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Preface

These notes serve as an introduction to a subject of study in computational
mathematics referred to as domain decomposition methods. It concerns divide
and conquer methods for the numerical solution and approximation of partial
differential equations, primarily of elliptic or parabolic type. The methods in
this family include iterative algorithms for the solution of partial differential
equations, techniques for the discretization of partial differential equations
on non-matching grids, and techniques for the heterogeneous approximation
of partial differential equations of heterogeneous character. The divide and
conquer methodology used is based on a decomposition of the domain of the
partial differential equation into smaller subdomains, and by design is suited
for implementation on parallel computer architectures. However, even on serial
computers, these methods can provide flexibility in the treatment of complex
geometry and heterogeneities in a partial differential equation.

Interest in this family of computational methods for partial differential
equations was spawned following the development of various high perfor-
mance multiprocessor computer architectures in the early eighties. On such
parallel computer architectures, the execution time of these algorithms, as
well as the memory requirements per processor, scale reasonably well with
the size of the problem and the number of processors. From a computational
viewpoint, the divide and conquer methodology based on a decomposition
of the domain of the partial differential equation, yields algorithms having
coarse granularity, i.e., a significant portion of the computations can be im-
plemented concurrently on different processors, while the remaining portion
requires communication between the processors. As a consequence, these al-
gorithms are well suited for implementation on MIMD (multiple instruction,
multiple data) architectures. Currently, such parallel computer architectures
can alternatively be simulated using a cluster of workstations networked with
high speed connections using communication protocols such as MPI (Message
Passing Interface) [GR15] or PVM (Parallel Virtual Machines) [GE2].



VIII Preface

The mathematical roots of this subject trace back to the seminal work of
H. A. Schwarz [SC5] in the nineteenth century. Schwarz proposed an iterative
method, now referred to as the Schwarz alternating method, for constructing
harmonic functions on regions of irregular shape which can be expressed as
the union of subregions of regular shape (such as rectangles and spheres). His
motivation was primarily theoretical, to establish the existence of harmonic
functions on irregular regions, and his method was not used in computations
until recently [SO, MO2, BA2, MI, MA37, DR11, LI6, LI7, BR18].

A general development of domain decomposition methodology for par-
tial differential equations occurred only subsequent to the development of
parallel computer architectures, though divide and conquer methods such as
Kron’s method for electrical circuits [KR] and the substructuring method
[PR4] in structural engineering, pre-date domain decomposition methodol-
ogy. Usage of the term “domain decomposition” seems to have originated
around the mid-eighties [GL2] when interest in these methods gained mo-
mentum. The first international symposium on this subject was held in Paris
in 1987, and since then there have been yearly international conferences on
this subject, attracting interdisciplinary interest from communities of engi-
neers, applied scientists and computational mathematicians from around the
globe.

Early literature on domain decomposition methods focused primarily on
iterative procedures for the solution of partial differential equations. As the
methodology evolved, however, techniques were also developed for coupling
discretizations on subregions with non-matching grids, and for constructing
heterogeneous approximations of complicated systems of partial differential
equations having heterogeneous character. The latter approximations are built
by solving local equations of different character. From a mathematical view-
point, these diverse categories of numerical methods for partial differential
equations may be derived within several frameworks. Each decomposition of
a domain typically suggests a reformulation of the original partial differen-
tial equation as an equivalent coupled system of partial differential equations
posed on the subdomains with boundary conditions chosen to match solu-
tions on adjacent subdomains. Such equivalent systems are referred to in
these notes as hybrid formulations, and provide a framework for develop-
ing novel domain decomposition methods. Divide and conquer algorithms can
be obtained by numerical approximation of hybrid formulations. Four hybrid
formulations are considered in these notes, suited for equations primarily of
elliptic type:

• The Schwarz formulation.
• The Steklov-Poincaré (substructuring or Schur complement) formulation.
• The Lagrange multiplier formulation.
• The Least squares-control formulation.

Alternative hybrid formulations are also possible, see [CA7, AC5].
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The applicability and stability of each hybrid formulation depends on
the underlying partial differential equation and subdomain decomposition.
For instance, the Schwarz formulation requires an overlapping decomposi-
tion, while the Steklov-Poincaré and Lagrange multiplier formulations are
based on a non-overlapping decomposition. The least squares-control method
can be formulated given overlapping or non-overlapping decompositions.
Within each framework, novel iterative methods, discretizations schemes on
non-matching grids, and heterogeneous approximations of the original par-
tial differential equation, can be developed based on the associated hybrid
formulations.

In writing these notes, the author has attempted to provide an accessible
introduction to the important methodologies in this subject, emphasizing a
matrix formulation of algorithms. However, as the literature on domain de-
composition methods is vast, various topics have either been omitted or only
touched upon. The methods described here apply primarily to equations of
elliptic or parabolic type, and applications to hyperbolic equations [QU2], and
spectral or p-version elements have been omitted [BA4, PA16, SE2, TO10].
Applications to the equations of elasticity and to Maxwell’s equations have
also been omitted, see [TO10]. Parallel implementation is covered in greater
depth in [GR12, GR10, FA18, FA9, GR16, GR17, HO4, SM5, BR39]. For
additional domain decomposition theory, see [XU3, DR10, XU10, TO10]. A
broader discussion on heterogeneous domain decomposition can be found in
[QU6], and on FETI-DP and BDDC methods in [TO10, MA18, MA19]. For
additional bibliography on domain decomposition, see http://www.ddm.org.

Readers are assumed to be familiar with the basic properties of ellip-
tic and parabolic partial differential equations [JO, SM7, EV] and tradi-
tional methods for their discretization [RI, ST14, CI2, SO2, JO2, BR28, BR].
Familiarity is also assumed with basic numerical analysis [IS, ST10], com-
putational linear algebra [GO4, SA2, AX, GR2, ME8], and elements of op-
timization theory [CI4, DE7, LU3, GI2]. Selected background topics are re-
viewed in various sections of these notes. Chap. 1 provides an overview of
domain decomposition methodology in a context involving two subdomain
decompositions. Four different hybrid formulations are illustrated for a model
coercive 2nd order elliptic equation. Chapters 2, 3 and 4 describe the ma-
trix implementation of multisubdomain domain decomposition iterative al-
gorithms for traditional discretizations of self adjoint and coercive elliptic
problems. These chapters should ideally be read prior to the other chapters.
Readers unfamiliar with constrained minimization problems and their saddle
point formulation, may find it useful to review background in Chap. 10 or
in [CI4], as saddle point methodology is employed in Chaps. 1.4 and 1.5 and
in Chaps. 4 and 6. With a few exceptions, the remaining chapters may be
read independently.
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1

Decomposition Frameworks

In this chapter, we introduce and illustrate several principles employed in
the formulation of domain decomposition methods for an elliptic equation. In
our discussion, we focus on a two subdomain decomposition of the domain
of the elliptic equation, into overlapping or non-overlapping subdomains, and
introduce the notion of a hybrid formulation of the elliptic equation. A hybrid
formulation is a coupled system of elliptic equations which is equivalent to
the original elliptic equation, with unknowns representing the true solution
on each subdomain. Such formulations provide a natural framework for the
construction of divide and conquer methods for an elliptic equation. Using
a hybrid formulation, we heuristically illustrate how novel divide and con-
quer iterative methods, non-matching grid discretizations and heterogeneous
approximations can be constructed for an elliptic equation.

We illustrate four alternative hybrid formulations for an elliptic equation.
Each will be described for a decomposition of the domain into two subdomains,
either overlapping or non-overlapping. We shall describe the following:

• Schwarz formulation.
• Steklov-Poincaré formulation.
• Lagrange multiplier formulation.
• Least squares-control formulation.

For each hybrid formulation, we illustrate how iterative methods, non-matching
grid discretizations and heterogeneous approximations can be formulated for
the elliptic equation based on its two subdomain decomposition. In Chap. 1.1,
we introduce notation and heuristically describe the structure of a hybrid for-
mulation. Chap. 1.2 describes a two subdomain Schwarz hybrid formulation,
based on overlapping subdomains. Chap. 1.3 describes the Steklov-Poincaré
formulation, based on two non-overlapping subdomains. The Lagrange mul-
tiplier formulation described in Chap. 1.4 applies only for a self adjoint and
coercive elliptic equation, and it employs two non-overlapping subdomains.
Chap. 1.5 describes the least squares-control formulation for a two subdo-
main overlapping or non-overlapping decomposition.
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1.1 Hybrid Formulations

Given a subdomain decomposition, a hybrid formulation of an elliptic equation
is an equivalent coupled system of elliptic equations involving unknowns on
each subdomain. In this section, we introduce notation on an elliptic equation
and heuristically describe the structure of its two subdomain hybrid formu-
lation. We outline how divide and conquer iterative methods, non-matching
grid discretizations, and heterogeneous approximations can be constructed for
an elliptic equation, using an hybrid formulation of it. Four commonly used
hybrid formulations are described in Chap. 1.2 through Chap. 1.5.

1.1.1 Elliptic Equation

We shall consider the following 2nd order elliptic equation:{
Lu ≡ −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f, in Ω

u = 0, on ∂Ω,
(1.1)

for Ω ⊂ IRd. The coefficient a(x) will be assumed to satisfy:

0 < a0 ≤ a(x), ∀x ∈ Ω,

while b(x) and c(x) ≥ 0 will be assumed to be smooth, and f(x) ∈ L2(Ω).
Additional restrictions will be imposed on the coefficients as required.

1.1.2 Weak Formulation

A weak formulation of (1.1) is typically obtained by multiplying it by a suffi-
ciently smooth test function v(x) and integrating the diffusion term by parts
on Ω. It will seek u ∈ H1

0 (Ω) satisfying:⎧⎪⎪⎨
⎪⎪⎩

A(u, v) = F (v), ∀v ∈ H1
0 (Ω), where

A(u, v) ≡
∫

Ω
(a(x)∇u · ∇v + (b(x) · ∇u) v + c(x) u v) dx

F (v) ≡
∫

Ω
f v dx,

(1.2)

where the Sobolev space H1
0 (Ω) is formally defined as below [NE, LI4, JO2]:

H1
0 (Ω) ≡

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
,

while the space H1(Ω) is defined as:{
H1(Ω) ≡

{
v ∈ L2(Ω) : ‖v‖2

1,Ω < ∞
}

, where

‖v‖2
1,Ω ≡

∫
Ω

(
v2 + |∇v|2

)
dx,

for ∇v ≡
(

∂v
∂x1

, . . . , ∂v
∂xd

)
. The bilinear form A(., .) will be coercive if:

A(u, u) ≥ α ‖u‖2
1,Ω , ∀ v ∈ H1

0 (Ω),

for some α > 0 independent of u. Coercivity of A(., .) is guaranteed to hold
by the Poincaré-Freidrichs inequality, see [NE].
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1.1.3 Discretization

A finite element discretization of (1.1) is obtained by Galerkin approximation
of (1.2). Let Th(Ω) denote a triangulation of Ω with elements of size h and
let Vh denote the space of continuous piecewise linear finite element functions
on Th(Ω), see [ST14, CI2, JO2, BR28, BR]. If {φ1, . . . , φn} forms a basis for
Vh∩H1

0 (Ω), then the finite element discretization of (1.1) will yield the system:

Au = f ,

where Aij = A(φi, φj) for 1 ≤ i, j ≤ n and f i = F (φi) for 1 ≤ i ≤ n.

1.1.4 Subdomain Decompositions

We shall employ the following notation, see Fig. 1.1.

Definition 1.1. A collection of two open subregions Ωi ⊂ Ω for i = 1, 2 will
be referred to as a non-overlapping decomposition of Ω if the following hold:{

Ω1 ∪ Ω2 = Ω,
Ω1 ∩ Ω2 = ∅.

Boundaries of the subdomains will be denoted ∂Ωi and their interior and ex-
terior segments by B(i) ≡ ∂Ωi ∩Ω and B[i] ≡ ∂Ωi ∩ ∂Ω, respectively. We will
denote the common interface by B ≡ ∂Ω1 ∩ ∂Ω2.

Definition 1.2. A collection of two open subregions Ω∗
i ⊂ Ω for i = 1, 2 will

be referred to as an overlapping decomposition of Ω if the following holds:

Ω∗
1 ∪ Ω∗

2 = Ω.

Boundaries of the subdomains will be denoted Bi ≡ ∂Ω∗
i and their interior

and exterior segments by B(i) ≡ ∂Ω∗
i ∩Ω and B[i] ≡ ∂Ω∗

i ∩ ∂Ω, respectively.

Ω2

Ω1

Non-overlapping subdomains

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

����

����

Overlapping subdomains

Ω∗
1

Ω∗
2

Fig. 1.1. Two subdomain decompositions
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Remark 1.3. In applications, a decomposition of Ω into subdomains can be
chosen based either on the geometry of Ω or on the regularity of the solution
u (if known). An overlapping subdomain Ω∗

i can, if desired, be constructed
from a nonoverlapping subdomain Ωi by extending it to include all points in
Ω within a distance β > 0 of Ωi, yielding uniform overlap.

1.1.5 Partition of Unity

A partition of unity subordinate to the overlapping subdomains Ω∗
1 and Ω∗

2

consists of smooth functions χ1(x) and χ2(x) satisfying:⎧⎨
⎩

χi(x) ≥ 0, in Ω
∗
i

χi(x) = 0, in Ω\Ω
∗
i

χ1(x) + χ2(x) = 1, in Ω.

(1.3)

Each χi(.) may be non-zero on B[i]. In applications, each χi(x) may be re-
quired to satisfy a bound of the form |∇χi(x)| ≤ C h−1

0 , where h0 denotes the
diameter of each subdomain Ω∗

i .
Heuristically, a continuous partition of unity subordinate to Ω∗

1 and Ω∗
2

can be computed as follows. Let di(x) denote the distance function:

di(x) =
{

dist
(
x,B(i)

)
, if x ∈ Ω

∗
i

0, if x ∈ Ω
∗
i ,

(1.4)

where B(i) ≡ (∂Ω∗
i ∩ Ω). Then, formally define:

χi(x) ≡ di(x)
d1(x) + d2(x)

, for 1 ≤ i ≤ 2. (1.5)

By construction, each di(x) will be continuous, nonnegative, with support in
Ω

∗
i , and satisfy the desired properties. To obtain a smooth function χi(x),

each di(x) may first be mollified, see [ST9].

Remark 1.4. Given a non-overlapping decomposition Ω1 and Ω2 of Ω, we shall
sometimes employ a discontinuous partition of unity satisfying:⎧⎨

⎩
χi(x) ≥ 0, in Ωi

χi(x) = 0, in Ω\Ωi

χ1(x) + χ2(x) = 1, in Ω.
(1.6)

Each χi(x) will be discontinuous across B = ∂Ω1 ∩ ∂Ω2. Such a partition of
unity may be constructed using di(x) = 1 on Ωi in (1.5).

1.1.6 Hybrid Formulation

Let Ω1 and Ω2 (or Ω∗
1 and Ω∗

2) form a decomposition of a domain Ω. Then, a
hybrid formulation of (1.1), is a coupled system of partial differential equations
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equivalent to (1.1), with one unknown function wi(x), representing the local
solution, on each subdomain Ωi (or Ω∗

i ). Two requirements must be satisfied.
First, the restriction ui(x) of the true solution u(x) of (1.1) to each subdomain
Ωi (or Ω∗

i ) must solve the hybrid system, i.e., (u1(x), u2(x)) must solve the
hybrid formulation. Second, the hybrid formulation must be well posed as a
coupled system, i.e., its solution (w1(x), w2(x)) must exist and be unique, and
furthermore, it must depend continuously on the data.

The first requirement ensures that the hybrid formulation is consistent
with the original problem (1.1), yielding wi(x) = ui(x) for i = 1, 2. The
second requirement ensures that the hybrid formulation is stable and uniquely
solvable. The latter is essential for the stability of a numerical approximation
of the hybrid formulation. Once the hybrid system is solved, the solution u(x)
of (1.1) can be expressed in terms of the local solutions wi(x) as:

u(x) = χ1(x) w1(x) + χ2(x)w2(x),

using a partition of unity χ1(x) and χ2(x) appropriate for the subdomains.
Typically, a hybrid formulation consists of a local problem posed on each

individual subdomain, along with matching conditions that couple the local
problems. In some hybrid formulations, a global functional may be employed,
whose optima is sought, or new variables may be introduced to couple the
local problems. Such coupling must ensure consistency and well posedness.

Local Problems. On each subdomain Ωi (or Ω∗
i ), a hybrid formulation will

require wi(x) to solve the original partial differential equation (1.1):⎧⎨
⎩

Lwi = fi, on Ωi (or Ω∗
i )

Ti(wi, γ) = gi, on B(i)

wi = 0, on B[i]

for i = 1, 2, (1.7)

where Ti(w1, γ) denotes a boundary operator which enforces either Dirichlet,
Neumann or Robin boundary conditions on B(i):

Ti(wi, γ) =

⎧⎪⎨
⎪⎩

wi, for Dirichlet boundary conditions
ni · (a(x)∇wi) for Neumann boundary conditions
ni · (a(x)∇wi) + γ wi for Robin boundary conditions.

(1.8)
Here ni denotes the unit exterior normal to B(i) and γ(·) denotes a coefficient
function in the Robin boundary condition. Typically, fi(x) is f(x) restricted
to Ωi (or Ω∗

i ). The choice of the boundary operator Ti(wi, γ) may differ with
each hybrid formulation. The boundary data gi(.) typically corresponds to
Ti(.) applied to the solution on the adjacent domain, however, it may also be
a control or a Lagrange multiplier function which couples the local problems.

Matching Conditions. Matching conditions couple the different local prob-
lems (1.7) by choosing gi(.) to ensure that the hybrid formulation is equiv-
alent to (1.1). Typically, matching conditions are equations satisfied by the
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true solution u(x) restricted to the interfaces or regions of overlap between
adjacent subdomains. For an elliptic equation, these may be either algebraic
equations, such as the requirement of continuity of the local solutions ui(x)
and uj(x) across adjacent subdomains:{

ui − uj = 0, on ∂Ωi ∩ ∂Ωj , non-overlapping case
ui − uj = 0, on ∂Ω∗

i ∩ Ω∗
j , overlapping case

or they may be differential constraints, such as continuity of the local fluxes:{
ni · (a(x)∇ui) + nj · (a(x)∇uj) = 0, on ∂Ωi ∩ ∂Ωj , non-overlapping case
ni · (a(x)∇ui) − ni · (a(x)∇uj) = 0, on ∂Ω∗

i ∩ Ω∗
j , overlapping case

where ni denotes the unit exterior normal to ∂Ωi. Such equations specify gi(.).
Other differential constraints may also be employed using linear combinations
of the above algebraic and differential constraints. Matching conditions may be
enforced either directly, as in the preceding constraints, or indirectly through
the use of intermediary variables such as Lagrange multipliers. In the lat-
ter case, the hybrid formulation may be derived as a saddle point problem
(Chap. 1.4 or Chap. 10) of an associated constrained optimization problem.

We shall express general matching conditions in the form:

Hi(w1, w2, g1, g2) = 0, for 1 ≤ i ≤ 2, (1.9)

for suitably chosen operators Hi(·) on the interface B(i).

Reconstruction of the Global Solution. Once a hybrid formulation con-
sisting of local equations of the form (1.7) for 1 ≤ i ≤ 2 together with equa-
tions of the form (1.9) has been formulated and solved, the global solution
u(.) may be represented in the form:

u(x) = χ1(x) w1(x) + χ2(x)w2(x), (1.10)

where χi(x) is a (possibly discontinuous) partition of unity subordinate to the
subdomains Ω1 and Ω2 (or Ω∗

1 and Ω∗
2).

Well Posedness of the Hybrid Formulation. To ensure that the hybrid
formulation is solvable and that it may be approximated numerically by stable
schemes, we require that the hybrid formulation be well posed [SM7, EV],
satisfying, for C > 0 independent of the data, the bound:

(‖w1‖ + ‖w2‖) ≤ C (‖|f1‖| + ‖|f2‖| + ‖|g1‖| + ‖|g2‖|) ,

where ‖·‖ and ‖| ·‖| are appropriately chosen norms for the solution and data,
as suggested by elliptic regularity theory [GI].

Iterative Methods. Domain decomposition iterative algorithms can be for-
mulated for solving (1.1) by directly applying traditional relaxation, descent or
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saddle point algorithms to a hybrid formulation. For instance, each unknown
wi may be updated sequentially using a relaxation procedure. Given current
approximations of w1, w2, g1, g2 update for wi by solving:⎧⎨

⎩
Lwi = fi, on Ωi (or Ω∗

i )
Ti(wi, γ) = gi, on B(i)

wi = 0, on B[i],

replacing Ti(wi, γ) = gi by either of the equations:

Hj(w1, w2, g1, g2) = 0, j = 1, 2,

using the current iterates on the other subdomains. Alternatively, a descent
or saddle point algorithm can be employed.

Discretization on a Nonmatching Grid. In various applications, it may
be of interest to independently triangulate different subregions Ωi (or Ω∗

i ) with
grids suited to the geometry of each subdomain. The resulting grids, however,
may not match on the regions of intersection between the subdomains, and are
referred to as nonmatching grids, see Fig. 1.2. On such non-matching grids, a
global discretization of (1.1) may be sought by directly discretizing the hybrid
formulation, namely, the the local problems and the matching conditions.

Heuristically, the construction of a global discretization of equation (1.1)
on a non-matching triangulation on Ωi (or Ω∗

i ), will involve the following
steps.

• Let Thi(Ω) (or Thi(Ω
∗
i )) denote independent triangulations of Ωi (or Ω∗

i )
with local grid sizes hi, see Fig. 1.2. These grids need not match on the
region of intersection or overlap between the subdomains.

• Each local problem in the hybrid formulation can be discretized as:⎧⎨
⎩

Ahi
whi

= fhi
, on Ωhi

(or Ω∗
hi

)
Thi

(whi
, γhi

) = ghi
, on B(i)

whi
= 0, on B[i].

Each local discretization should be a stable scheme.
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Fig. 1.2. Nonmatching grids
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• The matching conditions should also be discretized:

Hh
i (wh1 ,wh2 ,gh1 ,gh2) = 0, 1 ≤ i ≤ 2.

To ensure the stability and consistency of the global discretization of the
hybrid formulation, care must be exercised in discretizing the matching
conditions across the subdomain grids.

Such issues are described in Chap. 1.2 through 1.5, and in Chap. 11.

Heterogenous Approximation. A partial differential equation is said to
be heterogeneous if its type changes from one region to another. An example
is Tricomi’s equation [JO]:

ux1x1 − x1 ux2x2 = f(x1, x2),

which is of hyperbolic type for x1 > 0 and of elliptic type for x1 < 0. In various
applications, efficient computational methods may be available for the local
problems involved in an heterogeneous partial differential equation. In such
cases, it may be of interest to approximate a partial differential equation
of heterogeneous character by a partial differential equation of heterogeneous
type. We refer to such models as heterogeneous approximations.

Our discussion will be restricted to an elliptic-hyperbolic heterogeneous
approximation of a singularly perturbed elliptic equation of heterogeneous
character. We shall consider an advection dominated equation:{

−ε∆u + b(x) · ∇u + c(x) u = f(x), in Ω

u = 0, on ∂Ω,
(1.11)

where 0 < ε � 1 is a small perturbation parameter. Depending f(x), there
may be a subdomain Ω1 (or Ω∗

1) on which:

ε |∆u| � |b(x) · ∇u + c(x)u|, for x ∈ Ω1 (or Ω∗
1).

On Ω1 (or Ω∗
1), the restriction of elliptic equation Lu = f to the subdomain,

will be of hyperbolic character, approximately satisfying L1u = f , where:⎧⎨
⎩

Lu ≡ εL0u + L1u
L0u ≡ −∆u

L1u ≡ b(x) · ∇u + c(x)u.

If Ω2 (or Ω∗
2) denotes a complementary (layer) region, then equation (1.11)

will be approximately of elliptic character in Ω2 (or Ω∗
2).

Motivated by singular perturbation methodology [LA5, KE5, OM], it may
be computationally advantageous to approximate elliptic equation (1.11) by
an heterogeneous approximation involving an equation of mixed hyperbolic
and elliptic character. To obtain an heterogeneous approximation of (1.11),
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we may approximate its hybrid formulation based on Ωi (or Ω∗
i ) for 1 ≤ i ≤ 2.

For instance, we may approximate (1.7) by:⎧⎨
⎩

L̃ivi = fi, on Ωi (or Ω∗
i ),

T̃i(vi, γ) = g̃i, on B̃(i),

vi = 0, on B̃[i],

for i = 1, 2

with vi(x) ≈ wi(x), and we may approximate (1.9) by:

H̃i(v1, v2, g̃1, g̃2) = 0, for i = 1, 2

where L̃i, T̃i and H̃i(·) are heuristic local approximations of Li, Ti and Hi(·),
obtained by formally omitting ε∆u on Ω1 (or Ω∗

1). We refer the reader to
Chap. 1.2 through Chap. 1.5 and Chap. 12 for specific examples.

Remark 1.5. Care must be exercised in the selection of approximations since
each local problem must be well posed, and the global coupled system must
also be well posed. For instance, if we define L̃1u = L1u on Ω1 (or Ω∗

1) then
the local problem will be hyperbolic, and we must replace Dirichlet boundary
conditions on B(1) and B[1] by inflow boundary conditions. Similarly, if we
choose L̃2u = Lu on Ω2 (or Ω∗

2) then the local problem on Ω2 (or Ω∗
2) will be

elliptic and Dirichlet boundary or flux boundary conditions can be employed
on B(2) and B[2]. Often, approximate matching conditions for a heterogeneous
problem can also be derived heuristically by a vanishing viscosity approach,
see Chap. 1.3 and Chap. 12.

1.2 Schwarz Framework

The framework that we refer to as the Schwarz hybrid formulation is based
on the earliest known domain decomposition method, formulated by H. A.
Schwarz [SC5] in 1870. Schwarz formulated an iterative method, now referred
to as the Schwarz alternating method, which solves Laplace’s equation on an
irregular domain that is the union of regular regions (such as rectangular and
circular regions). Although Schwarz’s motivation was to study the existence
of harmonic functions on irregular regions, the hybrid formulation underlying
Schwarz’s iterative method, applies to a wider class of elliptic equations, and
it enables the formulation of other divide and conquer approximations.

In this section, we describe the hybrid formulation underlying the Schwarz
alternating method for a two subdomain overlapping decomposition of Ω.
We let Ω∗

1 and Ω∗
2 denote the overlapping subdomains, and let B(i) = ∂Ω∗

i ∩Ω
and B[i] = ∂Ω∗

i ∩ ∂Ω denote the interior and exterior boundary segments
of Ω∗

i , respectively, see Fig. 1.3. Using the hybrid formulation, we illustrate
the formulation of iterative methods, non-matching grid discretizations, and
heterogeneous approximations for elliptic equation (1.1).
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Ω∗
2

Ω∗
1

B[2]

B(2)

B[1]

B(1)

Fig. 1.3. Boundary segments for an overlapping decomposition

1.2.1 Motivation

To derive the hybrid formulation underlying Schwarz’s method, let u(x) denote
the solution of (1.1). Define wi(x) = u(x) on Ω∗

i for 1 ≤ i ≤ 2. Then, by
construction Lwi = f in Ω∗

i . Furthermore, the continuity of u will yield
matching of w1 and w2 on Ω∗

1 ∩ Ω∗
2 . It will therefore hold that:⎧⎪⎨

⎪⎩
Lw1 = f, in Ω∗

1

w1 = w2, on B(1)

w1 = 0, on B[1]

and

⎧⎪⎨
⎪⎩

Lw2 = f, in Ω∗
2

w2 = w1, on B(2)

w2 = 0, on B[2].

Importantly, if the above coupled, decomposed system for w1(x) and w2(x),
is well posed, then by solving it, the original solution can be recovered with
u(x) = wi(x) on Ω∗

i for i = 1, 2. We have the following uniqueness result.

Theorem 1.6. Suppose the following assumptions hold.

1. Let c(x) ≥ 0 and ∇ · b(x) ≤ 0.
2. Let u(x) denote a sufficiently smooth solution of equation (1.1).
3. Let w1(x) and w2(x) be sufficiently smooth solutions of the following sys-

tem of coupled elliptic equations:⎧⎪⎨
⎪⎩

Lw1 = f, in Ω∗
1

w1 = 0, on B[1]

w1 = w2, on B(1)

and

⎧⎪⎨
⎪⎩

Lw2 = f, in Ω∗
2

w2 = 0, on B[2]

w2 = w1, on B(2).

(1.12)

Then the following result will hold:

u(x) =

{
w1(x), on Ω

∗
1

w2(x), on Ω
∗
2.

Proof. If u(x) is a solution of equation (1.1) and w1(x) ≡ u(x) in Ω∗
1 and

w2(x) ≡ u(x) in Ω∗
2 , then w1(x) and w2(x) will satisfy (1.12) by construction.

To prove the converse, suppose that w1(x) and w2(x) satisfy (1.12). We will
first show that w1(x) = w2(x) on Ω∗

1∩Ω∗
2 . To this end, note that w1(x)−w2(x)
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has zero boundary conditions on ∂ (Ω∗
1 ∩ Ω∗

2). Additionally, by construction
w1(x)−w2(x) will be L-harmonic. By uniqueness of L-harmonic functions for
c(x) ≥ 0 and ∇ · b(x) ≤ 0, it will follow that w1(x) − w2(x) = 0 in Ω∗

1 ∩ Ω∗
2 .

This yields that w1(x) = w2(x) on Ω∗
1 ∩ Ω∗

2 . Now let χ1(x) and χ2(x) denote
a sufficiently smooth partition of unity subordinate to the cover Ω∗

1 and Ω∗
2 .

If we define u(x) = χ1(x) w1(x) + χ2(x) w2(x), then u(x) will satisfy (1.1),
since w1 = w2 in Ω∗

1 ∩ Ω∗
2 and since Lwi = f in Ω∗

i . ��

Remark 1.7. The above result suggests that given a partition of unity χ1(x)
and χ2(x) subordinate to Ω∗

1 and Ω∗
1 , respectively, a solution to elliptic equa-

tion (1.1) may be obtained by solving (1.12) and defining:

u(x) = χ1(x)w1(x) + χ2(x) w2(x).

This yields an equivalence between (1.1) and (1.12).

Remark 1.8. The preceding theorem yields equivalence between sufficiently
smooth solutions to (1.1) and (1.12). It is, however, not a result on the well
posedness (stability) of formulation (1.12) under perturbations of its data.
The latter requires that the perturbed system:⎧⎪⎨
⎪⎩

Lw̃1 = f̃1, in Ω∗
1

w̃1 = 0, on B[1]

w̃1 = w2 + r̃1, on B(1)

and

⎧⎪⎨
⎪⎩

Lw̃2 = f̃2, in Ω∗
2

w̃2 = 0, on B[2]

w̃2 = w1 + r̃2, on B(2),

(1.13)

be uniquely solvable and satisfy a bound of the form:

(‖|w̃1‖| + ‖|w̃2‖|) ≤ C
(
‖f̃1‖ + ‖f̃2‖ + ‖r̃1‖ + ‖r̃2‖

)
,

in appropriate norms. See Chap. 15 for maximum norm well posedness.

1.2.2 Iterative Methods

The iterative method proposed by H. A. Schwarz is a very popular method
for the solution of elliptic partial differential equations, see [SO, MO2, BA2]
and [MI, MA37, DR11, LI6, LI7, BR18]. It is robustly convergent for a large
class of elliptic equations, and can be motivated heuristically using the block
structure of (1.12). If w

(k)
i denotes the k’th iterate on subdomain Ω∗

i , it can
be updated by solving the block equation of (1.12) posed on subdomain Ω∗

i

with boundary conditions w1 = w2 on B(1) or w2 = w1 on B(2) approximated
by the current iterate on its adjacent subdomain:⎧⎪⎨

⎪⎩
Lw

(k+1)
1 = f, in Ω∗

1

w
(k+1)
1 = w

(k)
2 , on B(1)

w
(k+1)
1 = 0, on B[1]

and

⎧⎪⎨
⎪⎩

Lw
(k+1)
2 = f, in Ω∗

2

w
(k+1)
2 = w

(k+1)
1 , on B(2)

w
(k+1)
2 = 0, on B[2].

The resulting algorithm is the Schwarz alternating method. It is sequential in
nature and summarized below.
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Algorithm 1.2.1 (Schwarz Alternating Method)
Let v(0) denote the starting global approximate solution.

1. For k = 0, 1, · · · , until convergence do:
2. Solve for w

(k+1)
1 as follows:⎧⎪⎨

⎪⎩
Lw

(k+1)
1 = f1, in Ω∗

1

w
(k+1)
1 = v(k), on B(1)

w
(k+1)
1 = g, on B[1],

Define v(k+1/2) as follows:

v(k+1/2) ≡
{

w
(k+1)
1 , on Ω∗

1

v(k), on Ω\Ω∗
1 .

3. Solve for w
(k+1)
2 as follows:⎧⎪⎨

⎪⎩
Lw

(k+1)
2 = f2, in Ω∗

2

w
(k+1)
2 = g, on B[2]

w
(k+1)
2 = v(k+1/2), on B(2)

Define v(k+1) as follows:

v(k+1) ≡
{

w
(k+1)
2 , on Ω∗

2

v(k+1/2), on Ω\Ω∗
2 .

4. Endfor

Output: v(k)

Remark 1.9. The iterates v(k+ 1
2 ) and v(k+1) in the preceding algorithm are

continuous extensions of the subdomain solutions w
(k+1)
1 and w

(k+1)
2 , to the

entire domain Ω. Under suitable assumptions on the coefficients of the elliptic
equation and overlap amongst the subdomains Ω∗

i , the iterates v(k) converge
geometrically to the true solution u of (1.1), see Chap. 2.5 when b(x) = 0.

The preceding Schwarz algorithm is sequential in nature, requiring the
solution of one subdomain problem prior to another. Below, we describe an
unaccelerated parallel Schwarz algorithm which requires the concurrent solu-
tion of subdomain problems. It is motivated by a popular parallel method,
referred to as the additive Schwarz algorithm [DR11], which is employed typ-
ically as a preconditioner. The algorithm we describe is based on a partition
of unity χ1(x) and χ2(x) subordinate to the overlapping subdomains Ω∗

1 and
Ω∗

2 , respectively, see [DR11, CA19, MA33, FR8, TA5]. Let w
(k)
i denote the

k’th iterate on Ω∗
i for 1 ≤ i ≤ 2. Then, new iterates are computed as follows.
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Algorithm 1.2.2 (Parallel Partition of Unity Schwarz Method)
Let w

(0)
1 , w

(0)
2 denote starting local approximate solutions.

1. For k = 0, 1, · · · , until convergence do:
2. For i = 1, 2 determine w

(k+1)
i in parallel:⎧⎪⎪⎨

⎪⎪⎩
Lw

(k+1)
i = f, in Ω∗

i

w
(k+1)
i = χ1(x) w

(k)
1 (x) + χ2(x) w

(k)
2 (x), on B(i)

w
(k+1)
i = 0, on B[i],

3. Endfor
4. Endfor

Output: (w(k)
1 , w

(k)
2 )

If c(x) ≥ c0 > 0 and there is sufficient overlap, the iterates v(k) defined by:

v(k) ≡ χ1(x)w
(k)
1 (x) + χ2(x) w

(k)
2 (x),

will converge geometrically to the solution u of (1.1), see Chap. 15.

Remark 1.10. In practice, given a discretization of (1.1), discrete versions of
the above algorithms must be applied. Matrix versions of Schwarz algorithms
are described in Chap. 2. There the multisubdomain case is considered, and
coarse space correction is introduced, which is essential for robust convergence.
In Chap. 2 it is observed that the matrix version of the Schwarz alternating
method corresponds to a generalization (due to overlap) of the traditional
block Gauss-Seidel iterative method. The additive Schwarz method [DR11] is
also introduced there, corresponding to a generalized block Jacobi method.

1.2.3 Global Discretization

An advantage of the hybrid formulation (1.12) is that novel discretizations
of (1.1) may be obtained by discretizing (1.12). Each subdomain Ω∗

i may
be independently triangulated, resulting in a possibly non-matching grid, see
Fig. 1.4. Furthermore, each local problem may be discretized using tradi-
tional techniques suited to the local geometry and properties of the solution.
The resulting solution, however, may be nonconforming along the internal
boundaries B(i) of the subdomains, and care must be exercised in discretizing
the matching conditions to ensure that the global discretization is stable.

Below, we outline the construction of a global finite difference discretiza-
tion of (1.12) based on a two subdomain decomposition of Ω, as in Fig. 1.4,
using finite difference schemes on the subdomains. For details, see Chap. 11.
We triangulate each subdomain Ω∗

i for 1 ≤ i ≤ 2 by a grid Thi
(Ωi∗) of size

hi as in Fig. 1.4. The local triangulation can be suited to the geometry and
regularity of the solution on Ω∗

i . On each subdomain, we block partition the
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Th1(Ω
∗
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Th2(Ω
∗
2 )

Fig. 1.4. Nonmatching overset grids

local discrete solution whi
on Thi

(Ω∗
i ) as:

whi =
(
w(i)

I ,w(i)

B(i) ,w
(i)
B[i]

)T

, for i = 1, 2

corresponding to the grid points in the interior and the boundary segments
B(i) and B[i], respectively. Let ni, mi and li denote the number of grid points
of triangulation Thi(Ω

∗
i ) in the interior of Ω∗

i , on B(i) and B[i], respectively. By
assumption on the boundary values of whi

on B[i], it will hold that w(i)
B[i]

= 0.
Next, for i = 1, 2 discretize the elliptic equation Lwi = fi on Ω∗

i by employing
a stable scheme on Thi

(Ω∗
i ) and denote the discretization as:

A
(i)
II w(i)

I + A
(i)

IB(i)w
(i)

B(i) = fhi
, for 1 ≤ i ≤ 2.

Next, on each boundary segment B(i), discretize the inter-subdomain
matching conditions w1 = w2 on B(1) and w2 = w1 on B(2) by applying
appropriate interpolation stencils or by discretizing its weak form. If interpo-
lation stencils are employed, then the value wh1(x) at a grid point x on B

(1)
h1

may be expressed as a weighted average of nodal values of wh2(·) on the grid
points of Ω∗

h2
. We denote the discretized matching conditions as:

w(1)

B(1) = Ih1
h2

wh2 and w(2)

B(2) = Ih2
h1

wh1 .

Here Ih1
h2

will denote a matrix of size m1 × (n2 + m2 + l2) and Ih2
h1

will denote
a matrix of size m2 × (n1 +m1 + l1). If the local grids match on each segment
B[i], then this discretization step would be trivial. However, for nonmatching
grids care must be exercised to ensure stability of the global scheme.

The global discretization now will have the following block matrix form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A
(1)
II w(1)

I + A
(1)

IB(1)w
(1)

B(1) = fh1 ,

w(1)

B(1) = Ih1
h2

wh2

A
(2)
II w(2)

I + A
(2)

IB(2)w
(2)

B(2) = fh2 ,

w(2)

B(2) = Ih2
h1

wh1 .

(1.14)

This algebraic system can be solved by the Schwarz alternating method.
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Remark 1.11. If c(x) ≥ c0 > 0 and the local discretizations satisfy a discrete
maximum principle, if the inter-grid interpolations Ih2

h1
and Ih1

h2
are convex

weights, and if the overlap is sufficiently large so that a certain contraction
property holds, see Chap. 11, then the above discretization can be shown to
be stable and convergent of optimal order in the maximum norm.

1.2.4 Heterogeneous Approximation

A heterogeneous approximation of a partial differential equation is a model
system of partial differential equations in which the problems posed on dif-
ferent subdomains are not all of the same type. Such approximations may be
useful if there is a reduction in computational costs resulting from the use
of a heterogeneous model. Here, we illustrate the construction of an elliptic-
hyperbolic approximation of an advection dominated elliptic equation:{

Lε u ≡ −ε∆u + b(x) · ∇u + c(x)u = f, in Ω
u = 0, on ∂Ω,

(1.15)

where 0 < ε � 1 is a perturbation parameter. In this case, depending on the
solution u, the singularly perturbed elliptic equation may be approximately
of hyperbolic character on some subregions and of elliptic character elsewhere,
motivating a heterogeneous approximation.

Suppose the overlapping subdomain Ω∗
1 can chosen such that:

|ε∆u(x)| � |b(x) · ∇u(x) + c(x) u(x)| for x ∈ Ω
∗
1.

Then, on Ω∗
1 the term Lεu may be approximated by L0 u defined by:

L0 u ≡ b(x) · ∇u + c(x)u.

Motivated by singular perturbation theory [LA5, KE5], a global heterogeneous
approximation of the singularly perturbed equation (1.15) may be sought by
replacing the elliptic equation Lε w1 = f1 on Ω∗

1 by the hyperbolic equation
L0 w1 = f1 within the Schwarz hybrid formulation (1.12).

To ensure well posedness of the local subproblems, however, the Dirichlet
boundary value problem on Ω∗

1 must be replaced by suitable inflow boundary
conditions, due to the hyperbolic nature of L0 w1 = f1:⎧⎪⎨

⎪⎩
L0 w1 = f1, in Ω∗

1

w1 = 0, on B[1],in,

w1 = w2, on B
(1)
in ,

where, the inflow boundary segments are defined by:{
B[1],in ≡ {x ∈ B[1] : b(x) · n(x) < 0}
B

(1)
in ≡ {x ∈ B(1) : b(x) · n(x) < 0},



16 1 Decomposition Frameworks

where n(x) denotes the exterior unit normal to ∂Ω∗
1 at x. The resulting global

heterogeneous approximation will be:⎧⎪⎪⎨
⎪⎪⎩

L0 w1 = f1, in Ω∗
1

w1 = 0, on B[1],in

w1 = w2, on B
(1)
in

and

⎧⎪⎪⎨
⎪⎪⎩

Lw2 = f2, in Ω∗
2

w2 = 0, on B[2]

w2 = w1, on B(2).

(1.16)

This heterogeneous system can be discretized, and the resulting algebraic
system can be solved by the Schwarz alternating method, see Chap. 12.

Remark 1.12. Well posedness of this heterogeneous system, as well as bounds
on the error resulting from such approximation are discussed in Chap. 15.

1.3 Steklov-Poincaré Framework

The hybrid formulation that we refer to as the Steklov-Poincaré framework is
motivated by a principle in physics referred as a transmission condition, em-
ployed in the study of electric fields in conductors [PO, ST8, LE12, AG, QU5].
The underlying principle states that across any interface within a conduct-
ing medium, the electric potential as well as the flux of electric current must
match, i.e., be continuous. The mathematical version of this principle suggests
a hybrid formulation for a 2nd order elliptic equation given a two subdomain
non-overlapping decomposition of its domain, separated by an interface.

1.3.1 Motivation

Consider elliptic equation (1.1) posed on Ω:{
L u ≡ −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f, in Ω

u = 0, on ∂Ω,
(1.17)

Let Ω1, Ω2 denote a non-overlapping decomposition of Ω, as in Fig. 1.5, with
interface B = ∂Ω1∩∂Ω2 separating the two subdomains and B[i] ≡ ∂Ωi∩∂Ω.
Let ni(x) denote the unit outward normal vector to ∂Ωi at the point x ∈ B.
For i = 1, 2, denote the solution on each subdomain Ωi by wi(x) ≡ u(x).
Then, the following transmission conditions, which are derived later in this
section, will hold on the interface B for smooth solutions:{

w1 = w2, on B

n1 · (a∇w1 − bw1) = n1 · (a∇w2 − bw2) , on B.
(1.18)

The first condition requires the subdomain solutions w1 and w2 to match on
B, while the second condition requires the local fluxes n1 · (a∇w1 − bw1) and
n1 · (a∇w2 − bw2) associated with w1 and w2 to also match on B.
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Ω2

Ω1

B[2]

B[1]

B n1

�

Fig. 1.5. A two subdomain non-overlapping decomposition

Combining the transmission conditions with the elliptic equation on each
subdomain, yields the following hybrid formulation equivalent to (1.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lw1 = f, in Ω1

w1 − w2 = 0, on B

w1 = 0, on B[1]

Lw2 = f, in Ω2

n1 · (a∇w1 − bw1) + n2 · (a∇w2 − bw2) = 0, on B

w2 = 0, on B[2].

In this section, we shall outline how this hybrid formulation can be employed
to formulate novel domain decomposition iterative methods, discretization
methods and heterogeneous approximations for (1.1).

Remark 1.13. If the coefficient b(x) in elliptic equation (1.1) is continuous,
then the flux boundary condition may also be equivalently stated as:

n1 · (a∇w1) + n2 · (a∇w2) = 0, on B,

by taking linear combinations of (1.18), since w1(x) = w2(x) on B and since
n1(x) = −n2(x) on B. In particular, the following equivalent flux transmission
condition is preferred in several domain decomposition methods:

n1 ·
(

a∇w1 −
1
2
bw1

)
+ n2 ·

(
a∇w2 −

1
2
bw2

)
= 0, on B,

for continuous b(x), see [QU6, GA14, AC7, RA3].

Equivalence of the Steklov-Poincaré hybrid formulation is shown next.
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Theorem 1.14. Suppose the following assumptions hold.

1. Let Lu be defined by (1.1) with smooth coefficient b(x) and solution u.
2. Let w1(x) and w2(x) be smooth solutions of the following coupled system

of partial differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Lw1 = f, in Ω1

w1 = 0, on B[1]

w1 = w2, on B

Lw2 = f, in Ω2

w2 = 0, on B[2]

n1 · (a∇w2 − bw2) = n1 · (a∇w1 − bw1) , on B.

(1.19)

Then, the following result will hold.{
w1(x) = u(x), on Ω1

w2(x) = u(x), on Ω2.

Proof. Suppose u is a smooth solution to (1.1) and wi ≡ u on Ωi, we will
verify that (w1, w2) solves (1.19). By construction, Lwi = f in Ωi and wi = 0
on B[i]. By continuity of u (or an application of the trace theorem), we obtain
that w1 = w2 on B. To verify that the local fluxes match on B, employ the
following weak formulation of (1.1), and express each integral on Ω as a sum
of integrals on Ω1 and Ω2, to obtain:

2∑
i=1

∫
Ωi

(a∇wi · ∇v − wi ∇ · (b v) + cwi v) dx =
2∑

i=1

∫
Ωi

f v dx,

for v ∈ C∞
0 (Ω). If v is chosen to be of compact support in Ω and not identically

zero on B, then integration by parts yields:{∑2
i=1

∫
Ωi

−∇ · (a∇wi) v + (b · ∇wi) v + cwi v dx

−
∫

B
n1 · (a∇w1 − bw1 − a∇w2 + bw2) v dsx =

∑2
i=1

∫
Ωi

f v dx,

for v ∈ C∞
0 (Ω). Substituting that Lwi = f on Ωi, it follows that:∫

B

n1 · (a∇w1 − bw1 − a∇w1 + bw1) v dsx = 0, ∀v ∈ C∞
0 (Ω),

yielding the result that n1 · (a∇w1 − bw1) = n1 · (a∇w2 + bw2) on B. The
converse can be verified analogously. ��

Remark 1.15. The above result only demonstrates the equivalence of solu-
tions to both systems. It does not guarantee well posedness of hybrid for-
mulation (1.19). This may be demonstrated using elliptic regularity theory in
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appropriately chosen norms (however, we shall omit this). When system (1.19)
is well posed, given a solution (w1, w2) to (1.19), we may define:

u ≡
{

w1 in Ω1

w2 in Ω2,

thus yielding a solution u to (1.1).

We now introduce an operator, referred to as a Steklov-Poincaré operator,
which represents hybrid formulation (1.19) more compactly.

Definition 1.16. Given sufficiently smooth Dirichlet boundary data g(·) on
the interface B, we define a Steklov-Poincaré operator S(g, f1, f2) as follows:

S (g, f1, f2) ≡ n1 · (a∇w1 − bw1) − n1 · (a∇w2 − bw2) ,

where w1(·) and w2(·) are solutions to the following problems:⎧⎪⎨
⎪⎩

Lw1 = f1, in Ω1

w1 = 0, on B[1]

w1 = g, on B,

and

⎧⎪⎨
⎪⎩

Lw2 = f2, in Ω2

w2 = 0 on B[2]

w2 = g, on B.

(1.20)

If the local forcing terms f1(·) and f2(·) are nonzero, then the action of
the Steklov-Poincaré operator S(g, f1, f2) on g(·) will be affine linear. It will
map the Dirichlet data g(·) on B to the jump in the local fluxes (Neumann
data) across interface B using (1.20). Importantly, if an interface function g(·)
can be found which yields zero jump in the flux across B, i.e.

S(g, f1, f2) = 0, (1.21)

then, corresponding to this choice of interface data g(·), the local solutions
w1(·) and w2(·) to (1.20) will satisfy:{

w1 = w2 (= g), on B

n1 · (a∇w1 − bw1) = n1 · (a∇w2 − bw2) , on B,

so that (w1, w2) will solve (1.19). As a result, the search for a solution
(w1, w2) to problem (1.19) may be reduced to the search for interface data
g(·) which solves the Steklov-Poincaré problem (1.21). For such interface data
g(·), the local solutions (w1, w2) to (1.20) will yield the solution to (1.19)
with g(x) = u(x) on B. When a weak formulation is used, if X denotes the
space of Dirichlet data on B, the flux or Neumann data will belong to its dual
space X ′, where X = H

1/2
00 (B) for a standard subdomain decomposition and

X = H1/2(B) for an immersed subdomain decomposition.
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Remark 1.17. For computational purposes, the Steklov-Poincaré operator S
may be expressed as the sum of two subdomain operators:

S(g, f1, f2) ≡ S(1)(g, f1) + S(2)(g, f2),

where {
S(1)(g, f1) ≡ n1 · (a∇w1 − bw1)

S(2)(g, f2) ≡ n2 · (a∇w2 − bw2) ,

for w1 and w2 defined by (1.20). By definition, each operator S(i) will require
only subdomain information and will be affine linear.

Remark 1.18. Both S(1) and S(2) map the Dirichlet interface data g(·) pre-
scribed on B to the corresponding Neumann flux data n1 · (a∇w1 − bw1)
and n2 · (a∇w2 − bw2) on B, respectively, obtained by solution of the local
problems (1.20). As a result, the maps S(i) are commonly referred to as lo-
cal Dirichlet to Neumann maps. These Dirichlet to Neumann maps are not
differential operators since the solutions wi to (1.20) have representations
as integral operators acting on the data g. They are referred to as pseudo-
differential operators, and for the correct choice of Dirichlet interface data
g(·) on B, the jump in the Neumann data on B will be zero for the local
solutions.

In the rest of this section, we outline how iterative methods, global dis-
cretizations and heterogeneous approximations can be constructed for the
original problem (1.1) using the Steklov-Poincaré formulation (1.19).

1.3.2 Iterative Methods

The block structure of the Steklov-Poincaré system (1.19) suggests various
iterative algorithms for its solution. For instance, if w

(k)
1 and w

(k)
2 denote

the k’th iterates on subdomains Ω1 and Ω2, respectively, then the system of
equations posed on subdomain Ωi in (1.19) can be solved to yield updates
w

(k+1)
i for the local solutions, with boundary conditions chosen using preced-

ing iterates. The resulting iterative algorithm sequentially enforces either the
continuity or flux transmission boundary conditions on B, and is referred to
as a Dirichlet-Neumann algorithm as it requires the solution of Dirichlet and
Neumann boundary value problems. In the following, suppose that b(x) = 0
in Ω, and let 0 < θ < 1 denote a relaxation parameter required to ensure
convergence [BJ9, BR11, FU, MA29].
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Algorithm 1.3.1 (Dirichlet-Neumann Algorithm)
Let v

(0)
2 (where v

(0)
2 ≡ w

(0)
2 on B) denote a starting guess.

1. For k = 0, 1, · · · , until convergence do:
2. Solve for w

(k+1)
1 as follows:⎧⎪⎨

⎪⎩
Lw

(k+1)
1 = f1, in Ω1

w
(k+1)
1 = v

(k)
2 , on B

w
(k+1)
1 = 0, on B[1],

3. Solve for w
(k+1)
2 as follows:

⎧⎪⎨
⎪⎩

Lw
(k+1)
2 = f2, in Ω2

w
(k+1)
2 = 0, on B[2]

n2

(
a∇w

(k+1)
2

)
= n2

(
a∇w

(k+1)
1

)
, on B.

4. Update: v
(k+1)
2 = θ w

(k+1)
2 + (1 − θ)v(k)

2 on B.
5. Endfor

Output: (w(k)
1 , w

(k)
2 )

Remark 1.19. In step 2, the local solution w
(k+1)
1 matches v

(k)
2 on B (however,

the local fluxes may not match on B). This step requires the solution of an
elliptic equation on Ω1 with Dirichlet conditions on B[1] and B. In step 3,
the flux of w

(k+1)
2 matches the flux of w

(k+1)
1 on B (though w

(k+1)
2 may not

match w
(k+1)
1 on B). This step requires the solution of an elliptic equation on

Ω2 with Dirichlet conditions on B[2] and Neumann conditions on B. A matrix
formulation of this algorithm is given in Chap. 3.

Remark 1.20. Under restrictions on the coefficients (such as b(x) ≡ 0 and
c(x) ≥ 0), and additional restrictions on the parameter 0 < θ < 1, the iterates
w

(k)
i in the Dirichlet-Neumann algorithm will converge geometrically to the

true local solution wi of (1.19) as k → ∞, see [FU, MA29].

The preceding Dirichlet-Neumann algorithm has sequential steps. Various
algorithms have been proposed which solve subdomain problems in parallel,
see [BO7, DE3, DR18, MA14, DO13, QU6, GA14, AC7, RA3]. Multidomain
matrix versions of such algorithms are described in Chap. 3. Below, we de-
scribe a two fractional step algorithm, each step requiring the solution of
subdomain problems in parallel [DO13, DO18, YA2]. We assume b(x) = 0.
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Algorithm 1.3.2 (A Parallel Dirichlet-Neumann Algorithm)
Let w

(0)
1 and w

(0)
2 denote a starting guess on each subdomain.

Let 0 < θ, δ, β, α < 1 denote relaxation parameters.

1. For k = 0, 1, · · · , until convergence do:

2. Compute

{
µ(k+ 1

2 ) = θ n1 ·
(
a∇w

(k)
1

)
+ (1 − θ)n1 ·

(
a∇w

(k)
2

)
, on B

g(k+ 1
2 ) = δ w

(k)
1 + (1 − δ) w

(k)
2 , on B.

3. In parallel solve for w
(k+ 1

2 )
1 and w

(k+ 1
2 )

2⎧⎪⎪⎨
⎪⎪⎩

Lw
(k+ 1

2 )
1 = f, in Ω1

w
(k+ 1

2 )
1 = 0, on B[1]

n1 ·
(
a∇w

(k+ 1
2 )

1

)
= µ(k+ 1

2 ), on B,

and

⎧⎪⎪⎨
⎪⎪⎩

Lw
(k+ 1

2 )
2 = f, in Ω2

w
(k+ 1

2 )
2 = 0, on B[2]

w
(k+ 1

2 )
2 = g(k+ 1

2 ), on B,

4. Compute

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

µ(k+1) = β n2 ·
(
a∇w

(k+ 1
2 )

1

)
+ (1 − β)n2 ·

(
a∇w

(k+ 1
2 )

2

)
,

on B

g(k+1) = α w
(k+ 1

2 )
1 + (1 − α)w

(k+ 1
2 )

2 ,
on B.

5. In parallel solve for w
(k+1)
1 and w

(k+1)
2⎧⎪⎨

⎪⎩
Lw

(k+1)
1 = f, in Ω1

w
(k+1)
1 = 0, on B[1]

w
(k+1)
1 = g(k+1), on B,

and

⎧⎪⎨
⎪⎩

Lw
(k+1)
2 = f, in Ω2

w
(k+1)
2 = 0, on B[2]

n2 ·
(
a∇w

(k+1)
2

)
= µ(k+1), on B,

6. Endfor

Output: (w(k)
1 , w

(k)
2 )

Remark 1.21. Under appropriate restrictions on the coefficients a(x) and c(x),
and the relaxation parameters θ, δ, β, α, this parallel algorithm will converge
geometrically [YA2]. For related parallel algorithms, see [DO13, DO18].

When the advection coefficient b(x) = 0, a parallel algorithm, referred to
as a Robin-Robin algorithm can also be used [QU6, GA14, AC7, RA3]. Let:

Φi(w) ≡ ni ·
(

a(x)∇w − 1
2
b(x) w

)
+ zi(x) w,

denote a local Robin boundary operator on B for i = 1, 2 for an appropriately
chosen bounded interface function zi(x) > 0. For convenience, ĩ will denote a
complementary index to i (namely, ĩ = 2 when i = 1 and ĩ = 1 when i = 2).
Then, the Robin-Robin algorithm has the following form.
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Algorithm 1.3.3 (A Robin-Robin Algorithm)
Let w

(0)
1 and w

(0)
2 denote a starting guess on each subdomain

Let 0 < θ < 1 denote a relaxation parameter

1. For k = 0, 1, · · · , until convergence do:
2. For i = 1, 2 in parallel solve:⎧⎪⎨

⎪⎩
Lw

(k+1)
i = fi, in Ωi

w
(k+1)
i = 0, on B[i]

Φi

(
w

(k+1)
i

)
= θ Φi

(
w

(k)
i

)
+ (1 − θ)Φĩ

(
w

(k)

ĩ

)
, on B

3. Endfor
4. Endfor

Output: (w(k)
1 , w

(k)
2 )

Remark 1.22. When (c(x)− 1
2∇·b(x)) ≥ β > 0, the Robin-Robin iterates will

converge geometrically, for a suitable choice of relaxation parameter 0 < θ < 1
and zi(x) > 0, see [QU6, GA14, AC7, RA3].

1.3.3 Global Discretization

Hybrid formulation (1.19) can be used to construct a global discretization
of (1.1). Such discretizations have not been studied extensively, however, see
[AG, AG2, DO4] and in the context of spectral methods, see [MA4, PH].
A potential advantage of discretizing (1.19) is that each subdomain Ωi can
be independently triangulated, see Fig. 1.6, by methods suited to the local
geometry and regularity of the local solution, and each subproblem may be
discretized independently. However, care must be exercised in discretizing the
transmission conditions so that the resulting global discretization is stable.
Below, we heuristically outline the general stages that would be involved in
discretizing (1.19) using finite element methods.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Th2(Ω2)

Th1(Ω1)

Fig. 1.6. Nonmatching local grids
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On each subdomain Ωi, generate a grid Thi
(Ωi) of size hi suited to the local

geometry and solution. If the resulting local grids do not match along B, as in
Fig. 1.6, they will be referred to as nonmatching grids. On each subdomain Ωi,
employ a traditional method to discretize the following Neumann problem:⎧⎨

⎩
Lwi = f, in Ωi

wi = 0, on B[i]

ni · (a∇wi − bwi) = gi, on B,

where ni denotes the exterior unit normal to ∂Ωi and the flux data gi is to be
chosen when the transmission conditions are applied. Employing block matrix
notation, denote the resulting local discretization by:[

A
(i)
II A

(i)
IB

A
(i)
BI A

(i)
BB

][
w(i)

I

w(i)
B

]
=

[
fhi

ghi

]
,

where w(i)
I denotes the interior unknowns on Ωhi

and w(i)
B denotes the bound-

ary unknowns on B associated with the discrete solution on Thi
(Ωi). Sepa-

rately discretize the two transmission conditions on B:{
w1 = w2, on B

n1 · (a∇w1 − bw1) = n1 · (a∇w2 − bw2) , on B.

Since the grid functions (w(i)
I ,w(i)

B ) may be nonmatching on B, care must be
exercised to ensure well posedness and stability of this discretization.

Below, we indicate how each transmission condition can be discretized by a
“mortar” element type method. Let ni and mi denote the number of unknowns
in w(i)

I and w(i)
B respectively. Then the continuity equation w1 = w2 on B may

be discretized by a Petrov-Galerkin approximation of its weak form:∫
B

(w1 − w2) v dsx = 0, v ∈ Xh(B),

where Xh(B) denotes some appropriately chosen subspace of L2(B). In a mor-
tar element discretization, Xh(B) is typically chosen as a finite element space
defined on a triangulation of B inherited from either triangulation Th1(Ω1)
or Th2(Ω2). Examples of such spaces are described in Chap. 11. For definite-
ness suppose Xh(B) = Xh1(B) is chosen to be of dimension m1 based on the
triangulation of B inherited from Th1(Ω1). Then, the discretized continuity
transmission condition will have the following matrix form:

M11w
(1)
B = M12w

(2)
B ,

where M11 and M12 are m1 × m1 and m1 × m2 mass matrices, respectively.
The flux transmission condition on B may be similarly discretized:∫
B

(n1 · (a∇w1 − bw1) − n1 · (a∇w2 − bw2)) µdsx = 0, ∀µ ∈ Yh(B),
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where it is sufficient to choose Yh(B) ⊂ H1
0 (B). Again, Yh(B) may be chosen

as a finite element space defined on the triangulation of B inherited from
either triangulation Ωh1 or Ωh2 . However, to ensure that the total number of
equations equals the total number of unknowns in the global system, it will
be preferable that Yh(B) be chosen using the complementary triangulation.
In the above example, since Xh(B) = Xh1(B) is of dimension m1, we choose
Yh(B) = Yh2(B) of dimension m2 based on triangulation Ωh2 . This will yield
m2 constraints, which we denote as:

M21

(
A

(1)
BIw

(1)
I + A

(1)
BBw(1)

B − f (1)
B

)
= −M22

(
A

(2)
BIw

(2)
I + A

(2)
BBw(2)

B − f (2)
B

)
,

where M21 and M22 are m2 × m1 and m2 × m2 matrices, respectively. The
interface forcing terms f (i)

B have been added to account for the approximation
resulting from integration by parts. The actual choice of subspaces Xh1(B)
and Yh2(B) will be critical to the stability of the resulting global discretization:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A
(1)
II w(1)

I + A
(1)
IBw(1)

B = fh1

M11w
(1)
B = M12w

(2)
B

A
(2)
II w

(2)
I + A

(2)
IBw(2)

B = fh2

M21

(
A

(1)
BIw

(1)
I + A

(1)
BBw

(1)
B − f (1)

B

)
= −M22

(
A

(2)
BIw

(2)
I + A

(2)
BBw(2)

B − f (2)
B

)
.

General theoretical results on the stability of such discretizations of (1.19) are
not known to the author, and this scheme was heuristically considered only
for its intrinsic interest.

Remark 1.23. If the grids Th1(Ω1) and Th2(Ω2) match on B, then m1 = m2.
We would then obtain M11 = M12, both square and nonsingular, yielding:

w(1)
B = w(2)

B .

Similarly, M21 = M22 will be square and nonsingular yielding:(
A

(1)
BIw

(1)
I + A

(1)
BBw

(1)
B − f (1)

B

)
= −

(
A

(2)
BIw

(2)
I + A

(2)
BBw(2)

B − f (2)
B

)
.

The resulting global discretization will then correspond to the standard finite
element discretization of (1.1).

1.3.4 Heterogeneous Approximations

A heterogeneous approximation of a partial differential equation is a coupled
system of partial differential equations which approximates the given equa-
tion, in which the approximating partial differential equations are not of the
same type in different subregions [GA15, QU6]. In the following, motivated
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by classical singular perturbation approximations [KE5, LA5], we heuristi-
cally outline how an elliptic-hyperbolic heterogeneous approximation can be
constructed for the following singularly perturbed elliptic equation:{

Lε u ≡ −ε∆u + b(x) · ∇u + c(x) u = f, in Ω
u = g, on ∂Ω,

(1.22)

where 0 < ε � 1 is a perturbation parameter. The Steklov-Poincaré hybrid
formulation (1.19) will be employed to heuristically approximate (1.22).

Suppose Ω1 and Ω2 form a non-overlapping decomposition of Ω such that:

ε |∆u| � |b · ∇u + c u| , on Ω1.

Then, on subdomain Ω1, we may approximate Lεu = f by L0 u = f , where
L0 u ≡ b(x) · ∇u + c(x)u. Formally, a global heterogeneous approximation
of (1.22) may be obtained by substituting the preceding approximation in the
hybrid formulation corresponding to (1.22), yielding:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L0 w1 = f, in Ω1

w1 = 0, on B[1]

w1 = w2, on B

Lεw2 = f, in Ω2

w2 = 0, on B[2]

n1 · (ε∇w2 − bw2) = n1 · (ε∇w1 − bw1) . on B,

However, retaining the Dirichlet boundary conditions on B and B[1] for w1(.)
will yield an ill-posed problem for w1(.), since L0w1 is hyperbolic on Ω1.
Indeed, denote the inflow and outflow boundary segments on B and B[1] by:⎧⎪⎪⎨

⎪⎪⎩
Bin ≡ {x ∈ B : n1 · b(x) < 0}
Bout ≡ {x ∈ B : n1 · b(x) > 0}
B[1],in ≡ {x ∈ B[1] : n1 · b(x) < 0}.

Since L0w1 = f is hyperbolic, specification of Dirichlet or Neumann boundary
conditions on the entire boundary ∂Ω1 will yield a locally ill posed problem.
Fortunately, replacing the Dirichlet conditions by inflow conditions, resolves
this local ill-posedness on Ω1, see [GA15, QU6].

Thus, the boundary conditions w1 = 0 on B[1] and w1 = w2 on B can be
replaced by inflow boundary conditions w1 = 0 on B[1],in and w1 = w2 on Bin,
respectively. To deduce the remaining transmission boundary conditions in the
heterogeneous approximation, a subdomain vanishing viscosity approach may
be employed as in [GA15]. Accordingly, the elliptic equation Lεu = f may be
approximated by the discontinuous coefficient elliptic problem:{

Lε,η v = f, on Ω
v = 0, on ∂Ω,
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where Lε,η v ≡ −∇ · (a(x, η)∇v) +b(x) · ∇v + c(x) v and a(x, η) is defined by:

a(x, η) ≡
{

η for x ∈ Ω1

ε for x ∈ Ω2.

For ε > 0 and η > 0, the problem will be elliptic and the traditional trans-
mission conditions should hold:{

w1 = w2, on B

n1 · (η∇w1 − bw1) = n1 · (ε∇w2 − bw2) , on B.

However, letting η → 0+, and imposing the inflow condition on Bin yields:{
w1 = w2, on Bin

−n1 · bw1 = n1 · (ε∇w2 − bw2) , on B.

When b(x) is continuous, the substitution that w1 = w2 on Bin will yield the
following additional simplifications:⎧⎪⎨

⎪⎩
w1 = w2, on Bin

0 = n1 · ε∇w2, on Bin

−n1 · bw1 = n1 · (ε∇w2 − bw2) , on Bout.

As a result, heuristically, the global system of partial differential equations
satisfied by the weak limit of the solutions vε,η as η → 0 will be:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0 w1 = f, in Ω1

w1 = 0, on B[1],in

w1 = w2, on Bin

Lεw2 = f, in Ω2

n2 · (ε∇w2 − bw2) = −n2 · bw1, on Bout,
n2 · ∇w2 = 0, on Bin,

w2 = 0, on B[2].

Dirichlet-Neumann iterative methods can be formulated to solve the above
heterogeneous approximation to (1.22), see [GA15, QU6] and Chap. 12.

Remark 1.24. For rigorous results on the well posedness of the preceding het-
erogeneous system, readers are referred to [GA15].

1.4 Lagrange Multiplier Framework

The framework we refer to as the Lagrange multiplier formulation [GL, GL7],
underlies a variety of non-overlapping domain decomposition methods. It is
employed in the FETI (Finite Element Tearing and Interconnection) method
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(a constrained optimization based parallel iterative method [FA16, FA15]),
the mortar element method (a method for discretizing elliptic equations on
nonmatching grids [MA4, BE22, BE18, BE6, BE4, WO4, WO5]), and in non-
overlapping Schwarz iterative methods [LI8, GL8]. In this section, we illustrate
its application to formulate iterative algorithms, non-matching grid discretiza-
tions and heterogeneous approximations.

The Lagrange multiplier framework is applicable only when there is an
optimization principle associated with the elliptic equation. Thus, the solution
u must optimize some energy functional J(·). For such a property to hold,
the elliptic equation (1.1) must be self adjoint and coercive, requiring that
b(x) = 0 and c(x) ≥ 0. Accordingly, in this section we shall consider:{

Lu ≡ −∇ · (a(x)∇u) + c(x) u = f, in Ω
u = 0, on ∂Ω,

(1.23)

with c(x) ≥ 0. It is well known that the solution u minimizes an energy J(.),
see (1.24) and (1.25) within H1

0 (Ω). Given any non-overlapping subdomain
decomposition of Ω, we will show that the optimization problem (1.24) can be
reformulated as a constrained optimization problem based on the subdomains.
The Lagrange multiplier hybrid formulation will be the saddle point problem
associated with this constrained minimization problem.

1.4.1 Motivation

Let Ω1 and Ω2 form a non-overlapping decomposition of the domain Ω of
elliptic equation (1.23), see Fig. 1.7. Using this decomposition of Ω, we may
decompose the energy functional J(·) associated with (1.23) as a sum of en-
ergy contributions Ji(·) from each subdomain Ωi. The resulting sum of local
energies will be well defined even if the local displacement functions are dis-
continuous across the interface B = ∂Ω1 ∩ ∂Ω2. It is thus an extended energy
functional.

A constrained minimization problem equivalent to the minimization of
J(.) can be obtained by minimizing this extended energy functional, subject
to the constraint that the local displacements match on the interface B. The
Lagrange multiplier hybrid formulation is the saddle point problem associated
with this constrained minimization problem. We outline the steps below.

Ω2Ω1 B

Fig. 1.7. An immersed non-overlapping decomposition



1.4 Lagrange Multiplier Framework 29

Minimization Formulation. It is well known, see [ST14, CI2, JO2, BR28],
that the solution u to (1.23) minimizes the energy J(·) associated with (1.23):

J(u) = min
w∈X

J(w), (1.24)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

J(w) ≡ 1
2A(w, w) − F (w),

A(v, w) ≡
∫

Ω
(a∇v · ∇w + c vw) dx, for v, w ∈ X

F (w) ≡
∫

Ω
fwdx, for w ∈ X,

X ≡ H1
0 (Ω).

(1.25)

Constrained Minimization Formulation. Let {Ωi}2
i=1 be a non-over-

lapping decomposition of Ω. Suppose wi ≡ w on Ωi for 1 ≤ i ≤ 2. We
may express the energy J(w) = JE(w1, w2) ≡ J1(w1) + J2(w2), where:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

JE(w1, w2) ≡ J1(w1) + J2(w2), for wi ∈ Xi

Ji(wi) ≡ 1
2Ai(wi, wi) − Fi(wi), for wi ∈ Xi

Ai(vi, wi) ≡
∫

Ωi
(∇vi · a∇wi + cviwi) dx, for vi, wi ∈ Xi

Fi(wi) ≡
∫

Ωi
fwidx, for wi ∈ Xi,

Xi ≡
{
v ∈ H1(Ωi) : v = 0 on B[i]

}
.

Here JE(w1, w2) is defined even when w1 = w2 on B. To obtain a constrained
minimization problem equivalent to (1.24), we minimize JE(v1, v2) within the
larger (extended) class of functions X1×X2 defined above, but subject to the
weak constraint that the subdomain functions match on B:

m ((v1, v2), µ) ≡
∫

B

(v1 − v2) µdsx = 0, ∀µ ∈ Y,

where Y ≡ H
−1/2
00 (B) (the dual space of H

1/2
00 (B)). Problem (1.24) will thus

be formally equivalent to the following constrained minimization problem:

J1(w1) + J2(w2) = min
(v1,v2)∈K

J1(v1) + J2(v2), (1.26)

where

K ≡ {(v1, v2) ∈ X1 × X2 : m ((v1, v2), µ) = 0, ∀µ ∈ Y } .

Saddle Point Formulation. By optimization theory, see [CI4] and Chap. 10,
the solution (w1, w2) to the constrained minimization problem (1.26) can be
expressed as components in the saddle point ((w1, w2), µ) of an associated
Lagrangian functional L (·, ·), where µ ∈ Y denotes an artificially introduced
variable referred to as a Lagrange multiplier. We define the Lagrangian func-
tion for ((v1, v2), η) ∈ X1 × X2 × Y as:

L ((v1, v2), η) ≡ J1(v1) + J2(v2) + m ((v1, v2), η) . (1.27)
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At the saddle point ((w1, w2), µ) ∈ X1 × X2 × Y of L (·), we obtain:

L ((w1, w2), η) ≤ L ((w1, w2), µ) ≤ L ((v1, v2), µ) (1.28)

for any choice of (v1, v2) ∈ X1 × X2 and η ∈ Y . Requiring the first order
variation at the saddle point ((w1, w2), µ) to be zero yields:{∑2

i=1 Ai(wi, vi) + m ((v1, v2), µ) =
∑2

i=1 Fi(vi), for vi ∈ Xi

m ((w1, w2), η) = 0, for η ∈ Y.
(1.29)

The above system is referred to as a saddle point problem.

Hybrid Formulation. If we integrate the weak form (1.29) by parts, we can
express it in terms of partial differential equations involving w1(.), w2(.) and
the Lagrange multiplier variable µ(.) as follows. We seek (w1, w2, µ) satisfying:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lw1 = f, in Ω1

w1 = 0, on B[1]

n1 · (a∇w1) = −µ, on B

Lw2 = f, in Ω2

w2 = 0, on B[2]

n2 · (a∇w1) = µ, on B

w1 = w2, on B

(1.30)

where B[i] ≡ ∂Ωi ∩ ∂Ω is the exterior boundary and ni is the unit exterior
normal to ∂Ωi for i = 1, 2. For each choice of Neumann data µ(·), each
subdomain problem for wi(.) will be uniquely solvable provided B[i] = ∅. We
must choose the Lagrange multiplier µ(.) (representing the flux on B) so that
w1 = w2 on B. The next result indicates the equivalence of (1.30) to (1.23).

Theorem 1.25. Suppose the following assumptions hold.

1. Let u be a solution to (1.23).
2. Let (w1, w2, µ) be a solution to the hybrid formulation (1.30).

Then u(x) = w1(x) in Ω1 and u(x) = w2(x) in Ω2.

Proof. The equivalence follows since (1.23) is equivalent to (1.19), and
since (1.30) is equivalent to (1.19) for the substitution µ = n2 · (a∇u)
on B. ��

Remark 1.26. The preceding result only asserts the equivalence between solu-
tions of (1.23) and (1.30). It does not demonstrate the well posedness of (1.30).
The latter can be demonstrated for (1.30) by employing general results on the
well posedness of the saddle point problem (1.29) associated with it [GI3].
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1.4.2 Iterative Methods

Since the Lagrange multiplier µ(.) determines w1(.) and w2(.) in (1.30), an
iterative method for solving (1.23) can be obtained by applying a saddle point
iterative algorithm such as Uzawa’s method, see Chap. 10, to update the
Lagrange multiplier function µ(·), as described below.

Algorithm 1.4.1 (Uzawa’s Method)
Let µ(0) denote a starting guess with chosen step size τ > 0.

1. For k = 0, 1, · · · until convergence do:
2. Determine w

(k+1)
1 and w

(k+1)
2 in parallel:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ ·
(
a∇w

(k+1)
1

)
+ cw

(k+1)
1 = f, in Ω1

w
(k+1)
1 = 0, on B[1]

n1 ·
(
a∇w

(k+1)
1

)
= −µ(k), on B,

−∇ ·
(
a∇w

(k+1)
2

)
+ cw

(k+1)
2 = f, in Ω2

w
(k+1)
2 = 0, on B[2]

n2 ·
(
a∇w

(k+1)
2

)
= µ(k), on B.

3. Update µ(k+1) as follows:

µ(k+1)(x) = µ(k)(x) + τ
(
w

(k+1)
1 (x) − w

(k+1)
2 (x)

)
, for x ∈ B.

4. Endfor

Output: (w(k)
1 , w

(k)
2 )

Remark 1.27. The map µ(k) →
(
w

(k)
1 − w

(k)
2

)
will be compact, and thus the

iterates will converge geometrically to the true solution for sufficiently small
τ > 0. Discrete versions of Uzawa’s algorithm are described in Chap. 10.

Remark 1.28. The FETI method [FA16, FA15], see Chap. 4, is also based on
updating the Lagrange multiplier µ. However, it generalizes the preceding
saddle point iterative algorithm to the multisubdomain case, where the rate
of convergence may deteriorate with increasing number of subdomains, and
where the local problems may be singular.

An alternative hybrid formulation equivalent to (1.30) can be obtained
by replacing the Lagrangian functional L (·, ·) by an augmented Lagrangian
Lδ (·, ·), where an additional non-negative functional is added to the original
Lagrangian functional with a coefficient δ > 0, see [GL7, GL8]:

Lδ ((v1, v2), µ) ≡ J1(v1) + J2(v2) + m ((v1, v2), µ) +
δ

2
‖v1 − v2‖2

L2(B).
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The augmented term δ
2‖v1−v2‖2

L2(B) will be zero when the constraint v1 = v2

is satisfied on B. As a result, both formulations will be equivalent, and the
saddle point of the augmented Lagrangian will also yield the desired solution.
Applying an alternating directions implicit (ADI) method to determine the
saddle point of the augmented Lagrangian functional, will yield the following
algorithm, referred to as the non-overlapping Schwarz method [LI8, GL8].

Algorithm 1.4.2 (Non-Overlapping Schwarz Method)
Let w

(0)
1 , w

(0)
2 denote starting guesses.

Let δ > 0 be a chosen parameter.

1. For k = 0, 1, · · · until convergence do:
2. Solve in parallel:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ ·
(
a∇w

(k+1)
1

)
+ cw

(k+1)
1 = f, in Ω1

w
(k+1)
1 = 0, on B[1]

n1 ·
(
a∇w

(k+1)
1

)
+ δw

(k+1)
1 = n1 ·

(
a∇w

(k)
2

)
+ δw

(k)
2 , on B,

−∇ ·
(
a∇w

(k+1)
2

)
+ cw

(k+1)
2 = f, in Ω2

w
(k+1)
2 = 0, on B[2]

n2 ·
(
a∇w

(k+1)
2

)
+ δw

(k+1)
2 = n2 ·

(
a∇w

(k)
1

)
+ δw

(k)
1 , on B.

3. Endfor

Output: (w(k)
1 , w

(k)
2 )

Remark 1.29. In practice, a careful choice of parameter δ > 0 will be necessary
for optimal convergence [LI8, GL8].

1.4.3 Global Discretization

In principle, a discretization of (1.23) can be obtained by discretizing (1.30).
Each subdomain can be triangulated independently without requiring the
local triangulations to match on B. However, to ensure that the resulting
discretization yields a constrained minimization problem, it is advantageous
to employ a Galerkin approximation of the saddle point problem (1.29). An
extensive literature exists on such nonmatching grid discretization techniques,
see [MA4, BE22, DO4, BE4, WO4, WO5]. The resulting discretization is re-
ferred to as a mortar element method, see also Chap. 11.

Triangulate each subdomain Ωi by a grid Thi
(Ωi) of size hi suited to the

local geometry and solution for 1 ≤ i ≤ 2, see Fig. 1.8. Let Xhi ⊂ Xi denote
a traditional finite element space defined on the triangulation Thi

(Ωi). Select
a triangulation of interface B inherited either from Th1(Ω1) or Th2(Ω2). For
definiteness, suppose that Th1(Ω1) is chosen. Construct a finite element space
Yh1(B) ⊂ L2(B) ⊂ Y consisting of piecewise polynomial functions defined on
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Ω2Ω1

B[1]

Fig. 1.8. Non-overlapping nonmatching grids

the triangulation of B inherited from Th1(Ω1). The dimension of Yh1 should
equal the dimension of Xh1∩H1

0 (B). See Chap. 11 for multiplier spaces Yh1(B).
Discretization of the saddle point formulation (1.29) using the subspaces

Xh1 × Xh2 × Yh1(B) will yield a linear system of the form:⎡
⎢⎢⎣

A(1) 0 M (1)T

0 A(2) −M (2)T

M (1) −M (2) 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

wh1

wh2

µh

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

fh1

fh2

0

⎤
⎥⎥⎦ ,

where:⎧⎪⎨
⎪⎩

Ai(whi
, whi

) = wT
hi

A(i)whi
, for 1 ≤ i ≤ 2

F (whi
) = wT

hi
fhi

, for 1 ≤ i ≤ 2

m ((wh1 , wh2), µh) = µT
h

(
M (1)wh1 − M (2)wh2

)
.

Here we have used whi
and µh to denote finite element functions and whi

and
µh as their vector representations with respect to some fixed basis.

If each nodal vector whi
is block partitioned as whi

=
(
w(i)

I ,w(i)
B

)T

cor-
responding to the unknowns in the interior of each subdomain and on the
interface B, then matrices A(i) and M (i) will have the block structure:

A(i) =

[
A

(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

]
and M (i) =

[
0 M

(i)
B

]
, for 1 ≤ i ≤ 2

where w(i)
I and w(i)

B are of size ni and mi. Substituting, we obtain:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(1)
II A

(1)
IB 0 0 0

A
(1)T

IB A
(1)
BB 0 0 M

(1)T

B

0 0 A
(2)
II A

(2)
IB 0

0 0 A
(2)T

IB A
(2)
BB −M

(2)T

B

0 M
(1)
B 0 −M

(2)
B 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w(1)
I

w(1)
B

w(2)
I

w(2)
B

µh

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f (1)
I

f (1)
B

f (2)
I

f (2)
B

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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If the dimension of the space Yh1(B) is m1, then matrix M
(1)
B will be square

and invertible of size m1. In this case, we may parameterize the solution space
of the interface constraints as:

w(1)
B ≡ R12w

(2)
B where R12 ≡ M

(1)−1

B M
(2)
B .

The local unknowns can then be represented as w(1)
I , w(1)

B = R12w
(2)
B ,

w(2)
I , and w(2)

B . Substituting this representation into the discrete energy
Jh1(w

(1)
I , R12w

(2)
B )+Jh2(w

(2)
I ,w(2)

B ) and applying first order stationarity con-
ditions for its minimum yields the following linear system:⎡

⎢⎢⎣
A

(1)
II 0 A

(1)
IBR12

0 A
(2)
II A

(2)
IB

RT
12A

(1)T

IB A
(2)T

IB RT
12A

(1)
BBR12 + A

(2)
BB

⎤
⎥⎥⎦
⎡
⎢⎢⎣

w(1)
I

w(2)
I

w(2)
B

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f (1)
I

f (2)
I

RT
12f

(1)
B + f (2)

B

⎤
⎥⎥⎦ .

If both grids match, then R12 = I and the above discretization reduces to the
traditional conforming finite element discretization of (1.23).

Mortar element spaces Yhi(B) are described in Chap. 11. They include
piecewise polynomial functions which are continuous across elements as well
as piecewise polynomial functions which are discontinuous across elements
[MA4, BE22, BE18, BE6, BE4]. In the latter case, a basis for Yhi(B) can
be constructed so that matrix M

(i)
B is diagonal [WO4, WO5]. The resulting

global discretization will be stable and convergent of optimal order.

1.4.4 Heterogeneous Approximations

When elliptic equation (1.23) is singularly perturbed, its Lagrange multiplier
formulation (1.30) can be employed to heuristically study an heterogeneous
approximation of it. Below, we illustrate two alternative approximations of
the following singularly perturbed, self adjoint elliptic equation [KE5]:{

−∇ · (ε∇u) + c(x)u = f(x), in Ω
u = g(x), on ∂Ω,

(1.31)

where 0 < ε � 1 is a small perturbation parameter and c(x) ≥ c0 > 0.
Suppose Ω1 and Ω2 form a nonoverlapping decomposition of Ω, such that:

|ε∆u| � |c(x) u| , for x ∈ Ω1.

Then, Ω2 must enclose the boundary layer region of the solution.
To obtain an heterogeneous approximation of (1.31), we heuristically apply

the subdomain vanishing viscosity method as in [GA15]:{
−∇ · (aε,η(x)∇u) + c(x) u = f(x), in Ω

u = g(x), on ∂Ω,
(1.32)
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where

aε,η(x) ≡
{

η for x ∈ Ω1

ε for x ∈ Ω2.

For ε > 0 and η > 0, the above problem is elliptic and coercive. However, as
η → 0+, formally the limiting system (1.30) becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(x) w1 = f(x), in Ω1

w1 = g(x), on B[1]

0 = µ, on B

−ε∆w2 + c(x) w2 = f(x), in Ω2

w2 = g(x), on B[2]

ε∂w2
∂n = µ, on B

w1 = w2, on B.

Two alternative approximations may be constructed. Either the transmission
condition w1 = w2 or ε ∂w2

∂n = 0 can be enforced, but not both, since w1(.)
formally satisfies a zeroth order equation in Ω1. Since c(x) ≥ c0 > 0, the
limiting equation on Ω1 for w1(x) can be solved to formally yield:

w1(x) =
f(x)
c(x)

, on Ω1.

If B[1] = ∅ and the boundary data g(x) is not compatible with the formal
solution f(x)

c(x) , i.e., if g(x) = f(x)
c(x) on B[1], then the local solution may be ill

posed, indicating a poor choice of subdomain Ω1.
If a continuous (or H1(·)) solution is sought, then continuity of the local

solutions must be enforced and the flux transmission condition needs to be
omitted, yielding the following system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c(x) w1 = f(x), in Ω1

w1 = g(x), on B[1]

−ε∆w2 + c(x) w2 = f(x), in Ω2

w2 = w1, on B

w2 = g(x), on B[2].

If a discontinuous approximation is sought, then the continuity transmission
condition can be omitted, and the flux transmission condition can be enforced,
yielding the alternative system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c(x) w1 = f(x), in Ω1

w1 = g(x), on B[1]

−ε∆w2 + c(x) w2 = f(x), in Ω2

ε ∂w2
∂n = 0, on B

w2 = g(x), on B[2].
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In this case, the subproblems for w1 and w2 are formally decoupled. In both
cases, the limiting solutions may not minimize the energy functional Jε,η(·)
associated with (1.32) as η → 0+.

Remark 1.30. Since (1.30) is equivalent to (1.19), rigorous results on the well
posedness of the above approximation may be deduced from [GA15].

Remark 1.31. Similar heuristics may be applied to construct an approximation
of the singularly perturbed anisotropic elliptic equation using (1.30):{

−ε ux1x1 − ux2x2 − ux3x3 + c(x) u = f(x), in Ω

u = g(x), on ∂Ω,

for which the limiting problem is a degenerate elliptic equation. In this case,
both transmission conditions can be retained in the limiting problem.

1.5 Least Squares-Control Framework

The least squares-control method [LI2, GL] is a general optimization method,
which has various applications to partial differential equations. It results in
a constrained least squares problem, and is based on the minimization of a
square norm objective functional, subject to constraints. In domain decompo-
sition applications, see [AT, GL13, GU3, GU2], the square norm functional
typically measures the difference between the subdomain solutions on the re-
gions of overlap or intersection between the subdomains, while the constraints
require the local solutions to solve the original partial differential equation on
each subdomain, with appropriate boundary conditions. Since the boundary
data on each subdomain boundary is unknown, it is regarded as a control
function which parameterizes the local solution. The control boundary data
must be determined to minimize the square norm function, hence the name
least squares-control. Importantly, an optimization principle need not be as-
sociated with the underlying partial differential equation.

In this section, we describe the hybrid formulation associated with the
least squares-control method for the following elliptic equation:{

Lu ≡ −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f(x), in Ω

u = 0, in ∂Ω,
(1.33)

in which the domain Ω is decomposed into two subdomains. The subdo-
mains can be overlapping or non-overlapping, but we focus on the overlapping
case. We illustrate the formulation of iterative methods, non-matching grid
discretizations, and heterogeneous approximations for (1.33).
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Ω∗
12 Ω∗

2Ω∗
1

B[2]

B[1]

Fig. 1.9. An overlapping decomposition

1.5.1 Motivation

Let Ω∗
1 and Ω∗

2 form an overlapping decomposition of Ω, with Ω∗
12 = Ω∗

1 ∩Ω∗
2 ,

see Fig. 1.9. Let B(i) = ∂Ω∗
i ∩ Ω and B[i] = ∂Ω∗

i ∩ ∂Ω denote the interior
and exterior segments, respectively, of the subdomain boundaries, and let ni

denote the unit exterior normal to ∂Ω∗
i . On each subdomain Ω∗

i for 1 ≤ i ≤ 2,
we let wi denote the approximation of the solution u to (1.33) on Ω∗

i , and let
gi denote the local Neumann data associated with wi on B(i).

If wi(.) = u(.) on Ω∗
i and gi(.) = ni ·(a(x)∇u) on B(i), then wi will satisfy:⎧⎪⎨
⎪⎩

Lwi = f, in Ω∗
i

wi = 0, on B[i]

ni · (a∇wi) = gi, on B(i).

Furthermore, since w1 and w2 will match on Ω∗
12, i.e., w1 = w2, on Ω∗

12, it will
hold that ‖w1 −w2‖2

L2(Ω∗
12)

= 0 and |w1 −w2|2H1(Ω∗
12)

= 0. Motivated by this,
define the following square norm functional J (·):

J (v1, v2) ≡
γ1

2

∫
Ω∗

12

(v1 − v2)2 dx +
γ2

2

∫
Ω∗

12

|∇(v1 − v2)|2 dx. (1.34)

Typically (γ1 = 1, γ2 = 0), but other choices are possible. Then, it will hold:

J(w1, w2) = 0,

for the true subdomain solutions.
The preceding observation suggests the following constrained minimization

problem equivalent to (1.33). Determine (w1, w2) which minimizes J (·) (with
minimum value zero), within a class K:

J(w1, w2) = min
(v1,v2)∈K

J(v1, v2), (1.35)

where K is defined by the constraints:

K ≡

⎧⎨
⎩(v1, v2) :

Lvi = f, in Ω∗
i

ni · (a∇wi) = gi, on B(i)

vi = 0, on B[i]

for 1 ≤ i ≤ 2

⎫⎬
⎭ . (1.36)
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Instead of Neumann conditions on B(i), we may alternatively pose Robin or
Dirichlet conditions. However, in the non-overlapping case, we cannot pose
Dirichlet conditions on B(i), since the functional J(.) typically measures the
difference between the Dirichlet data. To avoid cumbersome notation, we often
omit explicit inclusion of gi as an argument in the definition of J(., .) and K. In
a strict sense, we must replace vi by (vi, gi). Hopefully, such omission should
be clear from the context.

The following equivalence will hold.

Theorem 1.32. Suppose the following assumptions hold.

1. Let the solution u of (1.33) exist and be smooth.
2. Let (w1, w2) minimize (1.35) subject to the constraints (1.36).

Then at the minimum:

J(w1, w2) = min
(v1,v2)∈K

J(v1, v2),

it will hold that: {
w1 = u, on Ω∗

1

w2 = u, on Ω∗
2 .

Proof. Suppose u is the solution to (1.33) and wi ≡ u on Ω∗
i for 1 ≤ i ≤ 2.

Then, (w1, w2) will satisfy all the required constraints (1.36). Furthermore:

w1 − w2 = u − u = 0, in Ω∗
12,

yields that J(w1, w2) = 0 and minimizes J(., .) ≥ 0.
Conversely, suppose a solution to (1.35) exists, subject to constraints (1.36)

and minimizes J(v1, v2). Then this minimum value must be zero, since for
ui ≡ u in Ω∗

i for 1 ≤ i ≤ 2 it will hold that (u1, u2) ∈ K and J(u1, u2) = 0.
Thus, using the definition of J(., .) and that J(w1, w2) = 0, we obtain that
w1 = w2 on Ω∗

12. Let χ1(x) and χ2(x) form a partition of unity subordinate to
the cover Ω∗

1 and Ω∗
2 . The it is easily verified that χ1(x) w1(x) + χ2(x) w2(x)

solves (1.33), since Lwi = f in Ω∗
i and since w1 = w2 in Ω∗

12. Thus, by the
uniqueness of solutions to (1.33) it follows that:

u(x) ≡ χ1(x) w1(x) + χ2(x)w2(x).

The desired result follows using w1 = w2 on Ω∗
12. ��

Remark 1.33. The preceding result only demonstrates an equivalence between
the solutions of (1.33) and (1.35). It does not guarantee the well posedness
of (1.35) under perturbation of data. Such a result, however, will hold under
appropriate assumptions (such as b = 0, coercivity of (1.33)) given sufficient
overlap between the subdomains.
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Remark 1.34. Well posedness of the constrained minimization problem (1.35)
will depend on the definition of J (·). For instance, when the elliptic equa-
tion (1.33) is self adjoint and coercive, J(v1, v2) = 1

2‖v1 − v2‖2
H1(Ω∗

12)
can be

shown to yield a well posed saddle point problem [GL, AT], where the term
J(v1, v2) is coercive in the constraint space K. More generally, an augmented
Lagrangian formulation [GL7] may be employed to regularize (1.35).

As mentioned earlier, the constraint set K in (1.36) can be parameterized in
terms of the Dirichlet, Neumann or Robin data gi specified on each boundary
segment B(i), for 1 ≤ i ≤ 2. For instance, when Neumann boundary conditions
are imposed on each B(i), define an affine linear mapping Ei as follows:

Ei gi ≡ vi, where

⎧⎨
⎩

L vi = f, in Ω∗
i

ni · (a∇vi) = gi, on B(i)

vi = 0, on B[i].

Then, the constraint set K can be represented as:

K ≡ {(E1g1, E2g2) : for gi ∈ Xi, 1 ≤ i ≤ 2} ,

where g1 and g2 are regarded as control data. For Neumann conditions, the
function space Xi for the boundary data for gi is typically chosen for each
1 ≤ i ≤ 2 as Xi = (H1/2

00 (B(i)))′ or Xi = H−1/2(B(i)). This parameterization
enables the reformulation of this constrained minimization problem (1.35) as
an unconstrained minimization problem. Define a function H(·):

H(g1, g2) ≡ J(E1g1, E2g2). (1.37)

Then, the unconstrained minimum (g∗1 , g∗2) of H(·, ·):

H(g∗1 , g∗2) = min
(g1,g2)

H(g1, g2), (1.38)

will yield the constrained minimum of J(., .) as (w1, w2) = (E1g
∗
1 , E2g

∗
2). Thus,

once g∗1 and g∗2 have been determined by minimizing H(·, ·), the desired local
solutions will satisfy wi ≡ Eig

∗
i for 1 ≤ i ≤ 2. Such unconstrained minimization

does not require Lagrange multipliers.
The unknown control data g1 and g2 can be determined by solving the

system of equations which result from the application of first order stationarity
conditions δH = 0 at the minimum of H(·). We shall omit the derivation of
these equations, except to note that the calculus of variations may be applied
to (1.38), or such equations may be derived by heuristic analogy with the
associated discrete saddle point problem, as described in Chap. 6.

The resulting first order stationarity equations will be of the form:

δH (g1, g2) = 0 ⇔
{

v1(x) = 0, for x ∈ B(1)

v2(x) = 0, for x ∈ B(2)
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where v1(x) and v2(x) are defined in terms of g1(x) and g2(x) as follows. Solve:⎧⎪⎨
⎪⎩

−∇ · (a∇wi) + b · ∇wi + cwi = f(x), in Ω∗
i

wi = 0, on B[i]

ni · (a∇wi) = gi(x), on B(i)

for i = 1, 2

for w1(x) and w2(x) using g1(x) and g2(x). Next, compute:

r(x) ≡
{

w1(x) − w2(x), for x ∈ Ω∗
12

0, for x ∈ Ω∗
12.

Then, v1(x) and v2 are defined as the solutions to:⎧⎪⎨
⎪⎩

−∇ · (a∇vi) −∇ · (b vi) + c vi = r(x), in Ω∗
i

vi = 0, on B[i]

ni · (a∇vi + b vi) = 0, on B(i)

for 1 ≤ i ≤ 2.

The control data g1(x) and g2(x) must be chosen to ensure that vi(x) = 0 on
B(i) for i = 1, 2. Later, we shall outline a gradient method to determine g1 and
g2 iteratively. When (1.35) is discretized, an explicit matrix representation can
be derived for H(·) and its gradient, see Chap. 6. In this case, a preconditioned
CG method can be employed to solve the resulting linear system.

Remark 1.35. If Ω is decomposed into non-overlapping subdomains Ω1 and Ω2

with common interface B = ∂Ω1 ∩ ∂Ω2, a least squares-control formulation
may be constructed as follows [GU3, GU2]. Seek (w1, w2) which minimizes:

J(w1, w2) = min
(v1,v2)∈K

J(v1, v2),

where
J(v1, v2) ≡

1
2
‖v1 − v2‖2

L2(B),

and K consists of all (v1, v2) satisfying the following constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lv1 = f(x), in Ω1

v1 = 0, on B[1]

n1 · (a∇v1) = µ(x), on B

Lv2 = f(x), in Ω2

v2 = 0, on B[2]

n2 · (a∇v2) = −µ(x), on B.

Here µ(x) is a flux variable on the interface B (which can be eliminated). The
above constraints will ensure that the original elliptic equation is solved on
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each subdomain, and that the Neumann fluxes of the two subdomain solutions
match on B. In this case, the feasible set K can be parameterized in terms
of the flux µ(x) = n1 · (a∇v1) on B. In applications, an alternative choice
of objective functional J(v1, v2) ≡ 1

2‖v1 − v2‖2

H
1/2
00 (B)

may also be employed,

where H
1/2
00 (B) denotes a fractional Sobolev norm (defined in Chap. 3).

1.5.2 Iterative Methods

The solution to (1.33) can be determined iteratively, by formally applying a
steepest descent method to the unconstrained minimization problem (1.38),
with sufficiently small step size τ > 0. Such an algorithm can be derived
formally using calculus of variations, or by analogy with the discrete version
of this algorithm described in Chap. 6.

Algorithm 1.5.1 (Gradient Least Squares-Control Algorithm)
Let g

(0)
1 (x) and g

(0)
2 (x) denote starting guesses and τ > 0 a fixed step size.

1. For k = 0, 1, · · · until convergence do:
2. For i = 1, 2 in parallel solve:⎧⎪⎨

⎪⎩
−∇ · (a∇vi) + b · ∇vi + c vi = f(x), in Ω∗

i

vi = 0, on B[i]

ni · (a∇vi) = g
(k)
i (x), on B(i).

3. Endfor
4. Compute:

r(x) ≡
{

v1(x) − v2(x), for x ∈ Ω∗
12

0, for x ∈ Ω∗
12

5. For i = 1, 2 in parallel solve the adjoint problems:⎧⎪⎨
⎪⎩

−∇ · (a∇wi) −∇ · (bwi) + cwi = r(x), in Ω∗
i

wi = 0, on B[i]

ni · (a∇wi + bwi) = 0, on B(i).

6. Endfor
7. Update: {

g
(k+1)
1 (x) = g

(k)
1 (x) − τ w1(x), for x ∈ B(1)

g
(k+1)
2 (x) = g

(k)
2 (x) + τ w2(x), for x ∈ B(2).

8. Endfor

Output: (g(k)
1 , g

(k)
2 )



42 1 Decomposition Frameworks

Alternative divide and conquer iterative algorithms can be formulated
for (1.33) using its saddle point formulation. However, the resulting algorithm
may require more computational resources. For instance, suppose that:

J(v1, v2) =
1
2
‖v1 − v2‖2

L2(Ω∗
12)

,

and that Neumann boundary conditions are imposed on B(i). Then, as de-
scribed in Chap. 10, a constrained minimization problem such as (1.35)
with (1.36), can be equivalently formulated as a saddle point problem, and
saddle point iterative algorithms can be formulated to solve it.

Indeed, if λ1 and λ2 denote the Lagrange multipliers, then the saddle point
problem associated with (1.35) would formally be of the form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χΩ12 (w1 − w2) + L∗
1λ1 = 0,

−χΩ12 (w1 − w2) + L∗
2λ2 = 0,

L1w̃1 = f1,

L2w̃2 = f2.

(1.39)

Here Liw̃i = fi formally denotes the operator equation associated with
Lwi = f in Ω∗

i with Neumann conditions ni ·(a∇wi)−gi = 0 on B(i) and ho-
mogeneous Dirichlet boundary conditions wi = 0 on B[i], with w̃i = (wi, gi).
The operator L∗

i formally denotes the adjoint of Li. Here, χΩ∗
12

(x) denotes
the characteristic (indicator) function of Ω∗

12. We omit elaborating on such a
saddle point problem here, except to note that, it may be obtained by heuris-
tic analogy with the discrete saddle point problems described in Chap. 10.
The λi(x) corresponds to Lagrange multiplier functions, see [GL, AT]. In this
saddle point problem, the Lagrange multiplier variables will not be unique,
and an augmented Lagrangian formulation would be preferable.

1.5.3 Global Discretization

Hybrid formulation (1.35) or (1.38) can, in principle, be employed to dis-
cretize (1.33) on a nonmatching grid such as in Fig. 1.10. Such discretizations
have not been considered in the literature, however, a heuristic discussion of
such a discretization is outlined here for its intrinsic interest, employing for-
mulation (1.38). We employ finite element discretizations on the subdomains.

A nonmatching grid discretization of (1.38) will require discretizing J(·):

J(v1, v2) =
1
2
‖v1 − v2‖2

H1(Ω∗
12)

,

and this will involve two overlapping non-matching grids. In the following, we
heuristically outline a mortar element discretization of J(v1, v2) on Ω∗

12, and
employ this to construct a global non-matching grid discretization of (1.33),
with Dirichlet boundary controls on each subdomain boundary B(i). Each
subdomain problem will involve only a conforming grid.
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Th1(Ω
∗
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Fig. 1.10. Overlapping nonmatching grids

Remark 1.36. If J(v1, v2) is replaced by JB(v1, v2) ≡ 1
2‖v1 − v2‖2

B where B =
∂Ω1 ∩ ∂Ω2 and Ω∗

i is an extension of a non-overlapping decomposition Ωi,
such a discretization would be considerably simpler.

Local Triangulation. For 1 ≤ i ≤ 2 triangulate each subdomain Ω∗
i by a

grid Thi
(Ω∗

i ) according to the local geometry and regularity of the solution,
see Fig. 1.10. We shall assume that at least one of the local grids triangulates
the region of overlap Ω∗

12. For definiteness assume that triangulation Th1(Ω
∗
1)

triangulates Ω∗
12. Let ni and mi denote the number of nodes of grid Thi

(Ω∗
i )

in the interior of Ω∗
i and on B(i), respectively. Additionally, let li denote the

number of nodes of triangulation Thi(Ω
∗
i ) in Ω

∗
12.

Local Discretizations. For 1 ≤ i ≤ 2, employ Dirichlet boundary conditions
on B(i) in (1.36) and discretize the resulting local problems using a finite
element space Xhi

⊂ Xi based on triangulation Thi
(Ω∗

i ):

Xi ≡
{
vi ∈ H1(Ω∗

i ) : vi = 0 on B[i]

}
.

Block partition the unknowns whi
= (w(i)

I ,w(i)
B )T according to the interior

unknowns and the unknowns on the boundary B(i) respectively. Denote the
block partitioned linear system for the discretized Dirichlet problem as:{

A
(i)
II w(i)

I + A
(i)
IBw(i)

B = f (i)
I ,

w(i)
B = g(i)

B .

Weak Matching on Ω∗
12. Choose a finite element space:

Yh(Ω∗
12) ⊂ L2(Ω∗

12)
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based on the triangulation of Ω∗
12 inherited from Th1(Ω

∗
1), of dimension l1.

Define the weak matching condition on Ω∗
12 as:∫

Ω∗
12

(wh1 − wh2) µh1 dx = 0, for µh1 ∈ Yh1(Ω
∗
12),

enforced using the subspace Yh1(Ω
∗
12). Denote its matrix form as:

M11wh1 − M12wh2 = 0,

where M11 is invertible of size l1. Define an oblique projection P1 ≡ M−1
11 M12.

Discrete Functional J(·, ·). Let A(12) be the stiffness matrix associated
with J(·) on the triangulation Th1(Ω

∗
12). The quadratic functional J(·) can be

discretized using A(12) and the projection P1 as follows:⎧⎪⎨
⎪⎩

J (vh1 , vh2) ≡ 1
2 ‖vh1 − vh2‖2

H1(Ω∗
12)

≈ 1
2 (vh1 − P1vh2)

T
RT

12A
(12)R12 (vh1 − P1vh2)

≡ Jh (vh1 ,vh2) .

Here R12 is a restriction map onto the nodes of Ω
∗
12 from Ω∗

1 , see Chap. 6.
The reduced functional Hh(·) can be discretized using:

Hh (gh1 ,gh2) ≡ Jh (vh1 ,vh2) ,

where

vhi
=

[
A

(i)−1

II (f (i)
I − A

(i)
IBg(i)

B )

g(i)
B

]
for 1 ≤ i ≤ 2.

Stationarity Condition. The first order derivative conditions for the mini-
mum of Hh(·) will yield the following equations for (g(1)

B ,g(2)
B ):[

ET
1 RT

12A
(12)R12E1 − ET

1 RT
12A

(12)R12P1E2

− ET
2 PT

1 RT
12A

(12)R12E1 ET
2 PT

1 RT
12A

(12)R12P1E2

][
g(1)

B

g(2)
B

]
=

[
γ

(1)
B

γ
(2)
B

]

(1.40)
where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
(1)
B ≡ ET

1 RT
12A

(12)R12

(
−µ

(1)
I + P1µ

(2)
I

)
,

γ
(2)
B ≡ ET

2 PT
1 RT

12A
(12)R12

(
−µ

(1)
I + P1µ

(2)
I

)
,

Ei ≡
[
−A

(i)−1

II A
(i)
IB

I

]
,

µ
(i)
I ≡

[
A

(i)−1

II f (i)
I

0

]
,

w(i)
I = A

(i)−1

II

(
f (i)
I − A

(i)
IBg(i)

B

)
, for i = 1, 2.
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Thus, a non-matching grid discretization of (1.33) based on the subdomains
involves solving system (1.40) for the control boundary data g(1)

B and g(2)
B .

Subsequently, the subdomain solution w(i)
I can be determined as:

w(i)
I = A

(i)−1

II

(
f (i)
I − A

(i)
IBg(i)

I

)
, for 1 ≤ i ≤ 2.

Remark 1.37. General results on the stability and convergence properties of
such discretizations are not known. However, when both local grids match on
Ω∗

12, projection P1 = I and the global discretization will be equivalent to a
traditional discretization of (1.33) on the global triangulation.

1.5.4 Heterogeneous Approximations

The least square-control formulation (1.35) provides a flexible framework for
constructing heterogeneous approximations of general systems of partial dif-
ferential equations of heterogeneous character [AT, GL13]. We illustrate here
how an elliptic-hyperbolic approximation can be constructed for the following
singularly perturbed elliptic equation:{

Lε u ≡ −ε∆u + b(x) · ∇u + c(x)u = f, on Ω
u = 0, on ∂Ω,

(1.41)

where 0 < ε � 1 is a perturbation parameter. Suppose Ω∗
1 and Ω∗

2 form an
overlapping covering of Ω such that:

|ε∆u| � |b(x) · ∇u + c(x)u| , in Ω∗
1 .

We may then heuristically approximate Lε u = f in Ω∗
1 by L0u = f where

L0 u ≡ b(x) · ∇u + c(x) u. To construct an elliptic-hyperbolic approximation
of (1.41), replace the elliptic problem Lε v1 = f on Ω∗

1 by the hyperbolic prob-
lem L0 v1 = f within the least squares-control formulation (1.35) of (1.41).
The resulting heterogeneous problem will seek (w1, w2) which minimizes:

Ĵ(w1, w2) = min
(v1,v2)∈K̂

Ĵ(v1, v2),

where
Ĵ (v1, v2) ≡ 1

2
‖v1 − v2‖2

L2(Ω∗
12)

,

and K̂ consists of (v1, v2) which satisfy the constraints:⎧⎪⎨
⎪⎩

L0 v1 = f, on Ω∗
1

v1 = g1, on B
(1)
in

v1 = 0, on B[1],in

and

⎧⎪⎨
⎪⎩

Lε v2 = f, on Ω∗
2

v2 = g2, on B(2)

v2 = 0, on B[2].

(1.42)
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Here the inflow boundary segments of B(1) and B[1] are defined by:{
B

(1)
in ≡

{
x ∈ B(1) : n1(x) · b(x) < 0

}
B[1],in ≡

{
x ∈ B[1] : n1(x) · b(x) < 0

}
,

where n1(x) is the unit outward normal to B1 at x.

Remark 1.38. The admissible set K̂ may be parameterized in terms of the local
boundary data. An equivalent unconstrained minimization problem may then
be obtained analogous to (1.37) and (1.38). See also Chap. 12.

Remark 1.39. The solution (w1, w2) to the above heterogeneous model may
not match on Ω∗

12 and the minimum value of Ĵ(·) within the class K̂ may no
longer be zero. A continuous global solution, however, may be obtained by
employing a partition of unity χ1(x) and χ2(x) subordinate to the cover Ω∗

1

and Ω∗
2 and by defining:

w(x) ≡ χ1(x) w1(x) + χ2(x) w2(x).

Remark 1.40. Rigorous results are not known on the well posedness of the
above heterogeneous model. The above procedure has been generalized and
employed to construct heterogeneous approximations to the Boltzmann,
Navier-Stokes and Euler equations [AT, GL13].
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Schwarz Iterative Algorithms

In this chapter, we describe the family of Schwarz iterative algorithms. It
consists of the classical Schwarz alternating method [SC5] and several of its
parallel extensions, such as the additive, hybrid and restricted Schwarz meth-
ods. Schwarz methods are based on an overlapping decomposition of the do-
main, and we describe its formulation to iteratively solve a discretization of a
self adjoint and coercive elliptic equation. In contrast with iterative algorithms
formulated on non-overlapping subdomains, as in Chap. 3, the computational
cost per Schwarz iteration can exceed analogous costs per iteration on non-
overlapping subdomains, by a factor proportional to the overlap between the
subdomains. However, Schwarz algorithms are relatively simpler to formulate
and to implement, and when there is sufficient overlap between the subdo-
mains, these algorithms can be rapidly convergent for a few subdomains, or
as the size of the subdomains decreases, provided a coarse space residual cor-
rection term is employed [DR11, KU6, XU3, MA15, CA19, CA17].

Our focus in this chapter will be on describing the matrix version of
Schwarz algorithms for iteratively solving the linear system Au = f obtained
by the discretization of an elliptic equation. The matrix versions correspond
to generalizations of traditional block Gauss-Seidel and block Jacobi iterative
methods. Chap. 2.1 presents background and matrix notation, restriction and
extension matrices. Chap. 2.2 describes the continuous version of the classi-
cal Schwarz alternating method [MO2, BA2, LI6] and derives its projection
version, which involves projection operators onto subspaces associated with
the subdomains. The projection version of the Schwarz alternating method
suggests various parallel generalizations such as the additive Schwarz, hybrid
Schwarz and restricted Schwarz methods. Chap. 2.3 describes the matrix ver-
sion of Schwarz algorithms, which we refer to as Schwarz subspace algorithms
[XU3]. Chap. 2.4 discusses implementational issues for applications to finite
element or finite difference discretizations of elliptic equations. Specific choices
of coarse spaces are also described. Chap. 2.5 describes theoretical results on
the convergence of Schwarz algorithms in an energy norm.
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2.1 Background

In this section, we introduce notation on the elliptic equation and its weak
formulation and discretization, subdomain decompositions and block matrix
partitioning of the resulting linear system, restriction and extension maps.

2.1.1 Elliptic Equation

We consider the following self adjoint and coercive elliptic equation:⎧⎪⎨
⎪⎩

Lu ≡ −∇ · (a(x)∇u) + c(x) u = f, in Ω

u = gD, on BD

n · (a∇u) + γ u = gN , on BN ,

(2.1)

on a domain Ω ⊂ IRd for d = 2, 3, with unit exterior normal n(x) at x ∈ ∂Ω,
Dirichlet boundary BD ⊂ ∂Ω, and natural (Neumann or Robin) boundary
BN ⊂ ∂Ω where BD ∪ BN = ∂Ω and BD ∩ BN = ∅. We shall assume that the
diffusion coefficient a(x) is piecewise smooth and for 0 < a0 ≤ a1 satisfies:

a0|ξ|2 ≤ ξT a(x) ξ,≤ a1|ξ|2, ∀x ∈ Ω, ξ ∈ IRd.

To ensure the coercivity of (2.1), we shall assume that c(x) ≥ 0 and γ(x) ≥ 0.
In most applications, we shall assume BD = ∂Ω and BN = ∅.
Remark 2.1. When BD = ∅, γ(x) ≡ 0 and c(x) ≡ 0, functions f(x) and gN (x)
will be required to satisfy compatibility conditions for solvability of (2.1):∫

Ω

f(x)dx +
∫

∂Ω

gN (x)dsx = 0.

In this case, the general solution u(·) to the Neumann boundary value problem
will not be unique, and will satisfy u(x) ≡ u∗(x) + α where u∗(x) is any
particular non-homogeneous solution and α is a constant.

2.1.2 Weak Formulation

The weak formulation of (2.1) is obtained by multiplying it by a test function
v(.) with zero boundary value on BD, and integrating the resulting expression
by parts over Ω. The weak problem will seek u ∈ H1

D(Ω) which satisfies
u(.) = gD(.) on BD such that:

A(u, v) = F (v), ∀v ∈ H1
D(Ω), (2.2)

where A(·, ·), F (·) and H1
D(Ω) are defined by:⎧⎪⎪⎨

⎪⎪⎩
A(u, v) ≡

∫
Ω

(∇u · a∇v + c u v) dx +
∫
BN

γ u v dsx,

F (v) ≡
∫

Ω
f v dx +

∫
BN

gNv dsx,

H1
D(Ω) ≡

{
v ∈ H1(Ω) : v = 0 on BD

}
.

(2.3)

Here H1
D(Ω) denotes the space satisfying zero Dirichlet boundary conditions.
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2.1.3 Finite Element Discretization

Let Th (Ω) denote a quasiuniform triangulation of Ω ⊂ IRd with elements of
size h. For simplicity, we assume that the elements are simplices (triangles
when d = 2 or tetrahedra when d = 3) and that Vh ⊂ H1(Ω) is the space of
continuous piecewise linear finite element functions on Th(Ω). Homogeneous
essential boundary conditions can be imposed in Vh by choosing Vh ∩H1

D(Ω).
The finite element discretization of (2.1), see [ST14, CI2, JO2, BR28, BR],
will seek uh ∈ Vh with uh = Ih gD on BD and satisfying:

A(uh, vh) = F (vh), ∀vh ∈ Vh ∩ H1
D(Ω). (2.4)

Here Ih denotes the nodal interpolation onto Vh, restricted to BD. This will
yield a linear system Ahuh = fh. We shall often omit the subscript h.

Let nI , nBN and nBD denote the number of nodes of triangulation Th(Ω)
in the interior of Ω, the boundary segments BN and BD, respectively. Denote
by xi for 1 ≤ i ≤ (nI + nBN

+ nBD
) all the nodes of Th(Ω). We assume that

these nodes are so ordered that:⎧⎪⎨
⎪⎩

xi ∈ Ω, for 1 ≤ i ≤ nI

xi ∈ BN , for (nI + 1) ≤ i ≤ (nI + nBN
)

xi ∈ BD, for (nI + nBN
+ 1) ≤ i ≤ (nI + nBN

+ nBD
).

Corresponding to each node 1 ≤ i ≤ (nI + nBN
+ nBD

), let φi(x) denote the
continuous piecewise linear finite element nodal basis in Vh, satisfying:

φi(xj) = δij , for 1 ≤ i, j ≤ (nI + nBN
+ nBD

),

where δij denotes the Kronecker delta. Given uh(x) ∈ Vh, we expand it as:{
uh(x) =

∑nI

i=1(uI)iφi(x) +
∑nBN

i=1 (uBN )iφnI+i(x)

+
∑nBD

i=1 (uBD
)iφnI+nBN

+i(x),

where uI , uBN
and uBD

denote subvectors defined by:⎧⎪⎪⎨
⎪⎪⎩

(uI)i ≡ uh(xi), 1 ≤ i ≤ nI ,

(uBN
)i ≡ uh(xnI+i), 1 ≤ i ≤ nBN

,

(uBD
)i ≡ uh(xnI+nBN

+i), 1 ≤ i ≤ nBD
.

This block partitions the vector of nodal values associated with uh as:

uh =
(
uT

I ,uT
BN

,uT
BD

)T
,

corresponding to the ordering of nodes in Ω, BN and BD, respectively.
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Employing the above block partition, the finite element discretization (2.4)
of (2.1) is easily seen to have the following block structure:⎧⎪⎨

⎪⎩
AIIuI + AIBN

uBN
+ AIBD

uBD
= f I

AT
IBN

uI + ABNBN uBN + ABNBDuBD = fBN

uBD
= Ih g

D
,

where the block submatrices and vectors above are defined by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(AII)ij = A(φi, φj), 1 ≤ i, j ≤ nI

(AIBN
)ij = A(φi, φnI+j), 1 ≤ i ≤ nI , 1 ≤ j ≤ nBN

(AIBD)ij = A(φi, φnI+nBN +j), 1 ≤ i ≤ nI , 1 ≤ j ≤ nBD

(ABNBN )ij = A(φnI+i, φnI+j), 1 ≤ i, j ≤ nBN

(ABNBD)ij = A(φnI+i, φnI+nBN +j), 1 ≤ i ≤ nBN , 1 ≤ j ≤ nBD

(f I)i = F (φi), 1 ≤ i ≤ nI

(fBN )i = F (φnI+i), 1 ≤ i ≤ nBN

(Ihg
D

)i = g
D

(xnI+nBN +i), 1 ≤ i ≤ nBD .

