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Preface

With modern computers and software tools, there are, in general, no problems gen-
erating numerical values to various kinds of special functions. Indeed, excellent
software, such as Mathematica, Maple, and MATLAB, can generate a large vari-
ety of special functions with high precision. Moreover, the general topic of special
functions is well covered in the literature, see, e.g., [2, 3, 8, 14, 20, 28]. However,
the knowledge of the overall structure and relationship between the different special
functions is often lacking nowadays. This textbook tries to remedy that need. The
presentation of the theory in the book does not deal with the particular properties of
various special functions, but rather focuses on the generic connection between the
functions and the families they belong to.

The way the special functions are introduced and classified is the subject of the
current textbook. The aim is to provide a self-contained treatment of the subject
intended for the upper undergraduate, graduate student, or the researcher in mathe-
matical physics who has a need to understand the underlying systematics of special
functions. There are many ways of approaching this subject indeed. The most pop-
ular ones are:

• Classification and systematics based upon the singular behavior of the coeffi-
cients of the underlying ordinary differential equation, see, e.g., [12, 23]

• Group theoretical approach, see, e.g., [17, 27, 29]
• Classification and systematics based upon integral averages, see, e.g., [4]

We pursue the first, most traditional, approach in this textbook. The singular be-
havior of the coefficients manifests itself by the number of singular points — poles
or branch points — in the complex plane. For systems with less than three singular
points, the solutions of the ordinary equation belong to a rather well defined class
of functions. As the number of singular points becomes three or more, the solution
class becomes “rich” in the sense that most functions encountered in mathematical
physics are found among these solutions. The purpose of this book is to explore and
understand the systematics of these classes of functions and their relations to the
many special functions encountered in applications and in mathematical physics.
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viii Preface

The focus is on the overall relationship of these solutions, rather than the analysis
of the particular special functions themselves.

This textbook originates from a series of seminars in the mid-1970s on spe-
cial functions given by the late Professor Nils Svartholm at the Institute of The-
oretical Physics, Chalmers University of Technology, Göteborg, Sweden. Inciden-
tally, Professor Svartholm made several important contributions to the solution of
Heun’s equations in the late 1930s, see Section 8.4. The general outline of Professor
Svartholm’s notes is to some extent kept, but numerous extensions have been made
in order to make the text more complete.

The text intends to cover a three- to four-week upper undergraduate or graduate
course on the subject. The prerequisites of the course are analytic function theory on
the level of, e.g., E. Hille [13] or R. Greene and S. Krantz [9]. Specifically, the reader
should have basic knowledge of the method of residues and multi-valued functions.
To make the textbook more self-contained and complete, a series of appendices are
found at the end of the book, which contain specific background material. At the
end of each chapter, there are problems that illustrate the analysis in the chapter. It
is recommended that students solve these problems in order to get a better under-
standing of the theory. Problems marked with a dagger, †, indicate problems that are
more difficult. A solution manual to all problems is available at the home page of
the author.

I am most grateful to Professor Anders Melin, who has been very supportive and
helpful during this whole project. He has contributed numerous valuable comments
and improvements to the text. This is particularly true for Appendices A and B
in which he has given esteemed input and criticism. Writing this book has taken
most of my leisure time, and thanks to an understanding wife, the project had an
happy ending. Thank you Mona-Lisa! The author is also grateful to Martin Nor-
gren, Kristin Persson, Daniel Sjöberg, and Christian Sohl for finding typos. Finally
I like to thank Springer, especially Vaishali Damle and Marcia Bunda, for very con-
structive collaboration.

Lund, May 5, 2010 Gerhard Kristensson
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Chapter 1
Introduction

The question of how the equations of physics originate is adequate. They usually
arise from a boundary value problem that models a particular physical problem of
interest. Typically, a boundary value problem consists of{

Partial differential equations
Boundary value and/or initial value conditions

Sometimes the physical problem itself is modeled as an ordinary differential
equation (ODE) — often of second order. Moreover, solving partial differential
equations of various kinds introduces the ordinary differential equation by the meth-
ods through which these equations are solved. One striking example of how second
order differential equations arise from a more general problem is the method of sep-
aration of variables. As an explicit example, we take the Helmholtz equation in three
dimensions, which reads

∇
2
Φ(x,y,z)+ k2

Φ(x,y,z) = 0

The ansatz
Φ(x,y,z) = Xα(x)Yβ (y)Zγ(z)

where (α,β ,γ) belongs to an index set I, implies that each function Xα(x), Yβ (y),
and Zγ(z) satisfies a second order ODE. Requiring some additional conditions on
these functions, the complete solution of the Helmholtz equation is obtained as a
series

Φ(x,y,z) = ∑
(α,β ,γ)∈I

Xα(x)Yβ (y)Zγ(z)

Specifically, the separation of variables is successful in 11 coordinate systems,
e.g., the spherical coordinate system, (r,θ ,φ), leads to a set of ordinary differential
equations

G. Kristensson, Second Order Differential Equations: Special Functions 1
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2 1 Introduction

(
d2

dr2 +
2
r

d
dr
− l(l +1)

r2 + k2
)

Rl(r) = 0(
d2

dθ 2 + cotθ
d

dθ
− m2

sin2
θ

+ l(l +1)
)

Θlm(θ) = 0(
d2

dφ 2 +m2
)

Φm(φ) = 0

which all can be written as differential equations with coefficients as rational func-
tions (change the variables θ → u = cosθ ).

In all the 11 separable cases, the method of separation of variables leads to ordi-
nary differential equations of second order where the coefficients are rational func-
tions1 [3, 5]. It is therefore of some interest to study ordinary differential equations
of the following form:

A(x)
d2u(x)

dx2 +B(x)
du(x)

dx
+C(x)u(x) = 0

where A(x), B(x), and C(x) are polynomials (or rational functions) of x ∈ R.
We extend the independent variable to the complex plane C and let x→ z =

x + iy ∈ C. The complex roots of the leading function A(z) are vital. We write A(z)
as

A(z) =
m

∏
i=1

(z−ai)

and classify the solution depending on2 m ∈ Z+. In the current textbook, ordinary
differential equations and their solutions with at most four roots, m = 1,2,3,4, are
analyzed. The appropriate form therefore is

A(z)
d2u(z)

dz2 +B(z)
du(z)

dz
+C(z)u(z) = 0 (1.1)

where A(z) has the form above, and B(z) and C(z) are meromorphic3 or rational
functions in a domain S⊂C. Most special functions that are encountered in mathe-
matical physics are included as a solution of an ordinary differential equation of this
type.

1 A rational function is defined as a quotient p(x)/q(x) between two polynomials p(x) and q(x),
where q(x) is not identically zero.
2 The notation used in this textbook is presented in Appendix F on page 213.
3 A meromorphic function is defined as a quotient p(z)/q(z) of two analytic (holomorphic) func-
tions p(z) and q(z), where q(z) is not identically zero.



Chapter 2
Basic properties of the solutions

In this chapter, the basic concepts of second order linear differential equations are
introduced, such as regular and singular points — both located in the finite complex
plane or at infinity. Moreover, the general properties of the solutions at such points
are analyzed.

2.1 ODE of second order

2.1.1 Standard forms

The standard form of a second order linear differential equation (ODE) is, cf. (1.1)

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0 (2.1)

where p(z) and q(z) are analytic functions in a domain S⊂C, or analytic in S except
at a finite number of isolated points, i.e., meromorphic functions in S. The domain
S can be the entire complex plane including the ∞-point — the extended complex
z-plane.1 We seek solutions u(z) to this equation that are analytic in at least some
parts of the domain S.

The equation can be transformed to a reduced form

d2u1(z)
dz2 +q1(z)u1(z) = 0 (2.2)

with the following change of dependent variable2

1 A function f (z) is analytic at infinity, z = ∞, provided the function f (1/ζ ) is analytic at ζ = 0.
The meromorphic properties at infinity are defined in the same way.
2 If the domain S is not simply connected, multi-valued functions occur, e.g., if S = C \ {0} and
p(z) = c/z. To avoid this situation, assume S is simply connected.

G. Kristensson, Second Order Differential Equations: Special Functions 3
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4 2 Basic properties of the solutions
u(z) = u1(z)exp

{
−1

2

∫ z

b
p(z′)dz′

}
q1(z) = q(z)− 1

2
dp(z)

dz
− 1

4
(p(z))2

where b ∈ S. It is easy to prove that if u1(z) is a solution to (2.2), then u(z) is a
solution to (2.1), and, conversely, if u(z) is a solution to (2.1), then u1(z) is a solution
to (2.2), see Problem 2.2.

In fact, the reduced form of the differential equation, (2.2), is a special case of a
more general transformation of variables, given by the following theorem:

Theorem 2.1. Let u(z) be a solution of

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0

where p(z) and q(z) are analytic in a domain S.

a) If z = g(t), where g(t) is analytic in a domain T , such that the image is contained
in S, i.e., g(T )⊂ S, g′(t) 6= 0, t ∈ T , then v(t) = u(g(t)) satisfies

d2v(t)
dt2 +

(
p(g(t))g′(t)− g′′(t)

g′(t)

)
dv(t)

dt
+q(g(t))

(
g′(t)

)2 v(t) = 0

b) If the function h(z) is analytic and nonzero in S, then u(z) = h(z)v(z) defines a
function v(z), which satisfies

d2v(z)
dz2 +{p(z)+2 f (z)} dv(z)

dz
+
{

( f (z))2 + f ′(z)+ p(z) f (z)+q(z)
}

v(z) = 0

where f (z) = h′(z)/h(z).

This theorem is straightforward to prove and left as an exercise, see Problem 2.1.

2.1.2 Classification of points

A point z = c in the finite complex plane is classified depending on the analytic prop-
erties of the functions p(z) and q(z) at z = c. The following definition is essential
for the analysis of the ordinary differential equations treated in this book.

Definition 2.1. A point z = c∈C (|c|< ∞) is called a regular point of the differen-
tial equation (2.1) if p(z) and q(z) are analytic in a neighborhood of z = c. A point
z = c ∈ C (|c| < ∞) is called a singular point of the differential equation (2.1) if
p(z) or q(z) have a singularity at z = c.

Similarly, a point z = c ∈ C (|c| < ∞) to the reduced form (2.2) is classified as
a singular or a regular point depending on whether q1(z) is singular or analytic
(regular) at z = c, respectively.
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The point at infinity is special, and the classification of this point as a regular or
a singular point is postponed to Section 2.5.

2.2 The Wronskian

We start with a definition and a lemma.

Definition 2.2. Let u1(z) and u2(z) be two meromorphic functions in a domain S.
The Wronskian3 of the functions u1(z) and u2(z) is then defined as

W (u1,u2;z) = u1(z)u′2(z)−u′1(z)u2(z), z ∈ S

From this definition, the Wronskian depends on the functions u1(z) and u2(z).
The following lemma shows that if u1(z) and u2(z) are solutions to (2.1), W (z)
depends only on the variable z and the function p(z).

Lemma 2.1. Let S be a connected domain S in the complex plane containing only
regular points of the differential equation (2.1). Then the Wronskian of two solu-
tions, u1(z) and u2(z), to (2.1), i.e.,

W (z) = u1(z)u′2(z)−u′1(z)u2(z)

in S satisfies

W (z) = W (a)exp
{
−
∫ z

a
p(z′)dz′

}
where a and z are points in S.

Proof. Derivation and use of the differential equation give

dW (z)
dz

= u1(z)u′′2(z)−u′′1(z)u2(z)

=−u1(z)
[
p(z)u′2(z)+q(z)u2(z)

]
+
[
p(z)u′1(z)+q(z)u1(z)

]
u2(z)

= p(z)
(
u′1(z)u2(z)−u1(z)u′2(z)

)
=−p(z)W (z)

The Wronskian therefore becomes4 (a and z are regular points of the differential
equation (2.1) in S)

W (z) = W (a)exp
{
−
∫ z

a
p(z′)dz′

}
by integration. ut

3 Józef Maria Hoëne-Wroński (1778–1853), Polish mathematician.
4 See also the comment made in footnote 2 on page 3.
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From the result in this lemma, we see that if the Wronskian of two solutions
vanishes at one point in S, it vanishes everywhere in S. Moreover, if the Wronskian
is non-zero at one point in S, it is non-zero everywhere in S. We also observe that
W (z) does not depend on the explicit functions u1(z) and u2(z), but only on p(z).
However, the functions u1(z) and u2(z) affect the constant W (a).

Definition 2.3. Two functions, u1(z) and u2(z), are linearly dependent in a domain
S (or an interval if we deal with functions defined on the real axis), if there exist
constants c1 and c2, not both zero, such that

c1u1(z)+ c2u2(z) = 0, z ∈ S

If no such constants can be found, the functions are linearly independent in S.

The following lemma gives a check on linear independence.

Lemma 2.2. Let u1(z) and u2(z) be two meromorphic functions in a domain S. A
necessary and sufficient condition that u1(z) and u2(z) are linearly dependent is

W (z) = 0, z ∈ S

Proof. Without loss of generality, assume u1(z) not identically zero, and define
f (z) = u2(z)/u1(z). Then f (z) is meromorphic in S, and u1(z) and u2(z) are lin-
early dependent if and only if f (z) is constant. However, since f (z) is meromorphic
and

f ′(z) =
u1(z)u′2(z)−u′1(z)u2(z)

(u1(z))
2 =

W (z)

(u1(z))
2

f (z) is constant if and only if W (z) = 0. ut

We apply the results to the differential equation (2.1) and assume we have two so-
lutions, u1(z) and u2(z), to this differential equation in a domain S in the complex
plane containing only regular points. If the functions u1(z) and u2(z) are linearly
dependent, the Wronskian vanishes identically in the domain S, and if the Wron-
skian is non-zero at one point, the solutions u1(z) and u2(z) are independent in S,
see Lemma 2.1.

2.3 Solution at a regular point

In a neighborhood of a regular point, a solution to the differential equation (2.1) can
always be found. This section contains the details of such an explicit construction.

Let z = b ∈ C be a regular point, and let Sb be a circular neighborhood to b
(radius rb > 0) so that every point in Sb is a regular point, see Figure 2.1, i.e., take
rb smaller than the distance between b and the closest singular point P1. We also
assume p(z) = 0 — this is no restriction (transform to the reduced form).
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°P1

b

z

rb

Sb

Fig. 2.1 The regular point z = b and the circular domain Sb. The point P1 denotes the closest
singular point.

For given a0, a1 ∈C, define a sequence of functions un(z), n∈N, by the iteration
scheme 

u0(z) = a0 +a1(z−b), a0,a1 ∈ C

un(z) =
∫ z

b
(ζ − z)q(ζ )un−1(ζ )dζ , n ∈ Z+

(2.3)

where the integration path is a straight line from b to z. We have the following
fundamental theorem:

Theorem 2.2. In a circular neighborhood, Sb, to the regular point z = b ∈ C, the
series

u(z) =
∞

∑
n=0

un(z), z ∈ Sb (2.4)

obtained from the recursion formula in (2.3) is uniformly convergent and represents
an analytic function in Sb. Specifically, u(z) satisfies the differential equation

d2u(z)
dz2 +q(z)u(z) = 0 (2.5)

with the following initial conditions at z = b:{
u(b) = a0

u′(b) = a1
(2.6)

Moreover, there is only one analytic function satisfying the differential equation (2.5)
and the initial conditions (2.6), i.e., the function u(z) in (2.4) is the unique analytic
solution to the ODE, (2.5), with the given boundary conditions.

Proof. We prove this theorem in four lemmas, Lemmas 2.3–2.6. ut
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Lemma 2.3. The sequence in (2.3) satisfies

|un(z)| ≤ µMn |z−b|2n

n!
, for all z ∈ Sb, and n ∈ Z+

where {
|u0(z)| ≤ µ

|q(z)| ≤M
for all z ∈ Sb

Proof. We prove the lemma by induction. For n = 0 it is trivial. Let n≥ 1. We have,
by the induction assumption, the estimate

|un(z)| ≤
∫ z

b
|ζ − z|MµMn−1 |ζ −b|2n−2

(n−1)!
|dζ |, z ∈ Sb

The integration path is: ζ (t)= (z−b)t +b, t ∈ [0,1]. Therefore, since |ζ−z| ≤ |z−b|
and 2n−1≥ n, we get

|un(z)| ≤ µMn|z−b|
∫ 1

0

|ζ (t)−b|2n−2

(n−1)!

∣∣∣∣dζ (t)
dt

∣∣∣∣ dt

= µMn|z−b|2
∫ 1

0

|z−b|2n−2t2n−2

(n−1)!
dt = µMn|z−b|2n

∫ 1

0

t2n−2

(n−1)!
dt

= µMn|z−b|2n 1
(2n−1)(n−1)!

≤ µMn |z−b|2n

n!

and the lemma is proved. ut

Lemma 2.4. The series

u(z) =
∞

∑
n=0

un(z), z ∈ Sb (2.7)

is uniformly convergent in Sb, and, therefore, analytic in Sb.

Proof. From Lemma 2.3, we have

|un(z)| ≤ µMn |z−b|2n

n!
≤ µMn r2n

b
n!

Since the series
∞

∑
n=0

µMn r2n
b
n!

< ∞, for rb < ∞

the series (2.7) is uniformly convergent in Sb by the M-test of Weierstrass5 [13,
p. 107], and thus analytic in Sb. ut

Lemma 2.5. The analytic function u(z) in Lemma 2.4 satisfies

5 Karl Weierstrass (1815–1897), German mathematician.
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d2u(z)
dz2 +q(z)u(z) = 0

with the following initial conditions at z = b:{
u(b) = a0

u′(b) = a1

Proof. We easily getu′n(z) =−
∫ z

b
q(ζ )un−1(ζ )dζ

u′′n(z) =−q(z)un−1(z)
n ∈ Z+

and, since the series (2.7) can be differentiated inside the sum, we get

d2u(z)
dz2 =

d2u0(z)
dz2︸ ︷︷ ︸
=0

+
∞

∑
n=1

d2un(z)
dz2 =−q(z)

∞

∑
n=1

un−1(z) =−q(z)u(z)

Moreover, the sequence takes at z = b the values{
u0(b) = a0

un(b) = 0, n ∈ Z+

{
u′0(b) = a1

u′n(b) = 0, n ∈ Z+

Therefore 
u(b) =

∞

∑
n=0

un(b) = a0

u′(b) =
∞

∑
n=0

u′n(b) = a1

and the lemma is proved. ut

Lemma 2.6. There is only one analytic function u(z) that satisfies

d2u(z)
dz2 +q(z)u(z) = 0

{
u(b) = a0

u′(b) = a1

Proof. Assume there are two analytic solutions, u1 and u2, and form v = u1− u2.
The function v is an analytic function and it satisfies

d2v(z)
dz2 +q(z)v(z) = 0

{
v(b) = 0
v′(b) = 0

in Sb. By evaluating the differential equation at z = b, we obtain v′′(b) = 0, since the
point b is regular, i.e., |q(b)|< ∞. If we differentiate the equation, we get
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b

P1

P2

P3

P4

Sb
z

Two analytic continuation paths that do

not necessarily give the same value at z

Fig. 2.2 The analytic continuation of the solution of the differential equation in the complex z-
plane. The points Pi, i = 1,2,3,4, denote the singular points of the differential equation.

v′′′(z)+q′(z)v(z)+q(z)v′(z) = 0

and evaluating this equation at z = b, we obtain by the same argument as above

v′′′(b) = 0

Continuing the argument, we see that v(n)(b) = 0 for all n ∈ N. Since the solution
v(z) is analytic at z = b, we conclude that v(z) = 0 for all z ∈ Sb. ut

As a consequence of the Theorem 2.2, we can construct an analytic solution at
any regular point to the ordinary differential equation in the complex z-plane. This
means that we can construct a solution at all points in the complex z-plane, except
at the singular points of the differential equation, where the solution shows singular
behavior of some kind.

From a given initial condition, a unique solution is obtained by analytic con-
tinuation in the complex plane. The solution is unique at each regular point in the
complex z-plane, but might depend on the way the analytic continuation is made,
see Figure 2.2.

Any solution to (2.2), and therefore to (2.1), can be obtained as a linear combina-
tion of two linearly independent solutions to the equation. Two linearly independent
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solutions6 u1(z) and u2(z) can be constructed by the initial conditions{
u1(b) = a0 = 0
u′1(b) = a1 = 1

{
u2(b) = a0 = 1
u′2(b) = a1 = 0

From the analysis in this section, we see that two linearly independent solutions
can be constructed by analytic continuation everywhere in the complex plane, ex-
cept at the singular points of the differential equation. The behavior near a singular
point is, however, not determined by the analysis. In Section 2.4, we investigate the
behavior of the solution near a singular point in more detail, but we finish this sec-
tion with the construction of a second linearly independent solution if one solution
is known.

A series solution of the solution at a regular point is investigated in Problem 2.6.
This technique is exploited in more detail in Section 2.4.

2.3.1 The second solution

Now assume we have obtained one solution u1(z) to the differential equation — ei-
ther by the explicit construction in Theorem 2.2 or by guessing or by some other
way. In this section we explicitly construct a second linearly independent solu-
tion u2(z) from the solution u1(z). We proceed by writing the Wronskian in Def-
inition 2.2 as

W (z) = u1(z)u′2(z)−u′1(z)u2(z) = (u1(z))
2 d

dz

(
u2(z)
u1(z)

)
Combine the equation with the result obtained in Lemma 2.1 into

d
dz

(
u2(z)
u1(z)

)
=

W (a)

(u1(z))
2 exp

{
−
∫ z

a
p(z′′)dz′′

}
and integrate in z from a to z. We get

u2(z)
u1(z)

= W (a)
∫ z

a

1

(u1(z′))
2 exp

{
−
∫ z′

a
p(z′′)dz′′

}
dz′+

u2(a)
u1(a)

A second linearly independent solution to the differential equation then is

u2(z) = u1(z)
∫ z 1

(u1(z′))
2 exp

{
−
∫ z′

p(z′′)dz′′
}

dz′ (2.8)

where we have dropped the lower limits (and the last constant term), which only give
a term that is a proportional to the first solution u1(z), and, therefore, adds nothing

6 The check of linear dependence is developed in Section 2.2.
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new. In particular, for the reduced differential equation (2.2), where p(z) = 0, we
have a particularly simple form of the second solution, viz.,

u2(z) = u1(z)
∫ z dz′

(u1(z′))
2

The method presented in this section has been employed to find a second solution
to the differential equation in a neighborhood of a regular point, but the method may
also have potential finding a second solution in the neighborhood of a singular point.

Example 2.1. We illustrate the result above with a very simple example. The differ-
ential equation

u′′(z)− k2u(z) = 0

has a solution u1(z) = ekz. The second solution then is, k 6= 0

u2(z) = u1(z)
∫ z dz′

(u1(z′))
2 = ekz

∫ z
e−2kz′ dz′ =− 1

2k
ekze−2kz =− 1

2k
e−kz

which, of course, is a second solution to the differential equation, which is linearly
independent from the first one.

Comment 2.1. The analysis in this section proved the existence of two linearly in-
dependent solutions u1(z) and u2(z) in the neighborhood of a regular point z = b. In
Section 2.4, an explicit algorithm to find the power series solution is presented, in
particular, see Comment 2.2 on page 23.

2.4 Solution at a regular singular point

We have seen that, in general, two linearly independent solutions to the second order
differential equation can be constructed at all points in C except at the singular
points of the differential equation. In this section, we investigate the behavior of the
solution near these singular points in detail. We start with a definition.7

Definition 2.4. Assume z = c ∈ C (|c| < ∞) is a singular point of the differential
equation (2.1). The point z = c is called a regular singular point of the differential
equation (2.1) if p(z) and q(z) have the form

p(z) =
P(z)
z− c

, q(z) =
Q(z)

(z− c)2

where P(z) and Q(z) are analytic functions in a neighborhood of z = c. In all other
cases, the singular point z = c is called an irregular singular point of the differen-
tial equation (2.1).

7 We use uppercase letters to denote functions that are analytic functions, and lowercase letters are
used to denote meromorphic functions.
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The point at infinity is special, and the classification of this point as a regular or an
irregular singular point is postponed to Section 2.5.

2.4.1 The indicial equation

The appropriate differential equation for a regular singular point at z = c therefore
is

d2u(z)
dz2 +

P(z)
z− c

du(z)
dz

+
Q(z)

(z− c)2 u(z) = 0 (2.9)

Since the functions P(z) and Q(z) are analytic in a neighborhood of z = c, i.e.,
they have power series expansions

P(z) =
∞

∑
n=0

pn(z− c)n = p0 + p1(z− c)+ p2(z− c)2 + . . .

Q(z) =
∞

∑
n=0

qn(z− c)n = q0 +q1(z− c)+q2(z− c)2 + . . .

(2.10)

which are convergent for all z ∈ Sc, where the set Sc is an open circle, radius rc > 0,
centered at z = c. The set Sc contains no other singular points of (2.9) than z = c.

We know that the solution u(z) shows a singular behavior near the regular singu-
lar point z = c∈C. To investigate this behavior, we make an ansatz for the solution8

u(z) =(z− c)α

(
1+

∞

∑
n=1

an(z− c)n

)
=(z− c)α +a1(z− c)α+1 +a2(z− c)α+2 + . . .

(2.11)

where, due to linearity and homogeneity of the differential equation, the first coeffi-
cient is set to 1, i.e., a0 = 1. Our goal is to determine the unknown complex coeffi-
cients an, n ∈ Z+, provided the complex constants pn and qn, n ∈ N, are known.

The differential equation (2.9) is employed, i.e.,

(z− c)2u′′(z)+(z− c)P(z)u′(z)+Q(z)u(z) = 0

and we insert the solution u(z). We get

(z− c)α

{
α(α−1)+

∞

∑
n=1

an(α +n)(α +n−1)(z− c)n

+P(z)

(
α +

∞

∑
n=1

an(α +n)(z− c)n

)
+Q(z)

(
1+

∞

∑
n=1

an(z− c)n

)}
= 0

8 This is the method of Frobenius named after the German mathematician Ferdinand Georg Frobe-
nius (1849–1917).
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Introduce the power series expansions of P(z) and Q(z) in (2.10), and identify the
coefficient in front of each power of z− c within the braces. Each of these coeffi-
cients must be zero if u is a solution to (2.9).

The result for each coefficient is

0) α
2 +(p0−1)α +q0 = 0

1) a1
{
(α +1)2 +(p0−1)(α +1)+q0

}
+ p1α +q1 = 0

2) a2
{
(α +2)2 +(p0−1)(α +2)+q0

}
+a1 {p1(α +1)+q1}+ p2α +q2 = 0

. . .

n) an
{
(α +n)2 +(p0−1)(α +n)+q0

}
+

n−1

∑
m=1

an−m {pm(α +n−m)+qm}+ pnα +qn = 0

We define the indicial equation

I(α) = α
2 +(p0−1)α +q0 = 0 (2.12)

and write the relations above as (a0 = 1)

I(α) = 0
a1I(α +1)+ p1α +q1 = 0
a2I(α +2)+a1 {p1(α +1)+q1}+ p2α +q2 = 0
. . .

anI(α +n)+
n

∑
m=1

an−m {pm(α +n−m)+qm}= 0

(2.13)

The coefficient in front of the lowest power is

I(α) = 0

This indicial equation is a quadratic equation in α , and we denote the two roots of
the equation by α1 and α2, respectively. Notice that the two roots satisfy

α1 +α2 = 1− p0, α1α2 = q0 (2.14)

so that the values of P(z) and Q(z) at z = c determine the roots of the indicial
equation.

The coefficient in front of the second lowest power is

a1I(α +1)+ p1α +q1 = 0

and, provided I(α +1) 6= 0, the coefficient a1 has a unique solution in terms of the
expansion coefficients of P(z) and Q(z). If we continue this argument, the coeffi-
cients an, n ∈ Z+, are uniquely soluble in terms of the expansion coefficients of
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P(z) and Q(z), provided I(α + i) 6= 0, i = 1,2, . . . ,n. If this condition is met, the for-
mal series in (2.11) can be constructed by the iterative scheme obtained from (2.13).
We have

a0 = 1

an =−∑
n
m=1 an−m {pm(α +n−m)+qm}

I(α +n)
, n = 1,2,3, . . .

(2.15)

The following lemma quantifies when I(α +n) vanishes:

Lemma 2.7. Denote by α1 and α2 the two roots of the indicial equation (2.12). Then

I(α1 +n) = n(α1−α2 +n)

Proof. Let s = α1−α2. The lemma is then easily proved by the following observa-
tions:

I(α1 +n) = (s+α2 +n)2 +(p0−1)(s+α2 +n)+q0

= α
2
2 +(p0−1)α2 +q0︸ ︷︷ ︸

=0

+(s+n)2 +2(s+n)α2 +(p0−1)(s+n)

= (s+n)(s+n+2α2 +(p0−1)) = n(s+n) = n(α1−α2 +n)

due to (2.14), and the lemma is proved. ut

From Lemma 2.7, we see that if the two roots of the indicial equation (2.12), α1
and α2, do not differ by an integer, then I(α1 + n) 6= 0, n ∈ Z+. The main investi-
gation of the convergence of this power series, with coefficients obtained in (2.15),
is postponed to Section 2.4.2. Meanwhile, we conclude that either of the following
two cases can occur:

Case 1. α1−α2 is not an integer. Then the iterative procedure in (2.15) has the po-
tential of constructing two linearly independent solutions corresponding
to the two roots α = α1 and α = α2, respectively.

Case 2. α1−α2 is an integer. Then it is unclear whether the procedure gives a
solution or not.

The growth rate of the coefficients an obtained from (2.15) is estimated in the
next two lemmas.

Lemma 2.8. Denote by α1 and α2 the two roots of the indicial equation (2.12), and
let α1 be the root with the largest real part, i.e., Reα1≥Reα2. Furthermore, assume

|pn| ≤
M
rn , |pnα1 +qn| ≤

M
rn , n ∈ Z+ (2.16)

where M > 1. Then with α = α1 in (2.15), the coefficients an satisfy

|an| ≤
Mn

rn , n ∈ Z+



16 2 Basic properties of the solutions

Proof. We prove the lemma by induction, and use Lemma 2.7, which with the no-
tion s = α1−α2 reads

I(α1 +n) = n(s+n) (2.17)

The statement is true for n = 1, since, taking α = α1 in (2.15), we get

|a1|=
∣∣∣∣ p1α1 +q1

I(α1 +1)

∣∣∣∣= |p1α1 +q1|
|s+1|

≤ M
r|s+1|

≤ M
r

due to (2.16), (2.17), and |s + 1| ≥ 1 (remember Res ≥ 0, due to the assumption in
the lemma).

Assume the induction statement is true for k = 1,2, . . . ,n−1. Then with α = α1
in (2.15), we get for n≥ 2

|an|=
∣∣∣∣∑n

m=1 an−m {pm(α1 +n−m)+qm}
I(α1 +n)

∣∣∣∣
≤ ∑

n
m=1 |an−m| |pmα1 +qm|+∑

n
m=1 |an−m| |pm|(n−m)

n|s+n|

≤ ∑
n
m=1 Mn−mrm−nMr−m +∑

n
m=1 Mn−mrm−nMr−m(n−m)

n2|1+ s/n|

by (2.16), (2.17), and the induction assumption. Further estimates give (remember
M > 1)

|an| ≤
Mn

rn
n+∑

n
m=1(n−m)

n2|1+ s/n|
=

Mn

rn
n+n(n−1)/2

n2|1+ s/n|
=

Mn

rn
n+1

2n|1+ s/n|

and since |1+ s/n| ≥ 1 (remember Res≥ 0), and n+1≤ 2n, we have

|an| ≤
Mn

rn , n≥ 2

and the induction proof is finished. ut

The growth rate of the coefficients an corresponding to the other root is more
complex.

Lemma 2.9. Denote by α1 and α2 the two roots of the indicial equation (2.12), and
let α2 be the root with the smallest real part, i.e., Reα1 ≥ Reα2. Moreover, assume
s = α1−α2 /∈ Z+, and

|pn| ≤
M
rn , |pnα2 +qn| ≤

M
rn , n ∈ Z+ (2.18)

Then with α = α2 in (2.15), the coefficients an satisfy

|an| ≤
M′n

rn , n ∈ Z+
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where M′ = M/κ and M′ > 1. Here κ = inf{|1− s|, |1− s/2|, |1− s/3|, . . .} is a
positive number, due to the assumptions on s.

Proof. Again, we prove by induction, and use Lemma 2.7, which with the notion
s = α1−α2 reads

I(α2 +n) = n(n− s) (2.19)

We conclude that the statement is true for n = 1, since, taking α = α2 in (2.15),
we get

|a1|=
∣∣∣∣ p1α2 +q1

I(α2 +1)

∣∣∣∣= |p1α2 +q1|
|1− s|

≤ M
r|1− s|

≤ M
κr

=
M′

r

due to (2.18), (2.19), and |1− s| ≥ κ .
Assume the induction statement is true for k = 1,2, . . . ,n−1. Then with α = α2

in (2.15), we get for n≥ 2

|an|=
∣∣∣∣∑n

m=1 an−m {pm(α2 +n−m)+qm}
I(α2 +n)

∣∣∣∣
≤∑

n
m=1 |an−m| |pmα2 +qm|+∑

n
m=1 |an−m| |pm|(n−m)

n|n− s|

≤∑
n
m=1 M′n−mrm−nMr−m +∑

n
m=1 M′n−mrm−nMr−m(n−m)

n2|1− s/n|

by (2.18), (2.19), and the induction assumption. Further estimates give (remember
M′ > 1)

|an| ≤
MM′n−1

rn
n+∑

n
m=1(n−m)

n2|1− s/n|

=
MM′n−1

rn
n+n(n−1)/2

n2|1− s/n|
=

MM′n−1

rn
n+1

2n|1− s/n|
and since |1− s/n| ≥ κ and n+1≤ 2n, we have

|an| ≤
Mn

κnrn ≤
M′n

rn

and the induction proof is finished. ut

2.4.2 Convergence of the solution

We now address the question of convergence of the power series

∞

∑
n=1

an(z− c)n
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with the coefficients an, n ∈ Z+, explicitly constructed by the algorithm in Sec-
tion 2.4.1 above. The main theorem of this section is:

Theorem 2.3. Denote by α1 and α2 the two roots of the indicial equation (2.12),
and number the roots such that Reα1 ≥ Reα2. Then the power series

∞

∑
n=1

an(z− c)n

with coefficients, an, obtained by the iteration scheme in (2.15), starting from the
root α1, represents an analytic function in a neighborhood of the regular singular
point z = c.

Moreover, if the two roots α1 and α2 of the indicial equation do not differ by a
positive integer,9 the power series

∞

∑
n=1

a′n(z− c)n

with coefficients, a′n, obtained by the iteration scheme in (2.15), starting from the
root α2, also represents an analytic function in a neighborhood of the regular sin-
gular point z = c.

The theorem guarantees that there exists at least one solution to the differential
equation, (2.9), in a neighborhood of the regular singular point, z = c. If the the roots
of the indicial equations do not differ by a positive integer, we can also construct a
second solution. In this case, the solutions are

u1(z) = (z− c)α1

(
1+

∞

∑
n=1

an(z− c)n

)
, u2(z) = (z− c)α2

(
1+

∞

∑
n=1

a′n(z− c)n

)

Proof. The explicit coefficients an, obtained by the algorithm in Section 2.4.1, is
given by (2.15), i.e., I(α) = 0 and

a0 = 1

an =−∑
n
m=1 an−m {pm(α +n−m)+qm}

I(α +n)
, n = 1,2,3, . . .

(2.20)

To analyze the convergence, denote the two roots of the indicial equation by α1
and α2, respectively, and let s = α1 −α2. Number the roots such that Res ≥ 0,
i.e., Reα1 ≥ Reα2. The assumption of the second part of the theorem implies that
s /∈ Z+.

The coefficients in the power series expansions of the functions P(z) and Q(z)
in (2.10), i.e.,

9 If both roots are identical, α1 = α2, only one solution is obtained.
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P(z) =

∞

∑
n=0

pn(z− c)n

Q(z) =
∞

∑
n=0

qn(z− c)n

are determined by10

pn =
1

2πi

∮
C

P(t)dt
(t− c)n+1 , qn =

1
2πi

∮
C

Q(t)dt
(t− c)n+1

where C is a circle with radius rc, centered at z = c, and contained in the common
domain of analyticity of P(z) and Q(z). Let the constant Mp and Mq be the maximum
value of |P(z)| and |Q(z)|, respectively, on the circle C. Then

|pn| ≤
Mp

rn
c

, |qn| ≤
Mq

rn
c

, n ∈ Z+

The coefficients p0 and q0 satisfy similar inequalities, but these are not used in the
proof.

Denote by M = max{Mp, |α1|Mp +Mq, |α2|Mp +Mq}, which is a finite number,
due to the assumptions made on P(z) and Q(z). Then, we have for n ∈ Z+

|pn| ≤
M
rn

c
, |pnα1 +qn| ≤

M
rn

c
, |pnα2 +qn| ≤

M
rn

c
, (2.21)

There is no loss of generality to assume that the constant M > 1 — increase the
value of M if necessary.

From Lemma 2.8, we then obtain

|an| ≤
Mn

rn
c

, n ∈ Z+

if we are using the root α1 — the one with the largest real part. The power series

∞

∑
n=1

an(z− c)n

is then uniformly convergent inside the circle |z− c|< ρ = rc/M since

10 The expansion coefficients of an analytic function f (z) in a power series expansion satisfy [13,
p. 128]

f (z) =
∞

∑
n=0

f (n)(c)
n!

(z− c)n

where [13, p. 180]

f (n)(c) =
n!

2πi

∮
C

f (t)dt
(t− c)n+1 , n ∈ Z+
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∞

∑
n=1
|an||z− c|n ≤

∞

∑
n=1

Mn|z− c|n

rn
c

=
∞

∑
n=1

|z− c|n

ρn < ∞

and the series represents an analytic function inside the circle |z− c| < ρ , and the
first part of the theorem is proved.

Using the second root of the indicial equation, α2, and Lemma 2.9, we obtain

|a′n| ≤
M′n

rn
c

=
Mn

κnrn
c
, n ∈ Z+

where κ = inf{|1− s|, |1− s/2|, |1− s/3|, . . .}, which is a positive number, due to
the assumption that s is not a positive integer, and M′ = M/κ . The power series

∞

∑
n=1

a′n(z− c)n

is then uniformly convergent inside the circle |z− c|< ρ ′ = rc/M′ = κrc/M since

∞

∑
n=1
|a′n||z− c|n ≤

∞

∑
n=1

Mn|z− c|n

κnrn
c

=
∞

∑
n=1

|z− c|n

ρ ′n
< ∞

and the series represents an analytic function inside the circle |z− c| < ρ ′. This
completes the second part of the proof of the theorem. ut

Indeed, if α1 −α2 is not a positive integer or zero, we have constructed two
linearly independent11 solutions of the differential equation, viz.,

u1(z) = (z− c)α1

(
1+

∞

∑
n=1

an(z− c)n

)

u2(z) = (z− c)α2

(
1+

∞

∑
n=1

a′n(z− c)n

) (2.22)

2.4.3 The second solution — exceptional case

The existence of one solution to the differential equation of the form, see (2.22),

u1(z) = (z− c)α1

(
1+

∞

∑
n=1

an(z− c)n

)
= (z− c)α1 f (z) (2.23)

where f (z) is analytic in a neighborhood of the regular singular point z = c, is guar-
anteed by Theorem 2.3. It is constructed from the root of the indicial equation with
the largest real part.

11 They are linearly independent since they have different analytic properties at z = c.



2.4 Solution at a regular singular point 21

In this section, we construct a second, linearly independent solution, u2(z), to the
differential equation, in a neighborhood of the regular singular point z = c, when
s = α1−α2 ∈ N, i.e., it is a positive integer or zero. This is exactly the case when
the construction of the power series of second solution, u2(z), in the proof of The-
orem 2.3 breaks down or only gives one solution. The reason for the failure is that
the quantity κ in the proof then is zero, and the constructions fail due to division by
zero. The first solution u1(z) in (2.23) is used to construct the second solution.

In Section 2.3.1, we presented a method to find a second solution, u2(z), if one
solution, u1(z), is known. Here, we prefer to employ a variation of this method,
which is more pertinent for the analysis in this section. The method is also called
“variation of the constant,” and we proceed, by making a formal ansatz

u2(z) = C(z)u1(z)

Our aim is to find the conditions on C(z) that make u2(z) a solution to the differential
equation (2.9), if u1(z) is a known solution of the same differential equation.

Differentiate the solution u2(z) and insert in the differential equation (2.9). This
implies

C′′(z)u1(z)+2C′(z)u′1(z)+C(z)u′′1(z)

+
P(z)
z− c

C′(z)u1(z)+
P(z)
z− c

C(z)u′1(z)+
Q(z)

(z− c)2 C(z)u1(z) = 0

If u1(z) is the solution given in (2.23), then it satisfies (2.9), and the expression
above simplifies to

C′′(z)u1(z)+2C′(z)u′1(z)+
P(z)
z− c

C′(z)u1(z) = 0

or
C′′(z)
C′(z)

+2
u′1(z)
u1(z)

+
P(z)
z− c

= 0

We easily integrate this expression and get

lnC′(z)+2lnu1(z)+
∫ z P(z′)

z′ − c
dz′ = A

where A is a complex constant. The integral becomes∫ z P(z′)
z′ − c

dz′ =
∫ z p0 + p1(z′ − c)+ p2(z′ − c)2 + . . .

z′ − c
dz′ = p0 ln(z− c)+F(z)

where F(z) is analytic12 in a neighborhood of z = c. The expression above then is

12 Note that ∫ z ∞

∑
i=0

p1+i(z− c)i dz′ =
∞

∑
i=0

p1+i

i+1
(z− c)i+1 +C
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lnC′(z)+2lnu1(z)+ ln(z− c)p0 +F(z) = A

or13

C(z) =
∫ z G(z′)

(u1(z′))
2 (z′ − c)p0

dz′ =
∫ z H(z′)

(z′ − c)2α1+p0
dz′

where G(z) = exp{A−F(z)} and H(z) = G(z)/( f (z))2 are analytic functions in a
neighborhood of z = c (remember f (z) is non-zero in a neighborhood of z = c).

The roots of the indicial equations satisfy α1 + α2 = 1− p0, see (2.14). The
function C(z) then is (s = α1−α2 is a positive integer or zero)

C(z) =
∫ z H(z′)

(z′ − c)s+1 dz′ =
∫ z h0 +h1(z′ − c)+h2(z′ − c)2 + . . .

(z′ − c)s+1 dz′

where the power series expansion of H(z)

H(z) =
∞

∑
n=0

hn(z− c)n

converges in a neighborhood of z = c. Two different cases appear.

Case 1. First, if s = 0, i.e., the two roots of the indicial equations coincide, then

C(z) =
∫ z h0 +h1(z′ − c)+h2(z′ − c)2 + . . .

z′ − c
dz′ = h0 ln(z− c)+K1(z)

where K1(z) is analytic14 in a neighborhood of z = c. The second solution
u2(z) can then be written as

u2(z) = C(z)u1(z) = (h0 ln(z− c)+K1(z))(z− c)α1 f (z)

where f (z) and K1(z) are analytic functions in a neighborhood of z = c.
Case 2. The second case appears when s is a positive integer, i.e., s = n ∈ Z+.

Then we get

C(z) =
∫ z h0 +h1(z′ − c)+h2(z′ − c)2 + . . .

(z′ − c)n+1 dz′

=
∫ z
(

n−1

∑
i=0

hi

(z− c)n+1−i +
hn

z− c
+

∞

∑
i=0

hn+1+i(z− c)i

)
dz′

which we simplify to

has the same radius of convergence as the power series of P(z).
13 Notice the resemblance with the result in (2.8) in Section 2.3.1.
14 The change of order between summation and integration, and the radius of convergence of the
power series of H(z), see footnote 12 above.



2.4 Solution at a regular singular point 23

C(z) =−
n−1

∑
i=0

hi(z− c)i−n

n− i
+hn ln(z− c)+K2(z)

= (z− c)−nK3(z)+hn ln(z− c)

where K2(z) and K2(z) are analytic in a neighborhood of z = c. The second
solution u2(z) can then be written as

u2(z) = C(z)u1(z) =
(
(z− c)−nK3(z)+hn ln(z− c)

)
(z− c)α1 f (z)

where f (z) and K3(z) are analytic functions in a neighborhood of z = c.

We conclude that, in both cases (s = 0 and s = n ∈ Z+), a logarithmic term
appears, and the second solution can be written (remember s = α1−α2)

u2(z) = (z− c)α2g(z)+hn ln(z− c)(z− c)α1 f (z)

where

f (z) = 1+
∞

∑
n=1

an(z− c)n

and the coefficients an are determined above in Theorem 2.3, and g(z) is an analytic
function in a neighborhood of z = c.

For convenience, we summarize the results in this section in a theorem.

Theorem 2.4. Denote by α1 and α2 the two roots of the indicial equation (2.12) to
the differential equation (2.9), and number the roots such that Reα1 ≥ Reα2. Then
the two linearly independent solutions to (2.9) are:

1. If s = α1−α2 /∈ N {
u1(z) = (z− c)α1 f1(z)
u2(z) = (z− c)α2 f2(z)

where f1(z) and f2(z) are analytic functions in a neighborhood of z = c. The
explicit constructions of these analytic functions are made in Theorem 2.3.

2. If s = α1−α2 ∈ N{
u1(z) = (z− c)α1 f1(z)
u2(z) = (z− c)α2g(z)+hn ln(z− c)(z− c)α1 f1(z)

where f1(z) and g(z) are analytic functions in a neighborhood of z = c. The
explicit construction of f1(z) is made in Theorem 2.3.

