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Introduction

The present volume analyzes mathematical models of time-dependent physical phe-
nomena on three levels: microscopic, mesoscopic, and macroscopic. We provide a
rigorous derivation of each level from the preceding level and the resulting meso-
scopic equations are analyzed in detail. Following Haken (1983, Sect. 1.11.6) we
deal, “at the microscopic level, with individual atoms or molecules, described by
their positions, velocities, and mutual interactions. At the mesoscopic level, we
describe the liquid by means of ensembles of many atoms or molecules. The ex-
tension of such an ensemble is assumed large compared to interatomic distances
but small compared to the evolving macroscopic pattern. . . . At the macroscopic
level we wish to study the corresponding spatial patterns.” Typically, at the macro-
scopic level, the systems under consideration are treated as spatially continuous
systems such as fluids or a continuous distribution of some chemical reactants, etc.
In contrast, on the microscopic level, Newtonian mechanics governs the equations of
motion of the individual atoms or molecules.1 These equations are cast in the form
of systems of deterministic coupled nonlinear oscillators. The mesoscopic level2 is
probabilistic in nature and many models may be faithfully described by stochastic
ordinary and stochastic partial differential equations (SODEs and SPDEs),3 where
the latter are defined on a continuum. The macroscopic level is described by time-
dependent partial differential equations (PDE’s) and its generalization and simplifi-
cations.

In our mathematical framework we talk of particles instead of atoms and mole-
cules. The transition from the microscopic description to a mesoscopic (i.e., sto-
chastic) description requires the following:

• Replacement of spatially extended particles by point particles
• Formation of small clusters (ensembles) of particles (if their initial positions and

velocities are similar)

1 We restrict ourselves in this volume to “classical physics” (cf., e.g., Heisenberg (1958)).
2 For the relation between nanotechnology and mesoscales, we refer to Roukes (2001).
3 In this volume, mesoscopic equations will be identified with SODEs and SPDEs.

1



2 Introduction

• Randomization of the initial distribution of clusters where the probability distri-
bution is determined by the relative sizes of the clusters

• “Coarse graining,” i.e., representation of clusters as cells or boxes in a grid for
the positions and velocities

Having performed all four simplifications, the resulting description is still gov-
erned by many deterministic coupled nonlinear oscillators and, therefore, a simpli-
fied microscopic model.

Given a probability distribution for the initial data, it is possible, through scaling
and similar devices, to proceed to the mesoscopic level, governed by SODEs and
SPDEs, as follows:

• Following Einstein (1905), we consider the substance under investigation a
“solute,” which is immersed in a medium (usually a liquid) called the “solvents.”
Accordingly, the particles are divided into two groups: (1) Large particles, i.e.,
the solute particles; (2) small particles, the solvent particles.

• Neglect the interaction between small particles.

• Consider first the interaction between
large and small particles. To obtain the
Brownian motion effect, increase the
initial velocities of the small particles
(to infinity). Allow the small particles
to escape to infinity after having in-
teracted with the large particles for a
macroscopically small time. This small
time induces a partition of the time axis
into small time intervals. In each of the
small time intervals the large particles
are being displaced by the interaction
with clusters of small particles. Note
that the vast majority of small particles
have previously not interacted with the
large particles and they disappear to in-
finity after that time step. (Cf. Figs. 1
and 2.) This implies almost indepen-
dence of the displacements of the large
particles in different time intervals and,

Fig. 1

Fig. 2

in the scaling limit, independent increments of the motion of the large particles.
To make this rigorous, an infinite system of small particles is needed if the inter-
val size tends to 0 in the scaling limit. Therefore, depending on whether or not
friction is included in the equations for the large particles, we obtain that, in the
scaling limit, the positions or the velocities of the large particles perform Brown-
ian motions in time.4 If the positions are Brownian motions, this model is called

4 The escape to infinity after a short period of interaction with the large particles is necessary
to generate independent increments in the limit. This hypothesis seems to be acceptable if for
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the Einstein-Smoluchowski model, and if the velocities are Brownian motions,
then it is called an Ornstein-Uhlenbeck model (cf. Nelson, 1972).

• The interaction between large particles occurs on a much slower time scale
than the interaction between large and small particles and can be included after
the scaling limit employing fractional steps.5 Hence, the positions of the large
particles become solutions of a system of SODEs in the Einstein-Smoluchowski
model.

• The step from (Einstein-Smoluchowski) SODEs to SPDEs, which is a more sim-
plified mesoscopic level, is relatively easy, if the individual Brownian motions
from the previous step are obtained through a Gaussian space–time field, which
is uncorrelated in time but spatially correlated. In this case the empirical distri-
bution of the solutions of the SODEs is the solution of an SPDE, independent
of the number of particles involved, and the SPDE can be solved in a space of
densities, if the number of particles tends to infinity and if the initial particle dis-
tribution has a density. The resulting SPDE describes the distribution of matter
in a continuum.

The transition from the mesoscopic SPDEs to macroscopic (i.e., deterministic)
PDE’s occurs as follows:

• As the correlation length6 in the spatially correlated Gaussian field tends to 0 the
solutions of the SPDEs tend to solutions of the macroscopic PDEs (as a weak
limit).

The mesoscopic SPDE is formally a PDE perturbed by state-dependent Brownian
noise. This perturbation is small if the aforementioned correlation length is small.
Roughly speaking, the spatial correlations occur in the transition from the micro-
scopic level to the mesoscopic SODEs because the small particles are assumed to
move with different velocities (e.g., subject to a Maxwellian velocity distribution).
As a result, small particles coming from “far away” can interact with a given large
particle “at the same time” as small particles were close to the large particles. This
generates a long-range mean-field character of the interaction between small and
large particles and leads in the scaling limit to the Gaussian space–time field, which
is spatially correlated. Note that the perturbation of the PDE by state-dependent
Brownian noise is derived from the microscopic level. We conclude that the correla-
tion length is a result of the discrete spatially extended structures of the microscopic
level. Further, on the mesoscopic level, the correlation length is a measure of the
strength of the fluctuations around the solutions of the macroscopic equations.

Let w̄ denote the average speed of the small particles, η > 0 the friction coeffi-
cient for the large particles. The typical mass of a large particle is ≈ 1

N , N ∈ N, and

spatially extended particles the interparticle distance is considerably greater than the diameter
of a typical particle. (Cf. Fig. 1.) This holds for a gas (cf. Lifshits and Pitayevskii (1979), Ch.1,
p. 3), but not for a liquid, like water. Nevertheless, we show in Chap. 5 that the qualitative
behavior of correlated Brownian motions is in good agreement with the depletion phenomenon
of colloids in suspension.

5 Cf. Goncharuk and Kotelenez (1998) and also our Sect. 15.3 for a description of this method.
6 Cf. the following Chap. 1 for more details on the correlation length.
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√
ε > 0 is the correlation length in the spatial correlations of the limiting Gaussian

space–time field. Assuming that the initial data of the small particles are coarse-
grained into independent clusters, the following scheme summarizes the main steps
in the transition from microscopic to macroscopic, as derived in this book:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Microscopic Level: Newtonian mechanics/systems of deterministic
coupled nonlinear oscillators

⇓ (w̄ � η→ ∞)
Mesoscopic Level: SODEs for the positions of N large particles

⇓ (N → ∞)
SPDEs for the continuous distribution of large
particles

⇓ (
√
ε→ 0)

Macroscopic Level: PDEs for the continuous distribution of large particles

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Next we review the general content of the book. Formally, the book is divided
into five parts and each part is divided into chapters. The chapter at the end of each
part contain lengthy and technical proofs of some of the theorems that are formu-
lated within the first chapter. Shorter proofs are given directly after the theorems.
Examples are provided at the end of the chapters. The chapters are numbered con-
secutively, independent of the parts.

In Part I (Chaps. 1–3), we describe the transition from the microscopic equa-
tions to the mesoscopic equations for correlated Brownian motions. We simplify
this procedure by working with a space–time discretized version of the infinite sys-
tem of coupled oscillators. The proof of the scaling limit theorem from Chap. 2 in
Part I is provided in Chap. 3. In Part II (Chaps. 4–7) we consider a general system
of Itô SODEs7 for the positions of the large particles. This is called “mesoscopic
level A.” The driving noise fields are both correlated and independent, identically
distributed (i.i.d) Brownian motions.8 The coefficients depend on the empirical dis-
tribution of the particles as well as on space and time. In Chap. 4 we derive existence
and uniqueness as well as equivalence in distribution. Chapter 5 describes the quali-
tative behavior of correlated Brownian motions. We prove that correlated Brownian
motions are weakly attracted to each other, if the distance between them is short
(which itself can be expressed as a function of the correlation length). We remark
that experiments on colloids in suspension imply that Brownian particles at close
distance must have a tendency to attract each other since the fluid between them
gets depleted (cf. Tulpar et al. (2006) as well as Kotelenez et al. (2007)) (Cf. Fig. 4

7 We will drop the term “Itô” in what follows, as we will always use Itô differentials, unless
explicitly stated otherwise. In the alternative case we will consider Stratonovich differentials
and talk about Stratonovich SODEs or Stratonovich SPDEs (cf. Chaps. 5, 8, 14, Sects. 15.2.5
and 15.2.6).

8 We included i.i.d. Brownian motions as additional driving noise to provide a more complete
description of the particle methods in SPDEs.
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in Chap. 1). Therefore, our result confirms that correlated Brownian motions more
correctly describe the behavior of a solute in a liquid of solvents than independent
Brownian motions. Further, we show that the long-time behavior of two correlated
Brownian motions is the same as for two uncorrelated Brownian motions if the
space dimension is d ≥ 2. For d = 1 two correlated Brownian motions eventu-
ally clump. Chapter 6 contains a proof of the flow property (which was claimed
in Chap. 4). In Chap. 7 we compare a special case of our SODEs with the for-
malism introduced by Kunita (1990). We prove that the driving Gaussian fields in
Kunita’s SODEs are a special case of our correlated Brownian motions. In Part III
(mesoscopic level B, Chaps. 8–13) we analyze the SPDEs9 for the distribution of
large particles. In Chap. 8, we derive existence and strong uniqueness for SPDEs
with finite initial mass. We also derive a representation of semilinear (Itô) SPDEs
by Stratonovich SPDEs, i.e., by SPDEs, driven by Stratonovich differentials. In the
special case of noncoercive semilinear SPDEs, the Stratonovich representation is a
first order transport SPDE, driven by Statonovich differentials. Chapter 9 contains
the corresponding results for infinite initial mass, and in Chap. 10, we show that cer-
tain SPDEs with infinite mass can have homogeneous and isotropic random fields as
their solutions. Chapters 11 and 12 contain proofs of smoothness, an Itô formula and
uniqueness, respectively. In Chap. 13 we review some other approaches to SPDEs.
This section is by no means a complete literature review. It is rather a random sam-
ple that may help the reader, who is not familiar with the subject, to get a first
rough overview about various directions and models. Part IV (Chap. 14) contains
the macroscopic limit theorem and its complete proof. For semi-linear non-coercive
SPDEs, using their Stratonovich representations, the macroscopic limit implies the
convergence of a first order transport SPDE to the solution of a deterministic par-
abolic PDE. Part V (Chap. 15) is a general appendix, which is subdivided into four
sections on analysis, stochastics, the fractional step method, and frame-indifference.
Some of the statements in Chap. 15 are given without proof but with detailed ref-
erences where the proofs are found. For other statements the proofs are sketched or
given in detail.
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Part I
From Microscopic Dynamics to Mesoscopic

Kinematics



Chapter 1
Heuristics: Microscopic Model and Space–Time
Scales

On a heuristic level, this section provides the following: space–time scales for the
interaction of large and small particles; an explanation of independent increments
of the limiting motion of the large particles; a discussion of the modeling difference
between one large particle and several large particles, suspended in a medium of
small particles; a justification of mean-field dynamics. Finally, an infinite system
of coupled nonlinear oscillators for the mean-field interaction between large and
small particles is defined.

To compute the displacement of large parti-
cles resulting from the collisions with small
particles, it is usually assumed that the large
particles are balls with a spatial extension
of average diameter ε̂n 	 1. Simplifying
the transfer of small particles’ momenta to
the motion of the large particles, we expect
the large particles to perform some type of
Brownian motion in a scaling limit. A point
of contention, within both the mathemati-
cal and physics communities, has centered
upon the question of whether or not the
Brownian motions of several large particles
should be spatially correlated or uncorre-
lated. The supposition of uncorrelatedness

Fig. 3

Fig. 4

has been the standard for many models. Einstein (1905) assumed uncorrelatedness
provided that the large particles were “sufficiently far separated.” (Cf. Fig. 3.) For
mathematicians, uncorrelatedness is a tempting assumption, since one does not need
to specify or justify the choice of a correlation matrix. In contrast, the empirical
sciences have known for some time that two large particles immersed in a fluid
become attracted to each if their distance is less than some critical parameter. More
precisely, it has been shown that the fluid density between two large particles drops
when large particles approach each other, i.e., the fluid between the large particles

9
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gets “depleted.” (Cf. Fig. 4.) Asakura and Oosawa (1954) were probably the first
ones to observe this fact. More recent sources are Goetzelmann et al. (1998), Tulpar
et al. (2006) and the references therein, as well as Kotelenez et al. (2007). A simple
argument to explain depletion is that if the large particles get closer together than
the diameter of a typical small particle, the space between the large particles must
get depleted.1 Consequently, the osmotic pressure around the large particles can
no longer be uniform – as long as the overall density of small particles is high
enough to allow for a difference in pressure. This implies that, at close distances,
large particles have a tendency to attract one another. In particular, they become
spatially correlated. It is now clear that the spatial extension of small and large
particles imply the existence of a length parameter governing the correlations of the
Brownian particles. We call this parameter the “correlation length” and denote it by√
ε. In particular, depletion implies that two large particles, modeled as Brownian

particles, must be correlated at a close distance.
Another derivation of the correlation length, based on the classical notion of

the mean free path, is suggested by Kotelenez (2002). The advantage of this ap-
proach is that correlation length directly depends upon the density of particles in a
macroscopic volume and, for a very low density, the motions of large particles are
essentially uncorrelated (cf. also the following Remark 1.2).

We obtain, either by referring to the known experiments and empirical observa-
tions or to the “mean free path” argument, a correlation length and the exact deriva-
tion of

√
ε becomes irrelevant for what follows. Cf. also Spohn (1991), Part II, Sect.

7.2, where it is mentioned that random forces cannot be independent because the
“suspended particles all float in the same fluid.”

Remark 1.1. For the case of just one large particle and assuming no interaction
(collisions) between the small particles, stochastic approximations to elastic col-
lisions have been obtained by numerous authors. Dürr et al. (1981, 1983) obtain an
Ornstein-Uhlenbeck approximation2 to the collision dynamics, generalizing a result
of Holley (1971) from dimension d = 1 to dimension d = 3. The mathematical
framework, employed by Dürr et al. (loc.cit.), permits the partitioning of the class
of small particles into “fast” and “slowly” moving Particles such that “fast” moving
particles collide with the large particle only once and “most” particles are moving
fast. After the collision they disappear (towards ∞) and new “independent” small
particles may collide with the large particle. Sinai and Soloveichik (1986) obtain
an Einstein-Smoluchowski approximation3 in dimension d = 1 and prove that al-
most all small particles collide with the large particle only a finite number of times.
A similar result was obtained by Szász and Tóth (1986a). Further, Szász and Tóth

1 Cf. Goetzelmann et al. (loc.cit.).
2 This means that the limit is represented by an Ornstein-Uhlenbeck process, i.e., it describes the

position and velocity of the large particle – cf. Nelson (1972) and also Uhlenbeck and Ornstein
(1930).

3 This means that the limit is a Brownian motion or, more generally, the solution of an ordinary
stochastic differential equation only for the position of the large particle – cf. Nelson (loc.cit.).
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(1986b) obtain both Einstein-Smoluchowski and Ornstein-Uhlenbeck approxima-
tions for the one large particle in dimension d = 1.4 
�

As previously mentioned in the introduction, we note that the assumption of sin-
gle collisions of most small particles with the large particle (as well as our equiv-
alent assumption) should hold for a (rarefied) gas. In such a gas the mean distance
between particles is much greater (�) than the average diameter of a small particle.5

From a statistical point of view, the situation may be described as follows: For the
case of just one large particle, the fluid around that particle may look homogeneous
and isotropic, leading to a relatively simple statistical description of the displace-
ment of that particle where the displacement is the result of the “bombardment”
of this large particle by small particles. Further, whether or not the “medium” of
small particles is spatially correlated cannot influence the motion of only one large
particle, as long as the medium is homogeneous and, in a scaling limit, the time
correlation time δs tends to 0.6 The resulting mathematical model for the motion
of a single particle will be a diffusion, and the spatial homogeneity implies that the
diffusion matrix is constant. Such a diffusion is a Brownian motion.

In contrast, if there are at least two large particles and they move closely together,
the fluid around each of them will no longer be homogeneous and isotropic. In
fact, as mentioned before, the fluid between them will get depleted. (Cf. Fig. 4.)
Therefore, the forces generated by the collisions and acting on two different large
particles become statistically correlated if the large particles move together closer
than the critical length

√
ε.

Remark 1.2. Kotelenez (2002, Example 1.2) provides a heuristic “coarse graining”
argument to support the derivation of a mean-field interaction in the mesoscale from
collision dynamics in the microscale. The principal observation is the following:
Suppose the mean distance between particles is much greater (�) than the aver-
age diameter of a small particle. Let w̄ be the (large) average speed of the small
particles, and define the correlation time by

δs :=
√
ε

w̄
.

Having defined the correlation length
√
ε and the correlation time δs, one may,

in what follows, assume the small particles to be point particles.
To define the space–time scales, let Rd be partitioned into small cubes, which

are parallel to the axes. The cubes will be denoted by (r̄λ], where r̄λ is the center of
the cube and λ ∈ N. These cubes are open on the left and closed on the right (in the
sense of d-dimensional intervals) and have side length δr ≈ 1

n , and the origin 0 is
the center of a cell. δr is a mesoscopic length unit. The cells and their centers will
be used to coarse-grain the motion of particles, placing the particles within a cell

4 Cf. also Spohn (loc.cit.).
5 Cf. Lifshits and Pitaeyevskii (1979), Ch. 1, p. 3.
6 Cf. the following (1.1).
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at the midpoint. Moreover, the small particles in a cell will be grouped as clusters
starting in the same midpoint, where particles in a cluster have similar velocities.

Suppose that small particles move with different velocities. Fast small particles
coming from “far away” can collide with a given large particle at approximately the
same time as slow small particles that were close to the large particle before the
collision. If, in repeated microscopic time steps, collisions of a given small parti-
cle with the same large particle are negligible, then in a mesoscopic time unit δσ ,
the collision dynamics may be replaced by long-range mean field dynamics (cf.
the aforementioned rigorous results of Sinai and Soloveichik, and Szász and Tóth
(loc.cit.) for the case of one large particle). Dealing with a wide range of veloci-
ties, as in the Maxwellian case, and working with discrete time steps, a long range
force is generated. The correlation length

√
ε is preserved in this transition. Thus,

we obtain the time and spatial scales

δs 	 δσ 	 1

δρ 	 δr ≈ 1
n
	 1.

}
. (1.1)

δρ is the average distance between small particles in (r̄λ] and the assumption that
there are “many” small particles in a typical cell (r̄λ] implies δρ 	 δr . If we as-
sume that the empirical velocity distribution of the small particles is approximately
Maxwellian, the aforementioned mean field force from Example 1.2 in Kotelenez
(loc.cit.) is given by the following expression:

mḠε,M (r − q) ≈ m(r − q)
(

2
dε

) 1
2 √Dηn

1

(πε)
d
4

ē
−|r−q|2

2ε . (1.2)

D is a positive diffusion coefficient, m the mass of a cluster of small particles,
and ηn is a friction coefficient for the large particles. r and q denote the positions of
large and small particles, respectively. 
�

A rigorous derivation of the replacement of the collision dynamics by mean-
field dynamics is desirable. However, we need not “justify” the use of mean-field
dynamics as a coarse-grained approximation to collision dynamics: there are mean-
field dynamics on a microscopic level that can result from long range potentials, like
a Coulomb potential or a (smoothed) Lenard-Jones potential. Therefore, in Chaps. 2
and 3 we work with a fairly general mean-field interaction between large and small
particles and the only scales needed will be7

δσ = 1
nd 	 1, δr = 1

n
	 1. (1.3)

The choice of δσ follows from the need to control the variance of sums of in-
dependent random variables and its generalization in Doob’s inequality. With this

7 We assume that, without loss of generality, the proportionality factors in the relations for δr and
δσ equal 1.
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choice, δσ becomes a normalizing factor at the forces acting on the large particle
motion.8

Consider the mean-field interaction with forcing kernel Gε(q) on a space–time
continuum. Suppose there are N large particles and infinitely many small particles.
The position of the i th large particle at time t will be denoted r i (t) and its velocity
v i (t). The corresponding position and velocity of the λth small particle with be
denoted qλ(t) and wλ(t), respectively. m̂ is the mass of a large particle, and m is the
mass of a small particle. The empirical distributions of large and small particles are
(formally) given by

X N (dr, t) := m̂
N∑

j=1

δr j (t)(dr), Y(dq, t) := m
∑
λ,

δqλ(t)(dq).

Further, η > 0 is a friction parameter for the large particles. Then the interaction
between small and large particles can be described by the following infinite system
of coupled nonlinear oscillators:

d
dt

r i (t) = v i (t), r i (0) = r i
0,

d
dt
v i (t) = −ηv i (t)+ 1

m̂m

∫
Gε(η, r i (t)− q)Y(dq, t), v i (0) = v i

0,

d
dt

qλ(t) = wλ(t), qλ(0) = qλ0 ,
d
dt
wλ(t) = 1

m̂m

∫
Gε(η, qλ(t)− r)XN (dr, t), wλ(0) = wλ0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.4)

In (1.4) and in what follows, the integration domain will be all of Rd , if no
integration domain is specified.9

We do not claim that the infinite system (1.4) and the empirical distributions
of the solutions are well defined. Instead of treating (1.4) on a space–time contin-
uum, we will consider a suitable space–time coarse-grained version of (1.4).10 Un-
der suitable assumptions,11 we show that the positions of the large particles in the
space–time coarse-grained version converge toward a system of correlated Brown-
ian motions.12

8 Cf. (2.2).
9 Gε(η, r i (t)− q) has the units �

T 2 (length over time squared).
10 Cf. (2.8) in the following Chap. 2.
11 Cf. Hypothesis 2.2 in the next chapter.
12 This result is based on the author’s paper (Kotelenez, 2005a).



Chapter 2
Deterministic Dynamics in a Lattice Model
and a Mesoscopic (Stochastic) Limit

The evolution of a space–time discrete version of the Newtonian system (1.4) is
analyzed on a fixed (macroscopic) time interval [0, t̂] (cf. (2.9)). The interaction
between large and small particles is governed by a twice continuously differentiable
odd Rd-valued function G.1 We assume that all partial derivatives up to order 2 are
square integrable and that |G|m is integrable for 1 ≤ m ≤ 4, where “integrable”
refers to the Lebesgue measure on Rd . The function G will be approximated by odd
Rd-valued functions Gn with bounded supports (cf. (2.1)). Existence of the space–
time discrete version of (1.4) is derived employing coarse graining in space and an
Euler scheme in time. The mesoscopic limit (2.11) is a system stochastic ordinary
differential equation (SODEs) for the positions of the large particles. The SODEs
are driven by Gaussian standard space–time white noise that may be interpreted as
a limiting centered number density of the small particles. The proof of the meso-
scopic limit theorem (Theorem 2.4) is provided in Chap. 3.

Hypothesis 2.1 – Coarse Graining

• Both single large particles and clusters of small particles, being in a cell (r̄λ],2
are moved to the midpoint r̄λ.

• There is a partitioning of the velocity space

Rd = ∪ι∈N Bι,

and the velocities of each cluster take values in exactly one Bι where, for the sake of
simplicity, we assume that all Bι are small cubic d-dimensional intervals (left open,
right closed), all with the same volume ≤ 1

nd . 
�
1 With the exception of Chaps. 5 and 14, we suppress the possible dependence on the correlation

length
√
ε.

2 Recall from Chap. 1 that Rd is partitioned into small cubes, (r̄λ], which are parallel to the
axes with center r̄λ. These cubes are open on the left and closed on the right (in the sense of
d-dimensional intervals) and have side length δr = 1

n . n will be the scaling parameter.

15
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Let m̂ denote the mass of a large particle and m denote the mass of a cluster of
small particles. Set

Yn(dq, t) := m
∑
λ,ι

δq̄n(t,λ,ι)(dq), XN ,n(dr, t) := m̂
N∑

j=1

δr̄ j
n (t)
(dr),

where r̄ j
n (t) and q̄n(t, λ, ι) are the positions at time t of the large and small par-

ticles, respectively. “–” means that the midpoints of those cells are taken, where the
particles are at time t . E.g., r̄ j

n (t) = r̄ λ̃ if r j
n (t) ∈ (r̄ λ̃]. Yn and XN ,n are called

the “empirical measure processes” of the small and large particles, respectively. The
labels λ, ι in the empirical distribution Yn denote the (cluster of) small particle(s)
that started at t = 0 in (r̄λ] with velocities from Bι.

Let “∨” denote “max.” The average speed of the small particles will be denoted
w̄n and the friction parameter of the large particles ηn . The assumptions on the most
important parameters are listed in the following

Hypothesis 2.2

ηn = n p̃, d > p̃ > 0,

m = n−ζ , ζ ≥ 0,

w̄n = n p, p > (4d + 2) ∨ (2 p̃ + 2ζ + 2d + 2). 
�
Let Kn ≥ 1 be a sequence such that Kn ↑ ∞ and Cb(0) be the closed cube in

Rd , parallel to the axes, centered at 0 and with side length b > 0. Set

Gn(q) :=

⎧⎪⎨
⎪⎩

nd
∫
(r̄λ]

G(r)dr, if q ∈ (r̄λ] and (r̄λ] ⊂ CKn (0),

0, if q ∈ (r̄λ] and (r̄λ] is not a subset of CKn (0).
(2.1)

|C | denotes the Lebesgue measure of a Borel measurable subset C of Rk , k ∈
{d, d +1}. Further, |r | denotes the Euclidean norm of r ∈ Rd as well as the distance
in R. For a vector-valued function F , F� is its �th component and we define the sup
norms by

|‖F�|‖ := supq |F�(q)|, � = 1, . . . , d, |‖F |‖ := max
�=1,..,d

|‖F�|‖.

Let ∧ denote “minimum” and m ∈ {1, . . . , 4}. For � = 1, . . . , d, by a simple
estimate and Hölder’s inequality (if m ≥ 2)

∑
λ

|Gn,�(r − r̄λ)|m = nd
∫

|Gn,�(r − q)|mdq

≤ (nd K d
n |‖G�|‖m) ∧

(
nd

∫
|G�(q)|mdq

)
.

⎫⎪⎪⎬
⎪⎪⎭

(2.2)
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Let r̄ the midpoint of an arbitrary cell. Similar to (2.2)
∑
λ

1{|Gn(r̄−r̄λ)|>0} ≤ K d
n nd . (2.3)

Using the oddness of G we obtain
∑
λ

Gn(r̄ − r̄λ) = 0. (2.4)

All time-dependent functions will be constant for t ∈ [kδσ, (k + 1)δσ). For
notational convenience we use t, s, u ∈ {lδσ : l ∈ N, lδσ ≤ t̂}, etc. for time,
if it does not lead to confusion, and if t = lδσ , then t− := (l − 1)δσ and
t+ := (l + 1)δσ . We will also, when needed, interpret the time-discrete evolution
of positions and velocities as jump processes in continuous time by extending all
time-discrete quantities to continuous time. In this extension all functions become
cadlag (continuous from the right with limits from the left).3 More precisely, let B
be some topological space. The space of B-valued cadlag functions with domain
[0, t̂] is denoted D([0, t̂];B).4 For our time discrete functions or processes f (·) this
extension is defined as follows:

f̄ (t) := f (l δσ), if t ∈ [l δσ, (l + 1)δσ) .

Since this extension is trivial, we drop the “bar” and use the old notation both for
the extended and nonextended processes and functions.

The velocity of the i th large particle at time s, will be denoted v i
n(s), where

v i
n(0) = 0 ∀i . wλ,ι0,n ∈ Bι will be the initial velocity of the small particle starting at

time 0 in the cell (r̄λ], ι ∈ N. Note that, for the infinitely many small particles, the
resulting friction due to the collision with the finitely many large particles should
be negligible. Further, in a dynamical Ornstein-Uhlenbeck type model with friction
ηn the “fluctuation force” must be governed by a function G̃n(·). The relation to a
Einstein-Smoluchowski diffusion is given by

G̃n(r) ≈ ηnGn(r),

as ηn −→ ∞.5 This factor will disappear as we move from a second-order dif-
ferential equation to a first-order equation (cf. (2.9) and (3.5)). To simplify the cal-
culations, we will work right from the start with ηnGn(·).

We identify the clusters in the small cells with velocity from Bι with random
variables. The empirical distributions of particles and velocities in cells define, in a

3 From French (as a result of the French contribution to the theory of stochastic integration): f
est “continue á droite et admet une limite á gauche.”

4 Cf. Sect. 15.1.6 for more details. D([0, t̂];B) is called the “Skorokhod space of B-valued cadlag
functions.” If the cadlag functions are defined on [0,∞) we denote the Skorokhod space by
D([0,∞);B).

5 Cf., e.g., Nelson (1972) or Kotelenez and Wang (1994).
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canonical way, probability distributions. The absence of interaction of the small ma-
terial particles among themselves leads to the assumption that their initial positions
and velocities are independent if modelled as random variables.

Let α ∈ (0, 1) be the expected average volume (in a unit cube) occupied by
small particles (for large n) and assume that the initial “density” function ϕn(q) for
the small particles satisfies:

0 ≤ ϕn(q) ≤ αnd .

We need a state to describe the outcome of finding no particle in the cell (the
“empty state”). Let � denote this empty state and set R̂d := Rd ∪ {�}. A suitable
metric can be defined on R̂d as follows:

ρ(r − q) := |r − q| ∧ 1 if r, q ∈ Rd ;

ρ̂(r − q) :=
⎧⎨
⎩
ρ(r − q), if r, q ∈ Rd ,

1, if r ∈ Rd and if q = �.

⎫⎪⎪⎬
⎪⎪⎭

(2.5)

The Borel sets in Rd and in R̂d will be denoted by Bd and B̂d , respectively. Set

Ω := {R̂d × Rd}N.

The velocity field of the small particles is governed by a strictly positive proba-
bility density ψ(·) on Rd , which we rescale as follows:

ψn(w) := 1
n pd ψ

( w
n p

)
.

Define the initial velocities of a cluster of small particles starting in the cell (r̄λ]
as random variables with support in some Bι:

wλ,ι0,n ∼ ψn(w)1Bι (w)
1∫

Bι
ψn(w) dw

.6 (2.6)

Further, let

µλ,ι,n :=
∫
(r̄λ]
ϕn(q) dq

∫
Bι
ψn(w) dw

be the probability of finding a small particle at t = 0 in (r̄λ] and with velocity
from Bι. Define random variables ζ̂ λ,ιn for the initial positions of the small particles
as follows:

ζ̂ λ,ιn :=
{

r̄λ, with probability (w.p.) µλ,ι,n,
�, w.p. 1 − µλ,ι,n . (2.7)

Denote by µ̂n,λ,ι and νn,λ,ι the distributions of ζ̂ λ,ιn and wλ,ι0,n , respectively. Set

ωλ,ι := q̂λ,ι × wλ,ι ∈ R̂d × Rd

6 “∼” here denotes “is distributed.”
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and
Pn,λ,ι := µ̂n,λ,ι ⊗ νn,λ,ι.

We assume the initial positions and velocities to be independent, i.e., we define
the initial joint probability distribution of positions and velocities on Ω to be the
product measure:

Pn := ⊗λ∈N ⊗ι∈N Pn,λ,ι. (2.8)

Formally, the coarse-grained particle evolution in the mesoscale is described by
the following Euler scheme:

r i
n(t) = r i

n(0)+
∑
s≤t
v i

n(s)δσ,

v i
n(s) =

∑
0<u≤s

exp[−ηn(s − u)] 1
m̂m

∫
ηnGn(r̄ i

n(u−)− q)Yn(dq, u) δσ ,

qn(s, λ, ι) = r̄λ + wλ,ι0,ns + 1
m̂m

∑
u<s

∑
v≤u

∫
ηnGn(q̄n(v, λ, ι)− r)XN ,n(dr, v)(δσ)2

if ζ̂ λ,ιn = r̄λ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

Note that the empirical measure processes of the small particles is not a priori
finite on bounded sets. In particular, we do not know whether or not infinitely many
small particles interact with a given large particle at a given time u. Therefore, we
must show existence of the coarse-grained particle model:

Proposition 2.1. The Euler scheme (2.9) is defined for all s ≥ 0 a.s.

The Proof will be provided at the end of this chapter.

We list the remaining hypotheses:

Hypothesis 2.3

Set αn,λ :=
∫
(r̄λ] ϕn(q) dq, ᾱn := sup

λ
αn,λ, αn := infλ αn,λ. Let δ ∈ (0, 1

7 ) and

assume

nd+δ(|α − ᾱn| + |α − αn|) −→ 0. as n −→ ∞. 
�
The speed of convergence assumption will be needed in Lemmas 3.2 and 3.3. The

particular choice of δ allows for a simple formulation of the ratios in Hypothesis 2.2
(cf. also Remark 2.7).

Hypothesis 2.4

{r1
n (0), . . . , r

N
n (0)} and {ζ̂ λ,ιn , wλ,ιn,0 : λ, ι ∈ N} are independent, where (r1

n (0), . . . ,
r N

n (0)) are the initial positions of the large particles. 
�
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We now describe the possible scaling limit, as n → ∞. An important component
of this limit is standard Gaussian space–time white noise w(dq, dt).7 Suppose the
Borel subset A of Rd has finite Lebesgue measure |A|. Denote by N (0, |A|) the
normal distribution with mean 0 and variance |A|. Following Walsh (1986), Chap. 1,
we have the following.

Definition 2.2. – Standard Gaussian Space–Time White Noise
A standard Gaussian Space–Time white noise w(dq, dt, ω) based on the Lebesgue
measure in Rd × R+ is a finitely additive random signed measure on the sets Borel
sets A in Rd × R+ of finite Lebesgue measure |A| such that

• ∫∞
0

∫
1A(q, t)w(dq, dt, ·) ∼ N (0, |A|);

• if A ∩ B = ∅, then
∫∞

0

∫
1A(q, t)w(dq, dt, ·) and

∫∞
0

∫
1B(q, t)w(dq, dt, ·) are

independent. 
�
Remark 2.3.

• Walsh’s theory of stochastic integration with respect to w(dq, dt) and, more gen-
erally, with respect to martingale measures is based on Itô’s approach.8 We show
in Chap. 4 ((4.14) and (4.15)) that stochastic integrals in finite dimensional space,
driven by w(dq, dt) are equivalent to sums of stochastic (Itô) integrals, driven by
infinitely many i.i.d. Brownian motions.

• A description ofw(dq, dt) as a generalized Gaussian space–time field is provided
in Sects. 15.2.2 and 15.2.4. Of special importance are (15.69) and (15.126). In
fact, we show in (15.126) that the finitely additive signed measure w(dq, dt, ω)
has a generalized (Radon-Nikodym) derivative, ∂d+1

∂s∂q1...∂qd
¯̂w(·, ·, ω), which is a

Schwarz distribution9 over Rd+1, i.e., in the space of Schwarz distributions over
Rd+1

∂d+1

∂s∂q1 . . . ∂qd

¯̂w(q, s)dq ds ∼ w(dq, ds). (2.10)

• A modeling interpretation of w(dq, dt) in terms of the (centered) occupation
measure (cf. (2.16) (3.15)) is provided in Remark 3.10 at the end of Chap. 3. It

7 w(dq, ds) is the space–time generalization of the time increments of a scalar valued standard
Brownian motion β(ds). If restricted to only positive coordinates rk ≥ 0, k = 1, . . . , d the
integrated version,

∫ t
0

∫ r1
0 . . .

∫ rd
0 w(dq, dt), is called the Brownian sheet. Cf. also (15.124).

8 The most important features of Itô integration are presented in Sect. 15.2.5.
9 Here “∼” means “equivalent in distribution” and ¯̂w(·, ·) is a suitably defined Brownian sheet

on Rd × [0,∞). We refer to our analysis of w(dq, dt) in Sect. 15.2.4, in particular, (15.126).
Our space–time white noise w(dq, dt) and ¯̂w(·, ·) can be identified as S ′-valued random fields,
i.e., as a random Schwarz distributions. If we assume that our space–time white noise was
defined as integration with respect to the Brownian sheet ¯̂w(·, ·), (2.10) can be strengthened
to ∂d+1

∂s∂q1...∂qd
¯̂w(q, s, ω)dqds ≡ w(dq, ds, ω) a.s. and we can drop the “ ¯̂ ” over w. In the

terminology of Gel’fand and Vilenkin (1964), Chap. III.1.3, ∂d+1

∂s∂q1...∂qd
¯̂w(·, ·) may be called

a “unit random field.” We refer to our Sect. 15.1.3 for a presentation of Schwarz distributions
and some of their properties.
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follows, in particular, that ∂d+1

∂s∂q1...∂qd
¯̂w(·, ·) may be interpreted as an approxima-

tion to the centered “number density” of the small particles in the mesoscopic
scaling limit. 
�

Hypothesis 2.5

• Suppose there are Rd -valued square integrable random variables (r1(0), . . . ,
r N (0)) such that

(
r1

n (0), . . . , r
N
n (0)

) �⇒ (
r1(0), . . . , r N (0)

)
, as n −→ ∞,

where “�⇒” denotes weak convergence.10

• sup
n

N∑
i=1

E |r i
n(0)| <∞.

• There is a finite constant c > 0 such that the function G satisfies the following
Lipschitz condition:

∑
j=1,...,d

∫
(G j (r1 − q)− G j (r2 − q))2dq ≤ cρ(r1 − r2)

for all r1 and r2 in Rd , where G j is the j th component of G.
• There is a scalar standard Gaussian white noise, w(dq, ds), on Rd ×R+, defined

on the same probability space as (r1(0), . . . , r N (0)) such that (r1(0), . . . , r N (0))
and w(dq, ds) are independent. 
�
Consider the stochastic integral equations:

r i (t) = r i (0)+√
α

∫ t

0

∫
G(r i (u)− q)w(dq, du), i = 1, . . . , N . (2.11)

By the assumptions on G, in addition to Hypothesis 2.5, (2.11) has a unique
solution and is a Markov process in RNd .11 Moreover, we show in Chap. 5 that
the solutions of (2.11) are correlated Brownian motions. The following mesoscopic
limit theorem is the main result of Part I. It establishes the Einstein-Smoluchowski
model as an approximation to the evolution of the positions of the large particles.

Theorem 2.4. – Mesoscopic Limit Theorem

Under Hypotheses 2.1–2.5

(r1
n (·), . . . , r N

n (·)) �⇒ (r1(·), . . . r N (·))
in D([0, t̂];RdN ), as n −→ ∞,

where (r1(·), . . . , r N (·)) are the unique solutions of (2.11) and (r1
n (·), . . . , r N

n (·))
are the solutions of the Euler scheme (2.9).

10 For the definition of weak convergence we refer to Sect. 15.2.1, (15.56).
11 Cf. Kotelenez (1995b) and Theorems 4.5 and 4.7 in the following Chap. 4.
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The Proof will be provided in Chap. 3. 
�
Remark 2.5. Formally,12 we may replace the stochastic integrator, w(dq, ds), in
(2.11) by integrating with respect to the limiting centered number density, i.e.,

r i (t)=r i (0)+√
α

∫ t

0

∫
G(r i (u)−q)

∂d+1

∂u∂q1 . . . ∂qd
w(q, u, ω)dqdu, i=1, . . . , N .

(2.12)

Hence, we could say that the displacement of the large particles in the mesoscopic
scaling limit is driven by the limiting centered number density of the small particles.
Of course, it is not clear whether the right-hand side in (2.12) is well-defined since
r i (u) depends on the events, generated by the increments of w(dq, ds) until time
u.13 Under an additional assumption on G14, we show in Proposition 15.60 that the
Itô and Stratonovich integrals coincide for the right-hand side of (2.11). Although
this is encouraging, it does not suffice to give a rigorous meaning to (2.12), unless
the integrand were independent of w(dq, ds). In such a case, e.g., if the integrand
were deterministic, the above representation could become rigorous as a Stieltjes
integral (cf. Sect. 15.1.5). 
�

We state the obvious changes in the model and the limit theorem for the case of
a system without friction. (2.9) must be replaced by

r i
n(t)=r i

n(0)+
∑
s≤t

v i
n(s)δσ ,

v i
n(s)=

∑
0<u≤s

1
m̂m

∫
Gn(r̄ i

n(u−)−q)Yn(dq, u)δσ ,

qn(s, λ, ι)= r̄λ+wλ,ι0,ns+ 1
m̂m

∑
u<s

∑
v≤u

∫
Gn(q̄n(v, λ, ι)−r)XN ,n(dr, v)(δσ)2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)
The limiting equation becomes

r i (t) = r i (0)+
∫ t

0
v i (u)du,

v i (t) = √
α

∫ t

0

∫
G(r i (u)− q)w(dq, du),

i = 1, . . . , N .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.14)

Finally, we replace Hypothesis 2.2 by

12 Cf. (15.126).
13 Cf. Sects. 15.2.5. and 15.2.6 for a discussion of Itô and Stratonovich integrals.
14 Cf. (15.195).
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Hypothesis 2.6
m = n−ζ , ζ ≥ 0,

w̄n = n p, p > (4d + 2) ∨ (2ζ + 2d + 2). 
�
We then obtain

Theorem 2.6. Under Hypotheses 2.1, 2.3–2.5, and 2.6

(r1
n (·), v1

n(·), . . . , r N
n (·), vN

n (·)) �⇒ (r1(·), v1(·), . . . , r N (·), vN (·))
in D([0, t̂];R2d N ), as n −→ ∞,

where (r1(·), v1(·), . . . , r N (·), vN (·)) are the unique solutions of (2.14) and
(r1

n (·), v1
n(·), . . . , r N

n (·), vN
n (·)) are the solutions of the Euler scheme (2.13).

The proof is somewhat simpler than the proof of Theorem 2.4 and can be ob-
tained by doing the appropriate changes in the proof of Theorem 2.4. 
�
Remark 2.7.

• Hypotheses 2.4 and 2.5 are self-explanatory and do not require any further com-
ments.

• Hypothesis 2.3 is trivially satisfied for ϕ ≡ αnd . The following example appears
often in equilibrium statistical mechanics as one factor of a Gibbs distribution if
U is the potential for the interaction force. It also satisfies Hypothesis 2.3.
Let U ≥ 0 be smooth with bounded support and set

ϕn(q) := αnd exp
( −1

n2pm̂

∫
U (q − r)XN ,n(dr)

)
1(r̄λ](q),

where n p = w̄n is the average speed (cf. Hypothesis 2.2).
• We can also derive an Ornstein-Uhlenbeck model, i.e., a version of (2.14) with

a fixed friction coefficient, by making suitable adjustments in the model and
Hypothesis 2.2. 
�

Proof of Proposition 2.1

Suppose that up to time t− we have determined the particle evolution accord-
ing to (2.9) and that for u ≤ t− the empirical measure process Y(dq, u) is a.s.
finite on bounded sets. Assume, without loss of generality, t− < 1. It follows that
max0≤u≤t− maxi=1,...,N |r i

n(u)| ≤ K̃n,t− a.s., where K̃n,t− is some finite positive
number (which depends on ω). The assumption is true, of course, for t− = 0.

Since by induction assumption the empirical distributions XN (dr, u), u ≤ t−,
are a.s defined, we can define the positions of the small particles at t by
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qn(t, λ, ι) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r̄λ + wλ,ι0,nt

+ 1
m̂m

∑
u≤t−

∑
v≤u

∫
ηnGn(q̄n(v, λ, ι)− r)XN (dr, v)(δσ)2,

if ζ̂ λ,ιn = r̄λ ;
� , if ζ̂ λ,ιn = �.

(2.15)

The velocity field v i
n(t) can be defined if Y(dq, t) is a.s. finite on CKn (r̄

i
n(t−))15

for i = 1, . . . , n. The analysis of this problem simplifies if we restrict Y(dq, t) to
cells and then “paste” the results together. We define the “occupation measure”16

associated with (2.15) as follows:

I n
A(t) :=

1
m

∫
A
Yn(dq, t) =

∑
λ,ι

1A(q̄n(t, λ, ι)). (2.16)

We partition N × N, the set of indices for the positions and velocities, as fol-
lows: Choose an integer K̄n,t>K̃n,t− (a more precise relation will be determined in
(2.19)). We decompose the velocity indices:

Jn,t := {ι : Bι ⊂ CK̄n,t
(0)}, J⊥n,t := N \ Jn,t .

We then choose a positive integer K̂n,t > K̄n,t + K̃n,t−+Kn , and we decompose
the position indices:

Ln,t := {λ : (r̄λ] ⊂ CK̂n,t
(0)}, L⊥

n,t := N \ Ln,t .

We may, without loss of generality, assume that for s ≤ t− the sequences of
constants {K̃n,s}, {K̄n,s} and {K̂n,s} have been defined and are monotone increasing
in s. Altogether we partition the pairs of indices into 3 sets:

N × N = (N × J⊥n,t) ∪ (Ln,t × Jn,t) ∪ (L⊥
n,t × Jn,t). (2.17)

The first set contains labels for all possible positions and all “large” velocities.
The second set is finite and the third one is chosen in such a way that small particles
starting in those positions with labels for the “small” velocities from Jn,t cannot
reach the cube with side length K̃n,t− + Kn during a time of length 1. Hence, those
particles cannot interact with the large particles during that time interval (since the
large particles are at time points u ≤ t− in CK̃n,t−). Next we decompose the occu-
pation measure I n

A(t) into the sum of three different measures, restricting the sum-
mation for each measure to the sets of indices from the decomposition (2.17):

I n
A(t) = I n

A,N×J⊥n,t
(t)+ I n

A,Ln,t×Jn,t
(t)+ I n

A,L⊥
n,t×Jn,t

(t), (2.18)

where A := (r̄λ] for some λ is a subset of the cube with side length K̃n,t− +
Kn . By the choice of the indices, I n

A,L⊥
n,t×Jn,t

(t) = 0 and I n
A,Ln,t×Jn,t

(t) is finite.

15 Kn is defined in (2.1).
16 1

|A| I n
A(t) is the “number density.”
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Therefore, all we must show is that I n
A,N×J⊥n,t

(t) <∞ a.s. for all A ⊂ CK̃n,t−+Kn
(0).

Since K̃n,t− <∞ a.s., we may, again without loss of generality, assume 1 ≤ K̃n :=
K̃n,t− < ∞ is deterministic (partitioning Ω into sets where the bounds can be
chosen deterministic). Hence, we may also assume that K̄n := K̄n,t > K̃n and
J⊥n := J⊥n,t are deterministic. Define

c̄ := (|‖G|‖N + 2)(t̂ + 1),
cn := c̄K d

n ,

c̃n := cn(K̃n ∨ n p̃+ζ ),
K̄n := 4c̃nnd ,

⎫⎪⎪⎬
⎪⎪⎭

(2.19)

where we may assume that ∀ι either Bι ⊂ CK̄n
(0) or Bι ∩ CK̄n

(0) has Lebesgue
measure 0. The choice of ratios between K̄n , K̃n , and Kn is motivated by the es-
timates in Lemmas 3.1 and 3.3 of the next section. Let n̂1 be an integer such that
n̂1 ≥ 3. To complete the proof of Proposition 2.1 we derive the following Lemmas
2.8 and 2.10 in addition to Corollary 2.9.

Lemma 2.8. Let u, s ≤ t . Suppose ∃ω̃ ∈ Ω, ι ∈ J⊥n and u such that qn(u, λ, ι, ω̃) ∈
Cc̃n (0). Then ∀s != u ,∀ω ∈ Ω and ∀n ≥ n̂1

qn(s, λ, ι, ω) /∈ C2c̃n (0).

Proof. (i) Suppose, without loss of generality, ζ̂ λ,ιn = r̄λ in (2.15) and abbreviate:

Hn(t, λ, ι) := n p̃+ζ 1
m̂

∑
s<t

∑
u≤s

∫
Gn(q̄n(u, λ, ι)− r)XN (dr, u)(δσ)2.

Using the abbreviations from (2.19), it follows that for u != s

|Hn(s, λ, ι, ω)− Hn(u, λ, ι, ω)| ≤ |s − u|c̄n p̃+ζ (2.20)

and, consequently,

|qn(s, λ, ι, ω)− qn(u, λ, ι, ω)| ≥ |s − u|
[∣∣∣wλ,ι0,n(ω)

∣∣∣− c̄n p̃+ζ ] > 3c̃n . (2.21)

Thus, for n ≥ n̂1 and ∀ω ∈ Ω
qn(s, λ, ι, ω) ∈ C2c̃n (0) for at most one s ≤ t.

Since Cc̃n (0) ⊃ CK̃n+Kn
(0), we obtain for n ≥ n̂1, ι ∈ J⊥n and ω ∈ Ω

maxs≤t |Hn(s, λ, ι, ω)| ≤ c̄n p̃+ζ δσ. (2.22)

(ii) Let ω, ω̃ ∈ Ω and u != s. We have

|qn(s, λ, ι, ω)− qn(u, λ, ι, ω̃)|
≥ |qn(s, λ, ι, ω)− qn(u, λ, ι, ω)| − |qn(u, λ, ι, ω)− qn(u, λ, ι, ω̃)|

= I − I I.
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By (2.21) I > 3c̃n . Further, by Hypothesis 2.1, (2.22) and by the fact that, for
n ≥ n̂1, δσ = 1

nd ≤ 1
9 we conclude that

I I ≤ 2c̄n p̃+ζn−d + 2
n
≤ c̃n .

Therefore,
|qn(s, λ, ι, ω)− qn(u, λ, ι, ω̃)| > 2c̃n .


�
Corollary 2.9.

∀n ≥ n̂1,∀λ, ∀ι ∈ J⊥n , ∀ω, ∀s ∈ (0, t],∀A = (ā] ⊂ Cc̃n (0):
1A(qn(s, λ, ι, ω)) = 1A(r̄λ + wλ,ι0,n(ω)s)1{ζ̂ λ,ιn (ω)=r̄λ}.

Proof. Note that on the set {ζ̂ λ,ιn = r̄λ}
qn(s, λ, ι) = r̄λ + wλ,ι,0,n s + Hn(s, λ, ι).

The assumption

1A(qn(s, λ, ω̃)) != 0 for some ω̃ and some A ⊂ Cc̃n (0)

implies by Lemma 2.8

qn(u, λ, ι, ω) /∈ C2c̃n (0) ∀u != s, ∀ω.
The definition of the constants implies for ∀n ≥ n̂1:

|q̄n(u, λ, ι, ω)− r | ≥ 2c̃n − 1
2n − K̃n > c̃n (2.23)

for r ∈ ∪v<t supp(XN (·, (v))), where “supp” denotes the support of the measure.
Thus, q̄n(u, λ, ι, ω) − r /∈ CKn (0) ∀ω ∀r ∈ ∪v<t supp(XN (·, (v))), whence for
u < s

Gn(q̄n(u, λ, ι, ω)− r) = 0 ∀(ω, u < s, r ∈ ∪v<t supp(XN (·, (v, ω)))). (2.24)

This implies
Hn(s, λ, ι, ω) = 0 ∀(ω, s ≤ t). (2.25)


�

Recall the definition of ᾱ and α from Hypothesis 2.3. Corollary 2.9 and Lemma
2.8 imply

Lemma 2.10. ∀A ⊂ Cc̃n (0), ∀s ∈ (0, t]
∫
{|x |> K̄n

n p }
ψn(x)dxαn ≤ E I n

A,N×J⊥n
(s) ≤

∫
{|x |> K̄n

n p }
ψn(x)dx ᾱn .
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Proof. By Corollary 2.9 we have the representation

I n
A,N×J⊥n

(s) =
∑
λ,ι

1A

(
r̄λ + wλ,ι0,ns

)
1{ζ̂ λ,ιn =r̄λ}.

Denoting by ā the midpoint of the cell A,

|qn(s, λ, ι)− ā| ≤ 1
2n ⇐⇒ |swλ,ι0,n + r̄λ − ā| ≤ 1

2n ⇐⇒ wλ,ι0,n ∈ C 1
2ns
(−r̄λ+ā

s ).

The Lebesgue measure does not charge the boundaries of the cubes. Therefore,
using equivalent representations of the indicator function and change of variables
x := sw, we obtain

E I n
A,N×J⊥n

(s) =
∑
λ

∑

ι∈J⊥n

P({qn(s, λ, ι) ∈ A})

=
∑
λ

∑

ι∈J⊥n

∫
1Bι (w)1C 1

2sn

(
− r̄λ

s

)
(
w − ā

s

)
ψn(w)dwαn,λ

= 1
sd

∑
λ

∫
1C 1

2n
(−r̄λ+ā)(x)(1 − 1CsK̄n (0)

(x))ψn

(
x

1
s

)
dxαn,λ

= 1
sd

∑
λ

∫
1(−r̄λ+ā](x)(1 − 1CsK̄n (0)

(x))ψn

(
x

1
s

)
dxαn,λ.

Taking sup and inf with regard to αn,λ allows us to incorporate the summation
over λ into the integral and use the obvious relation:

∑
λ

1(−r̄λ+ā](x) = 1∪λ(−r̄λ+ā](x) ≡ 1.

Change of variables finishes the proof of Lemma 2.10. 
�
Lemma 2.10 implies in particular that a.s. I n

A,N×J⊥n
(t) < ∞ for any

A ⊂ CK̃n+Kn
(0) ⊂ Cc̃n (0). Hence, by (2.18) and the arguments given there-

after, Y(dq, t) is a.s. finite on CKn (r̄
i
n(t−)) for i = 1, . . . , n. Altogether we obtain

Proposition 2.1 from Lemmas 2.8, 2.10, and Corollary 2.9. 
�
We conclude this chapter with some comments on the model.

Remark 2.11. Here are some arguments to support the initial discretization of time
and space.

• Time
The collision dynamics should (in the microscale) be described by straight lines
(the free motion between collisions). The discrete time approach reflects this
by using an “average” time interval. The “information” the particle carries after
some collision will be a time-delayed one at the next collision. An Euler scheme
for the mean field dynamics in discrete time preserves this feature. The delays
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in time become infinitesimally small in the macroscale (as in Itô differentials).
If, however, for some other microscopic interaction time delays would be inade-
quate, we need to interpolate between two “collisions,” i.e., between future and
past, to obtain an adequate continuous time description. For correlation Brownian
motions, this could result in correction terms (s., e.g., the classical papers of
Wong and Zakai (1965) and Stratonovich (1964) as well as our Sect. 15.6.5).

• Space
The discretization in space is an example of “coarse graining” and it simplifies
the calculations. Second, this discretization allows us to model the observation
that, in the framework of classical mechanics, one cannot precisely determine the
position and the velocity of a given particle – as a result of “measurement errors”
(cf., e.g., Heisenberg (1958)). We incorporate this observation into our model as
follows: Instead of saying our particle is at time t in the position q(t) and has the
velocity w(t), we say it is in the cell (rλ] and its velocity is from the cell Bι (s.
Chap. 2 for the precise definitions). We then model the “measurement errors” by
random variables, where each random variable takes values only in some small
cell. In particular, the clusters of small particles that are initially in a given cell
(rλ] with approximately the same initial velocities from the cell Bι become one
small particle, placed at the midpoint r̄λ, and its velocity is randomly distributed
over the cell Bι. We use the material distributions of the small particles in a cell
(rλ] to define the probability that the cell does contain the “random particle” with
velocities from Bι (cf. (2.6)). Finally, we make the independence assumptions
about the initial positions and velocities (justifying this assumption by assuming
no interaction. . . ), and we have a relatively simple standard probabilistic set-up
that we can work with. 
�

Remark 2.12.

• The relation of our initial distribution to the more common Poisson random mea-
sure for the particles or particles and velocities can be described as follows (cf.,
e.g., Dürr et al. (1981, 1983), Sinai and Soloveichik (1986), Spohn (1991), Szász
and Tóth (1986, 1987) for the use of the Poisson random measure): Assume for
simplicity Bι ∈ {(r̄λ] : λ ∈ N} ∀ι and ϕn(q) = αnd . Let A and B cubes in Rd ,
which can be represented as finite unions of cells (r̄λ] and set

µ̃n(ω, A × B) := #{(λ, ι) :=
(
ζ̂ λ,ιn , wλ,ιn,0

)
∈ A × B}.

Since µ̃n(ω, A× B) ≤ n2d |A||B| we see immediately that µ̃n(ω, A× B) is not a
Poisson random measure (say, on the grid). However, in many other aspects it is
similar to the Poisson random measure for positions and velocities. In particular,
we have independence in sets (A, B) and ( Ã, B̃), if (A, B) ∩ ( Ã, B̃) = ∅. We
obviously have the representation

{ω : µ̃n(ω, A × B) = k} =
⎧⎨
⎩ω :

∑
λ,ι

1
(ζ̂ λ,ιn ,wλ,ιn,0)∈A×B(ω) = k

⎫⎬
⎭ .
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Abbreviate γp := ανn(Bιp ). If k ∈ N and k ≤ l := nd |A| and m := nd |B|

P{ω : µ̃n(ω, A × B) = k} =
∑

k1+ ···+km=k

m∏
p=1

[(
l

kp

)
γ

kp
p (1 − γp)

l−kp

]
.

Therefore, we may call our initial distribution a “multinomial random measure.”
Note that in our framework time and spatial scales as well as mass and average
velocities are functions of n. If we fix the average velocity w̄n � 1 then, for
sets B not far from the origin, the density in νn is almost constant. Hence, the
γp are approximately equal to ≈ cn−d , where c is a constant. We obtain that the
multinomial distribution is close to the usual binomial distribution, i.e.,

{µ̃n(ω, A × B) = k} ≈
(

n2d |A||B|
k

)
(cn−d)k(1 − cn−d)n

2d |A||B|−k .

As a result, we could evoke the usual Poisson limit theorem and obtain (for B
close to the origin) that our distribution can be approximated by a Poisson ran-
dom measure with intensity measure αnd |A| × νn(B).

• Typically, in many scaling limits the forces must be scaled as well. Kotelenez
(2002, Example 1.2) derives a long-range smooth force through a heuristic
scaling limit argument in the passage from the microscale to the mesoscale
(cf. Remark 1.2 and (1.2)). A scaling of the type nbGn(n(r − q)), where b ≥ 0,
would make the action of the force local in the limit. Such a result would be in-
consistent with the observation made in Remark 1.2. In other words, if we want
to capture the long-range effects of bombardments of the large particles by small
particles that move with different velocities, we ought to avoid the localizing
scaling in the argument of Gn . In Example 1.3 of Kotelenez (loc.cit.), this long
range effect of different velocities is compounded by the presence of a long-range
interaction potential. Accounting for these long-range effects requires summing
up over potentially infinitely many contributions and converting sums into inte-
grals (cf. (2.2)). The choice δσ from (1.1) provides the correct normalizing factor
for this approach. Our approach generates a global Brownian medium that pre-
serves the long-range effects of the original particle interaction in the correlation
operator.

• A simpler version of the Einstein-Smoluchowski equations than (2.11) was
shown to be the limit of the so-called Orstein-Uhlenbeck model of Brownian
motion by I’lin and Khasminskii (1964) and Nelson (1972). This was general-
ized by Kotelenez and Wang (1994) to the case described by (2.11). Note that in
these results the Ornstein-Uhlenbeck model was a second order stochastic differ-
ential equation where the velocity was a Wiener process (I’lin and Khasminskii
(loc.cit.) and Nelson (loc.cit), and in Kotelenez and Wang (loc.cit) the veloc-
ity was driven by Gaussian space–time white noise. These results were only a
reduction of a second order stochastic equation to a first order SODE (called
Einstein-Smoluchowski) as a consequence of a very large friction ηn and, there-
fore, describe the transition from stochastic dynamics to stochastic kinematics.
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In contrast, in the derivation presented here, no stochastic effects are assumed,
i.e., the motion of both large and small particles is, by assumption, entirely de-
terministic. Only with regard to initial conditions we assume randomness and in-
dependence. However, because of the very large velocities of the small particles
and their independent starts, the changes in the velocities of the large particles
become approximately independent. Scaling yields the stochastic effects for the
large particles, i.e., the independence in the changes in time. For ηn fixed this
would result in an Ornstein-Uhlenbeck model, which was the starting point in
the analysis by I’lin and Khasminskii as well as Nelson (loc.cit) to derive the
simpler Einstein-Smoluchowski equations. Therefore, in our derivation, we have
joined two steps (for the slowly moving large particles) into one:

(i) Transition from deterministic dynamics to stochastic dynamics, as n −→ ∞.
(ii) Transition from stochastic dynamics to stochastic kinematics, as ηn −→ ∞.


�



Chapter 3
Proof of the Mesoscopic Limit Theorem

Let Dn ⊂ N, r(u) be some cadlag process and J n(u) some (nice) occupation mea-
sure process with support in the cells. Assume that both r(u) and J n(u) are constant
for u ∈ [(l − 1)δσ, lδσ), l ∈ N. Abbreviate

�(t,Dn, r, J n) := 1
m̂

∑
u≤t

∑
λ∈Dn

Gn(r̄(u−)− r̄λ)J n
[r̄λ)(u)δσ. (3.1)

Further, �(ds, . . .) denotes the (Stieltjes) integrator, defined by the increments
of �(s, . . .).

Using these abbreviations, we plug v i
n(s) into the equation for r i

n(t) in (2.9) and
replace integration with respect to Y(dq, u) by integration over the sum of occupa-
tion measures, I n(u), in accordance with (2.16). We then change the order of the
summation in the resulting double sum. By Hypothesis 2.2 and the summation for-
mula for geometric sums, we obtain that the evolution of the large particles in (2.9)
may be described by

r i
n(t) = r i

n(0)+�(t,N, r i
n, I n)−

∫ t

0
exp[−ηn(t − s)]�(ds,N, r i

n, I n). (3.2)

Further, let K̃n > 0 such that
∑
n

1
K̃n
< ∞. By the uniform boundedness of the

first moments of r i
n(0) (cf. Hypothesis 2.5) and Chebyshev’s inequality, we obtain

that for all ζ̃ > 0 there is an n(ζ̃ ) such that

P(∪n≥n(ζ̃ ){ω ∈ Ω : max
i=1,...,N

|r i
n(0, ω)| ≥ K̃n})

≤
∑

n≥n(ζ̃ )

P({ω ∈ Ω : max
i=1,...,N

|r i
n(0, ω)| ≥ K̃n})

≤
∑

n≥n(ζ̃ )

maxi=1,...,N E |r i
n(0)|

K̃n

≤
∑

n≥n(ζ̃ )

const

K̃n
≤ ζ̃ .

31
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Hence, we may, without loss of generality, assume that ∀n ∈ N:

sup
ω∈Ω

maxi=1,...,N |r i
n(0, ω)| ≤ K̃n

4 ,

where K̃n := nd+2δ and 0 < δ < 1
7 .

⎫⎬
⎭ (3.3)

For the support of Gn we assume: Kn := n
δ
d .

The choice K̃n follows from the need to control certain error terms that are of
the order of nd (cf. (3.18)) and the choice 0 < δ < 1

7 makes the choice of p in the
representation of the average speed simpler.1 Summarizing the previous definitions
and referring to Hypothesis 2.2 for the definition of p̃ and ζ , the constants from
(2.19) now have the following values:

0 < δ < 1
7 ,

K̃n := nd+2δ (bound in (3.3) and (3.8)),

Kn := n
δ
d (for the support of Gn),

c̄ := (|‖G|‖N + 2)(t̂ + 1),

cn := c̄nδ,

c̃n := c̄n(d+3δ)∨( p̃+ζ+δ) (cf. (3.6) and (3.1)),

K̄n := 4c̄n(2d+3δ)∨( p̃+ζ+δ+d).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

It follows from integration by parts in Stieltjes integrals that

sup
t≤t̂

∣∣∣∣
∫ t

0
exp[−ηn(t − s)]�(ds,Dn, r i

n, J n)

∣∣∣∣ ≤ 2 sup
t≤t̂

|�(t,Dn, r i
n, J n)|. (3.5)

Consequently, bounds on�(t,Dn, r i
n, J n) imply bounds on

∫ t
0 exp[−ηn(t−s)]�

(ds,Dn, r i
n, J n) and, therefore, most of the following analysis will be focused on the

asymptotics of �(t,Dn, r i
n, J n).

Recall the definition of the constants K̃n and c̃n from (3.4). Define the following
sequence of stopping times:

Tn := inf
{

s ≤ t̂ : maxi=1,..,N |�(t,Cn, r i
n, I n)| ≥ K̃n−1

4

}
,

where Cn := {λ : (r̄λ] ⊂ Cc̃n (0)}.

}
(3.6)

Denote integration against measures from a set of time dependent empirical mea-
sure processes Z(s), s ∈ [0, t−], by Z(dr, [0, t−]). Set for 0 ≤ s ≤ t̂

r̃ i
n(s) := r i

n(s ∧ Tn),

X̃N (dr, ·) := m̂
N∑

i=1

δ ¯̃r i
n(·)
(dr),

q̃n(t, λ, ι) := qn(t, λ, ι, X̃N (dr, [0, t−])),
Ĩ n

A(t) :=
∑
λ,ι

1A(q̃n(t, λ, ι)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

1 Cf. Hypothesis 2.2, Lemmas 3.2–3.3 and (3.10).
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Here qn(t, λ, ι, X̃N (dr, [0, t−])) is the solution of the third recursive scheme in
(2.9) with XN (dr, [0, t−]) being replaced by X̃N (dr, [0, t−]).2 As a consequence
of (3.3) and (3.5) we obtain

sup
ω∈Ω

sup
s≤t̂

max
i=1,..,N

|r i
n(s ∧ Tn)| < K̃n ∀n ∈ N. (3.8)

The stopping implies that we may proceed as in the derivation of Proposition 2.1
with deterministic constants K̄n > K̃n and deterministic sets of labels J⊥n := N\Jn,

which are now all independent of t as well. The precise definitions of K̃n ,Kn and
K̄n are given in (3.4). The decomposition of the occupation measure Ĩ n

A into the
sum of two different measures follows the pattern of (2.18). One of the measures is
driven by the “small” velocities (ι ∈ Jn) and the other one by the “large” velocities
ι ∈ J⊥n := N \ Jn . We no longer need to partition the position indices. Using the
abbreviations Ĩ n,⊥

A := Ĩ n
A,N×J⊥n

and Ĩ n
A,Jn

:= Ĩ n
A,N×Jn

, we have

Ĩ n
A(s) = Ĩ n

A,Jn
(s)+ Ĩ n,⊥

A (s), (3.9)

Lemmas 2.8 and 2.10 as well as Corollary 2.9 carry immediately over to Ĩ n,⊥
A (t)

and q̃n(t, λ, ι) for ι ∈ J⊥n . Lemma 2.8 and Corollary 2.9 imply

Lemma 3.1. ∀A ⊂ Cc̃n (0) Ĩ n,⊥
A (s) (from (3.9)) is independent in s = k δσ, s ≤ t̂ ,

and Ĩ n,⊥
A (·) does not depend on the states r̃ i

n, i = 1, . . . , N.

Proof. Let u != s. For t ∈ {s, u} set

Et := ∪
{
λ ∈ N, ι ∈ J⊥n : q̃n(t, λ, ι, ω) ∈ Cc̃n (0) for at least one ω

}
.

We represent Ĩ n,⊥
A (t) as the sum over all indices from Et since the other in-

dices would not change the values of the occupation measures. Therefore, by Corol-
lary 2.9

Ĩ n,⊥
A (t, ω) =

∑
(λ,ι)∈Et

1A

(
r̄λ + wλ,ι0,n(ω)t

)
1{ζ̂ λ,ιn (ω)=r̄λ}.

First of all, this shows the independence with respect to the states r̃ i
n , i =

1, . . . , N . Further, by Lemma 2.8 and Corollary 2.9,

Es ∩ Eu = ∅.
Ĩ n,⊥

A (s) and Ĩ n,⊥
A (u) as sums of independent families of random variables are

independent. 
�

2 Cf. also (2.15).
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Lemma 3.2.

nd+δ
[

max
A⊂Cc̃n (0)

max
δσ≤s≤t

|E I n
A,N×J⊥n

(s)− α|
]
−→ 0,3

as n −→ ∞.
The Proof easily follows from Lemma 2.10 and (2.19), (3.3), (3.4) in addition to

Hypotheses 2.2 and 2.3. 
�

The following Lemma 3.3 provides a bound from above for Ĩ n
A,Jn
(s), showing

that the contribution of Ĩ n
A,Jn
(s) to the time evolution of the large particles becomes

negligible in the limit. In other words, we need to consider only the “large velocities”
from J⊥n . In what follows recall that

s > 0 ⇐⇒ s ≥ δσ = n−d ,

since u, s, t take only discrete time values in (0, t̂], which are multiples of δσ .

Lemma 3.3. There is a finite constant ĉ, depending on ψ,G, N , t̂ , such that ∀A ⊂
Cc̃n (0), ∀s ∈ (0, t̂] and arbitrary constant L > 1:

∑
λ

∑
ι∈Jn

P({q̃n(s, λ, ι) ∈ A}) ≤ ĉn([(4d+6δ)∨(2 p̃+2ζ+2d+2δ)]−p)d ᾱn,
4

Proof. Let us denote by Q̆n(s, λ, ι) the restriction of the random variable Q̃n(s, λ, ι)
to those ω, where ζ λ,ιn = R̄λ.

(i) Similarly to the proof of Lemma 2.8, we abbreviate

Hn

(
t, λ,wλ,ι0,n

)
:= n p̃+ζ 1

m̂

∑
s<t

∑
u≤s

∫
Gn

( ¯̆qn(u, λ, ι)− r
)
X̃N (dr, u)(δσ)2.

As in the proof of Lemma 2.10 we obtain

‖ ¯̆qn(s, λ, ι)− ā‖ ≤ 1
2n ⇐⇒ wλ,ι0,n ∈ C 1

2ns

(
−r̄λ−Hn

(
s,λ,wλ,ι0,n

)
+ā

s

)
.

Set
Ĥn(s, λ,w

λ,ι
0,n) := Hn

(
s, λ,wλ,ι0,n

)
− ā.

We can easily show (by induction) that

w %−→ Hn(s, λ,w)

3 Recall that α is the expected average volume (in a unit cube) occupied by small particles (for
large n). Cf. also Hypothesis 2.3.

4 Cf. Hypothesis 2.3 for the definition of ᾱn .
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is Bd −Bd -measurable for all n, λ, s and, therefore, the same holds for Ĥn(s, λ,w).
Thus,

Iλ :=
∑
ι∈Jn

P({q̆n(s, λ, ι) ∈ A})

= 1
sdn pd

∫
1C 1

2n
(−r̄λ)

(
x + Ĥn

(
s, λ,

x
s

))
1CsK̄n (0)

(x)ψ
(

x
1

n ps

)
dxαn,λ

≤ |‖ψ |‖
sdn pd

∫
1C 1

2n
(−r̄λ)

(
x + Ĥn

(
s, λ,

x
s

))
1CsK̄n (0)

(x)dxαn,λ.

ā ∈ Cc̃n (0) implies: ∀s ≤ t,∀λ, |Ĥn(s, λ,w)| ≤ c̄n p̃+ζ + c̃n − 1 ≤ 2c̃n − 1 =
2c̄n(d+3δ)∨( p̃+ζ+δ) − 1.5 The product of the two indicator functions in the integral
in the right-hand side of the above equation will be 0 if |r̄λ| > s K̄n + 2c̃n − 1+ 1

2n .
Hence, we can estimate the integral of the product of the two indicator functions by
sd K̄ d

n × ∫
1C 1

2n
(−r̄λ)(x)1CsK̄n+2c̃n (0)

(x)dxnd . Altogether, we obtain

Iλ ≤ |‖ψ |‖
n pd

∫
1C 1

2n
(−r̄λ)(x)1CsK̄n+2c̃n (0)

(x)dx ᾱn K̄ d
n nd ,

where
∫

1C 1
2n
(−r̄λ)(x)1CsK̄n+2c̃n (0)

(x)dxnd is an upper bound for the indicator

function 1{|r̄λ|≤s K̄n+2c̃n−1+ 1
2n }.

Hence,

∑
λ

∑
ι∈Jn

P({q̆n(s, λ, ι) ∈ A}) ≤ |‖ψ |‖
n pd

∫
CsK̄n+2c̃n (0)

dx[4c̃nnd ]dndαn .

The last integral is estimated above by
[

t̂ K̄n+2c̃n
n p

]d
. Recalling the abbreviations

from (3.4), we finish the proof of Lemma 3.3. 
�
Note that by the assumption on ϕn we have ᾱn ≤ α. Since by Hypothesis 2.2

nd+δn([(4d+6δ)∨(2 p̃+2ζ+2d+2δ)]−p)d −→ 0 as n −→ ∞ ,

we obtain

nd+δ
[

max
λ∈Cn

max
δσ≤s≤t̂

E Ĩ n
(r̄λ],Jn

(s)
]
−→ 0, as n −→ ∞, (3.10)

where Cn was defined in (3.6). With the decomposition (3.9) we obtain

nd+δ|E Ĩ n
A(s)− α| ≤ nd+δ|E Ĩ n

A,Jn
(s)| + nd+δ|E Ĩ n,⊥

A (s)− α|.

Hence, (3.10) in addition to Lemma 3.2 implies
5 Cf. (2.19) and (3.4).
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nd+δ
[

max
λ∈Cn

max
δσ≤s≤t̂

∣∣∣E Ĩ n
(r̄λ](s)− α

∣∣∣
]
−→ 0, as n −→ ∞. (3.11)

It follows that there is an
n̂2 ≥ n̂1

such that for all n ≥ n̂2

max
λ∈Cn

max
δσ≤s≤t̂

E Ĩ n
(r̄λ](s) ≤ α + 1. (3.12)

For λ /∈ Cn and |r̄ | < K̃n we have |r̄λ − r̄ | > nd+2δ(c̄ − 1) > nd+2δ (cf. (3.4)
and (3.6)). We conclude

Gn

( ¯̃r i
n(u−)− r̄λ

)
= 0 ∀u ≤ t̂,∀n ≥ n̂2, ∀λ /∈ Cn . (3.13)

Therefore, we obtain

�
(

t ∧ Tn,N, r i
n, I n

)
≡ �

(
t ∧ Tn,N, r̃ i

n, Ĩ n
)
≡ �

(
t ∧ Tn,Cn, r̃ i

n, Ĩ n
)
, (3.14)

where the first relation is trivial.
In what follows, we show that we may work, without loss of generality, with

centered occupation measures as defined by

Ĩ n,⊥,c
A (t) := Ĩ n,⊥

A (t)− E Ĩ n,⊥
A (t) ∀t. (3.15)

We obtain

r̃ i
n(·) = r i

n(0)+�(·,Cn, r̃ i
n, Ĩ n,⊥,c)

−
∫ t

0
exp[−ηn(· − s)]�

(
ds,Cn, r̃ i

n, Ĩ n,⊥,c)+ Ui,n
1 (·),

⎫⎬
⎭ (3.16)

where

Ui,n
1 (t) := �

(
t ∧ Tn,Cn, r̃ i

n, Ĩ n
)
−�

(
t,Cn, r̃ i

n, Ĩ n,⊥,c
)

−
∫ t

0
exp [−ηn (t − s)]

[
�
(

d (s ∧ Tn) ,Cn, r̃ i
n, Ĩ n

)
−�

(
ds,Cn, r̃ i

n, Ĩ n,⊥,c)] .

⎫⎪⎬
⎪⎭

(3.17)

Lemma 3.4.

E sup
t≤t̂

∣∣∣�
(

t,Cn, r̃ i
n, Ĩ n

)
−�

(
t,Cn, r̃ i

n, Ĩ n,⊥,c
)∣∣∣

−→ 0, as n −→ ∞ .

Proof.

(i) By (2.3), (3.4), and (3.10)

E
∑

t≤t̂

∣∣∣�
(

t,Cn, r̃ i
n, Ĩ n

)
−�

(
t,Cn, r̃ i

n, Ĩ n,⊥)∣∣∣

≤ t̂
|‖G|‖

m̂
nd+δ sup

λ∈Cn

max
δσ≤t≤t̂

E Ĩ n
(r̄λ],Jn

(t)

−→ 0, as n −→ ∞.
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(ii)
∑
λ∈Cn

Gn

( ¯̃r i
n(t−)−r̄λ

)
E Ĩ n,⊥
(r̄λ] (t)δσ = ∑

λ∈Cn

Gn

( ¯̃r i
n(t−)−r̄λ

) [
E Ĩ n,⊥
(r̄λ] (t)−α

]
,

employing (2.4) in addition to (3.13). Hence, by (2.3), (3.4), and Lemma 3.2
for Ĩ n,⊥ − Ĩ n,⊥,c = E Ĩ n,⊥

E sup
t≤t̂

∣∣∣�
(

t,Cn, r̃ i
n, Ĩ n,⊥

)
−�

(
t,Cn, r̃ i

n, Ĩ n,⊥,c
)∣∣∣

≤ t̂ |‖G|‖
m̂ nd+δ

[
sup
λ∈Cn

maxδσ≤s≤t̂

∣∣∣E Ĩ n,⊥
(r̄λ] (s)− α

∣∣∣
]

−→ 0 as n −→ ∞,
which completes the proof. 
�
We obtain for n ≥ n̂2 by Chebyshev’s inequality in addition to (2.3), (3.3), (3.4),

and (3.12):

P

{
maxi=1,...,N sup

0≤t≤t̂

∣∣∣�
(

t,Cn, r̃ i
n, Ĩ n

)
−�

(
t ∧ Tn,Cn, r̃ i

n, Ĩ n
)∣∣∣ > 0

}

≤ P

{
maxi=1,...,N sup

0≤t≤t̂

∣∣∣�
(

t,Cn, r̃ i
n, Ĩ n

)∣∣∣ ≥ K̃n−1
4

}

≤ 8|‖G|‖t̂(α+1)
nδ

−→ 0, as n −→ ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.18)

Corollary 3.5.

max
i=1,...,N

sup
t≤t̂

|Ui,n
1 (t)| −→ 0 stochastically, as n −→ ∞.

Proof.

(i) By Lemma 3.4 in addition to (3.18)

sup
t≤t̂

∣∣∣�
(

t ∧ Tn,Cn, r̃ i
n, Ĩ n

)
−�

(
t,Cn, r̃ i

n, Ĩ n,⊥,c
)∣∣∣

−→ 0 stochastically, as n −→ ∞.
Let us write �(s), etc. and suppress the dependence on the other parameters.

Similar to (3.5)

‖
∫ t

0
exp[−ηn(t − s)][�(d(s ∧ Tn))−�(ds)]‖

≤ sup
t≤t̂

2‖�(t ∧ Tn)−�(t)‖,

and the proof is complete. 
�
We are now ready to apply the existing tools of stochastic analysis, in particular,

limit theorems as developed by Kurtz and Protter (1998). In view of the previous es-
timates, we will assume n ≥ n̂2. Following the scheme in Kurtz and Protter (loc.cit.)
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we show first that the driving term in�(·,Cn, r̃ i
n, Ĩ n,⊥,c) converges to some type of

Brownian noise.6 To this end we introduce filtrations σ -algebras. We use the com-
mon notation σ {·} to denote the σ -algebra generated by the the quantities in the
braces. Set

Gn,s := σ {1A(q̃n(s, λ, ι, ·)), (λ, ι) ∈ N × J⊥n , A ⊂ Cc̃n (0)},
Fn,s− := σ {r̃ i

n(u), 0 ≤ u ≤ s−, i = 1, . . . , N },
F̂n,s = σ {Fn,s−,Gn,u, u ≤ s}.

⎫⎪⎪⎬
⎪⎪⎭

(3.19)

Again, as in the proof of Lemma 3.1, Lemma 2.8, and Corollary 2.9 imply that
Gn,s and Gn,t are independent if t != s. Further, we have

Proposition 3.6. �(·,Cn, r̃ i
n, Ĩ n,⊥,c) is a square integrable mean zero F̂n,·-

martingale.7

Proof.

(i) Let A := (r̄λ] ⊂ Cc̃n (0) for some λ. We obtain that both Ĩ n,⊥
A (s) and Ĩ n,⊥,c

A (s)

are Gn,s-measurable. Hence, �
(
·,Cn, r̃ i

n, Ĩ n,⊥,c
)

is F̂n,·-adapted.
(ii) Further, by independence and the mean zero property, using the definition in

(3.7), and by (3.12) for n ≥ n̂2

E
([

Ĩ n,⊥,c
A (s)

]2
)
≤ E Ĩ n

A(s) ≤ α + 1.

Therefore, �(·,Cn, r̃ i
n, Ĩ n,⊥,c) is square integrable.

(iii) Finally,
F̂n,s = F̂n,s− ⊗ Gn,s ∀s,

where for two σ -algebras A,B, A ⊗ B is the product σ -algebra. Hence, using
conditional expectations, we see that�(·,Cn, r̃ i

n, Ĩ n,⊥,c) is a square integrable mean
zero F̂n,s-martingale. 
�

Denote by L2,F̂n,·−([0, t̂] × Rd × Ω) the space of all real-valued processes f ,
which are constant in t ∈ [lδσ, (l + 1)δσ), l ∈ N ∪ {0}, and depend on q ∈ Rd in
addition to the dependence on ω such that

(i) f is square integrable on [0, t̂] × Rd ×Ω with respect to dt × dq × dP;
(ii) f (s, ·, ·) is Bd ⊗ F̂n,s−-measurable.

Setting Ĝn(r, q) := Gn(r̄ − r̄λ) for q ∈ (r̄λ], we obtain Ĝn, j ( ¯̃r i
n(·−), ·) ∈

L2,F̂n,·−([0, t̂] × Rd ×Ω), and

6 Cf. also the end of our Sect. 15.2.4.
7 We refer to Sect. 15.2.3 for the definition and properties of martingales.
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�
(

t,Cn, r̃ i
n, Ĩ n,⊥,c

)

=
∑
s≤t

1
m̂

∫
Ĝn

( ¯̃r i
n(s−), q

)⎡⎣∑
λ∈Cn

1(r̄λ](q)nd Ĩ n,⊥,c
(r̄λ] (s)

⎤
⎦ dq δσ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.20)

Formally, this representation is the integration of elements from L2,F̂n,·−([0, t̂]×
Rd×Ω) against the time increments of a sum of step functions, where by the restric-
tion to Cn the sum is finite (cf. (3.6)). To indicate that the summation is restricted to
Cn , we will in what follows use the symbol

∑̂
instead of just

∑
.

We define an infinite dimensional integrator Mn(s) by setting for f ∈
L2,F̂n,·−([0, t̂] × Rd ×Ω)

∫ t

0
〈 f (s−), d Mn(s)〉 :=

∑
s≤t

∫
f (s−, q)

⎡
⎣∑
λ∈Cn

1(r̄λ](q)nd Ĩ n,⊥,c
(r̄λ] (s)

⎤
⎦ dqδσ.

(3.21)
We obtain

� j

(
t,Cn, r̃ i

n, Ĩ n,⊥,c) =
∫ t

0
< Ĝn, j

( ¯̃r i
n(s−), ·

)
, dMn(s) > .

In what follows, [·, ·] will denote the mutual quadratic variation of square inte-
grable martingales. Let f, g ∈ L2,F̂n,·−([0, t̂] × Rd ×Ω). For k ∈ { f, g} set

k̂n(q) :=
⎧⎨
⎩

nd
∫
(r̄λ]

k(q)dq, if q ∈ (r̄λ] and (r̄λ] ⊂ Cc̃n (0),

0, if q ∈ (r̄λ] and (r̄λ] is not a subset of Cc̃n (0).
(3.22)

Since, for a pure jump process, the quadratic variation is the sum of the squares
of the jumps, we obtain

[∫ t

0
〈 f (s−), dMn(s)〉,

∫ t

0
〈g(s−), dMn(s)〉

]

=
∑
s≤t

∑̂
A

∑̂
B

f̂n(s−, ā)ĝn(s−, b̄)I n,⊥,c
A (s) Ĩ n,⊥,c

B (s)(δσ)2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.23)

To obtain bounds on the quadratic variation, we first need some estimates on the
evolution of the small particles. If A ∩ B = ∅, then

1A(q̃n(s, λ, ι, ω))1B(q̃n(s, λ, ι, ω)) = 0 ∀ω;
E1c

A(q̃n(s, λ, ι))1c
B(q̃n(s, λ, ι)) = −E1A(q̃n(s, λ, ι))E1B(q̃n(s, λ, ι)).

}
(3.24)

Recall that s = lδσ for some l ∈ N. From Hypothesis 2.1, (2.6), (2.7), and
Corollary 2.9 in addition to the independence of ζ̂ λ,ιn and wλ,ι0,n , we obtain

E1A(q̃n(s, λ, ι)) ≤ |‖ψ |‖
nd(p+1) . (3.25)
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Hence, by (3.12) in addition to (3.24) and (3.25) and the definitions of n̂2 before
(3.12) we have for n ≥ n̂2 and A ∩ B = ∅∣∣∣E

(
Ĩ n,⊥,c

A (s) Ĩ n,⊥,c
B (s)

)∣∣∣ ≤ |‖ψ |‖
nd(p+1) (α + 1). (3.26)

For the case A = B, we now improve the estimate in step (ii) of the proof of
Proposition 3.6, using (3.25):

E
[(

Ĩ n,⊥,c
A (s)

)2
]

∈
(

E Ĩ n,⊥
A (s)− |‖ψ |‖

nd(p+1) (α + 1), E Ĩ n,⊥
A (s)+ |‖ψ |‖

nd(p+1) (α + 1)
)
.

⎫⎪⎬
⎪⎭

(3.27)

Hence, by Lemma 3.2 we obtain for A = (r̄λ] ⊂ Cc̃n (0)

E
(

Ĩ n,⊥,c
A (s)

)2 −→ α, as n −→ ∞. (3.28)

Let us use the following simplifying notation:

q̃n(t, λ, ι,⊥) :=
⎧⎨
⎩

q̃n(t, λ, ι), if ι /∈ Jn,

�, if ι ∈ Jn;
1c

A(q̃n(s, λ, ι,⊥)) := 1A(q̃n(s, λ, ι,⊥))− E1A(q̃n(s, λ, ι,⊥));

h(c, s, λ, ι) :=
∑̂

A

f̂n(s−, ā)1c
A(q̃n(s, λ, ι,⊥))δσ.

Note that h(c, s, λ, ι) = 0 for ι ∈ Jn . Apparently,

〈 f (s−), dMn(s)〉 =
∑
λ,ι

h(c, s, λ, ι).

We obtain the (discrete time) increment of the quadratic variation

[〈 f (s−), dMn(s)〉] =
⎛
⎝∑
λ,ι

h(c, s, λ, ι)

⎞
⎠

2

.

Suppose (λ, ι) != (λ̃, ι̃). The independence of F̂n,s− and Gn,s (cf. step (iii) in the
proof of Proposition 3.6) in addition to the independence in λ, ι and the mean zero
property of 1c

A(q̃n(s, λ, ι)) yields

E(h(c, s, λ, ι)h(c, s, λ̃, ι̃)|F̂n,s−) = 0.

Therefore,

E

⎡
⎢⎣
⎛
⎝∑
λ,ι

h(c, s, λ, ι)

⎞
⎠

2

|F̂n,s−

⎤
⎥⎦ =

∑
λ,ι

E
[
(h(c, s, λ, ι))2|F̂n,s−

]

= (δσ)2
∑̂

A

(
f̂n(s−,ā)

)2∑
λ,ι

E
(

1c
A(q̃n(s, λ, ι,⊥))

)2

+(δσ)2̂
∑

A

f̂n(s−, ā)̂
∑

B

f̂n(s−, b̄)1A∩B=∅
∑
λ,ι

E1c
A (q̃n(s, λ, ι,⊥)) 1c

B (q̃n(s, λ, ι,⊥)).
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Let |∑̂| be the number of nontrivial terms in
∑̂

. By (3.6) the summation is
restricted to the set of all A = [r̄ λ̃) for some λ̃ such that [r̄ λ̃) ⊂ Cc̃n . Therefore, by
(3.4) ∣∣∣

∑̂∣∣∣ ≤ c̃d
n nd = c̄dn[(d+3δ)∨( p̃+ζ+δ)]dnd .

Using (3.24), (3.25), (3.12), the Cauchy-Schwarz inequality in the summation
“
∑̂

,” (1.3) and the definition of f̂n , the double sum of mixed terms in
∑̂

can be
estimated from above as follows:

|(δσ)2
∑̂

A

f̂n(s−, ā)
∑̂

B

f̂n(s−, b̄)1A∩B=∅
∑
λ,ι

E1c
A(q̃n(s, λ, ι,⊥))1c

B(q̃n(s, λ, ι,⊥))|

≤ (α + 1)|‖ψ |‖(δσ)c̄dnd([(d+3δ)∨( p̃+ζ+δ)]−p)
∫
( f (s−, q))2dq.

Next, by (3.24) and Lemma 3.2

(δσ)2
∑̂ (

f̂n(s−, ā)
)2 ∑

λ,ι

E
(
1c

A(q̃n(s, λ, ι,⊥))
)2 ∈ (x, y),

where x = (δσ)2 ∑̂ (
f̂n(s−, ā)

)2 [
α − o(nd+δ)

] (
1 − |‖ψ |‖n−d(p+1)) and y =

(δσ)2
∑̂ (

f̂n(s−, ā)
)2 [
α + o(nd+δ)

]
(1 + |‖ψ |‖n−d(p+1)) with nonnegative func-

tions o(·). Finally, let

n̂3 ≥ n̂2 and such that ∀n ≥ n̂3 : 0 ≤ o(nd+δ) ≤ α
3 and |‖ψ |‖n−d(p+1) < 1

4 .

Before continuing, let us introduce an abbreviated notation for L2(Rd , dr), the
real-valued functions on Rd that are square integrable with respect to the Lebesgues
measures dr .

H0 := L2(Rd , dr), and for f, g ∈ H0:

〈 f, g〉0 :=
∫

f (q)g(q)dq, | f |0 := √
< f, f >0. (3.29)

Thus, for all n ≥ n̂3 and ∀s ∈ (0, t̂]
δσ | f̂n(s−)|20

α

2
< (δσ)2

∑̂(
f̂n(s−, ā)

)2 ∑
λ,ι

E
(
1c

A(q̃n(s, λ, ι,⊥))
)2

< δσ
∣∣ f̂n(s−)

∣∣2
0 2α ≤ δσ‖ f (s−)‖2

02α.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.30)

We obtain altogether for n ≥ n̂3 from the previous estimates and (3.30)8

8 Here, the duality < f (s−), dMn(s) > is identical to the scalar product < f (s−), dMn(s) >0.
However, by Proposition 3.7, Mn(·) will converge to a distribution-valued process and for cer-
tain distributions the scalar product < ·, · >0 may be extended to a duality between “test func-
tions” and “distributions.” The notation < f (s−), dMn(s) > indicates this fact. We refer to
Sect. 15.1.3 for more details.
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E

⎡
⎢⎣
⎛
⎝∑
λ,ι

h(c, t, λ, ι)

⎞
⎠

2 ∣∣F̂n,s−
]

= E
(

[〈 f (s−), d Mn(s)〉]
∣∣F̂n,s−

)

≤ (α + 1)δσ
∫
( f (s−, q))2dq

[
1 + |‖ψ |‖c̄dnd([(d+3δ)∨( p̃+ζ+δ)]−p)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.31)

We also need an estimate of the “quadratic variation” of the quadratic variation
[< f (s−), dMn(s) >], which, for a pure jump process, is the sum of the 4th powers
of the jump sizes. Moreover, this estimate is used for a law of large numbers (LLN)
argument for the quadratic variation of functionals of Mn . Note that the f̂n(s−, āi )
are measurable with respect to F̂n,s− and the 1Ai

c(q̃n(s, λ, ι,⊥)) are independent
of F̂n,s−. Therefore, we have

E

⎛
⎜⎝
⎛
⎝∑
λ,ι

h(c, s, λ, ι)

⎞
⎠

4

|F̂n,s−

⎞
⎟⎠

= (δσ)4
∑̂
A1

. . .
∑̂
A4

4∏
i=1

f̂n(s−, āi )E
4∏

i=1

⎛
⎝∑
λ,ι

1c
Ai
(q̃n(s, λ, ι,⊥))

⎞
⎠ .

The mean zero property of 1Ai
c(q̃n(s, λ, ι,⊥)) and independence in λ, ι yields:

E
4∏

i=1

⎛
⎝∑
λ,ι

1Ai
c(q̃n(s, λ, ι,⊥))

⎞
⎠=

∑
λ,ι

E
4∏

i=1

1Ai
c(q̃n(s, λ, ι,⊥))

+
∑

(λ,ι) !=(λ̃,ι̃)
E

⎛
⎝ ∏

i∈{1,2}
1Ai

c(q̃n(s, λ, ι,⊥))
⎞
⎠ E

⎛
⎝ ∏

j∈{3,4}
1A j

c(q̃n(s, λ̃, ι̃,⊥))
⎞
⎠

+
∑

(λ,ι) !=(λ̃,ι̃)
E

⎛
⎝ ∏

i∈{1,3}
1Ai

c(q̃n(s, λ, ι,⊥))
⎞
⎠ E

⎛
⎝ ∏

j∈{2,4}
1A j

c(q̃n(s, λ̃, ι̃,⊥))
⎞
⎠

+
∑

(λ,ι) !=(λ̃,ι̃)
E

⎛
⎝ ∏

i∈{1,4}
1Ai

c(q̃n(s, λ, ι,⊥))
⎞
⎠ E

⎛
⎝ ∏

j∈{2,3}
1A j

c(q̃n(s, λ̃, ι̃,⊥))
⎞
⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.32)

In the expansion of E((
∑
λ,ι

h(c, t, λ, ι))4|F̂n,s−) the resulting terms with (λ, ι) !=
(λ̃, ι̃) are estimated as follows, where we show the computations only for the first of
the three terms, since the other terms can obviously be estimated in the same way.
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(δσ)4
∑ ∑

(λ,ι) !=(λ̃,ι̃)

∑̂
A1

∑̂
A2

∏
i∈{1,2}

f̂n(s−, āi )E

⎛
⎝ ∏

i∈{1,2}
1c

Ai
(q̃n(s, λ, ι,⊥))

⎞
⎠

×
∑̂
A3

∑̂
A4

∏
j∈{3,4}

f̂n(s−, ā j )E

⎛
⎝ ∏

j∈{3,4}
1c

A j
(q̃n(s, λ̃, ι̃,⊥))

⎞
⎠

≤
⎛
⎜⎝E

⎛
⎜⎝
⎛
⎝∑
λ,ι

h(c, t, λ, ι)

⎞
⎠

2 ∣∣F̂n,s−

⎞
⎟⎠

⎞
⎟⎠

2

= (E([〈 f (s−), dMn(s)〉]|F̂n,s−))2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.33)

Next, the other case for the fourth moment can be written as follows:

∑̂
A1,A2,A3,A4

∑
λ,ι

(δσ)4
4∏

i=1

f̂n(s−, āi )E
4∏

i=1

[1Ai (q̃n(s, λ, ι,⊥))− E1Ai (q̃n(s, λ, ι,⊥))].

Multiplying out, we group the terms into different cases. One case contains

terms of the form E
4∏

i=1
1Ai (q̃n(s, λ, ι,⊥)). However, this term is only nontrivial

if A1 = A2 = A3 = A4, because q̃n(s, λ, ι,⊥) cannot be in two disjoint sets at the
same time. Therefore, instead of quadruple summation, we have only the summa-
tion over A1, for example. In the other cases, the quadruple summation also reduces

accordingly, except in the case E
4∏

i=1
E1Ai (q̃n(s, λ, ι,⊥)). If we get more than one

factor E1Ai (q̃n(s, λ, ι,⊥)) in those products we can use estimate (3.25) as a bound
on this factor. By (3.12) we obtain for n ≥ n̂3

∑̂
A1,A2,A3,A4

∑
λ,ι

(δσ)4
4∏

i=1

f̂n(s−, āi )E
4∏

i=1

1c
Ai
(q̃n(s, λ, ι,⊥))

≤ (α + 1)
∑̂
a1

| f̂n(s−, ā1))|4(δσ)4

+(α + 1)
∑̂
ak ,al

| f̂n(s−, āk)|3| f̂n(s−, āl)| · |‖ψ |‖n−d(p+1)(δσ)4

+(α + 1)
∑̂

ak ,al ,ak̃

| f̂n(s−, āk)|2| f̂n(s−, āl) f̂n(s−, āk̃)| · |‖ψ |‖2n−2d(p+1)(δσ)4

+(α + 1)
∑̂

{akl ,l=1,..,4}

4∏
i=1

| f̂n(s−, āki )|4|‖ψ |‖3n−3d(p+1)(δσ)4.



44 3 Proof of the Mesoscopic Limit Theorem

Converting the summation into integration,

∑̂
A1,A2,A3,A4

∑
λ,ι

(δσ)4
4∏

i=1

f̂n(s−, āi )E
4∏

i=1

1Ai
c(q̃n(s, λ, ι,⊥))

≤ (δσ)4(α + 1)nd
∫

| f̂n(s−, q)|4dq

+(δσ)4|‖ψ |‖(α + 1)nd−dp
∫

| f̂n(s−, q)|3dq
∫

| f̂n(s−, q)|dq

+(δσ)4|‖ψ |‖2(α + 1)nd−2dp
∫

| f̂n(s−, q)|2dq
(∫

| f̂n(s−, q)|dq
)2

+(δσ)4|‖ψ |‖3(α + 1)nd−3dp
(∫

| f̂n(s−, q)|dq
)4

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.34)

From (3.33) and (3.34) in addition to (3.31) we obtain

E

⎛
⎜⎝
⎛
⎝∑
λ,ι

h(c, t, λ, ι)

⎞
⎠

4

|F̂n,s−

⎞
⎟⎠ = E

(
([〈 f (s−), dMn(s)〉])2 |F̂n,s−

)

≤ (δσ)2c(α + 1)2
∑

1≤i, j≤4

(∫
| f̂n|i (s−, q)dq

) j

,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.35)

where c > 0 is some finite constant, which depends only on the powers
i = 1, . . . , 4, |‖ψ |‖ and the constant c̄ from (3.4). Finally, from the calculations
in (3.32) and (3.33), we obtain for n ≥ n̂3 by the estimate in (ii) of the proof
of Proposition 3.6.

E
(

Ĩ n,⊥,c
A (s)

)4 ≤ c(α + 1)2. (3.36)

The previous computations were a direct analysis of the quadratic variation of
� j . To apply the results by Kurtz and Protter (loc. cit.) we need to separate a driving
term in�(·,Cn, r̃ i

n, Ĩ n,⊥,c), which depends only on Ĩ n,⊥,c and not on the “state” r̃ i
n .

Let us describe this term in a convenient way.
Let N̂ := N ∪ {0} denote the nonnegative integers. The multiindices from N̂d

will be denoted in bold face. Choose the normalized Hermite functions {φk}k∈N̂d as
a complete orthonormal system (CONS) in H0.9 Specializing to f (s, ·, ω) := φk,
we set

mk,n(t) :=
∫ t

0
〈φk, dMn(s)〉 =

∑
s≤t

∫
φk(q)

⎡
⎣∑
λ∈Cn

1(r̄λ](q)nd Ĩ n,⊥,c
(r̄λ] (s)

⎤
⎦ dq δσ.

(3.37)

As before, < ·, · > is a duality between generalized functions and smooth func-
tions which extends the usual scalar product < ·, · >0 on H0. Obviously, mk,n(·)

9 The precise definition and the proof of completeness are provided in Sect. 15.1.3, (15.11) and
Proposition 15.8.
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are mean zero square integrable martingales and do not depend on the state ¯̃r i
n(s−).

Therefore, they are a perfect candidate for the martingale central limit theorem.10

Since |φk|0 = 1, we obtain from (3.31) and Doob’s inequality11 that for n ≥ n̂3 and
for all k

E sup
t≤t̂
(mk,n(t))2 ≤ 4(α + 1)t̂

[
1 + |‖ψ |‖c̄dnd([(d+3δ)∨( p̃+ζ+δ)]−p)

]
. (3.38)

A Fourier expansion yields

�(t,Cn, r̃ i
n, Ĩ n,⊥,c) = 1

m̂

∑
s≤t

∑
k

∫
Ĝn(r, q)φk(q)dqmk,n(ds). (3.39)

(3.23) becomes

[mk,n(t),ml,n(t)] =
∑
s≤t

∑̂
A

∑̂
B

φ̂k,n(ā)φ̂l,n(b̄) Ĩ
n,⊥,c
A (s) Ĩ n,⊥,c

B (s)(δσ)2. (3.40)

By Lemma 3.1, the right-hand side of (3.40) is a sum of independent random
variables (in the time variable s!). Referring to (3.4) for the definition of c̃n , we note
that by (1.3), (3.26), and (3.6), the notational convention (3.22) and the Cauchy-
Schwarz inequality12

∣∣∣∣∣
∑̂

A

∑̂
B

1A∩B=∅φ̂k,n(ā)φ̂l,n(b̄)(δσ)E Ĩ n,⊥,c
A (s) Ĩ n,⊥,c

B (s)

∣∣∣∣∣

≤ nd

n p(d+1) |‖ψ |‖(α + 1)
∫

|φk|(x)1Cc̃n (0)(x)dx
∫

|φl|(x)1Cc̃n (0)(x)dx

≤ nd

n p(d+1) |‖ψ |‖(α + 1)c̃d
n .

We obtain from the above inequality in addition to the scaling assumption (1.3),
(3.4), (3.3), (3.4), and (3.28), Hypothesis 2.2 and Lebesgue’s dominated conver-
gence theorem (applied to

∫
φk,n(q)φl,n(q)dq)

∑
s≤t

∑̂
A

∑̂
B

φ̂k,n(ā)φ̂l,n(b̄)(δσ)2 E Ĩ n,⊥,c
A (s) Ĩ n,⊥,c

B (s) −→ αtδk,l, (3.41)

where δk,l = 1, if k = l and δk,l = 0 otherwise. As before, we use the following
simplifying notation:

h̃(c, s, λ, ι,k) :=
∑

A

φ̂k,n(ā)1c
A(q̃n(s, λ, ι,⊥))δσ, as n −→ ∞ .

10 Cf. Theorem 15.39 in Sect. 15.2.3.
11 Cf. Theorem 15.32 in our Sect. 15.2.3.
12 Proposition 15.4 in Sect. 15.1.2.
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Set c(φk) := sup
n

∑
1≤i, j≤4

(
∫ |φ̂k,n|i (q)dq) j and note that c(φk) < ∞. We use

independence and the mean zero property in addition to (3.35) and the fact that the
summation

∑
s≤t

has t
δσ terms. Therefore, the variance of (3.40) satisfies for n ≥ n̂3:

E([mk,n(t),ml,n(t)] − E[mk,n(t),ml,n(t)])2

≤
∑
s≤t

E(
∑
λ,ι

h̃(c, s, λ, ι,k))2
⎛
⎝∑
λ,ι

h̃(c, s, λ, ι, l)

⎞
⎠

2

≤ 1
2

∑
s≤t

[
E
((

d
[
mk,n(s)

])2
)
+ E

((
d
[
ml,n(s)

])2
)]

≤ δσ tc(α + 1)2
1
2
[c(φk)+ c(φl)] by (3.34) ,

−→ 0, as n −→ ∞ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.42)

Consequently, we obtain the weak law of large numbers from Lemma 3.1 in
addition to (3.31), (3.41), and (3.42):

∀k, l,∀t ≥ 0 [mk,n(t),ml,n(t)] −→ tαδk,l
in probability, as n −→ ∞.

}
(3.43)

It is required to check a jump size condition in the martingale central limit the-
orem. Recall that we extended our time-discrete quantities to continuous time in
a canonical way, where the processes are considered cadlag jump processes.13 By
(3.37)

mk,n(t)− mk,n(t−) =
∑̂

A

φ̂k,n(ā) Ĩ
n,⊥,c
A (t)δσ ∀k.

Hence, by (3.42)
{

E
[
supt≤t̂ |mk,n(t)− mk,n(t−)|

]}2

≤
⎧⎨
⎩
∑

t≤t̂

E(
∑
λ,ι

h̃(c, t, λ, ι,k))4

⎫⎬
⎭

1
2

≤ √
c(α + 1)

√
c(φk)

√
δσ t̂

−→ 0 , as n −→ ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.44)

Let k1, . . . ,k j , . . . be an enumeration of our multiindices. Further, let

βk1(·), . . . , βk j (·), . . .
be independent identically distributed (i.i.d.) real-valued standard Brownian mo-

tions. By (3.43) and (3.44) we may employ the martingale central limit theorem
(Theorem 15.39):

13 Cf. the procedure at the beginning of Chap. 2.
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Proposition 3.7.

∀ j ∈ N (mk1,n(·), . . . ,mk j ,n(·)) �⇒ (
√
αβk1(·), . . . ,

√
αβk j (·)), as n −→ ∞.


�
The process (

√
αβk1(·), . . . ,

√
αβk j (·), . . .) is cylindrical on the space of square

summable sequences, i.e., for each t the distribution of (
√
αβk1(t), . . . ,

√
αβk j(t), . . .)

is (only) a finitely additive measure on that sequence space. Therefore,

W (·) :=
∑

k∈N̂d

βk(·)φk (3.45)

is a standard cylindrical Brownian motion in H0, i.e., its covariance operator on
H0 is the identity operator. Further, without loss of generality, we may assume that
W (·) from (3.45) has representation14

W (t) ≡
∑

k∈N̂d

∫ t

0

∫
φk(q)w(dq, du)φk. (3.46)

We have

Mn(·) =
∑

k∈N̂d

mk,n(·)φk. (3.47)

We now analyze the “covariance” operator

�n(s) := 1
δs

E |[Mn]|(s)− |[Mn]|(s−), (3.48)

where |[Mn]|(·) is the tensor quadratic variation associated with E[〈 f, dMn(s)〉,
〈g, dMn(s)〉], where f, g ∈ H0.15 Note that the increments [〈 f, dMn(s)〉,
〈g, dMn(s)〉] are independent of the “past” F̂n,s−. Therefore, we may use the
conditional expectation instead of the unconditional one. Recalling (3.23) and the
notational convention (3.22), �n(s) is defined by

E([〈 f, dMn(s)〉, 〈g, dMn(s)〉]|F̂n,s−)

= 〈�n(s) f, g〉0δσ = 〈�n(s) f̂n, ĝn〉0δσ.

⎫⎬
⎭ (3.49)

Apparently, �n(s) is nonnegative (i.e., it has a nonnegative spectrum); it is sym-
metric and bounded (by (3.30) and ‖ f̂ ‖0 ≤ ‖ f ‖0). Additionally,�n(s) has the finite
dimensional subspace H0,n as its range, where H0,n := { f̂n : f ∈ H0}. Therefore,
it is compact and has a discrete real-valued spectrum. Note that this spectrum is de-
terministic by the independence of the increments 〈 f, dMn(s)〉 and 〈g, dMn(s)〉 of

14 It follows from Sect. 15.2.2 that both (3.45) and the right-hand side of (3.46) define H0-
valued standard cylindrical motions. In particular, both processes are identically distributed.
Cf. (15.69). Cf. also (4.14) and (4.29) in Chap. 4.

15 Cf. Sect. 15.2.5, (15.177). For continuous martingales�n(s)would be defined as the covariance
of d Mn(s)

ds on H0. Cf. Sect. 15.2.3, Definition 15.43.
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F̂n,s−. Consequently, denoting by µk(s) the eigenvalues of �n(s), we obtain from
(3.29) for n ≥ n̂3

max
0<s≤t̂

sup
k
µk(s) ≤ 2α. (3.50)

It is well known16 that �n(s) is symmetric and nonnegative in addition to (3.50)
implies

sup
0≤s≤t̂

‖�n(s)‖L(H0) ≤ 2α,

and 0 ≤ 〈�n(s) f, f 〉0 ≤ 2α〈 f, f 〉0 ∀ f ∈ H0, ∀n ∈ N 0 ≤ s ≤ t̂ .

}
(3.51)

Next, set

Jn := { f̃ := ( f1, . . . ., fdN )
T : fi ∈ L2,F̂n,·− [0, t̂] ×Ω and fi (·) is cadlag },

where L2,F̂n,·−([0, t̂] ×Ω) is the space of those elements from L2,F̂n,·−([0, t̂] ×
Rd ×Ω), which do not depend on q ∈ Rd . Further, let B0 the Borel σ -algebra on
H0. Set

An := { f̃ : ∃φ̃1, . . . , φ̃L ∈ H0, L ∈ Nsuch that f̃ (s) :=
L∑

k=1

f̃ k(s)φ̃k, f̃ (·) ∈ Jn}.

Further, set

An,0 := { f̃ ∈ An such that | f̃ (t, ·, ω)|0,dN ≤ 1},

where |h|20,dN :=
∑

j=1,...,dN

|h j |20 for an RdN -valued square integrable function

h = (h1, . . . , hdN ). The stochastic integral of the components of f̃ ∈ An with
respect to Mn has the representation17

∫ t

0
〈 fi (q, s−), dMn(s)〉 =

L∑
k=1

∫ t

0
f k
i (s−)〈φ̃k, dMn(s)〉, i = 1, . . . , dN . (3.52)

Proposition 3.8.

lim sup
c−→∞

sup
f ∈An,0

sup
n

P

⎧⎨
⎩sup

t≤t̂

∑
i∈{1,...,dN }

∣∣∣∣
∫ t

0
〈 fi (q, s), dMn(s)〉

∣∣∣∣ > c

⎫⎬
⎭ = 0,

and, consequently, the sequence Mn is uniformly tight in the sense of Definition
15.53 in Sect. 15.2.5.

16 cf., e.g., Kato (1976), Chap. Vol. 2, (2.4). The conclusion (3.51) does not depend on the dis-
creteness of the spectrum.

17 Cf. (15.176).
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Proof.
∑

i∈{1,...,dN }
∫ t

0 < Fi (q, s−), dMn(s) > | is a submartingale. Hence, by the

submartingale inequality18 for c > 0 and the Cauchy-Schwarz inequality

P

⎧⎨
⎩sup

t≤t̂

∑
i∈{1,...,dN }

∣∣∣∣
∫ t

0
〈 fi (·), s), dMn(s)〉

∣∣∣∣ > c

⎫⎬
⎭

≤
∑

i∈{1,...,dN }

1
c

E

∣∣∣∣∣
∫ t̂

0
〈 fi (·), dMn(s)〉

∣∣∣∣∣

≤
∑

i∈{1,...,dN }

1
c

√√√√E

(∫ t̂

0
〈 fi (·), dMn(s)〉

)2

By the rules for Itô integrals,19 in addition to (3.49), (3.22), and (3.51),

E

(∫ t̂

0
〈 fi (·), dMn(s)〉

)2

= E
∫ t̂

0
〈 fi (·), dMn(s)〉2

= E
∫ t̂

0
E(〈 fi (·), dMn(s)〉2|F̂n,s−)

=
∑

s≤t̂

E〈�n(s) f̂i (·), f̂i (·)〉δσ

≤ 2α
∑

s≤t̂

E | fi (·)|20δσ.

Again by the Cauchy-Schwarz inequality and the assumption
∑

i∈{1,...,d N }
| fi (·)|20≤1,

the preceding steps imply

P

{
sup
t≤t̂

{1, . . . , dN }|
∫ t

0
〈 fi (·), s), dMn(s) > | > c

}

≤ (dN )
c

2αt̂ −→ 0, as c −→ ∞. (3.53)


�
Now we set for j = 1, . . . , d (cf. (3.17))

Ui,n
2, j (·) := −

∫ ·

0
exp[−ηn(· − s)]� j

(
ds,Cn, R̃i

n, Ĩ n,⊥,c) . (3.54)

Although Ui,n
2, j (t) in the last representation is a stochastic convolution integral,

we may nevertheless apply the Itô formula20 to the second factor of the process

18 Theorem 15.32, (i).
19 By a cadlag generalization of (15.151) – cf. Metivier and Pellaumail (1980) (Sects. 3.2, 4.2).
20 For the Itô formula, cf. Sect. 15.2.5, Theorem 15.50.
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exp[−ηnt]
∫ t

0
exp[ηns]dmi, j (s),

where we use the abbreviation

mi, j (s) := � j (s,Cn, R̃i
n, Ĩ n,⊥,c).

For a step function cadlag process f (s), constant in u ∈ ((k − 1)δσ, k δσ) and
evaluated at s = k δσ, k = 0, 1, 2, . . ., f (s−) is the limit from the left. Again, by
the cadlag generalization of (15.151) (cf. Metivier and Pellaumail (loc.cit.)),

|Ui,n
2, j (t)|2 ≤ 2

∫ t

0
exp[−2ηn(t − s)]

∫ s−

0
exp[−ηn(s − u)]dmi, j (u)dmi, j (s)

+ exp[−2ηnt]
∫ t

0
exp[2ηns]d[mi, j (s)].

We apply the Itô formula again along with an estimate for the quadratic variation
from Metivier and Pellaumail (loc.cit.)
(∫ t

0
exp[2ηns]d[mi, j (s)]

)2

≤2
∫ t

0
exp[2ηns]

∫ s−

0
exp[2ηnu]d[mi, j (u)]d[mi, j (s)]

+
∫ t

0
exp[4ηns]d[[mi, j (s)]],

where d[[mi, j (s)]] is the increment of the “quadratic variation” of the quadratic
variation. Abbreviate

zn(t) := 2
∫ t

0
exp[−4ηn(t − s)]

∫ s−

0
exp[−2ηn(s − u)] d [mi, j (u)]d[mi, j (s)]

+
∫ t

0
exp[−4ηn(t − s)] d [[mi, j (s)]].

Thus,

exp[−2ηnt]
∫ t

0
exp[2ηns]d[mi, j (s)] ≤

√
zn(t).

Altogether, we obtain

|Ui,n
2, j (t)|2

≤ 2
∫ t

0
exp[−2ηn(t − s)]

∫ s−

0
exp[−ηn(s − u)]dmi, j (u)dmi, j (s)+

√
zn(t).

⎫⎬
⎭

(3.55)

Next, by Theorem 15.42 of our Sect. 15.2.3 there is a c(t̂) <∞ such that

E sup
0≤t≤t̂

∣∣∣∣2
∫ t

0
exp [−2ηn(t − s)]

∫ s−

0
exp [−ηn(s − u)] dmi, j (u)dmi, j (s)

∣∣∣∣

≤ c(t̂)

⎡
⎣E

(∫ t̂

0
(2
∫ s−

0
exp [−ηn(s − u)] dmi, j (u))dmi, j (s)

)2
⎤
⎦

1
2

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.56)
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Recall the representation of mi, j (s) after (3.21). By (3.31) and (2.2) there is an
n̂4 ≥ n̂3 such that for n ≥ n̂4

E([dmi, j (s)]|F̂n,s−) ≤ δσc2,G,α, (3.57)

where c2,G,α := max
1≤ j≤d

|G j |202(α + 1) <∞ . Therefore, using conditional math-

ematical expectations, by the Itô formula

E

(∫ t̂

0
(2
∫ s−

0
exp [−ηn(s − u)] dmi, j (u)dmi, j (s)

)2

= E

(∫ t̂

0
(2
∫ s−

0
exp [−ηn(s − u)] dmi, j (u))2 E

(
d
[
mi, j (s)

] |F̂n,s−
))

≤ 4
∑

s≤t̂

∑
0<u<s

exp[−2ηn(s − u)](c2,G,α)
2(δσ)2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.58)

Recalling that u = l δσ, l ∈ N, the summation formula for geometric sums
yields ∑

0<u<s

exp[−2ηn(s − u)]δσ ≤ (1 − exp[−2ηns])δσ
exp[2ηn δσ ] − 1

.

Further,

δσ
exp[2ηn δσ ] − 1

= δσ

2ηn

∫ δσ

0
exp[2ηnu]du

≤ 1
2ηn
.

Since
∑
s≤t̂

δσ = t̂ the calculations (3.56)–(3.58) in addition to the assumptions on

G imply

E sup
0<t≤t̂

∣∣∣∣2
∫ t

0
exp[−2ηn(t − s)]

∫ s−

0
exp[−ηn(s − u)]dmi, j (u)dmi, j (s)

∣∣∣∣

≤ 2c(t̂)c2,G,α

√
t̂

2ηn
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(3.59)

Let us now show that the last term in (3.55) tends to 0. Since the integrands and
the integrator increments are positive,

sup
t≤t̂

2
∫ t

0
exp[−4ηn(t − s)]

∫ s−

0
exp[−2ηn(s − u)]d[mi, j (u)]d[mi, j (s)]

≤ 2
∫ t̂

0

∫ s−

0
exp[−2ηn(s − u)]d[mi, j (u)]d[mi, j (s)].

Therefore, proceeding as in the derivation of (3.58) and (3.59), using conditional
expectations and the summation formula for geometric sums,
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E sup
t≤t̂

2
∫ t

0
exp[−4ηn(t − s)]

∫ s−

0
exp[−2ηn(s − u)]d[mi, j (u)][dmi, j (s)]

≤ 2E
∫ t̂

0

∫ s−

0
exp[−2ηn(s − u)]d[mi, j (u)]dE

([mi, j (s)]|F̂n,s−
)

≤ 2(c2,G,α)
2 t̂

2ηn
.

Finally, from the positivity of the increments of the quadratic variation in ad-
dition to (3.35) and the homogeneity and integrability of |G|m,m = 1, . . . , 4, we
obtain for n ≥ n̂4

E sup
t≤t̂

∫ t

0
exp[−4ηn(t − s)]d[[mi, j (s)]] ≤ E

∫ t̂

0
d[[mi, j (s)]]

=
∫ t̂

0
E(E(d[[mi, j (s)]]|F̂n,s−)) ≤ δσ t̂ c(4,G, α),

where c(4,G, α) := c(α + 1)2 sup
n

∑
1≤k,l≤4

(
∫ |G j |k(q)|dq)l) < ∞. Hence, for

n ≥ n̂4 we obtain the following estimate for the second term in (3.53):

E sup
t≤t̂

√
zn(t) ≤

√
2(c2,G,α)2

t̂
2ηn

+ δσ t̂ c(4,G, α). (3.60)

So, (3.55) in addition to (3.59) and (3.60) implies

max
j=1,...,d,i=1,...,N

E sup
t≤t̂

|Ui,n
2, j (t)|2

≤ c(t̂)2c2,G,α

√
t̂

2ηn
+
√

2(c2,G,α)2
t̂

2ηn
+ δσ t̂ c(4,G, α)

−→ 0, as n −→ ∞ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.61)

Now set

Ui,n
j (t) := r i

j,n(0)+ Ui,n
1, j (t)+ Ui,n

2, j (t), i = 1, . . . , N , j = 1, . . . , d,

where Ui,n
1, j (t) was defined in (3.17) and shown in Corollary 3.5 to converge

stochastically to 0 uniformly in t ≤ t̂ . Denote the strong dual of H0 by H′
0 and

identify H′
0 with H0. Let S ′ be the Schwarz space of tempered distributions over

Rd , and let H−γ be a Hilbert distribution subspace of S ′ such that the imbedding21

H′
0 ⊂ H−γ is Hilbert–Schmidt.

21 Cf. Sect. 15.1.3, in particular, (15.32) and (15.36).
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By Hypotheses 2.4 and 2.5, Corollary 3.5, (3.61) and a standard argument
about weak convergence and stochastic convergence to 022, and by Theorem 15.54
(Sect. 15.2.5) we obtain

((U 1,n(·), . . . ,U N ,n(·)),Mn(·)) �⇒ ((r1(0), . . . , r N (0)),W (·))

in Rd N × D([0, t̂];H−γ ), as n −→ ∞.

⎫⎬
⎭ (3.62)

We now write the solution of (3.16) as the solution of the stochastic integral
equation

r̃ i
n(t) =

∫ t

0

〈
Ĝn

(
r̃ i

n(s−)
)
, dMn

〉
+ Ui,n(t), i = 1, . . . , N , (3.63)

where 〈·, ·〉 is the duality between the (cylindrical H0)-valued sequence of mar-
tingales Mn and the Hd

0-valued function Ĝn(r i
Mn
(s−), ·). Expression (3.62) is of the

type that is considered in Sect. 15.2.5 (Theorem 15.54). By the identification of H′
0

with H′
0 the components of Ĝn(r, ·) are elements of H0. Recalling the notation in-

troduced before (3.20), we evoke the dominated convergence theorem, the uniform
continuity and integrability of |G j |m,m = 1, . . . , 4 , and we obtain for an arbitrary
c <∞ and all j = 1, . . . , d

sup
{|R|≤c}

|Gn, j (r − ·)− G j (r − ·)|20 −→ 0, as n −→ ∞. (3.64)

This, in addition to the properties of G, implies the condition (15.181) in
Sect. 15.2.5.

The preceding calculations in addition to Theorem 15.54 imply the main lemma
of this section:

Lemma 3.9. Under Hypotheses 2.1–2.6

(r̃1
n (·), . . . , r̃ N

n (·)) �⇒ (r1(·), . . . , r N (·))

in D([0, t̂];RdN ), as n −→ ∞,
where (r1(·), . . . ., r N (·)) are the unique solutions of the stochastic integral

equation (2.11). 
�

Proof of Theorem 2.4

We show that we may replace
(
r̃1

n (·), . . . , r̃ N
n (·)

)=(
r1

n (·∧ Tn) , . . . , r N
n (· ∧ Tn)

)
in Lemma 3.9 by

(
r1

n (·) , . . . , r N
n (·)

)
, where the stopping times Tn were defined in

(3.6).

22 Cf. Corollary 15.25 in Sect. 15.2.1.
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(i) Note that by a theorem of Levy the Ri (·) − Ri (0) are Rd -valued Brownian
motions.23 The initial conditions are bounded in probability. Therefore, we
have

P

⎧⎨
⎩ sup

0≤t≤t̂

∑
i=1,...,d

|r i (t)| ≥ L

⎫⎬
⎭ ≤

d∑
i=1

P

{
sup

0≤t≤t̂
|r i (t)| ≥ L

d

}

≤
d∑

i=1

P

{
sup

0≤t≤t̂
|r i (t)− r i (0)| ≥ L

2d

}
+

d∑
i=1

P
{
|r i (0)| ≥ L

2d

}

−→ 0, as L −→ ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.65)

We restrict the metric dD,RdN (X, Y ) on the Skorokhod space D([0,∞);RdN )24

to D([0, t̂];RdN ). We observe that for any L > 0
{

x(·) ∈ D([0, t̂];RdN ) : sup
t≤t̂

|x(t)|dN ≥ L

}

are closed subsets of the metric space (D([0, t̂];RdN ), dD,RdN ). From the de-
finition of the stopping times Tn in (3.6) we obtain

P{Tn < t̂} ≤ P

{
sup
t≤t̂

max
i=1,...,N

|�(t,Cn, r̃ i
n, Ĩ n)| ≥ K̃n − 1

4

}
.

Set r(·) := (r1(·), . . . , r N (·)) and similarly for r̃n(·). Theorem 15.24 in Sect.
15.2.1 in addition to Lemma 3.4, Lemma 3.9, and (3.62) implies

lim sup
n−→∞

P

{
sup
t≤t̂

max
i=1,...,N

|�
(

t,Cn, r̃ i
n, Ĩ n

)
| ≥ L

}

≤ lim sup
n−→∞

P

{
sup
t≤t̂

|r̃n(t)|dN ≥ L
2

}

+ lim sup
n−→∞

P

{
sup
t≤t̂

|U n(t)|dN ≥ L
2

}

≤ P

{
sup

0≤t≤t̂
|r(t)|dN ≥ L

2

}
+ P

{
|r(0)|dN ≥ L

2

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.66)

Altogether we obtain from the calculations (3.63) through (3.66):

lim sup
n−→∞

P{Tn < t̂} = 0. (3.67)

23 Cf. Sect. 15.2.3, Theorem 15.37, and Proposition 5.2 in Chap. 5. The joint RdN -valued process
is not Brownian and, by Definition 5.3, is a family of N correlated Brownian motions.