Eliminating uBD
in the above linear system yields:{
AIIuI + AIBN

uBN
= f I − AIBD

Ihg
D

AT
IBN

uI + ABNBN
uBN

= fBN
− ABNBD

Ihg
D

.
(2.5)

In matrix notation, this yields the block partitioned linear system:[
AII AIBN

AT
IBN

ABNBN

][
uI

uBN

]
=

[
f̃ I

f̃BN

]
,

where [
f̃ I

f̃BN

]
≡
[
f I − AIBD

Ihg
D

fBN
− ABNBD

Ihg
D

]
.

Remark 2.2. If BN = ∅, then problem (2.1) will be a Dirichlet problem with
∂Ω = BD. In this case, the discretization reduces to:

Ahuh = fh, (2.6)

with Ah ≡ AII and fh ≡ f I − AIBIhgB, where we have denoted B ≡ BD.

Remark 2.3. If BD = ∅, then (2.1) will be a Robin problem if γ(x) = 0, or a
Neumann problem if γ(x) ≡ 0. In this case ∂Ω = BN and we shall use the
notation B ≡ BN . The discretization of (2.1) will then have the form:

Ahuh = fh, with Ah ≡
[

AII AIB
AT

IB ABB

]
, uh ≡

[
uI

uB

]
, fh ≡

[
f̃ I

f̃B

]
. (2.7)



2.1 Background 51

If γ(x) ≡ 0 and c(x) ≡ 0, then matrix Ah will be singular, satisfying Ah 1 = 0,
where 1 and 0 denote vectors of appropriate size having all entries identically
1 or 0, respectively. In this case, the forcing fh in (2.7) will be required to
satisfy the compatability condition 1T fh = 0, for the linear system to be
solvable. The solution space will then have the form uh = u∗

h +α1 for α ∈ IR,
where u∗

h is any particular solution.

2.1.4 Multisubdomain Decompositions

We employ the following notation for multidomain decompositions, see Fig. 2.1.

Definition 2.4. A collection of open subregions Ωi ⊂ Ω for 1 ≤ i ≤ p will be
referred to as a nonoverlapping decomposition of Ω if the following hold:{

∪p
l=1Ωi = Ω,

Ωi ∩ Ωj = ∅, if = j.

Boundaries of the subdomains will be denoted Bi ≡ ∂Ωi and their interior
and exterior segments by B(i) ≡ ∂Ωi ∩ Ω and B[i] ≡ ∂Ωi ∩ ∂Ω, respectively.
We denote common interfaces by Bij ≡ Bi ∩ Bj and B ≡ ∪iB

(i).

When the subdomains Ωi are shape regular, we let h0 denote its diameter.
For additional notation on non-overlapping subdomains, see Chap. 3.

Definition 2.5. A collection of open subregions Ω∗
i ⊂ Ω for 1 ≤ i ≤ p will be

referred to as an overlapping decomposition of Ω if the following holds:

∪p
l=1Ω

∗
i = Ω.

If {Ωl}p
l=1 forms a non-overlapping decomposition of Ω of diameter h0 and

each Ωi ⊂ Ω∗
i , then {Ω∗

l }
p
l=1 will be said to form an overlapping decomposition

of Ω obtained by extension of {Ωl}p
l=1. Most commonly:

Ω∗
i ≡ Ωβ h0

i ≡ {x ∈ Ω : dist(x,Ωi) < β h0} (2.8)

where 0 < β < 1 is called the overlap factor. Boundaries will be denoted ∂Ω∗
i

and with abuse of notation, B(i) ≡ ∂Ω∗
i ∩Ω and B[i] ≡ ∂Ω∗

i ∩∂Ω, respectively.

Ω1 Ω2 Ω3 Ω4

Ω5 Ω6 Ω7 Ω8

Ω9 Ω10 Ω11 Ω12

Ω13 Ω14 Ω15 Ω16

Non-overlapping subdomains

Ω∗
1

Ω∗
11

Selected extended subdomains

Fig. 2.1. Multidomain overlapping and non-overlapping decompositions
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2.1.5 Restriction and Extension Maps

Restriction and extension maps are rectangular matrices used for representing
domain decomposition preconditioners. A restriction map will restrict a vector
of nodal values to a subvector corresponding to indices in some index set S.
An extension map will extend a subvector of nodal values in S to a full vector,
whose entries will be zero outside S. Formally, given any subregion S ⊂ (Ω ∪
BN ), order the nodes of Th(Ω) in S in some local ordering. Let n ≡ (nI +nBN

)
denote the total number of finite element unknowns, and nS the number of
nodes of Th(Ω) in S. We shall associate an index function index(S, i) to denote
the global index of the i’th local node in S for 1 ≤ i ≤ nS . We then define an
nS × n restriction matrix RS which will map a vector in IRn of nodal values
on the grid Th(Ω) into a subvector in IRnS of nodal values associated with the
nodes in S in the local ordering:

(RS)ij =

{
1 if index(S, i) = j

0 if index(S, i) = j.
(2.9)

The transpose RT
S of restriction matrix RS is referred to as an extension

matrix. It will be an n×nS matrix which extends a vector in IRnS to a vector
in IRn with zero entries corresponding to indices not in S.

Remark 2.6. Given a vector v ∈ IRn of nodal values in Th(Ω), the vector
RS v ∈ IRnS will denote its subvector corresponding to indices of nodes in S
(using the local ordering of nodes in S). Given a nodal vector vS ∈ IRnS of
nodal values in S, the vector RT

SvS ∈ IRn will denote a nodal vector in Th(Ω)
which extends vS to have zero nodal values at all nodes not in S. To imple-
ment such maps, their action on vectors should be computed algorithmically
employing suitable data structures and scatter-gather operations.

Remark 2.7. Given the global stiffness matrix Ah of size n, its submatrix ASS
of size nS corresponding to the nodes in S may be expressed formally as:

ASS = RSAhRT
S .

In implementations, the action of ASS on vectors should be computed algo-
rithmically employing scatter-gather operations and sparse data structures.

Remark 2.8. Typical choices of S in Schwarz algorithms will be indices of
nodes in Ω∗

i ∪ (BN ∩ ∂Ω∗
i ). (In Schur complement algorithms, see Chap. 3,

the set S will correspond to indices of nodes on segments, called globs, of the
subdomain boundaries B(i). The notation RS and RT

S will be used).

2.1.6 Partition of Unity

Given an overlapping decomposition Ω∗
1 , . . . , Ω∗

p of Ω, we shall often employ a
smooth partition of unity χ1(x), . . . , χp(x) subordinate to these subdomains.
The partition of unity functions must satisfy the following requirements:
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⎩

χi(x) ≥ 0, in Ω
∗
i

χi(x) = 0, in Ω\Ω
∗
i

χ1(x) + · · · + χp(x) = 1, in Ω.

(2.10)

As in Chap. 1.1, a continuous partition of unity may be constructed based on
the distance functions di(x) ≡ dist(x, ∂Ω∗

i ∩ Ω) ≥ 0 as follows:

χi(x) ≡ di(x)
d1(x) + · · · + dp(x)

, for 1 ≤ i ≤ p.

Smoother χi(x) may be obtained by using mollified di(x), see [ST9].

2.1.7 Coarse Spaces

The convergence rate of one-level domain decomposition algorithms (namely,
algorithms involving only subdomains problems) will typically deteriorate as
the number p of subdomains increases. This may be understood heuristically
as follows. Consider a rectangular domain Ω divided into p vertical strips. Each
iteration, say of a Schwarz alternating method, will only transfer information
between adjacent subdomains. Thus, if the forcing term is nonzero only in
the first strip and the starting iterate is zero, then it will take p iterations for
the local solution to be nonzero in the p’th subdomain. For elliptic equations
(which have a global domain of dependence on the solution, due to the Green’s
function representation), the solution will typically be nonzero globally even
when the forcing term is nonzero only in a small subregion. Thus, an algo-
rithm such as the classical Schwarz alternating method (and other one-level
methods) will impose limits on the speed at which information is transferred
globally across the entire domain.

The preceding limitation in the rate of convergence of one-level domain de-
composition iterative algorithms can be handled if a mechanism is included for
the global transfer of information across the subdomains. Motivated by multi-
grid methodology [BR22, HA2, MC2] and its generalizations [DR11, XU3],
such a global transfer of information can be incorporated by solving a subprob-
lem on an appropriately chosen subspace of the finite element space, whose
support covers the entire domain. Such subspaces are referred to as coarse
spaces, provided they satisfy specified assumptions. A simple example would
be the space of coarse grid finite element functions defined on a coarse trian-
gulation Th0(Ω) of Ω, as in two-level multigrid methods. In the following, we
list the approximation property desired in such coarse spaces, where 0 < h0

represents a small parameter (typically denoting the subdomain size).

Definition 2.9. A subspace V0 ⊂ Vh ∩ H1
D(Ω) will be referred to as a coarse

space having approximation of order O(h0) if the following hold:{
‖Q0 uh‖H1(Ω) ≤ C ‖uh‖H1(Ω), ∀uh ∈ Vh ∩ H1

D(Ω)

‖uh − Q0 uh‖L2(Ω) ≤ C h0‖uh‖H1(Ω), ∀uh ∈ Vh ∩ H1
D(Ω)

where Q0 denotes the L2-orthogonal projection onto subspace V0 ∩ H1
D(Ω).
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Using a coarse space V0 ⊂ Vh, information may be transferred globally
across many subdomains, by solving a finite dimensional global problem, using
residual correction as follows. Suppose wh denotes an approximate solution of
discrete problem (2.4) in Vh ∩ H1

D(Ω). An improved approximation wh + w0

of uh may be sought by selecting w0 ∈ V0 so that it satisfies the following
residual equation:

A(w0, v) = F (v) −A(wh, v), ∀v ∈ V0. (2.11)

It is easily verified that w0 is the A(., .)-orthogonal projection of uh −wh onto
the subspace V0. Once w0 is determined, wh + w0 will provide an improved
approximation of the desired solution uh.

The preceding coarse space residual problem (2.11) can be represented in
matrix terms as follows. Let n0 denote the dimension of V0 ⊂ Vh ∩ H1

D(Ω)
and let ψ

(0)
1 (·), · · · , ψ

(0)
n0 (·) denote a basis for V0. If n = (nI + nBN

) is the
dimension of Vh∩H1

D(Ω), let x1, · · · , xn denote the nodes in (Ω∪BN ). Define
an n × n0 matrix RT

0 whose entries are defined as follows:

RT
0 =

⎡
⎢⎢⎢⎣

ψ
(0)
1 (x1) · · · ψ

(0)
n0 (x1)

...
...

ψ
(0)
1 (xn) · · · ψ

(0)
n0 (xn)

⎤
⎥⎥⎥⎦ .

Let w0 = RT
0 α and v = RT

0 β denote nodal vectors representing w0 and v
above, for suitable coefficient vectors α, β ∈ IRn0 . Then (2.11) becomes:

βT (R0AhRT
0 )α = βT R0 (fh − Ahwh) , ∀β ∈ IRn0 .

This yields the linear system A0 α = R0 (fh − Ahwh) , where A0 = (R0AhRT
0 ).

The vector update to the approximate solution wh will then be wh + RT
0 α,

which may also be expressed as wh + RT
0 A−1

0 R0 (fh − Ahwh). Four specific
coarse spaces V0 are described in the following. Additional spaces are described
in [BR15, SM2, CO8, SA7, WI6, MA17].

Coarse Triangulation Space. If domain Ω can be triangulated by a quasi-
uniform triangulation Th0(Ω) with elements of size h0 > h, such that Th(Ω)
is obtained by successive refinement of Th0(Ω), then a coarse space V0 can be
defined as the space of continuous, piecewise linear finite element functions on
triangulation Th0(Ω). To enforce homogeneous essential boundary conditions
so that V0 ⊂ Vh∩H1

D(Ω), the Dirichlet boundary segment BD must the union
of boundary segments of elements of Th0(Ω). Such coarse spaces are motivated
by multigrid methodology.

Interpolation of a Coarse Triangulation Space. If the geometry of Ω
is complex or the triangulation Th(Ω) is unstructured, then it may be com-
putationally difficult, if not impossible, to construct a coarse triangulation
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Th0(Ω) of Ω from which to obtain Th(Ω) by successive refinement. In such
cases, an alternative coarse space [CA4, CH17] can be constructed as follows,
when BN = ∅. Let Ω∗ ⊃ Ω denote an extension of Ω having simpler geometry
(such as a polygon). Let Th0(Ω

∗) denote a coarse triangulation of Ω∗ hav-
ing elements of size h0 > h. The elements of Th0(Ω

∗) will in general not be
the union of elements in Th(Ω). Despite this, a coarse subspace of Vh can be
defined as follows. Let Vh0(Ω

∗) ⊂ H1
0 (Ω∗) denote a finite element space on

triangulation Th0(Ω
∗) of Ω∗ with zero boundary values. Define V0 as:

V0 ≡ {πhw∗
h0

: w∗
h0

∈ Vh0(Ω
∗)},

where πh denotes the standard nodal interpolation onto all grid points of
Th(Ω) excluding nodes on BD. By construction V0 ⊂ Vh ∩ H1

D(Ω).

Interpolation of a Polynomial Space. If as in the preceding case, the
geometry of Ω is complex or the triangulation Th(Ω) is unstructured, and
BD = ∅, then a coarse space may be defined as follows. Let Pd(Ω) denote
the space of all polynomials of degree d or less on Ω. Generally Pd(Ω) ⊂ Vh.
However, we may interpolate such polynomials onto the finite element space
Vh ∩ H1

D(Ω) as follows:

V0 ≡ {πhwd(x) : wd(x) ∈ Pd(Ω)} ,

where πh denotes the standard nodal interpolant onto the finite element space
Vh ∩ H1

D(Ω). By construction V0 ⊂ Vh ∩ H1
D(Ω).

Piecewise Constant Space. A more general coarse space, referred to as the
piecewise constant coarse space [CO8, SA7, MA17, WA6], can be constructed
given any nonoverlapping decomposition Ω1, . . . , Ωp of Ω as follows. Let h0

denote the size of the subdomains and define Ω∗
i as the extension of Ωi con-

taining all points of Ω within a distance β h0 to Ωi. Let χ1(.), . . . , χp(.) denote
a partition of unity based on Ω∗

1 , . . . , Ω∗
p . This partition of unity should be

constructed so that its sum is zero on BD and unity on BN . Denote the union
of subdomain interfaces as B ≡ (∪p

i=1∂Ωi) \ BD.
Define a restriction map RB which restricts any function w(x) onto B:

RB w(x) ≡ w(x), for x ∈ B.

Given a function v(x) defined on B, denotes its piecewise harmonic extension
Ev(x) into the interior of each subdomain Ωi for 1 ≤ i ≤ p as:{

L (Ev) = 0, in Ωi

Ev = v, on ∂Ωi,

where LEv denotes the elliptic operator applied to Ev. The continuous version
of the piecewise constant coarse space V0 is now defined as:

V0 ≡ span [E RB χ1 . . . E RB χp] .
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A finite element version of V0 can be constructed analogously, see Chap. 2.5,
using restriction onto nodal values on B and discrete harmonic extensions into
the subdomains. If the coefficient a(.) in (2.1) is discontinuous of the form:

a(x) ≡ ai for x ∈ Ωi, 1 ≤ i ≤ p,

then it will be advantageous to rescale the original partition of unity to account
for large variation in a(.). A new partition of unity χ̂1(.), . . . , χ̂p(.) will be:

χ̂i(x) ≡ ai χi(x)
a1 χ1(x) + · · · + ap χp(x)

for 1 ≤ i ≤ p.

An alternative coarse space V̂0 can be constructed based on this.

2.2 Projection Formulation of Schwarz Algorithms

In this section, we describe the classical Schwarz alternating method for iter-
atively solving the following coercive elliptic equation:⎧⎪⎨

⎪⎩
Lu ≡ −∇ · (a(x)∇) + c(x) u = f, in Ω

n · ( a∇u) + γ u = gN , in BN

u = 0, on BD,

(2.12)

where c(x) ≥ 0, γ(x) ≥ 0, and BD and BN denote Dirichlet and natural
boundary segments of ∂Ω. The weak formulation of (2.12) seeks u ∈ H1

D(Ω):

A(u, v) = F (v), ∀v ∈ H1
D(Ω), (2.13)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(u, v) ≡
∫

Ω
(a(x)∇v · ∇v + c(x) u v) dx

+
∫
BN

γ(x) u v ds(x), for u, v ∈ H1
D(Ω)

F (v) ≡
∫

Ω
f(x) v(x) dx +

∫
BN

gN (x) v ds(x), for v ∈ H1
D(Ω)

H1
D(Ω) ≡

{
v ∈ H1(Ω) : v = 0 on BD

}
.

(2.14)

Applying integration by parts to the continuous version of the multidomain
Schwarz alternating method, we shall derive a formal expression for the up-
dates in the iterates as involving orthogonal projections onto certain subspaces
of H1

D(Ω). Employing these projections, we shall derive various parallel ex-
tensions of the classical Schwarz alternating method, including the additive
Schwarz, hybrid Schwarz and restricted Schwarz methods. Let Ω∗

1 , · · · , Ω∗
p

denote an overlapping decomposition of Ω, and let B(i) ≡ ∂Ω∗
i ∩ Ω and

B[i] ≡ ∂Ω∗
i ∩ ∂Ω denote the interior and exterior boundary segments of Ω∗

i .
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2.2.1 Classical Schwarz Alternating Method

Let w(0) denote a starting iterate satisfying w(0) = 0 on BD. Then, the
multidomain Schwarz alternating method will iteratively seek the solution
to (2.12) by sequentially updating the iterate on each subdomain Ω∗

i in some
prescribed order. Each iteration (or sweep) will consist of p fractional steps
and we shall denote the iterate in the i’th fractional step of the k’th sweep as
w(k+ i

p ). Given w(k+ i−1
p ) the next iterate w(k+ i

p ) is computed as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∇ ·
(
a(x)∇w(k+ i

p )
)

+ c(x)w(k+ i
p ) = f(x), in Ω∗

i

n ·
(
a∇w(k+ i

p )
)

+ γ w(k+ i
p ) = gN , on B[i] ∩ BN

w(k+ i
p ) = w(k+ i−1

p ), on B(i)

w(k+ i
p ) = 0, on B[i] ∩ BD.

(2.15)

The local solution w(k+ i−1
p ) is then extended outside Ω∗

i as follows:

w(k+ i
p ) ≡ w(k+ i−1

p ), on Ω \ Ω
∗
i . (2.16)

The resulting iterates will thus be continuous on Ω by construction.

Algorithm 2.2.1 (Continuous Schwarz Alternating Method)
Input: w(0) starting iterate.

1. For k = 0, 1, · · · until convergence do:
2. For i = 1, · · · , p solve:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∇ ·
(
a(x)∇v(k+ i

p )
)

+ c(x) v(k+ i
p ) = f(x), in Ω∗

i

n ·
(
a∇v(k+ i

p )
)

+ γ v(k+ i
p ) = gN , on B[i] ∩ BN

v(k+ i
p ) = w(k+ i−1

p ), on B(i)

v(k+ i
p ) = 0, on B[i] ∩ BD.

Update:

w(k+ i
p ) ≡

{
v(k+ i

p ), on Ω
∗
i

w(k+ i−1
p ), on Ω \ Ω

∗
i .

3. Endfor
4. Endfor

The iterates w(k)(.) will converge geometrically to the solution u(.) with:

‖u − w(k)‖H1(Ω) ≤ δk ‖u − w(0)‖H1(Ω).

The convergence factor 0 < δ < 1 will generally depend on the overlap β
between the subdomains, the diameters diam(Ω∗

i ) of the subdomains, and the
coefficients in (2.1), see Chap. 2.5 and Chap. 15.
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As the number p of subdomains increases, the convergence rate typically
deteriorates yielding δ → 1. This is because the true solution to (2.12) has a
global domain of dependence on f(.), while if w(0) = 0 and f(.) has support in
only one subdomain, then since information is transferred only between adja-
cent subdomains during each sweep of the Schwarz iteration, it may generally
take p sweeps before this information is transferred globally. Such a deteri-
oration in the convergence, however, can often be remedied by using coarse
space residual correction (described later).

The Schwarz alternating Alg. 2.2.1 is also known as the multiplicative
or sequential Schwarz algorithm. It is sequential in nature. However, paral-
lelizability of this algorithm can be significantly improved by grouping the
subdomains into colors so that distinct subdomains of the same color do not
intersect. Then, all subproblems on subdomains of the same color can be
solved concurrently, since such subdomain does not intersect.

Definition 2.10. Given subdomains Ω∗
1 , · · · , Ω∗

p , a partition C1, · · · , Cd of the
index set {1, 2, · · · , p} is said to yield a d-coloring of the subdomains if:

i, j ∈ Ck with i = j =⇒ Ω∗
i ∩ Ω∗

j = ∅,

so that subdomains of the same color Ck do not intersect.

The following is the multicolor Schwarz algorithm with starting iterate w(.).

Algorithm 2.2.2 (Multicolor Schwarz Alternating Algorithm)
Input: w(.)

1. For k = 0, · · · until convergence do:
2. For l = 1, · · · , d do:
3. For each i ∈ Cl solve in parallel:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∇ ·
(
a(x)∇v(k+ i

p )
)

+ c(x) v(k+ i
p ) = f(x), in Ω∗

i

n ·
(
a∇v(k+ i

p )
)

+ γv(k+ i
p ) = gN , on B[i] ∩ BN

v(k+ i
p ) = w, on B(i)

v(k+ i
p ) = 0, on B[i] ∩ BD.

Update:
w ← v(k+ i

p ), on Ω
∗
i .

4. Endfor
5. Endfor
6. w(k+1) ← w
7. Endfor

Output: w(.)
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Ω1 Ω2 Ω3 Ω4

Ω5 Ω6 Ω7 Ω8

Ω9 Ω10 Ω11 Ω12

Ω13 Ω14 Ω15 Ω16

Non-overlapping decomposition

Ω∗
1

Ω∗
11

Selected extended subdomains

Fig. 2.2. Multisubdomain overlapping decomposition

Remark 2.11. To minimize the number d of sequential steps, the number of
colors d should be chosen to be as small as possible. Additionally, to ensure
that the loads assigned to each processor are balanced, there should be approx-
imately the same number of subdomains of each color, and each subdomain
should be approximately of the same diameter. For instance, the subdomains
Ω∗

1 , · · · , Ω∗
16 in Fig. 2.2 may be grouped into four colors:

C1 = {1, 3, 9, 11} , C2 = {2, 4, 10, 12} , C3 = {5, 7, 13, 15} , C4 = {6, 8, 14, 16} ,

provided the overlap β is not too large.

Remark 2.12. If q processors are available and the subdomains can be colored
into d colors with approximately (p/d) subdomains of the same color, and
further if (p/d) is a multiple of q, then subdomains of the same color may be
partitioned into q groups and each group assigned to one of the processors.
Some communication will be necessary between the different subdomains.

The updates w(k+ i
p ) in the continuous Schwarz alternating method can be

expressed in terms of certain projection operators onto subspaces of H1
D(Ω),

see [MA37, LI6]. On each Ω∗
i define a subspace Vi of H1

D(Ω) as:

Vi ≡
{
v ∈ H1

D(Ω) : v = 0 in Ω \ Ω∗
i

}
. (2.17)

We will employ the property that the bilinear form A(., .) in (2.14) defines an
inner product on H1

D(Ω) when BD = ∅, see [CI2, JO2]. We define an A(., .)-
orthogonal projection operator Pi onto subspace Vi of H1

D(Ω) as follows.

Definition 2.13. Given w ∈ H1
D(Ω) define Piw ∈ Vi as the solution of:

A(Piw, v) = A(w, v), for v ∈ Vi.

Remark 2.14. The existence and uniqueness of Piw is guaranteed by the
Lax-Milgram lemma, see [CI2]. If u denotes the solution of weak formula-
tion (2.13), then Piu can be computed without explicit knowledge of u using
that A(u, v) = F (v), since F (·) is given for all v ∈ Vi.

The following result shows that the projection maps Pi can represent the
updates in the continuous version of the Schwarz alternating method.



60 2 Schwarz Iterative Algorithms

Lemma 2.15. Suppose the following assumptions hold.

1. Let u satisfy (2.13) and let gN (x) ≡ n · (a(x)∇u) + γ(x) u on BN .
2. Given w ∈ H1

D(Ω) let wi satisfy:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∇ · (a(x)∇wi) + c(x) wi = f(x), on Ω∗
i

n · (a∇wi) + γ wi = gN , on B[i] ∩ BN

wi = w, on B(i)

wi = 0, on B[i] ∩ BD.

(2.18)

with wi ≡ w on Ω \ Ω∗
i .

Then wi = w + Pi (u − w) .

Proof. Multiplying (2.18) by v ∈ Vi ⊂ H1
D(Ω) (which is zero outside Ω∗

i ), and
integrating the resulting term by parts yields:∫

Ω∗
i

(Lwi) v dx =
∫

Ω

(Lwi) v dx = A(wi, v) = F (v) = A(u, v), ∀v ∈ Vi,

where wi ∈ Vi due to its boundary conditions. Employing the above yields:

A(wi − w, v) = A(u − w, v), ∀v ∈ Vi.

Since (wi − w) = 0 in Ω \ Ω∗
i it yields wi − w ∈ Vi and wi − w = Pi(u − w).

Thus, we obtain wi = w + Pi (u − w) . ��

The continuous version of the Schwarz alternating method may now be
reformulated in terms of the projection operators Pi onto Vi ⊂ H1

D(Ω). An
application of Lemma 2.15 with wi ≡ w(k+ i

p ) and w ≡ w(k+ i−1
p ) yields:

w(k+ i
p ) = w(k+ i−1

p ) + Pi

(
u − w(k+ i−1

p )
)
. (2.19)

Substituting this representation into the Schwarz alternating method yields
its projection formulation.

Algorithm 2.2.3 (Projection Version of the Classical Schwarz Method)
Input: w(0) starting iterate.

1. For k = 0, 1, · · · until convergence do:
2. For i = 1, · · · , p do

w(k+ i
p ) = w(k+ i−1

p ) + Pi

(
u − w(k+ i−1

p )
)
.

3. Endfor
4. Endfor

Output: w(k)
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Remark 2.16. The preceding projection version of the Schwarz alternating
method will also be applicable for more general subspaces Vi ⊂ H1

D(Ω). To
ensure convergence, however, the subspaces Vi of H1

D(Ω) must satisfy:

H1
D(Ω) = V1 + · · · + Vp

see Chap. 2.5. For general subspaces Vi ⊂ H1
D(Ω), the projections Pi may no

longer involve the solution of partial differential equations on subdomains.

Subtracting the iterates in (2.19) from u and recursively applying the
expression yields the following equation for the error u − w(k+1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
u − w(k+1)

)
= (I − Pp)

(
u − w(k+ p−1

p )
)

= (I − Pp)(I − Pp−1)
(
u − w(k+ p−2

p )
)

...

= (I − Pp) · · · (I − P1)
(
u − w(k)

)
.

Define the error amplification map by T = (I −Pp) · · · (I −P1). This map T
will be a contraction (in an appropriate norm, see Chap. 2.5). Since (I − T )
involves only sums (or differences) of products of projections Pi, we may
compute w∗ ≡ (I − T )u without explicit knowledge of u. For instance, when
p = 2 we obtain that (I −T ) = P1 +P2 −P2P1 and w∗ = P1u+P2u−P2P1u.
Consequently, an equivalent problem for determining u is:

(I − T )u = w∗. (2.20)

Equation (2.20) will be well posed since T is a contraction.

2.2.2 Additive Schwarz Method

The additive Schwarz method to solve (2.13) is a highly parallel algorithm in
the Schwarz family [DR11]. It reformulates (2.13) using a sum of projections
P ≡ P1 + · · · + Pp, where each Pi is the A(., .)-orthogonal projection onto Vi

defined by (2.17). Formally, the solution u of (2.13) will also solve:

P u = w∗, (2.21)

where w∗ ≡ P1u + · · · + Ppu can be computed without explicit knowledge of
u, since the terms Piu ∈ Vi can be computed by solving:

A(Piu, v) = A(u, v) = F (v), ∀v ∈ Vi.

It is shown in Chap. 2.5 that the operator P is self adjoint and coercive in the
Sobolev space H1

D(Ω) equipped with the inner product A(., .). Furthermore,
upper and lower bounds can be calculated for the spectra of P , ensuring the
well posedness of problem (2.21).
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The additive Schwarz formulation of (2.13) is based on the solution
of (2.21). In the discrete case, it is typically employed as a preconditioner,
however, for illustrative purposes we indicate a Richardson iteration to
solve (2.21). Given an iterate w(k), a new iterate w(k+1) is constructed as
follows [TA5]. For 1 ≤ i ≤ p solve in parallel:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∇ ·
(
a(x)∇v

(k+1)
i

)
+ c(x) v

(k+1)
i = f(x), in Ω∗

i

n ·
(
a∇v

(k+1)
i

)
+ γ v

(k+1)
i = gN , on B[i] ∩ BN

v
(k+1)
i = w(k), on B(i)

v
(k+1)
i = 0, on B[i] ∩ BD

and extend v
(k+1)
i ≡ w(k) on Ω \ Ω∗

i . Then update:

w(k+1) ≡ (1 − τ p) w(k) + τ
(
v
(k+1)
1 + · · · + v(k)

p

)
,

where 0 < t1 < τ < t2 < 1
p is the step size parameter in Richardson’s iteration.

The resulting algorithm is summarized below in terms of projections.

Algorithm 2.2.4 (Additive Schwarz-Richardson Iteration)
Input: w(0) (starting iterate) and 0 < t1 < τ < t2 < 1

p

1. For k = 0, · · · until convergence do:
2. Compute in parallel:

w(k+1) ≡ w(k) + τ
(
P1(u − w(k)) + · · · + Pp(u − w(k))

)
.

3. Endfor

The additive Schwarz-Richardson iterates w(k) will converge geometrically
to u for appropriately chosen τ . However, the multiplicative Schwarz iterates
will generally converge more rapidly [XU3]. The matrix version of the additive
Schwarz preconditioner is described in Chap.2.3. If a coarse space V0 ⊂ H1

D(Ω)
is employed, then P = (P0 + · · · + Pp) must be employed.

2.2.3 Hybrid Schwarz Method

The hybrid Schwarz method is a variant of the additive Schwarz method
obtained by incorporating sequential steps from the multiplicative Schwarz
method [MA15]. The resulting method yields improved convergence over the
additive Schwarz method, but the algorithm is less parallelizable due to the
extra sequential steps.

As in the additive Schwarz method, subspaces Vi are defined by (2.17),
with associated A(., .)-orthogonal projections Pi for 1 ≤ i ≤ p. Additionally, a
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coarse space V0 ⊂ H1
D(Ω) is employed with A(., .)-orthogonal projection P0.

The hybrid Schwarz formulation decomposes the solution to (2.13) as:

u = P0u + (I − P0)u,

which is an A(., .)-orthogonal decomposition. The component P0u ∈ V0 can
be formally determined by solving the subproblem:

A(P0u, v0) = F (v0), ∀v0 ∈ V0,

without explicit knowledge of u. The component (I − P0)u ∈ V ⊥
0 can be

sought, in principle, by applying an additive Schwarz method in V ⊥
0 :

(I − P0) (P1 + · · · + Pp) (I − P0)u = g∗,

where V ⊥
0 denotes the orthogonal complement of V0 in the inner product

A(., .). Here g∗ = (I −P0) (P1 + · · · + Pp) (I −P0)u can be computed without
explicit knowledge of u. The preceding observations may be combined. Define:

P̂ ≡ P0 + (I − P0) (P1 + · · · + Pp) (I − P0),

and formally construct the following problem equivalent to (2.13):

P̂ u = f∗, (2.22)

where f∗ ≡ P̂ u can be computed explicitly. The operator P̂ can be shown to
be self adjoint and coercive in A(., .) and will generally have improved spectral
properties over the additive Schwarz operator P = (P1 + · · · + Pp). Formally,
the hybrid Schwarz method solves (2.22).

Remark 2.17. The forcing f∗ in (2.22) can be computed explicitly as follows.
Determine u0 ∈ V0 satisfying:

A(u0, v0) = F (v0), ∀v0 ∈ V0.

For 1 ≤ i ≤ p determine wi ∈ Vi satisfying:

A(wi, vi) = F (vi) −A(u0, vi), ∀vi ∈ Vi.

Define w ≡ w1 + · · · + wp and determine ũ0 ∈ V0 satisfying:

A(ũ0, v0) = A(w, v0), ∀v0 ∈ V0.

Then f∗ = P̂ u = u0 + (w − ũ0).

In the following, we illustrate a Richardson iteration to solve (2.22).
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Algorithm 2.2.5 (Hybrid Schwarz-Richardson Iteration)
Input: w(0) starting iterate and 0 < t1 < τ < t2 < 1

p

1. For k = 0, · · · until convergence do:
2. Compute in parallel:

w(k+1) ≡ w(k) + τP̃ (u − w(k)).

3. Endfor

Remark 2.18. The balancing domain decomposition preconditioner for Schur
complement matrices (in Chap. 3) is based on this principle [MA14, MA17].
In it, the exact projections Pi are replaced by approximations which require
the solution of Neumann boundary value problems on non-overlapping sub-
domains Ωi. For each subdomain Neumann problem to be solvable, certain
compatibility conditions must be satisfied locally. In such applications, the
coarse space V0 may be constructed so that all the subdomain compatability
conditions are simultaneously enforced in the orthogonal complement of V0.

2.2.4 Restricted Schwarz Algorithm

The restricted Schwarz method is a variant of the additive Schwarz method
employing a partition of unity, see [CA19, KU6, CA17]. Formally, it can also
be motivated by a multisubdomain hybrid formulation of (2.12) based on a
partition of unity χ1(x), · · · , χp(x) subordinate to Ω∗

1 , · · · , Ω∗
p . In practice,

the algorithm can be applied either as an unaccelerated iteration or as a
preconditioner. In the latter case, it yields a non-symmetric preconditioner
even for self adjoint problems. Given the partition of unity {χi(.)}p

i=1, we
note that

∑
j �=i χj(x) = 1 on B(i) for 1 ≤ i ≤ p, since χi(x) = 0 on B(i).

Using this, we obtain the hybrid formulation.

Theorem 2.19. Suppose the following assumptions hold.

1. Let c(x) ≥ c0 > 0 in (2.12).
2. Let u(x) denote a solution to (2.12).
3. Let w1(.), · · · , wp(.) solve the hybrid formulation for 1 ≤ i ≤ p:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∇ · (a(x)∇wi) + c(x) wi = f(x), in Ω∗
i

n · (a∇wi) + γ wi = gN , on B[i] ∩ BN

wi =
∑

j �=i χj wj , on B(i)

wi = 0, on B[i] ∩ BD.

(2.23)

Then, the following result will hold:

u(x) = wi(x) on Ω
∗
i , for 1 ≤ i ≤ p.

Proof. See Chap. 15 for the case BN = ∅. ��
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The hybrid formulation (2.23) corresponds to a fixed point equation for
the following linear mapping T defined by:

T (v1, · · · , vp) = (w1, · · · , wp)

where for vi satisfying vi = 0 on B[i] ∩ BD and n · (a∇vi) + γ vi = gN on
B[i] ∩ BN for 1 ≤ i ≤ p, the outputs wi satisfy:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∇ · (a(x)∇wi) + c(x) wi = f(x), on Ω∗
i

n · (a∇wi) + γ wi = gN , on B[i] ∩ BN

wi =
∑

j �=i χj vj , on B(i)

wi = 0, on B[i] ∩ BD.

(2.24)

Under the assumption c(x) ≥ c0 > 0 and BN = ∅, the mapping T will
be a contraction and the Picard iterates of T will converge to its fixed point
(u1, · · · , up) where ui ≡ u on each subdomain Ω∗

i . Given local approximations
(v1, · · · , vp) define a global approximation v ≡

∑p
j=1 χj vj . Since χi(x) = 0

for x ∈ B(i). the global approximation v(x) will satisfy:

v(x) =
∑
j �=i

χj(x)vj(x), on each B(i).

Substitute this into (2.24) and apply Lemma 2.15 to wi with w ≡ v to obtain:

wi = v + Pi(u − v), on Ω∗
i , for 1 ≤ i ≤ p

where u solves (2.13). At the fixed point of T where v = w, this yields:

w =
∑

i

χi wi =
∑

i

χi (w + Pi(u − w)) = w +
∑

i

χiPi(u − w). (2.25)

The following algorithm corresponds to a Picard iteration of the map T .

Algorithm 2.2.6 (Restricted Schwarz Method in Projection Form)
Input: (w(0)

1 , · · · , w
(0)
p ) and w(0)(x) ≡

∑p
j=1 χj(x)w(0)

j (x)

1. For k = 0, 1, · · · until convergence do:
2. For i = 1, · · · , p in parallel compute:

w
(k+1)
i ≡ Pi

(
u − w(k)

)
.

3. Endfor
4. Define: w(k+1)(x) ≡ w(k)(x) +

∑p
i=1 χi(x)w(k+1)

i (x).
5. Endfor
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Under appropriate assumptions, T will be a contraction and the iterates
w(k) will converge geometrically to the solution u of (2.12):

‖w(k) − u‖∞,Ω ≤ δk ‖w(0) − u‖∞,Ω ,

where ‖ · ‖∞,Ω denotes the maximum norm, see Chap. 15 when BN = ∅.

Remark 2.20. The matrix form of preconditioner associated with the restricted
Schwarz method is described in Chap. 2.3. The preceding restricted Schwarz
algorithm did not employ coarse space residual correction. Consequently, as
the number of subdomains is increased and their diameters decrease in size, the
rate of convergence of the algorithm can deteriorate. The convergence of the
preconditioner associated with the preceding algorithm can also be improved
significantly if a coarse space projection term is employed additively.

2.3 Matrix Form of Schwarz Subspace Algorithms

In this section, we shall describe the matrix version of Schwarz algorithms. Our
formulation will employ the finite dimensional linear space V = IRn, endowed
with a self adjoint and coercive bilinear form A(., .). We shall further assume
that we are given subspaces Vi ⊂ V for 0 ≤ i ≤ p satisfying:

V = V0 + V1 + · · · + Vp. (2.26)

In this case, matrix expressions can be derived for the projection version of
the Schwarz algorithms described in the preceding section, for problems of the
form (2.13), see [MI, MA37, DR11, BR18, TA8, XU3, GR4].

Consider the finite dimensional space V ≡ IRn endowed with a self adjoint
and coercive bilinear form A(., .), which also defines an inner product on V .
Given a linear functional F (·), we shall seek u ∈ V such that:⎧⎪⎨

⎪⎩
A(u,v) = F (v), for v ∈ V, where
A(v,w) ≡ vT Aw, for v,w ∈ V

F (v) ≡ vT f , for v ∈ V,

(2.27)

where A is an n × n symmetric and positive definite matrix and f ∈ IRn. In
matrix terms, problem (2.27) will correspond to the linear system:

Au = f . (2.28)

We shall formulate matrix Schwarz algorithms to solve this system by analogy
with the projection algorithms described in Chap. 2.2.

We shall assume that each Vi ⊂ IRn is of dimension ni, and that it is the
column space (Range) of an n × ni matrix RT

i of full rank:

Vi ≡ Range
(
RT

i

)
, for 0 ≤ i ≤ p.



2.3 Matrix Form of Schwarz Subspace Algorithms 67

Thus, the columns of RT
i must form a basis for Vi. We assume that Vi satis-

fies (2.26). This requires that given v ∈ V , there must exist vi ∈ Vi satisfying:

v = v0 + v1 + · · · + vp.

An elementary rank argument will show that (n0 + n1 + · · · + np) ≥ n.

Remark 2.21. The matrices Ri will be referred to as restriction maps while
their transposes RT

i will be referred to as extension maps. Matrix versions
of Schwarz algorithms to solve (2.28) based on the subspaces Vi can be ob-
tained by transcribing the projection algorithms in terms of matrices. This
will require a matrix representation of the projections Pi.

Definition 2.22. Given v ∈ V , we define Pi v ∈ Vi:

A(Piv,wi) = A(v,wi) ∀wi ∈ Vi (2.29)

as the A(., .)-orthogonal of v ∈ V onto Vi.

Remark 2.23. A matrix representation of Pi can be derived as follows. Since
Vi is the column space of RT

i , represent Piv = RT
i xi and wi = RT

i yi for
xi, yi ∈ IRni . Substitute these representations into (2.29) to obtain:

yT
i (RiART

i )xi = yT
i RiAv, ∀yi ∈ IRni .

Since this must hold for all yi ∈ IRni , we obtain that Ai xi = RiAv, where
Ai ≡ (RiART

i ). Solving this linear system yields xi = A−1
i RiAv, and substi-

tuting Pi v = RT
i xi results in the expression:

Pi = RT
i A−1

i RiA (2.30)

for the matrix representation of Pi. Matrix A−1
i should not be assembled.

Instead, an expression wi = A−1
i ri can be computed by solving Aiwi = ri.

Remark 2.24. If the rows and columns of matrix Ri are elementary vectors,
corresponding to selected columns or rows or some identity matrix of appro-
priate size, then matrix Ai = RiART

i will correspond to principal submatrices
of A. In particular, if (n0 + · · · + np) = n and Rl corresponds to the rows of
an identity matrix of size n with indices in Il:

Il = {(n0 + · · · + nl−1) + 1, . . . , (n0 + · · · + nl)} ,

then Al will correspond to the diagonal block of A with indices in Il.

Multiplicative Schwarz Algorithm. The matrix version of Alg. 2.2.3 to
solve system (2.28) instead of problem (2.2), can be obtained by replacing
each update Pi(u − w(k+ i−1

p )) by its discrete counterpart Pi

(
u − w(k+ i−1

p )
)
,

where u is the solution to (2.28). Substituting the matrix form of projection Pi
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and using that Au = f yields:⎧⎨
⎩

Pi(u − w) = RT
i A−1

i RiA
(
u − w(k+ i−1

p )
)

= RT
i A−1

i Ri

(
f − Aw(k+ i−1

p )
)

.

Thus, the matrix form of:

w(k+ i
p ) = w(k+ i−1

p ) + Pi

(
u − w(k+ i−1

p )
)

,

becomes:

w(k+ i
p ) = w(k+ i−1

p ) + RT
i A−1

i Ri

(
f − Aw(k+ i−1

p )
)

.

The resulting multiplicative or sequential Schwarz algorithm is listed next.

Algorithm 2.3.1 (Multiplicative Schwarz Method to Solve (2.28))
Input: w(0) = 0 (starting guess), f

1. For k = 0, 1, · · · until convergence do:
2. For i = 0, · · · , p do:

w(k+ i+1
p+1 ) = w(k+ i

p+1 ) + RT
i A−1

i Ri

(
f − Aw(k+ i

p+1 )
)

.

3. Endfor
4. Endfor

Output: w(k)

The iterates w(k) in this algorithm will converge to the solution of (2.28)
without acceleration. If CG acceleration is employed to solve Au = f , then
a symmetric positive definite preconditioner would be necessary [GO4]. The
inverse of the symmetrized Schwarz preconditioner M is described below.

Algorithm 2.3.2 (Symmetrized Schwarz Preconditioner for (2.28))
Input: w ≡ 0 and r

1. For i = p, · · · , 1, 0, 1, · · · , p do:

w ← w + RT
i A−1

i Ri(r − Aw).

2. Endfor

Output: M−1r ≡ w

Remark 2.25. The notation A−1
i was only employed for convenience in the

preceding algorithms. In practice, A−1
i should not be assembled. Instead, its

action on a vector should be computed by solution of the associated linear
system. For instance, the computation of RT

i A−1
i Rif should first involve the

computation of Rif , followed by the solution of the linear system Aivi = Rif ,
followed by the computation RT

i vi. Scatter-gather operations can be used to
implement RT

i and Ri.
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Remark 2.26. In both of the preceding algorithms, the matrices Ai = RiART
i

can be replaced by appropriately chosen preconditioners Ãi = ÃT
i > 0. As

an example, a sparse preconditioner Ãi for Ai can be obtained by ILU fac-
torization of Ai, see [BE, AX, SA2]. If approximations are employed in the
multiplicative Schwarz method, to ensure convergence without acceleration,
the condition λmax

(
Ã−1

i Ai

)
< 2 must be satisfied, see [XU3].

Remark 2.27. If a preconditioner is employed for A0, an alternative sym-
metrization involving one additional fractional step can be used in the sym-
metrized Schwarz preconditioner. In step 1 of the preceding algorithm, residual
corrections can be implemented for i = p, p−1, · · · , 1, 0, 0, 1, · · · , p−1, p. Both
versions will be equivalent if an exact solver is employed for A0.

Additive Schwarz Algorithm. The matrix version of the additive Schwarz
equation P u = f∗ for solution of (2.28) has the form:(

p∑
i=0

RT
i A−1

i RiA

)
u = w∗, (2.31)

where

w∗ ≡
p∑

i=0

RT
i A−1

i Rif .

The system (2.31) for u corresponds to a preconditioned system of the form
M−1Au = M−1f . This yields the additive Schwarz preconditioner as:

M−1 =
p∑

i=0

RT
i A−1

i Ri.

This is summarized below.

Algorithm 2.3.3 (Additive Schwarz Preconditioner for (2.28))
Input: r

1. For i = 0, · · · , p in parallel do:

wi = RT
i A−1

i Rir

2. Endfor
3. Sum:

w ≡ w0 + · · · + wp.

Output: M−1r ≡ w

Remark 2.28. When (n0+n1+· · ·+np) = n and the columns of Rl correspond
to selected columns of an identity matrix, then it is easily seen that the matrix
version of the additive Schwarz preconditioner corresponds to a block Jacobi
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preconditioner, and the matrix version of the multiplicative Schwarz method
corresponds to the block Gauss-Seidel method. When (n0 + · · · + np) > n
or when the columns of Rl are not columns of an identity matrix, then the
multiplicative and additive Schwarz algorithms generalize the block Jacobi
and block Gauss-Seidel algorithms.

Hybrid Schwarz Method. The matrix version of the hybrid Schwarz pre-
conditioner can be derived from the hybrid Schwarz problem P̃ u = f∗ where
P̂ = P0 + (I − P0) (P1 + · · · + Pp) (I − P0). As this problem represents the
preconditioned system M−1Au = M−1f , the action M−1 of the inverse of
preconditioner M can easily be deduced to be the following.

Algorithm 2.3.4 (Hybrid Schwarz Preconditioner for (2.28))
Input: r

1. Compute:
w0 = RT

0 A−1
0 R0r.

2. For i = 1, · · · , p in parallel do:

vi = RT
i A−1

i Ri(r − Aw0).

3. Endfor
4. Sum: v = v1 + · · · + vp.
5. Compute:

v0 = RT
0 A−1

0 R0Av.

6. Compute: w = w0 + v − v0.

Output: M−1r ≡ w

Remark 2.29. If the input residual r satisfies R0 r = 0, then step 1 in the
hybrid Schwarz preconditioner can be skipped, yielding w0 = 0. This suggests
choosing a starting iterate u0 ∈ IRn in the conjugate gradient method so that
the initial residual r = f − Au0 satisfies R0 (f − Au0) = 0. Then, as will
be shown below, all subsequent residuals in the conjugate gradient method
with hybrid Schwarz preconditioner will satisfy this constraint. Note that to
construct a starting iterate u0 ∈ IRn, so that R0 (f − Au0) = 0, seek it in the
form u0 = RT

0 α0 for some unknown coefficient vector α0 ∈ IRn0 . Imposing
the preceding constraint will yield:

R0 (f − Au0) = 0 ⇔ R0

(
f − A RT

0 α0

)
= 0 ⇔ α0 = A−1

0 R0 f ,

where A0 = R0ART
0 . Thus, u0 = RT

0 A−1
0 R0f . Next, to verify that M−1r will

satisfy R0AM−1r = 0 whenever r ∈ IRn satisfies R0r = 0, apply R0A to
step 6 in the hybrid Schwarz preconditioner with w0 = 0 to obtain:

R0AM−1r = R0Av − R0ART
0 A−1

0 R0Av = 0.



2.3 Matrix Form of Schwarz Subspace Algorithms 71

Thus, the computational costs in a conjugate gradient method to solve Au = f
can be reduced by splitting the solution as u = u0 +v with u0 = RT

0 A−1
0 R0f .

To determine v, solve the linear system Av = f−Au0 by a conjugate gradient
method with a hybrid Schwarz preconditioner in which step 1 is skipped.

Remark 2.30. In Chap. 2.5, it is shown that the hybrid Schwarz precondi-
tioned matrix P̃ is better conditioned than its associated additive Schwarz
preconditioned matrix P .

Remark 2.31. The submatrices Ai = RiART
i in the hybrid Schwarz precondi-

tioner may be replaced by approximations Ãi for 1 ≤ i ≤ p. In certain appli-
cations, it may even be advantageous to employ singular matrices Ãi whose
null spaces are known. In this case, linear systems of the form Ãivi = ri

will be solvable only if a compatibility condition is satisfied. Indeed, if αi is
an ni × di matrix whose columns form a basis for the null space of Ãi, then
αT

i ri = 0 must hold for solvability. Then, the solution vi will not be unique,
and will involve an arbitrary additive term from the null space. In such ap-
plications, a careful choice of coarse space V0 in the hybrid Schwarz method
can ensure solvability of all such local problems, and also effectively handle
the arbitrariness of the local solutions. Define a coarse space V0 ⊂ IRn as:

V0 ≡ Range
(
RT

0

)
, where RT

0 ≡
[
RT

1 α1, . . . , R
T
p αp

]
.

By construction of the term w0 in step 1 of the hybrid Schwarz preconditioner,
it will hold that R0 (r − Aw0) = 0. Substituting the definition of R0 yields
that αT

i Ri (r − Aw0) = 0 for 1 ≤ i ≤ p, so that the subproblems in step 2
of the hybrid Schwarz preconditioner are well defined when Ai is replaced
by Ãi. Each vi in step 2 of the hybrid Schwarz preconditioner can have an
arbitrary additive term of the form RT

i αiβi with βi ∈ IRdi . However, the
projection term v − RT

0 A−1
0 R0Av in step 6 modifies these arbitrary terms

so that R0AM−1r = 0 holds. This is the principle underlying the balancing
domain decomposition preconditioner [MA14].

Restricted Schwarz Algorithm. Since the restricted Schwarz algorithm
in Chap. 2.2 is based on a partition of unity, its general matrix version will
require an algebraic partition of unity, if such can be found.

Definition 2.32. Let Vi = Range(RT
i ) be subspaces of V = IRn for 1 ≤ i ≤ p.

We say that matrices E1, · · · , Ep form a discrete partition of unity relative to
R1, · · · , Rp if:

E1R1 + · · · + EpRp = I,

where each Ei is an n × ni matrix for 1 ≤ i ≤ p.

The action M−1 of the inverse of the restricted Schwarz preconditioner to
solve (2.28) is motivated by (2.25) when iterate w = 0. In the version given
below, a coarse space correction term is included, with E0 ≡ RT

0 .



72 2 Schwarz Iterative Algorithms

Algorithm 2.3.5 (Restricted Schwarz Preconditioner for (2.28))
Input: r, 0 < α < 1.

1. For i = 0, 1, · · · , p in parallel compute:

wi = EiA
−1
i Rir.

2. Endfor

Output: M−1r ≡ αw0 + (1 − α) (w1 + · · · + wp).

Remark 2.33. Since the above preconditioner is not symmetric, it cannot be
employed in a conjugate gradient method [CA19].

2.4 Implementational Issues

In this section, we remark on applying the matrix Schwarz algorithms from
Chap. 2.3 to solve a discretization of (2.1). For simplicity, we only consider a
finite element discretization, though the methodology (with the exception of a
coarse space V0) will typically carry over for a finite difference discretization.
We shall also remark on local solvers and parallel software libraries.

2.4.1 Choice of Subdomains and Subdomain Spaces

Various factors may influence the choice of an overlapping decomposition
Ω∗

1 , . . . , Ω∗
p of Ω. These include the geometry of the domain, regularity of

the solution, availability of fast solvers for subdomain problems and hetero-
geneity in the coefficients. When a natural decomposition is not obvious, an
automated strategy may be employed, using the graph partitioning algorithms
discussed in Chap. 5, so that the decomposition yields approximately balanced
loads, see [BE14, FO2, SI2, FA9, BA20, PO3, PO2]. Ideally, the number of
subdomains p also depends on the number of processors.

Once a an overlapping decomposition {Ω∗
l }

p
l=1 has been chosen, and given

the finite element space Vh ⊂ H1
D(Ω), we define the local spaces as:

Vi ≡ Vh ∩
{

v ∈ H1(Ω) : v = 0 on Ω\Ω∗
i

}
for 1 ≤ i ≤ p.

Let ni = dim (Vi) and let index(Ω∗
i , j) denote the global index of the j’th local

node in Ω∗
i ∪

(
BN ∩ B[i]

)
. Then, define Ri as an ni × n restriction matrix:

(Ri)kj =

{
1, if index(Ω∗

i , k) = j

0, if index(Ω∗
i , k) = j,

for 1 ≤ i ≤ p.

For 1 ≤ i ≤ p these matrices will have zero or one entries, and at most one
nonzero entry per row or column. The action of Ri and RT

i for 1 ≤ i ≤ p
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may be implemented using scatter-gather operations and the data structure
of index(Ω∗

i , ·). The subdomain submatrices Ai of size ni × ni defined by:

Ai = RiAhRT
i , for 1 ≤ i ≤ p,

will be principal submatrices of A corresponding to the subdomain indices.

2.4.2 Choice of Coarse Spaces

A coarse space V0 ⊂ (Vh∩H1
D(Ω)) may be employed as described in Chap. 2.1.

If ψ
(0)
1 (·), · · · , ψ

(0)
n0 (·) forms a finite element basis for V0, then an extension

matrix RT
0 of size n × n0 will have the following entries:

(
RT

0

)
ij

= ψ
(0)
j (xi), for 1 ≤ i ≤ n, 1 ≤ j ≤ n0.

Matrix R0 will not be a zero-one matrix, unlike Ri for 1 ≤ i ≤ p. Furthermore,
A0 = R0AhRT

0 will not be a submatrix of A. In some applications, the coarse
space may be omitted, without adversely affecting the rate of convergence
of Schwarz algorithms. For instance, if c(x) ≥ c0 > 0 and coefficient a(x) is
anisotropic with a sufficiently small parameter and aligned subdomains, or for
a time stepped problem, with sufficiently small time step and large overlap.

Remark 2.34. When the boundary segment BD = ∅, equation (2.12) will have
a unique solution, and matrix A will be symmetric positive definite. However,
when BD = ∅ and c(x) = 0 and γ(x) = 0 then (2.12) will be a Neumann
problem. In this case, a compatability condition must be imposed for the
solvability of (2.1), and its solution will be unique only up to a constant. By
construction, all the subdomain matrices Ai will be nonsingular for 1 ≤ i ≤ p
since Dirichlet boundary conditions will be imposed on B(i) = ∅. However,
matrix A0 will be singular with 1 spanning its null space. To ensure that
each coarse problem of the form A0v0 = R0r is solvable, it must hold that
1T R0r = 0. Then, the coarse solution will be nonunique, but a specific solution
may be selected so that either 1T v0 = 0, or 1T v = 0 for the global solution.

2.4.3 Discrete Partition of Unity

For the restricted Schwarz algorithm, an algebraic partition of unity consisting
of matrices Ei can be constructed as follows. Let χ1(·), · · · , χp(·) denote a
continuous partition of unity subordinate to Ω∗

1 , · · · , Ω∗
p . If x1, · · · , xn denote

the nodes of Th(Ω) in Ω ∪ BN , define:

(Ei)lj =

{
χi(xl) if index(Ω∗

i , j) = l

0 if index(Ω∗
i , j) = l
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Here 1 ≤ i ≤ p, 1 ≤ l ≤ n and 1 ≤ j ≤ ni. Then, by construction:

p∑
i=1

EiRi = I.

Similar discrete partitions of unity are employed in [MA17]. For the coarse
space, we formally define E0 ≡ RT

0 .

2.4.4 Convergence Rates

For discretizations of self adjoint and coercive elliptic equations, Schwarz al-
gorithms typically converge at a rate independent of (or mildly dependent
on) the mesh size h and the subdomain size h0, provided the overlap between
subdomains is sufficiently large, and a coarse space V0 is employed with an
O(h0) approximation property. This is verified by both computational tests
and theoretical analysis. The latter typically assumes that the overlap between
subdomains is β h0 > 0 and shows that the rate of convergence can depend
on the coefficient a(.), and mildly on the parameter β, see Chap. 2.5.

2.4.5 Local Solvers

The implementation of Schwarz algorithms requires computing terms of the
form wi = A−1

i Rir for multiple choices of Rir. In practice, wi is obtained
by solving the associated system Aiwi = Rir, using a direct or iterative
solver. Direct solvers are commonly employed, since they are robust and do
not involve double iteration. Furthermore, efficient sparse direct solvers are
available in software packages. In the following, we list several solvers.

Direct Solvers. Since Ai = AT
i > 0 is sparse, a direct solver based on

Cholesky factorization can be employed [GO4, GE5, DU]. Matrix Ai its
Cholesky factorization Ai = LiL

T
i should be stored using a sparse format.

Systems of the form Aiwi = Rir can then be solved using back substitution,
solving Lizi = Rir and LT

i wi = zi, see [GO4]. Such algorithms are available
in LAPACK, SPARSPAK and SPARSKIT, see [GE5, DU, GO4, SA2, AN].

Remark 2.35. The cost of employing a direct solver to solve Aiwi = Rir de-
pends on the cost of computing its Cholesky factors Li and LT

i , and the cost
for solving Lizi = Rir and LT

i wi = zi. When multiple systems of the form
Aiwi = Rir need to be solved, the Cholesky factors of Ai need to be deter-
mined only once and stored. The cost of computing the Cholesky factorization
of Ai will depend on the sparsity of Ai, while the cost of solving Lizi = Rir
and LT

i wi = zi will depend on the sparsity of Li. These costs can be sig-
nificantly reduced by reordering (permuting) the unknowns. For instance, if
subdomain Ω∗

i is a thin strip, then a band solver can be efficient, provided
the unknowns are reordered within the strip so that the band size is mini-
mized. Other common orderings include the nested dissection ordering, and
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the Cuthill-McKee and reverse Cuthill-McKee orderings, see [GE5, DU, SA2].
Sparse software packages such as SPARSPAK and SPARSKIT, typically em-
ploy graph theoretic methods to automate the choice of a reordering so that
the amount of fill in is approximately minimized, to reduce the cost of em-
ploying a direct solver [GE5, DU]. Such solvers typically have a complexity of
O(nα

i ) for 1 < α < 3.

FFT Based Solvers. Fast direct solvers based on Fast Fourier Transforms
(FFT’s) may be available for special geometries, coefficients, triangulations
and boundary conditions, see [VA4]. Such solvers will apply when the eigen-
value decomposition Ai = FiΛiF

T
i of Ai is known, where Λi is a diagonal

matrix of eigenvalues of Ai, and Fi is a discrete Fourier (or sine or cosine)
transform. Such solvers will typically have a complexity of O(ni log(ni)).

Iterative Solvers. Each subdomain problem Aiwi = ri may also be solved
iteratively using a CG algorithm with a preconditioner Mi (such as ILU,
Gauss-Seidel, Jacobi) in an inner loop. This will introduce double iteration.
To ensure convergence, the fixed number of local iterations must be accurate
to within the discretization error. If the number of iterations vary with each
application of the local solver, then the Schwarz preconditioner may vary with
each iteration, see [GO4, SA2, AX, SI3].

Remark 2.36. If an iterative local solver is employed, with fixed number of
iterations and zero starting guess, this will yield a preconditioner Ãi for Ai,
see [GO4, BE2, NO2, AX, MA8]. To ensure the convergence of Schwarz algo-
rithms when approximate solvers are employed, matrices Ãi must satisfy cer-
tain assumptions. For instance, the condition number of the additive Schwarz
preconditioner with inexact solver will increase at most by the factor γ:

γ ≡
maxi λmax

(
Ã−1

i Ai

)
mini λmin

(
Ã−1

i Ai

) .

If inexact solvers Ãi are employed in the multiplicative Schwarz algorithm,
then the spectral radius must satisfy ρ

(
Ã−1

i Ai

)
< 2 to ensure convergence. In

the hybrid Schwarz algorithm (in balancing domain decomposition [MA15])
the coarse problem must be solved exactly.

2.4.6 Parallelization and Software Libraries

With the exception of the sequential Schwarz algorithm without coloring, the
computations on different subdomains in a Schwarz algorithm can typically
be implemented concurrently. From the viewpoint of parallelization, Schwarz
algorithms thus have “coarse granularity”, i.e., a significant portion of the
computations can be performed in parallel, with the remaining portion re-
quiring more intensive communication between processors. As an example,
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consider the additive Schwarz preconditioner:

M−1r =
p∑

l=0

RT
l A−1

l Rlr.

Suppose there are (p + 1) processors available, and that we assign one proces-
sor to each subproblem and distribute the data amongst the processors. Then,
the action of M−1r can be computed as follows. First, given r, synchronize all
the processors and communicate relevant data between the processors, so that
processor l receives the data necessary to assemble Rlr from other processors.
Second, let each processor solve its assigned problem Alwl = Rlr in parallel.
Third, synchronize and communicate the local solution wl to other processors,
as needed (processor l = 0 should transfer Rlw0 to processor l, while proces-
sor l should transfer RjR

T
l wl to processor j if Ω∗

j ∩Ω∗
l = ∅). Fourth, let each

processor sum relevant components and store the result locally (processor l
can sum Rl

(
RT

0 w0 + RT
1 w1 + · · · + RT

p wp

)
). For simplicity, processor 0 may

be kept idle in this step. Other Schwarz algorithms may be parallelized simi-
larly. The PETSc library contains parallelized codes in C, C++ and Fortran,
for implementing most Schwarz solvers, see [BA15, BA14, BA13]. These codes
employ MPI and LAPACK.

MPI. The message passing interface (MPI) is a library of routines for imple-
menting parallel tasks in C, C++ and Fortran, see [PA, GR15]. It is based on
the “message passing model”, which assumes that different processors have
separate memory addresses, and that data can be moved from one memory
address to another. Using MPI, a parallel computer architecture can be simu-
lated given a cluster of work stations connected by high speed communication
lines. Once the MPI library has been installed, the same executable code of
a parallel program employing the MPI library is stored and executed on each
processor. Each processor is assigned a label (or rank). If there are p proces-
sors, then processor l is assigned rank l. Since the same executable code is
to be run on each processor, parallelization is obtained by branching the pro-
grams based on the rank. The library employs protocol for synchronizing and
communicating data between the different processors. Readers are referred to
[PA, GR15] for details on the syntax, and for instructions on downloading and
installing MPI. In many domain decomposition applications, however, details
of MPI syntax may not be required if the PETSc parallel library is employed.

PETSc. The suite of routines called PETSc (Portable, Extensible Toolkit
for Scientific Computing) is a library of routines for implementing domain de-
composition iterative methods, optimization algorithms, and other algorithms
used in scientific computing. The PETSc library is available in C, C++ and
Fortran, but requires installation of the MPI and LAPACK libraries. Most
Schwarz and Schur complement solvers are implemented in PETSc, and are
coded to run on parallel computers. We refer to [BA14] for a tutorial on the
syntax for this library.
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2.5 Theoretical Results

In this section, we describe theoretical results on the convergence of multi-
plicative, additive and hybrid Schwarz algorithms in an Hilbert space norm,
see [MA37, DR11, LI6, LI7, WI4, BR18, XU3]. We formulate an abstract
convergence theory for Schwarz projection algorithms on a finite dimensional
Hilbert space, where the convergence rate of the algorithms can be reduced
to two key parameters, which depend the properties of the subspaces under-
lying the projections. The theoretical framework admits replacement of exact
projections by approximations, in which case two additional parameters will
arise in the convergence bounds. We focus first on the abstract theory before
estimating the key parameters in applications to finite element discretizations
of self adjoint and coercive elliptic equations. Additional analysis of Schwarz
algorithms is presented in [ZH2, WA2, GR4, DR17, MA15].

Our discussion will be organized as follows. In Chap. 2.5.1 we present
background and notation. Chap. 2.5.2 presents the abstract Schwarz conver-
gence theory. Applications to finite element discretizations of elliptic equa-
tions are considered in Chap. 2.5.3. Our discussion follows [XU3, CH11]
where additional results may be found. Selected results on the convergence of
Schwarz algorithms in the maximum norm are presented in Chap. 15, see also
[FR7, FR8].

2.5.1 Background

Let V denote a Hilbert space equipped with inner product A(., .) and norm:

‖w‖V ≡ A(w, w)1/2, ∀w ∈ V.

We consider the following problem. Find u ∈ V satisfying:

A(u, v) = F (v), ∀v ∈ V, (2.32)

where F (·) is a bounded linear functional on V . The solution to (2.32) will be
sought by Schwarz algorithms based on (p + 1) subspaces V0, · · · , Vp of V :

V = V0 + V1 + · · · + Vp,

i.e., for each v ∈ V we can find vi ∈ Vi such that

v = v0 + · · · + vp.

On each Vk, let Ak : Vk × Vk → IR be a symmetric, bilinear form defined as:

Ak(v, w) ≡ A(v, w), ∀v, w ∈ Vk.

If inexact projections (or solvers) are employed in the Schwarz algorithms, we
let Ãk : Vk ×Vk → IR denote a symmetric, bilinear form corresponding to the
inexact solver for the projection onto Vk.
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Remark 2.37. We assume there exists parameters 0 < ω0 ≤ ω1 such that:

ω0 ≤ Ak(v, v)
Ãk(v, v)

≤ ω1, ∀v ∈ Vk\{0} (2.33)

for 0 ≤ k ≤ p. If Ãk(·, ·) ≡ Ak(·, ·) for 0 ≤ k ≤ p we obtain ω0 = ω1 = 1.

Remark 2.38. If V is finite dimensional, by employing basis vectors for V and
Vk, we may represent the bilinear forms A(·, ·), Ak(·, ·) and Ãk(·, ·) in terms
of matrices A, Ak and Ãk, respectively. Indeed, suppose n and nk denote
the dimensions of V and Vk, respectively, and let φ1, . . . , φn be a basis for
V and ψ

(k)
1 , · · · , ψ

(k)
nk a basis for Vk. Define an n × n matrix A and nk × nk

matrices Ak and Ãk with entries (A)ij = A(φi, φj) for 1 ≤ i, j ≤ n, and

(Ak)ij = Ak(ψ(k)
i , ψ

(k)
j ) and

(
Ãk

)
ij

= Ãk(ψ(k)
i , ψ

(k)
j ) for 1 ≤ i, j ≤ nk.

Matrix Ak may be obtained from matrix A as follows. Denote by RT
k an n×nk

extension matrix whose i’th column consists of the coefficients obtained when
expanding ψ

(k)
i in the basis φ1, · · · , φn for V :

ψ
(k)
i =

n∑
j=1

(
RT

k

)
ji

φj , for 0 ≤ k ≤ p.

Substituting this into the definition of Ak above, yields:

(Ak)ij = Ak(ψ(k)
i , ψ

(k)
j ) = A

(
n∑

l=1

(
RT

k

)
li

φl,

n∑
q=1

(
RT

k

)
qj

φq

)
=
(
RkART

k

)
ij

.

Thus Ak = RkART
k . Substituting v =

∑nk

j=1 (v)j ψ
(k)
j into (2.33) yields:

ω0 ≤ vT Akv
vT Ãkv

≤ ω1, ∀v ∈ IRnk\{0}.

This yields:

ω0 = min
k

λmin

(
Ã−1

k Ak

)
≤ max

k
λmax

(
Ã−1

k Ak

)
= ω1,

corresponding to uniform lower and upper bounds for the spectra of Ã−1
k Ak.

Remark 2.39. In applications to elliptic equation (2.12) with BN = ∅, the
Hilbert space V = H1

0 (Ω) and Vk = H1
0 (Ω∗

k) for 1 ≤ k ≤ p, the forms are:{A(u, v) ≡
∫

Ω
(a(x)∇u · ∇v + c(x)uv) dx, for u, v ∈ V

Ak(u, v) ≡
∫

Ω∗
k

(a(x)∇u · ∇v + c(x)uv) dx, for u, v ∈ Vk.

A simple approximation Ãk(·, ·) of Ak(·, ·) can be obtained by replacing the
variable coefficients a(.) and c(.) by their values at an interior point xk ∈ Ω∗

k .
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This can be particularly useful if Ω∗
k is a rectangular domain with a uniform

grid, in which case fast solvers can be formulated for Ãk:

Ãk(u, v) ≡
∫

Ω∗
k

(a(xk)∇u · ∇v + c(xk)uv) dx, for u, v ∈ Vk.

Provided a(·) and c(·) do not have large variation in Ω∗
k then ω0 and ω1 will

correspond to uniform lower and upper bounds for a(x)
a(xk) and c(x)

c(xk) in Ω∗
k . In

applications, Ãk can be any scaled preconditioner for Ak, such as ILU.

We now define a projection map Pk : V → Vk and its approximation
P̃k : V → Vk for 0 ≤ k ≤ p as follows.

Definition 2.40. Given u,w ∈ V , we define Pku and P̃kw as the unique
elements of Vk satisfying:{

Ak(Pku, v) = A(u, v), for all v ∈ Vk

Ãk(P̃kw, v) = A(w, v), for all v ∈ Vk.

The existence of Pk and P̃k follows by the Lax-Milgram lemma, see [CI2].

The following properties of Pk and P̃k will be employed in this section.

Lemma 2.41. Let Pk and P̃k be as defined above. The following hold.

1. The matrix representations Pk of Pk and P̃k of P̃k are given by:

Pk = RT
k A−1

k RkA and P̃k = RT
k Ã−1

k RkA.

2. The mappings Pk and P̃k are symmetric, positive semidefinite in A(·, ·):{
A(Pkv, w) = A(v, Pkw), for v, w,∈ V

A(P̃kv, w) = A(v, P̃kw), for v, w,∈ V

with A(Pkv, v) ≥ 0 and A(P̃kv, v) ≥ 0 for v ∈ V . In matrix terms, this
corresponds to APk = PT

k A, AP̃k = P̃
T

k A, vT APkv ≥ 0, vT AP̃kv ≥ 0.
3. The projections Pk satisfy:

PkPk = Pk, Pk(I − Pk) = 0 and ‖Pk‖V ≤ 1.

4. The map P̃k satisfies ‖P̃k‖V ≤ ω1 and also:{
ω0 A(Pku, u) ≤ A(P̃ku, u), for all u ∈ V

A(P̃ku, P̃ku) ≤ ω1 A(P̃ku, u), for all u ∈ V.
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Proof. Properties of orthogonal projections Pk are standard, see [ST13, LA10].
The symmetry of P̃k in A(·, ·) may be verified by employing the definition of
P̃k and using that P̃ku, P̃kv ∈ Vk for all u, v ∈ V :

A(P̃ku, v) = A(v, P̃ku) = Ãk(P̃kv, P̃ku) = Ãk(P̃ku, P̃kv) = A(u, P̃kv).

The positive semi-definiteness of P̃k in A(·, ·) follows since:

0 ≤ Ãk(P̃kv, P̃kv) = A(v, P̃kv), ∀v ∈ V.

To obtain ‖P̃k‖V ≤ ω1, apply the definition of P̃k and employ (2.33):

‖P̃ku‖2
V = A(P̃ku, P̃ku) = Ak(P̃ku, P̃ku)

≤ ω1Ãk(P̃ku, P̃ku)

= ω1A(u, P̃ku)

≤ ω1‖u‖V ‖P̃ku‖V .

The desired bound follows. To verify the bound on A(P̃ku, u), employ the
matrix equivalents Pku and P̃ku of Pku and P̃ku, respectively to obtain:

A(Pku, u) = uT APku = uT ART
k A−1

k RkAu

≤ 1
ω0

uT ART
k Ã−1

k RkAu

= 1
ω0

A(P̃ u, u).

Here, we have employed the property of symmetric positive definite matrices:

ω0 ≤ vT Akv
vT Ãkv

≤ ω1 ∀v = 0 ⇔ 1
ω0

≥ vT A−1
k v

vT Ã−1
k v

≥ 1
ω1

∀v = 0.

To verify that A(P̃ku, P̃ku) ≤ ω1A(P̃ku, u) consider:

A(P̃ku, u) = A(u, P̃ku) = Ãk(P̃ku, P̃ku)

≥ 1
ω1

Ak(P̃ku, P̃ku)

= 1
ω1

A(P̃ku, P̃ku),

where we have employed the definition of P̃ku, and property (2.33), and the
definition of ak(·, ·). This yields the desired result. ��

In the following, we shall derive properties of different Schwarz algorithms
in terms of the mappings Pk or P̃k, which will be used later.

Classical (Multiplicative) Schwarz Algorithm. Each sweep of the clas-
sical Schwarz algorithm to solve (2.32) based on subspaces V0, · · · , Vp has the
following representation in terms of projections (or its approximations):⎧⎪⎨

⎪⎩
For i = 0, · · · , p do

u(k+ i+1
p+1 ) = u(k+ i

p+1 ) + P̃i

(
u − u(k+ i

p+1 )
)

Endfor
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Since the solution u trivially satisfies u = u + P̃i (u − u) for 0 ≤ i ≤ p,
subtracting this from the above yields:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

For i = 0, · · · , p do

u − u(k+ i+1
p+1 ) = u − u(k+ i

p+1 ) − P̃i

(
u − u(k+ i

p+1 )
)

= (I − P̃i)
(
u − u(k+ i

p+1 )
)

Endfor

Recursive application of the above yields the following expression:

(u − u(k+1)) = (I − P̃p) · · · (I − P̃0)(u − u(k)), (2.34)

which expresses the error u − u(k+1) in terms of the error u − u(k). This is
referred to as the error propagation map or the error amplification map.
The iterates u(k) of the multiplicative Schwarz algorithm will converge to the
desired solution u in the energy norm ‖ · ‖V if ‖(I − P̃p) · · · (I − P̃0)‖V < 1.
This will be demonstrated later in this section.

Remark 2.42. If M−1 denotes the matrix action corresponding to one sweep
of the unsymmetrized Schwarz Alg. 2.3.1 to solve (2.28), then we obtain:

I − M−1A = (I − P̃p) · · · (I − P̃0).

By (2.34), it would follow that the Schwarz vector iterates u(k) will converge
to u if ‖(I − P̃p) · · · (I − P̃0)‖V ≤ δ for some 0 ≤ δ < 1.

Next, we express the preconditioned matrices M−1A corresponding to the
additive, hybrid and symmetrized multiplicative Schwarz preconditioners with
inexact local solvers Ãk in terms of the matrices P̃k.

Additive, Hybrid and Symmetrized Schwarz Preconditioners.

• The inverse M−1 of the additive Schwarz preconditioner satisfies:

M−1A =
p∑

i=0

RT
i Ã−1

i RiA,

where an inexact solver Ãk was assumed. This may also be expressed as:{
P̃ ≡

∑p
i=0 P̃i = M−1A, in matrix form

P̃ ≡
∑p

i=0 P̃i, in operator form

where P̃ is self adjoint, and will be shown to be coercive, in the A(., .)
inner product. Its condition number satisfies:

cond(M, A) ≡ λmax(M−1A)
λmin(M−1A)

=
λmax(P̃ )
λmin(P̃ )

,

and it will be estimated later in this section.
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• The inverse M−1 of the hybrid Schwarz preconditioner satisfies:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M−1A

≡ RT
0 A−1

0 R0A + (I − RT
0 A−1

0 R0)(
∑p

i=1 RT
i Ã−1

i Ri)(I − ART
0 A−1

0 R0)A

= P0 + (I − P0)
(
P0 +

∑p
i=1 P̃i

)
(I − P0)

= P0 + (I − P0) P̃ (I − P0) ,

where P̃ ≡ P0 + P̃1 + · · ·+ P̃p. Here, the local matrices Ai were replaced
by approximations Ãi for 1 ≤ i ≤ p. However, to ensure that all iterates
lie in V ⊥

0 , the coarse matrix A0 should not be approximated. We obtain:

cond(M,A) ≡ λmax(M−1A)
λmin(M−1A)

=
λmax

(
P0 + (I − P0)P̃ (I − P0)

)
λmin

(
P0 + (I − P0)P̃ (I − P0)

) ,

where P̃ = P0 + P̃1 + · · · + P̃p represents the additive Schwarz operator.
This will be shown to be better conditioned than P̃ .

• The symmetrized Schwarz preconditioner M satisfies:

M−1A ≡ I − (I − P̃p) · · · (I − P1)(I − P0)(I − P̃1) · · · (I − P̃p).

If an approximate coarse space projection P̃0 = P0 is employed, then the
following alternative symmetrization Ã may also be employed:

Ã−1A ≡ I − (I − P̃p) · · · (I − P1)(I − P̃0)(I − P̃0)(I − P̃1) · · · (I − P̃p).

Both symmetrizations will be equivalent if P̃0 = P0, though the latter
involves an extra residual correction on V0. We will analyze the latter.

Schwarz convergence analysis will be based on bounds for the preceding.

2.5.2 Convergence of Abstract Schwarz Algorithms

Our study of the convergence of Schwarz algorithms will involve the study
of the operator P̃ associated with the additive Schwarz method, and Ep, the
error propagation map of the multiplicative Schwarz method:{

P̃ ≡ P̃0 + · · · + P̃p,

Ep ≡ (I − P̃p) · · · (I − P̃0),

Here, each P̃i as defined earlier, denotes an approximation of the projection Pi

onto the subspace Vi. The spectra λmin

(
P̃
)

and λmax

(
P̃
)

of the A(·, ·)-self
adjoint operator P̃ and the norm ‖Ep‖V of the error propagation map Ep

will be estimated. These quantities will generally depend on two parameters



2.5 Theoretical Results 83

K0 and K1 associated with the subspaces V0, · · · , Vp, and the approximate
solvers Ãi for 0 ≤ i ≤ p. Estimates of K0 and K1 will be described later in
this section for a finite element discretization of a self adjoint and coercive
elliptic equation and will also depend on the parameters ω0 and ω1.

Definition 2.43. We associate a parameter K0 > 0 with the spaces V0, . . . , Vp

and the forms Ã0(., .), . . . , Ãp(., .) if for each w ∈ V there exists wi ∈ Vi:

w = w0 + · · · + wp

and satisfying the bound:
p∑

i=0

Ãi(wi, wi) ≤ K0 A(w, w).

Remark 2.44. In matrix form, the above may be stated that given w ∈ IRn,
there exists wi ∈ IRni for 0 ≤ i ≤ p such that:

w = RT
0 w0 + · · · + RT

p wp,

and
p∑

i=0

wT
i Ãiwi ≤ K0 wT Aw.

The following result reduces the estimation of K0 to a parameter C0 in [LI6].

Lemma 2.45. Suppose the following assumptions hold.

1. Let C0 > 0 be a parameter such that for each w ∈ V there exists wi ∈ Vi

for 0 ≤ i ≤ p satisfying w = w0 + · · · + wp and:

p∑
i=0

Ai(wi, wi) ≤ C0A(w, w).

2. Let ω0 > 0 be defined by (2.33).

Then, the following estimate will hold:

K0 ≤ C0

ω0
.

Proof. By assumption:
p∑

i=0

Ai(wi, wi) ≤ C0 A(w,w).

Substituting

ω0 Ãi(wi, wi) ≤ Ai(wi, wi), for 0 ≤ i ≤ p,

in the above, yields the desired result. ��



84 2 Schwarz Iterative Algorithms

Definition 2.46. Let K1 > 0 be a parameter such that for all choices of
v0, · · · , vp, w0, · · · , wp ∈ V and for any collection I of subindices:

I ⊂ {(i, j) : 0 ≤ i ≤ p, 0 ≤ j ≤ p} ,

the following holds:

∑
(i,j)∈I

A
(
P̃ivi, P̃jwj

)
≤ K1

(
p∑

i=0

A
(
P̃ivi, vi

))1/2
⎛
⎝ p∑

j=0

A
(
P̃jwj , wj

)⎞⎠
1/2

.

Remark 2.47. In matrix terms, the preceding requires that for all choices of
v0, · · · ,vp,w0, · · · ,wp and indices I the following holds:∑

(i,j)∈I vT
i ART

i Ã−1
i RiART

j Ã−1
j RjAwj

≤ K1

(∑p

i=0
‖RiAvi‖2

Ã−1
i

)1/2 (∑p

j=0
‖RjAwj‖2

Ã−1
j

)1/2

.

Here we denote the norm ‖xi‖2
Ã−1

i

= xT
i Ã−1

i xi for Ãi = ÃT
i > 0.

The parameter K1 can be estimated in terms of ω1 and the spectral radius
ρ (E) of a matrix E = (εij), whose entries εij are strengthened Cauchy-Schwartz
inequality parameters associated with each pair of subspaces Vi and Vj .

Definition 2.48. For each index pair i, j ∈ {0, · · · , p} define the parameters
0 ≤ εij ≤ 1 as the smallest possible coefficient satisfying:

A(wi, wj) ≤ εij A(wi, wi)1/2A(wj , wj)1/2, ∀wi ∈ Vi, wj ∈ Vj .

Matrix E ≡ (εij) for 0 ≤ i, j ≤ p.

Remark 2.49. Parameter εij represents the maximum modulus of the cosine
of the angle between all pairs of vectors in subspace Vi and Vj . If εij < 1 the
above is called a strengthened Cauchy-Schwartz inequality. In particular, if the
subspaces are orthogonal, i.e., each vector in Vi is orthogonal to each vector
in Vj , then εij = 0, while if Vi and Vj share at least one nontrivial vector in
common, then εij = 1.

Lemma 2.50. Suppose the following assumptions hold.

1. Let parameter ω1 be as defined earlier.
2. Let matrix E be as defined earlier.

Then the following estimate will hold:

K1 ≤ ω1 ρ (E) .
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Proof. Applying the strengthened Schwartz inequalities pairwise yields:∑
(i,j)∈I A(P̃ivi, P̃jwj)

≤
∑

(i,j)∈I εij A(P̃ivi, P̃ivi)1/2A(P̃jwj , P̃jwj)1/2

≤
∑

i,j
εij A(P̃ivi, P̃ivi)1/2A(P̃jwj , P̃jwj)1/2

≤
∑

i,j
εij ω1 A(P̃ivi, vi)1/2A(P̃jwj , wj)1/2

≤ ω1 ρ(E) (
∑p

i=0
A(P̃ivi, vi))1/2(

∑p

j=0
A(P̃jwj , wj))1/2.

For additional details, see [XU3]. ��

The following result describes alternative bounds for K1.

Lemma 2.51. Suppose the following assumptions hold.

1. Let V0, · · · , Vp denote subspaces of V .
2. Let E = (εij) denote the strengthened Cauchy-Schwartz parameters which

are associated with the subspaces Vi and Vj for 0 ≤ i, j ≤ p.
3. Denote by l0

l0 ≡ max
1≤i≤p

⎛
⎝ p∑

j=1

εij

⎞
⎠. (2.35)

Then the following estimate will hold:

K1 ≤
{

ω1 l0, if V0 is not employed
ω1 (l0 + 1), if V0 is employed.

Proof. See [XU3, TO10]. If a coarse space V0 is not employed, let Ẽ be defined
by Ẽij ≡ εij for 1 ≤ i, j ≤ p. We apply lemma 2.50 to estimate K1 as:

K1 ≤ ω1 l0, if V0 is not employed,

since ρ(Ẽ) ≤ ‖Ẽ‖∞ = l0.
If a coarse space V0 is employed, we estimate K1 as follows. Given an index

set I ⊂ {(i, j) : 0 ≤ i, j ≤ p} define I00, I01, I10, I11 as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I00 ≡ {(i, j) ∈ I : i = 0, j = 0}
I01 ≡ {(i, j) ∈ I : i = 0, 1 ≤ j ≤ p}
I10 ≡ {(i, j) ∈ I : 1 ≤ i ≤ p, j = 0}
I11 ≡ {(i, j) ∈ I : 1 ≤ i ≤ p, 1 ≤ j ≤ p}.
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Let vi, wi ∈ Vi for 0 ≤ i ≤ p. Applying Lemma 2.50 yields:

(
∑

(i,j)∈I00
A(P̃ivi, P̃jwj))2 ≤ ω2

1 A(P̃0v0, v0)A(P̃0w0, w0)

(
∑

(i,j)∈I11
a(P̃ivi, P̃jwj))2 ≤ ω2

1 l20 (
∑p

i=1 A(P̃ivi, vi))(
∑p

j=1 A(P̃jwj , wj)).

Next, consider the sum over index set I01:

(
∑

(i,j)∈I01
A(P̃ivi, P̃jwj))2 = (

∑
j:(0,j)∈I01

A(P̃0v0, P̃jwj))2

= (A(P̃0v0,
∑

j:(0,j)∈I01
P̃jwj))2

≤ A(P̃0v0, P̃0v0)A(
∑

j:(0,j)∈I01
P̃jwj ,

∑
j:(0,j)∈I01

P̃jwj)

≤ ω1 A(P̃0v0, v0)A(
∑

j:(0,j)∈I01
P̃jwj ,

∑
j:(0,j)∈I01

P̃jwj)

≤ ω2
1 l0 A(P̃0v0, v0) (

∑
j:(0,j)∈I01

A(P̃jwj , wj))

≤ ω2
1 l0 A(P̃0v0, v0) (

∑p
j=0 A(P̃jwj , wj)).

Similarly, we obtain for the sum over index set I10:

(
∑

(i,j)∈I10
A(P̃ivi, P̃jwj))2 = (

∑
j:(i,0)∈I10

A(P̃ivi, P̃0w0))2

= (A(
∑

j:(i,0)∈I10
P̃ivi, P̃0w0))2

≤ A(
∑

i:(i,0)∈I10
P̃ivi,

∑
i:(i,0)∈I10

P̃ivi)A(P̃0w0, P̃0w0)

≤ ω1 A(
∑

i:(i,0)∈I10
P̃ivi,

∑
i:(i,0)∈I10

P̃ivi)A(P̃0w0, w0)

≤ ω2
1 l0 (

∑
i:(i,0)∈I10

A(P̃ivi, vi))A(P̃0w0, w0)

≤ ω2
1 l0 (

∑p
i=0 A(P̃ivi, vi))A(P̃0w0, w0).

Combining the preceding results using that I = I00 ∪ I01 ∪ I10 ∪ I11 yields:

(
∑

(i,j)∈I A(P̃ivi, P̃jwj))2

≤ ω2
1 (1 + 2l0 + l20) (

∑p
i=0 A(P̃ivi, vi)) (

∑p
j=0 A(P̃iwi, wi))

= ω2
1 (1 + l0)

2 (
∑p

i=0 A(P̃ivi, vi)) (
∑p

j=0 A(P̃iwi, wi)).

This yields the desired bound for K1 ≤ ω1 (l0 + 1). ��

We now estimate the condition number of the additive Schwarz operator
M−1A = P̃ =

∑p
i=0 P̃i. Since each P̃i is symmetric in the A(., .) inner product,

its eigenvalues will be real, as also the eigenvalues of P̃ . The condition number
of P̃ will be a quotient of the maximal and minimal eigenvalues of P̃ , and will
satisfy the following Rayleigh quotient bounds:

K−1
0 ≤ A(P̃ u, u)

A(u, u)
≤ K1, u = 0.
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Theorem 2.52. The following bounds will hold for the spectra of P̃ :

K−1
0 ≤ λmin

(
P̃
)
≤ λmax

(
P̃
)
≤ K1.

Proof. For an upper bound, expand ‖P̃ v‖2
V , and apply the definition of K1:

‖P̃ v‖2
V = A

(
P̃ v, P̃ v

)
=
∑p

i=0

∑p
j=0 A

(
P̃iv, P̃jv

)
≤ K1

(∑p
i=0 A(P̃iv, v)

)1/2 (∑p
j=0 A(P̃jv, v)

)1/2

= K1 A
(
P̃ v, v

)
≤ K1 ‖P̃ v‖V ‖v‖V .

The upper bound ‖P̃ v‖V ≤ K1 ‖v‖V thus follows immediately.
For a lower bound, choose v ∈ V and expand v = v0 + · · · + vp employing

the decomposition guaranteed by definition of K0. Substitute this into A (v, v)
and simplify using the definition of P̃i and the Cauchy-Schwartz inequality:

A (v, v) =
∑p

i=0 A (v, vi) =
∑p

i=0 Ãi

(
P̃iv, vi

)
≤
∑p

i=0 Ãi

(
P̃iv, P̃iv

)1/2

Ãi (vi, vi)

=
∑p

i=0 A
(
v, P̃iv

)1/2

Ãi (vi, vi)

≤ (
∑p

i=0 A(v, P̃iv))1/2
(∑p

i=0 Ãi(vi, vi)
)1/2

= A(P̃ v, v)1/2
(∑p

i=0 Ãi(vi, vi)
)1/2

≤ A(P̃ v, v)1/2 K
1/2
0 ‖v‖V .

We thus obtain ‖v‖V ≤ K
1/2
0 A(P̃ v, v)1/2. Squaring both sides yields:

‖v‖2
V = A(v, v) ≤ K0 A(P̃ v, v),

which is a lower bound for the spectrum of P̃ . See [XU3, TO10]. ��

Remark 2.53. Combining the upper and lower bounds together yields:

cond(M, A) =
λmax(P̃ )
λmin(P̃ )

≤ K0 K1,

which is a bound for the condition number of M−1A = P̃ .

Remark 2.54. If subspaces V0, · · · , Vp form an orthogonal decomposition of V

and exact solvers are employed (i.e., Ãk = Ak for all k), then it is easily
verified that K0 = K1 = 1. In this case the additive Schwarz preconditioned
system will have condition number of 1 and the conjugate gradient method
will converge in a single iteration.
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The following result concerns the optimal choice of parameter K0.

Lemma 2.55. If K̂0 is the smallest admissible choice of parameter K0, then:

K̂−1
0 = λmin

(
P̃
)
.

Proof. For any choice of admissible parameter K0, Thm. 2.52 yields:

0 < K−1
0 ≤ λmin

(
P̃
)
.

Thus, P̃ is invertible and given v ∈ V we may construct an optimal partition.
For 0 ≤ i ≤ p define:

vi ≡ P̃iP̃
−1v.

By construction
p∑

i=0

vi =
p∑

i=0

P̃iP̃
−1v = P̃ P̃−1v = v.

For this decomposition, the definition of P̃i and that P̃iP̃
−1v ∈ Vi yields:

∑p
i=0 Ãi (vi, vi) =

∑p
i=0 Ãi

(
P̃iP̃

−1v, P̃iP̃
−1v

)
=
∑p

i=0 A
(
P̃−1v, P̃iP̃

−1v
)

= A
(
P̃−1v,

∑p
i=0 P̃iP̃

−1v
)

= A
(
P̃−1v, P̃ P̃−1v

)
= A

(
P̃−1v, v

)
≤ 1

λmin(P̃ )
A (v, v) .

Thus, K0 = 1
λmin(P̃ )

is an admissible parameter. ��

The following result shows that the hybrid Schwarz preconditioner P̃∗ is
better conditioned than the associated additive Schwarz preconditioner.

Lemma 2.56. Let K0 and K1 be as defined above. Define:{
P̃ ≡ P0 + P̃1 + · · · + P̃p

P̃∗ ≡ P0 + (I − P0)P̃ (I − P0).

Then, the spectra of P̃∗ will satisfy:

K−1
0 ≤ λmin

(
P̃
)
≤ λmin

(
P̃∗
)
≤ λmax

(
P̃∗
)
≤ λmax

(
P̃
)
≤ K1.

In particular, κ2(P̃∗) ≤ κ2(P̃ ).
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Proof. Expand the terms in the Rayleigh quotient associated with P̃∗ as:

A(P̃∗u, u)
A(u, u)

=
A(P0u, P0u) + A(P̃ (I − P0)u, (I − P0)u)
A(P0u, P0u) + A((I − P0)u, (I − P0)u)

,

employing the A(., .)-orthogonality of the decomposition u = P0u+(I−P0)u.
Since the range of (I − P0) is V ⊥

0 , a subspace of V , the Rayleigh quotient
associated with the self adjoint operator (I − P0)P̃ (I − P0) will satisfy:

λmin

(
P̃
)
≤ min

u∈V ⊥
0 \{0}

A(P̃ (I − P0)u, (I − P0)u)
(A((I − P0)u, (I − P0)u)

,

and

max
u∈V ⊥

0 \{0}
A(P̃ (I − P0)u, (I − P0)u)
(A((I − P0)u, (I − P0)u)

≤ λmax

(
P̃
)
,

since the extrema are considered on a subspace of V . Substituting these ob-
servations in the Rayleigh quotient yields the desired result. ��

We next consider norm bounds for Ep = (I − P̃0) · · · (I − P̃p), the error
map associated with the multiplicative Schwarz method. Bounds for ‖Ep‖V

directly yield convergence rates for the multiplicative Schwarz method and
condition number estimates for the symmetrized Schwarz preconditioner.

Remark 2.57. If inexact solvers are employed, there are two alternative pos-
sibilities for symmetrizing Schwarz sweeps. Both define w = 0 initially and
define M−1f ≡ w at the end of the sweeps. The first symmetrization is:⎧⎨

⎩
For k = p, p − 1, · · · , 1, 0, 1, · · · , p − 1, p do

w ← w + RT
k Ã−1

k Rk (f − Aw)
Endfor

An alternative symmetrization has an additional fractional step for k = 0.⎧⎨
⎩

For k = p, p − 1, · · · , 1, 0, 0, 1, · · · , p − 1, p do
w ← w + RT

k Ã−1
k Rk (f − Aw)

Endfor

If an exact solver is used for k = 0, then both sweeps will be mathematically
equivalent. In our analysis, we consider the latter sweep.

Lemma 2.58. Suppose the following assumptions hold.

1. For some 0 ≤ δ < 1 let Ep = (I − P̃0) · · · (I − P̃p) satisfy:

‖Ep‖V ≤ δ.

2. Let M be the symmetrized multiplicative Schwarz preconditioner with:

I − M−1A = ET
p Ep,

where Ep = (I − P̃0) · · · (I − P̃p) is the matrix equivalent of Ep.
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Then the following results will hold.

1. The maximum eigenvalue of M−1A will satisfy:

λmax

(
M−1A

)
≤ 1.

2. The minimum eigenvalue of M−1A will satisfy:

1 − δ2 ≤ λmin(M−1A).

3. The condition number of the preconditioned matrix will satisfy:

cond(M, A) ≡
λmax

(
M−1A

)
λmin (M−1A)

≤ 1
1 − δ2

.

Proof. See [XU3, TO10]. The assumption that ‖Ep‖V ≤ δ is equivalent to:

A(Epv, Epv) ≤ δ2 A(u, u), ∀u ∈ V.

Since M−1A = I − ET
p Ep, we may substitute the above into the following

Rayleigh quotient, with v denoting the vector representation of v, to obtain:

vT AM−1Av
vT Av

=
A (v, v) −A (Epv, Epv)

A (v, v)
.

Since 0 ≤ A (Epv,Epv) ≤ δ2A(v, v), the desired results follow. ��

We next derive an estimate for ‖Ep‖V . We employ the notation:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E−1 ≡ I

E0 ≡ (I − P̃0)

E1 ≡ (I − P̃1)(I − P̃0)
...

...

Ep ≡ (I − P̃p) · · · (I − P̃0).

(2.36)

We derive two preliminary results.

Lemma 2.59. The following algebraic relations will hold for Ei defined
by (2.36): {

Ek−1 − Ek = P̃kEk−1, for 0 ≤ k ≤ p

I − Ei =
∑i

k=0 P̃kEk−1, for 0 ≤ i ≤ p.

Proof. Employing the definition of Ek and substituting Ek = (I − P̃k)Ek−1

for 0 ≤ k ≤ p yields the first identity. The second identity is obtained from
by summing up the first identity and collapsing the sum. ��
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Lemma 2.60. Let the parameters ω1, K0 and K1 be as defined earlier. Then,
for v ∈ V , the following bound will hold:

‖v‖2
V − ‖Epv‖2

V ≥ (2 − ω1)
p∑

j=0

A
(
P̃jEj−1v,Ej−1v

)
.

Proof. Consider identity Ek−1v − Ekv = P̃kEk−1v from Lemma 2.59, take
A(., .) inner products of both sides with Ek−1v + Ekv, and simplify:

‖Ek−1v‖2
V − ‖Ekv‖2

V = A
(
P̃kEk−1v, Ek−1v

)
+ A

(
P̃kEk−1v, Ekv

)
= A

(
P̃kEk−1v, Ek−1v

)
+ A

(
P̃kEk−1v, (I − P̃k)Ek−1v

)
= 2A

(
P̃kEk−1v, Ek−1v

)
−A

(
P̃kEk−1v, P̃kEk−1v

)
.

By Lemma 2.41, the map P̃k is symmetric and positive semidefinite in the
A(., .) inner product and satisfies:

A
(
P̃kEk−1v, P̃kEk−1v

)
≤ ω1A

(
P̃kEk−1v, Ek−1v

)
.

Substituting this yields:

‖Ek−1v‖2
V − ‖Ekv‖2

V = 2A
(
P̃kEk−1v,Ek−1v

)
−A

(
P̃kEk−1v, P̃kEk−1v

)
≥ (2 − ω1)A

(
P̃kEk−1v, Ek−1v

)
.

Summing for k = 0, · · · , p and collapsing the sum yields the desired result:

‖v‖2
V − ‖Epv‖2

V ≥ (2 − ω1)
p∑

k=0

A
(
P̃kEk−1v,Ek−1v

)
.

See [XU3, TO10] for additional details. ��

We are now able to derive the main result on norm bounds for Ep.

Theorem 2.61. Let parameters ω1, K0 and K1 be as defined earlier. Then
for v ∈ V , the following bound will hold:

‖Epv‖2
V ≤

(
1 − 2 − ω1

K0(1 + K1)2

)
‖v‖2

V (2.37)

for the error propagation map Ep of the multiplicative Schwarz method.

Proof. Expand P̃ v and substitute v = Ei−1v + (I − Ei−1)v to obtain:

A
(
P̃ v, v

)
=
∑p

i=0 A
(
P̃iv, v

)
=
∑p

i=0 A
(
P̃iv, Ei−1v

)
+
∑p

i=0 A
(
P̃iv, (I − Ei−1)v

)
=
∑p

i=0 A
(
P̃iv, Ei−1v

)
+
∑p

i=0

∑i
k=1 A

(
P̃iv, P̃kEk−1v

)
.
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The last line was obtained by an application of Lemma 2.59. By Lemma 2.41,
the mappings P̃i are symmetric and positive semidefinite in A(·, ·). Conse-
quently, the Cauchy-Schwartz inequality may be generalized to yield:

A
(
P̃iv, Ei−1v

)
≤ A

(
P̃iv, v

)1/2

A
(
P̃iEi−1v, Ei−1v

)1/2

.

Summing the above for i = 0, · · · , p yields:

∑p
i=0 A

(
P̃iv, Ei−1v

)
≤
∑p

i=0 A
(
P̃iv, v

)1/2

A
(
P̃iEi−1v,Ei−1v

)1/2

≤
(∑p

i=0 A(P̃iv, v)
)1/2 (∑p

i=0 A(P̃iEi−1v, Ei−1v)
)1/2

= A
(
P̃ v, v

)1/2 (∑p
i=0 A(P̃iEi−1v,Ei−1v)

)1/2

.

Applying the definition of K1 yields:∑p
i=0

∑i
k=1 A

(
P̃iv, P̃kEk−1)v

)
≤ K1

(∑p
i=0 A(P̃iv, v)

)1/2 (∑p
k=0 A(P̃kEk−1)v, Ek−1v)

)1/2

= K1A
(
P̃ v, v

)1/2 (∑p
k=0 A(P̃kEk−1)v, Ek−1v)

)1/2

.

Combining both these results yields:

A
(
P̃ v, v

)
≤ A

(
P̃ v, v

)1/2 (∑p
i=0 A(P̃iEi−1v,Ei−1v)

)1/2

+K1A
(
P̃ v, v

)1/2 (∑p
k=0 A(P̃kEk−1)v,Ek−1v)

)1/2

= (1 + K1)A
(
P̃ v, v

)1/2 (∑p
k=0 A(P̃kEk−1)v, Ek−1v)

)1/2

.

Canceling common terms yields:

A
(
P̃ v, v

)1/2

≤ (1 + K1)
(∑p

k=0 A(P̃kEk−1)v, Ek−1v)
)1/2

A
(
P̃ v, v

)
≤ (1 + K1)2

∑p
k=0 A(P̃kEk−1)v, Ek−1v).

Applying Lemma 2.60 yields:

A
(
P̃ v, v

)
≤ (1 + K1)2

2 − ω1

(
‖v‖2

V − ‖Epv‖2
V

)
.

Finally, applying the lower bound for the eigenvalue of P̃ yields:

K−1
0 ‖v‖2

V ≤ A
(
P̃ v, v

)
≤ (1 + K1)2

2 − ω1

(
‖v‖2

V − ‖Epv‖2
V

)
.

This immediately yields the desired inequality:

‖Epv‖2
V ≤

(
1 − 2 − ω1

K0(1 + K1)2

)
‖v‖2

V .

See [XU3, TO10] for additional details. ��
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Remark 2.62. The bound (2.37) for ‖Ep‖V imposes restrictions on the choice
of inexact solvers. To ensure convergence of multiplicative Schwarz iterates,
the parameter ω1 must satisfy ω1 < 2. We will henceforth assume that inexact
solvers Ãk are suitably scaled so that λmax

(
Ã−1

k Ak

)
= ω1 < 2.

Remark 2.63. The bound (2.37) for ‖EP ‖V is not optimal. Indeed, suppose
V0, · · · , Vp are mutually orthogonal subspaces which form an orthogonal de-
composition of V , equipped with the A(., .)-inner product. Then, the mul-
tiplicative Schwarz algorithm based on exact solvers will converge in one
iteration, yielding ‖Ep‖V = 0. However, theoretical estimates yield K0 =
K1 = 1 and ω0 = ω1 = 1 so that:

‖Ep‖V ≤
√

3
4
,

which is not optimal.

2.5.3 Applications to Finite Element Discretizations

We shall now apply the preceding abstract Schwarz convergence theory to
analyze the convergence of overlapping Schwarz algorithms for solving the fi-
nite element discretization (2.28) of elliptic equation (2.12) with BD = ∂Ω.
We shall make several simplifying assumptions and estimate the dependence
of the convergence rate on the underlying mesh size h, subdomain size h0,
overlap factor β h0 and the variation in the coefficient a(.). Since the rate
of convergence of the multiplicative, additive and hybrid Schwarz algorithms
depend only on the parameters K0 and K1, we shall estimate how these pa-
rameters depend on h, h0, a(.) and β for the finite element local spaces Vi

and forms Ai(., .). We shall assume that c(x) ≡ 0 and that exact solvers are
employed in all projections, so that Ãk = Ak for 0 ≤ k ≤ p and ω0 = ω1 = 1.
We will show that K1 is independent of h, h0 and a(.). So our efforts will
focus primarily on estimating how K0 depends on h, h0 and a(.). Readers are
referred to [XU3, TO10] for additional details.

Assumption 1. We assume that the coefficient a(.) is piecewise constant
on subregions S1, · · · , Sq of Ω which form a nonoverlapping decomposition:

a(x) = ak > 0, for x ∈ Sk, for 1 ≤ k ≤ q.

The notation ‖|a‖| will denote the variation in a(x):

‖|a‖| ≡ maxk ak

minl al
.

For the preceding choice of coefficients, the terms A(., .) and F (.) in weak
formulation (2.13) of (2.12) will have the form:{

A(u, v) ≡
∑q

i=1 ai

∫
Si

∇u · ∇v dx, for u, v ∈ H1
0 (Ω)

F (v) ≡
∫

Ω
f v dx, for v ∈ H1

0 (Ω).

We next state our assumptions on the overlapping subdomains {Ω∗
i }

p
i=1.
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Assumption 2. We assume that the overlapping subdomains {Ω∗
i }

p
i=1 are

constructed from a non-overlapping decomposition {Ωi}p
i=1, where each sub-

domain Ω∗
i is an extension of Ωi of diameter h0, with overlap β h0:

Ω∗
i ≡ Ωβ h0

i ≡ {x ∈ Ω : dist(x, Ωi) < β h0} , 1 ≤ i ≤ p,

where 0 ≤ β denotes an overlap parameter.
We associate a p × p adjacency matrix G with the subdomains {Ω∗

i }
p
i=1.

Definition 2.64. Given Ω∗
1 , · · · , Ω∗

p , we define its adjacency matrix G by:

Gij =
{

1, if Ω∗
i ∩ Ω∗

j = ∅
0, if Ω∗

i ∩ Ω∗
j = ∅ and g0 ≡ max

i

⎛
⎝∑

j �=i

Gij

⎞
⎠, (2.38)

where g0 denotes the maximum number of neighbors intersecting a subdomain.

We assume the following about the triangulation of Ω and the subdomains.
Assumption 3. We assume a quasiuniform triangulation Th(Ω) of Ω, whose

elements align with the subdomains {Si}q
i=1, {Ωi}p

i=1 and {Ω∗
i }

p
i=1. We let

Vh denote the space of continuous, piecewise linear finite element functions
defined on Th(Ω). The Hilbert space V ≡ Vh ∩H1

0 (Ω), while subspaces Vi for
1 ≤ i ≤ p are defined as Vi ≡ Vh ∩ H1

0 (Ω∗
i ). If a coarse space V0 is employed,

it will assumed to satisfy V0 ⊂ Vh ∩ H1
0 (Ω).

We will employ a partition of unity satisfying the following assumptions.
Assumption 4. We assume there exists a smooth partition of unity

{χi(x)}p
i=1 subordinate to the cover {Ω∗

i }
p
i=1 satisfying the following con-

ditions: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ χi(x) ≤ 1, for 1 ≤ i ≤ p

χi(x) = 0, for x ∈ Ω\Ω∗
i , 1 ≤ i ≤ p

χi(x) + · · · + χp(x) = 1, for x ∈ Ω

‖∇χi‖L∞(Ω) ≤ β h−1
0 , for 1 ≤ i ≤ p.

(2.39)

If a coarse space V0 is employed, we consider several operators which map
onto this subspace. We let Q0 denote the L2(Ω)-orthogonal projection onto
V0, and when applicable, we let π0 denote a traditional interpolation map onto
V0, and I0 a weighted interpolation map onto V0. The following properties will
be assumed about these operators.

Assumption 5. Let the L2(Ω)-orthogonal projection Q0 onto V0 satisfy:{
|Q0v|2H1(Ω) ≤ c1(Q0, h, h0) |v|2H1(Ω), for v ∈ C(Ω) ∩ H1(Ω)

‖v − Q0v‖2
L2(Ω) ≤ c2(Q0, h, h0) h2

0 |v|2H1(Ω), for v ∈ C(Ω) ∩ H1(Ω),
(2.40)

where c1(Q0, h, h0) > 0 and c2(Q0, h, h0) > 0 denote parameters which may
depend on h, h0 and operator Q0, but not on the coefficients {al}.
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When applicable, we assume that π0 : C(Ω) ∩ H1(Ω) → V0 (the traditional
interpolation map) satisfies the following local bounds on each Ωi:{

|π0v|2H1(Ωi)
≤ c1(π0, h, h0) |v|2H1(Ωi)

, for v ∈ C(Ωi) ∩ H1(Ωi)

‖v − π0v‖2
L2(Ωi)

≤ c2(π0, h, h0)h2
0 |v|H1(Ωi), for v ∈ C(Ωi) ∩ H1(Ωi),

(2.41)
where c1(π0, h, h0) and c2(π0, h, h0) denote parameters which can depend on
h, h0 and π0, but not on the coefficients {al}.

If a weighted interpolation map can be defined, we assume Sl = Ωl for
1 ≤ l ≤ p with p = q. We assume that I0 : C(Ω) ∩ H1(Ω) → V0 satisfies the
following bound on each subdomain Ωi for v ∈ H1(Ω):{

|I0v|2H1(Ωi)
≤ c1(I0, h, h0)

∑
j:Gij �=0 d2

ij |v|2H1(Ωj)
,

‖v − I0v‖2
L2(Ωi)

≤ c2(I0, h, h0)h2
0

∑
j:Gij �=0 d2

ij |v|H1(Ωj),
(2.42)

where c1(I0, h, h0) and c2(I0, h, h0) denote parameters which may depend on
h, h0 and I0 but not on the coefficients {al}. The weights dij ≥ 0 depend on
the coefficients {al} and satisfy dij ≤ aj

ai+aj
, so that

(
ai d2

ij/aj

)
≤ 1.

Remark 2.65. The L2(Ω)-orthogonal projection Q0 will typically be global,
in the sense that (Q0w)(x) for x ∈ Ωj may depend on w(·) in Ω\Ωj . In
contrast, interpolation map π0 is required to be local on the subregions Ωj ,
since (π0w)(x) for x ∈ Ωj depends only on the values of w(·) in Ωj .

Remark 2.66. If as in multigrid methods, the triangulation Th(Ω) is obtained
by the refinement of some coarse quasiuniform triangulation Th0(Ω) whose
elements {Ωi}p

i=1 have diameter h0, then a coarse subspace V0 ⊂ Vh can
be defined as the continuous, piecewise linear finite element functions on
Th0(Ω). For such a coarse space, explicit bounds are known for ci(Q0, h, h0),
ci(π0, h, h0) and ci(I0, h, h0) in assumption 5, as noted in the following.

The L2(Ω)-orthogonal projection Q0 onto V0 will satisfy:{
|Q0v|2H1(Ω) ≤ c |v|2H1(Ω), for v ∈ H1(Ω)
‖v − Q0v‖2

L2(Ω) ≤ c h2
0 |v|2H1(Ω), for v ∈ H1(Ω)

(2.43)

where c is independent of h, h0, a(.), see [BR22, BR21, XU3, DR11].
The standard nodal interpolation map π0 onto V0 will satisfy the following

bounds on each element Ωi of Ω for v ∈ C(Ω) ∩ H1(Ω):⎧⎪⎨
⎪⎩

|π0v|2H1(Ωi)
≤ c (1 + log(h0/h)) |v|2H1(Ωi)

, for Ω ⊂ IR2

|π0v|2H1(Ωi)
≤ c (1 + (h0/h)) |v|2H1(Ωi)

, for Ω ⊂ IR3

‖v − π0v‖2
L2(Ωi)

≤ c h2
0 |v|2H1(Ωi)

, for Ω ⊂ IRd, d = 2, 3,

(2.44)
where c is independent of h, h0, a(.), see [CI2, JO2, DR11, BR21].
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A piecewise constant weighted interpolation map I0 onto V0 can be defined
satisfying the following bounds on each element Ωi of Ω for v ∈ C(Ω)∩H1(Ω):{

|I0v|2H1(Ωi)
≤ c

(
1 + log2(h0/h)

) ∑
j:Gij �=0 dij |v|2H1(Ωj)

,

‖v − I0v‖2
L2(Ωi)

≤ c h2
0

∑
j:Gij �=0 dij |v|H1(Ωj),

(2.45)

where c is independent of h and h0 (and a(x)), and dij ≤ aj

ai+aj
. We refer the

reader to [CO8, SA7, MA17, WA6], see also Chap. 3.9.

Remark 2.67. In applications, alternative coarse spaces may be employed, see
[WI6, DR10, MA17, CA18]. In particular, the piecewise constant coarse space
[CO8, SA7, MA17] applies to general grids and yields robust convergence.

Assumption 6. We assume that the following inverse inequality holds with
a parameter c (independent of h) such that on each element κ ∈ Ωh

|v|H1(κ) ≤ C h−1 ‖v‖L2(κ), ∀v ∈ Vh. (2.46)

See [ST14, CI2, GI3, JO2].

Estimation of K1

Lemma 2.68. Let g0 denote the maximum number of neighboring subdomains
which intersects a subdomain, as in (2.38). Then, the following will hold for
the subspaces Vi defined as Vi ≡ Vh ∩ H1

0 (Ω∗
i ) for 1 ≤ i ≤ p:

1. The parameter l0 defined by (2.35) will satisfy:

l0 ≤ g0.

2. The parameter K1 will satisfy:

K1 ≤
{

ω1 (g0 + 1), if V0 is employed

ω1 g0, if V0 is not employed,

where ω1 = maxi λmax

(
Ã−1

i Ai

)
.

Proof. Consider the matrix E = (εij)
p
i,j=0 of strengthened Cauchy-Schwartz

parameters associated with subspaces V0, V1, . . . , Vp. The following observa-
tion relates the entries of E to the entries of the following matrix G:

Gij = 0 =⇒ Ω∗
i ∩ Ω∗

j = ∅ =⇒ H1
0 (Ω∗

i ) ⊥ H1
0 (Ω∗

j ),

representing subdomain adjacencies. Thus, Gij = 0 will yield εij = 0 for
1 ≤ i, j ≤ p. Similarly, when Gij = 1, parameter εij = 1 for 1 ≤ i, j ≤ p. An
application of Lemma 2.51 now yields the desired result. ��
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Remark 2.69. For a typical overlapping decomposition {Ω∗
i }

p
i=1 of Ω and for

sufficiently small β, the the number g0 of adjacent subdomains is independent
of h, h0, ‖|a‖|, and β. Thus K1 is typically independent of these parameters,
and the rate of convergence of a traditional two-level overlapping Schwarz
algorithm depends primarily only on the parameter K0 (or equivalently C0).

In the following, we shall estimate the parameter K0, or equivalently the
partition parameter C0 (since we assume ω0 = ω1 = 1) for different Schwarz
algorithms, with or without a coarse space. For convenience, with some abuse
of notation, C will denote a generic constant independent of h, h0 and a(.),
whose value may differ from one line to the next. The next preliminary result
will be employed later in this section in estimating the parameter C0.

Estimation of K0

Lemma 2.70. Suppose the following conditions hold.

1. Let the assumptions 1 through 6 hold.
2. Let Vi ≡ Vh ∩ H1

0 (Ω∗
i ) for 1 ≤ i ≤ p be local finite element spaces.

3. Given w ∈ Vh ∩ H1
0 (Ω) define wi ≡ πhχiw ∈ Vi for 1 ≤ i ≤ p.

Then, the following results will hold.

1. We obtain w = w1 + · · · + wp.
2. For each 1 ≤ i ≤ p and 1 ≤ j ≤ q the following bound will hold:

aj

∫
Sj

|∇wi|2 dx ≤ 2aj

(∫
Sj

|∇w|2 dx + Cβ−2 h−2
0 ‖w‖2

L2(Sj)

)
,

where C > 0 is independent of h, h0, β and ‖|a‖|.

Proof. By construction w1 + · · · + wp = πh (χ1 + · · · + χp) w = πhw = w.
Consider an element κ ∈ Sj and let xκ be its geometric centroid. We express:{

wi(x) = πhχi(x)w(x), x ∈ κ

= Ihχi(xκ)w(x) + πh (χi(x) − χi(xκ)) w(x), x ∈ κ.

Application of the triangle and arithmetic-geometric mean inequality yields:

|wi|2H1(κ) ≤ 2 |πhχi(xκ)w|2H1(κ) + 2 |πh (χi(·) − χi(xκ)) w|2H1(κ) .

Substituting πhχi(xκ)w = χi(xκ)w on κ and the inverse inequality yields:{
|wi|2H1(κ) ≤ 2χi(xκ)2 |w|2H1(κ) + Ch−2 |πh(χi(·) − χi(xκ))w|2L2(κ)

≤ 2 |w|2H1(κ) + 2Ch−2 |πh (χi(·) − χi(xκ))w|2L2(κ) .
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Here, we employed that 0 ≤ χi(xκ) ≤ 1. By Taylor expansion, we obtain:{
|χi(x) − χi(xκ)| = |∇χi(x̃) · (x − xκ)|

≤ Cβ−1h−1
0 h,

for some point x̃ on the line segment (x, xκ). Substituting the above in the
expression preceding it yields:⎧⎪⎨

⎪⎩
|wi|2H1(κ) ≤ 2 |w|2H1(κ) + Ch−2‖πh (χi(·) − χi(xκ)) w‖2

L2(κ)

≤ 2 |w|2H1(κ) + 2Ch−2β−2h−2
0 h2‖w‖2

L2(κ)

= 2 |w|2H1(κ) + 2Cβ−2h−2
0 ‖w‖2

L2(κ).

Here C is a generic constant independent of h, h0, ‖|a‖| and β. Summing over
all the elements κ ∈ Sj and multiplying both sides by aj yields the result. ��

Remark 2.71. Without loss of generality, we may assume that the subregions
{Si}q

i=1 are obtained by refinement of {Ωj}p
j=1 (if needed by intersecting the Si

with Ωj). If m0 denotes the maximum number of subdomains Ω∗
j intersecting

a subregion Si, then it immediately follows that m0 ≤ g0 where g0 denotes
the maximum number of overlapping subdomains intersecting any Ω∗

i .