Comment 2.2. The construction of the solutions u1(z) and u2(z) in a neighborhood
of a regular singular point z = c, see Theorem 2.4, can, of course, also be applied if
the point z = c is regular. This becomes a special case of the above, simply by letting
p0 = q0 = q1 = 0. We then apply the result of the theorem with the roots of the
indicial equation α1 = 1 and α2 = 0. The iterative scheme in (2.15) corresponding
to α1 = 1 then becomes (Lemma 2.7 implies I(α1 +n) = n(n+1))
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a1 =− p1

2

a2 =−a1 p1 + p2 +q2

6
=

p2
1/2− p2−q2

6

an =−∑
n
m=1 an−m {pm(1+n−m)+qm}

n(n+1)
, n = 2,3,4, . . .

Due to Theorem 2.4, the power series solution u1(z) given by

u1(z) = (z− c)

(
1+

∞

∑
n=1

an(z− c)n

)

is convergent in a neighborhood of the regular point z = c. Also, compare this result
with the result of Problem 2.6.

2.5 Solution at a regular singular point at infinity

The point at infinity is different from all points in the finite complex plane, and it has
to be analyzed as a special case. To find out the behavior of the differential equation
at the point at infinity, introduce a new variable ζ , defined as

ζ =
1
z

=⇒ d
dz

=−ζ
2 d

dζ
and

d2

dz2 = ζ
2 d

dζ
ζ

2 d
dζ

= ζ
4 d2

dζ 2 +2ζ
3 d

dζ

The point at z = ∞ is then mapped to ζ = 0, and in this new variable, ζ , we can
apply the results already obtained in the sections above to the origin ζ = 0.

In fact, the differential equation (2.1) becomes

ζ
4 d2u

dζ 2 +
(
2ζ

3−ζ
2 p(1/ζ )

) du
dζ

+q(1/ζ )u = 0

or
d2u
dζ 2 +

1
ζ

(
2− 1

ζ
p(1/ζ )

)
du
dζ

+
1

ζ 4 q(1/ζ )u = 0 (2.24)

and the behavior of the original equation at z = ∞ is transformed to an ordinary
differential equation at a finite point ζ = 0, which we know how to handle and
classify.

We proceed by investigating the conditions that the coefficients have to satisfy in
order to have a regular point, a regular singular point, or an irregular singular point
at infinity, respectively. We state the result as a definition.

Definition 2.5. The point at infinity is classified as:

1. The point z = ∞ is a regular point of the differential equation (2.1) provided
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2
ζ
− 1

ζ 2 p(1/ζ ) is analytic at ζ = 0 ⇐⇒ 2z− z2 p(z) is analytic at z = ∞

which means that p(z) = 2/z+O(z−2) as z→ ∞,

and

1
ζ 4 q(1/ζ ) is analytic at ζ = 0 ⇐⇒ z4q(z) is analytic at z = ∞

which means that q(z) = O(z−4) as z→ ∞.
2. The point z = ∞ is a regular singular point of the differential equation (2.1)

provided

2− 1
ζ

p(1/ζ ) is analytic at ζ = 0 ⇐⇒ zp(z) is analytic at z = ∞

which means that p(z) = O(z−1) as z→ ∞,

and

1
ζ 2 q(1/ζ ) is analytic at ζ = 0 ⇐⇒ z2q(z) is analytic at z = ∞

which means that q(z) = O(z−2) as z→ ∞.
3. The point z = ∞ is an irregular singular point of the differential equation (2.1)

in all other cases.

The analysis of a regular or singular point at infinity therefore is transformed to
an investigation of the properties at the origin in the ζ variable.

Example 2.2. The differential equation

d2u(z)
dz2 +

2
z

du(z)
dz

+
1
z2 u(z) = 0

has a singular point at z = ∞. This point is a regular singular point.

Example 2.3. The differential equation

d2u(z)
dz2 +

2
z

du(z)
dz

+u(z) = 0

has a singular point at z = ∞. This point is an irregular singular point.
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Problems

2.1. Prove the result of Theorem 2.1.

2.2. Prove, using the result of Problem 2.1, that if u1(z) is a solution (2.2)

d2u1(z)
dz2 +q1(z)u1(z) = 0

where q1(z) is analytic in a domain S, then (b is a regular point of the differential
equation)

u(z) = u1(z)exp
{
−1

2

∫ z

b
p(z′)dz′

}
solves (2.1)

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0

and vice versa, provided

q1(z) = q(z)− 1
2

dp(z)
dz
− 1

4
(p(z))2

2.3. Check that
u1(z) =

sinz
z

solves
d2u1(z)

dz2 +
2
z

du1(z)
dz

+u1(z) = 0

Find a second, linearly independent solution to the differential equation.

2.4. One form of Lamé’s15 differential equation reads (a 6= b and a,b 6= 0)16

d2u(z)
dz2 +

(
z

z2−a2 +
z

z2−b2

)
du(z)

dz
+

k−m(m+1)z2

(z2−a2)(z2−b2)
u(z) = 0

Find its singular points and classify them, and determine the roots of the indicial
equation. Moreover, find the Wronskian W (z) of the two linearly independent solu-
tions, u1(z) and u2(z), that satisfy17{

u1(0) = 1
u′1(0) = 0

{
u2(0) = 0
u′2(0) = 1

15 Gabriel Lamé (1795–1870), French mathematician.
16 Lamé’s differential equation is also briefly mentioned in Section 8.6.1.
17 A way of constructing these solutions is to use the result of Problem 2.6.
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2.5. Electromagnetic scattering by a radially inhomogeneous sphere leads to a dif-
ferential equation of the form

d2u(z)
dz2 +

(
q1(z)−

l(l +1)
z2

)
u(z) = 0

where q1 is an analytic function everywhere in the finite complex plane, and q1(z)→
constant as |z| → ∞ and l ∈ Z+. Classify the points to the differential equation, and
find the functional behavior of its solutions at the origin.

2.6. †Let z = b be a regular point to the differential equation

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0

where p(z) and q(z) have power series expansions
p(z) =

∞

∑
n=0

pn(z−b)n = p0 + p1(z−b)+ p2(z−b)2 + . . .

q(z) =
∞

∑
n=0

qn(z−b)n = q0 +q1(z−b)+q2(z−b)2 + . . .

which are convergent in a neighborhood of z = b. Assume a power series expansion
of the solution u(z)

u(z) =
∞

∑
n=0

an(z−b)n = a0 +a1(z−b)+a2(z−b)2 + . . .

and write the solution as

u(z) = a0u1(z)+a1u2(z)

Find the power series of u1(z) and u2(z), and prove that the series converge, and that
the solutions u1(z) and u2(z) are linearly independent.
Hint: Copy relevant parts of Section 2.4, and use the result of Theorem 2.2.



Chapter 3
Equations of Fuchsian type

Again, we focus on the standard form of the ordinary differential equation of the
second order, viz., equation (2.1)

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0

If all its singular points are regular singular points (including the point at infinity),
see Definitions 2.4 and 2.5 on pages 12 and 24, respectively, the equation is of
Fuchsian type.1 An equation of Fuchsian type therefore only has regular and regu-
lar singular points in the complex plane (including the point at infinity). This implies
— as we shall see soon — that the functions p(z) and q(z) are rational functions.
We divide the analysis below into two different cases, Section 3.1 and Section 3.2,
depending on whether the point at infinity is a singular regular point or a regular
point, respectively. The chapter ends with the displacement theorem in Section 3.3.

3.1 Regular singular point at infinity

We start this section with an investigation of the form of the functions p(z) and q(z),
and the results are then collected in a theorem on page 32.

We assume there are n distinct, regular singular points in the finite complex plane,
located at z = ar, r = 1,2,3, . . . ,n, and one at z = ∞. Moreover, no irregular singular
points are present anywhere in the complex plane. The roots of the indicial equation
are denoted by αr, βr, r = 1,2,3, . . . ,n, and at infinity we denote the roots by α , β .
The functions p(z) and q(z) then must be of the form, see Definition 2.4 on page 12

p(z) =
G(z)
ψ(z)

, q(z) =
H(z)

(ψ(z))2

1 Lazarus Fuchs (1833–1902), German mathematician.
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where

ψ(z) =
n

∏
r=1

(z−ar),

and G(z) and H(z) are analytic functions everywhere in the complex plane (entire
functions). Since the condition of a regular singular point at infinity implies that
zp(z) and z2q(z) are analytic at z = ∞, see Definition 2.5 on page 24, we conclude
that p(z) and q(z) do not grow faster than |z|−1 and |z|−2, respectively, as z→ ∞.
Recall that

G(z) = p(z)
n

∏
r=1

(z−ar) and H(z) = q(z)
n

∏
r=1

(z−ar)
2

are entire functions, and G(z) and H(z) do not grow faster than |z|n−1 and |z|2n−2,
respectively, as z→ ∞. Therefore, they both are polynomials of degree n− 1 and
2n−2, respectively, due to Liouville’s2 theorem [9, p. 87] or [13, p. 204]. We have{

G(z) is a polynomial of degree ≤ n−1
H(z) is a polynomial of degree ≤ 2n−2

Using partial fraction decomposition,3 we write the functions p(z) and q(z) as

p(z) =
n

∑
r=1

cr

z−ar
(3.1)

and either of the two representations of q(z)

q(z) =
n

∑
r=1

dr

(z−ar)2 +
R(z)
ψ(z)

=
n

∑
r=1

dr

(z−ar)2 +
n

∑
r=1

fr

z−ar
(3.2)

where R(z) is a polynomial of degree n−2, satisfying one condition, see below.
The leading coefficients in these representations are determined by

ci = lim
z→ai

(z−ai)p(z)

di = lim
z→ai

(z−ai)2q(z)
i = 1,2,3, . . . ,n

Focus on the singularity at a specific singular point, say z = ai, and write p(z)
and q(z) as 

p(z) =
P(z)
z−ai

=
1

z−ai

∞

∑
n=0

pn(z−ai)n

q(z) =
Q(z)

(z−ai)2 =
1

(z−ai)2

∞

∑
n=0

qn(z−ai)n

2 Joseph Liouville (1809–1882), French mathematician.
3 Some results on partial fractions are presented in Appendix C, see also [10, p. 217–218]
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The roots of the indicial equation at z = ai satisfy (2.14)
αi +βi = 1− p0 = 1− lim

z→ai
(z−ai)p(z) = 1− ci

αiβi = q0 = lim
z→ai

(z−ai)2q(z) = di

Therefore, we have {
ci = 1−αi−βi

di = αiβi
, i = 1,2,3, . . . ,n (3.3)

Continue with the behavior at infinity and use z = 1/ζ , see Section 2.5. The
differential equation in the variable ζ is, see (2.24),

ζ
2 d2u

dζ 2 +ζ

(
2− 1

ζ
p(1/ζ )

)
du
dζ

+
1

ζ 2 q(1/ζ )u = 0

and, see Definition 2.5,

2− 1
ζ

p(1/ζ ) and
1

ζ 2 q(1/ζ ), analytic at ζ = 0

Proceed as above in the case of a singularity at a finite location, and we get,
see (2.14) and (3.1),

α +β = 1− lim
ζ→0

(
2− 1

ζ
p(1/ζ )

)
=−1+ lim

ζ→0

n

∑
r=1

cr

1−arζ
=−1+

n

∑
r=1

cr

With the result in (3.3), we obtain

α +β +
n

∑
r=1

(αr +βr) = n−1

Similarly, we get for the product of the two roots, αβ , that the coefficients in the
polynomial R(z) = ∑

n−2
i=0 rizi have to satisfy a condition. We assume n ≥ 2, and we

get

αβ = lim
ζ→0

1
ζ 2 q(1/ζ ) = lim

ζ→0

(
n

∑
r=1

dr

(1−arζ )2 +
ζ n−2

ζ nψ(1/ζ )
R(1/ζ )

)

=
n

∑
r=1

dr + lim
ζ→0

ζ
n−2R(1/ζ ) =

n

∑
r=1

dr + rn−2

Finally, a condition on the coefficients fr is derived.

αβ = lim
ζ→0

1
ζ 2 q(1/ζ ) = lim

ζ→0

(
n

∑
r=1

dr

(1−arζ )2 +
1
ζ

n

∑
r=1

fr

1−arζ

)
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which implies

αβ =
n

∑
r=1

dr + lim
ζ→0

1
ζ

n

∑
r=1

fr
(
1+arζ +O(ζ 2)

)
For this relation to be consistent, we obtain

αβ =
n

∑
r=1

dr +
n

∑
r=1

frar and
n

∑
r=1

fr = 0

These results are summarized in the following theorem:

Theorem 3.1. Assume the differential equation of Fuchsian type

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0

has n distinct, regular singular points in the finite complex plane, located at z = ar,
r = 1,2,3, . . . ,n, and one at z = ∞. If the roots of the indicial equation at the regular
singular points in the finite plane and at infinity are denoted αr, βr, r = 1,2,3, . . . ,n,
and α , β , respectively, the functions p(z) and q(z) of the differential equation have
the form

p(z) =
n

∑
r=1

1−αr−βr

z−ar

q(z) =
n

∑
r=1

αrβr

(z−ar)2 +
n

∑
r=1

fr

z−ar
=

n

∑
r=1

αrβr

(z−ar)2 +
1

ψ(z)

n−2

∑
i=0

rizi

where ψ(z) = ∏
n
r=1(z− ar). Moreover, the following consistency relations have to

be satisfied

α +β +
n

∑
r=1

(αr +βr) = n−1 (3.4)

and 
n

∑
r=1

fr = 0

αβ =
n

∑
r=1

αrβr +
n

∑
r=1

frar

or

αβ =
n

∑
r=1

αrβr + rn−2 (n≥ 2)

Specifically, when n = 2, f1 and f2 =− f1 are determined in terms of α , β , and αi,
βi.
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3.2 Regular point at infinity

Again, assume there are n distinct, regular singular points in the finite complex
plane, located at z = ar, r = 1,2,3, . . . ,n, but now with a regular point at z = ∞. The
corresponding roots of the indicial equation are denoted αr, βr, r = 1,2,3, . . . ,n,
respectively, and defined as in Section 3.1,

p(z) =
G(z)
ψ(z)

, q(z) =
H(z)

(ψ(z))2

where

ψ(z) =
n

∏
r=1

(z−ar)

and where G(z) and H(z) are entire functions such that, see Definition 2.5 on
page 24,

2z− z2 p(z) and z4q(z) are analytic at z = ∞

With similar arguments as in Section 3.1, these conditions imply that{
G(z) is a polynomial of degree ≤ n−1 with coefficient 2 in front of zn−1

H(z) is a polynomial of degree ≤ 2n−4

We adopt a similar partial fraction decomposition of the functions p(z) and q(z) as
in Section 3.1, viz.,

p(z) =
n

∑
r=1

cr

z−ar

q(z) =
n

∑
r=1

dr

(z−ar)2 +
S(z)
ψ(z)

=
n

∑
r=1

dr

(z−ar)2 +
n

∑
r=1

fr

z−ar

where S(z) is a polynomial of degree n−2, satisfying two side conditions, see below.
The leading coefficients in these representations are determined by

ci = lim
z→ai

(z−ai)p(z)

di = lim
z→ai

(z−ai)2q(z)
i = 1,2,3, . . . ,n

There are conditions on both the p(z) and the q(z) representations. We start with
p(z) and investigate the condition imposed by the regularity at infinity.

2
ζ
− 1

ζ 2 p(1/ζ ) is analytic at ζ = 0

or
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lim
ζ→0

1
ζ

(
2−

n

∑
r=1

cr

1−arζ

)
= lim

ζ→0

1
ζ

(
2−

n

∑
r=1

cr
(
1+arζ +O(ζ 2)

))
finite at ζ = 0

which implies
n

∑
r=1

cr = 2 (3.5)

We proceed by investigating q(z) and the conditions imposed by the regularity at
infinity. There are two conditions on the polynomial S(z).

H(z) = q(z)(ψ(z))2 = (ψ(z))2
n

∑
r=1

dr

(z−ar)2 +ψ(z)S(z)

The degree of the polynomial on the left-hand side is required to be at most 2n−4.
If we denote the polynomial S(z) = ∑

n−2
r=0 srzr, we get, assuming n ≥ 2, see Prob-

lem 3.1,

sn−2 =−
n

∑
r=1

dr, sn−3 =

(
n

∑
r=1

dr

)(
n

∑
i=1

ai

)
−2

n

∑
r=1

drar (3.6)

An alternative representation of the quotient is

S(z)
ψ(z)

=
n

∑
r=1

fr

z−ar
(3.7)

with three conditions on fr, see Problem 3.2,

n

∑
r=1

fr = 0,
n

∑
r=1

dr +
n

∑
r=1

frar = 0, 2
n

∑
r=1

drar +
n

∑
r=1

fra2
r = 0

Analogous to the case with a regular singular point at infinity in Section 3.1, we
also have for the roots of the indicial equation, see (3.3),{

ci = 1−αi−βi

di = αiβi
, i = 1,2,3, . . . ,n

The condition in (3.5) then reads

n

∑
r=1

αr +βr =
n

∑
r=1

(1− cr) = n−2

We summarize these results in the following theorem:

Theorem 3.2. Assume the differential equation of Fuchsian type

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0
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has n distinct, regular singular points in the finite complex plane, located at z = ar,
r = 1,2,3, . . . ,n, and a regular point at z = ∞. If the roots of the indicial equation at
the regular singular points are denoted αr, βr, r = 1,2,3, . . . ,n, the functions p(z)
and q(z) of the differential equation have the form

p(z) =
n

∑
r=1

1−αr−βr

z−ar

q(z) =
n

∑
r=1

αrβr

(z−ar)2 +
n

∑
r=1

fr

z−ar
=

n

∑
r=1

αrβr

(z−ar)2 +
1

ψ(z)

n−2

∑
r=0

srzr

where ψ(z) = ∏
n
r=1(z− ar). Moreover, the following consistency relations have to

be satisfied
n

∑
r=1

αr +βr = n−2

and 

n

∑
r=1

fr = 0

n

∑
r=1

αrβr +
n

∑
r=1

frar = 0

2
n

∑
r=1

αrβrar +
n

∑
r=1

fra2
r = 0

or 
sn−2 =−

n

∑
r=1

αrβr

sn−3 =

(
n

∑
r=1

αrβr

)(
n

∑
i=1

ai

)
−2

n

∑
r=1

αrβrar

(n≥ 2)

Specifically, when n = 3, f1, f2, and f3 are determined in terms of αi and βi, since4∣∣∣∣∣∣
1 1 1
a1 a2 a3
a2

1 a2
2 a2

3

∣∣∣∣∣∣ 6= 0

Comment 3.1. Notice that both the condition above

4 This is a Vandermonde determinant∣∣∣∣∣∣∣∣∣
1 1 . . . 1
a1 a2 . . . an
...

...
...

an
1 an

2 . . . an
n

∣∣∣∣∣∣∣∣∣= ∏
i> j

(ai−a j)

named after the French musician and chemist Alexandre-Théophile Vandermonde (1735–1796).
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n

∑
r=1

αr +βr = n−2

and the corresponding result of Theorem 3.1, see (3.4),

α +β +
n

∑
r=1

(αr +βr) = n−1

can be summarized as “the sum of the roots of the indicial equation (including the
root of the point at infinity) is equal to the number of regular singular points minus
2.”

3.3 The displacement theorem

We adopt the same assumptions as in Section 3.1, viz., there are n distinct, regular
singular points in the finite complex plane, located at z = ar, r = 1,2,3, . . . ,n, and
one regular singular point at z = ∞. The roots of the indicial equation are denoted
by αr, βr, r = 1,2,3, . . . ,n, and at infinity they are α , β .

Let u(z) be a solution to (2.1), and introduce a new function v(z) by a multipli-
cation of powers of the following form:

u(z) = v(z)
n

∏
r=1

(z−ar)ρr (3.8)

where ρr, r = 1,2,3, . . . ,n are arbitrary complex numbers. This multiplication leads
to a change of differential equation, but the location of the singular points and their
singular classification remain. The roots of the indicial equation, however, shift or
are displaced. The following theorem makes these statements more precise:

Theorem 3.3. Let u(z) satisfy the differential equation of Fuchsian type

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0

and assume the equation has n distinct, regular singular points in the finite complex
plane, located at z = ar, r = 1,2,3, . . . ,n, and one regular singular point at z = ∞.
The roots of the indicial equation at the regular singular points in the finite plane
and at infinity are denoted αr, βr, r = 1,2,3, . . . ,n, and α , β , respectively. Moreover,
let

u(z) = v(z)
n

∏
r=1

(z−ar)ρr

where ρr, r = 1,2,3, . . . ,n are arbitrary complex numbers.
Then the function v(z) satisfies
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d2v(z)
dz2 + p(z)

dv(z)
dz

+q(z)v(z) = 0 (3.9)

where

p(z) = p(z)+
n

∑
r=1

2ρr

z−ar
=

n

∑
r=1

1−αr−βr +2ρr

z−ar
=

n

∑
r=1

1−αr−β r
z−ar

q(z) = q(z)+
d
dz

(
n

∑
r=1

ρr

z−ar

)
+

(
n

∑
r=1

ρr

z−ar

)2

+

(
n

∑
r=1

cr

z−ar

)(
n

∑
r=1

ρr

z−ar

)

=
n

∑
r=1

αrβ r

(z−ar)
2 +

R(z)
ψ(z)

which has the same regular singular points, and the indicial equation for v(z) has
the roots

{
αr = αr−ρr

β r = βr−ρr
r = 1,2,3, . . . ,n


α = α +

n

∑
r=1

ρr

β = β +
n

∑
r=1

ρr

corresponding to the finite regular singular points and the point at infinity, respec-
tively.

Proof. Let u(z) = h(z)v(z) and apply Theorem 2.1 on page 4. We have

v′′+
(

p+2
h′

h

)
v′+

{(
h′

h

)2

+
d
dz

h′

h
+ p

h′

h
+q

}
v = 0

From this we conclude that
p(z) = p(z)+2

h′(z)
h(z)

q(z) =
(

h′(z)
h(z)

)2

+
d
dz

h′(z)
h(z)

+ p(z)
h′(z)
h(z)

+q(z)

We use

h(z) =
n

∏
r=1

(z−ar)ρr

and get

p(z) = 2
d
dz

lnh(z)+ p(z) = 2
d
dz

ln
n

∏
r=1

(z−ar)ρr + p(z)

which we simplify to
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p(z) = 2
d
dz

n

∑
r=1

ln(z−ar)ρr + p(z) =
n

∑
r=1

2ρr

z−ar
+ p(z)

=
n

∑
r=1

2ρr

z−ar
+

n

∑
r=1

cr

z−ar
=

n

∑
r=1

1−αr−βr +2ρr

z−ar

by (3.1) and (3.3). Similarly, we get

q(z) =
(

h′(z)
h(z)

)2

+
d
dz

(
h′(z)
h(z)

)
+ p(z)

h′(z)
h(z)

+q(z)

=

(
n

∑
r=1

ρr

z−ar

)2

+
d
dz

(
n

∑
r=1

ρr

z−ar

)
+

(
n

∑
r=1

cr

z−ar

)(
n

∑
r=1

ρr

z−ar

)
+q(z)

and we see that the position and the classification of the singular points ar, r =
1,2,3, . . . ,n remain.

To proceed, calculate the roots of the indicial equations at the singular points. We
make the following definitions:

cr = lim
z→ar

(z−ar)p(z) = 1−αr−βr +2ρr = 1− (αr−ρr)− (βr−ρr)

dr = lim
z→ar

(z−ar)2q(z) = ρ
2
r −ρr + crρr +αrβr

= ρ
2
r −ρr +(1−αr−βr)ρr +αrβr = ρ

2
r − (αr +βr)ρr +αrβr

= (αr−ρr)(βr−ρr)

since limz→ar(z−ar)2q(z) = αrβr, and where we also have used (3.3). The indicial
equation of the differential equation of v(z) at the regular singular point z = ar,
see (2.12), therefore becomes5

ξ
2 +(cr−1)ξ +dr = 0

or
ξ

2−ξ [(αr−ρr)+(βr−ρr)]+(αr−ρr)(βr−ρr) = 0

with solutions {
αr = αr−ρr

β r = βr−ρr

Notice that

p(z) =
n

∑
r=1

1−αr−β r
z−ar

The regular singular point at infinity is analyzed in the same way. The equation
transforms with z = 1/ζ into, see Section 2.5,

5 We denote the variable in the indicial equation by ξ to avoid confusion with the root α to the
indicial equation of the regular singular point at infinity.



3.3 The displacement theorem 39

d2u
dζ 2 +

1
ζ

(
2− 1

ζ
p(1/ζ )

)
du
dζ

+
1

ζ 4 q(1/ζ )u = 0

where
p(z) =

n

∑
r=1

1−αr−βr +2ρr

z−ar

q(z) = q(z)−
n

∑
r=1

ρr

(z−ar)2 +

(
n

∑
r=1

ρr

z−ar

)2

+

(
n

∑
r=1

cr

z−ar

)(
n

∑
r=1

ρr

z−ar

)

To find the roots of the indicial equation of the singularity at infinity, we need to
calculate the following limit, cf. Definition 2.5 on page 24:

p∞ = lim
ζ→0

(
2− 1

ζ
p(1/ζ )

)
= 2− lim

ζ→0

n

∑
r=1

1−αr−βr +2ρr

(1−arζ )

= 2−
n

∑
r=1

(1−αr−βr +2ρr) = 1−2
n

∑
r=1

ρr−α−β

where we in the last equality have used (3.4).
Similarly, we get

q∞ = lim
ζ→0

q(1/ζ )
ζ 2 = lim

ζ→0

q(1/ζ )
ζ 2 − lim

ζ→0

n

∑
r=1

ρr

(1−arζ )2

+ lim
ζ→0

(
n

∑
r=1

ρr

1−arζ

)2

+ lim
ζ→0

(
n

∑
r=1

cr

1−arζ

)(
n

∑
r=1

ρr

1−arζ

)

=αβ −
n

∑
r=1

ρr +

(
n

∑
r=1

ρr

)2

+
n

∑
r=1

cr

n

∑
r=1

ρr

Since cr = 1−αr−βr, we get

q∞ = αβ +

(
n

∑
r=1

ρr

)2

+

(
(n−1)−

n

∑
r=1

(αr +βr)

)
n

∑
r=1

ρr

and due to (3.4), we get

q∞ = αβ +

(
n

∑
r=1

ρr

)2

+(α +β )
n

∑
r=1

ρr =

(
α +

n

∑
r=1

ρr

)(
β +

n

∑
r=1

ρr

)

Since p∞ and q∞ are finite, the regular singular point at infinity remain, see Defini-
tion 2.5 on page 24.

The roots of the indicial equation, α , β , for this equation at the regular singular
point at infinity satisfy, cf. (2.14),
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α +β = 1− p∞ = 2

n

∑
r=1

ρr +α +β

αβ = q∞ =

(
α +

n

∑
r=1

ρr

)(
β +

n

∑
r=1

ρr

)

which gives

α = α +
n

∑
r=1

ρr, β = β +
n

∑
r=1

ρr

and the theorem is proved. ut

As a consequence of this theorem, we see that if we can find solutions to (3.9),
then we have a solution to our original equation, (2.1), by (3.8). Notice also that

dr = αrβ r, r = 1,2,3, . . . ,n

We conclude this chapter with an example and a comment that points out the
alterations in Theorem 3.3 when the point at infinity is a regular point.

Example 3.1. One special case is of interest, viz., ρr = βr, r = 1,2,3, . . . ,n, which
implies {

αr = αr−βr

β r = 0

and the differential equation has the form

d2v(z)
dz2 + p(z)

dv(z)
dz

+q(z)v(z) = 0

whereby Theorems 3.1 and 3.2
p(z) =

n

∑
r=1

1−αr−β r
z−ar

=
n

∑
r=1

1−αr

z−ar

q(z) =
n

∑
r=1

αrβ r

(z−ar)
2 +

R(z)
ψ(z)

=
R(z)
ψ(z)

Notice that the singular behavior of the last term in the differential equation now is
altered — it is less singular — but the point is still a regular singular point due to
the singularity in p(z).

Comment 3.2. Finally, we conclude that if the point, z = ∞, is a regular point to the
equations, the displacement theorem is unaltered except that we now do not have
any displacement of the roots of the indicial equation at infinity. Moreover, if we
require the regularity of the point at infinity is preserved, the sum of the shifts must
add up to zero, i.e., ∑

n
r=1 ρr = 0.
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Problems

3.1. Show the statement made in (3.6).

3.2. Verify the three conditions on fr in the representation

S(z)
ψ(z)

=
n

∑
r=1

fr

z−ar

in Equation (3.7).

3.3. Show that

α +β +
n

∑
r=1

(
αr +β r

)
= n−1

with the notation used in Theorem 3.3.

3.4. Let u(z) satisfy the differential equation

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0

where 
p(z) =

1−α1−β1

z
+

1−α2−β2

z−1

q(z) =− 1
z(z−1)

(
α1β1

z
− α2β2

z−1
−a
)

Under what conditions on the constants αr, βr, r = 1,2, and a is this a differential
equation of Fuchsian type with regular singular points at z = 0,1,∞? Use the dis-
placement theorem, Theorem 3.3, to transform the differential equation so that one
of the roots of the indicial equation at z = 0,1 is zero.

3.5. †Let u(z) satisfy

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0

which is assumed to have n distinct, regular singular points in the finite complex
plane, located at z = ar, r = 1,2,3, . . . ,n, and a regular point at z = ∞. The roots of
the indicial equation are denoted αr, βr, r = 1,2,3, . . . ,n. Prove that a change of the
independent variable

t(z) =
az+b
cz+d

, ad−bc 6= 0

transforms the differential equation to a new differential equation having the same
form, but with regular singular points at

t(ar) =
aar +b
car +d

, r = 1,2,3, . . . ,n
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Moreover, the roots of the indicial equation at the regular singular points are iden-
tical for the two differential equations, and the consistency relations of the two dif-
ferential equations have the same form. What happens if one of the singular points,
say an, satisfies can +d = 0?



Chapter 4
Equations with one to four regular singular
points

We are now well prepared to illustrate the theory presented in Chapter 3 by some ex-
amples. The most simple type of ordinary differential equation contains one regular
singular point, either at a finite location in the complex plane or located at infinity.
We also present the cases of two, three, and four regular singular points.

Before we determine the form of the ordinary differential equation with one, two,
three, and four regular singular points, we might, for completeness, conclude that
there does not exist any ordinary differential equation with only regular points in
the extended complex plane. This is seen by the conflicting conditions that p(z) and
2z− z2 p(z), and q(z) and z4q(z), are all analytic in the extended complex plane, see
Definition 2.5 at page 24.

4.1 ODE with one regular singular point

If there is only one regular singular point present, the singular point can be located
in the finite complex plane or at infinity. The form of the solutions is similar in the
two cases, but we prefer to treat the two cases separately.

4.1.1 Regular singular point at infinity

If the regular singular point is at infinity, we have from Theorem 3.1 on page 32
(n = 0) that p(z) = q(z) = 0, and

u′′(z) = 0

since at all points in the finite complex plane p(z) and q(z) are analytic, and at the
regular singularity at infinity we have
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zp(z) and z2q(z) analytic at z = ∞

We see that there are no free parameters in the differential equation in this case. The
solutions are1

u(z) = Az+B

4.1.2 Regular point at infinity

Assume we have only one regular singular point at z = a1 to the ODE (n = 1), which
we, without loss of generality, can locate at the origin,2 i.e., a1 = 0. The differential
equation is

u′′(z)+ p(z)u′(z)+q(z)u(z) = 0

and, in the language of Theorem 3.2 on page 34, the functions must satisfy α1 +β1 =
−1, α1β1 = 0, and f1 = 0. We then have p(z) =

1−α1−β1

z
=

2
z

q(z) = 0

The general ODE with one regular singular point therefore is

z2u′′(z)+2zu′(z) = 0

and again we see that there are no free parameters in the differential equation. The
general solution is3

u(z) =
A
z

+B

Note that the results presented in the two subsections above, with the regular
singular point at the origin and at infinity as two separate cases, can easily be trans-
formed to the other case by the change of variable z→ 1/z. With this in mind, the
two cases represent the same type of differential equation.

1 Notice that the roots of the indicial equation are 1 and 0, which are consistent with the algebraic
structure of the general solution.
2 Change the variable z→ z−a1.
3 Notice that the roots of the indicial equation are−1 and 0, which are consistent with the algebraic
structure of the general solution.
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4.2 ODE with two regular singular points

The two regular singular points can both be located at a finite location in the complex
plane or one of them can be located at infinity. In the case of two regular singular
points in the finite plane, we also have a possibility to study what happens if the
two regular singular points are located very close to each other. This analysis of
confluence is studied in Section 4.2.3.

4.2.1 One regular singular point at infinity

We assume one of the regular singular points is located at infinity, and the other
regular singular point is located at the origin,4 i.e., a1 = 0.

u′′(z)+ p(z)u′(z)+q(z)u(z) = 0

From Theorem 3.1 we conclude (n = 1)
p(z) =

1−α1−β1

z

q(z) =
α1β1

z2

since f1 = 0, and
α +β +α1 +β1 = 0

where the roots of the indicial equation to the regular singular point at the origin and
at infinity are α1, β1, and α , β , respectively, and the ordinary differential equation
becomes

z2u′′(z)+ z(1−α1−β1)u′(z)+α1β1u(z) = 0

This equation contains two free parameters, viz., the roots α1 and β1 of the indicial
equation. The solutions of the differential equation are{

u(z) = Azα1 +Bzβ1 , α1 6= β1

u(z) = zα1 (A+B lnz) , α1 = β1

The behavior at infinity is determined by ζ = 1/z. We get

ζ
2u′′(ζ )+ζ (1+α1 +β1)u′(ζ )+α1β1u(ζ ) = 0

which is a differential equation of the same form as above and with the same roots
to the indicial equation, but with opposite sign, i.e., α =−α1 and β =−β1.

4 Always possible by a change in the variable, see footnote 2.
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°
a1

a2

z

Fig. 4.1 The two regular singular points a1 and a2 in the finite complex plane.

4.2.2 Regular point at infinity

If the point at infinity is regular, we use the result of Theorem 3.2 with n = 2. The
two distinct, regular singular points are z = a1 and z = a2, see Figure 4.1, and the
roots of the indicial equation are αr and βr, r = 1,2. We have conditions on the roots
of the indicial equation

p(z) =
2

∑
r=1

1−αr−βr

z−ar

q(z) =
2

∑
r=1

αrβr

(z−ar)2 +
s0

(z−a1)(z−a2)

and constraints
s0 =−

2

∑
r=1

αrβr

2

∑
r=1

(αr +βr) = 0,

(
2

∑
r=1

αrβr

)(
2

∑
i=1

ai

)
−2

2

∑
r=1

αrβrar = 0

We rewrite the last two conditions as{
α2 +β2 =−α1−β1

(α1β1−α2β2)(a2−a1) = 0 ⇐⇒ α1β1 = α2β2

which implies that α1 = −α2 and β1 = −β2 or α1 = −β2 and β1 = −α2. These
conditions lead to

p(z) =
2

∑
r=1

1−αr−βr

z−ar
=

1−α1−β1

z−a1
+

1+α1 +β1

z−a2
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and

q(z) =
2

∑
r=1

αrβr

(z−ar)2 −
2

∑
r=1

αrβr

(z−a1)(z−a2)

=
α1β1

(z−a1)2 +
α1β1

(z−a2)2 −
2α1β1

(z−a1)(z−a2)

which we simplify to

q(z) =
α1β1(a1−a2)2

(z−a1)2(z−a2)2

and the differential equation becomes

u′′(z)+
(

1−α1−β1

z−a1
+

1+α1 +β1

z−a2

)
u′(z)+

α1β1(a1−a2)2

(z−a1)2(z−a2)2 u(z) = 0 (4.1)

Again, this equation contains two free parameters, viz., the roots α1 and β1 of the
indicial equation, and the solutions are5

u(z) = A
(

z−a1

z−a2

)α1

+B
(

z−a1

z−a2

)β1

, α1 6= β1

u(z) =
(

z−a1

z−a2

)α1
(

A+B ln
(

z−a1

z−a2

))
, α1 = β1

Note that the results presented in the two subsections above, with the regular
singular points at z = a1 and z = a2, and at the origin and at infinity, respectively,
as two separate cases, can easily be transformed to the other case by the change of
variable z→ (z−a1)/(z−a2). With this in mind, the two cases represent the same
type of differential equation.

4.2.3 Confluence

If we have only one regular singular point, we know from Section 4.1 that6

u′′(z)+
2

z−a
u′(z) = 0 (4.2)

with solution
u(z) =

A
z−a

+B

On the other hand, if we start with two distinct, regular singular points at z = a1
and z = a2, respectively, and let the two regular singular points coalesce, i.e., a1→

5 Notice that this supports the conclusions α1 = −α2 and β1 = −β2 or α1 = −β2 and β1 = −α2
above.
6 The regular singular point is shifted from the origin to the point z = a.
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a2, we can study what happens with the solution under confluence. To investigate
this case, let a2 = a1 + ε in (4.1), and let ε → 0.

u′′(z)+
2(z−a1)− ε + ε(α1 +β1)

(z−a1)(z−a1− ε)
u′(z)+

α1β1ε2

(z−a1)2(z−a1− ε)2 u(z) = 0

If we just let ε → 0 with α1 and β1 fixed, we end up with the same equation as
above, see (4.2).

To obtain a new equation, we can let the two roots, α1 and β1, go to infinity at
the same time. Therefore, we impose the constraint that α1 and β1 approach infinity
according to7 

lim
ε→0

ε(α1 +β1) = 0

lim
ε→0

ε
2
α1β1 = k2

where k2 is a fixed complex constant. Notice that this corresponds to q0 → ∞, and
we expect that classification of the regular singular point at z = a1 changes. We get
in the limit ε → 0

u′′(z)+
2

z−a1
u′(z)+

k2

(z−a1)4 u(z) = 0

Notice that the singular point at z = a1 now is an irregular singular point provided
k2 6= 0, consistent with the fact that q0 → ∞, and that only one free parameter, k,
remains.

To investigate the solution to this equation, let ζ = 1/(z−a1), and the equation
becomes

d2u(ζ )
dζ 2 + k2u(ζ ) = 0

with solutions
u(z) = Aeik/(z−a1) +Be−ik/(z−a1)

The fact that the point z = a1 is an irregular singular point also shows up in the
functional behavior of the solution at the singular point. We notice that the solution
u(z) now has an essential singularity at z = a1, in contrast to the power behavior that
always is the singular behavior at a regular singular point.

7 One simple way of accomplishing this is (other possibilities exist)
α1 =

ik
ε

+
f (ε)

ε

β1 =− ik
ε

where f (ε) is any function satisfying limε→0 f (ε) = 0.
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4.3 ODE with three regular singular points

We have seen that ordinary differential equations with one or two regular singular
points lead to differential equations that have only elementary functions as solutions.
Three regular singular points is the simplest type of a differential equation that pos-
sesses non-elementary functions as solutions. In this section, we explore this case in
some detail. A more extensive treatment is given in Chapter 5.

4.3.1 One regular singular point at infinity

The two regular singular points in the finite plane are, as above, denoted a1 and a2,
see Figure 4.1. We start by moving these regular singular points to z = 0,1, respec-
tively, and at the same time preserving the regular singular point at infinity.8 This
is accomplished in two steps by changing the variable z. The first change, which
moves the point a1 to the origin, is the change z→ z− a1. The second transfor-
mation,9 z→ z/a2, rotates and stretches the complex plane, which preserves the
position of the point at the origin and moves the point a2 to 1.

Moreover, by the use of the displacement theorem, see Theorem 3.3, we can,
without any loss of generality, choose one of the solutions to the indicial equation to
zero, say β1 = β2 = 0. These transformations show that it suffices to study the case
where the regular singular points are located at 0, 1, and ∞, and with the roots of the
indicial equation at these points {α1,0}, {α2,0}, and {α,β}, respectively.

To get the form of the ordinary differential equation use Theorem 3.1 (n = 2)
with a1 = 0 and a2 = 1, and β1 = β2 = 0, see also Example 3.1 on page 40. We get

p(z) =
1−α1

z
+

1−α2

z−1

q(z) =
f1

z
− f1

z−1
=− f1

z(z−1)

since f2 =− f1, and subject to the constraints{
α +β +α1 +α2 = 1
αβ =− f1

Introduce γ = 1−α1. We then have α2 = γ−α−β . The general form of the differ-
ential equation is therefore

u′′(z)+
[

γ

z
+

1− γ +α +β

z−1

]
u′(z)+

αβ

z(z−1)
u(z) = 0

8 The general problem with arbitrary positions of the regular singular points in the finite complex
plane is analyzed in Problem 4.2.
9 The change of variable can, of course, also be made in one step z→ (z−a1)/(a2−a1).
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or
z(z−1)u′′(z)+ [(α +β +1)z− γ]u′(z)+αβu(z) = 0 (4.3)

with regular singular points at z = 0,1, and ∞, and three free parameters α , β , and
γ . We notice that the differential equation is uniquely determined by the parameters
α , β , and γ , with the convention that the order of α and β is immaterial. This is the
hypergeometric differential equation, and due to its central role in the solution of
many differential equations, it is the subject of a whole chapter, see Chapter 5. We
conclude this subsection with a simple lemma that is used below.

Lemma 4.1. Let u(z) be a solution of the hypergeometric differential equation with
parameters α , β , and γ , i.e., (4.3). Then v(z) = u′(z) is the solution to the hyperge-
ometric differential equation with parameters α +1, β +1, and γ +1 (as usual, the
order of the first two parameters is immaterial), i.e.,

z(z−1)v′′(z)+ [(α +β +3)z− (γ +1)]v′(z)+(α +1)(β +1)v(z) = 0

Proof. Let u(z) be a solution to (4.3), and differentiate the equation. The result is

z(z−1)u′′′(z)+(2z−1)u′′(z)+ [(α +β +1)z− γ]u′′(z)
+(α +β +1)u′(z)+αβu′(z) = 0

Denote v(z) = u′(z). Then v(z) satisfies

z(z−1)v′′(z)+ [(α +β +3)z− (γ +1)]v′(z)+(αβ +α +β +1)︸ ︷︷ ︸
(α+1)(β+1)

v(z) = 0

which completes the proof. ut

4.3.2 Regular point at infinity

If the three regular singular points are located in the finite complex plane at a1, a2,
and a3,10 the coefficients of the differential equations are found using the result in
Theorem 3.2 with n = 3. The result is, see Problem 4.4,

p(z) =
3

∑
r=1

1−αr−βr

z−ar

q(z) =
1

(z−a1)(z−a2)(z−a3)
∑
(i jk)

cycl. perm.

αiβi(ai−a j)(ai−ak)
z−ai

(4.4)

where the sum over the cyclic permutations of (i jk) is a sum over the index set
{i jk} ∈ {(123),(231),(312)}. The roots of the indicial equation are subject to the

10 We do not transform these singular points to a set of standard positions as we did in Section 4.3.1.
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constraint
3

∑
r=1

αr +βr = 1

The ordinary differential equation with three regular singularities has, because of
its widespread use and importance, a special name — the Papperitz11 equation. Its
solutions are denoted

u(z) ∈ P

a1 a2 a3
α1 α2 α3 z
β1 β2 β3


This notion is due to Riemann12 (Riemann’s P symbol) and denotes the set of all
solutions of the differential equation with coefficients (4.4). The first row denotes
the three singular points of the differential equation, and the second and third rows
contain the roots of the indicial equation, respectively. The three columns can be
interchanged arbitrarily. Also, the two roots of the indicial equation in each column
can be interchanged, without affecting the solution set.

4.3.2.1 Displacements

The displacement theorem, Theorem 3.3, shows that multiplying the solution with a
factor (z−ai)ρi shifts both the roots of the indicial equation by a factor ρi, i.e., αi→
αi−ρi and βi→ βi−ρi. If we want the new solution to be of the same Fuchsian type
— in this case with three regular singular points — and preserving the regular point
at infinity, the coefficients of the shift must satisfy, see Comment 3.2 on page 40,

3

∑
r=1

ρr = 0

in order to satisfy the constraint

3

∑
r=1

αr +βr = 1

both for the shifted and the original cases. The result of the displacement theorem
then reads

P

a1 a2 a3
α1 α2 α3 z
β1 β2 β3

=
(

z−a1

z−a3

)ρ1
(

z−a2

z−a3

)ρ2

P

 a1 a2 a3
α1−ρ1 α2−ρ2 α3 +ρ1 +ρ2 z
β1−ρ1 β2−ρ2 β3 +ρ1 +ρ2


(4.5)

11 Erwin Johannes Papperitz, German mathematician.
12 Bernhard Riemann (1826–1866), German mathematician.
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4.3.2.2 Substitutions

It makes sense to ask what transformations of the independent variable z preserve
the form of the equation — in this case three distinct, regular singular points. Such
transformation must be one-to-one mappings of the extended complex plane onto
itself. The Möbius13 transformation t(z) is the only such transformation,14 and the
following theorem is central:

Theorem 4.1 (The substitution theorem). A change of the independent variable

t(z) =
az+b
cz+d

, ad−bc 6= 0

preserves the set of solutions, i.e.,

P

a1 a2 a3
α1 α2 α3 z
β1 β2 β3

= P

t(a1) t(a2) t(a3)
α1 α2 α3 t(z)
β1 β2 β3


where ∑

3
r=1 (αr +βr) = 1 and the images of the regular singular points are

t(ar) =
aar +b
car +d

, r = 1,2,3

If one of the regular singular points, say a3, satisfies ca3 + d = 0, then the images
are two regular singular points, t(a1) and t(a2), in the finite complex plane, and a
regular singular point at infinity.

