . . . , n. We will assume that the Dirichlet problem
for the system (5.8.4) with the data u = g0 on ∂� has a unique solution. It is
known that this is true for almost all coefficients and it is not hard to give sufficient
conditions by assuming some positivity of matrices B,C like in [LU]. Then we
have a well-defined Dirichlet-to Neumann map�: g0 → ∂νu on ∂� ∈ Lip which
is a continuos linear operator from H(1/2)(∂�) into H(−1/2)(∂�).

Theorem 5.8.2. Let n ≥ 3. Let � be a ball in R
n. Let matrix-functions B,C,

B•,C• have supports in �. Let �,�• be the Dirichlet-to-Neumann operators
corrsponding to these sets of coefficients.

If � = �•, then the the matrix coefficients (B,C) are gauge equivalent to the
marix coefficients (B•,C•).

Now we consider the stationary elasticity system

Ae
i u =

∑
∂ j (ci jklεkl) = 0 in � (the sum is over j, k, l = 1, . . . , n),(5.8.5)

where εkl = 1/2(∂luk + ∂kul) is the linear strain and ci jkl is the elastic tensor with
C∞(�)-components, they obtained uniqueness at ∂� of this tensor in the case
of the classical elasticity (ci jkl = λδikδ jl + µ(δikδ jl + δilδ jk), δi j is the Kronecker
delta). The natural analogue of the Dirichlet-to-Neumann map �λ,µ maps the
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displacement vector u = (u1, . . . , un) = g at the boundary to the stress

�i (g0) =
∑
ν j ci jkl2

−1εkl (the sum over j, k, l = 1, . . . , n)

at the boundary. The boundary reconstruction is considered in [NaU1], [NaU2].
Partial uniqueness results for determination of elastic parameters inside� from all
boundary observations were obtained by Eskin and Ralston [ER4] and Nakamura
and Uhlmann [NaU3]. In the multidimensional case currently the following result
is available.

Let n ≥ 3. Let the Lame parameters λ,µ ∈ C∞(�) satisfy the following strong
convexity assumption:

µ > 0, nλ+ 2µ > 0 on �.

Let |∇µ| ≤ ε0 for some small positive ε0.
Then the elastic Dirichlet-to-Neumann map �λ,µ uniquely determines λ and µ

in �.
Proofs are based on the following orthogonality relations for two possible solu-

tions λ1, µ1, λ2, µ2 of the inverse problem:∫
�

((λ1 − λ2) div u1 · div u2 + 2(µ1 − µ2)(ε(u1) · ε(u2))) = 0(5.8.6)

for all solutions u j to the elasticity systems (5.8.5) withλ = λ j , µ = µ j and further
use of almost exponential solutions as in Section 5.3. However, one cannot reduce
the classical elasticity system to a diagonal operator with constant coefficients plus
zero-order operator and to construct almost complex exponential solutions some
smallness assumtions are needed. The first step is to form a fourth-order system by
multiplying A3 from the right by the special matrix Ae,co (a second-order matrix
operator) of “cofactors” of Ae to obtain

A = (µ(λ+ 2µ))−1 Ae Ae,co = �2 + A1�+ A2,

where A j is a (matrix) differential operator of j th order. Then one looks for solu-
tions eiζ ·V , so one is using the operators Aζ = e−iζ · Aeiζ ·. By using the pseudodif-
ferential operator Pζ with the symbol (|ξ |2 + |ζ |2), we reduce Aζ to a second-order
pseudodifferential operator

A•
ζ = �•2

ζ + Bζ�
•
ζ + Cζ

with �•
ζ = P−1

ζ �ζ and zero-order pseudodifferential operators Bζ ,Cζ .
A crucial step is a diagonalization of this operator by introducing a new extended

vector-function V ∗ =t (V,�•
ζV ) satisfying the first-order system A∗

ζV ∗ = 0 with
A∗
ζ = �•

ζ + A∗0, A∗ a zero-order 6 × 6-matrix differential operator. It turns out
that A∗

ζ is completely diagonalizable:

A∗
ζ A0

ζ = B0
ζ �

•
ζ (modulo smoothing operators)

for some zero-order pseudodifferential operators A0
ζ , B0

ζ . Moreover, all these op-
erators are computable when |ζ | → ∞. Finally, our approximate solutions will
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be of the form Ae,co(eζ ·V∞(v)), where v solves a diagonal system with constant
coefficients and the operator V∞ is some standard fundamental solution.

Calculating the limit of the integrals (5.8.6) as |ζ | → ∞ and using the inverse
Fourier transform, one gets second-order hyperbolic equations for λ and µ with
respect to space variables. Since the Cauchy data of the Lame parameters on ∂�
can be found by boundary reconstruction, these equations uniquely determine λ
and µ.

A version of the orthogonality relations (5.8.6) can be used to estimate size of
an inclusion with different elastic properties as for inverse conductivity problem
in section 4.6. We refer to the review paper of Alessandrini, Morassi, and Rosset
in [I3].

5.9 Open problems

We list some outstanding research problems important for the theory and applica-
tions.

Problem 5.1. Prove uniqueness of the coefficient c ∈ L∞(�) of the two-
dimensional Schrödinger operator −�+ c.

The available semiglobal uniqueness result (Corollary 5.4.2) follows from the
global uniqueness theorem of Nachman for the two-dimensional conductivity
equation. Possibilities of this scheme seem to be exhausted, so new ideas are
needed.

Problem 5.2. Prove completeness of products of solutions for general (elliptic)
second-order equations.

This property is known for the equations L + c, where L is a partial differential
operator with constant coefficients under some additional conditions and for the
equations close to these equations. These conditions are satisfied for second-order
equations of elliptic, parabolic, and hyperbolic type and for some higher-order
equations. We refer to Sections 5.3, 9.5.

Problem 5.3. (Local Dirichlet-to-Neumann Map). Let� be a nonempty open part
of ∂�. Let A be −�+ c, c ∈ L∞(�), in a bounded domain � ⊂ R

n, n ≥ 2. We
define the local Dirichlet-to-Neumann operator�(�) that maps the Dirichlet data
g0 ∈ H(1/2)(∂�), g0 = 0 on ∂�\� into the Neumann data on �. Prove that �(�)
uniquely determines c.

When � = ∂�, global uniqueness follows from Theorem 5.2.2 and Corollary
5.5.2. When supp c ⊂ � (i.e, when c is zero near ∂�), one can repeat approximation
arguments from Section 5.7 and prove uniqueness, too (see Exercise 5.7.4). Gen-
erally, this problem is open even in the three-dimensional case. We think it is quite
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difficult and important for applications, since it does suggest that boundary mea-
surements can be implemented only on a (arbitrarily small) part of the boundary.

Let us consider the following boundary value problem:

−�u + cu = δ(x∗) in R
3, lim u(x) = 0 as |x | → ∞,

where c ∈ L∞(�), c = 0 outside a bounded domain �. It solution u(x ; x∗) =
1/(4π |x − x∗|) + v(x ; x∗), where v is continuous when x, x∗ are not in �.

Problem 5.4. Prove uniqueness of c given v(x ; x) for all x ∈ B∗, where B∗ is a
ball � outside �.

This problem suggests a natural way to reduce overdetermination in the inverse
problem with many boundary measurements. While the linearized version pos-
sesses the uniqueness property as observed in Sections 2.2, 5.7, we have no idea
how to approach this problem with variable c in the original nonlinear case.

Problem 5.5. Show that in the three-dimensional case the equality of the
Dirichlet-to-Neumann maps corresponding to the two anisotropic elliptic equa-
tions div(a j∇u j ) = 0 (a j are negative symmetric matrices) implies that a1 is re-
lated to a2 via the relation (5.4.14), where � is a diffeomorphism of � that is
identical at ∂�.

In the plane case this problem has been solved by Astala,Lassas and Päivärinta
[AsLP], Nachman [N3] and Sylvester [Sy1] (see Section 5.5). In the three-
dimensional case it is considered by Lassas, Lee, Taylor and Uhlmann under some
conditions, the most restrictive of them is that a j is analytic on �. The general
three-dimensional case is open and seems to be quite difficult, in particular due to
the scarcity of conformal mappings in R

n, n ≥ 3.

Problem 5.6. Consider the inverse problem of finding the nonlinear term c(u) of
the equation −�u + c(u) = 0. Let u(; θ ) be a solution to this equation satisfying
the Dirichlet data u(; θ ) = θg. Assume that g has a positive maximum on ∂� at
a point y. Show that the Neumann data ∂νu(y; θ ) given for 0 < θ < θ∗ uniquely
determine c on (0, θ∗), provided that c ∈ C2[0, θ∗] and ∂uc ≥ 0.

We think that the linearization procedure described in Section 5.6 can be adjusted
to this situation. Probably the most difficult part here will be a study of the linearized
problem.

Problem 5.7. Show that the Dirichlet-to-Neumann map for the quasilinear equa-
tion −�u + b(u,∇u) = 0 determines b on R

n+1 in a Hölder (or even Lipschitz)
conditionally stable way.

We think that this problem can be solved by using reconstruction at the boundary
for linear equations and the linearization technique from Section 5.6. Since both
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ingredients admit Lipschitz stability estimates in natural and appropriate norms,
one can expect the same stability for the resulting reconstruction.

Problem 5.8. Assume that we are given the Dirichlet-to-Neumann map for the
elliptic equation div(a∇u) = 0 in a three-dimensional domain�. (i) Prove unique-
ness for D entering the conductivity coefficient a = a0 + a•χ (D) without the as-
sumption that �\D is connected. (ii) Prove uniqueness of C2-smooth a0, a• and
of Lipschitz D.

This problem looks like a difficult one. It is obviously related to problem 5.3. In
the plane case positive answer is given by results of Astala and Päivärinta [AsP].
In the three-dimensional case best regularity assumptions are given by Päiv ärinta,
Panchenko, and Uhlmann [PPU].

Problem 5.9. Prove uniqueness of discontinuous coefficients ε = ε1 + ε•χ (D),
µ = µ0 + µ•χ (D), σ = σ0 + σ •χ (D) of Maxwell’s system with given local
Dirichlet-to-Neumann map (defined as in Section 5.7) under the assumptions
that ε•, µ•, σ • ∈ C3(D), where D is a bounded Lipschitz subdomain of �
with connected �\D, when one of the following conditions is satified: ε• �=
0, µ• �= 0, σ • �= 0 on ∂D. Prove uniqueness of the discontinuous Lame parame-
ters λ = λ0 + λ•χ (D), µ = µ0 + µ•χ(D) of the classical elasticity system under
similar assumptions.

Supposedly, one can adjust the methods of Section 5.7. Apparently, there will
be some technical difficulties with constructing singular solutions, but generally
this problem looks like a solvable one.

Problem 5.10. Show that the elastic Dirichlet-to Neumann map �λ,µ uniquely
determines the Lame parameters λ,µ ∈ C∞(�) without smallness assumptions.

We mention another very interesting problem on the characterization of the
Dirichlet-to-Neumann map, which is to find necessary and sufficient conditions
on an operator � : H(1/2)(∂�) → H(−1/2)(∂�) to be the Dirichlet-to Neumann
operator of a second-order (self-adjoint) elliptic equation. This seems to be a very
difficult question in part due to instability of the inverse conductivity problem in
classical functional spaces and its overdeterminacy.
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Scattering Problems

6.0 Direct Scattering

The stationary incoming wave u of frequency k is a solution to the perturbed
Helmholtz equation (scattering by medium)

(6.0.1) Au − k2u = 0 in R
3

(A is the elliptic operator − div(a∇) + b · ∇ + c with Rb = 0, div b = 0, and
Ic ≤ 0, which coincides with the Laplace operator outside a ball B and which
possesses the uniqueness of continuation property) or to the Helmholtz equation
(scattering by an obstacle)

(6.0.2) �u + k2u = 0 in De = R
3\D

with the Dirichlet boundary data

(6.0.3d ) u = 0 on ∂D (soft obstacle D).

or the Neumann boundary data

(6.0.3n) ∂νu = 0 on ∂D(hard obstacle D).

The function u is assumed to be the sum of the so-called incident plane wave
ui (x) = exp(ikξ · x) and a scattered wave v satisfying the Sommerfeld radiation
condition

(6.0.4) σ · ∇v − ikv(x) = O(r−2) as r goes to ∞,
where r = |x |, σ = x/r . Here ξ ∈ R

3, |ξ | = 1, is the so-called incident direction.
It is well known (see the book of Colton and Kress [CoKr]) that any solution u
to the Helmholtz equation outside B that is the sum of an incident wave and a
function v satisfying (6.0.4) admits the representation

(6.0.5) u(x ; ξ, k) = exp(ikξ · x) + r−1 exp(ikr )A(σ, ξ, k) + O(r−2).

The function A is called the scattering amplitude (or the scattering pattern).

173
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The representation (6.0.5) follows from the fact that any solution v to the
Helmholtz equation satisfying the radiation condition (6.0.4) has the represen-
tation by a single layer potential

(6.0.6) v(x) =
∫
∂B

g(y)K (x − y; k)d�(y),

where K (x ; k) = eik|x |/(4π |x |) and B is some large ball. To obtain (6.0.5) from
(6.0.6) it suffices to use the elementary expansion

K (rσ − y; k) = eikr/(4πr )e−ikσ ·y(1 + O(r−1)),

which is uniform with all derivatives with respect to y ∈ B and bounded k.
In this chapter we will assume that D is a bounded domain in R

3 with C2-
boundary ∂D and with the connected complement De = R

3\D. We expect that all
results are valid for bounded open sets with Lipschitz boundaries and connected
components of complements and that proofs need only minor modifications thanks
to recent progress on elliptic boundary problems in such domains [McL].

First we establish uniqueness of its solution.

Lemma 6.1. If v solves the equation (6.0.1) in R
3 and satisfies the radiation

condition (6.0.4), then v = 0.

PROOF. From the definition (5.0.1) of a weak solution to equation (6.0.1) in B with
the test function φ = v we have∫

∂B
∂νvv =

∫
B

(
a∇v · ∇v + b · ∇vv + (c − k2)vv

)
=

∫
(a∇v · ∇v + b · ∇vv + (c − k2)vv)

when we integrate by parts the term b · ∇vv and use the conditions on b. It follows
that the integral over ∂B is equal to the sum of two terms: one involving ∇v and
another cvv . The first term coincides with its complex conjugate, so its imaginary
part is zero; and the second one has a nonpositive imaginary part due to the
condition on c, so

I

∫
∂B
∂νvv ≤ 0.

Since v satisfies the Helmholtz equation and the radiation condition, the known
results (e.g., [CoKr], Theorem 2.12) imply that then v = 0 outside B. By unique-
ness of the continuation for the elliptic operator A − k2 we obtain that v = 0 in
R

3.
The proof is complete.

THE LAX-PHILLIPS METHOD OF SOLVING THE SCATTERING PROBLEM

We assume that A = −� outside a bounded smooth domain �. Let B be a ball
containing�. Moreover let k2 be not a Dirichlet eigenvalue for A in B. We fix�0
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containing � with the closure in B. Let φ be a cutoff C∞-function that is 1 on �
and 0 outside �0.

We look for a solution

(6.0.6) v = w − φ(w − V )

to equation Av − k2v = f , where V (; f ∗) is a solution to the Dirichlet problem

AV − k2V = f ∗ in B, V = 0 on ∂B,

w is a solution to the Helmholtz equation in R
3

−�w − k2w = f ∗

satisfying the radiation condition (6.0.4), and f ∗ is a function to be found later.
We have v = V on�, so AV − k2V = f there. Outside� the operator A = −�,
and

Av − k2v = −�w − k2w +�φ(w − V )

+2∇φ · ∇(w − V ) + φ(�(w − V ) + k2(w − V ))

= f ∗ + K f ∗ + φ( f ∗ − f ∗),

where we let K f ∗ = �φ(w − V ) + 2∇φ · ∇(w − V ). Defining K f ∗ as zero in
�, we conclude that v solves the original equation if and only if f ∗ solves the
following equation:

(6.0.7) f = f ∗ + K f ∗.

We claim that the operator K is compact from Hp,l(B) into itself. Indeed, the
well-known elliptic estimates (Theorem 4.1) give that V and w are linear con-
tinuous operators from Hl,p(B) into Hl+2,p(B). Here l = −1 when a ∈ L∞(B),
l = 0 when ∇a ∈ L∞(B), and can be greater when the coefficients of A are more
regular. Since the definition of K involves only first-order derivatives of w, V , this
operator is continuous from Hl,p(�) into Hl+1,p(�) and therefore compact into
Hl,p(�). Finally, the equation (6.0.7) is Fredholm, so its solvability follows from
the uniqueness of its solution.

Let f = 0. Then v is a solution to the homogeneous scattering problem. By
Lemma 6.1 we have v = 0 in R

3. So w = φ(w − V ). Observe that f ∗ = f = 0
on� and V = 0 on�. Then from the equations for w and V we obtain that w − V
solves the homogeneous Helmholtz equation in B. In addition, w = 0, V = 0 on
∂B. According to the choice of B, k2 is not an eigenvalue for −� in B. Therefore,
w − V = 0 on B. Hence w = 0 on B, and from the definition of w we have f ∗ = 0.

It is obvious that this method implies unique solvability of the scattering problem
for a general (not necessarily self-adjoint) A provided that we have uniqueness of
its solution. At present we do not know how to prove this uniqueness.

Exercise 6.2. By using the Lax-Phillips method prove the unique solvability of
the obstacle scattering problem and of the problem (5.7.5).
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The inverse scattering problem is to find A or D given the scattering amplitude
A. This problem is apparently overdetermined (A is defined on the 5-dimensional
manifold S2 × S2 × R+), so it is important to study uniqueness when the scattering
data are given, say, for one frequency or for one incident direction. However,
even the complete knowledge of A does not guarantee uniqueness of A without
additional assumptions.

In Section 6.1 we collect auxiliary results on uniqueness and stability of re-
covery of a solution u to the Helmholtz equation from its scattering amplitude as
well as some lemmas about approximation of an arbitrary solution by particular
incident waves, which are of independent interest and which allow us to deduce
uniqueness and stability results for the inverse scattering problem from results for
finite domains (in particular, from theorems on the Dirichlet-to-Neumann map).
In Section 6.2 we give results on inverse scattering by medium, and in Section 6.3
by obstacles.

6.1 From A to near field

Referring to the book of Colton and Kress [CoKr], p. 35, we recall the following
known representation

(6.1.1) v(x) = k�h(1)
m (kr )PrmA(σ ),

where h(1)
m (r ) is the Hankel function and Prm is an orthogonal projector in the

space L2(S2), Prl Prm = 0 when l �= m, and the sum of these projectors over m
is the identity (in fact, it is the spherical harmonics expansion of a function on
the unit sphere S2). This representation implies in particular the famous Rellich
theorem: the first asymptotic term A determines a solution u to the Helmholtz
equation with regular behavior at infinity (in the above sense). Observe that the
Hankel function behaves like (2m/(er ))m for large m uniformly with respect to r
on bounded sets.

Lemma 6.1.1. Let ∑
m2mb2

mρ
2m
1 < M2 and

∑
b2

m ≤ ε2.

If ε < 1, ρ < 1, ρ/ρ1 < 1/e, then

(6.1.2)
∑

m2mb2
mρ

2m ≤ (M2 + 1)ε2λ(ε),

where λ(ε) = 1/(1 + ln(− ln ε + e)).

PROOF. Let

σ = − ln ε, N = σ/(1 + ln(σ + e)).

Then we have∑
N≤m

m2mb2
mρ

2m ≤
∑
N≤m

m2mb2
mρ

2m
1 (ρ/ρ1)2m ≤ M2e−2N = M2ε2λ(ε).



6.1. From A to near field 177

For the first terms we have∑
m<N

m2mb2
mρ

2m ≤ N 2Nε2 = e(2N ln N−2σ ) ≤ e(−2σ/(1+ln(σ+e))

because 2N ln N − 2σ ≤ −2N . The latter inequality follows from

N ln N + N ≤ σ (1 + ln(σ + e))−1 ln(σ (1 + ln(σ + e))−1)

+ σ (1 + ln((σ + e))−1

≤ σ (1 + ln(σ + e))−1 ln σ + σ (1 + ln(σ + e))−1

≤ σ
where we used that ln(σ + e) ≥ 0, ln(σ + e) ≥ ln σ .

The proof is complete. �

It is not clear that the choice of N in the proof and the estimate (6.1.2) are
optimal.

Lemma 6.1.2. Let v be a radiating solution to the Helmholtz equation outside the
ball BR, with |v|0(R3\BR) ≤ C0. Let its scattering pattern satisfy the inequality
|A| < ε on S2.

Then

(6.1.3) ‖v‖2(B3R+1\B3R) < Cελ(ε),

where λ(ε) = 1/(1 + ln(− ln ε + e)) and C depends only on C0, R.

PROOF. By using the representation (6.1.1) and the bound on v we conclude that∑
(2m/(ek R))2m‖PrmA‖2

2(S2) ≤ C.

By Lemma 6.1.1 with bm = ‖PrmA‖, ρ1 = 2/(ek R), and ρ = 2/(ekr ) ≤
2/(3ek R) we have

‖v(rσ )‖2
2(S2) ≤ C

∑
(2m/(ekr ))2m‖PrmA‖2 ≤ Cε2λ(ε)

when 3R < r , and we complete the proof by integrating this inequality with respect
to r over (3R, 3R + 1) and taking the square root. �

Bushuyev [Bus] showed that it is not possible to find λ that does not depend
on ε, so Hölder stability does not hold. On the other hand, in the same paper
he calculated C explicitly and found that for typical computational precision his
estimate is very close to the Hölder one (with relatively large λ). Stability estimates
are discussed also by Taylor [Tay].

Now we review a related question about relations between the Dirichlet-to-
Neumann map and the scattering amplitude. We fix some ball B = BR .

Theorem 6.1.3. Let k be not an eigenvalue of the Dirichlet problem for A j in B.
Let A j ( ; k) be the scattering amplitude for the operator A j in (6.0.1), and let � j

be the Dirichlet-to-Neumann map for this operator in B.
Then A1( ; k) = A2( ; k) if and only if �1( ; k) = �2( ; k).
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PROOF. Let A1 = A2. Using the representation (6.1.1) we then obtain u1 = u2 for
scattering solutions outside B, and therefore the Neumann data for u j coincide
on ∂B. Henceforth �1(u1) = �2(u1). The equality of the Dirichlet-to-Neumann
maps on the whole H(1/2)(∂B) follows from Lemma 6.1.4.

Let �1 = �2. Let w be a solution to the Dirichlet problem (A2 − k2)w = 0 in
B, w = u1( ; ξ, k) on ∂B. Since u1 solves the Dirichlet problem for the operator
A1 − k2 with the same Dirichlet data and this operator has the same Dirichlet-to-
Neumann map, we have ∂νu1 = ∂νw on ∂B. Define w∗ as w on B and u1 outside B.
Then w∗ is a solution to the scattering problem (6.0.1), (6.0.4) with A = A2. This
solution is unique, so u2 = w∗, and therefore u1 = u2 outside B. By comparing
the asymptotics (6.0.5) for u1 and u2 we conclude that A1 = A2. The proof is
complete. �

Lemma 6.1.4. For any bounded domain� with connected R
3\�, span{u( ; ξ, k) :

ξ ∈ �} is L2(�)-dense in the space of all solutions to equation (6.0.1) near �.

PROOF. Let us assume the opposite. Then there is a function f ∈ L2(Rn) supported
in� such that

∫
f u(; ξ ) = 0 for all scattering solutions u(; ξ ), but not for a solution

u0 to equation (6.0.1) near�. As shown above, there is a solution w to the equation
(A∗ − k2)w = f in R

3 satisfying the radiation condition. We pick up a ball B
containing � where the solution of the Dirichlet problem for A − k2 is unique.
By using the definition (4.0.3) of a generalized solution w with the test function
φ = u(; ξ ), we obtain

0 =
∫

B
f u(; ξ )

=
∫

B

(
a∇w · ∇u(; ξ ) + b · ∇wu(; ξ ) + (c − k2)wu(; ξ )

) −
∫
∂B
∂νwu(; ξ ).

Since u(; ξ ) solves the homogeneous equation (A − k2)u = 0, we similarly con-
clude that the right side of the above equation with w and u interchanged is zero
as well. Finally, ∫

∂B
(∂νwu − ∂νuw) = 0.

From the representation (6.0.5) we replace u by the sum of the exponent and a
remainder v that satisfies the radiation condition. Since both w and this remainder
solve the Helmholtz equation, we can replace the surface of integration ∂B by
∂B(0; r ) with r tending to infinity and by using the radiation condition conclude
that this integral is zero; so we can replace u by exp(ikξ · x). Indeed, from the
representation (6.0.6) it follows that for radiating solutions w , v one has |w | + |v| ≤
Cr−1, |∇w | + |∇v| ≤ Cr−2.

Let w0 be a solution to the Helmholtz equation in B with the Dirichlet data
w = w0 on ∂B. Since uξ = exp(ikξ · x) satisfies the same equation in B, again
from Green’s formula the integral of ∂νw0uξ − w0∂νuξ is zero. Comparing the
two integrals, we have that the integral of (∂νw0 − ∂νw)uξ over ∂B is zero. Since
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k2 is not an eigenvalue of −�, one can conclude ([Is5]) that exponential solutions
are dense in L2(∂B), so ∂νw0 = ∂νw on ∂B. Let us define w∗ as w0 on B and w
outside B. Since w,w0 have the same Cauchy data on ∂B, the function w∗ solves
the Helmholtz equation on R

3 and satisfies the radiation condition. By Lemma 6.1,
w∗ = 0 on R

3, so w = 0 outside B and on B by uniqueness of the continuation
from outside �.

Now, consider
∫

B f u0. Using that (A∗ − k2)w = f and w = 0 outside�, from
Green’s formula we obtain that the integral of f u0 is zero, which is a contradiction.

�

Corollary 6.1.5. Let � be any bounded domain with analytic boundary and with
connected R

3\� and let A = −� outside� and near ∂�. Let k2 be not a Dirichlet
eigenvalue for A in �.

Then span{u(; ξ )} is dense in H(1/2)(∂�).

To prove this result we first observe that from Lemma 6.1.4 and interior
Schauder-type estimates it follows that solutions u(; ξ ) are H(1)-dense on bounded
subsets among all solutions. Since k2 is not an eigenvalue, one can solve the Dirich-
let problem in�with any real-analytic Dirichlet data. This solution can be contin-
ued into some neighborhood of � and therefore can be H(1)(�)-approximated by
solutions u(; ξ ). By trace theorems we have also an approximation in H(1/2)(∂�).
Since real analytic functions on ∂� are dense among all functions, we complete
the proof.

One has an analogy of these approximation results for scattering on obstacles.

Lemma 6.1.6. For any bounded domain � with � ⊂ R
3\D, span{u(, ξ ; k) : ξ ∈

�} is L2(�)-dense in the space of all solutions to the obstacle problem (6.0.2),
(6.0.3d ), (6.0.3d ) (or (6.0.3n)) in V , which is an open subset of R

3\D such that
� ⊂ V and R

3\(D ∪ V ) is connected.

PROOF. We will slightly modify the proof of Lemma 6.1.4. As in that proof, we find
f in L2(�) orthogonal to all radiating solutions to the, say, hard obstacle problem,
but not to a solution of this problem in V . According to Exercise 6.2 there is a
solution w to the equation −(�+ k2)w = f in R

3\D satisfying the boundary
condition (6.0.3n) and the radiation condition. Let B be a ball containing D ∪�
where the solution to the Dirichlet problem for the Helmholtz equation is unique.
We have

0 =
∫

B\D
f u( , ξ ) =

∫
B\D

(∇w · ∇u(, ξ ) − k2wu(, ξ )
) −

∫
∂B
∂νwu(, ξ ),

where we integrated by parts and used the zero Neumann condition for w on ∂D.
If we integrate by parts once more and use that u solves the Helmholtz equation,
we conclude that ∫

∂B
(w∂νu(, ξ ) − ∂νwu(, ξ )) = 0.
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Arguing as in Lemma 6.1.4, we can replace u by exp(ikξ ·) and conclude that
w = 0 outside a (large) ball B. Now,∫

�

f u0 =
∫

V
(−�− k2)wu0 =

∫
∂V

(∂νu0w − ∂νwu0) = 0

because at the points ∂V ∩ ∂D the normal derivatives of w and u0 are zero, while
at the remaining points of ∂V we have w = ∂νw = 0 by uniqueness of the contin-
uation from B. We have a contradiction, which shows that the initial assumption
was wrong.

The proof is complete. �

6.2 Scattering by a medium

From the results of Chapter 5 and Section 6.1 we can derive many important results
about uniqueness and stability in inverse scattering.

Theorem 6.2.1. Let A j = −�+ c j , where c j ∈ L∞(B) (or A j = − div(a j∇),
where a j ∈ H2,∞(B)).

If A1(σ, ξ, k) = A2(σ, ξ, k) for all σ ∈ S2, ξ ∈ S2, and for one k, then c1 = c2

(or a1 = a2).

This result follows from Theorems 5.2.1, 5.2.2, and 6.1.3.
The remarks of section 5.2 and theorems of Section 5.5 similarly lead to

uniqueness results under the assumptions that c j ∈ L p(B) or a j ∈ H2,p(B), where
p ≥ n/2 if n ≥ 3 and a j ∈ L∞(B) if n = 2.

We have to mention that this result was obtained by Nachman [N1] (who based it
on the Sylvester-Uhlmann theorem) and by Novikov [No1], where another fruitful
viewpoint is adopted.

Hähner and Hohage [HaH] obtained the following conditional logarithmic sta-
bility estimate.

Theorem 6.2.2. Let c1, c2 ∈ H(2)(B) for some ball B and c1 = c2 = 0 outside B.
Let ‖c j‖(2)(B) ≤ M. LetA j be the scattering pattern of the operator −�− k2 + c.

Then there is a constant C depending only on B, k,M such that

‖c2 − c1‖2(B) ≤ C(−ln‖|A2(, k) − A1(, k)‖2(S2 × S2))1/4

They used some ideas of Alessandrini of proving stability from the Dirichlet-to
Neumann exposed in section 5.2 and properties of Green functions and scattering
patterns as well as stability of recovery of near field from A in part described in
section 6.1. This stability estimate looks optimal due to recent results of Mandache
[Ma] and Di Christo and Rondi [DR] and it indicates that inverse scattering by a
medium is a strongly ill-posed problem.

By using two different frequencies one is able to recover two coefficients of A.
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Corollary 6.2.3. Let A j = − div(a j∇) + c j where a j and c j satisfy the conditions
of Theorem 6.2.1.

If A1(σ, ξ, k) = A2(σ, ξ, k) for all σ ∈ S2, ξ ∈ S2, and two different k, then
a1 = a2 and c1 = c2.

To prove this corollary we make use of the substitution (5.2.1), which does
not change the equations and their solutions outside B and which replaces the
equations inside B by

−�u∗ + (a−1/2
j �a1/2

j + (c j − k2)a−1/2
j )u∗ = 0.

By Theorem 6.2.1 we conclude that the coefficients of this equation are equal for
two different k when j = 1, 2, so a2 = a1 and hence c2 = c1.

Similar conclusions are valid for identification of several coefficients of elliptic
equations when we combine Theorems 5.4.1 and 6.1.3.

Let ∂� ∈ C2, R
3\� be connected, and supp c ⊂ �. Now we focus for a while

on the Schrödinger operator A = −�+ c. Writing (6.0.1) as the equation −�v −
k2v = −cu in R

3, using the classical integral representation of scattering solutions
of such equations, and letting u = exp(ikξ ·) + v we obtain the so-called Lippman-
Schwinger integral equation

(6.2.1) u(x ; ξ ) = exp(ikξ · x) −
∫

K (x − y; k)c(y)u(y; ξ ) dy.

When c is compactly supported, it is quite easy to prove unique solvability of this
equation and therefore of the original scattering problem (6.0.1), (6.0.4). On the
other hand, a simple generalization of Green’s representation implies that

v(x ; ξ ) =
∫
∂�

(v(; ξ )∂νK (x−; k) − ∂νv K (x−; k)) when x ∈ R
3\�.

By Green’s formula the right side of this equation with v replaced by exp(ikξ ·)
is zero, since this exponential function solves the Helmholtz equation inside �.
Therefore, we can replace v by u − exp(ikξ ·) on the left side and by u on the
right side. Using the jump relations for double layer potentials and the equality
∂νu = �u on ∂�, we arrive at the relation
(6.2.2)

u(x ; ξ ) = exp(ikξ · x) + (u(x ; ξ )/2 + Bku(; ξ )(x) − Sk�u(; ξ )(x)), x ∈ ∂�,
where

Bk g(x) =
∫
∂�

∂ν(y) K (x − y; k)g(y)d�(y)

is the double layer potential of density g on ∂� and

Sk g(x) =
∫
∂�

K (x − y; k)g(y)d�(y)

is the single layer potential. It can be shown that the operator I/2 + Bk − Sk� is
compact (in H(s)(∂�), 0 < s < 3/2), and a solution u(; ξ ) to equation (6.2.2) is
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unique; so the Dirichlet-to-Neumann map uniquely determines scattering solutions
u(; ξ ) on ∂�. An asymptotic analysis of both sides of the formula for v when
|x | → ∞ shows that

(6.2.3) A(σ, ξ, k) = −1/(4π )
∫
∂�

e−ikσ ·y(�+ ikσ · ν(y))u(y, ξ )d�(y).

For details and a proof we refer to the paper of Nachman [N1]. From (6.0.5) and
(6.2.1) by letting |x | → +∞ we obtain

(6.2.4) A(σ, ξ, k) = −1/(4π )
∫

e−ikσ ·yc(y)u(y; ξ )dy.

For small ‖c‖∞ we conclude from (6.2.1) that u(x ; ξ ) ∼ exp(ikξ · x) on�, so the
following (Born) approximation makes sense and is widely used:

(6.2.5) A(σ, ξ ; k) ∼ −1/(4π )
∫

e−ik(σ−ξ )·yc(y) dy.

We explained above how to obtain a uniqueness result for inverse scattering
from results for the Dirichlet-to-Neumann map. In fact, the opposite direction
is quite useful. In the paper of Nachman [N1] there is a constructive algorithm
to recover c from the Dirichlet-to-Neumann map � for equation (6.0.1) with
A = −�+ c at given frequency k. The complex scattering solution ψ(x, ζ ) is
defined as a solution of the Schrödinger equation (−�+ c)ψ = 0 in R

3, where
ψ(x, ζ ) = exp(i x · ζ ) + w(x, ζ ) and w ∈ L2

−δ(R
n) with 1/2 < δ < 1. Here Lδ,2

is the weighted L2-space with the norm ‖(1 + |x |2)δv‖2(Rn). The existence of such
almost exponential solutions for large |ζ |, ζ · ζ = 0, has been proved by Sylvester
and Uhlmann [SyU2], who also showed that ‖w‖2(�) < C/|ζ |. Similarly to the
case of real ζ , one can show that these complex scattering solutions satisfy the
equation

(6.2.6) ψ(, ζ ) = exp(i x · ζ ) + (I/2 + Bζ − Sζ�)ψ(, ζ ),

where Sζ and Bζ are classical single and double layer potentials that correspond
to the Faddeev Green’s function (the inverse Fourier transform of the function
ξ 2 + 2ζ · ξ multiplied by exp(i x · ζ )). It is proven by Nachman [N1] that for large
|ζ |, ζ · ζ = 0, the integral equation (6.2.6) has a unique solution ψ ∈ H(3/2)(∂�).
Define an analogue of the scattering amplitude divided by exp(i x · ζ ),

t(ξ, ζ ) =
∫
�

e−i x ·(ξ+ζ )c(x)ψ(x, ζ )dx

=
∫
∂�

exp(−i x · (ξ + ζ ))(�+ i(ξ + ζ ) · ν))ψ(, ζ )dσ (x),

where we have used the equality cψ = �ψ , Green’s formula, the fact that
exp(−i x · (ξ + ζ )) solves the Laplace equation with respect to x when ξ · ξ +
2ξ · ζ = 0, and that ∂νψ = �ψ . The function t(ξ, ζ ) is known due to the last rep-
resentation as an integral over ∂�. As mentioned above, ψ(x, ζ ) exp(−i x · ζ ) is
convergent to 1 in L2(�) as |ζ | → ∞. Hence the Fourier transformation of c at a
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point ξ is equal to lim t(ξ, ζ ) as |ζ | goes to ∞ and ξ 2 + 2ζ · ξ = 0, and we have
a constructive method of finding c. As shown in Section 5.3 (proof of Corollary
5.3.5), one can find such ζ . It is possible to avoid a limiting procedure and to recover
c by using an integral representation of Koppelman type where singular integrals
over the manifold {ζ : ξ 2 + 2ζ · ξ = 0} and some Bochner-Martinelli kernels are
involved ([N1], Theorem 3.4).

Similar ideas and interesting results (including also a characterization of the data
in the inverse scattering) are contained in the papers of Henkin and Novikov [HeN]
and Novikov [No1], who were inspired by the pioneering work of Faddeev in the
1960s where almost exponential solutions with complex ζ were first introduced
and used. There are space limitations that do not allow us to go into the details
of these papers. We only mention that in [HeN] there is a characterization of the
scattering amplitude in terms of solutions of some complicated integral equations
and compatibility conditions for the ∂-equation on a certain complex-analytic
manifold where solutions of these equations are defined. There is a possibility that
these results can be simplified and applied to the characterization of the Dirichlet-
to-Neumann map, which is a completely open problem in the three-dimensional
case. To related questions we refer also to the book of R. Newton [Ne] and to the
papers of Nachman [N1], [N3].

The difficulties with existence and stability in the inverse scattering problem
with complete data stimulated some formulations with restricted scattering ampli-
tude. Probably the most reasonable and popular are data A(σ,−σ ; k) (the inverse
backscattering). While global uniqueness is still open, there is one recent result by
Eskin and Ralston [ER2] showing stability near “almost all” potentials c.

Let Hα,N be the weighted Hölder space that is obtained by completion of the
space C∞

0 (R3)-functions ĉ with respect to the norm

‖ĉ‖α,N = |(1 + |ξ |2)N/2ĉ(ξ )|α(R3),

where 0 < α < 1, 1 < N . This space was introduced by Faddeev and Friedrichs.
Let Hr

α,N consist of Fourier transformations of real-valued potentials.
Let A∗(ξ ) be the backscattering amplitude A(|ξ |−1ξ , −|ξ |−1ξ , |ξ |). Eskin and

Ralston [ER2] obtained the following result.

Theorem 6.2.4. There is an open dense subset U of Hα,N such that its intersection
with Hr

α,R and the backscattering map S : ĉ → A∗ is an analytic homeomorphism
in a neighborhood of any ĉ ∈ U .

The proof of this result is quite long and technical, so we are able to tell only a
few words about it. First, one proves that the map S is differentiable on an open
dense subset of Hα,N that is a complex Banach space, so we get analyticity of
this map. The next step is to show that the Fréchet derivative of S is a Fredholm
operator of zero index, which one might expect since in view of the formula
(6.2.4) at the origin (c = 0) this derivative is the identity. This goal is achieved
by representing this derivative as the identity plus a compact operator and plus
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another operator with compact square. A final argument is application of Fredholm
analytic theory. The underlying reason is that the operator of multiplication by c
is an analytic operator in an appropriate Banach space, and probably the most
difficult part of the proof is to find the right space to secure compactness of related
operators.

We emphasize that Theorem 6.2.4 guarantees that the inverse backscattering
problem is (locally) stable. However, still there are questions about local invertiblity
for real-valued potentials c and about global uniqueness that are somehow similar
to those questions about the two-dimensional Dirichlet-to-Neumann map.

The two-dimensional case of inverse backscattering is considered by Eskin and
Ralston [ER3] as well.

Now assume that we are given the complete scattering data. Even in this case
one cannot determine an operator A, and we must impose additional assumptions.
Indeed, the substitution u = cφv with φ = 0 outside some ball B discussed in Sec-
tion 5.4 does not change scattering data while changing the differential equation.

Theorem 6.2.5. Suppose that A j = −�+ b j · ∇ + c j , where b j ∈ C2
0 (Rn), c j ∈

L∞(Rn), are compactly supported, and Rb j = 0, div b j = 0, Ic j ≤ 0.
If A1(σ, ξ ; k) = A2(σ, ξ ; k) for all σ, ξ ∈ S2 and all k > 0, then curl b1 =

curl b2 and 4c1 + b1 · b1 = 4c2 + b2 · b2.

At a fixed frequency k this result under the additional regularity assumption
that b j ∈ C6, c j ∈ C5 follows from the papers of Eskin and Ralston and of Eskin
[Es1] and for infinitely smooth coefficients from the paper of Nakamura, Sun,
and Uhlmann [NSU] combined with Theorem 6.1.3. Proofs of this result and its
relation to hyperbolic problems are given by Novikov and Henkin [HeN] under
some additional assumptions. About the variable principal part we refer to the
chapter on hyperbolic equations. One can prove that the complete scattering data
(i.e., the scattering amplitude given at all frequencies) uniquely determines the
lateral hyperbolic Dirichlet-to-Neumann operator. Indeed, by Theorem 6.1.3 the
scattering amplitude uniquely determines the elliptic Dirichlet-to-Neumann map
for equation (6.0.1) for all real k. By using the Fourier or the Laplace transforma-
tions it is possible to show that the hyperbolic map is also uniquely determined.
So Theorem 6.2.5 follows from Theorem 8.3.1.

Scattering for nonlinear equations was considered by Morawetz [Mo]. Our The-
orem 5.6.1 implies some uniqueness results for such equations from scattering data
that are obtained in the paper of Isakov and Nachman [IsN].

6.3 Scattering by obstacles

First we consider scattering by obstacles D ⊂ B(0; R). Let N = ∑
(2n + 1) over

all n such that 0 < t(n, l) < k∗ R, where t(n, l) is a zero of the Bessel function
jn . Observe that N = 0 when k∗ R < π ([CoKr], p. 107). Let k∗ ≤ k1 < · · · <
kN+1 ≤ k∗.
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Theorem 6.3.1 (Uniqueness of Soft Obstacles). Let us consider two soft scatter-
ers D1, D2 contained in B. Let their scattering amplitudes A1, A2 coincide either
(a) for all σ ∈ S2, one ξ ∈ S2, and N + 1 frequencies k1, . . . , kN+1 or (b) for all
σ ∈ S2, N + 1 distinct ξ , and one k ≤ k∗.

Then D1 = D2.

We give a proof in case (a) referring for case (b) to the book of Colton and Kress
([CoKr], section 5.1) and to the paper of Kirsch and Kress [KirK], where they
corrected the initial proof of Schiffer described in the book of Lax and Phillips
[LaxP2].

Let D∞ be the unbounded component of the complement R
3\(D1 ∪ D2). By

the conditions of Theorem 6.3.1 we have the same scattering amplitudes for both
domains, so from the Rellich uniqueness theorem we obtain that the related solu-
tions u1, u2 are equal on D∞. Let D∞ be R

3\D
∞

. Let us assume that D1 �= D2.
Then there is a point, say, in D2\D1. Since the complement of D1 is connected, we
can join this point with a point in D∞ by a continuous path that does not intersect
D1. This path intersects ∂D∞, so there is a connected component D∗ of D∞\D1.

The function u1 solves the Helmholtz equation in D∗ for k = k1, . . . , kN+1.
Moreover, u1 = 0 on ∂D∗ because this boundary condition is satisfied on ∂D1 and
because u1 = u2 = 0 on ∂D2 ∩ D∞. According to the Courant max-min property,
the eigenvalues of the Laplacian for D∗ are greater than corresponding eigenval-
ues for the ball B, which can be calculated explicitly using Bessel functions. In
particular, their number is less than N . Therefore, one of k2

1, . . . , k
2
N+1 is not an

eigenvalue. For this k2 we have u1 = 0 on D∗. Then u1 = 0 on D∞ by uniqueness
of the continuation. This is a contradiction because u1 �= 0 outside of a large ball
due to the representation (6.0.5). This contradiction shows that D1 = D2.

The gap in Schiffer’s initial proof is due to the possible disconnectedness of
R

3\(D1 ∪ D2).
Observe that in the paper of Stefanov [St] there is a discussion of a moving

obstacle and a counterexample that shows nonuniqueness in the inverse scattering
problem.

In Theorem 6.3.2 we let k j = k∗ + ( j − 1)(k∗ − k∗)/N .

Theorem 6.3.2 (Stability for Soft Obstacles). Consider two star-shaped domains
D1, D2 given in polar coordinates by the equations {r < d j (σ )}, where 1/R0 <

|d j |2+λ(S2) < R0.
If |A1 − A2|(σ, ξ, k) < ε for some ξ ∈ S2, all σ ∈ S2, and k = k1, . . . , kN+1,

then |d1 − d2| < C ln(− ln ε)−1/C , where C depends only on R0.

A proof of this estimate is given in the papers [Is8], [Is9]. It is based on Lemma
6.1.2, and then on estimates for the continuation of solutions to the Helmholtz
equation (u2 − u1) from outside of B up to ∂(D1 ∪ D2) and from D∗ back to
outside of B (with bounds explicitly involving some size of D∗) where one can
always assume that |u2| > 1/2. Combining all explicit bounds, we arrive at the
final estimate.
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We observe that for analytic boundaries this weak estimate can be improved: as
shown in the papers of the author [Is8], [Is9], one can replace the right side of the
stability estimate by C |λ(ε) ln ε|−1/C , where λ(ε) is as defined in Lemma 6.1.2.

We will outline a proof of a stability estimate, referring for detail to the above
mentioned papers. In this outline C denotes (different) constants determined only
by R0.

The first claim is that

(6.3.1) |u j |2(R3\D j ) ≤ C.

This basically follows from Theorem 4.1 combined with behavior at infinity. The
estimate (6.3.1) in view of the well-known integral representation

v j (x) =
∫

D j

(−�− k2)v∗
j K (x−)

(6.0.5) and of decay of K at infinity implies that

(6.3.2) |u j | > 1/2 on ∂B,

where B is some ball determined only by R0. Here v∗
j is an extension of v j onto

R
3 whose | |2-norm is bounded by the C2-norm of v j (or equivalently of u j ) on

R
3\D j . Such v∗

j exists by extension theorems.
Lemma 6.1.2 applied to v = v1 − v2 gives

(6.3.3) |u2 − u1|0(B(0; R2)\B) < ε1, where ε1 = Cελ(ε)

and λ(ε) is as defined in Lemma 6.1.2. The next step is to derive from this estimate
the following estimate up to the boundary of the analyticity domain of u j

(6.3.4) |u2 − u1|0(∂(D1 ∪ D2)) < ε2 = | ln ε1|−1/C .

The estimate (6.3.4) is similar to the logarithmic estimate of Exercise 3.1.2 and is
typical for the Cauchy problem for elliptic equations.

Since u1 = 0 on ∂D1 and |u1| ≤ |u1 − u2| + |u2| ≤ ε2 on ∂D2\D1, where
u2 = 0 by using the Dirichlet problem at one of the frequencies k j that is not
an eigenvalue, we conclude that

(6.3.5) |u1| < Cε2 on D2\D1.

The decisive step of the proof is the estimate of the continuation of u1 from
D2\D1 to ∂B based on the methods of complex analysis. To demonstrate this
step we introduce the cone {x : ‖x |−1x − e| < 1/C , |x | < ρ} and denote by
con(x0; e, ρ) its translation by x0. According to our conditions, there is C such that
con(x0; ρ) defined as con(x0; |x0|−1x0, ρ) is contained in R

3\D1 when x0 ∈ ∂D1.
We claim that

(6.3.6) if |u1| < ε3 on con(x0; ρ), then |u1| < Cερ
C/C

3 on ∂B ∩ con(x0; R).

To prove (6.3.6) we consider xε con(x0; R) and make use of polar coordinates
r, σ in R

3 centered at x0, which is the intersection of the ray {t x, t > 0} and ∂D1.
We take {t x} as the x1-axis in these new coordinates. Then x = (r, 0, 0). Points
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of ∂D1 will be written as (y1, y2, y3). The function u1 has a complex-analytic
continuation onto a sector Cr2

2 < r2
1 of the complex plane r = r1 + ir2. To show

this, we make use of the above integral representation of v1. Since ∂D1 is the graph
of a Lipschitz function in the original polar coordinates, we find C1 such that the
cone {0 < y1,C2

1 (y2
2 + y2

3 ) < y2
1} is outside D1. We have

|(x − y) · (x − y)| ≥ R(x − y) · (x − y)

= r2
1 − 2y1r1 + y2

1 + y2
2 + y2

3 − r2
2

≥ (r2
1 − 2y1r1 + (1 + 1/(2C2

1 ))y2
1 ) + 1/2(y2

2 + y2
3 ) − r2

2

≥ 1/2(y2
2 + y2

3 )

when Cr2
2 < r2

1 because by elementary inequalities the three terms in parentheses
are greater than

(1 − 2C2
1

2C2
1 + 1

)r2
1

so these three terms −r2
2 are greater than 1/(2C2

1 + 1)r2
1 − r2

2 , which is nonnegative
when we choose C > 2C2

1 + 1. Hence the fundamental solution K has a complex-
analytic continuation onto the sector Cr2

2 < r2
1 , which has absolute value bounded

by a function integrable over ∂D1. Therefore, v1 and consequently u1 have the
above-mentioned continuations bounded by C .

Now we can apply methods of complex variables. u1 considered as a function of r
is bounded in the sector {Cr2

2 < r2
1 , 0 < r1 < C} and is less than ε3 on the segment

[0, ρ]. As in Section 3.3 we have |u1| ≤ Cεµ(r )
3 , whereµ(r ) is the harmonic measure

of the interval [0, ρ] in this sector at a point r . By using conformal mappings and
scaling, one can show that (ρ/r )C ≤ Cµ(r ) (see [Is4], p. 88, or [Is8]). Putting all
this together, we obtain the claim (6.3.6).

The end of the proof of Theorem 6.3.2 is short. Due to continuity we can
assume that ‖d2 − d1‖∞ = (d2 − d1)(σ0) at some σ0 ∈ S2. Let ρ be one-half of
this number. Then con(d1(σ0)σ0; ρ) ⊂ D2\D1. From (6.3.3), (6.3.4), (6.3.5), and
(6.3.6) we have

|u1| < C(−λ(ε) ln ε)−ρ
C/C at a point of ∂B.

Using the condition (6.3.2) we conclude that

1 < C(−λ(ε) ln ε))−ρ
C/C ,

and taking logarithms,

−C < −ρC ln(−λ(ε) ln ε) or ρ < C ln(−λ(ε) ln ε)−1/C .

Since Cλ(ε) > (−lnε)−1/2 we can drop λ(ε) and remembering that ρ = 1/2‖d2 −
d1‖∞ we complete this outline of a proof of Theorem 6.3.2.

We observe that De Christo and Rondi [DR] showed optimality of conditional
logarithmic type stability estimate given by Theorem 6.3.2.
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Due to the remark at the beginning of Section 6.2, one can use only one frequency
k ≤ k∗ < πR. There is a well-known conjecture that one frequency is sufficient
even without this restriction, but there is no idea how to attack it.

In case of the Neumann boundary condition we know weaker results.

Theorem 6.3.3 (Uniqueness for Hard Obstacles). Let D1, D2 be two domains
with connected R

3\D j and let A1, A2 be their scattering amplitudes correspond-
ing to the Neumann boundary conditions on ∂D1, ∂D2.