24 Cf. Sect. 15.1.6, (15.53).
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(ii) Let dp denote the Prohorov metric on the space of probability measures on the
complete separable metric space (DRdN [0, t̂], dD,RdN ).25 Denote the probabil-
ity distributions of rn(·) and r(·) on (D([0, t̂]; RdN ), dD,RdN ) by Pn and P̄ ,
respectively. We can easily show that for any δ̄ > 0 there is an n(δ̄) such that
for all n ≥ n(δ̄)

dp(Pn, P̄) < δ̄. (3.68)

(iii) Finally, note that weak convergence is equivalent to the convergence in the
Prohorov metric.26 ��

Remark 3.10. – On Space–Time White Noise
Recall that we constructed the “occupation measure” Ĩ n

A(t) as a positive random
measure by counting the number of small particles that are in A at time t . Fur-
ther, we showed that summing up the centered occupation measure ((3.15)) in time
from 0 to t essentially determined an infinite dimensional square integrable mean
zero martingale, Mn(·), (cf. (3.37)) which, by the martingale central limit theorem,
was shown to converge to a (scalar) standard cylindrical H0−valued Brownian mo-
tion.27 Considering space and time as variables in the occupation measure, the ap-
proximate independence of the occupation measure in space and time was a result
of the independent starts of the small particles. In the scaling limit the centered
occupation measure is approximated by the scalar valued standard Gaussian white
noise w(dq, dt) or, equivalently, by ∂d+1

∂s∂q1 ... ∂qd
¯̂w(·, ·)28 as the limit of the centered

number density of the small particles. Consequently, we may interpret the inde-
pendence in space and time of the limiting generalized random field w(dq, dt) the
result of independent starts and large velocities of the underlying medium of small
particles. ��

25 Section 15.2.1, (15.57).
26 Section 15.2.1, Theorem 15.21.
27 Proposition 3.7 and (3.45). Cf. also (5.2).
28 Cf. our comments to (2.10) in Chap. 2.
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Differential Equations



Chapter 4
Stochastic Ordinary Differential Equations:
Existence, Uniqueness, and Flows Properties

The principal steps in defining “mesoscopic” equations for the positions of parti-
cles in Rd are as follows: We first construct solutions of stochastic ordinary differ-
ential equations in the sense of Itô (SODEs)1 such that solutions r(t, Ỹ, q) depend
“nicely” on some measure-valued process Ỹ and on the initial condition q. To pro-
ceed from SODEs to stochastic partial differential equations (SPDEs) for the mass
distribution of particles, governed by the flow q %→ r(t, Ỹ, q), we proceed in a
second step as follows: Suppose r(t, Ỹ, q) is measurable in q with respect to the
Borel σ -algebra Bd of Rd and integrable with respect to some initial measure µ0.
If µ0(Rd) <∞, we can define a finite measure-valued process2

Y(t)(dr) :=
∫

δ(r(t,Ỹ,q))(dr)µ0(dq). (4.1)

The process Y(t) is the solution of a bilinear SPDE (cf. Chap. 8, (8.25)). If, in
addition to the previous step, the input process Ỹ(·) equals Y(·) from the left-hand
side of (4.1), then Y(t) is the solution of a semilinear or quasilinear SPDE.3 For
this case we use the notation X (t) or Xε(t) instead of Y(t).

4.1 Preliminaries

We introduce the necessary notation and definitions. Recall from (2.5) the definition
of the metric on Rd

ρ(r − q) := |r − q| ∧ 1,

1 Cf. the following (4.9) and (4.10).
2 (4.1) is by definition the image of the initial measure µ0 under the “flow” q %→ r(t, Ỹ, q),

i.e.,
∫

A Y(t)(dr) = ∫
δ(r(t,Ỹ,q))(A)µ0(dq) = µ0(r−1

ε (t, Ỹ, s, q))(A), where A ∈ Bd . Cf. also
(8.50) in Chap. 8.

3 Cf. Chap. 8, (8.26).

59
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where r, q ∈ Rd , |r − q| is the Euclidean distance on Rd and “∧” denotes
“minimum.” The particle distributions will be measures. Set

M f :=
{
µ : µ is a finite Borel measure on Rd

}
. (4.2)

Let γ f be the Wasserstein distance on M f . For the precise definition and prop-
erties we refer to Sect. 15.1.4, (15.38) and Proposition 15.9. Here we note that
(M f , γ f ) is a complete and separable metric space. Further, we note that γ f is the
restriction of a norm4 on a space of distributions to the cone of nonnegative finite
Borel measures and that

γ f (µ) = µ(Rd). (4.3)

By M∞ we denote the σ -finite Borel measures µ on Rd , i.e., µ is σ -finite. For
the description of those µ ∈ M∞, which have a density with respect to the Lebesgue
measure, we choose the following (standard) weight function making the constants
integrable over Rd (cf. Sect. 15.2.8):

�(r) = (1 + |r |2)−γ , γ >
d
2
. (4.4)

In what follows we write�µ etc. to denote the finite measure that is represented
as µ with density � . Set

M∞,� :=
{
µ ∈ M∞ :

∫
�(q)µ(dq) <∞

}
(4.5)

where the integration is taken over Rd .5 If we define for µ, ν ∈ M∞,�

γ� (µ− ν) := γ f (�(µ− ν))
we obtain that (M∞,� , γ� ) is isometrically isomorphic to (M f , γ f ). There-

fore, (M∞,� , γ� ) is also a complete separable metric space (and even a separable
Fréchet space).

The stochastic set-up is provided as follows: (Ω,F ,Ft , P) is a stochastic basis
with right continuous filtration. All our stochastic processes are assumed to live on
Ω and to be Ft -adapted (including all initial conditions in stochastic ordinary dif-
ferential equations (SODEs) and stochastic partial differential equations (SPDEs)).
Moreover, the processes are assumed to be dP ⊗ dt-measurable, where dt is the
Lebesgue measure on [0,∞).6

Let w�(dr, dt) be i.i.d. real-valued space–time white noises on Rd × R+, � =
1, . . . , d (cf. Definition 2.2). Set w(p, t) := (w1(p, t), . . . , wd(p, t))T , where “T ”

4 It follows that (M f , γ f ) is a separable Fréchet space. Cf. Sect. 15.1.1.
5 Recall from (1.4) our convention not to indicate the integration domain when integrating over

Rd .
6 Cf., e.g., Metivier and Pellaumail (1980), Ch. 1.2., and Dellacherie (1975), Ch. III.2.
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denotes the transpose. Finally, {β⊥,n(·)}n∈N is a family of i.i.d. standard Rd -valued
Brownian motions, which is independent of {w�}�=1,..,d .7

Notation

(i) If (K, dK) is some metric space with a metric dK, then C([s, T ];K) is the space
of continuous K-valued functions, defined on [s, T ].
L0,Fs (K) is the space of K-valued Fs-measurable random variables, and
L0,F (C([s, T ];K)) is the space of K-valued adapted and dt ⊗ dP-measurable
processes with sample paths in C([s, T ];K) a.s.

(ii) Let p ≥ 1 and e be a fixed element of (K, dK). L p,Fs (K) and L p,F (C([s, T ];
K)) are those elements in L0,Fs (K) and L0,F (C([s, T ];K)), respectively, with
finite pth moments of dK(ξ, e), where for the processes sup

s≤t≤T
d p

K(ξ(t), e) has

to be integrable.
(iii) For p ∈ {0} ∪ [1,∞) L p,F (C([s,∞);K)) is the space of those processes ξ(·)

such that ξ(· ∧ T ) ∈ L p,F (C([s, T ];K)) ∀T > s.

Definition 4.1.

• A random variable τ : Ω −→ [0,∞] is called a “stopping time” if for every
t ∈ [0,∞) {ω : τ(ω) ≤ t} ⊂ Ft .

• Let (K�, dK,�) and (K̃k, dK̃,k) be metric spaces with metrics dK,�, dK̃,k and ξ�(t)
and µs,k , � = 1, . . . ,m, k = 1, . . . , m̃ be elements from L0,F (C([s, T ];K�))
and L0,F (C([s, T ]; K̃k)), respectively. We will call a sequence of stopping times
τn ∈ [s,∞] localizing stopping times for ξ�(·, ω) and µs,k , � = 1, . . . ,m, k =
1, . . . , m̃, if

τn(ω) := τn(ω, ξ�, µs,k, � = 1, . . . ,m, k = 1, .., m̃)

:= inf{t ∈ [s,∞]: max
�=1,...,m

max
k=1,...,m̃

dK,�(ξ�(t, ω), e) ∨ dK̃,k(µs,k, ẽ) ≥ n},
and

∀T > 0 P{ω : τn(ω) < T } ↓ 0, as n −→ ∞ . 
�

Let τn be a sequence of localizing stopping times for ξ�(·, ω) and set for p ≥ 1. Set

L loc,p,F (C([s, T ];K)) :=
{
ξ(·) ∈ L0,F (C([s, T ];K)) :

× ∃ “l.s.t.”(τn := τn(ξ))s.t. E
(

sup
s≤t≤T∧τn

d p
K(ξ(t), e)

)
<∞

}
∀n,

7 The i.i.d. standard Brownian motions,{β⊥,n(·)}n∈N, are being used to obtain more general
SODEs and SPDEs. However, the main focus in this volume are on stochastic equations driven
by

{w�}�=1,..,d
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L loc,p,F (C((s, T ];K)) :=
{
ξ(·) ∈ K[s,T ] :

× ∃ “l.s.t.”(τn := τn(ξ))s.t. E
(

sup
s≤t≤T∧τn

d p
K (ξ(t), e)1{τn>s}

)
<∞

}
∀n,

L loc,p,Fs (K) := {η ∈ L0,Fs (K) :})) :
× ∃ “l.s.t.”(τn := τn(η))s.t. η1τn>s ∈ L p,Fs (K)

} ∀n
}

where “l.s.t.” means “localizing stopping time.” If the particular level n at which
we stop or truncate the random maps is irrelevant (as it will be most of the time),
we drop the subscript n and call τ a “localizing” stopping time. This means that for
each level n there is such a τ with the properties, described above.

Let us make some comments on this definition:

Remark 4.2.

• In most cases, our metric spaces will be either vector spaces with a norm or
positive cones of vector spaces, i.e., the set of elements of a vector space that
is invariant with respect to multiplications with nonnegative real numbers, e.g.,
M f . In those cases the metric will be the restriction of a norm to the positive
cones (e.g., γ f ) and we may choose e := 0, i.e., the “null” element.

• For µs ∈ L0,Fs (M f ) or L0,Fs (M∞,� ) we have ∀p ≥ 1 : µs1{τn>s} ∈
L p,Fs (M f ) or ∈ L p,Fs (M∞,� ), respectively. A similar statement holds for the
processes.

• Assume for simplicity m = m̃ = 1 and K = K̃ and dK a norm with e := 0.
Denoting

Ωn := {ω : dK (ξ(s, ω)) < n}
we have

P{Ωn} ↑ 1, as n −→ ∞.
Therefore, setting

τn(ω) := inf{t ∈ [s,∞] : dK (ξ(t, ω)) ≥ n},
it follows that

τn(ω)|Ω\Ωn = s, Ωn = {ω : τn > s}.
On Ω\Ωn , however, dK (ξ(s), e) does not have to be integrable, whereas in

L loc,p,F (C([s, T ];K)) also the pth moment at the initial time s must be integrable.
So, L loc,p,F (C((s, T ];K)) strictly contains L loc,p,F (C([s, T ];K)). The above set
Ωn is Fs-measurable. Therefore, ξ(·)1{τn>s} ∈ L loc,p,F (C([s, T ];K)). Conse-
quently, we may work with pth moments estimates for processes that may not be
integrable at the initial time point s. 
�

Let us now return to our approach to mesoscopic equations. The definition (4.1)
implies mass conservation, i.e., Y(t, ω,Rd) = µ0(ω,Rd). Hence, we have in this
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case γ f (Y(t, ω)) = Y(t, ω,Rd) = µ0(ω,Rd) = γ f (µ0(ω)) < ∞. Therefore,
bounds on the initial measure also yield bounds for the measure uniformly in t ≥ 0,
if we work with M f -valued initial conditions. The situation with M∞,� -valued initial
conditions is not so straightforward. Although we might think of

∫
A�(q)µ(dq)

as a finite measure on the Borel sets even if µ(Rd) = ∞, we do not have in
general

∫
�(q)Y(t, dq) = ∫

�(q)µ0(dq) – even if µ0(Rd) = Y(t,Rd) <∞. The
problem is that the weight function � “distorts” the mass distribution. However,
if we assume Eγ∞,� (µ0) < ∞, we can find an important subspace of L0,F
(C([s,∞);M∞,� )) where this assumption implies E sup

0≤t≤T
γ∞,� (µ(t)) <∞.

To this end, let � denote the set of adapted measurable flows ϕ from [0, T ]×Rd

into Rd , which satisfy the following conditions:

(i) ϕ(0, q) ≡ q.
(ii) t %−→ ϕ(t, q) is continuous a.s. ∀q and measurable in q ∈ Rd .

(iii) ∀q ϕ(t, q) is a square integrable semimartingale. If b(t, q) and m(t, q) are
the process of bounded variation and the martingale in the Doob-Meyer de-
composition, respectively, both b(t, q) and the mutual quadratic variations8

of the one-dimensional martingale components, [mk(t, q),m�(t, q)] are dif-
ferentiable with respect to t and the derivatives are bounded uniformly in
ω ∈ Ω, q ∈ Rd and t ∈ [0, T ] for all T > 0.

Clearly, condition (iii) implies for ϕ ∈ �

sup
q

E sup
0≤s≤T

|ϕ(s, q)− q|2 <∞.

Proposition 4.3.

(a) Suppose µ0 ∈ M∞,� and ϕ ∈ �. Then

t %−→ µ(·) := µ0 ◦ ϕ−1(·) ∈ L0,F (C([0,∞);M∞,� )). (4.6)

(b) Suppose, in addition, that for p ≥ 1 Eγ p
�(µ0) <∞. Then

E sup
0≤t≤T

γ p
�(µ(t)) ≤ cT Eγ p

�(µ0) <∞, (4.7)

where the finite constant cT depends only on T and the bounds of the derivatives
of the characteristics of the semimartingale.

Equation (4.6) states that the boundedness of the moment at the initial time
implies µ(·) ∈ L p,F (C([s, T ];M∞,� )).

The proof is given in Sect. 15.2.8. 
�

Notation

All constants will be denoted by cF , cJ , cJ ,T , etc. and are assumed to be nonneg-
ative and finite.

8 Cf. Sects. 15.2.3 and 15.2.5, in particular, (15.149) and (15.92).
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4.2 The Governing Stochastic Ordinary Differential Equations

Existence and uniqueness are proved for a class of SODEs that are driven by both
space–time white noise, w(dq, ds), and by finitely many independent Brownian
motions. The coefficients may depend on measure processes as parameters or on
the empirical measure processes for the solutions.

In what follows let (M, γ ) ∈ {(M f , γ f ), (M∞,� , γ� )} and let Md×d denote the
d × d matrices over R. We now define the coefficients for the stochastic ordinary
differential equations (SODEs):

F : Rd × M × R → Rd;

J : Rd × Rd × M × R → Md×d;

σ⊥n : Rd × M × R → Md×d , n ∈ N.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.8)

We consider two types of stochastic ordinary differential equations:

dr i (t) = F(r i (t), Ỹ(t), t)dt

+
∫

J (r i (t), p, Ỹ(t), t)w(dp, dt)+ σ⊥i (r i (t), Ỹ(t), t)dβ⊥,i (t)
r i (s) = r i

s ∈ L2,Fs (R
d), Ỹ ∈ L loc,2,F (C((s, T ];M)), i = 1, . . . , N ,

⎫⎪⎪⎬
⎪⎪⎭
(4.9)

where L2,Fs (Rd) is the space of Rd -valued, Fs-measurable random variables
rs such that E |rs |2 < ∞. (4.9) describes the motion of a system of diffusing par-
ticles in a random environment (represented by Ỹ, w�, � = 1, . . . , d, β⊥,i , i =
1, . . . , N .). The RNd -valued process with d-dimensional components r i (t) will be
denoted rN (t).

dr i
N (t) = F(r i

N (t),XN (t), t)dt

+
∫

J (r i
N (t), p,XN (t), t)w(dp, dt)+ σ⊥i (r i

N (t),XN (t), t)dβ⊥,i (t),

r i
N (s) = r i

s ∈ L2,Fs (R
d), i = 1, . . . N , XN (t) :=

N∑
i=1

mi δr i
N (t)
, mi ≥ 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.10)

Expression (4.10) represents the motion of N interacting and diffusing particles
in the random environment (represented by w�, � = 1, . . . , d, β⊥,i , i = 1, . . . , N ).
δr i is the point measure concentrated in r i . XN (t) is the empirical measure process
associated with (4.10). The general measure process Ỹ(t) in (4.9) has been re-
placed by the empirical measure process of the solution of (4.10). Therefore, the
N · d-vector-valued solution of (4.10) depends on N , whereas in (4.9) it is indepen-
dent of N .

In what follows, γ is assumed to be an arbitrary metric from {γ f , γ� } and µ is
in the corresponding spaces M f and M∞,� , respectively.
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Hypothesis 4.19

Suppose (r�, µ�, t) ∈ Rd × M × R, � = 1, 2. Let cF , cJ ,σ⊥ , cF,J ,σ⊥ ∈ (0,∞).
Assume global Lipschitz and boundedness conditions:

(a) |F(r1, µ1, t)− F(r2, µ2, t)|
≤ cF {(γ (µ1) ∨ γ (µ2))ρ(r1 − r2)+ γ (µ1 − µ2)},

d∑
k,�=1

[∫
(Jk�(r1, p, µ1, t)− Jk�(r2, p, µ2, t))2dp

+ sup
n∈N

|σ⊥n,k�(r1, µ1, t)− σ⊥n,k�(r2, µ2, t)|2
]

≤ c2
J ,σ⊥{(γ 2(µ1) ∨ γ 2(µ2))ρ

2(r1 − r2)+ γ 2(µ1 − µ2)};

(b) |Fε(r, µ, t)|2 +
d∑

k,�=1

{∫
J 2
ε,k�(r, p, µ, t)dp + sup

n∈N
|σ⊥n,k�(r, µ, t)

}

≤ cF,J ,σ⊥ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.11)

The constants cF , cJ , and cF,J ,σ⊥ in (4.11) may also depend on the space
dimension d. 
�

Alternatively, if we drop the boundedness assumption on the coefficients in
(4.11), we need to impose a linear growth condition in addition to corresponding
Lipschitz conditions from (4.11) in terms of the Euclidean metric:

(a) |F(r1, µ1, t)− F(r2, µ2, t)|
≤ cF {γ (µ1) ∨ γ (µ2)|r1 − r2| + γ (µ1 − µ2)},

d∑
k,�=1

[∫
(Jk�(r1, p, µ1, t)− Jk�(r2, p, µ2, t))2dp

+ sup
n∈N

|σ⊥n,k�(r1, µ1, t)− σ⊥n,k�(r2, µ2, t)|2
]

≤ c2
J ,σ⊥{(γ 2(µ1) ∨ γ 2(µ2))|r1 − r2|2 + γ 2(µ1 − µ2)};

(b) |F(r, µ, t)| ≤ cF (1 + |r |),

|
d∑

k,�=1

{∫
J 2

k�(r, p, µ, t)dp + sup
n

|σ⊥n,k�(r, µ, t)|2
}
≤ c2

J ,σ⊥(1 + |r |2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.12)

Note that we only need to construct solutions on sets of ω with large probability.
Working either with M f or M∞,� , boundedness of the norm of the initial measure
implies boundedness for all t ∈ [0, T ]. Therefore, we will be able to use stopping
time techniques to enforce uniformly bounded Lipschitz constants on the coeffi-
cients F , J , and σ⊥n . In fact, with only minor modifications, we may assume that

9 For some SODEs with singular interaction cf. Skorohod (1996).
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the coefficients also depend on ω and for given input variables are Ft -adapted. This
is standard in stochastic analysis (cf., e.g., Liptser and Shiryayev (1974) or Kurtz
and Protter (1996)). However, the dependence of our coefficients on empirical mea-
sures requires more notation than in the traditional treatment of SODEs. To avoid
cumbersome notation, the analysis in this volume is restricted to coefficients that
depend on ω only through solutions of the SODEs (the Markovian case!) or explicit
input processes.

In Sect. 4.4 (i.e., at the end of this section), we provide a number of examples of
coefficients F,J satisfying Hypothesis 4.1. Examples for σ⊥ can be obtained from
the examples for F .

In this section we will use both metrics and conditions (4.11) and (4.12). In the
derivation of SPDEs we will work with the bounded metric ρ(· − ·). This allows us
to work directly in the case of finite measures with the metric γ f and, employing
the Kantorovich-Rubinstein theorem for some important estimates, we may use the
Wasserstein metric (15.38)/(15.39). With the exception of Chaps. 9 and 14, the cor-
responding theorems, based on the Euclidean metric and the additional linear growth
assumption, can be obtained after minor modifications from the proofs based on the
bounded metric as long as we work with M f .10

Remark 4.4.

• Borkar (1984) was probably the first author to use Brownian white noise as a
driving term for stochastic ordinary differential equations (SODEs). The step
from SODEs for the position of particles to the empirical measure and related
stochastic partial differential equations (SPDEs) was introduced by the author in
his papers (1995a, b).

• Recall from (3.29) that H0 is the space of measurable functions on Rd , which are
square integrable with respect to the Lebesgue measure with norm | · |0 and scalar
product< ·, · >0. Let {φn}n∈N be a complete orthonormal system (CONS) in H0
and define an Md×d -valued function φ̂n(·) by

φ̂n :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φn 0 ....... 0
0 φn ..... 0

.............................

.............................

.............................
0 0 ....... φn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.13)

i.e., φ̂n(·) is a d × d matrix-valued function whose entries on the main diagonal
are all φn(·) and whose other entries are all 0. Set

βn(t) :=
∫ t

0

∫
φ̂n(p)w(dp, ds). (4.14)

10 The analysis of M∞,� processes and solutions of SPDEs in Chap. 9 is based on Proposition
4.3 and, in the present setting, requires bounded coefficients.
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Then the βn(·) are i.i.d. standard Rd -valued Brownian motions (or Wiener
processes).11 Moreover, for any Ỹ ∈ L loc,2,F (C((s, T ];M)) and r(·) ∈
L0,F (C([0,∞);Rd)) (the space of Rd -valued adapted continuous processes)
∫

J (r(t), p, Ỹ(t), t)w(dp, dt) =
∞∑

n=1

∫
J (r(t), p, Ỹ(t), t)φ̂n(p)dpdβn(t).

(4.15)

The right-hand side of (4.15) defines the increment of an Rd -valued square
integrable continuous martingale m(·).12 In particular, (4.11) implies for the
mutual quadratic variation of the one-dimensional components of m(t) :=
m(r(·), Ỹ(·), t) the following estimate:

[mk(t),m�(t)] ≤ cJ t. (4.16)


�

Notation

Let Gs,t (resp. Gt ) be the σ -algebra generated by w(dp, du) between s and t (resp. 0
and t) for t ≥ s. By analogy, for t ≥ s, G⊥

s,t and G⊥
t are the σ -algebras generated by

{dβ⊥,n(u)}n∈N between s and t and 0 and t , respectively. The cylinder set filtration
on C([s,∞);M) is denoted FM,s,t . We write FM,t if s = 0. Here, we used again the
abbreviation: M ∈ {M f ,M∞,� } etc. Completed σ -algebras will be denoted with a
bar on top of the σ -algebra, e.g. Ḡs,t .

Denote a solution of (4.9), if it exists, by rN (t, Ỹ, rN ,s, s). Further, if f is a
stochastic process on [s,∞) with values in some metric space, we set for t ≥ s

(πs,t f )(u) := f (u ∧ t), (u ≥ s).

In the following theorem (M, γ ) ∈ {(M f , γ f ), (M∞,� , γ� )}.
Theorem 4.5. Assume either (4.11) or (4.12) and ρ̃(·) ∈ {ρ(·), | · |}. Then

(1) To each s ≥ 0, r k
s ∈ L2,Fs (Rd), Ỹ ∈ L loc,2,F (C((s, T ];M)) (4.9) has a

unique solution rk(·, Ỹ, rk
s , s) ∈ L loc,2,F (C([s, T ];Rd)).

(2) Let Ỹi ∈ L loc,2,F (C((s, T ];M)) and rk
s,i ∈ L2,Fs (Rd), i = 1, 2. Then for any

T ≥ s and any stopping time τ ≥ s, which is localizing for Ỹi , i = 1, 2,

E sup
s≤t≤T∧τ

ρ̃2(rk(t, Ỹ1, rk
s,1, s)− rk(t, Ỹ2, rk

s,2, s))1{τ>s}

≤ cT,F,J ,σ,Ỹ,τ {E(ρ̃2(rk
s,1 − rk

s,2)1{τ>s})

+E
∫ T∧τ

s
(γ 2(Ỹ1(u)− Ỹ2(u))1{τ>s}du}.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.17)

11 Cf. Sect. 15.2.2.
12 The statement follows from Doob’s inequality (Theorem 15.32, Part (b)) and the fact that the

terms in the right-hand side of (4.15) are uncorrelated martingales, employing (15.92).
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Further, with probability 1 uniformly in t ∈ [s,∞)
rk(t, Ỹ, rk

s,1, s) ≡ rk(t, πs,t Ỹ, rk
s,1, s). (4.18)

(3) For any N ∈ N there is a RdN -valued map in the variables (t, ω, µ(·), rN , s),
0 ≤ s ≤ t <∞ such that for any fixed s ≥ 0

r N (·, . . . , ·, s) : Ω × C([s, T ];M)× RdN → C([s, T ];RdN ),

and the following holds:

(i) For any t ∈ [s, T ] r N (t, ·, . . . , ·, s) is Gs,t⊗G⊥,[1,N ]
s,t ⊗FM,s,t⊗BdN−BdN -

measurable.
(ii) The i th d-vector of r N = (r1, . . . , r i , . . . r N ) depends only on the i th d-

vector initial condition r i
s ∈ L2,Fs (Rd) and the Brownian motion β⊥,i (·),

in addition to its dependence on w(dq, dt) and Ỹ ∈ L2,F (C([s, T ];M)),
and with probability 1 (uniformly in t ∈ [s,∞))

r i
N (t, ·, Ỹ, r i

s , s) ≡ r i (t, Ỹ, r i
s , s), (4.19)

where the right-hand side of (4.19) is the i th d-dimensional component of
the solution of (4.9).

(iii) If u ≥ s is fixed, then with probability 1 (uniformly in t ∈ [u,∞))
r N (t, ·, πu,t Ỹ, r N (u, ·, πs,uỸ, rN ,s, s), u) ≡ r N (t, ·, πs,t Ỹ, rN ,s, s). (4.20)

Proof. Statements (1) and (2) are standard, and we prove them, without loss of
generality, on [0, T ] for fixed T > 0, s = 0 and N = 1. Whenever possible,
we suppress the dependence on s = 0 and the particle index i = 1 in our notation.
Moreover, by our global Lipschitz (and linear growth) assumptions we may, without
loss of generality, assume that the coefficients are time independent.

Further, our stopping times are localizing, i.e., for each δ > 0 and each b > 0
there is a stopping time τ and an F0-measurable set Ωb such that

P

{
sup

0≤t∧τ≤T
γ (Ỹ(t, ω))1|Ωb ≤ b

}
≥ 1 − δ.

Therefore, we may, without loss of generality, assume that

ess sup
ω

sup
0≤t≤T∧τ

γ (Ỹ(t)) := cY <∞.

(i) Let q�(· ∧ τ) ∈ L2,F (C([0,∞);Rd)) and set

q̃�(t) := q�(0)+
∫ t

0
F(q�(s), Ỹ�(s))ds +

∫ t

0

∫
J (q�(s), p, Ỹ�(s))w(dp, ds)

+
∫ t

0
σ⊥1 (q(s), Ỹ�(s))dβ⊥,1(s))
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whose right-hand side is a well-defined Itô integral, driven by a semimartin-
gale.13 Observe that for a constant c ≥ 1 and a ≥ 0

a ∧ c ≤ (a ∧ 1)c.

Therefore, working in the following steps ρ̃(·) ∈ {ρ(·), | · |}, we assume that,
without loss of generality, the constants in (4.11) are greater or equal to 1.

(ii) From the preceding estimate and cF ≥ 1 we obtain

|F(q1(s), Ỹ1(s))− F(q2(s), Ỹ2(s))| ≤ cF ρ̃(F(q1(s), Ỹ1(s))− F(q2(s), Ỹ2(s)))

Hence,

ρ̃

(∫ t∧τ

0
F(q1(s), Ỹ1(s))ds −

∫ t∧τ

0
F(q2(s), Ỹ2(s))ds

)

≤
∣∣∣∣
∫ t∧τ

0
F(q1(s), Ỹ1(s))ds −

∫ t∧τ

0
F(q2(s), Ỹ2(s))ds

∣∣∣∣

≤
∫ t∧τ

0
|F(q1(s), Ỹ1(s))− F(q2(s), Ỹ2(s))|ds

≤
∫ t∧τ

0
cF ρ̃

(
F(q1(s), Ỹ1(s))− F(q2(s), Ỹ2(s))

)
ds

≤ cF

{∫ t∧τ

0
cỸ ρ̃(q1(s)− q2(s))ds +

∫ t∧τ

0
γ (Ỹ1(s)− Ỹ(s))ds

}

(by (4.11), (a), or (4.12) , (a) )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.21)

where cỸ ≥ ess sup
ω

sup
0≤t<∞

γ (Ỹ1(t ∧ τ , ω) sup
ω

sup
0≤t<∞

γ (Ỹ2(t ∧ τ , ω)).
(iii) Similarly, by (4.11) and the independence of w� and β⊥,1

d∑
k,�=1

[∫ t∧τ

0

∫
{Jk�(q1(s), p, Ỹ1(s))− Jk�(q2(s), p, Ỹ2(s))}w(dp, ds)

]

+
d∑

k,�=1

[∫ t∧τ

0
{σ⊥1,k�(q1(s), Ỹ1(s))− σ⊥1,k�(q2(s), Ỹ2(s))}dβ⊥,1(s)

]

≤ cJ ,σ

{∫ t∧τ

0
c2
Ỹ ρ̃

2(q1(s)− q2(s))ds +
∫ t∧τ

0
γ 2(Ỹ1(s)− Ỹ2(s))ds

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.22)

13 Cf. Sect. 15.2.5.
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(iv) By the Cauchy–Schwarz and Doob inequalities14

E sup
0≤t≤T

ρ̃2(q̃�(t ∧ τ)) ≤ 3E ρ̃2(q(0))+ 3T
∫ T∧τ

0
cF ρ̃

2|F(q(s), Ỹ(s))|2ds

+3
d∑

k,�=1

E
[∫ T∧τ

0

{[ ∫
Jk�(q(s), p, Ỹ(s))w(dp, ds)

]

+
[
σ⊥1,k�(q(s), Ỹ(s))dβ⊥,1(s)

] ]}

≤ 3E ρ̃2(q(0))+ cF,J ,σ,T,τ E
∫ T∧τ

0
(1 + ρ̃2(q(s)))ds

(by (4.11) (b) or (4.12) (b))

≤ 3E ρ̃2(q(0))+ cF,J ,σ,T,τ E
∫ T

0
(1 + ρ̃2(q(s ∧ τ)))ds

The Gronwall inequality15 implies

E sup
0≤t≤T

ρ̃2(q̃�(t ∧ τ)) ≤ c̃F,J ,σ,T,τ E ρ̃2(q(0)), (4.23)

whence q̃�(· ∧ τ) ∈ L2,F (C([0,∞);Rd)).
(v) (4.21)–(4.23), the Cauchy-Schwarz and Doob inequalities imply

E sup
0≤t≤T

ρ̃2(q̃1(t ∧ τ)− q̃2(t ∧ τ))

≤ cF,J ,σ,T

{
E ρ̃2(q1(0)− q2(0))+ E

∫ T

0
c2
Ỹ ρ̃

2(q1(s ∧ τ)− q2(s ∧ τ))ds

+E
∫ T∧τ

0
γ 2(Ỹ1(s)− Ỹ2(s))ds

}
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.24)

(vi) Choosing first Ỹ1 ≡ Ỹ2, the existence of a continuous solution is derived by
the standard Picard-Lindelöf procedure, defining iteratively:

qn+1(t) := q(0)+
∫ t

0
F(qn(s), Ỹ�(s))ds +

∫ t

0

∫
J (qn(s), p, Ỹ�(s))w(dp, ds)

+
∫ t

0
σ⊥1 (qn(s), Ỹ�(s))dβ⊥,1(s)

q0(t) :≡ q(0).

By (4.23) and (4.24) qn(·) converge uniformly on the compact interval [0, T ]
in mean square towards a solution of (4.9). This follows from the contraction

14 Cf. Proposition 15.4 in Sect. 15.1.2 and Theorem 15.32 in Sect. 15.2.3.
15 Cf. Sect. 15.1.2, Proposition 15.5
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mapping principle.16 The uniqueness follows from (4.24) and Gronwall’s
inequality. Having thus established the existence of unique (continuous) so-
lutions r(·, Ỹ�, r0,�), � = 1, 2, (4.17) follows from (4.24) and Gronwall’s
inequality.

(vii) The relation (4.18) follows immediately from the construction.
(viii) Statement 3 is proved in Sect. 6. 
�
Remark 4.6. By Part (3) of Theorem 4.4 and the boundedness of the coefficients F ,
J , and σi the map

q %→ ψ i (t, q) := r̄ i
N (t, Ỹ, q) (4.25)

is in � from Proposition 4.3 for arbitrary input process Ỹ and i = 1, . . . , N . 
�

Next, we consider the Rd N -valued system of coupled SODEs (4.10). Since for
each ω the initial measure is a finite sum of point measures, it is finite. Therefore,

XN (s) :=
N∑

i=1

mi δr i (s),∈ L0,Fs (M).

Further, a solution of (4.10), if it exists, preserves the initial mass, i.e.,

XN (·,Rd) ≡
N∑

i=1
mi , where XN (t) :=

N∑
i=1

mi δr i (t). Therefore, we may take

Ỹ(t) := XN (t) :=
N∑

i=1
mi δr i (t) in Theorem 4.4. We endow Rd N with the metric

ρN (rN , qN ) := max
1≤i≤N

ρ(ri , qi ),

where rN := (r1, . . . , r N ), qN := (q1, . . . , qN ) ∈ Rd N .

Theorem 4.7. Assume (4.11) or (4.12) in addition to XN (s) ∈ L0,Fs (M f ).
Then, to each initial condition rN (s) ∈ L0,Fs (RdN ) (4.10) has a unique solution
rN (·, rN (s)) ∈ L0,F (C([s,∞);RdN )), which is a Markov process on RdN .

Proof.

(i) Assume, without loss of generality, s = 0. Let b > 0 and choose a localizing
stopping time τ > 0 for XN (0) such that

0 ≤ XN (0, ω,Rd)1{τn>0} ≤ b a.s

Since 1{τn>0} is F0-measurable, we may therefore, without loss of generality,
assume

16 Cf., Theorem 15.2 in Sect. 15.1.1. Picard-Lindelöf iterative approximations of the solutions of
SODEs are standard in stochastic analysis – cf., e.g., Gikhman and Skorokhod (1982), Chap.
IV.1, or Protter (2004), Chap. V.3. The argument for SODEs is essentially the same as for
ODE’s. For the latter case, cf. Coddington and Levinson, 1955, Chap. 1.3.
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0 ≤ XN (0, ω,Rd) ≤ b a.s. (4.26)

Define recursively for i = 1, . . . , N

qi
n+1(t) := qi (0)+

∫ t

0
F(qi

n(s),Yn(s))ds+
∫ t

0

∫
J (qi

n(s), p,Yn(s))w(dp, ds)

+
∫ t

0
σ⊥i (qi

n(s),Yn(s))dβ i,⊥(s),

where now

Yn(s) :=
N∑

i=1

mi δqi
n(s)
.

(ii) We now proceed, following the pattern of the proof of Theorem 4.5.17 We
compare two steps in the recursive scheme, indexed by 1 and 2 (instead of n
and m).

γ f (Y1(s),Y2(s)) = sup
‖ f ‖L ,∞≤1

∫
f (r)(Y1(s)− Y2(s))

= sup
‖ f ‖L ,∞≤1

N∑
i=1

mi

[
f (qi

1(s))− f (qi
2(s))

]

= sup
‖ f ‖L ,∞≤1

N∑
i=1

mi

[
f (qi

1(s))− f (qi
2(s))

]

ρ(qi
1(s), q

i
2(s))

ρ(qi
1(s), q

i
2(s))

≤
N∑

i=1

miρ(qi
1(s), q

i
2(s))

≤ bρN (q1,N (s), q2,N (s)),

i.e.,
γ f (Y1(s),Y2(s)) ≤ bρN (q1,N (s), q2,N (s)). (4.27)

(iii) Using estimates (4.21)–(4.24) in addition to (4.27) and letting “tilde” indicate
the next step, we obtain that for i = 1, . . . , N

E sup
0≤ t ≤ T∧τ

ρ2(q̃i
1(t), q̃

i
2(t))

≤ cF,J ,T {Eρ2(q1(0), q2(0))+ E
∫ T∧τ

0
cbρ

2
N (q1,N (s), q2,N (s)ds}.

(iv) Summing up from 1 to N and using

max
i=1,...,N

(ρ2(q̃i
1(t), q̃

i
2(t)) ≤

N∑
i=1

(ρ2(q̃i
1(t), q̃

i
2(t))

17 To simplify the notation we provide the argument only for the bounded metric ρ(·) under the
assumption (4.11). The corresponding steps, based on (4.12) can be obtained as in Theorem
4.5.



4.3 Equivalence in Distribution and Flow Properties for SODEs 73

in addition to Gronwall’s inequality, the contraction mapping principle implies
the existence of a unique continuous solution.

(v) The Markov property follows from the more general Proposition 15.64 in
Sect. 15.2.7. 
�

4.3 Equivalence in Distribution and Flow Properties for SODEs

We derive equivalence of the distributions of the solutions of (4.9) if we replace the
space–time white noise w(·, ·) by a space–time field with the same distribution. This
analysis is motivated by different space–time white noise fields w(·, ·) as a result of
shifts and rotations (cf. the following Chap. 5, (5.23)–(5.25), and Chap. 10. Finally,
we analyze the backward flow for (4.9).

For the analysis of equivalent distributions it is convenient to have a nice state
space for w(dp, dt) and the infinite sequence of i.i.d. Brownian motions {β⊥,n(·)}.
The representation (4.14)/(4.15) suggests for fixed t a state space on which we can
define spatial Gaussian standard white noise as a countably additive Gauss measure.
To generalize (3.45) to Rd -valued processes let Hd

0 be the Cartesian product H0 ×
. . . × H0 (d times). Endowed with the scalar product < ·, · >0,d as the sum of the
corresponding d scalar products < ·, · >0, Hd

0 is a real separable Hilbert space. The
usual definition of standard cylindrical Brownian motions18 implies that

W (t) :=
∞∑

n=1

φ̂n(·)
∫ t

0

∫
φ̂n(p)w(dp, ds) =

∞∑
n=1

φ̂n(·)βn(t),

W⊥(t) :=
∞∑

n=1

φ̂n(·)β⊥,n(t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.28)

define Hd
0-valued standard cylindrical Brownian motions. It follows from

Sects. 15.2.2 and 15.2.4 that

W (t) = ∂d

∂r1 . . . ∂rd

∫ t

0
w(·, ds), (4.29)

where the derivatives are taken in the distributional sense.19 To regularize W (·)
and W⊥(·), we need to choose an appropriate Hilbert distribution space. The pre-
cise definition and analysis are provided in Sect. 15.1.3 in the framework of the
well known Schwarz space S ′ of tempered distributions. We show in Sect. 15.1.3
((15.32)–(15.36)) that there is a Hilbert distribution space H0 ⊂ H−γ ⊂ S ′ with
γ > d such that, imbedded into H−γ , the H0-valued standard Brownian motion,

18 Cf. Sect. 15.2.2.
19 Cf. (2.10), (15.69), (15.126), and (15.127).
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defined by (3.45) becomes an H−γ -valued regular Brownian motion. More pre-
cisely, the γ is chosen such that

∞∑
n=1

‖φn‖2−γ <∞, (4.30)

which means that the imbedding H0 ⊂ H−γ is Hilbert-Schmidt.20 As in the
definition of Hd

0 , we define H−γ × . . .×H−γ (d times) and let 〈·, ·〉−γ,d be the sum
of the corresponding d scalar products 〈·, ·〉−γ . Setting

(Hw,d , 〈·, ·〉w,d) := (Hd−γ , 〈·, ·〉−γ,d), (4.31)

the imbedding
Hd

0 ⊂ Hw,d , (4.32)

is Hilbert-Schmidt. Hence, imbedded into Hw,d , W (·) and W⊥(·) become Hw,d -
valued regular Brownian motions. In Hw, W (·) and W⊥(·) are mean zero square
integrable continuous martingales. By Doob’s inequality for W̃ ∈ {W,W⊥}

E

{
sup

0≤t≤T
‖W̃ (t)‖2

w,d

}
≤ 4d

∞∑
n=1

‖φn‖2−γ T <∞, (4.33)

recalling that φ̂nβ
n(t) = (φnβ

n
1 (t), . . . , φnβ

n
d (t))

T and similarly for βn,⊥(·).
Consequently, the sums in (4.28), imbedded into Hw,d , converge uniformly on com-
pact intervals in mean square. It follows that

W (·), W⊥(·) ∈ L0,F (C([0,∞);Hw,d)). (4.34)

It is more convenient to analyze probability distributions on the “canonical” prob-
ability space. Set

Ω := C([0,∞);Hw,d × Hw,d × M)× RdN . (4.35)

Notation

(i) Let FHw,d×Hw,d×M,s,t denote the σ -algebra of cylinder sets in C([s, t];Hw,d ×
Hw,d ×M) and F̄Hw,d×Hw,d×M,s,t denotes the completion of FHw,d×Hw,d×M,s,t
with respect to the underlying probability measure P . F̄Hw,d×Hw,d×M,s,t ⊗BdN

is the filtration on the canonical probability space. Finally we set F̄ :=
F̄Hw,d×Hw,d×M,0,∞.

(ii) β⊥,[ j,k] is the R(k+1− j)d -dimensional standard Brownian motion with d-
dimensional components β⊥,i , i = j, . . . , k.

(iii) If f and g are random variables with values in some measurable space, we
write

f ∼ g,

if f and g have the same distribution.

20 Cf. (15.35)–(15.36).
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Hypothesis 4.2

Suppose for s ≥ 0 there are two sets of random variables (wi ,W⊥
i ,Yi , rs,i ), i =

1, 2, on (Ω,F , P) such that

(1) wi are two space–time white noises with Wi in L0,F (C([0,∞);Hw,d)) such

that in the (weak) representation (4.28) Wi (·, t) =
∞∑

n=1
φ̂n(·)βn,i (t), where

{βn,i (·)}n∈N are two families of independent Rd -valued standard Brownian mo-
tions.

(2) {βn,⊥,i }{n∈N,i=1,2} are two sequences of i.i.d. Rd -valued standard Brownian
motions, independent of the white noises wi , with representations W⊥,i in
L0,F (C([0,∞);Hw,d)).

(3) Ỹi ∈ L loc,2,F (C([s, T ];M)) and for T ≥ t ≥ u ≥ s

πu,t Ỹ1 ∼ πu,t Ỹ2.

(4) rN ,i,s ∈ L2,Fs (RdN ) and
rN ,1,s ∼ rN ,2,s .

Finally, suppose

(W1,W⊥
1 , Ỹ1, rN ,1,s) ∼ (W2,W⊥

2 , Ỹ2rN ,2,s)

in C([s, T ];Hw,d × Hw,d × M × RdN ). (4.36)


�

We denote by r̄N (·, wi , β
⊥,[1,N ], Ỹi , rN ,i,s, s) the unique continuous solutions of

(4.9) with input variables (wi , β
⊥,i,[1,N ], Ỹi , rN ,i,s), i = 1, 2, with properties from

Part (3) of Theorem 4.5.

Theorem 4.8. Assuming Hypothesis 4.2,

rN ( ·, w1, β
⊥,1,[1,N ], Ỹ1, rN ,1,s, s) ∼ rN (·, w2, β

⊥,2,[1,N ],
Ỹ2, rN ,2,s, s) in C[s, T ];RdN ). (4.37)

In particular, for any t ≥ s

rN (t, w1, β
⊥,1,[1,N ], Ỹ1, rN ,1,s, s) ∼ rN (t, w2, β

⊥,2,[1,N ], Ỹ2, rN ,2,s, s). (4.38)

Proof. By the results of Theorem 4.5, there is a solution map
=
r N : C([0, T ];Hw,d × Hw,d × M)× RNd → C([0, T ];RNd)

such that for all t ∈ [0, T ]
(πt

=
r )(·, ·, ·, ·) is F̄Hw,d×Hw,d×M,0,t ⊗ Bd − FRNd ,0,t -measurable, (4.39)

where FRNd ,0,t is the σ -algebra of cylinder sets on C([0, t];RNd). Moreover, in
C([0, t];RNd)
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=
r N (·, π·Wi , π·β⊥,i,[1,N ], π·Ỹi , rN ,0) ∼ r̄N (·, wi , β

⊥,i,[1,N ], Ỹi , , rN ,0), i ≡ 1, 2,
(4.40)

(cf. Ikeda and Watanabe (1981), Chap. IV). Expressions (4.36), (4.39), and (4.40)
imply (4.37) and (4.38). 
�

The SODE (4.9) describes the random “forward” flow. Next, we follow the pro-
cedure in Ikeda and Watanabe (1981), Chap. V, to construct the random “backward”
flow. Fix T > s and consider

dr i (t) = −F(r i (t), Ỹ(T + s − t), T + s − t)dt

+
∫

J (r i (t), p, Ỹ(T + s − t), T + s − t)w̌(dp, dt)

+σ⊥i (r i (t), p, Ỹ(T + s − t), T + s − t)dβ̌⊥,i (t),
r i (s) = r i (deterministic), t ∈ [s, T ], i = 1, . . . , N ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.41)

where
w̌(dp, t) := w(dp, T − t)− w(dp, T ),

β̌⊥,i (t) := β⊥,i (T − t)− β⊥,i (T ).

}
(4.42)

Replacing F(r, Ỹ(t), t) by −F(r, Ỹ(T + s − t), T + s − t), J (r, p, Ỹ(t), t) by
J (r, p, Ỹ(T +s−t), T +s−t), σ̃⊥i (r, Ỹ(t), t) , σ⊥i (r, Ỹ(T +s−t), T +s−t),w by
w̌ and β⊥,i by β̌⊥,i , Theorem 4.5 implies the existence of a unique Itô-solution of
(4.41). Moreover, setting Gt := Ǧt := σ(W̌ (u), u ≤ t) and G⊥,[ j,k]

t := Ǧ⊥,[ j.k]
t :=

σ({β̌⊥,i (u), u ≤ t, i = j, . . . , k} (where σ(·) is the completed σ -algebra), this
solution can be represented through the Ǧt⊗Ǧ⊥,[1,N ]

t ⊗FM,t⊗BN – BNd -measurable
map řN (t, ·, ·, s, w̌, β̌⊥,[1,N ]) of Part 3 of Theorem 4.5. The measurability properties
of ř allow us to define

ξN %→ řN (·, Ỹ, ξN , s, w̌, β̌⊥,[1,N ]) (4.43)

for any RN -valued random variable ξN such that for deterministic ξN = rN
řN (·, Ỹ, rN , s, w̌, β̌⊥,[1,N ]) is the unique Itô-solution of (4.41) with řN (s, Ỹ, r, s, w̌,
β̌⊥,[1,N ]) = rN .

Remark 4.9.

(i) In general, řN (·, Ỹ, ξN , s, w̌, β̌⊥,[1,N ]) cannot be interpreted as an Itô-solution
of (4.41) with initial condition ξN at time s, because ξN can be anticipating with
respect to w̌, β̌⊥,[1,N ].

(ii) Since in (4.43) we do not need the measurability in µ, we may always as-
sume Ỹ ∈ L0,F (C([s, T ];M)), etc. and assume that řN (t, Ỹ, ·, s, w̌, β̌⊥,[1,N ])
is measurable with respect to (ω, r). 
�

We show that (4.41) is indeed the SODE for the backward flow, under an addi-
tional smoothness assumption on the coefficients of (4.9). To this end, we introduce
the following notation, which will also be used in the following sections:
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Notation

For m ∈ N let Cm
b (R

d ,R) be the space of m times continuously differentiable
bounded real valued functions on Rd , where all derivatives up to order m are
bounded, Cm

0 (R
d ,R) is the subspace of Cm

b (R
d ,R) whose elements and deriva-

tives vanish at infinity and Cm
c (Rd ,R) the subspace of Cm

0 (R
d ,R), whose elements

have compact support. For m = 0 we drop the superscript in Cm
b (R

d ,R), etc.
To describe the order of differentiability of f : Rd → R we introduce the fol-

lowing notation on multiindices:

n = (n1, . . . , nd) ∈ (N ∪ {0})d .
|n| := n1 + . . . + nd . If n = (n1, . . . , nd) and m = (m1, . . . ,md), then n ≤ m

iff ni ≤ mi for i = 1, . . . , d. n < m iff n ≤ m and |n| < |m|. For arbitrary n,m
we define

n − m := (k1, . . . , dd),

where ki = (ni − mi ) ∨ 0, i = 1, . . . , d, n = (n1, . . . , nd), and m =
(m1, . . . ,md). Differential operators with respect to the space variables are usually
denoted by ∂ j, j ∈ (N ∪ {0})d , e.g., for j = ( j1, . . . , jd) we write

∂ j f (r) = ∂ j

(∂r j1)
j1 . . . (∂r jd )

jd
f (r).

However, if there are several groups of space variables, like (r, p, q) etc., we will
write ∂ j

r , ∂
j
q , etc. to indicate the variable on which ∂ j is acting. Partial derivatives of

first and second order may also be denoted by ∂k, ∂
2
k�, resp. ∂k,r , ∂

2
k�,r (indicating

again in the latter cases the relevant space variables). If f ∈ Cm
b (R

d ,R) we set

|‖ f |‖m := max
|j|≤m

sup
r∈Rd

|∂ j f (r)|. (4.44)

.
Abbreviate for u ∈ [0, T ]
F̃k(r, u) := Fk(r, Ỹ(u), u), k = 1, . . . , d;
J̃k�(r, p, u) := Jk�(r, p, Ỹ(u), u) k, � = 1, . . . , d;
σ̃⊥n,k�(r, u) := σ⊥n (r, Ỹ(u), u), k, � = 1, . . . , d, n, � = 1, . . . , N .

⎫⎪⎪⎬
⎪⎪⎭

(4.45)

Suppose that for some m ≥ 1

max
1≤k,�≤d

ess sup
ω∈Ω, 0≤u≤T

{|‖F̃k(·, u, ω)|‖m + max
|j|≤m+1

∣∣∣∣∣

∥∥∥∥∥
d∑
�=1

∫
(∂

j
r J̃ )2k�(·, p, u, ω)dp

∣∣∣∣∣

∥∥∥∥∥+ |‖σ̃⊥n,k�(·, u, ω)|‖m+1} <∞. (4.46)
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Remark 4.10. For homogeneous diffusion coefficients (and σ⊥n ≡ 0, n = 1, . . . , N )
condition (4.46) is similar to (8.35) on D̃, defined in (8.34) If, in addition, σ⊥n is not
identically 0, n = 1, .., N , then (4.46) is similar to (8.35) and (8.75), respectively
(cf. Chap. 8). Indeed, assuming |j| ≤ m + 1,

∫ ( d∑
�=1

(∂
j
r r J̃k�)(r, p, u)(∂ j

r r J̃k�)(r, p, u)dp

= ∂
j
r (∂

j
q

∫ d∑
�=1

J̃k�)(r, p, u)J̃k�

)
(q, p, u)dp|q=r

= ∂ j
r∂

j
q(−1)|j| D̃kk(r − q, u)|q=r 
�

Theorem 4.11. Fix T > s and assume (4.46) with m ≥ 1 in addition to (4.11).
Then, with probability 1,

r N(T−t, Ỹ, rN , s, w, β⊥,[1,N ])= ř(t, Ỹ, r(T−s, Ỹ, r, s, w, β⊥,[1,N ]), w̌, β̌⊥,[1,N ]),
(4.47)

uniformly in rN ∈ RN and t ∈ [s, T ], where the left- hand side in (4.47) is the
(ω, r)-measurable version of the solution of the “forward” SODE (4.9), and the
right-hand side is the measurable version (in (ω, r)) of the “backward” SODE
(4.41).

Proof. (6.33), (6.38), and (6.39) in Chap. 6 imply (4.47). 
�

4.4 Examples

Since the inclusion of a time dependence in the coefficients does not cause any ad-
ditional difficulty, it suffices to provide examples of time-independent coefficients.
Further, we note that examples of coefficients, depending on finite measures µ(dr)
can be immediately generalized to examples, depending on �(r)µ(dr), where
µ ∈ M∞,� . Therefore, it suffices to provide examples of coefficients F and J
that depend on finite measures. We support this claim analyzing at the end a simple
example of a diffusion kernel depending on measures from M∞,� .

We use the following abbreviation:

W0,1,1 := L1(Rd; dr)

where the right-hand side is the space of real valued functions on Rd which are
integrable with respect to the Lebesgue measure dr . The usual L1-norm will be
denoted ‖ · ‖0,1,1.
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Example 4.12. • (Fin.,F) Suppose there is a sequence of kernels Kn :=
(K1n, . . . , Kdn): Rd −→ Rd such that

(i) K�n ∈ C1
b(R

d ,R) ∩ W0,1,1 for n ∈ N ∪ {0}, � = 1, . . . , d;
(ii) sup

n∈N∪{0}
max�=1,...,d{|‖K�n|‖1 + ‖K�n‖L ,∞ + ∫ |K�n|(r)dr} =: cK <∞.

Further, for f ∈ W0,1,1 and µ ∈ M f we define

f ∗ µ∗n(r) :=
⎧⎨
⎩

∫
f (r − p)µ∗n(dp), if n ≥ 1 ,

f (r), if n = 0,

where
∫

f (r − p)µ∗n(dp) :=
∫

· · ·
∫

f (r − (p1 + · · · + pn))µ(dp1) · · ·µ(dpn).

Let two finite measures µ1 and µ2 be given, and suppose pn is a sequence of
nonnegative numbers such that

∞∑
n=1

pnn(γ f (µ1) ∨ γ f (µ2))
n ≤ cF (γ f (µ1) ∨ γ f (µ2)) <∞. (4.48)

Set

F(r, µi ) :=
∞∑

n=0

pn Kn ∗ µ∗n
i (r) i = 1, 2. (4.49)

We verify the Lipschitz assumption:

|F(r1, µ1)− F(r2, µ1)| ≤
d∑
�=1

∞∑
n=0

pn|
∫

· · ·
∫
(Kn�(r1 − (p1 + · · · + pn)))

−Kn�(r2 − (p1 + · · · + pn))µ1(dp1) · · ·µ1(dpn)|

≤ dcK

∞∑
n=0

pnρ(r1, r2)γ f (µ1)
n

Further,

|F(r2, µ1)− F(r2, µ2)| ≤
d∑
�=1

∞∑
n=0

pn|
∫

· · ·
∫

Kn�(r2 − (p1 + · · · + pn))

×(µ1(dp1) · · ·µ1(dpn)− µ2(dp1) · · ·µ2(dpn)|
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≤
d∑
�=1

∞∑
n=0

pn|
∫

· · ·
∫

Kn�(r2 − (p1 + · · · + pn))

×[(µ1(dp1)− µ2(dp1))µ1(dp2) · · ·µ1(dpn)

+
d∑
�=1

∞∑
n=0

pn|
∫

· · ·
∫

Kn�(r2 − (p1 + · · · + pn))µ2(dp1)

×(µ1(dp2) · · ·µ1(dpn)− µ2(dp2) · · ·µ2(dpn)|
...

≤
d∑
�=1

∞∑
n=0

pn

n∑
k=1

|
∫

· · ·
∫

Kn�(r2 − (p1 + · · · + pn))

×[µ2(dp1) · · ·µ2(dpk−1)(µ1(dpk)− µ2(dpk))µ1(dpk+1) · · ·µ1(dpn)|
with the usual interpretation of the factors if k = 1 or k = n

≤
d∑
�=1

∞∑
n=0

pnγ f (µ1, µ2)‖Kn�‖L ,∞,1(γ f (µ1) ∨ γ f (µ2))
n−1

≤ dcK

∞∑
n=0

pnγ f (µ1, µ2)(n − 1)(γ f (µ1) ∨ γ f (µ2))
n−1.

Applying the triangle inequality the previous two calculations yield

|F(r1, µ1)− F(r2, µ2)| ≤ cF ((γ f (µ1)∨ γ f (µ2))ρ(r1, r2)+ γ f (µ1, µ2)). (4.50)

Hence, F(r, µ) satisfies the assumptions on F with γ = γ f .
Let H2 denote the Sobolev space square integrable real-valued functions on Rd ,

which are twice differentiable in the generalized sense such that their first and sec-
ond partial derivatives are in H0. The Hilbert norm on H2 is denoted by ‖ · ‖2.
Further, ‖ · ‖L denotes the Lipschitz norm on the real-valued functions with domain
Rd . 21 
�

Example 4.13. • (Fin.,J ) Suppose there is a sequence of kernels �n := (�k�n) :
Rd −→ Md×d such that

(i) �k�n ∈ C2
b(R

d ,R) ∩ H2 for n ∈ N ∪ {0}, � = 1, . . . , d;
(ii) sup

n∈N∪{0}
maxk,�=1,...,d{|‖�k�n|‖2 + ‖�k�n‖2

L + ‖�k�n‖2} =: c� <∞.

Let two finite measures µ1 and µ2 be given, and suppose qn is a sequence of
nonnegative numbers such that

21 Cf. Sect. 15.1.4, (15.37).
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∞∑
n=1

qn(n + 1)((γ f (µ1) ∨ γ f (µ2))
n ≤ cJ ((γ f (µ1) ∨ γ f (µ2)) <∞.

Then

J (r, p, µi ) :=
∞∑

n=0

qn�n ∗ µ∗n
i (r − p), i = 1, 2, (4.51)

is homogeneous in the position coordinates and satisfies the assumptions on J with
respect to γ f .

Indeed,

d∑
k,�=1

∫
(Jk�(r1, p, µ1)− Jk�(r2, p, µ1))

2dp

≤
d∑

k,�=1

d∑
n,ñ

qn(γ f (µ1)
nnqñ(γ f (µ1)

ñ ñ sup
ζ,ζ̃{(∫

(�k�n(r1 − p + ζ )− �k�n(r2 − p + ζ ))2dp
) 1

2

(∫
(�k�n(r1 − p + ζ̃ )− �k�n(r2 − p + ζ̃ ))2dp

) 1
2
}

≤ d2c2
J γ

2
f (µ1)ρ

2(r1, r2).

By shift invariance of the Lebesgue measure,
∫ ∫ [∫

�k�n(r − p − p̃)�k�n(r − p − p̂)dp
]
(µ1 − µ2)(d p̃)(µ1 − µ2)(d p̂)

=
∫ ∫ [∫

�k�n( p̂ − p̃ − p)�k�n(−p)dp
]
(µ1 − µ2)(d p̃)(µ1 − µ2)(d p̂).

The function

F( p̂) :=
∫ ∫

�k�n( p̂ − p̃ − p)�k�n(−p)dp(µ1 − µ2)(d p̃)

is Lipschitz continuous and bounded. Indeed,

G( p̃) := sup
{ p̂2 != p̂1,| p̂2− p̂1|≤1}

1
ρ( p̂2 − p̂1)

∫ [
�k�n( p̂2 − p̃ − p)

−�k�n( p̂1 − p̃ − p)
]
�k�n(−p)dp

is Lipschitz continuous and bounded. A Lipschitz constant can be computed
as follows:
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∣∣∣∣
G( p̃2)− G( p̃1)

ρ( p̃2 − p̃1)

∣∣∣∣ ≤ sup
{ p̂2 != p̂1,| p̂2− p̂1|≤1}

1
ρ( p̂2 − p̂1)ρ( p̃2 − p̃1)

×
∣∣∣∣
∫
�k�n( p̂2 − p̃2 − p)− �k�n( p̂1 − p̃2 − p)− �k�n( p̂2 − p̃1 − p)

+�k�n( p̂1 − p̃1 − p)�k�n(−p)dp
∣∣∣∣

= sup
{ p̂2 != p̂1,| p̂2− p̂1|≤1}

∣∣∣∣∣∣
d∑

i, j=1

( p̂2, j − p̂1, j )( p̃2, j − p̃1, j )

ρ( p̂2 − p̂1)ρ( p̃2 − p̃1)

∫ 1

0

∫ 1

0
dα dβ

×
∫
∂2

i, j�k�n( p̂1 + β( p̂2 − p̂1)− p̃1 − α( p̃2 − p̃1)− p)�k�n(−p)dp

∣∣∣∣∣∣

≤
d∑

i, j=1

∫ 1

0

∫ 1

0
dα dβ

∣∣∣∣
∫
∂2

i, j�k�n( p̂1 + β( p̂2 − p̂1)

− p̃1 − α( p̃2 − p̃1)− p)�k�n(−p)dp
∣∣∣∣

≤
d∑

i, j=1

∫ 1

0

∫ 1

0
dα dβ

(∫
(∂2

i, j�k�n)
2( p̂1 + β( p̂2 − p̂1)− p̃1

−α( p̃2 − p̃1)− p)dp
) 1

2
(∫

�2
k�n(−p)dp

) 1
2

(by the Cauchy-Schwarz inequality)

=
d∑

i, j=1

(∫
(∂2

i, j�k�n)
2(−p)dp

) 1
2
(∫

�2
k�n(−p)dp

) 1
2

(by the shift invariance of the Lebesgue measure dp)

≤ d‖�k�n‖2‖�k�n‖0(
by the Cauchy-Schwarz inequality with respect to

d∑
i, j=1

)
.

Hence, ∣∣∣∣
F( p̂2)− F( p̂1)

ρ( p̂2, p̂1)

∣∣∣∣ ≤ d‖�k�n‖2‖�k�n‖0γ f (µ1 − µ2).

Altogether, we obtain:
∣∣∣∣
∫ ∫ [∫

�k�n(r − p − p̃)�k�n(r − p − p̂)dp
]
(µ1 − µ2)(d p̃)(µ1 − µ2)(d p̂)

∣∣∣∣

≤ d‖�k�n‖2‖�k�n‖0γ
2
f (µ1 − µ2).

Using this bound in addition to the triangle inequality, we obtain, repeating the
calculations for (Fin.,F), the global Lipschitz property:
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d∑
k,�=1

∫
(Jk�(r2, p, µ1)− Jk�(r1, p, µ2))

2 dp

≤ c2
J ,d((γ f (µ1) ∨ γ f (µ2))

2ρ2(r2 − r1)+ γ 2
f (µ1 − µ2)),

(4.52)

where again the Lipschitz constant at γ f (µ2, µ1)may be chosen independent of the
mass of the measures. 
�
Example 4.14. (Infin.,J ) Let us analyze a version of the above example for n = 1
and µ ∈ M∞,� .

Let � = (�k�) ∈ Md×d with its one-dimensional components �k� ∈
C2

b(R
d ,R) ∩ H2. Set

J̃ (r, p, µ) :=
∫
�(r − p − q)�(q)µ(dq) (4.53)

Abbreviate

Dk�(r2 − r1) :=
d∑

m=1

∫
�km(r2 − p)��m(r1 − p)dp

and note that Dk�(r2 − r1) = Dk�(r1 − r2), i.e, Dk�(·) is even. Further, Dk�(·) ∈
C2

b(R
d ,R). Then

d∑
m=1

∫
(J̃km(r2, p, µ)− J̃km(r1, p, µ))2dp

=
d∑

m=1

∫ ∫ ∫
(�km(r2 − p − q)− �km(r1 − p − q))(��m(r2 − p − q̃)

−��m(r1 − p − q̃))dp�(q)µ(dq)�(q̃)µ(dq̃)

=
∫ ∫ [

2Dk�(q̃ − q)− 2Dk�(q̃ − q + r2 − r1)
]
�(q)µ(dq)�(q̃)µ(dq̃)

Since Dk�(·) is even and in C2
b(R

d ,R) it follows that

|Dk�(q̃ − q)− Dk�(q̃ − q + r2 − r1)| ≤ c2
J ρ

2(r2 − r1).

This implies in particular that Dk� is a bounded Lipschitz function. Hence,

d∑
m=1

∫
(J̃km(r2, p, µ)− J̃km(r1, p, µ))2dp ≤ c2

J γ
2
�(µ)ρ

2(r2, r1).



84 4 Stochastic Ordinary Differential Equations: Existence, Uniqueness, and Flows Properties

Further,

d∑
m=1

∫
(J̃km(r, p, µ2)− J̃km(r, p, µ1))

2dp

=
d∑

m=1

∫ ∫ ∫
(�km(r − p − q)(��m(r − p − q̃)dp�(q)�(q̃)(µ2(dq)

−µ1(dq))(µ2(dq̃)− µ1(dq̃))

=
∫ ∫

Dk�(q̃ − q)�(q)(µ2(dq)− µ1(dq))�(q̃)(µ2(dq̃)− µ1(dq̃))

≤ c2
J γ

2
�(µ2, µ1).

Altogether,

d∑
m=1

∫
(J̃km(r2, p, µ2)− J̃km(r1, p, µ1))

2dp ≤ c2
J ((γ� (µ1) ∧ γ� (µ2))

×ρ2(r2 − r1)+ γ 2
�(µ2 − µ1)).

(4.54)
Recall that because of the mass conservation we may assume that γ f (Ỹ(t, ω)) =
γ f (Ỹ(0, ω)) if γ f (Ỹ(0, ω)) ≤ c < ∞. Hence, we easily see that J (r, µ) satisfies
the assumption (4.11), provided we work with L loc,2,F (C((s, T ];M f )) and assume
that the total mass of the measures Ỹ(0, ω) is bounded.

Restricting the Ỹ(·) ∈ L loc,2,F (C((s, T ];M�)) to measure processes generated
by flows in the sense of Proposition 4.3 allows us to use stopping time techniques
to enforce uniform Lipschitz bounds on the coefficients F , J and σ⊥ (cf. the proof
of Proposition 4.3 in Sect. 15.2.8). 
�



Chapter 5
Qualitative Behavior of Correlated Brownian
Motions

5.1 Uncorrelated and Correlated Brownian Motions

We define correlated Brownian motions and compare their space–time correlations
with uncorrelated Brownian motions. Further, some simple properties of correlated
Brownian motions are derived.

Recall the N-particle motion described by (2.11) where we may incorporate
the coefficient α into the definition of Gε. By Theorems 4.5 or 4.7, (2.11) has a
unique solution for every adapted and square integrable initial condition r i (0), i =
1, . . . , N . Let us now generalize (2.11) to the following system of SODEs in integral
form, which is a special case of equations (4.9) and (4.10).

r(t, r i
0) = r i

0 +
∫ t

0

∫
�ε(r(s, r i

0), q, t)w(dq, dt), i = 1, . . . , N . (5.1)

As in (4.9) and (4.10), w(dq, dt) is a d-dimensional space–time white noise and
�ε(r, q) is an Md×d -valued function such that Hypothesis 4.1 holds with �ε re-
placing J . Hypothesis 4.1 guarantees the existence and uniqueness of the solution
of (5.1). In addition, we assume that the kernel function �ε depends on a correlation
length parameter ε > 0. Let us denote the square integrable continuous martingales
from the right-hand side of (5.1) by

mε(t, r i
0) :=

∫ t

0

∫
�ε(r(u, r i

0), q)w(dq, du), i = 1, . . . , N . (5.2)

We may use the increments of mε(t, r i
0) as a stochastic perturbation of a deter-

ministic ODE. Of particular interest are the special cases of (4.9) or (4.10), if we
replace J by �ε and assume σ⊥ ≡ 0. We may simplify the set of SODEs even
further, assuming the initial conditions to be deterministic points r i

0 at time t = 0
and r i

0 != r j
0 , if i != j . To be specific, let us consider (4.10). We may then rewrite

the resulting SODE in the following equivalent form:

dr i
N (t) = F(r i

N (t),XN (t), t)dt + mε(dt, r i
0),

r i
N (0) = r i

0, i = 1, . . . N , XN (t) :=
N∑

i=1

mi δr i
N (t)
, mi ∈ R

⎫⎪⎪⎬
⎪⎪⎭

(5.3)

85
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where the unperturbed ODE is cast in the form

∂

∂t
r i

N (t) = F(r i
N (t),XN (t), t),

r i
N (0) = r i

0, i = 1, . . . N , XN (t) :=
N∑

i=1

mi δr i
N (t)
, mi ∈ R.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.4)

In a more traditional approach, the stochastic perturbation of (5.4) is modeled by
i.i.d. Brownian motions β(·, r i

0), i = 1, . . . , N , with variance parameter D > 0.
The initial condition r i

0 specifies the Brownian motion that perturbs the motion of
the i th particle, yielding the following system of SODEs

dr⊥N i (t) = F(r⊥N i (t),XN (t), t)dt + β(dt, r i
0),

r i
N (0) = r i

0, i = 1, . . . N , XN (t) :=
N∑

i=1

mi δr i
N (t)
, mi ∈ R.

⎫⎪⎪⎬
⎪⎪⎭

(5.5)

Remark 5.1. There seem to be three reasons for the use of (5.5).

• The first reason is the relatively simple space–time correlations of the noise
β(dt, r i

0).• The second reason is related to the deterministic behavior of XN (t), as N −→ ∞
if the masses mi ≈ 1

N . We refer the reader to Chap. 14 for more details on the
macroscopic limit problem and will focus here our attention on the space–time
correlations.

• The third reason is historical precedence: Einstein (1905) derives, in his first
paper on Brownian motion, the diffusion equation with constant diffusion coef-
ficient ×∆, assuming that “neighboring particles are sufficiently separated.” On
the Basis of Einstein’s arguments, scientists, more or less tacitly, assume that the
Brownian particles are sufficiently separated.1 
�
Following the analysis of both generalized and classical random processes and

random fields by Gel’fand and Vilenkin (1964), we choose test functions from the
Schwarz space of infinitely often differentiable and rapidly decreasing real-valued
functions on R, S(R), for the time parameter.2 The duality between functions from
S(R) and its dual is denoted by (·, ·). Note that the deterministic equation (5.4)
is perturbed by the time-derivatives of the Brownian motions β(·, r0), where we
are dropping the superscript “i” at the initial condition, since the initial condi-
tions can vary on the continuum Rd . We choose ϕ,ψ ∈S(R) and we obtain from
(15.1120/(15.113) in Sect. 15.2.4

1 It is obvious that two Brownian particles at a close distance must be correlated. One argument
to support this claim is the depletion phenomenon. The main goal of this chapter is to define a
model of correlated Brownian motions, which at large distance are approximately uncorrelated
but at distances less or equal

√
ε show attractive behavior. Under appropriate assumptions (cf.

(5.10) and Sect. 5.3) we show that mε(·, r0), r0 ∈ Rd , may serve as a model for correlated
Brownian motions with the desired properties.

2 We refer the reader to our Sect. 15.1.3 for a description of the Schwarz space.
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E
(
ϕ,

(
d
dt

)
βk(·, r0)

)(
ψ,

(
d
dt

)
β�(·, r̃0)

)

=
∫
ϕ(t)ψ(t)dt Dδ0,d(r0 − r̃0)

=
∫ ∞

0

∫ ∞

0
ϕ(t)ψ(s)δ0(t − s)dt ds Dδ0,d(r0 − r̃0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

Here, δ0(t − s) and δ0,d(r0 − r̃0) are the delta-functions with support in 0 in R
and Rd , respectively. We refer to Lemma 15.45 in Sect. 15.2.4, which shows that for
k = 1, . . . , d and r0 ∈ Rd the generalized random processes d

dt βk(·, r0, ω) are with
probability 1 elements of S ′(R), i.e., of the strong dual of S(R). Recall the definition
of the tensor product between the bilinear functionals δ0(t − s) and δ0,d(r0 − r̃0),
denoted δ0,d(r0 − r̃0)⊗δ0(t − s). Denoting the space–time correlations by Covd+1,
we obtain

Covd+1 = Dδ0,d(r0 − r̃0)⊗ δ0(t − s). (5.7)

The derivation (5.7) begs the question concerning the space–time correlations of
the stochastic perturbations in (5.3). We recall the definition of the tensor quadratic
variation of a vector-valued martingale, as given by Metivier and Pellaumail (1980),
Sect. 2.3. In case of finite-dimensional martingales the tensor quadratic variation
reduces to the mutual quadratic variation of all components of the vector-valued
martingale. The tensor quadratic variation of the R2d -valued continuous square in-
tegrable martingale (mε(·, r0),mε(·, r̃0)) is defined by

[mε,k(t, r0),mε,�(t, r̃0)] =
∫ t

0

∫ d∑
m=1

�ε,km(r(u, r0), q)�ε,�m(r(u, r̃0), q)dq du,

k, � = 1, . . . , d, r0, r̃0 ∈ Rd .

⎫⎪⎬
⎪⎭

(5.8)

Expression (5.8) has a derivative in t . It follows from Itô’s formula that this deriva-
tive serves as the diffusion matrix in an equation for the mass distribution associated
with (5.1):

Dε,k�(r, r̃) :=
∫ d∑

m=1

�ε,km(r, q)�ε,�m(r̃ , q)dq,

where r(t, r0) = r, r(t, r̃0) = r̃ .

⎫⎪⎪⎬
⎪⎪⎭

(5.9)

The diffusion matrix in M(2d)×(2d) consists of 4 d × d matrices, which describe
the spatial pair correlations between the motions of two given particles, indexed by
r0 and r̃0, at a given time.

Of special interest are the block diagonal d × d matrices, i.e., when r0 = r0 or
r̃0 = r̃0, in particular, for the case of spatially homogeneous diffusion coefficients,
i.e., when the diffusion coefficients satisfy

Dε,k�(r, q) = Dε,k�(r − q) ∀r, q. (5.10)
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If r0 = r̃0 and the diffusion matrix is homogeneous, the uniqueness of the solu-
tions implies that the tensor quadratic variation for one given particle is a constant
matrix times t . We remark that the class of equations (5.1) with resulting spatially
homogeneous diffusion matrix includes those equations where the kernel function
�ε is itself spatially homogeneous, i.e., where

�ε(r, q) = �ε(r − q) ∀r, q. (5.11)

Indeed, assuming (5.11), the shift invariance of the Lebesgue measure yields

Dε,k�(r(u.r0), r(u, r̃0))=
∫ d∑

m=1

�ε,km(r(u, r0)− q)�ε,�m(r(u, r̃0)− q)dq

=
∫ d∑

m=1

�ε,km(r(u, r0)− r(u, r̃0)− q)�ε,�m(−q)dq

=: Dε,k�(r(u, r0)− r(u, r̃0)).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.12)

However, we show in Chap. 7 that there are also spatially inhomogeneous
�ε(r, q) with spatially homogeneous diffusion matrix. The key observation for the
remainder of this section is the following.

Proposition 5.2. Suppose the diffusion matrix associated with (5.1) is spatially
homogeneous. Then, for each r0 M(·, r0), defined by (5.2), is a d-dimensional
Brownian motion with diffusion matrix

⎛
⎜⎜⎜⎝

Dε,11(0) Dε,12(0) . . . Dε,1d(0)
Dε,21(0) Dε,22(0) . . . Dε,2d(0)

...
Dε,d1(0) Dε,d2(0) . . . Dε,dd(0)

⎞
⎟⎟⎟⎠ (5.13)

Proof. The proposition is a direct consequence of a d-dimensional generalization
of Paul Levy’s theorem.3 
�

Henceforth we assume that the diffusion matrix, associated with (5.1), is spatially
homogeneous, i.e., that (5.10) holds. If certain properties hold for the more general
case of a possibly inhomogeneous diffusion matrix such as Propositions 5.4, 5.5,
and Corollary 5.6, we will state this explicitly.4

The computation of the spatial correlations for d
dt β(·, r0) is easy because of the

independence assumptions. To derive the corresponding space–time correlations
for d

dt mε(·, r0), we treat r0 as a variable and, referring to the calculations in Sect.
15.2.4, we have that d

dt mε(·, ·, ω) ∈ S ′(Rd+1), the dual of the infinitely often differ-
entiable, rapidly decreasing real-valued functions on Rd+1. Choose ϕd , ψd ∈ S(Rd)
and ϕ,ψ ∈ S(R). We show in (15.113)/(15.119) of Sect. 15.2.4 that, using the ten-
sor quadratic variation of the martingale (mε(·, r0),mε(·, r̃0), we obtain the follow-
ing random covariance for the space–time random field d

dt mε(·, ·)
3 Cf. Theorem 15.37 in Sect. 15.2.3.
4 Cf. Remark 5.7.



5.1 Uncorrelated and Correlated Brownian Motions 89

Covd+1,ω

[
(ϕdϕ,

d
dt

mε(·, ·))(ψdψ,
d
dt

mε(·, ·))
]

=
∫ ∫ ∫ ∞

0

∫ ∞

0
ϕd(r0)ψd(r̃0)ϕ(t)ψ(s)δ0(t − s)

∫ d∑
m=1

�ε,km(r(t, r0, ω), q)�ε,�m(r(s, r̃0, ω), q)dq ds dt dr0 dr̃0.

Hence, employing (5.9) and (5.10) in addition to the (15.119), the random co-
variance is an Md×d -valued bilinear functional on S(Rd+1)

Covd+1,ω = δt−s ⊗ Dε(r(t, r0, ω)− r(s, r̃0, ω)). (5.14)
The space–time correlations for mε(·, ·), Covd+1, are obtained by taking the

mathematical expectation in (5.14):

Covd+1 = δt−s ⊗ E(Dε(r(t, r0)− r(s, r̃0))). (5.15)

Observe that the joint motion of (mε(·, r0),mε(·, r̃0)) for r0 != r̃0 is not Gaussian,
because the 2d × 2d-diffusion matrix is not constant in the space variable. We are
now ready to formulate the main concept of this section:

Definition 5.3. Suppose the diffusion matrix associated with (5.1) is spatially
homogeneous. The N d-dimensional martingales mε(·, r i ), defined by (5.2),
i = 1, . . . , N, are called “N d-dimensional correlated Brownian motions with
start in 0 and the pair space–time correlation is given by (5.15). If, in addi-
tion, the initial conditions in (5.1) are deterministic, the solutions r(·, r i

0), i =
1, . . . N , are called “N d-dimensional correlated Brownian motions with start in
(r1

0 , . . . , r
N
0 ).” 
�

In the following proposition we allow adapted random initial conditions. We then
show that particles, performing correlated Brownian motions and starting with osi-
tive probability at the same point, will stick together with the same probability.

Proposition 5.4. Let A := {ω : r i
0(ω) = r j

0 (ω)} and assume P(A) > 0. Then,

r(·, r i
0)1A ≡ r(·, r j

0 )1A wi th probabili t y 1. (5.16)

Proof. (i) Set rA,0 := r i
01A and let rA(t, rA,0) be the unique solution of the stochas-

tic integral equation

rA(t, rA,0) = rA,0 +
∫ t

0

∫
�ε(rA(s, rA,0), q)w(dp, ds)−

∫ t

0

∫
�ε(0, q)w(dp, ds)1Ω\A,

(5.17)
Suppose m ∈ {i, j}. Then,

r(t, rm
0 )1A = rA,0 +

∫ t

0

∫
�ε(r(s, rm

0 ), q)w(dp, ds)1A

= rA,0 +
∫ t

0

∫
�ε(r(s, rm

0 )1A, q)w(dp, ds)1A

(since the integral is 0 for ω /∈ A we may change the values of � for those ω)
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= rA,0 +
∫ t

0

∫
�ε(r(s, rm

0 )1A, q)w(dp, ds)−
∫ t

0

∫
�ε(r(s, rm

0 )1A, q)w(dp, ds)1Ω\A

= rA,0 +
∫ t

0

∫
�ε(r(s, rm

0 )1A, q)w(dp, ds)−
∫ t

0

∫
�ε(0, q)w(dp, ds)1Ω\A

(since we now may change the values of � for ω ∈ A) .
By the uniqueness of the solution of (5.1) we conclude that with probability 1

r(·, r i
0)1A ≡ rA(·, rA,0) ≡ r(·, r j

0 )1A. 
�
Next, let us show that the large particles solving (5.1) and starting at different

positions, will never collide.

Proposition 5.5.5
Suppose i != j and

P{ω : |r i
0(ω)− r j

0 (ω)| = 0} = 0.

Then
P{∪t≥0{ω : |r(t, ω, r i

0)− r(t, ω, r j
0 )| = 0}} = 0. (5.18)

Proof. Set
τ := inf{t > 0 : |r(t, r i

0)− r(t, r j
0 )| = 0},

where, as customary, we set τ = ∞ if the set in the right-hand side is empty. τ is
a stopping time.6 We need to show τ = ∞ a.s. Abbreviate

g(r(t, r i
0), r(t, r

j
0 ), p)

:=
{
|r(t, r i

0)− r(t, r j
0 )|−2(r(t, r i

0)− r(t, r j
0 )) · (�ε(r(t, r i

0), p)− �ε(r(t, r j
0 ), p)), if t < τ,

0, if t ≥ τ and τ <∞ .

Note that the assumptions on �ε imply a global Lipschitz condition. Therefore, there
is also a finite constant c1 such that

∫ t

0

∫
g2(r(s, r i

0), r(s, r
j

0 ), p)dp ds ≤ c1t ∀t.

Hence, employing Walsh (1986), Chap. 2, we obtain that
∫ t

0

∫
g(r(s, r i

0), r(s, r
j

0 ), p)w(dp, ds)

is a continuous adapted square integrable martingale whose quadratic variation is
bounded by c1t . Again, by the assumptions on �ε, there is a finite constant c2 such

5 The proof is an adaptation of a proof by Krylov (2005) to our setting. An alternative proof was
provided by Dawson (1993) under the assumption E |r i

0 − r j
0 |−2 <∞.

6 Cf. Liptser and Shiryayev (1974), Chap. 1.3, Lemma 1.11.



5.1 Uncorrelated and Correlated Brownian Motions 91

that for the increments of the mutual quadratic variations the following estimate
holds:

d∑
k,�=1

d
[∫
(�ε,k(r(t, r i

0), p)− �ε,k(r(t, r j
0 ), p))w(dp, dt),

∫
(�ε,�(r(t, r i

0), p)− �ε,�(r(t, r j
0 ), p))w(dp, dt)

]

=
d∑

k,�=1

∫
(�ε,k(r(t, r i

0), p)− �ε,k(r(t, r j
0 )− p))(�ε,�(r(t, r i

0), p)

−�ε,�(r(t, r j
0 ), p))dp dt

≤ c2|r(t, r i
0)− r(t, r j

0 )|2dt.

Hence,

f (r(t, r i
0), r(t, r

j
0 ))

:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑d

k,�=1

∫
(�ε,k(r(t,r i

0),p)−�ε,k(r(t,r j
0 ),p))(�ε,�(r(t,r

i
0),p)−�ε,�(r(t,r j

0 ),p))

|r(t,r i
0)−r(t,r j

0 )|2
dp,

if t < τ,

0, if t ≥ τ and τ <∞,

is a bounded, dt ⊗ dP-measurable adapted process. The Itô formula yields

d|r(t, r i
0)− r(t, r j

0 )|2 = |r(t, r i
0)− r(t, r j

0 )|2
∫

g(r(t, r i
0), r(t, r

j
0 ), p)w(dp, ds)+ |r(t, r i

0)

−r(t, r j
0 )|2 f (r(t, r i

0), r(t, r
j

0 ))dt. (5.19)

Consequently, |r(t, r i
0)− r(t, r j

0 )|2 is the solution of a bilinear SODE, driven by
a “nice” semi-martingale. We verify the following representation by Itô’s formula:

|r(t ∧ τ, r i
0)− r(t ∧ τ, r j

0 )|2

= |r i
0 − r j

0 |2 exp
[ ∫ t∧τ

0

∫
g(r(s, r i

0), r(s, r
j

0 ), p)w(dp, ds)

+
∫ t∧τ

0
( f (r(s, r i

0), r(s, r
j

0 ))

−1
2

∫
g2(r(s, r i

0), r(s, r
j

0 ), p)dp)ds
]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.20)

We obtain from the assumption and (5.20) that τ = ∞ a.s. 
�
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Propositions 5.4 and 5.5 together imply the following:

Corollary 5.6. Let A := {ω : r i (0, ω) = r j (0, ω)} and assume 1 > P(A) > 0.
Then ∀t ≥ 0

r(t, ω, r i
0) = r(t, ω, r j

0 ) if ω ∈ A, and r(t, ω, r i
0) != r(t, ω, r j

0 ) ∀t if ω /∈ A.
(5.21)


�
Remark 5.7. Propositions 5.4, 5.5, and Corollary 5.6 also hold for the solutions of
(5.1) with inhomogeneous diffusion matrix, since we have not used the homogeneity
of the diffusion matrix in the proofs. 
�

5.2 Shift and Rotational Invariance of w(dq, dt)

We prove shift and rotational invariance of w(dq, dt).

Denote by O(d) the orthogonal d × d matrices over Rd , i.e., O(d) := {Q ∈
Md×d : det(Q) = ±1}. Let h ∈ Rd and Q ∈ O(d). Let A be a bounded Borel set
in Rd and define the spatially shifted (resp. rotated) space–time white noise by∫

A
w−h(dq, ds) :=

∫
A+h

w(dq, ds),
∫

A
wQ−1(dq, ds) :=

∫
Q A
w(dq, ds).

⎫⎪⎪⎬
⎪⎪⎭

(5.22)

Recall that

ŵ(r, t) :=
∫ t

0

∫ rd

0
. . .

∫ r1

0
w(dq, ds)

is called a “Brownian sheet,” if ri ≥ 0, i = 1, . . . , d. Although we will not need
the notion of the Brownian sheet in what follows, we remark that for r, r − h and
Q−1r vectors with nonnegative components (5.22) may be written as transforma-
tions of the Brownian sheet:7

ŵ−h(r, t) := ŵ(r − h, t),

ŵQ−1(r, t) := ŵ(Q−1r, t).

}
(5.23)

Let h∗ denote the shift operator on H0 defined through

(h∗ f )(r) := f (r + h),

where f ∈ H0. Similarly, we define the rotation operator Q∗ on H0 through

(Q∗ f )(r) := f (Qr).

7 We refer to Sect. 15.2.4, in particular, to (15.125) for an extension of the Brownian sheet to
Rd × [0,∞).
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Let {φn} be a CONS in H0 and define H0-valued standard cylindrical Brownian
motions W−h(t),WQ−1(t) by:

W−h(t) :=
∑
n∈N

φn(·)
∫
φn(q)w−h(dq, t),

WQ−1(t) :=
∑
n∈N

φn(·)
∫
φn(q)wQ−1(dq, t).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.24)

Note that
∫

1A(q)w−h(dq, t) =
∫

1{A+h}(q)w(dq, t) =
∫

1A(q − h)w(dq, t),

and
∫

1A(q)wQ−1(dq, t) =
∫

1Q A(q)w(dq, t) =
∫

1A(Q−1q)w(dq, t).

Therefore,

∑
n∈N

φn(·)
∫
φn(q)w−h(dq, t) =

∑
n∈N

φn(·)
∫
φn(q − h)w(dq, t)

=
∑
n∈N

(h∗φn)(· − h)
∫
φn(q − h)w(dq, t);

∑
n∈N

φn(·)
∫
φn(q)wQ−1(dq, t) =

∑
n∈N

φn(·)
∫
φn(Q−1q)w(dq, t)

=
∑
n∈N

(Q∗φn)(Q−1(·))
∫
φn(Q−1q)w(dq, t).

Choose a suitable Hilbert distribution space H−γ as in Sect. 15.1.3 (15.36), such
that the imbedding

H0 ⊂ H−γ .

is Hilbert-Schmidt.8 Set

Hw := H−γ , (for some arbitrary fixed) γ > d

Then, W−h(t),WQ−1(t), and W (t), are regular Hw-valued Brownian motions
with continuous sample paths. Let us now show that the systems {(h∗φ)n} and
{(Q∗φ)n} are complete orthonormal systems (CONS) in H0.

8 Cf. also Chap. 4 (4.31).
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∫
(Q∗φn)(q)(Q∗φm)(q)dq =

∫
φn(Qq)φm(Qq)dq

=
∫
φn(q)φm(q)|det(Q−1)|dq = δn,m,

because |det(Q−1)| = 1. The completeness follows from

0 =< f, φn(Q(·)) >0 ∀n iff 0 =< f (Q−1(·)), φn(·) >0 ∀n

iff a.e. 0 = f (Q−1(q)) iff a.e. 0 = f (q), because Q−1 is a bijection.

Therefore, for f ∈ H0

< f,WQ−1(t) >0 =
∑
n∈N

∫
φn(q) f (q)dq

∫
φn(q)wQ−1(dq, t)

=
∑
n∈N

∫
φn(q) f (q)dq

∫
φn(Q−1q)w(dq, t)

=
∑
n∈N

∫
φn(Q−1q) f (Q−1q)|det(Q)|dq

∫
φn(Q−1q)w(dq, t)

=
∑
n∈N

∫
φn(Q−1q)(Q−1∗ f )(q)dq

∫
φn(Q−1q)w(dq, t)

< (Q−1∗ f ),W (t) >0 .

But
< (Q−1∗ f ),W (t) >0∼ N (0, |Q−1∗ f |20) = N (0, | f |20),

because |Q−1∗ f |20 = | f |20. Similarly for {(h∗φn)}. As a consequence we obtain

Proposition 5.8.

WQ−1(·) ∼ W−h(·) ∼ W (·) in C([0,∞);Hw), (5.25)

i.e., all three processes are different versions of the standard cylindrical process
W (·) in H0. 
�

5.3 Separation and Magnitude of the Separation of Two
Correlated Brownian Motions with Shift-Invariant
and Frame-Indifferent Integral Kernels

We restrict our analysis to two correlated Brownian motions, r(·, r i
0), i = 1, 2, as

described by (2.9). We obtain Markov and SODE representations for the separation
r(·, r2

0 ) − r(·, r1
0 ) and, under the additional assumption of frame-indifference of
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the kernel Gε, also Markov and SODE representations for the magnitude of the
separation, |r(·, r2

0 )− r(·, r1
0 )|.

Setting Gε = �ε,·1 and assuming that the other column vectors of �ε are identi-
cally 0 in addition to spatial homogeneity of Gε, (5.1) reduces to (2.11), where we
now use the notation w(dq, dt) to denote a scalar valued space–time white noise.

We denote the solutions of (2.11) with initial conditions r i
0, i = 1, 2, and driving

noise w(dr, dt) by r1(·) := r(·, r1
0 , w) and r2(·) := r(·, r2

0 , w)), respectively. For
h ∈ Rd and i = 1, 2, we see that

r i (t)+ h = r i (0)+ h +
∫ t

0

∫
Gε(r i (u)+ h − q + h)w(dq, du)

= r i (0)+ h +
∫ t

0

∫
Gε(r i (u)+ h − q)w−h(dq, du)

⎫⎪⎪⎬
⎪⎪⎭

(5.26)

Hence, the left-hand side of (5.26) is the solution (r(·, r1
0 + h, w−h), r(·, r2

0 +
h, w−h)). Further, the assumptions on Gε imply that, by Part (3) of Theorem 4.5,
the solutions of (2.11) have a version that is measurable in all parameters, i.e., in
the initial conditions and in the noise process, considered as a distribution-valued
Wiener process.9 This implies by Theorem 4.8 for N = 2 that

(r(·, r1
0 , w)+ h, r(·, r2

0 , w)+ h) ∼ (r(·, r1
0 + h, w), r(·, r2

0 + h, w)).

To obtain a similar statement for rotations, we follow Truesdell and Noll (1965),
Sect. 17,10 and call functions ϑ : Rd −→ R, G : Rd −→ Rd , and A : Rd −→
Md×d “frame-indifferent” if ∀r ∈ Rd , Q ∈ O(d)

ϑ(Qr) = ϑ(r),
G(Qr) = QG(r)

A(Qr) = Q A(r)QT .

⎫⎪⎬
⎪⎭

(5.27)

To describe the structure of matrix-valued frame-indifferent functions, we first
denote the subspace spanned by r , {r}, and the subspace orthogonal to {r}, we de-
note {r}⊥. We define the projection operators

P(r) := rr T

|r |2 , P⊥(r) := Id − P(r), (5.28)

where rr T is the matrix product between the column vector r and the row vector
r T , resulting in the d × d matrix with entries rkr�, k, � = 1, . . . , d. Assuming A is
symmetric, we show in Sect. 15.2.8, Theorem 15.71, that these functions are frame-
indifferent if and only if there are scalar functions α, β, λ, λ⊥ : R+ −→ R such that
∀r ∈ Rd , Q ∈ O(d)

9 Cf. (5.24) and (5.25).
10 Cf. also Kotelenez et al. (2007).
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ϑ(r) ≡ α(|r |2),
G(r) ≡ β(|r |2)r,

A(r) ≡ λ(|r |2)P(r)+ λ⊥(|r |2)P⊥(r).

⎫⎪⎬
⎪⎭

(5.29)

Example 5.9. Consider the kernel, derived in (1.2) from a Maxwellian velocity field

Gε,M (r) := c̄εr exp
(
−|r |2

2ε

)
(

where c̄ε :=
√
αD(πε)

d
4 ( 2

dε )
1
2 1

(2πε)
d
2

)
.

⎫⎪⎬
⎪⎭

(5.30)

Clearly, Gε,M is both shift-invariant and, by (5.27), also frame-indifferent.

Now suppose Gε is frame-indifferent. Then

Qri (t) = Qri (0)+ ∫ t
0

∫
Gε(Qri (u)− Qq)w(dq, du)

= Qri (0)+ ∫ t
0

∫
Gε(Qri (u)− q)wQ−1(dq, du)

⎫⎬
⎭ (5.31)

Summarizing and using the same argument for the rotation as for the shift, we
obtain by Theorem 4.8:

Proposition 5.10.

(r(·, r1
0 , w)+ h, r(·, r2

0 , w)+ h) ∼ (r(·, r1
0 + h, w), r(·, r2

0 + h, w)),

and, if Gε is frame-indifferent,

(Qr(·, r1
0 , w), Qr(·, r2

0 , w)) ∼ (r(·, Qr1
0 , w), r(·, Qr2

0 , w)).

⎫⎪⎬
⎪⎭

(5.32)

where the pair processes are considered as C([0,∞);R2d)-valued random vari-
ables. 
�

Note that (5.32) is only correct if we shift both r1 and r2 by the same
d-dimensional vector h, or rotate them by the same orthogonal matrix Q. Abbre-
viate r̂ := (r1, r2) ∈ R2d with d-dimensional coordinates r1 and r2, respectively.
Set

Dε,k�,i j (r̂) :=
∫

Gε,k(r i − q)Gε,�(r j − q)dq, k, � = 1, .., d, i, j = 1, 2.

(5.33)

By Proposition 15.72 of Sect. 15.2.8, Dε,k�,i j is symmetric for each fixed (i, j). The
generator, Aε,R2d , of the Markov pair process r̂(·) := (r1(·), r2(·)) is given by

Aε,R2d := 1
2

d∑
k,�=1

2∑
i, j=1

Dε,k�,i j (r̂)
∂2

∂r i
k∂r j

�

. (5.34)

A core for this generator is, e.g., C2
0(R

2d ,R), the space of twice continuously
differentiable real-valued functions on R2d , which vanish at infinity.11

11 Cf. Ethier and Kurtz (loc.cit.), Sect. 8.2, Theorem 2.5.
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We are interested in local effects of the diffusion coefficient on the |r2 − r1|.
An initial step in this direction is change of coordinates. First, we employ the shift
invariance to obtain a Markov representation for r(·, r2

0 )− r(·, r1
0 ).

Let Id be the identity matrix in Rd and define the following unitary matrix A in
R2d :

A := 1√
2

(
Id − Id
Id Id

)
. (5.35)

We then define: (
r1

r2

)
= A

(
u
v

)
. (5.36)

In (5.36) u, v, r1, r2 ∈ Rd . It follows

u = 1√
2
(r1 + r2)

v = 1√
2
(r2 − r1).

⎫⎪⎬
⎪⎭

(5.37)

Let B be a Borel set in Rd . Set

�B := A(Rd × B)

and

r̂(u, v) :=
(

r1(u, v)
r2(u, v)

)
,

where the coordinate functions are determined by the linear map (5.35). We wish
to compute the probability, P(t, r̂ , �B), for the two-particle motion to be at time t
in �B , having started in r̂ . Note that r i (t) = r(t, r i ), i = 1, 2, i.e., r i (t) are the
solutions of (2.11) with start in r i , i = 1, 2. By (5.36)

P(t, r̂ , �B) = P
((

1√
2
(r(t, r1)+ r(t, r2), 1√

2
(r(t, r2)− r(t, r1)))

)
∈ Rd × B

)

= P
(

1√
2
(r(t, r2)− r(t, r1)) ∈ B

)
.

⎫⎪⎪⎬
⎪⎪⎭

(5.38)

Let h ∈ Rd and ĥ :=
(

h
h

)
. By (5.32), (5.36), and (5.37)

P(t, r̂ + ĥ, �B) = P( 1√
2
(r(t, r2)+ h − (r(t, r1)+ h) ∈ B)

= P( 1√
2
(r(t, r2)− r(t, r1)) ∈ B) = P(t, r̂ , �B).

⎫⎪⎬
⎪⎭

(5.39)

Therefore, the probability in (5.38) depends only the starts q := 1√
2
(r2 − r1) and,

following Dynkin (1965), Chap. 10.6, we may define the “marginal” transition prob-
ability distribution
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P̄(t, a, B) := P(t, r̂ , �B)
∣∣∣∣
{

1√
2
(r2−r1)=a

}. (5.40)

Next, let f ∈ C2
0(R

2d ,R) and denote

f̃ (u, v) := f (r1(u, v), r2(u, v)).

To calculate the action of the generator on f in the new coordinates u and v from
(5.37) we need to express the derivatives with respect to (r1, r2) in terms of deriva-
tives with respect to (u, v). Expression (5.36) implies

∂2

∂r1
k ∂r1

�

f + ∂2

∂r2
k ∂r2

�

f = ∂2

∂uk∂u�
f̃ + ∂2

∂vk∂v�
f̃ ;

∂2

∂r1
k ∂r2

�

f = 1
2

[
∂2

∂uk∂v�
f̃ − ∂2

∂vk∂u�
f̃ + ∂2

∂uk∂u�
f̃ − ∂2

∂vk∂v�
f̃
]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.41)

Suppose f̃ does not depend on u. Using the notation r and q instead of v , we
then define

(Tε,Rd (t) f̃ )(q) :=
∫

f̃ (r)P̄(t, q, dr). (5.42)

Let Tε,R2d (t) denote the Markov semigroup of operators generated by the transi-
tion probabilities P(t, r̂ , ·) and denote its generator by Aε,R2d . By definition,

(Tε,Rd (t) f̃ )(q) = (T (t)ε,R2d f )(r̂)∣∣∣∣
{

1√
2
(r2−r1)=q

}. (5.43)

Therefore, we calculate the time derivative of the left-hand side of (5.43) in terms
of the generator Aε,R2d . The result defines an operator Aε,Rd acting on those f ∈
C2

0(R
2d ,R) for which f̃ does not depend on u. Note that Dε,k�,11 = Dε,k�,22 and

Dε,k�,12 = Dε,k�,21. Taking into account that f̃ does not depend on u, we obtain
from (5.41) and (5.43)

(Aε,Rd f̃ )(q) := ∂

∂t
(Tε,Rd (t) f̃ )(q)|t=0

= ∂

∂t
(T (t)ε,R2d f )(r̂)| 1√

2
(r2−r1)=q |t=0

= 1
2

d∑
k,�=1

D̄ε,k�(
√

2q)
(

∂2

∂qk∂q�
f̃
)
(q),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.44)

where we abbreviated

D̄ε,k�(
√

2q) := [D̃ε,k�(0)− D̃ε,k�(
√

2q)],

D̃ε,k�(
√

2q) :=
∫

Gε,k(q − q̃)Gε,�(−q̃)dq̃, k, � = 1, . . . , d.

⎫⎪⎪⎬
⎪⎪⎭

(5.45)
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Definition 5.11. The Markov process rε(·, r0) with generator Aε,Rd will be called
the “separation process” for the two correlated Brownian motions r(·, r2

0 ) and
r(·, r1

0 ). 
�
Proposition 5.12.

(i) D̄ε,k�(
√

2q) is nonnegative definite, and its entries of are in C2
b(R

d ,R).
(ii) Aε,Rd , defined by (5.44), is the generator of a Feller semigroup on C0(Rd ,R).

(iii) If, in addition to the previous assumptions on Gε, the range of Gε is not a
proper subspace of Rd , then for all q ∈ Rd \{0} D̄ε,k�(

√
2q) is positive definite

and therefore invertible.
(iv) D̄ε,k�(

√
2q) = 0 ∀k, � if and only if q = 0 unless Gε,k(·) ≡ 0 ∀k.

Proof. Let (x1, . . . , xd) ∈ Rd . To prove the first part of (i) suppose (x1, . . . , xd) !=
(0, . . . , 0). Denote the entries of Dε,k�,11(0) by ck� and the entries of Dε,k�,12(

√
2q)

by dk�. Set A(q̃) :=
d∑

k=1
xk Gε,k(−q̃) and B(q̃) :=

d∑
k=1

xk Gε,k(q − q̃). Note that

∑
k,�

ck�xk x� =
∫

A2(q̃)dq̃,
∑
k,�

dk�xk x� =
∫

A(q̃)B(q̃)dq̃.

Further, by change of variables and the shift-invariance of the Lebesgue measure
∫

B2(q̃)dq̃ =
∫

A2(q̃)dq̃.

Then

0 ≤
∫
(A(q̃)− B(q̃))2dq̃ =

∫
A2(q̃)dq̃ +

∫
B2(q̃)dq̃ − 2

∫
A(q̃)B(q̃)dq̃

= 2
[∫

A2(q̃)dq̃ −
∫

A(q̃)B(q̃)dq̃
]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.46)

This proves that D̄ε,k�(
√

2q) is nonnegative definite. The second statement in (i)
follows directly from our assumptions on Gε.

The properties of D̄ε,k�(
√

2q) imply that Aε,Rd is the generator of a Feller semi-
group on C0(Rd ,R).12

Finally, we have equality in (5.46) if, and only if, A(·) ≡ B(·). Hence, A(·) is
a periodic function with period q. This contradicts the integrability of Gε,k(·) on
Rd unless A(·) ≡ 0. Since by assumption the range of Gε cannot be restricted to a
proper subspace of Rd it follows that xi = 0 for all i = 1, . . . , d.

D̄ε(
√

2q) = 0 (the matrix whose entries are all 0) if and only if (D̃ε(0) −
D̃ε(

√
2q))x · y = 0 ∀x = (x1, .., xd)

⊥, y = (y1, .., yd)
⊥ ∈ Rd . Choosing

x = y = (0, ..0, 1, 0.., 0)⊥ where the entry 1 is at the kth coordinate, the argu-
ments of step (iii) imply that A(·) ≡ Gε,k(·) is a periodic function with period q.
This contradicts the integrability of Gε,k(·) on Rd unless A(·) ≡ 0. 
�
12 Cf. Ethier and Kurtz (loc.cit.), Sect. 8.2, Theorem 2.5.
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Remark 5.13. The preceding calculations show that, assuming shift-invariance of
the kernel Gε, the Markov semigroup Tε,R2d (t), defined on C0(R2d ,R), has a non-
trivial invariant subspace. After the rotation (5.35)–(5.37) this subspace can be writ-
ten as C0(Rd ,R), and Tε,R2d (t), restricted to this subspace, defines a Feller-Markov
semigroup Tε,Rd (t). The corresponding Markov process is equivalent in distribution
to r(t) := 1√

2
(r(t, r2)− r(t, r1)). We may, therefore, call the system

u(t) = 1√
2
(r(t, r1)+ r(t, r2))

v(t) = 1√
2
(r(t, r2)− r(t, r1))

⎫⎪⎪⎬
⎪⎪⎭

(5.47)

“partially decoupled in distribution.” 
�
The assumptions imply that there is a unique function σε(q) with values in the

nonnegative definite matrices such that
∑

j

σε,k j (q)σε,�j (q) = D̄ε,k�(
√

2q), k, � = 1, . . . , d;
∑
k, j

|σε,k j (r)− σε,k j (q)| ≤ c|r − q|

(for some finite constant c ),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.48)

i.e., the nonnegative definite square root of (D̄ε,k�(
√

2q)) is Lipschitz continu-
ous.13 Therefore, the separation process, generated by Aε,Rd , can be represented as
the unique solution r(·, q) of the stochastic differential equation in the sense of Itô:

dr(t) =
∑

j

σε,· j (r)β j (dt),

r(0) := q,

⎫⎪⎬
⎪⎭

(5.49)

where the β j are i.i.d. one-dimensional standard Brownian motions, j =1, . . . , d.
For the solution we have a.s. r(·, q) ∈ C([0,∞);Rd).14

In addition to the shift-invariance we henceforth also assume that our kernel Gε
is frame-indifferent .

We first analyze the matrix function r %→ D̃ε(
√

2r) from (5.45), which may be
written as

D̃ε
(√

2q
)
:=

∫
Gε

(
1
2

q − q̃
)

GT
ε

(
−1

2
q − q̃

)
dq̃.

By the frame-indifference assumption and (5.29)

13 Cf. Stroock and Varadhan (1979), Chap. 5.2, Theorem 5.2.3. Cf. also our representation (5.60)
for frame-indifferent D̄ε).

14 Cf. also our representation (5.68) for frame-indifferent D̄ε .
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D̃ε(
√

2r) =
∫
(q + r)(q − r)Tβε(|q + r |2)βε(|q − r |2)dq (5.50)

Since
∫
(rqT − qr T )βε(|q + r |2)βε(|q − r |2)dq = 0 (5.50) reduces to

D̃ε(
√

2r) =
∫

qqTβε(|q+r |2)βε(|q−r |2) dq−rr T
∫
βε(|q+r |2)βε(|q−r |2) dq.

(5.51)
Define a matrix function of r by

Aε(r) :=
∫

qqTβε(|q + r |2)βε(|q − r |2) dq (5.52)

and a scalar function of r by

φε(r) :=
∫
βε(|q + r |2)βε(|q − r |2) dq. (5.53)

Thus,
D̃ε(

√
2r) = Aε(r)− φε(r)rr T . (5.54)

Let Q ∈ O(d). |q + r | = |Qq + Qr | and |q − r | = |Qq − Qr | in addition to a
change-in-variables q̃ := Qq yield the following:

Q Aε(r)QT = Aε(Qr) and φε(r) = φε(Qr), (5.55)

that is, they are frame-indifferent in the sense of (5.27). By (5.29) Aε(r) and
φε(r) must have the form

Aε(r) = λε(|r |2)P(r)+ λ⊥,ε(|r |2)P⊥(r) and φε(r) = γε(|r |2) (5.56)

for scalar functions

λε, λ⊥,ε, γε : R+ → R; ξ %→ λε(ξ), λ⊥,ε(ξ), γε(ξ).

At r = 0
λε(0) = cε > 0 and λ⊥,ε(0) = cε. (5.57)

Moreover, it follows from the definitions in (5.51) and (5.52), together with our
basic regularity hypotheses, that

lim|r |→∞ λε(|r |
2) = 0, lim|r |→∞ λ⊥,ε(|r |

2) = 0 and lim|r |→∞ |r |2γε(|r |2) = 0. (5.58)

Combining, we see that D̃ε has the special form

D̃ε(
√

2r) = λ⊥,ε(|r |2)P⊥(r)+ (λε(|r |2)− |r |2γε(|r |2))P(r). (5.59)

Putting it all together, we see that the pair diffusion matrix, D̄ε(
√

2r), of (5.45)
must have the special form

D̄ε(
√

2r) = α⊥,ε(|r |2)P⊥(r)+ αε(|r |2)P(r), (5.60)
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α⊥,ε(|r |2) = cε − λ⊥,ε(|r |2)

αε(|r |2) = cε − λε(|r |2)+ |r |2γε( 1
2 |r |2).

⎫⎬
⎭ (5.61)

Hence
lim|r |→∞ D̄ε(

√
2r) = cε Id . (5.62)

Recall that D̄ε(
√

2r) is nonnegative definite by Proposition 5.12. Choose first a unit
vector z̄ ∈ Rd that is perpendicular to r . Then from (5.60)

α⊥,ε(|r |2) = (D̄ε(
√

2r)z̄) · z̄ ≥ 0 ∀r != 0. (5.63)

Similarly, choosing r̄ := 1
|r |r , we obtain

αε(|r |2) = (D̄ε(
√

2r)r̄) · r̄ ≥ 0 ∀r != 0. (5.64)

By Part (iv) of Proposition 5.12,

αε(|r |2)+ α⊥,ε(|r |2) > 0 ∀r != 0. (5.65)

Finally, by (5.63) and (5.64),

Whenever D̄ε(
√

2r) is positive definite, αε(|r |2) > 0 and α⊥,ε(|r |2) > 0.
(5.66)

Remark 5.14.

(i) The condition in Part (iii) of Proposition 5.12 guarantees that D̄ε(
√

2r) is posi-
tive definite ∀r != 0.

(ii) If, in addition to the assumptions of Proposition 5.12, we suppose that the kernel
Gε is frame-indifferent, then we obtain a simple representation of the nonnega-
tive square root of D̄ε(

√
2r):15

D̄
1
2
ε (
√

2r) = √
α⊥,ε(|r |2)P⊥(r)+√

αε(|r |2)P(r). (5.67)

Consequently, the stochastic ordinary differential equation (5.49) for the separation
simplifies as well:

dr(t) = √
α⊥,ε(|r |2)P⊥(r)β̃(dt)+√

αε(|r |2)P(r)β̃(dt),

r(0) := r0,

⎫⎬
⎭ (5.68)

where β̃(·) is an Rd -valued standard Brownian motion. 
�
Proposition 5.15. In addition to the assumptions of Proposition 5.12 suppose that
the kernel Gε is frame-indifferent, and let r(t, q) be the solution of (5.49) (resp. of
(5.68)). Then

x(t, a) := |r(t, q)|, x(0, a) = |q|, (5.69)

15 Cf. (5.48) and (5.60).
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is equivalent in distribution to a one-dimensional Feller diffusion. Its generator is an
extension of the differential operator

(Aε,Rϕ)(x) = 1
2

(
(d − 1)α⊥,ε(x2)

1
x

dϕ(x)
dx

+ αε(x2)
d2ϕ(x)
(dx)2

)
,

ϕ′(0) = 0

⎫⎪⎬
⎪⎭

(5.70)

where ϕ ∈ C2(R;R).

Proof.

(i) If q, q̃ ∈ Rd and |q| = |q̃| then there is a Q ∈ O(d) such that

q̃ = Qq.

On the other hand, we may suppose

q = r2
0 − r1

0 , q̃ = r̃2
0 − r̃1

0 .

Hence,
r̃2

0 − r̃1
0 = Qr2

0 − Qr1
0 .

Then, by Proposition 5.10, (5.49), (5.39), and (5.40),

r(t, q) ∼ r(t, r2
0 , w)− r(t, r1

0 , w) ∼ r(t, Qr2
0 , w)− r(t, Qr1

0 , w) ∼ r(t, q̃).
(5.71)

Let B be a Borel subset of R and | · |−1 B denote the inverse image of the map
r −→ |r |. (5.71) and the preceding considerations imply by Dynkin (loc.cit.)
that

PR(t, x, B)|{x :=|q|} := P{r(t, q) ∈ | · |−1 B} (5.72)

is a family of transition probabilities of a Markov diffusion in R+.
(ii) The boundary condition follows from the fact that our “test functions” f̃ (r) =

ϕ(|r |) are even.
(iii) Next, we compute the action of the differential operator in (5.44) on functions f̃

of the form f̃ (q) = ϕ(|q|), where ϕ ∈ C2(R;R).As a preliminary, compute the
matrix ∇q∇T

q f̃ whose components are given by ∂2

∂qi ∂q j
ϕ(|q|). This computation

yields

(∇q∇T
q f̃

)
(q) = ϕ′(|q|)

|q|
(

Id − qqT

|q|2
)
+ ϕ′′(|q|)qqT

|q|2 , (5.73)

provided q != 0. In terms of the projections from (5.28), (5.73) is cast in the form

(∇∇T f̃
)
(q) = ϕ′(|q|)

|q| P⊥(q)+ ϕ′′(|q|)P(q). (5.74)
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Using the diffusion matrix D̄ε(
√

2q) in the form of (5.60), the partial differential
operator of (5.44) applied to ϕ reduces to the ordinary differential operator

(Aε,Rϕ(|q|)) = 1
2 tr

(
D̄ε(

√
2q)

(∇∇T f̃
)
(q)

)

= 1
2

(
(d − 1)α⊥,ε(|q|2) ϕ′(|q|)∣∣q| + αε(|q|2)ϕ′′(|q|)

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.75)

This yields the generator for the magnitude process, defined in (5.70). The Feller
property of the diffusion follows because the semigroup T̄ε(t) for the separation
process is Feller and the semigroup for the magnitude of the separation process is
obtained by a restriction of T̄ε(t) to functions ϕ(|q|) from the preceding proof. 
�
Definition 5.16. The real-valued Markov process x(t, y), generated by Aε,R from
(5.70) will be called the “magnitude of the separation process” or, simply, the
“magnitude process.” 
�
Remark 5.17.

(i) Changing to spherical coordinates

r = (r1, . . . , rd) −→ ( r1|r | , . . . ,
rd|r | , |r |), (5.76)

the preceding calculations show that the magnitude of the separation process,
|r(t)|, is partially decoupled in distribution (cf. Remark 5.13).

(ii) By (5.58) and (5.61) ∀ε > 0 and large x

(Aε,Rϕ)(x) ≈ cε
2
(d − 1)

1
x

dϕ(x)
dx

+ cε
2

d2ϕ(x)
(dx)2

, (5.77)

This is for cε
2 = 1 the generator of the Bessel process associated with a

d-dimensional standard Brownian motion β(·).16 In other words, for large x
the magnitude process behaves like the Bessel process of the Brownian motion√

cε
2 β(·). We will, therefore, call the magnitude process with generator (5.70) a

“Bessel-type process.”
(iii) From (5.70) we obtain that the magnitude of the separation process is equivalent

in distribution to the solution of the following stochastic ordinary differential
equation:

dx = 1
2
(d − 1)

α⊥,ε(x2)

x
dt +

√
αε(x2)β(dt),

x(0) = x0,

⎫⎪⎬
⎪⎭

(5.78)

where β(·) is a one-dimensional standard Brownian motion and where, for the
interpretation of the magnitude, we assume x0 > 0. 
�
16 Cf. Dynkin, loc. cit., Chap. X, (10.87).
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5.4 Asymptotics of Two Correlated Brownian Motions
with Shift-Invariant and Frame-Indifferent Integral Kernels

We apply criteria from stochastic analysis of one-dimensional diffusions to obtain
a proof of the long-time behavior of the magnitude process both for d=1 and for
d ≥ 2.17

As the case d=1 is relatively simple, we will first focus on d≥2 and then provide
the argument for d=1. The case d=2 and d≥3 require different assumptions on the
kernel Gε.

Lemma 5.18.18 For x > 0 define functions

ψ(x) ∈ {log(x + e), 1(x)}, (5.79)

where 1(x) ≡ 1, log(·) is the natural logarithm and log(e) = 1. Suppose

∫
|Gk�(−p)|2ψ2(|p|)dp <∞ ∀k, �. (5.80)

Then
∫

|Gk�(q − p)Gk�(−p)|dpψ(|q|) −→ 0, as |q| −→ ∞ ∀k, �. (5.81)

Proof. In what follows we assume ψ(x) = log(x + e). The proof for ψ(x) ≡ 1
follows the same pattern. Since the functions Gk�(·) log(| · |+ e) are continuous and
square integrable, we obtain

|Gk�(q − p)| log(|q − p| + e) −→ 0, as |q| −→ ∞ ∀p ∈ Rd .

Further, for given ε > 0 there is an N = N (ε) > 0 such that
∫

1{|p|≥N }G2
k�(−p) log2(|p| + e)dp

<
ε2

16[maxk,�
∫

G2
k�(−p) log2(|p| + e)dp + 1] =: ε̃2.

Note that

log(|q| + e) ≤ log(|q − p| + e)+ log(|p| + e)

≤ 2[log(|q − p| + e) ∨ log(|p| + e)]
≤ 2 log(|q − p| + e) · log(|p| + e).

17 In Sect. 5.8 we obtain the same results, on the basis of theorems of Friedman (1975), without
the assumption of frame-indifference. However, the proofs under the assumption of frame-
indifference are clearer and simpler. Therefore, we have included this subsection for the
convenience of the reader.

18 We remark that Lemma 5.18 and the following Corollary 5.19 do not require frame-indifference.
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This implies
log(|q| + e) ≤ 2 log(|q − p| + e) · log(|p| + e). (5.82)

Hence,

sup
q

∫
1{|p|≥N }|Gk�(q − p)Gk�(−p)|dp log(|q| + e)

≤ sup
q

2

√∫
1{|p|≥N }G2

k�(q − p) log2(|q − p| + e)dp

√∫
1{|p|≥N }G2

k�(−p) log2(|p| + e)dp

< sup
q

2

√∫
G2

k�(q − p) log2(|q − p| + e)dp · ε̃ = 2

√∫
G2

k�(−p) log2(|p| + e)dp · ε̃ ≤ ε

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.83)

Employing first (5.82) and then Lebesgue’s dominated convergence theorem, we
obtain that there is an |q|(N (ε)) > 0 such that

∫
1{|p|<N }|Gk�(q − p)Gk�(−p)|dp log(|q| + e)

≤
∫

1{|p|<N }|Gk�(q − p) log(|q − p| + e)Gk�(−p) log(|p| + e)|dp

<
ε

2
, ∀q whenever |q| ≥ |q|(N (ε)).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.84)

(5.83) and (5.84) together imply (5.81). 
�
Corollary 5.19. Suppose (5.80). Then, with ψ(·) from (5.79),

|D̄ε,k�(
√

2q)− Dε,k�,11(0)|ψ(|q|),−→ 0 as |q| −→ ∞ for k, � = 1, . . . , d.
(5.85)

Set
ξ0 := inf{ξ ≥ 0 : αε(x) > 0 whenever x ≥ ξ }. (5.86)


�
Remark 5.20.

We note that by (5.57), (5.58), and (5.61), 0 ≤ ξ0 < ∞. If, in addition, the
conditions of Part (iii) of Proposition 5.12 hold, (5.66) implies that ξ0 = 0. 
�

Recall in the following theorem that for d ≥ 2 x(t, x0) ∼ |r(t, r2) −
r(t, r1)|{x0=|r2−r1|}, where r(·, r i ), i = 1, 2, are solutions of (2.11). For d = 1,
r(t, q) ∼ (r(t, r2)− r(t, r1)){q=r2−r1}
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Theorem 5.21.19

Suppose (5.80) with ψ(x) ≡ 1 if d != 2 and ψ(x) = log(x + e) if d = 2.
Further, suppose that the diffusion matrix with entries Dε,k�(0) is positive definite
in addition the the conditions of Proposition 5.12, Part (iii). Finally, assume for
d = 2 that αε(ξ) > 0 ∀ξ > 0. Then the following holds:

(i) {0} is an attractor for the r(·), if d = 1, i.e.,20

P{ lim
t→∞ r(t, q) = 0} = 1, if d = 1 and q != 0. (5.87)

(ii) For d = 2 and x0 > 0 let 0 < a < b and x(·, x0) is the solution of (5.78). Then

P{x(t, x0) hits (a, b) at a sequence of times increasing to ∞ } = 1, if d = 2,
(5.88)

i.e., the solution of (5.78) is recurrent. A similar statement holds for x0 < 0.
(iii) For d ≥ 3 and x0 != 0 the solution of (5.78) is transient, i.e,

P{ lim
t→∞ |x(t, x0)| = ∞} = 1. (5.89)

As a consequence, if d = 1 the two Brownian particles r(·, r i ), i = 1, 2, will
eventually clump. Further, if d = 2, the two Brownian particles r(·, r i ), i = 1, 2,
will attract and repel each other infinitely often and, if d ≥ 3 the distance between
the particles will tend to ∞ with probability 1, as t −→ ∞.

Proof. Case d = 1.
Our coefficient σ is Lipschitz continuous and σ(0) = 0. Therefore, σ 2

ε (x) ≤
(const)x2. Hence, for y > 0

∫ y

0

1
σ 2
ε (x)

dx = ∞. (5.90)

This result implies (5.87).21

Case d ≥ 2.
Assuming αε(ξ) > 0 ∀ξ ≥ ρ ≥ 0 the following functional (5.91) was used by

Gikhman and Skorokhod22 to study the asymptotic behavior of solutions of one-
dimensional stochastic ordinary differential equations.23

s(x, ρ) :=
∫ x

ρ
exp

[
−
∫ y

ρ

(d − 1)α⊥,ε(z2)

zαε(z2)
dz
]

dy. (5.91)

19 We refer to Remark 5.34 at the end of Sect. 5.8 for a comparison with the separation of inde-
pendent Brownian motions.

20 This result was first derived by Kotelenez (2005b).
21 Cf. Ikeda and Watanabe (1981), Chap. 6.3, Theorem 3.1; Skorohod (1987), Chap. 1.3, Theorem

19 and the references therein.
22 Cf.Gikhman and Skorokhod (1968), Chap. 4, Sect. 16.
23 Cf. also Skorokhod (loc.cit.), Chap. 1.3. For the notation – cf. Ikeda and Watanabe (loc.cit.),

Chap. VI.3.
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We must show that

s(x, ξ) −→ ±∞, as x −→ ±∞ if d = 2

s(x, ξ) −→ s±, as x −→ ±∞ if d > 2,

⎫⎬
⎭ (5.92)

where −∞ < s− ≤ s+ < ∞. The statement then follows from Theorem 3.1 in
Ikeda and Watanabe (loc.cit.).

(i) We verify that for any numbers x, ρ, ξ

s(x, ξ) = s(ρ, ξ)+ exp
[
−
∫ ρ

ξ

(d − 1)α⊥,ε(u2)

uαε(u2)
du
]

s(x, ρ), (5.93)

whence we may choose appropriate values for ρ and prove (5.92) for s(x, ρ)
instead of s(x, ξ).
Further, for 0 < ρ < x

s(−x,−ρ) = −s(x, ρ). (5.94)

Therefore, we may, in what follows, restrict ourselves to the case 0 < ρ < x .
(ii) Suppose d = 2. Let z̄ be a unit vector in R2, which is perpendicular to q. By

(5.45) and (5.59)

λ⊥,ε(|q|2) = λ⊥,ε(|q|2)P⊥(q)z̄ · z̄ =
∫

Gε(q − q̃)G⊥
ε (−q̃)dq̃ z̄ · z̄. (5.95)

Hence, by (5.81),

|λ⊥,ε(|q|2)| log(|q| + e) −→ 0, as |q| −→ ∞. (5.96)

Similarly, we set q̄ := 1
|q|q. Then, by (5.45) and (5.59),

λε(|q|2)− |q|2γε(|q|2) = (λε(|q|2)− |q|2γε(|q|2))P (q)q̄ · q̄

=
∫

Gε(q − q̃)GT
ε (−q̃)dq̃q̄ · q̄. (5.97)

Again, by (5.81),

|λε(|q|2)− |q|2γε(|q|2)| log(|q| + e) −→ 0, as |q| −→ ∞. (5.98)

Abbreviate
µε(x2) := λε(x2)− x2γε(x2). (5.99)

Then, by (5.61),

α⊥,ε(x2)

αε(x2)
= 1 + [µε(x2)− λ⊥,ε(x2)]c−1

ε

1 − µε(x2)c−1
ε

. (5.100)
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By (5.96) and (5.98) there is a ρ > 0 such that for all x ≥ ρ
[µε(x2)− λ⊥,ε(x2)]c−1

ε

1 − µε(x2)c−1
ε

log(x + e)
log(x + e)

≤
1
2

1
2 log(x + e)

= 1
log(x + e)

. (5.101)

Hence, for x ≥ ρ(> 0)

α⊥,ε(x2)

xαε(x2)
≤ 1

x
+ 1

x log(x + e)
≤ 1

x
+ 1

x log(x)
. (5.102)

Integrating from ρ to y ≥ ρ:
∫ y

ρ

(
1
u
+ 1

u log(u)

)
du = log

(
y
ρ

)
+ log

(
log(y)
log(ρ)

)
, (5.103)

whence

exp
(
−
∫ y

ρ

(
1
u
+ 1

u log(u)

)
du
)
= ρ

y
· log(ρ)

log(y)
. (5.104)

Thus,

exp
(
−
∫ y

ρ

(
(α⊥,ε(u2)

uαε(u2)

)
du
)
≥ ρ

y
· log(ρ)

log(y)
. (5.105)

This implies

s(x, ρ) ≥
∫ x

ρ

ρ

y
· log(ρ)

log(y)
dy = ρ log(ρ) log

(
log(x)
log(ρ)

)
−→ ∞ as x −→ ∞,

(5.106)
which finishes the proof for d = 2.

(iii) If for ξ0 > 0 from (5.86) αε(ξ0) = 0 then, by (5.65) α⊥,ε(ξ0) > 0, i.e., at
the point ξ0 (5.78) has a positive drift and no diffusion. Consequently, it is
increasing at that point. Since we are claiming transience for d > 2, we may
for d > 2, without loss of generality, assume that for all x ≥ ξ0 αε(x2) > 0.
So, let d ≥ 3 and 0 < δ < 1

2 . By (5.58) and (5.61) there is a ρ > 0 such that
for z > ρ > 0

(d − 1)(1 + δ)
x

≥ (d − 1)α⊥,ε(x2)

xαε(x2)
≥ (d − 1)(1 − δ)

x
. (5.107)

Then

s(x, ρ) ≤
∫ x

ρ
exp

[
−
∫ y

ρ

(d − 1)(1 − δ)
z

dz
]

dy

=
∫ x

ρ

(
ρ

y

)(d−1)(1−δ)
dy ≤

∫ x

ρ

(
ρ

y

)(2−2δ)
dy

= ρ(2−2δ)

2δ − 1

[
x (2δ−1) − ρ(2δ−1)

]
−→ ρ(2−2δ)

1 − 2δ
ρ(2δ−1), as x −→ ∞.
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Since s(x, ρ) is monotone increasing in x , the previous steps imply (5.92) for
d > 2.

