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Preface

The problems of modern society are both complex and inter-disciplinary. Despite the ap-
parent diversity of problems, however, often tools developed in one context are adaptable
to an entirely different situation. For example, consider the well known Lyapunov’s second
method. This interesting and fruitful technique has gained increasing significance and has
given decisive impetus for modern development of stability theory of discrete and dynamic
system. It is now recognized that the concept of Lyapunov function and theory of differ-
ential inequalities can be utilized to investigate qualitative and quantitative properties of a
variety of nonlinear problems. Lyapunov function serves as a vehicle to transform a given
complicated system into a simpler comparison system. Therefore, it is enough to study the
properties of the simpler system to analyze the properties of the complicated system via an
appropriate Lyapunov function and the comparison principle.
It is in this perspective, the present monograph is dedicated to the investigation of the theory
of causal differential equations or differential equations with causal operators, which are
nonanticipative or abstract Volterra operators. As we shall see in the first chapter, causal
differential equations include a variety of dynamic systems and consequently, the theory
developed for CDEs (Causal Differential Equations) in general, covers the theory of several
dynamic systems in a single framework. Also, many of the same tools which are employed
for ODEs (Ordinary Differential Equations) are applicable to CDEs including the method
of Lyapunov Functions, for not only the development of stability theory but also other
qualitative properties of solutions of CDEs.
It is Volterra who used causal operators implicitly in his work on integral equations and
Tonelli gave a sharp definition. It is Tychonoff who made a significant contribution in de-
veloping the theory of functional equations involving causal operators. At the end of the last
century, the functional equations of a variety of types such as delay differential equations,
functional differential equations and integrodifferential equations, etc., were developed and
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vi Theory of Causal Differential Equations

studied and all these are special cases of causal differential equations .
The first book dealing with functional equations with causal operators is of Corduneanu,
which offers some basic theory and paves the way for future development. Recently, a
lot of important research has been done in this area and there exists sufficient amount of
literature to warrant assembling the existing results in a unified way. It is now widely
recognized that this important branch of nonlinear analysis merits further study in order to
explore and appreciate the intricacies and advantages involved in the investigation of such
dynamic systems.
It is with this spirit we see the importance of the present monograph. As a result, we provide
a systematic account of recent developments, describe the present state of the useful theory,
show the essential unity achieved and initiate several new extensions to other types of CDEs
such as CDEs in infinite dimensional spaces with or without memory, fractional CDEs and
set differential equations with causal operators. We hope that this book would motivate
scientists to investigate CDEs and their applicability to real world problems and becomes
instrumental for further advancement of this interesting area of nonlinear analysis. One can
extend CDEs to cover the case of dynamic systems on time scales, impulsive systems and
hybrid systems to name a few.
In Chapter 1, we collect preliminary material providing necessary tools, some relevant
basic concepts and useful results. Defining causal operators, we give examples of several
dynamic systems that are included under the banner of causal systems. Also, we list some
useful fixed point theorems, define measures of noncompactness and nonconvexity and
indicate necessary preliminaries of a Banach space.
Chapter 2 is devoted to the investigation of fundamental theory of causal differential equa-
tions (CDEs) such as comparison principles, existence, uniqueness and continuous depen-
dence of solutions on initial data, existence of extremal solutions, global existence and
Nagumo type uniqueness results. Existence of Euler solutions via nonsmooth analysis is
also discussed. We present some basic theory for differential and integral equations of
Sobolev type and finally inequalities results for causal differential systems.
Chapter 3 contains the method of lower and upper solutions including monotone iterative
technique, quasilinearization and their generalizations. Chapter 3, therefore, provides a rich
source of methods of finding approximating sequences which are monotone and converge
to the extremal solutions/unique solution of the causal differential system.
Chapter 4 introduces the stability theory via Lyapunov method by employing Lyapunov
functions, Lyapunov functionals and functions on product spaces. Stability theory in terms
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of two measures is indicated and is useful for covering many stability concepts in a sin-
gle frame work. The method of vector Lyapunov functions and cone valued Lyapunov
functions is described to provide weaker sufficient conditions for stability theory.
Finally Chapter 5 deals with several new topics that are initiated in the context of CDEs.
They are

(i) CDEs in a Banach Space,
(ii) CDEs with fractional derivatives,
(iii) CDEs with memory,
(iv) causal set differential equations,
(v) CDEs with retardation and anticipation.

Few basic results are proved in each case, enough to provide initial apparatus for further
study.
Some important features of the monograph are as follows:

(1) It is the first book that attempts to describe the theory of CDEs as an independent
discipline;

(2) It incorporates the recent general theory of CDEs showing the interconnections be-
tween various dynamic systems and CDEs;

(3) It introduces several new areas of study by providing the initial apparatus for further
advancement;

(4) It is a timely introduction to a subject that is broad enough to cover a variety of dy-
namic systems in a single setup that follows the present trend of studying analysis and
dynamic systems in a general framework.

The monograph will be very useful to those scientists and doctoral students who work in
nonlinear analysis in general. It is a good reference book to researchers in several disci-
plines where real world problems are considered and to graduate students in those disci-
plines. In fact, the concept of causal operators is prevalent in the engineering literature and
thus engineering researchers may find the monograph useful.



 



Contents

Preface v

1. Preliminaries 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Causal Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Known Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Fixed Point Theorems and Auxiliary Results . . . . . . . . . . . . . . . . 9
1.5 Preliminaries in a Banach Space . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Directional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Measure of Noncompactness . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 The Measure of Nonconvexity . . . . . . . . . . . . . . . . . . . . . . . 18
1.9 Notes and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2. Basic Theory 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Causal Functional and Differential Inequalities . . . . . . . . . . . . . . 24
2.3 Existence and Extremal Solutions . . . . . . . . . . . . . . . . . . . . . 27
2.4 Global Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Nagumo-Type Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 Continuous Dependence Relative to Initial Data . . . . . . . . . . . . . . 43
2.8 Existence of Euler Solutions . . . . . . . . . . . . . . . . . . . . . . . . 47
2.9 Flow Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.10 Systems of Causal Differential Inequalities . . . . . . . . . . . . . . . . 53

ix



x Theory of Causal Differential Equations

2.11 Nonlinear Variation of Parameters . . . . . . . . . . . . . . . . . . . . . 55
2.12 Integral Equations of Sobolev Type . . . . . . . . . . . . . . . . . . . . 59
2.13 Differential Equations of Sobolev Type . . . . . . . . . . . . . . . . . . 65
2.14 Notes and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3. Theoretical Approximation Methods 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Method of Lower and Upper Solutions . . . . . . . . . . . . . . . . . . . 74
3.3 Monotone Iterative Technique . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Generalized Monotone Iterative Technique . . . . . . . . . . . . . . . . . 79
3.5 Monotone Technique for PBVPs . . . . . . . . . . . . . . . . . . . . . . 87
3.6 The Method of Quasilinearization (MQL) . . . . . . . . . . . . . . . . . 91
3.7 Extension of Quasilinearization . . . . . . . . . . . . . . . . . . . . . . 94
3.8 Newton’s Method Versus Quasilinearization . . . . . . . . . . . . . . . . 99
3.9 Notes and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4. Stability Theory 105

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Comparison Theorems via Lyapunov Functions . . . . . . . . . . . . . . 106
4.3 Definitions of Stability and Boundedness . . . . . . . . . . . . . . . . . 111
4.4 Definitions Relative to Two Measures . . . . . . . . . . . . . . . . . . . 114
4.5 Stability Criteria-Lyapunov Functions . . . . . . . . . . . . . . . . . . . 116
4.6 Stability Criteria-Lyapunov Functionals . . . . . . . . . . . . . . . . . . 118
4.7 Lyapunov Functions on Product Spaces . . . . . . . . . . . . . . . . . . 120
4.8 Stability in Terms of two Measures . . . . . . . . . . . . . . . . . . . . . 123
4.9 Vector Lyapunov Functions . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.10 Cone-valued Lyapunov Functions . . . . . . . . . . . . . . . . . . . . . 128
4.11 Notes and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5. Miscellaneous Topics in Causal Systems 137

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Causal Set Differential Equations . . . . . . . . . . . . . . . . . . . . . . 138
5.3 Comparison Results and Stability Theory . . . . . . . . . . . . . . . . . 146
5.4 Causal Differential Equations in a Banach Space . . . . . . . . . . . . . 157
5.5 Global Existence and Inequalities in Cones . . . . . . . . . . . . . . . . 163



Contents xi

5.6 Fractional Causal Differential Equations . . . . . . . . . . . . . . . . . . 169
5.7 Causal Differential Equations with Memory . . . . . . . . . . . . . . . . 175
5.8 Causal Differential Systems with Retardation and Anticipation . . . . . . 181
5.9 Monotone Iterative Technique . . . . . . . . . . . . . . . . . . . . . . . 188
5.10 Neutral Differential Equations with Causal Operators on a Semi-Axis . . 193
5.11 Notes and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Bibliography 203

Subject Index 207



 



Chapter 1

Preliminaries

1.1 Introduction

This chapter is essentially introductory in nature. Its main purpose is to introduce some
relevant basic concepts, present some known results from standard books and sketch some
useful results that are not so well known. Section 1.2 deals with the notion of causal
operators and provides several possible examples that may be treated as causal operators
so that one can formulate causal functional equations and causal differential equations.
In Section 1.3, we assemble some known basic results including comparison results. The
notion of Dini derivatives and their properties are given. In Section 1.4, we list some well
known fixed point results as well as one not so well known contraction result where domain
and range of the operator are different but connected.
Necessary preliminaries of a Banach space are described in Section 1.5, while Section
1.6 is devoted to the notion of directional derivatives and their properties. In Section 1.7,
we define the concept of the measure of noncompactness and provide some of its useful
properties. Section 1.8 introduces the measure of nonconvexity. Finally Section 1.9 is
devoted to notes and comments.

1.2 Causal Operators

This monograph is primarily a brief account of the investigation of equations with causal or
nonanticipatory or Volterra operators. We shall use the word causal to denote such opera-
tors. The causal operators can be described by several functions or functionals that occur in
the formulation of many dynamic systems as well as functional systems including discrete
systems. Therefore, the study of the theory of causal systems becomes very important.
This is because a single result involving causal operators covers interesting corresponding

V. Lakshmikantham et al., Theory of Causal Differential Equations, Atlantis Studies in Mathematics  
for Engineering and Science 5, DOI 10.2991/978-94-91216-25-1_1,  
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2 Theory of Causal Differential Equations

results from many categories of dynamic systems, thus avoiding duplication and monotony
of repetition. Moreover, in this general set up, one can visualize how far we can go and
where we get stumbling blocks, if at all. The investigation of the theory of causal systems,
dynamic or otherwise, is an important branch of nonlinear analysis.
Let us first define the concept of the causal operator. Let E = E(J,X) where J is an appro-
priate time interval, X represents either finite or infinite dimensional space, depending on
the requirement of the context, so that E is a function space. The operator Q : E → E is
said to be a causal or nonanticipatory operator if the following property is satisfied:
(*) for each couple of elements x,y of E such that x(s) = y(s) for 0 ≤ t0 ≤ s ≤ t, we also
have (Qx)(s) = (Qy)(s) for 0≤ t0≤ s≤ t, t < T , T being arbitrary. Of course, the definition
needs a slight modification when E is a space of measurable functions on [t0,T ), t0 ≥ 0,
requiring property (*) to be valid almost everywhere on [t0,T ]. We wish to point out that
for causal operators, a notation identical with what is encountered for a general equation
with memory can be stated as follows. A representation of the form

(Qx)(t) = Q(t,xt)

where for each t ∈ [t0,T ), Q(t,xt) is a functional on E which takes values in X , for each t,
while the whole family of functionals, t ∈ [t0,T ), define the operator from E =C([t0,T ),X)

to itself. Sometimes, this description is more clear in defining the operator Q. Many
operators on function spaces have been defined and investigated in connection with their
use in the theory of functional or functional differential equations.
The sum and product of two causal operatorsQ : E→ E and P : E→ E are causal. Another
property of causal operators is related to the convergence of a sequence of such operators.
For illustration, let us take E = C([t0,T ),Rn) as the underlying space. Let {Qn} be a
sequence of causal operators on E such that

lim
n→∞

(Qnx)(t) = (Qx)(t), (1.1)

for each (t,x) ∈ [t0,T )×E . The question is whether we can infer that the limit Q : E → E
is also a causal operator. The answer is yes because the causality of {Qn} implies that

(Qnx)(s) = (Qny)(s), s ∈ [t0,T ).

If we let n→ ∞ on both sides, in the above relation and use (1.1) for each fixed s ∈ [t0,T ),
we obtain the causality of Q.
The problem of invertibility of causal operators is not true in general. If E =C([0,∞),R)

and Q, the operator defined by

(Qx)(t) = x(t/2), t ∈ [0,∞),
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is continuous and has inverse in E , namely,

(Q−1y)(t) = y(2t), t ∈ [0,∞). (1.2)

Also, this operator is continuous, i.e., if yn → y uniformly on any interval [0,T ], then
(Q−1yn) → (Q−1y) on any bounded interval of R+. But, as seen from (1.2) Q−1 is not
a causal operator. Hence, we cannot take it for granted the causality of the inverse of a
causal operator.
However, with reference to the classical examples of causal operators, there are many cir-
cumstances where the inverse exists and is a causal operator. An example which plays an
important role in the study of linear integral equations (of Volterra) of the second kind

x(t) =

∫ t
t0
k(t,s)x(s)ds+ f (t) (1.3)

is provided by the operator

(Lx)(t) = x(t)−
∫ t
t0
k(t,s)x()sds

so that (1.3) can be written as

(Lx)(t) = f (t), t ∈ [t0,T ],

choosing E =C([t0,T ],Rn) and assuming that the kernel k(t,s) is a continuous n× n ma-
trix valued function on t0 ≤ s ≤ t ≤ T . This operator L is invertible on the space E and
expressing x= (L−1 f ), we get the solution of (1.3) in terms of the resolvent formula given
by

(L−1 f )(t) = x(t) = f (t)+

∫ t
t0
R(t,s) f (s)ds,

where R(t,s) is the resolvent kernel associated with k(t,s) obtained by the method of suc-
cessive approximations. Clearly L−1 is causal.
Next, we shall provide examples of dynamic equations that can be included in causal dif-
ferential equations of the form

x′(t) = (Qx)(t), x(t0) = x0. (1.4)

Clearly, the IVP

x′(t) = f (t,x(t)), x(t0) = x0 (1.5)

can be considered as a causal differential equation by identifying f (t,x(t)) with (Qx)(t).
The next example is difference-differential IVP

x′(t) = f (t,x(t),x(t− τ)), τ > 0,
xt0 = φ0(s), t0− τ ≤ s≤ t0,

}
(1.6)
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where φ0 is the initial function at t = t0. Clearly (1.6) is a causal differential equation since,
we can make the identification

f (t,x(t),x(t− τ)) ≡ (Qx)(t)

and because of the finite memory that is involved, we need the information on x(t) for
[t0− τ,t0] given as the initial function φ0(s).
More general than (1.6) is known as the functional differential equation, given by

x′(t) = f (t,xt ), xt0 = φ0(s), (1.7)

where xt = xt(s) = x(t+ s), −τ ≤ s≤ 0. (1.7) is also known as delay-differential equation
and is clearly a causal differential equation with finite memory.
Consider the next IVP given by an integro-differential equation

x′(t) =
∫ t
t0
k(t,s,x(s))ds, x(t0) = x0. (1.8)

One can incorporate finite memory and write (1.8) as

x′(t) =
∫ t
t−τ k(t,s,x(s))ds, τ > 0,

x(t0+ s) = xt0 = φ0(s), −τ ≤ s≤ 0, t0 ≥ 0.

}
(1.9)

A more general problem than (1.8) is given by

x′(t) = f (t,x(t))+
∫ t
t0 k(t,s,x(s))ds,

x(t0) = x0,

}
(1.10)

and if we incorporate delay, we get

x′(t) = f (t,x(t))+
∫ t
t−τ k(t,s,x(s))ds

x(t0+ s) = xt0 = φ0(s), −τ ≤ s≤ 0, t0 ≥ 0

}
(1.11)

or in general

x′(t) = f (t,xt)+
∫ t

τ−z k(t,s,x(s))ds
x(t0+ s) = xt0 = φ0(s), −τ ≤ s≤ 0, t0 ≥ 0.

}
(1.12)

The very general integro-differential equation can be written as

x′(t) = f (t,x(t),
∫ t
t0 k(t,s,x(s))ds

x(t0) = x0

}
(1.13)

which can be extended with memory as

x′(t) = f (t,x(t),
∫ t
t−τ k(t,s,x(s))ds

xt0 = φ0(s),

}
(1.14)
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or more generally,

x′(t) = f (t,x(t),xt ,
∫ t
t−τ k(t,s,x(s))ds

xt0 = φ0(s).

}
(1.15)

All equations (1.8)–(1.15) are examples of causal differential equations. In all of these
equations where xt occurs, xt represents the graph of x in [t − τ,t] shifted to the interval
[−τ,0]. We could have delay or memory of Volterra type, namely, xt is the graph of x on
[t0− τ,t], in which case, an IVP could be of the form, for example,

x′(t) = f (t,xt)+

∫ t
t0−τ

k(t,t,x(s))ds, xt0 = φ0(s).

This remark applies to (1.9), (1.11), (1.13) etc.
Other possibilities also exist. For example, the IVP

x′(t) = f
(
t, max
t0≤s≤t

x(s)
)

, x(t0) = x0

or

x′(t) = f (t,x[t]), x(t0) = x0

where the notation x([t]) represents the maximum value of x(t) in each interval [tn,tn+1],
n= 1,2, . . . . Another possibility is difference equation

xn+1− xn =
n

∑
i=1
k(i+1, i,xi), xn0 = x0.

Thus, we see that the IVP for causal differential equation or causal equation may include a
variety of problems, that we normally study independently in different branches of nonlin-
ear analysis. However, all of these can be incorporated as special cases of causal differential
or causal functional equations in finite or infinite dimensional spaces.
The equations with causal operators also include integral equations of the type

x(t) = h(t)+

∫ t
t0
k(t,s,x(s))ds.

The functional differential equation can also contain advance argument as well as delay,
such as

x′(t) = f (t,x(t),x(t− τ1),x(t+ τ2)), τ1,τ2 > 0.

A typical example with infinite delay is

x′(t) =

∫ t
−∞
k(t,s,x(s))ds

and in general, functional differential equations with unbounded delay are also examples
of causal differential equations.
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1.3 Known Basic Results

We list, in this section, certain basic comparison results, that concern with estimating a
function which satisfies a differential inequality by the extremal solutions of the corre-
sponding differential equation. Sometimes, it is enough to have the differential inequality
satisfied relative to only Dini derivatives. We adopt the following notation for Dini deriva-
tives:

D+u(t) = limsup
h→0+

1
h
[u(t+h)−u(t)];

D+u(t) = liminf
h→0+

1
h
[u(t+h)−u(t)];

D−u(t) = limsup
h→0−

1
h
[u(t+h)−u(t)];

D−u(t) = liminf
h→0−

1
h
[u(t+h)−u(t)],

where u ∈ C((t0,t0 + a),R). When D+u(t) = D+u(t), the right derivative is denoted by
u′+(t). Similarly, u′−(t) denotes the left derivative when D−u(t) = D−u(t).
The following results are useful in the sequel. Let us begin with a simple result.
Lemma 1.3.1. Suppose m(t) is continuous on (a,b). Then m(t) is nondecreasing (nonin-
creasing) on (a,b) if and only if D+m(t) ≥ 0(≤ 0) for every t ∈ (a,b), where

D+m(t) = limsup
δ→0+

1
δ

[m(t+ δ )−m(t)].

Proof. The condition is obviously necessary. Let us prove that it is sufficient. Assume
first that D+m(t) > 0 on (a,b). If there exists two points α,β ∈ (a,b), α < β , such that
m(α) >m(β ), then there exists a μ with m(α) > μ >m(β ) and some points t ∈ [α,β ] such
that m(t) > μ . Let ζ = sup{t;m(t) > μ ,t ∈ [α,β ]}. Clearly, ζ ∈ (α,β ) and m(ζ ) = μ .
Therefore, for every t ∈ (ζ ,β ), we have

m(t)−m(ζ )

t− ζ
< 0

which implies D+m(ζ ) ≤ 0. This is a contradiction and therefore the proof is complete.
Lemma 1.3.2. Let v,w ∈ C([t0,T ],R) and for some fixed Dini derivative, Dv(t) ≤ w(t),
t ∈ [t0,T ]. Then D−v(t) ≤ w(t), t ∈ [t0,T ].
Proof. Define the function

m(t) = v(t)−
∫ t
t0
w(s)ds.
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It then follows, from the assumption, that

Dm(t) = Dv(t)−w(t)≤ 0, t ∈ [t0,T ].

Hence by Lemma 1.3.1, m(t) is nonincreasing in t on [t0,T ]. Consequently,

D−m(t) = D−v(t)−w(t)≤ 0, t ∈ [t0,T ],

and the lemma is proved.
The existence theorem together with the extension result imply the following.
Theorem 1.3.1. Let g∈C(E,R), where E is an open (t,u)-set in R

2 and (t0,u0)∈ E . Then,
the IVP

u′ = g(t,u), u(t0) = u0, (1.16)

has extremal solutions (that is, minimal and maximal solutions) which can be extended up
to the boundary of E .
The next lemma is useful in certain situations.
Lemma 1.3.3. Let the hypotheses of Theorem 1.3.1 hold and let [t0,T ) be the largest inter-
val of existence of maximal solution r(t) of IVP (1.16). Suppose that [t0,t1] is a compact
subinterval of [t0,T ). Then there is an ε0 > 0 such that for 0< ε < ε0, the maximal solution
r(t,ε) of IVP

u′ = g(t,u)+ ε, u(t0) = u0+ ε, (1.17)

exists over [t0,t1] and

r(t) = lim
ε→0

r(t,ε)

uniformly on [t0,t1].
Lemma 1.3.4. Let g ∈C[[t0,t0+a]×R,R] and nondecreasing in u for each t ∈ [t0,t0+a].
Assume that

g(t,0) ≡ 0,

|g(t,u)| ≤M on [t0,t0+a]×R,

and u(t) ≡ 0 is the unique solution of

u′ = g(t,u), u(t0) = 0

on [t0,t0+a]. Then, the successive approximations

u0(t) =M(t− t0),
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un+1(t) =

∫ t
t0
g(s,un(s))ds

are well defined;

0≤ un+1(t) ≤ un(t) on [t0,t0+a],

and

lim
n→∞

un(t) ≡ 0 uniformly on [t0,t0+a].

Moreover, for n≥ 1, the maximal solution rn(t) of

u′ = g(t,u)+ kg(t,un−1(t)), un(t0) = 0, k > 0,

exists on [t0,t0+a], and

lim
n→∞

rn(t) ≡ 0 uniformly on [t0,t0+a].

One of the results that is widely used is the following comparison theorem:
Theorem 1.3.2. Let E be an open (t,u)-set in R

2 and let g ∈C[E,R]. Suppose that [t0,t0+
a) is the largest interval in which the maximal solution r(t) of (1.16) exists. Let m ∈
C[(t0,t0+a),R], (t,m(t)) ∈ E for t ∈ [t0,t0+a), m(t0)≤ u0, and for a fixed Dini derivative,

Dm(t) ≤ g(t,m(t)),

t ∈ [t0,t0+a). Then,

m(t) ≤ r(t), t ∈ [t0,t0+a),

where r(t) = r(t,t0,u0) is the maximal solution of IVP (1.16) existing on [t0,t0+a).
To give another comparison theorem that, in certain situations, is more useful than Theorem
1.3.2, we require the following result:
Theorem 1.3.3. Let E be the product space [t0,t0+a)×R

2 and g ∈C[E,R]. Assume that
g is nondecreasing in v for each t and u. Suppose that r(t) is the maximal solution of the
differential equation

u′ = g(t,u,u), u(t0) = u0 ≥ 0

existing on [t0,t0+a), and

r(t) ≥ 0, t ∈ [t0,t0+a).

Then, the maximal solution r1(t) of

u′ = g1(t,u), u(t0) = u0 ≥ 0,
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where g1(t,u) = g(t,u,r(t)), exists on [t0,t0+a) and

r(t) = r1(t), t ∈ [t0,t0+a).

Theorem 1.3.4. Let the hypothesis of Theorem 1.3.3 hold; m ∈C[[t0,t0+a),R] such that
(t,m(t),v) ∈ E , t ∈ [t0,t0+a), and m(t0) ≤ u0. Assume that for a fixed Dini derivative the
inequality

Dm(t) ≤ g(t,m(t),v)

is satisfied for t ∈ [t0,t0+a). Then, for all v≤ r(t), t ∈ [t0,t0+a), we have

m(t) ≤ r(t), t ∈ [t0,t0+a).

1.4 Fixed Point Theorems and Auxiliary Results

In this section, we shall list some fixed point theorems and other auxiliary results that we
need in the course of our discussion. One of the most useful tools in proving existence and
uniqueness of solutions for a variety of equations is what is known as Banach Contraction
Principle which is stated below.
Theorem 1.4.1. Let (E,d) be a complete metric space and T : E → E is a contraction
mapping, that is, for every x,y ∈ E ,

d(Tx,Ty) ≤ αd(x,y), 0< α < 1.

Then, there exists a unique fixed point x of T in E such that x= Tx.
Banach Contraction principle provides an abstract setting for the classical method of itera-
tions or successive approximations. Another fixed point result which has many applications
in the theory of functional equations is Schauder’s fixed point theorem, which we state next.
Theorem 1.4.2. Let E be a Banach space and B ⊂ E , a convex, closed bounded set. If
T : E → E is a continuous operator such that TB ⊂ B and T is relatively compact, then T
has a fixed point.
A more general result known as Tychonoff’sfixed point theorem is in the context of Fréchet
space. Before stating the theorem, let us define Fréchet space.
A Fréchet space is a linear space endowed with an invariant metric with respect to trans-
lation and is complete with respect to this metric. It is usual to define a Fréchet space by
means of the use of seminorms. A seminorm on the linear space X is a map from X into
R+, say x→ |x|, such that the following holds:

(i) |x| ≥ 0;
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(ii) |λx| = |λ ||x|;
(iii) |x+ y| ≤ |x|+ |y|.

The only difference with respect to a norm consists in the fact that |x| = 0 does not neces-
sarily imply x= 0.
Theorem 1.4.3. Let F be a Fréchet space whose distance function is constructed by means
of a sufficient, countable family of seminorms, say {|xk|;k ≥ 1}, i.e., from |x|k = 0, k ≥ 1
one derives x= 0. If B⊂ F is a closed, convex set and T : B→ B is a continuous operator
such that TB is relatively compact, then T has at least one fixed point in B.
An extension of Banach contraction principle is the following result. Let E be a Banach
space and E0 = C([a,b],E) where [a,b] is any closed interval in R. Suppose that T is an
operator defined from E0 into E . We shall say φ ∈ E0 is a fixed point of T if Tφ = φ(c) for
some fixed c ∈ [a,b]. The operator T is said to be a contraction if

|Tφ −Tψ |E ≤ α|φ −ψ |E0 ,

for all φ ,ψ ∈ E0 and 0 < α < 1, where |φ |E0 = maxa≤s≤b |φ(s)|E . Now, we can state the
general fixed point result.
Theorem 1.4.4. Suppose that T : E0 → E and that T is a contraction. Then, given φ0 ∈
E0, every sequence of iterates {φn} satisfying Tφn = φn+1(c) fpr a given c ∈ [a,b] and
|φn+1−φn|E0 = |φn+1(c)−φn(c)|, converges to a fixed point φ∗ of T .
Let us now state the well-known Ascoli-Arzela criterion which is helpful in determining
the compactness of a set inC([t0,T ],Rn).
Theorem 1.4.5. Let M ⊂ E = C([t0,T ],Rn), t0 ≥ 0. Then M is relatively compact with
respect to uniform convergence on [t0,T ] if and only if

(i) M is bounded in E , that is, there exists a N > 0 such that |x(t)| ≤N, t ∈ [t0,T ], for each
x ∈M;

(ii) M is equicontinuous, which means that for any ε > 0, there exists a δ = δ (ε) > 0 such
that for t,s ∈ [t0,T ],

|x(t)− x(s)| < ε, for |t− s| < δ ,

for every x ∈M.

One simple situation in which equicontinuity takes place is when all functions inM satisfy
the Lipschitz condition

|x(t)− x(s)| ≤ L|t− s| on [t0,T ],
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with the same constant L> 0. Sometimes, the supremum norm needs to be replaced by an
equivalent norm by introducing a weighted norm, namely, if g ∈ C([t0,T ],R) is positive,
define

|x|g =

(
sup

|x(t)|
g(t)

: t ∈ [t0,T ]

)
.

Proof of Theorem 1.4.4. Let φ0 ∈E0 be given. By hypothesis Tφ0 ∈E . Suppose Tφ0 = x1.
Choose φ1 ∈ E0 such that x1 = φ1(c) and |φ1(c)− φ0(c)|E = |φ1 − φ0|E0 . Defining φ0
inductively so that

Tφn = xn+1 = φn+1(c)

and

|φn+1(c)−φn(c)|E = |φn+1−φn|E0 , for n= 1,2, . . . ,

we claim the sequence {φn} is Cauchy in E0. First we observe

|φn−φn+1|E0 = |φn(c)−φn+1(c)|E = |Tφn−1−Tφn| ≤ α|φn−1−φn|E0 .

By induction one can easily verify

|φn−φn+1|E0 ≤ αn|φ0−φ1|E0 .

If m≥ n, by the triangle inequality, we get

|φm−φn|E0 ≤ |φm−φm−1|E0 + |φm+1−φm−2|E0 + · · ·+ |φn+1−φn|
≤ αm−1|φ0−φ1|E0 + αm−2|φ0−φ1|E0 + · · ·+ αn|φ0−φ1|E0
= (αm−1+ αm−2+ · · ·+ αn)|φ0−φ1|E0
≤ αn(1−α)−1|φ0−φ1|E0 .

Hence as m,n→ ∞, |φm−φn|E0 → 0. This shows that {φn} is a Cauchy sequence, and the
fact that E0 is complete implies that {φn} converges to a limit φ∗ in E0. That is, there exists
φ∗ ∈ E0 such that

lim
n→∞

φn = φ∗.

Therefore

Tφ∗ = T
(
lim
n→∞

φn
)

= lim
n→∞

(Tφn) = lim
n→∞

φn+1(c) = φ∗(c).

The proof is complete.
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1.5 Preliminaries in a Banach Space

Let E be a linear space (vector space) over the field φ (of real numbers or complex numbers)
and let p be a function from E into R+, the set of non-negative real numbers. Then p is a
norm on E if

(i) p(ax) = |ap(x)| for all x ∈ E and a ∈ φ ;
(ii) p(x+ y) ≤ p(x)+ p(y) for all x,y ∈ E;
(iii) p(x) = 0 if and only if x= 0 where 0 is the null element of E .

In this case, we write p(·) = | · | and say that (E, | · |) is a normed linear space over φ . It
is easily seen that ρ(x,y) = |x− y|, x,y ∈ E , defines a metric on E and that a sequence
{xn} ⊂ E converges in this metric topology to x ∈ E if and only if limn→∞ |xn− x| = 0. We
shall generally refer to this metric topology as the norm (uniform or strong) topology. A
normed linear space E over the field of real numbers is said to be a real Banach space if
it is a complete metric space when equipped with the metric ρ(x,y). We shall be working
mostly with real Banach spaces.
A mapping f : E → R is said to be a linear functional on E if f (x+ y) = f (x) + f (y)
and f (ax) = a f (x) for all x,y ∈ E and a ∈ R, R being the field of real numbers. A linear
functional f on E is bounded if there is an M ≥ 0, such that | f (x)| ≤M for all x ∈ E with
|x| ≤ 1. The dual space E∗ of E is defined to be a class of all continuous linear functionals
on E and for each x∗ ∈ E∗, we define

|x∗| = sup{|x∗(x)| : x ∈ E, |x| ≤ 1}.

It is easy to show that this is the norm on E∗ and with this norm, it is clear that E∗ is a
normed linear space. Also, since R is complete, it follows that E∗ is complete and thus is
a Banach space. Note that continuity and boundedness of a linear functional are equivalent
concepts, i.e., a linear functional f ∈ E∗ if and only if it is bounded on E .
One of the fundamental results in functional analysis is the following theorem due to Hahn-
Banach which assures that a linear functional on a linear subspace of a linear space that is
bounded by a seminorm can always be extended to the entire space in such a manner that
its seminorm boundedness is preserved. However, such an extension, in general, is not
unique.
Theorem 1.5.1. (Hahn-Banach) Suppose that E is a linear space over the field R and that
p : E → R is such that p(λx) = λ p(x), p(x+ y) ≤ p(x)+ p(y) for all λ ≥ 0 and x,y ∈ E .
Assume thatΩ is a linear subspace of E and f is a linear functional fromΩ intoR such that
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f (x) ≤ p(x) for all x ∈ Ω. Then there is a linear functional g : E→ R such that g(x) = f (x)
for all x ∈ Ω and g(x) ≤ p(x) for all x ∈ E .
If E is a normed linear space, we have the following version of Theorem 1.5.1.
Theorem 1.5.2. Let Ω be a linear subspace of the normed linear space E over R and let
y∗ ∈ Ω∗. Then there is an x∗ ∈ E∗ such that |x∗| = |y∗| and x∗(x) = y∗(x) for all x ∈ Ω.
Some important consequences of Hahn-Banach theorem are as follows.
Corollary 1.5.1. If x ∈ E and x �= 0, then there is an x∗ ∈ E∗ such that |x∗| = 1 and
x∗(x) = |x|.
Corollary 1.5.2. LetΩ be a subspace of E and x∈E with d(x,Ω) = d > 0, where d(x,Ω) =

infy∈Ω |x−y|. Then there is an x∗ ∈ E∗ with d|x∗|= 1, x∗(x) = 1 and x∗(y) = 0 for all y∈Ω.
Now, let x ∈ E , E a normed linear space, and define the mapping x̃ : E∗ → R by

x̃(x∗) = x∗(x), x∗ ∈ E∗.

Clearly x̃ is linear and |x̃(x∗)| ≤ |x∗||x| for all x∗ ∈ E∗. Hence x̃ is a bounded linear func-
tional on E∗ and x̃ is a member of the dual space of E∗, which is denoted by E∗∗ and
called the bidual or second dual of E . By Corollary 1.5.1, it follows that |x̃| = |x| and the
mapping τ : E → E∗∗ defined by τx = x̃ is linear and norm preserving. This mapping τ is
called the canonical embedding of E into E∗∗. A Banach space E is said to be reflexive if
E∗∗ = {τx : x ∈ E}. Note that any finite dimensional Banach space is reflexive.
In a reflexive Banach space, the following result concerning weak convergence is true.
Theorem 1.5.3. If E is a reflexive Banach space, any norm bounded sequence in E has a
weakly convergent subsequence.
If x∗ ∈ E∗ and {x∗n} is a sequence in E∗, then {x∗n} is said to be weak∗ convergent to x∗ if

limx∗n(x) = x∗(x), for all x ∈ E.

In this case, we say that {x∗n} converges to x∗ in weak∗-topology.
The next result concerning weak∗-convergence is also valid.
Theorem 1.5.4. Let E be a Banach space and {x∗n} be a bounded sequence in E∗. Then
{x∗n} has a weak∗-convergent subsequence.
We list below the definitions of some useful concepts in terms of weak topology. Let Ew
denote the space E when endowed with weak topology generated by the continuous linear
functional on E .
Definition.

(i) A subset A of Ew is totally bounded if and only if for all x∗ ∈ E∗ and ε > 0, the set A
can be covered by a finite number of x∗-balls of radius ε;
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(ii) If {yn} is a sequence in E , then {yn} is weakly Cauchy if given ε > 0, x∗ ∈ E∗, there
exists N = N(x∗,ε) such that n,m≥ N implies |x∗(yn− ym)| < ε;

(iii) E is weakly complete if every Cauchy sequence converges weakly to a point in E .

With these definitions, we can now state that a set A is compact in a weak topology (or
weakly compact) if and only if it is weakly complete and totally bounded.
Let x(t) be a function mapping some interval I ⊂ R into E . The function x(t) is said to be
strongly continuous at t0 ∈ I if

lim
t→t0

|x(t)− x(t0)| = 0,

that is, the convergence of x(t) to x(t0) is in the norm topology on E . If x : I → E is
continuous at each point of I then we say that x is continuous on I and write x ∈ C[I,E].
x′(t) is said to be the strong derivative of x(t) if

lim
h→0

∣∣∣∣1h [x(t+h)− x(t)]− x′(t)
∣∣∣∣= 0.

The Riemann integral of x(t) can be similarly defined. Some useful properties of the inte-
gral are given in the following lemmas.
Lemma 1.5.1. Let E be a Banach space and x(t) be an integrable function from I into E .
Then

1
b−a

∫ b
a
x(s)ds ∈ co({x′(s) : s ∈ [a,b]})

for all a,b ∈ I, with a< b, where co(A) is the closed convex hull of A.
Lemma 1.5.2. If {xn}, n = 1,2, . . . , is a sequence of continuous functions from I into E
such that limn→∞ xn(t) = x(t) uniformly for t ∈ I, then

lim
n→∞

∫ b
a
xn(s)ds=

∫ b
a
x(s)ds for all [a,b] ⊂ I.

A useful form of the Ascoli-Arzela theorem for a family of functions from I into X is as
follows.
Theorem 1.5.5. Let F be an equicontinuous family of functions from I into X . Let {xn(t)}
be a sequence in F such that, for each t ∈ I, the set {xn(t) : n ≥ 1} is relatively compact
in X , i.e., the closure of the set {xn(t) : n ≥ 1} is compact. Then there is a subsequence
{xnk(t)} which converges uniformly on I to a continuous function x(t).
The following is a useful extension theorem due to Dugundji.
Theorem 1.5.6. Suppose that E1 and E2 are two Banach spaces, Ω ⊂ E1 and f : Ω → E2
is a continuous mapping. Then there is a continuous extension f̃ : E1 → E2 of f such that
f̃ (E1) ⊂ co( f (Ω)).
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The next result extends the mean value theorem to functions with values in a Banach space
in terms of both strong and weak topologies.
Theorem 1.5.7. Let u ∈ C[J,X ], where J is an interval and X is a real Banach space.
Suppose that a,b ∈ J, a < b, and there is an at most countable subset Γ of [a,b] such that
u′+(t) exists for all t ∈ [a,b]−Γ. Then the following relation holds:

u(b)−u(a)∈ (b−a)co({u′+(t) : [a,b]−Γ}),

where co(A) is a closed convex hull of A.
Theorem 1.5.8. (Krein-S̃mulian Theorem) Let (E, | · |) be a Banach space over φ and
suppose K ⊂ E∗ is convex. Then the following statements are equivalent:

(i) K is weak∗-closed;
(ii) for each a≥ 0 the set K ∩aB∗1 is weak∗-closed, where B∗1 = {x∗ ∈ E∗ : |x∗| ≤ 1}.

Theorem 1.5.9. (Eberlein-S̃mulian Theorem) Let (E, | · |) be a Banach space over φ and
suppose K ⊂ E is weakly closed in E . Then the following statements are equivalent:

(i) K is weakly compact;
(ii) K is weakly sequentially compact.

1.6 Directional Derivatives

When we use |x| or |x|2 as a measure in estimates later, we need to assume conditions in
terms of their one-sided directional derivatives. Here, we define and list several properties
of such derivatives.
Let x,y ∈ E , E being a real Banach space with norm | · |. Define

[x,y]h =
1
h
(|x+hy|− |x|)

for any h ∈ R. Then we have the following result.
Lemma 1.6.1.

(i) The limits limh→0+[x,y]h = [x,y]+ and limh→0− [x,y]h = [x,y]− exist; and
(ii) [x,y]+ is upper semicontinuous and [x,y]− is lower semicontinuous.

Proof. Let us first show that [x,y]h is monotone nondecreasing in h. Suppose 0 < h1 < h2
and let β ∈ (0,1) be such that h1 = (1−β )h2. Since

x+h1y= x+(1−β )h2y= βx+(1−β )(x+h2y),
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we have

[x,y]h1 =
1
h1

(|x+h1y|− |x|) =
1
h1

{|βx+(1−β )(x+h2y)|− |x|}

≤ 1
h1

{β |x|+(1−β )|x+h2y|− |x|} =
|x+h2y|− |x|

h2
= [x,y]h2 .

Similarly, one gets [x,y]h1 ≤ [x,y]h2 if h1 < h2 < 0. If h1 < 0< h2, we let h=min(−h1,h2)
and note that

2|x| = |x+hy+ x−hy|≤ |x+hy|+ |x−hy|.
This implies that [x,y]−h ≤ [x,y]h, which in turn yields

[x,y]h1 ≤ [x,y]−h ≤ [x,y]h ≤ [x,y]h2 ,

proving that [x,y]h is monotone. If−1≤ h1 ≤ h2 ≤ 1, the monotone property of [x,y] gives
[x,y]−1 ≤ [x,y]h1 ≤ [x,y]h2 ≤ [x,y]1

and hence the limits

[x,y]+ = lim
h→0+

[x,y]h,

and

[x,y]− = lim
h→0−

[x,y]h

exist. To prove that [x,y]+ is upper semicontinuous; let {xn},{yn} be two sequences in E
such that limn→∞ xn = x and limn→∞ yn = y. Then for h> 0

[xn,yn]+ ≤ 1
h
{|xn+hyn|− |xn|} for all n≥ 1.

Letting n→ ∞, we get

limsup
n→∞

[xn,yn]+ ≤ 1
h
{|x+hy|− |x|}

for all h> 0. We now let h→ 0+, obtaining

limsup
n→∞

[xn,yn]+ ≤ [x,y]+. (1.18)

Since [x,y]− =−[x,−y]+, by definition, lower semicontinuity of [x,y]− follows from (1.18)
thus proving the lemma.
Some properties of [x,y]± are listed in the following lemma.
Lemma 1.6.2. Let [x,y]± be defined as in Lemma 1.6.1. Then,

(i) [x,y]− ≤ [x,y]+;
(ii) |[x,y]±| ≤ |y|;
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(iii) |[x,y]±− [x,z]±| ≤ |y− z|;
(iv) [x,y]+ = −[x,−y]− = −[x,y]−;
(v) [sx,ry]± = r[x,y]± for r,s≥ 0;
(vi) [x,αx]± = α|x|, α ∈ R;
(vii) [x,y+ z]+ ≤ [x,y]+ + [x,z]+ and [x,y+ z]− ≥ [x,y]− +[x,z]−;
(viii) [x,y+ z]+ ≥ [x,y]+ + [x,z]− and [x,y+ z]− ≤ [x,y]− +[x,z]+;
(ix) [x,y+ αx]± = [x,y]± + α|x|, α ∈ R;
(x) if x : [a,b] → E such that x′±(t) (the right and left derivatives of x(t)) exists for some

t ∈ (a,b) and m(t) = |x(t)|, then m′±(t) = [x(t),x′+(t)]+.

1.7 Measure of Noncompactness

Let A be a bounded subset in a Banach space E . The diameter of A is defined by

dia(A) = sup{|x− y| : x,y ∈ A}.
Clearly, 0≤ dia(A) < ∞. Kuratowski’s measure of noncompactness of A is defined by

α(A) = inf{d > 0 : A is covered by a finite number of sets with diameter≤ d}.
In particular, given d > α(A), there exists a finite number of sets S1,S2, . . . , Sn⊂A such that
dia(Si)≤ d and∪ni=1Si=A. In other words, α(A) can be regarded as a measure of the extent
to which A is not compact. Note also that α(A) ≤ dia(A) and α(A) ≤ 2d if supx∈A |x| ≤ d.
The various properties of α that will be useful later are listed in the following theorem.
Theorem 1.7.1. Let A,B be bounded subsets of E . Then

(i) α(A) = 0 if and only if A is compact, where A denotes the closure of A;
(ii) α(A) = α(A);
(iii) α(λA) = |λ |α(A), λ ∈ R where λA= {λx : x ∈ A};
(iv) α(A∪B) =max(α(A),α(B));
(v) α(A) ≤ α(B) if A⊂ B;
(vi) α(A+B) ≤ α(A) + α(B) where A+B = {x+ y : x ∈ A and y ∈ B}; in particular, if

A= {xn}, B= {yn} are two countable sets of points in E , then
α({xn})−α({yn}) ≤ α({xn− yn});

(vii) α is continuous with respect to the Hausdorff metric;
(viii) α(A) = α(co(A)) where co(A) is the convex hull of A;
(ix) if {An} is a family of nonempty bounded subsets of E such that An+1 ⊂ An for n =

1,2, . . . , and limn→∞ α(An) = 0, then ∩∞
n=1An is nonempty and compact.



18 Theory of Causal Differential Equations

Also, using the definitions of α(·), it is easy to show that α(A×B) = max(α(A),α(B))

where A×B is the Cartesian product of two bounded subsets A,B of Banach spaces E,F
respectively, with |(x,y)| =max(|x|, |y|), x ∈ A, y ∈ B.
While considering bounded subsets ofC(I,E), I being any compact subset of the real line,
it is convenient to use the following notation: for any setH ⊂C[I,E], H(t) andH(I) denote
the sets given by {φ(t) : φ ∈ H} and ∪t∈I{φ(t) : φ ∈ H} respectively. A useful property
of measure of noncompactness α is in the following result, which, in some sense, also
provides a generalization of the theorem of Ascoli-Arzela.
Theorem 1.7.2. If H = {xk}, where xk ∈C[I,E], is any bounded equicontinuous family of
functions, then

sup
t∈I

α(H(t)) = α(H).

The proof of Theorem 1.7.2, is an immediate consequence of
Lemma 1.7.1. If H ⊂C[I,E] is a bounded, equicontinuous set, then

(a) α(H) = α(H(I));
(b) α(H(I)) = supt∈I α(H(t)).

1.8 The Measure of Nonconvexity

As we have seen, the measure of noncompactness which was introduced by Kuratowski
has now become an important tool in nonlinear analysis. Following Kuratowski, we shall
introduce a measure of nonconvexity which has many properties in common with the mea-
sure of noncompactness and therefore we may now have convexity where we previously
had compactness in the statement of some results.
Let E be a Banach space (with norm | · |) and A is a subset in E . Denote by co(A) the convex
hull of A. We say that A is α-measurable with measure α(A) if

α(A) = sup
b∈co(A)

inf
a∈A

|b−a|< ∞. (1.19)

Alternatively, if H(X ,Y ) denotes the Hausdorff distance between two subsets X and Y ,

α(A) = H(A,co(A)). (1.20)

Clearly, a bounded set is α-measurable.
From the definition, the following properties of α can be derived in a straightforward man-
ner.

α(A) = 0 iff A (the closure of A) is convex; (1.21)
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α(λA) = |λ |α(A) for λ ∈ R
1 (where λA= {λa|a ∈ A}); (1.22)

α(A+B)≤ α(A)+ α(B); (1.23)

|α(A)−α(B)| ≤ α(A−B); (1.24)

α(A) = α(A); (1.25)

α(A) ≤ diam(A) (the diameter of A); (1.26)

|α(A)−α(B)| ≤ 2H(A,B). (1.27)

Note that all of these properties are shared by the measure of noncompactness γ . Recall
γ(A) = inf{d > 0|A can be covered by a finite number of sets of diameter ≤ d}. α is not
monotone in the sense that α(A) ≤ α(B) if A ⊂ B. If it did, then every closed set would
be convex which is not true. Unfortunately α(A) measures only the nonconvexity of A and
not A itself if A is not closed.
As a consequence of (1.27) and a similar inequality for γ , |γ(A)− γ(B)| ≤ H(A,B), the
measures α and γ are continuous with respect to the Hausdorff metric, that is,
Proposition 1.8.1. Let An be a sequence of subsets of E such that An approaches a subset
A∞ in the Hausdorff metric. Then

(i) if An are α-measurable,

lim
n→∞

α(An) = α(A∞); (1.28)

(ii) if An are bounded

lim
n→∞

γ(An) = γ(A∞). (1.29)

Proposition 1.8.2. (Kuratowski) Let (X ,ρ) be a complete metric space and let A0 ⊃ A1 ⊃
. . . be a decreasing sequence of nonempty, closed subsets of E . Assume γ(An) → 0. Then
if we write A∞ = ∩n≥0An, A∞ is a nonempty compact set and An approaches A∞ in the
Hausdorff metric.
Proposition 1.8.3. Let A0 ⊃ A1 ⊃ . . . be a decreasing sequence of closed bounded subsets
of E . Let A∞ = ∩n≥0An. Then A∞ is nonempty, convex and compact and An converges to
A∞ in the Hausdorff metric iff α(An) → 0 and γ(An) → 0.
Proof. Suppose γ(An) → 0. It follows from Proposition 1.8.2 that An converges to the
nonempty compact set A∞ in the Hausdorff metric. If, in addition, α(An) → 0 then in view
of (1.28), α(A∞) = 0. Since A is also closed, A∞ is convex by (1.21).
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Suppose An → A∞ in the Hausdorff metric and α(A∞) = γ(A∞) = 0. Then by (1.28) and
(1.29), α(An) → 0 and γ(An) → 0.
Proposition 1.8.4. Let A0 ⊃ A1 ⊃ . . . be a decreasing sequence of closed, bounded subsets
of E such that α(An)→ 0 and γ(An)→ 0. Suppose T is a continuous map of A0→ A0 such
that

Tx ∈ An, if x ∈ An, n= 0,1, . . . (1.30)

Then there exists an x ∈ A∞ = ∩n≥0An such that
Tx= x, (1.31)

Proof. The result is a corollary of the Schauder principle since, from Proposition 1.8.3, A∞

is nonempty, convex and compact and T maps A∞ into itself.
Closely associated with the notion of measure of noncompactness is the concept of k-
set-contraction. Let (X1,d1) and (X2,d2) be metric spaces and suppose T : X1 → X2 is a
continuous map. We say T is a k-set-contraction if given any bounded set A in X1, T (A)

is bounded and γ2(T (A)) ≤ kγ1(A) where γi denotes the measure of noncompactness in Xi,
i= 1,2, . . .
Proposition 1.8.5. Let C be a closed, bounded, convex set and T : C → C a k-set-
contraction, k < 1. Then T has a fixed point, i.e., a point x satisfying (1.31).
The above generalization of the Schauder principle was further extended by introducing a
comparison function ψ which has the following properties:

(i) ψ maps a conical segment of regular cone in a partially ordered space into itself;
(ii) ψ is monotone;
(iii) ψ is upper semi-continuous from the right;
(iv) ψ(x) = x iff x= θ (the zero of the space).

Then Darbo’s condition γ(T (A)) ≤ kγ(A), k < 1, is replaced by the weaker condition

γ(T (A)) ≤ ψ(γ(A)). (1.32)

Definition 1.8.1. A function ψ : [0,∞) → [0,∞) is a comparison function if

(i) ψ(t) < t for t > 0,
(ii) ψ(0) = 0, ψ is upper semi-continuous from the right.

Proposition 1.8.6. Let ψ be a comparison map and let S0,S1, . . . be a sequence of nonneg-
ative real numbers such that Sn ≤ ψ(Sn−1), n−1,2, . . . Then the sequence Sn converges to
zero.
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Proof. Since Sn ≤ ψ(Sn−1) ≤ Sn−1, the sequence Sn converges monotonically. Suppose
S∞ > 0. Then ψS∞ < S∞ ≤ Sn, n= 1,2, . . . . But this contradicts the upper semi-continuity
from the right.
Proposition 1.8.7. Let ψ : [0,a) → [0,a) be nonincreasing, upper semicontinuous from
the right, and ψ(t) = t iff t = 0. Then ψ has an extension to [0,∞) which is a comparison
function.
Proof. Since the interval [0,a] is a segment of the regular cone (of nonnegative real num-
bers) it follows that if t ≤ ψ(t) then t ≤ t0 where t0 is the maximal solution of ψ(t) = t.
By assumption t0 = 0. Thus t ≤ ψ(t) iff t = 0. If we define φ(t) = ψ(a), t ≥ a then φ is a
comparison function.
Definition 1.8.2. Let (X1, | · |1) and (X2, | · |2) be Banach spaces and suppose T : X1 →
X2 is a continuous map. We say that T is a ψ-set-contraction with respect to convexity
(compactness) if given any α1-measurable (bounded) set A in X1, T (A) is α2-measurable
(bounded) and

α2(T (A)) ≤ ψ(α1(A)) (1.33)

(γ2(T (A)) ≤ ψ(γ1(A))) (1.34)

where αi(γi) denotes the measure of nonconvexity (noncompactness) in Xi, i = 1,2. We
say that T is a contraction if |Tx−Ty|2 ≤ ψ(|x− y|1) for every x,y ∈ X1. The following
result is a generalization of a similar result due to Darbo in regard to relating the notion of
k-contraction i.e. ψ-contraction with ψ(t) = kt, to the notion of k-set-contraction.
Proposition 1.8.8. Let (X1, | · |1) and (X2, | · |2) be Banach spaces. Let T be a ψ-contraction,
then

(i) T is a ψ-set-contraction with respect to compactness;
(ii) H(TA,TB) ≤ ψ(H(A,B)) whenever H(A,B) < ∞;
(iii) if for every α-measurable set A, co(TA)⊂ T (co(A)) (where co(X) denotes the convex

closure of X), then T is ψ-set-contraction with respect to convexity.

Proof.

(i) Let A be a bounded set in X1 and suppose γ1(A) = d. Then given ε > 0, we can
write A = ∪mj=1S j, diam(S j) ≤ d + ε . Thus T (A) = ∪mj=1T (S j) and since T is a ψ-
contraction, diam(T (S j)) ≤ ψ(d+ ε). Let εi be a sequence of positive numbers con-
verging to zero such that ψ(d+εi) converges and let b= limψ(d+εi). Then by upper
semi-continuity from the right, b≤ ψ(d). Hence γ2(TA) ≤ ψ(d).
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(ii) Let A and B be sets such that H(A,B) = d < ∞. Let b ∈ B. Then inf{|Tb− Ta|2,
a ∈ A} ≤ inf{ψ(|b− a|1), a ∈ A} ≤ ψd, by the upper semi-continuity from the right
of the function ψ . Similarly inf{|Ta−Tb|2, b ∈ B} ≤ ψd. Thus H(TA,TB) ≤ d.

(iii) Let A be an α-measurable set in X1. Then from (ii), α(TA) = H(TA,co(TA))

≤ H(TA,T (co(A))) = H(TA,T (co(A))) ≤ ψ(H(A,coA)) = ψα(A).

Theorem 1.8.1. Let A be a closed subset of a Banach space and T a map from A onto
itself. If T is set contractive with respect to convexity (compactness) then A is convex
(compact). In particular, the set of fixed points of a set contractive, with respect to convexity
(compactness) map of a closed subset of a Banach spaceB intoB is convex (compact).
Proof. Set m= α(T (A)) = α(A) (m = γ(T (A)) = γ(A)). Then m ≤ ψ(m). If m > 0 then
ψ(m) < m. But this is impossible. Clearly m= 0.
Theorem 1.8.2. Let C be a closed, bounded set and T : C→ C a ψ1-set-contraction with
respect to convexity and a ψ2-set-contraction with respect to compactness. The set of fixed
points of T is nonempty, convex, and compact.
Proof. LetC0 =C, andCn+1 = T (Cn). ThenCn+1 ⊂Cn. Let sn = γ(Cn), tn = α(Cn), then it
follows from Proposition 1.8.6 that sn → 0 and tn → 0. By Proposition 1.8.4, the set F(T )

of fixed points of T is nonempty and, by Theorem 1.8.1, it is also convex and compact.

1.9 Notes and Comments

The material concerning causal operators detailed in Sec. 1.2 is taken from Corduneanu
[1] and [2]. See Karakostas [3] for topological dynamics generated by causal operators.
The comparison results listed in Sec. 1.3 are from Lakshmikantham and Leela [4]. For
the proofs of the fixed point theorems listed in Sec. 1.4, see Edwards [5], Tychonoff [6],
Deimling [7], Kantorovich and Arilov [8], Bernfeld, Lakshmikantham and Reddy [9]. The
contents of the remaining sections are adapted fromLakshmikantham and Leela [10] except
Sec. 1.8, which is taken from Eisenfeld and Lakshmikantham [11]. See Tonelli [12] and
Turinici [13].



Chapter 2

Basic Theory

2.1 Introduction

This chapter is devoted to the basic theory of causal differential equations (CDE) and there-
fore forms a basis for the remaining chapters. We begin Section 2.2 with causal differen-
tial inequalities and prove fundamental results involving strict and nonstrict functional and
causal differential inequalities, which are useful to prove existence of extremal solutions
and important comparison results. Section 2.3 deals with local existence results, includ-
ing the existence of maximal and minimal solution of CDEs, which are required for later
discussion. While proving the important comparison results in this section, we realize that
when imposing various conditions on the causal functions involved, it is enough to suppose
such conditions on a suitable subset of the function space, which is a definite advantage in
investigating the qualitative properties of solutions of CDEs.
In Section 2.4, we discuss global existence by utilizing two different approaches, one is
based on the use of Tychonoff’s fixed point theorem and the other on a direct approach
employing the comparison results. Section 2.5 starts with the simple existence and unique-
ness results under Lipschitz condition, then by using the general uniqueness conditions,
we prove the convergence of successive approximations that guarantees simultaneously
the existence and uniqueness. Section 2.6 employs Nagumo and Krasnoselskii-Krein type
conditions to achieve the convergence and successive approximations. In view of the sin-
gularity involved in this type of conditions, the proofs differ substantially. The continuous
dependence with respect to the initial data and parameters are studied in Section 2.7.
In Section 2.8, we investigate the existence of Euler solutions, first without demanding con-
tinuity on the functions involved and then show that the Euler solution is actually the usual
solution of CDE under continuity assumption. The flow invariance results are considered,
in Section 2.9 utilizing the concepts of nonsmooth analysis. In Section 2.10, we indicate
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the extension of the scalar results on inequalities to systems of causal differential inequal-
ities employing the necessary notions. In Section 2.11, we present nonlinear variation of
parameters. Section 2.12, 2.13 deal with integral and differential equations of Sobolev type
which are new types of dynamic systems which are not yet well investigated. Finally, notes
and comments are given in Section 2.14.