If A1 = A2 at all σ ∈ S2, ξ ∈ S2 and one k, then D1 = D2.

PROOF. Let D∞ be the unbounded connected component R
3\(D1 ∪ D2), D∞ the

complement of its closure, and V an open set (with smooth boundary) containing
D∞. From Green’s formula for any solution v to the Helmholtz equation near V
we obtain ∫

∂D1

u1∂νv =
∫
∂V

(∂νu1v − u1∂νv).

Since the scattering data coincide, we conclude as above that u1 = u2 on R
3\V ,

and so ∫
∂D2

u2∂νv =
∫
∂D1

u1∂νv

for all such v .
If obstacles do not coincide, then as in the proof of Theorem 6.3.1 we can

assume that there is a point x0 ∈ ∂D2\D1 that belongs also to ∂D∞. We can let
x0 = 0 and assume that the x3-axis coincides with the exterior normal to ∂D2 at 0.
Let � = ∂D2 ∩ B(0; δ) for some small δ. Since u2(; ξ ) = u1(; ξ ) on D∞, we can
replace u2 on � by u1 in the preceding integrals and obtain

(6.3.7)
∫
�

u1( ; ξ )∂νv = −
∫
∂D2\�

u2(; ξ )∂νv +
∫
∂D1

u1(; ξ )∂νv .

Let us introduce x(ε) = (0, 0, ε), 0 < ε < δ/2. We can find a large ball B such
that the mixed boundary value problem for the Helmholtz equation in B\D1 and
B\D2 with the Dirichlet data on ∂B and the Neumann data on ∂D j is uniquely
solvable. In particular, there is a unique solution u1ε to the boundary value problem

(−�− k2)u1 = δ(−x(ε)) in B\D1, ∂νu1 = 0 on ∂D1, u1 = 0 on ∂B.

By letting u1ε = K (x(ε), ) + w , where K is the (outgoing) fundamental solution
to the Helmholtz equation (given after (6.0.6)), and using Theorem 4.1 as well
as the assumption about unique solvability of the boundary value problem one
can conclude that ‖w‖∞(B\D1) + ‖∇w‖∞(B\D1) < C , which does not depend
on ε. Using Lemma 6.1.6 and the argument to prove Corollary 6.1.5, we can
approximate u1ε by radiating solutions u1(; ξ ) in H(1)(�), where � is a bounded
smooth subdomain of B\D1 containing D∞\(D1 ∪ B(0; ε)) and coinciding in
B(0; ε) with D2. We can choose � to be independent on ε. In particular, we can
replace u1(; ξ ) on the left side of (6.3.7) by u1ε, and the second integral on the right
side of this equality will be bounded with respect to ε when v = K (x(ε), ). To
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show that the first term also remains bounded, we recall that u2(; ξ ) = u1(; ξ ) on
B\D∞, and since u1(; ξ ) approximates u1ε in H(1)(�), we can derive by using local
estimates of Theorem 4.1 that the solution u2(; ξ ) to the Helmholtz equation with
∂νu2 = 0 on ∂D2 is bounded in L2(∂D2\�). Putting all this together, we obtain
from (6.3.1) that ∫

�

u1ε∂νK (x(ε), ) = bounded function of ε.

Letting D2δ = D2 ∩ B(0; δ) and using that K = K (x(ε), ) solves the Helmholtz
equation after integrating by parts we will have∫

D2δ

∇u1ε · ∇K =
∫
�

u1ε∂νK +
∫
∂D2δ\�

u1ε∂νK + k2
∫

D2δ

u1εK ,

and since the second and the third term of the right side are bounded with respect
to ε, we conclude that

(6.3.2)
∫

D2δ

∇u1ε · ∇K = bounded function of ε.

By using the explicit formula for K and the decomposition u1ε = K + w it is not
difficult to see that

|∇u1ε(y) · ∇K (x(ε), y)| ≥ 1/C |x(ε) − y)|−4,

so as in the proof of Theorem 5.1.1, the left side of (6.3.2) is unbounded when
ε → 0.

We have obtained a contradiction, showing that D1 = D2. �

A proof of Theorem 6.3.3 was given first by Kirsch and Kress [KirK]. It is
a modification of the original uniqueness proof for penetrable obstacles in [Is5]
that we adopted above to hard obstacles. Recently, Colton and Kirsch [CoK] used
singular solutions in a numerical method for the inverse scattering problem.

We observe that there are no uniqueness proofs for hard obstacles when scatter-
ing data are given only at one ξ and at a finite number of frequencies k. Schiffer’s
idea cannot be used here, because it is generally wrong that the space of solutions
of the homogeneous Neumann problem in the domain D∗ (whose boundary might
have arbitrary cusps) is finite-dimensional.

To conclude, we consider penetrable obstacles D. In this case u solves the
equation (A − k2)u = 0, where A = div(a∇) with piecewise analytic a of with
a = 1 + (k − 1)χ (D), where k ∈ C2(B). In the last case we can write this equation
in a more traditional form by letting ue = u on De and ui = u on D. Then this
equation with the discontinuous coefficient a is equivalent to the relations

�ue + k2ue = 0 in De, div(k∇ui ) = 0 in D,

ue = ui , ∂νue = k∂νui on ∂D,

where ue ∈ C1(De) and satisfies the radiation condition and ui ∈ C1(D) as soon
as ∂D ∈ C2.
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Let us consider two problems with coefficients a1, a2 and scattering amplitudes
A1,A2.

Theorem 6.3.4 (Uniqueness of Penetrable Obstacles). Let a1, a2 satisfy one of
the following three conditions:

(1) They are piecewise analytic in� = B and their analyticity domains�(k; a j )
have piecewise analytic boundaries. (2) They are constant on �(k; a j ). (3) a j =
1 + (k j − 1)χ (D j ), where k j ∈ C2(B), k j �= 1 on ∂D j , and the D j are unknown
open subsets of B with Lipschitz boundaries and connected R

3\D j .
If A1 = A2 at all σ ∈ S2, all ξ ∈ S2, and one k, then a1 = a2.

As above, this theorem follows from a simple modification of Theorem 5.7.1
(A is replaced by A − k2) and Theorem 6.1.3

In particular, D1 = D2 and k1 = k2 on D1. In the plane case we can conclude
only that the domains coincide and k1 = k2 on ∂D1. By using frequencies one can
identify more terms as above. We refer to [Is5].

We think that it is possible to obtain (logarithmic-type) stability estimates similar
to those of Theorem 6.3.2, but it will require a modification of technique and new
ideas. This remark is also valid for hard obstacles. More general transmission
conditions at ∂D are considered by Valdivia [V].

Starting with the paper of Keller of 1958, there are results about stable recovery
of (the convex hull of) D from the high-frequency behavior of the kernel S(σ, ξ ; k)
of the scattering operator in the translation representation, which can be found
from the scattering amplitude A.

Lax and Phillips [LaxP1] proved that the support function of D is given by the
formula hD(ξ ) = sup x · ξ over x ∈ D can be recovered from S by the following
formula: the right endpoint of the support of S(σ, ξ ; s) with respect to s is equal to
hD(σ − ξ ) in the case of soft obstacles in the general case and for hard obstacles
when σ = −ξ (backscattering). In the paper of Majda and Taylor [MT] there is a
uniqueness result for transparent (penetrable) convex D with the given backscat-
tering data. In fact, they first recover Gaussian curvature from the high-frequency
behavior A and then make use of the Minkowski problem.

An interesting (and still) open question concerns uniqueness in the penetrable
case when A is given for one ξ and for several k. It has a direct relation to inverse
hyperbolic problems with unknown discontinuity surface of speed of propagation,
which we will discuss later.

In the paper of Hettlich [Het] the Fréchet derivative with respect to a hard or
transparent obstacle is found. It could be useful in the theoretical or numerical
analysis of inverse scattering.

6.4 Open problems

Problem 6.1. Prove uniqueness of scalar a, curl b, and b · b − 2 div b + 4c when
one is given the scattering amplitude A(σ ; ξ, k) for all σ, ξ ∈ S2, k = k1, . . . , kN ,
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where N depends only on the norms |a|3(�), |b|2(�), and |c|1(�) and diam�.
Show that N can be chosen smaller than C M , where M is the maximum of these
norms.

This problem is a further development of the results of the paper of Isakov
and Sun [IsSu2] on global uniqueness of the potential of the two-dimensional
Schrödinger operator when A is given at finitely many frequencies. On the other
hand, it suggests a realistic improvement of Theorem 6.2.5. Very often, one can
implement measurements of physical fields at finitely many frequencies quite
easily.

Problem 6.2. Prove uniqueness of the coefficient c ∈ L∞(�) of the Schrödinger
operator −�+ c with the given backscattering data A(σ ; −σ, k) for all σ ∈ S2

and k ∈ R.

Local (and generic) uniqueness and stability results in this problem have been
obtained by Eskin and Ralston (Theorem 6.2.3). Global uniqueness of singularities
of c was proven by Greenleaf and Uhlmann [GrU]. At present there is no decisive
idea how to get global uniqueness.

Problem 6.3. Prove uniqueness of a soft obstacle D when its scattering amplitude
A(σ ; ξ, k) is given at arbitrary fixed k and ξ for all directions σ ∈ S0. Here S0 is a
nonempty open part of the unit sphere.

This is a well-known question that supposedly can be solved by elementary
means. However, it has been open for thirty to forty years. For polygonal obstacles
there are recent positive results by Cheng and Yamamoto [CheY3].

Problem 6.4. Prove uniqueness of a hard obstacle D when A(σ ; ξ, k) is known
at some (probably small) fixed k, fixed ξ , and all σ ∈ S0.

Schiffer’s method cannot be applied here because contrary to the case of soft
obstacles, one cannot control the space of solutions to the homogeneous Neumann
problem in a component of the difference of two possible obstacles. Since this
component can have arbitrary cusps of its boundary, one cannot even conclude that
this space is finite-dimensional. It is of interest of course to find a hard obstacle and
the coefficient of the boundary condition simulteneously and from the scattering
data at fixed frequency and incident direction. The study of this problem started
by Kress and Rundell [KR2].

Problem 6.5. Prove uniqueness of a soft obstacle D with |A(, ξ ; k)| on S2.

This problem is motivated by applications. Some local results in the plane case
are given by Kress and Rundell [KR1].
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Integral Geometry and Tomography

The problems of integral geometry are to determine a function given (weighted)
integrals of this function over a “rich” family of manifolds. These problems are
of importance in medical applications (tomography), and they are quite useful for
dealing with inverse problems in hyperbolic differential equations (integrals of
unknown coefficients over ellipsoids or lines can be obtained from the first terms
of the asymptotic expansion of rapidly oscillating solutions and information about
first arrival times of a wave). There has been significant progress in the classical
Radon problem when manifolds are hyperplanes and the weight function is unity,
there are interesting results in the plane case when family of curves is regular
(resembling locally family of straight lines) or in case of family of straight lines with
arbitrary regular attenuation. Still there are many interesting open questions about
the problem with local data and simulteneous recovery of density of a source and
of attenuation. We give a brief review of this area, referring for more information
to the book of Natterer [Nat].

7.1 The Radon transform and its inverse

We describe here some uniqueness and stability results of recovery of a function
given its integrals over a family of hyperplanes (straight lines in R

2 or planes in
R

3).
The Radon transform R f of a compactly supported function f ∈ C(R2) is de-

fined as the integral

(7.1.1) F(ω, s) = R f (ω, s) =
∫

x ·ω=s
f.

When f ∈ L1(Rn) and compactly supported, the Radon transform is defined by
the same formula for almost all (ω, s) ∈ � × R. Due to the rotational invariancy
of R f , we can make use of the expansion of f , F in spherical harmonics:

(7.1.2) f (x) =
∑

f j,m(r )Y j,m(σ ), F(ω, s) =
∑

Fj,m(s)Y j,m(ω).

192
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We recall that a spherical harmonic Y j,m(σ ) is a homogeneous harmonic poly-
nomial of degree j restricted to the unit sphere. There are M( j, n) (M( j, 2) =
2,M( j, 3) = 2 j + 1) such linearly independent polynomials. The functions Y j,m

and Yk,l with different j and k are L2-orthogonal on the unit sphere. By apply-
ing the standard orthogonalization procedure we can assume that Y j,m and Y j,l

are orthogonal when m �= l as well, and that the whole system is orthonormal in
L2(Sn−1).

The following result is due to Cormak (n = 2) [Cor] and Deans [D].

Theorem 7.1.1. We have

(7.1.3) f j,m(r ) = cnr2−n
∫ +∞

r
(s2 − r2)(n−3)/2C (n−2)/2

j (s/r )F (n−1)
j,m (s)ds,

where Ck
j (t) is a normalized Gegenbauer polynomial of degree j, c2 = −1/π ,

c3 = π−3/2/2.

To prove the theorem we need the Funk-Hecke formula:∫
Sn−1

h(σ · ω)Y j,m(θ )d S(σ ) = c(n)
∫ 1

−1
h(t)C (n−2)/2

j (t)(1 − t2)(n−3)/2dtY j,m(ω)

(7.1.3)

relating spherical harmonics and Gegenbauer polynomials. Here c(2) = 2, c(3) =
2π . Detailed references on this classical result and further properties of Gegenbauer
polynomials related to the multiplicative analogue of the Fourier transformation
can be found in the book of Natterer [Nat]. Another needed tool is the so-called
Mellin transform

M f (s) =
∫ ∞

0
f (r )r s−1dr,

which plays the same role for the multiplicative convolution

f ∗m g(s) =
∫ ∞

0
f (r )g(s/r )r−1dr

as does the Fourier transformation for convolutions. Here f , g are bounded measur-
able functions with compact supports. We will need the following known properties
of the Mellin transform:

M( f ∗m g)(s) = M f (s)Mg(s),

M f (s + t) = M(xt f (x))(s),

M f (k)(s) = (1 − s) . . . (k − s)M f (s − k).(7.1.4)

We observe that by introducing new variables ξ = ln r, η = ln s we replace the
Mellin transform by the Laplace transform and the multiplicative convolution by
the usual one, so properties (7.1.4) are not completely surprising.

Exercise 7.1.2. Prove properties (7.1.4).
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Also, we will use in the proof the following known results about the Mellin
transform of Gegenbauer polynomials. Let g(r ) be C (n−2)/2

j (r )(1 − r2)(n−3)/2 when

0 ≤ r ≤ 1 and 0 when 1 < r , and let g1(r ) be C (n−2)/2
j (1/r )(1 − r2)(n−3)/2 when

0 ≤ r ≤ 1 and 0 when 1 < r . Then

Mg(s) = �
(

1
2

)
�

(
n−1

2

)
�(s)2−s(

�
(

j+s+n−1
2

))
�

(
s+1− j

2

) ,

Mg1(s) =
2s−1� (n − 2)�

(
s− j

2

)
�

(
n−2+s+ j

2

)
(
�

(
n−2

2

)
� (s + n − 2)

) ,(7.1.5)

provided that j < s. Here �(s) is Euler’s gamma function.

PROOF OF THEOREM 7.1.1. First, we will parametrize the hyperplane {x · ω = s}
by points σ of the unit sphere � according to the formula σ → (s/(σ · ω))σ and
write the integral over the hyperplane as the integral over �,∫

x ·ω=s
f j,m(r )Y j,m(σ )d�(x) =

∫
�

f j,m(s/(σ · ω))Y j,m(σ )sn−1/(σ · ω)nd�(σ ).

Using the Funk-Hecke theorem (7.1.3) with h(t) = f j,m(s/t)sn−1/tn when t > 0
and 0 otherwise, we obtain∫

x ·ω=s
f j,m(r )Y j,m(σ )d�(x)

= cn

∫ 1

0
f j,m(s/t)sn−1/tnC (n−2)/2

J (t)(1 − t2)(n−3)/2dtY j,m(ω)

= cn

∫ ∞

s
C (n−2)/2

j (s/r )(1 − s2/r2)(n−3)/2 f j,m(r )rn−2drY j,m(ω),

where we have made use of the substitution r = s/t . By comparing with (7.1.2)
we conclude that

(7.1.6) Fj,m(s) = cn

∫ ∞

s
C (n−2)/2

j (s/r )(1 − s2/r2)(n−3)/2 f j,m(r )rn−2dr.

The equality (7.1.6) can be considered as an Abel-type integral equation
with respect to f j,m , which can be solved explicitly using the Mellin trans-
form. Letting f (r ) = f j,m(r )rn−1 and defining g as above, we conclude that
M Fj,m(s) = M f (s)Mg(s) because of the first property (7.1.4). To make use of
the second formula (7.1.5) we have to replace s by s − 1. So by applying the
second property (7.1.4) with t = −1 we will have

M(r−1 f )(s) = M( f )(s − 1)
M Fj,m(s − 1)

Mg(s − 1)
.
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Comparing the two formula (7.1.5) we conclude that

1

Mg(s − 1)
= dn

�(s + n − 2)

�(s − 1)
Mg1(s),

dn = �(n − 2)

�((n − 1)/2)�((n − 2)/2)�(1/2)
,

(d2 = 1/2). By using the second and third properties (7.1.4) with t = n − 2 and
k = n − 1 we obtain

M(r−1 f )(s) = (−1)n−1dn M(rn−2 F (n−1)
j,m )(s)M(g1)(s).

Returning to the functions from their Mellin transforms by using the first property
(7.1.4), we finally will have

rn−2 f j,m = (−1)n−1dng1∗m(rn−1 F (n−1)
j,m ),

which is formula (7.1.3) by the definitions of the multiplicative convolution ∗m

and the function g1.
This completes the proof. �

We recall that the (normalized) Gegenbauer polynomial Ck
j (t) of degree j can

be defined as

(7.1.7) �−1(k)
∑

(−1)m�( j − m + k)/(m!( j − 2m)!)(2t) j−2m

(the sum is over m < j/2). When k = 0 the Gegenbauer polynomial is the Cheby-
shev polynomial Tj (t) = cos( j arccos t), and when k = 1/2 it is the Legendre
polynomial Pj . By using properties of these polynomials we will obtain later
stability estimates for inversion of the Radon transform in the situation of the
following corollary.

Corollary 7.1.3 (The “hole” Theorem). Let K be a convex compact set in R
n. Let

f ∈ L1(Rn) with compact support.
If R f (ω, s) = 0 for (almost) all hyperplanes {x · ω = s} not intersecting K ,

then f = 0 outside K .

PROOF. Formula (7.1.6) says that F(ω, s) given for all s > R uniquely determines
f (rσ ) when r > R. In other words, this corollary is true when K is the ball B(0; R).
By using scaling and translations we obtain the result also for any ball B.

In the general case let x be outside K . Then, due to the convexity of K one can
find a ball B containing K and not containing x . By applying the result for B we
get f (x) = 0.

The proof is complete. �

For the inversion of the complete Radon transform one can give sharp stability
estimates. We introduce the norm

‖F‖•,α =
(∫

|σ |=1

∫
R

(1 + τ 2)α|F (̂σ, τ )|2dτd S(σ )

)1/2

,
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where F (̂σ, τ ) is the (partial) Fourier transform of the function F(σ, s) with respect
to s.

The next sharp stability result was obtained by Natterer (n = 2) and by Smith,
Solmon, and Wagner [SmSW] in the general case.

Theorem 7.1.4. There is a constant C = C(n, α, ρ) such that

(7.1.8) C−1‖ f ‖(α) ≤ ‖R f ‖•,α+(n−1)/2 ≤ C‖ f ‖(α)

for all functions f in C∞
0 (B(0; ρ)).

PROOF. Observe that

F (̂σ, τ ) =
∫

R

e−iτ s

(∫
x ·σ=s

f (x)d�(x)

)
ds =

∫
R

e−iτ x ·σ f (x)dx = f̂ (τσ ).

Therefore,

‖F‖2
•,α+(n−1)/2 = cn

∫
|σ |=1

∫
R

(1 + τ 2)α+(n−1)/2| f̂ (τσ )|2dτd�(σ )

= cn

∫
(1 + |ξ |2)α+(n−1)/2|ξ |−n+1| f̂ (ξ )|2dξ.(7.1.9)

To obtain the last equality we let ξ = τσ and used that dξ = cnτ
n−1dτd�(σ ).

Since (1 + |ξ |2)1/2|ξ |−1 ≥ 1, we have the inequality

‖F‖2
•,α+(n−1)/2 ≥ cn

∫
(1 + |ξ |2)α| f̂ (ξ )|2dξ.

The last integral is ‖ f ‖2
(α). Therefore, we have the first inequality (7.1.8).

To prove the second we will split the integration domain in the last integral in
(7.1.9) into |ξ | ≥ 1 and |ξ | < 1. In the first integral

(1 + |ξ |2)(n−1)/2|ξ |−n+1 ≤ 2(n−1)/2,

so this integral is bounded by C‖ f ‖(α). The second integral is bounded by C‖ f̂ ‖2
∞.

Using that f is compactly supported and applying the Hölder inequality, one
has

‖ f̂ ‖∞ ≤ C‖ f ‖2(B(0; ρ)) ≤ C‖ f ‖(α).

the proof is complete. �

Theorem 7.1.5. Let n = 2 or 3. Assume that | f |n−1(BR) ≤ M. Let AR,ρ = {ρ <
s < R}.

Then there is a constant C = C(R, ρ) such that

‖ f ‖2(BR\Bρ) ≤ C M2/| ln ‖F‖2(AR,ρ)|.
PROOF. As a preliminary step we obtain a bound on Gegenbauer polynomials by
using (7.1.7) with k = 0(n = 2) of k = 1/2(n = 3). By the basic property of the
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gamma function,

�( j − m + 1/2) = ( j − m − 1/2) . . . 3/21/2�(1/2) ≤ ( j − m)!�(1/2).

therefore,

|Ck
j (x)| ≤

∑
2m< j

( j − m)!/(m!( j − 2m)!)(2x) j−2m ≤
∑

2m< j

j!/((2m)!( j − 2m)!)(2x) j−2m ≤ (1 + 2x) j(7.1.10)

according to the binomial theorem.
First we will bound the integral∫ R

ρ

f 2
j,mrn−1dr.

We will start with the three-dimensional case, which is easier technically. Ac-
cording to Theorem 7.1.1, this integral equals

C
∫ R

ρ

(∫ R

r
C1/2

j (s/r )F (2)
j,m(s)ds

)2

dr

≤ C(1 + 2R/ρ)2 j
∫ R

ρ

(∫ R

r
|F (2)

j,m(s)|ds

)2

dr

≤ C(1 + 2R/ρ)2 j
∫ R

ρ

(R − r )
∫ R

r
(F (2)

j,m(s))2ds)dr

≤ C(1 + 2R/ρ)2 j (R − ρ)2
∫ R

ρ

(F (2)
j,m(s))2ds.

In the second inequality we made use of (7.1.10), and then of Fubini’s theorem
and Hölder’s inequality. Using the interpolation theorem for spaces H(k)(ρ, R) and
then the definition of the norm ‖ ‖•,2 and orthonormality of spherical harmonics
on the unit sphere, we obtain∫ R

ρ

(F (2)
j,m(s))2ds ≤ C

(∫ R

ρ

(F (3)
j,m(s))2ds

)1/3(∫ R

ρ

(Fj,m(s))2ds

)2/3

≤ C

(∫
|σ |=1

∫
R

(F (3)
j,m(s)Y j,m(σ ))2 ds dσ

)1/3

‖F‖4/3
2 (A)

≤ C‖F‖2/3
•,3 ‖F‖4/3

2 (A)

≤ C‖ f ‖2/3
(2) ‖F‖4/3

2 (A) ≤ C M2/3‖F‖4/3
2 (A)

by Theorem 7.1.4. We conclude that

(7.1.11)
∫ R

ρ

f 2
j,mrn−1dr ≤ Ce2L j M2−λ‖F‖λ2(A), L = ln(1 + 2R/ρ)

when n = 3 with λ = 4/3.
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This integral in the two-dimensional case is∫ R

ρ

(∫ R

r
(s2 − r2)−1/2C0

j (s/r )F (1)
j,m(s) ds

)2

dr

≤ Ce2L j

(∫ R

ρ

(∫ R

r
(s2 − r2)−3/4 ds

)4/3

dr

)(∫ R

ρ

(F (1)
j,m(s))3 ds

)2/3

≤ Ce2L j

(∫ R

ρ

(F (1)
j,m(s))3 ds

)2/3

,

where as above we have used (7.1.10) and the Hölder inequality for the integral
with respect to s. The last integral by the embedding theorem (with q = 3, k =
1,m = 7

6 , n = 1, p = 2) is less than

C‖Fj,m‖2
(7/6)(ρ, R) ≤ C‖Fj,m‖14/9

3/2 ‖Fj,m‖4/9
(0) (ρ, R) ≤ C‖F‖14/9

•,3/2‖F‖2/3
(0) (A)

≤ C‖ f ‖14/9
(1) ‖F‖4/9

(0) (A) ≤ C M14/9‖F‖4/9
2 (A),

where in the second inequality we have used the interpolation theorem with θ =
2/9, s1 = 3/2, s2 = 0. Thus, we obtain the bound (7.1.11) when n = 2.

Now we can complete the proof as in Section 6.1. Observe that

∑
j,m

∫ R

0
j2 f 2

j,mrn−1dr ≤ C‖ f ‖2
(1)(B) ≤ C M2.

By orthonormality and completeness of spherical harmonics,

‖ f ‖2
2(A) =

∑
m, j<J

∫ R

ρ

f 2
j,mrn−1dr +

∑
m,J≤ j

∫ R

ρ

f 2
j,mrn−1dr

≤ Ce2L J M2−λ‖F‖λ2(A) + C J−2 M2,

where we have made use of (7.1.11) and of the previous observation. Let us choose
J from the inequalities 2J ≤ −δ ln ‖F‖2(A) ≤ 2J + 2, where positive δ is to be
determined later. Then the previous inequality yields

‖ f ‖2
2(A) ≤ C M2(‖F‖−δL+λ

2 (A) + 1/(−δ/2 ln ‖F‖2(A) − 1)).

Choosing δ < λ/L and using that the logarithm grows more slowly than any
positive power, we complete the proof. �

It is realistic that one can derive stability estimates from a singular value de-
composition for the Radon transform given in the most advanced form by Quinto
[Q].

Lissianoi [Lis] showed the one cannot improve logarithmic estimates of Theo-
rem 7.1.4 to Hölder even when looking for f in {R + ε < |x |} while F is given
on {R < |s|}. This is contrast to interior estimates for the Cauchy problem in
differential equations and shows that it is not possible to apply to integral geom-
etry over straight lines and planes reduction to hyperbolic equations and use of
Carleman-type estimates. The spherical means tranform defined as integrals of f
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over a family of spheres centered at γ with radius changing from 0 to T has better
stability properties: indeed it is closely related to the Cauchy problem for the wave
equation with the data on the lateral surface γ × (0, T ). This Cauchy problem is
discussed in sections 3.2, 3.4. There is a renewed interest to the spherical transform
due to applications in ultrasound detection [FPR].

Despite the sharp estimates of Theorem 7.1.4, the Radon transform is not an
invertible map from H(α) onto H•,α+(n−1)/2 because its range is substantially smaller
than this space. There is a complete description of the range given by the following
Helgason-Ludwig consistency conditions:∫

R

sm F(σ, s)ds is a homogeneous polynomial of degree m in σ,

F(σ, s) = F(−σ,−s).(7.1.12)

A similar characterization was given by Kuchment and Lvin in 1990 for the atten-
uated Radon transform in the plane when the attenuation coefficient is constant,
and we refer for some generalizations to the recent paper of Aguilar, Ehrenpreis,
and Kuchment [AEK]. It claims that Fµ is the exponential Radon transform of a
function f ∈ C∞

0 (R2) if and only if Fµ ∈ C∞
0 (R × S1) and

Fˆ
µ(σ (s), is) = Fˆ

µ(σ (−s),−is),

where σ (s) is σ rotated clockwise by the angle arcsin s(s2 + µ2)1/2.
We define the weighted Radon transform of f (with weight ρ) as

(7.1.13) Rρ f (ω;ω · x) =
∫

(y−x)·ω=0
ρ(y, x ;ω) f (y)d�(y)

and observe that the constant attenuation in R
2 with the attenuation coefficient

µ > 0 means that

ρ(y, x, ω) = exp(µ(y − x) · (−ω2, ω1)).

Another inversion tool is the averaging operator S with respect to ω:

SF =
∫

|ω|=1
F(ω)dω.

Lemma 7.1.6.

(7.1.14) S Rρ f (x) =
∫

|x − y|−1ρ•(y, x) f (y)dy,

where

ρ•(y, x) =
∫

|ω|=1,(x−y)·ω=0
ρ(y, x ;ω)dω.

PROOF. By definition,

S Rρ f (x) =
∫

|ω|=1

∫
(y−x)·ω=0

ρ(y, x ;ω) f (y)d�(y)d S(ω)
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By introducing the polar coordinates y = x + rν, ν · ω = 0 in the hyperplane (y −
x) · ω = 0, we write the interior integral as∫

|ν|=1,ν·ω=0

∫ +∞

0
rn−2ρ(x + rν, x ;ω) f (x + rν)dr d S(ν).

By interchanging the order of integration with respect to ω and ν we obtain

S Rρ f (x)

=
∫

|ν|=1

∫ +∞

0
r−1

×
((∫

|ω|=1,ω·ν=0
ρ(x + rν, x ;ω)

)
d S(ω) f (x + rν)rn−1drd S(ν)

)
.

Returning from polar coordinates to y = x + rν and using that dy =
rn−1drdν, r = |x − y|, and ω · ν = 0 is equivalent to (x − y) · ω = 0, we obtain
the formula (7.1.14). �

When ρ = 1 (the classical Radon transform) we have

S R1 f (x) = cn

∫
|x − y|−1 f (y)dy.

In particular, if n = 3, then the right side is the volume potential of f ; so applying
the Laplace operator to the both parts, we will find that

(7.1.15) f (x) = c�x

∫
|ω|=1

R1(x, ω)dω,

where c can be shown to be −1/(8π2). This formula was known already to Radon.
In a more general situation we can reduce the problem of reconstruction of f to a
Fredholm integral equation and obtain Schauder-type estimates for f .

Corollary 7.1.7. Let n = 3 and ρ ∈ C3(�×�×�). Then the inversion of the
attenuated Radon transform can be obtained as a solution of the following Fred-
holm integral equation in C(�):

(7.1.16) c f (x) +
∫
�

K (x, y) f (y)dy = (−�)SF(x),

where

K (x, y) = 2∇x |x − y|−1 · ∇xρ
•(x, y) + |x − y|−1�xρ

•(x, y),

We have the Schauder-type estimate

| f |λ(�) ≤ C(|SF |2+λ(�) + | f |0(�)).

PROOF. By using that −�x |x − y|−1 = 4πδ(x), we get from (7.1.14)

c f (x) +
∫
�

K (x, y) f (y)dy = (−�)SF(x).
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Due to our assumptions on ρ, this kernel satisfies the conditions

|K | ≤ C |x − y|−2, |∇x K | ≤ C |x − y|−3,

so it is an N (1,1)-kernel by [Mi], p. 23. As shown in the book of Miranda ([Mi], p.
27), the integral operator with kernel K is continuous from C(�) into Cλ(�) and
for any λ, 0 < λ < 1. Since the embedding of Cλ into C is compact, the equation is
Fredholm. The estimate of Corollary 7.1.7 also follows from the above-mentioned
continuity of this operator. �

We observe that the weighted Radon transform is defined for a more general
family of hypersurfaces than hyperplanes. In the papers of Bukhgeim and Lavren-
tiev [LaB] and of Beylkin [Bey] there are results similar to Corollary 7.1.7 in a
more general situation and also for the plane case, where on has to use (−�)1/2,
which is a first-order pseudo-differential operator.

When vol� is small, the same argument implies that the integral operator is a
contradiction, and therefore we have uniqueness and stability of inversion of the
attenuated Radon transform.

As a useful fact we give (without proof, which one can find in the paper of Isakov
and Sun [IsSu1]) the following uniqueness and stability results on the weighted
X-ray transform

P•
ρ f (x, σ ) =

∫
l(x,σ )

ρ(l, ) f dl,

where l(x, σ ) is the straight line passing through x with direction σ . To formulate
it, we introduce a ball B in R

3 and the manifold (h) = {(x, σ ) : the intersection
of the plane through x with the normal σ with B is at positive distance from
{x3 ≥ −h}}. Let B−(h) be B ∩ {x3 < −h}.

Theorem 7.1.8. Let the weight function ρ ∈ C2(R6) and ρ > δ > 0. Then there
is a constant C(δ, |ρ|2) such that

| f |0(B−(h + ε) ≤ Cε−4|P•
ρ f |3/2( (d))

for all functions f ∈ C2
0 (B).

7.2 The energy integral methods

Let γ (x, y) be a C2-smooth regular curve with endpoints x, y ∈ � ⊂ R
2. We

assume that the family of curves {γ (x, y)} has the following properties: (a) For
any x, y ∈ � there is a unique γ (x, y). (b) This family is locally diffeomorphic
to the family of straight lines between the same points. We refer for more detail
concerning condition (b) to the papers of Muhometov [Mu1], [Mu2] and the book
of Romanov [Rom]. Let y(x3) be a parametrization of ∂�, x3 ∈ I = [0, S]. Let us
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introduce the function

(7.2.1) F(x, y) =
∫
γ (x,y)

ρ(v, y) f (v)dγ (v).

Let ρ∗(v, x3) = ρ(v, y(x3)) and F∗(x, x3) = F(x, y(x3)). Let τ = (cosφ, sinφ)
be the tangent direction to γ (x, y(x3)) at a point x .

The following result is due to Muhometov [Mu1].

Theorem 7.2.1. Assume that the weight function ρ satisfies the following condi-
tions: ρ∗ ∈ C2(�× I ), ρ∗ > ε > 0, and

(7.2.2) |∂3 ln ρ∗| < ∂3φ on �× I.

Then

(7.2.3) ‖ f ‖2(�) ≤ C‖∇F∗‖2(∂�× I ),

where C depends on the family {γ } and onρ. Moreover, C = (2π )−1/2 whenρ = 1.

PROOF. Let us consider the function

(7.2.4) u(x1, x2, x3) =
∫
γ ((x1,x2),y(x3))

ρ(y, x3) f (y)dγ (y).

This function satisfies the first-order partial differential equation

(7.2.5) τ1∂1u + τ2∂2u = ρ f in �× I.

The function f does not depend on x3, so dividing both parts by ρ and differenti-
ating with respect to x3 we get the homogeneous second-order equation

(7.2.6) ∂3(ρ−1τ1∂1u + ρ−1τ2∂2u) = 0 in �× I.

To make use of the energy integrals method we multiply this equation by the
nonstandard factor (−ρτ2∂1u + ρτ1∂2u) and integrate over �× I , observing that
ρ∂3ρ

−1 = −∂3 ln ρ. We obtain

0 =
∫
�×I

((∂3 ln ρ)(τ2∂1u − τ1∂2u)(τ1∂1u + τ2∂2u)

+ (−τ2∂1u + τ1∂2u)(∂3τ1∂1u + ∂3τ2∂2u)

+ (−τ2∂1u + τ1∂2u)(τ1∂3∂1u + τ2∂3∂2u)).

Using the notation τ⊥ = (τ2,−τ1), multiplying the terms in parentheses and inte-
grating by parts the term

−τ2τ1∂1u∂3∂1u = −τ1τ2∂3(∂1u)2, τ1τ2∂2u∂3∂2u = τ1τ2∂3(∂2u)2/2

of the last parentheses, and using that due to the S-periodicity with respect to
x3 there will be no boundary terms resulting from this integration by parts, we
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obtain∫
�×I

(∂3 ln ρ)τ⊥ · ∇uτ · ∇u

=
∫
�×I

(−τ2∂3τ1(∂1u)2 + (τ1∂3τ1 − τ2∂3τ2)∂1u∂2u + τ1∂3τ2(∂2u)2

+ 1

2
∂3(τ1τ2)(∂1u)2 + τ 2

1 ∂2u∂1∂3u − τ 2
2 ∂1u∂2∂3u − 1

2
∂3(τ1τ2)(∂3u)2)(7.2.7)

Integrating by parts with respect to x3 in the term τ 2
1 ∂2u∂1∂3u, we obtain the

term −2τ1∂3τ1∂2u∂1u − τ 2
1 ∂2∂3u∂1u. Collecting all terms involving ∂1u∂2u, we

obtain the term −(τ1∂3τ1 + τ2∂3τ2)∂1u ∂2u, which is zero because the factor in the
parentheses is 1

2∂3(τ 2
1 + τ 2

2 ) = 1
2∂31 = 0. So the last integral is reduced to∫

�×I
(
1

2
(τ1∂3τ2 − τ2∂3τ1)((∂1u)2 + (∂2u)2) − (τ 2

1 + τ 2
2 )∂1u∂2∂3u).

Now we will make use of the identity τ 2
1 + τ 2

2 = 1, the identities ∂3τ1 = −τ2∂3φ,
∂3τ2 = τ1∂3φ, and the relations

−
∫
�×I

∂1u∂2∂3u = −1

2

∫
�×I

∂1u∂2∂3u − 1

2

∫
∂�×I

∂1u∂3uν2

+ 1

2

∫
∂�×I

∂2u∂3uν1 − 1

2

∫
�×I

∂2u∂1∂1∂3u.

The sum of the first and the last integrals on the right side is zero because
∂1u∂2∂3u + ∂2u∂1∂3u = ∂3(∂1u∂2u), so the integral of this function over �× I
is zero due to the S-periodicity with respect to x3.

Summing up and using that (τ1∂3τ − τ2∂3τ1) = (τ 2
1 + τ 2

2 )∂3φ, from (7.2.7) we
conclude that∫

�×I
∂3φ((∂1u)2 + (∂2u)2) + 2

∫
�×I

(∂3 ln ρ)τ⊥ · ∇uτ · ∇u

= −
∫
∂�×I

(−ν2∂1u + ν1∂2u)∂3u.

Due to the assumption (7.2.2), ∂3φ > |∂3 ln ρ| + ε on �× I . By using this in-
equality as well as the known inequality

−2|τ⊥ · ∇uτ · ∇u| ≥ −|τ⊥ · ∇u|2 − |τ · ∇u|2
= −((∂1u)2 + (∂2u)2),

we conclude that

ε

∫
�×I

((∂1u)2 + (∂2u)2) ≤
∫
∂�×I

|ν⊥ · ∇u‖∂3u|.

From equation (7.2.5) we have | f |2 ≤ |ρ|−2((∂1u)2 + (∂2u)2). In addition, ν⊥ · ∇u
is the tangential component of ∇u, so the last integral is bounded by C‖u‖(1)(∂�×
I ).
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Thus we obtain the bound (7.2.3) in the general case.
When ∂3ρ = 0 we can repeat the previous argument and use the relations∫

�×I
∂3φ((∂1u)2 + (∂2u)2) ≥

∫
�×I

∂3φρ
2 f 2

=
∫
�

ρ2 f 2

(∫
I
∂3φdx3

)
dx = 2π

∫
�

ρ2 f 2,

which follow from equation (7.2.5) and the independence of f on x3, to complete
the proof �

This proof essentially belongs to Muhometov. In fact, Theorem 7.2.1 is only
formulated in his paper [Mu1], where the basic idea of the given proof is actually
applied to a more difficult problem of determining a Riemannian metric from the
lengths of its geodesics, as described below. More detail are given in [Mu2]. One
of the crucial steps is to find an appropriate factor by which to multiply equation
(7.2.5). It seems that this multiplying factor has origin in Friedrich’s theory of
symmetric positive systems [Fri] and that it is unique. Multidimensional versions
are given by Beylkin, Gerver, Markushevich, Muhometov, and Romanov [Rom].
They are quite similar to Theorem 7.2.1, and their main condition is that γ (x, y)
are geodesics of a Riemannian C2-metric that form a regular family in� and� is
convex with respect to these geodesics. Regularity of geodesics loosely speaking
means that locally their family is diffeomorphic to the family of straight lines.

For other possibilities of the two-dimensional case we refer to the paper of
Gelfand, Gindikin, and Shapiro [GeGS].

Vector (and tensor) versions of this theory are obtained and presented in the book
of Sharafutdinov [Sh] where one can find a necessary preliminary on Riemannian
geometry and multidimensional versions of Mukhometov’s theory, as well as many
applications to problems of geophysics and vector tomography. We will briefly
describe some of recent findings of Pestov and Uhlmann [PU] based on this theory.

A compact Riemannian manifold�, g with the boundary is simple if� is simply
connected, any geodesic has no conjugate points, and ∂� is strictly convex (in the
metric g). Then the distance d(x, y) between two points x, y ∈ � is well defined.
Let d j corresponds to the metric g j , j = 1, 2.

Theorem 7.2.2 ([PU]). Let (�, g j ), j = 1, 2 be two two-dimensional simple Rie-
mannian manifolds with the boundary. Let

d1(x, y) = d2(x, y), when (x, y) ∈ ∂�× ∂�
Then there is a diffeomorphism� of� onto itself identical on ∂� and such that

g2 = �∗g1.

We remind that g2 = �∗g1 if g2(x)ξ · η = g1(�(x))(�′(x)ξ ) · (�′(x)ζ ) for all
vectors ξ, η of tangent space to � at all x ∈ �.

We mention ideas of the proof in [PU]. Sharafutdinov [Sh] showed that the
conclusion of Theorem 7.2.2 follows from Theorem 7.2.2 with the additional
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assumption that g1 = g2 on ∂�. By using the so-called scattering relation they
showed in [PU] that the conditions of the weaker form of Theorem 7.2.2 imply
equality of the Dirichlet- Neumann maps of the Laplace-Beltrami equations corre-
sponding to g1 and g2. Now Theorem 5.5.7 of Lassas and Uhlmann and of Belishev
combined with known facts from two-dimensional Riemannian geometry imply
existence of the needed diffeomorphism.

Observe that in the three-dimensional case a uniqueness result for the attenuated
X-ray transform can be obtained only under positivity and minimal smoothness
assumptions with respect to ρ. This is clear from Theorem 7.1.8 because in this
case we can slice a general domain � by plane domains of small volume and use
uniqueness in the plane case for domains of small diameter.

The interesting counterexample given in the next section shows that without
condition (7.2.2) Theorem 7.2.1 is wrong.

7.3 Boman’s counterexample

To describe the following example of nonuniqueness we will make use of a slightly
different parametrization of a weight function ρ(y, L) and of a line L itself. L =
{y : y · ω = p} is identified with the unit vector ω and the real number p, so the
manifold of the straight lines is considered as � × R. By using an appropriate
parametrization of L one can obtain a function ρ of variables used in Theorem
7.2.1.

Boman [Bo] found the following convincing counterexample.

Theorem 7.3.1. Let B be the unit disk in R
2. There are functions ρ(x, L) and

f (x) such that ρ ∈ C∞, ρ > ρ0 > 0, f ∈ C∞(B), f �= 0, and

(7.3.1)
∫

L∩B
ρ(y, L) f (y)d L(y) = 0

for any straight line L.

PROOF. We first construct

(7.3.2) f =
∑

fk/k!,

where

(7.3.3) fk(r, θ ) = φ(2k(1 − r )) cos(3kθ ), k = 1, 2 . . . ,

and φ is a C∞-function such that 0 ≤ φ ≤ 1. It is zero outside the interval ( 4
5 ,

6
5 ),

and it is positive on this interval. Here r, θ are the polar coordinates in the plane.
because of the factor k! in the denominators, the series (7.3.2) and all its partial
derivatives are uniformly convergent on B, which implies that f is C∞-smooth.
Observe that f = 0 when r < 2

5 , and that supports of all fk(r, θ ) are disjoint annuli
accumulating to ∂B.

The weight function near ∂B.
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To construct the weight function ρ0 we make use of a partition of unity {ψk}
of the interval 1

2 < r < 1 such that ψk is zero outside (1 − 2−k+1, 1 − 2−k−1) and
‖∂mψk‖∞ ≤ C(m)2km . To find ψk one can use translations, scaling, and well-
known results on cutoff functions (e.g., see [Hö2], Chapter 1). We define

(7.3.4) ρ0(x, L) = 1 −
∞∑

k=3

Ak(L) fk(x),

where

(7.3.5) Ak(L) = k! ψk−2(|p|)
∫

L
f/

∫
L

f 2
k ,

and we have used the standard parametrization of the straight line L as {y : y · ω =
p}.

Exercise 7.3.2. Prove that the function ρ = ρ0 defined by formula (7.3.4) satisfies
condition (7.3.1)

Smoothness of the weight function.
Since for any p in (−1, 1) the series (7.3.4) contains at most two nonzero terms,

it is obvious that ρ is smooth for such p. So to establish smoothness for |p| ≤ 1 it
suffices to show that the sum in (7.3.4) and all its derivatives with respect to x j , p,
and ω converge to zero when |p| goes to 1. We write the sum as

B(L)�k≥3k! fk(x)ψk(|p|)/Ck(L),

where

B(L) =
∫

L
f, Ck(L) =

∫
L

f 2
k .

We claim that the following bounds are valid:

(7.3.6) |∂α fk | ≤ C(α)3|α|k,

for any m there are C(β,m) such that

(7.3.7) |∂βB| ≤ C(β,m)2−mk/k!, provided that 1 − |p| < 2−k ;

and

(7.3.8) |∂β(ψk(|p|)/Ck(L))| ≤ C(β)32|β|k,

and ∂α mean differentiation with respect to x , while ∂β is differentiation with
respect to ω, p.

The bound (7.3.6) is obvious.
To obtain (7.3.7) we will make use of the coordinates p andσ, ω = (cos σ, sin σ ),

of a line L . We have B = ∑
Bk/k!, where Bk is the integral of fk over L . We

write Bk by using the parametrization of L by the angle u = θ − σ , where θ is the
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angular polar coordinate in the plane. We have

Bk =
∫ π/2

−π/2
φ(2k(1 − p/ cos u)) cos 3k(σ + u) cos−2 u|p|du

= |p|3−k N
∫ π/2

−π/2
∂N

u (φ(2k(1 − p/ cos u))/ cos2 u) cos(3k(σ + u))du

when we integrate by parts. This gives the bound |Bk | ≤ C(N )(2/3)Nk . Using that
Bk is zero when 1 − |p| < 2−k−1, summing over k# > k, and choosing N such
that ( 2

3 )N < 2−m , we obtain the bound (7.3.7) when β = 0. To prove the general
case we differentiate and repeat the argument.

The bound (7.3.8) can be obtained similarly. The bound |∂βCk | ≤ C(β)32|β|k

can be obtained exactly as for Bk . In fact, it is easier because we do not need to
integrate by parts. Observe that |Ck | ≥ 2−k/C because when 1 − |p| ≥ 2−k+1, the
line L intersects annular supports of f 2

k over intervals of length 2−k/C . Now the
bound (7.3.8) follows by applying the differentiation formulae for products and
quotients.

Since the supports of the functions fk do not intersect, at any particular point of
B there is only one zero term of the series (7.3.4) as well as of the differentiated
series, so C∞-smoothness when |p| < 1 and x ∈ B is obvious. From the bounds
(7.3.6)–(7.3.8) it follows that any such derivative ∂α∂β of the sum of this series
goes to 0 when |p| is approaching 1. Indeed, when 1 − |p| < 2−k we have only
two nonzero functionsψk, ψk+1, and accordingly only the terms of the sum (7.3.4)
with the indices k + 2, k + 3. From the formulae for differentiation of products
and the bounds (7.3.6)–(7.3.8) we conclude that the ∂α∂β of this sum is bounded
by the sum of

C(α, β,m)32(|α|+|β|)k2−mk < C(α, β,m)2−k

when we choose m such that 32(|α|+|β|) < 2m−1. Now the convergence to 0 is
obvious.

Positivity of the weight function.
From the previous results it follows that ρ0 → 1 when |p| → 1, so

(7.3.9) ρ0 >
1

2
when |p| > 1 − p0.

At this stage we have built ρ for lines L close to ∂B. Now we complete the
construction for all lines L , which is much easier to do for L close to the origin.

Lines close to the center of B.
The definition (7.3.2), (7.3.3) guarantees that the function f changes sign on

any straight line L inside B.
Indeed, if L does not cross 0, then for large k, supp fk intersects L over two

intervals. The angular size of each interval is greater than 2−k/C(L). On the
other hand, the period of the angular component of fk is 2π3−k , so for large k
the angular size of the interval is greater than the period of the angular part, so
this part changes sign on this interval. If L crosses 0, then its points in polar
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coordinates are (r, γ ), 0, and (r, γ + π ), where γ is fixed and r varies between 0
and 1. Then our claim follows from the relation cos(3k(γ + π )) = − cos(3kγ ), so
f (r, γ + π ) = − f (r, γ ).

Hence for any L0 there is a nonnegative function χ ∈ C∞ such that∫
L0

f χd L0 �= 0, and if
∫

L0
f d L0 �= 0, then the first integral has the opposite sign.

The function

ρ(x, L) = 1 − χ (x)
∫

L
f d L/

∫
L

f χd L

will be C∞ with respect to all variables (x and L) and ≥ 1
2 when L is in a neigh-

borhood V (L0) of L0.
Final construction of ρ.
To complete the construction in the whole of B we use a partition of unity in

the manifold of lines. We already have the function ρ0 >
1
2 when |p| > p0. Let

L be the set of all straight lines L with |p| ≤ p0. This is a compact set covered
by open sets V (L). Choose a finite subcovering V1, . . . , VN of L, and denote the
weight functions around lines in Vj by ρ j (x, L). Define V0 as {p0 ≤ |p| ≤ 1}. Let
φp, . . . , φN be a nonnegative C∞-partition of unity subordinated to the covering
V0, . . . , VN of the set of lines {|p| ≤ 1}. In particular, suppφ j ⊂ Vj . Finally, we
define

ρ(x, L) =
∑
φ j (L)ρ j (x, L).

Obviously, ρ > 1
2 , and it is in C∞. Since all functions ρ j satisfy the relation (7.3.1),

it is easy to see that so is ρ.
The proof is complete. �

This proof is a slight modification of the one in [Bo].

7.4 The transport equation

Of significant applied interest is the following integro-differential equation

∂t u + v · ∇u + b0u =
∫

W
K (x, v,w, t)u(x,w, t)dw + f (x, v, t),

u = u(x, t, v)(7.4.1)

augmented by the initial conditions

(7.4.2) u = u0 on �× {0} × W

and the boundary conditions

(7.4.3) u = g− on �− × (0, T ),

where�− is the part∪(∂� ∩ {ν · v < 0} × {v}) of ∂�× W ,� is a bounded domain
in R

n with the boundary ∂� ∈ C1, and W ⊂ R
n is the velocity domain. Quite often

W = Sn−1.
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Assuming that ∂� ∈ C2; u0 ∈ L2(�× W ); g− ∈ C1([0, T ]; L2(�−); b0 ∈
L∞(�× W ); K is a bounded, measurable, nonnegative function of all its vari-
ables satisfying the condition∫

W×W
|K (x, v,w)|2dv dw ≤ k;

and f ∈ C([0, T ]; L2(�× W )), one can prove uniqueness and existence of a so-
lution u ∈ C1([0, T ], L2(�× W )) of the initial boundary value problem (7.4.1)–
(7.4.3).

The natural inverse problem for equation (7.4.1) is to determine the coefficient
b0, the kernel K of the collision operator, and the density of interior radiation
sources f from the lateral data

(7.4.4) u = g+ on �+ = (∂�× W\�−) × (0, T )

and final observations

(7.4.5) u = uT on �× {T } × W.