(iv) The statements about the distance of the particles are a simple consequence of
the recurrence and transience properties, respectively. 
�

5.5 Decomposition of a Diffusion into the Flux and a Symmetric
Diffusion

Starting with Van Kampen’s definition of the flux of a one-dimensional diffusion,
we develop an alternative mathematical definition of a flux for Markovian SODEs.
On the basis of the concept of symmetric Dirichlet forms, we first decompose a
quadratic form, defined by the generator of the SODEs, into a symmetric Dirichlet
form and a nonsymmetric form. The flux is defined through the nonsymmetric form.

Van Kampen (1983), Chap. VIII.1, considers one-dimensional diffusions with
drift a(x) and quadratic variation b(x) ≥ 0 ∀x . Suppose that both coefficients are
bounded and continuous with bounded continuous derivatives. The Fokker-Planck
equation24 for such diffusions is

∂P(x, t)
∂t

= − ∂

∂x

[
a(x)P(x, t)

]+ 1
2
∂2

∂x2

[
b(x)P(x, t)

]
, (5.108)

where P(x, t) is the probability density at time t in the point x . Van Kampen
(loc.cit.) then defines the “probability flux” of the one-dimensional diffusion (5.108)

J (x, t) := a(x)P(x, t)− 1
2
∂

∂x

[
b(x)P(x, t)

]
. (5.109)

Setting σ(x) := √
b(x) and choosing a one-dimensional standard Brownian mo-

tion β(·), we obtain the stochastic differential equation for the diffusion (5.108):

dx = a(x)dt + σ(x)β(dt),
x(0) = x0.

}
(5.110)

To better understand the meaning of the flux, consider first the case with no drift.
Let us stick, for the time being, to van Kampen’s notation of the probability density
P(x, t). We discretize the space into densely packed sites, denoted x, y, etc. The
flux can be obtained as follows:

Fix a point x ∈ R and consider the diffusion between x and its right neighbor,
x + δx between some time t and t + δt . Then the rate of probability flow from x to
x + δx during a short time interval δt is proportional to σ 2(x)P(x, t)δt and the rate
of probability flow from x + δx to x is proportional to σ 2(x + δx)P(x + δx, t)δt .
The difference is the net flow from x to x + δx . A formal calculation leads to the
definition of the flux (as the instantaneous rate of change of the net flow):25

24 Cf. Sect. 15.2.7, in particular, (15.236).
25 Cf. Van Kampen, loc.cit. Chap. 8.1, (1.3).
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J (x, t) := −1
2
∂

∂x
(b(x)P(x, t)). (5.111)

Further, if the probability density near x is approximately constant at time t and
δx is “small”, then the sign of the flux completely depends on the derivative of the
diffusion coefficient b(x), and the derivative of b(x) describes the “bias of the dif-
fusion” in one or the other direction. We, therefore, obtain that a one-dimensional
diffusion with spatially dependent diffusion coefficient and no drift has a natural
bias, depending on the sign of the derivative of the diffusion coefficient. In con-
trast, if

σ 2(x)P(x, t) = σ 2(x + δx)P(x + δx, t), (5.112)

then the (probability) flux between these two points equals 0, and we conclude
that the solute (i.e., the diffusing substance) between the sites x and x + δx is in
(local) equilibrium. If (5.112) holds between all neighboring sites, the diffusing sub-
stance is in (global) equilibrium.

The problem, however, is that the probability flux (5.109) cannot be explicitly
computed, unless the probability density is stationary. For dimensions d>1, even in
the stationary case, we usually cannot compute the solution of (5.109). Let us, there-
fore, consider the fundamental solution of the Fokker-Planck equation, p(t, x, y),
which is the probability density at y at time t > 0, where at t = 0 the probability dis-
tribution is the point measure δx (A) (and its density, in the distributional sense, the
Dirac delta function with support in x). Let us first consider the case b(z) ≡ b̄ > 0.
The diffusion then is a Brownian motion with transition probability density

p(t, x, y) := 1√
2π b̄t

exp
[
− (y − x)2

2b̄t

]
.

Apparently,

p(t, x, y) = p(t, y, x) ∀t > 0, ∀x, y ∈ R. (5.113)

Hence, if the transition probability density of a solute with transition probability
satisfies (5.113), the transition from site x to site y during a fixed time interval t is
the same as the transition from site y to site x during the same time interval t . We
call the solute (whose probability distribution is the solution of a diffusion equa-
tion, similarly to (5.108)) in “(global) equilibrium” if (5.113) holds. Observe that
for nonzero drift and constant diffusion coefficient, the deviation from equilibrium
(or bias) is completely described by the sign of the drift. It seems to be natural to
incorporate the bias from the nonconstant diffusion coefficient into the drift and to
define an additional stochastic motion that is unbiased. To this end let us consider
the Dirichlet form corresponding to (5.110).26 Let A be the generator of the Markov
process, defined through (5.110) or (5.108) and f and g be in the domain of A such
that their first and second partial derivatives are continuous and in H0 := L2(R, dr).
A is given by

26 Cf. Fukushima (1980) as well as Ma and Röckner (1992).
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(A f )(x) :=
(

a(x)
∂

∂x
f
)
(x)+

(
b(x)

∂2

(∂x)2
f
)
(x). (5.114)

Assume, for simplicity, that the coefficients in (5.109) are bounded and con-
tinuous and that b(x) has a bounded and continuous derivative. Suppose also
b(x) > 0 ∀x . Then A is closable in H0, and its closure defines a Markov semi-
group on H0 as well. By a slight abuse of notation, we denote this closure also A.
Set

E( f, g) := 〈−A f, g〉0, (5.115)

where, as before, 〈·, ·〉0 is the L2-scalar product. Integration by parts in the dif-
fusion term and rearranging the terms yields

E( f, g) = E1( f, g)+ E2( f, g), (5.116)

where

E1( f, g) = −
∫ [

a(x)
(
∂

∂x
f
)
(x)− 1

2

(
∂

∂x
b(x)

)(
∂

∂x
f
)
(x)

]
g(x)dx,

E2( f, g) := 1
2

∫
b(x)

(
∂

∂x
f
)
(x)

(
∂

∂x
g
)
(x)dx .

⎫⎪⎪⎬
⎪⎪⎭

(5.117)

E2( f, g) is a closable symmetric Dirichlet form,27 and since b(x) > 0 ∀x (by as-
sumption) the domain of its closure is the standard Hilbert-Sobolev space H1 whose
vectors are those f ∈ H0, which have square integrable derivatives (in the gener-
alized sense). Consequently, there is a self-adjoint nonpositive operator A2 defined
through the form E2( f, g). The form E1( f, g) is, of course, not symmetric and de-
fines in a unique way a first order partial differential operator A1. More precisely,
we have

〈−A1 f, g〉0 = E1( f, g),

〈−A2 f, g〉0 = E2( f, g)

⎫⎬
⎭ (5.118)

for sufficiently smooth f and g. For appropriately chosen f the generators are
given by

(A1) f (y) := a(y)
(
∂

∂y
f
)
(y)− 1

2

(
∂

∂y
b(y)

)(
∂

∂y
f
)
(y);

(A2) f (z) := 1
2

(
d
dz

(
b(z)

d
dz

f
))
(z),

⎫⎪⎪⎬
⎪⎪⎭

(5.119)

where the latter generator is in divergent form and where we employed the simple
identiy

1
2

(
d
dz

b
)
(z)

(
d
dz

f
)
(z)+ 1

2
b(z)

(
d2

(dz)2
f
)
(z) = 1

2

(
d
dz

(
b(z)

d
dz

f
))
(z).

27 Cf. Fukushima (loc.cit.), Example 1.2.1.
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A2 is the generator of a symmetric Markov semigroup of self-adjoint operators
on H0, T (2, t). Further, this semigroup that defines a semigroup of transition prob-
abilities on Cb(R,R). A1 itself generates a strongly continuous group, T (1, t) both
on H0 and on Cb(R,R). In terms of semigroups and generators we may consider
A1 a relatively bounded perturbation of A2, and the Markov semigroup T (t) with
generator A can be obtained through the Trotter product formula, applied to T (1, t)
and T (2, t).28 We call T (t) the “Trotter product” of T (1, t) and T (2, t). Recalling
the abbreviation

σ(z) := √
b(z)

and observing that

1
2

d
dy
(σ 2(y)) =

(
d

dy
σ(y)

)
σ(y),

the (Markovian) group T (1, t) is generated by the solutions of the following
ordinary differential equation (ODE)

dy
dt

= a(y)−
(

d
dy
σ(y)

)
σ(y)

y(0) = y0,

⎫⎪⎬
⎪⎭

(5.120)

and the (Markovian) semigroup T (2, t) is generated by the solution of the sto-
chastic ordinary differential equation (SODE)

dz = ( d
dzσ(z))σ (z)dt +√

σ(z)dβ,

z(0) = z0.

⎫⎬
⎭ (5.121)

Alternatively to the Trotter product formula, we may apply the fractional step
method29 to show that the mixture of the solutions of (5.120) and (5.121) converges
under suitable assumptions on the initial conditions to the solution of (5.110). We
call the resulting limit the “fractional step product” of the two equations (5.120)
and (5.121). With this terminology (5.110) is the fractional step product of (5.120)
and (5.121). Moreover, if the probability density is constant near the site x van
Kampen’s probability flux is proportional to the right-hand side of the ODE (5.120).
We, therefore, call the right-hand side of (5.120) the “(local) flux” of the diffusion
(5.110), and most of the time we will not explicitly mention the attribute “local”.30

Our assumptions imply that the family of transition probabilities for (5.116)–
(5.119), P(t, x, A), P1(t, x, A), P2(t, x, A), have densities p(t, x, y), p1(t, x, y),
p2(t, x, y). For P2(t, x, A) this means31

P2(t, x, A) := ∫
1A(y)p2(t, x, y)dy ∀ Borel set A ⊂ R and ∀x ∈ R. (5.122)

28 Cf. Davies (1980), Chap. 4.3 and Chap. 3.4.
29 Cf. Sect. 15.3.
30 Cf. the following (5.130) and Definition 5.23 for the usefulness of this approach versus (5.109).
31 Cf. Stroock and Varadhan (1979), Sect. 9.1, Theorem 9.1.9.



114 5 Qualitative Behavior of Correlated Brownian Motions

The smoothness assumptions on the coefficient b(z) implies that p2(t, x, y) is
continuous in x and y for all t > 032 The symmetry of the Dirichlet form E2( f, g)
implies that the semigroup, defined through the transition probabilities P2(t, x, A),
is symmetric in H0

33 Employing (5.122), the symmetry, change of variables x ↔ y
and Fubini’s theorem imply∫ ∫

f (x)p2(t, x, y)g(y)dydx =
∫ ∫

f (x)p2(t, y, x)g(y)dydx ∀ f, g ∈ H0.

(5.123)
We, therefore, obtain

p2(t, x, y) = p2(t, y, x) ∀t > 0, ∀x, y ∈ R. (5.124)

We conclude that the diffusion, defined by E2( f, g), is in equilibrium, which is
the same as to say that the flux equals 0.

Finally, we note that we may rewrite (5.110) into Stratonovich SODE:

dx =
[

a(x)−
(
∂

∂x
σ

)
(x)σ (x)

]
dt +

[(
∂

∂x
σ

)
(x)σ (x)dt + σ(x)β(dt)

]

=
[

a(x)−
(
∂

∂x
σ

)
(x)σ (x)

]
dt +

[
1
2

(
∂

∂x
σ

)
(x)σ (x)dt + σ(x) ◦ β(dt)

]
,

x(0) = x0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.125)

where ◦ denotes the Stratonovich differential.34 We observe that the Stratonovich
differential needs to be corrected as well in order to describe an unbiased stochastic
motion.

The derivation of the flux for the d-dimensional case may be easily achieved by
decomposing the stochastic motion into an equilibrium motion (via a symmetric
Dirichlet form) and a flux (via a nonsymmetric first order form). A generalization
of (5.49) is

dr = a(r)dt +
∑

j

σ·, j (r)β j (dt),

r(0) = r0.

⎫⎬
⎭ (5.126)

Here a(r) is an Rd -valued drift and σ(r) is a symmetric matrix. We assume that
both coefficients are bounded with bounded continuous derivatives. Now H0 denotes
L2(Rd , dr) and the scalar product < ·, · >0 is the corresponding L2-scalar product.
We define the divergence of the matrix D(r) by35

−1
2

div(D(r)) = −1
2

( d∑
�=1

∂D1�(r)
∂r�

, . . . ,

d∑
�=1

∂Dd�(r)
∂r�

)T

= −1
2

d∑
�=1

∂D·�(r)
∂r�

.

(5.127)
32 Cf. Ladyzhenskaya et al. (1967), Sect. IV.11.
33 Cf. Fukushima (loc.cit.), Sect. 1, (1.4.12).
34 Cf. also Sect. 15.2.6.
35 Cf. Gurtin (1981), Sect. II.5.
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Besides the above modifications, we may use the same notation as in the one-
dimensional case with corresponding assumptions and obtain

(A f )(r) = a(r) · (∇ f )+ 1
2

∑
i, j

Di j (r)
(

∂2

∂ri∂r j
f
)
(r)

E( f, g) :=< −A f, g >0,

E1( f, g) = −
∫ [

a(r)− 1
2

div(D(r))
]
· (∇ f )(r)g(r)dr,

E2( f, g) :=
∫

1
2

∑
i, j

Di j (r)
(
∂

∂ri
f
)
(r)

(
∂

∂r j
g
)
(r)dr,

E( f, g) = E1( f, g)+ E2( f, g),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.128)

where A in (5.128) is the generator of the Markov process, associated with
(5.126). As in one dimension, the existence of a transition probability density
p2(t, q, r) for the symmetric Markov diffusion, defined by E2( f, g), implies the
symmetry of the densities:

p2(t, q, r) = p2(t, r, q) ∀t > 0, ∀q, r ∈ Rd . (5.129)

Moreover, the symmetry of the densities obviously implies symmetry of the
Markov diffusion semigroups in H0. In other words, if the Markov transition prob-
abilities have densities, then symmetry of the Markov diffusion is equivalent to
(5.129). Hence, we arrive at the following decomposition of (5.126) into two dif-
ferential equations, corresponding to the decomposition of E( f, g) into the non-
symmetric and symmetric parts E1( f, g) and E2( f, g). Setting

Fl(q) := a(q)− 1
2 div(D(q)),

}
(5.130)

we obtain the deterministic ODE

dq
dt

= Fl(q), q(0) = q0 (5.131)

and the symmetric SODE

dp = −Fl(p)dt +
∑

j

σ·, j (p)β j (dt), p(0) = p0. (5.132)

Definition 5.22. Fl(r) in (5.130) is called the “(d-dimensional) flux” for the diffu-
sion (5.126). 
�

Let q(t) be the solution of the ODE in (5.131). Then

d|q(t)|2
dt

= 2Fl(q(t)) · q(t). (5.133)
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We conclude that |q(t)| is decreasing or increasing dependent on whether the
sign in (5.133) is negative or positive. Further, the motion of the solution r(t) of the
symmetric Itô equation in (5.132) is unbiased. Consequently, the motion of (5.126)
has a preferred tendency towards the origin or away from the origin, depending on
the sign of the right hand of (5.133).36 Since for the separation of the two particles a
motion toward the origin describes an attractive phenomenon and the reverse motion
implies repulsion, we arrive at the following.

Definition 5.23. A point r ∈ Rd is called “attractive” if Fl(r) · r < 0 . The point r
is called “repulsive” if Fl(r) · r > 0. 
�

In (5.126) and in Definition 5.23 we see that the decomposition of (5.110) into
(5.120) and (5.121) gives us an explicit way to describe the inherent bias in a spa-
tially dependent diffusion (with or without drift) through (5.120). Consequently, the
use of the flux from (5.120) has an advantage over the use of the probability flux
(5.109). Obviously, the same comments hold for the d-dimensional case, if we gen-
eralize (5.109) to d dimensions.

5.6 Local Behavior of Two Correlated Brownian Motions
with Shift-Invariant and Frame-Indifferent Integral Kernels

We derive the flux for the separation and also for the magnitude of the separa-
tion and define attractive and repulsive points. Under the assumption of frame-
indifference, we obtain the radial flux that characterized attractive and repulsive
points through their distance from the origin.

Theorem 5.24. The SODE (5.68) for the separation r(t, q) is obtained as the frac-
tional step product of the following two differential equations:

dq
dt
(t) =

{
1
2
(d − 1)
|q|2 [α⊥,ε(|q|2)− αε(|q|2)] − (α′ε)(|q|2)

}
q,

q(0) := q0,

⎫⎪⎪⎬
⎪⎪⎭

(5.134)

and

dr(t) = −
{

1
2
(d − 1)
|r |2 [α⊥,ε(|r |2)− αε(|r |2)] − (α′ε)(|r |2)

}
rdt

+
[√
α⊥,ε(|r |2)P⊥(r)+

√
αε(|r |2)P(r)

]
β̃(dt),

r(0) := r0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.135)

36 This is true for short times if the distribution near the point of investigation is approximately
constant. A divergence theorem argument, provided in (15.165)–(15.167), supports this conclu-
sion.
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The right-hand side of (5.134) is the flux of (5.68), and (5.135) is the symmetric
diffusion.

Proof. Recall that by (5.130) the flux for (5.68) is just the divergence of the matrix
D̄ε. Employing the representation (5.60), we first compute

∂α⊥,ε(|r |2)
∂r�

= (α′⊥,ε)(|r |2)2r�,
∂αε(|r |2)
∂r�

= (α′ε)(|r |2)2r�. (5.136)

Further,
∂

∂r�

(
rkr�
|r |2

)
= rk

|r |2 + rlδk�

|r |2 − 2rkr2
�

|r |4 . (5.137)

Observe that
d∑
�=1

(α′⊥,ε)(|r |2)2r�

[
δk� − rkr�

|r |2
]
= 0;

d∑
�=1

(α′ε)(|r |2)2r�
rkr�
|r |2 = 2(α′ε)(|r |2)rk;

−
d∑
�=1

α⊥,ε(|r |2)
[

rk

|r |2 (1 + δk�)− 2rkr2
�

|r |4
]
= −α⊥,ε(|r |2) (d − 1)rk

|r |2 ;

d∑
�=1

αε(|r |2)
[

rk

|r |2 (1 + δk�)− 2rkr2
�

|r |4
]
= αε(|r |2) (d − 1)rk

|r |2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.138)

Recalling (5.130), we obtain from the preceding calculations for the kth compo-
nent of the d-dimensional flux Fl(r)

Flk(r) =
{

1
2
(d − 1)
|r |2

[
α⊥,ε(|r |2)− αε(|r |2)

]
− (α′ε)(|r |2)

}
rk . (5.139)

The statement about the fractional step product follows from Goncharuk and
Kotelenez (1998). 
�

Observe that, under the frame-indifference assumption, the flux is parallel to 1
|r |r .

Therefore, if a point r is attractive or repulsive then all points on the boundary ∂B of
a ball B, centered at the origin with radius |r |, are either all attractive or all repulsive.
In other words, attractive and repulsive domains can be completely characterized by
the distance |r | to the origin. (Note that the outward normal at r ∈ ∂B is 1

|r |r .) In
this case we change coordinates and define the radial flux for (5.68) through

F̄l(x) := 1
2

{
(d − 1)

x

[
α⊥,ε(x2)− αε(x2)

]
−
(

d
dx
αε

)
(x2)

}
, x := |r |.

(5.140)
Then we have
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Proposition 5.25. The sphere {r : |r | = x} is attractive for (5.68) if F̄l(x) < 0, and
it is repulsive if F̄l(x) > 0.

It remains to discuss the relation of Proposition 5.25 to the one-dimensional Itô
SODE (5.78) for the radial component |r(t)| of the solution of (5.68). As a prelimi-
nary, we analyze the symmetric diffusion (5.135) and its Dirichlet form E2( f, g).

Let A(Sd−1) be the surface measure of the unit sphere in Rd and define a measure
m on the Borel sets of [0,∞):

m(dx) := A(Sd−1)xd−1dx . (5.141)


�
Proposition 5.26.

(i) The transition probabilities, P2(t, q, A), of the Markov diffusion (5.135) have
densities p2(t, q, r) such that for any Q1, Q2 ∈ O(d)

p2(t, Q1q, Q2r) = p2(t, q, r) ∀t > 0, q, r ∈ Rd . (5.142)

(ii) Restrict E2( f, g) to (smooth and integrable) f̃ (r) := ϕ(|r |) and g̃(r) := ψ(r).
Then

E2(ϕ, ψ) = 1
2

∫ ∞

0
αε(x2)ϕ′(x)ψ ′(x)m(dx). (5.143)

Proof.

(i) With the obvious modifications (5.71) and (5.72) carry over to the diffusion
(5.135). Hence,

P2(t, Qq, A) = P2(t, q, A) ∀Q ∈ O(d) ∀t > 0, q,∈ Rd ∀A ∈ Bd .

Stroock and Varadhan (loc.cit.) and Ladyženskaja et al. (loc.cit.) guarantee the
existence of a density, continuous in q, r for t > 0. Therefore, the previous
equation implies for the densities

p2(t, Qq, r) = p2(t, q, r) ∀Q ∈ O(d) ∀t > 0, q, r ∈ Rd .

By symmetry in q and r we obtain the same statement with respect to r , i.e.,

p2(t, q, Qr) = p2(t, q, r) ∀Q ∈ O(d) ∀t > 0, q, r ∈ Rd .

We now apply another element from O(d) to the coordinate q and obtain
(5.142).

(ii) Recalling the definition (5.28) of P(r) and P⊥(r), the generator, A2 for (5.135)
is given by

(A2 f )(r) = −
{

1
2
(d − 1)
|r |2 [α⊥,ε(|r |2)− αε(|r |2)] − (α′ε)(|r |2)

}
r · ∇ f (r)

+1
2

d∑
k,�=1

[
α⊥,ε(|r |2)

(
δk� − rkr�

|r |2
)
+ αε(|r |2)rkr�

|r |2
](

∂2

∂k∂�
f
)
(r),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.144)
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where f is sufficiently smooth and integrable. As before, we consider only
(smooth) functions f̃ (r) = ϕ(|r |), g̃(r) := ψ(|r |). Note that

∇ϕ(|r |) = (ϕ)′(|r |) 1
|r |r, ∇ψ(|r |) = (ψ)′(|r |) 1

|r |r;

∂2

∂rk∂r�
ϕ(|r |) = (ϕ′)(|r |)

[
δk�

|r | −
rkr�
|r |3

]
+ (ϕ′′)(|r |)rkr�

|r |2 ;

d∑
k,�=1

[
rkr�δk� − r2

k r2
�

|r |2
]
= 0;

d∑
k,�=1

[
δk� − rkr�

|r |2
]2 = d − 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.145)

We, therefore, obtain

E2(ϕ, ψ)

= 1
2

∫ {
d − 1
|r | [α⊥,ε(|r |2)− αε(|r |2)] − 2(α′ε)(|r |2)

}
ϕ′(|r |)ψ(|r |)dr

−1
2

∫
d − 1
|r | α⊥,ε(|r |

2)ϕ′(|r |)ψ(|r |)dr − 1
2

∫
αε(|r |2)ϕ′′(|r |)ψ(|r |)dr

= −1
2

∫ {
d − 1
|r | αε(|r |

2)+ 2(α′ε)(|r |2)
}
ϕ′(|r |)ψ(|r |)dr

−1
2

∫
αε(|r |2)ϕ′′(|r |)ψ(|r |)dr.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.146)

Since all the functions in the last line of (5.146) depend only on |r |, we may
change the measure according to (5.141) and obtain

E2(ϕ, ψ) = −1
2

∫ ∞

0

d − 1
x
αε(x2)ϕ′(x)ψ(x)m(dx)

−1
2

∫ ∞

0

[
d

dx
(α(x2)ϕ′(x))

]
ψ(x)m(dx) (5.147)

Finally, we integrate by parts and obtain (5.143). 
�
By (5.142)

p̄2(t, |q|, |r |) := p2(t, q, r). (5.148)

is a continuous function of the arguments t, x = |q|, y = |r |, which is symmetric
in x and y.
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Corollary 5.27. Let r(t, r0) be the solution of (5.135). Then x(r, x0)x0=|r0| =
|r(t, r0)| is equivalent in distribution to a one-dimensional Markov diffusion with
probability density

p2,R(t, x, y) := A(Sd−1) p̄2(t, x, y)yd−1 ∀t > 0, x, y ∈ R+, (5.149)

where A(Sd−1) is the surface measure of the d-dimensional unit sphere (cf.
(5.141)). Moreover, this density is symmetric with respect to m(dx) from (5.141).
The Dirichlet form for this diffusion is given by (5.143). It is equivalent in distribu-
tion to the solution of the Itô SODE

dx = −F̄l(x)dt +√
αε(x2)β(dt), x(0) = x0, (5.150)

where F̄l(x) is the radial flux from (5.140). Finally, if q(t, q0) is the solution of
(5.134), then y(t, y0)y0=|q0| = |q(t, q0)| can be obtained as the solution of the ODE

dy
dt

= F̄l(y), y(0) = y0. (5.151)

Proof. That the radial part of (5.135) is itself equivalent to a Markov diffusion on
the positive real line follows exactly like the corresponding statement Proposition
5.15. To prove (5.149), consider the probability

P(|r(t, q)| ∈ [a, b]) = A(Sd−1)

∫ b

a
p̄2(t, |q|, y)yd−1dy.

Dividing both sides of the last equality by b − a and assuming b ↓ a we obtain
(5.149). To check the symmetry let ϕ,ψ be “nice” functions, defined on [0,∞).
Then

∫ ∞

0

∫ ∞

0
ϕ(y)p2,R(t, x, y)dyψ(x)m(dx) = [A(Sd−1)]2

∫ ∞

0

∫ ∞

0
ϕ(y)ψ(x) p̄2(t, x, y)yd−1xd−1dydx . (5.152)

The symmetry of p̄2(t, x, y) in x, y in addition to (5.152) implies the symme-
try of p2,R(t, x, y) with respect to the initial distribution m(dx). It is obvious that
(5.143) is the Dirichlet form for the radial diffusion |r(t, q)| and that the represen-
tation (5.150)/(5.151) holds. 
�
Theorem 5.28. 37

Consider the two correlated Brownian motions r(t, r1
0 ) and r(t, r2

0 ) as solutions
of (2.11). Suppose

α⊥,ε(x2)

αε(x2)
≤ 1 ∀x > 0. (5.153)

37 We refer to Remark 5.34 at the end of Sect. 5.8 for a comparison with the separation of inde-
pendent Brownian motions.
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Then there is an interval (a, b) with a ≥ 0 such that the magnitude of the separa-
tion |r(t, r1(0))− r(t, r2(0)| ∈ (a, b) has a bias to decrease, i.e., the two Brownian
particles become attracted to each other if their distance is in (a, b).

Proof. Note that αε(x2) equals 0 at x = 0. It is nonnegative by (5.64) and that there
is an interval, where αε(x2) > 0. Hence, it must have a positive derivative on some
interval (a, b). This, in addition to the assumption (5.153) and (5.140), implies that
F̄l(x) < 0 in (a, b). 
�

5.7 Examples and Additional Remarks

Based on the definition of the flux, attractive zones are explicitly computed for the
Maxwellian kernel. The flux of the magnitude of d-dimensional separation process,
which is based on the d-dimensional Lebesgue measure, is compared with a one-
dimensional flux, based on the one-dimensional Lebesgue measure. These two fluxes
are shown to be different. We also provide a derivation of the flux, employing the
divergence theorem.

Example 5.29. Consider the Maxwellian kernel Gε,M (r) = c̄εr exp
(
−|r |2

2ε

)

(cf. 5.30). The mutual quadratic variations are as follows:

Dε,k�,12(
√

2r) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−cε,d exp
(
− |r |2

2ε

)
rkr�, if k != �,

−cε,d exp
(
− |r |2

2ε

)(
− ε

2
+ r2

k

)
, if k = �.

with cε,d := c̄2
ε(πε)

d
2 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.154)
Indeed, recalling the definition (5.33),

Dk�,12(r̂) =
∫

Gε,k(r1 − q)Gε,�(r2 − q)dq

The first observation is that for i = 1, 2

Gε,�,i (ri − q) = c̄ε(ri − q)� exp
(
−|ri − q|2

2ε

)

= −c̄εε∂� exp
(
−|ri − q|2

2ε

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.155)
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Hence,

Dk�,12(r̂) = (c̄εε)2
∫
∂k exp

(
−|r1 − q|2

2ε

)
∂� exp

(
−|r2 − q|2

2ε

)
dq

= (c̄εε)2
∫

∂

∂qk
exp

(
−|r1 − q|2

2ε

)
∂

∂q�
exp

(
−|r2 − q|2

2ε

)
dq

= −(c̄εε)2
∫

exp
(
−|r1 − q|2

2ε

)
∂2

∂qk∂q�
exp

(
−|r2 − q|2

2ε

)
dq

(integrating by parts )

= −(c̄εε)2
∫

exp
(
−|r1 − q|2

2ε

)
×

⎧⎪⎨
⎪⎩

(r2−q)k
ε

(r2−q)�
ε exp

(
−|r2−q|2

2ε

)
dq, if k != �,(

− 1
ε +

(r2−q)2k
ε2

)
exp

(
−|r2−q|2

2ε

)
dq, if k = �.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.156)
Using shift invariance, we obtain for k != �

Dk�,12(r̂) = −c̄2
ε

∫
exp

(
−|r1 − r2 − q|2 + |q|2

2ε

)
qkq� dq

and for k = �

Dk�,12(r̂) = −c̄2
ε

∫
exp

(
−|r1 − r2 − q|2 + |q|2

2ε

)
(−ε + q2

k ) dq.

We use

exp
(
−|r − q| + |q|2

2ε

)
= exp

(
−|r |2

4ε

)
exp

(
−|q − 1

2r |2
ε

)
. (5.157)

Hence, we obtain for k != �

Dk�,12(r̂) = −c̄2
ε2 exp

(
−|r1 − r2|2

4ε

)∫
exp

(
−| 1

2 (r1 − r2)− q|2
ε

)
qkq� dq

and for k = �

Dk�,12(r̂) = −c̄2
ε exp

(
−|r1 − r2|2

4ε

)∫
exp

(
−| 1

2 (r1 − r2)− q|2
ε

)
(−ε + q2

k )dq.

The previous steps, in addition to a simple integration, imply

Dk�,12(r̂) :=

⎧⎪⎨
⎪⎩
−c̄2

ε(πε)
d
2 exp

(
−|r1−r2|2

4ε

)
(r1−r2)k (r1−r2)�

4 , if k != �,
−(c̄2

ε(πε)
d
2 exp

(
−|r1−r2|2

4ε

)(
− ε

2 + (r1−r2)
2
k

4

)
, if k = �.

(5.158)
Recalling

√
2r = r1 − r2, this yields (5.154).
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Hence,

D̄ε,k�(
√

2r) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cε,d
2

exp
(
−|r |2

2ε

)
rkr�, if k !=�,

ε
cε,d

2

[
1−exp

(
−|r |2

2ε

)]
+ cε,d

2
exp

(
−|r |2

2ε

)
r2

k

)]
, if k=�.

(5.159)

The diffusion matrix D̄ε(
√

2r) is clearly frame-indifferent. Employing the rep-
resentation (5.60), we obtain

α⊥,ε(|r |2) = ĉε

(
1 − exp

[
−|r |2

2ε

])
,

αε(|r |2) = ĉε

(
1 − exp

[
−|r |2

2ε

]
+ |r |2

ε

)
exp

[
−|r |2

2ε

]
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.160)

and, therefore,

d
dx
αε(x2) = ĉε

ε
x
[

3 − x2

ε

]
exp

[
− x2

2ε

]
.

So, the radial flux from (5.140) is

F̄l(x) = − ĉε
ε

x exp
[
− x2

2ε

] [
d + 2 − x2

ε

]
(5.161)

We obtain that the interval (0,
√
ε(d + 2)) is attractive for two correlated

Brownian motions with Maxwellian kernel Gε,M (r) = c̄εr exp
(
−|r |2

2ε

)
.

We remark that, for the Maxwellian case, the divergence of the matrix D̄ε(
√

2r)
may also be computed directly without recourse to the representation (5.60), and we
obtain

divD̄ε(
√

2r) · 1
|r |r = F̄l(|r |). 
�

Remark 5.30. So far we have focused on the d-dimensional origin of the radial dif-
fusion |r(t, q)|. Using the d-dimensional Lebesgue measure as the equilibrium mea-
sure for r(t, q) from (5.68) we have derived m(dx) = A(Sd−1)xd−1 dx in (5.141)
as the equilibrium measure for |r(t, q)| and determined the radial flux (5.140). On
the other hand, we could have decomposed (5.78) right away into two differential
equations, following the pattern of (5.120)/(5.121):

F̂l(x) := 1
2

{
(d − 1)

x
α⊥,ε(x2)−

(
d

dx
αε

)
(x2)

}
;

dy
dt

= F̂l(y), y(0) = y0;

dz = −F̂l(z)dt +√
αε(z2)β(dt) z(0) = z0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.162)
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The difference between the radial flux F̄l(x) and the one-dimensional flux F̂l(x)
is the term − 1

2
(d−1)

x αε(x2). Recall that E2(ϕ, ψ) from (5.143) has representation
(5.147). (In fact, we derived (5.143) from (5.147).) The Dirichlet form E1(ϕ, ψ),
generated by (5.151), is given by

E1(ϕ, ψ) =
∫ ∞

0

1
2

{
(d − 1)

x

[
α⊥,ε(x2)− αε(x2)

]

−
(

d
dx
αε

)
(x2)

}
ϕ′(x)ψ(x)m(dx)

(5.163)

So,

E1(ϕ, ψ)+ E2(ϕ, ψ)

=
∫ ∞

0

1
2

{
(d − 1)

x
α⊥,ε(x2)−

(
d

dx
αε

)
(x2)

}
ϕ′(x)ψ(x)m(dx)

−1
2

∫ ∞

0

[
d

dx
(α(x2)ϕ′(x))

]
ψ(x)m(dx)

=: Ê1(ϕ, ψ)+ Ê2(ϕ, ψ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.164)

In this derivation two other Dirichlet forms, Ê1(ϕ, ψ) and Ê2(ϕ, ψ), emerge, cor-
responding to decomposition (5.162) of (5.78). An important observation is that the
second form is not symmetric with respect to m(dx). However, if we now replace in
the right-hand side of (5.164) m(dx) from (5.141) by the Lebesgue measure dx , then
the second form becomes symmetric, and the first form contains the flux for (5.78)
as a one-dimensional SODE with Lebesgue measure as the equilibrium measure.
This last representation of the flux is equivalent to van Kampen’s probability flux, if
the density near the point x is constant, as we mentioned before. Summarizing, we
remark that, for frame-indifferent diffusions in Rd , d > 1, the analysis of the ra-
dial part of that diffusion has to take into account the “correct” equilibrium measure
in Rd and then compute the corresponding equilibrium measure on [0,∞) (in our
case m(dx)). A careless application of the generator of the radial part, without com-
puting the corresponding equilibrium measure on [0,∞), can lead to an incorrect
definition of the flux.38 
�

Additional Comments

(i) Einstein (1905), Chap. 4, (2), derives his famous formula for the diffusion coef-
ficient D for the Brownian motion of one particle by assuming some force K and
equilibrium between the diffusion and the force K . In a kinematic stochastic model,

38 Cf. also a fluid mechanics argument in our Additional Comment (ii).
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the force becomes a drift coefficient. Therefore, Einstein’s equilibrium condition is
equivalent to the condition that the flux equals 0 (with respect to some equilibrium
measure). In our approach, the Lebesgue measure dr , i.e., the uniform initial distri-
bution, is the equilibrium measure, and the flux describes local deviations from that
equilibrium.

(ii) It is interesting in its own right to generalize (5.109), using the divergence
theorem. We use, without loss of generality, the same notation as in (5.127).39 Let
X (t, r) denote the density of the solute at location r ∈ Rd and time t . Let ν :=
(ν1, . . . , νd) be a unit vector in Rd . The pair (r, ν) determines an oriented plane in
Rd through r with orienting normal ν.

Consider a small right cylindrical “pill box” P(r, ν), with axis ν passing through
the point r . One end of the cylinder is located at r and the other end is located at
r +λν, 0 < λ	 1. We now interpret the transition probabilities for the diffusion of
r(t) as the distribution of some matter. The matter flowing out of the pill box P(r, ν)
in a small time step through its boundary ∂P(r, ν) is described by the following
surface integral

∫
∂P(r,ν)

1
2

D̄ε(
√

2r̃)ν̃(r̃)X (t, r) · ν(r̃)dA(r̃),

where dA(r̃) is the surface measure, ν̃(r̃) is the outward unit normal at r̃ ∈
∂P(r, ν) and X (t, r) is the density. Then, using the Divergence Theorem40, we have
∫
∂P(r,ν)

1
2

D̄ε(
√

2r̃)ν̃(r̃)X (t, r̃) · ν dA(r̃) =
∫
P(r,ν)

1
2

div(D̄ε(
√

2r̃)ν(r̃)X (t, r̃))dr̃ .

(5.165)

Next, we suppose that the length, λ, and the area of the cross section are both
small and that the ratio of the length to the cross-sectional area is also small. This
implies that the contribution through the lateral surface is small in comparison with
that for the ends. We arrive at the following observation: the flow of (probability)
matter out of the pill-box through the lateral surfaces becomes negligible. As a re-
sult, we obtain essentially the difference of the probability “mass,” moving in a
small time step in the direction of the normal ν, minus the probability “mass,” mov-
ing in the direction of −ν. Note that ν̃(r̃) ≡ ±ν for r̃ in the cross-sectional areas.
Therefore, dividing the volume integral by the volume of the pill box, we define the
surface flux density Jν(r, t) as the instantaneous rate of change in the net probability
flow through a unit area of plane at r in the ν direction by

Jν(r, t) := −1
2
∇·((D̄ε(

√
2r)X (t, r))ν) = −1

2
(div(D̄ε(

√
2r)X (t, r)))·ν. (5.166)

In terms of the divergence of the diffusion matrix, divD̄ε, the surface flux
density is

39 We follow arguments, provided by M. Leitman – cf. Kotelenez et al. (2007).
40 Cf. Gurtin, loc.cit.
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Jν(r, t) = −1
2

X (t, r)div(D̄ε(
√

2r) · ν)− 1
2
∇r X (t, r) · (D̄ε(

√
2r) · ν). (5.167)

Again, if X (t, r) is approximately constant at time t near r the sign of the flux
will be completely determined by the divergence of the matrix D̄ε(

√
2r).

We note that for d = 1 and no drift, the surface flux density is exactly van
Kampen’s probability flux (5.109). For d > 1 and no drift the d-dimensional flux
density and X (t, r) approximately constant near r the d-dimensional flux density
is our d-dimensional flux Fl(r) from (5.130)/(5.139), which we used to derive the
radial flux F̄l(x)|x=|r | in (5.140). In other words, Leitman’s application of the di-
vergence theorem provides an independent proof of our claim that F̄l(x)|x=|r | is the
correct flux for the radial motion, |r(t)|, of a frame-indifferent diffusion r(t) (cf. our
Remark 5.30).

(iii) Friedman (loc.cit.), Chap. 9.4, calls the flux Fl(x) in (5.130) the “Fichera
drift.” Following Friedman, loc.cit., the Fichera drift plays a role in trapping diffu-
sion in domain B if the “normal diffusion” to ∂B at r equals 0, i.e., if

d∑
k,�=1

Dk�(
√

2r)νkν� = 0. (5.168)

Employing the factorization as in (5.48) of Dk�(
√

2r), we obtain that (5.168) is
equivalent to

d∑
j=1

( d∑
k=1

σk j (r)νk

)2

= 0, if r ∈ ∂B

⇐⇒
d∑

k=1

σk j (r)νk = 0 ∀ j ∈ {1, .., d}, if r ∈ ∂B .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.169)

Using (5.48) and assuming (5.168) and that the coefficients in (5.49) have con-
tinuous bounded partial derivatives, we obtain

− c
2

d∑
k=1

d∑
�=1

∂Dk�(
√

2r)
∂r�

νk

= − c
2

d∑
k=1

d∑
�=1

d∑
j=1

(
∂σk j (r)
∂r�

)
σ�j (r)νk − c

2

d∑
k=1

d∑
�=1

d∑
j=1

σk j (r)
∂σ�j (r)
∂r�

νk

= − c
2

d∑
k=1

d∑
�=1

d∑
j=1

(
∂σk j (r)
∂r�

)
σ�j (r)νk,

since

−1
2

d∑
k=1

d∑
�=1

d∑
j=1

σk j (r)
∂σ�j (r)
∂r�

νk = −1
2

d∑
�=1

d∑
j=1

∂σ�j (r)
∂r�

( d∑
k=1

σk j (r)νk

)
= 0

(by (5.168)).
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If we write the SODE, corresponding to (5.49), in Stratonovich form (indicated
by “◦” in the stochastic differential,41 we obtain that r(t) is the solution of

dr(t) = −1
2

d∑
�=1

d∑
j=1

(
∂σ· j (r)
∂r�

)
σ�j (r)dt +

∑
j

σ· j (r) ◦ β j (dt),

r(0) := q.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.170)

− 1
2

d∑
�=1

d∑
j=1
(
∂σ· j (r)
∂r�

)σ�j (r) is the so-called Stratonovich correction term, which we

have to add if we want to transform an Itô equation into an equivalent Stratonovich
equation. The above derivations imply the following:

In addition to the previous assumptions on the domain B and the coefficients of
(5.49), assume that the normal diffusion to ∂B at r equals 0. Then the Fichera drift
(which is the same as our flux) equals the Stratonovich correction term, i.e.,

−1
2

d∑
�=1

∂ D̄·�(r)
∂r�

= −1
2

d∑
�=1

d∑
j=1

(
∂σ· j (r)
∂r�

)
σ�j (r). (5.171)

(iv) The result of Theorem 5.21 (and the following more general Theorem 5.34)
imply in particular that, under the assumption of frame-indifference and smooth
kernels Gε, the separation of two correlated Brownian motions cannot be “trapped”
within a (small) distance for all t > 0 if d ≥ 2. For more general d-dimensional
diffusions Friedman (loc.cit., Sect. 9.5) provides sufficient conditions for a solution
to be “trapped” in a given domain. This begs the question whether there are diffusion
matrices for the separation, as defined in (5.45), that can force the separation to
remain in a ball with center 0 for all t > 0. The investigation of this interesting
problem goes beyond the scope of this book.

(v) Suppose that βε(x) > 0 ∀x (cf. (5.29)). Further suppose that βε(·) is twice
continuously differentiable, such that ∀x β ′ε(x) ≤ 0 and (log(βε(x)))′′ ≤ 0. Fol-
lowing Kotelenez et al (loc.cit.) we call such a function “logarithmically concave.”
For the proof of the recurrence for d = 2 of the separation in Theorem 6.1 of
Kotelenez et al., it is assumed that βε(·) is logarithmically concave instead of our
integrability condition (5.80). First note that for logarithmically concave βε(·) we
obtain (5.153), i.e.,42

0 ≤ α⊥,ε(x2)

αε(x2)
≤ 1.

Hence, for logarithmically concave βε(·) the recurrence proof for d = 2 in
Theorem 5.28 is simpler. We wish to show that the assumption of logarithmically
concavity implies the integrability condition (5.80) with ψ(x) = log(x + e), if we
have already integrability with ψ)(·) ≡ 1. Set

41 Cf. Sect. 15.2.6.
42 Recall that this is our assumption in Theorem 5.28.
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γε(x) := log(βε(x)).

The differentiability assumptions imply

γ ′ε(x) ≤ 0, γ ′′ε (x) ≤ 0 ∀x .

Hence by the integrability there must be an x0 > 0 and δ > 0 such that

∀x ≥ x0 γε(x) ≤ −δ,

whence
∀x ≥ x0 γε(x) ≤ −δ − a(x − x0).

This is equivalent to

∀x ≥ x0 βε(x) ≤ exp[−δ − a(x − x0)]. (5.172)

Since for continuous functions Gk� we must check the integrability condition
(5.80) only outside a bounded ball, (5.172) implies (5.80).

(vi) Theorem 5.28 states that there is an attractive zone for two Brownian parti-
cles at close distances. This is consistent with the depletion effect. The fact that, un-
der our assumptions, the two Brownian particles never hit and for d > 2 eventually
move apart by Theorem 5.21 is consistent with the existence of a strong repulsive
(electrostatic) force at distance ≈ 0. Both the attractive behavior for distances near
0 and the “repulsive” behavior at distance ≈ 0 are in good agreement with empirical
data about colloids in fluids.43

5.8 Asymptotics of Two Correlated Brownian Motions
with Shift-Invariant Integral Kernels

This subsection contains generalizations of Sect. 5.4 without the assumption of
frame indifference.

Friedman (1975), Chap. 9, provides conditions for transience and recurrence
of d-dimensional diffusions, represented by SODEs, as described by our equation
(5.49). In what follows, we will adjust those conditions for the dimension d = 2
and d ≥ 3 to our setting.

Since the coefficients in (5.49) are Lipschitz and bounded, the Lipschitz and
linear growth condition, A.1 in Friedman (loc.cit), Chap. 9.1 holds for (5.49). Con-
dition B.1 in Friedman (loc.cit.), Chap. 9.5, reduces in our setting to the nondegen-
eracy of Dε,k�(

√
2q), for which we have given a sufficient condition in Proposition

5.12, Part (iii).
Condition B.2 in Friedman (loc.cit.), Chap. 9.5, we can simplify in our setting as

follows: Consider the function R(q) = |q|, which is infinitely often continuously

43 Cf. Tulpar, John Y. (2006), and the references therein as well as Kotelenez et al. (loc.cit.).
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differentiable for q != 0. For q != 0 denote by Dq |q| is the directional derivative of
the function R(q) = |q| at q in the direction of q. If q != 0, we calculate

∂

∂qk
|q| = qk

|q| ;
∂2

∂qk∂q�
|q| :=

⎧⎨
⎩

1
|q| −

q2
k

|q|2 , if k = � ,

− qkq�
|q|2 , if k != �;

Dq |q| ≡ 1.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.173)

Set for q != 0

B(q) := 1
2

d∑
k,�=1

D̄ε,k�(
√

2q)
∂2

∂qk∂q�
|q|,

P(q) := 1
2

d∑
k,�=1

D̄ε,k�(
√

2q)
∂

∂qk
|q| ∂
∂q�

|q|,

and for x > 0
ε(x) := 1

log x
.

Lemma 5.31. There is a δ0 > 0 such that 0 < |q| ≤ δ0 implies

B(|q|)
|q| ≥ P(|q|)

|q|2 (1 + ε(|q|)). (5.174)

Proof. By (5.173)

B(|q|) = 1
2|q|

d∑
k=1

D̄ε,kk(
√

2q)− P(|q|),

whence (5.174) is equivalent to

1
2

d∑
k=1

D̄ε,kk(
√

2q) ≥ P(|q|)[|q| + (1 + ε(|q|))]. (5.175)

Note that

D̄ε,kk(
√

2q) −→ D̄ε,kk(0) > 0, as |q| ↓ 0 for k = 1, . . . , d. (5.176)

Further,44

ε(x) −→ −∞, as x ↓ 0, (5.177)

and for 0 < x < y < 1

44 (5.177) is Condition (5.3) in Friedman (loc.cit.), Chap. 9.5.
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∫ y

x

1
u

exp
[∫ y

u

ε(v)

v
dv
]

du

=
∫ y

x

1
u

exp
[
log log(v)|yu

]
du

=
∫ y

x

1
u

log y
log u

du −→ ∞, as x ↓ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.178)

We obtain from (5.173) in addition to Proposition 5.12 that P(q) > 0 for all
q != 0. Hence, by (5.176) and (5.177), for sufficiently small |q| the left-hand side in
(5.175) is positive, whereas the right-hand side is negative.

Remark 5.32. Expression (5.43) implies Condition B.2 in Friedman (loc.cit.), Chap.
9.5. Further, assuming the matrix with entries Dε,k�,11(0) is positive definite, (5.85)
implies Friedman’s Condition A.3’ if the dimension d ≥ 3 and ψ(x) ≡ 1.
Friedman’s Condition A.4’ holds if d = 2 and ψ(x) = log(x + e). (Friedman,
loc.cit. Chap. 9.2, pp. 200 and 202), taking into account the “Remark” on p. 202. 
�

We are now ready to derive the announced generalization of Theorem 5.21. We
recall that in the following theorem r(t, q) ∼ (r(t, r2) − r(t, r1)){q=r2−r1}, where
r(·, r i ), i = 1, 2, are solutions of (2.11).

Theorem 5.33. Consider the SODE (5.49). Suppose the matrix with entries
Dε,k�,11(0) is positive definite in addition to the conditions of Proposition 5.12,
Part (iii). Further, suppose (5.80) with ψ(x) ≡ 1 if d != 2 and ψ(x) = log(x + e)
if d = 2. Let q != 0. Then

• {0} is an attractor for the r(·), if d = 1, i.e.,

P{ lim
t→∞ r(t, q) = 0} = 1, if d = 1 (5.179)

• r(·, q) is recurrent, if d = 2, i.e., for any ball Bγ (p) := {q̃ : |q̃ − p| ≤ γ }, p ∈
Rd , γ > 0,

P{r(t, q) hits Bγ (p) at a sequence of times increasing to ∞ } = 1, if d = 2
(5.180)

• r(·, q) is transient, if d ≥ 3, i.e.,

P{ lim
t→∞ |r(t, q)| = ∞} = 1, if d ≥ 3 (5.181)

As a consequence, if d = 1 the two Brownian particles r(·, r i ), i = 1, 2, will
eventually clump. Further, if d = 2, the two Brownian particles r(·, r i ), i = 1, 2,
will attract and repel each other infinitely often and, if d ≥ 3 the distance between
the particles will tend to ∞ with probability 1, as t −→ ∞.
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Proof. Case d = 1 has been shown in Theorem 5.21.
The cases d ≥ 2 follow from Friedman (1975), Chap. 9, as shown in the previous

steps (cf. our Remark 5.32). For d = 2 we employ Friedman’s Theorem 6.1 in
Chap. 9 and the Remark at the end of that section, and the case d ≥ 3 follows from
Friedman’s Theorem 5.3 in Chap. 9. 
�
Remark 5.34.

• Consider, as in the traditional approach, two i.i.d. standard Rd -valued Brownian
motions, β1(t) and β2(t) to describe the positions of two Brownian particles. The
difference, β((t) := β2(t) − β1(t), is again a d-dimensional Brownian motion,
which for fixed t is distributed acoording to N (0, 2t Id). For d = 1, 2 β(·) is
recurrent, and for d = 3 it is transient. Therefore, the only difference in the long-
time behavior between our model of convolutions of space–time Brownian noise
with a homogeneous kernel Gε(r) and the traditional one appears in dimension
d = 1.

• However, we have seen in Theorem 5.28 that, under the assumption of frame-
indifference, for short times the behavior of our correlated Brownian motions is
different from the traditional one also for d > 1, because they show attractive
and repulsive phenomena, depending on the distance of the particles. We expect
a similar phenomenon also without the assumption of frame-indifference. 
�



Chapter 6
Proof of the Flow Property

We first derive a version of the solution of (4.9), which is measurable in all para-
meters (Sect. 6.1). In Sect. 6.2 smoothness results are derived for the forward and
backward flows.

6.1 Proof of Statement 3 of Theorem 4.5

(i) For this proof we may, without loss of generality, assume N = 1 and that
σ⊥i ≡ 0 ∀i . We adjust the classical proof of the Markov property for certain
SODEs to our setting.1 Let “diameter” be defined as usual for metric spaces
(B, dB), i.e., for a Borel set A ⊂ B we set

diam (A) := sup
b,b̃∈A

dB(b, b̃).

C1([0, T ];M) is the space of continuously differentiable functions from [0, T ]
into M, where M ∈ {M f ,M∞,� } and recall that both spaces are separable
complete metric spaces.2 Note that C1([0, T ];M) is dense in C([0, T ];M),
which itself is separable.3 Therefore, for each n ∈ N we define a countable
decomposition of C([0, T ];M) into disjoint Borel sets Dn

� of diameter ≤ 3−n ,
�, n ∈ N, such that each Dn

� contains an ηn
� ∈ C1([0, T ];M). By the separa-

bility of Rd , there is a sequence of countable decompositions {Em
k }k∈N, where

Em
k are nonempty Borel sets of diameter ≤ 3−m for all k ∈ N and m ∈ N. The

distance is measured in the Euclidean norm. In each Em
k we choose an arbitrary

but fixed element rm
k , k,m ∈ N. Finally, we decompose [0, T ) into intervals[

s N
j , s

N
j+1

)
, j = 0, 1, . . ., where s N

j := (
3−N j

) ∧ T . Now we define maps

1 Cf., e.g., Dynkin, 1965, Chap. VI, §2.
2 Cf. Sect. 15.1.4, Proposition 15.9, and (15.45), respectively.
3 Cf. Treves, 1967, Chap. 44, Theorem 44.1.
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fm : Rd → Rd , fm(r) = rm
k , if r ∈ Em

k ;
hn : C([0, T ];M)→ C([0, T ];M), hn(η) = ηn

� ∈ C1 ([0, T ];M) ∩ Dn
� , if η ∈ Dn

� ;
gN : [0, T )→ [0, T ), gN (s) = s N

j−1, if s ∈
[
s N

j−1, s
N
j

)
;

k, �, j = 1, 2, . . .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.1)

Let SN ([0, T ];M) be the space of M-valued functions on [0, T ], which are
constant on [s N

j−1, s
N
j ), j = 1, 2, . . . and set

C SN ([0, T ];M) := C([0, T ];M) ∪
∞⋃

N=1

SN ([0, T ];M).

We endow C SN ([0, T ];M) with the metric |‖η1 −η2|‖γ,T := sup
0≤t≤T

γ (η1(t)−
η2(t)), where we recall that γ ∈ {γ f , γ� }, depending on whether M = M f or
M = M� . We then define

πN : C([0, T ];M)→ SN ([0, T ];M) ⊂ C SN ([0, T ];M),

η(·) %→ πNη(·) := η(gN (·)).

}
(6.2)

Let BC([0,t];M) and FM,t be the σ -algebras of the Borel sets and the cylinder
sets on C([0, t];M), respectively, t ≤ T . The corresponding σ -algebras on
C SN ([0, t];M) will be denoted BC SN ([0,t];M) and F̂M,t , respectively. By the
separability of M and the definition of |‖ · |‖γ,T we have for all t ≤ T 4

BC([0,t];M) = FM,t ,

BC SN ([0,t];M) = F̂M,t .

}
(6.3)

The continuity of the imbedding

C([0, T ];M) ⊂ C SN ([0, T ];M)

implies
BC SN ([0,t];M) ∩ C([0, t];M) = BC([0,t];M), (6.4)

where the left-hand side of (6.4) is the trace of BC SN ([0,t];M) in C([0, t];M).
Since for πt := π0,t

πtFM,T = FM,t , πt F̂M,T = F̂M,t

we obtain

Dn
k,t := πt Dn

k ∈ FM,t , Dn,N
k,t := πtπN Dn

k ∈ F̂M,t . (6.5)

4 Cf., e.g., Kuo, 1975, Chap. 1, §3, whose proof can be easily generalized to our setting.
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(ii) Let 0 ≤ s ≤ u ≤ t . By (4.18) and the uniqueness of the solution of (4.9)

r(t, πs,t Ỹ, rs, s) = r(t, πu,t Ỹ, r(u, πs,uỸ, rs, s), u). (6.6)

Hence, the solution of (4.9) is also well defined for measurable and adapted
input processes with trajectories in SN ([0, T ];M) and (4.18) holds for step
function valued processes Ỹ5 as well. Denote by r̃(·, ω, πN hnη, fm(r), gN (s))
the unique continuous (Itô-)solution of (4.9) with fixed deterministic input
(πN hn(η), fm(r), gN (s)). By (4.18) with probability 1 (uniformly in t ∈
[gN (s), T ])

r̃(t, ω, πN hn(η), fm(r), gN (s)) ≡ r̃(t, ω, πtπN hn(η), fm(r), gN (s)). (6.7)

Let B ∈ Bd . By adaptedness

At,πN hn(η), fm (r),gN (s) := {ω : r̃(t, ω, πN hn(η), fm(r), gN (s)) ∈ B} ∈ Gt .
(6.8)

Set

r̃−1(t, ·, ·, ·, ·)(B) :=
⋃

k,�, j

At,πN η
n
� ,r

m
k ,s

N
j
× Dn,N

�,t × Em
k ×

[
s N

j−1, s
N
j

)

(the subindex t at Dn,N
� is justified by (6.7) for the inverse image). Then, by

(6.5)
r̃−1(t, ·, ·, ·, ·)(B) ∈ Gt ⊗ F̂M,t ⊗ Bd ⊗ B[0,t]. (6.9)

(iii) We now employ (4.17) and the Borel-Cantelli lemma to remove step by step
the discretization of our input variables, extending the proof given by Dynkin6

to our setting. The first step is the limit m → ∞, and we may directly copy
Dynkin’s proof. This step yields the existence of a function

≈
r : 0 ≤ s ≤ t ≤ T ×Ω × C SN ([0, T ];M)× Rd → Rd

and sets Ω̃η̃,r,s with P(Ω̃η̃,r,s) = 1 such that uniformly in t ∈ [gN (s), T ]
≈
r (t, ω, πN hn(η), fm(r), gN (s)) :≡

{
r̃(t, ω, πN hn(η), fm(r), gN (s)), if ω ∈ Ω̃η,r,s ,
0, if ω !∈ Ω̃η̃,r,s),

}

(6.10)

and for any ω, η, r, s uniformly on [gN (s), T ]

lim
m→∞

≈
r (·, ω, πN hn(η), fm(r), gN (s)) =≈

r (·, ω, πN hn(η), r, gN (s)). (6.11)

5 We can define the solution of (4.9) recursively on intervals
[
s N

j , s
N
j+1

)
, j = 0, 1, . . . and patch

them together. Alternatively, we could have included step functions Ỹ as input processes into
(4.9), which would have lead to the same result.

6 Cf. Dynkin (loc. cit.), Chap. XI, §2, (11.44) and (11.45).
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Expression (6.10) and (6.11) imply that both
≈
r (t, ·, πN hn(·), fm(·), gN (·)) and

≈
r (t, ·, πN hn(·), ·, gN (·)) are Gt ⊗F̂M,t ⊗Bd ⊗B[0,t]−Bd measurable. Further,

≈
r (t, ·, πN hn(η), rgN (s), gN (s)) is a solution of (4.9) for any

rgN (s) ∈ L2,FgN (s)
, η ∈ C([0, T ];M).

}
(6.12)

(iv) In this step we show that
≈
r (t, ·, πN hn(Ỹ), rgN (s), gN (s)) is a solution of (4.9)

for rgN (s) ∈ L2,FgN (s)
, Ỹ ∈ L2,F (C([0, T ];M)). Without loss of generality,

let gN (s) = 0. Since on [0, s N
1 ) πN hn(Ỹ)(s) = hn(Ỹ)(0) is F0-measurable,

we may again copy Dynkin’s proof to show that
≈
r (t, · , πN hn(Ỹ), r0, 0) is a

solution of (4.9) on [0, s N
1 ) and, by a continuity argument, also on [0, s N

1 ].
Set rs N

1
:= lim

t↑s N
1

≈
r (t, ·, πN hn(Ỹ), r0, 0). As before, we conclude that

≈
r (t, ·, πN hn(Ỹ), rs N

1
) solves (4.9) on

[
s N

1 , s
N
2

]
.

Set

Ωk0 :=
{
ω : πN hn(Ỹ)(0) = ηn

k0
(0)

}
,Ωk1 :=

{
ω : πN hn

(
Ỹ
) (

s N
1

)
=ηn

k1

(
s N

1

)}

Since Ωk0 ∈ F0 and Ωk1 ∈ Fs N
1

, a.s. for t ∈ [
s N

1 , s
N
2
]

≈
r
(

t, ·, πN hn

(
Ỹ
)
, rs N

1

)
1Ωk0∩Ωk1

= ≈
r
(

t, ·, πNη
n
k1

≈
r
(

s N
1 , ·, πNη

n
k0
, r0, 0

)
, s N

1

)
1Ωk0∩Ωk1

= ≈
r
(

t, ·, πNη
n
k0,k1

, r0, 0
)

1Ωk0∩Ωk1

with ηn
k0,k1

∈ C SN ([0, T ];M) such that πNη
n
k0,k1

(0)= ηn
k0
(0) and πNη

n
k0,k1

(s N
1 )

= ηn
k1
(s N

1 ). The second identity derives from the unique continuation property
of solutions of (4.9) and (6.12). So, we obtain a.s. for t ∈ [s N

1 , s
N
2 ]

≈
r
(

t, ·, πN hn

(
Ỹ
)
, rs N

1
, s N

1

)
1Ωk0∩Ωk1

=≈
r
(

t, ·, πN hn

(
Ỹ
)
, r0, 0

)
1Ωk0∩Ωk1

.

Since Ω = ⋃
k0,k1

Ωk0 ∩Ωk1 , this implies that a.s. for any t ∈ [
s N

1 , s
N
2
]

≈
r
(

t, ·, πN hn

(
Ỹ
)
, rs N

1
, s N

1

)
≡≈

r
(

t, ·, πN hn

(
Ỹ
)
, r0, 0

)
,

whence
≈
r (·, ·, πN hn(Ỹ), r0, 0) is a solution of (4.9) on [0, s N

2 ]. Repeating this
procedure a finite number of times finishes step (iv).
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(v) We verify that for any n and k

(α)

∫ T

0
γ
(
πNη

n
k (s)− ηn

k (s)
)

ds ≤ cT

∣∣∣∣
∣∣∣∣
∂

∂t
ηn

k

∣∣∣∣
∣∣∣∣
2

γ,T
e−N

and for any s, η, and r

(β)E |r(s, η, r, gN (s))− r |2 ≤ cT 3−N .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.13)

Hence, as in step (iv), employing (4.17) and the Borel–Cantelli lemma, we ob-
tain a function

=
r : 0 ≤ s ≤ t ≤ T ×Ω × C SN ([0, T ];M)× Rd → Rd

and sets
≈
Ωη,r,s with P

( ≈
Ωη,r,s

)
= 1 such that uniformly in t ∈ [gN (s), T ]

=
r (t, ω, πN hn(η), fN (r), gN (s)) :≡

⎧⎨
⎩

≈
r (t, ω, πN hn(η), fN (r), gN (r)), if ω ∈ ≈

Ωη,r,s

0, if ω !∈ ≈
Ωη,r,s ;

⎫⎬
⎭

(6.14)

and for any ω, η, r, s uniformly in t ∈ [gN (s), T ]
lim

N→∞
=
r (·, ω, πN hn(η), fN (r), gN (s)) = =

r (·, ω, hn(η), r, s). (6.15)

Clearly,
=
r has the same measurability properties as

≈
r . Moreover, setting Ω̃ :=⋂

�,k, j
≈
Ωηn

� ,r
N
k ,s

N
j

we have P(Ω̃) = 1, whence
=
r (·, ·, πN hn(Ỹ), fN (rgN (s)),

gN (s)) is a solution of (4.9) (being a.s. equal to
≈
r (·, ·, πN hn(Ỹ), fN (rgN (s)),

gN (s))). Next, we may suppose E |rgN (s)|2 → E |rs |2, as N → ∞. Using
the usual truncation technique we may, without loss of generality, assume ess
supω sup0≤t≤T γ

(
Ỹ(t, ω)

)
<∞. We then choose a subsequence Ñ (N )→ ∞

such that

E
∫ T

0
γ 2

(
πÑ hn

(
Ỹ(t)

)
− hn

(
Ỹ(t)

))
dt ≤ cT 3−N . (6.16)

The choice of Ñ (N ) implies that a.s. uniformly on [s, T ]
=
r (·, ·, πÑ hn(Ỹ), f Ñ (rgÑ (s)), gN (s))→ r(·, hn(Ỹ), rs, s), (6.17)

the solution of (4.9). (6.14) and (6.17) imply that a.s.

=
r
(
·, ·, hn(Ỹ), rs, s

)
≡ r

(
·, hn(Ỹ), rs, s

)
,

i.e.,
=
r
(
·, ·, hn(Ỹ), rs, s

)
solves (4.9).
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(vi) We now proceed as before. By (4.17) and the Borel–Cantelli lemma we obtain

r : 0 ≤ s ≤ t ≤ T × C SN ([0, T ];M)× Rd × [0, t] → Rd

and sets Ωη̃,r,s with P
(
Ωη̃,r,s

) = 1 such that uniformly in t ∈ [gN (s), T ]

r(t, ω, hN (η), fN (r), gN (s)) :=
{ =

r (t, ω, hN (η), fN (r), gN (s)), if ω ∈ Ωη,r,s,
0, if ω !∈ Ωη,r,s;

}

(6.18)

and for any ω, η, r, s uniformly in t ∈ [gN (s), T ]
lim

N→∞ r(·, ω, hN (η), fN (r), gN (s)) ≡ r(·, ω, η, r, s). (6.19)

This implies the Gt ⊗ F̂M,t ⊗ Bd ⊗ B[0,t] − Bd -measurability of r(t, ·, ·, ·, ·)
and, by a simple modification of the previous steps, also statement 3)(i). Fur-
ther, as before, r(t, ·, hN (Ỹ), fN (rgN (s)), gN (s)) is a solution of (4.9).
Again, by (4.17) and the Borel-Cantelli lemma, we obtain that r(t, ·, Ỹ, rs, s)
is a solution of (4.9). 
�

6.2 Smoothness of the Flow

Let (B, ‖ · ‖B) be some Banach space with norm ‖ · ‖B . A B-valued random field is
by definition a Bd ⊗F −BB-measurable map from Rd ×Ω into B, where BB is the
Borel σ -algebra on B.

Definition 6.6. Let p ≥ 1. A B-valued random field is said to be an element of
L p,loc(Rd ×Ω;B), if for any L <∞

E
∫
|q|≤L

‖ f (q)‖p
B dq <∞. 
�

Let r(·, q) := r(·, Ỹ, s, q, w) be the measurable version of the solution of (4.9) with
r(s, q) = q, as derived in Theorem 4.5 under the Hypothesis 1.

Lemma 6.3.

(I) For any p ≥ 2 and T > s, r(·, ·) ∈ L p,loc(Rd ×Ω;C([s, T ];Rd).
(II) Let q, q̃ ∈ Rd . Then, for any p ≥ 2 and T > s

E sup
s≤t≤T

|r(t, q)− r(t, q̃)|p ≤ cT,F,J ,p|q − q̃|p. (6.20)

Proof.

(i) Theorem 4.5 implies that r(·, ·) is C([s, T ];Rd)-valued random field for any
T > s. The integrability with respect to (q, ω) follows from the boundedness
and integrability assumptions on the coefficients F and J .
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(ii) (6.20) follows from our assumptions and the Cauchy-Schwarz and Burkholder-
Davis-Gundy inequalities.7 
�

Endow Md×d , the space of d × d matrices over R, with the Euclidean metric of
Rd2

and let δ denote the Fréchet derivative.

Lemma 6.4. Suppose the coefficients of (4.9) satisfy condition (4.46) with m ≥ 1 in
addition to condition (4.11). Then, r(t, ·) is at least once differentiable with respect
to qk in the generalized sense, k = 1, . . . , d, and for any p ≥ 2, T > s

ϕ(·, ·) := ∂

∂r
r(·, ·) ∈ L p,loc(Rd ×Ω;C([s, T ];Md×d)). (6.21)

Moreover, for any q ∈ Rd , ϕ(·, q) is the Itó-solution of the following bilinear
Md×d-valued SODE:

dϕ(t, q) =

⎧⎪⎨
⎪⎩
(δF)(r(t, q), t)ϕ(t, q)dt +

d∑
�=1

∫
(δJ�)(r(t, q), p, t)ϕ(t, q)w�(dp, dt)

ϕ(s, q) = Id for all q ∈ Rd ,

⎫⎪⎬
⎪⎭

(6.22)

where Id is the identity matrix in Md×d .

Proof. We adjust the proof of Theorem 12, Chap. 4, of Gihman and Skorohod
(1982) to our setting.

(i) Assumption (4.46) (m ≥ 1) implies that for each q ∈ Rd (6.22) has a unique
solution ϕ(·, q) ∈ C([s, T ];Md×d) a.s. Moreover, for each p ≥ 2 there is a
finite cT,F,J ,p,d such that

sup
q∈Rd

E sup
s≤t≤T

|ϕ(t, q)|p ≤ cT,F,J ,p,d . (6.23)

(ii) First, we need some notation. For q ∈ Rd and / j ∈ R set

q+/ j := (q1, . . . , q j−1, q j +/ j , q j+1, . . . , qd)
T .

Now let f : Rd → R. Set

∂/, j f (q) = 1
/ j
( f (q+/ j )− f (q)).

Next, assume f to be differentiable and define the “quotient” map for f , Q/ f :
R2d → Rd , as follows:

(r, r̂) %→ (Q/ f )k(r, r̃) =
{

f (r̃1,...,r̃k−1,rk ,...rd )− f (r̃1,...,r̃k ,rk+1,...rd )
rk−r̃k

, if rk != r̃k

∂k f (r̃1, . . . , r̃k, rk+1, . . . , rd), if rk = r̃k,

}

(6.24)

7 Cf. for the latter inequality Sect. 15.2.3, Theorem 15.40.
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k = 1, . . . , d, where f (r̃1, . . . , r̃ j , r j+1, . . . , rd) means the first j coordinates
are those of r̃ and the last d − j coordinates are those of r . Moreover, if j = 0,
then we have f (r1, . . . rd) and for j = d we obtain f (r̃1, . . . , r̃d). Recalling
the abbreviations (4.43), we obtain by assumption

(Q/ F̃i )k(r(u, q+/ j ), r(u, q), u),

(Q/J̃i�)k(r(u, q+/ j ), p̃, r(u, q), p̃, u)

are well defined for i, j, �, k = 1, . . . d. They are also adapted processes and
(for fixed / j ) measurable in (u, q, ω) (as a consequence of the measurability
and adaptedness of r(·, ·) with respect to (u, q, ω) and the continuous differen-
tiability of F and J ). We must verify that these “quotients” are also “nicely”
integrable. By Taylor’s formula

(Q/J̃i�)k(r(u, q+/ j ), p̃, r(u, q), p̃, u)

= ∂k,r J̃i�(r̃ , p̃, u)+ 1
2∂

2
kk,r J̃i�(r̂ , p̃, u)(rk(u, q+/ j )− rk(u, q))

}
(6.25)

where

r̃ = (r1(u, q), . . . , rk(u, q), rk+1(u, q+/ j ), . . . , rd(u, q+/ j )) =: r̃(u, q, j, k)

and

r̂ = (r1(u, q), . . . , rk−1(u, q), θ(rk(u, q+/ j )

−rk(u, q))+ rk(u, q), rk+1(u, q+/ j ), . . . , rd(u, q+/ j ))

=: r̂(u, q, j, k)

with θ ∈ (0, 1). By (4.46)
∫ (

∂2
kk,r J̃i�

)2
(r, p̃, u)d p̃|r=r̂(u,q, j,k) ≤ d1,T (6.26)

uniformly in i, k, �, j, ω, r and u ≤ T . Equation (6.26) allows us to reduce the
integrability properties of (Q/J̃i�)k(r(u, q+/ j ), p̃, r(u, q), p̃, u) to those of
∂kJ̃i�(r̃(u, q, j), p̃). In particular, (6.25) and (6.26) imply
∫ {

(Q/J̃i�)k(r(u, q+/ j ), p̃, r(u, q), p̃, u)− ∂kJ̃i�(r̃(u, q, j), p̃, u)
}2

d p̃

≤ d1,T |rk(u, q+/ j )− rk(u, q)|2

⎫⎬
⎭

(6.27)

for i, j, k, � ∈ {1, . . . , d}, where we used the abbreviations, introduced after
(6.25). With the same abbreviations, we obtain immediately

|(Q/ F̃i )k(r(u, q+/ j ), r(u, q), u))− ∂k F̃i (r̃(u, q, j), u)|
≤ d3,T |r(u, q+/ j )− r(u, q)|.

}
(6.28)
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(iii) Now we define the Md×d -valued process η/(t, q) by

η/,i, j (t, q) = ∂/, j r i (t, q), (6.29)

where ∂/, j acts on the j th component of q. Then, with J̃·� being the �th col-
umn of J̃ ,

η/(t, q) = I +
∫ t

s
(Q/ F̃)(r(u, q+/ j ), r(u, q), u)η/(u, q)du

+
d∑
�=1

∫ t

s

∫
(Q/J̃·�)(r(u, q+/ j ), p̃, r(u, q), p̃, u)η/(u, q)w�(d p̃, du),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.30)

which may be rewritten as an integral equation associated with (6.22) plus two
error terms. Setting

ψ/(t, q) := ϕ(t, q)− η/(t, q),
we have

ψ/(t, q) =
∫ t

s
(δF̃)(r(u, q), u)ψ/(u, q)dq

+
d∑
�=1

∫ t

s

∫
(δJ̃·�)(r(u, q), p̃, u)ψ/(u, q)w̃�(d p̃, du)

+
∫ t

s
DF (r(u, q),/, u)du

+
d∑
�=1

∫ t

s

∫
DJ ·�(r(u, q), p̃,/, u)w�(d p̃, du),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.31)

where the error terms are defined by

DF (r(u, q),/, u) := ((Q/ F̃)(r(u, q+/ j ), r(u, q), u)

−δF̃(r̃(u, q, j), u))η/(u, q),

and

DJ·� (r(u, q), p̃,/, u) := ((Q/J̃·�)(r(u, q+/ j ), p̃, r(u, q), p̃, u)η/(u, q)
−δJ̃·�(r(u, q), p̃, u))η/(u, q).

(iv) By the Burkholder-Davis-Gundy inequality, in addition to the usual inequality
for Riemann-Lebesgues integrals and (6.20), (6.27), and (6.28), we obtain

E sup
s≤t≤T

|ψ/(t, q)|p ≤ cT,F,J ,p|(/1, . . . ,/d)
T |p. (6.32)
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Letting /i −→ 0 for i = 1, . . . , d implies that

ϕ(·, ·) = ∂

∂r
r(·, ·).

The measurability of ϕ with respect to q follows from the measurability of
η/(·, ·) in q, since by (6.32) η/(t, q) approximates ϕ(t, q) uniformly in q, and
so, a fortiori, also in L p,loc(Rd × Ω;C([s, T ];Rd) , where the local integra-
bility is trivial. 
�

Next, we set

J̃M (r, p, u) :=
M∑

n=1

∫
J̃ (r, q, u)φ̂n(q)dqφ̂n(p), (6.33)

with φ̂n from (4.13). This implies8

∫
J̃M (r, p, u)w(dp, du) =

M∑
n=1

σn(r, u)dβn(u), (6.34)

where σn(r, u) :=
∫
J (r, q, u)φn(q)dq. Hence, (4.9) with JM instead of J , be-

comes an SODE driven by finitely many Brownian motions. We see that the validity
of the conditions (4.11) and (4.46) on J entails the validity of the same conditions
for JM . Hence, Theorem 4.5 and Lemmas 6.3 and 6.4 hold for (4.9), if we replace
J by JM . Moreover, all these results also carry over to the SODE for the backward
flow (4.41) associated with (J̌M , ř) and w̌(dp, t) defined by (4.42) for fixed T > 0,
and t ∈ [0, T ]. Therefore, we may, without loss of generality, focus in what follows
on the forward equation. We denote the measurable version of the solutions of the
forward flow, associated with JM , by

r M (·, q) := r M (·,Y, s, q, w).
If B is some metric space, then L0(Ω;B) is by definition the space of B-valued

random variables. Fix T > s.

Lemma 6.5. Let m ≥ 1 and suppose (4.46). Let j and �� be multiindices with |j| ≤ m
and |��| ≤ m − 1. Then for any p ≥ 2

∂ jr̄M ∈ L p,loc(Rd ×Ω;C([s, T ];Rd)) (6.35)

and
∂��r̄M ∈ L0(Ω;C(Rd × [s, T ];Rd). (6.36)

8 Cf. (4.14), (4.15), and (4.28).
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Proof. Expression (6.35) for |j| ≤ 1 is a consequence of Lemma 6.4. For |j|> 1
we can (repeatedly) apply the procedure of the proof of Lemma 6.4 to SODEs
in increasing dimensions. Therefore, to prove (6.35) for m = 2, we consider the
Rd2+d -valued SODE for (r , ϕ) and obtain a bilinear SODE for 0((r , ϕ)T ) on
M(d2+d)×(d2+d) (0 now being the (d2 + d)-dimensional gradient). Expression
(6.36) follows from a straightforward generalization of Lemma 2.1 and Propositions
2.1 and 2.2 in Chap. V of Ikeda and Watanabe (1981). 
�

Next, let

řM (·, q) = ř(·,Y, s, q, w̌)

denote the measurable version of the solutions of the backward flows associated
with JM . The solution of (6.22) associated řM will be denoted by ϕ̌M . We show
that řM indeed defines the flow inverse to r M , following the procedure of Ikeda and
Watanabe (loc. cit) and approximate r M and řM by solutions of suitably chosen
random ODEs (Wong-Zakai approximations), for which the invertibility will follow
from uniqueness.

Remark 6.6. For time-independent coefficients Ikeda and Watanabe (loc. cit.) pro-
vide nice approximations of Itô SODEs by random ODEs. An analysis of the proof
of the approximation theorems in Ikeda and Watanabe (Chap. V, 2, Chap. VI, 7)
shows the following: No explicit use of Stratonovich SODEs is made. Instead, ran-
dom ODEs with different coefficients (containing the “correction” term) approxi-
mate the Itô-SODEs. The independence of time and chance of the coefficients is
not necessary – the “correction” term has the same form for time (and chance)-
dependent coefficients and for those that do not depend on t or ω (cf. the following
(6.37)).9 
�

We now define the coefficients for the drift of the forward random ODE, resp. of
the backward random ODE:

F+
i (r, t) = Fi (r, t)− 1

2

M∑
n=1

d∑
j,k=1

(
∂kσn,i j (r, t)

)
σn,k j (r, t)) (forward),

F−
i (r, t) = Fi (r, T − t)+ 1

2

M∑
n=1

d∑
j,k=1

(
∂kσn,i j (r, T − t)

)
σn,k j (r, T − t) (backward).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.37)

Lemma 6.7. Suppose (4.46) with m ≥ 1. Then F+
i and F−

i are globally Lipschitz
with Lipschitz constants independent of t and ω.

9 Cf. Sect. 15.2.6.
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Proof.

(i)

|(∂kσn,i j (r, t))σn,k j (r, t)− (∂kσn,i j (q, t))σn,k j (q, t)|
≤ |∂kσn,i j (r, t)− ∂kσn,i j (q, t)| · |σn,k j (r, t)|
+|σn,k j (r, t)− σn,k j (q, t)| · |∂kσn,i j (q, t)|

=: A1,n(t, r, q)+ A2,n(t, r, q).

(ii)

M∑
n=1

A1,n(t, r, q) ≤
⎛
⎝

∞∑
n=1

σ 2
n,k j (r, t))

1
2

( ∞∑
n=1

(∂kσn,i j (r, t)− ∂kσn,i j (q, t)

)2
⎞
⎠

1
2

.

Further,
∞∑

n=1

σ 2
n,k j (r, t) =

∫
J̃ 2

k j (r, p, t) d p̂ ≤ d1,T

uniformly in t ∈ [s, T ] and ω by (4.14)/(4.15). Next,

(∂kσn,i j (r, t)− ∂kσn,i j (q, t))2 =
(∫

(∂kJ̃i j (r, p̃, t)− ∂kJ̃i j (q, p̃, t))φn( p̃)d p̃
)2

=
( d∑
�=1

∫ r�

q�

∫
∂2

k�J̃i j ((q, r, α)�, p̃, t)φn( p̃)d p̃ dα

)2

(where (q, r, α)� = (q1, . . . , q�−1, α, r�+1, . . . rd) with the usual interpretation
for � = 1 and � = d, cf. (6.24))

≤ d|r − q| ·
d∑
�=1

∫ r�

q�

(∫
∂2

k�J̃i j ((q, r, α)�, p̃, t)φn( p̃)d p̃
)2

dα

by the Cauchy-Schwarz inequality, where r� = r�, q� = q� if r� ≥ q� and
r� = q�, q� = r� if q� > r�). Summing up from n = 1, . . . ,∞ implies

∞∑
n=1

(
∂kσn,i j (r, t)− ∂kσn,i j (q, t)

)2

≤ d|r − q| ·
d∑
�=1

∫ r�

q�

∫ (
∂2

k�J̃i j ((q, r, α)�, p̃, t)
)2

d p̃ dα

≤ d1,T d2|r − q|2
by (4.46).
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Hence,
M∑

n=1

(
A1,n(t, r, q)

) ≤ d̃1,T d|r − q|. (6.38)

uniformly in t and ω (and M).
(iii)

∞∑
n=1

(
∂kσn,i j

)2
(r, t) =

∫ (
∂kJ̃i j (r, p̃, t)

)2
d p̃ ≤ d1,T .

Repeating the derivation of (6.38) (with the obvious changes)

M∑
n=1

∣∣A2,n(t, r, q)
∣∣ ≤ d̃1,T d|r − q| (6.39)

(uniformly in t, ω and M).
(iv) Since Fi , i = 1 . . . d, are globally Lipschitz by assumption, the lemma is

proven. 
�
Lemma 6.8. Under the assumption (4.46), m ≥ 1, for any T > s with probability 1

r M (T − t, r) = řM (t, r M (T, r)) (6.40)

uniformly in r ∈ Rd and t ∈ [s, T ].
Proof.

(i) We take the Wong-Zakai approximations to the SODEs for r M and řM with
piecewise linear approximations βn,L(t) of βn , n = 1, . . . ,M , L ∈ N, where

βn,L(t) = L
{(

j + 1
L

− t
)
βn

(
j
L

)
+
(

t − j
L

)
βn

(
j + 1

L

)}

if
j
L
≤ t ≤ j + 1

L
, j = 0, 1, . . . .

⎫⎪⎪⎬
⎪⎪⎭

(6.41)

By Lemma 6.7, the Wong-Zakai approximations of the forward and backward
flows have unique solutions r M,L(t, r) and řM,L(t, r), respectively. Moreover,
r M,L(T−t, r), the solution of the approximate forward random ODE, evaluated
at T − t , satisfies the random ODE

dr(t)
dt

= −F+(r(t), T − t)−
M∑

n=1

σn(r(t), T − t)
dβn,L

dt
(t), (6.42)

which is the backward random ODE for řM,L(t, ·). By uniqueness (6.40) fol-
lows, if we replace r M and řM by r M,L and řM,L , respectively, uniformly in
r ∈ Rd and t ∈ [s, T ].
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(ii) Next, we check that we may (trivially) generalize Lemma 7.2 in Ikeda and
Watanabe (loc. cit.), Chap. VI, to our equations with time – and ω – dependent
coefficients, which implies for any multiindex j with |j| ≤ m), any N ∈ N,
p ≥ 2 and any r̃M,L ∈ {r M,L , řM,L}.

sup
|r |≤N

sup
L

E sup
s≤t≤T

|∂ jr̃M,L(t, r)|p <∞ (6.43)

The same estimates (without L) hold for r M (·, r) and řM (·, r) and their partial
derivatives up to order m by (6.35). Hence, we truncate all involved processes
using stopping times σk,L and σk such that for j with |j| ≤ m and (r̃M,L , r̃M ) ∈
{(r M,L , r M ), (řM,L , řM )}

sup
s≤t≤T∧σk,L

|∂ jr̃M,L(t, r)| + sup
s≤t≤T∧σk

|∂ jr̃M (t, r)| ≤ K <∞, (6.44)

whence

sup
s≤t≤T∧σk,L∧σk

|∂ jr̃M,L(t, r)− ∂ jr̃M (t, r)|p

≤ (2K )p−2 · sup
s≤t≤T∧σk,L∧σk

|∂ jr̃M,L(t, r)− ∂ jr̃M (t, r)|2,
sup

T∧σk,L∧σk≤t≤T
|∂ jr̃M,L(t, r)− ∂ jr̃M (t, r)|p

≤ 2
K

sup
s≤t≤T

(|∂ jr̃M,L(t, r)| + |∂ jr̃M (t, r))|)p+1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.45)

The estimates (6.43) and (6.45) imply that for any N ∈ N10

sup
|r |≤N

E sup
T∧σk,L∧σk≤t≤T

|∂ jr̃M,L(t, r)− ∂ jr̃M (t, r)|p

≤ 2
K

sup
|r |≤N

E sup
s≤t≤T

(|∂ jr̃M,L(t, r)| + |∂ jr̃M (t, r))|)p+1

→ 0, as K → ∞.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.46)

(iii) We check that Theorem 7.2, Ch. VI, in Ikeda and Watanabe (loc. cit.) general-
izes to our equations, which implies by (6.45) and (6.46) for any multiindex j
with |j| ≤ m, N ∈ N and p ≥ 2

sup
|r |≤N

E sup
s≤t≤T

|∂ jr̃M,L(t, r)− ∂ jr̃M (t, r)|p → 0, as L → ∞, (6.47)

which, of course, implies for any N ∈ N, |j| ≤ m and p ≥ 2

E
∫
|r |≤N

sup
s≤t≤T

|∂ jr̃M,L(t, r)− ∂ jr̃M (t, r)|p dr → 0, as L → ∞. (6.48)

10 Cf. Ikeda and Watanabe (loc. cit.), Chap. V, Proof of Lemma 2.1 therein.
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(iv) Choose p > d ∨ 2 (where “∨” denotes “maximum”). Then (6.48) implies by
the Sobolev imbedding theorem11 that for any N ∈ N and |j| ≤ m − 1

E sup
|r |≤N

sup
s≤t≤T

|∂ jr̃M,L(t, r)− ∂ jr̃M (t, r)| → 0, as L → ∞. (6.49)

(v) (6.40) follows now from steps (i)–(iv) and (6.49). 
�
Lemma 6.9. Assume (4.46), m ≥ 1, and let p ≥ 2. Then, for any (r̃M , r̃) ∈
{(r M , r), (řM , ř)} and any L <∞

sup
|q|≤L

E sup
s≤t≤T

|r̃M (t, q)− r̃(t, q)|p → ∞, as M → ∞. (6.50)

Proof.

(i) Assume, without loss of generality, (r̃M , r̃) = (r M , r). By the Burkholder-
Davis-Gundy and Hölder inequalities

E sup
s≤t≤T

|r(t, q)− r M (t, q)|p

≤ cT,p

{∫ T

s
E |F(r(u, q), u)− F(r M (u, q), u)|p du

+
∫ T

s
E

{ M∑
n=1

|σn(r(u, q), u)− σn(r M (u, q), u)|2
} p

2

du

+
∫ T

s
E

⎧⎨
⎩

∞∑
n=M+1

|σn(r(u, q), u)|2
} p

2

du

⎫⎬
⎭

=: cT,p

{ 3∑
i=1

Ai,M (T )

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.51)

(ii)

A2,M (T ) ≤
∫ T

s
E

{ ∞∑
n=1

|σn(r(u, q), u)− σn(r M (u, q), u)|2
} p

2

du

≤ cJ ,p

∫ T

s
E |r(u, q)− r M (u, q)|p du

by assumption (4.11) on J̃ (r, p, u).

(iii) Since
∞∑

n=1
|σn(r(u, q), u)|2 =

d∑
k,�=1

∫
J 2

k�(r(u, q), p̃, u)2 d p̃ <∞ uniformly in

u, ω, and q the monotone convergence theorem implies that for any ε > 0 there
is an M(ε) such that for all M ≥ M(ε)

A3,M (T ) ≤ ε.
11 Cf., e.g., Triebel (1978), Chap. 4.6.1.
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(iv)

A1,M (T ) ≤ cF,p

∫ T

s
E |r(u, q)− r M (u, q)|p du

by the Lipschitz condition on F .
(v) Hence, for all M ≥ M(ε)

E sup
s≤t≤T

|r(t, q)− r M (t, q)|p ≤ c̃T,F,J ,pε. (6.52)


�
Let ϕ(t, q) and ϕ̌(t, q) be the solutions of (6.22) associated with the forward flow
r(t, q) and backward flow ř(t, q), respectively.

Lemma 6.10. Assume (4.46), m ≥ 1, and let p ≥ 2. Then for any (ϕ̃M , ϕ̃) ∈
{(ϕM , ϕ), (ϕ̌M , ϕ̌)} and any L <∞

sup
|q|≤L

E sup
s≤t≤T

|ϕ̃M (t, q)− ϕ̃(t, q)|p → ∞, as M → ∞. (6.53)

Proof.

(i) Assume without loss of generality (ϕ̃M , ϕ̃) = (ϕM , ϕ). Set ψM := ϕ − ϕM .
Then

ψM (t, q) =
∫ t

s
δF̃(r(u, q), u)ψM (u, q)du

+
d∑
�=1

∫ t

s

∫
δJ̃M,·�(r(u, q), p̃, u)ψM (u, q)w�(d p̃, du)

+
∫ t

s
(δF̃(r M (u, q), u)− δF̃(r(u, q), u))(ψM (u, q)− ϕ(u, q))dq

+
d∑
�=1

∫ t

s

∫
(δJ̃M,·�(r M (u, q), p̃, u)

−δJ̃M,·�(r(u, q), p̃, u))(ψM (u, q)− ϕ(u, q))w�(d p̃, du)

+
d∑
�=1

∞∑
n=M+1

∫ t

s
δσn,·�(r(u, q), u)dβn,�(u)

=
5∑

i=1

Bi,M (t).

(ii) By the assumptions on J we obtain as in the previous proof of the previous
lemma (step iv) (cf. also the proof of Lemma 6.7) that for any p ≥ 2 and ε > 0

sup
q

E sup
s≤t≤T

|B5,M (t, q)|p ≤ ε

provided M ≥ M(ε).
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(iii) We easily see that for any p ≥ 2 and L <∞

sup
M

sup
|q|≤L

E sup
s≤t≤T

|ϕ̃M (t, q)|p <∞. (6.54)

Therefore, the boundedness and continuity of all coefficients in addition to

Lemma 6.9 imply (6.53). 
�
Corollary 6.11. Assume (4.46) with m≥1. Then, for any (r̃M , r̃)∈{(r M , r), (řM , ř)},
L <∞ and |j| ≤ m − 1

E sup
|q|≤L

sup
s≤t≤T

|∂ jr̃M (t, q)− ∂ jr̃(t, q)| → 0, as M → ∞. (6.55)

Moreover, for any multiindex j with |j| ≤ m − 1

∂ jr̃ ∈ L0(Ω;C(Rd × [s, T ];Rd)). (6.56)

Proof. Expression (6.55) follows in the same way as (6.49). Expression (6.56)
follows from (6.55) and (6.36). 
�



Chapter 7
Comments on SODEs: A Comparison
with Other Approaches

7.1 Preliminaries and a Comparison with Kunita’s Model1

We briefly review Kunita’s generalization of the classical Itô SODEs, driven by
Brownian noise. Correlation functionals for Gaussian random fields are shown to
have a representation as convolutions of certain kernels with Gaussian space–time
white noise (Proposition 7.1). Under a global Lipschitz assumption, it follows that
Kunita’s SODEs for Brownian flows are a special case of our SODEs (4.10).

In view of (4.15), we may interpret the present definition of SODEs as Itô SODEs
driven by infinitely many i.i.d. Brownian motions. SODEs, driven by finitely many
i.i.d. Brownian motions have been the standard Brownian model in stochastic analy-
sis for a number of decades.2 In addition, the driving noise in SODEs have been
generalized to martingales and semimartingales.3

A significant step beyond this standard model was accomplished by Kunita
(1990). Kunita4 defines C(Rd ;Rk)-valued Brownian motion S(·, ·) as a contin-
uous independent increment process. If we evaluate S(·, ·) at the spatial points
r1, . . . , rN we obtain an RNk-valued independent increment process (S(r1, ·), . . . ,
S(rN , ·)) with continuous sample paths. This is equivalent to the statement that
(S(r1, ·), . . . , S(rN , ·)) is a Gaussian process with independent increments.5 If we,
in addition, assume that the process has mean 0 and stationary increments, then
the process is an RNk-valued “Brownian motion” in the traditional sense.6 The

1 The comparison with Kunita’s approach is taken from the appendix in Kotelenez and Kurtz
(2006).

2 Cf., e.g., Gihman and Skorohod (1968, 1982), Arnold (1973), or Ikeda and Watanabe (1981).
3 In addition to some of the previously mentioned monographs, cf., e.g., Metivier and Pellaumail

(1980) and Protter (2004) and the references therein.
4 Kunita (1990), (loc.cit.), Sect. 3.1.
5 Cf. Gikhman and Skorokhod (1971), Chap. III.5, Theorem 5.
6 Note that the covariance may not be INk t in our definition of Brownian motion, where INk is

the identity matrix on RNk . If the covariance matrix is INk t , the Brownian motion is called
“standard.” Cf. also Sects. 15.2.2 and 15.2.4.
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existence of a C(Rd;Rk)-valued Brownian motion S(·, ·) is equivalent to the ex-
istence of a Gaussian random field with mean

E[S(r, t)] =
∫ t

0
b(r, u)du, Cov(S(r, t), S(q, s)) =

∫ t∧s

0
a(r, q, u)du, (7.1)

subject the assumptions that b(r, u) is jointly continuous in all variables and Hölder
continuous in r and a(r, q, u) is jointly continuous in all variables and Hölder con-
tinuous in (r, q).7 The proof of the existence is based on Kolmogorov’s existence
theorem and the existence of a continuous version follows from Kolmogorov’s con-
tinuity theorem.8 Kunita calls b(r, u) and a(r, q, u) the “infinitesimal mean” and
“infinitesimal covariance” of the random field, respectively. Following Kunita’s no-
tation we define the Lipschitz norms:

‖b(t)‖0,1 := sup
r !=q

|b(r, t)− b(q, t)|
|r − q|

‖a(t)‖0,1 := sup
r !=q,r̃ !=q̃

|a(r, r̃ , t)− a(q, r̃ , t)− a(r, q̃, t)+ a(q, q̃.t)|
|r − q||r̃ − q̃| ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.2)

Under the additional assumptions

|b(r, t)| ≤ c(1 + |r |), ‖a(r, q, t)‖ ≤ c(1 + |r |)(1 + |q|) (linear growth) ,

sup
t≥0

[‖b(t)‖0,1 + ‖a(t)‖0,1] ≤ c (globally Lipschitz ) ,

⎫⎬
⎭
(7.3)

Kunita9 constructs a “forward Brownian flow” ϕs,t (r) as the unique solution of
a stochastic ordinary differential equation driven by the Gaussian field (or random
function) S(r, t):

ϕs,t (r) = r +
∫ t

s
S(ϕs,u(r), du). (7.4)

where in (7.4) the stochastic integral must be interpreted in the sense of Itô. To better
understand the formalism involved, let us look at a special case of such a Gaussian
space–time random field:

S̃(r, t) :=
∫ t

0
F(r, u)du +

∫ t

0

N∑
i=1

σ⊥i (r, u)dβ⊥,i (u),

where k = d and all coefficients and the Brownian motions are as in (4.10), except
they do not depend on the empirical distribution of the solutions of (4.10) (and

7 Cf. Kunita (loc.cit., Sect. 4.2).
8 Cf. Gikhman and Skorokhod, (1971), Sect. III.1 and Sect. III.5, where the Gaussian field is

called “Gaussian random function,” for a proof. Cf. also Ibragimov (1983) for a generalization
of Kolmogorov’s continuity theorem.

9 Kunita (1990), (loc.cit.), Sect. 4.2, Theorems 4.2.5 and 4.2.8.
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J ≡ 0). In this case, (7.4) becomes exactly a special case of (4.10 (with J ≡ 0),
and the Itô differential S(r(u, s, q), du) in (4.10) is the usual (Itô) semimartingale
differential

S̃(r(u, s, q), du) = F(r(u, s, q), u)du +
N∑

n=1

σ⊥i (r(u, s, q), u)dβ⊥,i (u).

Let us now assume that the coefficients F and J in our equation (4.10) depend
only on the position r and the time t , which we call the “bilinear case.”10 Further,
assume σ⊥i (·, ·) ≡ 0 ∀i. Then

Ŝ(r, t) :=
∫ t

0
F(r, u)du +

∫ t

0

∫
J (r, p, u)w(dp, du) (7.5)

is a Gaussian space–time random field (or Gaussian random function) with contin-
uous sample paths. Further, (4.10) becomes the stochastic integral equation

r(t, s, r) = r+
∫ t

s
F(r(u, s, r), u)du+

∫ t

s

∫
J (r(u, s, r), p, u)w(dp, du), (7.6)

which may be written as

r(t, s, r) = r +
∫ t

s
Ŝ(r(u, s, r), du). (7.7)

We obtain that

b̂(r, t) := F(r, t)

â(r, q, t) :=
∫
(J (r, p, t)J T (q, p, t)) dp

⎫⎬
⎭ (7.8)

are the infinitesimal mean and infinitesimal covariance, respectively.

Our linear growth assumption (4.12) is similar to Kunita’s Condition (A.2),11

except we do not assume the coefficient to be continuous in t . Since we solve our
SODEs on a finite time interval, our assumption of uniform boundedness in t is the
same as in Kunita’s Theorem 4.2.5, and it may be easily removed by working with
localizing stopping times. Further, let us comment on the Lipschitz assumption in
Kunita.12 Since this is an assumption on the components of the matrices involved
we may, without loss of generality, assume that the coefficients are real valued. Our
assumption (4.12) then implies in the terminology of Kunita that

|a(r, r, t)+ a(q, q, t)− 2a(r, q, t)| ≤ c|r − q|2, (7.9)

10 The term “bilinear” refers to the fact that the associated SPDE for the empirical distribution will
be bilinear as long as the coefficients of the underlying SODE do not depend on the empirical
distribution of the solutions (cf. Chap. 8, (8.26)). The SODE (7.6) needs, of course, not be
bilinear.

11 Kunita (1990), (loc.cit.), Sect. 4.2.
12 Kunita (1990), (loc.cit.), Theorem 4.2.5.
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which is apparently weaker than Kunita’s continuity assumption on a(r, q, t) in ad-
dition to the global Lipschitz assumption (7.3).

It remains to show that each Gaussian random field (random function), consid-
ered by Kunita may be represented as in (7.5). Since a Gaussian random field (ran-
dom function) is uniquely determined by its mean and covariance, we have just to
show that the class of infinitesimal means and covariances from (7.8) contains those
considered by Kunita.

The case for the mean is trivial. Therefore, without loss of generality, we may
assume that the mean is 0. Let us fix t and first consider the case of real-valued
random fields. Set B := C(Rd ;R) and endow B with the topology of uniform con-
vergence on bounded sets. Let B be the Borel σ -algebra on B. Given a(r, q, t) from
(7.1), Kolmogorov’s theorem implies that the Gaussian random field with covari-
ance a(r, q, t) has sample paths in C(Rd+1;R).13 Hence, for fixed t , the Gauss
measure µ on the space of functions from Rd with values in R is supported by B,
endowed with B.14 Thus, we have the existence of a (continuous) Gaussian random
field ξ(r, t) such that

∀t a(r, q, t) = E(ξ(r, t)ξ(q, t)) =
∫

B
(b(r, t)b(q, t))µ(db(·, t). (7.10)

Observe that B is a Polish space. Hence, any measure on (B,B) is a Radon
measure.15 Therefore, by Corollary 3.2.7 in Chap. 3.2 of Bogachev (1997),
L2(B,B, dµ) is separable. The separability of L2(B,B,dµ) implies that

L2(B,B, dµ) ∼= L2(Rd ,Bd , dr) (isometrically isomorphic) . (7.11)

Note for the special case of a separable Banach space B, the separability of
L2(B,B, dµ) follows from the Itô–Wiener–Chaos decomposition (by construction a
countable complete orthonormal system of eigenfunctions for L2(BN ,BN , duN ).16

The relation (7.11) immediately generalizes to Rd -valued Gaussian random fields.
Thus, there are Borel measurable Rd valued functions J (r, p), which are Borel
measurable in p and continuous in r such that17

∀t, r, q a(r, q, t) = E(ξ(r, t)ξ T (q, t)) =
∫

Rd
J (r, p, t)J T (q, p, t)dp. (7.12)

If J (r, p, t) = J (r − p, t), i.e., if the kernel is spatially homogeneous, then
also a(r, q, t) = a(r −q, t). For spatially homogeneous kernels J (r, t) is called the

13 Cf. Ibragimov (1983).
14 It is actually supported by an even smaller space of more regular functions. Recall the classical

Wiener space and the regularity of the standard Brownian motion expressed by Levy’s modulus
of continuity.

15 Cf. Bourbaki (1977), Chap. IX, Sect. 3.3.
16 Cf. Watanabe (1984), Sect. 1.2. Cf. also Gikhman and Skorokhod (1971), Chap. VIII, and for

newer results on the Malliavian calculus, Üstünel (1995) and the references therein.
17 The observation, leading to (7.12), is essentially due to Dorogovtsev (2004a).
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convolution root of a(r, t).18 We extend this term also to the inhomogeneous case
and show that there are “many” spatially homogeneous a(r, t) whose convolution
root is necessarily (spatially) inhomogeneous.19

Since Gaussian fields are uniquely determined by their mean and their correlation
operator we have

Proposition 7.1.

S(·, ·) ∼
∫ ·

0
F(·, u)du +

∫ ·

0

∫
J (·, p, u)w(dp, du). (7.13)


�

Hence, (7.11) allows us to represent Kunita’s Gaussian random fields directly as
the sum of a deterministic integral and a stochastic integral, where the latter is driven
by a standard Gaussian space–time white noise, as in our Chaps. 2 and 4. Recalling
Kunita’s stronger regularity assumptions on the mean and covariance, it follows that
the Gaussian random fields that drive the stochastic differential equations of Kunita
(loc.cit.) are essentially a special case of the fields given in (7.5), which themselves
are a special case of the fields, driving the SODEs in Chap. 4.

Remark 7.2. Suppose that the covariance of the Gaussian space–time random field
is given by the right-hand side of (7.12). By Theorem 1 of Gikhman and Skorokhod
(loc.cit.), Chap. 4.5, there is an orthogonal random measure ŵ(dp, dt) with the
Lebesgue measure as its “structure measure.” ŵ(dp, dt) is measurable with re-
spect to the random variables generated by the linear combinations of S(ri , ti ), i =
1, . . . , N , N ∈ N, such that S(t, x) has the following representation:

S(·, ·) =
∫ ·

0
F(·, u)du +

∫ ·

0

∫
J (·, p, u)ŵ(dp, du) a.s.. (7.14)

Since S(r, t) is Gaussian, the random measure ŵ(dp, dt) is Gaussian and, in
view of the orthogonality, it follows that ŵ(dp, dt) is (another) standard Gaussian
space–time white noise. 
�
Remark 7.3. Let us specialize the analysis to the case of homogeneous mean zero
Gaussian fields. Since the vector-valued case can be easily derived from the analysis
of scalar fields and t can be kept fixed, we assume that, without loss of generality,
the correlation functionals are real valued and independent of t . For f ∈ C(Rd ;R)
define the norm:20

|‖ f |‖L := |‖ f |‖ + sup
r !=0

| f (0)− f (r)|
|r |2 (7.15)

and set
CL(Rd;R) := { f ∈ C(Rd;R) : |‖ f |‖L <∞}. (7.16)

18 Cf. Ehm et al. (2004) and the references therein.
19 Cf. Remark 7.3 and Example 7.6.
20 Cf. (7.9).
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We verify that class of real-valued homogeneous and autonomous a from (7.1),
satisfying(7.2)/(7.3), has the following properties:

(i) a ∈ CL(Rd;R);
(ii) a(0) ≥ |a(r)| ∀r;

(iii) a(r) = a(−r) ∀r.

⎫⎪⎪⎬
⎪⎪⎭

(7.17)

We denote the class of functions with properties (i)–(iii) from (7.17) by C̃L . Next,
let � ∈ H0. Then, ∫

�(r − p)�(−p)dp ∈ C0(Rd;R), (7.18)

i.e., in the space of continuous functions that vanish at infinity.21 Let us call the
mapping from H0 into C0(Rd;R) an s-convolution (since for the convolution we
would have to evaluate the second integrand at p rather than at −p). Thus, our result
implies that there are “many” homogeneous correlation functionals a resulting from
spatially inhomogeneous s-convolution-type products of functions J (r, p). 
�

7.2 Examples of Correlation Functions

Three examples of correlation functionals are analyzed.

Before giving examples convolution roots, related to Fourier transforms, let us
prove a simple fact about odd integrable functions f .

Proposition 7.4. Let f ∈ L1(Rd; dr) such that f is odd, i.e., f (p) = − f (−p) a.s.
Then ∫

f (p)dq = 0. (7.19)

Proof. For d = 1 this is trivial. If d > 1 we divide Rd into 2d infinite squares as
follows: each of the squares has as one-dimensional boundaries either {−∞, 0} or
{0,∞} and we add linear manifolds of dimension less than d, i.e., where at least one
of the coordinates equals 0 instead of an interval for the boundary of the squares.
Choose one of the squares and call it B+. Then there is exactly one other square,
called B− such that p ∈ B+ if and only if −p ∈ B−. Note that by change of
variables p ↔ −p in addition to the oddness of f

∫
B−

f (p)dp = −
∫

B+
f (p)dp.

Since the integration over the linear manifolds of dimension less than d equals 0,
we obtain from the preceding equation

21 Cf., e.g., Folland (1984), Chap. 8.2, (8.8) Proposition.
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∫
f (p)dp =

∑
B

[∫
B+

f (p)dq +
∫

B−
f (p)dp

]
= 0.


�
Example 7.5. Let ϕ(p) ∈ L1(Rd , dr) an even and nonnegative function. Set

a(r) :=
∫

cos(r · p)ϕ(p)dp, (7.20)

i.e., a(r) is the Fourier transform of a finite measure with a density. We verify that
a(·) ∈ C̃L .22 Further, evoking the Riemann-Lebesgue Theorem23, we obtain that
a(·) ∈ C̃L ∩ C0(Rd;R). Set

�(r, p) := [cos(r · p)+ sin(r · p)]√ϕ(p). (7.21)

Since

cos(r · p) cos(q · p) = 1
2 [cos((r − q) · p)+ cos((r + q) · p)];

sin(r · p) sin(q · p) = 1
2 [cos((r − q) · p)− cos((r + q) · p)]

we obtain

[cos(r · p)+ sin(r · p)][cos(q · p)+ sin(q · p)]
= [cos((r − q) · p)+ cos(r · p) sin(q · p)+ sin(r · p) cos(q · p)

The last two functions are odd in p. Since ϕ(·) is even and integrable it follows
from Proposition 7.4 that

∫
[cos(r · p) sin(q · p)+ sin(r · p) cos(q · p)]ϕ(p)dp = 0.

So,
∫
�(r, p)�(q, p)dp =

∫
cos((r − q) · p)ϕ(p)dp = a(r − q). (7.22)


�
Example 7.6. Set

a(r) := 1 + cos(r · b), r, b ∈ Rd , b != 0. (7.23)

Obviously, a(r) /∈ C0(Rd;R). Further,

a(r) =
∫

exp(ir · λ)
[

1
2
δ−b(dλ)+ δ0(dλ)+ 1

2
δb(dλ)

]
, (7.24)

i.e., a(r) is the Fourier transform of the symmetric spectral measure

22 C̃L has been defined by (7.17).
23 Cf. Bauer (1968), Chap. VIII, Sect. 48.
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µ(dλ) := 2π
[

1
2
δ−b(dλ)+ δ0(dλ)+ 1

2
δb(dλ)

]
. (7.25)

Hence a(r) defines a correlation functional of a homogeneous random field.24

As before we employ the trigonometric identity

cos((r − q) · b) = cos(r · b) cos(q · b)+ sin(r · b) sin(q · b) (7.26)

and note that
∫

[cos(r · λ) sin(q · λ)+ sin(r · λ) cos(q · λ)]

×
[

1
2

δ−b(dλ)+ δ0(dλ)+ 1
2

δb(dλ)
]
= 0, (7.27)

because the integrand is odd and the measure is symmetric. We obtain that

a(r − q) =
∫

[cos(r · λ)+ sin(r · λ)] [cos(q · λ)+ sin(q · λ)]

×
[

1
2

δ−b(dλ)+ δ0(dλ)+ 1
2

δb(dλ)
]
, (7.28)

Equation (7.28) represents a(r − q) as an s-convolution with respect to the spec-
tral measure. Our goal, however, is to represent a(r − q) by an s-convolution with
respect to the Lebesgue measure, as in (7.8). Abbreviate

C1(0) :=
{

p ∈ Rd : − 1
2 ≤ pi ≤ 1

2 , i = 1, . . . , d
}
,

B+ :
{

p ∈ Rd : pi ≥ 1
2 ∀i

}
,

B− :
{

p ∈ Rd : pi ≤ − 1
2 ∀i

}
,

.

Let h(p) ≥ 0 be an even and integrable function such that

h(p) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if p ∈ C1(0),

0, if there are i, jsuch that − 1
2
≤ pi ≤ 1

2
and |p j | > 1

2
,

≥ 0 , ifp ∈ B+ ∪ B− and such that
∫

B+
h(p)dp = 1

2
=
∫

B−
h(p)dp.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.29)

Define an odd function φ(p) by

φ(p) :=

⎧⎪⎨
⎪⎩

−1, if p ∈ B−,
1, if p ∈ B+,
0, otherwise.

(7.30)

24 Cf. Yaglom (1957) or Gel’fand and Vilenkin (1964).
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Set
�(r, p) := [cos(r · bφ(p))+ sin(r · bφ(p))]√h(p). (7.31)

As φ(p) = 0 ∀p ∈ C1(0), we have �(r, p) = 1 ∀r and ∀p ∈ C1(0). It follows
that ∫

C1(0)
�(r, p)�(q, p)dp =

∫
C1(0)

h(p)dp = 1.

Further,
∫

B−
�(r, p)�(q, p)dp

= [cos(−r · b)+ sin(−r · b)] [cos(−q · b)+ sin(−q · b)]
∫

B−
h(p)dp

= 1
2

[cos(−r · b)+ sin(−r · b)] [cos(−q · b)+ sin(−q · b)] ,

∫
B+
�(r, p)�(q, p)dp

= [cos(r · b)+ sin(r · b)] [cos(q · b)+ sin(q · b)]
∫

B+
h(p)dp

= 1
2

[cos(r · b)+ sin(r · b)] [cos(q · b)+ sin(q · b)]

and ∫
Rd\(B+∪B−∪C1(0))

�(r, p)�(q, p)dp = 0.

Adding up these results and employing the trigonometric identity (7.26) yields

a(r − q) = ∫
�(r, p)�(q, p)dp, (7.32)

i.e., a(r − q) has representation (7.8) with inhomogeneous kernel �(r, p). 
�
Example 7.7. For d = 1 we may take b = 1 and obtain

a(x) := 1 + cos(x). (7.33)

Since a(x) = a(|x |) the associated process is also isotropic. 
�
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Chapter 8
Stochastic Partial Differential Equations:
Finite Mass and Extensions

8.1 Preliminaries

The variational and the semigroup approaches are reviewed and the particle
approach is introduced. In conclusion, we define continuum and macroscopic limits.

Generalizing Pardoux’s variational approach to SPDEs,1 Krylov and Rozovsky
(1979) consider a class of SPDEs of the following type

dX = A(t, X)dt + B(t, X)dW + dZ ,

X (0) = X0.

}
(8.1)

A(t, X) is an unbounded closed operator on some Hilbert space H. Further, in
the variational frame-work there are two Banach spaces B and B′ such that

B ⊂ H = H′ ⊂ B′ (8.2)

with dense continuous imbeddings, where “′” denotes the (strong) dual space. The
spaces B and B′ are chosen such that A(t, ·) may be considered a bounded operator
from B into B′. W (·) is a K-valued regular Brownian motion, i.e., its covariance
operator, QW , is nuclear where K is another (separable) Hilbert space.2 B(t, X) is
a linear operator from K into a class of unbounded operators on H. In the most
important examples A(t, X) = A(t)X is a linear parabolic second-order operator
(which may depend on ω), and the unboundedness of B(t, X) is of the order of
a first-order linear operator. Z(t, ω) is just a state independent H-valued process.
We do not wish to present all the specific details and assumptions, except for the
“coercivity.”3 This is, by definition, the assumption that

〈2A(t, X), X〉+Trace{B(t,X)QWB′(t,X)} ≤ −γ1‖X‖2
B +γ2‖X‖2

H + const. (8.3)

1 Cf. Pardoux (1975).
2 Cf. Sect. 15.2.2.
3 Krylov and Rozovsky (1979) call condition (8.3) “coercivity of the pair.”
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Here, 〈·, ·〉 is the duality between B and B′, extending the scalar product 〈·, ·〉H on
H. γ1 and γ2 are positive constants, and the norms in (8.3) are the norms on B and H,
respectively. We call

∫ t
0 Trace B(s,X)QWB′(s,X)ds the trace of the tensor quadratic

variation of the martingale noise.4 The key in this assumption is the term −γ1‖X‖2
B

which allows a smoothing result for the solutions, i.e., starting in H the solution may
be in B for t > 0. This assumption is satisfied if, e.g., A =  and B XdW = ∇X ·
dW , where W (·) = (W1(·), . . . ,Wd(·))T and the components Wi (·) are H-valued
regular Brownian motions, i.e., whose covariance operators, QWi , are nuclear (cf.
Definition 15.1 of Chap. 15). An important consequence of (8.3) is that it satisfies
the assumptions of the Zakai equation.5 Consider first the deterministic case, i.e.,
replace the stochastic term by a deterministic perturbation f (·) ∈ L2([0, T ];B′)
and suppose that B is itself a Hilbert space. Under these assumptions, Lions and
Magenes6 show that the solution X (·) of the corresponding parabolic problem with
X (0) = 0 lives in L2([0, T ];B)∩C([0, T ];H). Therefore, the action of the operator
is smoothing the solution. The SPDE (8.1) is obtained by replacing the deterministic
perturbation by the martingale term

∫ t
0 B(s, X)dW . Since the additive term Z in

(8.1) is just an “external” perturbation, suppose, in what follows, Z(·) ≡ 0. To
explain the notion of a solution in the variational context of Pardoux and of Krylov
and Rozovsky we introduce the following notation, similar to DaPrato and Zabczyk
(1992):

Notation

L p,F ([s, T ] ×Ω;B), p ∈ [1,∞) ∪ {0}, is the set of all Y (·, ·) : [s, T ] ×Ω → B,
such that Y (·, ·) is dt⊗dP-measurable, adapted to Ft , and p-integrable with respect
to dt ⊗ dP on [s, T ] ×Ω .7

If a solution of (8.1) exists for X0 ∈ L2,F0(H), then Pardoux (loc. cit.) as well as
Krylov and Rozovsky (loc. cit.) show the analog to the result of Lions and Magenes,
namely that

X (·, X0) ∈ L0,F (C([0, T ];H)) ∩ L2,F ([0, T ] ×Ω;B), (8.4)

where we chose p = 2. Strictly speaking, (8.4) means that the solution X (·, X0) has
two versions, one with continuous paths in the space H and the other with merely
measurable paths in the smoother space B. It is important to note that the B-valued
version of this solution is smoother than the initial condition.

Returning to the deterministic framework of Lions and Magenes (loc. cit.), it
follows in the time invariant case that A generates an analytic semigroup T (t)
(both on B and on H).8 Further, Tanabe (1979), Chap. 5, provides conditions which

4 Cf. Sects. 15.2.3 and 15.2.4.
5 Expression (13.23) in Chap. 13.2. Cf. Zakai (1969) and Pardoux (1979).
6 Cf. Lions and Magenes (1972), Chap. 3, Sect. 4, (4.3), (4.4), Theorem 4.1.
7 For p = 0, we define the pth moment to be equal to

∫ T
s E(‖Y (u)‖B ∧ 1)du.

8 Cf. Tanabe (1979), Chap. 3.6, Theorem 3.6.1.
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guarantee the existence of a two-parameter group, U (t, s), generated by A(t).9

Then, employing “variation of constants,” (8.1) is transformed into the (stochastic)
integral equation

X (t) = U (t, 0)X0 +
∫ t

0
U (t, s)X (s)ds +

∫ t

0
U (t, s)B(s, X (s))dW (s)

+
∫ t

0
U (t, s)dZ(s).

(8.5)

A solution of (8.5) is called a “mild solution” of (8.1). Assuming coercivity of
the pair, A being independent of t and a Lipschitz condition on B and a suitable Z ,
DaPrato (1982) obtains the unique mild solution of (8.5) for X0 ∈ L2,F0(H).

The Itô formula provides the simplest key to understanding the coercivity condi-
tion (8.3). Suppose, for the time being, that (8.5) has a strong solution in H (“strong”
in the sense of PDEs), i.e., a solution which is in the domain of A(·), considered as
an unbounded operator on H. By the Itô formula10

‖X (t)‖2
H = ‖X (0)‖2

H +
∫ t

0
{〈2A(s, X (s)), X (s)〉H

+Trace{B(s, X (s))QW B∗(s, X (s))}}ds

+ (mean zero) martingale(t).

(8.6)

Employing the a priori estimate (8.3) and taking mathematical expectations,

E‖X (t)‖2
H ≤ E‖X (0)‖2

H +
∫ t

0

[
−γ1 E‖X (s)‖2

B + γ2 E‖X (s)‖2
H

]
ds + t (const.)

⇐⇒
∫ t

0
E‖X (s)‖2

B ≤ 1
γ1

{
E‖X (0)‖2

H + γ2

∫ t

0
E‖X (s)‖2

Hds

−E‖X (t)‖2
H + t (const.)

}
, (8.7)

i.e., we obtain an estimate of the solution in the norm ‖ · ‖B in terms of the solution
of the weaker norm ‖ · ‖H. In the variational approach (for p = 2), the notion of
a strong solution is weakened to the assumption that X (·) ∈ L2,F ([0, T ] ×Ω;B).
Accordingly, the Itô formula must be proved under those weakened assumptions to
provide a priori estimates.11

To illustrate our particle approach to SPDEs, let us present a simple example
from 2D fluid mechanics.12 Assume first that the fluid is ideal. Set

g(|r |) := 1
2π

log |r |, ∇⊥ :=
(
− ∂

∂r2
,
∂

∂r2

)T

.

9 Cf. Sect. 15.2.3, Definition 15.41, and Sect. 15.2.7, Proposition 15.64.
10 Cf. Metivier and Pellaumail (1980), Chap. 2.3.7.
11 Cf. Krylov and Rozovsky (loc. cit.), Theorem 3.1.
12 Cf. Marchioro and Pulvirenti (1982).
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Further, for η > 0, let gη be a smooth approximation of g if η→ 0 and set

Kη(r) := ∇⊥gη(|r |).
Consider the system of N coupled ordinary differential equations

d
dt

r i (t) =
N∑

j=1

a j Kη(r i − r j ) =
∫

Kη(r i − q)Yη,N (t, dq),

r i (0) = r i
0, i = 1, . . . , N , Yη,N (t) =

N∑
i=1

ai δr i (t).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8.8)

where a j ∈ R are the (positive and negative) intensities of the rotational motion
of the fluid and Yη,N (t) is the empirical process, generated by the solutions of the
ODEs.

It is well known13 that Yη(t) is an approximate solution of the (first-order
quasilinear) Euler equation

∂

∂t
Y (t, r) = −∇(Y (t, r)

∫
∇⊥g(|r − q|)Y (t, q)dq),

Y (0, r) = Y0(r),

⎫⎪⎬
⎪⎭

(8.9)

provided the initial empirical measure
N∑

i=1
ai δr i (0) ≈ Y0(r).

Next, assume that the fluid is viscous with viscosity coefficient ν > 0. In this
case, the Euler equation is replaced by a (semilinear second-order) Navier–Stokes
equation for the vorticity distribution:

∂

∂t
X (t, r) = ν/X (t, r)−∇(X (t, r)

∫
∇⊥g(|r − q|)X (t, q)dq),

X (0, r) = X0(r).

⎫⎬
⎭ (8.10)

A natural question is how to generalize the approximation of (8.9) through (8.8)
to the viscous case. Chorin14 replaces the system of ODEs (8.8) by the system of
SODEs:

dr i (t) =
∫

Kη(r i − q)Xη,N (t, dq)dt +√
2νβ⊥,i (dt),

r i (0) = r i
0, i = 1, . . . , N , Xη,N (t) =

N∑
i=1

ai δr i (t),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.11)

13 Cf., e.g., Marchioro and Pulvirenti (loc. cit.).
14 Cf. Chorin (1973) and the references therein.
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where {β⊥,i } are R2-valued i.i.d. standard Brownian motions (cf. (4.10)). Marchioro
and Pulvirenti (loc. cit.) obtain in a rigorous limit theorem

Xη,N (·) −→ X (·), as N −→ ∞ and η = η(N )→ 0

(suitably coupled with the limit behaviors of N )
(8.12)

in a weak topology, provided that the initial measures Xη,N (0) converge to X0. We
call a limit of the type (8.12), where the limit is the solution of a deterministic partial
differential equation, a “macroscopic limit.”

The use of ODEs and SODEs in 2D fluid mechanics to approximately solve the
Euler equation and the Navier–Stokes equation, respectively, is known as the point
vortex method.

Besides the obvious difference of approximations of a first-order and a second-
order PDE,15 there is another feature which the approximations Yη,N and Xη,N do
not share. Let ϕ be a smooth test function on R2 with compact support. Let 〈·, ·〉
denote the duality between smooth functions and distributions, extending the L2-
scalar product 〈·, ·〉0.16 The chain rule and integration against the empirical process
implies

d
dt

〈
Yη,N (t), ϕ

〉 =
〈
Yη,N (t),∇ϕ ·

∫
Kη(· − q)Yη,N (t, dq)

〉
,which is equivalent to

∂

∂t
Yη,N (t) = −∇ · (Yη,N (t)

∫
Kη(· − q)Yη,N (t, dq)),

(8.13)

i.e., the empirical process Yη,N is a weak solution of an approximation of the Euler-
type equation (cf. (8.9)). Unfortunately, the empirical process Xη,N is not a weak
solution of a Navier–Stokes type equation. The method fails as a result of the choice
of different Brownian motions β⊥,i as perturbations of different point vortices (or
particles). Therefore, Kotelenez (1995a) replaces in (8.11) the independent Brown-
ian motions by correlated Brownian motions

∫
Gε(r i − q)w(dq, dt), assuming∫

Gε(r − q)GT
ε (r − q)dq = Id (d = 2). Following this procedure, we obtain a

system of SODEs driven by correlated Brownian motions

dr i (t) =
N∑

j=1

a j Kη(r i
ε − r j

ε )dt +√
2ν

∫
Gε(r i

ε − q)w(dq, dt),

r i
ε(0) = r i

0, i = 1, . . . , N , Xη,ε,N (t) =
N∑

i=1

ai δr i
ε(t)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8.14)

We may now apply the Itô formula (i.e., the extended chain rule) and obtain,
similarly to (8.13), an SPDE as an approximation to the Navier–Stokes equation
(8.10).

15 The following parabolic second-order SPDE (8.14) can be written as a first-order transport
SPDE, if we replace the Itô differential w(dq, dt) by the Stratonovich differential w(dq, ◦dt).
Cf. Theorem 8.25 in Sect. 8.6.

16 Here H0 denotes L2(R2, dr).
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d
〈
Xη,ε,N (t), ϕ

〉 =
[〈
Xη,ε,N (t), ν/ϕ +∇ϕ ·

∫
Kη(· − q)Xη,ε,N (t, dq)

〉]
dt

+
〈
Xη,ε,N (t),∇ϕ ·

√
2ν

∫
Gε(· − q)w(dq, dt)

〉
,which is equivalent to

dXη,ε,N (t) = ν/Xη,ε,N (t)− ∇ · (Xη,ε,N (t)
∫

Kη(· − q)Xη,ε,N (t, dq))

−∇ · (Xη,ε,N (t)
√

2ν
∫

Gε(· − q)w(dq, dt)).

(8.15)

Further, it is shown in Kotelenez (1995a) that for fixed ε > 0, fixed η > 0 and
N −→ ∞, the empirical processes Xη,ε,N (t, dq)) tend toward a smooth solution of
(8.15), provided the initial distribution tends to a smooth initial distribution. Here
and in what follows, “smooth” solution means that the solution has a density with
respect to the Lebesgue measure, and that the density itself is a solution of (8.15).17

This is in contrast to the macroscopic behavior of the empirical process Xη,N (t, dq)
of (8.12).

The example from 2D fluid mechanics may be generalized to a system of dif-
fusing and interacting particles where, for most purposes, the real-valued intensities
are replaced by nonnegative weights, the masses of the individual particles. Simi-
larly to the drift in (8.11), the diffusion may also depend on the empirical process,
which leads to quasilinear PDEs or SPDEs. If the Brownian motions are chosen
uncorrelated as in (8.11), macroscopic limits have been obtained by numerous au-
thors.18 Note that in those macroscopic limit theorems, the original particle system
is governed by a system of interacting ODEs (as in (8.8)). The diffusion is added
such that each particle is driven by an independent standard Brownian motion (times
a diffusion coefficient J0(r, µ, . . .) ∈ Md×d ). Let us use the same notation as in
(8.8)–(8.12) for the relevant quantities but omit, without loss of generality, the de-
pendence on the smoothing parameter η (which is not needed in most of the models
mentioned above). Choose a twice continuously differentiable function ϕ on Rd

and denote now by 〈·, ·〉 the duality between measures and continuous functions.
Under nontrivial assumptions on the coefficients, Itô’s formula yields the following
(incremental) quadratic variations19 for the duality between test functions and the
empirical process, associated with the interacting and diffusion particle system:

d[〈X0.N (t), ϕ〉] =
N∑

i=1

1
N 2

d∑
k,�=1

(∂kϕ)(r i
0,N (t))(∂�ϕ)(r

i
0,N (t))

D0,k,�(r i
0,N (t), r

i
0,N (t),X0,N (t), t)dt

= Oϕ

(
1
N

)
dt,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8.16)

17 Cf. also Theorem 8.6.
18 Cf. Oelschläger (1984, 1985), Gärtner (1988), and the references therein.
19 Cf. Sects. 15.2.3 and 15.2.4. We may consider the left-hand side of (8.16), the tensor quadratic

variation of X0.N (t), in weak form.
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where

D0(r i , r j , µ, t) :=
{
J0(r i , µ, t)J T

0 (r
j , µ, t), if i = j ,

0, if i != j .