2.2 Causal Functional and Differential Inequalities

Recall that an operator Q : E → E , E = C([t0,T ],Rn) is said to be causal (or non-
anticipatory) if, for any x,y ∈ E such that x(s) = y(s), we have (Qx)(s) = (Qy)(s),
t0 ≤ s< T . Let us consider the causal functional equation

x(t) = (Qx)(t), x(t0) = x0, (2.1)

where the causal operatorQ : E→ E is continuous and x(t0) = x0, t0≥ 0, denotes the initial
value for any x ∈ E . A basic result in causal functional inequalities for the scalar case is
the following.
Theorem 2.2.1: Assume that Q : E → E is a continuous causal operator where E =

C([t0,T ],R) and let v,w ∈ E satisfy

v(t) ≤ (Qv)(t), w(t) ≥ (Qw)(t), t0 ≤ t < T. (2.2)

Suppose that Q is semi-nondecreasing i.e.

x(t1) = y(t1), x(t) < y(t), t0 ≤ t < t1 < T

implies

(Qx)(t1) = (Qy)(t1) and (Qx)(t) ≤ (Qy)(t) t0 ≤ t < t1 < T.

Then,

v(t) < w(t), t0 ≤ t < T (2.3)

whenever

v(t0) < w(t0) (2.4)

provided one of the inequalities in (2.2) is strict.
Proof. Suppose that the claim (2.3) is false and w(t) > (Qw)(t). Then because of the
continuity of the functions involved and (2.4), there would exist a t1 > t0 such that

v(t1) = w(t1), v(t) < w(t), t0 ≤ t < t1. (2.5)
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Since Q is assumed to be semi-nondecreasing, we have

v(t1) ≤ (Qv)(t1) ≤ (Qw)(t1) < w(t1).

This contradicts v(t1) = w(t1) and therefore, proves the claim (2.3). The proof is complete.
Remark 2.2.1.We have utilized the semi-nondecreasing nature of the causal operatorQ in
Theorem 2.2.1. This is because the causal operators include ordinary differential equations
as well, where we do not require any monotone character. To incorporate this aspect, we
have coined a weaker notion of semi-nondecreasing.
The next result is for nonstrict inequalities which demands a one-sided Lipschitz condition.
Theorem 2.2.2. Suppose that the assumptions of Theorem 2.2.1 hold. Assume further that

(Qx)(t)− (Qy)(t) ≤ L max
t0≤s≤t

[x(s)− y(s)] (2.6)

whenever x(s) ≥ y(s) for t0 ≤ s≤ t and 0< L< 1. Then

v(t0) ≤ w(t0) implies v(t) ≤ w(t), t0 ≤ t < T. (2.7)

Proof. Set wε(t) = w(t)+ ε , ε > 0 being arbitrary and small. Then we have

wε (t0) ≥ w(t0)+ ε ≥ v(t0)+ ε > v(t0)

and

wε(t) ≥ w(t), t0 ≤ t < T.

Now, utilizing the one-sided Lipschitz condition (2.6), we get

wε(t) ≥ (Qw)(t)+ ε ≥ (Qwε )(t)−Lε + ε > (Qw)(t)

for t0 ≤ t < T , because of the condition 0 < L < 1. Now, applying Theorem 2.2.1 to v(t)
and wε(t), we find that

v(t) < wε (t), t0 ≤ t < T.

Since ε > 0 is arbitrary, it follows by taking ε → 0, that

v(t) ≤ w(t), t0 ≤ t < T,

proving the stated conclusion (2.7).
We shall now consider the fundamental result on causal differential inequalities. For this
purpose, consider the IVP for the causal differential equation

x′(t) = (Qx)(t), x(t0) = x0, (2.8)

where Q : E → E is a continuous causal operator. Relative to (2.8) we can prove the
following basic inequalities result.
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Theorem 2.2.3. Suppose that v,w ∈C([t0,T ],R) and

v′(t) ≤ (Qv)(t), w′(t) ≥ (Qw)(t), t0 ≤ t < T. (2.9)

Then, v(t0) < w(t0) implies

v(t) < w(t), t0 ≤ t < T, (2.10)

provided one of the inequalities in (2.9) is strict and the causal operator Q is semi-
nondecreasing.
Proof. Suppose that the conclusion (2.10) is false and w′(t) > (Qw)(t). Then, the continu-
ity of v,w and the fact v(t0) < w(t0) yield that there exists a t1 > t0 such that

v(t1) = w(t1), v(t) < w(t) on t0 ≤ t < t1. (2.11)

The semi-nondecreasing nature of Q and (2.11) give

(Qv)(t1) ≤ (Qw)(t1). (2.12)

In view of (2.11), we get for small h> 0,

v(t1−h)− v(t1) < w(t1−h)−w(t1)

and hence (2.9) and (2.12) show that

(Qv)(t1) ≥ v′(t1) ≥ w′(t1) > (Qw)(t1) ≥ (Qv)(t1).

This is a contradiction and therefore the claim (2.10) is valid. The proof is complete.
As before, for nonstrict differential inequalities, we require a one-sided Lipschitz condition.
Theorem 2.2.4. Under the assumptions of Theorem 2.2.3 and the one-sided Lipschitz
condition (2.6) of Theorem 2.2.2,

v(t) ≤ w(t), t0 ≤ t < T, (2.13)

provided v(t0) ≤ w(t0).
Proof.We set wε (t) = w(t)+ ε exp(2L(t− t0)) for small ε > 0 so that we have

wε (t0) > w(t0) and wε (t) ≥ w(t).

Now use the one-sided Lipschitz condition

(Qwε )(t)− (Qw)(t) ≤ L max
t0≤s≤t

(wε (s)−w(s)) = Lε exp(2L(t− t0))
to obtain

w′
ε (t) ≥ w′(t)+2εLexp(2L(t− t0))

≥ (Qw)(t)+2εLexp(2L(t− t0))
≥ (Qwε )(t)−Lε exp(2L(t− t0))+2εLexp(2L(t− t0))
> (Qwε (t)).
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Applying Theorem 2.2.3 to v(t) and wε (t), we have

v(t) < wε(t), t0 ≤ t < T
which yields as ε → 0, v(t) ≤ w(t), t0 ≤ t < T . The proof is complete.
As an application of Theorem 2.2.1, consider the example

x(t) = (Qx)(t) = h(t)+

∫ t
t0
K(t,s,x(s))ds,

where K ∈C([t0,T )×R,R), h ∈C([t0,T ),R). Assume K(t,s,x) is monotone nondecreas-
ing in x for each (t,s) and

x(t) ≤ h(t)+

∫ t
t0
K(t,s,x(s))ds = (Qx)(t),

y(t) ≥ h(t)+

∫ t
t0
K(t,s,y(s))ds = (Qy)(t),

one of the inequalities being strict. Then x(t0) < y(t0) implies x(t) < y(t), t ∈ [t0,T ). If one
assumes further

|K(t,s,x)−K(t,s,y)| ≤ L|x− y|, 0< L< 1,

which leads to

|(Qx)(t)− (Qy)(t)| ≤ L max
t0≤s≤t

|x(s)− y(s)|
and then Theorem 2.2.2 is valid, which gives a result concerning non-strict inequalities.

2.3 Existence and Extremal Solutions

We shall consider the causal functional equation and causal differential equation respec-
tively given by

x(t) = (Qx)(t), x(t0) = x0 (2.14)

and

x′(t) = (Qx)(t), x(t0) = x0 (2.15)

where Q : E → E , E =C([t0,T ],Rn), x0 ∈ R
n. The problem (2.15) can be reduced to

x(t) = x0+

∫ t
t0

(Qx)(s)ds. (2.16)

We shall discuss the existence problem for both (2.14) and (2.15). However, we will first
deal with the functional equation with causal operator (2.14) by proving the following
existence theorem.
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Theorem 2.3.1. Assume that the causal operatorQ :E→E in equation (2.14) is continuous
and compact, as well as the property of the fixed initial value x(t0) = x0 ∈ R

n. Then there
exists a solution of (2.14) onC([t0,t0+ δ ],Rn) for some δ > 0 and t0+ δ ≤ T .
Proof. For any x ∈ C([t0,T ],Rn), consider the initial value x(t0) = x0 and the functional
equation

x(t)− x0 = (Qx)(t)− x0 (2.17)

which is equivalent to (2.14). In view of the compactness assumption of Q, if we fix an
r > 0, one can write

|(Qx)(t)− x0| ≤ β

for t0 ≤ t ≤ t0+ δ and for all x ∈C([t0,T ],Rn) satisfying

|x(t)− x0| ≤ r, t ∈ [t0,T ].

If r is fixed, then δ depends on β . We can assume without loss of generality that β ≤ r.
Then (2.17) shows that

|(Qx)(t)− x0| ≤ β ≤ r,
for all x(t) with |x(t)− x0| ≤ r, on [t0,t0+ δ ]. This means that in the space E =C([t0,t0+

δ ],Rn), the ball of radius r with center x0 is taken into itself by Q. Since Q is assumed to
be continuous and compact, Schauder’s fixed point theorem applies in the Banach space
C([t0,t0 + δ ],Rn) and the ball |x(t)− x0| ≤ r is clearly convex and closed. Hence there
exists at least one solution x(t) of (2.14) on the interval [t0,t0+ δ ]. The proof is complete.
We shall next prove the existence result for IVP (2.15) which is equivalent to (2.16).
Theorem 2.3.2. Consider the causal differential equation (2.15) with the initial condition.
Suppose that Q is a causal operator on C([t0,T ],Rn), continuous and takes bounded sets
into bounded sets. Then, there exists a solution x(t) of (2.15) on [t0,t0+ δ ], t0+ δ ≤ T .
Proof. Since the IVP (2.15) is equivalent to the functional equation (2.16), it is enough to
prove that the operatorW given by

(Wx)(t) = x0+
∫ t
t0

(Qx)(s)ds (2.18)

satisfies the conditions of Theorem 2.3.1. The continuity and causality of the operatorW is
clear. Since the convergence in E is uniform convergence, the continuity of Q implies the
continuity ofW . To prove the compactness ofW in E , suppose that x ∈ B ⊂ E where B is
a bounded set in E , with Q bounded in E . In view of the assumption that Q takes bounded
sets into bounded sets, for each x ∈ B we have

|(Qx)(t)| ≤ K, t ∈ [t0,T ].
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Therefore, for each x ∈ B, one has
|W (x)(t)| ≤ |x0|+K(t− t0), t ∈ [t0,T ]

and

|(Wx)(t)− (Wx)(s)| ≤ K|t− s|, t,s ∈ [t0,T ].

These inequalities show that the subset of E consisting of those functions that are of the
form (Wx)(t), x ∈ B, satisfies the conditions of Ascoli-Arzela Theorem and hence W is
compact. Hence, by Theorem 2.3.1, there exists a solution x(t) of (2.16) on [t0,t0+ δ ] and
equivalently of (2.15). Hence the theorem is proved.
We shall now discuss the existence of extremal solutions for the IVP (2.15) i.e. maximal
and minimal solutions for (2.15). We will do this for the scalar case only.
Definition. Let r(t) be a solution of IVP (2.15) on [t0,T ]. Then r(t) is said to be the
maximal solution of (2.15) if for every solution x(t) of (2.15) existing on [t0,T ), we have
x(t) ≤ r(t), t0 ≤ t < T.

Similarly, if p(t) is a solution of (2.15) and for every solution x(t) of (2.15) existing on
[t0,T ), we have x(t) ≥ p(t), t0 ≤ t < T , then p(t) is said to be the minimal solution of
(2.15).
Theorem 2.3.3. Let the assumptions of Theorem 2.3.2 hold and suppose further that Q is
semi-nondecreasing on [t0,T ]. Then, there exists extremal solutions for IVP (2.15).
Proof. We shall indicate the proof of existence for maximal solution only. Consider, for
some arbitrary small ε > 0, the IVP

x′(t) = (Qx)(t)+ ε, x(t0) = x0+ ε (2.19)

so that we have the corresponding operator equation equivalent to (2.19)

(Wx)(t) = x0+ ε +
∫ t
t0

(Qx)(s)ds+ ε(t− t0).

By Theorem 2.3.2, there exists an η > 0 such that there is a solution x(t,ε) ≡ xε(t) on
[t0,t0+ η ] for IVP (2.19). Let 0< ε2 < ε1 ≤ ε . Then,

x(t0,ε2) < x(t0,ε1,)

x′(t,ε2) ≤ (Qxε2)(t)+ ε2,

x′(t,ε1) > (Qxε1)(t)+ ε2.

An application of Theorem 2.2.3 yields

x(t,ε2) < x(t,ε1), t ∈ [t0,t0+ η ].
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The family of functions {x(t,ε)} are equicontinuous and uniformly bounded on [t0,t0+η ].
Arguing as in Theorem 2.3.2, it follows from Ascoli-Arzela Theorem that there exists a
decreasing sequence {εn}, εn→ 0 as n→ ∞, and the uniform limit

r(t) = lim
n→∞

x(t,εn)

exists on [t0,t0+ η ]. It can be easily shown that r(t) is a solution of (2.15). To show that
r(t) is the desired maximal solution of (2.15) on [t0,t0+η ], let x(t) be any solution of (2.15)
defined on [t0,t0+ η ]. Then by Theorem 2.2.3, it follows that for any ε > 0,

x(t) < x(t,ε), t0 ≤ t ≤ t0+ η .

The uniqueness of the maximal solution shows that x(t,ε) tends uniformly to r(t) on
[t0,t0+ η ] and therefore the proof is complete.
An immediate consequence of Theorem 2.3.3 is the following comparison theorem.
Theorem 2.3.4. Assume that the conditions of Theorem 2.3.3 hold and suppose that m ∈
C1([t0,T ],R+) satisfies

m′(t) ≤ (Qm)(t), m(t0) ≤ x0.

Then, we have

m(t) ≤ r(t), t ∈ [t0,T ],

where r(t) is the maximal solution of (2.15) existing on [t0,T ].
Proof. Let x(t,ε) ≡ xε(t), for ε > 0, be any solution of

x′(t,ε) = (Qxε)(t)+ ε, x(t0) = x0+ ε.

Then, by Theorem 2.2.3, we get

m(t) < x(t,ε), t ∈ [t0,T ]

from which it follows that m(t) ≤ r(t) on [t0,T ] and the proof is complete.
Another variant of comparison theorem is the following result.
Theorem 2.3.5. Consider the IVP (2.15) where the causal operator Q satisfies the inequal-
ity

|(Qx)(t)| ≤ g
(
t, max
t0≤s≤t

|x(s)|
)

t ∈ [t0,T )

where g ∈C([t0,T )×R+,R+) and g(t,u) is monotone nondecreasing in u for each t. Sup-
pose that r(t) is the maximal solution of the scalar initial value problem

u′ = g(t,u), u(t0) = u0 ≥ 0 (2.20)
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existing on [t0,T ). Then

|x(t)| = |x(t,t0,x0)| ≤ r(t) (2.21)

whenever |x0| ≤ u0 and r(t,t0,u0) = r(t) is the maximal solution of the scalar IVP (2.20)
and x(t) is any solution of the causal differential equation (2.15).
Proof. Let m(t) = |x(t,t0,x0)|. Then,

D−m(t) = liminf
h→0−

1
h
[m(t+h)−m(t)]

≤ |x′(t)| = |(Qx)(t)|
≤ g

(
t, max
t0≤s≤t

m(s)
)

.

To prove the stated inequality (2.21), it is enough to show that

m(t) < u(t,ε) (2.22)

where u(t,ε) is any solution of

u′(t) = g(t,u)+ ε, u(t0) = u0+ ε,

ε > 0 being sufficiently small, since limε→0 u(t,ε) = r(t).
If (2.22) is not true, there exists a t1 > t0 such that

m(t1) = u(t1,ε) and m(t) < u(t,ε), on [t0,t1).

This yields

D−m(t1) ≥ u′(t1,ε) = g(t1,u(t1,ε))+ ε. (2.23)

Since g(t,u) ≥ 0, u(t,ε) is nondecreasing in t and this implies

max
t0≤s≤t1

m(s) = u(t1,ε) = m(t1)

and we get the inequality

D−m(t1) ≤ g
(
t1, max
t0≤s≤t1

m(s)
)

= g(t1,u(t1,ε))

which contradicts (2.23). Hence the theorem is proved.
Remark. We observe that in the proof of Theorem 2.3.5, we get the contradiction at t1
where maxt0≤s≤t1m(s) = m(t1) and therefore, it is enough to assume that

|(Qx)(t)| ≤ g
(
t, max
t0≤s≤t

|x(s)|
)

(2.24)

holds only on

Ω = {x ∈C([t0,T ],Rn) : max
t0≤s≤t

|x(s)| = |x(t)|},
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instead of requiring the inequality (2.24) for all x ∈ C([t0,T ],Rn). Hereafter, we will em-
ploy this observation and modify the assumption (2.24) to hold only for x ∈ Ω, whenever
we refer to Theorem 2.3.5.
Let us apply existence result of theorem 2.3.1 to the Volterra integral equation

x(t) = f (t)+

∫ t
t0
K(t,s,x(s))ds = (Qx)(t), t ∈ [t0,T ),

where f and K satisfy the following assumptions:

(i) f ∈C([t0,T,Rn]);
(ii) K ∈C([t0,T ]× [t0,T ]×R

n,Rn).

Then, there exists a δ > 0 such that t0+ δ ≤ T and the integral equation x(t) = (Qx)(t)
admits a solution inC([t0,t0+ δ ],R�).
The proof is a consequence of the fact that the operatorQ satisfies the hypotheses of Theo-
rem 2.3.1. Only compactness of operator Q needs a little explanation, since continuity and
causality are obvious.
Assume that x(t) ∈ B⊂C([t0,t0+δ ],Rn) =C, with set B being bounded inC. This means
that we can findM > 0 such that |x(t)| ≤M, t ∈ [t0,T ] and x ∈ B. The set J× J×B, where
J = [t0,T ], is compact, i.e. it is bounded and closed in R

n+2. This implies boundedness of
K on that set, |K(t,s,x)| ≤ A for some A > 0, as well as its uniform continuity. One can
derive for x ∈ B,

|(Qx)(t)| ≤ sup | f (t)|+A(T − t0), t ∈ [t0,T ]

and

|(Qx)(t+h)− (Qx)(t)| ≤ | f (t+h)− f (t)|

+

∫ t
t0
|K(t+h,s,x(s))−K(t,s,x(s))|ds+

∫ t+h
t

|K(t+h,s,x(s))|ds.

the first inequality proves the uniform boundedness of the set {(Qx) : x ∈ B}, while the
second leads to the conclusion that the set is uniformly equicontinuous on [t0,T ]. Ascoli-
Arzela theorem can be applied to get compactness of the operatorQ.

2.4 Global Existence

Consider the IVP for causal differential equation

x′(t) = (Qx)(t), x(t0) = x0, (2.25)
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where Q ∈ E = C([t0,∞),Rn) is a continuous causal operator. We shall first employ Ty-
chonoff’s fixed point theorem to get global existence of solutions of (2.25).
Theorem 2.4.1. Let Q ∈ E and satisfy the estimate

|(Qx)(t)| ≤ g(t, |x(t)|), x ∈ Ω, (2.26)

whereΩ = {x∈ E : maxt0≤s≤t |x(s)| = |x(t)|} and g∈C([t0,∞)×R+,R+), g(t,u) is mono-
tone nondecreasing in u for each t ∈ [t0,∞). Assume that, for every u0 > 0, the scalar
differential equation

u′ = g(t,u), u(t0) = u0 ≥ 0, (2.27)

has a solution u(t) existing on [t0,∞). Then for every x0 such that |x0| ≤ u0, there exists a
solution x(t) of (2.25) on [t0,∞) satisfying

|x(t)| ≤ u(t), t ∈ [t0,∞).

Proof. Consider the space E , the topology on E being that induced by the family of pseudo-
norms {pn(x)}∞

n=1, where for x ∈ E ,
pn(x) = sup

t0≤t<n
|x(t)|.

A fundamental system of neighborhoods is then given by {Vn(x)}∞
n=1 where

Vn(x) = {x ∈ E : pn(x) ≤ 1}.
Under this topology, E becomes a complete, locally convex linear space. Now, define a
subset E0, E0 ⊂ E as follows:

E0 = {x ∈ Ω : |x(t)| ≤ u(t), t ≥ t0}, (2.28)

where u(t) is a solution of (2.27) existing on [t0,∞). It is clear that, in the topology of E ,
the set E0 is closed, convex and bounded. Consider the integral operator defined by

(Tx)(t) = x0+
∫ t
t0

(Qx)(s)ds, (2.29)

whose fixed point corresponds to the solution of (2.25). This operator T is compact in the
topology of E and therefore closure of TE0 is compact in view of the boundedness of E0.
To prove the theorem, it remains to be shown that TE0 ⊂ E0. To this end, we observe that
for any x ∈ E0

|(Tx)(t)| ≤ |x0|+
∫ t
t0
|(Qx)(s)|ds

≤ |x0|+
∫ t
t0
g(s, |x(s)|)ds

≤ |x0|+
∫ t
t0
g(s,u(s))ds, (2.30)
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because of (2.29), (2.26) and (2.28). Here, we have used the monotone nature of g(t,u),
the definition of set E0 and the fact that u(t) is a solution of (2.27) with |x0| ≤ u0. It then
follows from (2.30) that

|(Tx)(t)| ≤ u(t),
proving that TE0 ⊂ E0 and the proof is complete.
A direct proof of global existence is given by the following result.
Theorem 2.4.2. Assume that Q ∈ E and is smooth enough to guarantee local existence
of solutions of (2.25) for any (t0,x0) and satisfies the inequality (2.26) for x ∈ Ω, where
g ∈C(R2+,R+), g(t,u) is nondecreasing in u for each t ∈ [t0,∞). Suppose further that the
maximal solution r(t) of the scalar equation (2.27) exists on [t0,∞). Then the largest inter-
val of existence of any solution x(t) of (2.25) such that |x0| ≤ u0 is [t0,∞).
Proof. Let x(t) by any solution of (2.25) with |x0| ≤ u0, which exists on [t0,β ), for t0 <

β < ∞ and such that the value of β cannot be increased. Define

m(t) = |x(t)|, t0 ≤ t < β . (2.31)

Then, using the assumption (2.26), we obtain

D+m(t) ≤ |x′(t)| = |(Qx)(t)| ≤ g(t, |x(t)|)
i.e. we have the differential inequality

D+m(t) ≤ g(t,m(t)), m(t0) ≤ u0.
Hence, by Theorem 2.3.5, we have

m(t) ≤ |x(t)| ≤ r(t), t0 ≤ t < β ,

where r(t) is the maximal solution of (2.27). For any t1,t2 such that t0 ≤ t1 < t2 < β ,

|x(t1)− x(t2)| =

∣∣∣∣
∫ t2
t1

(Qx)(s)ds
∣∣∣∣

≤
∫ t2
t1
g(s,m(s))ds

≤
∫ t2
t1
g(s,r(s))ds

= r(t2)− r(t1). (2.32)

Here we used (2.26), (2.31) and the monotone character of g(t,u). Since limt→β− r(t)
exists and is finite, taking limits as t1,t2→ β− and using Cauchy criterion for convergence,
it follows that limt→β− x(t) exists. We define

x(β ) = lim
t→β−

x(t)
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and consider the IVP

x′(t) = (Qx)(t)

with initial value x(β ). By assumed local existence, we find that x(t) can be continued be-
yond β , contradicting our assumption about its interval of existence. Hence, every solution
of (2.25) with |x0| ≤ u0 exists on [t0,∞) and the proof is complete.
Corollary 2.4.1. Assume that the causal operator Q in IVP (2.15) satisfies

|(Qx)(t)| ≤ λ (t)|x(t)|, x ∈ Ω, (2.33)

in place of (2.26), where λ (t)≥ 0 is continuous on [t0,∞), g(u)≥ 0 is continuous for u≥ 0,
g(0) = 0, g(u) > 0 for u> 0 and g(u) is nondecreasing in u. If g(u) satisfies∫ ∞

u0

du
g(u)

= ∞ (2.34)

for u0 > 0, then for every x0 ∈ R
n, there exists a solution of (2.25) for t ≥ t0.

Proof. The result follows from Theorem 2.4.1 if we show that the scalar differential equa-
tion

u′ = λ (t)g(u), u(t0) = u0 > 0 (2.35)

has a solution existing for t ≥ t0. If we write
G(u) =

∫ u
u0

du
g(u)

=
∫ t
t0

λ (s)ds,

it is easily seen that the functionG(u) is strictly increasing in u and hence, its inverse exists.
In view of the assumptions concerning g, the domain of the inverse function is [0,∞) and
therefore, the solution u(t) of (2.35) is defined for t ≥ t0.

2.5 Existence and Uniqueness

Consider the IVP for causal differential equation

x′(t) = (Qx)(t), x(t0) = x0, (2.36)

where Q ∈ E =C(J,Rn), Q : E→ E and J = [t0,t0+a]. This IVP is equivalent to

x(t) = x0+
∫ t
t0

(Qx)(s)ds, t ∈ J. (2.37)

We shall first discuss the uniqueness result for (2.36) under Lipschitz condition and apply
the contraction mapping theorem to get local existence and uniqueness.
Theorem 2.5.1. Suppose that Q satisfies

|(Qx)(t)− (Qy)(t)| ≤ L|x(t)− y(t)|, x,y ∈ Ω, L> 0, (2.38)
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where

Ω = {x,y ∈ E : max
t0≤s≤t

|x(s)− y(s)| = |x(t)− y(t)|}.

Then, there exists a unique solution x(t) of IVP (2.36) on J if a< 1
L .

Proof. Define the metric

|x− y|0 = max
t0≤t≤t0+a

|x(s)− y(s)|
for all x,y ∈ E . For any x ∈ E , define operator T on J by the relation

Tx(t) = x0+
∫ t
t0

(Qx)(s)ds,

so that Tx ∈ E. Using (2.38), we get for x,y ∈ Ω,

|Tx(t)−Ty(t)| ≤
∫ t
t0
|(Qx)(s)− (Qy)(s)|ds

≤ L
∫ t
t0
max
t0≤s≤t

|x(s)− y(s)|ds
≤ aL|x− y|0 (2.39)

which implies

|Tx−Ty|0 ≤ La|x− y|0. (2.40)

Then, if La< 1, T is a contraction and the contraction mapping principle assures that there
exists a unique fixed point of T , say x∗ which shows that x∗(t) is the unique solution of IVP
(2.36) on J. The proof is complete.
If, on the other hand, we use the weighted metric,

|x− y|∗ = max
t0≤s≤t0+a

|x(s)− y(s)|e−λ s, λ > 0,

and λ to be chosen later suitably, we get from (2.39)

|Tx(t)−Ty(t)| ≤ L
∫ t
t0
max
t0≤s≤t

|x(s)− y(s)|e−λ seλ sds≤ L|x− y|∗
∫ t
t0
eλ sds

so that

e−λ t |Tx(t)−Ty(t)| ≤ Le−λ t |x− y|∗ e
λ t

λ
=
L
λ
|x− y|∗

and

|Tx−Ty|∗ ≤ 1
2
|x− y|∗

by choosing λ = 2L. Now, the contraction mapping principle shows that there exists a
unique fixed point of T , say x∗, which is the unique solution of IVP (2.36). This approach
avoids restriction La< 1.
We shall next discuss the convergence of successive approximations for IVP (2.36) under
a condition more general than (2.38) and the proof is very instructive.
Theorem 2.5.2. Assume that the following hypotheses hold:
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(i) Q ∈ E = C(R0,R
n) where R0 = {(t,x) : t ∈ J, |x− x0|0 ≤ b} and |(Qx)(t)| ≤M0 on

R0;
(ii) g ∈ C(J× [0,2b],R+), 0 ≤ g(t,u) ≤ M1 on J× [0,2b], g(t,0) ≡ 0, g(t,u) is nonde-

creasing in u for each t and u(t) ≡ 0 is the unique solution of the scalar IVP

u′ = g(t,u), u(t0) = 0, t ∈ J; (2.41)

(iii) whenever x,y ∈ Ω,

|(Qx)(t)− (Qy)(t)| ≤ g(t, |x(t)− y(t)|) on R0. (2.42)

Then the successive approximations defined by

xn+1(t) = x0+

∫ t
t0

(Qxn)(s)ds, n= 0,1,2, ..., (2.43)

on [t0,t0 + α] where α = min(a,b/M), M = max{M0,M1}, converge uniformly to the
unique solution x(t) of IVP (2.36).
Proof. It is easy to see, by induction, that the successive approximations (2.43) are defined
and continuous on [t0,t0+ α] and

|xn(t)− x0| ≤ b, n= 0,1,2, . . .

We shall now define the successive approximations for IVP (2.41) as follows:{
u0 =M(t− t0)
un+1(t) =

∫ t
t0 g(s,un(s))ds, t ∈ [t0,t0+ α].

(2.44)

An easy induction proves that the successive approximations (2.44) are well defined and
satisfy

0≤ un+1(t) ≤ un(t), on [t0,t0+ α].

Since |u′n(t)| ≤M1, we conclude by Ascoli-Arzela Theorem and the monotonocity of the
sequence {un(t)} that

lim
n→∞

un(t) = u(t), t ∈ [t0,t0+ α]

uniformly. It is clear that u(t) satisfies (2.41) and hence by (ii), u(t) ≡ 0 on [t0,t0+ α] by
Lemma 1.3.4. Now,

|x1(t)− x0| ≤
∫ t
t0

(Qx0)(s)ds ≤M(t− t0) ≡ u0(t).

Assume that for some fixed integer k,

|xk(t)− xk−1(t)| ≤ uk−1(t).
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Since

|xk+1(t)− xk(t)| ≤
∫ t
t0
|(Qxk)(s)− (Qxk−1)(s)|ds,

using the nondecreasing nature of g(t,u) in u and the assumption (iii), we get

|xk+1(t)− xk(t)| ≤
∫ t
t0
g(s,uk−1(s))ds ≡ uk(t),

in view of (2.44) and Theorem 2.3.5. Thus, by principle of induction, the inequality

|xk+1(t)− xn(t)| ≤ un(t), t ∈ [t0,t0+ α] (2.45)

is true for all n. Also,

|x′n+1(t)− x′n(t)| ≤ |(Qxn)(t)− (Qxn−1)(t)|
≤ g(t, |xn(t)− xn−1(t)|)
≤ g(t,un−1(t)), (2.46)

because of (2.45) and the nondecreasing character of g(t,u). Let n ≤ m. Then one can
easily obtain using (2.46),

|x′n(t)− x′m(t)| = |Qxn−1(t)− (Qxm−1)(t)|
≤ |(Qxn)(t)− (Qxn−1)(t)|+ |(Qxm)(t)− (Qxm−1)(t)|

+|(Qxn)(t)− (Qxm)(t)|
≤ g(t,un−1(t))+g(t,um−1(t))+g(t, |xn(t)− xm(t)|).

Since un+1(t) ≤ un(t), it follows that
D+|xn(t)− xm(t)| ≤ g(t, |xn(t)− xm(t)|)+2g(t,un−1(t))

where D+ is the Dini derivative. An application of Theorem 1.4.1 in [4] gives

|xn(t)− xm(t)| ≤ rn(t), t ∈ [t0,t0+ α],

where rn(t) is the maximal solution of

v′n = g(t,vn)+2g(t,un−1(t)), vn(t0) = 0,

for each n. Since g(t,un−1(t))→ 0, as n→∞, uniformly on [t0,t0+α], it follows by Lemma
1.3.4 that rn(t) → 0 uniformly on [t0,t0+ α]. This implies that xn(t) converges uniformly
to x(t) and it is now easy to show that x(t) is a solution of (2.36) by standard arguments.
To show that the solution is unique, let y(t) be another solution of IVP (2.36) existing on
[t0,t0+ α]. Define m(t) = |x(t)− y(t)| and note m(t0) = 0. Then,

D+m(t) ≤ |x′(t)− y′(t)| = |(Qx)(t)− (Qy)(t)|
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≤ g(t, |x(t)− y(t)|) = g(t,m(t)),

whenever x,y ∈ Ω, using assumption (iii). Again, applying Theorem 2.3.5, we get

m(t) ≤ r(t), t ∈ [t0,t0+ α],

where r(t) is the maximal solution of IVP (2.41). But by assumption (ii), r(t) ≡ 0 and
this proves that x(t) ≡ y(t). Hence the limit of the successive approximations is the unique
solution of IVP (2.36) and the proof is complete.
Let us now obtain an error estimate between the solution and an approximate solutions of
IVP (2.36).
Definition. A function yε(t) = y(t,ε), ε > 0, is said to be an approximate solution of IVP
(2.36) with y(t0,ε) = y0, if y(t,ε) satisfies the inequality

|y′(t,ε)− (Qyε)(t)| ≤ ε, t0 ≤ t ≤ t0+ α.

We can prove the following result which provides the desired estimate.
Theorem 2.5.3. Assume that Q in (2.36) satisfies

|(Qx)(t)− (Qyε)(t)| ≤ g(t, |x(t)− y(t,ε)|)

where g ∈C([t0,t0+ α]×R+,R+). Then

|x(t)− y(t,ε)| ≤ r(t,t0,u0,ε), t ∈ [t0,t0+ α],

where r(t,t0,u0,ε) is the maximal solution of (2.41) with u0 = |x0− y0|.
Proof. As before let m(t) = |x(t)− y(t,ε)|. We obtain,

D+m(t) ≤ |x′(t)− y′(t,ε)|
≤ |x′(t)− (Qx)(t)|+ |(Qyε)(t)− y′(t,ε)|

+|(Qx)(t)− (Qyε)(t)|
≤ ε +g(t, |x(t)− y(t,ε)|)
= g(t,m(t))+ ε, on [t0,t0+ α].

This yields, by Theorem 2.3.5, the estimate

|x(t)− y(t,ε)| ≤ r(t,t0, |x0− y0|,ε), t ∈ [t0,t0+ α].

If g(t,u) = Lu, then it is easy to get

|x(t)− y(t,ε)| ≤ |x0− y0|exp(L(t− t0))+
ε
L

(eL(t−t0) −1)

since the RHS is the solution of u′ = Lu, u0 = |x0− y0|.
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2.6 Nagumo-Type Conditions

We continue to consider IVP (2.36) and prove the convergence of successive approxima-
tions to the unique solution when Nagumo-type conditions are assumed for the causal op-
erator Q.
Theorem 2.6.1. Suppose that the hypothesis (i) and (ii) of Theorem 2.5.2 hold. Suppose
further that for x,y ∈ Ω,

|(Qx)(t)− (Qy)(t)| ≤ |x(t)− y(t)|
t− t0 , t �= t0. (2.47)

Then, the conclusion of Theorem 2.5.2 is true.
Proof. It is easy to show that the sequence defined by (2.43) is uniformly bounded and
equi-continuous on [t0,t0+ α] and hence, there exists uniformly convergent subsequences.
Suppose that

xn(t)− xn−1(t) → 0 as n→ ∞,

then (2.43) implies that the limit of any such subsequence is the unique solution of (2.36).
It then follows that a selection of the subsequence is unnecessary and that the full sequence
{xn(t)} also converges uniformly on [t0,t0+ α] to the unique solution.
To prove the conclusion of the theorem, it is therefore sufficient to show that m(t) ≡ 0,
where

m(t) = limsup
n→∞

|xn(t)− xn−1(t)|. (2.48)

We shall first show thatm(t) is continuous for t0≤ t ≤ t0+α . Since we have |(Qx)(t)| ≤M0
on R0, we see that

|xn(t1)− xn−1(t1)| ≤ |xn(t2)− xn−1(t2)|+2M0|t1− t2|

≤ m(t2)+2M0|t1− t2|+ ε

for large n, if ε > 0. Hence, we have

m(t1) ≤ m(t2)+2M0|t1− t2|+ ε.

As t1,t2 can be interchanged and ε > 0 is arbitrary, we obtain

|m(t1)−m(t2)| ≤ 2M0|t1− t2|,
which proves the continuity of m(t). The assumption (2.47) together with the relation
(2.43) yields

|xn+1(t)− xn(t)| ≤
∫ t
t0
|(Qxn)(s)− (Qxn−1)(s)|ds
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≤
∫ t
t0

(s− t0)−1|xn(s)− xn−1(s)|ds,

for t �= t0, t ∈ [t0,t0+ α] and for those xn(t) which belong to Ω for a fixed t in [t0,t0+ α],
there is a sequence of integers n1 < n2 < .. . such that

|xn+1(t)− xn(t)| →m(t)

as n= nk → ∞ and that

m∗(s) = lim
n=nk→∞

|xn(s)− xn−1(s)|

exists uniformly on [t0,t0+ α]. Thus,

m(t) ≤
∫ t
t0

(s− t0)−1m∗(s)ds. (2.49)

Since g is assumed to be monotone nondecreasing in u and m∗(s) ≤ m(s), we obtain from
(2.49) the inequality

m(t) ≤
∫ t
t0

(s− t0)−1m(s)ds, t �= t0. (2.50)

Now,
m(t)
t− t0 =

1
t− t0 limsupn→∞

∫ t
t0
|xn(s)− xn−1(s)|ds,

and therefore as t→ t0,

lim
t→t0

(
m(t)
t− t0

)
= lim
t→t0

[
1

t− t0 limsupn→∞

∫ t
t0
|xn(s)− xn−1(s)|ds

]

= limsup
n→∞

lim
t→t0

[
1

(t− t0)
∫ t
t0
|xn(s)− xn−1(s)|ds

]
= limsup

n→∞
[|(Qxn−1)(t0)− (Qxn−2)(t0)|] = 0.

Setting ψ(t) = m(t)
t−t0 and noting ψ(t0) = 0, it is enough to show that ψ(t) ≡ 0. If this is not

true, let

β = max
t0≤t≤t0+α

ψ(t) = ψ(t1).

Then we get from (2.50) that

β ≤ (t1− t0)−1
∫ t1
t0

m(s)
s− t0 ds= (t1− t0)−1

∫ t
t0

ψ(s)ds

< β (t1− t0)−1
∫ t1
t0
ds= β .

This is a contradiction and hence the proof is complete.
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The next result is a generalization of Nagumo’s Theorem known as Krasnoselskii-Krein’s
Theorem.
Theorem 2.6.2. Assume that hypothesis (i) and (ii) of Theorem 2.5.2 hold. Assume also
that for x,y ∈ Ω,

|(Qx)(t)− (Qy)(t)| ≤ K|x(t)− y(t)|
t− t0 , t �= t0,K > 1 (2.51)

and

|(Qx)(t)− (Qy)(t)| ≤C|x(t)− y(t)|α , 0< α < 1, K(1−α) < 1. (2.52)

Then the conclusion of Theorem 2.5.2 is valid.
Proof. Let x(t),y(t) be solutions of (2.36) and m(t) = |x(t)− y(t)|. Then using (2.52), we
have

m(t) ≤
∫ t
t0
C|x(s)− y(s)|αds=

∫ t
t0
C(m(s))αds.

Set

R(t) =

∫ t
t0
C(m(s))αds,

so that

R′(t) =C(m(t))α ≤C(R(t))α .

It is easy to see that ddt (R
1−α(t)) ≤C(1−α)≤C and hence (R(t))1−α ≤C(t− t0).

This shows that

m(t) ≤ R(t) ≤C1(t− t0)
1
1−α for someC1.

Setting

ψ(t) =
m(t)

(t− t0)K ,

the following inequality

0≤ ψ(t) ≤C1(t− t0)
1
1−α −K =C1(t− t0)

1−K(1−α)
1−α

is satisfied. Since K(1−α) < 1, it follows that ψ(t0) = 0. It is now enough to show that
ψ(t) ≡ 0 to prove the theorem. If not,

β = max
t0≤t≤t0+α

ψ(t) = ψ(t1) =
m(t1)

(t1− t0)K

< (t1− t0)−K
∫ t1
t0

K|x(s)− y(s)|
s− t0 ds

= (t1− t0)−K
∫ t1
t0
Kψ(s)(s− t0)K−1ds

< β (t1− t0)−KK
∫ t1
t0

(s− t0)K−1ds< β ,
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using (2.51). This contradiction proves the uniqueness of solutions directly. In order to
show the convergence of successive approximations, we can proceed as in Theorem 2.6.1
with minor modifications and therefore we do not give the proof. Note that, in this case,
K > 1 where as in Nagumo’s Theorem, 0< K ≤ 1.
Consider the example

x′(t) = f (t,x)+
∫ t
t0 K(t,s,x(s))ds ≡ (Qx)(t),

x(t0) = x0,

}
(2.53)

where f and K satisfy

| f (t,x)− f (t,y)| ≤ 1
2

(x− y)
t− t0 , t �= t0,

and

|K(t,s,x)−K(t,s,y)| ≤ λ (t,s)
|x− y|
t− t0 , t �= t0,

λ (t,s) being continuous. Then,∫ t
t0
|K(t,s,x(s))−K(t,s,y(s))|ds ≤

∫ t
t0

λ (t,s)
(s− t0) maxt0≤s≤t

|x(s)− y(s)|ds.

When x, y ∈ Ω, we have

max
t|0≤s≤t

|x(s)− y(s)| = |x(t)− y(t)|

and if
∫ t
t0 λ (t,s) ≤ 1

2 , then we get

|(Qx)(t)− (Qy)(t)| ≤ |x(t)− y(t)|
t− t0 , t �= t0

which is the Nagumo condition for the causal operator Q. Theorem 2.6.1. can be applied
and the uniqueness of solutions of (2.53) follows.
One can, similarly arrive at Krasnoselskii-Krein type conditions by imposing suitable con-
ditions on f and K. We leave the details to the reader.

2.7 Continuous Dependence Relative to Initial Data

We shall consider the problem of continuity of solutions of the IVP

x′(t) = (Qx)(t), x(t0) = x0, (2.54)

with respect to the initial values t0,x0. For this purpose, we need the following result.
Lemma 2.7.1. Let Q : E→ E =C([t0,T ],Rn) and let

G(t,r) = max
|x(t)−x0|≤r

|(Qx)(t)|.
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Assume that r∗(t,t0,0) is the maximal solution of

u′ = G(t,u), u(t0) = 0.

Let x(t) = x(t,t0,x0) be any solution of (2.54). Then

|x(t)− x0| ≤ r∗(t,t0,0), t ∈ [t0,T ].

Proof. Define m(t) = |x(t)− x0|. Then,

D+m(t) ≤ |x′(t)| = |(Qx)(t)| ≤ max
|x(t)−x0|

|(Qx)(t)| ≤ G(t,m(t)).

This implies by Theorem 1.3.2 that

|x(t)− x0| ≤ r∗(t,t0,0) on [t0,T ]

proving the lemma.
Theorem 2.7.1. Let Q : E→ E and satisfy

|(Qx)(t)− (Qy)(t)| ≤ g(t, |x(t)− y(t)|), x,y ∈ Ω, (2.55)

where g ∈ C([t0,T ]×R+,R+). Assume that u(t) ≡ 0 is the unique solution of the scalar
differential equation

u′ = g(t,u), u(t0) = u0, (2.56)

with u0 = 0. Then, if the solutions u(t,t0,u0) of (2.56) through (t0,u0) are continuous with
respect to (t0,u0), then the solutions x(t,t0,x0) of (2.54) are unique and continuous with
respect to the initial values (t0,x0).
Proof. Since the uniqueness follows from Theorem 2.5.2, we have to prove the continuity
part only. To this end, let x(t) = x(t,t0,x0), y(t) = y(t,t0,y0) be the solutions of (2.54)
through (t0,x0), (t0,y0) respectively. Defining m(t) = |x(t)− y(t)|, we obtain from (2.55),

D+m(t) ≤ g(t,m(t))

and by comparison Theorem 1.3.2, we have

m(t) ≤ r(t,t0, |x0− y0|), t ∈ [t0,T ],

where r(t,t0,u0), with u0 = |x0− y0|, is the maximal solution of (2.56). Since the solutions
u(t,t0,u0) of (2.56) are assumed to be continuous with respect to initial values, it follows
that

lim
x0→y0

r(t,t0, |x0− y0|) = r(t,t0,0),
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and by hypothesis, r(t,t0,0) ≡ 0. This, in view of definition of m(t), shows that

lim
x0→y0

x(t,t0,x0) = y(t,t0,y0)

and the continuity of solutions relative to x0 follows.
We shall next prove the continuity with respect to t0. If x(t,t0,x0), y(t,t1,x0), t1 > t0, are
any two solutions of (2.54) through (t0,x0), (t1,x0) respectively, then as before, we obtain
the inequality

D+m(t) ≤ g(t,m(t))

where m(t) = |x(t,t0,x0)− y(t,t1,x0)|. Also m(t1) = |x(t1,t0,x0)− x0|. Hence, by Lemma
2.7.1,

m(t1) ≤ r∗(t1,t0,0)

and as a result

m(t) ≤ r̃(t), t > t1,

where

r̃(t) = r(t,t1,r∗(t1,t0,0))

is the maximal solution of (2.56) through (t1,r∗(t1,t0,0)). Since r∗(t0,t0,0) = 0, we have

lim
t1→t0

r̃(t,t1,r∗(t1,t0,0)) = r̃(t,t0,0)

and by hypothesis, r̃(t,t0,0) ≡ 0. This proves desired continuity of solutions relative to t0
and the proof is complete.
We shall now prove the continuous dependence of solutions of (2.54) with respect to a
parameter.
Theorem 2.7.2. Suppose that Q : E∗ → E , where E∗ is an open set in Ẽ = E ×R+ that
contains the parameter μ and for μ = μ0, let x0(t) = x(t,t0,x0,μ0) be the solution of

x′(t) = (Qx,μ)(t), x(t0) = x0, (2.57)

existing on [t0,T ]. Assume that

lim
μ→μ0

(Qx,μ)(t) = (Qx,μ0)(t) (2.58)

uniformly in (t,x(t)) and

|(Qx,μ)(t)− (Qy,μ)(t)| ≤ g(t, |x(t)− y(t)|), (2.59)
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for x,y ∈ Ω, where g ∈C([t0,T ]×R+,R+). Suppose that u(t) ≡ 0 is the unique solution
of (2.56) with u(t0) = 0. Then, given ε > 0, there exists a δ (ε) > 0 such that, whenever
|μ − μ0| < δ (ε), the IVP

x′(t) = (Qx,μ)(t), x(t0) = x0 (2.60)

admits a unique solution x(t) = x(t,t0,x0,μ) satisfying

|x(t)− x0(t)| < ε, t ∈ [t0,T ].

Proof. The uniqueness of solutions is obvious from Theorem 2.5.2. From the assumption
that u(t) ≡ 0 is the only solution of (2.56), it follows by Lemma 1.3.3 that given any com-
pact interval [t0,t0+a]⊂ [t0,T ] and any ε > 0, there exists a positive number η = η(ε) > 0
such that the maximal solution r(t,t0,0,η) of

u′ = g(t,u)+ η

exists on [t0,T ] and satisfies

r(t,t0,0,η) < ε, t ∈ [t0,T ].

Also, because of (2.58), given η > 0, there exists a δ = δ (η) > 0 such that, whenever
|μ − μ0| < δ , we have

|(Qx,μ)(t)− (Qx,μ0)(t)| < η .

Now let ε > 0 be given and define

m(t) = |x(t)− x0(t)|,

where x(t), x0(t) are the solutions of (2.57), (2.60) respectively. Then, using assumption
(2.59), we get

D+m(t) ≤ g(t,m(t))+ η

and by comparison Theorem 1.3.2,

m(t) ≤ r(t,t0,0,η).

Hence, whenever |μ − μ0| < δ ,we have

|x(t)− x0(t)| < ε, t ∈ [t0,T ].

Clearly, δ depends on ε since η does. The proof is complete.
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2.8 Existence of Euler Solutions

We consider the IVP for causal differential equation

x′(t) = (Qx)(t), x(t0) = x0, (2.61)

where Q : E → E , E =C([t0,T ],Rn). Let

π = {t0,t1, . . . ,tN = T} (2.62)

be a partition of [t0,T ] and consider the interval [t0,t1]. Note that the right side of the causal
differential equation

x′(t) = (Qx0)(t0), x(t0) = x0

is a constant on [t0,t1] and hence, the IVP (2.61) clearly has a unique solution x(t) =

x(t,t0,x0) on [t0,t1]. We define the node x1 = x(t1) and iterate next by considering on
[t1,t2], the IVP

x′(t) = (Qx1)(t1), x(t1) = x1.

The next node is x2 = x(t2) = x(t2,t1,x1) and proceed this way till the entire arc xπ = xπ(t)
has been defined on [t0,T ].We employ the notation xπ to emphasize the role played by the
particular partition π in finding the arc xπ which is the Euler polygonal arc corresponding
to the partition π . The diameter μπ of the partition π is given by

μπ =max[ti− ti−1 : 1≤ i≤ N]. (2.63)

Definition 2.8.1. By an Euler solution of (2.61), we mean any arc x = x(t) which is the
uniform limit of Euler polygonal arcs xπ , corresponding to some sequence π j such that
π j → 0 i.e. as the diameter μπ j → 0 as j→ ∞.
Clearly, the corresponding number Nj of the position points in π j and the nodes also go to
∞. Also, the Euler arc satisfies the initial condition x(t0) = x0.
We can now prove the following result on the existence of Euler solution for IVP (2.61).
Theorem 2.8.1. Assume that

(i) for x ∈ Ω = {x ∈ E : maxt0≤s≤T |x(s)| = x(t)} and t ∈ [t0,T ],

|(Qx)(t)| = g(t, |x(t)|),
where g ∈C([t0,T ]×R+,R+), g(t,u) is nondecreasing in (t,u);

(ii) the maximal solution r(t) = r(t,t0,u0) of the scalar differential equation

u′ = g(t,u), u(t0) = u0, (2.64)

exists on [t0,T ]. Then
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(a) there exists at least one Euler solution x(t) = x(t,t0,x0) of the IVP (2.61) which
satisfies the Lipschitz condition;

(b) any Euler solution x(t) of (2.61) satisfies the relation

|x(t)− x0| ≤ r(t,t0,u0)−u0, t ∈ [t0,T ], (2.65)

where u0 = |x0|.

Proof. Let π be the partition of [t0,T ] defined by (2.62) and let xπ = xπ(t) denote the
corresponding arc with nodes of xπ represented by x0,x1, . . . ,xN . Let us set xπ = xi(t) on
ti ≤ t ≤ ti+1, i= 0,1, . . . ,N−1 and observe that xi(ti) = xi, i= 0,1,2, . . . ,N. On the interval
(ti,ti+1), we have

|x′π(t)| = |(Qxi)(ti)| ≤ g(ti, |xi|). (2.66)

On [t0,t1], we obtain

|xi(t)− x0| = |x0+
∫ t
t0

(Qx0)(t0)ds− x0| ≤
∫ t
t0
|(Qx0)(t0)|ds

≤
∫ t
t0
g(t0, |x0|)ds≤

∫ t
t0
g(s,r(s))ds

= r(t,t0, |x0|)−|x0|
≤ r(T,t0, |x0|)−|x0| ≡M, say.

Here we have employed the properties of the norm and the integral, monotone character
of g(t,u) in u and the fact that r(t,t0,u0) ≥ 0 is nondecreasing in t. Similarly, we get, on
[t1,t2],

|x2(t)− x0| = |x1+
∫ t
t1

(Qx1)(t1)ds− x0|

= |x0+
∫ t1
t0

(Qx0)(t0)ds+
∫ t
t1

(Qx1)(t1)ds− x0|

≤
∫ t1
t0

|(Qx0)(t0)|ds+
∫ t
t1
|(Qx1)(t1)|ds

≤
∫ t1
t0
g(s,r(s))ds+

∫ t
t1
g(s,r(s))ds

=

∫ t
t0
g(s,r(s))ds ≤ r(T,t0, |x0|)−|x0| =M.

Proceeding in this way, we obtain on [ti,ti+1],

|xi(t)− x0| ≤ r(T,t0, |x0|)−|x0| =M.

Hence, it follows that

|xπ(t)− x0| ≤M, on [t0,T ].
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Also, from (2.66), we have

|x′π(t)| ≤ g(T,r(T )) = r′(T,t0, |x0|) ≡ K, (say).

Consequently, using similar arguments, we can find for t0 ≤ s≤ t ≤ T,

|xπ(t)− xπ(s)| ≤
∫ t
t0
|(Qxπ)(z)|dz−

∫ s
t0
|(Qxπ)(z)|dz

≤
∫ t
t0
g(z,r(z))dz−

∫ s
t0
g(z,r(z))dz

=
∫ t
s
g(z,r(z))dz = r(t)− r(s)

= r′(σ)|t− s| ≤ K(t− s)

for some σ , s≤ σ ≤ t, proving xπ(t) satisfies Lipschitz condition with constantK on [t0,T ].
Now, let π j be a sequence of partitions of [t0,T ] such that π j→ 0, i.e., μπ j → 0 and therefore
Nj → ∞. Then, the corresponding polygonal arcs xπ on [t0,T ] all satisfy

xπ j(t0) = x0, |xπ j (t)− x0| ≤M and |x′π j (t)| ≤ K.

Hence the family {xπ j} is equicontinuous and uniformly bounded, and as a consequence,
Ascoli-Arzela Theorem guarantees the existence of a subsequence which converges uni-
formly to a continuous function x(t) on [t0,T ] and that is also absolutely continuous on
[t0,T ]. Thus, by definition, x(t) is an Euler solution of the IVP (2.61) on [t0,T ] and the
claim of the theorem follows. The inequality (2.65) in part (b) is inherited by x(t) from
the sequence of polygonal arcs generating it when we identify T with t. Hence the proof is
complete.
If (Qx) in (2.61) is assumed continuous, then one can show that x(t) actually satisfies (2.61).
Theorem 2.8.2. Under the assumptions of Theorem 2.8.1, if we also suppose that Q is
continuous, then x(t) is a solution of IVP (2.61).
Proof. Let xπ j denote a sequence of polygonal arcs for IVP (2.61) converging uniformly
to an Euler solution x(t) on [t0,T ]. Clearly, the arcs xπ j (t) all lie in B(x0,M) = {x ∈ E :
|x− x0| ≤ M} and satisfy Lipschitz condition with some constant K. Since a continuous
function is uniformly continuous on compact sets, for any given ε > 0, one can find a δ > 0
such that

|x− x∗| < δ , |t− t∗| < δ implies |(Qx)(t)− (Qx∗)(t∗)| < ε

for t,t∗ ∈ [t0,T ], x,x∗ ∈ {xπ j}. Let j be sufficiently large so that the particular diameter
μπ j satisfies μπ j < δ and Kμπ j < δ for any t which is not one of the infinitely many points
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at which xπ j is a node, we have x′π j (t) = (Qxπ j)(t̃) for some t̃ within μπ j < δ of t. Since
|xπ j(t)− xπ j(t̃)| ≤ Kμπ j < δ , we get

|x′π j (t)− (Qxπ j)(t)| = |(Qxπ j)(t̃)− (Qxπ j)(t)| < ε.

It follows for any t ∈ [t0,T ], we obtain∣∣∣∣xπ j(t)− xπ j(t0)−
∫ t
t0

(Qxπ j)(s)ds
∣∣∣∣

=

∣∣∣∣xπ j(t0)+

∫ t
t0
x′π j(s)ds− xπ j(t0)−

∫ t
t0

(Qxπ j )(s)ds
∣∣∣∣

=

∣∣∣∣
∫ t
t0
x′π j(s)ds−

∫ t
t0

(Qxπ j )(s)ds
∣∣∣∣

≤
∫ t
t0
|x′π j (s)− (Qxπ j)(s)|ds

≤ ε(t− t0) < ε(T − t0).

Letting j→ ∞, we have from this inequality,∣∣∣∣x(t)− x0−
∫ t
t0

(Qx)(s)ds
∣∣∣∣ < ε(T − t0).

Since ε > 0 is arbitrary, it follows that

x(t) = x0+
∫ t
t0

(Qx)(s)ds, t ∈ [t0,T ],

which implies that x(t) is continuously differentiable and therefore,

x′(t) = (Qx)(t), x(t0) = x0, t ∈ [t0,T ].

The proof is complete.
Remark 2.8.1. One can extend the notion of Euler solution of (2.61) from the interval
[t0,T ] to [t0,∞), if we defineQ and g on [t0,∞) instead of [t0,T ] and assume that the maximal
solution r(t) exists on [t0,∞). Then we can show that an Euler solution exists on every
compact interval [t0,T ], t0 < T < ∞.
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2.9 Flow Invariance

Consider the IVP

x′(t) = (Qx)(t), x(t0) = x0 ∈ F (2.67)

where F is a closed set in R
n and Q : E→ E =C([t0,∞),Rn).