We will describe some of them below.
All possible lateral boundary measurements can be viewed as the so called

albedo operator � which is similar to the Dirichlet-to Neumann operator for
partial differential operators of second order. We define �(g−) = g+ given by
(7.4.4) where u solves the initial boundary value problem (7.4.1) − (7.4.3) with
f = 0, u0 = 0. From the mentioned results on the direct problem (7.4.1) − (7.4.3)
it follows that � is a linear continuous operator from C1([0, T ]; L2(�−) into
C1([0, T ]; L2(�+). It is known that � has the continous extension as the oper-
ator from L1((0, T ); L1;ν·v (�−) into L1((0, T ); L1;ν·v (�+) where L1;ν·v (�) is the
weighted L1(�)-space with the weight |ν(x) · v|.

It was shown by Choulli and Stefanov [ChoS1] that if � is convex then the
albedo operator with T = +∞ has the Schwarz kernel A(t − θ, x, v, y,w) which
is the sum of the two terms

|ν(y) · w |−1exp

(
−

∫ τ(x,v)

0
b0(x − sv, v)ds)δ(y − (x − τ−(x, v)v);�−)

× δ(v − w)δ(τ − τ−(x, v)

)
,

|ν(y) · w |−1
∫

exp

(
−

∫ s

0
b0(x − pv, v)dp

−
∫ τ−(x−sv,w)

0
b0(x − sv − pw,w)dp)δ(τ − s − τ−(x − sv,w)

)

K (x − sv, v,w)δ(y − (x − sv − τ−(x − sv,w)w);�−)χ (x − sv, x)ds

and of the term which is an integrable function (and hence has lower singular-
ity). Here τ = t − θ , τ−(x, v) = in f {t : (x − tv, v) ∈ �−}, χ (x, y) = 1 when the
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whole interval [x, y] ⊂ � and χ (x, y) = 0 otherwise, δ is the Dirac delta-function
in R

n , and δ(;�) is the delta-function on�. Hence the albedo operator (the first sin-
gular term of its kernel) uniquely determines the integrals of b0 over intersections
of all straight lines with� and by uniqueness of the inverse X -ray transform b0 is
unique, provided it does not depend on v . Once b0 is known the second singular
term uniquely determines the collision kernel K .

The problem with final overdetermination (7.4.1)–(7.4.3), (7.4.5) has been con-
sidered by Prilepko and Tikhonov [PrT], [PrOV] using positive operators. Their
approach is somehow similar to that initiated by the author for parabolic equations
and described in some detail in Section 9.1.

Assuming that b0 ≥ β > 0, k < β (absorption dominates collision), and f =
ρ f1 + f2, where

ρ ∈ C1([0, T ]; L2(�× W )), ρ ≥ 0, ∂tρ ≥ 0 and ρ > 0 on �× {T } × W ,

they proved uniqueness of the source term f . Other assumptions are that b0, K , ρ,
and f2 are given. Assuming in addition that f ∈ C1([0, T ]; L2(�× W )), 0 ≤
f, 0 ≤ ∂t f , and uT > 0 are given functions as well as K , they also obtained in
[PrT] uniqueness results for b0 = b0(x, v).

In case of stationary transport equation

(7.4.6) v · ∇u + b0u =
∫

W
K ( , v,w)u(,w)dw + f in �× W

with the boundary condition

(7.4.7) u = g on ∂�× W.

on has less data in the inverse problem and the results are weaker. The formula for
the Schwarz kernel of the direct boundary value problem for stationary transport
equation was given by Bondarenko [Bon] and Choulli and Stefanov [ChoS2].
In the corresponding singular terms for stationary case one only has to drop
terms δ(τ − τ−(x, v)), δ(τ − s − τ−(x − sv,w)) which are due to time depen-
dence. Accordingly, one has uniqueness of b0(x, |v|) and for 3 ≤ n also uniqueness
of K

As for second order elliptic equations, many boundary measurements severely
overdetermine the inverse problem and is it desirable to use as few of them as
needed. In case of few boundary measurements there are papers of D. Anikonov
[Ani1], [Ani2], and we describe some more general results using the uniqueness
theorems for the Radon transform in Sections 7.1, 7.2. In fact, there is a sim-
ple and not completely utilized relation between the two problems; in particular,
one hopes that the results in inverse problems for the transport equation (7.4.6)
(which is actually a differential equation of first order with parameter v) will be
useful in integral geometry. Further on we will assume that b0 does not depend
on v .
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One can write equation (7.4.6) as

∂s(eBu(x + sv, v)) = eB

(∫
W

K (x + sv, v,w)u(x,w)dw + f (x + sv, v)

)
,

B(x + sv) =
∫ s

0
b0(x + σv)dσ.

Integrating and using the boundary conditions u(x) = g(x), x ∈ �−, we conclude
that

u(x + sv, v) = g(x, v)e−B(x+sv)

+
∫ s

0
eB(x+tv)−B(x+ts)

∫
W

K (x + tv, v,w)u(x + tv,w)dt

+
∫ s

0
eB(x+tv)−B(x+sv) f (x + tv, v)dt.(7.4.8)

Using the additional boundary data (7.4.4), we conclude that we are given the right
side of (7.4.8) when x ∈ ∂� and x + sv is another point of ∂�.

First, let us consider the case n = 2.
Let K = 0. Given g+ for the two boundary conditions g− > 0 and g− = 0, one

can determine B(x + sv), x + sv ∈ ∂� and the weighted integral∫
L(x,y)

ρ(z, y) f (z)dl(z), ρ(z, y) = exp

(∫
L(z,y)

−b0d L

)

for all directions v and therefore for all straight lines L . From the definition of B it
follows that we are given the integrals of f over all straight lines, so the first results
on the Radon transform (Corollary 7.1.3) show that b0 ∈ L∞(�) (extended as zero
outside �) is uniquely determined. Then according to next Theorem 7.4.1 the
weighted integral with known weight ρ obtained from the attenuation coefficient
b0 ∈ C2(�) uniquely determines f ∈ L2(�). When the data are available only
with g− = 0, we cannot say much about the simultaneous determination of b0, f .

Now we describe results of Arbuzov, Bukhgeim, and Kasantzev [ABK] contain-
ing first global uniqueness theorems for f ∈ L2(�) in case of arbitrary attenuation
coefficient b0 ∈ C2(�), for some particular important collision kernel K . We will
use some results of complex and functional analysis and use notation from section
4.4, indroducing complex variables z = x1 + i x2, z̄ = x1 − i x2 and corresponding
complex differentiations ∂̄, ∂ . Letting v = (cosφ, sinφ) and denoting by u(z, φ)
the function u(x, v) we will write the equation (7.4.6) as

∂̄u(z, φ)e−iφ + ∂u(z, φ)eiφ + b0(z)u(z, φ)

=
∫ π

−π
K (z, cos(φ − w))u(z,w)dw + f (z), z ∈ �, φ ∈ (−π, π),(7.4.9)

where we specifieded the kernel K . Observe that periodicity with respect
to angle and Fouirer series were used by Anikonov [Anik1]. The functions
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u(, φ), g(, φ), K (, φ) are in L2(W ) and 2π -periodic, hence

u(z, φ) = u0(z) + 2�
∞∑
j=1

u j (z)e− j iφ,

g(z, φ) = g0(z) + 2�
∞∑
j=1

g j (z)e−i jφ,

K (z, φ) = K0(z) +
∞∑
j=1

K j (z)(ei jφ + e−i jφ)

where u0, g0, K j are real-valued functions in L2(�). Due to these expansions the
equation (7.4.9) is equivalent to the equations

(7.4.10) ∂̄u j + ∂u j+2 + b0u j+1 = K j+1u j+1, j = 0, 1, 2, . . .

and

f = 2�∂u1 + b0u0 − K0u0.

Let us introduce the infinite-dimensional vectors u = (u0, u1, . . .), g =
(g0, g1, . . .) in the Hilbert space l2 of sequences with the standard scalar prod-
uct. Let U be the operator of the right shift and U ∗ its adjoint in l2:

U (u) = (0, u0, u1, . . .), U ∗(u) = (u1, u2, . . .)

and the operator

K(u) = (K1u1, K2u2, . . .)

Due to our computations, the system (7.4.10) can we written as

∂̄u + U ∗U ∗∂u + b0U ∗u − Ku = 0

or, in more convenient form,

(7.4.11) (∂̄ − U1∂)u + Bu = 0, where U1 = −U ∗U ∗, B = b0U ∗ − K
The boundary data (7.4.6) imply that

(7.4.12) u = g on ∂�.

Now we will assume that K = 0 and we will formulate one of basic results of
[ABK]. The equation (7.4.11) turns out to be somehow similar to the Beltrami
equation. In particular, it is shown in [ABK] there is no more than one solution to
this equation satisfying the boundary condition (7.4.12) and one has an analogue
of the Cauchy integral formula. To give exact formulations we need to introduce
some operator functions.

Let ω(z, φ) be the point of the intersection of ∂� and of the ray originated at
z ∈ � with in the direction −eiφ , [z1, z2] be the interval with endpoints z1, z2 and

B0(z, φ) =
∫

[ω(z,φ),z]
b0(ζ )|dζ |.
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We define B0 j (z) as the coefficient of the Fourier expansion

B0(z, φ) =
∞∑

j=−∞
B0, j (z)e−i jφ.

and we let

G(z) = −2U ∗ ∑
j = 0∞ B̄0,2 j+1(z)(−U1) j .

Theorem 7.4.1. Let � be a strictly convex domain in R
2 with the boundary of

class C2. Let real-valued b0 ∈ C2(�). Let u solve the equation (7.4.11).
Then

u(z) = 1/(2π i)
∫
∂�

KB(ζ, z)u(ζ )(dζ + U1d ζ̄ ), z ∈ �

where KB(ζ, z) = ((ζ − z)I + (ζ̄ − z̄)U1)−1eG(z)−G(ζ ) is an operator-valued func-
tion with values in L(l2,1; l2,0) which is continuous with respect to ζ �= z, ζ, z ∈ �

Now we give some auxiliary results explaining the solution of the problem and
describing continuity properties of the operator functions G(z), KB(ζ, z).

The first claim is that the operator function G(z) ∈ C1(�;L(l1,m)) ∩
C(�;L(l2,m) and it satisfies the differential equation

(7.4.13) ∂̄G − U1∂G + b0U ∗ = 0 in �.

A proof is this claim given in [ABK], Theorem 4.2, is based on the assumptions
that � is strictly convex and b0 ∈ C2(�) is real-valued. We reproduce the basic
argument. Due to the convexity and regularity properties of� and b0 we have that
ω(z, φ), ∂ω(z, φ), ∂̄ω(z, φ) are well-defined and are continuously differentiable
with respect to φ. Hence the vectors

(B0,1, B0,2, . . .), (∂̄B0,1, ∂̄B0,2, . . .)(∂B0,1, ∂B0,2, . . .)

are contained in l2. Hence the series for and ∂̄, ∂ of this series are convergent and by
direct calculations it follows that the series for G satisfies the differential equation
(7.4.13). One of main observations in [ABK] is that the function

v(z) = e−G(z)u(z)

solves the equation (7.4.11) with B = 0. Loosely speaking, this transformation
reduces the attenuated Radon transform to the standard nonattenuated one. As
a result we have uniqueness of function f entering the boundary value problem
(7.4.11), (7.4.12) withK = 0 and therefore of the function f in (7.4.6), (7.4.7) with
K = 0. Since the boundary condition (7.4.7) with g = 0 means that the attenuated
Radon transform of the function f is zero, we have uniqueness of the inversion
of the attenuated Radon transform with the attenuation coefficient b0 ∈ C2(�)
which is described in more detail below. This uniqueness and Corollary 7.1.7
combined with the standard compactness-uniqueness argument imply that for b0 ∈
C3(�) one can drop the last term in the Schauder type estimate of Corollary 7.1.7.
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Theorem 7.4.1 is certainly valid if f ∈ C1(�). However, uniqueness of f ∈ L1(�)
easily follows by standard argument and Corollary 7.1.7. Indeed, if f ∈ L1(�)
produces zero attenuated integrals, then smoothness of f can be increased to
f ∈ C1(�) by using smoothing properties of the integral operator in (7.1.16)
given for example in [Mi]. These regularity assumptions can be relaxed and a
similar stability estimate can be given for Sobolev norms. Similarly, one can show
that for the attenuation coefficient b0 ∈ C3(�) solution of the Fredholm equation
(7.1.16) is unique, and hence this equation is uniquely solvable. This suggest some
numerical algorithm of inversion of the attenuated Radon transform in the plane.

After the paper [ABK], Novikov gave a particular explicit inversion formula
for Hölder b0. His most recent results can be found in [No2]. To give an example
of an inversion formulae we will use the parametrization of the attenuated Radon
transform given in section 7.1, (7.1.13), letting p = x · ω and

ρ(y, ω) = exp(
∫ ∞

0
b0(x + siω̄)ds).

Currently, the most general inversion formulae (in more general cases) and short
and clear proofs of them are given by Boman and Strömberg [BoS]. We remind
one of them claiming that

(7.4.14) f (z) = 1/(4π )�(∂((R∗
1/ρωH Rρ)( f )(z)

for compactly supported functions f ∈ L1(R2). Here H is the Hilbert transform
which is defined by the principal value singular integral

Hg(p) = 1/π
∫

R

g(s)/(p − s)ds,

ω is considered as an element of C, and as above z = x1 + i x2. Due to overdetermi-
nancy, there are many inversion formulae for the attenuated Radon transform and
advantages of one of them over another are not obvious. Probably, only possible
way to select the best inversion formula is to design the most efficient numerical
inversion algorithm based on this formula.

In the three-dimensional case, which is of most interest for applications of the
transport equation, we have much better uniqueness results. We let θ be the angle
between v and the x3-axis. Let P0 be a half-space with its boundary parallel to the
plane {x3 = 0} and �0 = � ∩ P0.

Theorem 7.4.2. (i) If K = 0 and b0 ∈ C2(R3) is given, then a source term f =
f (x) ∈ L∞(�0) is uniquely determined in�0 by the function g given on ∂� ∩ P0.
(ii) Assume that ∇x b0,∇x,v K ∈ L∞(�× W × W ),∇x,v f ∈ L∞(�× W ), and
the boundary condition g− is chosen in such a way that ‖∂αx g−‖∞(∂�× W ) <∞,
|α| ≤ 1 and |∂θg−| → ∞ when θ → π/2. Then the additional boundary data g+
on ∂�0 ∩ P uniquely determine b0 in �0.

Part (i) follows from formula (7.4.8) and the uniqueness of the attenuated X-ray
transform in the three-dimensional case (Theorem 7.1.8).
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To outline a proof of (ii), we observe that from equation (7.4.6) and the boundary
condition (7.4.2) one can conclude that ∇x u ∈ L∞(�× W ), and therefore on the
right side of (7.4.8) all the terms, with the possible exception of the first one, have
bounded derivatives with respect to θ . Now we will make use of the data g(x, v)
when the plane {x · v = s0} ∩�0 is at positive distance from the plane ∂P0; in
other words, this plane must be almost parallel to ∂P0. Letting the parameter θ go
to π/2, we conclude that we are given the coefficient of the only singularity in the
first term; i.e.,

B(x + sv) =
∫ s

0
b0(x + tv)dt

when v3 = 0 and x ∈ P0. In other words, we are given the Radon transforms of b0

in the parts of all planes x3 = s inside P0. By uniqueness of the Radon transform,
b0 is uniquely determined.

7.5 Open problems

One challenging problem with important applications is related to the attenuated
Radon transform.

Not very much is known about integral geometry with local data when u(x, y)
is given only for x, y ∈ �0 that is a part of ∂�. This problem is certainly fun-
damental for geophysics when one actually can implement only local boundary
measurements, and it is quite interesting mathematically, since there is locality as
in the Cauchy problem for differential equations discussed in Chapter 3.

Problem 7.1. Prove uniqueness of f near �0 when the integral (7.2.1) is given
for all x, y in �0 ⊂ ∂� and when the weight function ρ is monotone with respect
to arc length on L .

In the local case �0 �= ∂� one can probably make use of weighted (Carleman-
type) estimates. It seems that the global case �0 = ∂� must be easier to handle,
but no result is available at present. Probably, an appropriate reduction of equation
(7.2.6) to a symmetric positive system in the sense of Friedrichs can be imple-
mented and used. This problem is quite interesting even for the special attenuation
function with positive variable µ.

The Radon transform F must satisfy consistency conditions, which are difficult
to describe in the case of variable attenuation. Looking for two functions f1, f2

from the generalized Radon transform∫
y·ω=p

f1 +
∫

y·ω>p
f2

reduces the overdetermination. For available results we refer to the book of
Anikonov [Anik2].
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Problem 7.2. Find a generalization of the Radon transform with the properties of
uniqueness of the inversion and with the range containing C∞(Sn−1 × R).

Of importance for applications are the generalizations of the Radon transform
onto integration manifolds of lower dimensions. Then the problem of reduction
of the overdeterminacy is even more serious. In particular, very interesting is the
X-ray transform

P f (x, ω) =
∫

L
ρ(y, L) f (y)d L(y).

Here L is a smooth regular curve passing through the point x with tangential
directionω at this point. Even the case of straight lines is challenging. When n = 2,
we obtain the attenuated Radon transform; but when n = 3, the X-ray transform
is quite different. If ρ = 1, then the obvious way to invert P is to use inversion of
the Radon transform in any two-dimensional plane in R

3. If ρ > 0, then one can
use this idea combined with “slicing” supp f by planes π such that π ∩ supp f
has small two-dimensional measure and then to use arguments of Corollary 7.1.7.
One can even obtain uniqueness from local data described as follows. Let E be
a half-space in R

3, and � = ∂� ∩ E . In the local problem, P f is given for all
straight lines L with the endpoints of intervals L ∩ E on �. This has been done
in the paper of Isakov and Sun [IsSu1], where there are also Hölder-type stability
estimates for f . But for curved L this is an open question.

Problem 7.3. Consider the family of smooth curves L with the property that for
any x ∈ � and any direction ω ∈ Sn−1 there is a unique curve L through x with
tangential direction ω at x . Consider the subfamily L of curves L of this family
such that L ∩ E has endpoints only on �. Assume that for any half-space E(x)
such that x ∈ ∂E(x) and � ∩ E(x) ⊂ � ∩ E the union of curves of L passing
through x and with tangential directions in ∂E(x) is contained in E(x). Prove that
the integrals P f over L ∈ L uniquely determine f in � ∩ E .

We expect a Hölder stability estimate in this problem, too.

A different aspect of Problem 7.2 is that actually in the attenuated tomography
there is hope of determining both the source and the attenuation coefficient b0.
Due to the apparent equivalency of this problem to the similar one for the transport
equation, we formulate the question for the equation

v · ∇u + b0u = f in �× W

with the boundary condition (7.4.2), where g = 0.

Problem 7.4. Show that with the one exception of spherical symmetry a function
g on � uniquely determines both v-independent b0 ≥ 0 and f > 0 on �.

We have noted already that inverse problems for the transport equation are
largely open. In particular, we think that the following problem is of importance.
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Problem 7.5. Show uniqueness of the absorption coefficient b0(x, v) and of the
collision kernel K (x, v,w),W = {w ∈ R

2 : |w | = 1} given the map g− → g+ for
the stationary transport equation (7.4.6)

It appears that to determine b0 one can use special solutions concentrated near
certain directions, which almost annihilates the collision term. After the absorption
coefficient is found, one can again use solutions that are more singular near some
directions to find K . It is not quite clear how to do this in detail. About recent
results in particular cases we refer to [ChoS1], [ChoS2].
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Hyperbolic Problems

8.0 Introduction

In this chapter we are interested in finding coefficients of the second-order hyper-
bolic operator

(8.0.1) a0∂
2
t u + Au = f in Q = �× (0, T )

given the initial data

(8.0.2) u = u0, ∂t u = u1 on �× {0},
the Neumann lateral data

(8.0.3) aν · ∇u = g1 on γ1 × (0, T ),

and the additional lateral data

(8.0.4) u = g0 on γ0 × (0, T ).

Here γ j is a part of ∂�, and A is a second-order elliptic operator (4.0.1) with
the (real-valued) coefficients depending on (x, t). We will be interested in some
cases of discontinuous coefficients a or irregular lateral boundary data when a
classical solution u ∈ H(2)(Q) does not exist. So we have to give appropriate
definitions of generalized solutions to the initial boundary value problem (8.0.1)–
(8.0.3). In particular, when a0 = a0(x) ∈ L∞(�); a, b, c ∈ L∞(Q); the initial con-
ditions u0 ∈ H(1)(�), u1 ∈ H(0)(�); and the Neumann data g1 ∈ L2(∂�× (0, T )),
a generalized solution u ∈ H(1)(Q) of the hyperbolic problem (8.0.1)–(8.0.3) (with
γ1 = ∂�) is defined as a function satisfying the following integral relations:∫

Q
(−a0∂t u∂t v + a∇u · ∇v + (b · ∇u + cu)v)d Q

=
∫

Q
f vd Q −

∫
�

a0u1v(, 0)d�+
∫
∂�×(0,T )

g1v(8.0.5)

for any (test) function v ∈ H(1)(Q) with v(, T ) = 0, and the initial condition
u = u0 on �× {0}. In the one-dimensional case we will consider quite singular
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lateral Neumann data (the Dirac delta function δ(0)). In this case we will define
a generalized solution to (8.0.1)–(8.0.3) with a = 1, b = 0, a0 = a0(x) ∈ C2(�),
c ∈ L∞(Q) with the zero initial data as a function u that is piecewise continuous in
Q, continuous on {0} × [0, T ], and that satisfies the following integral relations:

(8.0.51)
∫

Q
u(a0∂

2
t v − ∂2

x v + cv) = −v(0, 0)

for any function v ∈ C2(Q) with v(, T ) = ∂t v(, T ) = 0 on �× {T }, ∂x v = 0 on
{0} × (0, T ).

We will describe basic solvability and stability results for the direct hyperbolic
problem (8.0.1)–(8.0.3)

Theorem 8.1. Assume that ∂� ∈ Ck+1 and a0 ∈ Hk−1,∞(�), a, ∂t a ∈
Hk−1,∞(Q), b, c ∈ Hk−1,∞(Q), and a ∈ Hk,∞(V ) for some neighborhood
V of ∂�. Assume that the initial and Neumann data and the source term
satisfy the following regularity conditions: u0 ∈ H(k)(�), u1 ∈ H(k−1)(�),
f ∈ H(k−1)(Q), g1 ∈ H(k−1/2)(∂�× (0, T )), and the kth-order compatibility
condition on ∂�× {0}. Here k = 1, 2, . . ..

Then there is a unique solution u to the initial boundary value problem (8.0.1)–
(8.0.3), and this solution satisfies the following inequality:

‖u(, t)‖(k)(�) + ‖∂t u(, t)‖(k−1)(�) ≤ C(‖ f ‖(k−1)(Q) + ‖u0‖(k)(�)

+ ‖u1‖(k−1)(�) + ‖g1‖(k−1/2)(∂�× (0, T )).(8.0.6)

When additionally in the case k = 1, ∂t a = 0, ∂t b0, ∂t b, ∂t c ∈ L∞(Q); and
u0 ∈ H(2)(�), u1 ∈ H(1)(�), ∂t f ∈ L2(Q), ∂t h ∈ H(1/2)(∂�× (0, T )) satisfy the
second-order compatibility condition, then ‖∂2

t u(, t)‖2(�) is bounded by the right
side of (8.0.6) and by

‖∂t f ‖2(Q) + ‖u0‖(2)(�) + ‖u1‖(1)(�) + ‖∂t g1‖(1/2)(∂�× (0, T )).

This result is known, and the assumptions on g1 and coefficients are not optimal
(optimal are not known at present, in contrast to elliptic and parabolic equations).
Indeed, by subtracting from u a function w such that ∂ν(a)w = g1 on the lateral
boundary, w is zero outside V , and ‖w‖(k+1)(Q) is bounded by the used norm of g1,
we can assume that g1 = 0. Then Theorem 8.1 with k = 1 follows from Theorems
8.1, 8.2 in the book of Lions and Magenes ([LiM], p. 265), when one chooses
V = H(1)(�), H = L2(�). The additional regularity result follows from the result
for k = 1 by differentiating the equations and the lateral boundary conditions with
respect to t . In the differential equation for w = ∂t u we refer to the source term
all terms resulting from differentiation of the coefficients b and c. The new source
term is in L2(Q), and the initial conditions are w0 = u1,w1 = −Au0 − b0u1 + f
on �× {0}.

The compatibility conditions guarantee that g1 agrees with ∂ν(a)u0 on ∂�×
{0} as well as their derivatives, which can be found from equation (8.0.1) and
the initial data, and which have trace on ∂�× {0}. The first-order compatibility
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condition does not impose any constraint. The second-order condition is ∂ν(a)u0 =
g1 on ∂�× {0}. By using the Sobolev embedding theorems and Theorem 8.1,
we can conclude that if ∂�, the coefficients of the hyperbolic operator in Q, and
the (initial, Neumann, and right side) data are in C∞(Q), then the solution u ∈
C∞(Q). Observe that in contrast to elliptic and parabolic equations, the conditions
of Theorem 8.1 are not sharp (and sharp regularity conditions are not known).
Regularity results in Ck-spaces also follow from embedding and trace theorems.
Of course, they are not sharp as well.

To introduce an important property of solutions of hyperbolic equations, we will
make use of the notation conc(x, t) = {(y, s) : 0 < s, |y − x | < c(t − s)}.

Theorem 8.2 (Finite speed of propagation). Let c be (sup a−1
0 aξ · ξ )1/2, |ξ | =

1, (x, t) ∈ Q.
If f = 0 on Q ∩ conc(x, t), u0 = u1 = 0 on � ∩ conc(x, t), and g1 = 0 on

∂�× (0, T ) ∩ conc(x, t), then u = 0 on Q ∩ conc(x, t).

This result says that a solution u to the mixed hyperbolic problem (8.0.1)–(8.0.3)
in Q ∩ con depends only on traces of the data f, u0, u1, g1 inside of this cone. It is
well known, and we refer to the classical book of Courant and Hilbert [CouH], p,
649. Due to the finite speed of propagation, Theorem 8.2 is valid with Q replaced by
Q ∩ conc(x0, t0), when the data are given on the intersections of the initial surface
and the lateral wall with this cone. So generally, γ1 can be some part of ∂�, and
then u is uniquely determined and admits corresponding bounds on a subset of Q
that is the intersection of Q with the family of cones whose intersections with γ1

are inside this surface.
Theorems 8.1 and 8.2 and further comments guarantee that for any Neumann

data g1 ∈ H(1/2)(∂�× (0, T )) there is a unique solution u of the initial boundary
value problem (8.0.1)–(8.0.3) with g0 ∈ C([0, T ]; H(1/2)(�))) ⊂ L2(∂�× (0, T )).
The last inclusion follows from the estimate (8.0.6) and the trace theorems about
continuity of the trace operator from H(1)(�) into H(1/2)(∂�). The claim about
regularity of g0 is not sharp (and there is no sharp result at present). Referring to the
paper of Lasiecka and Triggiani [LaT], we observe that for smooth coefficients and
boundaries the map g1 → g0 is continuous from L(∂�× (0, T )) into H(1/6)(∂�×
(0, T )) and from H(1)(∂�× (0, T )) into H(1)(∂�× (0, T )) and is not continuous
from H(−1/2)(∂�× (0, T )) into H(1/2)(∂�× (0, T )) as for elliptic equations. Most
advanced results about Neumann boundary condition are given by Tataru [Tat4]. In
addition, the map g1 → u(; T ) is continuous from L2(∂�× (0, T )) into H(1/2)(�).
As above, we will distinguish the cases of single and many boundary measurements
when we are given the (lateral) Neumann-to-Dirichlet operator�l from L2(∂�×
(0, T )) into itself. Since the Dirichlet-to Neumann map and the Neumann-to-
Dirichlet operators are inverses of each other, the prescription of one of them
is equivalent (at least theoretically) to the prescription of the other. We choose
to consider the Neumann-to-Dirichlet operator in this chapter in part because it
looks more natural in applications of hyperbolic equations. Observe that the map
g0 → u(, T ) is continuous from H(k)(∂�× (0, T )) into Hk(�) at least for smooth
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coefficients and boundaries. This follows from classical results of Sakamoto [Sak]
and standard energy integrals.

To conclude this brief introduction, we recall a known relation between hyper-
bolic problems and corresponding spectral problems.

Let um be Neumann eigenfunctions of the elliptic operator A when b = 0, 0 ≤ c
and the coefficients do not depend on t :

Aum = λ2
mum in �, a∇um · ν = 0 on ∂�.

It is known that this self-adjoint elliptic problem has an L2(�) complete and
orthonormal system of eigenfunctions um corresponding to nondecreasing eigen-
values λ1 ≤ λ2 ≤ · · · ≤ λm ≤ . . .. For simplicity we will assume that 0 < λ1. In
fact, this inequality can be achieved by using substitution u = veτ t . So a solution
to the hyperbolic problem (8.0.1)–(8.0.3) with a0 = 1, u0 = u1 = 0, f = 0 can be
written as

u(x, t) =
∑

g1m(t)um(x),

g1m(t) =
∫
∂�×(0,t)

sin(λm(t − τ ))/λmum(y)g1(y, τ )dγ (y)dτ, x, y ∈ ∂�

(see, e.g., the book of Lions [Li, Ch. 4, section 7, p. 320]). The series for u is
convergent in L2(�). From the last two formulas it is not difficult to see that the
Neumann-to-Dirichlet operator �l is an integral operator with the kernel∑

sin(λm(t − τ ))/λmum(x)um(y)(the sum over m = 1, 2, . . .).

The data of the inverse spectral problem are Neumann eigenvalues λm and the
Dirichlet traces on ∂� the L2(∂�) normalized Neumann eigenfunctions. The above
formula shows that these data uniquely determine the Neumann-to-Dirichlet lateral
operator�l . Therefore most of the uniqueness results for coefficients with the given
�l give uniqueness results for the inverse spectral problem. For more results on
inverse spectral problems we refer to [KKL].

8.1 The one-dimensional case

We consider two simple inverse problems that illustrate limitations and possibilities
of the multidimensional situation. These problems are one-dimensional, which
makes them relatively easy, but still there are some fundamental and unanswered
questions about them.

Let � be the half-axis (0,+∞) and Q = �× (0, T ). Let us consider the hy-
perbolic equation

(8.1.1) (∂2
t − ∂2

x + c)u = 0 in Q

with the coefficient c = c(x) ∈ C[0,∞), the zero initial data (8.0.2) (u0 = u1 =
0), and the Neumann data g1 = δ(0) on the lateral surface γ1 × [0, T ), γ1 = ∂�.
Here δ is the Dirac delta function. When the data g1 ∈ C1[0, T ] and satisfy the com-
patibility condition g1(0) = 0, there is a unique solution u ∈ C2(Q). Let u0(x, t)
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be 1 when x < t and 0 when t ≤ x . This function is a generalized solution to
the string equation satisfying the Neumann condition with the delta function. Let
u = u0 + U . Then U solves the initial boundary value problem

(∂2
t − ∂2

x )U = −c(u0 + U ) in Q,U = ∂tU = 0 on �× {0},
∂xU = 0 on ∂�× (0, T ).

We extend U, c, . . . onto {x < 0} by the symmetric reflection U (−x, t) =
U (x, t), c(−x) = c(x), u0(−x, t) = u0(x, t). By d’Alembert’s formula, the ex-
tended initial value problem is equivalent to the integral equation

(8.1.2) U (x, t) = −1

2

∫
con(x,t)

c(u0 + U ),

where con(x, t) is the backward characteristic triangle {(y, s) : |x − y| < |t −
s|, s < t}. This Volterra-type equation has a unique solution U ∈ C(Q). Indeed,
let us define the operator

BU (x, t) = −1

2

∫
con(x,t)

cU.

By using induction, it is not difficult to show that

‖BkU‖∞(Q) ≤ µ2k T 2k/(2k)!‖U‖∞, µ = ‖c‖1/2
∞ (Q).

This bound implies that the operator (I − B) is invertible (in C(Q) or L∞(Q)) with
inverse (I − B)−1 = I + B + · · · + Bk + · · ·. From this formula and the bound
on ‖Bk‖ we have ‖(I − B)−1‖ ≤ eµT . The Volterra integral equation (8.1.2) can
be written as (I − B)U = Bu0, so its unique solution U can be obtained via the
inverse operator. From the above bounds it follows that

‖U (; c)‖∞(Q) ≤ 1

2
T 2eµT ‖c‖∞(Q),(8.1.3)

‖U (; c2) − U ( ; c1)‖∞(Q) ≤ 1

2
eµ1T (1 + 1/2µ2

2T 2eµ1T )T 2‖c2 − c1‖∞(Q).

To obtain the second bound, observe that by subtracting the integral equations
(8.1.2) for U2,U1 we will have

(U2 − U1)(x, t) = −1

2

∫
con(x,t)

(c2 − c1)(u0 + U2) − 1

2

∫
con(x,t)

c1(U2 − U1),

which can be considered as a Volterra integral equation with respect to U2 − U1.
Denoting by B1 the operator B with c replaced by c1 as above, we obtain the
bound on ‖Bk

1‖ withµ replaced byµ1 = ‖c1‖1/2
∞ , and the corresponding bound on

‖(I − B1)−1‖. Using the first inequality (8.1.3) to bound ‖U2‖∞, we can conclude
that the L∞-norm of the first term on the right side of the equation for U2 − U1 is
not greater than

1

2
T 2‖c2 − c1‖∞(Q)(1 + 1/2µ2

2T 2eµ1T ).

Thus, we obtain the second bound (8.1.3).
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Differentiating the integral (8.1.2) with respect to x, t , we conclude that
∇U ∈ C(Q+), where Q+ is {x ≤ t} ∩ Q. The differential equation for U can
be understood in the generalized sense.

In the inverse problem, one is looking for c ∈ C[0,+∞) given the Dirichlet
data (8.0.4) on ∂�× (0, T ).

Lemma 8.1.1. The inverse problem is equivalent to the following nonlinear
Volterra-type integral equation:

c(τ ) + 2
∫ τ

0
c(s)∂tU (s, 2τ − s; c)ds = −2g′′

0 (2τ ),

g0(0) = 1, g′
0(0) = 0, 2τ < T,(8.1.4)

where U is a solution to equation (8.1.2).

PROOF. We define the function v as 1 when t + x < 2τ < T and as 0 otherwise.
We approximate v by functions vε(t + x) in C∞ such that the vε are decreasing
with respect to ε, and vε = v on ∂�× (0, 2τ − ε). From the definition of a weak
solution to the problem (8.1.1), (8.0.2), (8.0.3) we have∫

Q
u(∂2

t − ∂2
x + c)vε =

∫
∂�×(0,T )

(−g0∂x vε − vεg1)dt.

Using that vε solves the homogeneous wave equation, that the vε converge to v
in L1(Q) and in L1(∂�× (0, T )), and that the ∂x vε converge to the Dirac delta
function concentrated at 2τ as ε → 0, in the limit we obtain∫

Q
cuv = −g(2τ ) − 1.

We denote the right side by F1(τ ) and observe that the first integral is actually over
Tr(τ ) (the triangle with vertices at the points (0, 0), (τ, τ ), (0, 2τ )), where v = 1.
Writing this integral as a multiple one, we obtain∫ τ

0
c(s)

(∫ 2τ−s

s
(1 + U )dt

)
ds = F1(τ ).

We differentiate both sides with respect to τ to get∫ τ

0
c(x)2(1 + U (x, 2τ − x))dx = F ′

1(τ ).

Differentiating once more and using that U (τ, τ ) = 0, we obtain the relation
(8.1.4).

Let c be any solution to equation (8.1.4) and let g• be the data of the inverse
problem generated by this coefficient. Starting with the relation (8.1.4) and using
the conditions on g0, return to the above relation containing g0(2τ ) + 1. On the
other hand, repeating the previous argument, we will obtain the same relation with
g• instead of g0. Since both relations are valid when 0 < τ < T/2, we conclude
that g = g• on (0, T ).

The proof is complete. �
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By inspecting equation (8.1.4), one concludes that when c ∈ C[0, T ], the data
g0 must be in C2[0, T ].

Corollary 8.1.2. A solution to c to the inverse problem is unique on (0, T/2).
Let g0 ∈ C2[0, T ].
Then there is T0 ≤ T such that a solution c to the inverse problem exists on

[0, T0/2].

PROOF. We will show that the nonlinear operator

B•c(τ ) = 2
∫ τ

0
c(x)∂tU (x, 2τ − x ; c)dx

from L∞(0, T ) into itself admits the following bound:

(8.1.5) ‖B•c2 − B•c1‖∞(0, T ) ≤ C(M)(T − T0)‖c2 − c1‖∞(0, T ),

where C(M) = (4Me + e2), provided that ‖c j‖∞ ≤ M2, T M ≤ 1, 0 ≤ T0 ≤ T ,
and c1 = c2 on (0, T0). This implies that for small T − T0 the operator B• is a
contraction, and then uniqueness follows.

Observe that subtracting two integral relations (8.1.2) for U2 and U1, we con-
clude that for fixed c1 the operator U2 − U1 can be considered as linear with respect
to c2 − c1. Therefore, we can write the difference of values of B• at c2 and c1 as
B(c2 − c1), where B is a linear operator. We have

B•c2 − B•c1 = 2
∫ τ

0
(c2 − c1)∂tU2 + 2

∫ τ

0
c1∂t (U2 − U1).

Differentiating the integral (8.1.2) with respect to t and subtracting the equations
for U2 and U1, we have

∂t (U2 − U1) = −2−3/2
∫
∂ con(x,t)

((c2 − c1)U2 + c1(U2 − U1)).

Using that U1 = 0 when c1 = 0 and the first bound (8.1.3), we conclude
that ‖∂tU2‖∞(Q) ≤ M/2eT M , and therefore the L∞-norm of the first integral is
bounded by

(T − T0) ‖c2 − c1‖∞MeT M .

Using the second bound (8.1.3) with T replaced by T − T0(c1 = c2 on (0, T0)),
we similarly conclude that

‖∂t (U2 − U1)‖∞(Q) ≤
(

3

2
eMT + 1

2
e2MT

)
(T − T0)‖c2 − c1‖∞.

We conclude that ‖B•c2 − B•c1‖∞ is bounded by

(4MeMT + e2MT )(T − T0)‖c2 − c1‖∞.

Using the condition T M ≤ 1, we obtain (8.1.5).
As we noted above, global uniqueness of the solution of equation (8.1.4) follows

from (8.1.5). Indeed, let T0 be maximal with the property that c1 = c2 on (0, T0).
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If T0 < T , then we can find (probably smaller) T such that C(M)(T − T0) < 1.
From (8.1.5) it follows that the operator B• is a contraction in L∞(T0, T ), which
as in the Banach contraction theorem implies uniqueness of a solution of equation
(8.1.4). So c1 = c2 on (T0, T ), which contradicts the choice of T0. Accordingly,
T0 = T , and we have global uniqueness.

Local existence also follows from the bound (8.1.5) and the Banach contraction
theorem. Indeed, let g2(τ ) = −2g′′

0 (2τ ) and r = ‖g2‖∞(0, T ). Let M = √
2r . We

can assume that T is so small that T M ≤ 1 and C(M)T < 1
2 . Consider the set

S ⊂ L∞(0, T ) of functions c such that ‖c − g2‖∞(0, T ) < r . Equation (8.1.4) can
be written as c = g2 − B•c. We claim that the operator on the right side of this
equation maps S into S and is a contraction. Indeed, ‖c‖∞(0, T ) ≤ r + r = 2r
when c ∈ S, so ‖c‖∞ ≤ M2, and we have the bound (8.1.5), which implies that
‖B•c2 − B•c1‖• ≤ 1

2‖c2 − c1‖∞. Now it is easy to check that the operator maps
S into itself.

The proof is complete. �

Observe that the existence of a solution c to the inverse problem is guaranteed
when

2rT 2 ≤ 1, (4
√

2re + e2)T <
1

2
,

where r = 2‖g′′
0‖∞(0, T ).

The next problem about determination of the speed of propagation is more
complicated, even in the one-dimensional case.

We consider the equation

(8.1.6) (a2
0∂

2
t − ∂2

x )u = 0 in Q

with the same initial and lateral boundary conditions.
Again, the inverse problem is to determine a0 from g0. We will study it in the

new (characteristic) variables

(8.1.7) y = y(x) =
∫ x

0
a0(θ )dθ, τ = t.

Lemma 8.1.3. Equation (8.1.6) is equivalent to the following one:

(8.1.8) ∂2
τ v − ∂2

y v + c(y)v = 0 in Q,

where

c(y) = 1

2
∂2

y l + 1

4
(∂yl)2, l(y) = ln a0(x(y))

for the function

v(y, τ ) = a1/2
0 (x(y))u(x(y), τ ).

PROOF. This lemma follows from the following elementary calculations.
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From formula (8.1.7) according to the chain rule, we have ∂x y = a0(x), ∂x =
a0(x(y))∂y , ∂t = ∂τ . So

∂x u = −1

2
a−3/2

0 ∂x a0v + a1/2
0 ∂yv,

∂2
x u = a3/2

0 ∂2
y v −

(
1

2
a−3/2

0 ∂2
x a0 − 3/4a−5/2

0 (∂x a0)2

)
v,

and equation (8.1.6) is equivalent to equation (8.1.8) with

c(y) = 1

2
a−3

0 ∂
2
x a0 − 3

4
(a−2

0 ∂x a0)2, x = x(y).

Observe that this expression for c can be written as

−1

2
a−1

0 ∂
2
x (a−1

0 ) + 1

4
(∂x (a−1

0 ))2,

or using that according to (8.1.7), ∂yl = a−1
0 ∂ya0 = a−2

0 ∂x a0 = −∂x (a−1
0 ) and

therefore a−1
0 ∂

2
x (a−1

0 ) = −a−1
0 ∂x∂yl = −∂2

y l, we arrive at formula (8.1.8) for c.
The proof is complete. �

In the next result it is quite helpful to make use of smooth Neumann data, which
are also natural in several applications. We will consider

(8.1.9) g1 ∈ Ck[0, T ], g(k−1)
1 (0) �= 0, k = 1, 2, . . . .

First, we observe that due to time independence of our equations, a solution u(; g1)
to equation (8.1.6) in Q with the zero initial condition (8.0.2) and the Neumann
condition (8.0.3) admits the following representation:

(8.1.10) u(x, t ; g1) =
∫ t

0
g1(s)u(x, t − s; δ)ds.

Exercise 8.1.4. Prove relation (8.1.10) by using definition (8.0.51).

According to (8.1.10), the data g0(; g1) and g1(; δ) of the inverse problems with
the Neumann data g1 and δ are related via

(8.1.11) g0(t ; g1) =
∫ t

0
g1(s)g0(t − s; δ)ds,

which can be considered a Volterra-type integral equation with respect to g0(; δ). In
addition to (8.1.9), one can assume that g(m)

1 (0) = 0 when m < k − 1. Writing the
convolution as the integral of g1(t − s)g0(s) and differentiating equation (8.1.11)
k times, we arrive at the Volterra equation

g(k)
0 (t ; g1) = g(k−1)

1 (0)g0(t ; δ) +
∫ t

0
g(k)

1 (s)g0(t − s; δ)ds,

which has a unique solution g0(t ; δ) ∈ C[0, T ] given any g0 ∈ Ck[0, T ]. This
implies that the Dirichlet data g0 given for some Neumann data g1 satisfying
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condition (8.1.9) uniquely determine the Dirichlet data g0(; δ). On the other hand,
the Dirichlet data for the delta function uniquely determine the general Dirichlet
data via formula (8.1.11). Hence, only one set of lateral Cauchy data (with g1 = δ
or satisfying condition (8.1.9)) uniquely determines the complete lateral Neumann-
to-Dirichlet map g1 → g0.

Lemma 8.1.5. The data of the inverse problem uniquely determine a0(0), ∂x a0(0).

PROOF. First, we observe that if a01, a02 are two coefficients producing the same
data of the inverse problem, then

(8.1.12)
∫

Q
(a2

02 − a2
01)v1v∗

2d Q = 0

for any solution v1 ∈ H(2)(Q) to the first equation in Q satisfying the initial condi-
tions v1 = ∂t v1 = 0 on (0,∞) × {0} and for any solution v∗

2 to the second equation
in Q satisfying the final conditions v2 = ∂t v2 = 0 on (0,∞) × {T }.

To prove (8.1.12), we subtract equations (8.1.6) with the coefficients a02 and
a01 to obtain for the difference u of their solutions u2, u1 the equation

a2
02∂

2
t u − ∂2

x u = (a2
01 − a2

02)∂2
t u1 in Q.

We will take as u01, u02 solutions to the hyperbolic problems (8.1.1), (8.0.2), (8.0.3)
with zero initial data and with the same Neumann data g1 ∈ C1[0, T ], g1(0) =
0. According to our assumptions and to the remark before Lemma 8.1.5, two
coefficients produce the same lateral Neumann-to-Dirichlet map, so u01 = u02

on {0} × (0, T ). Therefore, the function u has zero Cauchy data on this interval.
Multiplying the equation for u by any solution u∗

2 of the second equation with
u∗

2 = ∂t u∗
2 = 0 on (0,∞) × {T } and integrating by parts two times on the left side

of the equation and once (with respect to t) on the right side, we obtain the relation
(8.1.12) with ∂t u1, ∂t u∗

2 instead of v1, v∗
2 . Observe that for any v1, v∗

2 satisfying the
conditions in (8.1.12) the functions

u1(x, t) =
∫ t

0
v1(x, s)ds, u∗

2(x, t) = −
∫ T

t
v∗

2 (x, s)ds

solve the same hyperbolic equations and have zero Cauchy data on (0,∞) × {0},
(0,∞) × {T }. Using these functions in the orthogonality relations obtained, we
arrive at (8.1.12).

To complete the proof, assume the opposite. Then there are two coefficients
a01, a02 with a01(0) < a02(0) or with a01(0) = a02(0) and ∂x a01(0) < ∂x a02(0). In
cases 0 < (a02 − a01) on the interval (0, ε) for some positive ε. Let v1 be the
solution to the first equation in Q∗ = R × (0, T ) with right side f ∈ C1(Q∗) that
is nonnegative and with supp f = {x ≤ 0} × [0, T0], and with zero Cauchy data on
R × {0}. Let v∗

2 be the solution of the second equation with the same right side and
with zero Cauchy data on R × {T }. By using Riemann’s function [CouH, p. 453],
it is not difficult to show that v1 > 0 near the origin above the characteristic t =
γ1(x) passing through (0, 0)(γ ′

1(x) = a−1
01 (x), γ1(0) = 0) and that v∗

2 > 0 near the
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origin below the characteristic t = γ2(x) passing through the point (0, T0)(γ ′
2(x) =

−a−1
02 (x), γ2(0) = T0) when T0 is sufficiently small. For such v1, v∗

2 the integral
(8.1.12) is negative. The contradiction shows that our assumption was wrong.

The proof is complete. �

To formulate uniqueness results for the coefficient, we assume that a0 ≤ a•.

Corollary 8.1.6. Let � = (0, 1). The coefficient a0(x) ∈ C2([0,+∞)) of the hy-
perbolic equation (8.1.6), with zero initial conditions and the lateral Neumann
condition −∂x u = δ or −∂x u = g1 on {0} × [0, T ], where g1 satisfies conditions
(8.1.9), is uniquely determined on [0, T/(2a•)] by the additional Dirichlet data
u = g0 on {0} × [0, T ].

PROOF. First, we consider the Dirac function as the Neumann data. From Lemmas
8.1.3, 8.1.5 and Corollary 8.1.2 we conclude that the coefficient c(y) given in
(8.1.8) is uniquely determined on (0, T/2) by the data of the inverse problem.
By Lemma 8.1.5 the Cauchy data l(0), ∂yl(0) are uniquely determined as well.
Solving the Cauchy problem for the ordinary differential equation (8.1.8) with
respect to l, we obtain uniqueness of l(y) when 0 < y < T/2. So we are given
a0(x(y)) = el(y). From the definition (8.1.7) of the substitution y = y(x), we have
dx/dy = a−1

0 (x(y)) = el(y), and therefore

x(y) =
∫ y

0
e−l(s)ds, 0 < y < T/2.

Since a0 < a•, the inverse function y(x) is uniquely determined, at least on the
interval 0 < x < T/(2a•). Finally, we have a0(x) = el(y(x)) on this interval.

The claim about the Neumann data g1 satisfying condition (8.1.9) follows from
the observation that the Dirichlet data g0 for g1 uniquely determine the Dirichlet
data for the delta function.

The proof is complete. �

Corollary 8.1.7. (i) The coefficient c ∈ C[0, 1] of equation (8.1.1) with zero initial
conditions (8.0.2) and Neumann condition (8.0.3) on {0} × (0, T ) with g1 = δ or
satisfying condition (8.1.9) and zero on {1} × (0, T ) is uniquely determined on
[0, T/2], T < 2, by the additional Dirichlet data u = g0 on {0} × [0, T ].

(ii) The coefficient a0 ∈ C2[0, 2] of equation (8.1.6) with the same initial and
lateral boundary conditions as in (i) is uniquely determined on [0, T/(2a•)], T <
2a•, by the additional Dirichlet data on {0} × (0, T ).

PROOF. (i) First, we extend u and c as even functions with respect to (x − 1) and use
the same notation for the extended functions. From the zero Neumann boundary
condition on {1} × (0, T ), we will obtain the same hyperbolic equation in the
extended domain (0, 2) × (0, T ). Since in our problem the speed of propagation
is 1 (Theorem 8.2) and the initial data are zero, its solution coincides on con(0, T )
with the solution of the problem in the strip (0,∞) × (0, T ). Now Corollary 8.1.7(i)
follows from Corollary 8.1.2.
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(ii) By extending u and c onto (0, 2) as above the using that the speed of propa-
gation does not exceed 1/(2a•), we can extend u onto R+ × (0, T ) ∩ {t < 2a•x}
as zero, preserving the equation and the initial and lateral boundary data on
{0} × (0, T ). After this preparation, Corollary 8.1.7(ii) follows from Corollary
8.1.6.

The proof is complete. �

Exercise 8.1.8. By using the substitutions (8.1.7) and u = wv with an appropriate
function w = w(x), show that the general second-order hyperbolic equation

a2
0∂

2
t u − ∂2

x u + b0∂t u + b∂x u + cu = 0

with time-independent coefficients a0, b0, b, and c can be transformed into the
simpler equation

(8.1.13) ∂2
t v − ∂2

x v + B∂t v + Cv = 0,

also with time-independent coefficients B,C .

Exercise 8.1.9. Consider equation (8.1.1) with c = c(x, t) ∈ L∞(Q). Show that
the lateral Neumann-to-Dirichlet map g1 → g0 for this equation uniquely deter-
mines c on the triangle with vertices (0, 0), (0, T ), (T/2, T/2).

{Hint: Repeating the argument of Lemma 8.2.1, derive for c(x, t) the nonlinear
Volterra-type integral equation

c(κ, τ ) + (∂τ − ∂κ )
∫ κ

0
cU (x, τ + κ − x ; τ − κ)dx = (∂2

τ − ∂2
κ )g(τ + k; τ − κ).