In the following result, we estimate C0 when a coarse space V0 is not
employed. Our estimate will be based on Lemma 2.70.

Lemma 2.72. Suppose the following conditions hold.

1. Let the assumptions 1 through 6 hold.
2. Let Vi ≡ Vh ∩ H1

0 (Ω∗
i ) for 1 ≤ i ≤ p.

3. Given w ∈ Vh ∩ H1
0 (Ω) define wi ≡ πhχiw ∈ Vi for 1 ≤ i ≤ p.

Then, for C independent of h, β, ‖|a‖| and h0, the decomposition will satisfy:{∑p
j=1 A(wi, wi) ≤ 2g0 A(w, w) + 2g0 Cβ−2h−2

0

∑q
j=1 aj‖w‖2

L2(Sj)

≤ 2g0

(
1 + Cβ−2h−2

0 ‖||a‖|
)
A(w, w),

(2.47)

yielding that parameter C0 ≤ 2g0

(
1 + Cβ−2h−2

0 ‖||a‖|
)
.

Proof. By construction w1 + · · · + wp = w. Apply Lemma 2.70 to obtain:

aj

∫
Sj

|∇wi|2dx ≤ 2aj

∫
Sj

|∇w|2dx + 2Cajβ
−2h−2

0 ‖w‖2
L2(Ωj)

.

Since the terms on the left hand side above are zero when Sj ∩ Ω∗
i = 0, we

only need sum the above for i such that Gij = 0 to obtain:

p∑
i=1

aj

∫
Sj

|∇wi|2dx ≤ 2g0

(
aj

∫
Sj

|∇w|2dx + Cβ−2h−2
0 aj‖w‖2

L2(Sj)

)
.
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Summing the above for j = 1, · · · , q yields:∑p
i=1 A(wi, wi) =

∑p
i=1

∑q
j=1 aj

∫
Sj

|∇wi|2dx

≤ 2g0

∑q
j=1 aj

(∫
Sj

|∇w|2dx + Cβ−2h−2
0 ‖w‖2

L2(Sj)

)
≤ 2g0 A(w, w) + 2g0Cβ−2h−2

0 ‖a‖∞‖w‖2
L2(Ω)

≤ 2g0 A(w, w) + 2g0 Cβ−2h−2
0 ‖a‖∞|w|2H1(Ω)

≤ 2g0 A(w, w) + 2g0 Cβ−2h−2
0 ‖a‖∞‖a−1‖∞A(w, w)

= 2g0 (1 + Cβ−2h−2
0 ‖|a‖|)A(w, w).

Here, we employed Poincaré-Freidrich’s inequality to bound ‖w‖2
L2(Ω) in terms

of |w|2H1(Ω). With abuse of notation, C denotes a generic constant, whose value
may differ from one line to the next. ��

The preceding bound for C0 deteriorates as h0 → 0. This deterioration
is observed in Schwarz algorithms in which information is only exchanged
between adjacent subdomains each iteration. Inclusion of a coarse space can
remedy such deterioration, as it enables transfer of some information globally
each iteration. The following result estimates C0 when a coarse subspace V0

is employed. These bounds, derived using the projection Q0, are independent
of h0, but not optimal with respect to coefficient variation ‖|a‖|.

Theorem 2.73. Suppose the following conditions hold.

1. Let assumptions 1 to 6 hold with Vi ≡ Vh ∩ H1
0 (Ω∗

i ) for 1 ≤ i ≤ p.
2. Let V0 ⊂ Vh ∩ H1

0 (Ω) be a coarse space for which Q0 satisfies (2.40).
3. Given v ∈ Vh ∩ H1

0 (Ω) define v0 = Q0v and vi ≡ πhχi (v − v0).

Then, the following will hold for v0, v1, . . . , vp:

p∑
i=0

A(vi, vi) ≤ C0 A(v, v),

with C0 ≤ C (g0+1)
(
1 + c1(Q0, h, h0)‖|a‖| + c2(Q0, h, h0)β−2‖|a‖|

)
, where C

is independent of h, h0, ‖|a‖| and β and ci(Q0, h, h0) has known dependence
on h and h0 for i = 1, 2, see equation (2.40) in assumption 5.

Proof. By construction, it is easily verified that v0 + v1 + · · · + vp = v. Since
the projection Q0 satisfies (2.40), we obtain:

A(Q0v, Q0v) =
∑q

j=1 aj

∫
Sj

|∇Q0v|2 dx

≤ ‖a‖∞|Q0v|2H1(Ω)

≤ ‖a‖∞ c1(Q0, h0, h)|v|2H1(Ω)

≤ c1(Q0, h0, h)‖a‖∞‖a−1‖∞
∑q

j=1 aj

∫
Sj

|∇v|2 dx

= c1(Q0, h, h0) ‖|a‖|A(v, v).
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Here, we used equation (2.40) from assumption 5. Now apply equation (2.47)
from Lemma 2.72 using w = v−v0 and also using wi ≡ vi = πhχiw to obtain:

∑p
j=1 A(vi, vi) ≤ 2g0

(
A(w, w) + Cβ−2h−2

0

∑q
j=1 aj‖w‖2

L2(Sj)

)
≤ 2g0

(
A(w, w) + Cβ−2h−2

0 ‖a‖∞‖v − Q0v‖2
L2(Ω)

)
≤ 2g0

(
A(w, w) + C c2(Q0, h, h0) β−2h−2

0 ‖a‖∞h2
0|v|2H1(Ω)

)
≤ 2g0

(
A(w,w) + Cc2(Q0, h, h0) β−2‖a‖∞‖a−1‖∞A(v, v)

)
= 2g0

(
A(w,w) + Cc2(Q0, h, h0) β−2‖|a‖|A(v, v)

)
,

where C is independent of h, h0, ‖|a‖| and β, while c2(Q0, h, h0) was used
from equation (2.40) in assumption 5.

Since w = v − v0, applying the triangle inequality yields:

A(w,w) ≤ 2 (1 + c1(Q0, h, h0) ‖|a‖|)A(v, v).

Substituting the above and combining the sums for i = 0, · · · , p yields:

p∑
i=0

A(vi, vi) ≤ (g0+1)C(1+c1(Q0, h, h0)‖|a‖|+c2(Q0, h, h0)β−2‖|a‖|)A(v, v),

where C is a generic constant independent of h, h0, ‖|a‖| and β. ��

Remark 2.74. When V0 is the traditional coarse space of continuous, piecewise
linear finite element functions defined on a coarse triangulation Th0(Ω) of Ω
from which Th(Ω) is obtained by successive refinement, then c1(Q0, ., .) and
c2(Q0, ., .) are independent of h, h0, β and ‖|a‖|, see equation (2.43), yielding:

C0 ≤ C (g0 + 1)‖|a‖|
(
1 + β−2

)
,

where C is a generic constant independent of h, h0, ‖|a‖| and β. This result
shows that a Schwarz algorithm employing traditional coarse space residual
correction is robust when the variation ‖|a‖| in the coefficients is not large.

The next result considers alternative bounds for C0 when ‖|a‖| is large.

Theorem 2.75. Suppose the following assumptions hold.

1. Let assumptions 1 to 6 hold with Vi ≡ Vh ∩ H1
0 (Ω∗

i ) for 1 ≤ i ≤ p.
2. Let p = q and Sj = Ωj for 1 ≤ j ≤ p.
3. Let V0 ⊂ Vh ∩ H1

0 (Ω) be a coarse space.
4. Let π0 satisfy equation (2.41).
5. For v ∈ Vh ∩ H1

0 (Ω), define v0 = π0v and vi ≡ πhχi (v − v0).
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Then, the following estimate will hold:
p∑

i=0

A(vi, vi) ≤ C (g0 + 1)
(
c1(π0, h, h0) + c2(π0, h, h0) β−2

)
A(v, v),

where C is independent of h, h0, ‖|a‖| and β and ci(π0, h, h0) are defined in
equation (2.41) of assumption 5.

Proof. By construction v0 + · · · + vp = v. Apply equation (2.41) to obtain:⎧⎪⎨
⎪⎩

A(π0v, π0v) =
∑q

j=1 aj

∫
Sj

|∇π0v|2 dx

≤ c1(π0, h, h0)
∑q

j=1 aj |v|2H1(Sj)

= c1(π0, h, h0)A(v, v).

Apply Lemma 2.72 with w = v − v0 and wi ≡ vi = πhχiw, yielding (2.47):

∑p
j=1 A(vi, vi) ≤ 2g0

(
A(w, w) + Cβ−2h−2

0

∑q
j=1 aj‖w‖2

L2(Sj)

)
= 2g0

(
A(w, w) + Cβ−2h−2

0

∑q
j=1 aj‖v − π0v‖2

L2(Sj)

)
≤ 2g0

(
A(w, w) + Cβ−2h−2

0 c2(π0, h, h0)h2
0

∑q
j=1 aj |v‖2

H1(Sj)

)
= 2g0

(
A(w, w) + C c2(π0, h, h0)β−2A(v, v)

)
where c2(π0, h, h0) is defined in equation (2.41) and C is independent of h,
h0, ‖|a‖| and β. Since w = v − v0, the triangle inequality yields:

A(w, w) ≤ 2 (1 + c1(π0, h, h0))A(v, v).

Substituting this and combining the terms yields:
p∑

i=0

A(vi, vi) ≤ C(g0 + 1)
(
c1(π0, h, h0) + c2(π0, h, h0) β−2

)
A(v, v),

where C is independent of h, h0, ‖|a‖| and β. ��

Remark 2.76. When V0 is a traditional finite element coarse space defined on
a coarse triangulation Th0(Ω) of Ω, whose successive refinement yields Th(Ω),
then bounds for c1(π0, ., .) and c2(π0, ., .) in equation (2.44) yields:

C0 ≤
{

C (g0 + 1)
(
log(h0/h) + β−2

)
, if Ω ⊂ IR2

C (g0 + 1)
(
(h0/h) + β−2

)
, if Ω ⊂ IR3.

This result indicates that Schwarz algorithms employing traditional coarse
spaces have reasonably robust theoretical bounds independent of ‖|a‖|. While
these bounds deteriorate in three dimensions, computational tests indicate
almost optimal convergence in both two and three dimensions.

Improved bounds result if I0-interpolation (2.42) is used onto V0.
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Theorem 2.77. Suppose the following assumptions hold.

1. Let assumptions 1 to 6 hold with Vi ≡ Vh ∩ H1
0 (Ω∗

i ) for 1 ≤ i ≤ p.
2. Let p = q and Sj = Ωj for 1 ≤ j ≤ p.
3. Let V0 ⊂ Vh ∩ H1

0 (Ω) be a coarse space.
4. Let I0 satisfy equation (2.42).
5. For v ∈ Vh ∩ H1

0 (Ω), define v0 = I0v and vi ≡ πhχi (v − v0).

Then, the following estimate will hold:

p∑
i=0

A(vi, vi) ≤ C (g0 + 1)
(
c1(I0, h, h0) + c2(I0, h, h0) β−2

)
A(v, v),

where C is independent of h, h0, ‖|a‖| and β, while ci(I0, h, h0) is defined in
equation (2.42) of assumption 5.

Proof. By construction v0 + · · · + vp = v. Apply equation (2.42) to obtain:

A(I0v, I0v) =
∑p

i=1 ai

∫
Ωi

|∇I0v|2 dx

≤ c1(I0, h, h0)
∑p

i=1 ai

∑
j:Gij �=0

d2
ij

aj
aj |v|2H1(Ωj)

≤ c1(I0, h, h0)
∑p

i=1

∑
j:Gij �=0

ai d2
ij

aj
aj |v|2H1(Ωj)

≤ g0 c1(I0, h, h0)A(v, v).

Apply (2.47) from Lemma 2.72 with w = v − v0 and wl ≡ vl = πhχlw:

∑p
l=1 A(vl, vl) ≤ 2g0

(
A(w, w) + C β−2h−2

0

∑p
i=1 ai ‖w‖2

L2(Ωi)

)
= 2g0

(
A(w,w) + C β−2h−2

0

∑p
i=1 ai ‖v − I0v‖2

L2(Ωi)

)
≤ 2g0

(
A(w,w) + Cβ−2h−2

0 c2(I0, h, h0)h2
0

∑p
i=1

∑
j:Gij �=0

aid
2
ij

aj
aj |v‖2

H1(Ωj)

)
= 2g0

(
A(w, w) + Cg0 c2(I0, h, h0)β−2 A(v, v)

)
,

where C is independent of h, h0, ‖|a‖| and β. Since w = v − v0, applying the
triangle inequality yields:

A(w, w) ≤ 2 (1 + c1(I0, h, h0))A(v, v).

Substituting this and combining the terms yields:

p∑
i=0

A(vi, vi) ≤ C (g0 + 1)
(
c1(I0, h, h0) + c2(I0, h, h0) g0 β−2

)
A(v, v),

where C is independent of h, h0, ‖|a‖| and β. ��
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Remark 2.78. When V0 is the piecewise constant coarse space defined on
the subdomain decomposition Ω1, . . . , Ωp, then bounds for c1(I0, ., .) and
c2(I0, ., .) in equation (2.42) will satisfy:

C0 ≤ C (g0 + 1)
(
log2(h0/h) + β−2

)
, if Ω ⊂ IRd,

for d = 2, 3, see [CO8, SA7, MA17, WA6]. Thus, Schwarz algorithms employ-
ing the piecewise constant coarse space will have almost optimal convergence
bounds in both two and three dimensions. Sharper estimates with respect to
overlap β are obtained in [DR17].

Anisotropic Problems

We next outline estimates for Schwarz algorithms applied to solve anisotropic
elliptic equations. We consider the following model anisotropic problem:{

−εux1x1 − ux2x2 + u = f, in Ω

u = 0, on ∂Ω,
(2.48)

where Ω ⊂ IR2 and 0 < ε � 1 is a small perturbation parameter. Due
to presence of the small parameter ε, the preceding elliptic equation will be
strongly coupled along the x2 axis, and weakly coupled along the x1 axis. In
the limiting case of ε = 0, the elliptic equation will not be coupled along the
x1 axis. For 0 < ε � 1, the solution may exhibit boundary layer behavior
near ∂Ω, i.e., there may be subregions of Ω on which the solution has large
gradients. If such layers need to be resolved computationally, then refinement
of the grid may be necessary in such subregions.

The weak coupling along the x1 axis suggests several heuristic choices in
the formulation of the Schwarz iterative algorithm.

• Non-overlapping subdomains {Ωi}p
i=1 can be chosen as strips of the form:

Ωi ≡ {(x1, x2) : bi < x1 < bi+1} ∩ Ω, (2.49)

for some choice of bi. To obtain strips of width h0, ensure that:

|bi+1 − bi| = O(h0), for 1 ≤ i ≤ p.

• Extended subdomains {Ω∗
i }

p
i=1 can be constructed from the strips {Ωi}p

i=1

using an overlap factor of β h0 for some 0 < β < 1/2.
• If h0 is sufficiently small, efficient direct solvers (such as band solvers)

may be available for solution of the strip problems, provided the discrete
unknowns within each strip are ordered horizontally, row by row, yielding
a matrix with small bandsize.

• If the overlap factor is chosen so that β h0 ≥ c
√

ε, then a coarse space V0

may not be required to ensure robust convergence.
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These ideas may be extended to more general anisotropic problems in two or
three dimensions, provided that in the general case the subdomains be chosen
as cylinders or strips whose sections are perpendicular to the axis of weak
coupling of the elliptic equation.

We now estimate the convergence rate of Schwarz iterative algorithms
applied to anisotropic problem (2.48).

Lemma 2.79. Consider a finite element discretization of elliptic equation
(2.48) based on a finite element space Vh ∩ H1

0 (Ω).

1. Choose subdomains Ωi for 1 ≤ i ≤ p of the form (2.49) with width h0.
Extend each Ωi to Ω∗

i to have overlap β h0 where β < 1/2.
2. Let g0 denote the maximum number of adjacent overlapping subdomains.
3. Employ a Schwarz algorithm based on subspaces Vi ≡ Vh ∩ H1

0 (Ω∗
i ) for

1 ≤ i ≤ p, without a coarse space V0, and use exact local solvers.

Then the following will hold.

1. Parameter K1 will satisfy K1 ≤ g0,for sufficiently small β.
2. Parameter K0 (equivalently C0, since ω0 = ω1 = 1) will satisfy:

K0 ≤ C g0

(
1 + εβ−2h−2

0

)
,

for C independent of h, h0, ε and β.

Proof. We outline the proof only in the continuous case. The proof involving
a finite element discretization can be obtained by appropriate modification
of the proof given below. Applying Lemma 2.68 yields K1 ≤ g0. To esti-
mate K0, given the strip subdomains, we shall employ a partition of unity
χ1(x), · · · , χp(x) subordinate to the strip subdomains Ω∗

1 , · · · , Ω∗
p , such that

χi(x) = χi(x1), i.e., each partition of unity function is solely a function of the
variable x1. We further require the smoothness assumption:∣∣∣∣∂χi

∂x1

∣∣∣∣ ≤ Cβ−1h−1
0 , 1 ≤ i ≤ p.

Such a partition of unity will not satisfy χi(x) = 0 for x ∈ ∂Ω. However, this
will not alter the construction of wi described below, since the partition of
unity functions will multiply functions which are in H1

0 (Ω).
Given such a partition of unity and w ∈ H1

0 (Ω) define wi ≡ χi w. Then,
by construction (w1 + · · · + wp) = (χ1 + · · · + χp) w = w. Furthermore:

∂wi

∂x1
=
(

∂χi

∂x1
w + χi

∂w

∂x1

)
and

∂wi

∂x2
=
(

χi
∂w

∂x2

)
.

Employing arguments analogous to the isotropic case, we obtain:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(wi, wi) = ε‖∂wi

∂x1
‖2

L2(Ω∗
i ) + ‖∂wi

∂x2
‖2

L2(Ω∗
i ) + ‖wi‖2

L2(Ω∗
i )

≤ C
(
εβ−2h−2

0 ‖w‖2
L2(Ω∗

i ) + ε‖ ∂w
∂x1

‖2
L2(Ω∗

i ) + ‖ ∂w
∂x2

‖2
L2(Ω∗

i ) + ‖w‖2
L2(Ω∗

i )

)
= C

(
1 + εβ−2h−2

0

) (
ε‖ ∂w

∂x1
‖2

L2(Ω∗
i ) + ‖ ∂w

∂x2
‖2

L2(Ω∗
i ) + ‖w‖2

L2(Ω∗
i )

)
.
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Summing over 1 ≤ i ≤ p yields the following bound:
p∑

i=1

A(wi, wi) ≤ Cg0

(
1 + εβ−2h−2

0

)
A(w,w).

Thus C0 ≤ Cg0

(
1 + εβ−2h−2

0

)
, where C will be independent of h0 and ε (and

h in the discrete case). ��

Remark 2.80. If the overlap satisfies βh0 ≥ c
√

ε, then the term
(
1 + εβ−2h−2

0

)
will be bounded and convergence of Schwarz algorithms will be robust without
the inclusion of coarse space correction.

Time Stepping Problems

We conclude this section by considering the Schwarz algorithm for the iterative
solution of the linear system arising from the implicit time stepping of a finite
element or finite difference discretization of a parabolic equation:⎧⎪⎨

⎪⎩
ut + Lu = f, in Ω × [0, T ]

u = 0, on ∂Ω × [0, T ]
u(x, 0) = u0(x), in Ω,

(2.50)

where Lu ≡ −∇ · (a∇u). If τ > 0 denotes the time step, then the elliptic
equation resulting from an implicit time stepping of (2.50) will have the form:{

(I + τL) = f̃ , in Ω

u = 0, on ∂Ω.
(2.51)

This elliptic equation is singularly perturbed for τ → 0+ and may exhibit
boundary layer behavior on subregions. Grid refinement may be necessary to
resolve such layer regions. We will assume that the parabolic equation has
been suitably discretized.

The presence of the small parameter 0 < τ � 1 enables simplification of
Schwarz algorithms to solve (2.51) or its discretizations [KU3, KU6, CA, CA3].

• Let Ω1, . . . , Ωp denote a nonoverlapping decomposition of Ω of size h0. Let
each extended subdomain Ω∗

i be constructed by extending Ωi to include
overlap of size βh0 ≥ c

√
τ .

• The Schwarz algorithm based on the subspaces Vi ≡ Vh ∩ H1
0 (Ω∗

i ) will
have optimal order convergence without the use of a coarse space.

The absence of coarse space residual correction can be particularly advan-
tageous from the viewpoint of parallelization, since coarse spaces requires
interprocessor communication. Estimates yield that K1 ≤ g0 and:

K0 ≤ Cg0

(
1 + τ β−2h−2

0

)
,

for C independent of h, h0 and τ , see [KU3, KU6, CA, CA3] and Chap. 9.
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Schur Complement and Iterative
Substructuring Algorithms

In this chapter, we describe multi-subdomain Schur complement and iterative
substructuring methods. These methods iteratively solve the linear systems
arising from the discretization of a self adjoint and coercive elliptic equation,
based on a decomposition of its domain into non-overlapping subdomains. In
the continuous case, the solution to an elliptic equation can be parameterized
in terms of its unknown Dirichlet values on the subdomain boundaries. This
parameterization enables reducing the original elliptic equation to a Steklov-
Poincaré problem for determining the solution on such boundaries. Once the
reduced problem is solved, the global solution can be obtained by solving a
local boundary value problem on each subdomain, in parallel.

In the discrete case, parameterizing the global solution in terms of its
Dirichlet values on the subdomain boundaries, to obtain a reduced problem,
corresponds to a block Gaussian elimination of the unknowns in the interiors
of the subdomains. This reduced system, referred to as the Schur complement
system, is iteratively solved by a PCG method. The Schur complement matrix
is by construction a discrete approximation of the Steklov-Poincaré operator,
and this property enables the formulation of various effective preconditioners.
By contrast, the traditional substructuring method in structural engineering,
which pre-dates domain decomposition methodology, assembles and solves the
Schur complement system using a direct method [PR4, PR5].

Our discussion in this chapter is organized as follows. In Chap. 3.1 we
introduce notations. The Schur complement system and its algebraic proper-
ties are described in Chap. 3.2, with the substructuring method. Chap. 3.3
describes FFT based fast direct solvers for Schur complement systems on
rectangular domains with stripwise constant coefficients. Chap. 3.4 describes
several preconditioners for two subdomain Schur complement matrices, while
Chap. 3.5 and Chap. 3.6 describe multi-subdomain preconditioners for Schur
complements in two dimensions and three dimensions. Chap. 3.7 describes
the Neumann-Neumann and balancing preconditioners, while Chap. 3.8 dis-
cusses implementational issues. Chap. 3.9 describes theoretical estimates for
the condition number of various Schur complement preconditioners.
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3.1 Background

We consider the following self adjoint and coercive elliptic equation:⎧⎨
⎩

−∇ · (a(x)∇u) + c(x) u = f(x), in Ω
u = 0 on BD,

n · (a∇u) = gN (x), on BN ,
(3.1)

where a(x) ≥ a0 > 0 and c(x) ≥ 0. Here BD and BD denote the Dirichlet and
Neumann boundary segments, with BD ∪ BN = ∂Ω and BD ∩ BN = ∅. Given
a quasiuniform triangulation Th(Ω) of Ω, we shall let Vh denote the finite
element space of continuous, piecewise linear functions defined on Th(Ω). A
finite element discretization of (3.1) seeks uh ∈ Vh ∩ H1

D(Ω) satisfying:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(uh, vh) = F (vh), ∀vh ∈ Vh ∩ H1
D(Ω), where

A(u, v) ≡
∫

Ω
(a∇u · ∇v + c uv) dx, ∀u, v ∈ H1

D(Ω)
F (v) ≡

∫
Ω

f v dx +
∫
BN

gN v dsx, ∀v ∈ H1
D(Ω)

H1
D(Ω ≡

{
v ∈ H1(Ω) : v = 0 on BD

}
.

(3.2)
Let n denote the number of nodes of Th(Ω) in (Ω ∪ BN ). We enumerate
them as x1, . . . , xn. Then, the standard piecewise linear nodal basis functions
{φi(x)}n

i=1 dual to these nodes will satisfy:

φj(xi) = δij , 1 ≤ i, j ≤ n. (3.3)

A matrix representation of the discretization (3.2) can be obtained by expand-
ing uh relative to this nodal basis uh(y) ≡

∑n
i=1 uh(xi) φi(y), and substituting

this into (3.2) with vh = φj for 1 ≤ j ≤ n. This results in a linear system:

Ahu = f , (3.4)

where: ⎧⎪⎨
⎪⎩

(Ah)ij = A(φi, φj), for 1 ≤ i, j ≤ n

(u)i = uh(xi), for 1 ≤ i ≤ n

(f)i = F (φi), for 1 ≤ i ≤ n.

This system will be partitioned into subblocks based on an ordering of the
nodes given a decomposition of the domain into non-overlapping subdomains.

Definition 3.1. We shall say that Ω1, . . . , Ωp forms a non-overlapping de-
composition of Ω (see Fig. 3.1) if:

Ω = ∪p
l=1Ωl and Ωi ∩ Ωj = ∅ when i = j.

The following notation will be employed for subdomain boundaries.

B ≡ ∪p
i=1B

(i) and B(i) ≡ ∂Ωi\BD and B[i] ≡ ∂Ωi ∩ BD for 1 ≤ i ≤ p.

Here B(i) denotes the interior and Neumann segment of ∂Ωi, B[i] the exterior
non-Dirichlet segment, and B the interface separating the subdomains. We
also let Bij ≡ B(i) ∩ B(j) denote the interface between Ωi and Ωj.
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Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

Non-overlapping strip decomposition

Ω1 Ω2 Ω3 Ω4

Ω5 Ω6 Ω7 Ω8

Ω9 Ω10 Ω11 Ω12

Ω13 Ω14 Ω15 Ω16

Non-overlapping box decomposition

Fig. 3.1. Multidomain non-overlapping decompositions

In most applications, box like subdomain decompositions will be employed,
though strip decompositions have advantages. We shall assume that the sub-
domains are chosen to align with the triangulation Th(Ω), and that the nodes
x1, . . . , xn in Th(Ω) are ordered based on the subdomains Ω1, . . . , Ωp and
interface B, as in Fig. 3.1. The nodes within each subdomain Ωi and on the
interface B may be ordered arbitrarily. Let n

(i)
I denote the number of nodes in

subdomain Ωi and n
(i)
B the number of nodes on B(i). Let nB denote the number

of nodes on B. Then, by construction it will hold n = (n(1)
I + · · ·+n

(p)
I +nB).

We shall assume that the chosen ordering of nodes satisfies:{
xj ∈ Ωi, for (n(1)

I + . . . n
(i−1)
I ) + 1 ≤ j ≤ (n(1)

I + . . . n
(i)
I ), for 1 ≤ i ≤ p

xj ∈ B, for (nI + 1) ≤ j ≤ (nI + nB),

where nI ≡ (n(1)
I + · · ·+n

(p)
I ) denotes the total number of nodes in subdomain

interiors. Using this ordering, system (3.4) can be block partitioned as:[
AII AIB

AT
IB ABB

] [
uI

uB

]
=
[

f I

fB

]
, (3.5)

corresponding to the partition u =
(
uT

I ,uT
B

)T and f =
(
fT
I , fT

B

)T where:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(AII)lj = (Ah)lj , for 1 ≤ l, j ≤ nI

(AIB)lj = (Ah)l,nI+j , for 1 ≤ l ≤ nI and 1 ≤ j ≤ nB

(ABB)lj = (Ah)nI+l,nI+j , for 1 ≤ l, j ≤ nB

(uI)j = (u)j , for 1 ≤ j ≤ nI

(uB)j = (u)nI+j , for 1 ≤ j ≤ nB

(f I)j = (f)j , for 1 ≤ j ≤ nI

(fB)j = (f)nI+j , for 1 ≤ j ≤ nB .

The block submatrices AII and AIB in (3.5) will be further partitioned using
submatrices arising from the subregions, and this will be described later.
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3.2 Schur Complement System

The solution to system (3.5) can be sought formally by block Gaussian elim-
ination. Eliminating uI using the first block equation in (3.5) below:{

AIIuI + AIBuB = f I

AT
IBuI + ABBuB = fB

yields uI = A−1
II (f I − AIBuB) provided AII is invertible. Substituting this

parametric representation of uI into the 2nd block equation above yields the
following reduced linear system for uB :⎧⎪⎪⎨

⎪⎪⎩
SuB = f̃B , where

S ≡ (ABB − AT
IBA−1

II AIB)

f̃B ≡ (fB − AT
IBA−1

II f I).

(3.6)

The system SuB = f̃B is referred to as the Schur complement system. It corre-
sponds to a discrete approximation of a Steklov-Poincaré problem associated
with elliptic equation (3.1), but posed on the interface B. Matrix S is referred
to as the Schur complement (strictly speaking, S is the Schur complement
of submatrix AII in Ah). The Schur complement system can be employed to
determine the solution

(
uT

I ,uT
B

)T to (3.5) as follows. First, determine uB by
(iteratively or directly) solving the Schur complement system (3.6):

uB = S−1
(
fB − AT

IBA−1
II f I

)
.

This will be possible when matrix S is invertible. Once uB has been deter-
mined, uI can be obtained by solving AIIuI = (f I − AIBuB), yielding:

uI = A−1
II (f I − AIBuB).

We summarize the resulting algorithm below.

Algorithm 3.2.1 (Schur Complement Algorithm)

1. Solve for wI :
AII wI = f I .

2. Compute:
f̃B = fB − AT

IBwI .

3. Solve for uB:
S uB = f̃B .

4. Solve for uI :
AII uI = (f I − AIBuB).

Output:
(
uT

I ,uT
B

)T .
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Schur complement and iterative substructuring algorithms are motivated
by the preceding algorithm. If a direct solver is employed to solve (3.6), then
matrix S must first be assembled. This is the approach employed in traditional
substructuring [PR4, PR5]. However, in domain decomposition applications,
the Schur complement system (3.6) is typically solved using a preconditioned
conjugate gradient iterative method. This does not require explicit assembly
of matrix S, and instead only requires computing the action of S on different
vectors. Such matrix-vector products, for instance S wB , given wB , may be
computed by first solving AIIwI = −AIBwB in parallel (as discussed below)
for wI , and by subsequently defining S wB ≡ ABBwB + AT

IBwI .
The preceding version of the Schur complement algorithm can be imple-

mented in parallel by using the block structure of matrix AII . Indeed, given a
decomposition of Ω into the subdomains Ω1, . . . , Ωp, and an ordering of the
nodes based of this, matrix AII in system (3.5) will be block diagonal. To
see this, note that when nodes xi and xj belong to the interiors of different
subdomains, then the nodal basis functions φi(x) and φj(x) will have support
in different subdomains, yielding that Aij = A(φi, φj) = 0. More formally,
define the index set:

I(j) ≡
{

i : (n(1)
I + · · · + n

(j−1)
I + 1) ≤ i ≤ (n(1)

I + · · · + n
(j)
I )

}
.

By construction xi ∈ Ωj ⇔ i ∈ I(j) and I = I(1) ∪ · · · ∪ I(p). It then follows

that the diagonal blocks of AII = blockdiag
(
A

(1)
II , . . . , A

(p)
II

)
satisfy:

AII =

⎡
⎢⎢⎣

A
(1)
II 0

. . .

0 A
(p)
II

⎤
⎥⎥⎦ where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
A

(j)
II

)
lk

= (Ah)l̃k̃ for 1 ≤ l, k ≤ n
(j)
I

l̃ = (n(1)
I + · · · + n

(j−1)
I ) + l

k̃ = (n(1)
I + · · · + n

(j−1)
I ) + k.

(3.7)
This block diagonal structure of AII will enhance the parallelizability of

Schur complement algorithms, since the action of A−1
II = blockdiag(A(1)−1

II ,

. . ., A
(p)−1

II ) involves p separate blocks, each of which can be computed in
parallel.

We next describe the substructuring algorithm for solving (3.5). It employs
a direct method to solve (3.6), but incorporates the assembly of matrices Ah

and S by a finite element subassembly procedure. Given the non-overlapping
subdomains Ω1, . . . , Ωp, let AΩi

(., .) and FΩi
(.) denote subdomain forms:{

AΩi(u, v) ≡
∫

Ωi
(a(x)∇u · ∇v + c(x) uv) dx, for u, v ∈ H1

D(Ω)
FΩi(v) ≡

∫
Ωi

f v dx, for v ∈ H1
D(Ω).

By definition, the following subassembly relation will hold:{
A(u, v) =

∑p
i=1 AΩi

(u, v), for u, v ∈ H1
D(Ω)

F (v) =
∑p

i=1 FΩi
(v), for v ∈ H !

D(Ω).
(3.8)
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If u, v ∈ Vh ∩H1
D(Ω), then these local forms can be represented using matrix-

vector notation. Accordingly, on each subdomain Ωj , let I(j) and B(j) denote
the index sets of nodes in Ωj and ∂Ωj\BD, respectively, each with a specified
local ordering of the nodes (for instance in ascending order of indices). Let n

(j)
I

and n
(j)
B denote the number of nodes in Ωj and B(j), respectively. Given finite

element functions uh, vh ∈ Vh ∩ H1
D(Ω), let u, v ∈ IRn denote its vector of

nodal values, with u(j)
I , v(j)

I ∈ IRnj and u(j)
B , v(j)

B ∈ IRn
(j)
B denoting subvectors

corresponding to indices in I(j) and B(j) (in the local ordering of nodes). We
may then represent:

AΩj (uh, vh) =

[
u(j)

I

u(j)
B

]T [
A

(j)
II A

(j)
IB

A
(j)T

IB A
(j)
BB

][
v(j)

I

v(j)
B

]
, FΩj

(vh) =

[
f (j)
I

f (j)
B

]T [
v(j)

I

v(j)
B

]
,

where the submatrices and subvectors are defined by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
A

(j)
II

)
lk

≡ AΩj

(
φl̃, φk̃

)
, for 1 ≤ l, k ≤ n

(j)
I(

A
(j)
IB

)
lk

≡ AΩj

(
φl̃, φk̃

)
, for 1 ≤ l ≤ n

(j)
I , 1 ≤ k ≤ n

(j)
B(

A
(j)
BB

)
lk

≡ AΩj

(
φl̃, φk̃

)
, for 1 ≤ l, k ≤ n

(j)
B(

f (j)
I

)
l

= FΩi

(
φl̃

)
, for 1 ≤ l ≤ n

(j)
I(

f (j)
B

)
l

= FΩi

(
φl̃

)
, for 1 ≤ l ≤ n

(j)
B ,

with l̃ and k̃ denoting global indices corresponding to the local indices l and
k on Ωj and B(j). The discrete version of subassembly identity (3.8) becomes:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
uI

uB

]T [
AII AIB

AT
IB ABB

][
vI

vB

]
=
∑p

j=1

[
u(j)

I

u(j)
B

]T [
A

(j)
II A

(j)
IB

A
(j)T

IB A
(j)
BB

][
v(j)

I

v(j)
B

]

[
vI

vB

]T [
f I

fB

]
=
∑p

j=1

[
v(j)

I

v(j)
B

]T [
f (j)
I

f (j)
B

]
.

(3.9)
These subassembly relations may equivalently be expressed based on restric-
tion and extension matrices, as defined below.

Definition 3.2. For any set of indices W (such as I(j), B(j), B) let
index(W, l) denote the global index associated with the l’th node in the lo-
cal ordering of indices in W . If nW denotes the number of nodes in W , we
define restriction map RW as an nW × n matrix with entries:

(RW )lj =

{
1, if index(W, l) = j

0, if index(W, l) = j.
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Given a nodal vector v ∈ IRn, its restriction RW v will denote a subvector
of nodal values corresponding to the indices in W in the chosen local order-
ing of nodes. While, given vW ∈ IRnW , its extension RT

W vW will denote a
vector of size n whose entries at indices in W correspond to those of vW

in the local ordering, with zero values for all other entries. The subassembly
relations (3.9) may now be alternatively expressed as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
AII AIB

AT
IB ABB

]
=
∑p

j=1

[
R

(j)
I

R
(j)
B

]T [
A

(j)
II A

(j)
IB

A
(j)T

IB A
(j)
BB

][
R

(j)
I

R
(j)
B

]

[
f I

fB

]
=
∑p

j=1

[
R

(j)
I

R
(j)
B

]T [
f (j)
I

f (j)
B

]
.

(3.10)

This subassembly identity relates the global stiffness matrix and load vectors to
the subdomain stiffness matrices and subdomain load vectors. The following
result establishes a related expression between the global Schur complement
matrix S and subdomain Schur complements S(i) ≡ A

(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB .

Lemma 3.3. Suppose the following assumptions hold.

1. Let u =
(
uT

I ,uT
B

)T ∈ IRn be discrete Ah-harmonic, i.e., satisfy:[
AII AIB

AT
IB ABB

] [
uI

uB

]
=
[

0
fB

]
, (3.11)

for some vector fB.
2. Let u(i)

I = R
(i)
I u and u(i)

B = R
(i)
B u.

Then the following results will hold.

1. The term fB = SuB and the Schur complement energy will satisfy:

uT
BSuB =

[
uI

uB

]T [
AII AIB

AT
IB ABB

] [
uI

uB

]
. (3.12)

2. The subvectors u(i)
I and u(i)

B will satisfy:

A
(i)
II u(i)

I + A
(i)
IBu(i)

B = 0. (3.13)

3. It will hold that:

uT
BSuB =

p∑
i=1

u(i)T

B S(i)u(i)
B , (3.14)

where S(i) ≡ (A(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB).
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Proof. To prove that fB = SuB eliminate uI using (3.11) and substitute the
resulting expression uI = −A−1

II AIBuB into the 2nd block equation to obtain
the desired result. Next, take inner product of (3.11) with

(
uT

I ,uT
B

)T and
substitute fB = SuB to obtain (3.12).

To prove (3.13), we restrict the block equation:

AIIuI + AIBuB = 0

to indices in I(i). Apply R
(i)
I to (3.11), using that AII = blockdiag(A(1)

II , . . .,

A
(p)
II ) and u = (u(1)T

I , . . . ,u(p)T

I ,uT
B)T to obtain:

A
(i)
II u(i)

I + R
(i)
I AIBuB = 0. (3.15)

Now, for standard finite element discretizations, the nodes in Ωi will be cou-
pled only to nodes in Ωi and B(i). This yields:

R
(i)
I AIBuB = A

(i)
IBu(i)

B .

Substituting this expression into (3.15) yields the desired result.
To prove (3.14), we apply (3.13) to the local nodal vector (u(i)T

I ,u(i)T

B )T :[
A

(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

][
u(i)

I

u(i)
B

]
=
[

0
f (i)
B

]
, (3.16)

for some vector f (i)
B . Formally eliminating u(i)

I = −A
(i)−1

II A
(i)
IBu(i)

B and substi-
tuting into the 2nd block equation above yields f (i)

B = S(i)u(i)
B where:

S(i) ≡ (A(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB). (3.17)

We refer to S(i) as a local (subdomain) Schur complement. Taking the inner
product of (u(i)T

I ,u(i)T

B )T with (3.16) and employing that f (i)
B = S(i)u(i)

B yields:[
u(i)

I

u(i)
B

]T [
A

(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

][
u(i)

I

u(i)
B

]
= u(i)T

B S(i)u(i)
B . (3.18)

Substituting expressions (3.12) and (3.18) into identity (3.9) yields (3.14). ��

The subassembly identity (3.14) may be expressed equivalently using re-
striction and extension maps between nodal vectors on B and B(j), as follows.

Definition 3.4. Given region G ⊂ B containing nG indices, let index(B, G, i)
denote the index of the i’th local of G in the ordering of indices on B. We define
an nG × nB matrix RG as:

(RG)il =

{
1, if index(B,G, i) = l

0, if index(B,G, i) = l.
(3.19)

It can easily be verified that RG = RGRT
B.
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Using the restriction and extension maps R(i)
B and R(i)T

B , respectively, the
Schur complement subassembly identity (3.14) can be stated as:

S =
p∑

i=1

R(i)T

B S(i)R(i)
B =

p∑
i=1

R(i)T

B

(
A

(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB

)
R(i)

B , (3.20)

where S(i) = (A(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB) is a subdomain Schur complement.

The traditional substructuring algorithm solves the Schur complement system
by using Cholesky factorization, and explicitly assembles the subdomain fi-
nite element stiffness matrices, load vectors and Schur complement matrices
using (3.9), (3.10) and (3.20). The resulting algorithm is summarized below.

Algorithm 3.2.2 (Substructuring Algorithm)

1. For i = 1, · · · , p in parallel do:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Assemble: A
(i)
II , A

(i)
IB, A

(i)
BB, f (i)

I , f (i)
B

Determine the Cholesky factors: A
(i)
II = L

(i)
I L

(i)T

I

Assemble: S(i) ≡ A
(i)
BB − A

(i)T

IB L
(i)−T

I L
(i)−1

I A
(i)
IB

Assemble: f̃ (i)
B ≡ f (i)

B − A
(i)T

IB L
(i)−T

I L
(i)−1

I f (i)
I .

2. Endfor
3. Assemble: ⎧⎨

⎩
S ≡

∑p
i=1 R

(i)T

B S(i)R(i)
B

f̃B =
∑p

i=1 R
(i)T

B f̃ (i)
B

4. Determine the Cholesky factors: S = LSLT
S and solve:{

LS wB = f̃B

LT
S uB = wB .

5. For i = 1, · · · , p in parallel solve for u(i)
I :

A
(i)
II u(i)

I = (f (i)
I − A

(i)
IBR(i)

B uB).

6. Endfor

Output:
(
u(1)T

I , . . . ,u(p)T

I ,uT
B

)T

.

Steps 1 and 2 in the substructuring algorithm involve the assembly of A
(i)
II ,

A
(i)
IB , A

(i)
BB , f (i)

I and f (i)
B on each subdomain Ωi, followed by the computation

of the subdomain Cholesky factors, modified loads and and Schur complement
matrices S(i). The computations on different subdomains can be performed in
parallel. However, the substructuring algorithm is not purely algebraic, since
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it employs the subdomain stiffness matrices (as they may not be available
if the linear system Au = f has already been assembled). Assembly of the
global Schur complement matrix S using identity (3.20), and of the forcing
term f̃B in (3.6) must be parallelized using traditional methods. Similarly, the
Cholesky factorization of S and the solution of the Schur complement system
yielding uB , must be parallelized traditionally. Once uB is determined, the
components u(i)

I of uI can be determined in parallel (on each subdomain).
From a computational viewpoint, assembly of matrix S and its Cholesky fac-
torization can be significant costs, since nB can be large.

Remark 3.5. When coefficient c(x) = 0 and B(i) = ∂Ωi, the subdomain stiff-
ness matrices will typically be singular, and satisfy:[

A
(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

][
1
1

]
=

[
0
0

]
,

where 1 = (1, . . . , 1)T is of appropriate size. In this case, matrix S(i) will also
be singular with a null vector of the form (1, . . . , 1)T . However, the submatrices
A

(i)
II will be invertible.

Remark 3.6. For brevity of expression, we have employed matrix inverses in
the expressions for S(i) and f̃

(i)

B in the substructuring algorithm. However, such
inverses should not be assembled explicitly [GO4], instead the action of the in-
verse should be computed by the solution of the associated linear system. Each
subdomain Schur complement matrix S(i) will be of size n

(i)
B corresponding to

the number of nodes on B(i). Explicit assembly of S(i) requires the solution
of n

(i)
B linear systems involving sparse coefficient matrix A

(i)
II . The subdomain

Schur complement matrices S(i) will typically not be sparse, however, their
entries may decay in magnitude with increasing distance between the nodes.

Remark 3.7. The global Schur complement matrix S will have a block matrix
structure depending on the ordering of nodes in B. If nodes xi and xj lie
on some common subdomain boundary B(k), then entry Sij will typically be
nonzero, otherwise, the entry Sij will be zero. The magnitude of a nonzero
entry Sij typically decreases with increasing distance between the nodes xi and
xj . Such properties are further explored when block matrix preconditioners
are constructed for S.

From a computational viewpoint, the cost of the substructuring algorithm
is dominated by the cost of assembling matrix S, and the subsequent cost
of solving SuB = f̃B using a direct solver. If instead, a preconditioned itera-
tive method [GO4, AX, GR2, SA2] is employed to solve SuB = f̃B without
assembling S, then it may be possible to reduce these computational costs
provided an effective preconditioner can be found. Such a reduction in the
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computational costs motivates the iterative substructuring method. Precon-
ditioners for S are considered in Chap. 3.4 through Chap. 3.7. The iterative
substructuring method has similar steps as Alg. 3.2.2. However, matrix S is
not assembled in step 3 (instead, vector f̃B is assembled) and step 4 is replaced
by a preconditioned CG method to solve SuB = f̃B with a preconditioner M .
Steps 5 and 6 remain as in Alg. 3.2.2. We summarize the resulting algorithm.

Algorithm 3.2.3 (Iterative Substructuring Algorithm)

1. For i = 1, · · · , p in parallel do:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Assemble: A
(i)
II , A

(i)
IB, A

(i)
BB, f (i)

I , f (i)
B

Determine the Cholesky factors: A
(i)
II = L

(i)
I L

(i)T

I

Assemble: S(i) ≡ A
(i)
BB − A

(i)T

IB L
(i)−T

I L
(i)−1

I A
(i)
IB

Assemble: f̃ (i)
B ≡ f (i)

B − A
(i)T

IB L
(i)−T

I L
(i)−1

I f (i)
I .

2. Endfor
3. Assemble:

f̃B =
∑p

i=1 R
(i)T

B f̃ (i)
B

4. Solve SuB = f̃B using a preconditioned CG method.
5. For i = 1, · · · , p in parallel solve for u(i)

I :

A
(i)
II u(i)

I = f (i)
I − A

(i)
IBR(i)

B uB .

6. Endfor

Output:
(
u(1)T

I , . . . ,u(p)T

I ,uT
B

)T

.

Remark 3.8. The cost of implementing a preconditioned iterative method to
solve SuB = f̃B using a preconditioner M in step 4 will be proportional to the
number of preconditioned iterations and to the cost per iteration. When the
number of preconditioned iterations is less than mini

(
n

(i)
B

)
, the cumulative

cost for computing matrix-vector products with S will not exceed the cost
of assembling the subdomain Schur complement matrices S(i). Furthermore,
if the cost of solving M wB = rB is modest, then the total cost of solving
S uB = f̃B iteratively without assembling S, may be less than the cost of
assembling S and solving S u = f using a direct method.

Remark 3.9. The iterative substructuring method is not purely algebraic, as it
employs the subdomain stiffness matrices A

(i)
XY for X, Y = I, B. When these

submatrices are available, a product with S can be computed as:

S wB =
p∑

i=1

R(i)T

B

(
A

(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB

)
R(i)

B wB . (3.21)
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However, when these matrices are not available (for instance, when matrix A
is already assembled), then such a product can be computed using:

SwB = ABBwB − AT
IBA−1

II AIBwB . (3.22)

This requires computing AIBwB first, followed by solving AIIwI = −AIBwB

(in parallel, since AII is block diagonal, with p diagonal blocks), followed by
defining SwB ≡ ABBwB + AT

IBwI .

Remark 3.10. The iterative substructuring and Schur complement algorithms
have the disadvantage that they require the solution of subdomain problems
of the form A

(i)
II w(i)

B = r(i)
B , close to machine precision (when computing the

matrix-vector product with S). An alternative approach which avoids this is
to solve the original linear system Au = f by a preconditioned CG method
with a block matrix preconditioner Ã for A. Indeed, suppose ÃII and M are
preconditioners for matrices AII and S, respectively, and let ÃIB denote an
approximation of AIB , then motivated by the block form (3.25) (derived later
in this section), a preconditioner Ã for stiffness matrix A may be constructed:

Ã−1 =
[

I −Ã−1
II ÃIB

0 I

] [
I 0
0 M−1

] [
I 0

−ÃT
IB I

] [
Ã−1

II 0
0 I

]
. (3.23)

Matrix Ã will be symmetric and positive definite, and when applying a CG
method, each iteration will require the solution of a linear system of the form
Ãz = r, which can be obtained by formally applying the expression z = Ã−1r
given above. Such an approach will have the advantage that the subdomain
problems need not be exact. However, care must be exercised in the choice of
matrices ÃII and ÃIB approximating AII and AIB , respectively, and these
approximations must be scaled appropriately. Indeed, it has been shown that
if ÃII ≡ α AII for some α = 1, then the convergence rate of of the conjugate
gradient method deteriorates significantly [BO4]. This approach, however, re-
quires two subdomain solves per iteration involving coefficient matrix ÃII .

In the remainder of this chapter, after describing properties of matrix S
and FFT based direct solvers for S, we shall focus on preconditioners M for S
for use in the iterative substructuring or Schur complement algorithm. These
preconditioners will be grouped as two subdomain or multisubdomain pre-
conditioners. In the latter case, we shall separately consider two dimensional
and three dimensional domains, as most preconditioners depend on the geom-
etry of the interface B. A separate section is devoted to the robust class of
Neumann-Neumann and balancing domain decomposition preconditioners.

3.2.1 Properties of the Schur Complement System

From a matrix viewpoint, the block elimination of uI , which results in the
Schur complement system, can be understood to arise from the following block
matrix factorization of A, as expressed next [CO6, MA11, GO4]:
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A ≡
[

AII AIB

AT
IB ABB

]
=
[

I 0
AT

IBA−1
II I

] [
AII AIB

0 S

]

=
[

I 0
AT

IBA−1
II I

] [
AII 0
0 S

] [
I A−1

II AIB

0 I

]
,

(3.24)

where S ≡
(
ABB − AT

IBA−1
II AIB

)
denotes the Schur complement matrix. In

this case, matrix A−1 will formally have the following block factorizations:

A−1 =
[

I −A−1
II AIB

0 I

] [
A−1

II 0
0 S−1

] [
I 0

− AT
IBA−1

II I

]

=
[

I −A−1
II AIB

0 I

] [
I 0
0 S−1

] [
I 0

− AT
IB I

] [
A−1

II 0
0 I

]
.

(3.25)

To formally determine the solution of Au = f using this block factorization
of A−1 requires computing the action of A−1

II twice, and S−1 once. However,
if iterative methods are employed, then the Schur complement matrix S need
not be assembled explicitly, but its action must be computed.

The following result provides bounds for the extreme eigenvalues of S when
A is a symmetric and positive definite matrix. We employ the notation λm(C)
and λM (C) to denote the minimum and maximum eigenvalues, respectively,
of a real symmetric matrix C, and let κ2(C) ≡ λM (C)/λm(C) denote the
spectral condition number of C. Given an arbitrary matrix D, we let σ1(D)
denote its smallest singular value.

Lemma 3.11. Suppose the following assumptions hold.

1. Let A be a symmetric positive definite matrix having the block structure:

A =

[
AII AIB

AT
IB ABB

]
.

2. Let S = (ABB − AT
IBA−1

II AIB) denote the Schur complement matrix.
3. Define EwB ≡ −A−1

II AIBwB for a vector wB.

Then the following results will hold:

1. S will be symmetric and positive definite, with[
AII AIB

AT
IB ABB

] [
EuB

uB

]
=
[

0
SuB

]
, (3.26)

for arbitrary uB.
2. The energy associated with matrix S will satisfy:

uT
BSuB =

[
EuB

uB

]T
[

AII AIB

AT
IB ABB

] [
EuB

uB

]
, (3.27)

for arbitrary uB.
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3. The minimum eigenvalue of S will satisfy:

λm(A)
(
σ1(E)2 + 1

)
≤ λm(S).

4. The maximum eigenvalue of S will satisfy:

λM (S) ≤
(

λM (ABB) − σ1(AIB)2

λM (AII)

)
.

5. The Schur complement matrix S will be better conditioned than matrix A
in the spectral norm:

κ2(S) ≤ κ2(A).

Proof. When A is symmetric positive definite, its diagonal block AII will also
be symmetric and positive definite, so that A−1

II is well defined. Consequently,
matrix S = ABB − AT

IBA−1
II AIB will be defined and symmetric by construc-

tion. Substituting the definition of EuB and computing directly yields:[
AII AIB

AT
IB ABB

] [
EuB

uB

]
=
[

0
SuB

]
.

To show that S is positive definite, take inner product of the above equation
with

(
(EuB)T ,uT

B

)T to obtain:

[
EuB

uB

]T
[

AII AIB

AT
IB ABB

] [
EuB

uB

]
=
[

EuB

uB

]T [ 0
SuB

]

= uT
BSuB .

Since A is symmetric positive definite, we obtain that:

uT
BSuB =

[
EuB

uB

]T
[

AII AIB

AT
IB ABB

] [
EuB

uB

]

≥ λm(A)
[

EuB

uB

]T [
EuB

uB

]

≥ λm(A)
(
(EuB)T EuB + uT

BuB

)
≥ λm(A)

(
σ1(E)2 + 1

)
uT

BuB .

In particular, since σ1(E) ≥ 0, we immediately obtain that:

uT
BSuB ≥ λm(A)uT

BuB ,

and so S will be positive definite, with its lowest eigenvalue at least as large
as the lowest eigenvalue of A:

λm(A) ≤ λm(S).
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Next, employing the definition of S, we obtain that

uT
BSuB = uT

B

(
ABB − AT

IBA−1
II AIB

)
uB

≤ uT
BABBuB − uT

BAT
IBA−1

II AIBuB

≤
(
λM (ABB) − σ1(AIB)2λm(A−1

II )
)
uT

BuB

=
(
λM (ABB) − σ1(AIB)2

λM (AII)

)
uT

BuB .

In particular, since the eigenvalues of the principal submatrix ABB of A
must lie between the maximum and minimum eigenvalues of A, and since
−σ1(AIB)2

λM (AII) ≤ 0, we obtain:

λM (S) ≤ λM (A).

Combining the upper and lower bounds for the eigenvalues of S yields:

κ2(S) =
λM (S)
λm(S)

≤ λM (A)
λm(A)

= κ2(A),

which is the desired result. ��

Refinements of the preceding bounds may be found in [MA11]. The next
result shows that if matrix A is an M -matrix, then the Schur complement S
will also be an M -matrix. This will hold even if matrix A is non-symmetric.

Definition 3.12. A nonsingular matrix K is said to be an M -matrix if:⎧⎪⎨
⎪⎩

(K)ii > 0, ∀i

(K) ij ≤ 0, i = j(
K−1

)
ij

≥ 0, ∀i, j,

see [VA9, SA2]. Equivalently, K is an M -matrix if it can be expressed in
the form K = r I − N where (N)ij ≥ 0 for all i, j and either (K−1)ij ≥ 0
entrywise or if all minors of K are positive, see [BE17].

Lemma 3.13. Suppose the following assumptions hold.

1. Let matrix A be non-symmetric and block partitioned as follows:

A =

[
AII AIB

ABI ABB

]
.

2. Let A be an M -matrix.

Then, S = (ABB − ABIA
−1
II AIB) will also be an M -matrix.
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Proof. See [CR, NA]. First note that since A is an M -matrix, it will be of
the form A = r I − N where N ≥ 0 entrywise. Thus, submatrix AII will
also be an M -matrix, since AII = r I − NII for NII ≥ 0 entrywise and
since the minors of AII will be positive. As a result, A−1

II ≥ 0 entrywise.
Furthermore, because ABI ≤ 0, AIB ≤ 0 and A−1

II ≥ 0 entrywise, it will hold
that (ABIA

−1
II AIB) ≥ 0 entrywise. Since ABB = r I − NBB where NBB ≥ 0

entrywise, it will hold that S = (ABB −ABIA
−1
II AIB) has the form r I −GBB

for GBB = (NBB + ABIA
−1
II AIB) ≥ 0 entrywise. Since:

S−1 =
[
0 I
]
A−1

[
0
I

]
,

we obtain that S−1 ≥ 0 entrywise. Thus, S will be an M -matrix [BE17]. ��

We shall now consider analytic properties of the Schur complement ma-
trix S, inherited from the underlying elliptic partial differential equation (3.1)
and its discretization. These properties will be employed to construct ap-
proximations of S which serve as preconditioners. We begin by identifying a
Steklov-Poincaré operator S whose discrete analog yields matrix S.

Remark 3.14. Let Ω1, . . . , Ωp denote a nonoverlapping decomposition of Ω
and let uB denote a sufficiently regular function defined on interface B with
zero values on BD. Let Lu ≡ −∇ · (a∇u) + c u denote the elliptic operator
underlying (3.1). Using the continuous analog of (3.26), we heuristically define
the action of a Steklov-Poincaré operator S on a function uB defined on
interface B as follows:

SuB(x) ≡ LwB(x), for x ∈ B,

where wB = E uB denotes the piecewise L-harmonic extension of uB on B:{
LwB = 0, in Ωi

wB = uB , on ∂Ωi,
for 1 ≤ i ≤ p.

Heuristically by analogy with (3.27), the energy associated with the Steklov-
Poincaré operator S will satisfy:

(SuB , uB)L2(B) = A (EuB , EuB), (3.28)

where A(., .) is defined by (3.2).

We next describe bounds for the eigenvalues of S in terms of the mesh size
h and coefficients in the elliptic equation. Such estimates employ properties
of elliptic equation (3.1), trace theorems, fractional Sobolev norms, discrete
extension theorems and also inverse inequalities for finite element spaces, see
[DR2, BR12, BR15, DR14, DR10, MA17]. We shall employ the notation:
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⎪⎪⎪⎪⎪⎪⎩

|u|21,Ωi
≡
∫

Ωi
|∇u|2 dx

‖u‖2
1,Ωi

≡
∫

Ωi
|∇u|2 dx +

∫
Ωi

|u|2 dx

|u|21/2,∂Ωi
≡
∫

∂Ωi

∫
∂Ωi

|u(x)−u(y)|2
|x−y|d dx dy, Ωi ⊂ IRd

‖u‖2
1/2,∂Ωi

≡
∫

∂Ωi

∫
∂Ωi

|u(x)−u(y)|2
|x−y|d dx dy +

∫
∂Ωi

|u|2 dx.

The following result will not be optimal with respect to coefficient variation
or the diameter h0 of the subdomains.

Lemma 3.15. Suppose the following assumptions hold with BD = ∂Ω.

1. Let the coefficients a(x) and c(x) satisfy:{
0 < am ≤ a(x) ≤ aM

0 < cm ≤ c(x) ≤ cM .

Define σm = min {cm, am} and σM = max {cM , aM}.
2. Let uh denote a finite element function corresponding to a nodal vector

u =
(
uT

I ,uT
B

)T where uI satisfies uI ≡ EuB = −A−1
II AIBuB.

3. Let the following inverse inequality hold for all vh ∈ Vh

‖vh‖1/2,∂Ωi
≤ Ch−1/2‖vh‖0,∂Ωi

, (3.29)

for 1 ≤ i ≤ p where C does not depend on h.

Then the following results will hold.

1. The finite element function uh will be piecewise discrete L-harmonic:

A(uh, v) = 0, ∀v ∈ Vh ∩ H1
0 (Ωi), 1 ≤ i ≤ p, (3.30)

with its energy equivalent to the Schur complement energy, as in (3.28):

uT
BSuB = A(uh, uh). (3.31)

2. There exists c > 0 and C > 0 independent of h, σm and σM , but possibly
dependent on the subdomain diameter h0, such that:

c σm

(
p∑

i=1

‖uh‖2
1/2,∂Ωi

)
≤ A(uh, uh) ≤ C σM

(
p∑

i=1

‖uh‖2
1/2,∂Ωi

)
.

(3.32)
3. There exists c > 0 and C > 0 independent of h, σm and σM , but possibly

dependent on the subdomain diameter h0, such that:

c σm

(
p∑

i=1

‖uh‖2
0,∂Ωi

)
≤ A(uh, uh) ≤ C σM

(
p∑

i=1

‖uh‖2
0,∂Ωi

)
h−1.

(3.33)
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Proof. Applying the inner product of
(
vT

B , (EvB)T
)T with (3.26) yields:

[
vI

vB

]T
[

AII AIB

AT
IB ABB

] [
EuB

uB

]
=
[

vI

vB

]T [ 0
SuB

]
, ∀vI ,vB .

If vB = 0, then the right hand side will be zero. If vh denotes the finite
element function corresponding to the nodal vector v = (vT

I ,0)T , we may
equivalently express the preceding as:

A(uh, vh) = 0, ∀vh ∈ Vh ∩ H1
0 (Ωi), for 1 ≤ i ≤ p,

since vh will be zero on B. This verifies that uh is discrete L-harmonic on each
Ωi. By choosing vB = uB and vI = EuB , we obtain A(uh, uh) = uT

BSuB .
To derive bounds for the energy A(uh, uh) associated with uh, we employ

the equivalence between the energy norm and the Sobolev norm:

σm‖uh‖2
1,Ω ≤ A (uh, uh) ≤ σM‖uh‖2

1,Ω .

We then decompose the Sobolev norm based on the subdomains to obtain:

σm

p∑
i=1

‖uh‖2
1,Ωi

≤ A(uh, uh) ≤ σM

p∑
i=1

‖uh‖2
1,Ωi

. (3.34)

Application of the trace theorem on each Ωi yields the lower bound:

c ‖uh‖2
1/2,∂Ωi

≤ ‖uh‖2
1,Ωi

, 1 ≤ i ≤ p,

where c > 0 is independent of h and the coefficients, but may depend on h0.
To obtain an upper bound, we employ a discrete extension theorem (see

Chap. 3.9) and a prior estimates for discrete harmonic functions to obtain:

‖uh‖2
1,Ωi

≤ C ‖uh‖2
1/2,∂Ωi

, for 1 ≤ i ≤ p,

for C > 0 independent of h and the coefficients, but possibly dependent on
h0. Substituting the above upper and lower bounds into (3.34) yields (3.32).

Combining the trivial bound c ‖uh‖2
0,∂Ωi

≤ ‖uh‖2
1/2,∂Ωi

with inverse in-
equality (3.29) yields:

c ‖uh‖2
0,∂Ωi

≤ ‖uh‖2
1/2,∂Ωi

≤ C h−1 ‖uh‖2
0,∂Ωi

.

Combining the preceding bound with (3.32) yields (3.33). ��

Remark 3.16. If uh is a finite element function corresponding to the nodal
vector u =

(
uT

I ,uT
B

)T, then known properties of the mass matrix [ST14, CI2]
imply that ‖uh‖2

0,∂Ωi
will be equivalent, up to a scaling factor, to the Euclidean

norm of the nodal vector u restricted to ∂Ωi. Substituting this in (3.33) yields:
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c σm ≤ vT
BSvB

vT
BvB

≤ C σMh−1.

Thus, the condition number κ2(S) will grow as C (σM/σm) h−1 with decreas-
ing mesh size h, for fixed subdomains. A refinement of this estimate yields:

κ2(S) ≤ C (σM/σm) h−1
0 h−1,

where h0 denotes the subdomain diameter [BR24]. These bounds compare
favorably with the condition number bound of C (σM/σm) h−2 for κ2(A).

Remark 3.17. If v = 0 on BD and ∂Ωi ∩ BD = ∅, then the following norm
equivalence can be employed [LI4]:

c ‖v‖2

H
1/2
00 (B(i))

≤ ‖v‖2
H1/2(∂Ωi)

≤ C ‖v‖2

H
1/2
00 (B(i))

.

Discrete approximations of the fractional Sobolev norm ‖vh‖2

H
1/2
00 (B(i))

will be

considered later in this chapter for finite element functions.

Remark 3.18. When c(x) = 0 in (3.1) and a(x) is piecewise constant:

a(x) = ρi, x ∈ Ωi, for 1 ≤ i ≤ p,

then the following equivalence will hold, see Chap. 3.9, for any finite element
function uh ∈ Vh satisfying (3.30):

c

(
p∑

i=1

ρi |uh|21/2,∂Ωi

)
≤ A(uh, uh) ≤ C

(
p∑

i=1

ρi |uh|21/2,∂Ωi

)
, (3.35)

with 0 < c < C independent of h and a(x). Here, seminorms replace the
norms since some of the local Dirichlet energies AΩi

(uh, uh) can become zero
even when uh(x) = 0 (for instance, when uh is constant locally).

3.3 FFT Based Direct Solvers

For a discretization of a separable elliptic equation, it may be possible to
construct fast Fourier transform (FFT) based direct solvers for the stiffness
matrix A and the Schur complement matrix S. For such solvers to be appli-
cable, the stiffness matrix A must have a block matrix structure in which each
block is simultaneously diagonalized by a discrete Fourier transform matrix
Q, see [BJ9, CH13, CH14, RE, VA4]. When this property holds, the stiffness
matrix A can be transformed, using an orthogonal similarity transformation,
into a block matrix with diagonal submatrices. After appropriately reorder-
ing the unknowns, this transformed system will be block diagonal, with band
matrices along its diagonal, and it can be solved in parallel using band solvers.
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Fig. 3.2. Strip decomposition with four subdomains

In this section, we outline the construction of such fast direct solvers, for
matrix A and its Schur complement S. In the special case of a two subdomain
rectangular decomposition, with a uniform grid and constant coefficients, this
will yield an explicit eigendecomposition of the Schur complement S. The FFT
based algorithm to solve Au = f is summarized in Alg. 3.3.1, and algorithm
to solve SuB = f̃B is summarized in Alg. 3.3.2.

We shall consider the following separable elliptic equation posed on a two
dimensional rectangular domain Ω = (0,Lx1) × (0,Lx2) for x = (x1, x2):{

− ∂
∂x1

(
a1(x) ∂u

∂x1

)
− ∂

∂x2

(
a2(x) ∂u

∂x2

)
= f(x), for x ∈ Ω

u = 0, for x ∈ ∂Ω.
(3.36)

Triangulate Ω using a uniform grid with (l − 1) × (k − 1) interior grid points
having mesh spacings hx1 ≡ (Lx1/l) and hx2 ≡ (Lx2/k) as in Fig. 3.2. The
grid points (ihx1 , jhx2) for indices 1 ≤ i ≤ (l−1) and 1 ≤ j ≤ (k−1) will lie in
the interior, and the nodal values of a finite element function uh at these grid
points will be denoted ui,j = uh(ihx1 , jhx2). We consider a nonoverlapping
decomposition Ω1, . . . , Ωp of Ω consisting of the strip subdomains:

Ωi ≡ (Li−1,Li) × (0,Lx2), for 1 ≤ i ≤ p,

where L0 ≡ 0 < L1 < · · · < Lp ≡ Lx1 .
The subdomain boundary segments E(r) ≡ ∂Ωr∩∂Ωr+1 for 1 ≤ j ≤ (p−1)

will be assumed to align with the triangulation, so that there are integers Lr

such that Lr = Lrhx1 , for 0 ≤ r ≤ p. The coefficients a1(x) and a2(x) in the
elliptic equation will be assumed to be constant within each subdomain Ωi:{

a1(x) = a
(i)
1 , for x ∈ Ωi

a2(x) = a
(i)
2 , for x ∈ Ωi

for 1 ≤ i ≤ p.

For this choice of coefficients and triangulation, the stiffness matrix A resulting
from the finite element discretization of (3.36) will have the following stencil
at a gridpoint (ihx1 , jhx2). We formally denote it as:
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(Au)i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(r)
1

hx2
hx1

(2ui,j − ui−1,j − ui+1,j) if i �= Lr,

+ a
(r)
2

hx1
hx2

(2ui,j − ui,j−1 − ui,j+1)

a
(r)
1

hx2
hx1

(ui,j − ui−1,j) if i = Lr

+ a
(r+1)
1

hx2
hx1

(ui,j − ui+1,j)

+ (a
(r)
2 +a

(r+1)
2 )hx1

2hx2
(2ui,j − ui,j−1 − ui,j+1) .

(3.37)

To represent (3.37) as a linear system, define subvectorsui ≡ (ui,1, · · · , ui,k−1)T

for 1 ≤ i ≤ l−1 and employ them to define a nodal vector u ≡ (u1, · · · ,ul−1)
T .

For this ordering of nodes, the linear system Au = f representing (3.37) is:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T (1) −β(1)

−β(1) T (2) −β(2)

. . . . . . . . .

−β(l−3) T (l−2) −β(l−2)

−β(l−2) T (l−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

...
ul−2

ul−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

...
f l−2

f l−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (3.38)

where T (r) and β(r) are submatrices of size (k− 1) defined for Li−1 < r < Li:

T (r) ≡ a
(i)
2 hx1

hx2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+
2a

(i)
1 hx2

hx1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

. . .
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

while
T (r) ≡ 1

2

(
T (Li−1) + T (Li+1)

)
, for r = Li.

Each matrix T (r) is symmetric, tridiagonal and Toeplitz (it is constant along
each diagonal) of size (k − 1).

The submatrices β(r) are multiples of the identity:

β(r) ≡
⎧⎨
⎩

a
(i)
1

hx2
hx1

I, if Li−1 < r < Li

1
2

(
a
(i+1)
1 + a

(i)
1

)
hx2
hx1

I, if r = Li,
(3.39)

where I denotes an identity matrix of size (k − 1). An important property of
matrix A in (3.38) is that its submatrices T (r) and β(r) are diagonalized by a
discrete sine transform matrix Q, as defined next.
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Definition 3.19. Given an integer k > 2, we define the entries of a discrete
sine transform matrix Q of size (k − 1) as follows:

Qij ≡
√

2
k

sin
(

ijπ

k

)
, for 1 ≤ i, j ≤ (k − 1). (3.40)

For 1 ≤ j ≤ (k − 1), we let qj denote the j’th column of matrix Q

qj =

√
2
k

(
sin
(

jπ

k

)
, sin

(
2jπ

k

)
, · · · , sin

(
(k − 1)jπ

k

))T

.

By construction, matrix Q is symmetric. Using trigonometric identities, it
can be verified that QT Q = I so that Q is an orthogonal matrix. Routines for
fast multiplication of a vector by Q are available in most FFT packages with
complexity proportional to O(k log(k)), see [VA4]. To verify that each block
of A is diagonalized by Q, we apply matrix T (r) to the j’th column vector qj

of Q. By direct substitution and the use of trigonometric identities it is easily
verified that qj is an eigenvector of matrix T (r):

T (r)qj = λ
(r)
j qj ,

corresponding to the eigenvalue λ
(r)
j given by:

λ
(r)
j ≡

⎧⎪⎪⎨
⎪⎪⎩

2a
(i)
2 hx1
hx2

(
1 − cos

(
jπ
k

))
+ 2a

(i)
1 hx2
hx1

, if Li−1 < r < Li,

(
a
(i)
2 +a

(i+1)
2

)
hx1

hx2

(
1 − cos

(
jπ
k

))
+

(
a
(i)
1 +a

(i+1)
1

)
hx2

hx1
, if r = Li,

(3.41)
Thus, T (r) has the eigendecomposition:

T (r) = QΛ(r)QT ,

where Λ(r) = diag(λ(r)
1 , · · · , λ

(r)
k−1). Since the matrices β(r) are scalar multiples

of the identity, they are also trivially diagonalized by Q.
The following algebraic result shows how any block partitioned system

Cw = g can be reduced to a block diagonal linear system provided all blocks
of matrix C can be simultaneously diagonalized by an orthogonal matrix Q.

Lemma 3.20. Suppose the following assumptions hold.

1. Let C be an invertible matrix of size mn having an n×n block structure in
which the individual blocks Cij are submatrices of size m for 1 ≤ i, j ≤ n.

2. Let Q be an orthogonal matrix of size m which simultaneously diagonalizes
all the block submatrices of C:

QT CijQ = Dij , for 1 ≤ i, j ≤ n,

where each Dij is a diagonal matrix of size m.
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3. Let w =
(
wT

1 , . . . ,wT
n

)T with wi ∈ IRm denote the solution to the block
partitioned linear system:⎡

⎢⎢⎣
C11 · · · C1n

...
...

Cn1 · · · Cnn

⎤
⎥⎥⎦
⎡
⎢⎢⎣

w1

...
wn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

g1

...
gn

⎤
⎥⎥⎦, (3.42)

where g =
(
gT

1 , . . . ,gT
n

)T with gi ∈ IRm.

Then, the solution to system (3.42) can be obtained by solving the following
block diagonal linear system:⎡

⎢⎢⎣
G11 0

. . .

0 Gmm

⎤
⎥⎥⎦
⎡
⎢⎢⎣

α1

...
αm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

µ1

...
µm

⎤
⎥⎥⎦, (3.43)

where Gii, αi and µi are defined by:

1. For 1 ≤ i ≤ m matrix Gii is of size n with entries defined by:

(Gii)lk ≡ (Dlk)ii , for 1 ≤ i ≤ m, 1 ≤ l, k ≤ n.

2. For 1 ≤ i ≤ m subvector αi of size n is defined by:

(αi)k =
(
QT wk

)
i
, for 1 ≤ i ≤ m, 1 ≤ k ≤ n.

3. For 1 ≤ i ≤ m subvector µi of size n is defined by:

(µi)k =
(
QT gk

)
i
, for 1 ≤ i ≤ m, 1 ≤ k ≤ n.

Proof. Define a block diagonal matrix Q ≡ blockdiag (Q, . . . , Q) having n di-
agonal blocks, using the given orthogonal matrix Q of size m. By construction
Q will also be an orthogonal matrix. Apply Q to transform the linear system
Cw = g into

(
QT CQ

) (
QT w

)
=
(
QT g

)
:⎡

⎢⎢⎣
QT C11Q · · · QT C1nQ

...
...

QT Cn1Q · · · QT CnnQ

⎤
⎥⎥⎦
⎡
⎢⎢⎣

QT w1

...
QT wn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

QT g1

...
QT gn

⎤
⎥⎥⎦. (3.44)

Define D ≡ QT CQ and let w̃ ≡ QT w and g̃ ≡ QT g denote the trans-
formed vectors. Then, the transformed linear system becomes Dw̃ = g̃. By
construction, each block submatrix Dij = QT CijQ of D will be a diagonal
matrix of size m. As a consequence, components of w̃ will be coupled within
the transformed linear system Dw̃ = g̃ only when its indices differ by an
integer multiple of m. Thus, a suitable reordering of the indices within the
transformed system should yield a block diagonal linear system.
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Accordingly, we partition the index set {1, 2, . . . , nm} into subsets such
that two indices belong to the same subset only if they differ by an integer
multiple of m. The resulting partition will be:

{1, . . . , n m} = {1, 1 + m, . . . , (n − 1)m + 1} ∪ · · · ∪ {m, 2m, . . . , nm}.

There will be m subsets in this partition, each containing n entries ordered
in ascending order. Let PT denote a permutation matrix whose action on
a vector reorders its entries according to the above ordering. We reorder the
components of w̃ and define α ≡ PTQT w. Similarly, we define µ ≡ PTQT g as
a reordering of g̃. By construction, reordering the rows and columns of matrix
D should yield G = blockdiag(G11, . . . , Gmm) = PT DP to be a block diagonal
matrix. The reordered transformed system

(
PT DP

) (
PT w̃

)
=
(
PT g̃

)
will

then correspond to the system (3.43).
Once the subproblems Giiαi = µi in (3.43) have been solved in parallel,

define yk for 1 ≤ k ≤ n as follows:

(yk)i = (αi)k , for 1 ≤ i ≤ m, 1 ≤ k ≤ n,

The original unknowns wk will satisfy wk = Qyk for 1 ≤ k ≤ n. ��

Remark 3.21. It can be easily verified that the block submatrices Gii in the
preceding will inherit the “block sparsity pattern” of C. For example, if C is
block tridiagonal, then each submatrix Gii will be a tridiagonal matrix.

FFT Based Solution of Au = f . A fast direct solver can be constructed
for solving (3.38) using Lemma 3.20 and choosing C = A, n = (l − 1) with
m = (k−1), w = u and g = f . Let Q denote the discrete sine transform matrix
defined by (3.40). In this case, each nonzero block in QT AQ will satisfy:{

QT T (r)Q = Λ(r),

QT β(r)Q = β(r).

We define cj = QT uj and f̃ j = QT f j for j = 1, · · · , l − 1, where:

cj = (c1,j , · · · , ck−1,j)
T

, for 1 ≤ j ≤ (l − 1).

Since A is block tridiagonal, system
(
QT AQ

) (
QT u

)
=
(
QT f

)
will also be

block tridiagonal. Furthermore, each Gii in (3.43) will be a tridiagonal matrix.
Once all the unknowns cij have been determined by parallel solution of

the tridiagonal linear systems, the nodal values {uij} at the grid points can
be reconstructed by applying Q columnwise

(u1,j , · · · , uk−1,j)
T = Q (c1,j , · · · , ck−1,j)

T
, for j = 1, · · · , l − 1.

Since a tridiagonal system can be solved in optimal order complexity, and
since multiplication by Q has O (l k log(k)) complexity, the complexity of the
FFT based solution algorithm will be O (l k log(k)).
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Algorithm 3.3.1 (FFT Based Solution of Au = f)
Let λ

(r)
j and β(r) be defined by (3.41) and (3.39)

1. For j = 1, · · · , l − 1 in parallel do:
2. Compute the fast sine transform:

f̃ j ≡ Qf j .

3. Endfor
4. For i = 1, · · · , k − 1 in parallel do:
5. Solve the tridiagonal system using Cholesky factorization:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
(1)
i −β

(1)
i

−β
(1)
i λ

(2)
i −β

(2)
i

. . . . . . . . .

. . . . . . . . .

−β
(l−3)
i λ

(l−2)
i −β

(l−2)
i

−β
(l−2)
i λ

(l−1)
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci,1

ci,2

...

...
ci,l−2

ci,l−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(f̃1)i

(f̃2)i

...

...
(f̃ l−2)i

(f̃ l−1)i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

6. Endfor
7. For j = 1, · · · , l − 1 in parallel do:
8. Compute using the fast sine transform

uj ≡ Q

⎡
⎢⎣

c1,j

...
ck−1,j

⎤
⎥⎦.

9. Endfor

Output:
(
uT

1 , . . . ,uT
l−1

)T .

FFT based solution of SuB = f̃B. Lemma 3.20 can also be applied to
construct a direct solver for the Schur complement system, provided the block
submatrices of S are simultaneously diagonalized by an orthogonal matrix.

Accordingly, in the following we study the block structure of the Schur
complement matrix S. Given a finite element function uh with nodal values
uij = uh(ihx1 , jhx2) for 1 ≤ i ≤ (l − 1) and 1 ≤ j ≤ (k − 1), we will employ
the following notation for index sets and nodal vectors associated with them.

I(r) ≡ {(ihx1 , jhx2) : Lr−1 < i < Lr, 1 ≤ j ≤ (k − 1)} , for 1 ≤ r ≤ p

I ≡ I(1) ∪ · · · ∪ I(p)

E(r) ≡ {(Lr hx1 , jhx2) : 1 ≤ j ≤ (k − 1)}, for 1 ≤ r ≤ (p − 1)

B ≡ E(1) ∪ · · · ∪ E(p−1).



132 3 Schur Complement and Iterative Substructuring Algorithms

For convenience, we have used E(r) to denote interface E(r) = ∂Ωr ∩ ∂Ωr+1

as well as the set of indices of nodes on it. We will employ nodal subvectors
ui ≡ (ui,1, · · · , ui,k−1)

T for 1 ≤ i ≤ (l − 1). The following additional nodal
subvectors will be associated with each of the preceding index sets:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(r)
I ≡

(
uT

Lr−1+1, · · · ,uT
Lr−1

)T

, for 1 ≤ r ≤ p

uI ≡
(
u

(1)T

I , · · · ,u(p)T

I

)T

u(r)
E ≡ uLr , for 1 ≤ r ≤ (p − 1)

uB ≡
(
u(1)T

E , · · · ,u(p−1)T

E

)T

.

The stiffness matrix A will be block partitioned into the submatrices AII ,
AIB and ABB based on the preceding index sets. Matrix AII takes the form:

AII =

⎡
⎢⎢⎣

A
(1)
II 0

. . .

0 A
(p)
II

⎤
⎥⎥⎦, A

(r)
II =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M (r) −γ(r)

−γ(r) M (r) −γ(r)

. . . . . . . . .

−γ(r) M (r) −γ(r)

−γ(r) M (r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.45)

Here A
(r)
II is a block tridiagonal and block Toeplitz matrix with dr ×dr blocks

of size (k− 1), where dr ≡ (Lr − Lr−1 − 1). The submatrix γ(r) ≡ a
(r)
1

hx2
hx1

I is

of size (k − 1), while M (r) of size (k − 1) satisfies:

M (r) ≡ a
(r)
2 hx1

hx2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+
2a

(r)
1 hx2

hx1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

. . .
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.46)

Matrix AIB will be block bidiagonal with p × (p − 1) blocks Xij = AI(i)E(j) :

AIB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11 0
X21 X22

X32 X33

. . . . . .

X(p−1)(p−2) X(p−1)(p−1)

0 Xp(p−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.47)
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where for 2 ≤ r ≤ p and 1 ≤ s ≤ (p− 1) its block submatrices are defined by:

Xrr = AI(r)E(r) =

⎡
⎢⎢⎢⎣

0
...
0

−γ(r)

⎤
⎥⎥⎥⎦ and Es(s−1) = AI(s)E(s−1) =

⎡
⎢⎢⎢⎣
−γ(s)

0
...
0

⎤
⎥⎥⎥⎦

(3.48)
with blocks of size (k−1). Matrix ABB will be a (p−1)×(p−1) block diagonal
matrix whose individual blocks are each of size (k − 1)

ABB =

⎡
⎢⎢⎣

A
(1)
EE 0

. . .

0 A
(p−1)
EE

⎤
⎥⎥⎦ where A

(r)
EE ≡ 1

2

(
M (r) + M (r+1)

)
. (3.49)

Each submatrix M (r) is diagonalized by the sine transform matrix Q defined
earlier, with M (r) = QΛ(r)QT and Λ(r) = diag

(
λ

(r)
1 , . . . , λ

(r)
k−1

)
, where:

λ
(r)
j = 2

a
(r)
2 hx1

hx2

(
1 − cos(

jπ

k
)
)

+
2a

(r)
1 hx2

hx1

, for 1 ≤ j ≤ (k − 1). (3.50)

Since matrix γ(r) is a scalar multiple of the identity, it is trivially diagonalized
by Q with eigenvalues

(
γ(r)

)
j

= a
(r)
1

hx2
hx1

for 1 ≤ j ≤ (k − 1).
We next consider the block structure of matrix S given the ordering of

nodes on B. If we substitute the block partitioned matrices (3.49), (3.47)
and (3.45) for ABB , AIB and AII , respectively, in S = (ABB −AT

IBA−1
II AIB),

then since matrices ABB , AIB and AII are block diagonal, rectangular block
bidiagonal and block diagonal, respectively, it will follow that matrix S must
be block tridiagonal. Explicit expressions for the block submatrices SE(r)E(r)

and SE(r+1)E(r) can be obtained by directly computing the block entries of S =
(ABB −AT

IBA−1
II AIB) using (3.49), (3.47) and (3.45). The resulting structure

is summarized in the following.

Lemma 3.22. Given the ordering of nodes on B based on the index sets
E(1), . . . , E(p−1) the following will hold.

1. The Schur complement matrix S will be block tridiagonal of the form:

S =

⎡
⎢⎢⎢⎢⎢⎣

SE(1)E(1) SE(1)E(2) 0
ST

E(1)E(2) SE(2)E(2) SE(2)E(3)

. . . . . . . . .
ST

E(p−3)E(p−2) SE(p−2)E(p−2) SE(p−2)E(p−1)

0 ST
E(p−2)E(p−1) SE(p−1)E(p−1)

⎤
⎥⎥⎥⎥⎥⎦

(3.51)
with block submatrices SE(i)E(j) of size (k − 1).
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2. For 1 ≤ r ≤ (p − 1) the block submatrices SErEr
will satisfy:{

SE(r)E(r) = AE(r)E(r) − AT
I(r)E(r)A

−1
I(r)I(r)AI(r)E(r)

−AT
I(r+1)E(r)A

−1
I(r+1)I(r+1)AI(r+1)E(r) .

3. For 1 ≤ r ≤ (p − 2) the block submatrices SE(r+1)E(r) will satisfy:

SE(r+1)E(r) = −AT
I(r+1)E(r+1)A

−1
I(r+1)I(r+1)AI(r+1)E(r) .

Proof. As outlined earlier. ��

Since AII , AIB and ABB can be partitioned into blocks of size (k − 1),
each of which are diagonalizable by the discrete sine transform matrix Q, the
block submatrices of S = (ABB − AT

IBA−1
II AIB) will also be diagonalizable

by matrix Q. The following two results will be employed to show this, and to
obtain analytical expressions for the eigenvalues of its blocks.

Lemma 3.23. Suppose the following assumptions hold.

1. Let C denote a positive definite symmetric matrix of size mn partitioned
into n × n blocks Cij of size m for 1 ≤ i, j ≤ n.

2. Let Q be an orthogonal matrix of size m which simultaneously diagonalizes
all the block submatrices of C:

QT CijQ = Dij , for 1 ≤ i, j ≤ n,

where each Dij is a diagonal matrix.
3. Let

(
wT

1 , . . . ,wT
n

)T denote the solution to the block partitioned system:
⎡
⎢⎢⎣

C11 · · · C1n

...
...

Cn1 · · · Cnn

⎤
⎥⎥⎦
⎡
⎢⎢⎣

w1

...
wn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

g1

...
gn

⎤
⎥⎥⎦,

where wi ∈ IRm and gi ∈ IRm for 1 ≤ i ≤ n.
4. Let gi = δi qt, for scalars δi ∈ IR where qt ≡ (q1t, . . . , qmt)

T denotes the
t’th column of Q.

Then, each wi = αi qt will be a scalar multiple of qt for some αi ∈ IR.
Furthermore, the scalars α1, . . . , αn will solve the following linear system:⎡

⎢⎢⎣
(D11)tt · · · (D1n)tt

...
...

(Dn1)tt · · · (Dnn)tt

⎤
⎥⎥⎦
⎡
⎢⎢⎣

α1

...
αn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

δ1

...
δn

⎤
⎥⎥⎦.
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Proof. This result can be obtained by an application of Lemma 3.20. Alter-
natively, substitute the ansatz wi = αi qt to obtain the linear system:⎧⎪⎪⎨

⎪⎪⎩
C11qt α1 + · · · + C1nqt αn = qtδ1

...
...

Cn1qt α1 + · · · + Cnnqt αn = qtδn.

Since qt is an eigenvector of each matrix Cij corresponding to eigenvalue
(Dij)tt, elimination of the common factors qt yields the linear system:⎧⎪⎪⎨

⎪⎪⎩
(D11)tt α1 + · · · + (D1n)tt αn = δ1

...
...

(Dn1)tt α1 + · · · + (Dnn)tt αn = δn.

(3.52)

By construction, since (qT
t qt) = 1, it will hold that:⎡

⎢⎢⎣
α1 qt

...
αn qt

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

C11 · · · C1n

...
...

Cn1 · · · Cnn

⎤
⎥⎥⎦
⎡
⎢⎢⎣

α1 qt

...
αn qt

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

α1

...
αn

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

(D11)tt · · · (D1n)tt

...
...

(Dn1)tt · · · (Dnn)tt

⎤
⎥⎥⎦
⎡
⎢⎢⎣

α1

...
αn

⎤
⎥⎥⎦.

When C is symmetric and positive definite, both terms in the above expression
will be positive for (α1, . . . , αn)T �= 0, verifying that (3.52) is nonsingular. ��

The next result describes the solution of a Toeplitz tridiagonal system.

Lemma 3.24. Consider the following Toeplitz tridiagonal linear system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b̃ ã 0

c̃ b̃ ã

. . . . . . . . .

c̃ b̃ ã

c̃ b̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

...

...

...
αd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ1

...

...

...
µd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ã, b̃, c̃ ∈ IR satisfies (b̃2 − 4ã c̃) > 0. Define ρ1, ρ2 ∈ IR as follows:

ρ1 ≡ −b̃ +
√

b̃2 − 4 ã c̃

2 ã
and ρ2 ≡ −b̃ −

√
b̃2 − 4 ã c̃

2 ã
. (3.53)

Then, the following will hold:

1. If (µ1, . . . , µd)
T = (−c̃, 0, . . . , 0)T , then:

αi =

(
ρd+1
2 ρi

1 − ρd+1
1 ρi

2

ρd+1
2 − ρd+1

1

)
, for 1 ≤ i ≤ d. (3.54)
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2. If (µ1, . . . , µd)
T = (0, 0, . . . ,−ã)T , then:

αi =
(

ρi
1 − ρi

2

ρd+1
1 − ρd+1

2

)
, for 1 ≤ i ≤ d. (3.55)

Proof. Substitute the ansatz that αi = ρi for 0 ≤ i ≤ (d + 1) into the finite
difference equations. This yields the following equations:(

ã ρ2 + b̃ ρ + c̃
)

ρi−1 = 0, for 1 ≤ i ≤ d.

It can be solved simultaneously, provided ρ solves the characteristic equation:

ã ρ2 + b̃ ρ + c̃ = 0.

The roots of the characteristic polynomial are given by (3.53) and they will
be real and distinct provided (b̃2 − 4 ã c̃) > 0. The general discrete solution to
the finite difference equations will be of the form:

αi = γ1 ρi
1 + γ2 ρi

2, for each i,

for arbitrary γ1 and γ2. To solve the first linear system, we impose the bound-
ary condition α0 = 1 and αd+1 = 0. Solving for γ1 and γ2 yields (3.54). To
solve the second linear system, we impose the boundary condition α0 = 0 and
αd+1 = 1. Solving for γ1 and γ2 yields (3.55). ��

The next result shows that each submatrix SE(r)E(s) of the Schur comple-
ment matrix S is diagonalized by the discrete sine transform Q of size (k−1).
Furthermore, by employing Lemma 3.23 and 3.24, we can obtain analytical
expressions for the eigenvalues of SE(r)E(s) .

Lemma 3.25. Let λ
(r)
t , γ(r), ω(r, t), ρ1(r, t) and ρ2(r, t) be as defined below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ(r) ≡ a
(r)
1 (hx2/hx1)

λ
(r)
t ≡ 2a

(r)
2 (hx1/hx2)

(
1 − cos( tπ

k )
)

+ 2γ(r)

ω(r, t) ≡ a
(r)
2 h2

x1

a
(r)
1 h2

x2

(
1 − cos( tπ

k )
)

+ 1

ρ1(r, t) ≡ ω(r, t) +
√

ω(r, t)2 − 1

ρ2(r, t) ≡ ω(r, t) −
√

ω(r, t)2 − 1.

(3.56)

In addition, define dr = (Lr − Lr−1 − 1).
Then, the following results will hold.

1. For 1 ≤ r ≤ (p−1) the vector qt will be an eigenvector of matrix SE(r)E(r)

corresponding to eigenvalue (Drr)tt:

SE(r)E(r)qt = (Drr)tt qt,
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where (Drr)tt is given by:⎧⎪⎨
⎪⎩

(Drr)tt = −γ(r)
(

ρ1(r,t)dr−ρ2(r,t)dr

ρ1(r,t)dr+1−ρ2(r,t)dr+1

)
+ 1

2

(
λ

(r)
t + λ

(r+1)
t

)
−γ(r+1)

(
ρ1(r+1,t)dr+1−ρ2(r+1,t)dr+1

ρ1(r+1,t)dr+1+1−ρ2(r+1,t)dr+1+1

)
.

(3.57)

Matrix SE(r)E(r) will be diagonalized by the discrete sine transform Q:

QT SE(r)E(r)Q = Drr, (3.58)

where Drr is a diagonal matrix of size (k − 1).
2. For 1 ≤ r ≤ (p − 2) the vector qt will be an eigenvector of the matrix

SE(r)E(r+1) corresponding to the eigenvalue (Dr,r+1)tt:

SE(r)E(r+1)qt = (Dr,r+1)tt qt,

where (Dr,r+1)tt is given by:

(Dr,r+1)tt = −γ(r+1)

(
ρ1(r + 1, t) − ρ2(r + 1, t)

ρ1(r + 1, t)d(r+1)+1 − ρ2(r + 1, t)d(r+1)+1

)
.

(3.59)
Matrix SE(r)E(r+1) will be diagonalized by the discrete sine transform Q:

QT SE(r)E(r+1)Q = Dr,r+1,

where Dr,r+1 is a diagonal matrix of size (k − 1).

Proof. To verify that qt is an eigenvector of SE(r)E(r) , we shall employ the
following expression for SE(r)E(r) qt:{

SE(r)E(r)qt = −AT
I(r)E(r)A

−1
I(r)I(r)AI(r)E(r)qt + AE(r)E(r)qt

−AT
I(r+1)E(r)A

−1
I(r+1)I(r+1)AI(r+1)E(r)qt.

Each of the submatrices in the above can be block partitioned into blocks
that are diagonalized by Q. By Lemma 3.23 it will follow that qt is an eigen-
vector of each of the three matrix terms above. We will determine the eigen-
value associated with each term separately. Let θ1 denote the eigenvalue of
−
(
AT

I(r)E(r)A
−1
I(r)I(r)AI(r)E(r)

)
associated with eigenvector qt:

−AT
I(r)E(r)A

−1
I(r)I(r)AI(r)E(r)qt = θ1 qt.

An application of Lemma 3.23 will yield the following expression for θ1:

θ1 = −γ(r)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
...
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
(r)
t −γ(r)

−γ(r) λ
(r)
t −γ(r)

. . . . . . . . .

−γ(r) λ
(r)
t −γ(r)

−γ(r) λ
(r)
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
...
0

γ(r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The right hand side above can be evaluated as −γ(r) αdr
in Lemma 3.24 for

the choice ã = c̃ = −γ(r), b̃ = λ
(r)
t and d = dr = (Lr −Lr−1 − 1). This yields:

θ1 = −γ(r)

(
ρ1(r, t)dr − ρ2(r, t)dr

ρ1(r, t)dr+1 − ρ2(r, t)dr+1

)
.

The eigenvalue θ2 of AE(r)E(r) corresponding to eigenvector qt was derived
earlier in this subsection as:

θ2 =
1
2

(
λ

(r)
t + λ

(r+1)
t

)
.

The eigenvalue θ3 of −
(
AT

I(r+1)E(r)A
−1
I(r+1)I(r+1)AI(r+1)E(r)

)
corresponding to

eigenvector qt can be determined as for θ1 using Lemma 3.23 and 3.24. It
results in the expression:

θ3 = −γ(r+1)

(
ρ1(r + 1, t)dr+1 − ρ2(r + 1, t)dr+1

ρ1(r + 1, t)dr+1+1 − ρ2(r + 1, t)dr+1+1

)
.

Combining the three terms yields an expression for the eigenvalue (Drr)tt of
SE(r)E(r) corresponding to eigenvector qt:

(Drr)tt = θ1 + θ2 + θ3,

which verifies (3.57). By construction, Q diagonalizes SE(r)E(r) = QDrrQ
T .

To obtain an expression for the eigenvalue (Dr+1,r)tt of SE(r+1)E(r) we
evaluate −

(
AT

I(r+1)E(r+1)A
−1
I(r+1)I(r+1)AI(r+1)E(r)

)
qt at the eigenvector qt, us-

ing Lemma 3.23 and 3.24. This yields:

(Dr+1,r)tt = −γ(r+1)

(
ρ1(r + 1, t) − ρ2(r + 1, t)

ρ1(r + 1, t)d(r+1)+1 − ρ2(r + 1, t)d(r+1)+1

)
.

By construction, matrix Q will diagonalize SE(r+1)E(r) = QDr+1,rQ
T . ��

The preceding result shows that the block submatrices of matrix S are
simultaneously diagonalized by the discrete sine transform Q. Thus, we may
employ Lemma 3.20 to construct a fast direct solver for S.

We summarize the algorithm next, using matrices Gii of size (p − 1):

(Gii)r,s = (Dr,s)ii for 1 ≤ r, s ≤ (p − 1), 1 ≤ i ≤ (k − 1),

where (Dr,s)ii is defined by (3.57) or (3.59). Matrix Gii will be tridiagonal.
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Algorithm 3.3.2 (FFT Based Solution of SuB = fB)
Let uB =

(
uT

E(1) , . . . ,uT
E(p−1)

)T and fB =
(
fT
E(1) , . . . , fT

E(p−1)

)T
1. For i = 1, . . . , p − 1 in parallel do:

Compute f̃E(i) ≡ QT fE(i)

2. Endfor
3. For i = 1, . . . , p − 1 do
4. For j = 1, . . . , k − 1 do

Define (gj)i ≡
(
f̃E(i)

)
j

5. Endfor
6. Endfor
7. For j = 1, . . . , k − 1 in parallel solve (using a tridiagonal solver):

Gjjcj = gj

8. Endfor
9. For i = 1, . . . , p − 1 do:

10. For j = 1, . . . , k − 1 do:

Define (c̃E(i))j = (cj)i

11. Endfor
12. Endfor
13. For i = 1, . . . , p − 1 do:

Compute uE(i) = Qc̃E(i) .

14. Endfor

Output: uB =
(
uT

E(1) , . . . ,uT
E(p−1)

)T .

Remark 3.26. The loop between lines 1 and 2 requires the application of a
total of (p − 1) fast sine transforms. The loop between lines 7 and 8 requires
the solution of a total of (k − 1) tridiagonal linear systems, each involving
(p − 1) unknowns. The loop between lines 13 and 14 requires the application
of a total of (p− 1) fast sine transforms. As a result, the preceding algorithm
will have a complexity of O (p k log(k)).

Remark 3.27. In the case of a two strip decomposition, the Schur complement
matrix S = SE(1)E(1) will be diagonalized by the discrete sine transform Q:

S = QD11Q
T .

Such eigendecompositions can be employed to precondition a two subdomain
Schur complement matrix arising in two dimensional elliptic problems and
will be considered in the next section [BJ9, CH13, CH14, RE].
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Remark 3.28. In this section, we have focused solely on FFT based Schur com-
plement solvers for discretizations of elliptic equations on two dimensional do-
mains. However, the block matrix techniques that were described can also be
applied to discretizations of separable elliptic equations on three dimensional
rectangular domains with strip subdomains. In such cases, the stiffness matrix
A and the Schur complement matrix S will have block tridiagonal structure,
provided, the nodal vectors uj correspond to nodal unknowns on planar cross
sections of Ω. Matrix Q will then be a two dimensional FFT or FST ma-
trix, and the algebraic expressions derived in this section for eigenvalues of
the Schur complement blocks will remain valid provided λ

(r)
j and γ(r) cor-

respond to eigenvalues of block matrices M (r) and γ(r), respectively, in the
three dimensional case. We omit additional details.

3.4 Two Subdomain Preconditioners

Our study of preconditioners for the Schur complement S begins with the two
subdomain case, where the geometry of the interface B is relatively simple.
In this case, S will be dense, however, its entries will decay in magnitude
with increasing distance between the nodes. We shall describe preconditioners
based either on local Schur complement matrices or on approximations of S
which use properties of the Steklov-Poincaré map associated with S.

We consider a finite element discretization of elliptic equation (3.1) on
a domain Ω, with Dirichlet boundary conditions on BD = ∂Ω. We assume
that Ω is partitioned into two nonoverlapping subdomains Ω1 and Ω2 with
interface B ≡ ∂Ω1 ∩ ∂Ω2, see Fig. 3.3, and order the nodes in Ω based on
Ω1, Ω2 and B. Given this ordering, a nodal vector u can be partitioned as

u =
(
u(1)T

I ,u(2)T

I ,uT
B

)T

, and the discretization of (3.1) will be (see Chap. 3.1):

⎡
⎢⎢⎣

A
(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IB

A
(1)T

IB A
(2)T

IB ABB

⎤
⎥⎥⎦
⎡
⎢⎣

u(1)
I

u(2)
I

uB

⎤
⎥⎦ =

⎡
⎢⎣

f (1)
I

f (2)
I

fB

⎤
⎥⎦.

Ω2

Ω1

B

Regular decomposition

Ω2

Ω1

B

Immersed decomposition

Fig. 3.3. Two subdomain decompositions
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The Schur complement matrix S associated with the above system can be
derived by solving u(i)

I = A
(i)−1

II (f (i)
I − A

(i)
IBuB) for i = 1, 2 and substituting

this into the third block row above. This will yield the reduced system:

S uB =
(
fB − A

(1)T

IB A
(1)−1

II f (1)
I − A

(2)T

IB A
(2)−1

II f (2)
I

)
,

where S ≡ (ABB −A
(1)T

IB A
(1)−1

II A
(1)
IB −A

(2)T

IB A
(2)−1

II A
(2)
IB) is the two subdomain

Schur complement. S will be dense, however, its action can be computed
without its assembly. We shall seek preconditioners M for S such that:

cond(M,S) ≡
λmax

(
M−1S

)
λmin (M−1S)

,

is significantly smaller than the condition number of S, without deterioration
as h → 0+, or as the coefficient a(x) and the subdomain size h0 varies.

In this section, we shall describe three categories of Schur complement
preconditioners for two subdomain decompositions:

• Preconditioners based on subdomain Schur complements.
• Preconditioners based on FFT’s and fractional Sobolev norms.
• Preconditioner based on algebraic approximations of S.

Of these, the preconditioners based on subdomain Schur complements are
more easily generalized to the many subdomain case and higher dimensions.

3.4.1 Preconditioners Based on Subdomain Schur Complements

The use of the local Schur complement S(i) to precondition S can be motivated
by the matrix splitting of S by the subassembly identity (3.20):

S = S(1) + S(2), where S(i) = A
(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB ,

since B = B(1) = B(2) and R(i)
B = I for i = 1, 2. This splitting may also be

derived by substituting the identity ABB = A
(1)
BB + A

(2)
BB , into the algebraic

expression S = (ABB − AT
IBA−1

II AIB) for the Schur complement matrix:

⎧⎨
⎩

S =
(
A

(1)
BB + A

(2)
BB

)
− A

(1)T

IB A
(1)−1

II A
(1)
IB − A

(2)T

IB A
(2)−1

II A
(2)
IB

=
(
A

(1)
BB − A

(1)T

IB A
(1)−1

II A
(1)
IB

)
+
(
A

(2)
BB − A

(2)T

IB A
(2)−1

II A
(2)
IB

)
= S(1) + S(2).

Typically, each S(i) will be symmetric and positive definite, except when
c(x) = 0 and Ωi is immersed in Ω, in which case S(i) will be singular. For
simplicity, however, we shall assume S(i) is nonsingular (see Chap. 3.7).

Matrix S(i) need not be assembled (and it will be dense, even if it were
assembled). It will be important to solve the system S(i)v(i)

B = r(i)
B efficiently.
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Fortunately, such a system can be solved without assembling S(i), by using
the following algebraic property satisfied by S(i):[

A
(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

][
v(i)

I

v(i)
B

]
=
[

0
S(i)v(i)

B

]
. (3.60)

This identity can be verified by block elimination of v(i)
I . It suggests that

the solution to S(i)v(i)
B = r(i)

B can be obtained by solving (3.60) using r(i)
B to

replace S(i)v(i)
B in the right hand side, and by selecting v(i)

B . Formally:

S(i)−1
r(i)

B =
[

0
I

]T
[

A
(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

]−1 [
0
I

]
r(i)

B .

The subdomain stiffness matrix here corresponds to the discretization of an
elliptic equation on Ωi with Neumann boundary data on B(i).

S(i) is traditionally referred to as the Dirichlet-Neumann preconditioner
for S, see [BJ9, BR11, FU, MA29]. Its name arises, since a Neumann problem
must be solved on Ωi and a subsequent Dirichlet problem on its complemen-
tary domain, in the Dirichlet-Neumann algorithm (Alg. 1.3.1 from Chap. 1.3).
When the number of unknowns on each subdomain is approximately half the
total number of unknowns, the cost of preconditioning with S(i) is typically
less than half the cost of solving Av = r. However, the number of iterations
required depends on the effectiveness of this preconditioner. It is shown in
Chap. 3.9 that cond(S(i), S) ≤ c, for c > 0 independent of h. In the special
case where the elliptic equation and the grid is symmetric about B, it will
hold that S(1) = S(2) and cond(S(i), S) = 1.

Below, we list a discretization of the Steklov-Poincaré formulation (1.19)
from Chap.1.3, and derive the discrete version of the Dirichlet-Neumann al-
gorithm. Let (w(1)

I ,w(1)
B )T and (w(2)

I ,w(2)
B )T denote nodal vectors associated

with finite element functions on Ω1 and Ω2, respectively. Then, a discretiza-
tion of the Steklov-Poincaré formulation (1.19) will yield:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A
(1)
II w(1)

I + A
(1)
IBw(1)

B = f (1)
I

w(1)
B = w(2)

B

A
(2)
II w(2)

I + A
(2)
IBw(2)

B = f (2)
I

A
(2)T

IB w(2)
I + A

(2)
BBw(2)

B = −A
(1)T

IB w(1)
I − A

(1)
BBw(1)

B + fB .

To obtain a discrete version of the Dirichlet-Neumann algorithm, let v(k)
I and

v(k)
B denote the k’th iterate on Ω1 and B(1), respectively, and u(k)

I and u(k)
B the

k’th iterate on Ω2 and B(2), respectively. Iteratively replace the transmission
boundary conditions on B using a relaxation parameter 0 < θ < 1.
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Algorithm 3.4.1 (Dirichlet-Neumann Algorithm)
Let (v(0)

I ,v(0)
B )T and (u(0)

I ,u(0)
B )T denote starting iterates.

1. For k = 0, 1, · · · until convergence do:
2. Solve the Dirichlet problem:⎧⎨

⎩
A

(1)
II v(k+1)

I + A
(1)
IBv(k+1)

B = f (1)
I

v(k+1)
B = θ u(k)

B + (1 − θ)v(k)
B

3. Solve the mixed problem:⎧⎨
⎩

A
(2)
II u(k+1)

I + A
(2)
IBu(k+1)

B = f (2)
I

A
(2)T

IB u(k+1)
I + A

(2)
BBu(k+1)

2 = fB − A
(1)T

IB v(k+1)
I − A

(1)
BBv(k+1)

B .

4. Endfor

Output:
(
v(k)T

I ,v(k)T

B

)T

,
(
u(k)T

I ,u(k)T

B

)T

If the interior variables v(k+1)
I and u(k+1)

I are eliminated in the preceding
algorithm, we may obtain an expression relating v(k+2)

B to v(k+1)
B . A matrix

form for this can be derived by solving for v(k+1)
I in step 2:⎧⎨

⎩v(k+1)
I = A

(1)−1

II

(
f (1)
I − A

(1)
IBv(k+1)

B

)
v(k+1)

B = θu(k)
B + (1 − θ)v(k)

B ,

and substituting this into the equations in step 3. Solving the resulting block
system using block elimination (representing u(k+1)

I in terms of u(k+1)
B ) yields:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
S(2)u(k+1)

B = fB − A
(1)T

IB A
(1)−1

II

(
f (1)
I − A

(1)
IBv(k+1)

B

)
−A

(1)
BBv(k+1)

B − A
(2)T

IB A
(2)−1

II f (2)
I

= fB − A
(1)T

IB A
(1)−1

II f (1)
I − A

(2)T

IB A
(2)−1

II f (2)
I − S(1)v(k+1)

B .

Defining f̃B ≡ fB − A
(1)T

IB A
(1)−1

II f (1)
I − A

(2)T

IB A
(2)−1

II f (2)
I , this reduces to:

u(k+1)
B = S(2)−1

(
f̃B − S(1)v(k+1)

B

)
.

Since v(k+2)
B is defined as v(k+2)

B = θ u(k+1)
B + (1 − θ)v(k+1)

B , this shows that
the preceding Dirichlet-Neumann algorithm corresponds to an unaccelerated
Richardson iteration to solve the Schur complement system S uB = f̃B with
M = S(2) as a preconditioner and θ as a relaxation parameter. We may also
employ M = S(1) as a preconditioner for S. Below, we summarize the action
of the Dirichlet-Neumann preconditioner M = S(i) on a vector r(i)

B .
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Algorithm 3.4.2 (Dirichlet-Neumann Preconditioner)
Input: rB

Solve: [
A

(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

][
v(i)

I

v(i)
B

]
=
[

0
rB

]
.

Output: M−1rB ≡ v(i)
B .

Remark 3.29. As mentioned earlier, when c(x) = 0 and B(i) = ∂Ωi, the local
stiffness matrix A(i) and its Schur complement S(i) will be singular, with
the null space of S(i) spanned by 1 = (1, . . . , 1)T . In this case, the Dirichlet-
Neumann preconditioner must be modified, since S(i)v(i)

B = rB will be solvable
only if the compatability condition 1T rB = 0 is satisfied. Furthermore, the
solution will be unique only up to a multiple of 1. Both issues are addressed
by the balancing procedure in Chap. 3.7, see [MA14, MA17].

When applying the Dirichlet-Neumann preconditioner, a specific Schur
complement matrix S(i) must be chosen, for i = 1, 2. When the geometry,
coefficients, and grid on the two subdomains differ significantly, matrices S(1)

and S(2) can also differ significantly. In this case, it may be more equitable to
combine information from both the subdomains in the preconditioner. This
motivates the Neumann-Neumann preconditioner. The action of the inverse
of the two subdomain Neumann-Neumann preconditioner M is defined as:

M−1 ≡ α S(1)−1
+ (1 − α)S(2)−1

,

where 0 < α < 1 is a scalar parameter for assigning different weights to
each subdomain (though, typically α = 1

2 ). Computing the action of M−1

requires the solution of a discretized elliptic equation on each subdomain,
and in parallel, with Neumann boundary conditions on B, hence, the name
Neumann-Neumann preconditioner [BO7]. The action of the inverse of this
preconditioner is summarized below.

Algorithm 3.4.3 (Neumann-Neumann Preconditioner)
Input: rB and 0 < α < 1

1. For i = 1, 2 in parallel solve for
(
w(i)

I ,w(i)
B

)T

:

[
A

(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

][
w(i)

I

w(i)
B

]
=
[

0
rB

]
.

2. Endfor

Output: M−1rB ≡ αw(1)
B + (1 − α)w(2)

B .
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An advantage of the Neumann-Neumann preconditioner is that each local
problem is typically easy to set up, and its algebraic form extends easily to
multisubdomain decompositions. It also applies to subdomains with arbitrary
geometry in two or three dimensions. Theoretical analysis in Chap. 3.9 in-
dicates that the Dirichlet-Neumann and Neumann-Neumann preconditioners
typically yield convergence rates which are independent of the mesh size h. By
construction, the preceding Dirichlet-Neumann preconditioner requires only
one subdomain solve, while the Neumann-Neumann preconditioner requires
two subdomain solves.

Theorem 3.30. If M denotes the Dirichlet-Neumann or Neumann-Neumann
preconditioner for a two subdomain decomposition, then the condition number
cond(M, S) will be bounded independent of the mesh size h.

Proof. See [BJ9, BR11, FU, MA29] and Chap. 3.9. ��

3.4.2 Preconditioners Based on FFT’s and Fractional Norms

Preconditioners for S, based on FFT’s and fractional Sobolev norms, can be
motivated in alternate ways. In a model problem based approach, the Schur
complement S on an interface B is approximated by the Schur complement
S̃ of a model problem on another domain, whose interface B̃ has the same
number of unknowns as on B. If the Schur complement S̃ in the model problem
has FFT solvers, then it will provide a heuristic FFT based preconditioner
for S. In the fractional Sobolev norm approach, an equivalence between the
energy of the Schur complement S and a fractional Sobolev norm energy of its
boundary data on B is employed. If M is a matrix that generates the latter
fractional Sobolev norm energy, it can be employed to precondition the Schur
complement S. The advantage of FFT based preconditioners is that when they
are applicable, they yield almost optimal order complexity, and convergence
rates independent of h. However, such methodology is primarily applicable in
two dimensions, i.e., when Ω ⊂ IR2. In three dimensions, the grid on B must
either be uniform, or have a multilevel structure, for applicability.

Model Problem Based Preconditioners. The model problem approach
is heuristic in nature. Given a domain Ω with subdomains Ω1 and Ω2, with
interface B, let Ω̂ be a region approximating Ω, with subdomains Ω̂1, Ω̂2

and interface B̂ that approximate Ω1, Ω2 and B, respectively. Then, the
elliptic equation (3.1) posed on Ω may be heuristically approximated by an
elliptic equation posed on Ω̂ with (possibly modified) coefficients â(x) and
ĉ(x) approximating a(x) and c(x), respectively:{

∇ · (â(x)∇û) + ĉ(x) = f̂(x̂), for x̂ ∈ Ω̂

û = 0, for x̂ ∈ ∂Ω̂.
(3.61)
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A preconditioner Ŝ can be constructed for S, as follows. Let Th(Ω̂) denote a
triangulation of Ω̂ having the same number of interior nodes in B̂ as in B,
and consider a discretization of (3.61) on this grid. Given the subdomains Ω̂1,
Ω̂2 and interface B̂, let Ŝ denote the Schur complement associated with the
discretized model problem on Ω̂. Block partitioning the unknowns in Ω̂ based
on the subregions yields the system:[

ÂII ÂIB

ÂT
IB ÂBB

] [
ûI

ûB

]
=
[

f̂ I

f̂B

]
. (3.62)

The Schur complement matrix Ŝ = (ÂBB − ÂT
IBÂ−1

II ÂBB) in the model prob-
lem may then be employed as a preconditioner for S.

Remark 3.31. If Ω̂ is obtained by mapping Ω and if B maps into B̂, we may
seek Ω̂1 and Ω̂2 that are rectangular. Furthermore, the coefficients â(x) and
ĉ(x) may be chosen so that (3.61) is separable. If a uniform triangulation is
employed on Ω̂, then a FFT solver can be constructed for Ŝ.

Remark 3.32. If Ω̂ is a small subregion of Ω satisfying B ⊂ Ω̂ ⊂ Ω, then we
may define Ω̂1 = Ω1 ∩ Ω̂, Ω̂2 = Ω2 ∩ Ω̂ and B̂ = B. In this case, we may
choose â(·) = a(·) and ĉ(·) = c(·), and system (3.62) will have a coefficient
matrix which is a small submatrix of A. To construct a preconditioner Ŝ for
S, we may substitute f̂ I = 0, f̂B = rB into (3.62) and define the action of the
inverse of a preconditioner as Ŝ−1rB ≡ ûB , see [NE3, MA37, SM].

Next, we elaborate on the preconditioner outlined in Remark 3.31 for a two
dimensional domain Ω. We shall assume that the interface B can be mapped
onto a line segment B̂, and choose Ω̂, Ω̂1 and Ω̂2 to be rectangular regions.
The grid on Ω̂ will be chosen to be uniform, and the coefficients â(x) and
ĉ(x) will be chosen to be constant in each subdomain. In this case, matrix
Ŝ may be explicitly diagonalized by a discrete sine transform matrix Q, with
Ŝ = QDQT for a diagonal matrix D, see (3.57) and (3.58). If k denotes the
number of unknowns on B (and hence on B̂), we define the discrete sine
transform matrix Q of size k as:

Qij ≡
√

2/(k + 1) sin (i j π/(k + 1)) , 1 ≤ i, j ≤ k. (3.63)

We employ a model Schur complement preconditioner Ŝ = QDQT for S, for
different choices of diagonal matrices D, see [DR, GO3, BJ9, CH2, BR11].
Heuristically, matrix Ŝ should be approximately spectrally equivalent to S,
when the triangulation of Ω̂ restricted to B̂ has the same connectivity as the
original triangulation restricted to B.

Next, we list different choices of diagonal entries Dii for 1 ≤ i ≤ k, in two
dimensions, yielding different preconditioners:
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dii =
(
a(1) + a(2)

)
(σi)

1/2
, [DR]

Dii =
(
a(1) + a(2)

) (
σi + σ2

i /4
)1/2

, [GO3]

Dii =
(

a(1) 1 + γm1+1
i

1 − γm1+1
i

+ a(2) 1 + γm2+1
i

1 − γm2+1
i

)(
σi +

1
4
σ2

i

)1/2

, [BJ9, CH2]

Dii =
1
2
(
a(1) + a(2)

) (
σi − σ2

i /6
)1/2

, [BR11, BJ9].

(3.64)
Here, the parameters σi and γi are defined by:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σi ≡ 4 sin2

(
i π

2(k + 1)

)
, for 1 ≤ i ≤ k

γi ≡
1 +

1
2
σi −

√
σi +

1
4
σ2

i

1 +
1
2
σi +

√
σi +

1
4
σ2

i

, for 1 ≤ i ≤ k.
(3.65)

The scalars a(1) and a(2) denote values of a(x) at some interior point in Ω1

and Ω2, respectively, when a(x) is a scalar function. When a(x) is a matrix
function, a(1) and a(2) will be eigenvalues of a(x) at chosen interior points in
Ω1 and Ω2. The parameters m1 and m2 in the preconditioner of [BJ9, CH2]
are integers chosen so that (mi +1) h and (k+1)h represents the approximate
length and width of subdomain Ωi. The resulting preconditioner Ŝ = QDQT

for S, is summarized next, where Q is the discrete sine transform.

Algorithm 3.4.4 (FST Based Fractional Norm Preconditioner)
Input: rB, D

1. Evaluate using the fast sine transform: yB = Q rB

2. Compute in linear complexity: xB = D−1yB

3. Evaluate using the fast sine transform: wB = QxB

Output: Ŝ−1rB ≡ wB.

Since the cost of applying a discrete sine transform is typically O(k log(k)),
the combined cost for solving the linear system Ŝ wB = rB will be O(k log(k)).
Since the discrete sine transform matrix Q is symmetric and orthogonal, it
will hold that Q−1 = Q, so that the transform applied twice should yield the
identity. However, in FFT packages [VA4] the discrete sine transform may be
scaled differently, so the user may need to rescale the output.