Here, 0 ∈ Md×d is the matrix with all entries being equal to 0 and the subscript
“0” indicates that the correlation length equals 0, i.e., the processes are driven by
uncorrelated Brownian motions.20 Clearly, we have N terms in the sum (8.16), di-
vided by N 2, which suggests a generalization of Chebyshev inequality estimates in
the law of large numbers for independent random variables with suitable moment
conditions. Thus, one can show that X0,N (·) �⇒ X (·), as N −→ ∞, where now
X (·) is the solution of a quasilinear parabolic partial differential equation (PDE) of
McKean–Vlasov type.21

We return now to the main theme of this chapter, namely the derivation of SPDEs
from particle distributions, generalizing (8.14)/(8.15). The stochastic Navier–Stokes
equation (8.15) is generalized to a class of quasilinear SPDEs by the author in
Kotelenez (1995b), where the quasilinearity appears if, as in (4.10), the diffu-
sion kernel Jε(r, q,Xε,N (·)) depends also on the empirical process. Suppose that
σ⊥i ≡ 0 ∀i in (4.10). Then the motion of the particles in (4.10) is perturbed only by
correlated Brownian motions, where we now explicitly use the subscript ε for the
correlation length. Choose, as in (8.16), a twice continuously differentiable function
ϕ on Rd . Itô’s formula yields the following (incremental) quadratic variations for
duality between test functions and the empirical process Xε,N (t), associated with
the interacting and diffusion particle system:

d[〈Xε,N (t), ϕ〉] =
N∑

i, j=1

1
N 2

d∑
k,�=1

(∂kϕ)(r i
ε,N (t))(∂�ϕ)(r

j
ε,N (t))

Dε,i, j,k,�(r i
ε,N , r

j
ε,N ,Xε,N (t), t)dt

= Oε,ϕ (1) dt,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.17)

where

Dε(r i , r j , µ, t) :=
∫

Jε(r i
ε, q, µ, t)J T

ε (r
j
ε , q, µ, t)dq ∀ i, j = 1, . . . , N .

In difference from (8.16), we now have N 2 terms in the sum (8.17), divided by
N 2, and the noise does not disappear in the limit as N −→ ∞. As a consequence,
the limit N −→ ∞ is a stochastic space–time field and solves a corresponding
SPDE.22 Observe that the limit N −→ ∞ is, most of the time, performed to obtain
a continuum model. In the case of (8.17), this limit is an SPDE which can be solved

20 Cf. Chap. 14, in particular, (14.1)–(14.3).
21 Cf. (14.5)/(14.6) in Chap. 14 of this book as well as Oelschläger (1984, 1985) and Gärtner

(1988). Cf. also (8.72).
22 Vaillancourt (1988) obtains similar SPDEs in the limit N −→ ∞ for a somewhat different

choice of the diffusion.
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on the space of densities (with respect to the Lebesgue measure, Theorems 8.3 and
8.6). Therefore, we will call the limit N −→ ∞ a “continuum limit.” Summarizing
the previous observations, the continuum limit of the empirical process (provided
such a limit exists) is the solution of a macroscopic PDE (i.e., deterministic), if
each particle is perturbed by its own independent Brownian motion (times diffusion
coefficients). The continuum limit, however, is the solution of a mesoscopic SPDE,
if the particle system is perturbed by correlated Brownian motions. Returning to the
problem of macroscopic behavior of the particle distribution, we mention that by
our Theorem 14.2 for the case of nonnegative masses we obtain a macroscopic limit
as ε −→ 0.

Summarizing, we may conclude that the use of correlated Brownian motions
allows us to perform the transition to a macroscopic model in two steps:

1. We first perform a continuum limit, which is described by an SPDE, defined
on a suitable space of densities. This SPDE is a PDE plus a stochastic term,
representing the interaction of the (large) particles with the medium of small
particles.23 Further, the stochastic term contains the correlation length ε > 0 as
a parameter, and this parameter “measures” the distance to a macroscopic (i.e.,
deterministic) PDE.

2. We then perform a macroscopic limit as ε −→ 0. In this limit the solution of
the SPDE tends to the solution of a PDE.

In view of our results of Chap. 5, the above procedure allows us to work with
the SPDE as a more realistic continuum model, where the stochastic perturbation is
small. This perturbation, derived from the interaction of small and large particles,
describes in the continuum model the error which we commit when simplifying
a discrete microscopic model of atoms and molecules by a continuum model for
their distribution. We will refrain here from a discussion of whether or not point
vortices in viscous fluid should be driven by uncorrelated or correlated Brownian
motions. As we shall see later in Remark 8.13, the SPDEs obtained for the em-
pirical processes of (4.19) are noncoercive, if we assume σ⊥i ≡ 0 ∀i in (4.10)
(cf. also Theorem 8.25 and the relation between the stochastic Navier–Stokes equa-
tion, driven by Itô differentials, and a stochastic Euler-type equation, driven by
Stratonovich differentials).

Kurtz and Xiong (1999) extend the author’s particle approach to SPDEs to
include quasilinear SPDEs of coercive type.24 This approach combines (8.11) and
(8.14) into one SODE (as in our (4.9) or (4.10)), and Kurtz and Xiong obtain an
SPDE in the continuum limit as N −→ ∞. Using this generalization, Kurtz and
Xiong (2001) solve the Zakai equation by particle methods. In Sect. 8.4, we analyze
a special case of the Kurtz and Xiong result, namely where the mass is conserved.25

23 We recall that this interaction is observable and deterministic on a microscopic level (cf. Chaps.
1 and 2).

24 Cf. Remark 8.14.
25 For other approaches and results on SPDEs, we refer the reader to Chap. 13.
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8.2 A Priori Estimates

The general conditions of Theorem 4.5 on initial values and input processes will be
assumed throughout the rest of this section. A priori estimates for measure valued
SPDEs are derived, based on Hypothesis 4.1.

We assume that the initial mass is finite in the a priori estimates for the empirical
processes for (4.9) and (4.10) . As in Chap. 4, we suppress a possible dependence of
the kernels J on the correlation length parameter ε for the rest of this section. Set

M f,d := {µ ∈ M f : µ is finite sum of point measures}
and

L0,Fs (M f,d) :=
{
Xs : Xs = Xs,N :=

N∑
i=1

mi δr i
s

with weights and initial positions adapted, N ∈ N
}
.

(8.18)

In what follows, µs,1 and µs,2 ∈ L0,Fs (M f,d) are the initial distributions of the
particles, described in Theorem 4.5 and Ỹ, Ỹi ∈ Lloc,2,F (C((s, T ];M f )), i = 1, 2
be arbitrary and fixed.

Lemma 8.1. Assume Hypothesis 4.1. Let µi (t), i = 1, 2, be the empirical measures,
generated by the solutions r(t, Ỹ, rs,i ) of (4.9) with initial distributions µs,i , and
let τ be a localizing stopping time for Ỹ, µs,1 and µs,2. Then there is a constant
cT,F,J ,τ such that

E

(
sup

s≤t≤T∧τ
γ 2

f (µ1(t)− µ2(t))1{τ>s}

)
≤ cT,F,J ,τ E(γ 2

f (µs,1 − µs,2)1{τ>s}).

(8.19)

Proof. Suppose, without loss of generality, that Ỹ ∈ Lloc,2,F (C([s, T ];M f )) and
that the initial distributions are nonrandom (employing first conditional expecta-
tion in the following estimates conditioned on the events from Fs) with total mass
m̄i , i = 1, 2. Then, by (15.43)26

E sup
s≤t≤T∧τ

γ 2
f (µ1(t)− µ2(t))

≤ E sup
s≤t≤T∧τ

[
(m̄1 ∧ m̄2) γ̃1

(
µ1(t)

m̄1
− µ2(t)

m̄2

)
+ |m̄1 − m̄2|

]2
.

26 The following derivation employs definitions and notation from Sect. 15.1.4; e.g., C(µ, ν)
denotes the set of joint distributions Q on the Borel sets of R2d for two probability measures,
µ and ν on Bd .
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By (15.40)

E sup
s≤t≤T∧τ

[
(m̄1 ∧ m̄2)γ̃1

(
µ1(t)

m̄1
− µ2(t)

m̄2

)]2

= (m̄1 ∧ m̄2)
2 E sup

s≤t≤T∧τ
inf

Q1∈C
(
µs,1
m̄1
,
µs,2
m̄2

)
[∫ ∫

!(r(t, Ỹ, q)− r(t, Ỹ, q̃))Q1(dq, dq̃)
]2

≤ (m̄1 ∧ m̄2)
2 E sup

s≤t≤T∧τ

[∫ ∫
!(r(t, Ỹ, q)− r(t, Ỹ, q̃))Q1(dq, dq̃)

]2

(where Q1 ∈ C
(
µs,1
m̄1
,
µs,2
m̄2

)
is arbitrary)

= (m̄1 ∧ m̄2)
2 E sup

s≤t≤T∧τ

∫ ∫ ∫ ∫
!(r(t, Ỹ, q)− r(t, Ỹ, q̃))!(r(t, Ỹ, p)

−r(t, Ỹ, p̃))Q1(dq, dq̃)Q1(dp, d p̃).

By the Cauchy–Schwarz inequality along with the usual properties of integrals
and suprema in addition to (4.17) and the fact that the initial values and distributions
are deterministic we obtain

E sup
s≤t≤T∧τ

∫ ∫ ∫ ∫
!(r(t, Ỹ, q)− r(t, Ỹ, q̃))!(r(t, Ỹ, p)

−r(t, Ỹ, p̃))Q1(dq, dq̃)Q1(dp, d p̃)

≤
∫ ∫ ∫ ∫ √

E sup
s≤t≤T∧τ

!2(r(t, Ỹ, q)− r(t, Ỹ, q̃))
√

E sup
s≤t≤T∧τ

!2(r(t, Ỹ, p)− r(t, Ỹ, p̃))Q1(dq, dq̃)Q1(dp, d p̃)

≤ c̃T,F,J ,τ

∫ ∫ ∫ ∫ √
!2(q − q̃)

√
!2(p − p̃)Q1(dq, dq̃)Q1(dp, d p̃)

= c̃T,F,J ,τ

∫ ∫ ∫ ∫
!(q − q̃)!(p − p̃)Q1(dq, dq̃)Q1(dp, d p̃)

= c̃T,F,J ,τ γ̃
2
1

(
µs,1

m̄1
− µs,2

m̄2

)

(since Q1 ∈ C
(
µs,1

m̄1
,
µs,2

m̄2

)
was arbitrary).

Altogether,

E sup
s≤t≤T∧τ

[
(m̄1 ∧ m̄2)γ̃1

(
µ1(t)

m̄1
− µ2(t)

m̄2

)]2
≤ c̃T,F,J ,τ (m̄1∧m̄2)

2γ̃ 2
1

(
µs,1
m̄1

− µs,2
m̄2

)
.
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We add to the previous estimates |m̄1 − m̄2|2 on both sides, multiply the result
by 2 and employ 2a2 + 2b2 ≤ 2(a + b)2 for nonnegative a, b. Then (15.43) implies
(8.19) (with cT,F,J ,τ := 4c̃T,F,J ,τ ). 
�

Recall that, according to Definition 4.1, a stopping time τ is called “localizing”
for initial measures µs,k , k = 1, . . . ,m, and measure-valued input processes Ỹ�(t),
� = 1, . . . , n, if there is a finite constant c such that

m∑
k=1

γ f (µs,k)1{τ>s} +
n∑
�=1

γ f (Ỹ�(t ∧ τ))1{τ>s} ≤ c a.s.

Lemma 8.2. Assume Hypothesis 4.1. Let µ(t, Ỹi , µs,i ), i = 1, 2, be the empirical
measures, generated by the solutions r(t, Ỹi , rs,i ) of (4.9) with initial distributions
µs,1 and µs,2, respectively. Further, let τ be a localizing stopping time for Ỹi , µs,i
and µs,2, i = 1, 2. Then there is a constant cT,F,J ,τ such that

E

(
sup

s≤t≤T∧τ
γ 2

f (µ(t, Ỹ1, µs,1)− µ(t, Ỹ2, µs,2))1{τ>s}

)

≤ 2cT,F,J ,τ E(γ 2
f (µs,1 − µs,2)1{τ>s})

+2cT,F,J ,τ E
(
[µs,1(Rd)]2

∫ T∧τ

s
γ 2

f (Ỹ1(u)− Ỹ2(u))du1{τ>s}
)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8.20)

Proof. As in the proof of Lemma 8.1, we may, without loss of general-
ity, assume that the initial distributions are deterministic and that the Ỹ� ∈
Lloc,2,F (C([s, T ];M f )), � = 1, 2.

(i)

γ f (µ(t, Ỹ1, µs,1)− µ(t, Ỹ2, µs,2))

≤ γ f (µ(t, Ỹ1, µs,1)− µ(t, Ỹ2, µs,1))+ γ f (µ(t, Ỹ2, µs,1)− µ(t, Ỹ2, µs,2))

=:
2∑

i=1
Ii (t).

(ii)

E sup
s≤t≤T∧τ

γ 2
f (µ(t, Ỹ1, µs,1)− µ(t, Ỹ2, µs,1))

= E sup
s≤t≤T∧τ

sup
‖ f ‖L ,∞≤1

[∫
( f (r(t, Ỹ1, q))− f (r(t, Ỹ2, q)))µs,1(dq)

]2

≤ E sup
s≤t≤T∧τ

∣∣∣∣
∫
(ρ(r(t, Ỹ1, Z1, q)− r(t, Ỹ2, Z1, q))µs,1(dq)

∣∣∣∣
2

≤
∫
µs,1(dq)

∫
E sup

s≤t≤T∧τ
ρ2(r(t, Ỹ1, q)− r(t, Ỹ2, q))µs,1(dq)
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(by the Cauchy–Schwarz inequality)

≤ [µs,1(Rd)]2c̃T,F,J ,τ E
∫ T∧τ

s
γ 2(Ỹ1(u)− Ỹ2(u))du

(by (4.17) and the assumption that the initial distributions are in L0,Fs (M f,d)).

(iii) Applying (8.19) to the term I2(t) completes the proof. 
�

8.3 Noncoercive SPDEs

Assuming Hypothesis 4.1, we obtain results for noncoercive SPDEs on the space
of finite measures as well as the existences of smooth solutions and extensions of
function-valued SPDEs on weighted Sobolev spaces. The general conditions of
Theorem 4.5 on initial values and input processes will be assumed throughout the
rest of this section.

Suppose throughout this Sect. 8.3

Hypothesis 8.1

σ⊥i ≡ 0 ∀i in (4.9)/(4.10). 
�
Further, assume first that the initial mass is finite. Recall our notational conven-

tion M ∈ {M f ,M∞,� } and Lloc,p,F (C((s, T ];M)) ∈ {Lloc,p,F (C((s, T ];M f )),
Lloc,p,F (C((s, T ];M∞,� ))}. The empirical process associated with (4.9) is
given by

YN (t) :=
N∑

i=1

mi δr(t,r i
s )
, (8.21)

where r(t, r i
s ) is the solution of (4.9) starting at r i

s with input process Ỹ ∈
Lloc,2,F (C((s, T ];M)) (cf. Theorem 4.5). The random weights mi = mi (ω)
are ≥ 0 and Fs-measurable. We note that

YN ∈ Lloc,p,F (C((s, T ];M f )) ∀p ≥ 1,

and, if the mi are deterministic, then

YN ∈ Lloc,p,F (C([s, T ];M f )) ∀p ≥ 1.

⎫⎪⎪⎬
⎪⎪⎭

(8.22)

The following derivation of estimates of solutions of (8.25), resp. (8.26), depends
on bounds on the initial distributions. Therefore, we will often replace the absolute
expectation by the conditional one, conditioned on the events from Fs .27 It follows

27 Cf. also the proofs of Lemmas 8.1 and 8.2.
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that in the conditional expectation the initial distribution is deterministic and we
may assume the second relation in (8.22) instead of the more general first relation
in that formula.

Recall from (4.15) the abbreviation

m(r(·), Ỹ(·), t) :=
∫ t

0

∫
J (r(s), p, Ỹ(s), s)w(dq, ds).

Generalizing the procedure in Chap. 5, we replace the processes r(·), Ỹ(·) and
q(·), Ỹ(·) in m(·, ·, t) by fixed (deterministic!) elements (r, µ), (q, µ) ∈ M × Rd ,
i.e., we consider the Gaussian space–time fields

m(r, µ, t) :=
∫ t

0

∫
J (r, p, µ, s)w(dp, ds), m(q, µ, t)

:=
∫ t

0

∫
J (q, p, µ, s)w(dp, ds).

We then define the generalization of (5.9), setting28

D̃k�(µ, r, q, t) :=
d∑

j=1

∫
Jk j (r, p, µ, t)J�j (q, p, µ, t)dp,

Dk�(µ, r, t) := D̃k�(µ, r, r, t),

and obtain, by the Cauchy–Schwarz inequality,

|D̃k�(µ, r, q, t)|

≤

√√√√√
d∑

j=1

∫
J 2

k j (r, p, µ, t)dp

√√√√√
d∑

j=1

∫
J 2
�j (q, p, µ, t)dp

= √
Dkk(µ, r, t)

√
D��(µ, q, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.23)

Take a test function ϕ ∈ C3
c (Rd ,R) and recall that 〈·, ·〉 denotes the duality be-

tween measures and continuous test functions with compact supports (extending

28 Observe that D̃k�(µ, r, q, t) = d
dt [mk(r, µ, t),m�(q, µ, t)]. In Chap. 5 and Sect. 15.2.4 we

analyze the case of correlated Brownian motions. In that case J does not depend on the input
process Ỹ(·), F(·, ·, ·) ≡ 0, and the diffusion matrix is spatially homogeneous. The derivative
of the mutual tensor quadratic variation is called the “random covariance” of the correlated
Brownian motions r(·), q(·) which are solutions of (5.1). (Cf. also Chap. 5, (5.8) and (5.9).)
In fact, the derivation of (15.121) can immediately be generalized to the case of input process
dependent diffusion kernels J . The only difference is that for this case the marginals r(·) and
q(·) are no longer Brownian motions.
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the H0 inner product). Let r j (t) be the solutions of (4.9) with the initial conditions
r j

s , j = 1, . . . , N and Ỹ ∈ Lloc,2,F (C((s, T ];M)) and observe that under Hypoth-
esis 4.1 the right-hand side of (8.23) is bounded. Itô’s formula yields

〈dYN (t), ϕ〉 = d〈YN (t), ϕ〉 =
∑N

j=1
m j dϕ(r j (t))

=
∑N

j=1
m j (0ϕ)(r j (t)) · F(r j (t), Ỹ, t)dt

+
∑N

j=1
m j (0ϕ)(r j (t)) ·

∫
J (r j (t), p, Ỹ, t)w(dp, dt)

+
∑N

j=1
m j

1
2

∑d

k,�=1
(∂2

k�ϕ)(r
j (t))Dk�(Ỹ, r j (t), t)dt

= 〈YN (t), (0ϕ)(·) · F(·, Ỹ, t)dt〉

+
〈
YN (t), (0ϕ)(·) ·

∫
J (·, p, Ỹ, t)w(dp, dt)

〉

+
〈
YN (t),

1
2

d∑
k,�=1

(∂2
k�ϕ)(·)Dk�(Ỹ, ·, t)

〉
dt

(by the definition of the duality between the measure

YN (t)and the corresponding test functions)

=
〈

1
2

d∑
k,�=1

Dk�(Ỹ, ·, t)YN (t), ∂2
k�ϕ

〉
dt

+
d∑

k=1

〈YN (t)Fk(·, Ỹ, t)dt, ∂kϕ〉

+
d∑

k=1

〈YN (t)
∫

Jk·(·, p, Ỹ, t)w(dp, dt), ∂kϕ〉

(by rearranging terms in the duality and changing the order

of the summation of the brackets 〈·, ·〉),
i.e.,

〈dYN (t), ϕ〉 =
〈

1
2

d∑
k,�=1

∂2
k�(Dk�(Ỹ, ·, t)YN (t))dt, ϕ

〉

−〈0 · (YN (t)F(·, Ỹ, t))dt, ϕ〉
−
〈
0 · (YN (t)

∫
J (·, p, Ỹ, t)w(dp, dt)), ϕ

〉

(integrating by parts in the generalized sense).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8.24)

Employing the linearity of the duality 〈·, ·〉 and the fact that the test functions
from C3

c (Rd ,R) uniquely determine the measure, we obtain that the empirical
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process associated with (4.9), YN (t), is a weak solution of the bilinear SPDE

dY =
⎛
⎝1

2

d∑
k,�=1

∂2
k�(Dk�(Ỹ, ·, t)Y)−0 · (YF(·, Ỹ, t)

⎞
⎠ dt

−0 ·(Y
∫
J (·, p, Ỹ, t)w(dp, dt))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.25)

with initial condition Y(s) =
N∑

i=1
mi δr i

s
. Note that we use “weak solution” as is

customary in the area of partial differential equations. Since we do not change the
probability space and work strictly with the same stochastic driving term, our solu-
tion is a “strong (Itô) solution” in the terminology of stochastic analysis.

The empirical process associated with (4.10) is XN (t), which is explicitly defined
in (4.10). We verify that XN ∈ Lloc,2,F (C((s, T ];M f )). Replacing Ỹ by XN in the
derivation (8.24)/(8.25), we also obtain that the empirical process associated with
(4.10), XN (t), is a weak solution of the quasilinear SPDE:

dX =
⎛
⎝1

2

d∑
k,�=1

∂2
k�,r (Dk�(X , ·, t)X )−0 · (X F(·,X , t))

⎞
⎠ dt

−0 · (X
∫
J (·, p,X , t)w(dp, dt))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.26)

with initial condition X (s) =
N∑

i=1
mi δr i

s
.

We next extend the empirical processes associated with (4.9) and (4.10), respec-
tively, by continuity from discrete initial distributions to general initial distribution.
This extension by continuity is one of the main tools in the derivation of SPDEs
from the empirical distributions of finitely many SODEs.29 We start with (4.9).

Theorem 8.3. Under Hypotheses 4.1 and 8.1, the following holds: For any fixed
Ỹ ∈ Lloc,2,F (C((s, T ];M)) the map

Xs,N %−→ YN (·, Ỹ,Xs,N ) from L0,Fs (M f,d) into Lloc,2,F (C((s, T ];M f ))
extends uniquely to a map

Xs %−→ Y(·, Ỹ,Xs) from L0,Fs (M f ) into Lloc,2,F (C((s, T ];M f )).

Further, let Xs,� ∈ L0,Fs (M f ), Ỹ� ∈ Lloc,2,F (C((s, T ];M f )), � = 1, 2, and let
τ be a localizing stopping time for those four random quantities. Then,

E

(
sup

s≤t≤T∧τ
γ 2

f

(
Y(t, Ỹ1,Xs,11{τ>s})− Y(t, Ỹ2,Xs,21{τ>s})

))

≤ 3cT,F,J ,τ E
(
γ 2

f ((Xs,1 − Xs,2)1{τ>s})
)

+3cT,F,J ,τ E
(
[µs,1(Rd)]2

∫ T∧τ

s
γ 2

f (Ỹ1(u)− Ỹ2(u))1{τ>s}du
)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(8.27)

29 Cf. Theorem 15.1 in Sect. 15.1.1.
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Moreover, if m(ω) := Xs(ω,Rd) = γ f (Xs(ω)) is the random mass at time s,
then with probability 1 uniformly in t ∈ [s, T ]

Y
(

t, ω, Ỹ,Xs(ω)
)
∈ Mm(ω). (8.28)

Proof. Working with localizing stopping times, we may, without loss of generality,
assume that all quantities are square integrable. The extension from L2,Fs (M f,d)
into L2,F (C([s, T ];M f )) and (8.27) is a straightforward consequence of (8.20) and
the extension by continuity, since L2,Fs (M f,d) is dense in L2,Fs (M f ) with respect
to the metric

√
Eγ 2(·, ·).

Let
τn(ω) := inf{t ∈ [s,∞] : γ f (Ỹ(t, ω))+ γ f (X (s, ω)) ≥ n}.

Set Ωn := {ω : τn > s}. Note that for n ∈ N

Y1Ωn (t, ω, Ỹ,Xs(ω)) ≡ Y1Ωn (t, ω, Ŷ, X̂s(ω))

for all adapted measure processes Ỹ, Ŷ from Lloc,2,F (C((s, T ];M)) and adapted
initial measures Xs, X̂s from L0,Fs (M f ) whose restrictions to Ωn satisfy

Ỹ1Ωn ≡ Ŷ1Ωn , Xs1Ωn ≡ X̂s1Ωn .

This is a simple consequence of the construction of the empirical process Y from
finitely many particles and their associated stochastic ordinary differential equa-
tions. Further, for n1 < n2

Y1Ωn1

(
t, ω, Ỹ,Xs(ω)1Ωn2

)
= Y1Ωn1

(
t, ω, Ỹ1Ωn1

,Xs1Ωn2
1Ωn1

(ω)
)

Hence, if n1 < n2, then

Y1Ωn1

(
t, ω, Ỹ,Xs(ω)1Ωn2

)
= Y1Ωn1

(
t, ω, Ỹ1Ωn1

,Xs(ω)1Ωn1

)

= Y
(

t, ω, Ỹ,Xs(ω)1Ωn1

)
,

⎫⎬
⎭ (8.29)

because for those ω, where the initial measure is 0, the process Y(t, ω, Ỹ,Xs
(ω)) ≡ 0 by mass conservation. Hence, there is an M f -valued process Y(t, , Ỹ,Xs),
whose restriction to any of the Ωn is the afore-mentioned extension. Clearly,
Y(t, , Ỹ,Xs) is an extension from L0,Fs (M f ) into Lloc,2,F (C((s, T ];M f )). The
uniqueness follows because all the restrictions are unique and the τn are localizing
for the input processes and the initial measures.

Expression (8.28) is a simple consequence of the conservation of mass. 
�
We next consider the mesoscopic equation (8.26) associated with the coupled

system of SODEs (4.10). We denote the empirical process of the N -particle system
by X (t,Xs,N ), with Xs,N being its initial state.
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Theorem 8.4. Under Hypotheses 4.1 and 8.1 the following holds: The map

Xs,N %→ XN (·,Xs,N ) from L0,Fs (M f,d) into Lloc,2,F (C((s, T ];M f ))
extends uniquely to a map

Xs %→ X (·,Xs) from L0,Fs (M f ) into Lloc,2,F (C((s, T ];M f )).

Further, let Xs,� ∈ L0,Fs (M f ) and a localizing stopping time τ for both initial
conditions. Then,

E

(
sup

s≤t≤T∧τ
γ 2

f (X (t,Xs,1)− X (t,Xs,2)1{τ>s})
)
≤ c2

T,F,J ,τ E(γ 2
f (Xs,1 − Xs,2)1{τ>s}).

(8.30)

Moreover, if m(ω) := Xs(ω,Rd) is the random mass at time s, then with proba-
bility 1 uniformly in t ∈ [s, T ]

X (t, ω,Xs(ω)) ∈ Mm(ω). (8.31)

Proof. Set Y := X (·,Xs,N ). We obtain X (t,Xs,N ) = Y(t,Y,Xs,N ). Apply (8.27)
and Gronwall’s inequality. 
�
Theorem 8.5. Suppose Xs ∈ L0,Fs (M) in addition to Hypotheses 4.1 and 8.1. Then
the following statements hold:

1. If Ỹ ∈ Lloc,2,F (C((s, T ];M)), then Y(·, Ỹ,Xs), the process obtained in
Theorem 8.3, is a solution of (8.25).

2. Assume also that the conditions of Theorem 4.7 hold. Then X (·,Xs), the process
obtained in Theorem 8.4, is a solution of (8.26).

Proof. 30 We must confirm that the solutions satisfy the SPDEs in weak form, as
described in the derivation (8.25). We will show (2). The proof of (1) is simpler.

Without loss of generality, let s = 0 and γ f (X0(ω)) ≤ b <∞ a.s. for some finite
b > 0. Let X (t) := X (t,X0) be the extension of the empirical process XN (t) :=
X (t,XN ,0), where we assume Eγ 2

f (XN ,0 − X0) −→ 0.
Let ϕ ∈ C3

c (Rd ;R). Note that ‖ϕ‖L ,∞, ‖∂�ϕ‖L ,∞, and ‖∂2
k,�ϕ‖L ,∞ are finite for

all k, � = 1, . . . , d, where ‖·‖L ,∞ denotes the bounded Lipschitz norm.31 Substitut-
ing on the right-hand side of (8.24) X (·) for YN (·) and for Ỹ(·) or XN (·) for YN (·)
and for Ỹ(·), the right-hand side of (8.24) is well defined for both substitutions.

(i) |〈X (t)− XN (t), ϕ〉| −→ 0, as N −→ ∞,
since, by Theorem 8.4, we have convergence to 0 if we take the sup over all ϕ
with ‖ϕ‖∞,L ≤ 1. By the same argument, the assumptions imply

30 For another and simpler proof via a flow representation of the empirical processes cf. Theorem
8.12. However, the present proof is straightforward and can be generalized to the coercive SPDE
(8.54).

31 Cf. (15.37).
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|〈X0 − XN ,0, ϕ〉| −→ 0, as N −→ ∞.
Therefore, we must show that the difference of the right-hand sides of (8.24),
evaluated at X (t) and XN (t), respectively, and integrated from 0 to t , converges
to 0. Set hN (t) := X (t)− XN (t). Then

E
{∫ t

0
〈hN (t), (0ϕ)(·) ·

∫
J (·, p,X (s), t)w(dp, ds)〉

}2

=
d∑

k,�,m=1

∫ t

0
E
∫ ∫

hN (t, dr)hN (t, dq)∂kϕ(r)∂�ϕ(q)

×
∫

Jkm(r, p,X (s), t)J�m(q, p,X (s), t)dp ds

−→ 0, as N −→ ∞,

because, by Hypothesis 4.1, the integral with respect to dp is bounded by a
constant, uniformly in all variables.

(ii) Since f (r) ≡ 1 is uniformly Lipschitz,

lim
N→∞XN ,0(Rd , ω) = X0(Rd , ω).

The mass conservation implies (uniformly in t)

lim
N→∞XN (t)(Rd , ω) = X (t)(Rd , ω).

Hence, we obtain that

XN (t)(Rd , ω) = X0,N (Rd , ω) ≤ b <∞ a.s.

Thus,

E
{∫ t

0

〈
XN (t), (0ϕ)(·) ·

∫
[J (·, p,X (s), t)− J (·, p,XN (s), t)]w(dp, ds)

〉}2

=
d∑

k,�,m=1

∫ t

0
E
∫ ∫

XN (t, dr)XN (t, dq)∂kϕ(r)∂�ϕ(q)

×
∫
[Jkm(r, p,X (s), t)− Jkm(r, p,XN (s), t)]

[J�m(q, p,X (s), t)− J�m(q, p,XN (s), t)]dp ds

≤
d∑

k,�,m=1

∫ t

0
E
∫ ∫

XN (t, dr)XN (t, dq)|∂kϕ(r)∂�ϕ(q)|

×
√∫

[Jkm(r, p,X (s), t)− Jkm(r, p,XN (s), t)]2dp

√∫
[J�m(q, p,X (s), t)− J�m(q, p,XN (s), t)]2dp ds
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(by the Cauchy–Schwarz inequality)

≤ c2
J

d∑
k,�,m=1

∫ t

0
E
∫ ∫

XN (t, dr)XN (t, dq)|∂kϕ(r)∂�ϕ(q)|γ 2
f (X (s)−XN (s))ds

(by Hypothesis 4.1)

≤ c2
J max

k=1,..,d
|‖∂kϕ|‖2d2b2

∫ t

0
Eγ 2

f (X (s)− XN (s))ds−→ 0, as N −→ ∞.

(iii) For the integral containing the diffusion coefficients we use

|Dk�(µ, r, t)− Dk�(ν, r, t)|

=
∣∣∣∣∣

d∑
m=1

∫
[Jkm(r, p, µ, t)J�m(r, p, µ, t)− Jkm(r, p, ν, t)J�m(r, p, ν, t)]dp

∣∣∣∣∣

≤
∣∣∣∣∣

d∑
m=1

∫
[Jkm(r, p, µ, t)− Jkm(r, p, ν, t)]J�m(r, p, µ, t)dp

∣∣∣∣∣

+
∣∣∣∣∣

d∑
m=1

∫
Jkm(r, p, µ, t)[J�m(r, p, µ, t)− J�m(r, p, ν, t)]dp

∣∣∣∣∣

≤
d∑

m=1

√∫
[Jkm(r, p, µ, t)− Jkm(r, p, ν, t)]2dp

√∫
J 2
�m(r, p, µ, t)dp

+
d∑

m=1

√∫
J 2

km(r, p, µ, t)dp

√∫
[J�m(r, p, µ, t)− J�m(r, p, ν, t)]2dp

(by the Cauchy–Schwarz inequality),

whence, by Hypothesis 4.1,

|Dk�(µ, r, t)− Dk�(ν, r, t)| ≤ cγ f (µ− ν). (8.32)

Using (8.32), we prove the convergence to 0 of the corresponding deterministic
integrals, following the pattern of step (ii). 
�

In what follows we focus on “smooth” solutions of (8.25) and (8.26). To this end,
we introduce suitable functions spaces.

Notation

Set for m ∈ N ∪ {0}
Bd,1,m := { f : Rd → R : f is Bd − B1 measurable and ∃ ∂ j f, |j| ≤ m},

where ∂ j f = ∂ j1,..., jd

∂r j1 ...∂r jd
f was introduced at the end of Sect. 4.3 (before (4.45)) and

these derivatives are taken in the generalized sense. For p > 0 and f ∈ Bd,1,m ,
we set
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‖ f ‖p
m,p,Φ :=

∑
|j|≤m

∫
|∂ j f |p(r)Φ(r)dr.

Let
Φ ∈ {1,� },

where 1(r) ≡ 1, and set

Wm,p,Φ := { f ∈ Bd,1,m : ‖ f ‖m,p,Φ <∞}.
For the L2-space, introduced in (3.29) of Sect. 3, we have

(H0, ‖ · ‖0) = (W0,2,1, ‖ · ‖0,2,1).

Further,
(H0,� , ‖ · ‖0,� ) := (W0,2,� , ‖ · ‖0,2,� )

and
(Hm, ‖ · ‖m) := (Wm,2,1, ‖ · ‖m,2,1).

Note that smoothness for the bilinear SPDE (8.25) implies smoothness for the
quasilinear SPDE (8.26) (by taking Y ≡ X ∈ Lloc,2,F (C((s, T ];M f )), provided
Xs ∈ L0,Fs (M f )). To make the arguments more transparent we assume that the
diffusion coefficients from (8.23) are spatially homogeneous, i.e.,

D̃k�(µ, r, q, t) = D̃k�(µ, r − q, t),

Dk�(µ, r, t) ≡ D̃k�(µ, 0, t).

}
(8.33)

We abbreviate

Dk�(s) := Dk�(Ỹ(s), 0, s),
Fk(r, s) := Fk(r, Ỹ(s), s),

J (r, p, s) := J (r, p, Ỹ(s), s),

dm(s) :=
∫

J (·, p, s)w(dp, ds),

D̃k�(s, r − q) := Dk�(Ỹ, r − q, s).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.34)

Fix m ∈ N ∪ {0}, T > 0 and suppose there are finite constants di,T , i = 1, 2, 3
such that

max
1≤k,�≤d

ess sup
(t,ω)∈[0,T ]×Ω

|‖D̃k�(t, ω)|‖m+3 ≤ d1,T ;
max

1≤k,�≤d
ess sup

(t,ω)∈[0,T ]×Ω
max

1≤k≤d
ess sup

(t,ω)∈[0,T ]×Ω
|‖Fk(t, ω)|‖m+1 ≤ d2,T ;

D̃k�(s, r) ≡ D̃k�(s,−r) ∀k, � (symmetry of the diffusion).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(8.35)

For the definition of the norms |‖ · |‖m we refer to (4.44). We call m the
“smoothness degree of the coefficients” F and J . If we make more differentiability
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assumptions on the kernels in the examples of Sect. 4.4, (8.35) will hold for those
examples. The symmetry assumption follows immediately, if we, e.g., assume that
J is symmetric. A more interesting sufficient condition is obtained, if we assume
the generating kernel of J to be frame indifferent.32

Notation

Following the notation of DaPrato and Zabczyk (1992), let L1,F ([0, T ]×Ω) be the
space of dt ⊗ dP-measurable and adapted processes. Further, we set33

Ln̄ p,F ([s, T ] ×Ω;Wm,p,Φ)

:= {Ỹ : [s, T ] ×Ω %→ Wm,p,# : Ỹ isFt

-adapted and ‖Ỹ‖n̄ p
m,p,Φ ∈ L1,F ([0, T ] ×Ω;R)},

Ln̄ p,F ((s, T ] ×Ω);Wm,p,Φ)

:= {Ỹ : Ỹ 1{τ>s} ∈ Ln̄ p,F ([s, T ] ×Ω);Wm,p,Φ)},
where τ is an arbitrary localizing stopping time for

Ỹ (s) and p ∈ [1,∞) ∪ {0}andn̄ ∈ N.

Theorem 8.6. Assume that the conditions of part (1) of Theorem 8.5 hold in addition
to (8.35) and (8.33), and let p ∈ {2, 4, 6, . . .} be an even integer. Suppose that for
Φ ∈ {1,� }

Ys ∈ L loc,p,Fs (Wm,p,Φ) ∩ L0,Fs (M f ), (8.36)

where m ∈ N ∪ {0} and n̄ ∈ N. Then the solution of (8.25), derived in Theorem
8.5, is unique and has a density with respect to the Lebesgue measure Y (·, Ys) :=
Y (·, Ỹ,Ys) such that for any T > s

Y (·, Ys) ∈ Ln̄ p,F ((s, T ] ×Ω;Wm,p,Φ) ∩ L0,F (C([s, T ];M f )). (8.37)

Moreover, there are finite constants ĉm,T,Φ := cm,T (d1, d2) <∞, depending on
the bounds d1 = d1,T and d2 = d2,T from (8.35), and the following estimate holds:

sup
s≤t≤T

E(‖Y (t)‖p
m,p,Φ1{τ>s}) ≤ ĉm,T,ΦE(‖Y (s)‖p

m,p,Φ1{τ>s}), (8.38)

where τ ≥ s is a localizing stopping time for Ỹ and Ys.
Finally, if m ≥ 2,

Y (·) ∈ L0,F (C([s, T ];Wm−2,p,Φ)). (8.39)

32 Cf. Example 8.27 at the end of this chapter.
33 Cf. (8.4).
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Proof. The smoothness, (8.38) and (8.39), is proven in Chap. 11. The uniqueness
follows from the bilinearity and (8.38). 
�
Corollary 8.7. Suppose the positive and negative parts of the initial condition in
(8.25), Y+(0) := Y (0)∧ 0 and Y−(0) := Y (0)− Y+(0) are in Lloc,p,Fs (Wm,p,Φ)∩
L0,Fs (M f ). Then there is a unique solution of (8.25), Y (·,Y (0)) such that (8.37)
and (8.39) hold for Y (·, Y (0)).
Proof. The statement follows from Theorem 8.6 and the bilinearity of (8.25). 
�

We next derive the Itô formula for ‖Y (t)‖p
0,p,Φ under smoothness assumption on

the coefficients and the initial conditions. We add the following abbreviations to our
notation with multi-indices.34

Notation

1k := (0, . . . , 0, 1, 0, . . . , 0) (i.e., the d-vector where all entries except for the kth
entry are 0 and the kth entry is 1. Further, we set

Lk,�,n(s) := ∂n D̃k�(s, r)|r=0. (8.40)

The definition of D̃k�(s, r) implies that

D̃k�(s, r) = D̃�k(s,−r),

whence
Lk,�,n(s) = (−1)|n|L�,k,n(s). (8.41)

Theorem 8.8 (Itô formula). Let Φ ∈ {1,� } and assume (8.35) with m = 0. Let
Y (·) := Y (·, Ys) := Y (·, Ỹ, Ys) be the (smooth) solution of (8.25) and recall the
abbreviations from (8.34). Suppose

Y (s) ∈ L2,Fs (H0,� ) and Ỹ ∈ L2,F (C([0, T ];M)).

Then,∫
Y 2(t, r)Φ(r)dr =

∫
Y 2(s, r)Φ(r)dr

+1
2

d∑
k,�=1

∫ t

s

∫
Y 2(u, r)∂2

k�Φ(r)dr Dk�(u)du

−
d∑

k,�=1

∫ t

s

∫
Y 2(u, r)Φ(r)drLk,�,1k+1� (u)du

+
d∑
�=1

∫ t

s

∫
Y 2(u, r)((∂�F�)(r, u)Φ(r)+ F�(r, u)∂�Φ(r))dr du

+
d∑
�=1

∫ t

s

∫
Y 2(u, r)((d∂�m�(u, r))Φ(r)+ dm�(u, r)∂�Φ(r))dr.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.42)

34 Cf. the end of Sect. 4.3.
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Proof is given in Chap. 11.
From (8.42) we obtain the Itô formula in the special case m = 0, p = 2, and

Φ ≡ 1:∫
Y 2(t, r)dr

=
∫

Y 2(s, r)dr −
d∑

k,�=1

∫ t

s

∫
Y 2(u, r)drLk,�,1k+1� (u)du

+
d∑
�=1

∫ t

s

∫
Y 2(u, r)∂�F�(r, u)dr du +

d∑
�=1

∫ t

s

∫
Y 2(u, r)d∂�m�(u, r))dr.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.43)


�
The smoothness result (Theorem 8.6 and Corollary 8.7) imply the following.

Lemma 8.9. Let Y (t, Ys) and Ỹ (t, Ỹs) be two solutions of (8.25), whose initial con-
ditions satisfy the assumptions of Corollary 8.7 with |m| =: m = 2, p = 2, and
smoothness degree m > d +4. Then there is a sequence of localizing stopping times
s ≤ τN −→ ∞ a.s., as N −→ ∞ such that

sup
s≤t<∞

max
|m|≤2

[‖∂mY (t ∧ τN , Ys)‖0,Φ + ‖∂mỸ (t ∧ τN , Ỹs))‖0,Φ ] ≤ N a.s. (8.44)

Proof. Our assumptions imply that both Y and Ỹ are in C([0,∞);W1,2,Φ). 
�
We now derive uniqueness for the quasilinear SPDE (8.26) under the smoothness

assumptions (8.35). Let ∂n
r be a partial differential operator acting on the variable

r in the following formula and set div F :=
d∑

k=1
∂k Fk . We assume the following

(additional) Lipschitz condition on the coefficients of (4.9)/(4.10):

sup
t≥0

|div F(r, µ1)− div F(r, µ2)| ≤ cγ� (µ1 − µ2)

sup
t≥0

d∑
m,�=1

∑
|n|≤2

∫
[∂n

r J�m(r, p, µ1)− ∂n
r J�m(r, p, µ2)]2dp ≤ cγ 2

�(µ1 − µ2).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.45)

As we noted after (8.35), Sect. 4.4, Examples, provides coefficients which satisfy
(8.45), if we increase the smoothness assumptions on the kernels (cf. (4.49) and
(4.51)). Further, assume that µi have densities Xi ∈ H0,� , i = 1, 2. Identifying
the measures with their densities in what follows, the Cauchy–Schwarz inequality
implies

γ� (µ1 − µ2) ≤ sup
‖ f ‖L ,∞≤1

∫
| f |(q)�(q)|X1 − X2|(q)dq

=
∫
�(q)|X1 − X2|(q)dq ≤ ‖√�‖0‖X1 − X2‖0,� ,

i.e.,
γ� (µ1 − µ2) ≤ ‖√�‖0‖X1 − X2‖0,� . (8.46)
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If B is some function space, we denote the cone of functions with nonnegative
values by B+. From (8.46) we obtain

H0,�,+ ⊂ M∞,� ,
C([s, T ];H0,�,+) ⊂ C([s, T ];M∞,� ) ∀ 0 ≤ s < T <∞

}
(8.47)

with continuous imbeddings. Since

M∞,� ⊂ S ′,

where S ′ is the space of tempered distributions over Rd ,35 these imbeddings are also
dense.

Lemma 8.10. Let Y (t, Z , Ys) and Ỹ (t, Z̃ , Ỹs) be two solutions of (8.25), whose
initial conditions satisfy the assumptions of Theorem 8.6 with |m| =: m = 2,
p = 2, and smoothness degree m > d + 4 in addition to (8.45) and Hypothe-
sis 4.1 with γ = γ� . Further, assume that Z , Z̃ ∈ L loc,2,F (C((s, T ];H0,�,+)) ∩
L loc,2,F (C([s, T ];M∞,� )). Then there are a finite cF,J ,� and a sequence of stop-
ping times τN ≥ s which are localizing for Z , Z̃ , Ys, and Ỹs such that for any T > s

sup
s≤t≤T

E[‖Y (t ∧ τN , Ys)− Ỹ (t ∧ τN , Ỹs)‖2
0,�1{τN>0}]

≤ exp((T − s)cF,J ,� )N
[

E
{∫ T∧τN

s
‖Z(u)− Z̃(u))‖2

0,�1{τN>s}du

+‖Ys − Ỹs‖2
0,�1{τN>s}

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8.48)

The Proof uses the same ideas as the proof of Theorem 8.8 and is given in
Sect. 12. 
�

Lemma 8.10 implies the following uniqueness theorem for (8.26).

Theorem 8.11. Suppose the conditions of Theorem 8.6 hold with |m| =: m = 2,
p = 2, and smoothness degree m > d+4 in addition to (8.45). Further, suppose the
initial condition Xs for (8.26) is in L0,Fs (H0,Φ,+) ,Φ ∈ {1,� }. Then the following
holds:

If there is a solution X (·, Xs) ∈ L loc,2,F (C((s, T ];H0,Φ,+)) of (8.26), then this
solution is unique.

Proof. Again we may assume that, without loss of generality, the initial condi-
tion is in L2,Fs ((H0,�,+). Let there be two solutions X (·, Xs) and X̃(·, Xs) in
L2,F (C([s, T ];H0,Φ,+)). Then both solutions are also in L2,F (C([s, T ];H0,�,+)),
and we may consider both solutions as solutions of (8.25) with input processes X
and X̃ , respectively. By (8.48) and the Gronwall inequality

X (t ∧ τN , Xs) ≡ X̃(t ∧ τN , Xs).

Our assumptions imply that τN −→ ∞ a.s., as N −→ ∞, where N is the bound
from (8.44) with Φ = � . 
�
35 Cf. (15.32) in Sect. 15.1.3.
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We next derive a flow representation for the solutions of (8.25)/(8.26). Consider
test functions ϕ ∈ C1

c (Rd ,R) and let µ ∈ M f . Then the duality

〈ϕ,µ〉 :=
∫
ϕ(r)µ(dr). (8.49)

is a continuous bilinear form between (M f , γ f ) and C1
c (Rd ,R)(⊂ CL ,∞(Rd;R)).

Theorem 8.12. Let r(t, Ỹ, s, q) be the solution of (4.9) with “input” Ỹ(·) and
let r(t,X , s, q) be the solution of (4.10) with “input” X (·). Both solutions start
at s in deterministic q and, without loss of generality, are the versions, measur-
able in all parameters, as constructed in Statement 3 of Theorem 4.5. Further,
let Y(t) := Y(t, Ỹ, s,Y(s)) be the solution of (8.25) with input process Ỹ(·) ∈
Lloc,2,F (C((s, T ];M)) and initial value Y(s) at s and X (t) := X (t, s,X (s)) be
the solution of (8.26) with initial value X (s) at s. We then have the following flow
representations:

Y(t) =
∫

δ(r(t,Ỹ,s,q))Y(s, dq) = Y(s)(r−1(t, Ỹ, s, q))(·),
X (t) =

∫
δ(r(t,X ,s,q))X (s, dq) = X (s)(r−1(t,X , s, q))(·).

⎫⎪⎬
⎪⎭

(8.50)

Moreover, if uniqueness holds, then for t ≥ s ≥ 036

∫
δ(r(t,X ,0,q))X (0, dq) =

∫
δ(r(t,X ,s,q))X (s, dq). (8.51)

Further, for ϕ ∈ C3
c (Rd ,R), Itô’s formula implies37

〈ϕ,Y(t,Xs)〉 = 〈ϕ,Ys〉 +
∫ t

s

〈
1
2

d∑
k,�=1

(∂2
k�ϕ)(r(u, Ỹ, ·))Dk�(Ỹ, ·, u)

+ (0ϕ)(r(u, Ỹ, ·)) · F(·, Ỹ, u),Y(s)
〉

du

+
∫ t

s

〈
0ϕ(r(u,X , ·)) · J (·, p, Ỹ, u),Y(s)

〉
w(dp, du)

=
〈
ϕ,Ys〉 +

∫ t

s
〈1
2

d∑
k,�=1

(∂2
k�ϕ)(·)Dk�(Ỹ, ·, u)

+ (0ϕ)(·) · F(·, Ỹ, u),Y(u, Ỹ,Y(s))
〉

du

+
∫ t

s

〈
0ϕ(·) · J (·, p, Ỹ, u),Y(u, Ỹ,Y(s))

〉
w(dp, du).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.52)

36 Cf. (4.1). The formula is similar to formulas applied in Markov processes. Cf., e.g., Dynkin
(1965) or Ethier and Kurtz (1986).

37 The assumption ϕ ∈ C3
c (Rd ,R) implies that the first and second partial derivatives of ϕ are

in C1
c (Rd ,R) ⊂ CL ,∞(Rd ;R). Therefore, the duality between those derivatives of the test

function and the initial measure is continuous.
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Substituting X (t,X (s)) for Y(t) and Ỹ(t) in (8.52), we obtain the analogous
statement for the solution of (8.26).38

Proof. Without loss of generality we may restrict the proof to the quasilin-
ear SPDE (8.26). Note that X (·,Xs) ∈ L loc,2,F (C((s, T ];M f )). Therefore,∫

δ(r(t,X ,s,q))X (s, dq) is well defined and an element from M f for all ω. Start-
ing in just N points, i.e., X (s) = XN (s), we have X (t, s,XN (s)) = XN (t), whence
(8.50) reduces to the definition of the empirical process at time t ≥ s. The unique-
ness of the extension from discrete to more general initial distributions, derived in
Theorem 8.3, establishes (8.50). Equation (8.51) is obvious.

We apply the Itô formula and obtain

〈ϕ,Y(t,Xs)〉 = 〈ϕ,Ys〉 +
〈 ∫ t

s
{1
2

d∑
k,�=1

(∂2
k�ϕ)(r(u, Ỹ, ·))Dk�(Ỹ, ·, u)

+ (0ϕ)(r(u, Ỹ, ·)) · F(·, Ỹ, u)}du,Y(s)
〉

+
〈 ∫ t

s
{0ϕ(r(u,X , ·)) · J (·, p, Ỹ, u)}w(dp, du),Y(s)

〉
.

Fubini’s theorem implies immediately that we may change the order of integra-
tion in the deterministic integral with respect to du. For the stochastic integral, we
employ the series representation (4.15) in the change of the order of integration and
the continuity of the bilinearity 〈·, ·〉. This establishes the first identity in (8.52). The
second follows from (8.50). 
�
Remark 8.13. We show that the SPDEs (8.25)/(8.26) are noncoercive. In (8.26) we
have

A(t, X) :=
(

1
2

d∑
k,�=1

∂2
k�,r (Dk�(X, ·, t)X

)
,

B(s, X)dW := − 0 ·(X
∫

J (·, p, X)w(dp, dt)).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.53)

Employing (4.15) we can easily rewrite the stochastic term in terms of an infinite
dimensional (cylindrical) Wiener process. Apart from the fact that in (8.25)/(8.26)
the Wiener process is cylindrical (cf. Sect. 15.2.2, Proposition 15.29), the differen-
tial operator in (8.53) is quasilinear. More importantly, the Itô formula (8.43) shows
that the SPDEs (8.26) is not coercive in the sense of definition (8.3), where we now
consider the interpolation triplet39

H1 ⊂ H0 = H′
0 ⊂ H−1 := H′

1.

As a consequence of the noncoercivity of the pair, the smoothness of the solution
of (8.26) is, at best, equal to the smoothness of the initial condition. (Similarly for
(8.25).) 
�
38 Expression (8.52) provides another proof that the empirical processes Y(·) and X (·) are weak

solutions of (8.25) and (8.26), respectively.
39 Cf. (11.37).
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8.4 Coercive and Noncoercive SPDEs

A more general class of SPDEs, which can be coercive, is analyzed.

We now discuss a more general case which contains the noncoercive SPDEs of
Sect. 8.3 as a special case and includes a class of coercive SPDEs as well. Most of
what follows is, to some extent, a special case of the Kurtz and Xiong result, namely
the case where the mass is conserved. Within the class of mass conserved equations,
however, our method of extension by continuity appears to allow more generality
than the use of exchangeability employed by Kurtz and Xiong. Accordingly, we
will work with the empirical processes of (4.9) and (4.10), respectively.

The second martingale term in (4.9)/(4.10) is tagged by the noise processes
{β⊥,i } and the coefficients {σ⊥i }. With respect to the latter, we introduce the fol-
lowing simplifying assumption for this chapter.

Hypothesis 8.2

∀i σ⊥i = σ⊥1 =: σ⊥.
Assuming (8.35) in addition to Hypotheses 4.1 and 8.2, the following SPDE is
shown to be the continuum limit of the empirical process associated to (4.10):

dX =
⎛
⎝1

2

d∑
k,�=1

∂2
k�,r

(
Dk�(X , ·, t)X

)
−0 · (X F(X , t))

⎞
⎠ dt

−0 ·
(
X
∫

J (·, p,X , t)w(dp, dt)
)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.54)

The coefficients J , F , and the Gaussian white noise w(dq, dt) in (8.54) are the
same as in (8.25)/(8.26). The only difference is the diffusion matrix. Recalling the
definition of Dk�(µ, r, t) from (8.23), the diffusion matrix in (8.54) is defined by

D(µ), r, t) = D(µ, r, t)+ (σ⊥(r, µ, t))2. (8.55)

Remark 8.14. Before showing that (8.54) has a (unique) solution for certain initial
values, let us assume there is a smooth solution X (·) in H0 which is in the domain
of the operator

A(t, X) := A(t, X)+ Ã(t, X),
where

A(t, X) := 1
2

d∑
k,�=1

∂2
k�,r (Dk�(X, ·, t)X),

Ã(t, X) := 1
2

d∑
k,�=1

∂2
k�,r (((σ

⊥(·, X, t))2)k�X).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.56)
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A straightforward generalization of the Itô formula (8.43) yields

‖X (t)‖2
0 = ‖X (0)‖2

0

+
∫ t

0
{〈2 Ã(s, X (s)), X (s)〉0 − 1

2

d∑
k,�=1

∫ t

s

∫
Y 2(u, r)drLk,�,1k+1� (u)du

+
d∑
�=1

∫ t

s

∫
Y 2(u, r)∂�F�(r, u)dr du +

d∑
�=1

∫ t

s

∫
Y 2(u, r)d∂�m�(u, r))dr,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8.57)
where, recalling the abbreviations from (8.34),

dm(s) :=
∫

J (·, p, s)w(dp, ds).

The trace of the unbounded operator part in the tensor quadratic variation of the
martingale noise term has already disappeared, as was shown in the proof of The-
orem 8.8 that it canceled against the term 〈2A(s, X (s)), X (s)〉0.40 Recall that, by
assumption (8.35), the functions Lk,�,1k+1� (u) and ∂�F�(r, u) are bounded. Further,
suppose, in addition to the previous assumptions, that σ⊥ is positive definite. Then
integration by parts implies

〈2 Ã(s, X (s)), X (s)〉0 ≤ −γ1‖X (s)‖2
1 + γ2‖X (s)‖2

0, (8.58)

where γ1 and γ2 are both positive constants and ‖ · ‖ is the Hilbert norm on H1.
Hence, we obtain from (8.55)

‖X (t)‖2
0 ≤ ‖X (0)‖2

0 −
∫ t

0
γ1‖X (s)‖2

1ds + const.
∫ t

0
‖X (s)‖2ds

+
d∑
�=1

∫ t

s

∫
Y 2(u, r)d∂�M�(u, r))dr.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.59)

This is essentially the same bound as in (8.7), whence we have shown that
(8.54) is coercive.

We now construct a solution of (8.54) as the empirical distribution of an infinite
system of SODEs, extending the finite system (4.10). As in Chap. 2, we first add
an empty state to Rd which will be again denoted �. Recall R̂d := Rd ∪ {�}, and
that the usual metric, ρ(·), on Rd is extended in (2.5) to the metric ρ̂(·) on R̂d . We
embed finite and infinite Rd -valued sequences into R̂d -valued infinite sequences as
follows

(r1, r2, . . . , r N ) ∈ RNd −→ (r1, r2, . . . , r N , �, . . .) ∈ (R̂d )N, if the Rd -valued

sequence is finite,

(r1, r2, . . . , r N , . . .) ∈ (Rd )N −→ (r1, r2, . . . , r N , . . .) ∈ (R̂d )N, if the Rd -valued

sequence is infinite,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.60)
40 Cf. (11.66).
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i.e., infinite sequences remain unchanged, and finite sequences of length N become
infinite sequences by adding � at all coordinates N + i, i = 1, 2, . . . We denote
infinite sequences by r (·) and finite sequences of length N by r (·∧N ). Further, we
endow (R̂d)N with the metric

d∞
(

r (·), q(·)
)
:=

∑∞
i=1

(
1
2

)
n/2ρ̂(r i , qi ). (8.61)

We note that ((R̂d)N, d∞) is a complete separable metric space. Since (M f , γ f )
is also complete and separable, the same holds for the Cartesian product

((R̂d)N×M f , d̂), where d̂((r (·),X ), (q(·),Y)) :=
√

d2∞(r (·), q(·))+ γ 2
f (X − Y).

(8.62)

Consider the following subset of (R̂d)N × M f , which consists of all finite se-
quences and all possible associated empirical measures:

M̂ f in :=
{(

r (·∧N ),

N∑
i=1

mi δr i

)
, r i ∈ Rd ,mi ≥ 0, i = 1, . . . , N , N ≥ 1

}
.

(8.63)

Set
M̂ f := M̂ f in, (8.64)

where the right-hand side in (8.64) is the closure of M̂ f in in ((R̂d)N × M f , d̂). The
following properties are obvious.

Proposition 8.15. (M̂ f , d̂) is a complete separable metric space, and the set M̂ f in

is dense in (M̂ f , d̂). 
�
The following lemma provides an a priori estimate which we need for the exten-

sion by continuity.

Lemma 8.16. Assume Hypotheses 4.1 and 8.2 in addition to the assumptions of
Theorem 4.7. Let {r i (·)}N , {qi (·)}M be two solutions of (4.10) with empirical
processes XN (·) and YM (·), respectively, where M ≤ N and suppose that both
XN (s) and YM (s) are in L2,Fs (M f ). Then for any T > 0 there is a finite constant
cT , depending only on the coefficients of the equation (4.10) and on the bounds on
the second moments of the initial empirical distributions, such that

E sup
s≤t≤T

d̂2 ((r (·∧N )(t),XN (t)
)
,
(
q(·∧M)(t),YM (t)

))

≤ cT Ed̂2 ((r (·∧N )(s),XN (s)
)
,
(
q(·∧M)(s),Y(s)

))
.

⎫⎬
⎭ (8.65)
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Proof. By a slight abuse of notation we will formally add up all components in
the finite sequences from 1 to ∞, bearing in mind that the infinite tails of those
sequences consist of the constant value �. Without loss of generality, we assume
s = 0.

E sup
0≤t≤T

d̂2((r (·∧N )(t),XN (t)), (q(·∧M)(t),YM (t)))

= E sup
0≤t≤T

∞∑
i=1

1
2i ρ̂

2(r i (t), qi (t))+ E sup
0≤t≤T

γ 2
f (XN (t)− YM (t))

=: IT + I IT .

By (4.17) in Theorem 4.5 there is a finite c̃T such that

IT ≤
M∑

i=1

1
2i E sup

0≤t≤T
ρ̂2(r i (t), qi (t))+

N∑
i=M+1

1
2i

≤ c̃T

M∑
i=1

1
2i E ρ̂2(r i (0), qi (0))+

N∑
i=M+1

1
2i

+
M∑

i=1

1
2i

∫ T

0
γ 2

f (XN (s)− YM )(s)ds

= c̃T Ed2∞(r (·)(0), q(·)(0))+
M∑

i=1

1
2i

∫ T

0
γ 2

f (XN (s),YM (s))ds

≤ c̃T Ed2∞(r (·)(0), q(·)(0))+ T E sup
0≤t≤T

γ 2
f (XN (t)− YM (t)).

Hence, (8.65) follows with cT := c̃T + T . 
�
We are now ready to derive the extension by continuity, which is a direct gener-

alization of Theorem 8.4.

Theorem 8.17. Suppose X (s) ∈ L0,Fs (M f ) in addition to Hypotheses 4.1 and 8.2.
Choose an infinite system of Fs -measurable random variables r (·)s and mi,N > 0,

i = 1, 2, . . . , such that sup
N

N∑
i=1

mi,N <∞ and such that

X (s) = lim
N→∞

N∑
i=1

mi,N δr i
s

in L0,Fs (M f ) .
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Then there is a unique empirical process X (·) ∈ L loc,2,F (C((s, T ];M f )), as-
sociated with a unique system of solutions of (4.10), r (·)(t) := r(·,X , rs)

(·) :=
(r1(·,X , r1

s ), r
2(·,X , r2

s ), . . .), such that for all t ≥ s

E sup
s≤t≤T∧τ

γ 2
f (X (t)− XN (t)) −→ 0, as N → ∞ . (8.66)

Further, let there be another Y(s) ∈ L0,Fs (M f ) and an infinite system of
Fs -measurable random variables q(·)s and point masses m̃i,M > 0 such that

sup
M

M∑
i=1

m̃i,M < ∞ and Y(s) = lim
M→∞

∞∑
i=1

m̃i,M δqi
s

in L0,Fs (M f ). Let Y(·)
denote the associated empirical process for the system q(·)(t) := q(·,X , qs)

(·) :=
(q1(·,X , q1

s ), q
2(·,X , q2

s ), . . .) of solutions of (4.10) and τ be a stopping time,
which is localizing for both initial conditions. The following estimate then holds:

E

{
sup

s≤t≤T∧τ
d̂2((r (·)(t),X (t)), (q(·)(t),Y(t)))1{τ>s}

}

≤ c2
T,F,J ,σ⊥,τ E{d̂2((r (·)s ,X (s)), (q(·)s ,Y(s)))1{τ>s}}.

⎫⎪⎪⎬
⎪⎪⎭

(8.67)

Moreover, if m(ω) := Xs(ω,Rd) is the random mass at time s, then with proba-
bility 1 uniformly in t ∈ [s, T ]

X (t, ω,Xs(ω)) ∈ Mm(ω). (8.68)

Proof. Expression (8.67) follows from (8.65) and the extension by continuity.
Expression (8.68) is a consequence of the the mass conservation. 
�

Define the projections
π2 : M̂ f −→ M f

π2((r (·), µ)) = µ.

}
(8.69)

The following theorem generalizes Theorem 8.5.

Theorem 8.18. Suppose Xs ∈ L0,Fs (M f ) and that the conditions of Theorem 4.7
hold in addition to Hypotheses 4.1 and 8.2. Further, suppose on the initial mass
distribution

max
i=1,...,N

mi,N −→ 0 as N −→ ∞ . (8.70)

Then X (·,Xs), the projection π2 of process obtained in Theorem 8.17, is a solu-
tion of (8.54).

Proof.

(i) Without loss of generality, s = 0. Let ϕ∈C3
c (Rd;R) and XN (t) :=

N∑
i=1

mi,N δr i (t).

Itô’s formula yields
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〈dXN (t), ϕ〉 = d〈XN (t), ϕ〉 =
∑N

j=1
m j,N dϕ(r j (t))

=
∑N

j=1
m j,N (0ϕ)(r j (t)) · F(r j (t),XN , t)dt

+
∑N

j=1
m j,N (0ϕ)(r j (t)) · (σ⊥(r j (t),XN , t)β⊥, j (dt))

+
N∑

j=1

m j,N (0ϕ)(r j (t)) ·
∫

J (r j (t), p,XN , t)w(dp, dt)

+
∑N

j=1
m j,N

1
2

∑d

k,�=1
(∂2

k�ϕ)(r
j (t))(σ⊥)2k�(r j (t),XN , t)dt

+
N∑

j=1

m j,N
1
2

d∑
k,�=1

(∂2
k�ϕ)(r

j (t))Dk�(XN , r j (t), t)dt

= 〈XN (t), (0ϕ)(·) · F(·,XN , t)dt〉
+〈XN (t), (0ϕ)(·) ·

∫
J (·, p,XN , t)w(dp, dt)〉

+
〈
XN (t), 1

2

∑d

k,�=1
(∂2

k�ϕ)(·)Dk�(XN , ·, t)
〉

dt

+
〈
XN (t), 1

2

∑d

k,�=1
(∂2

k�ϕ)(·)(σ⊥)2k�(·,XN , t)
〉

dt

+
N∑

j=1

m j,N (0ϕ)(r j (t)) · (σ⊥(r j (t),XN , t)β⊥, j (dt))

(by the definition of the duality between the measure XN (t)

and the corresponding test functions)

=
〈

1
2

d∑
k,�=1

Dk�(XN , ·, t)XN (t), ∂2
k�ϕ

〉
dt

+
〈

1
2

d∑
k,�=1

(σ⊥)2k�(·,XN , t)XN (t), ∂2
k�ϕ

〉
dt

+
d∑

k=1

〈XN (t)Fk(·,XN , t)dt, ∂kϕ〉

+
d∑

k=1

〈XN (t)
∫

Jk·(·, p,XN , t)w(dp, dt), ∂kϕ〉

+
N∑

j=1

m j,N (0ϕ)(r j (t)) · (σ⊥(r j (t),XN , t)β⊥, j (dt))

(by rearranging terms in the duality and changing the order

of summation of the brackets 〈·, ·〉),
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i.e.,

〈dXN (t), ϕ〉 =
〈

1
2

d∑
k,�=1

∂2
k�(Dk�(XN , ·, t)XN (t))dt, ϕ

〉

+
〈

1
2

d∑
k,�=1

∂2
k�((σ

⊥)2k�(·,XN , t)XN (t))dt, ϕ

〉

−〈0 · (XN (t)F(·,XN , t))dt, ϕ〉

−〈0 · (XN (t)
∫

J (·, p,XN , t)w(dp, dt)), ϕ〉

+
N∑

j=1

m j,N (0ϕ)(r j (t)) · (σ⊥(r j (t),XN , t)β⊥, j (dt))

(integrating by parts in the generalized sense).

Recalling the abbreviation of Dk�(XN , ·, t) from (8.55), we obtain from the
last equation

〈dXN (t), ϕ〉 =
〈

1
2

d∑
k,�=1

∂2
k�(Dk�(XN , ·, t)XN (t))dt, ϕ

〉

−〈0 · (XN (t)F(·,XN , t))dt, ϕ〉
−〈0 · (XN (t)

∫
J (·, p,XN , t)w(dp, dt)), ϕ〉

+
N∑

j=1

m j,N (0ϕ)(r j (t)) · (σ⊥(r j (t),XN , t)β⊥, j (dt))

(integrating by parts in the generalized sense).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.71)

Apparently, the last term cannot be converted into a functional of measures,
independent of N , because the noise terms are tagged. If, however, in the limit
this term disappears we obtain a weak form of an SPDE for the limiting empir-
ical process (cf. (8.24)).

(ii) We estimate the variance of the tagged term from (8.71)41:

E

⎧⎨
⎩
∫ t

0

N∑
i=1

mi,N (∇ϕ)(ri (s)) · (σ⊥(r i (s),XN , s)β
⊥,i (ds))

⎫⎬
⎭

2

=
N∑

i=1

m2
i,N

∫ t

0
E
∂

∂rk
ϕ(r i (s))

∂

∂r�
ϕ(r i (s))

d∑
m=1

σ⊥km(r
i (s),XN , s)σ

⊥
�m(r

i (s),XN , s)ds

≤ max
1≤ j≤N

m j,N

N∑
i=1

mi,N cT,ϕ,σ⊥ −→ 0, as N −→ ∞ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.72)

41 Cf. (8.16).
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(iii) By (8.66) γ 2
f (X (t) − XN (t)) −→ 0, uniformly on suitably bounded intervals

a.s., as N −→ ∞. The boundedness and Lipschitz property of σ⊥(r, µ, t)
imply that (σ⊥)2(r, µ, t) is Lipschitz in µ, similarly to the derivation of (8.32).
Therefore, we may adjust the proof of Theorem 8.5 to show that the limiting
empirical process X (·) is a weak solution of (8.54). 
�

Remark 8.19. Suppose Xs ∈ L0,Fs (M f ). Further, suppose Ỹ ∈ L loc,2,F (C((s, T ];
M)) and that the conditions of Theorems 4.5 and 8.18 hold. With the same methods
(and less effort) we may show that the empirical process associated with (4.9) and
the initial “smooth” distribution42 Ys ∈ is the solution of the following “bilinear”
SPDE

dY =
⎛
⎝1

2

d∑
k,�=1

∂2
k�,r (Dk�(Ỹ, ·, t)Y)−0 · (YF(Ỹ, t))

⎞
⎠ dt

−0 ·(Y
∫

J (·, p, Ỹ, t)w(dp, dt)).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.73)

The uniqueness of the solution of (8.73) follows from the bilinearity (cf. the proof
of Theorem 8.8). 
�

In what follows, we provide sufficient conditions for “smooth” solutions of (8.54)
and (8.73), generalizing the corresponding statements of Theorem 8.6. The follow-
ing assumptions on σ⊥ must be added to (8.35), (8.45) and Hypotheses 4.1 and 8.2
to guarantee smoothness and uniqueness of solutions:

max
1≤k,�≤d

ess sup
(t,µ)∈[0,T ]×M1

|‖σ⊥k�(·, µ, t)|‖m+3 ≤ d3,T , m ∈ N ∪ {0}, (8.74)

sup
t≥0

d∑
m,�=1

∑
|n|≤2

[∂n
r σ

⊥
�m(r, µ1)− ∂n

r σ
⊥
�m(r, µ2)]2 ≤ cγ 2

�(µ1 − µ2). (8.75)

Theorem 8.20.

(i) Suppose, in addition to the conditions of Theorem 8.18 and Remark 8.19, that
(8.35) and (8.74) hold. Further, assume that

Xs, Ys ∈ L0,Fs (Wm,p,1) ∩ L0,Fs (M f ), (8.76)

where m ∈ N ∪ {0}. Then the solutions of (8.54) and (8.73) have densities
with respect to the Lebesgue measure X (·, Xs) and Y (·,Ys) := Y (·, Ỹ, Ys),
respectively, such that for any T > s

X (·, Xs), Y (·, Ys) ∈ L p,F ((s, T ] ×Ω;Wm,p,1) ∩ L0,F (C([s, T ];M f )).
(8.77)

42 We assume that (8.70) holds.
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(ii) If σ⊥(r, µ, t) is positive definite for all (r, µ, t) and the previous assumptions
hold with m = 0, p = 2 such that Xs , Ys ∈ L0,Fs (H0) ∩ L0,Fs (M f ), then we
also have43

X (·, Xs) , Y (·, s) ∈ L2,F ((s, T ];H1 ∩ M f ) ∩ L0,F (C([s, T ];H0)). (8.78)

(iii) Suppose in addition to the previous assumptions that (8.45) and (8.75) hold.
Then the solution of (8.54) is unique.

Proof. The proof of the first statement (as for Theorem 8.6) is given in Chap. 11.
To prove the second statement, we “freeze” the solutions in the coefficients and
treat (8.54) as a bilinear SPDE (of type (8.73)). This bilinear SPDE is coercive
and satisfies the assumptions of Krylov and Rozovsky (1979), whence we obtain
improved smoothness of the solution, as well as the existence of continuous sample
paths with values in H0. In the coefficients, we may then replace the solution by its
smoother version, which does not change the values of the coefficients. Finally, the
uniqueness follows from the calculations in Chap. 12. 
�
Remark 8.21. Kurtz and Xiong define uniqueness of the SPDE as uniqueness of the
solutions of the infinite version of (4.10) and its empirical processes, i.e., as a system
of stochastic equations on (M̂ f , d̂). If we adopt this restrictive definition of unique-
ness, then by Theorem 8.17 we have uniqueness without any additional smooth-
ness assumptions. Unfortunately, we do not know (a priori) whether all solutions of
(8.54) (or of the special case (8.25)) are generated by particle methods. 
�

8.5 General SPDEs

1. With some modifications we may derive solutions of quasilinear SPDEs from
the system of SODEs (4.10) under (4.12). In this case, we need to use a different
version of the Wasserstein metric, namely a version of γ̃p(µ, µ̃), which is defined
as in (15.39), using the Euclidean distance | · | instead of ρ(·) where µ and µ̃
are probability measures. We refer to Dorogovtsev (2004b) and the references
therein.

2. The original motivation for the particle approach arose from the derivation of
the stochastic Navier–Stokes equation (8.15) for the vorticity in a 2D fluid44

which required to consider signed measure valued processes. Under additional
assumptions, quasilinear SPDE (8.26) can be extended to signed measures.45

3. The strength of the particle approach to SPDEs is its derivation from the solutions
of SODEs, which allows us to solve a large class of quasilinear SPDEs. It fol-
lows from this derivation that the driving martingale process in those SPDEs will

43 Cf. (8.4).
44 Cf. Kotelenez (1995a).
45 Cf. Kurtz and Xiong (1999) as well as Kotelenez (1995a,b) for results on the particle approach

to quasilinear SPDEs on the space of signed measures.
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always be state dependent and contain the gradient, applied to the solution times
noise. This approach, however, also exposes the limitations of the particle ap-
proach. If, e.g., we need a noise term which is state independent, like in central
limit theorem phenomena,46 then other methods must be applied. By employ-
ing the fractional step method47 we can combine the particle method with other
methods to obtain a more general class of SPDEs and their solutions. Typically,
this class has the characteristics of both approaches. For a further discussion we
refer the reader to Chap. 13.

8.6 Semilinear Stochastic Partial Differential Equations
in Stratonovich Form

We obtain representations of the parabolic Itô SPDEs (8.25)/(8.26) in terms of
Stratonovich SPDEs under the assumption that the diffusion coefficients do not
depend on the solutions of the SPDEs. In particular, we show that the solutions
of the stochastic noncoercive parabolic SPDEs (8.25)/(8.26), driven by Itô differ-
entials, can be rewritten as a stochastic first-order (transport) SPDE, driven by
Stratonovich differentials.48

Theorem 8.23. Consider the SPDEs (8.26) and (8.54) and suppose that neither J
nor σ⊥ depend upon the measure variable. Further, in addition to the conditions of
Theorem 8.20, guaranteeing unique solutions of these SPDEs, suppose that49

sup
r∈Rd

d∑
i, j,k,�=1

∫ T

0

∫
(∂2

i jJk,�)
2(r, q, s)dq ds <∞

and
d∑

k=1

(∂k D̃)k�(0, t) ≡ 0 ∀�.

Let X (·) := X (·,X0) be the Itô solution of the SPDE (8.54).50 Then X (·) is a
weak solution of the following SPDE in Stratonovich form:

46 Cf. Holley and Stroock (1978), Itô (1984), or Kotelenez (1984) and the references therein.
47 Cf. Chap. 15.3 and Goncharuk and Kotelenez (1998).
48 Recall that we have used the Itô differential in the SODEs, whence the associated SPDEs were

obtained through Itô’s formula. We refer the reader to Sects. 15.2.5 and 15.2.6 for the most im-
portant properties of Itô and Stratonovich differentials, respectively. Theorem 8.23 was obtained
by Kotelenez (2007).

49 These conditions are the conditions (15.192) and (15.195) from Sect. 15.2.6.
50 If σ⊥ ≡ 0, (8.54) becomes (8.26).



8.6 Semilinear Stochastic Partial Differential Equations in Stratonovich Form 199

dX = 1
2

d∑
k,�=1

∂2
k�,r (((σ

⊥(·, t))2)k�X )−0 · (X F(·,X , t))dt

−0 ·(X
∫

J (·, p, t))w(dp, ◦dt),

X (0) = X0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(8.79)

where, as before, “◦” denotes Stratonovich differentials.

Proof. As before, let r(t,X , q) be the solution of (4.10), based on Theorem 4.5,
Part 3.51 Let ϕ ∈ C3

c (Rd ,R). In the proof of Theorem 8.18, step (i), we apply
(15.210) of Sect. 15.2.6 and obtain

N∑
j=1

m j,N (0ϕ)(r j (t)) ·
∫

J (r j (t), p,XN , t)w(dp, dt)

+
N∑

j=1

m j,N
1
2

d∑
k,�=1

(∂2
k�ϕ)(r

j (t))Dk�(X̃N , r j (t), t)dt

=
N∑

j=1

m j,N (0ϕ)(r j (t)) ·
∫

J (r j (t), p,XN , t)w(dp, ◦dt).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.80)

Thus, we replace (8.71) by

〈dXN (t), ϕ〉 =
〈

1
2

d∑
k,�=1

∂2
k�(((σ

⊥(·, t))2)k�XN (t))dt, ϕ

〉

−〈0 · (XN (t)F(·,XN , t))dt, ϕ〉

−〈0 · (XN (t)
∫

J (·, p,XN , t)w(dp, ◦dt)), ϕ〉

+
N∑

j=1

m j,N (0ϕ)(r j (t)) · (σ⊥(r j (t),XN , t)β⊥, j (dt))

(integrating by parts in the generalized sense).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.81)

As the assumptions imply that the tagged noise term disappears in the limit, and
the existence of the limit has been established by Theorem 8.17, we may repeat the
proof of Theorem 8.18 to derive (8.79) in weak form. 
�
Remark 8.24.

• In the Stratonovich representation the second-order partial operator comes from
the coercive contribution alone.

51 As before in similar applications of Theorem 4.5, Part 3, the empirical measure process X (·) is
treated as an input process.



200 8 Stochastic Partial Differential Equations: Finite Mass and Extensions

• If we restrict Theorem (8.23) to the noncoercive SPDEs (8.25)/(8.26), i.e., if
σ⊥ ≡ 0, the proof is a simple consequence of (8.52) and (15.219). For this case,
the Stratonovich representation of (8.25)/(8.26) takes the form of a first-order
transport SPDE.52 
�
We state the last observation as an independent theorem.

Theorem 8.25. Suppose that, in addition to the assumptions of Theorem 8.24, σ⊥ ≡
0. Then the solution of the noncoercive parabolic Itô SPDE (8.26) is the solution of
the first-order transport Stratonovich SPDE

dX = −0 · (X F(·,X , t))dt −0 · (X
∫

J (·, p, t))w(dp, ◦dt),

X (0) = X0.
(8.82)

An analogous statement holds for the bilinear SPDE (8.25). 
�

8.7 Examples

Example 8.26. To show the relation between the symmetry assumption in (8.35) and
frame-indifference of the generating kernels, let us analyze the last Example (4.53)
under the additional assumption of frame-indifference.

Suppose � = (�k�) ∈ Md×d with its one-dimensional components �k� ∈
C2bν (Rd ,R) ∩ H2 and suppose that � is frame-indifferent. Set

J̃ (r, p, µ) :=
∫
�(r − p − q)�(q)µ(dq) .

Employing the notation from (8.34) with µ instead of Ỹ we set

D̃k�(r − q) :=
d∑

m=1

∫
J̃km(r, p, µ)J̃�m(q, p, µ)dp. (8.83)

Then,

D̃k�(r − q) =
∫ ∫ [ d∑

m=1

∫
�km(r − p − p̃)��m(q − p − p̂)dp

]
�( p̃)µ(d p̃)�( p̂)µ(d p̂)

=
∫ ∫

λ⊥(|r − q − p̃ + p̂|2)P⊥(r − q − p̃ + p̂)

+λ(|r − q − p̃ + p̂|2)P(r − q − p̃ + p̂)�( p̃)µ(d p̃)�( p̂)µ(d p̂)

(employing a representation as in (5.29))

52 The interpretation of the SPDEs (8.25)/(8.26) as stochastic transport equations was suggested
to the author by J.P. Fouque (1994).
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=
∫ ∫

λ⊥(|q − r − p̂ + p̃|2)P⊥(q − r − p̂ + p̃)

+λ(|q − r − p̂ + p̃|2)P(q − r − p̂ + p̃)�( p̃)µ(d p̃)�( p̂)µ(d p̂)

(because all coordinates are squared in the above representation)

=
∫ ∫

λ⊥(|q − r − p̃ + p̂|2)P⊥(q − r − p̃ + p̂)

+λ(|q − r − p̃ + p̂|2)P(q − r − p̃ + p̂)�( p̃)µ(d p̃)�( p̂)µ(d p̂)

(by Fubini’s theorem in the double integral and change
of variables p̂↔p̃)

= D̃k�(q − r),

i.e.,
D̃k�(r − q) = D̃k�(q − r). (8.84)


�



Chapter 9
Stochastic Partial Differential Equations:
Infinite Mass

9.1 Noncoercive Quasilinear SPDEs for Infinite Mass Evolution

Assuming Hypothesis 4.1, existence and uniqueness of a solution of a noncoercive
quasilinear SPDE is derived in the space of σ -finite Borel measures M∞,� (cf.
(4.5)). As the main step, we construct suitable flows of SODEs which satisfy an a
priori estimate.

We have not yet shown existence of a solution of (8.26) in the case of infinite
mass, although we obtained, in the previous section, an extension of the solutions
of the bilinear SPDE (8.25) to infinite mass and a uniqueness result even for the
quasilinear SPDE (8.26). Without loss of generality, we assume s = 0 in what
follows, and we suppress the dependence of the coefficients F and J on t in the
formulas. Suppose

X0 ∈ L0,F0(M�,∞). (9.1)

Let b > 0 be a constant and set for a measure µ ∈ M∞,�

µb :=
{
µ, if γ� (µ) < b,
µ

γ� (µ)
b, if γ� (µ) ≥ b. (9.2)

This truncation allows us to define recursively solutions of (8.25) as follows: Let
r1(t,X0,b, ω, q) be the unique solution of (4.9), driven by the input process X0,b.
Henceforth, we will tacitly assume that the solutions of (4.9) are the space–time
measurable versions, whose existence follows from Part 3) of Theorem 4.5. For
simplicity of notation, we drop the “bar” over those versions. Define the empirical
measure process associated with r1(t, . . .) as follows

X1(t, b, ω) :=
∫

δr1(t,X0,b,ω,q)X0,b(ω, dq).

X1(t, b, ω) is continuous and Ft -adapted, whence the same holds for γ� (X1(t, b,
ω)) (cf. (8.50)/(8.51)). Moreover, by the boundedness of the coefficients of
(4.9), ϕ(t, q) := r1(t,X0,b, ω, q) satisfies the assumptions of Proposition 4.3.
Therefore, (4.7) implies

203
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E sup
0≤t≤T

γ 2
�(X1(t, b)) ≤ cT Eγ 2

�(X0,b) ≤ cT b.

Hence, X1(t, b) ∈ L2,F (C([0, T ];M∞,� )) and we can define r2(t,X1(b), ω, q)
as the unique solution of (4.9), driven by the input process X1(t, b). Suppose we
have already defined rm(t,Xm−1(b), ω, q) as (unique) solutions of (4.9) with em-
pirical measure processes Xm−1(t, b) ∈ L2,F (C([0, T ];M∞,� )) for m = 1, . . . n.
As before, the solution rn(t,Xn−1(b), ω, q satisfies the assumptions of Proposition
4.3 and we define the empirical measure process of rn(t,Xn−1(b), ω, q) by

Xn(t, b, ω) :=
∫

δrn(t,Xn−1,b,ω,q)X0,b(ω, dq). (9.3)

Again (4.7) implies

E sup
0≤t≤T

γ 2
�(Xn(t, b)) ≤ cT Eγ 2

�(X0,b), (9.4)

where the constant cT depends only on T and the coefficients of (4.9).
Set

Ωb := {ω : γ� (X0(ω)) ≤ b}. (9.5)

Clearly,
Ωb2 ⊃ Ωb1, if b2 ≥ b1 > 0 .

Proposition 9.1. Suppose b2, b1 > 0. Then, a.s., for all n

Xn(·, b2, ω)1Ωb1 ∩ Ωb2
≡ Xn(·, b1, ω)1Ωb1 ∩ Ωb2

(9.6)

Proof.
(i) The fact thatΩb ∈ F0 allows us to apply (4.17) with the conditional expectation
with respect to the events from F0. Suppose b2 ≥ b1 > 0. Hence,

E sup
0≤t≤T

ρ2(rn(t,Xn−1(b2), q)− rn(t,Xn−1(b1), q))1Ωb1

≤ cT

∫ T

0
γ 2
�(Xn−1(s, b2)− Xn−1(s, b1))1Ωb1

ds

= cT

∫ T

0
γ 2
�(Xn−1(s, b2)1Ωb1

− Xn−1(s, b1)1Ωb1
)1Ωb1

ds,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9.7)

where the last identity is obvious, as forω /∈ Ωb1 the expressionγ 2
�(Xn−1(s, b2)−

Xn−1(s, b1))1Ωb1
= 0.

(ii) We show by induction that the right-hand side of (9.7) equals 0. First of all, note
that

X0,b2 1Ωb1
= X0,b1 1Ωb1

,

because both sides equal X01Ωb1
. If

Xn−1(·, b2, ω)1Ωb1
≡ Xn−1(·, b1, ω)1Ωb1

,

then (9.7) implies a.s.
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rn(·,Xn−1(b2), q)1Ωb1
≡ rn(·,Xn−1(b1), q)1Ωb1

.

Therefore,
∫

δrn(·,Xn−1(b2),ω,q)X0,b2(ω, dq)1Ωb1
(ω) ≡

∫
δrn(·,Xn−1(b1),ω,q)X0,b1(ω, dq)1Ωb1

(ω),

whence by (9.3)

Xn(·, b2, ω)1Ωb1
≡ Xn(·, b1, ω)1Ωb1

.


�
For a second truncation, let c > 0 and define stopping times as follows

τn(c, b, ω) := inf{t ≥ 0 : γ� (Xn(t, b, ω)) ≥ c},
τ (c, b, ω) := infn τn(c, b, ω).

}
(9.8)

By (9.6) we have for b2, b1 > 0 and ∀c > 0

τn(c, b2, ω)|Ωb1 ∩ Ωb2
= τn(c, b1, ω)|Ωb1 ∩ Ωb2

,

τ (c, b2, ω)|Ωb1 ∩ Ωb2
= τ(c, b1, ω)|Ωb1 ∩ Ωb2

.

}
(9.9)

Lemma 9.2.
P{ω : lim

c→∞ τ(c, b, ω) = ∞} = 1 ∀b > 0. (9.10)

Proof. Suppose (9.10) is not correct and note that τ(c, b) is monotone increasing as
c increases. Therefore, there must be a T > 0, b > 0, and δ > 0 such that

P(∩m∈N{ω : τ(m, b, ω) < T }) ≥ δ.

Set
τ n(c, b) := τ1(c, b) ∧ τ2(c, b) ∧ · · · ∧ τn(c, b).

Then
τ n(c, b) ↓ τ(c, b) a.s., as n −→ ∞ .

Thus,

∩m∈N{ω : τ(m, b, ω) < T } = ∩n∈N ∩m∈N {ω : τ n(m, b, ω) < T }.
As

Bn := ∩m∈N{ω : τ n(m, b, ω) < T } ↑, as n −→ ∞ ,

there must be an n̄ such that

P(Bn̄) ≥ δ
2
.

The definition of the stopping times implies

Bn ⊂ ∩m∈N

{
ω : max

k=1,...,n
sup

0≤t≤T
γ� (Xk(t, b, ω)) ≥ m

}
.
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Set

Am(n) :=
{
ω : max

k=1,...,n
sup

0≤t≤T
γ� (Xk(t, b, ω)) ≥ m

}
.

Obviously, the Am(n) are monotone decreasing as m increases. Therefore, the
assumption on P(Bn̄) implies

P(∩m∈N Am(n̄)) ≥ δ
2
.

However, by (9.4), a.s. ∀k,

sup
0≤t≤T

γ� (Xk(t, b, ω)) <∞.

Hence, we have also a.s. ∀n

max
k=1,...,n

sup
0≤t≤T

γ� (Xk(t, b, ω)) <∞.

This implies
∀n P(Am(n)) ↓ 0, as m −→ ∞ ,

contradicting P(∩m∈N Am(n̄)) ≥ δ
2 . 
�

Abbreviate in what follows

τ := τ(c, b), ri (t, q) := ri (t,Xi−1, b, q).
}

(9.11)

Lemma 9.3. For any T > 0 there is a finite constant cT := c(T, F,J , c, b, γ ) such
that ∀t ∈ [0, T ]

E
∫

sup
0≤s≤t

ρ4(rn(s ∧ τ, q)− rm(s ∧ τ, q))[�(rn(s ∧ τ, q))
+�(rm(s ∧ τ, q))]X0,b(dq)

≤ cT

∫ t

0
Eγ 4
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))ds.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.12)

Proof.
(i) Let χ ∈ C2

b(R;R) be an odd function such that there are constants 0 < c1 ≤
c2 <∞ and the following properties hold

χ(u) = u ∀u ∈ [−1, 1],
χ ′(u) > 0 ∀u ∈ R,

|χ ′′(u)u2| ≤ c1|χ ′(u)u| ≤ c2|χ(u)| ∀u ∈ R,
|‖χ |‖ ≤ 2,
|‖χ ′|‖ ≤ 1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.13)

where χ ′ and χ ′′ are the first and second derivatives of χ , respectively. Then

ρ2(r) ≤ χ(|r |2) ≤ 2ρ2(r). (9.14)
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(ii) Abbreviate

f (s, q) := rn(t ∧ τ, q)− rm(t ∧ τ, q), g(t, q) := ri (t, q), i ∈ {n,m}. (9.15)

Note that f (0, q) = 0 and g(0, q) = q, whence we have χ(| f (0, q)|2) = 0 and
�(g(0, q)) = �(q). Itô’s formula yields

χ(| f (t, q)|2) =
∫ t

0
χ ′(| f (s, q)|2)2 f (s, q) · d f (s, q)

+
∫ t

0
(χ ′′(| f (s, q)|2)2

d∑
k,�=1

fk(s, q) f�(s, q)

+ χ ′(| f (s, q)|2)δk�)d[ fk(s, q), f�(s, q)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9.16)

and for �β := �β, β > 0,

�β(g(t, q)) = �β(q)+
∫ t

0
(∇�β)(g(s, q)) · dg(s, q)

+ 1
2

d∑
k,�=1

∫ t

0
(∂2

k��β)(g(s, q))d[gk(s, q), g�(s, q)].

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9.17)

Next, we apply Itô’s formula to the product of the left-hand sides of (9.16) and
(9.17):

χ(| f (t, q)|2)�β(g(t, q)) =
∫ t

0
�β(g(s, q))dχ(| f (s, q)|2)

+
∫ t

0
χ(| f (s, q)|2)d�β(g(s, q))

+
∫ t

0
d[χ(| f (s, q)|2),�β(g(s, q))].

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(9.18)

In what follows, we first derive bounds for the deterministic differentials in (9.18)
employing (4.11). By (9.16)

dχ(| f (s, q)|2) = χ ′(| f (s, q)|2)2 f (s, q) · d f (s, q)

+ (χ ′′(| f (s, q)|2)2
d∑

k,�=1

fk(s, q) f�(s, q)

+ χ ′(| f (s, q)|2)δk�)d[ fk(s, q), f�(s, q)].

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.19)

First,

d f (s, q) = (F(rn(s ∧ τ, q),Xn−1(b))− F(rm(s ∧ τ, q),Xm−1(b)))ds

+
∫
(J (rn(s ∧ τ, q), p,Xn−1(b))

−J (rm(s ∧ τ, q), p,Xm−1(b)))w(dp, ds).

Recall that by (9.8) �β(Xi−1(t ∧ τ, b)) ≤ c ∀i ∈ N. Let c̃ be a positive con-
stant, depending on c, F,J , T, b, β and γ� , and the value of c̃ may be different for
different steps in the following estimates. Therefore, (4.11) yields



208 9 Stochastic Partial Differential Equations: Infinite Mass

|F(rn(s ∧ τ, q),Xn−1(b))− F(rm(s ∧ τ, q),Xm−1(b))|
≤ c̃(ρ(rn(s ∧ τ, q)− rm(s ∧ τ, q))+ γ� (Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))).

}

(9.20)

Again by (4.11),

d[ fk(s, q), f�(s, q)]

=
d∑

j=1

∫
(Jk j (rn(s ∧ τ, q), p,Xn−1(s ∧ τ, b))

−Jk j (rm(s ∧ τ, q), p,Xm−1(s ∧ τ, b)))
×(J�j (rn(s ∧ τ, q), p,Xn−1(b))− J�j (rm(s ∧ τ, q), p,Xm−1(b)))dp ds

≤ c̃(ρ2(rn(s ∧ τ, q)− rm(s ∧ τ, q))+ γ 2
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b)))ds

and also

d∑
j=1

∫
(Jk j (rn(s ∧ τ, q), p,Xn−1(s ∧ τ, b))

−Jk j (rm(s ∧ τ, q), p,Xm−1(s ∧ τ, b)))
×(J�j (rn(s ∧ τ, q), p,Xn−1(b))− J�j (rm(s ∧ τ, q), p,Xm−1(b)))dp ds

≤ c̃(ρ(rn(s ∧ τ, q)− rm(s ∧ τ, q))+ γ� (Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b)))ds,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.21)

where in the last inequality we used the boundedness of the coefficients. Employing
(9.20) and (9.21), (9.13) yields the following estimates

|χ ′(| f (s, q)|2)2 f (s, q)|ρ( f (s, q)) ≤ c̃χ(| f (s, q)|2),
|χ ′(| f (s, q)|2)2 f (s, q)| ≤ c̃

|(χ ′′(| f (s, q)|2)2
d∑

k,�=1

fk(s, q) f�(s, q)| ≤ c̃χ(| f (s, q)|2),

|χ ′(| f (s, q)|2)| ≤ 1,

|χ ′′(| f (s, q)|2)2
d∑

k,�=1

fk(s, q) f�(s, q)|d[ fk(s, q), f�(s, q)]

≤ c̃χ(| f (s, q)|2)[ρ2( f (s, q))+ γ 2
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))]ds,

χ ′(| f (s, q)|2))
d∑

k=1

d[ fk(s, q), fk(s, q)] ≤ c̃{χ(| f (s, q)|2)ds

+γ 2
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))ds},

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.22)
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where the last inequality follows from

χ ′(| f (s, q)|2))
d∑

k=1

d[ fk(s, q), fk(s, q)]
≤ χ ′(| f (s, q)|2)c̃(ρ2(rn(s ∧ τ, q)− rm(s ∧ τ, q))
+γ 2

�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b)))ds

≤ c̃χ(| f (s, q)|2)ds + c̃γ 2
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))ds.

We note that
|χ(| f (s, q)|2) ≤ 2.

Therefore, by (9.19), (9.20), and (9.22),

dχ(| f (s, q)|2) ≤ c̃(χ(| f (s, q)|2)+ γ 2
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b)))ds

+ χ ′(| f (s, q)|2)2 f (s, q) ·
∫
(J (rn(s ∧ τ, q), p,Xn−1(b))

− J (rm(s ∧ τ, q), p,Xm−1(b)))w(dp, ds).

⎫⎪⎪⎬
⎪⎪⎭

(9.23)

Set

dm1(s, q) :=
∫
(J (rn(s ∧ τ, q), p,Xn−1(b))

−J (rm(s ∧ τ, q), p,Xm−1(b)))w(dp, ds). (9.24)

Hence,
∫ t

0
�β(g(s, q))dχ(| f (s, q)|2) ≤ c̃

∫ t

0
�β(g(s, q))χ(| f (s, q)|2)

+�β(g(s, q))γ 2
�(Xn−1(s ∧ τ, b)−Xm−1(s ∧ τ, b)))ds

+
∫ t

0
�β(g(s, q))χ ′(| f (s, q)|2)2 f (s, q) · dm1(s, q).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.25)

Next, by (9.17)

d�β(g(s, q))=(∇�β)(g(s, q)) · dg(s, q)

+1
2

d∑
k,�=1

(∂2
k��β)(g(s, q))d[gk(s, q), g�(s, q)]

=(∇�β)(ri (s ∧ τ, q)) · F(ri (s ∧ τ, q),Xi−1(b))ds

+1
2

d∑
k,�=1

(∂2
k��β)(ri (s ∧ τ, q))d[ri,k(s ∧ τ, q), ri,�(s ∧ τ, q)]

+(∇�β)(ri (s ∧ τ, q)) ·
∫
J (ri (s ∧ τ, q)− p,Xi−1(b))w(dp, ds).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.26)
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By (4.11), (15.46), and the definition of τ

|∇�β)(ri (s ∧ τ, q))||F(ri (s ∧ τ, q),Xi−1(b))| ≤ c̃�β(ri (s ∧ τ, q)),
1
2

d∑
k,�=1

(∂2
k��β(ri (s ∧ τ, q))d[ri,k(s ∧ τ, q), ri,�(s ∧ τ, q)] ≤ c̃�β(ri (s ∧ τ, q)).

⎫⎪⎪⎬
⎪⎪⎭

(9.27)

Abbreviating

dm2(s, q) :=
∫

J (g(s, q), p,Xi−1(b))w(dp, ds), (9.28)

we obtain
∣∣∣∣
∫ t

0
χ(| f (s, q)|2)d�β(g(s, q))

∣∣∣∣≤ c̃
∫ t

0
χ(| f (s, q)|2)�β(g(s, q))ds

+
∫ t

0
χ(| f (s, q)|2)(∇�β)(g(s, q)) · dm2(s, q).

⎫⎪⎪⎬
⎪⎪⎭

(9.29)

Finally,
[
χ(| f (t, q)|2),�β(g(t, q))

]

=
[∫ t

0
χ ′(| f (s, q)|2)2 f (s, q) · dm1(s),

∫ t

0
(∇�β)(g(s, q)) · dm2(s)

]
.

⎫⎪⎪⎬
⎪⎪⎭
(9.30)

Hence,
[
χ(| f (t, q)|2),�β(g(t, q))

]

=
∑

k,�=1

∫ t

0
χ ′(| f (s, q)|2)2 fk(s, q)(∂��β)(g(s, q))d[m1,k(s),m2,�(s)].

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(9.31)

We apply (9.21) and the Cauchy–Schwarz inequality in addition to (4.11) and
obtain

d[m1,k(s),m2,�(s)] ≤ c̃(ρ( f (s, q))+ γ� (Xn−1(b)− Xm−1(b)))ds. (9.32)

Consequently, by (15.46) and (9.14) as well as by | f j (s, q)| ≤ | f (s, q)|,
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∣∣[χ(| f (t, q)|2),�β(g(t, q))

]∣∣

≤ c̃
∫ t

0
|χ ′(| f (s, q)|2)|| f (s, q)|�β(g(s, q))(ρ( f (s, q))

+γ� (Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b)))ds

≤ c̃
∫ t

0
χ(| f (s, q)|2)�β(g(s, q))ds

+c̃
∫ t

0
�β(g(s, q))|χ ′(| f (s, q)|2)|| f (s, q)|γ� (Xn−1(s ∧ τ, b)

−Xm−1(s ∧ τ, b))ds

≤ c̃
∫ t

0
χ(| f (s, q)|2)�β(g(s, q))ds

+c̃
∫ t

0
�β(g(s, q))[|χ ′(| f (s, q)|2)|2| f (s, q)|2

+γ 2
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))]ds

(again employing ab ≤ 1
2 (a

2 + b2) )

≤ c̃
∫ t

0
χ(| f (s, q)|2)�β(g(s, q))ds

+c̃
∫ t

0
�β(g(s, q))[χ(| f (s, q)|2)

+γ 2
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))]ds

(because |χ ′(| f (s, q)|2)|2| f (s, q)|2 ≤ |χ ′(| f (s, q)|2)|χ(| f (s, q)|2)
≤ c̃χ(| f (s, q)|2)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.33)

Altogether we obtain from the previous calculations

χ(| f (t, q)|2)�β(g(t, q))
≤ c̃

∫ t

0

[
χ(| f (s, q)|2)�β(g(s, q))+�β(g(s, q))γ 2

�(Xn−1(s ∧ τ, b)
−Xm−1(s ∧ τ, b))

]
ds

+
∫ t

0
�β(g(s, q))χ ′(| f (s, q)|2)2 f (s, q)dm1(s, q)

+
∫ t

0
χ(| f (s, q)|2)(∇�β)(g(s, q)) · dm2(s, q).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.34)

We next derive bounds for the quadratic variations of the martingales. Doob’s
inequality yields1

E sup
0≤s≤t

{∫ s

0
�β(g(u, q))χ ′(| f (s, q)|2)2 f (s, q) · dm1(u, q)

}2

≤ 4E
∫ t

0
� 2
β (g(u, q))(χ

′(| f (s, q)|2)2| f (s, q)|)2d[m1(u, q)].
1 Cf. Sect. 15.2.3, Theorem 15.32.
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By (9.22), (9.21), and (9.14),

d[χ ′(| f (s, q)|2)2 f (s, q) · m1(s, q)]

≤ 4|χ ′(| f (s, q)|2)|| f (s, q)|2
d∑

k,�=1

d[ fk(s, q), f�(s, q)]

≤ c̃χ(| f (s, q)|2)(ρ2(rn(s ∧ τ, q)− rm(s ∧ τ, q))
+γ 2

�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b)))ds

≤ c̃{χ2(| f (s, q)|2)+ χ(| f (s, q)|)γ 2
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))}ds

≤ c̃{χ2(| f (s, q)|2)+ γ 4
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))}ds

(employing ab ≤ 1
2 (a

2 + b2) in the last inequality).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.35)

Thus,

E sup
0≤s≤t

∣∣∣∣
∫ s

0
�β(g(u, q))χ ′(| f (s, q)|2)2 f (s, q) · dm1(u, q)

∣∣∣∣
2

≤ c̃E
∫ t

0
� 2
β (g(u, q))

{
χ2(| f (u, q)|2)

+γ 4
�(Xn−1(u ∧ τ, b)− Xm−1(u ∧ τ, b))

}
du.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(9.36)

It is now convenient to square the terms in (9.18). Expressions (9.25) and (9.36)
imply

E sup
0≤s≤t

∣∣∣∣
∫ s

0
�β(g(u, q))dχ(| f (u, q)|2)

∣∣∣∣
2

≤ c̃E
∫ t

0
� 2
β (g(u, q)){χ2(| f (u, q)|2)

+γ 4
�(Xn−1(u ∧ τ, b)− Xm−1(u ∧ τ, b))}du.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(9.37)

Similarly, employing (4.11) (i.e., boundedness of J ) and (15.46), Doob’s
inequality implies

E sup
0≤s≤t

∣∣∣∣
∫ s

0
χ(| f (u, q)|2)(∇�β)(g(u, q)) · dm2(u, q)

∣∣∣∣
2

≤ c̃E
∫ t

0
χ2(| f (u, q)|2)� 2

β (g(u, q))du.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9.38)

Hence, by (9.29) and (9.38)

E sup
0≤s≤t

(∫ s

0
χ(| f (u, q)|2)d�β(g(u, q))

)2

≤ c̃E
∫ t

0
χ2(| f (u, q)|2)� 2

β (g(u, q))du.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9.39)
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We also square both sides in (9.33) and employ the Cauchy–Schwarz inequality:

[χ(| f (t, q)|2),�β(g(t, q))]2 ≤ c̃
∫ t

0
χ2(| f (s, q)|2)� 2

β (g(s, q))ds

+c̃
∫ t

0
� 2
β (g(s, q))γ

4
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))ds.

⎫⎪⎪⎬
⎪⎪⎭

(9.40)

Choosing β := 1
2 , the previous steps imply

E sup
0≤s≤t

χ2(| f (t, q)|2)�(g(t, q)) ≤ c̃E
∫ t

0

[
�(g(u, q))χ2(| f (u, q)|2)

+�(g(u, q))γ 4
�(Xn−1(u ∧ τ, b)− Xm−1(u ∧ τ, b))

]
du.

⎫⎪⎬
⎪⎭
(9.41)

By estimate (9.14) this implies

E sup
0≤s≤t

ρ4( f (t, q))�(g(t, q)) ≤ c̃E
∫ t

0

[
sup

0≤u≤s
�(g(u, q))ρ4( f (u, q)))

+�(g(s, q))γ 4
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))

]
ds.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(9.42)

Gronwall’s inequality implies

E sup
0≤s≤t

ρ4( f (t, q))�(g(t, q)) ≤ cT

∫ t

0
E�(g(s, q))γ 4

�(Xn−1(s ∧ τ, b)
− Xm−1(s ∧ τ, b))ds.

(9.43)

Adding up the inequalities of (9.43) for g(t, q) = rn(t ∧ τ, q) and for g(t, q) =
rm(t ∧ τ, q) and integrating against X0,b(dq) yields

E
∫

sup
0≤s≤t

ρ4(rn(s ∧ τ, q)− rm(s ∧ τ, q))[�(rn(s ∧ τ, q))

+�(rm(s ∧ τ, q))]X0,b(dq) ≤ cT

∫ t

0
E
∫
[�(rn(s ∧ τ, q))

+�(rm(s ∧ τ, q))]X0,b(dq)γ 4
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))ds.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.44)

Taking into account that
∫
[�(rn(s ∧ τ, q))+�(rm(s ∧ τ, q))]X0,b(dq)

= γ� (Xn(s ∧ τ, b))+ γ� (Xm(s ∧ τ, b)) ≤ 2c,

we obtain (9.12).
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Proposition 9.4. For any T > 0 there is a finite constant cT := c(T, F,J , c, b, γ )
such that

E sup
0≤t≤T

γ 4
�(Xn((t ∧ τ, b)− Xm(t ∧ τ, b)))

≤ cT

∫ T

0
E sup

0≤s≤t
γ 4
�(Xn−1(s ∧ τ, b)− Xm−1(s ∧ τ, b))dt. (9.45)

Proof.

E sup
0≤t≤T

γ 4
�(Xn((t ∧ τ, b)− Xm(t ∧ τ, b)) = E sup

0≤t≤T
sup

‖ f ‖L ,∞≤1

×
{∫ [

f (rn(t ∧ τ,Xn−1(b), q))�(rn(t ∧ τ,Xn−1(b), q))

− f (rm(t ∧ τ,Xn−1(b), q))�(rm(t ∧ τ,Xn−1(b), q))
]
X0,b(dq)

}4

,

Further,

| f (rn(t ∧ τ,Xn−1(b), q))�(rn(t ∧ τ,Xn−1(b), q))

− f (rm(t ∧ τ,Xm−1(b), q))�(rm(t ∧ τ,Xm−1(b), q))|
≤ | f (rn(t ∧ τ,Xn−1(b), q))

− f (rm(t ∧ τ,Xm−1(b), q))|�(rn(t ∧ τ,Xn−1(b), q))

+| f (rm(t ∧ τ,Xm−1(b), q))||�(rn(t ∧ τ,Xn−1(b), q))

−�(rm(t ∧ τ,Xm−1(b), q))|

≤ ρ(rn(t ∧ τ,Xn−1(b), q)− rm(t ∧ τ,Xm−1(b), q))�(rn(t ∧ τ,Xn−1(b), q))

+γρ(rn(t ∧ τ,Xn−1(b), q)− rm(t ∧ τ,Xm−1(b), q))

[�(rn(t ∧ τ,Xn−1(b), q))+�(rm(t ∧ τ,Xm−1(b), q))]
(by the definition of f and (15.46))

≤ (γ + 1)ρ(rn(t ∧ τ,Xn−1(b), q)− rm(t ∧ τ,Xm−1(b), q))

[�(rn(t ∧ τ,Xn−1(b), q))+�(rm(t ∧ τ,Xm−1(b), q))].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.46)
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Thus,
E sup

0≤t≤T
γ 4
�Xn((t ∧ τ, b)− Xm(t ∧ τ, b))

≤ (γ + 1)4 E sup
0≤t≤T

{∫
ρ(rn(t ∧ τ,Xn−1(b), q)

−rm(t ∧ τ,Xm−1(b), q))

×(�(rn(t ∧ τ,Xn−1(b), q))

+�(rm(t ∧ τ,Xn−1(b), q)))X0,b(dq)
}4

≤ (γ + 1)4 E sup
0≤t≤T

∫
ρ4(rn(t ∧ τ,Xn−1(b), q)

−rm(t ∧ τ,Xm−1(b), q))

×(�(rn(t ∧ τ,Xn−1(b), q))

+�(rm(t ∧ τ,Xn−1(b), q)))X0,b(dq)

×
{∫

(�(rn(t ∧ τ,Xn−1(b), q))

+�(rm(t ∧ τ,Xn−1(b), q)))X0,b(dq)
}3

(by Hölder’s inequality)

≤ c̃
∫

E sup
0≤t≤T

ρ4(rn(t ∧ τ,Xn−1(b), q)

−rm(t ∧ τ,Xm−1(b), q))

×(�(rn(t ∧ τ,Xn−1(b), q))

+�(rm(t ∧ τ,Xn−1(b), q)))X0,b(dq)

(because
∫
�(ri (t ∧ τ,Xi−1(b), q))X0,b(dq)

= γ� (Xi (t ∧ τ, b)) ≤ c, i = m, n).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.47)

The proof follows from (9.12). 
�
Corollary 9.5. There is a unique X̄ (·) ∈ Lloc,4,F (C((0, T ];M∞,� )), and for any
positive rational numbers b and c and stopping time τ = τ(c, b)

E sup
0≤t≤T

γ 4
�(Xn(t ∧ τ(c, b), b)1Ωb − X̄ (t ∧ τ(c, b))1Ωb ) −→ 0, as n −→ ∞ .

(9.48)

Proof. The space Lloc,4,F (C((0, T ];M∞,� )) is complete. Therefore, we obtain
from Proposition 9.4 a unique X̃ (·, c, b) such that

E sup
0≤t≤T

γ 4
�(Xn(t ∧ τ(c, b), b)− X̃ (t, c, b)) −→ 0, as n −→ ∞ . (9.49)
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Further, the monotonicity of τ(c, b) in c implies that for c2 ≥ c1 and b > 0

Xn(· ∧ τ(c2, b) ∧ τ(c1, b), b, ω) ≡ Xn(· ∧ τ(c1, b), b, ω) a.e.

Hence,

X̃ (·, c2, b, ω)1{t≤τ(c1,b)} ≡ X̃ (·, c1, b, ω)1{t≤τ(c1,b)} a.e. (9.50)

Let τ(0, b) ≡ 0 and define

X̄ (t, b, ω) :=
∑
i∈N

X̃ (t, i, b, ω)1{τ(i−1,b)<t≤τ(i,b)} (9.51)

Expression (9.50) implies that

X̃ (t ∧ τ(c, b), i, b, ω)1{τ(i−1,b)<t≤τ(i,b)}
≡ X̃ (t ∧ τ(c, b, c), b, ω)1{τ(i−1,b)<t≤τ(i,b)} a.e., uniformly in t .

(9.52)

Indeed, for i ≤ c, (9.52) follows since we consider only values of t ∈ (τ (i −
1, b), τ (i, b)]. Therefore, we may apply (9.50) for c = c2 and i = c1. If, however,
i > c, then the stopping at τ(c, b) restricts the values of t to those where t ≤ τ(c, b).
Hence, (9.50) applies with c2 = i and c1 = c.

Thus,

X̄ (t ∧τ(c, b), b) =
∑
i∈N

X̃ (t ∧τ(c, b), c, b)1{τ(i−1,b)<t≤τ(i,b)} a.e., uniformly in t,

whence,

X̄ (t ∧ τ(c, b), b) ≡ X̃ (t ∧ τ(c, b), c, b) ≡ X̃ (t, c, b) a.e., uniformly in t .
(9.53)

Further, note that for b2 ≥ b1 > 0 a.e., uniformly in t ,

X̃ (t, i, b2)1{τ(i−1,b2)<t≤τ(i,b2)}1Ωb1

= X̃ (t, i, b2)1{τ(i−1,b1)<t≤τ(i,b1)}1Ωb1
(by (9.9))

= limn→∞ Xn(t ∧ τ(i, b2), b2)1{τ(i−1,b1)<t≤τ(i,b1)}1Ωb1
(by (9.49))

= limn→∞ Xn(t ∧ τ(i, b1), b1)1{τ(i−1,b1)<t≤τ(i,b1)}1Ωb1
(by (9.6) and (9.9))

= X̃ (t, i, b1)1{τ(i−1,b1)<t≤τ(i,b1)}1Ωb1
(by (9.49))

i.e., a.e., uniformly in t ,

X̃ (t, i, b2)1{τ(i−1,b2)<t≤τ(i,b2)}1Ωb1
= X̃ (t, i, b1)1{τ(i−1,b1)<t≤τ(i,b1)}1Ωb1

,

X̄ (t, b2)1Ωb1
= X̄ (t, b1)1Ωb1

,

⎫⎬
⎭

(9.54)
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where the second line follows from the first line and (9.51). We now set

X (t) :=
∑
j∈N

X̄ (t, j)1Ω j\Ω j−1 , (9.55)

and we note thatX (·)∈L0,F (C([0,∞);M∞,� ))∩p≥1 L loc,p,F (C((0,∞);M∞,� )).
We verify that a.e. uniformly in t ,

X (t ∧ τ(c, b))1Ωb

=
∑
j∈N

X̄ (t ∧ τ(c, b), j)1Ω j \Ω j−11Ωb

=
∑
j∈N

∑
i∈N

X̃ (t ∧ τ(c, b), i, j)1{τ(i−1, j)<t≤τ(i, j)}1Ω j \Ω j−1 1Ωb

=
∑
j∈N

∑
i∈N

X̃ (t ∧ τ(c, b), c, j)1{τ(i−1, j)<t≤τ(i, j)}1Ω j \Ω j−1 1Ωb
(by (9.52))

=
∑
j∈N

∑
i∈N

X̃ (t ∧ τ(c, b), c, b)1{τ(i−1, j)<t≤τ(i, j)}1Ω j \Ω j−1 1Ωb
(by (9.54))

=
∑
j∈N

∑
i∈N

X̃ (t ∧ τ(c, b), i, b)1{τ(i−1, j)<t≤τ(i, j)}1Ω j \Ω j−1 1Ωb
(by (9.52))

= X̄ (t ∧ τ(c, b), b)1Ωb (by (9.51))

= X̃ (t ∧ τ(c, b), c, b)1Ωb (by (9.53)) ,

i.e., for any positive rational numbers b and c

X (t ∧ τ(c, b))1Ωb = X̃ (t ∧ τ(c, b), b)1Ωb

= X̃ (t ∧ τ(c, b), c, b)1Ωb a.e., uniformly in t .
(9.56)

(9.56) in addition to (9.49) implies (9.48). 
�
Let r(·, X̄ (b), ω, q) be the solution of (4.9) with input process X̄ (·, b). Note that

(9.49) in addition to (9.53) in the proof of Corollary 9.5 implies

E sup
0≤t≤T

γ 4
�(Xn(t ∧ τ(c, b), b)− X̄ (t ∧ τ(c, b), b)) −→ 0, as n −→ ∞ . (9.57)

Therefore, by Theorem 4.5,

sup
q

E sup
0≤t≤T

!2(r(t ∧ τ(c, b), X̄ (b), q)− rn(t ∧ τ(c, b),Xn−1(b), q))

≤ cT

∫ T

0
Eγ 2
�(X̄ (s ∧ τ(c, b), b)− Xn−1(s ∧ τ(c, b), b))ds

≤ cT

√∫ T

0
Eγ 4
�(X̄ (s ∧ τ(c, b), b)− Xn−1(s ∧ τ(c, b), b))ds −→ 0,

as n −→ ∞ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.58)
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We set
X (·, b, ω) :=

∫
δr(·,X̄ (b),ω,q)X0,b(dq). (9.59)

By Proposition 4.3

X (·, b, ω) ∈ L p,F (C([0,∞);M∞,� )) ∀p ≥ 1. (9.60)

Proposition 9.6. For all positive rational numbers b and c

E
∫ T

0
γ 4
�(X (t ∧ τ(c, b), b)− X̄ (t ∧ τ(c, b), b))dt = 0. (9.61)

Proof. By (9.57),

E
∫ T

0
γ 4
�(X (t ∧ τ(c, b), b)− X̄ (t ∧ τ(c, b), b))dt

= lim
n→∞

∫ T

0
Eγ 4
�(X (s ∧ τ(c, b), b)− Xn−1(s ∧ τ(c, b), b))ds

= lim
n→∞ E

∫ T

0
sup

‖ f ‖L ,∞≤1

×
[∫

[ f (r(t ∧ τ(c, b), X̄ (b), q))�(r(t ∧ τ, X̄ (b), q))

− f (rn(t ∧ τ(c, b),Xn−1(b), q))�(rn(t ∧ τ(c, b),Xn−1(b), q))]X0,b(dq)
]4

≤ c̃ lim
n→∞ E

∫ T

0

∫
X0,b(dq)

×!4(r(t ∧ τ(c, b), X̄ (b), q)− rn(t ∧ τ(c, b),Xn−1(b), q))

[�(r(t ∧ τ(c, b), X̄ (b), q))+�(rn(t ∧ τ(c, b),Xn−1(b), q))]
(as in (9.46) and (9.47) by Hölder’s inequality).

By (15.46) and the boundedness of �(·), Itô’s formula in addition to (9.27) im-
plies that �(rn(t ∧ τ(c, b),Xn−1(b), ω, q)) is uniformly integrable with respect to
the product measure P(dω)⊗ X0,b(dq), since X0,b(dq) is σ -finite.2 Therefore,

c̃ lim
n→∞ E

∫ T

0

∫
X0,b(dq)× !4(r(t ∧ τ(c, b), X̄ (b), q)

−rn(t ∧ τ(c, b),Xn−1(b), q))

[�(r(t ∧ τ(c, b), X̄ (b), q))+�(rn(t ∧ τ(c, b),Xn−1(b), q))]
−→ 0, as n −→ ∞ (by (9.50)

and Lebesgue’s dominated convergence theorem).


�
2 Cf., Bauer (1968), Sect. 20, Corollary 20.5.
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Since for X (0) ∈ L0,F0(M�,∞) we have X (·), defined in (9.47), is in
L0,F (C([0,∞);M∞,� )), the solution of (4.9) with input process X (·) and start q
is well defined. Employing the measurable version of Part 3 of Theorem 4.5 we set

∑
j∈N

∫
δr(·,X ,ω,q)X0, j (ω, dq)1Ω j\Ω j−1(ω)

=
∫

δr(·,X ,ω,q)
∑
j∈N

X0, j (ω, dq)1Ω j\Ω j−1(ω)

=
∫

δr(·,X ,ω,q)X0(ω, dq).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(9.62)

Therefore, Proposition 9.6 in addition to (9.48), (9.57), and (9.58) implies
Theorem 9.7.

Theorem 9.7. (i) Assume Hypothesis 4.1. Then the measure valued process X (·),
defined by (9.55), is a solution of the quasilinear SPDE (8.26) with initial con-
dition X0 ∈ L0,F0(M�,∞). X (·) ∈ L0,F (C([0,∞);M∞,� )) and it has the
flow representation

X (·, ω) =
∫

δr(·,X ,ω,q)X0(ω, dq). (9.63)

(ii) Suppose that in addition to (4.11) the conditions of Theorem 8.11 hold and that
X0 ∈ L0,F0(M�,∞) ∩ L2,F0(H0,� ). Then (8.26) has a unique solution.

9.2 Noncoercive Semilinear SPDEs for Infinite Mass Evolution
in Stratonovich Form

Completely analogous to Theorem 8.25 we obtain the Stratonovich representation
of the solution of (8.26).

Theorem 9.8. Under the conditions of Theorems 8.25 and 9.7 the solution of the
noncoercive parabolic Itô SPDE (8.26), X (·), driven by the (possibly infinite) initial
mass distribution X (0) ∈ L0,F0(M�,∞) is the solution of the first order transport
Stratonovich SPDE

dX = −0 ·(X F(·,X , t))dt −0 · (X
∫

J (·, p, t))w(dp, ◦dt),

X (0) = X0,
(9.64)

An analogous statements for the bilinear SPDE (8.25) is obvious.



Chapter 10
Stochastic Partial Differential Equations:
Homogeneous and Isotropic Solutions

The coefficients F and J of (4.9) are assumed to be time independent. Conditions
are provided under which F and J allow rotational and shift invariant solutions
of the bilinear SPDE (8.25). Employing Theorem 4.8, homogeneous and isotropic
solutions of the bilinear SPDE (8.25) are derived (Theorem 10.2). This result is
applied to show that, under the additional assumptions of Theorem 9.7, the solution
of the quasilinear SPDE (8.26) is homogeneous and isotropic (Theorem 10.3).

O(d) := {σ ∈ Md×d : det σ = ±1}. For σ ∈ O(d) we define the rotation
operator Sσ on H0,� by

(Sσ f )(r) := fσ (r) := f (σr).

Similarly, we define the shift operator Uh on H0,� , where h ∈ Rd , by

(Uh f )(r) := fh(r) := f (r + h).

Moreover, we use fσh(r) to denote the image of the composition SσUh :

(SσUh f )(r) := fσh(r) := f (σ (r + h)).

If the coefficients F and J are generated by homogeneous kernels, they may
give rise to homogeneous solutions (cf. Gε from (1.2)). If, in addition, F(r, ·) and
J (r, ·) depend only upon |r | (as, e.g., the fundamental solution of the heat equation,
G(u, r)) we can also expect to obtain isotropic solutions of (8.25)/(8.26).

For h ∈ Rd and σ ∈ O(d) h̃ and σ̃ will denote arbitrary elements from {h, 0} and
{σ, Id}, respectively, where Id is the identity matrix in Rd . We define for f ∈ H0,�

U∼
h f := fh̃,

S∼σ f := fσ̃ .

}
(10.1)

Set

Q(r, Z(t), w(d·, dt)) := (F(r, Z(t))dt,
∫

J (r, p, Z(t))w(dp, dt)). (10.2)

Z and w will be called the coordinates of Q or of the pair (F,J ), where Z ∈
L loc,2,F (C((s, T ];H0,�,+)) ⊂ L loc,2,F (C((s, T ];M∞,�,)) (cf. (8.47)).

221
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Definition 10.1. Let σ ∈ O(d) and h ∈ Rd . The pair (F,J ) is called σ–h-
admissible, if J is spatially homogeneous,1 i.e., if

J (r, q, µ) = J (r − q, µ) ∀r, q

and
(SσUh Q)(r, Z(t), w(d·, dt)) = Q(r, Z σ̃ h̃(t), wσ̃ h̃(d·, dt)), (10.3)

where σ̃ and h̃ may vary with the coordinates. (F,J ) is called admissible, if it is
σ–h-admissible for all (σ, h) ∈ O(d)× Rd . 
�
(F,J ) and (F, J̃ ) from Sect. 4.4 (Examples) are admissible. The coordinates

in (10.3), where h̃ = h, combined with the coordinates, where σ̃ = σ , deter-
mine a type of the admissible pair (F,J ). We observe that a given pair may have
several types. Since we can obviously restrict the notion of a type to any of the
two components on the right-hand side of (10.2), admissibility implies that ne-
glecting the additional coordinate w(d·, dt) of the second component of Q, F ,
and

∫
J (·, p, ·)w(dp, dt) must have at least one common type. Note that Uh and

Sσ are homomorphisms (on the group of functions with pointwise multiplication).
Therefore, the types of the mutual quadratic variations d[mk(t),m�(t)] coincide
with the types of dm(t) := ∫

J (·, p, ·, ·)w(dp, dt).

In what follows, we identify
∫ t

0 w(dp, ds) with the cylindrical Brownian motion
W (t) from (4.28).

Theorem 10.2. Suppose (8.35), m ≥ 0 and Z ∈ Lloc,2,F (C((s, T ];H0,�,+)).
Further, let h ∈ Rd and σ ∈ O(d), and assume F,J is σ–h-admissible. Let
Y (·, Z , Y0, w) be the solution of (8.25) with Y0 ∈ L2,F0(H0,�,+) and w as in (4.9).
Let (σ̃ , h̃) be a collection of (coordinate-dependent) values so that (10.3) holds. In
addition to the preceding assumptions suppose that in C([s, T ];M∞,� )×H0,�,+×
C([s, T ];Hw,d)2

(S∼σ U∼
h Z , SσUhY0, S∼σ U∼

h W ) ∼ (Z , Y0,W ). (10.4)

Then, for any t ∈ [s, T ], in C([s, T ];H0,�,+) × C([s, T ];M∞,� ) × H0,�,+
×C([s, T ];H0,�,+)

((πt SσUhY )(·, Z ,Y0,W ), S∼σ U∼
h Z , SσUhY0, SσU∼

h W )

∼ ((πt Y )(·, Z ,Y0,W ), Z , Y0,W ).

}
(10.5)

Proof.

(i) We only show the shift invariance, assuming σ = I , since the proof for σ != I
follows the same pattern. Again, we assume s = 0.