Here g0(; τ ) = u(0, ; τ ), where u(; τ ) is the solution to the hyperbolic problem with
the Neumann data δ(−τ ) (and zero initial data). Use that due to the finite speed of
propagation u(x, t ; τ ) = 0 when t − x < τ.}

For one-dimensional inverse problems and their applications we refer to the
book of Gladwell [Gl]. For one-dimensional inverse spectral problem we refer to
Pöschel and Trubowitz [PoT].

8.2 Single boundary measurements

As for elliptic equations, one can prescribe one set of the initial and boundary
data (8.0.2), (8.0.3) and then try to recover, say, the coefficient a(x) from ob-
servation (8.0.4). Since the problem is local in time and space (due to finite
speed of propagation), it is reasonable to consider small times and replace the
original nonlinear inverse problem by its linearization (for � that is the strip
{0 ≤ xn ≤ T }, and around b0 that depends only on xn). As an example of avail-
able results we will formulate Theorem 8.2.1 where we consider equation (8.0.1)
with a0 = 1, a = 1, b = −ρ−1∇ρ, c = 0, which is a form of the acoustic equa-
tion ρ∂2

t u − div(ρ∇u) = 0. The linearization of the inverse problem around ρ0
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(ρ = ρ0 + f with “small” f ) consists in finding (v, f ) entering the equations

∂2
t v −�v − ∇ log ρ0 · ∇v

= ∇(ρ−1
0 f ) · ∇u(; 0) in {(x, t) : xn < t, 0 < t < 2T },

∂nv = 0 on γ × (0, 2T ),

v(x ′, t, t) = −1

2
ρ0(t)−3/2 f (x ′, t) as x ∈ γ, 0 < t < T,

v = g0 on γ × (0, 2T ),

where γ is {xn = 0}, g0 is a given function, and u(; 0) is a solution to the initial
boundary value problem (8.0.1), (8.0.2), (8.0.3) with ρ = ρ0, u0 = u1 = 0, and
g1 = δ(t) (Dirac delta-function). It is not difficult to observe that u(; 0) depends
only on xn and t .

We give the following result of Sacks and Symes [SSy].

Theorem 8.2.1 (Uniqueness for Linearization). Assume that log ρ0 ∈
H∞,1(0, T ), ρ0 > ε > 0, and that f ∈ H1,1(�), f = 0 on � ∩ {xn = 0}.

If g0 = 0, then f = 0 on �.

We will not give details of a proof, observing only that by using the Fourier
transform with respect to x ′ one can reduce the multidimensional (linear) hyper-
bolic problem to a one-dimensional problem depending on the Fourier variable as
a parameter and then make use of Volterra-type integral equations as in Section 8.1.
The Fourier transform will transform the differential equation into a differential
equation because b0 and u(; 0) do not depend on x ′.

Linearization makes certain sense for small T due to the finite speed of propaga-
tion. However, there are no proofs that the range of the operator that maps f into g0

is closed in standard functional spaces, so one cannot apply contraction arguments
and derive from Theorem 8.2.1 uniqueness results for the original nonlinear inverse
problem. Even for the linearization there are no results when the data are given on
a part of ∂� (local data), which is a typical situation in geophysics. The situation
is more complicated when the speed of propagation is variable. Linearization is
also discussed by Romanov [Rom], p. 134, where there are uniqueness results for
c obtained by using integral geometry over a family of ellipsoids.

Now we will discuss the original (nonlinear) inverse problem. There are global
uniqueness results under a quite restrictive condition on the initial data. In particular
they can not be zero. The method of proof is based on Carleman estimates. It was
orginated by Bukhgeim and Klibanov [BuK] and later modified by Imanuvilov and
Yamamoto [IY2]. By using their ideas we will give a general result applicable to
systems of equations of second order (including elasticity system and systems with
principal parts which correspond to parabolic and Schrödinger equations). Let A be
a m × m-matrix partial differential operator of second order in a domain Q ⊂ R

n+1

with time independent L∞(�)-coefficients. We let x = (x1, . . . , xn), t = xn+1. Let
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us consider the following inverse source problem

(8.2.1) Au = Af, ∂t f = 0 in Q = �× (−T, T )

with a weight m × m matrix- function A. Here the vector-functions u =
(u1, . . . , um) and f = ( f1, . . . , fm) are to be found from additional initial and
lateral boundary data.

We introduce a Carleman type estimate

(8.2.2)
∫

Q
e2τϕ(τ 2|u|2 + mτ |∂t u|2) ≤ C

∫
Q

e2τϕ|Au|2

for all functions u ∈ C2
0 (Q) and C ≤ τ . Here m = 0, 1, ϕ is a C2(Q)-function

with nonvanishing gradient on Q. As in chapter 3 we let Qε = Q ∩ {ε < ϕ}. We
will consider two cases: 1) m = 0, and 2) m = 1 or A does not involve ∂t∂ j , j =
1, . . . , n + 1. Case 1) is applicable to the isotropic elasticity ( see (3.5.11)). Case 2)
corresponds to standard Carleman estimates for scalar hyperbolic operators or to
parabolic or Schrödinger operators (see Theorem 3.2.1, proof of Theorem 3.3.10,
Theorem 3.3.12, and proof of Theorem 3.4.13).

Theorem 8.2.2. Let A,. . . ,∂2
t A ∈ C(Q) and in case 1) let ∂3

t A ∈ C(Q). Let the
weight function ϕ satisfy conditions
(8.2.3)
ϕ < 0 on ∂Q\�,� ⊂ ∂�× (−T, T ), ϕ(, t) ≤ ϕ(, 0), when − T < t < T .

Let A does not involve differentiations ∂t∂k, k = 1, . . . , n and the Carleman esti-
mate (8.2.2) be valid. Let ∂ j

t ∂
αu ∈ L2(Q), j = 0, . . . , 3, |α| ≤ 1 and f ∈ L2(�).

Let

(8.2.4) det(A) �= 0 on Q0 ∩ {t = 0}
Then the equalities

(8.2.5) u = 0 on �× {0}
and

(8.2.6) u = ∂νu = 0 on �

imply that f = 0 on Q0.

PROOF. We consider case 1). Differentiating the equations (8.2.1) with respect to
t and using time independence of coefficients of A we obtain

A∂t u = ∂tAf, A∂2
t u = ∂2

t Af, A∂3
t u = ∂3

t Af in Q.

Let ε > 0. Letχ be a C∞(Rn+1)-function,χ = 1 on Qε andχ = 0 on Q\Q0. Since
u has zero Cauchy data on � the functions A∂ j

t (χu) can be L2(Q) approximated
by C2

0 (Q)-functions, so for them we have the Carleman estimate (8.2.2). From the
Leibniz’ formula we have A(χu) = χAu + . . . where | . . . | ≤ C |∇u|. Using that
χ = 1 on Q0 and shrinking the integration domain in the left side of (8.2.2) for
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χu, . . . ∂3
t (χu) we obtain∫

Qε

e2τϕ
∑

j=0,...,3

τ 2|∂ j
t u|2 ≤ C(

∫
Q

e2τϕ|f|2 +
∫

Q\Qε

e2τϕ
∑

|∂ j
t ∂
αu|2)

(8.2.6) ≤ C(
∫

Q
e2τϕ|f|2 + e2τε).

where the sums are over j = 0, . . . , 3, |α| ≤ 1 and we used that ϕ ≤ ε on Q\Qε.
Here and further in the proof C denote generic constants depending on Q,u, ϕ
but not on τ .

On the other hand, from the equation (8.2.1) at t = 0 and from the initial con-
dition (8.2.5) we get A2∂

2
t u(, 0) = A(, 0)f on � where A2 is a L∞(�)-matrix

function. Using condition (8.2.4) we yield |f| ≤ C |∂2
t u(, 0)|. According to condi-

tion (8.2.3)

(8.2.7)
∫

Q
e2τϕ|f|2 ≤ 2T

∫
�

e2τϕ(,0)|∂2
t u|2(, 0).

On the other hand,∫
�

e2τϕ(,0)|∂2
t u|2(, 0) = −

∫
�

∫ T

0
∂s(e2τϕ(,s)|∂2

t u(, s)|2)ds

+
∫
�

e2τϕ(,T )|∂2
t u(, T )|2

≤ C(
∫

Q
e2τϕ(τ |∂2

t u|2 + |∂3
t u|2) + 1)

where we used that ϕ(, T ) ≤ 0. Combining this inequality with (8.2.6) and (8.2.7)
we arrive at

τ 2
∫

Qε

e2τϕ
∑

j=0,...,3

|∂ j
t u|2 ≤ C(τ

∫
Q

e2τϕ
∑

j=0,...,3

|∂ j
t u|2 + e2τε).

Splitting Q in the right side into Qε and Q\Qε, choosing τ large to absorb the
integral over Qε by the left side and observing that the remaining integral is less
than Cτ we finally yield

τ 2
∫

Qε

e2τϕ|u|2 ≤ C(τ + 1)e2τε

Dividing both sides by τ , replacing ϕ on Qε by its smallest value ε and letting
τ → ∞ we conclude that u = 0 on Qε. Since ε is any positive number, u = 0 on
Q0 and from (8.2.4) we obtain the conclusion of Theorem 8.2.2.

The proof in case 2) is similar. Only difference is that it is sufficient to differen-
tiate the equation (8.2.1) with respect to t twice. �
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Observe that conditions of this Theorem can be slightly relaxed, at expense of
longer proofs. For example, regularity of solution u can be raised in Q0 by using
Carleman estimates. Condition (8.2.4) however is hard to remove.

As an application let us consider the initial problem (8.0.1)–(8.0.3) with a0 =
1, A = −a�, a ∈ Cl(�), l > (n + 7)/2, g1 ∈ Cl(∂�× [0, T ]), u0 ∈ Cl(�), and
∂� ∈ Cl . We will consider cases (3.4.2), (3.4.3) where G is replaced by �. We
assume that γ1 = ∂� and γ0 = γ from (3.4.2), (3.4.3). We let Qε = Q ∩ {ε <
x2

1 + · · · + x2
n−1 + (xn − βn)2 − θ2t2 − s}, where βn and s are chosen as in The-

orem 3.4.1. We assume also the compatibility condition on ∂�× {0} of order l.
These conditions are certainly satisfied when a = 1 near ∂� and g1 = ∂νu0 on ∂�,
where u0 is any smooth function on R

n with −�u0 > 0 on �. Let u(; 1), u(; 2)
be solutions to the hyperbolic initial boundary value problem (8.0.0)–(8.0.3) (with
A = −a1�,−a2�, a0 = 1, f = 0, b = 0, c = 0).

Corollary 8.2.3. Assume that the numbers θ, T and the functions a−1/2
1 , a−1/2

2
satisfy conditions (3.4.5) and that the initial data satisfy the conditions 0 < −�u0,
0 < u0, u0 ∈ Cl(�), u1 = 0 on �.

If u(; 1) = u(; 2) on γ × (0, T ), then a1 = a2 on �0.

PROOF. First, we extend u(; j) onto negative t by letting u(x,−t ; j) = u(x, t ; j).
Then the differential equations will hold in the extended domain Q0, which we
will denote by the same symbol. Subtract the equations for u(; 2) and u(; 1) and
let u = u(; 2) − u(; 1), f = a2 − a1. Then we will have the following equations:

∂2
t u − a2�u = �u(; 1) f, ∂t f = 0 on Q,

u = 0 on �× {0}, u = ∂νu = 0 on γ × (0, T ).

As shown in the proof of Theorem 3.4.1, the functionψ(x, t) = x2
1 + · · · + x2

n−1 +
(xn − βn)2 − θ2t2 − s is pseudo-convex with respect to the hyperbolic operator
A = ∂2

t − a2�, hence the function ϕ = eλψ − 1 is strongly pseudo-convex for
some large λ, as demonstrated in the proof of Theorem 3.2.1’, and we have the
Carleman estimate (8.2.2). Conditions (8.2.3) follow from (3.4.5) and from the
choice of ψ . By Theorem 8.2.2 f = 0 on Q0.

The proof is complete. �

Conditions on the initial data are not quite suitable for many applied problems,
but Theorem 8.2.2 (and corollaries for elliptic, parabolic, and hyperbolic equa-
tions) provide the only uniqueness results available for many nonoverdetermined
inverse coefficients problems. In [Is4] there are also results about the simultaneous
determination of two coefficients a0 and c from two (independent) lateral boundary
measurements.

Stability estimates in this Corollary were given by Khaidarov [Kh2]. They are
similar to the estimate (3.2.6), but they are more complicated.

When the Dirichlet (or Neumann data) are given on the whole of ∂� and the
additional lateral boundary data on a “large” part �0 of ∂� as in Theorem 3.4.8,
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one can expect much better stability. Indeed, Imanuvilov and and Yamamoto [IY2]
obtained the followng conditional Lipschitz stability estimate.

Let u(; 2), u(; 1) be solutions of the hyperbolic initial boundary value problem

∂2
t u(; j) −�u(; j) + c j u(; j) = 0 in Q,

∂νu(; ) j = 0 on ∂�× (0, T ),

and with the initial data u0 ∈ H(3)(�), ∂νu0 = 0 on ∂�× (0, T ), u1 = 0.

Theorem 8.2.4. Let diam � < T . Let ε0 < u0 on �.
Then there is a constant C depending only on �, T, u0, ‖c j‖1,∞(�) such that

‖c2 − c1‖2(�) ≤ C‖∂t (u(; 2) − u(; 1))‖(1)(∂�× (0, T )).

The proofs in [IY2] are based on the linearization which reduces the coefficient
problem to the inverse source problem, like in Theorem 8.2.2 and Corollary 8.2.3,
and on Carleman estimates.

The even reflection with respect to t which was used in the proof of Corollary
8.2.3 can not be applied to the equation ∂2

t u −�u + b0∂t u = 0 and a for some
time uniqueness of damping coefficient b0(x) from the same data as in Corollary
8.2.3 was not known and was posed as Problem 8.3 in the first edition of this book.
If b0 �= 0, then this reflecton defines solutions of the wave equation with time
discontinuous coefficient b0 and hence the known uniqueness proof could not be
applied. Bukhgeim, Cheng, Isakov, and Yamamoto [BuCIY] combined singular
behavior of solutions at t = 0 with the initial condition and showed that Carleman
estimates method still leads to uniqueness result quite similar to Corollary 8.2.3.
provided condition ε0 < u0 is replaced by condition ε0 < u1.

For the acoustic equation ∂2
t u − div(a∇u) = 0 one can not apply Theorem 8.2.2

because the source term is now a differential operator div( f ∇u1). Imanuvilov and
Yamamoto [IY3] modified the scheme of the proof of Theorem 8.2.2 by using
Carleman estimates in the Sobolev space H(−1)(Q) of negative order, so one can
handle the source term like in Theorem 8.2.2. In [IY3] there are global uniqueness
and Hölder stability results for a similar to Corollary 8.2.3.

The same idea was applied by Imanuvilov, Isakov and Yamamoto [IIY] to the
far more difficult case of linear isotropic elasticity system

ρ(x)∂2
t u − µ(x)(�u + ∇ div u) − ∇(λ(x) div u)−

(8.2.8)
3∑

j=1

∇µ · (∇u j + ∂ j u)e j in Q = �× (−T, T )

for the displacement vector u = (u1, u2, u3). Here � is a domain in R
3 with C4-

boundary and e1, e2, e3 is the standard basis in R3. We let d = in f |x | and D =
sup|x | over x ∈ �. By translating � we can assume that D2 < 2d2. As above we
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introduce Q(ε) = Q ∩ {ε < |x |2 − θ2t2 − d2}. Let us indroduce conditions

(8.2.9) −θ0 < x · ∇a/a, a2θ2 + 2|∇a|θd < 1 − θ0 on �

with some positive θ0, and the class of the elastic parameters

E = Eθ,θ0,ε0,M = {(λ,µ, ρ) : |λ|6(�̄) + |µ|7(�̄) + |ρ|7(�̄)

≤ M, ε0 < λ+ µ, ε0 < µ, ε0 < ρ on �̄,

a = (ρ/µ)1/2 and a = (ρ/(2µ+ λ))1/2 satisfy (8.2.9)}
where ε0 > 0 and M > 0 are some positive constants. We will use two sets
G(; j), j = 1, 2 of the initial and lateral boundary data u0 ∈ H(8)(�), u1 ∈ H(7)(�),
g ∈ C7([−T, T ]; H(1)(∂�)) satisfying the standard compatibility conditions at
∂�× {0} (of order 7). Differentiating the equations (8.2.8) and the lateral bound-
ary conditions with respect to t and using known energy estimates for the elasticity
system [Ci] and Sobolev imbedding theorems we conclude that

|∂6
t u(; ρ, λ, µ,G)|0(Q) + |∂αx ∂5

t u(; ρ, λ, µ,G)|0(Q) < C when |α| ≤ 1,

for all elastic parameters in E and the initial and boundary data G of the described
regularity.

To guarantee uniqueness of elastic parameters we will use two sets G(; j) of
the initial and lateral boundary data (u0(; j),u1(; j), g(; j)), j = 1, 2. Denote by
D the 12 × 7-matrix⎛
⎜⎝
µ1�u0(; 1) + (λ1 + µ1)∇(divu0(; 1)) (divu0(; 1))I3 ∇u0(; 1) + (∇u0(; 1))T

µ1�u1(; 1) + (λ1 + µ1)∇(divu1(; 1)) (divu1(; 1))I3 ∇u1(; 1) + (∇u1(; 1))T

µ1�u0(; 2) + (λ1 + µ1)∇(divu0(; 2)) (divu0(; 2))I3 ∇u0(; 2) + (∇u0(; 2))T

µ1�u1(; 2) + (λ1 + µ1)∇(divu1(; 2)) (divu1(; 2))I3 ∇u1(; 2) + (∇u1(; 2))T

⎞
⎟⎠

constructed from these data.
Let ω be a subdomain of � with ∂� ⊂ ∂ω (boundary layer) and Qω = ω ×

(−T, T ).

Theorem 8.2.5. Let us assume that (ρ, λ, µ), (ρ1, λ1, µ1) are in Eθ,θ0,ε0,M , that
λ1 = λ,µ1 = µ on ∂� and that for some ε0 > 0 we have:

at any point of �̄ absolute value of one of

(8.2.10) 7 × 7 minors of the matrix D is not less than the number ε0.

Then there are constants C and κ ∈ (0, 1) depending only on Q, E,G, θ, ε0

such that

‖λ1 − λ‖2(�) + ‖µ1 − µ‖2(�) + ‖ρ1 − ρ‖2(�)

≤ C
2∑

j=1

‖u(; λ1, µ1, ρ1; G(; j)) − u(; λ,µ, ρ; G(; j))‖κ(5)(Qω)

for all (ρ, λ, µ), (ρ1, λ1, µ1) ∈ Eθ,θ0,ε0,M .
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The condition (8.2.10) is somehow restrictive, but it guarantees the indepen-
dency of the data (u0(; 1),u1(; 1)) and (u0(; 2),u1(; 2)). For example, it is satisfied
for

u0(x ; 1) = (x1x2, 0, 0), u1(x ; 1) = (0, 0, 0),

and

u0(x ; 2) = (x1, x2, x3), u1(x ; 2) = (0, x2, x3),

provided (ρ, λ, µ) ∈ E .
Indeed, since the initial data are harmonic functions, the terms with � in D are

zero. Then using the condition λ+ µ > ε0 one can drop this factor in the first col-
umn of D. The needed 7 × 7-minor is now formed by the rows 2, 7, 8, 9, 10, 11, 12.

Conditions of Theorem 8.2.5 can relaxed in several ways. In particular, a local
version (when the data are given on some part of ∂�, like in Theorem 8.4.1) is
available. Also instead of full Cauchy data one can prescribe on some part of ∂�
zero Dirichlet boundary condition, etc. The Hölder stability estimate of Theorem
8.2.5 most likely can be improved to a Lipschitz one, which is quite promising for
good numerics.

Local uniqueness and Lipschitz stability results are available for the more
challenging problem with zero initial data; see the paper of Bukhgeim and
Lavrent’ev [LaB], where the solution of the hyperbolic problem (8.0.1)–(8.0.3)
(with a0 = a = 1, b = 0) and its Neumann data are prescribed on the whole lat-
eral boundary ∂�× (0, T ) when T is large. These results are obtained by using
integral geometry over the family of ellipsoids generated by intersections of back-
ward and forward characteristic cones for the wave equation. The problems of
integral geometry (with the data over curves joining points of the whole bound-
ary) are stable (Theorem 7.1.4) as well as the Cauchy problem for nontrapping
hyperbolic equations with the data on a “large” part of ∂� (Theorem 3.4.5). By
using reduction to an inverse source problem and division and differentiation with
respect to t as in the proof of Theorem 8.2.2, one can hope to obtain good stability
when determining coefficients of a hyperbolic equation. Yamamoto [Y] obtained
certain “local” or “generic” results in this direction.

8.3 Many measurements: use of beam solutions.

We consider the operator

Au = −�u + b0∂t u + b · ∇u + cu.

LetP be a half-space in R
n and�0 = � ∩ P , γ0 = ∂� ∩ P . We define the local

lateral Neumann-to-Dirichlet map �ε(b, c; T ) : g1 → g) on γ0 × (0, T ), where u
is a solution to the mixed problem (8.0.1), (8.0.2), (8.0.3) with f = 0, zero initial
data, and supp g1 ⊂ �0 × (0, ε). In this section we assume that b0, b, c do not
depend on t . By � j,ε we denote �(b j , c j ; T ).
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Theorem 8.3.1. Suppose that�0 is simply connected, b0, b ∈ C2(�), c ∈ L∞(�),

(8.3.1) diam�0 < T,

and b is given on γ0.
Then the local Neumann-to-Dirichlet map �ε(b, c; T ) uniquely determines

b0, curl b, 4c + b · b − 2 div b in �0.

The proof is based on the following results.

Lemma 8.3.2. �ε uniquely determines the integral

(8.3.2)
∫

Q
(−u(b0 + b∗

0)∂t v − u(b + b∗) · ∇v + (c − div b)uv)

for any solution u to the problem (8.0.1)–(8.0.3) with given ∂νu on ∂�× (0, T ),

(8.3.3) ∂νu = 0 on (∂�\γ0) × (0, T ) and in C2
0 (∂�× (0, T )),

and any (given) solution v ∈ H(2)(Q) to the backward initial value problem for the
hyperbolic equation

(� + b∗
0∂t + b∗ · ∇)v = 0 in Q,(8.3.4)

v = ∂t v = 0 on �× {T },(8.3.5)

∂νv = 0 on (∂�\γ0) × (0, T ),(8.3.6)

where � = ∂2
t −� and b∗

0, b
∗ are some given functions with the same properties

as b0, b.

PROOF. First observe that �ε uniquely determines �T . Indeed, let us pick any
g1 supported in γ0 × (0, T ). Let represent it as the sum g1,1 + · · · + g1,m with
supp g1,k in γ0 × [tk, tk + ε]. Denote by uk a solution to the mixed hyperbolic
problem (8.0.1)–(8.0.3) with large T and with Neumann data g1,k . Since the coef-
ficients of the differential equation do not depend on t , the function uk(x, t − tk)
solves the mixed hyperbolic problem with the translated data g1,k(x, t − tk) that
are supported in [0, ε]. Then �ε uniquely determines uk(x, t − tk) when x ∈ γ0,
0 < t < T , and therefore uk is uniquely determined on γ0 × (0, T ). Thus we obtain
u on γ0 × (0, T ). So we are given �T .

Multiplying the equation for u by v and integrating by parts gives

0 =
∫

Q
((� + b0∂t + b · ∇ + c)u)v

=
∫
∂�×(0,T )

(∂νvu − ∂νuv + b · νuv)

+
∫

Q
((� − b0∂t − b · ∇ − div b + c)v)u,

where we used that b0 does not depend on t and the Cauchy data for u are zero at
t = 0 and for v at t = T , so the integrals over�× {0} and over�× {T } are zero.
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From conditions (8.3.3), (8.3.6), the integral over ∂�× (0, T ) is reduced to the
integral over γ0 × (0, T ), where ∂νu, v, ∂νv are given. The map�T then uniquely
determines u on this over part of the lateral boundary, and hence we are given the
boundary integral. Using the equation for v , we complete the proof. �

Lemma 8.3.3. For any x ∈ R
n, any direction σ , and any function φ ∈ C∞

0 (Rn)
there is a solution u to equation (8.0.1) of the form

u(x, t) = φ(x + tσ )B(x, t) exp(iτ (x · σ + t)) + r (x, t),

B(x, t) = exp(−1/2
∫ t

0
(b0 + b · σ )(x + sω)ds)(8.3.7)

with

(8.3.8) r = ∂t r = 0 on �× {0}, ∂νr = 0 on ∂�× (0, T ),

and

(8.3.9) τ‖r‖2(Q) + ‖r‖(1)(Q) ≤ C(φ).

PROOF. Since

�(vw) = �vw + 2∂t v∂t w − 2∇v · ∇w + w�v

and (exp(iτ (x · ω + t)) = 0, equation (8.0.1) for u is equivalent to the following
equation for r :

(8.3.10) (� + b0∂t + b · ∇ + c)r = F,

where

F = (−� − b0∂t − b · ∇ − c)(� exp(iτ (x · σ + t))

= −((iτ (2∂t�− 2∇� · σ + (b0 + b · σ )�)

+ (� + b0∂t + b · ∇ + c)�) exp(iτ (x · σ + t)),

� = φ(x + tσ )B.

If B is given by formula (8.3.7), then the factor of iτ in the above formula is zero.
This is easy to derive by using the substitution s = θ + t in the integral defining
B. So

(8.3.11) F = F1 exp(iτ (x · σ + t)), ‖F1‖2(Q) + ‖∂t F1‖2(Q) ≤ C.

Since the coefficients b0, b, c do not depend on t , the function

R(x, t) =
∫ t

0
r (x, s)ds

solves the mixed hyperbolic problem (8.3.10), (8.3.8) with the right side

F2 =
∫ t

0
F =

∫ t

0
F1(, s)(iτ )−1∂s(exp(iτ (x · σ + s))ds.
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Integrating by parts with respect to s and using the bounds (8.3.11), we conclude
that ‖F2‖2(Q) ≤ C/τ . The standard energy estimates for mixed hyperbolic prob-
lems given by Theorem 8.1 imply then that ‖∂t R‖2(Q) ≤ C/τ , so we have the
bound (8.3.9) for r = ∂t R.

Since ‖F‖2(Q) ≤ C , applying again the energy estimates we obtain the bound
(8.3.9) for ‖r‖(1) and thereby complete the proof. �

Lemma 8.3.4. Assume that b∗
0, b

∗ do not depend on t and have the same regularity
properties as b0, b. For x, σ, φ in Lemma 8.3.3 there is a solution v to the hyperbolic
equation (� + b∗

0∂t + b∗ · ∇)v = 0 in Q of the form

v(x, t) = φ(x + tσ )B∗(x, t) exp(−iτ (x · σ + t)) + r∗(x, t),

B∗(x, t) = exp(−1/2
∫ t

0
(b∗

0 + b∗ · σ )(x + sσ )ds)(8.3.7∗)

with

(8.3.8∗) r∗ = ∂t r
∗ = 0 on �× {T }, ∂νr

∗ = 0 on ∂�× (0, T ),

and

(8.3.9∗) τ‖r∗‖|2(Q) + ‖r∗‖(1)(Q) ≤ C(φ).

The proof is similar to that of Lemma 8.3.3.

PROOF OF THEOREM 8.3.1.
Let L be any straight line such that it intersection L0 with �0 is contained in

the half-space P . Let σ be a direction of this line. We will show that our data
determine the integral of b0 + b · σ over L .

From our assumptions it is possible to find an interval [y, z] in R
n containing

L0 such that |y − z| < T , and both y and z do not belong to �0. Let us choose
δ > 0 so small that the δ-neighborhoods of y and z do not intersect�0 as well, and
the δ-neighborhood of [y, z] is contained in P . Let φ ∈ C∞

0 in the δ-neighborhood
of y and zero elsewhere. We choose the direction σ = −|z − y|−1(z − y). Then
the function φ(x + tσ ) is zero in (Rn\P × (0, T ) near �× [0, T ]. The boundary
conditions (8.3.8) for r guarantee that u constructed in Lemma 8.3.3 satisfies all the
conditions of Lemma 8.3.2. So does the function v , where we take b∗

0 = 0, b∗ = 0.
According to Lemma 8.3.2, we are given the integrals (8.3.2). Using the formulae
(8.3.7), (8.3.7∗) and the bounds (8.3.9), (8.3.9∗), we conclude that we are given

(8.3.12) iτ
∫

Q
(b0 + b · σ )(x)φ2(x + tσ )B(x, t)dxdt + · · · ,

where . . . denotes the terms bounded with respect to τ .
Dividing by τ and letting τ → +∞ yields the integral (8.3.12). Extending b0, b

as zero onto R
n\�0 and substituting X = x + tσ , θ = t in the integrals, we obtain
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the integral∫
φ2(X )

(∫ T

0
(b0 + b · σ )(X − θσ )B(X − θσ, θ )dθ

)
d X.

Since φ is an arbitrary smooth function supported near y, we are given the interior
integral when X = y, i.e.,

(8.3.13)
∫ T

0
(b0 + b · σ )(y − θσ )B(y − θσ, θ )dθ.

Using the substitution s = θ + s1 in the integral (8.3.7) defining B and differenti-
ating with respect to θ , we obtain

d/dθB(y − θσ, θ ) = d/dθ exp

(
−1

2

∫ 0

−θ
(b0 + b · σ )(y + s1ω) ds1

)

= −1

2
(b0 + b · ω)(y − θσ )B(y − θσ, θ ).

Therefore, the integral (8.3.13) is the difference of the value of the function
−2B(y − θσ, θ ) at the points θ = T and θ = 0. The value at 0 is −2, so we
are given the value at θ = T . Taking the logarithm, we obtain∫

L
(b0 + b · σ ).

Since the direction of L is −σ as well, we are given the integral of b0 − b · σ , and
therefore the integrals of b0 and of b · σ over all such L .

The next step is to show that these integrals determine b0 and curl b in�0. First,
we reduce the n-dimensional case to the two-dimensional one by intersecting �
with two-dimensional planes and considering only lines L in these planes. By
Corollary 7.1.2 (where K is the closure of the convex hull of �\P) the integrals
of b0 over L not crossing �\P uniquely determine b0 in �0.

The recovery of curl b is based on the equality∫
p(σ )

curl b =
∫

L
b · σ,

where p(σ ) is a half-plane with exterior normal orthogonal to σ that does not
intersect �\P . To prove this equality, introduce orthonormal coordinates x1, x2

such that the x1-direction coincides with the exterior unit normal to p(σ ). Then the
x2-direction is parallel to σ . We have curl b = ∂1b2 − ∂2b1. Integrating by parts,
we obtain∫

p(σ )
curl b =

∫
L

b2 +
∫

p(σ )∩∂�
(ν1b2 − ν2b1) =

∫
L

b · σ + I.

Since the direction (−ν2, ν1) is tangential to ∂�, the integral I is given by the
conditions of Theorem 8.3.2. Given the integrals of curl b over all such p(ω), we
can find the integrals of curl b over L by considering parallel translations p(σ ) by
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θ and then differentiating the integrals over the translated p(σ ) with respect to θ .
As above, the integrals over L uniquely determine curl b in �0.

As in the proof of Theorem 5.4.1, curl b uniquely identifies b• = b − ∇φ, where
φ is a C1(�0)-function. We can assume that this function is zero at a point of �0.
Since b is given there by the conditions of Theorem 8.3.1, both φ and ∂νφ are
given there as well. As in the proof of Theorem 5.5.1, the substitution u = eφ/2v
transforms the equation for u into the equation

v + b0∂t v + b• · ∇v +
(

c + 1

2
div b• − 1

4
|b•|2 − 1

2
div b + 1

4
|b|2

)
v = 0.

Since φ and ∂νφ are given on γ0, the Neumann-to-Dirichlet map for the original
equation uniquely determines the map for the new equation. To complete the proof,
it suffices to show that c − 1

2 div b + 1
4 |b|2 is uniquely determined when b0, b• are

given. We will again make use of integrals (8.3.2), where now b0, b = b• are given.
We will use in the integrals (8.3.2) new functions u• given in Lemma 8.3.3 for
the •-equation and solutions v to the hyperbolic equation (8.3.4) with b∗

0 = −b0,
b∗ = −b. Multiplying in the integrand, we will have

φ2(x + tω)(c(x) + div b• − 1

4
|b•|2 − 1

2
div b + 1

4
|b|2) + O(τ−1).

Therefore, we are given integrals of the first term over Q. Repeating the argument
from the beginning of the proof of Theorem 8.3.1, we conclude that we know
(nonweighted) integrals of c over all straight lines L joining boundary points in
γ0. So, as above, uniqueness in the Radon transform guarantees that c − 1

2 div b +
1
4 |b|2 is unique in �0.

The proof is complete. �

Observe that using L2(Q)-bounds of solutions of hyperbolic initial boundary
value problems with source terms in negative Sobolev spaces H(−1)(Q) (see the
book of Lions and Magenes [LiM], Vol. 1, Theorem 9.3, p. 288) one can obtain
uniqueness of b0, b ∈ C1(�0). One has only to make minor changes in the proofs
of Lemmas 8.3.3, 8.3.4. Using the structure of fundamental solutions of hyperbolic
equations and integral geometry, Romanov [Rom] obtained uniqueness of curl b
and c − 1

2 div b + 1
4 |b|2 in 1974. Then Rakesh and Symes showed uniqueness of

c(b = 0, b0 = 0) in the paper [RS], where they first used beam solutions in inverse
hyperbolic problems. In these papers �0 = �; i.e., they consider the data on the
whole lateral boundary. Beam solutions seem to be a very useful tool in inverse
problems that has not yet been completely utilized. For review of the subject we
can refer to the books of Arnaud [Ar], Katchalov, Kurylev, and Lassas [KKL]
and to the paper of Ralston [Ra]. The idea to use rapidly oscillating solutions in
the inverse hyperbolic problems with given results of all boundary measurements
originated from the paper of Sylvester and Uhlmann [SyU2] on elliptic equations,
which has been discussed in Sections 5.2, 5.3.
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To formulate a stability estimate, we impose the following constraints on b0 j , c j :
|b0 j |2(�) + |c j |1(�) < M, j = 1, 2.

We view � j,ε as an operator from L2(�0 × (0, ε)) into H(1/6)(�0 × (0, T )) and
denote by δ the operator norm of �2,ε −�1,ε.

Theorem 8.3.5. There are C, λ depending only on P, �, ε,M such that
(a) When n = 3, we have |b02 − b01|0(�0) + |c2 − c1|0(�0) ≤ Cδλ.
(b) When n = 2 and b01 = b02, we have |c2 − c1|0(�0) ≤ C(− ln δ)−λ.

This result is proven in the paper of Isakov and Sun [IsS1] using the scheme
of the proof of Theorem 8.3.1. Observe that the (Hölder) stability estimates in the
three-dimensional case are much better than in the two-dimensional one and in
the inverse conductivity problem (Theorem 5.2.3). We think that by modifying the
method of the proof one can obtain Hölder-type stability in the two-dimensional
case as well.

When one is given the complete Dirichlet-to-Neumann map for any initial
data and the lateral Neumann data, and one measures the Dirichlet data and the
Cauchy data at the final moment of time, then there are results about unique-
ness of the coefficient c(x, t) ∈ L∞(Q) (see, e.g., [Is7]) that are similar to
Lemma 9.6.3.

The beam solutions can be constructed for more general hyperbolic equations. In
principle, this construction shows that for scalar a the lateral Neumann-to-Dirichlet
map (when T is sufficiently large) uniquely determines geodesic distances between
point of γ0, which is not enough to obtain uniqueness of a in�0 without additional
assumptions.

When γ0 = ∂�, there is another way to show that�l (when T is large) uniquely
determines geodesic distances between points of ∂�. A simple argument based on
the structure of the fundamental solution of the Cauchy problem for second-order
hyperbolic equations (progressive wave expansion) is given by Uhlmann [U1]. We
will give a minor part of it as the following exercise.

Exercise 8.3.6. Consider the hyperbolic equation (8.0.1) with the given lateral
Neumann-to-Dirichlet map. Show that a solution of the Cauchy problem for this
equation in R

n × (0, T ) with the (given) data u0, u1, f supported in R
n\� is

uniquely determined in (Rn\�) × (0, T ).

Given all geodesic distances on ∂�, a (conformal, or scalar) Riemannian metric
a(x)|dx |2 is uniquely determined, provided that its geodesics are regular (see, e.g.,
[Rom, p. 93]). So if �0 = ∂�, T is large, and a generates a regular geodesic, the
lateral Neumann-to-Dirichlet map uniquely determines a. Recently, Eskin [Es2]
showed that one also can recover unknown inclusions and established a connection
with Aharonov-Bohm effect from theoretical physics.

For a discussion of the uniqueness problem for a matrix a we refer to the paper
of Sylvester and Uhlmann [SyU4].
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8.4 Many measurements: methods of boundary control

We consider the initial value problem (8.0.1)–(8.0.3), where
(8.4.1)

Au = −a�, a0 = 1, a ∈ C∞(�) does not depend on t, and a > 0 on �.

We assume zero initial conditions u0 = 0, u1 = 0, which is natural in many appli-
cations (say, in geophysics). We define the Riemannian distance

da(x, y) = inf
∫
γ (x,y)

a−1/2dγ

where inf is over all smooth regular curves γ in�with endpoints x, y. Let γ1 = ∂�
and �−1

γ0,T
be the local lateral Neumann-to-Dirichlet map corresponding to a part

γ0 ⊂ ∂� : supp g1 ⊂ γ0 × (0, T ) and g0 is given only on γ0 × (0, T ).

Theorem 8.4.1. The lateral Neumann-to-Dirichlet map�−1
γ0,l

uniquely determines
a in the domain �γ0,T = {y ∈ � : da(y, γ0) < T/2}.

This result belongs to Belishev [Be1], [Be2], [Be3]. We will reproduce a mod-
ified scheme of his proof. It is more convenient to assume that we are given the
local lateral Dirichlet-to-Neumann map �γ0,T : g0 → g1.

Outline of proof. Let us assume that

(8.4.2) �T �= �.
This is certainly true for small T . By reconstructing a for small T and then in-
creasing T , we will cover the general case. For small T one can introduce in �T

the geodesic coordinates x(η, ξ ), η ∈ ∂�, ξ = dista(x, ∂�).
Let Wγ0,T g0 = u(, T ; g0) where u(; g0) be the solution to the hyperbolic problem

(8.0.1), (8.0.2), u = g0 on ∂�× (0, T ), supp g0 ⊂ γ0 × (0, T ) on �× {T }. We
introduce the weighted space L2,a(�) by using the scalar product

(u, v)2,a(�) =
∫
�

a−1uv

in L2(�). In fact, it is the same space L2(�) with a different scalar product and
(equivalent) norm. As observed in section 8.0, the operator Wγ0,T is linear and
continuous from L2(∂�× (0, T )) into L2,a(�), so we can define the operator
Cγ0,T = W ∗

γ0,T
Wγ0,T ( where W ∗ is the adjoint of W ) from L2(γ0 × (0, T ) into

itself. We have

(8.4.3) (Cγ0,T g01, g02)2(∂�× (0, T )) = (Wγ0,T g01,Wγ0,T g02)2,a(�).

By Cg0 we denote the restriction of C onto g0 supported in γ0.

Lemma 8.4.2. The operator Cγ0,T is a symmetric, positive linear operator in
L2(γ0 × (0, T )). It has zero kernel and is uniquely determined by �γ0,2T .
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PROOF. Assume that Cg0 = 0. Then (Wg0,Wg0)2,a(�) = 0 and Wg0 = 0. We
will extend the solution u = u(; g0) onto�× R as follows. Let us define u(x, t) =
−u(x, 2T − t) when T ≤ t < 2T , and u = 0 when 2T ≤ t . Then the limits of
u(x, t) as t → T from t < T and T < t are 0, and the limits of ∂t u(x, t) are equal.
By using the definition of a generalized solution, we conclude that u solves the
same hyperbolic equation in �× R. By assumption (8.4.2), the set �\�T is not
empty. Apparently, u = 0 on this set for all t ∈ R. The Laplace transform U (x, s)
of u with respect to t satisfies the elliptic equation s2U − a�U = 0 in �× R,
and it is zero on �\�T . By uniqueness of the continuation for elliptic equations
(Section 3.3) we have U = 0 on �. By inverting the Laplace transform we obtain
u = 0, and so its Dirichlet data g0 are zero as well.

To show that �γ0,2T uniquely determines Cγ0,T , observe that

(∂2
t − ∂2

s )(u(, t ; g01), u(, s; g02))2,a(�)

=
∫
�

((�u(, t ; g01))u(, s; g02) − u(, t ; g01)�u(, s; g02))

=
∫
γ0

((∂νu(, t ; g01))u(s; g02)) − u(, t ; g01)∂νu(, ; g02))

=
∫
γ0

(g01(t)�γ0,2T T g02(s) −�γ0,2T g01(t)g02(s))

is given for s < 2T, t < 2T when we are given g01, g02. In addition, u(t ; g01) = 0
when t < 0. By solving the Cauchy problem for the one-dimensional wave operator
(∂2

t − ∂2
s ) we uniquely determine (u(, t ; g01), u(, s; g02))2,a(�) when t < 2T, s +

t < 2T . Letting s = y = T , we obtain (Wγ0,T g01,Wγ0,T g02)2,a(�), which uniquely
determine Cγ0,T by (8.4.3).

The proof is complete. �

Exercise 8.4.3. Prove that for any harmonic function v in �, v ∈ C1(�), v = 0
on ∂�\γ0 we have

(u(, T ; g), v)2,a(�) = (g,�•v)2(�0 × (0, T ))

where �•v = �−1∗θv − θ∂νv, θ (t) = (T − t).
{Hint: integrate by parts in

0 =
∫
�×(0,T )

(a−1∂2
t u −�u)θv}

This result is important for the proof of Theorem 8.4.1 because it enables to
“replace” unknown function u(, T ; g0) by known function v .

Let γ be an open smooth subsurface of γ0 and Wγ,T the operator W considered
only on functions g0 that are zero outside γ × (0, T ).

Lemma 8.4.4. The range of Wγ,T is dense in L2,a(�γ,2T ).
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PROOF. Let us assume the opposite. Then by the Hahn-Banach theorem, there is
a function u1 ∈ L2(�) that is L2,a(�)-orthogonal to all solutions u(, T ; g0) with
g0 = 0 outside γ × (0, T ). Since all these solutions are zero outside�γ,2T , we can
let u1 be zero onto �\�γ,2T .

Let us consider the solution v to the backward initial boundary value problem

(∂2
t − a�)v = 0 on Q,

v = 0, ∂t v = u1 on �× {T },
v = 0 on ∂�× (0, T ).(8.4.4)

When u1 ∈ H̊ (1)(�) and g0 ∈ H̊ (1)(� × (0, T )), we have v, u ∈ H(2)(Q). Multi-
plying the equation ∂2

t − a�v = 0 by a−1u and using integration by parts with
respect to t and Green’s formula with respect to x , we obtain

0 =
∫

Q
a−1(∂2

t − a�)vu

=
∫
�×{T }

a−1u1u −
∫
∂�×(0,T )

(∂νvu − ∂νuv)

=
∫
�×{T }

a−1u1u −
∫
γ×(0,T )

g0∂νv .(8.4.5)

Some integrals over the boundary are zero due to the zero initial and boundary
value conditions (8.0.2), (8.4.4) for u and v . So for all such regular solutions the
last expression is zero. Approximating u1 by H̊ (1)-functions in L2(�), we can
obtain this equality in the less regular case under consideration. By the choice of
u1, we have ∫

γ×(0,T )
g0∂νv =

∫
�×{T }

a−1u1u = 0

when u = u(, T ; g0), g0 ∈ H̊ (1)(∂�× (0, T )), g0 = 0 outside γ × (0, T ). Since
the space of such g is dense in L2(γ × (0, T )), we conclude that v = 0 on γ ×
(0, T ). Therefore, v has zero Cauchy data on γ × (0, T ). As above, we extend
v onto �× (T, 2T ) by letting v(x, t) = −v(x, 2T − t). Then using mollifying
(described in the book of Hörmander [Hö2]) with respect to t and Theorem 8.1,
we can assume that v ∈ H(2)(�× (0, T )).

Now we can apply Corollary 3.4.6 to conclude that v = 0, ∂t v = 0 on �γ,2T ×
{T }, because any point of this surface can be reached by noncharacteristic defor-
mations of γ × (0, 2T ). So u1 = ∂t v = 0, which contradicts the choice of u1.

The proof is complete. �

In the proof we will use the following known (see, e.g. [Be3]) formula for
propagation of jump singularities of solutions v to the problem (8.4.4)

(8.4.6) lim
τ→T −ξ

∂νv(η, τ )(PT − Pξ )φ = α(η, ξ )φ(x(η, ξ ), T ), η ∈ γ0
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provided φ ∈ C∞(�), 0 < ξ < T , and α is a positive function determined only by
a. Here Pξ is the projector defined as the operator of multiplication by the function
χ (�γ0,2χ ). On the other hand, from (8.4.5) we have

(Wγ0,T g0, φ)2,a(�) = (g0, ∂νv)2(γ0 × (0, T ))

for all g0 ∈ L2(γ0 × (0, T )), so ∂νv = W ∗
γ,Tφ. Hence we have the relation

(8.4.7) ∂νv(; (PT − Pξ )φ) = W ∗
γ0,T (PT − Pξ )φ

A crucial observation is that�γ0,2T uniquely determines the right side of (8.4.7).
Indeed, let g0 j (; ξ ) be a complete system of functions in L2(γ0 × (T − ξ, T )) which
is orthonormal in the following sense: (Cγ0,2T g0 j , g0k)2(γ0 × (T − ξ, T )) = δ jk

(Kronecker delta). Such a system can be obtained from any L2(γ0 × (T − ξ, T ))-
complete system by using the Gram-Schmidt process. Lemma 8.4.2 guarantees
that (Cγ0, T g01, g02)2 is a scalar product. Lemma 8.4.2 and Lemma 8.4.4 also
imply that Wγ0, T g0 j (; ξ ) form an orthonormal basis in L2,a(�(γ0, χ )). We have

W ∗
γ0,T (PT − Pξ )φ

= W ∗
γ0,T

( ∞∑
j=1

(φ,Wγ0,Tg0 j (; T ))2,a Wγ0,T g0 j (; T )

− (φ,Wγ0,T g0 j (; ξ ))2,a Wγ0,T g0 j (; ξ )

)

=
∞∑
j=1

((φ,Wγ0,T g0 j (; T ))2,aCγ0,T g0 j (; T )

−(φ,W T g0 j (; ξ ))2,aCγ0,T g0 j (; ξ ))

Hence, due to Lemma 8.4.2 and Exercise 8.4.3, for any harmonic function φ ∈
C∞(�), φ = 0 on ∂�\γ0, the operator �γ0,2T uniquely determines W T ∗(PT −
Pξ )φ. Combining this observation with the relations (8.4.6), (8.4.7) we conclude
that �γ0,2T uniquely determines α(η, ξ )φ(x(η, ξ ), T ) for any such φ.

We will complete the reconstruction in the normal neighborhood N (T ) of γ0

by using appropriate φ. Here the normal neighborhood is defined as {x(η, ξ ) : η ∈
γ0, 0 < ξ < T/2}. Let K be any compact in � ∪ γ0. From the Runge property
for harmonic functions (see the proof of Lemma 5.7.2) and interior Schauder
estimates of Theorem 4.1 it follows that we can approximate the harmonic functions
1, x1, . . . , xn in C1(K ) by harmonic C∞(�)-functions φ0, . . . , φn which are zero
on ∂�\γ0. Therefore we can choose φ0, . . . , φn in such a way that φ0 >

1
2 and

the map x → (φ1(x), . . . , φn(x)) is one-to-one on K . We already found that�γ0,T

uniquely determines φ j/φ0(x(η, ξ )), j = 1, . . . , n when η ∈ γ0, ξ < T/2. Due to
the choice of φ j it uniquely determines x(η, ξ ) for these η, ξ . Since the map x(η, ξ )
is one-to-one we can uniquely find ξ = ξ (x), x ∈ N (T ). Then by the eikonal
equation

a−1(x) = |∇xξ |2, x ∈ N (T ).
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To show uniqueness in the remaining part of �γ0,T and for larger T we can use
a smaller domain �2 ⊂ � provided a is known in �\�2.

Let�2 be a subdomain of� such that γ2 = ∂�2\∂� is in�, ∂�2 ∈ C∞, and any
geodesic x(η, ξ ), η ∈ γ0, 0 < ξ < T , intersects�\�2 over a connected set. Let Q0

be ∪�γ0,T −|2t−T | × {t} over t ∈ (0, T ) and �20 = γ2 × (0, T ) ∩ Q0. We claim that
if a is given on�\�2 then the Dirichlet-to-Neumann operator�2 : g02 → ∂νu2 on
γ20 is uniquely determined by the original Neumann-to-Dirichlet operator. Here
u2 is the solution to the following hyperbolic problem

∂2
t u2 − a�u2 = 0 in �2 × (0, T )

u2 = ∂t u2 = 0 on �2 × {0}
u2 = g02 on ∂�2 × (0, T ), supp g02 ⊂ γ20

Indeed, let u be the solution of the above problem with�2, g02, γ20 replaced by
�, g0, γ0 × (0, T ). The original Dirichlet-to-Neumann map uniquely determines
∂νu on γ0 × (0, T ) when g0 is given. Due to our assumptions about �2 the set
Q0 can be covered by differentiable family of noncharacteristic surfaces with the
boundaries on γ0 × (0, T ). Since the hyperbolic equation is known in �\�2 ×
(0, T ) Corollary 3.4.6 guarantees that u is uniquely determined in Q0. Hence for
any g02 = u on ∂�2 × (0, T ) we are given ∂νu on γ20. Now our claim follows
from completeness of such u in L2(γ20) guaranteed by Lemma 8.4.5.

Lemma 8.4.5. Any function g02 ∈ L2(γ2 × (0, T )) with supp g02 ⊂ �20 can be
L2-approximated on�20 by functions u solving the equations (8.4.1) on�× (0, T )
with zero initial conditions on �× {0} and with u = 0 on (∂�\γ0) × (0, T ).

PROOF. Let us assume the opposite. Then there is a non-zero functionψ ∈ L2(γ2 ×
(0, T )), suppψ ⊂ �20 such that

(8.4.8)
∫
γ2×(0,T )

ψu = 0

for all u described in Lemma 8.4.5. Using completeness of smooth functions in
L2 we can assume that (extended) ψ ∈ C∞(Rn+1).