Remark 3.33. The choice of diagonal matrix D in [BJ9, CH2] can be formally
obtained as follows for a two dimensional domain Ω̂ with k interior nodes
on B. Let (mi + 1) h the approximate length of subdomain Ω̂i and let the
coefficients of the model problem be isotropic with â(i) constant in Ω̂i. Then,
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for hx1 = hx2 = h, the eigenvalues Dii of the Schur complement matrix Ŝ in
the model problem simplifies to:

Dii =
(

a(1) 1 + γm1+1
i

1 − γm1+1
i

+ a(2) 1 + γm2+1
i

1 − γm2+1
i

)(
σi +

1
4
σ2

i

)1/2

,

for 1 ≤ i ≤ k, where σi and γi are as defined in (3.65). This follows by
algebraic simplification of (3.57). When the parameters m1 and m2 are large
above, the expression for the eigenvalues Dii can be approximated as:

Dii →
(
a(1) + a(2)

) (
σi + σ2

i /4
)1/2

,

for 1 ≤ i ≤ k, since 0 < γi < 1. This heuristically motivates the precondi-
tioner of [GO3]. The preconditioner of [DR] can be formally obtained from the
preconditioner of [GO3] by replacing the terms

(
σi + σ2

i /4
)1/2 by the terms

(σi)
1/2

. By construction, both preconditioners will be spectrally equivalent
since

(
σi + σ2

i /4
)1/2 = (σi)

1/2 (1 + σi/4)1/2 and 1 < (1 + σi/4)1/2
<

√
2 for

0 < σi < 4.

Remark 3.34. Similar preconditioners can be constructed in three dimensions
provided the grid on the interface B can be mapped into a two dimensional
rectangular grid. Matrix Q will then be a two dimensional fast sine trans-
form. When the grid on B is not rectangular, preconditioners approximating
fractional Sobolev norms can be constructed using multilevel methodology,
provided the grid has a multilevel structure, see [BR17] and Chap. 7.1.

Fractional Sobolev Norm Based Preconditioners. This approach is mo-
tivated by a norm equivalence, see (3.28) and (3.32), between the energy as-
sociated with a two subdomain Schur complement S and a fractional Sobolev
norm energy. Such norm equivalences hold for harmonic and discrete harmonic
functions, and is proved using elliptic regularity theory. For two subdomain
decompositions, the norm equivalences (3.32) and (3.28) reduce to:

c ‖uh‖2

H
1/2
00 (B)

≤ uT
BSuB ≤ C ‖uh‖2

H
1/2
00 (B)

, (3.66)

for 0 < c < C independent of h, since the fractional Sobolev norm ‖uh‖1/2,∂Ωi

can be shown to be equivalent to ‖uh‖H
1/2
00 (B)

when uh is zero on ∂Ωi\B,
see [LI4]. This norm equivalence suggests that a preconditioner M can be
constructed for S, by representing the discrete fractional Sobolev energy as:

‖uh‖2

H
1/2
00 (B)

= uT
BMuB .

A matrix M satisfying this property can be constructed by employing the
theory of Hilbert interpolation spaces [BA3, LI4, BE16] as outlined below.

Given two Hilbert spaces satisfying H0 ⊃ H1 where the latter space has
a stronger norm ‖u‖H0 ≤ C ‖u‖H1 for all u ∈ H1, a family of interpolation
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spaces Hα can be constructed for 0 ≤ α ≤ 1 with H0 = H0 and H1 = H1,
with associated inner products defined as outlined below [BA3, LI4, BE16].

• Let H0 denote an Hilbert space with inner product (., .)0 and let H1 ⊂ H0

denote a subspace with a stronger inner product (, ., )1:

(u, u)0 ≤ C (u, u)1 , ∀u ∈ H1.

• Let T denote a self adjoint coercive operator satisfying:

(Tu, v)0 = (u, v)1 , ∀u, v ∈ H1,

which corresponds to a Riesz representation map.
• Let T have the following spectral decomposition:

T =
∞∑

i=1

λiPi,

where 0 < λ1 < λ2 < · · · are eigenvalues of T and Pi are (., .)0 orthogonal
projections onto the eigenspace of T corresponding to eigenvalue λi.

Then, for 0 ≤ α ≤ 1 we may formally define a fractional operator Tα as:

Tα ≡
∞∑

i=1

λα
i Pi, 0 ≤ α ≤ 1.

Then, for each 0 ≤ α ≤ 1 the interpolation space Hα is formally defined as
the domain of the fractional operator Tα, so that H0 = H0 and H1 = H1:

Hα ≡ {u ∈ H0 : (Tαu, u)0 < ∞} ,

where the inner product on Hα is consistently defined by:

(u, v)α ≡ (Tαu, v)0 =
∑∞

i=1 λα
i (Piu, v)0.

This procedure defines interpolation spaces Hα satisfying H1 ⊂ Hα ⊂ H0.
In elliptic regularity theory, the fractional index Sobolev space H

1/2
00 (B)

is often constructed as an interpolation space H1/2 obtained by interpolating
H0 = L2(B) and H1 = H1

0 (B). The space H
1/2
00 (B) will correspond to the

domain of the operator T
1
2 with associated fractional norm defined by:

‖u‖2

H
1/2
00 (B)

≡
(
T

1
2 u, u

)
0

=
∑∞

i=1 λ
1
2
i (Piu, u)0, ∀u ∈ H

1/2
00 (B).

The operator T corresponds to a Laplace-Beltrami operator −∆
B

defined on
B with homogeneous boundary conditions on ∂B. Formally, the fractional
powers of T may be computed by employing the eigenfunction expansion of T
and replacing the eigenvalues of T by their fractional powers. These fractional
operators Tα, however, will not remain differential operators for 0 < α < 1,
and are examples of pseudodifferential operators.

In the finite dimensional case, we may employ fractional powers of ma-
trices to represent fractional operators. To obtain a matrix representation
of ‖uh‖2

H
1/2
00 (B)

on the finite element space Vh(B) of finite element functions
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restricted to B, we seek a symmetric positive definite matrix Th satisfying:{(
T 0

huh, uh

)
= ‖uh‖2

L2(B), for uh ∈ Vh(B) ∩ L2(B)(
T 1

huh, uh

)
= ‖uh‖2

H1
0 (B)

, for uh ∈ Vh(B) ∩ H1
0 (B),

where (·, ·) denotes the L2(B) inner product. Let Gh denote the mass (Gram)
matrix associated with the finite element space Vh ∩ H1

0 (B) with standard
nodal basis, and let Ah denote the finite element discretization of the Laplace-
Beltrami operator with trivial boundary conditions imposed on ∂B. Then, by
construction it will hold that:{

(Tα
h uh, uh) = uT

BAhuB , for α = 1
(Tα

h uh, uh) = uT
BGhuB , for α = 0,

where uB denotes the nodal vector corresponding to the finite element func-
tion uh(x) restricted to B. Formally, a matrix representation of fractional
operators associated with Th may be constructed as:

Tα
h = G

1
2
h

(
G

− 1
2

h AhG
− 1

2
h

)α

G
1
2
h , for 1 ≤ α ≤ 1.

This yields:

T
1
2

h = G
1
2
h

(
G

− 1
2

h AhG
− 1

2
h

) 1
2

G
1
2
h .

When matrices Ah and Gh can be simultaneously diagonalized by the discrete
sine transform Q, then T

1
2

h can be efficiently computed and its associated linear
system can be solved efficiently.

To construct an explicit representation of matrix T
1/2
h we assume that the

interface B corresponds to the line segment (0, 1). Then, the Laplace-Beltrami
operator −∆

B
defined on B, with zero boundary conditions on ∂B is:

−∆Bu(x) ≡ −d2u

dx2
, for u(0) = 0 and u(1) = 0.

If the grid size is h = 1/(k +1), and nodal vector (uB)i = uh(ih) corresponds
to the finite element function uh, then the finite element discretization Ah of
the Laplace-Beltrami operator and the Gram matrix Gh will be of size k:

Ah =
1
h

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and Gh =
h

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 1
1 4 1

. . . . . . . . .

1 4 1
1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Matrices Ah and Gh can be simultaneously diagonalized by the one dimen-
sional discrete sine transform matrix Q with entries:

Qij =
√

2/(k + 1) sin (i j π/(k + 1)) , for 1 ≤ i, j ≤ k.

The eigenvalues of matrices Ah and Gh corresponding to eigenvector qj is:⎧⎪⎪⎨
⎪⎪⎩

λj(Ah) = 4(k + 1) sin2(
j π

2(k + 1)
), for 1 ≤ j ≤ k

λj(Gh) =
1

3(k + 1)

(
3 − 2 sin2(

j π

2(k + 1)
)
)

for 1 ≤ j ≤ k.

The fractional power T
1
2

h can be represented explicitly as T
1
2

h = QDQT where:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Djj = λj(Gh)
1
2 λj(Ah)

1
2

=
(

1
3(k + 1)

(
3 − 2 sin2(

j π

2(k + 1)
)
))1

2
(

4 (k + 1) sin2(
j π

2(k + 1)
)
)1

2

=
2√
3

(
3 sin2(

j π

2(k + 1)
) − 2 sin4(

j π

2(k + 1)
)
)1

2 =
(

σj −
1
6
σ2

j

)1
2

for σi = 4 sin2( i π
2(k+1) ) where 1 ≤ j ≤ k. This choice of D yields the precondi-

tioner M = QT DQ of [BR11, BJ9] in (3.64), with a(1) = a(2) = 1. It may be
implemented as in Alg. 3.4.4.

Remark 3.35. Analogous FFT based preconditioners can be constructed for
two subdomain Schur complements in three dimensions, provided that the
grid on the interface B can be mapped onto a uniform rectangular grid [CH2,
CH13]. In this case, the Schur complements S may be formulated and applied
heuristically, by analogy with the two dimensional case.

The following result is proved in Chap. 3.9.

Lemma 3.36. For any 2nd order, coercive self adjoint elliptic operator, the
subdomain Schur complement preconditioner and the fractional Sobolev norm
based preconditioner Ŝ will be spectrally equivalent to S as h → 0.

The convergence rate, however, may depend on the aspect ratios of the sub-
domains, and also on the coefficients.

3.4.3 Preconditioners Based on Algebraic Approximation of S

The Schur complement matrix S arising in a two subdomain decomposition is
typically a dense matrix. This can be verified heuristically by computing its
entries and plotting its magnitude, or by using expression (3.26) and noting
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that the discrete Green’s function A−1
II is a dense matrix as h → 0+ (due to

the global domain of dependence of elliptic equations). As a result, traditional
algebraic preconditioners based on ILU factorization [GO4, BE2, SA2, AX]
will offer no advantages over direct solution. Furthermore, such factorizations
cannot be employed when matrix S is not assembled, as is the case in itera-
tive substructuring methods. Instead, in this subsection we shall describe two
alternative algebraic preconditioners for the Schur complement matrix, one
based on sparse approximation of the Schur complement using the probing
technique, and the other based on incomplete factorization of the subdomain
matrices A

(i)
II . Both preconditioners may be applied without assembly of S.

The first algebraic preconditioner we shall consider is based on the con-
struction of a sparse matrix approximation of S using a probing technique
[CH13, KE7, CH9]. A sparse approximation of S can be heuristically moti-
vated by a decay property in the entries Sij of a two subdomain Schur com-
plement matrix, with increasing distance between the nodes xi and xj . This
decay property can be observed when S is assembled explicitly, and arises
from the decay in the entries (A(l)−1

II )rs of the discrete Green’s function asso-
ciated with the elliptic equation on the subdomains, with increasing distance
between the nodes xr and xs. This suggests that a sparse approximation M
of S may be effective as a preconditioner, provided the nonzero entries of M
approximate the dominant entries of S. In the following, we shall describe the
probing technique for determining a sparse approximation M of S.

For Ω ⊂ IR2, if the nodes xi on B are ordered consecutively along B, then
the entries of the Schur complement matrix S typically decay along diagonal
bands. This motivates choosing a band matrix M , say of band width d, to
approximate S. Nonzero entries of the band matrix M can be determined by
choosing probe vectors pl, say for 1 ≤ l ≤ (2d + 1), and requiring that the
matrix vector products of S with each probe vector pl matches the matrix
vector product of M with the same probe vector:

Mpl = Spl, for 1 ≤ l ≤ (2d + 1).

If matrix S is of size k, these requirements yield k (2d + 1) equations for the
unknown entries of M . A careful choice of the probe vectors based on the decay
in the entries of S can increase the accuracy of the probe approximation M ,
and also simplify the linear system for the nonzero entries of M . The resulting
probing technique [CH13, KE7, CH9] does not require the explicit assembly
of matrix S, but does require the computation of the matrix-vector products
of S with the chosen probe vectors.

Below, we illustrate a specific choice of probe vectors to construct a tridi-
agonal approximation M of S. In this case 2d+1 = 3, and three probe vectors
p1, p2 and p3 will be sufficient. Choose:⎧⎪⎨

⎪⎩
p1 = (1, 0, 0, 1, 0, 0, . . .)T

p2 = (0, 1, 0, 0, 1, 0, . . .)T

p3 = (0, 0, 1, 0, 0, 1, . . .)T .
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Equating Mpk = Spk for k = 1, 2, 3 yields:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12

m21 m22 m23

m32 m33 m34

. . . . . . . . .

. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 0
m21 m22 m23

m34 m32 m33

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Sp1 Sp2 Sp3

...
...

...
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦

.

All the nonzero entries of the tridiagonal matrix M can be computed explicitly
using the above equations. An algorithm for constructing a tridiagonal matrix
M of size k is summarized below. For an integer i, we employ the notation:

mod(i, 3) ≡

⎧⎪⎨
⎪⎩

1 if i = 3k + 1, for some integer k

2 if i = 3k + 2, for some integer k

3 if i = 3k, for some integer k.

Thus, mod(i, 3) denotes the remainder in the division of i by 3.

Algorithm 3.4.5 (Probe Tridiagonal Approximation of S)
Input: Sp1, Sp2, Sp3

1. For i = 1, · · · , k do:
2. Let j = mod(i, 3).
3. mii = (Spj)i
4. If i < k define: {

mi,i+1 ≡ (Spj+1)i
mi+1,i ≡ (Spj)i+1

Endif
5. Endfor

Output: Tridiagonal matrix M .

Remark 3.37. As input, this algorithm requires three matrix vector products
of the form Spj for j = 1, 2, 3. These products can be computed without the

assembly of S, using the identity (3.20) with S(i) = A
(i)
BB −A

(i)T

IB A
(i)−1

II A
(i)
IB , or

based on the identity S = ABB−AT
IBA−1

II AIB . The computational cost of con-
structing a tridiagonal approximation M of S will essentially be proportional
to the cost of computing three matrix-vector products with S.

Remark 3.38. If the Schur complement matrix S is tridiagonal, it is easily ver-
ified that the entries Mij of the reconstructed matrix will match Sij . More
generally, however, the reconstructed entries Mij will only be approximations
of the corresponding entries Sij , due to the nonzero entries of S outside the
tridiagonal band. However, if the entries of S decay rapidly outside the tridi-
agonal band, then this approximation may be reasonably accurate.
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Remark 3.39. The reconstructed matrix M in the above algorithm may not
be symmetric, i.e., Mij �= Mji. However, given a nonsymmetric tridiagonal
matrix M , a symmetric tridiagonal approximation M̃ may be obtained as:{

M̃ij = max{Mij ,Mji}, if i �= j

M̃ii = Mii, if i = j.

Alternatively, a different probing technique [KE7] involving only two probe
vectors can be employed to construct a symmetric approximation M of S.

The following result concerns a tridiagonal probe approximation based on
three probe vectors.

Lemma 3.40. If S is an M -matrix, then the tridiagonal probe approxima-
tion M of S will also be an M -matrix. Furthermore, its symmetrization M̃
will also be an M -matrix. For a model Laplacian on a rectangular grid with
periodic boundary conditions on two boundary edges, the condition number
of the tridiagonal probe approximation will satisfy cond(M, S) ≤ C h−1/2 in
comparison to cond(S) ≤ C h−1.

Proof. See [CH9]. ��

The tridiagonal probing procedure described above can be easily gener-
alized to to band matrices with larger bandwidths. To generalize to other
sparsity patterns, however, requires some care. Suppose G denotes the adja-
cency matrix representing the sparsity pattern desired for M . To construct
an approximation M of S with the same sparsity pattern as G, the first step
would be to determine a coloring or partitioning of the nodes so that nodes
of the same color are not adjacent in G. Thus, if node i is adjacent to nodes
j and k in G, then nodes j and k cannot be of the same color. Given such a
coloring of the nodes, into d colors, define d probe vectors p1, . . . ,pd so that
pj is one at all indices corresponding to the j’th color and zero on all other
nodes. A reconstruction algorithm may be derived for M using the symmetry
of M . Once a sparse approximation M of S has been constructed, it may
be necessary to further approximate M by its ILU factorization, to enable
efficient solvability of the preconditioner. We omit further details.

We conclude our discussion on algebraic approximation of S, with another
approximation based on an incomplete factorization of the matrices A

(i)
II . Such

approximations will be of interest primarily for multisubdomain decomposi-
tions [CA33]. In the two subdomain case, the method employs an incomplete
factorization of the subdomain stiffness matrices A

(i)
II ≈ L̃

(i)
I L̃

(i)T

I for i = 1, 2
to compute a low cost dense approximation M of S:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
S = ABB − A

(1)T

IB A
(1)−1

II A
(1)
IB − A

(2)T

IB A
(2)−1

II A
(2)
IB

≈ ABB − A
(1)T

IB L̃
(1)−T

II L̃
(1)−1

II A
(1)
IB − A

(2)T

IB L̃
(2)−T

II L̃
(2)−1

II A
(2)
IB

≡ M.

(3.67)
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If the matrix S is of size k, then the cost of constructing M will typically be
proportional to O(k2). The approximation M will typically be dense. However,
sufficiently small entries of M may be truncated to zero using a threshold
parameter η > 0:

M̃ij ≡
{

0, if |Mij | ≤ η (|Mii| + |Mjj |)
Mij , otherwise.

(3.68)

The use of incomplete factorization to construct a dense approximation M of
S, followed by threshold truncation M̃ of M will yield a sparse approximation
M̃ of S, which can then be used as a preconditioner [CA33] for S.

Lemma 3.41. If A is an M -matrix, then the approximation M in (3.67) will
also be an M -matrix. Furthermore, if threshold truncation as in (3.68) is
applied to the resulting dense matrix M , the truncated approximation M̃ will
also be an M -matrix.

Proof. See [CA33]. ��

3.5 Preconditioners in Two Dimensions

The Schur complement matrix S associated with the discretization of elliptic
equation (3.1) is typically more difficult to precondition for multisubdomain
decompositions and in higher dimensions. This difficulty can be attributed to
the increasingly complex geometry of the interface B for a multisubdomain
decomposition, and to the properties of the Steklov-Poincaré map on B. In
the multisubdomain case, the Schur complement matrix will have zero block
entries corresponding to nodes on disjoint subdomains ∂Ωi∩∂Ωj = ∅. Further-
more, the entries in the nonzero blocks will decay in magnitude with increasing
distance between the nodes. As the size h0 of each subdomain decreases, the
condition number of the multisubdomain Schur complement matrix increases
from O(h−1) to O(h−1h−1

0 ), see [BR24]. However, Schwarz subspace precon-
ditioners employing suitable overlap between blocks of S can be effective (see
Chap. 3.7 on Neumann-Neumann preconditioners, in particular).

In this section, we shall describe the block Jacobi, BPS and vertex space
preconditioners for a multisubdomain Schur complement matrix S associated
with (3.5) on a domain Ω ⊂ IR2. Each of the preconditioners we describe
will have the structure of an additive Schwarz subspace preconditioner from
Chap. 2.3, for the space V = IRnB of nodal vectors on B, endowed with the
inner product generated by S. With the exception of the coarse space V0 ⊂ V ,
the other subspaces Vi ⊂ V required to define the Schwarz subspace algorithm
for S, will be defined based on a partition of the interface B into subregions
Gi ⊂ B, referred to as globs. These globs may be extended to define overlapping
or non-overlapping segments on B, but to implement such preconditioners, the
submatrices of S must be approximated without assembling S. Importantly,
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Ω1 Ω2

⊗
cross
point

vl

Ω7 Ω8

an edge El

vertex
region

Gm

Fig. 3.4. A partition of Ω into 8 subdomains

as h0 → 0+, if a coarse space V0 is included, global transfer of information will
be facilitated between the subdomains, and this will reduce the dependence
of the condition number on h0.

Let Ω1, . . . , Ωp form a nonoverlapping box type decomposition of Ω ⊂ IR2

as in Fig. 3.4, with subdomains of diameter h0. Consider a finite element
discretization of elliptic equation (3.1) with Dirichlet boundary BD = ∂Ω. We
shall employ the notation:⎧⎪⎨

⎪⎩
B(i) ≡ ∂Ωi\BD, for 1 ≤ i ≤ p

B ≡ ∪p
i=1B

(i)

Bij ≡ int
(
B(i) ∩ B(j)

)
, for 1 ≤ i, j ≤ p.

Here int(B(i) ∩B(j)) refers to the interior of B(i) ∩B(j). Each connected and
nonempty boundary segment Bij will be referred to as an edge. The distinct
edges will be enumerated as E1, · · · , Eq so that each El corresponds uniquely
to a nonempty connected segment Bij . Endpoints in B of open segments Bij

will be referred to as vertices or cross-points, see Fig. 3.4, and the collection
of all vertices will be denoted V:

V = B\ (E1 ∪ · · · ∪ Eq).

The term glob will refer to subregions of the interface which partition B, see
[MA14]. For Ω ⊂ IR2, edges and cross-points will be globs.

The interface B arising in the decomposition of a two dimensional domain
can be partitioned based on edges and cross-points as follows:

B = E1 ∪ · · · ∪ Eq ∪ V.

If the indices of nodes on B are grouped and ordered based on the globs
E1, . . . , Eq,V, with some chosen ordering within each edge El and cross-point
set V, then the Schur complement matrix can be block partitioned as:

S =

⎡
⎢⎢⎢⎢⎣

SE1E1 · · · SE1Eq
SE1V

...
...

...
ST

E1Eq
· · · SEqEq

SEqV
ST

E1V · · · ST
EqV SVV

⎤
⎥⎥⎥⎥⎦. (3.69)
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Here SElEr
, SElV and SVV denote submatrices of S corresponding to indices

in the respective globs.
Since the Schur complement matrix S is not typically assembled in iterative

substructuring methodology, the different submatrices of S in (3.69) will also
not be assembled explicitly. However, the action of submatrix SElEl

on a
subvector can be computed explicitly without assembly of SElEl

when edge
El = B(i) ∩B(j). This is because in this case submatrix SElEl

will correspond
to a two subdomain Schur complement matrix, arising from the decomposition
of the subregion Ωi ∪ Ωj ∪ El into the subdomains Ωi, Ωj and interface El.
This observation yields the formal expression:

SElEl
= AElEl

− A
(i)T

IEl
A

(i)−1

II A
(i)
IEl

− A
(j)T

IEl
A

(j)−1

II A
(j)
IEl

, (3.70)

for submatrix SElEl
. This may be applied to yield:

S−1
ElEl

rEl
=

⎡
⎣ 0

0
I

⎤
⎦

T
⎡
⎢⎣

A
(i)
II 0 A

(i)
IEl

0 A
(j)
II A

(j)
IEl

A
(i)T

IEl
A

(j)T

IEl
AElEl

⎤
⎥⎦
−1 ⎡
⎣0

0
rEl

⎤
⎦ , (3.71)

so that the action of S−1
ElEl

on a subvector can be computed at the cost of solv-
ing the preceding linear system. More generally, by applying property (3.26)
of Schur complement matrices, it can be noted that when edges El and Ek

belong to a common subdomain boundary B(i), the block submatrices SElEk

will be nonzero and dense. Otherwise, the submatrices SElEk
will be zero. The

block submatrices SElV and SVV will typically have nonzero entries since there
will be nodes in El adjacent to nodes in V. We now describe preconditioners.

3.5.1 Block Jacobi Preconditioner

In two dimensions, a block Jacobi preconditioner for S can be defined based
on the partition of B into the globs E1, . . . , Eq and V. In matrix form, such a
preconditioner will correspond to the block diagonal of matrix (3.69):

M =

⎡
⎢⎢⎢⎢⎣

SE1E1 0
. . .

SEqEq

0 SVV

⎤
⎥⎥⎥⎥⎦.

The action of the inverse of the block Jacobi preconditioner satisfies:

M−1 ≡
p∑

i=1

RT
Ei

S−1
EiEi

REi
+ RT

VS−1
VVRV , (3.72)

using the interface restriction and extension matrices RG and RT
G defined

in (3.19) between nodes on B and nodes on G = El or G = V. Since
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the Schur complement matrix S will not be assembled, the diagonal blocks
SElEl

= REl
SRT

El
and SVV = RVSRT

V of S must typically be approxi-
mated, or alternatively, the action of the inverses of the submatrices S−1

ElEl

and S−1
VV must be approximated. We outline how such approximations can be

obtained.

Approximation of SElEl
. If there are nEl

nodes on El then SElEl
will be of

size nEl
. Since block submatrix SElEl

corresponds to a two subdomain Schur
complement matrix by (3.70) when edge El = B(i) ∩B(j), the action of S−1

ElEl

on a vector can be computed exactly using (3.71). This does not require as-
sembly of SElEl

. Alternate approximations MElEl
of SElEl

can be obtained
by employing any two subdomain preconditioner for SElEl

. Choices of such
preconditioners include Dirichlet-Neumann, Neumann-Neumann, fractional
Sobolev norm, FFT based or algebraic approximation based preconditioners.
Such preconditioners must be scaled based on the coefficient a(x) within the
subdomains Ωi and Ωj .
Approximation of SVV . If there are nV vertices in V then SVV will be of size
nV . The block submatrix SVV can typically be approximated by a diagonal
matrix based on the following heuristics. When Ω is a rectangular domain, and
the subdomains are rectangular boxes, and a five point stencil is employed, it
can easily be verified that matrix SVV will be identical to the submatrix AVV
of stiffness matrix A. This is a consequence of the property that for five point
stencils, the interior solution in a rectangular subdomain will not depend on
the nodal value on corner vertices. This observation, heuristically suggests
replacing SVV by MVV = AVV . The latter is easily seen to be diagonal.

Due to its block diagonal structure, the block Jacobi preconditioner M ig-
nores coupling between distinct edges and between the edges and the vertex set
V. As a result, the block Jacobi preconditioner does not globally exchange in-
formation between the different subdomains, and this results in a non-optimal
convergence rate as h0 → 0. We assume that the grid in quasi-uniform.

Theorem 3.42. If M is the block Jacobi preconditioner and the subdomains
are of diameter h0, then there exists C > 0 independent of h0 and h:

cond(M,S) ≤ Ch−2
0

(
1 + log2(h0/h)

)
.

Proof. See [BR12, DR14, DR10]. ��

3.5.2 BPS Preconditioner

As with the block Jacobi preconditioner, the BPS preconditioner [BR12] also
has the structure of a matrix additive Schwarz preconditioner for S. Formally,
this preconditioner can be obtained by replacing the local residual correction
term RT

VS−1
VVRV on the vertices V in the block Jacobi preconditioner (3.72) by

a global coarse space residual correction term of the form RT
0 S−1

0 R0. We shall
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define R0 in (3.74), however, given R0, matrix S0 ≡ R0SRT
0 , and the action

of the inverse of the BPS preconditioner will have the form:

M−1 ≡
q∑

i=1

RT
El

S−1
ElEl

REl
+ RT

0 S−1
0 R0. (3.73)

Unlike the restriction matrices REl
and RV onto El and V, respectively,

which have zero-one entries, the matrix R0 whose row space defines the coarse
space, will not be a matrix with zero-one entries. As a result, the matrix
S0 = R0SRT

0 will not be a submatrix of S. When the region of support
of Range(RT

0 ) covers Ω, the residual correction term RT
0 S−1

0 R0 in the BPS
preconditioner will transfer information globally between the different subdo-
mains. Heuristically, this can help reduce the dependence of the condition
number of the preconditioned Schur complement matrix on h0.

In applications, the coarse space restriction matrix R0 is usually defined
when the subdomains Ω1, . . . , Ωp form a coarse triangulation Th0(Ω) of Ω with
elements of size h0 and nodes corresponding to the vertices in V. In this case,
we enumerate the vertices in V as v1, . . . , vn0 , and denote by φh0

1 (x), . . . , φh0
n0

(x)
the coarse grid nodal basis functions associated with these vertices. Suppose
the nodes on B are enumerated as x1, · · · , xnB

, where nB denotes the number
of nodes on B. Then, the coarse space restriction matrix R0 is defined as the
following n0 × nB matrix:

R0 ≡

⎡
⎢⎢⎣

φh0
1 (x1) · · · φh0

1 (xnB )
...

...
φh0

n0
(x1) · · · φh0

n0
(xnB

).

⎤
⎥⎥⎦. (3.74)

Its transpose RT
0 of size nB × n0 is an interpolation onto nodal values on B.

As with the block Jacobi preconditioner, suitable approximations of the ma-
trices SElEl

= REl
SRT

El
and S0 = R0SRT

0 must be employed in the BPS
preconditioner (3.73), since the Schur complement matrix S is not assembled.
Below, we indicate various such approximations [BR12].
Approximation of SElEl

. The submatrix SElEl
in (3.73) can be replaced

by any suitable two subdomain Schur complement preconditioner MElEl
just

as for the block Jacobi preconditioner (3.72). In the original BPS algorithm,
SElEl

was approximated by a preconditioner of the form (a(i) + a(j))QlDlQ
T
l

where Ql was a discrete sine transform of size nEl
, and Dl was a suitably

chosen diagonal matrix from (3.64), with a(k) corresponding to an evaluation
of coefficient a(x) at some point in Ωk.
Approximation of S0. The matrix S0 = R0SRT

0 associated with the
coarse space is typically approximated by a coarse grid stiffness matrix A0

obtained by discretizing the underlying elliptic equation (3.1) on the coarse
grid. Below, we heuristically indicate why such an approximation can be em-
ployed. Consider a Poisson problem on a rectangular domain Ω partitioned
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into subdomains Ωi which form a coarse triangulation Th0(Ω) of Ω of size h0.
Let φh0

l (x) denote the coarse grid finite element nodal basis centered at vertex
vl. Then, the entries (A0)ij of the coarse space stiffness matrix A0 will satisfy:

(A0)ij = A
(
φh0

i , φh0
j

)
.

Let uB and wB denote the nodal vectors representing the coarse space nodal
basis functions φh0

i (x) and φh0
j (x) on B. Then, the vector representation of

φh0
i (x) and φh0

j (x) on Ω will be given by
(
(EuB)T ,uT

B

)T and
(
(EwB)T ,wT

B

)T
where E ≡ −A−1

II AIB denotes the discrete harmonic extension map from B
into the interior ∪p

i=1Ωi of the subdomains. This holds because each coarse
grid function φh0

l (x) is linear within each subdomain, and thus also harmonic
(and discrete harmonic) within each subdomain. Consequently, by (3.27), it
will hold that:

(S0)ij = wT
BSuB =

[
EwB

wB

]T

A

[
EuB

uB

]
= A(φh0

i , φh0
j ) = (A0)ij .

This yields that A0 = S0 for this geometry and choice of coefficients a(x).
More generally, matrix A0 may be employed as an approximation of S0. The
following result concerns the condition number of the BPS preconditioner.

Theorem 3.43. Let Th(Ω) denote a quasiuniform triangulation of Ω and let
the subdomains Ω1, . . . , Ωp form a coarse triangulation of Ω of size h0. Then,
there exists C > 0 independent of h0 and h such that:

cond(M, S) ≤ C
(
1 + log2(h0/h)

)
.

If a(·) is constant within each Ωi, then C will also be independent of a(·).

Proof. See [BR12, DR14, DR10]. ��

3.5.3 Vertex Space Preconditioner for S

From a theoretical viewpoint, the logarithmic growth factor
(
1 + log2(h0/h)

)
in the condition number of the BPS preconditioner arises because the BPS
preconditioner does not approximate the coupling in S between different edges
El of B. The vertex space preconditioner extends the BPS preconditioner
by including local residual correction terms based on overlapping segments
of B, see [SM3]. It includes a local correction term of the form RT

Gl
S−1

GlGl
RGl

involving nodal unknowns on regions Gl ⊂ B, referred to as vertex regions.
For each vertex vl ∈ V, a vertex region Gl is a star shaped connected subset
of B that contains segments of length O(h0) of all edges Er emanating from
vertex vl. By construction, each local residual correction term approximates
coupling in S between edges adjacent to that vertex.
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Formally, the vertex space preconditioner is obtained by adding the terms
RT

Gl
S−1

GlGl
RGl

to the BPS preconditioner (3.73), yielding:

M−1 =
q∑

l=1

RT
El

S−1
ElEl

REl
+ RT

0 S−1
0 R0 +

n0∑
i=1

RT
Gi

S−1
GiGi

RGi . (3.75)

The resulting preconditioner has the structure of a matrix additive Schwarz
preconditioner for S based on the overlapping decomposition:

B = (E1 ∪ . . . ∪ Eq) ∪ V ∪ (G1 ∪ . . . ∪ Gn0),

of interface B, with an additional coarse space correction term. In practice,
it will be convenient to construct each vertex region Gl as the intersection of
interface B with a subdomain Ωvl

⊃ vl of diameter O(h0) centered at vl, see
[NE3, MA37, SM3]. By construction, each Gl will be a cross shaped or star
shaped subregion of B, see Fig. 3.4, and restriction matrix RGl

will map a
nodal vector on B to its subvector corresponding to nodes in Gl. Matrix RGl

will be of size nGl
× nB when there are nGl

nodes on vertex region Gl, and
have entries which are zero or one, as defined by (3.19). Consequently, each
matrix SGlGl

= RGl
SRT

Gl
will be a submatrix of S of size nGl

corresponding
to indices of nodes in Gl. The vertex space preconditioner can be implemented
like the BPS preconditioner. Since matrix S is generally not assembled, the
matrices SElEl

, SGiGi and S0 must be appropriately approximated to imple-
ment the preconditioner. The matrices SElEl

and S0 can be approximated as
described for the BPS preconditioner, since these terms will be identical to
those in (3.73). Below, we focus on the action of S−1

GiGi
.

Approximation of SGiGi
. Let Ωvi ⊂ Ω denote a subregion used to define

the vertex region Gi ≡ B∩Ωvi
. Partition the nodes of Th(Ω) in Ωvi

into those
in Di ≡ Ωvi

\Gi and those in Gi. This will induce a block partitioning of the
submatrix A(Ωvi

) of stiffness matrix A corresponding to all nodes in Ωvi :

A(Ωvi
) =

[
ADiDi

ADiGi

AT
DiGi

AGiGi

]
.

Using the above block partitioned matrix, one may approximate the action of
S−1

GiGi
on a vector rGi

as follows:

S−1
GiGi

rGi
≈
[

0
I

]T [
ADiDi

ADiGi

AT
DiGi

AGiGi

]−1 [
0

rGi

]
.

Alternatively, sparse approximations of SGiGi
can be computed efficiently

using the probing technique, by weighted sums of FFT based matrices, or
by use of inexact factorizations see [CH12, CA33]. The following convergence
bound will hold for the vertex space preconditioner.
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Theorem 3.44. If the diameter of vertex subregions is β h0, then the condi-
tion number of the vertex space preconditioned system will satisfy:

cond(M, S) ≤ C0(1 + β−1),

where C0 > 0 is independent of h0, h and β, but may depend on the variation
of a(·). There also exists a constant C1 independent of h0, h, and the jumps
in a(·) (provided a(x) is constant on each subdomain Ωi).

cond(M, S) ≤ C1

(
1 + log2(h0/h)

)
.

Proof. See [SM, DR10]. ��

Thus, in the presence of large jumps in the coefficient a(·), the bounds
for the condition number of the vertex space algorithm can deteriorate to(
1 + log2(h0/h)

)
, which is the same growth as for the BPS preconditioner.

3.6 Preconditioners in Three Dimensions

The Schur complement matrix S for a three dimensional multi-subdomain
decomposition is more difficult to precondition than in two dimensions. This
difficulty arises due to the more complex geometry of the interface B in
three dimensions. However, effective preconditioners can be constructed (see
in particular, Chap. 3.7 on Neumann-Neumann preconditioners) by employing
Schwarz subspace methods with more overlap between blocks of S.

Our discussion of three dimensional preconditioners will focus on several
block Jacobi preconditioners for S, a vertex space preconditioner, and a par-
allel wirebasket preconditioner. We consider a decomposition of Ω ⊂ IR3 into
p non-overlapping box type or tetrahedral subdomains Ω1, · · · , Ωp. having
diameter h0. Typically, these subdomains will be assumed to form a quasi-
uniform coarse triangulation Th0(Ω) of Ω. For the Dirichlet boundary value
problem (3.1) with BD = ∂Ω, we let B(i) ≡ ∂Ωi\BD denote the non-Dirichlet
segment of ∂Ωi, and define the interface as B = B(1) ∪ · · · ∪ B(p).

The different additive Schwarz matrix preconditioners we shall consider
for S will be based on a decomposition of the interface B into the following
subregions of B referred to as globs [MA14], They will typically be well defined
for tetrahedral or box type subdomains:⎧⎪⎨

⎪⎩
Fij ≡ int

(
B(i) ∩ B(j)

)
W (i) ≡ B(i) ∩ (∪j �=i∂Fij)

W ≡ W (1) ∪ · · · ∪ W (p).

Here Fij = int
(
B(i) ∩ B(j)

)
denotes the interior of region B(i) ∩ B(j), and

is referred to as a face of Ωi when it is nonempty. By definition, each face
will be two dimensional. The subregion W (i) of B(i) is referred to as a local
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Fig. 3.5. Boundary segments and vertex regions for three dimensional subdomains

wirebasket of Ωi and is the union of the boundaries ∂Fij of all faces of Ωi.
Typically, each wirebasket will be connected and the union of several one
dimensional segments. The union of all local wirebaskets is referred to as the
global wirebasket. The above mentioned subregions are indicated in Fig. 3.5
for an individual subdomain.

In applications, we shall enumerate all the faces in B as F1, . . . , Fq where q
denotes the total number of faces. By definition, each face Fl will correspond
uniquely to some nonempty intersection int

(
B(i) ∩ B(j)

)
, and by construction,

we may partition the interface B into the following globs:

B = F1 ∪ · · · ∪ Fq ∪ W.

In practice, it will be convenient to decompose the wirebaskets into smaller
globs. We define an edge as a maximal line segment of a local wirebasket,
homeomorphic to an open interval. We define vertices as endpoints of edges.

Edges and vertices can be expressed formally as:⎧⎪⎨
⎪⎩

Eijk ≡ int
(
F ij ∩ F ik

)
V ≡ W\ (∪i,j,kEijk)

= {vl : vl ∈ V}.

By definition each edge will be open, and we enumerate all the nonempty
edges as E1, . . . , Er where r denotes the total number of such edges. Similarly,
we enumerate all the vertices as v1, . . . , vn0 , where n0 will denote the total
number of vertices in W . The collection of all vertices will be denoted V, as
in two dimensions.

Definition 3.45. Given a glob G ⊂ B containing nG nodes of Ωh, we let
RG ≡ RGRT

B denote a restriction matrix of size nB × nG which restricts a
nodal vector on B to a subvector corresponding to nodes on G, as defined
in (3.19). Its transpose RT

G ≡ RBRT
G will extend a vector of nodal values on

G to a vector of nodal values on B (extension by zero). The entries of these
glob based restriction and extension matrices will be zeros or ones.
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In the three dimensional case, we will on occasion employ an additional
restriction map, which we shall denote as RW (i)W .

Definition 3.46. Let RW (i)W ≡ RW (i)RT
W denote the matrix which restricts

a vector of nodal values on the global wirebasket W into a subvector of nodal
values on the local wirebasket W (i). Its transpose RT

W (i)W
≡ RW RT

W (i) will
extend a vector of nodal values on W (i) to a vector of nodal values on W
(extension by zero).

3.6.1 Block Jacobi Preconditioner for S

We first describe a block Jacobi preconditioner based on the decomposition
of B into the faces F1, . . . , Fq and the wirebasket W :

B = F1 ∪ · · · ∪ Fq ∪ W.

This nonoverlapping decomposition of B induces a block partition of S as:

S =

⎡
⎢⎢⎢⎢⎣

SF1F1 · · · SF1Fq
SF1W

...
. . .

...
...

ST
F1Fq

· · · SFqFq
SFqW

ST
F1W · · · ST

FqW SWW

⎤
⎥⎥⎥⎥⎦,

corresponding to indices of nodes within the chosen subregions of B. If nGl

denotes the number of nodes on glob Gl, then SGiGj
will denote a submatrix

of S of size nGi
× nGj

corresponding to the nodes on glob Gi and Gj .
The block Jacobi preconditioner will be the block diagonal part of S:

M =

⎡
⎢⎢⎢⎢⎣

SF1F1 0
. . .

SFqFq

0 SWW

⎤
⎥⎥⎥⎥⎦.

In terms of restriction and extension matrices, the action of the inverse M−1

the block Jacobi preconditioner will be:

M−1 =
q∑

l=1

RT
Fl

S−1
FlFl

RFl
+ RT

W S−1
WWRW , (3.76)

where SFlFl
= RFl

SRT
Fl

and SWW = RW SRT
W are submatrices of S corre-

sponding to indices in Fl and W . As with the other Schwarz preconditioners
for S, in practice the submatrices SFlFl

and SWW of S must be replaced
by suitable approximations since S will typically not be assembled. Various
alternative approximations may be chosen for such approximations.
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Approximation of SF lF l
. If Fl = int

(
B(i) ∩ B(j)

)
, then SFlFl

will corre-
spond to a two subdomain Schur complement associated with the partition
of Ωi ∪ Fl ∪ Ωj into Ωi and Ωj . Consequently, the action S−1

FlFl
rFl

may be
computed exactly as follows:

S−1
FlFl

rFl
=

⎡
⎣ 0

0
I

⎤
⎦

T
⎡
⎢⎣

A
(i)
II 0 A

(i)
IFl

0 A
(j)
II A

(j)
IFl

A
(i)T

IFl
A

(j)T

IFl
AFlFl

⎤
⎥⎦
−1 ⎡
⎣0

0
rFl

⎤
⎦, (3.77)

where the above blocks are submatrices of A corresponding to indices in Ωi, Ωj

and Fl. Alternatively, a Dirichlet-Neumann preconditioner may be employed,
for instance based on subdomain Ωi:

S
(i)−1

FlFl
rFl

≈
[

0
I

]T
[

A
(i)
II A

(i)
IFl

A
(i)T

IFl
A

(i)
FlFl

]−1 [
0
rFl

]
.

A Neumann-Neumann preconditioner will also approximate SFlFl
.

If the triangulation of Fl induced by Ωh can be mapped bijectively into
a rectangular grid, then we may employ an FFT based preconditioner of the
form SFlFl

≈ (a(i) +a(j))QDQT where Q is a two dimensional fast sine trans-
form and D is a diagonal matrix approximating the eigenvalues of a reference
Schur complement matrix ŜFlFl

associated with a three dimensional cubical
domain partitioned into two strips [RE]. Here a(l) denotes the coefficient a(x)
evaluated at a sample point of Ωl. Alternative preconditioners for SFlFl

may
be obtained using algebraic approximation of SFlFl

based on generalization of
the tridiagonal probing procedure [KE7, CH9] or ILU [CA33].

Approximation of SW W . An approximation of SWW = RW SRT
W can be

based on the following heuristic observation. When Ω is rectangular, and the
subdomains are boxes, and a seven point stencil is used for the finite element
discretization of (3.1), then matrix SWW = AWW . This can be verified by
using the property that for seven point stencils the nodal values on the wire-
basket will not influence the interior Dirichlet solution in a box subdomain.
As a consequence, the piecewise discrete harmonic extension of nonzero nodal
values on W and zero nodal values on B\W will be zero in the interior of
the subdomains. The desired property that SWW = AWW will now follow
from (3.26). When the geometry of the subdomains is more general, AWW

may still be used as an approximation of SWW . Replacing the submatrices
SFlFl

and SWW by the preceding approximations will yield an approximate
block Jacobi preconditioner for S.

Remark 3.47. Efficient sparse solvers may be employed to solve systems of
the form AWW uW = rW , since AWW will typically be sparse. Indeed, for
the seven point stencil, at most seven entries of the form (AWW )ij will be
nonzero when xi ∈ V, while at most three entries of the form (AWW )ij will
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be nonzero when xi ∈ El. However, the band width of AWW will depend on
the ordering of nodes within W . In practice, the wirebasket W can be further
decomposed into the edges E1, . . . , Er and the vertex set V, and the action of
RT

W S−1
WWRW can be approximated by the following matrix additive Schwarz

preconditioner:

RT
W S−1

WWRW ≈
r∑

l=1

RT
El

A−1
ElEl

REl
+ RT

VA−1
VVRV .

A variant of the block Jacobi preconditioner employs such an approximation.
The following result concerns the convergence rate associated with (3.76).

Lemma 3.48. The condition number of the Schur complement matrix pre-
conditioned by the block Jacobi preconditioner (3.76) satisfies:

cond (M,S) ≤ Ch−2
0 (1 + log(h0/h))2 ,

for some C > 0 independent of h and h0.

Proof. See [BR15, DR10]. ��
As the preceding theorem indicates, the convergence rate of block Jacobi

preconditioner (3.76) for S deteriorates as the subdomain sizes h0 becomes
small. This deterioration arises primarily because this block Jacobi precon-
ditioner exchanges information only locally for the chosen diagonal blocks in
the block partition of S. This convergence rate, however, can be improved by
including some global transfer of information.

We next describe two variants of the block Jacobi preconditioner (3.76)
incorporating coarse space correction [DR10]. To obtain the first variant, we
substitute the approximation:

RT
W S−1

WWRW ≈
r∑

l=1

RT
El

S−1
ElEl

REl
+ RT

VS−1
VVRV ,

into (3.76) and replace the local correction term R−1
V S−1

VVRV on the vertices
V by a coarse space correction term R−1

0 S−1
0 R0 to obtain the preconditioner:

M−1 =
q∑

l=1

RT
Fl

S−1
FlFl

RFl
+

r∑
l=1

RT
El

S−1
ElEl

REl
+ RT

0 S−1
0 R0. (3.78)

Here, the coarse space restriction matrix R0 is defined analogous to (3.74),
with coarse grid nodal basis functions φh0

i (x) corresponding to each vertex
vi ∈ V, and S0 = R0SRT

0 . A second variant is obtained by adding the local
correction term R−1

V S−1
VVRV yielding:

M−1 =
q∑

l=1

RT
Fl

S−1
FlFl

RFl
+

r∑
l=1

RT
El

S−1
ElEl

REl
+ R−1

V S−1
VVRV + RT

0 S−1
0 R0.

(3.79)
The resulting preconditioners satisfy the following bounds.
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Theorem 3.49. The preconditioner M in (3.78) satisfies the bound:

cond(M,S) ≤ C1
h0

h
(1 + log(h0/h))2,

while the bound for the preconditioner M in (3.79) satisfies:

cond(M,S) ≤ C2(1 + log(h0/h))2,

where C1 is independent of h0, h and jumps in the coefficient a(x), while C2

is independent of h0 and h, but may depend on the coefficient a(x).

Proof. See [DR10]. ��

As with the other matrix Schwarz preconditioners for S, the submatrices
SFiFi

, SElEl
, SVV and S0 must be replaced by suitable approximations since

S is not assembled in practice. As we have already described approximations
of SFiFi

, we shall only focus on the other terms.

Approximation of SElEl
. To obtain a heuristic approximation of SElEl

, we
approximate SWW ≈ AWW as described earlier to obtain SElEl

≈ AElEl
. It

is easily verified that the edge matrix AElEl
will be well conditioned and may

effectively be replaced by a suitably scaled multiple of the identity matrix:

SElEl
≈ hσEl

IEl
,

where σEl
represents the average of the coefficients a(·) in the subdomains

adjacent to edge El. For finite difference schemes, the scaling factor for SElEl

must be proportional to h−2 instead of h.

Approximation of SVV . To obtain an approximation of SVV , again we em-
ploy the approximation SWW ≈ AWW to obtain SVV ≈ AVV . The submatrix
AVV will also be diagonal, and may be approximated as follows:

(SVV)ii ≈ hσi,

for finite element discretizations, where σi denotes a suitably weighted average
of the coefficients a(·) in subdomains adjacent to vertex vi. For finite difference
discretizations, the scaling factor must be h−2 instead of h.

Approximation of S0. The coarse space matrix S0 = R0ART
0 can be ap-

proximated by A0 as in two dimensions.

Remark 3.50. For smooth coefficients, preconditioner (3.79) will yield better
convergence than preconditioner (3.78), due to elimination of (h0/h).

3.6.2 Vertex Space Preconditioner for S

The different variants of the block Jacobi preconditioner are nonoptimal. This
arises due to the elimination of the off diagonal blocks in S. The vertex space
preconditioner [SM3] for S, incorporates some of this coupling by including
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subspace correction terms on overlapping globs containing segments of faces
adjacent to each vertex vl and to each edge El, yielding improved bounds.

The three dimensional vertex space preconditioner is based on an overlap-
ping extension of the following partition of B:

B = (F1 ∪ · · · ∪ Fq) ∪ (E1 ∪ · · · , Er) ∪ (v1 ∪ · · · ∪ vn0).

Each edge El is extended to a glob El which includes segments of all faces
adjacent to this edge. Formally, a cylindrical subdomain ΩEl

⊃ El of width
O(h0) is employed to define:

El ≡ ΩEl
∩ B, for 1 ≤ l ≤ r,

see Fig. 3.5 for segments of El within a subdomain Ωi. Similarly, each vertex
vk is extended to a glob Gk of width O(h0) containing segments of all faces
adjacent to vertex vk. Formally, a domain Ωvk

⊃ vk of size O(h0) centered
about vertex vk is employed to define glob Gk:

Gk ≡ B ∩ Ωvk
, for 1 ≤ k ≤ n0,

see [SM3, MA38]. A section of glob Gk restricted to subdomain Ωi is illustrated
in Fig. 3.5. The overlapping decomposition of B employed in the vertex space
preconditioner can be expressed in terms of Fl, Ei and Gr:

B = (F1 ∪ · · · ∪ Fq) ∪ (E1 ∪ · · · ∪ Er) ∪ (G1 ∪ · · · ∪ Gn0).

Additionally, a coarse space correction term based on a coarse space is em-
ployed. Corresponding to each glob Fl, Ei and Gk, we define the restriction
maps RFl

, REi and RGk
which restrict a vector of nodal values on B to

the nodes on Fl, Ei and Gk, respectively. Such restriction maps are defined
by (3.19) with zero-one entries so that SFlFl

= RFl
SRT

Fl
, SEiEi

= REi
SRT

Ei

and SGkGk
= RGk

SRT
Gk

are submatrices of S corresponding to indices of
nodes on Fl, Ei and Gk. Additionally, R0 will denote a coarse space matrix
defined by (3.74). The action M−1 of the vertex space preconditioner is then:

M−1 =
q∑

l=1

RT
Fl

S−1
FlFl

RFl
+

r∑
i=1

RT
Ei

S−1
EiEi

REi
+

n0∑
k=1

RT
Gk

S−1
GkGk

RGk
+RT

0 S−1
0 R0.

(3.80)
As with the other matrix Schwarz preconditioners for S, the matrices SFlFl

,
SEiEi SGkGk

and S0 must be approximated without explicit construction of
S. We outline below such approximations.

Approximation of SF lF l
. The action of S−1

FlFl
on a vector can either be com-

puted exactly or approximately, as described for block Jacobi preconditioners.
We shall omit further discussion of it here.
Approximation of SElEl

. The action of S−1
ElEl

on a vector rEl
can be approx-

imated as follows. Given the domain ΩEl
such that El = B ∩ ΩEl

, partition
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the nodes in ΩEl
into Dl ≡ ΩEl

\El and El. Let A(ΩEl
) denote the submatrix

of A corresponding to indices of nodes in Dl and El. Then, the action of S−1
ElEl

may be approximated as:

S−1
ElEl

rEl
≈
[

0
I

][
ADlDl

ADlEl

AT
DlEl

AElEl

]−1 [
0
rEl

]
.

Alternative approximations of SEkEk
can be constructed based on extensions

of the probing technique or based on inexact Cholesky factorizations.
Approximation of SGkGk

. The action of S−1
GkGk

on a vector rGk
can be

approximated as follows. Let Ωvk
denote a domain of width O(h0) such that

Gk = B ∩ Ωvk
. Partition the nodes in Ωvk

based on Hk ≡ Ωvk
\Gk and Gk.

Let A(Ωvk
) denote the submatrix of corresponding to nodes in Hk and Gk.

Then, the action of S−1
GkGk

may be approximated as:

S−1
GkGk

rGk
≈
[

0
I

][
AHkHk

AHkGk

AT
HkGk

AGkGk

]−1 [
0

rGk

]
.

Alternative matrix approximations of SGkGk
may be constructed based on

extensions of the probing technique or inexact Cholesky decomposition.
Approximation of S0. The coarse space matrix S0 = R0SRT

0 can be ap-
proximated by coarse grid stiffness matrix A0 as in the two dimensional case.
The rate of convergence of the vertex space preconditioner will be of optimal
order provided the globs {El} and {Gk} have sufficient overlap of size β h0

when the coefficients a(·) is smooth.

Theorem 3.51. There exists C1 > 0 independent of h0 and h, but depending
on the coefficients a(·) such that:

cond(M, S) ≤ C1

(
1 + log2(β−1)

)
.

If the coefficient a(·) is constant on each subdomain, but has large jumps across
subdomains, then the above bound deteriorates to:

cond(M,S) ≤ C2(β)
h0

h
,

where C2 > 0 is independent of h0, h and a(·).

Proof. See [SM, DR10]. ��

3.6.3 A Parallel Wirebasket Preconditioner for S

Wirebasket methods for the Schur complement S are preconditioners which
employ special coarse spaces [BR14, BR15, DR3, MA12, SM2, DR10], based
on the wirebasket region of the interface. These preconditioners are typically
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formulated to yield robust convergence in the presence of large jump
discontinuities in the coefficient a(x), with rates of convergence that compare
favorably with those for the block Jacobi and vertex space preconditioners.
Due to a weaker discrete Sobolev inequality holding for traditional coarse
spaces in three dimensions, theoretical bounds for the latter two precondi-
tioners deteriorate in the presence of large jump discontinuities in a(x). With
the use of an appropriately chosen wirebasket coarse space, improved bounds
can be obtained. Like traditional coarse spaces, wirebasket coarse spaces help
transfer information globally between different subdomains, but involve sig-
nificantly more unknowns. Typically however, an efficient algebraic solver can
be formulated to solve the resulting coarse problems.

The parallel wirebasket preconditioner [SM2] we describe has the form of a
matrix additive Schwarz preconditioner for S. Like the preconditioner (3.76),
it is based on a partition of the interface into faces and the wirebasket:

B = F1 ∪ · · · ∪ Fq ∪ W,

However, unlike (3.76) which employs a local correction term RT
W S−1

WWRW

corresponding to the nodes on the wirebasket region W , where RW is a point-
wise nodal restriction matrix with zero-one entries, the parallel wirebasket pre-
conditioner employs a coarse space correction term of the form IT

W S−1
WB IW

based on a weighted restriction matrix IW whose rows span the wirebasket
coarse space. Once IW is defined, the wirebasket preconditioner is obtained
by formally replacing the term RT

W S−1
WWRW in (3.76) by the wirebasket coarse

space correction term IW S−1
WBIT

W where SWB ≡ IW SIT
W :

M−1 =
q∑

i=1

RT
Fi

S−1
FiFi

RFi
+ IT

W S−1
WBIW , (3.81)

If nW and nB denote the number of nodes on the wirebasket region W and
interface B, respectively, then IW will be a matrix of size nW × nB and
SWB will be a symmetric positive definite matrix of size nW . Once the coarse
space given by Range

(
IT

W

)
has been defined, a suitable matrix approximation

MWB ≈ SMB ≡ IW S IT
W must also be specified, to ensure that linear systems

of the form MWBuW = rW can be solved efficiently within the wirebasket
preconditioner. We shall describe IT

W and MWB in the following.
We first define the extension map IT

W . Let ∂Fl ⊂ W denote the boundary
segment of face Fl and let n∂Fl

denote the number of nodes on ∂Fl. Then, the
wirebasket extension map IT

W is defined as the following nB × nW matrix:

(
IT

W vW

)
i
=

{
(vW )i , if xi ∈ W

1
n∂Fl

∑
j:xj∈∂Fl

(vW )j , if xi ∈ Fl,
(3.82)

where xi is a node on W with index i in the local ordering of nodes on B. By
definition, the extension

(
IT

W vW

)
i

equals the average nodal value of vW on
∂Fl when node xi ∈ Fl. It can thus be verified that its transpose IW satisfies:
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(IW vB)i = (vB)i +
∑

{k:xi∈∂Fk}

∑
{j:xj∈Fk}

(vB)j

n∂Fk

, (3.83)

which yields a weighted combination of the nodal values of vB on B.

Remark 3.52. Since the Schur complement S is not assembled in iterative
substructuring, the matrices SFlFl

= RFl
SRT

Fl
and SWB ≡ IW SIT

W must be
approximated in practice. Symmetric positive definite approximations of the
submatrices SFlFl

of S have already been described in the section on block
Jacobi preconditioners, and so will not be described further. A symmetric
positive definite approximation MWB of SWB and an associated algebraic
solver for linear systems of the form MWBvW = rW will be formulated in the
remainder of this subsection.

To construct a heuristic approximation MWB of SWB , we consider the
subassembly identity for the Schur complement matrix:

S =
p∑

i=1

R(i)T

B S(i)R(i)
B ,

Substituting this identity into SWB = IW SIT
W yields:

SWB =
p∑

i=1

IWR(i)T

B S(i)R(i)
B IT

W . (3.84)

Using definition (3.82), it can be verified that the extension (interpolation)
map IT

W acts locally on each subdomain boundary. Indeed, the nodal values of
IT

W vW on each subdomain boundary B(i) can be expressed solely in terms of
the nodal values of vW on the wirebasket W (i), yielding the following identity
on each boundary B(i):

EB(i)W (i)vW (i) = R(i)
B IT

W vW , (3.85)

where EB(i)W (i)vW (i) is defined next.

(EB(i)W (i)vW (i))k ≡
{

(vW (i))k , if xk ∈ W (i)

1
n∂Fl

∑
j:xj∈∂Fl

(vW (i))j , if xk ∈ Fl ⊂ B(i).

Thus EB(i)W (i)RW (i)W = RB(i)IT
W . Substituting this into (3.84) yields:

SWB =
p∑

i=1

RT
W (i)W S

(i)
WBRW (i)W , (3.86)

where S
(i)
WB ≡ ET

B(i)W (i)S
(i)EB(i)W (i) . This expresses SWB as a sum of local

contributions. Given a local approximation M
(i)
WB of S

(i)
WB , an approximation

MWB of SWB can be constructed by replacing S
(i)
WB by M

(i)
WB in (3.86).
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To construct an approximation M
(i)
WB of S

(i)
WB so that MWB is spectrally

equivalent to SWB independent of the coefficient a(·), we will require that
each M

(i)
WB be spectrally equivalent to S

(i)
WB independent of a(·). The fol-

lowing heuristic observations will be employed when a(·) is piecewise con-
stant. Firstly, when c(.) = 0 in elliptic equation (3.1), and a(x) ≡ a(i) on
each Ωi, then the local Schur complement S(i) (and consequently S

(i)
WB) will

scale in proportion to coefficient a(i). In particular, if Ωi is immersed in Ω,
i.e., B(i) = ∂Ωi, then S(i) (and also S

(i)
WB) will be singular. Secondly, when

c(.) = 0 and a(x) ≡ a(i) on Ωi and Ωi is immersed, let zW (i) ≡ (1, . . . , 1)T

denote a vector of size nW (i) corresponding to the number of nodes on W (i).
Then, its extension EB(i)W (i)zW (i) of size nB(i) will satisfy:

EB(i)W (i)zW (i) = (1, . . . , 1)T
,

where vector (1, . . . , 1)T of size nB(i) generates the null space of S(i). As a
consequence, S

(i)
WB will be singular when S(i) is singular, and zW (i) will span

its null space. Thirdly, since S
(i)
WB will scale in proportion to coefficient a(i), it

will be necessary to choose M
(i)
WB also proportional to a(i) to ensure spectral

equivalence between M
(i)
WB and S

(i)
WB independent of {a(l)}.

Employing these heuristic observations, we may seek to approximate S
(i)
WB

by a scalar multiple D(i) = β a(i) I of the identity matrix of size nW (i) for a
scaling factor β > 0 to be specified. However, to ensure that S

(i)
WB and M

(i)
WB

also both have the same null spaces, we shall post-multiply and pre-multiply
matrix D(i) and define M

(i)
WB = (I − Pi)T D(i)(I − Pi) where Pi is defined as:

Pi ≡
zW (i)zT

W (i)D
(i)

zT
W (i)D(i)zW (i)

=
zW (i)zT

W (i)

zT
W (i)zW (i)

, (3.87)

corresponding to a D(i)-orthogonal projection onto the null space span(zW (i))
of S

(i)
WB . This yields the choice of M

(i)
WB as:

M
(i)
WB = (I − Pi)T D(i)(I − Pi) = β a(i) (I − Pi).

Matrix M
(i)
WB may also be equivalently characterized by the requirement:

vT
W (i)M

(i)
WBvW (i) = min

ωi

(vW (i) − ωizW (i))T
D(i) (vW (i) − ωizW (i)), (3.88)

where ωi is a parameter chosen to minimize the above expression. This can
easily be verified. Theoretical analysis [SM2, DR10] suggests choosing the
scaling factor as β = h (1 + log(h0/h)). Combining the preceding observations
yields a global approximation MWB ≈ SWB based on the local approximations
M

(i)
WB ≈ S

(i)
WB as:
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MWB =

∑p
i=1 RT

W (i)W
M

(i)
WBRW (i)W

=
∑p

i=1 RT
W (i)W

(I − Pi)T D(i)(I − Pi)RW (i)W ,
(3.89)

where D(i) = h (1 + log(h0/h)) a(i)I, and Pi is defined by (3.87).

Remark 3.53. Matrix MWB may also be equivalently characterized using (3.89)
and (3.88) as satisfying:

vT
W MWBvW

= min(ω1,...,ωp)

∑p
i=1 (vW (i) − ωizW (i))T

D(i) (vW (i) − ωizW (i)),
(3.90)

where vW (i) = RW (i)W vW . This alternative expression will be useful in con-
structing an efficient solver for linear systems of the form MWBvW = rW .

Remark 3.54. For elliptic systems such as the equations of linear elasticity, the
null space of S(i) may have several linearly independent vectors. In this case
zW (i) will need to be replaced by a matrix whose columns are restrictions to
W (i) of a basis for the null space of S(i).

Remark 3.55. By construction, matrix MWB is symmetric, and will also be
positive semidefinite since vT

W MWBvW is a sum of nonnegative quadratic
forms. A vector vW will belong to the null space of MWB only if:

MWBvW = 0 ⇔ RW (i)W vW = αi zW (i) , for 1 ≤ i ≤ p.

This can be verified to hold for nonzero αi only if SWB is singular. As a result,
MWB will be positive definite whenever SWB is positive definite.

We now describe an algebraic solver for MWBuW = rW . Since MWB will
be a symmetric and positive definite matrix, the solution uW to the linear
system MWW uW = rW will also solve the following minimization problem:

J(uW ) = min
v

W

J(vW ), (3.91)

where J(uW ) ≡ 1
2v

T
W

MWBvW − vT
W rW is its associated energy.

J(v
W

) ≡ 1
2v

T
W

MWBvW − vT
W rW

= 1
2

∑p
i=1 minωi

(RW (i)W vW − ωizW (i))T
D(i)

(RW (i)W vW − ωizW (i)) − vT
W rW .

The minimization of (3.91) will thus also be equivalent to:

J̃
(
uW , ω∗

1 , . . . , ω∗
p

)
= min

(vW ,ω1,··· ,ωp)
J̃ (vW , ω1, . . . , ωp),

where

J̃ (vW , ω1, . . . , ωp)

≡ 1
2

∑p
i=1 (vW (i) − ωizW (i))T

D(i) (vW (i) − ωizW (i)) − vT
W rW .
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Applying the first order derivative conditions for a minimum (differentiating
the above expression with respect to vW and ω1, . . . , ωp and requiring it to
equal zero) yields the following system of equations:{

zT
W (i)D

(i) (RW (i)W uW − ω∗
i zW (i)) = 0, for 1 ≤ i ≤ p,

DWBuW −
∑p

i=1 ω∗
i RT

W (i)W
D(i)zW (i) = rW ,

(3.92)

where DWB is the following diagonal matrix of size nW :

DWB ≡
p∑

i=1

RT
W (i)W D(i)RW (i)W ,

with diagonal entries:

(DWB)ii =
∑

{k:vi∈B(k)}
a(k) h (1 + log(h0/h)).

An efficient solver for MWBuW = rW can be formulated by solving (3.92).
For each choice of parameters ω∗

1 , . . . , ω∗
p , the vector unknown uW can be

determined by solving the second block row in (3.92):

uW = D−1
WB

(
rW +

p∑
i=1

ω∗
i RT

W (i)W D(i)zW (i)

)
.

A reduced system can thus be obtained for the parameters ω∗
1 , . . . , ω∗

p by
substituting the preceding expression for uW into the first block row in (3.92):⎡

⎢⎣
K11 · · · K1p

...
...

K1p · · · Kpp

⎤
⎥⎦
⎡
⎢⎣

ω∗
1
...

ω∗
p

⎤
⎥⎦ =

⎡
⎢⎣

g1

...
gp

⎤
⎥⎦,

where the entries Kij and gi are defined as follows.⎧⎪⎪⎨
⎪⎪⎩

Kij ≡ −zT
W (i)D

(i)RW (i)W D−1
WBRT

W (j)W
D(j)zW (j) , for i �= j

Kii ≡
(
zT

W (i)D
(i)zW (i)

)
− zT

W (i)D
(i)RW (i)W D−1

WBRT
W (i)W

D(i)zW (j) ,

gi ≡ zT
W (i)D

(i)RW (i)W D−1
WBrW .

(3.93)
Matrix K can be verified to be symmetric and sparse, and the preceding linear
system can be solved using any suitable sparse direct solver. We summarize
the implementation of the parallel wirebasket preconditioner for S.
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Algorithm 3.6.1 (Wirebasket Preconditioner)

M−1rB ≡
q∑

i=1

RT
Fk

S−1
FkFk

RFk
rB + IT

W M−1
WBIW rB .

The terms S−1
FkFk

RFk
rB can be computed as described for the block Jacobi

preconditioner. The solution to MWB uW = IW rB can be computed as fol-
lows. Firstly, using rW ≡ IW rB solve for ω∗

1 , . . . , ω∗
p:⎡

⎢⎣
K11 · · · K1p

...
...

K1p · · · Kpp

⎤
⎥⎦
⎡
⎢⎣

ω∗
1
...

ω∗
p

⎤
⎥⎦ =

⎡
⎢⎣

g1

...
gp

⎤
⎥⎦,

where the entries Kij and gj are defined in (3.93). Secondly, solve for uW :

DWB uW =

(
rW +

p∑
i=1

ωiRT
W (i)W D(i)zW (i)

)
.

This yields uW . The following result concerns the convergence rate of the
preceding parallel wirebasket algorithm.

Theorem 3.56. If the coefficient a(·) is constant within each subdomain,
there exists C > 0 independent of h0, h and a(·) such that

cond(M, S) ≤ C(1 + log(h0/h))2.

Proof. See [SM2, DR10]. ��

Remark 3.57. The heuristic approximation MWB of SWB assumed that the
coefficient c(x) = 0. In practice the same matrix MWB described above (based
on the vectors zW (i)) can be employed even when c(x) �= 0 though S

(i)
WB will

not be singular in such a case. Indeed, omitting such terms will remove the
mechanism for global transfer of information. Alternate wirebasket algorithms
are described in [BR15, MA12, DR10], including an algorithm with condition
number (1 + log(h0/h)).

3.7 Neumann-Neumann and Balancing Preconditioners

Neumann-Neumann and balancing domain decomposition methods are a
widely used family of preconditioners for multisubdomain Schur complement
matrices in two and three dimensions. From a computational viewpoint, these
preconditioners solve a Neumann problem on each subdomain, and hence
the name. Furthermore, such preconditioners have an algebraic form that
may be applied to arbitrary subdomain geometries in two or three dimen-
sions, without the requirement that the subdomains be boxes or tetrahedra.
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Theoretical analysis indicates that these methods precondition effectively,
yielding condition number bounds which grow polylogarithmic in the mesh
parameters, independent of the jump discontinuities in the coefficient. Our
discussion will focus on the family of Neumann-Neumann preconditioners
[BO7, DE2, DE3, DR14, DR16, LE, DR18, LE5], and the balancing domain
decomposition preconditioner [MA14, MA17]. We also outline an algebraic
preconditioner [CA33] based on the Neumann-Neumann preconditioner.

From the viewpoint of Schwarz subspace methods, a Neumann-Neumann
preconditioner has the structure of an additive Schwarz preconditioner for S,
while the balancing domain decomposition preconditioner has the structure
of a hybrid Schwarz preconditioner for S. Given a decomposition Ω1, . . . , Ωp

of Ω, both preconditioners decompose the interface B into the segments:

B = B(1) ∪ · · · ∪ B(p), where B(i) ≡ ∂Ωi\BD. (3.94)

Both preconditioners employ the subdomain Schur complement matrix S(i)

to approximate the unassembled submatrix SB(i)B(i) = RB(i)SRT
B(i) of S,

corresponding to the nodes on B(i). Different coarse spaces facilitating global
transfer of information are also employed in each preconditioner.

3.7.1 Neumann-Neumann Preconditioners

Multi-subdomain Neumann-Neumann preconditioners are extensions of the
two subdomain Neumann-Neumann preconditioner from Chap. 3.4. It has
the formal structure of an additive Schwarz subspace preconditioner for S,
based on the decomposition of B into the overlapping boundary segments
B(1), . . . , B(p), with restriction and extension matrices RB(i) and RT

B(i) re-
spectively, defined in (3.19). Since S is not assembled, SB(i)B(i) ≡ RB(i)SRT

B(i)

submatrix of S is approximated by the subdomain Schur complement S(i). If
no coarse space is employed, the preconditioner has the form:

M−1 =
p∑

i=1

RT
B(i)S

(i)†RB(i) , (3.95)

where S(i)† denotes the Moore-Penrose pseudoinverse [GO4] of the local Schur
complement matrix S(i), since S(i) can be singular, unlike SB(i)B(i) .

Remark 3.58. In practical implementation, the local Schur complement S(i)

need not be assembled. Instead the following may be noted. When matrix S(i)

is nonsingular, then S(i)† = S(i)−1
. In this case, terms of the form S(i)†rB(i)

can be computed by solving the linear system S(i)wB(i) = rB(i) corresponding
to a discrete Neumann problem on Ωi:

S(i)−1
rB(i) =

[
0
I

]T
[

A
(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

]−1 [
0
rB(i)

]
.
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However, when c(x) = 0 and Ωi is immersed inside Ω (i.e., B(i) = ∂Ωi), then
matrices A(i) and S(i) will be singular. In this case, the null space of A(i) and
S(i) will be spanned by vectors of the form 1 = (1, . . . , 1)T of appropriate
sizes. As a result, the linear system S(i)wB(i) = rB(i) will be solvable only if
rB(i) satisfies the compatability condition:

1T rB(i) = 0.

When this compatibility condition is satisfied, a solution wB(i) will exist,
though it will not be unique, as any scalar multiple of 1 may be added to it.
When S(i) is singular, the action of S(i)† on a vector it typically approximated
in Neumann-Neumann algorithms [DE3], as follows. If direct solvers are em-
ployed, then when the Cholesky factorization L(i)L(i)T

of A(i) is computed
on each subdomain, zero or “small” pivots can be set to a prescribed nonzero
number ε > 0, and this approximate factorization can be employed to formally
compute w̃B(i) ≈ S(i)†rB(i) . If desired, this approximate solution w̃B(i) may
then be projected onto the orthogonal complement of the null space:

wB(i) ≡ w̃B(i) −
(

1T w̃B(i)

1T 1

)
1.

Alternatively, a projected gradient method may be used to iteratively solve
S(i)wB(i) = rB(i) , yielding an approximate solution satisfying 1T wB(i) = 0.
We summarize the algorithm below assuming nonsingular subproblems.

Algorithm 3.7.1 (Neumann-Neumann Preconditioner-No Coarse Space)
Given rB the vector M−1rB is computed as follows.

1. For i = 1, · · · , p in parallel solve:[
A

(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

][
w(i)

I

w(i)
B

]
=
[

0
RB(i)rB

]
.

2. Endfor

Output: M−1rB ≡
∑p

i=1 RT
B(i)w

(i)
B .

Remark 3.59. As noted earlier, if a local problem is singular, the local Cholesky
factorization can be modified. However, the balancing domain decomposition
preconditioner [MA14, MA17], described later, elegantly addresses the issue
arising with singular local problems and its non-unique solution.

We shall next describe a Neumann-Neumann preconditioner employing an
algebraic partition of unity. For convenience, we omit a coarse space correction
term, though it may be added. To motivate this version of the preconditioner,
note that because of overlap between adjacent boundaries B(i), the Neumann-
Neumann preconditioner adds duplicates of the solution on the regions of
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overlap. Such duplication can be reduced by employing a discrete partition of
unity on B subordinate to the subdomain boundaries B(1), . . . , B(p). Accord-
ingly, let nB(l) denote the number of nodes on B(l) for 1 ≤ l ≤ p and let x(l)

i

for 1 ≤ i ≤ nB(l) denote an ordering of the nodes on B(l). For each 1 ≤ l ≤ p
let D(l) denote a diagonal matrix of size nB(l) with nonnegative entries so that
a discrete partition (decomposition) of the identity matrix is obtained:

p∑
l=1

RT
B(l) D(l) RB(l) = I. (3.96)

Various choices of such diagonal matrices exist. The diagonal entries of D(l)

is also commonly defined based on the coefficient a(x):

(
D(l)

)
ii

=
(a(l))ρ∑

j:x(l)
i

∈B(j) (a
(j))ρ (3.97)

where 0 ≤ ρ ≤ 1 denotes some user chosen scaling factor and a(l) denotes
some sample value of coefficient a(x) in Ωl. When a(x) ≡ 1, the above def-
inition yields

(
D(l)

)
ii

= 1/deg(x(l)
i ), where deg(x(l)

i ) denotes the degree of

node x
(l)
i , i.e., the number of distinct subdomain boundaries B(j) to which

node x
(l)
i belongs to. Such a discrete partition of the identity on B can be

employed to distribute an interface load rB to the subdomain boundaries
rB =

∑p
i=1 RT

B(i)D
(i)RB(i)rB so that the load is not duplicated. The parti-

tion of unity Neumann-Neumann preconditioner can now be formulated as:

M−1rB =
p∑

i=1

RT
B(i) D(i)T

S(i)† D(i) RB(i)rB (3.98)

where we have omitted a coarse space correction term. To ensure that the
preconditioner is symmetric, each matrix D(i) has been employed twice. Pre-
conditioner (3.98) corresponds to a matrix additive Schwarz preconditioner for
S based on the subspaces Range(RT

B(i)D
(i)T

) for 1 ≤ i ≤ p with the matrices
S(i) approximating D(i)RB(i)SRT

B(i)D
(i)T

.
The following bounds will hold for the standard and partition of unity

versions of the Neumann-Neumann preconditioner without a coarse space.

Lemma 3.60. If M denotes the preconditioner in (3.95) or in (3.98), then
the following condition number bound will hold:

cond(M,S) ≤ C h−2
0

(
1 + log(h0/h)2

)
,

where C > 0 is independent of h and h0.

Proof. See [DE3, DR18]. ��
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To improve the convergence rate of the preceding Neumann-Neumann
algorithms as the subdomain size h0 decreases, a coarse space correction
term can be included, thereby providing some global exchange of information.
Any coarse space from Chap. 2.1 may be employed, in principle. However, if
the subdomains Ω1, . . . , Ωp correspond to elements in a coarse triangulation
Th0(Ω) of size h0, let y

(0)
l denote the coarse nodes for 1 ≤ l ≤ n0, and let

φ
(h0)
l (x) denote the coarse space nodal basis satisfying φ

(h0)
l (y(0)

j ) = δij . If
x1, . . . , xnB

denotes the nodes on B, then the coarse space matrix RT
0 is:

RT
0 =

⎡
⎢⎢⎣

φ
(h0)
1 (x1) · · · φ

(h0)
n0 (x1)

...
...

φ
(h0)
1 (xnB

) · · · φ
(h0)
n0 (xnB

)

⎤
⎥⎥⎦, (3.99)

A coarse space version of the Neumann-Neumann preconditioner can now be
obtained by including the correction term RT

0 S−1
0 R0 with S0 = R0SRT

0 :

M−1rB =
p∑

i=1

RT
B(i)D

(i)T

S(i)†D(i)RB(i) rB + R0S
−1
0 R0 rB . (3.100)

As with other matrix additive Schwarz preconditioners for S, the coarse ma-
trix S0 may be approximated by the coarse grid discretization A0 of (3.1).
The Neumann-Neumann preconditioner with coarse space correction can be
implemented in parallel using (3.100) with the subdomain problems solved as
in Alg. 3.7.1. For brevity, we shall not summarize the resulting algorithm.

Lemma 3.61. If coefficient a(x) satisfies a(x) = a(i) on each subdomain Ωi,
then the condition number of the partition of unity Neumann-Neumann pre-
conditioner with coarse space correction will satisfy:

cond(M, S) ≤ C
(
1 + log(h0/h)2

)
,

where C > 0 is independent of h, h0 and {a(l)}.

Proof. See [DE3, DR18].

3.7.2 Balancing Domain Decomposition Preconditioner

The balancing domain decomposition preconditioner [MA14, MA17] for the
Schur complement S, employs an algebraic procedure referred to as balancing,
which ensures that each singular subdomain problem arising in the Neumann-
Neumann preconditioner is solvable. Additionally, the procedure eliminates
arbitrariness in the output of the Neumann-Neumann preconditioner, arising
from non-unique subdomain solutions, and provides a natural coarse space
which transfers information globally, see also [GL14, FA16].
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We shall heuristically motivate the balancing procedure, before outlining
its implementation. The methodology will be illustrated for balancing the
discrete partition of unity version of the Neumann-Neumann preconditioner:

M−1 rB =
p∑

l=1

RT
B(l)D

(l)S(l)†D(l)RB(l) rB . (3.101)

When c(x) = 0 and Ωl is floating in Ω, matrix S(l) will be singular. Let
Ñl denote a matrix whose columns form a basis for Kernel(S(l)), so that
Range(Ñl) = Kernel(S(l)). If n

(l)
B denotes the size of S(l) and d̃l the dimension

of the null space of S(l), then Ñl will be a matrix of size n
(l)
B × d̃l. When the

matrix S(l) is singular, the subdomain problem:

S(l)w(l)
B = D(l)RB(l) rB , (3.102)

will be solvable only if the following compatibility condition holds:

ÑT
l D(l)RB(l) rB = 0. (3.103)

When (3.103) holds, the general solution to (3.102) will be:

w(l)
B = v(l)

B + Ñlαl, (3.104)

where v(l)
B is a particular solution, and Ñlαl represents a general term in the

null space of S(l) for αl ∈ IRd̃l . The balancing procedure will employ a more
general matrix Nl of size n

(l)
B × dl with dl ≥ d̃l such that:

Kernel(S(l)) = Range(Ñl) ⊂ Range(Nl).

For instance when c(x) > 0, matrix S(l) will be nonsingular, but it may be
advantageous to choose Nl as the matrix whose columns span the null space
of the local Schur complement associated with c(x) = 0. By construction, if
NT

l D(l)RB(l)r(l)
B = 0, then system (3.102) will be consistent (even if Nl �= Ñl).

Definition 3.62. A vector rB ∈ IRnB will be said to be balanced if:

NT
l D(l)RB(l)rB = 0, for 1 ≤ l ≤ p. (3.105)

In this case, each system S(l)w(l)
B = D(l)RB(l)rB will be solvable.

By the preceding definition, when vector rB is balanced, each subproblem
S(l)w(l)

B = D(l)RB(l) rB in (3.101) will be solvable. When rB is not balanced,
it may be modified by subtracting a correction term P0 rB so that (I −P0) rB

is balanced, where P0 is an S-orthogonal projection, which will be described
in the following. Equation (3.105) which describes a balanced vector can be
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compactly represented using a matrix C of size nB ×d for d = (d1 + · · ·+dp),
where the columns of C consists of the columns of RT

B(l)D
(l)T

Nl for 1 ≤ l ≤ p:

C =
[
RT

B(1)D
(1)T

N1 · · · RT
B(p)D

(p)T

Np

]
.

Then, equation (3.105) for a balanced vector rB becomes:

CT rB = 0.

When CT rB �= 0, a correction term (S C α) may be sought for α ∈ IRd:

CT (rB − S C α) = 0,

so that (rB − S C α) is balanced. This yields the following linear system of
equations for determining α =

(
αT

1 , . . . ,αT
p

)T ∈ IRd:

(
CT SC

)
α = CT rB . (3.106)

When C is of full rank, this system will be uniquely solvable by positive
definiteness of S. The correction term S C α may then be represented as:

P0 rB ≡ S C α = S C
(
CT SC

)−1
CT rB ,

where P0 rB can be easily verified to be an S-orthogonal projection of rB onto
the column space of C (with P0 P0 = P0 and P0 S = S PT

0 ).
Motivated by the preceding, the balancing domain decomposition precon-

ditioner M employs the structure of a hybrid Schwarz preconditioner:

M−1S = P0 + (I − P0)

(
p∑

l=1

RT
B(l)D

(l)S(l)†D(l)RB(l) rB

)
(I − P0). (3.107)

The first application of (I − P0) ensures that the residual is balanced so that
when the partition of unity Neumann-Neumann preconditioner is applied, the
subproblems are solvable (but with non-unique solutions). To ensure sym-
metry, the output of the Neumann-Neumann preconditioner is subsequently
balanced by another application of the (I − P0) in a post-processing step.
Since this output will lie in the subspace Kernel(CT ) of balanced vectors, the
term P0 is employed to compute the projection of the solution onto the coarse
space V0 = Kernel(CT )⊥, which is the S-orthogonal complement of the space
Kernel(CT ) of balanced vectors.

Computing the action M−1rB of the inverse of the hybrid Schwarz pre-
conditioner M in (3.107) involves three steps. In the first step, solve:

(CT SC)α = CT rB .
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If rB = S uB, this yields C α = P0 uB. Using S C α, a balanced residual r̃B

is constructed from rB by subtraction of the term S C α:

r̃B = rB − S C α.

In the second step, the partition of unity Neumann-Neumann preconditioner
is formally applied to the balanced residual r̃B:

vB =
p∑

l=1

RT
B(l)D

(l)S(l)†D(l)RB(l) r̃B.

In the third step, to obtain ṽB = (I − P0)vB requires solving the system:

(CT SC)β = CT vB,

and defining ṽB = (vB − S C β). Then M−1rB ≡ (S C α + vB − S C β).

Remark 3.63. System (3.106) has a block structure which can be obtained by
substituting the block structure α =

(
αT

1 , . . . ,αT
p

)T and the block structure
of C into (3.106) to yield the following block partitioned linear system:⎡

⎢⎣
K11 · · · K1p

...
...

KT
1p · · · Kpp

⎤
⎥⎦
⎡
⎢⎣

α1

...
αp

⎤
⎥⎦ =

⎡
⎢⎣

NT
1 D(1)RB(1)rB

...
NT

p DpRB(p)rB

⎤
⎥⎦, (3.108)

involving (d1 + · · ·+ dp) unknowns corresponding to the subvectorsα1, . . . , αp.
Here, the block submatrices Kij will be di × dj matrices defined by:

Kij ≡ NT
i D(i)RB(i)SRT

B(j)D
(j)T

Nj , for 1 ≤ i, j ≤ p, (3.109)

and αi ∈ IRdi . If di = 0 for any index i, then the corresponding block rows
and columns of K and α should be omitted.

Remark 3.64. In most applications, K will be symmetric and positive definite.
However, when C is not of full rank, matrix K can be singular. In this case,
the columns of C will be linearly dependent with:

p∑
l=1

RT
B(l)D

(l)Nlγl = 0,

for some choice of coefficient vectors γ1, . . . ,γp. To avoid a singular matrix
K, some care must be exercised when extending each matrix Ñl to Nl.

Below, we summarize the action of the inverse of the balancing domain de-
composition preconditioner.
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Algorithm 3.7.2 (Balancing Domain Decomposition Preconditioner)
Input: rB.

1. Solve: ⎡
⎢⎣

K11 · · · K1p

...
...

KT
1p · · · Kpp

⎤
⎥⎦
⎡
⎢⎣

α1

...
αp

⎤
⎥⎦ =

⎡
⎢⎣

NT
1 D(1)RB(1)rB

...
NT

p D(p)RB(p)rB

⎤
⎥⎦.

2. Define: {
w∗

B ≡
∑p

j=1 RT
B(j)D

(j)T

Njαj

r∗B ≡ rB − Sw∗
B .

3. For i = 1, · · · , p in parallel solve:

S(i)wB(i) = D(i) RB(i)r∗B .

4. Endfor
5. Compute: {

wB =
∑p

j=1 RT
B(j)D

(j)T

wB(j)

tB = r∗B − SwB .

6. Solve: ⎡
⎢⎣

K11 · · · K1p

...
...

KT
1p · · · Kpp

⎤
⎥⎦
⎡
⎢⎣

β1

...
βp

⎤
⎥⎦ =

⎡
⎢⎣

NT
1 D(1)RB(1)tB

...
NT

p D(p)RB(p)tB

⎤
⎥⎦.

7. Define:

v∗
B ≡

p∑
j=1

RT
B(j)D

(j)T

Njβj .

Output: M−1rB ≡ w∗
B + wB + v∗

B.

Remark 3.65. If the input rB to the preconditioner is balanced, then step 1
can be omitted in the preconditioner, yielding w∗

B = 0. In this case, the
output M−1rB = wB + v∗

B will also be balanced. Motivated by this, in prac-
tice steps 1 and 2 are employed in a pre-processing stage to ensure that the
initial residual is balanced. Then, steps 1 and 2 can be omitted in all subse-
quent applications of M−1 in the CG algorithm. Each iteration will require
one matrix multiplication with S and one multiplication by M−1. Thus, the
computational cost of each iteration will be proportional to the cost of two
subdomain solves on each subdomain and the cost of balancing (which re-
quires the solution of a coarse problem P0). The following convergence bound
will hold for the balanced domain decomposition preconditioner.
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Theorem 3.66. Suppose that c(x) = 0 and that coefficient a(x) = a(i) on
each subdomain Ωi. Then, if each Nl = Ñl, there will be a constant C inde-
pendent of h0, h and the {a(i)} such that:

cond(M, S) ≤ C (1 + log(h0/h))2 ,

where M denotes the balancing domain decomposition preconditioner.

Proof. See [MA14, MA17, DR18]. ��

Remark 3.67. If c(x) > 0, then each subdomain problem will be nonsingular.
In this case, the coarse space V0 = Kernel(CT )⊥ will be trivial, and the
convergence rate of the balancing domain decomposition preconditioner will
deteriorate. However, this can be remedied by choosing a nontrivial matrix
Nl �= Ñl on each subdomain, such that Kernel(Nl) corresponds to the null
space of S(l) when c(x) = 0 (typically with Nl = Span(1)).

3.7.3 An Algebraic Preconditioner

We conclude this section by outlining an algebraic preconditioner of [CA33].
It approximates the following additive Schwarz preconditioner for S, based on
the segments B(1), . . . , B(p) of B:

M−1 =
p∑

i=1

RT
B(i)S

−1
B(i)B(i)RB(i) + RT

0 S−1
0 R0.

Here RB(i) denotes a restriction matrix with zero-one entries corresponding to
nodes on B(i), and R0 denotes the coarse space weighted restriction matrix,
with SB(i)B(i) = RB(i)SRT

B(i) and S0 = R0SRT
0 . An exact application of the

preceding preconditioner requires assembly of the submatrices SB(i)B(i) and
the coarse matrix S0. However, an approximation S̃B(i)B(i) ≈ SB(i)B(i) can be
constructed based on the ILU factorization A

(i)
II ≈ L̃(i)L̃

T
(i) of each subdomain

stiffness matrix A(i), with A(i)−1 ≈ L̃−T
(i) L̃−1

(i) :

S̃B(i)B(i) ≡
p∑

l=1

RB(i)RT
B(l)

(
A

(l)
BB − A

(l)T

IB L̃−T
(l) L̃−1

(l) A
(l)
IB

)
RB(l)RT

B(i) .

Efficient algorithms for assembling such approximations are described in
[CA33]. Unlike the subdomain stiffness matrices S(i), the algebraic approx-
imations S̃B(i)B(i) of SB(i)B(i) will not be singular. Matrix S̃B(i)B(i) will be
dense, and can be truncated to a sparse matrix, and its incomplete factoriza-
tion can be found. The coarse matrix S0 may be approximated by a coarse grid
discretization A0 of (3.1). Numerical studies indicate attractive convergence
properties for such preconditioners [CA33].
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3.8 Implementational Issues

Schur complement algorithms are generally more difficult to implement than
Schwarz methods, since more geometric information is required about the
subdomains and their boundaries (Neumann-Neumann and balancing pre-
conditioners may be exceptions). However, an effectively preconditioned Schur
complement algorithm can converge at almost optimal rates with respect to
h, h0 and jumps in the coefficient a(.), just as Schwarz algorithms, where the
implementation, storage and communication costs, may be reduced due to the
lack of overlap between the subdomains.

In this section, we remark on implementational issues in applications of
Schur complement algorithms to solve a discretization of (3.1). They include,
choice of subdomains, general boundary conditions, preconditioning S or
A, local solvers, parallel libraries, and remarks on discontinuous coefficient
problems, anisotropic problems, and time stepped problems. The condition
number bounds of several Schur complement preconditioners are summarized
in Table 3.1, when the coefficient a(.) is constant within each subdomain.
Estimates are presented for the case when the jumps in a(·) are mild, and
when the jumps are large. C(a) denotes a parameter independent of h0 and
h but dependent on the coefficient a(·), while C is independent of h0, h and
a(·). For the vertex space algorithm C(β) depends on the overlap factor β.

3.8.1 Choice of Subdomains

Various factors influence the choice of a decomposition Ω1, . . . , Ωp of Ω. These
include, the geometry of the domain, location of the essential and natural
boundary, regularity of the solution, availability of fast local solvers, and het-
erogeneity of the coefficients. For instance, when a(.) has large jumps, the
subdomains should ideally be aligned with the discontinuities in a(.), to re-
duce the variation of a(.) within each subdomain. For anisotropic coefficients,
strip like subdomains may be chosen so that the elliptic equation is cou-
pled more strongly within the strips. When a natural decomposition is not
obvious, an automated strategy, see Chap. 5.1, may be employed to mini-
mize the communication between the subdomains, and to balance the loads
[BE14, FO2, SI2, FA9, BA20, PO3, PO2].

Table 3.1. Condition number bounds for Schur complement preconditioners

Algorithm Mild Coeff. Disc Coeff.

2D BPS C
(
1+log2(h0/h)

)
C
(
1+log2(h0/h)

)
2D Vertex Space C(a)

(
1+log2(β−1)

)
C(β)

(
1+log2(h0/h)

)
3D Vertex Space C(a)

(
1+log2(β−1)

)
C(β)(h0/h)

3D Wirebasket C
(
1+log2(h0/h)

)
C
(
1+log2(h0/h)

)
Neumann & Balancing C

(
1+log2(h0/h)

)
C
(
1+log2(h0/h)

)
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3.8.2 General Boundary Conditions

Our discussion of Schur complement preconditioners has focused primarily
on Dirichlet problems, i.e., for BD = ∂Ω. When more general boundary con-
ditions are imposed, the natural boundary BN �= ∅. and the solution will
be unknown not only in Ω, but also in BN . In this case, the triangulation
must ideally be chosen so that its elements are aligned with BN . Then, given
a decomposition Ω1, . . . , Ωp of Ω, the nodal unknowns can in principle be
block partitioned in two alternate ways, yielding two different Schur com-
plement systems. In the following, we shall indicate both block partitionings,
and remark on the construction of Schur complement preconditioners for a
discretization of (3.1) with stiffness matrix A and load vector f .

In both of the above cases, a discretization of (3.1) can be block partitioned
as in (3.5), using the block vectors uI and uB of unknowns, yielding a Schur
complement S = (ABB − AT

IBA−1
II AIB). However, AII , AIB and ABB will

have different sizes for each partition.

First Case. In the first block partitioning, each u(l)
I will denote a vector of

unknowns in Ωl ∪ (∂Ωl ∩BN ), while u(l)
B will denote unknowns on (∂Ωl ∩Ω).

Thus, the unknowns on BN ∩ ∂Ωl will be included in u(l)
I though they do not

strictly lie in the interior of the subdomain, while B = ∪p
l=1(∂Ωl ∩Ω) will not

include the natural boundary BN . We then define uI = (u(1)T

I , . . . ,u(p)T

I )T ,
and let uB denote the vector of nodal values on B. In this case, Schur com-
plement preconditioners can be constructed as for a Dirichlet problem, since
the interface B will be identical to the interface for a Dirichlet problem, and
it can be decomposed into globs or overlapping segments, as before. How-
ever, the subdomain matrix A

(l)
II will involve natural boundary conditions on

(∂Ωl ∩ BN ). Care must be exercised in defining a coarse space when BN �= ∅,
since the coarse space must be a subspace of Vh ∩ H1

D(Ω).

Second Case. In the second block partitioning, each u(l)
I will denote un-

knowns in Ωl and uI = (u(1)T

I , . . . ,u(p)T

I )T . We shall define the “interface”
as B = ∪p

l=1∂Ωl ∩ (Ω ∪ BN ) and let uB denote the unknowns on B. Since
B will include the natural boundary BN , it may be difficult to decompose it
into standard globs if BN has an irregular shape. This may complicate the
formulation of glob based preconditioners (such as block Jacobi, vertex space
and wirebasket preconditioners), and it may also be difficult to formulate a
traditional coarse space. However, given a decomposition of B into globs or
overlapping segments, Schwarz subspace preconditioners can be formulated for
S, and the subdomain matrix A

(l)
II will only involve interior nodal unknowns

in Ωl. Neumann-Neumann and balancing methods apply in both cases.

Remark 3.68. If BN �= ∅ and BD �= ∅, then stiffness matrix A and the Schur
complement matrix S, will be nonsingular. However, if BN = ∂Ω and coeffi-
cient c(x) = 0, then stiffness matrix A and the Schur complement matrix S
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will be singular. In this case, the coarse space matrix S0 = R0SRT
0 will also be

singular. As a result, the Schur complement system SuB = f̃B and the coarse
problem S0w0 = R0rB will be solvable only if 1T f̃B = 0 and 1TR0rB = 0,
respectively, for 1 = (1, . . . , 1)T . To obtain a unique solution, each iterate
should be normalized to have zero mean value. For instance, if wB ∈ IRnB de-
notes the output of the preconditioned system in the k’th iterate, then modify
it to have mean value zero:

wB ← wB −
(

1T wB

1T 1

)
1.

Such normalizations will not be needed when c(x) �= 0.

3.8.3 Preconditioning S or A

Given subdomains Ω1, . . . , Ωp of Ω, the solution to (3.5) may in principle
be sought in two alternate ways. In the first approach, the Schur comple-
ment system may be solved for uB using Alg. 3.2.1 and a CG algorithm with
an appropriate preconditioner for S. Once uB has been determined, uI can
be obtained at the cost of one subdomain solve. This approach will require
matrix-vector products with S computed exactly (to machine precision), and
so require solving systems of the form A

(l)
II w

(l)
I = r(l)

I exactly (to machine
precision) each iteration. A sparse direct solver may be used for A

(l)
II .

In the second approach, the global stiffness matrix A is solved by a precon-
ditioned CG algorithm, where the action of the inverse of the preconditioner
Ã for A has the following block matrix structure:

Ã−1 =
[

I −Ã−1
II AIB

0 I

] [
Ã−1

II 0
0 S̃−1

] [
I 0

− AT
IBÃ−1

II I

]

=
[

I −Ã−1
II AIB

0 I

] [
I 0
0 S̃−1

] [
I 0

− AT
IB I

] [
Ã−1

II 0
0 I

]
,

(3.110)

where S̃ denotes a preconditioner for S and ÃII a preconditioner for AII .
Computing the solution to Ãu = f formally requires computing the action of
Ã−1

II twice, and S̃−1 once. The advantage is that an exact solver is not required
for A

(l)
II , but the disadvantage is that the inexact solver must be applied twice.

Remark 3.69. The second approach has not be studied extensively. If a pre-
conditioner Ã is employed for A, it is important that the submatrices Ã

(i)
II and

ÃIB be scaled similar to A
(i)
II and AIB , respectively, or the convergence rate

can deteriorate significantly to O(h−2) even if cond(Ã(i)
II , A

(i)
II ) = 1, see [BO4].
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3.8.4 Local Solvers, Parallelization and Libraries

Typically, sparse direct solvers are employed for solving the subdomain prob-
lems arising in a Schur complement algorithm. In some applications, however,
FFT based solvers and iterative solvers are used for subdomain problems.
In the Schur complement method, the action of A−1

II and the action of pre-
conditioners typically involve parallel tasks, which require synchronization
between the processors assigned to different subdomains. Importantly, the
PETSc library contains parallel codes implementing most Schur complement
algorithms, see Chap. 2.4 for additional comments on local solvers, paralleliza-
tion, and the MPI and PETSc libraries.

3.8.5 Remarks on Discontinuous Coefficient Problems

When a(.) has large jump discontinuities, care must be exercised in the choice
of a subdomain decomposition and a coarse problem, or the rate of con-
vergence of a Schur preconditioned algorithm can deteriorate. Ideally, the
subdomains must align with the discontinuities of a(.), i.e., if Γ denotes
the curve or surface along which the coefficient a(.) is discontinuous, then
Γ ⊂ B = ∪p

i=1∂Ωi. If an initial decomposition of Ω yields subdomains on
which a(.) is smooth, then larger subdomains may be further decomposed to
improve load balancing. Choosing subdomains with reduced variation in a(.)
also yields better conditioned local problems.

Another consideration is the choice of a coarse space. Theoretical bounds
for Schur complement preconditioners, are better when a coarse space is
included. For instance, on a two dimensional domain, typical bounds are
O (1 + log(h0/h))2 when a traditional coarse space is employed, provided the
coefficient a(.) is constant within each subdomain. For a three dimensional
domain, such bounds can deteriorate to O

(
(h0/h)(1 + log(h0/h))2

)
when a

traditional coarse based on a coarse triangulation is employed, but improve
to O (1 + log(h0/h))2 when a piecewise constant coarse space is employed (see
Remark 3.70 below). Other coarse spaces include wirebasket and partition
of unity spaces, see [BR15, MA12, WI6, DR10, SA11, SA12]. For a Schur
complement preconditioner with optimal order complexity, see [NE5].

Remark 3.70. The “piecewise constant coarse space” V0,P is defined as follows.
Let nB and nB(i) denote the number of nodes on B and B(i), respectively. Let
Ni denote a matrix of size nB(i) whose columns form a basis for the null space
of the local Schur complement matrix S(i) when c(x) = 0. For 2nd order scalar
elliptic equations Ni = (1, . . . , 1)T . Let D(i) be a diagonal matrix of size nB(i)

with nonnegative entries defined by (3.97). Then, V0,P ≡ Range(RT
0 ) where:

RT
0 =

[
RT

B(1)D
(1)T

N1 · · · RT
B(p)D

(p)T

Np

]
.

Such a coarse space will be defined even when the subdomains do not form a
coarse triangulation of Ω, see [CO8, MA14, SA7, SA8, MA15].
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3.8.6 Remarks on Anisotropic Problems

To motivate Schur complement algorithms for anisotropic problems, consider
the following model equation:{

−α1 ux1x1 − α2 ux2x2 = f, in Ω

u = 0, on ∂Ω,
(3.111)

posed on a domain Ω ≡ (−L1, L2)× (0, 1) ⊂ IR2 with parameters α1 > 0 and
α2 > 0 which determine the degree of anisotropy in the equation. This problem
will be strongly anisotropic when (α1/α2)  1 or (α1/α2) � 1. When this
holds, elliptic equation (3.111) may be of singular perturbation type with
boundary layers in the solution [KE5, LA5]. However, we shall assume that
the boundary layer need not be captured, and instead heuristically motivate
issues for consideration when formulating a Schur complement preconditioner.

Consider a discretization of the above equation on a uniform grid and
suppose that Ω is partitioned into vertical strip subdomains. Suppose that
the unknowns are ordered consecutively along each vertical line x1 = c, with
increasing indices as x2 increases and as x1 increases. Then, the coefficient
matrix A will have a block tridiagonal structure, as in Chap. 3.3, and its
eigendecomposition may be obtained exactly. The following special limiting
cases may be noted.

When α1 = 1 and α2 → 0+. If α1 = 1 and α2 → 0+, then the linear
system will be strongly coupled along the x1-axis, but weakly coupled along
the x2 axis. As a result, each diagonal block of S will formally approach a
scalar multiple of the identity (and will be well conditioned), but S will still
have a block tridiagonal structure in this limiting case. In particular, if the
off diagonal blocks in S are neglected when a preconditioner is formulated, it
will result in deteriorated convergence rates.

When α1 → 0+ and α2 = 1. If α2 = 1 and α1 → 0+, then the linear
system will be strongly coupled along the x2-axis, but weakly coupled along
the x1 axis. Formally, AIB will be proportional to α1, and AII will remain
nonsingular as α1 → 0+, yielding that S = (ABB − AT

IBA−1
II AIB) → ABB

as α1 → 0+, and the off diagonal blocks of S will formally approach zero.
The diagonal blocks of S approach a discretization of −(∂2/∂2

x2
), yielding an

ill-conditioned matrix. This suggests ABB as a heuristic preconditioner for S.
The limiting cases above indicate that the square root of the discrete

Laplace-Beltrami operator on the interface B will generally not be an effective
preconditioner for S in the strongly anisotropic case. The traditional norm
equivalence between the subdomain Schur complement energy u(i)T

S(i)u(i)

and the fractional Sobolev energy |uh|21/2,∂Ωi
on the subdomain boundary:

c1 |uh|21/2,∂Ωi
≤ u(i)T

S(i)u(i) ≤ c2 |uh|21/2,∂Ωi
,

will deteriorate for an anisotropic problem, with the ratio (c2/c1) increasing
in proportion to the anisotropy in a(.).
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However, a preconditioner based on subdomain Schur complements (such
as the Neumann-Neumann or balancing preconditioner), or one based on al-
gebraic approximation may be employed. Heuristically, for the former, each
subdomain problem may have similar anisotropic limits, while for the latter,
an algebraic approximation may be constructed to have the same anisotropic
limits. Depending on the alignment of the sides of the subdomains relative to
direction of weak coupling, a coarse space may be required. For instance, if
a(.) is a constant (or mildly varying) but strongly anisotropic matrix function
on a domain Ω (not necessarily rectangular). Then, strip subdomains may
be chosen so that the equation is strongly coupled within each strip, with
sides perpendicular to the direction in which the equation is weakly coupled.
Then, the Schur complement matrix will have a block tridiagonal structure,
and by analogy with the model problem as α1 → 0+, S will formally approach
ABB in the limit. Matrix ABB may then be employed as a heuristic algebraic
preconditioner for S (without coarse space correction). However, if the strips
were chosen with its sides perpendicular to an axis of strong coupling, as when
α2 → 0+, then a coarse space will be required.

In three dimensions, the coefficient matrix a(x) will have three eigenvalues
for each x ∈ Ω and the elliptic equation will be strongly anisotropic if either
one or two eigenvalues of a(x) are very small relative to the others. When
a(.) is a constant matrix having only one relatively small eigenvalue, then the
elliptic equation will be strongly coupled on planes perpendicular to the eigen-
vector of a(.) corresponding to the smallest eigenvalue. When a(.) is a constant
matrix having two relatively small eigenvalues, then the elliptic equation will
be strongly coupled along rays (lines) parallel to the eigenvector associated
with the largest eigenvalue. Heuristically, strip subdomains may still be em-
ployed, provided its sides are perpendicular to the eigenvector associated with
the smallest eigenvalue of a(.).

3.8.7 Remarks on Time Stepped Problems

In time stepped problems, the condition number of an unpreconditioned Schur
complement matrix improves with decreasing time step. However, care must
be exercised, if a preconditioner is employed, We consider an implicit scheme in
time and a finite difference discretization in space for the parabolic equation:⎧⎪⎨

⎪⎩
ut + Lu = f, in Ω × (0, T )

u = 0, on ∂Ω × (0, T )
u(x, 0) = u0(x), in Ω,

where Lu ≡ −∇ · (a∇u). This will yield a linear system (I + τ A)u = f̃ , at
each time step, where 0 < τ denotes the time step and (I + τ A) corresponds
to a finite difference discretization of the elliptic operator (I + τ L).

Given a nonoverlapping decomposition Ω1, . . . , Ωp of Ω with interface B,
block partition u = (uT

I ,uT
B)T and f̃ = (f̃T

I , f̃T
B)T , based on the subdomain
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interiors ∪p
i=1Ωi and interface B. The time stepped system (I + τ A)u = f̃ ,

will have the following block structure:[
I + τAII τAIB

τAT
IB I + τABB

][
uI

uB

]
=

[
f̃ I

f̃B

]
. (3.112)

The Schur complement system will be:

S(τ)uB = (f̃B − τAT
IB(I + τAII)−1f̃ I),

where the Schur complement matrix S(τ) satisfies:

S(τ) =
(
I + τABB − τ2 AT

IB (I + τ AII)
−1

AIB

)
.

Due to τ and h dependent terms, a preconditioner M(τ) must ideally adapt
to both parameters uniformly, such as would be heuristically expected for the
Neumann-Neumann and balancing preconditioners. For such preconditioners,
by heuristic analogy with Schwarz algorithms, we expect that a coarse space
may not be required if some time step constraint of the form τ ≤ c h2

0 holds.

Remark 3.71. In the strip or two subdomain case, FFT based preconditioners
M(τ) can be constructed to adapt to the τ and h dependent terms. However,
using a fixed FFT based based preconditioner M for S(τ), such as the square
root of the discrete Laplace-Beltrami matrix for a two subdomain decompo-
sition, will not perform uniformly, since formally, S(τ) → I as τ → 0+, for a
fixed h. The entries of ABB , AIB and AII grow as O(h−2) as h → 0+.

In time stepped problems, it may also be of interest to formulate a stable
one iteration algorithm which computes the discrete solution at each time step
to within the local truncation error, see [DA4, DA5, DR5, LA3, LA4, ZH5].
Below, we outline a heuristic approach based on a subassembly identity for
the time stepped Schur complement S(τ) in terms of S(l)(τ):

S(τ) =
p∑

l=1

RT
B(l)S

(l)(τ)RB(l) ,

where each S(l)(τ) = (I(l) +τA
(l)
BB)−τ2A

(l)T

IB (I +τA
(l)
II )−1A

(l)
IB is a subdomain

Schur complement, and I =
∑p

l=1 RT
B(l)I

(l)RB(l) forms an algebraic partition
of the identity. Given such a decomposition, we may split S(τ) as:

S(τ) = I + τ

p∑
l=1

RT
B(l)

(
A

(l)
BB − τ A

(l)T

IB (I + τA
(l)
II )−1A

(l)
IB

)
RB(l) ,

and apply a generalized ADI (alternating directions implicit) method to con-
struct an approximate solution [DR5, LA3, LA4, VA, VA2], see Chap. 9. For
an alternative scheme, see [ZH5]. Time step constraints may apply.
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3.9 Theoretical Results

In this section, we describe theoretical methods for estimating the condition
number of selected Schur complement preconditioners. We focus primarily
on the dependence of the condition numbers on the mesh parameter h and
subdomain size h0, and in some cases on the jumps in the coefficients a(·). To
obtain such bounds, we will employ the abstract Schwarz convergence theory
described in Chap. 2.5, and employ theoretical properties of elliptic equations
and Sobolev norms to estimate the dependence of partition parameters on the
mesh size h, subdomain size h0 and jumps in the coefficient a(.).

Our discussion will be organized as follows. In Chap. 3.9.1, we introduce
scaled Sobolev norms, Poincaré-Freidrich’s inequalities, and trace and exten-
sion theorems. We use these background results to derive an equivalence be-
tween the energy associated with the Schur complement matrix and a scaled
sum of fractional Sobolev norm energies. Chap. 3.9.2 describes discrete Sobolev
inequalities for finite element spaces and uses them to prove a result referred
to as the glob theorem (our proof will hold only in two dimensions), useful in
estimating partition parameters for glob based algorithms. In Chap. 3.9.3, we
describe theoretical properties of the traditional and piecewise constant coarse
spaces. In Chap. 3.9.4, we estimate the condition number of several two sub-
domain preconditioners. In Chap. 3.9.5, we estimate the condition number
of multisubdomain block Jacobi, BPS and vertex space preconditioners. We
omit theoretical discussion of wirebasket preconditioners. In Chap. 3.9.6, we
describe estimates for the condition number of the balancing domain decom-
position preconditioner.

3.9.1 Background Results

We will consider a finite element discretization of elliptic equation (3.1) on
a quasiuniform triangulation Th(Ω) of Ω. The domain Ω will be assumed
to be partitioned into nonoverlapping subdomains Ω1, . . . , Ωp which forms a
quasiuniform triangulation Th0(Ω) of Ω of diameter h0. The coefficient c(.)
in (3.1) will be assumed to be zero, while coefficient a(.) will be assumed to
be constant on each subdomain:{

a(x) = ρi, for x ∈ Ωi, for 1 ≤ i ≤ p

c(x) = 0, in Ω.

We will denote the finite element space defined on Ω as Vh(Ω) and by Vh(D)
the space of finite element functions restricted to D, for any subregion D ⊂ Ω
(including D ⊂ B). In most applications, we assume that the finite element
space consists of continuous piecewise linear finite elements.

The following scaled norms and seminorms will be employed throughout
this section [NE, LI4, DR2, GR8, BR15, DR14, DR10, MA17]:
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⎪⎪⎪⎪⎪⎪⎩

|u|21,Ωi
≡
∫

Ωi
|∇u|2dx

‖u‖2
1,Ωi

≡
∫

Ωi
|∇u|2dx + 1

h2
0

∫
Ωi

|u|2dx

|u|21/2,B(i) ≡
∫

B(i)

∫
B(i)

|u(x)−u(y)|2
|x−y|d dxdy, Ωi ⊂ IRd

‖u‖2
1/2,B(i) ≡

∫
B(i)

∫
B(i)

|u(x)−u(y)|2
|x−y|d dxdy + 1

h0

∫
B(i) |u|2dx.

(3.113)

By construction, the above norms and seminorms will scale similarly under
dilations of the underlying domain in IRd. As a consequence, we may map a
subdomain Ωi of width h0 to a reference domain of width 1, apply trace or
extension theorems on the reference domain, and map the results back to the
original domain and obtain estimates of the norms in the trace and extension
theorems independent of the width h0 of the subdomain. We will thus assume
heuristically that the bounds in the trace, extension, and Poincaré-Freidrich’s
type inequalities are independent of h0 when scaled norms are employed.

We will frequently encounter norms of the form ‖v‖2
1/2,∂Ωi

when the func-
tion v(·) ∈ H1/2(∂Ωi) is zero outside some subregion Di ⊂ ∂Ωi. In such
cases, the norm ‖v‖1/2,∂Ωi

will be stronger than ‖v‖1/2,Di
and will be de-

noted ‖v‖2

H
1/2
00 (Di)

as formalized below.

Definition 3.72. Let Di ⊂ ∂Ωi. We define an extension by zero map E0 as:

E0 v =

{
v on Di

0 in ∂Ωi\Di,

and define a Sobolev space H
1/2
00 (Di) and its norm by:⎧⎨

⎩
H

1/2
00 (Di) ≡

{
v ∈ H1/2(Di) : E0v ∈ H1/2(∂Ωi)

}
‖v‖

H
1/2
00 (Di)

≡ ‖E0v‖1/2,∂Ωi
.

(3.114)

Substitution of the above definition into the integral form of the fractional
Sobolev norm on H1/2(∂Ωi) yields:

‖v‖2

H
1/2
00 (Di)

≡
∫

Di

∫
Di

|v(x) − v(y)|2
|x − y|d dxdy + 2

∫
Di

∫
∂Ωi\Di

|v(x)|2
|x − y|d dydx

+
‖u‖2

0,Di

h0
.

When Ωi ⊂ IR2, this is easily verified to be equivalent to:

‖v‖2

H
1/2
00 (Di)

≡
∫

Di

∫
Di

|v(x) − v(y)|2
|x − y|d dxdy +

1
h0

∫
Di

|u(x)|2
dist(x, ∂Ωi\Di)

dx.

Here dist(x, ∂Ωi\Di) denotes the distance of x to ∂Ωi\Di. Importantly,
the fractional Sobolev space H

1/2
00 (Di) may also be defined equivalently as



194 3 Schur Complement and Iterative Substructuring Algorithms

an interpolation space of the form [L2(Di),H1
0 (Di)]1/2 using interpolation

between embedded Hilbert spaces, see [LI4, BA3, BE16]. This equivalence
enables an alternate formal representation of fractional Sobolev spaces and
their norm using fractional powers of eigenvalues in the spectral expansion
of a Laplace-Beltrami operator associated with the underlying spaces, as de-
scribed below.

Lemma 3.73. Suppose the following assumptions hold.

1. Let H1
0 (Di) =

{
v : E0v ∈ H1(∂Ωi)

}
and let −∆Di

formally denote a self
adjoint coercive operator which generates the Dirichlet form:

(−∆Di
u, u)L2(Di)

≡ ‖u‖2
1,Di

, ∀u ∈ H1
0 (Di) ⊂ L2(Di),

as guaranteed by the Riesz representation theorem. Let:

−∆Di =
∞∑

l=1

λlPl,

denote its spectral representation where each Pl denotes an L2(Di)-
orthogonal projection onto the null space of −∆Di

associated with eigen-
value λl > 0.

2. Formally define the fractional power (−∆Di)
1/2 of operator −∆Di as:

(−∆Di
)1/2 =

∞∑
l=1

λ
1/2
l Pl.

Then, the fractional Sobolev space H
1/2
00 (Di) defined by (3.114) will satisfy:

H
1/2
0 (Di) =

{
v ∈ L2(Di) : −∆

1/2
Di

v ∈ L2(Di)
}

,

while its fractional Sobolev norm will satisfy:

c

∞∑
l=1

λ
1/2
l ‖Plv‖2

0,Di
≤ ‖v‖2

H
1/2
00 (Di)

≤ C

∞∑
l=1

λ
1/2
l ‖Plv‖2

0,Di
,

for some 0 < c < C.

Proof. See [LI4, BA3, BE16]. ��

We next describe a result referred to as the Poincaré-Freidrich’s inequality,
which establishes a bound for the L2(Ωi) norm of a function in terms of one
of its Sobolev seminorms, provided the function either has zero mean value
on the underlying domain, or is zero on a segment of the boundary.
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Lemma 3.74 (Poincaré-Freidrich’s). The following bounds will hold.

1. If v ∈ H1(Ωi) satisfies
∫

Ωi
vdx = 0 then:{

‖v‖2
0,Ωi

≤ C|v|21,Ωi

‖v‖2
1,Ωi

≤ (1 + C) |v|21,Ωi
,

for some C > 0 independent of v and h0.
2. If v ∈ H1(Ωi) satisfies v = 0 on Di ⊂ ∂Ωi where measure(Di) > 0, then:{

‖v‖2
0,Ωi

≤ C|v|21,Ωi

‖v‖2
1,Ωi

≤ (1 + C) |v|21,Ωi
,

for some C > 0 independent of v and h0.
3. If g ∈ H1/2(B(i)) satisfies

∫
B(i) gds = 0, then:{

|g‖2
0,B(i) ≤ C |g|2

1/2,B(i)

|g‖2
1/2,B(i) ≤ (1 + C) |g|2

1/2,B(i) ,

for some C > 0 independent of g and h0.
4. If g ∈ H1/2(B(i)) satisfies g = 0 on Di ⊂ ∂Ωi where measure(Di) > 0,

then: {
‖g‖2

0,B(i) ≤ C |g|2
1/2,B(i)

‖g‖2
1/2,B(i) ≤ (1 + C) |g|2

1/2,B(i) ,

for some C > 0 independent of g and h0.

Proof. See [NE]. ��
For the choice of scaled Sobolev norms and seminorms defined in (3.113),

the parameter C will be independent of h0. Additionally, since the seminorms
are invariant under shifts by constants, the first and third Poincaré-Freidrich’s
inequalities may equivalently be stated in the quotient space H1(Ωi)/IR or
H1/2(B(i))/IR, respectively. The next result we describe is referred to as a
trace theorem, and states that when Ωi ⊂ IRd for d = 2, 3, functions in H1(Ω)
will have boundary values (or trace) of some regularity (smoothness).