Proof. The proof is a direct consequence of the results in Problem 3.5, but we prefer
to present an explicit proof using Theorem 2.1 on page 4. To this end, assume u(z)
is a solution of

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0

where the coefficients are given by (4.4). Then if

t(z) =
az+b
cz+d

, with inverse z(t) =
b−dt
ct−a

v(t) = u(z(t)) satisfies

d2v(t)
dt2 +

(
p(z(t))z′(t)− z′′(t)

z′(t)

)
dv(t)

dt
+q(z(t))

(
z′(t)

)2 v(t) = 0

In our special case

13 August Ferdinand Möbius (1790–1868), German mathematician.
14 See, e.g., [9, p. 187].
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z′(t) =
ad−bc
(ct−a)2 and z′′(t) =−2c

ad−bc
(ct−a)3

Explicit calculations show that the first coefficient in (4.4) transforms as (we intro-
duce the notion cr = 1−αr−βr, r = 1,2,3)

p̃(t) = p(z(t))z′(t)− z′′(t)
z′(t)

=
3

∑
r=1

cr(ad−bc)
(b−dt)(ct−a)−ar(ct−a)2 +

2c
ct−a

=
1

(ct−a)

3

∑
r=1

(
cr(ad−bc)

(aar +b)− t(car +d)
+ crc

)
=

1
(ct−a)

3

∑
r=1

cr
(ad−bc)+ c(b+aar)− ct(car +d)

(aar +b)− t(car +d)

=
1

(ct−a)

3

∑
r=1

cr
(car +d)(ct−a)

t(car +d)− (aar +b)
=

3

∑
r=1

cr

t− t(ar)

since ∑
3
r=1 cr = 2, and where

t(ar) =
aar +b
car +d

If one of the regular singular points, say a3, satisfies ca3 + d = 0, then only two
terms remain in the sum, i.e.,

p̃(t) =
2

∑
r=1

cr

t− t(ar)

The second coefficient in (4.4) transforms as

q̃(t) = q(z(t))
(
z′(t)

)2

=
(ad−bc)2

[b−dt−a1(ct−a)][b−dt−a2(ct−a)][b−dt−a3(ct−a)]

× ∑
(i jk)

cycl. perm.

αiβi(ai−a j)(ai−ak)
b−dt−ai(ct−a)

which we simplify to

q̃(t) =
(ad−bc)2(ca1 +d)−1(ca2 +d)−1(ca3 +d)−1

(t− t(a1))(t− t(a2))(t− t(a3))
∑
(i jk)

cycl. perm.

αiβi(ai−a j)(ai−ak)
t(cai +d)− (aai +b)

=
(ad−bc)2

(t− t(a1))(t− t(a2))(t− t(a3))
∑
(i jk)

cycl. perm.

αiβi(ai−a j)(ai−ak)
(t− t(ai))(cai +d)2(ca j +d)(cak +d)
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For each cyclic permutation of i, j,k, the terms in the sum can be rewritten as

(ad−bc)2(ai−a j)(ai−ak)
(cai +d)2(ca j +d)(cak +d)

=
{
(aai +b)(ca j +d)− (aa j +b)(cai +d)

}
× {(aai +b)(cak +d)− (aak +b)(cai +d)}

(cai +d)2(ca j +d)(cak +d)
= (t(ai)− t(a j))(t(ai)− t(ak))

The entire contribution then is

q̃(t) =
1

(t− t(a1))(t− t(a2))(t− t(a3))
∑
(i jk)

cycl. perm.

αiβi(t(ai)− t(a j))(t(ai)− t(ak))
t− t(ai)

If one of the regular singular points, say a3, satisfies ca3 +d = 0, then we obtain
the second coefficient from above by taking the limit t(a3)→ ∞, i.e.,

q̃(t) =
α1β1(t(a1)− t(a2))

(t− t(a1))2(t− t(a2))
+

α2β2(t(a2)− t(a1))
(t− t(a1))(t− t(a2))2 +

α3β3

(t− t(a1))(t− t(a2))

We therefore conclude that, if u(z) is a solution to

d2u(z)
dz2 + p(z)

du(z)
dz

+q(z)u(z) = 0 (4.6)

with coefficients (4.4), then v(t) = u(z(t)) satisfies

d2v(t)
dt2 + p̃(t)

dv(t)
dt

+ q̃(t)v(t) = 0 (4.7)

where
p̃(t) =

3

∑
r=1

cr

t− t(ar)

q̃(t) =
1

(t− t(a1))(t− t(a2))(t− t(a3))
∑
(i jk)

cycl. perm.

αiβi(t(ai)− t(a j))(t(ai)− t(ak))
t− t(ai)

The roots of the indicial equation for these two differential equations, (4.6) and
(4.7), are the same.

It remains to investigate what happens if one of the regular singular points, say
a3, satisfies ca3 +d = 0. We then have

p̃(t) =
2

∑
r=1

cr

t− t(ar)

q̃(t) =
α1β1(t(a1)− t(a2))

(t− t(a1))2(t− t(a2))
+

α2β2(t(a2)− t(a1))
(t− t(a1))(t− t(a2))2 +

α3β3

(t− t(a1))(t− t(a2))
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From Definition 2.5 on page 24, we conclude that the point at infinity is a regular
singular point, since

2− lim
ζ→0

1
ζ

p̃(1/ζ ) = 2−
2

∑
r=1

cr = c3 = 1−α3−β3

and
lim
ζ→0

1
ζ 2 q̃(1/ζ ) = α3β3

are analytic at γ = 0, and the theorem is proved. ut

4.3.2.3 Connection to a regular singular point at infinity

Theorem 4.1 states that the solution set of the two equations, (4.6) and (4.7), are
the same. Using this theorem, it is possible to transform one of the singular points
to infinity (transforming the infinity point from a regular point to a regular singu-
lar point), and, moreover, to scale the other two to the positions z = 0 and z = 1,
respectively. It is convenient to extend the use of the Riemann’s P symbol to ac-
commodate also solutions, which have a regular singular point at infinity and two
regular singular points at z = 0 and z = 1. With such an extension, we get

P

a1 a2 a3
α1 α2 α z
β1 β2 β

= P


0 1 ∞

α1 α2 α
z−a1

a2−a1

a2−a3
z−a3

β1 β2 β

 (4.8)

Please bear in mind that the roots of the indicial equation satisfy

2

∑
r=1

αr +βr +α +β = 1

which is consistent both with the condition for three regular singular points in the
finite complex plane and a regular point at infinity (left-hand side of (4.8)), and with
the condition for two regular singular points in the finite complex plane and a regular
singular point at infinity (right-hand side (4.8)).

Moreover, with the use of the displacement theorem, Theorem 3.3, and Com-
ment 3.2 on page 40, we can shift one of the roots of the indicial equation at the
points at z = 0 and z = 1 to zero by a shift ρr = βr. However, to preserve the Fuch-
sian type — two regular singular points at z = 0 and z = 1, and one regular singular
point at infinity — the root of the indicial equation of the point at infinity has to
increase by ρ1 +ρ2 = β1 +β2. The result of this transformation is

P

 0 1 ∞

α1 α2 α z
β1 β2 β

= zβ1 (z−1)β2 P

 0 1 ∞

0 0 α +β1 +β2 z
α1−β1 α2−β2 β +β1 +β2

 (4.9)
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From these last relations, (4.8) and (4.9), we see that the total set of solutions
of the Papperitz equation, where all three regular singular points lie in the finite
complex plane, can be obtained from the solutions of the differential equation with
regular singular points at 0, 1, and ∞, respectively, and where two of the roots of the
indicial equation are zero, i.e., the hypergeometric differential equation, (4.3). All
solutions of the Papperitz equation are therefore found by solving the hypergeomet-
ric equation followed by a proper transformation of the independent variable. This
result strongly motivates us to study the solutions of the hypergeometric equation,
and this is the subject of Chapter 5.

4.4 ODE with four regular singular points

We proceed with the two different cases of differential equations with four regular
singular points. The point at infinity can, as above, be a regular singular point or
a regular point. These two cases are developed in the two sections below. A more
extensive analysis of the solutions is given in Chapter 8.

4.4.1 One regular singular point at infinity

The three singular points in the finite complex plane are generally located at z = ai,
i = 1,2,3. One of these points can be transformed to the origin, and one transformed
(rotated and translated) to z = 1, see the analogous transformation and rotation in
Section 4.3.1. The remaining singular point is located at z = a. The three singular
points in the finite complex plane are therefore located at a1 = 0, a2 = 1, and a3 = a
(complex number), see Figure 4.2.

One of the roots of the indicial equation can, for each ai, by the displacement
theorem on page 36, be set to zero, see also Example 3.1 on page 40. The other
roots are labeled αi, i = 1,2,3, corresponding to the singular points ai, i = 1,2,3,
respectively. The roots at infinity are denoted α and β .

Following the result of Theorem 3.1 (n = 3) on page 32, we get
p(z) =

1−α1

z
+

1−α2

z−1
+

1−α3

z−a

q(z) =
r0 + r1z

z(z−1)(z−a)

subject to the constraints {
α +β +α1 +α2 +α3 = 2
αβ = r1
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°

a

1

z

Fig. 4.2 The three regular singular points at z = 0,1,a in Heun’s equation. The fourth singular
point is located at infinity.

Introduce 
γ = 1−α1

δ = 1−α2

ε = 1−α3

The general form of the differential equation is therefore

u′′(z)+
[

γ

z
+

δ

z−1
+

ε

z−a

]
u′(z)+

αβ (z−h)
z(z−1)(z−a)

u(z) = 0 (4.10)

where h is a free parameter — an accessory parameter — and the other coefficients
are subject to the constraint

α +β +1 = γ +δ + ε

This is Heun’s equation,15 and the properties of its solution are analyzed in some
detail in Chapter 8.

4.4.2 Regular point at infinity

For completeness, we give the form of the differential equation with four regular
singular points in the finite complex plane, and the point at infinity being a regular
point, even if we do not explore this equation any further in this textbook.

15 Karl Heun (1859–1929), German mathematician.



58 4 Equations with one to four regular singular points

Labeling the regular singular points, as usual, by ai, i = 1,2,3,4, and the cor-
responding roots of the indicial equation by αi and βi, i = 1,2,3,4, respectively,
Theorem 3.2 on page 34 implies

p(z) =
4

∑
r=1

1−αr−βr

z−ar

q(z) =
4

∑
r=1

αrβr

(z−ar)2 +
4

∑
r=1

fr

z−ar

subject to
4

∑
r=1

(αr +βr) = 2

and

4

∑
r=1

fr = 0,
4

∑
r=1

αrβr +
4

∑
r=1

frar = 0, 2
4

∑
r=1

αrβrar +
4

∑
r=1

fra2
r = 0

Generalizing the notation by Riemann introduced in Section 4.3.2, we write the
set of solutions to the differential equation in this section as

u(z) ∈ P

a1 a2 a3 a4
α1 α2 α3 α4 z
β1 β2 β3 β4

 (4.11)

This notion denotes the set of all solutions of the differential equation with co-
efficients above. The first row denotes the four singular points of the differential
equation, and the second and third rows contain the roots of the indicial equation,
respectively. The four columns can be interchanged arbitrarily. Also, the two roots
of the indicial equation in each column can be interchanged, without affecting the
solution set.

Problems

4.1. Prove that the differential equation with two regular singular points, (4.1), trans-
forms by a change of the independent variable

t(z) =
az+b
cz+d

, ad−bc 6= 0

to the differential equation

v′′(t)+
(

1−α1−β1

t− t(a1)
+

1+α1 +β1

t− t(a2)

)
v′(t)+

α1β1(t(a1)− t(a2))2

(t− t(a1))2(t− t(a2))2 v(t) = 0
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i.e., the change of variable preserves the set of solutions, cf. Theorem 4.1. What
happens if one of the singular points, say a2, satisfies ca2 +d = 0?

4.2. Find the general form of the differential equation with two regular singular
points at z = a1 and z = a2 and one regular singular point at infinity. Check, by
specializing the result, with the expression in (4.3).

4.3. Show that the general differential equation with three regular singular points at
z = a1,a2 and ∞ transforms into the equation in Section 4.2.1 as a2→ a1.
Hint: Start with the hypergeometric differential equation, see (4.3),

z(z−1)u′′(z)+ [(α +β +1)z− γ]u′(z)+αβu(z) = 0

and make the transformation z→ (z−a1)/(a2−a1).

4.4. Show the representation of the coefficient functions p(z) and q(z) in the Pap-
peritz equation, see (4.4),

p(z) =
3

∑
r=1

1−αr−βr

z−ar

q(z) =
1

(z−a1)(z−a2)(z−a3)
∑
(i jk)

cycl. perm.

αiβi(ai−a j)(ai−ak)
z−ai

where the sum over the cyclic permutations of (i jk) is a sum over the index set
{i jk} ∈ {(123),(231),(312)}.

4.5. Using the notion in (4.11) and the displacement theorem, Theorem 3.3, prove
(also compare (4.5) and (4.9))

P

a1 a2 a3 a4
α1 α2 α3 α4 z
β1 β2 β3 β4

=
(

z−a1

z−a4

)ρ1
(

z−a2

z−a4

)ρ2
(

z−a3

z−a4

)ρ3

×P

 a1 a2 a3 a4
α1−ρ1 α2−ρ2 α3−ρ3 α4 +ρ1 +ρ2 +ρ3 z
β1−ρ1 β2−ρ2 β3−ρ3 β4 +ρ1 +ρ2 +ρ3


and

P

 0 1 a ∞

α1 α2 α3 α z
β1 β2 β3 β

= zβ1 (z−1)β2 (z−a)β3

×P

 0 1 a ∞

0 0 0 β +β1 +β2 +β3 z
α1−β1 α2−β2 α3−β3 α +β1 +β2 +β3





Chapter 5
The hypergeometric differential equation

Differential equations with three regular singular points (one located at infinity) play
an important role in mathematical physics, and in this chapter we investigate this
situation in some detail. More details are found in the rich literature on the subject,
see, e.g., Refs. 11, 18, 31.

5.1 Basic properties

We have already seen that the hypergeometric differential equation in (4.3)

z(z−1)u′′(z)+ [(α +β +1)z− γ]u′(z)+αβu(z) = 0

has three regular singular points at z = 0,1,∞. We also write the differential equation
as

u′′(z)+
(α +β +1)z− γ

z(z−1)
u′(z)+

αβ

z(z−1)
u(z) = 0

The roots of the indicial equation are given by, see (2.12),

I(λ ) = λ
2 +(p0−1)λ +q0 = 0

The roots of the indicial equations at the three different regular singular points are
summarized in Table 5.1.

Table 5.1 The roots of the indicial equation of the hypergeometric differential equation.

Point p0 q0 Roots λ

z = 0 γ 0 0,1− γ

z = 1 1+α +β − γ 0 0,γ−α−β

z = ∞ 1−α−β αβ α,β
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We now investigate the solution of the hypergeometric differential equation in the
vicinity of the regular singular point z = 0, where the roots of the indicial equation
are 0 and 1− γ . Therefore, we expect that one of the solutions is analytic at z =
0. In general, from the analysis in Section 2.4, there are two linearly independent
solutions u(z) and v(z) of the form

u(z) = 1+
∞

∑
n=1

anzn, v(z) = z1−γ

(
1+

∞

∑
n=1

a′nzn

)
(5.1)

Note that the solution v(z) is not analytic near the regular singular point z = 0,
unless γ = 1,0,−1,−2, . . .. However, in this case the two indicial roots differ by an
integer, and Re(1−γ)≥ 0, which implies that the results of Section 2.4.3 have to be
used. The power series solution u(z) in (5.1) is called the hypergeometric series.
The radius of convergence of this power series is at most the distance to the closest
singular point,1 i.e., the radius is less than or equal to 1. The properties of this power
series solution are presented in Theorem 5.1 below.

The analytic extension of the hypergeometric series in the complex z-plane is
denoted the hypergeometric function,2 and we adopt the notation F(α,β ;γ;z).
Note that

F(α,β ;γ;0) = 1

The hypergeometric function is analytic everywhere in the finite complex plane,
excluding the possible singular point at z = 1. The singularity can be either a pole or
a branch point. If the singularity is a branch point, we introduce a branch cut from
z = 1 to z = ∞ along the real axis, in order to get a one-valued function throughout
the cut plane.

A long list of elementary and special functions can be expressed in a direct or an
indirect way in the hypergeometric function. A collection of functions that can be
expressed in the hypergeometric function is found in Appendix E on page 209.

5.2 Hypergeometric series

The objective of our investigation is now to explicitly determine the coefficients an
and a′n in (5.1). This approach resembles strongly the analysis in Section 2.4, i.e.,
Frobenius method, but due to the special form of the differential equation, we repeat
parts of the analysis here.

We begin with the an coefficients and insert the power series of u(z) in the differ-
ential equation, and identity the coefficient in front of the same power of z, which
must vanish in order to have the power series of u(z) satisfying the differential equa-

1 An exception occurs if αβ = 0, then u(z) = 1 is a solution, which has infinite convergence radius.
2 The more complete notion is 2F1(α,β ;γ;z), see also the generalized hypergeometric series in
Equation (7.14) on page 138.
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tion.3 We get

n(n−1)an− (n+1)nan+1 +(α +β +1)nan− γ(n+1)an+1 +αβan = 0, n ∈ N

which simplifies to

(n+1)(n+ γ)an+1 = (n+α)(n+β )an, n ∈ N (5.2)

or
an+1

an
=

(n+α)(n+β )
(n+1)(n+ γ)

, n ∈ N

The values of γ = 0,−1,−2, . . . have to be excluded from the analysis, otherwise the
coefficients an become undetermined for high n values. By recursion we get (a0 = 1)

an =
an

a0
=

n−1

∏
ν=0

aν+1

aν

=
n−1

∏
ν=0

(ν +α)(ν +β )
(ν +1)(ν + γ)

Notice that we can always let a0 = 1, since the hypergeometric differential equation
is linear and homogeneous.4 It is now convenient to introduce the rising factorial,
also known as the Appell5 symbol or Pochhammer6 symbol, (α,n) defined in Ap-
pendix A on page 173 as

(α,n) =
n−1

∏
ν=0

(ν +α) = α(α +1)(α +2) . . .(α +n−1) =
Γ (α +n)

Γ (α)
, (α,0) = 1

and we write the coefficient an as

an =
(α,n)(β ,n)
(γ,n)(1,n)

=
(α,n)(β ,n)

(γ,n)n!

since n! = (1,n). The solution u(z) then becomes

u(z) =
∞

∑
n=0

(α,n)(β ,n)
(γ,n)

zn

n!

The sum on the right-hand side defines the hypergeometric series, and the sum is a
representation of the hypergeometric function in the domain of the complex plane,
where the series converges. The domain of convergence of the hypergeometric series
is investigated in the following theorem:

Theorem 5.1. The hypergeometric series

3 The coefficients a′n in (5.1) are determined in Problem 5.1.
4 When γ = 0 and αβ 6= 0, the recursion relation for the lowest order term n = 0 is γa1 = αβa0,
with is in conflict with a0 = 1. In this case, no solution, that is analytic at the origin satisfying
u(0) 6= 0, exists.
5 Paul Appell (1855–1930), French mathematician.
6 Leo August Pochhammer (1841–1920), Prussian mathematician.
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∞

∑
n=0

(α,n)(β ,n)
(γ,n)

zn

n!

converges inside the unit circle, |z|< 1, and there it represents an analytic function
for any choice of parameters, provided γ is not zero or a negative integer.7 Outside
the unit circle, |z|> 1 the series, in general, diverges. On the unit circle, |z|= 1, the
series is absolutely convergent, provided Re(γ−α−β ) > 0. The series converges,
but not absolutely, for |z|= 1, z 6= 1, as long as −1 < Re(γ−α−β )≤ 0. If Re(γ−
α−β )≤−1 the series diverges on |z|= 1.

The hypergeometric series represents the hypergeometric function in the domain
of convergence of the series, i.e.,

F(α,β ;γ;z) =
∞

∑
n=0

(α,n)(β ,n)
(γ,n)

zn

n!
, |z|< 1

If α or β is a non-positive integer −n, the series is a polynomial of degree n.

Proof. The radius of convergence, r, of the power series is determined by the ratio
test8

r−1 = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
The analysis preceding this theorem shows that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

∣∣∣∣ (n+α)(n+β )
(n+1)(n+ γ)

∣∣∣∣= 1

and since the radius of convergence, r, of a power series is determined by recip-
rocal of this limit, we have proved that the power series converges absolutely for
|z|< 1 and diverges for |z|> 1. Convergence inside and divergence outside the unit
circle are therefore proved. On the radius of convergence, r = 1, the ratio test is
inconclusive, and we can use Raabe’s test.9 From above, we get

7 When γ is zero or a negative integer, the γ parameter is increased by an arbitrary integer m if we
investigate the mth derivative of u(z) instead, see Lemma 4.1 on page 50 (see also footnote 4). The
solution u(z) is then obtained by an m-fold integration.
8 Sometimes this test is known as d’Alembert’s ratio test after the French mathematician Jean le
Rond d’Alembert (1717–1783).
9 Raabe’s test, see, e.g., [24] or [13, p. 106], is sometimes useful when the ratio test is inconclusive.
The test is named after the Swiss mathematician Joseph Ludwig Raabe (1801–1859). If the terms
wn ∈ C of the series

S =
∞

∑
n=0

wn

satisfy
wn+1

wn
= 1+

α

n
+

βn

n2 , |βn| ≤M

for large n, then the series S converges absolutely if Reα <−1.
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an+1

an
=

(n+α)(n+β )
(n+1)(n+ γ)

= 1+
α +β − γ−1

n
+O(n−2)

and by Raabe’s test, the power series converges absolutely on the unit circle, z = 1,
provided Re(γ−α−β ) > 0.

In order to investigate what happens on the unit circle in more detail, let z = eiθ ,
θ ∈ [0,2π]. The sum to analyze is

∞

∑
n=0

aneinθ

where

an =
(α,n)(β ,n)

(γ,n)n!
=

(α,n)
n!

(β ,n)
n!

n!
(γ,n)

=
Γ (γ)

Γ (α)Γ (β )
nα+β−γ−1 (1+O(1/n))

=
Γ (γ)

Γ (α)Γ (β )

(
n−(δ+1) +O(n−(Reδ+2))

)
where we used Lemma A.5 on page 174, and where δ = γ−α−β . Since the series

S(θ) = 1+
∞

∑
n=1

n−(δ+1)einθ

is absolutely convergent for Reδ > 0, which we also concluded above by Raabe’s
test, and divergent if Reδ ≤−1, the hypergeometric series is absolutely convergent
or divergent under the same conditions [22].

It remains to investigate what happens when −1 < Reδ ≤ 0. We conclude that
the hypergeometric series under this condition differs from the series S(θ) by an
absolutely convergent series, so it suffices to prove the convergence of the sum S(θ).
Summation by parts10 implies

(S(θ)−1)
(

eiθ −1
)

=
∞

∑
n=1

n−(δ+1)
(

ei(n+1)θ − einθ

)
=−eiθ −

∞

∑
n=1

ei(n+1)θ
(
(n+1)−(δ+1)−n−(δ+1)

) (5.3)

The parenthesis in the last sum is bounded by∣∣∣(n+1)−(δ+1)−n−(δ+1)
∣∣∣= ∣∣∣∣(δ +1)

∫ n+1

n
t−(δ+2) dt

∣∣∣∣≤ |δ +1|n−(Reδ+2)

10 Summation by parts is

n

∑
k=m

fk(gk+1−gk) = fn+1gn+1− fmgm−
n

∑
k=m

gk+1( fk+1− fk)
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The last series on the right-hand side of (5.3) therefore converges absolutely and we
conclude that S(θ)

(
eiθ −1

)
is finite, and S(θ) is convergent provided θ 6= 0,2π ,

i.e., z 6= 1.
We note that if α or β is a non-positive integer −n, the coefficient ak = 0, k > n,

and the hypergeometric series is a polynomial of degree n, and the proof is com-
pleted. ut

Comment 5.1. The results of Theorem 5.1 can also be obtained by employing The-
orem B.4 and Corollary B.1 on pages 191 and 193, respectively. Even if no addi-
tional results are obtained by employing these theorems, it is illustrative to apply an
alternative approach to determine the radius of convergence of the hypergeometric
series.

We begin by identifying the recursion relation of the coefficient an. From (5.2),
we obtain

an+1 =
(n+α)(n+β )
(n+1)(n+ γ)

an = Anan

where 
An =

(n+α)(n+β )
(n+1)(n+ γ)

= 1+
α +β − γ−1

n
+O(1/n2)

= 1− δ +1
n

+O(1/n2)

Bn = 0

which implies, using the notation in Theorem B.4,
α = 0
β1 =−(δ +1)
γ1 = 0

and from the same theorem we obtain the dominant contribution of the sequence
{an}∞

n=0 at large values of n, i.e.,

an = Cn(β1+γ1)/(1−α)
(

1+
c
n

+O(1/n2)
)

= Cn−(δ+1)
(

1+
c
n

+O(1/n2)
)

, n→ ∞

From the results above and Corollary B.1, the asymptotic behavior becomes

lim
n→∞

an+1

an
= 1

The convergence inside the unit circle is therefore established.
A necessary condition for convergence of the hypergeometric series on the unit

circle can also be obtained from Corollary B.1. The result is

an+1

an
= 1− δ +1

n
+O(1/n2)
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By Raabe’s test, see footnote 9, we get convergence on the unit circle provided
Reδ > 0.

We also conclude from the series representation of the hypergeometric function
that F(α,β ;γ;z) is analytic in α and β provided |z|< 1.

If γ is a positive integer,11 the two roots of the indicial equation differ by an inte-
ger, and the general solution to the hypergeometric differential equation is obtained
by the method developed in Section 2.4.3. The general solution then has the form

v(z) = G(α,β ,γ,z)+ lnzH(α,β ,γ,z)

where G(α,β ,γ,z) and H(α,β ,γ,z) are analytic in a neighborhood of z = 0.
We end this section by constructing alternative solutions to the hypergeometric

differential equation. Formally, in the notion of Riemann’s P symbol, the hypergeo-
metric function belongs to the set

F(α,β ;γ;z) ∈ P

 0 1 ∞

0 0 α z
1− γ γ−α−β β


The displacement theorem, Theorem 3.3, in this notation reads, see (4.9) on page 55,
with α1 = β2 = 0

P

 0 1 ∞

0 0 α z
1− γ γ−α−β β

= z1−γ P

 0 1 ∞

0 0 α +1− γ z
γ−1 γ−α−β β +1− γ


from which we conclude that

z1−γ F(α +1− γ,β +1− γ;2− γ;z) (5.4)

is also a solution to the hypergeometric differential equation,12 and this solution, in
general, represents the second solution to the hypergeometric differential equation
in a power series expansion at z = 0. Indeed, by Theorem 5.1, the hypergeometric
series corresponding to the right-hand side converges for |z| < 1, and on the unit
circle the convergence is guaranteed, provided Re((2− γ)− (α +1− γ)− (β +1−
γ)) = Re(γ−α−β ) > 0.

Similarly,13 using α2 = β1 = 0 in (4.9),

P

 0 1 ∞

0 0 α z
1− γ γ−α−β β

= (1− z)γ−α−β P

 0 1 ∞

0 0 γ−β z
1− γ α +β − γ γ−α


11 See footnote 7 for the case γ = 0.
12 Note that the corresponding hypergeometric series is well defined when γ = 0,−1,−2, . . ., which
was a case where the technique in Theorem 5.1 did not work, cf. also Lemma 4.1 on page 50.
13 It does not matter if we write (1− z)γ−α−β or (z−1)γ−α−β since Riemann’s P symbol denotes
the set of solutions.
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and, using α1 = α2 = 0 in (4.9),

P

 0 1 ∞

0 0 α z
1− γ γ−α−β β


= z1−γ (1− z)γ−α−β P

 0 1 ∞

0 0 1−β z
γ−1 α +β − γ 1−α


(5.5)

which lead to
(1− z)γ−α−β F (γ−α,γ−β ;γ;z) (5.6)

and
z1−γ(1− z)γ−α−β F (1−α,1−β ;2− γ;z) (5.7)

also are solutions to the same equation. The systematics of this observation is further
developed in Section 5.4.

5.3 Recursion and differentiation formulae

To simplify the analysis in this section, we introduce the notion

Fγ(z) = F(α,β ;γ;z)

and form the difference Fγ −Fγ−1. By the use of the result in Theorem 5.1, we get

Fγ −Fγ−1 =
∞

∑
n=0

(α,n)(β ,n)
(1,n)(γ,n)

zn
(

1− γ +n−1
γ−1

)
=− z

γ−1

∞

∑
n=0

(α,n)(β ,n)
(1,n)(γ,n)

nzn−1 =− z
γ−1

d
dz

F(α,β ;γ;z)

We then have
zF ′γ =−(γ−1)(Fγ −Fγ−1) (5.8)

It is convenient to also introduce the notation

an(γ) =
(α,n)(β ,n)
(1,n)(γ,n)

Differentiation of the hypergeometric series gives

zF ′γ =
∞

∑
n=1

an(γ)nzn =
∞

∑
n=0

an+1(γ)(n+1)zn+1 (5.9)

We also observe that



5.3 Recursion and differentiation formulae 69

an+1(γ)(n+1)
an(γ)

=
(n+α)(n+β )

n+ γ
= n+α +β − γ +

(α− γ)(β − γ)
n+ γ

and
an(γ)
n+ γ

=
(α,n)(β ,n)

(1,n)(γ,n)(n+ γ)
=

(α,n)(β ,n)
(1,n)(γ +1,n)γ

=
an(γ +1)

γ

In addition, we also have (replace γ → γ−1 in the last equality)

an(γ)(n+ γ−1) = (γ−1)an(γ−1)

From these last three equalities, we can now conclude that

an+1(γ)(n+1) = an(γ)(n+α +β − γ)+an(γ)
(α− γ)(β − γ)

n+ γ

= an(γ)(n+ γ−1)+an(γ)(α +β −2γ +1)+an(γ +1)
(α− γ)(β − γ)

γ

= an(γ−1)(γ−1)+an(γ)(α +β −2γ +1)+an(γ +1)
(α− γ)(β − γ)

γ

and we obtain from (5.9)

zF ′γ = z
(

(γ−1)Fγ−1 +(α +β −2γ +1)Fγ +
(α− γ)(β − γ)

γ
Fγ+1

)
and from (5.8), we get

−(γ−1)(Fγ −Fγ−1) = z
(
(γ−1)Fγ−1

+(α +β −2γ +1)Fγ +
(α− γ)(β − γ)

γ
Fγ+1

)
or

(1− z)Fγ−1 =
(

1+ z
α +β −2γ +1

γ−1

)
Fγ +

(α− γ)(β − γ)
γ(γ−1)

Fγ+1

The derivation of this recursion formula was done under the assumption that |z|< 1,
so that all the power series in the derivation converge. However, the final result holds
by analytic continuation for all z ∈ C in the common domain of analyticity of the
left- and right-hand sides.

We summarize this result in a lemma.

Lemma 5.1. The hypergeometric function satisfies

(1− z)F(α,β ;γ−1;z) =
(

1+ z
α +β −2γ +1

γ−1

)
F(α,β ;γ;z)

+
(α− γ)(β − γ)

γ(γ−1)
F(α,β ;γ +1;z)
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in the common domain of analyticity of the left- and right-hand sides, and for all
values of the parameters α , β , and γ for which the left- and right-hand sides are
defined.

Example 5.1. We illustrate the use of the recursion formula in Lemma 5.1 by evalu-
ating the value of Fγ(1), when neither γ nor γ−α−β are zero or a negative integer.
The recursion formula implies

α +β − γ

γ−1
Fγ(1) =− (α− γ)(β − γ)

γ(γ−1)
Fγ+1(1)

or
Fγ(1)

Fγ+1(1)
=

(γ−α)(γ−β )
γ(γ−α−β )

or more generally, by recursion

Fγ(1)
Fγ+m(1)

=
Fγ(1)

Fγ+1(1)
Fγ+1(1)
Fγ+2(1)

· . . . ·
Fγ+m−1(1)
Fγ+m(1)

=
(γ−α,m)(γ−β ,m)
(γ,m)(γ−α−β ,m)

where m ∈N, and (α,m) = Γ (α +m)/Γ (α) is the Appell symbol, see Appendix A
on page 173. Therefore

Fγ(1) =
(γ−α,m)(γ−β ,m)
(γ,m)(γ−α−β ,m)

Fγ+m(1)

which we write as
Fγ(1) = ABmFγ+m(1)

where we have introduced the notation
A =

Γ (γ)Γ (γ−α−β )
Γ (γ−α)Γ (γ−β )

Bm =
Γ (γ−α +m)Γ (γ−β +m)
Γ (γ +m)Γ (γ−α−β +m)

and

Fγ+m(1) =
∞

∑
n=0

(α,n)(β ,n)
(1,n)(γ +m,n)

Note that the series Fγ+m(1) always is absolutely convergent for sufficiently large
m (use the same technique as in the derivation of Theorem 5.1), since Re(γ + m−
α −β ) > 0. Evaluate Bm and Fγ+m(1) as m→ ∞. By Stirling’s formula, see (A.6)
on page 166, we get to leading order

lnΓ (α +m) = ln
√

2π +
(

α +m− 1
2

)
ln(α +m)−α−m+O(1/m)

We obtain the limits
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Bm = Fγ+m(1) = 1, as m→ ∞

and we conclude that

F(α,β ,γ;1) = Fγ(1) = A =
Γ (γ)Γ (γ−α−β )
Γ (γ−α)Γ (γ−β )

(5.10)

This expression makes sense as long as the arguments in the numerator are not
a negative integer or zero, i.e., γ 6= 0,−1,−2, . . . and γ −α − β 6= 0,−1,−2, . . ..
This result is also proved below by the use of the integral representation of the
hypergeometric function, see Corollary 5.1 on page 78.

5.3.1 Gauss’ contiguous relations

Above, in Lemma 5.1, we found a relation between three hypergeometric functions
of different γ index. Another type of relation between the hypergeometric functions
of different indices, α , β , and γ , is the Gauss14 contiguous relations. There is a
whole set of such relations, and we limit ourselves to show one of them. The other
relations are proved with the same technique.

Lemma 5.2. The hypergeometric function satisfies

γ(1− z)F(α,β ;γ;z)− γF(α−1,β ;γ;z)+ z(γ−β )F(α,β ;γ +1;z) = 0

in the common domain of analyticity of the terms on the left-hand side, and for all
values of the parameters α , β , and γ for which the terms on the left-hand side are
defined.

Proof. The lemma is proved by the use of the result in Theorem 5.1. We rewrite the
left-hand side of the lemma as a power series, and then prove that the coefficients of
this power series are all zero, i.e.,

γ(1− z)F(α,β ;γ;z)− γF(α−1,β ;γ;z)+ z(γ−β )F(α,β ;γ +1;z) =
∞

∑
k=0

akzk

(5.11)
and prove that all ak = 0. Indeed, the coefficient in front of the lowest order term,
k = 0, in (5.11) is

a0 = γ− γ = 0

and the coefficient in front of the linear term, k = 1, is

a1 = γ
αβ

γ
− γ− γ

(α−1)β
γ

+(γ−β ) = 0

The coefficient in front of the kth power of z in (5.11), k = 2,3, . . ., is

14 Johann Carl Friedrich Gauss (1777–1855). German mathematician.
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ak = γ
(α,k)(β ,k)

(γ,k)k!
− γ

(α,k−1)(β ,k−1)
(γ,k−1)(k−1)!

− γ
(α−1,k)(β ,k)

(γ,k)k!

+(γ−β )
(α,k−1)(β ,k−1)
(γ +1,k−1)(k−1)!

=
((α,k)− (α−1,k))(β ,k)− k(γ + k−1− γ +β )(α,k−1)(β ,k−1)

(γ +1,k−1)k!

where we used (a,k) = a(a + 1,k− 1) and (a,k)(a + k) = (a,k + 1) = a(a + 1,k),
see (A.9) in Appendix A. Further simplifications give

ak =
((α,k)− (α−1,k))(β ,k)− k(β + k−1)(α,k−1)(β ,k−1)

(γ +1,k−1)k!

=
(β ,k){(α,k)− (α−1,k)− k(α,k−1)}

(γ +1,k−1)k!

=
(β ,k){(α,k)− (α + k−1)(α,k−1)}

(γ +1,k−1)k!
= 0

and the lemma is proved. ut

5.4 Kummer’s solutions to hypergeometric differential equation

We have already proved that a Möbius transformation of the independent variable
z in the Papperitz equation is still a solution of the original equation. In fact, from
Theorem 4.1 (the substitution theorem) we have

P

a1 a2 a3
α1 α2 α3 z
β1 β2 β3

= P

t(a1) t(a2) t(a3)
α1 α2 α3 t(z)
β1 β2 β3


where

t(z) =
az+b
cz+d

, ad−bc 6= 0

which in particular applies to the hypergeometric differential equation. In this sec-
tion, we are going to exploit the consequences of this theorem in a systematic way.

The effects of the displacement theorem, Theorem 3.3, have already been utilized
at the end of Section 5.2. Four different solutions,15 u1(z) = F(α,β ;γ;z), u2(z)
given by (5.4), u13(z) given by (5.6), and u14(z) given by (5.7), were discovered.
We are now ready to invoke the consequences of the substitution theorem discussed
above. The observations above lead to the important theorem:

15 The numbers of these solutions follow the traditional way of numbering, which is given in
Table 5.2.
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Theorem 5.2 (Kummer16). All four ways of displacement of the roots of the indi-
cial equation in

P

 0 1 ∞

0 0 α z
1− γ γ−α−β β


viz., displacements leading to the following multiplicative factors{

1,z1−γ ,(1− z)γ−α−β ,z1−γ(1− z)γ−α−β

}
and all six different permutations, obtained by combinations of Möbius transforms,
of the singular points, 0, 1, and ∞, viz.,

{(0,1,∞),(1,∞,0),(∞,0,1),(1,0,∞),(0,∞,1),(∞,1,0)}

are solutions to the hypergeometric differential equation. In total there are 24 differ-
ent combinations, which are listed in Table 5.2. The different domains of analyticity
guaranteed by the convergence of the hypergeometric series, corresponding to dif-
ferent solutions in Table 5.2, are listed in Table 5.3.

An example illustrates the result of the theorem.

Example 5.2. Let t(z) = 1− z. Then

P

 0 1 ∞

0 0 α z
1− γ γ−α−β β

= P

 0 1 ∞

0 0 α 1− z
γ−α−β 1− γ β


and

F(α,β ;1− γ +α +β ;1− z)

is a solution to the hypergeometric differential equation, cf. solution u5(z) in Ta-
ble 5.2. Similarly, the solutions u6(z), u17(z), and u18(z) are found by the use of the
displacement theorem, Theorem 3.3.

Since a second order ODE only has two linearly independent solutions, any three
of the solutions in Theorem 5.2 must be linearly dependent. Thus, between any three
of these combinations there is a relation, i.e., aui(z) = bu j(z)+ cuk(z), i 6= j 6= k =
1,2,3, . . . ,24, where the constants a, b, and c can be determined from explicit values
of the hypergeometric function at two different points z. To find the constants a, b,
and c can be rather cumbersome in many of the cases. The integral representation by
Barnes17 in Section 5.6 is often very useful in this context. We give an example of
a relation of this kind by stating the combinations between u1(z), u5(z), and u6(z).
This relation is proved in Section 5.6.1 by the use of Barnes’ integral representation.
An alternative proof is also given in Example 5.3.

16 Ernst Eduard Kummer (1810–1893), German mathematician.
17 Ernest William Barnes (1874–1953), English mathematician.
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Table 5.2 The 24 different solutions of the hypergeometric differential equation due to Kummer.

Solution Sing.
u1(z) F(α,β ;γ;z) 0,1,∞

u2(z) z1−γ F(1+α− γ,1+β − γ;2− γ;z) 0,1,∞

u3(z) (−z)−α F
(
α,1+α− γ;1+α−β ; 1

z

)
∞,1,0

u4(z) (−z)−β F
(
β ,1+β − γ;1+β −α; 1

z

)
∞,1,0

u5(z) F (α,β ;1− γ +α +β ;1− z) 1,0,∞

u6(z) (1− z)γ−α−β F (γ−α,γ−β ;1+ γ−α−β ;1− z) 1,0,∞

u7(z) (1− z)−α F
(
α,γ−β ;γ; z

z−1

)
0,∞,1

u8(z) z1−γ (1− z)γ−α−1F
(
1+α− γ,1−β ;2− γ; z

z−1

)
0,∞,1

u9(z) (1− z)−α F
(
α,γ−β ;1+α−β ; 1

1−z

)
1,∞,0

u10(z) (1− z)−β F
(
β ,γ−α;1+β −α; 1

1−z

)
1,∞,0

u11(z) z−α F
(
α,1+α− γ;1+α +β − γ;1− 1

z

)
∞,0,1

u12(z) zα−γ (1− z)γ−α−β F
(
γ−α,1−α;1+ γ−α−β ;1− 1

z

)
∞,0,1

u13(z) (1− z)γ−α−β F (γ−α,γ−β ;γ;z) 0,1,∞

u14(z) z1−γ (1− z)γ−α−β F (1−α,1−β ;2− γ;z) 0,1,∞

u15(z) zβ−γ (1− z)γ−α−β F
(
1−β ,γ−β ;1+α−β ; 1

z

)
∞,1,0

u16(z) zα−γ (1− z)γ−α−β F
(
1−α,γ−α;1−β +α; 1

z

)
∞,1,0

u17(z) z1−γ F (1+α− γ,1+β − γ;1+α +β − γ;1− z) 1,0,∞

u18(z) z1−γ (1− z)γ−α−β F (1−α,1−β ;1−α−β + γ;1− z) 1,0,∞

u19(z) (1− z)−β F
(
γ−α,β ;γ; z

z−1

)
0,∞,1

u20(z) z1−γ (1− z)γ−β−1F
(
1+β − γ,1−α;2− γ; z

z−1

)
0,∞,1

u21(z) z1−γ (1− z)γ−α−1F
(
1−β ,1+α− γ;1+α−β ; 1

1−z

)
1,∞,0

u22(z) z1−γ (1− z)γ−β−1F
(
1−α,1+β − γ;1+β −α; 1

1−z

)
1,∞,0

u23(z) z−β F
(
1+β − γ,β ;1+α +β − γ;1− 1

z

)
∞,0,1

u24(z) zβ−γ (1− z)γ−α−β F
(
γ−β ,1−β ;1+ γ−α−β ;1− 1

z

)
∞,0,1

Table 5.3 The domain of convergence of the hypergeometric series corresponding to different
solutions in Table 5.2.

Solution # Domain
1, 2, 13, 14 |z|< 1
3, 4, 15, 16 |z|> 1
5, 6, 17, 18 |z−1|< 1
7, 8, 19, 20 Rez < 1/2
9, 10, 21, 22 |z−1|> 1
11, 12, 23, 24 Rez > 1/2
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°

1

z

Fig. 5.1 The analytic continuity of the hypergeometric function F(α,β ;γ;z) due to relation (5.12).
The branch cut along the real axis vanishes if γ−α−β is a positive integer.

F(α,β ;γ;z) =
Γ (γ)Γ (γ−α−β )
Γ (γ−α)Γ (γ−β )

F(α,β ;1− γ +α +β ;1− z)

+
Γ (γ)Γ (α +β − γ)

Γ (α)Γ (β )
(1− z)γ−α−β F(γ−α,γ−β ;1+ γ−α−β ;1− z)

(5.12)
which extends the domain of analyticity of the hypergeometric function, see Fig-
ure 5.1.

Other relations, obtained from the solutions in Table 5.2, can be used to extend
the domain of analyticity of the hypergeometric function further. For example, the
result of Lemma 5.3 on page 79 is used to extend the domain of analyticity of the
hypergeometric function as given in Figure 5.2, since∣∣∣∣ z

z−1

∣∣∣∣< 1 ⇔ |z−1|> |z| ⇒ Rez = x <
1
2

Example 5.3. A proof of (5.12) is given in Section 5.6.1 by the use of Barnes’ inte-
gral representation. In this example, we give an alternative proof of the relation by
using (5.10), when neither γ nor γ−α−β are zero or a negative integer.

F(α,β ,γ;1) =
Γ (γ)Γ (γ−α−β )
Γ (γ−α)Γ (γ−β )

and
F(α,β ,γ;0) = 1

We know that u1(z), u5(z), and u6(z) must be linearly dependent, i.e., there are
constants a and b such that
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°

1

z

Fig. 5.2 The analytic continuity of the hypergeometric function F(α,β ;γ;z) due to solution u7(z).