Let u∗ be the solution of the following transmission problem

∂2
t u− − a�u− = 0 in �−

2 × (0, T ), ∂2
t u+ − a�u+ = 0 in �+

2 × (0, T )

u− = ∂t u
− = 0 on �−

2 × {T }, u+ = ∂t u
+ = 0 on ∂�+

2 × {T }
u− = u+, ∂νu+ − ∂νu− = ψ on ∂�+

2 × (0, T )

u− = 0 on ∂�× (0, T ).(8.4.9)

Here �+
2 is a smooth subdomain of �2 with the closure in � such that suppψ ⊂

∂�+
2 , �−

2 = �\�+
2 and u∗ = u− on �−

2 × (0, T ), u∗ = u+ on �+
2 × (0, T ). By

subtracting ψ from u−
2 and using Theorem 8.1 we obtain existence of a (weak)

solution to the transmission problem with ∂k
t u∗ ∈ L2(�2 × (0, T )). By subtracting

(1 + a)∂2
t u−, (1 + a)∂2

t u+ from the both sides of the differential equations (8.4.9)
we can consider these equations and the relations on ∂�+

2 as an elliptic transmission
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problem. The solution of the elliptic transmission problem is the sum of volume
potentials over�+

2 × (0, T ), �−
2 × (0, T ) and of the single layer potential U with

density ψ over ∂�+
2 × (0, T ). The known properties of potentials (for the Laplace

equation) imply that for the sequence of domains �+
2k whose boundaries are im-

ages of ∂�+
2 under the maps�(x ; k) = x − k−1ν(x) (interior normal deformation)

we have |∇U (�(; k), )| < g ∈ L2(∂�+
2 × (0, T )) and the functions ∇U (�(; k), )

have limits almost everywhere on ∂�+
2 × (0, T ) when k → ∞. The similar prop-

erty holds for outside limits. From theory of elliptic boundary value problems it
follows that u+

2 ∈ H(2)(�
+
3 × (0, T )), u−

2 ∈ H(2)(�
−
3 × (0, T )) where �+

3 , �
−
3 are

subdomains of�+
2 , �

−
2 such that their closures are inside�+

2 , �
−
2 ∪ ∂�. From the

differential equation (8.4.9) we have

0 =
∫
�+

3 ×(0,T )
(a−1∂2

t u+ −�u+)u =
∫
∂�+

3 ×(0,T )
(∂νuu+ − u∂νu

+)

where we did integrate by parts two times, have used zero initial and final conditions
(8.4.9) for u and u+ and the differential equation for u. Letting �+

3 = �+
2k and

passing to the limit as k → ∞ we obtain that

(8.4.10)
∫
∂�+

2 ×(0,T )
(∂νuu+ − u∂νu

+) = 0

We can similarly consider u− to obtain

(8.4.11) −
∫
γ0×(0,T )

u∂νu
− −

∫
∂�−

2 ×(0,T )
(∂νuu− − u∂νu

−) = 0

where we have used that ∂�− = ∂� ∪ ∂�+, that u− = 0 on ∂� and that u = 0
on ∂�\�0. Adding the equalities (8.4.10) and (8.4.11) and using the transmission
condition (8.4.9) we conclude that

−
∫
γ0×(0,T )

u∂νu
− −

∫
∂�+

2 ×(0,T )
ψu = 0

From (8.4.8) we conclude that the first integral is zero. Since u on γ0 × (0, T )
can be any smooth function we have ∂νu− = 0 on γ0 × (0, T ). Using also the
boundary condition (8.4.9) we obtain that u− has zero Cauchy data on γ0 × (0, T ).
As above from uniqueness in the lateral Cauchy problem we derive that u− = 0
on Q0 ∩ (∂�+

2 × (0, T )).
Now we will complete the proof by showing that ψ = 0. Our first claim is that

u− = 0 on ∂�+
2 × (T/2, T ). Indeed, we have this equality on �20. Due to the

definition �20 ∩ {T/2 < t < T } is the intersection of ∂�+
2 × (T/2, T ) and of the

influence domain for our hyperbolic equation. Since ψ is supported in �20 we
conclude that a solution u− to the backward hyperbolic problem (8.4.9) is zero on
∂�+

2 × (T/2, T )\�20. Finally, u+ = u− = 0 on ∂�+
2 × (T/2, T ) and therefore a

solution u+ to the hyperbolic equation (8.4.9) with zero final conditions is zero on
�+

2 × (T/2, T ). Therefore from the transmission condition (8.4.9) we derive that
ψ = 0 on ∂�+

2 × (T/2, T ). To show thatψ is zero when 0 < t < T/2 we consider
the hyperbolic equation (8.4.9) for u+

2 in the intersection Q+ of �+
2 × (0, T/2)
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with the influence domain of �20 ∩ {0 < t < T/2}. We have zero Cauchy data on
�2 × {T/2} and zero lateral boundary data u+ = u− = 0 (on �20). By uniqueness
in the mixed hyperbolic problem u+ = 0 on Q+. Now from the transmission
conditions (8.4.9) and from our previous conclusions about u−

2 we derive that
ψ = 0 on the remaining part of �20. �

Observe that the assumption a ∈ C∞(�) is needed only for the formula (8.4.6)
(in fact C N with large N is sufficient). All other parts of the proof require only
a ∈ C1(�).

By extending this method Belishev and Kurylev [Be3], [BeK], [KKL] obtained
a complete solution of uniqueness problem for an anisotropic equation with com-
plete spectral data or with the lateral hyperbolic Dirichlet-to-Neumann map. They
proved the following result

Theorem 8.4.6. Let a be a C∞(�) positive symmetric matrix. Let a• be another
matrix of the coefficients of the operator A which produces the same complete spec-
tral data (eigenvalues and boundary values of normalized Neumann eigenfunction)
or the same lateral Neumann-to-Dirichlet map as a. Then there is an isometry of
the Riemannian manifold (�, a) onto the Riemannian manifold (�, a•) which is
identical on ∂�

There are other of recovery of the speed of the propagation which are not using
the formula (8.4.6). In particular, in [Be3] a so-called mark function (a harmonic
function with singularity inside � and with zero Dirichlet data on ∂� is used).
Also, Gaussian beams can be incorporated in the reconstruction process [KKL].

The anisotropic inverse hyperbolic problem has been considered by Sylvester
and Uhlmann [SyU4], who obtained uniqueness results for a in a linearized (around
the Euclidean metric) version of the inverse problem. They showed that by using
the progressive wave expansion for the Cauchy problem one can find Riemannian
distances between all boundary points of �. Then from known results [Rom] one
concludes that a conformal metric (a is scalar) is unique, and by using uniqueness
in the Radon transform and a harmonic map, one can prove the linearized version
in the general case.

8.5 Recovery of discontinuity of the speed of propagation

An important applied problem concerns recovery of a discontinuity surface of the
speed of propagation from boundary observations.

We consider the hyperbolic equation (8.0.1), where

Au = − div((1 + kχ (D × (−∞, T )))∇u), a0 = 1

in the half-space R
3
− × (−∞, T ) with zero initial data u = 0 when t < 0. Given

R > 0, we let γ0 = ∂� ∩ B(0; R), so the Neumann data g1 are supported in
B(0; R) × [0, T ].
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With respect to domains D j , we assume that they are subgraphs {(x, t) : x3 <

d j (x1, x2)} of Lipschitz functions d j . We introduce the uniqueness set

U = {−T/2 < x3, |x ′| < R}.
We will make use of the special Neumann data. To describe them we consider any
function φ ∈ H(2)(R) such that it is zero on (−∞, 0) and φ, φ′ are positive on the
interval (0, τ ) for some τ . Then the function φ(t + x3) is a solution to the wave
equation in the half-space with the Neumann data g1,φ(x ′, t) = φ′(t).

Theorem 8.5.1 (Uniqueness of Discontinuity Surface). Assume that

(8.5.1) −1 < k j < 0, d j < 0.

If solutions u j to the initial boundary value problem (8.0.1)–(8.0.3) with k =
k j , D = D j , and the Neumann data g1 = g1,φ on γ0 × {0, τ } for some τ satisfy
the condition

(8.5.2) u1 = u2 on γ0 × (0, T ),

then D1 ∩ U = D2 ∩ U.

PROOF. Our first claim is that

(8.5.3) u1 = u2 on QT \(Q1 ∪ Q2),

where QT is {0 < t + x3, t − x3 < T, |x ′| < R, x3 < 0}. To prove this, we denote
by Tr(x0, t0) the triangle {t0 + x0

3 < t + x3, t − x3 < t0 − x0
3 , x3 < 0}, which is a

translated and scaled triangle Tr from Lemma 3.4.6. Observe that (x0, t0) is a vertex
of this triangle. Let (x0, t0) be a point in QT \(Q1 ∪ Q2). Then there is positive ε
such that the set {x ′ : |x ′ − x0′ | < ε} × Tr(x0, t0) is contained in QT \(Q1 ∪ Q2).
On this set the function u = u2 − u1 satisfies the wave equation, and it has zero
Cauchy data on the part of the boundary of this set contained in {x3 = 0}. By
Lemma 3.4.7 we have u = 0 on this set and hence at the point (x0, t0).

Let us assume that the claim of Theorem 8.5.1 is wrong. After (possible) rela-
beling we can then assume that there is a point y(0) ∈ (∂D2\D1) ∩ U . Since ∂D2

is a Lipschitz surface, it has an (exterior) normal almost everywhere, so we can
in addition assume that there is an exterior normal ν at y(0). Let y(δ) = y(0) +
δν.

Let us introduce the functions

v(x, t) = φ(t + x3), v∗(x, t ; y, τ ) = |x − y|−1φ(−A0(t − τ ) − |x − y|),
where φ is the function from the beginning of this section and A0 = (1 + k2)1/2 is
the speed of propagation inside D2. We have

v = 0 when t + x3 < 0

v∗ = 0 outside conA0 (y, τ ).(8.5.4)
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Moreover, one can check that

(∂2
t −�)v = 0,

(∂2
t − (1 + k2)�)v∗ = 0 when x �= y.(8.5.5)

We have the following orthogonality relation.

Lemma 8.5.2. Under the conditions of Theorem 8.5.1, we have

(8.5.6)
∫

Q2

k2∇v · ∇v∗ = 0

for any v∗ = v∗(; y(δ), (|y3(0)| + δ)/A0 + ε) when δ, ε(δ) are positive and small.

PROOF. Subtracting equations (8.0.1) for u2 and u1 and letting u = u2 − u1, we
obtain

(∂2
t u − div((1 + k2χ (Q2))∇u) = div((k2χ (Q2) − k1χ (Q1))∇u1).

From (8.5.3) we have u = 0 on QT \(Q1 ∪ Q2). In addition, when δ, ε are
small we have ∇v · ∇v∗ = 0 outside a small neighborhood of the point Y (0) =
(y(0), |y3(0)|) on Q2. To convince yourself of this observe that the intersection of
the backward cone with the half-space {t + x3 > 0} will be in a small neighborhood
of Y (0) for small δ, since the surface of this cone is “steeper” than the boundary of
the half-space (because the speed of propagation inside Q2 corresponding to this
cone is less than outside). Using the definition of y(δ) and a continuity argument,
we can find small ε to guarantee that the intersection of the cone, the half-space,
and Q2 is simultaneously not empty and in a small neighborhood of Y (0).

According to the definition (8.0.5) of the generalized solution we have

(8.5.7)
∫

V
(∂t u∂tψ − (1 + k2χ (Q2))∇u · ∇ψ) = −

∫
V

k2∇u1 · ∇ψ

for any test function ψ ∈ C∞
0 (V ). Since u = 0 on V \Q2, we can replace 1 +

k2χ (Q2) by 1 + k2 and use asψ on C∞(V )-function that is zero near ∂V ∩ Q2; in
particular, ψ = v∗ with small δ, ε. Integrating by parts on the left side of (8.5.7)
to apply all partial differentiations to ψ and exploiting that v∗ solves the wave
equation (8.5.5) on V ∩ Q2, we conclude that the left side of (8.5.7) is zero.
Therefore, we have obtained (8.5.6) with u1 instead of v . Our choice of the lateral
Neumann data guarantees that v1 has the same Neumann data as v near � × {0}.
Observing that by condition (8.5.1) the speed of propagation outside Q1 is greater
than that inside, we conclude that v = u1 in V .

The proof is complete. �

We return to the proof of Theorem 8.5.1.
From the definition of v, v∗ and the equality

∂3|x − y(δ)| = |x − y(δ)|−1(x3 − y3(δ))
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we have

−∇v · ∇v∗ = −φ′(t + x3)∂3v∗

= φ′(t + x3)(|x − y(δ)|−3φ(−A0(t − τ ) − |x − y(δ)|)|
+ |x − y(δ)|−2φ′(−A0(t − τ ) − |x − y(δ)|))(x3 − y3(δ)),

due to the assumption φ′ > 0. Besides, x3 − y3(δ) > 0 when x ∈ Q2 ∩ V , pro-
vided that δ and ε are small. Hence

(8.5.8) −
∫

Q2

k2∇v · ∇v∗ > 0

when δ, ε are small.
For small δ and ε, by Lemma 8.5.2 we have the equality (8.5.6), which contradicts

the inequality (8.5.8). This contradiction shows that the assumption Q1 ∩ U �=
Q2 ∩ U is wrong.

The proof is complete. �

In geophysics one is also interested in spherical waves φ(t + |x − a|) instead
of plane waves. A minor modification of Theorem 8.5.1 gives a sharp uniqueness
result in this case. Let a function φ satisfy the same conditions as in Theorem 8.5.1.
Then φ(t + |x |) is a solution to the wave equation in the half-space {x3 < 0} with
the Neumann data hφs(x ′, t) = φ′(t + |x ′|)|x |−1x3.

Let us introduce the spherical uniqueness set Us = {|x | < T/2, |x ′| < R}.

Theorem 8.5.3s . Let condition (8.5.1) be satisfied. If for solutions u j of the initial
boundary value problem (8.0.1)–(8.0.3) with k = k j , D = D j , and g1 = hφs on
�0 × (0, τ ) for some τ we have the equality (8.5.2), then D1 ∩ Us = D2 ∩ Us.

Exercise 8.5.3. Give a proof of Theorem 8.5.1s .

We expect that the proof of Theorem 8.5.1 can be repeated with the natural
changes when applying sharp uniqueness of the continuation result, considering
the intersection of two cones instead of the cone and the half-plane, and proving
the inequality (8.5.8).

We think that the scheme of the proof of Theorem 8.5.1 can be transformed
into an efficient algorithm of numerical reconstruction. To do so one considers one
(unknown) equation (8.0.1), a = 1 + kχ (D), and makes use of solutions v∗ of the
wave equation to form a functional similar to the integral (8.5.8). This functional
can be found from the boundary measurements and the continuation of the wave
field. For some simple geometries of D this continuation is not needed. Then one
can change T and calculate this functional. The first time it is positive, the wave
strikes ∂D. By using spherical waves from different sources x0, one can calculate
distances from x0 to ∂D and recover D.

In the paper [Is11] there is a similar result for the classical elasticity system.
Hansen [H] considered a linearized variant of this problem. Rakesh [Ra] made use
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of the study of propagation of singularities after reflection from ∂D to recover
convex D entering the acoustic equation

(1 + kχ (D))∂2
t − div((1 + kχ (D))∇u) = 0.

The coefficient of this equation involves discontinuity similar to that under the
consideration, but the speed of the propagation is 1 everywhere.

8.6 Open problems

As in previous chapters we will list some outstanding research problems.

Problem 8.1 (Two Speeds of Propagation). Give sufficient conditions for unique-
ness of the coefficients a01(x), a02(x) ∈ C2[0,+∞) of the fourth-order hyperbolic
equation

(a01∂
2
t − ∂2

x )(a02∂
2
t − ∂2

x )u = 0 in (0,+∞) × (0, T )

with zero initial conditions u = · · · = ∂3
t u = 0 on (0, 1) × {0} and some lateral

boundary data (e.g., u = g0, ∂x u = g1 on {0} × (0, T ) with prescribed g j satisfying
the conditions of the type (8.1.9)) when one is given additional lateral data (e.g.,
∂2

x u, ∂3
x u on {0} × (0, T )).

One can obtain simple conclusions from the results of Section 8.1.1. Say, if the
lateral data are u = t2, ∂2

x u = 0 on {0} × (0, T ) and one is given the additional
lateral data ∂x u, ∂3

x u on {0} × (0, T ) and a02(0), ∂x a02(0) are given as well, one
obtains for the function v = (a02∂

2
t − ∂2

x )u the second-order equation and data that
guarantee uniqueness of a01 due to Corollary 8.1.6. However, there are difficulties
with proving uniqueness of a02 (and of coefficients of more general higher-order
equations as well as hyperbolic systems of first order). The main source of these
difficulties is the presence of many speeds of propagation.

Problem 8.2. In the problem about identification of the coefficient c in section
8.1 obtain sufficient/necessary conditions for a function g(t), 0 < t < T , to be the
data of the inverse problem.

Observe that the first necessary conditions in the inverse problem for one-
dimensional hyperbolic equations have been obtained by M. Krein [Kr], where
there are no proofs. Later on in a similar problem, Symes [Sym] obtained suffi-
cient conditions that are quite close to being necessary as well. Loosely speaking,
these conditions mean that for any C the kernel C − g0(s − t) is positively defined.
Such conditions on g0 are desirable, in particular for improving numerics, because
the integral equation (8.1.4) has a strong (in fact Riccatti-type or square) nonlin-
earity, and without proper conditions on g its solution (which exists for small T )
blows up for larger T . on ∂�× (0, T ) uniquely determine b0 on �, provided that
diam� < T .
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Let us consider the initial value problem

u + cu = 0 in �× (0, T ),

u = ∂t u = 0 on �× {0}, ∂nu = g1 on ∂�× (0, T ),

where � = {xn > 0} and g1(x1, . . . , xn−1, t) = 1.

Problem 8.3. Prove uniqueness of the coefficient c = c(x) in {xn < T/2} given
u on ∂�× (0, T ).

There is a similar question when g1 = δ (the delta function with the pole at the
origin) that looks even more difficult.

Problem 8.4. Is it possible recover all three scalar coefficients a = a(x) ∈
C1(�), b0 = b0(x) ∈ C1(�), and c = c(x) ∈ L∞(�) of equation (8.0.1) (with
a0 = 1, b = 0, f = 0) given its lateral Neumann-to-Dirichlet map for large T ?

It is supposed to be solved by the methods of boundary control (Section 8.4).
Observe that there is only an assumption on smoothness and positivity of a.

Problem 8.5. Obtain uniqueness results from single boundary measurements for
some anisotropic Maxwell’s and elasticity systems similar to results of Imanuvilov,
Isakov, and Yamamoto [IIY] for classical isotropic dynamical elasticity system.

Difficulties here are in particular due to absence of Carleman estimates. Partial
results are obtained by Belishev, Isakov, Pestov, and Sharafutdinov [BeIPS].

Problem 8.6. Prove uniqueness of all three time independent coefficients ρ, λ, µ
of the dynamical Lame system with given lateral elastic Dirichlet-to-Neumann
map.

So far there are partial results due to Rachele [R] under complicated geometrical
assumptions on speeds of propagation.

Problem 8.7. Is it possible to remove the assumption (8.5.1) of Theorem 8.5.1
that tells that the speed of propagation inside D is less then that outside?
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Inverse parabolic problems

9.0 Introduction

In this chapter we consider the second-order parabolic equation

(9.0.1) a0∂t u − div(a∇u) + b · ∇u + cu = f in Q = �× (0, T ),

where � is a bounded domain the space R
n with the C2-smooth boundary ∂�. In

Section 9.6 we study the nonlinear equation

(9.0.1n) a0(x, u)∂t u −�u + c(x, t, u) = 0 in Q.

We prescribe the initial condition

(9.0.2) u = u0 on �× {0}
and the lateral boundary condition

(9.0.3) u = g0 on ∂�× (0, T ).

Here a is a symmetric strictly positive matrix function with entries in L∞(Q); b is
a (real-valued) vector function with the same regularity properties; and a0, c are
(real-valued) L∞(Q)-functions, a0 > ε > 0.

For these parabolic equations there are convenient anisotropic functional spaces
H2l,l;p(Q) and C2l,l(Q), which we will describe below. The first one is formed of
all functions u(x, t) with finite norm

‖u‖2l,l;p(Q) =
∑

‖∂k
l ∂
α
x u‖p(Q)

where the sum is over k, α with 2k + |α| ≤ 2l, l is integer, and the second one of
all functions u(x, t) with the finite norm

|u|2l,l(Q) =
∑

|∂k
t ∂
α
x u|2λ,λ(Q),

where the sum is over the same set of indices, λ = l − [2l]/2. Here |v|2λ,λ(Q) =
sup |v(x + h, t + s) − v(x, t)|/(|h|2λ + |s|λ) over (x + h, t + s), (x, t) ∈ Q.

These are Banach spaces, and if p = 2, the first one is a Hilbert space
with respect to an equivalent norm. Since we are interested in discontinuous

255



256 9. Inverse parabolic problems

coefficients a of equation (9.0.1) a classical solution does not necessarily ex-
ist, so we recall the following standard definition of a generalized solution
u ∈ C([0, T ]; H(1)(�)) to the initial boundary value problem (9.0.1), (9.0.2),
(9.0.3) with f = f0 + div f •, f0, f • ∈ L2(Q) as a function satisfying the inte-
gral identity ∫

Q
(−u∂t (a0v) + a∇u · ∇v + (b · ∇u + cu)v)d Q

=
∫

Q
( f0v − f • · ∇v)d Q +

∫
�

a0u0v(, 0)

(for all (test) functions v ∈ H1,2(Q) that are zero on�× {T } and on ∂�× (0, T ))
as well as the lateral boundary condition (9.0.3). Here we have assumed that
∂t a0 ∈ L∞(Q).

We will describe some basic solvability and regularity results about the direct
problem (9.0.1)–(9.0.3) in the following theorem.

Theorem 9.1. (i) (Weak Solutions) Assume that f j ∈ L2(Q), u0 ∈ L2(�),
g0, ∂t g0 ∈ L2((0, T ); H(1/2)(∂�)).

Then there is a unique (generalized) solution u ∈ C([0, T ]; H(1)(�)) to the initial
boundary value problem (9.0.1)–(9.0.3).

(ii) (Regularity) If f j ∈ L∞(Q) and u ∈ Cλ,λ/2(�), where � is an (open) part
of ∂QT , 0 < λ < 1 then u ∈ Cµ,µ/2(Q ∪ �) with some µ ∈ (0, 1).

If ∂� ∈ C2+λ, a0, a jk, ∂ma jk, bk, c, f0 ∈ Cλ,λ/2(Q
0
), f j = 0, u0 ∈ C2+λ(� ∩

Q
0
), g0 ∈ C2+λ,1+λ/2(∂�× [0, T ] ∩ Q

0
), where Q0 is a subdomain of Q and

the following compatibility conditions are satisfied: u0 = g0, ∂t g0 + Au0 = f0

on ∂�× {0}, then u ∈ C2+λ,1+λ/2(Q0 ∪ �0), where �0 is an open part of

∂Q ∩ Q
0
.

Moreover, under the mentioned Hölder regularity conditions on the coefficients,
for any subdomain Q1 of Q0 with positive distance to ∂Q0 ∩ Q there is a constant
C depending on this distance such that

|u|2+λ,1+λ/2(Q1) ≤ C(| f |λ,λ/2(Q0) + |g0|2+λ,1+λ/2(∂�× [0, T ] ∩ ∂Q0)

+ |u0|2+λ(�× {0} ∩ ∂Q0) + ‖u‖∞(Q0))

and when only a0, a,∇a, b, c ∈ C(Q) and p �= 3/2, then

‖u‖2,1;p(Q1) ≤ C(‖ f ‖p(Q0)

+ ‖g0‖2−2/p,1−1/p;p(∂�× [0, T ] ∩ ∂Q0)

+ ‖u0‖2−2/p,p(�× {0} ∩ ∂Q0) + ‖u‖p(Q0)).

If Q0 = Q, the terms ‖u‖∞(Q) and ‖u‖p(Q) can be dropped.

Here ∂QT is ∂Q ∩ {t < T }. Essentially, these results are proven in the book of
Ladyzhenskaya, Solonnikov, and Ural’tseva [LSU]. Part (i) follows from Theorem
4.2 of [LSU] when we reduce our case to the case of zero lateral data by using
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a function U that is in L2((0, T ); H(1)(�)) together with ∂tU and that coincides
with g0 on ∂�× (0, T ). The existence of such a function follows from extension
theorems for Sobolev spaces. Observe that U ∈ C([0, T ], L2(�)). Then we let
u = U + u0 and make use of the results of [LSU] for u0. Local bounds are given
in [LSU, chapter 4, section 10].

The regularity part of Theorem 9.1 in particular implies continuity of solutions
of parabolic equations with discontinuous coefficients, provided that the initial and
lateral boundary data are Hölder continuous and the source term is measurable and
bounded.

Using the known definition of a generalized solution to equation (9.0.1) with
lateral Neumann data a∇u · ν = �u on ∂x Q ([LSU, p. 168]), we obtain the useful
identity ∫

Q
(−u∂t (a0v) + a∇u · ∇v + (b · ∇u + cu)v)

=
∫

Q
( f0v − f • · ∇u) +

∫
∂�×(0,T )

�uv −
∫
�

a0u0v(, 0)(9.0.4)

for all test functions v ∈ H1,2(Q) that are equal to zero on �× {T }. This identity
makes sense for generalized solutions u from Theorem 9.1(i).

Solutions to linear parabolic equations have remarkable positivity properties,
which we will formulate as follows.

Theorem 9.2 (The Positivity Principle). If f j = 0, f0 ≥ 0 on Q, g0 ≥ 0 on ∂�×
(0, T ), u0 ≥ 0 on�, then u ≥ 0 on Q. In addition, if u(x, t) > 0, then u(y, s) > 0
when y ∈ �, t < s ≤ T .

This result follows directly from the maximum principles when the coefficients,
the source term, and the initial and boundary data are (Hölder) smooth. We refer
to the book of Friedman [Fr, chapter 2]. In the general case we can approxi-
mate the coefficients, source term, and boundary data by smooth nonnegative data
and pass to the limit by using known stability theorems ([LSU, Theorem 4.5,
p. 166]).

Exercise 9.3 (Maximum Principle). Prove that if in equation (9.0.1) f j = 0 and
c ≥ 0 in Q, then u ≤ max u over ∂QT provided max u ≥ 0.

{Hint: let W = max u over ∂QT and apply Theorem 9.2 to difference W − u.}

Exercise 9.4. Let u ∈ C2,1(Q) ∩ C(Q) be a solution to the nonlinear equation
(9.0.1n). Assuming that c(x, t, u)u ≥ 0 for all u and U− ≤ u ≤ U+(U−,U+ and
negative and positive constants) on ∂QT , prove that U− ≤ u ≤ U+ on Q.

{Hint: to prove that w = U+ − u ≥ 0, observe that the nonlinear operator
(9.0.1n) at U+ is c(x, t,U+) ≥ 0. Subtract the nonlinear parabolic equations for U+
and u to obtain for w a linear parabolic equation with the source term c(x, t,U+)
and apply Theorem 9.2.}
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In Sections 9.3 and 9.5 we will make use of analyticity in time of solutions
of parabolic problems with time-independent coefficients and of stabilization of
solutions of equations with maximum principle to solutions that do not depend
on t . We are going to formulate related results about direct problems. Let A =
− div(a∇) + b · ∇ + c.

Theorem 9.5 (Analyticity with Respect to t). Assume that the coefficients of A
do not depend on t; a0,∇a ∈ C(�); b, c ∈ L∞(�); the right side of (9.0.1) f =
0; and the Dirichlet data g0 ∈ C2(∂�× R

+) are (complex) analytic in a sector
containing the ray (T − ε,∞).

Then a solution to the first boundary value problem (9.0.1), (9.0.2), (9.0.3) is
complex analytic with respect to t in a smaller sector. There is C depending only
on�, H1,∞(�)-norms of a0, a, b, c, and the ellipticity constant of A such that for
a solution u to the parabolic boundary value problem (9.0.1), (9.0.2), (9.0.3) is
with T = ∞, f = 0, u0 = 0, and g0 ∈ H(1/2)(∂�× (0, τ )) that does not depend
on t ∈ (τ/2,∞), one has

‖u(, t)‖(1)(�) ≤ C‖eCt g0)‖(1/2)(∂�× (0, τ )), t ∈ S.

This result follows from the abstract theory of holomorphic semigroups of op-
erators, described, for example, in the books of Krein [Kre] and Yosida ([Yo],
section 9.10). Applicability of the basic results of the abstract theory follows from
the bound of the resolvent of corresponding elliptic boundary value problems given
in several papers. We refer to the most recent of them, by Colombo and Vespri
[CoV], which contains an extensive bibliography.

Theorem 9.6. Assume that the coefficients of A do not depend on t; 0 ≤ c, and g0

does not depend on t ∈ (τ/2,∞), g0 ∈ C2(∂�× R
+),‖g0‖(1/2)(∂�× (0, τ )) ≤ 1.

Let u0 be the solution to the Dirichlet problem Au0 = 0 in �, u0 = g0(, τ ).
Then there are C and θ > 0 depending only on �, τ , on the norms of the

coefficients and of ∇a in L∞(�), and on the ellipticity constant of A such that

‖u(, t) − u0‖∞(�) ≤ Ce−θ t , when τ/2 < t.

This result is proven in the book of Friedman [Fr, pp. 158–161].
In inverse problems one is looking for one or several coefficients of equation

(9.0.1) or for the source term f , when in addition to the initial and lateral boundary
data (9.0.2), (9.0.3) we are given either the final data

(9.0.5) u = uT on ω × {T }

where ω is an open subset of �, or the lateral (Neumann) data

(9.0.6) a∇u · ν = g1 on γ × (0, T ),

where γ is a part of ∂�.
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9.1 Final overdetermination

In this section we will consider the inverse problem with additional data at the
final moment of time T . It was introduced as early as in 1935 by Tikhonov [Ti],
motivated by a geophysical interpretation (recovery of a geothermal prehistory
from contemporary data). He studied the one-dimensional heat equation in the
half-plane and proved the uniqueness of its (bounded) solution with prescribed
lateral and final data. In the 1950s this backward parabolic problem was studied
by Fritz John [Jo1], [Jo3]. We refer for more detail to Section 3.1. In particular,
the backward parabolic problem is ill-posed in the sense of Hadamard. When
both the initial and final data are given, it turns out also to be possible to find a
coefficient of a parabolic equation. Moreover, the problem becomes stable but of
course nonlinear. In this section we recall some results concerning this problem
referring for additional results to the books [Is4], [PrOV] and to the papers of
Isakov [Is6], and Prilepko and Solov’ev [PrS].

We will assume that ∂� is of class C2+λ. In Theorem 9.1.1 λ is any number in
(0, 1).

Theorem 9.1.1. Let us assume that f = αF, where F ∈ Cλ(�), ∂t F = 0 in Q,
and that the coefficients of equation (9.0.1) and the weight function α are given,
that these coefficients, their t-derivatives, α, ∂1α are in Cλ,λ/2(Q), and that ε0 < α

on ω × {T }. Let Qω be a subdomain of Q such that Qω ⊂ ω ∪ ∂�× [0, T ].
Then there is a constant C depending only on Q, ω, Qω, | |λ,λ/2(Q)-norms of the

coefficients of the parabolic equation (9.0.1) and of α as well as their t-derivatives,
and on the positive number ε0 such that any solution (u, F) to the inverse source
problem (9.0.1), (9.0.2), (9.0.3), (9.0.5) satisfies the inequality

|u|λ+2,λ/2+1(Qω) + |F |λ(ω) ≤ C(|u0|λ+2(�)(9.1.1)

+ |uT |λ+2(ω) + |g0|λ+2,λ/2+1(∂�× (0, T )) + ‖F‖∞(�)).

PROOF. We can assume that u0 = 0, g0 = 0 (it can be achieved by subtracting a
solution of the direct parabolic problem with the data u0, g0). We let t = T in the
equation (9.0.1) and use the final overdetermination (9.0.5) to get

(9.1.2) F − α−1(, T )a0(, T )∂t u(, T ; F) = α−1(, T )A(, T )uT ,

where u(x, t ; F) denotes the solution to the (direct) parabolic problem (9.0.1)–
(9.0.3) with f = αF and A the second-order elliptic operator formed from the
terms of the left side of (9.0.1) not involving ∂t u. Letting v = ∂u(; F) and differ-
entiating (9.0.1) with respect to t we obtain for v the parabolic equation (9.0.1)
with

f = −∂t a0∂t u + div(∂t a∇u) − ∂t b · ∇u − ∂t cu + ∂tαF.

Using the bounds of Theorem 9.1 with any p > 1 we conclude that the L p(Q)-
norms of all partial derivatives in the expression for f are bounded by C‖F‖∞(�).
Using again the L p bounds of Theorem 9.1 with large p and embedding theorems
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for Sobolev spaces we yield

|∂t u(; F)|λ(�) ≤ C‖v‖2,1;p(Q) ≤ C2‖F‖∞(�).

Now the bound (9.1.1) for F follows from (9.1.2) and then the bound for u follows
from interior Hölder estimates of Theorem 9.1. �

This result does not (and can not) imply uniqueness.

Theorem 9.1.2. We assume that the coefficients of the parabolic equation (9.0.1)
and the weight function α are given and that they satisfy the following conditions

a, b do not depend on t ; 0 ≤ c, ∂t c ≤ 0 on Q; ∂t a0, ∂t c, α, ∂tα ∈ Cλ,λ/2(Q),

(9.1.3) 0 ≤ α, 0 ≤ ∂tα on Q; 0 < α on ω × {T }.
Then a solution (u, F) ∈ Cλ,λ/2(Q) × Cλ(�) to the inverse source problem

(9.0.1)-(9.0.3), (9.0.5) with f = αF, F = 0 on � \ ω is unique.

PROOF. Now we will give a short and complete proof of uniqueness based on the
positivity principle, as first suggested by Prilepko and Solov’ev [PrS]. Since the
inverse source problem is linear, it suffices to show that u = 0 in Q, provided that
the boundary data (9.0.2), (9.0.3), (9.0.5) are zero.

Let us assume that F is not zero onω. Let F+ = (F + |F |)/2 and F− = (−F +
|F |)/2. Since α ≥ 0, we have (αF)+ = αF+, (αF)− = αF−. Since F ∈ Cλ(�),
the functions F+, F− have the same regularity. If F− = 0, then 0 ≤ F , and by
the positivity principle 0 < u on �× {T }, which contradicts the homogeneous
condition (9.0.5). Similarly, the case F+ = 0 is not possible. Let ω+ = {x ∈ ω :
F+(x) > 0} andω− = {x ∈ ω : F−(x) < 0}. Then both setsω+, ω− are nonempty
open subsets of ω.

Let u+, u− be solutions to the parabolic problem (9.0.1), (9.0.2), (9.0.3) with
zero initial and lateral boundary data and with the source term αF+, αF−. By
Theorem 9.1 these solutions exist and are in C2+λ,1+λ/2(Q). By the positivity
principle, u+, u− are nonnegative. We claim that

(9.1.4) 0 < ∂t u
+, 0 < ∂t u

− on Q and on �× {T }.
By using finite differences with respect to t and a priori estimates of solutions to
parabolic problems, one can show that w+ = ∂t u+ ∈ C2+λ,1+λ/2(Q). Differenti-
ating equation (9.0.1) with respect to t we get

a0∂t w
+ − div(a∇w+) + b · ∇w+ + (c + ∂t a0)w+ = ∂tαF+ − ∂t cu+ ≥ 0 in Q,

by conditions (9.1.3). From the equation for u+ at t = 0 we have w+ = ∂t u+ =
−A0 + αa0 F+ ≥ 0 on �. Obviously, w = 0 on ∂�× (0, T ). Applying Theorem
9.2 again, we obtain the first inequality (9.1.4). A proof of the second one is similar.

Since u+ ∈ C(�) and is zero on ∂�× {T }, it has a maximum point. Due to
(9.1.4) this maximum point is (x0, T ). Since F+ = 0 outside ω Theorem 9.2
forbids x0 to be outside ω̄+, so x0 ∈ ω̄. Similarly, maximum of u− is achieved on
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ω̄− × {T }. The homogeneous condition (9.0.5) implies that u+ = u− on ω × {T },
so (x0, T ) is also a maximum point of u− on �× {T }. Consequently, x0 ∈ ω̄+ ∩
ω̄−, ∇u+(x0, T ) = 0 and we from (9.0.1) we have

div(a∇u+)(x0, T ) = c(x0, T )u+(x0, T ) + a0∂t u(x0, T ) > 0,

due to conditions (9.1.4) and to (9.1.5). But at an interior maximum point x0 the
left side can not be positive. The contradiction shows that the initial assumption
was wrong, so F = 0. Then u = 0 by Theorem 9.1.

The proof is complete. �

Corollary 9.1.3. Under conditions of Theorems 9.1.1 and 9.1.2 there is a constant
C depending on the same parameters as in Theorem 9.1.1 such that

|F |λ(ω) ≤ C(|uT |2+λ(ω) + |u0|2+λ(�) + [g0]2+λ(∂�× (0, T )))

This corollary follows by compactness-uniqueness argument (see the proof of
Theorem 3.4.11) from Theorems 9.1.1, 9.1.2.

Theorems 9.1.1, 9.1.2 are easy to apply to identification of coefficients problems.
The monotonicity condition (9.1.1) is somehow restrictive, especially in applica-
tions to identification of coefficients. It can be relaxed, to a certain inequality in-
volving the first eigenvalue of the corresponding elliptic boundary value problem,
but it can not be removed completely. Indeed, in the paper [Is6] there is a (quite com-
plicated) counterexample that shows that the uniqueness claim is generally false
if the condition ∂tα > 0 is not satisfied. In more detail, in Q = (0, 1) × (0, T ) one
can construct nonzero C∞(Q)-functions u, α, F with ∂t F = 0 such that

∂t u − ∂2
x u = αF, on ∂Q, 0 < α on Q.

There is no such counterexample in the following (nonlinear) problem on identi-
fication of coefficients.

Now, we are looking for the coefficient c = c(x) ∈ Cλ(�) of the parabolic initial
boundary value problem (9.0.1)–(9.0.3) with a0 = a = 1, b = 0, f = 0, u0 = 0,
and given g0 ∈ C2+λ,1+λ/2(∂�× [0, T ]), g0 = ∂t g0 = 0 on ∂�× {0} from the
additional final overdetermination (9.0.5).

Theorem 9.1.4. (i) (Uniqueness) If

(9.1.5) 0 ≤ g0, 0 ≤ ∂t g0 (and not identically zero) on ∂�× (0, T ),

then a solution (u, c) of the inverse problem is unique.
(ii) (Stability) If (u1, c1), (u2, c2) are solutions of the inverse problem with the

data g1, u01, g2, u02 satisfying condition (9.1.5) and the additional condition 0 <
ε0 < g j on ∂�× {T }, then

|c2 − c1|λ(�) + |u2 − u1|2+λ,1+λ/2(Q)(9.1.6)

≤ C(|g02 − g01|2+λ,1+λ/2(∂�× (0, T )) + |uT 2 − uT 1|2+λ(�)),
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where C depends on the same parameters as in Theorem 9.1.1, on ε0, and on the
norms of g0 j , uT j used on the right side of inequality (9.1.6).

(iii) (Existence) If in addition, uT ∈ C2+λ(�) satisfies the conditions

(9.1.7) −�uT + ∂t v(, T ) ≤ 0, 0 ≤ uT on �, g0 = uT on ∂�× {T },
where v is a solution to the initial boundary value problem (9.0.1)–(9.0.3) with c =
0, then there is a solution (u, c) ∈ C2+λ,1+λ/2(Q) × Cλ(�) to the inverse problem
(9.0.1)–(9.0.3), (9.0.5).

PROOF. (i) Using a possible translation with respect to t , one assumes that g0 is
not zero on any set ∂�× (0, τ ). Observe that then

(9.1.8) 0 < u, 0 < ∂t u on Q.

Indeed, the first inequality follows immediately from the positivity principle and
our condition on the data of the problem. To prove the second inequality we
differentiate equation (9.0.1) with respect to t and apply the positivity principle
again.

Now, if u2, c2 and u1, c1 are solutions to the inverse problem, then subtracting
the equations for them and letting u = u2 − u1, α = u2, F = c1 − c2, we obtain
the inverse source problem discussed in Theorem 9.1.2. Condition (9.1.3) is satis-
fied due to (9.1.8). By this theorem, u = 0, F = 0, which completes the proof of
uniqueness.

(ii) To prove stability estimate (9.1.6) we can repeat the above subtraction pro-
cedure and apply the estimate of Theorem 9.1 and Corollary 9.1.3.

(iii) The proof we will suggest is constructive and employs the (mononote)
iterations u(; j), c(; j − 1) defined as follows: u(; j) solves the parabolic boundary
value problem (9.0.1)–(9.0.3) with

c = c(; j − 1),

c(; 0) = 0, c(; j) = (�uT − ∂t u( , T ; j))/uT .(9.1.9)

From Theorem 9.1 it follows that u(; j) exists and is in C2+λ,1+λ/2(Q).
By using the positivity principle and conditions (9.1.5),(9.1.7), we will show

that

u( ; j + 1) ≤ u(; j), ∂t u( ; j + 1) ≤ ∂t u( ; j),(9.1.10)

c( ; j − 1) ≤ c(; j).(9.1.11)

Indeed, subtracting the equations for u(; j + 1) and u(; j) and letting w be the dif-
ference of these functions as above, we obtain for w the parabolic initial boundary
value problem (9.0.1)–(9.0.3) with zero initial and lateral boundary data and with
the source term u(; j)(c(; j − 1) − c(; j)). As in part (i), we have 0 ≤ u(; j), so
(9.1.11) implies that the source term is positive, and therefore by the positivity
principle, 0 ≤ w . Differentiating the equations with respect to t , we obtain the
second inequality (9.1.10). Now it remains to prove (9.1.11), which can be done
by using induction in j . When j = 0, the result follows from definition (9.1.9).
When j = 1, it follows from condition (9.1.7). If (9.1.11) is valid for j ≥ 1, then
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from the definition of c(; j) in (9.1.9) and from the second inequality (9.1.10), we
obtain (9.1.11) for j + 1.

Since u(; j), ∂t u(; j) are solutions to an initial boundary value parabolic prob-
lem with nonnegative data, from the positivity principle we conclude that these
functions are nonnegative on Q. Using, in addition, the definition (9.1.9) of c(; j),
we obtain

(9.1.12) 0 ≤ u( ; j), 0 ≤ ∂t u( ; j), c( ; j) ≤ �uT /uT .

From inequalities (9.1.10), (9.1.11), and (9.1.12) we conclude that the sequence of
functions c( ; j − 1)∂t u(; j) is bounded in L∞(Q). Considering the initial boundary
value problem (9.0.1)–(9.0.3) for ∂t u( ; j) again, transferring the term c( ; j)∂t u( ; j)
onto the right side of the equation, and treating it as a source term from the
L p(Q)-estimates of Theorem 9.1, we conclude that the sequence of functions
∂t u( ; j) is bounded in H2,1;p(Q). Therefore, by embedding theorems it is bounded
in Cλ,λ/2(Q). According to definition (9.1.9), the sequence of the coefficients c( ; j)
is bounded in Cλ(�). We can make use of the Hölder estimates of Theorem 9.1
applied to the forward problem for u( ; j) to conclude that

|u( ; j)|2+λ,1+λ/2(Q) + |c( ; j)|λ(�) ≤ C.

According to (9.1.10), (9.1.11), the sequences of functions u( ; j), c( ; j) are mono-
tone with respect to j , and they are bounded in the corresponding Hölder func-
tional spaces by the last estimate. Hence, they converge to some functions u, c in
C2,1(Q),C(�). From our bounds it follows that u ∈ C2+λ,1+λ/2(Q), c ∈ Cλ(�).
Passing to the limit in the equations for u(; j) we obtain equation (9.0.1) for u with
the coefficient c.

Passing to the limit in the definition (9.1.9) of c(; j), we obtain the equality
∂t u −�uT + cuT = 0 on�× {T }. Using the differential equation for u at t = T ,
we then obtain −�(u − ut ) + c(u − uT ) = 0 on �× {T }. From the compatibil-
ity condition (9.1.7) we have u − uT = 0 on ∂�× {T }. Since c ≥ 0, the elliptic
equation for u − uT satisfies the maximum principle, so u − uT = 0 on�× {T }.

The proof is complete. �

A similar result is valid for principal coefficients a0 = a0(x) of the problem
(9.0.1)–(9.0.3), (9.0.5) with a = 1, b = 0, c = 0, f = 0, and u0 = 0. We will for-
mulate it as the following exercise.

Exercise 9.1.5. (i) Prove that under the conditions 0 < ∂t g0, 0 ≤ ∂2
t g0 a solution

(u, a0) to the identification problem is unique.
(ii) Prove that under the additional condition

0 < �uT ≤ a!∂t v(, T ) on �, g = uT on ∂�× {T },
where v is a solution to the problem (9.0.1)–(9.0.3) with a0 = a!, a solution (u, a0)
to the identification problem exists and can be found by the monotone iterations

a0(; 0) = a!, a0(; j) = �uT /∂t u(, T ; j),
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where u(; j) is a solution to the parabolic problem (9.0.1)–(9.0.3) with the coeffi-
cient a0 = a0(; j − 1).

In thermal applications the assumption u0 = 0 is not natural physically, but in
the equations with no zero-order terms (as considered in Exercise 9.1.5), in de-
scribing propagation of heat and other diffusion phenomena one can consider
constant initial conditions and then subtract this constant from a solution to
the parabolic problem. This subtraction does not affect the assumptions of this
exercise.

The inverse problems for equations in divergence form are not easy to handle.
However, one can obtain uniqueness results in the one-dimensional case for the
problem of finding (u, a) entering the initial boundary value problem

∂t u − ∂x (a∂x u) = 0 on (0, 1) × (0, T ), u = 0 on (0, 1) × {0},
∂x u = 0 on {0} × (0, T ), u = g0 on {1} × (0, T ),

with the final overdetermination u = uT on (0, 1) × {T }. We assume that g0, ∂t g0 ∈
C1+λ/2([0, T ]) and that g0(0) = · · · = ∂2

t g0(0) = 0.

Exercise 9.1.6. Assuming that 0 ≤ ∂t g0, 0 ≤ ∂2
t g0 on (0, T ), prove that a solution

(u, a), a = a(x) ∈ Cλ([0, 1]), of the inverse problem is unique.
{Hint: Introduce the new unknown function w = a∂x u, derive for it a nondi-

vergent parabolic equation, and apply to the new inverse problem the suitably
modified method of proof of Theorem 9.1.2 as it has been done in the proof of
Theorem 9.1.4. One will need maximum principles for normal derivatives similar
to Theorem 4.2 for elliptic equations.}

9.2 Lateral overdetermination: single measurements

While stable and computationally feasible, inverse problems with final overdeter-
mination do not very often reflect interesting applied situations when one is given
only additional lateral data. In many cases, the results of all possible lateral bound-
ary measurements are available. However, even in this case, we have a severely
ill-posed inverse problem that is challenging both theoretically and numerically.
We start our discussion of lateral overdetermination with single boundary mea-
surements; i.e., we are given one set of lateral boundary data {g0, g1} on the lateral
boundary ∂�× (0, T ) or on a part of it.

We will make use of the known transform

(9.2.1) u(x, t) = (π t)−1/2
∫ ∞

0
exp(−τ 2/(4t))u∗(x, τ )dτ.

Observe that

(9.2.2) u(, t) = v(, 0, t),
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where v = v(τ, t) is the solution to the following standard parabolic problem:

∂t v − ∂2
τ v = 0 in R+ × R+,
v = u∗ on R+ × {0},

∂τ v = 0 on {0} × R+.(9.2.3)

This follows from the known basic representation of the solution of the one-
dimensional Cauchy problem, provided that we extend the initial data u∗ onto R

as an even function:

(9.2.4) v(τ, t) = (4π t)−1/2
∫ ∞

0
(e−(τ−θ )2/(4t) + e−(τ+θ )2/(4t))u∗(θ )dθ.

We observe that when ∂2
τ u∗ ∈ L2(0, R) for any positive R and ∂τu∗(0) = 0, one

can differentiate the equation and the initial conditions of the extended Cauchy
problem (9.2.3). Since from the heat equation ∂t v solves the Cauchy problem with
the initial data ∂2

τ u∗, we conclude that the operator (9.2.1) transforms ∂2
τ u∗ into ∂t u.

The transformation u∗ → u is very stable, while the inverse one is quite unstable
(as a solution of the lateral Cauchy problem).

Theorem 9.2.1. Let

(9.2.5) ‖u∗‖∞(0, T ) ≤ T 2 M2eMT , ‖∂τu∗‖∞(0, T ) ≤ T M2(1 + T 2 M2)eMT

and ε = ‖u(, 0)‖2(T/8, T ).
Then there is C depending only on T, T ∗, δ such that

(9.2.6) |u∗(τ )| ≤ CC(δ,M)((− log ε)−1 + M(− log ε)−1+δ)

where C(δ,M) = σ 1/2eσ
2 M2T +4MT ∗

.

We outline a proof based on the following auxiliary results.

Lemma 9.2.2. Under the conditions (9.2.5) for a solution v to the problem (9.2.3)
we have

|v(τ, t)| ≤ 2e4M2t+2Mτ , |∂τ v(τ, t)| ≤ 4.2Me4M2t+2Mτ .

PROOF. First, we observe the elementary inequality

(9.2.7) (4πat)−1/2
∫ ∞

0
skeMθ−(τ−θ )2/(4at)dθ ≤ (k/(Me))ke4M2at+2Mτ .

Indeed, the function θ ke−Mθ attains its maximum at θ = k/M , hence θ ke−Mθ ≤
(k/(Me))k . So the integral in the left side of (9.2.7) is less than

(k/(Me))k(4πat)−1/2
∫

R

e2Mθe−(τ−θ )2/(4at)dθ = (k/(Me))ke4M2at+2Mτ

because due to the known integral formula for the Cauchy problem the both sides
solve the same Cauchy problem for the heat equation ∂t v − a∂2

τ v = 0.
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Using the formula (9.2.4) and the first condition (9.2.6) we yield

|v(τ, t)| ≤ (π t)−1/2
∫ ∞

0
θ2 M2eMθ−(τ−θ )2/(4t)dθ ≤ 2M2(2/(Me))2e4M2t+2Mτ

where we used the inequality (9.2.7) with a = 1, k = 2. So we have the first bound
of Lemma 9.2.2. The second bound follows similarly when we use the integral
formula (9.2.4) for ∂τ v (with difference of exponents instead of the sum and with
∂θu(θ ) intstead of u∗(θ )), second condition (9.2.5), the inequality (9.2.7) with
a = 1 and k = 1, 3, as well as the elementary inequality 2/e + (3/e)3 < 2.1. �

From Theorem 3.3.10 and from Lemma 9.2.2 we have

(9.2.8) |v| ≤ CC1(M)εκ on �T,T ∗ = {0 < τ < T ∗, T/4 < t < 3T/4}
where C1(M) = e4M(MT +T ∗), κ ∈ (0, 1) and depends only on T, T ∗. Now we will
obtain the bound of Theorem 9.2.1 by using stability estimates of the analytic
continuation of v(, t) onto (0, 3T/4).

Our first claim is that for all τ ∈ (0, T ∗) the function v(τ, t) has the complex-
analytic continuation onto the sector S = {t = t1 + i t2 : |t | < σ t1} of C and more-
over

(9.2.9) |v| ≤ C2(M)eσM2|t |

where C2(M) = 0.55
√
σe2Mτ . This complex-analytic continuation for 0 < t2

is given by the formula (9.2.4). Using in addition the bound |e−(τ−θ )2/(4t)| ≤
e−(τ−θ )2/(4σ |t |) for t ∈ S and conditions (9.2.6) we yield

|v(τ, t)| ≤ M2√σ (σπ |t |)−1/2
∫ ∞

0
θ2eMθ−(τ−θ )2/(4σ |t |)dθ

√
σM2(2/(Me))2e4σM2|t |+2Mτ

by Lemma 9.2.2 with k = 2, a = σ . Using that (2/e)2 < 0.55 we complete the
proof of the bound (9.2.9).