Definition. The set F is said to be flow invariant with respect to Q if every solution x(t) of
(2.67) on [t0,∞) is such that x(t) ∈ F for t0 ≤ t < ∞.
A set B is called a distance set if for each x ∈ R

n, there corresponds a point y ∈ B such that
d(x,B) = |x− y|.
A function g ∈C[R2+,R+] is said to be a uniqueness function if the following holds:
If m ∈C[R+,R+] is such that m(t0) ≤ 0 and D+m(t) ≤ g(t,m(t)) whenever m(t) > 0, then
m(t) ≤ 0 for t0 ≤ t < ∞.
We shall first prove a result on flow invariance for set F .
Theorem 2.9.1. Let F ⊂ R

n be closed and distance set. Suppose further that, for each t,

(i) limh→0 1hd(x+h(Qx)(t),F) = 0, t ≥ t0 and x ∈ ∂F ;
(ii) |(Qx)(t)−(Qy)(t)| ≤ g(t, |x(t)−y(t)|), x,y∈ Ω, x∈R

n−F, y∈ ∂F and t ≥ t0, g being
the uniqueness function.

Then F is flow invariant with respect to Q.
Proof. Let x(t) be a solution of (2.67) for t ≥ t0. Assume that x(t) ∈ F for t0 ≤ t < t0+a<

∞, [t0,t0+a) is the maximal interval of existence i.e. x(t) leaves the set F at t = t0+a for
the first time. Let x(t1) �∈ F , t1 ∈ (t0+a,∞) and let y0 ∈ ∂F be such that

d(x(t1),F) = |x(t1)− y0|.
Set for t ∈ [t0,∞), m(t) = d(x(t),F) and v(t) = |x(t)− y0|. For h> 0 sufficiently small, we
have, letting x= x(t1),

m(t1+h)≤ |x(t1+h)− y0−h(Qy0)(t1)|+d(y0+h(Qy0)(t1),F)

≤ |x+h(Qx)(t1)− y0−h(Qy0)(t1)|+d(y0+h(Qy0)(t1),F)

+|x(t1+h)− x−h(Qx)(t1)|

≤ |x− y0|+hg(t1, |x− y0|)+o(h).

Setting m(t1) ≡ v(t1) > 0, we obtain

D+m(t1) ≤ g(t1,m(t1)).
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This implies, in view of the fact that g is a uniqueness function andm(t0) = 0, thatm(t)≤ 0,
t0 ≤ t < ∞. This contradicts d(x(t1),F) = m(t1) > 0. The proof is complete.
Next we consider weak flow invariance ofQ. The system (F,Q), where F ⊂R

n is closed, is
said to be weakly flow invariant provided that for all x0 ∈ F , there exists an Euler solution
x(t) of (2.67) on [t0,∞) such that x0 = x(t0) and x(t) ∈ F , t ≥ t0. In order to prove weak
invariance, we have to employ the notion of proximal normal.
Let F ⊂ R

n be a closed set. Assume that for any x ∈ R
n such that x and F are disjoint and

for any s ∈ F , there exists a z ∈ R
n such that x = s+ z. Then x− s is called the Hukuhara

difference. Suppose now that for any x ∈ R
n, there is an element s ∈ F whose distance to x

is minimal, i.e.,

|x− s| = inf
s0∈F

|x− s0|,

then s is called a projection of x onto F . The set of all such elements is denoted by ProjF(x).
The element x− s will be called the proximal normal direction to F at s. Any nonnegative
multiple ξ = t(x−s), t ≥ 0, is called the proximal normal to F at s. The set of all ξ obtained
in this way is said to be the proximal normal cone to F at s and it is denoted by NpF(s).
We can now prove the following result which offers sufficient conditions for the weak
invariance of the system (F,Q) in terms of proximal normal.
Theorem 2.9.2. Let Q satisfy the assumptions of Theorem 2.8.1. Let A be an open set
containing x(t) for all t ∈ [t0,T ]. Suppose that for any (t,z) ∈ (t0,T )×A, the proximal
aiming condition is satisfied i.e., there exists s ∈ ProjA(z) such that

〈(Qz)(t),z− s〉 ≤ 0,

where 〈·, ·) is the inner product. Then we have

d(x(t),F) ≤ d(x(t0),F), t ∈ [t0,T ].

Proof. Let xπ be one polygonal arc in the sequence converging uniformly to x, as per
definition of the Euler solution. As usual, denote its node at ti by xi, i = 0,1, . . . ,N and
x0 = x(t0). We may suppose that xπ(t) lies in set A for all t ∈ [t0,T ]. Accordingly, there
exists for each i, a point si ∈ ProjA(xi) such that

〈(Qxi)(ti),xi− si〉 ≤ 0.
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Letting K be the apriori bound on |x′π |, we calculate

d2(x1,F) ≤ |x1− s0|2, (since x0 ∈ F)

= |x1− x0|2+ |x0− s0|2+2〈x1− x0,x0− s0〉
≤ K2(t1− t0)2+d2(x0,F)+2

∫ t1
t0

〈
x′π(t),x0− s0

〉
ds

= K2(t1− t0)2+d2(x0,F)+2
∫ t1
t0

〈(Qx0)(t0),x0− s0〉ds

≤ K2(t1− t0)2+d2(x0,F),

since the inner product in the integral term is ≤ 0. The same estimates apply at any node xi
and hence

d2(xi,F) ≤ d2(xi−1,F)+K2(ti− ti−1)2.

Repeating this recursively, we get

d2(xi,F) ≤ d2(x0,F)+K2
i

∑
l=1

(tl− tl−1)2

≤ d2(x0,F)+K2μπ
i

∑
l=1

(tl− tl−1)

≤ d2(x0,F)+K2μπ(T − t0).

Consider now the sequence xπ j of polygonal arcs converging to x. Since the above estimate
holds at every node and since μπ j → 0, same K applying to each xπ j , we can deduce that in
the limit,

d(x(t),F) ≤ d(x(t0),F), t ∈ [t0,T ]

as claimed. The proof is complete.

2.10 Systems of Causal Differential Inequalities

As we have seen in earlier sections, most of the results relative to causal differential equa-
tions which depend on causal differential inequalities are proved only for the scalar case.
This includes the existence of extremal solutions as well. If we wish to extend such results
to systems of causal differential equations, we need to first prove the corresponding results
for systems of causal differential inequalities. For this purpose, we shall make use of vec-
torial inequalities freely, with the understanding that the inequalities are component-wise,
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i.e., the vectorial inequality x≤ y, x,y ∈ R
n implies that xi ≤ yi holds for each i, 1≤ i≤ n.

We need the following notion of quasi-semi monotonicity relative to the causal operator.
The operator Q : E→ E =C([t0,T ],Rn) is said to be quasi-semi monotone nondecreasing,
if for any x,y ∈ E , x≤ y and xi = yi, and for any fixed i, 1≤ i≤ n, we have

(Qix)(t) ≤ (Qiy)(t), for each i. (2.68)

and Qi is semi-nondecreasing for each i.
This concept is to be imposed on Q when we deal with systems of causal differential in-
equalities and existence of extremal solutions. As an extension to the case of systems, we
shall indicate the proof of one result corresponding to Theorem 2.2.3.
Theorem 2.10.1. Suppose that v,w ∈C1([t0,T ],Rn), Q ∈C([t0,T ],Rn) and

v′(t) ≤ (Qv)(t), w′(t) ≥ (Qw)(t), t ∈ [t0,T ], (2.69)

where the inequalities are component-wise. Assume further thatQ is quasi-semi monotone
nondecreasing in x. Then v(t0) < w(t0) implies

v(t) < w(t), t ∈ [t0,T ], (2.70)

provided one of the inequalities in (2.69) is strict.
Proof. If (2.70) is not true, then the initial condition v(t0) <w(t0), together with continuity
of v,w yields that there exists an index i, 1≤ i≤ n and a t1 > t0 such that

vi(t1) = wi(t1), v j(t1) < wj(t1), i �= j, 1≤ j ≤ n
and v j(t) < wj(t), 1≤ j ≤ n, t0 < t < t1

}
(2.71)

Suppose that the second inequality in (2.69) is strict. Using (2.71), it follows that for index
i,

v′i(t1) ≥ w′
i(t1) (2.72)

and therefore,

(Qiv)(t1) ≥ v′i(t1) ≥ w′
i(t1) > (Qiw)(t1) ≥ (Qiv)t1,

using (2.69), (2.71), (2.72) and the quasi-semimonotone nondecreasing character of Q.
This is a contradiction and hence the conclusion (2.70) is true for t ∈ [t0,T ]. The proof is
complete.
For nonstrict inequalities, we state the following result.
Theorem 2.10.2. Suppose that the conditions of Theorem 2.10.1 hold. Assume further that
for each i,

|(Qix)(t)− (Qiy)(t)| ≤ Li max
t0≤s≤t

|xi(s)− yi(s)|, 0< Li < 1.
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Then v(t0) ≤ w(t0) implies v(t) ≤ w(t), t0 ≤ t ≤ T .
For the proof, we follow the proof of Theorem 2.2.2 with wiε (t) = wi(t)+ εi, for each i,
εi > 0 and proceed with suitable modifications to get the strict inequality

w′
iε(t) > (Qiwiε )(t), t0 ≤ t ≤ T.

Now, using the arguments of Theorem 2.10.1, we can prove

v(t) < wε(t), t ∈ [t0,T ]

and since ε = (ε1, . . . ,εn) > 0 is arbitrary, we get for t ∈ [t0,T ]

v(t) ≤ w(t), t ∈ [t0,T ].

2.11 Nonlinear Variation of Parameters

We shall develop, in this section, the nonlinear variation of parameters formula and for this
purpose, we need to prove the differentiability of solutions of causal differential system
relative to the initial values. Let us consider the causal differential system

u′(t) = (Qu)(t), u(t0) = u0,

where Q is smooth enough to guarantee existence, uniqueness and continuous dependence
with respect to the initial values and parameters. Before we proceed, we state the following
integral mean value theorem which is needed.
Theorem 2.11.1. Let the Frechet derivative Qu of Q exist and be continuous. Then for
u1, u2 ∈ J = [t0,t0+ η ], we have

(Qu1)(t)− (Qu2)(t) =

∫ 1
0
Q [λu1+(1−λ )u2]u (t)(u1−u2)(t)dλ .

We begin with the following theorem, which establishes the continuity and differentiability
of the solutions with respect to initial values.
For convenience, we rewrite the causal differential system in the form{

u′(t) = (Qt0u)(t)
u(t0) = u0

(2.73)

where Qt0 ∈C[E,E] denotes a causal operator.
Theorem 2.11.2. Let u(t,t0,u0) be the unique solution of (2.73) existing on some interval
J0 = [t0,t0+ η ]. Assume that the Frechet derivative (Qt0u)(u) ≡ L(t,t0,u0) exists and is
continuous on E . Then,
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(a) φ(t,t0,u0) = ∂u(t,t0,u0)
∂u0

exists and is a solution of

z′(t) = L(t,t0,u0)(z) such that φ(t0,t0,u0) = I, (2.74)

where L(t,t0,u0) is a linear operator and I is the identity matrix;
(b) ψ(t,t0,u0) = ∂u(t,t0,u0)

∂ t0
exists and is a solution of

y′(t) = L(t,t0,u0)(y)− (Q̂t0u)(t),

y(t0) = −(Qt0u)(t0) (2.75)

where (Q̂t0)(t) is the term in (Qu)(t) that depends on the initial time t0;
(c) the functions φ(t,t0,u0) and ψ(t,t0,u0) satisfy the relation

ψ(t,t0,u0)+ φ(t,t0,u0)(Qt0u)(t0) =

∫ t
t0
R(t,s; t0,u0)(Q̂t0u)(s)ds, (2.76)

where R(t,s;t0,u0) is the solution of the IVP

∂R(t,s;t0,u0)
∂ s

+L(t,t0,u0)(R(t,s;t0,u0)) = 0, (2.77)

R(t,t;t0,u0) = I, t0 ≤ s≤ t and R(t,t0;t0,u0) = φ(t,t0,u0).

Proof. Under the assumptions on Q, it is clear that solutions u(t,t0,u0) of (2.73) exist,
are unique and continuous in t,t0 and u0 on some interval. Consequently, the operator
L(t,t0,u0) is continuous in t,t0, and u0 on that interval. Therefore, the solutions of the
linear initial-value problems (2.74) and (2.75) exist and are unique over the same interval.
To prove (a), let ek = (e1k ,e

2
k , . . . ,e

n
k) be the vector such that e

j
k = 0 if j �= k and ekk = 1.

Then for some k, ũ(t,h) = u(t,t0,u0+ ekh) is defined on J0 and limh→0 ũ(t,h) = u(t,t0,u0)
uniformly on J0. Let u(t) = u(t,t0,u0) and u(t,h) = ũ(t,h)− u(t). Then differentiating
u(t,h) with respect to t and using Theorem 2.11.1, it follows that

d
dt
u(t,h) = ũ′(t,h)−u′(t)

= (Qt0 ũ−Qt0u)(t)

=

∫ 1
0

[Qt0(λ ũ+(1−λ )u)]u(t)dλ (ũ(t,h)−u(t))
≡ L(t,t0,u0,h)(ũ(t+h)−u(t)).

Dividing by h, h �= 0,
u′(t,h)
h

= L(t,t0,u0,h)
u(t,h)
h

,

and since
u(t0,h)
h

=
u(t0,t0,u0+ ekh)−u(t0,t0,u0)

h
= ek,
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it is clear that u(t,h)h is a solution of the following initial-value problem{
z′(t) = L(t,t0,u0,h)z,
z(t0) = ek,

(2.78)

where L(t,t0,u0,h) =
∫ 1
0 [Qt0(λ ũ+(1−λ )u)]u(t)dλ . Since limh→0 ũ(t,h) = u(t) uniformly

on J0, continuity of (Qt0u)u implies that limh→0L(t,t0,u0,h) = L(t,t0,u0) uniformly on J0.
Also observe that L(t,t0,u0,h) is linear and hence we conclude that (2.78) admits a unique
solution, which is continuous with respect to h for fixed t,t0,u0.
Next, consider the family of initial value problems defined by (2.78), with a small pa-
rameter h, for k = 1,2, . . . ,n. Since the solutions corresponding to this family of ini-
tial value problems are all continuous functions of h for fixed t,t0,u0, it follows that
limh→0

u(t,h)
h = ∂

∂u0
u(t0,u0), which is a solution of (2.74) with ∂

∂u0
u(t0,t0,u0) = I. Also,

in view of assumptions on L(t,t0,u0), it is clear that ∂
∂u0
u(t,t0,u0) is also continuous with

respect to its arguments.
To prove (b), define û(t,h) = u(t,t0+h,u0). Then, differentiating with respect to t we have

u(t,h) = û(t,h)−u(t)
u′(t,h) = (Qt0+hû)(t)− (Qt0u)(t)

= (Qt0+hû)(t)− (Qt0+hu)(t)− (Qt0u)(t0+h)

=
∫ 1
0

[Qt0+h(λ û+(1−λ )u)]u(t)dλ (û(t,h)−u(t))− (Qt0u)(t0+h)

≡ L(t,t0,u0,h)(û(t,h)−u(t))− (Q̂t0u)(t).

It is clear that u(t,h)h is solution of the following initial value problem{
y′(t) = L(t,t0,u0,h)(z)− (Q̂t0y)(t)
y(t0+h) = u(t0+h,h)

h = − 1
h
∫ t0+h
t0 (Qt0u)(s)ds

(2.79)

where L(t,t0,u0,h) =
∫ 1
0 [Qt0+h(λ û+(1−λ )u)]u(t)dλ .

Noting that limh→0 1h (Qt0u)(s)ds = (Qt0u)(t0) and using an argument similar to the argu-
ment in the proof of (a), we see that ∂

∂ t0
u(t,t0,u0) exists, is continuous in its arguments,

and is a solution of (2.75).
The result in (c) follows from the fact that φ(t,t0,u0) and ψ(t,t0,u0) are solutions of (2.74)
and (2.75), respectively, and the fact that R(t,s;ty0,u0) is the solution of the IVP (2.77),
which is a linear equation. observe that (2.74) is the homogeneous linear equation corre-
sponding to (2.75).
Having established the continuity and differentiability of the solutions of (2.73) with re-
spect to initial values, we now proceed to obtain the nonlinear variation of parameters
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formula for the solutions r(t,t0,u0) of the perturbed system{
r′(t) = (Qt0r)(t)+ (Pt0r)(t)
r(t0) = u0,

(2.80)

where Pt0 ∈C[E,E].
Theorem 2.11.3. Suppose the hypotheses of Theorem 2.11.2 hold. Let r(t,t0,u0) be any
solution of (2.80) existing on J0. Then r(t,t0,u0) satisfies the integral equation

r(t,t0,u0) = u(t,t0,u0)+

∫ t
t0

∫ t
s
R(s,t;t0,u0)(Q̂su)(σ)dσds

+

∫ t
t0

φ(t,s,r(s))(Pt0 r)(s)ds (2.81)

where R(s,t;t0,u0) is the solution of the IVP (2.77).
Proof. Setting p(s) = u(t,s,r(s)) where r(s) = r(s,t0,u0), we have

p′(s) =
∂u(t,s,r(s))

∂ t0
+

∂u(t,s,r(s))
∂u0

r′(s)

= ψ(t,s,r(s))+ φ(t,s,r(s))[(Qt0 r)(s)+ (Pt0r)(s)].

Integrating from t0 to t, we have

p(t)− p(t0) =

∫ t
t0

[ψ(t,s,r(s))+ φ(t,s,r(s))(Qt0 r)(s)]ds

+

∫ t
t0

φ(t,s,r(s))(Pt0 r)(s)ds

=

∫ t
t0

∫ t
s
R(t,s;t0,u0)(Q̂su)(σ)dσds

+

∫ t
t0

φ(t,s,r(s))(Pt0 r)(s)ds.

Thus, using the fact that

u(t,t,r(t)) = r(t,t0,u0) and u(t,t0,r(t0)) = u(t,t0,u0),

we have

r(t,t0,u0) = u(t,t0,u0)+

∫ t
t0

∫ t
s
R(s,t;t0,u0)(Q̂su)(σ)dσds

+

∫ t
t0

φ(t,s,r(s))(Pt0 r)(s)ds,

completing the proof.



Basic Theory 59

2.12 Integral Equations of Sobolev Type

We have so far investigated causal functional and differential equations utilizing the general
concept of causal operator that includes several popularly known dynamic equations and
we shall continue to study the same in the entire monograph. However, we shall discuss
in the next two sections what is known as Sobolev type Volterra integral and differential
equations in a special form since these special cases themselves are very new types of
dynamic systems which are not yet known and popular. Moreover, using the causal operator
framework creates more confusion and the results would not be clearer.
In this section we shall consider Volterra type Sobolev integral equations and the next
section contains differential equations. We shall indicate how one could employ the causal
operator for these equations that we plan to consider so that it can pave the way for further
work in this area. For example,

u(t,x) = (Qu)(t,x),

u′(t,x) = (Qu)(t,x), u(t0,x) = u0(t0,x),
d
dt

=′

where

u(t,x) = (Qu)(t,x) = u0(t,x)+

∫ t
t0
K(t,x,s,u(s,x),u(x,s))ds

and

u′(t,x) = (Qu)(t,x) = f (t,x,u(t,x),u(x,t)), u(t0,x) = u0(t0,x).

Consider the following system of integral equations:

u(t,x) = u0(t,x)+
∫ t
t0
K(t,x,s,u(s,x),u(x,s))ds, (2.82)

where u0(t,x) ∈C[J× J,Ω], K ∈C[J× J× J×Ω×Ω,Ω], J = [t0,t0+a] ⊂ R and Ω is an
open subset of R

n. For convenience, we list these needed assumptions:

(A1) |K(t,x,s,u,v)| ≤M for all (t,x,s,u,v) ∈ J× J× J×Ω×Ω;
(A2) lim

t1→t2
x1→x2

[sup{∫I |K(t1,x1,s,u(s,x1),u(x1,s)) − K(t2,x2,u(s,x2),u(x2,s))|ds :

u(s,x),u(x,s) ∈C[J× J,B]}] = 0 for every set B⊆ Ω and for every interval I ⊆ J.

We also use Bε(u(t0,x0)) to denote the ball in R
n of radius ε centered at u(t0,x0).

We now prove the following existence result.
Theorem 2.12.1. Let K ∈C[J× J× J×Ω×Ω,Ω], u0(t,x) ∈C[J× J,Ω], and suppose the
conditions (A1) and (A2) are satisfied. Then there exists a solution u(t,x) for the problem
(2.82) on J0× J0 where J0 = [t0,t0+ γ] for some γ > 0.
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Proof. Set η = sup{u∈ Bε(u0(t0,x0))⊆ Ω : ε > 0}. Since u0(t,x) is uniformly continuous
on J× J, there exists a δ1 > 0 such that

|u0(t,x)−u0(t0,x0)| < η/2 whenever |t− t0| < δ1 and |x− x0| < δ1. (2.83)

Let γ =min{a,δ1,η/2M}, and let J0 = [t0,t0+ γ]. Define A⊆C[J0× J0,Ω] by

A= {φ(t,x) ∈C[J0× J0,Ω] : sup
t,x∈J0

|φ(t,x)−u0(t,x)| ≤ η/2}.

We note that φ(x,t) also satisfies |φ(x,t)−u0(x,t)|< η/2. In other words, A can be defined
as

A=

{
φ ∈ [J0× J0,Ω] : sup

t,x∈J0
|φ(t,x)−u0(t,x)| ≤ η/2, sup

t,x∈J0
|φ(x,t)−u0(x,t)| ≤ η/2

}
.

Clearly A is closed, bounded, and convex.
For any φ in A define the function Tφ by the relation

(Tφ)(t,x) = u0(t,x)+

∫ t
t0
K(t,x,s,φ(s,x),φ(x,s))ds. (2.84)

We now apply the Schauder fixed-point theorem to assert the existence of a fixed point of
T in A. If φ ∈ A, then

|(Tφ)(t,x)−u0(t,x)| ≤
∫ t
t0
|K(t,x,s,φ(s,x),φ(x,s))|ds ≤M(t− t0) ≤ η/2.

Thus TA⊆ A.

We now prove TA is uniformly bounded and equicontinuous.
For any φ ∈ A, we have, for (t,x) ∈ J0× J0,

|(Tφ)(t,x)−u0(t0,x0)| ≤ |(Tφ)(t,x)−u0(t,x)+u0(t,x)−u0(t0,x0)| ≤ η

by (2.83) and (2.84), which shows that TA is uniformly bounded.
For t1,t2,x1,x2 ∈ J0, t1 ≥ t2 and φ ∈ A, we get

|(Tφ)(t1,x1)− (Tφ)(t2,x2)| ≤ |u0(t1,x1)−u0(t2,x2)|

+

∫ t1
t0

|K(t1,x1,s,φ(s,x1),φ(x1,s))−K(t2,x2,s,φ(s,x2),φ(x2,s))|ds

+
∫ t1
t2

|K(t1,x1,s,φ(s,x1),φ(x1,s))|ds = I1+ I2+ I3, say.

Since u0(t,x) is uniformly continuous on J0× J0 by a proper choice of δ (say δ ∗
1 ), I1 can

be made less than ε/3. I2 can be made less than ε/3 by the assumption A2 and by a proper
choice of δ ∗

2 ; I3 can be made less than ε/3 by assumption A1 and by a proper choice of δ ∗
3 .
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Consequently, if max(|t1− t2|, |x1− x2|) <min(δ ∗
1 ,δ ∗

2 ,δ ∗
3 ), then

|(Tφ)(t1,x1)− (Tφ)(t2,x2)| < ε.

This implies that the set TA is an equicontinuous family and therefore the closure of {TA}
is compact.
Let {un(t,x)} ⊆ A be a sequence converging to u(t,x). It is easy to see that un(x,t) is also
a sequence converging to u(x,t). Since K is continuous, we have

K(t,x,s,un(t,x),un(x,t)) → K(t,x,s,u(t,x),u(x,t)).

Using the bounded convergence theorem, it then follows that∫ t
t0
K(t,x,s,u(s,x),u(x,s))ds = lim

n→∞

∫ t
t0
K(t,x,s,un(s,x),un(x,s))ds.

Hence Tun → Tu, which shows T is continuous. By the Schauder fixed-point theorem, T
has a fixed point in A. Hence the proof is complete.
We shall next develop the theory of integral inequalities.
Theorem 2.12.2. Assume that K ∈ C[J × J × J × R

n × R
n,Rn]; u,v ∈ C[J × J,Rn];

K(t,x,s,u,v) is monotone nondecreasing in u,v for each (t,x,s) ∈ J × J × J; and for
(t,x) ∈ J× J,

u(t,x) ≤ u0(t,x)+

∫ t
t0
K(t,x,s,u(s,x),u(x,s))ds (2.85)

v(t,x) ≥ u0(t,x)+

∫ t
t0
K(t,x,s,v(s,x),v(x,s))ds. (2.86)

Then u(t0,x) < v(t0,x) implies u(t,x) < v(t,x) for (t,x) ∈ J× J, provided that one of the
inequalities (2.85) and (2.86) is strict.
Proof. Suppose that one of the inequalities (2.85) and (2.86) is strict. Then if the conclusion
is not true, the set

Z = ∪ni=1{(t,x) ∈ J× J : ui(t,x) ≥ vi(t,x)orui(x,t) ≥ vi(x,t)}

is nonempty. Let Zt be the projection of Z on the t-axis, and let t1 = infZt . Clearly t1 > t0.
It follows that there is an index j, 1≤ j ≤ n, such that

ui(s,x) < vi(s,x) for t0 < s< t1, t0 ≤ x≤ t0+a, (2.87)

ui(x,s) < vi(x,s) for t0 ≤ x≤ t0+a, t0 < s< t1, (2.88)

for i= 1,2, . . . ,n, and either

u j(t1,x) ≤ v j(t1,x),
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or

u j(x,t1) ≤ v j(x,t1),

for all x ∈ J. Consequently, there is an x1 ∈ J such that either u j(t1,x1) = v j(t1,x1) or
u j(x1,t1) = v j(x1,t1).
Consider the case u j(t1,x1) = v j(t1,x1). Using now (2.85), (2.86), the fact that K is nonde-
creasing, and the relations (2.87), (2.88), we get

u j(t1,x1) ≤ u j0(t1,x1)+

∫ t1
t0
Kj(t1,x1,s,u(s,x1),u(x1,s))ds

≤ u j0(t1,x1)+

∫ t1
t0
Kj(t1,x1,s,v(s,x1),v(x1,s))ds

< v j(t1,x1),

which leads to a contradiction.
To consider the other situation, we first observe that the inequalities (2.85) and (2.86) can
also be written in the form

u(x,t) ≤ u0(x,t)+

∫ x
x0=t0

K(x,t,s,u(s,t),u(t,s))ds, (2.89)

v(x,t) ≥ v0(x,t)+

∫ x
x0=t0

K(x,t,s,v(s,t),v(t,s))ds. (2.90)

As before, using (2.89), (2.90) together with (2.87), (2.88) and the monotonicity of K, we
obtain

u j(x1,t1) ≤ u0 j(x1,t1)+
∫ x1
x0
Kj(x1,t1,s,u(s,t1),u(t1,s))ds

≤ u0 j(x1,t1)+

∫ x1
x0
Kj(x1,t1,s,v(s,t1),v(t1,s))ds< v j(x1,t1).

This contradicts the case u j(x1,t1) = v j(x1,t1). Consequently Z is empty and the proof is
complete.
If one of the inequalities (2.85), (2.86) is not assumed strict, the conclusion of Theorem
2.12.2 fails to hold. However, if K satisfies a one-sided Lipschitz condition, we get the
following result.
Theorem 2.12.3. Let the assumption (i) of Theorem 2.12.2 hold. Suppose further that

K(t,x,s,u1,v1)−K(t,x,s,u2,v2) ≤ A[(u1−u2)+ (v1− v2)] (2.91)

whenever u1 ≥ u2, v1 ≥ v2, where A is an n× n matrix such that ai j ≥ 0, i �= j. Then
u(t0,x) ≤ v(t0,x) for x ∈ J implies u(t,x) ≤ v(t,x) on J× J.



Basic Theory 63

Proof. Let ṽ(t,x) = v(t,x)+ εe2A(t+x), where ε > 0 is a sufficiently small vector. Then by
(2.87),

ṽ(t,x) ≥ u0(t,x)+

∫ t
t0
K(t,x,s,v(s,x),v(x,s))ds+ εe2A(t+x).

Because of the condition on the matrix A, it is clear that εe2A(t0+x) > 0. Consequently, we
have

ṽ(t,x) > u0(t,x)+

∫ t
t0
K(t,x,s, ṽ(s,x), ṽ(x,s))ds. (2.92)

By Theorem 2.12.2, we now get

u(t,x) < ṽ(t,x) = v(t,x)+ εe2A(t+x) on J× J.
Taking the limit as ε → 0, we conclude that u(t,x) ≤ v(t,x) on J× J, which proves the
stated result.
We only prove the existence of maximal solution for (2.82). The existence of minimal
solution can be proved similarly.
Theorem 2.12.4. Let K and u0 be as in Theorem 2.12.1 and suppose K(t,x,s,u,v) is
monotone nondecreasing in u and v for each (t,x,s) ∈ J× J× J. Then there exists a γ > 0
so that the maximal solution to (2.82) exists on [t0,t0+ γ]× [t0,t0+ γ].
Proof. Let η and δ1 be as in Theorem 2.12.1. Choose δ = min{a,δ1,η/4M}. As before,
set

A=

{
φ(t,x) ∈C[J0× J0,Ω] : sup

(t,x)∈ j0×J0
|φ(t,x)−u0(t,x)| ≤ η/2

}
,

where J0 = [t0,t0 + γ]. We define Tn as Tnφ = Tφ + ε/n, for n = 1,2, . . . , where ε > 0
is arbitrarily small vector and T is the same map defined in (2.84). The continuity of Tn
follows from the continuity of T . Further,

|(Tnφ)(t,x)−u0(t,x)| = ε
n

+

∫ t
t0
K(t,x,s,φ(s,x),φ(x,s))ds

≤
∣∣∣εn
∣∣∣+M(t− t0) ≤ η

4
+

η
4
≤ η
2

.

Thus Tn ⊆ A for each n.
As in Theorem 2.12.1, it can be shown that TnA is equicontinuous at each (t,x) ∈ J0× J0.
Thus Tn has a fixed point φn. Let m> n. Consider

φn(t,x) = u0(t,x)+
ε
n

+
∫ t
t0
K(t,x,s,φn(s,x),φn(x,s))ds

> u0(t,x)+
ε
m

+

∫ t
t0
K(t,x,s,φn(s,x),φn(x,s))ds,

φm(t,x) = u0(t,x)+
ε
m

+

∫ t
t0
K(t,x,s,φm(s,x),φm(x,s))ds.



64 Theory of Causal Differential Equations

Also φn(t0,x) = u0(t0,x) + ε/n > u0(t0,x) + ε/m = φm(t0,x). Thus by Theorem 2.12.2,
φn(t,x) > φm(t,x) for (t,x) ∈ J0× J0 which shows that {φn} is monotone in n.
Now consider {φn(t,x)}. Since

|φn(t,x)−u0(t0,x0)| = |Tnφn(t,x)−u0(t0,x0)|
= |(Tφn)(t,x)+ ε/n−u0(t0,x0)|
= |(Tφn)(t,x)−u0(t,x)|

+|u0(t,x)−u0(t0,x0)|+ |ε/n|
< η/2+ η/4+ η/4= η .

This proves {φn} is uniformly bounded. Also,

|φn(t1,x1)−φn(t2,x2)| = |(Tnφn)(t1,x1)− (Tnφn)(t2,x2)|
= |(Tφn)(t1,x1)− (Tφn)(t2,x2)|.

This shows that {φn} is equicontinuous at each (t,x) ∈ J0× J0. Hence by Ascoli’s theorem
there exists a uniformly convergent subsequence {φnk} of {φn}. The monotonicity of the
sequence now implies that the whole sequence {φn} converges uniformly to ψ . Conse-
quently as n→ ∞, the bounded convergence theorem gives∫ t

t0
K(t,x,s,φn(s,x),φn(x,s))ds→

∫ t
t0
K(t,x,s,ψ(s,x),ψ(x,s))ds,

and this shows ψ is a fixed point of T .
If u(t,x) is any other fixed point of T , then

u(t,x) = u0(t,x)+

∫ t
t0
K(t,x,s,u(s,x),u(x,s))ds,

φn(t,x) = u0(t,x)+
ε
n

+

∫ t
t0
K(t,x,s,φn(s,x),φn(x,s))ds

> u0(t,x)+
∫ t
t0
K(t,x,s,φn(s,x),φn(x,s))ds,

and u(t0,x) = u0(t0,x) < u0(t0,x) + ε/n = φn(t0,x). Thus by Theorem 2.12.2, u(t,x) <

φn(t,x) for (t,x) ∈ J0× J0. This implies that u(t,x) ≤ limn→∞ φn(t,x) = ψ(t,x) for (t,x) ∈
J0× J0. Thus ψ is the maximal solution to (1.1) on J0× J0.
Finally, we give a comparison theorem.
Theorem 2.12.5. Let m ∈ C[J× J,Ω], K ∈ C[J× J× J×Ω×Ω,Ω], and K(t,x,s,u,v) be
monotone nondecreasing in u,v for each (t,x,s) ∈ J× J× J and for (t,x) ∈ J× J. Let

m(t,x) ≤ u0(t,x)+

∫ t
t0
K(t,x,s,m(s,x),m(x,s))ds.
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Let r(t,x) be the maximal solution of the equation (2.82) on j× J. Then m(t,x) ≤ r(t,x)
on J× J.
Proof. Let u(t,x,ε) be any solution of the integral equation

u(t,x,ε) ≡ u0(t,x)+ ε +
∫ t
t0
K(t,x,s,u(s,x,ε),u(x,s,ε))ds

for sufficiently small ε > 0. Then by Theorem 2.12.2 we have

m(t,x) < u(t,x,ε) on J× J.
Since limε→0 u(t,x,ε) = r(t,x), where r(t,x) is the maximal solution of (2.82), the stated
result follows.

2.13 Differential Equations of Sobolev Type

In an embedding method for solving linear Fredholm integral equations introduced by
Sobolev [14], the solution of the following differential equation with initial value for the
resolvent kernel is involved

Kx(t,y,x) = K(t,x,x)K(x,y,x),

K(t,y,0) = φ(t,y), 0≤ t, y,x≤ a.
This differential equation is unusual and this is the basis for the study of integral and dif-
ferential equations of Sobolev type in a similar form. As pointed out in Section 2.12, we
shall concentrate to discuss the IVPs for different equations of Sobolev type.
We consider equations of the form

u′(t,x) = f (t,x,u(t,x),u(x,t)), u(t0,x) = u0(x),
(
′ =

d
dt

)
, (2.93)

where u0 ∈C[J,Rn], J = [t0,t0+a] and f ∈C[J×J×R
n×R

n×R
n]. We need the following

assumptions:

(A1)

| f (t,x,u,v)| ≤M for all (t,x,u,v) ∈ J× J×R
n×R

n;

(A2)

lim
x1→x2

(
sup

φ

{∫
I
| f (s,x1,φ(s,x1),φ(x1,s))− f (s,x2,φ(s,x2),φ(x2,s))|ds :

φ ∈C[J× J,Rn]
})

= 0;
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(A3)

lim
x1→x2

(
sup

φ

(
sup

ψ

{∫
I
| f (s,x1,φ(s,x1),ψ(x1,s))− f (s,x2,φ(s,x2),ψ(x2,s))|ds :

φ ,ψ ∈C[J× J,Rn]
}))

= 0;

(A4)

| f (t,x,u,v)− f (t,x,u,v)| ≤ L|u−u|.

We now prove the following existence result.
Theorem 2.13.1. Suppose that u0 ∈ C[J,Rn], f ∈ C[J×,J×R

n×R
n,Rn] satisfying the

assumptions (A1) and (A2). Then a solution to (2.93) exists on [t0,t0+α] for some α > 0.
Proof. Since u0 is continuous on J, u0(J) is bounded and uniformly continuous. Thus
∃N > 0 such that

|u0(x)−u0(x)| < N for every x,x ∈ J.

Let α =min{a,N/M} and let Jα = [t0,t0+ α]. Define A⊆C[J0× J0,Rn] by
A= {φ ∈C[Jα × Jα ,Rn] : sup

t,x∈Jα
|φ(t,x)−u0(x)| ≤ N}.

Clearly A is closed, bounded and convex.
For any φ ∈ A, define the function Tφ by

(Tφ)(t,x) = u0(x)+

∫ t
t0
| f (s,x,φ(s,x),φ(x,s))|ds.

Then

|(Tφ)(t,x)−u0(x)| ≤
∫ t
t0
| f (s,x,φ(s,x),φ(x,s))|ds ≤ αM ≤ N.

Thus TA⊆ A. Also |(Tφ)(t,x)| ≤ supx∈Jα |u0(x)|+N. Thus TA is uniformly bounded.
We show that TA is equicontinuous. Let ε > 0 be given, and let t1,x1,t2,x2 ∈ Jα . Then

|(Tφ)(t1,x1)− (Tφ)(t2,x2)|
≤ |u0(x1)−u0(x2)|+

∫ t2
t1

| f (s.x2,φ(s,x2),φ(x2,s))|ds

+

∫ t1
t0

| f (s,x2,φ(s,x2),φ(x2,s))− f (s,x1,φ(s,x1),φ(x1,s))|ds
= I1+ I2+ I3.

Since u0(x) is uniformly continuous, we can choose δ1 so that |x1− x2| < δ1 ⇒ I1 < ε/3.
Also I2 ≤ (t2− t1)M; thus if |t2− t1| < ε/3M = δ2, I2 < ε/3. Now using (A2) we choose
δ3 so that |x1− x2| < δ3⇒ I3 < ε/3.
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Thus if max{|t1− t2|, |x1− x2|} <min{δ1,δ2,δ3} = δ ,

|(Tφ)(t1,x1)− (Tφ)(t2,x2)| < ε.

Thus TA is equicontinuous and TA is compact.
Now let {φn} ∈ A be a sequence converging to ψ . Since f is continuous,∫ t

t0
f (s,x,φn(s,x),φn(x,s))ds→

∫ t
t0
f (s,x,ψ(s,x),ψ(x,s))ds.

Thus Tφn → Tψ , and therefore T is continuous. Now applying the Schauder fixed point
theorem, the proof is complete.
Our next result provides conditions for the extension of solutions to (2.93).
Theorem 2.13.2. Let u0 ∈ C[J,Rn] and f ∈ C[J × J×R

n ×R
n,Rn], and suppose that

assumptions (A1), (A3) and (A4) hold. Then any solution u of (2.93) which exists on
Jα × Jα can be extended to Jβ × Jβ , where β =min(2α,α).
Proof. Let u be a solution of (2.93). Let γ =min(a/2,α). Restrict u to Jγ × Jγ .
Consider the equation

U ′(t,x) = F(t,x,U(t,x),U(x,t)), U(t0,x) =U0(x), (2.94)

where

U0(x) = (u(t0+ γ,x),u0(x+ γ)),

and

F(t,x,U,W ) = ( f (t+ γ,x,u1,w2), f (t,x+ γ,w1,u2)),

where

U = (u1,u2), W = (w1,w2) with ui,wi ∈ R
n for i= 1,2.

It is clear that U0 ∈ C[Jγ ,R2n] and that F ∈ C[Jγ × Jγ ×R
2n×R

2n,R2n], and it is easy to
verify that

|U0(x)−U0(x)| ≤
√
10N and |F(t,x,V,W )| ≤

√
2M

for t,x,x ∈ Jγ . Thus there exists a solutionU(t,x) = (u1(t,x),u2(t,x)) to (2.94) on Jβ × Jβ ,
where β =min(γ,

√
5N/M) = γ .

Note that u′1(t,x) = f (t + γ,x,u1(t,x),u2(x,t)), u′2(t,x) = f (t,x+ γ), u2(x,t),u1(x,t) and
u1(x0,s) ≡ u(x0+ γ,s).
Now let m(t) = |u2(t,x0)−u(t,x0+ γ)|. Then m(0) = 0, and by assumption (A4)

m′(t) ≤ | f (t,x0+ γ,u2(t,x0),u1(x0,t))− f (t,x0+ γ,u(t,x0+ γ),u(x0+ γ,t))| ≤ Lm(t).
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Thus m(t) ≡ 0, and so u2(t,x0) ≡ u(t,x0+ γ).
Now consider the equation

ũ′(t,x) = f̃ (t,x, ũ(t,x), ũ(x,t)), ũ(t0,x) = u2(t0+ γ,x), (2.95)

where f̃ is defined by f̃ (t,x,u,w) = f (t+ γ,x+ γ,u,w). Using Theorem 2.13.1, we con-
clude that there exists a solution ũ(t,x) to (2.95) on Jγ × Jγ , and using (A4), as above we
find that ũ(t,x0) ≡ u1(t,x0+ γ).
Now define the function u(t,x) on Jβ × Jβ as follows:

u(t,x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(t,x), t,x ∈ Jγ ,
u1(t− γ,x), t ∈ [t0+ γ,t0+ β ], x ∈ Jγ ,
u2(t,x− γ), x ∈ [t0+ γ,t0+ β ], t ∈ Jγ ,
ũ(t− γ,x− γ), t,x ∈ [t0+ γ,t0+ β ].

We need only establish that u is an extension of u. We verify one case: suppose that
t ∈ [t0+ γ,t0+ β ], x ∈ Jγ ; then

u′1(t,x) = u′1(t− γ,x) = f (t,x,u1(t− γ,x),u2(x,t− γ)) = f (t,x,u(t,x),u(x,t)).

The other cases are similar. Thus u extends the solution u to Jβ × Jβ .
Remark. The above theorem can be used to extend solution of (2.93) to J× J as long as
a< +∞. One can easily see that if α ≥ a/2, then the value of β in Theorem 2.13.2 is a. For
values of α < a/2 one needs only to repeat the above argument a finite number of times to
extend u to J× J.
Corollary 2.13.1. Let u0 and f be as in Theorem 2.13.2. Then solutions to (2.93) can be
extended to [t0,t0+a]× [t0,t0+a] as long as a is finite.
We shall next develop the theory of differential inequalities. Consider the following system
of differential inequalities:

D−u(t,x) ≤ f (t,x,u(t,x),u(x,t)), (2.96)

D−v(t,x) ≥ f (t,x,v(t,x),v(x,t)), (2.97)

where

D−v(t,x) = liminf
h→0−

[
v(t+h,x)− v(t,x)

h

]
.

Definition 2.13.1. A function f (t,x,u,v) ∈C[J×J×R
n×R

n,Rn] is said to be quasimono-
tone nondecreasing where u,v ∈ C[J× J,Rn] whenever fi(t,x,u,v) ≤ fi(t,x,u,v), where
ui ≤ ui and u j = u j for every i, j = 1,2, . . . ,n.
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Theorem 2.13.3. Let f be (i) quasimonotone nondecreasing in u(t,x) and nondecreasing in
u(x,t) on J×J. Then if further if one of the inequalities above is strict and u(t0,x) < v(t0,x),
then u(t,x) < v(t,x) on J× J.
Proof. If the conclusion is not true, consider the set Z(t,x) = {(t,x)|u(t,x)≥ v(t,x),u(x,t ≥
v(x,t))}, which is nonempty. Let Zt be the projection of Z on the t axis. Let t1 = infZt .
Certainly t1 > t0. It follows that there is an index j, 1≤ j ≤ n, such that for i= 1,2, . . . ,n

ui(s,x) < vi(s,x) for s,x ∈ [t0,t1]× [t0,t0+a],

ui(x,s) < vi(x,s) for x,s ∈ [t0,t0+a]× [t0,t1],

and either

u j(t1,x) ≤ v j(t1,x)
or

u j(x,t1) ≤ v j(x,t1)
∀x ∈ J. Consequently there is an x1 ∈ J such that either

u j(t1,x1) = j j(t1,x1) (2.98)

or

u j(x1,t1) = j j(x1,t1). (2.99)

Let x1 be the minimum value of x for which (2.98) or (2.99) happens. Certainly x1 > t0.
If (2.98) happens, then

D−u j(t1,x1) = liminf
h→0−

u j(t1+h,x1)−u j(t1,x1)

> liminf
h→0−

v j(t1),+h,x1)− v j(t1,x1)
h

= D−v j(t1,x1).

But by hypothesis

D−u j(t1,x1) ≤ f j(t1,x1,u(t1,x1),u(x1,t1))

≤ f j(t1,x1,v(t1,x1),v(x1,t1)) <D−v j(t1,x1),

which leads to a contradiction.
If (2.99) happens, we have u j(x1,t1) = v j(x1,t1). Let x1 = t̃, t1 = x̃, i.e., u j(t̃, x̃) = v j(t̃, x̃)
and u j(t̃+h, x̃) < v j(t̃+h, x̃) for h< 0, by definition of x1 and t1. Therefore

D−u j(t̃, x̃) = liminf
h→0−

u j(t̃+h, x̃)−u j(t̃, x̃)
h
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> liminf
h→0−

v j(t̃+h, x̃)− v j(t̃, x̃)
h

=D−v j(t1,x1).

But by hypothesis

D−u j(t̃, x̃) ≤ f j(t̃, x̃.u(t̃, x̃),u(x̃, t̃))

≤ f j(t̃, x̃,v(t̃, x̃),v(x̃, t̃)) < D−v j(t̃, x̃),

whence a contradiction, and the theorem is complete.
If one of the inequalities (2.96), (2.97) is not assumed strict, the conclusion of theorem
2.13.3 fails to hold. However, if f satisfies a one-sided Lipschitz condition, we get the
following result.
Theorem 2.13.4. Let the assumption (i) of Theorem 2.13.3 hold. Suppose further that

f (t,x,v1,w1)− f (t,x,v2,w2) ≤ L[(v1− v2)+ (w1−w2)]. (2.100)

Whenever v1 ≥ v2, w1 ≥ w2. Then u(t0,x) ≤ v(t0,x) for x ∈ J implies u(t,x) ≤ v(t,x) on
J× J.
Proof. Let ṽ(t,x) = v(t,x)+εe3L(t+x) where ε > 0 is a sufficiently small vector in R

n. then
ṽ′(t,x) = v′(t,x)+3εLe3L(t+x). That is,

ṽ′(t,x) = f (t,x,v(t,x),v(x,t))+3εLe3L(t+x)

≥ f (t,x, ṽ(t,x), ṽ(x,t))+ εLe3L(t+x).

Consequently, we have

ṽ′(t,x) > f (t,x, ṽ(t,x), ṽ(x,t)). (2.101)

We now get u(t,x) < ṽ(t,x) on J×J. Taking the limit as ε → 0. we conclude u(t,x)≤ v(t,x)
on J× J, which provides the stated result.

2.14 Notes and Comments

The basic results presented in this chapter are new in the general setup of causal differen-
tial equations and causal functional equations. For special cases of Sec. 2.2, see Caljuk
[15], Gripenberg, Londen and Staffans [16], Lakshmikantham and Mohana Rao [17],
Lakshmikantham and Leela [4], Lakshmikantham, Leela and Martynyuk [18], Mamedov,
Asherov and Atdaev [19], MeNabb and Weir [20], Nohel [21], Sumin [22, 23], Volterra
[24] and Zhukovskii [25].
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For existence results, see Corduneanu [2]. See also Corduneanu [26]-[1]. For existence
results for functional differential equations and integro-differential equations, see Driver
[27], Azbelev [28]-[29], Azbelev et al [30]-[31], Brandi and Ceppitelli [32], Burton [33,
34], Hale [35], Miller [36], Hara and Miyazaki [37], Kolmanovskii Myshkis [38], Kwapisz
[39]-[40], Lakshmikantham and Mahana Rao [17], Li [41]-[42], Meehan and ORegan [43],
Oguztorelli [44], oRegan [45], Staffans [46] and Zhivotovskii [47]. Euler solutions and flow
invariance are based on the corresponding results of Clarke, Ledyaev, Stern and Wolenski
[48] for ordinary differential equations. For the results related to nonlinear variations of
parameters, see Drici, McRae and Vasundhara Devi [49]. The results related to Sobolev
integral and differential equations see Vatsala and Vaughn [50], Lakshmikantham, Vatsala
and Vaughn [51]. See also Lakshmikantham and Lord [52]. See also Lakshmikantham and
Mahana Rao [17] for special cases.
For allied results, see Azbelev et al [53]-[31] and Corduneanu [54]-[55]. See also Buhgeim
[56], Christyakov and Simonov [57], Ceppitelli and Faina [58], Corduneanu and Li [59],
Corduneanu and Mahdavi [60], Gao et al [61], Kurbatov [62], Mahdavi [63]-[64], Li and
Mahdavi [65], Myshkis [66], Neustadt [67], Marcelli and Salvadori [68], Rugh [69], Sand-
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Chapter 3

Theoretical Approximation Methods

3.1 Introduction

This chapter introduces the theoretical methods that are constructive. We first prove in
Section 3.2, an existence result in a special closed set generated by the lower and upper
solutions. Next in Section 3.3, we describe a constructive technique that offers mono-
tone sequences which converge to the extremal solutions. This technique is very important
because the iterates are solutions of a certain causal differential equationwhich can be com-
puted explicitly and the method can be applied to many nonlinear problems. In Section 3.4,
the monotone iterative technique is extended to causal differential equations where the right
hand side is the sum of the two functions, one of which is monotone nondecreasing and the
other is monotone nonincreasing. The results obtained include several special cases and
hence, very valuable.
Section 3.5 deals with periodic boundary value problems (PBVP) for causal differential
equations. Since these problems do not follow the techniques of IVP, we need to develop
the required technology appropriately. Therefore the necessary causal differential inequal-
ities theorem for PBVP is proved and then deduce the corresponding linear causal differ-
ential inequality result that is employed in the process of developing monotone iterative
technique for PBVP.
Section 3.6 is devoted to the development of the method of quasilinearization, which not
only offers monotone sequences that converge uniformly to the solution of IVP for causal
differential equations but also shows that the convergence is quadratic. The advantage of
this method is familiar to those analysts who employ numerical methods for real world
problems. Section 3.7 develops the extensions of generalized quasilinearization method
and considers various results in the set up. In Section 3.8, we consider Newton’s method
for causal equations and explore its connection to the method of quasilinearization. We
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compare and contrast Newton versus quasilinearization methods.
Finally, Section 3.9 gives notes and comments.

3.2 Method of Lower and Upper Solutions

Consider the IVP for causal differential equation

x′(t) = (Qx)(t), x(t0) = x0 t0 ≥ 0, (3.1)

where the causal operator Q : E → E is continuous, E =C(J,R), J = [t0,T ].
Definition. Let v,w ∈C(J,R). v,w are lower and upper solution of (3.1) if they satisfy the
inequalities

v′(t) ≤ (Qv)(t), v(t0) ≤ x0,
w′(t) ≥ (Qw)(t), w(t0) ≥ x0

}
(3.2)

respectively, for t ∈ J.
When we know the existence of lower and upper solutions of (3.1) such that v(t) ≤ w(t),
t ∈ J, then we can prove the existence of a solution of the IVP (3.1) in the closed set

Ω̃ = {x ∈ E : v(t) ≤ x(t) ≤ w(t), t ∈ J}.
Theorem 3.2.1. Let v,w ∈ C(J,R) be lower and upper solutions of IVP (3.1) satisfying
v(t) ≤ w(t), t ∈ J. Suppose also that the operator Q is bounded on Ω̃. Then, there exists a
solution x(t) of (3.1) in the closed set Ω̃, i.e. v(t) ≤ x(t) ≤ w(t), t ∈ J.
Proof. Let P ∈C(J,R) be defined by

(Px)(t) =max[v(t),min(x(t),w(t))].

Then (QPx)(t) defines a continuous extension of Q on E which is also bounded since Q is
assumed to be bounded on Ω̃. Hence there exists a solution of IVP

x′(t) = (QPx)(t), x(t0) = x0

on J. For any ε > 0, consider

wε (t) = w(t)+ ε(1+ t),
vε(t) = v(t)− ε(1+ t).

}

We then have vε(t0) < x0 < wε(t0), since v(t0) ≤ x0 ≤ w(t0). We wish to show that

vε(t) < x(t) < wε (t), on J. (3.3)

If this is not true, then there exists a t1 ∈ (t0,T ] at which x(t1) = wε(t1) and vε(t) < x(t) <

wε (t), t0 ≤ t < t1. Then
x(t1) > w(t1) and (Px)(t1) = w(t1).
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Moreover,

v(t1) ≤ (Px)(t1) ≤ w(t1).

Hence,

w′(t1) ≥ (QPx)(t1) = x′(t1).

Since w′
ε (t1) > w′(t1), we have w′

ε (t1) > x′(t1). However, with x(t1) = wε (t1) and x(t) <

wε (t), t0 ≤ t < t1, we have w′
ε (t1) ≤ x′(t1), which is a contradiction to w′

ε (t1) > x′(t1).
Hence for all t ∈ J, x(t) < wε(t) and consequently (3.3) holds on J. Letting ε → 0 we get
v(t) ≤ x(t) ≤ w(t) on J. The proof is complete.
Next we shall present a simple result giving conditions that guarantee the existence of lower
and upper solutions.
Theorem 3.2.2. Suppose that (Qx)(t) is nonincreasing in x ∈ C(J,R). Then there exists
lower and upper solutions v0,w0 for the IVP (3.1) such that v0(t) ≤ w0(t) on J.
Proof. Let y(t) be the solution of

y′(t) = (Q0)(t), y(0) = y0.

Define v0(t) = −R0+ y(t) and w0(t) = R0+ y(t). Choose R0 > 0 sufficiently large so that
v0(t) ≤ 0≤ w0(t) on J. Since Q is nonincreasing, this implies that

w′
0(t) = y′(t) = (Q0)(t) ≥ (Qw0)(t)

and

v′0(t) = y′(t) = (Q0)(t) ≤ (Qv0)(t), t ∈ J.

The functions v0(t), w0(t) are desired lower and upper solutions of (3.1).
Remark. If Q is assumed to be bounded on the sector {x ∈ E : v0(t) ≤ x(t) ≤ w0(t), t ∈
J}, then by Theorem 3.2.1 there exists a solution x(t) of (3.1) lying in the sector. The
uniqueness of x(t) is a consequence of nonincreasing nature of Q.

3.3 Monotone Iterative Technique

The results of Section 3.2 offer theoretical existence results in a sector, or a closed set. We
shall now describe a constructive method that yields monotone sequences that converge
to solutions of (3.1). Since each member of these sequences happens to be the solution
of a certain linear differential equation which can be explicitly computed, the advantage
and importance of the technique needs no special emphasis. Moreover, these ideas and
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methods can successfully be employed to generate two-sided bounds on solutions of IVP
from which qualitative and quantitative behavior can also be investigated. Furthermore,
one can apply these techniques to a variety of problems generalizing the ideas involved.
Let us first prove a simple result to bring out the ideas clearly.
Theorem 3.3.1. Let Q : E → E , E =C([0,T ],R), v0,w0 ∈ E be lower and upper solutions
of IVP (3.1) such that v0(t) ≤ w0(t) on J = [0,T ]. Suppose that (Qx)(t)+Mx(t), M > 0 be
nondecreasing function in x ∈ E , i.e., for any x, y ∈ E , we have

(Qx)(t)+Mx(t) ≥ (Qy)(t)+My(t), (3.4)

whenever, x,y ∈ Ω where

Ω = {x,y ∈ E : max
0≤s≤t

(x(s)− y(s)) = x(t)− y(t), x(t) ≥ y(t)}. (3.5)

Then, there exists monotone sequences {vn}, {wn} such that vn(t) → v(t), wn(t) → w(t)
uniformly on J and v,w are minimal and maximal solutions of IVP (3.1) on the sector Ω̃,
where

Ω̃ = {x ∈ E : v0(t) ≤ x(t) ≤ w0(t), t ∈ J},

with

v0 ≤ v1 ≤ v2 ≤ ·· · ≤ vn ≤ wn ≤ ·· · ≤ w2 ≤ w1 ≤ w0, on J.

Proof. For any η ∈ E such that v0(t) ≤ η(t) ≤ w0(t) on J, consider the linear differential
equation

x′(t) = (Qη)(t)−M[x(t)−η(t)]
x(0) = x0, v0(0) ≤ x0 ≤ w0(0).

}
(3.6)

It is clear that for every such η , there exists a unique solution for IVP (3.6). Define a
mapping A by Aη = x. This mapping will be used to define the sequences {vn}, {wn}. Let
us now prove that

(a) v0 ≤ Av0, w0 ≥ Aw0;
(b) A is a monotone operator on the sector

[v0,w0] = {x ∈ E : v0(t) < x(t) < w0(t), t ∈ J}.

To prove (a), set Av0 = v1, where v1 is the unique solution of (3.6) with η = v0. Setting
p= v1− v0, we see that p(0) ≥ 0 and

p′ = v′1− v′0 ≥ (Qv0)(t)−M(v1− v0)− (Qv0)(t) = −Mp.
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This shows that p(t) ≥ p(0)e−Mt ≥ 0 and hence v0 ≤ v1 on J or equivalently, v0 ≤ Av0. In
a similar way, we can prove that w0 ≥ Aw0.
To prove (b), let η1,η2 ∈ [v0,w0] such that η1 ≤ η2 and (3.4) is satisfied. Suppose that
x1 = Aη1, x2 = Aη2 and set p = x2− x1, so that p(0) = 0 and

p′ = (Qη2)(t)−M[x2(t)−η2(t)]− (Qη1)(t)+M[x1(t)−η1(t)]

≥−M(η2−η1)−M(x2−η2)+M(x1−η1) = −Mp.

Here in using the monotone character of (Qx)(t)+Mx(t), we have utilized η1,η2 ∈ Ω. As
before, the foregoing inequality implies x2 ≥ x1, which in turn yields Aη2 ≥ Aη1, proving
(b).
We now define the sequences {vn}, {wn} by

vn = Avn−1, wn = Awn−1

and conclude from the previous arguments that on J,

v0 ≤ v1 ≤ v2 ≤ ·· · ≤ vn ≤ wn ≤ ·· · ≤ w2 ≤ w1 ≤ w0.