1 The spatial homogeneity of J implies (8.33).
2 Hw,d has been defined in (4.31).
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(ii) Let ϕ ∈ C2
c (Rd ;R). Since differentiation and shift commute on C2

c (Rd;R),
we obtain from the preceding remarks

〈(UhY )(t, Z , Y0,W ), ϕ〉0 = 〈Y (t, Z , Y0,W ),U−hϕ〉0 = 〈Y0,U−hϕ〉0

+
∫ t

0

1
2

d∑
k,�=1

〈Y (s, Z , Y0,W ), Dk�(Z(s))U−h∂
2
k� ϕ〉0ds

+
∫ t

0
〈Y (s, Z , Y0,W ), F(·, Z(s)) · (U−h 0 ϕ)〉0ds

+
∫ t

0
〈Y (s, Z , Y0,W ),

∫
J (· − p, Z(s))w(dp, ds) · (U−h 0 ϕ)〉0ds

= 〈Y0,h, ϕ〉0

+
∫ t

0

1
2

d∑
k,�=1

〈Yh(s, Z , Y0,W ), Dk�(Z∼
h (s))∂

2
k�ϕ〉0ds

+
∫ t

0
〈Yh(s, Z , Y0,W ), F(·, Z∼

h (s)) · 0ϕ〉0ds

+
∫ t

0
〈Yh(s, Z , Y0,W ),

∫
J (· − p, Z∼

h (s))w
∼
h (dp, ds) · 0ϕ〉0.

Here, w∼
h is the shifted white noise.3 However, the right-hand side of the last

equation is equivalent to the statement Yh(·) := Yh(·, Z ,Y0,W ) is the solution
of the bilinear SPDE (8.25) with input process Z∼

h , initial condition Y0,h and
driving Brownian space–time white noise w∼

h (dp, ds) (∼W∼
h ). By Theorem

8.6 this solution, denoted Y (·, Z∼
h , Y0,h,W∼

h ), is unique. Hence, a.s.,

(UhY )(·, Z ,Y0,W ) = Y (·, Z∼
h , Y0,h,W∼

h ). (10.6)

(iii) To show that Y (·, Z∼
h , Y0,h,W∼

h ) ∼ Y (·, Z , Y0,W ), we apply Theorem 4.8. In
a first step, we discretize H0,� as follows: Set Cn := {r ∈ Rd : −n ≤ rk < n
for k = 1, . . . , d}, where n ∈ N. We then partition Cn into N boxes of equal
volume (2n)d/N (cf. Chap. 2), where we assume that the left end points of
those boxes (or d-dimensional intervals) are excluded and the right end points
belong to the box. Let us denote the midpoints by {r̄1, . . . , r̄ N } and identify the
i th box with r̄ i , i = 1, . . . , N . If f ∈ H0,� we set

(πN ,n f )(r) :=
{

N
(2n)d

∫
(r̄ i ] f (q)dq, r ∈ (r̄ i ], i = 1, . . . N ,

0, r !∈ Cn,

}
(10.7)

where (r̄ i ] is the i th box. Lebesgue’s differentiation theorem and Lebesgue’s
dominated convergence theorem imply for any f ∈ H0,�

‖ f − πN ,n f ‖0,� → 0, as N → ∞, n → ∞, (10.8)

3 Cf. (5.22).



224 10 Stochastic Partial Differential Equations: Homogeneous and Isotropic Solutions

and also for any X0 ∈ H0,�,0 and any stopping time τ which is localizing
for X0

E(‖X0 − πN ,n X0‖2
0,�1{τ>0})→ 0, as N → ∞, n → ∞. (10.9)

Moreover, for fixed n and N we define a map

gN : πN ,nH0,� → RN

πN ,n f %→ a(N , f )

}
(10.10)

where the i th component of a(N , f ) is the integral in (10.7) (the “weight,” if
f ≥ 0). The restriction of gN to nonnegative values defines

gN : πN ,nH0,�,+ → RN+ .

We check that gN is continuous, where πN ,nH0,�,+ is endowed with ‖ · ‖0,� .
Since πN ,n is a projection into a closed subspace of H0,�,+, the map

C([0, T ];M∞,� )× H0,�,+ × C([0, T ];Hw,d) %−→ C([0, T ];M∞,� )
×RN+ × C([0, T ];Hw,d)

(η, ξ0,W ) %−→ (η, gNπN ,nξ0,W )

is continuous. Therefore, (10.4) implies

(U∼
h Z , gNπN ,nUhY0,U∼

h W ) ∼ (Z , gNπN ,nY0,W ) (10.11)

in C([0, T ];M∞,� )× RN+ × C([0, T ];Hw,d).
(iv) By the proof of Theorem 4.8 there is a solution map

=
r N for (4.9) (on the

“canonical” probability space). Using the notation which was introduced in
Chap. 4 after (4.35), it follows that for any t ∈ [0, T ] the following map is
measurable as indicated:

RN+ × Rd N × C([0, T ];M∞,� × Hw,d ) %−→ RN+ × C([0, T ];Rd N

×M∞,� × Hw,d )
(a(N ), rN , η,W ) %−→ (a(N ), (πt

=
r N )(·,W , η, rN ), η,W )

BN ⊗ Bd N ⊗ F̄M�,∞×Hw,d ,T −BN ⊗ F̄Rd N×M�,∞×Hw,d ,t

⎫⎪⎪⎬
⎪⎪⎭

(10.12)

where W denotes a typical element of C([0, T ];Hw,d). Hence, by (10.11), for
any t ≥ 0

(gNπN ,nUhY0, (πt
=
r N )(·,U∼

h W,U∼
h Z , rN ),U∼

h Z ,U∼
h W )

∼ (gNπN ,nY0, (πt
=
r N )(·,W, Z , rN ), Z ,W )

⎫⎬
⎭ (10.13)

in RN+ × C([0, T ];Rd N × M∞,� × Hw,d).
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(v) Let a(N ) := (a1, . . . , aN ) ∈ RN+ (the “weights”) and qN := (q1, . . . , q N ) ∈
Rd N (the “positions”). Then,

hN (a(N ), qN ) :=
N∑

i=1

aiδqi (10.14)

is continuous from RN+ × Rd N into (M∞,� , γ� ). Let π̃N ,nY0 and π̃N ,nUhY0
be the sum of point measures associated with the discretization, i.e.,

π̃N ,nY0 :=
N∑

i=1

ar̄i (N , Y0)δr̄ i ,

where ar̄i (N , Y0) has been defined in (10.10), and similarly for π̃N ,nUhY0. Fur-
ther, let Y(·) denote the empirical measure process associated with

=
r N (·) =

(
=
r (·, r̄1) · · · =r (·, r̄ N ))T , i.e.,

Y(t) :=
N∑

i=1

ar̄i (N , Y0)δ=r (t,r̄ i )
.

Then (10.7), (10.13), and (10.14) imply

(πN ,nUhY0, (πtY)(·,U∼
h W,U∼

h Z , π̃N ,nUhY0),U∼
h Z ,U∼

h W )
∼ (πN ,nY0, (πtY)(·,W, Z , π̃N ,nY0), Z ,W )

}
(10.15)

in H0,� × C([0, T ];M∞,� × Hw,d). Here, we used the fact that gN from
(10.10) has a continuous inverse.

(vi) The Cauchy–Schwarz inequality implies that Y0 (and UhY0), restricted to Cn ,
is in L0,F0(W0,1,1)(⊂ L0,F0(M f ) ⊂ L0,F0(M∞,� )). Therefore, for any stop-
ping time τ which is localizing for Y0,

E(γ 2
�(π̃N ,nY0, 1Cn Y0)1{τ>0})→ 0, as N → ∞ (10.16)

and, trivially,
E‖1Cn Y0 − Y0‖2

0,� → 0 as n → ∞. (10.17)

The same holds for UhY0.

Since Y is the solution of the bilinear SPDE (8.25), it follows from Theo-
rem 8.6 that Y(·, . . . , 1Cn Y0) = Y (·, . . . , 1Cn Y0) ∈ L loc,2,F (C([0, T ];M f )) ∩
L loc,2,F (C([0, T ];H0,�,+)), and similarly for 1Cn UhY0. Hence, (10.16) in addition
to the continuous mapping theorem4 implies the equivalence, as stated in (10.15),
but with πN ,n and π̃N ,n replaced by 1Cn . Expression (10.17) in addition to (10.6)
and the continuous mapping theorem yields (10.5). 
�

4 Cf. Sect. 15.2.1, Theorem 15.22.
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We now extend the results of Theorem 10.2 to the solution X of the quasilinear
SPDE (8.26) under the assumptions of Theorems 8.11 and 9.7.

Theorem 10.3. Suppose the pair (F,J ) is σ–h-admissible. Further, suppose (8.35)
with smoothness degree m > d + 2 and (8.45) in addition to (4.11). Let h ∈ Rd and
σ ∈ O(d) and assume that (F,J ) is σ–h-admissible. Let (σ̃ , h̃) be a collection of
(coordinate-dependent) values so that (10.3) holds with Z := X. Further, suppose
we have that in H0,�,+ × C([0, T ];Hw,d)

(X0, SσUh W ) ∼ (X0,W ). (10.18)

Then, for any t ≥ 0, in C([0, T ];H0,�,+)× H0,�,+ × C([0, T ];Hw,d)

((πt SσUh X)(·, X, X0,W ), X0, S∼σ U∼
h W )

∼ ((πt X)(·, X, X0,W ), X0,W ).

}
(10.19)

In particular, (10.19) implies (in C([0, T ];H0,�,+))

(SσUh X)(·, X, X0,W ) ∼ X (·, X, X0,W ). (10.20)

Proof.

(i) Consider the recursive sequence Xn(t, b), defined by (9.3). Employing (9.6), we
may set

Xn(t) :=
∑
j∈N

Xn(t, j)1Ω j\Ω j−1, (10.21)

which is analogous to (9.55) for the limiting process. It follows that for all n ∈ N
Xn(·) ∈ L0,F (C([0,∞);M∞,� )) ∩p≥1 L loc,p,F (C([0,∞);M∞,� )). There-
fore, there is a unique solution of (4.9), r(·,Xn−1, q), with input Xn−1(·) and
start q which, by Part 3 of Theorem 4.5, is measurable in all variables. Set

τ j (ω) :=
{

T, if ω ∈ Ω j ,
0, otherwise.

Since Ω j ∈ F0, it follows that τ j is a stopping time and 1{τ j>0} = 1Ω j .
Therefore,

γ (Xn(u)− Xn(u, j))1{τ j>0} = 0 ∀u ∈ [0, T ],
whence

r(u,Xn−1, q)1Ω j = r(u,Xn−1( j), q)1Ω j ∀u ∈ [0, T ].
This implies

Xn(t, ω)1Ω j\Ω j−1 =
∫

δrn(t,Xn−1,ω,q)X0(dq)1Ω j\Ω j−1 = Xn(t, j)1Ω j\Ω j−1 .

(10.22)
Consequently, we obtain from (9.49) and (9.55) for all c, j ∈ N

E sup
0≤t≤T

γ 4
�(Xn(t ∧ τ(c, j))− X (t ∧ τ(c, j))) −→ 0, as n −→ ∞ . (10.23)
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(ii) We have
Xn+1(·) = Xn+1(·,Xn, X0).

Next, we approximate X (·, X, X0) by Xn+1(·,Xn, X0), as shown in the
proof of Proposition 9.4 and Corollary 9.5, employing (10.23). Although
this procedure uses the topology of L loc,2,F (C((0, T ]);M∞,� )), the smooth-
ness of X0 in addition to (8.35) implies that for each n Xn+1(·,Xn, X0) ∈
L loc,2,F (C((0, T ];H0,�,+)). Consequently, by (10.5) and (10.18),

((πt SσUhXn+1)(·,Xn,X0,W ), S∼σ U∼
h Xn,X0, S∼σ U∼

h W ))
∼ ( (πtXn+1)(·,Xn,X0,W ),Xn,X0,W ).

}
(10.24)

Since by (10.23), Xn → X , SσUhXn → SσUhX , S∼σ U∼
h Xn → S∼σ U∼

h X in
L loc,2,F (C((0, T ]);M∞,� )) and since X ∈ L loc,2,F (C((0, T ];H0,�,+)), Ex-
pression (10.24) in addition to the continuous mapping theorem implies (10.19)
and (10.20). 
�



Chapter 11
Proof of Smoothness, Integrability,
and Itô’s Formula

We first derive basic estimates and define norms on the relevant state spaces.
Smoothness and imbedding properties are derived. Finally, the proof of the Itô for-
mula (8.42) is provided.

11.1 Basic Estimates and State Spaces

To describe the order of differentiability of f : Rd → R we recall the notation on
multiindices from Sect. 4:

n = (n1, . . . nd) ∈ (N ∪ {0})d .
|n| := n1 + · · · + nd . If n = (n1, . . . , nd) and m = (m1, . . . ,md), then n ≤ m iff
ni ≤ mi for i = 1, . . . , d. n < m iff n ≤ m and |n| < |m|. For arbitrary n,m we
define

n − m := (k1, . . . , dd),

where ki = (ni − mi ) ∨ 0, i = 1, . . . , d, with “∨” denoting the maximum and
n = (n1, . . . , nd), m = (m1, . . . ,md). For n = (n1, . . . , nd) ∈ Zd we set

πn(r) :=
{
%d

i=1rni
i , for all i = 1, . . . , d ni ≥ 0

0, otherwise.

If x ∈ R, then we set [x] := max{k ∈ Z : k ≤ x}. Further, we abbreviate

G(u, r) := (2πu)−d/2 exp
(−|r |2

2u

)
, u > 0 (11.1)

with the other usual assignments for the cases u = 0 and (|r | = 0 or |r | > 0).

Lemma 11.1. For any n ≥ 0 there are finite constants γi := γi,n such that

∂nG(u, r) =
∑

0≤2i≤n

γi
πn−2i(r)
u|n|−|i| G(u, r), (11.2)

where γ0 = (−1)|n|.

229
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Proof. We use induction in |n|. Expression (11.2) is obviously correct for |n| = 0.
Assume (11.2) is correct for all n such that |n| ≤ m − 1 and m − 1 ≥ 0. Choose n
with |n| = m. Then, recalling the notation 1k from Chap. 8 (before (8.39)),

∂nG(u, r) = ∂k∂
n−1k G(u, r)

for some k ∈ {1, . . . , d}

= ∂k

⎧⎪⎪⎨
⎪⎪⎩

[ |n|−1
2

]
∑
|i|=0

γi
πn−1k−2i(r)

u|n|−1−|i| G(u, r)

⎫⎪⎪⎬
⎪⎪⎭

(by induction hypothesis)

=

[ |n|−1
2

]

2∑
|i|=0

γi
1

u|n|−1−|i|

(
ck,n,iπn−2·1k−2i(r)− πn−1k−2i(r)rk

u

)
G(u, r)

=

[ |n|−1
2

]

2∑
|i|=0

γick,n,i
πn−2(i+1k )(r)

u|n|−(|i|+1) G(u, r)−
|n|−1

2∑
|i|=0

γi
πn−2i(r)
u|n|−|i| G(u, r)

(where ck,n,i := (nk − 1 − 2ik) ∨ 0)

=
∑

0≤2i≤n

γ̃i
πn−2i(r)
u|n|−|i| G(u, r)

for some finite constants γ̃i := γ̃i,n, where γ̃0 = (−1)γ0, as the upper limit in the
summation is restricted to n by the definition of πn−2i(r). 
�
Lemma 11.2. For any n ≥ 0 there are finite constants γi := γi,n such that

G(u, r)πn(r) =
∑

0≤2i≤n

u|n|−|i|γi∂
n−2iG(u, r). (11.3)

Proof. Expression (11.3) is obvious for |n| = 0 and |n| = 1. Assume (11.3) is
correct for all n ≥ 0 with |n| ≤ m − 1, m − 1 ≥ 1. Choose n with |n| = m. Then,
by Lemma 11.1,

G(u, r)
πn(r)
u|n|

− (−1)|n|∂nG(u, r)

=
∑

0<2i≤n

−(−1)|n|γi

u|n|−|i| πn−2i(r)G(u, r)
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=
∑

0<2i≤n

−(−1)|n|γi

u|n|−|i|

⎛
⎝ ∑

0≤2j≤n−2i

u|n|−2|i|−|j|γ̃j∂
n−2i−2jG(u, r)

⎞
⎠

(by induction hypothesis with finite constants γ̃j and by |n − 2i| = |n| − 2|i| for
0 ≤ 2i ≤ n)

=
∑

0<2k≤n

βku−|k|∂n−2kG(u, r)

(with k = i + j and βk = −(−1)|n|
∑

i+j=k
γiγ̃j ). Hence,

G(u, r)πn(r) = u|n|(−1)|n|∂nG(u, r)+
∑

0<2k≤n

βku|n|−|k|∂n−2kG(u, r).

This implies (11.3). 
�
Expression (11.2) immediately implies

Corollary 11.3. Let n,m ≥ 0. Then there are finite constants γi such that

(∂mG(u, r))πn(r) = u
|n|
2

∑
0≤2i≤m

γi
πm−2i+n(r)

u|m|−|i|+ |n|
2

G(u, r)

= u
|n|−|m|

2
∑

0≤2i≤m

γi
πm−2i+n(r)

u
|m|
2 −|i|+ |n|

2

G(u, r).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11.4)


�
Corollary 11.4. Let n,m ≥ 0. Then there are finite constants γ̂ñ such that

(∂mG(u, r))πn(r) =
∑

0≤2ñ≤(n+m)

u|n|−|ñ|γ̂ñ∂
m+n−2ñG(u, r). (11.5)

Proof.

(∂mG(u, r))πn(r)=
∑

0≤2i≤m

γi
πm−2i(r)
u|m|−|i| πn(r)G(u, r)

(by (11.2))

=
∑

0≤2i≤m

γi
πm+n−2i(r)

u|m|−|i| G(u, r).

Further, by (11.3),

πm+n−2i(r)G(u, r) =
∑

0≤2j≤(n+m−2i)

u|n+m−2i|−|j|γ̃j∂
n+m−2i−2jG(u, r).
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Since 2i ≤ m we have |n+m−2i|−|j| = |n|+|m|−2|i|−|j|, the above calculations
imply

(∂mG(u, r))πn(r) =
∑

0≤2i≤m

∑
0≤2j≤(n+m−2i)

u|n|−|i|−|j|γiγ̃j∂
n+m−2i−2jG(u, r)

Setting γ̂ñ := ∑
i+j=ñ

γiγ̃j the last equation implies (11.5). 
�

Let β > 1 and note that

G(u, r) = βd/2 exp
(
−|r |2(β − 1)

2βu

)
G(βu, r) (11.6)

Obviously, for any k

sup
r,u≥0

∣∣∣∣
πk(r)
u|k|/2

exp
(
−|r |2(β − 1)

2βu

)∣∣∣∣ ≤ ck,β <∞. (11.7)

Therefore, we obtain from (11.4)

|(∂mG(u, r))πn(r)| ≤ cm,n,βu(|n|−|m|)/2G(βu, r), (11.8)

where cm,n,β <∞.
Let / be the Laplacian on (H0, ‖ · ‖0), considered as a closed self-adjoint opera-

tor. In what follows let µ ≥ 1, and let (µ− 1
2/)−1 be the resolvent of 1

2/ at µ. Set
Rµ := µ(µ− 1

2/)−1.
Next, let Φ ∈ {1,� }. We refer to (15.47) for a verification of the following

estimate:

�−1(q)�(r) =
(

1 + |q|2
1 + |r |2

)γ
≤ 2γ (1 + |r − q|2)γ .

If γ /∈ N choose, in what follows, β > 1 the smallest number such that γβ ∈ N.
If γ ∈ N choose β = 1. Hölder’s inequality allows us to compute the usual moments
of the normal density as follows:

∫
G(u, r)(1 + |r |2)γ dr =≤

(∫
G(u, r)(1 + |r |2)γβdr

)1/β

≤ c1,γ + c2,γ uγ .

⎫⎬
⎭ (11.9)

Expression (11.9) in addition to (15.47) implies, in particular, the first inequality
of the following (11.10) for the case Φ = � . The second inequality follows from
the simple observation that |‖� |‖ ≤ 1. If we choose Φ ≡ 1 both bounds can be
replaced by 1:

sup
q

∫
G(u, r − q)�−1(q)�(r)dr = sup

r

∫
G(u, r − q)�−1(r)�(q)dq

≤ 2γ (c1,γ + c2,γ uγ ),

sup
q

∫
G(u, r − q)�(r)dr = sup

r

∫
G(u, r − q)�(q)dq ≤ 1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11.10)
where we used on the left-hand sides the symmetry in the variables q and r .
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Let f ∈ Wn,p,Φ, n ∈ N ∪ {0}, p ∈ [1,∞). Setting

K (t, r, q) := G(t, r − q)Φ−1(q),

Expression (11.10) implies

sup
q

∫
K (t, r, q)�(r)dr = sup

r

∫
K (t, r, q)�(q)dq ≤ 2γ (c1,γ + c2,γ uγ ).

(11.11)
Since �(r) = �−1(q)�(q)�(r), we may write

∫
G(t, r − q)∂n

q f (q)dq =
∫

K (t, r, q)∂n
q f (q)�(q)dq.

By Proposition 15.6 from Sect. 15.1.2 we obtain
∫ ∣∣∣∣

∫
G(t, r − q)∂n

q f (q)dq
∣∣∣∣

p

Φ(r)dr

≤

⎧⎪⎨
⎪⎩

2γ (c1,γ + c2,γ tγ )
∫

|∂n
q f (r)|p�(r)dr, if Φ = �,

∫
|∂m

q f (r)|pdr , if Φ ≡ 1.
(11.12)

Hence, the heat semigroup extends to a semigroup of bounded operators on
Wn,p,Φ . For Φ ≡ 1 the heat semigroup is a contraction. Further, for Φ ≡ 1 the
proof of strong continuity can be found in Tanabe (1979), Sect. 3.1, p. 52, Example
3. This proof is generalized, using the following result.

Lemma 11.5. Let f ∈ W0,p,Φ . Then
∫

| f (h + q)− f (q)|pΦ(q)dq −→ 0 as |h| −→ 0. (11.13)

Proof. The proof for Φ ≡ 1 can be found in Bauer (loc. cit., 48.1 Lemma). For
Φ = � we generalize Bauer’s proof as follows, where we use a simple inequality
and the shift invariance of the Lebesgue measure:
∫

| f (h + q)− f (q)|p�(q)dq

=
∫ ∣∣∣ f (h + q)

[
� 1/p(q)−� 1/p(h+q)+� 1/p(h + q)

]
−� 1/p(q) f (q)

∣∣∣p
dq

≤ 2p−1
∫ ∣∣∣ f (h + q)

[
� 1/p(q)−� 1/p(h + q)

]∣∣∣p
dq + 2p−1

×
∫ ∣∣∣ f (h + q)� 1/p(h + q)− f (q)� 1/p(q)

∣∣∣p
dq

= 2p−1
∫ ∣∣∣ f (q)

[
� 1/p(q − h)−� 1/p(q)

]∣∣∣p
dq + 2p−1

×
∫ ∣∣∣ f (h + q)� 1/p(h + q)− f (q)� 1/p(q)

∣∣∣p
dq

(by the shift invariance of the Lebesgue measure).
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Note that by (15.47)

� 1/p(q − h)�−1/p(q) ≤ 2γ /p(1 + |h|2)γ /p.

Hence,

| f (q)[� 1/p(q − h)−� 1/p(q)]| ≤ | f (q)[2γ /p(1 + |h|2)γ /p + 1]� 1/p(q)|.
Therefore,

2p−1
∫ ∣∣∣ f (h + q)

[
� 1/p(q)−� 1/p(h + q)

]∣∣∣p
dq −→ 0, as |h| −→ 0

by the uniform continuity and boundedness of � and Lebesgue’s dominated con-
vergence theorem.

2p−1
∫

| f (h + q)� 1/p(h + q)− f (q)� 1/p(q)|pdq −→ 0, as |h| −→ 0

by the existing result for Φ ≡ 1.
Altogether, this establishes (11.13) also for the case Φ = � . 
�

Abbreviating f̃ (q) :=
(
∂n

q f
)
(q), we change coordinates q̂ := 1√

t
(r − q) and

obtain
∫

G(t, r − q)[ f̃ (q)− f̃ (r)]dq =
∫

G(1, q̂)[ f̃ (r +√
t q̂)− f̃ (r)]dq̂.

Thus, we have for Φ ∈ {1,� }
∫ ∣∣∣∣

∫
G(t, r − q)[(∂n

q f )(q)− (∂n
q f )(r)]dq

∣∣∣∣
p

Φ(r)dr

=
∫ ∣∣∣∣

∫
G(1, q)[(∂n

q f )(r +√
tq)− (∂n

q f )(r)]dq
∣∣∣∣

p

Φ(r)dr

≤
∫ ∫

G(1, q)|(∂n
q f )(r+√

tq)−(∂n
q f )(r)|pdq

[∫
G(1, q)dq

]
/(p−1)/pΦ(r)dr

(by Hölder’s inequality with G(1, q) = G1/p(1, q)G p−1/p(1, q))

=
∫ ∫

G(1, q)|(∂n
q f )(r +√

tq)− (∂n
q f )(r)|pdqΦ(r)dr

(since
∫

G(1, q)dq = 1)

=
∫

G(1, q)
[∫

|(∂n
q f )(r +√

tq)− (∂n
q f )(r)|pΦ(r)dr

]
dq

(by Fubini’s theorem).
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Next, we note that

|(∂n
q f )(r +√

tq)− (∂n
q f )(r)|p ≤ 2p−1[| f (r +√

tq)|p + | f (r)|p]
(by Hölder’s inequality, if p > 1).

(11.14)

Let us first focus on the (more difficult) case Φ = �.
∫

2p−1| f (r +√
tq)|p�(r)dr

]

=
∫

2p−1| f (r)|p�(r −√
tq))dr

]

(by change of variables)

=
∫

2p−1| f (r)|p�(r −√
tq))�−1(r)�(r)dr

]

≤ 2γ (1 + t |q|2)γ
∫

2p−1| f (r)|p�(r)dr
]

(by (15.47))

Hence, we obtain

G(1, q)
[ ∫

|(∂n
q f )(r +√

tq)− (∂n
q f )(r)|p�(r)dr

≤ G(1, q)2γ (1+t |q|2)γ
∫

2p−1| f (r)|p�(r)dr+K (1, q)
∫

2p−1| f (r)|p�(r)dr,

≤ 2pG(1, q)2γ (1 + t |q|2)γ
∫

| f (r)|p�(r)dr,

which, by (11.9), is integrable with respect to dq.
For the case Φ ≡ 1, we employ (11.14) and obtain by the shift invariance of the

Lebesgue measure

G(1, q)
[∫

|(∂n
q f )(r +√

tq)− (∂n
q f )(r)|pdr

≤ G(1, q)
∫

2p−1| f (r)|pdr + K (1, q)
∫

2p−1| f (r)|pdr,

≤ 2pG(1, q)
∫

| f (r)|p�(r)dr,

which is, of course, integrable with respect to dq.

So, by (11.13) and Lebesgue’s dominated convergence theorem,
∫ ∣∣∣∣

∫
G(t, r − q)

[
(∂n

q f )(q)− (∂n
q f )(r)

]
dq|pΦ(r)dr −→ 0, as t ↓ 0.

(11.15)
The previous analysis shows that, for any D > 0, the heat semigroup

(TD(t) f )(r) :=
∫

G(Dt, r − q) f (q)dq (11.16)
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defines a strongly continuous semigroup on Wn,p,Φ, n ∈ N ∪ {0}, p ∈ [1,∞),
Φ ∈ {1,� }.1 Let t > 0. Then

∣∣∣∣
∂

∂t
G(t, r)

∣∣∣∣ =
∣∣∣∣
1
t

[
−d

2
G(t, r)+ |r |2

2t
G(t, r)

]∣∣∣∣
≤ cβ

t
[G(t, r)+ G(βt, r)]

(by (11.6) and (11.7) for β > 1).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11.17)

Choose again f ∈ Wn,p,Φ . Then

∣∣∣∣
1
2
/
∫

G(t, r − q) f (q)dq
∣∣∣∣ =

∣∣∣∣
∫
∂

∂t
G(t, r − q) f (q)dq

∣∣∣∣

≤ cβ
t

[∫
G(t, r − q) f (q)dq +

∫
G(βt, r − q) f (q)dq

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(11.18)

Note that for any θ > 0 there is a Kθ > 0

2γ (c1,γ + c2,γ tγ ) ≤ Kθ exp(θ t) ∀t ≥ 0, (11.19)

where the left-hand side in (11.19) is the bound in (11.10). Hence, T (t) maps
Wn,p,Φ into the domain of its generator and by (11.12) in addition to (11.18) for
any D > 02

‖T (Dt) f ‖n,p,Φ ≤ Kθ exp(θDt)]‖ f ‖n,p,Φ ∧ 2γ (c1,γ + c2,γ tγ )‖ f ‖n,p,Φ,

∥∥∥∥
1
2
/T (Dt) f

∥∥∥∥
n,p,Φ

≤ cβ
Dt

[
1 + (Kθ exp(θDt) ∧ 2γ (c1,γ + c2,γ tγ ))

] ‖ f ‖n,p,Φ .

⎫⎪⎪⎬
⎪⎪⎭

(11.20)

This implies that the heat semigroup is analytic (or holomorphic) on Wn,p,Φ .3

Further, (11.12) in addition to (11.15) and (11.20) implies that the heat semigroup
is an analytic contraction semigroup on Wn,p,1. Setting for α > 0.

�(α) =
∫ ∞

0
uα−1e−udu

1 Strictly speaking, we need for the the heat semigroup, defined on different spaces, different
symbols. However, on the space S, the space of infinitely often differentiable and rapidly de-
creasing real valued functions with domain Rd , these versions coincide, as they are defined by
the same kernel G(t, r). Therefore, we use the same symbol for the heat semigroup and its
generator 1

2/ (as the closed operator) on Wn,p,Φ , n ∈ N ∪ {0}, p ∈ [1,∞), Φ ∈ {1,� }. We
refer to Sect. 15.1.3 for the definition and properties of S.

2 Observe that for Φ ≡ 1 we may choose θ = 0 and Kθ = 1 in (11.20), which will be used in
what follows.

3 Cf. Davies (loc. cit., Theorem 2.39).
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for the Gamma function,4 we may for D > 0 and α > 0 define the fractional powers
of the resolvent of D

2 / by

(
µ− D

2
/
)−α

= 1
�(α)

∫ ∞

0
uα−1e−µu T (Du)du, (11.21)

where f ∈ Wn,p,Φ, n ∈ N ∪ {0}, p ∈ [1,∞), Φ ∈ {1,� }.5
Denote by L(B) the set of linear bounded operators from a Banach space B into

itself and the operator norm ‖ · ‖L(B). Choose α̃ ≥ 1 the smallest number such that
(α − 1)α̃ ∈ N, i.e.,

(α − 1)α̃ = [α − 1] + 1.

Let µ > Dθ for D > 0. Then,

∥∥∥∥
∫ ∞

0
uα−1e−µu T (Du)du

∥∥∥∥
L(Wn,p,Φ )

≤ Kθ

∫ ∞

0
uα−1e(Dθ−µ)udu

≤ Kθ

{∫ ∞

0
u[α−1]+1e(Dθ−µ)udu

}1/α̃ {∫ ∞

0
e(Dθ−µ)udu

}(α̃−1)/α̃

(by Hölder’s inequality)

≤ Kθ
(((α − 1)α̃)!)1/α̃
(µ− Dθ)α−1+1/α̃

1
(µ− Dθ)(α̃−1)/α̃

= Kθ
(((α − 1)α̃)!)1/α̃
(µ− Dθ)α

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.22)

Hence, for α > 0

∥∥∥∥(µ− D
2
/)−α

∥∥∥∥
L(Wn,p,Φ )

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Kθ
(((α − 1)α̃)!)1/α̃
�(α)(µ− Dθ)α

≤ K̄θ
(µ− Dθ)α

, if Φ = � and µ > Dθ,

(((α − 1)α̃)!)1/α̃
�(α)µα

≤ K̄
µα
, if Φ ≡ 1 and µ > 0.

(11.23)

Set for α > 0

Rαµ := µα
(
µ− 1

2
/
)−α

, Rαµ,D := µα
(
µ− D

2
/
)−α

. (11.24)

4 For α = k ∈ N, we have �(k) = (k − 1)!.
5 Cf. Pazy (1983), Chap. 2.6, (6.9).
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Expression (11.23) implies

‖Rαµ,D f ‖n,p,Φ ≤
⎧⎨
⎩
µα

K̄θ
(µ− Dθ)α

‖ f ‖n,p,� , if Φ = � and µ > Dθ,

K̄‖ f ‖n,p,Φ, if Φ ≡ 1 and µ > 0.
.

(11.25)

Lemma 11.6. Let f ∈ W0,p,Φ . Then for any α > 0

‖(Rαµ,D − I ) f ‖n,p,Φ −→ 0, as µ −→ ∞ . (11.26)

Proof.
∥∥∥(Rαµ,D − I ) f

∥∥∥p

n,p,Φ

=
∥∥∥∥
µα

�(α)

∫ ∞

0
du uα−1e−µu T (Du) f − f

∥∥∥∥
p

n,p,Φ

≤
(
µα

�(α)

∫ ∞

0
du uα−1e−µu ‖T (Du) f − f ‖n,p,Φ

)p

=
(

1
�(α)

∫ ∞

0
dv vα−1e−v

∥∥∥∥T (D
v

µ
) f − f

∥∥∥∥
n,p,Φ

)p

−→ 0, as µ −→ ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.27)
by change of variables v := µu in addition to the strong continuity of T (Dt) and
Lebesgue’s dominated convergence theorem, since by (11.20)

‖T (D
v

µ
) f − f ‖n,p,Φ ≤ ‖T (D

v

µ
) f ‖n,p,Φ + ‖ f ‖n,p,Φ ≤ 2γ (c1,γ + c2,γ (D

v

µ
)γ ).


�
Lemma 11.7. Let D > 0 and k be a multi-index and

α ≥ |k|
2
.

For all µ > Dθ are in the resolvent set of D
2 /,6 we can extend the operator

∂k(θ − D
2 /)−α to a bounded operator on Wn,p,Φ . Denoting this extension by the

same symbol, there is a finite constant cn,k,α,p,D,Φ such that for any ε > 0

‖∂k(µ− D
2
/)−α‖L(Wn,p,Φ )≤ cn,k,α,p,D,Φ(µ− Dθ + ε

2
)−α+|k| ∀µ ≥ Dθ + ε.

(11.28)

Proof. Let g ∈ Wn,p,Φ , and f := ∂ jg, where j ≤ n with |n| = n. Further, let m be
an even number > n and µ > Dθ . Then we have

6 As before, we may choose θ = 0 if Φ ≡ 1.
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∣∣∣∣∂k(µ− D

2
/)−αRm/2

µ,D f (r)
∣∣∣∣

=
∣∣∣∣∣∣
µm/2

(
m
2 − 1

)
!

∫ ∞
0

du uα+m/2−1e−µu
∫
∂k

r G(Du, r − q) f (q)dq

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∑

0≤2i≤k
γi

µm/2

(m
2 − 1)!

∫ ∞
0

du uα+m/2−1e−µu
∫
πk−2i(r − q)

u|k|−2|i| G(Du, r − q) f (q)dq

∣∣∣∣∣∣
(by (11.2))

=
∣∣∣∣∣∣
∑

0≤2i≤k
γi

µm/2

(m
2 − 1)!

∫ ∞
0

du uα+|i|−|k|/2+m/2−1e−µu

×
∫
πk−2i(r − q)

u|k|/2−|i| G(Du, r − q) f (q)dq
∣∣∣∣

≤ ck,D
∑

0≤2i≤k
γi

µm/2

(m
2 − 1)!

∫ ∞
0

du uα+|i|−|k|/2+m/2−1e−µu
∫

G(βu, r − q)| f (q)|dq

(by (11.6) and (11.7) with β = β(D) > 1 such that µ > βDθ )

= ck,D
∑

0≤2i≤k
γi

µm/2

(m
2 − 1)!β

−α−|i|+|k|/2−m/2

×
∫ ∞

0
du uα+|i|−|k|/2+m/2−1e−µ/βu

∫
G(u, r − q)| f (q)|dq

= ck,D,α
∑

0≤2i≤k
γi

(
µ

β
− 1

2
/
)−

(
α+|i|− |k|

2

)

Rm/2
µ/β | f |(r).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.29)

Taking the pth power and integrating against Φ(r)dr , (11.29) implies

‖∂k
(
µ− 1

2
/
)−α

Rm/2
µ f ‖0,p,Φ

≤ ck,D,α,p
∑

0≤2i≤k

γi‖
(
µ

β
− 1

2
/
)−(α+|i|−|k|/2)

Rm/2
µ/β | f |‖0,p,Φ . (11.30)

By the analyticity of the semigroup, generated by D
2 /, the resolvent of D

2 / maps
Wn,p,Φ into the domain of D

2 /. Then, for µ, µ̃ > Dθ ,
(
µ̃− D

2
/
)(
µ− D

2
/
)−1

= I−µ
(
µ− D

2
/
)−1

+µ̃
(
µ− D

2
/
)−1

. (11.31)
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Apparently, all operators on the right-hand side of (11.31) are bounded. The
bound in the second operator is a constant c which is uniform for all µ > Dθ + ε,
where ε > 0. Choosing µ̃ := µ/β, the bound of the last family of operator with
µ > Dθ + ε is c/β. Hence, for µ̃ := µ/β the operator on the left hand side is
bounded by

1 + c
(

1 + 1
β

)

and positive powers on the left-hand side are bounded by the same positive powers
of 1 + c(1 + 1/β). Consequently,

‖µ−m/2(µ− 1
2
/)m/2 Rm/2

µ/β‖Ln,p,Φ ≤ cp,Φ,m,β ,

‖Rm/2
µ/β R−m/2

µ Rm/2
µ f ‖0,p,Φ ≤ cp,Φ,m,β‖Rm/2

µ f ‖0,p,Φ,

⎫⎪⎬
⎪⎭

(11.32)

where the second inequality follows from the first one, since the resolvent operators
and their powers commute. Since we chose β = β(D)(> 1) in (11.29) and (11.30),
we obtain that for any µ > Dθ and D > 0

‖∂k
(
µ− D

2
/
)−α

Rm/2
µ f ‖0,p,Φ ≤ ck,Φ,α,m,p,D

×
∑

0≤2i≤k

γi‖
(
µ

β
− 1

2
/
)−(α+|i|−|k|/2)

Rm/2
µ | f |‖0,p,Φ

≤ c̃k,Φ,α,m,p,D
∑

0≤2i≤k

γi‖(µ
β
− 1

2
/)−(α+|i|−|k|/2)| f |‖0,p,Φ

(by (11.23))

≤ ck,Φ,α,m,p,D
∑

0≤2i≤k

γi‖(µ
β
− 1

2
/)−(α+|i|−|k|/2)‖L(W0,p,Φ )‖ f ‖0,p,Φ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.33)
For sufficiently smooth f (e.g., f ∈ S), (11.27) implies

‖(Rαµ,D − I )∂k
(
µ− D

2
/
)−α

f ‖p
n,p,Φ −→ 0, as µ −→ ∞ .

Hence, we may pass to the limit on the left-hand side for (11.33) (assuming f to be
smooth) and obtain
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∥∥∥∥∂k(µ− D

2
/)−αRm/2

µ f
∥∥∥∥

0,p,Φ

≤ ck,Φ,α,m,p,D
∑

0≤2i≤k

γi

∥∥∥∥∥
(
µ

β
− 1

2
/
)−(α+|i|−|k|/2)∥∥∥∥∥

L(W0,p,Φ )

‖ f ‖0,p,Φ .

(11.34)
Since S is dense in W0,p,Φ and α ≥ |k|

2 by our assumption, (11.34) extends to all
f ∈ W0,p,Φ , whence by (11.25) ∂k(µ− D

2 /)−α is a bounded operator on W0,p,Φ .
Next, we recall the abbreviation f = ∂ i g, with |i| ≤ n. Summing up over all |i| ≤ n
in (11.34) implies the extendibility of α ≥ |k|

2 as a bounded operator on Wn,p,Φ .
The inequality (11.28) follows from (11.34), choosing

β = β(D) > 1 such that (β − 1)Dθ ≤ ε
2 .


�
Corollary 11.8. Let D > 0 and k be a multi-index. Then, for any α > |k|/2

lim
µ→∞

∥∥∥∥∥∂
k
(
µ− D

2
/
)−α∥∥∥∥∥

L(Wn,p,Φ )

= 0. (11.35)

Proof. Expression (11.28). 
�
Corollary 11.9. Let D > 0, µ > Dθ and α ∈ N. Then (suitably indexed versions
of) (µ− D

2 /)−α/2 are bounded linear operator from Wn,p,Φ into Wn+α,p,Φ for all
n ∈ N ∪ {0} and (suitably indexed versions of) (µ − D

2 /)α/2 are bounded linear
operator from Wn,p,Φ into Wn−α,p,Φ for all n ≥ α. 
�

We develop the corresponding Hilbert scales which are better known and, for
negative powers, somewhat easier to work with. Abbreviate

R := R1.

Note that for the case ofΦ ≡ 1 and p = 2, the definition of the fractional powers
for resolvents of analytic semigroups coincide with those defined by the method of
spectral resolution.7 In this Hilbert space setup, both positive and negative powers
of R are well defined,8 and the fractional powers Rα are positive and self-adjoint
operators on H0. We now consider α ≥ 0 and define the norms

| f |α := ‖R
α
2 f ‖0, (11.36)

where f ∈ S. The first observation is that for m ∈ N the norms | f |m and
‖ f ‖m := ‖ f ‖m,2,1 are equivalent. A proof of this equivalence can be constructed

7 Cf. Tanabe (1979) Sect. 2.3.3.
8 Cf., e.g., Pazy (loc. cit) or Tanabe (loc. cit.), Chap. 2.3.
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using interpolation inequalities.9 We denote this equivalence by | f |m ∼ ‖ f ‖m . The
second observation is that | · |α defines Hilbert norms on S for all α ∈ R. Further,
let S ′ be the strong dual of S, i.e., the Schwarz space of tempered distributions.10

We define
Hα := {F ∈ S ′ : |F |α <∞}.

Hα is the completion of S with respect to | · |α in S ′. Identifying H0 with its
strong dual, we now obtain for α ≥ β ≥ 0 the chain of spaces

Hα ⊂ Hβ ⊂ H0 = H′
0 ⊂ H−β ⊂ H−α (11.37)

with dense continuous imbeddings.11 As the operators Rαµ commute with Rβ we can
extend (resp. restrict) the operators Rαµ in an obvious way to Hβ for all α, β ∈ R. In

particular, for α/2 the extension (or restriction) of Rα/2µ to Hβ is a bounded linear
operator from Hβ into Hα+β ,12 i.e.,

Rα/2µ ∈ L(Hβ,Hα+β), α, β ∈ R. (11.38)

Thus, for µ > Dθ and α, α̃, β ∈ R

Rα/2µ (θ − D
2 /)α̃ ∈ L(Hβ,Hα−α̃+β). (11.39)

Further, by the Sobolev imbedding theorem13 we obtain that for any α > d/2

Hα ⊂ Cb(Rd ;R). (11.40)

Therefore, by the (square) integrability of the elements of Hα

Hα ⊂ C0(Rd;R).

Recall from (15.48) the definition of distance in the total variation, ‖µ− ν‖ f for
µ, ν ∈ M f . By the Riesz representation theorem14

‖µ− ν‖ f = sup
{|‖ϕ|‖≤1,ϕ∈C0(Rd ;R)}

| < µ− ν, ϕ > |,

whence
(M f , ‖ · ‖ f ) ⊂ (H−α, | · |−α) for any α > d

2 ,

9 Cf., e.g., Adams (1975), Chap. IV, Theorems 4.13 and 4.14.
10 Cf. Sect. 15.1.3 (15.32).
11 Cf. Kotelenez (1985). Observe that the main difference to (15.32) is that in (15.32) we have

Hilbert–Schmidt imbeddings if the indices are sufficiently far apart. Cf. also (13.10) and
(13.13).

12 Cf. Kotelenez (1985).
13 Cf. Triebel (1978), Sect. 2.8.1, (16).
14 Cf. Sect. 15.1.4, (15.49).
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Further, it follows that the imbedding from Proposition 15.13 that

(M f , γ f (·)) ⊂ (M f , ‖ · ‖ f )

is continuous.15

Altogether, we obtain the following continuous imbeddings:

(M f , γ f (·)) ⊂ (M f , ‖ · ‖ f ) ⊂ (H−α, | · |−α) for any α > d
2 . (11.41)

Let f ∈ S. The definition of ‖ · ‖i,p,Φ , the Sobolev imbedding theorem16 and an
elementary calculation imply for i ∈ N ∪ {0}, p ≥ 2 and α > d

2

‖ f ‖p
i,p,Φ ≤ ‖ f ‖p

i,p ≤ |‖ f |‖p−2
i · ‖ f ‖2

i

≤ cp−2
2 ‖ f ‖p−2

α+i · ‖ f ‖2
i

≤ cp−2
2 ‖ f ‖p

α+i ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11.42)

where c2 is a finite positive constant. Let m ∈ N ∪ {0} and abbreviate

m := m(m) := min{n ∈ N : n even and n > m + 2 + d}. (11.43)

By (11.42) for i ∈ N ∪ {0}, p ≥ 2 and sufficiently small ε > 0

Hm−m−d/2−ε ⊂ Hm−m−d/2−2+i−ε ⊂ H d
2 +ε+i ⊂ Wi,p,Φ (11.44)

with continuous (and dense) imbeddings.

Lemma 11.10. Let n̄ be some multi-index and assume for some other multi-index ¯̄n

| ¯̄n| ≥ |n̄|. (11.45)

Further, let m ≥ m(0), where the latter is given by (11.43). Suppose f ∈ S,
D > 0, and µ > Dθ , and consider the integral operator

(K̄µ f )(r) := (K̄µ,m,n̄, ¯̄n,D f )(r)

:= µm/2

(m
2 − 1)!

∫ ∞
0

duum/2−1e−µu
∫ [

∂ n̄
r G(Du, r − q)

]
π ¯̄n(r − q) f (q)dq.

⎫⎪⎪⎬
⎪⎪⎭

(11.46)

15 For probability measures the statement also follows from Theorem 15.24 of Chap. 15.2.1. Cf.
also Bauer (1968), Chap. VII, Satz 45.7.

16 Cf. Triebel, loc. cit, Sect. 2.8.1, (16), or Adams (1975), Sect. 5.4.
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Then, for sufficiently small ε > 0 and p ≥ 1, K̄µ,m,n̄, ¯̄n has an extension to all
f ∈ H−d/2−ε to a bounded linear operator from H−d/2−ε into Wi,p,Φ , i = 0, 1, 2,
such that for µ > Dθ
∥∥∥(K̄µ,m,n̄, ¯̄n,D f )

∥∥∥
i,p,Φ

≤ cΦ,m,n̄, ¯̄n,D(µ− Dθ)−| ¯̄n|−|n̄|/2 ∥∥∥Rm/2
µ f

∥∥∥
i,p,Φ

(i = 0, 1, 2)

≤ µm
2 c̄Φ,m,n̄, ¯̄n,D(µ− Dθ)−| ¯̄n|−|n̄|/2‖ f ‖−d/2−ε .

⎫⎪⎪⎬
⎪⎪⎭

(11.47)

Proof. By (11.5)

(∂ n̄G(Du, r))π ¯̄n(r) =
∑

0≤2ñ≤¯̄n+n̄

(Du)| ¯̄n|−|ñ|γñ∂
n̄+¯̄n−2ñG(Du, r), (11.48)

we have

µm/2

(m
2 − 1)!

∫ ∞

0
du u| ¯̄n|−|ñ|+m/2−1e−µu

∫
∂
¯̄n+n̄−2ñ
r G(Du, r − q) f (q)dq

=
((
µ− D

2
/
)−(| ¯̄n|−|ñ|)

∂ n̄+¯̄n−2ñ Rm/2
µ,D f

)
(r),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11.49)
and | ¯̄n| ≥ |ñ|, since | ¯̄n| ≥ |n̄|. By Lemma 11.7, the operator

(
µ− D

2
/
)−1/2(|n̄+¯̄n|−2|ñ|)

∂ n̄+¯̄n−2ñ

has a bounded extension on Wm,p,Φ for all m ≥ 0. Therefore, summing up, we
obtain the first inequality in (11.47) from (11.28). Moreover, for sufficiently small
ε > 0, Rm/2

µ is a bounded operator from H−d/2−ε into Hd/2+2ε+2 by (11.38). By
(11.42) this implies that Rm/2

µ also bounded operator from H−d/2−ε into W2,p,Φ .
Hence, we obtain the second inequality in (11.47). 
�

Lemma 11.11 was proved in Kotelenez (1995b, Lemma 4.12) for the caseΦ ≡ 1.
Its proof can be generalized to the caseΦ ∈ {1,� }. However, we provide a different
proof, based on the preceding calculations.

Lemma 11.11. Suppose f, g ∈ H0,Φ . Set for m ≥ m(0) and D > 0

gµ := |(Rm/2
µ,D − I )g| + |g|.

Then,

lim
µ→∞

µm/2
(

m
2 − 1

)
!

∫ ∞

0
du e−µuum/2−1

∫
dr Φ(r)

×
∫

dq G(u, r − q)| f (q)− f (r)|gµ(r) = 0. (11.50)
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Proof.∫ ∫
dr Φ(r)dq G(u, r − q)| f (q)− f (r)|gµ(r)

≤
√∫

dr Φ(r)
[∫

dq G(u, r − q)| f (q)− f (r)|
]2

×
√∫

dr Φ(r)
[∫

dq G(u, r − q)gµ(r)
]2

(by the Cauchy–Schwarz inequality, employing G(u, q) = √
G(u, q)

√
G(u, q))

≤ cΦ

√∫
dr Φ(r)

[∫
dq G(u, r − q)| f (q)− f (r)|

]2

‖g‖0,Φ

(since
∫

dq G(u, r − q) = 1 and Rm/2
µ,D is a bounded operator on H0,Φ )

−→ 0, as u −→ ∞ by (11.15).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.51)
We next change variables v := µu, whence

µm/2
(

m
2 − 1

)
!

∫ ∞

0
du e−µuum/2−1

∫
dr Φ(r)

∫
dq G(u, r − q)| f (q)− f (r)|gµ(r)

=
∫ ∞

0
dv e−vvm/2−1

∫
dr Φ(r)

∫
dq G

(
v

µ
, r − q

)
| f (q)− f (r)|gµ(r).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11.52)

By (11.51) for any v > 0 and r, q ∈ Rd the integrand on the right-hand side of
(11.52) tends to 0, as µ→ ∞. It remains to find an upper bound which is integrable
with respect to dv e−vvm/2−1 and independent of µ.

∫
dr Φ(r)

[∫
dq G(u, r − q)| f (q)− f (r)|

]2

≤ 2‖ f ‖2
0,Φ + 2

∫
dr Φ(r)

[∫
dq G(u, r − q)| f (q)|

]2

.

As, before, by the Cauchy–Schwarz inequality and the fact that
∫

dq G(u, r −
q) = 1
∫

dr Φ(r)
[∫

dq G(u, r − q)| f (q)|
]2

≤
∫

dr Φ(r)
∫

dq G(u, r − q)| f (q)|2.
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If Φ ≡ 1 we are done. If Φ = � we employ (15.47) and obtain

∫
dr

∫
dq�(r)�−1(q)�(q)G(u, r − q)| f (q)|2

≤ 2γ
∫

dq
(∫

dr �(q)G(u, r − q)(1 + |r − q|2)γ
)
| f (q)|2

≤ cγ
(
1 + uγ

) ‖ f ‖2
0,�

by the integrability of the moments of the normal distribution. Thus,
∫

dr �(r)
∫

dq G(
v

µ
, r − q)| f (q)− f (r)|gµ(r)

≤ cγ,Φ

√(
1 +

(
v

µ

)γ)
‖ f ‖0,� ‖g‖0,�

≤ cγ,� (1 + vγ )‖ f ‖0,� ‖g‖0,� for µ ≥ 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(11.53)

The right-hand side in the last inequality of (11.53) is integrable with respect to
dv e−vvm/2−1. 
�
Lemma 11.12. Let g ∈ Cm

b (R
d ;R),m ∈ N. For f ∈ H0 let f g define point-wise

multiplication. Then the multiplication operator on H0, defined by

f %−→ f g

can be extended to a bounded operator on H−m.

Proof. If ‖ϕ‖m ≤ 1, then ‖gϕ‖m ≤ c, where c is the norm of g in Cm
b (R

d;R). Let
f ∈ H0.

‖ f g‖−m = sup
{‖ϕ‖m≤1}

|〈 f g, ϕ〉|

= sup
{‖ϕ‖m≤1}

|〈 f, gϕ〉| ≤ sup
{‖ψ‖m≤c}

|〈 f, ψ〉| ≤ c‖ f ‖−m .

Since H0 is densely and continuously imbedded in H−m, the preceding estimates
imply the extendibility of the multiplication operator g onto H−m. 
�

11.2 Proof of Smoothness of (8.25) and (8.73)

(i) Assume for notational simplicity s = 0. Further, it follows from the estimates of
the martingale part driven by space–time white noise that we may, without loss of
generality, assume σ⊥(r, µ, t) ≡ 0. Let m ≥ 0 such that |m| = m. For 0 ≤ n ≤ m
we set
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Qn
µ := ∂n Rm/2

µ , Yµ,n(t) := Qn
µY (t), (11.54)

where Y (t) is the solution of (8.25) and m has been defined in (11.43). Since Y (·) ∈
C([0,∞);M f ) a.s. we also have by (11.41) for any ε > 0

Y (·) ∈ C([0,∞);H−d/2−ε).

Therefore, for any β ∈ R,

Rβ/2µ Y (·) ∈ C([0,∞);H−d/2−ε+β).

Further, let n be a multi-index. By (11.21), (11.24), and the equivalence of the
norms | f |m and ‖ f ‖m for m ∈ N, we easily see that

∂n Rm/2
µ H−α ⊂ H−α+m−|n|. (11.55)

Set
η := m − m − 2 − d ∈ (0, 2],

and choose δ > 0 small enough so that

ε := η − δ
2

> 0.

Further, assume, in what follows,

|n| ≤ m.

Then, with α = d/2 + δ we obtain from (11.41), (11.44), and (11.55) that with
probability 1 for p ≥ 2

Yµ,n(·) ∈ C([0,∞);H2+d/2+ε) ⊂ C([0,∞);W2,p,Φ). (11.56)

As a result, the following equation holds in Hd/2+ε ⊂ H0 ∩ W0,p,Φ ⊂ H0:

Yµ,n(t) = Yµ,n(0)+
∫ t

0

1
2

d∑
k,�=1

Dk�(s)∂2
k�Yµ,n(s)ds

−
∫ t

0
0 · Qn

µ(Y (s)F(s))ds −
∫ t

0
0 · Qn

µ(Y (s)dm(s)). (11.57)

Recall that Y (t, ω) ∈ M f for all ω. Expression (11.41), in addition to mass
conservation, implies for ε > 0

‖Y (t, ω)‖−d/2−ε ≤ cγ f (Y )(t, ω)) = cγ f (Y (0, ω)), (11.58)
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where we may choose ε > 0 small. By (11.55)

∂n Rm/2
µ ∈ L(H−α,H−α+m−|n|),

whence for small ε > 0

∂n Rm/2
µ ∈ L(H−α,H−α+d+2+2ε).

Choosing α = d/2 + ε, this imlies

∂n Rm/2
µ ∈ L(H−d/2−ε,Hd/2+2+ε).

Hence, by (11.41) and (11.42), there is a cµ < ∞ such that uniformly in (t, ω),
0 ≤ n ≤ m, p ≥ 2, i ≤ 2, and any n̄ ∈ N

‖Yµ,n(t, ω)‖n̄ p
i,p,Φ≤ cn̄(p−2)

2 ‖Yµ,n(t, ω)‖n̄ p
2+d/2+ε

≤ cn̄ p
µ cn̄(p−2)

2 ‖Y (t, ω)‖n̄ p
−d/2−ε ≤ cn̄ p

µ ccn̄(p−2)
2 γ

n̄ p
f (Y (0, ω)) =: cn̄ p

µ cn̄ p
ω <∞,

⎫⎪⎬
⎪⎭

(11.59)
where we used (11.58) in the last inequality. Thus,

max
0≤n≤m

sup
t≥s

‖Yµ,n(t, ω)‖n̄ p
i,p,Φ ≤ c(p−2)n̄

2 max
0≤n≤m

sup
t≥s

‖Yµ,n(t, ω)‖n̄ p
2+d/2+ε

≤ (cµcω)n̄ p <∞. (11.60)

We conclude that, with arbitrarily large probability, ‖Yµ,n(t, ω)‖n̄ p
i,p,Φ is inte-

grable with respect to dt ⊗ dP , i = 0, 1, 2. By mass conservation, this probability
depends only on the initial mass distribution.

We will initially analyze the case n̄ = 1. The preceding considerations allow us
to apply Itô’s formula for p ≥ 2 and n ≤ m:

‖Yµ,n(t)‖p
0,p,Φ = ‖Yµ,n(0)‖p

0,p,Φ

+ p
2

d∑
k,�=1

∫ t

0
〈Y p−1
µ,n (s), ∂2

k�Yµ,n(s)〉0,ΦDk�(s)ds

−p
∫ t

0
〈Y p−1
µ,n (s),0 · Qn

µ(Y (s)F(s))〉0,Φ ds

−p
∫ t

0
〈Y p−1
µ,n (s),0 · Qn

µ(Y (s)dm(s))〉0,Φ

+ p(p − 1)
2

∫ t

0
〈Y p−2
µ,n (s), [0 · Qn

µ(Y (s)dm(s))]〉0,Φ

=: ‖Yµ,n(0)‖p
0,p,Φ +

5∑
i=2

Ai,n,Y (t)

= ‖Yµ,n(0)‖p
0,p,Φ +

∑
i∈{2,3,5}

∫ t

0
ai,n,Y (s)ds + A4,n,Y (t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.61)
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where the ai,n,Y (s) denote the integrands in the deterministic integrals of (11.61).
(ii) We first decompose a2,n,Y (t). Integrating by parts, we obtain

p
∫

Y p−1
µ,n (s, r)(∂�Yµ,n(s, r))∂kΦ(r)dr =

∫
∂�(Y

p
µ,n(s, r))∂kΦ(r)dr

= −
∫

Y p
µ,n(s, r)∂2

k�Φ(r)dr.
(11.62)

Therefore,

a2,n,Y (s)

= − p(p − 1)
2

d∑
k,�=1

∫
(Yµ,n(s, r))p−2(∂kYµ,n(s, r))(∂�Yµ,n(s, r))Φ(r)dr Dk�(s)

+1
2

d∑
k,�=1

∫
(Yµ,n(s, r))p∂2

k�Φ(r)dr Dk�(s)

=: a2,n,1,Y (s)+ a2,n,2,Y (s).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.63)
Next, recalling the homogeneity assumption (8.33),

a5,n,Y (s)

= p(p − 1)
2

d∑
k,�=1

∫
(Yµ,n(s, r))p−2 µm

[(m
2 − 1)!]2

∫ ∞
0

∫ ∞
0

du dv e−µ(u+v)um/2−1vm/2−1

×
∫ ∫

∂k,r ∂
n
r G(u, r − q)∂�,r ∂

n
r G(v, r − q̃)Y (s, q)Y (s, q̃)D̃k,�(s, q − q̃)Φ(r)dq dq̃ dr

By Chap. 8, ((8.33) and (8.34)), Dk�(s) := D̃k�(0, s). Set

D̂k�(s, r − q̃) := −D̃k�(s, r − q̃)+ Dk�(s), (11.64)

where, by the symmetry assumption on D̃k�(s, q̃ − r) we have

D̂k�(s, r − q̃) = D̂k�(s, q̃ − r).

Altogether, we obtain

a5,n,Y (s)

= p(p − 1)
2

d∑
k,�=1

∫
(Yµ,n(s, r))p−2 µm

[(m
2 − 1)!]2

∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)um/2−1vm/2−1

×
∫ ∫

∂k,r∂
n
r G(u, r − q)∂�,r∂n

r G(v, r − q̃)Y (s, dq)Y (s, dq̃)Dk�(s)Φ(r)dr

− p(p − 1)
2

d∑
k,�=1

∫
(Yµ,n(s, r))p−2 µm

[(m
2 − 1)!]2

∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)um/2−1vm/2−1

×
∫ ∫

∂k,r∂
n
r G(u, r − q)∂�,r∂n

r G(v, r − q̃)Y (s, dq)Y (s, dq̃)D̂k,�(s, q − q̃)Φ(r)dr

=: a5,n,1,Y (s)+ a5,n,2,Y (s).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.65)
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Apparently,
a2,n,1,Y (s)+ a5,n,1,Y (s) ≡ 0. (11.66)

(iii) Y (s) ∈ H−d/2−ε ∀ε > 0. The highest derivative involved in a5,n,2,Y (s)
is of the order of n + 1, and after one integration by parts with respect to a scalar
coordinate the order can increase to n+2. Applied to Y (s) (in the generalized sense)
this would map Y (s) into H−d/2−ε−n−2 ⊂ H−m+d/2+ε for all small ε > 0, since
m > d + m + 2 ≥ d + n + 2.

Recall from (8.40) the abbreviation for Lk�,n(s), where n ≥ 0 with |n| ≤ m + 1.
We have

Lk�,n(s) := ∂n D̃k�(s, r)|r=0 = −∂n D̂k�(s, r)|r=0. (11.67)

We expand D̂k�(s, q − q̃) = D̂k�(s, q − r + r − q̃) in the variable r − q̃ , using
Taylor’s formula. Observe that, by symmetry assumption,

Lk�,n(s) = (−1)|n|Lk�,n(s),

whence Lk�,n(s) ≡ 0, if |n| is odd. Further, we recall that D̂k�(s, 0) = 0. Therefore,
the degree of the polynomials πñ j (q − r)πni (r − q̃), |ñ j + ni |, in the following
expansion (11.68) is an even number ≥ 2.

D̂k� (s, q − r + r − q̃)

=
m+1∑
i=0

∑
|ni |=i

(
∂

ni
q−r

D̂k� (s, q − r)
i !

)
πni (r − q̃)

+
∑

|nm+2|=m+2

θ̂k�,nm+2
(s, q, r, q̃)πnm+2 (r − q̃)

= −
m+1∑
i=0

∑
|ni |=i

m+1−i∑
j=0

∑
|ñ j |= j

1{|ñ j |+|ni|≥2}
1

i ! j !Lk�,ni+ñ j (s)πñ j (q − r)πni (r − q̃)

+
∑

|nm+2|=m+2

θ̂k�,nm+2
(s, q, r, q̃)πnm+2(r − q̃)

+
m+1∑
i=0

∑
|ni |=i

∑
|nm+2−ni |=m+2−i

θ̃k�,nm+2−ni
(s, q, r)πnm+2−ni (q − r)πni (r − q̃) .

=: Ik�(s, q, q̃, r)+ I Is,k�(q, q̃, r)+ I I Is,k�(q, q̃, r),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.68)
where by (8.35) the remainder terms θ̂ and θ̃ have derivatives which are bounded
uniformly in all parameters. By assumption (8.35), for any T > 0

∑
0≤|n|≤(m+1)

ess sup
ω

sup
0≤s≤T,q,r,q̃

[|Lk�,n(s, ω)| + |‖θ̂k�,n(s, ·, r, q̃, ω)|‖1

+|‖θ̃k�,n(s, q, ·, ω)|‖1] <∞.
(11.69)
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We replace D̂k,�(s, q− p) in a5,n,2,Y (s)with terms from the expansion (11.68). If
a term from that expansion does not depend on q̃ (or on q), we can integrate by parts
to simplify the resulting expression. Let us assume that, without loss of generality,
the term does not depend on q̃ . Note that for any Z ∈ M f

µ
m
2[

(m
2 − 1)!

]
∫ ∞

0
dv e−µvvm/2−1

∫
∂�,r∂

n
r G(v, r−q̃)Z(dq̃) =

(
∂�,r∂

n Rm/2
µ Z

)
(r).

Thus,17

((
∂n Rm/2

µ Z
)
(r)

)p−2 µm/2
[(

m
2 − 1

)
!
]
∫ ∞

0
dv e−µvvm/2−1

∫
∂�,r∂

n
r G(v, r − q̃)Z(dq̃)

= 1
p − 1

∂�,r ((∂
n Rm/2
µ Z)(r))p−1. (11.70)

Step 1: |n| = 0. Let us first analyze Ik�(s, q, q̃, r). Replacing D̂k,�(s, q − p)
with a term from Ik�(q, q̃, r) in a5,0,2,Y (s) yields

− p(p − 1)
2

d∑
k,�=1

∫
(Yµ,n(s, r))p−2 µm

[(m
2 − 1)!]2

×
∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)u(m/2)−1v(m/2)−1

×
∫ ∫

(∂k,r G(u, r − q))(∂�,r G(v, r − q̃))

×Y (s, dq)Y (s, dq̃)πñ j (q − r)πni (r − q̃)Φ(r)dr

×1{|ñ j |+|ni|≥2}
1

i ! j !Lk�,ni+ñ j (s),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.71)

where
ñ j := nm+2 − ni .

Let us first consider the case |ni | = 0 and employ (11.70) with Z := Y (s).
Integrating by parts in a5,0,2,Y (s) with πñ j (q − r) 1

j !Lk�,ñ j (s) replacing D̂k,�(s, q −
p), we obtain

17 We provide the simple formula (11.70) in a more abstract formulation which allows us to em-
ploy it later to smoothed versions of Y (s) (cf. (11.92)).
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− p(p − 1)
2

d∑
k,�=1

∫
(Yµ,0(s, r))p−2 µm

[(m
2 − 1)!]2

×
∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)u(m/2)−1v(m/2)−1

×
∫ ∫

(∂k,r G(u, r − q))(∂�,r G(v, r − q̃))Y (s, dq)Y (s, dq̃)πñ j (q − r)Φ(r)dr

= − p(p − 1)
2

d∑
k,�=1

∫
(Yµ,0(s, r))p−2 µm/2

(m
2 − 1)!

∫ ∞

0
du e−µuu(m/2)−1

×
∫
(∂k,r G(u, r − q))Y (s, dq)πñ j (q − r)(∂�,r Yµ,0)(s, r)Φ(r)dr

= p
2

d∑
k,�=1

∫
(Yµ,0(s, r))p−1 µm/2

(m
2 − 1)!

∫ ∞

0
du e−µuu(m/2)−1

∫
(∂2

k�,r G(u, r − q))

×Y (s, dq)πñ j (q − r)Φ(r)dr

+ p
2

d∑
k,�=1

∫
(Yµ,0(s, r))p−1 µm/2

(m
2 − 1)!

∫ ∞

0
du e−µuu(m/2)−1

∫
(∂k,r G(u, r − q))

×Y (s, dq)(∂�,rπñ j (q − r))Φ(r)dr

+ p
2

d∑
k,�=1

∫
(Yµ,0(s, r))p−1 µm/2

(m
2 − 1)!

∫ ∞

0
d ue−µuum/2−1

∫
(∂k,r G(u, r−q))

×Y (s, dq)πñ j (q−r)∂�,rΦ(r)dr.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.72)

The first term on the right-hand side of (11.72) can be estimated, employing
Lemma 11.10. We set

n̄ := 1k + 1�, ¯̄n := ñ j .

We note that | ¯̄n| = |ñ j | ≥ |n̄|, since |ni | = 0 and |ni | + |ñ j | ≥ 2 (recalling
that the sum has to be even and ≥2). Employing Hölder’s inequality to separate
(Yµ,0(s, r))p−1 from the integral operator in addition to (11.47), we obtain that the
first term is estimated above by
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p
2

d∑
k,�=1

∣∣∣∣∣
∫
(Yµ,0(s, r))p−1 µm/2

(m
2 − 1)!

∫ ∞

0
du e−µuu(m/2)−1

∫
(∂2

k�,r G(u, r − q))

×Y (s, dq)πñ j (q − r)Φ(r)dr
∣∣∣

≤ ‖Y p
µ,0(s)‖(p−1)/p

0,p,Φ cΦ,m,k,�,ñ j ,D‖Yµ,0(s)‖0,p,Φ

(assuming µ ≥ Dθ + 1)

= cΦ,m,k,�,ñ j ,D‖Yµ,0(s)‖p
0,p,Φ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.73)

The second and third terms are estimated in the same way, where for the third
term we also use (15.46).

Consider the case when |ni | ≥ 1 and |ñ j | ≥ 1 in Ik�(s, q, q̃, r). (The case |ñ j | =
0 obviously leads to the same estimate as the previous case.) We now do not integrate
by parts, but otherwise we argue as in the previous step, applying Lemma 11.10 to
both factors containing Y (s, dq) and Y (s, dq̃) in addition to Hölder’s inequality.
Thus, we obtain a similar bound as in (11.73):

p(p − 1)
2

d∑
k,�=1

∣∣∣∣∣
∫
(Yµ,0(s, r))p−2 µm

[(m
2 − 1)!]2

×
∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)u(m/2)−1v(m/2)−1

×
∫ ∫

(∂k,r G(u, r − q))(∂�,r G(v, r − q̃))Y (s, dq)

×Y (s, dq̃)πñ j (q − r)πni (r − q̃)Φ(r)dr

∣∣∣∣∣≤cΦ,m,k,�,ñ j ,D‖Yµ,0(s)‖p
0,p,Φ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.74)

We now estimate I I Is,k�(q, q̃, r). The estimate of I Ik�(s, q, q̃, r) is easier. It suf-
fices to restrict ourselves to the case |ni | = 0 and follow the pattern in the estimate
of Ik�(q, q̃, r). The other cases can be handled similarly. We obtain
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∣∣∣∣
p(p − 1)

2

d∑
k,�=1

∫
(Yµ,0(s, r))p−2 µm

[(m
2 − 1)!]2

∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)u(m/2)−1v(m/2)−1

×
∫ ∫

(∂k,r G(u, r − q))(∂�,r G(v, r − q̃))Y (s, dq)

×Y (s, dq̃)θ̃k�,nm+2
(s, q, r)πnm+2(q−r)Φ(r)dr

∣∣∣∣

≤
∣∣∣∣

p
2

d∑
k,�=1

∫
(Yµ,0(s, r))p−1 µm/2

[(m
2 − 1)!]

∫ ∞

0
du e−µuu(m/2)−1

×
∫
(∂2

k�,r G(u, r − q))Y (s, dq)θ̃k�,nm+2
(s, q, r)πnm+2(q − r)Φ(r)dr

∣∣∣∣

+
∣∣∣∣

p
2

d∑
k,�=1

∫
(Yµ,0(s, r))p−1 µm/2

[(m
2 − 1)!]

∫ ∞

0
du e−µuu(m/2)−1

×
∫
(∂k,r G(u, r − q))Y (s, dq)(∂�,r θ̃k�,nm+2

(s, q, r))πnm+2(q − r)Φ(r)dr
∣∣∣∣

+
∣∣∣∣

p
2

d∑
k,�=1

∫
(Yµ,0(s, r))p−1 µm/2

[(m
2 − 1)!]

∫ ∞

0
du e−µuu(m/2)−1

×
∫
(∂k,r G(u, r − q))Y (s, dq)θ̃k�,nm+2

(s, q, r)(∂�,rπnm+2(q − r))Φ(r)dr
∣∣∣∣

+
∣∣∣∣

p
2

d∑
k,�=1

∫
(Yµ,0(s, r))p−1 µm/2

[(m
2 − 1)!]

∫ ∞

0
du e−µuu(m/2)−1

×
∫
(∂k,r G(u, r − q))Y (s, dq)θ̃k�,nm+2

(s, q, r)πnm+2(q − r)∂�,rΦ(r)dr
∣∣∣∣.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.75)

By the boundedness of ∂�,r θ̃k�,nm+2
(s, q, r) and the fact that ∂�,rπnm+2(q −r) has

degree ≥ 1 in addition to (15.46), it is sufficient to estimate the first term on the
right-hand side of (11.75). By (11.8), we obtain
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∣∣∣∣∣
p
2

d∑
k,�=1

∫
(Yµ,0(s, r))

p−1 µm/2

[(m
2 − 1)!]

∫ ∞
0

du e−µuu(m/2)−1

×
∫
(∂2

k�,r G(u, r − q))Y (s, dq)θ̃k�,nm+2
(s, q, r)πnm+2(q − r)Φ(r)dr

∣∣∣∣∣

≤ cm,β

∣∣∣∣∣
p
2

d∑
k,�=1

×
∫

|Yµ,0(s, r)|p−1 µm/2

[(m
2 − 1)!]

∫ ∞
0

du e−µuu(m+m/2)−1
∫

G(βu, r − q))

×Y (s, dq)|θ̃k�,nm+2
(s, q, r)|Φ(r)dr

∣∣∣∣∣

≤ cm,β [ sup
q,r.s

|θ̃k�,n2m+2
(s, q, r)|]

∣∣∣∣∣
p
2

d∑
k,�=1

×
∫

|Yµ,0(s, r)|p−1 µm/2

[(m
2 − 1)!]

∫ ∞
0

du e−µuu(m+m/2)−1
∫

G(βu, r − q))

×Y (s, dq)Φ(r)dr

∣∣∣∣∣

= c̄m,β | p
2

d∑
k,�=1

∫
|Yµ,0(s, r)|p−1µm/2(µ− β

2
/)−(m/2)−(m−|n|/2)(Y (s))(r)Φ(r)dr |

(by (11.21) and (11.24))

≤ c̄m,β,Φ
p
2

d∑
k,�=1

‖Yµ,0(s)‖p−1
0,p,Φ‖µm/2(µ− β

2
/)−m/2Y (s))‖0,p,Φ

(by Hölder’s inequality and since m ≥ 0)

≤ c̃m,β,Φ
p
2

d∑
k,�=1

‖Yµ,0(s)‖p−1
0,p,Φ‖Rm/2

µ Y (s)‖0,p,Φ

(by (11.24), (11.25), and (11.32))

≤ c̃m,β,Φ
p
2

d∑
k,�=1

(‖Yµ,0(s)‖p
0,p,Φ + ‖Rm/2

µ Y (s)‖p
0,p,Φ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.76)
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where the last step follows from the definition of the norm ‖ · ‖m,p,Φ and the fol-
lowing simple inequality18

ab ≤ a p

p
+ b p̄

p̄
for nonnegative numbers a and b, and p > 1 and p̄ := p

p−1 .

Recalling that the functions 1
i ! j !Lk�,ni+ñ j (s) are uniformly bounded in s and ω,

we obtain

a5,0,2,Y (s) ≤ c̃m̄,Φ(‖Yµ,0(s)‖p
0,p,Φ + ‖Rm/2

µ Y (s)‖p
0,p,Φ). (11.77)

(iv) Now we estimate a3,0,Y (s). Taylor’s expansion yields

Fk(s, q)=Fk(s, r)+
|m|∑
|j|=1

1
|j|! (∂

j Fk(s, r))πj(q−r)+
∑

|m|=m

θ̄k,m+1(s, q, r)πm+1(q−r),

(11.78)
where by assumption (8.35), for any T > 0

ess sup
ω

sup
0≤s≤T,q,

|‖θ̂k�,m+1(s, q, ·, ω)|‖] <∞. (11.79)

Then,

−p
d∑

k=1

∫
(Yµ,0(s, r))

p−1 µm/2

(m
2 − 1)!

×
∫ ∞

0
du e−µuu(m/2)−1

∫
(∂k,r G(u, r − q))Fk(s, q)

×Y (s, dq)Φ(r)dr

= −p
d∑

k=1

∫
(Yµ,0(s, r))

p−1 µm/2

(m
2 − 1)!

∫ ∞
0

du e−µuu(m/2)−1
∫
(∂k,r G(u, r − q))

×Y (s, dq)Fk(s, r)Φ(r)dr

−p
d∑

k=1

∫
(Yµ,0(s, r))

p−1 µm/2

(m
2 − 1)!

∫ ∞
0

du e−µuu(m/2)
−1

×
∫
(∂k,r G(u, r − q))

⎡
⎣

|m|∑
|j|=1

1
|j|!πj(q − r)

⎤
⎦Y (s, dq)(∂j Fk(s, r))Φ(r)dr

−p
d∑

k=1

∫
(Yµ,0(s, r))

p−1 µm/2

(m
2 − 1)!

∫ ∞
0

du e−µuu(m/2)−1

×
∫
(∂k,r G(u, r − q))

∑
|m|=m

θ̄k,m+1(s, q, r)πm+1(q − r)Y (s, dq)Φ(r)dr

=:
d∑

k=1

[Ik(s)+ I Ik(s)+ I I Ik(s)].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.80)

18 Cf. (15.2) in Sect. 15.1.2 for a proof.
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We estimate Ik(s) for n ≤ m as in (11.72), integrating by parts

−p
d∑

k=1

∫
(Yµ,0(s, r))p−1 µm/2

(m
2 − 1)!

∫ ∞

0
du e−µuum−1

×
∫
(∂k,r G(u, r − q))Y (s, dq)Fk(s, r)Φ(r)dr

= −
d∑

k=1

∫
(∂k,r ((Yµ,0(s, r))p))Fk(s, r)Φ(r)dr

=
d∑

k=1

∫
(Yµ,0(s, r))p(∂k,r Fk(s, r))Φ(r)dr

+
d∑

k=1

∫
(Yµ,0(s, r))p Fk(s, r)∂k,rΦ(r)dr.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.81)

Applying the assumptions on F in addition to (15.46) yields

|p
d∑

k=1
|Ik(s)| ≤ cF,Φ‖Yµ,0(s)‖p

0,p,Φ . (11.82)

Repeating the arguments in the estimate of a5,0,2,Y (s) with respect to I Ik(t) and
I I Ik(t), we obtain altogether

|a3,0,Y (s)| ≤ cm,p,Φ(‖Yµ,0(s)‖p
0,p,Φ + ‖Rm/2

µ Y (s)‖p
0,p,Φ). (11.83)

(vi) The previous steps imply

|a2,0,Y (s)+ a5,0,Y (s)| + |a3,0,Y (s)|

≤ ĉp,Φ,m(‖Yµ,0(s)‖p
0,p,Φ + ‖Rm/2

µ |Y |(s)‖p
0,p,Φ)

= ĉp,Φ(‖Yµ,0(s)‖p
n,p,Φ + ‖Rm/2

µ Y (s)‖p
0,p,Φ).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(11.84)

Integrating both sides of (11.84) against ds from 0 to t we obtain from (11.61)

‖Yµ,0(t)‖p
0,p,Φ ≤ ‖Yµ,0(0)‖p

0,p,Φ + ĉp,Φ,m

∫ t

0
(‖Yµ,0(s)‖p

0,p,Φ

+‖Rm/2
µ Y (s)‖p

0,p,Φ)ds − p
∫ t

0
〈Y p−1
µ,0 (s),0 · Rm/2

µ (Y (s)dM(s))〉0,Φ.

⎫⎪⎪⎬
⎪⎪⎭

(11.85)

We take the mathematical expectation on both sides and may apply the Gronwall
lemma in addition to (11.25) (for the norms of the initial condition) and obtain
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sup
0≤t≤T

E‖Rm/2
µ Y (t)‖p

0,p,Φ ≤ ĉm,p,T,ΦE‖Y (0)‖p
0,p,Φ . (11.86)

As µ→ ∞, Fatou’s lemma implies the integrability part of (8.38) for |n| = 0.

Step 2: |n| > 0 – Estimates with Spatially Smooth Processes.
The problem for |n| > 0 is that a generalization of Lemma 11.10 to integral

operators from (11.46) to

(K̄µ f )(r) := (K̄µ,m,n̄, ¯̄n,D f )(r)

:= µm/2

(m
2 − 1)!

∫ ∞

0
du um/2−1e−µu

∫
[∂ n̄

r ∂
nG(Du, r − q)]π ¯̄n(r − q) f (q)dq

does not yield good upper bounds, which could be used in estimating a5,n,2,Y (s)
and a3,n,Y (s). On the other hand, if Y (·) were already smooth, we could proceed
differently. Let us, therefore, replace Y (·) in a5,n,2,Y (s) and a3,n,Y (s) by

Yλ(·) := Rm/2
λ Y (·) and Yµ,n,λ(s) := ∂n Rm/2

µ Rm/2
λ Y (s) = Qn

µYλ(s), (11.87)

where λ > Dθ + 1 (cf. 11.54). Then, from (11.65)

a5,n,2,Yλ(s)

= − p(p − 1)
2

d∑
k,�=1

∫
(Yµ,n,λ(s, r))p−2 µm

[(m
2 − 1)!]2

×
∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)um/2−1vm/2−1

×
∫ ∫

dq dq̃ ∂k,r∂
n
r G(u, r − q)∂�,r∂n

r G(v, r − q̃)Yλ(s, q)

×Yλ(s, q̃)D̂k,�(s, q − q̃)Φ(r)dr.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.88)

As in Step 1 we first replace D̂k,�(s, q − p) with a term from Ik�(q, q̃, r) in
a5,n,2,Yλ(s):

− p(p − 1)
2

d∑
k,�=1

∫
(Yµ,n,λ(s, r))p−2 µm

[(m
2 − 1)!]2

×
∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)um/2−1vm/2−1

×
∫ ∫

dq dq̃(∂k,r∂
n
r G(u, r − q))(∂�,r∂n

r G(v, r − q̃))Yλ(s, q)

×Yλ(s, q̃)πñ j (q − r)πni (r − q̃)Φ(r)dr

×1{|ñ j |+|ni|≥2}
1

i ! j !Lk�,ni+ñ j (s).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.89)
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Again, we consider first the case |ni | = 0 and employ (11.70) with
Z := Yλ(s). Integrating by parts in a5,n,2,Yλ(s) with πñ j (q − r) 1

j !Lk�,ñ j (s), re-

placing D̂k,�(s, q − p), we obtain in place of (11.72)

− p(p − 1)
2

d∑
k,�=1

∫
(Yµ,n,λ(s, r))p−2 µm

[(m
2 − 1)!]2

×
∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)um/2−1vm/2−1

×
∫ ∫

dq dq̃(∂k,r∂
n
r G(u, r − q))(∂�,r∂n

r G(v, r − q̃))Yλ(s, q)

×Yλ(s, q̃)πñ j (q − r)Φ(r)dr

= − p(p − 1)
2

d∑
k,�=1

∫
(Yµ,n,λ(s, r))p−2 µm/2

(m
2 − 1)!

∫ ∞

0
du e−µuum/2−1

×
∫
(∂k,r∂

n
r G(u, r − q))Yλ(s, q)πñ j (q − r)(∂�,r Yµ,n,λ)(s, r)Φ(r)dr

= p
2

d∑
k,�=1

∫
(Yµ,n,λ(s, r))p−1 µm/2

(m
2 − 1)!

∫ ∞

0
du e−µuum/2−1

×
∫

dq(∂2
k�,r∂

n
r G(u, r − q))Yλ(s, q)πñ j (q − r)Φ(r)dr

+ p
2

d∑
k,�=1

∫
(Yµ,n,λ(s, r))p−1 µm/2

(m
2 − 1)!

∫ ∞

0
du e−µuum/2−1

×
∫

dq(∂k,r∂
n
r G(u, r − q))Yλ(s, q)(∂�,rπñ j (q − r))Φ(r)dr

+ p
2

d∑
k,�=1

∫
(Yµ,n,λ(s, r))p−1 µm/2

(m
2 − 1)!

∫ ∞

0
du e−µuum/2−1

×
∫

dq(∂k,r∂
n
r G(u, r − q))Yλ(s, q)πñ j (q − r)∂�,rΦ(r)dr.
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(11.90)
Let us now estimate the first term on the right-hand side of (11.90). By the

homogeneity of G(u, r − q) we have

∂2
k�,r∂

n
r G(u, r − q) = (−1)2+|n|∂2

k�,q∂
n
q G(u, r − q),
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whence, integrating by parts
∫

dq(∂2
k�,r∂

n
r G(u, r − q))Yλ(s, q)πñ j (q − r)

=
∫

dq G(u, r − q)∂2
k�,q∂

n
q (Yλ(s, q)πñ j (q − r))

=
∫

dq G(u, r − q)
∑

{ñ≤n+1k+1�}
γñ(∂

ñ
q Yλ(s, q))(∂n+1k+1�−ñ

q πñ j (q − r))

=
∫

dq G(u, r − q)
∑

{ñ≤n+1k+1�,|ñ|≤|n|}
γñ(∂

ñ
q Yλ(s, q))(∂n+1k+1�−ñ

q πñ j (q − r))

+
∫

dq G(u, r − q)
∑

{ñ≤n+1k+1�,|ñ|>|n|}
γñ(∂

ñ
q Yλ(s, q))(∂n+1k+1�−ñ

q πñ j (q − r))

=: I + I I

In I the order of derivative at Yλ is ≤ |n| which need not be changed. In I I we
simplify the notation in the terms to

(∂ ñ
q Yλ(s, q))G(u, r − q)∂ i

qπñ j (q − r),

where i := n + 1k + 1� − ñ. In this case |ñ| equals either |n| + 1 or |n| + 2. In
the first case, |i | = 1, in the latter case |i | = 0. We again integrate by parts once or
twice against the product G(u, r − q)∂ i

qπñ j (q − r) to reduce the order to |n|. The
resulting expression in the product G(u, r −q)∂ i

qπñ j (q − r) is a linear combination
of terms of the following kind

(∂
j̃
q G(u, r − q))(∂ ĵ

q∂
i
qπñ j (q − r)), |j̃| = 2 − |i| − |ĵ|.

Hence, the order in the derivative at G(u, r − q) is the same as the degree of the

resulting polynomial (∂ ĵ
q∂

i
qπñ j (q − r)). Thus,

∫
dq(∂2

k�,r∂
n
r G(u, r − q))Yλ(s, q)πñ j (q − r)

=
∫

dq
∑

{|j̃|≤2−|i|−|ĵ|}

∑
{ñ+i=n+1k+1�,|ñ|≤|n|}

γñ,j̃,ĵ

×(∂ j̃
q G(u, r − q))(∂ ĵ

q∂
i
qπñ j (q − r))(∂ ñ

q Yλ(s, q)).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(11.91)

Employing Lemma 11.10,

{∣∣∣∣
∫ ∞

0
du e−µuum/2−1

∫
dq(∂2

k�,r∂
n
r G(u, r − q))Yλ(s, q)πñ j (q − r)

∣∣∣∣
p

Φ(r)dr
}1/2

≤ cβ,n,Φ,m
∑

{|ñ|≤|n|}

∥∥∥Rm/2
µ ∂ ñ

q Yλ(s)
∥∥∥

0,p,Φ
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(11.92)
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As a result of (11.91) and (11.92) we can estimate the first term on the right-hand
side of (11.90) by Hölder’s inequality and obtain

∣∣∣∣
p
2

d∑
k,�=1

∫
(Yµ,n,λ(s, r))p−1 µm/2

(m
2 − 1)!

∫ ∞

0
du e−µuum/2−1

×
∫

dq(∂2
k�,r∂

n
r G(u, r − q))Yλ(s, q)πñ j (q − r)Φ(r)dr

∣∣∣∣

≤ cβ,n,d
p
2

∥∥∥∥Yµ,n,λ(s)
∥∥∥∥

p−1/p

0,p,Φ

∑
{|ñ|≤|n|}

∥∥∥∥Rm/2
µ ∂ ñ

q Yλ(s)
∥∥∥∥

0,p,Φ
= cβ,n,d

p
2

×
∥∥∥∥Yµ,n,λ(s)

∥∥∥∥
p−1/p

0,p,Φ

∥∥∥∥Rm/2
µ Yλ(s)

∥∥∥∥
n,p,Φ

≤ cβ,n,d
p
2

∥∥∥∥Rm/2
µ Yλ(s)

∥∥∥∥
p

n,p,Φ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
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(11.93)

We obtain similar bounds by the same arguments (in addition to (15.46)) for
the second and third terms on the right-hand side of (11.90). For |ni | > 0 we do
not integrate by parts and proceed for the dq- and dq̃ integrals as in the arguments
leading to (11.91). A simple adjustment of the arguments leading from (11.91) to
(11.93) yields the same bounds as in (11.93).

The term I I Is,k�(q, q̃, r) can be directly estimated as in Step 1, since for those
estimates the derivatives at G(u, r−q) are compensated by the correspondingly high
order of the polynomials πnm+2(q − r). The bounds for a3,n,Y (s) can be obtained in
the same way. Finally, we obtain, as in (11.66)

a2,n,1,Yλ(s)+ a5,n,1,Y λ(s) ≡ 0. (11.94)

Employing (11.94), we obtain altogether the estimate, corresponding to (11.84),

(|a2,n,Yλ(s)+ a5,n,Yλ(s)| + |a3,n,Yλ(s)|)n̄ ≤ ĉp,Φ,m,n̄(‖Rm/2
µ Yλ(s)‖n̄ p

n,p,Φ

+‖Rm/2
µ Yλ(s)‖n̄ p

0,p,Φ) ∀n̄ ∈ N,
(11.95)

where the estimate for n̄ > 1 is obtained by taking the n̄th power on both sides of
the inequality for the case n̄ = 1. Note that, by (11.25),

‖Rm/2
µ Yλ(s)‖p

0,p,Φ = ‖R
m
2
µ Rm/2

λ Y (s)‖p
0,p,Φ ≤ cΦ‖Rm/2

µ Y (s)‖p
0,p,Φ .

Taking mathematical expectations, this last inequality in addition to (11.86) im-
plies ∀n̄ ∈ N:
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E[|a2,n,Yλ(s)+ a5,n,Yλ(s)| + |a3,n,Yλ(s)|]n̄ ≤ ĉp,Φ,m,n̄(E‖R
m
2
µ Yλ(s)‖n̄ p

n,p,Φ

+cT E‖Y (0)‖n̄ p
0,p,Φ)

≤ c̃p,Φ,m,n̄(E‖R
m
2
µ Y (s)‖n̄ p

n,p,Φ

+cT E‖Y (0)‖n̄ p
0,p,Φ)

(sinceR
m
2
µ Yλ(s) = R

m
2
λ R

m
2
µ Y (s).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.96)
Step 3: |n| ≥ 0 – Extension of the Estimates.

We need to show that E
∑

i∈{2,3,5}
∫ t

0 (ai,n,Y (s)− ai,n,Yλ(s))ds −→ 0, as λ −→ ∞
and apply the Gronwall Lemma. The first observation is that, by (11.66) and (11.94),

∑
i∈{2,5}

(ai,n,Y (s)− ai,n,Yλ(s)) = a5,n,2,Y (s)− a5,n,2,Yλ(s). (11.97)

Recalling (11.65), we set

Ψ2(g, f, f, s, k, �)

:=
∫

g(s, r)
µm

[(m
2 − 1)!]2

∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)um/2−1vm/2−1

×
∫ ∫

dqdq̃∂k,r∂
n
r G(u, r − q)∂�,r∂n

r G(v, r − q̃)

× f (s, q) f (s, q̃)D̂k,�(s, q − q̃)Φ(r)dr,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.98)

where g and f are suitably chosen integrable functions. Observe in what follows
that, based on Step 1, we may assume that Y (s) ∈ W0,p,Φ . Then,

Ψ2(Y
p−2
µ,n , Y, Y, s, k, �)− Ψ2(Y

p−2
µ,n,λ, Yλ, Yλ, s, k, �)

= Ψ2(Y
p−2
µ,n − Y p−2

µ,n,λ, Y, Y, s, k, �)+ Ψ2(Y
p−2
µ,n,λ,

×Y − Yλ, Y, s, k, �)| + Ψ2(Y
p−2
µ,n,λ, Yλ, Y − Yλ, s, k, �).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11.99)
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We first estimate Ψ2(Y
p−2
µ,n − Y p−2

µ,n,λ, Y, Y, s, k, �), assuming p ≥ 4, as for p = 2
the term equals 0 and for p = 3 the term can be estimated as in the case p ≥ 4 in
what follows

sup
0≤s≤T

‖Y p−2
µ,n − Y p−2

µ,n,λ‖0, p
p−2 ,Φ

≤ ‖(Rm/2
λ − I )Yµ,n|0, p

(p−2) ,Φ

×∣∣
p−3∑
i=0

(Y i
µ,n + Y p−3−i

µ,n,λ )‖0,(p/p−2),Φ

≤ c(ω,Φ, p)‖(Rm/2
λ − I )Yµ,n

∣∣
0,(p/p−2),Φ (by (11.60))

−→ 0, as λ −→ ∞ by (11.26) for any T > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.100)

Similarly for Ψ2(Y
p−2
µ,n,λ, Y − Yλ, Y, s, k, �) = Ψ2(Y

p−2
µ,n,λ, Yλ, Y − Yλ, s, k, �).

Applying Hölder’s inequality (cf. (11.60) for the integrability condition), it follows
that for any T > 0

sup
0≤s≤T

E |a5,n,2,Y (s)− a5,n,2,Yλ(s)|n̄ −→ 0, as λ −→ ∞ ∀n̄ ∈ N . (11.101)

By similar arguments we can show that

sup
0≤s≤T

E |a3n,Y (s)− a3,n,Yλ(s)|n̄−→ 0, as λ −→ ∞ ∀n̄ ∈ N . (11.102)

Altogether, for any T > 0

Ψ n̄
λ (T ) := sup

0≤s≤T
E |

∑
i∈{2,5}

(ai,n,Y (s)− ai,n,Yλ(s))|n̄−→ 0, as λ −→ ∞ ∀n̄ ∈ N .

(11.103)
(11.103) in addition to (11.95) implies

E[|a2,n,Y (s)+ a5,n,Y (s)| + |a3,n,Y (s)|]n̄

≤ c̃p,Φ,m

(
E
∥∥Rm/2

µ Y (s)
∥∥n̄ p

n,p,Φ + cT E |Y (0)∥∥n̄ p
0,p,Φ

)
+ Ψ n̄

λ (T ),

where Ψλ(T ) −→ 0, as λ −→ ∞ ∀n̄ ∈ N.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11.104)

Hence, employing the previous calculations for n̄ = 1, we obtain the following
bound for the left-hand side of (11.61)
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E‖Yµ,n(t)‖p
0,p,Φ ≤ E‖Yµ,n(0)‖p

0,p,Φ + cT E‖Y (0)‖p
0,p,Φ + TΨλ(T )

+
∫ t

0
c̃p,Φ,m(‖Rm/2

µ Y (s)‖p
n,p,Φds,

⎫⎪⎪⎬
⎪⎪⎭

(11.105)

where |n| ≤ m. Note that

‖Yµ,ñ(t)‖p
0,p,Φ ≤ ‖Rm/2

µ Y (s)‖p
|ñ|,p,Φ ≤ ‖Rm/2

µ Y (s)‖p
n,p,Φ ∀ñ ≤ n,

∑
ñ≤n

‖Yµ,ñ(t)‖p
0,p,Φ = ‖Rm/2

µ Y (s)‖p
n,p,Φ .

As a result, we obtain an “a priori” estimate for the left-hand side of (11.61)

E‖Rm/2
µ Y (t)‖p

n,p,Φ≤ (cT + 1)(E‖Yµ,n(0)‖p
0,p,Φ + E‖Y (0)‖p

0,p,Φ)+ TΨλ(T )

+
∫ t

0
c̄p,Φ,m(‖Rm/2

µ Y (s)‖p
n,p,Φds.

(11.106)

Employing Gronwall’s inequality (cf. Sect. 15.1.2, Proposition 15.5), (11.106)
and a simple calculation imply

sup
0≤t≤T

E‖Rm/2
µ Y (t)‖p

n,p,Φ ≤ cp,Φ,m,T (E‖Yµ,n(0)‖p
0,p,Φ

+E‖Y (0)‖p
0,p,Φ + Ψλ(T )) ∀λ ≥ Dθ + 1.

(11.107)

Since �λ(T ) −→ 0, as λ −→ ∞ we obtain the generalization of (11.86) to
|n| ≥ 0

sup
0≤t≤T

E‖Rm/2
µ Y (t)‖p

n,p,Φ ≤ cp,Φ,m,T E‖Y (0)‖p
n,p,Φ . (11.108)

Hence, again applying Fatou’s lemma, as µ → ∞, implies (8.39) for
0 ≤ |n| ≤ m. The statement (8.38) is a simple consequence of the fact that
sup

0≤t≤T
E‖ f (t)‖p

m,p,Φ is stronger than
∫ T

0 E‖ f (t)‖p
m,p,Φdt for suitable f (·) and the

dP ⊗ dt measurability of Rm/2
µ Y (·) as an Wm,p,Φ -valued process. This finishes the

proof of the integrability part of (8.38) for the case n̄ = 1.

Step 4: Case n̄ ≥ 2.

Employing (11.61), the Itô formula yields
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‖Yµ,n(t)‖n̄ p
0,p,Φ = ‖Yµ,n(0)‖n̄ p

0,p,Φ

+ n̄ p
2

d∑
k,�=1

∫ t

0
‖Yµ,n(s)‖(n̄−1)p

0,p,Φ 〈Y p−1
µ,n (s), ∂

2
k�Yµ,n(s)〉0,ΦDk�(s)ds

−n̄ p
∫ t

0
‖Yµ,n(s)‖(n̄−1)p

0,p,Φ 〈Y p−1
µ,n (s),0 · Qn

µ(Y (s)F(s))〉0,Φds

−n̄ p
∫ t

0
‖Yµ,n(s)‖(n̄−1)p

0,p,Φ 〈Y p−1
µ,n (s),0 · Qn

µ(Y (s)dm(s))〉0,Φ

+ n̄ p(p − 1)
2

∫ t

0
‖Yµ,n(s)‖(n̄−1)p

0,p,Φ 〈Y p−2
µ,n (s), [0 · Qn

µ(Y (s)dm(s))]〉0,Φ

+ n̄(n̄ − 1)p2

2

∫ t

0
‖Yµ,n(s)‖(n̄−2)p

0,p,Φ [〈Y p−1
µ,n (s),0 · Qn

µ(Y (s)dm(s))〉0,Φ ]

=:
6∑

i=1

Ai,n̄,n,Y (t)

= ‖Yµ,n(0)‖n̄ p
0,p,Φ +

∑
i∈{2,3,5,6}

∫ t

0
‖Yµ,n(s)‖(n̄−1)p

0,p,Φ ai,n,Y (s)ds

+A4,n̄,n,Y (t)+ A6,n̄,n,Y (t),
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(11.109)

where we used the notation for the integrands in the deterministic integrals of
(11.61). By Hölder’s inequality in addition to (11.104)

E‖Yµ,n(s)‖(n̄−1)p
0,p,Φ | ∑

i∈{2,3,5}
ai,n,Y (s)|

≤
{

E‖Yµ,n(s)‖n̄ p
0,p,Φ

}(n̄−1)/n̄
{

E | ∑
i∈{2,3,5}

ai,n,Y (s)|n̄
}1/n̄

≤
{

E‖Yµ,n(s)‖n̄ p
0,p,Φ

}(n̄−1)/n̄
{

c̃p,Φ,m

(
E‖Rm/2

µ Y (s)‖n̄ p
n,p,Φ + cT E |Y (0)‖n̄ p

0,p,Φ

)

+Ψ n̄
λ (T )

}1/n̄

.

Employing inequality (15.2) to the last term with η := n̄/(n̄ − 1) and η̄ := n̄
(instead of p and p̄) and recalling ‖Rm/2

µ Y (s)‖n,p,Φ = ‖Yµ,n(s)‖0,p,Φ , we obtain
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E‖Yµ,n(s)‖(n̄−1)p
0,p,Φ

∣∣∣∣∣
∑

i∈{2,3,5}
ai,n,Y (s)

∣∣∣∣∣

≤ cp,Φ,m,n̄

(
E‖Yµ,n(s)‖n̄ p

0,p,Φ + E‖Rm/2
µ Y (s)‖n̄ p

n,p,Φ

)
+ cn̄,T E‖Y (0)‖n̄ p

0,p,Φ

+ 1
n̄Ψ

n̄
λ (T )

≤ c̄p,Φ,m,n̄ E‖Rm/2
µ Y (s)‖n̄ p

n,p,Φ + cn̄,T E‖Y (0)‖n̄ p
0,p,Φ + 1

n̄Ψ
n̄
λ (T ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.110)
Setting

ā6,n.Y (ds) :=
[
〈Y p−1
µ,n (s),0 · Qn

µ(Y (s)dm(s))〉0,Φ
]
,

we have

ā6,n,Y (ds)

=
d∑

k,�=1

∫ ∫
dr dr̃Φ(r)Φ(r̃)(Yµ,n(s, r))p−1

×(Yµ,n(s, r̃))p−1 µm

[(m
2 − 1)!]2

∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)u(m/2)−1v(m/2)−1

×
∫ ∫

∂k,r∂
n
r G(u, r − q)∂�,r̃∂n

r̃ G(v, r − q̃)Y (s, q)

×Y (s, q̃)(D̃k,�(s, 0)− D̂k,�(s, q − q̃))dq dq̃ ds

=
d∑

k,�=1

∫ ∫
dr dr̃Φ(r)Φ(r̃)(Yµ,n(s, r))p−1

×(Yµ,n(s, r̃))p−1 µm

[(m
2 − 1)!]2

∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)u(m/2)−1v(m/2)−1

×
∫ ∫

∂k,r∂
n
r G(u, r − q)∂�,r̃∂n

r̃ G(v, r − q̃)Y (s, q)Y (s, q̃)D̃k,�(s, 0)dq dq̃ds

−
d∑

k,�=1

∫ ∫
dr dr̃Φ(r)Φ(r̃)(Yµ,n(s, r))p−1

×(Yµ,n(s, r̃))p−1 µm

[(m
2 − 1)!]2

∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)u(m/2)−1v(m/2)−1

×
∫ ∫

∂k,r∂
n
r G(u, r − q)∂�,r̃∂n

r̃ G(v, r − q̃)Y (s, q)Y (s, q̃)D̂k,�(s, q − q̃)dq dq̃ ds

=: a6,n,1,Y (s)ds + a6,n,2,Y (s)ds =: a6,n,Y (s)ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.111)
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Then,

A6,n̄,n,Y (t) = n̄(n̄ − 1)p2

2

∫ t

0
‖Yµ,n(s)‖(n̄−2)p

0,p,Φ a6,n,Y (s)(ds).

We have

|a6,n,1,Y (s)ds|
=
∣∣∣∣

d∑
k,�=1

∫ ∫
dr dr̃Φ(r)Φ(r̃)(Yµ,n(s, r))p−1

×(Yµ,n(s, r̃))p−1 µm

[(m
2 − 1)!]2

∫ ∞

0

∫ ∞

0
du dv e−µ(u+v)u(m/2)−1v(m/2)−1

×
∫ ∫

∂k,r∂
n
r G(u, r − q)∂�,r̃∂n

r̃ G(v, r − q̃)Y (s, q)Y (s, q̃)D̃k,�(s, 0)dq dq̃
∣∣∣∣

≤ cD

( d∑
k=1

∫
dr Φ(r)(Yµ,n(s, r))p−1(∂kYµ,n(s, r))

)2

(by the uniform boundedness of D̃k,�(s, 0) in all arguments)

= cD

(
1
p

d∑
k=1

∫
dr Φ(r)∂k((Yµ,n(s, r))p)

)2

≤ c̄D,Φ,d

p2

(∫
dr Φ(r)(Yµ,n(s, r))p

)2

(integrating by parts, if Φ(r) = �(r) and employing (15.46))

= c̄D,Φ,d

p2 ‖Yµ,n(s)‖2p
0,p,Φ ≤ c̄D,Φ,d

p2 ‖Rm/2
µ Yλ(s)‖2p

n,p,Φ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
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(11.112)
Next, we employ the representation (11.68) to find bounds for a6,n,2,Y (s). We

can argue as in the estimate of a5,n,2,Y (s). By a simple repeat of those arguments,
we first establish the analogue of (11.95)

|a6,n,2,Yλ(s)ds|n̄/2
≤ cp,Φ,m,n̄

(
‖R(m/2)µ Yλ(s)‖n̄ p

n,p,Φ + ‖R(m/2)µ Yλ(s)‖n̄ p
0,p,Φ

)
∀n̄ ∈ N

⎫⎬
⎭ (11.113)

as well as the analogue of (11.96)

E |a6,n,2,Yλ(s)ds| n̄
2 ≤ ĉp,Φ,m,n̄

(
E‖Rm/2

µ Yλ(s)‖n̄2p
n,p,Φ + cT E‖Y (0)‖n̄ p

0,p,Φ

)

≤ c̃p,Φ,m,n̄

(
E‖Rm/2

µ Y (s)‖n̄ p
n,p,Φ + cT E‖Y (0)‖n̄ p

0,p,Φ

)
.

⎫⎪⎬
⎪⎭

(11.114)
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Further, the analogue of (11.101) holds:

Ψ̃ n̄
λ (T ) := sup

0≤s≤T
E |a6,n,2,Y (s)− a6,n,2,Yλ(s)|n̄/2 −→ 0, as λ −→ ∞ ∀n̄ ∈ N .

(11.115)

Expressions (11.112) and (11.113) in addition to (11.115) imply the analogue of
(11.104)

E |a6,n,Y (s)n̄/2

≤ cp,Φ,m,n̄

(
E‖Rm/2

µ Y (s)‖n̄ p
n,p,Φ + cT E |Y (0)‖n̄ p

0,p,Φ

)
+ Ψ̃ n̄

λ (T ),

where Ψ̃λ(T ) −→ 0, as λ −→ ∞ ∀n̄ ∈ N.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(11.116)

By Hölder’s inequality, in addition to (15.2), we obtain the analogue of (11.110)

E‖Yµ,n(s)‖(n̄−2)p
0,p,Φ |a6,n,Y (s)|

≤
{

E‖Yµ,n(s)‖n̄ p
0,p,Φ

}(n̄−2)/n̄
{

c̃p,Φ,m

(
E‖Rm/2

µ Y (s)‖n̄ p
n,p,Φ + cT E‖Y (0)‖n̄ p

0,p,Φ

)

+Ψ̃ n̄
λ (T )

}2/n̄

≤ cp,Φ,m,n̄

(
E‖Yµ,n(s)‖n̄ p

0,p,Φ + E‖Rm/2
µ Y (s)‖n̄ p

n,p,Φ

)
+ cn̄,T E‖Y (0)‖n̄ p

0,p,Φ

+ 2
n̄ Ψ̃

n̄
λ (T )

≤ c̄p,Φ,m,n̄ E‖Rm/2
µ Y (s)‖n̄ p

n,p,Φ + cn̄,T E‖Y (0)‖n̄ p
0,p,Φ + 2

n̄ Ψ̃
n̄
λ (T ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.117)

Altogether, we obtain from (11.109), (11.110), (11.117), and
∑

ñ ≤ n‖Yµ,ñ
(s)‖0,p,Φ = ‖ Rm/2

µ Y (s)‖n,p,Φ

E‖Rm/2
µ Y (t)‖n̄ p

n,p,Φ ≤ E‖Rm/2
µ Y (0)‖n̄ p

n,p,Φ

+ c̄p,Φ,m,n̄,T

[∫ t
0 E‖Rm/2

µ Y (s)‖n̄ p
n,p,Φds + E‖Y (0)‖n̄ p

0,p,Φ

]

+ c̄p,Φ,m,n̄,T

[
Ψ n̄
λ (T )+ Ψ̃ n̄

λ (T )
]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11.118)

Employing again Gronwall’s inequality

E sup
0≤t≤T

‖Rm/2
µ Y (t)‖n̄ p

n,p,Φ ≤ cp,Φ,m,T,n̄(E‖Rm/2
µ Y (0)‖n̄ p

n,p,Φ

+Ψ n̄
λ (T )+ Ψ̃ n̄

λ (T )) ∀λ ≥ Dθ + 1.
(11.119)

Since Ψλ(T ) + Ψ̃λ(T ) −→ 0, as λ −→ ∞ we obtain the generalization of
(11.108) to n̄ ≥ 2:

sup
0≤t≤T

E‖Rm/2
µ Y (t)‖n̄ p

n,p,Φ ≤ cp,Φ,m,T E‖Y (0)‖n̄ p
n,p,Φ . (11.120)
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Hence, again applying Fatou’s lemma, as µ→ ∞, implies the integrability part
of (8.38) for 0 ≤ |n| ≤ m and n̄ ≥ 1.

Step 5: Continuous Sample Paths
The solution is almost trivial. By the previous step Y (·) are in Ln̄ p,F ((s, T ] ×
Ω;Wm,p,Φ). The first and second derivatives are bounded operators from Wm,2,Φ
into Wm−1,2,Φ and Wm−2,2,Φ , respectively. The coefficients have bounded deriva-
tives by (8.35). Hence, the stochastic Itô integral for the strong solution is a con-
tinuous square integrable martingale with values in Wm−1,2,Φ ⊂ Wm−2,2,Φ . 19 The
deterministic (Bochner) integrals are obviously continuous with values in Wm−1,2,Φ
and Wm−2,2,Φ , respectively. 
�

11.3 Proof of the Itô formula (8.42)

We choose m = m(0) in (11.43). Assume, without loss of generality, s = 0 and set
for the solution of (8.25) Y (t) := Y (t, Y (0)).

(i) Smooth Initial Conditions

For p = 2 and smoothness coefficient m, Theorem 8.6 and the definition of m
imply Y (t), ∂kY (t), ∂2

k�Y (t) are in W0,2,1 ⊂ W0,2,Φ for k, � = 1, . . . , d. Further,
since we can always choose a decomposition {Bn}n∈n of Ω with Bn ∈ F0 such
that ess sup

ω
‖Y0‖m1Bn < ∞ for n ≥ 2 and P(B1) = 0 we may, without loss of

generality, assume
ess sup

ω
‖Y0(ω)‖2 ≤ c <∞. (11.121)

By Theorem 8.6, we may stop ‖Y (t)‖2 at the first exit time τ := τN for the ball
with center 0 and radius N > c (where τN (ω) = ∞, if sup

0≤t<∞
‖Y (t)‖2 < ∞).

Hence, ‖Y (t ∧ τN )‖2 ≤ N a.s. for all t ≥ 0. By the smoothness result, we obtain
the analogue of (11.86) with n = 0, µ = ∞, and t ∧ τ instead of t . We now proceed
as in the proof of Theorem 8.6, and let us also use similar abbreviations as in that
proof (with t %→ t ∧ τ ).

(ii) Integration by parts yields

A2(t) = −1
2

d∑
k,�=1

∫ t∧τ

0

∫
(∂kY (s, r))(∂�Y (s, r))Φ(r)dr Dk�(s)ds

+1
2

d∑
k,�=1

∫ t∧τ

0

∫
(Y (s, r))2∂2

k�Φ(r)dr ds

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11.122)

19 Cf. Metivier and Pellaumail (1980). Cf. also our sketch of the Itô integral in Sects. 15.2.5 and
15.2.3.
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=: A2,1(t)+ A2,2(t),

where the second term comes from

2
∫

Y (s, r)(∂�Y (s, r))∂kΦ(r)dr

=
∫
∂�(Y 2(s, r))∂kΦ(r)dr

and integration by parts. Next, note that

d[∂kmk(s, r), ∂�m�(s, r)] = Lk�,1k+1� (s)ds (11.123)

and
−Lk�,0(s) = Dk�(s)

Recalling, that Lk�,1i (s) = 0 by the symmetry assumption in (8.33), we obtain,

[∂k(Y (s, r)dmk(s, r)), ∂�(Y (s, r)dm�(s, r))]
= (∂kY (s, r))(∂�Y (s, r))Dk�(s)ds

+ (Y 2(s, r))Lk�,1k+1� (s)ds

=:
2∑

i=1

Bk�,i (s, r)ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.124)

The decomposition of the left-hand side of (11.95) into
2∑

i=1
Bk�,i (s, r)ds induces

a decomposition

A5(t) =
2∑

i=1

A5,i (t).

Clearly,

A2,1(t)+ A5,1(t) ≡ 0. (11.125)

The transformation of the drift and the stochastic terms is easier. 
�
• Initial Conditions ∈ L2,F0(W0,2,1).

Let Y0,m ∈ L2,F0(W2,2,Φ) and assume

E‖Y0,m − Y0‖2
0,Φ −→ 0, as m −→ ∞ . (11.126)

Truncating at a level N > 0,

Y0,N := Y01{‖Y0‖0,Φ≤N }, Y0,m,N := Y0,m1{‖Y0,m‖0,Φ≤N } (11.127)
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implies that for p = 1, 2 and ∀N > 0:

sup
0≤t≤T

E‖Y (t, Y0,N )− Y (t, Y0,m,N )‖2p
0,Φ ≤ cp E‖Y (t,Y0,N )− Y (t, Y0,m,N )‖2p

0,Φ

−→ 0 , as m −→ ∞ ,

sup
0≤t≤T

E‖Y (t, Y0,N )‖2p
0,Φ ≤ cp E‖Y (t, Y0,N )‖2p

0,Φ,

sup
0≤t≤T

E‖Y (t, Y0,N )‖2p
0,Φ ≤ cp E‖Y (t, Y0,N )‖2p

0,Φ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(11.128)

where for the first inequality we used the bilinearity of (8.25). ForΦ = � , (11.128)
follows from Theorem 8.6, since by the Cauchy–Schwarz inequality

‖ f ‖4
0,� ≤ c�‖ f ‖4

0,4,� .

For Φ ≡ 1, (11.128) follows from Kotelenez (1995b), Theorem 4.11. Note that
for the truncated initial conditions the convergence assumption (11.126) also holds
for the fourth moment of the norm of the difference of the initial conditions (by
Lebesgue’s dominated convergence theorem). Since the Itô formula is a statement
for almost all ω we may in what follows drop the subindex N and assume, without
loss of generality, (11.128). Abbreviate

Ym(t) := Ym(t, Y0,m), Y (t) := Y (t, Y0).

We know already from the first part (with smooth initial conditions) that the Itô
formula holds for ‖Ym(t)‖2

0,Φ . Denote the right-hand side of (8.42) with process
Ym(·) by Rm(t). If we replace on the right-hand side of (8.42) all Ym terms by Y (t)
the right-hand side of (8.42) is a continuous semimartingale and will be denoted by
R(t). We need to show that for all t ≥ 0,

‖Y (t)‖2
0,Φ = R(t) with probability 1,

which is precisely the Itô formula for ‖Y (t)‖2
0,Φ . We easily see that the deterministic

integrals in Rm(·) converge to the deterministic integrals of R(·) (in the topology of
L2,F ([s, T ];W0,2,Φ)). Therefore, we will provide details only for the more difficult
stochastic integrals. Abbreviate

Im,�(t) :=
∫ ∫ t

0
Y 2

m(s, r)∂�m�(r, ds)Φ(r)dr

and

I�(t) :=
∫ ∫ t

0
Y 2(s, r)∂�m�(r, ds)Φ(r)dr.

The mutual quadratic variation

d[∂�m�(r, ds), ∂�m�(r̃ , ds)] = −(∂�,r�,r D̃)(s, r − r̃)ds. (11.129)

Thus, by the boundedness of |(∂�,r�,r D̃)(s, r − r̃)| in all variables (cf. (8.35)), we
obtain
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E |I�(t)− Im,�(t)|2 ≤ cD̃ E

(∫ t

0

(∫
(Y 2(s, r)− Y 2

m(s, r))Φ(r)dr
)2

)
. (11.130)

A simple calculation shows that the right-hand side of (11.130) can be estimated by

cD̃,Φ

(∫ t

0
(E |Y (s)− Ym(s)‖4

0,Φ)
1/2(E |Y (s)+ Ym(s)‖4

0,Φ

)1/2

.

Hence, by (11.128) in addition to (11.130) and the convergence assumption
(11.126) (also holding after truncation for the fourth moment),

E |I�(t)− Im,�(t)|2 ≤ c̄D̃,Φ(E |Y (0)− Ym(0)‖4
0,Φ)

1/2 −→ 0 , as m −→ ∞ .
(11.131)



Chapter 12
Proof of Uniqueness

Employing Itô’s formula, the basic estimate (8.48) is proved, which ensures strong
uniqueness for quasilinear SPDEs under smoothness assumptions on the coeffi-
cients and initial conditions.

We may without loss of generality assume s = 0 and that the coefficients are
independent of t . Further, as in the smoothness proof of Chap. 11, the proof of
(8.48) generalizes immediately to the coercive case, assuming in addition (8.74) and
(8.75). Therefore, it suffices to provide the proof of (8.48) assuming σ⊥(r, µ, t) ≡
0. Hence, the two solutions from Lemma 8.10 can be written as

Y (t) = Y0 + 1
2

∫ t

0

d∑
k,�=1

∂2
k,�(Dk,�(Z(s))Y (s))ds −

∫ t

0
∇(Y (s)F(·, Z(s)

))
ds

−
∫ t

0
∇(Y (s)

∫
J (·, p, Z(s))w(dp, ds)),

Ỹ (t) = Ỹ0 + 1
2

∫ t

0

d∑
k,�=1

∂2
k,�
(
Dk,�

(
Z̃(s)

)
Ỹ (s)

)
ds −

∫ t

0
∇(Ỹ (s)F(·, Z̃(s)

))
ds

−
∫ t

0
∇(Ỹ (s)

∫
J
(·, p, Z̃(s)

)
w(dp, ds)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12.1)

Let c denote some finite constant whose values may change throughout the steps
of a series of estimates. ∂� denotes the partial derivative with respect to the �’s spatial
coordinate. If there are two spatial variables, we will write ∂�,r to indicate that the
partial derivative is to be taken with respect to the variable r , etc.

Note that our assumptions imply by Theorem 8.6 that both Y and Ỹ are in
L0,F (C([0,∞);W2,2,� )). Therefore, by Itô’s formula (8.42)

273
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∥∥∥Y (t)− Ỹ (t)
∥∥∥2

0,�

=
∫ t

0

〈 d∑
k,�=1

∂2
k,�

(
Dk,�

(
Z(s)

)
Y (s)− Dk,�

(
Z̃(s)

)
Ỹ (s)

)
, Y (s)− Ỹ (s)

〉

0,�

ds

+
d∑

m=1

∫ t

0

∫ ∫ (
∇ •

(
Y (r, s)J·,m(r, p, Z(s))− Ỹ (r, s)J·,m

(
r, p, Z̃(s)

)))2
dp�(r)drds

−2
∫ t

0

〈
∇ •

(
Y (s)F(·, Z(s))

)
− ∇ •

(
Ỹ (s)F

(
·, Z̃(s)

))
, Y (s)− Ỹ (s)

〉
0,�

ds

+
∥∥∥Y (0)− Ỹ (0)

∥∥∥2

0,�
+ martingale

=:
∫ t

0
(I (s)+ I I (s)+ I I I (s))ds +

∥∥∥Y (0)− Ỹ (0)
∥∥∥2

0,�
+ martingale .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.2)

The homogeneity assumption (8.33) implies that the diffusion coefficient is not
dependent on the spatial variable. Therefore, integrating by parts,

I (s) =
d∑

k,�=1

−
〈
Dk,�(Z(s))∂kY (s)− Dk,�

(
Z̃(s)

)
∂k Ỹ (s), ∂�Y (s)− ∂�Ỹ (s)

〉
�

−
〈
Dk,�(Z(s))∂kY (s)− Dk,�

(
Z̃(s)

)
∂k Ỹ (s),

(
Y (s)− Ỹ (s)

)
∂��

〉
0

=:
d∑

k,�=1

I1,k�(s)+ I2,k�(s),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.3)

I1,k�(s) = − 〈
Dk,�(Z(s))∂kY (s), ∂�Y (s),

〉
0,� −

〈
Dk,�

(
Z̃(s)

)
∂k Ỹ (s), ∂�Ỹ (s),

〉
0,�

+
〈
Dk,�(Z(s))∂kY (s), ∂�Ỹ (s)

〉
0,�

+
〈
Dk,�

(
Z̃(s)

)
∂k Ỹ (s), ∂�Y (s)

〉
0,�

=: I1,1,k�(s)+ I1,2,k�(s)+ I1,3,k�(s)+ I1,4,k�(s),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(12.4)

I2,k�(s) = −
〈
Dk,�(Z(s))∂k

(
Y (s)− Ỹ (s)

)
,
(
Y (s)− Ỹ (s)

)
∂��

〉
0

−
〈(

Dk,�(Z(s))− Dk,�
(
Z̃(s)

))
∂k Ỹ (s),

(
Y (s)− Ỹ (s)

)
∂��

〉
0

=: I2,1,k�(s)+ I2,2,k�(s).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(12.5)

In what follows we will repeatedly use the simple formula

∂k
(
Y (s)− Ỹ (s)

)(
Y (s)− Ỹ (s)

) = 1
2
∂k
(
Y (s)− Ỹ (s)

)2
. (12.6)
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Hence, by the homogeneity assumption,

I2,1,k�(s) = −Dk,�(Z(s))
〈
∂k
(
Y (s)− Ỹ (s)

)
,
(
Y (s)− Ỹ (s)

)
∂��

〉
0

= −Dk,�(Z(s))
〈
∂k
(
Y (s)− Ỹ (s)

)(
Y (s)− Ỹ (s)

)
, ∂��

〉
0

= −Dk,�(Z(s))
〈

1
2
∂k
((

Y (s)− Ỹ (s)
)2)
, ∂��

〉

0

= 1
2

Dk,�(Z(s))
〈(

Y (s)− Ỹ (s)
)2
, ∂2

k,��
〉
0
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.7)

using integration by parts. By (15.46)

‖∂k�(r)‖ +
∣∣∣∂2

k,��(r)
∣∣∣ ≤ c�(r).

It follows

I2,1,k�(s) ≤ c
2

∣∣Dk,�(Z(s))
∣∣ 〈(Y (s)− Ỹ (s)

)2
,�

〉
0

= c
2

∣∣Dk,�(Z(s))
∣∣ · ‖Y (s)− Ỹ (s)‖2

0,� . (12.8)

Next, suppressing temporarily the dependence on s in the notation
∣∣∣Dk,�(Z)− Dk,�(Z̃)

∣∣∣

=
∣∣∣∣∣

d∑
m=1

∫ (
Jk,m(r, p, Z)J�,m(r, p, Z)− Jk,m

(
r, p, Z̃

)
J�,m

(
r, p, Z̃

))
dp

∣∣∣∣∣

=
∣∣∣∣∣

d∑
m=1

∫ (
Jk,m(r, p, Z)− Jk,m

(
r, p, Z̃

))
J�,m(r, p, Z) dp

+
∫ (

Jk,m
(
r, p, Z̃

)(
J�,m(r, p, Z)− J�,m

(
r, p, Z̃

))
dp

∣∣∣∣

≤
d∑

m=1

c
( ∫ (

Jk,m(r, p, Z)− Jk,m
(
r, p, Z̃

))2dp
) 1

2

+c
( ∫ (

J�,m(r, p, Z)− J�,m
(
r, p, Z̃

))2dp
) 1

2

(by Hölder’s inequality and the boundedness assumption on the integral of the sec-
ond moment of J )

≤ c‖Z − Z̃‖0,�

(by Hypothesis 4.1 and (8.46)),

i.e., ∣∣Dk,�(Z(s))− Dk,�
(
Z̃(s)

)∣∣ ≤ c
∥∥Z(s)− Z̃(s)

∥∥
0,� . (12.9)
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Hence,

|I2,2,k�(s)|
≤ ∣∣Dk,�(Z(s))− Dk,�

(
Z̃(s)

)∣∣ 〈∣∣∂k Ỹ (s)
∣∣, ∣∣Y (s)− Ỹ (s)

∣∣∣∣∂��
∣∣〉

0

≤ c
∣∣Dk,�(Z(s))− Dk,�

(
Z̃(s)

)∣∣ 〈∣∣∂k Ỹ (s)
∣∣, ∣∣Y (s)− Ỹ (s)

∣∣〉
0,�

(by (15.46))

≤ c
∥∥Z(s)− Z̃(s)

∥∥
�

∥∥∂k Ỹ (s)
∥∥
�

∥∥Y (s)− Ỹ (s)
∥∥

0,�

(by the Cauchy–Schwarz inequality)

= c
∥∥∂k Ỹ (s)

∥∥
0,�

∥∥Z(s)− Z̃(s)
∥∥

0,�

∥∥Y (s)− Ỹ (s)
∥∥

0,� ,

i.e., ∀k, �

|I2,2,k�(s)| ≤ c‖∂k Ỹ (s)‖0,�‖Z(s)− Z̃(s)‖0,�‖Y (s)− Ỹ (s)‖0,� . (12.10)

Expression (12.8) and (12.10) together yield

|I2,k�(s)| ≤ c
[∥∥∂k Ỹ (s)

∥∥
0,�

∥∥Z(s)− Z̃(s)
∥∥

0,�

∥∥Y (s)− Ỹ (s)
∥∥

0,�

+∥∥Y (s)− Ỹ (s)
∥∥2
�

]
, (12.11)

I I (s)

=
d∑

k,�=1

{
d∑

m=1

∫ ∫
(∂k(Y (r, s)Jk,m(r, p, Z(s))))

×(∂�(Y (r, s)J�,m(r, p, Z(s))))dp�(r)dr

+
∫ ∫ (

∂k
(
Ỹ (r, s)Jk,m

(
r, p, Z̃(s)

)))
(∂�(Ỹ (r, s)J�,m(r, p, Z̃(s))))dp�(r)dr

−
∫ ∫

(∂k(Y (r, s)Jk,m(r, p, Z(s))))
(
∂�
(
Ỹ (r, s)J�,m(r, p, Z̃(s))

))
dp�(r)dr

−
∫ ∫ (

∂k
(
Ỹ (r, s)Jk,m(r, p, Z̃(s))

))
(∂�(Y (r, s)J�,m(r, p, Z(s))))

×dp�(r)dr

}

=:
d∑

m=1

I I1,m(s)+ I I2,m(s)+ I I3,m(s)+ I I4,m(s).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.12)
By symmetry,

I I3,m(s)+ I I4,m(s) = 2I I3,m(s) ∀m. (12.13)

Further, for Z̄ ∈ {
Y, Ỹ

}
, integrating by parts and employing (12.6),

∫
∂k Z̄(s, r)Z̄(s, r)�(r)dr = 1

2

∫
∂k
(
Z̄2(s, r)

)
�(r)dr =−1

2

∫
Z̄2(s, r)∂k�(r)dr.