The second claim is the following stability estimate for analytic continuation:

(9.2.10) |v(τ, t)| ≤ CC3(M)εtπ/(2β)/C

where C3(M) = √
σeσ

2 M2T +4MT ∗
, β = cos−1σ−1.

To prove (9.2.10) we introduce the function V (τ ) = v(τ )e−(σ 2 M2+δ1)t with a
positive parameter δ1. This function is complex-analytic in S and from the bound
(9.2.9) it follows that |V (τ, t)| ≤ C2(M)e−δ1/σ |t | when t ∈ S. Hence log|V (τ, )| is
a subharmonic function on S which tends to zero at infinity.

Let µ(t, I ) be the harmonic measure of the interval [T/4, 3T/4] in S with
respect to t which is defined in section 3.3. As in section 6.3 or in the proof of
Theorem 9.4.3, by using the conformal mapping z = tπ/(2β), β = cos−1σ−1 and
the maximum principles one can show that tπ/(2β) < C(σ )µ(t, I ) when 0 < t < T .
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Since the subharmonic function log|V | ≤ logC2(M) on ∂S and due to (9.2.8)

log|V (, t)| ≤ log(Ce4M(2Mt+T ∗)εκe−σ 2 M2t ) ≤ log(Ce4MT ∗
εκ )

on I when 3 < σ , from maximum principles we derive that

log|V (, t)| ≤ (1 − µ(t))logC2(M) + µ(t)(log(Ce4MT ∗
) + κlogε)

provided t ∈ S. Taking exponents of the both sides, replacing µ in the first term
by 0, using the lower bound on µ and letting δ1 → 0 we complete the proof of
(9.2.10).

To conclude the proof of Theorem 9.2.1 we will utilize the Mean Value Theorem
to get v(τ, 0) = v(τ, t) − ∂t v(τ, θ(τ, t))t for some θ ∈ (0, t). Using Lemma 9.2.2
and (9.2.10) we obtain

|v(τ, 0)| ≤ CC4(σ,M)(εtπ/(2β)/C + Mt).

Given δ > 0 one can choose large σ (hence β close to π/2) so that (2 − δ)β/π =
1 − δ. Letting t = (−logε)−β/π (2−δ) in the bound for v(τ, 0) we conclude that

|v(τ, 0)| ≤ CC4(δ,M)(e−(−logε)δ/2/C + M(−logε)−1+δ).

Finally, since e−w δ/C ≤ C(δ)w−1 we complete the proof of Theorem 9.2.1.
Returning to inverse problems, we first give a complete solution of the unique-

ness question in the one-dimensional case for some special lateral boundary data.

Theorem 9.2.3. Let � = ∂�, where � = (0, 1) in R. Let g0(t, j), j = 0, 1, be
the transform (9.2.1) of a function g∗

0 (τ, j) ∈ Ck([0,∞)) whose absolute value is
bounded by C exp(Cτ ) with some C and that satisfies the condition g∗(k−1)

0 (0) �= 0.
Then (i) the coefficient c = c(x) ∈ L∞(�) of equation (9.0.1) with a0 = a =

1, b = 0 or (ii) the coefficient a = a(x) ∈ C2(�) of the same equation with
a0 = 1, b = 0, c = 0 is uniquely determined by the Neumann data (9.0.6) of the
parabolic problem (9.0.1)–(9.0.3) with f = 0, u0 = 0, and g = g(, j) at x = j .

PROOF. Case (i). Let us consider the hyperbolic problem

∂2
τ u∗ − ∂2

x u∗ + c(x)u∗ = 0 in �× (0, T ∗),

u∗ = ∂τu∗ = 0 on �× {0},
u∗ = g∗

0 on (0, T ∗) × ∂�.(9.2.11)

Using (9.2.3) and the remarks after it concerning the transformation of ∂2
τ u∗, we

conclude that u obtained via (9.2.1) solves the parabolic equation (9.0.1), (where
a0 = 1, a = 1, b = 0). The additional data

(9.2.12) ∂x u∗ = g∗
1 on ∂�× (0, T ∗)

necessary to find the coefficient c(x) in (9.2.11) can be obtained by inverting the
relation (9.2.1), where u is replaced by g1. As follows from Theorem 9.2.1, the
correspondence between g∗

1 and g1 is unique, so we can uniquely determine g∗
1 .

According to known results about one-dimensional inverse hyperbolic problems
(Corollary 8.1.2), a solution c(x) to the inverse problem (9.2.11), (9.2.12) is unique
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(and stable) on (0, 1
2 ) if we choose T ∗ = 1. With this choice of T ∗ we can use

Corollary 8.1.2, because due to finite speed of propagation, g∗
1 on (0, T ∗) coincides

with the Neumann data for the hyperbolic problem when � = (0,∞). To prove
uniqueness of c on ( 1

2 , 1), one can similarly use the data g∗
1 at x = 1.

Part (ii) follows from Corollary 8.1.7, after a similar reduction to the inverse
hyperbolic problem with variable speed of propagation.

The proof is complete. �

As an explicit example of the Dirichlet data satisfying the conditions of Theorem
9.2.3 we can use g0(t) = 1. The corresponding function g∗

0 (τ ) = 1/2τ 2. This can
be seen from the parabolic intial value problem (9.2.3) with v(t, τ ) = t − 1/2τ 2.

The unstable part of the reconstruction procedure described in this proof is the
step g1 → g∗

1 . On the other hand, this logarithmic instability is isolated and is due
to the solution of the simplest, standard ill-posed lateral Cauchy problem for the
one-dimensional heat equation (9.2.3), which is relatively well understood.

In the multidimensional case the best uniqueness results are available in the case
of nonzero initial data u. Let P be a half-space in R

n , e be the exterior unit normal
to ∂P , γ equal to ∂� ∩ P , and x0 a point of P such that x0 · e ≥ x · e when x ∈ γ .

Theorem 9.2.4. Let a = 1, b = 0, c = 0, f = 0, and g∗
0 , u0 ∈ Cl(�), ∂� ∈ Cl

where (n + 7)/2 ≤ l. Let us assume that

(9.2.13) 0 < ε0 < �u0 on �0 = � ∩ P.
Then the coefficient a0 = a0(x) ∈ Cl(�0) of the parabolic equation (9.0.1) with

the given initial data (9.0.3) and satisfying condition

(9.2.14) ∇a0 · e ≤ 0, 0 ≤ a0 + 1

2
∇a0 · (x − x0) on �0

is uniquely determined on �0 by the Cauchy data

u = g0, ∂νu = g1 on γ × (0, T ).

PROOF. We will make use of the transform (9.2.1) again, this time reducing our
parabolic problem to the following hyperbolic one:

a0∂
2
t u∗ −�u∗ = 0 on �× (0, T ∗),

u∗ = u0, ∂τu
∗ = 0 on �× {0},

u∗ = g∗
0 on ∂�× (0, T ∗).

By uniqueness of inversion g1 → g∗
1 due to Theorem 9.2.1, we conclude that

the data of the inverse parabolic problem uniquely identify the data of the inverse
hyperbolic problem for any T ∗ > 0. Now uniqueness of a0 follows from Corollary
8.2.3.

The proof is complete. �

Exercise 9.2.5. Show that in the situation of Theorem 9.2.4 the coefficient c =
c(x) ∈ L∞(�) of the equation ∂t u −�u + cu = 0 is uniquely determined by the
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additional lateral Neumann data (9.0.6), provided that condition (9.2.14) is replaced
by the condition 0 < ε0 < u0 on �0.

A disadvantage of Theorem 9.2.4 and of similar results is the condition that the
initial condition is not zero. This condition is not satisfies in many applications
when the physical field is intiated from the lateral boundary. Another seemingly
excessive restriction of Theorem 9.2.4 is the condition (9.2.14) which guarantees
absence of trapped rays/validity of appropriate Carleman estimates in the associ-
ated hyperbolic problem.

One of few available theoretical results in case of zero initial data and few
boundary measurements requires simulteneous overdetermination at ∂� and inside
� at some fixed moment of time θ ∈ (0, T ).

Theorem 9.2.6. Let us assume that a0, a, b, c ∈ C1(Q) and α, ∂tα ∈ C(Q). Let
γ be any open subset of ∂� and � = γ × (0, T ). Let θ ∈ (0, T ) and

(9.2.15) ε0 < α on �× {θ}
for some positive number ε0.

Then any pair (u, F) ∈ H2,1;2(�) × L2(�) satisfying the equation (9.0.1) with
f = αF, ∂t F = 0 in Q is uniquely determined by the lateral Cauchy data

u = g0, ∂νu = g1 on γ × (0, T )

and the intermediate time data

u(, θ ) = uθ on �.

This result follows from Theorem 8.2.2 because as shown in the proof of The-
orem 3.3.10 for any subdomain �0 of � which is a diffeomorphic image of a
halfsphere, so that γ0 = ∂�0 ∪ ∂� is in γ , there is a Carleman estimate (3.2.3) for
the equation (9.0.1) with the weight function ϕ with ϕ > 0 on γ0 × (θ − ε, θ + ε)
and ϕ < 0 on Q\(�0 × (θ − ε, θ + ε)). We would like to emphasize locality of
this uniqueness statement: indeed we do not assume that the lateral boundary data
are known outside �, so � can be an arbitrary subdomain of a larger domain. We
only need condition (9.2.15).

By using some new Carleman estimates and assuming additional regularity
of the coefficients of the parabolic boundary value problem Imanuvilov and Ya-
mamoto [IY1] showed that under the additional assumption that u satisfies a lateral
boundary condition u = 0 or ∂ν(a)u + b0u = 0 on ∂�× (0, T ) one has Lipschitz
stability estimate

‖F‖2(�) ≤ C(‖uθ‖(2)(�) +
∑

‖w∂ l
t ∂

m
j ‖2(�))

where the sum is over j = 1, . . . , n, l,m = 0, 1, w is some nonnegative C2(Q)-
function which goes to infinity as t goes to 0 or T . In this stability estimate C
depends on the coefficients of the parabolic initial boundary value problem, on
�, T, γ, ‖α‖∞(Q) + ‖∂α‖∞(Q) and on ε0 from condition (9.2.15). This a best
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possible estimate showing a possibility for a very efficient numerical solution of
this inverse problem.

9.3 The inverse problem of option pricing

As an important example of inverse problem with single measurements for
parabolic equations we will consider determination of so-called volatility coeffi-
cient σ of a parabolic equation for option prices discovered by Black and Scholes
in 1973. This discovery revolutionized financial markets in 1990-s. In 1997 Merton
and Scholes were awarded the Nobel prize in economics.

For any stock price, 0 < s <∞, and time t, 0 < t < T , the price u for an
option expiring at time T satisfies the following Black-Scholes partial differential
equation

(9.3.1) ∂u/∂t + 1/2s2σ 2(s, t)∂2u/∂s2 + sµ∂u/∂s − ru = 0.

Here, σ (s, t) is the volatility coefficient that satisfies 0 < m < σ (s, t) < M <∞
and is assumed to belong to the Hölder space Cλ(ω̄), 0 < λ < 1, on some interval
ω and outside this interval, and µ and r are, respectively, the risk-neutral drift and
the risk-free interest rate assumed to be constants. The backward in time parabolic
equation (9.3.1) is augmented by the final condition specified by the payoff of the
call option with the strike price K

(9.3.2) u(s, T ) = (s − K )+ = max(0, s − K ), 0 < s.

By using the logarithmic substitution y = logs and Theorem 9.1 one can show that
there is a unique solution u to (9.3.1), (9.3.2) which belongs to C1((0,∞) × (0, T ])
and to C((0,∞) × [0, T ]) and satisfies the bound |u(s, t)| < C(s + 1).

All coefficients of the equation (9.3.1) except of σ are known. Volatility coeffi-
cient is a fundamental characteristic of options market, so it is highly desirable to
know it. The inverse problem of option pricing seeks for σ given

(9.3.3) u(s∗, t∗; K , T ) = u∗(K ), K ∈ ω∗.

Here s∗ is market price of the stock at time t∗, and u∗(K ) denote market price of
options with different strikes K for a given expiry T . The additional data (9.3.3)
are available from current trading. One can find them on Internet. We will attempt
to recover volatility in the same interval ω∗ containing s∗.

To obtain our results we will use that the option premium u(., .; K , T ) satisfies
the equation dual to the Black-Scholes equation (9.3.1):

(9.3.4) ∂u/∂T − 1/2K 2σ 2(K , T )∂2u/(∂K 2) + µK∂u/(∂K ) + (r − µ)u = 0.

The equation (9.3.4) was found by Dupire in 1994 and rigorously justified, for
example, in [BI].

The logarithmic substitution

y = ln(K/s∗), τ = T − t, U (y, τ ) = u(; K , T ), a(y, τ ) = σ (s∗ey, T − τ ),

(9.3.5)
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transforms the dual equation (9.3.4) and the additional (market) data into the
following inverse parabolic problem

∂U/∂τ = 1/2a2(y, τ )∂2U/∂y2 − (1/2a2(y, τ ) + µ)∂U/∂y

+ (µ− r )U, y ∈ R, 0 < τ < T,

(9.3.7) U (y, 0) = s∗(1 − ey)+, y ∈ R

with the final observation

(9.3.8) U (y, τ ∗) = U ∗(y), y ∈ ω.
where ω is the interval ω∗ in y-variables.

We list available theoretical results. σ (s, t) can be found from the data U ∗(K , T )
due to the Dupire’s equation (9.3.4). In many important cases temporal data are
not available or sparse. In any case these data are not available for future, when
knowledge of volatility is most important for useful predictions. This is why we
think it is reasonable to look for σ = σ (s) and that what we will do in the remaining
part of section 9.3.

Theorem 9.3.1. Let U1 and U2 be two solutions to the initial value problem with
a = a1 and a = a2 and let U ∗

1 ,U
∗
2 be the corresponding final data. Let ω0 be a

non-void open subinterval of ω.
If U ∗

1 (y) = U ∗
2 (y) for y ∈ ω and a1(y) = a2(y) for y ∈ ω0, then a1(y) = a2(y)

when y ∈ ω.
If, in addition, a1(y) = a2(y) when y ∈ ω ∪ (R\ω) and if ω is bounded, then

there is a constant C depending only on |a1|1(ω), |a2|2(ω), ω, ω0, τ
∗, λ such that

|a2 − a1|λ(ω) ≤ C |U ∗
2 − U ∗

1 |2+λ(ω)

PROOF. To show uniqueness we subtract two equations for U2 and U1 to get

∂U/∂τ = 1/2a2
2(y)∂2U/∂y2 − (1/2a2

2(y) +µ)∂U/∂y + (µ− r )U +α1(y, τ ) f (y)

where

U = U2 − U1, α1 = ∂2U1/∂y2 − ∂U1/∂y, f (y) = 1/2(a2
2(y) − a2

1(y)).

Besides, U (y, 0) = 0. By Theorem 9.5 solutions of an initial value parabolic prob-
lem with time independent coefficients are time analytic. Since U (, τ ∗) = 0, f = 0
onω0 we conclude from the differential equation that ∂U/(∂τ )(, τ ∗) = 0 onω0. Re-
peating this argument we conclude that all τ -derivatives of U are zero onω0 × {τ ∗}.
By analyticity U = 0 on ω0 × (0, τ ∗). By using (9.3.7) the function α1 satisfies
(in distributional/generalized sense) the initial value problem

∂τα1 = 1/2(∂2
y − ∂y)(a2

1(y)α1) − 1/2µ∂yα1 + (µ− r )α1, y ∈ R, 0 < τ < T

α1(y, 0) = δ(y)

where δ is the Dirac delta-function. So α1 is the Green’s function for this Cauchy
problem and hence α(y, τ ) > 0. By Theorem 9.2.6 f = 0 on ω.
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Stability estimate follows from uniqueness and Theorems 9.1, 9.1.1 by
compactness-uniqueness arguments. �

The assumption that a(y) is known on a subinterval of ω is probably not neses-
sary. Moreover it prevents from existence results since it severely overdetermines
the inverse problem. Masahiro Yamamoto observed that for a ∈ C∞(R) this as-
sumption can be removed.

A feature of the inverse options pricing problem is localization around the
underlying price s∗ resulting from singularity of the final data. Thus local results
make sense.

Theorem 9.3.2. Let |a|λ(ω) < M and a2(y) = σ 2
0 (given constant) on R \ ω.

Then there is ε > 0 (depending only on s∗, τ ∗, σ0) and M such that under the
condition ω ⊂ (−ε, ε) a solution a(y) to the inverse problem (9.3.1)-(9.3.3) is
unique.

A proof follows from standard contraction arguments augmented by careful
study of singularities of solution and it is based on the study of the linearized
inverse problem given below. For details of proofs of Theorems 9.3.1, 9.3.2 we
refer to the review paper [BI].

In the remaining part of section 9.3 we will assume that 1/2σ 2(s) = 1/2σ 2
0 +

f∗(s) where f∗ is a small C(ω̄)-perturbation of constant σ 2
0 and f∗ = 0 outside ω∗.

As in section 4.5 one can show that U = V0 + V + v . Here V0 solves (9.3.10)
with a = σ0 and v is quadratically small with respect to f∗, while the principal
linear term V satisfies the equations

∂V/(∂τ ) − 1/2σ 2
0 ∂

2V/(∂y2) + (σ 2
0 /2 + µ)∂V/(∂y) + (r − µ)V = α0 f,

V (y, 0) = 0, y ∈ R, V (y, τ ∗) = V ∗(y), y ∈ ω,
where

α0(y, τ ) = s∗1/σ0(4πaτ )−1/2e−y2/(2τσ 2
0 ) + cy + dτ,

c = 1/2 + µ/σ 2
0 , d = −1/(2σ 2

0 )(σ 2
0 /2 + µ)2 + µ− r

and V ∗ is the principal linear part of U ∗.
The new substitution V = ecy+dτW simplifies these equations to

∂W/(∂τ ) − 1/2σ 2
0 ∂

2W/(∂y2) = α f, 0 < τ < τ ∗, y ∈ R,

(9.3.9) W (y, 0) = 0, y ∈ R, W (y, τ ∗) = W ∗(y), y ∈ ω,
with

α(τ, y) = s∗/(
√

2πτσ0)e−y2/(2τσ 2
0 ),W ∗(y) = e−cy−dτ ∗

V ∗(y).
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In the remaining part of this section we will assume that f = 0 outside ω. From
numerical experiments ( in particular, in [BIV]) we can see that values of f outside
ω are not essential, due to a very fast decay of the Gaussian kernel α in s.

Let us denote by A f the solution to (9.3.9) on ω : A f (y) = W (y, τ ∗), y ∈ ω.

Lemma 9.3.3. We have

A f (x) =
∫
ω

B(x, y; τ ∗) f (y)dy, x ∈ ω,

where

B(x, y; τ ∗) = s∗/(σ 2
0

√
π )

∫
(|x−y|+|y|)/(σ0

√
2τ ∗)

e−τ 2
dτ.

Moreover, the linearized inverse problem implies the following Fredholm inte-
gral equation

f (x) − 1/(2τ ∗σ 2
0 )

∫
ω

e−((|x−y|+|y|)2−|x |2)/(2τ ∗σ 2
0 )(|x − y| + |y|) f (y)dy

(9.3.10) = −√
πτ ∗/

√
2s∗σ 3

0 e(|x |2)/(2τ ∗σ 2
0 )∂2/(∂x2)W (x, τ ∗), x ∈ ω

PROOF. The well-known representation of the solution to the Cauchy problem
(9.3.9) for the heat equation yields

W (x, τ ) =
∫

R

B(x, y; τ ) f (y)dy,

B(x, y; τ ) =
∫ τ

0
1/(

√
2π (τ − θ )σ0)e−|x−y|2/(2σ 2

0 (τ−θ ))s∗/(
√

2πθσ0)e−|y|2/(2σ 2
0 θ )dθ.

We will simplify B(x, y; τ ) by using the Laplace transform �(p) = L(φ)(p)
of φ(τ ) with respect to τ . Since the Laplace transform of the convolution is the
product of Laplace transforms of convoluted functions, we have

LB(x, y; )(p) = s∗/(2πσ 2
0 )L(τ−1/2e−|x−y|2/(2σ 2

0 τ ))L(τ−1/2e−|y|2/(2σ 2
0 τ ))

= s∗/(2πσ 2
0 )

√
π/pe−√

2|x−y|/σ0
√

p
√
π/pe−√

2|y|/σ0
√

p

= s∗/(2σ 2
0 )1/pe−√

2(|x−y|+|y|)/σ0
√

p,

where we used the formula for the Laplace transform of τ−1/2e−β/τ . Applying the
formula for the inverse Laplace transform of the function 1/pe−α√p we arrive at
the conclusion of Lemma 9.3.3.

A proof of the second statement can be obtained by differentiating the equation
A f = W (, τ ∗) on ω. �

Theorem 9.3.4. Letω = (−b, b). Let θ0 be the root of the equation 2θ − e−4θ = 3.
If

(9.3.11) b2/(τ ∗σ 2
0 ) < θ0,
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then a solution f ∈ L∞(ω) to the integral equation (9.3.11) and hence to the
linearized inverse option pricing problem (9.3.9) is unique.

PROOF. Due to Lemma 9.3.3 to prove Theorem 9.3.4 it suffices to show uniqueness
of solution f of (9.3.10). To do it we observe that∫

ω

e−(|x−y|+|y|)2/(2τ ∗σ 2
0 )(|x − y| + |y|)dy

= e−x2/(2τ ∗σ 2
0 )(τ ∗σ 2

0 + x2) − (τ ∗σ 2
0 )/2(e−(2b−x)2/(2τ ∗σ 2

0 ) + e−(2b+x)2/(2τ ∗σ 2
0 )).

(9.3.12)

Returning to uniqueness of f we assume that f is not zero. We can assume that
‖ f ‖∞(ω) = f (x0) > 0 at some x0 ∈ [−b, b]. From (9.3.10) at x = x0 (with zero
right side) we have

‖ f ‖∞ ≤ 1/(2τ ∗σ 2
0 )

∫
ω

e−(|x0−y|+|y|)2−x2
0 )/(2τ ∗σ 2

0 )(|x0 − y| + |y|)‖ f ‖∞dy

= ‖ f ‖∞((τ ∗σ 2
0 + x2

0 )/(2τ ∗σ 2
0 ) − 1/4(e−((2b−x0)2−x2

0 )/(2τ ∗σ 2
0 )

+ e−((2b+x0)2−x2
0 )/(2τ ∗σ 2

0 )))

if we use (9.3.12).
One can show that (9.3.11) implies

g(x) = x2/(τ ∗σ 2
0 ) − 1/2(e(2b(x−b))/(τ ∗σ 2

0 ) + e−(2b(x+b))/(τ ∗σ 2
0 )) < 1, −b ≤ x ≤ b.

Then the previous inequality yields

‖ f ‖∞ < ‖ f ‖∞(1/2 + 1/2) = ‖ f ‖∞,

and hence ‖ f ‖∞(ω) = 0. �

By Lemma 9.3.3 the linearized inverse option pricing problem implies the inte-
gral equation

(9.3.13) A f (x) = W ∗(x), x ∈ ω = (−b, b),

where W ∗ is the function defined after (9.3.9). Lemma 9.3.3 and Theorem 9.3.4
guarantee uniqueness a solution f ∈ C(ω̄) to this equation under the condition
(9.3.11). It is not known whether this condition is necessary for uniqueness in the
linearized inverse problem.

One can show [BIV] that the range of A has the codimension 2 in C2+λ(ω̄). At
present we do not know an exact description of the range of A.

The integral equation (9.3.13) with the data W ∗(x) equal to the difference of
the final states e−cy−dτ ∗

(U ∗(y) − U ∗
0 (y)) where U solves the parabolic equation

(9.3.7) with a2(y) = σ 2
0 + 2 f (y) and U0 solves the unperturbed equation (9.3.7)

was solved numerically in [BIV] with good results indicating that the condition
(9.3.11) of Theorem 9.3.4 can be essential. Moreover, numerics worked very well
when the (uniform) deviation of σ from σ0 = 1 did not exceed 0.3.
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9.4 Lateral overdetermination: many measurements

This section is devoted to identification problems when one is given the Neu-
mann data (9.0.6) for all (regular) Dirichlet data (9.0.3). In other words, we know
the so-called lateral Dirichlet-to-Neumann map �l : g0 → g1. We will assume
that unknown coefficients are regular; in particular, the principal coefficients a
must be at least C1. Discontinuous principal coefficients are to be considered in
section 9.5.

Theorem 9.4.1. Let a0 = 1, b = 0, and let a be a scalar matrix. Let f = 0 and
u0 = 0. Let � = ∂�.

Then the lateral Dirichlet-to-Neumann map �l uniquely determines a ∈
H2,∞(�) and c ∈ L∞(�).

PROOF. We will make use of stabilization of solutions of parabolic problems when
t → ∞, reducing our inverse parabolic problem to inverse elliptic problems with
parameter, where one can use results from Chapter 5.

The substitution

(9.4.1) u = veλt

transforms equation (9.0.1) into the equation

(9.4.2) ∂t v − div(a∇v) + (c + λ)v = 0 on Q.

Choosingλ large, we can achieve that 0 ≤ c + λ. It is clear that the lateral Dirichlet-
to-Neumann map for v is given as well.

Let g0 = g0φ, where g0 is any function in C2(�) and φ(t) ∈ C∞(R) satisfies
the conditions φ(t) = 0 on (−∞, T/4) and φ(t) = eλt on (T/2,+∞). Since the
coefficients of equation (9.4.2) and the lateral boundary condition do not depend
on t > T/2, the solution u(t, x) is analytic with respect to t > T/2 as well as
∂νu(t, x), x ∈ ∂�.

Since our equation (9.4.2) satisfies all the conditions of the maximum principle,
and its coefficients and the lateral boundary condition do not depend on t > T/2,
Theorem 9.6 guarantees that

(9.4.3) ‖v( , t) − v0‖∞(�) → 0 as t → ∞,
where v0 is a solution to the (stationary) Dirichlet problem

(9.4.4) − div(a∇v0) + (c + λ)v0 = 0 in �, v0 = g0 on ∂�.

The maximum principle for parabolic equations yields ‖v‖∞(�× R
+) ≤ C ,

so the local L p-estimates for parabolic boundary value problems (Theorem
9.1) give ‖v‖2,1;p(�× (s − 1, s + 1)) ≤ C . Differentiating the equation with re-
spect to t and again using local estimates, we derive from the previous bound
that ‖∂t v‖2,1;p(�× (s, s + 1)) ≤ C . So trace theorems give ‖v(, t)‖(2)(�) ≤ C .
From this estimate and from the estimate (9.4.3), by interpolation theorems it
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follows that

(9.4.5) ‖v( , t) − v0‖(1)(�) → 0 as t → ∞.
Again by trace theorems, we obtain that ∂νv(, t) → ∂νv0 in H(−1/2)(∂�) as t →
∞. Since a∂νv(, t) on ∂� is given, we conclude that a∂νv0 on ∂� is given as
well. Thus, we are given the Dirichlet-to-Neumann map for the elliptic equation
(9.4.4) (for all λ ≥ −c). As in Theorem 5.1.1, a and ∇a on ∂� are uniquely
determined.

The known Riccati substitution v0 = a−1/2w as in Section 5.2 transforms equa-
tion (9.4.4) into the Schrödinger equation

(9.4.6) −�w + a−1/2(�a1/2 + a−1/2(c + λ))w = 0 in �.

By Theorem 5.3.1 (3 ≤ n) and Corollary 5.5.2 (n = 2), the coefficient c∗ of w in
equation (9.4.6) (for any λ) is uniquely determined by its Dirichlet-to-Neumann
map. Hence a−1/2 is uniquely determined as the coefficient of λ in c∗, and therefore
c is uniquely determined as well.

The proof is complete. �

With the appropriate stabilization theory for equations with L∞(�) coefficient a
the method of the proof of Theorem 9.4.1 and Theorem 5.4.1 will imply uniqueness
of a provided b = 0, c = 0.

The method of proof of this theorem and Theorem 5.5.1 can be used to solve
the following exercise.

Exercise 9.4.2. Let a = 1 and 3 ≤ n. Show that�l uniquely determines the coeffi-
cients a0(x) ∈ L∞(�), curl b(b ∈ H2,∞(�)) and 4c + b · b − 2 div b, c ∈ L∞(�),
in equation (9.0.1) with f = 0, provided that ‖b‖1,∞(�) is small.

The stabilization technique also enables one to obtain stability estimates. Let
us consider two lateral Dirichlet-to-Neumann maps�l1 and�l2 corresponding to
equation (9.0.1) with the coefficients a0 = a01 and a02, a = 1, b = 0, c = c1 and
c2 that depend only on x and f = 0. Let ε be the operator norm of�l1 −�l2 (from
L2((0, T ); H(1/2)(∂�)) into L2((0, T ); H(−1/2)(∂�)).

Theorem 9.4.3. Assume that n = 3 and

(9.4.7) ‖a0 j‖∞,1(�) + ‖c j‖∞,1(�) < M.

Then there are constants C, δ ∈ (0, 1) such that

(9.4.8) ‖a01 − a02‖∞(�) + ‖c1 − c2‖∞(�) < C | ln ε|−1/6.

PROOF. Using the substitution (9.4.1), we can achieve that 0 ≤ c j + λa0 j .
Let g0 ∈ C2(∂�), ‖g0‖(1/2)(∂�) < 1. We consider g0 = g0φ, where φ is as in-

troduced in the proof of Theorem 9.3.1. Let u1, u2 be solutions to the initial
boundary value problems (9.0.1)–(9.0.3) with the coefficients a01, a02, . . ., with
zero initial condition (9.0.2), and with lateral Dirichlet data g0. By Theorem 9.5,
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u j (x, t) has a complex-analytic extension onto the sector S = {t = t1 + i t2 : |t2| ≤
(t1 − T/2)} of the complex t-plane. Moreover, the extension operator is bounded,
so ‖u j (, t)‖(1)(�) ≤ CeCt1 when t ∈ S, with C possibly depending on �,φ, and
M . By trace theorems,

(9.4.9) ‖c−Ct∂ν(u1 − u2)( , t)‖(−1/2)(∂�) ≤ C when t ∈ S.

Since the norm of a complex-analytic function with values in a Banach space
is a subharmonic function in the plane, we conclude that the function s(t) =
ln ‖e−Ct∂ν(u1 − u2)‖(−1/2)(∂�) is subharmonic on S. Let µ(t) be the harmonic
measure of the interval IT = (7T/8, T ) in S. We recall that µ is a harmonic
function on S\I T that is continuous in S\IT and is equal to zero on ∂S, to 1
on IT , and tends to zero when t goes to infinity. By using conformal mappings
onto a standard annulus, it is not difficult to show that µ exists. Observe that
using the conformal mapping τ1 = (t − T/2)2 of S onto the half-plane {0 < Rτ1}
and then the conformal mapping τ = 2/(1 + τ1), one concludes that µ (in τ -
variables) is harmonic in B1\γ , where B1 is the disk {|τ − 1| < 1} and γ is the
subinterval of (0, 1) that is the image of (7T/8, T ) under the map t → τ . In
addition, µ = 0 on ∂B1 and µ = 1 on γ . Since µ achieves its minimum at τ = 0,
from the maximum principles for elliptic equations it follows that ∂1µ(0) > 0,
so µ(τ ) > τ/C when 0 < τ for some constant C . Returning to t-variables, we
conclude that t−2/C < µ(t) when T < t .

We claim that

s(t) ≤ Cµ(t) ln ε + (1 − µ(t)) ln C when t ∈ S.

Indeed, when t ∈ ∂S, this follows from inequality (9.4.9). When t ∈ IT , it fol-
lows from our definition of ε. Since the right side is harmonic and the left side is
subharmonic in S\IT , the maximum principles imply the inequality in S. Taking
exponents of both parts of this inequality, we obtain

(9.4.10) ‖∂ν(u1 − u2)‖(−1/2)(∂� ≤ CeCtεµ(t)C1−µ(t) ≤ C2eCtεt−2/C
, T < t,

when we use one of the properties of µ and drop the µ in the exponent. On the
other hand, by Theorem 9.6 we have exponential stabilization of the solution u j (, t)
of our parabolic problem to the solution u j (, t) of our parabolic problem to the
solution u0 j to the steady-state elliptic problem

(9.4.11) −�u0 j + (c j + λa0 j )u0 j = 0 in �, u0 j = g0 on ∂�,

which gives ‖u j (, t) − u0 j‖∞(�) ≤ Ce−θ t , where positive θ depends only on �
and the upper bounds on the coefficients of the operator. From this bound and
from interior Schauder-type estimates (Theorem 9.1) for the differences u j − u0 j

in the domains �× (�,�+ 1) we obtain the bounds of the H(1)(�)-norms of
these differences. By using trace theorems in � we get

(9.4.12) ‖∂ν(u j (, t) − u0 j )‖(−1/2)(∂�) ≤ Ce−θ t .
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The triangle inequality for norms yields

‖∂ν(u01 − u02)‖(−1/2)(∂�)

≤ ‖∂ν(u1( , t) − u2(, t))‖(−1/2)(∂�) + ‖∂ν(u1( , t) − u01)‖(−1/2)(∂�)

+ ‖∂ν(u2( , t) − u02)‖(−1/2)(∂�) ≤ C(eCtεt−2/C + e−θ t ),

where we also have made use of (9.4.10) and (9.4.12). To make the last two terms
equal we let t = (− ln ε)1/3/(2C). Denoting by ε1 the norm of the difference of
the Dirichlet-to-Neumann operators of equations (9.4.11), we conclude that

ε1 ≤ Ce−(− ln ε)1/3
/C.

By Theorem 5.2.3 we have

‖(c2 − c1) + λ(a02 − a01)‖∞ ≤ C(− ln ε1)−1/2.

By using the bound on ε1, we can replace ε1 by ε, provided that 1
2 is changed to 1

6
and C denotes possibly a larger constant. From the last estimate with two different
λ (say, λ = 1 and λ = 2) the bound (9.4.8) follows.

The proof is complete. �

At present, use of stabilization does not produce uniqueness results when mea-
surements are implemented at a part of the boundary (� �= ∂�), because such
results are not available for elliptic equations. This “local” case can be handled by
again using the transform (9.2.1) and the recent method of Belishev for hyperbolic
problems. We observe that the transform (9.2.1) applied to the parabolic equation
(9.0.1) with time-independent coefficients and Theorem 9.2.1 imply that given the
local (corresponding to γ ⊂ ∂�) parabolic Dirichlet-to-Neumann map uniquely
determine the local Dirichlet-to-Neumann map for the corresponding hyperbolic
equation.

Indeed, the set of functions g0(x)φ∗(t) with g0 ∈ C2
0 (γ ) and bounded

φ∗ ∈ C2(R+), φ∗(0) = φ∗′
(0) = 0, is complete in the subspace of functions in

C([0, T ∗]; H(1)(∂�)) that are zero at {t = 0} and outside γ × (0, T ∗). A func-
tion φ determined by φ∗ via (9.2.1) is analytic with respect to t , so a solution to
the parabolic problem will be analytic with respect to t as well. Then as above,
the Dirichlet data for the hyperbolic problem generate the Dirichlet data for the
parabolic problem whose solution is analytic with respect to time, so its Neumann
data given on γ × (0, T ) determine the Neumann data on γ × R+ and due to
uniqueness of the back transform ∂νu → ∂νu∗ uniquely determine the hyperbolic
Neumann data for any T ∗. By applying Theorem 8.4.1, we obtain the following
corollary.

Corollary 9.4.4. Let γ be any nonempty open part of ∂� and let the parabolic
equation (9.0.1) have coefficients a = 1, b = 0, c = 0, f = 0.

Then the diffusion coefficient a0 ∈ C∞(�) is uniquely determined by the local
parabolic Dirichlet-to Neumann map �l : g0 → g1 on γ × (0, T ), supp g ⊂ γ ×
(0, T ).
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Similarly the known results about anisotropic hyperbolic equations [Be3],
[KKL] lead to

Corollary 9.4.5. Let γ be any nonempty open part of ∂� and let the parabolic
equation (9.0.1) have coefficients a0 = (deta∗)1/2, a = a0a∗, where a∗ is a strictly
positive symmetric C∞(�)-matrix function, b = 0, c = 0, ∂� ∈ C∞.

Then the local parabolic Dirichlet-to Neumann map uniquely determines a∗

modulo an isometry of the Riemannian manifold (�, a).

In [KKL] there are also some partial results about recovery of more general
hyperbolic equations modulo gauge transforms which similarly imply parallel
results for parabolic inverse problems.

9.5 Discontinuous principal coefficient and recovery
of a domain

The results and technique described above are applicable only to continuous coef-
ficients of the principal part of an equation in divergent form, while in applications
the discontinuous coefficient is quite important. As a typical example we will
consider

(9.5.1) a = a0 + kχ (Q•),

where a0, k are C2-smooth functions and χ (Q•) is the characteristic function of
the unknown domain Q•. In this section we describe uniqueness results for time-
independent and time-dependent Q• with given one or many lateral boundary
measurements. To prove the first result we will make use of the transform (9.2.1)
and of the Laplace transform, which enable one to apply uniqueness theorems for
hyperbolic and elliptic equations. To prove the second result we utilize the method
of products of singular solutions developed for elliptic equations in Section 5.7.

In the next theorem γ is any open subset of the hyperplane xn = 0 and � is the
half-space {xn < 0} in R

n .

Theorem 9.5.1. Let a0 = 1, and Q• = D × (0, T ), where D is a bounded Lip-
schitz xn-convex domain in the half-space {xn < 0}, 2 ≤ n, intersecting the strip
γ × R−. Assume that k is known constant and

(9.5.2) −1 < k < 0.

Let the Dirichlet lateral data g0(x, t) be g0(x)ψ(t), where ψ corresponds via
(9.2.1) to a function ψ∗(τ ) that is positive as well as its first-order derivative on
some interval (0, ε), |ψ0(τ )| ≤ C exp(Cτ ) and g0 = 1 on �, g0 ∈ C2

0 (∂�). Let u
be a solution to the parabolic problem (9.0.1)–(9.0.3) with a given by (9.5.1) and
with a0 = 1, b = 0, c = 0, u0 = 0.

Then ∂νu on γ × (0, T ) uniquely determines D.
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PROOF. We consider the hyperbolic equation

∂2
τ u∗ − div((1 + kχ (Q•))∇u∗) = 0 on �× R+

with zero initial data and with the lateral data u∗(x, τ ) = g0(x)ψ∗(τ ) on ∂�× R+.
T ∗ is to be chosen later. Then u(x, t) obtained from u∗ solves on �× R+
the parabolic problem (9.0.1)–(9.0.3) with a0 = 1, b = 0, c = 0, and a given by
(9.5.1). As in Section 9.2, the Dirichlet lateral data for the parabolic problem are
analytic with respect to t , due to our growth assumptions on ψ∗. Therefore, the
solution of the parabolic problem is analytic with respect to t as well, and the data
∂νu(x, t) of the inverse problem given on γ × (0, T ) are uniquely determined on
γ × R+. Let us choose any x ′0 ∈ γ such that the straight line through this point
parallel to the xn-axis intersects ∂D. Let x0 = (x ′0, x0

n ) be the intersection point
with largest xn . Since ∂D is Lipschitz, there is a point of ∂D near x0 where there is
a tangent (hyper-)plane to ∂D whose normal is not perpendicular to γ . For brevity
we can assume that this point is x0. By the uniqueness Theorem 8.5.1 for inverse hy-
perbolic problems, ∂D ∩ V is uniquely identified for some neighborhood V of x0.

The Laplace transform

U (x, s) =
∫ ∞

0
u(x, t)e−st dt

of the solution to the parabolic problem solves the elliptic problem with the pa-
rameter s,

− div((1 + kχ (D))∇U ) − sU = 0 in �, s > 0.

The Dirichlet data of U (, s) on ∂� are g0(x)�(s) and not zero at some s1.
Moreover, ∂νU (, s) on ∂�\D is uniquely determined because the solution of the
parabolic problem is uniquely determined. We have proved already that two possi-
ble solutions D1, D2 of the inverse problem have a common piece of their bound-
aries. From our assumptions about xn-convexity it follows that they are i-contact.
Since both domains produce the same Cauchy data on �, they have to coincide by
Theorem 4.3.2.

The proof is complete. �

To formulate the result for domains changing in time, we define the lateral
boundary ∂x Q• of an open subset of the layer R

n × (0, T ) as the closure of ∂Q• ∩
{0 < t < T }. We will say that Q• is x-Lipschitz if ∂x Q• is Lipschitz.

Theorem 9.5.2. Let n ≥ 2. Suppose that Q• is an open x-Lipschitz subset of Q
with ∂x Q• ∩ ∂x Q = ∅ satisfying the conditions

(9.5.3) the sets (Q\Q•) ∩ {t = τ } are connected when 0 < τ < T

and that scalar matrix a0, a symmetric matrix k, and b, c satisfy the conditions

a0, k ∈ C2(�), a = a0 +χ (Q•)k, b = 0, c = 0, 0 < k, or − a0 < k < 0, on �

(9.5.4)
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Then the lateral boundary data

g1 = ∂νu on γ × (0, T )

of a solution u to (9.0.1)–(9.0.3) (with ∂x Q•, u) = 0) given for any g0 ∈ C2
0 (∂�×

(0, T )) that are zero outside γ × (0, T ) uniquely determine Q•. If k is a scalar
function, then it is uniquely determined on Q•.

Detailed proofs for scalar k are given in the paper of Elayyan and Isakov [ElI1].
They utilize the idea of using singular solutions of differential equations in in-
verse problems introduced and used by Isakov [Is3]. Since these proofs are quite
technical, we will outline only the basic steps.

Let us assume that there are two domains Q•
1, Q•

2 with two k1, k2 producing the
same boundary data. Let us denote by Q3θ the connected component of the open set
�\(Q

•
1θ ∪ Q

•
2θ ) whose boundary contains γ . Here Q•

jθ is defined as Q•
j ∩ {t = τ }.

Let Q3 be the union of Q3θ over 0 < θ < T and let Q4 = Q\Q3.

Lemma 9.5.3. Under the conditions of Theorem 9.5.2 we have the following or-
thogonality relations:

(9.5.5)
∫

Q•
1

k1∇v1 · ∇u∗
2 =

∫
Q•

2

k2∇v1 · ∇u∗
2

for all solutions v1 to the equation

∂t v1 − div((a0 + k2χ (Q1))∇v1) = 0 near Q4, v1 = 0 when t < 0,

and all solutions u∗
2 to the adjoint equation

−∂t u
∗
2 − div((a0 + k2χ (Q2))∇u∗

2) = 0 near Q4, u
∗
2 = 0 when T < t.

PROOF. As we did several times before, we subtract two equations (9.0.1) with the
coefficients a2 and a1 and obtain for the difference u of their solutions u2 and u1

the differential equation

(9.5.6) ∂t u − div((a0 + k2χ (Q•
2))∇u) = div((k2χ (Q•

2) − k1χ (Q•
1))∇u1) in Q.

Since u2, u1 have the same lateral Cauchy data on γ × (0, T ) by known uniqueness
results (Theorem 3.3.10) they coincide on Q4, so their difference u is zero there.

Writing the definition (9.0.4) of the generalized solution to equation (9.5.6) with
the test function v∗

2 , we get∫
Q

(∂t uv∗
2 + (1 + k2χ (Q•

2))∇u · ∇v∗
2 ) = −

∫
Q

(k2χ (Q•
2) − k2χ (Q•

1))∇u1 · ∇v∗
2 .

Applying again the definition (9.0.4) of the generalized solution to the equation
for v∗

2 with the test function u, we complete the proof of the orthogonality relation
(9.5.5) with u1 instead of v1. The final relation can be obtained by using the
approximation of v1 by u1 exactly as was done for elliptic equations in Lemma
5.7.2. �
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Exercise 9.5.4. Prove that the relation (9.5.5) with v1 replaced by u1 implies the
general (9.5.5).

{Hint: make use of uniqueness of the continuation and of parabolic potentials
to prove the Runge property of solutions of parabolic equations.}

Returning to the proof of Theorem 9.5.2, we assume that

(9.5.7) Q•
1 �= Q•

2.

Then we may assume that there is a point (x0, t0) ∈ ∂x Q•
1\Q

•
2 that is contained

as well in ∂Q3. By considering g0 = 0 when t < t0 and using the translation
t → t − t0, x → x − x0, we can also assume that t0 = 0, x0 = 0. Let us choose a
ball B ⊂ R

n and a cylinder Z = B × (−τ, τ ) such that B ⊂ �, Z is disjoint from
Q2, and (∂x Q1) ∩ Z is a Lipschitz surface. By the Whitney extension theorem
there is a C2(Q1 ∪ Z )-function a3 coinciding with a0 + k1 on Q1. We will extend
a3 onto Q\(Q1 ∪ Z ) as a0.

To complete the proof we need the following modification of the orthogonality
relations (9.5.5):

(9.5.8)
∫

Q•
1

k1∇u3 · ∇u∗
2 =

∫
Q•

2

k2∇u3 · ∇u∗
2

for any solution u3 to the parabolic equation

∂t u3 − div(a3∇u3) = 0 near Q4, u3 = 0 when t < 0

and for any solution u∗
2 to the parabolic equation from Lemma 9.5.3. The derivation

of (9.5.8) from (9.5.5) is quite similar to the derivation of the relation (5.7.4) from
the relation (5.7.2) in the elliptic case. It suffices to approximate u3 by solutions
u3 of parabolic equations with a3 replaced by a3,m and with the same initial and
lateral boundary Dirichlet data as u3. The sequence of the coefficients a3,m is
chosen so that they are uniformly bounded from zero and from infinity, equal to
a3 in a neighborhood of Q4 depending on m, and pointwise convergent to a3. The
orthogonality relation (9.5.5) is valid with v1 = u3,m , and the relation (9.5.8) is
obtained by passing to the limit when m → ∞.

To obtain a contradiction with the initial assumption, we will use as u3 and u∗
2 the

fundamental solutions K + and K − of the forward and backward Cauchy problems
for the parabolic equations with coefficients a3 and a2 with poles at the points
(y, 0), (y, τ ), where y is outside Q4 and is close to the origin. To obtain bounds
of integrals it is convenient to use new variables. We can assume that the direction
en of the xn-axis coincides with the interior unit normal to ∂x Q•

1 ∩ {t = 0}. This
surface near the origin is the graph of a Lipschitz function xn = q1(x1, . . . , xn−1, t).
The substitution

xm = x0
m,m = 1, . . . , n − 1, xn = x0

n + q1(0, t), t = t0

transforms the equations into similar ones (with additional first-order differential
operators with respect to x0

n ). The domains Q•
j are transformed into similar do-

mains, with the additional property that the points (0, t), 0 < t < T , are in ∂x Q•
1.
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Since q1 is a Lipschiz function we may assume that (0, . . . , 0, 1) is the interior
normal to its graph at the origin. Further on, we will drop the index 0.

The singular (fundamental) solutions to be used have the following structure:

(9.5.9) K + = K +
1 + K +

0 , K − = K −
1 + K −

0 ,

where the first terms are the so-called parametrices

K +
1 (x, t ; y, τ ) = C(deta−1

3 (y)(t − τ ))−n/2 exp(−a−1(y)(x − y)

·(x − y)(/(4(t − τ ))),

K −
1 (x, t ; y, τ ) = C(a0(y))1/2((τ − t))−n/2 exp(−|x − y|2/(4a0(y)(τ − t))),

and K +
0 , K −

0 are remainders with weaker singularities satisfying the bounds

|∇ j
x K +

0 (x, y; t, τ )| ≤ C |t − τ |(λ−n− j)/2exp(−C |x − y|2/(t − τ )),

|∇ j
x K −

0 (x, y; t, τ )| ≤ C |t − τ |(λ−n− j)/2exp(−C |x − y|2/(τ − t)), j = 0, 1.

Letting in (9.5.8) u3 = K +( ; y, 0), u∗
2 = K −( ; y, τ ), splitting K +, K − according

to (9.5.9), and breaking the integration domain Q•
1 into Q•

1 ∩ Z and its complement,
we obtain

(9.5.10) I1 = I2 + I3,

where

I1 =
∫

Q•
1∩Z

k1∇x K +
1 · ∇x K −

1 ,

I2 = −
∫

Q•
1\Z

k1∇x K + · ∇x K − +
∫

Q•
2

k2∇x K + · ∇x K −,

and

I3 =
∫

Q•
1∩Z

k1(∇x K +
1 · ∇x K −

0 + ∇x K +
0 · ∇x K −

1 + ∇x K +
0 · ∇K −

0 ).

To obtain the relation (9.5.10) we first take y = (0, . . . , 0,−δ) and then let δ → 0.
The passage to the limit can be justified (when τ > 0 is fixed) by using the Lebesgue
dominated convergence theorem and bounds on x-derivatives of the fundamental
solutions, which follows from the given formulae for parametrices and from known
results (see the book by Friedman [Fr]). After the passage to the limit, the integrals
in (9.5.10) became functions of τ only.

Lemma 9.5.5. We have

τ−n/2/C ≤ |I1|,
|I2| ≤ C,

|I3| ≤ Cτ−n/2+λ/2,

where constant C does not depend on τ .
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PROOF. From (9.5.9) we have

∇x K +
1 (x, t ; 0, 0) = −K +

1 (x, t ; 0, 0)/(2t)a−1
1 (0)x,

∇x K −
1 (x, t ; 0, 0) = −K −

1 (x, t ; 0, 0)/(2ta0(0))x .