Since it is easy to show that the sequences {vn}, {wn} are uniformly bounded and equicon-
tinuous, the fact that they are also monotone leads to the fact that the entire sequence {vn},
{wn} converge uniformly and monotonically on J to v,w respectively. It is easy to show
that v,w are solutions of (3.1) in view of the fact that vn,wn satisfy for t ∈ J,

v′n(t) = (Qvn−1)(t)−M(vn(t)− vn−1(t)), vn(0) = x0,

w′
n(t) = (Qwn−1)(t)−M(wn(t)−wn−1(t)), wn(0) = x0.

To prove that v and w are extremal solutions of (3.1), we have to show that if x(t) is any
solution of (3.1) such that v0(t) ≤ x(t) ≤ w0(t), t ∈ J, then

v0(t) ≤ v(t) ≤ x(t) ≤ w(t) ≤ w0, t ∈ J.

Suppose that for some n, vn ≤ x≤ wn on J and set p= x− vn+1 so that p(0) = 0 and

p′ = (Qx)(t)− (Qvn)(t)+M(vn+1− vn)

≥−M(x− vn)+M(vn+1− vn) = −Mp.

Here, we have used the monotone character of (Qx)(t)+Mx(t)with the condition x,vn ∈Ω.
This implies as before vn+1 ≤ x on J. Similarly, x≤ wn+1 on J and hence vn+1 ≤ x≤ wn+1
on J.
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Since v0 ≤ x ≤ w0 on J, this proves by induction that on J, vn ≤ x ≤ wn for all n. Taking
the limit as n→ ∞, we conclude that v≤ x≤ w, proving that v,w are extremal solutions of
(3.1). The proof is complete.
We observe that the special case when (Qx) is monotone nondecreasing is covered by The-
orem 3.3.1. To see this, it is enough to take M = 0 in (3.4). However, the other case,
when (Qx) is monotone nonincreasing is not covered by Theorem 3.3.1 and is of particular
interest. We shall next discuss this important special case. We find that under somewhat
special conditions, we shall show that when (Qx) is nonincreasing, a single iteration pro-
cedure yields an alternating sequence which forms two monotone sequences bounding the
solution from above and below. The iteration scheme in this case is simply either

v′n+1(t) = (Qvn)(t), vn+1(0) = x0, (3.7)

or

w′
n+1(t) = (Qwn)(t). wn+1(0) = x0. (3.8)

Theorem 3.3.2. Suppose that (Qx) is nonincreasing in x, then either

(i) the iterates vn(t) given by (3.7) and the unique solution x(t) of (3.1) satisfy for t ∈ J,

v0 ≤ v2 ≤ ·· · ≤ v2n ≤ x(t) ≤ v2n+1 ≤ ·· · ≤ v3 ≤ v1 (3.9)

provided v2(t) ≥ v0(t) on J. Furthermore, the alternating sequences {v2n},{v2n+1}
converge uniformly and monotonically to p(t),r(t) respectively and p(t)≤ x(t)≤ r(t)
on J; or

(ii) the iterates wn(t) given by (3.8) and the unique solution x(t) of (3.1) satisfy for t ∈ J,

w1 ≤ w3 ≤ ·· · ≤ w2n+1 ≤ x(t) ≤ w2n ≤ ·· · ≤ w2 ≤ w0 (3.10)

provided w2(t) ≤ w0(t) on J. Moreover, the alternating sequences {w2n+1}, {w2n}
converge uniformly and monotonically to p∗(t),r∗(t) respectively and p∗(t) ≤ x(t) ≤
r∗(t) on J.

In fact, since the extremal solutions of (3.1) are unique, p∗(t) = p(t) and r∗(t) = r(t), t ∈ J.
Proof. By Theorem 3.2.2, there exists lower and upper solutions v0,w0 and a unique so-
lution x(t) of (3.1) such that v0 ≤ x ≤ w0 on J. We shall only prove the case (i) since the
proof of (ii) follows similar arguments.
Assuming that v0 ≤ v2 on J, we shall first show that

v0(t) ≤ v2(t) ≤ x(t) ≤ v3(t) ≤ v1(t) on J. (3.11)
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Setting p= v1− v0, we find that
p′ = v′1− v′0 ≥ (Qv0)(t)− (Qv0)(t) = 0, p(0) ≥ 0

and therefore, p(t) ≥ p(0) ≥ 0 i.e., v1 ≥ v0 on J. Now letting p= x− v1, we get
p′ = x′ − v′1 = (Qx)(t)− (Qv0)(t) ≤ 0 and p(0) = 0.

This implies x(t) ≤ v1(t) on J. By using similar arguments, we can show successively
v2(t) ≤ x(t), v3(t) ≤ v1(t), and x(t) ≤ v3(t), t ∈ J.

Consequently, we have proved that (3.11) holds for t ∈ J.
To prove (3.9), we use the induction principle, i.e. assume that (3.9) is true for some n and
show that it holds for (n+ 1). Consider p = v2n+2− v2n+1. Then by using (3.7) and the
monotone character of Q, we have

p′ = v′2n+2− v′2n+1 = (Qv2n+1)(t)− (Qv2n)(t) ≤ 0
and p(0) = 0. This shows p(t) ≤ 0 and hence v2n+2(t) ≤ v2n+1(t). By repeating similar
arguments we can get

v0 ≤ v2 ≤ ·· · ≤ v2n ≤ v2n+2 ≤ x≤ v2n+3 ≤ v2n+1 ≤ ·· · ≤ v3 ≤ v1
on J. Since (3.9) is true for n = 1, it follows by induction that (3.9) is true for all n. It is
easy to conclude that the sequences {v2n},{v2n+1} converge uniformly and monotonically
to p(t),r(t) respectively and that p(t) ≤ x(t) ≤ r(t) on J. This proves (i) and the proof of
Theorem 3.3.2 is complete.
Corollary 3.3.1. In addition to the assumptions of Theorem 3.3.2, suppose that

(Qu1)(t)− (Qu2)(t) ≥−M(u1(t)−u2(t))
wherever u1(t) ≥ u2(t), i.e. u1,u2 ∈ Ω. Then p(t) = r(t) = x(t) on J.
We note that in the proof of Theorem 3.3.2, p and r are indeed quasi solutions since p′(t) =

(Qr)(t), r′(t) = (Qp)(t) on J.

3.4 Generalized Monotone Iterative Technique

We shall devote this section to proving general results relative to monotone iterative tech-
nique which contain as special case, several important results of interest. We need the
following definition which characterizes lower and upper solutions of various types. We
consider

x′(t) = (Px)(t)+ (Qx)(t), x(0) = x0 (3.12)
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where P,Q : E→ E =C(J,R), J = [0,T ].
Definition. Relative to the IVP for causal differential equation (3.12), the functions α,β ∈
C1(J,R) are said to be

(a) natural lower and upper solutions of (3.12) if{
α ′(t) ≤ (Pα)(t)+ (Qα)(t), α(0) ≤ x0
β ′(t) ≥ (Pβ )(t)+ (Qβ )(t), β (0) ≥ x0;

(3.13)

(b) coupled lower and upper solutions of type I for (3.12) if{
α ′(t) ≤ (Pα)(t)+ (Qβ )(t), α(0) ≤ x0
β ′(t) ≥ (Pβ )(t)+ (Qα)(t), β (0) ≥ x0;

(3.14)

(c) coupled lower and upper solutions of type II for (3.12) if{
α ′(t) ≤ (Pβ )(t)+ (Qα)(t), α(0) ≤ x0
β ′(t) ≥ (Pα)(t)+ (Qβ )(t), β (0) ≥ x0;

(3.15)

(d) coupled lower and upper solutions of type III for (3.12) if{
α ′(t) ≤ (Pβ )(t)+ (Qβ )(t), α(0) ≤ x0
β ′(t) ≥ (Pα)(t)+ (Qα)(t), β (0) ≥ x0.

(3.16)

Whenever α(t) ≤ β (t), t ∈ J and the operators P,Q are monotone in the sense that (Px)
is nondecreasing and (Qx) is nonincreasing, then the lower and upper solutions defined in
(3.13) and (3.16) also satisfy (3.15). Hence it is enough to consider only the cases (3.14)
and (3.15). We are now in a position to prove the first main result.
Theorem 3.4.1. Assume that the following hypotheses hold:

(i) α0,β0 ∈ C1(J,R) are the coupled lower and upper solutions of type I for IVP (3.12)
with α0(t) ≤ β0(t) on J;

(ii) the operators P,Q in (3.12) are such that P,Q : E→ E , (Px) is nondecreasing in x and
(Qx) is nonincreasing in x.

Then there exists monotone sequences {αn(t)},{βn(t)} such that

αn(t) → p(t), βn(t) → r(t)

uniformly on J and p,r are coupled minimal and maximal solutions of IVP (3.12), i.e., p,r
satisfy

p′(t) = (Pp)(t)+ (Qr)(t), α0(0) ≤ p(0) ≤ β0(0),

r′(t) = (Pr)(t)+ (Qp)(t), α0(0) ≤ r(0) ≤ β0(0).
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Proof. Consider the following linear causal differential equations

α ′
n+1(t) = (Pαn)(t)+ (Qβn)(t), αn+1(0) = x0, (3.17)

β ′
n+1(t) = (Pβn)(t)+ (Qαn)(t), βn+1(0) = x0. (3.18)

Clearly, there exists unique solutions αn+1(t) and βn+1(t) on J, for the IVPs (3.17) and
(3.18) respectively. Now we wish to prove that

α0 ≤ α1 ≤ ·· · ≤ αn ≤ βn ≤ βn−1 ≤ ·· · ≤ β1 ≤ β0 (3.19)

on J. Setting n= 0 in (3.17) and taking p= α0−α1, we obtain

p′ = α ′
0−α ′

1 ≤ (Pα0)(t)+ (Qβ0)(t)− (Pα0)(t)− (Qβ0)(t) = 0

and p(0)≤ 0. This implies that p(t) ≤ 0 on J, which gives α0(t) ≤ α1(t) on J. Similarly it
can be shown that β1 ≤ β0 on J.
Now set p= α1−β1. Then, by using (3.17), we have

p′ = α ′
1−β ′

1 = (Pα0)(t)+ (Qβ0)(t)− (Pβ0)(t)− (Qα0)(t) ≤ 0

using the monotone nature of the operators P,Q and the fact α0 ≤ β0 on J. Thus, we have
p′(t) ≤ 0, p(0) ≤ 0 which yields p(t) ≤ 0, i.e., α1(t) ≤ β1(t) on J. Now assume that for
some integer k > 1

αk−1 ≤ αk ≤ βk ≤ βk−1 on J.

We shall show that

αk ≤ αk+1 ≤ βk+1 ≤ βk, on J.

Consider p = αk−αk+1 on J. Then, by (3.17) and the monotone nature of P and Q, we
obtain

p′ = α ′
k−α ′

k+1 = (Pαk−1)(t)+ (Qβk−1)(t)− (Pαk)(t)− (Qβk)(t)

≤ (Pαk)(t)+ (Qβk)(t)− (Pαk)(t)− (Qβk)(t) ≤ 0.

Since p(0) = 0, this implies p(t) ≤ 0 or equivalently, αk ≤ αk+1 on J. Similarly, we can
show that βk+1 ≤ βk on J, using (3.18) and the monotone properties of P,Q. To prove
αk+1 ≤ βk+1, set p= αk+1−βk+1 to see that p(0) = 0 and

p′ = α ′
k+1−β ′

k+1 = (Pαk)(t)+ (Qβk)(t)− (Pβk)(t)− (Qαk)(t)

≤ (Pβk)(t)+ (Qαk)(t)− (Pβk)(t)− (Qαk)(t) ≤ 0,
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since αk ≤ βk. That yields p(t) ≤ 0 i.e., αk+1 ≤ βk+1. Now, by induction principle, we
have (3.19) for all n.
Clearly, the constructed sequences {αn},{βn} are uniformly bounded and equicontinuous.
Since they are monotone sequences, we find that not only some subsequences but the entire
sequences {αn},{βn} converge uniformly and monotonically to p,r on J respectively. It is
easy to see that from (3.17) and (3.18) that p,r are coupled solutions.
To show that p,r are coupled minimal and maximal solutions of IVP (3.12), let x(t) be any
solution of (3.12) such that α0 ≤ x≤ β0 on J. Suppose that for some k, αk ≤ x≤ βk on J.
Setting p= αk+1− x, we obtain p(0) = 0 and

p′ = α ′
k+1− x′ = (Pαk)(t)+ (Qβk)(t)− (Px)(t)− (Qx)(t)≤ 0,

using the monotone nature of P,Q and the assumption αk ≤ x ≤ βk on J. That implies
p(t) ≤ 0, proving that αk+1 ≤ x on J. Similarly, it can be shown that x ≤ βk+1 on J and
hence, by principle of induction, αn ≤ x ≤ βn holds for all n. Taking limit as n→ ∞, we
have p ≤ x≤ r, completing the proof that p,r are coupled minimal and maximal solutions
of (3.12) since, from (3.17), (3.18) we get

p′(t) = (Pp)(t)+ (Qr)(t), p(0) = x0,

r′(t) = (Pr)(t)+ (Qp)(t), r(0) = x0

respectively on J.
Corollary 3.4.1. If in addition to the assumptions of Theorem 3.4.1, we suppose that for
u1 ≥ u2, u1,u2 ∈ Ω, we have

(Pu1)(t)− (Pu2)(t) ≤ N1(u1(t)−u2(t)), N1 > 0,

(Qu1)(t)− (Qu2)(t) ≥−N2(u1(t)−u2(t)), N2 > 0,

then p(t) = x(t) = r(t) on J.
Proof. Since p≤ r on J, it is enough to show that r≤ p. Consider y= r− p. Then, y(0) = 0
and

y′ = r′ − p′ = (Pr)(t)+ (Qp)(t)− (Pp)(t)− (Qr)(t)

≤ N1(r− p)+N2(r− p)
= (N1+N2)y.

Hence y(t) ≤ 0 on J, proving that r ≤ p on J. hence r = x= p on J, completing the proof.
Remark 3.4.1. Following the proof of theorem 3.4.1, there are several interesting remarks
to be made which indicate many ramifications and provide useful special cases:
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(1) In Theorem 3.4.1, suppose that (Qx) = 0. Then α0,β0 are natural lower and upper
solutions of (3.12) and with (Px) nondecreasing, we get the monotone sequences
{αn},{βn} converging to minimal and maximal solutions of (3.12) respectively, ly-
ing in the sector [α0,β0].

(2) However if (Px) is not nondecreasing and (Qx) = 0, we can assume that (Px)+Mx is
nondecreasing in x for some M > 0 and still come to the same conclusion as above,
since the IVP

x′(t) = (P̃x)(t), x(t0) = x0

satisfies the conditions of Theorem 3.3.1.
Also, when (Px) is not nondecreasing, we consider the IVP

x′(t) = (P̃x)(t)−Mx(t), x(t0) = x0, (3.20)

where (P̃x) = (Px)+Mx,M> 0 is nondecreasing. (3.20) is same as (3.12) with (Qx) =

0. We see that it can also be seen as (3.12) with (Px) replaced by (P̃x) and (Qx)
replaced by−Mx. Hence we get the same conclusions as of Theorem 3.4.1, since (P̃x)
is nondecreasing and −Mx is nonincreasing in x.

(3) If (Px) = 0 in Theorem 3.4.1, we obtain the result for nonincreasing (Qx) and α0,β0
are coupled lower and upper solutions of the IVP x′(t) = (Qx)(t) with nonincreasing
(Qx). In this case, the monotone iterates {αn},{βn} converge to p,r respectively which
satisfy

p′(t) = (Qr)(t), r′(t) = (Qp)(t), r(t0) = x0 = p(t0).

(4) If in (3) above, we suppose that Qx is not nonincreasing and there exists a N > 0 such
that (Q̃x) = (Qx)−Nx is nonincreasing we can consider the IVP

x′(t) = (Qx)(t) = (Q̃x)(t)+Nx(t), x(t0) = x0

which is the same as IVP (3.12) with (Px) replaced by Nx which is nondecreasing
and (Qx) replaced by (Q̃x) which is nonincreasing. Hence the case then reduces to
Theorem 3.4.1 and the conclusion of Theorem 3.4.1 remains valid.

(5) Suppose (Px) is nondecreasing but (Qx) is not nonincreasing. Then consider the IVP

x′(t) = (P̃x)(t)+ (Q̃x)(t), x(t0) = x0, (3.21)

where (P̃x) = (Px) +Nx, N > 0 is nondecreasing and (Q̃x) = (Qx)−Nx, N > 0, is
nonincreasing. This results in Theorem 3.4.1 with (Px),(Qx) replaced by (P̃x),(Q̃x)
respectively and the conclusion of Theorem 3.4.1 holds. Note that (P̃x)(t)+(Q̃x)(t) =

(Px)(t)+ (Qx)(t) and hence, (3.21) is the same as (3.12).
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(6) If (Px) is not nondecreasing but (Qx) is nonincreasing, then consider the IVP

x′(t) = (P̃x)(t)+ (Q̃x)(t), x(t0) = x0, (3.22)

where (P̃x) = (Px)+Mx, M > 0 is nondecreasing and (Q̃x) = (Qx)−Mx, M > 0 is
nonincreasing. This results in Theorem 3.4.1 and so, the conclusion of Theorem 3.4.1
is valid. Again note that IVP (3.22) is the same as (3.12) since (P̃x)(t)+ (Q̃x)(t) =

(Px)(t)+ (Qx)(t).
(7) If (Px) is not nondecreasing and (Qx) is not nonincreasing, then forM> 0,N > 0, such

that (P̃x) = (Px)+Mx is nondecreasing and (Q̃x) = (Qx)−Nx is nonincreasing, we
get the context of Theorem 3.4.1 with (Px),(Qx) replaced by (P̃x),(Q̃x) respectively
and hence the conclusion of Theorem 3.4.1 remains valid.

Next, we shall consider the case of the coupled lower and upper solutions of type II for IVP
(3.12). Here, we need not assume the existence of coupled lower and upper solutions, since
it can be established with the given assumptions.
Theorem 3.4.2. Assume that the hypothesis (ii) of Theorem 3.4.1 holds. Then, for any
solution x(t) of (3.12) with α0 ≤ x ≤ β0 on J, we have the iterates αn,βn satisfying, for
t ∈ J,

α0 ≤ α2 ≤ ·· · ≤ α2n ≤ x≤ α2n+1 ≤ ·· · ≤ α3 ≤ α1,
β1 ≤ β3 ≤ ·· · ≤ β2n+1 ≤ x≤ β2n ≤ ·· · ≤ β2 ≤ β0,

}
(3.23)

provided α0 ≤ α2 and β2 ≤ β0 on J, where the iterates are given by

α ′
n+1(t) = (Pβn)(t)+ (Qαn)(t), αn+1(0) ≤ x0,

β ′
n+1(t) = (Pαn)(t)+ (Qβn)(t), βn+1(0) ≥ x0, t ∈ J.

}
(3.24)

Moreover, the monotone sequences {α2n},{α2n+1},{β2n},{β2n+1} converge uniformly to
p,r,r∗, p∗ respectively and they satisfy

r′(t) = (Pr∗)(t)+ (Qp)(t),

p′(t) = (Pp∗)(t)+ (Qr)(t),

r∗′(t) = (Pr)(t)+ (Qp∗)(t),

p∗′(t) = (Pp)(t)+ (Qr∗)(t),

for t ∈ J and p≤ x≤ r, p∗ ≤ x≤ r∗, t ∈ J, r(0) = p(0) = p∗(0) = r∗(0) = x0.
Proof. In view of hypothesis (ii), it is easy to construct coupled lower and upper solutions
of (3.12) following the method of Theorem 3.2.2. Hence, we proceed further assuming



Theoretical Approximation Methods 85

such coupled lower and upper solutions α0,β0 exist. Assume that α0 ≤ α2 and β2 ≤ β0, on
J. We show that

α0 ≤ α2 ≤ x≤ α3 ≤ α1,
β1 ≤ β3 ≤ x≤ β2 ≤ β0, on J.

}
(3.25)

Set p= x−α1, so that by (3.24) and (3.12)

p′ = x′ −α ′
1 = (Px)(t)+ (Qx)(t)− (Pβ0)(t)− (Qα0)(t) ≤ 0.

Here we have used the fact α0 ≤ x ≤ β0 on J, x being any solution of (3.12) and the
monotone nature of the operators P,Q. Also, p(0) = 0. Hence p(t) ≤ 0 on J, i.e., x ≤ α1
on J.
We shall next show that α3 ≤ α1, β1 ≤ x and α2 ≤ x, by considering the differences p =

α3−α1, p= β1− x and p= α2− x respectively and showing in each case p′(t) ≤ 0, t ∈ J.
In fact, for p= α3−α1, we have p(0) = 0 and using (3.23),

p′(t) = α ′
3(t)−α ′

1(t) = (Pβ2)(t)+ (Qα2)(t)− (Pβ0)(t)− (Qα0)(t) ≤ 0

because of the assumptions α0 ≤ α2, β2 ≤ β0 and the monotone nature of P,Q. Hence,
p(t)≤ 0, t ∈ J and thusα3(t)≤α1(t). Similarly, the difference p= β1−x leads to p(0)= 0,
and

p′(t) = β ′
1(t)− x′(t) = (Pα0)(t)+ (Qβ0)(t)− (Px)(t)− (Qx)(t)≤ 0

because of the fact that α0 ≤ x ≤ β0 (3.24) and monotone character of P,Q, thus proving
p(t) ≤ 0, t ∈ J, i.e., β1(t) ≤ x(t).
The difference p= α2− x leads to p(0) = 0 and

p′(t) = α ′
2(t)− x′(t) = (Pβ1)(t)+ (Qα1)(t)− (Px)(t)− (Qx)(t)≤ 0

since β1 ≤ x ≤ α1, (Px) is nondecreasing and (Qx) is nonincreasing. Using similar argu-
ments we can show that for each of the following β3− x, x− β2, and β1− β3 has their
derivatives less than 0, t ∈ J thus proving β3 ≤ x, x≤ β2 and β1 ≤ β3. Combining all these
arguments, we now have the desired relation (3.25).
Now, assume for n> 2, the following inequalities hold:

α2n−4 ≤ α2n−2 ≤ x≤ α2n−1 ≤ α2n−3
β2n−3 ≤ β2n−1 ≤ x≤ β2n−2 ≤ β2n−4, t ∈ J.

}
(3.26)

By employing arguments similar to our earlier discussion, it can be shown that for t ∈ J,
α2n−2 ≤ α2n ≤ x≤ α2n+1 ≤ α2n−1
β2n−1 ≤ β2n+1 ≤ x≤ β2n ≤ β2n−2.

}
(3.27)
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In fact, using the differences α2n−2−α2n, β2n−β2n−2, α2n+1−α2n−1 and β2n−1−β2n+1
successively to show that each of these is negative for t ∈ J, since in each case we get
p(0) = 0 and p′(t)≤ 0, in view of the relations in (3.26), (3.24) and the monotone character
of P,Q.
To prove α2n ≤ x and x≤ β2n, consider the relations

p′(t) = α ′
2n(t)− x′(t) = (Pβ2n−1)(t)+ (Qα2n−1)(t)− (Px)(t)− (Qx)(t)≤ 0

and

p′(t) = x′(t)−β ′
2n = (Px)(t)+ (Qx)(t)− (Pα2n−1)(t)− (Qβ2n−1)(t) ≤ 0

together with p(0) = 0 in each case, where the monotonicity of P,Q and the inequalities
x ≤ α2n−1, β2n−1 ≤ x of (3.26) are used. Hence, as before, we can conclude that (3.27)
holds whenever we assume (3.26) to be true.
Now, with the principle of induction, the two chains of inequalities in (3.23) are established
for t ∈ J and all n. By employing reasoning similar to that of Theorem 3.4.1, we arrive at

lim
n→∞

α2n = p, lim
n→∞

α2n+1 = r,

lim
n→∞

β2n+1 = p∗, lim
n→∞

β2n = r∗, on J.

Thus,

lim
n→∞

[(Pβ2n)(t)+ (Qα2n)(t)] = (Pr∗)(t)+ (Qp)(t),

lim
n→∞

[(Pβ2n+1)(t)+ (Qα2n+1)(t)] = (Pp∗)(t)+ (Qr)(t),

lim
n→∞

[(Pα2n)(t)+ (Qβ2n)(t)] = (Pp)(t)+ (Qr∗)(t),

lim
n→∞

[(Pα2n+1)(t)+ (Qβ2n+1)(t)] = (Pr)(t)+ (Qp∗)(t),

on J. It is now easy to obtain the relations satisfied by r, p,r∗, and p∗ as stated in the
conclusion of Theorem 3.4.2. The proof is complete.
Theorem 3.4.2 also contains several special cases as in Theorem 3.4.1. But to avoid
monotony of ideas, we have not stated all those special cases. It is easy for the reader
to recognize the various special cases.
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3.5 Monotone Technique for PBVPs

We have seen that the monotone iterative technique is an effective and flexible mechanism
to provide constructive existence results in a closed set, generated by the lower and upper
solutions for the IVP of causal differential equations. In this section, we shall extend the
technique for periodic boundary value problems. We need the following lemma before we
proceed further.
Lemma 3.5.1. Let m ∈C1[J,R] be such that

m′(t) ≤−Mm(t)− (Lm)(t), m(0) ≤ m(2π), t ∈ J = [0,2π ], (3.28)

whereM > 0 and L ∈C[E,E] is a positive linear operator, that is, Lm≥ 0 wherever m≥ 0.
Then, m(t) ≤ 0, t ∈ J provided one of the following conditions hold:

(a) 2πe2Mπ(Le−M)(2π) ≤ 1;
(b) 2π(M+(L1)(2π)) ≤ 1.

Proof. Suppose (a) holds. Set v(t) = m(t)eMt so that inequality (3.28) reduces to

v′(t) ≤−eMt(L(ve−M))(t). (3.29)

It is enough to prove v(t) ≤ 0 for t ∈ J.
If this is not true, then we have the following cases:

(A) v(t) ≥ 0 for t ∈ J and v(t) �≡ 0;
(B) there exists t1,t2 ∈ J such that v(t1) > 0 and v(t2) < 0.

In case (A) we have v(0) ≤ v(2π) and from (3.29) we also have that v′(t) ≤ 0 on J. Since
v(0) ≤ v(2π) and v(t) is nonincreasing on J, v(t) ≡C > 0. Hence, m(t) =Ce−Mt , which
impliesm(0)≥m(2π). In view of(3.28), we conclude thatC= 0, and we get a contradiction
to (A).
In case (B), we have two situations:

(i) v(2π) ≥ 0 and
(ii) v(2π) < 0.

When v(2π) ≥ 0, it is clear that v(0) < v(2π). Suppose that v(t2) = −λ where
min0≤t≤2π v(t) = −λ , λ > 0. Then, t2 ∈ [0,2π), and using the mean-value theorem on
[t2,2π ], we get

v′(t0) =
v(2π)+ λ
2π − t2 >

λ
2π

, (3.30)
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for some t0 ∈ (t2,2π). On the other hand, since v(s) ≥ −λ for s ∈ [0,2π ] we have from
(3.29) and condition (a):

v′(t0) ≤ −eMt0(L(ve−M))(t0)

≤ eMt0(L(λe−M))(t0)

≤ λe2πM(L(e−M))(2π) ≤ λ
2π

This is a contradiction to (3.30). When v(2π) < 0, we also have v(0) < 0 and there
exists a t∗ ∈ (0,2π) such that v(t∗) = 0 and v(t) < 0 for t ∈ (t∗,2π ]. It is clear that
min0≤t≤t∗ v(t) < 0. Let −λ = min0≤t≤t∗ v(t) = v(t2), where t2 ∈ [0,t∗) and λ > 0. We
can repeat the argument employed above in the interval [t2,t∗] and obtain a contradiction.
This completes the proof of the lemma when condition (a) holds.
If (b) holds, we proceed starting directly from (3.28). Again we have the two cases (A) and
(B) relative to m(t). When (A) holds, since m(0) ≤ m(2π), it is clear that

m(t0) = max
0≤t≤2π

m(t) > 0 with t0 ∈ (0,2π ].

Therefore, in view of (3.28)

0= m′(t0) ≤−Mm(t0)− (Lm)(t0) ≤−Mm(t0) < 0,

which is a contradiction.
When case (B) holds, we argue exactly as before and find that condition (B) leads to a
contradiction. The proof of the lemma is complete.
Let us begin with the definition of the upper and lower solutions for the PBVP involving
causal operators,

u′(t) = (Qu)(t),

u(0) = u(2π), (3.31)

where Q ∈C[E,E], E =C[J,R].
Definition 3.5.1. α,β ∈C1[J,R] are said to be lower and upper solutions of (3.31) respec-
tively, if

α ′(t) ≤ (Qα)(t), α(0) ≤ α(2π),

and

β ′(t) ≥ (Qβ )(t), β (0) ≥ β (2π).

Now, we are in a position to develop the monotone iterative technique (MIT) for (3.31) and
we proceed to do so in the following theorem.
Theorem 3.5.1. Let Q ∈C[E,E]. Assume that for t ∈ J,
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(i) α,β ∈C1[J,R] are lower and upper solutions of (3.31) respectively;
(ii) whenever α(t) ≤ v(t) ≤ u(t) ≤ β (t), (Qu)(t)− (Qv)(t) ≥ −M(u(t)− v(t))− (L(u−

v))(t), whereM > 0 is a positive constant and L ∈C[E,E] is a positive linear operator
such that e2Mπ |L| <M, where |L| = sup|u|=1

[ |Lu|
|u|
]
.

Then, there exists monotone sequences {αn(t)},{βn(t)} with α0 = α , β0 = β such that
limn→∞ αn(t) = p(t), limn→∞ βn(t) = r(t) where p,r are minimal and maximal solutions of
the PBVP (3.31), respectively, satisfying α(t) ≤ p(t) ≤ r(t) ≤ β (t) on J.
Proof. For any η ∈C[J,R], α(t) ≤ η(t) ≤ β (t), t ∈ J, consider the linear PBVP

u′(t)+Mu(t) = −(Lu)(t)+ ση(t), u(0) = u(2π), (3.32)

where ση(t) = (Qη)(t)+Mη(t)+ (Lη)(t).
Now,

u(t) = e−Mt
[

1
e2Mπ −1

∫ 2π
0

[ση (s)− (Lu)(s)]eMsds+
∫ t
0

[ση(s)− (Lu)(s)]eMsds
]

≡ (Su)(t).

To show S is a contraction, consider

|(Su)(t)− (Sv)(t)| =

∣∣∣∣e−Mt 1
e2Mπ −1

∫ 2π
0

(L(u− v))(s)eMsds

+e−Mt
∫ t
0

(L(u− v))(s)eMsds
∣∣∣∣

≤ |u− v|
e2Mπ −1e

2Mπ |L|
∫ 2π
0
eMsds

≤ e2Mπ

M
|L| |u− v|.

Thus from our hypothesis, we have that S is a contraction, and hence has a unique fixed
point. Therefore, the linear PBVP (3.32) has a unique solution.
Next, we need to show that any solution u(t) of (3.32) satisfies u(t) ∈ [α(t),β (t)], t ∈ J.
We have

α ′(t) ≤−Mα(t)− (Lα)(t)+ σα(t)

and

u′(t) = −Mu(t)− (Lu)(t)+ ση(t) ≥−Mu(t)− (Lu)(t)+ σα(t).

Setting p= α −u, we have

p′(t) ≤−Mp(t)− (Lp)(t)
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and p(0) ≤ p(2π). Now, Lemma 3.5.1 gives p(t) ≤ 0 and hence α(t) ≤ u(t), t ∈ J. Simi-
larly, we can show that u(t) ≤ β (t), t ∈ J. Hence, we have α(t) ≤ u(t) ≤ β (t), t ∈ J.
Next we want to show that

α0 ≤ α1 ≤ α2 ≤ ·· · ≤ αn ≤ βn ≤ ·· · ≤ β2 ≤ β1 ≤ β0 t ∈ J,
where

α ′
n+Mαn = −(Lαn)+ (Qαn−1)+Mαn−1+(Lαn−1),

β ′
n+Mβn = −(Lβn)+ (Qβn−1)+Mβn−1+(Lβn−1).

First we show that α0 ≡ α ≤ α1. Now

α ′
0 ≤ (Qα0) and α ′

1+Mα1 = −(Lα1)+Mα0+(Lα0).

Let p= α0−α1. Then p′ = α ′
0−α ′

1 =−Mp−(Lp). and p(0)≤ p(2π). Hence, by Lemma
3.5.1, α0(t) ≤ α1(t), t ∈ J.
Assume αk−1(t) ≤ ak(t), t ∈ J. Let p= αk−αk+1. Using hypothesis (ii) and simplifying,
we obtain

p′ = α ′
k−α ′

k+1

= −Mαk+(Qαk−1)+Mαk−1+(Lak−1)− (Lαk)

+Mαk+1− (Qαk)− (Mαk)− (Lαk+1)+ (Lαk+1)

≤ −Mαk+Mαk−1− (Lαk)− (Lαk)+Mαk+1−Mαk

−(Lαk)+ (Lαk+1)+M(αk−αk−1)+ (L(αk−αk−1))

= −Mp− (Lp)

and p(0) = p(2π). Again, using Lemma 3.5.1, we get αk(t) ≤ αk+1(t), t ∈ J. Thus, by
induction, we have

α(t) = α0(t) ≤ α1(t) ≤ αk(t), t ∈ J.
Similarly, we can show that

βn ≤ βn−1 ≤ ·· · ≤ β2 ≤ β1 ≤ β0 = β .

We next show that αn(t) ≤ βn(t), t ∈ J. Letting p = αn−βn, and proceeding as before we
arrive at

p′ ≤ −Mp− (Lp) and p(0) = p(2π),

which yields αn ≤ βn, t ∈ J, n= 1,2, . . . , from Lemma 3.5.1. Hence, we have

α0 ≤ α1 ≤ α2 ≤ ·· · ≤ αn ≤ βn ≤ ·· · ≤ β2 ≤ β1 ≤ β0, t ∈ J.



Theoretical Approximation Methods 91

It then follows, using standard arguments, that limn→∞ αn(t)= p(t) and limn→∞ βn(t)= r(t)
uniformly on J, and p(t) and r(t) are solutions of the PBVP (3.31).
To show that p(t) and r(t) are extremal solutions of (3.31), let u(t) be any solution of (3.31)
such that u(t) ∈ [α(t),β (t)], and suppose for some k > 0, αk−1(t) ≤ u(t) ≤ βk−1(t), t ∈ J.
Let p = αk−u. Then

p′ = α ′
k−u′ = −Mαk+(Qαk−1)+Mαk−1+(Lαk−1)− (Lαk)− (Qu).

Since αk−1 ≤ u, we have from the hypothesis (ii) of the theorem that
(Qu)− (Qαk−1) ≥−M(u−αk−1)+ (L(u−αk−1)).

Substituting the above inequality in p′(t) we get,

p′ ≤ −Mp− (Lp).

Also p(0) = p(2π). Now applying Lemma 3.5.1 we get

αk(t) ≤ u(t).
Similarly, u(t) ≤ βk(t). Thus, from the induction principle, it follows that

αn ≤ u≤ βn, for all n,t ∈ J.
Now taking limits as n→ ∞, we obtain

p(t) ≤ u(t) ≤ r(t).
Hence p(t) and r(t) are extremal solutions of the PBVP (3.31).
Remark 3.5.1. Theorem 3.5.1 and Lemma 3.5.1 hold for any linear operator L and a
constantM > 0 such thatM < 1

2π and e
2Mπ |L| <M. But, it should be observed that even if

M > 1
2π the Theorem 3.5.1 holds if L satisfies the condition (a) in Lemma 3.5.1.

3.6 The Method of Quasilinearization (MQL)

If we utilize the technique of lower and upper solutions coupled with the method of quasi-
linearization and employ the idea of Newton-Fourier, it is possible to construct concurrently
upper and lower bounding monotone sequences whose elements are the solutions of linear
initial value problems. Compared to monotone iterative technique, the method of quasi-
linearization has the advantage that the sequences converge quadratically to the unique
solution.
We consider the IVP for causal differential equation

x′(t) = (Qx)(t), x(0) = x0, t ∈ J = [0,T ], (3.33)
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where Q : E → E is a continuous operator, E = C(J,R). We shall prove the following
simple result to bring out the ideas involved.
Theorem 3.6.1. Assume that

(i) α0,β0 ∈C(J,R) satisfy the inequalities

α ′
0(t) ≤ (Qα0)(t), β ′

0(t) ≥ (Qβ0)(t), α0 ≤ β0, t ∈ J;
(ii) the second Frechet derivative of Q exists and satisfies Qxx(x) ≥ 0 and Qx(x)y is semi-

nondecreasing in y for each x.

Then, there exists monotone sequences {αn(t)},{βn(t)} which converge uniquely and
quadratically to the unique solution x(t) of (3.33) on J.
Proof. In view of assumption (ii), we obtain for x≥ y, x,y ∈C(J,R),

(Qx)(t) ≥ (Qy)(t)+Qx(y)(x− y)(t) (3.34)

and for x,y ∈ Ω,

(Qx)(t)− (Qy)(t) ≤ L(x(t)− y(t)), t ∈ J, L> 0. (3.35)

Since Q satisfies one-sided Lipschitz condition, it follows that (3.33) possesses the unique
solution x(t) on J. Define the iterates {αn(t)},{βn(t)} as follows:

α ′
n+1(t) = (Qαn)(t)+ (Qxαn)(αn+1−αn)(t), αn+1(0) = x0, (3.36)

β ′
n+1(t) = (Qβn)(t)+ (Qxβn)(βn+1−βn)(t), βn+1(0) = x0, (3.37)

with α0(0) ≤ x0 ≤ β0(0), t ∈ J. We shall show that
α0 ≤ α1 ≤ α2 ≤ ·· · ≤ αn ≤ βn ≤ ·· · ≤ β2 ≤ β1 ≤ β0, on J. (3.38)

Let us first prove that

α0 ≤ α1 ≤ β1 ≤ β0, on J. (3.39)

Set p= α0−α1 so that p(0) ≤ 0 and by (3.36)
p′ ≤ (Qα0)(t)− [(Qα0)(t)+ (Qxα0)(α1−α0)(t)] ≤ (Qxα0)p.

By Theorem 2.2.1, it follows that p(t)≤ 0 on J which impliesα0(t)≤α1(t) on J. Similarly,
it can be shown that β1 ≤ β0 on J. Now set p = α1−β1 so that p(0) = 0 and by (3.34),
(3.36), and (3.37),

p′ = [(Qα0)+ (Qxα0)(α1−α0)(t)]− [(Qβ0)+ (Qxβ0)(β1−β0)(t)]

≤ (Qx(α0))(α0−β0)+Qx(α0)[α1−α0]−Qx(β0)[β1−β0]



Theoretical Approximation Methods 93

which in view of hypothesis (ii) regardingQx(x)y seminondecreasing in y for each x, yields

p′ ≤ Qx(α0)p.
This shows that by Theorem 2.2.1, p(t) ≤ 0 which gives α1 ≤ β1 on J. This establishes
(3.39). Assuming, that for some integer k, the relation

αk−1 ≤ αk ≤ βk ≤ βk−1

is true, we can prove, by arguments similar to those in getting (3.39) that

αk ≤ αk+1 ≤ βk+1 ≤ βk

and thus, by the principle of induction, (3.38) is true for all n.
Therefore, the iteration scheme described by (3.36) and (3.37) yield the monotone se-
quences {αn},{βn} satisfying (3.38). Employing standard arguments, it is now easy to
prove that the entire sequences {αn},{βn} converge uniformly and monotonically to the
unique solution x(t) of (3.33) on J.
We shall next show that the convergence is quadratic. For this purpose, consider

pn+1 = x−αn+1 ≥ 0, qn+1 = βn+1− x≥ 0, on J
and note that pn+1(0) = qn+1(0) = 0, n≥ 1. Now,

p′n+1 = x′(t)−α ′
n+1(t) = (Qx)(t)− [(Qαn)(t)+ (Qxαn)(αn+1−αn)(t)]

= Qx(η)pn−Qx(αn)(pn− pn+1)
≤ [Qx(x)−Qx(αn)]pn+Qx(αn)pn+1
= Qxx(σ)p2n+Qx(αn)pn+1,

where αn ≤ η ≤ x and αn ≤ σ ≤ βn. Thus we get

p′n+1 ≤Mpn+1+Np2n, on J,
where |Qx(x)| ≤M, |Qxx(x)| ≤ N on J. Consequently, applying Gronwall inequality, treat-
ing Np2n as forcing term, it follows that

0≤ x(t)−αn+1(t) ≤ N
∫ t
0

[xn(s)−αn(s)]2eM(t−s)ds,

which yields the desired estimate

max
J

|x(t)−αn+1(t)| ≤ N
M
eMT max

J
|x(t)−αn(t)|2.

In a similar way, one can obtain, after some computation, the estimate

max
J

|βn+1− x(t)| ≤ 3
2
N
M
eMT max

J
|βn(t)− x(t)|2+ 12

N
M
eMT max

J
|x(t)−αn(t)|2.

The proof is complete.
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3.7 Extension of Quasilinearization

We have seen in Section 3.6 that when the operator Q in (3.33) is convex, one can obtain
lower and upper bounds simultaneously, that converge quadratically to the unique solution
of (3.33). We have a similar conclusion in case of Q being concave. The question remains
whether we can obtain corresponding results when Q admits a decomposition into a differ-
ence of two convex or concave functions or equivalently, Q admits a splitting into convex
and concave parts. The answer is affirmative and we shall consider such a question in this
section.
Let α0,β0 ∈C1(J,R), J = [0,T ] and define the sector

S = {(t,x) ∈ J×E : α0(t) ≤ x(t) ≤ β0(t)}
where E =C(J,R). We shall consider the IVP

x′(t) = (Px)(t)+ (Qx)(t), x(0) = x0, (3.40)

where P,Q : E → E are continuous. Let us consider the case when the lower and upper
solutions of (3.40) are natural.
Theorem 3.7.1. Assume the following hypotheses:

(H1) α0,β0 ∈C1(J,R), α0(t) ≤ β0(t) and for t ∈ J,
α ′
0(t) ≤ (Pα0)(t)+ (Qα0)(t),

β ′
0(t) ≥ (Pβ0)(t)+ (Qβ0)(t),

with α0(0) ≤ x0 ≤ β0(0);
(H2) P,Q ∈ C(J,R) and for (t,x) ∈ S, the Frechet derivatives Px,Qx,Pxx and Qxx exist, are

continuous and satisfy

Pxx(x) ≥ 0, Qxx(x) ≤ 0.

Then there exists monotone sequences {αn},{βn} which converge uniformly to the unique
solution of (3.40) and the convergence is quadratic.
Proof.We note that hypothesis (H2) yields the following inequalities:

(Px)(t) ≥ (Py)(t)+ (Pxy)(x− y)(t), (3.41)

(Qx)(t) ≥ (Qy)(t)+ (Qxx)(x− y)(t), (3.42)

for x ≥ y. It is also clear that P,Q satisfy, for any u1,u2 such that α0(t) ≤ u2(t) ≤ u1(t) ≤
β0(t), t ∈ J,

−L(u1(t)−u2(t)) ≤ (Pu1)(t)− (Pu2)(t) ≤ L(u1(t)−u2(t)), (3.43)



Theoretical Approximation Methods 95

−L(u1(t)−u2(t)) ≤ (Qu1)(t)− (Qu2)(t) ≤ L(u1(t)−u2(t)), (3.44)

for some L> 0.
Consider the IVPs

u′(t) = F(t,α0,β0;u) (3.45)

≡ (Pα0)(t)+ (Puα0)(u−α0)(t)+ (Qα0)(t)+ (Quβ0)(u−α0)(t),

and

v′(t) = G(t,α0,β0;v) (3.46)

≡ (Pβ0)(t)+ (Puα0)(v−β0)(t)+ (Qβ0)(t)+ (Quβ0)(v−β0)(t),

with α0(0) ≤ u0, v0 ≤ β0(0), where u(0) = u0, v(0) = v0. The inequalities (3.41), (3.42)
together with hypothesis (H1) imply

α ′
0(t) ≤ (Pα0)(t)+ (Qα0)(t) ≡ F(t,α0,β0;α0)

β ′
0(t) ≥ (Pβ0)(t)+ (Qβ0)(t)

≥ (Pα0)(t)+ (Puα0)(β0−α0)(t)+ (Qα0)(t)+ (Quβ0)(β0−α0)(t)

≡ F(t,α0,β0;β0).

Hence, by Theorem 3.2.1 and the fact that (3.45) is a linear IVP, it follows that there exists
a unique solution α1(t) of (3.45) such that α0(t) ≤ α1(t) ≤ β0(t) on J. Similarly using
(3.41), (3.42) and (H1), we obtain

α ′
0 ≤ (Pα0)(t)+ (Qα0)(t)

≤ (Pβ0)(t)+ (Puα0)(α0−β0)(t)+ (Qβ0)(t)+ (Quβ0)(α0−β0)(t)

≡ G(t,α0,β0;α0),

β ′
0 ≥ (Pβ0)(t)+ (Qβ0)(t) ≡ G(t,α0,β0;β0),

and therefore, as before, there exists a unique solution β1(t) of (3.46) such that α0(t) ≤
β1(t) ≤ β0(t) on J.
Since α ′

1(t) = F(t,α0,β0;α1), we get by using (3.45),

α ′
1 = (Pα0)(t)+ (Puα0)(α1−α0)(t)+ (Qα0)(t)+ (Quβ0)(α1−α0)(t)

≤ (Pα1)(t)+ (Qα1)(t)+ (Quα1)(α0−α1)(t)+ (Quβ0)(α1−α0)(t)

≤ (Pα1)(t)+ (Qα1)(t)+ [Quβ0−Quα1](α1−α0)(t)

≤ (Pα1)(t)+ (Qα1)(t)
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because of the factQu(u) is nonincreasing and α1(t)≤ β0(t). Similarly, using (3.46), since
β ′
1 = G(t,α0,β0;β1), we obtain

β ′
1 = (Pβ0)(t)+ (Puα0)(β1−β0)(t)+ (Qβ0)(t)+ (Quβ0)(β1−β0)(t)

≥ (Pβ1)(t)+ (Qβ1)(t)+ (Puβ1)(β0−β1)(t)+ (Puα0)(β1−β0)(t)

≥ (Pβ1)(t)+ (Qβ1)(t)+ [Puα0−Puβ1](β1−β0)(t)

≥ (Pβ1)(t)+ (Qβ1)(t)

because Pu(u) is nondecreasing and α0(t) ≤ β1(t) ≤ β0(t). It then follows from Theorem
3.2.1, (3.43) and (3.44) that α1(t) ≤ β1(t) on J. As a result, we get

α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t) on J. (3.47)

Next we consider the IVPs

u′(t) = F(t,α1,β1;u), u(0) = u0 (3.48)

v′(t) = G(t,α1,β1;v), v(0) = v0. (3.49)

We observe that

α ′
1(t) ≤ (Pα1)(t)+ (Qα1)(t) ≡ F(t,α1,β1;α1),

β ′
1(t) ≥ (Pβ1)(t)+ (Qβ1)(t)

≥ (Pα1)(t)+ (Puα1)(β1−α1)(t)+ (Qα1)(t)+ (Quα1)(β1−α1)(t)

≡ F(t,β1,α1;β1),

in view of (3.41) and (3.42). Consequently, by Theorem 3.2.1 and the fact that (3.48),
(3.49) are linear, we obtain, as before, a unique solution α2(t) of (3.48) such that

α1(t) ≤ α2(t) ≤ β1(t) ≤ β0(t) on J.

Similarly, since

α ′
1(t) ≤ (Pα1)(t)+ (Qα1)(t)

≤ (Pβ1)(t)+ (Puα1)(α1−β1)(t)+ (Qβ1)(t)+ (Quα1)(α1−β1)(t)

≡ G(t,α1,β1;α1),

β ′
1(t) ≥ (Pβ1)(t)+ (Qβ1)(t) ≡ G(t,α1,β1;α1),

we find that there exists a unique solution β2(t) of (3.49) satisfying

α1(t) ≤ β2(t) ≤ β1(t) ≤ β0(t) on J.
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In view of the fact

α ′
2(t) = F(t,α1,β1;α2),

β ′
2(t) = G(t,α1,β1;β2),

we have, as before, using (3.41) and (3.42),

α ′
2 ≤ (Pα2)(t)+ (Qα2)(t),

β ′
2 ≥ (Pβ2)(t)+ (Qβ2)(t),

which yields by Theorem 3.2.1, (3.43) and (3.44)

α2(t) ≤ β2(t) on J.

It therefore follows that

α0(t) ≤ α1(t) ≤ α2(t) ≤ β2(t) ≤ β1(t) ≤ β0(t) on J

because of (3.47). This process can be continued successively to arrive at

α0(t) ≤ α1(t) ≤ ·· · ≤ αn(t) ≤ βn(t) ≤ ·· · ≤ β1(t) ≤ β0(t) on J,

where the elements of the monotone sequences {αn(t)},{βn(t)} are the unique solutions
of the linear IVPs

α ′
n+1(t) = F(t,αn,βn;αn+1), αn+1(0) = u0,

β ′
n+1(t) = G(t,αn,βn;βn+1), βn+1(0) = v0.

Employing the standard arguments, it is easy to conclude that the sequences
{αn(t)},{βn(t)} converge uniformly to the unique solution of (3.40) on J.
We shall now show that the convergence of the sequences {αn(t)},{βn(t)} to the unique
solution of (3.40) is indeed quadratic. To do this, consider

pn(t) = u(t)−αn(t) ≥ 0, qn = βn(t)−u(t)≥ 0
and note that pn(0) = qn(0) = 0.
Using the definitions of αn(t),βn(t) and the mean value theorem together with hypothesis
(H2), we obtain successively,

p′n(t) = (Pu)(t)+ (Qu)(t)+ [(Pαn−1)(t)+ (Puαn−1)(αn−αn−1)(t)

+(Qαn−1)(t)+ (Quβn−1)(αn−αn−1)(t)]

= [(Puξ )− (Puαn−1)+ (Quσ)− (Quβn−1)]pn−1(t)

[(Puαn−1)+ (Quβn−1)]pn(t)

≤ [(Puu)− (Puαn−1)+ (Quu)− (Quβn−1)]pn−1(t)

+[(Puαn−1)+ (Quβn−1)]pn(t)

= (Puuε1)p2n−1(t)− (Quuσ1)(βn−1−αn−1)pn−1(t)

+[(Puαn−1)+ (Quβn−1)]pn(t)
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where αn−1 < ξ , σ < u, αn−1 < ε1 < u and αn−1 < σ1 < βn−1. But,

−Quu(σ1)[βn−1−αn−1]pn−1(t)

≤ N2[qn−1(t)+ pn−1(t)]pn−1(t)

≤ N2[p2n−1(t)+ pn−1(t)qn−1(t)]

≤ 3
2
N2p2n−1(t)+

1
2
N2q2n−1(t).

Thus,

p′n(t) ≤Mpn(t)+ (N1+
3
2
N2)p2n−1(t)+

1
2
N2q2n−1(t),

where

|Puu(u)| ≤ N1, |Quu(u)| ≤ N2, |Pu(u)| ≤M1,

|Qu(u)| ≤M2 andM =M1+M2.

Now, Gronwall inequality implies

0< pn(t) ≤
∫ t
0
eM(t−s)[(N1+

3
2
N2)p2n−1(s)+

1
2
N2q2n−1(s)]ds

which yields, for t ∈ J,

max
J

|u(t)−αn(t)| ≤ e
MT

M

[(
N1+

3
2
N2
)
max
J

|u(t)−αn−1(t)|2+ 12N2maxJ |βn−1(t)−u(t)|2
]
.

Similarly, we get with some computation, an estimate relative to qn given by

max
J

|βn(t)−u(t)| ≤ e
MT

M

[(
3
2
N1+N2

)
max
J

|βn−1(t)−u(t)|2+ 12N1maxJ |αn−1(t)−u(t)|2
]
.

These estimates on pn(t) and qn(t) establish the quadratic convergence of the iterates
{αn(t)},{βn(t)} to the unique solution of IVP (3.40).
By choosing lower and upper solutions differently with suitable linear problems, one can
show that the same conclusion as in Theorem 3.7.1 is valid. Moreover, Theorem 3.7.1
includes several special cases. For example, Q is not convex but (Q+S) is a convex causal
operator, is one special case. In this case, we write

u′(t) = ((Qu)+ (Su)− (Su))(t)= [(Q̃u)+ (−Su)](t)
where (Q̃u) = [(Qu)+ (Su)] is convex and −Su is concave. Also, another special case is
when (Qu) is not concave but (Qu+Su) is concave with (Su) being concave, so that

u′(t) = [(−Su)+ (Q̃u)](t),

where Q̃u = (Qu+ Su) and Pu = −Su. Theorem 3.7.1 is applicable in all such cases and
we get quadratic convergence of iterates.
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3.8 Newton’s Method Versus Quasilinearization

In this section we compare and contrast Newton’s method and the method of quasilin-
earization. Some of the several possible situations are explored providing a preliminary
discussion.
Let us consider the problem of finding a root of scalar causal functional equation

0= (Qx)(t) (3.50)

where Q : E → E , E = C([0,T ],R) which means that we are seeking functions x(t) or
constant valued functions x(t) that makes (Qx)(t) = 0. For example, if

(Qx)(t) =
∫ t
t0
k(t,s,x(s))ds,

then the above problem (3.50) reduces to finding x(t) which will make the integral to be
zero. It is possible for x(t) to be just a constant function or a nonconstant function. Thus,
it follows that finding the zeroes of (Qx)(t) implies finding a function x∗(t), constant or
otherwise such that (Qx∗)(t) = 0 and in the example considered above,

∫ t
t0 k(t,s,x

∗(s))ds=
0.
On the other hand, let us also consider the IVP for causal differential equation

x′(t) = (Qx)(t), x(t0) = x0, t0 ≥ 0, (3.51)

on the interval J= [0,T ], whereQ :E→E , E =C([0,T ],R). If we are looking for constants
functions as solutions of this IVP, then the problem is identical to finding roots of the causal
equation (3.50), that are constant valued functions.
As is well known, Newton’s method is the best known procedure for finding the solution
of functional equation (3.50). Although, it may not be the best method for the given prob-
lem, its simplicity and rapid convergence of the iterates often motivate one to employ this
method for solving (3.50). The iteration formula of Newton’s method is

xn+1− xn = −(Qxn)/(Qxxn), n≥ 0. (3.52)

For (3.52) to hold, one needs to assume that Q is continuously Fréchet differentiable and
(Qxx) �= 0, in a neighborhood of an isolated zero of (3.50), namely in the sector [α0,β0] =
{x ∈ E : α0 < x< β0}.
There are three possibilities:

(a) (Qxx) > 0;
(b) (Qxx< 0);
(c) (Qxx �= 0);
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or equivalently, (Qx) is monotone increasing or (Qx) is monotone decreasing or (Qx) is
not monotone on [α0,β0]. In Newton’s method, we require only (Qxx �= 0) and the iterative
scheme need not produce a sequence of monotone iterates. However, when (Qx) is mono-
tone, it is possible to develop monotone iterative technique for IVP (3.51) when suitable
lower and upper solutions are assumed to exist.
Let us consider the following two situations for (3.50):

(1) (Qxx) < 0, 0< (Qα0), 0> (Qβ0), α0 < β0 and (Qxxx) < 0;
(2) (Qxx) > 0, 0< (Qβ0), 0> (Qα0), α0 < β0 and (Qxxx) > 0.

Comparing this to IVP (3.51), we have the following two cases:

(1*) (Qxx)(t) ≤ 0, α ′
0(t) ≤ (Qα0)(t), β ′

0 ≥ (Qβ0)(t), α0(t) ≤ β0(t), (Qxxx)(t) ≤ 0 on J;
(2*) (Qxx)(t) ≥ 0, α ′

0(t) ≤ (Qβ0)(t), β ′
0(t) ≥ (Qα0)(t), α0(t) ≤ β0(t), (Qxxx)(t) ≥ 0 on J.

For IVP (3.51), the cases (1*) and (2*) lead us to the method of generalized quasilineariza-
tion and we require the conditions in (1*), (2*) to hold only in the closed set

[α0,β0] = {x ∈ E : α0(t) ≤ x(t) ≤ β0(t), t ∈ J}.

One of the tools in order to obtain monotone sequences from the iteration schemes in the
method of quasilinearization is the appropriate comparison result. In case of IVP (3.51),
one needs the simple linear differential inequality

p′(t) ≤ (Qxη)p(t), p(0) < 0, t ∈ J (3.53)

where η = η(t) is such that α0(t) ≤ η(t) ≤ β0(t), which implies that p(t) ≤ 0 on J.
This conclusion does not require (Qxη) to be either only positive or only negative. On the
other hand, the corresponding comparison result for (3.50) would lead to

0< (Qxη)p, (3.54)

where α0 < η < β0. In order to conclude p< 0 or p> 0, we certainly require to assume that
(Qxη) < 0 or (Qxη) > 0. We therefore see that there is a similarity between generalized
quasilinearization method and Newton’s method, when we write (3.52) in the form

0= (Qxn)+ (Qxxn)(xn+1− xn) (3.55)

and the corresponding iterative scheme for (3.51) which is given by

x′n+1(t) = (Qxn)(t)+ (Qxxn)(xn+1− xn)(t)
xn+1(0) = x0.