(12.14)
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Set for Ẑ ∈ {Z , Z̃}

2CẐ ,m := J·,m(r, p, Ẑ), DẐ ,m := divr 2CẐ ,m(=
d∑
�=1

∂�,rJ�,m(r, p, Ẑ)).

Note that

d∑
k,�=1

∫ ∫
(∂kY (r, s))Jk,m(r, p, Z(s))Y (r, s)(∂�,rJ�,m(r, p, Z(s)))dp�(r)dr

=
d∑

k,�=1

∫
(∂kY (r, s))Y (r, s)

∫
Jk,m(r, p, Z(s))(∂�,rJ�,m(r, p, Z(s)))dp�(r)dr

= −
d∑

k,�=1

1
2

∫
Y 2(r, s)

∫
Jk,m(r, p, Z(s))(∂�,rJ�,m(r, p, Z(s)))dp∂k �(r)dr

= −1
2

∫
Y 2(r, s)

( ∫ 2CZ ,m DZ ,mdp
) · (∇�)(r)dr

=: I I1,3,m(s)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.15)
and, similarly,

d∑
k,�=1

∫ ∫
(∂�Y (r, s))(∂k,rJk,m(r, p, Z(s)))Y (r, s)J�,m(r, p, Z(s))dp�(r)dr

= −
d∑

k,�=1

1
2

∫
Y 2(r, s)

∫
(∂k,rJ�,m(r, p, Z(s))J�,m(r, p, Z(s))dp ∂��(r)dr

=: I I1,4,m(s) = I I1,3,m(s).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(12.16)
Therefore,

I I1,m(s) =
∫ ∫ (∇Y (r, s) · 2CZ ,m

)2dp�(r)dr

+
∫ ∫

Y 2(r, s)D2
Z ,mdp�(r)dr

+2I I1,3,m(s)

=: I I1,1,m(s)+ I I1,2,m(s)+ 2I I1,3,m(s).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(12.17)

In the same way, we obtain

I I2,m(s) =
∫ ∫ (

∇Ỹ (r, s) · 2CZ̃ ,m

)2
dp�(r)dr

+
∫ ∫

Ỹ 2(r, s)D2
Z̃ ,m

dp�(r)rmdr

−
∫

Ỹ 2(r, s)
(∫

2CZ̃ ,m DZ̃ ,mdp
)
· (∇�)(r)dr

=: I I2,1,m(s)+ I I2,2,k�,m(s)+ 2I I2,3,m(s).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(12.18)
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For the following elementary algebraic transformations it is safe to abbreviate
∫ ∫

( ) :=
∫ (∫

( )dp
)
�(r)dr.

Thus,

I I3,m(s) = −
∫ ∫

(∇Y (r, s) · 2CZ ,m)
(∇Ỹ (r, s) · 2CZ̃ ,m

)
dp

−
∫ ∫

Y (s, r)Ỹ (r, s)DZ ,m DZ̃ ,m dp �(r)dr

−
∫ ∫

(∇Y (r, s) · 2CZ ,m)Ỹ (r, s)DZ̃ ,m

−
∫ ∫

Y (s, r)DZ ,m
(∇Ỹ (r, s) · 2CZ̃ ,m

)

=: I I3,1,m(s)+ I I3,2,m(s)+ I I3,3,m(s)+ I I3,4,m(s).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.19)

A similar representation holds, of course, for I I4,m(s) which by (12.13) equals
I I3,m(s). Set

A :=
∫ ∫ (

Y − Ỹ
)(∇Y + ∇Ỹ

) · ( 2CZ ,m − 2CZ̃ ,m)(DZ ,m + DZ̃ ,m)

=
∫ ∫ [(

Y∇Y − Ỹ∇Ỹ
)+ (

Y∇Ỹ − Ỹ∇Y
)] · [( 2CZ ,m DZ ,m − 2CZ̃ ,m DZ̃ ,m)

+( 2CZ ,m DZ̃ ,m − 2CZ̃ ,m DZ ,m)
]

=
∫ ∫ (

Y∇Y − Ỹ∇Ỹ
) · ( 2CZ ,m DZ̃ ,m − 2CZ̃ ,m DZ ,m)

+
∫ ∫ (

Y∇Ỹ − Ỹ∇Y
) · ( 2CZ ,m DZ ,m − 2CZ̃ ,m DZ̃ ,m)

+
∫ ∫

Y∇Y • 2CZ ,m DZ ,m +
∫ ∫

Ỹ∇Ỹ • 2CZ̃ ,m DZ̃ ,m

−
∫ ∫

Y∇Y • 2CZ̃ ,m DZ̃ ,m −
∫ ∫

Ỹ∇Ỹ • 2CZ ,m DZ ,m

+
∫ ∫

Y∇Ỹ • 2CZ ,m DZ̃ ,m +
∫ ∫

Ỹ∇Y • 2CZ̃ ,m DZ ,m

−
∫ ∫

Y∇Ỹ • 2CZ̃ ,m DZ ,m −
∫ ∫

Ỹ∇Y • 2CZ ,m DZ̃ ,m

=:
10∑

i=1

Ai .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.20)
Note

A3 = I I1,3,m(s) = I I1,4,m(s),

A4 = I I2,3,m(s) = I I2,4,m(s),

A9 = I I3,4,m(s) = I I4,4,m(s),

A10 = I I3,3,m(s) = I I4,3,m(s).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(12.21)



12 Proof of Uniqueness 279

A5 + A7 = ∫ ∫
Y DZ̃ ,m

[∇Ỹ • 2CZ ,m −∇Y • 2CZ̃ ,m

]
,

A6 + A8 = ∫ ∫
Ỹ DZ ,m

[∇Y • 2CZ̃ ,m −∇Ỹ • 2CZ ,m
]

= − ∫ ∫
Ỹ DZ ,m

[∇Ỹ • 2CZ ,m −∇Y · 2CZ̃ ,m

]
.

⎫⎪⎪⎬
⎪⎪⎭

(12.22)

It follows

8∑
i=5

Ai =
∫ ∫ (

Y DZ̃ ,m − Ỹ DZ ,m
)[∇Ỹ • 2CZ ,m −∇Y • 2CZ̃ ,m

]
(12.23)

and

A3 + A4 + A9 + A10 = A − (A1 + A2)−
8∑

i=5

Ai . (12.24)

Hence,

d∑
k,�=1

d∑
m=1

(I I1,3,k�,m(s)+ I I1,4,k�,m(s)+ I I2,3,k�,m(s)+ I I2,4,k�,m(s))

+
d∑

k,�=1

d∑
m=1

(I I3,4,k�,m(s)+ I I4,4,k�,m(s)+ I I3,3,k�,m(s)+ I I4,3,k�,m(s))

= 2
d∑

m=1

∫ ∫ (
Y (s, r)− Ỹ (s, r)

)(∇Y (s, r)

+∇Ỹ (s, r)
) · ( 2CZ(s),m − 2CZ̃(s),m)(DZ(s),m + DZ̃(s),m)

−2
d∑

m=1

∫ ∫ (
Y (s, r)∇Y (s, r)

−Ỹ (s, r)∇Ỹ (s, r)
) · ( 2CZ(s),m DZ̃(s),m − 2CZ̃(s),m DZ(s),m)

−2
d∑

m=1

∫ ∫ (
Y (s, r)∇Ỹ (s, r)

−Ỹ (s, r)∇Y (s, r)
) · ( 2CZ(s),m DZ(s),m − 2CZ̃(s),m DZ̃(s),m)

−2
d∑

m=1

∫ ∫ (
Y (s, r)DZ̃(s),m

−Ỹ (s, r)DZ(s),m
)(∇Ỹ (s, r) • 2CZ(s),m −∇Y (s, r) • 2CZ̃(s),m

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.25)
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Next (cf. (12.17), (12.18) and (12.4)),

d∑
m=1

I I1,1,m(s) =
d∑

m=1

d∑
k,�=1

∫ ∫
∂kY (r, s), ∂�Y (r, s)

∫
Jkm(r, p, Z)J�m(r, p, Z)dp �(r)dr

=
d∑

k,�=1

〈∂kY (s), ∂�Y (s)〉0,� Dk�(Z(s)) = −I1,1(s)

(and similarly)

d∑
m=1

(I I2,1,m(s) =
d∑

k,�=1

〈
∂k Ỹ (s), ∂�Ỹ (s)

〉
0,� Dk�

(
Z̃(s)

) = −I1,2(s).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.26)

Thus,

I1,1(s)+ I1,2(s)+
d∑

m=1

(I I1,1,m(s)+ I I2,1,m(s)) = 0. (12.27)

Further (cf. (12.17) – (12.19)),

d∑
m=1
(I I1,2,m(s)+ I I2,2,m(s)+ I I3,2,m(s)+ I I4,2,m(s))

=
d∑

m=1

∫ ∫
Y 2(r, s)D2

Z ,m dp �(r)dr

+
d∑

m=1

∫ ∫
Ỹ 2(r, s)D2

Z̃ ,m
dp �(r)dr

−2
d∑

m=1
Y (s, r)Ỹ (r, s)DZ ,m DZ̃ ,m dp �(r)dr

=
d∑

m=1

∫ ∫ (
Y (r, s)DZ(s),m − Ỹ (s, r)DZ̃(s),m

)2 dp �(r)dr,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.28)
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I1,3(s)+ I1,4(s)+
d∑

m=1

[I I3,1,m(s)+ I I4,1,m(s)]

=
d∑

k,�=1

[〈
∂kY (s), ∂�Ỹ (s)

〉
0,� Dk�(Z(s))+

〈
∂kY (s), ∂�Ỹ (s)

〉
�

Dk�
(
Z̃(s)

)]

−2
d∑

m=1

∫ ∫
(∇Y (s, r) · 2CZ(s),m)

(∇Ỹ (s, r) · 2CZ̃(s),m

)
dp �(r)dr

=
d∑

m=1

∫ ∫
dp �(r)dr

× {
(∇Y (s, r) · 2CZ(s),m)

(∇Ỹ (s, r) · 2CZ(s),m
)

+ (∇Y (s, r) · 2CZ̃(s),m)
(∇Ỹ (s, r) · 2CZ̃(s),m

)

− 2(∇Y (s, r) · 2CZ(s),m)
(∇Ỹ (s, r) · 2CZ̃(s),m

)}

=
d∑

m=1

∫ ∫
dp �(r)dr

× {
(∇Y (s, r) · 2CZ(s),m)

(∇Ỹ (s, r) · [ 2CZ(s),m − 2CZ̃(s),m

])

+ (∇Ỹ (s, r) · 2CZ̃(s),m

)
(∇Y (s, r) · [ 2CZ̃(s),m − 2CZ(s),m])

}

=
d∑

m=1

∫ ∫
dp �(r)dr

× {[(∇Y (s, r) · 2CZ(s),m
)∇Ỹ (s, r)

− (∇Ỹ (s, r) · 2CZ̃(s),m

)∇Y (s, r)
] · [ 2CZ(s),m − 2CZ̃(s),m]

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.29)
Note that
[
(∇Y (s, r) · 2CZ(s),m)∇Ỹ (s, r)− (∇Ỹ (s, r) · 2CZ̃(s),m

)∇Y (s, r)
]

= ([∇Y (s, r)−∇Ỹ (s, r)
] · 2CZ(s),m

)∇Ỹ (s, r)

+(∇Ỹ (s, r) · [ 2CZ(s),m − 2CZ̃(s),m])∇Ỹ (s, r)

+(∇Ỹ (s, r) · 2CZ̃(s),m)
[∇Ỹ (s, r)− ∇Y (s, r)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(12.30)
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Hence,

I1,3(s)+ I1,4(s)+
d∑

m=1

[I I3,1,m(s)+ I I4,1,m(s)]

=
d∑

m=1

∫ ∫
dp �(r)dr

×{([∇Y (s, r)− ∇Ỹ (s, r)] · 2CZ(s),m)∇Ỹ (s, r)

+(∇Ỹ (s, r) · [ 2CZ(s),m − 2CZ̃(s),m])∇Ỹ (s, r)

+(∇Ỹ (s, r) · 2CZ̃(s),m)[∇Ỹ (s, r)− ∇Y (s, r)])
·( 2CZ(s),m − 2CZ̃(s),m)}

:= Î1(s)+ Î2(s)+ Î3(s).

Integration by parts yields

Î1(s)

=
d∑

m,k,�=1

∫ ∫
dp �(r)dr∂k,r (Y (s, r)

−Ỹ (s, r))Jkm(r, p, Z(s))
(
∂�,r Ỹ (s, r)

)(
J�m(r, p, Z(s))− J�m

(
r, p, Z̃(s)

))

= −
d∑

m,k,�=1

∫ ∫
dp �(r)dr

(
Y (s, r)

−Ỹ (s, r)
)
(∂k,rJkm(r, p, Z(s)))

(
∂�,r Ỹ (s, r)

)(
J�m(r, p, Z(s))

−J�m
(
r, p, Z̃(s)

))−
d∑

m,k,�=1

∫ ∫
dp �(r)dr

(
Y (s, r)

−Ỹ (s, r)
)
Jkm(r, p, Z(s))

(
∂2

k,�,r Ỹ (s, r)
)(
J�m(r, p, Z(s))

−J�m
(
r, p, Z̃(s)

))−
d∑

m,k,�=1

∫ ∫
dp �(r)dr

(
Y (s, r)

−Ỹ (s, r)
)
Jkm(r, p, Z(s))

(
∂�,r Ỹ (s, r)

)(
∂k,r

(
J�m(r, p, Z(s))

−J�m
(
r, p, Z̃(s)

)))−
d∑

m,k,�=1

∫ ∫
dp∂k�(r)dr

(
Y (s, r)

−Ỹ (s, r)
)
Jkm(r, p, Z(s))

(
∂�,r Ỹ (s, r)

)(
J�m(r, p, Z(s))

−J�m
(
r, p, Z̃(s)

))
.

Therefore, by (15.46) in addition to our assumptions and the Cauchy–Schwarz
inequality,

∣∣ Î1(s)
∣∣ ≤ c max|m‖≤2

∥∥∂mỸ (s)
∥∥

0,�

∥∥Y (s)− Ỹ (s)
∥∥

0,�

∥∥Z(s)− Z̃(s)
∥∥

0,� .
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A similar calculation yields the same estimate for
∥∥ Î3(s)

∥∥. For
∥∥ Î2(s)

∥∥ we obtain a
bound

c max
|m
∣∣≤2

∥∥∂mỸ (s)‖0,� ‖Z(s)− Z̃(s)‖2
0,�

without integration by parts. Hence,

∣∣I1,3(s)+ I1,4(s)+
d∑

m=1

[I I3,1,m(s)+ I I4,1,m(s)]
∣∣

≤ c max|m|≤2
‖∂mỸ (s)‖0,� [‖Y (s)− Ỹ (s)‖0,� ‖Z(S)

−Z̃(s)‖0,� + ‖Z(s)− Z̃(s)‖2
0,� ].

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(12.31)

Next, we derive suitable bounds for the terms in (12.25) and (12.28). We start
with (12.25):

∣∣∣∣∣∣
d∑

k,�=1

d∑
m=1

∫
[Jk,m(r, p, Z(s))− Jk,m(r, p, Z̃(s))]

[∂�,rJ�,m(r, p, Z(s))+ ∂�,rJ�,m(r, p, Z̃(s))]dp

∣∣∣∣∣∣

≤
d∑

k,�=1

d∑
m=1

{∫
[Jk,m(r, p, Z(s))− Jk,m(r, p, Z̃(s))]2dp

}1/2

×
{∫

[∂�,rJ�,m(r, p, Z(s))+ ∂�,rJ�,m(r, p, Z̃(s))]2dp
}1/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.32)

By the Cauchy–Schwarz inequality, we have
∣∣∣∣
∫
(∂�,rJ�,m(r, p, Z(s))∂�,rJ�,m(r, p, Z̃(s))dp

∣∣∣∣
2

≤
∫
∂�,rJ 2

�,m(r, p, Z(s))dp
∫
∂�,rJ 2

�,m(r, p, Z̃(s))dp.

⎫⎪⎪⎬
⎪⎪⎭

Further, by assumption (8.35),
∣∣∣∣
∫
∂�,rJ 2

�,m(r, p, Z(s))dp
∣∣∣∣ = | − ∂r∂q Dk�(s, Z , r − q)|q=r | ≤ c

}
. (12.33)

Therefore,
{∫

[∂�,rJ�,m(r, p, Z(s))+ ∂�,rJ�,m(r, p, Z̃(s))]2dp
}1/2

≤ c ∀�,m (independent of Z and Z̃ ). (12.34)
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Consequently, by (12.32) and (12.34) in addition to Hypothesis 4.1 and (8.46),
∣∣∣∣∣∣

d∑
k,�=1

d∑
m=1

∫
[Jk,m(r, p, Z(s))− Jk,m(r, p, Z̃(s))]

[∂�,rJ�,m(r, p, Z(s))+ ∂�,rJ�,m(r, p, Z̃(s))]dp

∣∣∣∣∣
≤ c‖Z(s)− Z̃(s)‖0,� .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(12.35)

Therefore,
∣∣∣∣∣

d∑
m=1

∫ ∫
(Y (s, r)− Ỹ (s, r))(∇Y (s, r)

+∇Ỹ (s, r)) · ( 2CZ(s),m − 2CZ̃(s),m)(DZ(s),m + D ˜(s),m)
∣∣∣

≤
∫

|Y (s, r)− Ỹ (s, r)| max
k=1,..,d

(|∂Y (s, r)|
+|∂Ỹ (s, r)|)�(r)dr c‖Z(s)− Z̃(s)‖�
≤ c max

k=1,..,d
[‖∂Y (s)‖0,�

+‖∂Ỹ (s)‖0,� ]‖Y (s)− Ỹ (s)‖0,�‖Z(s)− Z̃(s)‖0,�

(by the Cauchy–Schwarz inequality).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.36)

Let ∂m and ∂n be two partial differential operators of orders m := |m| and
n := |n|, respectively. Note that the integrals in formula (12.37) are well defined
for |m|, |n| ≤ 2 by the assumptions in Theorem 8.6. Then,
∫
(∂mJk,m(r, p, Z(s))∂nJ�,m(r, p, Z̃(s))

−∂mJk,m(r, p, Z̃(s))∂nJ�,m(r, p, Z(s)))dp

≤
∣∣∣∣
∫
(∂mJk,m(r, p, Z(s))− ∂mJk,m(r, p, Z̃(s)))∂nJ�,m(r, p, Z̃(s))dp

∣∣∣∣

+
∣∣∣∣
∫
(∂nJ�,m(r, p, Z(s))− ∂nJ�,m(r, p, Z̃(s)))∂mJk,m(r, p, Z̃(s))dp

∣∣∣∣

≤
{∫
(∂mJk,m(r, p, Z(s))− ∂mJk,m(r, p, Z̃(s)))2dp

}1/2

{∫
(∂nJ�,m(r, p, Z̃(s)))2dp

}1/2

+
{∫
(∂nJ�,m(r, p, Z(s))− ∂nJ�,m(r, p, Z̃(s)))2dp

}1/2

×
{∫
(∂mJk,m(r, p, Z̃(s)))2dp

}1/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.37)
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Hence, by our assumptions for |m|, |n| ≤ 2,242

∫
(∂mJk,m(r, p, Z(s))∂nJ�,m(r, p, Z̃(s))

−∂mJk,m(r, p, Z̃(s))∂nJ�,m(r, p, Z(s)))dp

≤ c‖Z(s))− Z̃(s)‖0,� .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(12.38)

Further,

d∑
m=1

∣∣∣∣
∫ ∫

dp�(r)dr(Y (s, r)∇Y (s, r)

−Ỹ (s, r)∇Ỹ (s, r)) · [ 2CZ(s),m DZ̃(s),m − 2CZ̃(s),m DZ(s),m]
∣∣∣∣∣

≤
d∑

m=1

∣∣∣∣
∫ ∫

dp�(r)dr(Y (s, r)

−Ỹ (s, r))∇Y (s, r) · [ 2CZ(s),m DZ̃(s),m − 2CZ̃(s),m DZ(s),m]
∣∣∣∣∣

+
d∑

m=1

∣∣∣∣
∫ ∫

dp�(r)dr Ỹ (s, r)(∇(Y (s, r)

−Ỹ (s, r))) · [ 2CZ(s),m DZ̃(s),m − 2CZ̃(s),m DZ(s),m]
∣∣∣∣∣

=: A + B.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.39)

By (12.38)

A ≤ c‖Z(s)− Z̃(s)‖0,�

d∑
k,�=1

d∑
m=1

|
∫

|Y (s, r)− Ỹ (s, r)| · |∂kY (s, r)|�(r)dr

≤ c‖Z(s)− Z̃(s)‖0,�‖Y (s)− Ỹ (s)‖0,� max
k=1,..,d

‖∂kY (s)‖0,�

(by the Cauchy–Schwarz inequality).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(12.40)

242 Cf. (8.45).
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In B, we integrate by parts to move the partial differentiation from (Y (s, r) −
Ỹ (s, r)) to the other factors:

B ≤
d∑

m=1∣∣∣∣
∫ ∫

dp �(r)dr(Y (s, r)

−Ỹ (s, r))∇Ỹ (s, r) · [ 2CZ(s),m DZ̃(s),m − 2CZ̃(s),m DZ(s),m]
∣∣∣∣

+
∣∣∣∣
∫ ∫

dp �(r)dr(Y (s, r)

−Ỹ (s, r))Ỹ (s, r)[div 2CZ(s),m DZ̃(s),m − div 2CZ̃(s),m DZ(s),m]
∣∣∣∣

+
∣∣∣∣
∫ ∫

dp �(r)dr(Y (s, r)

−Ỹ (s, r))Ỹ (s, r)[ 2CZ(s),m · ∇DZ̃(s),m − 2CZ̃(s),m · ∇DZ(s),m]
∣∣∣∣

+
∣∣∣∣
∫ ∫

dp(∇�(r))dr(Y (s, r)

−Ỹ (s, r))Ỹ (s, r) · [ 2CZ(s),m DZ̃(s),m − 2CZ̃(s),m DZ(s),m]
∣∣∣∣

=: B1 + B2 + B3 + B4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.41)

By (12.38)

B1 ≤ c‖Z(s)− Z̃(s)‖0,� ‖Y (s)− Ỹ (s)‖0,� maxk=1,..,d ‖∂k Ỹ (s)‖0,� ,

Bi ≤ c‖Z(s)− Z̃(s)‖0,�‖Y (s)− Ỹ (s)‖0,�‖Ỹ (s)‖0,� , i = 2, 3, 4.

}
(12.42)

Hence,∣∣∣∣∣
d∑

m=1

∫ ∫
(Y (s, r)∇Y (s, r)

−Ỹ (s, r)∇Ỹ (s, r)) · ( 2CZ(s),m DZ̃(s),m − 2CZ̃(s),m DZ(s),m)

∣∣∣∣∣
≤ c max

k=1,..,d
[‖∂kY (s)‖0,�

+‖∂k Ỹ (s)‖0,� ]‖Z(s)− Z̃(s)‖0,�‖Y (s)− Ỹ (s)‖0,� .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.43)

Obviously, we obtain as in (12.43)
∣∣∣∣∣

d∑
m=1

∫ ∫
(Y (s, r)∇Ỹ (s, r)

−Ỹ (s, r)∇Y (s, r)) · ( 2CZ(s),m DZ(s),m − 2CZ̃(s),m DZ̃(s),m)

∣∣∣∣∣
≤ c max

k=1,..,d
[‖∂kY (s)‖0,�

+‖∂k Ỹ (s)‖0,� ]‖Z(s)− Z̃(s)‖0,�‖Y (s)− Ỹ (s)‖0,� .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.44)
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The integrand in the last integral of (12.25) can be rewritten as follows

(Y (s, r)DZ̃(s),m − Ỹ (s, r)DZ(s),m)(∇Ỹ (s, r) · 2CZ(s),m −∇Y (s, r) • 2CZ̃(s),m)

= [(Y (s, r)− Ỹ (s, r))DZ̃(s),m + Ỹ (s, r)(DZ̃(s),m − DZ(s),m)]
×[∇(Ỹ (s, r)− Y (s, r)) • 2CZ(s),m + ∇Y (s, r) • ( 2CZ(s),m − 2CZ̃(s),m)].

By (12.6) we simplify:∫ ∫
(Y (s, r)− Ỹ (s, r))DZ̃(s),m[∇(Ỹ (s, r)− Y (s, r))] • 2CZ(s),mdp �(r)dr

= −1
2

∫ ∫
(Y (s, r)− Ỹ (s, r))2 DZ(s),m DZ̃(s),mdp �(r)dr

−1
2

∫ ∫
(Y (s, r)− Ỹ (s, r))2 2CZ(s),m • (∇DZ̃(s),m)dp �(r)dr

−1
2

∫ ∫
(Y (s, r)− Ỹ (s, r))2 2CZ(s),m • (∇�(r))DZ̃(s),m)dp dr

(integrating by parts).

Hence,∫ ∫
(Y (s, r)− Ỹ (s, r))DZ̃(s),m[∇(Ỹ (s, r)− Y (s, r))] • 2CZ(s),mdp �(r)dr

≤ 1
2

∫ ∫
(Y (s, r)− Ỹ (s, r))2| 2CZ(s),m • ∇DZ̃(s),m |�(r)dp dr

+1
2

∫ ∫
(Y (s, r)− Ỹ (s, r))2|DZ(s),m DZ̃(s),m |dp �(r)dr

+1
2

∫ ∫
(Y (s, r)− Ỹ (s, r))2| 2CZ(s),m • ∇�(r)|DZ̃(s),mdp dr

≤ c‖Y (s)− Ỹ (s)‖2
0,� ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.45)

employing (15.46) in addition to the boundedness assumptions on the moments of
the derivatives of J . The other terms in the last integral of (12.25) can be rewritten
as in the derivation of (12.43). Therefore,
∣∣∣∣∣

d∑
m=1

∫ ∫
(Y (s, r)DZ̃(s),m − Ỹ (s, r)DZ(s),m)

(∇Ỹ (s, r) • 2CZ(s),m − ∇Y (s, r) • 2CZ̃(s),m)

∣∣∣∣∣
≤ c max

k=1,..,d
[‖∂kY (s)‖0,� + ‖∂k Ỹ (s)‖0,� ]‖Z(s)− Z̃(s)‖0,� ‖Y (s)− Ỹ (s)‖0,� .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.46)
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Altogether, we can bound the right-hand side of (12.25) as follows
∣∣∣∣∣

d∑
m=1

(I I1,3,m(s)+ I I1,4,m(s)+ I I2,3,m(s)+ I I2,4,m(s))

+
d∑

m=1

(I I3,4,m(s)+ I I4,4,m(s)+ I I3,3,m(s)+ I I4,3,m(s))

∣∣∣∣∣
≤ c max

k=1,..,d
[‖∂kY (s)‖0,� + ‖∂k Ỹ (s)‖0,� ]

‖Z(s)− Z̃(s)‖0,�‖Y (s)− Ỹ (s)‖0,� .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.47)

obtaining a bound for the right-hand side of (12.28) is easier. Following the preced-
ing steps, we obtain

d∑
m=1

∫ ∫ (
Y (r, s)DZ(s),m − Ỹ (s, r)DZ̃(s),m

)2dp �(r)dr

≤ 2
d∑

m=1

∫ ∫ (
Y (r, s)− Ỹ (s, r)

)2 D2
Z(s),mdp �(r)dr

+2
d∑

m=1

∫ ∫
Ỹ 2(s, r)(DZ(s),m − DZ̃(s),m)

2dp �(r)dr

≤ c‖Ỹ (s)‖2
0,� [‖Z(s)− Z̃(s)‖2

0,� + ‖Y (s)− Ỹ (s)‖2
0,� ].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.48)

Using |ab| ≤ 1
2 (a

2 + b2) for the upper bounds, we obtain the final bound for the
deterministic (diffusion) integrals in (12.2):

∫ t

0
<

d∑
k,�=1

∂2
k,�(Dk,�(Z(s))Y (s)

−Dk,�(Z̃(s))Ỹ (s)),Y (s)− Ỹ (s) >0,� ds

+
d∑

m=1

∫ t

0

∫ ∫
(∇ • (Y (r, s)J·,m(r, p, Z(s))

−Ỹ (r, s)J·,m(r, p, Z̃(s))))2dp �(r)dr ds

≤ c
∫ t

0
max|m|≤2

[‖∂mY (s)‖0,� + ‖∂mỸ (s)‖0,� + 1
]

[‖Y (s)− Ỹ (s)‖2
0,� + ‖Z(s)− Z̃(s)‖2

0,�
]
ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.49)
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It remains to estimate I I I (s) in (12.2). We obtain

I I I (s)

=
∫
[(∇Y (s, r) • F(r, Z(s))

−∇Ỹ (s, r) • F(r, Z̃(s)))][Y (s, r)− Ỹ (x, r)]�(r)dr

+
∫
[Y (s, r)div F(r, Z(s))

−Ỹ (s, r)div F(r, Z̃(s))][Y (s, r)− Ỹ (x, r)]�(r)dr

=
∫
[(∇(Y (s, r)− Ỹ (x, r))) • F(r, Z(s))

+(∇Ỹ (s, r)) • (F(r, Z(s))− F(r, Z̃(s)))][Y (s, r)− Ỹ (x, r)]�(r)dr

+
∫
[(Y (s, r)− Ỹ (x, r))div F(r, Z(s)

+Ỹ (s, r)(div F(r, Z(s)− div F(r, Z̃(s))][Y (s, r)− Ỹ (x, r)]�(r)dr.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.50)

By the same simple integration by parts and (12.6), we obtain from (12.49) and
the assumptions of Lemma 8.10 (cf. (8.45))

|〈∇ • (Y (s)F(·, Z(s)))− ∇ • (Ỹ (s)F(·, Z̃(s))), Y (s)− Ỹ (s)〉0,� |
≤ c maxk=1,..,d [‖∂k Ỹ (s)‖0,� ][‖Y (s)− Ỹ (s)‖2

0,� + ‖Z(s)− Z̃(s)‖2
0,� ].

}

(12.51)

Altogether, (12.49) and (12.51) imply the estimate

‖Y (t)− Ỹ (t)‖2
0,�

≤ c
∫ t

0
max
|m|≤2

[‖∂mY (s)‖0,� + ‖∂mỸ (s)‖0,� + 1]
×[‖Y (s)− Ỹ (s)‖2

0,� + ‖Z(s))− Z̃(s)‖2
0,� ]ds

+‖Y (0)− Ỹ (0)‖2
0,� + martingale.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(12.52)

We stop

τN := inf{t ≥ 0 : max
|m|≤2

[‖∂mY (s)‖0,� + ‖∂mỸ (s)‖0,� + 1] ≥ N }. (12.53)

Now Gronwall’s inequality implies (8.48).
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Remark 12.1. Expression (12.3) can be estimated without the associated quadratic
variation term:

∣∣∣∣∣∣
d∑

k,�=1

〈Dk,�(Z(s))∂kY (s)− Dk,�(Z̃(s))∂k Ỹ (s), ∂�Y (s)− ∂�Ỹ (s)〉�
∣∣∣∣∣∣

≤
∣∣∣∣∣∣

d∑
k,�=1

〈[Dk,�(Z(s))− Dk,�(Z̃(s))]∂kY (s), ∂�Y (s)− ∂�Ỹ (s)〉�
∣∣∣∣∣∣

+
∣∣∣∣∣∣

d∑
k,�=1

−〈Dk,�(Z̃(s))∂k[Y (s)Ỹ (s)], ∂�Y (s)− ∂�Ỹ (s)〉�
∣∣∣∣∣∣

≤ c max|m|≤2
‖∂mY (s)‖0,� [‖Z(s)− Z̃(s)‖2

0,� + ‖Y (s)− Ỹ (s)‖2
0,� ],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.54)

where we used the previous calculations in the last step. In this formal manipulation
we may replace Dk,�(Z(s)) by σ⊥(Z(s)), and we obtain under the assumptions of
Theorem 8.20 also strong uniqueness in the coercive case. 
�



Chapter 13
Comments on Other Approaches to SPDEs

SPDEs are classified by formal criteria such as linear, semilinear, quasilinear, and
nonlinear. Each class is divided into subclasses, depending on whether the driving
noise is a regular Brownian motion or cylindrical Brownian motion.

The comments in this section are not meant to be a complete overview of the field
of SPDEs in its present state; although, in view of the absence of such an overview,
this might be a desirable goal. Instead, we will review a small “random” sample of
results. This may help the reader to learn about some other approaches to SPDEs.
The approaches were motivated either by some kind of physical model or by the
desire to generalize deterministic PDEs to SPDEs, adding a stochastic term to the
right-hand side of the PDE. The latter approach is formally similar to the transition
from an ordinary differential equation (ODE) to a stochastic ordinary differential
equation (SODE). Although the present book is motivated by modeling problems,
it is somewhat easier to classify SPDEs first in a formal manner by considering a
time-dependent PDE and adding a stochastic term. In fact, all the models we will
be considering may be formally represented in this way. The reader may also wish
to consider the book, edited by Carmona and Rozovski (1999), which contains six
papers, written by leading experts in their fields. Four of them are on models and
two papers cover different mathematical approaches.

13.1 Classification

Let O ⊂ Rd be some domain and X (t, r) be some Rm-valued (random) field, where
r ∈ B and t ≥ 0. For most of what follows we assume that B = Rd , and we
will point out whenever this assumption does not hold. Â(t, X, r,∇X,∇∇T X, ω)
is some Rm-valued functional. This functional describes the deterministic rate of
change in our SPDE. For the stochastic rate of change we initially assume that
W (t, r) is a Brownian motion1 in t for fixed r and measurable in all arguments. Later

1 An equivalent term for W (·, ·) is Wiener process.
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292 13 Comments on Other Approaches to SPDEs

we will somewhat modify this description to a more rigorous infinite dimensional
setup. Further, let B̂(t, X, r,∇X, ω) be a suitable linear operator valued functional
such that B̂(t, X, r,∇X, ω)[W (t + dt, ·)− W (t, ·)] ∈ Rm . As before, we write

W (dt, ·) := W (t + dt, ·)− W (t, ·).
Using this notation, the SPDEs we are mainly interested in are of second-order

parabolic type. We make some additional comments and give references to some
SPDEs of hyperbolic type as well. Second-order parabolic SPDEs are usually cast
in the form of the following initial value problem:

dX = Â(t, X, ·,∇X,∇∇T X, ·)dt + B̂(t, X, ·,∇X, ·)W (dt, ·),
X (0) = X0.

}
(13.1)

We assume that all quantities are adapted to a stochastic filtration (Ω,F ,Ft , P)
and that the stochastic differential is to be taken in the sense of Itô. In addition, we
need to impose boundary conditions, if O != Rd . The generalization of this scheme
to higher order PDE operators is simple and will not be discussed here. With the
exception of some recent results in stochastic fluid mechanics, all functionals will
be real valued, i.e., m = 1. In the following classification we assume m = 1, since
the vector valued case can be classified by a straightforward generalization. Let us
first assume B̂ ≡ 0. (13.1) then becomes the deterministic PDE

∂
∂t Y = Â(t, Y, ·,∇Y,∇∇T Y, ·),

Y (0) = Y0.

}
(13.2)

Let us now assume that Â ≡ 0. Expression (13.1) then becomes the purely sto-
chastic equation

dZ = B̂(t, Z , ·,∇Z , ·)W (dt, ·),
Z(0) = Z0.

}
(13.3)

Note that we wrote Y instead of X in (13.2) and Z instead of X in (13.3). This
change of notation is convenient, as there are many cases where one can decompose
(13.1) into a deterministic equation (13.2) and a purely stochastic equation (13.3).
Assuming that both equations are uniquely solvable in a suitably chosen state space,
the method of fractional steps2 may be used to obtain a solution of (13.1). In what
follows we use the decomposition of (13.1) into (13.2) and (13.3) to classify the
SPDEs given by (13.1).

If Â is a nonlinear functional in the variables ∂2
k�X , then (13.2) is called nonlin-

ear. Next, suppose Â can be written as

Â(t, Y, ·,∇Y,∇∇TY, ·) =
d∑

k,�=1
∂2

k�[Dk,�(t, Y, ·, ·)Y ] + B̂1(t,Y, r,∇X, ω),

}

(13.4)

2 Cf. Goncharuk and Kotelenez (1998) and Chap. 15.3 of this book.
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where B̂1(t, Y, r,∇Y, ω) is a real valued functional, similar to B̂(t,Y, r,∇Y, ω) and
Dk,�(t, Y, r, ω) is a symmetric and nonnegative definite matrix. In this case, (13.2)
is called quasilinear.

If the diffusion matrix Dk,�(t, Y, r, ω) in (13.4) does not depend on Y and
B̂1(t, Y, r,∇Y, ω) is nonlinear in the first-order derivatives, we call (13.2) semi-
linear of order 1. If B̂1(t, Y, r,∇Y, ω) does not depend on ∇Y but it is nonlinear in
Y we call (13.2) semilinear of order 0. If B̂1(t, Y, r,∇X, ω) is linear in ∇Y and Y
(13.2) will be called linear.

The same classification can be utilized with respect to the functional B̂(t, X, r,
∇X, ω), namely into nonlinear, quasilinear, and semilinear of order 0. However,
the assumptions on W (·, ·) generate additional subclasses. To differentiate between
two types of W (t, ·), as has been done for most classes of SPDEs, we consider suit-
able spaces of functions or distributions in the space variable r , the most common of
which is L2(O, dr), i.e., the space of real-valued functions, defined on O, which are
square integrable with respect to the Lebesgue measure dr . The latter space is a real
separable Hilbert space, and most of the other function and distribution spaces may
be defined as real valued Hilbert spaces, where the step to L p-spaces is not difficult.
Therefore, we change the previous space–time setup to an infinite-dimensional one
and, to keep things simple, we assume for most of what follows that the state space
is a real separable Hilbert space (H, 〈·, ·〉H with scalar product 〈·, ·〉H. We call an
H-valued Brownian motion (Wiener process) W (·) regular if the covariance oper-
ator QW of W (1) is nuclear, which is often also called “trace-class”. QW is by
definition nuclear on H if, for a given complete orthonormal system of vectors {φn},

∑
n

‖QWφn‖H <∞. (13.5)

If QW is not nuclear, we call W (·) cylindrical. W (·) is called a standard cylin-
drical Brownian motion if QW = I , where I is the identity operator on H.3 All we
need to do now is to combine the various cases from (13.2) and (13.3), writing the
class from (13.2) in the first coordinate, the class from (13.3) in the second coor-
dinate and the type of Wiener process or Brownian motion in the third coordinate.
Further, if B̂1(t, Y, r,∇Y, ω) ≡ I , where I is the identity operator on H, we will
just write I instead of B̂. Thus, in our somewhat simplified setting, we obtain the
following family of classes:

{( Â, B̂,W ) : Â ∈ {N L , QL , SL1, SL0, L},
B̂ ∈ {N L , QL , SL0, L , I }, W ∈ {C, R}},

(13.6)

where we used the abbreviations,
N L := nonlinear, QL := quasilinear, SL1 := semilinear of order 1, SL0 :=

semilinear of order 0, L := linear, I is the identity operator, R := regular, C :=
cylindrical.

In addition, we will quote some work on stochastic wave equations.

3 Cf. Sect. 15.2.2.
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Not all classes of SPDEs in the above classification may be made well posed in
full generality, even for “nice” functionals Â and B̂. The first obstacle to overcome
is to give a meaning to (13.1) if W (t) is cylindrical. To see which problems may
arise as a result of the non regularity of W (·), let us first discuss the simplest SPDE,
namely a linear one.

13.1.1 Linear SPDEs

In the above classification, linear SPDEs are described by a linear partial second-
order differential operator A(t, ω), B̂ ≡ IH, where IH is the identity on H, and
by a regular or cylindrical Brownian motion W (t). Assuming in addition that
A(t, ω) ≡ A, independent of t and ω, we obtain (infinite dimensional) Langevin
equation:

dX = AXdt + dW,
X (0) = X0.

}
(13.7)

Suppose that A is a closed operator (closing, if necessary, with respect to some
boundary conditions, etc.) and that A generates a strongly continuous semigroup
U (t). The mild solution of (13.7), if it exists, is by definition the solution of the
following integral equation:

X (t) = U (t)X0 +
∫ t

0 U (t − s)dW (13.8)

The right-hand side of (13.8) is often called the variation-of-constants for-
mula, and the solution of (13.2), if it exists, is often called an infinite dimensional
Orstein–Uhlenbeck process. We may assume that X0 is a square integrable H-valued
F0-measurable random variable. The mild solution of (13.7) exists exactly when
the stochastic convolution integral on the right-hand side of (13.8) is a well-defined
H-valued process.

It is important to note that in (13.8) U (t − s) becomes anticipating if A de-
pends on ω and t and is adapted to Ft . Therefore, the first restrictive assumption
in the semigroup approach is the assumption that A or A(t) does not depend on
ω. However, if the pair is coercive4 we can still solve infinite dimensional Langevin
equations, using the variational formulation. In contrast, the semigroup approach al-
lows to solve (13.8) also for noncoercive cases, like hyperbolic equations, etc.5 We
will continue our discussion of (13.7) under the previous assumption that A does
not depend on ω.

Recall that QW is the covariance operator of W (1) and denote by “Tr” the trace
of a linear operator on H, if it exists. A necessary and sufficient condition for the
existence of a mild solution of (13.6) on some interval [0, T ] is the assumption that6

4 Cf. Chap. 8.
5 Cf. Kotelenez (1985), Sect. 3, and Da Prato and Zabczyk (1992).
6 Cf. Da Prato and Zabczyk (1992), Sect. 5.1.2.
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∫ T
0 Tr(U (s)QW U∗(s))ds <∞. (13.9)

The nomenclature already indicates the way equations (13.7) and (13.8) are gen-
eralizations of corresponding linear equations in Rd . Naturally, the problem is easier
if we assume that QW is already nuclear, i.e., that the H-valued Wiener process is
regular. This assumption implies (13.9).

Under the assumption that W (·) is regular equations of type (13.7) and (13.8) are
generalizations of corresponding linear equations in Rd . Expression (13.7)/(13.8)
and with possible time-dependent families of unbounded operators A(t) and two-
parameter semigroups U (t, s) and additional linear deterministic terms were consid-
ered by Curtain and Falb (1971), Chow (1976), Zabczyk (1977) and others (cf. also
Curtain and Pritchard (1978) for more references and applications in linear systems
theory). The problem of continuous versions for (13.8) under the assumption of a
regular Wiener process (and its generalization to continuous locally square inte-
grable Hilbert space valued martingales) was solved by the author7 under the as-
sumption that the (two-parameter) semigroup U (t, s) is of contraction type (cf. also
for similar results Ichikawa (1982), Kotelenez (1984), and Tubaro (1984)). Con-
tinuous versions for the general case of (13.8) were obtained by Da Prato et al.
(1987). The reader may also consider Walsh (1981) for space–time regular versions
of equations of type (13.8) for a standard cylindrical Brownian motion W (·). To our
knowledge, Dawson (1972) was the first to obtain space–time regular solutions of a
generalization of (13.7)/(13.8) to the following case: Â linear and independent of t
and ω, B̂ semilinar of order 0 and W (·) a standard cylindrical Brownian motion.

Note that the condition (13.9) appears naturally if we formally compute the mean
square of the norm of

∫ t
0 U (t − s)dW in H. For finite mean square we may also

solve (13.8) for some cylindrical Wiener processes, provided the semigroup T (t)
is sufficiently smoothing so that Expression (13.9) holds.8 Expression (13.9) holds
if and only if U (s)QW U∗(s) is nuclear, i.e., if it has finite trace norm. Further, the
mean square of (13.8) is finite if the trace norm U (s)QW U∗(s) is integrable with
respect to dt dP on [0, T ]×Ω . Da Prato (1982) obtains spatial regularity results for
(13.8) and Kotelenez (1987) generalizes some results of Dawson (1972).

Obviously, the requirement of U (s)QW U∗(s) being nuclear with integrable trace
norm restricts the choice of admissible covariance operators QW . We explain this
by two examples, following Kotelenez (1985), Sect 3.

(i) Suppose A is self-adjoint and has a discrete spectrum. Then there is β ≥ 0 such
that β − A has a strictly positive spectrum of eigenvalues 0 < λ1 < λ2 < · · ·,
where λn → ∞. Here β − A := β IH − A, where IH is the identity operator
on H. Further, there is a complete orthonormal system (CONS) of eigenvectors
{Φn} in H0. For γ ≥ 0 set

H̃γ := { f ∈ H0 : |(β − A)γ /2 f |0 <∞,
7 Cf. Kotelenez (1982).
8 Cf. again Da Prato and Zabczyk (loc. cit.) and references therein.
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where (β − A)γ /2 is the fractional power of β − A.9 Endowed H̃γ with the
scalar product

〈, g〉γ := 〈(β − A)γ /2 f, (β − A)γ /2g〉0.
H̃γ becomes a real separable Hilbert space. Set

# := ∩γ≥0H̃γ .
Denote by #′ the strong dual of #. For γ ≥ 0, set

H̃−γ := {F ∈ #′ : sup
| f |γ=1

|〈F, f 〉| <∞,

where 〈·, ·〉 denotes the extension of 〈·, ·〉0 to a duality between #′ and #.
Finally, we identify H0 with its strong dual H′

0 and we obtain the scale of
Hilbert spaces

# ⊂ H̃γ ⊂ H0 ∼= H′
0 ⊂ H̃−γ ⊂ #′ (13.10)

with dense continuous imbeddings. Let {φγ,n} be a CONS in H̃γ , where now
γ ∈ R. The assumptions on the spectrum imply that there is a β < γ such that

∑
n

|φγ,n|2β <∞,

i.e., the imbedding H̃γ ⊂ H̃β is Hilbert Schmidt. Since the semigroup U (t)
commutes with the fractional powers (β−A)γ /2 it can be extended ( restricted)
to H̃γ preserving the operator norm. All we need to do now is to assume that
QW can be defined as a bounded operator from H0 into H̃γ for some positive γ .
We then choose a positive β >γ such that the imbedding H̃−γ ⊂ H̃−β is Hilbert
Schmidt. On H̃−β , W (·) is regular. We now extend (13.7) onto H̃−β and solve
it via (13.8) on H̃−β .

A typical example for A is the Laplacian on a bounded domain O ⊂ Rd such
that its closure with respect to boundary conditions is a self-adjoint operator.

(ii) Let A = 1
2/ and O = Rd . We consider the Laplacian / to be a closed operator

on H := H0 = L2(Rd , dr). Setting

G(t, r) := (2π t)−d/2 exp
[
−|r |2

2t

]
, (13.11)

the semigroup U (t) is given by

(U (t) f )(r) = ∫
G(t, r − q) f (q)dq, (13.12)

where f ∈ H0. In difference from the previous example, A and U (t) do not
have a discrete spectrum.10 Therefore, a direct copy of the scale (13.10) does

9 Cf., e.g., Tanabe (1979), Sect. 2.3.
10 The spectrum of 1

2/ on Rd is the set (−∞, 0]. Cf., e.g., Akhiezer and Glasman (1950),
Chap. VI.
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not yield Hilbert-Schmidt imbeddings between Hilbert spaces on the scale. The
remedy is found by using |r |2 − / instead of β − /, where |r |2 is considered
a multiplication operator. This operator has a discrete spectrum, and the CONS
of eigenfunctions are the well-known normalized Hermite functions. Thus, we
define for γ ∈ R the fractional powers (|r |2 − /)γ /2. We now choose γ ≥ 0,
denote corresponding Hilbert spaces by Hγ and obtain the Schwarz scale of
distribution spaces11

S ⊂ Hγ ⊂ H0 ∼= H′
0 ⊂ H−γ ⊂ S ′. (13.13)

The imbedding ⊂ Hγ ⊂ Hβ is Hilbert Schmidt if, and only if, γ >β + d.
Although U (t) does not commute with (|r |2 − /)γ /2 it may still be extended
and restricted to a strongly continuous semigroup on the corresponding spaces
Hγ , which is enough to consider (13.7) on a corresponding Hilbert distribution
space and solve it via (13.8).

We have seen in both examples that linear SPDEs may be solvable for a large
class of cylindrical Brownian motions by simply redefining them on a suitable
Hilbert space of distributions. Langevin equations of type (13.7) arise naturally
in central limit phenomena in scaling limits for the mass distribution of various
particle systems. We refer the reader to Itô (1983, 1984) and to the papers by
Martin-Löf (1976), Holley and Stroock (1978), Gorostiza (1983), Kotelenez (1986,
1988), Bojdecki and Gorostiza (1986), Gorostiza and León (1990), and Dawson
and Gorostiza (1990). There are many papers which deal with properties of infinite
dimensional Ornstein–Uhlenbeck processes. Cf., e.g., Curtain (1981), Schmuland
(1987), Bojdecki and Gorostiza (1991), Iscoe and McDonald (1989), and the refer-
ences therein.

13.1.2 Bilinear SPDEs

Let B(X, dW ) be a bilinear functional on H×H. The prototype of a bilinear SPDE
can be described as follows:

dX = AX dt + B(X, dW ),

X (0) = X0,

}
(13.14)

Sometimes SPDEs of type (13.14) are also called linear in the literature. We
find such a term confusing. We have already seen that for many self-adjoint oper-
ators A the linear SPDE may be redefined on a suitable distribution space where
the original cylindrical Brownian motion becomes a regular one. In some cases of
bilinear SPDEs, one may succeed in generalizing the variations-of-constants, con-
sidering the two-parameter random semigroup (also called random evolution opera-
tor) generated by the bilinear SPDE (cf. Curtain and Kotelenez (1987)). However, in

11 Cf. (15.32) in Sect. 15.1.3. The completeness of the normalized Hermite functions is derived in
Proposition 15.8 of Sect. 15.1.3.



298 13 Comments on Other Approaches to SPDEs

many cases such a procedure may not be possible. Note that the bilinear SPDE with
B(X, dW ) = ∇X · dW is a special case of our equation (8.26) for J , Dk� indepen-
dent of X and F ≡ 0, where the noise term can be cylindrical. For more examples of
(13.14) with regular W (·), cf. Da Prato et al. (1982), Balakrishnan (1983), Üstünel
(1985), and the references therein.

The difference between the linear SPDE (13.7) and the bilinear SPDE (13.14) is
best explained by the following special case of (13.14):

dX = AXdt + σ(X)dW ),

X (0) = X0,

}
(13.15)

where σ is some nice function of x ∈ R and σ(X)dW is understood as a pointwise
multiplication. We assume that W (t) is a standard cylindrical Brownian motion on
H0. Recall that, by our Fourier expansion (4.28), W (·) may be represented by our
standard space–time white noisew(dr, dt).12 Further, to make things somewhat eas-
ier suppose that the semigroup generated by A, U (t) has a kernel G(t, r) (the fun-
damental solution, associated with the Cauchy problem for A, I.e., U (t) is cast in
the form of the following integral operator

(U (t) f )(r) :=
∫

G(t, r − q) f (q)dq,

where f ∈ H0. In this case the mild solution of (13.15), if it exists, by definition, is
the solution of

X (t) =
∫

G(t, r − q)X0(q)dq +
∫ t

0

∫
G(t − s, r − q)σ (X (t, q)w(dq, ds).

(13.16)
To see whether (13.16) can be well posed for nontrivial multiplication operators

σ(·), we take a random field Y (t, q), measurable, adapted, etc. We compute the
variance of the stochastic integral and obtain as a condition to solve the problem on
H0 := L2(Rd, dr) that the variance be finite, i.e.,

E
∫ [∫ t

0

∫
G(t − s, r − q)σ (Y (t, q)w(dq, ds)

]2

dr

=
∫ ∫ t

0

∫
G2(t − s, r − q)σ 2(Y (s, q))dq ds dr <∞.

(13.17)

For the important special case

A = D/, and G(t, r) := (4πDt)−d/2 exp
[
− |r |2

2Dt

]
. (13.18)

It is hard to guarantee a priori the condition (13.17). Take, e.g., σ(·) ≡ 1. We are then
dealing with a special case of the linear SPDE (13.7) and the Integral on the right-
hand side of (13.17) equals ∞. Note that this problem would not have appeared

12 Cf. also (15.69) in Sect. 15.2.2.
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if d = 1 and the SPDE would have been restricted to a bounded interval with
Neumann or Dirichlet boundary conditions. Walsh (1986) shows that for d = 1 and
G as in (13.15) the convolution integral

∫
G(t − s, r − q)w(dq, ds)

is function valued. Following Kotelenez (1992a),13 we choose the weight function
�(r) := (1 + |r |2)−γ with γ > d/2. This implies

∫
�(r)dr <∞. Instead of

working with H0 = L2(R, dr) we now analyze (13.16) on the weighted L2 space
H0,� = L2(R,�(r)dr). Young’s inequality14 implies that for d = 1 and G as
in (13.18) the condition (13.17) holds, i.e., at least for bounded σ(·) the problem
(13.16) may be well posed. The generalization to unbounded σ(·) and to d > 1 and
higher order partial differential operators and pseudodifferential operators has been
treated by Kotelenez (1992a). Finally, for the Laplacian on a bounded domain in
Rd , closed with respect to Neumann boundary conditions, and d > 1 the linear con-
volution is necessarily distribution valued. In this problem G from (13.18) must be
replaced by the corresponding fundamental solution.15

Finally, Nualart and Zakai (1989) show that (13.15) for A is in (13.18) and
σ(x) ≡ x has a solution only in the space of generalized Brownian functionals
if H0 := L2Rd , dr), where d ≥ 2 and W (t) is the standard cylindrical Brownian
motion on H0. In other words, we cannot construct some state space (like S ′) and
obtain solutions of (13.14) as ordinary random variables, defined on S ′).

13.1.3 Semilinear SPDEs

Semilinear SPDEs may be written as

dX = AX + B1(·, X,∇X)dt + B(·, X,∇X)dW,

X (0) = X0,

}
(13.19)

The type (SL0, SL0, R) is probably the simplest and has been studied early
on (cf. Chojnowska-Michalik (1976)). The difficulty increases if we consider
(SL1, SL0, R) or (SL1, SL1, R). Both types have also been investigated over many
years, and we wish to mention first of all the variational approach to those SPDEs
in the thesis of Pardoux (1975) as well as Krylov and Rozovsky (1979), Gyöngy
(1982), and the references therein. Chow and Jiang (1994) obtain space–time
smooth solutions. For the semigroup approach see the paper by Da Prato (1982)
and the book by Da Prato and Zabczyk (1992), which contains a rather complete
description of those equations as well as many interesting references.

13 Cf. also our Chaps. 8, 9, and Sect. 15.1.4 for the use of H0,� .
14 Cf. Theorem 15.7 in Sect. 15.1.2.
15 Cf. Walsh (1986), Sect. 3.
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As previously mentioned in the comments on linear SPDEs, Dawson (1972)
obtains existence, uniqueness and smoothness for a class of SPDEs of type
(SL0, SL0,C), using a semigroup approach. The Brownian motion in Dawson’s
paper is standard cylindrical, and his results hold for d = 1 if A is a second-
order elliptic partial differential operator. Dawson also considers higher dimensions
and, accordingly, A is an elliptic partial differential operator of higher order.
Marcus (1974) studies stationary solutions of the mild solution of an SPDE of type
(SL0, SL0,C). Generalization of Dawson’s result have been obtained by Funaki
(1983) for d = 1, Kotelenez (1987, 1992a,b) in a more general setting and by oth-
ers. Kunita (1990) obtains solutions of SPDEs of type (SL1, SL1,C) and first-order
SPDE for regular and certain cylindrical Brownian motions which are equivalent to
our cylindrical Brownian motion W (t) := ∫ t

0

∫
J (·, q, s)w(dq, ds).16 Kunita’s ap-

proach is based on the method characteristics. First-order SPDEs are also analyzed
by Gikhman and Mestechkina (1983), employing the method of characteristics.
Krylov (1999) provides an analytic approach to solve a large class of semilinear
SPDEs on L p-spaces with p ≥ 2. For more work in this direction, cf. Kim (2005).

We mention here Dawson’s (1975) paper in which he introduces the Dawson–
Watanabe SPDE (to be commented on later). This SPDE describes a scaled system
of branching Brownian motions. The driving term is standard cylindrical, A = /,
and Dawson shows the existence of the process in higher dimensions as well, al-
though the corresponding SPDE seems to be ill posed. For d = 1, however, one
may solve the SPDE and obtain the Dawson–Watanabe process as a solution (cf.
Konno and Shiga (1988) and Reimers (1989)).

For W (·) being standard cylindrical, type (SL1, I,C) has a solution if d = 1,
which can be shown by semigroup methods as well as variational methods (cf.
Da Prato and Zabczyk (1992)). Note that the SPDEs driven by a Brownian mo-
tion and with deterministic coefficients are Markov processes in infinite dimensions
with well-defined transition probabilities. Da Prato and Zabczyk (1991) analyze
a semilinear SPDE of the type (SL1, I, R) or (SL1, I,C) so that our condition
(13.9) holds. The semigroup, defined through the transition probabilities is called
the Kolmogorov semigroup. This semigroup, P(t) is defined on Cb(H;R), the space
of bounded continuous real-valued functions on H. Let f ∈ Cb(H;R) and δ and δ2

denote the first- and second-Fréchet derivatives with respect to the space variable
X ∈ H. Then P(t) satisfies the following equation:

∂
∂t (P(t) f )(X) = 1

2 Tr(QW δ2(P(t) f )(X)+ 〈AX + B1(X), δ(P(t) f )(X)〉H,
(P(0) f )(X) = f (X).

}

(13.20)

Dropping initially the semilinear part, the SPDE becomes a linear SPDE. Its
Kolmogorov semigroup, P2(t), is shown to have certain smoothing properties (sim-
ilar to analytic semigroups), and the Kolmogorov semigroup for the semilinear

16 Cf. (7.4) and (7.13) in Chap. 7.
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SPDE may be obtained by variation of constants as the mild solution of a linear
deterministic evolution equation:

(P(t) f )(·) = (P2(t) f )(·)+ ∫ t
0 P2(t − s)(〈B1(·), δ(P(t) f )(·)〉Hds. (13.21)

For more details and results, cf. Da Prato (2004).
For d = 2, Albeverio and Röckner (1991) employ Dirichlet form methods to

weak solutions to an SPDE related to an SPDE in Euclidean field theory. Mikulevi-
cius and Rozovsky (1999) analyze a class of SPDEs driven by cylindrical Brownian
motions in the strong dual #′ of a nuclear space # (cf. our previous (13.10)). A
large portion of the book by Kallianpur and Xiong (1995) treats SPDEs in a similar
framework.

Finally, let us also mention some qualitative results. Wang et al. (2005) consider
two families of semilinear PDE’s. The first one is defined on a domain with (peri-
odically placed) holes, and the second one is the weak (homogenization) limit of
the first one, as the size of the holes tends to 0. Invariant manifolds for semilinear
SPDEs with regular Brownian motion have been obtained by Duan et al. (2003,
2004).

13.1.4 Quasilinear SPDEs

Quasilinear SPDEs can be written as

dX = A(t, X)X + B1(·, X,∇X)dt + B(·, X,∇X)dW,

X (0) = X0,

}
(13.22)

where for fixed f ∈ H A(t, f ) is an unbounded operator, e.g., an elliptic differ-
ential operator. Daletskii and Goncharuk (1994) employ analytical methods in the
analysis of a special case of (13.22) with regular Brownian motion. Further, let us
mention some results, obtained by a particle approach: Dawson and Vaillancourt
(1995), Dawson et al. (2000), Kotelenez (1995a–c 1996, 1999, 2000), Kurtz and
Protter (1996), Kurtz and Xiong (1999, 2001, 2004), Dorogovstev (2004b), and
Dorogovtsev and Kotelenez (2006). Goncharuk and Kotelenez (1998) employ frac-
tional steps in addition to particle and “traditional methods” to derive quasilinear
SPDEs with creation and annihilation.

13.1.5 Nonlinear SPDEs

For the type (NL,NL,R) we refer the reader to a paper by Lions and Souganidis
(2000), who employ a viscosity solution approach. The noise in that setup consists
of finitely many i.i.d. Rd -valued Brownian motions. A direct generalization to the
case of an infinite dimensional regular Brownian motion should not be too difficult.
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13.1.6 Stochastic Wave Equations

Results and more references may be found in Carmona and Nualart (1988a,b),
Marcus and Mizel (1991), Peszat and Zabczyk (2000), Dalang (1999), Dalang
and Walsh (2002), Chow (2002), Dalang and Mueller (2003), Dalang and Nualart
(2004), Dalang and Sanz-Sol (2005), Dalang et al.(2006).

13.2 Models

Applications of SPDEs within a number of different areas are reviewed.

Historically, the development of SPDEs was motivated by two main models:

• The Kushner17 and Zakai equations in nonlinear filtering (cf. Kushner (1967) and
Zakai (1969)).

• The Dawson–Watanabe equation for the mass distribution of branching
Brownian motions (cf. Dawson (1975).

Other models and equations followed. We will start with the nonlinear filtering
equation.

13.2.1 Nonlinear Filtering

Let r(t) be a Markov diffusion process in Rd which is described by the following
SODE:

r(t) = r0 +
∫ t

0
a(r(s), s)ds +

∫ t

0
b(r(s), s)dw̃(ds).

Suppose we observe the Rm-valued process

q(t) :=
∫ t

0
h(r(s))ds + w(t).

w(·) and w̃(·) are assumed to be independent standard Brownian motions with
values in Rd and Rm , respectively. Under these conditions Kushner (1967) obtains
a semilinear SPDE for the normalized conditional density of r(t) based on the ob-
servations of σ {q(s), s ≤ t}, where the linear second-order operator A is the formal
adjoint of the generator of r(·). Zakai (1969) obtains a bilinear SPDE for the unnor-
malized conditional density:

dX (t) = AY (t)dt + Q−1/2h(·)X · q(dt),
X (0) = X0,

}
(13.23)

where Q is the covariance operator of w(·) and X0 is the density of the random
variable r0.

17 The Kushner equation is also known as the “Kushner–Stratonovich” equation.
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Besides the original papers by Kushner and Zakai we refer for more general non-
linear filtering equations to Pardoux (1979), Krylov and Rozovsky (1979), Da Prato
(1982), Da Prato and Zabczyk (1992), Bhatt et al. (1995), and the references therein.
Similar to the approach taken in this book, Kurtz and Xiong (2001) employ a particle
method approach to the solution of the Zakai equation, and Crisan (2006) provides
numerical solutions, based on particle methods.

13.2.2 SPDEs for Mass Distributions

A number of papers have been devoted to stochastic reaction-diffusion phenomena.
The SPDEs in many papers are semilinear of type (SL0, SL0, R), (SL0, SL0,C)
as well as (SL0, I, R) and (SL0, I,C). However, the last two cases, if solvable,
do not have nonnegative solutions and, therefore, cannot describe the distribution
of some matter (cf. Kotelenez (1995b) and Goncharuk and Kotelenez (1998) for an
alternative proof of the positivity of solutions). In contrast, a particle approach auto-
matically has the positivity property. In addition, in a particle approach we describe
the microscopic dynamics first before simplifying the time evolution of the mass
distribution by passing to SPDEs and PDEs. There are at least two directions in the
particle approach to SPDEs:

1. Branching Brownian motions and associated superprocesses
2. Brownian motions with mean-field interaction and associated McKean–Vlasov

equations

1. We will first discuss superprocesses and the Dawson–Watanabe equation.
Dawson (1975) analyzes an infinite system of i.i.d. diffusion approximations
to a system of branching particles. For a set of atomic measures, he obtains the
stochastic evolution equation on M f

dX (t) = αX (t)dt +√
X (t)W (dt),

X (0) = X0.

}
(13.24)

Here X0 is supported by a countable set of points {ai } and α != 0 is the differ-
ence between birth and death rates. The square root is taken with respect to the
mass at the point of support, W (t, ai ) are i.i.d. standard Brownian motions and√

X (t, ai ) is a factor at W (dt, ai ), whence
√

X (t, ·) acts as a multiplication op-
erator on W (dt, ·). The i.i.d assumption implies that W (t, ·) can be extended to a
standard cylindrical Brownian motion (on H0 = L2(Rd , dr)). Through extension
by continuity, Dawson extends the process from (13.24) to starts X0 ∈ M f . The
process (13.24) is a Markov process. Dawson then considers a pure diffusion,
governed by the Laplacian /, which itself is a Markov process. The dynam-
ics of both phenomena are linked through the Trotter product of their respective
Markov semigroups, resulting in an M f -valued Markov process with generator

(A f ) = 〈(/+ α)δ f (X), X〉 + 1
2 Tr(δ2 f )(X). (13.25)
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Formally, this diffusion may be written as a solution to the following SPDE:

dX (t) = (/+ α)X (t)dt +√
X (t)W (dt),

X (0) = X0.

}
(13.26)

There are two difficulties in the interpretation of (13.26). The first and most
important problem is that

√
X (t) is not defined for general measures. The sec-

ond difficulty is that multiplication between measures and distributions is not
defined. Recalling our analysis of the one-dimensional case in (13.15)–(13.18)
we conclude that (13.26) may be well posed for d = 1, and the only problem in
(13.26) is posed by the square root, which is not Lipschitz. As mentioned earlier,
Konno and Shiga (1988) and Reimers (1989) showed existence of a solution of
(13.26) for d = 1. Consequently, the research activities on (13.26) “branched”
into two directions: For d > 1 many papers have been written both on the gener-
alization of (13.26) and on some qualitative properties. For d = 1, it became an
active research area in SPDEs.

In our earlier discussion of bilinear SPDEs we have seen that for d > 1 we
cannot interpret (13.26) as an SPDE, and most of the work in that direction goes
beyond the scope of this book. We just mention Perkins (1992, 1995) who in-
cludes interaction into the dynamics of branching Brownian particles. Further,
Dawson and Hochberg (1979) and Iscoe (1988) analyze the support of measure
valued branching Brownian motion. Cf. also Dawson (1993) for a detailed analy-
sis, many properties and more references.

Blount (1996) obtains for d = 1 a semilinear version of (13.25). For SPDEs of
type (13.25), d = 1, cf. Mueller and Perkins (1992), Donati-Martin and Pardoux
(1993), Shiga (1993), Mueller and Sowers (1995), Mueller and Tribe (1995),
Mueller (2000), Dawson et al. (2003), and the references therein.

2. The second direction in particle methods is the central theme of this book. Apart
from the author’s contributions (cf. Kotelenez (1995–2000)), we need to men-
tion Vaillancourt (1988) and Dawson and Vaillancourt (1995) for a somewhat
different approach. For generalizations of both the author’s and other results, cf.
Wang (1995), Kurtz and Protter (1996), Goncharuk and Kotelenez (1998), Kurtz
and Xiong (1999), Dawson et al. (2000), Kurtz and Xiong (2001), Dorogovtsev
(2004b), and Dorogovtsev and Kotelenez (2006).

13.2.3 Fluctuation Limits for Particles

We discussed earlier the infinite dimensional Langevin equations, which are ob-
tained in central limit theorem phenomena for the mass concentration of particle
systems. Kurtz and Xiong (2004) obtain an interesting generalization of this classi-
cal central limit theorem as follows: Consider the empirical process XN (·) associ-
ated with our system of SODEs (4.2) and the limit X (·) which is a solution of the
quasilinear SPDE (8.54) in Chap. 8. Under some assumptions 1

N (XN −X )(·) tends
to the solution of a bilinear SPDE, whose coefficients depend on X (t). Giacomin
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et al. (1999) obtain a semilinear Cahn–Allen type SPDE with additive white noise
for the fluctuations in a Glauber spin flip system. The space dimension is d = 1
for a rigorous result, and the equation is conjectured to be the limit also for d = 2.
Solvability for d = 2 is not shown.

13.2.4 SPDEs in Genetics

Fleming and Viot (1979) propose a derivation of the frequency distribution of infi-
nitely many types in a population, following Dawson’s approach to measure valued
diffusion. Donelly and Kurtz (1999) obtain a general particle representation which
includes both some Fleming–Viot processes and the Dawson–Watanabe process.

If the domain of types is the bounded interval [0, L] in the Fleming–Viot model,
then this frequency distribution may be represented by the solution of the following
SPDE:

dX (t) = (/+ α)X (t)+ g(X (t))dt +√
X (t)(1 − X (t)W (dt),

X (0, r) = X0(r) ∈ [0, 1],

}
(13.27)

where the Laplacian is closed with respect to homogeneous Neumann boundary
conditions. The term

√
X (t)(1 − X (t)W (dt) is called the random genetic drift. For

W (·) regular (13.27) was solved by Viot (1975) (even in higher dimensions). For
W (t) being standard cylindrical in L2([0, L]; dr), this equation is of the type we
discussed in Sect. 13.2.2.

13.2.5 SPDEs in Neuroscience

Walsh (1981) represents a neuron by the one-dimensional interval [0, L]. He ob-
tains an equation for an electrical potential, X (t, r), by perturbing the (linear) cable
equation by impulses of a current. These impulses are modeled by space–time white
noise times a nonlinear function of the potential:

dX (t, r) = (/− 1)X (t, r)+ g(X (t, r), t)w(dr, dt),
∂
∂r X (0, t) = ∂

∂r X (L , t) = 0,

X (0, r) = X0(r).

⎫⎪⎪⎬
⎪⎪⎭

(13.28)

Under a Lipschitz assumption on g, Walsh obtains existence and uniqueness for
the mild solution of (13.28) as well as space–time smoothness and a version of a
multiparameter Markov property. It was in part this work which motivated Walsh’s
general approach to semilinear SPDEs, driven by space–time white noise and its
generalization, employing variation of constants (cf. Walsh, 1986).

Kallianpur and Wolpert (1984) analyze an Ornstein–Uhlenbeck approximation
to a similar stochastic model, where the neuron can be represented by a compact
d-dimensional manifold and the driving noise is a generalized Poisson process.
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13.2.6 SPDEs in Euclidean Field Theory

These are semilinear SPDEs driven by space–time white noise, i.e., they are of type
(SL1, I,C). As we have already seen in our comments, these equations can be
solvable in space dimension d = 1 by direct SPDEs methods. The nonlinear term
is usually a polynomial g(X) and in higher dimension the powers Xm(r) have to
be replaced by the Wick powers: Xm(r):18 The resulting quantization equation is
written as

dX (t) = (/X (t)+ : g(X (t)) :)dt + W (dt),

X (0) = X0,

and possible self-adjoint boundary conditions.

⎫⎪⎪⎬
⎪⎪⎭

(13.29)

For existence, uniqueness, and properties in space dimension d = 2 we refer
to papers of Albeverio and Röckner (1991), Albeverio et al. (2001), Da Prato and
Debussche (2003), and the references therein. A version of (13.29) with a regular
H0-valued Brownian motion and with an ordinary polynomial has been analyzed
in detail by Doering (1987). This paper also contains a number of interesting com-
ments on the problem of stochastic quantization and Euclidean field theory.

13.2.7 SPDEs in Fluid Mechanics

Monin and Yaglom (1965) treat the statistical approach to turbulence. The veloc-
ity field of a fluid is described by a space–time vector-valued random field. If the
random field is stationary, homogeneous, and isotropic, the correlation matrix has a
particularly simple structure which can be compared with empirical data (cf. Monin
and Yaglom (loc. cit. Chap. 7). Observe that the velocity field is governed by the
Navier–Stokes equations. Solutions of a forced version of these equations with ran-
dom initial conditions may yield stationary, homogeneous and isotropic random
fields as solutions. This begs the question whether the solutions of a suitably forced
version of the Navier–Stokes are consistent with theoretical considerations, based on
the theory of Kolmogorov and Obukhov and its generalizations and whether their
correlation matrices are structurally similar to the empirical data.

If the fluid is incompressible and the forcing is a Gaussian random field which
is white in time, we obtain stochastic Navier–Stokes equations. We recommend the
review paper by Kupiainen (2004) and the references therein as a starting point for
more information on turbulence, homogeneous, and isotropic solutions and (in 2D)
on ergodicity results of stochastically forced Navier–Stokes equations. Let U (t, r)
be the velocity of the fluid. The stochastic Navier–Stokes equations, mentioned
above, are cast in the form

18 Cf. Da Prato and Zabczyk (1992), Introduction, 06, for a definition.



13.2 Models 307

dU (t) = (ν/U (t)− (U · ∇)U −∇ p)dt + W (dt),

∇ · U = 0,

U (0) = U0,

and possible boundary conditions.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(13.30)

Here, p is the pressure of the fluid and ν the kinematic viscosity. A first step
in the derivation of stationary, homogeneous, and isotropic random field solutions
of (13.30) is to show existence of a stationary solution of (13.30) and, if possible,
ergodicity.

Stochastic Navier–Stokes equations of type (13.30) were considered by Chow
(1978) for regular (vector-valued) Brownian motion. Vishik and Fursikov (1980)
show existence and uniqueness (for d = 2) and derive a number of properties. Flan-
doli and Maslowski (1995) obtain an ergodicity result for a 2D version of (13.30).
For more results in the 2D case, cf. Mattingly and Sinai (2001) as well as Da Prato
and Debussche (2002) and the references therein. In the paper by Da Prato and
Debussche the Brownian motion is standard cylindrical. Da Prato and Debussche
(2003) show existence of a solution and ergodicity for d = 3, where the Brownian
motion is regular. Mikulevicius and Rozovsky (2004) consider the fluid dynam-
ics of a fluid particle as a stochastic flow. The time derivative of the flow is gov-
erned by the velocity field of a more general version of (13.30) and by a stochastic
Stratonovich differential. The last term represents the fast oscillating component of
the flow and shall model turbulence. Further, existence and uniqueness results with
regard to the stochastic Navier–Stokes equations with state-dependent noise are ob-
tained by Mikulevicius and Rozovsky (2005).

For convergence of the solutions of the Navier-Stokes equations toward random
attractors, we refer the reader to Schmalfuss (1991), Crauel et al.(1997), Brzeźniak
and Li (2006), and the references therein.

Kotelenez (1995a) analyzes a stochastic Navier–Stokes equation for the vortic-
ity of a 2D fluid,19 employing a particle approach. Apart from the fact that, in the
approximation, the (positive) point masses are replaced positive and negative inten-
sities (for the angular velocities), this equation is a semi–linear version of our SPDE
(8.26). Sritharan and Sundar (2006) consider a 2D Navier–Stokes equations per-
turbed by multiplicative noise and establish a large deviation principle for the small
noise limit. Neate and Truman (2006) employ the d-dimensional stochastic Burg-
ers equation in the study of turbulence and intermittence (cf. also the references
therein).

Baxendale and Rozovsky (1993) consider an SPDE to study the long-time as-
ymptotics of a magnetic field in a turbulent δ-correlated flow of an ideal incom-
pressible fluid.

19 Cf. Chap. 8, (8.15).
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13.2.8 SPDEs in Surface Physics/Chemistry

In many formulations, SPDEs arising from the study of interfaces between two
phases (e.g., vapor–liquid interface) are quasilinear, where the quasilinearity results
from the motion by mean curvature of the interface. Such an SPDE for a sharp inter-
face has been analyzed by Yip (1998), where the stochastic perturbation is given by
Kunitas Gaussian martingales increments dM(t, r). This is equivalent to our choice
of

∫
G(r, q, t)w(dq, dt), as shown in Chap. 7. Yip obtains existence of a solution

using fractional steps. Souganidis and Yip (2004) show that the solution of a similar
SPDE can be unique, where the deterministic motion may have several solutions.

Funaki and Spohn (1997) derive a sharp interface model from an interacting and
diffusing particle model (on a lattice) as a macroscopic limit, employing a hydrody-
namic scaling. Replacing the i.i.d. Brownian motions (indexed by the lattice sites)
in the paper by Funaki and Spohn by correlated Brownian motions should result in a
sharp stochastic interface, which itself should be the solution of a quasilinear SPDE,
similar to the SPDE obtained by Yip (loc. Cit.).

Blömker (2000) analyzes surface growth and phase separation, whose macro-
scopic regime is often described by the semilinear fourth-order parabolic Cahn–
Hilliard equation.

13.2.9 SPDEs for Strings

For SPDEs describing the motion of strings we refer to Funaki (1983), Faris and
Jona-Lasinio (1982), Mueller and Tribe (2002), and the references therein.

13.3 Books on SPDEs

To our knowledge Rozovsky’s book in 1983 is first book on SPDEs. It treats
bilinear SPDEs driven by regular Brownian motion with emphasis on filtering.
Metivier (1988) obtains weak solutions for a class of semilinear SPDEs. Da Prato
and Zabczyk (1992) develop linear, bilinear, and semilinear SPDEs using a semi-
group approach. Both regular and cylindrical Brownian motions appear as stochastic
driving terms. It also contains a chapter on invariant measures and large deviations
as well appendixes on linear deterministic systems and control theory. The problem
of invariant measures and ergodicity is treated in detail by Da Prato and Zabczyk
(1996). Kallianpur and Xiong (1995) analyze linear, bilinear and some semilinear
SPDEs driven by regular and cylindrical Brownian motions and quasilinear SPDEs
driven by Poisson random measures. This book also provides a chapter on large de-
viations. Greksch and Tudor (1995) analyze semilinear SPDEs, employing both a
semigroup approach and variational methods. Flandoli (1995) obtains regularity re-
sults for stochastic flows associated with the solutions of bilinear SPDEs. The book
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by Holden et al. (1996) deviates from all the previously mentioned monographs
in that the state space is a space of generalized random variables (cf. the paper
by Nualart and Zakai (1989)) and multiplication is replaced by the Wick product
(cf. (13.29) above and the references quoted). Peszat and Zabczyk (2006) employ
a semigroup approach to SPDEs, driven by Lévy processes with applications to
models in physics and mathematical finance. Knoche–Prevot and Röckner (2006)
provide an introduction to the variational approach.

Finally, we must mention Walsh (1986) and Dawson (1993). Although those
St. Fleur notes have not appeared as separate books, they are as comprehensive and
detailed as any good monograph. Walsh employs a semigroup approach, but uses
a space–time formulation for the stochastic terms instead of infinite dimensional
Brownian motions or martingales. We have adopted the integration with respect to
space–time white noise from Walsh. Dawson’s St. Fleur notes are, strictly speaking,
not on SPDEs. However, the particle approach to SPDEs has been strongly influ-
enced by Dawson’s work.



Part IV
Macroscopic: Deterministic Partial

Differential Equations



Chapter 14
Partial Differential Equations as a Macroscopic
Limit

14.1 Limiting Equations and Hypotheses

We define the limiting equations and state additional hypotheses.

In this section we add the subscript ε to the coefficients of the SODEs and
SPDEs which are driven by correlated Brownian noise. Further, we restrict the
measures to M1, since we want to use results proved by Oelschläger (1984) and
Gärtner (1988) on the derivation of the macroscopic McKean–Vlassov equation as
the limit of interacting and diffusion particles driven by independent Brownian mo-
tions. To this end, choose a countable set of i.i.d. Rd -valued standard Brownian
motions {β i } j∈N. Let F0(r, µ, t) and J0(r, µ, t) be Rd -valued and Md×d val-
ued functions, respectively, jointly measurable in all arguments. Further, suppose
(r�, µ�, t) ∈ Rd × M × R, � = 1, 2, Let cF , cJ ∈ (0,∞) and assume global
Lipschitz and boundedness conditions

|F0(r1, µ1, t)− F0(r2, µ2, t)| ≤ cF {ρ(r1 − r2)+ γ (µ1 − µ2)}
d∑

k,�=1

(J0,k�(r1, µ1, t)− J0,k�(r2, µ2, t))2

≤ c2
J

{
ρ2(r1 − r2)+ γ 2(µ1 − µ2)

}
,

|F0(r, µ, t)|2 +
d∑

k,�=1

J 2
0,k�(r, µ, t) ≤ cF,J .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14.1)

Consider stochastic ordinary differential equations (SODEs) for the displacement
of r i of the following type

dr i
0,N (t) = F0(r i

0,N (t), X N (t), t)dt + J0(r i
0,N (t), X N (t), t)dβi (t),

r i (s) = qi , i = 1, . . . , N , X0,N (t) :=
N∑

i=1

mi δr i
0,N (t)

.

⎫⎪⎬
⎪⎭

(14.2)

The subscript 0 indicates that there is no correlation between the Brownian noises
for each particles. The Lipschitz conditions are those of Oelschläger. Gärtner allows

313
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for local Lipschitz conditions. Both authors restrict the analysis to time-independent
coefficients. However, assuming conditions, uniformly in t , we may assume that
their results can be formulated also for the nonautonomous case. The two-particle
diffusion matrix of the noise is given by

D̃0(µ, r i , r j , t) :=
{
J0(r i , µ, t)J T

0 (r
j , µ, t), if i = j,

0, if i != j,
(14.3)

where AT is the transpose of a matrix A. Set

D0(µ, r, t) := D̃0(µ, r, r, t). (14.4)

Under the above assumptions

X0,N (·) �⇒ X0,∞(·) in C([0,∞);M1), as n −→ ∞, (14.5)

where X0,∞(·) is the unique solution of the macroscopic McKean–Vlassov equation
(or “nonlinear diffusion equation”):1

∂

∂t
X0,∞ = 1

2

d∑
k,�=1

∂2
k�(D0,k�(X0,∞, ·, t)X0,∞)−0 · (X0,∞F0(·, X0,∞, t)),

X0,∞(0) = µ.

⎫⎪⎬
⎪⎭

(14.6)

Along with (14.6) we define infinitely many SODEs, whose empirical distribu-
tion is the solution of (14.6):

dr i
0,∞ = F0(r i

0,∞, X0,∞, t)dt + J0(r i
0,∞, X0,∞, t)dβ i ,

r i
0,∞(0) = qi , i = 1, 2, . . . , X0,∞(t) = lim

N→∞

N∑
i=1

1
N

δr i
0,∞
(t).

⎫⎪⎬
⎪⎭

(14.7)

Existence and uniqueness for (14.7) follow under the assumptions (14.1).2

Let σε(r, µ, t) be the nonnegative square root of Dε(µ, r, t). Since the entries
of Dε(µ, r, t) are bounded, uniformly in (r, µ, t), the same boundedness holds for
σε(r, µ, t).3

Hypothesis 14.1

(i) Suppose that σ⊥i ≡ 0 ∀i in (4.10).
(ii) Suppose that for each r ∈ Rd , t ≥ 0 and µ ∈ M1, σε(r, µ, t) is invertible.

1 Cf. Oelschläger (1984). Gärtner (loc. cit.) obtains the same result under local Lipschitz and
linear growth conditions, making an additional assumption on the initial condition.

2 Cf. Oelschläger (1984), Gärtner (loc. cit.), and Kurtz and Protter (1996). Cf. also Remark 14.1.
3 In Sect. 4.3, we provide a class of coefficients which satisfy Hypothesis 14.1.



14.1 Limiting Equations and Hypotheses 315

(iii) Further, suppose that for any compact subset K of Rd , any compact subset
C ⊂ M1, any T > 0 and any δ > 0 the following three relations hold:

lim
ε↓0

sup
r∈K

sup
0≤t≤T

sup
µ∈C
(|Fε(r, µ, t)− F0(r, µ, t)| + |σε(r, µ, t)− J0(r, µ, t)|) = 0,

(14.8)

where | · | denotes the Euclidean norms in Rd and Md×d , respectively.

(iv)
sup

1≥ε>0
sup

r∈K,0≤t≤T,µ∈C
|σ−1
ε (r, µ, t)| <∞, (14.9)

(v)
lim
ε↓0

sup
|r−q|>δ

sup
0≤t≤T,µ∈C

|D̃ε(µ, r, q, t)| = 0, 4 (14.10)

(vi)

lim
η↓0

sup
r∈K

sup
µ∈C

sup
0≤s,t≤T,|t−s|≤η

|F0(r, µ, t)− F0(r, µ, s)| + |J0(r, µ, t)

−J0(r, µ, s)| = 0, (14.11)

i.e., F0(r, µ, t) and J0(r, µ, t) are continuous in t , uniformly in (r, µ) from
compact sets K × C.

(vii) Given the solution X0,∞(t) of (14.7), suppose that D0,k�(X0,∞(·), ·, ·) and
F0,k(·, X0,∞(·), ·) as functions of (r, t) are both twice continuously differen-
tiable, where k, � = 1, . . . , d. 
�

Remark 14.1.

(i) In what follows we assume the Oelschläger–Gärtner result to hold also for
nonautonomous coefficients, since one can obviously generalize their results,
assuming that their hypotheses hold uniformly in t .

(ii) A closed k-dimensional submanifold � of Rn will be called nonattainable by
an Rn-valued diffusion, (r1(·, q1), . . . , rn(·, qn))with initial values (q1, . . . , qn)
if

P {(q1, . . . , qn) ∈ �} = 0 implies P {∪t>0(r1(·, q1), . . . , rn(·, qn)) ∈ �)} = 0.
(14.12)


�
Friedman (1976), Sect. 11, obtains general conditions for nonattainability of

closed k-dimensional submanifold � of Rn for linear Rn-valued diffusions, under
the assumption that the coefficients are autonomous and twice continuously differ-
entiable.

In Lemma 14.8, we extend Friedman’s result to the nonautonomous case, defined
by the first m diffusions of the system (14.7). The standard device of adding the time
t as another dimension converts the nonautonomous system into an autonomous (but
degenerate) system.

4 Cf. the definition of D̃ε(µ, r, q, t) before (8.23).
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The differentiability assumption (iv) on the coefficients as functions of (r, t) in
Hypothesis 14.1 depends on the existence of weak derivatives of the solution of
the McKean–Vlasov equation (14.7) with respect to t . For an example where the
assumption holds, cf. (14.3) (v).

Finally, let Xε,∞(0) be the continuum limit of Xε,N (0) :=
N∑

i=1
miδq

εi
and

Z0,∞(Y, t, Xε,∞(0)) be the solution of the random media PDE:

∂

∂t
Z0,∞(Y ) = 1

2

d∑
k,�=1

∂2
k�(D0,k�(Y, ·, t)Z0,∞(Y ))−0 · (Z0,∞(Y )F0(·, Z0,∞(Y ), t)),

Z0,∞(0) = µ,

⎫⎪⎬
⎪⎭

(14.13)
where Y (·) ∈ Mloc,2,0,∞.

14.2 The Macroscopic Limit for d ≥ 2

Assuming d ≥ 2 we prove that, under the hypotheses from 14.1 and Chap. 4, the so-
lutions of the SPDE (8.26) converge weakly toward the solution of a corresponding
quasilinear macroscopic PDE, as the correlation length tends to 0.

For m ∈ N, set

�m :=
{
(p1, . . . , pm) ∈ Rd·m : ∃i != j, i, j ∈ {1, . . . ,m}, with pi = p j

}
.

Infinite sequences in Rd will be denoted either (r1, r2, . . .) or r (·). The corre-
sponding state space, (Rd)∞, will be endowed with the metric

d∞(r (·), q(·)) :=
∞∑

k=1

2−kρ(rk − qk).

Theorem 14.2. 5 Suppose Hypotheses 4.1 and 14.1. Further, suppose that d ≥ 2
and that {q1

ε , q
2
ε , . . .} is a sequence of exchangeable6 initial conditions in (4.10)

and (14.2), respectively, such that for all m ∈ N and ε ≥ 0,

P
{
(q1
ε , . . . , q

m
ε ) ∈ �m

} = 0,

where q1
ε , . . . , q

m
ε are the initial conditions in (4.10) for ε > 0 and in (14.2) for

ε = 0, respectively. Finally, suppose

5 This theorem was obtained by Kotelenez and Kurtz (2006), and, in what follows, we adopt the
proof from that paper.

6 By definition exchangeability means that {q1
ε , q

2
ε , . . .} ∼ {qπ(1)ε , qπ(1)ε , . . .} whenever π is a

finite permutation of N. Cf. Aldous (1985).
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(Xε(0), q1
ε , q

2
ε , . . .)⇒ (X0,∞(0), q1

0 , q
2
0 , . . .) in M1 × (Rd)∞, as ε ↓ 0 ,

where Xε(0) are the initial values for (8.26) and X0,∞(0) = lim
N→∞

1
N

N∑
j=1
δq j

0
is the

initial condition of (14.6). Then

Xε ⇒ X0,∞ in C([0,∞);M1), as ε ↓ 0 (14.14)

and
Zε(Y )⇒ Z0,∞(Y ) in C([0,∞);M1), as ε ↓ 0 , (14.15)

where Zε(Y ) is the solution of the SPDE (8.25) with coefficients Fε and Dε and Y (·)
as in (14.13).

The proof of Theorem 14.2 will be the consequence of a series of lemmas, which
we will derive first. �

Lemma 14.3. Let (q1
ε , . . . , q

m
ε , . . .) be a finite or infinite subsequence of initial con-

ditions for (4.10) at time 0 and Xε(0) an initial condition for (8.26) such that
(Xε(0), q1

ε , q
2
ε , . . .) satisfy the assumptions of Theorem 14.2.

Then (Xε(·), rε(·, Xε, q1
ε ), . . . , rε(·, Xε, qm

ε , . . .)) is relatively compact in
C([0,∞);M1 × (Rd)∞).

Proof.

(i) It sufficient to restrict the sequences to the first m coordinates in the formulation
of the Lemma.

(ii) For s ≤ t ≤ T ,

E(γ 2(Xε(t), Xε(s))/Fs)

= E sup
‖ f ‖L ,∞≤1

(∫
( f (r(t, Xε, s, q))− f (q))Xε(s, dq)

)2

/Fs)

(by (15.22) and (8.50))

≤ E(
∫
ρ(rε(t, q), q)Xε(s, dq))2/Fs)

(since the f , used in the norm γ, are Lipschitz with Lipschitz constant 1)

≤ E(
∫
ρ2(rε(t, q), q)Xε(s, dq)/Fs)

(by the Cauchy–Schwarz inequality and Xε(s,Rd) = 1)

=
∫

E(ρ2(rε(t, q), q)/Fs)Xε(s, dq)

≤ cT (t − s)Xε(0,Rd) = cT (t − s)

independent of ε by the boundedness of Fε and Jε (cf. (4.11)) and by
Xε(s,Rd) = Xε(0,Rd) = 1 a.s. Similarly, for the m-particle process with
a constant cT,m .
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(iii) To prove relative compactness of the marginals we must show tightness. In-
deed, for the m-particle process this is obvious and its tightness follows from
(4.11). For the (M1, γ )-valued process this follows from the proof of a similar
statement, when M1 is endowed with the Prohorov metric and the equivalence
of γ and the Prohorov metric.7

To show tightness of Xε(t) let δ > 0 be given. Choose a closed ball SL in Rd

with center 0 and radius L = L(T ) such that for all ε > 0

(α) P
{

Xε(0, Sc
L) >

δ
2

} ≤ δ
2 ,

(β) E sup
q∈Rd ,ε>0

L−2

{∣∣∣∣
∫ T

0
Fε(rε̄(s, q), X ε̄(s), s)ds

∣∣∣∣
2

+
d∑

k,�=1

∫ T

0

∫
J 2
ε,k�(rε(s, q), p, Xε(s), s)dp ds

⎫⎬
⎭ ≤ δ

2
.

Cf. (4.11)–here we used the abbreviation Ac := Rd\A for A ∈ Bd . Then,

P
{∫

1Sc
2L
(rε(t, q))Xε(0, dq) > δ

}

≤ P
{∫
(1Sc

L
(rε(t, q)− q)+ 1Sc

L
(q))Xε(0, dq) > δ

}

≤ E
{∫ (

E
|rε(t, q)− q|2

L2

∣∣∣∣F0

)
Xε(0, dq)

}
+ δ

2
< δ

2 + δ
2 = δ.

Employing Theorems 15.26 and 15.27 of Sect. 15.2.1 completes the proof. 
�
In what follows let (Xε, r1

ε , . . . , r
Nε
ε ) := (Xε,Nε , rε(·, Xε,Nε , q

1), . . . , rε
(·, Xε,Nε , q

Nε )) be a convergent subsequence in CM1×(Rd )∞[0,∞), where ε ↓ 0.
We allow Nε = ∞. If Nε <∞, we require Nε → ∞. Set

wi
ε(t) :=

∫ t

0

∫
σ−1
ε (r

i
ε(s), Xε(s), s)Jε(r i

ε(s), q, Xε(s), s)w(dq, ds), (14.16)

where Xε := Xε,Nε is the empirical process for (r1
ε , . . . , r

Nε
ε ). By Levy’s theorem8

each wi
ε is an Rd -valued Brownian motion. Abbreviating

cε(r, q, µ, t) := σ−1
ε (r, µ, t)D̃ε(µ, r, q, t)σ

−1
ε (q, µ, t),

we obtain

|[wi
ε, w

j
ε ]|(t) =

∫ t

0
cε(r i

ε(s), r
j
ε (s), Xε(s), s)ds, (14.17)

where the left-hand side of (14.17) is the tensor quadratic variation.9 Moreover,
hypotheses (14.9) and (14.10) imply for any δ > 0, any compact subset C ⊂ M1
and any T

7 Cf. Sect. 15.2.1, Theorems 15.23 and 15.24.
8 Cf. Theorem 15.37, Sect. 15.2.3.
9 Cf. Sect. 15.2.3.
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lim
ε↓0

sup
|r−q|>δ

sup
µ∈C,0≤t≤T

|cε(r, q, µ, t)| = 0. (14.18)

Define for 1 > δ > 0 and m < Nε stopping times

τm
ε (δ) := min

1≤i != j≤m
inf{t ≥ 0 : |r i

ε(t)− r j
ε (t)| ≤ δ}. (14.19)

Let G be the σ -algebra, generated by w(dr, dt) and by all events from F0, i.e.,
we set

G := σ
{∫

Rd

∫ ∞

0
1B(r, t)w(dr, dt), B ∈ Bd+1, A ∈ F0

}
,

where Bd+1 is the Borel σ -algebra in Rd+1. Further, let {β i }i∈N be i.i.d. Rd -valued
Brownian motions, defined on (Ω,F ,Ft , P) and independent of G. Set

(
β1
ε,δ,m , . . . , β

Nε
ε,δ,m

)
(t) :=(w1

ε , . . . , w
Nε
ε )(t ∧ τm

ε (δ))+
∫ t

0
1{u≥τm

ε (δ)}(dβ
1, . . . , dβNε )(u).

(14.20)
Clearly, (β1

ε,δ,m, . . . , β
Nε
ε,δ,m) is a continuous square integrable Rd·Nε -valued mar-

tingale with tensor quadratic variation

∣∣[β1
ε,δ,m, . . . , β

Nε
ε,δ,m

]∣∣(t) = ∣∣[w1
ε , . . . , w

Nε
ε

]∣∣(t ∧ τm
ε (δ))+

∫ t

0
1{u≥τm

ε (δ)}du Id·Nε .
(14.21)

Here Ik denotes the identity matrix on Rkand for Nε = ∞ Id·∞ is the identity
operator in (Rd)∞.

Lemma 14.4. For each δ > 0 and m < Nε

(β1
ε,δ,m, . . . , β

m
ε,δ,m)⇒ (β1, . . . , βm) in C([0,∞);Rm·d), as ε ↓ 0. (14.22)

Proof. The family of marginals {Xε(t), ε > 0}, t ≥ 0, is relatively compact by
Lemma 14.3. So, by the compact containment condition10 in addition to Lebesgue’s
dominated convergence theorem

∣∣[β1
ε,δ,m, . . . , β

m
ε,δ,m

]∣∣(t)→ t Id·m, as ε ↓ 0 in probability.

Hence, (14.22) follows from the martingale central limit theorem.11 
�
Consider the following system of SODEs

dr i
ε,δ,m,Nε = Fε(r i

ε,δ,m,Nε , Xε)dt + σε(r i
ε,δ,m,Nε , Xε)dβ i

ε,δ,m

ri
ε,δ,m,Nε (0) = qi

ε, i = 1, . . . , Nε, Xε,δ,m,Nε (t) :=
Nε∑

i=1

1
Nε
δr i
ε,δ,m,Nε

(t),

⎫⎪⎬
⎪⎭
(14.23)

10 Cf. Remark 7.3 in Sect. 3 of Ethier and Kurtz (1986) and (14.24).
11 Cf. Theorem 15.39, Sect. 15.2.3.
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where for Nε = ∞ here and in what follows i = 1, . . . , Nε shall mean i ∈ N.
Repeating the proof of Lemma 14.3, we show that (Xε,δ,m,Nε (·), r1

ε,δ,m,Nε (·), . . .)
is relatively compact in C([0,∞);M1 × R∞) and, therefore, we may, without
loss of generality, assume that (Xε,δ,m,Nε (·), r1

ε,δ,m,Nε (·), . . .) converges weakly. Let
(r1

0,∞, . . .) be the solution of (14.7).

Lemma 14.5. For every δ > 0, m < Nε

(r1
ε,δ,m,Nε , . . . , r

Nε
ε,δ,m,Nε )⇒ (r1

0,∞, . . .) in C([0,∞) : (Rd)∞), as ε ↓ 0 .

Proof. Recall that (q1
ε , . . . , q

Nε
ε )⇒ (q1

0 , . . .) in (Rd)∞, as ε ↓ 0. Using the bound-
edness of the coefficients in (14.23) we may repeat the proof of Lemma 14.3 and
conclude that the family Xε,δ,m,Nε (·) is relatively compact in C([0,∞);M1), as a
function of ε, δ, and m. Hence, the aforementioned compact containment condition
of Ethier and Kurtz (loc. cit.) now reads: For every L ∈ N there is a compact subset
CL of M1 such that

inf{ε>0,δ>0,m<Nε}
P{Xε(t) ∈ CL , Xε,δ,m,Nε (t) ∈ CL

and X0,∞(t) ∈ CL for 0 ≤ t ≤ T } ≥ 1 − 1
L
.

(14.24)

This implies the existence of an increasing sequence of compact subsets CL of
M1, L ∈ N, such that ∀ε > 0, δ > 0,m ∈ N with probability 1

∪0≤t≤T ({Xε(t, ω)} ∪ {Xε,δ,m,Nε (t, ω)} ∪ {X0,∞(t, ω)) ⊂ ∪L∈NCL . (14.25)

For each N ∈ N define maps ΨN from ((Rd)∞, d∞) into (M1, γ f ) by

ΨN
(
r (·)

) = 1
N

N∑
i=1

δr i ,

where here and in what follows (r1, . . . , r N ) are the first N coordinates of r (·). The
definition of the norm γ implies that for two sequences r (·) and q(·)

γ (ΨN
(
r (·)

)− ΨN
(
q(·)

) ≤ 1
N

N∑
i=1

!(r i − qi ). (14.26)

So the maps ΨN are continuous. Further, set

D∞ := {r (·) ∈ (Rd)∞ : such that lim
N→∞ΨN (r (·)) exists},

Ψ∞(r (·)) :=
{

lim
N→∞ΨN (r (·)), if r (·) ∈ D∞,

δ0, if r (·) /∈ D∞.

This definition implies that D∞ is a Borel set in ((Rd)∞, d∞) and that Ψ∞ is a
measurable map from ((Rd)∞, d∞) into (M1, γ f ). Further, by the previously men-

tioned density of measures of the form 1
N

N∑
i=1
δr i in (M1, γ )
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Ψ∞(D∞) = M1.

Finally, we set

D∞,L := {
r (·) ∈ D∞ : Ψ∞(r (·)) ∈ CL

}
.

Define stopping times

τε(δ,m, L) := inf
{
t ≥ 0 : Xε,δ,m,Nε (t) /∈ CL

}
. (14.27)

By (14.25), ∀ε > 0, δ > 0,m ∈ N with probability 1:

τε(δ,m, L) ↑ ∞, as L −→ ∞. (14.28)

If Xε(0) ∈ CL with probability 1 for some L then with probability 1
(
r1
ε,δ,m,Nε (· ∧ τε (δ,m, L)) , . . . , rm

ε,δ,m,Nε (· ∧ τε (δ,m, L)) , . . .
) ∈ D∞,L .

(14.29)
Let Ĉ ∈ Rd and D̂ ∈ Md×d arbitrary but fixed elements. Define for ε ≥ 0 maps

F̂ε,i,L and σ̂ε,i,L from D∞,L × [0,∞) into Rd and Md×d , respectively:

For ε > 0, we set

F̂ε,i,δ,m,L(r (·), t) :=
{

Fε(r i , ΨNε (r
(·)), t), if r (·) ∈ D∞,L ,

Ĉ, if r (·) /∈ D∞,L ,

σ̂ε,i,δ,m,L(r (·), t) :=
{
σε(r i , ΨNε (r

(·)), t), if r (·) ∈ D∞,L ,
D̂, if r (·) /∈ D∞,L ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(14.30)

and for ε = 0 we make corresponding definitions, employing in the above definition
Ψ∞.

Stopping the solutions of (14.23) and (14.7) at τε(δ,m, L), we see by (14.27)
and (14.29) that these stopped solutions solve the following systems of SODEs in
(Rd)∞:

dr̂ i
ε,δ,m,Nε = F̂ε,i,δ,m,L

(
r̂ (·)ε,δ,m,Nε , t

)
1D∞,L

(
r̂ (·)ε,δ,m,Nε

)
dt

+σ̂ε,i,δ,m,L(r̂ (·)ε,δ,m,Nε , t)1D∞,L
(
r̂ (·)ε,δ,m,Nε

)
dβ i
ε,δ,m,

r i
ε,δ(0) = qi

ε, i = 1, . . . , Nε

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(14.31)

and

dr̂ i
0,∞ = F̂0,i,L

(
r̂ (·)0,∞, t

)
1D∞,L

(
r̂ (·)0,∞

)
dt + σ̂0,i,L

(
r̂ (·)0,∞, t

)
1D∞,L

(
r̂ (·)0,∞

)
dβ i ,

r i
ε,δ(0) = qi

ε, i = 1, . . . , Nε,

}

(14.32)
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respectively. Conversely, up to time τε(δ,m, L) every solution of (14.31) and
(14.32) is a solution of (14.23) and (14.7), respectively. Note that

∣∣Fε
(
r i , ΨNε

(
r (·)

)
, t
)− F0

(
r i , Ψ∞

(
r (·)

)
, t
)∣∣ ≤ ∣∣Fε

(
r i , ΨNε

(
r (·)

)
, t
)

−F0
(
r i , ΨNε

(
r (·)

)
, t
)∣∣+ ∣∣F0

(
r i , ΨNε

(
r (·)

)
, t
)− F0

(
r i , Ψ∞

(
r (·)

)
, t
)∣∣.

The last term in the above inequality tends to 0 by the Lipschitz assumption on
F0, as ε ↓ 0, if r (·) ∈ D∞. The first terms tends to 0 by (14.8), as ε ↓ 0. Similarly,
we can estimate the distance between the diffusion coefficients. Let K be a compact
subset of Rd . Our assumption (14.8) now implies that for all i ≤ m,m ∈ N, δ > 0,
and L ∈ N:

lim
ε↓0

sup
r i∈K

sup
0≤t≤T

sup
r (·)

(∣∣F̂ε,i,δ,m,L
(
r (·), t

)− F̂0,i,δ,m,L
(
r (·), t

)∣∣

+∣∣σ̂ε,i,δ,m,L
(
r (·), t

)− σ̂0,i,δ,m,L
(
r (·), t

)∣∣) = 0 .

(14.33)

Consequently, Condition C.3 of Sect. 9 of Kurtz and Protter (loc. cit.) holds for
(14.31) and (14.32). Finally, the Brownian motions in (14.23) and (14.6) are identi-
cally distributed (they are all standard). This implies that the sequence of integrators
in (14.23) is uniformly tight (cf. Kurtz and Protter, loc. cit., Sect. 6). Hence, em-
ploying Theorem 9.4 of Kurtz and Protter (loc. cit.) in addition to (14.28) and the
uniqueness of the solution of (14.7), we obtain that the solutions of (14.23) converge
to the solutions of (14.7) for all m < Nε and all δ > 0.12 
�

Let S be a complete, separable metric space. A family of S-valued random
variables {ξ1, . . . , ξm} is exchangeable if for every permutation (σ1, . . . , σm) of
(1, . . . ,m), {ξσ1, . . . , ξσm } has the same distribution as {ξ1, . . . , ξm}. A sequence
ξ1, ξ2, . . . is exchangeable if every finite subfamily ξ1, . . . , ξm is exchangeable. Let
P(S) be the set of probability measures on (the Borel sets of) S.

Lemma 14.6. For n = 1, 2, . . . , let {ξn
1 , . . . , ξ

n
Nn
} be exchangeable, S-valued ran-

dom variables. (We allow Nn = ∞.) Let Ξn be the corresponding empirical mea-
sure,

Ξn = 1
Nn

Nn∑
i=1

δξn
1
,

where if Nn = ∞, we mean

Ξn = lim
m→∞

1
m

m∑
i=1

δξn
i
.

We will refer to the empirical process of an exchangeable system as the DeFinitti
measure for the system. By the above convention this implies its continuum limit, if
the system is infinite.

12 Cf. also the end of Sect. 15.2.5.
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Assume that Nn → ∞ and that for each m = 1, 2, . . . , {ξn
1 , . . . , ξ

n
m} ⇒

{ξ1, . . . , ξm} in Sm. Then {ξi } is exchangeable and setting ξn
i = s0 ∈ S for i > Nn,

{Ξn, ξn
1 , ξ

n
2 , . . .} ⇒ {Ξ, ξ1, ξ2, . . .} in P(S)× S∞, (14.34)

where Ξ is the DeFinetti measure for {ξi }. If for each m, {ξn
1 , . . . , ξ

n
m} →

{ξ1, . . . , ξm} in probability in Sm, then

Ξn → Ξ in probability in P(S). (14.35)

Proof. The exchangeability of {ξi } follows immediately from the exchangeability
of {ξ Nn

i }. Assuming m + k ≤ Nn , exchangeability implies

E
[

f (ξn
1 , . . . , ξ

n
m+k)

]

= E

⎡
⎣ 1
(Nn − m) · · · (Nn − m − k + 1)

∑
{i1,...,ik }⊂{m+1,...,Nn}

f
(
ξn

1 , . . . , ξ
n
m, ξ

n
i1
, . . . , ξn

ik

)
⎤
⎦

= E
[∫

Sk
f
(
ξn

1 , . . . , ξ
n
m, s1, . . . , sk

)
Ξn (ds1) · · ·Ξn(sk)

]
+ O

(
1

Nn

)

and hence if f ∈ C̄(Sm+k), the bounded continuous real-valued functions on
Sm+k ,

lim
n→∞ E

[∫
Sk

f
(
ξn

1 , . . . , ξ
n
m, s1, . . . , sk

)
Ξn (ds1) · · ·Ξn(sk)

]

= E
[

f (ξ1, . . . , ξm+k)
]

= E
[∫

Sk
f (ξ1, . . . , ξm, s1, . . . , sk)Ξ (ds1) ·Ξ(dsk)

]
,

where the second equality follows by exchangeability. Since the space of functions
on P(S)× S∞ of the form

F(µ, x1, . . . , xm) =
∫

Sk
f (x1, . . . , xm, s1, . . . , sk)µ(ds1) · · ·µ(dsk)

form a convergence determining class, the first part of the lemma follows.
If for each m, {ξn

1 , . . . , ξ
n
m} → {ξ1, . . . , ξm} in probability, then

Ξ(m)n ≡ 1
m

m∑
i=1

δξn
i
→ 1

m

m∑
i=1

δξi

in probability in P(S), and the convergence of Ξn to Ξ follows by approximation,
that is, by exchangeability, for each ε > 0 and ϕ ∈ C̄(S),

lim
m→∞ sup

n
P
{∣∣〈ϕ,Ξ(m)n

〉− 〈
ϕ,Ξn

〉∣∣ > ε} = 0.


�
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Corollary 14.7. Assuming the above hypotheses we obtain that for all m ∈ N and
δ > 0

Xε,δ,m,Nε ⇒ X0,∞, as ε ↓ 0 . (14.36)

Proof.

(i) Recall that, by assumption, {qi
ε}i∈N is exchangeable and P{qi

ε = q j
ε } = 0

for i != j and ε ≥ 0. The assumptions on Fε and Jε as well as
the usual properties of the conditional expectation and of {β i }i∈N imply
that {r1

ε,δ,m,Nε (·), . . . , r
Nε
ε,δ,m,Nε (·)} is exchangeable. Denote by Ξε,δ,m,Nε

the empirical process for {r1
ε,δ,m,Nε (·), . . . , r

Nε
ε,δ,m,Nε (·)}, which is an ele-

ment of M1(C([0,∞);Rd)), i.e., of the space of probability measures on
C([0,∞);Rd). The existence for Nε = ∞ follows from DeFinetti’s theorem
(cf. Dawson (1993), Sect. 11.2). Let Ξ0,∞ be the DeFinetti measure for (14.7).
By our Lemma 14.6,

Ξε,δ,m,Nε �⇒ Ξ0,∞, as ε ↓ 0 . (14.37)

Since Xε,δ,m,Nε (·) converges weakly, (14.36) follows. 
�
Recall the definition

Λm := {(p1, . . . , pm) ∈ Rd·m : ∃i != j, i, j ∈ {1, . . . ,m}, with pi = p j }.
Lemma 14.8. �m is nonattainable by the Rd·m-valued diffusion, (r1

0,∞(·, q1), . . . ,

rm
0,∞(·, qm)) with initial values (q1, . . . ., qm), which is defined by the first m

d-dimensional equations of the system (14.7).

Proof. Recall that we assumed d ≥ 2. It is obviously sufficient to prove the Lemma
for m = 2, and, in what follows, we use a notation similar to Friedman (loc. cit.).
We convert the nonautonomous equation into an autonomous one by adding time t
as an additional dimension. Abbreviate

F(r, t) := F0(r, X0,∞(t), t), σ (r, t) := J0(r, X0,∞(t), t)

and set
x := (r1, r2, t)T ∈ R2d+1,

where, as before, “AT ” denotes the transpose of a matrix A. Further, set

F̂(x) :=
⎛
⎝

1
F(r1, t)
F(r2, t)

⎞
⎠ , σ̂ (x) =

⎛
⎝

0 0 0
0 σ(r1, t) 0
0 0 σ(r2, t)

⎞
⎠ , (14.38)

where σ is the appropriate d×d matrix and σ̂ (x) is a block-diagonal matrix with en-
tries in the first row and the first column all equal to 0. Let β(t) be a one-dimensional
standard Brownian motion, independent of the d-dimensional standard Brownian
motions β1(t) and β2(t) and set
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β̂(t) := (β(t), β1(t), β2(t))T.

Then the stochastic SODEs for the two solutions of (14.7) can be written as an
SODE in R2d+1 :

dx = F̂(x)dt + σ̂ (x)dβ̂,
x(0) = (0, q1, q2)T.

}
(14.39)

Imbedded into R2d+1, Λ2 becomes the d-dimensional submanifold:

Λ̂2 = {(t, r1, r2) : r1 = r2}. (14.40)

Normal vectors to Λ̂2 are given by

N i := 1√
2
(0, . . . , 0, 1, 0, . . . , 0,−1, . . . , 0)T,

where the 1 is at the (i + 1)th coordinate and the −1 at the (i + d + 1)th coordinate
and all other coordinates are 0, i = 1, . . . , d. The linear subspace, spanned by
{N i , i = 1,. . . , d}, is d-dimensional and will be denoted Λ̂⊥

2 . Further, let “•” denote
here the scalar product in R2d+1.Note that the diffusion matrix

a(x) := σ̂ (x)σ̂ T (x)

has a block-diagonal structure, similar to σ̂ (x). Indeed, for k ∈ {2, . . . , d + 1}
and � ∈ {d + 2, . . . , 2d + 1},

a�k(x) = ak�(x) (by symmetry)

=
2d+1∑
j=1

σ̂k j (x)σ̂�j (x)

=
d+1∑
j=1

σ̂k j (x)σ̂�j (x)+
2d+1∑
j=d+2

σ̂k j (x)σ̂�j (x)

= 0 + 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(∗)

since σ̂k j (x) = 0 for k ≤ d + 1 and j ≥ d + 2 and σ̂�j (x) = 0 for � ≥ d + 2 and
j ≤ d + 1. Further, since

σ̂1 j (x) = σ̂i1(x) = 0 ∀i, j,

we have
ak�(x) = 0 if k = 0 or � = 0. (∗∗)

So

(a(x)N i ) · N j = √
2

d∑
k=1

σ jk(r1, t)σik(r1, t), if x = (t, r1, r1)T ∈ Λ̂2 . (14.41)

Since σ j i (r, t) is invertible for all (r, t), we obtain that for x ∈ Λ̂2 the rank of
a(x), restricted to Λ̂⊥

2 , equals d. The statement of the Lemma now follows from
Friedman (loc. cit., Chap. 11, (1.8) and Theorem 4.2). 
�
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Lemma 14.9. Assuming the above hypotheses we obtain that for all t ≥ 0 there is
a sequence δm := δm(t) ↓ 0 as m → ∞ such that

lim
m→∞ limε↓0 P{τm

ε (δm) ≤ t} = 0. (14.42)

Proof.

For δ ≥ 0, set

Λm(δ) :=
{
(p1, . . . , pm) ∈ Rd·m : ∃i != j, i, j ∈ {1, . . . ,m}, with |pi−p j | ≤ δ}

(14.43)

and note that Λm(0) = Λm, where Λm was defined before Theorem 14.2. Define
maps τm(δ) from CRdm [0,∞) into [0,∞) through

τm(δ)((r1(·), . . . , rm(·))) := inf{t : (r1(t), . . . , rm(t)) ∈ �m(δ)}.
Observe that
{
(r1(·), . . . , rm(·)) : τm(δ)((r1(·), . . . , rm(·))) ≤ t

}

= {
(r1(·), . . . , rm(·)) : ∃s ∈ [0, t], i != j such that |r i (s)− r j (s)| ≤ δ },

and we verify that the latter set is closed in C([0,∞);Rdm), which is endowed with
the metric of uniform convergence on compact intervals [0, T ]. Setting

τm
0 (δ) := min

1≤i != j≤m
inf

{
t : ∣∣r i

0,∞(t)− r j
0,∞(t)

∣∣ ≤ δ},

we have

τm(δ)((r1
0,∞(·, ω), . . . , rm

0,∞(·, ω)))
= τm

0 (δ, ω) and for δ > 0 τm(δ)((r1
ε (·, , ω), . . . , rm

ε (·, ω))) = τm
ε (δ, ω) .

Hence, by a standard theorem in weak convergence,13 for all δ > 0 and m < Nε

limε↓0 P
{
τm
ε (δ) ≤ t

} ≤ P
{
τm

0 (δ) ≤ t
}
. (14.44)

By Lemma 14.8 for all m

lim
δ↓0

P
{
τm

0 (δ) ≤ t
} = 0 ∀t > 0. (14.45)

Hence there is a sequence δm = δm(t) ↓ 0, as m → ∞ such that

lim
m→∞ P

{
τm

0 (δm) ≤ t
} = 0. (14.46)

Expressions (14.44) and (14.46) together imply (14.42). 
�
13 Cf. Theorem 15.24, Sect. 15.2.1.
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Note that w.p. 1

r i
ε,δ,Nε (t) ≡ r i

ε(t) on
[
0, τm

ε (δ)
]
, i = 1, . . . ,m ≤ Nε, (14.47)

where {r i
ε(t)}i=1,...,Nε is the solution of (4.10) with σ⊥i ≡ 0 ∀i .

Proof of Theorem 14.2

Employing (14.42), Lemma 14.5, and Corollary 14.7, we obtain
(
Xε,Nε , rε(·, Xε,Nε , q

1
ε ), . . . , rε(·, Xε,Nε , q

Nε
ε )

) ⇒ (X0,∞, r0,∞(·, X0,∞, q1), . . .)

in C([0,∞);M × (Rd)∞), as ε→ 0 .

}

(14.48)

Since the solution X0,∞ of (14.6) is unique (cf. Remark 14.1), (14.14) follows
from Lemma 14.3.

The proof of (14.15) is easier. 
�

14.3 Examples

We provide examples of kernels, satisfying the additional hypotheses from Sect. 5.1.

(i) Fε(r, µ) ≡ F0(r, µ) for ε ≥ 0. Let α > 0. Set

Γ̃α(r) :=
(

1
(2πα)

)d/4
exp

(
−|r |2

4α

)
and Γα(r) the diagonal d × d matrix, whose

entries on the main diagonal are all Γ̃ε(r). Set

Jε(r, p, µ) :=
∫
Γε(r − p)Γ2(p − q)µ(dq).

Then,

D̃ε(µ, r, q) =
∫ ∫ ∫

Γε(r − p)Γε(q − p)Γ2(p− q̃)Γ2(p− q̂)µ(dq̃)µ(dq̂)dp.

Since we are dealing with diagonal matrices with identical entries we may, in
what follows, assume d = 1. Then,

σ 2
ε (r, µ) = Dε(µ, r) =

∫ ∫ ∫
Γ 2
ε (r − p)Γ2(p − q̃)Γ2(p − q̂)µ(dq̃)µ(dq̂)dp

and, since
∫
Γ 2
ε (r − p)dp = 1,

σ 2
0 (r, µ) =

∫ ∫
Γ2(r − q̃)µ(dq̃)Γ2(r − q̂)µ(dq̂)

=
∫ ∫ ∫

Γ 2
ε (r − p)Γ2(r − q̃)µ(dq̃)Γ2(r − q̂)µ(dq̂)dp.
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We employ the Chapman–Kolmogorov equation to “expand” Γ2(q − q̄) =
c1
∫
Γ1(q − p̄)Γ1( p̄ − q̄)d p̄) with sup

q
Γ1(q) ≤ c2 <∞. Hence,

∣∣∣∣
∫ ∫

Γ2(p − q̃)µ(dq̃)Γ2(p − q̂)µ(dq̂)−
∫ ∫

Γ2(r − q̃)µ(dq̃)Γ2(r − q̂)µ(dq̂)
∣∣∣∣

= c2
1

∣∣∣∣
∫ ∫ [

Γ1(p − p̃)Γ1(p − p̂)− Γ1(r − p̃)Γ1(r − p̂)
]

[∫ ∫
Γ1( p̃ − q̃)µ(dq̃)Γ1( p̂ − q̂)µ(dq̂)

]
d p̃ d p̂

∣∣∣∣

≤ c2
1c2

2

∫ ∫
|Γ1(p − p̃)Γ1(p − p̂)− Γ1(r − p̃)Γ1(r − p̂)|d p̃ d p̂,

where we used µ(Rd) = 1. So,

|σ 2
ε (r, µ)− σ 2

0 (r, µ)|
≤ c

∫
Γ 2
ε (r − p)|Γ1(p − p̃)Γ1(p − p̂)− Γ1(r − p̃)Γ1(r − p̂)|d p̃ d p̂ dp

= c
∫
Γ 2
ε (p) f (r, p)dp

by change of variables with f (r, p) := ∫ ∫ |Γ1(r + p − p̃)Γ1(r + p − p̂) −
Γ1(r − p̃)Γ1(r − p̂)|d p̃ d p̂. f is continuous in R2d with f (r, 0) = 0 ∀r . Since
Γ 2
ε (p) −→ δ0 as ε ↓ 0, we have for a compact set K ⊂ Rd

sup
r∈K

∫
Γ 2
ε (p) f (r, p)dp → 0, as ε ↓ 0.

This implies (14.8).
(ii) Let µ ∈ C, where C is a compact subset of M1. By Prohorov’s theorem for any

δ > 0 there is an L > 0 such that infµ∈C µ(SL) ≥ 1 − δ. Let SL := {p ∈
Rd ; |p| ≤ L}. Set

cδ := inf
p∈SL ,q̃∈SL

Γ2(p − q).

Obviously, cL > 0. So,

σ 2
ε (r, µ) =

∫
Γ 2
ε (r − p)

[∫
Γ2(p − q̃)µ(dq̃)

]2

dp

σ 2
ε (r, µ) =

∫
Γ 2
ε (r − p)

[∫
Γ2(p − q̃)µ(dq̃)

]2

dp

≥
∫

SL

Γ 2
ε (r − p)

[∫
SL

Γ2(p − q̃)µ(dq̃)
]2

dp

≥
∫

SL

Γ 2
ε (r − p)c2

δ [1 − δ]2 dp.
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Since {r} is bounded in the formulation of assumption in (14.9), we may assume
|r | ≤ L

2 . Changing variables in
∫

SL
Γ 2
ε (r − p)dp we obtain that for |r | ≤ L

2 and
0 < ε ≤ 1,

∫
SL

Γ 2
ε (r − p)dp ≥

∫
{|p|≤ L

2 }
Γ 2

1 (p)dp ≥ cL > 0.

Altogether we obtain (14.9).
(iii) Set

c2 := sup
q
Γ2(q),

which is obviously finite. Since µ(Rd) = 1, we obtain

Dε(r, q, µ) =
∫
Γε(r − p)Γε(q − p)

[∫
Γ2(p − q̃)µ(dq̃)

]2

dp

≤ c2
2

∫
Γε(r − p)Γε(q − p)dp = c2

2 exp
(
−|r − q|2

8ε

)
,

whence we obtain (14.10).
(iv) We are checking the Lipschitz condition (4.11) for our example, assuming again

without loss of generality d = 1.

Jε(r, p, µ) :=
∫
Γε(r − p)Γ2(p − q)µ(dq).∫

(Jε(r1, p, µ1)− Jε(r2, p, µ1))
2 dp

=
∫ {

[Γε(r1 − p)− Γε(r2 − p)]
∫
Γ2(p − q)µ(dq)

}2

dp

≤ c2
2

∫
[Γε(r1 − p)− Γε(r2 − p)]2 dp = 2c2

2

[
1 − exp

(
−|r1 − r2|2

8ε

)]

≤ 2c2
2

[ |r1 − r2|2
8ε

∧ 1 ≤ cερ2(r1 − r2).

Γ2(p−·) is a bounded function of q with bounded derivatives, where the bound
can be taken uniform in p. Therefore,

|Γ2(p − q1)− Γ2(p − q2)| ≤ c2ρ(q1 − q2).

Hence,
∫
(Jε(r, p, µ1)− Jε(r, p, µ2))

2 dp

=
∫ {

Γε(r − p)
∫
Γ2(p − q)[µ1(dq)− µ2(dq)]

}2

dp

≤ c2γ 2(µ1 − µ2)

∫
Γ 2
ε (r − p)dp = c2γ 2(µ1 − µ2).
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(v) Assume, without loss of generality, F ≡ 0. We have

D0(r, t) :=
∫ ∫

Γ2(r − q̃)X0,∞(t, dq̃)Γ2(r − q̂)X0,∞(t, dq̂).

Obviously, D0(r, t) is infinitely often differentiable with respect to r with deriv-
ative continuous in (r, t). Note that the “test functions” Γ2(r − q) are in the
Schwarz space of infinitely often differentiable functions, with all derivatives
rapidly decreasing. Taking all derivatives in the integrals in the distributional
sense,

∂

∂t
D0(r, t) = 2

∫ ∫
Γ2(r − q̃)

∂

∂t
X0,∞(t, dq̃)Γ2(r − q̂)X0,∞(t, dq̂).

Further, by (14.6), we may replace the partial with respect to t by the (quasilin-
ear) second partial with respect to the space variable, i.e.,

∂

∂t
D0(r, t) =

∫ ∫
Γ2(r − q̃)∂q̃q̃ [D0(q̃, t)X0,∞(t, dq̃)]Γ2(r − q̂)X0,∞(t, dq̂).

By definition (“integrating by parts”) the right-hand side can be rewritten, tak-
ing the second derivative of the “test function” Γ2(r − q̃), with respect to q̃ .
By the homogeneity of Γ2(r − q̃), this second derivative equals the second
derivative with respect to r . Hence,

∂

∂t
D0(r, t) =

∫ ∫
(∂rrΓ2)(r − q̃)D0(q̃, t)X0,∞(t, dq̃)Γ2(r − q̂)X0,∞(t, dq̂).

We verify that ∂∂t D0(r, t) is continuously differentiable in all variables. Hence,
we may compute the second derivative with respect to t , obtaining two terms.
One of them contains ∂

∂t D0(r, t) as a factor in the integral which we may
replace by the right-hand side of the last equation. The other term contains
∂
∂t X0,∞(t, dq̃) as a factor in the integral. As before, we replace this term by
∂q̃q̃ [D0(q̃, t)X0,∞(t, dq̃)] and integrate by parts.
Altogether, we obtain that D0(r, t) is twice continuously differentiable with re-
spect to all variables. The statement for d×d matrix-valued coefficients follows
from the one-dimensional case.

14.4 A Remark on d = 1

Based on a result by Dorogovtsev (2005) we expect in the one-dimensional case the
solution of (8.26) not to converge to the solution of a macroscopic PDE but to the
solution of an SPDE driven by one standard Brownian motion β(t) instead of the
space–time white noise w(dq, dt). A rigorous derivation of this SPDE is planned
for a future research project.
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14.5 Convergence of Stochastic Transport Equations
to Macroscopic Parabolic Equations

We obtain that a sequence of first-order stochastic transport equations, driven by
Stratonovich differentials converges to the solution of a semilinear parabolic PDE,
as the correlation length tend to 0.

We reformulate Theorem 14.2, employing the representation of the solutions of
(8.26) via a first-order stochastic transport equation, driven by Stratonovich differ-
entials.