Since a1 = a0 + k1 on Q1 and a0 is scalar, the matrices k1(0), a1(0), a−1/2
1 (0)

commute, using in addition their symmetry we will have

|k1(x)(a−1
1 (0)x)) · (a−1

0 (0)x)|
= |k1(0)a−1/2

1 (0)a−1/2
0 (0))x · (a−1/2

1 (0)a−1/2
0 (0)x)

+ (k1(x) − k1(0))(a−1
1 (0)x · (a−1

0 (0)x)|
≥ |x |2/C − C |x |3 ≥ |x |2/C, x ∈ B

where we used the trangle inequality and condition (9.5.4) on k = k1 and choose
B to have small radius. By our regularity assumptions there is an open cone C in
R

n with vertex at the origin and axis (0, . . . , 0, s), 0 < s < ε0 that is contained in
Q•

1. Hence,

|I1| ≥ 1/C
∫
C×(0,τ )

|x |2(t(τ − t))−n/2−1exp(−|x |2/(mt) − |x |2/(m(t − τ )))dtdx

≥ 1/C
∫
C

∫ τ

0
|x |2(t(t − τ ))−n/2−1exp(−|x |2τ/(mt(τ − t)))dtdx

where m is the smallest of the eigenvalues of a1, a0. Using the inequality

1/(tτ ) ≤ 1/(t(τ − t)) ≤ 2/(tτ ) when 0 < t < τ/2

and the previous bound we obtain

|I1| ≥ 1/C
∫
C

∫ τ/2

0
|x |2(tτ )−n/2−1exp(−2|x |2/(mt))dtdx

= 1/Cτ−n/2−1
∫ ε

0
ρ2(

∫ τ/2

0
t−n/2−1exp(−2ρ2/(mt))dt)ρn−1dρ

where we have used the polar coordinates ρ = |x | in R
n . Using the substitutiton

w = 2ρ2/(mt) in the last integral we yield

|I1| ≥ 1/Cτ−n/2−1
∫ ε

0
ρ(

∫
4ρ2/(mτ )

wn/2−1e−w )dρ

≥ 1/Cτ−n/2−1
∫ 4ε2/(mτ )

0
(
∫ √

mτw/2

0
ρdρ)wn/2−1e−w dw

where we replaced the integration domain by the smaller one {0 < ρ <
ε, 4ρ2/(mτ ) < w < 4ε2/(mτ )} and interchanged order of integration. Calculat-
ing the last inner integral we get

|I1| ≥ 1/Cτ−n/2
∫ 4ε2/(mτ )

0
wn/2e−w dw .
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The proof of the first bound of Lemma 9.5.5 is complete.
The second bound is obvious, since the fundamental solution is bounded away

from singularities.
The third bound can be obtained similarly to the first one by using the bounds

(9.5.9) on K +
0 , K −

0 . Of course, now we obtaining bounds from above. We will not
give a complete argument, only some outlines. One of the integrals to be bounded
looks like that one for I1, it is less than the integral of

|x |(τ − t)−n/2−1tλ/2−n/2−1/2e−|x |2/(mt)e−|x |2/(m(τ−t)

≤ C |x |2+λ(t(τ − t))−n/2−1e−|x |2/(m1t)e−|x |2/(m1(τ−t)

when 0 < m < m1. Here we used that |x |1+λt−(1+λ)/2exp(−(m1 −
m)|x |2/(mm1t)) < C . After these remarks upper bounding I3 repeats lower
bounding |I1|. �

To complete the proof of Theorem 9.5.2 we first show that domains coincide.
From (9.5.10) and Lemma 9.5.5 we have

τ−n/2 ≤ C(1 + τ−n/2+λ/2)

and letting τ → 0 we will have a contradiction. The contradiction shows that the
initial assumption is wrong, so Q•

1 = Q•
2.

When the domains coincide, one can prove equality of scalar k j on Q•
1 by using

the methods of sections 5.1,9.4.
The first claim is that

(9.5.11) k1 = k2, ∇k1 = ∇k2 on ∂x Q•.

As in the proof for domains we assume the opposite. Then we can assume that the
origin 0 ∈ ∂x Q•

1 and ε < k2 − k1 on some ball B centered at the origin. As above
there is function a4 ∈ C2(Rn) conciding with a2 on Q•

1. By repeating the proof of
(9.5.8) we conclude that ∫

Q•
1

(k2 − k1)∇u3 · ∇u∗
4 = 0

for all solutions u3 to the equation ∂t u3 − div(a3∇u3) = 0 near Q
•
1 which are zero

when t < 0 and for all solutions u∗
4 to the equation ∂t u∗

4 + div(a4∇u∗
4) = 0 near

Q
•
1 which are zero when T < t . Repeating the proof of uniqueness for domains we

will obtain a contradiction. Hence we have the first equality (9.5.11). Repeating
this argument with use of normal derivatives of fundamental solutions we prove
the second equality (9.5.11).

To conclude it suffices to show that k1 = k2 on the intersection �0 of all
Q•

1 ∪ {t = θ} over all θ ∈ (0, T ). Let Q0 = �0 × (0, T ). By using local represen-
tations of ∂x Q•

1 and using that min of a family of Lipschit z functions is Lipschitz
one can show that (at least for small T) �0 is Lipschitz. Due to (9.5.11) and to
time independence, k1 = k2 on Q\�0 × (0, T ). We can assume that T is small,
since increasing T shrinks Q0. Letting a5 = a0 + χ (�0)k1, a6 = a0 + χ (�0)k2
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and adjusting the derivation of (5.7.3) from (5.7.2) to the parabolic case we obtain
from Lemma 9.7.4 that

(9.5.12)
∫

Q0

(k2 − k1)∇x u5 · ∇x u∗
6 = 0,

for all solutions u5 to the equation ∂t u5 − div(a5∇x u5) = 0 near Q0 which are zero
when t < 0 and for all solutions u∗

6 to the equation ∂t u∗
6 + div(a6∇x u∗

6) = 0 near
Q0 which are zero when T < t .

We claim that (9.5.12) implies equality of the lateral Dirichlet-to Neumann maps
for parabolic equations with coefficients a5, a6.

Indeed, let u5 and u6 be solutions of these equations in Q with zero initial data
and with the same (smooth) lateral Dirichlet data g0 supported in γ × (0, T ). By
subtracting these equations and letting u = u6 − u5 we yield

∂t u − div(a6∇x u) = div((a5 − a6)∇x u5) on Q.

From the definition of a generalized solution ( before Theorem 9.1) we have

−
∫
∂�×(0,T )

a0∂νuv +
∫

Q
(a6∇x u · ∇x v − u∂t v) =

∫
Q

(a6 − a5)∇x u5 · ∇x v

(9.5.13)

for any function v ∈ L2(0, T ; H(1)(�)) with ∂t v ∈ L2(Q), v = 0 on�× {T }. Since
coefficients a5, a6 it follows ( by forming finite differences in time) from Theorem
9.1 that ∂t u5, ∂t u6 ∈ L2(Q), and ∂t u∗

6 ∈ L2(Q) for any solution to the adjoint
equation ∂t u∗

6 + div(a6∇x u∗) = 0 in Q with zero data at t = T and smooth lateral
Dirichlet data on ∂x Q. Using again the definition of a(weak) solution to the adjoint
equation with the test function u we obtain∫

Q
(a6∇u∗

6 · u − u∗
6∂t u) = 0,

because u = 0 on ∂x Q. Letting v = u∗
6 in (9.5.13) and using the last integral

equality as well as (9.5.12) we yield∫
∂�×(0,T )

a0∂νuu∗
6 = 0.

Since u∗
6 on ∂�× (0, T ) is an arbitrary smooth function, ∂νu = 0 on ∂�× (0, T ).

So a5, a6 generate the same lateral Dirichlet-to Neumann map. Now by using sta-
bilization of solutions of parabolic problems for large t as in the proof of Theorem
9.4.1 we conclude that the elliptic equations

− div(a j∇v j ) + sv j = 0, in �, j = 5, 6,

have the same Dirichlet-to Neumann maps. By Theorem 5.7.1, a5 = a6 and k1 =
k2.

Finally we prove similar results for impenetrable domains for single boundary
measurements which in particular guarantee that under natural assumptions voids
are uniquely identified by their exterior thermal field.
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Theorem 9.5.6. Let u solve the parabolic equation (9.0.1) with f = 0 in Q\Q•

where Q• is a subdomain of Q satisfying the conditions of Theorem 9.5.2. Let
u have the initial condition u0 = 0 on �× {0}\Q

•
and the Dirichlet condition

(9.0.3) with nonnegative g0 ∈ C2(∂�× [0, T ]) which is not identically zero on
∂�× (0, θ ) for any θ > 0. Let
(9.5.14)

u = 0 on ∂x Q• (D) or ∂ν(a)u = 0 on ∂x Q• and Q• = �• × (0, T ) (N ).

Then the additional Neumann data (9.0.6) for any open subset γ of ∂� uniquely
determine Q•.

We will prove this result by the Schiffer’s method which is used in section 6.3
to show uniqueness of a soft obstacle.

PROOF. Let us assume that there are two different domains Q•
1, Q•

2 producing
the same lateral boundary data. We will introduce the domains Q3, Q4 as in the
proof of Theorem 9.5.2. We may assume that Q•

2 is not contained in Q•
1, hence

as in the proof of Theorem 6.3.1 there is a connected component Q0 of Q4\Q
•
1.

The lateral boundary ∂x Q0 = �1 ∪ �2 where �1 ⊂ ∂x Q•
1 and �2 ⊂ ∂x Q•

1 ∩ ∂x Q3.
Since u1, u2 satisfy the same parabolic equation in Q3 by uniqueness in the lateral
Cauchy problem (Theorem 3.3.10) u1 = u2 on Q3. Hence u1 = u2 = 0 on �2 in
case (D) and ∂ν(a)u1 = 0 on �2 in case (N ).

Replacing u1 by eτ t v1 we will have for v1 the parabolic equation (9.0.1) with c
replaced by c + τa0. To show that v1 = 0 on Q0 we will make use of the definition
of weak solution in Q0:∫

Q0

(a0∂t v1φ + (a∇v1) · ∇φ + (b · ∇v1 + (c0 + τa0)v1)φ)

−
∫
�1

(a∇v1) · νφ −
∫
�2

(a∇v1) · νφ = 0

for any test function φ ∈ L2(Q\Q•
1) with ∇φ ∈ L2(Q\Q•

1), φ ∈ H(1/2)(Q\Q•
1).

Letting ϕ = v1, observing that (∂t v1)v1 = 1/2∂t (v2
1), and integrating by parts in

the first integral with use of zero boundary conditions on �1, �2 and at t = 0 we
obtain∫
∂Q0∩{t=0}

1/2a0v2
1 +

∫
Q0

(a∇v1 · ∇v1 + b · ∇v1v1 + (a0τ + c − ∂t a0/2)v2
1) = 0.

Using the elementary inequality −ε|∇v1|2 − C(ε)v2
1 ≤ b · ∇v1v1 and positivity of

the matrix a we yield∫
Q0

(ε0|∇v1|2 − ε|∇v1|2 + (a0τ + c − ∂t a0/2 − C(ε))v2
1 ≤ 0.

Choosing ε < ε0 and then τ to be large, we obtain that v1 = 0 in Q0. By uniqueness
of the continutation from Q0 (Theorem 3.3.10) we have v1 = 0, u1 = 0 on Q3 ∩
{T1 < t < T2} where T1 = in f t and T2 = supt over (x, t) ∈ Q0. Hence g0 = 0
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on ∂�× (T1, T2). In case (N ) T1 = 0 and we have a contradiction with conditions
of Theorem 9.5.6 on g0. In case (D) u1 is nonnegative by Theorem 9.2 and hence
by the second part of Theorem 9.2 we have u1 = 0 on (Q\Q•

1) ∩ {0 < t < T2},
g0 = 0 on ∂�× (0, T2) and we have a contradiction again.

The proof is complete. �

Instead of smooth function g0 one can use the Dirac delta-function concentrated
at a point of ∂�× {0}. The proof is valid in this case with minor technical ad-
justments regarding definition of a weak soltion with less regular Dirichlet data.
Vessella [Ve] obtained a logarithmic stability estimate for this problem.

9.6 Nonlinear equations

In this section we consider recovery of the terms a0(x, u), c(x, t, u) of the nonlinear
parabolic equation

(9.6.1) a0(x, u)∂t u −�u + c(x, t, u) = 0 in Q

from two natural analogues of the Dirichlet-to-Neumann map for this equation.
About the nonlinear terms we assume that

0 < a0 on �× R, 0 ≤ ∂uc, c(x, t, 0) = 0,

a0, ∂ua0, ∂
2
u a0, c, ∂uc, ∂2

u c are in L∞(Q × [−U,U ])(9.6.2)

for any finite U .
By using maximum principles and upper and lower solutions and Theorem 9.1

as in Section 5.6 for elliptic equations, one can show that for any C2-smooth
compatible data u0, g0 there is a unique solution u(x, t ; u0, g0) in H2,1;2(Q) ∩
C(Q). Therefore, we have a well-posed direct (boundary value) problem for the
nonlinear parabolic equation (9.6.1), and the following functions are well-defined:

uT = u on �× {T }, g1 = ∂νu on ∂�× (0, T ).

Let E par = {(x, t, u) : (x, t) ∈ Q, u = u(x, t ; θ, θ) for some constant θ}. As for
elliptic equations values of solutions u(x, t) to the nonlinear initial boundary value
problem for the parabolic equation (9.6.1) with all possible data u0, g0 under
conditions (9.6.2) do not necessarily cover R, and we hope to have uniqueness at
most on E par .

Theorem 9.6.1. Assume that

(9.6.3) a0 = 1.

Then the complete Dirichlet-to-Neumann map� : (g0, u0) → (g1, uT ) uniquely
determines c on E par .

PROOF. We will adapt to the inverse parabolic problem the proof of Theorem 5.6.1.
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Let c∗(x, t ; θ ) be ∂uc(x, t ; u(x, t ; θ, θ)). We consider the linear parabolic equa-
tion

(9.6.4) ∂t v −�v + c∗v = 0 on Q

and let�∗ be the complete Dirichlet-to-Neumann map for this linear equation. �

Lemma 9.6.2. � uniquely determines�∗. Moreover, the function v = ∂θu(; θ, θ)
is well-defined, satisfies the differential equation (9.6.4), and has initial and lateral
boundary data 1.

PROOF. As in the proof of Lemma 5.6.2 we take any pair (g∗
0 , u

∗
0) of the admissible

lateral and initial data. Let us subtract the equations for u(; θ + τg∗
0 , θ + τu∗

0)
and for u(; θ, θ), divide the result by τ , and denote by v(; τ ) the finite difference
(u(; θ + τg∗

0 , θ + τu∗
0) − u(; θ, θ))/τ . Using Taylor’s formula as in Section 5.6 and

the regularity assumptions (9.5.2) on c, we obtain the linear differential equation

(9.6.5) ∂t v( ; τ ) −�v( ; τ ) + c∗( ; θ, τ )v( ; τ ) = 0 on Q,

where

c∗( ; θ, τ ) =
∫ 1

0
∂uc( ; (1 − s)u( ; θ, θ) + su( ; θ + τg∗, θ + τu∗

0))ds,

and the initial and lateral Dirichlet boundary data

(9.6.6) v( ; τ ) = u∗
0 on �× {0} and v( ; τ ) = g∗

0 on ∂�× (0, T ).

According to conditions (9.6.2), we have ‖c∗‖∞(Q) < C , where C does not depend
on τ , so Theorem 9.1 gives that ‖v(; τ )‖∞(Q) < C . More detail is given for elliptic
equations in section 9.5. Now, the formula for c∗ and conditions (9.6.2) imply
that c∗(; θ, τ ) = c∗(; θ ) + r1 where ‖r1‖∞ ≤ Cτ . Finally, the bounds on v(; τ )
and on r1 combined with Theorem 9.1 permit us to conclude that solutions to
the parabolic boundary value problem (9.6.5)–(9.6.6) have a H2,1;p(Q)-limit v as
τ → 0. The function v apparently satisfies equation (9.6.4) and the initial and
lateral boundary conditions (9.6.6). Since we are given the complete Dirichlet-to-
Neumann map for equation (9.6.1), we are given ∂νv(; τ ) on ∂�× (0, T ) and v(; τ )
on�× {T }. The convergence in H2,1;2(Q) and the trace theorems imply that these
functions are convergent in L2((0, T ); H(1/2)(∂�)) and in L2(�) respectively. So
the complete Dirichlet-to-Neumann map �∗ for the linearized equation (9.6.5) is
uniquely defined by �.

The proof is complete. �

Lemma 9.6.3. The complete Dirichlet-to-Neumann map for the linear equation
(9.6.4) uniquely identifies its coefficient c∗.

PROOF. Assume that we have two different coefficients c∗
1 and c∗

2 generating the
same complete Dirichlet-to-Neumann map�∗. As in Section 5.3, subtracting equa-
tions (9.6.4) with the coefficients c∗

2 and c∗
1, we obtain

∂t u −�u + c∗
2u = (c∗

1 − c∗
2)u1 on Q, u = 0 on ∂Q, ∂νu = 0 on ∂x Q,



290 9. Inverse parabolic problems

where u1, u2 are solutions to the equations (9.6.4) with the coefficients c∗
1, c

∗
2,

which have the same initial and lateral Dirichlet boundary data, and u = u2 − u1.
The function u and its normal derivatives are zero at the boundary, because both
coefficients produce the same Dirichlet-to-Neumann map. Let v2 be any solution
to the adjoint equation

∂t v −�v + c∗
2v = 0 in Q, v ∈ H2,1;2(Q).

Using the identity (9.0.4) for the equation for u and then the same identity for the
equation for v2, we conclude that∫

Q
(c∗

1 − c∗
2)u1v2 = 0

for any solution u1 of the parabolic equation with the coefficient c1 and any solution
to the above-mentioned adjoint equation. To prove uniqueness it suffices to show
that products of solutions of these equations are complete in L1(Q). We will derive
this result from Theorem 5.3.3.

To check condition (5.3.8) of this theorem, we choose any ξ (0) ∈ R
n+1.

Due to the invariancy of the principal symbols P1(ζ ) = iζn+1 + ζ 2
1 + · · · + ζ 2

n ,
P2(ζ ) = −iζn+1 + ζ 2

1 + · · · + ζ 2
n with respect to rotations in R

n , we will assume
that ξ (0) = (ξ1(0), 0, . . . , 0, ξn+1(0)). We let"0 be {ξ 2

1 + · · · + ξ 2
n �= 0}. The equa-

tions P1(ζ (1)) = P2(ζ (2)) = 0 for the vectors

ζ (1) = (ζ1, ζ2, 0, . . . , 0, ζn+1),

ζ (2) = (ξ1(0) − ζ1,−ζ2, 0, . . . , 0, ξn+1(0) − ζn+1)

can be transformed into

ζ 2
1 + ζ 2

2 + iζn+1 = 0, ξ 2
1 (0) − 2ξ1(0)ζ1 − iξn+1(0) = 0.

These algebraic equations have the solutions

ζ1 = ξ1(0)/2 − iξn+1(0)/(2ξ1(0)), ζ2 = i R,

ζn+1 = ξn+1(0)/2 + i(ξ 2
1 (0)/4 − ξ 2

n+1(0)/(2ξ1(0))2 − R2).

We have

P1(ξ + ζ ) = 2ζ1ξ1 + · · · + 2ζnξn + iξn+1 + ξ 2
1 + · · · + ξ 2

n ,

so P̃2
1 (ξ + ζ (1)) ≥ |∂ξ2 P1(ξ + ζ (1))|2 = 4|ξ2 + ζ2(1)|2 ≥ 4R2.

Similarly, P̃2
2 (ξ + ζ (2)) ≥ 4R2. Therefore, the conditions of Theorem 5.3.3 are

satisfied, and the products u1v2 are complete in L1(Q).
The proof is complete. �

END OF THE PROOF OF THEOREM 9.6.1. Now we will complete the proof of The-
orem 9.6.1 quite quickly.

By Lemmas 9.6.2, 9.6.3 the function ∂uc(x, t, u(x, t ; θ, θ)) is uniquely identi-
fiable. Then by Lemma 9.6.2 the function v = ∂θu(; θ, θ) can be uniquely found
as a solution to the linear parabolic equation (9.6.4) with known coefficient and
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initial and lateral boundary data. Since u(; 0, 0) = 0 we can uniquely determine
u(; θ, θ). By the positivity principle v is strictly positive on Q. So the equation
u = u(x, t ; θ, θ) has the unique solution θ (u; x, t) provided (x, t, u) ∈ E par . Plug-
ging this θ into c∗, we find ∂uc(x, t ; u). Since c(x, t ; 0) = 0 we uniquely determine
c(x, t ; u). �

We introduce the set E p = {(x, u) : u∗(x) ≤ u ≤ u∗(x) when 0 < t < T },
where u∗(x) is inf u(x, t) over all admissible (regular bounded) g and over
t ∈ (0,∞) (and u∗ is sup). The following result in a weaker form was obtained by
Isakov in the paper [Is10].

Theorem 9.6.4. Let 2 ≤ n and let Q = �× (0,+∞). Then the lateral Dirichlet-
to-Neumann map�l uniquely determines c = c(x, u) on E p. If in addition 3 ≤ n,
then �l also uniquely determines a0 on E p.

Before proving this result, we recall some known results about the asymptotic
behavior of a solution u(x, t) of the first initial boundary value problem for the
nonlinear parabolic equation (9.6.1) when t is large. We refer for a proof to the
paper of Guidetti [Gu]. Assume that the lateral Dirichlet data are

(9.6.7) g0(x, t) = g0(x) + g1(x)t−1 + g2(x)t−2 when 1 ≤ t,

where g0, g1, g2 are C2(�)-functions, with g1, g2 ≤ 0. Let u0, u1, u2 be solutions
to the following elliptic (stationary) Dirichlet problems:

−�u0 + c(x, u0) = 0 in �, u0 = g0 on ∂�,(9.6.8)

−�u1 + ∂uc(x, u0) = 0 in �, u1 = g1 on ∂�,(9.6.9)

−�u2 + ∂uc(x, u0)u2 = −1

2
∂2

u c(x, u0)(u1)2 + ao(x, u0)u1(x) in �,

u2 = g2 on ∂�.(9.6.10)

From known results about parabolic initial boundary value problems we can con-
clude that a solution u(x, t) to (9.0.1n), (9.0.2), (9.0.3) with g as given in (9.6.7)
admits the following representation:

(9.6.11) u(x, t) = u0(x) + u1(x)t−1 + u2(x)t−2 + w(x, t),

where t2‖w(, t)‖1,p(�) → 0 for any p > 1 as t → ∞.

PROOF OF THEOREM 9.6.4. First we will make use of g0 = g0. From (9.6.8),
(9.6.11) it follows that u(t) → u0 in H1,p(�) as t goes to infinity. By the trace
theorems we have then ∂νu(, t) → ∂νu0 in the space H(−1/2)(∂�). According to
the condition of Theorem 9.6.4, ∂νu(, t) on ∂� is given for any t . Therefore, we
are given ∂νu0 on ∂� for any (smooth) Dirichlet data g0. So we are given the
Dirichlet-to-Neumann map for the semilinear elliptic equation (9.6.8), which by
Theorem 5.6.1 uniquely determines c(x, u) on E (the set defined similarly to E p

for the elliptic equation (9.6.8); see Section 5.6). We will explain next that E p = E .
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Indeed, in Section 5.6 we observed that due to monotonicity properties, E can
be defined by using only constant Dirichlet data on ∂�. By using a stabilization
argument, it is easy to see that E ⊂ E p. We will show the inverse inclusion. Let g0

be any admissible Dirichlet boundary data for the parabolic problem and g0 < C
(a constant). Denote by u the solution of the nonlinear parabolic equation with
zero Cauchy data on �× {0} and lateral Dirichlet data g0 on ∂�× (0,+∞).
Consider the new Dirichlet lateral boundary data g+(x, t) = ψ(t)G, where ψ is a
smooth nondecreasing function that is 0 when t < −1 and 1 when 1 < t . Let u+

be the solution of the same equation on�× (−1,+∞) with zero Cauchy data on
�× {−1} and lateral Dirichlet data g+ on ∂�× (−1,+∞). Since the initial and
lateral boundary data for u are less than for u+ by the positivity principle we have
u ≤ u+ on Q. On the other hand, differentiating equation (9.6.1) with respect to
t , one can obtain a linear parabolic differential equation for v+ = ∂t u+. Since v+

is zero at t = −1 and nonnegative on ∂�× (−1,∞), again by the monotonicity
principle we have ∂t u+ ≥ 0. Since the lateral boundary data for u+ are constant for
t > 0, this solution to the parabolic equation (9.6.1) is stabilizing to the solution
u+0 of the elliptic equation (9.6.8) with Dirichlet data g0 = G. Due to monotonicity
of u+ with respect to t , we have u+(x, t) ≤ u+(x). So u(x, t) ≤ u+(x), and any
solution of our parabolic equation is majorized by a solution to the elliptic equation,
so the sup over bounded solutions of parabolic equations is not greater than the
sup over solutions of the steady-state elliptic equation. A similar argument works
for inf. Therefore, E p ⊂ E .

To prove the uniqueness of a0(x, u) we need the first three terms of the asymptotic
expansion (9.6.11). Fix any g0, g1, g2 ∈ C2(∂�). Since c is known (on E), we
know the solution u0 to the Dirichlet problem (9.6.8). We therefore know a solution
u1 to the linear Dirichlet problem (9.6.9). The asymptotics (9.6.11) implies that
t2‖∂νw(, t)‖(−1/2)(∂�) → 0 as t goes to +∞. Since we are given ∂νu(, t) on ∂�,
multiplying (9.6.11) by t and passing to the limit as t → +∞, we will find ∂νu2

on ∂�. Multiplying both parts of equation (9.6.10) by an H(2)(�)- solution v2 to
the linear homogeneous equation

(9.6.12) −�v2 + ∂uc(x, u0)v2 = 0 in �

and using Green’s formula, we obtain∫
∂�

(−(∂νu
2)v2 + u2∂νv

2) =
∫
�

(−1

2
∂2

u c(x, u0)(u1)2v2 + a0(x, u0)u1v2).

For any given g0, g1, g2, and v2 the left side of this equality is known, as well as
c(x, u), u1. Hence, for all solutions u1 and v2 to the linear Schrödinger equations
(9.6.9) and (9.6.12) we are given the integrals∫

�

a0(x, u0(x))u1(x)v2(x)dx .

By Corollary 5.3.5 these integrals uniquely determine a0(x, u0(x)) for all x ∈
�, u0, provided that n ≥ 3. To be convinced that in fact c is uniquely determined
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on E is uniquely determined on E , it suffices to show that it is uniquely determined
at any interior point (x, u) of E . Let u0(x ; θ ) be the solution to the (known) elliptic
equation (9.6.8) with constant Dirichlet data g0 = θ . As already observed, the
maximum (or monotonicity) principle implies that for any given x the function
u0(x ; θ ) is increasing with respect to θ . According to the definition of E and
to the previous remarks about monotonicity, there is a unique θ (x ; u) such that
u0(x ; θ ) = u. Since c is known, so is the function θ (x ; u). Finally, a0(x, u) =
a0(x, u0(x ; θ (x, u))).

The proof is complete. �

For inverse problems in nonlinear equations with one measurement we refer to
the paper of Pilant and Rundell [PiR1].

9.7 Interior sources

All the results of Chapter 9 presented so far about identification of coefficients
have been obtained when the source term f = 0. This is the case in most impor-
tant applications. With the exception of the final overdetermination, such inverse
problems are quite unstable, and this is a serious obstacle for practical use. Lowe
and Rundell [LowR] observed that when one can use the boundary data from many
interior sources, then it is possible to solve inverse problems in a simple and stable
way.

We consider a solution u to the problem (9.0.1), (9.0.2), (9.0.3) with a0 = 1, a =
1, b = 0, and unknown

(9.7.1) c ∈ Cλ(Q).

We assume that the Dirichlet boundary data g0 = 0 and that the source term f is
the Dirac delta function δ(−y,−s) with the pole at a point (y, s). We denote the
solution of this parabolic boundary value problem by u(x, t ; y, s). It is Green’s
function of the first boundary value problem for our equation.

Let γ be any open part of ∂�. Let us fix a function g∗
0 satisfying the following

conditions:

0 ≤ g∗
0 on γ × (0, T ), g∗ is not identically zero on γ × (s0, T ),

g∗
0 = 0 on (∂�\γ ) × (0, T ), g∗

0 ∈ C2(∂�× [0, T ]),

g∗
0 = ∂t g

∗
0 = 0 on ∂�× {T }.(9.7.2)

Theorem 9.7.1. The weighted flux integral

w(y, s) =
∫
�×(0,T )

g∗
0 g1( ; y, s)

given for all (y, s) in a neighborhood V of a point (y0, s0) ∈ Q uniquely (and in
a stable way) determines c(y0, s0).
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PROOF. Let v be a solution to the backward heat equation

(9.7.3) ∂t v +�v = 0 in Q

with initial and lateral boundary conditions

(9.7.4) v = 0 on �× {T }, v = g∗
0 on ∂�× (0, t).

According to the definition of a generalized solution to our parabolic boundary
value problem with the test function v , we have∫

Q
u(−∂t v −�v + cv) −

∫
γ×(0,T )

g∗
0∂νu = v(y, s).

Using equation (9.7.3) as well, we conclude that the function

U (y, s) =
∫

Q
cu( ; y, s)v = w(y, s) + v(y, s)

is given when (y, s) ∈ V . Since u is Green’s function for our parabolic equation,
we have −∂sU −�yU + cU = cv , and using again equation (9.7.3), we conclude
that

−∂sw −�yw + cw = 0 in Q.

The function w = U − v is 0 on �× {T } and −g∗
0 on ∂�× (0, T ). By using

conditions (9.7.2) and the positivity principle for parabolic equations, we conclude
that w < 0 in V . Hence we can divide by w in V to obtain

(9.7.5) c(y, s) = (∂sw +�w)/w(y, s), (y, s) ∈ V .

The proof is complete. �

The reconstruction formula (9.7.5) gives a stable solution to the inverse problem.
We observe that in [LowR] the authors were looking for c = c(x) in the one-

dimensional case, and they used a minimal overdetermination over � × {T }. They
have been able to prove uniqueness under several very restrictive assumptions. We
use more information, consider the multidimensional case, and impose minimal
conditions on c.

Similarly, one can identify a leading coefficient. Consider the problem (9.0.1),
(9.0.2), (9.0.3) with a = 1, b = 0, c = 0, unknown positive

a0, ∂t a0 ∈ Cλ(Q),

boundary data g0 = 0, zero initial data, and the source term f = δ(−y,−s). Let
u(; y, s) be a solution of this problem. As above, let us introduce a function g∗∗

0
satisfying the conditions 0 ≤ ∂t g∗∗

0 on γ × (0, T ); g∗∗
0 is not identically equal

to zero on γ × (s0, T ); g∗∗
0 = 0 on any (∂�\�) × (0, T ); g∗∗

0 , ∂t g∗∗
0 ∈ C2(∂�×

[0, T ]); g∗∗
0 = ∂t g∗∗

0 = ∂2
t g∗∗

0 = 0 on ∂�× {T }.
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Exercise 9.7.2. Show that if we introduce the weighted flux

w1(s, t) =
∫
γ×(0,T )

g∗∗
0 ∂νu( ; s, t),

then

a0(s, t) = −�yw/∂sw(s, t), (y, s) ∈ V .

{Hint: Modify the proof of Theorem 9.7.1 using a function v that solves the same
backward heat equation with Dirichlet data g∗∗

0 instead of g∗
0 . To show that ∂sw < 0,

differentiate the equation −a0∂sw −�w = 0 and the lateral boundary condition
with respect to t and make use of the positivity principle.}

9.8 Open problems

Here we mention some unsolved questions of significant theoretical and applied
importance.

Problem 9.1 (Two additional measurements at the final moment of time). It is
true that two sets of boundary data g0, uT (under some monotonicity conditions
on g0) uniquely determine two coefficients a0(x), c(x) in the inverse problem
discussed in section 9.1?

A natural approach is to choose two different lateral boundary Dirichlet
data g01, g02 such that g02 is increasing faster then g01 (e.g., g01(x .t) = et −
1, g02(x, t) = eλt − 1 with large λ), subtract two different equations as in the proof
of Theorem 9.1.2, and try to eliminate one of the differences of unknown coeffi-
cients.

Problem 9.2 (Global uniqueness for coefficients in the case of zero initial data
and single measurements). Does the single set of lateral data g0, g1 with nonzero
(monotone with respect to t) g0 uniquely determine the coefficient c = c(x) of the
parabolic problem (9.0.1)–(9.0.3) with a0 = 1, a = 1, b = 0, f = 0?

We emphasize that this is a problem for an arbitrary g0, e.g., for g0(t) = t . By
using analyticity of solutions of t-independent problems with respect to t , it was
observed by J. Gottlieb and T. Seidman that for some particular (and quite artificial)
choice of

g0(x, t) = �2−kφk(t)g(x ; k)

one can actually determine the Neumann data for all Dirichlet data g(; k), re-
covering from one single boundary measurement the whole lateral Dirichlet-to-
Neumann map when {g(; k)} is a complete family of (smooth) functions on ∂�.
Here φk(t) ∈ C∞(R) is 0 when 0 < t < 1 − 2−k , is 1 when 1 − 2−k−1 − 2−k−2 <

t < 1, and otherwise 0 < φk(t) < 1. Responses (∂νuk on the lateral boundary)
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from all terms of the series can be separated by using t-analyticity of solutions of
parabolic problems with t-independent data and coefficients and the special choice
of the lateral boundary data g0.

Problem 9.3 (Global uniqueness of the t-dependent principal part). Does the lat-
eral Dirichlet-to-Neumann map uniquely determine the coefficient a0 = a0(x, t)
in equation (9.0.1) with a = 1, b = 0, c = 0, f = 0?

Uniqueness is not known even when one is given the complete (not only lateral)
Dirichlet-to-Neumann map (g0, u0) → (g1, uT ). This is one of the simplest ques-
tions about uniqueness of the anisotropic partial differential equation. At present,
the methods of complex geometrical optics described in Section 5.3 can give
uniqueness only if a0 is close to a constant. Of course, using analyticity arguments
one derive generic uniqueness results similar to Theorem 5.5.3.

Problem 9.4 (Restricted data for the domain problem). In the situation of Theo-
rem 9.4.1 is it sufficient for uniqueness of D with connected�\D in a = 1 + χ (D)
to prescribe ∂νu only on ∂�× {T }?

Problem 9.5 (Reduction of overdeterminacy in Theorem 9.5.2). Is uniqueness of
the time-dependent domain valid in the case of a (special) single lateral boundary
measurement?

Apparently, we required too much data in Theorem 9.5.2, but at present we have
no idea how to get uniqueness with less data.

Problem 9.6. Does the lateral Dirichlet-to-Neumann map for the equation ∂t u −
�u + c(x, u) = 0 in �× (0, T ) uniquely determine c(x, u) when T is finite?

This problem is about recovery of smooth c that are not necessarily analytic
with respect to u. But it has not been solved even for time-analytic coefficients,
when one can try to mimic the proof of Theorem 9.5.1. This problem is quite
interesting for systems , in particular in particualr in chemical kinetics, when it
describes interaction term in mathematical models of chemical reactions.
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Some Numerical Methods

In this chapter we will briefly review some popular numerical methods widely used
in practice. Of course it is not a comprehensive collection. We will demonstrate
certain methods that are simple and widely used or, in our opinion, interesting
and promising both theoretically and numerically. We observe that most of these
methods have not been justified and in some cases even not rigorously tested
numerically.

Due to the ill-posedness and nonlinearity of a typical inverse problem, one has
two difficulties to overcome. In many practical numerical procedures nonlinearity
is removed by replacing the original problem by its linearization around constant
coefficients. Then a solution of the direct problem and therefore of the inverse one
is dramatically simplified; but still, due to ill-posedness, the inverse problem is not
easy, and its satisfactory numerical solution is possible mostly in the one- and two-
dimensional cases. In Section 10.1 we take as an example the inverse conductivity
and the inverse diffusion problems, treat their linearized versions, and briefly dis-
cuss some nonlinear methods. When the ill-posed problem admits Hölder stability
estimates (as with the backward heat equation or with the Cauchy problem with the
data on pseudo-convex surfaces, or related coefficients problems for equations),
there is a modification of the general regularization method that generates efficient
numerics. We will present this approach in Section 10.2 together with the conjugate
gradient method applied to the problem of numerical continuation of the acoustic
field with applications in nearfield acoustic holography. A nonlinear identification
of coefficients can be reduced to a nonconvex minimization problem, and there
have been several attempts to find a minimizer numerically. One serious difficulty
is connected with nonconvexity, which generates several possible local (but not
global) minima, so one can try to replace minimization of a nonconvex functional
by minimization of a convex one. This replacement is called relaxation and is in-
tensively studied in the calculus of variations and in the theory of optimal control.
In section 10.3 we present one adaption of these methods to the inverse conduc-
tivity problem as well as another approach to convexification based on Carleman
estimates in Section 10.3. Invariant embedding methods have been applied quite
successfully applied to one-dimensional inverse hyperbolic problems. Recently,
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they have been adjusted to the inverse conductivity problem. We will discuss this
topic in Section 10.4. In section 10.5 we collect describe various methods based
on the range test. Indeed, growing computational power made possible a complete
spectral analysis (singular value decomposition) of operators arising in important
inverse problems. Range tests are deciding whether a point is contained in a sup-
port of a inhomogeneity by checking if a some particular function is contained in
the range of the operator determined by the data of the inverse problem. Typically
they can detect a domain or point of a support of some source function from data
of an overdetermined inverse problem, and even if the original inverse problem
is nonlinear, range tests are typically implemented by solving linear problems.
Finally, in concluding Section 10.6, we report on some results on the discretized
inverse conductivity problem, which can be also interpreted as reconstruction of
resistances in a resistor network from exterior measurements.

10.1 Linearization

In Section 4.5 we justified in a certain way linearization of inverse coefficients
problems, in particular, of the inverse conductivity problem. The linearized inverse
conductivity problem consists in finding the “small” perturbation f = aδ of the
constant conductivity coefficient a = 1 entering the boundary value problem

−�v = div( f ∇u0) in �,

v = 0 on ∂�(10.1.1)

from the additional Neumann data

(10.1.2) ∂νv = g1 on ∂�

given for any harmonic function u0 with Dirichlet boundary data g0. By using
Green’s formula when f is C1-smooth or the definition of the weak solution in the
general case, we obtain

(10.1.3)
∫
�

f ∇u0 · ∇w =
∫
∂�

g1w,

where w is any harmonic function (in R
n). Since w and g1 are known functions, we

are given the integral on the left side. This approach was used by Calderon [C], who
let u0(x) = 2|ξ |−1 exp(− 1

2 (iξ + ξ⊥) · x), w(x) = |ξ |−1 exp(− 1
2 (iξ − ξ⊥) · x), to

obtain the Fourier transformation∫
�

f (x)e−iξ ·x dx,

which uniquely (and in a stable way) recovers f . Here ξ⊥ denotes a vector per-
pendicular to ξ ∈ R

n of the same length as ξ . The needed boundary data g(x) are
u0(x ; ξ ), x ∈ ∂�. Instability in this procedure comes from the exponentially grow-
ing factors exp(−ξ⊥ · x). A similar approach was utilized by David Isaacson and
his group at the Rensselaer Polytechnic Institute for a practical implementation of
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electrical impedance tomography in R
2 and R

3. In particular, they considered the
unit disk � in R

2 and cylinder in R
3, which simulate the human body, and pre-

scribed sines and cosines as boundary data for u0, taking frequencies |ξ | ≤ 100.
The problem was to find the conductivity of the human body from all possible
boundary electrical measurements. The results of reconstruction in real time gave
a recognizable conductivity. The resolution of this reconstruction method cannot
compete with, say, classical tomography, which is quite understandable and natural
due to the severe ill-posedness of the inverse conductivity problem. Eventually, the
Rensselaer group employed a more sophisticated model by using more realistic
boundary conditions but the same linearization approach. However, the recon-
struction results still do not completely satisfy practitioners, and it is a challenging
and important question whether by improving the model, precision of measure-
ments, and most of all their mathematical processing, one would be able to design
a new and powerful medical diagnostic tool. The review of these results is given
in [CheIN].

Now we will describe another linearization method based on the constructive
approach, which reduces the inverse conductivity problem to a linear integral
equation with Riesz kernel and which is close to the original method of Barber and
Brown, inventors of electrical impedance tomography. Indeed, let u0(y) = K (x, y)
and w(y) = K (x, y), where K is a classical fundamental solution to the Laplace
equation, x ∈ �∗, and y ∈ �. Here�∗ is a domain in R

n with�
∗ ∩� = ∅. Since

u0,w are given, as well as functions g1 corresponding to the boundary data g0 = u0

on ∂�, from (10.1.3) we know that

(10.1.4) F(x) =
∫
�

|x − y|2(1−n) f (y)dy, x ∈ �∗,

where F is the right side of (10.1.3) divided by c(n), c(2) = (2π )−2, and c(3) =
(4π )−2. The equality (10.1.4) is an integral equation with respect to the unknown
function f . We have already indicated in Section 2.2 that this equation is of the
first kind, that its solution f ∈ L2(�) is unique, and that there are conditional
logarithmic stability estimates of its solution. In the paper of Isakov and Sever
[IsS] there are results of numerical experiments with this equation when � is the
unit disk in R

2 and�∗ is the annulus {y : 2 < |y| < 3}. We have used 10 × 10 and
30 × 30 grids in polar coordinates in both domains and discretized the integrals
replacing them by the mean value theorem. Minor errors (of relative magnitude 1%
in the uniform norm) completely destroyed the computations, so we regularized
equation (10.1.4) by the following one:

α f (x ;α) +
∫
�×�∗

|x − v|−2|v − y|−2 f (y;α)dv dy

=
∫
�∗

|x − v|−2 F(v)dv,(10.1.4α)

where x ∈ �. Equation (10.1.4α) is the particular form of the regularization (2.3.4)
when x(α) = f (;α), x0 = 0, and the operator A f (x) is defined by the right side
of equation (10.1.4). Then the discretized equation (a linear system with from 100
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to 1000 unknowns) was solved using the conjugate gradient method. This simple
regularization with α = 10−5 guaranteed a very good reconstruction of simple
polynomial functions in�, like f (y) = y2

1 − y2
2 . For discontinuous f = kχD there

are also satisfactory results when D is a disk or radius 1
2 or two disks of radius 1

5 ,
but a disk of radius 1

10 was unrecognizable. Furthermore, discontinuous f require
α = 10−10.

Now we will discuss a linearized inverse diffusion problem. We would like to
find the diffusion coefficient a of the parabolic initial boundary value problem

∂t u − div(a∇u) = 0 in Q = �× (0, T ),

u = 0 on �× {0},
u = g0 on ∂�× (0, T ).(10.1.5)

The additional data are given by the Neumann boundary condition

(10.1.6) a∂νu = g1 on ∂�× (0, T ).

We will assume that the complete lateral Dirichlet-to-Neumann map g0 → g1

is given. As above, we will linearize the inverse problem around a = 1, letting
a = 1 + f , with f = f (x) either uniformly small in� or of the form kχD , where
k is a C2(D)-bounded function and D is a domain of small volume with bounded
perimeter. To adjust the argument of Sections 4.5 to parabolic equations, it suffices
to use Theorem 9.1 instead of Theorem 4.1. We arrive at the linearized inverse
diffusion problem of finding f entering the parabolic boundary value problem

∂t v −�v = div( f ∇u0) on Q,

v = 0 on �× {0},
v = 0 on ∂�× (0, T )(10.1.7)

from the additional Neumann data

(10.1.8) a∂νv = g1 on ∂�× (0, T )

given for all solutions u0 to the heat equation in Q that are zero on�× {0}. As for
the conductivity equation, using the definition of a generalized solution (9.0.4) or
Green’s formula for regular solutions, we obtain the identity

(10.1.9)
∫

Q
f ∇u0 · ∇w =

∫
∂�×(0,T )

g1w

for any solution w ∈ H2,1;2(Q) to the backward heat equation in Q that is zero on
∂�× {T }. Since the right side of this equality is given from the data of the inverse
problem with g0 = u0, we are given the left side. Choosing

u0(y, s) = (4πs)−n/2 exp(−|x − y|2/(4s)),

w(y, s) = (4π (T − s))−n/2 exp(−|x − y|2/(4(T − s))
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and calculating gradients, we arrive at the integral equation

(10.1.10) F(x ; T ) =
∫
�×(0,T )

k(x − y) f (y)dy, x ∈ �∗,

where

k(x) = −|x |2
∫ T

0
(τ (T − τ ))−n/2−1 exp(−|x |2T/(4τ (T − τ ))dτ

and the data F are obtained by multiplying the (known) right side of (10.1.9) by
4(4π )n . Now we will show that a solution of this equation is unique.

Lemma 10.1.1. A solution f ∈ L2(�) to the integral equation (10.1.10) is unique.

PROOF. It suffices to assume that F = 0 on �∗ and to show that f = 0. Assume
the contrary. Using that the Fourier transformation of the convolution is a product
of Fourier transformations, we obtain F̂(ξ ) = k̂(ξ ) f̂ (ξ ). Since F = 0 on �∗ and
is real-analytic outside �, we conclude that F = 0 outside �. Since F, f have
compact supports, by the Paley-Wiener theorem F̂, f̂ are entire analytic functions
of order 1, so | f̂ (ζ )| ≤ C exp(C |ζ |) when ζ ∈ C, and the same inequality holds
for f (ζ ). Since f is not identically zero, f (ξ0) �= 0 for some ξ0 ∈ R

n . Hence the
entire analytic function of one complex variable φ(z) defined as f (zξ0) is of order
1 and not identically zero. By a theorem of Littlewood there is a constant C and
a sequence of positive r j → ∞ such that |φ(ir j )| > exp(−Cr j ). Using the above
bound for F̂ , we conclude that

|k̂(ir jξ0)| ≤ |F̂(ir jξ0)|/| f̂ (ir jξ0)| ≤ C exp(Cr j ).

On the other hand, by the result of Exercise 10.1.2 we have

|k̂(iξ )| = c(n)|
∫ T

0
(2τ (T − τ )/T |ξ |2 + n) exp(|ξ |2τ (T − τ )/T )dτ |

≥ nc(n)
∫ T

0
exp(|ζ |2τ (T − τ )/T )dτ

≤ nc(n)
∫ T/2

T/4
exp(|ζ |23T/16)dτ

≥ ncnT/4 exp(3T/16|ζ |2),

so we can claim that |k̂(ζ )| > C−1 exp(|ζ |2/C) when ζ = iξ . This contradicts the
previous bound on k̂ when r j is large.

This contradiction shows that the initial assumption was wrong. The proof is
complete. �

Exercise 10.1.2. Show that the Fourier transform k̂(ξ ) = 2−1−nT n/2−1π−n/2∫ T
0 (2τ (T − τ )/T |ξ |2 − n) exp(−|ξ |2τ (T − τ )/T )dτ
{Hint: Use the Fourier transform of the function exp(−γ |x |2/2) is

(2π )n/2γ−n/2 exp(−|ξ |2/(2γ )) and that (|x |2û(x)) = −�ξ û(ξ ).}
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So far, there is no stability estimate for the integral equation (10.1.10), but one
expects a logarithmic estimate as for equation (10.1.4).

We will report on some numerical results obtained in the paper of Elayyan and
Isakov [ElI2]. As in the elliptic case, one can use the Tikhonov regularization,
replacing (10.1.10) by the equation

(10.1.11) α fα + A∗
T AT fα = F∗,

where AT is given by the right side of equation (10.1.10), and correspondingly,

A∗
T AT f (x) = (16(4π )2n)

∫
�∗×�

f (y)|y − w |2|x − w |2

× K (x − w, T )K (y − w, T )dydw,

with

K (x − w, T ) =
∫ T

0
(τ (T − τ ))−n/2−1 exp(−|x − w |2T/(rτ (T − τ ))dτ

and F∗ = A∗
T F . A numerical solution is more difficult because one has to compute

kernels that in the elliptic case were given by simple formulae.
In [ElI2] we considered � = (0, 2) and �∗ = (3, 5) when n = 1 and � =

(0, 2) × (0, 2) and �∗ = (3, 5) × (0, 2) when n = 2 and discretizing integrals by
the trapezoid method that have been discretized by N and N × N grids with N =
30. In the one-dimensional case a reconstruction of the function f (x) = sinπx1

was very good with α = 10−6, T = 4, and it survived adding 1% relative noise.
In the two-dimensional case the reconstruction of the same function was even bet-
ter with α = 10−10, though much more time-consuming. Also, it was possible to
recover a simple discontinuity: f (x) = 1 when 1 < x1 < 2, 0 < x2 < 2, and zero
elsewhere.

We observe that the Tikhonov regularization, while simple in implementation
and quite general, does not utilize some possible a-priori features of functions f .
For example, when f is smooth, one can use other regularizations, say, adding to the
residue the norm in H(k)(�). Another way to improve the computations is to utilize
symmetry of kernels that depend on the difference of arguments and generate a
Töplitz structure of discretized equations. A substantial improvement has already
been made by Chan with coauthors [Cha], who made use of preconditioners. In
particular, they took k = 1, replacing in (10.1.11) α f (;α) by −α� f (;α).

Another approach was suggested by Berenstein and Tarabusi [BerT], who con-
sidered an integral equation similar to (10.1.4) and decomposed its solution into
a (stable) inversion problem of integral geometry over spheres with weights and a
one-dimensional convolution equation. This approach, called a back-projection al-
gorithm, was studied (in particular, numerically) by Santosa and Vogelius [SaV1].

Several numerical methods are discussed in the review paper of Borcea [Bor], in
particular use of constraint minimization, high-contrast conductivites, and proba-
bilistic methods. In many applications, including electrical impedance tomography,
the unknown function f is discontinuous, more precisely, f = kχD , where D is
the union of finitely many bounded Lipschitz domains, with k constant on any such
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domain and unknown, and one has good a priori information about maximal and
minimal values of k and about the perimeter of D. Then regularization by higher
Sobolev norms does not make much sense, and after the work of Osher and Setjan
[OshS], many researchers started to use as a regularizing addition the functional
of total variation

T V ( f ) = ‖∇ f ‖1(�).

This functional, while very natural, generates a nonlinear Euler equation for a
minimum point, replacing, for example, α f (;α) in the equation (10.1.4) with
−α div(|∇ f |−1∇ f ). The computational effort is accordingly greater, but the qual-
ity of the reconstruction of the discontinuous f improves. For an analysis of the
numerical solution when regularizing by the total variation functional, we refer to
the paper of Dobson and Santosa [DoS]. A particular and very effective method
of recovery of discontinuuty surface of conductivity based on single layer repre-
sentation is given by Kwon, Seo, and Yoon [KwSY].

10.2 Variational regularization of the Cauchy problem

The numerical method of variational regularization can be considered as a con-
cretization of regularization of differential problems. It was developed recently by
Klibanov and his collaborators, and we describe it using the results of the paper by
Klibanov and Rakesh [KlR], where they discussed the case a0 = 1 and γ = ∂�.

We consider the hyperbolic equation

(10.2.1) (a2
0∂

2
t u + Au) = f in Q = �× (−T, T ), u ∈ H(2)(Q),

with Cauchy data

(10.2.2) u = g0, ∂νu = g1 on � = γ × (−T, T ).

We assume that a0 = a0(x) ∈ C1(�) and is positive on� and that A is the elliptic
operator −�+ c, c ∈ L∞(Q). Generally, this problem is not well-posed, and even
when one has Lipschitz stability (as in Theorem 3.4.5), it is overdetermined, so its
numerical solution needs some version of the least-squares method. When solving
the Cauchy problem (10.2.1)–(10.2.2), we can assume that g0 = 0, g1 = 0. Indeed,
we can always achieve this by extending the Cauchy data onto � as a function u∗

and subtracting u∗ from u, obtaining Cauchy data for the difference zero. The ex-
tension operator is continuous from H(3/2)(γ × (−T, T )) × H(1/2)(γ × (−T, T ))
and can be explicitly written down for simple domains �. Later on, we assume
that g0 = g1 = 0.

The general regularization scheme (2.3.3) is quite applicable here. Specifically,
we can solve the following (regularized) minimization problem:

(10.2.3) min(‖a2
0∂

2
t v + Av − f ‖2

2(Q) + α‖v‖2
•(2)(Q)), v ∈ H̊ (2)(Q;�),
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where ‖v‖•(2)(Q) is one of the equivalent norms in H(2)(Q) defined as( ∑
1≤ j≤n+1

‖∂2
j v‖2

2(Q) + ‖v‖2
2(Q)

)1/2

and H̊ (2)(Q;�) is the subspace of H(2)(Q) formed of functions v with v = ∂νv = 0
on �. Due to coercivity and convexity of the regularized functional (10.2.3) on
the Hilbert space H̊ (2)(Q;�), the minimum point u(;α) in this space exists and is
unique by known basic results of convex analysis; see the book of Ekeland and
Temam [ET]. To describe the Euler equation for the minimum point u(;α) we need
a new scalar product [, ](Q) in H(2)(Q), defined as follows:
(10.2.4)

[u, v](Q) =
∫

Q

(
a2

0∂
2
t u + Au

) (
a2

0∂
2
t v + Av

) + α
∑

1≤ j≤n+1

∂2
j u∂2

j v + αuv .