}
(3.56)
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Thus the procedure in the proofs for both the methods would hold good, with appropriate
modifications. In both cases, we obtain quadratic convergence of the monotone sequences
to the unique solution of each problem.
The discussion described above generates a variety of results, some are known and some
unknown. We shall attempt to consider possible solutions with a view to compare and
contrast both of these important methods.
We shall begin by considering the case of natural lower and upper solutions and a result
relative to (3.50) under the assumption (1).
Theorem 3.8.1. Suppose that the conditions listed in (1) hold. Then there exist monotone
sequences {αn},{βn} satisfying

α0 < α1 < α2 < · · · < αn < r < βn < · · · < β2 < β1 < β0, (3.57)

which are generated by the iteration scheme

0= (Qαn)+ (Qxβn)(αn+1−αn)
0= (Qβn)+ (Qxβn)(βn+1−βn)

}
(3.58)

where r is the isolated zero of (3.50). Moreover, the sequences converge to the unique
solution r of (3.50) quadratically.
Proof.We have

0< (Qα0)− [(Qα0)+ (Qxβ0)(α1−α0)] = −(Qxβ0)(α1−α0),

which implies the relation α0 < α1, because of the assumption (Qxβ0) < 0. Similarly, we
can get β1 < β0. Next, we shall show that α1 < r < β1.
Since we have successively

0 = (Qr)− [(Qα0)+ (Qxβ0)(α1−α0)]

= (Q− xσ)(r−α0)− (Qxβ0)(α1−α0)

> (Qxβ0)(r−α0−α1+ α0)

= (Qxβ0)(r−α1),

where α0 < σ < β0 and the decreasing nature of (Qxx) is used.
We arrive at α1 < r. A similar argument shows that r < β1. Thus, we have

α0 < α1 < r < β1 < β0. (3.59)

Repeating the above proof inductively, we can show that (3.57) holds. Then, the bounded-
ness of monotone sequences {αn},{βn} show that they converge to α̃ , β̃ respectively and
it is easy to see that (Qα̃) = 0 and (Qβ̃ ) = 0. Since r is the unique solution in [α0,β0], it
follows that α̃ = r = β̃ .
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To show that the sequences {αn},{βn} converge quadratically to r, using the standard
computation, we arrive at

0< r−αn+1 <M1[(βn− r)(r−αn)] <
M1
2

[(βn− r)2+(r−αn)2],

where |(Qxσ)/(Qxxβn)| ≤M1. A similar estimate holds for βn+1− r and hence, combining
the two estimates, we get

|r−αn+1|+ |βn+1− r| ≤M[(r−αn)2+(βn− r)2]
for some constantM > 0. The proof is therefore complete.
The next result is relative to IVP (3.51) corresponding to the case (1*) except that we do
not need the condition (Qxx) < 0.
Theorem 3.8.2. Assume that the conditions listed in (1*) hold without (Qxx) < 0. Then
there exist monotone sequences {αn},{βn} defined by the scheme

α ′
n+1(t) = (Qαn)(t)+ (Qxβn)(αn+1−αn)(t), αn+1(0) = x0,

β ′
n+1(t) = (Qβn)(t)+ (Qxβn)(βn+1−βn)(t), βn+1(0) = x0

}

Which converge uniformly to the unique solution of (3.51) and the convergence is
quadratic.
We can prove a result similar to that of Theorem 3.8.2 in case of (1*), provided we replace
the condition (Qxxx) ≤ 0 by (Qxxx) ≥ 0. This is stated below.
Theorem 3.8.3. Assume that (1*) holds with (Qxxx) ≤ 0 replaced by (Qxxx) ≥ 0 and
without (Qxx) ≤ 0. Then the same conclusion of Theorem 3.8.2 is true.
In this case, the iterative scheme is

α ′
n+1 = (Qαn)(t)+ (Qxαn)(αn+1−αn)(t), αn+1(0) = x0,

β ′
n+1 = (Qβn)(t)+ (Qxαn)(βn+1−βn)(t), βn+1(0) = x0.

We do not offer the proofs of Theorem 3.8.2 and 3.8.3 since they are special cases of
results of earlier sections. The cases of coupled lower and upper solutions (2), (2*) maybe
considered similarly.

3.9 Notes and Comments

The method of lower and upper solutions coupled with monotone iterative technique and
quasilinearization, including generalizations and extensions are theoretical approximation
results that are very useful in applications and are popular in several disciplines. Therefore,
this entire chapter is dedicated to such results.
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The contents of Sec. 3.5 are taken from Drici, McRae and Vasundhara Devi [73] and the
rest of the results are new in the present general framework and are adapted from Laksh-
mikantham and Köksal [74], Lakshmikantham and Vatsala [75], Ladde, Lakshmikantham
and Vatsala [76], Lakshmikantham and Zhang [77], Vasundhara Devi and Vatsala [78].



Chapter 4

Stability Theory

4.1 Introduction

This chapter is devoted essentially to the theory of stability and boundedness of Causal
differential equations, using Lyapunov’s method. The concepts of Lyapunov stability have
given rise to several notions that are important in applications. For example, other than
usual stability concepts originated by Lyapunov, we have partial stability, conditional sta-
bility, perfect stability and eventual stability of asymptotically invariant sets, to name a
few. Corresponding to these, notions of boundedness have been formulated and sufficient
conditions are provided. In order to unify a variety of known concepts of stability and
boundedness, it is found beneficial to employ two different measures and obtain criteria in
terms of two measures.
In Section 4.2, we prove necessary comparison results in terms of Lyapunov functions and
other relevant theorems. Section 4.3 offers various stability and boundedness concepts in
terms of two measures and show these definitions unify various known stability concepts.
In Section, 4.5, stability criteria in terms of a Lyapunov function are given. Here it becomes
necessary to choose minimal classes of functions relative to which the generalized deriva-
tive of Lyapunov functions has to satisfy certain conditions. Section 4.6 uses Lyapunov
functionals to offer stability criteria.
In Section 4.7, we present Lyapunov functions on product spaces unifying the results of
stability theory. The stability criteria in terms of two differentmeasures are given in Section
4.8, while in Section 4.9, the method of vector Lyapunov functions is employed. In order,
not to duplicate the results in each of these situations, we have only presented some typical
results which cover a variety of known results. Finally, in Section 4.10, we give notes and
comments.
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4.2 Comparison Theorems via Lyapunov Functions

In order to investigate the theory of stability for causal differential equations, we need
comparison results in terms of Lyapunov-like functions.
Consider the causal differential system

x′(t) = (Qx)(t), x(t0) = x0 t0 ≥ 0, (4.1)

where Q : E → E =C([t0,∞),Rn). We assume the existence and uniqueness of solutions
x(t) of (4.1). When we utilize Lyapunov-like functions, it is necessary to select some
classes of functions relative to which the generalized derivative of Lyapunov function has
to satisfy suitable conditions. We define the following sets:

EA = {x ∈ E :V (s,x(s))A(s) ≤V (t,x(t))A(t), t0 ≤ s≤ t},
E1 = {x ∈ E :V (s,x(s)) ≤V (t,x(t)), t0 ≤ s≤ t},

where

(i) A(t) > 0 is continuously differentiable on R+ and A(t0) = 1;
(ii) V ∈C(R+×R

n,R+) is a Lyapunov function.

We now prove the following comparison results.
Theorem 4.2.1. Suppose that the following hypotheses hold;

(i) V ∈C(R+×R
n,R+), V (t,x) is locally Lipschitzian in x;

(ii) for t ≥ t0 and x ∈ E1,

D+V (t,x(t)) ≤ g(t,V (t,x(t))),

where

D+V (t,x(t)) = limsup
h→0+

1
h
[V (t+h,x(t)+h(Qx)(t))−V(t,x(t))]

and g ∈C(R2+,R+);
(iii) r(t) = r(t,t0,u0) is the maximal solution of the scalar differential equation

u′ = g(t,u), u(t0) = u0 ≥ 0, (4.2)

existing on [t0,∞).

Then, if x(t) = x(t,t0,x0) is any solution of IVP (4.1) existing on [t0,∞), V (t0,x0) ≤ u0
implies

V (t,x(t)) ≤ r(t), t ≥ t0.
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Proof. Let x(t) = x(t,t0,x0) be any solution of IVP (4.1) for t ≥ t0. Define

m(t) =V (t,x(t))

so that m(t0) = V (t0,x0) ≤ u0. For some sufficiently small ε > 0, consider the differential
equation

u′ = g(t,u)+ ε, u(t0) = u0+ ε, (4.3)

whose solutions u(t,ε) = u(t,t0,u0,ε) exist as far as r(t) exists. To prove the conclusion of
Theorem 4.2.1, it is enough to show that

m(t) =V (t,x(t)) < u(t,ε), t ≥ t0.

Suppose this is not true. Then, there exists a t1 > t0 such that

m(t) < u(t,ε), t0 ≤ t < t1
and

m(t1) = u(t1,ε).

It then follows that

D+m(t1) ≥ u′(t1,ε) = g(t1,u(t1,ε))+ ε. (4.4)

From the assumptions on g, the solutions u(t,ε) are nondecreasing in t. Since m(t) =

V (t,x(t)), we get

V (s,x(s)) ≤ u(t1,ε), for t0 ≤ s≤ t1.

Consequently, x(t) ∈ E1. Using the fact that V (t,x) is assumed to be Lipschitzian in x, the
standard computation yields

m(t+h)−m(t) = V (t+h,x(t+h))−V(t,x(t))

≤ V (t+h,x(t+h))−V(t+h,x(t)+h(Qx)(t))

+V(t+h,x(t)+h(Qx)(t))−V(t,x(t))

≤ L|x(t+h)− x(t)−h(Qx)(t)|
+V(t+h,x(t)+h(Qx)(t))−V(t,x(t)).

This shows that

D+m(t) = limsup
h→0+

1
h
[V (t+h,x(t)+h(Qx)(t))−V(t,x(t))]

≤ g(t,V (t,x(t))) = g(t,m(t)), t0 ≤ t ≤ t1 < ∞.
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hence at t = t1, we get

D+m(t1) ≤ g(t1,m(t1)) < g(t1,u(t1,ε))+ ε

which contradicts (4.4). Hence m(t) < u(t,ε), which as ε → 0 yields the desired estimate

m(t) =V (t,x(t)) ≤ r(t), t ≥ t0,
and the proof is complete.
Corollary 4.2.1. Let V satisfy the conditions of Theorem 4.2.1 with g(t,u) ≡ 0 and x(t) ∈
E1. Then

V (t,x(t)) ≤V (t0,x0), t ≥ t0,
where x(t) is any solution of IVP (4.1) or equivalently,

V (t2,x(t2)) ≤V (t1,x(t1)), t0 ≤ t1 ≤ t2 < ∞.

Theorem 4.2.2. Suppose that the hypothesis of theorem 4.2.1 hold except that the inequal-
ity in (ii) is replaced by

A(t)D+V (t,x(t))+V(t,x(t))A′(t) ≤ g(t,V (t,x(t))A(t)),

for t ≥ t0 and x ∈ EA. Then, A(t0)V (t0,x0) ≤ u0 implies
V (t,x(t))A(t) ≤ r(t), t ≥ t0.

Proof. Define L(t,x(t)) = V (t,x(t))A(t). Let t ≥ t0 and x(t) ∈ EA. Then it is easy to see
that

D+L(t,x(t)) ≤ A(t)D+V (t,x(t))+V(t,x(t))A(t)

≤ g(t,L(t,x(t))).
Then, by Theorem 4.2.1, it follows that

V (t,x(t))A(t) = L(t,x(t)) ≤ r(t), t ≥ t0.
To prove a general comparison theorem, we need the following result.
Lemma 4.2.1. Let g0,g ∈C(R2+,R) be such that

g0(t,u) ≤ g(t,u). (4.5)

Then, the left maximal solution η(t,τ0,v0) of the IVP

v′ = g0(t,v), v(τ0) = v0, (4.6)

and the right maximal solution r(t) = r(t,t0,u0) of IVP (4.3) satisfy the relation

r(t,t0,u0) ≤ η(t,τ0,v0), t ∈ [t0,τ0], (4.7)



Stability Theory 109

where r(τ0,t0,u0) ≤ v0.
Proof. It is known that limε→0 u(t,ε) = r(t,t0,u0) and limε→0 v(t,ε) = η(t,τ0,v0), where
u(t,ε) is any solution of

u′ = g(t,u)+ ε, u(t0) = u0+ ε

existing for t ≥ t0 and v(t,ε) is any solution of

v′ = g0(t,v)+ ε, v(τ0) = v0

existing to the left of τ0 and ε > 0 is sufficiently small. Note that (4.7) follows if we first
prove the inequality u(t,ε) < v(t,ε), t0 ≤ t ≤ τ0. Since g0 ≤ g and r(τ0,t0,u0) ≤ v0, it is
easy to see that, for sufficiently small δ > 0, we have

u(t,ε) < v(t,ε), τ0− δ ≤ t < τ0,

and in particular,

u(τ0− δ ,ε) < v(τ0− δ ,ε).

We claim that

u(t,ε) < v(t,ε), t0 ≤ t < τ0− δ .

If this is not true, there exists a t∗ ∈ [t0,τ0− δ ) such that

u(t∗,ε) = v(t∗,ε), u(t,ε) < v(t,ε), t∗ < t ≤ τ0− δ .

This leads to the contradiction

g(t∗,u(t∗,ε))+ ε = u′(t∗,ε) ≤ v′(t∗,ε) = g0(t∗,v(t∗,ε))+ ε.

Hence, u(t,ε) < v(t,ε), t0 ≤ t ≤ τ0− δ and the proof of the lemma is complete.
We are now in position to prove the following comparison result, which plays an important
role in the study of causal differential inequalities.
Theorem 4.2.3. Let m ∈C(R+,R+), Q : E→ E =C(R+,R) and satisfies

D+m(t) ≤ (Qm)(t)+g(t,m(t)), t ∈ I0, (4.8)

where

I0 = {t ≥ t0 : m(s) ≤ η(s,t,m(t)), t0 ≤ s≤ t},

η(t,τ0,v0) being the left maximal solution of (4.6) existing on [t0,τ0]. Assume that

g0(t,u) ≤ (Qu)(t)+g(t,u) (4.9)
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and r(t) is the maximal solution of IVP

u′(t) = (Qu)(t)+g(t,u(t)), u(t0) = u0, (4.10)

existing on [t0,∞). Then

m(t0) ≤ u0 implies m(t) ≤ r(t), t ≥ t0. (4.11)

Proof. Since it is known that limε→0 u(t,ε) = r(t) where u(t,ε) is any solution of

u′(t) = (Qu)(t)+g(t,u(t))+ ε, u(t0) = u0+ ε,

for ε > 0 being sufficiently small, on any compact interval [t0,τ0] ⊂ [t0,∞), it is enough to
prove that

m(t) < u(t,ε), t0 ≤ t ≤ τ0.

If this is not true, then there exists a t∗ ∈ (t0,τ0] such that

m(t∗) = u(t∗,ε), m(s) < u(s,ε), t0 ≤ s< t∗.

Thus implies that

D+m(t∗) ≥ u(t∗,ε) = (Qu)(t∗)+g(t∗,u(t∗,ε))+ ε. (4.12)

Consider now the left maximal solution η(s,t∗,m(t∗)), t0 ≤ s≤ t∗, of

u′ = g0(t,u), u(t∗) = m(t∗).

By Lemma 4.2.1,

r(s,t0,u0) ≤ η(s,t∗,m(t∗)), t0 ≤ s≤ t∗.

Since

r(t∗,t0,u0) = lim
ε→0

u(t∗,ε) = m(t∗) = η(t∗,t∗,m(t∗))

and m(s) ≤ u(s,ε), t0 ≤ s≤ t∗, it follows that

m(s) ≤ r(s,t0,u0) ≤ η(s,t∗,m(t∗)), t0 ≤ s≤ t∗.

This inequality implies that t∗ ∈ I0 and as a result (4.8) yields

D+m(t∗) ≤ (Qm)(t∗)+g(t∗,m(t∗))

which contradicts (4.12). Thus, m(t) ≤ r(t), t ≥ t0 and the proof is complete.
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4.3 Definitions of Stability and Boundedness

Let x(t,t0,x0) be any solution of the causal differential system

x′(t) = (Qx)(t), x(t0) = x0, t0 ≥ 0, (4.13)

where Q ∈C(E,Rn), E =C([t0,∞),Rn). Let

Sρ = {x ∈ R
n : |x| < ρ}. (4.14)

Assume that (4.13) admits the trivial solution x(t) ≡ 0 through (t0,0). We now list a few
definitions concerning the stability of the trivial solution.
Definition 4.3.1. The trivial solution x≡ 0 of (4.13) is

(S1) equistable, if for each ε > 0, t0 ∈ J= [t0,∞), there exists a positive function δ = δ (t0,ε)

that is continuous in t0 for each ε such that the inequality |x0| ≤ δ implies

|x(t,t0,x0)| < ε, t ≥ t0;
(S2) uniformly stable if δ in (S1) is independent of t0;
(S3) quasi-equi asymptotically stable if, for each ε > 0, t0 ∈ J, there exists positive numbers

δ0 = δ0(t0) and T = T (t0,ε) such that, for t ≥ t0+T and |x0| < δ0

|x(t,t0,x0)| < ε;

(S4) quasi uniformly asymptotically stable if the numbers δ0 and T in (S3) are independent
of t0;

(S5) equi-asymptotically stable if (S1) and (S3) hold simultaneously;
(S6) uniformly asymptotically stable if (S2) and (S4) hold together;
(S7) quasi-equi asymptotically stable if, for each ε > 0, α > 0, and t0 ∈ J, there exists a

positive number T = T (t0,ε,α) such that |x0| ≤ α implies

|x(t,t0,x0)| < ε, t ≥ t0+T ;

(S8) quasi uniformly asymptotically stable if the T in (S7) is independent of t0;
(S9) completely stable if (S1) holds and (S7) is verified for all α , 0≤ α < ∞;
(S10) uniformly completely stable if (S2) holds and (S8) is verified for all α , 0≤ α < ∞.

Remark 4.3.1. Sometimes the notion of quasi-asymptotic stability may be relaxed some-
what as in (S7) and (S8). Clearly the ε , α given in the preceding definitions must be less
than ρ of (4.14), and therefore the concepts (S1)-(S8) are of local nature. If, on the other
hand, ρ = ∞, so that Sρ = R

n, the corresponding concept of stability would be of global
character. These considerations lead to (S9) and (S10). We note further that the definitions
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(S7) and (S8) may hold even when Q(0) �≡ 0. In other words, the assumption about the
existence of the trivial solution is not necessary.
In characterizing Lyapunov functions, it is convenient to introduce certain classes of mono-
tone functions.
Definition 4.3.2.

(i) A function φ(r) is said to belong to the class K if φ ∈C([0,ρ),R+), φ(0) = 0, and
φ(r) is strictly monotone increasing in r;

(ii) a function σ(t) is said to belong to the class L if σ ∈ C(J,R+), σ(t) is monotone
decreasing in t, and σ(t) → 0 as t→ ∞;

(iii) a function φ(t,r) is said to belong to the classK K if φ ∈C(J× [0,ρ),R+), φ ∈ K

for each t ∈ J, and φ is monotone increasing in t for each r > 0 and φ(t,r) → ∞ as
t → ∞ for each r > 0.

Definition 4.3.3.

(i) A function V (t,x) with V (t,0) ≡ 0 is said to be positive definite (negative definite) if
there exists a function φ ∈ K such that the relation

V (t,x) ≥ φ(|x|), (≤−φ(|x|))

is satisfied for (t,x) ∈ J×Sρ ;
(ii) a function V (t,x) ≥ 0 is said to be decrescent if a function φ ∈ K exists such that

V (t,x) ≤ φ(|x|), (t,x) ∈ J× sρ .

To use the method of Lyapunov, which attempts to make statements about the stability prop-
erties directly by using suitable functions, we need to study the scalar differential equation

u′ = g(t,u), u(t0) = u0 ≥ 0, t0 ≥ 0, (4.15)

where g ∈ C(J × R+,R). We suppose that g(t,0) ≡ 0 so that u ≡ 0 is a solution of
(4.15) through (t0,0). Furthermore, this assumption also implies that the solutions u(t) =

u(t,t0,u0) of (4.15) are nonnegative for t ≥ t0 so as to assure that g(t,u(t)) is defined.
Corresponding to the stability definitions (S1)-(S8), we designate by (S1*)-(S8*) the con-
cepts concerning the stability of the solution u≡ 0 of (4.15).
Definition 4.3.4. The trivial solution u ≡ 0 of (4.15) is said to be (S1*) equistable if, for
each ε > 0, t0 ∈ J, there exists a positive function δ = δ (t0,ε) that is continuous in t0 for
each ε such that

u(t,t0,u0) < ε, t ≥ t0,
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provided

u0 ≤ δ .

The definitions (S2*)-(S8*) may be formulated similarly.
To the different types of stability, there correspond different types of boundedness. Some
important types are defined in the following:
Definition 4.3.5. The differential system (4.13) is said to be

(B1) equibounded if, for each α ≥ 0, t0 ∈ J, there exists a positive function β = β (t0,α),
which is continuous in t0 for each α , such that the inequality

|x0| ≤ α

implies

|x(t,t0,x0)| < β , t ≥ t0;

(B2) uniform bounded if the β in (B1) is independent of t0;
(B3) quasi-equi-ultimately bounded if, for each α ≥ 0 and t0 ∈ J, there exist positive num-

bers N and T = T (t0,α) such that the inequality

|x0| ≤ α

implies

|x(t,t0,x0)| < N, t ≥ t0+T ;

(B4) quasi-uniform-ultimately bounded if the T in (B3) is independent of t0;
(B5) equi-ultimately bounded if (B1) and (B3) hold at the same time;
(B6) uniform-ultimately bounded if (B2) and (B4) hold simultaneously;
(B7) equi-Lagrange stable if (B1) and (S7) hold simultaneously;
(B8) uniform-Lagrange stable if (B2) and (S8) hold simultaneously;

Proposition 4.3.1. If f (t,0) = 0, t ∈ J, and β occurring in (B1) and (B2) has the prop-
erty that β → 0 as α → 0, then the definitions (B1), (B2) imply the definitions (S1), (S2)
respectively.
The proof of the statement is obvious.
Proposition 4.3.2. Quasi-equi-ultimate boundedness implies equi-boundedness if

|(Qx)(t)| ≤ g(t, |x(t)|) (4.16)

where g ∈C(J×R+,R+).
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Proof. Consider the functionm(t)= |x(t,t0,x0)|, where x(t, ,t0,x0) is any solution of (4.13).
Then,

D+m(t) ≤ |x′(t,t0,x0)| = | f (t,x(t,t0,x0))| ≤ g(t,m(t)),

using assumption (4.16). By comparison Theorem 1.3.2, we have

|x(t,t0,x0)| ≤ r(t,t0,α), t ≥ t0, (4.17)

whenever |x0| ≤ α , where r(t,t0,α) is the maximal solution of

u′ = g(t,u), u(t0) = α. (4.18)

By the quasi-equi-ultimate boundedness, given α ≥ 0 and t0 ∈ J, there exist two positive
numbers N and T = T (t0,α) such that the inequality |x0| ≤ α implies

|x(t,t0,x0)| < N, t ≥ t0+T.

Since g(t,u) ≥ 0, the solution r(t,t0,α) of (4.18) is monotonic nondecreasing in t, and
therefore we have, from (4.17), that

|x(t,t0,x0)| ≤ r(t0+T,t0,α), t ∈ [t0,t0+T ].

It then follows that

|x(t,t0,x0)| ≤max[N,r(t0+T,t0,α)], t ≥ t0,
and this proves (B1).
Analogous to the group of definitions (B1)-(B8), we can define the concepts of bound-
edness and Lagrange stability with respect to the scalar differential equation (4.15) and
designate them (B1∗)− (B8∗).

4.4 Definitions Relative to Two Measures

The concepts of Lyapunov stability have given rise to several new notions that are important
in applications. For example, partial stability, conditional stability, eventual stability and
boundedness to name a few. In order to unify a variety of known concepts of stability and
boundedness, it is beneficial to employ two different measures and obtain criteria in terms
of two measures.
Consider the differential system (4.13) where the operatorQ is smooth enough to guarantee
existence, uniqueness and continuous dependence of solutions x(t) = x(t,t0,x0) of (4.13).
Let us first define the following classes of functions for future use:

CK = {a ∈C[R2+,R+] : a(t,s) ∈ K for each t},
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Γ = {h ∈C[R+ ×R
n,R+] : inf

(t,x)
h(t,x) = 0},

Γ0 = {h ∈ Γ : inf
x
h(t,x) = 0 for each t ∈ R+}.

We shall now define various stability concepts for the system (4.13) in terms of two mea-
sures h0, h ∈ Γ.
Definition 4.4.1. The differential system (4.13) is said to be

(S1) (h0,h)-equi-stable if, for each ε > 0, t0 ∈ R+, there exists a positive function δ =

δ (t0,ε) that is continuous in t0 for each ε such that h0(t0,x0) < δ implies h(t,x(t)) < ε ,
t ≥ t0, where x(t) = x(t,t0,x0) is any solution of system (4.13);

(S2) (h0,h)-uniformly stable if the δ in (S1) is independent of t0;
(S3) (h0,h)-equi-attractive, if for each ε > 0 and t0 ∈ R+, there exist positive constants

δ0 = δ (t0) and T = T (t0ε) such that h0(t0,x0) < δ0 implies h(t,x(t)) < ε , t ≥ t0+T ;
(S4) (h0,h)-uniformly attractive, if (S3) holds with δ0 and T being independent of t0;
(S5) (h0,h)-equi-asymptotically stable if (S1) and (S3) hold simultaneously;
(S6) (h0,h)-uniformly asymptotically stable if (S2) and (S4) hold together;
(S7) (h0,h)-equi-attractive in the large if for each ε > 0, α > 0 and t0 ∈ R+, there exists

a positive number T = T (t0,ε,α) such that h0(t0,x0) < α implies that h(t,x(t)) < ε ,
t ≥ t0+T ;

(S8) (h0,h)-uniformly attractive in the large if the constant T in (S7) is independent of t0.

Remark 4.4.1. Sometimes the notion of attractivity may be relaxed somewhat as in (S7)
and (S8) and the corresponding concepts of stability would be of global character.
A few choices of the two measures (h0,h) given below will demonstrate the generality of
the Definition 4.4.1. Furthermore, the concepts in terms of two measures (h0,h) enable
us to unify a variety of stability notions found in the literature, which would otherwise be
treated separately. It is easy to see that Definition 4.4.1 reduces to

(1) the well known stability of the trivial solution x(t) ≡ 0 of (4.13) or equivalently, of the
invariant set {0}, if h(t,x) = h0(t,x) = |x|;

(2) the stability of the prescribed motion x0(t) of (4.13) if h(t,x) = h0(t,x) = |x− x0(t)|;
(3) the partial stability of the trivial solution of (4.13) if h(t,x) = |x|s, 1 ≤ s < n and

h0(t,x) = |x|;
(4) the stability of asymptotically invariant set {0}, if h(t,x) = h0(t,x) = |x|+σ(t), where

σ ∈ L ;
(5) the stability of the invariant set A⊂ R

n if h(t,x) = h0(t,x) = d(x,A), where d(x,A) is
the distance of x from the set A;
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(6) the stability of conditionally invariant set B with respect to A, where A ⊂ B ⊂ R
n, if

h(t,x) = d(x,B), h0(t,x) = d(x,A);
(7) the conditional stability of the trivial solution of (4.13) if h0(t,x) = |x|+d(x,M), where

M is the k-dimensional manifold containing the origin;
(8) the orbital stability of periodic solution of (4.13) if h(t,x) = h0(t,x) = d(x,C), where

C is the closed orbit in the phase space.

We recall that the set {0} is said to be asymptotically invariant relative to (4.13) if given
ε > 0, there exists a τ(ε) > 0 such that x0 = 0 implies |x(t,t0,0)| < ε for t ≥ t0 ≥ τ(ε).
Recall also that x = 0 is said to be conditionally stable if given ε > 0 and t0 ∈ R+ there
exists a δ = δ (t0,ε) > 0 such that

x0 ∈ {x : |x| < δ}∩M implies x(t) ∈ {x : |x| < ε}, t ≥ t0.

We remark that when we wish to discuss the notion indicated in (4), we need to restrict
the initial time t0 to a suitable subset of R+ so that it is possible to have h0(t0,x0) < δ .
Similarly, when we intend to consider the concept defined in (7), we choose the initial
data x0 to be in the manifold M in order that h0(t0,x0) < δ implies x0 ∈ S(h0,δ )∩M,
where S(h0,δ ) = {x ∈ R

n : h0 = |x|+ d(x,M) < δ}. We note further that several other
combinations of choices are possible for h0,h is addition to those given in (1) to (8). The
following definition will be useful in the sequel
Definition 4.4.2. Let h0,h ∈ Γ. Then we say that

(i) h0 is finer than h if there exists a ρ > 0 and a function ϕ ∈ CK such that h0(t,x) < ρ
implies h(t,x) ≤ ϕ(t,h0(t,x));

(ii) h0 is uniformly finer than h if in (i) ϕ is independent of t;
(iii) h0 is asymptotically finer than h if there exists a ρ > 0 and a function ϕ ∈ K L such

that h0(t,x) < ρ implies h(t,x) ≤ ϕ(h0(t,x),t).

4.5 Stability Criteria-Lyapunov Functions

In order to discuss the stability properties of IVP (4.13), let us assume that the solutions
x(t) = x(t,t0,x0) of (4.13) exist and are unique for t ≥ t0. We shall give sufficient conditions
for the stability of the zero solution of (4.13) in terms of Lyapunov functions and we assume
that (4.13) admits a trivial solution. Let us start first proving a simple result.
Theorem 4.5.1. Assume that

(i) V ∈C(R+×S(ρ),R+) and V (t,x) is locally Lipschitzian in x;
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(ii) for t ≥ t0, x ∈ E1, D+V (t,x) ≤ 0;
(iii) a,b ∈ K are such that on R+ ×S(ρ),V (t,x) satisfies

b(|x|) ≤V (t,x) ≤ a(|x|),
i.e. V is positive definite and decrescent.

Then the trivial solution of (4.13) is stable.
Proof. Let ε > 0 and t0 ≥ 0 be given. Choose δ = δ (ε) > 0 such that a(δ ) < b(ε). Then,
we claim that with this δ , stability of the trivial solution of (4.13) follows. If it is not true,
there would exist a solution x(t) of (4.13) and t2 > t1 > t0 satisfying

|x(t1)| = δ , |x(t2)| = ε and δ ≤ |x(t)| ≤ ε, t1 ≤ t ≤ t2. (4.19)

Then, we get from (ii) and Corollary 4.2.1, the estimate

V (t2,x(t2)) ≤V (t1,x(t1))

and therefore, (4.19) and assumption (ii), together with the choice of δ yield

b(ε) = b(|x(t2)|) ≤V (t2,x(t2)) ≤V (t1,x(t1)) ≤ a(|x(t1)|) = a(δ ) < b(ε).

This contradiction proves stability of the trivial solution of (4.13), completing the proof.
The next result gives simple criterion for asymptotic stability of the trivial solution of
(4.13).
Theorem 4.5.2. Let the assumptions of Theorem 4.5.1 hold except that condition (ii) is
replaced by

(ii*) D+V (t,x)A(t)+V (t,x)A′(t) ≤ 0 for t ≥ t0, x ∈ EA, where A(t) is continuously differ-
entiable for t ≥ t0 with A(t0) = 1, A(t) ≥ 1 and A(t) → ∞ as t→ ∞.

Then the trivial solution of (4.13) is asymptotically stable.
Proof. By Theorem 4.2.2, we get

V (t,x(t))A(t) ≤V (t0,x0), t ≥ t0, (4.20)

and therefore, we have the stability of the trivial solution of (4.13). We only have to prove
quasi-asymptotic stability. For this purpose, let ε = ρ so that δ0 = δ (t0,ρ). Choose |x0| <
δ0. Then, in view of (ii*), (iii) and (4.20) it follows that given any ε > 0 and t0 ≥ 0, there
exists a T = T (t0,ε) > 0 satisfying

b(|x(t)|) ≤V (t,x(t)) ≤V (t0,x0)A−1(t) ≤ a(|x0|)A−1(t) < a(δ0)A−1(t) < ε

for t ≥ t0+ T , where A−1(t) = 1
A(t) → 0 as t → ∞. Hence, the zero solution of (4.13) is

quasi-asymptotically stable, thus establishing the asymptotic stability of the trivial solution
of (4.13).
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Consider the example

x′(t) = −ax(t)+
∫ t
t0
k(t,s)x(s)ds, a> 0 (4.21)

where k ∈C(R2+,R+). Take

L(t,x) = A(t)V (t,x) = eδ t x2, δ > 0.

Then, the set EA = {x ∈C(R+,R) : x2(s)eδ s ≤ x2(t)eδ t t ≥ t0}. Hence, for x ∈ EA,

x(s) ≤ x(t)exp
(

δ
2(t− s)

)

and

D+L(t,x(t)) = δeδ t x2(t)+2x(t)eδ t
[
−ax(t)+

∫ t
t0
k(t,s)x(s)ds

]
≤ 0,

when we assume that the kernel k(t,s) in (4.21) satisfies the condition∫ t
t0
k(t,s)exp

(
δ
2

(t− s)
)
ds≤ 2a− δ

2
. (4.22)

Now, applying Theorem 4.5.2, it follows that the zero solution of (4.21) is exponentially
asymptotically stable. Since δ is arbitrary, on letting δ → 0, the condition (4.22) reduces
to ∫ t

t0
k(t,s)ds≤ a,

which is a sufficient condition for uniform stability of the zero solution of (4.21).

4.6 Stability Criteria-Lyapunov Functionals

As in differential equations with delay, one can utilize Lyapunov functions and Lyapunov
functionals in the study of stability theory of causal differential equations. In this section,
we employ Lyapunov functionals for discussing stability theory in the context of causal
differential equations, given by IVP (4.13).
Let V ∈C(R+×E,R+) be any Lyapunov functional. We define its generalized derivative

D+V (t,x(t)) = limsup
h→0+

1
h
[V (t+h,x(t+h,t,x))−V(t,x)], (4.23)

where x(t+h,t,x) is the solution of IVP (4.13) through (t,x). Thus, the generalized deriva-
tive of a Lyapunov functional is defined along the solutions x(t,t0,x0) of (4.13). We shall
provide a result parallel to the original Lyapunov’s second theorem on uniform asymptotic
stability, in this set up.
Theorem 4.6.1. Assume that
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(i) V ∈C(R+×E,R+) and D+V (t,x(t)) ≤−C(|x(t)|), C ∈ K ;
(ii) b(|x(t)|) ≤V (t,x(t)) ≤ a(|x(t)|), a,b ∈ K .

then the trivial solution x≡ 0 of (4.13) is uniformly asymptotically stable.
Proof. Let ε > 0 and t0 ≥ 0 be given. Choose a δ = δ (ε) > 0 such that

a(δ ) < b(ε). (4.24)

With this δ ,ε , uniform stability of the trivial solution of (4.13) is valid. If not, there would
exist a t1 > t0 and a solution x(t,t0,x0) of (4.13) satisfying

|x(t1,t0,x0)| = ε, |x(t,t0,x0)| ≤ ε, t0 ≤ t ≤ t1. (4.25)

From the condition (i), it follows that

V (t,x(t,t0,x0)) ≤V (t0,x0), t0 ≤ t ≤ t1. (4.26)

Now, using (4.24), (4.25), (4.26) and condition (ii), we get

b(ε) = b(|x(t1,t0,x0)|) ≤V (t1,x(t1,t0,x0)) ≤V (t0,x0) ≤ a(|x0|) < a(δ ) < b(ε)

which is a contradiction. Hence uniform stability follows.
To prove uniform asymptotic stability, set ε = ρ and designate δ0 = δ (ρ) so that

|x0| < δ0 implies |x(t,t0,x0)| < ρ , t ≥ t0.

In view of uniform stability, it is enough to show that there exists a t∗, t0 < t∗ < t0+ T ,
where T = 1+ a(δ0)

c(δ )
and |x0| < δ0 and |x(t∗,t0,x0)| < δ (ε). Here δ = δ (ε) corresponds to

ε > 0 for uniform stability. If not, let δ ≤ |x(t,t0,x0)|, t ∈ [t0,t0+T ]. Then, by condition
(i), we have

V (t,x(t,t0,x0)) ≤V (t0,x0)−
∫ t
t0
C(|x(s,t0,x0)|)ds,

for t ∈ [t0,t0+T ]. As a result,

0 ≤ V (t0+T,x(t0+T,t0,x0))

≤ V (t0,x0)−
∫ t0+T
t0

C(|x(s,t0,x0)|)ds
≤ a(δ0)−C(δ )T < 0,

by the definition of T . This contradiction shows that there exists a t∗ > t0 such that
|x(t∗,t0,x0)| < δ . This implies, by stability, that

|x0| < δ and |x(t,t0,x0)| < ε, t ≥ t0+T,

and the proof is complete.
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4.7 Lyapunov Functions on Product Spaces

If we examine the literature where the Lyapunov functionals constructed for all the exam-
ples, relative to differential equations with delay and integro-differential equations, we find
that we have inadvertently employed a combination of a Lyapunov function and a func-
tional in such a way that the corresponding derivative of the Lyapunov function can be
estimated suitably without demanding a minimal class of functions or prior knowledge of
solutions. This observation leads us to consider the method of Lyapunov functions on prod-
uct spaces to investigate stability properties of solutions of causal differential equations.
Consider the causal differential system (4.13) and let x(t) = x(t,t0,x0) be any solution of
IVP (4.13) existing on J = [t0,∞). We wish to utilize Lyapunov functions on the product
space R

n×E and develop the stability theory for (4.13). In order to preserve clarity, we
shall use the notation xt to denote the Volterra operator which represents x(t) from t0 to t.
If V ∈C(R+ ×R

n×E,R+), then we define

D+V (t,x(t),xt) = limsup
h→0+

1
h
[V (t+h,x(t)+h(Qx)(t),xt+h(t,x))

−V(t,x,xt (t,x))]. (4.27)

Also, if we assume that V is locally Lipschitzian in x and x(t) = x(t,t0,x0) is a solution of
(4.13), then (4.27) is equivalent to

D+V (t,x(t),xt ) = limsup
h→0+

1
h
[V (t+h,x(t+h),xt+h(t0,x0))−V(t,x(t),xt)].

We shall now give sufficient conditions guaranteeing uniform asymptotic stability for zero
solution of (4.13).
Theorem 4.7.1. Assume there exists function V (t,x(t),xt) such that

(i) V ∈C(R+×R
n×E,R+) with

D+V (t,x(t),xt) ≤ 0;
(ii) b(|x(t)|) ≤V (t,x(t),xt) ≤ a(|x(t)|), a,b ∈ K .

Then the zero solution of (4.13) is uniformly stable.
Proof. Let 0< ε < ρ and t0 ≥ 0 be given. Choose δ = δ (ε) > 0 such that

a(δ ) < b(ε). (4.28)

Let x(t,t0,x0) = x(t) be a solution of (4.13) with initial values (t0,x0) existing for all t ≥ t0.
We claim that the zero solution of (4.13) is uniformly stable with this δ > 0. If this is not
true, then there exists a t1 > t0 such that

|x0| < δ and |x(t1,t0,x0)| = ε. (4.29)
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It then follows from (i) that

V (t,x(t),xt ) ≤V (t0,x0). (4.30)

Hence the condition (ii), relations (4.29) and (4.30) lead to

b(ε) ≤ b(|x(t1)|) ≤ V (t1,x(t1),xt1) ≤V (t0,x0)

≤ a(|x0|) < a(δ ) < b(ε),

which is a contradiction and this completes the proof.
Theorem 4.7.2. Suppose that the function V (t,x(t),xt) of Theorem 4.7.1 satisfies (ii) and
in place of (i), the inequality

D+V (t,x(t),xt) ≤−c(|x(t)|), c ∈ K . (4.31)

Then the zero solution of (4.13) is uniformly asymptotically stable.
Proof. By Theorem 4.7.1, the zero solution is uniformly stable. Thus, taking ε = ρ , there
exists a δ0 = δ0(ρ) such that

|x0| < δ0 implies |x(t)| < ρ , t ≥ t0.

From assumption (4.31), we have

V (t,x(t),xt) ≤V (t0,x0,x0)−
∫ t
t0
c(|x(s)|)ds.

Now, let 0 < η < ρ and T (η) = a(δ0)
c(δ (η)) +1, where δ (η) > 0 corresponds to η in uniform

stability. We claim that with |x0| < δ0, there exists a t1 ∈ [t0,t0+T ] such that

|x(t1)| < δ (η), t1 ∈ [t0,t0+T ]

and hence it follows from uniform stability of the zero solution of (4.13) that

|x(t)| < η , t ≥ t1.

Suppose that it is not true. Then we get

|x(t)| ≥ δ (η), for all t ∈ [t0,t0+T ].

Therefore, at t1 = t0+T , it follows that

0< b(η) ≤ b(|x(t1)|) ≤V (t1,x(t1),xt1)

≤ V (t0,x0,x0)−
∫ t1
t0
c(|x(s)|)ds

≤ a(δ0)− c(δ (η))T < 0,
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in view of the choice of T . This contradiction proves that there exists a t∗ ∈ [t0,t0+T ] such
that

x(t∗) < δ (η) and |x(t)| < η , t ≥ t0+T

whenever |x0| < δ0. This implies uniform asymptotic stability and the proof is complete.
Consider the example

u′(t) = α(t)u+

∫ t
0
a(t,s)u(s)ds, t ≥ 0, (4.32)

where we assume that α : R+ → R is continuous and the integral
∫ ∞
t |a(z,t)|dz is defined

and finite for all t ≥ 0. Assume also that there is a real number β such that∫ t
0
|a(t,s)|ds+

∫ ∞

t
|a(z,t)|dz+2|α(t)| ≤ −β . (4.33)

Then the zero solution of (4.32) is stable if α(t) < 0.
Suppose that α(t) < 0 and consider the Lyapunov functional on the product space R×C
given by

V (t,u,u(·)) = u2+
∫ t
0

∫ ∞

t
|a(z,s)|dzu2(s)ds.

Then the time derivative of V along the solutions of (4.32) is given by

V ′(t,u,u(·)) = 2α(t)u2+2
∫ t
0
|a(t,s)||u(s)||u|ds

+

∫ ∞

t
|a(z,t)|dzu2−

∫ t
0
|a(t,s)|u2(s)ds.

Since 2|u(s)||u| ≤ u2(s)+u2, it follows that

V ′(t,u,u(·)) ≤ 2α(t)u2+
∫ t
0
|a(t,s)|[u2(s)+u2]ds

+

∫ ∞

t
|a(z,t)|dzu2−

∫ t
0
|a(t,s)|u2(s)ds

=

[
2α(t)+

∫ t
0
|a(t,s)|ds+

∫ t
0
|a(z,t)|dz

]
u2.

Thus, in view of (4.33), we get

V ′(t,u,u(·)) ≤−βu2.

Since V is positive definite and V ′(t,u,u(·)) ≤ 0, it follows that the zero solution of (4.32)
is stable.
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4.8 Stability in Terms of two Measures

In this section, we shall consider a more general case and develop the basic Lyapunov
theory in terms of two different measures introduced in Section 4.4.
Theorem 4.8.1. Assume that

(i) V ∈C[R+×R
n,R+], h ∈ Γ, V (t,x) is locally Lipschitzian in x and h-positive definite;

(ii) D+V (t,x) ≤ 0, (t,x) ∈ S(h,ρ), where S(h,ρ) = {(t,x)∈ R+×R
n, h(t,x< ρ , ρ > 0)}

and x ∈ E1.

Then

(A) if, in addition, h0 ∈ Γ, h0 is finer than h and V (t,x) is h0-weakly decrescent, then the
system (4.13) is (h0,h)-equistable;

(B) if, in addition, h0 ∈ Γ, h0 is uniformly finer than h, and V (t,x) is h0−decrescent, then
the system (4.13) is (h0,h)-uniformly stable.

Proof. Let us first prove (A). Since V (t,x) is h0-weakly decrescent, then for t0 ∈ R+,
x0 ∈ R

n, there exist constant δ0 = δ0(t0) > 0 and function a ∈ CK such that

V (t0,x0) ≤ a(t0,h0(t0,x0)), provided h0(t0,x0) < δ0. (4.34)

The fact that V (t,x) is h-positive definite implies that there exist constant ρ0 ∈ (0,ρ) and
function b ∈ K such that

b(h(t,x)) ≤V (t,x), whenever h(t,x) ≤ ρ0. (4.35)

Also, by the assumption that h0 is finer than h, there exist constant δ1 = δ1(t0) > 0 and
function ϕ ∈ CK such that

h(t0,x0) ≤ ϕ(t0,h0(t0,x0)), if h0(t0,x0) < δ1, (4.36)

where δ1 is chosen so that ϕ(t0,δ1) < ρ0.
Let ε ∈ (0,ρ0) and t0 ∈R+ be given. By the assumption on a, there exists a δ2 = δ2(t0,ε) >

0 that is continuous in t0 such that

a(t0,δ2) < b(ε). (4.37)

Choose δ (t0) =min{δ0,δ1,δ2}. Then h0(t0,x0) < δ implies, by (4.34)-(4.37), that

b(h(t0,x0)) ≤V (t0,x0) ≤ a(t0,h0(t0,x0)) < b(ε),

which in turn yields that h(t0,x0) < ε . We now claim that for every solution x(t) =

x(t,t0,x0) of (4.13) with h0(t0,x0) < δ ,

h(t,x(t)) < ε, t ≥ t0. (4.38)
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If this is not true, then there would exist a t1 > t0 such that

h(t1,x(t1)) = ε and h(t,x(t)) < ε, t ∈ [t0,t1), (4.39)

for some solution x(t) = x(t,t0,x0) of (4.13). Set m(t) = V (t,x(t)) for t ∈ [t0,t1]. Since
V (t,x) is locally Lipschitzian in x, it follows fromCorollary 4.2.1 thatm(t) is nonincreasing
in [t0,t1]. Thus it follows from (4.34)-(4.37) that

b(ε) = b(h(t1,x(t1))) ≤V (t1,x(t1)) ≤V (t0,x0) < b(ε),

which is a contradiction. Hence (4.38) is true and the system (4.13) is (h0,h)-equistable.
To prove (B), note that if V (t,x) is h0-decrescent and h0 is uniformly finer than h, then
the functions a and ϕ in (4.34) and (4.36) are independent of t. Consequently, it is easily
seen that the constant δ can be chosen to be independent of t0. Hence the system (4.13) is
(h0,h)-uniformly stable.
We next prove a result on (h0,h)-uniform asymptotic stability.
Theorem 4.8.2. Assume that

(i) h0,h ∈ Γ and h0 is uniformly finer than h;
(ii) V ∈ C[R+ × R

n,R+], V (t,x) is locally Lipschitzian in x, h-positive definite, h0-
decrescent and

D+V (t,x) ≤−C(h0(t,x)), (t,x) ∈ S(h,ρ), C ∈ K .

Then the system (4.13) is (h0,h)-uniformly asymptotically stable.
Proof. SinceV (t,x) is h-positive definite and h0-decrescent, there exist constants 0< ρ0 ≤
ρ , 0< δ0 and functions a,b ∈ K such that

b(h(t,x)) ≤V (t,x), (t,x) ∈ S(h,ρ0) (4.40)

and

V (t,x) ≤ a(h0(t,x)), if h0(t,x) < δ0. (4.41)

It follows from Theorem 4.8.1 that the system (4.13) is (h0,h)-uniformly stable. If we let
ε = ρ0, then there exists δ1 = δ1(ρ) > 0 such that

h0(t0,x0) < δ1 implies h(t,x(t)) < ρ0, t ≥ t0,
where x(t) = x(t,t0,x0) is any solution of (4.13).
Let 0< ε < ρ0 and δ = δ (ε) be the same δ as in the definition for (h0,h)-uniform stability.
Assume that h0(t0,x0) < δ ∗ = min{δ0,δ1}. Set T = T (ε) = a(δ ∗)

C(δ ) + 1. To prove (h0,h)-
uniform asymptotic stability, it is enough to show that there exists a t∗ ∈ [t0,t0+T ], such
that

h0(t∗,x(t∗)) < δ
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. If this is not true, then there exists a solution x(t) = x(t,t0,x0) of (4.13) with h0(t0,x0)< δ ∗

such that

h0(t,x(t)) ≥ δ , t ∈ [t0,t0+T ]. (4.42)

Let m(t) =V (t,x(t)). Then it follows from condition (ii) that

D+m(t) ≤−C(h0(t,x(t))), t ≥ t0
which implies by (4.41) that∫ t0+T

t0
C(h0(s,x(s)))ds ≤ m(t0) ≤ a(δ ∗).

On the other hand, from (4.42), we obtain∫ t0+T
t0

C(h0(s,x(s)))ds ≥C(δ )T > a(δ ∗),

which is a contradiction. Thus the proof of the theorem is complete.

4.9 Vector Lyapunov Functions

In 1960, Bellman and Matrosov independently introduced the concept of vector (or sev-
eral) Lyapunov functions and developed the method of vector Lyapunov functions to study
stability theory. This method has more flexibility compared to utilizing a single Lyapunov
function. For example, each of the components of the vector Lyapunov function need
not be positive definite and decrescent and this offers more flexibility in constructing and
discovering Lyapunov functions for a given problem. Since the introduction of this new
method, it has been applied to a variety of problems. In particular, its application for the
study of large scale dynamic systems has become very effective and profitable, since sev-
eral Lyapunov functions appear naturally in dealing with a large scale system and its many
subsystems. We shall extend in this section, the method of vector Lyapunov functions to
the causal differential system

x′(t) = (Qx)(t), x(t0) = x0, t0 ≥ 0, (4.43)

utilizing the vector Lyapunov function on a product space i.e. V ∈C(R+×R
n×E,RN+). Of

course, we need to first prove the following comparison result in terms of several Lyapunov
functions.
Theorem 4.9.1. Assume that the vector Lyapunov function V is locally Lipschitzian in x
and satisfies the vectorial inequality

D+V (t,x(t),xt ) ≤ g(t,V (t,x(t),xt)) (4.44)
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where g ∈ C(R+ ×R
N
+,RN) and D+V (t,x(t),xt) is given by (4.27). Suppose further that

g(t,u) is quasi-monotone nondecreasing in u and r(t) = r(t,t0,u0) is the maximal solution
of the system

u′ = g(t,u), u(t0) = u0 ≥ 0, (4.45)

existing on [t0,∞). Then V (t0,x0) ≤ u0 implies

V (t,x(t),xt) ≤ r(t,t0,u0), t ≥ t0, (4.46)

where x(t) = x(t,t0,x0) is any solution of the causal differential system (4.43) and vectorial
inequalities and to be understood component-wise.
Proof. Set m(t) =V (t,x(t),x)t) with m(t0) = u0. It is easy to get the following differential
inequality

D+m(t) ≤ g(t,m(t)), t ≥ t0,

utilizing the condition (4.44). By Theorem 2.10.1, with v(t) = m(t), w(t) = u(t,ε), where
u(t,ε) is any solution of

u′ = g(t,u)+ ε, u(t0) = u0+ ε,

for small, arbitrary ε > 0, we get

m(t) < u(t,ε), t ≥ t0,

which yields, as ε → 0, the desired estimate (4.46) and the proof is complete.
We shall now give a result that gives the sufficient conditions for the stability properties of
the trivial solution of (4.43) in terms of vector Lyapunov functions.
Theorem 4.9.2. Assume that

(i) g ∈C(R+ ×R
N
+,RN), g(t,0) ≡ 0 and g(t,u) is quasi-monotone decreasing in u;

(ii) V ∈C(R+×R
N×E,Rn+), V is locally Lipschitzian and

b(|x|) ≤V0(t,x(t),xt ) ≤ a(|x|), a,b ∈ K ,

where

V0(t,x(t),xt ) =
N

∑
i=1
Vi(t,x(t),xt);

(iii) D+V (t,x(t),xt ) ≤ g(t,V (t,x(t),xt)).
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Then, the stability properties of the trivial solution of (4.45) imply the corresponding sta-
bility properties of the trivial solution of (4.43).
Proof. We shall prove only equi-asymptotic stability of the trivial solution of (4.43). For
this purpose, let us first prove equistability. Let 0 < ε < ρ and t0 ≥ 0 be given. Assume
that the trivial solution of (4.45) is equiasymptotically stable. Then, it is equistable. Hence,
given b(ε) > 0 and t0 ≥ 0, there exists a δ1 = δ1(t0,ε) such that

N

∑
i=1
u0i < δ1 implies

N

∑
i=1
ui(t,t0,u0) < b(ε), (4.47)

for t ≥ t0, where u(t,t0,u0) is any solution of (4.45). Choose u0 = V (t0,x0,x0) and a δ =

δ (t0,ε) > 0 satisfying

a(δ ) < δ1. (4.48)

Let |x0|< δ . Then, we claim that |x(t)|< ε , t ≥ t0. If this is not true, there exists a solution
x(t) of (4.43) and a t1 > t0 such that

|x(t1)| = ε and |x(t)| ≤ ε < ρ , t0 ≤ t ≤ t1. (4.49)

Hence, we have by Theorem 4.9.1,

V (t,x(t,xt)) ≤ r(t,t0,u0), t0 ≤ t ≤ t1, (4.50)

where r(t) = r(t,t0,u0) is the maximal solution of (4.45). Since

V0(t0,x0,x0) ≤ a(|x0|) < a(δ ) < δ1,
the relations (4.47)-(4.49) yield

b(ε) ≤V0(t1,x(t1),xt1 ) ≤ r0(t1,t0,u0) < b(ε)

where

r0(t,t0,u0) =
N

∑
i=1
ri(t,t0,u0).

This contradiction proves equistability.
Suppose next that the trivial solution of (4.45) is quasi-equi asymptotically stable. Set
ε = ρ and designate by δ0 = δ̂ (t0,ρ). Let 0 < η < ρ . Then, given b(η) and t0 ≥ 0, there
exists a δ ∗

1 = δ̂1(t0,η) > 0 and T = T (t0,η) > 0 satisfying
N

∑
i=1
ui0 < δ ∗

1 implies
N

∑
i=1
ui(t,t0,u0) < b(ε), (4.51)

for t ≥ t0+T .
Choosing u0 = V (t0,x0,x0) as before, we find δ ∗

0 > 0 such that a(δ ∗
0 ) < δ ∗

1 . Let δ0 =

min(δ ∗
1 ,δ

∗
0 ) and |x0| < δ0. This implies |x(t)| < ρ , t ≥ t0 and therefore the estimate (4.50)

holds for t ≥ t0. Suppose now that there is a sequence {tk}, tk ≥ t0+T , tk → ∞ as k→ ∞
and η ≤ |x(tk)| with |x0| < δ0. In view of (4.51) this leads to a contradiction

b(η) ≤V0(tk,x(tk),xtk ) ≤ r0(tk,t0,u0) < b(η).

Hence the trivial solution of (4.43) is equiasymptotically and the proof is complete.
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4.10 Cone-valued Lyapunov Functions

The method of vector Lyapunov functions, though flexible and effective, has an unpleasant
requirement of quasi-monotonicity of the comparison system. In the case of compari-
son systems being linear, this quasi-monotonicity requirement reduces to requiring all off-
diagonal elements of the comparison matrix involved in the linear differential system to be
non-negative. However, in applications, one encounters comparison systems which satisfy
stability conditions without being quasi-monotone. Hence, the application potential of this
useful and effective method of vector Lyapunov functionsis diminished. It was observed
later in 1974, that this difficulty is due to the choice of the cone relative to the comparison
system, namely, RN+, the cone of non-negative elements in R

N and a possible approach to
overcome this limitation is to choose an appropriate cone other than R

N
+ to work in a given

situation depending on the problem at hand. This observation gave rise to the development
of differential inequalities through arbitrary cones and the method of cone valued Lyapunov
functions.
In order to consider differential inequalities in a Banach space X in general, we need to
introduce the concept of a cone which induces a partial ordering in X .
A proper subset K of X is said to be a cone if K is closed, convex with K+K ⊂K, λK ⊂K,
λ ≥ 0 and K ∩{−K} = θ , where θ denotes the null element of the Banach space X . Let
K, K◦ denote the closure and interior of K respectively. Assume K◦ to be nonempty. The
cone induces the order relations in X defined by

x≤ y if and only if y− x ∈ K,

x< y if and only if y− x ∈ K◦,

for x,y∈X . LetK∗ be the set of all continuous linear functionals φ on X such that φ(u(t))≥
0 for all u(t) ∈ K, t ∈ J = [t0,T ) and let K∗

0 be the set of all continuous linear functionals
on X such that φ(u(t)) > 0 for all u(t) ∈ K◦.
Let us consider the causal differential system

x′(t) = (Qx)(t), x(t0) = x0, t ≥ 0, (4.52)

where Q ∈ C(R+ ×E,Rn), E = C([t0,T ),Rn) and assume that the operator Q is smooth
enough to guarantee the existence and uniqueness of solutions x(t,t0,x0) = x(t), t ≥ t0, for
IVP (4.52). We say that Q : E→ E is nondecreasing if

u≤ v implies (Qu)(t) ≤ (Qv)(t), t ∈ J = [t0,T ),
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where u≤ v means u(t) ≤ v(t), for u,v ∈ E , t ∈ J.
To prove a basic result on differential inequalities in a cone, we need the following result.
Lemma 4.10.1. Let K be a cone set with nonempty interior K◦. Then,

(i) x ∈ K is equivalent to φ(x) = (φ ,x) ≥ 0 for all φ ∈ K∗;
(ii) x ∈ ∂K implies that there exists a φ ∈ K∗

0 such that φ(x) ≡ 0.