Theorem 3.75 (Trace Theorem). If v ∈ H1(Ωi), then its restriction to the
boundary ∂Ωi will be well defined, with v ∈ H1/2(∂Ωi) ⊂ L2(∂Ωi), and:

‖v‖1/2,∂Ωi
≤ C‖v‖1,Ωi ,

where C > 0 is independent of v and h0.

Proof. See [NE, LI4, GR8]. The parameter C will be independent of h0 be-
cause of the scaled norms employed. ��

The linear mapping of v ∈ H1(Ωi) to its boundary value v ∈ H1/2(∂Ωi)
is not only bounded, it is surjective, see [NE, LI4, GR8]. As a consequence,
by the closed graph theorem this mapping will have a bounded right inverse.
This result is stated below, and referred to as an extension theorem.
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Theorem 3.76 (Extension Theorem). There exists a bounded linear map
E : H1/2(∂Ωi) → H1(Ωi) such that for each g ∈ H1/2(∂Ωi):

E g = g on ∂Ωi,

satisfying the following bound:

‖Eg‖1,Ωi
≤ C ‖g‖1/2,∂Ωi

for C > 0 independent of g and h0.

Proof. See [ST7, LI4, GR8]. The independence of C from h0 is a consequence
of the scaled norms employed. ��

As we will be working with finite element functions, we will require a
discrete version of the preceding extension theorem in which the extended
function is a finite element function. We refer to such a result as a discrete
extension theorem.

Lemma 3.77. Let Ωi be a polygonal domain of size h0 triangulated by a grid
Th(Ωi) quasiuniform of size h. Then there exists a bounded linear map:

Eh : Vh(∂Ωi) ∩ H1/2(∂Ωi) → Vh(Ωi) ∩ H1(Ωi),

such that for gh ∈ Vh(∂Ωi) ∩ H1/2(∂Ωi)

Ehgh = gh, on ∂Ωi,

with the following bound holding:

‖Ehgh‖1,Ωi ≤ C‖gh‖1/2,∂Ωi
,

where C > 0 is independent of gh, h and h0.

Proof. We will outline a proof when Ωi ⊂ IR2, in which case the solution
to Laplace’s equation has sufficiently regular solutions. More general results
are described in [AS4, WI, BJ9, BR11, NE6]. To construct a finite element
extension Ehgh ∈ Vh(Ωi), given gh ∈ Vh(∂Ωi), we will first extend gh to the
interior of the subdomain as a harmonic function Hgh:{

−∆(Hgh) = 0, in Ωi

Hgh = gh, on ∂Ωi.

Applying the continuous extension theorem and using the weak formulation
of Laplace’s equation on Ωi, it can easily be shown that Hgh ∈ H1(Ωi).

Furthermore, Hgh will satisfy the a priori bound:

‖Hgh‖1,Ωi
≤ C ‖gh‖1/2,∂Ωi
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where C > 0 is independent of gh and h. The harmonic extension Hgh will,
however, not be a finite element function. So define Ehgh as the interpolant
IhHgh of Hgh onto the finite element space V h(Ωi):

Ehgh ≡ IhHgh.

Since Hgh is a harmonic function, it will be continuous in the interior and
so the interpolant IhHgh will be well defined on the interior nodes of Ωi. By
construction, the interpolant IhHgh is well defined on the boundary ∂Ωi since
Hgh = gh is continuous and piecewise polynomial on ∂Ωi. Thus, IhHgh will
be well defined in Vh(Ω). We now verify that the discrete extension map Eh

is bounded. Since gh is continuous and piecewise polynomial it will hold that
gh ∈ H1(∂Ωi). Consequently, the harmonic extension Hgh will be H1+ε(Ωi)
regular on the polygonal domain [GR8] and satisfy the following a priori
bound, see [NE, GI, GR8, EV]:

|Hgh|1+ε,Ωi
≤ C |gh|1/2+ε,∂Ωi

.

Applying standard error bounds [CI2, JO2] for the interpolation map yields:{
|IhHgh −Hgh|1,Ωi ≤ C hε |Hgh|1+ε,Ωi

≤ C hε |gh|1/2+ε,∂Ωi
.

Substituting an inverse inequality [CI2, JO2] of the form:

|gh|1/2+ε,∂Ωi
≤ C h−ε |gh|1/2,∂Ωi

,

into the preceding yields:

|IhHgh −Hgh|1,Ωi
≤ C hε h−ε |gh|1/2,∂Ωi

.

Applying the triangle inequality and employing the preceding bounds yields:

|IhHgh|1,Ωi
≤ |IhHgh −Hgh|1,Ωi

+ |Hgh|1,Ωi
≤ C |gh|1/2,∂Ωi

where C is independent of h0 and h. By construction we obtain IhHgh = α
when gh(x) = α ∈ IR, so that using a quotient space and applying Poincaré-
Freidrich’s inequality yields:

‖IhHgh‖1,Ωi
≤ C ‖gh‖1/2,∂Ωi

.

Since ρi is not involved in this construction, C will be independent of ρi. ��

We shall next state and prove a basic norm equivalence between the energy
associated with the Schur complement matrix on a subdomain and a weighted
fractional Sobolev norm energy on the boundary of the subdomain.
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Lemma 3.78. Suppose the following assumptions hold.

1. Let a(·) in (3.1) satisfy a(x) = ρi on Ωi for 1 ≤ i ≤ p and c(·) ≡ 0 on Ω.
2. Let gi ∈ Vh(∂Ωi) ∩ H1/2(∂Ωi) satisfy:

gi = 0 on BD ∩ ∂Ωi.

3. Let ui ∈ Vh(Ωi) ∩ H1(Ωi) satisfy:{
Ai(ui, v) = 0, ∀v ∈ Vh(Ωi) ∩ H1

0 (Ωi)
ui = gi, on ∂Ωi,

where
Ai(u, v) ≡ ρi

∫
Ωi

∇u · ∇vdx.

Then the following norm equivalence will hold:

c ρi |gi|21/2,∂Ωi
≤ Ai(ui, ui) ≤ C ρi |gi|21/2,∂Ωi

,

for 0 < c < C independent of h, h0, ρi and gi.

Proof. We will describe the proof for the case ∂Ωi ∩BD = ∅. The proof when
∂Ωi ∩ BD �= ∅, will be analogous provided the boundary norm ‖gi‖2

1/2,∂Ωi

is replaced by ‖gi‖2

H
1/2
00 (B(i))

and provided the appropriate version of the

Poincaré-Freidrich’s inequality is employed. We will employ the notation
ui = Hh

i gi ∈ Vh(Ωi) ∩ H1(Ωi) to denote a discrete harmonic function with
boundary values gi ∈ Vh(∂Ωi)∩H1/2(∂Ωi). Since c(x) = 0, it will follow that
if γi is a constant then Hh

i γi = γi, and that Hh
i (gi − γi) = ui − γi.

To prove the lower bound, given data gi ∈ Vh(∂Ωi) ∩ H1/2(∂Ωi) let αi

denote the mean value of ui = Hh
i gi on Ωi. Apply the invariance of seminorms

under shifts by constants and the trace theorem to obtain:

|gi|21/2,∂Ωi
= |gi − αi|21/2,∂Ωi

≤ C1 ‖ui − αi‖2
1,Ωi

≤ C2 |ui − αi|21,Ωi

= C2 |ui|21,Ωi

=
(

C2
ρi

)
Ai (ui, ui) ,

where the third line above follows by Poincaré-Freidrich’s inequality since αi

corresponds to the mean value of ui on Ωi. Here C1, C2 > 0 denote generic
constants independent of h, h0 and ρi.

To prove the upper bound, represent the extension ui = Hh
i gi in the form:

Hh
i gi = Eigi + wi,
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where Eh
i gi ∈ Vh(Ωi) ∩ H1(Ωi) is an extension of gi satisfying the following:

Eh
i gi = gi, on ∂Ωi

‖Eh
i gi‖1,Ωi

≤ C ‖gi‖1/2,∂Ωi

(3.115)

as given by the discrete extension theorem (Lemma 3.77), and wi is defined
by wi ≡

(
Hh

i gi − Eh
i gi

)
∈ Vh(Ωi) ∩ H1

0 (Ωi). We substitute the above repre-
sentation into the equation satisfied by Hh

i gi:

Ai(Eigi + wi, v) = 0 ∀v ∈ Vh(Ωi) ∩ H1
0 (Ωi),

and choose v = wi ∈ Vh(Ωi) ∩ H1
0 (Ωi) to obtain:

ρi|wi|21,Ωi
= Ai(wi, wi) = −Ai(Eh

i gi, wi) ≤ ρi|Eh
i gi|1,Ωi

|wi|1,Ωi
.

It thus follows that:
|wi|1,Ωi

≤ |Eh
i gi|1,Ωi

≤ C1 ‖gi‖1/2,∂Ωi
.

Applying the triangle inequality to ui = Eh
i gi + wi, and using the preceding

bound and equation (3.115) yields:

|ui|1,Ωi
≤ C2‖gi‖1/2,∂Ωi

.

The same bound will hold if gi is replaced by gi − αi for any constant αi:

|ui − γi|1,Ωi
≤ C2 ‖gi − γi‖1/2,∂Ωi

,

where Hh
i (gi − γi) = ui − γi. If we choose γi as the mean value of gi on ∂Ωi,

then gi − γi will have zero mean value on ∂Ωi, and an application of the
Poincaré-Freidrich’s inequality will yield:

|ui − γi|1,Ωi ≤ C2 ‖gi − γi‖1/2,∂Ωi

≤ C3 |gi − γi|1/2,∂Ωi

= C3 |gi|1/2,∂Ωi
.

It will thus hold that:

Ai(ui, ui) = ρi |ui|21,Ωi

= ρi |ui − γi|21,Ωi

≤ C3 ρi |gi|21/2,∂Ωi
,

which is the desired upper bound. ��

Remark 3.79. The parameters Ci in the preceding estimates will be indepen-
dent of h and ρi, by construction. In addition, they will be independent of h0

due to the scale invariance of the seminorms. In general, Ci may depend on
other geometrical properties of Ωi, such as its aspect ratio.
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Applying the preceding equivalence on each subdomain and summing over
all the subdomains yields a global equivalence between the Schur complement
energy and a weighted sum of the subdomain fractional Sobolev energies.

Theorem 3.80. Suppose the following assumptions hold.

1. Let Ω1, . . . , Ωp form a quasiuniform triangulation of Ω of width h0.
2. Given a vector uB of nodal values on interface B, define u =

(
uT

I ,uT
B

)T
where uI = −A−1

II AIBuB. Let uh denote the discrete harmonic finite ele-
ment function corresponding the nodal vector u.

3. Let the coefficient a(x) = ρi on Ωi and c(x) = 0 on Ω with:

Ai(u, v) ≡ ρi

∫
Ωi

∇u · ∇vdx.

Then, the following estimate will hold:

c

p∑
i=1

ρi|uh|21/2,∂Ωi
≤ uT

BSuB = A(uh, uh) ≤ C

p∑
i=1

ρi|uh|21/2,∂Ωi
,

for 0 < c < C independent of h, h0 and ρi.

Proof. Since uh is piecewise discrete harmonic by assumption, it will satisfy:

uT
BSuB = uT Au = A(uh, uh) ≡

p∑
i=1

Ai(uh, uh).

The result now follows by an application of the preceding lemma on each
subdomain, and summing over all subdomains using that gi = uh on ∂Ωi. ��

Remark 3.81. In view of the preceding result, a preconditioner M for S must
ideally be chosen so that its interface energy uT

BMuB approximates the above
weighted sum of fractional Sobolev energies on its subdomain boundaries.

3.9.2 Discrete Sobolev Inequalities

We next describe a discrete Sobolev inequality [BR12] which holds for finite
element functions on Ω ⊂ IR2, see also [DR2, DR10, MA14, MA17],

Lemma 3.82. Let Vh(Ωi) denote a finite element space defined on a domain
Ωi ⊂ IR2 of diameter h0 triangulated by a quasiuniform grid of size h. Then
the following bound will hold for the maximum norm on Vh(Ωi) ⊂ H1(Ωi):

‖uh‖2
∞,Ωi

≤ C (1 + log(h0/h))
(
h−2

0 ‖uh‖2
0,Ωi

+ |uh|21,Ωi

)
, ∀uh ∈ Vh(Ωi),

where C > 0 is independent of h0 and h.
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Proof. We follow the proof in [BR12]. Let x∗ ∈ Ωi denote a point where the
finite element function uh attains it maximum modulus |uh(x∗)| = ‖uh‖∞,Ωi .
Let C ⊂ Ωi denote a cone of radius R and angle α at vertex x∗. Introduce
polar coordinates (r, θ) within the cone so that (0, 0) corresponds to x∗ and
so that the cone is specified in polar coordinates by 0 ≤ r ≤ R and 0 ≤ θ ≤ α.
Apply the fundamental theorem of calculus along a ray within the cone:

uh(0, 0) = uh(R, θ) +
∫ R

0

∂uh

∂r
(r, θ) dr.

Split the integral using the intervals 0 ≤ r ≤ ε h and ε h ≤ r ≤ R for some
0 < ε  1, take absolute values of all terms, and employ the inverse inequality
‖duh

dr ‖∞,Ωi
≤ ‖uh‖∞,Ωi

h−1 within the interval 0 ≤ r ≤ ε h (which holds
trivially for piecewise linear finite elements) to obtain:

|uh(0, 0)| ≤ |uh(R, θ)| +
∫ ε h

0
|∂uh(r,θ)

∂r dr| +
∫ R

ε h
|∂uh(r,θ)

∂r dr|

≤ |uh(R, θ)| + ε h ‖uh‖∞,Ωi
h−1 +

∫ R

ε h
|∂uh(r,θ)

∂r dr|

= |uh(R, θ)| + ε ‖uh‖∞,Ωi
+
∫ R

ε h
|∂uh(r,θ)

∂r dr|

Since |uh(0, 0)| = ‖uh‖∞,Ωi
, bringing back the term ε ‖uh‖∞,Ωi

yields:

(1 − ε) ‖uh‖∞,Ωi
≤ |uh(R, θ)| +

∫ R

ε h
|∂uh(r,θ)

∂r dr|.

Integrating the above expression as θ ranges in (0, α) yields:

(1 − ε)α‖uh‖∞,Ωi
≤
∫ α

0
|uh(R, θ)| dθ +

∫ α

0

∫ R

ε h
|∂uh(r,θ)

∂r |dr dθ

=
∫ α

0
|uh(R, θ)| dθ +

∫ α

0

∫ R

ε h
1
r |

∂uh(r,θ)
∂r |r dr dθ.

Squaring both sides, applying the triangle inequality and the Cauchy-Schwartz
inequality to the terms on the right side yields:

‖uh‖2
∞,Ωi

≤ 2
α2(1−ε)2

(
(
∫ α

0
|uh(R, θ)|2 dθ)(

∫ α

0
dθ)
)

+ 2
α2(1−ε)2

(
(
∫ α

0

∫ R

ε h
|∂uh(r,θ)

∂r |2r dr dθ)(
∫ α

0

∫ R

ε h
1
r2 r dr dθ)

)
.

Simplifying the expression yields the bound:

‖uh‖2
∞,Ωi

≤ 2α
α2(1−ε)2

( ∫ α

0
|uh(R, θ)|2dθ + log(R/εh)

∫ α

0

∫ R

εh
|∂uh(r,θ)

∂r |2r dr dθ
)
.

Since (∂uh

∂r )2 ≤ (∂uh

∂r )2 + 1
r2 (∂uh

∂θ )2 = |∇uh|2, we obtain:

‖uh‖2
∞,Ωi

≤ 2
α(1−ε)2

(∫ α

0
|uh(R, θ)|2 dθ + (log(1/ε) + log(R/h) |uh|21,C

)
≤ 2

α(1−ε)2

(∫ α

0
|uh(R, θ)|2 dθ + C(1 + log(h0/h) |uh|21,Ωi

)
.
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Multiplying both sides by R dR and integrating over 0 ≤ R ≤ β h0 (assuming
that the cone C can be extended within Ωi to have diameter β h0, for some
0  β ≤ 1) yields the estimate:

β2h2
0

2 ‖uh‖2
∞,Ωi

≤ 2
α(1−ε)2

(∫ βh0

0

∫ α

0
|uh(R, θ)|2R dR dθ + Cβ2h2

0
2 (1 + log(h0/h)) |uh|21,Ωi

)
≤ 2

α(1−ε)2

(
‖uh‖2

0,Ωi
+ Cβ2h2

0
2 (1 + log(h0/h)) |uh|21,Ωi

)
.

Dividing both sides by the factor β2h2
0/2 yields the desired result. ��

As a corollary of the preceding result, we obtain a discrete Sobolev in-
equality holding on the boundary ∂Ωi of a two dimensional domain.

Lemma 3.83. Let Ωi ⊂ IR2 be of diameter h0 and triangulated by a quasiu-
niform grid of size h. Then, the following bound will hold:

‖vh‖2
∞,∂Ωi

≤ C (1 + log(h0/h))
(
|vh|21/2,∂Ωi

+ h0‖vh‖2
0,∂Ωi

)
(3.116)

for vh ∈ Vh(∂Ωi) ∩ H1/2(∂Ωi), where C > 0 is independent of h0 and h.

Proof. Given vh ∈ Vh(∂Ωi) ∩ H1/2(∂Ωi) let Hh
i vh ∈ Vh(Ωi) ∩ H1(Ωi) denote

the discrete harmonic extension of vh into Ωi, satisfying:

‖Hh
i vh‖2

1,Ωi
≤ C‖vh‖2

1/2,∂Ωi
,

for C > 0 independent of h0 and h. Applying the preceding lemma to Hh
i vh

and using the boundedness of Hh
i yields:⎧⎪⎨

⎪⎩
‖vh‖2

∞,∂Ωi
≤ ‖Hh

i vh‖2
∞,Ωi

≤ C (1 + log(h0/h)) ‖Hh
i vh‖2

1,Ωi

≤ C (1 + log(h0/h)) ‖vh‖2
1/2,∂Ωi

,

for C > 0 independent of h0 and h. ��

We shall now present an alternate proof of the preceding discrete Sobolev
inequality based on Fourier series [BR29]. This proof will use the property
that the boundary ∂Ωi of a simply connected polygonal domain Ωi ⊂ IR2

will be Lipschitz homeomorphic to the unit circle S1 (i.e., there will be a
one to one correspondence between ∂Ωi and the unit circle S1, under a Lip-
schitz continuous parameterization). Given such a parameterization x(θ) of
the boundary ∂Ωi by a 2π periodic function x(θ) with arclength measure
ds(x(θ)) = |x′(θ)| dθ defined along the curve, we may represent any function
u(·) ∈ L2(∂Ωi) by a Fourier series expansion of the form:

u(x(θ)) =
∞∑

k=−∞
ckeikθ.
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When Ωi is shape regular, the following equivalences will hold [BR29]:⎧⎨
⎩

‖u‖2
L2(∂Ωi)

= h0
2π

∑∞
k=−∞ 2π|ck|2,

|u|2Hβ(∂Ωi)
= h1−2β

0
2π

∑∞
k=−∞ 2π |k|2β |ck|2, for 0 < β < 1,

where h0 = |∂Ωi| denotes the length of ∂Ωi. The alternate proof of the discrete
Sobolev inequality will be obtained based on the following continuous Sobolev
inequality for 2π periodic functions.

Lemma 3.84. Let v(x) ∈ H
1+ε
2 (0, 2π) denote a real periodic function on

[0, 2π] with Fourier expansion:

v(x) =
∞∑

k=−∞
ckeikx.

Then, the following bound will hold:

‖v‖2
L∞(0,2π) ≤ C

(
‖v‖2

L2(0,2π) + ε−1‖v‖2

H
1+ε
2 (0,2π)

)
, (3.117)

for 0 < ε < 1 and C independent of ε.

Proof. To prove the bound take absolute values of the Fourier expansion and
apply the Cauchy-Schwartz inequality to obtain:

‖v‖2
L∞(0,2π) ≤

(
|c0| +

∑∞
k=−∞, k �=0 |ck|

)2

=
(
|c0| +

∑∞
k=−∞, k �=0(|k|

1+ε
2 |ck|) |k|−

1+ε
2

)
≤ 2π|c0|2 + 2π

(∑∞
k=−∞, k �=0 |k|1+ε|ck|2

) (∑∞
k=−∞, k �=0 |k|−1−ε

)
≤ ‖v‖2

L2(0,2π) + |v|2
H

1+ε
2 (0,2π)

(∑∞
k=−∞, k �=0 |k|−1−ε

)
.

Using the integral test, we may bound:

∞∑
k=−∞, k �=0

|k|−1−ε ≤ 2
(

1 +
∫ ∞

1

dx

x1+ε

)
= 2

(
1 +

1
ε

)
≤ 4ε−1,

for 0 < ε < 1. Substituting this into the preceding bound yields:

‖v‖2
L∞(0,2π) ≤ ‖v‖2

L2(0,2π) + 4 ε−1 |v|2
H

1+ε
2 (0,2π)

which is the desired result. ��

The discrete Sobolev inequality (3.116) can now be obtained from (3.117)
by choosing ε appropriately and using an inverse inequality for finite elements.
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Lemma 3.85. Let vh ∈ Vh(∂Ωi) ∩ H
1+ε
2 (∂Ωi) be 2π-periodic. Then, the fol-

lowing bound will hold:

‖vh‖2
L∞(∂Ωi)

≤ C (1 + log(h0/h)) ‖vh‖2
H1/2(∂Ωi)

for C > 0 independent of h and h0.

Proof. We follow the proof in [BR29]. Apply the preceding continuous Sobolev
inequality to the 2π-periodic representation of vh, and employ norm equiva-
lences to obtain the bound:

‖vh‖2
∞,∂Ωi

≤ C h−1
0 ‖vh‖2

0,∂Ωi
+ C ε−1 hε

0|vh|2
H

1+ε
2 (∂Ωi)

.

Substitute the following inverse inequality:

|vh|2
H

1+ε
2 (∂Ωi)

≤ C h−ε|vh|2
H

1
2 (∂Ωi)

, ∀vh ∈ Vh(∂Ωi)

in the preceding bound, with C > 0 independent of h, to obtain:

‖vh‖2
∞ ≤ C h−1

0 ‖vh‖2
0,∂Ωi

+ C ε−1 hε
0 h−ε |vh|2

H
1
2 (∂Ωi)

.

Importantly, the parameter ε > 0 may be chosen small enough so that

ε−1 (h0/h)ε ≤ (1 + log(1/h)).

This will hold provided:

ε ≡
{ 1

4 , if (h/h0) ≥ e−4

−1
log(h0/h) , if (h/h0) < e−4,

and can be verified by an application of the derivative test for a maximum in
the parameter ε. The desired result follows immediately. ��

We now apply the discrete Sobolev inequalities to derive results useful for
estimating the condition number of Schur complement preconditioners.

Lemma 3.86. Suppose the following assumptions hold.

1. Let Di ⊂ ∂Ωi denote a connected subset of length di ≤ h0.
2. Let wh ∈ Vh(∂Ωi) satisfy:

wh(x) = 0 for x ∈ ∂Ωi\Di.

Then, the following results will hold:

|wh|21/2,∂Ωi
= |wh|2H1/2

00 (Di)
≤ C (1 + log(h0/h)) ‖wh‖2

∞,Di
+ |wh|21/2,Di

(3.118)
for C > 0 independent of h0 and h.
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Proof. Since wh(x) is zero outside Di, we may employ the equivalent integral
expression for the fractional Sobolev seminorm:

|wh|21/2,∂Ωi
≤ |wh|21/2,Di

+ 2
∫

Di

|wh(x)|2
dist(x, ∂Ωi\Di)

ds(x), (3.119)

where ds(x) denotes the arclength measure along ∂Ωi for s ∈ (0, di) and
dist(x, ∂Ωi\Di) denotes the arclength distance between x and ∂Ωi\Di. Since
the arclength distance satisfies:

dist(x, ∂Ωi\Di) = min{s, di − s},

the above integral can be split as:∫
Di

|wh(x)|2
dist(x, ∂Ωi\Di)

ds(x) =
∫ di/2

0

|wh(x(s))|2
s

ds +
∫ di

di/2

|wh(x(s))|2
di − s

ds.

(3.120)
Since wh(x) is zero when s = 0 and linear for 0 ≤ s ≤ h, The first integral may
further be split over the intervals [0, h] and [h, di/2]. For 0 ≤ s ≤ h, we may
bound |wh(x(s))| ≤ ‖wh‖∞,Di(s/h) since wh(x(s)) is linear on the interval
and wh(x(0)) = 0. For h ≤ s ≤ di/2, we may bound |wh(x(s))| ≤ ‖wh‖∞,Di

.
Substituting these yields:∫ di/2

0
|wh(x(s))|2

s ds =
∫ h

0
|wh(x(s))|2

s ds +
∫ di/2

h
|wh(x(s))|2

s ds

≤ ‖wh‖2
∞,Di

∫ h

0
s2

h2 sds + ‖wh‖2
∞,Di

∫ di/2

h
1
sds

= ‖wh‖2
∞,Di

h2

2h2 + ‖wh‖2
∞,Di

log(di/2h)

≤ C ‖wh‖2
∞,Di

(1 + log(h0/h)) .

We may similarly bound:∫ di

di/2

|wh(x(s))|2
di − s

ds ≤ C ‖wh‖2
∞,Di

(1 + log(h0/h)) .

Combining bounds and substituting them into (3.120) yields the result. ��
We now describe estimates of finite element decompositions based on globs.

Recall that a glob is either an edge or a vertex of B when Ω ⊂ IR2, and a face,
an edge or a vertex of B when Ω ⊂ IR3. Let G denote all globs of B.

Definition 3.87. If G ⊂ B is a glob, define the map IG : Vh(B) → Vh(B)
which assigns zero nodal values at all nodes in B outside G:

IGvh(x) ≡
{

vh(x), for nodes x ∈ G

0, for nodes x �∈ G
for vh ∈ Vh(B).

In particular, the following decomposition of the identity will hold:

I =
∑
G∈G

IG.
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We associate the following parameters with a subdomain decomposition.

Definition 3.88. Let L > 0 denote the maximum number of globs on any
shared interface of the form ∂Ωi ∩ Ωj:

L ≡ max
i,j

|{G : G ⊂ ∂Ωi ∩ ∂Ωj}| . (3.121)

Let K > 0 denote the maximum number of neighboring subdomains:

K ≡ max
i

|{j : ∂Ωi ∩ ∂Ωj �= ∅}| . (3.122)

For typical subdomain decompositions arising from a coarse triangulation, the
parameters K and L will be bounded independent of h, h0 and ρi.

We shall now outline an important theoretical result referred to as a glob
theorem. The glob theorem provides a bound for the H1/2(∂Ωi) seminorm of
the finite element interpolation map IG. It will be useful for estimating par-
tition parameters in abstract Schwarz algorithms. The following preliminary
result establishes a bound for IG when G is a vertex glob in two dimensions.

Lemma 3.89. Let Ω ⊂ IR2 and suppose the following assumptions hold.

1. Let G ∈ ∂Ωi denote a vertex glob, and let ψh
G(x) ∈ Vh(B) denote a finite

element nodal basis function centered at vertex G on B:

ψh
G(xj) =

{
1, if xj = G

0, if xj �= G,

where each xj denotes a node in B.
2. Given wh ∈ Vh(B) let IGwh ∈ Vh(B) denote the finite element function:

IGwh(x) ≡ wh(G) ψh
G(x).

Then, the following bound will hold:

|IGwh|21/2,∂Ωi
≤ C (1 + log(h0/h))2 ‖wh‖2

1/2,∂Ωi
∀wh ∈ Vh(B)

for some C > 0 independent of h0 and h.

Proof. See [MA17]. Since IGwh(x) = wh(G)ψh
G(x), by linearity we obtain:{

|IGwh|1/2,∂Ωi
= |wh(G)| |ψh

G|1/2,∂Ωi

≤ ‖wh‖∞,∂Ωi
|ψh

G|1/2,∂Ωi
.

Let BG ⊂ ∂Ωi denote the union of elements adjacent to G on which ψh
G(x)

has support. Apply Lemma 3.86 to ψh
G(x) which has support on BG to obtain:

|ψh
G|21/2,∂Ωi

≤ C (1 + log(h0/h)) ‖ψh
G‖2

∞,BG
+ |ψh

G|21/2,BG
, (3.123)
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for C > 0 independent of h0 and h. We estimate |ψh
G|21/2,BG

by substituting

that |ψh
G(x) − ψG

G(y)| ≤ |x−y|
h for x, y ∈ BG to obtain:

|ψh
G|21/2,BG

=
∫ h

−h

∫ h

−h

|ψh
G(x) − ψh

G(y)|2
|x − y|2 ds(x) ds(y) ≤ 4.

Substituting the preceding bound and using ‖ψh
G‖∞,BG

= 1 in (3.123) yields:

|IGwh|21/2,∂Ωi
≤ ‖wh‖2

∞,∂Ωi

(
C (1 + log(h0/h)) ‖ψh

G‖2
∞,BG

+ |ψh
G|21/2,BG

)
≤ ‖wh‖2

∞,∂Ωi
(C (1 + log(h0/h)) + 4)

≤ C (1 + log(h0/h)) ‖wh‖2
∞,∂Ωi

≤ C (1 + log(h0/h)) (1 + log(h0/h)) ‖wh‖2
1/2,∂Ωi

,

where we employed the discrete Sobolev inequality in the last step. ��

Remark 3.90. A bound of the form ‖IGvh‖0,∂Ωi ≤ C ‖vh‖0,∂Ωi will hold triv-
ially since the mass matrix on B is spectrally equivalent to an identity matrix.
Combining such a bound with Lemma 3.89 yields an estimate of the form:

‖IGwh‖2
1/2,∂Ωi

≤ C (1 + log(h0/h))2 ‖wh‖2
1/2,∂Ωi

, ∀wh ∈ Vh(B)

for C > 0 independent of h0 and h.

The next result bounds the H1/2(∂Ωi) seminorm of IG when G corresponds
to an edge glob in ∂Ωi ⊂ B on a two dimensional domain Ωi.

Lemma 3.91. Let Ω ⊂ IR2 and suppose the following assumptions hold.

1. Let G ∈ ∂Ωi denote a edge glob, and given vh ∈ Vh(B) let IGvh ∈ Vh(B)
denote the finite element function defined by:

IGvh(xj) ≡
{

vh(xj), if xj ∈ G

0, if xj ∈ ∂Ωi\G,

where xj denotes nodes on ∂Ωi.
2. Let BG denote the union of all elements of ∂Ωi intersecting the glob G.

Then, the following bound will hold:

|IGvh|21/2,∂Ωi
≤ C (1 + log(h0/h))2 ‖vh‖2

1/2,∂Ωi
,

for some C > 0 independent of h0 and h.

Proof. See [MA17]. Given an edge glob G ⊂ ∂Ωi, let GL, GR ∈ ∂Ωi denote its
endpoints, corresponding to vertex globs. By construction, the finite element
function wh(x) will be zero at these endpoints GL and GR and outside the
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glob, and may alternatively be expressed as:

wh(x) ≡ IGvh(x) =

{
vh(x) − IGL

vh(x) − IGR
vh(x) for x ∈ BG

0 for x ∈ ∂Ωi\BG.

Applying bound (3.118) to wh(x) on BG yields:

|wh|21/2,∂Ωi
≤ C (1 + log(h0/h)) ‖wh‖2

∞,BG
+ |wh|21/2,BG

for C > 0 independent of h0 and h. Substituting that ‖wh‖∞,BG
= ‖vh‖∞,BG

(which holds by construction), and estimating the latter term by the discrete
Sobolev inequality yields:{ |wh|21/2,∂Ωi

≤ C (1 + log(h0/h)) ‖vh‖2
∞,BG

+ |wh|21/2,BG

≤ C (1 + log(h0/h))2 ‖vh‖2
1/2,∂Ωi

+ |wh|21/2,BG
.

Since wh(x) = vh(x)− IGL
vh(x)− IGR

vh(x) on BG, we may apply the gener-
alized triangle inequality to estimate the seminorm |wh|21/2,BG

as follows:⎧⎨
⎩

|wh|21/2,BG
≤ 3

(
|vh|21/2,BG

+ |IGL
vh|21/2,BG

+ |IGR
vh|21/2,BG

)
.

≤ C
(
|vh|21/2,BG

+ (1 + log(h0/h))2 |vh|21/2,∂Ωi

)
,

where the latter expression was obtained using |IGL
vh|1/2,BG

≤ |IGL
vh|1/2,∂Ωi

and employing bounds for the vertex glob interpolants. Similarly for the
term |IGR

vh|1/2,BG
. Combining the above estimate with the trivial bound

|vh|21/2,BG
≤ |vh|21/2,∂Ωi

, we obtain:

|wh|21/2,∂Ωi
≤ C (1 + log(h0/h))2 ‖vh‖2

1/2,∂Ωi

which is the desired estimate. ��

Remark 3.92. As for vertex globs, a bound ‖IGvh‖0,∂Ωi
≤ C ‖vh‖0,∂Ωi

will
also hold trivially for edge globs since the mass matrix on B is spectrally
equivalent to an identity matrix. Combining such a bound with the preceding
lemma will yield an estimate of the form:

‖IGwh‖2
1/2,∂Ωi

≤ C (1 + log(h0/h))2 ‖wh‖2
1/2,∂Ωi

, ∀wh ∈ Vh(B)

for C > 0 independent of h0 and h.

Combining the preceding results yields the two dimensional glob theorem.

Lemma 3.93. Let Ω ⊂ IR2 and suppose the following assumptions hold.

1. Let Vh(Ω) be a finite element space on a quasiuniform triangulation.
2. Let IG denote the glob interpolation map for vertex or edge globs G ⊂ ∂Ωi.

Then, the following bound will hold for vh ∈ Vh(B):

‖IGvh‖2
1/2,∂Ωi

≤ C (1 + log(h0/h))2 ‖vh‖2
1/2,∂Ωi

, ∀vh ∈ Vh(B).
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Proof. The proof follows by combining the seminorm bounds for |IGvh|21/2,∂Ωi

in the preceding lemmas, with estimates for IG in the L2(∂Ωi) norm:

‖IGvh‖2
0,∂Ωi

≤ C‖vh‖2
0,∂Ωi

,

which will hold for some C > 0 independent of h0 and h for any glob G
because of the spectral equivalence between the mass matrix and a scaled
identity matrix on ∂Ωi. ��

We now state the general glob theorem [MA17] in two or three dimensions.

Theorem 3.94 (Glob Theorem). Suppose the following assumptions hold.

1. Let Th(Ω) be a quasiuniform triangulation of Ω ⊂ IRd for d = 2, 3.
2. Let Ω1, . . . , Ωp form a coarse triangulation Th0(Ω) of Ω of size h0.
3. Let G ⊂ ∂Ωi be a glob within B and let vh ∈ Vh(B).

Then, the following results will hold.

1. There exists C > 0 independent of h, h0 and ρi such that:

‖IGvh‖2
1/2,∂Ωi

≤ C (1 + log(h0/h))2 ‖vh‖2
1/2,∂Ωi

.

2. There exists C > 0 independent of h, h0 and ρi such that:

‖IGvh‖2
1/2,B ≤ C

∑
j:∂Ωj∩G �=∅

(1 + log(h0/h))2 ‖uh‖2
1/2,∂Ωj

.

Proof. See [BR12, BR15, DR17, DR10, MA17]. ��

3.9.3 Properties of Coarse Spaces

We shall now summarize theoretical properties of two types of coarse spaces
employed in Schur complement algorithms, the traditional coarse space defined
based on an underlying coarse triangulation of the domain, and the piecewise
constant coarse space employed in the balancing domain decomposition pre-
conditioner, based on a decomposition of the interface into globs. We shall
omit discussion of wirebasket coarse spaces, see [BR15, SM2].

Definition 3.95. When the subdomains Ω1, . . . , Ωp of size h0 form a coarse
triangulation Th0(Ω) of Ω, the traditional coarse space V0,T (B) ⊂ Vh(B) cor-
responds to the restriction to B of the finite element space defined on the coarse
triangulation. If y1, . . . , yn0 denote the coarse vertices with associated coarse
space nodal basis functions ψh0

1 (x), . . . , ψh0
n0

(x) which satisfy ψh0
i (yj) = δij

(where δij is the Kronecker delta), then the coarse space interpolation map
I0,T : Vh(B) → V0,T (B) ⊂ Vh(B) is defined by:

I0,T vh(x) =
n0∑
i=1

vh(yi) ψh0
i (x).

The traditional interpolation map I0,T is also denoted Ih0 , I0, π0 or πh0 .



210 3 Schur Complement and Iterative Substructuring Algorithms

In the following, we summarize known bounds for the coarse grid interpo-
lation map I0,T onto the standard coarse space V0,T (B) = Vh0(B) ⊂ Vh(B).

Lemma 3.96. Let Th(Ω) be a quasiuniform triangulation of Ω of size h. Let
Ω1, . . . , Ωp form a quasiuniform coarse triangulation Th0(Ω) of Ω of size h0.
Then, for 1 ≤ i ≤ p the following results will hold.

1. The following bound will hold locally on each ∂Ωi for vh ∈ Vh(B):

|I0,T vh|21/2,∂Ωi
≤
{

C (1 + log(h0/h)) ‖vh‖2
1/2,∂Ωi

, if Ω ⊂ IR2

C (h0/h) ‖vh‖2
1/2,∂Ωi

, if Ω ⊂ IR3 (3.124)

for C > 0 independent of h, h0 and ρi.
2. The interpolation error will satisfy:

|vh − I0,T vh|20,∂Ωi
≤ Ch0|vh|21/2,∂Ωi

, ∀vh ∈ Vh(B) (3.125)

for C > 0 independent of h, h0 and ρi.

Proof. For the general proof, see [BR15, DR10]. We shall only outline the proof
of boundedness of I0,T in two dimensions. Employ the equivalence between
|I0,T vh|21/2,∂Ωi

and |HhI0,T vh|21,Ωi
when Hh is the discrete harmonic extension

map into the subdomains. Since HhI0,T vh will be linear on each triangular
subdomain Ωi, the term |HhI0,T vh|21,Ωi

will involve the difference quotients:∑
l,j

a
(i)
lj (vh(xl) − vh(xj))

2

without a h0 scaling factor, in two dimensions.
The term |HhI0,T vh|21,Ωi

can thus be estimated by C |vh|2∞,Ωi
which in

turn can be estimated by the discrete Sobolev inequality as bounded by
C(1 + log(h0/h))‖vh‖2

1/2,∂Ωi
. This yields the desired bound for Ω ⊂ IR2. The

interpolation error:

|vh − I0,T vh|20,∂Ωi
≤ Ch0|vh|21/2,∂Ωi

is standard [ST14, CI2, JO2]. ��

Since each of the bounds in Lemma 3.96 are local, we may multiply them
by a factor ρi on each subdomain, and sum over all subdomains to obtain
global estimates involving weighted terms, as indicated below.

Lemma 3.97. Under the same assumptions as Lemma 3.96, the following
bound will hold for vh ∈ Vh(B):

p∑
i=1

ρi|I0,T vh|21/2,∂Ωi
≤
{

C (1 + log(h0/h))
∑p

i=1 ρi‖vh‖2
1/2,∂Ωi

, if Ω ⊂ IR2

C (h0/h)
∑p

i=1 ρi‖vh‖2
1/2,∂Ωi

, if Ω ⊂ IR3

for C > 0 independent of h, h0 and ρi.
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Proof. Multiply the local bounds in Lemma 3.96 by the factor ρi and sum
over all the subdomains. ��

We next consider the piecewise constant coarse space V0,P (B) used in
the balancing domain decomposition preconditioner, and describe analogous
estimates. The space V0,P (B) defined by (3.126) is referred to as piecewise
constant since the finite element functions within this space have constant
values on nodes within each glob of B.

Definition 3.98. Given a glob G ∈ G, we let 0 ≤ dj(G) ≤ 1 denote non-
negative partition of unity parameters which satisfy:{

dj(G) = 0, if G ∩ ∂Ωj = ∅∑
{j:G⊂∂Ωj} dj(G) = 1.

Remark 3.99. The quantities dj(G) are typically defined by:

dj(G) =
ρt

j∑
{l:G⊂∂Ωl} ρt

l

, with t ≥ 1
2
.

For 1 ≤ j ≤ p we define a map Qj : Vh(B) → IR by:

Qju =

∫
∂Ωi

u ds∫
∂Ωi

ds
.

The piecewise constant coarse space, denoted V0,P (B) ⊂ Vh(B), is formally
defined next as the range of an associated interpolation map I0,P .

Definition 3.100. We define an interpolation map I0,P : Vh(B) → Vh(B):

I0,P vh =
∑
G⊂G

IG

∑
{j:G⊂∂Ωi}

dj(G) Qjvh,

where Qj and dj(G) are as defined in the preceding. The piecewise constant
coarse space is then defined as the range of the interpolation map I0,P :

V0,P (B) ≡ Range(I0,P ). (3.126)

The interpolation map I0,P is also denoted Q0 elsewhere in these notes.

We shall now turn to theoretical estimates of the interpolation map I0,P .
Unlike the traditional interpolation map I0,T the map I0,P is not local, and its
values on a glob G depend on the mean value of the function on the boundaries
of adjacent subdomains. Fortunately, by carefully choosing the partition of
unity parameters dj(G), global norm bounds can be obtained which do not
depend on {ρi} and furthermore do not deteriorate in three dimensions.



212 3 Schur Complement and Iterative Substructuring Algorithms

Lemma 3.101. Suppose the following assumptions hold.

1. Let Ω1, . . . , Ωp form a quasiuniform triangulation of Ω of size h0.
2. Let I0,P denote the operator defined earlier based on the globs G ∈ G:

I0,P vh ≡
∑
G∈G

IG

∑
{j:G⊂∂Ωj}

dj(G)(Qjvh), (3.127)

where {
I =

∑
G∈G IG

1 =
∑

{j:G⊂∂Ωj} dj(G).
(3.128)

Then, the following bounds will hold for vh ∈ Vh(B).

1. If glob G ⊂ ∂Ωi, then:{
‖IG(I − I0,P )vh‖2

1/2,∂Ωi

≤ C (1 + log(h0/h))2
∑

{j:G⊂∂Ωj} dj(G)2|vh|21/2,∂Ωj
.

(3.129)

2. If the partition parameters dj(G) based on the globs are defined by:

dj(G) =
ρt

j∑
{l:G⊂∂Ωl} ρt

l

, for G ⊂ G

for t ≥ 1
2 , then:{ ∑p

i=1 ρi |(I − I0,P )vh|21/2,∂Ωi

≤ C L2 K2 (1 + log(h0/h))2
∑p

i=1 ρi|vh|21/2,∂Ωi
.

(3.130)

In both of the above, C > 0 is independent of h, h0 and {ρj}.

Proof. We follow the proof in [MA14, MA17, MA15]. Substituting (3.127)
and (3.128) in the expression for IG(vh − I0,P vh) and using that IG1IG2 = 0
whenever G1 and G2 are distinct globs, we obtain:

IG(vh − I0,P vh) =
∑

{j:G⊂∂Ωj}
dj(G)IG(I − Qj)vh.

Applying the generalized triangle inequality to the above expression yields:

|IG(vh − I0,P vh)|21/2,∂Ωi
≤ L

∑
{j:G⊂∂Ωj}

dj(G)2‖IG(I − Qj)vh‖2
1/2,∂Ωi

.

Since G ⊂ ∂Ωi and G ⊂ ∂Ωj the following norms will be equivalent:

c1‖IG(I −Qj)vh‖2
1/2,∂Ωi

≤ ‖IG(I −Qj)vh‖2
1/2,∂Ωj

≤ c2‖IG(I −Qj)vh‖2
1/2,∂Ωi

,



3.9 Theoretical Results 213

with 0 < c1 < c2 independent of h, h0 and {ρl}. This will hold because of
the compact support of IGw so that ‖IGw‖2

1/2,∂Ωj
and ‖IGw‖2

H
1/2
00 (G)

will be

equivalent by definition of H
1/2
00 (G). The latter will in turn be equivalent to

‖IGw‖2
1/2,∂Ωi

. Applying this norm equivalence yields:

|IG(vh − I0,P vh)|21/2,∂Ωi
≤ c2 L

∑
{j:G⊂∂Ωj}

dj(G)2‖IG(I − Qj)vh‖2
1/2,∂Ωj

.

Applying the glob theorem to the above yields:⎧⎪⎪⎨
⎪⎪⎩

|IG(vh − I0,P vh)|21/2,∂Ωi

≤ q(h/h0)
∑

{j:G⊂∂Ωj} dj(G)2‖(I − Qj)vh‖2
1/2,∂Ωj

= q(h/h0)
∑

{j:G⊂∂Ωj} dj(G)2
(
|(I − Qj)vh|21/2,∂Ωj

+ 1
h0
‖(I − Qj)vh‖2

0,∂Ωj

)

where q(h/h0) ≡ C c2 L (1 + log(h0/h))2. Using a quotient space argument
[CI2] (mapping ∂Ωj to a reference domain, using that Qj preserves constants
and employing the scaling of seminorms under dilation) we obtain:

‖(I − Qj)vh‖2
0,∂Ωj

≤ C h0 |vh|21/2,∂Ωj
,

for c3 > 0 independent of h, h0 and {ρl}. Since the seminorms are invariant
under shifts by constants, we may replace |(I − Qj)vh|21/2,∂Ωj

by |vh|21/2,∂Ωj
:

|IG(vh − I0,P vh)|21/2,∂Ωi
≤ q(h/h0)

∑
{j:G⊂∂Ωj}

dj(G)2 |vh|21/2,∂Ωj
.

where q(h/h0) ≡ C c2 L (1 + log(h0/h))2. This yields (3.129).
To obtain (3.130), we multiply (3.129) by the factor ρi and rearrange terms:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρi |IG(vh − I0,P vh)|21/2,∂Ωi

≤ C c2 L (1 + log(h0/h))2
∑

{j:G⊂∂Ωj} ρi dj(G)2 |vh|21/2,∂Ωj

= C c2 L (1 + log(h0/h))2
∑

{j:G⊂∂Ωj}
ρidj(G)2

ρj
ρj |vh|21/2,∂Ωj

.

(3.131)

When G ⊂ (∂Ωi ∩ ∂Ωj) the following bound may be obtained for dj(G):

dj(G)2 =
ρ2t

j(∑
{l:G⊂∂Ωl} ρt

l

)2 ≤
ρ2t

j(
ρt

i + ρt
j

)2 ≤
ρ2t

j

ρ2t
i + ρ2t

j

,

which yields the following estimate for
(
ρidj(G)2/ρj

)
:

ρidj(G)2

ρj
≤

ρiρ
2t
j

ρjρ2t
i + ρ1+2t

j

=
(ρj/ρi)2t−1

1 + (ρj/ρi)2t
.
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Since the factor (ρj/ρi) is positive, the preceding expression will be uniformly
bounded when 2t ≥ 1, with an upper bound of one. Substituting this upper
bound into (3.131) yields:{

ρi |IG(vh − I0,P vh)|21/2,∂Ωi

≤ C c2 L (1 + log(h0/h))2
∑

{j:G⊂∂Ωj} ρj |vh|21/2,∂Ωj
.

To estimate |vh − I0,P vh|21/2,∂Ωi
we employ the property of IG on ∂Ωi:

vh − I0,P vh =
∑

{G⊂G}
IG(vh − I0,P vh), on ∂Ωi.

This yields the bound:⎧⎪⎪⎨
⎪⎪⎩

ρi |vh − I0,P vh|21/2,∂Ωi

≤ ρi K
∑

{G⊂∂Ωi} |IG(vh − I0,P vh)|21/2,∂Ωi

≤ C c2 K
∑

{G⊂∂Ωi} L (1 + log(h0/h))2
∑

{j:G⊂∂Ωj} ρj |vh|21/2,∂Ωj
.

Summing over all subdomain boundaries ∂Ωi yields:

p∑
i=1

ρi |vh − I0,P vh|21/2,∂Ωi
≤ C c2 K2 L2 (1 + log(h0/h))2

p∑
j=1

ρj |vh|21/2,∂Ωj
,

which is the desired bound (3.130). ��

As an immediate corollary, we obtain the following bounds for I0,P vh.

Lemma 3.102. Let the assumptions in Lemma 3.101 hold. Then:

p∑
i=1

ρi |I0,P vh|21/2,∂Ωi
≤ C L2 K2 (1 + log(h0/h))2

p∑
i=1

ρi|vh|21/2,∂Ωi
, (3.132)

for C > 0 independent of h, h0 and {ρj}.

Proof. Follows immediately by an application of Lemma 3.101 and the triangle
inequality to I0,P vh = vh − (I − I0,P )vh. ��

Remark 3.103. The reader is referred to [BR15, DR10, SM2] for theoretical
estimates of the wirebasket interpolation map I0,W .

3.9.4 Two Subdomain Preconditioners for S

As an application of the preceding theoretical results, we estimate the con-
dition number of the two subdomain Dirichlet-Neumann [BJ9, BR11, FU,
MA29], Neumann-Neumann [BO7], and the fractional Sobolev norm precon-
ditioners [DR, GO3, BJ9, CH2, BR11], for the Schur complement. Such esti-
mates can be obtained by applying Lemma 3.78.
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Lemma 3.104. Suppose that Th(Ω) is a quasiuniform triangulation of Ω and
that neither Ω1 nor Ω2 is immersed. Let the coefficient a(x) = ρi in Ωi for
i = 1, 2 and c(x) = 0 on Ω. Then, the following bound will hold for vh ∈ Vh(Ω)
with associated nodal vector vB on B = ∂Ω1 ∩ ∂Ω2:

ci ρi |vh|2H1/2
00 (B)

≤ vT
BS(i)vB ≤ Ci ρi |vh|2H1/2

00 (B)
,

for 0 < ci < Ci independent of h and {ρ1, ρ2}.

Proof. Follows from Lemma 3.78 since |vh|21/2,∂Ωi
is norm equivalent to

|vh|2
H

1/2
00 (B)

by definition of H
1/2
00 (B). ��

Remark 3.105. Suppose F represents the fractional Sobolev norm energy:

vT
BFvB = |vh|2H1/2

00
, ∀vh ∈ Vh(B),

then the preceding lemma yields that for vB �= 0:

ci ρi ≤
vT

BS(i)vB

vT
BFvB

≤ Ci ρi, ∀vB �= 0,

where S(i) denotes the subdomain Schur complement matrix.

We have the following condition number estimates.

Lemma 3.106. Suppose the assumptions from Lemma 3.104 hold.

1. Let M denote any of the preconditioners [DR, GO3, BJ9, CH2, BR11]
from (3.64), then M will be spectrally equivalent to F and satisfy:

cond(M,S) ≤ β1,

for some β1 > 0 independent of h and {ρ1, ρ2}.
2. If M = S(i), i.e., M is a Dirichlet-Neumann preconditioner, then:

cond(M,S) ≤ β2,

for some β2 > 0 independent of h and {ρ1, ρ2}.
3. If M−1 = α S(1)−1

+ (1−α)S(2)−1
for some 0 < α < 1, i.e., M corresponds

to a Neumann-Neumann preconditioner, then:

cond(M,S) ≤ β3,

for some β3 > 0 independent of h and {ρ1, ρ2}.

Proof. By Lemma 3.104, we obtain that S = (S(1) + S(2)) � (ρ1 + ρ2) F. The
desired result follows immediately. ��
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3.9.5 Multi-Subdomain Preconditioners for S

We now estimate the condition number of several multisubdomain Schwarz
subspace preconditioners for the Schur complement matrix S. To study
such convergence, we shall employ the Schwarz subspace framework from
Chap. 2.5.2 with the linear space V = Vh(B), endowed with the inner
product A(., .) ≡ S(., .) defined later. Subspaces Vi ⊂ V will be chosen
as subspaces of the form Vh(G) ⊂ Vh(B) based on globs G ⊂ G, and a
coarse space V0 ⊂ Vh(B). Estimates for the parameters K0 and K1 from
Chap. 2.5.2 can then be obtained by applying the glob theorem and other
theoretical tools described in this section. Our estimates will be applicable
when the coefficients {ρi} have large variation across subdomains. However,
when the variation in the coefficients is mild, improved bounds may be ob-
tained in some cases by employing other tools, and the reader is referred to
[BR12, DR17, BR15, DR10, TO10]. We also omit wirebasket preconditioners.

The inner produce S(·, ·) : Vh(B) × Vh(B) → IR, that we shall employ
in Vh(B) will be generated by the Schur complement matrix S. Given finite
element functions uh, vh ∈ Vh(B) defined on B with associated nodal vectors
uB , vB , we define the bilinear form S(., .) as:

S(uh, vh) ≡ uT
BSvB =

[
EuB

uB

]T [
AII AIB

AT
IB ABB

][
EvB

vB

]
,

where E ≡ −A−1
II AIB . By Thm. 3.80, the following equivalence will hold:

c

p∑
i=1

ρi|uh|21/2,∂Ωi
≤ S(uh, uh) ≤ C

p∑
i=1

ρi|uh|21/2,∂Ωi
, ∀uh ∈ Vh(B).

For notational convenience, we shall use the notation:

‖uh‖2
1/2,B ≡

p∑
l=1

ρl|uh|21/2,∂Ωl
, (3.133)

so that c ‖uh‖2
1/2,B ≤ S(uh, uh) ≤ C ‖uh‖2

1/2,B . For convenience, the globs
in G shall be enumerated as G1, . . . , Gn for some n. The additive Schwarz
subspace preconditioners we shall consider will be based on the subspaces
Vh(Gi) ≡ Range(IGi

) ⊂ Vh(B) corresponding to globs Gi ∈ G, and a coarse
space V0(B) ⊂ Vh(B). We shall consider only the traditional coarse space
V0,T (B) ⊂ Vh(B) and the piecewise constant space V0,P ⊂ Vh(B). The local
bilinear forms Ãi(·, ·) in the abstract Schwarz framework of Chap. 2.5.2 will
be denoted Si(·, ·) on Vh(Gi) as defined below:

Si(uh, vh) ≡ S(uh, vh), ∀uh, vh ∈ Vh(Gi).

Similarly, for the coarse space.
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To simplify our discussion, we shall assume that exact solvers are employed
for the submatrices so that the parameters ω0 = ω1 = 1 and K0 = C0.
If a coarse space is not employed, we define an n × n matrix ε = (εij) of
strengthened Cauchy-Schwartz parameters such that:

S(vi, vj) ≤ εij S(vi, vi)1/2 S(vj , vj)1/2 ∀ vi ∈ Vh(Gi) and ∀ vj ∈ Vh(Gj).

It is easily verified that the spectral radius ρ(ε) of matrix ε is bounded by
K L. When a coarse space is employed, matrix ε will be of size (n + 1) and
its spectral radius will be bounded by (K L + 1) regardless of the choice of
coarse space. By the abstract theory of Chap. 2.5.2, the condition number of
additive Schwarz subspace preconditioner for S will satisfy:

cond(M, S) ≤
{

C0 K L, No Coarse Space
C0 (K L + 1), With Coarse Space.

Since K and L are typically independent of h, h0 and {ρi}, we only need to
focus on the partition parameter C0. The next result yields an estimate for
C0 when there is no coarse space.

Lemma 3.107. Let G1, . . . , Gn denote an enumeration of all the distinct
globs in G so that the following decomposition of identity property holds:

I =
n∑

i=1

IGi
,

where I : Vh(B) → Vh(B), and IGi : Vh(B) → Vh(Gi) for 1 ≤ i ≤ n. Then,
given vh ∈ Vh(B) there exists vi ∈ Vh(Gi) for 1 ≤ i ≤ n satisfying

vh = v1 + · · · + vn

and
p∑

i=1

S(vi, vi) ≤ C0 S(vh, vh),

where

C0 ≤ C L (1 + log(h0/h))2 h−2
0

(
ρmax

ρmin

)
, ∀vh ∈ Vh(B),

with C independent of h, h0 and {ρi}.

Proof. See [TO10, MA17]. We shall estimate the partition parameter C0 in the
weighted boundary norm (3.133) instead of S(·, ·) since both are equivalent.
Given vh ∈ Vh(B) define vi = IGi

vh ∈ Vh(Gi) for 1 ≤ i ≤ n. Due to the
decomposition of unity property for the IGi

, it will hold that:

v1 + · · · + vn = vh.
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If Gl ⊂ ∂Ωi, then by the glob theorem, we obtain that:

|IGl
vh|21/2,∂Ωi

≤ C (1 + log(h0/h))2 ‖vh‖2
1/2,∂Ωi

. (3.134)

Define Hhvh as the discrete harmonic extension of the the interface value vh

into the subdomain interiors Ωi for 1 ≤ i ≤ p

A(Hhvh, vi) = 0, ∀vi ∈ Vh(Ωi) ∩ H1
0 (Ωi),

where

A(u, v) ≡
p∑

i=1

ρi

∫
Ωi

∇u · ∇v dx.

Then, an application of the trace theorem to Hhvh on ∂Ωi yields:⎧⎨
⎩

‖vh‖2
1/2,∂Ωi

≤ C ‖Hhvh‖2
1,Ωi

= C
(
|Hhvh|21,Ωi

+ 1
h2
0
‖Hhvh‖2

0,Ωi

)
.

Substituting the preceding bound into (3.134), multiplying by the factor ρi,
and summing over all adjacent subdomains yields the following:

‖IGl
vh|21/2,B =

∑p
i=1 ρi|IGl

vh|21/2,∂Ωi

≤ C (1 + log(h0/h))2
∑

i:Gl⊂∂Ωi
ρi

(
|Hhvh|21,Ωi

+ 1
h2
0
‖Hhvh‖2

0,Ωi

)
≤ C (1 + log(h0/h))2 ρmax

∑
i:Gl⊂∂Ωi

(
|Hhvh|21,Ωi

+ 1
h2
0
‖Hhvh‖2

0,Ωi

)
.

Summing over all globs yields the estimate:∑n
l=1 ‖IGl

vh|21/2,B =
∑n

l=1

∑p
i=1 ρi|IGl

vh|21/2,∂Ωi

≤ C (1 + log(h0/h))2
∑n

l=1

∑
i:Gl⊂∂Ωi

ρi

(
|Hhvh|21,Ωi

+ 1
h2
0
‖Hhvh‖2

0,Ωi

)
≤ C (1 + log(h0/h))2 ρmax L

∑p
i=1

(
|Hhvh|21,Ωi

+ 1
h2
0
‖Hhvh‖2

0,Ωi

)
= C (1 + log(h0/h))2 ρmax L

(
|Hhvh|21,Ω + 1

h2
0
‖Hhvh‖2

0,Ω

)
.

Since Hhvh is zero on BD, we apply Poincaré-Freidrich’s inequality:

‖Hhvh‖2
0,Ω ≤ C |Hhvh|21,Ω ,

and substitute it in the preceding bound to obtain:{ ∑n
l=1 ‖IGl

vh‖2
1/2,B =

∑n
l=1

∑p
i=1 ρi|IGl

vh|21/2,∂Ωi

≤ C (1 + log(h0/h))2 ρmax L (1 + 1
h2
0
)
∑p

i=1 ρi|Hhvh|21,Ωi
.

(3.135)

Since Hhvh is piecewise discrete harmonic, Thm. 3.80 yields the equivalence:
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c ‖vh‖2
1/2,B ≤ S(vh, vh) =

p∑
i=1

ρi|Hhvh|21,Ωi
≤ C ‖vh‖2

1/2,B ,

for c, C independent of h, h0 and {ρi}. Substituting this into (3.135) yields:
n∑

l=1

S(IGl
vh, IGl

vh) ≤ C L (1 + log(h0/h))2
ρmax

ρmin

(
1 +

1
h2

0

)
S(vh, vh)

which is the desired result. ��
Remark 3.108. As an immediate corollary, we obtain the following condition
number estimate for the block Jacobi Schur complement preconditioner in two
or three dimensions:

cond(M,S) ≤ C L (1 + log(h0/h))2
(

ρmax

ρmin

)(
1 +

1
h2

0

)
,

for some C > 0 independent of h, h0 and {ρi}. This upper bound may be
unduly pessimistic when the factor (ρmax/ρmin) is large. However, if a suitable
coarse space V0 is employed, these bounds can be improved significantly.

Our next estimate is for the Schur complement additive Schwarz precon-
ditioner when a coarse space is included [TO10, MA17].

Lemma 3.109. Let Ω ⊂ IRd for d = 2, 3. Let the following conditions hold.

1. Let G1, . . . , Gn denote an enumeration of all the distinct globs in G so
that the following decomposition of identity property holds:

I =
n∑

i=1

IGi ,

where I : Vh(B) → Vh(B), and IGi
: Vh(B) → Vh(Gi) for 1 ≤ i ≤ n.

2. Let coarse space V0,T (B) ⊂ Vh(B) or V0,P (B) ⊂ Vh(B) be employed.
3. Let the partition parameters dj(G) be defined for t ≥ 1

2 by:

dj(G) =
ρt

j∑
{l:G⊂∂Ωl} ρt

l

.

Then, given vh ∈ Vh(B) there exists v0 ∈ V0 and vi ∈ Vh(Gi) for 1 ≤ i ≤ n
with vh = v0 + v1 + · · · + vn satisfying:

p∑
i=0

S(vi, vi) ≤ C0 S(vh, vh),

where

C0 ≤

⎧⎪⎨
⎪⎩

C (1 + log(h0/h))2, if V0 = V0,P for d = 2, 3

C (1 + log(h0/h))2, if V0 = V0,T and d = 2
C (h0/h), if V0 = V0,T and d = 3,

with C independent of h, h0 and {ρi}.
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Proof. We shall only outline the proof for the choice V0 = V0,P (B). The choice
V0 = V0,T (B) will be analogous, with differences arising from the bound for
I0,T : Vh(B) → V0,T depending on whether d = 2 or d = 3. Given vh ∈ Vh(B),
define v0 ≡ I0,P vh where I0,P is the interpolation onto V0,P (B). For 1 ≤ i ≤ n
define vi ≡ IGi (vh − I0vh). By construction, it will hold that:

vh = v0 + v1 + · · · + vn.

Bound (3.132) from the preceding section yields that:

‖I0,P vh‖2
1/2,B ≤ C (1 + log(h0/h))2 ‖vh‖2

1/2,B .

To estimate vl = IGl
(vh − I0,P vh) when Gl ⊂ ∂Ωi, bound (3.129) yields:

‖IGl
(I − I0,P )vh‖2

1/2,∂Ωi
≤ C (1 + log(h0/h))2

∑
{j:Gl⊂∂Ωj}

dj(Gl)2|vh|21/2,∂Ωj
,

where C > 0 is independent of h, h0 and {ρj}. Multiply the above expression
by ρi and sum over all subdomains containing Gl to obtain:∑

{i:Gl⊂∂Ωi} ρi‖IGl
(I − I0,P )vh‖2

1/2,∂Ωi

≤ C (1 + log(h0/h))2
∑

{i:Gl⊂∂Ωi}
∑

{j:Gl⊂∂Ωj} ρidj(Gl)2|vh|21/2,∂Ωj

= C (1 + log(h0/h))2
∑

{i:Gl⊂∂Ωi}
∑

{j:Gl⊂∂Ωj}
ρidj(Gl)

2

ρj
ρj |vh|21/2,∂Ωj

.

(3.136)
When Gl ⊂ (∂Ωi ∩ ∂Ωj), the following bound can be obtained, as before:

ρidj(Gl)2

ρj
≤

ρiρ
2t
j

ρj

(
ρ2t

i + ρ2t
j

) ≤ 1, for t ≥ 1/2.

Substitution of the above into (3.136) yields the bound:

‖IGl
(I − I0,P )vh‖2

1/2,B

=
∑

{i:Gl⊂∂Ωi} ρi‖IGl
(I − I0,P )vh‖2

1/2,∂Ωi

≤ C (1 + log(h0/h))2
∑

{i:Gl⊂∂Ωi}
∑

{j:Gl⊂∂Ωj} ρj |vh|21/2,∂Ωj
.

Summing over all globs Gl yields:∑n
l=1 ‖IGl

(I − I0,P )vh‖2
1/2,{ρi},B

≤ C (1 + log(h0/h))2
∑n

l=1

∑
{i:Gl⊂∂Ωi}

∑
{j:Gl⊂∂Ωj} ρj |vh|21/2,∂Ωj

≤ C (1 + log(h0/h))2 L2
∑p

j=1 ρj |vh|21/2,∂Ωj

= C (1 + log(h0/h))2 L2‖vh‖2
1/2,B .
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Combining the above bound with (3.132) yields:{‖I0,P vh‖2
1/2,B +

∑n
l=1 ‖IGl

(I − I0,P )vh‖2
1/2,{ρi},B

≤ C (1 + log(h0/h))2
(
1 + L2

)
‖vh‖2

1/2,B .

Since v0 = I0,P vh and vl = IGl
(I − I0,P )vh for 1 ≤ l ≤ n, the desired result

follows by equivalence between S(wh, wh) and ‖wh‖2
1/2,B . ��

As a corollary, we estimate the condition number of the additive Schwarz
preconditioner for S based on Vh(G1), . . . , Vh(Gn), and V0,T or V0,P .

Lemma 3.110. Let the assumptions in Lemma 3.109 hold. Then:

cond(M,S) ≤

⎧⎪⎨
⎪⎩

C K L (1 + log(h0/h))2 , if V0 = V0,P and d = 2, 3

C K L (1 + log(h0/h))2 , if V0 = V0,T and d = 2
C K L (h0/h) , if V0 = V0,T and d = 3.

Proof. Since cond(M, S) ≤ K0K1, we combine the upper bound K1 ≤ M L
with preceding bounds for K0 = C0 to obtain the desired result. ��

The preceding lemma may be applied to estimate the condition number
of several Schur complement preconditioners in two and three dimensions.

• The BPS preconditioner in two dimensions is an additive Schwarz subspace
preconditioner based on the edge and vertex globs, and a coarse space V0,T

or V0,P . The preceding result yields logarithmic bounds.
• The vertex space preconditioner in two or three dimensions, based on the

vertex, edge and face globs (in three dimensions) or their extensions, is
also an additive Schwarz subspace preconditioner. If coarse space V0,T is
employed, then the bound C (1 + log(h0/h))2 will hold in two dimensions,
while C (1 + (h0/h)) will hold in three dimensions. If coarse space V0,P is
employed, then the bound C (1 + log(h0/h))2 will hold in two and three
dimensions. Improved bounds independent of h0 and h can be proved,
depending only on the amount β of overlap, when the coefficient a(x) is
smooth, see [SM, DR17, DR10].

• The Schwarz subspace preconditioner for S based on the overlapping sub-
regions ∂Ω1, . . . , ∂Ωp of B and either coarse space V0,T or V0,P will yield
similar bounds as the vertex space preconditioner.

Readers are referred to [BJ8, BJ9, BR11, BR12, BR13, BR14, BR15, DR14]
and [DE3, DR10, WI6, MA17, XU10, KL8, TO10] for additional theory.



222 3 Schur Complement and Iterative Substructuring Algorithms

3.9.6 Balancing Domain Decomposition Preconditioner

We conclude our discussion on bounds for Schur complement preconditioners,
by estimating the condition number of the balancing domain decomposition
preconditioner using an algebraic framework introduced in [MA14, MA17].
We refer the reader to [DR14, DE3, DR18, TO10] for general convergence
estimates on Neumann-Neumann preconditioners.

We shall employ the following notation in our discussion. The number of
nodes on B will be denoted n and the number of nodes on B(i) = ∂Ωi\BD

will be denoted ni. The Euclidean inner product on IRn will be denoted:

(u,v) = uT v, ∀u, v ∈ IRn.

We also employ the inner product generated by the Schur complement S:

S(u,v) ≡ (Su,v) = uT Sv, ∀u,v ∈ IRn.

On each non-Dirichlet boundary segment B(i), we define a semi-norm:

|wi|2S(i) ≡
(
S(i)wi,wi

)
, for wi ∈ IRni .

The following Cauchy-Schwartz inequality will hold:

(
S(i)ui,vi

)
≤
(
S(i)ui,ui

)1/2 (
S(i)vi,vi

)1/2

, ∀ui, vi ∈ IRni ,

even when the Schur complement matrices S(i) is singular. Indeed, such a
Cauchy-Schwartz inequality follows from the Euclidean Cauchy-Schwartz in-
equality since the fractional powers (S(i))α are well defined for α ≥ 0 because
S(i) is symmetric positive semidefinite:(

S(i)ui,vi

)
=
(
(S(i))1/2ui, (S(i))1/2vi

)
≤
(
(S(i))1/2ui, (S(i))1/2ui

)1/2 (
(S(i))1/2vi, (S(i))1/2vi

)1/2

=
(
S(i)ui,ui

)1/2 (
S(i)vi,vi

)1/2

for all ui,vi ∈ IRni . When the subdomain stiffness matrix S(i) is singular, we
shall denote by Zi (identical to Ni in Chap. 3.7) an ni × di matrix:

Kernel(S(i)) ⊂ Range(Zi),

whose column space (i.e., range) contains the null space of S(i).
For each subdomain, let Ri (same as RB(i) in Chap. 3.7) denote the ni×n

matrix which restricts a nodal vector on B to its subvector corresponding to
nodes on B(i). For each subdomain, let Di denote a diagonal matrix of size
ni with positive diagonal entries such that the following identity holds:
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I =
p∑

i=1

RT
i DiRi,

which we refer to as a decomposition of unity. Define N (identical to matrix
C in Chap. 3.7) as the following n × d matrix, where d ≡ (d1 + · · · + dp):

N ≡
[
RT

1 DT
1 Z1 · · · RT

p DT
p Zp

]
.

We define T as the following n × n matrix:

T =
p∑

i=1

RT
i DT

i S(i)†DiRi,

where S(i)† denotes the Moore-Penrose pseudoinverse of matrix S(i), see
[ST13, GO4]. We define P̃0 as the following n × n symmetric matrix:

P̃0 = N
(
NT SN

)−1
NT and P0 = P̃0S.

By definition, P0 = P̃0S corresponds to the S-orthogonal projection onto
Range(N). Consequently, the following properties will hold:

P0P0 = P0

P0(I − P0) = 0
S(P0u,v) = S(u,v), ∀v ∈ Range(N), u ∈ IRn

S(P0u,v) = S(u, P0v), ∀u, v ∈ IRn

S(P0u, P0u) ≤ S(u,u), ∀u.

Employing the above notation, we express the matrix form of the balancing
domain decomposition preconditioner for S.

Lemma 3.111. The following properties will hold.

1. The inverse M−1 of the balanced domain decomposition preconditioner is:

M−1 = P̃0 + (I − P̃0S)T (I − SP̃0).

2. The preconditioned Schur complement matrix M−1S will have the form:

M−1S = P̃0S + (I − P̃0S)TS(I − P̃0S)

= P0 + (I − P0)TS(I − P0),
(3.137)

where M−1S will be symmetric in the S-inner product.

Proof. Follows from the hybrid Schwarz description of the balancing domain
decomposition preconditioner, in Chap. 3.7. ��
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Since the preconditioned matrix M−1S is symmetric in the S-inner prod-
uct, its condition number can be estimated as:

cond(M, S) =
λM

λm
, (3.138)

where λm and λM denote the minimum and maximum values of the general-
ized Rayleigh quotient associated with M−1S in the S-inner product:

λm ≤
S
(
M−1Su,u

)
S (u,u)

≤ λM , ∀u ∈ IRn\{0}. (3.139)

Estimation of the parameters λm, λM may be simplified using the
S-orthogonality of the decomposition u = P0u + (I − P0)u, as the follow-
ing result shows.

Lemma 3.112. Suppose the following condition holds:

γm ≤ S (TS(I − P0)u, (I − P0)u)
S ((I − P0)u, (I − P0)u)

≤ γM , ∀u ∈ IRn\{0}, (3.140)

for parameters 0 < γm ≤ γM Then, the following bound will hold:

cond(M,S) ≤ max{1, γM}
min{1, γm} . (3.141)

Proof. We will derive bounds for cond(M,S) by estimating the extreme values
of the generalized Rayleigh quotient of M−1S in the S-inner product, as
described in (3.138) and (3.139). By substituting (3.137) into S

(
M−1Su,u

)
,

we obtain the following equivalent expression:

S
(
M−1Su,u

)
= S (P0u + (I − P0)TS(I − P0)u,u)
= S (P0u,u) + S((I − P0)TS(I − P0)u,u)
= S (P0u, P0u) + S(TS(I − P0)u, (I − P0)u) .

(3.142)

Employing the Pythagorean theorem:

S(u,u) = S(P0u, P0u) + S((I − P0)u, (I − P0)u)

and substituting the bounds in (3.140) into (3.142) yields the estimates:

min{1, γm} ≤ S (P0u, P0u) + S (TS(I − P0)u, (I − P0)u)
S (P0u, P0u) + S ((I − P0)u, (I − P0)u)

≤ max{1, γM},

for u �= 0. ��

Next an alternative expression is derived for S (TS(I − P0)u,u). It is then
proved that γm = 1. Following that, Lemma 3.114 proves a bound for γM .
Readers are referred to [MA17] for additional details.
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Lemma 3.113. Given u ∈ IRn define ui ∈ IRni as follows:

ui ≡ S(i)†DjRi(I − P0)u for 1 ≤ i ≤ p,

and define
|ui|2S(i) ≡

(
S(i)ui,ui

)
, for 1 ≤ i ≤ p.

Then, the following identity will hold:

S (TS(I − P0)u, (I − P0)u) =
p∑

i=1

|ui|2S(i) . (3.143)

Furthermore, the lower bound γm = 1 will hold, i.e.,

S ((I − P0)u, (I − P0)u) ≤ S (TS(I − P0)u, (I − P0)u) , ∀u ∈ IRn.
(3.144)

Proof. To derive (3.143), express S (TS(I − P0)u, (I − P0)u) in the Euclidean
inner product, substitute T =

∑p
i=1 RT

i DT
i S(i)†DiRi and simplify as follows:

(TS(I − P0)u, S(I − P0)u)

=
(∑p

i=1 RT
i DT

i S(i)†DiRiS(I − P0)u, S(I − P0)u
)

=
∑p

i=1

(
S(i)†DiRiS(I − P0)u, DiRiS(I − P0)u

)
=
∑p

i=1

(
S(i)S(i)†DiRiS(I − P0)u, S(i)†DiRiS(I − P0)u

)
=
∑p

i=1

(
S(i)ui,ui

)
=
∑p

i=1 |ui|2S(i) .

To derive a lower bound for S (TS(I − P0)u, (I − P0)u), insert I =∑p
i=1 RT

i DiRi in S ((I − P0)u, (I − P0)) and expand to obtain:

S ((I − P0)u, (I − P0)) = (S(I − P0)u, (I − P0)u)

=
(∑p

i=1 RT
i DiRiS(I − P0)u, (I − P0)u

)
=
∑p

i=1

(
RT

i DiRiS(I − P0)u, (I − P0)u
)

=
∑p

i=1 (DiRiS(I − P0)u,Ri(I − P0)u).

(3.145)

By definition of P0, the vector S(I − P0)u will be balanced. Therefore it will
hold that DiRiS(I−P0)u ⊥ Kernel(S(i)), so a property of the pseudoinverse
yields DiRiS(I−P0)u = S(i)S(i)†DiRiS(I−P0)u, for 1 ≤ i ≤ p. Substituting
this into (3.145) and expressing the result in terms of ui, and applying the
Cauchy-Schwartz inequality yields:
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S ((I − P0)u, (I − P0))

=
∑p

i=1 (DiRiS(I − P0)u,Ri(I − P0)u)

=
∑p

i=1

(
S(i)S(i)†DiRiS(I − P0)u,Ri(I − P0)u

)
=
∑p

i=1

(
S(i)ui,Ri(I − P0)u

)
≤
∑p

i=1

(
S(i)ui,ui

)1/2 (
S(i)Ri(I − P0)u,Ri(I − P0)u

)1/2

≤
(∑p

i=1(S
(i)ui,ui)

)1/2 (∑p
i=1(S

(i)Ri(I − P0)u,Ri(I − P0)u)
)1/2

=
(∑p

i=1 |ui|2S(i)

)1/2 ((∑p
i=1 RT

i S(i)Ri(I − P0)u, (I − P0)u)
)1/2

=
(∑p

i=1 |ui|2S(i)

)1/2 (S(I − P0)u, (I − P0)u)1/2
.

Canceling common terms and squaring the resulting expression yields:

S ((I − P0)u, (I − P0)) ≤
p∑

i=1

|ui|2S(i) = S (TS(I − P0)u, (I − P0)u)

where bound (3.143) was employed. This yields the bound γm = 1. ��

Lemma 3.114. Suppose the following assumptions hold.

1. Let K denote the following set:

K ≡
{

(u1, . . . ,up) : ui ∈ IRni , ui ⊥ Kernel(S(i)), S(i)ui ⊥ Range(Zi)
}
.

2. Let C > 0 be as defined below:

C = sup
(u1,...,up)∈K\0

∑p
i=1 |Ri

∑p
j=1 RT

j DT
i uj |2S(i)∑p

i=1 |ui|2S(i)

. (3.146)

Then, the following estimate will hold:

γM ≤ C. (3.147)

Proof. γM corresponds to the maximum of the generalized Rayleigh quotient
associated with TS on the subspace Range(I−P0) in the inner product S(., .).
To estimate γM , expand (TS(I − P0)u, S(I − P0)u) employing (3.143). Then
substitute that S =

∑p
j=1 RT

j S(j)Rj , and simplify the resulting expression:



3.9 Theoretical Results 227

(TS(I − P0)u, S(I − P0)u) =
∑p

i=1

(
S(i)ui,ui

)
=
∑p

i=1

(
S(i)S(i)†DiRiS(I − P0)u,ui

)
=
∑p

i=1

(
S(I − P0)u,RT

i DT
i ui

)
=
∑p

i=1

(
(
∑p

j=1 RT
j S(j)Rj)(I − P0)u,RT

i DT
i ui

)
=
∑p

i=1

∑p
j=1

(
S(j)Rj(I − P0)u,RjRT

i DT
i ui

)
=
∑p

j=1

(
S(j)Rj(I − P0)u,Rj(

∑p
i=1 RT

i DT
i ui)

)
≤
∑p

j=1

(
S(j)Rj(I − P0)u,Rj(I − P0)u

)1/2(
S(j)Rj(

∑p
i=1 RT

i DT
i ui),Rj(

∑p
i=1 RT

i DT
i ui)

)1/2

≤
(∑p

j=1(S
(j)Rj(I − P0)u,Rj(I − P0)u)

)1/2

(∑p
j=1(S

(j)Rj(
∑p

i=1 RT
i DT

i ui),Rj(
∑p

i=1 RT
i DT

i ui))
)1/2

= (S(I − P0)u, (I − P0)u)1/2
(∑p

j=1 |Rj

∑p
i=1 RT

i DT
i ui|2S(j)

)1/2

≤
(∑p

i=1 |ui|2S(i)

)1/2
(∑p

j=1 |Rj

∑p
i=1 RT

i DT
i ui|2S(j)

)1/2

,

where (3.144) was applied to obtain the last line. Canceling the common terms
and squaring the resulting expression, yields:

(TS(I − P0)u, S(I − P0)u) ≤
p∑

j=1

|
p∑

i=1

RT
i DT

i ui|2S(j) .

Applying (3.146) yields (TS(I − P0)u, S(I − P0)u) ≤ C S((I − P0)u,
(I − P0)u), which yields an upper bound with γM ≤ C. See [MA17]. ��

By combining bound (3.141) with bounds (3.144) and (3.147), we obtain
the condition number estimate cond(M,S) ≤ C, where C is defined in (3.146).
Next, we shall estimate C for a finite element discretization. The following
notation will be employed. Let x1, . . . , xn denote the nodes on B. For each
glob G, let IG denote the following n × n diagonal matrix:

(IG)ii =

{
1, if xi ∈ G

0, if xi �∈ G.

By construction, it will hold that:∑
{G⊂G}

IG = I. (3.148)

On each ∂Ωi, let y
(i)
j for 1 ≤ j ≤ ni denote the nodes on B(i) in the local

ordering. Given glob G ∈ (∂Ωi ∩ ∂Ωj) define Iji
G as the matrix of size ni × nj

Iji
G ≡ RjIGRT

i .
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Expressing RjRT
i = RjIRT

i and substituting for I using (3.148) yields:

RjRT
i =

∑
{G⊂(∂Ωi∩∂Ωj)}

Iji
G .

Diagonal matrix Di of size ni has the following representation:

Di ≡
∑

{G⊂∂Ωi}
di(G)Iii

G,

where the scalars di(G) are defined by:

di(G) ≡ ρt
i∑

{l:G⊂∂Ωl} ρt
l

, for t ≥ 1
2
.

When G ⊂ (∂Ωi ∩ ∂Ωj), then the following will hold:

di(G) ≤ ρt
i

ρt
i + ρt

j

.

Additionally:

RjRT
i Diui =

∑
{G⊂∂Ωi∩∂Ωj} RjIGRT

i Diui

=
∑

{G⊂∂Ωi∩∂Ωj} Iji
G Diui

=
∑

{G⊂∂Ωi∩∂Ωj} Iji
G di(G)Iii

Gui

=
∑

{G⊂∂Ωi∩∂Ωj} di(G)Iji
G ui.

(3.149)

Lemma 3.115. Suppose the following assumptions hold.

1. Let ui ∈ Vh(∂Ωi) denote a finite element function with associated nodal
vector ui ∈ IRni on B(i).

2. Let R > 0 be the bound in the following discrete harmonic extension:

1
ρj

|Iji
G ui|2S(j) ≤ R

1
ρj

|ui|2S(i) , (3.150)

for ui ⊥ Kernel(S(i)) and S(i)ui ⊥ Range(Zi).

For K and L defined by (3.122) and (3.121), the following estimate will hold:

sup
(u1,...,up) �=0

∑p
i=1 |Ri

∑p
j=1 RT

j DT
i uj |2S(i)∑p

i=1 |ui|2S(i)

≤ K2 L2 R,

yielding cond(M,S) ≤ K2 L2 R.
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Proof. We follow the proof in [MA14, MA17]. Apply the generalized trian-
gle inequality to estimate the term |Rj

∑p
i=1 RT

i Diui|2S(j) and use assump-
tion (3.122) so that at most K terms of the form RjRT

i Diui will be nonzero:

|
∑p

i=1 RjRT
i Diui|2S(j) ≤

(∑p
i=1 |RjRT

i Diui|S(j)

)2
≤ K

∑p
i=1 |RjRT

i Diui|2S(j) .

Summing over the indices j yields:

p∑
j=1

|
p∑

i=1

RjRT
i Diui|2S(j) ≤ K2

p∑
i=1

max
j

|RjRT
i Diui|2S(j) . (3.151)

By property (3.149) it holds that:

RjRT
i Diui =

∑
{G:G⊂∂Ωi∩∂Ωj}

di(G)Iji
G ui.

Applying the triangle inequality and employing assumption (3.150) yields:

|RjRT
i Diui|S(j) ≤

∑
{G⊂∂Ωi∩∂Ωj} di(G)|Iji

G ui|S(j)

≤
∑

{G⊂∂Ωi∩∂Ωj}
ρt

i

ρt
i+ρt

j
|Iji

G ui|S(j)

≤
∑

{G⊂∂Ωi∩∂Ωj}
ρ

t− 1
2

i ρ
1
2
j

ρt
i+ρt

j
R1/2|ui|S(i)

≤ LR1/2 supρ>0
ρ1/2

1+ρt |ui|S(i)

≤ LR1/2 |ui|S(i) .

Substituting the above in (3.151) yields the desired result. ��

The condition number of the balancing domain decomposition system now
follows immediately from the preceding result.

Theorem 3.116. If the assumptions in Lemma 3.115 hold, then the balancing
domain decomposition preconditioned system will satisfy:

cond(M, S) ≤ C K2 L2 (1 + log(h0/h))2,

when t ≥ 1
2 , for some C > 0 independent of h0, h and coefficients {ρj}.

Proof. By Lemma 3.115, the condition number of the balancing domain
decomposition preconditioned system will satisfy the bound:

cond(M,S) ≤ K2 L2 R,

where the parameters K, L and R are as defined earlier. The parameters
K and L are generally independent of h, h0 and {ρj}, depending only on
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the spatial dimension and the shape regularity properties of the subdomain
decomposition. Thus, we only need to estimate parameter R.

Accordingly, let ui denote a finite element function on ∂Ωi with associ-
ated vector of nodal values ui ∈ IRni satisfying ui ⊥ Kernel(S(i)). If matrix
S(i) is singular, then (1, . . . , 1)T ∈ Kernel(S(i)) and so a Poincaré-Freidrich’s
inequality of the following form will hold for ui

|ui|21/2,∂Ωi
≤ C

1
ρi
|ui|2S(i) ,

for some C > 0 independent of h0, h and {ρj}. A similar Poincaré-Freidrich’s
inequality will hold for ui if S(i) is not singular (since c(x) = 0 and due to zero
Dirichlet values on a segment of ∂Ωi). In either case, Iji

G vi will correspond
to the finite element function IGui restricted to ∂Ωj , with ∂Ωi ∩ ∂Ωj as
the support. Applying the equivalence between the scaled Schur complement
energy 1

ρj
|Iji

G ui|2S(j) and the fractional Sobolev boundary energy |IGui|21/2,∂Ωj
,

the equivalence between |IGui|21/2,∂Ωj
and |IGui|21/2,∂Ωi

(due to support of
IGui on ∂Ωi ∩ ∂Ωj), and subsequently applying the glob theorem, we arrive
at the following estimates:

1
ρj
|Iji

G ui|2S(j) = |IGui|21/2,∂Ωj

≤ C|IGui|21/2,∂Ωi

≤ C (1 + log(h0/h))2 |ui|21/2,∂Ωi

≤ C (1 + log(h0/h))2 1
ρi
|ui|2S(i) ,

where we have employed the Poincaré-Freidrich’s inequality in the last line,
due to the constraint ui ⊥ Kernel(S(i)). Thus R ≤ C (1 + log(h0/h))2 for
some C > 0 independent of h0, h and {ρi}. ��

For additional details, the reader is referred to [MA14, MA17, KL8].
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Lagrange Multiplier Based Substructuring:
FETI Method

In this chapter, we describe the FETI method (the Finite Element Tearing
and Interconnecting method) [FA2, FA16, FA15, MA25, FA14, KL8]. It is a
Lagrange multiplier based iterative substructuring method for solving a finite
element discretization of a self adjoint and coercive elliptic equation, based on
a non-overlapping decomposition of its domain. In traditional substructuring,
each subdomain solution is parameterized by its Dirichlet value on the bound-
ary of the subdomain. The global solution is sought by solving a reduced Schur
complement system for determining the unknown Dirichlet boundary values
of each subdomain solution. By contrast, in Lagrange multiplier substructur-
ing, each subdomain solution is parameterized by a Lagrange multiplier flux
variable which represents the Neumann data of each subdomain solution on
the subdomain boundary. The global solution is then sought by determin-
ing the unknown Lagrange multiplier flux variable, by solving a saddle point
problem, resulting in a highly parallel algorithm with Neumann subproblems.
Applications include elasticity, shell and plate problems [FA2, FA16, FA15].

Our discussion is organized as follows. Chap. 4.1 describes the constrained
minimization problem underlying the FETI method. Given a non-overlapping
decomposition, the FETI method employs an extended energy functional asso-
ciated with the self adjoint and coercive elliptic. It is obtained by weakening
the continuity of the displacements across the subdomain boundaries. The
FETI method then minimizes this extended energy, subject to the constraint
that the local displacements be continuous across the subdomains. Chap. 4.2
describes the Lagrange multiplier formulation associated with this constrained
minimization problem. The Lagrange multiplier variables correspond to flux or
Neumann data on the subdomain boundaries. Chap. 4.3 describes a projected
gradient algorithm for determining the Lagrange multiplier flux variables in
the FETI method. Several preconditioners are outlined. Chap. 4.4 describes
the FETI-DP and BDDC variants of the FETI algorithm. Both methods are
based on the PCG method with a special coarse space and with local problems
that impose constraints on the globs. They yield identical convergence rates
and provide advantages in parallelizability.
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4.1 Constrained Minimization Formulation

The FETI method is based on a constrained minimization formulation of an
elliptic equation. Given a non-overlapping decomposition of a domain, local
solutions are sought on each subdomain which minimize an extended global
energy, subject to the constraint that the local solutions match across the sub-
domain boundaries. In this section, we describe the constrained minimization
formulation of a self adjoint and coercive elliptic equation, based on a non-
overlapping decomposition. We also describe the finite element discretization
of the elliptic equation and its constrained minimization formulation.

4.1.1 Constrained Minimization Problem: Continuous Case

Consider the following self adjoint and coercive elliptic equation:{
−∇ · (a(x)∇u) + c(x)u = f(x), in Ω

u(x) = 0, on ∂Ω.
(4.1)

The weak formulation of (4.1) seeks u ∈ H1
0 (Ω) satisfying:⎧⎪⎨

⎪⎩
A(u, v) = F (v), ∀v ∈ H1

0 (Ω), where
A(u, v) ≡

∫
Ω

(a∇u · ∇v + c u v) dx

F (v) ≡
∫

Ω
f v dx.

(4.2)

The minimization formulation of (4.1) seeks u ∈ H1
0 (Ω):

J(u) = min
v∈H1

0 (Ω)
J(v),

where J(v) ≡ 1
2A(v, v) − F (v). Given a non-overlapping decomposition

Ω1, . . . , Ωp of Ω, we define its internal boundary segments B(l) = ∂Ωl ∩ Ω
and external boundary segments B[l] = ∂Ωl ∩ ∂Ω, and common interfaces
Blj = ∂Ωl ∩ ∂Ωj . We also define the following subdomain forms and spaces:⎧⎪⎨

⎪⎩
AΩl

(ul, vl) ≡
∫

Ωl
(a∇ul · ∇vl + c ul vl) dx, ∀ul, vl ∈ H1

B[l]
(Ωl)

FΩl
(vl) ≡

∫
Ωl

f vl dx, ∀vl ∈ H1
B[l]

(Ωl) where
H1

B[l]
(Ωl) ≡ {v ∈ H1(Ωl) : v = 0 on B[l]}.

Given a collection of subdomain functions vE = (v1, . . . , vp) where each local
function vl(·) ∈ H1

B[l]
(Ωl), we define an extended energy functional JE(·) as:

JE(vE) =
p∑

l=1

(
1
2
AΩl

(vl, vl) − FΩl
(vl)
)

. (4.3)

By construction, if v ∈ H1
0 (Ω) and vl(·) ≡ v(·) on Ωl for 1 ≤ l ≤ p, then it

can be verified that J(v) = JE(vE). Generally, vl �= vj need not match across
common interfaces Blj = ∂Ωl ∩ ∂Ωj , yet JE(vE) is well defined.
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Define I∗(l) ≡ {j : Blj �= ∅}. Note that j ∈ I∗(l) if and only if l ∈ I∗(j).
For 1 ≤ l ≤ p, choose I(l) ⊂ I∗(l) as a subindex set, such that if Blj �= ∅, then
either j ∈ I(l) or l ∈ I(j), but not both. Additionally, define I∗(l) ⊂ I(l) as
the subindex set of interface segments of dimension (d − 1) when Ω ⊂ IRd.
Heuristically, we define the following constraint set of local functions:

V0 ≡ {vE : vl = vj on Blj if j ∈ I(l), 1 ≤ l ≤ p}.

Then V0 will consist of local functions which match across subdomains. Heuris-
tically, we expect that minimizing JE(vE) in V0 will yield:

JE(uE) = min
vE∈V0

JE(vE) (4.4)

where uE = (u1, . . . , up) will satisfy ul = u on Ωl for 1 ≤ l ≤ p, for the desired
solution u(.). The FETI method employs a Lagrange multiplier formulation of
a discrete version of this problem, and iteratively solves the resulting saddle
point system using a preconditioned projected gradient method.

4.1.2 Constrained Minimization Problem: Discrete Case

Let Th(Ω) denote a quasiuniform triangulation of Ω with n nodes in Ω. Let
Vh denote a space of finite element functions on the triangulation Th(Ω) of Ω.
A finite element discretization of (4.1) will seek uh ∈ Vh ∩ H1

0 (Ω) such that:

A(uh, vh) = F (vh), ∀vh ∈ Vh ∩ H1
0 (Ω).

If {φ1, . . . , φn} denotes a nodal basis for Vh ∩ H1
0 (Ω), then, the resulting

discretization will yield the linear system:

Au = f , (4.5)

where A is symmetric positive definite with entries Aij = A(φi, φj), and u
denotes the displacement vector with uh(x) =

∑n
i=1(u)iφi(x) and f denotes

the load vector, with (f)i = F (φi), for a chosen ordering of the nodes.
Given a nonoverlapping decomposition Ω1, . . . , Ωp of Ω, as in Fig. 4.1,

we shall block partition the nodal unknowns on each subdomain as follows.
Nodes in Ωi will be regarded as “interior” nodes in Ωi, while nodes on B(i)

Ω1 Ω2 Ω3 Ω4

Ω5 Ω6 Ω7 Ω8

Ω9 Ω10 Ω11 Ω12

Ω13 Ω14 Ω15 Ω16

Fig. 4.1. A non-overlapping decomposition
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as “subdomain boundary” nodes. The common interface will be denoted as
B = ∪p

i=1B
(i), and the number of nodes in Ωi and B(i) will be denoted

as n
(i)
I and n

(i)
B , respectively, with ni ≡ (n(i)

I + n
(i)
B ). We shall denote by

u(i)
I ∈ IRn

(i)
I and u(i)

B ∈ IRn
(i)
B vectors of finite element nodal values on Ωi

and B(i), respectively, for the chosen local ordering of the nodes. The local
displacements, local stiffness matrices and load vectors will be denoted as:

ui =

[
u(i)

I

u(i)
B

]
, A(i) =

[
A

(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

]
, f i =

[
f (i)
I

f (i)
B

]
, for 1 ≤ i ≤ p, (4.6)

given a local ordering of the nodes. We shall denote by Ri the restriction map
which maps a nodal vector u ∈ IRn of nodal values on Ω onto its subvector
ui = Riu of size ni of nodal values on Ωi ∪B(i). Its transpose RT

i will extend
by zero a nodal vector on Ωi ∪B(i) to the rest of Ω. Decomposing A(., .) and
F (.) based on the subdomains, will yield the subassembly identity (3.10):{

A =
∑p

i=1 RT
i A(i)Ri

f =
∑p

i=1 RT
i f i,

(4.7)

relating the local and global stiffness matrices and load vectors.
When coefficient c(x) = 0 in (4.1) and Ωi is floating, i.e., Ωi ⊂ Ω, then

the local stiffness matrix A(i) will be singular with 1 ≡ (1, . . . , 1)T spanning
Kernel

(
A(i)

)
. For discretizations of more general elliptic equations, such as

the equations of linear elasticity, Kernel
(
A(i)

)
may have dimension di up to

six (for Ω ⊂ IR3). When matrix A(i) is singular, we shall let Z(i) denote an
ni × di matrix whose columns form a basis for the kernel of A(i):

Range(Z(i)) = Kernel(A(i)). (4.8)

When A(i) is nonsingular, we define Z(i) = 0 and set di = 0. The FETI
algorithm solves (4.5) by a constrained minimization reformulation of (4.5).
The next result describes a minimization problem equivalent to (4.5).

Lemma 4.1. Suppose A = AT > 0 and let u solve the linear system (4.5).
Then u will minimize the associated energy functional:

J(u) = min
v∈IRn

J(v), where J(v) ≡ 1
2
vT Av − vT f , for v ∈ IRn. (4.9)

Proof. At the critical point of J (·), we obtain 0 = ∇J (u) = Au − f . Since
A = AT > 0, the critical point u will correspond to a minimum. ��

The constrained minimization problem employed in the FETI method is
obtained by weakening the requirement that the subdomain finite element
functions be continuous across the interface B, and by subsequently enforcing
continuity across B as a constraint. In terms of nodal vectors, each local
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displacement vector vi = (v(i)T

I ,v(i)T

B )T in an extended global displacement
vE ≡ (vT

1 , . . . ,vT
p )T of size nE = (n1+ · · ·+np), need not match with adjacent

displacements on B(i)∩B(j). To determine an extended displacement vE whose
components match on the interface B, constraints are imposed on vE and an
extended energy functional is minimized subject to these constraints.

The FETI method also employs extended loads fE ≡ (fT
1 , . . . , fT

p )T , where

f i = (f (i)T

I , f (i)T

B )T denote local loads, and an extended block diagonal stiffness
matrix AEE ≡ blockdiag

(
A(1), . . . , A(p)

)
of size nE , based on the local stiffness

matrices A(i). By construction, the extended stiffness matrices, displacement
and load vectors will have the following block structure:

AEE ≡

⎡
⎢⎣

A(1) 0
. . .

0 A(p)

⎤
⎥⎦ , vE ≡

⎡
⎢⎣

v1

...
vp

⎤
⎥⎦ , fE ≡

⎡
⎢⎣

f1

...
fp

⎤
⎥⎦ . (4.10)

Given matrices Z(i) of size ni ×min{1, di} whose columns span the null space
of A(i) with Range(Z(i)) = Kernel(A(i)), a block matrix Z of size nE × d:

Z ≡

⎡
⎢⎣

Z(1) 0
. . .

0 Z(p)

⎤
⎥⎦ (4.11)

will also be employed, where d = min{1, d1} + · · · + min{1, dp}.
In the following, we introduce the extended energy functional JE(wE) that

corresponds to the sum of the local displacement energies.

Lemma 4.2. Suppose the following assumptions hold for v ∈ IRn:

1. Define wi = Riv ∈ IRni and wE =
(
wT

1 , . . . ,wT
p

)T ∈ IRnE .

2. Given local load vectors f i =
(
f (i)T

I , f (i)T

B

)T

∈ IRni define:

f =
p∑

i=1

RT
i f i ∈ IRn and fE =

(
fT
1 , . . . , fT

p

)T ∈ IRnE .

3. Let JE(wE) denote the following extended energy functional:

JE(wE) ≡ 1
2
wT

E AEEwE − wT
E fE . (4.12)

Then, it will hold that J(v) = JE(wE), for J(v) defined by (4.9).

Proof. The subassembly identity (4.7) for the stiffness matrix yields:

vT Av =
p∑

i=1

vT RT
i A(i)Riv = wT

E AEEwE ,
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since wi = Riv. The subassembly identity for load vectors yields:

vT f = vT

(
p∑

i=1

RT
i f i

)
=

p∑
i=1

(Riv)T f i =
p∑

i=1

wT
i f i = wT

E f .

Substituting these into J(v) and JE(wE) yields the desired result. ��

Remark 4.3. When f =
∑p

i=1 RT
i f i, the above equivalence between J(v) and

JE(wE) will hold only when the constraints wi = Riv for 1 ≤ i ≤ p are
satisfied. By construction, the parametric representation wi = Riv in terms
of v ∈ IRn ensures that the nodal values of w(i)

B match with those of w(j)
B for

nodes on B(i) ∩B(j), corresponding to nodal values of v at the specific nodes.

A constrained minimization formulation of (4.5) can now be obtained,
provided a matrix M can be constructed, such that wi = Riv for 1 ≤ i ≤ p

if and only if MwE = 0 for wE =
(
wT

1 , . . . ,wT
p

)T :

V0 ≡
{(

(R1v)T , . . . , (Rpv)T
)T

: v ∈ IRn
}

= {wE ∈ IRnE : MwE = 0}.
(4.13)

Here M will be a matrix of size m×nE . When matrix M can be constructed,
the minimization problem (4.9) can be expressed as a constrained minimiza-
tion of the extended energy functional JE(wE) within the constraint set V0.

Lemma 4.4. Suppose the following assumptions hold.

1. Let f =
∑p

i=1 RT
i f i and fE =

(
fT
1 , . . . , fT

p

)T .
2. Let u denote the minimum of (4.9).
3. Let V0 and matrix M of size m × nE be as in (4.13).
4. Let wE =

(
wT

1 , . . . ,wT
p

)T denote the constrained minimum:

JE(wE) = min
vE∈V0

JE(vE). (4.14)

Then, the following results will hold:

wi = Riu, for i = 1, . . . , p.

Proof. By definition of subspace V0, the following parametric representation
wi = Riv will hold for 1 ≤ i ≤ p and for some v ∈ IRn. An application of the
preceding lemma will yield the desired result. ��

Construction of Matrix M . We shall now describe how to construct a
matrix M so that the representation V0 = Kernel(M) holds in (4.13). The
matrix M will be chosen so that the equation MwE = 0 enforces each admis-
sible pair of local displacement vectors w(i)

B and w(j)
B to match on the nodes

in B(i) ∩ B(j). We let nB denote the number of nodes on B = ∪p
i=1B

(i).



4.1 Constrained Minimization Formulation 237

Definition 4.5. Given nodes x1, . . . , xnB
on interface B, we define:⎧⎪⎪⎨

⎪⎪⎩
W (xi) ≡ {j : xi ∈ ∂Ωj}

degree (xi) ≡ |W (xi)|

index
(
xl, B

(j)
)
≡ local index of xl in B(j).

(4.15)

Here W (xi) denotes the indices of all subdomains whose boundaries contain
xi, and the degree of a node xi denotes the number of distinct subdomain
boundaries to which it belongs.

There is much arbitrariness in the choice of matrix M . Each row of matrix
M must be chosen to enforce a constraint which matches two nodal values.
Each node xi ∈ B will belong to degree (xi) distinct subdomain boundaries.
In principle, we may require matching of nodal values of vl and vj at node
xi for each pair of indices l, j ∈ W (xi). This can be done by requiring that
the difference between the nodal value of vl and vj be zero at node xi, for
each pair of indices l, j ∈ W (xi). However, this will typically yield redundant
equations when degree (xi) ≥ 3. In practice, it will be sufficient to select a
subset of linearly dependent constraints so that all such matching conditions
can be derived from the selected few constraints. We describe two alternate
choices of matrix M (not necessarily full rank), having the block structure:

M =
[
M (1) · · · M (p)

]
, (4.16)

so that MvE = M (1)v1 + · · · + M (p)vp where M (i) is of size m × ni. Since

each vi =
(
v(i)T

I ,v(i)T

B

)T

corresponds to interior and boundary nodal values,

each M (i) may further be partitioned as:

M (i) = [M (i)
I M

(i)
B ] = [0 M

(i)
B ]. (4.17)

The submatrix M
(i)
I will be zero since the matching of boundary values does

not involve interior nodal values. There is arbitrariness in the choice of entries
of M . The matrices we shall construct will have their entries Mij chosen from
{−1, 0,+1}, selected based on the following observations. Corresponding to
each node xi ∈ B, there will be 1

2 degree(xi) (degree(xi) − 1) distinct pairs of
subdomains which contain node xi. For each l, j ∈ W(xi) we will require that
the difference of the entries of vl and vj be zero at xi.

Specifically, if l, j ∈ W(xi) let l̃i = index(xi, B
(l)) and j̃i = index(xi, B

(j)).
Then the continuity of vl and vj at node xi can be enforced as follows:(

v(l)
B

)
l̃i
−
(
v(j)

B

)
j̃i

= 0, if l, j ∈ W(xi). (4.18)

This will yield entries of M to be from {−1, 0, +1}. By convention, we shall
require l < j, and in the following, describe two different choices of matrices
M depending on how many index pairs l, j are selected from W(xi).
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Choice 1. For each node xi, arrange all the indices in W(xi) in increasing
order. For each consecutive pair of such indices, impose one constraint, yield-
ing a total of degree(xi)−1 constraints corresponding to node xi. In this case,
the constraints will not be redundant, and the total number m of constraints:

m =
nB∑
i=1

(degree(xi) − 1) .

By construction, all such constraints will be linearly independent, and matrix
M will be of full rank (with rank equal to m). The actual entries of matrix
M will depend on the ordering of the constraints used. If l < j are consecu-
tive indices in W(xi), let k(i, l, j) denote the numbering (between 1 and m)
assigned to the constraint involving node xi and subvectors vl and vj . Then,
for each such node xi and consecutive indices l < j from W(xi) define the
entries of M as: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
M

(l)
B

)
k,r

= 1, if r = l̃i(
M

(l)
B

)
k,r

= 0, if r �= l̃i(
M

(j)
B

)
k,r

= −1, if r = j̃i(
M

(l)
B

)
k,r

= 0, if r �= j̃i.

(4.19)

All other entries in the k’th row of M are defined to be zero.

Choice 2. An alternative choice of matrix M may be obtained as follows.
For each node xi, impose one constraint corresponding to each distinct pair
l < j of indices in W(xi). Since there are degree(xi) such indices, there will
be 1

2 degree(xi) (degree(xi) − 1) such constraints, so that:

m =
nB∑
i=1

1
2

degree(xi) (degree(xi) − 1) .

In this case, several of the constraints will be redundant if degree(xi) ≥ 3.
Consequently, matrix M will not be of full rank if degree(xi) ≥ 3 for at least
one node xi. The entries of matrix M can be defined as in (4.19), noting that
l, j ∈ W(xi) need not be consecutive indices.

Choice 1 for M is easier to analyze than choice 2, due to it being of full
rank. However, choice 2 is preferable for parallel implementation [FA14]. In
both cases, however, the constraint set V0 will satisfy:

V0 =
{(

(R1v)T , . . . , (Rpv)T
)T

: v ∈ IRn
}

= Kernel (M) ,

as may be verified by the reader.

Remark 4.6. For a two subdomain decomposition, all nodes on B will have
degree two. Consequently, choices 1 and 2 will coincide. In this case, matrix
M will have the following block structure with M

(1)
B = I and M

(2)
B = −I:

M =
[
0 I 0 −I

]
,

provided all nodes on B are ordered identically in both subdomains.
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4.2 Lagrange Multiplier Formulation

To determine the solution to the constrained minimization problem (4.14),
the FETI method reformulates (4.14) as a saddle point problem (saddle point
or Lagrange multiplier methodology is described in [CI4, GI3] and Chap. 10).
It introduces new variables, referred to as Lagrange multipliers, one for each
constraint. Further, it associates a function, referred to as the Lagrangian
function, whose saddle point (a critical point which is neither a local maximum
nor a local minimum) yields the constrained minimum from its components.
At the saddle point of the Lagrangian function, its gradient with respect to
the original and Lagrange multiplier variables will be zero, and the resulting
system of equations can be solved to determine the constrained minimum. In
the following result, we describe the saddle point system associated with the
constrained minimization problem (4.14).

Lemma 4.7. Suppose the following assumptions hold.

1. Let uE =
(
uT

1 , · · · ,uT
p

)T ∈ IRnE denote the solution of:

JE(uE) = min
wE∈V0

JE(wE) (4.20)

where
V0 ≡ {wE ∈ IRnE : MwE = 0}. (4.21)

2. Let M be a matrix of size m × nE of full rank m.

Then, there will exist a vector λ ∈ IRm such that:[
AEE MT

M 0

][
uE
λ

]
=

[
fE
0

]
. (4.22)

Proof. To verify the first block row of (4.22), for each choice of nonzero vector
vE ∈ V0 consider the line x(t) = uE + tvE ∈ V0 for t ∈ IR. By construction,
it passes through uE when t = 0 with:

dx(t)
dt

∣∣∣∣
t=0

= vE .

Since uE corresponds to the minimum of JE (·) in V0, and since x(t) ⊂ V0

with x(0) = uE the function JE (x(t)) will attain a minimum along the line
at t = 0. Applying the derivative test yields:

dJE(x(t))
dt

∣∣∣
t=0

= 0, ∀vE ∈ V0 ⇔ ∇JE (uE) · vE = 0, ∀vE ∈ V0

⇔ ∇JE (uE) ⊥ V0

⇔ ∇JE (uE) ∈ Kernel(M)⊥

⇔ ∇JE (uE) ∈ Range(MT ).

We may represent any vector in Range(MT ) in the form −MT λ for λ ∈ IRm.
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Choosing −MT λ (the negative sign here is for convenience), we obtain:

AEEuE − fE = ∇JE (uE) = −MT λ, for some λ ∈ IRm,

which yields the first block row of (4.22). To verify the second block row
of (4.22), note that since uE ∈ V0, we obtain M uE = 0. ��

Remark 4.8. Each λi in λ = (λ1, . . . , λm)T is referred to as a Lagrange multi-
plier. There will be m Lagrange multipliers, one corresponding to each row of
M which enforces one of the m constraints. Since each λi is a dual variable to
the Dirichlet data (see Chap. 11.2), it will represent an inter-subdomain flux.

Remark 4.9. To ensure solvability of (4.22), it is sufficient to require that M is
an m×nE matrix of full rank m, and to require that matrix AT

EE = AEE ≥ 0 be
coercive on the null space V0 of M . This latter requirement can be equivalently
stated as Kernel(M)∩Kernel(AEE) = {0}. When M is not of full rank, λ will
not be uniquely determined.

Given µ ∈ IRm of Lagrange multipliers, we associate a Lagrangian function
L(vE , µ) with the constrained minimization problem (4.20):{

L(vE , µ) ≡ JE (vE) + µT MvE

= 1
2v

T
E AEEvE − vT

E fE + µT MvE .
(4.23)

By construction, the derivative test for the critical point of L(·, ·) yields (4.22).
We shall associate the following dual function with the Lagrangian function.

Definition 4.10. For µ ∈ IRm define the dual function D(µ):

D(µ) ≡ inf
vE

L(vE , µ).

Remark 4.11. Since matrix AEE may be singular, the above infimum could be
−∞ if (fE − MT µ) �∈ Range(AEE). Recall that Z of rank d satisfies:

Range(Z) = Kernel(AEE).

Using Z, we may define the class G of admissible Lagrange multipliers as:

G ≡ {µ : ZT (fE − MT µ) = 0}.

By definition, if µ ∈ G, then D(µ) > −∞.

Definition 4.12. For vE ∈ IRnE define a function E(vE):

E(vE) ≡ sup
µ

L(vE , µ).
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Remark 4.13. It is easily verified that since L(·, ·) is linear in µ:

E(vE) =

{
+∞, if MvE �= 0
JE (vE) , if MvE = 0.

So we define a class of admissible displacements vE as V0:

V0 ≡ {vE : MvE = 0} .

By definition, if vE ∈ V0 then we will have E(vE) = JE (vE) < ∞.

The term “saddle point” is motivated by the following property.

Definition 4.14. We say that (uE ,λ) is a saddle point of the Lagrangian
functional L(., .) if the following conditions are satisfied:

L(uE , µ) ≤ E(uE) = L(uE ,λ) = D(λ) ≤ L(vE ,λ), ∀vE , µ.

Remark 4.15. Thus, the saddle point (uE , λ) corresponds to a minimum of
L(vE , λ) as vE is varied, and to a maximum of L(uE , µ) as µ is varied. As
mentioned before, the first order derivative test (differentiation with respect
to vE and µ) for a critical point of L(vE , µ) at (uE , λ) yields system (4.22).

In the next section, we describe an algorithm for determining uE and λ.

4.3 Projected Gradient Algorithm

In this section, following [FA14] we describe an iterative algorithm for obtain-
ing the solution uE and λ to saddle point system (4.22). Since matrix AEE
may be singular, traditional saddle point iterative algorithms from Chap. 10
need to be modified, and we discuss these modifications [FA15, FA14]. We
assume that if AEE is singular, that Z has rank d. We define G ≡ MZ as a
matrix of size m × d. Due to the block structure of matrices M and Z, we
obtain:

G = MZ =
[
M (1)Z(1) · · · M (p)Z(p)

]
. (4.24)

When local stiffness matrix A(i) is nonsingular, Z(i) = 0 and M (i)Z(i) = 0.
The next result describes a system for determining λ, and subsequently uE .

Lemma 4.16. Suppose the following assumptions hold.

1. Let
(
uT
E , λT

)T denote the solution to the saddle point system (4.22):{
AEEuE + MT λ = fE

MuE = 0.
(4.25)
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Then, the following results will hold for G = M Z defined by (4.24):

1. The Lagrange multiplier λ will solve the following reduced system:{
P0 K λ = P0 e

GT λ = g,
(4.26)

where P0 ≡ I − G(GT G)†GT , K ≡ MA†
EEMT , e ≡ MA†

EE fE , g ≡ ZT fE ,
and A†

EE and (GT G)† denote Moore-Penrose pseudoinverses.
2. Given λ, the displacement uE can be determined as follows:⎧⎨

⎩
uE = A†

EE
(
fE − MT λ

)
+ Zα, where

α = (GT G)†GT
(
Kλ − MA†

EE fE
)

.
(4.27)

Proof. Since AEE is singular, the first block row in (4.25) yields:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AEEuE = fE − MT λ ⇐⇒ fE − MT λ ∈ Range(AEE)
⇐⇒ fE − MT λ ⊥ Kernel(AEE)
⇐⇒ ZT

(
fE − MT λ

)
= 0

⇐⇒ GT λ = g,

where g ≡ ZT fE . When the compatability condition GT λ = g is satisfied, the
general solution to the singular system AEEuE = fE − MT λ will be:

uE = A†
EE
(
fE − MT λ

)
+ Zα.

Here α ∈ IRd is arbitrary, since matrix Z has rank d, and A†
EE is the Moore-

Penrose pseudoinverse of AEE , see [ST13, GO4]. Applying the constraint
MuE = 0 to the above expression for uE yields:

MA†
EE
(
fE − MT λ

)
+ MZα = 0.

This corresponds to K λ − Gα = e, for K ≡ MA†
EEMT and e ≡ MA†

EE fE .
Combining the compatability condition with the preceding yields the system:{

K λ − Gα = e
GT λ = g,

(4.28)

which constitutes m+ d equations for the m+ d unknown entries of λ and α.
The term Gα in the first block equation in (4.28) can be eliminated by ap-
plying P0 = I −G(GT G)†GT , which corresponds to the Euclidean orthogonal
projection onto Range(G)⊥: {

P0 Kλ = P0 e
GT λ = g.

Since d = Rank(Z), it follows that Rank(G) = d and P0 is an orthogo-
nal projection onto a space of dimension m − d. This effectively constitutes
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m = (m − d) + d equations for the unknown λ ∈ IRm. Once λ is deter-
mined by solving the above problem, the unknown coefficient vector α can be
determined using (4.28) as α ≡ (GT G)†

(
GT Kλ − GT e

)
. ��

Remark 4.17. When matrix AEE is nonsingular, matrix Z will have zero rank
and vector α can be omitted. In this case, K = MA−1

EEMT , e = MA−1
EE fE ,

G = 0, P0 = I, and g = 0. Furthermore, the reduced system (4.26) will
correspond to the stationarity condition for a maximum of the dual function
D(µ) associated with the Lagrange multiplier variables.

4.3.1 Projected Gradient Algorithm to Solve (4.26)

Since the solution to (4.25) can be obtained using (4.27) once λ is determined,
the FETI method seeks the Lagrange multiplier variables λ ∈ IRm by solving:{

P0K λ = P0 e
GT λ = g.

(4.29)

In Lemma 4.19 it is shown that this system is symmetric and positive definite
within a certain subspace G∗ of IRm, and consequently, it will be solvable by
a conjugate gradient method in that subspace. However, the FETI method
solves a modified linear system equivalent to (4.29), to include global transfer
of information within the algorithm, as outlined below.

Let C denote an m × q matrix having rank q where q < m. Employing
matrix C we modify system (4.29) as follows:⎧⎪⎨

⎪⎩
P0K λ = P0 e

CT P0K λ = CT P0 e
GT λ = g.

(4.30)

The first and third block equations in (4.30) are identical to the first and
second block equations in (4.29), while the second block equation in (4.30) is
redundant, corresponding to linear combinations of the first block in (4.29)
with weights based on matrix C. Typically, either matrix G = 0 or C = 0,
however, both will be included for generality [FA14].

Remark 4.18. If Z (and hence G = MZ) has rank d, then the orthogonal
projection matrix P0 will have rank (m − d). Thus, the coefficient matrix in
the first block equation in (4.30) will have rank (m− d), third block equation
will have rank d, while the second block equation will be redundant consisting
of q linear combinations of rows of the first block equation.

We now motivate a projected gradient algorithm to solve (4.30). Suppose
λ∗ ∈ IRm can be found satisfying the 2nd and 3rd block equations in (4.30):{

CT P0K λ∗ = CT P0 e
GT λ∗ = g.

(4.31)
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Then, we may seek the solution to (4.30) as λ = λ∗ + λ̃ provided λ̃ solves:⎧⎪⎨
⎪⎩

P0K λ̃ = P0 (e − K λ∗)

CT P0K λ̃ = 0

GT λ̃ = 0.