F(α,β ;γ;z) = aF(α,β ;1− γ +α +β ;1− z)

+b(1− z)γ−α−β F(γ−α,γ−β ;1+ γ−α−β ;1− z)

Evaluate at z = 0,1 and we get

1 = a
Γ (1− γ +α +β )Γ (1− γ)
Γ (1− γ +β )Γ (1− γ +α)

+b
Γ (1+ γ−α−β )Γ (1− γ)

Γ (1−β )Γ (1−α)

and
Γ (γ)Γ (γ−α−β )
Γ (γ−α)Γ (γ−β )

= a

This implies using (A.4) on page 165

b
sinπα sinπβ

sinπγ sinπ(α +β − γ)
Γ (β )Γ (α)

Γ (α +β − γ)Γ (γ)

= 1− Γ (γ)Γ (γ−α−β )
Γ (γ−α)Γ (γ−β )

Γ (1− γ +α +β )Γ (1− γ)
Γ (1− γ +β )Γ (1− γ +α)

or with further use of (A.4)

b
sinπα sinπβ

sinπγ sinπ(α +β − γ)
Γ (β )Γ (α)

Γ (α +β − γ)Γ (γ)

= 1− sinπ(γ−α)sinπ(γ−β )
sinπγ sinπ(γ−α−β )

=
sinπγ sinπ(γ−α−β )− sinπ(γ−α)sinπ(γ−β )

sinπγ sinπ(γ−α−β )
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which we simplify further

bsinπα sinπβ
Γ (β )Γ (α)

Γ (α +β − γ)Γ (γ)
= sinπ(γ−α)sinπ(γ−β )− sinπγ sinπ(γ−α−β )

=
1
2

cosπ(β −α)− 1
2

cosπ(α +β ) = sinπα sinπβ

We thus conclude 
a =

Γ (γ)Γ (γ−α−β )
Γ (γ−α)Γ (γ−β )

b =
Γ (α +β − γ)Γ (γ)

Γ (β )Γ (α)

and we get

F(α,β ;γ;z) =
Γ (γ)Γ (γ−α−β )
Γ (γ−α)Γ (γ−β )

F(α,β ;1− γ +α +β ;1− z)

+
Γ (γ)Γ (α +β − γ)

Γ (α)Γ (β )
(1− z)γ−α−β F(γ−α,γ−β ;1+ γ−α−β ;1− z)

5.5 Integral representation of F(α,β ;γ;z)

The hypergeometric function is conveniently expressed as the hypergeometric se-
ries in its domain of convergence, and the solutions in Table 5.2 provide a way of
extending the domain of analyticity. Another means of extending the domain of
analyticity is the use of integral representations. To this end, we prove an integral
representation of the hypergeometric function.

Theorem 5.3. The hypergeometric function has the integral representation

F(α,β ;γ;z) =
Γ (γ)

Γ (β )Γ (γ−β )

∫ 1

0
uβ−1(1−u)γ−β−1(1−uz)−α du

valid for all Reγ > Reβ > 0 and all C 3 z /∈ [1,∞).

Proof. We prove that the right-hand side is identical to the power series expansion
of the hypergeometric function, i.e., the hypergeometric series

∞

∑
n=0

(α,n)(β ,n)
(γ,n)

zn

n!
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For |z|< 1 and u ∈ [0,1] expand the integrand,18 see also Problem 5.4

(1−uz)−α =
∞

∑
n=0

(
−α

n

)
(−1)nunzn =

∞

∑
n=0

(α,n)un zn

n!

since the binomial coefficient is, see (A.14) on page 176(
−α

n

)
=

Γ (−α +1)
Γ (−α +1−n)(1,n)

= (−1)n (α,n)
n!

where the last identity is obtained using (A.4) on page 165 twice, i.e.,

Γ (−α +1)
Γ (−α +1−n)

= (−1)n Γ (α +n)
Γ (α)

= (−1)n(α,n)

We get∫ 1

0
uβ−1(1−u)γ−β−1(1−uz)−α du =

∞

∑
n=0

(α,n)
zn

n!

∫ 1

0
uβ−1(1−u)γ−β−1un du︸ ︷︷ ︸

Γ (n+β )Γ (γ−β )
Γ (γ+n)

provided Re(γ−β ) > 0 and Reβ > 0, since, see (A.16) and (A.17) on page 176,∫ 1

0
tx−1(1− t)y−1 dt =

Γ (x)Γ (y)
Γ (x+ y)

, Rex,Rey > 0

The right-hand side of the theorem then becomes

Γ (γ)
Γ (β )Γ (γ−β )

∞

∑
n=0

(α,n)
Γ (n+β )Γ (γ−β )

Γ (γ +n)
zn

n!
=

∞

∑
n=0

(α,n)(β ,n)
(γ,n)

zn

n!

which is identical to the hypergeometric series. The integral thus coincides with the
hypergeometric series inside the unit circle |z| < 1, and by analytic continuation to
the larger region. ut
Note that the indices α and β can be interchanged without affecting the result.

Corollary 5.1 (Gauss’ formula). For γ 6= 0,−1,−2, . . . and Re(γ −α − β ) > 0,
we have

F(α,β ;γ;1) =
Γ (γ)Γ (γ−α−β )
Γ (γ−α)Γ (γ−β )

18 This identity can also be found by observing that u(z) = (1− z)−α solves

z(z−1)u′′(z)+ [(α +1)z]u′(z) = 0

which implies that

(1− z)−α = F(α,0;0;z) =
∞

∑
n=0

(α,n)
zn

n!
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Proof. This identity is obtained from the integral representation in Theorem 5.3

F(α,β ;γ;1) =
Γ (γ)

Γ (β )Γ (γ−β )

∫ 1

0
uβ−1(1−u)γ−α−β−1 du

which is convergent when Reβ > 0 and Re(γ−α−β ) > 0. The corollary is proved
provided we can show∫ 1

0
uβ−1(1−u)γ−α−β−1 du =

Γ (β )Γ (γ−α−β )
Γ (γ−α)

But this latter integral is the beta function in Appendix A, see (A.16) and (A.17) on
page 176. The condition on Reβ > 0 can be relaxed, since the factor Γ (β ) cancels.
ut

A simple change of variable of integration (u→ 1/u) proves the following corollary:

Corollary 5.2. The hypergeometric series has the integral representation

F(α,β ;γ;z) =
Γ (γ)

Γ (β )Γ (γ−β )

∫
∞

1
uα−γ(u−1)γ−β−1(u− z)−α du

valid for all Reγ > Reβ > 0 and all C 3 z /∈ [1,∞).

Lemma 5.3 (Euler19). The hypergeometric function satisfies

F(α,β ;γ;z) = (1− z)−α F
(

α,γ−β ;γ;
z

z−1

)
Proof. From the integral representation in Theorem 5.3, we have (Reγ > Reβ > 0
and all C 3 z /∈ [1,∞))

F(α,β ;γ;z) =
Γ (γ)

Γ (β )Γ (γ−β )

∫ 1

0
uβ−1(1−u)γ−β−1(1−uz)−α du

Make a change of variable u = 1− t. We get

F(α,β ;γ;z) =
Γ (γ)

Γ (β )Γ (γ−β )

∫ 1

0
(1− t)β−1tγ−β−1(1− (1− t)z)−α dt

which we rewrite as

F(α,β ;γ;z)

=
Γ (γ)

Γ (β )Γ (γ−β )
(1− z)−α

∫ 1

0
tγ−β−1(1− t)γ−(γ−β )−1

(
1− t

z
z−1

)−α

dt

Use the integral representation in Theorem 5.3 once again to conclude

19 Leonhard Paul Euler (1707–1783), Swiss mathematician and physicist.



80 5 The hypergeometric differential equation

F(α,β ;γ;z) =
Γ (γ)

Γ (β )Γ (γ−β )
(1− z)−α Γ (β )Γ (γ−β )

Γ (γ)
F
(

α,γ−β ;γ;
z

z−1

)
and analytic continuation of both sides in the equality proves the lemma. ut

The result in Lemma 5.3 then extends the domain analyticity of the hypergeomet-
ric series, see Figure 5.2. Moreover, the lemma expresses the linear relationship
between solutions u1(z) and u7(z) in Table 5.2.

5.6 Barnes’ integral representation

We are now ready to present an integral representation of the hypergeometric func-
tion due to Barnes.20 More extensive literature on this subject is found in, e.g.,
Ref. 19.

Theorem 5.4 (Barnes). If none of α , β , or γ are zero or a negative integer, and
α−β is not an integer, the hypergeometric function can be represented as a contour
integral

F(α,β ;γ;z) =
1

2πi

∫
L

Γ (α + s)Γ (β + s)Γ (γ)
Γ (α)Γ (β )Γ (γ + s)

Γ (−s)(−z)s ds, |arg(−z)|< π

where L is a contour in the complex s-plane, starting at −i∞ and ending at i∞,
such that all poles to Γ (α + s)Γ (β + s) (i.e., s = −α,−α−1,−α−2, . . . and s =
−β ,−β −1,−β −2, . . .) lie to the left and all poles to Γ (−s) (i.e., s ∈ N) lie to the
right of L, see Figure 5.3.

Proof. The proof of this theorem is rather complex, and we prefer to break it down
into two lemmas. The first one, Lemma 5.4, proves that the integral converges. The
second one, Lemma 5.5, proves that the right-hand side coincides with the hyperge-
ometric series in the domain |z| < 1, |arg(−z)| < π − δ , δ > 0, and, therefore, by
analytic continuation, is identical to the hypergeometric function in |arg(−z)|< π .
ut

Lemma 5.4. The integral in Theorem 5.4 converges for all z such that |arg(−z)|<
π−δ , δ > 0, see Figure 5.4.

Proof. We rewrite the gamma functions in the integrand using (A.4).

Γ (α + s)Γ (β + s)
Γ (γ + s)

Γ (−s) =−Γ (α + s)
Γ (s)

Γ (β + s)
Γ (s)

Γ (s)
Γ (γ + s)

Γ (s)
Γ (1+ s)

π

sinπs

20 The integral is also called a Mellin–Barnes’ integral. Robert Hjalmar Mellin (1854–1933) was
a Finnish mathematician, and Barnes was introduced in footnote 17 on page 73.
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−β −3 −β −2 −β −1 −β

−α−2 −α−1 −α

Fig. 5.3 The contour L in the complex s-plane used in Theorem 5.4.

Lemma A.4 on page 172 and Lemma A.1 on page 166 show that for each ε ∈
(0,1/2) we can estimate the gamma functions in the integrand as∣∣∣∣Γ (α + s)Γ (β + s)

Γ (γ + s)
Γ (−s)

∣∣∣∣≤CeRe(α+β−γ−1) ln |s|−π| Ims| (5.13)

when s ∈ {s ∈ C : |s + α + n| ≥ ε, |s + β + n| ≥ ε, |s− n| ≥ ε,∀n ∈ N}. Note
that (5.13) has no singularity at s =−γ−n or s =−n, n ∈ N.

We also have the following estimate:

|(−z)s|=
∣∣∣|z|seisarg(−z)

∣∣∣= eRes ln |z|−Imsarg(−z)

The integrand can now be estimated. We get



82 5 The hypergeometric differential equation

°z

δ

Fig. 5.4 The domain of convergence (unshaded region) of the integral in Theorem 5.4.

∣∣∣∣Γ (α + s)Γ (β + s)
Γ (γ + s)

Γ (−s)(−z)s
∣∣∣∣≤CeRe(α+β−γ−1) ln |s|−π| Ims|−Imsarg(−z)+Res ln |z|

(5.14)
when s ∈ {s ∈C : |s+α +n| ≥ ε, |s+β +n| ≥ ε, |s−n| ≥ ε,∀n ∈N}. We conclude
that the integrand vanishes by an exponential factor, viz.,

e(|arg(−z)|−π)| Ims| ≤ e−δ | Ims|

as s→±i∞, provided |arg(−z)|< π−δ , δ > 0, and the lemma is proved. ut

Lemma 5.5. The integral in Theorem 5.4 is identical to the hypergeometric series
in |z|< 1.

Proof. We close the contour L by the semi-circle C in the right-hand side of the
complex s-plane, see Figure 5.5. The poles at s ∈ N are avoided by parameterizing
the contour C as21

C : s = (N +1/2)eiφ = (N +1/2)(cosφ + i sinφ), φ ∈ [−π/2,π/2]

and let N → ∞ through the integer numbers. As in the proof of Lemma 5.4, the
integrand on the contour C can be estimated for large N, see (5.14),∣∣∣∣Γ (α + s)Γ (β + s)

Γ (γ + s)
Γ (−s)(−z)s

∣∣∣∣
≤CeRe(α+β−γ−1) ln(N+1/2)+(N+1/2){ln |z|cosφ−δ |sinφ |}

We have here assumed that |arg(−z)|< π−δ , δ > 0. Notice that on the contour C,
the variable s ∈ {s ∈C : |s+α +n| ≥ ε, |s+β +n| ≥ ε, |s−n| ≥ ε,∀n ∈N}. For an
|z|< 1, the dominant term in the exponent is

21 To be precise, it is only in the limit, N→ ∞, that the contour C is a complete semi-circle, as the
contour L in this limit approaches the imaginary axis.
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Fig. 5.5 The contours L and C in the complex s-plane.

(N +1/2){ln |z|cosφ −δ |sinφ |}

≤ (N +1/2)

{
−δ |sinφ | ≤ −δ/

√
2 < 0, |φ | ∈ [π/4,π/2]

ln |z|cosφ ≤ ln |z|/
√

2 < 0, |φ | ∈ [0,π/4]

The contribution from the contour C therefore vanishes by an exponential factor as
N→ ∞, and we have∫

L

Γ (α + s)Γ (β + s)Γ (γ)
Γ (α)Γ (β )Γ (γ + s)

Γ (−s)(−z)s ds

=
∫

L−C

Γ (α + s)Γ (β + s)Γ (γ)
Γ (α)Γ (β )Γ (γ + s)

Γ (−s)(−z)s ds

and consequently by the use of the residue theorem
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L

Γ (α + s)Γ (β + s)Γ (γ)
Γ (α)Γ (β )Γ (γ + s)

Γ (−s)(−z)s ds

=−2πi
∞

∑
n=0

Res
s=n

Γ (α + s)Γ (β + s)Γ (γ)
Γ (α)Γ (β )Γ (γ + s)

Γ (−s)(−z)s

The residues of Γ (z) at the poles z = 0,−1,−2, . . . are, see (A.3) on page 164,

Res
z=−n

Γ (z) =
(−1)n

n!
, n ∈ N

The residues of Γ (−s) then are22

Res
s=n

Γ (−s) =− (−1)n

n!
(5.15)

∫
L

Γ (α + s)Γ (β + s)Γ (γ)
Γ (α)Γ (β )Γ (γ + s)

Γ (−s)(−z)s ds

= 2πi
∞

∑
n=0

Γ (α +n)Γ (β +n)Γ (γ)
Γ (α)Γ (β )Γ (γ +n)

(−1)n

n!
(−z)n = 2πi

∞

∑
n=0

(α,n)(β ,n)
(γ,n)

zn

n!

and the lemma is proved. ut

As a corollary to Barnes’ theorem, Theorem 5.4, we get

Corollary 5.3.

Γ (α)(1− z)−α =
1

2πi

∫
L

Γ (α + s)Γ (−s)(−z)s ds, |arg(−z)|< π

Proof. Let β = γ in Theorem 5.4. We get for |arg(−z)|< π

F(α,β ;β ;z) =
1

2πi

∫
L

Γ (α + s)
Γ (α)

Γ (−s)(−z)s ds

The corollary then follows directly by the use of the result of Problem 5.4. ut

Barnes’ theorem, Theorem 5.4, can be used to study the behavior of the solution
F(α,β ;γ;z) outside the unit circle |z| < 1. The first step is the following theorem,
which also proves the linear relationship between solutions u1(z), u3(z) and u4(z) in
Table 5.2:

Theorem 5.5. For |arg(−z)|< π , and α , β , or γ not zero or a negative integer, and
α−β not an integer, the hypergeometric functions satisfy

22 Note that, if the residue of the meromorphic function f (z) at z = c is a1 (limz→c(z−c) f (z) = a1),
then the residue of f (−s) at s =−c is −a1, since lims→−c(s+ c) f (−s) =−a1.
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F(α,β ;γ;z) =
Γ (γ)Γ (β −α)
Γ (β )Γ (γ−α)

(−z)−α F
(

α,1− γ +α;1−β +α;
1
z

)
+

Γ (γ)Γ (α−β )
Γ (α)Γ (γ−β )

(−z)−β F
(

β ,1− γ +β ;1−α +β ;
1
z

)
Proof. Apply Barnes’ integral representation, and close the contour L in Figure 5.3
with a semi-circle C′ to the left in the complex s-plane. For technical reasons, we di-
vide the semi-circle into two parts, since our estimate of the quotients of the gamma
functions (5.13) holds only for |arg(s)| ≤ π . Therefore

C′ : s = Reiφ = R(cosφ + i sinφ), φ ∈ [π/2,π]∪ [−π,−π/2]

The closed contour then encloses the simple poles at s = −α−n and s = −β −m,
where m,n ∈ N, as R→ ∞. Use (5.13) to estimate the integrand, i.e.,∣∣∣∣Γ (α + s)Γ (β + s)

Γ (γ + s)
Γ (−s)

∣∣∣∣≤CeRe(α+β−γ−1) ln |s|−π| Ims|

when s∈ {s ∈C : |s+α +n| ≥ ε, |s+β +n| ≥ ε, |s−n| ≥ ε,∀n∈N}. We also have
the following estimate, provided |arg(−z)|< π−δ , δ > 0

|(−z)s|=
∣∣∣|z|seisarg(−z)

∣∣∣= eRes ln |z|−Imsarg(−z) ≤ eRes ln |z|+| Ims|(π−δ )

and, as in the proof of Lemma 5.5, we estimate the integrand on the contour C′ (for
values of R that avoid the poles)∣∣∣∣Γ (α + s)Γ (β + s)

Γ (γ + s)
Γ (−s)(−z)s

∣∣∣∣≤CeRe(α+β−γ−1) lnR+R{ln |z|cosφ−δ |sinφ |}

For an |z|> 1, the dominant term in the exponent is

R(ln |z|cosφ −δ |sinφ |)

≤ R

{
−δ |sinφ | ≤ −δ |/

√
2 < 0, |φ | ∈ [π/2,3π/4]

ln |z|cosφ ≤− ln |z|/
√

2 < 0, |φ | ∈ [3π/4,π]

The contribution from the contour C′ vanishes by an exponential factor as R→ ∞,
and the residue theorem implies∫

L

Γ (α + s)Γ (β + s)Γ (γ)
Γ (α)Γ (β )Γ (γ + s)

Γ (−s)(−z)s ds

=
∫

L+C′

Γ (α + s)Γ (β + s)Γ (γ)
Γ (α)Γ (β )Γ (γ + s)

Γ (−s)(−z)s ds

= 2πi
∞

∑
n=0

Res
α+s=0,−1,...
β+s=0,−1,...

Γ (α + s)Γ (β + s)Γ (γ)
Γ (α)Γ (β )Γ (γ + s)

Γ (−s)(−z)s
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The residues of Γ (z) at the poles z = 0,−1,−2, . . . are, see (A.3) on page 164,

Res
z=−n

Γ (z) =
(−1)n

n!
, n ∈ N

We get∫
L

Γ (α + s)Γ (β + s)Γ (γ)
Γ (α)Γ (β )Γ (γ + s)

Γ (−s)(−z)s ds

= 2πi
∞

∑
n=0

Γ (β −α−n)Γ (γ)Γ (α +n)
Γ (α)Γ (β )Γ (γ−α−n)

(−1)n

n!
(−z)−α−n +(α ↔ β )

= 2πi(−z)−α Γ (β −α)Γ (γ)
Γ (γ−α)Γ (β )

∞

∑
n=0

(1− γ +α,n)(α,n)
(1−β +α,n)

z−n

n!
+(α ↔ β )

= 2πi(−z)−α Γ (β −α)Γ (γ)
Γ (γ−α)Γ (β )

F
(

α,1− γ +α;1−β +α;
1
z

)
+(α ↔ β )

since by (A.11) we have

Γ (β −α−n) =
(−1)nΓ (β −α)
(1−β +α,n)

and similarly for Γ (γ −α − n). The theorem is proved for |z| > 1, but by analytic
continuation, the result is valid for all values of z∈C that are in the common domain
of analyticity of both the left- and the right-hand side of the identity. This ends the
proof of the theorem. ut

Also very useful is the following lemma by Barnes:

Lemma 5.6 (Barnes’ lemma).

1
2πi

∫
B

Γ (α + s)Γ (β + s)Γ (γ− s)Γ (δ − s)ds

=
Γ (α + γ)Γ (α +δ )Γ (β + γ)Γ (β +δ )

Γ (α +β + γ +δ )

where B is a contour in the complex s-plane, starting at −i∞ and ending at i∞, such
that all poles s = −α,−α − 1,−α − 2, . . . and s = −β ,−β − 1,−β − 2, . . . lie to
the left and all poles s = γ,γ +1,γ +2, . . . and s = δ ,δ +1,δ +2, . . . lie to the right
of B, see Figure 5.6. The poles of Γ (γ−s)Γ (δ −s) are all assumed simple, and they
are assumed not to coincide with the poles of Γ (α + s)Γ (β + s).

Proof. We rewrite the gamma functions in the integrand using (A.4)

Γ (α + s)Γ (β + s)Γ (γ− s)Γ (δ − s) =

Γ (α + s)
Γ (s)

Γ (β + s)
Γ (s)

Γ (s)
Γ (1− γ + s)

Γ (s)
Γ (1−δ + s)

π2

sinπ(s− γ)sinπ(s−δ )
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Fig. 5.6 The contour B in the complex s-plane used in Lemma 5.6.

Use Lemma A.4 on page 172 and Corollary A.1 on page 168 to estimate the inte-
grand

|Γ (α + s)Γ (β + s)Γ (γ− s)Γ (δ − s)| ≤CeRe(α+β+γ+δ−2) ln |s|−2π| Ims|

for s ∈ {s ∈C : |s+α +n| ≥ ε, |s+β +n| ≥ ε, |s− γ−n| ≥ ε, |s−δ −n| ≥ ε,∀n ∈
N}. Note that this factor has no singularity at s =−n, n ∈ N.

We first assume that Re(α +β + γ +δ −1) < 0. The integrand on a semi-circle
C, with radius R, in the right half plane of the complex s-plane, i.e.,

C : s = Reiφ = R(cosφ + i sinφ), φ ∈ [−π/2,π/2]

that avoids the poles at s = γ +n and δ +n, has the leading contribution

|Γ (α + s)Γ (β + s)Γ (γ− s)Γ (δ − s)| ≤CeRe(α+β+γ+δ−2) lnR−2πR|sinφ |
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From this estimate, we conclude that the contribution from C vanishes at least as
R−1 as R→ ∞, if Re(α +β + γ +δ −1) < 0.

The residues of the integrand at the poles at s = γ +n and δ +n are computed by
the use of (5.15)

Res
s=γ+n

Γ (γ− s) = Res
s=n

Γ (−s) =− (−1)n

n!
, n ∈ N

The residue theorem then gives

I =
1

2πi

∫
B

Γ (α + s)Γ (β + s)Γ (γ− s)Γ (δ − s)ds

=
∞

∑
n=0

(−1)n

n!
Γ (α + γ +n)Γ (β + γ +n)Γ (δ − γ−n)

+
∞

∑
n=0

(−1)n

n!
Γ (α +δ +n)Γ (β +δ +n)Γ (γ−δ −n)

=
∞

∑
n=0

(−1)n

n!
Γ (α + γ +n)Γ (β + γ +n)

Γ (1+ γ−δ +n)
π

sinπ(δ − γ +n)

+
∞

∑
n=0

(−1)n

n!
Γ (α +δ +n)Γ (β +δ +n)

Γ (1+δ − γ +n)
π

sinπ(γ−δ +n)

where we also have used (A.4). Gauss’ formula in Corollary 5.1 on page 78 is then
applied. We obtain

I =
π

sinπ(δ − γ)

∞

∑
n=0

Γ (α + γ +n)Γ (β + γ +n)
Γ (1+ γ−δ +n)n!

+
∞

∑
n=0

(γ ↔ δ )

=
π

sinπ(δ − γ)
Γ (α + γ)Γ (β + γ)

Γ (1+ γ−δ )
F(α + γ,β + γ;1+ γ−δ ;1)+

∞

∑
n=0

(γ ↔ δ )

=
π

sinπ(δ − γ)
Γ (α + γ)Γ (β + γ)Γ (1−α−β − γ−δ )

Γ (1−α−δ )Γ (1−β −δ )
+

∞

∑
n=0

(γ ↔ δ )

We rewrite using (A.4)

I =
πΓ (1−α−β − γ−δ )

sinπ(γ−δ )

(
Γ (α +δ )Γ (β +δ )

Γ (1−α− γ)Γ (1−β − γ)

− Γ (α + γ)Γ (β + γ)
Γ (1−α−δ )Γ (1−β −δ )

)

=
Γ (α + γ)Γ (β + γ)Γ (α +δ )Γ (β +δ )

sinπ(γ−δ )sinπ(α +β + γ +δ )Γ (α +β + γ +δ )
×{sinπ(α + γ)sinπ(β + γ)− sinπ(α +δ )sinπ(β +δ )}
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Since23

sinπ(α +β + γ +δ )sinπ(γ−δ )
= sinπ(α + γ)sinπ(β + γ)− sinπ(α +δ )sinπ(β +δ )

we have finally proved

1
2πi

∫
B

Γ (α + s)Γ (β + s)Γ (γ− s)Γ (δ − s)ds

=
Γ (α + γ)Γ (α +δ )Γ (β + γ)Γ (β +δ )

Γ (α +β + γ +δ )

for the parameters α , β , γ , and δ satisfying Re(α +β + γ +δ −1) < 0. However,
by analytic continuation of the left- and right-hand sides in the parameters α , β , γ ,
and δ , the lemma is true for all values α , β , γ , and δ , in their common domain of
analyticity. ut

5.6.1 Relation between F(·, ·; ·;z) and F(·, ·; ·;1− z)

The proof of the relation between u1(z), u5(z), and u6(z) in Table 5.2, see (5.12),
was postponed, and it is the purpose of this section to present a proof of this relation.

We start by Barnes’ integral representation in Theorem 5.4, i.e.,

Γ (α)Γ (β )
Γ (γ)

F(α,β ;γ;z) =
1

2πi

∫
L

Γ (α + s)Γ (β + s)
Γ (γ + s)

Γ (−s)(−z)s ds

where |arg(−z)|< π , and where the contour L is depicted in Figure 5.3. Moreover,
use Barnes’ lemma, Lemma 5.6, with γ = s and δ = γ−α−β . We get

1
2πi

∫
B

Γ (α + t)Γ (β + t)Γ (s− t)Γ (γ−α−β − t)dt

=
Γ (α + s)Γ (γ−β )Γ (β + s)Γ (γ−α)

Γ (s+ γ)

23 This identity can be derived by integration

sin(a+ c)sin(b+ c)− sin(a+d)sin(b+d) =−
∫ d

c

d
dx

sin(a+ x)sin(b+ x)dx

=
1
2

∫ d

c

d
dx

(cos(a+b+2x)− cos(a−b)) dx =
1
2

cos(a+b+2x)|x=d
x=c

=
1
2

cos(a+b+2d)− 1
2

cos(a+b+2c) = sin(a+b+ c+d)sin(c−d)
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where B is similar to the contour in Figure 5.6 (remember replacing γ = s and δ =
γ−α−β ). We get

2πi
Γ (α)Γ (β )

Γ (γ)
F(α,β ;γ;z)

=
∫
L

{
1

2πi

∫
B

Γ (α + t)Γ (β + t)Γ (s− t)Γ (γ−α−β − t)dt

}
Γ (−s)(−z)s ds

Γ (γ−α)Γ (γ−β )

Change the order of integration, and use the result in Corollary 5.3. We get

2πi
Γ (α)Γ (β )Γ (γ−α)Γ (γ−β )

Γ (γ)
F(α,β ;γ;z)

=
∫
B

{
Γ (α + t)Γ (β + t)Γ (γ−α−β − t)

{
1

2πi

∫
L

Γ (s− t)Γ (−s)(−z)s ds

}
︸ ︷︷ ︸

Γ (−t)(1−z)t , |z|<1

dt

}

or
Γ (α)Γ (β )Γ (γ−α)Γ (γ−β )

Γ (γ)
F(α,β ;γ;z)

=
1

2πi

∫
B

Γ (α + t)Γ (β + t)Γ (γ−α−β − t)Γ (−t)(1− z)t dt

We proceed by using the same arguments as in the proof of Barnes’ lemma,
Lemma 5.6. The integral on the right-hand side is evaluated in terms of the hyper-
geometric series by closing the contour in the right half plane and using the residue
theorem and (5.15), i.e.,

Γ (α)Γ (β )Γ (γ−α)Γ (γ−β )
Γ (γ)

F(α,β ;γ;z)

=
∞

∑
n=0

Γ (α +n)Γ (β +n)Γ (γ−α−β −n)
(−1)n

n!
(1− z)n

+
∞

∑
n=0

Γ (γ−α +n)Γ (γ−β +n)Γ (α +β − γ−n)
(−1)n

n!
(1− z)γ−α−β+n

By employing (A.10), we get

Γ (α)Γ (β )Γ (γ−α)Γ (γ−β )
Γ (γ)

F(α,β ;γ;z)

=
∞

∑
n=0

Γ (α +n)Γ (β +n)Γ (γ−α−β )
(1− γ +α +β ,n)

(1− z)n

n!

+(1− z)γ−α−β
∞

∑
n=0

Γ (γ−α +n)Γ (γ−β +n)Γ (α +β − γ)
(1+ γ−α−β ,n)

(1− z)n

n!
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which we rewrite as (5.12), viz.,

F(α,β ;γ;z) =
Γ (γ)Γ (γ−α−β )
Γ (γ−α)Γ (γ−β )

F(α,β ;1− γ +α +β ;1− z)

+
Γ (γ)Γ (α +β − γ)

Γ (α)Γ (β )
(1− z)γ−α−β F(γ−α,γ−β ;1+ γ−α−β ;1− z)

This result shows the nature of the singularity at z = 1, and also gives the linear
relationship between solutions u1(z), u5(z), and u6(z) in Table 5.2.

5.7 Quadratic transformations

In Section 5.4, we investigated the consequences of the symmetry properties of the
hypergeometric differential equation under the Möbius transformation. As a result,
24 different solutions were constructed from the hypergeometric function, see Ta-
ble 5.2 on page 74. Additional symmetry properties are investigated in this section.

The roots to the indicial equation at z = 0 are 0 and γ−1. One solution, the hyper-
geometric function, F(α,β ;γ;z), is analytic at the origin, and the other solution has
an exponent γ−1 at the origin, which for non-integer values of γ leads to a branch
point at the origin.24 For special values of the indices α , β , and γ , the singularity at
the origin can be removed. Specifically, let α = 2a, β = 2b, and γ = a+b+ 1

2 , i.e.,
the hypergeometric differential equation, see (4.3),

z(z−1)u′′(z)+
[
(2a+2b+1)z−

(
a+b+

1
2

)]
u′(z)+4abu(z) = 0

Two linearly independent solutions of this equation are, see solutions u1(z) and u2(z)
in Table 5.2 on page 74,

F
(

2a,2b;a+b+
1
2

;z
)

z
1
2−a−bF

(
a−b+

1
2
,b−a+

1
2

;
3
2
−a−b;z

) (5.16)

We notice that these solutions are identical if γ = a + b + 1
2 = 1, so this case must

be excluded below. Make a change of the independent variable t = 4z(1− z), with
inverse z = g(t) = (1− (1− t)1/2)/2. The point z = 0 corresponds to t = 0. By the
use of Theorem 2.1 on page 4, the new differential equation reads

t(t−1)v′′(t)+
[
(a+b+1)t−

(
a+b+

1
2

)]
v′(t)+abv(t) = 0

24 We exclude the non-positive integers γ = 0,−1,−2, . . ..
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which again we recognize as the hypergeometric differential equation with indices
α = a, β = b, and γ = a+b+ 1

2 . The solution that is analytic at the origin t = 0 is

F
(

a,b;a+b+
1
2

; t
)

= F
(

a,b;a+b+
1
2

;4z(1− z)
)

This solution can be expressed as a linear combination of the two linear inde-
pendent solutions in (5.16). However, the linear combination must be analytic
at the origin z = 0, which implies that it is a multiple of the the first solution
F (2a,2b;a+b+1/2;z) alone. The multiplicative coefficient, however, must be
1, since both F (a,b;a+b+1/2;4z(1− z)) and F (2a,2b;a+b+1/2;z) have the
value 1 at the origin. We, therefore, conclude

F
(

a,b;a+b+
1
2

;4z−4z2
)

= F
(

2a,2b;a+b+
1
2

;z
)

or stated differently, with a shift in the argument (z→ (1− z)/2, a→ a/2 and b→
b/2)

F
(

a
2
,

b
2

;
a+b+1

2
;1− z2

)
= F

(
a,b;

a+b+1
2

;
1− z

2

)
Employing the Euler result, Lemma 5.3 on page 79, we have proved the following
lemma:

Lemma 5.7. The hypergeometric function satisfies

F
(

a,b;
a+b+1

2
;

1− z
2

)
= z−aF

(
a
2
,

a+1
2

;
a+b+1

2
;1− 1

z2

)
This result is used below in the construction of a linearly independent solution of
the Legendre25 functions in Section 6.1.

5.8 Hypergeometric polynomials (Jacobi)

We have already noted that if α or β is a non-positive integer −n, n ∈ N, the hy-
pergeometric series F(α,β ;γ;z) is terminated after a finite number of terms — a
polynomial of degree n. In this section, we exploit the features of these polynomials
in more detail.

25 Adrien-Marie Legendre (1752–1833), French mathematician.
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5.8.1 Definition of the Jacobi polynomials

To initiate the construction of the Jacobi26 polynomials, we start by investigating
the derivatives of

fn(z) = zα+n(1− z)β+n

for arbitrary real constants α > −1 and β > −1 and n non-negative integer.27 The
reason for picking the points z = 0,1 as special is that we want to identify the result
below with regular singular points of the hypergeometric function.

The first derivative w.r.t. z is

f ′n(z) =
α +n

z
fn(z)−

β +n
1− z

fn(z)

or
z(1− z) f ′n(z) = (α +n)(1− z) fn(z)− (β +n)z fn(z)

= [α +n− (2n+α +β )z] fn(z)

Repeated differentiation w.r.t. z using Leibniz’ rule28 for higher derivatives of a
product29 gives

z(1− z) f (m+1)
n (z)+

(
m
1

)
(1−2z) f (m)

n (z)+
(

m
2

)
(−2) f (m−1)

n (z)

= [α +n− (2n+α +β )z] f (m)
n (z)−

(
m
1

)
(2n+α +β ) f (m−1)

n (z)

Let m = n+1 and introduce the notation gn(z) = f (n)
n (z). We have

z(1− z)g′′n(z)+(n+1)(1−2z)g′n(z)−n(n+1)gn(z)
= [α +n− (2n+α +β )z]g′n(z)− (n+1)(2n+α +β )gn(z)

or

z(z−1)g′′n(z)+ [(2−α−β )z+α−1]g′n(z)− (n+1)(n+α +β )gn(z) = 0

This is the hypergeometric differential equation

z(z−1)u′′(z)+ [(a+b+1)z− c]u′(z)+abu(z) = 0

26 Carl Gustav Jacob Jacobi (1804–1851), Prussian mathematician.
27 Generalizations to complex values of α and β satisfying Reα >−1 and Reβ >−1 exist.
28 Gottfried Wilhelm Leibniz (1646–1716), German mathematician.
29 Leibniz’ rule for higher derivatives of a product reads

dm(u(z)v(z))
dzm =

m

∑
k=0

(
m
k

)
u(m−k)(z)v(k)(z)
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with coefficients
a+b = 1−α−β

ab =−(n+1)(n+α +β )
c = 1−α

⇒


a = n+1
b =−n−α−β

c = 1−α

(or a and b interchanged)

Therefore

gn(z) ∈ P

 0 1 ∞

0 0 a z
1− c c−a−b b

= P

0 1 ∞

0 0 n+1 z
α β −n−α−β


Use the displacement theorem, see, e.g., (5.5) on page 68,

gn(z) =
dn

dzn

(
zα+n(1− z)β+n

)
∈ zα(1− z)β P

 0 1 ∞

0 0 n+α +β +1 z
−α −β −n


This relation tells us that

z−α(1− z)−β dn

dzn

(
zα+n(1− z)β+n

)
(5.17)

are polynomials of degree n in z, since one of the first coefficients in the hypergeo-
metric function is a non-positive integer −n. This conclusion can, of course, also be
made by a direct differentiation of the expression.

The polynomials constructed above lead us to the definition of the Jacobi poly-
nomials, P(α,β )

n (x) [11, 26]. The definition in terms of the hypergeometric function
is

P(α,β )
n (x) =

(
n+α

n

)
F
(
−n,n+α +β +1;α +1;

1− x
2

)
(5.18)

Notice that a shift in the argument has been made, so that instead of focusing on the
point z = 0,1, the focus is on x =±1. Notice also that in the definition of the Jacobi
polynomials we denote the independent variable x instead of the usual z. This is due
to the fact that in most cases the argument is real-valued, e.g., x ∈ [−1,1]. A series
of special polynomials that occur in mathematical physics are in fact special cases
of the Jacobi polynomials, see Table 5.4.

The definition also implies, see (A.14),

P(α,β )
n (1) =

(
n+α

n

)
=

Γ (n+α +1)
n!Γ (α +1)

=
(α +1,n)

n!
(5.19)

The hypergeometric series in Theorem 5.1 provides an explicit form of the Jacobi
polynomials, i.e.,

P(α,β )
n (x) =

(
n+α

n

) n

∑
k=0

(−n,k)(n+α +β +1,k)
(α +1,k)k!

(
1− x

2

)k
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Table 5.4 Different polynomials that are special cases of the Jacobi polynomials when α = β .

α = β Polynomial
Gegenbauer, Gα

n (x)
0 Legendre, Pn(x)

−1/2 Tchebysheff of the first kind, Tn(cosθ) = cosnθ

1/2 Tchebysheff of the second kind, Un(cosθ) = sin((n+1)θ)/sinθ

or with the use of the binomial coefficient, see (A.14) on page 176, and

(−n,k) = (−n) · . . . · (−n+ k−1) = (−1)kn · . . . · (n+1− k) = (−1)k n!
(n− k)!

we obtain

P(α,β )
n (x) =

Γ (n+α +1)
n!

n

∑
k=0

(
n
k

)
(n+α +β +1,k)

Γ (α + k +1)

(
x−1

2

)k

(5.20)

Moreover, the Jacobi polynomials satisfy

(1− x2)u′′(x)+ [β −α− (α +β +2)x]u′(x)+n(n+α +β +1)u(x) = 0 (5.21)

where we used Theorem 2.1 on page 4, and u(x) = P(α,β )
n (x).

By the use of Gauss’ formula, see Corollary 5.1 on page 78, and (A.4),

F(−n,n+α +β +1;α +1;1) =
Γ (α +1)Γ (−β )

Γ (α +1+n)Γ (−n−β )

= (−1)n Γ (α +1)Γ (β +n+1)
Γ (α +1+n)Γ (β +1)

we also have an explicit expression of the value of the Jacobi polynomials at x =−1,
i.e.,

P(α,β )
n (−1) = (−1)n Γ (β +n+1)

n!Γ (β +1)
= (−1)n (β +1,n)

n!
(5.22)

Using Lemma 5.3 on page 79, an alternative definition of the Jacobi polynomials
is obtained

P(α,β )
n (x) =

(
1+ x

2

)n(n+α

n

)
F
(
−n,−n−β ;α +1;

x−1
x+1

)
The coefficient c(α,β )

n of the highest power, xn, in P(α,β )
n (x) is used below. Since

P(α,β )
n (x) is a polynomial of degree n, this coefficient is determined by the use

of (5.20). Only the highest power term in the hypergeometric series gives a con-
tribution to the limit

c(α,β )
n =

(n+α +β +1,n)
2nn!

(5.23)
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°u

C

Fig. 5.7 The Contour C in the complex u-plane encircling the origin, but excluding the other two
singularities of the integrand, 1/z and 1/(z−1).

since

lim
x→∞

x−n
(

x−1
2

)n

= 2−n

5.8.2 Generating function

We start with another useful integral representation, which is derived in Problem 5.6.
The result is

F(−n,n+α +β +1;α +1;z)

=
n!Γ (α +1)

Γ (n+α +1)
1

2πi

∫
C

du
un+1 (1+(1− z)u)n+α(1−uz)n+β

where the contour C encircles the singularity u = 0, but not u = 1/z and u = 1/(z−1)
in the complex u-plane, see Figure 5.7.

A simple change of variable z = (1− x)/2, x ∈ [−1,1] gives an integral repre-
sentation of the Jacobi polynomials that is a suitable start for finding the generating
function of these polynomials. We get for x 6= ±1 (we restrict the variable x to be
real in this section)

P(α,β )
n (x) =

1
2πi

∫
C

du
un+1

(
1+

x+1
2

u
)n+α (

1+
x−1

2
u
)n+β

Multiply with tn and sum over n from n = 0 to n = ∞. For sufficiently small values
of t, we have
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G(α,β )(x, t)≡
∞

∑
n=0

P(α,β )
n (x)tn =

1
2πi

∫
C

du
u

(
1+

x+1
2

u
)α (

1+
x−1

2
u
)β

×
∞

∑
n=0

(
1+

x+1
2

u
)n(

1+
x−1

2
u
)n( t

u

)n

=
1

2πi

∫
C

(
1+

x+1
2

u
)α (

1+
x−1

2
u
)β du

D

where the denominator D is

D = u−
(

1+
x+1

2
u
)(

1+
x−1

2
u
)

t =−t
x2−1

4

(
u2− 4u

t
1− tx
x2−1

+
4

x2−1

)
We seek the zeros of this denominator. The roots are

D = 0 ⇐⇒ u =
2
t

1− tx
x2−1

± 2
t

R
x2−1

=
2
t

1− tx±R
x2−1

= u±

where
R =

√
1−2xt + t2

If we locate the position of the poles u±, we see that
u+ = 2

1− tx+
√

1−2xt + t2

t(x2−1)
= 4

1− tx+O(t2)
t(x2−1)

= O(t−1)

u− = 2
1− tx−

√
1−2xt + t2

t(x2−1)
= 2

O(t2)
t(x2−1)

= O(t)

For sufficiently small t, only the pole u = u− lies inside the contour C in Figure 5.7,
and only this pole contributes with its residue to the integral. The residue of the
integrand at the poles u = u− is

Res
u=u−

(
1+

x+1
2

u
)α (

1+
x−1

2
u
)β 1

D

=−
(

1+
1− tx−R
t(x−1)

)α (
1+

1− tx−R
t(x+1)

)β 4
t(x2−1)(u−−u+)

We simplify 
1+

1− tx−R
t(x−1)

=
1− t−R
t(x−1)

=
2

1− t +R

1+
1− tx−R
t(x+1)

=
1+ t−R
t(x+1)

=
2

1+ t +R

and, finally, we get

G(α,β )(x, t) =
(

2
1− t +R

)α ( 2
1+ t +R

)β 1
R
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or

G(α,β )(x, t) =
∞

∑
n=0

P(α,β )
n (x)tn =

2α+β

(1− t +R)α(1+ t +R)β R
(5.24)

Example 5.4. If α = β = 0, we obtain the generating function for the Legendre30

polynomials, Pn(x), see Table 5.4.

G(0,0)(x, t) =
∞

∑
n=0

Pn(x)tn =
1
R

=
1√

1−2xt + t2

Example 5.5. Evaluate the relation (5.24) for −x. This leads to

∞

∑
n=0

P(α,β )
n (−x)tn =

2α+β

(1− t + R̃)α(1+ t + R̃)β R̃

where
R̃ =

√
1+2xt + t2

However, evaluating the relation (5.24) at −t with α and β interchanged gives

∞

∑
n=0

P(β ,α)
n (x)(−t)n =

2α+β

(1+ t + R̃)β (1− t + R̃)α R̃

which is identical to the above and we conclude

P(α,β )
n (−x) = (−1)nP(β ,α)

n (x)

5.8.3 Rodrigues’ generalized function

With the notation and the results of Section 5.8.1, we have (see (5.17), z→ (1−
x)/2)

P(α,β )
n (x) = C(1− x)−α(1+ x)−β dn

dxn

(
(1− x)α+n(1+ x)β+n

)
where the constant C can be determined by evaluating both sides at x = 1 using
Leibniz’ rule for differentiation of a product, see footnote 29 on page 93. The result
is Rodrigues’ generalized function,31 see Problem 5.5.

P(α,β )
n (x) =

(−1)n

2nn!
(1− x)−α(1+ x)−β dn

dxn

(
(1− x)α+n(1+ x)β+n

)
(5.25)

30 Adrien-Marie Legendre (1752–1833), French mathematician.
31 Benjamin Olinde Rodrigues (1795–1851), French mathematician.
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Example 5.6. If α = β = 0, we obtain Rodrigues’ generalized function for the Leg-
endre polynomials, Pn(x), see Table 5.4.

Pn(x) =
1

2nn!
dn

dxn

(
x2−1

)n

5.8.4 Orthogonality

The Jacobi polynomials, P(α,β )
n (x), are orthogonal over the interval [−1,1] with the

weight function (1− x)α(1 + x)β (α and β are assumed real constants larger than
−1, and n a non-negative integer). To see this, define

In,m =
∫ 1

−1
(1− x)α(1+ x)β P(α,β )

n (x)P(α,β )
m (x)dx

=
(−1)n

2nn!

∫ 1

−1

dn

dxn

(
(1− x)α+n(1+ x)β+n

)
P(α,β )

m (x)dx

where (5.25) is introduced. If m < n, then from integration by parts n times, we
obtain (there is no loss of generality to assume that m < n, since In,m is symmetric
in n and m)

In,m =
1

2nn!