We can now state the basic inequalities result in cone K.
Theorem 4.10.1. Let K be a cone in E with nonempty interior K◦. Assume that

(i) u,v ∈C1(J,E), Q ∈C(B,E) with B ≡ B[u0,b] = {u ∈ E : |u−u0| ≤ b} and Q is non-
decreasing;

(ii) u′(t)− (Qu)(t) < v′(t)− (Qv)(t), t ∈ (t0,T ).

Then u(t0) < v(t0) implies that u(t) < v(t), t ∈ J.
Proof. Suppose that the assertion of the theorem is false. Then, there exists a t1 > t0 such
that

v(t1)−u(t1) ∈ ∂K and v(t)−u(t) ∈ K◦, t ∈ [t0,t1).

By Lemma 4.10.1 , there exists a φ ∈ K∗
0 such that

φ(v(t1)−u(t1)) = 0.

Setting m(t) = φ(v(t)−u(t)), we see that

m(t1) = 0 and m(t) > 0 for t0 ≤ t < t1.

Consequently,m′(t1) ≤ 0. Further, at t = t1, we have u(t1) = v(t1) and u(t) < v(t), t0 ≤ t <
t1. Thus u(t) ≤ v(t) on [t0,t1].
Using the nondecreasing nature of Q, we have

(Qu)(t) ≤ (Qv)(t), t0 ≤ t ≤ t1 < T.

Hence, from (ii), we get

m′(t1) = φ(v′(t1)−u′(t1)) > φ((Qv)(t1)− (Qu)(t1)) ≥ 0.

This contradiction proves the theorem.
Using Theorem 4.10.2, w can prove the existence of the maximal solution of (4.52) relative
to the cone K (see Section 5.5).
Relative to the system (4.52), we require the comparison differential system

w′ = g(t,w), w(t0) = w0 ≥ 0, (4.53)
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where g ∈C(R+ ×K,RN), K ⊂ R
N is a cone. We need the following notion to define the

concepts of stability relative to the solutions of (4.53) in terms of suitable two measures
H0,H ∈ Σ, where

Σ = {H ∈C(K,R+) : H(0) = 0 and H(w) is increasing relative to cone K}.

Definition 4.10.1. Let H0,H ∈ Σ. Then, we say that the comparison system (4.53)
is (H0,H)-equistable, if given ε > 0 and t0 ∈ R+, there exists a positive function δ =

δ (t0,ε) > 0 that is continuous in t0 for each ε such that

H0(w0) < δ implies H(w(t)) < ε, t ≥ t0,

where w(t) = w(t,t0,w0) is any solution of (4.53).
Other definitions of (H0,H)-stability can be formulated, based on the Definition 4.10.1 and
the corresponding (h0,h)-stability definitions in Section 4.4.
Let us now introduce the cone-valued Lyapunov-like functions. The following comparison
theorem plays an important role when we employ cone-valued Lyapunov-like functions.
Theorem 4.10.2. Assume that

(i) V ∈C(R+×R
n× e,K), V is locally Lipschitzian relative to the cone K and

D+V (t,x(t),xt) ≤ g(t,V(t,x(t)xt)),

where D+V (t,x(t),xt) is as defined in Section 4.7;
(ii) g ∈ C(R+ ×K,RN) and g(t,w) is quasi-monotone nondecreasing in w relative to K

for each t ∈ R+, that is, if u≤ v and φ(u) = φ(v) for some φ ∈ K∗
0 , then φ(g(t,u)) ≤

φ(g(t,v)), t ∈ R+, u,v ∈ K.

If r(t) = r(t,t0,w0) is the maximal solution of (4.53) relative to coneK and x(t) = x(t,t0,x0)
is any solution of (4.52) such that V (t0,x0,x0) ≤ w0, then on the common interval of exis-
tence, we have

V (t,x(t),xt) ≤ r(t,t0,w0.)

Corollary 4.10.1. In Theorem 4.10.2, the function g(t,w) ≡ 0 is admissible to yield

V (t,x(t),xt ) ≤V (t0,x0,x0).

The proof of Theorem 4.10.2 follows from Theorem 5.5.5 (see Section 5.5 for inequalities
in cones and existence of extremal solutions relative to cones). This is because, we can
immediately obtain, defining m(t) =V (t,x(t),xt ), the differential inequality

D+m(t) ≤ g(t,m(t))
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from which the stated result follows, using Theorem 5.5.5.
We are now in a position to prove (h0,h)-stability results for the system (4.52), utilizing
the corresponding (H0,H)-stability notions relative to the comparison system (4.53). First
we give two simple results, parallel to original Lyapunov theory, in terms of cone valued
Lyapunov functions.
Theorem 4.10.3. Assume that the following hypotheses hold:

(i) h0,h ∈ Γ and h(t,x) ≤ φ(h0(t,x)) if h0(t,x) < ρ0 for some ρ0 > 0, where φ ∈ K ;
(ii) H0,H ∈ Σ and H(w) ≤ ψ(H0(w)) if H0(w) < λ for some λ > 0, where ψ ∈ K ;
(iii) V ∈C(R+×R

n×E,K) and V is locally Lipschitzian with respect to come K;
(iv) there exists a ρ > 0 such that φ(ρ0) < ρ satisfying

b(h(t,x(t))) ≤ H(V (t,x(t),xt)) if h(t,x(t)) < ρ ,

H0(V (t,x(t),xt)) ≤ a(t,h0(t,x(t))) if h0(t,x(t)) < ρ0,

where b ∈ K and a ∈CK = {a ∈C(R2+,R+) : a(t,w) ∈ K for t ∈ R+};
(v) D+V (t,x(t),xt ) ≤ 0 in S(h,ρ) = {(t,x(t)) : h(t,x(t)) < ρ}.

Then, the causal differential system (4.52) is (h0,h)-equistable. If in addition, a in (iv) is
such that a ∈ K i.e. a(t,w) is independent of t, then (4.52) is (h0,h)-uniformly stable.
Proof. Let 0 < ε < min(ρ ,λ ) and t0 ∈ R+ be given. Let w0 = V (t0,x0,x0). Choose
δ = δ (t0,ε) <min(ρ0,λ0) with a(t0,λ0) ≤ λ and

ψ(a(t0,δ )) < b(ε). (4.54)

Let h0(t0,x0) < δ and note that

b(h(t0,x0)) ≤ H(V (t0,x0,x0)) ≤ ψ(H0(V (t0,x0,x0)))

≤ ψ(a(t0,h0(t0,x0))) ≤ ψ(a(t0,δ ))

< b(ε), (4.55)

which implies that h(t0,x0) < ε . We claim that with this δ , the system (4.52) is (h0,h)-
equistable. If this is not true, because of (4.55), there exists a t1 > t0 and a solution x(t) =

x(t,t0,x0) of (4.52) with h0(t0,x0) < δ such that

h(t1,x(t1)) = ε and h(t,x(t)) ≤ ε, t0 ≤ t ≤ t1. (4.56)

Hence, condition (iv) yields, by Corollary 4.10.1, the estimate

V (t,x(t),xt) ≤V (t0,x0,x0), t0 ≤ t ≤ t1. (4.57)
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Consequently, using (iv), (4.54), (4.56) and (4.57), we get

b(ε) = b(h(t1,x(t1))) ≤ H(V (t1,x(t1),xt1))

≤ ψ(H0(V (t0,x0,x0))) ≤ ψ(a(t0,h0(t0,x0)))

≤ ψ(a(t0,δ )) < b(ε),

which is a contradiction. Hence, (h0,h)-equistability of (4.52) follows. If a ∈ K in con-
dition (iv), then it is easy to see that λ0 and consequently δ , are independent of t0. As a
result, (h0,h)-uniform stability of (4.52) follows. The proof is complete.
The next result provides criteria for (h0,h)-uniform asymptotic stability.
Theorem 4.10.4. Let the hypotheses (i)-(iv) of Theorem 4.10.3 hold with a∈K . Suppose
further that

D+V (t,x(t),xt) ≤−C̃(h0(t,x(t))), (4.58)

for (t,x(t)) ∈ S(h,ρ), where C̃ ∈ C(R+,K) and C̃(t) is increasing in t relative to K with
C̃(0) = 0. Then, the system (4.52) is (h0,h)-uniformly asymptotically stable.
Proof. Since C̃ ∈ K , it follows that

D+V (t,x(t),xt) ≤ 0

in S(h,ρ) and this implies by Theorem 4.10.3, that the system (4.52) is (h0,h)-uniformly
stable. Let ε = ε0 =min(ρ ,λ ) and designate by δ0 = δ (ε0) so that we have

h0(t0,x0) < δ0 implies h(t,x(t)) < ε0, t ≥ t0. (4.59)

Now, let h0(t0,x0) < δ0 and for any ε < ε0, choose a T = T (ε) > 0 such that

H(C̃(δ )T ) ≥ ψ(a(δ0)), (4.60)

where δ = δ (ε) corresponds to ε in (h0,h)-uniform stability.
To prove (h0,h)-uniform asymptotic stability, it is sufficient to show that there exists a t∗ ∈
[t0,t0+T ] with h0(t∗,x(t∗)) < δ , where x(t) is any solution of (4.52) with h0(t0,x0) < δ0.
If this is not true, then we have

h0(t,x(t)) ≥ δ , t ∈ [t0,t0+T ]. (4.61)

Setting

m(t) =V (t,x(t),xt)+

∫ t
t0
C̃(h0(s,x(s)))ds,

we obtain, from (4.59), the estimate

m(t) ≤ m(t0) =V (t0,x0,x0) (4.62)
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for t ∈ [t0, t0+T ]. Hence, using the assumptions (ii), (iv) and the relations (4.61) and (4.62),
it follows that

H(C̃(δ )T ) = H
(
C̃(δ )

∫ t0+T
t0

ds
)

≤ H
(∫ t0+T

t0
C̃(h0(s,x(s))ds)

)
≤ H(m(t0+T)) ≤ H(V (t0,x0,x0))

≤ ψ(H0(V (t0,x0,x0)))

≤ ψ(a(h0(t0,x0))) < ψ(a(δ0)).

This is a contradiction and therefore, we have (h0,h)-uniform asymptotic stability of (4.52),
and the proof is complete.
Let us next discuss (h0,h)-equi asymptotic stability which is in spirit of Marachkov’s The-
orem.
Theorem 4.10.5. Let the assumptions (i)-(iv) of Theorem 4.10.3 hold. Suppose further that

D+V (t,x(t),xt) ≤−C̃(h(t,x(t))) (4.63)

for (t,x) ∈ S(h,ρ), where C̃ is the same function defined in Theorem 4.10.4. Assume also
that h(t,x) is locally Lipschitzian in x and D+h(t,x) is bounded above or below in S(h,ρ)

and H(w) → ∞ as |w| → ∞. Then, the system (4.52) is (h0,h)-equiasymptotically stable.
Proof. As in Theorem 4.10.4, since a ∈CK , we arrive at

h0(t0,x0) < δ0 = δ0(t0,ε0) implies h(t,x(t)) < ε0, t ≥ t0,

where x(t) = x(t,t0,x0) is any solution of (4.52). To prove the claim of the theorem, it is
enough to show that h(t,x(t))→ 0 as t→∞. We shall first note that limt→∞ infh(t,x(t))= 0.
If not, there exists a T > t0 and an η > 0 such that

h(t,x(t)) ≥ η , t ≥ T.

Hence, (4.63) yields, as before

H(C̃(η)(t−T )) ≤ H
(∫ t

T
C̃(h(s,x(s)))ds

)
≤ ψ(a(δ0))

which, in view of the assumption on H, leads to a contradiction.
Suppose that limsupt→∞ h(t,x(t)) �= 0. Then, for any η > 0 there exist divergent sequences
{tn},{t∗n} such that ti < t∗i < ti+1, i= 1,2, . . . , and

h(ti,x(ti)) = η
2 , h(t∗i ,x(t∗i )) = η , and,

η
2 < h(t,x(t)) < η , t ∈ (ti,t∗i ).

}
(4.64)
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Indeed, one could also have, instead of (4.64),

h(ti,x(ti)) = η , h(t∗i ,x(t∗i )) = η
2 and

η
2 < h(t,x(t)) < η , t ∈ (ti,t∗i ).

}
(4.65)

Suppose that D+h(t,x) ≤M. Then, using (4.64), we get

t∗i − ti ≥
η
4M

= γ > 0.

In view of (4.63), it then follows, for large n,

H
(
C̃
(η
2

)
γn
)
≤ ψ(a(δ0)).

Since H(w) → ∞ as |w| → ∞, this leads to a contradiction as n→ ∞. Thus, h(t,x(t)) → 0
as t→ ∞.
the case D+h(t,x) bounded below can be proved similarly using (4.65). Hence the proof is
complete.
Remark. The assumption (4.63) of Theorem 4.10.5 can be generalized to

D+V (t,x(t),xt) ≤−C̃(w(t,x(t))),

in S(h,ρ), where w(t,x) is h-positive definite and w satisfies similar conditions as h. Then,
the conclusion of Theorem 4.10.5 remains true.
Employing the comparison Theorem 4.10.2, we shall now consider a general set of criteria
for (h0,h)-stability properties which unify several stability concepts in a single set up.
Theorem 4.10.6. Assume that:

(A0) h0,h ∈ Γ and h0 is uniformly finer than h;
(A1) V ∈C(R+×R

n×E,K) and V is locally Lipschitzian relative to K;
(A2) H0,H ∈ Σ and H0 is finer than H;
(A3) g ∈C(R+ ×K,RN) and for (t,x) ∈ S(h,ρ),

D+V (t,x(t),xt) ≤ g(t,V (t,x(t),xt))

where g(t,w) is quasi-monotone nondecreasing in w relative to K for each t ∈ R+;
(A4) b(h(t,x(t))) ≤ H(V (t,x(t),xt)) if h(t,x(t)) < ρ and

H0(V (t,x(t),xt)) ≤ a(h0(t,x(t))) if h0(t,x(t)) < ρ0

where a,b ∈ K .
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Then, the (H0,H)-stability properties of the comparison system (4.53) imply the corre-
sponding (h0,h)-stability properties of the system (4.52).
Proof. We shall prove only (h0,h)-equistability, since based on this proof, one can con-
struct proofs of other (h0,h)-stability properties.
Since H0 is finer than H, there exists a λ > 0 and a ψ ∈ K such that

H(w) ≤ ψ(H0(w)) if H0(w) < λ . (4.66)

Let 0< ε <min(ρ ,λ ) and t0 ∈ R+ be given. Suppose that the comparison system (4.53) is
(H0,H)-equistable. Then, given b(ε) > 0 and t0 ∈ R+, there exist a δ1 = δ1(t0,ε) > 0 with
δ1 <min(λ ,ψ−1(b(ε))) such that for t ≥ t0

H0(w0) < δ1 implies H(w(t)) < b(ε), (4.67)

where w(t) = w(t,t0,w0) is any solution of the system (4.53). Also, h0 is finer than h
implies that there exists a φ ∈ K such that

h(t,x) ≤ φ0(h0(t,x)) if h0(t,x) < ρ0, (4.68)

with φ(ρ0) < ρ . Choose w0 =V (t0,x0,x0) and δ <min(ρ0,λ0), where a(λ0)≤ λ such that

a(δ ) < δ1. (4.69)

Now, let h0(t0,x0) < δ and note that

b(h(t0,x0)) ≤ H(V (t0,x0,x0)) ≤ ψ(H0(V (t0,x0,x0)))

≤ ψ(a(h0(t0,x0))) ≤ ψ(a(δ ))

< ψ(δ1) < b(ε),

so that

h(t0,x0) < ε. (4.70)

We claim that with this δ , it follows that

h0(t0,x0) < δ implies h(t,x(t)) < ε, t ≥ t0
where x(t) = x(t,t0,x0) is any solution of (4.52). If this is not true, because of (4.70), there
exists a t1 > t0 and a solution x(t) = x(t,t0,x0) of (4.52) with h0(t0,x0) < δ such that

h(t1,x(t1)) = ε and h(t,x(t)) < ε, t0 ≤ t ≤ t1, (4.71)

which shows that (t,x(t)) ∈ S(h,ρ) for t0 ≤ t ≤ t1. Hence by Theorem 4.10.2, we get

V (t,x(t),xt ) ≤ r(t,t0,w0), t0 ≤ t ≤ t1 (4.72)
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where r(t,t0,w0) is the maximal solution of (4.53) relative to cone K. Since H(w) is non-
decreasing in w with respect to K, we obtain using (A4), (4.71) and (4.72),

b(ε) = b(h(t1,x(t1))) ≤ H(V (t1,x(t1),xt1)) ≤ H(r(t1,t0,w0)). (4.73)

But

H0(w0) = H0(V (t0,x0,x0)) ≤ a(h0(t0,x0)) < a(δ ) < δ1,

and hence, by using (4.67),

H(r(t1,t0,w0)) < b(ε),

which contradicts (4.73). It therefore follows that the system (4.52) is (h0,h)-equistable.
The proof is complete.

4.11 Notes and Comments

Usually the norm is employed to estimate the functions that are involved in the evolution
process to obtain qualitative properties such as global existence and bounds on solutions.
This, however, is not conducive to provide best possible sufficient conditions, since the
estimated functions are always nonnegative. For example, in Section 2.4, we have assumed
|(Qx)(t)| ≤ g(t,maxt0≤s≤t |x(t)|) and g(t,u) ≥ 0 and thus the solutions of the comparison
equation are non-decreasing. In order to avoid this problem, directional derivatives given
in Section 1.6 can be utilized to give sufficient conditions as

(x,(Qx))± ≤ g(t, |x|)

0r equivalently,

< x,(Qx) >≤ g(t, |x|)

Where < · > is the inner product. In these estimates, the function g need not be posi-
tive. These are all special cases of Lyapunov functions because we can take V (t,x) = |x|2
or V (t,x) = |x| that result in the directional derivatives. Hence, employing Lyapunovlike
functions is very useful not only to develop stability theory but to investigate other qualita-
tive and quantitative properties of solutions via comparison principle.
All the results of this chapter are new in the given setup and are adapted from Lakshmikan-
tham and Leela [4], Lakshmikantham et al [18]-[79], [80]-[81]. For special cases, see also
Driver [27], Hale [35], Corduneanu [2], Corduneanu and Lakshmikantham [82], Drici et
al. [83] where Lyapunov functions and functionals are used.



Chapter 5

Miscellaneous Topics in Causal Systems

5.1 Introduction

This chapter deals with extensions and generalizations of causal differential equations to
other important areas of nonlinear analysis. We begin with the set differential equations
with causal operators naming them as causal set differential equations (CSDE). Set differ-
ential equations in a metric space has gained much attention recently due to its applicability
to multivalued differential inclusions and fuzzy differential equations and its inclusion of
ordinary differential systems as a special case. The generalization of this dynamic system
to include causal differential equations would cover a wider variety of situations and there-
fore, it would initiate an interesting and useful branch of nonlinear analysis that requires
further investigation.
The first two sections, 5.2 and 5.3, cover the basic results including stability results in terms
of Lyapunov functions. Necessary preliminaries are provided in these two sections. Sec-
tions 5.4 and 5.5 contain the extension of causal differential equations to a Banach space
setting so that it covers extensions of CDEs to special Banach spaces. Some fundamen-
tal results are investigated including global existence, showing possible differences under
different sets of conditions. Section 5.6 deals with the extension to fractional causal differ-
ential equations. Since the theory of ordinary fractional differential equations is very new,
this generalization should create a great interest for young researchers to obtain further
fruitful results in this hybrid dynamic system.
Section 5.7 is dedicated to causal differential equations with memory. We provide some
basic simple results covering this generalization. The next two sections deal with causal
differential equations with retardation (memory) and anticipation. This area of investi-
gation is also very new and important because there are several possible approaches to
follow and several ways of formulating the problem. It is a very fruitful area of investiga-
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tion because of its applicability to decision theory, chaotic epidemics and wavelet theory.
Section 5.10 contains neutral differential equations with causal operators on a semi axis.
Finally, Section 5.11 deals with notes and comments.

5.2 Causal Set Differential Equations

The study of set differential equations (SDE) in a metric space is interesting due to its
applicability to multivalued differential inclusions and fuzzy differential equations and its
inclusion of ordinary differential systems as a special case [84].
A combination of these two concepts leads to a set differential equation with causal opera-
tors. In this section, using this setup, we obtain some basic results on existence, uniqueness,
and continuous dependence of solutions with respect to initial values.
LetKc(Rn) denote the collection of all nonempty compact and convex subsets ofRn. Define
the Hausdorff metric

D[A,B] =max

[
sup
x∈B
d(x,A),sup

y∈A
d(y,B)

]
,

where A, B are bounded sets inR
n and d(x,A) = inf[d(x,y) : y∈A]. We observe thatKc(Rn)

is a complete metric space.
Suppose that the space Kc(Rn) is equipped with the natural algebraic operations of addition
and nonnegative scalar multiplication. Then, Kc(Rn) becomes a semilinear metric space,
which can be embedded as a complete cone into a corresponding Banach space.
We note that the Hausdorff metric satisfies the following properties:

D[A+C,B+C] = D[A,B] D[A,B] = D[B,A]

D[λA,λB] = λD[A,B] D[A,B] ≤ D[A,C]+D[C,B]

for all A, B,C ∈ Kc(Rn) and λ ∈ R+.
Given any two sets A, B ∈ Kc(Rn) if there exists setC ∈ Kc(Rn) satisfying A= B+C, then
A−B is defined as the Hukuhara difference of the sets A and B.
The mapping F : I→ Kc(Rn) has a Hukuhara derivative DHF(t0) at a point t0 ∈ I, if

lim
h→0+

F(t0+h)−F(t0)
h

, lim
h→0+

F(t0)−F(t0−h)
h

exists in the topology of Kc(Rn) and are equal to DHF(t0). Here I is any interval in R.
Now we can consider the set differential equation

DHU = F(t,U), U(t0) =U0 ∈ Kc(Rn), t0 ≥ 0, (5.1)

where F ∈C[R+ ×Kc(Rn),Kc(Rn)].
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Definition 5.2.1. The mappingU ∈C1[J,Kc(Rn)], J = [t0,t0+a], is said to be a solution of
(5.1) on J if it satisfies (5.1) on J.
SinceU(t) is continuously differentiable, we have

U(t) =U0+
∫ t
t0
DHU(s)ds, t ∈ J.

Hence, we can associate with the IVP (5.1). The Hukuhara integral

U(t) =U0+
∫ t
t0
F(s,U(s))ds, t ∈ J.

The following properties are useful tools in proving theorems in the SDE setup. If F :
[t0,T ] → Kc(Rn) is integrable, we have∫ t2

t0
F(t)dt =

∫ t1
t0
F(t)dt+

∫ t2
t1
F(t)dt, t0 ≤ t1 ≤ t2 ≤ T,

∫ T
t0

λF(t)dt = λ
∫ T
t0
F(t)dt, λ ∈ R+.

Also, if F,G : [t0,T ] → Kc(Rn) are integrable, then D[F(·),G(·)] : [t0,T ] → R is integrable
and

D
[∫ t
t0
F(s)ds,

∫ t
t0
G(s)ds

]
≤
∫ t
t0
D[F(s),G(s)]ds.

We observe that

D[A,θ ] = |A| = sup
a∈A

|a|

for A ∈ Kc(Rn), where θ is the zero element of R
n, which is regarded as a one-point set.

We shall now extend certain basic results to SDEs with causal or nonanticipative maps
of Volterra type, since such equations provide a unified treatment of the basic theory of
SDEs, SDEs with delay and set integrodifferential equations which in turn include ordinary
dynamic systems of the corresponding types.
Let E =C[[t0,T ],Kc(Rn)] with norm

D0[U,θ ] = sup
t0≤t≤T

D[U(t),θ ].

Definition 5.2.2. Suppose that Q ∈C[E,E], then Q is said to be a causal map or a nonan-
ticipative map if U(s) = V (s), t0 ≤ s ≤ t ≤ T , where U,V ∈ E , then (QU)(s) = (QV )(s),
t0 ≤ s≤ t.
We define the IVP for an SDE with causal map or CSDE using the Hukuhara derivative as
follows:

DHU(t) = (QU)(t), U(t0) =U0 ∈ Kc(Rn). (5.2)



140 Theory of Causal Differential Equations

Before we proceed to prove an existence and uniqueness result for (5.2), we need the fol-
lowing comparison result.
Theorem 5.2.1. Assume that m ∈C[J,R+], g ∈C[J×R+,R+] and for t ∈ J = [t0,T ],

D−m(t) ≤ g(t, |m|0(t)),
where |m|0(t) = supt0≤s≤t |m(s)|. Suppose that r(t) = r(t,t0,w0) is the maximal solution of
the scalar differential equation

w′ = g(t,w), w(t0) = w0 ≥ 0, (5.3)

existing on J. Then, m(t0) ≤ w0 implies m(t) ≤ r(t), t ∈ J.
Next we obtain an estimate of the distance between any two solutions of (5.2) in terms of
the maximal solution of (5.3) utilizing Theorem 5.2.1.
We define D0[U,V ](t) =maxt0≤s≤t D[U(s),V (s)].
Theorem 5.2.2. Let Q ∈C[E,E] be a causal map such that for t ∈ J,

D[(QU)(t),(QV )(t)] ≤ g(t,D0[U,V ](t)), (5.4)

where g ∈ C[J×R+,R+]. Suppose further that the maximal solution r(t,t0,w0) of the
differential equation (5.3) exists on J. Then, if U(t), V (t) are any two solutions of (5.2)
satisfyingU(t0) =U0, V (t0) =V0,U0,V0 ∈ Kc(Rn) on J, respectively,

D[U(t),V (t)] ≤ r(t,t0,w0), t ∈ J,
provided that D[U0,V0] ≤ w0.
Proof. Set m(t) =D[U(t),V(t)]. Then m(t0) =D[U0,V0]≤ w0. Now for small h> 0, t ∈ J,
consider m(t+ h) = D[U(t+ h),V(t+ h)]. Using the property of the Hausdorff metric D,
we successively get the following relations:

m(t+h) ≤ D[U(t+h),U(t)+h(QU)(t)]+D[U(t)+h(QU)(t),V(t+h)]

≤ D[U(t+h),U(t)+h(QU)(t)]+D[U(t)+h(QU)(t),V(t)+h(QV)(t)]

+D[V (t)+h(QV)(t),V (t+h)]

≤ D[U(t+h),U(t)+h(QU)(t)]+D[U(t),U(t)+h(QV)(t)]

+D[U(t)+h(QV)(t),V (t)+h(QV)(t)]+D[V(t)+h(QV)(t),V (t+h)].

Next, using the property of the Hausdorff metric D and the fact that Hukuhara differences
U(t+h)−U(t) and V (t+h)−V(t) exist for small h> 0, we arrive at

m(t+h)≤ D[U(t)+Z(t,h),U(t)+h(QU)(t)]+D[h(QU)(t),h(QV)(t)]

+D[U(t),V (t)]+D[V(t)+h(QV)(t),V (t)+Y(t,h)],
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whereU(t+h) =U(t)+Z(t,h) andV (t+h) =V (t)+Y (t,h). Again the property of Haus-
dorff metric Dgives

m(t+h) ≤ D[Z(t,h),h(QU)(t)]+D[h(QU)(t),h(QV)(t)]

+D[U(t),V (t)]+D[h(QV)(t),Y (t,h)].

Since the Hukuhara differences exist, we can replace Z(t,h)andY (t,h)withU(t+h)−U(t)
and V (t+ h)−V(t), respectively. This gives, on subtracting m(t) and dividing both sides
with h> 0,

m(t+h)−m(t)
h

≤ D
[
U(t+h)−U(t)

h
,(QU)(t)

]
+D[(QU)(t),(QV)(t)]

+D
[
(QV )(t),

V (t+h)−V(t)
h

]
.

Now taking limit supremum as h→ 0+ and using the fact thatU(t) and V (t) are solutions
of (5.2) along with the assumption (5.4) we obtain

D+m(t) ≤ D[(QU)(t),(QV )(t)] ≤ g(t,D0[U,V ](t)) = g(t, |m|0(t)), t ∈ J.

Theorem 5.2.1 now guarantees the stated conclusion and the proof is complete.
Corollary 5.2.1. Let Q ∈C[E,E] be a causal map such that

D[(QU)(t),θ ] ≤ g(t,D0[U,θ ](t)),

where g ∈ C[J×R+,R+]. Also, suppose that r(t,t0,w0) is the maximal solution of the
scalar differential equation (5.3). Then, if U(t,t0,U0) is any solution of (5.2) through
(t0,U0) withU0 ∈ Kc(Rn),D[U0,θ ] ≤ w0 implies D[U(t),θ ] ≤ r(t,t0,w0), t ∈ J.
We begin by providing a local existence result using successive approximations.
Theorem 5.2.3. Assume that

(a) Q ∈ C[B,E] is a causal map, where B = B(U0,b) = {U ∈ E : D0[U,U0] ≤ b} and
D0[(QU),θ ](t) ≤M1 on B;

(b) g ∈C[J× [0,2b],R+], g(t,w) ≤M2 on J× [0,2b], g(t,0)≡ 0, g(t,w) is nondecreasing
in w for each t ∈ J and w(t) = 0 is the only solution of

w′ = g(t,w), w(t0) = 0 on J; (5.5)

(c) D[(QU)(t),(QV )(t)] ≤ g(t,D0[U,V ](t)) on B.
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Then, the successive approximations defined by

Un+1(t) =U0+

∫ t
t0

(QUn)(s)ds, n= 0,1,2, . . . , (5.6)

exists on J0= [t0,t0+η), where η =min[T−t0,b/M] andM=max(M1,M2), and converge
uniformly to the unique solutionU(t) of (5.2).
Proof. For t ∈ J0, we have, by induction, using properties of the Hausdorff metric D, and
the integral,

D[Un+1(t),U0] = D
[
U0+

∫ t
t0

(QUn)(s)ds,U0
]

= D
[∫ t
t0

(QUn)(s)ds,θ
]

≤
∫ t
t0
D[(QUn)(s),θ ]ds,

≤
∫ t
t0
D0[QUn,θ ](t)ds≤M1(t− t0) ≤M(t− t0) ≤ b,

which shows the successive approximations are well defined on J0.
Next, we define successive approximations for the problem (5.5) as follows:

w0(t) =M(t− t0),

wn+1(t) =

∫ t
t0
g(s,wn(s))ds, t ∈ J0, n= 0,1,2, . . . .

Then,

w1(t) =

∫ t
t0
g(s,w0(s))ds≤M2(t− t0) ≤M(t− t0) = w0(t).

Assume, for some k> 1, t ∈ J0, that
wk(t) ≤ wk−1(t).

Then, using monotonicity of g, we get

wk+1(t) =

∫ t
t0
g(s,wk(s))ds≤

∫ t
t0
g(s,wk−1(s))ds = wk(t).

Hence, the sequence {wk(t)} is monotone decreasing.
Since w′

k(t) = g(t,wk−1(t)) ≤ M2, t ∈ J0, we conclude by Ascoli-Arzela theorem and the
monotonicity of the sequence {wk(t)} that

lim
t→∞

wn(t) = w(t)

uniformly on J0. Since w(t) satisfies (5.5), we get from condition (b) that w(t) ≡ 0 on J0.
Observing that for each t ∈ J0, t0 ≤ s≤ t,

D[U1(s),U0] = D
[
U0+

∫ s
t0

(QU0)(ξ )dξ ,U0
]

= D
[∫ s
t0

(QU0)(ξ )dξ ,θ
]

≤
∫ s
t0
D[(QU0)(ξ ),θ ]dξ ≤ D0[(QU0),θ ](s− t0)

≤ D0[(QU0),θ ](t− t0) ≤M1(t− t0) ≤M(t− t0) = w0(t),
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which implies that D0[U1,U0](t) ≤ w0(t). We assume, for some k> 1,

D0[Uk,Uk−1](t) ≤ wk−1(t), t ∈ J0.

Consider, for any t ∈ J0, t0 ≤ s≤ t,

D[Uk+1(s),Uk(s)] ≤
∫ s
t0
D[(QUk)(ξ ),(QUk−1)(ξ )]dξ ≤

∫ s
t0
g(ξ ,D0[Uk,Uk−1](ξ ))dξ

≤
∫ s
t0
g(ξ ,wk−1(ξ ))dξ ≤

∫ t
t0
g(ξ ,wk−1(ξ ))dξ = wk(t).

which further gives

D0[Uk+1,Uk](t) ≤ wk(t), t ∈ J0.

Thus, we consider that

D0[Un+1,Un](t) ≤ wn(t), (5.7)

for t ∈ J0 and for all n= 0,1,2, . . . .
We claim that {Un(t)} is a Cauchy sequence. To show this, let n ≤ m. Setting v(t) =

D[Un(t),Um(t)] and using (5.6), we get

D+v(t) ≤ D[DHUn(t),DHUm(t)](t) = D[(QUn−1)(t),(QUm−1)(t)]

≤ D[(QUn−1)(t),(QUn)(t)]+D[(QUn)(t),(QUm)(t)]

+D[(QUm)(t),(QUm−1)(t)] ≤ g(t,D0[Un−1,Un](t))+g(t,D0[Un,Um](t))

+g(t,D0[Um−1,Um](t)) ≤ g(t,wn−1(t))+g(t, |v|0(t))+g(t,wn−1(t))

= g(t, |v|0(t))+2g(t,wn−1(t)).

The above inequalities yield, on using Theorem 5.2.1, the estimate

v(t) ≤ rn(t), t ∈ J0,

where rn(t) is the maximal solution of

r′n = g(t,rn)+2g(t,wn−1(t)), rn(t0) = 0,

for each n. Since as n→ ∞, 2g(t,wn−1(t))→ 0 uniformly on J0, it follows by Lemma 1.3.3
that rn(t) → 0, as n→ ∞ uniformly on J0. This implies from (5.7) that Un(t) converges
uniformly toU(t) on J0 and clearlyU(t) is a solution of (5.2).
To prove uniqueness, let V (t) be another solution of (5.2) on J0. Set m(t) = D[U(t),V (t)].
Then, m(t0) = 0 and

D+m(t) ≤ g(t, |m|0(t)), t ∈ J0.
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Since m(t0) = 0, it follows from Theorem 5.2.1 that

m(t) ≤ r(t,t0,0), t ∈ J0,

where r(t,t0,0) is the maximal solution of (5.5). The assumption (b) now shows thatU(t)=

V (t), t ∈ J0, proving uniqueness.
Assuming local existence, we next discuss a global existence result.
Theorem 5.2.4. Let Q ∈C[E,E] be a causal map such that

D[(QU)(t),θ ] ≤ g(t,D0[U,θ ](t)),

where g ∈ C[R2+,R+], g(t,w) is nondecreasing in w for each t ∈ R+ and the maximal
solution r(t)= r(t,t0,w0) of (5.3) exists on [t0,∞). Suppose further thatQ is smooth enough
to guarantee the local existence of solutions of (5.2) for any (t0,U0) ∈ R+×Kc(Rn). Then,
the largest interval of existence of any solution U(t,t0,U0) of (5.2) is [t0,∞), whenever
D[U0,θ ] ≤ w0.
Proof. Suppose thatU(t) =U(t,t0,U0) is any solution of (5.2) existing on [t0,β ), t0 < β <

∞ with D[U0,θ ] ≤ w0, and the value of β cannot be increased. Define m(t) = D[U(t),θ ]

and note that m(t0) ≤ w0. Then, it follows that

D+m(t) ≤ D[DHU(t),θ ] ≤ D[(QU)(t),θ ] ≤ g(t,D0[U,θ ](t)).

Using Theorem 5.2.1, we obtain

m(t) ≤ r(t), t0 ≤ t < β .

For any t1,t2 such that t0 < t1 < t2 < β , using the assumptions and properties of Hausdorff
metric D,

D[U(t1),U(t2)] = D
[∫ t1
t0

(QU)(s)ds,
∫ t2
t0

(QU)(s)ds
]

≤
∫ t2
t1
D[(QU)(s),θ ]ds≤

∫ t2
t1
g(s,D0[U,θ ](s))ds.

Employing the estimate above and the monotonicity of g(t,w), we find

D[U(t1),U(t2)] ≤
∫ t2
t1
g(s,r(s))ds = r(t2)− r(t1).

Since limt→β− r(t,t0,w0) exists, taking the limit as t1,t2 → β−, we get that {U(tn)} is a
Cauchy sequence and therefore limt→β−U(t,t0,U0) =Uβ exists. We then consider the IVP

DHU(t) = (QU)(t), U(β ) =Uβ .

As we have assumed the local existence, we note that U(t,t0,U0) can be continued be-
yond β , contradicting our assumption that β cannot be increased. Thus, every solution
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U(t,t0,U0) of (5.2) such that D[U0,θ ] ≤ w0 exists globally on [t0,∞) and hence the proof
is complete.
Next, we discuss the continuous dependence of solutions with respect to initial values.
Lemma 5.2.1. Let Q ∈C[E,E] be a causal map and let

G(t,k(t)) = sup[D[(QU)(t),θ ] : D[U(t),U0] ≤ k(t)].

Assume that r∗(t,t0,0) is the maximal solution of

w′ =G(t,w), w(t0) = 0, on J.

LetU(t) =U(t,t0,0) be the solution of (5.2). Then,

D[U(t),U0] ≤ r∗(t,t0,0), t ∈ J.

Proof. Set m(t) = D[U(t),U0], t ∈ J. Then,

m(t+h)−m(t) = D[U(t+h),U0]−D[U(t),U0]

= D[U(t+h),U(t)+h(QU)(t)]+D[U(t)+h(QU)(t),U(t)].

Hence,
m(t+h)−m(t)

h
≤ D

[
U(t+h)−U(t)

h
,(QU)(t)

]
+D[(QU)(t),θ ],

D+m(t) ≤ D[(QU)(t),θ ] ≤ sup[D[(QU)(t),θ ] :D[U(t),U0] ≤ m(t)] ≤G(t,m(t)).

This implies by Theorem 1.3.2 that

D[U(t),U0] ≤ r∗(t,t0,0), t ∈ J.

Theorem 5.2.5. Assume that

(a) assumptions (a), (b), and (c) of Theorem 5.2.3 hold;
(b) the solutions w(t,t0,w0) of (5.3) through every point (t0,w0) are continuous with re-

spect to (t0,w0).

Then, the solutionU(t) =U(t,t0,U0) of (5.2) is continuous with respect to (t0,U0).
Proof. Let U(t) = U(t,t0,U0), V (t) = V (t,t0,V0), U0,V0 ∈ Kc(Rn) be two solutions of
(5.2). Then, defining m(t) = D[U(t),V (t)], we get from Theorem 5.2.3 the estimate

D[U(t),V (t)] ≤ r(t,t0,D[U0,V0]), t ∈ J.

Since limU0→V0 r(t,t0,D[U0,V0]) = r(t,t0,0) uniformly on J and by hypothesis r(t,t0,0) ≡
0, consequently limU0→V0U(t,t0,U0) =V (t,t0,V0) uniformly and henceU(t,t0,U0) is con-
tinuous with respect toU0.
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To prove continuity with respect to t0, we let U(t) =U(t,t0,U0), V = V (t,τ0,U0) be two
solutions of (5.2) with τ0 > t0. Again, setting m(t) =D[U(t),V (t)] and noting thatm(τ0) =

D[U(τ0),U0], using Lemma 5.2.1, we get

m(τ0) ≤ r∗(τ0,t0,U0).
Hence, using Theorem 5.2.2, we obtain

m(t) = r̃(t), t ≥ τ0,

where r̃(t,τ0,r∗(τ0,t0,0)) is the maximal solution of (5.2) through (τ0,r∗(τ0,t0,0)). Since
r∗(t,t0,0) = 0, we have

lim
τ0→t0

r̃(t,τ0,r∗(τ0,t0,0)) = r̃(t,t0,0),

uniformly on J. By hypothesis, r̃(t,t0,0) ≡ 0 which proves the continuity of U(t,t0,U0)
relative to t0.

5.3 Comparison Results and Stability Theory

In this section, we first prove some basic comparison results, which are used subsequently
to establish stability properties of CSDEs, that is causal set differential equations. We begin
with some definitions. Let E =C[[t0,∞),Kc(Rn)] with norm

sup
t∈[t0 ,∞)

D[U(t),θ ]

h(t)
< ∞,

where θ is the zero element of R
n, which is regarded as a point set and h : [t0,∞) → R+ is

a continuous map. E equipped with such a norm is a Banach space.
Definition 5.3.1. Let Q ∈C[E,E]. Q is said to be a causal map or nonanticipative map if
U(s) =V (s), t0 ≤ s≤ t < ∞, andU,V ∈ E then (QU)(s) = (QV )(s), t0 ≤ s≤ t < ∞.
Consider the initial value problem (IVP) for CSDEs defined using the Hukuhara derivative:

DHU(t) = (QU)(t), U(t0) =U0 ∈ Kc(Rn). (5.8)

In order to use the method of Lyapunov function (MLF), it is necessary to select mini-
mal subsets of E over which the derivative of the Lyapunov function can be conveniently
estimated. For that purpose, let L ∈ C[R+ ×B,R+], where B = B(θ ,b) = {U ∈ Kc(Rn) :
D[U,θ ] ≤ b}. Define the following sets:

Eα = {U ∈ Kc(Rn) : L(s,U(s))α(s) ≤ L(t,U(t))α(t), t0 ≤ s≤ t},
EI = {U ∈ Kc(Rn) : L(s,U(s)) ≤ L(t,U(t)), t0 ≤ s≤ t},
E0 = {U ∈ Kc(Rn) : L(s,U(s)) ≤ f (L(t,U(t))), t1 ≤ s≤ t, t1 ≥ t0},

where
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(i) α(t) > 0 is a continuous function on R+,
(ii) f (r) is a continuous on R+, nondecreasing in r and f (r) > r for r > 0.

We now prove the comparison results,
Theorem 5.3.1. Let L ∈ C[R+ ×B,R+] and let L(t,U) be locally Lipschitzian in U , i.e.,
forU,V ∈ B, t ∈ R+, and K > 0, |L(t,U)−L(t,V)| ≤ KD(U,V ).

(i) Assume that for t ≥ t0 andU ∈ E1,

D−L(t,U(t)) ≤ g(t,L(t,U(t))) (5.9)

where D−L(t,U(t)) = liminfh→0− 1
h [L(t+ h,U(t)+ h(QU)(t))−L(t,U(t))], and g ∈

C[R+ ×R+,R+].
(ii) Let r(t) = r(t,t0,w0) be the maximal solution of

w′ = g(t,w), w(t0) = w0 ≥ 0, (5.10)

existing on t0 ≤ t < ∞.

Let U(t, t0,U0) be any solution of (5.8) such that U(t,t0,U0) ∈ B for t ∈ [t0,t1] and let
L(t0,U0) ≤ w0. Then L(t,U(t,t0,U0)) ≤ r(t) for all t ∈ [t0,t1].
Proof. Let U(t,t0,U0) be any solution of (5.8) such that U(t,t0,U0) ∈ B for t ∈ [t0,t1].
Define m(t) = L(t,U(t)), t ∈ [t0,t1]. For sufficiently small ε > 0, consider the differential
equation

w′ = g(t,w)+ ε = gε(t,w), w(t0) = w0+ ε,

whose solutions w(t,ε) = w(t,t0,w0,ε) exist as far as r(t) exists to the right of t0. Since
the continuity of w(t) implies that limε→0w(t,ε) = r(t), it is sufficient to show that

m(t) < w(t,ε), t ∈ [t0,t1]. (5.11)

Suppose that (5.11) is not true. then there exists t2 ∈ (t0,t1) such that

(a) m(t) ≤ w(t,ε), t0 ≤ t ≤ t2, and
(b) m(t2) = w(t2,ε).

It then follows from (a) and (b) that

D−m(t2) ≥ liminf
h→0−

w(t2+h,ε)−w(t2,ε)

h
= D−w(t2,ε) = g(t2,w(t2,ε))+ ε. (5.12)

From the assumption on g, the solutions w(t,ε) are increasing functions of t. Since, m(t) =

L(t,U(t)) and using (a) and (b), we have

L(s,U(s)) ≤ L(t2,U(t2)), t0 ≤ s≤ t2.
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Consequently,U(t,t0,U0) ∈ EI , t0 ≤ t ≤ t2. Since L(t,U) is Lipschitzian inU and satisfies
condition (i), we have

m(t+h)−m(t) = L(t+h,U(t+h))−L(t,U(t))

= L(t+h,U(t+h))−L(t+h,U(t)+h(QU)(t))

+L(t+h,U(t)+h(QU)(t))−L(t,U(t))

≥ −KD[U(t+h),U(t)+h(QU)(t)]

+L(t+h,U(t)+h(QU)(t))−L(t,U(t)),

which, upon taking the liminf as h→ 0− and using the fact that DHU(t) exists and is equal
to (QU)(t) yields

D−m(t) ≤ D−L(t,U(t)) ≤ g(t,L(t,U(t))) = g(t,m(t)).

Therefore, it follows, for t = t2, that

D−m(t2) ≤ g(t2,m(t2)) = g(t2,w(t2,ε)),

which is a contradiction to (5.12). Hence the proof of the theorem is complete.
Corollary 5.3.1. Let L ∈C[R+ ×B,R+] and let L(t,U) be locally Lipschitzian in U . As-
sume that

D−L(t,U(t)) ≤ 0 for t ≥ t0 andU ∈ E0.
LetU(t) =U(t,t0,U0) be any solution of (5.8), then L(t,U(t)) ≤ L(t0,U0), t ≥ t0.
Proof. Proceeding as in the previous theorem with g(t,w) = 0, we have

L(s,U(s)) ≤ L(t2,U(t2)),t2 ∈ (t0,t1), t2 ∈ (t0,t1), t0 ≤ s≤ t2.
Since L(t2,U(t2)) = w(t2,ε) = L(t0,U0) + ε(t2 − t0) + ε > 0, we have L(s,U(s)) ≤
f (L(t2,U(t2))) for t0 ≤ s≤ t2. The rest of the proof is similar to that of Theorem 5.3.1.
Theorem 5.3.2. Assume the hypotheses of Theorem 5.3.1 hold, except for inequality (5.9),
which is replaced by

α(t)D−L(t,U(t))+L(t,U(t))D−α(t) ≤ w(t,L(t,U(t))α(t)), (5.13)

for t > t0, U ∈ Eα , where α(t) > 0 is continuous on R+ and D−α(t) =

liminfh→0−
α(t+h)−α(t)

h . Then α(t0)L(t0,U0)≤w0 implies that α(t)L(t,U(t))≤ r(t), t ≥ t0.
Proof. Let P(t,U(t)) = L(t,U(t))α(t). Let t ≥ t0 and usingU ∈ Eα . For sufficiently small
h> 0, we have

P(t+h,U(t)+h(QU)(t))−P(t,U(t))

= L(t+h,U(t)+h(QU)(t))α(t+h)−L(t,U(t))α(t)

= L(t+h,U(t)+h(QU)(t))(α(t+h)−α(t))

+[L(t+h,U(t)+h(QU)(t))−L(t,U(t))]α(t),
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from which it follows,

D−P(t,U(t)) = L(t,U(t))D−α(t)+ α(t)D−L(t,U(t))

≤ w(t,L(t,U(t))α(t)) = w(t,P(t,U(t))),

for t ∈ (t0,t1] andU ∈ E1, where E1, in this case, is to be defined with P(t,U(t)) replacing
L(t,U(t)) in the definition of set E1. Since P(t,U) is locally Lipschitzian inU , then all the
assumptions of Theorem 5.3.2 are satisfied with P(t,U(t)) replacing L(t,U(t)). Hence, the
conclusion of the theorem follows from the proof of Theorem 5.3.1.
To prove a general comparison result in terms of Lyapunov-like functions, we need the
following known result.
Lemma 5.3.1. Let g0,g ∈C[R2+,R] be such that

g0(t,w) ≤ g(t,w), (t,w) ∈ R
2
+. (5.14)

Then the right maximal solution r(t,t0,w0) of (5.10) and the left maximal solution
η(t,T0,v0) of

v′ = g0(t,v), v(T0) = v0, (5.15)

satisfy the relation

r(t,t0,w0) ≤ η(t,T0,v0), t ∈ [t0,T0],

whenever r(T0,t0,w0) ≤ v0.
Theorem 5.3.3. Assume that

(i) L ∈C[R+×B,R+] and L(t,u) is locally Lipschitzian inU ,
(ii) g0,g ∈ C[R2+,R] are such that g0(t,w) ≤ g(t,w), t,w ∈ R

2
+, and η(t,T0,v0) is the left

maximal solution of (5.15) existing on t0 ≤ t ≤ T0 and r(t,t0,w0) the right maximal
solution of (5.10) existing on [t0,∞);

(iii) D−L(t,U(t)) ≤ g(t,L(t,U(t))) on Ω, where

Ω = {U ∈ E : L(s,U(s)) ≤ η(s,t,L(t,U(t))), t0 ≤ s≤ t}.

Then we have

L(t,U(t,t0,U0)) ≤ r(t,t0,w0), t ≥ t0, (5.16)

whenever L(t0,U0) ≤ w0.
Proof. Set m(t) = L(t,U(t,t0,U0)), t ≥ t0, so that m(t0) = L(t0,U0) ≤ w0. Let w(t,ε) be
any solution of

w′ = g(t,w)+ ε, w(t0) = w0+ ε,
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for sufficiently small ε > 0. Then since r(t,t0,w0) = limε→0+ w(t,ε), it is enough to prove
that m(t) < w(t,ε) for t ≥ t0. If this is not true, there exists a t1 > t0 such that m(t1) =

w(t1,ε) and m(t) < w(t,ε) for t0 < t < t1. This implies that

D−m(t1) ≥ w′(t,ε) = g(t1,m(t1))+ ε. (5.17)

Now consider the left maximal solution η(s,t1,m(t1)) of (5.15) with v(t1) = m(t1) on the
interval t0 < t < t1. By Lemma 5.3.1, we have

r(s,t0,w0) ≤ η(s,t1,m(t1)), s ∈ [t0,t1].

Since

r(t1,t0,w0) = lim
ε→0+

w(t,ε) = m(t1) = η(t1,t1,m(t1))

and m(s) ≤ w(s,ε) for t0 < s≤ t1, it follows that

m(s) ≤ r(s,t0,w0) ≤ η(s,t1,m(t1)), s ∈ [t0,t1].

This inequality implies that hypothesis (iii) holds forU(s,t0,U0) on t0 < s≤ t1 and hence,
standard computation yields

D−m(t1) ≤ g(t1,m(t1)),

which contradicts (5.17). Thus m(t) ≤ r(t,t0,w0), t ≥ t0, and the proof is complete.
In order to discuss the stability properties of (5.8), let is assume that the solutions of (5.8)
exist and are unique for all t ≥ t0. In addition, in order to match the behavior of solutions
of (5.8) with those of the corresponding ordinary differential equation with causal map, we
assume thatU0 =V0+W0, so the Hukuhara differenceU0−V0 =W0 exists. Consequently,
in what follows, we consider the solutionsU(t) =U(t,t0,U0−V0) =U(t,t0,W0). This we
have the initial value problem

DHU(t) = (QU)(t), U(t0) =W0. (5.18)

To illustrate the idea mentioned above, we present a simple example in Kc(Rn). Consider

DHU(t) = −
∫ t
0
U(s)ds, U(0) =U0 ∈ Kc(Rn).

Then using interval methods, we get

u′1 = −
∫ t
0
u2(s)ds,

u′2 = −
∫ t
0
u1(s)ds,
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whereU(t) = [u1(t),u2(t)] andU0 = [u10,u20]. Clearly, this yields

u(4)
1 = u1, u1(0) = u10,

u(4)
2 = u2, u2(0) = u20,

whose solutions are given by

u1(t) =

(
u10−u20

2

)(
et + e−t

2

)
+

(
u10+u20

2

)
cos(t)

u2(t) =

(
u20−u10

2

)(
et + e−t

2

)
+

(
u10+u20

2

)
cos(t).

That is, for t ≥ 0,

U(t,t0,U0) =

[
−1
2
(u20−u10), 12(u20−u10)

](
et + e−t

2

)

+

[
1
2
(u10+u20),

1
2
(u10+u20)

]
cos(t) t ≥ 0.

Then choosing

V0 =

[
−1
2
(u20−u10), 12(u20−u10)

]
,

we obtain

U(t,t0,W0) =

[
1
2
(u10+u20),

1
2
(u10+U20)

]
cos(t), t ≥ 0,

which implies the stability of the trivial solution of the initial value problem.
Next, we give an example which illustrates that one can get asymptotic stability as well in
SDE with causal maps. Consider the following differential equation

DHU(t) = −aU−b
∫ t
0
U(s)ds, U(0) =U0 ∈ Kc(Rn), (5.19)

a,b> 0. As before we take U(t) = [u1(t),u2(t)] andU0 = [u10,u20]. Then equation (5.19)
reduces to

u′1 = −au2−b
∫ t
0
u2(s)ds,

u′2 = −au1−b
∫ t
0
u1(s)ds,

and

u(4)
1 = a2u′′1+2abu′1+b

2u1, u1(0) = u10,

u(4)
2 = a2u′′2+2abu′2+b2u2, u2(0) = u10,
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from which, by choosing a= 1 and b= 2, we obtain

u1(t) =
1
6
(u10−u20)e−t + 13 (u10−u20)e2t

+e−
1
2 t

[
1
2
(u10+u20)cos

(√
7
2
t

)
− 1
2
√
7
(u10+u20)sin

(√
7
2
t

)]
,

u2(t) =
1
6
(u20−u10)e−t + 13 (u20−u10)e2t

+e−
1
2 t

[
1
2
(u10+u20)cos

(√
7
2
t

)
− 1
2
√
7
(u10+u20)sin

(√
7
2
t

)]
.

Thus, it follows that

U(t,t0,U0) = (u20−u10)
[
−1
6
,
1
6

]
e−t +(u20−u10)

[
−1
3
,
1
3

]
e2t

+(u20+u10)
[
1
2
,
1
2

]
e−

1
2 t cos

(√
7
2
t

)

−(u20+u10)
[
1
2
√
7
,
1
2
√
7

]
e−

1
2 t sin

(√
7
2
t

)
, t ≥ 0.

Now, choosing u10 = u20, we eliminate the undesirable terms and, therefore we get asymp-
totic stability of the zero solution of (5.19).
We are now in a position to give sufficient conditions for the stability, and the asymptotic
and uniform asymptotic stability of the zero solution of (5.18).
Theorem 5.3.4. Assume that there exists functions L(t,U(t)) and g(t,w) satisfying the
following conditions

(i) g ∈C[R+ ×R+,R+] and g(t,0) ≡ 0;
(ii) L ∈C[R+×B,R+] where B= B(θ ,ρ) = {U ∈Kc(Rn) :D[U,θ ]≤ ρ}, L(t,θ )≡ 0, and

L(t,U) is positive definite and locally Lipschitzian inU ;
(iii) for t > t0 andU ∈ E1, D−L(t,U(t)) ≤ g(t,L(t,U(t))).

Then the stability of the zero solution of (5.10) implies the stability of the zero solution of
(5.18).
Proof. Let 0 < ε < ρ and t0 ∈ R+ be given. Since L(t,U) is positive definite, it follows
that there exists a function b ∈ K such that

b(D[U,θ ]) ≤ L(t,U) for (t,U) ∈ R+×B. (5.20)

Suppose that the zero solution is stable. Then given b(ε) > 0, t0 ∈ R+, there exists a
δ = δ (t0,ε) > 0 such that whenever w0 < δ , we have

w(t) < b(ε), t ≥ t0, (5.21)
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where w(t,t0,w0) is any solution of (5.10). Choose w0 = L(t0,W0). Since L(t,U(t)) is
continuous and L(t,θ ) ≡ 0, there exists a positive function δ1 = δ1(t0,ε) > 0 such that
D[W0,θ ] ≤ δ1 and L(t0,W0) ≤ δ hold simultaneously.
We claim that if D[W0,θ ] ≤ δ1, then D[U(t),θ ] < ε for all t ≥ t0. Suppose this not true.
Then there exists a solution U(t) = U(t,t0,W0) satisfying the properties D[U(t2),θ ] = ε
and D[U(t),θ ] < ε for t0 < t < t2, t2 ∈ (t0,t1). Together with (5.20), this implies that

L(t2,U(t2)) ≥ b(ε). (5.22)

Furthermore, U(t) ∈ B for t ∈ [t0,t2]. Hence, the choice of w0 = L(t0,W0) and condition
(iii) give, as a consequence of Theorem 5.3.1, the estimate

L(t,U(t)) ≤ r(t), t ∈ [t0,t2],

where r(t) = r(t,t0,w0) is the maximal solution of the comparison problem. Now from
equations (5.20), (5.22), we have

b(ε) ≤ L(t2,U(t2)) ≤ r(t2) < b(ε),

which is a contradiction. Therefore the proof of the theorem is complete.
The following theorem provides sufficient conditions for asymptotic stability:
Theorem 5.3.5. Assume that

(i) there exist functions L(t,U), g(t,w) satisfying the conditions of Theorem 4.3;
(ii) there exists a function α(t) such that α(t) > 0 is continuous for t ∈ R+ and α(t) → ∞

as t→ ∞.