Theorem 14.3. Suppose the conditions of Theorem 14.2 with diffusion kernel
Jε(r, q, u) being independent of the measure variables. Consider the sequence
of solutions of

dXε = −0 ·(XεF(·, Xε, t))dt −0 · (Xε
∫
Jε(·, p, t)

)
w(dp, ◦dt),

Xε(0) = Xε,0.
(14.49)

Then
Xε ⇒ X0,∞ in C([0,∞);M1), as ε ↓ 0 , (14.50)

where X0,∞(·) is the solution of the semilinear McKean–Vlasov equation

∂

∂t
X0,∞ = 1

2

d∑
k,�=1

∂2
k�(D0,k�(·, t)X0,∞)−0 · (X0,∞F0(·, X0,∞, t)),

X0,∞(0) = µ.

⎫⎪⎬
⎪⎭

(14.51)

Proof. Theorem 14.2 in addition to (8.81). 
�
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Chapter 15
Appendix

15.1 Analysis

15.1.1 Metric Spaces: Extension by Continuity, Contraction
Mappings, and Uniform Boundedness

The proof of the following statement may be found in Dunford and Schwartz
((1958), Sect. I.6., Theorem 17).

Proposition 15.1. Principle of Extension by Continuity
Let B1 and B2 be metric spaces and let B2 be complete. If

f : A %→ B2

is uniformly continuous on the dense subset A of B1, then f has a unique con-
tinuous extension

f̄ : B1 %→ B2.

This unique extension is uniformly continuous on B1. 
�
The following theorem is also known as “Banach’s fixed point theorem.” For the

proof we refer to Kantorovich and Akilov (1977), Chap. XVI.1.

Theorem 15.2. Contraction Mapping Principle

Let (B, dB) be a complete metric space and B a closed subset of B. Suppose
there is a mapping

� : B → B

such that there is a δ ∈ (0, 1) and the following holds:

dB(�( f ),�(g)) ≤ δdB( f, g) ∀ f, g ∈ B.

335
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Then there is a unique f ∗ ∈ B such that1

�( f ∗) = f ∗. 
�
The following uniform boundedness principle and the preceding definitions are

found in Dunford and Schwartz (1958), Sect. II, Theorem 11, and Definitions 7 and
10 and Yosida (1968), Theorem 1 and Corollary 1 (Resonance Theorem). First, we
require some terminology

Let (B, dB) be a metric space. The metric dB( f, g) is called a “Fréchet metric”
(or “quasi-norm”) if

dB( f, g) = dB( f − g, 0) ∀ f, g ∈ M.

• If the metric space B, endowed with a Fréchet metric, dB is also linear topological
space2 it is called a “quasi-normed linear space.”

• If a quasi-normed space B is complete it is called a “Fréchet Space.”
• A subset B of a quasi-normed space B is “bounded” if for any ε > 0 there is a
γ > 0 such that

dB(γ B, 0) ≤ ε.
Theorem 15.3. Uniform Boundedness Principle

(I) For each a in a set A, let Ta be a continuous linear operator from a Fréchet
space B1 into a quasi-normed space B2. If, for each f ∈ B1, the set {Ta f : a ∈
A} is bounded in B2, then

lim
f →0

Ta f = 0 uniformly for a ∈ A .

(II) If, in addition to the assumptions of Part (I), B1 is a Banach space with norm
‖·‖B1 and B2 is a normed vector space with norm ‖·‖B2 , then the boundedness of
{‖Ta f ‖B2 : a ∈ A} at each f ∈ B1 implies the boundedness of {‖Ta‖L(B1,B2)}
where

‖Ta‖L(B1,B2) := sup
‖ f ‖B1≤1

‖Ta f ‖B2

is the usual operator norm. 
�

15.1.2 Some Classical Inequalities

Let (-̃,F , µ) be some measure space and for p ∈ [1,∞) let L p(-̃,F , µ) the space
of measurable real (or complex)-valued functions f such that

‖̃ f ‖̃p :=
{∫
-̃
| f |p(ω)µ(dω)

} 1
p
<∞.

1 The mapping � is called a “contraction” and f ∗ a “fixed point.”
2 This means that (B, dB) is a vector space such that addition of vectors and multiplication by

scalars are continuous operations.
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Proposition 15.4. Hölder’s Inequality 3

Let p ∈ (1,∞) and p̄ := p
p−1 and f and g be measurable functions on -̃. Then

‖̃ f g‖̃1 ≤ ‖̃ f ‖̃p‖̃g‖̃ p̄. (15.1)

Proof. 4

(i) We first show

ab ≤ a p

p
+ b p̄

p̄
for nonnegative numbers a and b and p > 1 and p̄ := p

p−1 .

(15.2)

Indeed, the function h(t) := t p

p + 1
p̄ − t has for t ≥ 0 the minimum value 0, and

this minimum is attained only at t = 1. Setting t = ab−
p̄
p , we obtain (15.2).

(ii) The result is trivial if ‖̃ f ‖̃p = 0 or ‖̃g‖̃ p̄| = 0 (since then f = 0 µ−a.e. or
g = 0 µ−a.e.) It is also trivial if ‖̃ f ‖̃p = ∞ or ‖̃g‖̃ p̄ = ∞. Otherwise, we
apply (15.2) with

a := | f |(ω)
‖̃ f ‖̃p

, b := |g|(ω)
‖̃g‖̃ p̄

.

Then
| f |(ω)|g|(ω)
‖̃ f ‖̃p‖̃g‖̃ p̄

≤ | f |p(ω)

p‖̃ f ‖̃p
p
+ |g| p̄(ω)

p̄‖̃g‖̃ p̄
p̄

.

Integrating both sides yields

‖̃ f g‖̃1

‖̃ f ‖̃p‖̃g‖̃ p̄
≤ 1

p
+ 1

p̄
.


�

Next, we derive Gronwall’s inequality.5

Proposition 15.5. Gronwall’s Inequality
Let ϕ,ψ, χ be real-valued continuous (or piecewise continuous) functions on a

real interval a ≤ t ≤ b. Let χ(t) > 0 on [a, b], and suppose that for t ∈ [a.b]

ϕ(t) ≤ ψ(t)+
∫ t

a
χ(s)ϕ(s)ds. (15.3)

Then

ϕ(t) ≤ ψ(t)+
∫ t

a
χ(s)ψ(s)ds exp

[∫ t

s
χ(u)du

]
ds. (15.4)

3 For p = p̄ = 2 we have the Cauchy-Schwarz inequality.
4 We follow the proofs, provided by Adams (1975), Chap. II, Theorem 2.3, and Folland (1984),

Sect. 6, Theorem 6.2.
5 Cf. Coddington and Levinson (1955), Chap. I.8, Problem 1.
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Proof. Set x(t) := ∫ t
a χ(s)ϕ(s)ds. We immediately verify that (15.3) implies

x ′(t)− χ(t)x(t) ≤ χ(t)ψ(t) ∀t ∈ [a, b], x(a) = 0.

Set
f (t) := x ′(t)− χ(t)x(t) ∀t ∈ [a, b].

Obviously, x(·) solves the ODE initial value problem

x ′(t) = χ(t)x(t)+ f (t), x(a) = 0.

Employing variation of constants, x(·) has the following representation

x(t) =
∫ t

a
exp

[∫ t

s
χ(u)du

]
f (s)ds.

Since f (t) ≤ χ(t)ψ(t) ∀t ∈ [a, b] we obtain

x(t) ≤
∫ t

a
exp

[∫ t

s
χ(u)du

]
χ(s)ψ(s)ds ∀t ∈ [a, b],

whence

χ(t)ϕ(t) = x ′(t) ≤ χ(t)
∫ t

a
exp

[∫ t

s
χ(u)du

]
χ(s)ψ(s)ds+χ(t)ψ(t) ∀t ∈ [a, b].

Dividing both sides of the last inequality by χ(t) yields (15.4). 
�
Let (-1,F1, µ1) and (-2,F2, µ2) be σ -finite measure spaces. L p((Bi ,Fi , µi ))

are the spaces of p-integrable functions on the measure space -i , and the corre-
sponding L p-norms will be denoted ‖ f ‖-i ,p, i = 1, 2, where 1 ≤ p ≤ ∞.
Proposition 15.6. Inequality for Integral Operators

Let K be an F1 ⊗F2-measurable function on -1 ×-2 and suppose there exists
a finite C > 0 such that
∫
|K (ω1, ω2)|µ(dω1) ≤ C µ2-a.e. and

∫
|K (ω1, ω2)|µ(dω2) ≤ C µ1-a.e.

(15.5)

Then, f ∈ L p((-2,F2, µ2)) for 1 ≤ p ≤ ∞ implies that

(K̄ f )(ω1) :=
∫

K (ω1, ω2) f (ω2)µ2(dω2) ∈ L p((-1,F1, µ1)), (15.6)

such that
‖K̄ f ‖-1,p ≤ C‖ f ‖-2,p. (15.7)
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Proof. 6 Suppose p ∈ (1,∞). Then
∫

|K (ω1, ω2) f (ω2)|µ2(dω2)

=
∫

|K (ω1, ω2)|
p−1

p + 1
p | f (ω2)|µ2(dω2)

≤
[ ∫

|K (ω1, ω2)|µ2(dω2)

] p−1
p
[ ∫

|K (ω1, ω2)|| f (ω2)|pµ2(dω2)

] 1
p

(by Hölder’s inequality (Proposition 15.4))

≤ C
p−1

p

[ ∫
|K (ω1, ω2)|| f (ω2)|pµ2(dω2)

] 1
p
µ1-a.e.

Hence, by the Fubini–Tonelli theorem,
∫ [ ∫

|K (ω1, ω2) f (ω2)|µ2(dω2)

]p

µ1(dω1)

≤ C p−1
∫ ∫

|K (ω1, ω2)|| f (ω2)|pµ2(dω2)µ1(dω1)

≤ C p
∫

| f (ω2)|pµ2(dω2) <∞.

We obtain from the last estimate that, by Fubini’s theorem,

K (ω1, ·) f (·) ∈ L1((-2,F2, µ2)) µ1-a.e..

Therefore, K̄ f is well-defined µ1-a.e., and
∫

|(K̄ f )(ω1)|pµ1(dω1) ≤ C p‖ f ‖p
-2,p.

Taking the pth root on both sides, we obtain (15.7).
For p = 1 we do not require Hölder’s inequality, and other than that the proof is

similar. For p = ∞ the proof is trivial. 
�
Proposition 15.6 immediately implies the classical Young inequality.7

Proposition 15.7. Young’s Inequality
Let f ∈ W0,1,1 and g ∈ W0,p,1, where 1 ≤ p ≤ ∞. Then the convolution f ∗ g

exists for almost every r ∈ Rd such that f ∗ g ∈ W0,p,1 and

‖ f ∗ g‖0,p,1 ≤ ‖ f ‖0,1,1‖g‖0,p,1. (15.8)

Proof. We set K (r, q) := f (r − q) and apply Proposition 15.6.8 
�
6 The proof has been adopted from Folland (1984), Sect. 6.3, (6.18) Theorem.
7 We remark that in Tanabe (1979), Sect. 1.2, Lemma 1.2.3, this inequality is called the

“Haussdorf-Young inequality.”
8 Cf. Folland (loc.cit), Sect. 8.1, (8.7).



340 15 Appendix

15.1.3 The Schwarz Space

We define the system of normalized Hermite functions on H0 := L2(Rd , dr) and
provide a proof of the completeness of the system. Further, we prove that the nor-
malized Hermite functions are eigenfunctions of −/ + | · |2, where | · |2 acts as a
multiplication operator. We then introduce the Schwarz space and its strong dual
as well as the chain of associated Hilbert spaces. Finally, we define those Hilbert
distribution spaces, H−γ , for which the imbedding H0 ⊂ H−γ is Hilbert-Schmidt.

As in Chap. 3 we use the abbreviation

N̂ := N ∪ {0}.
First, we define the usual Hermite functions (i.e,. the Hermite functions that are

not normalized!) and the normalized Hermite functions for d = 1 and then for
d > 1:

(i) Case d = 1.

gk(x) := (−1)k exp
(

x2

2

)
dk

dxk exp(−x2),

φk := 1√
2kk!√π gk, k ∈ N̂.

⎫⎪⎪⎬
⎪⎪⎭

(15.9)

(ii) Case d > 1.

Denote the multiindices with a single letter in bold face, i.e., set

k := (k1, . . . , kd)
|k| := k1 + . . .+ kd .

Define:

gk(q1, . . . , qd) :=
d∏

i=1

gki (qi ), ki ∈ N̂, i = 1, . . . , d. (15.10)

We then obtain the normalized Hermite functions9

Φk := 1√√√√
d∏

i=1

2ki ki !π d
4

gk =
d∏

i=1

φki . (15.11)

Further, let / denote the self-adjoint closure of the Laplace operator on H0 with
Dom(/) = H2. | · |2 denotes the multiplication operator acting on functions f from
a suitable subspace of H0.

9 Cf. (15.28) in the proof of the following Proposition 15.8 which establishes that the normalized
Hermite functions have norm 1 in H0.
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Proposition 15.8. The system {φk} is a complete orthonormal system for H0 =
L2(Rd , dr).

Further,
((−/+ |r |2)φk)(r) ≡ (2|k| + d)φk(r) ∀k, (15.12)

i.e., the φk are eigenfunctions of the self-adjoint unbounded operator −/+ | · |2
on H0.10

Proof.

(i) Suppose first d = 1. To show the orthogonality we set

Jk,� :=
∫ ∞

−∞
gk(x)g�(x)dx

and suppose k ≥ �. Define the �th Hermite polynomial by

h�(x) := (−1)� exp(x2)
d�

dx�
exp(−x2) (15.13)

Observe that

h�(x) exp
(
− x2

2

)
≡ g�(x),

and we verify that
h�(x) = 2�x� + p�−2(x), (15.14)

where p�−2(x) is a polynomial of degree �− 2. Therefore,

Jk,� = (−1)k+�
∫ ∞

−∞
exp(x2)

(
dk

dxk exp(−x2)

)(
d�

dx�
exp(−x2)

)
dx

= (−1)k
∫ ∞

−∞
dk

dxk exp(−x2)h�(x)dx .

Integrating by parts k times we obtain

Jk,� = (−1)2k
∫ ∞

−∞
exp(−x2)

(
dk

dxk h�

)
(x)dx .

Observing that the degree of h�(·) is � we have
(

dk

dxk h�

)
(x) :=

{
2kk!, if � = k,
0, if � < k.

Hence,

Jk,� :=
{

2kk!√π, if � = k,
0, if � < k.

(15.15)

Equation (15.15) establishes the orthogonality of the system {gk(·)} and the
orthonormality of the system {φk(·)}.

10 Most of the steps in the following proof are taken from Suetin (1979), Chap. V, Sects. 1 and 3
as well as from Akhiezer and Glasman (1950), Chap. 1, Sect. 11. Cf. also the appendix in the
paper by Holley and Stroock (1978) and Kotelenez (1985).
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(ii) Next, we show completeness of the one-dimensional system.
Suppose there is an f ∈ L2(R, dx) such that

∫ ∞

−∞
f (x)φk(x)dx = 0 ∀k ∈ N̂. (15.16)

Setting φ̃k(x) := exp(− x2

2 )x
k, k ∈ N̂, we observe that, for any n ∈ N̂, the lin-

ear spans of {φ0, . . . , φn} and of {φ̃0, . . . , φ̃n} coincide. Thus, the assumption
(15.16) is equivalent to

∫ ∞

−∞
f (x) exp

(
− x2

2

)
xk dx = 0 ∀k ∈ N̂. (15.17)

Setting i := √−1 and for z ∈ C

ψ(z) :=
∫ ∞

−∞
f (x) exp

(
− x2

2

)
exp(ixz)dx, (15.18)

we obtain (employing Lebesgue’s dominated convergence theorem) that ψ(·)
is analytic in the complex plane. By (15.17) Taylor’s expansion at z = 0 yields

ψ(k)(0) =
∫ ∞

−∞
f (x) exp

(
− x2

2

)
(ix)kdx = 0 ∀k ∈ N̂, (15.19)

where ψ(k)(0) are the kth derivatives of ψ at z = 0. Hence,

ψ(z) ≡ 0.

In particular, we have

ψ(ξ) =
∫ ∞

−∞
f (x) exp

(
− x2

2

)
exp(ixξ)dx = 0 ∀ξ ∈ R. (15.20)

Multiplying both sides by exp(−iξ y), y ∈ R, and integrating with respect to
dξ from −γ to γ , yields

∫ ∞

−∞
f (x) exp

(
− x2

2

)
sin(γ (x − y))

x − y
dx = 0 ∀γ and ∀y . (15.21)

For fixed γ sin(γ (x−y))
x−y can be extended to a bounded and continuous function

in both variables, where the value at 0 equals γ . Let −∞ < a < b < ∞ and
integrate (15.21) with respect to dy from a to b. Employing the Fubini–Tonelli
theorem we obtain from (15.21)

∫ ∞

−∞
f (x) exp

(
− x2

2

)∫ b

a

sin(γ (x − y))
x − y

dy dx = 0 ∀γ . (15.22)
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The following relation is well known and proven in classical analysis books:11

∫ ∞

0

sin(u)
u

du = π

2
. (15.23)

Let c > 0. Then
∫ c

0

sin(u)
u

du =
∞∑

k=0

∫ c∧((k+1)π)

c∧(kπ)
sin(u)

u
du.

The series on the right is alternating, whose terms decrease to 0 in absolute
value. The first term is in (0, π). Therefore,

∫ c

0

sin(u)
u

du ∈ (0, 2π) ∀c > 0.

Since
sin(u)

u
is even,

∣∣∣∣
∫ b

a

sin(γ (x − y))
x − y

dy
∣∣∣∣ ≤ 4π ∀γ and ∀x

Changing variables,
∫ b

a

sin(γ (x − y))
x − y

dy =
∫ γ (b−x)

γ (a−x)

sin(γ (u))
u

du.

Therefore, by (15.23),

lim
γ→∞

∫ b

a

sin(γ (x − y))
x − y

dy = 1(a,b)(x)π + 1{a,b}(x)
π

2
, (15.24)

where 1{a,b}(x) is the indicator function of the set {a, b}, containing the two
elements a, b. By Lebesgue’s dominated convergence theorem,

lim
γ→∞

∫ ∞

−∞
f (x) exp

(
− x2

2

)∫ b

a

sin(γ (x − y))
x − y

dy dx =π
∫ b

a
f (x) exp

(
− x2

2

)
dx .

Hence, by (15.22),
∫ b

a
f (x) exp

(
− x2

2

)
dx = 0 , −∞ < a < b <∞. (15.25)

The integral in (15.25) is an absolutely continuous function of b, whence

f (x) exp
(
− x2

2

)
= 0 dx a.e., which is equivalent to f (x) = 0 dx a.e.

(15.26)
This establishes the completeness of the system {φk} for d = 1.

11 Cf., e.g., Erwe (1968), Chap. VI.8, (289).
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(iii) The completeness of the system {φk} in H0 = L2(Rd , dr) follows from the
completeness of the one-dimensional system employing in the following rela-
tion Fubini’s and the monotone convergence theorems:

| f |20 =
∫ ∞

−∞
· · ·

∫ ∞

−∞

[∫ ∞

−∞
f 2(r1, . . . , rd)dr1

]
dr2 · · · drd

=
∫ ∞

−∞
. . . ..

∫ ∞

−∞

⎡
⎣∑

k1

(∫ ∞

−∞
f (r1, . . . , rd)φk1(r1)dr1

)2
⎤
⎦dr2 · · · drd

=
∑
k1

∫ ∞

−∞
· · ·

∫ ∞

−∞

[∑
k2

(∫ ∞

−∞

(∫ ∞

−∞
f (r1, . . . , rd)φk1(r1)dr1

)

φk2(r2)dr2

)2 ]
dr3 · · · drd

...

=
∑
k1

. . . .
∑
kd

(∫ ∞

−∞
· · ·

∫ ∞

−∞
f (r1, . . . , rd)φk1(r1) · · · · · φkd (rd)dr1 · · · drd

)2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.27)

Further, the orthonormality follows from the one-dimensional case where
(15.15) provides the correct normalizing factor also for the d-dimensional case,
i.e.,

‖gk‖0 =
√√√√ d∏

i=1

2ki ki !π d
4 ∀k. (15.28)

(iv) We next prove (15.12) for d = 1. Observe that

d
dx

exp(−x2) ≡ −2x exp(−x2),

whence we recursively establish

dk+2

dxk+2 exp(−x2)+ 2x
dk+1

dxk+1 exp(−x2)+ 2(k + 1)
dk

dxk exp(−x2) ≡ 0.

Recalling (15.13), the last equation may be rewritten as

d2

dx2

[
exp(−x2)hk(x)

]
+2x

d
dx

[
exp(−x2)hk(x)

]
+2(k+1)

[
exp(−x2)hk(x)

]
≡ 0.

Abbreviating f (x) := exp(−x2) we obtain from the previous equation and the
equations for the first and second derivatives of f
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(
d2

dx2 f (x)+ 2x
d

dx
f (x)+ 2(k + 1) f (x)

)
hk(x)

+
(

2
d

dx
f (x)+ 2x f (x)

)
d

dx
hk(x)+ f (x)

d2

dx2 hk(x)

= f (x)
(

d2

dx2 hk(x)− 2x
d

dx
hk(x)+ 2khk(x)

)
≡ 0

Dividing the last equation by f (x) = exp(−x2) yields the differential equa-
tions for the Hermite polynomials

(
d2

dx2 hk

)
(x)− 2x

(
d

dx
hk

)
(x)+ 2khk(x) ≡ 0. (15.29)

We differentiate gk(x) = exp
(− x2

2

)
hk(x) and obtain

d
dx

gk(x) = −x exp
(
− x2

2

)
hk(x)+ exp

(
− x2

2

)
d

dx
hk(x)

and

d2

dx2 gk(x) = exp
(
− x2

2

)[
−hk(x)+ x2hk(x)− 2x

d
dx

hk(x)+ d2

dx2 hk(x)
]
.

Thus,

d2

dx2 gk(x)+ (2k + 1 − x2)gk(x)

≡ exp
(
− x2

2

)[
d2

dx2 hk(x)− 2x
d

dx
hk(x)

+x2hk(x)− hk(x)+ (2k + 1 − x2)hk(x)

]

≡ exp
(
− x2

2

)[
d2

dx2 hk(x)− 2x
d

dx
hk(x)+ 2khk(x)

]
≡ 0

by (15.29). As a result we obtain the following differential equation for the
Hermite functions:

(
d2

dx2 gk

)
(x)+ (2k + 1 − x2)gk(x) ≡ 0. (15.30)

Obviously, the normalized Hermite functions Φk(·) are solutions of the same
differential equation (15.30), whence we obtain (15.12) for d = 1.

Expression (15.11) in addition to the definition of / =
d∑

i=1
∂2

i i and (15.30)

proves (15.12) also for d > 1. 
�
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Let us introduce suitable spaces of distributions. The following set-up is standard
and details can be found in Itô (1984), Kotelenez (1985), and Holley and Stroock
(loc.cit) and the references therein.

For γ ≥ 0 and f, g ∈ C∞
c (Rd ;R) (the infinitely often continuously differen-

tiable real valued functions with compact support in Rd ) we define scalar products
and Hilbert norms by

〈 f, g〉γ :=
∑

k∈N̂d

(d + |k|)γ 〈 f, φk〉0〈g, φk〉0;

‖ f ‖γ := √〈 f, f 〉γ .

⎫⎬
⎭ (15.31)

Define Hilbert spaces for γ ≥ 0 by

Hγ := { f ∈ H0 : ‖ f ‖γ <∞},
where H0 = H0. Set

S := ∩γ≥0Hγ .

The topology on S is defined by the countable Hilbert norms ‖ · ‖γ , γ ∈ N̂. This
topology is equivalent to the topology generated by the metric

dS,H ( f, g) :=
∞∑
γ=0

(‖ f − g‖γ ∧ 1)2−γ .

Another definition of S is the following:12 Let f ∈ C∞(Rd;R) and define semi-
norms

|‖ f |‖N ,n := sup
r∈Rd

(1 + |r |)N |(∂n f )(r)|.

Then

S :=
{

f ∈ C∞(Rd;R) : |‖ f |‖N ,n <∞
}
∀N ∈ N,n ∈ N̂d .

One may show that the metric dS,H is equivalent to the metric

dS,sup( f, g) :=
∑
N ,n

(|‖ f − g|‖N ,n ∧ 1)2−(N+|n|),

where n = (n1, . . . , nd) and |n| =
d∑

i=1
ni . Therefore, both definitions of S coincide.

Next, identify H0 with its strong dual H′
0 and denote by S ′(Rd) the dual of

S(Rd). S ′(Rd) is called the Schwarz space of tempered distributions on Rd . For
γ ≥ 0 we set

H−γ :=
{

f ∈ S ′(Rd) : f ∈ L(Hγ ;R)
}

12 Cf., e.g. Treves (1967), Part II, Chap. 25.
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(the bounded linear functionals on Hγ ). We extend the scalar product 〈 f, g〉0 to
a duality 〈·, ·〉 between S(Rd) and S ′(Rd). We verify that the functional norm on
H−γ , ‖ · ‖−γ , may be defined as the norm associated with the following scalar
product on H−γ :

〈 f, g〉−γ =
∑

k∈N̂d

(d + |k|)−γ 〈 f, φk〉〈g, φk〉.

Hence, if γ1, γ2 > 0, we obtain the chain of spaces with dense and continuous
imbeddings

S := S(Rd) ⊂ Hγ1 ⊂ H0 = H′
0 ⊂ H−γ2 ⊂ S ′ := S ′(Rd) (15.32)

Next, for all all γ ∈ R

{φk,γ } :=
{
(d + |k|)− γ

2 φk

}
(15.33)

is a CONS in Hγ .
For applications to linear PDEs and SPDEs (cf. Sect. 13.1.1) the following char-

acterization of the above Hilbert spaces may be useful. Let “Dom” denote the
domain of an operator. Consider the fractional powers (−/ + |r |2) γ2 of the self-
adjoint operator (−/+ |r |2)13 where γ ∈ R. For suitable restrictions or extensions
of (−/ + |r |2) γ2 14, denoting all restrictions and extensions with the same symbol,
(15.12) and the definition of the Hilbert norms ‖ · ‖γ imply

Hγ := Dom((−/+ |r |2) γ2 ) and

〈
(−/+ |r |2) γ2 f, (−/+ |r |2) γ2 g

〉
0

=
∑

k∈N̂d

(d + |k|)γ 〈 f, φk〉〈g, φk〉 = 〈 f, g〉γ ∀ f, g ∈ Hγ .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(15.34)

In what follows assume −∞ < γ2 < γ1 <∞. We verify that the imbedding

Hγ1 ⊂ Hγ2

is compact if γ1 − γ2 > 0. A finitely additive Gauss measure on Hγ1 whose
covariance operator is the identity on Hγ1 can be extended to a countably additive
Gaussian measure on Hγ2 if, and only if, the imbedding is “Hilbert-Schmidt,”
i.e., if15 ∑

k

‖φk,γ1‖2
γ2
<∞. (15.35)

13 Cf., e.g., Pazy (1983), Sect. 2.6, or Tanabe (1979), Sect. 2.3.
14 Cf. Kotelenez (1985).
15 Cf. Itô (1984), Kotelenez (1985), and Walsh (1986) in addition to Kuo (1975), Chap. I, Sect. 4,

Theorem 4.3, and our previous discussion of the abstract case.
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Obviously, the imbedding is Hilbert-Schmidt if, and only if, γ1 − γ2 > d. The
previous definitions and results imply the following: The imbedding

H0 ⊂ H−γ is Hilbert-Schmidt, i.e., if and only if γ > d. (15.36)

15.1.4 Metrics on Spaces of Measures

Properties of various versions of the Wasserstein metric for M f and M∞,� as well
as properties of the weight function � are derived. At the end we compare the
Wasserstein metric with the metric in total variation.

In Chap. 4 we introduced M f as the space of finite Borel measures on Bd (the
Borel sets in Rd). We define a Wasserstein metric on M f as follows:

The space of all continuous Lipschitz functions f from Rd into R will be denoted
CL(Rd;R). Further, CL ,∞(Rd;R) is the space of all uniformly bounded Lipschitz
functions f from Rd into R. Abbreviate16

|‖ f |‖ := sup
q

| f (q)|; ‖ f ‖L := sup
{r !=q,|r−q|≤1}

| f (r)− f (q)|
ρ(r−q) ; ‖ f ‖L ,∞ := ‖ f ‖L ∨ |‖ f |‖.

(15.37)
For µ, ν ∈ M f , we set

γ f (µ− ν) := sup
‖ f ‖L ,∞≤1

∣∣∣∣
∫

f (q)(µ(dq)− ν(dq))
∣∣∣∣ . (15.38)

Obviously (M f , γ f ) is a metric space where γ f (µ − ν) is actually a norm. En-
dowed with the functional norm the space of all continuous linear bounded func-
tionals from CL ,∞(Rd;R) into R (denoted C∗

L ,1(R
d;R)) is the strong dual of

CL ,∞(Rd;R) and, therefore, a Banach space. M f is the cone of (nonnegative)
measures in C∗

L ,1(R
d;R), and convergence of a sequence µn ∈ M f in the norm-

topology implies convergence in the weak-* topology. It follows from the Riesz
theorem that the limit µ is a Borel (or Baire) measure. Thus, it is in M f .17 Hence,
M f is closed in the norm-topology and, therefore, it is also complete.

Set

Md :=
{
µ :=

N∑
i=1

aiδri , N ∈ N, ri ∈ Rd , ai ∈ R

}
,

i.e., Md is the space of finite sums of point measures with nonnegative weights.
Obviously,

Md ⊂ C∗
L ,1(R

d;R).

16 In the definition of the Lipschitz norm (15.37) we may, without loss of generality, restrict the
quotient to |r − q| ≤ 1, since for values |r − q| > 1 the quotient is dominated by 2|‖ f |‖.

17 Cf. Bauer (1968), Sect. VII, 45.



15.1 Analysis 349

Note that Md is dense in (M f , γ f ) in the topology generated by γ f .18 Further,
we verify that the sums of point measures with rational nonnegative weights and
supports in rational vectors are also dense in (M f , γ f ). Therefore, we have

Proposition 15.9. (M f , γ f ) is a complete separable metric space.19

Choose ν = 0 (the Borel measure that assigns 0 to all Borel sets) in (15.38). For
positive measures µ we have

γ f (µ) =< 1, µ >= µ(Rd),

i.e., the norm γ f (µ) of µ ∈ M is the total mass of µ.
Let us now make some comments on the relation of γ f to the Wasserstein (or

Monge-Wasserstein) metric.20 Ifµ, ν have equal total finite mass m̄ > 0 we will call
positive Borel measures Q on R2d joint representations of µ and ν, if Q(A×Rd) =
µ(A)m̄ and Q(Rd × B) = µ̃(B)m̄ for arbitrary Borel sets A, B ⊂ Rd . The set of
all joint representations of (µ, µ̃) will be denoted by C(µ, µ̃). For µ, µ̃ with mass
m̄ and p ≥ 1 define the pth Wasserstein metric by

γ̃p(µ, µ̃) :=
[

inf
Q∈C(µ,µ̃)

∫ ∫
Q (dr, dq)ρ p(r − q)

] 1
p
. (15.39)

For the case of two probability measures µ, ν (or finite measures of equal mass)
the Kantorovich-Rubinstein theorem asserts21

sup
‖ f ‖L≤1

∫
f (q)(µ(dq)− ν(dq)) = γ̃1(µ, ν) = inf

Q∈C(µ,ν)

∫ ∫
Q (dr, dq)ρ(r − q)

(15.40)
The first observation is that, both in (15.38) and (15.40), the sets of f are invariant

with respect to multiplication by −1, which allows us to drop the absolute value bars
in the definition of the metrics. Further, for two probability measures µ and ν

sup
‖ f ‖L≤1

∫
f (q)(µ(dq)− ν(dq)) ≥ sup

‖ f ‖L ,∞≤1

∫
f (q)(µ(dq)− ν(dq)).

Next, for arbitrary constants c f

sup
‖ f ‖L≤1

∫
( f (q)− c f )(µ(dq)− ν(dq)) = sup

‖ f ‖L≤1

[∫
f (q)(µ(dq)− ν(dq))

−c f (µ(Rd)− ν(Rd))

]

= sup
‖ f ‖L≤1

∫
f (q)(µ(dq)− ν(dq)),

18 Cf. De Acosta, A. (1982).
19 By Definition 15.2 and (15.38) (M f , γ f ) is a separable Fréchet space.
20 Cf. Dudley (1989), Chap. 11.8).
21 Cf. Dudley (loc.cit.), Chap. 11, Theorem 11.8.2.
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since µ(Rd) − ν(Rd) = 0. On the left-hand side of (15.40) we may therefore,
without loss of generality, assume f (0) = 0. If we choose two point measures δr , δ0
the (only) joint representation is δ(r,0). (15.37), in addition to f (0) = 0, implies

sup
‖ f ‖L≤1

f (r) = ρ(r) ≤ 1.

We obtain
|‖ f |‖ ≤ 1 if ‖ f ‖L ≤ 1 and if f (0) = 0.

Thus, we have for two probability measures µ and ν

γ̃1(µ, ν) = sup
‖ f ‖L≤1, f (0)=0

∫
f (q)(µ(dq)−ν(dq)) = sup

‖ f ‖L ,∞≤1

[∫
f (q)(µ(dq)− ν(dq))

]

and therefore, for two probability measures µ and ν

γ̃1(µ, ν) = γ f (µ− ν).

As a consequence, we may in the Kantorovich–Rubinstein theorem replace the
sup

‖ f ‖L≤1
by the sup

‖ f ‖L ,∞≤1
. “Normalizing” two measures µ, ν ∈ Mm̄ with m̄ > 0 to µ

m̄

and ν
m̄ , respectively, we obtain

γ f (µ− ν) = m̄γ̃1

(µ
m̄

− ν

m̄

)
. (15.41)

Next, consider two arbitrary measures µ, ν ∈ M+
f with total masses m̄ and n̄,

respectively. Suppose m̄ > n̄ > 0. Then,

γ f (µ− ν) = sup
‖ f ‖L ,∞≤1

∣∣∫ f (q)(µ(dq)− ν(dq))
∣∣

= sup
‖ f ‖L ,∞≤1

∫
f (q)(µ(dq)− ν(dq))

(as the set of f in question is invariant if the elements are multiplied by (−1))

= sup
‖ f ‖L ,∞≤1

[∫
f (q)

(
n̄
m̄
µ(dq)− ν(dq)

)
+
∫

f (q)
m̄ − n̄

m̄
µ(dq)

]

≤ sup
‖ f ‖L ,∞≤1

∫
f (q)

(
n̄
m̄
µ(dq)− ν(dq)

)
+ sup

‖ f ‖L ,∞≤1

∫
f (q)

m̄ − n̄
m̄

µ(dq)

= γ f

(
n̄
m̄
µ− ν

)
+
∫

1(q)
m̄ − n̄

m̄
µ(dq)

(where 1(q) ≡ 1)
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= γ f

(
n̄
m̄
µ− ν

)
+ m̄ − n̄

= n̄γ̃1

(µ
m̄

− ν
n̄

)
+ m̄ − n̄

(by (15.41).)

If n̄ = 0, then ν = 0. We recall that γ f (µ− ν) = γ f (µ− 0) = m̄.
For m̄ > n̄ > 0 we now suppose n̄

m̄µ != ν which is equivalent to γ f
( n̄

m̄µ− ν) =:
c > 0. Let fn be a sequence with ‖ fn‖L ,∞ ≤ 1 and γ

( n̄
m̄µ− ν) = c =

lim
n→∞

∫
fn(q)

( n̄
m̄µ(dq)− ν(dq)

)
. Note that

lim
n→∞

∫
fn(q)

(
n̄
m̄
µ(dq)− ν(dq)

)
= lim

n→∞

[∫
fn(q)

n̄
m̄
µ(dq)−

∫
fn(q)ν(dq)

]
.

Both integrals in the right-hand side of the last identity are bounded sequences
αn and βn , respectively. By compactness, they contain convergent subsequences,
and we may assume, without loss of generality, that both αn and βn converge to real
numbers α and β, respectively.

Consider first the case where −β < c. This implies α > 0, whence we may
assume that αn > 0 for all n. Since αn −→ α

∫
fn(q)

m̄ − n̄
m̄

µ(dq) = αn
m̄
n̄

m̄ − n̄
m̄

−→ α
m̄
n̄

m̄ − n̄
m̄

= α
(

m̄
n̄
− 1

)
> 0.

Hence,

γ f

(
n̄
m̄
µ− ν

)
= c = lim

n→∞

∫
fn(q)

(
n̄
m̄
µ(dq)− ν(dq)

)

≤ lim
n→∞

∫
fn(q)

(
n̄
m̄
µ(dq)− ν(dq)

)
+ lim

n→∞

∫
fn(q)

m̄ − n̄
m̄

µ(dq)

= lim
n→∞

∫
fn(q)(µ(dq)− ν(dq)) ≤ sup

‖ f ‖L ,∞≤1

∫
f (q)(µ(dq)− ν(dq))

= γ f (µ− ν).
Next, assume the other case −β ≥ c ⇐⇒ β ≤ −c. Since c > 0, we may assume

that βn = ∫
fn(q)ν(dq) < 0 for all n. So
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γ f

(
n̄
m̄
µ− ν

)
= c = lim

n→∞

∫
fn(q)

(
n̄
m̄
µ(dq)− ν(dq)

)

= n̄
m̄

lim
n→∞

∫
fn(q)

(
µ(dq)− m̄

n̄
ν(dq)

)

= n̄
m̄

lim
n→∞

∫
fn(q)(µ(dq)− ν(dq))+ m̄ − n̄

n̄

∫
fn(q)ν(dq)

≤ n̄
m̄

lim
n→∞

∫
fn(q)(µ(dq)− ν(dq))

≤ n̄
m̄

sup
‖ f ‖L ,∞≤1

∫
f (q)(µ(dq)− ν(dq))

= n̄
m̄
γ f (µ− ν) < γ f (µ− ν).

Note that for m̄ > n̄

(n̄ ∧ m̄)γ f

(µ
m̄

− ν
n̄

)
= γ f

(
n̄
m̄
µ− ν

)
.

The left-hand side is symmetric with respect to m̄ and n̄. Therefore, we obtain in
both cases

(n̄ ∧ m̄)γ f

(µ
m̄

− ν
n̄

)
≤ γ f (µ− ν). (15.42)

Further, note that

m̄− n̄ =
∫

1(q)(µ(dq)−ν(dq)) ≤ sup
‖ f ‖L ,∞≤1

∫
f (q)(µ(dq)−ν(dq)) = γ f (µ−ν)

Altogether,

γ f (µ− ν) ≤ (n̄ ∧ m̄)γ f

(µ
m̄

− ν
n̄

)
+ |m̄ − n̄| ≤ 2γ f (µ− ν)

⇐⇒
γ f (µ− ν) ≤ (n̄ ∧ m̄)γ̃1

(µ
m̄

− ν
n̄

)
+ |m̄ − n̄| ≤ 2γ f (µ− ν).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15.43)

Set
γ̂ f (µ, ν) := (n̄ ∧ m̄)γ̃1

(µ
m̄

− ν
n̄

)
+ |m̄ − n̄| (15.44)

We see that γ̂ f (µ, ν) defines a metric on M f . An equivalent version was intro-
duced in Kotelenez (1996). Summarizing the previous results we have shown:

Proposition 15.10. γ f (µ− ν) and γ̂ f (µ, ν) are equivalent metrics on M f . 
�
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Recall that M∞,� was defined in (4.5) as the space of all σ -finite Borel measures
µ on Rd such that

M∞,� :=
{
µ ∈ M∞ :

∫
�(q)µ(dq) <∞

}

where �(r) = (1 + |r |2)−γ , γ > d
2 , is the weight function from (4.4). �µ etc.

denotes the finite measure that can be represented as µ with density � . Further,
defining for µ, ν ∈ M∞,�

γ� (µ− ν) := γ f (�(µ− ν)), (15.45)

we obtain that (M∞,� , γ� ) is isometrically isomorphic to (M f , γ f ). Recalling
Proposition 15.9, we conclude that (M∞,� , γ� ) is also a complete separable metric
space.

Next, we derive some properties of� . For k, � = 1, . . . , d and f twice continu-
ously differentiable we recall the notation

∂k f := ∂

∂rk
f, ∂2

k� f := ∂2

∂rk∂r�
f.

Let β > 0 and consider �β(r) := �β(r). We easily verify
d∑

k=1

|∂k�β(q)| +
d∑

k,�=1

|∂2
k��β(q)| ≤ c�β(q),

|�β(r)−�β(q)| ≤ γβ!(r, q)[�β(r)+�β(q)].

⎫⎪⎬
⎪⎭

(15.46)

Indeed, a simple calculation yields

∂k�(r) = −γ (1 + |r |2)−γ−12rk

∂2
k,��(r) = −γ (−γ − 1)(1 + |r |2)−γ−22rk2r� − γ (1 + |r |2)−γ−12δk,�.

This implies the first inequality. The second inequality is obvious if |r − q| ≥ 1.
For the case |r − q| < 1 we may assume |r | < |q| and β = 1. Then

|�(r)−�(q)| = �(r)−�(q)

=
∫ |q|

|r |
2γ u(1 + u2)−(γ+1)du

≤
∫ |q|

|r |
γ (1 + u2)−γ du

(as 2u ≤ (1 + u2))

≤
∫ |q|

|r |
γ (1 + |r |2)−γ du

(as (1 + u2) is monotone decreasing for u ≥ 0 )

= (|q| − |r |)�(r) ≤ |r − q|�(r)
≤ |r − q|[�(r)+�(q)].
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The following was used in (11.9):

�−1(q)�(r) =
(

1+|q|2
1+|r |2

)γ ≤ 2γ (1 + |r − q|2)γ . (15.47)

(15.47) follows from

�−1(q) = 1 + |q|2 = 1 + |q − r + r |2 ≤ 1 + 2|q − r |2 + 2|r |2
≤ 2(1 + |q − r |2 + |r |2) ≤ 2(1 + |r − q|2)(1 + |r |2).

We have the continuous inclusion

(M f , γ f ) ⊂ (M∞,� , γ� ).

In what follows we compare the topologies of (M f , γ� ) and of (M∞,� , γ� ),
respectively, with the topologies of Wm,2,Φ . As a preliminary, we derive a relation
between weak and strong convergence in separable Hilbert spaces, using the Fourier
expansion of the square of the Hilbert space norm.22

Lemma 15.11. Let H be a separable Hilbert space with scalar product 〈·, ·〉H and
associated Hilbert space norm ‖·‖H and let {ϕk}k∈N be a CONS in H. Let fn, f ∈ H
such that

(i) ‖ fn‖H −→ ‖ f ‖H, as n −→ ∞,
(ii) 〈 fn, ϕk〉H −→ 〈 f, ϕk〉H ∀k ∈ N, as n −→ ∞.

Then, ‖ fn − f ‖H −→ 0, as n −→ ∞.

Proof.
〈 fn, f 〉H =

∑
k∈b f N

〈 fn, ϕk〉H〈ϕk, f 〉H.

By assumption, the kth term in the above Fourier series converges to
〈 f, ϕk〉H〈ϕk, f 〉H ∀k. To conclude that the the left-hand side also converges to
〈 f, f 〉H, we must show that the terms are uniformly integrable with respect to the
counting measure. Note that

|〈 fn, ϕk〉H〈ϕk, f 〉H| ≤ 1
2
[〈 fn, ϕk〉H〈ϕk, fn〉H + 〈 f, ϕk〉H〈ϕk, f 〉H].

Again our assumption implies that the first term 〈 fn, ϕk〉H〈ϕk, fn〉H converges
for all k to 〈 f, ϕk〉H〈ϕk, f 〉H and its sum, being equal to ‖ fn‖2

H, converges by as-
sumption to ‖ f ‖2

H. Consequently,

∑
k∈N

1
2
[〈 fn, ϕk〉H〈ϕk, fn〉H + 〈 f, ϕk〉H〈ϕk, f 〉H] −→ ‖ f ‖2

H, as n −→ ∞ .

22 The result of Lemma 15.11 is actually well known, except that we replaced weak convergence
by convergence of the Fourier coefficients (cf. Yosida (1968), Sect. V.1, Theorem 8).
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If follows that the terms 1
2 [〈 fn, ϕk〉H〈ϕk, fn〉H + 〈 f, ϕk〉H〈ϕk, f 〉H] are uni-

formly integrable with respect to the counting measure (cf. Bauer (1968), Sect. 20,
Korollar 20.5). Since these terms dominate |〈 fn, ϕk〉H〈ϕk, f 〉H| we have that the
terms |〈 fn, ϕk〉H〈ϕk, f 〉H| are also uniformly integrable with respect to the count-
ing measure. Hence, we may apply Lebesgue’s dominated convergence theorem and
obtain

∑
k∈N

|〈 fn, ϕk〉H〈ϕk, f 〉H − 〈 f, ϕk〉H〈ϕk, f 〉H| −→ 0, as n −→ ∞ .

This implies
〈 fn, f 〉H −→ 〈 f, f 〉H, as n −→ ∞ ,

and similarly for 〈 f, fn〉H. Now the statement follows as in Yosida (loc.cit.) from

‖ fn − f ‖2
H = ‖ fn|2H +‖ f ‖2

H − 〈 fn, f 〉H − 〈 f, fn〉H −→ 0, as n −→ ∞ . 
�
Proposition 15.12. Let α≥0, (M, γ )∈{(M f , γ f ), (M� , γ� )}, and let {ϕk}k∈N⊂S
be a CONS in Hα,#, # ∈ {1,� }. Suppose fn, f ∈ Hα,# ∩ M such that

(i) ‖ fn‖α,# −→ ‖ f ‖α,#, as n −→ ∞,
(ii) γ ( fn − f ) −→ 0, as n −→ ∞.

Then, ‖ fn − f ‖α,# −→ 0, as n −→ ∞.

Proof. Recalling the definitions of γ f from (15.38) and γ� from (15.45), respec-
tively, we note that for all k we find a suitable constant ck such that ‖ckϕk‖L ,∞ = 1
(cf. also the proof of Theorem 8.5). Hence, convergence of fn to f in (M, γ ) implies

〈 fn − f, ϕk〉α,# −→ 0 ∀k ∈ N, as n −→ ∞.

Employing Lemma 15.11 finishes the proof. 
�
For our purposes we need to mention two other metrics. The first is the Prohorov

metric, dp,B. This is a metric on probability measures µ, ν, defined on the Borel sets
of some separable metric space B. The Prohorov metric will be described in Sect.
15.2., (15.37). The second metric is the “metric of total variation” on M f , defined
as follows:

‖µ− ν‖ f := sup
{A∈Bd }

|〈µ− ν, 1A〉| (15.48)

Apparently, ‖ · ‖ f is a norm (on the finite signed measures), restricted to M f .

Proposition 15.13.

γ f (µ− ν) ≤ ‖µ− ν‖ f ∀µ, ν ∈ M f .

Proof.

(i) Since M f are finite Borel measures on Bd they are regular. The Riesz repre-
sentation theorem23 implies that

23 Cf. Bauer (1968), Sects. 40, 41, and Folland (1984), Sect. 7.3.
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‖µ− ν‖ f = sup
{|‖ϕ|‖≤1,ϕ∈C0(Rd ;R)}

|〈µ− ν, ϕ〉|. (15.49)

Further, the regularity implies that for every δ > 0 there exists a closed ball
BLδ (0) with finite radius Lδ and center at the origin such that

µ
(
Rd \ BLδ (0)

)+ ν(Rd \ BLδ (0)
) ≤ δ.

Hence,

γ f (µ− ν) ≤ sup
{‖ϕ‖L ,∞≤1}

∣∣∣∣
∫
ϕ(r)1BLδ (0)(r)(µ− ν)(dr)

∣∣∣∣+ δ

and

‖µ− ν‖ f ≥ sup
{|‖ϕ|‖≤1,ϕ∈C0(Rd ;R)}

∣∣∣∣
∫
ϕ(r)1BLδ (0)(r)(µ− ν)(dr)

∣∣∣∣− δ.

(ii) Set

η̃(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1, if 0 ≤ x ≤ Lδ ,

1 + δ(Lδ − x), if x ∈
(

Lδ + 1
δ

)
,

0, otherwise,
and

η(r) := η̃(|r |).
If ‖ϕ‖L ,∞ ≤ 1 we verify that the pointwise product of the two functions, ϕ and
η, satisfies the following relations:

ϕη ∈ C0(Rd;R) and ‖ϕη‖L ,∞ ≤ (1 + δ).
(iii) From (ii)

sup
{‖ϕ‖L ,∞≤1}

∣∣∣∣
∫
ϕ(r)1BLδ (0)(r)(µ− ν)(dr)

∣∣∣∣

= sup
{‖ϕ‖L ,∞≤1}

∣∣∣∣
∫
ϕ(r)η(r)1BLδ (0)(r)(µ− ν)(dr)

∣∣∣∣

≤ sup
{‖ϕη‖L ,∞≤1+δ,ϕ∈CL ,∞(Rd ;R)}

∣∣∣∣
∫
ϕ(r)η(r)1BLδ (0)(r)(µ− ν)(dr)

∣∣∣∣

≤ sup
{|‖ϕ|‖≤1+δ,ϕ∈C0(Rd ;R)}

∣∣∣∣
∫
ϕ(r)1BLδ (0)(r)(µ− ν)(dr)

∣∣∣∣

= sup
{|‖ϕ|‖≤1,ϕ∈C0(Rd ;R)}

∣∣∣∣
∫
ϕ(r)1BLδ (0)(r)(µ− ν)(dr)

∣∣∣∣ (1 + δ).

Therefore, from (i) we obtain

γ f (µ− ν) ≤ ‖µ− ν‖ f (1 + δ)+ δ(2 + δ).
Since δ > 0 was arbitrary the proof is complete. 
�
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15.1.5 Riemann Stieltjes Integrals

Next, we provide some facts about Riemann-Stieltjes integrals, following Natanson
(1974).

Definition 15.14. Let f and g be real-valued functions, defined on a one-
dimensional interval [a, b] and

{
a = tn

0 ≤ tn
1 ≤ . . . . ≤ tn

n = b
}

be a sequence of
partitions such that max1≤k≤n

(
tn
k − tn

k−1
) −→ 0, as n −→ ∞.

(I) Suppose that Vn( f ) :=
n∑

k=1

∣∣ f (tn
k )− f (tn

k−1)
∣∣ converges, as n −→ ∞. Then, f

is called to be of “bounded variation” and

V b
a ( f ) := lim

n→∞
n∑

k=1

∣∣ f (tn
k )− f (tn

k−1

∣∣

the variation of f on [a, b].
(II) Let ξn

k ∈ [
tn
k−1, t

n
k
]

arbitrary. Suppose
n∑

k=1
g
(
ξn

k
)[

f (tn
k ) − f (tn

k−1)
]

converges,

as n −→ ∞. Then g is said to be “Riemann-Stieltjes integrable with respect
to f ” and

∫ b

a
g(t) f (dt) := lim

n→∞

n∑
k=1

g(ξn
k )
[

f (tn
k )− f (tn

k−1)
]

(15.50)

the “Riemann–Stieltjes integral” on [a, b] of g with respect to f . 
�
The following result is well known. The proof is the same as for the classical

Riemann integral.24

Theorem 15.15. If g is continuous on [a, b] and f is of bounded variation on [a, b],
then g is Riemann–Stieltjes integrable with respect to f and

∣∣∣∣
∫ b

a
g(t) f (dt)

∣∣∣∣ ≤ max
a≤t≤b

|g(t)|V b
a ( f ) 
�

The Riemann–Stieltjes integral may be employed to define the Wiener integral
(cf. (15.107)) with smooth integrands. This application is based on the following
integration-by-parts formula:

Theorem 15.16. g is Riemann–Stieltjes integrable with respect to f if, and only if,
f is Riemann–Stieltjes integrable with respect to g and the following integration-
by-parts formula holds:

∫ b

a
g(t) f (dt)+

∫ b

a
f (t)g(dt) = f (b)g(b)− f (a)g(a). (15.51)

24 Cf.,e.g., Natanson, (loc.cit.), Chap. 8.7, Theorem 1.
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Proof. 25 Without loss of generality, suppose g is Riemann–Stieltjes integrable with
respect to f . Let

{
a = tn

0 ≤ tn
1 ≤ . . . . ≤ tn

n = b
}

be a sequence of partitions such
that max1≤k≤n

(
tn
k − tn

k−1
) −→ 0, as n −→ ∞, let ξn

k ∈ [
tn
k−1, t

n
k
]

arbitrary. Set

Sn :=
n∑

k=1

f
(
ξn

k
)[

g
(
tn
k
)− g

(
tn
k−1

)]
.

Obviously,

Sn =
n∑

k=1

f
(
ξn

k
)
g
(
tn
k
)−

n∑
k=1

f
(
ξn

k
)
g
(
tn
k−1

)
,

whence

Sn = −
n−1∑
k=1

g
(
tn
k
)[

f
(
ξn

k+1
)− f

(
ξn

k
)]+ f

(
ξn

k
)
g(b)− f

(
ξn

1
)
g(a).

Adding and subtracting the right-hand side of (15.51), we obtain

Sn = −
{n−1∑

k=1

g
(
tn
k
)[

f
(
ξn

k+1
)− f

(
ξn

k
)]+[

f (b)− f
(
ξn

k
)]

g(b)− [
f
(
ξn

1
)− f (a)

]
g(a)

}

+ f (b)g(b)− f (a)g(a).

By assumption

n−1∑
k=1

g
(
tn
k
)[

f
(
ξn

k+1
)− f

(
ξn

k
)]+ [

f (b)− f
(
ξn

k
)]

g(b)

−[ f
(
ξn

1
)− f (a)

]
g(a) −→

∫ b

a
f (t)g(dt), as n −→ ∞

since
{
a =: ξn

0 ≤ ξn
1 ≤ . . . . ≤ ξn

n ≤ ξn
n+1 = b

}
is a sequence of partitions such that

max1≤k≤n+1
(
ξn

k − ξn
k−1

) −→ 0, as n −→ ∞ and tn
k ∈ [

ξn
k , ξ

n
k+1

] ∀k, n. 
�
Observe that the Riemann–Stieltjes integral is constructed by partitioning the

time axis into small intervals and then passing to the limit. This construction may
be achieved in two steps. Fixing the integrator g(·), we first define the Riemann–
Stieltjes integral for step function integrands f (·).26 In the second step we may or
may not follow the classical procedure outlined above. An alternative method is to
approximate other possible integrands “suitably” by step function integrands and
extend the integral by continuity (with respect to some norm or metric) to a larger

25 The proof is adopted from Natanson (loc.cit.), Chap. 8.6.
26 As we will see in Sect. 15.2.5, the stochastic Itô integral necessarily starts with step function

type processes as elementary integrands because the integrator increments in time have to be
“orthogonal” to the integrator.



15.1 Analysis 359

class of integrands. This begs the question of what is “suitable,” how large is the
class of possible integrands, and what are the properties of the integral. If we wish
to have a dominated convergence theorem for the resulting integral, we may first
interpret the Riemann–Stieltjes integral for step functions as the Lebesgue–Stieltjes
integral with respect to the (signed) Stieltjes measure associated with the integrator
g(·). Representing g as the difference of two nondecreasing functions, it suffices
to consider only integrators that are nondecreasing. In this case the integrator g(·)
must be right continuous to entail the continuity from above of the associated Stielt-
jes measure and, therefore, the dominated convergence theorem. An answer to our
question what is “suitable” etc. is provided by Bichteler (2002) who provides a de-
tailed account of the extension of the Lebesgue–Stieltjes integral from step function
integrands to a large class such that the dominated convergence theorem is valid.
It is particularly important that, in the stochastic case, this extension leads to the
stochastic Itô integral.

In the next section we review some of the analytic properties of right continuous
functions with limits from the left.

15.1.6 The Skorokhod Space D([0,∞); B)

We provide some basic definitions and properties of the Skorokhod space of cadlag
functions with values in some metric space.

Let (B, dB(·, ·)) be a metric space. The space C([0,∞);B) is the natural state
space for B-valued stochastic processes with continuous sample paths. However,
there are many classes of stochastic processes with jumps,27 and it is desirable to
have a state space of B-valued functions that contain both continuous functions and
suitably defined functions with jumps. Skorokhod (1956) introduces such a function
space and derives both analytic properties of the function space and weak conver-
gence properties of corresponding B-valued stochastic processes. In this section we
restrict the presentation to the analytic properties of the function space.

Let D([0,∞);B) denote the space of B-valued cadlag functions on [0,∞) (i.e.,
of functions that are continuous from the right and have limits from the left).28

As for continuous functions, a suitable metric on D([0,∞);B) will be defined on
compact intervals first and then extended to a metric on [0,∞). Therefore, let us
for the moment focus on D([0, 1];B) and C([0, 1];B) (the space of continuous
functions on [0, 1] with values in B.

Remark 15.17. Let us endow C([0, 1];B) with the uniform metric

27 E.g., Poisson processes or processes arising in a time discretization scheme as our Theorem 2.4
in Chap. 3.

28 Skorokhod (1956) considers D([0, 1];B). For more references on our presentation, cf.
Kolmogorov (1956), Billingsley (1968), Chap. 3, Jacod (1985), and Ethier and Kurtz (1986),
Sect. 3.5.
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du,1,B( f, g) := sup
t∈[0,1]

dB( f (t), g(t). (15.52)

For the theory of stochastic properties the uniform metric has the following two
important properties:

(i) Completeness and separability of B implies completeness and separability of
(C([0, 1];B), du,1,B). (The completeness is obvious and to see the separability
it suffices to take the family of all piecewise linear continuous B-valued func-
tions with finitely many rational endpoints and taking values at those endpoints
in a countable dense set of B.)

(ii) du,1,B( fn, f )→ 0 is equivalent to dB( fn(tn), f (t))→ 0 whenever tn → t .
The first property is needed to obtain relative compactness criteria of families of
(continuous) random processes with values in a complete and separable metric
space B.29 The second property is obviously desirable for many models and
their numerical approximations.
Let us now (temporarily!) endow D([0, 1];B) with the uniform metric du .

(iii) We still obtain completeness of (D([0, 1];B), du,1,B) if B is complete.30 How-
ever, (D([0, 1];B), du,1,B) is not separable, even if B is separable. To verify
this statement it suffices to take an arbitrary b ∈ B such that b != 0 and to
consider the family

{ f (ξ, ·) ∈ D([0, 1];B) : f (ξ, t) := 1[ξ,1](t)b, ξ irrational}.
If ξ1 != ξ2 then

du( f (ξ1, ·), f (ξ2, ·) = dB(b, 0).

Hence, there is an uncountable set of nonintersecting nonempty open balls of
radius 1

2 dB(b, 0), which implies the nonseparability of (D([0, 1];B), du,1,B).
(iv) Property (ii) of (C([0, 1];B), du,1,B) does not hold either for (D([0, 1];B),

du,1,B). Consider 1 > tn > t and tn ↓ t . Setting fn(t) :≡ 1[tn ,1]b and f (t) :≡
1[t,1]b, we have

du,1,B( fn, f ) ≡ dB(b, 0),

although dB( fn(tn), f (t)) ≡ 0 and, by assumption, tn ↓ t . 
�
We have convinced ourselves that the uniform metric du,1,B is not a good choice

for D([0, 1];B). On the basis of the work of Skorokhod (1956), Billingsley (1968)
introduces a metric on D([0, 1];B), yielding properties analogous to properties (i)
and (ii) of (C([0, 1];B), du,1,B) in Remark 15.17. We will now discuss a generaliza-
tion of Billingley’s metric, dD,B on D([0,∞);B), as provided by Ethier and Kurtz
(1986), Chap. 3.5, (5.1)–(5.3).

Let � be the set of continuous strictly increasing Lipschitz functions λ(·) from
[0,∞) into [0,∞) such that λ(0) = 0 and

29 Cf. the following Theorems 15.22 and 15.23.
30 This assertion follows from Theorem 15.19 and the fact that the uniform metric (extended to

[0,∞)) is stronger than the the metric dD,M , defined by (15.53).
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γ (λ) := sup
0≤s<t

∣∣∣∣ log
λ(t)− λ(s)

t − s

∣∣∣∣ <∞.

Then for f, g ∈ D([0,∞);B) we define

dD,B( f, g) := inf
λ∈�

[
γ (λ) ∨

∫ ∞

0
exp(−u)d( f, g, λ, u)du

]
, (15.53)

where
d( f, g, λ, u) := sup

t≥0
dB( f (t ∧ u), g(λ(t) ∧ u)).

Remark 15.18. Choosing γ (t) ≡ t in (15.53), it follows immediately that uniform
convergence on all compact intervals [0, T ] implies convergence in the metric dD,B,
i.e., that the metric of uniform convergence on compact intervals is stronger than the
metric dD,B. 
�

Equipped with the metric dD,B, the resulting topology of D([0,∞);B) is called
the Skorokhod topology. If restricted to C([0,∞);B), the metric topology, gener-
ated by dD,B is the same as the topology, generated by uniform convergence on
bounded intervals [0, T ] ∀T (cf. Ethier and Kurtz (loc.cit.), Chap. 3.11, Problem
25,b). The usefulness of the metric dD,B in comparison to some other metrics ap-
pears to follow from the following theorem whose proof may be found in Ethier and
Kurtz (loc.cit.), Theorem 5.6:

Theorem 15.19. If (B, dB) is separable, then (D([0,∞);B), dD,B) is separable. If
(B, dB) is complete, then (D([0,∞);B), dD,B) is complete. 
�

To analyze convergence of stochastic processes with values in B we need criteria
of relative compactness. Such criteria may be provided by following the pattern
of Ascoli’s theorem (or “Arzela-Ascoli theorem”) in classical analysis. We remind
ourselves that Ascoli’s theorem characterizes compactness of continuous functions
from a compact metric space K into a Banach space in terms of equi-continuity of
the family of functions f (·) and compactness of the evaluations f (x), x ∈ K.31 The
corresponding characterization of compact subsets in (D([0,∞);B), dD,B) requires
an appropriate definition of a “modulus of continuity.”

Let δ > 0 and
{
tδ0 < tδ1 < · · · < tδk−1 < T ≤ tδk

}
be a family of partitions

of [0, T ] such that for every T > 0 min{
1≤k≤tδk∈[0,T ]

} (tδk − tδk−1
)
> δ. Ethier

and Kurtz (loc.cit.), Sect. 6.3, (6.2), characterize the “equi-continuous” subsets of
(D([0,∞);B), dD,B) in terms of the following “modulus of continuity”

w′(a, δ, T ) := inf
tδk

max
k

sup
s,t∈

[
tδk−1,t

δ
k

) dM(a(s), a(t)). (15.54)

The following theorem, proved by Ethier and Kurtz (loc.cit.), Sect. 3.6, Theorem
6.3, is a generalization of Ascoli’s theorem to (D([0,∞);B), dD,B) and a somewhat
more general form of a theorem proved by Billingsley (1968), Chap. 3.14, Theorem
14.3:
31 Cf. Dieudonné (1969), Theorem 7.5.7 and, for a typical application in ODEs (the Cauchy-Peano

existence theorem), Coddington and Levinson (1955), Chap. 1, Theorem 1.2.
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Theorem 15.20. The closure of A ⊂ D([0,∞);B) is compact if and only if the
following two conditions hold:

(i) For every rational t ≥ 0, there exists a compact set Kt ⊂ B such that a(t) ∈ Kt
for all a ∈ A.

(ii) For each T > 0,
lim
δ→0

sup
a∈A

w′(a, δ, T ) = 0. (15.55)


�

15.2 Stochastics

15.2.1 Relative Compactness and Weak Convergence

We state the basic definitions and theorems regarding weak convergence and rela-
tive compactness of random variables and stochastic processes.

Starting with random variables, let (-,F , P) be a probability space and suppose
that all our random variables are defined on (-,F , P) and take values in a metric
space (B, dB(·, ·)). P(B) denotes the family of Borel probability measures on B.
A sequence of µn ∈ P(B) is said to “converge weakly”32 to µ ∈ P(B) if

lim
n→∞

∫
B

f (a)µn(da) =
∫

B
f (a)µ(da) ∀ f ∈ Cb(B;R) (15.56)

For many estimates it is useful to have a metric on P(B) such that weak con-
vergence is equivalent to convergence in this metric. To this end, Prohorov (1956),
(1.6), defines a metric on P(B) through

dp,B(µ, ν) := inf
{
η > 0 : µ(B) ≤ ν(Bη)+ η ∀B ∈ C

}
, (15.57)

where C is the collection of closed subsets of B and

Bη := {
a ∈ B : inf

b∈B
dB(a, b) < η

}
. (15.58)

The metric (15.57) is called the “Prohorov metric” on P(B). Prohorov (loc.cit.,
Theorem 1.11) proves the following

Theorem 15.21. (P(B), dp,B) is a complete and separable metric space and con-
vergence in (P(B), dp,B) is equivalent to weak convergence. 
�

Ethier and Kurtz (loc.cit.), Chap. 3.1, Corollary 1.9, prove the following.33

32 The reader will notice that in functional analysis this type of convergence would be called
“weak* convergence.”

33 For a different version, employing the metric in total variation, cf. Dudley (1989), Chap. 9,
Theorem 9.3.7.
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Theorem 15.22. Continuous Mapping Theorem

Let (Bi , dBi (·, ·)), i = 1, 2, be two separable metric spaces, and let
� : B1 → B2 be Borel measurable. Suppose that µn, µ ∈ P(B1) ∀n satisfy

lim
n→∞ dp,B1(µn, µ) = 0.

Define probability measures νn, ν ∈ P(B2) as the images of µn and µ under the
mapping �:

νn := µn�
−1, ν := µ�−1.

Let C� be the set of points of B1 at which � is continuous. If µ(C�) = 1, then

lim
n→∞ dp,B2(νn, ν) = 0. 
�

A family of probability measures Q ⊂ P(B) is called “tight” if for each ε > 0
there is a compact set K ⊂ S such that

inf
µ∈Qµ(K ) ≥ 1 − ε.

The following theorem was proved by Prohorov (loc.cit.), Theorem 1.12. In mod-
ern literature it is called the “Prohorov Theorem.” We adopt the formulation from
Ethier and Kurtz, loc.cit., Sect. 3.2, Theorem 2.2.

Theorem 15.23. Prohorov Theorem

The following statements are equivalent:

(i) Q ⊂ P(B) is tight.
(ii) For every η > 0, there exists a compact set K ⊂ B such that, defining K η is

as in (15.58),
inf
µ∈Qµ(K

η) ≥ 1 − η. (15.59)

(iii) Q is relatively compact, i.e., its closure in (P(M, dp,M) is compact. 
�
We next provide well-known criteria that are equivalent to weak convergence.34

Let ∂A denote the boundary of A ⊂ B. A is said to be a P-continuity set if A ∈ BB
and P(∂A) = 0.

Theorem 15.24. Let (B, dB) be a separable metric space and let {Pn, P} be a family
of Borel probability measures on the (B, dB). The following conditions are equiva-
lent:

(a) Pn �⇒ P
(b) lim supn→∞ Pn(F) ≤ P(F) for all closed sets F ⊂ B
(c) lim infn→∞ Pn(G) ≥ P(G) for all open sets G ⊂ B
(d) lim

n→∞ Pn(A) = P(A) for all P−continuity sets A ⊂ B

34 Cf. Ethier and Kurtz (loc.cit. Theorem 3.1) and Dudley (1989), Chap. 11, Theorem 11.3.3.
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(e) lim
n→∞ dp,B(Pn, P) = 0

(f) lim
n→∞ γ f (Pn − P) = 0 
�

Ethier and Kurtz (loc.cit.), Corollary 3.3, prove the following

Corollary 15.25. Let (B, dB) be a metric space and let (Xn, Yn), n ∈ N, and X be
B × B- and B-valued random variables. If Xn �⇒ X and dB(Xn, Yn) −→ 0 in
probability, then Yn �⇒ X. 
�

We have defined weak convergence, relative compactness, etc. for B-valued ran-
dom variables in terms of their probability distributions, where all the previous as-
sertions hold provided (B, dB) is separable and complete. We next extend some of
those definitions and results to stochastic processes.
(-,F ,Ft , P) is called a “stochastic basis” if the set - is equipped with a

σ -algebra F and a probability measure P and if, in addition, there is an increas-
ing family of σ -algebras Ft , t ≤ 0 such that

Fs ⊂ Ft ⊂ F , 0 ≤ s ≤ t <∞.
Ft , t ≥ 0, is called a “filtration” and we will assume that it is right continuous,

i.e., that
∩s>0Ft+s = Ft .

Henceforth we assume that (-,F ,Ft , P), t ≥ 0, is a stochastic basis with a right
continuous filtration Ft of σ -algebras and that all B-valued stochastic processes a(·)
to be jointly measurable in (t, ω) and adapted to the filtration Ft , where the latter
means that a(t) is Ft -measurable for all t ≥ 0.

Two B-valued stochastic processes ai (·), i = 1, 2, are “P-equivalent” if

P{∃t : a1(t) != a2(t)} = 0.

This statement is equivalent to the property that these two processes are indistin-
guishable as elements of a metric space as follows: Let

L0,F ([0, T ] ×-;B)

be the space of B-valued (adapted and jointly measurable) stochastic processes. We
can endow L0,F ([0, T ] ×-;B)) with the metric

d(T,-);B(a1, a2) :=
∫ T

0

∫
-

dB{(a1(t, ω), a2(t, ω)) ∧ 1}P(dω)dt. (15.60)

Then P-equivalence of ai (·), i = 1, 2, just means that

d(T,-);B(a1, a2) = 0 ∀T > 0. (15.61)

If a2(·) is P-equivalent to a1(·), a2(·) is called a “modification” of a1(·).
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For many problems the space of jointly measurable adapted processes is unnec-
essarily large and, in what follows, we restrict ourselves to (D([0,∞);B), dD,B).
By Theorem 15.19 (D([0,∞);B), dD,B) is a complete and separable metric space
if (B, dB) is complete and separable, and the previous results for random variables
could be carried over directly to B-valued cadlag stochastic processes. However, for
stochastic processes X (·) many properties are shown in terms of the “marginals”
X (t). Therefore, the next step is to derive some stochastic Ascoli-type characteriza-
tion in terms of relative compactness of the marginals and the modulus of continuity
(15.54).35 Recall the notation from (15.58).

Theorem 15.26. Stochastic Arzela–Ascoli Theorem

Let {aα(·)} be a family of B-valued processes with sample paths in D([0,∞);B).
Then {aα(·)} is relatively compact if, and only if, the following two conditions hold:

(i) For every η > 0 and rational t ≥ 0, there exists a compact set Kη,t ⊂ M such
that

inf
α

{
aα(t) ∈ K ηη,t

} ≥ 1 − η. (15.62)

(ii) For every η > 0 and rational t ≥ 0, there exists a δ > 0 such that

sup
α

P{w′(aα, δ, T ) ≥ η} ≤ η. (15.63)


�

The criterion (ii) of the above theorem is difficult to apply. The following cri-
terion, equivalent to condition (ii) of Theorem 15.26, has been obtained by Kurtz
(1975).36 It is especially useful when applying to families of square integrable mar-
tingales and if we may choose β = 2 as the exponent of the following (15.64).37

We denote by E[·|Ft ] the conditional expectation with respect to Ft .

Theorem 15.27. Let {aα(·)} be a family of B-valued processes with sample paths
in D([0,∞);B). Then {aα(·)} is relatively compact if, and only if, condition (i) of
Theorem 15.26 holds and if the following condition holds:

For each T > 0, there exist β > 0 and a family {γα(δ) : 0 < δ < 1} of
nonnegative random variables such that

E
[

dM(aβα (t + u), aα(t))|Ft

]
≤ E

[
γα(δ)|Ft

]
(15.64)

for 0 ≤ t ≤ T, 0 ≤ u ≤ δ in addition to

lim
δ→0

sup
α

E
[
γα(δ)

]
= 0. (15.65)


�
35 Cf. Ethier and Kurtz (loc.cit), Sect. 3.7, Theorem 7.2. Cf. also Billingsley (1968), Chap. 3.15.
36 A proof is also found in Ethier and Kurtz (loc.cit.), Sect. 3.8, Theorem 8.6, and Remark 8.7.
37 Cf. the next subsection for the definition of martingales.
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15.2.2 Regular and Cylindrical Hilbert Space-Valued Brownian
Motions

Regular and cylindrical Hilbert space-valued Brownian motions are defined in
terms of their covariance operators. The H0-valued Brownian motion, defined
through correlated Brownian noise, is shown to be cylindrical. Imbedded into a
weighted L2-space it becomes a regular Brownian motion.

Let H be separable Hilbert space with scalar product < ·, · >H and norm ‖ · ‖H.
A system of independent vectors {φn} ⊂ H is called a complete orthonormal system
(CONS) in H if for every f ∈ H:

f =
∑
n∈N

〈 f, φn〉Hφn .

Further, a necessary and sufficient condition for completeness of {φn} is
Parseval’s identity:

‖ f ‖2
H =

∑
n∈N

〈 f, φn〉2H ∀ f ∈ H.

A bounded, nonnegative, and symmetric linear operator Q on H is called “nu-
clear” if its nonnegative square root, Q

1
2 , is “Hilbert-Schmidt”, i.e., if

∑
n∈N

‖Q
1
2φn‖2

H <∞. (15.66)

As is customary, we denote by N (a, b2) the distribution of a real-valued
Gaussian random variable with mean a and variance b2.

Definition 15.28. Brownian Motion

(1) A real-valued stochastic process β1(·) is called a Brownian motion if

(i) it has a.s. continuous sample paths
(ii) there is a σ > 0 such that for 0 ≤ s ≤ t

β1(t)− β1(s) ∼ N (0, σ 2(t − s)) andβ1(t)− β1(s)

is independent of σ(βu : 0 ≤ u ≤ s) ,

where σ(βu : 0 ≤ u ≤ s) is the σ -algebra generated by all βu with 0 ≤ u ≤ s.
The real-valued Brownian motion is called “standard” if σ = 1.

(2) Let

(i) {β1,n} be a sequence of i.i.d. R-valued standard Brownian motions
(ii) QW a nonnegative and self-adjoint linear operator on H

(iii) {φn} a complete orthonormal system (CONS) in Dom(QW ) ⊂ H38

38 Dom(QW ) denotes the domain of the operator QW .
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The Gaussian R-valued random field W (·) defined by

〈W (t), ϕ〉H :=
∞∑

n=1

β1,n

〈
ϕ, Q

1
2
Wφn

〉

H
, ϕ ∈ H, (15.67)

is called an H-valued Brownian motion, where Q
1
2
W is the nonnegative self-adjoint

square root of QW .39

The H-valued Brownian motion is called “regular” if Q
1
2
W is Hilbert-Schmidt.

Otherwise, the H-valued Brownian motion is called “cylindrical.” If Q
1
2
W = IH,

the identity operator on H, the H-valued Brownian motion is called “standard
cylindrical”. QW is called the covariance operator of the H-valued Brownian
motion. 
�

In what follows, we restrict ourselves to bounded self-adjoint covariance opera-
tors, which covers most infinite dimensional Brownian motions used in the SPDE
literature.40 Observe that an H-valued cylindrical Brownian motion W (·), evaluated
at fixed t , does not define a countably additive measure on H. This implies that W (·)
must be treated as a generalized random field.41 If a stochastic equation is driven by
a cylindrical Brownian motion W (·), it is quite natural to ask whether the cylindrical
Brownian motion can be imbedded into a larger (separable) Banach space B ⊃ H
such that in B W (t) defines a countably additive measure. This is the approach taken
by the theory of abstract Wiener spaces.42 The calculations may become easier if,
instead of a Banach space, we consider a separable Hilbert space H̃ such that H is
continuously and densely imbedded in H̃. Consider, e.g., an H-valued cylindrical
Brownian motion with bounded covariance operator QW . In this case, we need the
imbedding H ⊂ H̃ to be “Hilbert-Schmidt,” which means

∞∑
n=1

‖φn‖2
H̃ <∞,

where {φn} is a CONS in H and the norm in the right-hand side is the norm in H̃.43

Such a space H̃ can be obtained by the completion of H with respect to the norm,
generated by scalar product

〈 f, g〉H̃ :=
∞∑

n=1

1
n2 〈 f, φn〉H〈g, φn〉H.

The quadratic form on the left-hand side determines a symmetric positive definite
Hilbert-Schmidt operator Q

1
2 from H into H by setting

39 Recall that the nonnegative square root of a nonnegative self-adjoint operator is uniquely de-
fined and self-adjoint (cf., e.g., Kato (1976), Chap. V.3.11, (3.45)).

40 Cf. also the analysis of linear SPDEs in the space of distributions, reviewed in Chap. 13.
41 Cf. Gel’fand and Vilenkin (1964).
42 Cf. Gross (1965), Kuo (1975) and the references therein.
43 Cf. Kuo (loc.cit.), Chap. 1, Sect. 4, Theorem 4.3.
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Q
1
2φn = 1

nφn ∀n or, equivalently,
〈
Q

1
2 f, Q

1
2 g
〉
H
:= 〈 f, g〉H̃ (15.68)

In H̃ W (t) defines a countably additive Gauss measure. If W (·) is the perturbation
of some differential equation, the original differential equation must be redefined
on the larger space (which may or may not be possible). An example is pointwise
multiplication, which is usually well defined on function space, but not defined on
the space of distributions.44 To be more precise, consider an H0-valued standard
cylindrical Brownian motion W (·) which has been undoubtedly the most popular
one among all cylindrical Brownian motions. The reason for this popularity is that
it may be represented as

〈W (t), ϕ〉0 =
∫ t

0

∫
ϕ(r)w(dr, ds), (15.69)

where w(dq, ds) is a real-valued Gaussian space–time white noise.45 Hence, it may
serve to model space–time white noise perturbations.46 By (15.36) the H0-valued
standard cylindrical Brownian motion becomes an H−γ -valued regular Brownian
motion if γ > d. It is well known that elements in H−γ cannot be multiplied with
each other.

There are other cylindrical Brownian motions of interest in applications. In fact,
the perturbation by correlated Brownian motions used in this book give rise to cylin-
drical Brownian motions. Let us explain.

Consider the kernel the Rd -valued kernel G(r), r ∈ R from the previous sections
such that its one-dimensional components Gk are square integrable with respect to
the Lebesgue measure. Define Gaussian R-valued random fields Wk(·, ·) by

Wk(t, r) :=
∫ t

0

∫
Gk(r − q)w(dq, ds), k = 1, . . . , d. (15.70)

Proposition 15.29. The Gaussian random fields Wk(·, ·) from (15.70) define cylin-
drical H0-valued Brownian motions unless Gk(r) = 0 a.e. with respect to the
Lebesgue measure.

Proof.

(i) Employing the series representation (4.14) for the scalar field w(dq, ds) yields

〈Wk(t), ϕ〉0 :=
∞∑

n=1

∫
ϕ(r)

∫
Gk(r − q)φn(q)dq drβ1,n(t), ϕ ∈ H, (15.71)

44 Cf. Schwarz (1954). Cf. also our discussion of the bilinear SPDE in Chap. 13.
45 Jetschke (1986) shows that the right-hand side of (15.69) defines a standard cylindrical Brown-

ian motion. Using distributional calculus, Schaumlöffel (1986) shows also that every standard
cylindrical Brownian motion can be represented by the right-hand side of (15.69).

46 Cf. (4.29) and Definition 2.2. Cf. also our Chap. 13 and the SPDEs driven by cylindrical Brown-
ian motions, which, with a few exceptions, require space dimension d = 1, unless the SPDE is
linear.
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Consequently, the square root of the covariance operator QW,k is the following
integral operator:

(Q
1
2
W,kφ)(r) :=

∫
Gk(r − q)φ(q) dq. (15.72)

For Wk(·, ·) to be regular, Q
1
2
W,k must be Hilbert-Schmidt. In particular it must

be compact (such that the squares of the eigenvalues are summable).
(ii) Korotkov (1983), Chap. 2, Sect. 4, shows that such an integral operator is com-

pact if, and only if, Gk(r) = 0 a.e. with respect to the Lebesgue measure dr .
We adjust Korotkov’s proof to our notation:

Suppose Q
1
2
W,k is compact. Let B ⊂ Rd be a bounded Borel set and d be its

diameter. Set r̃m := (md, 0, . . . , 0)T ∈ Rd and define functions fm(q) :=
(Ur̃m 1B)(q) := 1B(q + r̃m), where m ∈ N (and Ur̃m is the shift operator). The
functions fm are bounded, integrable, and have disjoint supports. So fm −→ 0

weakly, as m −→ ∞. Since we assumed Q
1
2
W,k is compact, it follows that

|Q
1
2
W,k fm |20 −→ 0, as m −→ ∞. Note that

∣∣∣∣Q
1
2
W,k fm

∣∣∣∣
2

0
=
∫ (∫

Gk(r − q)1B(q + r̃m)dq
)2

dr

=
∫ (∫

Gk(r − q)1B(q)dq
)2

dr =
∣∣∣∣Q

1
2
W,k1B

∣∣∣∣
2

0

(by the homogeneity of the kernel Gk and the shift invariance of the Lebesgue
measure.)

It follows that |Q
1
2
W,k1B |20 = 0 for all bounded Borel sets B, whence

Gk(r) = 0 a.e. 
�
Although the Brownian motions, defined through (15.70), are cylindrical, they

are obviously not standard cylindrical. We now show that Wk(·) from (15.70)
become regular Brownian motions if imbedded into a (larger) suitably weighted
L2-space such that the constants are integrable with respect to the weighted
measure. A popular choice for the weight function was defined in (4.4):

�(r) = (1 + |r |2)−γ ,
where γ > d

2 .47 We obtain that
∫
�(r)dr < ∞, i.e., the constants are integrable

with respect to the measure �(r)(r)dr . Define the separable Hilbert space

(H0,� , 〈·, ·〉0,� ) := (L2(Rd ,�(r)dr), 〈·, ·〉0,� ),
〈 f, g〉0,� :=

∫
f (r)g(r)�(r)dr.

⎫⎬
⎭ (15.73)

47 Cf., e.g., Triebel (1978).
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Clearly, the norm ‖ · ‖0,� is weaker than the norm | · |0 and we have

H0 ⊂ H0,� (15.74)

with dense continuous imbedding. It is therefore natural to consider the cylindri-
cal H0-valued Brownian motions from (15.70) as H0,� -valued.

Proposition 15.30. The Brownian motions from (15.70) define regular H0,� -valued
Brownian motions.

Proof. Let φ,ψ ∈ H0,� . The covariance operator QW,k,� for Wk(t) in H0,� is
given by

d
dt

E
∫ ∫ t

0

∫
Gk(r − q)w(dq, ds)φ(r)�(r)dr

×
∫ ∫ t

0

∫
Gk(r − q)w(dq, ds)ψ(r)�(r)dr

=
∫ ∫ ∫

Gk(r − q)φ(r)�(r)Gk(r̃ − q)ψ(r̃)�(r̃)dr̃ dr dq

=: 〈QW,k,�φ,ψ〉0,� .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.75)

We show that the square root of QW,k,� is Hilbert-Schmidt. Let {φn,� } be a
CONS in H0,� . By the dominated convergence and Fubini’s theorems, in addition
to the shift invariance of the Lebesgue measure,

∞∑
n=1

〈
Q

1
2
W,k,�φn,� , Q

1
2
W,k,�φn,�

〉

0,�

=
∞∑

n=1

〈QW,k,�φn,� , φn,� 〉0,�

=
∞∑

n=1

∫ ∫ ∫
Gk(r − q)φn,� (r)�(r)Gk(r̃ − q)φn,� (r̃)�(r̃)dr̃ dr dq

=
∫ [ ∞∑

n=1

∫ ∫
Gk(r − q)φn,� (r)�(r)Gk(r̃ − q)φn,� (r̃)�(r̃)dr̃ dr

]
dq

=
∫ [∫

G2
k(r − q)�(r)dr

]
dq

=
∫ [∫

G2
k(r − q)dq

]
�(r)dr

]

= |Gk |20
∫
�(r)dr <∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.76)

�

Since the larger space H0,� is itself a space of functions, a number of opera-
tions, like pointwise multiplication, originally defined on H0, can be extended to
operations on H0,� .
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The procedure leading to (15.68) shows that imbeddings from one Hilbert space
H into a possibly larger Hilbert space H̃ can always be defined through some pos-
itive definite symmetric bounded operator on Q

1
2 from H into H. The imbedding

H0 ⊂ H0,� from (15.74) defines the multiplication operator Q
1
2

(Q
1
2 f )(r) := √

�(r) f (r) r ∈ Rd , f ∈ H0. (15.77)

We have
∂k�(r) = −γ (1 + |r |2)−γ−12rk .

So ∇�(r) != 0 Lebesgue-a.e. This implies that the spectrum of the multiplica-
tion operator Q

1
2 from (15.77) is (absolutely) continuous (cf. Kato (1976), Chap. 10,

Sect. 1, Example 1.9). Therefore, it cannot be compact and, a fortiori, Q
1
2 cannot

be a Hilbert-Schmidt operator Q
1
2 from H into H. We conclude that the imbedding

(15.77) is not a Hilbert-Schmidt imbedding. The same result holds for any (smooth)
and integrable weight function λ(r) as long as the ∇λ(r) != 0 Lebesgue-a.e.

15.2.3 Martingales, Quadratic Variation, and Inequalities

We collect some definitions and properties related to martingales, semi-martingales,
and quadratic variation, which are standard in stochastic analysis but may cause
problems to the reader from a different background. We also state Levy’s character-
ization of a Brownian motion, the martingale central limit theorem as well as three
maximal inequalities. The first two inequalities are Doob’s and the Burkholder–
Davis–Gundy inequalities. The last is a maximal inequality for Hilbert-valued
stochastic convolution integrals.

In this section (H, ‖ · ‖H) is a separable real Hilbert space48 with scalar product
< ·, · >H and norm ‖ · ‖H.

Definition 15.31. Martingale

An H-valued integrable stochastic process49 m(·) is called an “H-valued mean 0
martingale” with respect to the filtration Ft , if for all 0 ≤ t <∞

E(m(t)|Fs) = m(s) a.s. and m(0) = 0 a.s. 
�
An H-valued martingale m(·) always has a cadlag modification, i.e., there is an

H-valued martingale m̄(·) that is P-equivalent to m(·). It is customary to work with
the “smoothest” modification of a stochastic process, which, in case of an arbitrary
H-valued martingale, is the cadlag modification.50

48 H can also be finite dimensional in this setting. In particular, it can be Rd , d ≥ 1, endowed with
the usual scalar product or for d = 1 with the usual distance.

49 Integrability here means that E‖m(t)‖|H <∞ ∀t ≥ 0.
50 Cf. Metivier and Pellaumail (1980), Sects. 1.16 and 1.17. We remind the reader of the analogy

to Sobolev spaces over Rd , Hm , defined earlier. If m > d
2 , the equivalence classes of Hm always

contain one continuous element. We may call this a continuous modification and assume that
all elements of Hm are continuous.
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Henceforth, we will always assume that our martingales are cadlag. Since for
many applications (such as integration) it suffices to consider m(·)− m(0), we may
also, without loss of generality, assume that our martingales are mean 0.

Within the class of (cadlag) martingales, a special role is assigned to those mar-
tingales that have a continuous modification (i.e., where almost all sample paths
are continuous). These martingales are called “continuous martingales.” If, for all
t m(t) is square integrable, m(·) is called an “H-valued square integrable martin-
gale.” If there is a sequence of localizing stopping times τn −→ ∞ with probability
1 such that m(· ∧ τn) is a square integrable martingale, m(·) is called a “locally
square integrable martingale.”

Further, we recall the following terminology: b(·) is an “H-valued process of
bounded variation,” if with probability 1 the sample paths b(·, ω) have bounded
variation on any finite interval [0, T ]. If b(·) has a cadlag (continuous) modification,
then b(·) is called an “H-valued cadlag (continuous) process of bounded variation.”
The sum of an H-valued process of bounded variation and an H-valued martingale is
called an “H-valued semi-martingale.” It is obvious how to extend the local square
integrability (or, more generally, p-integrability for p ≥ 1) to semimartingales.

Probably the most important inequalities in martingale theory and stochastic Itô
integration are the following.

Theorem 15.32. Submartingale and Doob Inequalities

Let m(·) be an H-valued martingale.51 Then for any stopping time τ

(i) P{ sup
0≤t≤τ

‖m(t)‖H > L} ≤ 1
L E‖m(τ )‖H (submartingale inequality);

(i i) E sup
0≤t≤τ

‖m(t)‖2
H ≤ 4E‖m(τ )‖2

H (Doob’s inequality).

⎫⎪⎬
⎪⎭

(15.78)

The proof is found in Metivier and Pellaumail (loc.cit.), Sects. 4.8.2 and 4.10.4. 
�
Next we define processes of finite quadratic variation (cf. Metivier and Pellaumail
(loc. cit.), Chap. 2.3).

Definition 15.33. Let {tn
0 < tn

1 < · · · < tn
k < · · ·} be a sequence of partitions of

[0,∞) such that for every T > 0 max{1≤k≤T }(tn
k − tn

k−1) −→ 0, as n −→ ∞ and
for all n tn

k −→ ∞, as k −→ ∞. An H-valued process a(·) is said to be of “finite
quadratic variation” if there exists a monotone increasing real-valued process [a(·)]
such that for every t > 0

∑
k≥0

‖a(tn
k ∧ t)− a(tn

k−1 ∧ t)‖2
H −→ [a(t)] in probability, as n −→ ∞ .

(15.79)

�

51 A real-valued cadlag process, x(·), is called a “submartingale” if E(x(t)|Fs) ≥ x(s) a.s. for
0 ≤ s ≤ t . The sum of submartingales is a submartingale. If m(·) is an H-valued martingale
then ‖m(·)‖H is a submartingale.
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In what follows, let m(·) be an H-valued square integrable martingale. Our goal is
to show that m(·) has finite quadratic variation. Recall the space L0,F (D([0, T ];H)),
introduced before Definition 4.1. We endow L0,F (D([0, T ];H)) with the metric of
convergence in probability

dprob,D,H( f, g) := inf
ε>0

P{dD,H( f, g) ≥ ε} ≤ ε. (15.80)

Proposition 15.34. Suppose m(·) is an H-valued square integrable martingale.
Then there is a unique quadratic variation [m](·) such that (15.79) holds with
a(·) := m(·). If m(·) is continuous, then its quadratic variation [m](·) is also con-
tinuous.

Proof.

(i) To avoid cumbersome notation describing the jumps in cadlag processes, we
provide the proof only for continuous martingales and refer the reader for the
more general case to Metivier and Pellaumail, loc.cit.

(ii) Let {tn
0 < tn

1 < · · · < tn
k < · · ·} be a sequence of partitions of [0,∞) as in

Definition 15.33. We easily verify

‖m(tn
k ∧ t)‖2

H − ‖m(tn
k−1 ∧ t)‖2

H

= ‖m(tn
k ∧ t)− m(tn

k−1 ∧ t)‖2
H+2〈m(tn

k−1 ∧ t),m(tn
k ∧ t)− m(tn

k−1 ∧ t)〉H.

Therefore,

‖m(t)‖2
H =

∑
k

‖m(tn
k ∧ t)‖2

H − ‖m(tn
k−1 ∧ t)‖2

H

=
∑

k

‖m(tn
k ∧ t)− m(tn

k−1 ∧ t)‖2
H + 2

〈
m(tn

k−1 ∧ t),m(tn
k ∧ t)− m(tn

k−1 ∧ t)
〉
H

=: Sn,1(t)+ 2Sn,2(t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15.81)
Hence, for fixed t , Sn,1(t) will converge, if Sn,2(t) does and, of course, vice
versa. However, Sn,2(t) turns out to be a continuous martingale, whence we
may use orthogonality of increments, working with squares of the sequence.
Therefore, we show the convergence of Sn,2(t).

(iii) Observe that for 0 ≤ s ≤ t

E(〈m(s),m(t)〉H|Fs) = ‖m(s)‖2
H. a.s. (15.82)

Indeed, with probability 1

E(〈m(s),m(t)〉H|Fs) = E(〈 f,m(t)〉H|Fs)|{m(s)= f }

(cf. Gikhman and Skorokhod (1971), Chap. 1.3)

= 〈 f, E(m(t)|Fs)〉H = 〈 f,m(s)〉H|{m(s)= f } = ‖m(s)‖2
H,

where the interchangeability of the scalar product and the conditional expecta-
tion follows from the linearity and continuity of the scalar product.
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(iv) Let s < t . Then

E(Sn,2(t)|Fs)

=
∑

k

E(〈m(tn
k−1 ∧ t),m(tn

k ∧ t)− m(tn
k−1 ∧ t)〉H|Fs)

=
∑

k

1{tn
k ∧t≤s}E(〈m(tn

k−1 ∧ t),m(tn
k ∧ t)− m(tn

k−1 ∧ t)〉H|Fs)

+
∑
k≥0

1{tn
k ∧t>s}E(〈m(tn

k−1 ∧ t),m(tn
k ∧ t)− m(tn

k−1 ∧ t)〉H|Fs)

=: E(Sn,2,1(t)|Fs)+ E(Sn,2,2(t)|Fs).

Obviously,
Sn,2,1(t) ≡ Sn,2(s) a.s.,

which is Fs-measurable. Using standard properties of the conditional expecta-
tion in addition to (15.82), we obtain with probability 1

E(Sn,2,2(t)|Fs)

=
∑
k≥0

1{tn
k ∧t>s}E(〈m(tn

k−1 ∧ t)E{(m(tn
k ∧ t)− m(tn

k−1 ∧ t))Fs∨(tn
k−1∧t)}〉H|Fs)

=
∑
k≥0

1{tn
k ∧t>s}E(〈m(tn

k−1 ∧ t),m(s ∨ (tn
k−1 ∧ t))− m(s ∨ (tn

k−1 ∧ t))〉H|Fs)

= 0.

Combining the previous calculations, we have shown that for 0 ≤ s ≤ t <∞
E(Sn,2(t)|Fs) = Sn,2(s) a.s. (15.83)

As all quantities involved in the definition of Sn,2(·) are continuous, Sn,2(·) is
continuous and, obviously, square integrable and Sn,2(0) = 0 by construction.
Thus, we have shown that Sn,2(·) is a real-valued continuous square integrable
mean zero martingale.

(v) We must show that Sn,2(·) is a Cauchy sequence in L0,F (C([0, T ];H)) ∀T>0
(cf. before Definition 4.1), where the metric on L0,F (C([0, T ];H)) is now the
metric of convergence in probability

dprob,u,T,H( f, g) := inf
ε>0

P

{
sup

0≤t≤T
‖ f (t)− g(t)‖H ≥ ε

}
≤ ε. (15.84)

Analyzing the distance between Sn,2(· ∧ τn,δ,N ) and Sm,2(· ∧ τn,δ,N ) for two
partitions {tn

0 < tn
1 < · · · < tn

k < · · ·} and {tm
0 < tm

1 < · · · < tm
k < · · ·},

respectively, we may, without loss of generality, assume that52

{
tn
0 < tn

1 < · · · < tn
k < · · ·} ⊃ {

tm
0 < tm

1 < · · · < tm
k < · · ·} .

52 Otherwise we could compare both Sn,2(·) and Sm,2(·) with the corresponding sum, based on the
union of the partitions, {tn

0 < tn
1 < · · · < tn

k < · · ·} ∪ {tm
0 < tm

1 < · · · < tm
k < · · ·}.
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We then rewrite Sm(·) by adding the missing partition points from {tn
0 < tn

1
< · · · < tn

k < · · ·} and setting

tn
k := max�{tm

� : tm
� ≤ tn

k }, ∀k.

As in the derivation of (15.83), we then see that

Sn,2(t)− Sm,2(t)

=
∑

k

〈
m(tn

k−1 ∧ t)− m(tn
k−1 ∧ t),m(tn

k ∧ t)− m(tn
k−1 ∧ t)

〉
H

is itself a real-valued continuous square integrable martingale. For δ > 0 define
the following stopping times

τn,δ := inf

{
0 ≤ s ≤ 2T : sup

k
‖m(tn

k−1 ∧ s)− m(tn
k−1 ∧ s)‖2

H ≥ δ

E‖m(T )‖2
H + 1

}

and for N > 0

τn,N := inf{0 ≤ s ≤ 2T :
∑

k

‖m(tn
k ∧ s)− m(tn

k−1 ∧ s)‖2
H ≥ N }.

Setting
τn,δ,N := τn,δ ∧ τn,N ,

the continuity of m(·) implies,

τn,δ,N −→ 2T, a.s., as n −→ ∞ . (15.85)

Further, also Sn,2(t∧τn,δ,N )−Sm,2(t∧τn,δ,N ) is a real-valued continuous square
integrable martingale. By (15.85) it suffices to show that |Sn,2(·∧ τn,δ,N )− Sm,2(·∧
τn,δ,N )| tends to 0 uniformly on compact intervals in the metric of convergence
in probability. Employing Doob’s inequality (Theorem 15.32), we obtain that for
arbitrary T > 0

E0≤t≤T (Sn,2(t ∧ τn,δ,N )− Sm,2(t ∧ τn,δ,N ))2 ≤ 4E(Sn,2(T ∧ τn,δ,N )
−Sm,2(T ∧ τn,δ,N ))2

(15.86)

Note that, as in (15.82), for k < �:

E〈m(tn
k−1 ∧ t ∧ τn,δ,N )− m(tn

k−1 ∧ t ∧ τn,δ,N ),m(tn
k ∧ t ∧ τn,δ,N )

−m(tn
k−1 ∧ t ∧ τn,δ,N )〉H

×〈m(tn
�−1 ∧ t ∧ τn,δ,N )− m(tn

�−1 ∧ t ∧ τn,δ,N ),m(tn
� ∧ t ∧ τn,δ,N )

−m(tn
�−1 ∧ t ∧ τn,δ,N )〉H

= E〈m(tn
k−1 ∧ t ∧ τn,δ,N )− m(tn

k−1 ∧ t ∧ τn,δ,N ),m(tn
k ∧ t ∧ τn,δ,N )

−m(tn
k−1 ∧ t ∧ τn,δ,N )〉H × 〈m(tn

�−1 ∧ t ∧ τn,δ,N )− m(tn
�−1 ∧ t ∧ τn,δ,N ),

×E(m(tn
� ∧ t ∧ τn,δ,N )− m(tn

�−1 ∧ t ∧ τn,δ,N )|Ftn
�−1∧t∧τn,δ,N )〉H = 0

a.s., since E(m(tn
� ∧ t ∧ τn,δ,N )− m(tn

�−1 ∧ t ∧ τn,δ,N )|Ftn
�−1∧t∧τn,δ,N ) = 0
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Hence,

E(Sn,2(T ∧ τn,δ,N )− Sm,2(T ∧ τn,δ,N ))2

= E
{∑

k

〈m(tn
k−1 ∧ T ∧ τn,δ,N )− m(tn

k−1 ∧ T ∧ τn,δ,N ),m(tn
k ∧ T ∧ τn,δ,N )

−m(tn
k−1 ∧ T ∧ τn,δ,N )〉H

}2

=
∑

k

E〈m(tn
k−1 ∧ T ∧ τn,δ,N )− m(tn

k−1 ∧ T ∧ τn,δ,N ),m(tn
k ∧ T ∧ τn,δ,N )

−m(tn
k−1 ∧ T ∧ τn,δ,N )〉2H + ∑

k !=�
E〈m(tn

k−1 ∧ T ∧ τn,δ,N )
−m(tn

k−1 ∧ T ∧ τn,δ,N ),m(tn
k ∧ T ∧ τn,δ,N )− m(tn

k−1 ∧ T ∧ τn,δ,N )〉H
×〈m(tn

�−1 ∧ T ∧ τn,δ,N )− m(tn
�−1 ∧ T ∧ τn,δ,N ),m(tn

� ∧ T ∧ τn,δ,N )
−m(tn

�−1 ∧ T ∧ τn,δ,N )〉H
=
∑

k

E〈m(tn
k−1 ∧ T ∧ τn,δ,N )− m(tn

k−1 ∧ T ∧ τn,δ,N ),m(tn
k ∧ T ∧ τn,δ,N )

−m(tn
k−1 ∧ T ∧ τn,δ,N )〉2H

(since the mixed terms integrate to 0, as shown in the previous formula)

≤
∑

k

E‖m(tn
k−1 ∧ T ∧ τn,δ,N )− m(tn

k−1 ∧ T ∧ τn,δ,N )‖2
H‖m(tn

k ∧ T ∧ τn,δ,N )
−m(tn

k−1 ∧ T ∧ τn,δ,N )‖2
H

(by the Cauchy-Schwarz inequality)

≤
∑

k

E‖m(tn
k ∧ T ∧ τn,δ,N )− m(tn

k−1 ∧ T ∧ τn,δ,N )‖2
H

δ

E‖m(T )‖2
H + 1

by the definition of τn,δ,N .

By (15.81) and (15.82)

E‖m(tn
k ∧T∧τn,δ,N )−m(tn

k−1∧T∧τn,δ,N )‖2
H = E‖m(T∧τn,δ,N )‖2

H ≤ E‖m(T )‖2
H.

Altogether,

E(Sn,2(T ∧ τn,δ,N )− Sm,2(T ∧ τn,δ,N ))2 ≤ δ. (15.87)

Employing the Chebyshev inequality in addition to (15.86), we have shown that
Sn,2(·) is a Cauchy sequence in the metric (15.84), and it follows that the limit,
S2(·), is also a continuous real-valued square integrable martingale. We conclude
that Sn,1(·) converges uniformly in L0,F (C([0, T ];R) for all T > 0 as well. 
�

Returning to the more general case of cadlag martingales we denote the limit of
Sn,2(·) by
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S2(t) =:
∫ t

0
〈m(s−),m(ds)〉H, (15.88)

where m(s−) is the limit from the left of m(s) (cf. Metivier and Pellaumail (loc.
cit.)). The integral on the right-hand side of (15.88) is called the “stochastic Itô inte-
gral” of the linear operator 〈m(s−), ·〉H with respect to m(ds) (cf. also the following
Sect. 15.2.5 for more details). Summarizing, it follows that

‖m‖2
H(t) ≡ 2

∫ t

0
〈m(s−),m(ds)〉H + [m](t). (15.89)

Remark 15.35. We emphasize that, in general, the quadratic variation is not trivial,
i.e., it is not identically 0. (Cf. the following example.) However, we easily see that
for a continuous process of bounded variation b(·) its quadratic variation must be
identically 0 a.s. On the other hand, comparing the definitions of the variation of
a function and the quadratic variation of processes, it is an easy exercise to verify
the following statement: If the square integrable martingale m(·) is continuous and
[m](·, ω) is nontrivial, then m(·, ω) is of unbounded variation a.s. 
�
Example 15.36. Let β(·) be an Rd -valued Brownian motion with covariance matrix
σ 2 Id (cf. Definition 15.28, applied to the finite dimensional Hilbert space Rd ), i.e.,
for 0 ≤ s ≤ t β(t)−β(s) ∼ N (0, σ 2(t − s)Id). Further, the increments β(t)−β(s)
are independent of β(u) for 0 ≤ u ≤ s ≤ t . Therefore, β(·) is an Rd -valued
continuous martingale. For fixed t we can compute its quadratic variation directly,
employing the strong law of large numbers (LLN) for i.i.d. random variables. With
the notation of Definition 15.33 the law of large numbers (LLN) implies

∣∣∣∣
∑
k≥0

∣∣∣∣β(tn
k ∧ t)− β(tn

k−1 ∧ t)
∣∣∣∣
2

− tdσ 2
∣∣∣∣ −→ 0, as n −→ ∞ , (15.90)

whence,
[β](t, ω) ≡ tdσ 2 a.s. (15.91)

Observe that, by (15.79), the quadratic variation defines a bilinear form as fol-
lows: Let a1(·) and a2(·) be two H-valued processes with finite quadratic variations
[a1](·) and [a2](·), respectively. We easily verify that the existence of [a1](·) and
[a2](·) implies the existence of both [a1 +a2](·) and [a1 −a2](·). Consequently, the
following bilinear form is well defined:

[a1, a2](·) := 1
4 [a1 + a2](·)− 1

4 [a1 − a2](·). (15.92)

The left-hand side of (15.92) is called the “mutual quadratic variation of a1(·)
and a2(·). If b(·) is an H-valued process of bounded variation and m(·) is an
H-valued square integrable martingale

[b,m](·) ≡ 0 a.s. (15.93)

Expression (15.93) follows in the continuous case relatively easily from the pre-
ceding calculations. We refer to Metivier and Pellaumail (loc.cit.), Sect. 2.4.2, for
the general case.
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We call two H-valued square integrable martingales, m1(·) and m2(·) “uncorre-
lated” if

E〈m1(t),m2(t)〉H = 0 ∀t ≥ 0. (15.94)

For uncorrelated H-valued square integrable martingales mi (·) i = 1, 2,

[m1,m2](·) ≡ 0 a.s. (15.95)

It follows immediately that (15.95) holds if mi (·) are independent. If mi (·) are
two H-valued square integrable martingales and ϕi are two elements of H∗, the
strong dual of H,53 we verify that (mi (·), ϕi ) are real-valued square integrable mar-
tingales, where i = 1, 2, and (·, ·) is the duality which extends the scalar product
〈·, ·〉H. Hence, following Metivier and Pellaumail (loc.cit.), Sec. 2.3.6 and 2.4.4, we
define the “mutual tensor quadratic variation” of the two martingales mi (·) as a
random bilinear functional, acting on the tensor product H∗ ⊗ H∗, by

|[m1,m2]|(ϕ1 ⊗ ϕ2)(·) := [(m1, ϕ1), (m2, ϕ2)](·). (15.96)

By (15.95)

|[m1,m2]|(·) ≡ 0 a.s. if mi (·) i = 1, 2,

are uncorrelated H-valued square integrable martingales.
(15.97)

Set for the tensor quadratic variation of m(·)
|[m]|(·) := |[m,m]|(·).

Take a CONS {ϕn} in H∗. The trace of the bilinear functional |[m]|(t) is
defined as

Trace(|[m]|(t) =
∞∑

n=1

[(m(t), ϕn), (m(t), ϕn)],

whence,
Trace(|[m]|(·) = [m](·) a.s. (15.98)

The following characterization of Brownian motion is a special case of Theorem
1.1 of Ethier and Kurtz (loc.cit.), Chap. 7.1, where the covariance matrix may be
time dependent.

Theorem 15.37. Levy’s characterization of Brownian motion

(i) Suppose m(·) is an Rd-valued continuous square integrable martingale and
there is a nonnegative definite symmetric matrix C ∈ Md×d such that the
tensor quadratic variation satisfies

|[m]|(t) ≡ tC a.s. (15.99)

Then m(·) is an Rd -valued Brownian motion such that for all t > 0 m(t) ∼
N (0, tC).

53 Most of the time we may choose ϕi ∈ H since H and H∗ are isometrically isomorphic. However,
working with chains of Hilbert spaces as in (15.32) a natural choice could be H := H−γ for
some γ > 0. In this case H∗ = Hγ .
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The proof uses the Itô formula and will be given at the end of Sect. 15.6.4. 
�
Remark 15.38. We remark that an H-valued Brownian motion W (·) is H-valued
square integrable martingale if, and only if, it is regular. In this case the tensor
quadratic variation is given by

|[W ]|(t) ≡ t QW a.s. (15.100)

�

A somewhat more general version of the following martingale central limit the-
orem has been proved by Ethier and Kurtz (loc.cit.), Chap. 7.1, Theorem 1.4.

Theorem 15.39. Martingale Central Limit Theorem

(i) Let m(·) be a continuous Rd-valued Gaussian mean-zero martingale with
deterministic continuous tensor quadratic variation |[m]|(·) and components
|[m]|k�(·), k, � = 1, . . . , d.

(ii) For n = 1, 2, . . . let {Fn
t } be a filtration and mn(·) a locally square inte-

grable Fn
t martingale with sample paths in D([0,∞);Rd) and mn(0). Let

|[mn]|(·) denote the tensor quadratic variation of mn(·) with components
|[mn]|k�(·), k, � = 1, . . . , d.

Suppose that the following three conditions hold:
For each T > 0 and k, � = 1, . . . , d

lim
n→∞ E

[
sup
t≤T

|[mn]|k�(t)− |[m]|k�(t−)
] = 0. (15.101)

lim
n→∞ E

[
sup
t≤T

|mn(t)− mn(t−)
] = 0. (15.102)

For each t ≥ 0 and k, � = 1, . . . , d

|[mn]|k�(t) −→ ck�(t) in probability. (15.103)

Then
mn(·) �⇒ m(·) in D([0,∞);Rd). (15.104)


�

We conclude this section with two additional maximal inequalities.
For real-valued locally square integrable martingales we have the following im-

provement of Doob’s inequality:

Theorem 15.40. Burkholder-Davis-Gundy Inequality

There exist universal positive constants cp,C p, where 0 < p <∞ such that for
every real-valued locally integrable martingale m(·) and stopping time τ ≥ 0

cp E sup
0≤s≤τ

|m|2p(s) ≤ E[m]p(τ ) ≤ C p E sup
0≤s≤τ

|m|2p(s). (15.105)
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The proof for continuous locally square integrable martingales is found in Ikeda
and Watanabe (1981), Chap. III.3, Theorem 3.1. the proof of the more general ver-
sion of just locally integrable martingales is provided by Liptser and Shiryayev
(1986) , Chap. 1.9, Theorems 6 and 7.54 
�

We present a special case of an inequality proved by Kotelenez (1984), Theorem
2.1. For its formulation we require the definition of a strongly continuous (two-
parameter) semigroup on a real separable Hilbert space with scalar product 〈·, ·〉H
and norm ‖ · ‖H. Let IH denote the identity operator on H.

Definition 15.41. A family of bounded linear operators on H, U (t, s) with 0 ≤ s ≤
t < ∞, is called a “strongly continuous two-parameter semi-group” on H if the
following conditions hold:

(i) U (t, t) ≡ IH
(ii) U (t, u)U (u, s) = U (t, s) for 0 ≤ s ≤ u ≤ t <∞

(iii) U (t, s) is strongly continuous in both s and t55

The uniform boundedness principle (Theorem 15.3, Part (II)) implies

sup
0≤s≤t≤t̄

‖U (t, s)‖L(H) <∞ ∀t̄ <∞. 
�

Theorem 15.42. Maximal Inequality for Stochastic Convolution Integrals

Let m(·) be an H-valued square integrable cadlag martingale and U (t, s) a
strongly continuous two-parameter semigroup of bounded linear operators. Sup-
pose there is an η ≥ 0 such that

‖U (t, s)‖L(H) ≤ eη(t−s) ∀ 0 ≤ t <∞.
Then the H-valued convolution integral

∫ ·
0 U (·, s)m(ds) has a cadlag modifica-

tion and for any bounded stopping time τ ≤ T <∞
E sup

0≤t≤τ
‖
∫ t

0
U (t, s)m(ds)‖2

H ≤ e4TηE[m](τ ). (15.106)


�

15.2.4 Random Covariance and Space–time Correlations
for Correlated Brownian Motions

The random covariance of both generalized and classical random processes and
random fields, related to Rd-valued correlated Brownian motions, are analyzed. For

54 Both Liptser and Shiryayev (loc.cit.) and Metivier and Pellaumail (loc.cit.) prove additional
inequalities for martingales.

55 The definition is a straightforward generalization of strongly continuous one-parameter semi-
groups. For the definition and properties of strongly continuous one-parameter and two-
parameter groups we refer to Kato (1976) and Curtain and Pritchard (1978). However, we do
not make assumptions about the existence of a generator A(t). Curtain and Pritchard (1978) call
U (t, s) called a “mild evolution operator.”
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the time derivative of correlated and uncorrelated Brownian motions the Wiener
integral is employed. We compare the results with the covariance of uncorrelated
Brownian motions.

We start with the time correlations of a family of square integrable Rd -valued
continuous martingales martingales m1(·),m2(·), which are adapted to the same fil-
tration Ft . Note that the mutual tensor quadratic variation [mi ,m j ], i, j = 1, 2, is
absolutely continuous and, therefore, differentiable in the generalized sense. Sim-
ilar to the case of an R2-valued Brownian motion (β1(·), β2(·)), we treat the time
derivative of mi (·) as a random distribution over R (also called “generalized random
processes”) and follow the analysis provided by Gel’fand and Vilenkin56 for a one-
dimensional Brownian motion. The main difference from the case of (β1(·), β2(·))
is that m1(·),m2(·) is not necessarily Gaussian. Therefore, instead of computing the
covariance directly, we may in a first step work with the mutual quadratic varia-
tion and then determine the covariance, taking the mathematical expectation of the
mutual quadratic variation. Let η, ϕ, and ψ be test functions from C∞

c (R;R), i.e.,
from the space infinitely often differentiable real-valued functions on R with com-
pact support. Denoting by 〈ϕ, F〉 the duality between a distribution and a test func-
tion, the duality between the random distribution (or generalized random process)
d
dt

mi (·) and the test function η is given by the Wiener integral, i.e.,
〈
η,

d
dt

mi (·)
〉
:=

∫ ∞

0
η(t)dmi (t), i = 1, 2. (15.107)

Integration by parts, in the sense of Riemann–Stieltjes integrals,57 yields
∫ T

0
η(t)dmi

k(t) = −
∫ T

0

(
d
dt
η(t)

)
mi

k(t)dt+η(T )mi
k(T ),

k = 1, . . . , d, i = 1, 2, ∀T > 0,

where we used mi
k(0) = 0 to simplify the boundary condition.58 Letting

T −→ ∞, the fact that η has finite support implies:
∫ ∞

0
η(t)dmi

k(t) = −
∫ ∞

0
(

d
dt
η(t))mi

k(t)dt, k = 1, . . . , d, i = 1, 2. (15.108)

Since the test functions have finite support we obtain the existence of the limit of
the mutual quadratic variation [∫ T

0 ϕ(t)dmi
k(t),

∫ T
0 ψ(t)dm j

�(t)], as T −→ ∞.

Definition 15.43.

Covω

[(
ϕ,

d
dt

mi
)(
ψ,

d
dt

m j
)]

k�
:=

[∫ ∞

0
ϕ(t)dmi

k(t),
∫ ∞

0
ψ(t)dm j

�(t)
]

i, j = 1, 2, k, � = 1, . . . , d, (15.109)

56 Cf. Gel’fand and Vilenkin (1964), Chap. III.2.5.
57 Cf. our Theorem 15.16.
58 The Riemann–Stieltjes interpretation remains obviously valid, if we just assume η(·) to be con-

tinuous and of bounded variation on [0, T ].



382 15 Appendix

will be called the “random covariance” of the generalized random processes
d
dt mi (·), i = 1, 2, where the right-hand side of (15.109) is, by definition, equal to

lim
T→∞[∫ T

0 ϕ(t)dmi
k(t),

∫ T
0 ψ(t)dm j

�(t)]

Generalizing Gel’fand and Vilenkin (loc.cit), we compare the random covariance

of
(

d
dt

m1(·), d
dt

m2(·)
)

with random covariance of (m1(·),m2(·)), where

Covω

[(
d
dt
ϕ,mi

)(
d
dt
ψ,m j

)]

k�

:=
∫ ∞

0

∫ ∞

0

(
d
dt
ϕ

)
(t)

(
d
ds
ψ

)
(s)[mi

k,m
j
� ](t ∧ s)dt ds i, j = 1, 2,

(15.110)

By the orthogonality of the martingale increments the right-hand side of (15.110)
equals ∫ ∞

0

∫ ∞

0

(
d
dt
ϕ

)
(t)

(
d
ds
ψ

)
(s)[mi

k,m
j
� ](t ∧ s)dt ds

=
[∫ ∞

0

(
d
dt
ϕ

)
(t)mi

k(t)dt,
∫ ∞

0

(
d
dt
ψ

)
(s)m j

�(s)ds
]
. (15.111)

Theorem 15.44.

Covω

[(
ϕ,

d
dt

mi
)(
ψ,

d
dt

m j
)]

= Covω

[(
d
dt
ϕ,mi

)(
d
dt
ψ,m j

)]

=
∫ ∞

0
ϕ(t)ψ(t)

d
dt
[mi ,m j ](t)dt, i, j = 1, 2.

⎫⎪⎪⎬
⎪⎪⎭

(15.112)

Proof. The first equality in (15.112) follows from integration by parts in the gener-
alized sense. To show the second equality we set

f (t) := [mi ,m j ](t)
and follow the procedure of Gel’fand and Vilenkin (loc.cit) who consider for

Brownian motion the case f (t) ≡ t . We obtain
∫ ∞

0

∫ ∞

0

(
d
dt
ϕ

)
(t)

(
d
dt
ψ

)
(s) f (t ∧ s)dt dt

=
∫ ∞

0

∫ ∞

0
1{s≤t}

(
d
dt
ϕ

)
(t)

(
d
dt
ψ

)
(s) f (t ∧ s)dt dt

+
∫ ∞

0

∫ ∞

0
1{s>t}

(
d
dt
ϕ

)
(t)

(
d
dt
ψ

)
(s) f (t ∧ s)dt dt

=: I + I I.

By Fubini’s theorem

I = −
∫ ∞

0
ϕ(s)

(
d
dt
ψ

)
(s) f (s)ds, I I = −

∫ ∞

0
ψ(t)

(
d
dt
ϕ

)
(t) f (t)dt.
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Taking into account the boundary conditions

f (t)ϕ(t) = 0, t ∈ {0,∞},
we integrate by parts and obtain

I I =
∫ ∞

0
ϕ(t)

(
d
dt

f
)
(t)ψ(t))dt +

∫ ∞

0
ϕ(t) f (t)

d
dt
ψ(t)dt

Adding up the representations for I and II we obtain
∫ ∞

0

∫ ∞

0
(

d
dt
ϕ)(t)

(
d
dt
ψ

)
(s) f (t ∧ s)dt dt =

∫ ∞

0
ϕ(t)ψ(t)

d
dt

f (t)dt.

We may rewrite (15.112) in terms of the δ-function with support in t = 0 as
follows:

Covω

[(
ϕ,

d
dt

mi
)(
ψ,

d
dt

m j
)]

=
∫ ∞

0
ϕ(t)ψ(t)

d
dt
[mi ,m j ](t)dt,

=
∫ ∞

0

∫ ∞

0
ϕ(t)ψ(s)δ0(t − s)

[
d
dt

mi (t),
d
ds

m j
]

ds dt, i, j = 1, 2.

⎫⎪⎪⎬
⎪⎪⎭

(15.113)

Consider now the random covariance for the family of square integrable
Rd -valued continuous martingales martingales mε(·, r i

0),mε(·, r j
0 ), defined in (5.2)

mε(t, r i
0) :=

∫ t

0

∫
�ε(r(u, r i

0), q)w(dq, du), i = 1, . . . N ,

where the r(·, r i
0) are the solutions of (5.1) such that (4.11) holds. We assume

that the associated diffusion matrix, Dε,k�(·, ·), is spatially homogeneous, i.e., that
(5.12) holds. The mutual quadratic variations are continuously differentiable and the
derivatives are bounded uniformly in all variables, i.e., there is a finite c > 0 such
that

ess sup
t,ω

∣∣∣∣
d
dt
[mε,k (t, r i

0),mε,�(t, r
j

0 )]
∣∣∣∣ ≤ c k, � = 1, . . . , d, i, j = 1, . . . , N .

(15.114)
In this case we can take S(R) instead of C∞

c (R;R). We must show that
|mε|(t, r i

0) at most grows “slowly,” as t −→ ∞. To this end we employ a ver-
sion of the asymptotic law of the iterated logarithm, whose proof is found in Loève
(1978), Sect. 41.

Lemma 15.45. Let β(·) be a real-valued standard Brownian motion. Then

lim sup
t→∞

|β(t)|√
2t log log(t)

= 1 a.s. (15.115)


�
Corollary 15.46. There is a finite constant c̄ such that for all i = 1, . . . , N and
k = 1, . . . , d

lim sup
t→∞

|mε,k (t, r i
0)|√

2t log log(t)
≤ c̄ a.s. (15.116)
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Proof. By Proposition 5.2, mε,k(·, r i
0) are one-dimensional Brownian motions with

variance Dε,kk(0). Hence (15.116) follows from (15.115) after a simple determinis-
tic time change, provided Dε,kk(0) > 0. If Dε,kk(0) = 0, then mε,k(·, r i

0) ≡ 0. 
�
As a consequence we obtain “slow” growth of |mε|(t, r i

0) and we may choose the
test functions from S(R) in the derivation of Theorem 15.44.

We are ready to define the space–time correlations of our driving correlated
Brownian motions. Recall that

d
dt

mε(t, r0) =
∫
�ε(r(t, r0), q)w(dq, dt), (15.117)

interpreted as a generalized random process (in t) and indexed by the spa-
tial initial condition r0. Considering both t and r0 to be variables, the left-hand
side defines a space–time random field, which is generalized in the variable t .
Let ϕd , ψd ∈ S(Rd) and ϕ,ψ ∈ S(R). If Fd+1 is a function of (r, t) such that
Fd+1 ∈ S ′(Rd+1), the duality between F and ϕd(r) · ϕ(t) is defined by

(Fd+1, ϕdϕ) :=
∫ ∫ ∞

−∞
Fd+1(r, t)ϕd(r)ϕ(t)dr dt. (15.118)

The duality between arbitrary elements from S ′(Rd+1) and test functions is an
extension of this duality. Let us focus on two initial conditions, r0 and r̃0, respec-
tively.

Definition 15.47.

Covd+1,ω

[(
ϕdϕ,

d
dt

mε(·, ·)
)(
ψdψ,

d
dt

mε(·, ·)
)]

k�

=
∫ ∫ ∫ ∞

0

∫ ∞

0
ϕd(r0)ψd(r̃0)ϕ(t)ψ(s)δ0(t − s)

×
∫ d∑

m=1

�ε,km(r(t, r0), q)�ε,�m(r(s, r̃0), q)dq ds dt dr0 dr̃0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.119)

will be called the “random covariance” of the random field d
dt mε(·, ·). 
�

The definition of the δ-function implies

Covd+1,ω

[(
ϕdϕ,

d
dt

mε,k(·, ·)
)(
ψdψ,

d
dt

mε,�(·, ·)
)]

k�

=
∫ ∫ ∫ ∞

0
ϕd(r0)ψd(r̃0)ϕ(t)ψ(t)

×
∫ d∑

m=1

�ε,km(r(t, r0), q)�ε,�m(r(t, r̃0), q) dq dt dr0 dr̃0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.120)

It follows that the space–time random field of correlated Brownian motions is
generalized in the time variable and “classical” in the space variable. Taking the
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mathematical expectation in (15.120) (or (15.119)) yields the usual covariance as a
bilinear functional on the test functions:

ECovd+1,ω

[(
ϕdϕ,

d
dt

mε,k(·, ·)
)(
ψdψ,

d
dt

mε,�(·, ·)
)]

k�

=
∫ ∫ ∫ ∞

0
ϕd(r0)ψd(r̃0)ϕ(t)ψ(t)

×
∫

E

( d∑
m=1

�ε,km(r(t, r0), q)�ε,�m(r(t, r̃0), q)

)
dq dt dr0 dr̃0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.121)

Recall the proof of Theorem 14.2 and suppose that the diffusion matrices are
spatially homogeneous and independent of t and µ. Let β(·, r̃0) be a family of Rd -
valued Brownian motions with starts in r0 and covariance matrices D0 Id Brownian
motions such that β(·, r0) and β(·, r̃0) are independent whenever r0 != r̃0. It follows
from (15.113) that its covariance is59

D0δ0(t − s)⊗ δ0,d(r0 − r̃0)δk�.

By the proof of Theorem 14.2 (cf. (14.48)) we have

(rε(·, r0), rε(·, r̃0))⇒ (β(·, r0), β(·, r̃0)), as ε→ 0 .

Thus, we obtain

ECovd+1,ω

[(
··, d

dt
mε,k(·, ·)

)(
··, d

dt
mε,�(·, ·)

)]

k�

≈ D0δ0(t − s)⊗ δ0,d(r0 − r̃0)(··)δk� for small ε.
(15.122)

“··” in (15.122) is the space for the variables from S(Rd) and S(R), respectively.
However, we do not claim that β(·, ·) is a generalized d-dimensional random field
with covariance from the right-hand side of (15.122), because we did not specify the
distribution in the spatial variable. Instead of constructing β(·, ·) as a generalized
random field recall the definition of the Rd -valued space–time standard Gaussian
white noise w(dq, dt) = (w1(dq, dt), . . . , wd(dq, dt))T . Let us focus on the first
component of w(dq, dt). Following Walsh (1986), we defined in Definition 2.2
w1(dq, dt, ω) as a finitely additive signed measure on the Borel sets A of Bd+1 of
finite Lebesgue measure and as a family of Gaussian random variables, indexed by
(d+1)-dimensional Borel sets. We also pointed out that the definition ofw1(dq, dt)
is a multiparameter generalization of the properties of a scalar-valued (standard)
Brownian motion β(·) as a finitely additive signed random measure, β(dt, ω), on
one-dimensional Borel sets and as a family of Gaussian random variables indexed
by one-dimensional Borel sets. The analogy can be extended further. Recall that the
generalized derivative of β(·) is a Schwarz distribution, i.e.,

59 Cf. also (5.6).



386 15 Appendix

d
dt
β(·, ω) ∈ S ′(R).