∫ 1

−1
(1− x)α+n(1+ x)β+n dn

dxn P(α,β )
m (x)dx = 0

since P(α,β )
m (x) is a polynomial of degree m < n. If m = n, we again have from

integration by parts n times

In,n =
1

2nn!

∫ 1

−1
(1− x)α+n(1+ x)β+n dn

dxn P(α,β )
n (x)dx

Since P(α,β )
n (x) is a polynomial of degree n, with the coefficient c(α,β )

n in front of
the highest power xn, see (5.23), we get

In,n =
c(α,β )

n

2n

∫ 1

−1
(1− x)α+n(1+ x)β+n dx =

c(α,β )
n

2n−1

∫ 1

0
(2−2t)α+n(2t)β+n dt

= 2α+β+n+1c(α,β )
n

Γ (α +n+1)Γ (β +n+1)
Γ (α +β +2n+2)

by the beta function (A.16) and (A.17). With (5.23) we finally get

In,n =
2α+β+1

α +β +2n+1
Γ (α +n+1)Γ (β +n+1)

n!Γ (α +β +n+1)
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The orthogonality is summarized in the following lemma:

Lemma 5.8. The Jacobi polynomials, P(α,β )
n (x), are orthogonal over the interval

[−1,1] with the weight function (1− x)α(1+ x)β , where α and β are assumed real
constants larger than −1, and n ∈ N. The exact expression reads∫ 1

−1
(1− x)α(1+ x)β P(α,β )

n (x)P(α,β )
m (x)dx

=
δn,m2α+β+1Γ (α +n+1)Γ (β +n+1)
n!(α +β +2n+1)Γ (α +β +n+1)

Example 5.7. In particular, for the Legendre polynomials, Pn(x), where α = β = 0,
we have the well-known normalization integral, i.e.,∫ 1

−1
Pn(x)Pm(x)dx =

2δn,m

2n+1

5.8.5 Integral representation (Schläfli)

Integral representations of the Jacobi polynomials are useful, and in this section we
derive Schläfli’s integral representation32 of P(α,β )

n (x).
Rodrigues’ generalized function, (5.25), contains an nth order derivative, viz.,

dn

dxn

(
(1− x)α+n(1+ x)β+n

)
By the use of, see footnote 10 on page 19,

f (n)(x) =
n!

2πi

∮
C

f (t)dt
(t− x)n+1 , n ∈ Z+

where the contour C encircles the point t = x in a positive way, and where f (t) is
assumed analytic on and inside C, we obtain

dn

dxn

(
(1− x)α+n(1+ x)β+n

)
=

n!
2πi

∮
C

(1− t)α+n(1+ t)β+n

(t− x)n+1 dt

where the contour C encircles the point t = x in a positive way, but it does not
encircle the points t =±1, which are branch points of the integrand.

With Rodrigues’ generalized function in (5.25), we have then proved the integral
representation of the Jacobi polynomials. We summarize

32 Ludwig Schläfli (1814–1895), Swiss mathematician.
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Lemma 5.9. The Schläfli’s integral representation of P(α,β )
n (x) is

P(α,β )
n (x) =

2−n

2πi

∮
C

(
t2−1

)n
(

1− t
1− x

)α ( 1+ t
1+ x

)β

(t− x)−n−1 dt

where the contour C encircles the point t = x in a positive way, but it does not
encircle the points t =±1.

Example 5.8. In particular, for the Legendre polynomials, Pn(x), where α = β = 0,
we get

Pn(x) =
2−n

2πi

∮
C

(
t2−1

)n

(t− x)n+1 dt (5.26)

5.8.6 Recursion relation

Between any three consecutive orthogonal Jacobi polynomials there is a relation

P(α,β )
n+1 (x) = (A(α,β )

n x+B(α,β )
n )P(α,β )

n (x)+C(α,β )
n P(α,β )

n−1 (x) (5.27)

for some constants A(α,β )
n , B(α,β )

n , and C(α,β )
n . To see this, determine A(α,β )

n , the
exact value is given below, such that P(α,β )

n+1 (x)−A(α,β )
n xP(α,β )

n (x) is a polynomial of

degree n. This is always possible by adjusting the value of A(α,β )
n so that the terms

of order n + 1 cancel. We write the right-hand side as a sum of Jacobi polynomials
of degree less than or equal to n, i.e.,

P(α,β )
n+1 (x)−A(α,β )

n xP(α,β )
n (x) =

n

∑
k=0

a(α,β )
k P(α,β )

k (x) (5.28)

However, there are at most two non-vanishing terms (k = n,n− 1) in the series on
the right-hand side, since by orthogonality, see Lemma 5.8,∫ 1

−1
P(α,β )

n (x)P(α,β )
m (x)w(α,β )(x)dx = N(α,β )

n δn,m

where

N(α,β )
n =

2α+β+1Γ (α +n+1)Γ (β +n+1)
n!(α +β +2n+1)Γ (α +β +n+1)

, w(α,β )(x) = (1− x)α(1+ x)β

The orthonormal properties and (5.28) give
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N(α,β )
k a(α,β )

k =−A(α,β )
n

∫ 1

−1
P(α,β )

n (x)xP(α,β )
k (x)︸ ︷︷ ︸

∑
k+1
l=0 λ

(α,β )
l P(α,β )

l (x)

w(α,β )(x)dx = 0, if k < n−1

This identity implies that a(α,β )
k = 0, if k < n− 1. The existence of a recursion

relation of the kind given in (5.27) is therefore proved.
We proceed by determining the coefficients A(α,β )

n , B(α,β )
n , and C(α,β )

n in (5.27).
The coefficients in front of the nth power of x in the Jacobi polynomial P(α,β )

n (x) is,
see (5.23),

c(α,β )
n =

(n+α +β +1,n)
2nn!

Therefore, since the highest powers in x on both sides in the recursion relation (5.27)
match, we have using (A.9)

A(α,β )
n =

c(α,β )
n+1

c(α,β )
n

=
(n+α +β +2,n+1)

2(n+1)(n+α +β +1,n)
=

(2n+α +β +1)(2n+α +β +2)
2(n+1)(n+α +β +1)

The other two coefficients, B(α,β )
n and C(α,β )

n , are determined by the use of the
orthogonality relation and the explicit value at x = 1. We get by orthogonality

N(α,β )
n−1 C(α,β )

n =−A(α,β )
n

∫ 1

−1
P(α,β )

n (x)xP(α,β )
n−1 (x)︸ ︷︷ ︸

c(α,β )
n−1 xn+...

w(α,β )(x)dx

=−A(α,β )
n

c(α,β )
n−1

c(α,β )
n

N(α,β )
n =−A(α,β )

n

A(α,β )
n−1

N(α,β )
n

from which we can solve for C(α,β )
n ,

C(α,β )
n =−A(α,β )

n N(α,β )
n

A(α,β )
n−1 N(α,β )

n−1

=− (2n+α +β +2)(α +n)(β +n)
(n+1)(n+α +β +1)(2n+α +β )

By (5.19), we get

P(α,β )
n (1) =

Γ (n+α +1)
n!Γ (α +1)

=
(α +1,n)

n!

The recursion relation (5.27), evaluated at x = 1, is (use (A.9))

(n+α)(n+α +1)
n(n+1)

= (A(α,β )
n +B(α,β )

n )
(n+α)

n
+C(α,β )

n

which we solve for B(α,β )
n . The result is
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B(α,β )
n =

n+α +1
n+1

−A(α,β )
n − n

(n+α)
C(α,β )

n

All three coefficients, A(α,β )
n , B(α,β )

n , and C(α,β )
n , are then determined. A more

compact form of the relation is obtained by identifying the common denominator of
the coefficients A(α,β )

n , B(α,β )
n , and C(α,β )

n , and writing the recursion relation in the
form

2(n+1)(n+α +β +1)(2n+α +β )P(α,β )
n+1 (x)

= (a(α,β )
n x+b(α,β )

n )P(α,β )
n (x)+ c(α,β )

n P(α,β )
n−1 (x)

where 
a(α,β )

n = 2(n+1)(n+α +β +1)(2n+α +β )A(α,β )
n

= (2n+α +β ,3)

c(α,β )
n = 2(n+1)(n+α +β +1)(2n+α +β )C(α,β )

n

=−2(α +n)(β +n)(2n+α +β +2)

and

b(α,β )
n = 2(n+1)(n+α +β +1)(2n+α +β )

n+α +1
n+1

−a(α,β )
n − n

(n+α)
c(α,β )

n

= 2(n+α +β +1)(2n+α +β )(n+α +1)− (2n+α +β ,3)

+2n(β +n)(2n+α +β +2) = (2n+α +β +1)(α2−β
2)

We have thus proved the next lemma.

Lemma 5.10. The recursion relation between three consecutive Jacobi polynomials
reads (n ∈ Z+)

2(n+1)(n+α +β +1)(2n+α +β )P(α,β )
n+1 (x)

=
(
(2n+α +β +1)(α2−β

2)+(2n+α +β ,3)x
)

P(α,β )
n (x)

−2(n+α)(n+β )(2n+α +β +2)P(α,β )
n−1 (x)

The first two Jacobi polynomials, P(α,β )
0 (x) and P(α,β )

1 (x), are easily found by
explicitly evaluating the hypergeometric series or using (5.25). They areP(α,β )

0 (x) = 1

P(α,β )
1 (x) =

1
2
(α +β +2)x+

1
2
(α−β )

These two Jacobi polynomials are used to initialize the recursion relation. Indeed,
the recursion relation in Lemma 5.10 holds for n = 0 provided we make the addi-
tional definition P(α,β )

−1 (x) = 0, since
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2(α +β +1)(α +β )
(

1
2
(α +β +2)x+

1
2
(α−β )

)
︸ ︷︷ ︸

P(α,β )
1 (x)

= (α +β +1)(α2−β
2)+(α +β ,3)x

The recursion relation can be used to obtain integrals of products of Jacobi poly-
nomials in combination with x. If the recursion relation in Lemma 5.10 is multiplied
by P(α,β )

k (x)w(α,β )(x) and integrated over x ∈ [−1,1], the orthogonality relation, see
Lemma 5.8, implies

2(n+1)(n+α +β +1)(2n+α +β )N(α,β )
n+1 δk,n+1

= (2n+α +β +1)(α2−β
2)N(α,β )

n δk,n

+(2n+α +β ,3)
∫ 1

−1
xP(α,β )

n (x)P(α,β )
k (x)w(α,β )(x)dx

−2(n+α)(n+β )(2n+α +β +2)N(α,β )
n−1 δk,n−1

from which we can find the solution of the integral

Ik,n =
∫ 1

−1
xP(α,β )

n (x)P(α,β )
k (x)w(α,β )(x)dx

=
2(n+1)(n+α +β +1)

(2n+α +β +1)(2n+α +β +2)
N(α,β )

n+1 δk,n+1

− (α2−β 2)
(2n+α +β )(2n+α +β +2)

N(α,β )
n δk,n

+
2(n+α)(n+β )

(2n+α +β )(2n+α +β +1)
N(α,β )

n−1 δk,n−1

(5.29)

Example 5.9. In particular, for the Legendre polynomials, Pn(x), where α = β = 0,
the integrals in (5.29) become

Ik,n =
∫ 1

−1
xPn(x)Pk(x)dx =

2(n+1)
(2n+1)(2n+3)

δk,n+1 +
2n

(2n−1)(2n+1)
δk,n−1

Problems

5.1. Prove the sum for a,b,c ∈ C, c /∈ Z−
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n

∑
k=0

(a+ c,k)(b+ c,k)
(c+1,k)k!

{(a+b+ c)(c+ k)+ab}

=
(a+ c,n+1)(b+ c,n+1)

(c+1,n)n!
, n ∈ N

Hint: Combine the results in (5.1) with (5.4) or use Table 5.2, and use the coeffi-
cients a′n in (2.15).

5.2. Prove
d
dz

F(α,β ;γ;z) =
αβ

γ
F(α +1,β +1;γ +1;z)

and more generally

dn

dzn F(α,β ;γ;z) =
(α,n)(β ,n)

(γ,n)
F(α +n,β +n;γ +n;z)

5.3. For α−β not a negative integer and α not an even negative integer, show

F(α,β ;1+α−β ;−1) =
Γ (1+α−β )Γ (1+α/2)
Γ (1+α/2−β )Γ (1+α)

5.4. Show that
F(α,β ;β ;z) = (1− z)−α , z 6= 1

5.5. Show that the normalization constant C in Rodrigues’ generalized function, see
Section 5.8.3, is

C =
(−1)n

2n n!

5.6. †Prove, for non-negative integer values n,

F(−n,n+α +β +1;α +1;z)

=
n!Γ (α +1)

Γ (n+α +1)
1

2πi

∫
C

du
un+1 (1+(1− z)u)n+α(1−uz)n+β

where the contour C encircles the singularity u = 0, but not u = 1/z and u = 1/(z−1)
in the complex u-plane, see Figure 5.7.
Hint: Use the Euler relation in Lemma 5.3.

5.7. †Verify the recursion relation for the Jacobi polynomials that also contains a
derivative of the Jacobi polynomials (n ∈ Z+)

(2n+α +β )(1− x2)
d
dx

P(α,β )
n (x)

= n(α−β − (2n+α +β )x)P(α,β )
n (x)+2(n+α)(n+β )P(α,β )

n−1 (x)

Does the relation hold for n = 0 and n = 1?



Chapter 6
Legendre functions and related functions

Due to the great importance of the Legendre functions in mathematical physics,
we devote a whole chapter to analyze these functions, and the functions that are
related to the Legendre functions, in detail. As an important tool, we use the integral
representations developed in Chapter 5.

6.1 Legendre functions of first and second kind

In Section 5.8, we investigated the properties of polynomial solutions of the hyper-
geometric equation. Specifically, we found that the Legendre polynomials,1 Pn(z),
satisfy, see Table 5.4 on page 95 (use α = β = 0) and (5.21) on page 95,

(1− z2)u′′(z)−2zu′(z)+n(n+1)u(z) = 0

The solution that is regular at the point z = 1 can be expressed in the hypergeometric
function F(α,β ;γ;z), see (5.18),

Pn(z) = F
(
−n,n+1;1;

1− z
2

)
We now extend the solutions of this differential equation to non-integer values

of n, and we use the index ν , which in general can be complex-valued, i.e., the
Legendre differential equation reads

(z2−1)P′′ν (z)+2zP′ν(z)−ν(ν +1)Pν(z) = 0 (6.1)

and the Legendre function of the first kind is defined as

1 The independent variable takes complex values in this chapter, in contrast to the case in Sec-
tion 5.8, so we prefer to denote the independent variable z in this chapter.
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Pν(z) = F
(
−ν ,ν +1;1;

1− z
2

)
(6.2)

Note that
Pν(1) = 1, for all ν ∈ C

and, moreover, Pν(z) is an entire function in ν for fixed z. The point z = −1 and
the point at infinity are in general branch points, and to make the Legendre function
single-valued, a branch cut along the negative real axis, from z = −1 to infinity, is
introduced. We also conclude that

P−ν−1(z) = Pν(z), for all ν ∈ C

since the order of the first two indices in the hypergeometric function is non-
essential.

We continue by finding a second independent solution to the Legendre differ-
ential equation (6.1). This can be obtained by taking an independent solution in
Table 5.2 on page 74. However, we follow the traditional way of finding a second
solution to the Legendre differential equation due to Hobson.2 This particular sec-
ond solution, which is denoted Qν(z), is well-behaved at infinity.

We proceed by using Lemma 5.7 to find another, independent, way of expressing
the Legendre function of the first kind. We get

Pν(z) = zν F
(
−ν

2
,

1−ν

2
;1;1− 1

z2

)
(6.3)

With this result as a starting point, we construct another, linearly independent, solu-
tion to Pν(z), by using the result from Section 5.4 that u1(z) and u6(z) are linearly
independent solutions to the same equation. From Table 5.2 on page 74, we see that
the functions

F
(
−ν

2
,

1−ν

2
;1;1− 1

z2

)
and z−2ν−1F

(
1+

ν

2
,

1+ν

2
;ν +

3
2

;
1
z2

)
satisfy the same differential equation. Another solution to the Legendre differential
equation therefore is

z−ν−1F
(

1+
ν

2
,

1+ν

2
;ν +

3
2

;
1
z2

)
which is linearly independent to the solution (6.3). From this result, we define the
Legendre function of the second kind, Qν(z), as

Qν(z) =
√

π

(2z)ν+1
Γ (ν +1)

Γ (ν +3/2)
F
(

1+
ν

2
,

1+ν

2
;ν +

3
2

;
1
z2

)
(6.4)

2 Ernest William Hobson (1856–1933), English mathematician.
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The regular singular points of the Legendre function of the second kind are the
points at z =±1 and at the origin.

The relation between the first and second kind solutions becomes more apparent
if we use (6.3) and (5.12). The result is

Pν(z) =
Γ (ν + 1

2 )
Γ (1+ ν

2 )Γ ( 1+ν

2 )
zν F(−ν

2
,

1−ν

2
;

1
2
−ν ;

1
z2 )

+
Γ (−ν− 1

2 )
Γ (−ν

2 )Γ ( 1−ν

2 )
z−ν−1F(1+

ν

2
,

1+ν

2
;ν +

3
2

;
1
z2 )

This equality can be simplified by the use of the properties of the gamma function,
see (A.4) and (A.5). We get for ν /∈ N

Pν(z) =
Γ (ν + 1

2 )
√

π Γ (ν +1)
(2z)ν F(−ν

2
,

1−ν

2
;

1
2
−ν ;

1
z2 )

+
Γ (−ν− 1

2 )
√

π Γ (−ν)
(2z)−ν−1F(1+

ν

2
,

1+ν

2
;ν +

3
2

;
1
z2 )

=
tanνπ

π
(Qν(z)−Q−ν−1(z))

where we also used (6.4). In summary,

π cotνπPν(z) = Qν(z)−Q−ν−1(z)

6.2 Integral representations

Integral representations of Legendre functions of the first and second kind are
proved useful in applications and can be used as alternative definitions of these func-
tions. These integral representations are special cases of the more general integral
representations of the hypergeometric function developed in Chapter 5.

An integral representation for the Legendre polynomials is given in (5.26)

Pn(x) =
2−n

2πi

∮
C

(
t2−1

)n

(t− x)n+1 dt

where the contour C encircles the point t = x in a positive way in the complex t-
plane. This representation generalizes to non-integer values ν of n, provided the
contour also includes the point t = 1 but not the point t = −1, see Figure 6.1. The
enclosure of the point t = 1 gives no extra contribution to the integral for integer
order, ν = n, but ensures that the integrand resumes its original value after encircling
the contour C. In fact, the integrand
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°

−1 1

z

t

C

Fig. 6.1 The contour C in the complex t-plane used in Theorem 6.1. The complex t-plane has a
branch cut along the negative real axis from −1 to −∞.

(
t2−1

)ν

(t− z)ν+1

resumes its original value multiplied by a factor exp{−2iπ(ν +1)} after encircling
the point t = z in a counter-clockwise direction, and a factor exp{2iνπ} after encir-
cling the point t = 1. We summarize the result in a theorem.

Theorem 6.1 (Schläfli). The Legendre function of the first kind, Pν(z), has an inte-
gral representation

Pν(z) =
2−ν

2πi

∮
C

(
t2−1

)ν

(t− z)ν+1 dt

where the contour C encircles the points t = 1 and t = z counter-clockwise excluding
the point t = −1, see Figure 6.1. It is assumed that the argument z is not on the
branch cut along the negative real axis from −1 to −∞, i.e., z /∈ (−∞,−1].

Proof. We prove the theorem by showing that the contour integral in the theorem
is identical to the representation of the hypergeometric function in Theorem 5.3 on
page 77 for all −1 < Reν < 0 and all C 3 z /∈ (−∞,−1]. The representation in the
theorem is then valid for all parameter values by analytic continuation, since both
sides in the expression are well defined for all values of ν .

The integrand has three singular points t =±1 and t = z. For general non-integer
values of ν these points are branch points. We choose branch cuts along the line
connecting t = 1 and t = z, and from t =−1 along the negative real t-axis, see Fig-
ure 6.2. We first conclude that the two circles around t = 1 and t = z give vanishing
contributions as the radii become small provided −1 < Reν < 0.

On the right-hand side of the branch cut between the branch points t = 1 and
t = z we have {

t−1 = |t−1|eiφ

t− z = |t− z|eiθ



6.2 Integral representations 111

°

−1 1

z
t

C

Fig. 6.2 The contour C in the complex t-plane along the branch cut between t = 1 and t = z.

where the angles are related to each other on the right-hand side of the branch cut
as φ −θ = π , see Figure 6.3. On the left-hand side of the branch cut, encircling the
point t = z, we have {

t−1 = |t−1|eiφ

t− z = |t− z|eiθ+2πi

Notice also that the value of the integrand resumes its original value after encircling
both branch points t = 1 and t = z, since both the numerator and the denominator
differ by a factor e2iνπ .

The contour integral becomes

∮
C

(
t2−1

)ν

(t− z)ν+1 dt =
(

1− e−2iπ(ν+1)
)∫

L

(
t2−1

)ν

(t− z)ν+1 dt

−1 1

z

t

θ

φ

Fig. 6.3 The branch cut between the branch points t = 1 and t = z, and the definition of the angles
φ and θ .
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where L is the line segment from t = 1 to t = z evaluated on the right-hand side of
the cut. The branch cut between t = 1 and t = z is parameterized by t = 1−u(1−z),
u ∈ [0,1].

∮
C

(
t2−1

)ν

(t− z)ν+1 dt

= 2ie−iπ(ν+1) sinπ(ν +1)
∫ 1

0

(2−u(1− z))ν (u(z−1))ν

(1− z−u(1− z))ν+1 (z−1)du

= 2isinπ(ν +1)
∫ 1

0
(2−u(1− z))ν uν (1−u)−ν−1 du

Compare this expression with the representation of the hypergeometric function in
Theorem 5.3. We get from (6.2)

Pν(z) = F
(
−ν ,ν +1;1;

1− z
2

)
=

2−ν

Γ (ν +1)Γ (−ν)

∫ 1

0
uν(1−u)−ν−1(2−u(1− z))ν du

valid for all −1 < Reν < 0 and all C 3 z /∈ (−∞,−1]. Make use of (A.4), and we
get

Pν(z) = 2−ν sinπ(ν +1)
π

∫ 1

0
(2−u(1− z))ν uν (1−u)−ν−1 du

or

Pν(z) =
2−ν

2πi

∮
C

(
t2−1

)ν

(t− z)ν+1 dt

which completes the proof. ut

This integral representation of the Legendre function of the first kind is often seen
as an alternative definition of these functions.

We now turn to the integral representation of the Legendre function of the second
kind, and a similar representation to the one for the Legendre functions of the first
kind in Theorem 6.1 can be obtained. We have

Theorem 6.2 (Schläfli). The Legendre function of the second kind, Qν(z), has an
integral representation

Qν(z) =
2−ν

4isinνπ

∮
C

(
t2−1

)ν

(z− t)ν+1 dt

where the contour C encircles the points t =±1 in an eight-shape figure excluding
the point t = z, see Figure 6.4. It is assumed that the argument z is not on the branch
cut between the points t = ±1, i.e., z /∈ [−1,1]. The branch is chosen such that
arg(1− t) = arg(1+ t) = 0 on the upper part of the branch cut.

For Reν >−1, the integral representation is identical to
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°

−1 1

z

t

C

Fig. 6.4 The contour C in the complex t-plane in an eight-shape figure around t = 1 and t = −1
used in Theorem 6.2. The complex t-plane has a branch cut between the points t =±1.

Qν(z) =
1

2ν+1

∫ 1

−1

(
1− t2

)ν

(z− t)ν+1 dt

Proof. Note that the integrand resumes its original value after encircling the con-
tour C. In fact, after encircling the point t =−1 in counter-clockwise direction, the
integrand resumes its original value multiplied by a factor e2iνπ . Similarly, encir-
cling the point t = 1 in clockwise direction, the integrand resumes its original value
multiplied by a factor e−2iνπ . In total, the integrand resumes its original value after
completing the full contour C.

To simplify the notation in the proof, we denote the right-hand side of the theo-
rem by Iν(z), and we have to prove that Iν(z) is identical to the definition of (6.4).
Deform the contour C to a line integral along the cut [−1,1] (one above the cut, and
one below), and two circles around the points t =±1, see Figure 6.5.

For Reν >−1, the contributions from the two circles around t =±1 vanish, and
we obtain (C 3 z /∈ [−1,1])

Iν(z) = eiνπ 2−ν

4isinνπ

∫ 1

−1

(
1− t2

)ν

(z− t)ν+1 dt− e−iνπ 2−ν

4isinνπ

∫ 1

−1

(
1− t2

)ν

(z− t)ν+1 dt

=
1

2ν+1

∫ 1

−1

(
1− t2

)ν

(z− t)ν+1 dt

since t − 1 = (1− t)eiπ and t + 1 = 1 + t in the first integral (above the cut), and
t−1 = (1− t)eiπ and t +1 = (1+ t)e−2iπ in the second integral (below the cut).

As in the proof of Theorem 6.1, we prove the theorem by showing that the in-
tegral can be identified as the hypergeometric function for all Reν > −1 and all
|z|> 1.
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°

−1 1

z

t

Fig. 6.5 The deformed contour in the complex t-plane around t = 1 and t = −1 with the branch
cut between the points t =±1.

Iν(z) =
1

(2z)ν+1

∫ 1

−1

(
1− t2)ν

(
1− t

z

)−ν−1

dt

=
1

(2z)ν+1

∫ 1

−1

(
1− t2)ν

∞

∑
k=0

(−1)k
(
−ν−1

k

)(
t
z

)k

dt

=
1

(2z)ν+1

∫ 1

−1

(
1− t2)ν

∞

∑
k=0

(
−ν−1

2k

)(
t
z

)2k

dt

since all odd powers in the integral give zero contribution. The binomial coefficient
is rewritten as, see (A.14),(

−ν−1
2k

)
=

Γ (−ν)
Γ (−ν−2k)(2k)!

=
Γ (ν +2k +1)
Γ (ν +1)(2k)!

=
2νΓ (k +ν/2+1/2)Γ (k +ν/2+1)

Γ (ν +1)Γ (k +1/2)Γ (k +1)

=
2ν((ν +1)/2,k)Γ (ν/2+1/2)(ν/2+1,k)Γ (ν/2+1)

Γ (ν +1)Γ (k +1/2)k!

where we also have used (A.4) and (A.5), i.e.,
Γ (2k +1) =

22k
√

π
Γ (k +1/2)Γ (k +1)

Γ (ν +2k +1) =
2ν+2k
√

π
Γ (k +ν/2+1/2)Γ (k +ν/2+1)

We get

Iν(z) =
1

2ν+1

∫ 1

−1

(
1− t2

)ν

(z− t)ν+1 dt

=
∞

∑
k=0

((ν +1)/2,k)Γ (ν/2+1/2)(ν/2+1,k)Γ (ν/2+1)
zν+1Γ (ν +1)Γ (k +1/2)k!

∫ 1

0

(
1− t2)ν

(
t2

z2

)k

dt
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or

Iν(z) =
1
2

1
zν+1

Γ (ν/2+1/2)Γ (ν/2+1)
Γ (ν +3/2)

∞

∑
k=0

((ν +1)/2,k)(ν/2+1,k)
(ν +3/2,k)

z−2k

k!

=
1
2

1
zν+1

Γ (ν/2+1/2)Γ (ν/2+1)
Γ (ν +3/2)

F
(

1+
ν

2
,

1+ν

2
;ν +

3
2

;
1
z2

)
where we used (A.16), i.e.,∫ 1

0
t2k(1− t2)ν dt =

1
2

∫ 1

0
uk−1/2(1−u)ν du =

1
2

Γ (k +1/2)Γ (ν +1)
Γ (ν + k +3/2)

=
1
2

Γ (k +1/2)Γ (ν +1)
(ν +3/2,k)Γ (ν +3/2)

which is well defined as long as Reν >−1. We finally get by the use of (6.4)

Iν(z) =
1

2ν+1

∫ 1

−1

(
1− t2

)ν

(z− t)ν+1 dt =
2νΓ (ν/2+1/2)Γ (ν/2+1)√

πΓ (ν +1)
Qν(z) = Qν(z)

since by (A.5)

Γ (ν +1) =
2ν

√
π

Γ (ν/2+1/2)Γ (ν/2+1)

and the proof is completed for Reν >−1 and all |z|> 1. We thus have

Qν(z) =
2−ν

4isinνπ

∮
C

(
t2−1

)ν

(z− t)ν+1 dt, Reν >−1 and |z|> 1

By analytic continuation of both sides in this expression, the result holds in the full
domain of the parameter ν and the variable C 3 z /∈ [−1,1]. ut

We illustrate the use of Theorem 6.2 by a more elaborate example.

Example 6.1. The Legendre function of the second kind, Qν(z), z ∈ C, has an inte-
gral representation

Qν(z) =
1√
2

{∫
π

0

cos
(
ν + 1

2

)
t dt

(z− cos t)1/2 − cosνπ

∫
∞

0

e−(ν+ 1
2 )t dt

(z+ cosh t)1/2

}
(6.5)

where Reν > −1, and where the principal branch of the square root is assumed,
i.e., the square root (principal square root) is defined by a cut along the negative real
axis, thus leading to

z1/2 =
√

reiφ/2 if z = reiφ , φ ∈ (−π,π]

In this example, we prove this representation.
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For the parameter domain Reν >−1, the Legendre function of the second kind,
Qν(z), has an integral representation, see Theorem 6.2,

Qν(z) =
1

2ν+1

∫ 1

−1

(
1− t2

)ν

(z− t)ν+1 dt

The representation in (6.5) is then proved by a change of variable, followed by a
deformation of the contour.

To proceed, make a change of variables defined by

t→ u(t) =
1− t2

2(z− t)
(6.6)

The point t = z is mapped to infinity in the u-plane, and t =±1 are both mapped to
the origin in the u-plane. The inverse is double-valued

t = u±
(
u2 +1−2zu

)1/2
= u± (u−−u)1/2 (u+−u)1/2

The different signs refer to the two different Riemann sheets connected by a cut
along a straight line connecting the two branch points u± in the u-plane. The points
u± are explicitly given by

u± = z±
(
z2−1

)1/2
=

1
2

(
(z+1)1/2± (z−1)1/2

)2
= |u±|eiθ±

The branch points satisfy{
u+ +u− = 2z

u+u− = 1
=⇒

{
|u+|= 1/ |u−|
θ+ =−θ−

The image of the interval t ∈ [−1,1] under the transformation (6.6) is denoted C.
The details of the properties of the contour C are left as an exercise to the reader,
see Problem 6.3. The contour C starts at the origin in the u-plane, corresponding to
t =−1, on the branch defined by

t = u− (u−−u)1/2 (u+−u)1/2

since
(u−)1/2 (u+)1/2 = e−iθ/2eiθ/2 = 1

assuming the principal branch of the square root. The contour encircles the point
u− in a clockwise (counter-clockwise) direction if Imz > 0 (Imz < 0) and returns to
the origin on the second Riemann sheet, see Figure 6.6. Moreover, in Problem 6.3 it
is shown that u− lies inside or on the unit circle, i.e., |u−| ≤ 1 and that u+ satisfies
|u+| ≥ 1.

Since the derivative of the transformation on the relevant Riemann sheet is
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°

1

u

u+

u−

C

C1

C2

C3

C′

Branch cut

Fig. 6.6 The contour C and the deformed contour C′ in the complex u-plane together with the
branch cut connecting the branch points u± used in Example 6.1. In this particular example z =
0.5+ i0.3.

dt
du

=
z− t

(u−−u)1/2 (u+−u)1/2

the integral becomes

Qν(z) =
1
2

∫
C

uν du

(u−−u)1/2 (u+−u)1/2

The singular points of the integrand are the two branch points u± and the origin.
The final step is to deform the contour C into the contour C′ in Figure 6.6. In fact,

any contour that starts at the origin and encircles the branch point u− in a clockwise
direction and returns to the origin on the second Riemann sheet gives the same value
of the integral. Notice that no singular points, u±, are crossed in this deformation,
and the Legendre function of the second kind can be written as
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Qν(z) =
1
2

∫
C′

uν du

(u−−u)1/2 (u+−u)1/2

The contour C′ is now parameterized, taking appropriate notice to the phase of
the argument of the variable u

u =


e−w+iπ , w ∈ (∞,0]
eiφ , φ ∈ [π,−π]
e−w−iπ , w ∈ [0,∞)

(C1)
(C2)
(C3)

Notice that the value of the square root in the denominator along C3 is identical
to the corresponding values along C1 apart from a sign difference. The parametric
evaluation of this integral is

Qν(z) =
1
2

(∫
∞

0

e−νw+iνπ e−w+iπ dw

(e−2w +1+2ze−w)1/2 +
∫

∞

0

e−νw−iνπ e−w−iπ dw

(e−2w +1+2ze−w)1/2

)

− 1
2

∫
π

−π

eiνφ ieiφ dφ

(u−− eiφ )1/2 (u+− eiφ )1/2

=
1
2

∫
π

−π

ei(ν+1)φ dφ
√

2eiφ/2 (z− cosφ)1/2 − cosνπ

∫
∞

0

e−(ν+1)w dw

(e−2w +1+2ze−w)1/2

since(
u−− e−w±iπ

)1/2(
u+− e−w±iπ

)1/2
=±

(
e−2w +1+2ze−w)1/2

, on C1/C3

depending on the Riemann surface, and, moreover(
u−− eiφ

)1/2(
u+− eiφ

)1/2
=−i

√
2eiφ/2 (z− cosφ)1/2, on C2

where the phase −i had to be chosen so that the square root starts on the correct
Riemann sheet at φ = π . We simplify the expression to

Qν(z) =
1√
2

(∫
π

0

cos(ν +1/2)φ

(z− cosφ)1/2 dφ − cosνπ

∫
∞

0

e−(ν+1/2)w

(z+ coshw)1/2 dw

)

where the principal branch of the square root is assumed. This completes the exam-
ple.
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6.3 Associated Legendre functions

The associated Legendre functions are frequently used in applications, and they
come in two families with slightly different definitions, i.e., {Pm

ν (x),Qm
ν (x)}, and

{Pm
ν (z),Qm

ν (z)}, respectively. They all satisfy the differential equation

(z2−1)u′′(z)+2zu′(z)−
(

ν(ν +1)+
m2

z2−1

)
u(z) = 0

The parameter m can in general be an arbitrary complex constant, but in this sec-
tion we restrict m to take integer values, which is the situation encountered in most
applications. The differential equation has regular singular points at z = ±1 and at
infinity.

The two families of the associated Legendre functions can be constructed from
the Legendre functions of the first and second kind, Pν(x), and Qν(x), respec-
tively. To see this, first extract a factor h(z) = (z2− 1)m/2 from the solution. Write
u(z) = h(z)v(z), and let u(z) solve the differential equation above. By the use of
Theorem 2.1, the function v(z) then satisfies

(z2−1)v′′(z)+2z(m+1)v′(z)+(m(m+1)−ν(ν +1))v(z) = 0

In order to compare with the hypergeometric differential equation, let z = g(t) =
2t−1, and use Theorem 2.1 again to conclude that w(t) = v(g(t)) satisfies

t(t−1)w′′(t)+(2t−1)(m+1)w′(t)+(m(m+1)−ν(ν +1))︸ ︷︷ ︸
(m+ν+1)(m−ν)

w(t) = 0

which is the hypergeometric differential equation with indices α = m−ν , β = m+
ν +1, and γ = m+1, and, as always, the order of the two first indices is immaterial.
Repeated use of Lemma 4.1 on page 50 then shows that all solutions w(t) can be
written as the mth order derivatives of the solutions to

t(t−1)w′′(t)+(2t−1)w′(t)−ν(ν +1)w(t) = 0

which is the Legendre differential equation. This motivates the following two def-
initions of the associated Legendre functions for non-negative integer m. The first
one is 

Pm
ν (x) = (1− x2)

m
2

dm

dxm Pν(x)

Qm
ν (x) = (1− x2)

m
2

dm

dxm Qν(x)
x ∈ [−1,1]

and the second is
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Pm

ν (z) = (z2−1)
m
2

dm

dzm Pν(z)

Qm
ν (z) = (z2−1)

m
2

dm

dzm Qν(z)
z ∈ C

The two families {Pm
ν (x),Qm

ν (x)} and {Pm
ν (z),Qm

ν (z)} are related to each other,
and they differ in the domain of definition and a common phase factor. The first
family is only defined in the interval x ∈ [−1,1], i.e., on the line between the two
regular singular points z = ±1. The second family is defined everywhere in the
complex plane except on the line between the two regular singular points z =±1.

From the definition of Pν(z) in terms of the hypergeometric function in (6.2) and
the result in Problem 5.2, we get

Pm
ν (z) = (z2−1)

m
2

dm

dzm Pν(z)

=
(−1)m

2m
(−ν ,m)(ν +1,m)

(1,m)
(z2−1)

m
2 F
(

m−ν ,m+ν +1;m+1;
1− z

2

)
=

(−1)m

2m
Γ (m−ν)Γ (ν +m+1)

m!Γ (−ν)Γ (ν +1)
(z2−1)

m
2 F
(

m−ν ,m+ν +1;m+1;
1− z

2

)
Use (A.4), and we obtain

Pm
ν (z) =

Γ (ν +m+1)
2mm!Γ (ν−m+1)

(z2−1)
m
2 F
(

m−ν ,m+ν +1;m+1;
1− z

2

)
(6.7)

which is an alternative way of defining the associated Legendre functions of the first
kind.

Example 6.2. The Helmholtz equation does not separate in the toroidal coordinate
system. However, the Laplace equation does, and the differential equations gener-
ated by separation of variables are related to the Legendre functions.

The toroidal coordinates (ξ ,η ,φ) are defined as

(x1,x2,x3) =
a

coshη− cosξ
(sinhη cosφ ,sinhη sinφ ,sinξ )

where the domains of the coordinates are

ξ ∈ [0,2π), η ∈ [0,∞), φ ∈ [0,2π)

The Laplace equation, ∇2ψ(ξ ,η ,φ) = 0, is separable, if we extract a common factor√
coshη− cosξ , i.e.,

ψ(ξ ,η ,φ) =
√

coshη− cosξ F(ξ ,η ,φ)

Then F(ξ ,η ,φ) satisfies
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∂ 2F
∂ξ 2 +

1
sinhη

∂

∂η

(
sinhη

∂F
∂η

)
+

1
sinh2

η

∂ 2F
∂φ 2 +

1
4

F = 0

The appropriate systems in the ξ and the φ variables are the trigonometric functions,
i.e., (

cosnξ

sinnξ

) (
cosmφ

sinmφ

)
, m,n non-negative integers

which implies

1
sinhη

d
dη

(
sinhη

d f (η)
dη

)
− m2

sinh2
η

f (η)−
(

n2− 1
4

)
f (η) = 0

Introduce the independent variable z = coshη , and the equation is transformed into

d
dz

(
(z2−1)

d f (z)
dz

)
− m2

z2−1
f (z)− (n−1/2)(n+1/2) f (z) = 0

The solutions of this differential equation are most conveniently expressed by the
use of the definition in (6.7), extended to non-integer values of m. The solutions are
then Pm

n− 1
2
(coshη) or Qm

n− 1
2
(coshη) — the toroidal functions or the ring functions.

Problems

6.1. Prove the representation of the Legendre functions of the first kind, due to
Laplace,3 for Rez > 0

Pν(z) =
1
π

∫
π

0

(
z+
(
z2−1

)1/2
cosφ

)ν

dφ , Rez > 0

where the branch of the square root
(
z2−1

)1/2 is real positive when z is real and
> 1.
Hint: Use the following parameter representation of the contour C in Schläfli’s in-
tegral:

t = z+
(
z2−1

)1/2
eiφ , φ ∈ (−π,π]

6.2. †Prove the representation of the Legendre functions of the first kind, due to
Dirichlet4 and Mehler,5 for θ ∈ (0,π)

3 Pierre-Simon Laplace (1749–1827), French mathematician.
4 Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician.
5 Ferdinand Mehler, German mathematician.
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Pν(cosθ) =
√

2
π

∫
θ

0

cos
(
ν + 1

2

)
φ

(cosφ − cosθ)1/2 dφ , θ ∈ (0,π)

where the branch of the square root is real positive when the argument is real and
positive.
Hint: Use the following parameter representation of the contour C in Schläfli’s in-
tegral:

t = 1+2sin
θ

2
eiφ , φ ∈ (−(π +θ)/2,(3π−θ)/2]

6.3. Define the transformation from the complex t-plane to the u-plane by

t→ u(t) =
1− t2

2(z− t)

where C 3 z /∈ [−1,1]. Show that the interval t ∈ [−1,1] is mapped to a contour
C, see Figure 6.6, starting at the origin in the u-plane, encircling the point u− =
z−
(
z2−1

)1/2 in a clockwise direction, and returning to the origin. Show that the
point u− lies inside or on the unit circle in the complex u-plane.

6.4. †Show the relation (m ∈ N) [15, p. 182]

sinhm
η

(coshη− cosξ )m+ 1
2

=
(−1)m

√
2

√
π Γ

(
m+ 1

2

) ∞

∑
n=0

εnQ
m
n− 1

2
(coshη)cosnξ

where the Neumann6 symbol is εn = 2−δn,0.

6.5. Using the result in Problem 6.4, solve the integral (m,n ∈ N)∫
π

0

cosnξ

(coshη0− cosξ )m+ 1
2

dξ

6 Carl Gottfried Neumann (1832–1925), German mathematician.



Chapter 7
Confluent hypergeometric functions

The details of the hypergeometric function were developed in Chapter 5. We used
the notion F(α,β ;γ;z) to denote this function. A more complete notation on the
hypergeometric function is 2F1(α,β ;γ;z), which, in this chapter, is used in parallel
with the shorter one.

What happens if two of the regular singular points at z = 0,1,∞ in the hyperge-
ometric differential equation coalesce is the topic of this chapter. The way we let
this happen is that we scale the singular point at z = 1 and push it to infinity, where
already one of the regular singular points resides. In order to get something new
and meaningful out from this limit process, we also scale the roots, α and β , of
the indicial equation. There are two ways in which this scaling (or confluence) can
occur, and we treat these cases in two separate sections. In the first scaling, see Sec-
tion 7.1, one of the roots of the indicial equation approaches infinity, while, in the
second scaling, both of the roots approach infinity simultaneously, see Section 7.2.

7.1 Confluent hypergeometric functions — first kind

Of interest in this section is the confluence of the first kind. More explicitly, if the
three regular singular points are located at 0, b, and ∞, and one of the roots of
the indicial equation, corresponding to the point at infinity, is β = kb, we let b→
∞, where k is an independent complex constant in this limit process. In terms of
Riemann’s P symbol this is

lim
b→∞

P

 0 1 ∞

0 0 α z/b
1− γ γ−α− kb kb

= lim
b→∞

P

 0 b ∞

0 0 α z
1− γ γ−α− kb kb


We now study what happens to the hypergeometric series in this limit process
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2F1(α,kb;γ;z/b) =
∞

∑
n=0

(α,n)(kb,n)
(1,n)(γ,n)

( z
b

)n

The factor

(kb,n)
bn = k(k +1/b) · . . . · (k +(n−1)/b)→ kn as b→ ∞

Therefore, we get for z inside the domain of convergence

lim
b→∞

2F1(α,kb;γ;z/b) =
∞

∑
n=0

(α,n)
(1,n)(γ,n)

(kz)n

This power series converges everywhere in the finite complex plane,1 i.e., |z| < ∞.
We introduce the notation, also called Kummer’s function or the M-function

1F1(α;γ;z) =
∞

∑
n=0

(α,n)
(γ,n)

zn

n!
(7.1)

satisfying
1F1(α;γ;0) = 1

and Kummer’s differential equation for u(z) = 1F1(α;γ;z) is

zu′′(z)+(γ− z)u′(z)−αu(z) = 0

which is obtained by taking the limit b→ ∞ in the scaled version (β = b, z→ z/b)
of the hypergeometric equation (4.3). We observe that this differential equation has
one regular singular point at the origin, and one irregular singular point at infinity.
Therefore, the confluence of the first kind has created an irregular singular point out
of the two regular singular points at z = b→ ∞ and infinity.

The indicial equation of Kummer’s differential equation, at the regular singular
point at the origin, has roots 0 and 1−γ , respectively, and the second solution to the
differential equation is

v(z) = z1−γ f (z)

where, using Theorem 2.1 on page 4,

z f ′′(z)+(2− γ− z) f ′(z)− (α− γ +1)u(z) = 0

This differential equation has a solution, which is well behaved at the origin, viz.,

f (z) = 1F1(α− γ +1;2− γ;z)

1 Compare with the convergence of the exponential function

ez =
∞

∑
n=0

zn

(1,n)
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This observation implies that

v(z) = z1−γ
1F1(α− γ +1;2− γ;z), γ not an integer (7.2)

is a second solution to the differential equation.

7.1.1 Bessel functions

The Bessel2 functions, Jν(z), where ν is in general a complex parameter, play an
important role in mathematical physics, and they are related to the confluent hyper-
geometric function, 1F1(γ;z). The aim of this section is to show this relationship in
more detail.