Further, assume that relation (5.13) holds for t > t0, U ∈ Eα . Then, if the zero solution of
(5.3) is stable, then the zero solution of (5.18) is asymptotically stable.
Proof. Let ),ε < ρ and t0 ∈ R+ be given. Set α0 = mint∈R+ α(t), then α0 > 0 follows
from assumption (ii). Since L(t,U) is positive definite, there exists a b ∈ K such that
(5.20) holds. Define

ε1 = α0b(ε). (5.23)

Then, the stability of the zero solution of (5.10) implies that, given ε1 > 0 and a t0 ∈ R+,
there exists a δ = δ (ε1,t0) such that w0 < δ implies that

w(t,t0,w0) < ε1, t ≥ t0, (5.24)

where w(t,t0,w0) is any solution of (5.10). Choose w0 = L(t0,W0). Then proceeding as in
the proof of Theorem with ε1 instead of b(ε), we can prove that the zero solution of (5.18)
is stable.
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LetU(t,t0,W0) be any solution of (5.18) such that D[W0,θ ] ≤ δ0, where δ0 = δ (t0,1/2ρ).
Since the zero solution of (5.18) is stable, it follows that D[U(t),θ ] < 1/2ρ , t ≥ t0. Since
α(t) → ∞ as t→ ∞, there exists a number T = T (t0,ε) > 0 such that

b(ε)α(t) > ε1, t ≥ t0+T. (5.25)

Now from Theorem 5.3.4 and relation (5.20), we get

α(t)b(D[U(t),θ ]) ≤ α(t)L(t,U(t)) ≤ r(t), t ≥ t0, (5.26)

whereU(t) =U(t,t0,W0) is any solution of (5.18) such that D[W0,θ ] ≤ δ0.
If the zero solution of (5.18) is not asymptotically stable, then there exists a sequence {tk},
tk ≥ t0+T and tk→ ∞ as k→ ∞ such thatD[U(tk),θ ]≥ ε for some solutionU(t) satisfying
D[W0,θ ] ≤ δ0. The relations (5.24) and (5.26) yield that b(ε)α(tk) ≥ ε1, a contradiction to
(5.25). Thus, the zero solution of (5.18) is asymptotically stable.
The next theorem gives sufficient conditions for the uniform asymptotic stability of (5.18).
Theorem 5.3.6. Assume there exists a function L(t,U) satisfying the following properties:

(i) L ∈ C[R+ × B,R+], where B = B(θ ,ρ) = {U ∈ Kc(Rn) : D[U,θ ] ≤ ρ}, L(t,U) is
positive definite, decrescent and locally Lipschitzian inU ;

(ii) D−L(t,U(t)) ≤−c(D[U(t),θ ]) for t > t0,U ∈ E0 and c ∈ K .

Then the zero solution of (5.18) is uniformly asymptotically stable.
Proof. Since L(t,U) is positive definite and decrescent, there exist a,b ∈ K such that

b(D[U,θ ])≤ L(t,U) ≤ a(D[U,θ ]) (5.27)

for (t,U) ∈ R+×B. Let 0< ε < ρ and t0 ∈ R+ be given. Choose δ = δ (ε) > 0 such that

a(δ ) < b(ε). (5.28)

We claim that if D[W0,θ ] ≤ δ , D[U(t),θ ] < ε for all t ≥ t0, where U(t) =U(t,t0,W0) is
any solution of (5.18). Suppose this is not true. Then there exists a solutionU(t) of (5.18)
with D[W0,θ ] ≤ δ and t2 > t0, such that D[U(t2,t0,W0),θ ] = ε and D[U(t,t0,W0),θ ] ≤ ε
for t ∈ [t0,t2]. Thus, in view of (5.27), we have

L(t2,U(t2)) ≥ b(ε). (5.29)

It is clear that, since ε < ρ ,U(t)∈ B. By our choice of w0 = L(t0,W0) and by the condition
that D−L(t,U(t)) ≤ 0 for t > t0,U ∈ E0, and by Corollary 5.3.1, we have the estimate

L(t,U(t)) ≤ L(t0,W0), t ∈ [t0,t2]. (5.30)
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Now the relations (5.27) to (5.30) leads to the contradiction b(ε) ≤ L(t2,U(t2)) ≤
a(D[W0,θ ]) ≤ a(δ ) < b(δ ).
This proves uniform stability. Now let U(t) =U(t,t0,W0) be any solution of (5.18) such
that D[W0,θ ] ≤ δ0, where δ0 = δ (ρ/2), δ being the same as before. It then follows from
uniform stability that D[U(t),θ ] ≤ ρ/2 for t ≥ t0, and hence U(t) ∈ B for all t > t0. Let
0 < η < δ0 be given. Clearly, we have b(η) ≤ a(δ0). In view of the assumptions of f (r),
there exists a β = β (η) > 0 such that

f (r) > r+ β if b(η) ≤ r ≤ a(δ0). (5.31)

Furthermore, there exists a positive integer N = N(η) such that

b(η)+Nβ > a(δ0). (5.32)

If we have, for some t ≥ t0, L(t,U(t)) ≥ b(η), it follows from (5.27) that there exists a
δ2 = δ (η) > 0, such that D[U(t),θ ] ≥ δ2. This in turn implies that

c(D[U(t),θ ]) ≥ c(δ2) = δ3, (5.33)

where δ3 = δ3(η). We construct N+ 1 numbers tk = tk(t0,η) such that t0(t0,η) = t0 and
tk+1(t0,η) = tk(t0,η)+ β/δ3. By letting T (η) = Nβ/δ3, we have tk(t0,η) = t0+T(η).
Now to prove uniform asymptotic stability, we still have to prove D[U(t),θ ] for all t ≥
t0+T (η). It is therefore sufficient to show that

L(t,U(t)) < b(η)+ (N− k)β , t ≥ tk, k= 0,1,2, . . . ,N. (5.34)

Now we prove (5.34) by induction. For k = 0, t ≥ t0, we have, using (5.27),

L(t,U(t)) ≤ L(t0,U0) ≤ a(δ0) < b(η)+Nβ . (5.35)

Suppose we have, for some k,

L(s,U(s)) < b(η)+ (N− k)β , s≥ tk,

and, if possible, assume that for t ∈ [tk,tk+1],

L(t,U(t)) ≥ b(η)+ (N− k−1)β .

It then follows that

a(δ0) ≥ a(D[U(s),θ ]) ≥ L(s,U(s)) ≥ b(η)+Nβ − (k+1)β ≥ b(η).

Therefore from (5.31), we conclude that

f (L(s,U(s))) ≥ L(s,U(s))+ β > b(η)+ (N− k)β > L(s,U(s))
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for tk < s < t, t ∈ [tk,tk+1]. In turn, this implies that U(t) ∈ E0 for tk < s < t ∈ [tk,tk+1].
Hence, we obtain from assumption (ii) and (5.35) that

L(tk+1,U(tk+1)) ≤ L(tk,U(tk))−
∫ tk+1
tk

c(D[U(s),θ ])ds

< β (η)+ (N− k)β − δ3(tk+1− tk)
< b(η)+ (N− k)β .

This contradiction shows that there exists t∗ ∈ [tk,tk+1] such that

L(t∗,U(t∗)) < b(η)+ (N− k−1)β . (5.36)

Now we show that (5.36) implies that

L(t,U(t)) < b(η)+ (N− k−1)β , t ≥ t∗.
If not trues, then there exists t1 > t∗ such that L(t1,U(t1)) = b(η)+(N−k−1) or for some
small h> 0, L(t1+h,U(t1+h)) < b(η)+ (N− k−1)β , which implies that

D−L(t1,U(t1)) ≥ 0. (5.37)

As we did before, we can show thatU(t) ∈ B, for t∗ ≤ s≤ t1, and D−L(t1,U(t1))−δ3 < 0.
This contradicts (5.37), and hence

L(t,U(t)) < b(η)+ (N− k−1)β , t ≥ tk+1.
This completes the proof of the theorem.
Our final stability result is a general result, which offers various stability criteria in a single
set-up. The proof of this theorem, which can be obtained by using the comparison result
Theorem 5.3.3 is omitted.
Theorem 5.3.7. Assume that there exists a function L(t,U) satisfying properties (i), (ii),
and (iii) of Theorem 5.3.3. Then the stability properties of the zero solution of (5.10) imply
the corresponding properties of the zero solution of (5.18).
We now show that this theorem unifies the various stability results discussed earlier. To
that end, consider the following special cases:

(a) Suppose g0(t,w) ≡ 0. Then η(s,T0,v0) = v0, and hence Ω reduces to E1.
(b) Suppose g0(t,w) = −[α ′(t)/α(t)]w, where α(t) > 0 is continuously differentiable on

R+ and α(t) → ∞ as t → ∞. Let g(t,w) = g0(t,w)+ [1/α(t)]g1(t,α(t)w) with g1 ∈
C[R+ ×R+,R+], then η(s,T0,v0) = v0[α(T0)/α(s)]. Thus Ω = Eα .

(c) Let g0 = g = −c(w), c ∈ K . Then it is easy to show that η(s,T0,v0) = φ−1[φ(v0)−
(s−T0)], t0 ≤ s≤ T0 where φ(w) = φ(w0)+

∫ w
w0

ds
c(s) and φ−1 is the inverse function of

φ . Since η(s,T0,v0) is increasing in s to the left of T0, on choosing a fixed s0 ≤ T0 and
defining f (r) = η(s0,T),v0), it is clear that f (r) > r for r> 0. Thus f (r) is continuous
and increasing in r. Hence, Ω = E0.
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5.4 Causal Differential Equations in a Banach Space

Let X be a Banach space with the norm | · |, J = [t0,T ], E = C(J,X) and B = B[u0,b] =

[u ∈ E : |u−u0|E ≤ b]. We define |u− v|E(t) = maxt0≤s≤t |u(s)− v(s)|. In this section we
shall extend the basic results such as existence, uniqueness, global existence, to causal dif-
ferential equations in a Banach space. Then introducing the causal differential inequalities
in cones, we study the existence of extremal solutions.
Consider the Cauchy problem {

u′(t) = (Qu)(t),
u(t0) = u0,

(5.38)

where Q : B→ E .
Let us begin by proving a local existence result using successive approximations.
Theorem 5.4.1. Assume that

(a) Q ∈ C[B,E] is a causal map where B = B(u0,b) = {u ∈ E : |u− u0|0(t) ≤ b} and
|Qu|0(t) ≤M1, on B;

(b) g ∈C[J× [0,2b],R+], g(t,w) ≤M2 on J× [0,2b], g(t,0)≡ 0, g(t,w) is nondecreasing
in w for each t ∈ J and w(t) = 0 is the only solution of

w′ = g(t,w), w(t0) = 0 on J; (5.39)

(c) |(Qu)(t)− (Qv)(t)| ≤ g(t, |u− v|0(t)), on B.

Then, the successive approximations defined by

un+1(t) = u0+
∫ t
t0

(Qun)(s)ds, n= 0,1,2, . . . (5.40)

exist on J0 = [t0,t0+ η), where η = min{T − t0,b/M} and M = max{M1,M2}, and con-
verge uniformly to the unique solution u(t) of (5.38).
Proof. For t ∈ J0 we have, by induction

|un+1(t)−u0| =

∣∣∣∣
∫ t
t0

(Qun)(s)ds
∣∣∣∣

≤
∫ t
t0
|(Qun)(s)|ds

≤
∫ t
t0
|Qun|0(t)ds

≤ M1(t− t0)
≤ M(t− t0)
≤ b
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which shows the successive approximations are well defined on J0.
Next, we define the successive approximations for problem (5.39) as follows:

w0(t) = M(t− t0)
wn+1 =

∫ t
t0
g(s,wn(s))ds, n= 0,1,2, . . .

Then,

w1(t) =

∫ t
t0
g(s,w0(s))ds≤M2(t− t0) ≤M(t− t0) = w0(t).

Assume for some k > 1, t ∈ J0, that
wk(t) ≤ wk−1(t).

Then, using the monotonicity of g, we get

wk+1(t) =

∫ t
t0
g(s,wk(s))ds≤

∫ t
t0
g(s,wk−1(s)) = wk(t).

Hence, the sequence {wk(t)} is monotone decreasing.
Since w′

k(t) = g(t,wk−1(t)) ≤ M2, t ∈ J0, we conclude by the Ascoli-Arzela theorem and
the monotonicity of the sequence {wk(t)} that

lim
k→∞

wk(t) = w(t)

uniformly on J0. Since w(t) satisfies (5.39), we get from condition (b), that w(t) ≡ 0 on J0.
Observing that for each t ∈ J0, t0 ≤ s≤ t,

|u1(s)−u0| =

∣∣∣∣
∫ s
t0

(Qu0)(ζ )dζ
∣∣∣∣

≤
∫ s
t0
|(Qu0)(ζ )|dζ

≤ |Qu0|0(s− t0) ≤ |Qu0|0(t− t0)
≤ M1(t− t0) ≤M(t− t0) = w0(t),

which implies that |u1−u0|0(t) ≤ w0(t).We assume for some k > 1,

|uk−uk−1|0(t) ≤ wk−1(t), t ∈ J0.
Consider, for any t ∈ J0, t0 ≤ s≤ t,

|uk+1(s)−uk(s)| ≤
∫ s
t0
|(Quk)(ζ )− (Quk−1)(ζ )|dζ

≤
∫ s
t0
g(ζ , |uk−uk−1|0(ζ ))dζ

≤
∫ s
t0
g(ζ ,wk−1(ζ ))dζ

≤
∫ t
t0
g(ζ ,wk−1(ζ ))dζ = wk(t),
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which further gives

|uk+1−uk|0(t) ≤ wk(t), t ∈ J0.

Thus, we conclude that

|un+1−un|0(t) ≤ wn(t) (5.41)

for t ∈ J0 and for all n = 0,1,2, . . . . We claim that un(t) is a Cauchy sequence. To show
this, let n≤ m. Setting v(t) = |un(t)−um(t)| and using (5.40), we get

D+v(t) ≤ |u′n(t)−u′m(t)|
= |(Qun−1)(t)− (Qum−1)(t)|
≤ |(Qun−1)(t)− (Qun)(t)|+ |(Qun)(t)− (Qum)(t)|

+|(Qum)(t)− (Qum−1)(t)|
≤ g(t, |un−1−un|0(t))+g(t, |un−um|0(t))

+g(t, |um−1−um|0(t))
≤ g(t,wn−1(t))+g(t, |v|0(t))+g(t,wn−1(t))

= g(t, |v|0(t))+2g(t,wn−1(t)).

The above inequalities yield, on using Theorem 5.2.1, the estimate

v(t) ≤ rn(t), t ∈ J0,

where the maximal solution of

r′n = g(t,rn)+2g(t,wn−1(t)), rn(t0) = 0

for each n. Since as n→ ∞, 2g(t,wn−1(t))→ 0 uniformly on J0, it follows by Lemma 1.3.3
that rn(t) → 0, as n→ ∞ uniformly on J0. This implies from (5.41) that un(t) converges
uniformly to u(t) is a solution of (5.38).
To prove uniqueness, let v(t) be another solution of (5.38) on J0. Set m(t) = |u(t)− v(t)|.
Then m(t0) = 0 and

D+m(t) ≤ g(t, |m|0(t)), t ∈ J0.

Since m(t0) = 0, it follows from Theorem 5.2.1 that

m(t) ≤ r(t,t0,0), t ∈ J0,

where r(t,t0,0) is the maximal solution of (5.39). The assumption (b) now shows that
u(t) = v(t), t ∈ J0, proving uniqueness.
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Having discussed the situation relative to the method of successive approximations, we
now proceed to investigate another type of approximate solution for the problem (5.38).
Since the existence and uniqueness of solutions of (5.38) is guaranteed when Q satisfies
a local Lipschitzian condition, one can utilize this fact to construct a type of approximate
solution if it is possible to approximate a continuous function Q by a sequence of locally
Lipschitzian functions. The following result exploits this idea.
Theorem 5.4.2. Assume thatQ∈C[B,E], |Qu| ≤M on B and η =min{T− t0,b/(M+1)}.
Let {εn} be a sequence such that 0≤ εn ≤ 1, limn→∞ εn = 0. Then, for each positive integer
n, the Cauchy problem (3.1) has an ε-approximate solution un(t) on [t0,t0+ η ] satisfying

(i) un(t) is continuously differentiable on [t0,t0+ η ] and
(ii) |u′n− (Qun)(t)| ≤ εn for t0 ≤ t ≤ t0+ η .

To prove this theorem, we first need the following known result which shows that a contin-
uous function F(x) can be approximated by locally Lipschitzian functions.
Lemma 5.4.1. Let F ∈C[Ω,X ], where Ω ⊂ X is open. Then, for each ε > 0, there exists a
locally Lipschitzian function Fε(x) :Ω → X such that |F(x)−Fε(x)| < ε on Ω.
Let us now prove Theorem 5.4.2.
Proof. By Dugundji’s extension theorem, Theorem 1.5.8, Q has a continuous extension
Q̃ : E → E such that |Q̃u|E ≤M on E . Also, there exists, for every 0 < εn < 1, a function
Q̃εn : E→ E which is locally Lipschitizian in u satisfying

|Q̃εnu− Q̃u|E ≤ εn.

In particular, we have |Q̃εnu− Q̃u|E ≤ εn and |Q̃εnu|E ≤M+1 on B. Let un(t) be the unique
solution of

u′(t) = (Q̃εnu)(t), u(t0) = u0,

which exists on [t0,t0+ η ], η =min[T − t0,b/(m+1)].
Hence, we have

|u′n(t)− (Qun)(t)| = |(Q̃εnun)(t)− (Qun)(t)| ≤ εn

for t0 ≤ t ≤ t0+ η . The theorem is proved.
Next we prove a local existence result using a compactness condition.
Theorem 5.4.3. Assume that

(i) |Qu|E ≤M on B and η =min{T − t0,b/(M+1)},
(ii) (a) α((QA)(t)) ≤ g(t,supt0≤s≤t α(A(s))) for every bounded set A(s) ⊂ B,
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(b) Q is uniformly continuous on B,
(iii) g ∈C[[t0,T ]× [0,2b],R], g(t,0) ≡ 0, and w(t) ≡ 0 is the unique solution of (5.39).

Then the Cauchy problem (5.40) has a solution on [t0,t0+ η ].
Proof. By Theorem 5.4.2, we have approximate solutions {un(t)} on [t0,t0+ η ] such that

u′n(t) = (Qun)(t)+ yn(t), un(t0) = u0,

and |yn(t)| ≤ εn, where εn → 0 as n→ ∞. Since {un(t)} is equicontinuous and uniformly
bounded, it is enough to show, to use Ascoli-Arzela’s theorem, that the set {un(t)} =

{un(t) : n≥ 1} is relatively compact, that is, α({un(t)}) = 0 on [t0,t0+ η ].
Let m(t) = α({un(t) : n ≥ k}), and note that m(t0) = α({un(t0) : n ≥ k}) = α({u0}) = 0.
First we show m(t) is continuous as follows. By property (vi) on Theorem 1.7.1, we have,
for t0 ≤ s≤ t ≤ t0+ η ,

|m(t)−m(s)| = |α({un(t) : n≥ k})−α({un(s) : n≥ k})|
≤ |α({un(t)−un(s) : n≥ k})|
=

∣∣∣∣α
({∫ t

s
((Qun)(ζ )+ yn(ζ ))dζ : n≥ k

})∣∣∣∣ ,
and setting A = {xn(t) : n ≥ k}, where xn(t) =

∫ t
s ((Qun)(ζ ) + yn(ζ ))dζ , we have

supxn∈A |xn|E ≤ (M+1)|t− s| and α(A) ≤ 2(M+1)|t− s|. Hence,

|m(t)−m(s)| ≤ 2(m+1)|t− s|,

which implies m(t) is continuous.
Next, we show that D−m(t) ≤ g(t,m(t)) on [t0,t0 + η ], where
D−m(t) = liminfh→0+ 1/h[m(t)−m(t−h)].
By property (vi) of Theorem 1.7.1, we obtain

1
h
[m(t)−m(t−h)] =

1
h
[α({un(t) : n≥ k})−α({un(t−h) : n≥ k})]

≤ 1
h
[α({un(t)−un(t−h) : n≥ k})].

By the Mean-Value Theorem 1.5.5 and properties (ii) and (vii) of Theorem 1.7.1, we have,
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with Jh ≡ [t−h,t],
1
h
[m(t)−m(t−h)] ≤ 1

h
[α({hco({u′n(ζ ) : ζ ∈ [t−h,t]}) : n≥ k})]

= α({u′n(ζ ) : ζ ∈ [t−h,t] : n≥ k})
= α({u′n(ζ ) : n≥ k,ζ ∈ [t−h,t]})

= α

⎛
⎝ ⋃

ζ∈Jh
{u′n(ζ ) : n≥ k}

⎞
⎠

= α

(⋃
t∈Jh

{(Qun)(t)+ yn(t) : n≥ k}
)

≤ α{((Qun)(Jh)+ yn(Jh) : n≥ k)}
≤ α({(Qun)(Jh)+2εk : n≥ k}),

where (Qun)(Jh) =
⋃

ζ∈Jh(Qun)(ζ ) and yn(Jh) =
⋃

ζ∈Jh yn(ζ ).
Then it follows that

D−m(t) ≤ liminf
h→0+

α({(Qun)(Jh)+2εk : n≥ k}).
The equicontinuity of {un(t)} and the uniform continuity of Q imply that

lim
h→0+

(Qun)(Jh) = (Qun)(t) for n≥ k,
with respect to the Hausdorff metric. Also, in view of assumption (ii), we have

liminf
h→0+

(α{(Qun)(Jh) : n≥ k}) = α({Qun(t) : n≥ k}) ≤ g
(
t, sup
t0≤t≤t

α({un(s) : n≥ k})
)

.

Therefore,

D−m(t) ≤ g
(
t, sup
t0≤s≤t

α({un(s) : n≥ k})
)

+2εk.

Then by the basic comparison Theorem 1.3.2,

m(t) = α({un(t) : n≥ k}) ≤ rk(t,t0,0), t ∈ [t0,t0+ η ],

where rk(t,t0,0) is the maximal solution of{
u′(t) = g(t,u)+2εk
u(t0) = 0.

By Lemma 1.3.3 and condition (iii), we have

lim
k→∞

rk(t,t0,0) = r(t,t0,0),

where r(t,t0,0) ≡ 0 is the maximal solution of (5.39) on [t0,t0+ η ]. Thus α{un(t) : n ≥
k} = 0 on [t0,t0+ η ], proving the theorem.
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5.5 Global Existence and Inequalities in Cones

We shall continue to consider the IVP for causal differential equation (5.38). We shall begin
by proving a global existence theorem in a direct way and then through a Lyapunov func-
tion. We explain the different approaches. Then we discuss causal differential inequalities
in cones and utilizing these results prove existence of extremal solutions.
Theorem 5.5.1. Let Q ∈C[E,E] be a causal map such that

|(Qu)(t)| ≤ g(t, |u|0(t)), (5.42)

where g∈C[R2+,R+], g(t,w) is nondecreasing in w for each t ∈R and the maximal solution
r(t) = r(t,t0,w0) of (5.39) exists on [t0,∞). Suppose further that Q is smooth enough
to guarantee the local existence of solutions of (5.38) for any (t0,u0) ∈ R+ × X . Then,
the largest interval of existence of any solution u(t,t0,u0) of (5.38) is [t0,∞), whenever
|u0| ≤ w0.
Proof. Suppose that u(t) = u(t,t0,u0) is any solution of (5.38) existing on [t0,β ), t0 < β <

∞ with |u0| ≤ w0, and the value of β cannot be increased. Define m(t) = |u(t)| and note
that m(t0) ≤ w0. Then it follows that,

D+m(t) ≤ |u′(t)| = |(Qu)(t)| ≤ g(t, |u|0(t)).

Using Theorem 1.3.2, we obtain

m(t) ≤ r(t), t0 ≤ t < β . (5.43)

For any t1,t2 such that t0 < t1 < t2 < β ,

|u(t1)−u(t2)| ≤
∣∣∣∣
∫ t1
t0

(Qu)(s)ds−
∫ t2
t0

(Qu)(s)ds
∣∣∣∣

≤
∫ t2
t1

|(Qu)(s)|ds

≤
∫ t2
t1
g(s, |u|0(s))ds.

Employing the estimate (5.43) and the monotonicity of g(t,w), we find

|u(t1)−u(t2)| ≤
∫ t2
t1
g(s,r(s))ds = r(t2)− r(t1).

Since limt→β− r(t,t0,w0) exists, taking the limits as t1,t2 → β−, we get that {u(tn)} is a
Cauchy sequence and therefore limt→β− u(t,t0,u0) = uβ exists. We then consider the IVP

u′(t) = (Qu)(t), u(β ) = uβ .
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As we have assumed the local existence, we note that u(t,t0,u0) can be continued beyond
β , contradicting our assumption that β cannot be increased. Thus every solution u(t,t0,u0)
of (5.38) such that |u0| ≤ w0 exists globally on [t0,∞) and hence the proof.
Remark. Clearly, Q is bounded on bounded sets, if Q satisfies condition (5.42), which
need not be true if we relax (5.42) to

((Qx),x) ≤ g(t, |x|)|x|. (5.44)

This is also the case when one relaxes (5.42) to a more general condition by means of Lya-
punov like function. If we need only global existence we could also remove the restriction
of monotony on g(t,u). This is the motivation for the next result.
Theorem 5.5.2. Assume that

(i) Q ∈C[R+ ×E,E], Q is bounded on bounded sets and for any (t0,x0) ∈ R+ ×E there
exists a local solution for the problem (5.38).

(ii) V ∈C[R+ ×E,R+], V is locally Lipschitzian in x, V (t,x) → ∞ as |x| → ∞ uniformly
for [0,T ] for every T > 0 and for (t,x) ∈ R+×E

D+V (t,x) ≡ lim
h→0

1
h
[V (t+h,x+h(Qx))−V(t,x)] ≤ g(t,V (t,x)),

where g ∈C[R+×R+,R];
(iii) the maximal solution r(t) = r(t,t0,u0) of (5.39) exists on [t0,∞) and is positive if u0 >

0.

Then for every x0 ∈ E such that V (t0,x0) ≤ u0, the problem (5.38) has a solution x(t) on
[t0,∞) which satisfies the estimate

V (t,x(t)) ≤ r(t), t ≥ t0. (5.45)

Proof. Let S denote the set of all functions x defined on Ix = [t0,cx) with values in E
such that x(t) is a solution of (5.38) on Ix and V (t,x(t)) ≤ r(t), t ∈ Ix. We define a partial
order ≤ on S as follows: the relation x ≤ y implies Ix ⊆ Iy and y(t) ≡ x(t) on Ix. We
shall first show that S is nonempty. By (i), there exists a solution x(t) of (5.38) defined
on Ix = [t0,cx). Setting m(t) = V (t,x(t)) for t ∈ Ix and using assumption (ii), it is easy to
obtain the differential inequality

D+m(t) ≤ g(t,m(t)). t ∈ Ix.
Now, by Theorem it follows that

V (t,x(t)) ≤ r(t), t ∈ Ix, (5.46)

where r(t) is the maximal solution of (5.39). This shows that x ∈ S and so S is nonempty.
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If (xβ )β is a chain (S,≤), then there is a uniquely defined map y on Iy = [t0,supβ cxβ ) that
coincides with xβ on Ixβ . Clearly y ∈ S and hence y is an upper bound of (xβ )β in (S,≤).
Then Zorn’s lemma assures the existence of a maximal element z in (S,≤). The proof of
the theorem is complete if we show that cz = ∞. Suppose that it is not true, so that cz < ∞.
Since r(t) is assumed to exist on [t0,∞), r(t) is bounded on Iz. SinceV (t,x)→ ∞ as |x| → ∞
uniformly in t on [t0,cz], the relationV (t,z(t)) ≤ r(t) on Iz implies that |z(t)| is bounded on
Iz. By (i), this shows that there is anM > 0 such that

|(Qz)(t)| ≤M, t ∈ Iz.
We then have, for all t1,t2 ∈ Iz, t1 ≤ t2,

|z(t2)− z(t1)| ≤
∫ t2
t1

|(Qz)(s)|ds ≤M(t2− t1),

which shows that z is Lipschitzian on I2 and consequently has a continuous extension z0 on
[t0,cz]. By continuity, we get

z0(cz) = x0+
∫ c
t0

((Qz0)s)ds.

This implies that z0(t) is a solution of (5.38) on [t0,cz] and, clearly, V (t,z0(t)) ≤ r(t),
t ∈ [t0,cz]. Consider the problem

x′ = (Qx)(t), x(c0) = z0(cz).

By the assumed local existence there exists a solution x0(t) on [cz,cz+ δ ], δ > 0. Define

z1(t) =

[
z0(t) for t0 ≤ t ≤ cz
x0(t) for cz ≤ t < cz+ δ .

Clearly z1(t) is a solution of (5.38) on [t0,cz+δ ) and, by repeating the arguments that were
used to obtain (5.46), we get

V (t,z1(t)) ≤ r(t), t ∈ [t0,cz+ δ ).

This contradicts the maximality of z and hence cz = ∞. The proof is complete.
In order to develop the theory of differential inequalities in a Banach space X , we need to
introduce the concept of a cone which induces a partial ordering in X .
A proper subset K of X is said to be a cone if λK ⊂ K, λ ≥ 0, K+K ⊂ K, K = K and
K ∩{−K} = θ , where θ denotes the null element of the Banach space X , and K denotes
the closure of K. Let K◦ denote the interior of K and assume that K◦ is nonempty. The
cone induces the order relations in X defined by

x≤ y iff y− x ∈ K,

x< y iff y− x ∈ K◦, x,y ∈ X .
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Let K∗ be the set of all continuous linear functionals c on X such that c(u(t)) ≥ 0 for all
u(t) ∈ K and t ∈ J, and let K∗

0 be the set of all continuous linear functionals on X such that
c(u(t)) > 0 for all u(t)∈K◦. We say u≤ v on E if u(t)≤ v(t) for u,v∈ E , t ∈ J. A function
Q from E into E is said to be nondecreasing if u≤ v implies Qu≤ Qv.
To prove a basic result, on differential inequalities, we need the following lemma.
Lemma 5.5.1. Let K be a cone with nonempty interior K◦. Then

(i) x ∈ K is equivalent to cx≥ 0 for all c ∈ K∗;
(ii) x ∈ ∂K implies that there exists a c ∈ K∗

0 such that cx≡ 0.

Theorem 5.5.3. Let K be a cone in X with nonempty interior K◦. Assume that

(i) u,v ∈C1[J,X ], Q ∈C[B,E], B= B(u0,b) and Q is nondecreasing;
(ii) u′(t)− (Qu)(t) < v′(t)− (Qv)(t), t ∈ (t0,T ).

Then, u(t0) < v(t0) implies that u(t) < v(t), t ∈ J.
Proof. Suppose that the assertion of the theorem is false. Then, there exists a t1 > t0 such
that

v(t1)−u(t1) ∈ ∂K and v(t)−u(t) ∈ K◦, t ∈ [t0,t1).

Thus, by Lemma 5.4.2, there exists a c ∈ K∗
0 such that c(v(t1)−u(t1)) = 0.

Setting m(t) = c(v(t)− u(t)), we see that m(t) > 0 for t0 ≤ t < t1 and m(t1) = 0. Conse-
quently, m′(t1) ≤ 0. Further, at t = t1, we have u(t1) = v(t1) and u(t) < v(t), t0 ≤ t < t1.
Thus, u(t) ≤ v(t), t0 ≤ t ≤ t1.
Using the nondecreasing nature of Q, we have (Qu)(t) ≤ (Qv)(t), t0 ≤ t ≤ t1 < T . Hence
from (ii), we get

m′(t1) = c(v′(t1)−u′(t1)) > c((Qv)(t1)− (Qu)(t1)) ≥ 0.
This contradiction proves the theorem.
Using Theorem 5.4.3, we can prove the existence of the maximal solution of (5.38) relative
to the cone K.
Theorem 5.5.4. Let K be a cone in X with nonempty interior K◦. Suppose that

(i) Q ∈C[B,E] and Q is nondecreasing;
(ii) Q is uniformly continuous on B (and hence, we may assume that |Qu|E ≤M on B);
(iii) g ∈C[J×R+,R] with g(t,0)≡ 0, and the only solution of the scalar differential equa-

tion (5.39) is the trivial solution;
(iv) α((QA)(t)) ≤ g(t,supt0≤s≤t α((A)(S))), t ∈ J, where A(s) is bounded subsets of B and

α is the measure of noncompactness.
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Then, there exists a maximal solution of (5.38) relative to K on [t0,t0 + η ] where η =

min{T − t0,b/(M+1))}.
Proof. Let y0 ∈ K◦ with |y0| = 1. Consider the system{

u′(t) = (Qu)(t)+ 1
n y0,

u(t0) = u0+ 1
n y0,

(5.47)

for each integer n.
Consider ∣∣∣∣(Qu)(t)+

1
n
y0
∣∣∣∣≤ |(Qu)(t)|+ 1

n
|y0| ≤ |Qu|E +

1
n
≤M+

1
n
.

Applying Theorem 5.4.3, we conclude that there exists a solution un(t) of (5.47) for each n
and a solution u(t) of (5.38) on [t0,t0+η ]. The above inequality implies the equicontinuity
of the family {un(t)}. Noting that α({u)n(t0)}) = α({u0+ (1/n)y0}) = 0, by property
(iv) of Theorem 1.7.1, we conclude, as in Theorem 5.4.3, that the set {un(t)} is relatively
compact for each J ∈ [t0,t0+η ]. We then apply Ascoli-Arzela’s theorem to obtain a subse-
quence of {un(t)} which converges uniformly to a continuous function r(t) on [t0,t0+ η ],
using Theorem 5.4.5, the comparison theorem on cones, the sequence {un(t)} is monotone
and hence r(t) is a solution of (5.38) on [t0,t0+ η ].
Now let u(t) be any solution of (5.38) on [t0,t0+η ]. Then u′(t)− (Qu)(t) = 0< (1/n)y0 =

u′n(t)− (Qun)(t) and u(t0) = u0 < u0+(1/n)y0 = un(t0).
Then, by Theorem 5.4.5, we get u(t) ≤ un(t) for t ∈ [t0,t0+ η ].
Therefore,

u(t) ≤ lim
n→∞

un(t) ≡ r(t), t ∈ [t0,t0+ η ].

This shows that r(t) is the desired maximal solution and the proof is complete.
Theorem 5.5.5. Suppose that the assumptions of Theorem 5.4.6 are satisfied. Let m ∈
C1[[t0,t0+ η ],X ] and

m′(t) ≤ (Qm)(t), t ∈ [t0,t0+ η ].

If m(t0)≤ u0, then m(t)≤ r(t), t ∈ [t0,t0+η ], where r(t) is the maximal solution of (5.38).
Proof. Let un(t) be a solution of{

u′(t) = (Qu)(t)+ 1
n y0,

u(t0) = u0+ 1
n y0,

for each positive integer n, where y0 ∈ K◦ with |y0| = 1.
Note that u(t0) = u0 < u0+(1/n)y0 = un(t0) and u′n(t)−(Qun)(t) = (1/n)y0> θ ≥m′(t)−
(Qm)(t), for t ∈ [t0,t0+η ]. By Theorem 5.4.5, m(t) < un(t), for each n and t ∈ [t0,t0+η ].
Hence, m(t) ≤ limn→∞ un(t) ≡ r(t), t ∈ [t0,t0+ η ].
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Corollary 5.5.1. Let the hypothesis of Theorem 5.5.4 hold and let (Qθ )(0) ≡ θ . Then the
maximal solution r(t) of (1) such that r(t0) = u0 ∈ K remains in K for t ∈ [t0,t0+ η ].
Proof. The proof follows by choosing m(t) ≡ θ in Theorem 5.4.7.
Let E be a real Banach space and let | · | denote the norm in E . We let B= {x ∈ E : |x| ≤ b}
denote the ball of radius b and let R0 = [t0,t0+a]×Bwhere t0 ≥ 0, a> t0.
Consider the causal differential equation

x′(t) = (Qx)(t), x(t0) = x0, (5.48)

where Q : E → E . There are several known results which guarantee the existence of solu-
tions to (5.48). We mention in particular those given in [6]. One of the conditions given
there is:

(I) f is uniformly continuous in R0.

Another is a compactness condition which is similar to the convexity condition II stated
below.
For any subset A⊂ B and for small h> 0 set

Ah(Q) = {y|y= x+h(Qx) : x ∈ A}.

We introduce a (comparison) scalar equation

u′ = g(t,u), u(t0) = 0 (5.49)

where g ∈C[[t0,t0+a]×R
+,R]. Assume that u ≡ 0 is the unique solution of (5.49). then

the convexity condition on Q is

(II) liminfh→0+{h−1[α(Ah)(Q)−α(A)]} ≤ g(t,α(A))

for any subset A⊂ B.
We also require the following condition on a set A⊂ B:

(III) The set of solutions x(t,x0), x0 ∈ A of (5.48) exists and is equicontinuous.

Condition III is satisfied when A is pre-compact.
Theorem 5.5.6. Let A ⊂ B have convex closure and let condition I, II, and III be satisfied
for (5.38). Then the set

x(t,t0,A) = {x(t,t0,x0)|x0 ∈ A}

has convex closure for t ∈ [t0,t0+a].
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Proof. Set m(t) = α(x(t,A)) where α is the measure of nonconvexity and x(t,A) =

x(t,t0,A). Our claim is thenm(t) = 0. Now m(t+h)−m(t) = α(x(t+h,A))−α(x(t,A)) =

[α(x(t+h),A)−α(Ah(Q))]+ [α(Ah(Q))−α(x(t,A))]. If we know that

liminf
h→0+

h−1[α(x(t+h,A))−α(Ah(Q))] ≤ 0 (5.50)

then it follows from condition II that D+m(t)≤ g(t,m(t)) where D+ denotes a Dini deriva-
tive. It follows further from the theory of differential inequalities that m(t) ≡ 0. Thus it
remains to verify (5.50).
By properties

h−1[α(x(t+h,A))−α(Ah(Q))] ≤ α[h−1(x(t+h,A)−Ah(Q))]

≤ 2 sup
x0∈A

|h−1[x(t+h,x0)− x(t,x0)]− (Qx)(t)|.

Hence it suffices to show that

h−1(x(t+h,x0)− x(t,x0)) → (Qx)(t)

uniformly in x0. Now

|h−1(x(t+h,x0)− x(t,x0))− (Qx)(t)|

≤ h−1
∫ t+h
t

|(Qx)(t+ s)− (Qx)(t)|ds.
By the uniform continuity of Q and by the equicontinuity of x(t,x0) this last expression can
be made arbitrarily small, independent of x0, by taking h sufficiently small. This concludes
the argument.

5.6 Fractional Causal Differential Equations

We begin with some definitions. Let t0 ≥ 0 and T > t0 be arbitrary and let E =C[[t0,T ],Rn]

be a function space. The map Q : E → E is said to be a causal or a nonanticipative map
if x,y ∈ E have the property that if x(s) = y(s), t0 ≤ s ≤ t, then (Qx)(s) = (Qy)(s), t0 ≤
s ≤ t, t < T . Next, we give the definition of and relation between the Riemann-Liouville
and Caputo fractional differential equations. The Riemann-Liouville fractional differential
equation is given by

Dqx= (Qx)(t), x(t0) = x0 = x(t)(t− t0)1−q |t=t0 , t0 ≤ t < T, (5.51)

where 0 < q < 1 and Γ(q) is the standard gamma function. The corresponding Volterra
fractional integral equation is given by

x(t) = x0(t)+
1

Γ(q)

∫ t
t0

(t− s)q−1(Qx)(s) ds,
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where x0(t) = x0(t−t0)q−1
Γ(q) . The Caputo derivative has the main advantage that the initial

condition of the corresponding initial-value problem has the same form as that of ordinary
differential equations, and also the derivative of a constant is zero. Hence, it is convenient
to use the Caputo fractional derivative.
The fractional differential equation of Caputo type is given by

cDqx = (Qx)(s)
x(t0) = x0

}
(5.52)

where 0 < q < 1. If x ∈ Cq([t0,t0 + a],Rn) satisfies (5.52), it also satisfies the Volterra
fractional integral

x(t) = x0+
1

Γ(q)

∫ t
t0

(t− s)q−1(Qx)(s) ds, (5.53)

and vice versa.
The relation between the two types of fractional derivatives is given by

cDqx(t) = Dq(x(t)− x(t0)).

Next, we state some results that are needed to prove our main theorems. These results
are stated for fractional differential equations of Riemann-Liouville type, but they can be
readily extended to those of Caputo type. Let p = 1− q and Cp([t0,T ],R) = {u : u ∈
C((t0,T ],R) and (t− t0)pu(t) ∈C([t0,T ],R)}. Consider the initial-value problem (IVP)

Dqx= f (t,x), x(t0) = x0 = x(t) (t− t0)1−q |t−t0 (5.54)

where f ∈ C(R0,Rn), R0 = {(t,x) : t0 ≤ t ≤ t0 + a and | x− x0(t) |≤ b}, and x0(t) =
x0(t−t0)q−1

Γ(q) .

Lemma 5.6.1. Let m ∈Cp([t0,T ],R) be locally Hölder continuous with exponent λ > q,
and for any t1 ∈ (t0,T ],

m(t1) = 0 and m(t) ≤ 0 for t0 ≤ t ≤ t1.

Then,

Dqm(t1) ≥ 0. (5.55)

Lemma 5.6.2. Let {xε(t)} be a family of continuous functions on [t0,T ], for ε > 0, such
that

Dqxε(t) = f (t,xε (t))
x0ε = xε(t)(t− t0)1−q |t=t0 ,
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and | f (t,xε (t)) |≤M for t0 ≤ t ≤ T. Then the family {xε(t)} is equicontinuous on [t0,T ].

Theorem 5.6.1. Assume that m ∈ Cp([t0,T ], R+) is locally c̋ontinuous, g ∈ C([t0,T ]×
R+,R) and

Dqm(t) ≤ g(t,m(t)), t0 ≤ t ≤ T.

Let r(t) be the maximal solution of the IVP

Dqu(t) = g(t,u(t)), u(t)(t− t0)1−q |t=t0= u0 ≥ 0, (5.56)

existing on [t0,T ], such that m0 ≤ u0, where m0 = m(t)(t− t0)1−q |t=t0 . Then, we have
m(t) ≤ r(t), t0 ≤ t ≤ T.

Lemma 5.6.3. Assume that f ∈C[Ω,R], where Ω is an open set in R
2, (t0,x0) ∈ Ω, with

x0 = x(t)(t− t0)1−q |t=t0 . Suppose that [t0,t0+a) is the largest interval of existence of the
maximal solution r(t) of the fractional differential equation (5.56). Assume that [t0,t1] is
a compact interval of [t0,t0+ a). Then, there is an ε0 > 0 such that, for 0 < ε < ε0, the
maximal solution r(t,ε) of

Dqx= f (t,x)+ ε with initial value x0+ ε, (5.57)

where x0 = x(t)(t− t0)1−q |t=t0 , exists on [t0,t1], and lim
ε→0

r(t,ε) = r(t), uniformly on [t0,t1].
We begin with the theory of fractional differential inequalities.
Theorem 5.6.2. Let α,β ∈Cq(J,R] be c̋ontinuous with exponent λ > q, such that

cDqα(t) ≤ (Qα)(t), (5.58)
cDqβ (t) ≥ (Qβ )(t), (5.59)

with one of the inequalities (5.58) or (5.59) being strict and α(t0) < β (t0). Then α(t) <

β (t), t ∈ J.
Proof. Suppose the conclusion does not hold. Then there exists a t1 > t0 such that
α(t1) = β (t1) and α(t) < β (t), t0 ≤ t < t1. Now set m(t) = α(t)−β (t). Then m(t1) = 0
and m(t) < 0, t0 ≤ t < t1. Now, observe that cDqm(t) = Dq[m(t)−m(t0)], where Dqm(t) is
the Riemann-Liouville fractional derivative and also that m(t0) < 0 implies−Dqm(t0) > 0.
Thus, by Lemma 5.6.3, we have cDqm(t1) ≥ Dqm(t1) ≥ 0. This yields

(Qα)(t1) ≥ cDqα(t1) ≥ cDqβ (t1) > (Qβ )(t1),

a contradiction. Here, we have used (5.59) with a strict inequality. The contradiction
validates the conclusion and the proof is complete.
Having proved the basic result for strict differential inequalities, we are now in a position
to prove it for nonstrict inequalities.
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Theorem 5.6.3. Assume that the hypothesis of Theorem 5.6.2 holds with nonstrict in-
equalities. Further, assume that

(Qx)(t)− (Qy)(t) ≤ L max
t0≤s≤t

| x(s)− y(s) | for x≥ y.

Then, α(t) ≤ β (t) on J, provided α(t0) ≤ β (t0).
Proof. Set βε(t) = β (t)+ εEq(2L(t− t0)q). Then, βε(t0) = β (t0)+ ε > α(t0).
Further,

cDqβε(t) = cDqβ (t)+2LεEq(2L(t− t0)q)
≥ (Qβ )(t)+2LεEq(2L(t− t0)q)
≥ (Qβ )ε)(t)+LεEq(2L(t− t0)q),

which gives

cDqβε(t) > (Qβε)(t). (5.60)

Now, applying Theorem 5.6.1 to (5.58) and (5.60), we obtain that α(t) < βε(t). Taking the
limit as ε → 0, we arrive at α(t) ≤ β (t), and the conclusion holds.
Next, we shall prove a general uniqueness theorem using successive approximations.
Theorem 5.6.4. Assume that

(1) Q ∈ C[B,E] is a causal map where B = B(x0,b) = {x ∈ E : max
J

| x(t)− x0 |≤ b},
J = [t0,T ] and | (Qx) |≤M0 on B;

(2) g ∈C(J× [0,2b],R+), g(t,u) ≤M1 on J× [0,2b], g(t,0) ≡ 0, g(t,u) is nondecreasing
in u for each t ∈ J, and u(t) ≡ 0 is the only solution of

cDqu = g(t,u), u(t0) = 0 on J; (5.61)

and
(3) | (Qx)(t)− (Qy)(t) |≤ g(t, | x−y |0 (t)) on B, where | x−y |0 (t) = max

t0≤s≤t
| x(t)−y(t) |.

Then, the successive approximations defined by

xn+1(t) = x0+
1

Γ(q)

t∫
t0

(t− s)q−1(Qxn)(s)ds, n= 0,1,2, ..... (5.62)

exist and are continuous on I0 = [t0,t0+ α], with α = min(T − t0,( bΓ(1+q)
M )

1
q ) and M =

max{M0,M1}, and converge uniformly to the unique solution x(t) of (5.52).
Proof. By our choice of α , we have, for t ∈ I0,

| x1(t)− x0 | ≤ 1
Γ(q)

t∫
t0

(t− s)q−1 | f (s,x0) | ds.

≤ M(t−t0)q
Γ(q+1) ≤ Mαq

Γ(1+q) ≤ b.
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Hence, using induction, one can show that the successive approximations are continuous
and satisfy

| xn(t)− x0 |≤ b, n= 0,1,2, . . . . (5.63)

Next, we shall define the successive approximations for the IVP (5.60) as follows:

u0(t) =
M(t− t0)q
Γ(1+q)

,

un+1(t) =
1

Γ(q)

t∫
t0

(t− s)q−1g(s,un(s))ds on I0.
(5.64)

Since g(t,u) is assumed to be nondecreasing in u for each t, using induction we can show
that the successive approximations (5.64) are well defined and satisfy

0≤ un+1(t) ≤ un(t) on I0.
Moreover, |Dqun+1(t) |= g(t,un−1(t))≤M, and equicontinuity follows from Lemma 5.6.3.
Thus, using Ascoli-Arzela theorem and the monotonicity of the sequence {un(t)}, we ob-
tain lim

n→∞
un(t) = u(t), uniformly on I0. Clearly, u(t) satisfies (5.60). Hence, by assumption

(b), u(t) ≡ 0 on [t0,t0+ α] = I0.
We first note that | x1(t)− x0 |≤M (t−t0)q

Γ(1+q) ≡ u0(t), which gives | x1− x0) |0 (t) ≤ u0(t).
Then, assuming | xk− xk−1 |0 (t) ≤ uk−1(t) for some k, we have

| xk+1(t)− xk(t) | ≤ 1
Γ(q)

t∫
t0

(t− s)q−1 | (Qxk)(s)− (Qxk−1(s) | ds.

Using condition (c) and the monotone character of g(t,u) in u, we get

| xk+1(t)− xk(t) | ≤ 1
Γ(q)

t∫
t0

(t− s)q−1g(s, | xk− xk−1 |0)ds

≡ uk(t).
Hence, | xk+1−xk |0 (t)≤ uk(t). Thus, by induction, the inequality | xn+1−xn |0 (t)≤ un(t)
on I0 holds for all n. Also,

| cDqxn+1(t)− cDqxn(t) | = | (Qxn)(t)− (Qxn−1)(t)
≤ g(t, | xn− xn−1 |0 (t)) ≤ g(t,un(t)).

Let n≤ m. Then,
cD+q | xn(t)− xm(t) | ≤ | cDqxn(t)− cDqxm(t) |

≤ g(t,un−1(t))+g(t,um−1(t))+g(t, | xn− xm |0 (t)).

Since un+1(t) ≤ un(t) for all n, it follows that
cD+q | xn(t)− xm(t) | ≤ g(t, | xn− xm |0 (t))+2(g(t,un−1(t))),
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where cD+q is the Caputo Dini derivative corresponding to D+.An application of Theorem
5.6.1 (adjusted to the case of Caputo derivative) gives | xn− xm |0 (t) ≤ γn(t), on I0, where
γn(t) is the maximal solution of the IVP

cDqv= g(t,v)+2g(t,un−1(t)), v(t0) = 0 for each n.

Since, as n→ ∞, g(t,un−1(t)) → 0 uniformly on I0, using Lemma 5.6.3, we can conclude
that γn(t)→ 0, uniformly on I0. This implies that {xn(t)} converges uniformly to x(t).Now,
using the Volterra fractional integral equation (5.53), we can conclude that x(t) is a solution
of the IVP (5.52).
To show that the solution x(t) is unique, suppose y(t) is another solution of the IVP (5.52)
on I0. Define m(t) =| x(t)− y(t) | . Then, m(t0) = 0 and, by condition (c),

cD+qm(t) ≤| cDqx(t)− cDqm(t) | ≤| (Qx)(t)− (Qy)(t) | ≤ g(t, |m |0 (t)).

Again, by Theorem 5.5.3, m(t) ≤ r(t,t0,0) on I0, where r(t) is the maximal solution of
(5.61). But by assumption (c), r(t) ≡ 0. Hence, uniqueness follows and the proof is done.
Next, assuming local existence, we prove a global existence result.
Theorem 5.6.5. Let Q ∈C[E,E] be a causal map such that

| (Qx)(t) |≤ g(t, | x |0 (t)), (5.65)

where g ∈ C[R2+,R+], g(t,u) is nondecreasing in u for each t ∈ R+, and the maximal
solution r(t) = r(t,t0,u0) of the IVP

cDqu= g(t,u), u(t0) = u0 ≥ 0 (5.66)

exists on [t0,∞). Suppose Q is such that the local existence of solutions of (5.61) is guar-
anteed for any (t0,x0) ∈ R+ × B. Then, the largest interval of existence of any solution
x(t,t0,x0) of (5.52) is [t0,∞), whenever | x0 |≤ u0.
Proof. Suppose that x(t) = x(t,t0,x0) is any solution of (5.52) existing on [t0,β ), t0 < β <

∞, with | x0 |≤ u0, and that the value of β cannot be increased. Define m(t) =| x(t) | . Then,
it follows that

cDqm(t) ≤ |cDqx(t)| = |(Qx)(t)| ≤ g(t, |x|0 (t)) = g(t, |m|0 (t)) ,

and,using Theorem 5.6.4,we can conclude that m(t) ≤ r(t), t0 ≤ t ≤ β .
Also we have

|cDgx(t) = |(Qx)(t)|
≤ g(t, |x|0(t))
≤ g(t, |m|0(t)
≤ g(t,r(t))
≤ M , t0 ≤ t ≤ β ,



Miscellaneous Topics in Causal Systems 175

since g(t,u) ≥ 0 and r(t,t0,u0) is non decreasing. Now, for any t1,t2 such that t0 < t1 <

t2 < β , we have

| x(t1)− x(t2) | =

∣∣∣∣ 1Γ(q)

t1∫
t0

(t1− s)q−1(Qx)(s)ds− 1
Γ(q)

t2∫
t0

(t2− s)q−1(Qx)(s)ds
∣∣∣∣

≤ 1
Γ(q)

t1∫
t0

| (t1− s)q−1− (t2− s)q−1 | | (Qx)(s) | ds

+
1

Γ(q)

t2∫
t1

(t2− s)q−1 | (Qx)(s) | ds

≤ M
Γ(q)

[ t1∫
t0

(t1− s)q−1ds−
t1∫
t0

(t2− s)q−1ds+
t2∫
t1

(t2− s)q−1ds
]

=
2M(t2− t1)q

Γ(1+q)
.

Letting t1,t2 → β− and using Cauchy criterion, we have that lim
t→β−

x(t,t0,x0) exists. Set

x(β ,t0,x0) = lim
t→β−

x(t,t0,x0),

and consider the IVP

cDqx= (Qx)(t), x(β ) = x(β ,t0,x0).

The solution x(t,t0,x0) can be continued beyond β because of our assumption of local
existence. Hence, the claim is true and the proof is complete.

5.7 Causal Differential Equations with Memory

This and the following two sections, we shall devote to extend the theory of causal differen-
tial equations with memory. As we shall see, this extension is natural and with appropriate
modification, one can generalize almost all the results that we have discussed for the causal
differential equations so far. However, we shall be content with providing some typical
results and then investigate causal differential equations adding anticipation in addition to
memory. Since the theory of functional differential equations is well studied subject, we
begin from there so that similar framework can be utilized to discuss the causal differential
equations with retardation and anticipation.
For causal operators, we can also utilize a notion identical to that encountered in the general
functional differential equation of the type

x′(t) = f (t,xt), xt0 = φ0, (5.67)



176 Theory of Causal Differential Equations

where φ0 ∈ C0 is the initial function, C0 =C [[−τ,0],Rn] and f ∈C[[t0,T ]×C0, R
n]. The

symbol xt in (5.52) may be defined in two ways. For example, if x ∈C[[t0−τ,T ), R
n], τ >

0, then for each t ∈ [t0,T )

(i) xt is the graph of x on [t− τ,t] shifted to the interval [−τ,0];
(ii) xt is the graph of x on [t0− τ,t].

The IVP (5.67) relates to the case (i) and the corresponding IVPs for functional differential
equations is well studied area. Such equations are also called differential equations with
delay or with retardation. In case (ii), the functional is known as Volterra operator, which is
determined by t and the values of x(s) on t0− τ ≤ s≤ t. Consider, for example, Q(x)(t) ≡
Q(t,xt), where for each t ∈ [t0,T ), Q takes values in R

n, whereas, the family Q(t,xt) of
functionals for t ∈ [t0,T ], defines the operator from C into itself. As an example, consider
the operator given by the formula

Q(x)(t) = f (t)+
t∫
t0
K(t,s,x(s))ds,

then Q(t,xt) = f (t)+
t∫
t0
K(t,s,x(s))ds.

One should note thatQ(t0,xt0) = x0= f (t0) is the initial value in this setup. This framework
can also be employed to include the delay or the past history into the causal operators so
that one can extend the study of differential equations involving causal operators with delay
or past history. This leads to the IVP for such systems
In this framework, we have the IVP for such systems

x′(t) = Q(t,x(t),xt),
xt0 = φ0 ∈ C0

(5.68)

where Q takes values in R
n for each t ∈ (t0,T ) and the family of functionals {Qt =

Q(t,x(t),xt)}t∈[t0,T ] defines the operator from E = C([t0 − τ,T ],Rn) into itself. The in-
vestigation of the IVP (5.68) includes naturally not only IVPs with causal operators with-
out delay but also several corresponding IVPs with delay. The examples may include the
special cases

Q(t,x(t),xt) = f (t,xt ),
or = f (t,x(t),xt ),

or =
t∫

t0−τ
K(t,s,x(s))ds,

or = f (t,x(t),xt )+
t∫

t0−τ
K(t,s,x(s))ds,

or = f (t,x(t),xt ),
t∫

t0−τ
K(t,s,x(s))ds).
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All of these, of course, need an initial function φ0 ∈ C0. Moreover, the symbol xt is now
Volterra type, that is case (ii). Of course, instead of case (ii), one can also utilize case (i) for

the symbol xt , in which case, we need to replace
t∫

t0−τ
K(t,s,x(s))ds by

t∫
t−τ
K(t,s,x(s))ds in

the special cases. We prefer to use case (ii) because we are interested in the investigation of
IVPs involving Volterra or causal operators. Once we have the results in the framework of
causal operators with delay, parallel results can be obtained similarly employing suitable
modification relative to the case (i). We should also note that, once the initial function φ0 is
fixed for the IVP (5.67), all the elements of the space E will have the same φ0 on their tail
end, namely, on [t0− τ,t0].
In this section, we shall consider the basic differential inequalities involving causal opera-
tors with memory or delay.
Theorem 5.7.1. Assume that

(A1) for each t ∈ (t0,T ), Q takes values in R and the family of causal operators Qt =

Q(t,x(t),xt), for t ∈ [t0,T ) defines the map from E = C[[t0 − τ,T ),R] into itself;
Q(t,x(t),xt) is semi nondecreasing in xt , that is, if x(t) = y(t) and x(s)≤ y(s), t0−τ ≤
s< t for t ∈ [t0,T ), then Q(t,x(t),xt) ≤ Q(t,y(t),yt);

(A2) v,w ∈C([t0− τ,T ),R), v′,w′ exist for t ∈ [t0,T ) and v′(t) ≤ Q(t,v(t),vt),
w′(t) ≥ Q(t,w(t),wt ), t ∈ [t0,T );

(A3) Q(t,x(t),xt)−Q(t,y(t),yt) ≤ λ (t) max
t0−τ≤s≤t

[x(s)− y(s)],

whenever xt ≥ yt and λ (t) > 0 is continuous for t0 ≤ t < T .
Then we have

v(t) ≤ w(t), t ∈ [t0,T ) (5.69)

provided that vt0 ≤ φt0 on [t0− τ,t0].
Proof. Let us first consider the result for strict inequalities supposing any one of the
inequalities in (A2) is strict. Suppose that the corresponding conclusion v(t) < w(t), t ∈
[t0,T ) is false. Then there would exist a t1 such that t0 < t1 < T satisfying

v(t1) = w(t1), v(s) < w(s), t0− τ ≤ s< t1, (5.70)

because of the corresponding assumption vt0 < wt0 on [t0− τ,t0]. Using (5.70) we get, for
small h< 0,

v(t1+h)− v(t1) < w(t1+h)−w(t1),

and therefore, it follows that

v′(t1) ≥ w′(t1). (5.71)



178 Theory of Causal Differential Equations

In view of (A2), because of semimonotone property of Q, relations (5.70) and (5.71) we
arrive at

Q(t1,v(t1),vt1 ) ≥ v′(t1) ≥ w′(t1) > Q(t1,w(t1),wt1) ≥ Q(t1,w(t1),vt1 ),

which is a contradiction. Hence, v(t) <w(t), t0 ≤ t < T is valid. Note that we have utilized
only strict inequality for w in (A2)
To prove the claim of Theorem 5.7.1, we let for t0− τ ≤ t0 ≤ t < T,

φ̃ (t) = φ(t)+ εe2L(t),

where L(t) =
t∫
t0

λ (s)ds and L(t) = 1 on [t0− τ,t0] and ε > 0 is small enough. Clearly

vt0 ≤ wt0 < w̃t0 and using (A2),

w̃′(t) = w′(t)+2ελ (t)e2L(t) ≥ Q(t,w(t),wt )+2ελ (t)e2L(t).