(4.32)

If we seek the correction λ̃ within the subspace G0 ⊂ IRm defined by:

G0 ≡
{
µ ∈ IRm : CT P0K µ = 0, GT µ = 0

}
, (4.33)

then, the second and third block equations in (4.30) will automatically hold.
Importantly, by Lemma 4.19 below, matrix P0K will be symmetric and posi-
tive definite in subspace G0 equipped with the Euclidean inner product (·, ·):

{(
P0 Kλ̃, µ̃

)
=
(
λ̃, P0 K µ̃

)
, ∀µ̃, λ̃ ∈ G0

(P0 K µ̃, µ̃) ≥ c (µ̃, µ̃) , ∀µ̃ ∈ G0,
(4.34)

for some c > 0. Consequently, a projected conjugate gradient iterative method
may be applied to determine λ̃ within G0 so that:(

P0 Kλ̃, µ̃
)

= (P0 (e − K λ∗), µ̃) , ∀µ̃ ∈ G0. (4.35)

To determine λ∗ ∈ IRm such that (4.31) holds, seek it as λ∗ = Gβ∗ +Cγ∗
where the coefficient vectors β∗ ∈ IRd and γ∗ ∈ IRq are to be determined. By
applying the constraints (4.31) to Gβ∗ + Cγ∗, we obtain the following block
equations for β∗ and γ∗:{

CT P0KGβ∗ + CT P0KCγ∗ = CT P0 e
GT G β∗ + GT C γ∗ = g.

(4.36)

Rather than solve this system involving d + q unknowns, it will be advanta-
geous to combine the computation of P0Kλ∗ into the above system. Accord-
ingly, represent P0Kλ∗ as Kλ∗ + Gδ∗ where δ∗ ∈ IRd denotes an unknown
coefficient vector to be selected so that Kλ∗ + Gδ∗ ∈ Range (G)⊥:

GT (Kλ∗ + Gδ∗) = 0. (4.37)

Substituting P0Kλ∗ = Kλ∗ + Gδ∗ into (4.36) and applying the constraint
(4.37) yields the following block system for β∗, γ∗ and δ∗:⎧⎪⎨

⎪⎩
GT K (Gα∗ + Cβ∗) + GT Gµ∗ = GT P0 e
CT K (Gα∗ + Cβ∗) + CT Gµ∗ = CT P0 e

GT (Gα∗ + Cβ∗) = GT g.
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This system has the following block matrix form:⎡
⎣GT KG GT KC GT G

CT KG CT KC CT G
GT G GT C 0

⎤
⎦
⎡
⎣β∗

γ∗
δ∗

⎤
⎦ =

⎡
⎣GT P0 e

CT P0 e
GT g

⎤
⎦ . (4.38)

Once system (4.38) is solved, the solution λ∗ to problem (4.31) is:

λ∗ = Gα∗ + Cβ∗.

The solution λ of (4.30) may now be expressed as λ = λ∗ + λ̃ where λ̃
solves (4.35). We next verify that P0 K is symmetric positive definite in G∗.

Lemma 4.19. Suppose the following assumptions hold.

1. Let M be of full rank, K = MA†
EEMT , G = MZ, P0 = I −G

(
GT G

)†
GT

and Range(Z) = Kernel(AEE).
2. Let σ∗(AEE) be the smallest nonzero singular value of matrix AEE :

wT
E AEEwE ≥ σ∗(AEE)wT

E wE , ∀wE such that ZT wE = 0.

3. Define
G∗ ≡

{
µ ∈ IRm : GT λ = 0

}
.

4. Let σ∗(M) be the smallest singular value of M .

Also, let (·, ·) denote the Euclidean inner product.
Then, the following results will hold.

1. The matrix P0 K will be symmetric in the subspace G∗ with:

(P0 Kλ, µ) = (λ, P0 Kµ) , ∀λ, µ ∈ G∗.

2. Matrix P0 K will be positive definite, satisfying:

(P0 Kµ, µ) ≥ σ∗(AEE)σ∗(M) (µ, µ) , if GT µ = 0.

Proof. To show that P0 K is symmetric in G∗, choose µ, λ ∈ G∗. Then, by
definition P0λ = λ and P0µ = µ. Since PT

0 = P0 and KT = K, we obtain:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(P0 Kλ, µ) = (Kλ, P0µ)
= (Kλ, µ)
= (λ,Kµ)
= (P0λ, Kµ)
= (λ, P0Kµ) .
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To verify positive definiteness, suppose that µ ∈ IRm\{0} and that GT µ = 0,
i.e., ZT

(
MT µ

)
= 0. Then, applying the hypothesis yields:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(P0Kµ, µ) = (Kµ, µ)

=
(
MA†

EEMT µ, µ
)

=
(
A†

EEMT µ,MT µ
)

≥ σ∗(AEE)
(
MT µ,MT µ

)
≥ σ∗(AEE) σ∗(M) (µ,µ) ,

since ZT
(
MT µ

)
= 0 and since µ �= 0. ��

Lemma 4.19 shows that P0K is symmetric and positive definite in G∗, and
hence in G0 ⊂ G∗, see (4.33). As a result, the PCG method may be employed
to determine λ̃ ∈ G0. Care must be exercised, however, to ensure that all
iterates and residuals in the conjugate gradient algorithm remain within the
subspace G0. To do this, a projection matrix Q (possibly oblique, satisfying
Q2 = Q) will be employed to project residuals or preconditioned updates onto
the subspace G0 each iteration. In the following, we derive an expression for
such a (possibly oblique) projection matrix Q. Given λ ∈ IRm, we shall seek
its projection Qλ ∈ G0 in the form:

Qλ ≡ λ + Gβ + Cγ, (4.39)

where the coefficient vectors β ∈ IRd, γ ∈ IRq are chosen to satisfy:⎧⎪⎨
⎪⎩

GT K (Gβ + Cγ) + GT Gδ = −GT Kλ

CT K (Gβ + Cγ) + CT Gδ = −CT Kλ

GT (Gβ + Cγ) = −GT λ.

In the above, δ ∈ IRd was introduced to represent:

P0 K (Gβ + Cγ) = K (Gβ + Cγ) + Gδ.

The resulting projection Q will thus have matrix representation:

Q ≡ I −

⎡
⎣GT

CT

0

⎤
⎦

T ⎡
⎣GT KG GT KC GT G

CT KG CT KC CT G
GT G GT C 0

⎤
⎦
† ⎡
⎣GT K

CT K
GT

⎤
⎦ . (4.40)

A pseudoinverse was employed in the above since in the cases of interest, either
C = 0 or G = 0, and this coefficient matrix will become singular. By con-
struction Qλ ∈ G0. In the following, we describe the projection matrix (4.40)
in the two special cases of interest.
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Form of Q when c(x) = 0. If c(x) = 0 in (4.1), then the subdomain stiffness
matrix A(i) will be singular when Ωi is a floating subdomain. In this case Z,
and hence G = MZ, will be nontrivial, and typically C is chosen to be 0 (or
equivalently omitted). Importantly, due to the block diagonal terms M (i)Z(i)

in matrix G, the projection onto subspace G0 will provide global transfer of
information. When P0 K is suitably preconditioned, the convergence rate may
deteriorate only mildly with h. The nonhomogeneous term λ∗ can be sought
as λ∗ = Gβ∗ with:

GT Gβ∗ = GT g,

so that:
λ∗ = G(GT G)−1GT g.

In this case, the operator Q = I − G(GT G)−1GT reduces to P0 and will be
an orthogonal projection in the Euclidean inner product.

Form of Q when c(x) ≥ c0 > 0. If the coefficient c(x) ≥ c0 > 0 in (4.1),
then the local stiffness matrices A(i), and hence AEE , will be nonsingular. In
this case G = 0 and P0 = I. While this may be viewed as an advantage,
it results in an algorithm without any built in mechanism for global trans-
fer of information. Such transfer may be included in a suitably constructed
preconditioner. However, it will be advantageous to include it by selecting a
nontrivial matrix C ≡ MZ̃ where Z̃ is an nE × d matrix whose columns form
a basis for Kernel(ÃEE) where ÃEE = blockdiag(Ã(1), . . . , Ã(p)) denotes the
extended stiffness matrix arising from discretization of the elliptic operator
in (4.1) with c(x) = 0. For this choice of matrix C, and a suitable precondi-
tioner, the FETI algorithm will typically have convergence rates deteriorating
only mildly with increasing number of nodes per subdomain. Computation of
the initial nonhomogeneous term λ∗ reduces to:

(CT KC)β∗ = CT P0 e,

so that λ∗ = C(CT KC)−1CT P0 e.
In this case, operator Q = I − C(CT KC)−1CT K and will be orthogonal

only in the K induced inner product. A preconditioner for P0 K can be sought
within G0, so that the action of the inverse of the preconditioner has the form
QNQT where N is symmetric (in the Euclidean inner product). In applica-
tions, however, only the action QN needs to be computed when the residuals
from previous iterates lie in G0.

We may now summarize the FETI algorithm, employing the projection
matrices P0 and Q and a preconditioner, whose inverse has the form QNQT

(though in practice, it will be sufficient to evaluate only QN) for a matrix N .
The algorithm below includes the computation of λ∗ and λ̃.
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Algorithm 4.3.1 (FETI Algorithm to Solve (4.26))
Let λ0 de a starting guess (for instance λ0 = 0)

1. Compute: {
e ≡ M A†

EE fE
g ≡ ZT fE

2. Solve the following system (using a pseudoinverse):⎧⎪⎨
⎪⎩

GT K (Gβ∗ + Cγ∗) + GT Gδ∗ = GT P0 (e − Kλ0)
CT K (Gβ∗ + Cγ∗) + CT Gδ∗ = CT (P0e − Kλ0)

GT (Gα∗ + Cβ∗) = GT g.

3. Define:
λ∗ ← λ0 + Gβ∗ + Cγ∗.

4. Compute the residual:
r0 ≡ P0(Kλ∗ − e).

5. For k = 1, 2, · · · until convergence do:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk−1 = Nrk−1 preconditioning
yk−1 = Qzk−1 projection
ξk = rT

k−1yk−1

pk = yk−1 + ξk

ξk−1
pk−1 (p1 ≡ y0)

νk = ξk

pT
k P0 Kpk

λk = λk−1 + νkpk

rk = rk−1 − νkP0 Kpk

6. Endfor
7. Compute: {

α ≡ (GT G)†GT
(
Kλ − MA†

EE fE
)

u = A†
EE
(
fE − MT λ

)
+ Zα.

We next describe preconditioners of the form Q N in the FETI algorithm.

4.3.2 Preconditioners for P0 K

We shall describe two preconditioners proposed in [FA15], for matrix P0 K.
Since information will be transferred globally within the FETI algorithm in
the projection step involving matrix Q, a coarse space term will be unnecessary
in FETI preconditioners. Both the preconditioners considered below have a
similar structure, and are motivated as follows.
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Since matrices AEE and M have the following block structures:{
AEE = blockdiag

(
A(1), · · · , A(p)

)
,

M =
[
M (1) · · · M (p)

]
,

matrix K = MA†
EEMT will formally satisfy:

K =
p∑

i=1

M (i)A(i)†M (i)T

.

Each matrix M (i) will have the following block structures due to the ordering
of interior and boundary nodes within each subdomain:

M (i) = [M (i)
I M

(i)
B ] = [0 M

(i)
B ]

where M
(i)
I = 0 since the continuity constraint involves only interface un-

knowns. Substituting this into the preceding expression for K yields:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K =
∑p

i=1 M (i)A(i)†M (i)T

=
∑p

i=1

[
0
M

(i)T

B

]T [
A

(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

]† [
0
M

(i)T

B

]

=
∑p

i=1 M
(i)
B S(i)†M

(i)T

B .

(4.41)

The last equation above follows easily when submatrix A(i) is nonsingular.
When A(i) is singular, it can be verified by employing the block structure of
A(i) and the algebraic definition of the pseudoinverse of a matrix.

The additive expression for K in (4.41) resembles a subassembly identity,
heuristically, provided the boundary constraint matrices M

(i)
B with entries

from {−1, 0, 1} are interpreted as boundary restriction matrices Ri. This for-
mal analogy suggests that preconditioners can be sought for K having a similar
structure to Neumann-Neumann preconditioners [FA14, KL8]. For instance,
given a two subdomain decomposition the constraints will be M

(1)
B = I and

M
(2)
B = −I, so that K =

∑2
i=1 S(i)† . If matrix AEE is nonsingular, then the

formal inverses of S(1)† and S(2)† will be spectrally equivalent to each other
(independent of h). In this case, we may heuristically define the action of the
inverse of a preconditioner for K by QN = Q

∑2
i=1 S(i).

Other preconditioners based on analogy with two subdomain Schur com-
plement preconditioners are also possible. By construction, the resulting con-
dition number will be independent of h. More generally, the heuristic similar-
ity with Neumann-Neumann preconditioners suggests a preconditioner whose
formal inverse has the structure:⎧⎨

⎩
QN ≡ Q

(∑p
i=1 M

(i)
B S(i)M

(i)T

B

)
= Q

(∑p
i=1 M

(i)
B

(
A

(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB

)
M

(i)T

B

)
.

(4.42)
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In this case computing the action of QN will require the solution of a local
Dirichlet problem on each subdomain, and the resulting preconditioner is
referred to as a Dirichlet preconditioner, since computation of the action of(
A

(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB

)
requires the solution of a Dirichlet problem on each

subdomain.
The action QL of the inverse of an alternative preconditioner, referred to

as the lumped preconditioner, is obtained as follows:

QL ≡ Q
(∑p

i=1 M
(i)
B A

(i)
BBM

(i)T

B

)
.

This preconditioner does not require the solution of local Dirichlet problems
and is obtained by approximating the local Schur complement S(i) ≈ A

(i)
BB .

The following theoretical results will hold for the preconditioner QN .

Theorem 4.20. The following bounds hold for the Dirichlet preconditioner.

1. There exists C > 0 independent of h0, h and jumps in the coefficients:

cond (P0 K, QN) ≡ λmax(QNP0 K)
λmin(QNP0 K)

≤ C (1 + log(h0/h))3 .

Proof. See [MA25, KL8]. ��

4.4 FETI-DP and BDDC Methods

In this section, we describe two popular variants of the FETI method to
solve the saddle point problem (4.22) or its associated primal formulation.
The FETI-DP (Dual-Primal) method solves a reduced version of (4.22) while
BDDC (Balancing Domain Decomposition with Constraints) corresponds to a
primal version of FETI-DP [FA11, FA10, ST4, DO, DO2, MA18, MA19]. Both
methods work in a class of local solutions which are discontinuous across the
subdomain boundaries, except for a family of chosen continuity constraints.
For simplicity, we only consider simple continuity constraints across cross
points, edges and faces of a subdomain boundary. More general constraints
are considered in [TO10]. Both methods are CG based, and improve upon the
scalability of the FETI algorithm in three dimensions, yielding robust conver-
gence. The resulting preconditioned matrices have the same spectra, except
for zeros or ones. In the following, we describe the reduction of system (4.22)
to a smaller saddle point system and introduce notation, prior to formulating
the FETI-DP and BDDC methods. To be consistent with preceding sections,
our notation differs from that in [DO, DO2, MA18, MA19].
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Reduced Saddle Point System. To reduce system (4.22) by elimination of
the interior unknowns u(l)

I for 1 ≤ l ≤ p, we re-order the block vector uE as
(uT

I ,uT
B)T in the saddle point system (4.22), where:

uI =
(
u(1)T

I , . . . ,u(p)T

I

)T

and uB =
(
u(1)T

B , . . . ,u(p)T

B

)T

.

This will yield the following reordered system:⎡
⎢⎣

AII AIB 0
AT

IB ABB MT
B

0 MB 0

⎤
⎥⎦
⎡
⎢⎣

uI

uB

λ

⎤
⎥⎦ =

⎡
⎢⎣

f I

fB

0

⎤
⎥⎦ , (4.43)

where the block submatrices AII , AIB and ABB are defined as follows:

AII =

⎡
⎢⎢⎣

A
(1)
II 0

. . .

0 A
(p)
II

⎤
⎥⎥⎦ , AIB =

⎡
⎢⎢⎣

A
(1)
IB 0

. . .

0 A
(p)
IB

⎤
⎥⎥⎦ , ABB =

⎡
⎢⎢⎣

A
(1)
BB 0

. . .

0 A
(p)
BB

⎤
⎥⎥⎦ ,

with matrix MB =
[
M

(1)
B · · · M

(p)
B

]
, while the load vectors satisfy:

f I =
(
f (1)T

I , . . . , f (p)T

I

)T

and fB =
(
f (1)T

B , . . . , f (p)T

B

)T

.

Here, the matrices A
(l)
XY and M

(l)
B , and vectors u(l)

X , f (l)
X are as in (4.10)

and (4.6) for X, Y = I, B. We solve for uI = A−1
II (f I − AIBuB) using the

first block row of (4.43). Substituting this expression into the second block
row of (4.43) yields a reduced saddle point system for determining uB and λ.

The reduced saddle point system will be:[
SEE MT

B

MB 0

][
uB

λ

]
=

[
f̃B

0

]
, (4.44)

where f̃B ≡
(
fB − AT

IBA−1
II f I

)
and SEE = (ABB − AT

IBA−1
II AIB) satisfies:

SEE =

⎡
⎢⎢⎣

S(1) 0
. . .

0 S(p)

⎤
⎥⎥⎦ where S(i) ≡ (A(i)

BB − A
(i)T

IB A
(i)−1

II A
(i)
IB).

The solution to (4.43) can be obtained by solving (4.44) for uB and λ, and
subsequently uI = A−1

II (f I − AIBuB). Here MB and M
(l)
B will be of size

m × nB and m × n
(l)
B respectively, and SEE of size nB = (n(1)

B + · · · + n
(p)
B ).
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Primal and Dual Spaces, Restriction and Extension Maps. Given
Ω1, . . . , Ωp let B(l) = ∂Ωl ∩ Ω denote the interior segments of subdomain
boundaries, and let B = ∪p

l=1B
(l) be the interface. We employ the notation:

• Let U = IRq be the space of nodal vectors associated with finite element
functions on B in traditional substructuring. Here, q equals the number of
nodes of the triangulation on B, and U parameterizes the global degrees
of freedom on B. For 1 ≤ l ≤ p and u ∈ U , let Rlu denote the restriction
of the vector u of nodal values on B onto the indices of nodes on B(l).
Thus Rl will be an n

(l)
B × q matrix with zero-one entries.

• Let Wl ≡ Range(Rl) = IRn
(l)
B denote the space of local nodal vectors

associated with displacements on B(l) and let W ≡ (W1×· · ·×Wp) be the
space of extended local displacements with dim(W) = (n(1)

B + · · · + n
(p)
B ).

Let RE : U → W denote the restriction matrix from U into W:

RT
E =

[
RT

1 · · · RT
p

]
and RE =

[
RT

1 · · · RT
p

]T
,

where RE is a matrix of size nB × q.
• Let MB : W → Λ, where MB vB denotes the jump discontinuity in vB

across the subdomains, for vB ∈ W. Here, MB is of size m × nB and
m ≡ dim(Λ) ≥ q also denotes the number of Lagrange multiplier variables.

• By construction Kernel(MB) = Range(RE), thus MB RE = 0.
• Denote the primal Schur complement matrix S of size q × q as:

S ≡ RT
E SEERE =

p∑
l=1

RT
l S(l)Rl,

which is employed in traditional iterative substructuring.

We shall assume that Ω1, . . . , Ωp are geometrically conforming, so that B can
be further partitioned into globs, such as cross points and edges for Ω ⊂ IR2,
or cross points, edges and faces when Ω ⊂ IR3. We heuristically define globs
such as cross points, edges and faces, in the following.

When Ω ⊂ IR2, we heuristically define an edge as any non-trivial segment
int(∂Ωl∩∂Ωj) which can be mapped homeomorphically onto the open segment
(0, 1). We let nE denote the number of distinct edges and enumerate them
as E1, . . . , EnE

. We define a cross-point as an endpoint within Ω of an edge.
We let nX denote the number of distinct cross points and enumerate them as
X1, . . . , XnX

. We assume that the cross points and edges partition B.
When Ω ⊂ IR3, we heuristically define a face as any non-trivial segment

int(∂Ωl∩∂Ωj) which can be mapped homeomorphically onto the open square
(0, 1) × (0, 1). We let nF denote the number of distinct faces and enumerate
them as F1, . . . , FnF

. We define an edge as any non-trivial intersection in Ω of
two faces int(F l ∩F j) which can be homeomorphically mapped onto the open
interval (0, 1). We let nE denote the number of distinct edges and enumerate
them as E1, . . . , EnE

. We define a cross point as any endpoint in Ω of an
edge. We let nX be the number of distinct cross points and enumerate them
as X1, . . . , XnX

. We assume the cross points, edges and faces partition B.
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The disjoint cross points, edges and faces are referred to as globs, and we
shall assume that the interface B can be partitioned into distinct globs. In the
FETI-DP and BDDC methods, one coarse degree of freedom will be associated
with each distinct glob in B, and one basis function with mean value one on
each glob with zero nodal values outside the glob will employed in formulating
the primal space. There will be as many coarse degrees of freedom or coarse
basis functions as there are distinct globs in B, as described below.

Definition 4.21. When Ω ⊂ IR2, let q0 = (nE + nX) denote the number of
coarse degrees of freedom. We define Q0 as an q0 × q matrix which maps onto
the coarse degrees of freedom. Each row of Q0 will be associated with a distinct
glob of B, in some chosen ordering of the globs.

• If the i’th row of Q0 is associated with a cross point Xl then:

(Q0)ij =

{
1 if node j in B is the cross point Xl

0 otherwise

• If the i’th row of Q0 is associated with the edge El then:

(Q0)ij =

{
1

|El| if node j in B lies in El

0 if node j in B does not lie in El

where |El| denotes the number of nodes in El.

Thus, if u ∈ U = IRq is a nodal vector of global degrees of freedom on B,
then (Q0u)i will be the mean value of u on the glob associated with row i. The
above weights are uniform within each glob, for simplicity. More generally, the
entries of the local mass matrix on the glob must be divided by its row sum.

Definition 4.22. When Ω ⊂ IR3, let q0 = (nF +nE +nX) denote the number
of coarse degrees of freedom on B. Define Q0 as an q0 × q matrix which
maps onto the coarse degrees of freedom, as follows. Each row of Q0 will be
associated with a distinct glob of B, in some chosen ordering of the globs.

• If the i’th row of Q0 is associated with cross point Xl then:

(Q0)ij =

{
1 if node j in B is the cross point Xl

0 otherwise

• If the i’th row of Q0 is associated with the edge El then:

(Q0)ij =

{
1

|El| if node j in B lies in El

0 if node j in B does not lie in El

where |El| denotes the number of nodes in El.
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• If the i’th row of Q0 is associated with the face Fl then:

(Q0)ij =

{
1

|Fl| if node j in B lies in Fl

0 if node j in B does not lie in Fl

where |Fl| denotes the number of nodes in Fl.

Thus, if u ∈ U = IRq is a nodal vector of global degrees of freedom on B, then
(Q0u)i will be the mean value of u on the glob associated with row i. Here too,
the weights are uniform within each glob, for simplicity. More generally, the
entries of the local mass matrix on the glob must be divided by its row sum.

Since each coarse degree of freedom is associated with a distinct glob, and
since by definition, each glob either lies entirely within a subdomain boundary
segment B(i) or does not lie in B(i), only certain coarse degree of freedom will
be non-zero on B(i). Let q

(i)
0 denote the number of globs in B(i). We then

define a restriction matrix Rc
i of size q

(i)
0 × q0 as a matrix with zero or one

entries which picks the coarse degrees of freedom which are non-zero on B(i).

Definition 4.23. Given a global ordering of the q0 globs (and associated
coarse degrees of freedom) on B and a local ordering of the q

(i)
0 globs on B(i),

we define a restriction matrix Rc
i of size q

(i)
0 × q0 as follows:

(Rc
i )lj ≡

{
1 if glob j in the global ordering is l in the local ordering on B(i)

0 otherwise.

Remark 4.24. For instance, if Ωi ⊂ Ω ⊂ IR2 is a rectangle, then there will be
eight coarse degrees of freedom associated with ∂Ωi, with four cross points
and four edges. If Ωi ⊂ Ω ⊂ IR3 is a box, then there will be twenty six coarse
degrees of freedom on ∂Ωi, with six faces, twelve edges and eight cross points.

Using the restriction matrices Rc
i and the coarse degrees of freedom matrix

Q0, we define a family of constraint matrices Ci of size q
(i)
0 ×n

(i)
B that will be

employed to formulate the primal and dual spaces.

Definition 4.25. We define a matrix Ci ≡ Rc
i Q0RT

i for 1 ≤ i ≤ p. We
also define C ≡ blockdiag(C1, . . . , Cp) as the block diagonal matrix of size
(q(1)

0 + · · · + q
(p)
0 ) × nB (where nB = (n(1)

B + · · · + n
(p)
B ):

C ≡

⎡
⎢⎢⎣

C1 0
. . .

0 Cp

⎤
⎥⎥⎦ .
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Remark 4.26. Since RT
i and Rc

i are matrices with zero or one entries, with
at most one non-zero entry per row or column, if wi ∈ Wi, then Ciwi will
compute the average value of wi on each of the q

(i)
0 distinct globs on B(i), in

the local orderings. Thus, if Ciwi = 0, then wi will be zero at all the cross
points in B(i), with mean value zero on the edges and faces (if any) in B(i).

Definition 4.27. We define a matrix Rc of size (q(1)
0 + · · · + q

(p)
0 ) × q0 as:

Rc ≡

⎡
⎢⎢⎣
Rc

1

...
Rc

p

⎤
⎥⎥⎦

corresponding to a restriction of global coarse degrees of freedom on B onto
the local coarse degrees of freedom onto each of the local boundaries B(i).

The FETI-DP and BDDC methods employ several subspaces W0, WD,
WP and W∗ of W. Recall that W = (W1 × · · · × Wp) denotes the space of
nodal vectors on the boundaries, whose associated finite element functions are
discontinuous across the subdomains. Below, we define W∗ ⊂ W as the space
of local nodal vectors whose local coarse degrees of freedom are unique, i.e.,
continuous across the subdomain boundaries. The other degrees of freedom in
W∗ may be discontinuous across the subdomain boundaries.

Definition 4.28. We define W∗ as the following subspace of W:

W∗ ≡
{
wB = (w(1)T

B , . . . ,w(p)T

B )T : C wB ∈ Range(Rc)
}

,

i.e., for each wB ∈ W∗ there must exist some u ∈ IRq0 such that C wB = Rcu.

The space W∗ can be further decomposed as a sum of two spaces:

W∗ = WD + WP ,

where WD is referred to as the dual space and involves local constraints,
while the space WP , which is referred to as the primal space, involves global
constraints. The primal space WP will be employed as a coarse space.

Definition 4.29. The dual space WD ≡ Kernel(C) ⊂ W∗ will consist of local
nodal vectors whose coarse degrees of freedom (mean value on each glob) are
zero on each subdomain boundary:

WD ≡ Kernel(C) =
{
wB = (w(1)T

B , . . . ,w(p)T

B )T : Ciw
(i)
B = 0 for 1 ≤ i ≤ p

}
.

The primal space WP will be a subspace of W∗ complementary to WD,
and defined as the span of q0 local basis functions whose coarse degrees of
freedom are continuous across the subdomains.
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Definition 4.30. We define the primal space as WP ≡ Range(Φ) where:

Φ ≡

⎡
⎢⎢⎣

Φ1

...
Φp

⎤
⎥⎥⎦ where Ci Φi = Rc

i for 1 ≤ i ≤ p,

where Φl is of size n
(l)
B ×q0 and Φ is of size nB ×q0 with dim(Range(Φ)) = q0.

Remark 4.31. By construction, if vB ∈ W∗, then there exists u ∈ IRq0 such
that Civ

(i)
B = Rc

iu. Thus, wi ≡ (v(i)
B −Φiu) will satisfy Ciwi = 0 for 1 ≤ i ≤ p,

yielding that (wT
1 , . . . ,wT

p )T ∈ WD. Thus WP and WD are complementary:

W∗ = WP + WD.

As a result, each uB ∈ W∗ may be decomposed and sought in the form:

uB = uD + Φuc where C uD = 0 and Φuc ∈ WP .

Remark 4.32. The subspace W0 ≡ Kernel(MB) satisfies:

W0 ⊂ WD ⊂ W∗ ⊂ W.

Remark 4.33. The FETI-DP and BDDC methods will employ the following
property. The minimization of JB(vB) = 1

2v
T
BSEEvB − vT

B f̃B subject to the
constraint that C vB = 0 can be reduced to p concurrent local problems, since
SEE = blockdiag(S(1), . . . , S(p)) and C = blockdiag(C1, . . . , Cp). Indeed, let

vB = (v(1)T

B , . . . ,v(p)T

B )T , f̃B = (f̃
(1)T

B , . . . , f̃
(p)T

B )T , and µ = (µT
1 , . . . ,µT

p )T .
Then, by reordering the system, the solution to:[

SEE CT

C 0

][
uB

µ

]
=

[
f̃B

0

]
(4.45)

reduces to the solution of:[
S(i) CT

i

Ci 0

][
u(i)

B

µi

]
=

[
f̃ (i)
B

0

]
for 1 ≤ i ≤ p. (4.46)

If f̃B = SEEwB and SEE is positive definite within WD, then it is easily verified
that uB = PWD

wB where PWD
denotes the SEE -orthogonal projection onto

WD. Henceforth, we assume that matrix SEE is positive definite within W∗.

FETI-DP Method. The FETI-DP method seeks the solution (uT
B ,λT )T

to (4.44) by maximizing a dual function F(λ) associated with (4.44) using
a PCG algorithm to determine λ ∈ IRm. It is based on the decomposition
uB = uD + Φuc where wD ∈ WD with C wD = 0 and Φuc ∈ WP . We recall
the saddle point problem (4.44) with f̃B ≡

(
fB − AT

IBA−1
II f I

)
:
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SEE MT

B

MB 0

][
uB

λ

]
=

[
f̃B

0

]
. (4.47)

The Lagrangian function associated with the above saddle point problem is:

L(uB ,λ) =
1
2

uT
BSEEuB − uT

B f̃B + λT MBuB .

Since the constraint MB uB = 0 yields uB ∈ W0 ⊂ W∗, we may alternatively
minimize the functional within W∗ subject to the constraint MB uB = 0. The
FETI-DP method seeks uB = uD + uP where C uD = 0 and uP = Φuc.
The constraint C uD = 0 can be imposed by augmenting the Lagrangian with
the term µT CuD for µ ∈ IRq

(1)
0 +···+q

(p)
0 . This will alter µ and λ, but not uB .

Seeking the saddle point of the augmented Lagrangian:

Laug(uD,uc, µ,λ) ≡ L(uD + Φuc, λ) + µT CuD

will yield the following saddle point system:⎡
⎢⎢⎢⎣

SEE SEE Φ CT MT
B

ΦT SEE ΦT SEEΦ 0 ΦT MT
B

C 0 0 0
MB MBΦ 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

uD

uc

µ

λ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f̃B

ΦT f̃B

0
0

⎤
⎥⎥⎥⎦ . (4.48)

Rearranging the unknowns as (uT
D, µT ,uT

c , λT )T results in the system:

⎡
⎢⎢⎢⎣

SEE CT SEEΦ MT
B

C 0 0 0
ΦT SEE 0 ΦT SEEΦ ΦT MT

B

MB 0 MBΦ 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

uD

µ

uc

λ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f̃B

0

ΦT f̃B

0

⎤
⎥⎥⎥⎦ . (4.49)

The FETI-DP method solves the above system by solving a symmetric positive
definite system for determining λ ∈ Λ = IRm by a PCG method. In the
following, we express system (4.49) more compactly as:[

K LT

L 0

][
x
λ

]
=

[
g
0

]
(4.50)

where the matrices K and L and the vectors x and g are as described next.

K ≡

⎡
⎢⎣

SEE CT SEEΦ

C 0 0
ΦT SEE 0 ΦT SEEΦ

⎤
⎥⎦ , LT ≡

⎡
⎢⎣

MT
B

0
ΦT MT

B

⎤
⎥⎦ , x ≡

⎡
⎢⎣

uD

µ

uc

⎤
⎥⎦ , g ≡

⎡
⎢⎣

f̃B

0

ΦT f̃B

⎤
⎥⎦.

(4.51)
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The FETI-DP method seeks the solution to (4.44) by eliminating x and by
solving the resulting reduced system F λ = d for λ by a PCG method, where
the inverse of the preconditioner is MDSEEMT

D . Here, F λ = d arises as the
condition for maximizing the dual function F(λ) = infx Laug(x,λ):

F ≡ (LK−1LT ) and d ≡ (LK−1g).

Once λ ∈ IRm is determined, we obtain x = K−1(g − LT λ). By definition,
matrix F = FT , however, it will be positive definite, see [FA11, FA10, MA19]
and Remark 4.36. In the following, we elaborate on the action of K−1.

Remark 4.34. Matrix K is a saddle point matrix, and is indefinite. However,
within the subspace C vD = 0, matrix K can be verified to be positive definite.
A system of the form K x = g can be solved by duality, as follows:⎡

⎢⎣
SEE CT SEE Φ

C 0 0
ΦT SEE 0 ΦT SEE Φ

⎤
⎥⎦
⎡
⎢⎣

uD

µ

uc

⎤
⎥⎦ =

⎡
⎢⎣

g1

0
g2

⎤
⎥⎦ (4.52)

Given uc, we may solve the first two block rows above to obtain:

[
uD

µ

]
=

[
SEE CT

C 0

]−1 [
g1 − SEE Φuc

0

]
. (4.53)

Substituting this into the third block row yields the reduced system for uc:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sc uc = gc, where

Sc =

⎛
⎝ΦT SEE Φ −

[
SEE Φ

0

]T [
SEE CT

C 0

]−1 [
SEE Φ

0

]⎞⎠

gc = g2 −
[

SEE Φ

0

]T [
SEE CT

C 0

]−1 [
g1

0

]
.

(4.54)

Once Sc uc = gc is solved, we may determine (uT
D, µT )T by solving (4.53).

Matrix Sc of size q0 can be shown to be sparse and can be assembled in parallel,
since SEE and C are both block diagonal, see Remark 4.38. By Remark 4.33,
it will hold that Sc = ΦT (I − PWD

)T SEE(I − PWD
)Φ, since C uD = 0. As a

result, Sc will be positive definite within WP , see [DO, DO2, MA18, MA19].

Remark 4.35. The FETI-DP preconditioner F0 for F is chosen so that both
the FETI-DP and BDDC preconditioned matrices have the same spectra. Let
D = blockdiag(D(1), . . . , D(p)) : W → W be a discrete partition of unity:

RT
E DRE = I,
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where each D(l) : Wl → Wl is a diagonal matrix with non-negative diagonal
entries. Such weight matrices are employed in the BDDC method to average
the solution on different subdomain boundaries. Diagonal dual weight matrices
D(l)

∗ : Λ → Λ, each of size m, are defined based on the entries of the matrices
D(j) as follows. Recall that each row of MB is associated with a matching
requirement between nodal values on two distinct subdomains. Suppose that
a node α on B lies on B(l) ∩B(j), and that ind(α, l, j) denotes the row index
in MB which enforces the matching between the local nodal values at α in
B(l) and in B(j). Let ind(α, j) denote the index of the node α in the local
ordering in B(j). We define the diagonal dual matrix D(l)

∗ for all α ∈ B as:

(D(l)
∗ )ind(α,l,j) ≡

{
(D(j))ind(α,j) if α ∈ B(l) ∩ B(j)

0 if α �∈ B(l)

Let MD be a matrix the same size as MB defined by:

MD ≡
[
D(1)

∗ M (1) · · · D(p)
∗ M (p)

]
.

Then, it can be shown that MBMT
DMB = MB and MT

DMB + RERT
E D = I,

see [RI5, KL10, FR]. The inverse F−1
0 of the FETI-DP preconditioner for F

is:
F−1

0 ≡ MDSEEMT
D =⇒ cond(F0, F ) ≤ c (1 + log2(h0/h)).

Remark 4.36. Matrix F can be verified to be positive definite as follows. We
express F = (LK−1)K(K−1LT ) and for λ ∈ IRm let:

x = (wT
D, µ̃T ,wT

c )T = K−1LT λ.

Then, since C wD = 0, we will obtain that:

xT Kx =

[
wD

wc

]T [
SEE SEEΦ

ΦT SEE ΦT SEEΦ

][
wD

wc

]
. (4.55)

The latter will be positive provided SEE is positive definite within W∗ (which
we assume to hold) and provided (wT

D,wT
c )T �= 0 for λ �= 0.

BDDC Method. The BDDC method [DO, DO2, MA18, MA19] is a PCG
method to solve the primal problem associated with system (4.44). Since
MBuB = 0, we may seek uB = REu for some u ∈ U = IRq. Substituting
this, the primal problem associated with (4.44) can easily be verified to be
the Schur complement system arising in traditional substructuring:

S u = f where S ≡ (RT
E SEERE) and f = (RT

E f̃B). (4.56)

The BDDC preconditioner S0 is formulated using the same coarse space and
local saddle point problems employed in the FETI-DP method. Matrix S−1

0 S
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in the BDDC method has essentially the same spectrum as the preconditioned
matrix F−1

0 F in the FETI-DP method, except for zeros or ones.
The BDDC preconditioner employs a discrete partition of unity matrix

on B, with D = blockdiag(D(1), . . . , D(p)), where each D(l) : Wl → Wl is a
diagonal matrix with non-negative entries, satisfying:

RT
E DRE = I.

In practice, the diagonal entries of D(l) are chosen as a weighted average of
the diagonal entries of the stiffness matrices A(j). Let i denote the index of a
node on B(l) and j(i) = ind(B(j), i) the local index of node i in B(j). Then:

(D(l))ii =
A

(l)
ii∑

{j:B(j)∩B(l) �=∅} A
(j)
j(i) j(i)

.

The BDDC preconditioner also employs a coarse basis Ψ of size nB × q0

obtained by modifying the matrix Φ of size nB × q0 which satisfies C Φ = Rc:[
SEE CT

C 0

][
Ψ

G

]
=

[
0
Rc

]
.

If we expand Ψ = Φ + Φ̂, then since C Φ = Rc, matrix Φ̂ will satisfy:[
SEE CT

C 0

][
Φ̂

G

]
=

[
−SEE Φ

0

]
.

Solving for Φ̂, and computing ΨT SEEΨ after algebraic simplification yields:

ΨT SEEΨ =

⎛
⎝ΦT SEE Φ −

[
SEE Φ

0

]T [
SEE CT

C 0

]−1 [
SEE Φ

0

]⎞⎠ = Sc.

Employing Remark 4.33, it follows that Φ̃ = −PWD
Φ and Ψ = (I − PWD

) Φ.
The coarse matrix Sc, can be assembled using either expression above.

The BDDC preconditioner S0 for S corresponds to an additive Schwarz
preconditioner with inexact solvers, based on the following subspaces of U :{

U0 = Range(RT
E DT Ψ)

Ui =
{
RT

i D(i)wi : Ci wi = 0, wi ∈ Wi

}
, for 1 ≤ i ≤ p.

The spaces Range(Ψ) and W consist of nodal vectors associated with finite
element functions which are discontinuous across the subdomain boundaries.
However, the weighted averaging using RT

i D(i) or RT DT yields nodal vectors
in U , associated with continuous finite element functions on B. The action
S−1

0 of the inverse of the BDDC preconditioner for S is defined as:
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S−1
0 r ≡ RT

E D Ψ S−1
c ΨT DT RE r +

[
DTRE
0

]T [
SEE CT

C 0

]−1 [
DTRE
0

]
r.

The block diagonal structure of SEE and C yields its parallel form:

S−1
0 = RT

E D Ψ S−1
c ΨT DT RE +

p∑
i=1

[
D(i)T Ri

0

]T [
S(i) CT

i

Ci 0

]−1 [
D(i)T Ri

0

]
.

The following bounds will hold for the FETI-DP and BDDC methods.

Lemma 4.37. The following convergence bounds will hold:

λmax(S−1
0 S)

λmin(S−1
0 S)

=
λmax(F−1

0 F )
λmin(F−1

0 F )
≤ κ

and

κ ≤ sup
w∈W∗

‖MT
DMBw‖2

SEE
‖w‖2

SEE
= sup

w∈W∗

‖RERT
E Dw‖2

SEE
‖w‖2

SEE
,

where κ ≤ c(1 + log2(h0/h)) and h0 is the diameter of the subdomains.

Proof. See [DO, DO2, MA18, MA19].

Remark 4.38. The columns of matrix Ψ of size nB × q0 can be constructed as
follows. If ej denotes the j’th column of the identity matrix I of size q0, then
the j’th column ψj of Ψ can be computed by solving:[

SEE CT

C 0

][
ψj

µj

]
=

[
0
Rc ej

]
.

The components of ψj will be non-zero only on the boundaries B(l) which
intersect the glob associated with the j’th column of Rc. Thus, using the
block structure of SEE and C, only a few local problems need to be solved.
The non-zero entries of the sparse matrix Sc of size q0 can be computed as
(Sc)ij = ψT

i SEEψj based on the support of ψi and ψj .

Remark 4.39. In applications, each local saddle point problem:[
S(i) CT

i

Ci 0

][
wi

µi

]
=

[
f i

gi

]
, (4.57)

can be solved using the Schur complement method. On each B(i), the entries of
wi corresponding to the cross-points on B(i) can be eliminated. The entries of
the Lagrange multiplier variables enforcing the constraints on the cross points
can also be eliminated. Thus, the specified rows of S(i) and CT

i and associated
columns of S(i) and Ci must be eliminated. The resulting submatrix of S(i)
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will be non-singular (even if S(i) were singular). For notational convenience,
we shall denote the resulting saddle point system as in the above. To solve for
the remaining entries of wi and µi, parameterize wi in terms of µi using the
first block row. This formally yields:

wi = S(i)−1
(f i − CT

i µi).

Substituting this expression into the second block row yields:

Ti µi =
(
CiS

(i)−1
f i − gi

)
where Ti ≡ (CiS

(i)−1
CT

i ).

The Schur complement Ti of size q
(i)
0 can be assembled explicitly, q

(i)
0 will be

at most eight for rectangular subdomains when Ω ⊂ IR2 or of size twenty-six
when Ω ⊂ IR3. Once µi is determined, wi = S(i)−1

(f i − CT
i µi). Note that

matrix S(i) = (A(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB) need not be assembled. Instead, the

solution of the system can be obtained by solving the sparse system:[
A

(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

][
yi

wi

]
=

[
0

f i − CT
i µi

]
.

Thus, the solution to (4.57) can be sought by solving two sparse symmetric
positive definite systems and one dense symmetric positive definite system of
a small size. See [DO, DO2, MA18, MA19] for alternative methods.
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Computational Issues and Parallelization

In this chapter, we discuss several computational issues that arise with the
implementation of domain decomposition algorithms. The first issue concerns
the choice of a decomposition of a domain into non-overlapping or overlapping
subdomains. When an algorithm is implemented using multiple processors,
the number of interior unknowns per subdomain must be approximately the
same, to ensure load balancing, while the number of boundary unknowns must
be minimized to reduce inter-subdomain communication. We describe graph
partitioning algorithms which partition a grid. The second issue concerns the
expected parallel computation time and speed up when implementing a do-
main decomposition preconditioner on an idealized parallel computer archi-
tecture. We outline heuristic estimate for this using idealized models for the
computational time and inter-processor data transfer times.

Chap. 5.1 presents background on grid generation and graph theory, and
describes how the problem of partitioning a domain or an unstructured grid
can be heuristically reduced to a graph partitioning algorithm. We then de-
scribe the Kernighan-Lin, recursive spectral bisection and multilevel graph
partitioning algorithms for partitioning graphs. Following that, we brief dis-
cuss the implementation of Schwarz and Schur complement algorithms on
unstructured grids. Some heuristic coarse spaces are also outlined for use on
unstructured grids, with subdomains of irregular shapes.

Chap. 5.2 discusses background on the speed up and scalability of al-
gorithms on parallel computers. Employing a heuristic model of an ideal-
ized parallel computer with distributed memory, we describe models for the
computational time required for implementing various domain decomposition
preconditioners. Under such idealized assumptions, it is shown that domain
decomposition iterative algorithms have reasonable scalability.
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5.1 Algorithms for Automated Partitioning of Domains

The term unstructured grid refers broadly to triangulations without any iden-
tifiable structure. Such grids arise in computational fluid dynamics [PE4] and
aerodynamics computations [ST6, BA22, MA40, MA41], which require the
triangulation and discretization of partial differential equations on regions
having complex geometry. In such applications, the triangulation is generated
by using grid generation software [GE6, HO2, MA40, MA41, HE9, TH3, OW].
The resulting grids are typically not quasiuniform, and lack the connectivity
of uniform grids and the hierarchical structure of multigrids, see Fig. 5.1.1

Additionally, the density of grid points and the number of elements incident
to each node can vary significantly with location. As a result, algorithms are
required to automate the partitioning of a domain into subdomains, so that
the number of grid points per subdomain is approximately the same.

In this section, we discuss several practical techniques for implementing
domain decomposition solvers on unstructured grids. We discuss the selection
of subdomains so that load balancing constraints are satisfied, and so that
the communication time between processors assigned to different subdomains
is minimized. This issue is typically addressed by employing heuristic graph
partitioning algorithms. We also discuss the formulation of heuristic coarse
spaces for elliptic equations discretized on unstructured grids with subdo-
mains having irregular boundaries, where traditional coarse spaces are not
defined. Chap. 5.1.1 describes grid generation algorithms, followed by graph
partitioning algorithms in Chap. 5.1.2. Chap. 5.1.3 describes the construc-
tion of subdomains, while a few coarse spaces are described for unstructured
grids in Chap. 5.1.4. Comments on Schwarz, Schur complement and FETI
algorithms are presented in Chap. 5.1.5 to Chap. 5.1.7.

5.1.1 Grid Generation Algorithms

Generating a triangulation Th(Ω) on a domain Ω in two or three dimensions
with complex geometry, is generally a computationally intensive task. There is

Fig. 5.1. An unstructured grid [BA23]

1 The author thanks Dr. Timothy Barth for his kind permission to use Fig. 5.1.
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an extensive literature on algorithms and software for automated generation
of grids [GE6, HO2, MA40, HE9, MA41, TH3, OW]. Below, we list a few.

• Grid based method. In this method, a uniform or structured simplicial
or box type grid Th(Ω∗) with a specified grid size h is overlaid on an
extended domain Ω∗ ⊃ Ω, and the triangulation Th(Ω∗) of Ω∗ is modified
to conform to the boundary ∂Ω. The resulting triangulation of Ω will be of
low cost, however, it can be of poor quality for numerical approximation.

• Decomposition and mapping method. One of the earliest methods, here the
domain is decomposed into subregions, and each subregion is mapped onto
one or more standard reference regions. A structured triangulation of each
reference domain is then mapped back to triangulate the original subdo-
mains. However, the subdomain triangulations may not match near their
boundaries, so that the triangulations must be appropriately modified.

• Advancing front method. In this method, the boundary ∂Ω of the do-
main is first triangulated (for instance, by the decomposition and mapping
method), yielding an initial front of the triangulation. The algorithm then
advances (updates) these fronts by generating new nodes and elements of a
desired size within the interior of the domain, and adjacent to the current
front. The algorithm terminates when the entire domain is triangulated.

• Delaunay triangulation method. A Delaunay triangulation is a simplicial
triangulation (triangles in IR2 or tetrahedra in IR3) such that any circum-
sphere (i.e., a sphere in IR3 or a circle in IR2 passing though the nodes
of a tetrahedra or triangle) do not contain other nodes in the interior.
Many Delaunay triangulation algorithms are available, some based on the
computation of Voronoi cells (polyhedral cells consisting of all points in
Euclidean space closest to a node). Typically, in the first phase nodes are
placed on the boundary ∂Ω of the domain (for instance, by the decom-
position and mapping method) and new nodes are introduced within the
interior, using the advancing front method (or alternative methods). In the
second phase, a Delaunay triangulation Th(Ω) of Ω is constructed using
the given distribution of nodes.

Automatic mesh generation software may combine one or more of the above
methods and include a phase of refinement or smoothing of the resulting grid,
depending on the geometry and specifications for the grid size. As a result, the
generated grid may not be quasiuniform or structured. Readers are referred to
[GE6, HO2, MA40, HE9, MA41, TH3] for literature on unstructured meshes
and to [OW] for a survey of software algorithms.

5.1.2 Graph Partitioning Algorithms

The problem of decomposing a domain Ω into subdomains, or partitioning
an index set of nodes I = {x1, . . . , xn} into subindex sets, can be formulated
mathematically as a graph partitioning problem. Given a triangulation Th(Ω)
of Ω, a graph [BO2] (or a weighted graph) can be constructed representing
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the connectivity of the triangulation (either connectivity of elements or of the
nodes within the triangulation). A partition of the domain, or of the index
set I of nodes in the triangulation, may then be obtained by partitioning this
associated graph (or weighted graph) into subgraphs. Load balancing require-
ments can be incorporated by requiring that the subgraphs be approximately
of equal size, while minimization of communication costs can be imposed by
requiring that the number of edges cut between subgraphs in the partition is
minimized [FA9, MA30]. Formally, this problem can be formulated as a com-
binatorial minimization of an objective functional incorporating the above re-
quirements. Here, we introduce the graph partitioning problem, its associated
combinatorial minimization problem, and describe three heuristic algorithms
for its solution. The reader is referred to [PO3] for details.

Definition 5.1. A graph G = (V, E) consists of a collection V of n vertices

V = {v1, · · · , vn} ,

and a collection E of m edges

E = {e1, · · · , em} ,

where each edge represents adjacencies between pairs of vertices. Thus, if edge
el is incident to vertices vi and vj we denote it as el = (vi, vj) = (vj , vi) ∈ E.
The order of the graph, denoted by |V |, refers to the number n of vertices,
while the size of the graph, denoted |E|, refers to the number m of edges.

Given a graph G of order n, the adjacencies in E may be represented using
an n × n symmetric matrix MG referred to as the adjacency matrix;

(MG)ij =

{
1, if (vi, vj) ∈ E

0, if (vi, vj) �∈ E.

If the edges in E are enumerated as e1, . . . , em, then the vertices incident to
each edge may be summarized in an n × m incidence matrix NG:

(NG)lj =
{

1, if edge ej is incident with vertex vl

0, otherwise.

The number of edges incident to a vertex vi is referred to as the degree of the
vertex and will be denoted as d(vi). In various applications, it will be useful
to assign weights to edges and vertices in a graph. Such graphs are referred
to as weighted graphs.

Definition 5.2. A weighted graph is a graph G = (V, E) with weights wij

assigned to each edge (vi, vj) ∈ E. Such weights can be summarized in an
n×n symmetric weight matrix W . Weights may also be assigned to individual
vertices vi ∈ V and denoted by w(vi). By default, weights can be assigned to
any graph G = (V, E) by defining wij = wji = 1 if (MG)ij = 1 and w(vi) = 1.
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Associated with a graph G = (V,E) with a nonnegative weight matrix W ,
we define an n × n graph Laplacian matrix LG as follows:

(LG)ij ≡

⎧⎪⎨
⎪⎩
∑

l �=i wil, if j = i

−wij , if (vi, vj) ∈ E

0, if (vi, vj) �∈ E and i �= j.

(5.1)

If the graph is unweighted, then the default weights wij = (MG)ij for i �= j,
given by the adjacency matrix, should be used, and in this case the diagonal
entries (LG)ii = d(vi) will correspond to the degrees of the vertices. By defi-
nition, LG will be symmetric and weakly diagonally dominant with zero row
sums. Consequently LG will be singular with eigenvector x1 = (1, · · · , 1)T

corresponding to eigenvalue λ1 = 0. Due to symmetry and weak diagonal
dominance of LG, its eigenvalues {λi} will be nonnegative. We assume that
these eigenvalues are ordered as:

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Definition 5.3. A graph G = (V,E) is said to be connected if for any two
vertices vi, vj ∈ V there exists a “path” vi = x1, x2, · · · , xl = vj such that all
consecutive vertices are adjacent, i.e., (xr, xr+1) ∈ E for r = 1, · · · , l − 1. In
matrix terms, a graph G will be connected if and only if its adjacency matrix
MG is irreducible, i.e., any 2 × 2 block partitioning of matrix PMGPT must
yield a nonzero off diagonal block for any permutation matrix P reordering
the rows or columns.

If a graph G is not connected, then the algebraic multiplicity of the zero
eigenvalue of LG will yield its number of connected components.

Definition 5.4. For a connected graph G, the algebraic multiplicity of the
zero eigenvalue of LG will be one and λ2 > 0. In this case, the eigenvector x2

of LG corresponding to eigenvalue λ2 > 0:

LG x2 = λ2 x2,

is referred to as the Fiedler vector of the graph G.

The Fiedler vector of a connected graph can be employed to partition a
graph into two, as shall be described later. This can be applied recursively.

In applications to the partitioning of a triangulation, two alternative
graphs G = (V, E) may be associated with a given triangulation Ωh.

• In applications to Schwarz algorithms, let the vertices vi in the graph
correspond to nodes xi of Ωh. In this case vertices vi and vj can be defined
to be adjacent if nodes xi and xj belong to the same element.

• In applications to Schur complement algorithms, it will be preferable to
identify the vertices vi of the graph with elements κi of triangulation Ωh.
Vertex vi can be defined to be adjacent to vertex vj if elements κi∩κj �= ∅.

More details of such associations will be described later.
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Once a graph G = (V, E) has been associated with a domain or the nodes
in Ωh, a partition of the domain or its nodes, can be obtained by partitioning
the vertices of graph G = (V, E) into p subsets V1, · · · , Vp of order n1, · · · , np,
respectively so that: {

V1 ∪ · · · ∪ Vp = V,
Vi ∩ Vj = ∅, if i �= j.

(5.2)

The induced subgraph on the vertices Vi (i.e., the adjacencies from E between
vertices in Vi) will be required to be connected. The load balancing constraint
can be heuristically approximated by requiring the number ni of nodes within
each subset Vi be approximately the same, as stated formally in the following.

Definition 5.5. Given a graph G = (V, E) and a parameter ε > 0 chosen by
the user, we define Kε as an admissible partition of V into p sets V1, · · · , Vp

of size n1, · · · , np, respectively, if the following hold:

1. If ni = |Vi| for i = 1, · · · , p, then:

(1 − ε)
n

p
≤ ni ≤

n

p
(1 + ε), for i = 1, · · · , p.

2. The induced subgraphs Gi = (Vi, Ei) are connected, where each Ei denotes
adjacencies from E between vertices in Vi.

Remark 5.6. In some applications, it may be convenient to let each vertex in
the graph represent more than one nodal unknown in the original triangulation
Ωh. In such cases, a weight w(vi) can be assigned to each vertex to denote
the number of nodes that vertex vi represents. Then, the number ni of nodes
which subset Vi represents should be computed as:

ni = |Vi| =
∑

vl∈Vi

w(vl). (5.3)

This will reduce to the number of vertices in Vi if w(vl) = 1.

If one processor is assigned to each subdomain defined by Vi, then the vol-
ume of communication between the different processors can be heuristically
estimated in terms of the total number of edges between the vertices in dif-
ferent sets Vi in the partition. If weighted edges are used, this quantity may
be replaced by the sum of the edge weights on edges between different sets
Vi. The requirement that the communication between different subdomains
be minimized may thus be approximated by minimizing the sum of such edge
weights between distinct subsets Vi. Accordingly, we may define an objective
functional δ (·) which represents the sum of edge weights between distinct
subsets Vi in the partition.
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Definition 5.7. Given a graph G = (V,E) with weight matrix W and two
disjoint vertex subsets Vi and Vj of V , we denote by δ(Vi, Vj) the total sum of
edge weights between all pairs of vertices in Vi and Vj:

δ (Vi, Vj) ≡
∑

{vr∈Vi,vs∈Vj}
wrs. (5.4)

Given three or more disjoint vertex subsets of V , we define δ (V1, · · · , Vp) as
the sum of edge weights between each distinct pair of subsets Vi and Vj:

δ (V1, · · · , Vp) ≡
p−1∑
i=1

p∑
j=i+1

δ (Vi, Vj) . (5.5)

The functional δ (V1, · · · , Vp) will represent the volume of communication be-
tween subsets in the partition.

If W is chosen by default with wij = (MG)ij , then δ (V1, · · · , Vp) will
correspond to the total number of edges between all distinct pairs of subsets Vi

and Vj of the partition of V . The problem of partitioning a graph G so that the
load balancing constraint holds and so that the communication costs between
subdomains is minimized, may formally be approximated by the following
combinatorial minimization problem. Find a Kε partition V1, . . . , Vp satisfying:

δ (V1, · · · , Vp) = min
(Ṽ1,··· ,Ṽp)∈Kε

δ
(
Ṽ1, · · · , Ṽp

)
. (5.6)

Unfortunately, as with most combinatorial optimization problems, this is an
NP hard discrete problem, see [PO3]. Consequently, no algorithm of polyno-
mial complexity is known for determining the exact solution. We therefore
restrict consideration to heuristic algorithms which approximate the solution
to the above. The following three algorithms will be outlined in the following:
the Kernighan-Lin algorithm, the recursive spectral bisection algorithm and
the multilevel graph partitioning algorithm. The latter algorithm generally
has the lowest complexity amongst the three.

Kernighan-Lin Algorithm. This algorithm [KE4], corresponds to a discrete
descent method for the combinatorial minimization problem (5.6). Start with
any initial partition Ṽ1, · · · , Ṽp in Kε. Repeatedly exchange pairs of vertices
vi and vj for which the resulting partition is still within Kε and for which a
reduction in the functional δ(·) is obtained. If the vertex weights w(vi) are
unitary then such an exchange will leave n1, . . . , np unchanged, however, if
nonunitary vertex weights are employed, this constraint must be checked. To
avoid stagnation at a local minimum, the Kernighan-Lin algorithm permits
a fixed number q∗ of exchanges within Kε which increase the value of δ(·).
The algorithm must ideally be implemented for several selections of initial
partitions, and the partition corresponding to the lowest value of δ(·) must
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be stored. Once a prescribed number of iterations have been completed, this
optimal stored partition can be chosen as an approximate solution of (5.6).

The complexity of the Kernighan-Lin algorithm is O(n2 log(n)) if a fixed
number of iterations is implemented. However, the number of exchanges of
vertices per iteration can be reduced significantly if only boundary vertices
are exchanged, i.e., vertices which are adjacent to vertices in other sets of the
partition. An O(|E|) complexity algorithm is known for p = 2, 4, see [PO3].

Remark 5.8. To implement the Kernighan-Lin sweep, for any subset Ṽi ⊂ V
and vertex vr define dṼi

(vr) as the sum of edge weights wrs between vertex
vr and vertices vs in Ṽi:

dṼi
(vr) ≡

∑
{(vr,vs)∈E:vs∈Ṽi}

wrs.

Define the gain associated with exchanging vr ∈ Ṽi and vs ∈ Ṽj as follows:

gain(vr, vs) =

{
dṼi

(vr) − dṼj
(vr) + dṼj

(vs) − dṼi
(vs) if (vr, vs) �∈ E

dṼi
(vr) − dṼj

(vr) + dṼj
(vs) − dṼi

(vs) − 2wrs if (vr, vs) ∈ E.

If the gain is nonnegative, then the exchange should be accepted. At most q∗
exchanges resulting in a negative gain should be accepted.

Recursive Spectral Bisection Algorithm. The recursive spectral bisec-
tion algorithm is a popular graph partitioning algorithm which repeatedly
partitions a graph into two subgraphs [SI2, PO2, BA20, FI, FI2, BA21, BO3].
Each graph (or subgraph) is partitioned based on sorting the entries of the
Fiedler vector of the graph (or subgraph). The partitions obtained by recur-
sive spectral bisection are typically of very good quality as measured by δ (·),
however, the algorithm is ideally suited for p ≈ 2J for integer J ≥ 1, and is
relatively expensive to implement due to computation of the Fiedler vector.

We motivate the spectral bisection algorithm by considering the partition
of a graph G = (V, E) with weight matrix W into two subgraphs so that (5.6)
is minimized. For simplicity, we suppose that |V | is an even integer and that
all vertex weights w(vi) are unitary. In this case we seek |V1| = |V2| and
the partition is referred to as a bisection. Let LG denote the weighted graph
Laplacian matrix (5.1). Suppose V1, V2 is a solution to the graph bisection
problem, then define a vector q as:

(q)i ≡
{

1, if vi ∈ V1

−1, if vi ∈ V2.

By construction, we obtain:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qT LGq =
∑

{(vi,vj)∈E}
wij(qi − qj)2

=
∑

{vi∈V1,vj∈V2}
wij 4

= 4 δ(V1, V2).
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Additionally qT 1 =
∑

j qj = 0. Therefore, minimization of δ(V1, V2) over all
admissible partitions, will be equivalent to the minimization of qT LGq for
q ∈ Q where:

Q ≡
{
q̃ = (q̃1, . . . , q̃n)T : q̃i = ±1, 1 ≤ i ≤ n, q̃T 1 = 0

}
.

We may thus state the bisection problem as determining q ∈ Q such that:

qT LGq = min
{q̃∈Q}

q̃T LGq̃. (5.7)

This is called a quadratic assignment problem [PO3], and it is a discrete (com-
binatorial) optimization problem which may be heuristically approximated by
a quadratic minimization problem over IRn (with appropriate constraints) as
indicated next. Define Q∗ ≡ {x ∈ IRn : xT x = n, xT 1 = 0} ⊃ Q. We obtain:⎧⎪⎨

⎪⎩
min
q∈Q

qT LGq ≥ min
xT

2 LGx2

xT LGx = xT
2 LGx2

= λ2 xT
2 x2

= λ2 n,

where x2 is a Fiedler vector (i.e., an eigenvector of LG corresponding to eigen-
value λ2 > 0) scaled so that its Euclidean norm is

√
n.

We may approximate the discrete minimum of qT LGq in Q as follows.

• Compute the Fiedler vector x2 (having norm
√

n) associated with LG:

LG x2 = λ2 x2.

• Since the components (x2)i may not be in {+1,−1}, sort its entries in
increasing order and let α1/2 denote a median value of the entries of x2.

• If (x2)i > α1/2 define qi = +1 and if (x2)i < α1/2 define qi = −1. If
(x2)i = α1/2 define qi = ±1, so that (n/2) components have +1 entries.

The above algorithm is easily generalized when |V | is not even and when the
vertex weights are not unitary. Indeed, for any choice of nonnegative integers
n1 and n2 satisfying n1 + n2 = n, we may extend the above partitioning
by defining V1 as the vertices corresponding to the first n1 components of
the Fiedler vector after sorting (taking into account nonunitary weights of
vertices). The following theoretical result will hold.

Lemma 5.9. Suppose the following assumptions hold.

1. Let G be a connected graph.
2. Let x2 denote the Fiedler vector of LG.
3. For α ≥ 0 and β ≤ 0 define:

Iα ≡ {i : (x2)i ≤ α}
Jβ ≡ {i : (x2)i ≥ −β} .
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Then the following results will hold:

1. The induced graph associated with V1 = {vi : i ∈ Iα} is connected.
2. The induced graph associated with V2 = {vi : i ∈ Jβ} is connected.
3. For any p ∈ Q

‖x2 − q‖2 ≤ ‖x2 − p‖2.

Proof. For results 1 and 2 see [FI]. For result 3 see [PO3, CI6]. ��

The recursive spectral bisection algorithm partitions a graph G = (V,E)
by repeatedly applying the spectral bisection algorithm to each of the sub-
graphs obtained from the previous applications of the spectral bisection
algorithm. We summarize the algorithm below, and employ the notation
G

(k)
i = (V (k)

i , E
(k)
i ) to denote the i’th subgraph at stage k. Weight matrices

of subgraphs are defined as submatrices of the parent weight matrix corre-
sponding to the indices in the subgraphs.

Algorithm 5.1.1 (Recursive Spectral Bisection Algorithm)
Let p ≈ 2J denote the number of sets in the partition
Define G

(1)
1 = (V (1)

1 , E
(1)
1 ) ≡ G = (V,E)

1. For k = 1, · · · , J − 1 do:
2. Spectrally bisect each subgraph G

(k)
i at level k into two:

G
(k)
i →

{
G

(k+1)
I1(i)

, G
(k+1)
I2(i)

}
for 1 ≤ i ≤ 2k−1.

3. Reindex G
(k+1)
i so that indices 1 ≤ i ≤ 2k

4. Endfor

Here I1(i) and I2(i) denote temporary indices for the partitioned graphs,
before reindexing. In practice, the Fiedler vector x2 (or an approximation
of it) may be computed approximately by the Lanczos algorithm [GO4]. As
mentioned earlier, the quality of spectral partitions are very good, though
more expensive to compute. For additional details, see [PO3, CI8, CI7].

Multilevel Graph Partitioning Algorithm. The multilevel graph parti-
tioning algorithm [SI2, BA20, VA3, HE7, KA3, KU] is motivated by graph
compaction algorithms and multigrid methodology [BR22, HA2, MC2]. Given
a graph G = (V,E) with weight matrix W , this graph partitioning algorithm
constructs a hierarchy of smaller order or “coarser” graphs G(l) = (V (l), E(l))
with weight matrices W (l), by repeated merging (agglomeration) of pairs of
vertices within each parent graph. Each graph in the hierarchy is constructed
to have approximately half the number of vertices as its parent graph. Once
a weighted coarse graph of sufficiently small order has been constructed, a
standard graph partitioning algorithm (such as recursive spectral bisection)
is applied to partition the coarsest weighted graph by minimizing a suitably
defined objective functional equivalent to (5.6). The partitioned subgraphs of
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the coarse graph are then “projected” onto the next finer level in the hierar-
chy by unmerging (deagglomeration) of the merged vertices. These projected
partitions are improved at the finer level by applying a Kernighan-Lin type
algorithm. This procedure is recursively applied till a partitioning of the orig-
inal graph is obtained. Since the bulk of the computations are implemented
on the coarsest graph, the computational cost is significantly reduced.

We describe additional details. Each graph in the multilevel hierarchy will
be indexed as l = 0, 1, . . . , J . In contrast with traditional multilevel notation,
however, index l = 0 will denote the original and largest order graph in the
hierarchy, while index l = J will denote the coarsest and smallest order graph
in the hierarchy. For 0 ≤ l ≤ J , the graphs in the hierarchy will be denoted
as G(l) =

(
V (l), E(l)

)
with weight matrices W (l) of size nl. The initial graph

will be the original weighted graph G(0) ≡ G with (V (0), E(0)) ≡ (V, E),
W (0) ≡ W and n0 ≡ n. If the original graph G = (V, E) is not weighted,
then the default weight matrix W is employed with unitary weights w(vi) = 1
assigned to the original vertices vi in V .

Given a parent graph G(l−1) =
(
V (l−1), E(l−1)

)
, this algorithm defines a

coarser (smaller order) graph G(l) =
(
V (l), E(l)

)
by merging (agglomerating)

pairs of vertices within V (l−1) by a procedure referred to as maximal matching.

Definition 5.10. Given a graph G(l) = (V (l), E(l)) a matching is any subset
of edges from E(l) such that no more than one edge is incident to each vertex.
A maximal matching is a matching in which no additional edge can be added
without violating the matching condition.

A maximal matching can be constructed in graph G(l−1) as follows. Select
one vertex randomly, say v

(l−1)
r , from the graph and determine an unmatched

vertex adjacent to it (if it exists) with maximal edge weight, i.e., match v
(l−1)
r

with v
(l−1)
s if w

(l−1)
rs is largest amongst all the unmatched vertices v

(l−1)
s . If

no adjacent unmatched vertex is found for v
(l−1)
r , then it is left as a singleton

and matched with itself. To obtain a maximal matching, this procedure is
repeated till there are no remaining unmatched vertices. We shall denote by
I1(i, l) and I2(i, l) the indices of the two parent vertices at level (l − 1) which
are matched and merged to yield vertex v

(l)
i at level l. If a vertex is matched

with itself (i.e., is a singleton) then I1(i, l) = I2(i, l) denotes the index at level
(l − 1) of vertex v

(l)
i . Since a vertex v

(l)
i at level l is the agglomeration of

vertices v
(l−1)
I1(i,l)

and v
(l−1)
I2(i,l)

from V (l−1), we express this as:

v
(l)
i = {vI1(i,l) ∪ vI2(i,l)}.

Consequently, vertices in V (l) represent a subset of vertices from the original
graph V (0) = V . The new vertices v

(l)
i in V (l) are assigned weights as follows:

w(l)(v(l)
i ) = w(l−1)(v(l−1)

I1(i,l)
) + w(l−1)(v(l−1)

I2(i,l)
),
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if v
(l)
i is not a singleton. Otherwise w(l)(v(l)

i ) = w(l−1)(v(l−1)
I1(i,l)

). The weight

w(l)(v(l)
i ) will denote the number of vertices of the original graph V (0) in v

(l)
i .

Vertices v
(l)
i and v

(l)
j in V (l) will be defined to be adjacent in E(l) if any of

the parent vertices of v
(l)
i are adjacent to any parent vertices of v

(l)
j at level

(l − 1). A weight w
(l)
ij will be assigned to adjacent vertices v

(l)
i and v

(l)
j by

summing the weights on all edges between the parent nodes of v
(l)
i and v

(l)
j at

level (l − 1). More specifically, if

v
(l)
i = vI1(i,l) ∪ vI2(i,l) and v

(l)
j = vI1(j,l) ∪ vI2(j,l),

we define:

w
(l)
ij =

∑
r∈{I1(i,l),I2(i,l)}

∑
s∈{I1(j,l),I2(j,l)}

w(l−1)
rs .

The first phase of the multilevel graph partitioning algorithm recursively
applies maximal matching to compute coarser graphs till a coarse graph G(J)

of sufficiently small order is constructed. Weights and edges are recursively
defined by applying the preceding expressions. Before we describe the second
phase in the multilevel graph partitioning algorithm, we discuss how a parti-
tion V

(l)
1 , . . . , V

(l)
p of vertices in V (l) can be “projected” to yield a partition

of V (l−1). We define a projection P l−1
l as:

P l−1
l V

(l)
i ≡ ∪

w
(l)
j ∈V

(l)
i

(
w

(l−1)
I1(j,l)

∪ w
(l−1)
I2(j,l)

)
. (5.8)

More generally, given indices 0 ≤ r < l, we define a projection P r
l recursively:

P r
l V

(l)
i ≡ P r

r+1 · · ·P l−1
l V

(l)
i . (5.9)

Thus, a partition V
(l)
1 , . . . , V

(l)
p of V (l) will yield a partition of V (r) by use of

the projections P r
l V

(l)
1 , . . . , P r

l V
(l)
p , which will deagglomerate all the vertices

v
(l)
i ∈ V

(l)
k . Formally, we obtain an expression similar to (5.8).

We next describe how to define an induced objective function δ(l)(·) which
is equivalent to δ (·) for a partition V

(l)
1 , . . . , V

(l)
p at level l:⎧⎨

⎩
δ(l)
(
V

(l)
i , V

(l)
j

)
≡
∑

{v
(l)
r ∈V

(l)
i , v

(l)
s ∈V

(l)
j } w

(l)
rs

δ(l)
(
V

(l)
1 , . . . , V

(l)
p

)
≡
∑p−1

i=1

∑p
j=i+1 δ(l)

(
V

(l)
i , V

(l)
j

)
.

(5.10)

By construction, the preceding objective functionals will satisfy:

δ(l)
(
V

(l)
1 , . . . , V

(l)
p

)
= δ(r)

(
P r

l V
(l)
1 , . . . , P r

l V
(l)
p

)
, (5.11)

for 0 ≤ r < l, where δ(0) (·) = δ (·). Hence, by construction, if a sequence of
partitions are constructed on graph G(l) such that the value of the objective
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functional δ(l)(·) monotonically decreases, then the value of δ(0)(·) will also
decrease monotonically for the projected partitions at level l = 0.

We now summarize the multilevel graph partitioning algorithm. Given
G(0) ≡ G, a hierarchy of graphs G(1), . . . , G(J) are constructed by maximal
matching. Then, the coarsest graph G(J) is partitioned using an effective graph
partitioning algorithm, such as Kernighan-Lin or recursive spectral bisection,
to minimize δ(J) (·). The resulting partition is then projected to the next finer
level using P J−1

J and refined by an application of several iterations of the
Kernighan-Lin algorithm using δ(J−1)(·). This procedure is recursively applied
till a partition is obtained on the finest graph. The algorithm is summarized
next for an input graph G(0) = (V (0), E(0)) and J denoting the number of
desired levels in the hierarchy.

Algorithm 5.1.2 (Multilevel Graph Partitioning Algorithm)

1. For l = 1, . . . , J do:
2. Construct a coarser graph using maximal matching:

V (l) ← V (l−1)

E(l) ← E(l−1).

3. Define vertex and edge weights:⎧⎨
⎩

w(l)(v(l)
i ) = w(l−1)(v(l−1)

I1(i,l)
) + w(l−1)(v(l−1)

I2(i,l)
)

w
(l)
ij =

∑
r∈{I1(i,l),I2(i,l)}

∑
s∈{I1(j,l),I2(j,l)} w

(l−1)
rs

4. Endfor
5. Partition: V (J) → (V (J)

1 , · · · , V
(J)
p )

6. For l = J, . . . , 1 do:
7. Project: P l−1

l V
(l)
i → V

(l−1)
i for i = 1, . . . , p

8. Improve the partition employing Kernighan-Lin and δ(l)(·)
9. Endfor

Output: V
(0)
1 , . . . , V

(0)
p

Numerical studies, see [SI2, BA20, HE7, KA3, PO2], indicate that the
quality of multilevel partitions are comparable with that obtained by recursive
spectral bisection as measured by δ(·). Various software implementations of
multilevel partitioning algorithms are available, see CHACO [HE8], METIS
[KA3] and [KU]. For additional discussion, readers are referred to [PO3].

5.1.3 Construction of Subdomain Decomposition

Graph partitioning can be applied to either partition Ω into nonoverlapping
subdomains Ω1, . . . , Ωp, or to partition the index set I of nodes in Th(Ω) into
subindex sets I1, . . . , Ip, so that load balancing and minimal communication
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constraints hold. To partition the index set I = {x1, . . . , xn} of vertices in
Ωh. Define a graph G = (V, E) with vertices vi ≡ xi for i = 1, . . . , n where
vi is adjacent to vj in E if vertex xi and xj belong to the same element
κ ∈ Th(Ω). Assign unitary weights w(vi) = 1 to the vertices and unitary
weights wij ≡ 1 to the edges (vi, vj) ∈ E. Apply any of the partitioning
algorithms to minimize δ (·) within Kε (for a suitable ε > 0) and partition V
into V1, . . . , Vp. This yields a partition I1, . . . , Ip of the index set I. To obtain
overlap amongst the index sets, for any β > 0 extend each index set Ii as:

I∗
i ≡ {l : dist(xl, xj) ≤ β h0, for j ∈ Ii} , (5.12)

where dist(xl, xj) denotes the Euclidean distance between xl and xj .

Remark 5.11. If nj denotes the number of vertices in Ij and n∗
j ≥ nj the

number of vertices in I∗
j , and if Th(Ω) is not quasiuniform, then n∗

i may vary
significantly, violating load balancing requirements.

To partition Ω into nonoverlapping subdomains, let κ1, . . . , κq denote an
ordering of the elements in triangulation of Ωh. Define a graph G = (V, E) with
vertices vi ≡ κi for i = 1, . . . , q, where vi is adjacent to vj in E if κi ∩ κj �= ∅.
We assign unitary vertex weights w(vi) = 1 and unitary edge weights wij = 1
for (vi, vj) ∈ E. We may apply any of the partitioning algorithms to minimize
δ (·) within Kε (for ε > 0) and partition V into V1, . . . , Vp. By construction,
this will yield a partition of Ω into connected subdomains:

Ωi ≡ (∪vl∈Vi κl), for 1 ≤ i ≤ p. (5.13)

Overlap may be included amongst the subdomains by extending each subdo-
main Ωi to Ω∗

i by including all elements adjacent within a distance β h0 > 0,
where dist(κr, κj) denotes the the distance between the centroids of elements
κr and κj . The size of Ω∗

i and the associated number of nodes may vary
significantly if Th(Ω) is not quasiuniform.

5.1.4 Coarse Spaces on Unstructured Grids

Traditional coarse spaces defined on a coarse grid Th0(Ω) will not be applicable
on unstructured grids, since Th(Ω) is not obtained by the refinement of Th0(Ω).
Instead, alternative coarse spaces may be employed to provide global transfer
of information on such grids [WI6, CA4, CH17, CH3, SA11, SA12, SA13]. We
shall outline the following coarse spaces:

• Coarse space V0,I(Ω) obtained by interpolation of an external space.
• Piecewise constant discrete harmonic finite element space V0,P (Ω).

We shall let Vh(Ω) denote the finite element space defined on the unstructured
grid Th(Ω), and formulate coarse spaces either algebraically, corresponding to
a subspace of nodal vectors in IRn associated with finite element functions.
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Coarse Space Based on Interpolation. The finite element coarse space
V0,I(Ω) ⊂ Vh(Ω) is defined by interpolating or projecting an external finite
dimensional space Vh0(Ω∗) of functions with desirable approximation prop-
erties onto the finite element space Vh(Ω), see [CA4, CH17, CH3, CA17].
Let Ω∗ ⊃ Ω and let {φ(0)

1 (x), · · · , φ
(0)
n0 (x)} denote n0 basis functions in

Vh0(Ω∗) ⊂ H1(Ω∗) having desirable properties. The coarse space V0,I(Ω)
is defined as the subspace of Vh(Ω) ∩ H1

0 (Ω) spanned by interpolants (or
projections) of these basis functions onto the finite element space:

V0(Ω) ≡ span
{

Ihφ
(0)
1 (·), . . . , Ihφ(0)

n0
(·)
}
⊂ Vh(Ω), (5.14)

where Ih denotes a finite element interpolation or projection map onto Vh(Ω).
A matrix representation of V0,I(Ω) can be obtained using the standard

interpolation map Ih as follows. Let I = {x1, · · · , xn} denote an ordering of
the interior nodes of Th(Ω). Then, an n× n0 extension matrix RT

0 is defined:

RT
0 ≡

⎡
⎢⎢⎣

φ
(0)
1 (x1) · · · φ

(0)
n0 (x1)

...
...

φ
(0)
1 (xn) · · · φ

(0)
n0 (xn)

⎤
⎥⎥⎦ . (5.15)

The functions {φ(0)
i (·)}n0

i=1 should ideally be chosen so that the above matrix
is of full rank. The restriction matrix R0 will be the transpose of the extension
matrix, and A0 ≡ R0ART

0 . We indicate two examples below.

Example 5.12. If Ω∗ ⊃ Ω is a polygonal or polyhedral domain covering Ω

and triangulated by a quasiuniform grid Th0(Ω
∗), let {φ(0)

1 (x), · · · , φ
(0)
n0 (x)}

denote a finite element nodal basis defined on triangulation Th0(Ω
∗). Such

basis functions will be in H1(Ω∗). To ensure that each coarse node in Th0(Ω
∗)

corresponds to a true (nonredundant) degree of freedom, it will be assumed
that the support of each nodal basis function defined on Th0(Ω

∗) intersects
interior nodes of Th(Ω). A coarse space can be constructed as in (5.15), where
R0 will be sparse. Such a basis was tested in [CA4, CH17, CH3] and shown
to yield a quasioptimal convergence rate under appropriate assumptions. It is
more suited for Dirichlet boundary value problems.

Example 5.13. An alternative coarse space can be constructed by choosing
a space Vn0(Ω

∗) of polynomials on Ω∗ ⊃ Ω and interpolating it onto the
finite element space Vh(Ω). If {φ(0)

1 (x), · · · , φ
(0)
n0 (x)} denotes a monomial or

Tchebycheff basis for polynomials of degree d or less on a rectangular domain
Ω∗ ⊃ Ω, then the matrices R0, RT

0 and A0 can be constructed as in (5.15).
However, these matrices will not be sparse. In two dimensions, the monomials:

Vd(Ω∗) ≡ span {1, x1, x2, x
2
1, x1x2, x

2
2, . . . , x

d
1, . . . , x

d
2},

may be used, but a Tchebycheff basis would be preferable. Alternatively, a
tensor product of one dimensional polynomials may be employed. Heuristics
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studies indicate reasonable convergence for Neumann boundary value prob-
lems [CA18], in which case nodes on Ω ∪ BN must also be included in (5.15).

Coarse Space of Piecewise Discrete Harmonic Functions. We next
describe a coarse space V0,P (Ω) ⊂ Vh(Ω) of piecewise discrete harmonic fi-
nite element functions. Let Ω1, . . . , Ωp denote a nonoverlapping subdomain
decomposition of Ω, constructed by graph partitioning of the triangulation
Ωh of Ω. The coarse finite element space V0,P (Ω) will consist of finite element
functions which are discrete harmonic on each subdomain Ωl with specially
chosen boundary values on each B(l) = ∂Ωl\BD.

A matrix basis for V0 can be constructed as follows [MA14, CO8, SA7].
Denote by B = ∪p

i=1B
(i) the common interface, We shall assume that the

indices in I are grouped and ordered as I ∪ B corresponding to the nodes
in the subdomains Ω1, · · · , Ωp and on interface B, with nI and nB denoting
the number of nodes in I and B, respectively. Let yi for i = 1, . . . , nB denote
the ordering of nodes on B. Then, for each node yi ∈ B define NG(yi) as
the number of subdomain boundaries B(k) with yi ∈ B(k). Employ the block
partitioning w =

(
wT

I ,wT
B

)T as in Schur complement methods, resulting in
the following block structure for A:

A ≡
[

AII AIB

AT
IB ABB

]
,

where AII = blockdiag(A(1)
II , . . . , A

(p)
II ). The columns of RT

0 will be defined
as piecewise discrete A-harmonic vectors corresponding to the following p

specifically chosen interface data vectors w(k)
B for k = 1, · · · , p:

(
w(k)

B

)
i
=

{
1

NG(yi)
, if yi ∈ B(k), for i = 1, . . . , nB

0, otherwise.

Denote the discrete harmonic extension matrix as E ≡ −A−1
II AIB and define

matrix RT
0 as:

RT
0 ≡

[
Ew(1)

B · · · Ew(p)
B

w(1)
B · · · w(p)

B

]
.

The coarse finite element space V0,P (Ω) ⊂ Vh(Ω) will consist of finite element
functions whose nodal vectors are in Range

(
RT

0

)
. The restriction matrix R0

will be the transpose of RT
0 and A0 ≡ R0ART

0 . Approximation properties of
such spaces are described in [CO8, SA7, MA17].

Remark 5.14. The finite element functions in V0,P (Ω) correspond to discrete
harmonic extensions into the subdomains, of finite element functions in the
piecewise constant coarse space V0,P (B) employed in the balancing domain
decomposition preconditioner [MA17].
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5.1.5 Schwarz Algorithms

We consider next the matrix implementation of Schwarz iterative algorithms
on an unstructured grid Th(Ω). These algorithms can be formulated as before,
based on suitable restriction and extension matrices. We shall assume that the
index set I has been partitioned into subindex sets I1, . . . , Ip using a graph
partitioning algorithm which minimizes δ (·), and that each index set Il has
been extended to I∗

l as described earlier in this section. Let the subindex sets
I∗

1 , . . . , I∗
p have n∗

1, . . . , n
∗
p nodes in each set.

Define an index function with index(i, I∗
l ) denoting the global index in

I of the local index 1 ≤ i ≤ n∗
l in I∗

l . Then, the entries of an n∗
l × n local

restriction matrix Rl can be defined by:

(Rl)ij =

{
1, if index(i, I∗

l ) = j

0, if index(i, I∗
l ) �= j.

The extension matrices RT
l will be transposes of the restriction matrices with

Al ≡ RlART
l . Once a coarse space has be chosen with restriction matrix R0,

the system Au = f may be solved using matrix multiplicative, additive or
hybrid Schwarz algorithms based on the restriction matrices R0, R1, . . . , Rp.
If the unstructured grid is quasiuniform, optimal convergence should be ob-
tained, see [CH3, CH17, CA4, CA18] and [CO8, SA7]. Studies of the effects of
partitioning algorithms, amount of overlap and other factors in unstructured
grid applications are presented in [CI8].

5.1.6 Schur complement algorithms

When the grid is unstructured, the nonoverlapping subdomains Ω1, . . . , Ωp

determined by a graph partitioning algorithm may have complex geometry,
and traditional globs such as edges, faces and wirebaskets may be difficult to
identify. However, the subdomain boundary segments B(i) will be well defined,
so that Neumann-Neumann and balancing domain decomposition precondi-
tioners can be applied based on S(i). Depending on whether c(x) = 0 or
c(x) ≥ c0 > 0 in the elliptic equation, the local Schur complement S(i):

S(i) =
(
A

(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB

)
,

may be singular when Ωi is a floating subdomain. The singular vector will
be zi = (1, · · · , 1)T and the balancing domain decomposition algorithm can
be applied. When c(x) ≥ c0 > 0, the subdomain stiffness matrices A(i) will
not be singular. However, if no mechanism is employed for global transfer of
information, then the convergence rate of the resulting Neumann-Neumann
algorithm will deteriorate as h−2

0 (1 + log(h0/h))2 if the grid Th(Ω) is quasi-
uniform and the subdomains are shape regular of diameter h0. Instead, the
balancing domain decomposition or traditional Neumann-Neumann algorithm
can be employed with the coarse space V0,P (Ω) described earlier for unstruc-
tured grids, see [SA7, MA15].
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5.1.7 FETI Algorithms

As with Neumann-Neumann and balancing domain decomposition algorithms,
FETI algorithms also require minimal geometric information about the sub-
domains on unstructured grids. If c(x) = 0 and Ωi is floating, the subdomain
stiffness matrices A(i) will be singular, while if c(x) ≥ c0 > 0, matrix A(i) will
be non-singular. Appropriate versions of the FETI algorithm can be employed
on unstructured grids [FA15].

5.2 Parallelizability of Domain Decomposition Solvers

In this section, we heuristically model the potential parallel efficiency of do-
main decomposition solvers [GR10, GR12, SK, CH15, FA9, SM4, GR16]. We
do this by employing theoretical models, under highly idealized assumptions,
for the execution times of representative domain decomposition solvers imple-
mented on a parallel computer having p processors with distributed memory.
We consider representative Schwarz or Schur complement preconditioners,
with and without coarse space correction, and CG acceleration.

Our discussion will be organized as follows. In Chap. 5.2.1 we present
background and notation on identities used for the parallel computation of
matrix-vector products and inner products, and representative Schwarz and
Schur complement preconditioners. In Chap. 5.2.2, we describe background on
parallel computers and measures for assessing the speed up, efficiency and scal-
ability of parallel algorithms. Chap. 5.2.3 describes a domain decomposition
strategy for allocating memory and computations to individual processors,
and derives heuristic estimates for the parallel execution times of represen-
tative solvers, with and without coarse space correction. In Chap. 5.2.4 we
employ these bounds to obtain models for the parallel efficiency of various
domain decomposition iterative solvers.

5.2.1 Background

Consider the following self adjoint and coercive elliptic equation:{
−∇ · (a(x)∇u) + c(x)u = f(x), in Ω ⊂ IRd

u = 0, on ∂Ω,
(5.16)

with smooth coefficients a(x) ≥ a0 > 0 and c(x) ≥ 0. Its discretization by
a finite element method based on a quasiuniform triangulation τh (Ω) of Ω,
with grid size h, will yield the linear system:

Au = f , (5.17)

where A = AT > 0 is of size n.
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We consider the solution of (5.17) by a preconditioned CG algorithm using
an additive Schwarz or Neumann-Neumann preconditioner. Accordingly, we
let Ω1, . . . , Ωns

denote a nonoverlapping decomposition of of Ω ⊂ IRd into ns

subdomains, each of diameter h0 and volume (area) |Ωi| = O(hd
0). To obtain

an overlapping decomposition, we extend each subdomain Ωi by including all
points of Ω within a distance of β h0 from Ωi, resulting in subdomain Ω∗

i .
By construction, the volume (area) of the extended subdomains will satisfy
|Ω∗

i | = O ((1 + β∗) |Ωi|) for β∗ ≡ (1 + β)d − 1. Due to quasiuniformity of
the underlying triangulation, if n denotes the number of interior nodes in
Ω, then each nonoverlapping subdomain Ωi will contain O(n/ns) unknowns
while overlapping subdomains Ω∗

i will contain O ((1 + β∗)n/ns) unknowns.

Notation. We will employ the following notation. The pointwise nodal re-
striction map onto nodes in Ωi will be denoted R(i) and the local stiffness
matrix on Ωi will be denoted A(i). Consequently, the subassembly identity
can be expressed in the form:

A =
ns∑
i=1

R(i)T

A(i)R(i).

Local load vectors will be denoted f (i) for 1 ≤ i ≤ ns so that the global load
vector has the form f ≡

∑ns

i=1 R(i)T

f (i). We shall assume there exists diagonal
matrices I(i) which form a decomposition of the identity:

I =
ns∑
i=1

R(i)T

I(i)R(i),

where matrix I(i) has the same size as A(i) with nonnegative diagonal en-
tries. Such matrices can be constructed by defining (I(i))kk = 1 if xk ∈ Ωi

and (I(i))kk = 1/N(xk) if xk ∈ B(i) where N(xk) denotes the number of
subdomain boundaries to which node xk belongs to.

If a Schur complement preconditioner is employed, then Ri will denote
the pointwise restriction map from nodes on interface B onto the boundary
segment B(i) of Ωi. The local Schur complements will be denoted S(i), so that
the subassembly identity has the form:

S =
ns∑
i=1

RT
i S(i)Ri.

A decomposition of the identity on B of the form:

I =
ns∑
i=1

RT
i I(i)Ri,

will also be assumed, where I(i) (with some abuse of notation) denotes a
diagonal matrix of the same size as S(i) with nonnegative diagonal entries.
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If a coarse space is employed, it will be spanned by the rows of R0 with
S0 = R0SRT

0 denoting the coarse Schur complement matrix.
Given overlapping subdomains Ω∗

i , we let Ri denote the pointwise restric-
tion map onto nodes in Ω∗

i , so that Ai = RiART
i will be a principal submatrix

of A corresponding to nodes in Ω∗
i . If a coarse space is employed, then the

row space of R0 will span the coarse space, and the coarse space matrix will
be denoted A0 = R0ART

0 .

5.2.2 Parallel Computation

We consider a parallel computer with an MIMD (multiple instruction, multiple
data) architecture with distributed memory [HO, LE16, AL3, QU8, GR]. We
will assume there are p identical processors, each with local memory and
capable of executing programs independently, where τf denotes the time for
a floating point operation. For simplicity, it will be assumed that data can
be communicated directly between any pair of processors (though, in most
domain decomposition applications it will be sufficient to pass data between
neighboring processors, as specified by some adjacency matrix). We shall let
Tcomm(n) ≡ τ0 + n τc denote the average time for transferring n units of data
between two processors. Here τ0 denotes the start up time, which we shall
assume is zero for simplicity.

On a typical MIMD parallel computer, the speed of communication τc

between processors will be significantly slower than the speed τf of floating
point operations, i.e., τf  τc. This unfortunate fact places constraints on the
types of parallel algorithms suitable for implementation on such hardware.
In such cases, interprocessor communication must be kept to a minimum to
obtain high speed up of algorithms. If several processors simultaneously send
data to each other, then a suitable protocol such as message passing interface
[GR15] may be employed. By design, large portions of domain decomposition
algorithms involve computations which can be implemented independently
without communication, provided each processor is assigned to implement the
computations on one or more subdomains. The remaining portions typically
require communication, either between adjacent subdomains or with a coarse
space (if present). Algorithms having relatively large sections of independent
computations with relatively small sections requiring communication are said
to have coarse granularity, see [HO, LE16, AL3, QU8, GR], and are generally
suited for implementation on MIMD architectures.

The performance of an algorithm on a parallel computer is typically as-
sessed by a quantity referred to as the speed up, which measures the rate
of reduction in its execution time as the number of processors is increased.
Formally, if T (p, n) denotes the execution time for implementing a parallel
algorithm having problem size n using p processors, then its relative speed up
is defined as the ratio of its execution time T (1, n) on a serial computer to its
execution time T (p, n) on a parallel computer with p processors.
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Definition 5.15. The relative speed up of an algorithm implemented using p
processors is defined as:

S(p, n) ≡ T (1, n)
T (p, n)

.

The speed up ratio has a theoretical maximum value of p for a perfectly paral-
lelizable algorithm with 1 ≤ S(p, n) ≤ p.

Remark 5.16. Even if the relative speed up of a parallel algorithm attains its
maximum value, there may be other parallel implementations with shorter
execution times. This is because the relative speed up ratio is not measured
with reference to the best serial execution time. When the speed up is measured
relative to the best serial execution time, the resulting speed up is referred to
as total speed up. This is defined below, where Tbest(1, n) denotes the best
serial execution time.

Definition 5.17. The total speed up of an algorithm is defined as:

S(p, n) ≡ Tbest(1, n)
T (p, n)

.

When the best serial algorithm or execution time is not known, the relative
speed up may be used as a measure of its parallel performance. In finite ele-
ment applications, the lowest attainable complexity for the solution of a sparse
linear system of size n arising from discretizations of elliptic equations will be
denoted φ(n). In special cases, linear (or almost linear) order complexity may
be attained for multigrid and fast Poisson solvers, depending on the elliptic
equation, geometry and discretization. In such cases, Tbest(1, n) = C n τf , but
we will assume Tbest(1, n) = φ(n) τf where φ(n) = c0n

α+o(nα) for 1 < α ≤ 3.

Remark 5.18. The execution time T (p, n) of domain decomposition algorithms
may depend on other factors, such as the number ns of subdomains, the
amount β of overlap (if overlapping subdomains are employed), the stopping
criterion ε, the complexity φ(·) of the local solver, size n0 of the coarse space,
amongst other factors. If this dependence of the execution time on such ad-
ditional factors needs to be emphasized, we shall denote the execution time
as T (p, n, ns, β, ε, n0, φ) and the relative speed up as S(p, n, ns, β, ε, n0, φ) and
the total speed up as S(p, n, ns, β, ε, n0, φ). In the following, we define the
parallel efficiency of an algorithm as the percentage of the speed up relative
to the maximum speed up of p.

Definition 5.19. The relative parallel efficiency of an algorithm implemented
using p processors is defined as:

E(p, n) ≡ T (1, n)
p T (p, n)

× 100%.

The total parallel efficiency of an algorithm is defined as:

E(p, n) ≡ Tbest(1, n)
p T (p, n)

× 100%.



284 5 Computational Issues and Parallelization

Amdahl’s Law. In practice, there may be constraints on the maximal speed
up attainable in an algorithm, regardless of the computer hardware, due to
portions of the algorithm in which computations can only be executed sequen-
tially. Such an upper bound on the speed up is given by Amdahl’s law, which
may be derived as follows. Let 0 < α < 1 denote the fraction of computa-
tions within an algorithm which are serial in nature. Then, assuming perfect
parallelizability of the remaining portion of the algorithm, and ignoring over-
head and communication costs, the following estimate can be obtained for the
optimal execution times:

T (1, n) = α T (1, n) + (1 − α)T (1, n)
T (p, n) = α T (1, n) + (1 − α)T (1, n)/p.

This yields the following upper bound for the speed up:

S(p, n) =
T (1, n)
T (p, n)

=
1

α + (1 − α)/p
≤ 1

α
.

Thus, the parallel speed up of an algorithm cannot exceed the inverse of the
fraction α of serial computations within the algorithm.

The fraction α of serial computations within an algorithm can be difficult
to estimate and may vary with the problem size n. Amdahl’s law yields a pes-
simistic bound in practice, due to the implicit assumption that the fraction
α of serial computations remains fixed independent of n. Empirical evidence
indicates that α(n) diminishes with increasing problem size n for most algo-
rithms. A less pessimistic upper bound for the maximum speed up was derived
by Gustafson-Barris as indicated below. The parallel execution time given p
processors is decomposed as:

T (p, n) = A(n) + B(n),

where A(n) denotes the execution time for the serial portion of the algorithm,
while B(n) denotes the parallel execution time for the parallelizable portion
of the algorithm. This yields the following estimate for the serial execution
time of the algorithm:

T (1, n) = A(n) + pB(n)

from which we estimate the speed up as:

S(p, n) =
T (1, n)
T (p, n)

=
A(n) + pB(n)
A(n) + B(n)

=
(

A(n)
A(n) + B(n)

)
+
(

B(n)
A(n) + B(n)

)
p.

Unlike the fixed bound given by Amdahl’s law, the Gustafson-Baris bound for
the speed up increases linearly with the number of processors.

In applications, it is often of interest to know whether parallel algorithms
can be found which maintain their efficiency as the size n of the problem is
scaled up. The scalability of a parallel algorithm, defined below, is a measure
of how efficiently an algorithm makes use of additional processors.
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Definition 5.20. An algorithm is said to be scalable if it is possible to keep its
efficiency constant by increasing the problem size as the number of processors
increases. More specifically, an algorithm is scalable if given mp processors
where m > 1, the problem size can be increased to n(m) > n such that:

E(m p, n(m)) = E(p, n).

An algorithm is said to be perfectly scalable if its efficiency remains constant
when the problem size n and the number of processors p are increased by the
same factor m:

E(m p, m n) = E(p, n).

An algorithm is said to be highly scalable if its parallel efficiency depends
only weakly on the number of processors as the problem size n and the number
p of processors are increased by the same factor.

Remark 5.21. Using the definition of scalability, it is easily seen that the fol-
lowing will hold for an algorithm satisfying E(m p, n(m)) = E(p, n):

T (m p, n(m)) = (
T (1, n(m))
m T (1, n)

) T (p, n).

Here, the expression T (1, n(m))/(mT (1, n)) is the factor by which the com-
putation time is increased or decreased, in relation to T (p, n), as the number
of processors is increased to mp and the problem size is increased to n(m).

5.2.3 Parallelization of PCG Algorithms

Each iteration in a PCG algorithm can be decomposed into two portions, a
portion not involving the preconditioner (matrix-vector products, update of
residuals, iterates and inner products), and a portion computing the action
of the inverse of the preconditioner. When implementing a PCG algorithm
on a parallel computer with distributed memory, it will be desirable to allo-
cate memory to individual processors in a way compatible with both sections
of the algorithm, thereby minimizing communication of additional data. Fur-
thermore, if coarse space correction is employed within the preconditioner,
care must exercised in the parallel implementation of the coarse problem.
Typically, three alternative approaches may be employed for solving a coarse
space problem in parallel in domain decomposition preconditioners:

• Parallelize the solution of the coarse problem (using all the processors)
and store relevant data on each processor.

• Gather all the relevant coarse data on a specific processor and solve the
coarse problem only on this processor, and broadcast the result to all other
processors.

• Gather the coarse data on each processor, solve the coarse problem redun-
dantly in parallel on each processor.
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Generally, the latter two approaches are preferable on typical parallel archi-
tectures [GR10], though we shall consider only the second approach.

Motivated by the preceding, we shall heuristically consider the following
strategy for allocating memory and computations to individual processors.

• Each of the p processors is assigned to handle all the computations corre-
sponding to one or more subdomains or a coarse problem. Thus, if a coarse
space is not employed, each processor will be assigned to handle (ns/p)
subdomains, and (ns/p) + 1 subproblems if a coarse space is employed.

• To ensure approximate load balancing, we shall require the number of
unknowns O(n/ns) per nonoverlapping subdomain (or O ((1 + β∗)n/ns)
per overlapping subdomain) to be approximately equal. If a coarse space
is employed, we shall additionally require the number n0 of coarse space
unknowns not to exceed the number of unknowns per subdomain, yielding
the constraint n0 ≤ C(n/ns).

• To reduce communication between the processors, we shall assume that
the subdomain data are distributed amongst the different processors as
follows. The processor which handles subdomain Ωi should ideally store
the current approximation of the local solution u(i) on Ωi, the local stiff-
ness matrix A(i), local load vector f (i) and matrix I(i). If overlapping
subdomains Ω∗

i are used, then the local solution ui on Ω∗
i , submatrix

Ai = RiART
i , local load Rif , local residual Rir and the components RiR

T
j

for adjacent subdomains should also be stored locally. If a coarse space
is employed, then the nonzero rows of R0R

(i)T

and R0R
T
i should also be

stored locally.
• The processor which handles the coarse space should also store matrix

A0 = R0ART
0 and the nonzero entries of RjR

T
0 for 1 ≤ j ≤ ns.

We shall let K denote the maximum number of adjacent subdomains.
When deriving theoretical estimates of execution times, we shall as-

sume that an efficient sparse matrix solver having complexity φ(m) = c0 mα +
o(mα) for some 1 < α ≤ 3 is employed to solve all the subproblems of size m
occurring within a domain decomposition preconditioner. Analysis in [CH15]
suggests that if a serial computer is employed, then the optimal diameter h0

of a traditional coarse grid must satisfy:

h0 = O
(
hα/(2 α−d)

)
for Ω ⊂ IRd.

If a parallel computer is employed with p processors, then load balancing
requires the number n0 of coarse space unknowns to satisfy n0 ≤ c(n/ns).
Since theoretical analysis indicates a coarse space must satisfy an approxi-
mation property of order h0 for optimal or almost optimal convergence, this
heuristically suggests n0 ≈ ns ≈ n1/2 for traditional coarse spaces.

In the following, we outline parallel algorithms for evaluating matrix
multiplication and inner products, and the action of additive Schwarz and
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Neumann-Neumann preconditioners. We derive heuristic estimates for the
parallel execution times of the resulting algorithms.

Parallelization of Matrix Vector Products. By assumption,we let a vec-
tor w be distributed amongst different processors with component R(i)w (and
Riw, if overlapping subdomains are employed) stored on the processor han-
dling Ωi. As a result, a matrix-vector product Aw can be computed using
the subassembly identity:

Aw =
ns∑
i=1

R(i)T

A(i)R(i)w,

and the result can be stored locally using the following steps.

1. In parallel, multiply each of the local vectors R(i)w (assumed to be stored
locally) using the local stiffness matrix A(i).

2. The processor handling Ωi should send the data R(j)R(i)T (
A(i)R(i)w

)
to

the processor handling Ωj .
3. The processor handling Ωj should sum the contributions it receives:

R(j)Aw =
ns∑
i=1

R(j)R(i)T

A(i)R(i)w,

from all (at most K) neighbors, and store the result locally.

If ti denotes the parallel execution time for the i’th step above, it will satisfy:⎧⎪⎨
⎪⎩

t1 ≤ c1 (ns/p) (n/ns) τf

t2 ≤ c2 (ns/p) K (n/ns)(d−1)/d τc + τ0

t3 ≤ c3 (ns/p) K (n/ns)(d−1)/d τf .

Apart from τ0, the other terms are inversely proportion to p.
Matrix-vector products involving the Schur complement matrix S can be

computed similarly, based on an analogous subassembly identity:

SwB =
ns∑
i=1

RT
i S(i)RiwB .

Since S(i) = A
(i)
II − A

(i)T

IB A
(i)−1

II A
(i)
IB , such computations require the solution

of local linear systems, with the solver of complexity φ(.). Thus, the parallel
execution time for matrix multiplication by S will be bounded by a sum
of t1 = c1 (ns/p) φ(n/ns) τf , t2 = c2 (ns/p)K (n/ns)(d−1)/d τc + τ0 and also
t3 = c3 K (ns/p) (n/ns)(d−1)/d τf . Again, apart from the start up time τ0, the
other terms are inversely proportion to p.

Parallelization of Inner Products. Inner products can be computed in
parallel based on the distributed data stored on each processor. By assump-
tion, given vectors w and v, their components R(i)w and R(i)v will be stored
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on the processor handling Ωi. Since matrix I(i) will also be stored locally, the
inner product wT v can be computed using the identity:

wT v =
ns∑
i=1

wT R(i)T

I(i)R(i)v.

This computation may be distributed as follows.

1. In parallel, the processor handling Ωi should compute the local inner
products wT R(i)T

I(i)R(i)v.
2. Each processor should sum the (ns/p) local inner products it handles and

communicate the computed result to all the other processors.
3. Each processor should sum all the local inner products it receives and

store the resulting answer locally.

If ti denotes the execution time for the i’th step above, it will satisfy:⎧⎪⎨
⎪⎩

t1 ≤ c1 (ns/p) (n/ns) τf

t2 ≤ c2 (ns/p) τf + c3 p τc + τ0

t3 ≤ c4 p τf .

Except for c3 p τc + τ0 and c4 p τf , the other terms vary inversely with p.
Analogous estimates will hold for inner products in Schur complement

algorithms, based on interface unknowns. The total execution time in this
case will be bounded by the sum of t1 = c1 (ns/p) (n/ns)(d−1)/d τf along with
t2 = c2 (ns/p) τf + c3 p τc + τ0 and t3 = c4 p τf . Except for c3 p τc + τ0 and
c4 p τf , the other terms are inversely proportion to p.

Parallelization of an Additive Schwarz Preconditioner. If there is no
coarse space, the inverse of such a preconditioner will have the form:

M−1 =
ns∑
i=1

RT
i A−1

i Ri.

Computation of the action of M−1 on a residual vector r can be implemented
in parallel as follows.

1. In parallel, solve Aiwi = Rir using the locally stored residual vector Rir
and the locally stored submatrix Ai.

2. In parallel, the processor handling Ω∗
i should send RjR

T
i wi to each of the

processors handling Ω∗
j for Ω∗

j ∩ Ω∗
i �= ∅.

3. In parallel, each processor should sum contributions of solutions from
adjacent subdomains and store RjM

−1r =
∑ns

i=1 RjR
T
i wi locally.

The computational time for each step can be estimated.
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If ti denotes the execution time for the i’th step, it will satisfy:⎧⎪⎨
⎪⎩

t1 ≤ c1 (ns/p)φ ((1 + β∗)(n/ns)) τf

t2 ≤ c2 K β∗(n/p) τc + τ0

t3 ≤ c3 K β∗ (n/p)τf .

Apart from τ0, the terms are inversely proportional to p.
If a coarse space is included, the preconditioner will have the form:

M−1 =
ns∑
i=1

RT
i A−1

i Ri + RT
0 A−1

0 R0.

Care must be exercised when parallelizing the coarse grid correction term
RT

0 A−1
0 R0 since the computation of R0r requires global communication be-

tween processors. We shall assume that the coarse space computations are
performed on a processor assigned to the coarse space, however, they may
alternatively be performed redundantly on each of the other processors in
parallel. We shall not consider the parallelization of coarse space computa-
tions. By assumption, the nonzero rows of R0R

(i)T

, matrix I(i) and vector
R(i)r are stored locally on the processor handling Ω∗

i . Thus, the vector R0r
may be computed based on the following expression:⎧⎨

⎩
R0 = R0

(∑ns

i=1 R(i)T

I(i)R(i)
)

=
∑ns

i=1

(
R0R

(i)T
) (

I(i)R(i)
)
.

Below, we summarize an algorithm for the parallel computation of M−1r.

1. The processor handling Ω∗
i should compute the nontrivial rows of the term

R0R
(i)T

I(i)R(i)r using the locally stored vector R(i)r and matrix I(i). Send
these nontrivial rows to the processor handling coarse space correction.
The processor handling the coarse space should sum the components:

R0 r ≡
ns∑
i=1

R0R
(i)T

I(i)R(i) r.

2. In parallel, solve Aiwi = Ri r for 0 ≤ i ≤ ns.
3. If Ω∗

i ∩Ω∗
j �= ∅ then the processor handling Ω∗

i should send RjR
T
i wi to the

processor handling Ω∗
j . The processor handling the coarse space should

send relevant components of RT
0 w0 to the processor handling Ω∗

i .
4. In parallel, the processor handling Ω∗

i should sum the components:

Ri M−1 r ≡
ns∑

j=0

RiR
T
j wj .

The computational time for each step above can be estimated.



290 5 Computational Issues and Parallelization

If ti denotes the execution time for the i’th step above, it will satisfy:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1 ≤ c1 K (1 + β∗)(n/p) τf + c2 K n0 τc + τ0 + c3 K n0τf

t2 ≤ c4
(ns+1)

p φ ((1 + β∗)(n/ns)) τf

t3 ≤ c5 K (1 + β∗) (n/p) τc + τ0

t4 ≤ c6
(ns+1)

p (K + 1) (1 + β∗) (n/ns) τf ,

provided that n0 ≤ (1 + β∗)(n/ns). Additionally, if ns scales proportionally
to p, then apart from τ0, the other terms are inversely proportional to p.

Parallelization of the Neumann-Neumann Preconditioner. We next
consider a Neumann-Neumann Schur complement preconditioner, in which
the action of the inverse of the preconditioner has the form:

M−1 =
ns∑
i=1

RT
i S(i)†Ri + RT

0 S−1
0 R0,

where S0 = R0SRT
0 � A0. Care must be exercised when parallelizing the

computation of RT
0 S−1

0 R0rB , since it requires global communication. It will be
assumed that the nonzero rows of R0RT

i are stored on the processor handling
Ωi. The action of R0 on rB can be computed using the identity:{

R0 = R0

(∑ns

i=1 RT
i I(i)Ri

)
=
∑ns

i=1

(
R0RT

i

) (
I(i)Ri

)
.

Below, we list the implementation of the Neumann-Neumann preconditioner.

1. In parallel, each processor handling Ω∗
i should compute the nontrivial rows

of R0RT
i I(i)RirB using (the locally stored) RirB and matrix I(i). Send

these nontrivial rows to the processor handling coarse space correction
and then sum the components to obtain:

R0 rB ≡
ns∑
i=1

R0RT
i I(i)Ri rB .

2. In parallel, solve S(i)wi = RirB for 0 ≤ i ≤ ns where S(0) ≡ S0.
3. In parallel, if Ω∗

i ∩Ω∗
j �= ∅, the processor handling Ω∗

i should send RjRT
i wi

to the processor handling Ω∗
j . The processor handling the coarse space

should send RiRT
0 w0 to the processor handling Ω∗

i for 1 ≤ i ≤ ns.
4. In parallel, the processor handling Ω∗

i should sum the components:

RiM
−1 rB ≡

ns∑
j=0

RiRT
j wj .

The computation times for the above steps can be estimated.
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If ti denotes the execution time for the i’th step above, it will satisfy:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1 ≤ c1
(ns+1)

p K (n/ns)(d−1)/d τf + c2 K n0 τc + τ0 + c3 K n0τf

t2 ≤ c4
(ns+1)

p φ (n/ns) τf

t3 ≤ c5 K (ns/p) (n/ns)(d−1)/d τc + τ0

t4 ≤ c6
(ns+1)

p (K + 1) (n/ns)(d−1)/d τf ,

provided that n0 = O(n/ns). If ns is proportional to p, then apart from τ0,
the other terms vary inversely with p.

5.2.4 Estimation of the Total Execution Times

Using the preceding estimates, we may estimate the execution time T (p, n, ε)
of CG algorithms for different choices of preconditioners. Here T (p, n, ε) is the
total execution time for implementing a PCG algorithm to solve a problem
of size n, on a p processor parallel computer, where the initial residual is
reduced by a factor ε. The total execution time will be the product of the
number N(n, ε) of iterations required to reduce the residual by the factor ε,
and the parallel execution time T∗(p, n) per iteration:

T (p, n, ε) = N(n, ε)T∗(p, n). (5.18)

We shall suppress dependence on ε for convenience. The execution time
T∗(p, n) per iteration can be further decomposed as:

T∗(p, n) = G∗(p, n) + H∗(p, n), (5.19)

where G∗(p, n) denotes the execution time per iteration of the preconditioning
step, while H∗(p, n) denotes the execution time per iteration for the remaining
computations (matrix-vector products, inner products, vector addition).

Estimates for H∗(p, n) and G∗(p, n) can be obtained by summing up the
relevant execution time estimates ti for appropriately chosen routines from
the preceding pages. Employing the total execution times, we heuristically es-
timate the parallel efficiency of the additive Schwarz and Neumann-Neumann
PCG algorithms, making several simplifying assumptions.

• We assume that the best serial execution time satisfies:

Tbest(1, n) = φ(n) τf ≤ c0 nατf .

• We assume that:

τ0 = 0, p2 ≤ n, p ≤ ns, n0 ≤ (1 + β∗)(n/ns).

• We omit lower order terms in expressions.

We shall express the efficiency in terms of n, p, d, α and γc = (τc/τf ) � 1.
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Additive Schwarz Preconditioner Without Coarse Space. Estimates
of H∗(p, n) to solve Au = f using a CG algorithm can be obtained by sum-
ming the appropriately chosen quantities ti from the preceding section for
matrix-vector products and inner products routines. Estimates of G∗(p, n)
can be obtained similarly by summing the ti from the preceding section for
the additive Schwarz preconditioner without a coarse space. We assume that
τ0 = 0, p2 ≤ n and p ≤ ns, and omit all lower order terms.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H∗(p, n) ≤ d1 (n/p) τf + d2 K (n/p) τc

+d3 (ns/p) K (n/ns)(d−1)/d τf

G∗(p, n) ≤ c0 e1 (ns/p) (1 + β∗)α (n/ns)α τf

+e2 K β∗ (n/p) τc + e3 K β∗ (n/p) τf .

(5.20)

Bounds from Chap. 2 for the condition number of the additive Schwarz PCG
algorithm without coarse space correction yields:

cond(M, A) ≤ C(β) h−2
0 .

Standard estimates for error reduction in PCG algorithms [GO4] yields:

N(n, h0, ε, β) ≤ C(ε, β) h−1
0 ,

for some C(ε, β) independent of n, ns and p. Summing H∗(p, n) and G∗(p, n),
and retaining only the highest order terms and substituting h−1

0 = O(n1/d
s ),

(which holds since ns = O(|Ω|h−d
0 )), yields:

T (p, n, ns) ≤ c0 n1/d
s

(
C1 γc (n/p) + C2 (ns/p) (n/ns)α + C3 (n/p)(d−1)/d

)
τf

where γc ≡ (τc/τf ) � 1. Here Ci may depend on all parameters excluding
n, ns, p and γc. Substituting that Tbest(1, n) = c0 nα τf along with the pre-
ceding bound for T (p, n, ns) yields the following heuristic bound for the total
efficiency when p = ns ≤ n1/2, τ0 = 0 and 1 < α ≤ 3:

E(p, n) ≥
(

nα

p(d+1)/d
(
C1 γc (n/p) + C2 (n/p)α + C3 (n/p)(d−1)/d

)
)

.

By considering only the leading order terms as p increases, it may be noted
that the value of n can be increased to maintain a constant efficiency, as p
is varied. Thus the above algorithm is scalable. Heuristically, the value of p
which minimizes the denominator will optimize the efficiency, for a fixed n.

Additive Schwarz Preconditioner with Coarse Space. Estimates of
G∗(p, n) and H∗(p, n) can be obtained for the additive Schwarz preconditioner
with coarse space correction by summing the appropriate ti:
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⎪⎪⎪⎪⎩

H∗(p, n) ≤ d1 (n/p) τf + d2 K (n/p) τc

+ d3 (ns/p) K (n/ns)(d−1)/d τf

G∗(p, n) ≤ c0 e1 (ns/p) (1 + β∗)α (n/ns)α τf

+ e2 K β∗ (n/p) τc

(5.21)

where lower order terms and the start up time τ0 have been omitted. Bounds
from Chap. 2 yield the following estimate for the condition number of the
additive Schwarz PCG algorithm with coarse space correction:

cond(M,A) ≤ C(β).

Standard estimates for error reduction in PCG algorithms [GO4] yields:

N(n, h0, ε, β) ≤ C(ε, β),

where C(ε, β) is independent of n, ns. Summing H∗(p, n) and G∗(p, n) and
retaining only the highest order terms in φ(·) yields the following bound:

T (p, n, ns) ≤ c0 (C1 γc (n/p) + C2 (ns/p) (n/ns)α) τf

where γc ≡ (τc/τf ) � 1, and Ci may depend on all parameters excluding n,
p and ns. Substituting Tbest(1, n) = c0 nα τf and the preceding bounds for
T (p, n, ns) yields a bound for E(p, n) when p = ns ≤ n1/2 and τ0 = 0:

E(p, n) ≥
(

nα

p (C1 γc (n/p) + C2 (n/p)α)

)
.

The above bound is an improvement over the efficiency of the additive Schwarz
algorithm without coarse space correction. By considering only the leading
order terms, it is seen that as p is increased, the efficiency can be maintained.
Thus, this algorithm is scalable. Heuristically, the value of p which minimizes
the denominator optimizes the efficiency.

Neumann-Neumann Preconditioner for the Schur Complement. The
terms G∗(p, n) and H∗(p, n) can be estimated for the Schur complement algo-
rithm with Neumann-Neumann preconditioner by summing relevant estimates
ti for routines described in the preceding section:⎧⎪⎨

⎪⎩
H∗(p, n) ≤ d1 (ns/p)φ(n/ns) τf + d2 K (n/p) τc

G∗(p, n) ≤ e1 K (ns/p) φ(n/ns) τf

+ e2 K (ns/p) (n/ns)(d−1)/d τc.

(5.22)

Here, lower order terms and the start up time τ0 have been omitted. Bounds
from Chap. 3 yield the following condition number estimate:

cond(M, A) ≤ C (1 + log(h0/h))2 ,
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for the Neumann-Neumann algorithm with coarse space correction. Bounds
for the error reduction of PCG algorithms [GO4] yields:

N(n, h0, ε, β) ≤ C(ε) (1 + log(h0/h)) ,

where C(ε) is independent of n, ns. Since by assumption h−1
0 = O(n1/d

s ), it
follows that log(h0/h) = O(d−1 log(n/ns)). Summing the terms H∗(p, n) and
G∗(p, n), substituting log(h0/h) = O(d−1 log(n/ns)) and retaining only the
highest order terms in φ(·), yields the following bound for T (p, n, ns):

T (p, n, ns) ≤ c0 log(n/ns)
(
C1(ns/p) (n/ns)α + C2(n/p)(d−1)/d γc

)
τf

+ c0 log(n/ns) (C3(n/p) γc) τf ,

where γc = (τc/τf ) � 1. Substituting the estimate Tbest(1, n) = c0 nα τf and
using the preceding bound for T (p, n, ns) yields the following lower bound for
the total efficiency when p = ns ≤ n1/2 and τ0 = 0:

E(p, n) ≥
(

nα

p log(n/ns)
(
C1 (n/p)α + C2 (n/p)(d−1)/d γc + C3 (n/p) γc

)
)

.