The Bessel function Jν(z) satisfies the Bessel differential equation

z2u′′(z)+ zu′(z)+(z2−ν
2)u(z) = 0 (7.3)

and the Bessel function Jν(z) behaves near the origin as

Jν(z)∼ zν

2νΓ (ν +1)
(7.4)

The Bessel differential equation and the confluent hypergeometric equation

zu′′(z)+(γ− z)u′(z)−αu(z) = 0

are related. To see this, use Theorem 2.1 on page 4 and g(t) = 2it. The confluent
hypergeometric equation is then transformed into

tw′′(t)+(γ−2it)w′(t)−2iαw(t) = 0

Another application of Theorem 2.1 with w(t) = t−ν eitu(t) implies

t2u′′(t)+(γ−2ν)tu′(t)+
(
(ν− it)2 +ν +(γ−2it)(−ν + it)−2iαt

)
u(t) = 0

From these transformations, we see that by choosing α = ν + 1/2 and γ = 2ν + 1,
we get

t2u′′(t)+ tu′(t)+
(
t2−ν

2)u(t) = 0

which is identical to the Bessel differential equation. This leads to the identification
or definition of the Bessel function, Jν(z), in terms of the confluent hypergeometric
function, 1F1(γ;z),

Jν(z) =
zν e−iz

1F1(ν +1/2;2ν +1;2iz)
2νΓ (ν +1)

(7.5)

2 Friedrich Bessel (1784–1846), German mathematician.
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where the multiplicative constant is adjusted to the correct behavior as z → 0,
see (7.4).

The properties of the Bessel function are treated in detail by Watson [30], and
the reader is encouraged to study that excellent text in order to find out more about
the many different integral representations and additional properties of the Bessel
functions. We restrict ourselves to give an example of integral representations of
Bessel functions in Example 7.1 below.

7.1.2 Integral representations

From the integral representations in Chapter 5, we inherit integral representations
for the confluent hypergeometric function 1F1(α;γ;z). We start with the one devel-
oped in Section 5.5.

Theorem 7.1. Kummer’s function is represented as an integral

1F1(α;γ;z) =
Γ (γ)

Γ (α)Γ (γ−α)

∫ 1

0
uα−1(1−u)γ−α−1euz du

valid for all Reγ > Reα > 0 and all z ∈ C.

Proof. We start with Theorem 5.3 where α and β have been interchanged (has no
effect on the hypergeometric function)

F(α,β ;γ;z/β ) =
Γ (γ)

Γ (α)Γ (γ−α)

∫ 1

0
uα−1(1−u)γ−α−1(1−uz/β )−β du

valid for all Reγ > Reα > 0 and all C 3 z/b /∈ [1,∞). The result of the theorem is
then immediately obtained by taking the limit β → ∞ inside the integral using the
following representation of the exponential:

ez = lim
b→∞

(
1+

z
b

)b
(7.6)

The restriction on the variable z can be dropped, since the integral converges for all
z ∈ C. ut

Example 7.1. The Bessel function Jν(z) was defined in (7.5).

Jν(z) =
( z

2

)ν e−iz
1F1(ν +1/2;2ν +1;2iz)

Γ (ν +1)

The integral representation in Theorem 7.1 is used to express the Bessel function as
an integral. We obtain, Reν >−1/2,

Jν(z) =
( z

2

)ν e−iz

Γ (ν +1)
Γ (2ν +1)

(Γ (ν +1/2))2

∫ 1

0
uν−1/2(1−u)ν−1/2e2iuz du
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The gamma functions are simplified using (A.5) with z = ν +1/2, i.e.,

Γ (2ν +1) =
22ν

√
π

Γ (ν +1/2)Γ (ν +1)

Also introduce the change of variable u = (1− t)/2. We obtain

Jν(z) =
( z

2

)ν 1√
π Γ (ν +1/2)

∫ 1

−1
(1− t2)ν−1/2e−itz dt

Another change of variable t =−cosθ puts the integral representation into

Jν(z) =
( z

2

)ν 1√
π Γ (ν +1/2)

∫
π

0
sin2ν

θeizcosθ dθ , Reν >−1/2

This integral representation originates from Siméon-Denis Poisson (1781–1840),
who was a French mathematician.

There is also a parallel to Barnes’ integral representation in Theorem 5.4 on
page 80 for Kummer’s function.

Theorem 7.2. If α or γ are not zero or a negative integer, Kummer’s function can
be represented as a contour integral

1F1(α;γ;z) =
1

2πi

∫
E

Γ (γ)Γ (α + s)
Γ (α)Γ (γ + s)

Γ (−s)(−z)s ds, |arg(−z)|< π/2

where E is a contour in the complex s-plane, starting at−i∞ and ending at i∞, such
that all poles to Γ (α + s) (i.e., s = −α,−α − 1,−α − 2, . . .) lie to the left and all
poles to Γ (−s) (i.e., s ∈ N) lie to the right of E, see Figure 7.1.

Proof. The proof follows the proof of Barnes’ theorem closely. We rewrite the
gamma functions in the integrand.

Γ (α + s)
Γ (γ + s)

Γ (−s) =
Γ (α + s)

Γ (s)
Γ (s)

Γ (γ + s)
Γ (−s)

Lemma A.3 and Lemma A.4 on page 170 and page 172, respectively, show that for
each ε ∈ (0,1/2) we can estimate the gamma functions in the integrand as∣∣∣∣Γ (α + s)

Γ (γ + s)
Γ (−s)

∣∣∣∣≤CeRe(α−γ−s−1/2) ln |s|+Res+Imsarg(−s)

when s ∈ {s ∈ C : |s+α +n| ≥ ε, |s−n| ≥ ε,∀n ∈ N}. Note that this factor has no
singularity at s =−γ−n or s =−n, n ∈ N. We also estimate

|(−z)s|=
∣∣∣|z|seisarg(−z)

∣∣∣= eRes ln |z|−Imsarg(−z)
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E

−α−2 −α−1 −α

Fig. 7.1 The contour of integration in Theorem 7.2.

The integrand can now be estimated. We get∣∣∣∣Γ (α + s)
Γ (γ + s)

Γ (−s)(−z)s
∣∣∣∣≤CeRe(α−γ−s−1/2) ln |s|+Res(1+ln |z|)+Imsarg(−s)−Imsarg(−z)

Using

arg(−s) = arg(s)−

{
π, Ims≥ 0
−π, Ims≤ 0

we get∣∣∣∣Γ (α + s)
Γ (γ + s)

Γ (−s)(−z)s
∣∣∣∣≤CeRe(α−γ−s−1/2) ln |s|+Res(1+ln |z|)+| Ims|(|arg(s)|−π+|arg(−z)|)

(7.7)
For large values of s along the imaginary axis, the integrand is dominated by∣∣∣∣Γ (α + s)

Γ (γ + s)
Γ (−s)(−z)s

∣∣∣∣≤CeRe(α−γ−s−1/2) ln |s|+Res(1+ln |z|)+| Ims|(|arg(−z)|−π/2)

≤CeRe(α−γ−s−1/2) ln |s|+Res(1+ln |z|)−| Ims|δ
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where we have assumed |arg(−z)|< π/2−δ , δ > 0. The integrand is then exponen-
tially small as s→±i∞, and the integral is convergent, provided |arg(−z)| < π/2.
This concludes the first part of the proof.

We next show that the integral in the theorem is identical to Kummer’s function
in (7.1). As in the proof of Lemma 5.5, we close the contour by a semi-circle C in
the right-hand side of the s-plane. The poles at s ∈N are avoided by parameterizing
the contour C as

C : s = (N +1/2)eiφ = (N +1/2)(cosφ + i sinφ), φ ∈ [−π/2,π/2]

and let N→ ∞ through the integer numbers. The integrand on C is bounded by the
use of the estimates above, see (7.7),∣∣∣∣Γ (α + s)

Γ (γ + s)
Γ (−s)(−z)s

∣∣∣∣≤CeRe(α−γ−1/2) ln(N+1/2)+(N+1/2)cosφ(1+ln |z|−ln(N+1/2))

×e(N+1/2)|sinφ |(|φ |−π+|arg(−z)|)

or, provided |arg(−z)|< π/2−δ , δ > 0,∣∣∣∣Γ (α + s)
Γ (γ + s)

Γ (−s)(−z)s
∣∣∣∣≤CeRe(α−γ−1/2) ln(N+1/2)+(N+1/2)cosφ(1+ln |z|−ln(N+1/2))

×e(N+1/2)|sinφ |(|φ |−π/2−δ )

We see, using the same type of arguments as in Lemma 5.5,3 that the contribution
from the contour C vanishes as N→ ∞, and the residue theorem implies∫

E

Γ (γ)Γ (α + s)
Γ (α)Γ (γ + s)

Γ (−s)(−z)s ds =
∫

E−C

Γ (γ)Γ (α + s)
Γ (α)Γ (γ + s)

Γ (−s)(−z)s ds

=−2πi
∞

∑
n=0

Res
s=n

Γ (γ)Γ (α + s)
Γ (α)Γ (γ + s)

Γ (−s)(−z)s

The residues of Γ (−s), see (5.15) on page 84, then imply∫
E

Γ (γ)Γ (α + s)
Γ (α)Γ (γ + s)

Γ (−s)(−z)s ds

= 2πi
∞

∑
n=0

Γ (γ)Γ (α +n)
Γ (α)Γ (γ +n)

(−1)n

n!
(−z)n = 2πi

∞

∑
n=0

(α,n)
(γ,n)

zn

n!

and the theorem is proved. ut

3 In the interval |φ | < π/4, the factor exp{−(N + 1/2)cosφ ln(N + 1/2)}, which is exponen-
tially small as N → ∞, dominates, and in the interval π/4 < |φ | ≤ π/2, the factor exp{N +
1/2)|sinφ |(|φ |−π/2−δ} is exponentially small as N→ ∞.
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7.1.3 Laguerre polynomials

Polynomial solutions are obtained by letting α =−n, n ∈N, in the confluent hyper-
geometric function 1F1(α;γ;z). These polynomials are the Laguerre4 polynomials
L(α)

n (x), which with suitable normalization are defined as

L(α)
n (x) =

(
n+α

n

)
1F1(−n;α +1;x) (7.8)

The Laguerre polynomials, L(α)
n (x), satisfy

zu′′(z)+(α +1− z)u′(z)+nu(z) = 0

The confluent hypergeometric function, 1F1(α;γ;z), was obtained as a limit pro-
cess from the hypergeometric function, 2F1(α,β ;γ;z), i.e., scaling of β and the
location of the regular singular point at z = 1. The same procedure gives a relation
between the Laguerre polynomials and the Jacobi polynomials defined in (5.18) on
page 94. Since the normalization coefficients for both sets of polynomials are the
same, compare (5.18) and (7.8), the result is

L(α)
n (x) = lim

b→∞
P(α,b)

n

(
1− 2x

b

)
(7.9)

With this observation, Rodrigues’ generalized function, the generating function, and
the orthogonality relation of the Laguerre polynomials are obtained from the results
in Section 5.8 on page 92.

The argument x in the Laguerre polynomials does usually take positive values, in
contrast to the Jacobi polynomials where the arguments usually take values in the
interval [−1,1], see, e.g., the orthogonality relation in Lemma 5.8.

We derive Rodrigues’ generalized function for the Laguerre polynomials using
the result in Section 5.8.3, and taking the appropriate limit b→ ∞ in the Jacobi
polynomials, see (7.9). The limit, using (5.25), is

Ln
(α)(x)

=
(−1)n

2nn!
lim
b→∞

(
2x
b

)−α (
2− 2x

b

)−b(
−b

2

)n dn

dxn

{(
2x
b

)α+n(
2− 2x

b

)b+n
}

=
1
n!

lim
b→∞

x−α

(
1− x

b

)−b dn

dxn

{
xα+n

(
1− x

b

)b+n
}

which reduces to, see (7.6),

L(α)
n (x) =

1
n!

x−α ex dn

dxn

{
xα+ne−x}

4 Edmond Laguerre (1834–1886), French mathematician.
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Similarly, the generating function for the Laguerre polynomials, G(α)(x, t), is
obtained from (5.24) on page 98 by a limit process

G(α)(x, t) =
∞

∑
n=0

L(α)
n (x)tn =

∞

∑
n=0

lim
b→∞

P(α,b)
n

(
1− 2x

b

)
tn

= lim
b→∞

2α+b
(
(1− t)2 + 4xt

b

)−1/2(
1− t +

√
(1− t)2 + 4xt

b

)α (
1+ t +

√
(1− t)2 + 4xt

b

)b

= lim
b→∞

2b (1− t)−α−1(
2+ 2xt

b(1−t) +O(1/b2)
)b = (1− t)−α−1 e−

xt
1−t

The final result then is

G(α)(x, t) =
∞

∑
n=0

L(α)
n (x)tn = (1− t)−α−1 exp

{
− xt

1− t

}
Finally, we use the generating function, G(α)(x, t), to find the orthogonality prop-

erties of the Laguerre polynomials. The following double sum is appropriate:

∞

∑
n=0

∞

∑
m=0

∫
∞

0
e−xxα L(α)

n (x)L(α)
m (x)tnum dx =

∫
∞

0
e−xxα G(α)(x, t)G(α)(x,u)dx

=
∫

∞

0
e−xxα(1− t)−α−1 exp

{
− xt

1− t

}
(1−u)−α−1 exp

{
− xu

1−u

}
dx

= (1−u)−α−1(1− t)−α−1
∫

∞

0
xα exp

{
−x
(

1+
t

1− t
+

u
1−u

)}
dx

Further calculations give

∞

∑
n=0

∞

∑
m=0

∫
∞

0
e−xxα L(α)

n (x)L(α)
m (x)tnum dx

= (1−u)−α−1(1− t)−α−1
Γ (α +1)

(
1+

t
1− t

+
u

1−u

)−α−1

= Γ (α +1)(1−ut)−α−1 = Γ (α +1)
∞

∑
n=0

(
−1−α

n

)
(−ut)n

= Γ (α +n+1)
∞

∑
n=0

(ut)n

n!

where we used the definition of the gamma function Γ (z), (A.1), in Appendix A to
obtain (a > 0) ∫

∞

0
e−axxα dx = a−α−1

∫
∞

0
e−t tα dt = a−α−1

Γ (α +1)
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and by using (A.4)(
−β

n

)
=

Γ (1−β )
Γ (1−β −n)n!

= (−1)n Γ (β +n)
Γ (β )n!

The coefficients in front of the powers in t and u on the left- and the right-hand side
must be identical, leading to the orthogonality result for the Laguerre polynomials∫

∞

0
e−xxα L(α)

n (x)L(α)
m (x)dx =

Γ (α +n+1)
n!

δn,m

7.1.4 Hermite polynomials

We conclude this section by defining a set of polynomials —- the Hermite polyno-
mials — as a special case of the Laguerre polynomials. Specifically, the Hermite5

polynomials, Hm(x), are defined in terms of the Laguerre polynomials by letting
α =±1/2, viz.,{

H2m(x) = (−1)m22mm!L(−1/2)
m (x2)

H2m+1(x) = (−1)m22m+1m!xL(1/2)
m (x2)

x ∈ R

The argument of the Hermite polynomials usually takes values on the whole real
axis.

7.2 Confluent hypergeometric functions — second kind

The second kind of confluence in the hypergeometric function, F(α,β ;γ;z) =
2F1(α,β ;γ;z), where both roots of the indicial equation approach infinity together
with one of the regular singular points, is now investigated. To this end, let α = k1

√
b

and β = k2
√

b, and study what happens to the hypergeometric series as b→ ∞ with
a scaled argument z/b. The hypergeometric series in this limit process is

lim
b→∞

2F1(k1
√

b,k2
√

b;γ;z/b) =
∞

∑
n=0

(k1
√

b,n)(k2
√

b,n)
(γ,n)n!

( z
b

)n

The factor

(k1
√

b,n)(k2
√

b,n)
bn =

(k1
√

b,n)
bn/2

(k2
√

b,n)
bn/2 → kn

1kn
2 as b→ ∞

by the same arguments as used in Section 7.1. We get

5 Charles Hermite (1822–1901), French mathematician.
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lim
b→∞

2F1(k1
√

b,k2
√

b;γ;z/b) =
∞

∑
n=0

(k1k2z)n

(γ,n)n!

We introduce the notation

0F1(γ;z) =
∞

∑
n=0

1
(γ,n)

zn

n!
(7.10)

This series converges everywhere in the complex plane, and the differential equation
of u(z) = 0F1(γ;z) is

zu′′(z)+ γu′(z)−u(z) = 0 (7.11)

which is obtained by taking the appropriate limit b → ∞ in the scaled version
(α = β =

√
b, z → z/b) of the hypergeometric equation (4.3) on page 50. This

differential equation has one regular point at the origin, and one irregular point at
infinity. Just like confluence of the first kind, confluence of the second kind has cre-
ated an irregular singular point out of the regular singular point at z = b→ ∞ and
the one located at infinity.

Just as for confluence of the first kind, the indicial equation, for the regular sin-
gular point at the origin, has roots 0 and 1− γ , respectively, and the second solution
to the differential equation is

v(z) = z1−γ f (z)

where, use Theorem 2.1 on page 4,

z f ′′(z)+(2− γ) f ′(z)−u(z) = 0

This differential equation has a solution, which is well behaved at the origin, viz.,

f (z) = 0F1(2− γ;z)

This observation implies that

v(z) = z1−γ
0F1(2− γ;z), γ not an integer

is a second solution to the differential equation.

7.2.1 Integral representations

In parallel to Barnes’ integral representation of the hypergeometric function in The-
orem 5.4 on page 80, and the integral representation of the confluent hypergeometric
function of the first kind in Theorem 7.2 on page 127, there is an integral represen-
tation of the confluent hypergeometric function of the second kind.
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Fig. 7.2 The contour of integration in Theorem 7.3.

Theorem 7.3. If Reγ > 1, the confluent hypergeometric function of the second kind
can be represented as a contour integral

0F1(γ;z) =
1

2πi

∫
F

Γ (γ)
Γ (γ + s)

Γ (−s)(−z)s ds, R 3 z < 0

where F is a contour in the complex s-plane, starting at−i∞ and ending at i∞, such
that all poles to Γ (−s) (i.e., s ∈ N) lie to the right of F, see Figure 7.2.

Proof. The proof follows the proof of Theorem 7.2 closely. We start by rewriting
the integrand, using (A.4), as

Γ (−s)(−z)s

Γ (γ + s)
=− (−z)s

Γ (γ + s)Γ (1+ s)
π

sinπs

The gamma functions are estimated using Corollary A.2 on page 172 with α = 1
and α = γ . The result is (C1 is a constant independent of s)∣∣∣∣ 1

Γ (γ + s)Γ (1+ s)

∣∣∣∣≤C1e−Re(2s+γ) ln |s|+2Imsarg(s)+2Res

Moreover, we have for |s+n|> ε,∀n ∈ Z, see Lemma A.1,

|sinπs| ≥C3eπ| Ims|

and also for real z < 0
|(−z)s|= eRes ln |z|
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The integrand at large values of s can now be estimated for real z < 0,∣∣∣∣Γ (−s)(−z)s

Γ (γ + s)

∣∣∣∣≤Ce−Re(γ+2s) ln |s|+Res(2+ln |z|)+2| Ims|(|arg(s)|−π/2) (7.12)

for s ∈ {s ∈ C : |s + n| ≥ ε,∀n ∈ N}. Notice that the factor | Ims|(|arg(s)|−π/2)
is bounded as s→±i∞. The convergence properties as s→±i∞ are determined by
the factor

e−Reγ ln |s|

and the integrand vanishes at least as 1/|s|, as s→±i∞, since Reγ > 1. The inte-
grand is therefore convergent, and the first part of the proof is completed.

We next show that the integral in the theorem is identical to confluent hyperge-
ometric function of the second kind in (7.10). As in the proof in Theorem 7.2, we
close the contour by a semi-circle C in the right-hand s-plane. The poles at s∈N are
avoided by parameterizing the contour C as

C : s = (N +1/2)eiφ = (N +1/2)(cosφ + i sinφ), φ ∈ [−π/2,π/2]

and let N → ∞ through the integer numbers. The integrand on C is bounded by,
see (7.12),∣∣∣∣Γ (−s)(−z)s

Γ (γ + s)

∣∣∣∣
≤Ce−(Reγ+(2N+1)cosφ) ln |N+1/2|+(N+1/2)cosφ(2+ln |z|)+2(N+1/2)|sinφ |(|φ |−π/2)

and we observe that the convergence properties are determined by the factor

e−Reγ ln|N+1/2|e−(N+1/2)cosφ{2ln|N+1/2|+2+ln |z|}

which vanishes at least as N−Reγ as N → ∞, showing that the contour C does not
contribute in the limit as N→ ∞. The residue theorem implies∫

F

Γ (γ)
Γ (γ + s)

Γ (−s)(−z)s ds =
∫

F−C

Γ (γ)
Γ (γ + s)

Γ (−s)(−z)s ds

=−2πi
∞

∑
n=0

Res
s=n

Γ (γ)
Γ (γ + s)

Γ (−s)(−z)s

The residues of Γ (−s), see (5.15) on page 84, then imply∫
F

Γ (γ)
Γ (γ + s)

Γ (−s)(−z)s ds = 2πi
∞

∑
n=0

Γ (γ)
Γ (γ +n)

(−1)n

n!
(−z)n

= 2πi
∞

∑
n=0

1
(γ,n)

zn

n!
= 2πi0F1(γ;z)
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and the theorem is proved. ut

7.2.2 Bessel functions — revisited

The Bessel functions, Jν(z), were introduced in Section 7.1.1 and were found to be
related to the confluent hypergeometric function 1F1(γ;z), see (7.5),

Jν(z) =
zν e−iz

1F1(ν +1/2;2ν +1;2iz)
2νΓ (ν +1)

In this section, we show that Jν(z) also can be expressed in the confluent hypergeo-
metric function of the second kind, 0F1(γ;z).

The Bessel function Jν(z) satisfies the Bessel differential equation, see (7.3),

z2u′′(z)+ zu′(z)+(z2−ν
2)u(z) = 0

and the Bessel function Jν(z) behaves near the origin as

Jν(z)∼ zν

2νΓ (ν +1)

The derivation follows the analysis in Section 7.1.1 closely, and we start with the
confluent hypergeometric equation, (7.11)

zu′′(z)+ γu′(z)−u(z) = 0

As in Section 7.1.1, we use Theorem 2.1 on page 4 but now g(t) = −t2/4. The
confluent hypergeometric equation above then is transformed into

tw′′(t)+(2γ−1)w′(t)+ tw(t) = 0

Another transformation with Theorem 2.1 with w(t) = t−ν u(t) gives

t2u′′(t)+(2(γ−ν−1)+1)tu′(t)+(t2−2ν(γ−ν−1)−ν
2)u(t) = 0

From these transformations, we see that by choosing γ = ν +1, the equation is iden-
tical to the Bessel differential equation, leading to the identification of the Bessel
function, Jν(z), in terms of the confluent hypergeometric function, 0F1(γ;z)

Jν(z) =
zν

0F1(ν +1;−z2/4)
2νΓ (ν +1)

(7.13)

with power series expansion
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F(α,β ;γ;z)

0F1(γ;z)

1F1(α;γ;z)
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Jacobi polynomials

α =−n
Confluence of the first kind
β = b
b→ ∞

Confluence of the second kind
α =
√

b, β =
√

b
b→ ∞

α =−n

Bessel functions
Bessel functions Laguerre polynomials

Hermite polynomials

Fig. 7.3 An overview of the hierarchy of the solutions to the hypergeometric differential equation
and its two confluent tracks.

Jν(z) =
( z

2

)ν ∞

∑
n=0

(−1)n

Γ (n+ν +1)n!

( z
2

)2n

We conclude the section with an example.

Example 7.2. From (7.13) and Theorem 7.3, we get (x > 0 and Reν > 0)

Jν(x) =
xν

0F1(ν +1;−x2/4)
2νΓ (ν +1)

=
xν

2νΓ (ν +1)
1

2πi

∫
F

Γ (ν +1)
Γ (ν +1+ s)

Γ (−s)(x2/4)s ds

where the path of integration goes along the imaginary axis, but to the left of the
singular point at s = 0. We get the integral representation

Jν(x) =
1

2πi

∫ i∞

−i∞

Γ (−s)(x/2)ν+2s

Γ (ν +1+ s)
ds, x > 0, Reν > 0

7.3 Solutions with three singular points — a summary

After having explored the solutions of the hypergeometric function 2F1(α,β ;γ;z) in
Chapter 5, and its confluent versions, 1F1(α;γ;z) and 0F1(γ;z), in this chapter, it is
appropriate to illustrate the overall structure of the solutions. To this end, we collect
the different solutions in Figure 7.3.
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7.4 Generalized hypergeometric series

For completeness, we end this chapter with the definition of the generalized hyper-
geometric series of mFn(α1, . . . ,αm;γ1, . . . ,γn;z). We do not give any detailed de-
scription of the properties of this function in this section, but many of its properties
can be derived using techniques similar to the ones used above for the hypergeo-
metric function and the confluent hypergeometric functions of the first and second
kind.

The generalized hypergeometric series for general indices m and n has terms with
m factors in the nominator and n factors in the denominator of the series represen-
tation of the solution. Its definition is

mFn(α1, . . . ,αm;γ1, . . . ,γn;z) =
∞

∑
k=0

(α1,k) · . . . · (αm,k)
(γ1,k) · . . . · (γn,k)

zk

k!
(7.14)

The convergence properties of this series depend on how the m and n indices are
related to each other. By the ratio test we find

m≤ n =⇒ convergence for |z|< ∞

m = n+1 =⇒ convergence for |z|< 1
m > n+1 =⇒ divergence everywhere

Problems

7.1. Show that
1F1(α;γ;z) = ez

1F1(γ−α;γ;−z)

7.2. Prove
d
dz 1F1(α;γ;z) =

α

γ
1F1(α +1;γ +1;z)

and more generally

dn

dzn 1F1(α;γ;z) =
(α,n)
(γ,n) 1F1(α +n;γ +n;z)

7.3. Determine the Wronskian of the two linearly independent solutions 1F1(α;γ;z)
and v(z) in (7.1) and (7.2), respectively.

7.4. The Whittaker6 equation reads

z2u′′(z)+
(

1
4
−µ

2 +κz− z2

4

)
u(z) = 0

6 Edmund Taylor Whittaker (1873–1956), English mathematician.
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Find its solutions in terms of the Kummer function 1F1(α;γ;z).

7.5. Weber’s7 equation reads

u′′(z)+
(

ν +
1
2
− z2

4

)
u(z) = 0

Its solutions are often called parabolic cylinder functions. Find its solutions in terms
of the Kummer function 1F1(α;γ;z).

7.6. Show that for any σ < 0

ez =
1

2πi

∫
σ+i∞

σ−i∞
Γ (−s)(−z)s ds, Rez < 0

7.7. The error function erf(z) is defined as

erf(z) =
2√
π

∫ z

0
e−t2

dt

Show that

erf(z) =
2z√

π
1F1(1/2;3/2;−z2) =

2z√
π

e−z2
1F1(1;3/2;z2)

7 Heinrich Friedrich Weber (1843–1912), German physicist.



Chapter 8
Heun’s differential equation

The solutions to the hypergeometric differential equation — two regular singular
points in the finite complex plane (at z = 0 and z = 1) and a regular singular point at
infinity — were analyzed in detail in Chapter 5. In this chapter, the solutions of the
differential equation with four regular singular points are investigated. We restrict
ourselves to the situation where there are three regular singular points in the finite
complex plane, and a regular singular point at infinity.

8.1 Basic properties

The differential equation with three regular singular points in the finite complex
plane and one regular singular point at infinity was introduced in Section 4.4.1. The
three regular singular points in the finite complex plane are located at z = 0, z = 1,
and z = a, respectively. We restrict ourselves to the case when |a|> 1 (no restriction
if |a| 6= 1, since the role of the singular points z = 1 and z = a can be changed), see
Figure 8.1. The differential equation that corresponds to these conditions is Heun’s
differential equation, which reads, see (4.10) on page 57,

u′′(z)+
[

γ

z
+

δ

z−1
+

ε

z−a

]
u′(z)+

αβ (z−h)
z(z−1)(z−a)

u(z) = 0 (8.1)

The extra condition that the coefficients have to satisfy is{
α +β +1 = γ +δ + ε

h accessory parameter
(8.2)

The roots of the indicial equations at z = 0 are 0 and 1− γ . Similarly, the roots at
z = 1 are 0 and 1− δ , at z = a they are 0 and 1− ε , and, finally, at z = ∞ they are
α and β . The roots of the indicial equations at the four different regular singular
points are summarized in Table 8.1.
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Table 8.1 The roots of the indicial equation of Heun’s differential equation. The parameters α , β

γ , δ , and ε satisfy (8.2).

Point Roots λ

z = 0 0,1− γ

z = 1 0,1−δ

z = a 0,1− ε

z = ∞ α,β

Generalizing the notation by Riemann introduced in Section 4.3.2, see also (4.11),
we write the set of solutions to Heun’s differential equation as

u(z) ∈ P

 0 1 a ∞

0 0 0 α z
1− γ 1−δ 1− ε β


In Section 5.4, we concluded that the solutions of the hypergeometric differential

equation show symmetry properties with respect to transformations of the indepen-
dent variable z, see Theorem 5.2. A similar, but more complex result, holds for the
solutions to Heun’s differential equation. In total, there are 192 different solutions
to Heun’s differential equation, corresponding to the 24 permutations of the regular
singular points {0,1,a,∞} and the 8 combinations of the exponential factors corre-
sponding to the roots of the indicial equation, {{0,1−γ},{0,1−δ},{0,1−ε}}, see
also Problem 4.5. The result relies on the generalization of Theorem 4.1 on page 52
to four singular points, i.e., with the notation of Theorem 4.1

°

1

z

a

Fig. 8.1 The three regular singular points at z = 0,1,a in Heun’s differential equation. The fourth
regular singular point is located at infinity.
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P

a1 a2 a3 a4
α1 α2 α3 α4 z
β1 β2 β3 β4

= P

t(a1) t(a2) t(a3) t(a4)
α1 α2 α3 α4 t(z)
β1 β2 β3 β4


This result is a consequence of Problem 3.5. We refrain from giving the details of
this result here, but refer to Ronveaux [21] and Maier [16] for a comprehensive
treatment of the topic.

Comment 8.1. Heun’s differential equation reduces to the hypergeometric differen-
tial equation if we let a = 1 (confluence) and h = 1. To see this, rewrite Heun’s
differential equation in the form

z(z−1)2u′′(z)+ z(z−1)2
[

γ

z
+

δ + ε

z−1

]
u′(z)+αβ (z−1)u(z) = 0

or

z(z−1)u′′(z)+ z(z−1)
[

γ

z
+

α +β − γ +1
z−1

]
u′(z)+αβu(z) = 0

which is the hypergeometric differential equation

z(z−1)u′′(z)+ [(α +β +1)z− γ]u′(z)+αβu(z) = 0

8.2 Power series solution

Just as in the analysis of the solutions to the hypergeometric differential equation
in Chapter 5, we develop power series solutions to Heun’s differential equation at
z = 0, i.e., we make the ansatz

u(z) =
∞

∑
n=0

anzn, v(z) = z1−γ
∞

∑
n=0

a′nzn (8.3)

Insert the first ansatz in (8.3) into Heun’s differential equation and identify the co-
efficient in front of the nth power (n ∈ Z+). The result is

(n−1)(n−2)an−1− (1+a)n(n−1)an +a(n+1)nan+1 +(γ +δ + ε)(n−1)an−1

− (γ + γa+δa+ ε)nan + γa(n+1)an+1 +αβan−1−αβhan = 0

or with the use of the constraint condition in (8.2)

(n−1+α)(n−1+β )an−1− [(1+a)n(n−1+ γ)+(δa+ ε)n+αβh]an

+a(n+1)(n+ γ)an+1 = 0

The coefficient corresponding to n = 0 is
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aγa1−αβha0 = 0

We write the relation between the coefficients in the following way:

an+1 = Anan +Bnan−1, n ∈ Z+ (8.4)

where 
An =

(1+a)n(n−1+ γ)+(δa+ ε)n+αβh
a(n+1)(n+ γ)

Bn =− (n−1+α)(n−1+β )
a(n+1)(n+ γ)

n ∈ N (8.5)

The sequence is initialized by

a1 =
αβh
aγ

a0 = A0a0

The values of γ = 0,−1,−2, . . . have to be excluded from the analysis, otherwise
the coefficients an become undetermined at some n value. The coefficients An and
Bn behave asymptotically as n→ ∞ as

An = 1+
1
a

+
−2a−2+δa+ ε

an
+O(1/n2)

Bn =−1
a
− α +β − γ−3

an
+O(1/n2) =−1

a
− δ + ε−4

an
+O(1/n2)

(8.6)

The convergence of the power series solution in (8.3) is determined by studying the
behavior of the quotient an+1/an for large n. The limit

t = lim
n→∞

an+1

an

exists by the results in Appendix B.2, see Theorem B.2 on page 183. With A =
1+1/a and B =−1/a, the roots to the characteristic equation (B.3) satisfy

t2 = t
1+a

a
− 1

a

with solutions {
t1 = 1/a

t2 = 1

Here |t2| > |t1| by the assumption made on a. The radius of convergence of the
power series, (8.3), then is r = 1/|t|. As shown in Theorem B.2, the proper root is
t2, thus the power series converges absolutely inside the unit circle, r = 1, in the
complex z-plane, see Figure 8.2, and diverges outside this circle. In the exceptional
case, see (B.4) in Appendix B.2, the quotient an+1/an converges to t1, thus leading
to a larger domain of convergence, i.e., r = |a|. Provided this is the case, power
series converges absolutely for |z|< |a| and divergences for |z|> |a|.
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°

1

z

a

Fig. 8.2 The domain of convergence of the power series expansion of the solution to Heun’s dif-
ferential equation that is analytic at the origin.

The convergence on the unit circle, |z|= 1, is investigated by the use of Raabe’s
test, see footnote 9 on page 64. In Problem 8.1 it is proved that the power series
converges absolutely provided Reδ < 1. In the exceptional case, the power series
converges on the circle |z|= |a| if Reε < 1, see Problem 8.1.

We have seen that the power series (8.3) converges inside the unit circle. We
adopt the normalization a0 = 1, and call the solution obtained by the power series a
local solution, and use the notion

u(z) = Hl(a,h;α,β ,γ,δ ,ε;z)

We summarize these conclusions made so far in this section in a theorem.

Theorem 8.1. There is a solution u(z) to Heun’s differential equation, (8.1), ana-
lytic at the origin and u(0) = 1, with a power series expansion that converges abso-
lutely inside the unit circle. Moreover, the power series converges absolutely on the
unit circle provided Reδ < 1. This solution is denoted u(z)= Hl(a,h;α,β ,γ,δ ,ε;z).

In the exceptional case, see (B.4), the power series has a larger domain of con-
vergence, i.e., r = |a|. The power series converges on the circle |z| = |a| provided
Reε < 1.

We conclude this section with a brief discussion of the special conditions that
have to be met in order to fulfill the exceptional case. Lemma B.1 in Appendix B
shows that the coefficients an can be determined as a determinant Dn, i.e., an = Dna0,
where
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Dn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 −1 0 0 0 . . . . . . . . .
B1 A1 −1 0 0 . . . . . . . . .
0 B2 A2 −1 0 . . . . . . . . .
...

...
...

...
... . . .

...
...

. . . . . . . . . . . . . . . . . . An−1 −1
0 0 0 0 0 . . . Bn An

∣∣∣∣∣∣∣∣∣∣∣∣∣
n ∈ N (8.7)

A necessary condition for convergence of the power series in a larger domain than
the unit circle1 is that limn→∞ an = 0, or equivalently limn→∞ Dn = 0. This condition
for convergence can be viewed as an eigenvalue problem implying a condition on
the accessory parameter h, see also (B.4) in Appendix B. We number the allowed
values as h1,h2,h3, . . .. Infinite determinants have been studied by Hill,2 and we
refer to the literature for more details [31, p. 36].

8.3 Polynomial solution

Polynomial solutions play an important role, and in this section the conditions for a
polynomial solution of Heun’s differential equation are investigated.

The power series in (8.3) is terminated, resulting in a polynomial solution of de-
gree n, if Dn+1 = 0 in (8.7) and, at the same time, an 6= 0. To terminate the sequence
in (8.4) after n terms, we also need Bn+1 = 0, which implies

(n+α)(n+β ) = 0 =⇒ α =−n or β =−n

Example 8.1. The simplest example is n = 1, which implies that α =−1 or β =−1.
In both cases αβ =−(γ +δ +ε), due to the extra condition α +β +1 = γ +δ +ε .

D2 = 0 =⇒ D2 =
∣∣∣∣A0 −1
B1 A1

∣∣∣∣= A0A1 +B1 = 0

We get
αβh
aγ

(1+a)γ +δa+ ε +αβh
2a(1+ γ)

− αβ

2a(1+ γ)
= 0

The solution has to satisfy

0 = h(1+a)γ +hδa+hε−h2(γ +δ + ε)−aγ

= (a−h)(h−1)γ +h(a−h)δ +h(1−h)ε

or
γ

h
+

δ

h−1
+

ε

h−a
= 0

1 The necessary condition for convergence of the power series is that |an||z|n → 0 as n→ ∞, but
this implies |an| → 0 as n→ ∞ if |z|> 1.
2 George William Hill (1838–1914), U.S. astronomer and mathematician.
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Given γ , δ , and ε , this is a quadratic equation in h to solve. This gives two polyno-
mials 1+a1z, where

a1 =
αβh
aγ

=−h
γ +δ + ε

aγ

8.4 Solution in hypergeometric polynomials

A power series solution of Heun’s differential equations was analyzed in Section 8.2.
It was proved that this solution was absolutely convergent inside the unit circle,
|z| < 1. A rearrangement of the terms in the power series suggests another type of
solution expressed as an infinite series of polynomials. The hypergeometric polyno-
mials (Jacobi polynomials) in Section 5.8, P(α,β )

n (x), are polynomials of degree n,
and a suitable candidate for these polynomials. This type of solution was first inves-
tigated by N. Svartholm [25]. In this section, we investigate under what conditions
this series of the hypergeometric polynomials (Jacobi polynomials) is a solution of
Heun’s differential equation.

To this end, make the following ansatz in hypergeometric polynomials (Jacobi
polynomials)

u(z) =
∞

∑
n=0

cnyn(z) (8.8)

where we have introduced a short-hand notation for the Jacobi polynomials, see
also (5.18) on page 94

yn(z) = F(−n,n+ γ +δ −1;γ;z) =
n!Γ (γ)

Γ (n+ γ)
P(γ−1,δ−1)

n (1−2z)

and with ω = γ +δ −1, we have

yn(z) = F(−n,n+ω;γ;z)

The first two functions are 
y0(z) = 1

y1(z) = 1− 1+ω

γ
z
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8.4.1 Asymptotic properties of the polynomials yn(z)

The asymptotic behavior of the polynomials yn(z) for large indices n is needed to
determine the domain of convergence of the series in (8.8). This section is devoted
to an investigation of these properties.

The polynomials yn(z) satisfy, see Section 5.1,

y′′n(z)+
[

γ

z
+

δ

z−1

]
y′n(z)−

n(n+ω)
z(z−1)

yn(z) = 0 (8.9)

and the recursion relations, see Problem 8.2, n ∈ Z+

zyn(z) = Pnyn+1(z)+Qnyn(z)+Rnyn−1(z) (8.10)

z(z−1)
d
dz

yn(z) = P′nyn+1(z)+Q′nyn(z)+R′nyn−1(z) (8.11)

where (n ∈ Z+)

Pn =− (n+ω)(n+ γ)
(2n+ω)(2n+ω +1)

Qn =
(ω−1)(γ−δ )

2(2n+ω +1)(2n+ω−1)
+

1
2

Rn =− n(n+δ −1)
(2n+ω)(2n+ω−1)



P′n =− n(n+ω)(n+ γ)
(2n+ω)(2n+ω +1)

Q′n =
n(n+ω)(γ−δ )

(2n+ω−1)(2n+ω +1)

R′n =
n(n+ω)(n+δ −1)
(2n+ω)(2n+ω−1)

with initializing values (n = 0)
P0 =− γ

ω +1

Q0 =
γ

ω +1
R0 = 0


P′0 = 0
Q′0 = 0
R′0 = 0

The dominant contributions for large index values as n→ ∞ are
Pn =−1

4
+

1−2γ

8n
+O(1/n2)

Qn =
1
2

+O(1/n2)

Rn =−1
4
− 1−2γ

8n
+O(1/n2)


P′n =−n

4
+

1−2γ

8
+O(1/n)

Q′n =
γ−δ

4
+O(1/n2)

R′n =
n
4
− 1−2δ

8
+O(1/n)

(8.12)

The main result of the asymptotic behavior is contained in the following lemma:

Lemma 8.1. The limit
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lim
n→∞

yn+1(z)
yn(z)

= s(z) =

(
1− z−1

)1/2 +1

(1− z−1)1/2−1

exists, where the branch of the square root satisfies Re
(
1− z−1

)1/2
> 0 (we assume

z /∈ [0,1]). The function s(z) also satisfies |s(z)|> 1. Moreover,

yn+1(z)
yn(z)

= s(z)+
σ(z)

n
+O(1/n2), as n→ ∞

where σ(z) is

σ(z) = s(z)
1−2γ

2

Proof. We make use of the recursion relation for the functions yn(z) in (8.10).

zyn(z) = Pnyn+1(z)+Qnyn(z)+Rnyn−1(z)

The coefficients, Pn, Qn, Rn, have well-defined limits as n→∞. From (8.12) we have
Pn =−1

4
+

1−2γ

8n
+O(1/n2)

Qn =
1
2

+O(1/n2)

Rn =−1
4
− 1−2γ

8n
+O(1/n2)

as n→ ∞

To show that yn+1(z)/yn(z) has a limit as n→ ∞, we can employ Theorem B.2
on page 183 directly. However, in this proof, we proceed in a somewhat different
way. To this end, write

an(z) = s(z)−nyn(z)

where we choose s(z) such that the new recursion relation

an+1 = Anan +Bnan−1

where 
An =

z−Qn

sPn

Bn =− Rn

s2Pn

satisfies {
An = 1+α +O(1/n)
Bn =−α +O(1/n)

with |α|< 1. The asymptotic behavior of the coefficients, which is
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An = s−1(2−4z)+O(1/n)

Bn =−s−2 +O(1/n)

leads us to choose s satisfying (remember we require An +Bn→ 1 as n→ ∞)

s2−2s(1−2z)+1 = 0 (8.13)

with solutions

s1,2(z) = 1−2z±2
(
z2− z

)1/2
=−

(
z1/2∓ (z−1)1/2

)2

which we write as

s1(z) =
Z−1
Z +1

, s2(z) =
1

s1(z)
=

Z +1
Z−1

where
Z =

(
1− z−1)1/2

The first root satisfies

|s1(z)|=
∣∣∣∣Z−1
Z +1

∣∣∣∣< 1

since Z =
(
1− z−1

)1/2 is located in the right-hand side of the complex Z-plane
(ReZ > 0), whenever z /∈ [0,1]. Therefore, |s2(z)| > 1, and in order to satisfy the
condition |α|= |s(z)|−2 < 1, we have to pick the root s(z) = s2(z).

We can now apply Corollary B.1 on page 193, which shows that the quotient
an+1/an converges to 1, and, hence, the limit3

lim
n→∞

yn+1(z)
yn(z)

= s2(z) = s(z)

The first part of the lemma is then proved.
To prove the conditions on σ(z), we once again make use of the recursion rela-

tion in (8.10) and divide by yn(z). The asymptotic behavior of the coefficients then
implies

z =
(
−1

4
+

1−2γ

8n
+O(1/n2)

)(
s(z)+

σ(z)
n

+O(1/n2)
)

+
1
2

+O(1/n2)

+
(
−1

4
− 1−2γ

8n
+O(1/n2)

)
1

s(z)+ σ(z)
n−1 +O(1/n2)

3 The Hungarian-born British mathematician Arthur Erdélyi (1908–1977) showed that the excep-
tional case

lim
n→∞

yn+1(z)
yn(z)

= s1(z) =
1

s(z)
does not occur [7].
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Use (8.13), and keep terms up to order 1/n. We get

0 =−σ(z)
4n

+ s(z)
1−2γ

8n
+

1
s(z)

(
σ(z)

4s(z)(n−1)
− 1−2γ

8n

)
+O(1/n2)

A multiplication by n and taking the limit n→ ∞ give

2σ(z) =
(

s(z)− 1
s(z)

)
(1−2γ)+2

σ(z)
(s(z))2

which we solve for σ(z). Finally, we get

σ(z) = s(z)
1−2γ

2

which proves the lemma. ut

8.4.2 Asymptotic properties of the coefficients cn

In a similar manner, we investigate the asymptotic behavior of the expansion coef-
ficients cn in the series (8.8), which satisfy Heun’s differential equation. We collect
the results in two lemmas.