Then a minimum point of (10.2.3) is a minimum point of the quadratic functional

[v, v](Q) − 2
(

f, a2
0∂

2
t v + Av

)
2 (Q),

and by standard technique we have the variational Euler equation

(10.2.5) [u(;α), v] (Q) = (
f, a2

0∂
2
t v + Av

)
2 (Q), v ∈ H̊ (2)(Q;�),

for the minimum point u(;α).

Lemma 10.2.1. We have

‖u − u( ;α)‖•(2)(Q) ≤ ‖u‖•(2)(Q),

‖(a2
0∂

2
t + A)(u − u( ;α))‖2(Q) ≤ 2−1/2α1/2‖u‖•(2) (Q).(10.2.6)

PROOF. Since u solves equation (10.2.1), from the definition (10.2.4) of the scalar
product [, ] we have

[u, v](Q) = (
f,

(
a2

0∂
2
t v + Av

))
2 (Q) + α(u, v)•(2)(Q).

Subtracting this equality from the definition (10.2.5) of the weak solution u( ;α),
we obtain

[u( ;α) − u, v](Q) = −α(u, v)•2(Q), v ∈ H̊ (2)(Q;�).

Letting v = u( ;α) − u and using the definition (10.2.4) of the scalar product [, ]
gives

‖(a2
0∂

2
t + A)(u( ;α) − u)‖2

2(Q) + α‖u( ;α) − u‖2
•(2)(Q)

= −α(u, u( ;α) − u)•(2)(Q) ≤ α‖u‖•(2)(Q)‖u( ;α) − u‖•(2)(Q)

≤ α/2‖u( ;α) − u‖2
•(2)(Q) + α/2‖u‖2

•(2)(Q),(10.2.7)

where we used the Schwarz inequality for the scalar product (, )•(2) and the elemen-
tary inequality ab ≤ 1

2 (a2 + b2). Subtracting the first term of the last quantity in
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(10.2.7) and dropping the first term of the first quantity we obtain the first inequality
(10.2.6). Dropping the second term gives the second inequality (10.2.6).

The proof is complete. �

Lemma 10.2.1 does not guarantee that u( ;α) is convergent to u in L2(Q) when
α → 0 (and generally this is false, due to nonuniqueness in the Cauchy problem
in Q). However, combining the results of Lemma 10.2.1 and of Theorems 3.4.1
and 3.4.5, one can obtain convergence in domains Qε determined by a weight
function in Carleman estimates for the domain Q = �× (−T, T ) in the cases
(3.4.2), (3.4.3), or even in all of Q under the conditions of Theorem 3.4.5.

Corollary 10.2.2. If the domain Q and the coefficient a0 satisfy the conditions of
Theorem 3.4.1, then

(10.2.8) ‖u( ;α) − u‖(1)(Qε) ≤ Cαλ‖u‖(2)(Q),

where λ ∈ (0, 1) depends on ε > 0 determining the domain Qε.
If the domain Q and the coefficient a0 satisfy the conditions of Theorem 3.4.5

and γ = ∂� then

(10.2.9) ‖u(;α) − u‖(1)(Q) ≤ Cα1/2‖u‖(2)(Q).

PROOF. To prove (10.2.8) we observe that the first bound (10.2.6) implies that
‖u( ;α) − u‖(2)(Q) ≤ C‖u‖(2)(Q), and we combine the second bound (10.2.6)
and the bound (3.4.7) of Theorem 3.4.1.

To prove (10.2.9) we observe that Theorem 3.4.5 implies the bound

‖w‖(1)(Q) ≤ C‖(a2
0∂

2
t + A)w‖2(Q),

provided that w ∈ H(2)(Q) and w = ∂νw = 0 on ∂�× (−T, T ). Let w = u( ;α) −
u and use the second bound (10.2.6). �

In the paper [K1R] there are numerical results for this regularization in the
case of the wave equation in R

2. The authors found solutions u( ;α) of the regu-
larized problem (after discretization) by a finite-element method. The numerical
experiment agrees with the convergence estimate very well.

Similarly, one can consider the lateral Cauchy problem for parabolic equations

(10.2.10) a0∂t u + Au = f in Q, u ∈ H2,1;2(Q),

with the lateral boundary data

(10.2.11) u = g0, ∂νu = g1 on � × (−T, T ).

In this case we keep the assumptions about a0 while considering a general elliptic
operator A of second order with time-dependent coefficients, C1(�)-principal
coefficients, and other coefficients in L∞(Q). As above, for a solution of this
problem we can assume that g0 = g1 = 0.
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In the case of parabolic equations, we define

‖v‖2
•2,1;2(Q) = ‖∂t v‖2

2(Q) +
∑

1≤ j≤n

‖∂2
j v‖2

2(Q) + ‖v‖2
2(Q).

Exercise 10.2.3. Show that there is a unique minimizer u( ;α) of the problem

min(‖a2
0∂t v + Av‖2

2(Q) + α‖v‖2
•2,1;2(Q))

over v ∈ H2,1;2(Q) with v = ∂νv = 0 on γ × (−T, T ). Show that

‖u − u( ;α)‖•2,1;2(Q) ≤ ‖u‖•2,1;2(Q),

‖(a0∂t v + Av)(u − u( ;α)‖2(Q) ≤ 2−1/2α1/2‖u‖•2,1;2(Q)(10.2.12)

and derive from Theorem 3.3.10 that for any domain Qε with closure in Q ∪ (γ ×
(−T, T )) there are C and λ ∈ (0, 1) such that

‖u − u( ;α)‖2,1;2(Qε) ≤ Cαλ‖u‖2,1;2(Q).

Also, one can solve in this manner the backward initial problem for equation
(10.2.10) with final and lateral boundary data

(10.2.13) u(, T ) = uT , on �× {T }, u = 0 on ∂�× (0, T ).

As above, we can use extension results and consider uT = 0.

Exercise 10.2.4. Show that there is a unique solution u( ;α) of the minimization
problem

min(‖∂t v + Av − f ‖2
2(Q) + α‖v‖2

•2,1;2(Q))

over v ∈ H2,1;2(Q) with v = 0 on ∂�× (0, T ) and on �× {0}.
Further, show that

‖(u − u( ;α))(t)‖2(�) ≤ C(αλ + α1/2)‖u‖2,1;2(Q), λ = λ(t) ∈ (0, 1),

and that for A = −�+ c one can choose λ(t) = t/(2T ).
{Hint: Again make use of the scheme of the proof of Lemma 10.2.1 to obtain

the bounds (10.1.12). Then the difference w = u − u( ;α) will solve the parabolic
equation (10.2.10) with the right side f1 such that

‖ f1‖2(Q) ≤ Cα1/2‖u‖2,1;2(Q)

and will have zero boundary and final data. Use the solution w1 of the initial
boundary value problem for (10.2.10) with right side f1 and with zero boundary
and initial data and bound this solution using Theorem 9.1 and the trace theorem.
to bound the solution of the homogeneous parabolic equation for w − w1 use
Theorem 3.1.3 and Example 3.1.6.}

So far, we have considered only linear problems or linearizations, while identi-
fication of coefficients creates at least quadratic nonlinearity. Some Newton-type
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algorithms make use of similar regularization and have been proved to be effective,
but there is no general global approach to this problem.

Another interesting “alternating” iterative method has been suggested in appli-
cations and considered and justified in general framework in the paper of Kozlov
and Maz’ya [KozM]. For the Laplace equation in a domain � with Cauchy data
given on � ⊂ ∂� it consists in first solving the mixed boundary value problem
with given data on � and zero Neumann data on ∂�\�; then solving the mixed
boundary value problem with given Neumann data on � and the Dirichlet data
on the remaining part, which are obtained at the previous step; and then iterating.
This algorithm is convergent, and it would be interesting to develop its analogue
for the problems of identification of coefficients.

As an example of efficient numerical solution of practically important problem
we consider regularization of a linear integral equation arising in nearfield acousti-
cal holography. This technique seeks for vibrations of a surface from the acoustical
pressure generated by these vibrations. We will describe recent results of DeLillo,
Isakov, Valdivia, and Wang who handled a problem from aircraft industry. The
component u of pressure of frequency k satisfies the Helmholtz equation

�u + k2u = 0 in �.

Here� is a Lipschitz domain in R
3 with connected R

3\�. Microphones are located
on a surface �0 inside (cabin) �, so we are given

u = g0 on �0.

One is looking for the so-called normal velocity

v = ∂νu on � = ∂�.
It was shown in [DIVW] that any u ∈ H(1)(�) admits unique representation by
the single layer potential distributed over � (disregard of Dirichlet or Neumann
eigenvalues of the Laplacian in �). So it was proposed in [DIVW] to solve for
density φ from the integral equation

(10.2.14) 1/(4π)
∫
�

eik|x−y|/|x − y|φ(y)d�(y) = u(x), x ∈ �0

and then to find ∂νu on � from known jump relations for normal derivative of
single layer potential. Uniqueness can be guaranteed if �0 is a boundary of a
domain of small volume. Under constraints similar to those in Theorem 3.3.1 one
has logarithmic stability, but since distance from �0 to � is relatively small one
can achieve high resolution.

The integral equation (10.2.14) was discretized in [DIVW] by using piecewise
linear triangular boundary elements and the resulting linear algebraic system with
N unknowns was solved by the iterative conjugate gradient method where number
J of iterations plays the role of regularization parameter. The choice of J is cricial
for efficient numerics. When� is a cylinder of radius 1 with floor and flat endcaps
modeling Cessna 650 fuselage, k = 3 (typical acoustic range), and N = 1000, we
used J = 30 as suggested by generalized cross-validation. Relative L∞-error of
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0.01 in data produced relative reconstruction error of 0.1. Our experience showed
that use of integral equations is the most effective in numerical solution of ill-posed
Cauchy problems of relatively large size. Of course, it presumes a simple analytic
form of a fundamental solution. So far single layer method is the most competitive
algorithm for nearfield acoustic holography which is suitable for any geometry of
� and for exterior problems typical for automotive industry and naval applications.

10.3 Relaxation methods

A very serious difficulty in solving a coefficient-identification problem is due to
the nonconvexity of the corresponding minimization problem. Naively, a minimum
point of a (nonconvex) function coincides with a minimum point of the greatest
convex function that is pointwise not greater than the original function. So for some
time in the theory of variational methods one has considered replacing a nonconvex
functional to be minimized by its convexization. This new convex minimization
problem is called a relaxation of the original one. To be justified, the method
needs some conditions on the original functional, and there is a useful discussion
of available technique and results in the book of Ekeland and Temam [ET]. Before
returning to inverse problems, we recall a few basic facts about relaxation.

Let�(x, v) be a (nonlinear) function of v ∈ R
m . Its polar function�∗(x, v∗) is

defined as

�∗(x, v) = sup(v · v∗ −�(v)) over v ∈ R
m,

and the second polar �∗∗ coincides with the pointwise supremum of all linear
functions that are (pointwise) less than �. We call the second polar function a
�-regularization of �.

While in principle, �-regularization gives the needed convex replacement of
the original functional, its constructive calculation has been implemented only for
special functionals�. One can consult the book of Ekeland and Temam [ET] about
the relaxation of the classical variational problem

min
∫
�

f (x, u(x),∇u(x))dx

over u ∈ H1,p(�), u − u0 ∈ H̊ 1,p(�), which is to find

min
∫
�

f ∗∗(x, u(x),∇u(x))dx

over the same convex set of functions. Here f ∗(, v) = sup(v · v∗ − f (, v)), where
the arguments x , u are dropped, and accordingly, one calculates f ∗∗. Of course,
one can assume that f is a normal integrand with some growth at infinity with
respect to v . However, an inverse problem has originally no classical variational
form, and in any particular case it is not quite clear how to reduce it to this form.
We will discuss one case in which this reduction can be done.
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We will demonstrate the variational approach to the inverse conductivity prob-
lem due to Kohn and Vogelius [KoV3]. We are looking for the conductivity coef-
ficient a from the results of N boundary measurements of voltages and currents at
the boundary. The equation and boundary conditions are

div(a∇u j ) = 0 in �, j = 1, . . . , N ,

u j = g0, j , a∂νu j = g1, j on ∂�.(10.3.1)

A variational method is to find

min K (u1, . . . , uN ; v1, . . . , vN ; a)

subject to the constraints

u j = g0, j , v j · ν = g1, j on ∂�, u j , v j ∈ H(1)(�),

div v j = 0,C1 ≤ a ≤ C2 in �,(10.3.2)

where the functional

(10.3.4) K =
∫
�

K (∇u1, . . . ,∇uN ; v1, . . . , uN ; a)

with the integrand

K (p1, . . . , pN ; v1, . . . , uN ; a) =
∑

1≤ j≤N

|a−1/2v j − a1/2 p j |2.

While zero minimum is achieved at a solution to the inverse problem, in this form
the functional is not quadratic, which complicates applications of results of the
calculus of variations. A first step to simplify the problem is to minimize over a,
replacing in the above variational problem the integrand of the functional by

K1(p1, . . . , pN ; v1, . . . , uN ) = min K (p1, . . . , pN ; v1, . . . , uN ; a)

over a ∈ [C1,C2].
In the plane case, where we assume that � is a simply connected domain, one

can rewrite the condition that the v j are divergent free vector fields by representing
them as (∇w j )⊥ = (−∂2w j , ∂1w j ) for some functions w j in H(1)(�). Since g1, j

is the boundary value of tangential derivatives of these functions, we are given
their boundary values H• j determined up to constants. When C1 = 0,C2 = ∞, it
is easy to calculate

K1(∇u1, . . . ,∇uN ; ∇⊥w1, . . . ,∇⊥w N )

= 2

( ∑
1≤ j≤N

|∇u j |2
)1/2 ( ∑

1≤ j≤N

|∇w j |2
)1/2

+ 2
∑

1≤ j≤N

det(∇u j ,∇w j ).

This integrand is not convex with respect to ∇u j ,∇w j (because the function
|p11q11| obtained by letting ∇u1 = p1 = (p11, 0),∇w1 = q1 = (q11, 0),∇u j =
∇w j = 0, 2 ≤ j , is not a convex function of p11, q11). Kohn and Vogelius
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calculated the integrand of the relaxation and found that it is equal to

2

( ∑
1≤ j,k≤N

(det(∇u j ,∇wk))1/2

+ 2

( ∑
j<k,l<m

((det(∇u j ,∇uk))2(det(∇wl ,∇wm))2)1/2

)1/2

+ 2
∑

1≤ j≤N

det(∇u j ,∇w j

)
.

It appears that the relaxed minimization problem needs regularization, which
has not been discussed yet. So a theoretical foundation of this method is not quite
complete, and neither are rigorous numerical tests. However, there is some practical
numerical justification of its efficiency discussed in [KoV3], and some tests have
been implemented by Kohn and McKenney [KoM]. Certainly, this algorithm looks
very attractive from a mathematical point of view.

Klibanov [KlT] proposed to use convex cost functional based on the norm(∫
�

e2τϕ|u|2
)1/2

with large parameter τ . In particular, he considered problem of finding speed of
propagation in hyperbolic equations from lateral Cauchy data. So far convexity of
this functional is proven only for finite-dimensional (Galerkin-type) approxima-
tions of the inverse problem, and a value of τ , which guarantees convexity, grows
with dimension of approximation space.

10.4 Layer-stripping

Let �(t) be the Dirichlet-to-Neumann operator for the conductivity equation

(10.4.1) div(a∇u) = 0 in �(t),

where �(t) is the ball B(0; t) in R
n , n = 2, 3. We will derive an (operator) dif-

ferential equation for � as a function of t , assuming that a ∈ �(1) and t < 1. In
polar coordinates (r, σ ), |σ | = 1, equation (10.4.1) reads

(10.4.2) ∂r a∂r u + r−1(n − 1)∂r u + r−2 div
σ

a∇σu = 0,

where divσ and ∇σ are respectively divergence and gradient on the unit sphere.
One can consult the book of Courant and Hilbert for n = 2, 3. In particular, we
have the polar form of the plane conductivity equation

∂r a∂r u + r−1∂r u + r−1∂θa∂θu = 0.

By using the substitution r = tr∗, which reduces the Dirichlet problem in B(0; t)
to that in B(0; 1) and known results (e.g., given in the paper of Agmon, Douglis,
and Nirenberg [ADN]) about continuity and differentiability of elliptic boundary
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problems with respect to a parameter, one can conclude that the solution u(r, σ ; t)
to the conductivity equation (10.4.1) with the Dirichlet boundary condition

(10.4.3) u(t, σ ; t) = g0(σ ) ∈ H(3/2)(�)

has the derivatives ∂t u ∈ H(2)(�(t)). We will consider the Dirichlet-to-Neumann
map represented as

(10.4.4) �(t)g0(σ ) = (a∂r u)(t, σ ; t).

Differentiating the boundary condition, we obtain

(10.4.5) ∂r u + ∂t u = 0.

To obtain a differential equation for �(t) we differentiate (10.4.4) with respect
to t by using the chain rule to obtain

∂t�(t)g = (∂r (a∂r u))(t, σ, t) + (a∂t∂r u)(t, σ, t)

= −r−1(n − 1)a∂r u − r−2 div
σ

a∇σu + (a∂t∂r )(t, σ, t),

where we make use of the conductivity equation (10.4.2). Since a does not depend
on t , we can differentiate equation (10.4.2) with respect to t to conclude that ∂t u
also solves this equation. Therefore, a∂r∂t u = �∂t u on ∂�(t). Using that due to
continuity ∂t∂r u = ∂r∂t u and that according to (10.4.5) ∂t u = −∂r u = −a−1�g0

on ∂�(t), we have

∂t�(t)g0 = −r−1(n − 1)�(t)g − r−2 div
σ

g0 −�(a−1�g0).

After a little rearrangement we arrive at the differential operator equation of Riccati
type for the Dirichlet-to-Neumann map

(10.4.6) ∂t�(t) +�(a−1�) + r−1(n − 1)�+ r−2 div
σ

(a∇σ ) = 0.

Sylvester [Sy2] in a similar way derived this equation when n = 2, and he also
showed that in fact, any operator function satisfying (10.4.6) and some natural
“initial condition” at t = 0 is the Dirichlet-to-Neumann map for the conductivity
equation (10.4.1). In the inverse problem we are given �(1), which plays the role
of the final data. Observe that a is unknown, but it can be found on ∂�(t) by
using boundary reconstruction, described in Section 5.1. In particular, Nachman’s
formula says that

a(tσ ) = 2 lim e−irσ ·ξ S�(t)eirσ ·ξ as |ξ | → ∞.
If we consider� as an operator from H(3/2) onto H(1/2), and since the single layer
potential operator is continuous from H(1/2) into H(3/2), we can conclude that the
operator �(t) → a on ∂�(t) has certain continuity properties that have not been
studied in detail. Thus, we can consider (10.4.6) as an evolution equation for�(t)
with the given final data, and we can try to solve this equation. The idea can
be realized as a layer-stripping algorithm, which consists in the subsequent re-
construction of the conductivity coefficient a layer by layer, starting from r = 1
and penetrating inside by progressing from the layer {t j < r < t j−1} to the layer
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{t j+1 < r < t j }. Methods of propagation could be different, and we describe one
of them a bit later. However, the basic underlying idea is that the Dirichlet-to-
Neumann map satisfies some equation of evolution and can be found from this
equation and the given final conditions. In the most naive form, one can try to
use the Euler method from ordinary differential equations to discover immedi-
ately that one has a convergence problem. The Riccati equation (10.4.6) has some
similarities with the backward heat equation discussed in Section 3.1, but there
are some striking differences. First, equation (10.4.6) is nonlinear and second, it
is not a scalar equation and even not a system of them, but an operator equation.
Not much is known about such “backward” operator equations, neither theoret-
ically nor numerically. One exception, is the result of Sylvester [Sy2] about the
rotationally symmetric inverse conductivity problem. We briefly outline his main
findings.

When a = a(r ), n = 2, by separation of variables we have �(t)eimθ =
λm(t)eimθ , and equation (10.4.6) becomes

∂tλm + a−1(t)λ2
m + t−1λm − t−2a(t)m2 = 0, 0 < t < 1,m = 1, 2, . . . ,

we are given the final data λm(1), and one can show that we have the initial
condition λm(0) = ma(0). In [Sy2] it was shown that the symmetric matrices
((λ j/j = λk/k)/( j + k)) of any size must be positive definite, which guarantees
existence of a unique analytic function λ(r, z) on the right half-plane that maps this
half-plane into itself and satisfies the condition λm(r )/m = λ(r,m). then the Pick-
Nevanlinna construction explicitly gives λ(r, z) from λ(1, z), and a is recovered
from this function by a trace formula. It turns out that to identify a(r ) uniquely
one needs any sequence λm( j)(1) such that the series

∑
m−1( j) is divergent. Using

this technique, Sylvester showed that the layer-stripping algorithm is convergent
in the radial case when n = 2.

In the general plane case, layer-stripping was developed and tested numerically
by Cheney, Isaacsons, and Somersalo [SoCII], though their paper does not contain
a convergence proof or stability analysis of this possibly promising method. In par-
ticular, they used the Riccati equation for the inverse of the Dirichlet-to-Neumann
map �−1, which is the Neumann-to-Dirichlet map. This had certain advantages,
theoretical (it is a smoothing operator) and practical (it is more convenient to pre-
scribe currents a∂νu and measure voltages u on ∂�). The new Riccati equation
is

(10.4.7) ∂t�
−1 − a−1 − r−1(n − 1) − r−2�−1 div

σ
(a∇σ�−1) = 0,

and it can be obtained from equation (10.4.6) by using the identity ∂t� =
−�(∂t�

−1)�. The layer-stripping algorithm suggested in [SoCII] makes use of
the trigonometric basis {eimθ }. The authors divide the interval [0, 1] into subinter-
vals by the points t j , tN < · · · < t1 < t0 = 1, and accordingly break down the unit
disk� into N disjoint annuli� j = {t j+1 < r ≤ t j }. The key step of the algorithm
consists in a determination of a at {r = t j } and the propagation of� into� j . The
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boundary reconstruction has been done by using the formula

a−1
k = π−1 lim |m|

∫ 2π

0
ei(n+m)θ�−1(t j )e

−imθdθ,

where the ak are the Fourier coefficients of the resistivity a−1,

a−1
k =

∫ 2π

0
e−ikθa−1(t j , θ )dθ.

Then, approximating a−1 by finite Fourier sums and taking the inverse, one obtains
an approximation of a on the circle {r = t2}. An approximation of the discretiza-
tion of the operator �−1(t − j + 1) is obtained by using the Riccati equation
(10.4.7), which is discretized. So far, the numerical test of [SoCII] have shown
worse resolution and stability then those obtained by simple linearization.

Summarizing, we can tell that the layer-stripping method has obvious theoret-
ical and computational advantages. In particular, it is applied to exact nonlinear
inverse problems, and it has the property of locality, because during reconstruction
one moves from ∂� to inside layer by layer, so one has no problems with local
minima or limited memory, as in variational methods. On the other hand, despite
all promises, at present there have been no theoretical results or good numerics
obtained by this method.

10.5 Range test algorithms

Historically, the first range test algorithm, called linear sampling method was
proposed by Colton and Kirsch [CoK] for numerical solution of inverse obstacle
scattering problems.

To describe this method for scattering by hard obstacles we remind that the
function

K (x − a; k) = eik|x−a|/(4π |x − a|) = eik|x |/(4π |x |)e−ikσ (x)·a(1 + O(|x |−1),

so A(σ (x); k, a) = e−ikσ (x)·a, σ (x) = |x |−1x , is the scattering pattern of K (x −
a; k). We denote e(σ ; a) = −e−ikσ ·a . Let G be the operator mapping Neumann
boundary data of the exterior problem for the Helmholtz equation into the scattering
pattern of its solution. In more detail, let v be the solution of the exterior problem

(10.5.1) (�+ k2)v = 0 in R
3\D, ∂νv(x) = g1 on ∂D

with the Sommerfeld radiation condition at infinity. For any g1 ∈ H(−1/2)(∂D) this
solution exists and is unique, as described in section 6.0 (see also [CoKr], [McL]).
Let A(; g1) be the be the scattering pattern of v and Gg1 = A(; g1). We remind
that the Herglotz operator H : L2(S2) → H(−1/2)(∂D) is given by the formula

(10.5.2) Hφ(x) =
∫

S2
exp(ikσ · x)φ(σ )d S(σ ).
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Finally, let A be the scattering operator

(10.5.3) Aφ(σ ) =
∫

S2
A(σ, ξ ; k)φ(ξ )d S(ξ ), A : L2(S2) → L2(S2).

Obviously,

(10.5.4) A = G H.

A simple observation is that

(10.5.5) a ∈ D if and only if e(; a) ∈ RG.

Indeed, e(; a) ∈ RG if and only if this function is the scattering pattern of the
(scattering) solution v to the exterior problem (10.5.1). Since scattering pattern
uniquely determines scattering solution, this is equivalent to equality v = K (−a; k)
outside some large ball. Comparing singularities of both sides we conclude that this
equality is possible only if a ∈ D. The observation (10.5.5) and the factorization
(10.5.4) suggest the following method to decide whether a ∈ D. Solve the equation

(10.5.6) Aφ(; a) = e(; a)

for φ(; a). If the norm of φ(; a) is small, then a ∈ D, if is is large, then a is outside
D.

Unfortunately this naive approach has flaws. Firstly, the closure of range RH
of H is H(−1/2)(∂D) if and only if k2 is not the Dirichlet eigenvalue for the Laplace
equation in D. More importantly, the Herglotz operator is highly smoothing, so
its range never is H(−1/2)(�), hence it is certainly wrong that range of A (which is
known) coincides with range of G, that by (10.5.5) completely characterizes the
obstacle D. So at best one can try to solve the equation (10.5.6) approximately, by
using some regularization, and then there is a question how to modify (10.5.5) to
decide whether a ∈ D.

To resolve difficulties with a straightforward approach, Kirsch suggested the
following more detailed and complicated factorization of the far field operator A:

(10.5.7) A = CGS∗G∗

where C is some constant and S is the single layer operator

Sg(x) =
∫
�

K (x − y; k)g(y)d�(y)

considered from H(−1/2)(�) into H(1/2)(�). To be convinced that (10.5.7) holds
we observe that using that e−ikσ (x)·y is scattering pattern of K (x − y; k) and the
definitons of S and G we yield GS = 4πH∗. Now (10.5.7) follows from (10.5.3).
The operator S is an isomorphism between H(−1/2)(∂D) and H(1/2)(∂D). Using
this property as well as the singular value decompositions for G and the Picard’s
test (Lemma 2.3.5) Kirsch [Kir] showed that

RG = R(A∗
D AD)1/4.
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Since the operator AD is given this equality combined with (10.5.5) gives a range
test for detecting D provided that k2 is not a Dirichlet eigenvalue for D.

Under the same restriction on Dirichlet eigenvalues and using similar tools,
Arens [Ar] partially justified convergence of some regularized linear sampling
methods. In more detail, let (λm, am, bm) be the singular system for A as defined
in section 2.3. We define

Rαφ =
∑

m

r (α, λm)/λm(φ, bm)2(S2)am, r (α, λ) = λ2/(α + λ2).

It is not hard to see that Rα is a continuous linear operator from L2(S2) into
itself and it is a (Tikhonov) regularizer for the operator A. Using (10.5.4) it is
shown in [Ar] that H Rα is a regularizer for the operator G. Hence if a is not
in D, we have ‖H Rαe(; a)‖(1/2)(∂D) → ∞ as α → 0, and by coninuity of H it
follows that ‖Rαe(; a)‖2(S2) → ∞ as α → 0. Since A and Rα are determined by
scattering data, then boundedness of ‖Rαe(; a)‖2(S2) implies that a ∈ D. At the
author’s knowledge, this is the best result toward justification of the linear sampling
method.

Despite lack of complete theoretical base, the linear sampling method proved
to be quite successful in numerical solution of inverse scattering problems. It is
linear, does not involve any assumption about number of components of D, avoids
expensive numerical solution of the direct scattering problem required by iterative
Newton type methods, and is easily implemented numerically. This method can
be adjusted to a variety of important applied problems, in particular, to inverse
scattering of electromagnetic waves described by the Maxwell’s system. Indeed,
Colton, Haddar, and Piana [CoHP] obtained recognizable images of an aircraft
from electromagnetic scattering data at typical frequencies collected from all in-
cident scattering directions. The modification of this method by Kirsch is better
justified theoretically, but the method is more complicated and does nor produce
better numerical results than original linear sampling. One of origin of the linear
sampling methods were the author’s papers [Is3], [Is5] on use of singular solu-
tions for proofs of uniqueness of identification of transparent obstacles from the
Dirichlet-to-Neumann map and scattering data and their continuation by Kirsch
and Kress [KirK] for hard obstacles. It seems that for both theoretical and numer-
ical purposes a singular solution of Green’s function type is the best. Probably,
this is due to combination of (local) positivity of real parts and singularity. Use
of higher singularities (like derivatives of Green’s function) in numerical experi-
ments did not show any improvement. On theoretical side, say for uniqueness or
stability proofs, the linear sampling method and its modifications produce more
limited results than the original method of singular solutions. Typically, they are
applicable under conditions that k2 is not an eigenvalue of certain elliptic boundary
value problem in D. However, these elliptic problems are known to have many
eigenvalues in interesting ranges of k.

The factorization method of Kirsch was used by Hanke and Brühl [HB] in
numerical reconstruction of an hard obstacle from the Neumann-to-Dirichlet map
for the Laplace equation and by Kirsch in the inverse conductivity problem to
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identify dscontinuity surface of anisotropic conductivity. We will briefly describe
a simpler problem from [HB]. Let � be a bounded domain in R

n, n = 2, 3, with
C2-boundary and let D be an open subset of� with C2-boundary. Let�−1 be the
Neumann-to-Dirichlet map determined by D in the following way. As knowm, for
any

g1 ∈ H(−1/2)(∂�),
∫
∂�

g1d� = 0

there is a unique solution u ∈ H(1)(�\D) to the Neumann problem

�u = 0 in �\D, ∂νu = g1 on ∂�, ∂νu = 0 on ∂D

such that the integral of u over ∂� is zero. We define �−1g1 = u on ∂�.
Let �−1

0 be the Neumann-to- Dirichlet map for void D. Let E(; a) be the x1

derivative of the Neumann function for the Laplace operator in �. As known,
E(x ; a) = C(x1 − a1)|x − a|−n + v(x ; a), where v is bounded for fixed a ∈ �\D.
From known results (similar to Theorem 4.1) it follows that� is a continuous op-
erator from its domain in H(−1/2),0(∂�) into H(1/2),0(∂�) and that (�−�0) is
positive (in L2). Here additional index 0 denotes subspaces of functions with zero
integral over ∂�. Let G D : H(−1/2,0)(∂D) → H1/2,0(∂�) be the Green’s operator
mapping the Neumann data h1 on ∂D for the Neumann problem:

�v = 0 in �\D, ∂νv = h1 on ∂D, ∂νv = 0 on ∂�

into the Dirichlet data v on ∂�. As above, it can be demonstrated that

�−�0 = G D S1G∗
D

where S1 is an isomorphism from H(1/2),0(∂D) onto H(−1/2),0)(∂D).
Summing up it, as shown in detail in [HB],

a ∈ D if and only if E(; a) ∈ R(�−�0)1/2

which suggests the range test similar to the factorization method in the scattering
situation. This range test was suggested and numerically implemented in [HB]
with satisfactory results.

In case of many boundary measurements there are similar algorithms proposed
and implemented numerically by Ikehata [Ik] (probe method) and Potthast [Po]
(singular sources method). These methods also have some origin in the method
of singular solutions, they are theoretically justified and some cases proved to be
competitive with the linear sampling method.

Belishev [Be3] suggested a use of the so-called “mark function” (singular solu-
tion of the Laplace equation) to find speed of the propagation in inverse hyperbolic
problems with given lateral (local) Dirichlet-to Neumann map. Indeed, the result
of Exercise 8.4.3 can be easily extended onto fucntions v which are harmonic not
in the whole� but only near the subdomain�2T filled by waves from�0 in time T .
Then one can use as v a harmonic function with singuarity at a to decide whether
a ∈ �T and hence to determine the spped of propagation. This idea can lead to an
efficient range type test in inverse hyperbolic problems.
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One of recent range tests due to Kusiak and Sylvester [KuS] and to Potthast,
Sylvester, and Kusiak [PoSK] checks whether a domain D with connected R

3\D
contains singularities of a radiating solution v to the Helmholtz equation. This test
applies to single or many boundary measurements or scattering data. Let Av (σ ; k)
be the scattering pattern of a radiating solution v to the Helmholtz equation. Let k2

be not a Dirichlet eigenvalue of the Laplace operator for D. The main observation
is that the equation

(10.5.8)
∫
∂D

eikσ (x)·y g(y)d�(y) = Av (σ (x); k)

has a solution g ∈ H(1/2)(∂D) if and only if∫
∂D

K (x − y; k)g(y)d�(y) = v(x), |x | > R

or, equivalently, if and only if

(10.5.9) �v + k2v = 0 in R
3\D, v ∈ H(1)(B \ D),

for some large ball B and v satisfies the Sommerfeld radiation condition. In other
words, D contains singularities of v if and only if the scattering pattern Av of v
is contained in the range of the operator AD : H(1/2) → L2(S2) defined by the left
side of (10.5.8). In [KuS], [PoSK] they define the convex scattering support of
a scattering amplitude of a radiating solution v as the intersection of all convex
domains D such that (10.5.9) holds. In [KuS] they describe several properties
of convex scattering support. In particular, there is an analogue of Paley-Wiener
Theorem characterizing convex scattering support of A(σ ; k) via the growth of the
Fourier coefficients of in the plane case. The equation (10.5.8) is used in [PoSK]
for numerical reconstruction of convex scattering support of A. The operator from
the left side of (10.5.8) is highly smoothing, so for efficient numerics one needs to
regularize (10.5.8). The Tikhonov regularization is

(10.5.10) αg(;α) + A∗
D AAg(;α) = A∗

DAv .

The range test proposed in [PoSK] consists of four steps: 1) choice of a family of
convex domains D, 2) choice of (small) positive α and C , 3) solution of (10.5.10)
for each D and computation of ‖g(;α)‖2(∂D), 4) finding the intersection of all test
domains D for which this norm is less than C . If one use one set of scattering data
in inverse obstacle problem, like a scattered wave from one incident direction, then
generally convex scattering support is strictly inside an obstacle D and one can not
determine D. For example, if D is a soft (or hard obstacle) with analytic boundary,
then by known results ([Mor], section 6.7) v analytically continues across ∂D inside
D. However, if one uses a complete set of incident waves, singularities produced
by limits of linear combinations of scattering solutions fill out D which will be
recovered completely. In [PoSK] there are examples of satisfactory numerical
reconstruction of soft and hard scatterers of medium size from one set of scattering
data (one incident direction) and with 1% noise.



318 10. Some Numerical Methods

An important question arising in particular in this method is about singularities of
(radiating) solutions v to the Helmholtz equation satisfying Dirichlet or Neumann
boundary conditions at ∂D or generated by certain source f . This question is briefly
discussed in [KuS] for the Helmholtz equation in the plane and in the book [Is4],
chapter 4, where the main focus is on singularities of volume potentials of domains.
The question about singularities of solutions of exterior classical boundary value
problems for the Helmholtz equationis largely open. In particular, it is interesting
to get sufficient conditions to guarantee singular behavior of solutions to exterior
problems at corners of polyhedrons in R

3 and therefore to create a solid theoretical
background for numerical recovery of polyhedrons from scattering data via range
type tests.

Another important ( and mainly open) question is about stabililty and rates of
convergence of range type algorithms. Only proof of convergence hardly justifies
an algorithm, because it is important how fast it is convergent and how sensitive is
it to errors in data. The problems discussed in this section are severely ill-posed,
however there are observations that in some cases stability and resolution increase
with frequency k, while in some other cases stability is decreasing with k. The
study of this phenomena was started by Hrycak and Isakov [HrI] as described in
section 3.4, and further progress can lead to very efficient and robust numerical
algorithms for important inverse problems.

10.6 Discrete methods

One can attempt to solve an inverse problem for a partial differential equation
by discretizing the differential equation and trying to solve the discretized in-
verse problem. This general scheme works in some cases, but discretization and
solving of discretized problems is not a simple method. We will describe here
some results of Curtis and Morrow [CuM1], [CuM2] for a discretized version
of the conductivity equation. To describe this version, we consider an N × N
grid �N on the unit square � formed by points x( j, k) = ( j/N , k/N ), 0 ≤ j ≤
N , 0 ≤ k ≤ N . We let u jk = u(x jk). We will consider the following conductivity
equation:

(10.6.1)
∑
l,m

a j+l,k+m(u j+l,k+m − u jk) = 0 on �N .

This equation is a discretization of the conductivity equation a�u + ∇a · ∇u = 0,
where we replace partial derivatives by standard finite differences. Solutions to
equation (10.6.1) are called discrete harmonic functions. They have properties
similar to those of harmonic functions; in particular, they satisfy the maximum
principle, and it is easy to prove that one can uniquely solve the discrete Dirichlet
problem that augments equation (10.5.1) by the boundary condition

(10.6.2) u jk = g0, jk when j = 0, N or k = 0, N .
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In the discrete case there is no problem to define the Neumann data

a jk10(u j+1,k − u j,k) = g1, jk when j = 0, N − 1,

a jk01(u j,k+1 − u j,k) = g1, jk when k = 0, N − 1.(10.6.3)

The discrete Dirichlet-to-Neumann map �N maps the 4N -dimensional vector
of the discrete Dirichlet boundary data (g0,1, . . . , g0,N ) into the 4N -dimensional
vector of the discrete Neumann data (g1,1, . . . , g1,N ). Here the boundary data g0, jk

are labeled by coordinates g0,1, . . . , g0,N starting with g0,1 = g0,N ,N−1 clockwise,
so that the last coordinate is g0,4N = g0,N−1,N . The coordinates g1, j similarly label
the discrete Neumann data. Accordingly, �N is represented in these coordinates
by the 4N × 4N matrix (λ jk). It is not difficult to see that this matrix is symmetric.
Another property of this matrix that is proven by Curtis and Morrow is that for
any m ≤ N there are numbers α1, . . . , αm such that

(10.6.4) λ j,4N−m+1 +
∑

1≤l≤m

λ jkαk = 0 when m ≤ j ≤ 4N − m.

This property is the key for the reconstruction procedure and for characterization
of the discrete Dirichlet-to-Neumann map.

The reconstruction starts with the right upper corner of �N . To find aN−1,1

and a1,N−1 we will make use of the relation (10.6.4) with m = 1, which claims
that there is α1 such that λ j,4N + λ j,1α1 = 0 holds for all j = 2, . . . , 4N − 1. The
value of α1 can be found from this relation with, say, j = 2. Let the Dirichlet
boundary data be g0,1 = α1, g0,4N = 1, and other g0, j = 0. Then the solution of
the discrete Dirichlet problem u is zero at all interior points of �N ; in particular,
uN−1,N−1 = 0. By the definition of the Dirichlet-to-Neumann map we have the
Neumann data

g1,1 = λ1,4N + λ1,1α1 and g1,4N = λ4N ,4N + λ4N ,1α1.

Since we know these Neumann data and uN ,N−1 = α1, uN−1,N−1 = 0, uN−1,N =
1, the conductivities at the upper right corner points are

aN ,N−1 = g1,1/α1, aN−1,N = g1,4N

When the conductivities above the (m + 1)th diagonal from above
{x j,2N−m−1− j } are calculated, one can use the relation (10.6.4) to find them on this
diagonal. To solve the overdetermined system (10.6.4) for α1, . . . , αm , it suffices
to consider only the equations with, say, j = 3N − m + 1, . . . , 3N and to use that
due to the determinant property (10.6.5,d), this smaller system is uniquely solvable.
Then, as in the case m = 0, we consider the solution u to the discrete Dirichlet prob-
lem with boundary data g0,1 = α1, . . . , g0,m = αm, g0,4N−m+1 = 1, and g0, j = 0
for other indices j . As above, u = 0 on or below the diagonal {x j,2N−m−1− j }. Since
the conductivity coefficient is already known at points where u is not zero, we can
uniquely determine u by solving the Dirichlet problem for (10.6.1). Moving from
the left point of the diagonal to the right point, we can subsequently determine the
conductivity on the diagonal.



320 10. Some Numerical Methods

Moving from the upper right corner, one can uniquely determine a j,k when
j ≤ k. To determine other values one can similarly start from the lower left corner.

To formulate a characterization result, it is convenient to write�N as the block
matrix with N × N matrix entries�lm, l,m = 1, . . . , 4. Curtis and Morrow proved
that a 4N × 4N matrix (λ jk) represents a discrete Dirichlet-to-Neumann map if
and only if

(a) It is symmetric.

(b)
∑

1≤k≤4N

λ jk = 0, j = 1, . . . , 4N .

(c) The condition (10.6.4) is satisfied.

(d) �lm has the determinant property when l < m.(10.6.5)

A square matrix is said to have the determinant property if any of its square k × k
submatrices has positive determinant when k = 4m + 1 or 4m + 2 and negative
determinant if k = 4m + 3 or k = 4m.

While the determinant condition (10.6.5) resembles Krein’s positivity condition
for the one-dimensional inverse hyperbolic (or spectral) problem described in the
papers of Krein [Kr] or Symes [Sym], it has not yet been possible to utilize it, and at
present there is no characterization result for the Dirichlet-to-Neumann map in the
continuous case. In fact, at present there is no continuous analogue of conditions
(10.6.5) (b) and (d). Furthermore, nobody has found a continuous analogue of the
discrete reconstruction procedure described above.

Recently, Druskin and his collaborators [DrK] found optimal posititioning of
grid points for finite differences versions of problems of continuation of geophys-
ical fields. They are based on classical results from function and number theories
and show significant improvements in particular in the problems with very lim-
ited amount of data. In our opinion, also optimizing positions of receivers (like
microphones in acoustics) in many inverse problems has a promise for increase of
resolution.
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Functional Spaces

We collect here definitions and known results about space Ck+λ of Hölder contin-
uous functions and about Sobolev space Hk,p that we used in the book.

We recall that Cλ(�), 0 < λ < 1, consists of continuous functions u on �
with finite norms |u|λ(�) = |u|0(�) + sup |u(x) − u(y)|/|x − y|λ, x �= y, x, y ∈
�. Here � is any subset of R

n . The norm |u|0 = sup |u(x)|, x ∈ �. The space
Ck+λ(�) is formed of functions u with finite norm |u|k+λ(�) = ∑

|α|≤k |∂αu|λ(�).
When λ = 0, these spaces are defined when only the term |u|0 is left in the defini-
tion of the norm. These are known to be Banach spaces.

Now we introduce Sobolev space Hk,p(�) for open sets � in R
n of for Ck-

smooth manifolds. We recall that for k = 0, 1, . . . this space can be defined as
the completion of Ck(�) with respect to the norm ‖u‖k,p(�) = (

∑ ‖∂αu‖p
p(�)),

where the sum is over |α| ≤ k, and H̊ k,p(�) is the completion of Ck
0 (�) with

respect to the same norm. For negative k, the space Hk,p(�) is defined as the space
of linear continuous functionals on H̊ k,p(�). It is known (see Lions and Magenes
[LiM] for the case p = 2) that an element u of such a space can be represented
as

∑
∂αuα with uα ∈ L p(�), |α| ≤ k, and derivatives are understood in the weak

sense.

Theorem A1 (Extension). For any set � in R
n there is a linear continuous oper-

ator E mapping Ck+λ(�) into Ck+λ(Rn) such that Eu = u on �. This operator
depends on �, k, and λ, but its norm depends only on k, λ, and diam�.

For any Lipschitz � ⊂ � ⊂ B(0; R) and k = 0, 1, . . . there is a continuous
operator E mapping Hk,p(�) into H̊ k,p(B(0; R)) such that Eu = u on �. If
∂� ∈ Ck, then there is a similar continuous extension operator from H(s)(�) into
H̊ (s)(Rn) when s ≤ k and a bounded extension operator from H(k−1/2)(∂�) × . . .×
H(1/2)(∂�) into H(k)(�) such that the extended function u has the given Cauchy
data (u, . . . , ∂k−1

ν u) in this product of spaces.

The result about Hölder spaces is a version of the Whitney extension theorem. Its
proof (as well as a definition of Ck+λ for general sets�) can be found in the book of
Stein [Ste], extension operators for Sobolev spaces are constructed in the book of
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Morrey [Mor] for integer k, and the case p = 2 for all nonnegative k is considered
in the book of Lions and Magenes [LiM]. In [LiM] it is also observed that the
operator extending u as 0 outside � is continuous from H(s)(�) into H(s)(Rn) if
and only if 0 ≤ s < 1

2 .

Theorem A2 (Embedding). For any bounded Lipschitz domain � there is a con-
stant C(p, q, λ) such that for all functions u ∈ Hk,p(�) we have

‖u‖q (�) ≤ C‖u‖k,p(�)

‖u‖m,q (�) ≤ C‖u‖k,p(�)

|u|λ(�) ≤ C‖u‖k,p(�)

when q ≤ np/(n − kp), n > kp,

when m ≤ k, p ≤ q, n(1/p − 1/q) ≤ k − m,

when λ ≤ k − n/p, n < kp.

Moreover, in case of strict inequalities corresponding embedding operators are
compact.

This is a classical result basically obtained by Sobolev in the 1930s. The second
inequality is more contemporary and one can find it in many books on embedding
and interpolation of Sobolev type spaces.

Theorem A3 (On traces). For any bounded Lipschitz domain � ⊂ R
n and any

(n − 1)-dimensional Lipschitz surface S ⊂ � there is a constant C(S, k, q, p)
such that for all functions u ∈ Hk,p(�) we have

‖u‖q (S) ≤ C‖u‖k,p(�) when 1 < kp < n, q ≤ p(n − 1)/(n − pk), S ∈ Ck

‖u‖(1/2)(S) + ‖∇u‖(−1/2)(S) ≤ C‖u‖(1)(�).

The result for Hk,p-spaces can be found in [LU] while the claim about H(k)-
spaces is proven in the book of Lions and Magenes [LiM].

Theorem A4 (Interpolation). There is a constant C(�) such that

|∂αu|mu(�) ≤ C |u|(|α|+µ)/(k+λ)
k+λ (�)|u|1−(|α|+µ)/(k+λ)

0 (�),

‖u‖(s)(�) ≤ C‖u‖1−θ
(s1) (�)‖u‖θ(s2)(�),

provided that s = (1 − θ )s1 + θs2 �= − 1
2 − k, for any k = 0, 1, 2, . . . , 0 < θ < 1.

One can find a proof for spaces H(s) in the book of Lions and Magenes [LiM]
and McLean [McL].

For the reader’s convenience we recall also the integration by parts formula∫
�

u∂ j v =
∫
∂�

uvν j d� −
∫
�

∂ j uv,
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which is valid at least for functions u ∈ H1,p(�), v ∈ H1,q (�), 1/p + 1/q =
1, 1 ≤ p, and domains � with piecewise Lipschitz boundary ∂�. More exactly,
u, v (which are defined only almost everywhere) must be understood as their repre-
sentatives with well-defined traces on (n − 1)-dimensional surfaces. Integration by
parts leads to the following formula for the (formally) adjoint A∗ to the differential
operator A = div(a∇) + b · ∇ + c:

A∗ = div(a∇) − b · ∇ + (− div b + c)

and to the following Green’s formula,∫
�

(v Au − u A∗v) =
∫
∂�

((v∂ν(a)u − u∂ν(a)v + (b · ν)uv),

which takes the following simple form when A = �:∫
�

(v�u − u�v) =
∫
∂�

(v∂νu − u∂νv) .

Here ∂ν(a)v = ν · a∇u.
For a reader’s convenience we remind that curl(u1, u2, u3) = (∂2u3 −

∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1) and that curl curl u = ∇divu −�u. Also we give
the Leibniz’ formula [Hö2]

P(x, ∂)(uv) =
∑

(P (α)(x, ∂)u)∂αv/α!

where P(x, ∂)u = ∑
aα(x)∂αu is a linear partial differential operator of order m,

the sums are over |α| ≤ m, P(x, ξ ) = ∑
aαξα and P (α)(ξ ) = ∂αξ P(x, ξ ).
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[AsP] Astala, K., Päivärinta, L. Calderon’s inverse conductivity problem in the plane.
Ann. Math. (2005), to appear.
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[Het] Hettlich, F. Fréchet derivatives in inverse obstacle scattering. Inverse Problems,
11 (1995), 371–383.

[Ho] Hohage, T. Logarithmic convergence rates of the iteratively regularized Gauss-
Newton Method for an inverse potential and inverse scattering problem. Inverse
Problems, 13 (1997), 1279–1299.
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Hölder-type stability, 54
Holmgren’s Theorem, 55

i-contact domains, 103
ill-posed problem, 21
incident wave, 173
integral equation of first kind, 22

Landweber iterations, 39
Lax-Phillips method, 174
Leibniz’ formula, 323
linear sampling, 313
Lippman-Schwinger equation, 181
local backward uniqueness, 64

many-valued operator, 24
maximal entropy regularizer, 31
Maximum principles (Hopf’s, Giraud’s),

91
measn – Lebesgue measure, 19
method of logarithmic convexity, 43
m-principal part Am , 51
the multiplier method, 75

Newton type method, 39
non-characteristic surface, 55

orthogonality method, 94

343



344 Index

Picard’s test, 29
potentials

gravitational (Newtonian), 1
single layer, 4
double layer, 5
Riesz, 22

pseudo-convexity, 51
′pseudo-convexity, 56

quasireversibility, 43
quasisolution, 32

Radon transform R f , 192
attenuated, 199

refraction boundary condition, 103
regularizer, 25
regularization parameter, 25
Rellich’s theorem, 176

scattered wave, 173
scattering amplitude, 173

the Schrödinger-type equation, 79
spherical harmonics Y j,m , 193
singular solutions, 130
singular value decomposition, 29
smoothing regularizer, 31
soft obstacle, 173
Sommerfeld radiation

condition, 173
speed of propagation, 220
stability estimate, 24
stabilizing functional, 26
symbol of a differential operator, 51

uniqueness of the continuation, 60

volatility coefficient, 270

X -ray transform, 201

wave operator, 65
well-posed problem, 20



Applied Mathematical Sciences
(continued from page ii)

60. Ghil/Childress: Topics in Geophysical Dynamics:
Atmospheric Dynamics, Dynamo Theory and
Climate Dynamics.

61. Sattinger/Weaver: Lie Groups and Algebras with
Applications to Physics, Geometry, and Mechanics.

62. LaSalle: The Stability and Control of Discrete
Processes.

63. Grasman: Asymptotic Methods of Relaxation
Oscillations and Applications.

64. Hsu: Cell-to-Cell Mapping: A Method of Global
Analysis for Nonlinear Systems.

65. Rand/Armbruster: Perturbation Methods,
Bifurcation Theory and Computer Algebra.
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