By considering only leading order terms, it is seen that as p is increased, a
value of n can be determined so that the efficiency in maintained. Thus, this
algorithm is scalable. An intermediate value of p will optimize the efficiency.

Remark 5.22. The preceding discussion shows that the representative domain
decomposition solvers are scalable, though not perfectly scalable. Readers are
referred to [GR10, GR12, SK, CH15, FA9, SM4, GR16] for additional discus-
sion on the parallel implementation of domain decomposition algorithms.



6

Least Squares-Control Theory:
Iterative Algorithms

In this chapter, we describe iterative algorithms formulated based on the least
squares-control theory framework [LI2, GL, AT, GU2]. The methodology ap-
plies to non-self adjoint elliptic equations, however, for simplicity we shall
describe a matrix formulation for the following self adjoint elliptic equation:{

Lu ≡ −∇ · (a(x)∇u) + c(x)u = f, in Ω
u = 0, on ∂Ω,

(6.1)

where c(x) ≥ 0. We denote a finite element discretization of (6.1) as:

Au = f (6.2)

where A = AT > 0 is the stiffness matrix of size n and b ∈ IRn.

Given a decomposition of Ω into two or more subdomains, a least squares-
control formulation of (6.1) employs unknown functions on each subdomain.
These unknowns solve the partial differential equation on each subdomain,
with unknown boundary data that serve as control data. The control data
must be chosen so that the subdomain solutions match with neighbors to yield
a global solution to (6.1). This problem can be formulated mathematically as
a constrained minimization problem, which seeks to minimize the difference
between the local unknowns on the regions of overlap, subject to the constraint
that the local unknowns solve the elliptic equation on each subdomain. In
Chap. 6.1, we consider a decomposition of Ω into two overlapping subdomains,
while Chap. 6.2 considers two non-overlapping subdomains. Although saddle
point methodology may also be employed to solve this least squares-control
problem, we reduce it to an unconstrained minimization problem, and solve it
using a CG algorithm. Some extensions to multiple subdomains are discussed
in Chap. 6.3. Our discussion is heuristic and described for its intrinsic interest,
since the iterative algorithms based on the Schur complement, Schwarz and
Lagrange multiplier formulations are more extensively studied. One of the
algorithms elaborates an algorithm from Chap. 1.5.
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Fig. 6.1. Two overlapping subdomains

6.1 Two Overlapping Subdomains

In this section, we describe a least squares-control formulation of (6.1) based
on a decomposition of Ω into two overlapping subdomains [AT]. Our focus
will be on the iterative solution of system (6.2). Accordingly, we consider two
subdomains Ω∗

1 and Ω∗
2 which form an overlapping decomposition of Ω with

sufficient overlap, as in Fig. 6.1. We define Ω∗
12 ≡ Ω∗

1 ∩ Ω∗
2 as the region of

overlap between the two subdomains. We define B(i) = ∂Ωi∩Ω as the internal
boundary of each subdomain and B[i] = ∂Ωi ∩ ∂Ω as its external boundary.
Let ‖ · ‖α,Ω∗

12
be the fractional Sobolev norm Hα(Ω∗

12) on Ω∗
12. for 0 ≤ α ≤ 1.

We shall employ the following functional in the overlapping case:

J(v1, v2) ≡ ‖v1 − v2‖2
α,Ω∗

12
, (6.3)

where v1(.) and v2(.) are defined on Ω∗
1 and Ω∗

2 , respectively. The least squares-
control formulation of (6.1) seeks local functions u1(.) and u2(.) defined on
the subdomains Ω∗

1 and Ω∗
2 , which minimizes the functional within V∗:

J(u1, u2) = min
(v1,v2)∈V∗

J(v1, v2) (6.4)

where V∗ consists of v1(.) and v2(.) solving:⎧⎪⎨
⎪⎩

Lvi = f, in Ω∗
i

vi = gi, on B(i)

vi = 0, on B[i].

for i = 1, 2 (6.5)

Here gi denotes the unknown local Dirichlet data. By construction, if the
global solution u to (6.1) exists, then its restriction ui(.) ≡ u(.) on Ω∗

i for
i = 1, 2 will minimize ‖u1 − u2‖2

α,Ω12
with minimum value zero.

Remark 6.1. If the solution (u1, u2) to (6.4) and (6.5) satisfies u1(.) = u2(.) on
Ω∗

12, then it can easily be verified that ui(.) will match the true solution u(.)
on Ω∗

i . In this case, the Dirichlet boundary data gi(.) on B(i) can be regarded
as control data which needs to be determined in order to minimize the square
norm error term (6.4).
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We shall formulate a matrix version of the above least squares-control
formulation using the following notation. We shall order all the nodes in Ω
and partition them based on the subregions Ω∗

1 \ Ω
∗
2, B(2), Ω∗

12, B(1) and
Ω∗

2 \ Ω
∗
1 and define the associated set of indices as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

I11 = indices of nodes in Ω∗
1 \ Ω

∗
2

B(2) = indices of nodes in B(2)

I12 = indices of nodes in Ω∗
12

B(1) = indices of nodes in B(1)

I22 = indices of nodes in Ω∗
2 \ Ω

∗
1.

(6.6)

Let n11, n
(2)
B , n12, n

(1)
B and n22 denote the number of indices in I11, B(2),

I12, B(1) and I22, respectively. Let n
(1)
I = (n11 + nB(2) + n12) be the number

of nodes in Ω∗
1 and n

(2)
I = (n12 + n

(1)
B + n22) the number of nodes in Ω∗

2 .
Define ni = (n(i)

I + n
(i)
B ) and nE = (n1 + n2). If vi denotes a finite element

function defined on subdomain Ω
∗
i , we let v(i) = (v(i)T

I ,v(i)T

B )T ∈ IRni denote
the vector of its interior and boundary nodal values. The indices of nodes in
Ω∗

1 will be I(1) = I11 ∪ B(2) ∪ I12 and I(2) = I12 ∪ B(1) ∪ I22 in Ω∗
2 .

We let A
(i)
II denote a submatrix of A of size n

(i)
I corresponding to the

indices in I(i), representing coupling between interior nodes in Ω∗
i . Similarly,

we let A
(i)
IB denote an n

(i)
I ×n

(i)
B submatrix of A representing coupling between

nodes in I(i) and B(i), i.e., interior nodes in Ω∗
i with boundary nodes on B(i).

A global extended vector consisting of the local subdomain nodal vectors
will be denoted vE = (v(1)T

,v(2)T

)T ∈ IRnE . Given the original load vector

f ∈ IRn, we define local interior load vectors f (i)
I ∈ IRn

(i)
I as the restriction of

f onto the interior nodes in each subdomain, and fB ∈ IRnB as the restriction
of f onto the nodes on B. Given the ordering B(2) ∪ I12 ∪ B(1) of nodes in
Ω

∗
12, we let R12 denote an n12 × n1 restriction matrix which maps a nodal

vector on Ω
∗
1 into its subvector of nodal values on Ω

∗
12. Similarly, we define a

restriction matrix R21 as an n12×n2 matrix mapping a vector of nodal values
on Ω

∗
2 into its subvector of nodal values on Ω

∗
12. For 0 ≤ α ≤ 1 we let Aα

denote a symmetric positive definite matrix of size n12 representing the finite
element discretization of the Hα(Ω∗

12) Sobolev inner product on Ω
∗
12.

A discrete version of the least squares-control problem (6.4) and (6.5) can
now be obtained by discretizing the square norm functional and constraints.
Accordingly, if (v1, v2) are finite element functions defined on (Ω∗

1 , Ω∗
2) with

associated nodal vectors
(
v(1),v(2)

)
, we define J

(
v(1),v(2)

)
as:

J
(
v(1),v(2)

)
≡ 1

2 ‖v1 − v2‖2
α,Ω∗

12
= 1

2 ‖R12v(1) − R21v(2)‖2
Aα

= 1
2

(
R12v(1) − R21v(2)

)T
Aα

(
R12v(1) − R21v(2)

)
.

(6.7)
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The constraints (6.5) can be discretized to yield the following linear system:{
A

(i)
II v(i)

I + A
(i)
IBv(i)

B = f (i)
I

v(i)
B = g(i)

1 ≤ i ≤ 2 (6.8)

where f (i)
I denotes the local internal load vector and g(i) denotes the unknown

discrete Dirichlet boundary data on B(i). Since the second block row above
corresponds to a renaming of the Dirichlet boundary data, we eliminate g(i)

and shall henceforth employ v(i)
B .

Remark 6.2. By construction, if J
(
u(1),u(2)

)
= 0, then the restrictions:

R12u(1) = R21u(2),

of the local nodal vectors will match on Ω
∗
12, and hence their associated finite

element functions u1 and u2 will also match on the region Ω
∗
12 of overlap.

The objective functional J
(
v(1),v(2)

)
and the linear constraints may be

expressed compactly using matrix notation. We let K denote a singular matrix
of size nE having the following block structure:

K =

[
RT

12AαR12 −RT
12AαR21

−RT
21AαR12 RT

21AαR21

]
(6.9)

corresponding to the partitioning vE = (v(1)T

,v(2)T

)T . Then functional J(vE)
for vE = (v(1)T

,v(2)T

)T may be equivalently expressed as:

J (vE) =
1
2

[
v(1)

v(2)

]T [
RT

12AαR12 −RT
12AαR21

−RT
21AαR12 RT

21AαR21

][
v(1)

v(2)

]
=

1
2

vT
E KvE .

(6.10)
The constraints (6.8) may be expressed compactly as:

NvE = fE , where N =

[
N (1) 0

0 N (2)

]
, N (i) ≡

[
A

(i)
II A

(i)
IB

]
, fE =

[
f (1)
I

f (2)
I

]

(6.11)

where the local nodal vectors v(i) satisfy v(i) = (v(i)T

I ,v(i)T

B )T . Here N is an
(n(1)

I +n
(2)
I )×n rectangular matrix and N (i) is an n

(i)
I ×ni rectangular matrix,

of full rank. The discrete least squares-control formulation seeks to minimize
J (vE) subject to constraint (6.11), as described in the following result.
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Lemma 6.3. Suppose the following assumptions hold.

1. Let u denote the solution of (6.2).

2. Let wE =
(
w(1)T

,w(2)T
)T

denote an extended nodal vector satisfying:

J (wE) = min
vE∈V∗

J (vE) (6.12)

where
V∗ = {vE : NvE = fE} . (6.13)

3. For i = 1, 2 let Ri denote a restriction matrix mapping a nodal vector of
the form v onto a vector of nodal values on Ω

∗
i .

Then, the following results will hold for 0 ≤ α ≤ 1

w(i) = Riu for i = 1, 2,

with J (wE) = 0.

Proof. Follows by construction. ��

The constrained minimization problem (6.12) can be reformulated as a
saddle point linear system. Indeed, define a Lagrangian function L (vE , λ)

L (vE ,λ) ≡ J (vE) + λT (NvE − fE), (6.14)

where λ ∈ IRn
(1)
I +n

(2)
I denotes a vector of Lagrange multiplier variables. Then,

the saddle point linear system associated with (6.12) is easily derived by re-
quiring the first variation of L (vE ,λ) to be zero, as described in Chap. 10:[

K NT

N 0

][
vE
λ

]
=

[
0
fE

]
. (6.15)

Here matrix K is a singular matrix of size nE having low rank, while matrix
N is an (n(1)

I +n
(2)
I )×nE matrix of full rank. Traditional iterative algorithms

based either on augmented Lagrangian formulations [GL7] or the projected
gradient method (as in Chap. 4, see [FA14]) may be employed to solve (6.15).
However, we shall describe an alternative approach.

Remark 6.4. We briefly outline why system (6.15) will be nonsingular even
though matrix K is singular. General results in Chap. 10 show that a saddle
point system is nonsingular when the following conditions hold.

• Matrix N should have full rank. This is equivalent to the inf sup condition
which can easily be verified for (6.11) since N (i) are of full rank.

• Matrix K should be symmetric and coercive within the subspace V0:

V0 = {vE : NvE = 0} .
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Suppose the coercivity of K within V0 is violated, then due to the finite
dimensionality of V0, there must exist a non-trivial vE ∈ V0 satisfying
vT
E KvE = ‖R12v(1) − R21v(2)‖2

Aα
= 0. By construction NvE = 0 yields

N (i)v(i) = 0 for i = 1, 2, and so the restriction R12v(1) − R21v(2) will be
discrete harmonic on Ω∗

12. Since ‖R12v(1) − R21v(2)‖2
Aα

= 0, it will hold that
R12v(1) = R21v(2) and consequently, a global nodal vector v can be defined
matching v(i) on both subdomains and by construction v will satisfy Av = 0,
yielding that v = 0 and v(i) = 0 for i = 1, 2. We arrive at a contradiction.

The minimum of J (vE) in V∗ can alternatively be sought by parameterizing
V∗ and minimizing the resulting unconstrained functional. We describe this
approach next. The general solution to the full rank system NvE = fE can be
parameterized in terms of the boundary data v(i)

B by solving N (i)v(i) = f (i)
I :

v(i) =

[
−A

(i)−1

II A
(i)
IB

I

]
v(i)

B +

[
A

(i)−1

II f (i)
I

0

]
for i = 1, 2. (6.16)

To simplify the expressions, denote the restrictions of such vectors to Ω
∗
12 as:{

R12v(1) = H1v
(1)
B + e1

R21v(2) = H2v
(2)
B + e2

(6.17)

where

H1 ≡ R12

[
−A

(1)−1

II A
(1)
IB

I

]
, e1 ≡ R12

[
A

(1)−1

II f (1)
I

0

]

H2 ≡ R21

[
−A

(2)−1

II A
(2)
IB

I

]
, e2 ≡ R21

[
A

(2)−1

II f (2)
I

0

]
.

(6.18)

Here, the subdomain Dirichlet data v(1)
B and v(2)

B represent control variables.
Substituting this parameterization into the functional J

(
v(1),v(2)

)
yields the

following reduced functional JB

(
v(1)

B ,v(2)
B

)
= J(v(1),v(2)):

JB

(
v(1)

B ,v(2)
B

)
≡ 1

2

∥∥∥(H1v
(1)
B + e1

)
−
(
H2v

(2)
B + e2

)∥∥∥2

Aα

.

The new unconstrained minimization problem associated with (6.12) and (6.13)
seeks boundary data w(1)

B and w(2)
B which minimizes:

JB

(
w(1)

B ,w(2)
B

)
= min

(v
(1)
B ,v

(2)
B )

JB

(
v(1)

B ,v(2)
B

)
. (6.19)

Applying stationarity conditions to:

JB

(
w(1)

B ,w(2)
B

)
=

1
2
‖H1w

(1)
B −H2w

(2)
B + e1 − e2‖2

Aα
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yields the linear system:⎧⎪⎨
⎪⎩

1
2

∂JB

∂w
(1)
B

= HT
1 Aα

(
H1w

(1)
B −H2w

(2)
B + e1 − e2

)
= 0

1
2

∂JB

∂w
(2)
B

= −HT
2 Aα

(
H1w

(1)
B −H2w

(2)
B + e1 − e2

)
= 0.

Rewriting the above yields a block linear system:[
HT

1 AαH1 −HT
1 AαH2

−HT
2 AαH1 HT

2 AαH2

] [
w(1)

B

w(2)
B

]
=
[
HT

1 Aα(e2 − e1)
HT

2 Aα(e1 − e2)

]
. (6.20)

Henceforth, we assume that the solution to (6.19) is obtained by solving sys-
tem (6.20). We thus have the following equivalence between (6.12) and (6.19).

Lemma 6.5. Suppose the following assumptions hold.

1. Let
(
u(1),u(2)

)T
denote the constrained minimum of J(·, ·):

J
(
u(1),u(2)

)
= min

(v(1),v(2))∈V∗
J
(
v(1),v(2)

)
.

2. Let
(
w(1)

B ,w(2)
B

)T

denote the unconstrained minimum of JB(·, ·):

JB

(
w(1)

B ,w(2)
B

)
= min

(v
(1)
B ,v

(2)
B )

JB

(
v(1)

B ,v(2)
B

)
.

Then, the following results will hold:

u(i) =

[
A

(i)−1

II

(
f (i)
I − A

(i)
IBw(i)

B

)
w(i)

B

]
i = 1, 2.

Proof. Follows by direct substitution and algebraic simplification. ��

Remark 6.6. The coefficient matrix in (6.20) is symmetric by construction.
Importantly, it will also be positive definite, and an iterative method such as
CG algorithm may be applied to solve (6.20). To verify that the coefficient
matrix in (6.20) is positive definite, without loss of generality let ei = 0 for
i = 1, 2. Since the coefficient matrix in (6.20) generates the quadratic form
associated with a square norm, it will be positive semidefinite:

JB

(
v(1)

B ,v(2)
B

)
=
∥∥∥H1v

(1)
B −H2v

(2)
B

∥∥∥2

Aα

≥ 0.

To show definiteness, note that:

JB

(
v(1)

B ,v(2)
B

)
= J

(
v(1),v(2)

)
= ‖R12v(1) − R21v(2)‖2

Aα

where v(i) is the discrete harmonic extension of the boundary data v(i)
B when

ei = 0. Suppose for contradiction that ‖R12v(1) − R21v(2)‖2
Aα

= 0. Then
R12v(1) = R21v(2) and a global nodal vector v can be defined matching the
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two nodal vectors v(i) on the local grids. By construction v will be discrete
harmonic globally, and hence imply that v and v(i) are identically zero. Def-
initeness follows by the preceding, due to finite dimensionality.

Next, using heuristic arguments we outline a preconditioner M for the co-
efficient matrix F in (6.20) when α = 1. The preconditioner we describe can be
motivated by considering a rectangular domain Ω with rectangular overlap-
ping subdomains and a uniform triangulation. For a suitable ordering of the
nodes, A will be block tridiagonal matrix of the form blocktridiag (−I, T,−I),
as described in Chap. 3.3. Matrix T will be diagonalized by the discrete sine
transform. If the boundary data v(i)

B on B(i) corresponds to an eigenvector ql

of matrix T , then R12H1v
(1)
B will be scalar multiples of ql along each vertical

grid line in Ω∗
1 . Similarly for R21H2v

(2)
B . It can then be verified that:

c
(
‖c1ql‖2

1/2,B(1) + ‖c2ql‖2
1/2,B(2)

)
≤ ‖R12H1 c1 ql − R21H2 c2 ql‖2

A1

‖R12H1 c1 ql − R21H2 c2 ql‖2
A1

≤ C
(
‖c1ql‖2

1/2,B(1) + ‖c2ql‖2
1/2,B(2)

)
.

Using superposition and orthogonality of the modes (in the Euclidean and
discrete fractional Sobolev norms) we obtain for general

(
v(1)

B ,v(2)
B

)
:

c
(
‖v(1)

B ‖2
1/2,B(1) + ‖v(2)

B ‖2
1/2,B(2)

)
≤ ‖R12H1 v(1)

B − R21H2 v(2)
B ‖2

A1

‖R12H1 v(1)
B − R21H2 v(2)

B ‖2
A1

≤ C
(
‖v(1)

B ‖2
1/2,B(1) + ‖v(2)

B ‖2
1/2,B(2)

)
.

Similar bounds are heuristically expected to hold for more general domains
and operators, where c < C are independent of h. Based on this observation,
a suitable preconditioner M when α = 1 can be obtained by decoupling the
two boundary segments and defining a block diagonal preconditioner whose
diagonal blocks correspond to discretizations of the fractional Sobolev norms:

M−1 =

[
M

(1)−1

B 0
0 M

(2)−1

B

]
,

where M
(i)
B denotes any standard two subdomain interface preconditioner for

the two subdomain Schur complement matrix S
(i)
B on the interface B(i). An

alternative preconditioner which couples the two boundary values may be
constructed as follows. Suppose that the nodes in Ω

∗
12 are partitioned and

ordered according to I12, B(1)and B(2). Define the action of the inverse of the
preconditioner as:

M−1

[
r(1)

B

r(2)
B

]
≡

⎡
⎢⎣

0 0
I 0
0 I

⎤
⎥⎦

T

A−1
α

⎡
⎢⎣

0 0
I 0
0 I

⎤
⎥⎦
[
r(1)

B

r(2)
B

]
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where matrix Aα will have the following block structure for α = 1:

A1 =

⎡
⎢⎢⎣

A
(12)
II A

(12)

IB(1) A
(12)

IB(2)

A
(12)T

IB(1) A
(12)

B(1)B(1) 0

A
(12)T

IB(2) 0 A
(12)

B(2)B(2)

⎤
⎥⎥⎦ .

If F denotes the coefficient matrix in (6.20) when α = 1, we heuristically
expect cond (M,F ) ≤ C where C > 0 is independent of h for both of the above
preconditioners, when α = 1. Below, we summarize the discrete least squares-
control algorithm assuming that e1, e2, f (i)

I and Aα have been assembled
using (6.18). Subroutines for computing the action of R12, R21, H1 and H2

will also be required, based on the expressions in (6.18).

Algorithm 6.1.1 (Least Squares-Control Overlapping Algorithm)

1. Solve using a preconditioned conjugate gradient method:[
HT

1 AαH1 −HT
1 AαH2

−HT
2 AαH1 HT

2 AαH2

][
u(1)

B

u(2)
B

]
=

[
HT

1 Aα(e2 − e1)
HT

2 Aα(e1 − e2)

]
.

2. Compute: [
u(1)

I

u(2)
I

]
=

⎡
⎣A

(1)−1

II

(
f (1)
I − A

(1)
IBu(1)

B

)
A

(2)−1

II

(
f (2)
I − A

(2)
IBu(2)

B

)
⎤
⎦.

Define u(1) =
(
u(1)T

I ,u(1)T

B

)T

and u(2) =
(
u(2)T

I ,u(2)T

B

)T

.

6.2 Two Non-Overlapping Subdomains

We next describe a least squares-control iterative algorithm for solving (6.1)
based on a decomposition of Ω into two non-overlapping regions [GU2, GU3].
Let Ω1 and Ω2 denote a nonoverlapping decomposition of Ω with interface
B = ∂Ω1∩∂Ω2, and exterior boundary segments B[i] = ∂Ωi ∩∂Ω for i = 1, 2,
as in Fig. 6.2. Our focus will be on a matrix implementation of the least
square-control algorithm for solving (6.2) when c(x) ≥ c0 > 0 in (6.1). For
index 0 ≤ α ≤ 1

2 , we shall let ‖ · ‖2
α,B denote the square of the fractional

Sobolev Hα(B) norm on the interface B.
We shall employ the following functional in the non-overlapping case:

J(v1, v2) ≡ ‖v1 − v2‖2
α,B , (6.21)

where v1(.) and v2(.) are defined on Ω1 and Ω2, respectively. The least squares-
control formulation of (6.1) seeks local functions u1(.) and u2(.) defined on
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Ω2

Ω1

B

Regular decomposition

Ω1

Ω2 B

Immersed decomposition

Fig. 6.2. Two subdomain non-overlapping decomposition

the subdomains Ω1 and Ω2, which minimizes the functional within V∗:

J(u1, u2) = min
(v1,v2)∈V∗

J(v1, v2) (6.22)

where V∗ consists of v1(.) and v2(.) satisfying:{
Lvi = f, in Ωi

vi = 0, on B[i]

and n1 · (a(x)∇v1) + n2 · (a(x)∇v2) = 0, on B. (6.23)

Here ni denotes the unit exterior normal to ∂Ωi on B. The last constraint
n1 ·(a(x)∇v1)+n2 ·(a(x)∇v2) = 0 on B, enforces continuity of the local fluxes
on B, and is a flux transmission condition. By minimizing ‖v1 − v2‖2

α,B , the
model seeks to enforce continuity of the local solutions across B.

By construction, if ui ≡ u on Ωi denotes the restriction of the true solution
u of (6.1) onto subdomain Ωi, then the constraints in (6.23) will be satisfied
and ‖u1−u2‖2

α,B will attain a minimum value of zero. The constraints in (6.23)
can be parameterized using the local fluxes on B. For i = 1, 2 denote by gi(x)
the flux on B associated with the unknown vi:

gi(x) ≡ ni(x) · (a(x)∇vi) . on B, (6.24)

Then, constraint (6.23) will be equivalent to:⎧⎪⎨
⎪⎩

L vi ≡ −∇ · (a(x)∇u) + c(x)u = f, in Ωi

ni · (a(x)∇vi) = gi, on B

vi = 0, on B[i],

for i = 1, 2 (6.25)

along with the transmission condition requirement:

g1(x) + g2(x) = 0, on B. (6.26)

The Neumann data gi(x) parameterizing the local solutions can be regarded
as control data which is to be chosen to minimize the square norm (6.22).
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We shall employ the following notation to obtain a matrix formulation of
the above least squares-control problem. The indices of the nodes on Ω will
be partitioned as I(1), I(2) and B where:⎧⎪⎨

⎪⎩
I(1) = indices of nodes in Ω1

I(2) = indices of nodes in Ω2

B = indices of nodes in B.

(6.27)

The number of indices in I(1), I(2), B will be denoted n
(1)
I , n

(2)
I and nB , re-

spectively. We let n1 = (n(1)
I + nB) and n2 = (n(2)

I + nB) denote the number
of nodes in Ω1 and Ω2, respectively, and n = (n(1)

I +n
(2)
I +nB) the number of

nodes in Ω. Given a finite element function vi defined on subdomain Ωi, we
let v(i) = (v(i)T

I ,v(i)T

B )T ∈ IRni denote a vector of its nodal values. We define
vE = (v(1)T

,v(2)T

)T as an extended nodal vector consisting of the two subdo-
main nodal vectors (with nonmatching v(1)

B �= v(2)
B ). On each subdomain Ωi

let f (1) = (f (i)T

I , f (i)T

B )T denote the subdomain load vector, with global load

vector given by f = (f (1)T

I , f (2)T

I , fT
B)T for fB = (f (1)

B + f (2)
B ). As in substruc-

turing, we let A
(i)
II , A

(i)
IB and A

(i)
BB denote the submatrices of the subdomain

stiffness matrix A(i). On the interface B, for 0 ≤ α ≤ 1
2 we let Aα denote the

finite element discretization of the fractional Sobolev inner product Hα(B).
A discrete version of the least squares-control problem (6.22) and (6.23)

can be constructed by discretizing the square norm and constraints. Given
finite element functions v1 and v2 on Ω1 and Ω2 with associated nodal vectors
(v(1)T

I ,v(1)T

B )T and (v(2)T

I ,v(2)T

B )T , we define an objective functional J(vE) for
vE = (v(1)T

,v(2)T

)T as:⎧⎪⎨
⎪⎩

J (v) ≡ 1
2 ‖v

(1)
B − v(2)

B ‖2
Aα

= 1
2

(
v(1)

B − v(2)
B

)T

Aα

(
v(1)

B − v(2)
B

)
.

(6.28)

The constraints in (6.23) may be discretized as:⎧⎪⎪⎨
⎪⎪⎩

A
(1)
II v(1)

I + A
(1)
IBv(1)

B = f (1)
I

A
(2)
II v(2)

I + A
(2)
IBv(2)

B = f (2)
I

A
(1)T

IB v(1)
I + A

(1)
BBv(1)

B + A
(2)T

IB v(2)
I + A

(2)
BBv(2)

B = fB ,

(6.29)

where fB �= 0 to ensure that the global discretization is consistent with (6.2).

Remark 6.7. It will be computationally convenient to parameterize the local
discrete fluxes based on (6.25) and (6.26). We thus express (6.29) as:{

A
(i)
II v(i)

I + A
(i)
IBv(i)

B = f (i)
I

A
(i)T

IB v(i)
I + A

(i)
BBv(i)

B = gi

for i = 1, 2 (6.30)
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where gi ∈ IRnB denotes the unknown local fluxes which must satisfy:

g1 + g2 = fB . (6.31)

We shall parameterize the local fluxes as:{
g1 = f (1)

B + gB ,

g2 = f (2)
B − gB ,

(6.32)

for some unknown flux vector gB ∈ IRnB . By construction, the sum of the
second block rows in (6.30) yields the third block row in (6.29) using (6.32).

The objective functional and constraints may be expressed compactly as:

J (vE) =
1
2

vT
E KvE =

1
2

⎡
⎢⎢⎢⎢⎣

v(1)
I

v(1)
B

v(2)
I

v(2)
B

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

0 0 0 0
0 Aα 0 −Aα

0 0 0 0
0 −Aα 0 Aα

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v(1)
I

v(1)
B

v(2)
I

v(2)
B

⎤
⎥⎥⎥⎥⎦ . (6.33)

The constraint (6.29) may be expressed in matrix form as:

NvE = f , where N =

⎡
⎢⎢⎣

A
(1)
II A

(1)
IB 0 0

0 0 A
(2)
II A

(2)
IB

A
(1)T

IB A
(1)
BB A

(2)T

IB A
(2)
BB

⎤
⎥⎥⎦, vE =

⎡
⎢⎢⎢⎢⎣

v(1)
I

v(1)
B

v(2)
I

v(2)
B

⎤
⎥⎥⎥⎥⎦, f =

⎡
⎢⎣

f (1)
I

f (2)
I

fB .

⎤
⎥⎦.

(6.34)
The discrete least squares-control problem will seek to minimize J (vE) subject
to constraint (6.34), as described in the following result.

Lemma 6.8. Suppose the following conditions hold.

1. Let u denote the solution of (6.2).

2. Let wE =
(
w(1)T

,w(2)T
)T

denote an extended nodal vector satisfying:

J (wE) = min
vE∈V∗

J (vE) (6.35)

where
V∗ = {vE : NvE = f} . (6.36)

3. For i = 1, 2 let Ri denote a restriction matrix mapping a nodal vector of
the form u onto a vector of nodal values on Ωi.

Then, the following results will hold for 0 ≤ α ≤ 1
2

w(i) = Riu for i = 1, 2,

with J(wE) = 0.

Proof. Follows by construction. ��
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A saddle point formulation of (6.35) can be obtained by seeking the sta-
tionary point of the following Lagrangian functional:

L (vE , λ) =
1
2

vT
E KvE + λT (NvE − f),

with Lagrange multiplier variables λ ∈ IRn. The saddle point system will be:[
K NT

N 0

][
vE
λ

]
=

[
0
f

]
, (6.37)

where matrix K is a singular matrix of low rank. Iterative algorithms such
as the augmented Lagrangian algorithm [GL7] or the projected gradient algo-
rithm as in FETI [FA14], can be applied to solve (6.37). Instead, we describe
an alternative algorithm based on parameterizing V∗ = {vE : NvE = f}.

The vectors in the constraint set V∗ can be parameterized in terms of the
vector gB ∈ IRnB as described below. Eliminate the interior variables v(i)

I

using the first block equation in (6.30) to obtain:

v(i)
I = A

(i)−1

II

(
f (i)
I − A

(i)
IBv(i)

B

)
. (6.38)

Substituting this into the second block row of (6.30) yields:

S(i)v(i)
B = gi − A

(i)T

IB A
(i)−1

II f (i)
I , (6.39)

where S(i) ≡ A
(i)
BB − A

(i)T

IB A
(i)−1

II A
(i)
IB denotes the local Schur complement

matrix. When the local Schur complement matrix S(i) is nonsingular, the
solution to the above Schur complement system can be expressed as:⎧⎨

⎩
v(1)

B = S(1)−1
(
f (1)
B + gB − A

(1)T

IB A
(1)−1

II f (1)
I

)
v(2)

B = S(2)−1
(
f (2)
B − gB − A

(2)T

IB A
(2)−1

II f (2)
I

)
,

(6.40)

where we have substituted parameterization (6.32) of the local flux vectors
g1 = f (1)

B + gB and g2 = f (2)
B − gB . We express this more compactly as:⎧⎨
⎩

v(1)
B = H1gB + e1

v(2)
B = H2gB + e2,

(6.41)

where ⎧⎪⎨
⎪⎩

H1 ≡ S(1)−1

H2 ≡ − S(2)−1

ei ≡ S(i)−1
(
f (i)
B − A

(i)T

IB A
(i)−1

II f (i)
I

)
, for i = 1, 2.

(6.42)

An unconstrained minimization problem equivalent to the constrained min-
imization problem (6.35) can be obtained as follows. Define a functional
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JB(gB) equivalent to J(v(1),v(2)) as follows:

JB(gB) ≡ 1
2
‖(H1gB + e1) − (H2gB + e2)‖2

Aα
. (6.43)

Then, substituting the parameterization (6.41) and (6.38) of the constraint
set V∗ into the constrained minimization problem (6.35) yields the following
minimization problem for the unknown flux vector gB ∈ IRnB :

JB(g∗
B) = min

gB

JB(gB). (6.44)

Once the desired control vector g∗
B has been determined, the components

of the solution to (6.35) can be obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(1)
B = S(1)−1

(
f (1)
B + g∗

B − A
(1)T

IB A
(1)−1

II f (1)
I

)
u(1)

I = A
(1)−1

II

(
f (1)
I − A

(1)
IBu(1)

B

)
u(2)

B = S(2)−1
(
f (2)
B − g∗

B − A
(2)T

IB A
(2)−1

II f (2)
I

)
u(2)

I = A
(2)−1

II

(
f (2)
I − A

(2)
IBu(2)

B

)
.

(6.45)

The following equivalence property will hold.

Lemma 6.9. Suppose the following assumptions hold.

1. Let uE =
(
u(1)T

,u(2)T
)T

denote the constrained minimum of J(vE):

J
(
u(1),u(2)

)
= min

(v(1),v(2))∈V∗
J
(
v(1),v(2)

)
.

2. Let g∗
B denote the unconstrained minimum of JB(·):

JB (g∗
B) = min

gB

JB (gB) .

Then, the following result will hold:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(1)
B = S(1)−1

(
f (1)
B + g∗

B − A
(1)T

IB A
(1)−1

II f (1)
I

)
u(1)

I = A
(1)−1

II

(
f (1)
I − A

(1)
IBu(1)

B

)
u(2)

B = S(2)−1
(
f (2)
B − g∗

B − A
(2)T

IB A
(2)−1

II f (2)
I

)
u(2)

I = A
(2)−1

II

(
f (2)
I − A

(2)
IBu(2)

B

)
.

Proof. Follows by direct substitution and algebraic simplification. ��
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A linear system for the control vector gB can be obtained by applying
stationarity conditions to the functional JB(gB):

∂JB

∂g∗
B

= (H1 −H2)T Aα [(H1 −H2)gB + (e1 − e2)] = 0.

This may be rewritten as:

(H1 −H2)
T

Aα (H1 −H2)gB = (H1 −H2)
T

Aα(e2 − e1). (6.46)

We next describe a choice of matrix Aα and a choice of preconditioner
M for the coefficient matrix F = (H1 −H2)

T
Aα (H1 −H2), based on the

properties of Schur complements described in Chap. 3.
Since matrix H1 −H2 = S(1)−1

+S(2)−1
is symmetric and positive definite

when c(x) ≥ c0 > 0, if we define Aα = (H1 −H2)
−1, then the following linear

system will be obtained for the Neumann control vector g∗
B :(

S(1)−1
+ S(2)−1

)
g∗

B = (e2 − e1).

The choice Aα = (H1 −H2)
−1 will be spectrally equivalent to the matrix

arising from the discretization of the H1/2(B) inner product. In this case any
choice of preconditioner M spectrally equivalent to S−1 (or S(i)−1

) will yield
a spectrally equivalent preconditioner for (H1 −H2). The action M−1 of the
preconditioner M would then correspond to multiplication by any precondi-
tioner for the Schur complement matrix S, S(1) or S(2), requiring the solution
of a Dirichlet problem (as in the FETI Dirichlet preconditioner [FA14]).

In the following, we summarize the preceding least squares-control algo-
rithm assuming that the vectors e1, e2 have been assembled and that subrou-
tines are available for computing the action of matrices H1 and H2. We shall

summarize the algorithm below for the choice Aα =
(
S(1)−1

+ S(2)−1
)−1

.

Algorithm 6.2.1 (Least Squares-Control Nonoverlapping Algorithm)

1. Solve using a preconditioned conjugate gradient method:

(H1 −H2)g∗
B = (e1 − e2) .

2. Compute: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(1)
B = S(1)−1

(
f (1)
B + g∗

B − A
(1)T

IB A
(1)−1

II f (1)
I

)
u(1)

I = A
(1)−1

II

(
f (1)
I − A

(1)
IBu(1)

B

)
u(2)

B = S(2)−1
(
f (2)
B − g∗

B − A
(2)T

IB A
(2)−1

II f (2)
I

)
u(2)

I = A
(2)−1

II

(
f (2)
I − A

(2)
IBu(2)

B

)
.

By construction, the following convergence bounds will hold.
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Lemma 6.10. Suppose the following assumptions hold.

1. Let Aα ≡
(
S(1)−1

+ S(2)−1
)−1

.
2. Let preconditioner M satisfy:

c0 ≤ wT
BSwB

wT
BM−1wB

≤ c1, for wB �= 0.

Then there will exist C > 0 independent of h such that:

cond(M,H1 −H2) ≤ C

(
c1

c0

)
.

Proof. Follows trivially from the assumptions. We omit the details. ��
Remark 6.11. The least squares-control formulation described here has been
formulated for self adjoint coercive elliptic equations. However, most practical
applications of the least squares-control formulation, are to nonlinear and
heterogeneous problems [GL, GL13, AT, GU2]. The methodology described
here, based on an explicit parameterization of the constraint set, may still be
possible in such applications, however, the parametric map will be nonlinear
when the underlying elliptic equation is nonlinear.

Remark 6.12. The first order system least squares method provides an alter-
native methodology for various classes of partial differential equations, see
[AZ, BO, CA23]. The emphasis in such formulations is on the reduction of
the original partial differential equation into a first order system of partial dif-
ferential equations with a subsequent application of the least squares method
to determine its solution.

Remark 6.13. If the local load vectors f (1)
B and f (2)

B are not available, we may
employ g1 = fB + gB and g2 = −gB instead.

6.3 Extensions to Multiple Subdomains

We briefly consider heuristic extensions of the least squares-control method
when there are more than two subdomains. We consider both overlapping
and non-overlapping decompositions. Let Ω1, . . . , Ωp denote a non-overlapping
decomposition of Ω with subdomains of width h0. Also let Ω∗

1 , . . . , Ω∗
p denote

an overlapping decomposition of Ω, where:

Ω∗
l ≡ {x ∈ Ω : dist(x,Ωl) < β h0} for 1 ≤ l ≤ p,

for some 0 < β < 1. We let Blj = ∂Ωl ∩ ∂Ωj . For each index l, we define:

O(l) = {j : Blj �= ∅} .

By construction j ∈ O(l) iff l ∈ O(j). We let I(l) denote an index set:

I(l) ⊂ O(l)

such that either j ∈ I(l) or l ∈ I(j) but not both.
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6.3.1 Multiple Overlapping Subdomains

Given an overlapping decomposition Ω∗
1 , . . . , Ω∗

p define B(l) ≡ ∂Ω∗
l ∩ Ω as

the interior boundary segment and B[l] ≡ ∂Ω∗
l ∩ ∂Ω as the exterior boundary

segment of ∂Ω∗
l . To obtain a least squares-control hybrid formulation of (6.1)

based on the overlapping decomposition, given vl(.) defined on Ω∗
l define:

J(v1, . . . , vp) ≡
1
2

p∑
l=1

∑
j∈I(l)

‖vl − vj‖2
α,Blj

where ‖ · ‖α,Blj
denotes the Hα(Blj) Sobolev norm on Blj . One possible least

squares-control hybrid formulation of (6.1) is to seek:

J(u1, . . . , up) = min
(v1,...,vp)∈V∗

J(v1, . . . , vp) (6.47)

where V∗ consists of vl(.) defined on Ω∗
l satisfying:⎧⎪⎨

⎪⎩
Lvl = f, in Ω∗

l

vl = gl, on B(l)

vl = 0, on B[l].

for 1 ≤ l ≤ p. (6.48)

Here gl denotes unknown local Dirichlet data on B(l). By construction, if
ul ≡ u restricted to Ω∗

l , then it will solve the minimization problem with
J(u1, . . . , up) = 0. In principle, a multisubdomain iterative solver can be for-
mulated to solve (6.2) based on the minimization of (6.47) subject to the
constraints (6.48).

6.3.2 Multiple Non-Overlapping Subdomains

Given the non-overlapping decomposition Ω1, . . . , Ωp define B(l) ≡ ∂Ωl∩Ω as
the interior boundary segment and B[l] ≡ ∂Ωl ∩ ∂Ω as the exterior boundary
segment of ∂Ωl. To obtain a least squares-control hybrid formulation of (6.1)
based on this decomposition, given vl(.) defined on Ω∗

l , define:

J(v1, . . . , vp) ≡
1
2

p∑
l=1

∑
j∈I(l)

‖vl − vj‖2
α,Blj

where ‖ · ‖α,Blj
denotes the Hα(Blj) Sobolev norm on Blj . Let g(.) denote a

flux function defined on ∪p
l=1∂Ωl and parameterizing the local solutions in a

constraint set V∗ as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L vl ≡ −∇ · (a∇vl) + c vl = f, in Ω∗
l

nl · (a∇vl) = g, on Blj for j ∈ I(l)
nl · (a∇vl) = −g, on Blj for l ∈ I(j)

vl = 0, on B[l].

for 1 ≤ l ≤ p.

(6.49)
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Then, the following least squares-control formulation will be heuristically
equivalent to the original elliptic equation (6.1):

J(u1, . . . , up) = min
(v1,...,vp)∈V∗

J(v1, . . . , vp) (6.50)

By construction, if ul ≡ u restricted to Ωl, then it will solve the minimiza-
tion problem with J(u1, . . . , up) = 0. In principle, a multisubdomain iterative
solver can be formulated based on this hybrid formulation.



7

Multilevel and Local Grid Refinement Methods

In this chapter, we describe iterative methods for solving the discretization of a
self adjoint and coercive elliptic equation on a grid with a multilevel structure.
Such grids are obtained by the successive refinement of an initial coarse grid,
either globally or locally. When the refinement is global, the resulting grid is
quasi-uniform, while if the refinement is restricted to subregions, the resulting
grid will not be quasi-uniform. We describe preconditioners formulated using
multigrid methodology [BR22, HA4, HA2, BR36]. Multilevel preconditioners
can yield optimal order performance, like multigrid methods, however, they
are convergent only with Krylov space acceleration.

In Chap. 7.1, we describe multilevel preconditioners for a discretization
of an elliptic equation on a globally quasi-uniform grid, obtained by J suc-
cessive refinements of a coarse grid. The hierarchical basis preconditioner
[YS2, BA16, ON, AX4], BPX preconditioner [XU, BR20] and a multilevel
Schwarz preconditioner [ZH2] are described. From an algorithmic viewpoint,
these preconditioners have the structure of an additive Schwarz precondi-
tioner, where each subdomain restriction map is replaced by a restriction
onto a subspace defined on the multilevel triangulation [XU3]. Additionally,
the subspace projections are computed inexactly.

In Chap. 7.2, we describe iterative algorithms for solving a discretization
of an elliptic equation on a non-quasi-uniform locally refined (composite) grid.
Such grids are obtained by the repeated local refinement of a conforming grid
within selected subregions [MC4, BR7, HA9, DR12]. More specifically, the grid
refinement procedure refines elements only within selected subregions where
the solution is irregular, leaving all other elements intact, see Fig. 7.2. As a
result, locally refined grids violate standard element adjacency requirements
along the boundaries of refined regions. Despite this, a conforming finite el-
ement discretization can be constructed on such grids, by introducing slave
variables. We describe the BEPS, FAC and AFAC iterative algorithms for
solving discretizations of elliptic equations on locally refined grids, see also
[MC4, HA9, DR12, MA21, MA22, BR6, EW6, EW7, CH23].
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Fig. 7.1. Multilevel hierarchy of refined grids

7.1 Multilevel Iterative Algorithms

In this section, we shall describe the hierarchical basis preconditioner, the
BPX preconditioner and the multilevel Schwarz preconditioner. for solving a
discretization of the following self adjoint and coercive elliptic equation:{

−∇ · (a(x)∇u) + c(x)u = f(x), in Ω

u = 0, on ∂Ω,
(7.1)

where c(x) ≥ 0. From a matrix viewpoint, these preconditioners have the
structure of matrix Schwarz preconditioners with approximate solvers on the
hierarchy of grids. Let Th0(Ω) denote an initial quasiuniform triangulation of
Ω of mesh size h0 containing n0 interior nodes. For 1 ≤ l ≤ J let Thl

(Ω)
denote a triangulation of Ω obtained by refinement of Thl−1(Ω), see Fig. 7.1,
with grid size hl = (hl−1/2) and containing nl interior nodes. For 0 ≤ l ≤ J
we denote by Vhl

⊂ H1
0 (Ω) the finite element space of dimension nl defined

on triangulation Thl
(Ω). By construction, the spaces Vhl

will be nested:

Vh0 ⊂ Vh1 ⊂ · · · ⊂ VhJ
.

We enumerate the interior nodes of triangulation Thl
(Ω) as x

(l)
1 , . . . , x

(l)
nl and

denote by φhl
i (x) for 1 ≤ i ≤ nl the standard finite element nodal basis for Vhl

satisfying φhl
i (x(l)

j ) = δij where δij is the Kronecker delta. On the finest grid

level, we employ the notation n = nJ , h = hJ , Th(Ω) = ThJ
(Ω), xi = x

(J)
i ,

φi(x) = φhJ
i (x) and Vh = VhJ . We discretize elliptic equation (7.1) using

the finite element space Vh and denote the resulting symmetric and positive
definite linear system of size n as:

Au = f . (7.2)

For 0 ≤ l ≤ J we formally define an extension matrix RT
hl

as an n×nl matrix:

RT
hl

=

⎡
⎢⎢⎣

φhl
1 (x1) · · · φhl

nl
(x1)

...
...

φhl
1 (xn) · · · φhl

nl
(xn)

⎤
⎥⎥⎦ .
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This matrix will be sparse and its action, or that of its transpose Rhl
, can be

computed recursively in O(n) complexity, see [YS2, ON]. For 0 ≤ l ≤ J we let
Ghl

and Ahl
denote the mass and stiffness matrices, respectively, associated

with the finite element space Vhl
, and denote the L2(Ω)-orthogonal projection

onto Vhl
by Qhl

. A matrix representation of Qhl
can be obtained as:

Qhl
= RT

hl
G−1

hl
Rhl

Gh,

where Ghl
= Rhl

GhRT
hl

. We shall omit the subindex when l = J .

7.1.1 Hierarchical Basis Preconditioner

The hierarchical basis preconditioner [YS2, BA16, ON] is motivated by a
change of basis for Vh, from the standard nodal basis {φh

i (x)} to a basis re-
ferred to as the hierarchical basis, defined based on interpolation onto the
hierarchy of grids and finite element spaces. The hierarchical basis precondi-
tioner for matrix A will correspond to a diagonal (or block diagonal) matrix
approximation of A, relative to this new basis. When Th(Ω) = ThJ

(Ω) has
been obtained by J successive refinements of a coarse triangulation Th0(Ω)
of Ω, we let Ihl

denote the nodal interpolation map onto the finite element
space Vhl

for 0 ≤ l ≤ J as follows:

Ihl
w(x) =

nl∑
i=1

w(x(l)
i )φhl

i (x). (7.3)

By telescoping the interpolation maps, the following identity is obtained:

IhJ
= Ih0 + (Ih1 − Ih0) + · · · +

(
IhJ

− IhJ−1

)
, (7.4)

since IhJ
= I on Vh. The hierarchical basis preconditioner will formally corre-

spond to an approximate abstract additive Schwarz preconditioner based on
the subspaces Range(Ihl

− Ihl−1) ⊂ Vh for 0 ≤ l ≤ J , where Ih−1 ≡ 0. A
matrix representation of this preconditioner can be obtained as follows. Let
z
(0)
i = x

(0)
i for 1 ≤ i ≤ n0 denote the nodes on the coarsest grid. For 1 ≤ l ≤ J

let z
(l)
i for 1 ≤ i ≤ (nl − nl−1) denote the nodes in Thl

(Ω) which are not in
Thl−1(Ω). Thus, by construction, all the nodes can be partitioned as follows:

{x1, . . . , xn} = ∪J
l=0

{
z
(l)
1 , . . . , z

(l)
nl−nl−1

}
.

A hierarchical basis for Vh is then defined as follows.

• The first n0 functions in the hierarchical basis will consist of the standard
nodal basis for the coarsest space Vh0 . We shall denote them as {ψ(0)

i (·)}:

ψ
(0)
i (x) = φh0

i (x), for 1 ≤ i ≤ n0.
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• The remaining hierarchical basis functions will be recursively defined for
1 ≤ l ≤ J as follows. If grid point z

(l)
i in Thl

(Ω) (but not in Thl−1(Ω))
corresponds to node x

(l)
j , then define:

ψ
(l)
i (x) ≡ φ

(hl)
j (x) ∈ Vhl

, for 1 ≤ i ≤ (nl − nl−1).

By construction
{
{ψ(l)

i (x)}nl−nl−1
i=1

}J

l=0
will form a basis for Vh and it can be

verified that the following will hold:

uh(x) = (Ih0uh)(x) +
∑J

l=1

(
Ihl

uh − Ihl−1uh

)
(x)

=
∑n0

i=1 uh(z(0)
i )ψ(0)

i (x) +
∑J

l=1

∑nl−nl−1
i=1

(
uh(z(l)

i ) − (Ihl−1uh)(z(l)
i )
)
ψ

(l)
i (x).

Note that (Ihl
uh − Ihl−1uhl

)(x(l−1)
j ) = 0 for 1 ≤ j ≤ nl−1 so that we may

expand (Ihl
uh−Ihl−1uhl

) solely in terms of the basis {ψ(l)
k }nl−nl−1

k=1 . Theoretical
estimates show that the off diagonal entries of the stiffness matrix, relative
this hierarchical basis, decay in magnitude [YS2, BA16, ON]. Motivated by
this, the hierarchical basis preconditioner for A is chosen to be a diagonal
(or a block diagonal matrix) relative to this new basis. However, relative to
the standard nodal basis, the action of the inverse of the hierarchical basis
preconditioner M will have the following form:

M−1 = RT D−1R, (7.5)

where D denotes a diagonal or block diagonal matrix of size n and R denotes
a matrix of size n representing the transformation from the standard nodal
basis to hierarchical basis. The structure of the matrices R and D are described
below, corresponding to a matrix additive Schwarz preconditioner.

Using the hierarchical basis functions {ψ(l)
i (x)}nl−nl−1

i=1 , for 0 ≤ l ≤ J
define an extension matrix RT

l of size n × (nl − nl−1) as follows:

RT
l =

⎡
⎢⎢⎢⎣

ψ
(l)
1 (x1) · · · ψ

(l)
nl−nl−1

(x1)
...

...

ψ
(l)
1 (xn) · · · ψ

(l)
nl−nl−1

(xn)

⎤
⎥⎥⎥⎦.

Define the subspaces Vl = span(RT
l ) ⊂ IRn for 0 ≤ l ≤ J . Then dim (V0) = n0

and dim (Vl) = nl − nl−1 with n = n0 + (n1 − n0) + · · · + (nJ − nJ−1). The
hierarchical basis preconditioner corresponds to a matrix additive Schwarz
preconditioner based on the above extension matrices.

The action of the inverse of the hierarchical basis preconditioner is:

M−1 =
J∑

l=0

RT
l D−1

l Rl, (7.6)
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where ideally Dl = RlART
l . In practice D0 is replaced by a coarse grid

approximation of Ah0 while Dl is chosen as some diagonal approximation
of RlART

l for 1 ≤ l ≤ J . Furthermore, the action of Rl can be implemented
algorithmically using tree data structures in O(n log(n)) flops. For details on
the implementation of Rl and the construction of Dl, see [YS2, ON, BA16].

Lemma 7.1. The condition number of the hierarchical basis preconditioned
system satisfies:

cond(M,A) ≤
{

C
(
1 + log2(hJ)

)
, if Ω ⊂ IR2

C h−1
J , if Ω ⊂ IR3.

where C > 0 is independent of hiand J .

Proof. The theoretical bound depends on estimates of strengthened Cauchy-
Schwarz inequalities between the subspaces Vhl

= Range(Ihl
− Ihl−1), see

[YS2, BA16, ON]. ��

Remark 7.2. The convergence rate of the hierarchical basis preconditioned sys-
tem deteriorates in three dimensions. However, modified preconditioners with
improved convergence properties have been constructed, see [AX4]. Addition-
ally, hierarchical basis preconditioners may also be formulated analogously
for Schur complement matrices, provided triangulation Ωh has a multilevel
structure, see [SM6, TO].

7.1.2 BPX Preconditioner

The BPX preconditioner of [XU, BR20] is a parallel multilevel preconditioner
for A with an optimal order convergence rate independent of the mesh param-
eters h0, . . . , hJ and levels J . It is motivated by an important Sobolev norm
equivalence property which holds when the underlying finite element space
has a multilevel structure. For u ∈ VhJ

the following norms are equivalent:

‖u‖2
H1(Ω) � h−2

0 ‖Qh0u‖2
L2(Ω) +

J∑
l=1

h−2
l ‖(Qhl

−Qhl−1)u‖2
L2(Ω) (7.7)

with equivalence parameters independent of the number of levels J and the
mesh parameters h0, . . . , hJ , see [BR20, OS2, BO6, OS3, LO]. Here Qhl

de-
notes the L2(Ω)-orthogonal projection onto Vhl

. Let Ah denote the linear map
generating the form a(·, ·) on Vh endowed with the L2(Ω)-inner product:

a(u, v) =
∫

Ω

(a(x)∇u · ∇u + c(x)uv) dx ≡ (Ahu, v)L2(Ω) , u, v ∈ V h. (7.8)

Then, since the form (Ahu, u)L2(Ω) is spectrally equivalent to ‖u‖2
H1(Ω), the

norm equivalence (7.7) suggests the following approximation Mh of Ah on Vh
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equipped with the L2(Ω) inner product:

Mh = h−2
0 Qh0 +

J∑
l=1

h−2
l (Qhl

−Qhl−1) (7.9)

where Qh0 , (Qh1 −Qh0), . . . , (QhJ
−QhJ−1) are L2(Ω)-orthogonal projections

which are mutually orthogonal. Formally, the map Mh defines the BPX pre-
conditioner. Its eigenspaces in VhJ

consist of Range(Qhl
− Qhl−1) ⊂ Vhl

of
dimension (nl−nl−1) associated with eigenvalue h−2

l for 0 ≤ l ≤ J . Its formal
inverse M−1

h in Vh equipped with (·, ·)L2(Ω) will be:

M−1
h = h2

0 Qh0 +
J∑

l=1

h2
l (Qhl

−Qhl−1) (7.10)

as can be verified directly by multiplying Mh and M−1
h .

To obtain a matrix representation M−1
h of the inverse of M−1

h relative to
the Euclidean inner product, given u ∈ Vh, we evaluate the energy associated
with the right hand side of (7.10) in the L2(Ω) inner product and simplify:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
M−1

h u, u
)
L2(Ω)

= h2
0 ‖Qh0u‖2

L2(Ω) +
∑J

l=1 h2
l ‖(Qhl

−Qhl−1)u‖2
L2(Ω)

= h2
0 ‖Qh0u‖2

L2(Ω) +
∑J

l=1 h2
l

(
‖Qhl

u‖2
L2(Ω) − ‖Qhl−1u‖2

L2(Ω)

)
=

3
4

(∑J−1

l=0
h2

l ‖Qhl
u‖2

L2(Ω)

)
+ h2

J ‖QhJ
u‖2

L2(Ω)

=
3
4

(∑J−1

l=0
h2

l (Qhl
u, u)L2(Ω)

)
+ h2

J (QhJ
u, u)L2(Ω) .

(7.11)
If u denotes the nodal vector associated with a finite element function u and
Ghl

denotes the Gram (mass) matrix associated with Vhl
, then substituting

‖Qhl
u‖2

L2(Ω) = uT GhRT
hl

G−1
hl

Rhl
Ghu into the above yields the following rep-

resentation of M−1
h relative the Euclidean inner product:

M−1
h =

3
4

(
J−1∑
l=0

h2
l GhRT

hl
G−1

hl
Rhl

Gh

)
+ h2

J GhJ
RT

hJ
G−1

hJ
RhJ

GhJ
. (7.12)

We may further approximate the action of the inverse of the BPX precondi-
tioner by replacing the factors 3

4 by 1. Additionally, when Ω ⊂ IRd, the Gram
matrices Ghl

will be diagonally dominant and can be approximated by hd
l I

where I denotes an identity matrix of size nl.
The preceding approximations yield:

M−1
h � h2d

J RT
h0

h2−d
0 Rh0 +

J∑
l=1

h2d
J RT

hl
h2−d

l Rhl
. (7.13)

As a scaling of Mh will not alter cond(M, Ah), the term h2d
J may be omitted.

The following theoretical bound will hold for cond(Mh,Ah).
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Lemma 7.3. The BPX preconditioner Mh defined formally by:

Mh = h−2
0 Qh0 +

J∑
i=1

h−2
i

(
Qhi

−Qhi−1

)
,

will satisfy cond(Mh,Ah) ≤ C independent of h0, . . . , hJ and J .

Proof. The original proof in [BR20] yielded a nonoptimal bound of C J2 (or
a bound C J assuming full elliptic regularity of (7.1)). An improved bound
of C J was obtained in [ZH2, ZH] without elliptic regularity assumptions. An
optimal order bound C was obtained in [OS2, OS3]. Alternative proofs of the
optimal order bounds are given in [GR3, BO6]. ��

Remark 7.4. The BPX preconditioner may be regarded as an abstract additive
Schwarz preconditioner on the finite element space Vh based on the subspaces
V0 = Vh0 and Vl = Range(Qhl

− Qhl−1) for 1 ≤ l ≤ J , where a scalar
multiple of the identity operator approximates the subspace problem. The
action of the BPX preconditioner can be computed recursively in linear order
complexity. The BPX preconditioner can also be generalized to precondition
discretizations of other fractional Sobolev norms [BR17]. For instance, the
BPX norm equivalence (7.7) also holds for 0 ≤ α ≤ 1 and u ∈ Vh:

‖u‖2
Hα(Ω) � h−2α

0 ‖Qh0u‖2
L2(Ω) +

J∑
l=1

h−2α
l ‖(Qhl

−Qhl−1)u‖2
L2(Ω). (7.14)

This suggests the following spectral equivalences: in the inner product
(·, ·)L2(Ω): {

Mα = h−2α
0 Qh0 +

∑J
l=1 h−2α

l (Qhl
−Qhl−1)

M−1
α = h2α

0 Qh0 +
∑J

l=1 h2α
l

(
Qhl

−Qhl−1

)
.

A heuristic Euclidean approximation of M−1
α for 0 < α ≤ 1 is:

M−1
α ≈ h2d

J

J∑
l=0

RT
hl

h2α−d
l Rhl

.

Efficient ways to compute the action of M−1
α are described in [BR17]. In

domain decomposition, if a two subdomain interface B = ∂Ω1 ∩ ∂Ω2 has a
multilevel grid, the Schur complement S will satisfy M1/2 � S, see [BR17].

Remark 7.5. The BPX preconditioning methodology can also be applied to
construct preconditioners for implicit discretizations of parabolic equations,
without dependence on mesh parameters, number of levels or the time step. If
Ah denotes the positive definite stiffness matrix arising from a discretization of
a self adjoint elliptic operator, then an implicit discretization of its associated
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parabolic equation will yield a singularly perturbed elliptic equation with
coefficient matrix Gh + τ Ah for 0 < τ  1. An optimal order BPX type
preconditioner can be formulated for Mτ = Gh + τ Ah as:

M−1
τ =

(
1 + τ h−2

0

)−1 Qh0 +
∑J

l=1

(
1 + τ h−2

l

)−1 (Qhl
−Qhl−1

)
,

with spectral bounds independent of τ , hi and J . Its matrix form will be:

M−1
τ ≈ (Gh + τ Ah)−1 ≈ h2d

J

∑J
l=0 RT

hl

(
3 τh−2−d

l

1+5 τ h2
l +4τ2 h−4

l

)
Rhl

.

The scaling factor h2d
J can be omitted in the above preconditioner. The reader

is referred to [BR17] for more efficient approximations of M−1
τ .

Remark 7.6. The BPX preconditioner does not directly take into the account
coefficient variations in a(x). See [XU] for a variant of BPX which takes co-
efficients into account. The multilevel Schwarz algorithm, which is described
next, generalizes the BPX preconditioner and two level Schwarz algorithms,
and incorporates coefficient variation.

7.1.3 Multilevel Schwarz Preconditioner

Multilevel Schwarz preconditioners [ZH, ZH2, WA2] are abstract Schwarz sub-
space preconditioners which employ subdomain problems on different grid
levels. Suppose that triangulation Th(Ω) = ThJ

(Ω) is obtained by J succes-
sive refinements of a coarse triangulation Th0(Ω). Then, given an overlapping
decomposition {Ω∗

l }
p
l=1, a two level Schwarz algorithm will employ the fine

grid spaces VhJ
∩ H1

0 (Ω∗
l ) for 1 ≤ l ≤ p and a coarse space Vhm

∩ H1
0 (Ω)

defined on Thm(Ω) where m < J , for global transfer of information. If the
dimension of the coarse space Vhm

is large, it may be advantageous to re-
cursively decompose this coarse problem on level m using subspaces of the
form Vhm ∩ H1

0 (Ω∗
j ) and a coarser space Vhm2

where m2 < m1 ≡ m < J .
The multilevel Schwarz algorithm formalizes such a recursive procedure, by
incorporating domain decomposition and multigrid methodology, to involve
subproblems on various subdomains of various grid sizes in the hierarchy.

Let Th(Ω) = ThJ
(Ω) denote the finest triangulation with associated finite

element space VhJ
. Let 0 = l1 < l2 < · · · < lk = J denote integer values

representing grid levels to be employed in a k-level Schwarz algorithm.

• On each level lj except l1 = 0, decompose the domain into mj overlapping
subdomains Ω

(lj)
1 , . . . , Ω

(lj)
mj of Ω whose boundaries align with Thlj

(Ω):

Ω ⊂
(
Ω

(lj)
1 ∪ · · · ∪ Ω(lj)

mj

)
.

• For lj �= 0 define the finite element spaces V
(i)
hlj

= Vhlj
∩ H1

0 (Ω(lj)
i ) for

1 ≤ i ≤ mj . When lj = 0, let mj = 1 and define V
(1)
h0

= Vh0 .
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• Let RT
hlj

,i denote the extension matrix which maps nodal values at nodes

of Thlj
(Ω) in Ω

(lj)
i onto fine grid nodal values on Th(Ω). Its transpose

Rhlj
,i will denote an appropriate restriction matrix.

• Let Ai
hlj

= RT
hlj

,iAhJ
Rhlj

,i denote submatrices of Ahlj
= Rhlj

AhRT
hlj

, the
stiffness matrix corresponding to Vhlj

.

Multilevel Schwarz algorithms are matrix Schwarz algorithms based on the
finite element spaces V i

hlj
for 1 ≤ i ≤ mj and 1 ≤ j ≤ k. Thus, for instance

the action of the inverse of a multilevel additive Schwarz preconditioner is:

M−1 =
k∑

j=1

mj∑
i=1

RT
hlj

,i

(
Ai

hlj

)−1

Rhlj
,i.

Similarly for multilevel multiplicative Schwarz algorithms [WA2].

Remark 7.7. A hybrid multilevel Schwarz preconditioner can be formulated
using a symmetrized sequential Schwarz on each level, additive on different
levels. The BPX and multilevel additive Schwarz preconditioners have some
similarities. For instance, the BPX preconditioner can be obtained as a special
case of the multilevel additive Schwarz preconditioner, provided lj = j for
0 ≤ j ≤ J and each subdomain Ω

(lj)
i is defined to consist of elements of

Thlj
(Ω) adjacent to some interior node in Thlj

(Ω), so that Ai
hlj

are scalar

matrices with entries of magnitude O(h−2
lj

). Conversely, if each scaling factor
h2

l employed in (7.10) is formally replaced by the inverse of the submatrix of
Ah corresponding to Range(Qhl

− Qhl−1) in the BPX algorithm, see [XU], it
will be a special case of the multilevel additive Schwarz preconditioner.

Multilevel Schwarz algorithms can have optimal convergence bounds.

Lemma 7.8. Suppose that (hlj /hlj−1) ≤ r for r < 1 and that the subdomain
diameter satisfies diam

(
Ω

(lj)
i

)
≈ hlj−1 . Then cond(M,AhJ

) ≤ C(r, a), where
C(r, a) is independent of hi and J but dependent on r and a(x).

Proof. See [ZH2]. ��

7.2 Iterative Algorithms for Locally Refined Grids

In this section, we describe multilevel iterative methods for solving the lin-
ear system that arises from the discretization of an elliptic equation on
a locally refined composite grid. Such grids are obtained by the repeated
partial refinement of a conforming grid within specified nested subregions
[MC4, BR7, HA9, DR12, MA21, MA22, BR6, EW6, EW7, CH23]. Such
grids result in non-conforming triangulations, since the elements are refined
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Fig. 7.2. Locally refined composite grid

only in specified subregions where the solution is irregular, leaving all other
elements intact. The refined elements thus violate element adjacency re-
quirements along the boundaries of refined regions, see Fig.7.2. Despite
the non-conforming nature of locally refined composite grids, a conforming
finite element discretization can be constructed on such grids, by introduc-
ing slave variables. In special cases, when the refinement regions are rect-
angular, the local grids may be chosen to be Cartesian, resulting in signif-
icant computational advantages. Related composite grids are described in
[BA5, BA8, BE15, KE9, HE9].

Our discussion will be organized as follows. We first describe background
on locally refined composite grids and the conforming discretization of an
elliptic equation on such grids. We then describe the BEPS iterative algorithm
for a two level composite grid. We conclude our discussion with a description
of the FAC (Fast Adaptive Composite grid) and AFAC (Asynchronous Fast
Adaptive Composite grid) iterative algorithms for multilevel composite grids.

7.2.1 Local Grid Refinement

We consider the following self adjoint and coercive elliptic equation:{
−∇ · (a(x)∇u) + c(x)u = f(x), in Ω

u = 0, on ∂Ω,
(7.15)

where c(x) ≥ 0. We assume that a family of nested subregions is specified:

Ω ≡ Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωp,

such that the solution u(·) of (7.15) is increasingly irregular (nonsmooth)
within the subregions. If such subregions are not specified a priori, they may
be adaptively estimated, as outlined later. Initially, a quasiuniform grid is con-
structed on Ω0. At the l’th stage of refinement, elements within subregion Ωl
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are refined, leaving all other elements intact. This procedure is then repeatedly
applied on each of the remaining nested subregions, yielding a non-conforming
triangulation as in Fig. 7.2. We shall denote by:

Φl ≡
{

Ωl\Ωl+1, for 0 ≤ l ≤ (p − 1)
Ωp, for l = p,

(7.16)

so that subregions Φ0, . . . , Φp form a nonoverlapping decomposition of Ω,
where the triangulation on each region Φl is locally quasiuniform. Once the
refined grids have been constructed, a conforming finite element space can be
defined on the global grid, as described in the next section. To ensure that
the discretization is stable, however, it will be assumed that the area (volume)
ratios |Ωl| / |Ωl+1| are bounded uniformly.

We now elaborate on the procedure. Additional details may be found in
[BA5, MC4, HA9, MC2]. Let ε > 0 denote the user specified tolerance for the
desired global discretization error of the finite element solution uh on Ω:

|u − uh|H1(Ω) ≤ ε. (7.17)

To construct a locally refined composite grid and a discretization so that the
finite element solution satisfies the above error bound, we shall start with a
suitably chosen quasiuniform triangulation Th0(Ω0) of domain Ω0 ≡ Ω with
grid size h0. If the finite element solution uh0 to the discretization of (7.15)
on Th0(Ω0) satisfies |u − uh0 |H1(Ω) > ε, then further grid refinement will
be necessary. Since the true solution u(·) is not known, heuristic methods
must be employed to estimate the discretization error |u − uh0 |H1(Ω), see
[BA8, BA5, JO2]. We outline one such finite element strategy below [JO2]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

|u − uh0 |H1(Ω) ≤ C |u − πh0u|H1(Ω)

= C
(∑

κ∈Th0
|u − πh0u|2H1(κ)

)1/2

≤ C
(∑

κ∈Th0
h2

κ|u|2H2(κ)

)1/2

,

(7.18)

where πh0u denotes the standard nodal interpolation of the true solution u(·)
onto the grid Th0 (Ω0) and hκ denotes the diameter of element κ ∈ Th0(Ω).

Since the true solution u(·) is not known, |u|H2(κ) ≈ |uh0 |H2(κ) may be em-
ployed heuristically as an approximation, using the solution uh0 . If piecewise
linear finite elements are used then |uh0 |H2(κ) will be zero within each element
and such an estimate for |u|H2(κ) will be inaccurate. In such a case, a local
estimate for |u|H2(κ) can be sought as a suitable difference quotient of ∇uh

evaluated at the centroids of adjacent elements, see [BA8, BA5, JO2], and
Remark 7.10. Once an estimate for |u|H2(κ) has been obtained, each element
κ ∈ Th0 (Ω0) for which the following condition holds, should be flagged:

h2
κ |uh0 |2H2(κ) >

ε2

N0 C2
(7.19)
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where N0 denotes the total number of elements of Th0 (Ω0). The union of
all such flagged elements can be used to define the subregion Ω1 requiring
further refinement (or a union of rectangular regions enclosing such elements,
provided Ω1 aligns with the elements of Th0(Ω0)). We denote by Th0(Ω1) the
restriction of triangulation Th0(Ω0) to subregion Ω1.

Once Ω1 has been determined, all elements κ ∈ Th0 (Ω1) should be refined
uniformly, with local grid size h1 = (h0/2), leaving all elements in Φ0 intact.
This procedure can then be applied recursively. Thus, in the lth stage of the
local grid refinement procedure, for 1 ≤ l ≤ p, let uhl−1 denote the finite
element solution corresponding to a discretization of (7.15) on the current
locally refined grid on Ω. Then, the discretization error |u−uhl−1 |H1(Ωl−1) can
be estimated on each element κ ∈ Thl−1 (Ωl−1) using difference quotients of
uhl−1 as mentioned earlier based on the approximation |u|H2(κ) ≈ |uhl−1 |H2(κ).
All elements κ ∈ Thl−1 (Ωl−1) requiring refinement should be flagged if:

h2
κ |uhl−1 |2H2(κ) >

ε2 |Ω|
N0 |Ωl−1| 2d (l−1) C2

(7.20)

for h0 = 2lhl and Ωl−1 ⊂ IRd. Subregion Ωl can be defined as the union of
all flagged elements (or a suitable enlargement of it, in which case it will be
assumed that Ωl aligns with the elements of Thl−1 (Ωl−1)). Next, all elements
κ of Thl−1(Ωl−1) in Ωl should be uniformly refined resulting in elements of
size hl = (hl−1/2). We denote the resulting quasiuniform triangulation of Ωl

by Thl
(Ωl). This local refinement strategy can be terminated when there are

no new flagged elements in the refined region.

Remark 7.9. Since only the elements within the nested subregions are refined,
by construction the global “triangulation” will violate standard element ad-
jacency requirements near nodes marked “◦” on the subdomain boundaries
B(l) ≡ ∂Ωl\∂Ω. Such nodes will be referred to as slave nodes. They will not
represent true degrees of freedom, and care must be exercised to ensure that
the finite element functions defined on either side of slave nodes, match, so
that a conforming finite element space is obtained.

Remark 7.10. More accurate estimates of the finite element discretization er-
ror |u − uhl

|H1(Ωl) may be obtained [BA8, BA5]. For instance, all elements
κ ∈ Thl

(Ωl) of size hl in Ωl can be uniformly refined yielding elements of
size (hl/2), and the discrete solution u∗

hl
to (7.15) can be computed using

continuous piecewise linear finite elements on the nonconforming grid on Ω
with elements of size (hl/2) in Ωl. On each element κ ∈ Thl

(Ωl) let IQu∗
hl

denote the quadratic interpolant of u∗
hl

onto κ using the nodes of the refined
elements. Then, the norm |u|H2(κ) of the unknown solution u can be estimated
as |IQu∗

hl
|H2(κ). As before, all elements κ ∈ Thl

(Ωl) for which |IQu∗
hl
|H2(κ) is

sufficiently large can be flagged for refinement:

h2
κ |IQu∗

hl
|2H2(κ) >

ε2 |Ω|
N0 |Ωl| 2d l C2

. (7.21)
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Such an estimate for the discretization error will typically be more accurate
than the estimate obtained using a difference quotient of ∇uhl

on adjacent el-
ements. However, this procedure will also be computationally more expensive
as it requires determining u∗

hl
, see [MC2]

Notation. We shall employ the following notation for the nodes in the locally
refined grid. For 0 ≤ l ≤ p let nl denote the number of nodes of Thl

(Ωl)
in the interior of Ωl, and ql the number of nodes of Thl

(Ωl) in Ωl+1. For
convenience, define qp = 0. We enumerate the nodes of Thl

(Ωl) in the interior
of Ωl as {x(l)

i }nl
i=1 and assume they are ordered so that for 0 ≤ l ≤ p − 1:

x
(l)
i ∈

{
Φl, for 1 ≤ i ≤ nl − ql

Ωl+1, for nl − ql + 1 ≤ i ≤ nl.

For 1 ≤ l ≤ p, we let ml denote the number of nodes of Thl
(Ωl) on the

interface B(l) = ∂Ωl\∂Ω, and enumerate these nodes for 1 ≤ l ≤ p as:

x
(l)
i ∈ B(l), for nl + 1 ≤ i ≤ nl + ml.

For 1 ≤ l ≤ p, we refer to the nodes x
(l)
i ∈ Thl

(Ωl) which lie on B(l) but which
do not belong to Thl−1 (Ωl) as slave nodes. These are marked “◦” in Fig. 7.2.
All remaining nodes will be referred to as master nodes.

Since locally refined grids violate element adjacency requirements along
B(l), care must be exercised when constructing a H1(Ω) conforming finite
element space globally. More specifically, since the locally refined grid is non-
conforming only at the slave nodes, it will be sufficient to require that the
functions defined on elements adjacent to slave nodes, also match at the slave
nodes. When piecewise linear finite elements are employed, this will be equiv-
alent to requiring that the nodal value of a finite element function at a slave
node be a linear combination of its nodal value on adjacent master nodes.

Thus, the slave nodes will not represent true degrees of freedom in a locally
refined grid. Instead, only the master nodes will represent the true degrees of
freedom. Using our chosen ordering of nodes, the total number n of master
nodes is easily seen to satisfy:

n ≡ (n0 − q0) + (n1 − q1) + · · · + (np−1 − qp−1) + np.

Henceforth, let {yj}n
j=0 denote a reordering of all the master nodes in Ω:

{yj}n
j=0 =

{{
x

(l)
i

}nl−ql

i=1

}p

l=0

,

based on the local orderings.

Remark 7.11. The software package DAGH (distributed adaptive grid hierar-
chy) implements adaptive grid refinement based on rectangular (Cartesian)
subregions, see [MI2]. It is based on an adaptive mesh refinement algorithm
[BE15] which was formulated originally for hyperbolic equations.
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7.2.2 Discretization on Locally Refined Grids

On each subregion Ωl for 1 ≤ l ≤ p, let Vhl
(Ωl) ⊂ H1

0 (Ωl) denote a local finite
element space consisting of continuous, piecewise linear finite element func-
tions on triangulation Thl

(Ωl), vanishing outside Ωl. We shall let {φ(l)
i (x)}nl

i=1

denote the standard continuous piecewise linear nodal basis function for
Vhl

(Ωl) satisfying:
φ

(l)
i (x(l)

j ) = δij ,

where δij denotes the Kronecker delta. The global composite finite element
space Vh0,...,hp(Ω) which will be employed to discretize elliptic equation (7.15)
will be defined as the sum of the local finite element spaces:

Vh0,...,hp
(Ω) = Vh0(Ω0) + · · · + Vhp

(Ωp). (7.22)

By construction Vh0,...,hp(Ω) ⊂ H1
0 (Ω) so the space will be conforming. A

nodal basis {ψi(x)}n
i=1 of continuous piecewise linear functions can be con-

structed for Vh0,...,hp
(Ω) satisfying ψi(yj) = δij , at all master nodes {yj}.

A global finite element discretization of (7.15) can be constructed on the
composite grid [MC4, MC3, DR12, HA9], by seeking uh ∈ Vh0,...,hp(Ω) satis-
fying:

a(uh, vh) = F (vh), ∀vh ∈ Vh0,...,hp
(Ω) (7.23)

where the bilinear form a(u, v) and functional F (v) are defined as:{
a(u, v) ≡

∫
Ω

(a(x)∇u · ∇v + c(x)uv) dx

F (v) ≡
∫

Ω
f(x)v(x)dx.

(7.24)

Formally representing the finite element function uh(x) ∈ Vh0,...,hp(Ω) as:{
uh(x) =

∑n
j=1 uh(yj) ψj(x)

=
∑n

j=1 (u)j ψj(x)

and choosing vh = ψj for j = 1, . . . , n yields the linear system:

Au = f , (7.25)

where the stiffness matrix A, solution u, and load vector f are defined by:⎧⎪⎨
⎪⎩

(A)ij ≡ a(ψi, ψj), ∀i, j

(u)i ≡ uh(yi), ∀i

(f)i ≡ F (ψi), ∀i.

(7.26)

The stiffness matrix A and load vector f need not be assembled explicitly
based on the basis {ψl(·)}. Instead, they may be computed using a subassembly
procedure involving the subdomain stiffness matrices, as described next.
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Since each of the nonoverlapping subregions Φl are triangulated by the
quasiuniform local grid Thl

(Φl) of grid size hl for 0 ≤ l ≤ p, it may be
computationally advantageous to evaluate matrix-vector products Av based
on the subassembly identity involving the nonoverlapping decomposition:

Ω = Φ0 ∪ Φ1 ∪ · · ·Φp−1 ∪ Φp.

Accordingly, we define local bilinear forms and functionals:{
aΦl

(u, v) ≡
∫

Φl
(a(x)∇u(x) · ∇v(x) + c(x)u(x)v(x)) dx, for 0 ≤ l ≤ p

FΦl
(v) ≡

∫
Φl

f(x)v(x)dx, for 0 ≤ l ≤ p,

and obtain the following decomposition:{
a (
∑n

i=1 uiψi, ψj) =
∑p

l=0 aΦl
(
∑n

i=1 uiψi, ψj)
F (ψj) =

∑p
l=0 FΦl

(ψj) .

In order to express the preceding in matrix form, we shall introduce the follow-
ing notation for the nodes within each of the subregions Φl. For each 0 ≤ l < p
let rl denote the number of nodes in Φl from Thl

(Ωl) with rp = np. Enumerate
and order these nodes locally as:

z
(l)
i ∈ Φl, for 1 ≤ i ≤ rl,

and denote the associated nodal basis functions on triangulation Thl
(Φl) as:

χ
(l)
i (z(l)

j ) = δij , for 1 ≤ i, j ≤ rl.

Assemble the subdomain stiffness matrices A(Φl) of size rl on each of the sub-
domains Φl, including those nodes on its internal boundary segments ∂Φl:(

A(Φl)
)
ij

≡ aΦl

(
χ

(l)
i , χ

(l)
j

)
, for 1 ≤ i, j ≤ rl.

Similarly, for 0 ≤ l ≤ p define subdomain load vectors f (Φl) by:(
f (Φl)

)
i
≡ FΦl

(
χ

(l)
i

)
, for 1 ≤ i ≤ rl.

Next, for each 0 ≤ l ≤ p define an extension matrix RT
Φl

between nodal vectors
on Φl and master nodal vectors as the following matrix of size n × rl:

RT
Φl

≡

⎡
⎢⎢⎣

χ
(l)
1 (y1) · · · χ

(l)
rl (y1)

...
...

χ
(l)
1 (yn) · · · χ

(l)
rl (yn)

⎤
⎥⎥⎦.

The sparsity of these extension matrices will depend on the number of master
nodes within the support of the l’th level nodal basis functions. Associated
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restriction maps RΦl
are obtained by taking the transpose of the extension

maps. The subassembly identity for the evaluation of matrix-vector products
and computation of the load vector f can now be stated as:⎧⎨

⎩
Av =

∑p
l=0 RT

Φl
A(Φl)RΦl

v

f =
∑p

l=0 RT
Φl

f (Φl).
(7.27)

Before we describe iterative algorithms for solving the linear system (7.25)
resulting from the global discretization, we introduce additional notation.

Definition 7.12. For 0 ≤ l ≤ p, we define the n×nl extension matrix RT
Ωl,hl

:

RT
Ωl,hl

=

⎡
⎢⎢⎣

φ
(l)
1 (y1) · · · φ

(l)
ni (y1)

...
...

φ
(l)
1 (yn) · · · φ

(l)
ni (yn)

⎤
⎥⎥⎦.

The sparsity of these matrices will depend on the number of master nodes
within the support of each l’th level nodal basis function. Restriction matrices
RΩl,hl

will be transposes of the above matrices. We define a local stiffness
matrix of size nl corresponding to the Dirichlet problem on Ωl discretized
using Vhl

(Ωl) ∩ H1
0 (Ωl) as:(

A
(Ωl,hl)
II

)
ij
≡ aΩl

(
φ

(l)
i , φ

(l)
j

)
, for 1 ≤ i, j ≤ nl.

Similarly, we define additional extension and local stiffness matrices.

Definition 7.13. For 1 ≤ l ≤ p define the n×ql−1 extension matrix RT
Ωl,hl−1

:

RT
Ωl,hl−1

=

⎡
⎢⎢⎢⎣

φ
(l−1)
nl−1−ql−1+1(y1) · · · φ

(l−1)
nl−1 (y1)

...
...

φ
(l−1)
nl−1−ql−1+1(yn) · · · φ

(l−1)
nl−1 (yn)

⎤
⎥⎥⎥⎦.

Again, the sparsity of these matrices will depend on the number of master
nodes within the support of the (l−1)’th level nodal basis functions. Restriction
matrices RΩl,hl−1 will be transposes of the extension matrices. For 1 ≤ l ≤ p,
we denote the stiffness matrix of size ql associated with the Dirichlet problem
on Ωl discretized on Vhl−1(Ωl) ∩ H1

0 (Ωl) as:(
A

(Ωl,hl−1)
II

)
ij
≡ aΩl

(
φ

(l−1)
nl−ql+i, φ

(l−1)
nl−ql+j

)
, for 1 ≤ i, j ≤ ql.

We shall now describe iterative algorithms for (7.25).
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7.2.3 BEPS Algorithm for Two Level Composite Grids

We shall first consider a preconditioner of [BR7] for the stiffness matrix A
in (7.25) when p = 2. In this case, there will be only one level of grid refinement
with Ω1 ⊂ Ω0. The refined grid Th1 (Ω1) will be obtained by refinement of
elements of Th0 (Ω0) in Ω1. The BEPS preconditioner will correspond to a
symmetrized multiplicative Schwarz preconditioner based on the finite element
subspaces Vh1(Ω1) and Vh0(Ω0). More specifically, the action of the inverse
M−1 of the BEPS preconditioner M will be the output obtained after one
symmetrized multiplicative Schwarz iteration with zero initial iterate, based
on the column spaces RT

Ω1,h1
and RT

Ω0,h0
. We summarize the preconditioner.

Algorithm 7.2.1 (BEPS Preconditioner)
The action z = M−1r is given below.

1. Solve:
A

(Ω1,h1)
II v1 = RΩ1,h1r.

2. Solve:
A

(Ω0,h0)
II v2 = RΩ0,h0

(
r − ART

Ω1,h1
v1

)
.

3. Solve:

A
(Ω1,h1)
II v3 = RΩ1,h1

(
r − ART

Ω1,h1
v1 − A RT

Ω0,h0
v2

)
.

Output: z ≡ RT
Ω1,h1

v3 + RT
Ω0,h0

v2 + RT
Ω1,h1

v1.

Remark 7.14. Step 1 in this preconditioner may be omitted if the residual
vector r satisfies RΩ1,h1r = 0. This can be ensured if the initial iterate v(0) in
the conjugate gradient algorithm is chosen so that r = f −Av(0) satisfies the
constraint RΩ1,h1r = 0. Then, provided the preconditioning involves steps 2
through 3, all subsequent residuals will satisfy this constraint. The initial
iterate v(0) may be chosen in the form RT

Ω1,h1
α for α ∈ IRn1 chosen so that(

RΩ1,h1ART
Ω1,h1

)
α = RΩ1,h1f .

The BEPS preconditioner requires the solution of a linear system with
coefficient matrix A

(Ω0,h0)
II once and coefficient matrix A

(Ω1,h1)
II twice (once if

RΩ1,h1r = 0). The following convergence bound will hold.

Theorem 7.15. There exists C > 0 independent of h0 and h1, such that
cond(M,A) ≤ C.

Proof. See [BR7]. ��

The BEPS preconditioner is sequential in nature. A more parallelizable
variant of this preconditioner is described in [BR6].
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7.2.4 FAC and AFAC Algorithms for Multilevel Composite Grids

We next consider multilevel locally refined grids. We shall describe the Fast
Adaptive Composite (FAC) grid and Asynchronous Fast Adaptive Composite
(AFAC) grid algorithms, see [MC4, MA21, MA22, DR12, MC3], for solving
system (7.25). These algorithms are multilevel generalizations of the two level
BEPS algorithm and formally correspond to matrix Schwarz algorithms. We
first describe the FAC algorithm [HA9, MA21, DR12, MA22, MC3], which
corresponds to an unaccelerated multiplicative Schwarz algorithm based on
the subspaces Vhl

(Ωl)∩H1
0 (Ωl) for 0 ≤ l ≤ p. In matrix form, it corresponds to

a matrix Schwarz algorithm based on the column spaces RT
Ωl,hl

for 0 ≤ l ≤ p.

Algorithm 7.2.2 (Sequential FAC Algorithm)
Let v(0) denote a starting iterate

1. Define: v∗ ← v(0).
2. For k = 1, 2, · · · until convergence do:
3. For l = p, p − 1, · · · , 0 do:

v∗ ← v∗ + RT
Ωl,hl

(
A

(Ωl,hl)
II

)−1

RΩl,hl
(f − Av∗) .

4. Endfor
5. Endfor

Output: v∗.

The FAC algorithm is sequential. The following convergence bound holds.

Theorem 7.16. The convergence factor ρ of the sequential FAC iteration is
independent of the mesh sizes hl and the number p of levels. It depends on the
ratio max{(hl/hl−1)} and the ratio of areas (or volumes) max{(|Ωl−1|/|Ωl|)}.
Proof. See [HA9, MA21, DR12, MA22, MC3]. ��

We next describe a parallel version of the FAC algorithm, which we express
as an additive Schwarz preconditioner.

Algorithm 7.2.3 (Parallel FAC Preconditioner)
The action M−1 of the inverse of the parallel FAC preconditioner M is:

M−1r ≡
p∑

l=0

RT
Ωl,hl

(
A

(Ωl,hl)
II

)−1

RΩl,hl
r.

Unfortunately, the convergence rate for the above preconditioner deterio-
rates as the number p of grid levels increases, as the following result indicates.

Theorem 7.17. There exists C > 0 independent of the mesh sizes hl and the
number p of levels, such that:

cond(M,A) ≤ C p,

Proof. See [DR12, MA21, MA22, MC3]. ��
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Theoretical analysis indicates that this deterioration in the condition num-
ber is due to the redundant projections of the solution onto the subspaces
Vhl

(Ωl) and Vh−1(Ωl) for 1 ≤ l ≤ p. The following preconditioner removes such
redundancy, and restores optimal order convergence, at the cost of additional
computations. The resulting preconditioner is referred to as the AFAC pre-
conditioner, and corresponds formally to an additive Schwarz preconditioner
based on the subspaces Vh0(Ω0) and Vhl

(Ωl)∩Vhl−1(Ωl)⊥ for 1 ≤ l ≤ p. Here
Vhl−1(Ωl)⊥ denotes the orthogonal complement in the a(., .) inner product.

Algorithm 7.2.4 (AFAC preconditioner))
The action M−1

AFAC of the inverse of the AFAC preconditioner MAFAC is:

M−1
AFACr ≡ RT

Ω0,h0

(
A

(Ω0,h0)
II

)−1

RΩ0,h0r

+
∑p

l=1

(
RT

Ωl,hl

(
A

(Ωl,hl)
II

)−1

RΩl,hl
− RT

Ωl,hl−1

(
A

(Ωl,hl−1)
II

)−1

RΩl,hl−1

)
r.

On each subdomain Ωl for 1 ≤ l ≤ p, the AFAC preconditioner requires
the solution of two subproblems, involving matrices A

(Ωl,hl)
II and A

(Ωl,hl−1)
II .

We have the following convergence bound.

Theorem 7.18. There exists C > 0 independent of the mesh sizes hl and the
number p of levels, but dependent on the ratios of the mesh sizes (hl−1/hl)
and the ratios of the areas (or volumes) of the refined regions, such that:

cond(MAFAC, A) ≤ C.

Proof. See [DR12, MA21, MA22, MC3]. ��

Remark 7.19. We have tacitly assumed that each grid Thl−1(Ωl) was refined
so that hl = (hl−1/2). In practice, elements of size hl−1 in Ωl can be refined
to yield hl = (hl−1/2α) for α ≥ 1. In this case, there will be additional slave
nodes. Local grid refinement methodology can also be applied to time varying
(hyperbolic or parabolic type) problems, see [BE15, EW5].



8

Non-Self Adjoint Elliptic Equations:
Iterative Methods

In this chapter, we describe domain decomposition methods for precondition-
ing the nonsymmetric linear systems arising from the discretization of non-self
adjoint advection-diffusion elliptic equations. Under appropriate assumptions,
such discretizations have the following form:

Au = f , with A = H + N, HT = H ≥ 0 and NT = −N,

where H is Hermitian and positive semi-definite and N is skew-Hermitian.
The eigenvalues of matrix A will typically be complex and occur in conjugate
pairs, since A is real. They will have non-negative real parts when H ≥ 0.
Since A is non-symmetric, the CG algorithm cannot be employed to solve
Au = f . Instead, the GMRES (or QMR, CGNR or CGNE) method can be
employed with preconditioner M , see [AS3, FR5, SA2, AX]. These Krylov
space algorithms typically require more storage than the CG method.

Domain decomposition methodology is less developed for non-self adjoint
elliptic equations. Typically, the effectiveness of a preconditioner M for the
non-symmetric matrix A = H + N depends on the relative magnitude of the
diffusion and advection terms, i.e., H and N respectively. A bound for its rate
of convergence typically depends on the minimal eigenvalue of the Hermitian
part of M−1H and the maximal singular value of M−1A, see [SA2].

Our discussion is organized as follows. Section 8.1 presents background
on non-self adjoint elliptic equations and their discretizations. Section 8.2
describes Schwarz and Schur complement preconditioners for diffusion domi-
nated non-self adjoint elliptic equations. Section 8.3 considers the advection
dominated case, in which the underlying elliptic equation is of singular per-
turbation type (exhibiting boundary layers). Two subdomain precondition-
ers are described motivated by heterogenous domain decomposition methods.
Section 8.4 considers the implicit time stepping of non-self adjoint parabolic
equations. Section 8.5 presents a selection of energy norm based theoretical re-
sults for non-self adjoint elliptic equations (see Chap. 15 for theoretical results
in the maximum norm).
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8.1 Background

We shall consider the following advection-diffusion elliptic equation:{
−∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f(x), inΩ

u = 0, on∂Ω,
(8.1)

where a(x) ≥ a0 > 0 is a scalar diffusion (viscosity) coefficient, b(x) is a
vector (advection or convection) field, and c(x) is a reaction coefficient (we
shall assume that c(x) ≥ 0 except when specified otherwise). Equation (8.1) is
typically referred to as being diffusion dominated, when ‖b‖∞ = O(a0), and
as being advection dominated when ‖a‖∞  ‖b‖∞.

In the diffusion dominated case, equation (8.1) will have elliptic charac-
ter throughout the domain, and its solution will be smooth when the forc-
ing, boundary data, and geometry are sufficiently smooth. In the advection
dominated case, however, equation (8.1) may be of singular perturbation type
[KE5, LA5], exhibiting a layer region Ω2 ⊂ Ω in which the solution has “steep
gradients” (derivatives of large magnitude), where the equation is of elliptic
character, and a complementary region (“nonlayer”) Ω1 ⊂ Ω, in which the
diffusion term may be neglected (to an approximation), yielding hyperbolic
character locally. In the advection dominated case, care must be exercised in
discretizing (8.1) and in formulating iterative algorithms.

Weak Formulation. The standard weak formulation of (8.1) is obtained by
multiplying the equation by a test function v ∈ H1

0 (Ω), and integrating the
diffusion term by parts on Ω. It seeks u ∈ H1

0 (Ω) satisfying:⎧⎪⎪⎨
⎪⎪⎩

A(u, v) = F (v), ∀v ∈ H1
0 (Ω), where

A(u, v) ≡
∫

Ω
(a(x)∇u · ∇v + (b(x) · ∇u) v + c(x) u v) dx

F (v) ≡
∫

Ω
f v dx.

(8.2)

Using integration by parts,
∫

Ω
(b(x) · ∇u) v dx can be expressed as:∫

Ω
(b(x) · ∇u) v dx = −

∫
Ω

u∇ · (b(x) v) dx

= −
∫

Ω
u (b(x) · ∇v) dx −

∫
Ω

(∇ · b(x)) u v dx,

for u, v ∈ H1
0 (Ω). Taking a weighted arithmetic average of both expressions,

with weight parameter 0 ≤ θ ≤ 1, yields the following expression:∫
Ω

(b(x) · ∇u) v dx = (1 − θ)
∫

Ω
(b(x) · ∇u) v dx − θ

∫
Ω

u (b(x) · ∇v) dx

− θ
∫

Ω
(∇ · b(x)) u v dx.

Substituting this into (8.2) yields several equivalent expressions for A(., .):

Aθ(u, v) ≡
∫

Ω
(a(x)∇u · ∇v + (c(x) − θ∇ · b(x)) u v) dx

+ (1 − θ)
∫

Ω
(b(x) · ∇u) v dx − θ

∫
Ω

u (b(x) · ∇v) dx,
(8.3)
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where Aθ(u, v) = A(u, v) for u, v ∈ H1
0 (Ω) and 0 ≤ θ ≤ 1. Commonly θ = 0

is used for Galerkin approximation of (8.1). Other choices include θ = 1
2 or 1.

Choosing θ = 1
2 yields the following expression for A(., .) = A 1

2 (., .):

A 1
2 (u, v) ≡

∫
Ω

(
a(x)∇u · ∇v + (c(x) − 1

2 ∇ · b(x)) u v
)
dx

+ 1
2

∫
Ω

((b(x) · ∇u) v − u(b(x) · ∇v)) dx.
(8.4)

From this, a splitting of the bilinear form A(., .) = A 1
2 (., .) into its Hermitian

and skew-Hermitian parts can be obtained as follows:⎧⎪⎪⎨
⎪⎪⎩

A(u, v) = H(u, v) + N (u, v), where

H(u, v) =
∫

Ω

(
a(x)∇u · ∇v + (c(x) − 1

2∇ · b) u v
)
dx

N (u, v) = 1
2

∫
Ω

((b(x) · ∇u) v − u (b(x) · ∇v)) dx,

(8.5)

for u, v ∈ H1
0 (Ω). By construction, H (., .) is symmetric. It will also satisfy:

H(u, u) =
∫

Ω

a(x) |∇u|2 dx +
∫

Ω

(
c(x) − 1

2
∇ · b(x)

)
u2dx ≥ 0, (8.6)

when
(
c(x) − 1

2∇ · b(x)
)
≥ 0. The form N (u, v) will be skew-symmetric, i.e.:

N (u, v) = −N (v, u), for u, v ∈ H1
0 (Ω),

yielding that N (u, u) = 0 for u ∈ H1
0 (Ω) and that A(u, u) = H(u, u) ≥ 0.

When a0 > 0 and
(
c(x) − 1

2∇ · b(x)
)
≥ 0, the existence of solutions to (8.2)

is guaranteed by the nonsymmetric Lax-Milgram lemma [CI2].
In domain decomposition applications, it is sometimes necessary to pose

(8.1) on a subdomain Ωi ⊂ Ω with Robin boundary conditions on its interior
boundary segment ∂Ωi ∩ Ω. In such applications, let Aθ

Ωi
(., .) denote:

Aθ
Ωi

(u, v) ≡
∫

Ωi
(a(x)∇u · ∇v + (c(x) − θ∇ · b(x)) u v) dx

+(1 − θ)
∫

Ωi
(b(x) · ∇u) v dx − θ

∫
Ωi

u (b(x) · ∇v) dx,
(8.7)

the local contribution to Aθ(., .). Formally integrating Aθ
Ωi

(., .) by parts yields:

Aθ
Ωi

(u, v) =
∫

Ωi
(−∇ · (a∇u) + b(x) · ∇u + c(x) u) v dx

+
∫

∂Ωi
ni(x) · (a(x)∇u − θ b(x)u) v dsx,

(8.8)

where ni(x) denotes the unit exterior normal to Ωi at x ∈ ∂Ωi. Thus, it will
hold that Aθ

Ωi
(u, v) = AΩi

(u, v) − θ
∫

∂Ωi
ni(x) · b(x)u v dsx. Consider the

following local functional, given f(·) ∈ L2(Ω) and g(·) ∈ H−1/2(∂Ωi):

FΩi(v) =
∫

Ωi

f v dx +
∫

∂Ωi

g v dsx, ∀v ∈ Vi,



336 8 Non-Self Adjoint Elliptic Equations: Iterative Methods

where Vi =
{
v ∈ H1(Ωi) : v = 0 on ∂Ωi ∩ ∂Ω

}
, and seek w ∈ Vi such that:

Aθ
Ωi

(w, v) = FΩi
(v), ∀v ∈ Vi. (8.9)

This will correspond to a weak formulation of the boundary value problem:⎧⎪⎨
⎪⎩

−∇ · (a(x)∇w) + b(x) · ∇w + c(x)w = f(x), in Ωi

ni(x) · (a(x)∇w − θ b(x) w) = g(x), on ∂Ωi ∩ Ω

w = 0, on ∂Ωi. ∩ ∂Ω

(8.10)

This problem enforces Dirichlet boundary conditions on ∂Ωi ∩ ∂Ω, while on
∂Ωi ∩Ω it enforces a Neumann condition for θ = 0 and a Robin condition for
0 < θ ≤ 1. To replace the Robin condition in (8.10) by a β-Robin condition:

ni(x) · (a(x)∇w) + β w = g, on ∂Ωi ∩ Ω,

replace Aθ
Ωi

(w, v) by Aθ
Ωi

(w, v)+
∫

∂Ωi∩Ω
(β(x)+θ ni(x) ·b(x)) w v dsx in (8.9).

When θ = 1
2 , the resulting bilinear form is easily seen to be coercive, i.e.,

A
1
2
Ωi

(w,w) +
∫

∂Ωi∩Ω

(β(x) +
1
2

ni(x) · b(x)) w w dsx ≥ 0,

provided
(
β(x) + 1

2 ni(x) · b(x)
)
≥ 0.

Stable Discretizations. Traditional Galerkin finite element and centered
finite difference discretizations of (8.1) are unstable for the hyperbolic equation
obtained when a(x) = 0, see [JO2]. This instability also manifests itself as
‖a‖∞ → 0+, more specifically, when ‖a‖∞  h ‖b‖∞, where h denotes the
grid size. However, if h satisfies a cell Peclet restriction:

h ‖b‖∞ ≤ C ‖a‖∞, (8.11)

for some C > 0, independent of h, then the traditional Galerkin and centered
finite difference discretizations of (8.1) will be stable. If ‖a‖∞  ‖b‖∞, this
may require an extremely small mesh size h, making the Galerkin and cen-
tered schemes computationally expensive in the advection dominated case.
Instead, for such problems a streamline-diffusion, stabilized finite element or
upwind finite difference discretization will yield a stable discretization without
constraints on the mesh size [JO2, FR3, FR2].

Stable discretizations are typically constructed by adding a small diffusion
term, depending on a parameter 0 < δ  1, along the streamline direction,
so that the discretization is stable even when a(x) = 0. For instance, the
streamline-diffusion discretization [JO2] employs test functions of the form
v + δ b(x) · ∇v (for a small δ > 0), and replaces the forms A(u, v) and F(v)
by the modified forms Ãδ(u, v) and F̃δ(v):
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⎪⎪⎪⎪⎪⎪⎩

Ãδ(u, v) =
∑

κ∈Ωh

∫
κ

(a(x)∇u · ∇v + (b · ∇u) v + c(x) u v) dx

−δ
∑

κ∈Ωh

∫
κ
∇ · (a(x)∇u) (b · ∇v) dx

+δ
∑

κ∈Ωh

∫
κ
(b · ∇u) (b · ∇v) dx

+δ
∑

κ∈Ωh

∫
κ

c(x) u (b · ∇v) dx

F̃δ(v) ≡
∑

κ∈Ωh

∫
κ

f(x) (v + δ b · ∇v) dx.

(8.12)

For alternative stabilizations, see [FR3, FR2].
We shall assume that a stable finite element discretization of (8.1) is em-

ployed. The resulting system will be denoted:

Au = f . (8.13)

For instance, if a Galerkin discretization of (8.5) is employed satisfying a cell
Peclet restriction, and {φ1, . . . , φn} denotes a nodal basis for the finite element
space Vh ⊂ H1

0 (Ω), then we can express A = H + N where:

(A)ij = A(φi, φj), (H)ij = H(φi, φj), (N)ij = N (φi, φj), (f)i = F (φi),

with discrete solution uh(x) =
∑

i (u)i φi(x). Matrix H will be symmetric due
to the symmetry of H(., .). Furthermore, if a0 > 0 and

(
c(x) − 1

2∇ · b(x)
)
≥ 0,

or if a(x) = 0 and
(
c(x) − 1

2∇ · b(x)
)
≥ β > 0, then matrix H will also be

positive definite. Similarly, matrix N will be real and skew-symmetric with
NT = −N (due to skew-symmetry of N (., .)).

Remark 8.1. We may also decompose A(u, v) = H̃(u, v) + Ñ (u, v), where
H̃(u, v) ≡

∫
Ω

(a(x)∇u · ∇v + c(x)u v) dx and Ñ (u, v) ≡
∫

Ω
(b(x) · ∇u) v dx.

If ∇ · b = 0, then H̃(., .) = H(., .) and Ñ (., .) = N (., .). Furthermore, if
c(x) ≥ 0, with

(
H̃
)

ij
= H̃(φi, φj) and

(
Ñ
)

ij
= Ñ(φi, φj), it can easily be

verified that H̃T = H̃ ≥ 0 and ÑT = −Ñ .

Remark 8.2. If a streamline-diffusion discretization is employed [JO2] based
on the forms Ãδ(u, v) and F̃δ(v) defined in (8.12), and piecewise linear finite
elements are employed, with a(x) ≡ a, then the term

∫
κ
∇·(a(x)∇u) (b·∇v) dx

will be zero. Additionally, if c(x) = 0 and ∇·b(x) = 0, then we may decompose
Ãδ(u, v) = H̃δ(u, v) + Ñδ(u, v), where:⎧⎪⎨

⎪⎩
H̃δ(u, v) =

∑
κ∈Ωh

∫
κ

(a(x)∇u · ∇v) dx

+δ
∑

κ∈Ωh

∫
κ
(b · ∇u) (b · ∇v) dx

Ñδ(u, v) =
∑

κ∈Ωh

∫
κ
(b · ∇u) v dx,

where H̃δ(·, ·) is self-adjoint and coercive, and Ñδ(·, ·) is skew-symmetric. For
stabilized finite element discretizations of (8.1), see [FR3, FR2].
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Spectrum of A. Eigenvalues of the nonsymmetric matrix A in (8.13) will
generally be complex. The next result, referred to as Bendixson’s lemma,
describes a rectangular region in the complex plane C which encloses the
eigenvalues of a matrix C−1A, when A = H +N is any complex matrix of size
m and C is a Hermitian positive definite matrix of size m. Such methods may
be employed to estimate the rate of convergence of the GMRES algorithm to
solve C−1Au = C−1f , see [SA3, GO4, SA2, AX], where the commonly used
bound (8.16) depends on the smallest eigenvalue of (C−1A + A∗C−∗)/2 and
the largest singular value of C−1A. We shall let i =

√
−1 denote the imaginary

unit and C the complex field. Given a complex matrix F , let F ∗ ≡ F
T

denote
its conjugate transpose, where conjugation γ + i δ = γ − i δ for γ, δ ∈ IR.

Lemma 8.3 (Bendixson). Suppose the following conditions hold.

1. Let A be a complex matrix of size m with Hermitian part H = 1
2 (A + A∗)

and skew-Hermitian part N = 1
2 (A − A∗).

2. Let C be a Hermitian positive definite matrix of size m such that the
following bounds hold for z ∈ Cm \ {0}:

γ1 ≤ z∗Hz
z∗Cz

≤ γ2 and δ1 ≤ 1
i

(
z∗Nz
z∗Cz

)
≤ δ2, (8.14)

where γ1 ≤ γ2 and δ1 ≤ δ2 are real.
3. Let λ be an eigenvalue of C−1A.

Then, the following bounds will hold:

γ1 ≤ Re(λ) ≤ γ2 and δ1 ≤ Im(λ) ≤ δ2,

where Re(λ) and Im(λ) denote the real and imaginary parts of λ.

Proof. The eigenvalues of C−1A will be contained in the field of values of
the generalized Rayleigh quotient R(z) = z∗Az/z∗Cz for z �= 0. Decompose
z∗Az = z∗Hz + z∗Nz, and substitute this into the generalized Rayleigh quo-
tient, use that z∗Hz is real and that z∗Nz is imaginary, and apply (8.14) to
obtain the desired result. See [SA2]. ��

As a Corollary of the preceding Lemma, we obtain the following result.

Corollary 8.4. Suppose the following assumptions hold.

1. Let 0 < a0 ≤ a(x) ≤ ‖a‖∞ and
(
c(x) − 1

2∇ · b(x)
)
≥ 0.

2. Let A denote the Galerkin matrix with H = 1
2 (A+A∗) and N = 1

2 (A−A∗).
3. Let C = G denote the mass (Gram) matrix.

Then, the following bounds will hold for z ∈ Cm \ 0:

γ1 ≤ z∗Hz
z∗Gz

≤ γ2 and δ1 ≤ 1
i

(
z∗Nz
z∗Gz

)
≤ δ2, (8.15)

for γ1 = O(a0), γ2 = O(‖a‖∞ h−2), and −δ1 = δ2 = O(‖b‖∞ a−1
0 h−1).
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Proof. Apply the preceding Lemma using C = G. The bounds γ1 = O(a0)
and γ2 = O(‖a‖∞ h−2) follow from standard finite element theory, since H
corresponds to a stiffness matrix for a self adjoint problem.

To obtain bounds for δ1 and δ2, choose complex uh, vh ∈ Vh with associ-
ated complex nodal vectors u and v. Apply the Schwartz inequality:

|N (uh, vh)| ≤ (c1 ‖b‖∞) ‖uh‖H1(Ω) ‖vh‖L2(Ω),

for some c1 > 0. Expressing the norms in matrix terms yields:∣∣vT Nu
∣∣ ≤ (

c1 ‖b‖∞ a−1
0

)
‖u‖H ‖v‖G,

where ‖u‖2
H = u∗Hu and ‖v‖2

G = v∗Gv denote the matrix norms generated
by H and G, respectively. Choosing uh = vh, and employing the inverse
inequality ‖u‖H ≤ C h−1‖u‖G yields the desired result. ��

Remark 8.5. The preceding result immediately yields bounds for the real and
imaginary parts of the spectrum λ of A, since the Galerkin mass matrix G is
well conditioned with G � hdI for Ω ⊂ IRd:

γ1 ≤ Re(λ) ≤ γ2, δ1 ≤ Im(λ) ≤ δ2,

where γ1 = O(a0 hd), γ2 = O(‖a‖∞ h−2+d), −δ1 = δ2 = O(‖b‖∞ a−1
0 h−1+d).

For finite difference discretizations, it can be shown that γ1 = O(a0), while
γ2 = ‖a‖∞ h−2 and −δ1 = δ2 = O(‖b‖∞ a−1

0 h−1).

8.1.1 GMRES Bounds

The following bound [SA2] will be satisfied when the GMRES algorithm is
used to solve Au = f , provided that A is diagonalizable with A = UΛU−1:

‖Au(k) − f‖ ≤ cond(U)
(

min
{p(·)∈Pk : p(0)=1}

max
λ∈Sp (A)

|pk(λ)|
)

‖Au(0) − f‖,

where u(k) is the k’th GMRES iterate, Pk denotes polynomials of degree k
and Sp (A) denotes the spectrum of A (diagonal entries of Λ). For alternative
estimates based on the “ε-pseudospectrum” of A, see [TR], or the angle be-
tween invariant subspaces of A, see [SI3]. When matrix A is positive definite
(i.e., HT = H > 0), the following minimum residual bound will hold:

‖Au(k) − f‖ ≤
(

1 − λmin(H)2

σmax(A)2

) k
2

‖Au(0) − f‖, (8.16)

which estimates the residual norm of the k’th GMRES iterate u(k). Here ‖ · ‖
denotes the Euclidean norm, H = A∗+A

2 denotes the symmetric part of A, and
λmin(H) denotes the minimal eigenvalue of H, while σmax(A) = ‖A‖ denotes
the maximal singular value of A, see [SA2].
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8.2 Diffusion Dominated Case

Most domain decomposition preconditioners generalize to non-self adjoint
problems. We first describe preconditioners for A in the diffusion dominated
and coercive case, i.e. when ‖b‖∞ = O(a0) and

(
c(x) − 1

2∇ · b(x)
)

≥ 0
in (8.1). In this case, it can be shown that the positive definite matrix H
effectively preconditions A independent of h (however, the bounds deteriorate
when a0  ‖b‖∞). Below, we describe several preconditioners based on H.

8.2.1 A Positive Definite Preconditioner

In the diffusion dominated and coercive case, matrix H will dominate the ma-
trix N . As shown in Lemma 8.6, this motivates using the symmetric positive
definite matrix H (or H0 spectrally equivalent to H) as a preconditioner for
the nonsymmetric matrix A = H + N , see [YS, VA10].

Lemma 8.6. Suppose the following assumptions hold.

1. Let A be the stiffness matrix with H = 1
2 (A + A∗), N = 1

2 (A − A∗), and
let H0 be a symmetric positive definite preconditioner for H satisfying:

γ1 ≤ z∗Hz
z∗H0z

≤ γ2, (8.17)

where 0 < γ1 < γ2 are independent of h.
2. Let |v∗Nu| ≤ C ‖u‖H ‖v‖G and ‖v‖G ≤ ν ‖v‖H .

Then, the following bounds will hold:

γ1 ≤
(
z,H−1

0 Az
)
H0

(z, z)H0

≤ γ2 and ‖H−1
0 A‖H0 ≤ δ, (8.18)

for δ = γ2(1 + C γ2 ν), where (v,w)H0
≡ v∗H0w and ‖ · ‖2

H0
= (·, ·)H0

.

Proof. See [YS, VA10]. The first bound follows immediately upon substitution
of (·, ·)H0

and by employing the assumptions on H0.
To obtain a bound for ‖H−1

0 A‖H0 , we separately estimate ‖H−1
0 H‖H0 and

‖H−1
0 N‖H0 in H−1

0 A = H−1
0 H + H−1

0 N . Accordingly, consider the term:

‖H−1
0 H‖2

H0
= sup

v �=0

v∗HH−1
0 Hv

v∗H0v
= sup

v �=0

‖H−1/2
0 Hv‖2

‖H1/2
0 v‖2

,

where ‖ · ‖ denotes the Euclidean norm. The numerator satisfies:

‖H−1/2
0 Hv‖ = supw �=0

∣∣∣w∗H
−1/2
0 Hv

∣∣∣
‖w‖ = supu �=0

|u∗Hv|
‖H

1/2
0 u‖

≤ ‖u‖H ‖v‖H

‖u‖H0

≤ γ
1/2
2 ‖v‖H .
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Substituting this bound yields the estimate:

‖H−1
0 H‖2

H0
≤ sup

v �=0

γ2 ‖v‖2
H

‖H1/2
0 v‖2

= sup
v �=0

γ2 ‖v‖2
H

‖v‖2
H0

≤ γ2
2 .

Thus, ‖H−1
0 H‖H0 ≤ γ2. Next, the second term can be estimated as:

‖H−1
0 N‖2

H0
= sup

v �=0

v∗N∗H−1
0 Nv

v∗H0v
= sup

v �=0

‖H−1/2
0 Nv‖2

‖H1/2
0 v‖2

.

As before, the numerator may be estimated as:

‖H−1/2
0 Nv‖ = sup

w �=0

∣∣∣w∗H−1/2
0 Nv

∣∣∣
‖w‖ = sup

u �=0

|u∗Nv|
‖H1/2

0 u‖
= sup

u �=0

|u∗Nv|
‖u‖H0

.

Substituting the bound |v∗Nu| ≤ C ‖u‖H ‖v‖G yields:

‖H−1
0 Nv‖2

H0
= sup

u �=0

|u∗Nv|2

‖u‖2
H0

≤ sup
u�=0

C2‖u‖2
H ‖v‖2

G

‖u‖2
H0

≤ C2 γ2
2 ‖v‖2

G.

Employing this bound, and substituting ‖v‖G ≤ ν ‖v‖H , we obtain:

‖H−1
0 N‖2

H0
= sup

v �=0

‖H−1/2
0 Nv‖2

‖v‖2
H0

≤ sup
v �=0

C2 γ2
2 ‖v‖2

G

‖v‖2
H0

≤ C2γ4
2 ν2,

where we applied a Poincare-Freidrichs inequality ‖v‖2
G ≤ ν2‖v‖2

H . Each term
is independent of h, so summing both terms yields the desired bound. ��

Remark 8.7. The preceding result yields bounds for the rate of convergence
of the GMRES algorithm to solve H−1

0 Au = H−1
0 f in the H0-inner product.

The expressions λmin(H−1
0 A) ≤ γ1 and σmax(H−1

0 A) ≤ γ2(1 + C γ2 ν), can be
substituted into (8.16), provided ‖ · ‖ is replaced by ‖ · ‖H0 . As a result, the
convergence will depend only on the parameters γ1, γ2, C and ν. In applica-
tions to (8.1), we may estimate C and ν as follows. Applying integration by
parts and Schwartz’s inequality yields:

|u∗Nv| = |N (uh, vh)| ≤ ‖b‖∞ ‖uh‖H1(Ω) ‖vh‖L2(Ω) ≤ C ‖u‖H ‖v‖G,

for some C > 0 independent of h, but dependent on a0 ≤ a(x). The bound
‖v‖G ≤ ν‖v‖H will hold by the Poincare-Freidrichs inequality for some ν in-
dependent of h, but dependent on a0. Provided H0 is spectrally equivalent to
H, the parameters γ1 and γ2 will be independent of h. When equation (8.1) is
advection dominated, the parameters C and ν can become large. For instance,
if a(x) ≡ ε  ‖b‖∞ and

(
c(x) − 1

2∇ · b(x)
)

= 0, and if a Galerkin discretiza-
tion satisfying a Peclet condition is employed, we shall obtain C = O(ε−1)
and ν = O(ε−1). If H0 is chosen to be spectrally equivalent to H, indepen-
dent of h and ε, then λmin

(
H−1

0 A
)

will be independent of h and ε. However,
σmax(H−1

0 A) will deteriorate as O(ε−2).
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8.2.2 An Additive Preconditioner of [XU8]

When
(
c(x) − 1

2∇ · b(x)
)

is negative, matrix H = 1
2 (A + A∗) can be in-

definite. In this case, Lemma 8.6 will not be applicable. Despite this, we
may modify a symmetric positive definite preconditioner H0 for A by in-
cluding an additive but indefinite coarse space correction term [XU8]. Let
V0 ⊂ Vh denote a coarse subspace based on a coarse triangulation with
mesh size h0 > h, and basis {ψ(0)

1 , . . . , ψ
(0)
m }. Let R0 and RT

0 denote the
nodal restriction and extension maps associated with the coarse space, and
A0 = R0ART

0 . If H0 is any symmetric positive definite preconditioner for
L∗u = −∇ · (a(x)∇u), then the action of the inverse M−1 of the additive
preconditioner of [XU8] is:

M−1 = H−1
0 + RT

0 A−1
0 R0.

For sufficiently small h0, this preconditioner will yield a rate of convergence
independent of h in GMRES, see [XU8] and Chap. 8.5.