Lemma 8.2. If the series (8.8) is a solution of Heun’s differential equation, the co-
efficients in the series of hypergeometric polynomials, cn, satisfy

cn+1 = Encn +Fncn−1

where 
En =−εQ′n +αβQn +n(n+ω)Qn− (αβh+n(n+ω)a)

εR′n+1 +(αβ +(n+1)(n+1+ω))Rn+1

Fn =−
εP′n−1 +αβPn−1 +(n−1)(n−1+ω)Pn−1

εR′n+1 +(αβ +(n+1)(n+1+ω))Rn+1

The sequence is initialized by

c1 = E0c0 =−αβ (2+ω)(γ−h(ω +1))
δ ((ε−1)(ω +1)−αβ )

c0

Moreover, the coefficients En and Fn behave asymptotically as
En = 2−4a+

(1−2a)(2γ +2ε−5)
n

+O(1/n2)

Fn =−1− 2γ +2ε−5
n

+O(1/n2)
as n→ ∞ (8.14)

Proof. Insert the series expansion (8.8) in Heun’s differential equation
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u′′(z)+
[

γ

z
+

δ

z−1
+

ε

z−a

]
u′(z)+

αβ (z−h)
z(z−1)(z−a)

u(z) = 0

and use the differential equation for the function yk(z), see (8.9). We get

εz(z−1)
∞

∑
k=0

cky′k(z)+
∞

∑
k=0

ck (αβ (z−h)+ k(k +ω)(z−a))yk(z) = 0

or using (8.10) and (8.11)

ε

∞

∑
k=0

ck
(
P′kyk+1(z)+Q′kyk(z)+R′kyk−1(z)

)
+

∞

∑
k=0

ck (αβ + k(k +ω))(Pkyk+1(z)+Qkyk(z)+Rkyk−1(z))

−
∞

∑
k=0

ck (αβh+ k(k +ω)a)yk(z) = 0

Since the hypergeometric polynomials form an orthogonal set, see Lemma 5.8, the
coefficient in front of yn(z) must be zero, leading to (n ∈ Z+)

ε
(
cn−1P′n−1 + cnQ′n + cn+1R′n+1

)
+αβ (cn−1Pn−1 + cnQn + cn+1Rn+1)

+ cn−1(n−1)(n−1+ω)Pn−1 + cnn(n+ω)Qn + cn+1(n+1)(n+1+ω)Rn+1

− (αβh+n(n+ω)a)cn = 0

The coefficient in front of y0(z) is used as an initialization of recursion relation (use
P′0 = Q′0 = R′0 = 0)

εc1R′1 +αβ (c0Q0 + c1R1)+ c1(1+ω)R1−αβhc0 = 0

or explicitly

δ

(
ε−1
2+ω

− αβ

(2+ω)(ω +1)

)
c1 +αβ

(
γ

ω +1
−h
)

c0 = 0

or

c1 =−αβ (2+ω)(γ−h(ω +1))
δ ((ε−1)(ω +1)−αβ )

c0

We write the recursion relation as

cn+1 = Encn +Fncn−1

where
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En =−εQ′n +αβQn +n(n+ω)Qn− (αβh+n(n+ω)a)

εR′n+1 +(αβ +(n+1)(n+1+ω))Rn+1

Fn =−
εP′n−1 +αβPn−1 +(n−1)(n−1+ω)Pn−1

εR′n+1 +(αβ +(n+1)(n+1+ω))Rn+1

The asymptotic behavior in (8.14) is obtained by the use of (8.12). The denomi-
nator behaves as

εR′n+1 +(αβ +(n+1)(n+1+ω))Rn+1

=−n2

4
+

n
4

(
ε−2−ω− 1−2γ

2

)
+O(1)

=−n2

4
+

n
4

(
ε−δ − 3

2

)
+O(1)

The two numerators are

− εQ′n−αβQn−n(n+ω)Qn +(αβh+n(n+ω)a)

=
n2(2a−1)

2
+

nω(2a−1)
2

+O(1)

and

− εP′n−1−αβPn−1− (n−1)(n−1+ω)Pn−1

= ε
n
4
−
(
n2 +n(ω−2)+O(1)

)(
−1

4
+

1−2γ

8n
+O(1/n2)

)
+O(1)

=
n2

4
+n

2ε +4γ +2δ −7
8

+O(1)

These estimates imply
En =−

(
4a−2+

2ω(2a−1)
n

+O(1/n2)
)(

1+
1
n

(
ε−δ − 3

2

)
+O(1/n2)

)
Fn =−

(
1+

2ε +4γ +2δ −7
2n

+O(1/n2)
)(

1+
1
n

(
ε−δ − 3

2

)
+O(1/n2)

)
which simplifies to

En = 2−4a+
1−2a

n
(2ε +2γ−5)+O(1/n2)

Fn =−1− 4ε +4γ−10
2n

+O(1/n2)

and the lemma is proved. ut

The asymptotic behavior of the coefficients cn is given by the following lemma:

Lemma 8.3. The limit
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lim
n→∞

cn+1

cn
= t =

(
1−a−1

)1/2 +1

(1−a−1)1/2−1

exists, where the branch of the square root satisfies Re
(
1−a−1

)1/2
> 0 (under the

assumption |a|> 1), and |t|> 1. In the exceptional case, the limit is

lim
n→∞

cn+1

cn
= t =

(
1−a−1

)1/2−1

(1−a−1)1/2 +1

and |t|< 1.
Moreover, if we write

cn+1

cn
= t +

τ

n
+O(1/n2), as n→ ∞

then τ satisfies

τ = t(2γ +2ε−5)
(1−2a)t−1

t2−1

Proof. From Lemma 8.2 we get

cn+1 = Encn +Fncn−1 (8.15)

where 
En =−εQ′n +αβQn +n(n+ω)Qn− (αβh+n(n+ω)a)

εR′n+1 +(αβ +(n+1)(n+1+ω))Rn+1

Fn =−
εP′n−1 +αβPn−1 +(n−1)(n−1+ω)Pn−1

εR′n+1 +(αβ +(n+1)(n+1+ω))Rn+1

with dominant contributions, see (8.14)
En = 2−4a+

(1−2a)(2γ +2ε−5)
n

+O(1/n2)

Fn =−1− 2γ +2ε−5
n

+O(1/n2)
as n→ ∞

To show that cn+1/cn has a limit as n→ ∞, we can employ Theorem B.2 on
page 183 directly. However, as in Lemma 8.1, we proceed in a somewhat different
way, and write

an = t−ncn

where we choose t such that the new recursion relation

an+1 = Anan +Bnan−1

where
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An =

En

t

Bn =
Fn

t2

satisfies {
An = 1+α +O(1/n)
Bn =−α +O(1/n)

with |α|< 1. From the asymptotic behavior of En and Fn, t has to satisfy (remember
we require An +Bn→ 1 as n→ ∞)

t2−2t(1−2a)+1 = 0 (8.16)

with roots

t1,2 = 1−2a±2
(
a2−a

)1/2
=−

(
a1/2∓ (a−1)1/2

)2

which we write as
t1 =

A−1
A+1

, t2 =
1
t1

=
A+1
A−1

where
A =

(
1−a−1)1/2

The first root satisfies

|t1|=
∣∣∣∣A−1
A+1

∣∣∣∣< 1

since A =
(
1−a−1

)1/2 is located in the right-hand side of the complex A-plane
(ReA > 0, |a| > 1). Therefore, |t2| > 1, and in order to satisfy the condition
|α| = |t|−2 < 1, we have to pick the root t = t2. We can now apply Corollary B.1
on page 193, which shows that the quotient an+1/an converges to 1 (except in the
exceptional case), which implies

lim
n→∞

cn+1

cn
= t2

or in the exceptional case to
lim
n→∞

cn+1

cn
= t1

The first part of the lemma is then proved.
To prove the conditions on τ , we once again make use of the recursion relation

in (8.15) and divide by cn. The asymptotic behavior of the coefficients then implies

t +
τ

n
+O(1/n2) = 2−4a+

(1−2a)(2γ +2ε−5)
n

+O(1/n2)

−
(

1+
2γ +2ε−5

n
+O(1/n2)

)
1

t + τ

n−1 +O(1/n2)
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Use (8.16), and keep terms up to order 1/n. We get

τ

n
=

(1−2a)(2γ +2ε−5)
n

+
τ

t2(n−1)
− 2γ +2ε−5

tn
+O(1/n2)

Multiply with n and take the limit n→ ∞. This gives

τ = (1−2a)(2γ +2ε−5)+
τ

t2 −
2γ +2ε−5

t

which we solve for τ . The result is

τ = t(2γ +2ε−5)
(1−2a)t−1

t2−1

which proves the lemma. ut

Lemma 8.3 proves that there are two possible limits t of the quotient cn+1/cn,
viz., t1 and t2. Since |t1| < |t2|, t2 is the limit in the general case, but under certain
conditions, analogous to the result in Section 8.2, the quotient cn+1/cn converges to
the other root t1, see also (B.4) in Appendix B.

8.4.3 Domain of convergence

The main result about the domain of convergence of the series in hypergeometric
polynomials in (8.8) is now collected in a theorem.

Theorem 8.2. In the general case, when t2 is the appropriate root in Lemma 8.3, the
hypergeometric polynomial series in (8.8) converges nowhere outside the segment
[0,1].

However, when t1 is the appropriate root in Lemma 8.3, the hypergeometric poly-
nomial series in (8.8) converges inside the ellipse with foci at z = 0 and z = 1,
passing through the point z = a, see Figure 8.3, with possible exception of the line
connecting the two foci. Moreover, the series then converges absolutely on the el-
lipse, provided Reε < 1.

Proof. By the ratio test, absolute convergence of the series in (8.8) is guaranteed,
provided

lim
k→∞

∣∣∣∣ck+1yk+1(z)
ckyk(z)

∣∣∣∣= |tns2(z)|< 1, n = 1,2

Similarly, the series diverges if |tns2(z)|> 1, n = 1,2. Lemmas 8.1 and 8.3 show that

s2(z) =
Z +1
Z−1

,


t1 =

A−1
A+1

t2 =
A+1
A−1
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°

1

a
z

Fig. 8.3 The domain of convergence of the hypergeometric polynomial series expansion of the
solution to Heun’s differential equation that is analytic at the origin in the exceptional case.

where Z =
(
1− z−1)1/2

, z /∈ [0,1], ReZ > 0

A =
(
1−a−1)1/2

, |a|> 1, ReA > 0

The interval z ∈ [0,1] satisfies ReZ = 0, which is the boundary of the set ReZ > 0.
The result of Lemma 8.3 shows that, in general, t2 is the proper root. The bound-

ary of the domain of convergence, |t2s2(z)| = 1, consists of all complex numbers z
satisfying ∣∣∣∣Z +1

Z−1

∣∣∣∣= |s2(z)|=
1
|t2|

=
∣∣∣∣A−1
A+1

∣∣∣∣< 1

where the last inequality follows from the requirement that ReA > 0. The solution
set is void, since |Z +1|< |Z−1| implies that ReZ < 0, which is a contradiction to
the assumption ReZ > 0.

The other root, t1, gives a domain of convergence determined by∣∣∣∣Z +1
Z−1

∣∣∣∣= |s2(z)|<
1
|t1|

=
∣∣∣∣A+1
A−1

∣∣∣∣
which defines the interior of an ellipse in the complex z-plane, with foci at z = 0,1
and passing through z = a, see Lemma D.1 in Appendix D on page 205.

A somewhat easier way of realizing that the curve is an ellipse is to fix the mod-
ulus R of s2(z), i.e.,

|s2(z)|= R =
1
|t1|

> 1

The equation, see (8.13),
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s2(z)+
1

s2(z)
= 2−4z

then represents an ellipse centered at (1/2,0) in the complex z-plane as s2(z) varies
along the circle, centered at the origin, with radius R. To see this, let z = x+ iy, and
introduce a polar representation of s2(z),

s2(z) = Reiφ

We get, taking the real and the imaginary parts of the relation above,{
(R+R−1)cosφ = 2−4x

(R−R−1)sinφ =−4y

This equation represents an ellipse centered at (1/2,0) in the complex z-plane with
the half-axes being (R+R−1)/4 and (R−R−1)/4, respectively, since R = 1/|t1|> 1.
The distance between the foci is

(
(R+R−1)2− (R−R−1)2

)1/2
/2 = 1, so the foci

are located at z = 0,1.
On the ellipse, t1s2(z) = 1, Raabe’s test guarantees absolute convergence, if there

exists a positive number c, such that

lim
n→∞

nRe
(

cn+1yn+1(z)
cnyn(z)

−1
)

=−1− c

In our case we have from Lemmas 8.1 and 8.3 (t1s2(z) = 1)

lim
n→∞

nRe
(

cn+1yn+1(z)
cnyn(z)

−1
)

= lim
n→∞

nRe
((

t1 +
τ

n

)(
s2(z)+

σ(z)
n

)
−1
)

= Re(t1σ(z)+ τs2(z))

= Re
(

1−2γ

2
+(2γ +2ε−5)

(1−2a)t1−1
t2
1 −1

)
= Re

(
1−2γ

2
+(2γ +2ε−5)

1
2

)
= Reε−2

where we also used t2
1 = t1(2−4a)−1. By Raabe’s test, the series converges abso-

lutely on the ellipse if Reε < 1. ut

8.5 Confluent Heun’s equation

In Chapter 7 we analyzed two different confluent versions of the hypergeometric
differential equation. These equations were obtained by letting one of the regular
singular points approach infinity, and at the same time appropriately adjusting the
roots of the indicial equation. The same type of procedure is, of course, also possible
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for Heun’s equation, but, due to a more complex equation, this can be done in several
alternative ways. In this section, we restrict ourselves to just one of the many existing
versions. This version has certain similarities with the confluence of the second kind
described in Section 7.2.

The starting point is Heun’s equation, see (8.1),

u′′(z)+
[

γ

z
+

δ

z−1
+

α +β − γ−δ +1
z−a

]
u′(z)+

αβ (z−h)
z(z−1)(z−a)

u(z) = 0

where we have used (8.2) to eliminate root ε .
The aim now is to let a→ ∞ and at the same time adjust the roots of the indicial

equation. To accomplish this, we scale α = k1a1/2 and β = k2a1/2, and let a→ ∞.
After the limit process, the new differential equation reads

u′′(z)+
[

γ

z
+

δ

z−1

]
u′(z)− k1k2(z−h)

z(z−1)
u(z) = 0 (8.17)

This is the standard form of the singly confluent Heun’s equation.
An alternative form of this equation is obtained by the use of Theorem 2.1 with

z = g(t) = t2. The result is

v′′(t)+
[

2γ−1
t
− 2tδ

1− t2

]
v′(t)− 4k1k2(h− t2)

1− t2 v(t) = 0 (8.18)

A second way of confluence is addressed in Problem 8.3.

8.6 Special examples

Several special cases of Heun’s differential equation and its confluent versions play
an important role in mathematical physics. We illustrate with three examples.

8.6.1 Lamé’s differential equation

The first example of Heun’s equation is Lamé’s differential equation, which is char-
acterized by

γ = δ = ε =
1
2

=⇒ α +β =
1
2

This special case gives Lamé’s equation

u′′(z)+
1
2

[
1
z

+
1

(z−1)
+

1
(z−a)

]
u′(z)+

αβ (z−h)
z(z−1)(z−a)

u(z) = 0
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8.6.2 Differential equation for spheroidal functions

The prolate spheroidal coordinates (u,w,φ) are defined in terms of the Cartesian
coordinates (x1,x2,x3) as

(x1,x2,x3) = a(sinhusinwcosφ ,sinhusinwsinφ ,coshucosw)

where u ∈ [0,∞), w ∈ [0,π], and φ ∈ [0,2π). It is convenient to introduce
ξ1 = coshu ∈ [1,∞)
ξ2 = cosw ∈ [−1,1]
ξ3 = φ ∈ [0,2π)

and in these coordinates the Helmholtz equation, see Chapter 1, separates into the
following equations:

d
dξ1

(
(ξ 2

1 −1)
d f1(ξ1)

dξ1

)
−
[

λ −a2k2
ξ

2
1 +

µ2

ξ 2
1 −1

]
f1(ξ1) = 0

d
dξ2

(
(1−ξ

2
2 )

d f2(ξ2)
dξ2

)
+
[

λ −a2k2
ξ

2
2 −

µ2

1−ξ 2
2

]
f2(ξ2) = 0

d2 f3(ξ3)

dξ3
2 + µ

2 f3(ξ3) = 0

where λ and µ are constants of separation. We notice that the two first equations
are, from a differential equation point of view, really the same, but with different
domains of definition of the independent variable. This is the differential equation
of the spheroidal functions. We adopt the notation

(1− x2) f ′′(x)−2x f ′(x)+
[

λ + χ
2(1− x2)− µ2

1− x2

]
f (x) = 0

From the separation of variables above, we identify two different domains of interest
for the independent variable: {

1) x ∈ [1,∞)
2) x ∈ [−1,1]

We let f (x) = (1− x2)µ/2g(x). The function g(x) satisfies (use Theorem 2.1)

(1− x2)g′′(x)−2(µ +1)xg′(x)+
[
λ −µ(µ +1)+ χ

2(1− x2)
]

g(x) = 0 (8.19)

and the roots of the indicial equation are 0 and −µ for both x = ±1. Compare this
equation with the confluent Heun’s differential equation (8.18). This is the same
equation with the constants
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1
2

δ = µ +1


k1 =−k2 =

χ

2

h =
λ + χ2−µ(µ +1)

χ2

Thus, the spheroidal differential equation is a special case of the confluent Heun’s
differential equation.

8.6.3 Mathieu’s differential equation

Mathieu’s4 differential equation is a special case of (8.19). Let µ =−1/2, and (8.19)
becomes

(1− x2)g′′(x)− xg′(x)+
[

1
4

+λ + χ
2(1− x2)

]
g(x) = 0

Introduce x = cosθ and
u(θ) = g(cosθ)

We get, see Theorem 2.1,

u′′(θ)+
[

1
4

+λ + χ
2 sin2

θ

]
u(θ) = 0

Compare this equation with the alternative forms of the Mathieu’s differential equa-
tion found in the literature

u′′(θ)+ [a−2qcos2θ ]u(θ) = 0, HMF [1]
u′′(θ)+

[
b−h2 cos2 θ

]
u(θ) = 0, Morse and Feshbach [18]

u′′(θ)+ [a+16qcos2θ ]u(θ) = 0, Whittaker and Watson [31]

We see that they all express the same equation, but with different constants.

Problems

8.1. †Prove that the power series of Heun’s differential equation in (8.3)

u(z) =
∞

∑
n=0

anzn

4 Émile Léonard Mathieu (1835–1890), French mathematician.
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converges absolutely on the unit circle, provided Reδ < 1 or Reε < 1, depending
whether the root t2 = 1 or t1 = 1/a, respectively, is used.

8.2. Verify the recursion relations in (8.10) and (8.11) using the result in Sec-
tion 5.8.6 and in Problem 5.7.

8.3. In Section 8.5, one type of confluence of Heun’s equation was demonstrated.
This type of confluence resembles the confluence of the second kind of the hyper-
geometric function that was demonstrated in Section 7.2. Perform a confluence of
Heun’s equation that parallels the confluence of the first kind of the hypergeometric
function in Section 7.1.

8.4. Explicitly determine the coefficients a′n in the power series expansion of Heun’s
equation in (8.3). Determine the radius of convergence of the solution, and relate the
solution to the power series solution Hl(a,h;α,β ,γ,δ ,ε;z) in Theorem 8.1.



Appendix A
The gamma function and related functions

The gamma function plays a central role in the representation of the special func-
tions. This function and other functions derived from the gamma function are col-
lected in this appendix together with some of their basic properties.

A.1 The gamma function Γ (z)

The gamma function is not a special function in the sense that it is a solution to
a second order ordinary differential equation of the kind we have analyzed in this
book, i.e., a differential equation of Fuchsian type with a finite number of regular
singular points. That this is the case can be deduced from the fact that the gamma
function has infinitely many poles — a property that no solution to a second order
ordinary differential equation with a finite number of regular singular points can
have. Instead, the gamma function has to be defined by other means. In fact, it
satisfies a difference equation rather than a differential equation, see below in (A.2).

There are several ways of defining the gamma function Γ (z). We prefer to define
it by an integral representation, due to Euler, [18], viz.,

Γ (z) =
∫

∞

0
e−t tz−1 dt, Rez > 0 (A.1)

An explicit value is

Γ (1) =
∫

∞

0
e−t dt = 1

We easily see by integration by parts that

Γ (z+1) = zΓ (z), Rez >−1, and z 6= 0 (A.2)

Evaluated at the non-negative integers, Γ (n+1) coincides with the factorials, i.e.,

Γ (n+1) = n! n ∈ N

163
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Fig. A.1 The modulus of the Γ (z) function in the complex z-plane.

which is easy to verify by induction over n. This result shows that the gamma func-
tion is a generalization of the factorials from the non-negative integers to the com-
plex plane.

The gamma function has simple poles at z = 0,−1,−2,−3, . . ., which is seen by
repeated use of (A.2), see Figure A.1,

Γ (z) =
Γ (1+ z)

z
= . . . =

Γ (n+1+ z)
(n+ z)(n−1+ z) . . .z

=
Γ (n+1+ z)
(n+ z)(z,n)

where we introduced the Appell symbol, (α,n), defined in Section A.3.
The residue of Γ (z) at the poles z = 0,−1,−2,−3, . . . is determined by

Res
z=−n

Γ (z) = lim
z→−n

(z+n)Γ (z) =
Γ (1)

(−n,n)
=

(−1)n

n!
, n ∈ N (A.3)

since (−n,n) = (−n)(−n+1) . . .(−1) = (−1)nn! and Γ (1) = 1.
An alternative definition of the gamma function is to use the integral representa-

tion, see Problem A.2,
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°t

C

Fig. A.2 Definition of the contour C, which encircles the origin counter-clockwise.

Γ (z) =
i

2sinπz

∫
C

e−t(−t)z−1 dt, ∀z ∈ C

where the contour C is depicted in Figure A.2.
The reciprocal of the gamma function 1/Γ (z) is an entire function with zeros at

z = 0,−1,−2,−3, . . .. The Weierstrass factorization theorem states that every en-
tire function can be written as an infinite product [9]. The gamma function has the
product formula

1
Γ (z)

= zeγz
∞

∏
n=1

(
1+

z
n

)
e−z/n, ∀z ∈ C

where γ is the Euler–Mascheroni1 constant defined in (A.18) on page 176.
We also frequently use

Γ (z)Γ (1− z) =
π

sinπz
(A.4)

which is proved in Problem A.1. If we evaluate this identity at z = 1/2, we get

Γ (1/2) =
√

π

Additional expression for products of gamma functions are, see also Prob-
lem A.5:

Γ (z)Γ (z+1/2) =
√

π

22z−1 Γ (2z) (A.5)

and
Γ (z)Γ (z+1/3)Γ (z+2/3) =

2π

33z−1/2 Γ (3z)

1 Lorenzo Mascheroni (1750–1800), Italian mathematician.
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A.2 Estimates of the gamma function

The gamma function for large arguments is determined by Stirling’s2 formula

lnΓ (z) = ln
√

2π +
(

z− 1
2

)
lnz− z+ J(z), |arg(z)|< π (A.6)

where Binet’s3 function J(z) is an analytic and bounded function in any open sec-
tor Γδ = {z ∈ C : |arg(z)|< π−δ}, where δ > 0. Moreover, |J(z)| ≤ C(δ )/|z| as
z→ ∞ in Γδ . The branch of the logarithm is real for real arguments. An explicit
representation of Binet’s function is

J(z) =
1
π

∫
∞

0

z
z2 + t2 ln

1
1− e−2πt dt, Rez > 0

From this expression of Binet’s function, it is possible to analytically continue the
function J(z) to Γδ . A proof of these results is given in, e.g., [11, Sec. 8.5].

The growth rate of the gamma function is used frequently in the main text — in
particular in the proofs related to the integral representations of Barnes in Chapter 5.
It is convenient to summarize the results in a series of lemmas. We start with a useful
estimate of the growth properties of the sine function in the complex plane.

Lemma A.1. For each ε ∈ (0,1/2), there are positive constants, cε and Cε , depend-
ing only on ε , but not on z, such that the sine function satisfies

cε ≤ |sinπz|e−π| Imz| ≤Cε , in {z ∈ C : |z+n|> ε,∀n ∈ Z}

Proof. The modulus of the sine function in the complex plane is, x,y ∈ R

|sinπ(x+ iy)|2 = sinh2
πy+ sin2

πx =
e2π|y|

4

{
1+ e−4π|y| −2e−2π|y| cos2πx

}
For all z = x+ iy ∈ C, we have the estimate

e−π|y| |sinπ(x+ iy)|= 1
2

√
1+ e−4π|y| −2e−2π|y| cos2πx≤ 1

2

(
1+ e−2π|y|

)
≤ 1

Thus, we have proved that

|sinπ(x+ iy)| ≤ eπ|y|, ∀z ∈ C

This is the right part of the inequality of the lemma. In fact, the constant Cε = 1 is
independent of the value of ε .

To prove the left inequality, it suffices, due to the periodicity of the sine function,
i.e., |sinπ(z±1)|= |sinπz|, to prove the lemma in the strip Rez = x ∈ [0,1/2]. We

2 James Stirling (1692–1770), Scottish mathematician.
3 Jacques Binet (1786–1856), French mathematician.
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°z

ε I

I

II

II

1

Fig. A.3 The two domains I and II in the punctuated strip M (shaded area) in the roof of
Lemma A.1.

define for each ε ∈ (0,1/2) and for all complex numbers z = x+ iy in the punctuated
strip M = {z ∈ C : |z|> ε,Rez ∈ [0,1/2]}

f (x+ iy) = 1+ e−4π|y| −2e−2π|y| cos2πx, in M

Our aim is to bound this function from below in M. Write fy(x) = f (x+ iy), and we
have

d fy(x)
dx

= 4πe−2π|y| sin2πx≥ 0, in M

Therefore, for each fixed y, fy(x) is a non-decreasing function as a function of x in
M. We divide the set M in two parts, I and II, see Figure A.3. In the region I, where
|y| ≤ ε and x ∈ [

√
ε2− y2,1/2], we have for ε ∈ (0,1/2)

1+ e−4π|y| −2e−2π|y| cos
(

2π

√
ε2− y2

)
= fy(

√
ε2− y2)≤ fy(x)

The function on the left-hand side is bounded from below when |y| ∈ [0,ε]. To see
this, rewrite the left-hand side using the notation

a(y) = 2π|y|, b(y) = 2π

√
ε2− y2, c(x) =

√
4π2ε2− x2

as

fy(
√

ε2− y2) = 2e−a(y)
(∫ a(y)

0
sinhxdx+

∫ b(y)

0
sinxdx

)
= 2e−a(y)

(∫ a(y)

0
sinhxdx+

∫ 2πε

a(y)
x

sinc(x)
c(x)

dx
)

Since

sinhx≥ x≥ x
sinc(x)

c(x)
=

d
dx

cosc(x), x≥ 0
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we get (|y| ∈ [0,ε])

fy(
√

ε2− y2)≥ 2e−a(y)
∫ 2πε

0
x

sinc(x)
c(x)

dx

≥ 2e−2πε

∫ 2πε

0

d
dx

cosc(x)dx = 2e−2πε (1− cos2πε)

Thus, in region I, for each ε ∈ (0,1/2), we have

2e−2πε (1− cos2πε) =
(
2e−πε sinπε

)2 ≤ fy(x)

In region II, |y| ≥ ε , and we have

(
1− e−2πε

)2 ≤
(

1− e−2π|y|
)2

= 1+ e−4π|y| −2e−2π|y| = fy(0)≤ fy(x)

To summarize, for each ε ∈ (0,1/2) and for all z = x + iy ∈ M, we have the
estimate

4c2
ε ≤ fy(x) = 4e−2π|y| |sinπ(x+ iy)|2

where
cε = min

{
e−πε sinhπε,e−πε sinπε

}
= e−πε sinπε

Thus, we have proved that there exists a constant cε , such that

cε eπ| Imz| ≤ |sinπz|, z ∈M

which by periodicity holds for all {z ∈ C : |z+n|> ε,∀n ∈ Z}, and the lemma is
proved. ut

The argument of the sine function can also be shifted leading to the following
corollary:

Corollary A.1. For each ε ∈ (0,1/2) and α ∈ C, there are positive constants, cε,α

and Cε,α , depending only on ε and α , but not on z, such that the sine function
satisfies

cε,α ≤ |sinπ(z+α)|e−π| Imz| ≤Cε,α , in {z ∈ C : |z+α +n|> ε,∀n ∈ Z}

Proof. Lemma A.1 applied with z+α reads

cε ≤ |sinπ(z+α)|e−π| Im(z+α)| ≤Cε , in {z ∈ C : |z+α +n|> ε,∀n ∈ Z}

The lemma follows from the triangle inequality

| Imz|− | Imα| ≤ | Im(z+α)| ≤ | Imz|+ | Imα|

which leads to
cε,α = e−π| Imα|cε
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°t

Cz

z+α

−α

Fig. A.4 The contour C in the complex plane that connects the two points z and z + α , assuming
Imα > 0. The shaded area denotes the region between the two cuts.

and
Cε,α = eπ| Imα|Cε

and the proof is completed. ut

We have also need for the following useful result:

Lemma A.2. For arbitrary α,γ ∈ C, the real part of the function

f (z) = (z+ γ)(ln(z+α)− lnz)

is a bounded function in Γε,α = {z ∈ C : |z + α| ≥ ε, |z| ≥ ε}, where ε > 0, and
where the logarithms belong to the principal branch.4 Explicitly, there exist con-
stants cε,α,γ and Cε,α,γ that depend only on ε , α , and γ , but not on z, such that

cε,α,γ ≤ Re f (z)≤Cε,α,γ , in Γε,α (A.7)

Proof. We start with the identity

ln(z+α)− lnz =
∫

C

dt
t

, z ∈ Γε,α

where C is a contour in the complex t-plane that connects the two points z and
z + α without crossing the two branch cuts, |arg(z)| = π and |arg(z + α)| = π , see
Figure A.4.

If the two points, z and z+α , lie on the same side of the two cuts, i.e., both z and
z + α are located outside the shaded area in Figure A.4, we can connect the points
with a straight line, and the real part of the function f (z) can be estimated for large

4 The principal branch of the logarithm is defined as

lnz = ln |z|+ i arg(z), arg(z) ∈ (−π,π]
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°t

Cz

z+α

−α

Fig. A.5 The deformed contour C in the complex plane that connects the two points z and z + α ,
assuming Imα > 0. Notice that the contour C ends on the principal branch.

arguments as5

|Re f (z)|=
∣∣∣∣Re

∫ 1

0

(z+ γ)α dt
z+ tα

∣∣∣∣≤ |α|∫ 1

0

|1+ γ/z|
|1+ tα/z|

dt ≤ |α|
(
1+O(|z|−1)

)
which is bounded in Γε,α .

However, if the two points, z and z+α , are located on opposite sides of a branch
cut, i.e., either z or z + α is located in the shaded area in Figure A.4, we have to
compensate with a circle around the branch point, see Figure A.5, in order to end
the contour C on the principal branch. The real part of the function f (z) then is

Re f (z) = Re
{

(z+ γ)
(∫ 1

0

α dt
z+ tα

±2πi
)}

, z ∈ Γε,α

where the upper or lower sign in the last term depends on whether Imα > 0 or
Imα < 0, respectively. The real part of the extra term, however, is always bounded,
since Imz (in contrast to Rez) is bounded in this case, and the lemma is proved. ut

The next lemma estimates the growth properties of the gamma function from
both above and below.

Lemma A.3. For each ε ∈ (0,1/2), there are positive constants, cε and Cε , depend-
ing only on ε , but not on z, such that the gamma function satisfies6

cε ≤ |Γ (z)|e−Re(z− 1
2 ) ln |z|+Imzarg(z)+Rez ≤Cε , in {z ∈ C : |z+n|> ε,∀n ∈ N}

Proof. We first prove the statement in the lemma in the right-hand z-plane, or more
precisely, for all z∈ {z∈C : Rez≥ 0 and |z|> ε}. For all such z, Stirling’s formula,
(A.6), reads

lnΓ (z) = ln
√

2π +
(

z− 1
2

)
lnz− z+O(1/|z|)

5 In fact, not only the real part of the function is bounded, but also the modulus of the function
itself.
6 Note that Imzarg(z) is continuous across the negative real axis.
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The real part of this expression is

RelnΓ (z) = ln
√

2π +Re
(

z− 1
2

)
ln |z|− Imzarg(z)−Rez+O(1/|z|)

and, therefore, for each ε > 0, there exist constants Cε > cε > 0, depending only on
ε , but not on z, such that

cε ≤ |Γ (z)|e−Re(z− 1
2 ) ln |z|+Imzarg(z)+Rez ≤Cε

for all z ∈ {z ∈ C : Rez≥ 0 and |z|> ε}. This proves the estimate in the right-hand
complex z-plane. In fact, this estimate holds for all z such that |z|> ε and |arg(z)|<
π−δ , where δ > 0. However, we also want to estimate the gamma function on the
negative real axis away from the singular points at the non-positive integers.

We now focus on an estimate in the left-hand z-plane, more precisely, for an
ε ∈ (0,1/2), and for z ∈Mε = {z ∈C : |z+n|> ε,∀n ∈N}∩{z ∈C : Rez < 0}. We
start by utilizing (A.4), i.e.,

Γ (z) =
π

Γ (1− z)sinπz
(A.8)

Note that Re(1−z) > 1 when z∈Mε , and therefore, by the result above, there exists
constants C1 > c1 > 0, depending only on ε , but not on z, such that

c1 ≤
1

|Γ (1− z)|
eRe( 1

2−z) ln|1−z|+Imzarg(1−z)−Re(1−z) ≤C1, z ∈Mε

Using Lemma A.1 we can estimate (A.8) in Mε . There exist constants C2 > c2 > 0,
depending only on ε , but not on z, such that

c2 ≤ |Γ (z)|eRe( 1
2−z) ln|1−z|+Imzarg(1−z)+| Imz|π+Rez ≤C2, in Mε

As a consequence of Lemma A.2, see (A.7), there exist constants C3 and c3, depend-
ing only on ε , but not on z, such that

c3 ≤Re
(

1
2
− z
)

(ln |1− z|− ln |z|)− Im(−z)(arg(1− z)− arg(−z))︸ ︷︷ ︸
Re{( 1

2−z)(ln(1−z)−ln(−z))}

≤C3

and we get

cε ≤ |Γ (z)|e−Re(z− 1
2 ) ln |z|+Imzarg(−z)+| Imz|π+Rez ≤Cε

or
cε ≤ |Γ (z)|e−Re(z− 1

2 ) ln |z|+Imzarg(z)+Rez ≤Cε

since
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arg(−z) = arg(z)−

{
π, Imz≥ 0
−π, Imz≤ 0

in Mε

The combination of the results in the right- and the left-hand z-planes then proves
the lemma. ut

It is also possible to bound the shifted gamma function.

Corollary A.2. For each α ∈C and each ε ∈ (0,1/2), there are positive constants,
cε,α and Cε,α , depending only on ε and α , but not on z, such that the gamma function
satisfies

cε,α ≤ |Γ (z+α)|e−Re(z+α− 1
2 ) ln |z|+Imzarg(z)+Rez ≤Cε,α , in Mε,α

where Mε,α = {z ∈ C : |z+α +n|> ε, |z|> ε,∀n ∈ N} and |arg(z)| ≤ π .

Proof. From Lemma A.3 we have

cε ≤ |Γ (z+α)|e−Re(z+α− 1
2 ) ln |z+α|+Im(z+α)arg(z+α)+Re(z+α) ≤Cε , , z ∈Mε,α

Lemma A.2, see (A.7), implies that there exist constants c1 and C1, depending only
on ε and α , but not on z, such that

c1 ≤Re
(

z+α− 1
2

)
(ln |z+α|− ln |z|)− Im(z+α)(arg(z+α)− arg(z))︸ ︷︷ ︸

Re{(z+α− 1
2 )(ln(z+α)−lnz)}

≤C1

We get

cε,α ≤ |Γ (z+α)|e−Re(z+α− 1
2 ) ln |z|+Imzarg(z)+Rez ≤Cε,α , z ∈Mε,α

and the corollary is proved. ut

The quotient between two gamma functions are frequently used in the text. The
next lemma summarizes the growth properties.

Lemma A.4. Define for each ε ∈ (0,1/2) and α ∈ C the set, see Figure A.6,

Cε,α = {z ∈ C : |z+α +n|> ε and |z+n|> ε,∀n ∈ N}

Then for any α ∈ C, and all z ∈ Cε,α

cε,α eReα ln |z| ≤
∣∣∣∣Γ (α + z)

Γ (z)

∣∣∣∣≤Cε,α eReα ln |z|

where Cε,α > cε,α > 0 are constants that depend on ε and α , but not on z.
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Fig. A.6 The set Cε,α (unshaded area) in the complex z-plane.

Proof. Lemma A.3 and Corollary A.2 imply that there exist constants, such that

c1 ≤ |Γ (z)|e−Re(z− 1
2 ) ln |z|+Imzarg(z)+Rez ≤C1, in Cε,α

and
c2 ≤ |Γ (z+α)|e−Re(z+α− 1

2 ) ln |z|+Imzarg(z)+Rez ≤C2, in Cε,α

Then for all z ∈ Cε,α , we have

cε,α ≤
∣∣∣∣Γ (α + z)

Γ (z)

∣∣∣∣e−Reα ln |z| ≤Cε,α , in Cε,α

and the proof of the lemma is completed. ut

A.3 The Appell symbol

Related to the gamma function is the rising factorial, also known as the Appell
symbol or Pochhammer symbol, (α,n), defined for non-negative integers n as [4]

(α,n) =
n−1

∏
ν=0

(ν +α) = α(α +1)(α +2) . . .(α +n−1) =
Γ (α +n)

Γ (α)
, (α,0) = 1

As a consequence of this definition, we easily derive the following simple recursion
relations: {

(α,n) = α(α +1,n−1)
(α,n)(α +n) = (α,n+1) = α(α +1,n)

(A.9)
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The Appell symbol for negative integers n can be defined by repeated use of
(A.4). We have for non-integer values of α

Γ (α−n) =
1

Γ (1−α +n)
π

sinπ(α−n)
=

(−1)n

Γ (1−α +n)
π

sinπα

=
(−1)nΓ (α)Γ (1−α)

Γ (1−α +n)
=

(−1)nΓ (α)
(1−α,n)

(A.10)

from which we define

(α,−n) =
Γ (α−n)

Γ (α)
=

(−1)n

(1−α,n)
(A.11)

Similarly,
(−n,n) = (−n)(−n+1)(−n+2) . . .(−1) = (−1)nn! (A.12)

In the main text the growth rate of the Appell symbol is often analyzed. The
following lemma is then useful:

Lemma A.5. For any α ∈ C, the Appell symbol satisfies

(α,n)
n!

=
nα−1

Γ (α)
(1+O(1/n))

Proof. We investigate the quotient

ln
(α,n)Γ (α)

n! nα−1 = ln
Γ (α +n)
n! nα−1 = lnΓ (α +n)− lnΓ (n+1)− (α−1) lnn

as n→ ∞. Stirling’s formula, (A.6), implies for integer values of n

ln
(α,n)Γ (α)

n! nα−1 =
(

α +n− 1
2

)
ln(α +n)−

(
n+

1
2

)
ln(n+1)

− (α−1)(1+ lnn)+O(1/n)

=
(

α +n− 1
2

)
ln

α +n
n+1

− (α−1)
(

1− ln
n+1

n

)
+O(1/n)

=
(

α +n+1− 3
2

)
ln
(

1+
α−1
n+1

)
− (α−1)+O(1/n)

= O(1/n)

since ln(1+ z) = z+O(z2). Therefore,

ln
(α,n)

n! nα−1 =− lnΓ (α)+O(1/n)

or
(α,n)

n! nα−1 =
1

Γ (α)
(1+O(1/n))
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since
eO(1/n) = 1+O(1/n)

and the lemma is proved. ut

A.4 Psi (digamma) function

The logarithmic derivative of the gamma function is often used, and it is called the
psi (digamma) function.

ψ(z) =
d
dz

lnΓ (z) =
Γ ′(z)
Γ (z)

A relation similar to the relation (A.4) also holds for the psi function. We have, see
Problem A.4,

ψ(1− z) = ψ(z)+π cotπz (A.13)

The ψ function has closed form expressions for the half-integer values, i.e.,

ψ(n+1/2) =−γ−2ln2+2
(

1+
1
3

+ . . .+
1

2n−1

)
, n ∈ Z+

where γ is the Euler–Mascheroni constant, which is defined in (A.18). For negative
half integers we use (A.13), and get

ψ(−n+1/2) = ψ(n+1/2), n ∈ Z+

A.5 Binomial coefficient

Related to the gamma function is the binomial coefficient. For non-negative integers
n and k, the binomial coefficient is defined as(

n
k

)
=

n!
(n− k)!k!

which we extend to all integer values k by(
n
k

)
= 0 if k < 0 or k > n

The binomial coefficient for a non-integer value α can be expressed in the gamma
function, viz.,
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α

n

)
=

Γ (α +1)
Γ (α +1−n)n!

(A.14)

and, using (A.4) and zΓ (z) = Γ (z+1),(
−α

n

)
=

Γ (1−α)
Γ (1−α−n)n!

=
π

sinπα

1
Γ (α)Γ (1−α−n)n!

= (−1)n−1 π

sinπα

(1+α) · . . . · (n−1+α)
Γ (α)(−α−1) · . . . · (−α−n+1)Γ (1−α−n)n!

= (−1)n−1 π

sinπα

(1+α)(2+α) · . . . · (n−1+α)
Γ (α)Γ (−α)n!

= (−1)n (1+α)(2+α) · . . . · (n−1+α)Γ (1+α)
Γ (α)n!

= (−1)n Γ (n+α)
Γ (α)n!

= (−1)n (α,n)
n!

(A.15)

A.6 The beta function B(x,y)

The beta function B(x,y) is defined as

B(x,y) =
∫ 1

0
tx−1(1− t)y−1 dt, Rex,Rey > 0 (A.16)

It can be proved that this integral is a quotient of gamma functions. We have, see
Problem A.3,

B(x,y) =
Γ (x)Γ (y)
Γ (x+ y)

(A.17)

A.7 Euler–Mascheroni constant

The Euler–Mascheroni constant γ is defined as

γ = lim
n→∞

(
1+

1
2

+
1
3

+ . . .+
1
n
− lnn

)
= lim

n→∞

(
n

∑
k=1

1
k
− lnn

)
≈ 0.5772156649 . . .

(A.18)
This definition is equivalent to

γ =
∞

∑
k=1

{
1
k
− ln

(
1+

1
k

)}
(A.19)
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In fact, the partial sum of the expression can easily be rewritten as

n

∑
k=1

{
1
k
− ln

(
1+

1
k

)}
=

n

∑
k=1

1
k
− ln

(
n

∏
k=1

k +1
k

)
=

n

∑
k=1

1
k
− ln(n+1)

=
n

∑
k=1

1
k
− lnn+ ln

n
n+1

from which the equivalence follows.
From the definition of γ in equation (A.18) and Lemma B.5 on page 193, with

f (x) = 1/x and m = 1, we get (sharp inequalities in this explicit example)

1
n

<
n

∑
k=1

1
k
−
∫ n

1

dx
x

=
n

∑
k=1

1
k
− lnn < 1

and in the limit as n→∞, this gives 0 < γ < 1 (the limits are not reached in the limit
process). A more sharp estimate of γ is obtained in Problem A.6.

Problems

A.1. †Prove equation (A.4), i.e.,

Γ (z)Γ (1− z) =
π

sinπz

A.2. †Starting from (A.1), prove

Γ (z) =
i

2sinπz

∫
C

e−t(−t)z−1 dt, ∀z ∈ C

and
1

Γ (z)
=

i
2π

∫
C

e−t(−t)−z dt, ∀z ∈ C

A.3. †Prove the relation between the beta function and the product of gamma func-
tions in (A.17), i.e.,

B(x,y) =
Γ (x)Γ (y)
Γ (x+ y)

A.4. Show (A.13), i.e.,
ψ(1− z) = ψ(z)+π cotπz

A.5. Show (A.5), i.e.,

Γ (z)Γ (z+1/2) =
√

π

22z−1 Γ (2z)
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A.6. †Show that the Euler–Mascheroni constant γ satisfies

0.998γ ≈ 0.575804≈ 3
2
− 4

3
ln2 < γ <

8
3
−2ln2− 7

12
ζ (3)≈ 0.579172≈ 1.003γ

where ζ (3) is the Riemann zeta function, see Section B.4.1 on page 194. Compare
this estimate with the exact value γ =≈ 0.5772156649 . . ..
Hint: Use the inequality

1+
1
12

1
x2 + x+1/4

<

(
x+

1
2

)
ln
(

1+
1
x

)
< 1+

1
12

1
x2 + x

, x > 0



Appendix B
Difference equations

The asymptotic behavior of solutions to difference equations or recursion relations
is the subject of this appendix. For simplicity, we restrict ourselves to second order
recursion relations, which is the situation met in this textbook, and we examine the
asymptotic behavior of their solutions for large index values. Some of the results
are presented without proofs, and in these cases we give references to the relevant
literature.

B.1 Second order recursion relations

The second order recursion relation of interest is{
an+1 = Anan +Bnan−1, n ∈ Z+

a1 = A0a0
(B.1)

or, if we define B0 = 0,

an+1 = Anan +Bnan−1, n ∈ N

The following lemma shows that the coefficients an can be written in terms of a
determinant times the first coefficient a0.

Lemma B.1. Let the coefficients {an}∞
n=0, for given a0, be generated by

an+1 = Anan +Bnan−1, n ∈ Z+

and initialized by
a1 = A0a0

Denote Dn = an/a0. Then Dn+1 is expressed as the determinant

179
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Dn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 −1 0 0 0 . . . . . . . . .
B1 A1 −1 0 0 . . . . . . . . .
0 B2 A2 −1 0 . . . . . . . . .
...

...
...

...
... . . .

...
...