We shall next use (A3), observing that w̃t > wt , because of the fact

w̃t = wt + εe2Lt and e2Lt ≤ e2L(t),
w̃′(t) ≥ Q(t, w̃(t), w̃t)+2ελ (t)e2L(t)− ελ (t)e2L(t) > Q(t, w̃(t), w̃t ).

Now from the proof of the first part, it follows that v(t) < w̃(t),t0 ≤ t < T and letting ε → 0,
we have the result v(t) ≤ w(t), t0 ≤ t < T .
Remark 5.7.1. We note that instead of demanding the existence of v′,w′, we could only
require D v(t), D w(t) in (A2) for the inequalities to hold. The proof requires only this.
Here D v(t) = liminfh→0− 1

h [v(t+h)− v(t)].
The following lemma is needed before we proceed further.
Lemma 5.7.1. Let m ∈ [[t0− τ,T ],R], and satisfy the inequality

D m(t) ≤ g(t, |mt |0), |mt |0 = max
t0−τ≤s≤t<T

|m(s)|, (5.72)

where g ∈C([t0,T )×R+,R+). Assume that the maximal solution r(t) = r(t,t0,u0) of the
scalar differential equation

u′ = g(t,u), u(t0) = u0 ≥ 0, (5.73)

exists on [t0,T ). Then, if |mt0 |0 ≤ u0, we have
m(t) ≤ r(t), t ∈ [t0,T ). (5.74)

To prove (5.74), it is enough to prove that

m(t) < u(t,t0,u0,ε), t ∈ [t0,T ), (5.75)

where u(t,t0,u0,ε) is any solution of

u′ = g(t,u)+ ε, u(t0) = u0+ ε,
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ε > 0 being an arbitrary small quantity, since

lim
ε→0+

u(t,t0,u0,ε) = r(t,t0,u0).

Since |mt0 |0 < u0+ ε , if (5.75) is not true, there would exist a t1, t0 < t1 < T , such that

m(t1) = u(t1,t0,u0,ε), m(t) < u(t1,t0,u0,ε), t0 ≤ t < t1.
Hence,

D m(t1) ≥ u′(t1,t0,u0,ε) = g(t1,u(t1,t0,u0,ε))+ ε. (5.76)

Since g(t,u) ≥ 0, u(t1,t0,u0,ε) is nondecreasing in t and this implies from the preceding
considerations, that

|mt1 |0 = u(t1,t0,u0,ε) = m(t1).

Thus we are led to the inequality

D m(t1) ≤ g(t1, |mt1 |0) = g(t1,u(t1,t0,u0,ε)),

which is incompatible with (5.76). Thus the lemma follows.
Consider the IVP

x′(t) = Q(t,x(t),xt), xt0 = φ0, (5.77)

where φ0 ∈ C([t0− τ,t0],Rn). The operator Q takes values in R
n for each t ∈ [t0,t0+ a],

and the family of causal operators {Qt = Q(t,x(t),xt)} for t ∈ [t0,t0+ a] defines the map
from E =C([t0− τ,t0+a],Rn) into itself. Let us define y ∈C([t0− τ,t0+a],Rn) such that

y(t) =

[
φ0(t), t0− τ ≤ t ≤ t0,
φ0(t0), t0 ≤ t ≤ t0+a,

and for x ∈ E, |x|0 = max
t0−τ≤s≤t

|x(s)|.
The following local existence result will now be proved.
Theorem 5.7.2. Let the map Q be as defined above. Suppose that Q is continuous and
|Q(t,x(t),xt)| ≤ M on R0 = [[t0,t0 + a] and |xt − yt |0 ≤ b]. Then there exists a solution
x(t,t0,φ0) of (5.77) on t0− τ ≤ t ≤ t0+ α , where α =min

(
a, bM

)
.

Proof. Let B be the Banach space C([t0− τ,t0+ α],Rn) with norm as defined earlier. Let
S ⊂ B be defined by

S=

[
x ∈ B : (i) x(s) = φ0(s), t0− τ ≤ s≤ t0;

(ii) |x(t1)− x(t2)| ≤M|t1− t2|, t1,t2 ∈ [t0,t0+ α]

]
.

Since the members of S are uniformly bounded and equicontinuous on [t0− τ,t0+ α], the
compactness of S follows. A straight forward computation shows that S is convex. Let us
now define a mapping on S as follows. For any element x ∈ S, we let
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(i) T (xt0) = φ0;

(ii) T (x(t)) = φ0(t0)+
t∫
t0
Q(s,x(s),xs)ds, t0 ≤ t ≤ t0+ α.

For every x ∈ S and t ∈ [t0,t0+ α],

|x(t)−φ0(t0)| ≤M|t− t0| ≤Mα ≤ b,

and this yields that |xt − yt |0 ≤ b. It therefore follows that

|T (x(t))−φ0(t0)| ≤
t∫
t0

|Q(s,x(s),xs)|ds≤M(t− t0) ≤Mα ≤ b,

which implies T is well defined on S, T maps S into itself and T is continuous. An ap-
plication of Schauder’s fixed point theorem shows the existence of at least one x ∈ S such
that

(i) T (xt0) = xt0 ;
(ii) T (x(t)) = x(t),t0 ≤ t ≤ t0+ α,

which implies that

(i) xt0 = φ0,

(ii) x(t) = φ0(t0)+
t∫
t0
Q(s,x(s),xs)ds, t0 ≤ t ≤ t0+ α.

Since x ∈ S, it follows that this x ∈ S is also a solution of

x′(t) = Q(t,x(t),xt), t0 ≤ t ≤ t0+ α.

The proof is complete.
We shall next prove a global existence result.
Theorem 5.7.3. Let, for each t ∈ (t0,∞), Q takes values in R

n and the family of causal
operators {Qt = Q((t,x(t),xt)}, for t ∈ [t0,∞) defines the map from E =C([t0− τ,∞),Rn)

into itself. Suppose further that

|Q(t,x(t),xt)| ≤ g(t, |xt |0) (5.78)

where g∈C[[t0,∞)×R+,R+] and g(t,u) is nondecreasing in u for each t ∈ [t0,∞). Assume
that the maximal solutions r(t) = r(t,t0,u0) of the scalar differential equation

u′ = g(t,u), u(t0) = u0 ≥ 0,

exist on [t0,∞]. Then the largest interval of existence of any solution x(t,t0,φ0) of (5.77) is
[t0,∞).
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Proof. Let x(t,t0,φ0) be any solution of (5.77) existing on some interval [t0 − τ,β ),

where t0 < β < ∞. Assume that the value of β cannot be increased. Define, for
t ∈ [t0− τ,β ), m(t) = |x(t,t0,φ0)| so that mt = |xt(t0,φ0)|. Using the assumption (5.78), it
is easy to obtain the inequality

D m(t) ≤ g(t, |mt |0).
Choosing |mt0 |0 = |φ0|0 ≤ u0, we obtain from Lemma 5.6.3,

|x(t,t0,φ0| ≤ r(t,t0,u0), t0 ≤ t < β . (5.79)

Since g(t,u)≥ 0, r(t,t0,u0) is nondecreasing in t and therefore, it follows from (5.79) that
|xt(t0,φ0)|0 ≤ r(t,t0,u0), t0 ≤ t < β . (5.80)

For any t1,t2 such that t0 < t1 < t2 < β , we get

|x(t2,t0,φ0)− x(t1,t0,φ0| ≤
t2∫
t1

g(s, |xs(t0,φ0)|0)ds,

which, in view of (5.80) and the monotonicity of g(t,u) in u, implies

|x(t2,t0,φ0)− x(t1,t0,φ0)| ≤
t2∫
t1

g(s,r(s,t0,u0))ds= r(t2,t0,u0)− r(t1,t0,u0).

Letting t1,t2 → β−, the foregoing relation shows that lim
t→β−

x(t,t0,φ0) exists, because of

Cauchy’s criterion for convergence. We now define x(β ,t0,φ0) = lim
t→β−

x(t,t0,φ0) and ψ0 =

xβ (t0,φ0) as the new initial function at t = β . An application of local existence theorem
shows that there exists a solution x(t,t0,ψ0) of (5.77) on [β ,β + α], α > 0. This means
that the solution x(t,t0,φ0) can be continued to the right of β , which is contrary to the
assumption that the value of β cannot be increased. Hence, the stated result follows.

5.8 Causal Differential Systems with Retardation and Anticipation

We investigate, in this section, the existence theory for functional differential equations
with both retardation and anticipation as a first step by splitting the problem into two parts
and using existing theory of functional differential equations with delay and the contraction
mapping theorem for operators with PPF (past, present, and future) dependence.
The modeling of such equations serve to describe an organizational process. Anticipation
represents future potential, not yet realized values of the states of the system, known at the
present time. Hence the current evolution process of such systems takes into account past,
present and future (PPF) states of dependence.
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The investigation of the type of general functional differential systems with PPF depen-
dence, has its own challenges and there may be several approaches to follow and several
ways of posing the problem. However, recent practical applications in decision theory,
chaotic epidemics and wavelet theory, to name a few, suggest the need for the development
of some general theory, at least as a first step. With this motivation, we attempt to initiate
the existence theory of systems with PPF dependence.
Let us now formulate the problem concerning the causal differential system involving both
retardation and anticipation. Suppose that we are given

x′(t) = Q(t,xt ,xt),t ∈ [t0,T ], t0 ≥ 0,
xt0 = φ0, xT = ψ0,φ0 ∈C1, ψ0 ∈C2,

}
(5.81)

where C1 = C([−h1,0],Rn), C2 = C([0,h2],Rn), h1,h2 ≥ 0, Q ∈ C([t0,T ]×C1×C2,Rn),
and

xt(s) = x(t+ s),−h1 ≤ s≤ 0, xT (σ) = x(T + σ),0≤ σ ≤ h2.

The function φ0 is commonly known as delay or retardation or the past information. One
may consider φ0(s) defined on t0− h1 ≤ s < t0 as the past, φ0(t0) as the present and ψ0 is
the potential future that one wishes to reach. From this point of view, we may consider
(5.81) as the functional differential system with PPF (past, present and future) dependence.
In fact, there exists a contraction mapping theoremwhere the contractive operator is of PPF
dependence Theorem 1.4.4 and we shall be utilizing such a result.
We do not know how to prove directly an existence theorem for the posed problem (5.81).
We plan to utilize the known theory of functional differential systems with retardation to
build the theory for (5.81) by splitting suitably into two parts, since it is natural to employ,
more often than not, existing information for dealing with totally new problems. For this
purpose, we find that whenever a desired anticipation is involved, rarely one sits planning
nothing and expects that future event happens by itself. Normally, one makes appropriate
decisions to realize the desired future event. The decisions made continuously from the
present, using past memory, hopefully, will show their effects in the future, but it is not
guaranteed that the desired results occur. The desired future event depends, of course,
on the past, the present, the dynamics, the desired future and the decisions one makes
continuously. But the past and the present cannot be changed, since they have happened
already, other factors should help to relate in some form to yield the desired outcome.
In order to solve the existence problem (5.81), we therefore choose a decision function
z ∈C([t0,T ],Rn) such that z(t0) = φ0(t0) (although this is not essential) and z(T ) = ψ0(T ),
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that is, zt = z(t+σ), 0≤ σ ≤ h2 is defined for t ∈ [t0,T ]with zT = ψ0, as the tail end. With
this decision function chosen, the system (5.81) becomes

x′(t) = Q(t,xt ,zt) ≡ F(t,xt)
xt0 = φ0,

}
(5.82)

which is a functional differential system with only retardation. Because of the choice of
z(t), the system (5.82) employs the future information from [t0,T ]. We state the following
known existence and uniqueness result suitably modified for our problem (5.82).
Theorem 5.8.1. Suppose that the functional f in (5.82) satisfies

|Q(t,φ1,zt)−Q(t,φ2,zt )| ≤ L|φ1−φ2|0,

where |φ1−φ2|0 =max−h1≤s≤0 |φ1(s)−φ2(s)|, for φ1, φ2 ∈C1 and t ∈ [t0,T ]. If 0< α < 1
2L ,

then there exists a unique solution x(t0,φ0) (t) on t0 ≤ t ≤ t0+ α , for every z(t) chosen.
We shall next state a local existence result for (5.82) analogous to Theorem 6.1.1 in Volume
II of [4].

Theorem 5.8.2. Let F ∈C([t0,T ]×Cρ ,Rn)whereCρ = [φ ∈C1 : |φ |0 < ρ ]. Then for every
given initial function φ0 ∈ Cρ at t = t0, there exists an η > 0 such that there is a solution
x(t0,φ0)(t) of (5.82) existing on [t0,t0+ η ].
We therefore have by Theorem 5.8.2, local existence for a chosen z(t). We shall next
consider global existence of solutions of (5.82) on [t0,T ] by utilizing Theorems 1.3.3 and
1.3.4 and Theorem 6.1.2 in Volume II of [4].
Theorem 5.8.3. Assume that the solutions of (5.82) exist locally for any choice of z(t)
satisfying

|zt |0 ≤ R(t), t ∈ [t0,T ], (5.83)

where R(t) = R(t,t0,u0) is the maximal solution of

u′ = g(t,u,u), u(t0) = u0 ≥ 0, (5.84)

existing on [t0,T ], g ∈ C([t0,T ]×R2+,R+) and g(t,u,v) is nondecreasing in (u,v) for t ∈
[t0,T ]. Suppose also that f in (5.82) has the estimate,

|Q(t,φ ,zt )| ≤ g(t, |φ(0)|, |zt |0), (5.85)

for φ ∈C1 such that |φ |0 = |φ(0)|, and for any z satisfying (5.83). Let r(t) = r(t,t0,u0) be
the maximal solution of

u′ = g(t,u,R(t)), u(t0) = u0 ≥ 0 (5.86)
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existing on [t0,T ]. Then the largest interval of existence of any solution x(t0,φ0)(t) of (5.82)
is [t0,T ].
Proof. Let |zt |0 ≤ R(t) on [t0,T ] and x(t0,φ0)(t) be any solution of (5.82) existing on
some interval [t0,t1), t1 < T . Suppose that the value of t1 cannot be increased. Define for
t ∈ [t0,t1), m(t) = |x(t0,φ0)(t)| so that mt = |xt(t0,φ0)|. Using (5.85), it is easy to get the
differential inequality

D−m(t) ≤ g(t,m(t), |zt |0).
Because of (5.83) and g(t,u,v) is nondecreasing in v, we have

D−m(t) ≤ g(t,m(t),R(t)), t ∈ [t0,T ].

Choosing |mt0 | = |φ0|0 ≤ u0, we obtain by Theorem 1.3.4,
m(t) ≤ r(t), t ∈ [t0,t1). (5.87)

For any t2,t3 such that t0 < t2 < t3 < t1, it follows that

|x(t0,φ0)(t3)− x(t0,φ0)(t2)| ≤
∫ t3
t2
g(s, |xs(t0,φ0)|0,R(s))ds.

In view of the monotone nature of g(t,u,v) in u as well, using (5.87) we arrive at

|x(t0,φ0)(t3)− x(t0,φ0)(t2)| ≤
∫ t3
t2
g(s,r(s),R(s))ds = r(t3)− r(t2). (5.88)

Here we have used the fact that r(t) is nondecreasing in t because g(t,u,v) ≥ 0 and hence
mt ≤ r(t) for t ∈ [t0,t1) because of (5.84). Now letting t2,t3 → t1, we get from the relation
(5.88) that limt→t−1 x(t0,φ0)(t) exists, because of Cauchy criterion for convergence. We now
define x(t0,φ0)(t1) = limt→t−1 x(t0,φ0)(t) and consider xt1(t0,φ0) = φ1 as the new initial
function at t = t1. An application of Theorem 5.8.2 yields that there exists a solution
x(t1,φ1)(t) of (5.82) on [t2,t1+ α1], α1 > 0. This means that the solution x(t0,φ0)(t) can
be continued to the right of t1, which is a contradiction to our assumption that the value of
t1 < T can not be increased. Hence the conclusion of the theorem follows.
Remark. If in Theorem 5.8.3, all the functions involved are assumed to exist on [t0,∞), in-
stead of [t0,T ], then it is easy to see that the same proof shows that the solutions x(t0,φ0)(t)
exist globally on [t0,∞).
We wish to show that the solution x(t0,φ0)(t) of (5.82) which exists on [t0,T ] for a chosen
z(t) satisfies the relation

x(t0,φ0)(T ) = ψ0(T ) = z(T ), (5.89)

so that we can claim that x(t0,φ0)(t) is the solution of the problem (5.81) for a chosen z(t)
on [t0,T ]. However, it is not, in general, necessary that (5.89) can happen for any z(t). If, at
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least, one z(t) exists satisfying (5.89), we have an existence result, because of the decision
made, one could realize the future event. To achieve this second part of the problem, we
need the following consideration.

Let, for some α > 0 and t ∈ [t0,T ],

Ω = [φ1,φ2 ∈C1 : max
−h1≤s≤0

|φ1(s)−φ2(s)|eα(t+s) = |φ1(0)−φ2(0)|eαt ].

Let z1(t), z2(t) be two different decision functions on [t0,T ] as defined earlier, namely

z1(t0) = z2(t0) = φ0(t0), z1(T ) = z2(T ) = ψ0(T )

with the same ψ0 as tail end. Let x1(t0,φ0,z1)(t), x2(t0,φ0,z2)(t) be the two solutions
of (5.82) on [t0,T ] corresponding to z1(t), z2(t), with the same initial function φ0 ∈ C1.
Suppose that the functionalQ in (5.82) satisfies the condition, for φ1, φ2 ∈ Ω.

2eαt〈φ1(0)−φ2(0),Q(t,φ1,zt1)−Q(t,φ2,zt2)〉+ eαt|φ1(0)−φ2(0)|2
≤ c1eαt |z1− z2|20,

(5.90)

where c1 > 0, α > 0 and |z1− z2|0 =maxt0≤t≤T+h2 |z1(t)− z2(t)|.
Then taking L(t,φ1(0)− φ2(0)) = |φ1(0)− φ2(0)|2 eαt for some α > 0 and following the
proof of Theorem 8.1.2 in [4], we obtain, for t ∈ [t0,T ].

|x1(t0,φ1,z1)(t)− x2(t0,φ0,z2)(t)|2eαt ≤ c1|z1− z2|20
∫ t
0
eαsds. (5.91)

From (5.91), it follows that

|x1(t0,φ0,z1)(T )− x2(t0,φ0,z2)(T )| ≤
(c1

α

) 1
2 |z1− z2|0. (5.92)

We now define the operator S by Sz = x(t0,φ0,z)(T ), where S : E0 → E , E0 = C([t0,T +

h2],Rn) and E = Rn. Then we see that S satisfies the relation

|Sz1−Sz2| ≤
(c1

α

) 1
2 |z1− z2|0.

If
( c1

α
) 1
2 < 1, we can apply the fixed point theorem for PPF dependence (see Theorem

1.4.4) to conclude that there exists a z ∈ E0 such that Sz= z(T ) = ψ0(T ). This implies that

x(t0,φ0,z)(T ) = ψ0(T ) = z(T ). (5.93)

The foregoing considerations prove the following result.

Theorem 5.8.4. Assume that the solutions of (5.82) exist and are unique for [t0,T ]. Sup-
pose further that f satisfies condition (5.90). If

( c1
α
) 1
2 < 1, then there exists a function

z ∈C([t0,T ],Rn) such that (5.93) holds.
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Example. Consider

x′(t) = −ax(t)+bx(t−h)+ cx(t+h),

where a,b,c,h > 0 are constants. If 0< α
2 ≤ a −(beαh+ c) and

( c
α
) 1
2 < 1 hold, then the

conditions of the Theorem 5.8.4 are satisfied.
Example. An example of a functional differential equation corresponding to the above
example is,

x′(t) = −ax(t)+b
∫ 0
−h1
xt(s)ds+ c

∫ h2
0
xt(σ)dσ ,

where a,b,c,h1,h2 > 0 are constants. Here we need to choose

0<
α
2
≤ a− [

b
α

(eαh1−1)+ ch2] and
(
ch2
α

) 1
2

< 1

to make the hypothesis of Theorem to hold, and the needed computation is somewhat more
complicated.
There are many interesting ways one can formulate the problem of PPF dependence (5.81).
We shall state some typical formulations.
Consider, for example, extending (5.81) several times, namely, let T1 > T + h2 and on
[T1,T1+ h3] provide a potential future function ψ1 ∈ C[T1,T1+ h3],Rn). Here z(t) can be
chosen as z(t) = ψ0(t) on [T,T +h2] and arbitrary on [T +h2,T1] such that z(T1) = ψ1(T1)
and try to find one z(t) satisfying

z(T1) = ψ1(T1) = x(T,xT ,z(T1)

where x(T,xT ,z)(t) is the solution from (T,xT ), xT = (t0,φ0). One can repeat the process
several times to show that the evolution process meets the anticipated values several times.

Another type of functional differential system with retardation and anticipation could be as
follows:

x′(t) =Q(t,xt ,xt)
xt0 = φ0 and xt0 = ψ0

}
(5.94)

where ψ0 ∈ C([t0,T ],Rn) or ψ0 ∈ C([t0,∞),Rn) such that limt→∞ ψ0(t) = 0 in the latter
case. Notice that here the anticipative function, that is, the decision function is given from
the start t = t0, either on finite interval [t0,T ] or on infinite interval [t0,∞). In this case,
there is no need to choose z(t) as before, since ψ0 takes its place.

Yet another possibility is allowing for some time that the evolution process depends only on
the past and the present and then subject the dynamics to utilize the decision function, that



Miscellaneous Topics in Causal Systems 187

is, the problem is the same as (5.81) but z(t) is chosen from [T −h2,T ] such that z(T −h2)
= x(t0,φ0) (T −h2), z(T ) = ψ0(T ), with the tail end of ψ0 as before.

Finally, let us consider the problem (5.94) with ψ0 defined on the infinite interval [t0,∞)

and demand that the evolution process x(t0,φ0,ψ0) (t) also has the same property as ψ0,
that is,

lim
t→∞

x(t0,φ0,ψ0)(t) = 0= lim
t→∞

ψ0(t). (5.95)

We shall provide a set of sufficient conditions in terms of Lyapunov-like function to ac-
complish the conclusion of this problem.

Theorem 5.8.5. Assume that the solutions x(t0,φ0,ψ0)(t) of (5.94) exist for t ≥ t0. Suppose
further that

(i) there exists a V ∈C(R+×Rn,R+) V (t,x) is positive definite and V (t,0) ≡ 0;
(ii) for φ ∈ Ω0 = [φ ∈C1 : max−h1≤s≤0V (t+ s,φ(s))eα(t+s)

=V (t,φ(0)) eαt ] for some α > 0,

D−V (t,φ(0))eαt + αV (t,φ(0))eαt

≤ g(t,V (t,φ(0))eαt ,W (t, |ψt0|0),
whereW ∈C[R2+,R+], g(t,u,v) ≥ 0 satisfies the assumptions of Theorem 1.4.4;

(iii) W (t, |ψt0|0) ≤ R(t), t ≥ t0, where ψt0 = ψ0(t+ σ), 0≤ σ ≤ h2;
(iv) the maximal solution r(t) = r(t,t0,u0), u0 ≥ 0, is, in addition, bounded on [t0,∞).

Then every solution x(t0,φ0,ψ0) (t) of (5.94) is such that (5.95) holds.
Proof. Let us first observe that the existence of solutions x(t0,φ0,ψ0) (t) of (5.94) for all
t ≥ t0, can be proved following the Remark after Theorem 5.8.3. Since we have assumed
it, let us set

m(t) =V (t,x(t0,φ0,ψ0)(t))eαt

and employ the arguments as in Theorem 8.1.2 in [4] to obtain the differential inequality
D−m(t) ≤ g(t,m(t),W (t, |ψt0|0), t ≥ t0. Then using (iii) and the monotone nature of g, we
get

D−m(t) ≤ g(t,m(t),R(t)), t ≥ t0,
which yields,

m(t) ≤ r(t,t0,u0), t ≥ t0,
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provided |mt0 |0 ≤ u0. This then implies
V (t,x(t0,φ0,ψ0)(t))eαt ≤ r(t,t0,u0) ≤ N, t ≥ t0,

by assumption (iv), where N > 0 is the bound for r(t,t0,u0). The positive definiteness of
V (t,x) immediately shows that (5.95) is true and the proof is complete.

As an example of (5.94) consider

x′(t) = −ax(t)+bx(t−h1)+ c(t)x(t+h2)

xt0 = φ0 xt0 = ψ0

where a,b,h1,h2 > 0 are constants and c(t) ≥ 0 is continuous on [t0,∞). For φ ∈ Ω0, with
V (t,x) = |x|, we can compute the following estimate

limsuph→0+
1
h
[|φ(0)+h f (t,φ ,ψ0)|− |φ(0)|]eαt + αeαt |φ(0)|

≤ c(t)|ψ0|0eαt , t ≥ t0,
where |ψ0|0 = supt0≤t<∞ |ψ0(t)|, choosing 0< α ≤ (a−beαh1). We then get

|x(t0,φ0,ψ0)(t)|eαt ≤ |φ0|0+

∫ t
0
c(s)eαs|ψ0|0ds, t ≥ t0.

If c(t) is such that
∫ ∞
0 c(s)eαsds≤ N, we arrive at
eαt |x(t0,φ0,ψ0)(t)| ≤ |φ |0+ |ψ0|0N, t ≥ t0,

from which, it follows that limt→∞ |x(t0,φ0,ψ0)(t) = 0.

5.9 Monotone Iterative Technique

In this section, we employ the monotone iterative technique relative to the coupled lower
and upper solutions to obtain minimal and maximal solutions of coupled type and under
suitable conditions of uniqueness. It is then shown that the coupled extremal solutions
yield the unique solution of the proposed problem. Since the modeling of such equations
with PPF dependence serves to describe many practical problems as observed recently, the
development of general theory is timely.
Let us consider the following functional differential equation with retardation and antici-
pation, given by {

x′(t) = Q(t,x(t),xt ,xt ), t ∈ I = [t0,T ],

xt0 = φ0, xT = ψ0, t0 ≥ 0, t0 < T,
(5.96)
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where C1 = C([−h1,0],R), C2 =C([0,h2],R), φ0 ∈ C1, ψ0 ∈ C2 and f ∈ C(I×R×C1×
C2,R), h1,h2 > 0. Here and in what follows, the symbols xt = xt(s) = x(t+s),−h1≤ s≤ 0,
xt = xt(σ) = x(t+ σ), 0 ≤ σ ≤ h2, representing retardation and anticipation, respectively.
We plan to employ the monotone iterative technique for proving the existence of unique
solution for (5.96) utilizing coupled lower and upper solutions of (5.96). Before we proceed
further, we need to list the following known results relative to linear functional differential
inequalities in a suitable form.
Lemma 5.9.1: Assume that

(i) p ∈C([t0−h1,T +h2],R), p is continuously differentiable on I = [t0,T ] and

p′(t) ≤−Mp(t)−N
∫ 0
−h1
pt(s)ds, t ∈ I;

(ii) pt0(s) ≤ 0,−h1 ≤ s ≤ 0, p ∈ C1([t0− h1,t0,R), p′(s) ≤ λ
T+h1

where min[t0−h1,t0] p(s)
= −λ , λ ≥ 0 and [M+Nh1] (T +h1) ≤ 1.

Then p(t) ≤ 0 on t0 ≤ t ≤ T .
Lemma 5.9.2: Suppose that p ∈C([t0−h1,T +h2],R), p′(s) exists and is continuous on I
and

p′(t) ≤−Lp(t)+N1
∫ 0
−h1
pt(s)ds+N2

∫ h2
0
pt(σ)dσ , t ∈ I,

where L,N1,N2 > 0 satisfying N1 h1+N2h2 < L. Then pt0 ≤ 0, pT ≤ 0 implies p(t)≤ 0 on
I.
Proof. If the conclusion is false, there exists a t1 ∈ (t0,T ) and an ε > 0 such that p(t1) = ε ,
p(t) ≤ ε on I. It then follows that

0= p′(t0) ≤−Lε +N1εh1+N2εh2 < 0,

by assumptions proving p(t) ≤ 0 on I.
Let us list the following assumptions relative to (5.96) for convenience.

(i) α0,β0 ∈C1(I,R) satisfying

α ′
0(t) ≤ f (t,α0(t),α0t ,β t0), α0t0 = φ1, αT0 = ψ1,

β ′
0(t) ≥ f (t,β0(t),β0t ,αt0), β0t0 = φ2, β T0 = ψ2,

such that φ1≤ φ0 ≤ φ2, ψ1≤ψ0≤ψ2, α0(t)≤ β0(t) on I and φ1, φ2 ∈C1, ψ1, ψ2 ∈C2.
(ii) Q(t,x,φ ,ψ) is nonincreasing in ψ for each (t,x,φ).
(iii) Q(t,x,φ ,ξ ) −Q(t,y,ψ ,ξ ) ≥ −M(x− y) −N ∫ 0−h1(φ −ψ)(s)ds, for α0(t) ≤ y ≤ x ≤

β0(t), α0t ≤ ψ ≤ φ ≤ β0t , ξ ∈ C2 arbitrary andM,N ≥ 0.
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(iv) α0t0 −φ0, φ0−β0t0 satisfying the assumptions (ii) of Lemma 5.9.1.

The type of coupled lower and upper solutions assumed in (i) are utilized profitably. We
are now in a position to state and prove our main result.
Theorem 5.9.1: Suppose that assumptions (i) to (iv) are satisfied. Then there exist mono-
tone sequences {αn(t)}, {βn(t)} such that αn(t) → ρ(t), βn(t) → r(t) uniformly as n→ ∞
on [t0−h1,T +h2] and that (ρ ,r) are coupled minimal and maximal solutions of (5.96). If,
in addition,

(v) Q(t,x,φ1,ψ2)−Q(t,y,φ2,ψ1) ≤ −L(x− y) +N1
∫ 0
−h1(φ1 − φ2) (s)ds +N

∫ h2
0 (ψ1 −

ψ2)(σ)dσ , where L,N1,N2 > 0, α0(t) ≤ y ≤ x≤ β0(t),
α0t ≤ φ2 ≤ φ1 ≤ β0t , αT0 ≤ ψ2 ≤ ψ1 ≤ β T0 and N1h1 +N2h2 < L, holds, then
ρ(t) = r(t) = x(t) is the unique solution of (5.96) on I.

Proof: Consider the following linear problem for each n= 1,2,3, . . . ,,

α ′
n+1 = f (t,αn,αnt ,β tn)−M(αn+1−αn)−N

∫ 0
−h1(α(n+1),t −αnt )(s)ds,

β ′
n+1 = f (t,βn,βnt ,αtn)−M(βn+1−βn)−N

∫ 0
−h1(β(n+1)t−βnt)(s)ds,

}
(5.97)

with α(n+1)t0 = φ0, β(n+1)t0 = φ0 and αTn+1, β
T
n+1 are chosen such that

αT0 ≤ αTn ≤ αTn+1 ≤ ψ0 ≤ β Tn+1 ≤ β Tn ≤ β T0 (5.98)

and αTn , β Tn converge uniformly to ψ0 on [0,h2]. (See remark.)
Clearly each linear problem has a unique solution on [t0− h1,T + h2]. We wish to show
that

α0 ≤ α1 ≤ α2 ≤ . . . ≤ αn ≤ βn ≤ . . . ≤ β2 ≤ β1 ≤ β0 on I. (5.99)

We claim first that α0 ≤ α1 on I. For this purpose, set p = α0−α1 so that it follows from
(5.97), (5.98) and condition (i),

p′ = α ′
0−α ′

1 ≤ f (t,α0,α0t ,β t0)− f (t,α0,α0t ,β t0)

+M(α1−α0)+N
∫ 0
−h1

(α1t −α0t)(s)ds

≤−Mp−N
∫ 0
−h1
pt(s)ds, t ∈ I

and

pt0 = α0t0 −α1t0 ≤ 0.
By Lemma 5.9.1, in view of assumption (iv), this implies α0 ≤ α1 on I. Similarly, we can
show that β1 ≤ β0 on I.
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Next we prove that α1 ≤ β1 on I. Setting p= α1−β1, we obtain in view of (5.97), for t ∈ I,

p′ = α ′
1−β ′

1 = f (t,α0,α0t ,β t0)−M(α1−α0)−N
∫ 0
−h1

(α1t −α0t)(s)ds

− f (t,β0,β0t ,αt0)+M(β1−β0)+N
∫ 0
−h1

(β1t −β0t)(s)ds.

Since f (t,x,φ ,ψ) is nonincreasing in ψ by (ii), αt0 ≤ β t0, assumption (iii) yields

p′ ≤M(β0−α0)+N
∫ 0
−h1

(β0t −α0t)(s)ds−M(α1−α0)−N
∫ 0
−h1

(α1t −α0t(s)ds

+M(β1−β0)+N
∫ 0
−h1

(β1t −β0t)(s)ds

= −Mp−N
∫ 0
−h1
pt(s)ds and pt0 = 0.

Thus we get using Lemma 5.9.1, p(t) ≤ 0 on I. As a result, it follows that

α0 ≤ α1 ≤ β1 ≤ β0 on I. (5.100)

Now suppose that for some k > 1, we have

αk−1 ≤ αk ≤ βk ≤ βk−1 on I. (5.101)

We shall show that

αk ≤ αk+1 ≤ βk+1 ≤ βk on I. (5.102)

To do this, let p = αk−αk+1 so that pt0 = 0 and

p′ = α ′
k−α ′

k+1

= Q(t,αk−1,αk−1t ,β tk−1)−M(αk−αk−1)−N
∫ 0
−h1

(αkt −αk−1t)(s)ds

−Q(t,αk,αkt ,β tk)+M(αk+1−αk)+N
∫ 0
−h1

(αk+1t −αkt)(s)ds.

Using monotone nature of Q and condition (iii), we have

p′ ≤M(αk−αk−1+N
∫ 0
−h

(αkt −αk−1t)(s)ds−M(αk−αk−1)

−N
∫ 0
−h1

(αkt −αk−1t)(s)ds+M(αk+1−αk)+N
∫ 0
−h1

(αk+1t −αkt)(s)ds

= −Mp−N
∫ 0
−h1
pt(s)ds and pt0 = 0.
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This implies by Lemma 5.9.1 that αk ≤ αk+1 on I. Similarly, we can show that βk+1 ≤ βk
on I. To prove αk+1 ≤ βk+1 on I, consider p = αk+1−βk+1 so that pt0 = 0 and arguing as
before, one can show that

p′ ≤ −Mp−
∫ 0
−h1
pt(s)ds, pt0 = 0,

which yields αk+1 ≤ βk+1, on I. Thus we have (5.102) and therefore by induction, we
see that (5.99) is valid on I. This together with (5.98) follows that (5.99) is also true on
[t0,T +h2].
Since the sequences {αn}, {βn} are bounded by (5.99), employing the standard arguments,
namely Ascoli-Arzela and Dini theorems, one can conclude that {αn}, {βn} converge uni-
formly on [t0,T ], that is, αn → ρ , βn→ r uniformly on [t0,T ]. Also, it is easy to show that
(ρ ,r) satisfy

ρ ′ = f (t,ρ ,ρt ,rt ), ρt0 = φ0,

r′ = f (t,r,rt ,ρ t), rt0 = φ0,

with ρ ≤ r on I and ρT = rT .
To show that (ρ ,r) are coupled minimal and maximal solutions of (5.96), let x(t) be any
solution of (5.96) with xt0 = φ0, xT = ψ0 such that α0 ≤ x≤ β0 on I. Then it is enough to
show that ρ ≤ x ≤ r since by definition of (ρ ,r) we already have ρT = xT = rT . Setting
p= α1− x so that pt0 = 0 and

p′ = α ′
1− x′ = Q(t,α0,α0t ,β t0)−M(α1−α0)−N

∫ 0
−h1

(α1t −α0t)(s)ds−Q(t,x,xt ,xt)

≤M(x−α0)+N
∫ 0
−h1

(xt −α0t)(s)ds−M(α1−α0)−N
∫ 0
−h1

(α1t −α0t(s)ds

= −Mp−N
∫ 0
−h1
pt(s)ds.

Thus we get from Lemma 5.9.1, α1 ≤ x on I. Similarly, x ≤ β1 on I. By proceeding
similarly, it is easy to show that αn+1 ≤ x ≤ βn+1 on I. Hence (ρ ,r) are coupled minimal
and maximal solutions of (5.96).
If, in addition, condition (v) holds, since ρ ≤ r, we let p= r−ρ and find using ρ t ≤ rt and
(v),

p′ = r′ −ρ ′ = Q(t,r,rt ,ρ t)−Q(t,ρ ,ρt,rt)

≤−Lp(t)+N1
∫ 0
h1
pt(s)ds+N2

∫ h2
0
pt(σ)dσ ,
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and

pt0 = 0, pT = 0.

This implies by Lemma 5.9.2., p(t) ≤ 0 on I, which means ρ = r on I. Thus the common
value x = ρ = r is the unique solution of (5.96) with xt0 = φ0, and xT = ψ0. The proof is
therefore complete.
Remark. A simple choice of (5.98) would be to take for αTn , β Tn , suitable translates of ψ0
such that αTn = ψ0− εn, β Tn = ψ0+ ηn, with αn(T ) = ψ0(T ) −εn, βn(T ) = ψ0(T ) +ηn,
for each n, where εn, ηn > 0 are monotone sequences tending to zero as n→ ∞. To make
life simpler still, one can assume that αT0 = β T0 = ψ0. Note also that given any φ0 with
α0t0 ≤ φ0 ≤ β0t0 , ψ0 need to satisfy the inequality α1(T ) ≤ ψ0(T ) ≤ β1(T ) so that the
choice (5.98) is possible. Recall that the method of lower and upper solutions provides
existence results in the closed set generated by lower and upper solutions.

5.10 Neutral Differential Equations with Causal Operators on a Semi-Axis

Let us consider the functional differential equation
d
dt

[
dx(t)
dt

− (Lx)(t)
]

= (Vx)(t), t ∈ R+, (5.103)

where x∈R
n, n≥ 1 is an integer, and L, V are causal operators acting on the function space

C(R+,Rn), consisting of all continuous maps from R+ into R
n, the topology/convergence

being defined by the family of semi-norms {|x|k : k≥ 1}, with |xk|= sup{|x(t)| : 0≤ t ≤ k},
k ≥ 1.
It is well known that the above topology/convergence means uniform convergence on any
bounded interval [0,T ] ⊆ R+.

An initial condition of the form

x(0) = x0 ∈ R
n, ẋ(0) = v0 ∈ R

n, (5.104)

must be associated with (5.103), if we expect to get a unique solution to the Cauchy prob-
lem (5.103), (5.104).
We will be interested here in finding global solutions to the problem, i.e. belonging to the
spaceC(R+,Rn).
The space C(R+,Rn) contains as subspaces (closed or not) many usual spaces appearing
in the theory of differential or integral equations. An example is the space BC(R+,Rn)

consisting of all bounded continuous maps from R+ into R
n with the norm

|x| = sup{|x(t)| : t ∈ R+}, (5.105)
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BC(R+,Rn) is a Banach space.
The main concern of this section is finding adequate conditions on the data, more precisely
on the operators L andV , such that the existence of solution to the problem (5.103), (5.104)
is guaranteed (on the semi-axis R+).
We shall briefly discuss in this section a connection between causal operators on function
spaces and classical/integral operators of Volterra type, simply express by the formula∫ t

0
(Qx)(s)ds =

∫ t
0
K(t,s)x(s)ds, t ∈ R+, (5.106)

where Q stands for a linear causal operator on the space C(R+,Rn), and K(t,s) denotes a
matrix of type n×n.
More precisely, the result described by (5.106), states that for eachQ, there exists a measur-
able kernel K(t,s), rendering the service described by (5.106). The formula (5.106) holds
true for every x ∈ C(R+,Rn), and even in the most general case, x ∈ Lloc(R+,Rn). We
notice that K(t,s) must not be continuous. In order to assure the inclusion∫ t

0
K(t,s)x(s)ds ∈C(R+,Rn), (5.107)

for each x ∈ C(R+,Rn), it suffices to deal with a locally integrable K(t,s),(t,s) ∈ Δ =

{(t,s) : 0≤ s≤ t} satisfying also the condition

lim
h→0

(∫ t
0
|K(t+h,s)−K(t,s)|ds+

∫ t+h
t

|K(t+h,s)|ds
)

= 0 (5.108)

for each t ∈ R+.
Let us notice that condition (5.108) on K(t,s) is implied by (5.106), and the fact that Q is
a linear operator acting on C(R+,Rn). Hence, it takes continuous maps into continuous
ones.
The kernel K(t,s) from (5.106) automatically verifies other properties, if it does satisfy
extra conditions. For instance, one frequently encountered property is

sup
{∫ t

0
|K(t,s)|ds : t ∈ R+

}
< ∞, (5.109)

is implied by the requirement that the subspace BC(R+,Rn) must be left invariant by the
operatorV .
In general, the connection between the operator V , and the properties of the kernel K(t,s),
is not always easy to be established. The problem of clarifying such connections is of great
significance for applications.
We shall formulate conditions for Q, by means of the relationship (5.106). In other words,
by imposing the adequate conditions on the associated kernel K(t,s). In special situations,
when Q is chosen in a classical form, the connection may appear more transparent.
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Let us return to equation (5.103) and make a few remarks that will help simplifying the
coming considerations.
First, it is obvious that an additive constant to the operator L, i.e. a constant n-vector, does
not change the equation (5.103). Hence, without loss of generality, we can assume

(Lx)(0) = θ ∈ R
n, (5.110)

for any x in the space C(R+,Rn).
In case of classical Volterra operator

(Qx)(t) = f (t)+

∫ t
0
K(t,s,x(s))ds,

one obtains (Qx)(0) = f (0) = const, for any x∈C(R+,Rn), or in another underlying space.
As mentioned above we can substitute θ in (5.110) by any constant c ∈ R

n without chang-
ing the equation.
By integrating both sides (5.103) from 0 to t > 0 we obtain the functional differential
equation

ẋ(t)− (Lx)(t) = v0+
∫ t
0

(Vx)(s)ds, (5.111)

if we take into account (5.104) and (5.110).
The following equation is related to the equation (5.111),

ẋ(t)− (Lx)(t) = f (t), t ∈ R+. (5.112)

The Cauchy problem for (5.112) with x(0) = x0 ∈ R
n can be represented in case of linear

and continuous operator L on C(R+,Rn), by an integral formula, involving the Cauchy
operator associated to L. It is sort of variation of parameters formula (Lagrange), and it
looks

x(t) = X(t,0)x0+
∫ t
0
X(t,s) f (s)ds, t ∈ R+, (5.113)

for any f ∈C(R+,Rn). the Cauchy function (or kernel) X(t,s) is defined by the formula

X(t,s) = I+
∫ t
s
K̃0(t,u)du, (5.114)

for each (t,s) ∈ Δ,

Δ = {(t,s) : 0≤ s≤ t}, (5.115)

where K̃0(t,s) is the resolvent kernel corresponding to K0(t,s), (t,s) ∈ Δ, from the repre-
sentation ∫ t

0
(Lx)(s)ds =

∫ t
0
K0(t,s)x(s)ds, t ∈ R+. (5.116)
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In (5.116), K0(t,s) is measurable only, but the existence of K̃0(t,s)is assured, for instance,
if we accept the condition

K0(t,s) ∈ L∞
loc(Δ,L (Rn,Rn)). (5.117)

Let us apply formula (5.113) to the equation (5.111). We are led to the functional equation

x(t) = X(t,0)x0+
∫ t
0
X(t,s)v0ds+

∫ t
0
X(t,s)

∫ s
0

(Vx)(u)du ds. (5.118)

Since we already assumed L to be linear, there results that (5.118), which is an equivalent
equation to the problem (5.103), (5.104) is also linear when V is linear. Otherwise, it is a
nonlinear functional equation for x(t).
In case V is a linear operator acting on C(R+,Rn), we can use the representation (5.106),
and (5.118) leads to another equivalent form of the problem (5.103), (5.104):

x(t) = X(t,0)x0+
∫ t
0
X(t,s)v0ds+

∫ t
0
X(t,s)

∫ s
0
K(s,u)x(u)du ds.

Interchanging the order of integration in the double integral, we obtain the functional dif-
ferential equation

x(t) = X(t,0)x0+
∫ t
0
X(t,s)v0ds+

∫ t
0

(∫ t
u
X(t,s)K(s,u)ds

)
x(u)du,

which can be rewritten as

x(t) = f (t)+

∫ t
0
K1(t,u)x(u)du, t ∈ R+, (5.119)

with

f (t) = X(t,0)x0+
∫ t
0
X(t,s)v0ds, t ∈ R+, (5.120)

and

K1(t,u) =

∫ t
u
X(t,s)K(s,u)du, 0≤ u≤ t. (5.121)

The equation (5.119) will be discussed in detail, and the existence result will be applied to
the problem (5.103), (5.104).
Another case will be considered, when the operator V is not necessarily linear, but it is
Lipschitzian continuous.
We have to examine the function (5.120) and the kernel K1(t,u) to see if we can construct
a solution inC(R+,Rn).
First, the function f (t) from (5.120) is the solution of the functional differential equation
ẋ(t)− (Lx)(t) = v0, with the initial condition x(0) = x0. Hence, f (t) is a continuously
differentiable function on R+, with values in R

n.
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Second, the kernel K1(t,u) given by (5.121) is a locally bounded function on Δ. More
precisely, we can infer

K1(t,s) ∈ L∞
loc(Δ,L (Rn,Rn)). (5.122)

Indeed, we shall admit that K(t,s) belongs to L∞
loc, as mentioned above. Furthermore, for-

mula (5.114) shows us that X(t,s) is also locally bounded on Δ. This fact is a consequence
of property that states: any kernelK(t,s), which is locally bounded on Δ, admits a resolvent
K̃(t,s), which is locally bounded on Δ.
Therefore, the integral equation (5.119), whose kernel K1(t,s) satisfies (5.122), admits a
resolvent kernel K̃1(t,s), locally bounded on Δ, while its unique solution is represented by
the resolvent formula

x(t) = f (t)+

∫ t
0
K̃1(t,s) f (s)ds, t ∈ R+, (5.123)

for any function f ∈ L∞
loc(R+,Rn). In particular (5.123) holds true when f (t) is given by

the formula (5.120).
In summarizing the discussion carried out above, we can state the following existence result
for the problem (5.103), (5.104).
Theorem 5.10.1. Consider the neutral functional differential equation (5.103) with the
initial conditions (5.104). Assume the following conditions are satisfied:

(i) the operators L andV are linear, continuous and causal, acting on the spaceC(R+,Rn);
(ii) the kernels K(t,s) and K0(t,s), occurring in the representation (5.106) and (5.116) are

locally bounded on Δ, defined by (5.115).

Then, there exists a unique solution x(t), t ∈ R+, of the problem (5.103), (5.104), for
arbitrary initial data x0,v0 ∈ R

n. This solution is continuously differentiable on R+.
The proof is immediate if we rely on the discussion preceding the statement of Theorem
5.10.1, the equivalence (5.103), (5.104) with the equation (5.119) being the key ingredient.
Remark. The condition (5.108) is not the only condition that can be derived from the fact
that Q is acting onC(R+,Rn).
Indeed, from (5.108) we read∫ t

0
K(t,s)x(s)ds ∈ ACloc(R+,Rn), (5.124)

for every x ∈ C(R+,Rn). The space ACloc in (5.124) is a subspace of C(R+,Rn), and the
inclusion ∫ t

0
K(t,s)x(s)ds ∈C(R+,Rn), t ∈ R+, (5.125)
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tells us less than (5.124). Nevertheless, we prefer to use (5.125) instead of (5.124) for
simplicity. For example, (5.125) implies

lim
h→0

∫ t
0
|K(t+h,s) = K(t,s)|ds= 0, t ∈ R+. (5.126)

Remark. Considering the resolvent formula (5.123) for the solution of equation (5.119),
we can obtain more information about the solution of (5.103), (5.104), making extra as-
sumptions on the kernel K̃1(t,s). This kernel is determined, as shown by (5.121), by the
properties of the operators L and Q.
For instance, if we assume that K̃1(t,s) satisfies the condition∫ t

0
|K̃1(t,s)|ds ≤M < ∞, t ∈ R+, (5.127)

and also

|X(t,0)|+
∫ t
0
|X(t,s)|ds≤ N < ∞, t ∈ R+, (5.128)

then the solution of the problem (5.103), (5.104) will verify the inclusion

x(t) ∈ L∞(R+,Rn), x0,v0 ∈ R
n. (5.129)

The proof follows immediately from the formulas (5.120) and (5.123).
Further properties of the solution can be obtained by imposing various types of estimates
on the kernels K1(t,s) or K̃1(t,s), as well as on f (t).
The main problem is to establish the connection between the properties of the operators L
and Q and the kernels occurring in the representation (5.106) and (5.116). This question is
open.
We shall rewrite equation (5.118) in the form

x(t) = f (t)+

∫ t
0
X(t,s)

∫ s
0

(Qx)(u)ds ds, t ∈ R+, (5.130)

where f (t) is given by (5.120). Equation (5.130), with f (t) defined by (5.120), is equivalent
to our problem. This is a functional integral equation and we shall treat it by the classical
method of operation/successive approximations. This approach will lead to an existence
and uniqueness result in the space C(R+,Rn). Of course, the operator Q is assumed to be
acting on this space.
In order to simplify somewhat the procedure, we shall adopt a hypothesis which is part of
the assumption (5.127). This hypothesis concerns only the linear operator L, which fully
determines the Cauchy kernel X(t,s), 0≤ s≤ t.
Namely, we assume in this section that∫ t

0
|X(t,s)|ds≤M < ∞, (t,s) ∈ Δ, (5.131)
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and we shall limit our consideration in regard to equation (5.130), only to those operators
L for which (5.131) is satisfied.
Concerning the operatorV , acting on the same spaceC(R+,Rn), we shall assume it verifies
the Lipschitzian type condition

|(Qx)(t)− (Qy)(t)| ≤ λ (t)|x(t)− y(t)|, t ∈ R+, (5.132)

for any x,y ∈ C(R+,Rn). We also assume that λ (t) is a nonnegative nondecreasing map
from R+ into itself.
In order to prove the existence and uniqueness of a solution to (5.130), we construct the
sequence of successive approximations {xk(t) : k ≥ 0}, by letting x0(t) = f (t), and

xk+1(t) = f (t)+

∫ t
0
X(t,s)

∫ s
0

(Qxk(u))du ds, (5.133)

for k> 1, t ∈ R+.
We shall prove now that the sequence of successive approximations converges in
C(R+,Rn). This means that the sequence converges uniformly on each bounded interval
[0,T ] ⊆ R+. The limit of this sequence

x(t) = lim
k→∞

xk(t), t ∈ R+, (5.134)

will constitute the solution of our problem. As usual, if we subtract side by side the re-
lationship (5.133) and the one corresponding to k instead of k+ 1, we find the following
recurrent relation, valid for k ≥ 1 and t ∈ R+:

xk+1− xk(t) =

∫ t
0
X(t,s)

∫ s
0

[(Qxk)(u)− (Qxk−1)(u)]du ds. (5.135)

Taking into account (5.131) and (5.132), we obtain from (5.135) the following recurrent
inequality:

|xk+1(t)− xk(t)| ≤M sup
0≤s≤t

∫ s
0

λ (u)|xk(u)− xk−1(u)|du.

The above inequality leads immediately to

|xk+1(t)− xk(t)| ≤M
∫ t
0

λ (s) sup
0≤u≤s

|xk(u)− xk−1(u)|du. (5.136)

Let us denote

yk(t) = sup
0≤s≤t

|xk(s)− xk−1(s)|, (5.137)

and we rewrite (5.136) in the form

yk(t) ≤M
∫ t
0

λ (s)yk(s)ds, k ≥ 1. (5.138)
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We had to keep in mind the fact that sup{|xk(t)− xk−1(t)| : t ∈ [0,T ]} is nondecreasing
in T .
Now by induction, the recurrent inequality (5.138) leads to, if one assumes y1(t) ≤ A on
the interval [0,T ], T > 0 arbitrary,

yk+1(t) ≤ AM
k

k!

(∫ t
0

λ (u)du
)k

, t ∈ [0,T ]. (5.139)

The inequality (5.139) obviously implies the uniform convergence of the sequence of suc-
cessive approximations, on any finite interval of R+. Therefore, we have

lim
k→∞

xk(t) = x(t) ∈C(R+,Rn). (5.140)

The function x(t) defined by (5.140) is a solution of equation (5.119), and this equation is
equivalent to the problem. While (5.140) shows that x(t) is a continuous solution, is has
actually better regularity properties, as stipulated in Section 3.
Let us now formulate the main result of this section, related to our basic problem.
Theorem 5.10.2. Consider the initial value problem (5.103), (5.104), or equivalently the
functional integral equation (5.119), under the following assumptions:

(i) The operator L is a linear continuous operator on the spaceC(R+,Rn).
(ii) The operatorQ is also acting on the spaceC(R+,Rn), and verifies the Lipschitz condi-

tion (5.132), with λ (t) nondecreasing on R+.

Then, there exists a unique solution x(t) ∈C(R+,Rn), of (5.103), (5.104), or (5.119), and
it is continuously differentiable on R+, as well as ẋ(t)− (Lx)(t).
Once we know the solution of our problem does exist, we can think of obtaining further
properties, of asymptotic nature.
Namely, we shall drop the assumption (5.127) on the resolvent kernel K̃1(t,s), and impose
other conditions that can be verified more directly, on the operatorQ. These conditions are

(Qθ )(t) ≡ 0, λ (t) ∈ L1(R+,R), (5.141)

and they will help us to recognize the property of boundedness for the solution x(t) ∈
BC(R+,Rn).
Indeed, we see that the conditions of Theorem 5.10.2 are verified if we accept (5.141)
and the Lipschitz condition with λ (t) instead of the Lipschitz constant. But if we define
λ̃ (t) = sup{λ (s) : 0≤ s≤ t}, we find a function providing as λ (t) does. Obviously, (5.141)
implies |(Qx)(t)| ≤ λ (t)|x(t)| ≤ λ̃ (t)|x(t)|. Hence, on behalf of Theorem 5.10.2 we have
assured the existence and uniqueness of the solution.
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We shall prove that the solution is actually in BC(R+,Rn), if we make the extra assumption
(5.128) on X(t,s).
From (5.128), (5.130), (5.131), we obtain the integral inequality

|x(t)| ≤ N+M
∫ t
0
|(Vx)(s)|ds, t ∈ R+, (5.142)

x(t) being the solution in C(R+,Rn) for our problem. the inequality (5.142) and Lipschitz
condition imply

|x(t)| ≤ N+M
∫ t
0

λ (s)|x(s)|ds, t ∈ R+. (5.143)

The inequality (5.143) is of Gronwall type, and yields

|x(t)| ≤M exp
(
M
∫ ∞

0
λ (s)ds

)
, t ∈ R+,

which shows that x(t) ∈ BC(R+,Rn), as it follows from the second condition (5.141).

5.11 Notes and Comments

All the results starting from Sec. 5.2 to Sec. 5.7 are taken from Drici, McRae and Va-
sundhara Devi [49]-[73]. The contents of Sec. 5.8 and Sec. 5.9 are adapted from Gnana
Bhaskar and Lakshmikantham [85]; see also Gnana Bhaskar, Lakshmikantham and Va-
sundhara Devi [86]. See Dubois [87] and [88] for the use of special equations with retarda-
tion and anticipation in industrial applications. Those problems have been open for a long
time and need more investigation since they are useful in real world applications where de-
cisions are to be made. There is a lot of scope for the development of this area. Moreover,
we have only presented results that are available and a lot of scope exits for further research
and advancement in several directions extending CDEs suitably.
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