If we now fix t , then
∫ t

0 w(dq, ds, ω) defines a finitely additive signed measure on
the Borel sets B of Bd of finite Lebesgue measure. By (15.69), in addition to (15.32)
and (15.36), we can interpret the finitely additive signed measure on

∫ t
0 w1(d·, ds, ω)

as an element from S ′(Rd). Set

ŵ1(r, t, ω) :=
∫ t

0

∫
1Brw1(dq, ds, ω), (15.123)

where Br is a closed rectangular domain in Rd containing 0 and with side lengths
r1, . . . , rd and whose sides are parallel to the axes. If all endpoints of Br have non-
negative coordinates, ŵ1(·, ·) has a continuous modification, which is called the
Brownian sheet (cf. Walsh (loc. cit.)). We will assume that the left hand side of
(15.123) is already the Brownian sheet. Hence, we may interpret the integration
of a Borel set in Rd+1+ as a multiparameter integration against the Brownian sheet
ŵ1(r, t).

We extend the notion of a Brownian sheet to ŵ1(r, t, ω) for r ∈ Rd by
taking 2d i.i.d. Brownian sheets and patching the finitely additive measure∫∞

0

∫
1A(q, t)w1(dq, dt, ω) together as the sum of 2d measures, determined by

the multiparameter integration against 2d i.i.d. Brownian sheets, defined on each
of the 2d domains Dk, k = 1, . . . , 2d , where any of the coordinates is either non-
negative or negative. Denote these Brownian sheets by ŵ1,k, k = 1, . . . , 2d , and
observe that the sum of independent normal random variables is normal and that the
mean and variance of the sum is the sum of the means and variances. Therefore, we
obtain

∫ ∞

0

∫
1A(q, t)w1(dq, dt) ∼

2d∑
k=1

∫ ∞

0

∫
1A∩Dk 1A(q, t)ŵ1,k(dq, dt), (15.124)

i.e., both sides in (15.124) are equivalent in distribution. This construction is
relatively simple and, setting ŵ1,k(r, t) ≡ 0 for r /∈ Dk , yields a multiparameter
continuous random field60

¯̂w1(r, t) :=
2d∑

k=1

ŵ1,k(r, t)1Dk (r). (15.125)

Hence, we can differentiate ¯̂w1(r, t, ω) in the generalized sense with respect to
all coordinates. Choosing ϕ(·) ∈ S(R) and ϕd(·) ∈ S(Rd) we obtain61

60 Notice that the extension of the Brownian sheet to negative coordinates is analogous to the
construction of a Brownian motion on R, which can be done by taking two i.i.d. Brownian
motions β+(·) and β−(·) for the Borel sets in [0,∞) and (−∞, 0], respectively.

61 The time derivative leads to a Schwarz distribution by the previous arguments, because∫ t
0

∫
ϕd (q)w(dq, ds) is a one-dimensional Brownian motion.
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∫ ∞

0

∫
ϕd(q)ϕ(s)

∂d+1

∂s∂q1 . . . ∂qd

¯̂w1(q, s, ω)dq ds =
∫ ∞

0

∫
ϕ(s)ϕd(q)w1(dq, ds, ω).

We conclude62

∂d+1

∂s∂q1 . . . ∂qd

¯̂w1(·, ·, ω) ≡ w1(d·, d·, ω) in S ′(Rd+1). (15.126)

The generalization to w(dq, dt) = (w1(dq, dt), . . . wd(dq, dt))T is carried out
componentwise. Altogether, we obtain that

∂d+1

∂s∂q1 . . . ∂qd

¯̂w(·, ·) ≡ w(d·, d·)

is a generalized Rd -valued random field whose components take values S ′(Rd+1)
where ¯̂w(·, ·) is an appropriately defined Rd -valued Brownian sheet with parameter
domain Rd × [0,∞). Its covariance is given by

ECovd+1,ω[(ϕdϕ, ¯̂wk(·, ·))(ψdψ, ¯̂w�(·, ·))]k�

= ECovd+1,ω

∫ ∞

0

∫
ϕd(q)ϕ(s)

∂d+1

∂s∂q1 . . . ∂qd

¯̂wk(q, s)dq ds

×
∫ ∞

0

∫
ψd(r)ψ(t)

∂d+1

∂t∂r1 . . . ∂rd

¯̂w�(r, t)dr dt

=
∫ ∞

0

∫ ∞

0

∫ ∫
ϕd(q)ϕ(s)ψd(r)ψ(t)δ0(t − s)⊗ δ0,d(q − r)δk� dq ds dr dt

=
∫ ∫ ∞

0
ϕd(q)ψd(q)ϕ(t)ψ(t)dt dq δk�.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.127)
We conclude that the covariance operator of Rd -valued standard Gaussian space–

time white noise on Rd ×R+ is δ0(t − s)⊗ δ0,d(q −r)δk�. Apart from the factor D0
this is the same covariance as for the “random field” β(·, ·). That this coincidence is
not accidental follows from Remark 3.10 at the end of Chap. 3.

15.2.5 Stochastic Itô Integrals

We summarize the construction of the Itô integral63 in Rd driven by finitely and
infinitely many i.i.d Brownian motions. The Itô and the Itô-Wentzell formulas are

62 In the identification of a measure with a formal Radon–Nikodym derivative of that measure with
respect to the Lebesgue measure as as generalized function or generalized field the “Radon–
Nikodym derivative” is usually written as a suitable (partial) derivative in the distributional
sense. We remind the reader of the identification the Dirac delta function with support in some
point a ∈ Rd and the point measure δa(dr). Cf. also Schaumlöffel (1986).

63 Cf. Itô (1944).
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presented. Finally, we comment on the functional analytic interpretation of the Itô
integral and provide a sufficient condition for uniform tightness of SODEs.

Let β1(·) a one-dimensional standard Brownian motion and φ(·) a real-valued
dt ⊗ dP square integrable adapted process on [0, T ]×Ω . We have seen in (15.115)
of the previous section that, under the assumption φ(·) is a.s. continuous and of
bounded variation, we may define the stochastic integral as a Stieltjes integral plus
a boundary term:

∫ t

0
φ(s)β1(ds) := −

∫ t

0
β1(s)φ(ds)+ φ(t)β(t) ∈ [0, T ] (15.128)

The problem of stochastic integration, however, is that most interesting inte-
grands will not be of bounded variation. An easy way to understand this claim is
considering a stochastic ordinary differential equation (SODE):

dx = b(x)β1(dt), x(0) = x0, (15.129)

where we may, for the time being, assume that the initial condition is determinis-
tic. Following the procedure of ordinary differential equations (ODEs),64 we convert
(15.129) into an equivalent stochastic integral equation:

x(t) = x0 +
∫ t

0
b(x(s))β1(ds). (15.130)

Assuming that the coefficient b(x) = bx with b != 0 ∀x , we again resort to
the methods of ODE, apply the Picard-Lindelöf procedure (as b(x) = bx is obvi-
ously Lipschitz) and try to solve (15.130) through iteration, defining recursively an
approximating sequence as follows:

x1(t) = x0 +
∫ t

0
bx0β1(ds) = x0 + bx0β1(t), (15.131)

The definition of the first step x1(·) is trivial. However, we see that x1(·)− x0 ≡
bβ1(t), which is itself of unbounded variation and with quadratic variation [β1](t) ≡
t by (15.91). Therefore, we cannot explain the right-hand side of the second step,
presented in the following (15.132), pathwise as a Stieltjes integral through integra-
tion by parts as in (15.108):

x2(t) = x0 +
∫ t

0
bx1(s)β1(ds) =

∫ t

0
b{bβ1(s)+ x0}β1(ds). (15.132)

Being unable to define the stochastic integral on the right-hand side of (15.132)
through integration by parts need not prevent us from trying the Riemann–Stieltjes
idea directly. To this end, as in Definition 15.33, consider the sequence of partitions
{tn

0 < tn
1 < · · · < tn

k < · · ·} and let γ ∈ [0, 1]. Set

64 Cf., e.g., Coddington and Levinson (loc.cit.).
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Sn(t, γ ) :=
∑
k≥0

b
{
β1(tn

k−1 ∧ t)+ x0 + γ (β1(tn
k ∧ t)− β1(tn

k−1 ∧ t))
}

×(β1(tn
k ∧ t)− β1(tn

k−1 ∧ t)),

(15.133)

i.e., we choose the integrand at a fixed linear combination of the endpoints of the
interval. By linearity of the summation,

Sn(t, γ )

=
∑
k≥0

bγ (β1(tn
k ∧ t)− β1(tn

k−1 ∧ t))2

+
∑
k≥0

b{β1(tn
k−1 ∧ t)+ x0}(β1(tn

k ∧ t)− β1(tn
k−1 ∧ t))

=: Sn,1,γ (t)+ Sn,2,γ (t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.134)

By (15.90) for every t ≥ 0

Sn,1,γ (t) −→ bγ [β1](t) ≡ bγ t a.s., as n −→ ∞ . (15.135)

By the proof of Proposition 15.34,

Sn,2,γ (t) −→ b
∫ t

0
(β1(s)+ x0)β1(ds) in probability, as n −→ ∞ . (15.136)

Altogether,

Sn(t, γ ) −→ b
∫ t

0
(β1(s)+ x0)β1(ds)+ bγ t in probability, as n −→ ∞,

(15.137)

i.e., the limit depends on the choice of the evaluation of the integrand in the
approximating sum. We conclude that we cannot use the Stieltjes integral in the
Picard-Lindelöf approximation of (15.130).

If we choose the left endpoint in the above approximation, i.e., γ = 0, we ob-
tain the stochastic Itô integral. In what follows, we provide more details about Itô
integration. To avoid a complicated notation, we will only sketch the construction
of the Itô integral, driven by Brownian motions, and leave it to the reader to consult
the literature about the more general case of martingale-driven stochastic integrals.
Set

L2,F ,loc([0,∞)×- : Md×d) :=
⎧⎨
⎩φ :

d∑
k,�=1

E
∫ T

0
φ2

k�(t, ·)〈∞ ∀T 〉0
⎫⎬
⎭ ,

(15.138)
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where φ(·, ·) is an Ft -adapted Md×d -valued process, jointly measurable in (t, ω)
with respect to dt ⊗ P(dω). Further, let β(·) be an Rd -valued Ft -adapted standard
Brownian motion. Generalizing the idea of Riemann and Stieltjes, we first define the
stochastic Itô integral for step function type processes such that the resulting integral
becomes a square integrable martingale. Suppose for φ ∈ L2,F ,loc([0,∞) × - :
Md×d) there is a sequence of points {0 = tn

0 < tn
1 < · · · < tn

k < · · ·} and φ̃(tn
k )

Ftn
k
-adapted Md×d -valued random variables, i = 0, 1, . . ., such that

φn(t, ω) = φ̃(tn
0 )+

∞∑
k=1

φ̃(tn
k−1)1(tn

k−1,t
n
k ](t) ∀t a.s. (15.139)

φn(·, ·) is called “simple.” The stochastic (Itô) integral of a simple process with
respect to β(·) is defined by

∫ t

0
φn(s)β(ds) := φ̃(0)+

∞∑
k=1

φ̃(tn
k−1)(β(t

n
k ∨ t)− β(tn

k−1 ∨ t)) ∀t a.s. (15.140)

As in Sect. 15.6.2, we see that
∫ ·

0 φn(s)β(ds) is a continuous square integrable
martingale. Further, it is proved that the class of simple processes is dense in
L2,F ,loc([0,∞) × - : Md×d) (cf., e.g., Ikeda and Watanabe (loc.cit.), Chap.II.1
or Liptser and Shiryayev (1974), Chap. 4.2 as well as Itô (1944)). A simple appli-
cation of Doob’s inequality (Theorem 15.32), as for Sn,2(·) in the proof of Propo-
sition 15.34, entails that we may construct a Cauchy sequence

∫ ·
0 φn(s)β(ds) in

L0,F (C([0, T ];Rd)), as φn(·) approaches φ(·) in L2,F ,loc([0,∞) × - : Md×d).
The resulting limit is itself a square continuous Rd -valued martingale and is defined
as the limit in probability of the approximating stochastic (Itô) integrals.65

Definition 15.48. The stochastic Itô integral of φ(·) driven by β(·) is defined as the
stochastic limit in L0,F (C([0, T ];Rd))

∫ t

0
φ(s)β(ds) = lim

n→∞

∫ ·

0
φn(s)β(ds), (15.141)

where the φn are simple processes. 
�

We verify that
d∑
�=1

∫ t
0 φk,�(s)β�(ds) are continuous square integrable real-valued

martingales for k = 1, . . . , d, where φk,� are the entries of the d × d matrix Φ and
β�(·) are the one-dimensional components of β(·). Further, the mutual quadratic
variation of these martingales satisfies the following relation:

[∫ t

0
φk,�(s)β�(ds),

∫ t

0
φk,�̃(s)β�̃(ds)

]
:=

{ ∫ t
0 φ

2
k,�(s)ds, if � = �̃ ,

0, if � != �̃.
}

(15.142)

65 Since β(·) is continuous, we do not need to take the left hand limit in the integrand.
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Expression (15.142) can be shown through approximation with stochastic Itô in-
tegrals of simple processes, employing (15.95), since the one-dimensional Brown-
ian motions β�(·) are independent and, therefore, also uncorrelated. The latter fact
implies that the approximating Itô integrals are uncorrelated. Consequently, the
quadratic variation of

∫ t
0 φ(s)β(ds) is given by

[∫ ·

0
φ(s)β(ds)

]
(t) =

d∑
k,�=1

∫ t

0
φk,�(s)ds, (15.143)

We generalize the above construction to an infinite sequence of stochastic Itô
integrals. Let φn(·, ·) be a sequence of Ft -adapted jointly measurable Md×d -valued
processes and set

L2,F ([0, T ] ×-× N : Md×d) := {(φ1, . . . φn . . .) :
∞∑

n=1

d∑
k,�=1

∫ T

0
Eφ2

n,k�(t, ·) <∞}.
(15.144)

Further, as in (4.14), let βn(·) a sequence of Rd -valued Ft -adapted i.i.d. standard
Brownian motions.

As in (15.142), we see that
[∫ t

0
φn(s)βn(ds),

∫ t

0
φm(s)βm(ds)

]
= 0, if n != m (15.145)

Hence,

m(t) :=
∑

n

∫ t

0
φn(s)βn(ds) (15.146)

is a continuous square integrable Rd -valued martingale with quadratic variation
[∑

n

∫ ·

0
φn(s)βn(ds)

]
(t) ≡

∑
n

d∑
k�=1

∫ t

0
φ2

n,k�(s)ds (15.147)

and, by Doob’s inequality,

E sup
0≤t≤T

∣∣∣∣∣
∑

n

∫ t

0
φn(s)βn(ds)

∣∣∣∣∣
2

≤ 4
∑

n

d∑
k�=1

∫ T

0
Eφ2

n,k�(s)ds ∀T > 0.

(15.148)

Remark 15.49.

(i) The construction of Itô integrals with respect to a series of uncorrelated square
integrable martingales follows exactly the same pattern. Similarly, the theory
immediately generalizes to semimartingales of the following form
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a(t) := b(t)+ m(t), (15.149)

where b(·) is a process of bounded variation and m(·) is a square integrable
martingale.

(ii) The following generalization of (15.147) can be derived and is often quite use-
ful. Suppose φ(·) ∈ L2,F ,loc([0,∞)×-;Md×d) satisfies

d∑
i, j=1

∫ T

0
Eφ2

i j (s)[mi ](ds) <∞ ∀T, (15.150)

where m(·) = (m1(·), . . . ,md(·))T is a continuous square integrable Rd -valued
martingale. The Itô integral

∫ t

0
φ(s)m(ds)

is defined similarly to the Itô integral, driven by Brownian motions. It is also a
continuous square integrable Rd -valued martingale and

[∫ ·

0
φ(s)m(ds)

]
(t) ≡

d∑
i, j,k=1

∫ t

0
φi j (s)φik(s)[m j ,mk](ds). (15.151)

(iii) Using stopping times (15.150) can be relaxed to

d∑
i, j=1

∫ T

0
φ2

i j (s)[mi ](ds) <∞ a.s. ∀T, (15.152)

We obtain that
∫ t

0 φ(s)m(ds) exists and is a continuous locally square integrable
Rd -valued martingale. The extension of this statement to stochastic integrals,
driven by continuous semimartingales, is obvious.

(iv) Apart from the necessary integrability assumptions on the integrand the most
important assumption in stochastic Itô integration is that the integrand φ(tn

k−1)
must be Ftn

k−1
-adapted and that the integrator increments m(tn

k ) − m(tn
k−1) are

orthogonal (i.e. uncorrelated) to φ(tn
k−1). We abbreviate this property by66

φ(tn
k−1) ⊥ m(tn

k )− m(tn
k−1) ∀n, k and, for the limits,φ(s) ⊥ m(ds) ∀s.

(15.153)

�

The Itô integration has been extended to integrals driven by local (cadlag) martin-
gales.67 In fact, the Itô integral may be defined for general “good integrators,” which
are stochastic processes and allow a version of Lebesgue’s dominated convergence

66 For discontinuous martingales we need to evaluate the integrand at s− in (15.153).
67 Cf., e.g., Metivier and Pellaumail (1980), Liptser and Shiryayev (1974, 1986) as well as Protter

(2004).
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theorem.68 One then shows that these good integrators are semimartingales, i.e., can
be represented as in (15.149), where m(·) only needs to be integrable. Such a repre-
sentation is called the “Doob-Meyer decomposition” of a semimartingale. We will
return to the “good integrator” approach at the end of this subsection.

Next, we present the Itô formula, which is the most important formula in sto-
chastic analysis and is the key in the transition from a Brownian particle movement
to second-order parabolic PDEs and, as shown in Chaps. 8 and 14, also to second-
order parabolic SPDEs and their macroscopic limits.69 Again, we want to avoid a
cumbersome notation, and will only present a special case, which was used in the
derivation of SPDEs in this volume.

Theorem 15.50. Itô’s Formula: First Extended Chain Rule

Let ϕ(r, t) be a function from Rd+1 into R. Suppose ϕ is twice continuously
differentiable function with respect to the spatial variables and once continuously
differentiable with respect to t such that all partial derivatives are bounded. Let
m(·) be a continuous square integrable Rd-valued martingale and b(·) a continuous
process of bounded variation. We set

a(t) := b(t)+ m(t),

(cf. (15.149)). ϕ(a(·), t) is a continuous, locally square integrable semimartin-
gale and the following formula holds:

ϕ(a(t), t) = ϕ(a(0), 0)+
∫ t

0

(
∂

∂s
ϕ

)
(a(s), s)ds

+
∫ t

0
(∇ϕ)(a(s), s) · (b(ds)+ m(ds))

+1
2

d∑
i, j=1

∫ t

0
(∂2

i, jϕ)(a(s), s)[mi ,m j ](ds),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.154)

where [mi ,m j ](·) are the mutual quadratic variations of the one-dimensional
components of m(·).
Proof. (Sketch)

We only sketch the proof and refer the reader for more details to any book on
stochastic analysis.70

Let {tn
0 < tn

1 < · · · < tn
k < · · ·} be a sequence of partitions of [0,∞) as in

Definition 15.33. Then,

68 Cf. Protter (loc.cit.), Chap. IV, Theorem 32.
69 Recall from Chap. 14 that these macroscopic limits are themselves solutions of second-order

parabolic PDEs.
70 Cf., e.g., Ikeda and Watanabe (loc.cit.), Chap. II.5 or Gikhman and Skorokhod (1982), Chap.3.2.
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ϕ(a(t), t)− ϕ(a(0), 0)
=
∑

k

ϕ(a(tn
k ∧ t), tn

k ∧ t)− ϕ(a(tn
k−1 ∧ t), tn

k−1 ∧ t)

=
∑

k

ϕ(a(tn
k−1 ∧ t), tn

k ∧ t)− ϕ(a(tn
k−1 ∧ t), tn

k−1 ∧ t)

+
∑

k

ϕ(a(tn
k ∧ t), tn

k ∧ t)− ϕ(a(tn
k−1 ∧ t), tn

k ∧ t)

=: Sn,1(t)+ Sn,2(t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.155)

Apparently,

Sn,1(t) −→
∫ t

0

∂

∂t
ϕ(a(s), s)ds, as n −→ ∞, uniformly on compact intervals [0, T ].

(15.156)
By Taylor’s formula,

Sn,2(t) =
∑

k

ϕ(a(tn
k ∧ t), tn

k ∧ t)− ϕ(a(tn
k−1 ∧ t), tn

k ∧ t)

=
∑

k

∇ϕ(a(tn
k−1 ∧ t), tn

k ∧ t) · (a(tn
k ∧ t)− a(tn

k−1 ∧ t))

+
∑

k

1
2

d∑
i, j=1

∂2
i, jϕ(a(t

n
k−1 ∧ t), tn

k1 ∧ t)(ai (tn
k ∧ t)

−ai (tn
k−1 ∧ t))(a j (tn

k ∧ t)− a j (tn
k−1 ∧ t))

+Rn(t, ϕ, a),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.157)

where the remainder term Rn(t, ϕ, a) tends to 0 in probability.71 Next, we note
that

∇ϕ(a(tn
k−1 ∧ t), tn

k ) ⊥ m(tn
k ∧ t)− m(tn

k−1 ∧ t) ∀n, k. (15.158)

Therefore, ∇ϕ(a(tn
k−1∧t), tn

k ) satisfies the assumptions of the construction of the
Itô integral with respect to the semimartingale increments a(tn

k ∧ t) − a(tn
k−1 ∧ t).

Hence, the integrability assumptions on ∇ϕ(a(tn
k−1 ∧ t), tn

k ) allow us to conclude

71 Assuming more differentiability on ϕ, we may show that the remainder term is dominated by∑
n
|(ai (tn

k ∧ t) − ai (tn
k−1 ∧ t))(a j (tn

k ∧ t) − a j (tn
k−1 ∧ t))(a�(tn

k ∧ t) − a�(tn
k−1 ∧ t))|. As our

martingale has finite quadratic variation, this sum has to tend to zero. This is very similar to
showing that the quadratic variation of a continuous process of bounded variation equals 0.
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∑
k

∇ϕ(a(tn
k−1 ∧ t), tn

k ∧ t) · (a(tn
k ∧ t)− a(tn

k−1 ∧ t))

−→
∫ t

0
∇ϕ(a(s), s) · (b(ds)+ m(ds)) as n −→ ∞,

uniformly on compact intervals [0, T ],

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15.159)

Finally, recall that, by (15.93) we have for the mutual quadratic variations

[ai , a j ](t) = [mi ,m j ](t). (15.160)

Therefore, the integrability assumptions imply

∑
k

1
2

d∑
i, j=1

∂2
i, jϕ(a(t

n
k−1 ∧ t), tn

k−1 ∧ t)(ai (tn
k ∧ t)

−ai (tn
k−1 ∧ t))(a j (tn

k ∧ t)− a j (tn
k−1 ∧ t))

−→ 1
2

d∑
i, j=1

∫ t

0
∂2

i, jϕ(a(s), s)[mi ,m j ](ds), as n −→ ∞,

uniformly on compact intervals [0, T ],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.161)

where the right-hand side is the usual (Lebesgue) Stieltjes integral. 
�
As an application of the Itô formula we now give the proof of Theorem 15.37

(Levy’s characterization of Brownian motion), following Ethier and Kurtz (loc.cit.),
Chap. 7.1, Theorem 1.1.

Proof of Theorem 15.37
Let θ ∈ Rd be arbitrary and set

ϕ(r, t) := exp[iθ · r + 1
2
θ · (Cθ)t].

}
(15.162)

where i := √−1. Applying the Itô formula we obtain

exp
[

iθ · m(t)+ 1
2
θ · (Cθ)t

]

= 1 +
∫ t

0
exp

[
iθ · m(s)+ 1

2
θ · (Cθ)s

]
1
2
θ · (Cθ)ds

+
∫ t

0
exp

[
iθ · m(s)+ 1

2
θ · (Cθ)s

]
iθ · m(ds)

−1
2

∫ t

0
exp

[
iθ · m(s)+ 1

2
θ · (Cθ)s

]
θ · (Cθ)ds.
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Hence,

exp
[

iθ · m(t)+ 1
2
θ · (Cθ)t

]

= 1 +
∫ t

0
exp

[
iθ · m(s)+ 1

2
θ · (Cθ)s

]
iθ · m(ds).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15.163)

The right-hand side is (an Ft−) continuous square integrable complex-valued
martingale. Therefore, for 0 ≤ s < t

E
{

exp
[

iθ · m(t)+ 1
2
θ · (Cθ)t

] ∣∣∣∣Fs

}
= exp

[
iθ · m(s)+ 1

2
θ · (Cθ)s

]

or, equivalently,

E
{

exp
[

iθ · (m(t)− m(s))+ 1
2
θ · (Cθ)t

]∣∣∣∣Fs

}
= exp

[
1
2
θ · (Cθ)(t − s)

]
.

(15.164)
Consequently, m(·) is an Rd -valued Brownian motion with covariance Ct . 
�
There are many extensions of Itô’s formula in finite dimensions as well as ex-

tensions to Hilbert space valued semimartingales.72 In fact, (15.89) is a special case
of the Itô’s formula in Hilbert space. For finite dimensional more general semi-
martingales we refer the reader to Ikeda and Watanabe (loc.cit.) and Gikhman and
Skorokhod (loc.cit.) Chap. 4.4. Krylov (1977), Chap. II.10, proves an Itô’s formula
in finite dimensions where the function ϕ only needs to have second derivatives in
the generalized sense in addition to some other conditions. The semimartingales in
Krylov’s Itô formula are continuous and represented as solutions of Itôs SODEs
driven by Brownian motions. We now present a generalization in finite dimensions,
which applies to continuous semimartingales but where the function ϕ is replaced
by a semimartingale that depends on a spatial parameter.73

Theorem 15.51 Itô-Wentzell Formula – Second Extended Chain Rule

Consider the semi–martingale from (7.5)

Ŝ(r, t) :=
∫ t

0
F(r, u)du +

∫ t

0

∫
J (r, p, u)w(dp, du). (15.165)

Suppose F is continuously differentiable in r and J (r, p, u) is twice con-
tinuously differentiable in r . Let a(·) be a continuous locally square integrable
Rd-valued semimartingale with representation (15.152), a(·) = b(·) + m(·). De-
noting by Ŝ� the �-th coordinate of Ŝ, then the following formula holds for � =
1, . . . , d:

72 Cf. for the latter, Metivier and Pellaumail, loc.cit. Chap. 2.
73 Cf. Kunita, loc.cit., Chap. 3.3, Thereom 3.3.1, Generalized Itô formula. In view of the compar-

ison of our approach with Kunita’s formalism from our Chap. 7, we use our notation.
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Ŝ�(a(t), t) = Ŝ�(a(0), 0)+
∫ t

0
Ŝ�(a(s), ds)

+
∫ t

0
(∇ Ŝ�)(a(s), s) · (b(ds)+ m(ds))

+1
2

d∑
i, j=1

∫ t

0
(∂2

i, j Ŝ�)(a(s), s)[mi ,m j ](ds)

+
∫ t

0

d∑
i, j=1

[∫ (
∂

∂ri
J�, j

)
(a(s), p, s)w j (dp, ds),mi (ds)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.166)

Proof. (Sketch)
We again only sketch the proof and refer the reader for more details to Kunita

(loc.cit.) for a short proof and to Rozovsky (1983), Chap. 1.4, Theorem 9, for a
detailed proof, where the semimartingale Ŝ(r, t) has a somewhat different represen-
tation.

We basically repeat the proof of the Itô formula with Ŝ� instead of ϕ.
The second term on the right-hand side of (15.166) is formally equivalent to∫ t

0 (
∂
∂s Ŝ�)(a(s), s)ds, which corresponds to the second term on the right-hand side

of (15.154). We need to be more careful when applying Taylor’s formula to Sn,2(t).
The problem is that, unlike in (15.158),74 ∇ Ŝ�(a(tn

k−1 ∧ t), tn
k ∧ t) is anticipating

with respect to the increments (a(tn
k ∧t)−a(tn

k−1∧t)) and we cannot expect the sum
over all k to converge to an Itô integral driven by the semimartingale increments
a(ds). Therefore, we must “correct” this term first before we employ martingale
sums and Doob’s inequality as in Proposition 15.34. We do this as follows:

∇ Ŝ�(a(tn
k−1 ∧ t), tn

k ∧ t) · (a(tn
k ∧ t)− a(tn

k−1 ∧ t))

= (∇ Ŝ�(a(tn
k−1 ∧ t), tn

k ∧ t)− ∇ Ŝ�(a(tn
k−1 ∧ t), tn

k−1 ∧ t)) · (a(tn
k ∧ t)− a(tn

k−1 ∧ t))

+∇ Ŝ�(a(tn
k−1 ∧ t), tn

k−1 ∧ t) · (a(tn
k ∧ t)− a(tn

k−1 ∧ t)).

⎫⎪⎪⎬
⎪⎪⎭

(15.167)
We now have the analogue of (15.161), namely,

∇ Ŝ�(a(tn
k−1 ∧ t), tn

k−1 ∧ t) ⊥ m(tn
k ∧ t)− m(tn

k−1 ∧ t), (15.168)

whence summing up over all k, the integrability assumptions imply
∑

k

∇ Ŝ�(a(tn
k−1 ∧ t), tn

k−1 ∧ t) · (a(tn
k ∧ t)− a(tn

k−1 ∧ t))

−→
∫ t

0
∇ Ŝ�(a(s), s) · (b(ds)+ m(ds))

as n −→ ∞, uniformly on compact intervals [0, T ].

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(15.169)

74 ϕ(a(s), t) is Fs -adapted for all t , because ϕ(r, t) is deterministic.
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Next, our assumptions imply that the partial derivatives of Ŝ(r, ·) are themselves
continuous semimartingales. Therefore,∑

k

∇ Ŝ�(a(tn
k−1 ∧ t), tn

k ∧ t)−∇ Ŝ�(a(tn
k−1 ∧ t), tn

k−1 ∧ t) · (a(tn
k ∧ t)− a(tn

k−1 ∧ t)

converges toward the mutual quadratic variation of the partial derivatives of
Ŝ(r, ·) and the semimartingale a(·). Further, observe that, by (15.193), the terms
of continuous bounded variation do not contribute to the limit. Thus, we obtain the
“correction term” to the classical Itô formula

∫ t

0

d∑
i, j=1

[∫ (
∂

∂ri
J�, j

)
(a(s), p, s)w j (dp, ds),mi (ds)

]

=
∞∑

n=1

∫ t

0

d∑
i, j=1

[(
∂

∂ri
σn,�, j

)
(a(s), s)βn

j (ds),mi (ds)
]
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(15.170)

employing for the second equality (4.15) with {βn(·)} a system of i.i.d. standard
Rd -valued Brownian motions and the representation

∂

∂ri
σn(r, t) :=

∫ (
∂

∂ri
J
)
(r, p, t)φ̂n(p)dp. 
�

We remark that the second representation of the correction formula in (15.170)
is an extension (from a finite sum to an infinite series) of the formula proved in
Rozovski (loc.cit.)

We now return to the “good integrator” approach, following Protter (loc.cit.) and
restricting both integrators and integrands to Md×d - and Rd -valued processes, re-
spectively. In the generality of cadlag integrators we need to have some restrictions
on the integrands. The first step is to consider processes that are continuous from the
left with limits from the right as integrands, called by its French acronym “caglad.”
If f (·) is cadlag then the process f (·−), defined by

f (t−) := lim
s↑t

f (s) ∀t

is caglad. Hence, we may work with cadlag processes both for integrators and in-
tegrands, taking always the left-hand limits of the integrand. The class of integrands
will be denoted D([0,∞);Md×d).75 Our integrators will be cadlag semimartin-
gales with decomposition (15.149). The construction of the stochastic integral

J (φ, a) :=
∫ ·

0
f (s−)a(ds) ∈ L0(-; D([0,∞);Rd))) (15.171)

for f (·) ∈ L0(-; D([0,∞);Md×d)) and the semimartingale a(·) ∈ L0(-; D
([0,∞);Rd)) follows the pattern of the continuous case, which we outlined ear-
lier.76 It is important to note that for stochastic integral driven by the martingale
term, m(·), we employed Doob’s inequality (Theorem 15.32), which implies that

75 We endow Md×d with the usual matrix norm ‖ · ‖Md×d .
76 Cf. Proposition 15.34 and Definition 15.48.
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the stochastic integral is the limit in probability uniformly on compact intervals.
This fact is independent of whether or not m(·) is continuous or merely cadlag. For
the integral driven by the process of bounded variation, b(·), we also employ the
uniform metric and the total variation of the one-dimensional components of b(·) to
obtain similar estimates. Therefore, we need to endow both D([0,∞);Md×d) and
D([0,∞);Rd) with the uniform metric du,Md×d and du,Rd , respectively. The latter
is defined by

du,Rd ( f, g) :=
∞∑

n=1

sup
0≤t≤n

ρ( f (t)− g(t))2−n (15.172)

and similarly for du,Md×d . Further, L0(-; D([0,∞);Md×d)) and L0(-; D
([0,∞);Md×d)) are the corresponding classes of processes, endowed with the met-
ric of convergence in probability, dprob,u,∞,Md×d and dprob,u,∞,Rd , respectively.77

Protter proves the following78

Theorem 15.52. The mapping

J ((·), a) : (L0(-; D([0,∞);Md×d)), dprob,u,∞,Md×d )

−→ (L0(-; D([0,∞);Rd)), dprob,u,∞,Rd )

is continuous.

We next state a convergence condition for stochastic integrals due to Kurtz and
Protter (1996), Sects. 6 and 7. The semimartingale integrators take values in sep-
arable Banach space, and most properties are formulated with respect to the weak
topology of the Banach space. We formulate a special case of Theorem 7.5 in Kurtz
and Protter (loc.cit.), which will be sufficient for the application in the mesoscopic
limit theorem.

Let H be a separable Hilbert space with norm ‖ · ‖H and scalar product 〈·, ·〉H.
Suppose mn

k (·) is for each k ∈ N a sequence a real-valued square integrable mean
zero martingales, n ∈ N ∪ {∞}. Let φk be a CONS for H and suppose that for each
n ∈ N ∪ {∞} and ϕ ∈ H the series

∑
k∈N

mn
k (·)〈φk, ϕ〉H

converges in mean square uniformly on compact intervals. Set

Mn(·) :=
∑
k∈N

mn
k (·)φk, n ∈ N ∪ {∞}. (15.173)

77 Cf. (15.84) with Rd or Md×d instead of H.
78 Protter (loc.cit.), Chap. II, Theorem 11. Protter’s definition and his Theorem 11 are stated only

for the case where both integrands and integrators are real valued. Since the stochastic integral
is constructed for each component in the product between a matrix and a vector we may, without
loss of generality, state the theorem in the appropriate multi-dimensional setting.
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We call Mn(·) an H-valued weak (square integrable) martingale. Generalizing
the considerations of Sect. 15.2.3 and 15.2.4 to the sequence

∑
k∈N

mn
k (·)φk , we define

the tensor quadratic variation of Mn(t) by

|[Mn]|(t) := [mn
k ,m

n
� ](t)φk ⊗ φ�. k, � ∈ N. (15.174)

φk ⊗ φ� in (15.174) is the tensor product of φk and φ�. We verify that the above
convergence condition is equivalent to the statement that for each t E |[Mn]|(t) is a
bounded operator on H. If E |[Mn]|(t) is nuclear for each t (i.e., it is the product of
two Hilbert-Schmidt operators), we call Mn(·) “regular.” Otherwise we call Mn(·)
“cylindrical.”79

Next, let J be the collection of H-valued cadlag processes #(·) which is repre-
sented by

#(·) =
L∑

k=1

fk(·)φ̃k, L ∈ N, φ̃k ∈ H, (15.175)

where fk(·) are real-valued cadlag processes. The stochastic integral for #(·) ∈
A and Mn(·) is defined by

∫ t

0
〈#(s−),Mn(ds)〉 :=

L∑
k=1

∑
�∈N

∫ t

0
fk(s−)m�(ds)〈φ̃k, φ�〉H (15.176)

The quadratic variation of
∫

0〈#(s−),Mn(ds)〉 can be represented by
[∫ t

0
〈φ(s−),Mn(ds)〉

]
:=

∫ t

0

〈
|[Mn]|(ds)

( L∑
k=1

fk(s−)φ̃k

)
,

L∑
k=1

fk(s−)φ̃k

〉

H

.

(15.177)

Hence, by the boundedness of |[Mn]|(t), we extend this definition to all H-valued
square integrable cadlag processes #(·), using a Fourier expansion of #(·) with
respect to some CONS and obtain for the quadratic variation

[∫ t

0
〈#(s−),Mn(ds)〉

]
:=

∫ t

0
〈|[Mn]|(ds)(#(s−),#(s−)〉H. (15.178)

Needless to say that, employing stopping times, we can extend the definition of
the stochastic integral and (15.178) to the case where the tensor quadratic variation
|[Mn|](·) is only locally integrable.

Definition 15.53. The sequence Mn(·) of H-valued (possibly cylindrical) martin-
gales, n ∈ N is called “uniformly tight” if for each T and δ > 0 there is a constant
K (T, δ) such that

P

{
sup

0≤t≤T

1
K (T, δ)

∣∣∣∣
∫ t

0

〈
#(s−),Mn(ds)

〉 ∣∣∣∣ ≥ δ
}
≤ δ (15.179)

for each n and all Fn,t -adapted #(·) ∈ A satisfying sup
0≤t≤T

‖#n(t)‖H ≤ 1. 
�

79 Cf. Definition 15.28 of regular and cylindrical H-valued Brownian motions.
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Next, we consider a sequence of stochastic integral equations with valued in Rk̄ .
The integrands are F̂n(r̂ , s−) = (Fn

1 (r̂ , s−), . . . , Fn
k̄
(r̂ , s−))T such that Fn

i (r̂ , ·) ∈
H, n ∈ N∪ {∞}. Further, instead of the usual initial condition there is an Rk̄-valued
sequence of cadlag processes U n(·), n ∈ N∪{∞}. Hence the sequence of stochastic
integral equations can be written as

r̂ n(t) = U n(t)+
∫ t

0

〈
F̂n(r̂(s−), s−),Mn(ds)

〉
, n ∈ N ∪ {∞}, (15.180)

where

〈F̂n(r̂(s−), s−),Mn(ds)〉 := (〈F̂n
1 (r̂(s−), s−),Mn(ds)〉, . . . ,

〈F̂n
k̄ (r̂(s−), s−),Mn(ds)〉)T .

Kurtz and Protter provide conditions for the existence of solutions and unique-
ness, and we will just assume the existence of solutions of (15.180) for n ∈ N∪{∞}
and uniqueness for the limiting case n = ∞. Further, suppose that the following
condition holds on the coefficients F̂n :

∀c > 0, t > 0 sup
|r̂ |≤c

sup 0 ≤ s ≤ t‖Fn
i (r̂ , s)− F∞

i (r̂ , s)‖H → 0,

as n → ∞ , i = 1, . . . , k̄.
(15.181)

Theorem 15.54.

(i) Suppose H = H0 and Mn(·), given by (15.173), is uniformly tight and that
(15.181) holds. Further, suppose that for any finite {φ̃k, k = 1, . . . , L} ⊂ H0

(Un(·), 〈Mn(·), φ̃1〉, . . . , 〈Mn(·), φ̃L 〉) �⇒ (U∞(·), 〈M∞(·), Φ̃1〉, . . . , 〈M∞(·), φ̃L 〉)

in D([0,∞);Rk̄+L ).

Then for any finite {φ̃k, k = 1, . . . , L} ⊂ H0

(U n(·), r̂ n(·), 〈Mn(·), φ̃1〉, . . . , 〈Mn(·), φ̃L〉)
�⇒ (U∞(·), r̂∞(·), 〈M∞(·), φ̃1〉, . . . , 〈M∞(·), φ̃L〉)

in D([0,∞);R2k̄+L).

(15.182)

(ii) Fix γ > d.80 Suppose that, in addition to the conditions of part (i), for all t̂ ,
ε > 0 and L > 0 there exists a δ > 0 such that for all n

P{sup
t t̂

|〈Mn(·), ϕ > |〉L} ≤ ε whenever‖ϕ‖γ ≤ δ.

(ii) Then,

(U n(·), r̂ n(·),Mn(·)) �⇒ (U∞(·), r̂∞(·),M∞(·) in D([0,∞);R2k̄ ×H−γ ).
(15.183)

80 Recall (15.32) and (15.36).
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Proof. Part (i) is a special case of Theorem 7.5 in Kurtz and Protter (loc.cit.) using
the uniqueness of the the solution of the limiting equation.

Part (ii) follows from (i) and Walsh (loc.cit.), Corollary 6.16. 
�
Remark 15.55. To better understand the uniform tightness condition in the paper by
Kurtz and Protter, we now restrict the definitions and consequences to the finite-
dimensional setting of Theorem 15.51. To this end let an(·) be a sequence of
Rd -valued cadlag Fn,t semimartingales and fn(·) families of Md×d -valued Fn,t -
adapted cadlag simple processes.

(i) The sequence an(·) is called “uniformly tight” if for each T and δ > 0 there
is a constant K (T, δ) such that for each n and all Md×d -valued Fn,t -adapted
cadlag processes fn(·)

P

{
sup

0≤t≤T

1
K (T, δ)

∣∣∣∣
∫ t

0
fn(s−)an(ds)

∣∣∣∣ ≥ δ
}
≤ δ provided sup

0≤t≤T
‖ fn(t)‖Md×d ≤ 1 .

(ii) It follows from Sect. 15.1.6 that (D([0,∞);Rd), du,Rd ) is a complete met-
ric space and, by the vector space structure of D([0,∞);Rd), it is a Frechét
space.81 Hence, (L0(-; D([0,∞);Rd)), dprob,u,∞,Rd ) is also a Frechét space
space. We obtain the same property for (D([0,∞);Md×d), du,Md×d ) and
(L0(-; D([0,∞);Md×d)), dprob,u,∞,Md×d ). Since the mapping J (·, a) for
fixed a(·) is linear Theorem 15.52 asserts

J (·, a) ∈ L(L0(-; D([0,∞);Md×d)), L0(-; D([0,∞);Rd))), (15.184)

i.e., J (·, a) is a bounded linear operator from the Frechét space space
L0(-; D([0,∞);Md×d)) into the Frechét space space L0(-; D([0,∞);Rd)).

(iii) The subindex n at fn(·) in Definition 15.53 merely signifies adaptedness to the
family Fn,t . Therefore, we may drop the subindex at fn(·), and we may also
use the metrics on [0,∞) in the above definition. Further, we may obviously
drop the requirement that f (·) be in the unit sphere (in the uniform metric), in-
corporating the norm of f (·) into the constants as long as the norm of f (·) does
not change with n. The assumption that f (t, ω) be bounded in t and ω implies
boundedness of (·) in the uniform metric in probability. Having accomplished
all these cosmetic changes, the property that an(·) be uniformly tight implies
the following:
For each f (·) ∈ L0(-; D([0,∞);Md×d)), the set {J ( f, an) : n ∈ N} is
bounded in L0(-; D([0,∞);Rd)), i.e., it implies the assumptions of the uni-
form boundedness principle (Theorem 15.3).

(iv) We expect that a similar observation also holds in the Hilbert space case if, as
in the proof of Theorem 15.54, we can find, uniformly in t , a Hilbert-Schmidt
imbedding for the integrators. 
�

81 Cf. Definition 15.2. D([0,∞);Rd ), endowed with the Skorokhod metric dD,Rd ,
(D([0,∞);Rd ), dD,Rd ), is both complete and separable. Hence, (D([0,∞);Rd ), dD,Rd ) is a
separable Frechét space.
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15.2.6 Stochastic Stratonovich Integrals

We briefly describe the Stratonovich integral, following Ikeda-Watanabe, and pro-
vide the transformation rule by which one may represent a Stratonovich integral
as a sum of a stochastic Itô integral and a Stieltjes integral. Finally, we apply the
formulas to a special case of the SODE (4.9).

Recall that by (15.139) and (15.81) the Itô integral for continuous semimartingale
integrators is constructed as in a formal Stieltjes approximation, but taking the inte-
grand at the left endpoint of a partition interval and the integrator as the difference
of both endpoints. Stratonovich (1964) takes the midpoint.

Let ã(·) = b̃(·)+ m̃(·) and a(·) = b(·)+ m(·) be continuous locally square inte-
grable real-valued semimartingales (cf. (15.149)), adapted (as always in this book)
to the filtration Ft . Further, let {tn

0 < tn
1 < · · · < tn

k < · · ·} be a sequence of
partitions of [0,∞) as in Definition 15.33. Set

Sn(t, ã, a) :=
∑

k

1
2
{ã(tn

k )+ ã(tn
k−1)}(a(tn

k )− a(tn
k−1)). (15.185)

Ikeda and Watanabe show that Sn(t, ã, a) converges in probability, uniformly on
compact intervals [0, T ]. The proof of this statement is very similar to the proof of
the Itô formula. Thus, the following is well defined:

Definition 15.56. ∫ t

0
ã(s) ◦ a(ds) := lim

n→∞ Sn(t, ã, a) (15.186)

is called the “Stratonovich integral of ã(·) with respect to a(ds).”82 
�
The representation of the approximating sequence in (15.185) immediately im-

plies the following transformation rule:

Theorem 15.57. Under the above assumptions
∫ t

0
ã(s) ◦ a(ds) ≡

∫ t

0
ã(s)a(ds)+ [m̃,m](t) a.s., (15.187)

where the stochastic integral in the right-hand side is the Itô integral.

Proof.
∑

k

1
2
{ã(tn

k )+ ã(tn
k−1)}(a(tn

k )− a(tn
k−1))

=
∑

k

ã(tn
k−1)(a(t

n
k )− a(tn

k−1))+
∑

k

1
2
{ã(tn

k )+ ã(tn
k−1)}(a(tn

k )− a(tn
k−1)).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15.188)

82 Cf. with our attempt to define a Stieltjes approximation for (15.132), choosing {β1(tn
k−1 ∧ t)+

x0 + γ (β1(tn
k ∧ t)− β1(tn

k−1 ∧ t))} as the evaluation point for the integrand β1(·)+ x0.We saw
that Itô’s choice is γ = 0, whereas, by (15.185), Stratonovich’s choice is γ = 1

2 .
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Clearly, the first sum tends to the stochastic Itô integral, whereas the second sum
tends to the mutual quadratic variation of ã(·) and a(·). By (15.93) this process
reduces to the mutual quadratic variation of m̃(·) and m(·). 
�

The mutual quadratic variation [m̃,m](·) in (15.187) is usually called the “cor-
rection term”, which we must add to the Itô integral to obtain the corresponding
Stratonovich integral. The generalization to multidimensional semimartingales fol-
lows from the real case componentwise.

Although the Stratonovich integral requires more regularity on the integrands
and integrators than the Itô integral, transformations of Stratonovich integrals follow
the usual chain rule, very much in difference from the Itô integral where the usual
chain rule becomes the Itô formula. We adopt the following theorem from Ikeda and
Watanabe (loc.cit.), Chap. III.1, Theorem 1.3.

Theorem 15.58. The Chain Rule

Suppose a(·) := (a1(·), . . . , ad(·)) is an Rd -valued continuous locally square
integrable semimartingale and ϕ ∈ C3(Rd;R). Then,

ã(·) := ϕ(a(·))
is a real-valued continuous square integrable semimartingale and the following

representation holds:

ã(t) ≡ ϕ(a(0))+
d∑

i=1

∫ t

0
(∂iϕ)(a(s)) ◦ ai (ds). (15.189)


�
In what follows, we will apply the Stratonovich integral to the study of a special

case of semimartingales, appearing in the definition of our SODEs (4.9) with Ỹ(·) ∈
M f,loc,2,(0,T ] ∀T > 0. More precisely, we consider

dr(t) = F(r(t), Ỹ(t), t)dt +
∫

J (r(t), p, t)w(dp, dt)

r(0) = r0 ∈ L2,F0(R
d), (Ỹ+, Ỹ−) ∈ L loc,2,F (C((0, T ];M × M)),

⎫⎬
⎭

(15.190)

assuming the conditions of Hypothesis 4.2, (i).83 In the notation of Kunita (cf.
also our Sect. 7) (15.190) defines the following space–time field, which is a family
of semi-martingales, depending on a spatial parameter:

L(r, t) := ∫ t
0 F(r, Ỹ(s))ds + ∫ t

0

∫
J (r, q, s)w(dq, ds). (15.191)

Note that J does not depend on some measure Ỹ(·). If, in addition F does
not depend on the measure process Ỹ(·), the field is Gaussian. The assumption of
independence of the diffusion coefficient J of measure processes Ỹ(t) allows us to
define the Stratonovich integrals with respect to w(dq, ds) in terms of Itô integrals.

83 (15.190) is a special case of the SODE (4.9).
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Proposition 15.59. Let z(·) be a continuous square integrable Rd -valued semi-
martingale. Further, suppose that, in addition to Hypothesis 4.2, J (r, q, s) is twice
continuously differentiable with respect to r such that

supr∈Rd

d∑
i, j,k,�=1

∫ T

0

∫
(∂2

i jJk,�)
2(r, q, s)dq ds <∞. (15.192)

Then, employing the representation (4.15), for all n the entries of
∫
J (z(·), q, ·)

φ̂n(q)dq are continuous square integrable Rd -valued semimartingales.

Proof. We apply Itô’s formula (Theorem 15.50) to the functions

ϕ(r, t) :=
∫

Jk�(r, q, t)Φn(q)dq, k, � = 1, . . . , d.

�

Consequently, employing the series representation (4.15) and assuming the con-
ditions of Proposition 15.59, we can define the Stratonovich integral of J (z(s), q, s)
with respect to w(dq, ds) as a series of Stratonovich integrals from Definition
15.56 by84

∫ t

0

∫
J (z(s), q, s)w(dq, ◦ds) :=

∞∑
n=1

∫ t

0

∫
J (z(s), q, s)φ̂n(q)dq ◦ βn(ds),

(15.193)

where the i th component of the stochastic integral is defined by
{∫ t

0

∫
J (z(s), q, s)φ̂n(q)dq ◦ βn(ds)

}

i

:=
d∑

j=1

∫ t

0

∫
Ji j (z(s), q, s)φn(q)dq ◦ βn

j (ds).
(15.194)

Next, we consider the solution of (15.190). Since the coefficients are bounded
this solution is a continuous square integrable R-valued semimartingale.

Proposition 15.60. Let r(·) be the solution of (15.190). Suppose that, in addition to
the conditions of Proposition 15.59, the diffusion matrix, Dk� associated with the
diffusion kernel Jk,�(r, q, s) is spatially homogeneous, i.e., assume (8.33), and that
the divergence of the diffusion matrix equals 0 at (0, t) ∀t , i.e.,

d∑
k=1

(∂kD̃)k�(0, t) ≡ 0 ∀�. (15.195)

84 Our definition is equivalent to Kunita’s definition of the Stratonovich integral (cf. Kunita, loc.cit.
Chap. 3.2, and our Chap. 7).
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Then
∫ t

0

∫
J (r(s), q, s)w(dq, ◦ds) =

∫ t

0

∫
J (r(s), q, s)w(dq, ds), (15.196)

i.e., the Stratonovich and the Itô integrals coincide in this particular case.

Proof. 85

(i) Set

σn,i j (r, t) :=
∫

Ji j (r, q, s)φn(q)dq. (15.197)

By Proposition 15.59 σn,i j (r(·), ·) are continuous square integrable semimartin-
gales. Therefore, by (15.190)
∫ t

0
σn,i j (r(s), s) ◦ βn

j (ds)=
∫ t

0
σn,i j (r(s), s)βn

j (ds)+
[
σn,i j (r(t), t),

∫ t

0
βn

j (ds)
]

and all we need is to compute the correction term [σn,i j (r(t), t),
∫ t

0 β
n
j (ds)]. To

this end, we must find the semimartingale representation of σn,i j (r(t)). By Itô’s
formula

σn,i j (r(t), t) = σn,i j (r(0), 0)+
∫ t

0

(
∂

∂s
σn,i j

)
(r(s), s)ds

+
∫ t

0
(∇σn,i j )(r(s), s) · r(ds)+ 1

2

d∑
k�=1

(
∂2

k�σn,i j

)
(r(s), s)[rk, r�](ds),

where the assumptions allow us to interchange differentiation and integration.
By (15.93) the processes of bounded variation do not contribute to the calculation
of [σn,i j (r(t), t),

∫ t
0 β

n
j (ds)]. Hence,

[
σn,i j (r(t), t),

∫ t

0
βn

j (ds)

]
≡

d∑
k=1

[∫ t

0
(∂kσn,i j )(r(s), s)rk(ds),

∫ t

0
βn

j (ds)

]

≡
d∑

k=1

[∫ t

0
(∂kσn,i j )(r(s), s)

{∑
m

d∑
�=1

σm,k�(r(s), s)βm
� (ds)

}
,

∫ t

0
βn

j (ds)

]
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15.198)

Observe that βn
j and βm

� are independent if (n, j) != (m, �). Employing (15.151),
we obtain
[∫ t

0

∂

∂rk

∫
Ji j (r(t), q, t)φn(q)dq, βn

j (t)
]
≡
∫ t

0
(∂kσn,i j (r(s), s))σn,k j (r(s), s)ds.

(15.199)

85 The proof is adopted from Kotelenez (2007).
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Adding up

∑
n

d∑
j=1

σn,i j (r, t)σn,k j (q, t) =
∫
(J (r, p, t)J (q, p, t))ik dp.

Hence, summing up the correction terms,

d∑
k=1

⎛
⎝ ∂

∂rk

∑
n

d∑
j=1

σn,i j (r, t)σn,k j (q, t)|q=r

⎞
⎠

=
d∑

k=1

(
∂

∂rk

∫
(J (r, p, t)J (q, p, t))ik dp)|q=r

)
.

However, ∫
(J (r, p, t)J (q, p, t))ik dp = Dik(r − q, t).

Hence,

d∑
k=1

∑
n

d∑
j=1

(∂kσn,i j )(r, t)σn,k j (q, t)|q=r ≡
d∑

k=1

∂

∂rk
Dik(r − q, t)|q=r ≡ 0

(15.200)
by assumption (15.198). We conclude that the sum of all correction terms

equals 0, which implies (15.199). 
�

Lemma 15.61. Let ϕ ∈ C3
c (Rd;R) and assume the conditions and notation of

Proposition 15.60. Then

∑
n

∫ t

0
(∇ϕ)(r(s)) · (◦ σn(r(s), s)βn(ds))

=
∑

n

∫ t

0
(∇ϕ)(r(s)) · (σn(r(s), s) ◦ βn(ds)).

(15.201)

Proof.

(i) As in the proof of Proposition 15.60, we first analyze the one-dimensional
coordinates of (15.201). Since the deterministic integral

∫ t
0 F(r(s), Ỹ, s)ds is

the same for Itô and Stratonovich integrals, we may in what follows assume,
without loss of generality, F ≡ 0.
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(ii) By (15.187),

d∑
j=1

∫ t

0
(∂kϕ)(r(s)) ◦ σn,k j (r(s), s)βn

j (ds)

=
d∑

j=1

∫ t

0
(∂kϕ)(r(s))σn,k j (r(s), s)βn

j (ds)

+1
2

⎡
⎣(∂kϕ)(r(s)),

d∑
j=1

∫ t

0
σn,k j (r(s), s)βn

j (ds)

⎤
⎦ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.202)

To compute the correction term we apply Itô’s formula to (∂kϕ)(r(t)). Recall-
ing that, by (15.93), only the martingale part in Itô’s formula contributes to the
mutual quadratic variation, we obtain

1
2

⎡
⎣((∂kϕ)(r(t)),

d∑
j=1

∫ t

0
σn,k j (R(s), s)βn

j (ds)

⎤
⎦

= 1
2

[∫ t

0

( d∑
�=1

(∂2
k�ϕ)(r(s))

){∑
m

d∑
�=1

σm,�i (r(s), s)βm
i (ds)

}

×
d∑

j=1

∫ t

0
σn,k j (r(s), s)βn

j (ds)

]

= 1
2

∫ t

0

( d∑
�=1

(∂2
k�ϕ)(r(s))

)⎧⎨
⎩

d∑
j=1

σn,�j (r(s), s)σn,k j (r(s), s)ds

⎫⎬
⎭ .

i.e.,

1
2

⎡
⎣(∂kϕ)(r(t)),

d∑
j=1

∫ t

0
σn,k j (r(s), s)βn

j (ds)

⎤
⎦

= 1
2

d∑
j,�=1

∫ t

0
(∂2

k�ϕ)(r(s))σn,�j (r(s), s)σn,k j (r(s), s)ds.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(15.203)

Summing up over all n yields:

1
2

⎡
⎣
(
∂

∂rk
ϕ

)
(r(t)),

∑
n

d∑
j=1

∫ t

0
σn,k j (r(s), s)βn

j (ds)

⎤
⎦

= 1
2

d∑
�=1

∫ t

0
(∂2

k�ϕ)(r(s))D�k(0, s)ds.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(15.204)

Summing up (15.202) over all n and changing the notation for the indices we
obtain from the previous formulas



15.2 Stochastics 409

∫ t

0
(∂kϕ)(r(s)) ◦

∑
n

d∑
�=1

σn,k�(r(s), s)βn
� (ds)

=
∫ t

0
(∂kϕ)(r(s))

∫ d∑
�=1

Jk�(r(s), p, s)w�(dp, ds)

+1
2

d∑
�=1

∫ t

0
(∂2

k�ϕ)(r(s))D�k(0, s)ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.205)

(iii) Again by (15.187),

d∑
j=1

∫ t

0
(∂kϕ)(r(s))σn,k j (r(s), s) ◦ βn

j (ds)

=
d∑

j=1

∫ t

0
(∂kϕ)(r(s))σn,k j (r(s), s)βn

j (ds)

+1
2

d∑
j=1

[
(∂kϕ)(r(t))σn,k j (r(t), t),

∫ t

0
βn

j (ds)
]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.206)

We now must compute the martingale term of (∂kϕ)(r(t))σn,k j (r(t), t), using
Itô’s formula. We verify that this term equals

∫ t

0
σn,k j (r(s), s)(∇∂kϕ)(r(s)) ·

∫
J (r(s), p, s)w(dp, ds)

+
∫ t

0
(∂kϕ)(r(s))(∇σn,k j (r(s), s)) ·

∫
J (r(s), p, s)w(dp, ds).

Employing the series representation (4.15) with the notation from (15.197), we
obtain for the correction term

1
2

d∑
j=1

[
(∂kϕ)(r(t))σn,k j (r(t), t),

∫ t

0
βn

j (ds)
]

= 1
2

d∑
j=1

[∫ t

0
σn,k j (r(s), s)

( d∑
�=1

∂2
k�ϕ

)
(r(s))

×
{∑

m

d∑
i=1

σm,�i (r(s), s)βm
i (ds)

}
,

∫ t

0
βn

j (ds)
]

+1
2

d∑
j=1

[∫ t

0

d∑
�=1

(∂kϕ)(r(s))(∂�σn,k j )(r(s), s))

×
{∑

m

d∑
i=1

σm,�i (r(s), s)βm
i (ds)

}
,

∫ t

0
βn

j (ds)
]
.
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Observing the orthogonality of the Brownian motions the correction term
simplifies

1
2

d∑
j=1

[
(∂kϕ)(r(t))σn,k j (r(t), t),

∫ t

0
βn

j (ds)
]

= 1
2

d∑
j=1

[∫ t

0
σn,k j (r(s), s)

( d∑
�=1

∂2
k�ϕ)(r(s))σn,�j (r(s), s

)
βn

j (ds),
∫ t

0
βn

j (ds)

]

+1
2

d∑
j=1

[∫ t

0

( d∑
�=1

(∂kϕ)(r(s))

)
(∂�σn,k j )(r(s), s))σn,�j (r(s), s)βn

j (ds),

×
∫ t

0
βn

j (ds)
]
.

whence by (15.151) the correction term satisfies the following equation:

1
2

d∑
j=1

[
(∂kϕ)(r(t))σn,k j (r(t), t),

∫ t

0
βn

j (ds)
]

= 1
2

d∑
�, j=1

∫ t

0
(∂2

k�ϕ)(r(s))σn,k j (r(s), s)σn,�j (r(s), s)ds

+1
2

d∑
�, j=1

∫ t

0
(∂kϕ)(r(s))(∂�σn,k j )(r(s), s))σn,�j (r(s), s)ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.207)

It remains to sum up the correction terms over all n. First, we compute the sum
of the second terms. Basically repeating the calculations of (15.200),

1
2

d∑
�, j=1

∫ t

0
((∂kϕ)(r(s))

∑
n

(∂�
∑

n

σn,k j )(r(s), s))σn,�j (r(s), s) ds

= 1
2

d∑
�, j=1

∫ t

0
(∂kϕ)(r(s))

∂

∂r�

∫
Jk j (r, p, s)J�j (q, p, s)dp|r=q=r(s) ds

= 1
2

d∑
�=1

∫ t

0
(∂kϕ)(r(s))

∂

∂r�
Dk,�(r − q, s)|r=q=r(s) ds

= 0 by assumption (15.195).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.208)
Summing up over the first terms in the right-hand side of (15.207) yields

1
2

d∑
�, j=1

∫ t

0
(∂2

k�ϕ)(r(s))
∑

n

σn,k j (r(s), s)σn,�j (r(s), s)ds

= 1
2

d∑
�

∫ t

0
(∂2

k�ϕ)(r(s))Dk�(0, s)ds.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(15.209)
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Since the diffusion matrix Dk� is symmetric, we obtain by (15.204) that the
correction terms for both sides of (15.201) are equal. 
�

We conclude this subsection with the following important observation:86

Theorem 15.62. Suppose that the conditions of Proposition 15.60 hold and let ϕ ∈
C3

c (Rd;R). Denoting by r(·) the solution of the (Iô) SODE (15.190) the following
holds:

ϕ(r(t)) ≡ 1
2

d∑
k,�=1

(∂2
k�ϕ)(r(s))Dk�(r(s), s)ds

+
d∑

k=1

∫ t

0
(∇ϕ(r(s)) ·

∫
Jk,�(r(s), q, s)w�(dq, ds)

+
∫ t

0
(∇ϕ)(r(s)) · F(r(s), Ỹ(s), s)ds

=
d∑

k=1

∫ t

0
(∇ϕ)(r(s)) ·

∫
Jk,�(r(s), q, s)w�(dq, ◦ds)

+
∫ t

0
(∇ϕ)(r(s)) · F(r(s), Ỹ(s), s)ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.210)

Proof. The Itô formula (Theorem 15.50) yields the the first part of (15.210). The
chain rule for Stratonovich integrals (Theorem 15.58) in addition to Lemma 15.61
implies that ϕ(r(t)) equals the right-hand side of (15.210). 
�

15.2.7 Markov-Diffusion Processes

We review the definition of Markov-diffusion processes and prove the Markov prop-
erty for a class of semilinar stochastic evolution equations in Hilbert space. We
then derive Kolmogorov’s backward and forward equations for Rd-valued Markov-
diffusion processes. The latter is also called the “Fokker–Planck equation.” It
follows that the SPDEs considered in this volume are stochastic Fokker-Planck
equations for (generalized) densities (or “number densities”).

The general description and analysis of Markov processes is found in Dynkin
(1965). We will restrict ourselves only to some minimal properties of continuous
(nonterminating) Markov-diffusion processes (i.e., where the sample paths are a.s.
continuous) with values in Rd . However, to allow applications to SPDEs and other
infinite dimensional stochastic differential equations, we will initially consider con-
tinuous nonterminating processes with values in a separable metric space B. For the
basic definitions we choose the “canonical” probability space - := C([0,∞);B),
endowed with the Borel σ -algebra F := BC([0,∞);B).

86 Cf. Theorem 5.3 in Kotelenez (2007).
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The first object is a family of transition probabilities87 P(s, ξ, t, B), 0 ≤ s ≤
t < ∞, ξ ∈ B, B ∈ BB (the Borel sets on B). By assumption, this family satisfies
the following properties:

Definition 15.63.

(I) A family of probability measures on BB, P(s, ξ, t, ·), 0 ≤ s ≤ t <∞, ξ ∈ B,
is called a family of transition probabilities if

(i) P(s, ·, t, B) is BB-measurable for all 0 ≤ s ≤ t , B ∈ BB such that
P(s, ·, s, B) = 1B(·) for all s ≥ 0,

(ii) and if for 0 ≤ s < u < t, ξ ∈ B and B ∈ BB the “Chapman-Kolmogorov
equation” holds:

P(s, ξ, t, B) =
∫

B
P(u, η, t, B)P(s, ξ, u, dη). (15.211)

(II) Suppose, in addition to the family of transition probabilities, there is a prob-
ability measure µ on BB. A probability measure P on (-,BC([0,∞);B)) is called a
“Markov process” with transition probabilities P(s, ξ, t, B) and initial distribution
µ if

P(ωB(0) ∈ B) = µ(B) ∀B ∈ BB. (15.212)

and if for all 0 ≤ s < u < t and B ∈ BB

P(ωB(t) ∈ B|σ {ωB(u), 0 ≤ u ≤ s}) = P(s, ωB(s), t, B) a.s., (15.213)

where the quantity in the left-hand side of (15.213) is the conditional probability,
conditioned on the “past” up to time s and ωB(·) ∈ -.

If P(s, ξ, t, ·) ≡ Ph(t − s, ξ, ·), where Ph(t − s, ξ, ·) is some time-homogeneous
family of probability measures with similar properties as P(s, ξ, t, ·), then the cor-
responding Markov process is said to be “time homogeneous.” 
�

Property (15.213) is called the “Markov property.” It signifies that knowing the
state of the system at time s is sufficient to determine the future.

Obviously, a Markov process is not a stochastic process with a fixed distribution
on the sample path but rather a family of processes, indexed by the initial distribu-
tions and having the same transition probabilities. It is similar to an ODE or SODE
without specified initial value, where the “forcing function” describes the transition
from a given state to the next state in an infinitesimal time-step. This begs the ques-
tion of whether there is a deeper relation between SODEs (or ODEs)88 and Markov
processes. Indeed, it has been Itô’s program to represent a large class of Markov
processes by solutions of SODEs. To better understand this relation, let us look
at a fairly general example of infinite dimensional stochastic differential equations
related to semilinear SPDEs.

87 We follow the definition provided by Stroock and Varadhan (1979), Chap. 2.2.
88 Notice that ODEs can be considered special SODEs, namely where the diffusion coefficient

equals 0.
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Let H and K be a real separable Hilbert spaces with scalar products 〈·, ·〉H, 〈·, ·〉K
and norms ‖ · ‖H, ‖ · ‖K. Suppose there is a strongly continuous two-parameter
semigroup U (t, s) on H.89 In addition to U (t, s), let B(s, ·) be a family of (possibly)
nonlinear operators on H, Z ∈ H, s ≥ 0 such that

U (t, s)B(s, ·) is bounded on H and measurable in (s, Z) ∈ [0, t] × H for all
t ≥ 0.

Further, let W (·) be a K-valued Brownian motion and C(s, ·) a family of (pos-
sibly) nonlinear operators on H with values in the space of linear operators from K
into H. Suppose that
(s, Z) %→ U (t, s)C(s, Z) is a jointly measurable map from [0, t] × H into the

bounded linear operators from K into H for all t ≥ 0 such that for all Z ∈ H and
t ≥ 0

E‖
∫ t

0
U (t, s)C(s, Z)W (ds)‖2

H <∞.90

Consider the following stochastic evolution equation on H:

X (t) = Xs +
∫ t

s
U (t, u)B(u, X (u))du +

∫ t

s
U (t, u)C(u, X (u))W (du).

(15.214)
where Xs is an adapted square integrable initial condition. We assume in what

follows that (15.217) has a unique solution X (·, s, Xs), which is adapted, square
integrable and such that for any two adapted square integrable conditions Xs and Ys
the following continuous dependence on the initial conditions holds

sup
s≤t≤t̄

E‖X (t, s, Xs)− X (t, s,Ys)‖2
H ≤ ct̄ E‖Xs − Ys‖2

H ∀t̄ <∞, (15.215)

where c(t̄) <∞. If there is a generator A(t) of U (t, s) the solution of (15.214) is
called a “mild solution.” We adopt this term, whether or not there is a generator A(t).
Recall that in the finite dimensional setting of (4.10), as a consequence of global
Lipschitz assumptions, (4.17) provides an estimate as in (15.215) if we replace the
input processes Ỹ by the empirical processes with N coordinates. Similar global
(or even local) Lipschitz assumptions and linear growth assumptions on (15.214)
guarantee the validity of estimate (15.215) (cf. Arnold et al. (1980) or DaPrato and
Zabczyk (1992)).

Proposition 15.64. Under the preceding assumption the solution of (15.214) is a
Markov process with transition probabilities

P(s, Z , t, B) := E1B(X (t, s, Z)), Z ∈ H, B ∈ BH. (15.216)

89 Cf. Definition 15.41.
90 This condition implies that

∫ t
0 U (t, s)C(s, Z)W (ds) is a regular H-valued Gaussian random

variable, i.e., it is a generalization an H-valued regular Brownian motion whose covariance
depends on t . Arnold et al. (loc.cit.) actually assumed W (·) to be regular on K, etc. However,
DaPrato and Zabczyk (1992) provide many examples where W (·) can be cylindrical and the
“smoothing effect” of the semigroup “regularizes” the Brownian motion.
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Proof. 91

(i) Let Gt
s := σ {W (v)− W (u) : s ≤ u ≤ v ≤ t} and Ḡt

s the completed σ -algebra.
The existence of a solution X (t, s, Z , ω) of (15.214), which is measurable in
(s, Z , ω) ∈ [0, t] × H × - with respect to the σ -algebra B[0,t] ⊗ BH ⊗ Ḡt

s
follows verbatim as the derivation of property 3) of Theorem 4.5.92 Hence
the left-hand side of (15.216) defines a family of probability measures that is
measurable in Z .

(ii) Next, we show the Markov property (15.213) with X (·) replacing ωB(·). The
following function

fB(Z , ω) := 1B(X (t, s, Z , ω)

is bounded and BH ⊗ Ḡt
s-measurable. Consider functions

g(Z , ω) :=
n∑

i=1

hi (Z)φi (ω)

where all hi (·) are bounded BH-measurable and all φi (·) are bounded Ḡt
s-

measurable. Note that φi (·) are independent of σ {X (u), 0 ≤ u ≤ s}, whence

E[φi (ω)|σ {X (u), 0 ≤ u ≤ s}] = Eφi (·) = E[φi (ω)|σ {X (s)}].
Therefore,

E[g(X (s), ω)|σ {X (u), 0 ≤ u ≤ s} =
n∑

i=1

hi (X (s))E[φi (ω)|σ {X (s)}]
= E[g(X (s), ω)|σ {X (s)}].

(15.217)
A variant of the monotone class theorem (cf. Dynkin (1961), Sect. 1.1, Lemma
1.2) implies that (15.217) can be extended to all bounded BH ⊗ Ḡt

s-measurable
functions. Consequently, it holds for fB(Z , ω) and the Markov property
(15.213) follows.

(iii) For 0 ≤ s ≤ u ≤ t <∞, by the uniqueness of the solutions of (15.214),

X (t, s, Z) = X (t, u, X (u, s, Z)) a.s.

Thus,

P(s, Z , t, B) = E1B(X (t, s, Z)) = E1B(X (t, u, X (u, s, Z)))
= E[E[1B(X (t, u, X (u, s, Z)))|σ {X (u, s, Z)}]] = E[P(u, X (u, s, Z), t, B)]
=
∫

H
P(u, Z̃ , t, B)P(s, Z , u, dZ̃).

⎫⎪⎬
⎪⎭

(15.218)
This is the Chapman–Kolmogorov equation (15.211) and the proof of Proposi-

tion 15.64 is complete. 
�
91 We follow the proof provided by Arnold et al. (1980), which itself is a generalization of a proof

by Dynkin (1965), Vol. I, Chap. 11, for finite-dimensional SODEs.
92 Cf. Chap. 6.
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Corollary 15.65. The unique solution (r1(·, s, q1), . . . , r N (·, s, q N ) of (4.10) is an
RNd-valued continuous Markov process. 
�

In what follows, we restrict ourselves to Markov-diffusion processes with
values in Rd . Accordingly, the canonical probability space is (-,F) :=
(C([0,∞);Rd),BC([0,∞);Rd )). We now write r(·) for an element of C([0,∞);Rd).

Example 15.66.
(I)

P(s, q, t, B) :=
∫

1B(r)(2π(t − s))−
d
2 exp (− |r − q|2

2(t − s)
)dr, (15.219)

which is the transition function of an Rd -valued standard Brownian motion
β(·). The most frequently used initial distribution is µ := δ0.
A Markov process, generated by the transition function (15.219), is best repre-
sented by the solution of the following (simple!) SODE

dr = dβ r0 = q, (15.220)

(II) Consider the ODE
d
dt

r = F(r, t), r(s) = q. (15.221)

Suppose the forcing function F is nice so that the ODE has a unique solution
for all initial values (s, q), which is measurable in the initial conditions (s, q).
Denote this solution r(t, s, q). Set

P(s, q, t, B) := 1B(r(t, s, q)). (15.222)

(III) A more general example of a Markov process are the solutions of (4.10), con-
sidered in Rd N .93 In this case, we set

P(s, q, t, B) := E1B(rN (t, s, q)). (15.223)

�

Let P(s, q, t, B) be a family transition probabilities P(s, q, t, B) satisfies the
requirements of Definition 15.62. From the Chapman–Kolmogorov equation we
obtain a two-parameter semigroup U ′(t, s) on the space of probability measures
through

(U ′(t, s)µ)(·) =
∫

P(s, q, t, ·)µ(dq). (15.224)

Suppose that U ′(t, s) is strongly continuous on the space of probability measures,
endowed with the restriction of the norm of the total variation of a finite signed
measures. By the Riesz representation theorem94 the transition probabilities also
define in a canonical way a strongly continuous two-parameter semigroup U (t, s)
of bounded operators on the space C0(Rd;R), setting for f ∈ C0(Rd ;R)

93 Cf. Corollary 15.65.
94 Cf., e.g., Folland (1984), Chap. 7.3.
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(U (t, s) f )(q) :=
∫

P(s, q, t, dq̃) f (q̃). (15.225)

If the transition probabilities are time-homogeneous, the corresponding semi-
groups, U ′(t, s) and U (t, s), depend only on t − s and have time independent
generators, denoted A′ and A, respectively. To better understand the relation be-
tween Kolmogorov’s backward and forward equations and the general theory of
semigroups let us first look at the time-homogeneous case. In this case we will write
P(t, q, B) for the transition probabilities. C0(Rd;R) is the domain of the semigroup
U (t), endowed with the supremum norm |‖ · |‖. If f ∈ Dom(A) we obtain

(A f )(q) := lim
t→0
((U (t) f )(q)− f (q)) = lim

t→0

1
t

∫
P(t, q, dr)( f (r)− f (q)),

(15.226)
where the limit is taken with respect to the norm |‖ · |‖. (15.226) is called

“Kolmogorov’s backward equation” in weak form, where “backward” refers to the
fact that the evaluation of the generator (for Markov-diffusions the closure of a dif-
ferential operator) is computed with respect to the initial variable q.95

We have seen in Chap. 14, (14.38)–(14.39) that a time-inhomogeneous Markov
process, represented by an SODE, can be transformed into a time-homogeneous
Markov process by adding time as an additional dimension. However, the analysis
of backward and forward equations in the original time-inhomogeneous setting pro-
vides more insight into the structure of the time evolution of the Markov process.
Therefore, we will now derive the backward equation for the time-inhomogeneous
case (with time-dependent generator A(s)). Note that for the time-homogeneous
case P(t − s, q, B)

∂

∂t
P(t − s, q, B)|t−s=u = − ∂

∂s
P(t − s, q, B)|t−s=u .

Thus, we obtain in weak form the following “backward” equations for the two-
parameter semigroups, U ′(t, s) and U (t, s):96

− ∂
∂s

U ′(t, s) = U ′(t, s)A′(s), − ∂
∂s

U (t, s) = U (t, s)A(s). (15.227)

We denote the duality between measures and test functions by 〈·, ·〉. Assuming
f ∈ Dom(A(u)) ∀u, we then have

〈(U ′(t, s − h)− U ′(t, s))µ, f 〉 = 〈µ, (U (t, s − h)− U (t, s)) f 〉
=
∫ s

s−h
〈µ,U (t, u)A(u) f 〉du =

∫ s

s−h
〈A′(u)U ′(t, u)µ, f 〉du

⎫⎬
⎭ (15.228)

95 The reader, familiar with the semigroups of operators on a Banach space and their generators,
will recognize that the left-hand side of (15.226) is the definition of the generator of U (t) (cf.,
e.g., Pazy (1983)).

96 For the analytic treatment of time-dependent generators and the existence of associated two-
parameter semigroups we refer the reader to Tanabe (1979), Chap. 5.2, where U (t, s) is called
“fundamental solution.” Note that, in our setting, Tanabe considers two-parameter semigroups
on the space of test functions with −A(t) being a generator.
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We divide the quantities in (15.228) by h and pass to the limit. Choosing as the
initial distribution at time s the Dirac measure δq yields “Kolmogorov’s backward
equation” for the two-parameter flow of transition probabilities

− ∂
∂s

P(s, q, t, ·) = (A′(s)P(s, ·, t, ·))(q), P(s, q, s, ·) = δq(·). (15.229)

For a solution of an SODE (or ODE) we compute the generator A(s) of U (t, s)
through Itô’s formula (or the simple chain rule). To simplify the notation, suppose
that N = 1 in (4.10) and that the coefficients do not depend on the empirical process.
Let f ∈ C2

c (Rd ;R). Then

(A(s) f )(q) := (F(q, s) · ∇ f )(q)

+1
2

d∑
k,�=1

⎧⎨
⎩

d∑
j=1

∫
Jk j (q, q̃, s)J�j (q, q̃, s)dq̃ + σ⊥k j (q, s)σ

⊥
�j (q, s)

⎫⎬
⎭ (∂

2
k� f )(q),

(15.230)

where σ⊥ := σ⊥1 . The only term missing from Itô’s formula is the stochastic
term, because it has mean 0 (15.230) and its generalizations and specializations are
called the “Itô-Dynkin formula” for the generator.

Expression (15.228) lead to the backward equation, by varying the backward
time argument s. Let us present the analogous argument by varying the forward
time t . Then,

〈(U ′(t + h, s)− U ′(t, s))µ, f 〉 = 〈µ, (U (t + h, s)− U (t, s)) f 〉
=
∫ t+h

t
〈µ, A(u)U (u, t) f 〈du =

∫ t+h

t
〈A′(u)U ′(u, t)µ, f 〉du.

⎫⎬
⎭ (15.231)

We divide the quantities in (15.231) by h and pass to the limit. Choosing as the
initial distribution at time s the Dirac measure δq yields “Kolmogorov’s forward
equation” for the two-parameter flow of transition probabilities

∂

∂t
P(s, q, t, ·) = (A′(t)P(s, q, t, ·)), P(s, q, s, ·) = δq(·). (15.232)

Next, suppose that P(s, q, t, B) has a density, p(s, q, t, r), with respect to the
Lebesgue measure so that

∫
1B P(s, q, t, dr) =

∫
1B p(s, q, t, r)dr ∀t > s ≥ 0, q ∈ Rd , B ∈ Bd .

(15.233)
Computing the duality of the right-hand side of (15.227) with start in µ against

a smooth test function f we obtain

〈(A′(t)
∫

p(s, q, t, ·)µ(dq), f 〉 =
∫
µ(dq)

∫
p(s, q, t, r)(A(t) f )(r)dr.

(15.234)
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We are mainly interested in the case when the generator A is the closure of a
second-order differential operator as in (15.230), which defines a Markov-diffusion
process. If, for such an operator, the coefficients are sufficiently smooth, we can
integrate by parts in (15.234) and obtain adjoint generator, A∗, as an unbounded
operator in H0 = L2(Rd , dr)

∫
p(s, q, t, r)(A(t) f )(r)dr =

∫
(A∗(t)p(s, q, t, ·))(r) f (r)dr. (15.235)

Put (15.232) and (15.235) together and suppose that the domain of A(t) is dense
in C0(Rd;R) for all t ≥ 0. We then obtain “Kolmogorov’s forward equation” for
the density or, as it is called in the physics and engineering literature, the “Fokker–
Planck equation”:

(
∂

∂t
p
)
(s, q, t, r) ≡ (A∗ p(s, q, t, ·))(r), p(s, q, s, r) = δq(r). (15.236)

For the simplified version of (4.10), considered in (15.230), the Fokker–Planck
equation is cast in the form
(
∂

∂t
p
)
(s, q, t, r) = −(∇ · F(·, t)p(s, q, , t ·))(r)

+1
2

d∑
k,�=1

∂2
k�

{
p(s, q, t, ·)

d∑
j=1

∫
Jk j (·, q̃, t)J�j (·, q̃, t)dq̃ + σ⊥k j (·, t)σ⊥k�(·, t)

}
(r).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15.237)

Remark 15.67. As we have mentioned previously, the independence of the coeffi-
cients of the empirical process and N = 1 was assumed for notational convenience.
We now compare (15.237) with the SPDEs in (8.26) or, more generally, in (8.55).
Replacing the deterministic density p(s, q, ·) by X (t, ·) and adding the stochastic
terms, we conclude that the SPDEs derived in this book are stochastic Fokker–
Planck equations for the (generalized) density X (t, ·). The generalized density cor-
responds to what is called “number density” in physics and engineering. 
�

15.2.8 Measure-Valued Flows: Proof of Proposition 4.3

(i) The definition of µ(·) is equivalent to

µ(t, dr) =
∫
δϕ(t,q)(dr)µ0(dq).

So,

γ� (µ(t)) ≤
∫
�(r)µ(t, dr) =

∫
�(ϕ(t, q))µ0(dq).
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Let β > 0 and consider �β(r) := �β(r). By Itô’s formula ∀q

�β(ϕ(t, q))= �β(q)+
∫ t

0
(tr iangledown�β)(ϕ(s, q)) · [db(s, q)+ dm(s, q)]

+1
2

d∑
k,�=1

(∂2
k��β)(ϕ(s, q))d[mk(s, q),m�(s, q)].

Hence, by the Burkholder-Davies-Gundy inequality and the usual inequality for
increasing processes,

E sup
0≤t≤T

�β(ϕ(t, q)

≤ �β(q)+ c
∫ T

0

d∑
k=1

E |∂k�β(ϕ(s, q))|d|bk(s, q)|

+cE

√
∫ T

0 |
d∑

k,�
∂k�β(ϕ(s, q))∂��β(ϕ(s, q))|d[mk(s, q),m�(s, q)]

+cE
∫ T

0

d∑
k,�

|∂2
k,��β(ϕ(s, q))|d[mk(s, q),m�(s, q)]

≤ �β(q)+ c
∫ T

0

d∑
k=1

E�β(ϕ(s, q))d|bk(s, q)|

+cE

√√√√
∫ T

0

d∑
k,�

� 2
β (ϕ(s, q))d{[mk(s, q)] + [m�(s, q)]}

+cE
∫ T

0

d∑
k,�

�β(ϕ(s, q))d{[mk(s, q)] + [m�(s, q)]}
(by (15.46))

≤ �β(q)+ c
∫ T

0

d∑
k=1

E�β(ϕ(s, q))d|bk(s, q)|

+c

√
∫ T

0

d∑
k,�

E� 2
β (ϕ(s, q))d{[mk(s, q)] + [m�(s, q)]}

+cE
∫ T

0

d∑
k,�

�β(ϕ(s, q))d{[mk(s, q)] + [m�(s, q)]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15.238)

From Itô’s formula and (15.46) we obtain for β̃ > 0

E�β̃(ϕ(t, q)

≤ �β̃(q)+ c
∫ T

0

d∑
k=1

E�β̃(ϕ(s, q))d|bk(s, q)|

+cE
∫ T

0

d∑
k,�

� 2
β̃
(ϕ(s, q))d {[mk(s, q)] + [m�(s, q)]} .
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Gronwall’s inequality97 implies

E�β̃(ϕ(t, q) ≤ cT,b,[m]�β̃(q), (15.239)

where the finite constant cT,b,[m] depends on T, β̃, the bounds of the derivatives
of b and {[mk(s, q)] + [m�(s, q)]}. We employ (15.239) (with β̃ := 2β) to estimate
the square root in the last inequality of (15.238):

c

√
∫ T

0

d∑
k,�

E� 2
β (s, q)d{[mk(s, q)] + [m�(s, q)]}

≤ c

√
∫ T

0

d∑
k,�

E� 2
β (s, q)cT,b,[m]ds]} ≤ ĉT,b,[m]�β(q)

(15.240)

To estimate the remaining integrals in (15.238)we again use Gronwall’s inequal-
ity and obtain altogether

E sup
0≤t≤T

�β(ϕ(t, q)) ≤ c̄T,b,[m]�β(q), (15.241)

where c̄T,b,[m] depends only upon T, β and upon the bounds of the characteristics
of ϕ, but not upon ϕ itself. In what follows we choose β = 1.

We may change the initial measure µ0 on F0-measurable set of arbitrary small
probability such that

ess sup
ω

∫
�(q)µ0(dq) <∞.

Therefore, E
∫
�(q)µ0(dq) <∞. We may use conditional expectations instead

of absolute ones in the preceding calculations98 and assume in the first step that µ0
is deterministic. Hence E sup

0≤t≤T
�(ϕ(t, q)) is integrable against the initial measure

µ0, and we obtain

E sup
0≤t≤T

∫
�(ϕ(t, q))µ0(dq) ≤

∫
E sup

0≤t≤T
�(ϕ(t, q))µ0(dq)

≤ cT,b E
∫
�(q)µ0(dq) <∞. (15.242)

As a result we have a.s.

sup
0≤t≤T

γ� (µ(t)) ≤ sup
0≤t≤T

∫
�(ϕ(t, q))µ0(dq)

≤
∫

sup
0≤t≤T

�(ϕ(t, q))µ0(dq) <∞. (15.243)

97 Cf. Proposition 15.5.
98 Cf. (15.238).
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(ii) We show that µ(·) is continuous (a.s.) in M∞,� . Let t > s ≥ 0. Then,

γ� (µ(t)− µ(s)) = sup
‖ f ‖L ,∞≤1

∣∣∣∣
∫
[ f (ϕ(t, q))�(ϕ(t, q))

− f (ϕ(s, q))�(ϕ(s, q))]µ0(dq)
∣∣∣∣

≤ sup
‖ f ‖L ,∞≤1

∫ ∣∣∣∣ f (ϕ(t, q))− f (ϕ(s, q))
∣∣∣∣�(ϕ(t, q))]µ0(dq)

+ sup
‖ f ‖L ,∞≤1

∣∣∣∣
∫

f (ϕ(s, q))[�(ϕ(t, q))−�(ϕ(s, q))]µ0(dq)
∣∣∣∣

=: I (t, s)+ I I (t, s).

Since the Lipschitz constant for all f in the supremum is 1

I (t, s) ≤
∫
ρ(ϕ(t, q)− ϕ(s, q))�(ϕ(t, q))µ0(dq).

Further, ϕ(·, q) is uniformly continuous in [0, T ] and ρ(ϕ(t, q) − ϕ(s, q)) ≤ 1.
Therefore, we conclude by (15.243) and Lebesgue’s dominated convergence theo-
rem that a.s.

lim
δ→0

sup
0≤s<t≤T,|t−s|≤δ

I (t, s) = 0.

Similarly,

| f (ϕ(s, q)(�(ϕ(t, q))−�(ϕ(s, q)))| ≤ 2 sup
0≤t≤T

�(ϕ(t, q)),

where by (15.243) the right-hand side is a.s. integrable with respect to µ0(dq).
Therefore,

I I (t, s) = sup
‖ f ‖L ,∞≤1

| ∫ f (ϕ(s, q))[�(ϕ(t, q))−�(ϕ(s, q))]µ0(dq)|
≤ ∫ |�(ϕ(t, q))−�(ϕ(s, q))|µ0(dq) −→ 0, as |t − s| → 0

by the continuity of the integrand in t and by Lebesgue’s dominated convergence
theorem. Thus, we have shown that with probability 1

lim
δ→0

sup
0≤s<t≤T,|t−s|≤δ

γ� (µ(t)− µ(s)) = 0, (15.244)

i.e., µ(·) has continuous sample paths in M∞,� .
(iii) The adaptedness of µ(·) follows directly from the construction. This finishes
the proof of Part (a).

To show Part (b) we may again assume that the initial distribution is determin-
istic. The proof for p = 1 follows immediately from (15.241). We may, therefore,
without loss of generality, assume p > 1. Hence, we obtain
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E sup
0≤t≤T

γ p
�(µ(t)) ≤ E

[ ∫
sup

0≤t≤T
�(ϕ(t, q))µ0(dq)

]p

= E
[ ∫

sup
0≤t≤T

�(ϕ(t, q))�− p−1
p (q)�

p−1
p (q)µ0(dq)

]p

≤ E
[ ∫

sup
0≤t≤T

� p(ϕ(t, q))�−(p−1)(q)µ0(dq)
][ ∫

�(q)µ0(dq)
]p−1

(by Hölder’s inequality)

=
[ ∫

E{ sup
0≤t≤T

� p(ϕ(t, q))}�−(p−1)(q)µ0(dq)
][ ∫

�(q)µ0(dq)
]p−1

(by Fubini’s theorem)

≤ cT

[ ∫
�(q)p�−p+1µ0(dq)

] [∫
�(q)µ0(dq)

]p−1

(by (15.241) for β = p )

= cT

[∫
�(q)µ0(dq)

]p

= cT γ
p
�(µ0) (by the definition of γ� ). 
�

15.3 The Fractional Step Method

We sketch the fractional step method, following Goncharuk and Kotelenez (1998).99

Let H be some finite or infinite dimensional Hilbert space and consider the fol-
lowing stochastic evolution equation

dX = A(t, X)dt + B(t, X)dM + Ã(t, X)dt + B̃(t, X)dM̃,
X (0) = X0,

}
(15.245)

where M(t) and M̃(t) are Hilbert-valued (possibly cylindrical) martingales and
the other coefficients are suitably defined operators (possibly nonlinear, unbounded,
and random – adapted to some filtration). A solution of (15.245), if it exists, is an
element of H for fixed ω and t . To analyze (15.245) we decompose it into two
equations:

99 The method is widely used in numerical analysis. Another term for the method is “time splitting
method.” For an application of this method to the decomposition of a coercive SPDEs driven
by a regular Brownian motion into a deterministic and a purely stochastic equation, we refer
to Bensoussan et al. (1992). The author wants to thank J. Duan for informing him about the
existence of this paper.
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dY = A(t, Y )dt + B(t, Y )dM,

Y (0) = Y0,

}
(15.246)

and
dZ = Ã(t, Z)dt + B̃(t, Z)dM̃,

Z(0) = Z0.

}
(15.247)

Of course, other formal decompositions of (15.245) are possible as well.100

Given the above decomposition of (15.245), we need to make the following as-
sumptions:

• Assume the mutual tensor quadratic variation of noise processes, M(t), M̃(t),
equals 0 for all t .

• Assume solvability of (15.246) and (15.247) for suitable, adapted initial condi-
tions such that the increments of M̃ are orthogonal to the initial conditions of
(15.246) and that the increments of M are orthogonal to the initial conditions of
(15.247).

The fractional step method works as follows:
First solve (15.246) on a small time interval [0, t1] with initial condition Y (0) =

X0. Take the solution at the end point of this interval, denoted by Y (t1, Y0), as the
initial condition for (15.247) at time t0 = 0(!). The solution of (15.247) at t1, de-
noted Z(t1, Y (t1, Y0), serves as the initial condition of (15.246) on a small time in-
terval [t1, t2] etc. Decomposing a finite interval [0, t] into n small intervals [ti−1, ti ]
the above conditions imply the existence of a process Xn(·) and, under some ad-
ditional assumptions the process Xn(·) may converge to the solution X (·, X0), the
fractional step product of the equations (15.246) and (15.247).

Clearly the assumption that the two martingales are uncorrelated is necessary for
the fractional step method if we want to avoid working with anticipating solutions.
To appreciate this method, recall that the mass in the SPDEs (8.25) and (8.26) is
conserved. Goncharuk and Kotelenez employ this method to extend these noncoer-
cive SPDEs with mass conservation to SPDEs that include a creation and annihila-
tion of mass (as in reaction phenomena). Another application is qualitative insight
by decomposing an equation of type (15.245) into simpler equations for which it
may be easier to prove certain properties. If these properties hold for both equa-
tions (15.246) and (15.247) they may be preserved in the fractional step product
of both equations and therefore also hold for (15.245). An example is positivity or
comparison of solutions.101

The assumption that the two martingales be uncorrelated is void if one of the
equations does not contain a stochastic term, i.e., M(·) ≡ 0 or M̃(·) ≡ 0, as in
(5.68), (5.134), and (5.135) and similar decompositions in Chap. 5.

100 Cf., in particular, the decomposition of (5.68) into (5.134) and (5.135).
101 Cf. Goncharuk and Kotelenez (loc.cit.).
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15.4 Mechanics: Frame-Indifference

Following Kotelenez et al. (2007) we derive the representation of frame-indifferent
functions and matrices, which we used in Sect. 5.102

Definition 15.68. A scalar function φ(r1, . . . , rm), r i ∈ Rd , i = 1, . . . ,m is
“isotropic” whenever

φ
(
r1, . . . , rm) = φ(Qr1, . . . , Qrm) (15.248)

for every d × d-orthogonal matrix Q. 
�

Theorem 15.69. Cauchy’s Representation Theorem φ(r1, . . . , rm) is an isotropic
function of m vectors in Rd if and only if it can be expressed as a scalar function ϕ
of the m(m+1)

2 inner products {r i · j : i, j = 1, . . . ,m}.
The proof may be found in Truesdell and Noll (1965), Chap. B.II, Section 11). 
�
The following proposition is a simple exercise in linear algebra. For the conve-

nience of the reader we include a proof.

Proposition 15.70. Let A ∈ Md×d and assume

AB = B A ∀B ∈ O(d), (15.249)

where O(d) are the orthogonal matrices over R. Then there is an η ∈ R such
that

A = ηId , (15.250)

where Id is the identity matrix over Rd .103

Proof.

(i) Let ei be the i th unit column vector in (the Euclidean) Rd , i.e., if ei
k is the kth

coordinate then

ei
k :=

{
1, if k = i ,
0, if k != i .

Consider the following elements from O:

B(1,...,1,±1,1,...,1), j := (en, . . . , e j+1,±e j , e j−1, . . . , e1),

i.e., one matrix has the sign “plus” at all column vectors and the other matrix has
a “minus” sign exactly at the j th column vector and “plus” at all other column
vectors. Suppose that A has the following representation

102 The proofs are essentially due to Leitman.
103 If we assume A symmetric, we can restrict the class of orthogonal matrix to the subgroup

O+(d), which are the orthogonal matrices B with det(B) = 1. For this case, an alternative
proof has been provided by Kotelenez et al. (loc.cit., Appendix A).
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A =

⎛
⎜⎜⎜⎝

a1,1 a1,2 . . . a1,d
a2,1 a2,2 . . . a2,d

...
ad,1 ad,2 . . . ad,d

⎞
⎟⎟⎟⎠

Let Ri denote the i th row vector of A and C j the j th column vector. We note
that

B(1,...,1,±1,1,...,1), j A =

⎛
⎜⎜⎜⎜⎜⎜⎝

Rd
...

±Rd+1− j
...

R1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

i.e., all row vectors of the matrix A appear in reverse order and all of them but
the (d+1− j)th one have the sign “plus.” Rd+1− j has ±, depending on the sign
at the j th column vector in B(1,..1,±1,1,..,1), j . In this reverse order, ±Rd+1− j is
the j th row of the matrix product. Further, we have

AB(1,...,1,±1,1,...,1), j = (Cd , . . . ,±C j , . . . ,C1).

By condition (15.249) we must have
⎛
⎜⎜⎜⎜⎜⎜⎝

Rd
...

±Rd+1− j
...

R1

⎞
⎟⎟⎟⎟⎟⎟⎠

= (Cd , . . . ,±C j , . . . ,C1).

Comparing the j th rows in the above identity, we obtain for k = 1, . . . , d

±ad+1− j,k =
{

a j,d+1−k, if k != d + 1 − j ,
±a j, j if k = d + 1 − j.

Hence,
ai, j = 0, if i != j

and for j = 1, . . . , d
ad+1− j,d+1− j = a j, j .

It follows, in particular, A is a diagonal matrix.104

(ii) 105We next switch columns in B(1, . . . , 1), setting for i < j ,

Bi j (1, . . . , 1) := (ed , . . . , ed+1− j , . . . , ed+1−i , . . . , e1).

104 This finishes the proof of (15.250) for d = 2.
105 Alternatively, we could now adopt the proof of Kotelenez et al. (loc.cit.), since diagonal matrices

are symmetric.
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Then,

Bi j (1, . . . , 1)A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rd
...

Rd+1− j
.

Rd+1−i
...

R1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and
ABi j (1, . . . , 1) = (Cd , . . . ,Cd+1− j , . . . ,Cd+1−i , . . . ,C1).

The entry at the i th row and (d + 1 − j)th column of Bi j (1, . . . , 1)A equals
ad+1− j,d+1− j , and the entry at the i th row and (d + 1 − j)-column of
ABi j (1, . . . , 1) equals ai,i . Hence, by condition (15.249) and step (i),

ad+1− j,d+1− j = ai,i , i, j = 1, . . . , d.


�
Recall the definitions of

P(r) := rr T

|r |2 , P⊥(r) := Id − P(r),

from (5.28) which are the projections on the subspace spanned by r , denoted {r},
and the subspace orthogonal to {r}, respectively. We denote the latter subspace by
{r}⊥.

Theorem 15.71. Representation for Frame-Indifferent Functions

(i) A scalar function, ϑ : Rd −→ R is frame-indifferent if and only if there is a
scalar-valued function α : R+ −→ R such that

ϑ(r) ≡ α(|r |2). (15.251)

(ii) A vector function, G : Rd −→ Rd is frame-indifferent if, and only if, there is a
scalar-valued function β : R+ −→ R such that

G(r) ≡ β(|r |2)r. (15.252)

(iii) A symmetric matrix-valued function, A : Rd −→ Md×d is frame-indifferent if,
and only if, there are two scalar-valued functions λ, λ⊥ : R+ −→ R such that

A(r) ≡ λ(|r |2)P(r)+ λ⊥(|r |2)P⊥(r). (15.253)
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Proof.106 Note that for d = 1 (i) asserts that the function is even, and the result
clearly holds. Henceforth we suppose that d ≥ 2.

Part (i) follows from Cauchy’s representation theorem with m = 1.
For Part (ii) observe that by the frame-indifference G must be odd, whence

G(0) = 0. We may suppose that r != 0. For an arbitrary constant vector a set

φ(r, a) := G(r) · a. (15.254)

We verify that φ(r, a) is an isotropic scalar function in the two vectors r and
a. Further, it follows that φ(r, a) is linear in a for arbitrary r . Hence, by Cauchy’s
Representation Theorem

G(r) · a = ϕ(|r |2, |a|2, r · a) (15.255)

for some scalar-valued function ϕ os three scalar variables. Let r be fixed. ϕ as
a function of a must also be linear. Consider the restriction of ϕ(|r |2, |a|2, r · a) to
a ∈ {r}⊥, which maps a onto ϕ(|r |2, |a|2, 0). By the linearity in a,

ϕ
(|r |2, | − a|2, 0) = ϕ(|r |2, |a|2, 0) = −ϕ(|r |2, |a|2, 0) = 0. (15.256)

Hence,
G(r) · a|a∈{r}⊥ ≡ 0. (15.257)

Thus,
G(r) ∈ {{r}⊥} = {r}. (15.258)

Equivalently there must be a scalar function ϕ̂(r) such that

G(r) = ϕ̂(r)r.
As G(0) = 0 we may define ϕ̂(0) = 0. We see that the frame-indifference of G

implies the frame-indifference of ϕ̂. By Part (i) there is a scalar function β, defined
on R+ such that

ϕ̂(r) ≡ β(|r |2).
Hence,

G(r) ≡ β(|r |2)r,
which proves Part (ii).
To prove Part (iii) observe that A(0) commutes with all orthogonal matrices. By

Proposition 15.70 this implies

A(0) = ηId (15.259)

for some η ∈ R. Thus, Part (iii) holds if r = 0, and we may, in what follows,
suppose r != 0. Note that the frame-indifference for A(r) implies

A(r) = A(−r).

106 The proof has been provided by M. Leitman. Cf. Kotelenez et al. (2007).
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Set G(r) := A(r)r.We verify that G(r) is frame-indifferent, whence by Part (ii)

G(r) = λ(|r |2)r

for some real valued function λ, defined on R+. Hence, (λ(|r |2), r) is an eigen-
pair for A(r). By symmetry of A, {r} is also an eigenspace of AT (r)with eigenvalue
λ(|r |2). Let a ∈ {r}⊥. Then

A(r)a · r = a · AT (r)r = λ(|r |2)a · r = 0. (15.260)

Hence, A(r)a ∈ {r}⊥, i.e., the subspace {r}⊥ is also invariant under the action of
A(r). Employing the projections P(r) and P⊥(r) A(r) must have the decomposi-
tion

A(r) = P(r)A(r)P(r)+ P⊥(r)A(r)P⊥(r)
= λ(|r |2)P(r)+ P⊥(r)A(r)P⊥(r).

}
(15.261)

Set
A⊥(r) := P⊥(r)A(r)P⊥(r).

A⊥(r) is obviously frame-indifferent. Choose an orthogonal matrix Q̂ that leaves
the subspace {r} invariant. Then, Q̂r = ±r . Further, A(r) is even and so is A⊥.
Hence,

A⊥(Q̂r) = A⊥(±r) = A⊥(r) = Q̂ A⊥(r)Q̂T . (15.262)

Therefore, A⊥(r) commutes with every orthogonal matrix Q̂ that leaves {r} in-
variant. Note that the set of all orthogonal transformations that leave the subspace
{r} invariant is a subgroup equivalent to the group of all orthogonal transformations
on {r}⊥. Invoking Proposition 15.70, we conclude that the action of A⊥(r) on {r}⊥
is a multiple of the identity on {r}⊥ where the factor depends on r . Thus,

A⊥(r) = ψ(r)P⊥(r) (15.263)

for some scalar function ψ(r), where again the frame-indifference of A⊥(r) im-
plies that ψ(r) is also frame-indifferent. Therefore,

ψ(r) ≡ λ⊥(|r |2),
whence we obtain (15.253) from (15.253) and (15.255). 
�
Finally, we show that the diffusion matrix, defined in (5.33) is symmetric, as a

result of the frame-indifference of the kernel Gε.

Proposition 15.72. For fixed i, j

Dε,k�,i j = DT
ε,k�,i j . (15.264)
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Proof. Note that the frame-indifference of Gε implies that Gε is odd. Then,

Dε,k�,i j (r̂) =
∫

Gε(r i − q)GT
ε (r

j − q) dq

=
∫

Gε

(
1
2
(r i − r j )− q

)
GT
ε

(
−1

2
(r i − r j )− q

)
dq

(by shift invariance )

=
∫

Gε

(
−1

2
(r i − r j )+ q

)
GT
ε

(
1
2
(r i − r j )+ q

)
dq

(since Gε is odd )

=
∫

Gε

(
−1

2
(r i − r j )− q

)
GT
ε

(
1
2
(r i − r j )− q

)
dq

(changing variables q̃ = −q )

= DT
ε,k�,i j (r̂).


�



Subject Index

Abstract Wiener space - 367
Analytic semigroup - 236
Arzela-Ascoli theorem - s. Ascoli’s theorem
Ascoli’s theorem for (D([0,∞);M), dD,M ) - Theorem 15.20, 362
Attractive point - Definition 5.23, 116

Backward equation, Kolmogorov’s - 417, (15.229)
Banach’s fixed point theorem - Theorem 15.2, 335
Bessel process - (5.77), 104
Bessel-type process - 103, (5.70), 104, (5.78)
Bilinear SPDE’s - 153, 297
Bounded variation, function of - Definition 15.14, 357
Brownian flow, forward - 152, (7.4)
Brownian motion - Definition 15.28, 366
Brownian motion, standard - 366
Brownian motions, correlated - Definition 5.3, 89
Brownian motion, H-valued - Section 15.2.2

regular - Definition 15.28, 367
cylindrical - Definition 15.28, 367
standard cylindrical - Definition 15.28, 367

Brownian sheet - 386, 387, (15.123)-(15.127)
Burkholder-Davis-Gundy inequality - Proposition 15.40, 379

Cadlag functions, processes - 359
Cauchy’s Representation Theorem - Theorem 15.69, 424
Chain rule - Theorems 15.50, 15.51, 15.58, 393, 396, 404
Chapman-Kolmogorov equation - Definition 15.63, 412
Clusters - 2
Coarse graining (coarse-grain) - 2, 5, 28
Coercivity of the pair - 163, (8.3)
Coercivity of the SPDE (equivalent to “coercivity of the pair”) - 189

431



432 Subject Index

Collision dynamics - 12, 27
CONS - complete orthonormal system - 341
Continuous mapping theorem - Theorem 15.22, 363
Continuum limit - Theorem 8.3, 117
Contraction mapping principle - Theorem 15.2, 335
Contraction semigroup - 236
Converge weakly - 362, (15.56)
Convolution root - 155
Convolution, s-convolution - 156
Coupled oscillators, infinite system of - 13, (1.4)
Correction term - for Itô and Stratonovich integrals - 114, 127, 403, 404
Correlated - 10
Correlated Brownian motions - Definition 5.3, 89
Correlations - 10
Correlation length - 10
Correlation matrix - 9
Correlation time - 11
Correlations, space-time - 87, 89
Correlation functionals - 156
Covariance operator - 367
Cylindrical Hilbert space valued Brownian motion, standard

Definition 15.28, 367
Cylindrical Hilbert space valued martingale - 400

Depletion (depleted) - 10
Dirichlet form - 112

symmetric - 112
non symmetric - 112

Divergence of a matrix - 114
Divergent form of a generator - 112
Doob-Meyer decomposition - 392
Doob’s inequality - Theorem 15.32, 372

Einstein-Smoluchowski approximation - 2, 21
Empirical measure process - 16
Empty state, �, - 18
Equilibrium, (local) - 111
Equilibrium, (global) - 111
Euler equation - 166, 167
Euler scheme - 19
Extension by continuity - Proposition 15.1, 335

Fichera drift - 126
Filtration - 371
Flows - adapted measurable flows ϕ from Rd into itself, �, 63



Subject Index 433

Flow representation for the solution of an SPDE - Remark 8.12
Flux, probability - 110
Flux, (d−dimensional) - Definition 5.22, 117
Flux, radial - (5.140), 117
Fokker-Planck equation - 110, (5.108), 418, (15.232), (15.236)
Fokker-Planck equation, stochastic - Remark 15.67, 418
Fokker-Planck equation, fundamental solution of - 111
Forward Brownian flow - 152
Forward equation, Kolmogorov’s - 416
Fourier transform of a symmetric spectral measure - 157
Fractional powers of the resolvent operator - 237, (11.21)
Fractional step product - 113
Fractional step method - Section 15.3, 422
Frame-indifferent - 95, 426
Fréchet metric - 336
Fréchet space - 336
Fundamental solution of the Fokker-Planck equation - 111

Gas (rarefied) - 3
Gaussian (standard) space-time white noise - Definition 2.2, 20
Gaussian Rd -valued random field - 368
Gaussian Rd -valued random field, homogeneous - 155
Gronwall’s inequality - Proposition 15.5, 337

Hausdorff-Young inequality - Proposition 15.7, 339
Heat semigroup - 233
Hermite functions - 340, 341
Hilbert-Schmidt operator - 347

imbedding - 348
Hölder’s inequality - Proposition 15.4, 337

Inequality, Burkholder-Davis-Gundy - Proposition 15.40, 379
Inequality, Gronwall’s - Proposition 15.5, 337
Inequality, Hölder’s - Proposition 15.8, 337
Inequality, Haussdorf-Young - Proposition 15.7, 339
Inequality for integral operators - Proposition 15.6, 338
Inequality, Maximal for stochastic convolution integrals - Theorem 15.42, 380
Inequality, Young - Proposition 15.7, 339
Infinitesimal mean, covariance - 153
Iterated logarithm, asymptotic law of the - 383
Itô formula - Theorem 15.50, 393
Itô formula for norms of solutions of SPDE’s - Theorem 8.8, 184
Itô integral - Definition 15.48, 390
Itô-Dynkin formula - (15.230), 417
Itô-Wentzell formula - Theorem 15.51, 396
Itô SODEs and Itô SPDEs - the same as SODEs and SPDEs
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Kolmogorov’s backward equation - 417, (15.229)
Kolmogorov’s forward equation - 418, (15.236)
Kolmogorov semigroup - 300
Kushner equation - 302
Kushner-Stratonovich equation - 302

Law of the iterated logarithm, asymptotic - 383
Levy’s characterization of Brownian motion - Theorem 15.37, 378
Lipschitz norm - 348
localizing stopping time τ - 61
l.s.t. - localizing stopping time - 61

Macroscopic - 1
Macroscopic equations - 1, 2
Macroscopic limit - Chap. 14, 316
Magnitude process = magnitude of the separation process - Definition 5.16, 104
Marginal transition probability distribution - 97, 98
Markov-diffusion processes - 411
Markov process - Definition 15.63, 412
Markov property - Definition 15.63, 412
Martingale - Definition 15.31, 371
Martingale - Hilbert space valued, regular, cylindrical - 400
Martingale central limit theorem - Theorem 15.39, 379
Mass conservation - 59, (4.1), 62
Maximal inequality for stochastic convolution integrals - Proposition 15.42, 380
Maxwellian velocity distribution - 12
Maxwellian kernel, Gε,M , - 96
Mean-field dynamics - 12
Mean free path - 10
Mesoscopic - 1
Mesoscale - 12
Mesoscopic equations - 1
Mesoscopic length unit - 11
Mesoscopic limit theorem - Theorem 2.3, 21
Mesoscopic time unit - 12
Metric of total variation - 355
Microscopic - 1
Microscopic equations - 1, 13, (1.4)
Microscopic time unit - 12
Mild solution - 165, 294, 413
Modification - 364
Modulus of continuity for (D([0,∞);M), dD,M ) - 361
Mutual quadratic variation - 377
Mutual tensor quadratic variation - 378, (15.96)
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Nanotechnology - 1
Navier-Stokes equation (2D -vorticity) - 166
Navier-Stokes equation (2D -vorticity), stochastic - 168
Nonattainable - 315, 324, Lemma 14.8
Non-coercivity of SPDE’s (8.25)/(8.26) - 188
Nuclear operator - 366
Number density - 21, 24, 418
Number density, centered - 21, 22, 55

Occupation measure - 24, (2.16)
Occupation measure, centered - 36
Ornstein-Uhlenbeck approximation - 3
Osmotic pressure - 10
Oscillators, infinite system of coupled - 13, (1.4)

Partially decoupled in distribution - Remarks 5.13, 5.17, 100, 104
Particles - large, small 2
Point particles - 1
Point vortex method - 166
Poisson random measure - 28
Pressure, osmotic - 10
Principle of extension by continuity - 335
Probability flux - 110
Prohorov metric - 55, 362, (15.57)
Prohorov Theorem - Theorem 15.23, 363

Quadratic variation - Definition 15.33, 372
Quadratic variation, mutual - 377
Quasi-norm - 336

Radial flux - 117
Random covariance for correlated Brownian motions - Definition 15.47, 384
Random covariance - Definition 15.43, 381
Random fields, homogeneous and isotropic - Chap. 10
Recurrent - Theorem 5.21, 107
Regular Hilbert space valued Brownian motion - Definition 15.28, 367
Regular Hilbert space valued martingale - 400
Relative compactness - 363, 365
Repulsive point - Definition 5.23, 116
Riemann-Stieltjes integral - Definition 15.14, Theorem 15.16, 357

Scales - space-time - 11
Scaling limit - 2, 21
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Schwarz space of tempered distributions over Rd - 347, (15.32)
Semi-group of operators - Definition 15.41, 380
Semi-martingale - 392, (15.149)
Separation process - Definition 5.11, 99, 100
Skorokhod Space - Section 15.1.6
Smooth solution of an SPDE - a solution which has a density with respect to the
Lebesgue measure
Smoothness degree of the coefficients F and J - 182, (8.35)
Solute - 2
Solutions of SPDE’s - (8.25), (8.26), 177, 179, 183, 193, 219
Solvent - 2
Space-Time Correlations for Correlated Brownian Motions - Section 15.2.4
Spectral measure, symmetric - 157, 158, (7.25)
Square root, nonnegative definite of (D̄ε,k�(

√
2q) - 100, (5.48), 102 (5.67)

Standard cylindrical Brownian motion - Definition 15.28, 367
Stochastic basis - 364
Stopping time, localizing τ - 61
Stratonovich SODE - 114, 127, (5.170), Section 15.2.6
Stratonovich SPDE - Sections 8.6, 199, (8.79), 200, (8.82)
Stratonovich integral - Definition 15.56, 403
Stratonovich correction term - 114, 127, 403, 404
Strong solution in H (“strong” in the sense of PDE’s) - 165
Strong (Itô) solutions of SPDE’s - (8.25), (8.26), 177, 179, 183, 193, 219
Strongly continuous two-parameter semi-group - Definition 15.41, 380
Submartingale -372
Surface flux density - 125, (5.166)
Symmetric probability density - 114, (5.124), 115, (5.129)
Symmetric Dirichlet form - 112, (5.117)

Tensor quadratic variation of the martingale noise - 87, (5.8), 164, 378, (15.96),
400, (15.174)
Time splitting method - cf. fractional step method; Chap. 15.3
Tight - Theorem 15.23, 363
Time homogeneous Markov process - 416
Transition probabilities - Definition 15.63, 412
Transition to a macroscopic model - Chap. 14
Transport, stochastic transport equation - Sections 8.6, 14.5
Transient - Theorem 5.21, 107
Trotter product formula - 113
Trotter product - 113

Uncorrelated - 385
Uniform boundedness principle - Theorem 15.3, 336
Uniformly tight - Definition 15.53, 400
Unit random field - 20, (2.10)
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Variation of a function - Definition 15.14, 357
Variation of constants - 165, (8.5)

Wasserstein metric - 348, (15.38)
Weak convergence - 362, (15.56)
Weak∗ convergence - 362
Weak solution of SPDE’s, in the sense of PDE’s - (8.25), (8.26) - 177, 179, 183,
193, 219
Weight function -�(r) = (1 + |r |2)−γ - 60, (4.4), 353
White noise, Gaussian (standard) space-time - Definition 2.2, 20
Wiener integral - 381, 382

Young inequality - Proposition 15.7, 339

Zakai equation - 302



Symbols

Aε,R - (5.75)
αε(|r |2) - (5.61)
α⊥,ε(|r |2) - (5.61)
�⇒ denotes weak convergence

B is some metric space or function space
B+ is the cone of functions with nonnegative values if
Bd,1,m := { f : Rd → R: f is Bd − B1 measurable and ∃ ∂ j f, |j| ≤ m}, where
m ∈ N ∪ {0} - after (8.32)
Bd - Borel σ−algebra of Rd

Cb(q) denotes the closed cube in Rd , parallel to the axes, centered at q and with
side length b.
◦ denotes the Stratonovich differential
Cn – (3.6)
C([s, T ];K) is the space of continuous K-valued functions on [s, T ], where K
is a metric space.
Cm

b (R
d ,R) is the space of m times continuously differentiable bounded real val-

ued functions on Rd , where all derivatives up to order m are bounded
Cm

0 (R
d ,R) is the subspace of Cm

b (R
d ,R) whose elements and derivatives vanish

at infinity
Cm

c (Rd ,R) is the subspace of Cm
0 (R

d ,R), whose elements have compact support
C∞

c (R;R) is the subspace of Cm
c (Rd ,R) whose elements are infinitely often

differentiable
CL ,∞(Rd;R) is the space of all uniformly bounded Lipschitz functions f from
Rd into R.
Covω - random covariance of two processes, Definition 15.43
Covd+1,ω - random covariance of a random field, Definition 15.47

“·” denotes also the scalar product in Rk

dp, dp,B - the Prohorov metric

439



440 Symbols

d∞(r (·), q(·)) := ∑∞
k=1 2−kρ(rk − qk)

D([0,∞);B) - The (Skorokhod) space of B-valued cadlag functions with
domain [0,∞), where B be some topological space.
Dε,k�,i j (r̂) - (5.33)
(D([0,∞);M), dD,M ) - (15.53)
D̄ε(

√
2r) - (5.45)

D̃k�(µ, r, q, t) := d
dt [Mk(t, r, µ),M�(t, q, µ)] - 175

D̂k�(s, r) := −D̃k�(s, r)+ Dk�(s) - (11.64)
Dk�(µ, r, t) := D̃k�(µ, r, r, t) - 175
Dk�(µ, r, t) ≡ D̃k�(µ, 0, t) - (8.34)
D(µ, r, t) = D(µ, r, t)+ (σ⊥(µ, r, t))2 - (8.55)
δ denotes the Fréchet derivative
δR ≈ 1

n - mesoscopic length unit -
δs - correlation time, microscopic time unit -
δσ - mesoscopic time unit -
diam (A) := sup

b,b̃∈A
dB(b, b̃) - diameter of a Borel set A ⊂ B

� denotes this empty state, R̂d := Rd ∪ {�}.
dprob,u,T,H - metric of convergence in probability, uniformly on [0, T ], values
in H
∂n = ∂n

(∂rn1 )
n1 ...(∂rnd )

nd is a partial differential operator
∂n

r is a partial differential operator, acting on the variable r
∂k, ∂

2
k� - partial derivatives of first and second order

∂k,r , ∂
2
k�,r - partial derivatives of first and second order, acting on the variable r

divF :=
d∑

k=1
∂k Fk

∼ - equivalence in distribution√
ε - correlation length

ηn - friction coefficient.
E( f, g) = E1( f, g)+ E2( f, g) - Dirichlet forms

Fl(r) is the d−dimensional flux
F̄l(x) is the radial flux
FM,t , - the cylinder set filtrations on M[0,∞)
FM,s,t - the cylinder set filtrations on M[s,∞)
Fn,s− - (3.19)
F̂n,s−
{φk}k∈N̂d - the normalized Hermite functions
# ∈ {1,� } - weight function

γ f (µ− ν) - Wasserstein metric on finite measures -
γ� (µ− ν) - metric on a class of σ−finite measures
γ ∈ {γ f , γ� }
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γ̃p(µ, µ̃) - (15.39)
γ̂ f (µ, ν), - (15.44)
G(r) = Gε(r) - kernel, governing the interaction between large and small parti-
cles - Chap. 2
Gε,M - Maxwellian kernel
Gn(r) - (2.1)
Gt - the σ -algebra generated by w(dp, du) between 0 and t
Gs,t - the σ -algebra generated by w(dp, du) between s and t
G⊥

s,t - σ -algebra generated by {dβ⊥,n(u)}n∈N between s and t
G⊥

t - σ -algebras generated by {dβ⊥,n(u)}n∈N between 0 and t
Ḡs,t - completed σ−algebra G⊥

s,t
Gn,s - (3.19)

G(u, r) := (2πu)− d
2 exp

(−|r |2
2u

)
, u > 0

H0 := L2(Rd , dr) -
(H0, ‖ · ‖0) = (W0,2,1, ‖ · ‖0,2,1) - 182
Hm := Wm,2,1.
Hw - (4.31), (15.74)

Id is the identity matrix in Rd

I n
A(t) - occupation measure

Ĩ n
A(t) - (3.7)

Ĩ n
A,Jn
(t) - (3.9)

Ĩ n,⊥
A (t) - (3.9)

Ĩ n,⊥,c
A (t) - (3.15)

(K, dK ) is some metric space with a norm dK ,

“l.s.t.” means “localizing stopping time”
L p,loc(Rd ×-;B) - Definition 6.2
L0,Fs (K) is the space of K-valued Fs-measurable random variables
L0,F (C([s, T ];K)) - K-valued continuous adapted and dt ⊗ d P-measurable
processes
L p,Fs (K) - those elements in L0,Fs (K) with finite p−th moments of dK(ξ, e)
L p,F (C([s, T ];K)) are those elements in L0,F (C([s, T ];K)) such that
E sups≤t≤T d p

K(ξ(t), e) <∞
L p,F (C([s,∞);K)) - space of processes ξ(·) such that ξ(·∧T )∈L p,F (C([s, T ];
K))∀T > s.
Lloc,p,F (C([s, T ];K)) - 61
Lloc,p,F (C((s, T ];K)) - 61
L1,F ([0, T ] × -) is the space of dt ⊗ dP-measurable and adapted integrable
processes
L p,F ([0, T ]×-;B) is the space of dt⊗dP-measurable and adapted p integrable
B-valued processes - Section 8.1
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Lk,�,n(s) := ∂n D̃k�(s, r)|r=0 - (8.40)
L(B) - the set of linear bounded operators from a Banach space B into itself
�m := {(p1, . . . , pm) ∈ Rd·m : ∃i != j, i, j ∈ {1, . . . ,m}, with pi = p j }
�(t,Dn, R, J n) - (3.1)

m - mass of a small particle.
m̂ - mass of a large particle.
m(dx) := A(Sd−1)xd−1dx , where A(Sd−1) is the surface measure of the unit
sphere in Rd

m = m(m) - the smallest even integer with m > d + m + 2
Md×d - the d × d matrices
M f,s,d := {Xs : Xs = Xs,N := ∑N

i=1 miδr i
s

m+k := m + 1k
m(dx) - (5.141)
M f - finite Borel measures on Rd

M∞,� := {µ ∈ M∞ : ∫ �(q)µ(dq) <∞}
µb:=µ, if γ� (µ) < b , and = µ

γ� (µ)
b, if γ� (µ) ≥ b. - (9.2)

∧ - denotes “minimum”
∨ - denotes “maximum”

n ∈ N - index characterizing the discretization
n = (n1, . . . nd) ∈ (N ∪ {0})d
|n| := n1 + . . .+ nd .
n ≤ m iff ni ≤ mi for i = 1, . . . , d. n < m iff n ≤ m and |n| < |m|.
| · | denoted both the absolute value and the Euclidean norm on Rd .
‖ · ‖ denotes the maximum norm on Rd .
|‖F�|‖ := supq |F�(q)| denotes the sup-norm.
‖ · ‖L ,∞ denotes the bounded Lipschitz norm - (15.37)
|‖ f |‖m := max|j|≤m supr∈Rd |∂ j f (r)|
‖ f ‖p

m,p,# := ∑
|j|≤m

∫ |∂ j f |p(r)#(r)dr,
‖ f ‖m := ‖ f ‖m,2,1 - before (8.33)
‖ · ‖ f - dual norm on the finite Borel measures w.r.t. C0(Rd ,R)
‖ · ‖L(B) - the norm of the set of linear bounded operators from a Banach space
B into itself
0, i.e., the “null” element.
O(d) are the orthogonal d × d-matrices over Rd

- := {R̂d × Rd}N.
(-,F ,Ft , P) is a stochastic basis with right continuous filtration
1 = (1, . . . , 1)
1k := (0, . . . , 0, 1, 0, . . . , 0)

(πs,t f )(u) := f (u ∧ t), (u ≥ s).
π2 : M̂ f −→ M f π2(({r i (t)}∞,X (t))) = X (t)) - (8.69)
πN : M[0,T ] → M[0,T ],N ⊂ M̂[0,T ] - η(·) %→ πNη(·) := η(gN (·)) - (6.2)
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πn(r) := %d
i=1rni

i , if for all i = 1, . . . , d ni ≥ 0 and πn(r) = 0 otherwise.

P(r) := rr T

|r |2 - projection

P⊥(r) := Id − P(r) - projection
P̄(t, a, B) - marginal transition probability distribution - (5.25)
ψ(x) ∈ {log(x + e), 1(x)}
� - the set of measurable continuous semi-martingale flows ϕ from Rd into
itself - cf. Proposition 4.3
∂ j f = ∂ j1,..., jd

∂r j1 ...∂r jd
f

qn(t, λ, ι) - the position of a small particle with start in (R̄λ] and velocity from Bι.

R̂d := Rd ∪ {�}.
(R̄λ] - small cube, R̄λ is the center of the cube
r i

n(t) - position of i-th large particle
(µ− D

2 /)−γ = 1
�(γ )

∫∞
0 uγ−1e−µu T (Du)du - the resolvent of D/

Rγµ := µγ (µ− 1
2/)−γ , Rγµ,D := µγ (µ− D

2 /)−γ
r̂ := (r1, r2) ∈ R2d

{r} - subspace spanned by r (Chap. 5)
{r}⊥ - subspace orthogonal to {r} (Section 5)
ρ(r − q) := |r − q| ∧ 1 - (4.1)
ρ̄(r, q) = ρ(r − q), if r, q ∈ Rd and = 1, if r ∈ Rd and q = �.
ρN (rN , qN ) := max1≤i≤N ρ(ri , qi )

(Sσ f )(r) - rotation operator - Chap. 10
S ′ - Schwarz space of tempered distributions over Rd

σ {·} denotes the σ−algebra generated by the the quantities in the braces
[·, ·] - the mutual quadratic variation of square integrable martingales.∑̂

A - summation, restricted to a set Cn - after (3.20)

τn is a sequence of localizing stopping times
τ(c, b, ω) := infn τn(c, b, ω) - stopping time - (9.8)

Uh = shift operator - Chap. 10

�(r) = (1 + |r |2)−γ - weight function
�β(r) := �β(r) (β > 0)

w̄ - average speed of small particles
w�(dr, dt) be i.i.d. real valued space-time white noises on Rd×R+, � = 1, . . . , d
w̌(dp, t) := w(dp, T − t)− w(dp, T )
Wm,p,# := { f ∈ Bd,1,m : ‖ f ‖m,p,# <∞}.
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XN (t) - empirical (measure) process for N large particles, associated with
(4.10).
X̃N (t) - (3.7)
X (t) - (9.55)
0 ∈ Md×d - the matrix with all entries being equal to 0
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