. . . . . . . . . . . . . . . . . . An−1 −1
0 0 0 0 0 . . . Bn An

∣∣∣∣∣∣∣∣∣∣∣∣∣
and, thus, the determinants satisfy the same recursion relation as the coefficients an,
i.e.,

Dn+1 = AnDn +BnDn−1, n ∈ Z+

Proof. First let n = 0. The relation is then

A0 =
A0a0

a0
=

a1

a0
= D1

which proves the statement is consistent for n = 0.
We prove this lemma by induction over n ∈ Z+. The relation for n = 1 is∣∣∣∣A0 −1

B1 A1

∣∣∣∣= A0A1 +B1 =
A0A1a0 +B1a0

a0
=

A1a1 +B1a0

a0
=

a2

a0
= D2

which proves the induction statement for n = 1. Assume the lemma is true for k =
1,2, . . . ,n and prove it for n + 1. We then get by expanding the determinant along
the last column and using the induction assumption∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 −1 0 0 0 . . . . . . . . .
B1 A1 −1 0 0 . . . . . . . . .
0 B2 A2 −1 0 . . . . . . . . .
...

...
...

...
... . . .

...
...

. . . . . . . . . . . . . . . . . . An−1 −1
0 0 0 0 0 . . . Bn An

∣∣∣∣∣∣∣∣∣∣∣∣∣

= AnDn +

∣∣∣∣∣∣∣∣∣∣∣∣∣

A0 −1 0 0 0 . . . . . . . . .
B1 A1 −1 0 0 . . . . . . . . .
0 B2 A2 −1 0 . . . . . . . . .
...

...
...

...
... . . .

...
...

. . . . . . . . . . . . . . . . . . An−2 −1
0 0 0 0 0 . . . 0 Bn

∣∣∣∣∣∣∣∣∣∣∣∣∣
= AnDn +BnDn−1

We then have
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A0 −1 0 0 0 . . . . . . . . .
B1 A1 −1 0 0 . . . . . . . . .
0 B2 A2 −1 0 . . . . . . . . .
...

...
...

...
... . . .

...
...

. . . . . . . . . . . . . . . . . . An−1 −1
0 0 0 0 0 . . . Bn An

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

Anan +Bnan−1

a0
=

an+1

a0
= Dn+1

and the lemma is proved. ut

This following lemma shows that the original recursion relation in (B.1), under
certain conditions, can be transformed into a form where the first coefficient An = 1.

Lemma B.2. Let the coefficients {an}∞
n=0, for given a0, be generated by

an+1 = Anan +Bnan−1, n ∈ Z+

and initialized by
a1 = A0a0

If Ak 6= 0, k ∈ N, then the sequence {an}∞
n=0, for given a0, can be found from the

recursion relation
bn+1 = bn +Cnbn−1, n ∈ Z+

and initialized by the same value as the original recursion relation, i.e.,

b0 = a0

where
Cn =

Bn

AnAn−1
, n ∈ Z+

and
an = An−1 · . . . ·A1A0bn, n ∈ Z+

Proof. The statement of the lemma is easily seen if we insert an = αnbn, assuming
α0 = 1, i.e.,

αn+1bn+1 = Anαnbn +Bnαn−1bn−1, n ∈ Z+

and determine αn such that

αn+1 = Anαn =⇒ αn+1 = AnAn−1 · . . . ·A1A0, n ∈ N

The an coefficient then is

an = An−1 · . . . ·A1A0bn, n ∈ Z+

We get after division of αn+1 (note that αn+1 6= 0)

bn+1 = bn +
Bnαn−1

αn+1
bn−1 = bn +

Bn

AnAn−1
bn−1, n ∈ Z+
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and the lemma is proved. ut

B.2 Poincaré–Perron theory

The convergence of the quotient an+1/an as n→ ∞ is crucial in the development of
the theory presented in this book, especially when finding the radius of convergence
for power series. This result is often referred to as the Poincaré–Perron theory. A
comprehensive treatment of this problem is found in Ref. 6 and originates from
pioneer works by Poincaré1 and Perron.2 In this section, we give an overview of the
main results of this theory.

We immediately see that if the coefficients An and Bn in (B.1) satisfy lim
n→∞

An = A

lim
n→∞

Bn = B

and if the limit limn→∞ an+1/an = λ exists, then λ must satisfy (divide (B.1) by an−1
and take the limit n→ ∞)

an+1

an

an

an−1
=

an+1

an−1
= An

an

an−1
+Bn =⇒ λ

2 = Aλ +B

The following theorem is instrumental for the existence of the limit (proof omitted,
see also [6, Sec. 8.5]):

Theorem B.1 (Poincaré, Perron). Let {xn}∞
n=0 be a sequence generated by the re-

cursion relation {
xn+1 = Anxn +Bnxn−1, n ∈ Z+

x1 = A0x0

where the coefficients have well-defined limits as n→ ∞, i.e., lim
n→∞

An = A

lim
n→∞

Bn = B

and, moreover, that all Bn 6= 0 for all n∈Z+. The roots to the characteristic equation

λ
2 = Aλ +B

are denoted λ = λ1,λ2, i.e.,

λ1,2 =
A± (A2 +4B)1/2

2
1 Henri Poincaré (1854–1912), French mathematician and theoretical physicist.
2 Oskar Perron (1880–1975), German mathematician.
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We assume these roots have different moduli, say |λ1|< |λ2|.
Then there exists a fundamental set of solutions,3 {an}∞

n=0 and {bn}∞
n=0, such that

lim
n→∞

an+1

an
= λ2, and lim

n→∞

bn+1

bn
= λ1

As a consequence of the Poincaré–Perron theorem, Theorem B.1, we have

Theorem B.2. Let {xn}∞
n=0 be a sequence generated by the recursion relation{

xn+1 = Anxn +Bnxn−1, n ∈ Z+

x1 = A0x0
(B.2)

and  lim
n→∞

An = A

lim
n→∞

Bn = B

Assume the roots, λ = λ1,λ2, of the characteristic equation

λ
2 = Aλ +B (B.3)

i.e.,

λ1,2 =
A± (A2 +4B)1/2

2
have different moduli, say |λ1|< |λ2|.

Then the limit limn→∞ xn+1/xn always exists, and it is

lim
n→∞

xn+1

xn
= λ2

except when the solution is a multiple of {bn}∞
n=0, given in Theorem B.1. Then the

limit is
lim
n→∞

xn+1

xn
= λ1

Proof. As a consequence of Theorem B.1, there exists a fundamental set of solu-
tions, {an}∞

n=0 and {bn}∞
n=0, such that

lim
n→∞

an+1

an
= λ2, and lim

n→∞

bn+1

bn
= λ1

Let µ1 and µ2 be real numbers, such that |λ1| < µ1 < µ2 < |λ2|. Then there exists
an integer N, such that∣∣∣∣an+1

an

∣∣∣∣≥ µ2, and
∣∣∣∣bn+1

bn

∣∣∣∣≤ µ1, n≥ N

3 The existence of a fundamental set implies that every solution of the recursion relation can be
found as a linear combination of the elements in this set.
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which imply

|an|=
∣∣∣∣ an

an−1

∣∣∣∣ ∣∣∣∣an−1

an−2

∣∣∣∣ · · · ∣∣∣∣aN+1

aN

∣∣∣∣ |aN | ≥ µ
n−N
2 |aN | , n≥ N

and

|bn|=
∣∣∣∣ bn

bn−1

∣∣∣∣ ∣∣∣∣bn−1

bn−2

∣∣∣∣ · · · ∣∣∣∣bN+1

bN

∣∣∣∣ |bN | ≤ µ
n−N
1 |bN | , n≥ N

The quotient bn/an then converges to zero, i.e.,

lim
n→∞

∣∣∣∣bn

an

∣∣∣∣≤ lim
n→∞

(
µ1

µ2

)n−N ∣∣∣∣bN

aN

∣∣∣∣= 0

We say that the solution {bn}∞
n=0 is a minimal solution (sequence). We also have

lim
n→∞

∣∣∣∣bn+1

an

∣∣∣∣≤ lim
n→∞

(
µ1

µ2

)n−N

µ1

∣∣∣∣bN

aN

∣∣∣∣= 0

The general solution to (B.2) is xn = αan + βbn for some constants α and β .
Then

lim
n→∞

xn+1

xn
= lim

n→∞

αan+1 +βbn+1

αan +βbn
= lim

n→∞

αan+1/an +βbn+1/an

α +βbn/an
= λ2

This is the general limit value except when α = 0 and xn = βbn. Then the limit is

lim
n→∞

xn+1

xn
= λ1

and the theorem is proved. ut

The proof of the following theorem is presented on page 402 in Ref. 6, and it
provides conditions on the coefficients An and Bn for the solution to be minimal.

Theorem B.3 (Pincherle4). Let {xn}∞
n=0 be a sequence generated by the recursion

relation {
xn+1 = Anxn +Bnxn−1, n ∈ Z+

x1 = A0x0

where the coefficients have well-defined limits as n→ ∞, i.e., lim
n→∞

An = A

lim
n→∞

Bn = B

Then the continued fraction

4 Salvatore Pincherle (1853–1936), Italian mathematician.
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A0 +
B1

A1 +
B2

A2 +
B3

A3 + . . .

or in a compact notation

A0 +
∞

Φ
n=1

Bn

An

converges if and only if the sequence {xn}∞
n=0 (x0 6= 0) is a minimal solution (se-

quence), i.e.,
lim
n→∞

xn

an
= 0

where the sequence an is given in Theorem B.1. Moreover, in the case of convergence

B1

A1 +
B2

A2 +
B3

A3 + . . .

=−x1

x0
=−A0 (B.4)

B.3 Asymptotic behavior of recursion relations

The asymptotic behavior of the sequence generated by a special type of recursion
relation, (B.1), for large values of n is addressed in this section.5 The results are not
so general as the results in Section B.2, but they suffice for our needs, the analysis
is self-contained, and it uses only standard analysis arguments.

The start of the analysis is motivated by the following simple example.

Example B.1. If An = 1+α and Bn =−α , n ∈ Z+, where α is independent of n, the
sequences an = a0 (A0 = 1) and an = αna0 (A0 = α) are solutions to the recursion
relation (B.1). If |α|< 1, the solutions converge to a0 and 0, respectively.

For an = a0 to be a solution to the recursion relation (B.1), it suffices to require
An + Bn = 1, n ∈ Z+ and A0 = 1. With this observation in mind, we anticipate that
the size of An +Bn−1 as n→ ∞ is essential for the convergence. That this really is
the case is shown in this section.

We prefer to collect the results in two lemmas, a theorem, and a corollary. We
start by proving the lemmas.

Lemma B.3. Let {an}∞
n=0 be a sequence generated by the recursion relation{

an+1 = Anan +Bnan−1, n ∈ Z+

a1 = A0a0

5 The idea behind the approach presented here is due to Anders Melin.
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where the coefficients An and Bn satisfy lim
n→∞

An = 1+α

lim
n→∞

Bn =−α

and |α|< 1. Moreover, let λ > 1 be a real number, such that

Rn = An +Bn−1 = O(n−λ )

Then, for all initial values a0, the sequence {an}∞
n=0 converges to a limit d, and

an = d +O(n−λ+1), n→ ∞

Proof. Rewrite the recursion relation as

an+1−an = Rnan−Bn (an−an−1) , n ∈ Z+ (B.5)

and we start by proving that the sequence {an}∞
n=0 is bounded.

Let N be a positive integer such that

|Bn| ≤ c =
1+ |α|

2
, n≥ N

Notice that 0 < c < 1 with the assumptions made in the lemma. We also have

|Rn| ≤
C
nλ

, n≥ N

for some constant C. Define

εn = |an+1−an| , n ∈ N

Then from (B.5)

εn ≤
C
nλ
|an|+ cεn−1, n≥ N (B.6)

and
n

∑
k=N

εk ≤
n

∑
k=N

C
kλ
|ak|+ c

n

∑
k=N

εk + cεN−1, n≥ N

From this expression we conclude that

n

∑
k=N

εk ≤C1

n

∑
k=N

k−λ |ak|+C2, n≥ N (B.7)

where
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C1 =

C
1− c

> 0

C2 =
cεN−1

1− c
> 0

Introduce the notation

ân = max
0≤k≤n

|ak|, n ∈ N

and use the inequality

ân+1 = max
0≤k≤n

{|ak|, |an+1|︸ ︷︷ ︸
≤εn+an

} ≤ εn + ân

to obtain6

ân+1 ≤ âN +
n−N

∑
k=0

εn−k ≤ âN +
n

∑
k=N

εk, n≥ N

Use (B.7), and we obtain

ân+1 ≤C1

n

∑
k=N

k−λ |ak|+C2 + âN ≤ ânC1

n

∑
k=N

k−λ +C3, n≥ N

where C3 = C2 + âN . Choose the integer N large enough so that

C1

∞

∑
k=N

k−λ ≤ 1
2

and we get

ân+1 ≤
1
2

ân +C3, n≥ N

By the use of the result in footnote 6, we get

ân+1 ≤
1

2n−N+1 âN +C3

n−N

∑
k=0

1
2k , n≥ N

6 In this section we make frequent use of inequalities of the type

xn+1 ≤ axn +bn, n≥ N

By induction over m, we get

xn+1 ≤ am+1xn−m +
m

∑
k=0

akbn−k, 0≤ m≤ n−N

xn+1 ≤ an−N+1xN +
n−N

∑
k=0

akbn−k, n≥ N
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or
ân+1 ≤ âN +2C3, n≥ N

which proves that the sequence {an}∞
n=0 is bounded, and the first part of the proof is

completed.
We are now able to use the boundedness of the sequence {an}∞

n=0 to prove that
this sequence is a Cauchy sequence of complex numbers, and therefore has a limit.
Use (B.6), and we get for a suitable constant C

εn ≤ cεn−1 +
C
nλ

, n≥ N

Use the result in footnote 6 to get

εn ≤ cn−N+1
εN−1 +C

n

∑
k=N

cn−k

kλ
, n≥ N (B.8)

However, the sequence

sn =
n

∑
k=1

cnnλ

ckkλ

is bounded, see Lemma B.8 on page 197, which implies that

n

∑
k=1

cn−k

kλ
≤ C′

nλ

for a suitable constant C′. Therefore, εn in (B.8) is estimated as

εn ≤ cn−N+1
εN−1 +

C
′′

nλ
, n≥ N

which can be arbitrary small for all n≥ N′, provided N′ > N is large enough.
Moreover, the sequence {an}∞

n=0 is a Cauchy sequence, since we have from the
results above that7

|an−am| ≤
n−1

∑
k=m

εk ≤
cm−N+1− cn−N+1

1− c
εN−1 +C

′′ n−1

∑
k=m

1
kλ

≤cm−N+1− cn−N+1

1− c
εN−1 +

λ

λ −1
C
′′

mλ−1 , n > m≥ N′ > N

7 For example, use the estimate (B.9) (n > m≥ 1 and λ > 1)

n−1

∑
k=m

1
kλ
≤ 1

mλ
+
∫ n−1

m

dx
xλ

=
1

mλ
+

1
λ −1

(
1

mλ−1 −
1

(n−1)λ−1

)
≤
(

1+
1

λ −1

)
1

mλ−1 ≤
λ

λ −1
1

mλ−1
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which can be made arbitrarily small for n > m ≥ N′, provided N′ is chosen suffi-
ciently large. If the limit of the sequence {an}∞

n=0 is denoted d, we also have from
above that

|an−d| ≤
∞

∑
k=n

εk ≤
cn−N+1

1− c
εN−1 +

λ

λ −1
C
′′

nλ−1 , n≥ N′

Therefore, an = d +O(n−λ+1), and the lemma is proved. ut

The next lemma shows how the convergence of specific combination of the co-
efficients in the recursion relation can be improved.

Lemma B.4. If {an}∞
n=0 is a sequence generated by the recursion relation{

an+1 = Anan +Bnan−1, n ∈ Z+

a1 = A0a0

where the coefficients An and Bn satisfy
An = β0 +

β1

n
+

β2

n2 +O(1/n3)

Bn = γ0 +
γ1

n
+

γ2

n2 +O(1/n3)
as n→ ∞

where it is assumed that β0 +2γ0 6= 0. Then the sequence {a′n}∞
n=0 defined by

a′n = an

n

∏
k=1

(
1+

c1

k
+

c2

k2

)
, n ∈ Z+, a′0 = a0

where

c1 =− β1 + γ1

β0 +2γ0
, c2 =

c1(β0−2γ1−β1 + γ0− c1γ0)− γ2−β2

β0 +2γ0

satisfies the recursion relation{
a′n+1 = A′na′n +B′na′n−1, n ∈ Z+

a′1 = A′0a′0

where A′0 = A0 and
A′n = An

(
1+

c1

n+1
+

c2

(n+1)2

)
B′n = Bn

(
1+

c1

n+1
+

c2

(n+1)2

)(
1+

c1

n
+

c2

n2

) n ∈ Z+

Moreover, the coefficients A′n and B′n satisfy
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A′n +B′n−β0− γ0 = O(n−3)

Proof. The idea behind the proof is to replace the sequence {an}∞
n=0 by the sequence

{a′n}∞
n=0 defined by

a′n = an

n

∏
k=1

(
1+

c1

k
+

c2

k2

)
, n ∈ Z+, a′0 = a0

where c1 and c2 are to be determined, such that the claims of the lemma are satisfied.
The new sequence {a′n}∞

n=0 satisfies{
a′n+1 = A′na′n +B′na′n−1, n ∈ Z+

a′1 = A′0a′0

where A′0 = A0 and
A′n = An

(
1+

c1

n+1
+

c2

(n+1)2

)
B′n = Bn

(
1+

c1

n+1
+

c2

(n+1)2

)(
1+

c1

n
+

c2

n2

) n ∈ Z+

If we insert the expansions of the coefficients An and Bn, we get

A′n =
(

β0 +
β1

n
+

β2

n2 +O(1/n3)
)(

1+
c1

n+1
+

c2

(n+1)2

)
= β0 +

β1 +β0c1

n
+

β1c1 +β2 +β0c2−β0c1

n2 +O(1/n3)

B′n =
(

γ0 +
γ1

n
+

γ2

n2 +O(1/n3)
)(

1+
c1

n+1
+

c2

(n+1)2

)(
1+

c1

n
+

c2

n2

)
= γ0 +

γ1 +2γ0c1

n
+

γ2 + γ0(2c2 + c2
1− c1)+2γ1c1

n2 +O(1/n3)

We also denote
hn = A′n +B′n−β0− γ0

and our aim is to choose c1 and c2 such that hn = O(n−3).

hn =
β1 +β0c1 + γ1 +2γ0c1

n

+
β1c1 +β2 +β0c2−β0c1 + γ2 + γ0(2c2 + c2

1− c1)+2γ1c1

n2 +O(1/n3)

and we see that the conditions in the lemma are proved, if we choose c1 and c2 as

β1 + c1(β0 +2γ0)+ γ1 = 0 =⇒ c1 =− β1 + γ1

β0 +2γ0
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and
β1c1 +β2 +β0c2−β0c1 + γ2 + γ0(2c2 + c2

1− c1)+2γ1c1 = 0

which we simplify to

c2 =
c1(β0−2γ1−β1 + γ0− c1γ0)− γ2−β2

β0 +2γ0

ut

The main theorem of the section that proves convergence of sequences can now
be formulated.

Theorem B.4. Let {an}∞
n=0 be a sequence generated by the recursion relation{
an+1 = Anan +Bnan−1, n ∈ Z+

a1 = A0a0

where the coefficients An and Bn satisfy
An = 1+α +

β1

n
+

β2

n2 +O(1/n3)

Bn =−α +
γ1

n
+

γ2

n2 +O(1/n3)
as n→ ∞

and |α| < 1. Then, provided the sequence {an}∞
n=0 does not converge to zero, the

sequence for large n behaves as

an = Cn(β1+γ1)/(1−α)
(

1+
c
n

+O(1/n2)
)

, n→ ∞

for some constants C and c.

Proof. We prove the theorem by applying Lemmas B.3 and B.4. With the notation
and the results of these lemmas, there exists a sequence {a′n}∞

n=0 defined by (notice
that 1+α +2(−α) = 1−α 6= 0)

a′n = an

n

∏
k=1

(
1+

c1

k
+

c2

k2

)
, a′0 = a0

c1 =−β1 + γ1

1−α
, c2 =

c1(1−2γ1−β1 + c1α)− γ2−β2

1−α

which is converging to a limit d 6= 0, such that (λ = 3)

a′n−d = O(n−2), as n→ ∞

Note that required asymptotic behavior needed in Lemma B.4 is one order higher,
here λ = 3, than the result of Lemma B.3.

We write the original sequence as
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an = a′neqn = deqn
(
1+O(n−2)

)
where

qn =−
n

∑
k=1

ln
(

1+
c1

k
+

c2

k2

)
We proceed by finding an asymptotic expansion of qn valid for large values of n.

Start with the Taylor expansion

ln
(
1+ c1x+ c2x2)= F(x) =

∞

∑
m=1

F(m)(0)
m!

xm, 0≤ x≤ 1

where F ′(0) = c1. We also need the asymptotic expansions of the following sums:

n

∑
k=1

1
k

= lnn+ c1,0 +
c1,1

n
+O(n−2)

and

n

∑
k=1

1
km = cm,0 +

cm,m−1

nm−1 +O(n−m) = cm,0 +
cm,m−1

nm−1 +O(n−2), m≥ 2

We also define cm, j = 0 for j = 1,2, . . . ,m−2, m≥ 3. Specific values of the constants
are, see Lemmas B.6 and B.7

c1,0 = γ

c1,1 =
1
2


cm,0 = ζ (m)

cm,m−1 =
1

1−m

m≥ 2

where γ is the Euler–Mascheroni constant defined in (A.18) on page 176, and
ζ (m) = ∑

∞
n=1 n−m is the Riemann zeta function. We get

n

∑
k=1

ln
(

1+
c1

k
+

c2

k2

)
=

n

∑
k=1

∞

∑
m=1

F(m)(0)
m!

k−m =
∞

∑
m=1

F(m)(0)
m!

n

∑
k=1

k−m

= F ′(0) lnn+
∞

∑
m=1

F(m)(0)
m!

(
cm,0 +

cm,1

n
+O(n−2)

)
= c1 lnn+C0 +

C1

n
+O(n−2)

where O(n−2) has the meaning
∣∣O(n−2)

∣∣≤Cn−2, with C independent of m. More-
over, the constants C0 and C1 are
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C0 =

∞

∑
m=1

F(m)(0)
m!

cm,0

C1 =
∞

∑
m=1

F(m)(0)
m!

cm,1 =
2

∑
m=1

F(m)(0)
m!

cm,1

and consequently

qn =−c1 lnn−C0−
C1

n
+O(n−2)

The sequence of interest then is

an = de−c1 lnn−C0−
C1
n +O(n−2) (1+O(n−2)

)
= Cn−c1

(
1+

c
n

+O(n−2)
)

for some constants C and c, which concludes the proof. ut

Corollary B.1. With the assumptions in Theorem B.4, we have that

an+1

an
= 1+

β1 + γ1

n(1−α)
+O(1/n2), as n→ ∞

Proof. Use the result of Theorem B.4, i.e.,

an = Cn(β1+γ1)/(1−α)
(

1+
c
n

+O(1/n2)
)

, n→ ∞

which implies that

an+1

an
=
(

n+1
n

)(β1+γ1)/(1−α) 1+ c
n+1 +O(1/n2)

1+ c
n +O(1/n2)

= 1+
β1 + γ1

n(1−α)
+O(1/n2)

and the corollary follows. ut

Notice that the result of Corollary B.1 is consistent with the result of Theorem B.1
since λ1,2 = 1,α .

B.4 Estimates of some sequences and series

For convenience we here collect a series of lemmas on estimates of sequences and
series that are used above. We start by stating a general lemma that relates a series
to the corresponding integral.

Lemma B.5. Let the real-valued function f (x) be non-increasing in the interval
[m,n], m,n ∈ N. Then

f (n)≤
n

∑
k=m

f (k)−
∫ n

m
f (x)dx≤ f (m), n≥ m (B.9)
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m n

Fig. B.1 Estimates of the Riemann sum.

Proof. This lemma is easily proved by estimating the Riemann sum of the integral,
see Figure B.1. We have for integers m < n

n

∑
k=m+1

f (k)≤
∫ n

m
f (x)dx≤

n−1

∑
k=m

f (k)

which is identical to the statement in the lemma. ut

B.4.1 Riemann zeta function

Lemma B.6. Let λ > 1 be a real number. Then, the partial sum

sn =
n

∑
k=1

1
kλ

, n ∈ Z+

has the following asymptotic expansion:

sn = s+
n1−λ

1−λ
+O(n−λ )

where s = ζ (λ ) is the Riemann zeta function.

Proof. The sequence sn is increasing, since sn+1− sn = (n + 1)−λ ≥ 0. Moreover,
the sequence sn is bounded from above, which is proved using (B.9) with f (x) = x−λ

and m = 1.

0≤ sn ≤
∫ n

1
x−λ dx+1 =

1
λ −1

(
1−n−λ+1

)
+1 <

1
λ −1

+1 =
λ

λ −1

The sequence sn therefore has a limit s.
The remaining part of the lemma is proved using the notation
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qn = nλ−1 (s− sn) = nλ−1
∞

∑
k=n+1

1
kλ
≥ 0

Use (B.9) with f (x) = nλ−1x−λ , m = n+1, and the upper limit approaching infinity.
We get as f (x)→ 0 as x→ ∞,

0≤ qn−nλ−1
∫

∞

n+1
x−λ dx≤ nλ−1(n+1)−λ

or by evaluating the integral

0≤ qn−
1

λ −1

(
1+

1
n

)1−λ

≤ 1
n

(
1+

1
n

)−λ

which proves that

qn =
1

λ −1
+O(n−1), as n→ ∞

and

sn = s−qnn1−λ = s+
n1−λ

1−λ
+O(n−λ )

and the lemma is proved. ut

B.4.2 The sum ∑
n
k=1 k−1

The following lemma shows the asymptotic behavior of the series ∑
n
k=1 k−1, which

also is used above:

Lemma B.7. Define the partial sums

sn =
n

∑
k=1

1
k
, n ∈ Z+

Then the sequence sn has the asymptotic expansion

sn = lnn+ γ +
1

2n
+O(n−2)

where the Euler–Mascheroni constant γ is

γ = lim
n→∞

{
n

∑
k=1

1
k
− lnn

}

A more detailed treatment of the Euler–Mascheroni constant is presented in Ap-
pendix A on page 176.
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Proof. Introduce the notation

qn =
n

∑
k=1

1
k
−
∫ n

1

dx
x

= sn− lnn

The sequence qn is a decreasing sequence since

qn−qn−1 =
1
n
−
∫ n

n−1

dx
x

=
1
n

+ ln
(

1− 1
n

)
≤ 0

since ln(1 + x) ≤ x for x ≥ −1. Utilize the inequality (B.9) with f (x) = 1/x and
m = 1,

0 <
1
n
≤ qn ≤ 1, n ∈ Z+ (B.10)

which shows that the decreasing sequence qn is bounded from below, and therefore
the limit qn→ γ as n→ ∞ exists, i.e.,

γ = lim
n→∞

{
n

∑
k=1

1
k
− lnn

}
=

∞

∑
k=1

{
1
k
− ln

(
1+

1
k

)}
where we in the last equality have used (A.19) on page 176.

To proceed, rewrite

n

∑
k=1

{
1
k
− ln

(
1+

1
k

)}
=

n

∑
k=1

1
k
− ln

(
n

∏
k=1

k +1
k

)
=

n

∑
k=1

1
k
− ln(n+1)

=
n

∑
k=1

1
k
− lnn+ ln

n
n+1

= qn− ln
(

1+
1
n

)
and we get

γ−qn + ln
(

1+
1
n

)
=

∞

∑
k=n+1

{
1
k
− ln

(
1+

1
k

)}
Now use the inequality (B.9) with

f (x) = n
(

1
x
− ln

(
1+

1
x

))
≥ 0, x > 1

Letting the upper limit in (B.9) approach infinity, m = n+1, and using f (x)→ 0 as
x→ ∞ for each n, we get

0≤n
{

γ−qn + ln
(

1+
1
n

)
−
∫

∞

n+1

{
1
x
− ln

(
1+

1
x

)}
dx
}

≤ n
n+1

−n ln
(

1+
1

n+1

)
= O(1/n)
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since ln(1+ x) = x− x2/2+O(x3) as x→ 0. We conclude that

n(γ−qn)+1 = n
∫

∞

n+1

{
1
x
− ln

(
1+

1
x

)}
dx+O(n−1)

The integral can be evaluated as

n
∫

∞

n+1

{
1
x
− ln

(
1+

1
x

)}
dx = n

∫ 1/(n+1)

0

x− ln(1+ x)
x2 dx

= n
∫ 1/(n+1)

0

1
2

dx+O(n−1) =
1
2

+O(n−1)

We finally get

qn = sn− lnn = γ +
1
2n

+O(n−2)

and
sn = lnn+ γ +

1
2n

+O(n−2)

and the lemma is proved. ut

B.4.3 Convergence of a sequence

Lemma B.8. Let c ∈ (0,1) and λ ∈ C. Then the sequence

sn =
n

∑
k=1

cn−k
(n

k

)λ

, n ∈ Z+

is convergent with limit s = 1/(1− c).

Proof. The sequence {sn}∞
n=1 satisfies

sn+1 = 1+
c(n+1)λ

nλ

n

∑
k=1

cn−k
(n

k

)λ

= 1+ c
(

1+
1
n

)λ

sn = 1+bnsn, n ∈ Z+

where

bn = c
(

1+
1
n

)λ

→ c, n→ ∞

If the sequence {sn}∞
n=1 has a limit s, then it must satisfy

s = 1+ cs ⇒ s =
1

1− c
> 1

Therefore, write the sequence {sn}∞
n=1 as
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sn = s+ tn, n ∈ Z+

and the lemma follows, if we can prove that the sequence {tn}∞
n=1 converges to zero.

The sequence {tn}∞
n=1 satisfies

tn+1 =
bn− c
1− c

+bntn = c

(
1+ 1

n

)λ −1
1− c

+bntn, n ∈ Z+

which implies that

|tn+1| ≤
C
n

+ |bn| |tn| , n ∈ Z+

för some constant C > 0 since

lim
x→0

(
(1+ x)λ −1

)
x

= λ

To proceed, introduce the constant d = (1+c)/2 ∈ (c,1), and let N be an integer
such that

|bn|< d, n≥ N

which is possible since bn→ c as n→ ∞. Then

|tn+1| ≤
C
n

+d |tn| , n≥ N (B.11)

Moreover, introduce

rn = |tn|−
A
n

, n≥ N

where the positive constant A is chosen as

A =
C(N +1)

N(1−d)−d

which is positive if N > d/(1−d). Then from (B.11)

rn+1 ≤
C
n
− A

n+1
+

Ad
n

+drn, n≥ N

The chosen value of A implies that

C
n
− A

n+1
+

Ad
n

=
C +dA−A n

n+1

n
≤

C +dA−A N
N+1

n
= 0, n≥ N

and we obtain
rn+1 ≤ drn, n≥ N

Iteration of this expression gives
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rn+1 ≤ dn−N+1rN , n≥ N

which proves that rn → 0, and consequently |tn| → 0, as n→ ∞, and the lemma is
proved. ut



Appendix C
Partial fractions

A rational function, r(z), is a quotient between two polynomials, p(z) and q(z),

r(z) =
p(z)
q(z)

The rational function is defined in a domain in the complex z-plane, if we exclude
the isolated zeros of q(z), which we denote by

zi, i = 1,2,3, . . . ,k

By polynomial division, it is always possible to write r(z) as

r(z) = s0(z)+
p0(z)
q(z)

where s0(z) is a polynomial, and where the degree of the polynomial p0(z) is less
than the degree of the polynomial q(z). The rational function p0(z)/q(z) is analytic
at infinity.

If mi is the multiplicity of zi, then q(z) = (z− zi)miqi(z), where qi(z) is a polyno-
mial and qi(zi) 6= 0. Let the principal parts of r(z) be

si(z) =
mi

∑
j=1

ai, j

(z− zi) j , i = 1,2,3, . . . ,k

The partial fraction decomposition of r(z) then is

r(z) =
k

∑
i=0

si(z)
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Appendix D
Circles and ellipses in the complex plane

The circle and the ellipse occur frequently in the analysis in this book. In particular,
we use circles and ellipses in the treatment of the convergence properties of the
series solution of Heun’s equation in Chapter 8. Their equations in the complex
plane are reviewed in this appendix.

D.1 Equation of the circle

The equation for the circle, centered at z = z0 and radius r, in the complex z-plane
is

|z− z0|= r

or equivalently
(z− z0)(z∗ − z∗0) = r2

where the star, ∗, denotes complex conjugate of the complex number. Denote a =
−z0 and b = |z0|2− r2 ∈ R. The equation of the circle then is

zz∗+a∗z+az∗+b = 0, b real

Every circle in the complex plane has this form.
The analysis above implies that the equation

zz∗+αz+β z∗+ γ = 0 (D.1)

represents a circle if and only if

α = β
∗ and αβ − γ non-negative real number (D.2)

If these conditions are fulfilled, the circle has its center at z =−β and the radius is
r =

√
|α|2− γ .
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D.1.1 Harmonic circles

Let k be a real, positive number, and find the complex numbers z that satisfy∣∣∣∣ z−a
z−b

∣∣∣∣= k (D.3)

where a and b are distinct complex numbers, i.e., a 6= b. The problem has an equiv-
alent formulation:

|z−a|= k |z−b|

and we observe that the problem is to find the complex numbers z, whose distances
to the points a and b have a constant quotient k.

If k = 1, the solution is the straight line perpendicular to, and passing through the
midpoint of the line connecting a and b.

We now show that the solution is a circle if k 6= 1. The equation is equivalent to

(z−a)(z∗ −a∗) = k2(z−b)(z∗ −b∗)

or
(1− k2)zz∗+(k2b∗ −a∗)z+(k2b−a)z∗+ |a|2− k2|b|2 = 0

This is the equation of a circle, see (D.1), provided the conditions in (D.2) are ful-
filled. The first one in (D.2) is apparently satisfied, and the second is also satisfied,
since

|k2b−a|2

(1− k2)2 −
|a|2− k2|b|2

1− k2 =
|k2b−a|2− (1− k2)(|a|2− k2|b|2)

(1− k2)2

=
k2(|a|2 + |b|2−2Reab∗)

(1− k2)2 =
k2|a−b|2

(1− k2)2 ≥ 0

Equation (D.3) therefore is a circle centered at z = z0 and radius r, where z0 and r
are given by 

z0 =
a− k2b
1− k2

r =
k|a−b|
|1− k2|

The center of the circle lies on the line connecting the points a and b, see Figure D.1,
and the circle is called the harmonic circle to a and b. If k < 1, the circle encircles
a, and if z > 1, the circle encircles the point b in the complex z-plane.
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°

a

b

1

1

z

k = 1

k < 1

k > 1

Fig. D.1 The harmonic circles in the complex z-plane. In the illustration a = 1+ i and b =−3− i.
When 0 < k < 1, the circles enclose the point a, and when k > 1, the circles enclose the point b.

D.2 Equation of the ellipse

The equation of the ellipse in the complex plane can take many forms. If the ellipse
has foci at z = z1 and z = z2, and passes through z = a, one form of the equation is

|z− z1|+ |z− z2|= |a− z1|+ |a− z2|

This equation states that the sum of the distances from the point z in the complex
z-plane to the foci is constant and is equal to the sum of the distances from the point
a to the foci. In Theorem 8.2, we also use the following, less common, form of the
ellipse:

Lemma D.1. Let
Z =

(
1− z−1)1/2

, A =
(
1−a−1)1/2

where the branches of the square roots are taken as the principal branch, ReZ > 0
and ReA > 0. Then, for a given a, the equation∣∣∣∣Z−1

Z +1

∣∣∣∣= ∣∣∣∣A−1
A+1

∣∣∣∣
defines an ellipse in the complex z-plane with foci at z = 0 and z = 1, and passing
through the point z = a, see Figure D.2. Moreover, the inequality
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°

1

a
z

Fig. D.2 The ellipse in Lemma D.1.

∣∣∣∣Z−1
Z +1

∣∣∣∣> ∣∣∣∣A−1
A+1

∣∣∣∣
defines the interior of the ellipse containing the origin in the z-plane, and the in-
equality ∣∣∣∣Z−1

Z +1

∣∣∣∣< ∣∣∣∣A−1
A+1

∣∣∣∣
defines the domain exterior to the ellipse in the z-plane.

Proof. The real constant

C =
∣∣∣∣A−1
A+1

∣∣∣∣< 1

since the complex number A =
(
1−a−1

)1/2 is located in the right-hand side of the
complex A-plane, i.e., ReA > 0. For given A, the complex numbers Z satisfying

|Z−1|= C |Z +1|

define a circle in the complex Z-plane with center at Z0 and radius R, where, see
Section D.1.1, 

Z0 =
1+C2

1−C2

R =
2C

|1−C2|
and the circle encircles the point Z = 1.

The parameter representation of the circle
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Z = Z0 +Reiφ , φ ∈ [0,2π)

implies that the curve in the z-plane is

z =
1

1−Z2 =
1

(1+Z)(1−Z)
=

1
(1+Z0 +Reiφ )(1−Z0−Reiφ )

However, this is an ellipse with foci at z = 0 and z = 1, since
|z|= 1

|1+Z| |1−Z|
=

1

C |1+Z|2

|z−1|= |Z|2

|1+Z| |1−Z|
=

|Z|2

C |1+Z|2

and 
|Z|2 = (Z0 +Rcosφ)2 +R2 sin2

φ =

(
1+C2 +2C cosφ

)2 +4C2 sin2
φ

(1−C2)2

|1+Z|2 = (Z0 +1+Rcosφ)2 +R2 sin2
φ = 4

(1+C cosφ)2 +C2 sin2
φ

(1−C2)2

We simplify 
|Z|2 =

(
1+C2

)2 +4C
(
1+C2

)
cosφ +4C2

(1−C2)2

|1+Z|2 = 4
1+2C cosφ +C2

(1−C2)2

The sum of the distances from z to the origin and 1 is

|z|+ |z−1|=
(
1−C2

)2 +
(
1+C2

)2 +4C
(
1+C2

)
cosφ +4C2

4C (1+2C cosφ +C2)

=
2
(
1+C2

)2 +4C
(
1+C2

)
cosφ

4C (1+2C cosφ +C2)
=

1+C2

2C

which is the equation of the ellipse with foci at z = 0 and z = 1. Notice that

1+C2

2C
=
|A+1|2 + |A−1|2

2 |A+1| |A−1|
=
|A|2 +1
|A2−1|

=
|1−1/a|+1

1/|a|
= |a|+ |a−1|

by the parallelogram law |z1 +z2|2 + |z1−z2|2 = 2|z1|2 +2|z2|2, and we have proved
that the

|Z−1|= C |Z +1|

defines an ellipse in the complex z-plane.
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The complex number z = 1 lies inside the ellipse, and it corresponds to Z =(
1− z−1

)1/2 = 0, and the complex number Z = 0 satisfies

|Z−1|> C |Z +1|

since
C < 1

The inequality
|Z−1|> C |Z +1|

therefore defines the domain inside the ellipse, and

|Z−1|< C |Z +1|

the outside. ut



Appendix E
Elementary and special functions

A long list of elementary and special functions can be expressed in the hypergeomet-
ric function 2F1(α,β ;γ;z), and its two confluent versions, 1F1(α;γ;z) and 0F1(γ;z),
respectively. Some examples are given in this appendix. The Greek letters α and β

are arbitrary complex numbers, and n and m are non-negative integers.

E.1 Hypergeometric function 2F1(α,β ;γ;z)

Elementary functions



(1+ z)α = F (−α,β ;β ;−z)
ln(1+ z) = zF (1,1;2;−z)

arctanz = zF
(

1
2
,1;

3
2

;−z2
)

arcsinz = zF
(

1
2
,

1
2

;
3
2

;z2
)

Elliptic integrals

Complete elliptic integral of the first kind

K(m) =
∫ 1

0

(
(1− t2)(1−mt2)

)−1/2
dt =

∫
π/2

0

(
1−msin2

θ
)−1/2

dθ

=
π

2
F
(

1
2
,

1
2

;1;m
)
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Complete elliptic integral of the second kind

E(m) =
∫ 1

0

(
1− t2)−1/2 (

1−mt2)1/2
dt =

∫
π/2

0

(
1−msin2

θ
)1/2

dθ

=
π

2
F
(
−1

2
,

1
2

;1;m
)

Jacobi polynomials

P(α,β )
n (x) =

(
n+α

n

)
F
(
−n,n+α +β +1;α +1;

1− x
2

)

Legendre functions

Legendre functions of the first kind

Pν(z) = F
(
−ν ,ν +1;1;

1− z
2

)

Legendre functions of the second kind

Qν(z) =
√

π

(2z)ν+1
Γ (ν +1)

Γ (ν +3/2)
F
(

1+
ν

2
,

1+ν

2
;ν +

3
2

;
1
z2

)

Associated Legendre functions


Pm

ν (x) = (1− x2)
m
2

dm

dxm Pν(x)

Qm
ν (x) = (1− x2)

m
2

dm

dxm Qν(x)
x ∈ [−1,1]


Pm

ν (z) = (z2−1)
m
2

dm

dzm Pν(z)

Qm
ν (z) = (z2−1)

m
2

dm

dzm Qν(z)
z ∈ C
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Tchebysheff polynomials

Tchebysheff first kind

Tn(cosθ) = cosnθ = F
(
−n,n;

1
2

;
1− x

2

)

Tchebysheff second kind

Un(cosθ) =
sin(n+1)θ

sinθ
= (n+1)F

(
−n,n+2;

3
2

;
1− x

2

)

E.2 Confluent functions 1F1(α;γ;z)

Elementary functions


ez = 1F1(α;α;z)

e−iz

z
sinz = 1F1(1;2;−2iz)

ez

z
sinhz = 1F1(1;2;2z)

Bessel functions

Jν(z) =
zν e−iz

1F1(ν +1/2;2ν +1;2iz)
2νΓ (ν +1)

Laguerre polynomials

L(α)
n (z) =

(
n+α

n

)
1F1(−n;α +1;z)
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Hermite polynomials

{
H2m(x) = (−1)m22mm!L(−1/2)

m (x2)

H2m+1(x) = (−1)m22m+1m!xL(1/2)
m (x2)

x ∈ R

E.2.1 Error functions

erf(z) =
2z√

π
1F1(1/2;3/2;−z2) =

2z√
π

e−z2
1F1(1;3/2;z2)

E.3 Confluent functions 0F1(γ;z)

Bessel functions

Jν(z) = zν 0F1(ν +1;−z2/4)
2νΓ (ν +1)



Appendix F
Notation

Most of the notation and symbols adopted in this textbook are traditional, and there
is very little risk of confusion, but for the sake of completeness, we collect the
symbols in this appendix.

• We use the notation Z for all integers 0,±1,±2, . . ..
• The positive integers 1,2,3,4, . . . are denoted Z+.
• The negative integers −1,−2,−3,−4, . . . are denoted Z−.
• The natural, non-negative, integers 0,1,2,3, . . . are denoted N.
• The field of real numbers is denoted R.
• The field of complex numbers is denoted C. Sometimes the point at infinity is

included, and it is then appropriate to view the field as the Riemann sphere.
• We use the symbols o and O defined by

f (x) = o(g(x)) , x→ a ⇐⇒ lim
x→a

f (x)
g(x)

= 0

f (x) = O(g(x)) , x→ a ⇐⇒ f (x)
g(x)

bounded in a neighborhood of a

• The symbol ut is used to end a proof.
• The symbol is used to end an example or a comment.
• The dagger, †, in front of a problem denotes a more difficult problem.
• The star, ∗, denotes complex conjugation of a complex number.
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8. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. (eds.): Higher Transcendental Func-

tions. 3 vols. Bateman Manuscript Project. McGraw-Hill, New York (1953)
9. Greene, R.E., Krantz, S.G.: Function Theory of One Complex Variable, third edn. American

Mathematical Society, Providence, R.I. (2006)
10. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. John Wiley & Sons, New

York (1974)
11. Henrici, P.: Applied and Computational Complex Analysis, vol. 2. John Wiley & Sons, New

York (1977)
12. Hille, E.: Ordinary Differential Equations in the Complex Domain. Dover Publications, Mi-

neola, N.Y. (1976)
13. Hille, E.: Analytic Function Theory, vol. 1, second edn. Chelsea Publishing Company, New

York (1982)
14. Hochstadt, H.: The Functions of Mathematical Physics. John Wiley & Sons, New York (1971)
15. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions

of Mathematical Physics. Springer-Verlag, New York (1966)
16. Maier, R.: The 192 solutions of the Heun equation. Math. Computat. 76(258), 811 (2007)
17. Miller Jr., W.: Lie Theory and Special Functions. Academic Press, New York (1968)
18. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, vol. 1. McGraw-Hill, New York

(1953)
19. Paris, R., Kaminski, D.: Asymptotics and Mellin–Barnes Integrals. Cambridge University

Press, Cambridge, U.K. (2001)
20. Rainville, E.: Special Functions. Chelsea Publishing Company, New York (1960)
21. Ronveaux, A.: Heun’s Differential Equations. Oxford University Press, Oxford (1995)
22. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)
23. Slavyanov, S.Y., Lay, W.: Special Functions: A Unified Theory Based on Singularities. Oxford

University Press, Oxford (2000)

215



216 References

24. Stromberg, K.R.: An Introduction to Classical Real Analysis. Wadsworth International Group,
Belmont (1981)

25. Svartholm, N.: Die Lösung der Fuchsschen Differentialgleichung zweiter Ordnung durch hy-
pergeometrische Polynome. Mathematische Annalen 116(3), 413–421 (1939)
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