8.2.3 Schwarz Preconditioners

Given the non-symmetric stiffness matrix A obtained by discretization of
A0(., .), Schwarz preconditioners can be constructed by formal analogy with
the symmetric case. In the non-symmetric case, however, additional precon-
ditioners can be formulated which employ a discrete partition of unity. The
latter preconditioners will be non-symmetric even when A is symmetric.

Let Ω∗
1 , . . . , Ω∗

p form an overlapping decomposition of Ω, such that each
Ω∗

i aligns with a triangulation Ωh of Ω. We shall assume that A is of di-
mension n. For 1 ≤ i ≤ p let ni denote the number of interior nodes in Ω∗

i .
Corresponding to each subdomain Ω∗

i , let Ri denote a matrix of size ni × n
with zero-one entries, which restricts a vector of nodal values on Ω to its sub-
vector corresponding to nodes in Ω∗

i , in the local ordering of nodes. As in the
self adjoint case, let RT

0 denote a matrix of size n× n0 whose columns span a
coarse space. For 1 ≤ i ≤ p we define Ai ≡ RiART

i as the submatrix of A of
size ni, corresponding to nodes in Ω∗

i , and A0 = R0ART
0 as the coarse space

matrix. By construction, each matrix Ai will be nonsymmetric.
The action of the inverse M−1 of an additive Schwarz preconditioner for

the non-symmetric matrix A is analogous to the symmetric case:

M−1 = RT
0 A−1

0 R0 +
p∑

i=1

RT
i A−1

i Ri. (8.19)

Alternate additive preconditioners can be obtained using a discrete partition
of unity. Let Ω1, . . . , Ωp form a non-overlapping decomposition of Ω such that:

Ω∗
i = {x ∈ Ω : dist(x,Ωi) < βi} ,



8.2 Diffusion Dominated Case 343

i.e., each Ω∗
i contains all points in Ω within a distance of some βi > 0 of Ωi.

Let D(i) denote a diagonal matrix of dimension ni with nonnegative diagonal
entries that form a discrete partition of unity satisfying I =

∑p
i=1 RT

i D(i)Ri.

For instance, if x
(i)
l denotes the l’th interior grid point in Ω∗

i in the chosen
local ordering of nodes, and N(x(i)

l ) denotes the number of non-overlapping
subdomains Ωi containing x

(i)
l , then we can define:

(
D(i)

)
ll
≡

⎧⎨
⎩

1

N(x
(i)
l )

, if x
(i)
l ∈ Ωi

0, if x
(i)
l �∈ Ωi.

Given D(i), the restricted Schwarz preconditioner will have the form:⎧⎨
⎩

M−1r = RT
0 A−1

0 R0 r +
∑p

i=1 RT
i D(i)A−1

i Ri r, or

M−1r = RT
0 A−1

0 R0 r +
∑p

i=1 RT
i A−1

i D(i)Ri r,
(8.20)

see [CA19, FR8] and Chap. 15. The motivation for using the discrete partition
of unity matrices D(i) is that it helps to reduce the redundancy in the sum of
the local solutions (RT

i A−1
i Ri) r on the regions of overlap.

Under suitable assumptions, such as c(x) ≥ c0 > 0, sufficient overlap
between the subdomains, and a discrete maximum principle holding for the
discretization, the following unaccelerated version of the restricted Schwarz
algorithm to solve Au = f without coarse space correction will converge in
the maximum norm at a rate independent of h, but dependent on c0 and the
amount of overlap, see [MA33] and Chap. 15. Without a coarse space correc-
tion term, however, the rate of convergence will deteriorate as the number of
subdomains increases, as c0 → 0, or as the overlap decreases.

Algorithm 8.2.1 (Unaccelerated Restricted Schwarz Algorithm)
Input: w(0) and f

1. For k = 0, · · · until convergence do:

w(k+1) = w(l) +
p∑

i=1

RT
i D(i)A−1

i Ri

(
f − Aw(k)

)
.

2. Endfor

Output: w(k)

The local solves in step 1 can be implemented in parallel. Furthermore,
the associated preconditioner will not be symmetric even if A were symmetric.
Below, we describe the nonsymmetric (and possibly indefinite) multiplicative
Schwarz preconditioner for use with Krylov space acceleration. Its associated
unaccelerated fixed point iteration may not be convergent. Below, we list the
multiplicative Schwarz preconditioner M .
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Algorithm 8.2.2 (Multiplicative Schwarz Preconditioner)
Input: w(0) ≡ 0 and r

1. For i = 0, · · · , p do:

w( i+1
p+1 ) = w( i

p+1 ) + RT
i A−1

i Ri

(
r − Aw( i

p+1 )
)

.

2. Endfor

Output: M−1r ≡ w(1)

The following convergence bounds will hold in the Euclidean norm ‖ · ‖,
even when (c(x) − 1

2∇ · b(x)) is possibly negative.

Lemma 8.8. Let M denote either the additive or sequential Schwarz precon-
ditioner and let u(k) denote the k’th GMRES iterate to solve the preconditioned
system M−1Au = M−1f . If the grid size h0 associated with the coarse space
Range(RT

0 ) is sufficiently small (depending on (‖a‖∞/‖b‖∞) and h), then,
the iterates u(k) in the preconditioned GMRES algorithm will satisfy:

‖Au(k) − f‖ ≤ (1 − δ0)
k ‖Au(0) − f‖,

for some 0 ≤ δ0 < 1 independent of h.

Proof. See [CA20, XU8, CA21, WA3]. ��

Below, we list the unaccelerated multiplicative Schwarz algorithm to solve
Au = f , omitting the coarse space correction step i = 0 in step 2.

Algorithm 8.2.3 (Unaccelerated Multiplicative Schwarz Algorithm)
Input: w(0) and f

1. For k = 0, · · · until convergence do:
2. For i = 1, · · · , p do:

w(k+ i
p ) = w(k+ i−1

p ) + RT
i A−1

i Ri

(
f − Aw(k+ i

p )
)

.

3. Endfor
4. Endfor

Output: u(k)

Remark 8.9. If c(x) ≥ c0 > 0 and the overlap between Ω∗
i is sufficiently large,

if A is an M -matrix and the initial iterate satisfies w(0) ≥ u or w(0) ≤ u
componentwise, then the iterates w(k) of the unaccelerated restricted Schwarz
algorithm and the unaccelerated multiplicative Schwarz algorithm will con-
verge monotonically to u in the maximum norm, i.e., each iterate will also
satisfy w(k) ≥ u or w(k) ≤ u componentwise. The rate of convergence will be
independent of h, but dependent on the number of subdomain, the amount of
overlap and c0, see [MA33, FR7, FR8] and Chap. 15.



8.2 Diffusion Dominated Case 345

Remark 8.10. When b(x) = 0 and c(x) ≥ 0, then A = AT > 0. The step:

w(k+ i
p ) = w(k+ i−1

p ) + RT
i A−1

i Ri

(
f − Aw(k+ i−1

p )
)

,

will minimize the energy J(w) ≡ 1
2w

T Aw − wT f within Range(RT
i ):

J
(
w(k+ i

p )
)

= min
vi∈Range(RT

i )
J
(
w(k+ i−1

p ) + vi

)
,

i.e., the energy J(.) will be non-increasing each iteration. When A is nonsym-
metric, the sequential Schwarz algorithm can be modified so that the square
norm of the residual is minimized within the subspace Range(RT

i ) during the
i’th fractional step. Indeed, define a functional JR(w) as:

JR(w) ≡ 1
2
‖Aw − f‖2,

where ‖ · ‖ denotes the Euclidean norm. Then, if we require the update at the
i’th fractional step to minimize JR(·) within subspace Range(RT

i ):

JR

(
w(k+ i

p )
)

= min
vi∈Range(RT

i )
JR

(
w(k+ i−1

p ) + vi

)
,

the update will satisfy:

w(k+ i
p ) = w(k+ i−1

p ) + RT
i

(
RiA

T ART
i

)−1
RiA

T
(
f − Aw(k+ i−1

p )
)

.

The resulting algorithm will be a sequential Schwarz algorithm to solve the
normal equations AT Au = AT f , and JR(·) will be nonincreasing.

8.2.4 Schur Complement Preconditioners

Schur complement preconditioners can be formulated for nonsymmetric dif-
fusion dominated problems by analogy with the symmetric case. We shall let
Ω1, . . . , Ωp denote a nonoverlapping decomposition of Ω into p subregions,
with subdomain boundary B(l) = ∂Ωl ∩Ω and B[l] = ∂Ωl ∩∂Ω, and interface
B = ∪p

l=1B
(l). We define the following subdomain forms:{

A0
Ωl

(u, v) =
∫

Ωl
(a(x)∇u · ∇v + (b(x) · ∇u) v + c(x) u v) dx

FΩl
(v) =

∫
Ωl

f v dx.

Given a nonoverlapping decomposition, let u(l)
I and u(l)

B denote nodal vectors
corresponding to the discrete solution at nodes in the interior of Ωl and on
B(l), respectively. On each subdomain Ωl, we define a local stiffness matrix:

A
(l)
ij = A0

Ωl
(φi, φj).
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Galerkin discretization of the following weak problem on subdomain Ωl:

A0
Ωl

(u, v) = FΩl
(v) + 〈g, v〉 , where 〈g, v〉 =

∫
∂Ωl

g v dsx, ∀u, v ∈ H1
0 (Ω),

will yield a linear system of the following form:[
A

(l)
II A

(l)
IB

A
(l)
BI A

(l)
BB

][
u(l)

I

u(l)
B

]
=

[
f (l)
I

g(l)
B

]
, (8.21)

where f (l)
I and g(l)

B denote local discretizations of FΩl
(·) and FΩl

(·) + 〈g, ·〉,
respectively. For sufficiently smooth u, v, integration by parts in Ωl yields:

A0
Ωl

(u, v) =
∫

Ωl
(−∇ · (a(x)∇u) + (b(x) · ∇u) v + c(x) u v) dx

+
∫

∂Ωl
nl(x) · (a(x)∇u) v dsx.

This shows that each subdomain problem above discretizes:⎧⎪⎨
⎪⎩

Lu ≡ −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f, inΩl

u = 0, onB[l]

nl · (a∇u) = g, onB(l),

(8.22)

thereby enforcing Neumann boundary conditions on B(l). The symmetric and
skew-symmetric components of A0

Ωl
(u, v) = H0

Ωl
(u, v) + N 0

Ωl
(u, v) will be:⎧⎪⎪⎨

⎪⎪⎩
H0

Ωl
(u, v) =

∫
Ωl

a(x)∇u · ∇v dx +
∫

Ωl

(
c(x) − 1

2∇ · b(x)
)

u v dx

+ 1
2

∫
∂Ωl

nl(x) · b(x) u v dsx

N 0
Ωl

(u, v) = 1
2

∫
Ωl

((b(x) · ∇u) v − u (b(x) · ∇v)) dx,

(8.23)

which can be verified easily using integration by parts. Thus, A0
Ωl

(u, u) will
be coercive if

(
c(x) − 1

2∇ · b(x)
)
≥ 0 in Ωl and nl(x) · b(x) ≥ 0 on ∂Ωl.

Let uI =
(
u(1)T

I , . . . ,u(p)T

I

)T

and uB denote nodal vectors associated

with the discrete solution in ∪p
l=1Ωl and B, respectively. Using this ordering

of nodal variables, we may block partition the system Au = f as follows:[
AII AIB

ABI ABB

] [
uI

uB

]
=
[

f I

fB

]
. (8.24)

When (c(x) − 1
2∇ · b) ≥ 0, it will hold that A is non-singular. In this case,

we may express uI = A−1
II (f I − AIBuB) and substitute this into the second

block row to obtain a non-symmetric Schur complement system:

SuB = f̃B , (8.25)

where S =
(
ABB − ABIA

−1
II AIB

)
, and f̃B =

(
fB − ABIA

−1
II f I

)
. The solution

to (8.24) can be obtained by solving system (8.25) for uB by a preconditioned
GMRES algorithm, and then determining uI = A−1

II (f I − AIBuB). The fol-
lowing algebraic properties will hold in the nonsymmetric case.
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Lemma 8.11. Let AII be non-singular and let E uB ≡ −A−1
II AIB uB denote

a “discrete harmonic” extension. Then, the following results will hold.

1. The Schur complement S =
(
ABB − ABIA

−1
II AIB

)
will satisfy:[

AII AIB

ABI ABB

][
E uB

uB

]
=

[
0
S uB

]
.

2. The energy associated with the nonsymmetric matrix S will satisfy:

uT
BSuB =

[
E uB

uB

]T [
AII AIB

ABI ABB

][
E uB

uB

]
.

Proof. Follows by direct substitution. ��

Remark 8.12. As a corollary of the preceding Lemma, it will hold that S is
positive definite when A is positive definite. More specifically, when A > 0 it
will hold that uT

BSuB ≥ uT
BS0uB where S0 = (HBB − HT

IBH−1
II HIB) is the

Schur complement of matrix H = 1
2 (A + AT ). To show this, note that:

uT
BSuB = (EuB ,uB)T

A (EuB ,uB) = (EuB ,uB)T
H (EuB ,uB) .

Since EuB = −A−1
II AIBuB is not the “discrete harmonic” extension relative

to H, the minimization property of the discrete harmonic extension relative to
H will yield that (EuB ,uB)T

H (EuB ,uB) ≥ uT
B(HBB − HT

IBH−1
II HIB)uB .

Substituting this into preceding yields that uT
BSuB ≥ uT

BS0uB .

The following M -matrix property will also hold in the nonsymmetric case.

Lemma 8.13. If A is an M -matrix, then S will also be an M -matrix.

Proof. See Chap. 3. ��

We next outline Neumann-Neumann and Robin-Robin preconditioners for S
in the diffusion dominated case.

A nonsymmetric Neumann-Neumann preconditioner can be formulated for
S as follows. On each subdomain Ωl, let S(l) = A

(l)
BB − A

(l)
BIA

(l)
II A

(l)
IB denote

the subdomain Schur complement. As in the symmetric case, let the columns
of RT

0 form a basis for a coarse space on B, and define S0 ≡ R0SRT
0 . Then,

the inverse of the non-symmetric Neumann-Neumann preconditioner for S is:

M−1 = RT
0 S−1

0 R0 +
∑p

l=1 RT
l D(l)S(l)−1Rl, or

M−1 = RT
0 S−1

0 R0 +
∑p

l=1 RT
l S(l)−1

D(l)Rl,
(8.26)

where Rl denotes the nodal restriction map which restricts a nodal vector on
B onto nodes on B(l), its transpose RT

l extends a nodal vector on B(l) to a
nodal vector on B (extension by zero), and D(l) forms a discrete partition of



348 8 Non-Self Adjoint Elliptic Equations: Iterative Methods

unity on B with nonnegative diagonal entries satisfying I =
∑p

l=1 RT
l D(l)Rl.

Note that each discrete partition of unity matrix D(l) is employed only once.
The action of the inverse of S(l) can be computed using the expression:

S(l)−1
=

[
0
I

]T [
A

(l)
II A

(l)
IB

A
(l)
BI A

(l)
BB

]−1 [
0
I

]
,

and will require solving a local problem of the form (8.22). Each local problem
will be coercive if

(
c(x) − 1

2∇ · b(x)
)
≥ 0 in Ωl and nl(x) · b(x) ≥ 0 on ∂Ωl.

See [CO4] for a non-symmetric version of the balancing preconditioner.

Remark 8.14. Analysis of a two-subdomain Neumann-Neumann algorithm
shows that the rate of convergence can be sensitive to the magnitude of a(x)
and the direction of b(x), see [AC7, AL4, RA3]. Adding the mass matrix
term M

(l)
γ,BB ≥ 0 to S(l) can increase the coercivity of each subdomain Schur

complement, and improve the convergence of the Neumann-Neumann algo-
rithm [GA15, GA14, AC7, AL4, QU6, RA3]. Given γ(x) ≥ 0 on ∂Ωl and
the finite element basis {ψi} on B(l), let M

(l)
γ,BB denote the mass matrix with

entries
(
M

(l)
γ,BB

)
ij

=
∫

B(l) γ(x) ψi(x) ψj(x) dsx. Then, the Robin-Robin pre-

conditioner without a discrete partition of unity has the form [AC7, RA3]:

M−1 = RT
0 S−1

0 R0 +
p∑

l=1

RT
l

(
S(l) + M

(l)
γ,BB

)−1

Rl, (8.27)

where the action of
(
S(l) + M

(l)
γ,BB

)−1

can be computed using:

(
S(l) + M

(l)
γ,BB

)−1

=

[
0
I

]T [
A

(l)
II A

(l)
IB

A
(l)
BI A

(l)
BB + M

(l)
γ,BB

]−1 [
0
I

]
.

Each local problem will enforce the discretization of a Robin boundary con-
dition of the form nl(x) · (a∇ul) + γ(x)u = g on B(l) for some g(.).

8.3 Advection Dominated Case

The advection dominated case poses many computational challenges. We shall
illustrate the issues by considering the advection dominated elliptic equation:{

−ε∆uε + b(x) · ∇uε + c(x) uε = f(x), in Ω

uε = 0, on ∂Ω,
(8.28)

where ε  1 denotes a viscosity parameter and ‖b‖ = O(1). For notational
convenience, we shall use u(x) instead of uε(x). To ensure well posedness



8.3 Advection Dominated Case 349

of (8.28) as ε → 0+, we shall require
(
c(x) − 1

2 ∇ · b(x)
)
≥ β > 0. As ε → 0+,

singular perturbation theory suggests that the solution uε(x) can develop
“steep gradients” (i.e., derivatives of large magnitude) within some layer sub-
region, see [KE5, LA5]. If the solution is to be resolved in the layer, such
regions must be identified and the mesh size must be chosen appropriately
small locally. Furthermore, a stable finite element [JO2, FR3, FR2] or up-
wind discretization of (8.28) must be employed as ε → 0+. Subsequently, an
iterative algorithm can be formulated to solve the resulting system.

Multisubdomain Schwarz and Schur complement preconditioners can be
applied in the advection dominated case with coarse space correction, how-
ever theoretical convergence bounds deteriorate as ε → 0+ unless the coarse
grid size h0 → 0+, see [CA20, XU8, CA21, WA3]. Instead, we shall focus
on two subdomain Schwarz and Schur complement algorithms without coarse
space correction. They will have the disadvantage of involving large subprob-
lems, but yield convergence less sensitive to ε and h. Motivated by singular
perturbation methodology, let Ω1 ⊂ Ω be a subdomain such that:

ε |∆u(x)|  |b(x) · ∇u(x) + c(x)u(x)| , for x ∈ Ω1. (8.29)

We define Ω2 as its complementary region
(
Ω \ Ω1

)
, and shall refer to it as a

layer region, see [KE5, LA5]. By assumption, the term −ε∆u may be omitted
within Ω1 to an approximation, however, omitting such a term within Ω2 may
introduce significant errors due to large gradients locally. Typically, the layer
region Ω2 will have smaller area (or volume) relative to Ω1. For instance, if the
layer is a “boundary layer”, then Ω2 will typically be a region of width O(ε)
surrounding ∂Ω when b(x) �= 0, while Ω2 will be a region of width O(

√
ε)

surrounding ∂Ω when b(x) = 0, see [KE5, LA5] and Chap. 15. If the solution
is to be resolved in the layer region Ω2, then it may be necessary to choose
a grid size h2  h1 in Ω2. For instance, if the layer region is of width O(ε),
then h2 = O(ε), while if the layer region is of width O(

√
ε), then h2 = O(

√
ε).

Denote the linear system resulting from the discretization of (8.28) as:

Au = f , with A = ε H0 + H1 + N (8.30)

where H0 ≥ 0 and H1 ≥ 0 are symmetric matrices and N is skew-symmetric.
When (c(x)− 1

2∇·b(x)) = 0, it will hold that H1 = 0 and A = εH0+N . If H0

is employed as a preconditioner for A = εH0+N , an application of Lemma 8.6
will yield λmin(H−1

0 A) = O(ε) and σmax(H−1
0 A) = O(1), and so the conver-

gence factor
(
1 − O(ε2)

)
in (8.16), to solve H−1

0 Au = H−1
0 f deteriorates. If

(c(x)− 1
2∇·b(x)) ≥ β > 0, matrix H1 will be spectrally equivalent to the mass

matrix G with (εH0 +H1) ≥ β G. If K0 = KT
0 > 0 is spectrally equivalent to

(εH0 + H1) and used as a preconditioner for A, an application of Lemma 8.6
together with the bound

∣∣vT Nu
∣∣ ≤ C̃ h−1‖v‖G‖u‖G (which will hold for

C̃ = O(‖b‖∞) by the inverse inequality), will yield λmin(K−1
0 A) = O(1) and
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σmax(K−1
0 A) = O(h−1). The convergence factor in (8.16) will be

(
1 − O(h2)

)
.

However, if b(x) satisfies ‖b‖∞ = O(τ) = O(h) (as in an implicit discretiza-
tion of a parabolic equation with time step τ = O(h)), an optimal order
bound σmax(M−1

0 A) = O(τ h−1) = O(1) will hold, with convergence factor(
1 − O(h/τ)2

)
in (8.16). In this case, the additive Schwarz preconditioner

without coarse space correction will also satisfy similar bounds [WU2].

8.3.1 Hermitian-Skew-Hermitian Splittings

If efficient solvers are available for (αI + H) and (αI + N), then an algebraic
two step unaccelerated splitting algorithm of [BA12] can be employed to solve
Au = f . It is based on the Hermitian part H = 1

2 (A + A∗) and the skew-
Hermitian part N = 1

2 (A−A∗) of A. Given an iterate u(k), an updated iterate
u(k+1) is computed in two fractional steps as follows:{

(αI + H)u(k+ 1
2 ) = f + (αI − N)u(k)

(αI + N)u(k+1) = f + (αI − H)u(k+ 1
2 ),

where α > 0 is a parameter that must be chosen appropriately to ensure
convergence. The error is contracted as follows:

(u − u(k+1)) =
(
(αI + N)−1(αI − H)(αI + H)−1(αI − N)

)
(u − u(k)).

The spectral radius ρ
(
(αI + N)−1(αI − H)(αI + H)−1(αI − N)

)
will equal

ρ
(
(αI − H)(αI + H)−1(αI − N)(αI + N)−1

)
by similarity, yielding:

ρ
(
(αI + N)−1(αI − H)(αI + H)−1(αI − N)

)
≤ ‖ (αI − H) (αI + H)−1 ‖‖ (αI − N) (αI + N)−1 ‖.

Since N is skew-symmetric, it holds that ‖ (αI − N) (αI + N)−1 ‖ ≤ 1 for any
α ∈ IR. Parameter α may be chosen to minimize ‖ (αI − H) (αI + H)−1 ‖ and
will depend on κ(H), see [BA12], and the algorithm will converge robustly.
GMRES acceleration will not be necessary, however, efficient solvers will be
required for (α I + H) and (α I + N).

8.3.2 Schwarz Preconditioners

In the advection dominated case, multisubdomain Schwarz algorithms can be
formulated as in the diffusion dominated case. However, unless the coarse
grid size is sufficiently small, the energy norm convergence factor may not be
independent of ε, h and the subdomain size h0, [CA, CA20, XU8, CA21, WA3].
Thus, when h0 is small, coarse space correction can result in a subproblem
of a large size. Importantly, if c(x) ≥ c0 > 0, coarse space correction may
sometimes be omitted. For instance, if the discretization satisfies a discrete
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maximum principle, the maximum norm convergence factor of the sequential
and restricted Schwarz algorithms can be shown to be independent of h and ε,
but dependent on h0 (the size of the subdomains) and the amount of overlap,
see [LI6, LI7, MA33] and Chap. 15. In this case, a uniform convergence factor
can be obtained if we either choose a small number of subdomains, or increase
the overlap between subdomains, resulting in large subproblems.

Our discussion will focus on two subdomain algorithms motivated by singu-
lar perturbation methodology [GL13, GA8, GA9, AS2, GA10, MA33, GA12].
Such methods will have the disadvantage of involving large subproblems, but
can yield a uniform convergence factor in h and ε. We shall consider regions
Ω1 and Ω2 that form a nonoverlapping decomposition of Ω so that (8.29) is
satisfied. Define Ω∗

1 ≡ Ω1 and Ω∗
2 ⊃ Ω2 as extended subdomains:

ε |∆u(x)|  |b(x) · ∇u(x) + c(x) u(x)| , for x ∈ Ω∗
1 . (8.31)

If ul(x) ≡ u(x) in Ω∗
l denotes the local solution on Ω∗

l for l = 1, 2, then u1(x)
and u2(x) will solve the following hybrid formulation:⎧⎪⎪⎨

⎪⎪⎩
Lu1 = f(x), in Ω∗

1

u1 = u2, on B(1)

u1 = 0, on B[1],

and

⎧⎪⎪⎨
⎪⎪⎩

Lu2 = f(x), in Ω∗
2

u2 = u1, on B(2)

u2 = 0, on B[2],

(8.32)

where B(l) ≡ ∂Ω∗
l ∩Ω and B[l] ≡ ∂Ω∗

l ∩∂Ω and Lu ≡ −ε∆u+b(x)·∇u+c(x)u.
If ul(x) → wl(x) as ε → 0+, heuristically, w1(x) and w2(x) will satisfy:⎧⎪⎪⎨
⎪⎪⎩

L0w1 = f(x), in Ω∗
1

w1 = w2, on B
(1)
in

w1 = 0, on B[1],in,

and

⎧⎪⎪⎨
⎪⎪⎩

L0u2 = f(x), in Ω∗
2

w2 = w1, on B
(2)
in

w2 = 0, on B[2],in,

(8.33)

provided (8.31) holds on B(l) for l = 1, 2, where L0w ≡ b(x) · ∇w + c(x)w.
Here, the inflow boundary segments are defined as:

B
(l)
in ≡ {x ∈ ∂Ω∗

1 ∩ Ω : nl(x) · b(x) < 0} ,

B[l],in ≡ {x ∈ ∂Ω∗
1 ∩ ∂Ω : nl(x) · b(x) < 0}

where nl(x) denotes the unit exterior normal to ∂Ω∗
l .

When c(x) ≥ c0 > 0 and the discretization of (8.1) satisfies a discrete
maximum principle, yielding an M-matrix A, the unaccelerated multiplica-
tive Schwarz algorithm 8.2.3 and the unaccelerated restricted Schwarz algo-
rithm 8.2.1 can be employed to solve Au = f without acceleration, provided
the overlap between the subdomains is sufficiently large. For instance, the
two-subdomain unaccelerated restricted Schwarz algorithm will be:



352 8 Non-Self Adjoint Elliptic Equations: Iterative Methods

Algorithm 8.3.1 (Unaccelerated Restricted Schwarz Algorithm)
Input: w(0) and f

1. For k = 0, · · · until convergence do:

w(k+1) = w(l) +
2∑

i=1

RT
i D(i)A−1

i Ri

(
f − Aw(k)

)

2. Endfor

Output: w(k)

where RT
1 D(1)R1 + RT

2 D(2)R2 = I forms a discrete of unity for Ω1 and Ω2.
If GMRES acceleration is employed, then a preconditioner can be formu-
lated corresponding to one sweep of the unaccelerated algorithm with a trivial
starting iterate. The following convergence result will hold for two subdomain
decompositions. Importantly, assumption (8.31) does not need to hold.

Lemma 8.15. Suppose the following assumptions hold.

1. Let Ω∗
1 and Ω∗

2 form an overlapping decomposition of Ω with overlap β.
2. Let the discretization of (8.1) satisfy a discrete maximum principle, so

that matrix A is an M-matrix.

Then, the following results will hold.

1. If c(x) ≥ c0 > 0 and h is sufficiently small, the iterates will satisfy:

‖u − u(k)‖∞ ≤ ρk‖u − u(0)‖∞,

for algorithms 8.2.3 and 8.2.1 with ρ ≤ ρ0 < 1 independent of ε and h.
2. If c(x) ≥ 0 and h is sufficiently small, and if b(x) · n1(x) ≤ −b0 < 0 on

B
(1)
in for some b0 > 0, then the iterates of algorithm 8.2.3 will satisfy:

‖u − u(k)‖∞ ≤ ρk‖u − u(0)‖∞,

for ρ ≤ ρ0 = e−
C
ε with C > 0 independent of h and ε.

Proof. See [LI6, LI7, GA9, GA12, MA33] and Chap. 15.

Remark 8.16. A disadvantage of the two subdomain Schwarz algorithm is that
it can be computationally expensive to implement due to the large size of
the submatrices A1 and A2. However, if assumption 8.31 holds, then Ω∗

2

will be of width O(ε). If hl denotes the local grid size in Ω∗
l , then we may

choose h2  h1. So, the size of matrix A1 will be reduced. Additionally, since
the layer region Ω∗

2 will be of width O(ε), it may be possible to reorder the
unknowns so that an efficient band solver can be employed for matrix A2.
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Remark 8.17. When assumption (8.31) holds, a heterogeneous Schwarz pre-
conditioner can be constructed as follows. If the amount of overlap between
subdomains Ω∗

1 and Ω∗
2 is minimal, let I1 denote the indices of interior nodes

in Ω∗
1 ≡ Ω1 and I2 the indices of all remaining nodes in Ω, so that I1∪I2 forms

a partition of all interior nodes. Then, matrix A can be block partitioned as:[
AI1I1 AI1I2

AI2I1 AI2I2

][
uI1

uI2

]
=

[
f I1

f I2

]
, (8.34)

where uIl
and f Il

denote nodal vectors corresponding to indices in Il. Use the
splitting A = ε H0 + H1 + N and define H̃ = H0 and Ñ = H1 + N , so that:[

ε H̃I1I1 + ÑI1I1 ε H̃I1I2 + ÑI1I2

ε H̃I2I1 + ÑI2I1 ε H̃I2I2 + ÑI2I2

][
uI1

uI2

]
=

[
f I1

f I2

]
. (8.35)

If u∗ denotes the nodal vector obtained by restricting the exact solution
of (8.28) to the nodes in Ωh, then by the choice of Ω1, it will hold that
ε|H̃I1I1u

∗
I1
|  |ÑI1I1u

∗
I1
| component wise. We shall thus obtain:[

ÑI1I1 AI1I2

AI2I1 AI2I2

][
u∗

I1

u∗
I2

]
≈
[
f I1 − ε H̃I1I1u

∗
I1

f I2

]
≈
[
f I1

f I2

]
. (8.36)

If h1 � h2, we may define a heterogeneous Schwarz preconditioner M for A
corresponding to a modified block Gauss-Seidel preconditioner:

M =

[
ÑI1I1 0
AI2I1 AI2I2

]
. (8.37)

This preconditioner is a special case of the asymptotically motivated domain
decomposition preconditioner [AS2]. If the heterogeneous discretization (8.36)
is stable when ε → 0+, the error arising from the omission of the term
εHI1I1u

∗
I1

will be bounded by O(ε), and the discretization error will be
bounded by the sum of the original truncation error and the magnitude of
the omitted term (which will be O(ε)), see Chap. 12. Ideally, preconditioner
M in (8.37) will be better suited to precondition the heterogeneous linear sys-
tem (8.36), since the spectral properties of ÑI1I1 and AI1I1 = ε H̃I1I1 + ÑI1I1

may differ significantly, when the local mesh size h1 in Ω∗
1 is sufficiently small,

even though AI1I1u
∗
I1

≈ ÑI1I1u
∗
I1

.

8.3.3 Schur Complement Preconditioners

In the advection dominated case also, multisubdomain Schur complement al-
gorithms can be formulated. However, due to the hyperbolic character of the
limiting advection equation, each subproblem will be sensitive to the local
inflow direction of b(x) and the convergence factor will deteriorate as the
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subdomain size h0 decreases, unless the coarse grid size is sufficiently small
(yielding a large subproblem). We will focus on two subdomain algorithms
without coarse space correction, motivated by singular perturbation method-
ology [GA15, GA14, NA5, AC7, AL4, QU6, RA3, AU]. Such algorithms will
involve large subproblems, but can yield convergence uniform in h and ε.

The two subdomain Schur complement algorithms that we describe will be
generalizations of the Dirichlet-Neumann algorithm 1.3.1, motivated by inflow
transmission conditions of the limiting hyperbolic equation. Let Ω1 and Ω2

form a non-overlapping decomposition of Ω, such that B = ∂Ω1 ∩ ∂Ω2 does
not lie in the layer region. Let ul(x) ≡ u(x) on Ωl for l = 1, 2. Then, u1(x)
and u2(x) will solve the following hybrid formulation for ε > 0:⎧⎪⎪⎨
⎪⎪⎩

Lu1 = f(x), in Ω1

u1 = 0, on B[1]

n1 · (ε∇u1) = n1 · (ε∇u2), on B

and

⎧⎪⎪⎨
⎪⎪⎩

L u2 = f(x), in Ω2

u2 = 0, on B[2]

u2 = u1, on B
(8.38)

where B = ∂Ω1 ∩ ∂Ω2 and B[l] = ∂Ωl ∩ ∂Ω, and n1(x) is the unit exterior
normal to ∂Ω1. Alternative transmission conditions will be described.

We employ a stable discretization of (8.28) based on the bilinear form
A0(., .), see [JO2, FR3, FR2], and let u = (u(1)T

I ,u(2)T

I ,uT
B)T denote a block

partition of the vector u of nodal unknowns corresponding to nodes on Ω1,
Ω2 and B, respectively. The resulting linear system will be denoted as:⎡

⎢⎢⎢⎣
A

(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IB

A
(1)
BI A

(2)
BI ABB

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

u(1)
I

u(2)
I

uB

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f (1)
I

f (2)
I

fB

⎤
⎥⎥⎦ . (8.39)

Then, the Schur complement system will have the form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

SuB = f̃B , where

S = ABB − A
(1)
BIA

(1)−1

II A
(1)
IB − A

(2)
BIA

(2)−1

II A
(2)
IB

f̃B = fB − A
(1)
BIA

(1)−1

II f (1)
I − A

(2)
BIA

(2)−1

II f (2)
I .

We may further decompose S = S(1)+S(2), where S(l) = A
(l)
BB−A

(l)
BIA

(l)−1

II A
(l)
IB ,

for l = 1, 2, using ABB = A
(1)
BB + A

(2)
BB . In the following, we describe different

unaccelerated nonsymmetric generalizations of the Dirichlet-Neumann algo-
rithm, based on modifications of the matrix S(1) or S(2).

Adaptive Robin-Neumann and Related Algorithms. The effectiveness
of the Dirichlet-Neumann algorithm 1.3.1 can deteriorate as ε → 0+, see
[CA31, CI9, TR2, GA14]. To heuristically understand this, consider the fol-
lowing inflow, null flow and outflow segments on B = ∂Ω1 ∩∂Ω2, see Fig. 8.1:
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Ω1

Ω2��� ��� ��� ��� ���
Bout Bnull

� � � � �
��	
��	
��	
��	
��	

Bin

Fig. 8.1. Inflow, outflow and nullflow segments of B

Bin ≡ {x ∈ B : n1(x) · b(x) < 0}
Bnull ≡ {x ∈ B : n1(x) · b(x) = 0}
Bout ≡ {x ∈ B : n1(x) · b(x) > 0} ,

where n1(x) denotes the unit exterior normal to Ω1 for x ∈ B. When ε → 0+,
hybrid formulation (8.38) formally reduces to the following coupled system of
hyperbolic equations, see [GA15, GA14, AC7, AL4, QU6, RA3]:⎧⎪⎨

⎪⎩
L0 w1 = f, in Ω1

w1 = w2, on Bin

w1 = 0, on B[1],in

and

⎧⎪⎨
⎪⎩

L0 w2 = f, in Ω2

w2 = w1, on Bout

w2 = 0, on B[2],in,

with local inflow boundary conditions. Here L0 w ≡ b · ∇w + cw and:

B[1],in ≡
{
x ∈ B[1] : n1(x) · b(x) < 0

}
B[2],in =

{
x ∈ B[2] : n2(x) · b(x) < 0

}
.

As ε → 0+, a Neumann condition εn1 · ∇u1 = εn1 · ∇u2 on Bin does not
reduce to an inflow condition u1 = u2 on Bin. However, a Robin condition
εn1(x) · ∇u1 + γ(x) u1(x) = εn1(x) · ∇u2 + γ(x) u2(x) formally reduces to
u1(x) = u2(x) on Bin as ε → 0+, provided γ(x) �= 0 on Bin. A Dirichlet
condition on Bin will also reduce to an inflow condition. These observation
motivate different versions of adaptive algorithms [CA31, CI9, TR2, GA14].
Such adaptive algorithms employ an equivalent pair of transmission conditions
on Bin ∪ Bnull and Bout, from the list below, requiring that one of them
formally reduces to an inflow condition on Bin:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Dirichlet: u1 = u2, on B

Neumann: n1 · (ε∇u1) = n1 · (ε∇u2), on B

Robin: n1 · (ε∇u1 − bu1) = n1 · (ε∇u2 − bu2), on B

γ-Robin: n1 · (ε∇u1) + γ(x) u1 = n1 · (ε∇u2) + γ(x) u2, on B.

Each adaptive algorithm has a similar structure. The interface B is parti-
tioned into Bin ∩ Bnull and Bout, based on the inflow and outflow segments
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of B, relative to Ω1, for the advection field b(x). A pair of equivalent (com-
plementary) transmission conditions are chosen on B, such as Dirichlet and
Neumann, or Neumann and Robin. As ε → 0+, one of the transmission con-
ditions is required to reduce to an inflow condition on Bin when solving a
subproblem on Ω1. The complementary transmission condition is required to
reduce to an inflow condition on Bout when solving on Ω2. For instance, in the
adaptive Dirichlet-Neumann (ADN) algorithm, when solving on Ω1, Dirichlet
conditions are imposed on Bin ∩ Bnull and Neumann conditions are imposed
on Bout. This ensures that inflow conditions are imposed in the limiting advec-
tion equations on Ω1 as ε → 0+. When solving on Ω2, Neumann conditions are
imposed on Bin ∩ Bnull and Dirichlet conditions are imposed on Bout, which
ensures that inflow conditions are imposed on Bout (the inflow segment for
Ω2) as ε → 0+. Since Dirichlet and Neumann conditions are complementary,
together they are equivalent to the original transmission conditions. Below,
we list the continuous version of the ADN algorithm to update w

(k)
1 and w

(k)
2

as follows. Let ψD(w) ≡ w denotes a Dirichlet boundary operator on B and
ψ

(l)
N (w) ≡ ε (nl · ∇w) a Neumann boundary operator on B, where nl denotes

the unit exterior normal to Ωl. Let 0 < θ < 1 and 0 < δ < 1.

Algorithm 8.3.2 (Adaptive Dirichlet-Neumann Algorithm)
Input: w

(0)
1 and w

(0)
2

1. For k = 0, · · · until convergence do:
2. Define λ(k) ≡ θ ψD(w(k)

1 )+(1−θ)ψD(w(k)
2 ) on Bin∪Bnull and solve:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lw
(k+1)
1 = f, in Ω1

w
(k+1)
1 = 0, on B[1]

ψD(w(k+1)
1 ) = λ(k), on Bin ∪ Bnull

ψ
(1)
N (w(k+1)

1 ) = ψ
(1)
N (w(k)

2 ), on Bout,

3. Define µ(k+1) ≡ δ ψD(w(k+1)
1 ) + (1 − δ)ψD(w(k)

2 ) on Bout and solve:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lw
(k+1)
2 = f, in Ω2

w
(k+1)
2 = 0, on B[2]

ψD(w(k+1)
2 ) = µ(k+1), on Bout

ψ
(2)
N (w(k+1)

2 ) = ψ
(2)
N (w(k+1)

1 ), on Bin ∪ Bnull,

4. Endfor
5. Output: w

(k)
1 and w

(k)
2

By construction, if (w(k)
1 , w

(k)
2 ) converges, its limit (w1, w2) will satisfy the

original transmission conditions on B and solve hybrid formulation (8.38).
As mentioned earlier, the Dirichlet and Neumann conditions in the ADN

algorithm can be replaced by other complementary transmission conditions,
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provided the operator replacing ψD(.) reduces to a (weighted) Dirichlet con-
dition on Bin ∪ Bnull, as ε → 0+. In the adaptive Robin-Neumann (ARN)
algorithm, ψD(.) is replaced by a Robin operator ψ

(l)
R (w) ≡ εnl · (∇w − bw)

on Ωl, while ψ
(l)
N (.) is used as before. Robin and Neumann conditions will be

complementary on B, provided nl(x) · b(x) �= 0 for x ∈ B. This requirement
also ensures that ψR(w1) = ψR(w2) formally reduces to w1 = w2, as ε → 0+.
In the adaptive γ-Robin-Neumann (ARγN) algorithm, ψD(.) is replaced by
ψ

(l)
Rγ

(w) ≡ ε (nl · ∇w)+γ w when solving on Ωl. Again, ψN (.) and ψRγ (.) will

be complementary on B, if γ(x) �= 0 on B. The γ-Robin map ψ
(l)
Rγ

(.) reduces
to the Robin map ψR(.) for the choice γ(x) = −nl(x) · b(x).

Below, we indicate a matrix version of the ARγN algorithm. Let m denote
the number of nodal unknowns on B, with m = (m1 +m2), where m1 denotes
the number of nodal unknowns on Bin ∪ Bnull and m2 denotes the number
of nodal unknowns on Bout. We shall assume that the nodes in Bin ∪ Bout

are ordered prior to the nodes in Bout. Let {φ1(.), . . . , φm(.)} denote a finite
element nodal basis on B. Then, we define the following mass matrices on B:(

M
(1)
γ,BB

)
ij

=
∫

Bin∪Bnull
γ(x) φi(x) φj(x) dsx(

M
(2)
γ,BB

)
ij

=
∫

Bout
γ(x) φi(x) φj(x) dsx.

(8.40)

Let R1 denote an m1 ×m matrix restriction map which maps a nodal vector
on B into nodal values on Bin ∪ Bnull. Its transpose RT

1 will extend nodal
values on Bin ∪ Bnull by zero to B. Similarly, we let R2 denote the m2 × m
restriction map of nodal values on B into nodal values on Bout. Its transpose
RT

2 will extend nodal values on Bout by zero to B. We shall let v(k) and w(k)

denote the discrete nodal vectors corresponding to w
(k)
1 and w

(k)
2 , with v(k) =(

v(k)T

I ,v(k)T

B

)T

and w(k) =
(
w(k)T

I ,w(k)T

B

)T

. The matrix implementation of
step 2 in the ARγN algorithm to solve (8.39) will have the form:⎡

⎣A
(1)
II A

(1)
IB

A
(1)
BI M

(1)
γ,BB + A

(1)
BB

⎤
⎦
⎡
⎣v(k+1)

I

v(k+1)
B

⎤
⎦ =

⎡
⎣ f (1)

I

fB + r(k+1)
B

⎤
⎦ ,

where the components R1r
(k+1)
B and R2r

(k+1)
B are chosen as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
R1r

(k+1)
B = θR1

(
A

(1)
BIv

(k)
I + (M (1)

γ,BB + A
(1)
BB)v(k)

B − fB

)
+ (1 − θ)R1

(
−A

(2)
BIw

(k)
I + (M (1)

γ,BB − A
(2)
BB)w(k)

B

)
R2r

(k+1)
B = R2

(
−A

(2)
BIw

(k)
I + (M (1)

γ,BB − A
(2)
BB)w(k)

B

)
.

Our choice of the forcing terms r(k+1)
B and z(k+1)

B yield equations consistent
with the original system. Step 3 can be implemented analogously.
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Below, we list the matrix implementation of the ARγN algorithm.

Algorithm 8.3.3 (Adaptive γ-Robin-Neumann Algorithm)
Input: v(0), w(0), 0 < θ < 1 and 0 < δ < 1

1. For k = 0, · · · until convergence do:
2. Define the components R1r

(k+1)
B and R2r

(k+1)
B of r(k+1)

B as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1r
(k+1)
B = θR1

(
A

(1)
BIv

(k)
I + (M (1)

γ,BB + A
(1)
BB)v(k)

B − fB

)
+ (1 − θ)R1

(
−A

(2)
BIw

(k)
I + (M (1)

γ,BB − A
(2)
BB)w(k)

B

)
R2r

(k+1)
B = R2

(
−A

(2)
BIw

(k)
I + (M (1)

γ,BB − A
(2)
BB)w(k)

B

)
.

3. Solve:⎡
⎣A

(1)
II A

(1)
IB

A
(1)
BI M

(1)
γ,BB + A

(1)
BB

⎤
⎦
⎡
⎣v(k+1)

I

v(k+1)
B

⎤
⎦ =

⎡
⎣ f (1)

I

fB + r(k+1)
B

⎤
⎦

4. Define the components R1z
(k+1)
B and R2z

(k+1)
B of z(k+1)

B as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1z
(k+1)
B = R1

(
−A

(1)
BIv

(k+1)
I + (M (2)

γ,BB − A
(1)
BB)v(k+1)

B

)
R2z

(k+1)
B = δR2

(
A

(2)
BIw

(k)
I + (M (2)

γ,BB + A
(2)
BB)w(k)

B − fB

)
+ (1 − δ)R2

(
−A

(1)
BIv

(k+1)
I + (M (2)

γ,BB − A
(1)
BB)v(k+1)

B

)
.

5. Solve:⎡
⎣A

(2)
II A

(2)
IB

A
(2)
BI M

(2)
γ,BB + A

(2)
BB

⎤
⎦
⎡
⎣w(k+1)

I

w(k+1)
B

⎤
⎦ =

⎡
⎣ f (2)

I

fB + z(k+1)
B

⎤
⎦

6. Endfor
7. Output: v(k+1) and w(k+1)

Remark 8.18. A parallel version of the above sequential algorithm can be ob-
tained by replacing v(k+1)

I and v(k+1)
B by v(k)

I and v(k)
B , respectively, in step 4.

As noted in remark 8.19, the steps involved in updating v(k+1)
B and w(k+1)

B

can be viewed as an unaccelerated iterative method to solve the Schur comple-
ment system (S(1) + S(2))uB = f̃B . When matrix

(
S(l) + M

(l)
γ,BB

)
is positive

definite for l = 1, 2, the preceding algorithm can be shown to be convergent
for a suitable choice of parameters 0 < θ < 1 and 0 < δ < 1, see [GA14, QU6].
Under additional assumptions, the convergence will be uniform in h and ε. If
GMRES acceleration is employed, a preconditioner can be formulated for S
by applying one iteration of the ARγN algorithm with zero starting guess.
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Remark 8.19. When f (1)
I = 0, f (2)

I = 0, the ARγN algorithm will correspond
to a “modified” block Gauss-Seidel algorithm to solve the extended system:⎧⎪⎨

⎪⎩
(
S(1) + M

(1)
γ,BB

)
vB +

(
S(2) − M

(1)
γ,BB

)
wB = f̃B(

S(1) − M
(2)
γ,BB

)
vB +

(
S(2) + M

(2)
γ,BB

)
wB = f̃B ,

with partial relaxation (applied only to the components R1vB and R2wB).
When γ(x) �= 0 on B, the above system will yield vB = wB , where vB solves
the original Schur complement system (S(1) + S(2))uB = f̃B . Furthermore,
when f (1)

I = 0 and f (2)
I = 0, the different steps in the ARγN algorithm can

be expressed in terms of the Schur complement matrices as follows:

(S(1) + M
(1)
γ,BB)v(k+1)

B = (fB + r(k+1)
B ) in step 3

(S(2) + M
(2)
γ,BB)w(k+1)

B = (fB + z(k+1)
B ) in step 5.

The vector r(k+1)
B in step 2 and z(k+1)

B in step 4 satisfy:

R1r
(k+1)
B = R1

(
θ (S(1) + M

(1)
γ,BB)v(k)

B + (1 − θ) (−S(2) + M
(1)
γ,BB)w(k)

B − θ fB

)
R2r

(k+1)
B = R2(M

(1)
γ,BB − S(2))w(k)

B

R1z
(k+1)
B = R1(M

(2)
γ,BB − S(1))v(k+1)

B

R2z
(k+1)
B = R2

(
δ (M (2)

γ,BB + S(2))w(k)
B +(1 − δ) (M (2)

γ,BB − S(1))v(k+1)
B − δ fB

)
.

The original system (8.39) can be reduced to the case f (1)
I = 0 and f (2)

I = 0 as

follows. Split u(l)
I = y(l)

I + ũ(l)
I for l = 1, 2, where y(l)

I = A
(l)−1

II f (l)
I for l = 1, 2.

Then,
(
ũ(1)T

I , ũ(2)T

I ,uT
B

)T

will solve:

⎡
⎢⎢⎣

A
(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IB

A
(1)
BI A

(2)
BI ABB

⎤
⎥⎥⎦
⎡
⎢⎣

ũ(1)
I

ũ(2)
I

uB

⎤
⎥⎦ =

⎡
⎢⎣

0
0

f̃B

⎤
⎥⎦ , (8.41)

where f̃B =
(
fB − A

(1)
BIy

(1)
I − A

(2)
BIy

(2)
I

)
. By construction S uB = f̃B , and

once uB is known, we can determine ũ(l)
I = −A

(l)−1

II A
(l)
IBuB for l = 1, 2.

Remark 8.20. In practice, the Robin coefficient γ(x) must be chosen to ensure
that matrix

(
S(l) + M

(l)
γ,BB

)
is positive definite for l = 1, 2. When matrix

A is positive definite, the Schur complement matrix S =
(
S(1) + S(2)

)
is

positive definite by remark 8.12, however, the subdomain Schur complement
matrices S(l) =

(
A

(l)
BB − A

(l)
BIA

(l)−1

II A
(l)
IB

)
need not be positive definite. To
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derive conditions on γ(x) for coercivity of
(
S(l) + M

(l)
γ,BB

)
, note that matrix

A(l) is obtained by Galerkin discretization of A0
Ωl

(u, v), which differs from the

coercive bilinear form A
1
2
Ωl

(u, v) only by a boundary term:

A
1
2
Ωl

(u, v) = A0
Ωl

(u, v) − 1
2

∫
B

(nl(x) · b(x) u) v dsx, ∀u, v ∈ H1
0 (Ω),

(8.42)

where A0
Ωl

(u, v), and A
1
2
Ωl

(u, v) are defined by:

⎧⎪⎨
⎪⎩

A0(u, v) =
∫

Ωl
(ε∇ · ∇v + b(x) · ∇u v + c(x) u v) dx

A
1
2
Ωl

(u, v) =
∫

Ωl

(
ε∇u · ∇v + (c(x) − 1

2∇ · b(x)) u v
)
dx

+ 1
2

∫
Ωl

((b(x) · ∇u) v − u (b(x) · ∇v)) dx.

If
(
γ(x) + 1

2 nl(x) · b(x)
)
≥ 0 on B, employing expression (8.42) yields:

(
A0

Ωl
(u, u) +

∫
B

γ(x) u2 dsx

)
= A

1
2
Ωl

(u, u) +
∫

B

(
γ(x) + 1

2 nl(x) · b(x)
)

u2 dsx

≥ A
1
2
Ωl

(u, u)
=
∫

Ωl

(
ε∇u · ∇u + (c(x) − 1

2 ∇ · b(x)
)

dx,

which will be coercive when
(
c(x) − 1

2 ∇ · b(x)
)
≥ c0 > 0. Importantly, coer-

civity of A0
Ωl

(u, u) +
∫

B
γ(x)u2 dsx yields coercivity of (S(l) + M

(l)
γ,BB), due

to the relation between the Schur complement and the stiffness matrix. The
choice γ(x) = 1

2 |nl(x) · b(x)| is special, since it ensures that
(
S(l) + M

(l)
γ,BB

)
is coercive for both l = 1, 2.

Robin-Robin and Related Algorithms. The non-symmetric Robin-Robin
algorithm and the related Dirichlet-Robin algorithm [AL4, AC7, RA3, QU6]
are generalizations of the two subdomain Dirichlet-Neumann algorithm. They
share similarities with adaptive algorithms and employ two complementary
transmission conditions on the interface B, of which one is a Robin condition
(as the name suggests), however, the interface B is not partitioned into inflow
and outflow regions. The Robin boundary condition employed is a γ-Robin
condition based on the boundary operator:

ψ
(l)
R (w) = nl ·

(
ε∇w − 1

2
b(x)

)
+ γ̃(x) w, on B, (8.43)

for some coefficient γ̃(x) ≥ 0 chosen by the user, where nl(x) is the exte-
rior normal to ∂Ωl. The Robin-Robin algorithm employs two complementary
γ-Robin transmission conditions on B, while the Dirichlet-Robin algorithm
employs Dirichlet and γ-Robin transmission conditions on B.

Analysis of adaptive algorithms [GA14, QU6, AL4, AC7, RA3], shows that
each subdomain problem must be coercive to ensure convergence. When the
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coefficients satisfy
(
c(x) − 1

2∇ · b(x)
)
≥ c0 > 0 and ε > 0, the subdomain

bilinear form A
1
2
Ωl

(., .) will be coercive for l = 1, 2 (see remark 8.20). Since
ψR(.) with γ̃(x) = 0 is the boundary operator associated with A 1

2 (., .), the
coercivity of A 1

2 (., .) will ensure the coercivity of a subdomain Robin problem,
provided γ̃(x) ≥ 0. In applications, it will be assumed that γ̃(x) ≥ γ0 > 0.

The Dirichlet-Robin algorithm modifies the Dirichlet-Neumann by re-
placing the Neumann condition on B by a γ-Robin condition, for some
γ̃(x) ≥ γ0 > 0. Given w

(k)
1 and w

(k)
2 an update w

(k+1)
1 is computed on Ω1

by solving the Dirichlet problem:⎧⎪⎪⎨
⎪⎪⎩

Lw
(k+1)
1 = f, in Ω1

w
(k+1)
1 = 0, on B[1]

w
(k+1)
1 = λ(k), on B.

(8.44)

This is followed by the solution of a γ-Robin problem on Ω2:⎧⎪⎪⎨
⎪⎪⎩

Lw
(k+1)
2 = f, in Ω2

w
(k+1)
2 = 0, on B[2]

ψ
(2)
R (w(k+1)

2 ) = ψ
(2)
R (w(k+1)

1 ), on B.

(8.45)

The Dirichlet data λ(k) is defined as follows:

λ(k) ≡ θ w
(k)
1 + (1 − θ) w

(k)
2 , on B. (8.46)

using a relaxation parameter 0 < θ < 1.
The Robin-Robin algorithm employs the following iteration:⎧⎪⎪⎨

⎪⎪⎩
Lw

(k+1)
1 = f, in Ω1

w
(k+1)
1 = 0, on B[1]

ψ
(1)
R (w(k+1)

1 ) = λ(k), on B,

(8.47)

followed by the solution of:⎧⎪⎪⎨
⎪⎪⎩

Lw
(k+1)
2 = f, in Ω2

w
(k+1)
2 = 0, on B[2]

ψ
(2)
R (w(k+1)

2 ) = ψ
(2)
R (w(k+1)

1 ), on B.

(8.48)

The Robin data is defined by:

λ(k) ≡ θ ψ
(1)
R (w(k)

1 ) + (1 − θ)ψ(1)
R (w(k)

2 ), on B, (8.49)

for some relaxation parameter 0 < θ < 1. Each subproblem requires the
solution of a problem with γ-Robin conditions on B. Different choices of the
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coefficient function γ̃(x) yields different algorithms. For instance:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ̃(x) = 1
2 |b(x) · n(x)| , ARN Alg.

γ̃(x) = 1
2

√
|b(x) · n(x)|2 + 4 (c(x) −∇ · b(x)) ε, Alg. of [NA5]

γ̃(x) = 1
2

√
|b(x) · n(x)|2 + 4 κ ε, Alg. of [AU],

where κ > 0 and ε > 0, see [QU6].

Remark 8.21. To obtain a matrix representation of the Robin-Robin algorithm
with matrices A and A(l) obtained by discretization of A0(., .) and A0

Ωl
(., .),

respectively, given γ̃(x), we define a subdomain mass matrix G
(l)
γ̃,BB as follows:

(
G

(l)
γ̃,BB

)
ij

=
∫

B

(
γ̃(x) − 1

2
nl(x) · b(x)

)
φi(x)φj(x) dsx, (8.50)

where {φ1(.), . . . , φj(.)} denotes the finite element nodal basis restricted to B
(in an appropriate order).

Then, a matrix version of the γ-Robin-Robin algorithm is:

Algorithm 8.3.4 (γ-Robin-Robin Algorithm)
Input: v(0), w(0), 0 < θ < 1

1. For k = 0, · · · until convergence do:
2. Define:

r(k+1)
B = θ

(
A

(1)
BIv

(k)
I + (G(1)

γ̃,BB + A
(1)
BB)v(k)

B − fB

)
+ (1 − θ)

(
−A

(2)
BIw

(k)
I + (G(1)

γ̃,BB − A
(2)
BB)w(k)

B

)
3. Solve:⎡

⎣A
(1)
II A

(1)
IB

A
(1)
BI G

(1)
γ̃,BB + A

(1)
BB

⎤
⎦
⎡
⎣v(k+1)

I

v(k+1)
B

⎤
⎦ =

⎡
⎣ f (1)

I

fB + r(k+1)
B

⎤
⎦

4. Define:

z(k+1)
B = −A

(1)
BIv

(k+1)
I + (G(2)

γ̃,BB − A
(1)
BB)v(k+1)

B .

5. Solve:⎡
⎣A

(2)
II A

(2)
IB

A
(2)
BI G

(2)
γ̃,BB + A

(2)
BB

⎤
⎦
⎡
⎣w(k+1)

I

w(k+1)
B

⎤
⎦ =

⎡
⎣ f (2)

I

fB + z(k+1)
B

⎤
⎦

6. Endfor
7. Output: v(k+1) and w(k+1)
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In the preceding, the Robin-Robin subproblem on Ω1 was:⎡
⎣A

(1)
II A

(1)
IB

A
(1)
BI G

(1)
γ̃,BB + A

(1)
BB

⎤
⎦
⎡
⎣v(k+1)

I

v(k+1)
B

⎤
⎦ =

⎡
⎣ f (1)

I

fB + r(k+1)
B

⎤
⎦ ,

where:

r(k+1)
B = θ

(
A

(1)
BIv

(k)
I + (G(1)

γ̃,BB + A
(1)
BB)v(k)

B − fB

)
+(1 − θ)

(
−A

(2)
BIw

(k)
I + (G(1)

γ̃,BB − A
(2)
BB)w(k)

B

)
.

Analogous expressions hold for the Robin subproblem on Ω2.
As in remark 8.19, system (8.39) can be reduced to the case f (1)

I = 0,
f (2)
I = 0. In this case, the preceding γ-Robin-Robin algorithm will correspond

to a block Gauss-Seidel algorithm to solve the extended system:⎧⎪⎨
⎪⎩
(
S(1) + G

(1)
γ̃,BB

)
vB +

(
S(2) − G

(1)
γ̃,BB

)
wB = f̃B(

S(1) − G
(2)
γ̃,BB

)
vB +

(
S(2) + G

(2)
γ̃,BB

)
wB = f̃B ,

with relaxation of vB using a parameter 0 < θ < 1. When γ̃(x) ≥ γ0 > 0
on B, the above system will yield vB = wB , where vB solves the original
Schur complement system (S(1) + S(2))uB = f̃B . The Dirichlet-Robin will
correspond to a block Gauss-Seidel algorithm to solve the extended system:⎧⎨

⎩
vB − wB = 0(

S(1) − G
(2)
γ̃,BB

)
vB +

(
S(2) + G

(2)
γ̃,BB

)
wB = f̃B ,

using relaxation of vB with a parameter 0 < θ < 1.
When f (1)

I = 0 and f (2)
I = 0, the steps in the γ-Robin-Robin algorithm

can be expressed in terms of the Schur complement matrices as follows:

(S(1) + G
(1)
γ̃,BB)v(k+1)

B = (fB + r(k+1)
B ) in step 3

(S(2) + G
(2)
γ̃,BB)w(k+1)

B = (fB + z(k+1)
B ) in step 5.

The vector r(k+1)
B in step 2 and z(k+1)

B in step 4 satisfy:

r(k+1)
B =

(
θ (S(1) + G

(1)
γ̃,BB)v(k)

B − θ fB + (1 − θ) (−S(2) + M̃
(1)
γ̃,BB)w(k)

B

)
z(k+1)

B = (M̃ (2)
γ̃,BB − S(1))v(k+1)

B .

Once uB is determined, we can compute ũ(l)
I = −A

(l)−1

II A
(l)
IBuB for l = 1, 2.

Remark 8.22. In practice, the Schur complement system can be solved us-
ing GMRES acceleration, with a preconditioner obtained by applying one
iteration of the above algorithm with zero initial iterate, yielding robust
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convergence [AC7, RA3]. A parallel Robin-Robin preconditioner S0 for S
will be:

S−1
0 ≡

[
0
I

]T
⎛
⎝[A

(1)
II A

(1)
IB

A
(1)
BI G

(1)
γ̃,BB + A

(1)
BB

]−1

+

[
A

(2)
II A

(2)
IB

A
(2)
BI G

(2)
γ̃,BB + A

(2)
BB

]−1
⎞
⎠[ 0

I

]
,

corresponding to an analog of the Neumann-Neumann preconditioner.

Remark 8.23. A disadvantage of the two subdomain Robin-Robin precondi-
tioner is that the local problems can be computationally expensive. However,
if subdomain Ω2 corresponds to a layer region, and h1 � h2, then matrix
A(1) in Ω1 may be of smaller size and solved using a direct solver. If the layer
region Ω2 is of width O(ε), a band solver may be obtained for A(2) by reorder-
ing the unknowns along the thin layer region. For other advection dominated
algorithms, see [CH26, HE2, SC7, NA5, NA4, AC4] and Chap. 12.

8.4 Time Stepping Applications

The preconditioners described in the preceding sections can be simplified when
applied to solve the non-symmetric linear system arising from the implicit dis-
cretization of a non-selfadjoint parabolic equation. In this section, we remark
on some simplifications, see Chap. 9 for a more detailed discussion. Implicit
schemes result in linear systems having the form:

(G + α τ A)u = f , (8.51)

where G is a mass matrix for finite element discretizations or an identity
matrix for finite difference discretizations, A = H +N denotes a discretization
of the elliptic operator (with H symmetric positive semi-definite and N skew-
symmetric), τ > 0 denotes a time step, with α > 0 a parameter (which we
shall henceforth absorb into τ , for convenience). For appropriately small τ ,
the convergence factor of iterative algorithms to solve system (8.51) typically
improve, and coarse space correction may not be necessary. This arises due to
the spectral properties of the limiting matrix G, and when the skew-symmetric
part τ N is dominated by the symmetric part (G + τ H).

A Symmetric Positive Definite Preconditioner. Given A = H + N ,
matrix (G + τ A) can be split as follows:

(G + τ A) = (G + τ H) + τ N,

where (G+ τ H) is symmetric and positive definite and N is skew-symmetric.
This splitting immediately yields the following unaccelerated iteration:

(G + τ H)u(k+1) = f − τ Nu(k),

which will be convergent in a norm ‖ · ‖, provided:

‖τ(G + τH)−1N‖ < 1.
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If the Euclidean norm is employed, it will be sufficient to require that:

τ

(
σmax(N)

λmin(G + τH)

)
< 1, (8.52)

where σmax(N) denotes the maximum singular value of N and λmin(G + τH)
the minimum eigenvalue of (G + τH).

Remark 8.24. For a finite difference discretization σmax(N) = O(h−1) and
λmin(G+τH) = O(1), while σmax(N) = O(h−1+d) and λmin(G+τH) = O(hd)
for a finite element discretization (when Ω ⊂ IRd). In either case, if τ = C h,
condition (8.52) will hold if C > 0 is sufficiently small. However, this can be
too restrictive on τ . If τ ≤ C h but condition (8.52) is violated, and K0 is a
symmetric positive definite preconditioner for (G + τ H), we may employ K0

as a preconditioner for (G + τ A). Lemma 8.6 will then yield GMRES bounds
for K−1

0 (G + τ A) independent of h and τ , (but dependent on C). If K0 is a
domain decomposition preconditioner, coarse space correction can be omitted
if τ ≤ C̃ h2

0 for some C̃ > 0.

Schwarz Preconditioners. Typically, Schwarz algorithms yield rapid con-
vergence when applied to solve a well conditioned system Gu = f . As a result,
when applied to solve (G + τ A)u = f , we expect the convergence to improve
as τ → 0+. Convergence analysis of Schwarz algorithms indicates that if the
time step τ satisfies a constraint of the form τ ≤ C h2

0 (where h0 denotes
the size of the subdomains), then the coarse space correction term can be
omitted in Schwarz preconditioners for (G + τ A) without adverse deteriora-
tion in its convergence rate (yielding optimal or poly-logarithmic bounds), see
[CA, CA3, KU3, KU6]. The additive Schwarz preconditioner without coarse
space correction, has the form:

M−1 =
p∑

l=1

RT
l

(
Rl(G + τA)RT

l

)−1
Rl,

where Rl denotes the nodal restriction map onto Ω∗
l . The coarse space cor-

rection step may also be omitted in the multiplication Schwarz algorithm
provided τ ≤ C h2

0. In Chap. 9, we describe variants of Schwarz algorithms
which require only one iteration each time step, without compromising the
stability or accuracy of the original implicit scheme, provided the overlap
between subdomains is sufficiently large.

Schur Complement Preconditioners. The Schur complement associated
with non-symmetric system (8.51) can be preconditioned by a Neumann-
Neumann or Robin-Robin preconditioner, given a non-overlapping decompo-
sition Ω1, . . . , Ωp of diameter h0 and interface B = ∪p

l=1B
(l). As τ → 0+, we

expect the convergence rate to improve, see [DR5]. Matrix S(τ) will have the
form:

S(τ) ≡ (GBB + τABB) − (GBI + τABI)(GII + τAII)−1(GIB + τAIB).
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If matrix A is obtained by discretization of A0(., .), the Neumann-Neumann
preconditioner for S(τ) will have the following matrix form:

M−1
0 = RT

0 S−1
0 R0 +

p∑
l=1

RT
l

(
S(l)(τ)

)−1

Rl,

where Rl is the nodal restriction from B onto B(l) and RT
l is its transpose:

S(l)(τ) =
(
(G(l)

BB + τ A
(l)
BB) − (G(l)

BI + τ A
(l)
BI)(G

(l)
II + τ A

(l)
II )−1(G(l)

IB + τ A
(l)
IB)
)

.

Heuristically, if a constraint of the form τ ≤ C h2
0 is satisfied for subdomains

of size h0, then the coarse grid correction term RT
0 S−1

0 R0 can be omitted,
retaining poly-logarithmic bounds. In Chap. 9, we describe heuristic Schur
complement algorithms which require only one iteration each time step, with-
out affecting the stability of the original implicit scheme. For a comparison of
Schwarz and Schur complement algorithms, see [CA10, KE8].

8.5 Theoretical Results

In this section, we present selected theoretical results on non-self adjoint ellip-
tic equations [SC4, YS, YS3, CA, VA10, CA20, XU8, CA21, WA3], and apply
them to analyze the Sobolev norm convergence of an algorithm of [XU8].

8.5.1 Background

We consider the non-self adjoint, possibly indefinite, elliptic equation:{
−∇ · (a(x)∇u) + b(x) · ∇u + c(x)u = f(x), in Ω

u = 0, on ∂Ω,
(8.53)

where 0 < a0 ≤ a(x) ≤ a1. Here c(x) is permitted to be negative. The weak
formulation of the above problem will seek u ∈ H1

0 (Ω) such that:⎧⎪⎨
⎪⎩

A(u, φ) = F (φ), ∀φ ∈ H1
0 (Ω), where

A(u, φ) ≡
∫

Ω
(a(x)∇u · ∇φ + (b(x) · ∇u) φ + c(x) uφ) dx

F (φ) ≡
∫

Ω
f φ dx.

(8.54)

Its Galerkin discretization will seek uh ∈ Vh ⊂ H1
0 (Ω) satisfying:

A(uh, φh) = F (φh), ∀φh ∈ Vh, (8.55)

where Vh ⊂ H1
0 (Ω) is a finite element space defined on a quasiuniform tri-

angulation Ωh of Ω. Expanding uh =
∑n

i=1(u)iφi in a basis for Vh yields a
linear system: Au = f where (A)ij = A(φi, φj) and (f)i = F (φi).

The following is Garding’s inequality for the bilinear form A(u, v).
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Lemma 8.25. There exists α∗ > 0 and γ > 0 such that the bilinear form
A(u, v) satisfies the Garding inequality:

a0 α∗ ‖u‖2
1 − γ‖u‖2

0 ≤ A(u, u), ∀u ∈ H1
0 (Ω).

Proof. Assuming that b(x) is smooth, integrate by parts to obtain:

A(u, u) =
∫

Ω
a(x) |∇u|2dx −

∫
Ω

(
1
2∇ · b(x) − c(x)

)
u2dx

≥ a0

∫
Ω
|∇u|2dx − γ

∫
Ω

u2dx,

where γ ≡ maxΩ

∣∣ 1
2∇ · b(x) − c(x)

∣∣. Next, apply the Poincaré-Freidrichs in-
equality which guarantees the existence of the positive constant α∗ such that:

α∗‖u‖2
1,Ω ≤ |u|21,Ω =

∫
Ω

|∇u|2dx, ∀u ∈ H1
0 (Ω),

to obtain:
A(u, u) ≥ a0 α∗ ‖u‖2

1 − γ‖u2‖2
0,Ω .

Rearranging terms yields the desired result. ��

We shall split the nonsymmetric bilinear form A(u, v) as:

A(u, v) = H0(u, v) + N0(u, v), (8.56)

where:{
H0(u, v) ≡

∫
Ω

a(x)∇u · ∇v dx, ∀u, v ∈ H1
0 (Ω)

N0(u, v) ≡
∫

Ω
(b(x) · ∇u + c(x) u) v dx, ∀u, v ∈ H1

0 (Ω).
(8.57)

Here H0(., .) is a symmetric bilinear form corresponding to the principal part
of the elliptic operator, while N0(., .) is a nonsymmetric bilinear form corre-
sponding to the lower order terms. The following bounds will hold.

Lemma 8.26. There exists a positive constant C such that:

A(u, φ) ≤ C‖u‖1‖φ‖1, ∀u, v ∈ H1
0 (Ω)

H0(u, φ) ≤ C‖u‖1‖φ‖1, ∀u, φ ∈ H1
0 (Ω)

N0(u, φ) ≤ C‖u‖1‖φ‖0, ∀u, φ ∈ H1
0 (Ω)

N0(u, φ) ≤ C‖u‖0‖φ‖1, ∀u, φ ∈ H1
0 (Ω).

Proof. All the results, except the last inequality, follow trivially by the
Schwartz inequality. To obtain the last inequality, integrate by parts and shift
the derivatives before applying Schwartz’s inequality. ��

In the indefinite case, elliptic equation (8.53) may not always be solvable.
For instance, if b(x) ≡ 0 and c(x) = −λ is the negative of an eigenvalue of
the principal part of the elliptic operator, then the nonhomogeneous problem
will be solvable only if f(x) is orthogonal to the corresponding eigenfunction.
However, whenever

(
c(x) − 1

2∇ · b(x)
)
≥ 0, the quadratic form A(u, u) will be

coercive, and the Lax-Milgram lemma [CI2] will guarantee solvability of (8.53).
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Lemma 8.27. Let
(
c(x) − 1

2∇ · b(x)
)
≥ 0, and let 0 < c0 ≤ c1 be such that:

c0 H0(u, u) ≤ A(u, u) and A(u, v) ≤ c1H1/2
0 (u, u)H1/2

0 (v, v), ∀u, v ∈ H1
0 (Ω).

Then, equation (8.53) will be uniquely solvable.

Proof. We outline a proof based on Riesz isometry [CI2, EV]. Let X = H1
0 (Ω)

and X ′ denote its dual space, with duality pairing 〈·, ·〉 between X and X ′.
Let A : X → X ′ and H0 : X → X ′ denote the induced maps:

〈Au, v〉 = A(u, v) 〈H0u, v〉 = H0(u, v), ∀u, v ∈ X.

Given f ∈ X ′ the solvability of (8.53) reduces to that of Au = f in X.
When

(
c(x) − 1

2∇ · b(x)
)
≥ 0, the principal part H0 will be invertible by the

Lax-Milgram lemma. Define T : X → X by T u ≡ u + θ H−1
0 (f − A u) . For

appropriately chosen θ (depending on c0 and c1), it can easily be verified that
T is a contraction, and by construction, its fixed point will solve (8.53). ��

Henceforth, we shall assume that elliptic equation (8.53) and its adjoint
are uniquely solvable, where, given f(x) ∈ L2(Ω), the formal adjoint to (8.54)
seeks v ∈ H1

0 (Ω) such that:

A(φ, v) = (f, φ), ∀φ ∈ H1
0 (Ω). (8.58)

Below, we state a result [SC4], referred to as Schatz’s lemma, which can be
employed to show the coercivity of the indefinite bilinear form A(·, ·) within
a certain subspace of H1

0 (Ω), particularly when c(x) is negative.

Lemma 8.28 (Schatz’s Lemma). Suppose the following conditions hold:

1. For each f(x) ∈ L2(Ω), let the adjoint problem (8.58) be uniquely solvable
with v ∈ H1+α(Ω) for some 0 < α ≤ 1 satisfying:

‖v‖1+α ≤ C‖f‖0. (8.59)

2. Let w ∈ H1
0 (Ω) satisfy:

A(w, φ) = 0, ∀ φ ∈ Vh0 , (8.60)

for a finite element space Vh0 ⊂ H1
0 (Ω).

Then, there exists K∗ > 0 independent of h0 such that:

‖w‖0 ≤ K∗hα
0 ‖w‖1.

Proof. The proof employs Nietzsche’s trick, see [CI2, JO2]. Given w satisfy-
ing (8.60), solve the adjoint problem using f(x) = w(x):

A(φ, v) = (w, φ), ∀φ ∈ H1
0 (Ω).
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Choosing φ = w as a test function yields:

A(w, v) = (w, w).

We can replace A(w, v) by A(w, v − φh0) for φh0 ∈ Vh0 , since A(w, φh0) = 0.
Consequently, by applying boundedness of the bilinear form, we obtain:

(w, w) = A(w, v − φh0) ≤ C1‖w‖1‖v − φh0‖1 ≤ C2‖w‖1h
α
0 ‖v‖1+α

≤ C3‖w‖1h
α
0 ‖w‖0.

Here φh0 = Ih0v ⊂ Vh0 denotes the finite element nodal interpolant, and we
have used standard finite element interpolation error estimates and the bound
‖v‖1+α ≤ C‖w‖0 (which holds by assumption on the regularity of the adjoint
problem since f = w). It now follows that:

‖w‖0 ≤ K∗hα
0 ‖w‖1,

for some K∗ > 0, which is the desired result. ��

Remark 8.29. By regularity theory for elliptic partial differential equations,
bound (8.59) will hold true when Ω is a convex polyhedron, see [GR8].

Next, employing Schatz’s lemma, we describe conditions which guaran-
tee the non-singularity of the linear system Au = f arising from a Galerkin
discretization of (8.53). We also describe how u − uh can be estimated.

Lemma 8.30. Suppose that (8.53) and its adjoint are uniquely solvable with
solutions which are H1+α(Ω) regular when f(x) ∈ L2(Ω). Then, there exists
an h0 > 0 such that for h < h0 the matrix A, arising in the discretization
of (8.53) based on the finite element space Vh ⊂ H1

0 (Ω), will be non-singular.

Proof. Let u(x) = 0 denote the unique solution to the homogeneous prob-
lem (8.53) when f(x) = 0, and let wh ∈ Vh be any solution of its Galerkin
discretization. We shall show that wh = 0 is the only discrete homogeneous
solution, provided h is sufficiently small.

Accordingly, consider the equation satisfied by wh:

A(wh, φ) = 0, ∀φ ∈ Vh.

By construction, the error u − wh will satisfy:

A(u − wh, φ) = 0, ∀φ ∈ Vh.

Applying Garding’s inequality to u − wh yields:

α∗ a0‖u − wh‖2
1 − γ ‖u − wh‖2

0 ≤ A(u − wh, u − wh)

= A(u − wh, u),
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since A(u − wh, wh) = 0. The boundedness of A(·, ·) yields:

α∗ a0 ‖u − wh‖2
1 − γ ‖u − wh‖2

0 ≤ C‖u − wh‖1‖u‖1.

Applying Schatz’s inequality to u − wh yields:

‖u − wh‖0 ≤ K∗ hα‖u − wh‖1,

and substituting this into the inequality preceding it yields:

α∗ a0 ‖u − wh‖2
1 − γK2

∗h2α‖u − wh‖2
1 ≤ C‖u − wh‖1‖u‖1.

Dividing throughout by ‖u − wh‖1 yields:(
α∗ a0 − γ K2

∗ h2α
)
‖u − wh‖1 ≤ C‖u‖1.

When h < h0 =
(
α∗ a0/γK2

∗
)1/2α this shows that wh = 0 since u = 0.

Since the homogeneous problem has a unique solution, it follows that A is
non-singular, and that the discretization is uniquely solvable. ��

Another consequence of Schatz’s lemma is the coercivity of the bilinear
from A(·, ·) within any subspace of H1

0 (Ω) oblique A(., .)-orthogonal to Vh0

for sufficiently small h0. Importantly, this result will hold even when c(x) < 0.

Lemma 8.31. Let Vh0 ⊂ H1
0 (Ω) be a finite element space for which Schatz‘s

lemma holds with:
‖u‖0 ≤ K∗hα

0 |u|1,
for u satisfying

A(u, φh0) = 0, ∀φh0 ∈ Vh0 . (8.61)

Then for h < h0 =
(
a0/2 γ K2

∗
)1/2α, the following will hold:

A(u, u) ≥ 1
2
H0(u, u),

where H0(u, u) =
∫

Ω
a(x)|∇u|2dx and γ = maxx∈Ω |c(x) − 1

2∇ · b(x)|.

Proof. Let u satisfy (8.61). Employ the bound ‖u‖2
0 ≤ K2

∗h2α
0 |u|21 from

Schatz’s lemma to obtain:

A(u, u) = H0(u, u) +
∫

Ω

(
c(x) − 1

2∇ · b(x)
)
u2 dx

≥ H0(u, u) − maxx∈Ω |c(x) − 1
2∇ · b(x)|

∫
Ω

u2dx

≥ H0(u, u) − K2
∗h2α

0 maxΩ |c(x) − 1
2∇ · b(x)| |u|21

≥ H0(u, u) − K2
∗h2α

0 γ |u|21

≥
(
1 − (γ K2

∗h2α
0 )/a0

)
H0(u, u).
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The last term will be coercive provided h0 is sufficiently small so that:

1 − (γ K2
∗h2α

0 /a0) ≥
1
2
.

This establishes the coercivity of the nonsymmetric bilinear form A(., .) within
the subspace oblique A(., .)-orthogonal to Vh0 for h0 sufficiently small. ��

The next result establishes an upper bound for A(., .) in terms of the
principal part H0(., .) within a subspace.

Lemma 8.32. Let u ∈ H1
0 (Ω) satisfy: A(u, φ) = 0 for all φ ∈ Vh0 and let

Schatz’s lemma hold with:

‖u‖0 ≤ K∗hα
0 |u|1.

Then there exists c∗ > 0 independent of h0 such that:

|A(u,w)| ≤ (1 + c∗hα
0 )H0(u, u)1/2H0(w,w)1/2,

for any w ∈ H1
0 (Ω).

Proof. Integrate by parts, apply Schatz’s lemma and bounds for N0(., .):

A(u,w) = H0(u,w) + N0(u, w)

≤ H0(u,w) + C‖u‖0|w|1
≤ H0(u,w) + C K∗hα

0 |u|1|w|1

≤
(
1 + C K∗hα

0
a0

)
H0(u, u)1/2H0(w, w)1/2,

where the last inequality follows by the Schwartz inequality. The desired result
follows for c∗ = (C K∗/a0). ��

The preceding upper and lower bounds indicate that on any subspace of
H1

0 (Ω) oblique A(., .)-orthogonal to Vh0 for sufficiently small h0, the nonsym-
metric and indefinite quadratic form A(w,w) will be coercive and equivalent
to the quadratic form associated with its principal part H0(w, w):

cH0(w, w) ≤ A(w, w) ≤ C H0(w, w).

This heuristically motivates the additive preconditioner [XU8] for A based on
the discretization of A(., .) in subspace Vh0 and any symmetric positive definite
preconditioner spectrally equivalent to H0(., .). We shall describe convergence
bounds for such a preconditioner in the next section.

We conclude this subsection by indicating how traditional error estimates
can be obtained for a Galerkin discretization of (8.53) even when A(., .) is
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nonsymmetric and possibly indefinite. Let u denote the weak solution and uh

its Galerkin approximation. Then, by construction:

A(u − uh, φh) = 0, ∀φh ∈ Vh.

If h is sufficiently small, Schatz’s lemma will hold, and A(., .) will be coercive
for u − uh, so that:

cH0(u − uh, u − uh) ≤ A(u − uh, u − uh) = A(u − uh, u)
= A(u − uh, u − Ihu)
≤ C‖u − uh‖1‖u − Ihu‖1.

Standard error bounds now follow immediately.

8.5.2 Bounds for the Additive Preconditioner [XU8]

We shall now analyze the convergence of a preconditioned algorithm of [XU8],
for diffusion dominated problems. Given a finite element space Vh ⊂ H1

0 (Ω),
we shall employ the splitting A = H0+N0 where H0 and N0 are discretizations
of H0(., .) = (H0·, ·) and N0(., .) = (N0·, ·), respectively, on Vh, see (8.57),
where (., .) denotes the L2(Ω) inner product. Note that HT

0 = H0 > 0 and
that ‖ · ‖H0 is equivalent to ‖ · ‖1, by Poincaré-Freidrich’s inequality.

If M0 denotes any symmetric positive definite preconditioner for H0, and
Range(RT

0 ) denotes a coarse space Vh0 ⊂ Vh for a sufficiently small coarse
grid size h0, then, given a parameter β > 0, the action of the inverse M−1, of
the additive preconditioner M of [XU8], on the matrix A has the form:

M−1A = β M−1
0 A + RT

0

(
R0ART

0

)−1
R0A.

If P0 denotes the A(., .)-oblique projection onto Range(RT
0 ) = Vh0 :

A(P0vh, φh) = A(vh, φh), ∀φh ∈ Range(RT
0 ),

then, the matrix representation of the oblique-projection P0 will be:

P0 = RT
0

(
R0ART

0

)−1
R0A.

Note that P0P0 = P0. However, since A is not symmetric positive definite,
P0 will not be an orthogonal projection. The preconditioned matrix M−1A
in [XU8] can be now be represented in terms of matrix P0 as:

M−1A = β M−1
0 A + P0.

The following notation will be employed. We define a contraction factor:

δ0 = sup
u∈H1

0 (Ω)\{0}

‖(I − P0)u‖0

‖u‖H0

. (8.62)
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Since ‖ · ‖1 is equivalent to ‖ · ‖H0 , Schatz’s lemma yields a bound of the form
δ0 ≤ K∗hα provided (8.53) and its adjoint are uniquely solvable in H1+α(Ω)
for f(x) ∈ L2(Ω). We shall also let c1 and c2 denote parameters such that:

‖u‖0 ≤ c1‖u‖H0 , ∀u ∈ H1
0 (Ω)

N0(u, v) ≤ c2‖u‖0‖v‖H0 , ∀u, v ∈ H1
0 (Ω).

(8.63)

We shall also assume that matrix M0 satisfies:

λm ≤ vT H0v
vT M0v

≤ λM , (8.64)

with 0 < λm < λM where λm and λM are independent of h.

Remark 8.33. The parameters K∗, c1, c2 will be independent of h by standard
results from elliptic regularity and finite element theory.

The following is a preliminary result.

Lemma 8.34. Suppose that Schatz’s lemma holds, and that c1, c2, λm, λM and
δ0 are as defined before. Then, the following bounds will hold:

1. ‖P0u‖2
H0

≤ 2 (P0u, u)H0 + c2
2 δ2

0 ‖u‖2
H0

.
2. ‖u‖2

0 ≤ 4 c2
1 (P0u, u)H0 + 2 (c2

1c
2
2 + 1) δ2

0 ‖u‖2
H0

.

3. ‖u‖2
H0

≤ 2 λ−1
m (M−1

0 Au, u)H0 + c2
2

(
λM

λm

)2

‖u‖2
0.

Proof. We follow [XU8]. To prove result 1, consider:

‖P0u‖2
H0

= H0(P0u, P0u)

= H0(P0u, u) −H0(P0u, (I − P0)u)

= H0(P0u, u) −H0((I − P0)u, P0u)

= H0(P0u, u) −A((I − P0)u, P0u) + N0((I − P0)u, P0u)

= H0(P0u, u) + N0((I − P0)u, P0u)

≤ H0(P0u, u) + c2 ‖(I − P0)u‖0 ‖P0u‖H0

≤ H0(P0u, u) + c2 δ0 ‖u‖H0 ‖P0u‖H0

≤ H0(P0u, u) + 1
2 c2

2 δ2
0 ‖u‖2

H0
+ 1

2 ‖P0u‖2
H0

.

In the last four lines above, the definition of P0, the Schwartz inequality,
the definition of δ0, and the arithmetic-geometric inequality were employed.
Subtracting the term 1

2‖P0u‖2
H0

and rescaling yields result 1.
To prove result 2, decompose u = P0u + (I − P0)u and estimate:

‖u‖2
0 ≤ 2 ‖P0u‖2

0 + 2 ‖u − P0u‖2
0

≤ 2 c2
1 ‖P0u‖2

H0
+ 2 δ2

0 ‖u‖2
H0

≤ 2 c2
1

(
2H0(P0u, u) + c2

2 δ2
0 ‖u‖2

H0

)
+ 2 δ2

0 ‖u‖2
H0

= 4 c2
1 H0(P0u, u) + 2 (c2

1c
2
2 + 1) δ2

0 ‖u‖2
H0

.
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The triangle inequality was employed in the first line, ‖ · ‖0 ≤ c1‖ · ‖H0 and
the definition of δ0 were employed on the second line, while result 1 was
substituted on the third line.

To prove result 3, consider:

‖u‖2
H0

= H0(u, u)

≤ λ−1
m H0(M−1

0 H0u, u)

= λ−1
m H0(M−1

0 Au, u) − λ−1
m H0(M−1

0 N0u, u)

= λ−1
m H0(M−1

0 Au, u) − λ−1
m (M−1

0 N0u,H0u)0

= λ−1
m H0(M−1

0 Au, u) − λ−1
m (N0u,M−1

0 H0u)0

= λ−1
m H0(M−1

0 Au, u) − λ−1
m N0(u,M−1

0 H0u)

≤ λ−1
m H0(M−1

0 Au, u) + c2λ
−1
m ‖u‖0‖M−1

0 H0u‖H0

≤ λ−1
m H0(M−1

0 Au, u) + c2λ
−1
m ‖u‖0λM‖u‖H0

≤ λ−1
m H0(M−1

0 Au, u) + 1
2c2

2λ
−2
m λ2

M‖u‖2
0 + 1

2‖u‖2
H0

= λ−1
m H0(M−1

0 Au, u) + 1
2c2

2

(
λM

λm

)2

‖u‖2
0 + 1

2‖u‖2
H0

.

Subtracting the term 1
2‖u‖2

H0
and rescaling yields result 3. Here, we have

employed bounds for the Rayleigh quotient of M−1
0 H0 in the H0(., .) in-

ner product, that N0(u, v) = (N0u, v)0 and bounds on N0(u, v), and the
arithmetic-geometric mean inequality. ��

Now consider a preconditioner M of the form:

M−1 ≡ β M−1
0 + RT

0 (R0ART
0 )−1R0,

where β > 0 is a parameter defined below. The following result provides a
lower bound for the smallest eigenvalue of the symmetric part of M−1A.

Proposition 8.35. Suppose δ0 satisfies 2c2
2(c

2
1c

2
2 + 1)δ2

0

(
λM

λm

)2

≤ 1
2 . Then,

there exists parameters µ1 > 0 and β > 0 independent of h such that:

β H0(M−1
0 Au, u) + H0(P0u, u) ≥ µ1H0(u, u).

Proof. Combining result 3 from the preceding lemma:

‖u‖2
H0

≤ 2λ−1
m H0(M−1

0 Au, u) + c2
2

(
λM

λm

)2

‖u‖2
0,

with bound 2 from the preceding lemma:

‖u‖2
0 ≤ 4c2

1 H0(P0u, u) + 2(c2
1c

2
2 + 1)δ2

0‖u‖2
H0

,



8.5 Theoretical Results 375

yields the estimate:

‖u‖2
H0

≤ 2λ−1
m H0(M−1

0 Au, u) + 4c2
1c

2
2

(
λM

λm

)2

H0(P0u, u)

+ 2c2
2(c

2
1c

2
2 + 1)δ2

0

(
λM

λm

)2

‖u‖2
H0

.

When δ0 is small enough so that 2c2
2(c

2
1c

2
2 +1)δ2

0

(
λM

λm

)2

≤ 1
2 , we may subtract

the term involving ‖u‖2
H0

on the right hand side. Substituting the parameters:

µ1 ≡ λ2
m

8c2
1c

2
2λ

2
M

, and β ≡ λm

2c2
1c

2
2λ

2
M

,

we obtain the bound:

µ1 H0(u, u) ≤ β H0(M−1
0 Au, u) + H0(P0u, u).

By construction µ1 and β are independent of h. ��

An upper bound is established for ‖M−1A‖H0 in the following result.

Proposition 8.36. There exists µ2 > 0 independent of h such that:

‖β M−1
0 Au + P0u‖H0 ≤ µ2‖u‖H0 , ∀u ∈ Vh.

Proof. See [XU8]. First note that:

‖M−1
0 Au‖H0 ≤ ‖M−1

0 H0u‖H0 + ‖M−1
0 N0u‖H0

≤ λM‖u‖H0 + ‖M−1
0 N0u‖H0 .

However:
‖M−1

0 N0u‖2
H0

= (H0M
−1
0 N0u,M−1

0 N0u)

= (N0u,M−1
0 H0M

−1
0 N0u)

≤ c2‖u‖H0‖M−1
0 H0M

−1
0 N0u‖0

≤ c2λM‖u‖H0‖M−1
0 N0u‖0

≤ c1 c2 λM‖u‖H0‖M−1
0 N0u‖H0 .

It thus follows that:

‖M−1
0 N0u‖H0 ≤ c1c2λM‖u‖H0 .

Combining these results gives:

‖M−1
0 Au‖H0 ≤ λM‖u‖H0 + c1c2λM‖u‖H0 .
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Next, consider:

‖P0u‖2
H0

= H0(P0u, P0u)

= A(P0u, P0u) −N0(P0u, P0u)

= A(u, P0u) −N0(P0u, P0u)

= H0(u, P0u) + N0(u, P0u) −N0(P0u, P0u)

= H0(u, P0u) + N0((I − P0)u, P0u)

≤ ‖u‖H0‖P0u‖H0 + c2‖(I − P0)u‖0‖P0u‖H0

≤ ‖u‖H0‖P0u‖H0 + c2δ0‖u‖H0‖P0u‖H0 .

Canceling the common terms yields:

‖P0u‖H0 ≤ ‖u‖H0 + c2δ0‖u‖H0 = (1 + c2δ0) ‖u‖H0 .

Combining bounds for ‖M−1
0 Au‖H0 and ‖P0u‖H0 , we obtain:

β‖M−1
0 Au‖H0 + ‖P0u‖H0 ≤ (1 + c2δ0 + β(1 + c1c2)λM ) ‖u‖H0 .

Thus, µ2 = (1 + c2δ0 + β(1 + c1c2)λM ). ��

Remark 8.37. By construction, the upper and lower bounds µ2 and µ1 are
independent of h. These bounds may be substituted in the GMRES algorithm
to establish a rate of convergence independent of h:

‖Au(k) − f‖H0 ≤
(

1 − µ2
1

µ2
2

)k

‖Au(0) − f‖H0 ,

see [SA2].

Remark 8.38. When a(x) = ε  1, the bilinear form A(., .) will be coercive
only if the mesh size h0 satisfies:

h0 < C ε1/2α.

When h0 is very small, it will be prohibitively expensive to apply P0. As a
result, the additive preconditioner based on a coarse space will be primarily
suited for diffusion dominated problems.



9

Parabolic Equations

In this chapter, we describe domain decomposition methods for solving the
linear system arising from an implicit discretization of a parabolic equation.
If A denotes the discretization of the underlying elliptic operator, and τ > 0
is the time step, and G is a mass or identity matrix, this yields the system:

(G + α τ A)uk = f̃
k

at each time tk = k τ , where uk denotes the discrete solution at time tk.
The condition number of (G + α τA) improves as τ → 0+, and this facilitates
various simplifications or improvements in domain decomposition solvers.

Firstly, if the time step satisfies a constraint of the form τ ≤ C h2
0, where

h0 denotes the diameter of the subdomains, then coarse space correction may
not be necessary in Schwarz and Schur complement methods, to maintain a
rate of convergence independent of h and h0. The resulting algorithms can be
parallelized more easily. Secondly, it may be possible to formulate non-iterative
solvers accurate to within truncation error, without altering the stability of
the original scheme. Non-iterative solvers may employ uk−1 and apply an
explicit method to predict the boundary values of uk on subdomain interfaces
and use implicit methods to update the solution in the interior of subdomains,
or they may employ the boundary values of uk−1 to update the solution on
overlapping subdomains with large overlap, and use a partition of unity to
obtain uk, or they may employ domain decomposition operator splittings and
update uk−1 to obtain uk using splitting or generalized ADI schemes.

Our discussion in this chapter is organized as follows. Chap. 9.1 describes
background on implicit schemes, truncation error, stability and convergence
of discretizations. Chap. 9.2 describes iterative solvers, while Chap. 9.3 de-
scribes noniterative solvers. Chap. 9.4 describes the parareal method for solv-
ing a parabolic equation on a time interval [0, T ]. It corresponds to a multiple
shooting method on [0, T ], and is suited for applications to parabolic optimal
control problems. Sample theoretical results are presented in Chap. 9.5.
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9.1 Background

We consider the following parabolic equation:⎧⎪⎨
⎪⎩

ut + Lu = f(x, t), in Ω × (0, t)
u(x, 0) = u0(x), in Ω

u(x, t) = 0, on ∂Ω × (0, t),
(9.1)

where Lu = −∇ · (a(x)∇u)+b(x) ·∇u+ c(x)u denotes an underlying elliptic
operator with 0 < a0 ≤ a(x). Except when specified otherwise, we shall
assume that b(x) = 0 and that the reaction coefficient c(x) ≥ 0.

To obtain a spatial discretization of (9.1), let Ωh denote a triangulation of
Ω with grid size h and interior nodes x1, . . . xn. If a finite element discretization
is employed in space, let uh(x, t) ∈ Vh ⊂ H1

0 (Ω) denote the finite element
solution for each t. A Galerkin approximation of (9.1) will seek uh(x, t) ∈ Vh:{

(uh,t, v) + A(uh, v) = F (v), ∀v ∈ Vh

uh(x, 0) = Ihu0(x),

where (u, v) =
∫

Ω
u v dx in the weak formulation above, and:{

A(u, v) ≡
∫

Ω
(a(x)∇u · ∇v + (b(x) · ∇u) v + c(x) u v) dx

F (v) ≡
∫

Ω
f v dx.

This semi-discretization yields a stiff system of ordinary differential equations.
Let u(t) ∈ IRn denote a vector of nodal values of the discrete solution uh(x, t)
with (u)i (t) = uh(xi, t) for 1 ≤ i ≤ n. If {φ1, . . . , φn} denotes a finite element
nodal basis, define Gij = (φi, φj), Aij = A(φi, φj) and f i = (f, φi). Then, the
finite element semi-discretization will correspond to:{

Gut + Au = f(t)
u(0) = Ihu0,

(9.2)

where Ihu0 denotes the interpolation (Ihu0)i = u0(xi) for 1 ≤ i ≤ n.

Remark 9.1. If a finite difference discretization is employed in space, then
matrix G = I will be an identity matrix of size n, while Au will denote the
finite difference discretization of the elliptic term Lu. If b(x) = 0 and c(x) ≥ 0
then matrix A will be symmetric positive definite for finite element and finite
difference discretizations. In case u(x, t) = z(x, t) on ∂Ω × (0, t), then the
forcing term f(t) must be replaced by f(t) − AIB z(t), where AIB denotes
the extended stiffness matrix involving boundary data and z(t) = Ih,Bz(., t)
denotes interpolation of the boundary data onto nodes on ∂Ω.
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If (u∗(t))i = u(xi, t) denotes the restriction of the true solution u(x, t)
of (9.1) to the nodes x1, . . . , xn, we define the truncation error T(t) as:{

Gu∗ t + Au∗ = f(t) + T(t)
u∗(0) = Ih u0 + T(0).

(9.3)

By construction T(0) = 0. Subtracting (9.2) from (9.3), solving the resulting
inhomogeneous equation for e(t) = u∗(t) − u(t) using Duhamel’s principle
(superposition), and estimating yields the following bounds [CO, AR3]:

‖e(t)‖ ≤ ‖T(0)‖ ec1t + c2 t
(
ec1 t − 1

)
max
0≤s≤t

‖T(s)‖,

provided ‖e−G−1 A s‖ ≤ ec1 s, for c1 > 0 and c2 > 0 independent of h. If u(x, t)
is sufficiently smooth, the truncation error will satisfy ‖T(t)‖ ≤ Ch2.

To discretize (9.2) on a time interval (0, t∗) let τ = (t∗/m) denote a time
step, and let tk = k τ for 0 ≤ k ≤ m. An implicit or semi-implicit linear
two step method [ST10, IS, SH, SH2, LA7]. will result in a system of linear
equations of the following form at each time tk:{

(G + α τ A)uk+1 + C uk = f̃
k+1

, for 0 ≤ k ≤ (m − 1)
u0 = Ihu0.

(9.4)

where uk denotes the discrete solution at time tk = k τ . The θ-scheme, for
instance, yields the following discretization for 0 ≤ θ ≤ 1:

(G + τ θA)uk+1 + (−G + τ(1 − θ)A)uk = τ θ fk+1 + τ(1 − θ) fk.

We obtain the forward Euler method for θ = 0, the Crank-Nicolson method
for θ = 1

2 , and the backward Euler method for θ = 1. More general schemes
may be found in [GE, SH, SH2, HA7, LA7, HA8].

9.1.1 Consistency

If u(x, t) denotes the solution to (9.1) and
(
u(k)
∗
)

i
= u(xi, tk), we define the

local truncation error Tk+1 of scheme (9.4) at time tk+1 as:{
(G + α τ A)uk+1

∗ + C uk
∗ = f̃

k+1
+ Tk+1 for 0 ≤ k ≤ (m − 1)

u0
∗ = Ihu0 + T0

(9.5)

By construction T0 = 0. Discretization (9.4) will be said to be consistent if:

τ−1 ‖Tk‖ → 0 as (h, τ) → (0, 0).

More generally, discretization (9.4) will be said to be accurate to order (q1, q2)
if ‖Tk‖ ≤ c τ (hq1 + τ q2) , for some c > 0.
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Remark 9.2. It can easily be verified that for the θ-scheme in time and a
second order discretization in space, the local truncation error will satisfy:

‖Tk‖ ≤
{

C τ
(
τ1 + h2

)
, if θ �= 1/2

C τ
(
τ2 + h2

)
, if θ = 1/2.

Higher order discretizations of (9.1) may be constructed using more accurate
spatial discretization Au of Lu, and higher order linear multistep discretization
of ut + Au = f in time [GE, SH, SH2, HA7, LA7, HA8]. A k step linear
multistep method will typically require storage of the solution at k discrete
times. The resulting scheme will be stable only if the eigenvalues of τA lie in
the region of stability of the scheme, thereby imposing constraints on τ .

Remark 9.3. If a symmetric positive definite linear system is desirable, then
a semi-implicit scheme may be employed. For instance, suppose A = H + N
where Hu denotes the discretization of −∇· (a(x)∇u) and Nu the discretiza-
tion of b(x) · ∇u + c(x)u. Then, the system of differential equations:

ut + Hu + Nu = f ,

maybe discretized using an Adams-Moulton (implicit) scheme for the term Hu
and an Adams-Bashforth (explicit) scheme for the Nu term. This will yield a
linear multistep scheme, see [GE, SH, SH2, HA7, LA7, HA8], requiring storage
of the solution at several discrete times. Care must be exercised to ensure that
the resulting scheme is stable, as there will be constraints on admissible time
steps τ . For instance, we may employ a backward Euler scheme for the Hu
term and a forward Euler scheme for the Nu term resulting in:

uk+1 − uk

τ
+ Huk+1 + Nuk = fk, for 0 ≤ k ≤ (m − 1).

When H is symmetric positive definite, this scheme will be stable in the
Euclidean norm ‖ · ‖ provided:

‖(I + τ H)−1(I − τ N)‖ ≤ (1 + c1τ),

for some c1 > 0 independent of τ and h.

9.1.2 Stability

Discretization (9.4) will be said to be stable in a norm ‖ · ‖ if its solution
satisfies the following bound:

‖uk+1‖ ≤ (1 + c1τ)‖uk‖ + c2‖f̃
k‖,

for arbitrary f̃k, where c1 > 0 and c2 > 0 are independent of h and τ .
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Remark 9.4. If b(x) = 0 and A is a symmetric positive definite matrix, then
the θ-scheme will be stable in the Euclidean norm ‖·‖ and the mesh dependent
norm ‖ · ‖I+ατA, see Chap. 9.5. If A is a diagonally dominant M -matrix,
possibly nonsymmetric, then the θ-scheme will be stable in the maximum
norm ‖ · ‖∞ provided:

θ ≤ min
1≤i≤n

1
(1 − θ)Aii

,

see Chap. 9.5. When b(x) �= 0, care must be exercised in the spatial dis-
cretization of b(x) · ∇u, as a centered finite difference or traditional Galerkin
discretization will be unstable [SO2, JO2]. Upwind finite difference or stream-
line diffusion discretizations may be employed if a(x) is sufficiently small.

9.1.3 Lax Convergence Theorem

A discretization such as (9.4) will be said to be convergent if the norm of the
error ek = uk

∗ − uk goes to zero as (h, τ) → (0, 0):

max
1≤k≤m

‖ek‖ → 0 as (h, τ) → (0, 0).

We have the following important convergence theorem due to Lax [RI].

Theorem 9.5. If scheme (9.4) is consistent and stable, it will be convergent.
In particular if a stable scheme is consistent of order (q1, q2), then it will be
convergent with the error satisfying:

‖ek‖ ≤ c (hq1 + τ q2) .

Proof. See [RI] or Chap. 9.5. ��

9.2 Iterative Algorithms

At each discrete time tk for 0 ≤ k ≤ (m−1), we must solve the linear system:

(G + α τA)uk+1 = g̃k+1 = f̃
k+1 − Cuk. (9.6)

It will be sufficient to solve each system to truncation error, i.e., determine an
approximate solution wk+1 ≈ uk+1 so that the residual is the same magnitude
as the truncation error O(‖Tk+1‖). Most Schwarz and Schur complement
preconditioners from preceding chapters can be employed, however, it may be
possible to omit coarse space correction provided the time step τ is sufficiently
small. Omitting coarse space correction will help to reduce computational
costs and improve parallelizability of the solvers.
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9.2.1 Schwarz Algorithms

Let Ω∗
1 , . . . , Ω∗

p form an overlapping covering of Ω with shape regular subdo-
mains of size h0 having overlap β h0. Let Ωh denote a quasiuniform triangula-
tion of Ω with grid size h, and for 1 ≤ i ≤ p let Ri denote the pointwise nodal
restriction map onto interior nodes in Ω∗

i in the local ordering. Then, the ac-
tion of the inverse of the additive Schwarz preconditioner M for (G + α τ A),
without coarse space correction, will have the matrix form:

M−1 =
p∑

i=1

RT
i

(
Ri(G + α τ A)RT

i

)−1
Ri.

The sequential Schwarz preconditioner will yield more rapid convergence (with
multicoloring for parallelizability). If A is nonsymmetric, then GMRES accel-
eration will be necessary. The following theoretical result indicates that if τ
is sufficiently small, then coarse space correction can be omitted in Schwarz
algorithms without adverse deterioration in convergence rate provided see
[CA, CA3] and [KU3, KU5, KU6].

Lemma 9.6. Let b(x) = 0 and c(x) ≥ 0 in (9.1), and let Ω∗
1 , . . . , Ω∗

p have
overlap β h0. Then, the partition parameters K0 and K1 associated with the
subspaces Vh(Ω∗

i ) ⊂ H1
0 (Ω∗

i ) for 1 ≤ i ≤ p will satisfy:

K0 ≤ C(1 + τ ‖a‖∞ β−2 h−2
0 )

K1 ≤ C,

without a coarse space, for some C > 0 independent of h, h0, τ , ‖a‖∞, where:

‖a‖∞ = max
x∈Ω

|a(x)|.

Proof. See [CA, CA3] and Chap. 9.5. ��

The preceding result suggests that provided τ h−2
0 is uniformly bounded, the

coarse space correction term may be omitted without adverse deterioration in
the convergence of additive or multiplicative Schwarz algorithms.

Remark 9.7. Since ‖uk − uk−1‖ will formally be accurate to O(τ), we can
employ uk−1 as a starting guess in the Schwarz iteration to solve:

(G + α τ A)uk = g̃k = f̃
k − Cuk−1.

The Schwarz iteration can be applied till the residual norm is O(τ(hq1 +τ q2)).
If a coarse space correction is included, it will speed up the convergence of
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Schwarz algorithms, particularly if a(x) has large jump discontinuities. In
practice, it may be desirable to test the computational times with and without
coarse space correction.

9.2.2 Schur Complement Algorithms

Let Ω1, . . . , Ωp denote a nonoverlapping decomposition of Ω with common
interface B. Traditional Schur complement algorithms can be employed to
solve (G + α τ A)uk = g̃k. If we block partition each nodal vector as:

v =
(
vT

I ,vT
B

)T
, where vI =

(
v(1)T

I , . . . ,v(p)T

I

)T

,

then linear system (9.6) will have the following block structure:[
GII + ατ AII GIB + ατ AIB

GBI + ατ ABI GBB + ατ ABB

][
uk

I

uk
B

]
=

[
g̃k

I

g̃k
B

]
,

where AII = blockdiag(A(1)
II , . . . , A

(p)
II ). The Schur complement system is:

S(τ)uk
B = gk

B ,

where

S(τ) = (GBB + α τ ABB) − (GBI + ατABI)(GII + ατAII)−1(GIB + ατAIB)

gk
B = g̃k

B − (GBI + α τABI)(GII + α τAII)−1g̃k
I .

Most of the Schur complement preconditioners from preceding chapters can
be employed to precondition S(τ). For instance, if G1, . . . ,Gq are globs of B
with corresponding pointwise nodal restriction maps Ri from nodes on B to
nodes on B(i) = ∂Ωi\∂Ω, the action of the inverse of the Neumann-Neumann
preconditioner without coarse space correction will be:

M−1 =
p∑

i=1

Ri

(
S(i)(τ)

)−1

Ri,

where each S(i)(τ) denotes a (non-singular) subdomain Schur complement ma-
trix. This will yield a more parallelizable algorithm. As with Schwarz precon-
ditioners, if a time-step constraint of the form τ ≤ c h2

0 holds, here h0 denotes
the subdomain diameter, the above preconditioner should yield a condition
number bound with poly-logarithmic dependence on the mesh parameters
[FA14, FA15]. If R0 denotes a coarse space weighted restriction matrix and
S0(τ) = R0S(τ)RT

0 , then the coarse space correction term R0 (S0(τ))−1 R0

can be added to the above Neumann-Neumann preconditioner.
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9.3 Non-Iterative Algorithms

Given a discretization (9.4) of (9.1), a non-iterative algorithm determines an
approximate solution of (9.4) without iteration. Such methods, motivated by
the classical ADI and splitting methods, solve a modified discretization of (9.4),
see [DO9, PE, BA11, LE14, KO, SA5, YA, ST11, GL7]:{

H̃ wk+1 + C̃ wk = f̃
k+1

, for 0 ≤ k ≤ (m − 1)
w0 = u0,

(9.7)

where H̃ ≈ (G + α τ A) and C̃ ≈ C are chosen so that the linear system
H̃ wk+1 = f̃

k+1 − C̃ wk can be solved without iteration. Additionally, the
modified discretization (9.7) must be consistent to the same order as the
original discretization (9.4), and stable. Typically, however, some constraints
will be required on τ to ensure stability of the modified scheme (9.7).

In this section, we loosely group non-iterative methods by modification of
Schwarz or Schur complement methods, or based on domain decomposition
operator splittings. For simplicity, we consider a finite difference discretization
of (9.1), so that G = I, and employ a partition of unity.

Discrete Partition of Unity. Given subdomains Ω∗
1 , . . . , Ω∗

p which form
an overlapping decomposition of Ω, we define a discrete partition of unity
subordinate to Ω∗

1 , . . . , Ω∗
p as follows. Let n denote the number of interior

nodes in Ω and n∗
i the number of nodes in Ω∗

i , with Ri denoting a nodal
restriction matrix of size n∗

i × n which restricts a vector of nodal values on Ω
to nodal values on Ω∗

i . We let D(i) denote a diagonal matrix of size n∗
i , with

positive diagonal entries such that:

I =
p∑

i=1

RT
i D(i)Ri.

For instance, if x
(i)
l denotes the l’th node in the local ordering of nodes within

Ω∗
i , define (D(i))ll as 1/degree(x(i)

l ) where degree(x(i)
l ) denotes the number of

subdomains Ω∗
j to which node x

(i)
l belongs to, for 1 ≤ i ≤ p.

Similarly, given non-overlapping subdomains Ω1, . . . , Ωp, we shall employ
a discrete partition of unity subordinate to Ω1, . . . , Ωp satisfying:

I =
p∑

i=1

Φi,

where each Φi = RT
Ωi

D(Ωi)RΩi
is a diagonal matrix of size n with non-negative

diagonal entries, where RΩi
denotes a nodal restriction matrix of size ni × n

which restricts a vector in Ω into nodal values on Ωi (with ni nodes in Ωi) and
DΩi is a diagonal matrix of size ni such that if y

(i)
l denotes the l’th node in

the local ordering within Ωi, then (DΩi)ll is 1/degree(y(i)
l ) where degree(y(i)

l )
denotes the number of subdomains Ω

∗
j to which node y

(i)
l belongs to.
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9.3.1 Non-Iterative Schwarz Algorithms

The first non-iterative algorithm we describe is due to [KU3, KU5, KU6, ME6].
At each time step, this algorithm determines an approximate solution to (9.6)
by solving appropriately chosen problems on p overlapping subdomains. This
algorithm is motivated by the property that the entries (I + α τ A)−1

ij of the
discrete Green’s function decay rapidly away from the diagonal, as τ → 0+.
This suggests using a partition of unity to decompose the forcing term into the
subdomains, and to solve on overlapping subdomains with sufficiently large
overlap, to obtain an approximate solution to a specified accuracy ε.

More specifically, let Ω1, . . . , Ωp form a nonoverlapping decomposition of
Ω into subdomains of size h0. Given an overlap parameter β > 0, for each
subdomain define Ω∗

i ⊃ Ωi as an extended subdomain:

Ω∗
i ≡ {x ∈ Ω : dist(x,Ωi) < β h0} , for 1 ≤ i ≤ p.

Using barrier functions and comparison functions as described in Chap. 15,
it can be shown that for sufficiently small h, the entries (I + α τ A)−1

ij in the
ith row of the discrete Green’s function matrix decay rapidly with increasing
distance between nodes xi and xj . For instance, if b(x) = 0 and c(x) ≥ 0,
given 0 < ε  1, it can be shown that [KU3, KU5, KU6]:∣∣∣((I + α τ A)−1

)
ij

∣∣∣ ≤ ε, when |xi − xj | ≥ c∗
√

τ log(ε−1). (9.8)

As a result, if ri ∈ IRn has support in Ωi then wi = (I + α τ A)−1ri will be
of “small” magnitude at each node xl for which dist(xl, Ωi) ≥ c∗

√
τ log(ε−1):

|(wi)l| = |
∑

j

(
(I + α τA)−1

)
lj

(ri)j | ≤ c̃ ε ‖ri‖,

for some c̃ > 0, i.e., (wi)l will be O(ε). Thus, wi = (I + α τ A)−1ri may
be approximated by vi = RT

i (I + α τ Ai)−1Ri ri where supp(vi) ⊂ Ω∗
i and

Ai ≡ RiART
i and β h0 ≥ c∗

√
τ log(ε−1). To approximate (I +α τ A)−1g̃k, use

the partition of unity to decompose g̃k = r1 + · · ·+ rp with ri = Φi g̃k, where
supp(ri) ⊂ Ωi, and apply the preceding approximation on each term:

(I + α τ A)−1g̃k ≈
p∑

i=1

RT
i (I + α τ Ai)−1Ri ri =

p∑
i=1

RT
i vi,

where we need to solve:

(I + α τ Ai)vi = Riri, for 1 ≤ i ≤ p.

Below, we summarize the non-iterative algorithm of [KU3, KU5, KU6] for
approximately solving (I + α τ A)uk = g̃k = f̃

k − Cuk−1 to accuracy O(ε).
We let wk ≈ uk denote the non-iterative solution at time tk.
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Algorithm 9.3.1 (Noniterative Algorithm of [KU3, KU5, KU6])
Input w0 = u0, {f̃k}
1. For k = 1, . . . , m do:
2. Compute g̃k = f̃

k − Cwk−1

3. Update:

wk =
p∑

i=1

RT
i (I + α τ Ai)−1Ri Φig̃k.

4. Endfor

Output: wk ≈ uk

Parallel implementation of the above algorithm is described in [ME6]. The
following error bound will hold, see [KU3, KU5, KU6].

Lemma 9.8. If the extended subdomains Ω∗
i have overlap of:

β h0 = O(
√

τ log(ε−1)),

then the error will satisfy:

‖wk − uk‖ ≤ O(ε), for 1 ≤ k ≤ m.

Remark 9.9. If b(x) = 0 and c(x) ≥ 0, the resulting scheme will be convergent
for sufficiently small ε. If the original discretization is O(τ2 + h2) accurate,
then for the choice τ = h and ε = h3, the overlap should be approximately
O(

√
h log(h)). While if the original discretization is O(τ + h2) accurate, then

for the choice τ = h2 and ε = h4, the overlap should be O(h log(h)).

We next describe an improved version of the preceding non-iterative
method, see [BL3, CH22]. This algorithm employs the solution uk−1 from
the preceding time to compute an approximation to uk, and is motivated by
the following decay result on the influence of the boundary data as τ → 0+.
The next result is stated for a finite difference discretization on Ω∗

i .

Lemma 9.10. Suppose the following conditions hold.

1. Let b(x) = 0 and c(x) ≥ 0, and let Ω∗
1 , . . . , Ω∗

p have overlap β h0.
2. Let (I + α τ A) be an M -matrix.
3. Let (I + α τ A)uk = g̃k and{

((I + α τ A)vi)l =
(
g̃k
)

l
, for xl ∈ Ω∗

i

(vi)l =
(
uk−1

)
l
, for xl ∈ ∂Ω∗

i .

Then, for sufficiently small h, the following bound will hold:

max
xl∈Ωi

|(u(k))l − (vi)l| ≤ e−(α β h0/
√

τ) max
xl∈∂Ω∗

l

|(uk)l − (uk−1)l|,

for some α > 0 independent of h and τ .

Proof. See [LI7, BL3, CH22] and Chap. 15. ��
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Since maxxl∈∂Ω∗
l
|(uk)l − (uk−1)l| = O(τ), the preceding result can be

applied to estimate the error uk − vi within Ωi as follows:

max
xl∈Ωi

|(uk)l − (vi)l| ≤ C τ e−α β h0/
√

τ .

So if an approximate solution is desired to accuracy ε in Ωi, we must choose
the overlap β h0 depending on the time step τ so that:

e−(α β h0/
√

τ) τ ≤ ε =⇒ β h0 ≥ C α
√

τ log(τ/ε).

Thus, if ε = τ(h2 + τ2) = O(τ3), we require β h0 ≥ C α
√

τ log(τ−2). The
algorithm of [BL3, CH22] combines the local solutions vi on each Ωi using the
discrete partition of unity Φ1, . . . , Φp subordinate to {Ωi}. Alg. 9.3.2 below
summarizes the computation of the approximate solution of:

(I + α τ A)uk = g̃k = f̃
k − C uk−1,

employing the notation wk ≈ uk for the non-iterative solution.

Algorithm 9.3.2 (Noniterative Algorithm of [BL3, CH22])
Input w0 = u0, {f̃k}
1. For k = 1, . . . , m do:
2. Compute g̃k = f̃

k − Cwk−1

3. Compute the residual rk = g̃k − (I + α τ A)wk−1

4. In parallel solve:

wk = wk−1 +
p∑

i=1

Φi RT
i (I + α τ Ai)−1Ri rk.

5. Endfor

Output: wk

A sequential version of the above algorithm may also be employed.

Remark 9.11. In implementations, the contraction factor e−α β h0/
√

τ can be
estimated computationally. On each Ω∗

i ⊃ Ωi, define a subdomain contraction
factor κi as κi ≡ maxxl∈Ωi

|(vi)l|, where vi is the solution to:⎧⎪⎨
⎪⎩

((I + α τ A)vi)l = 0, for xl ∈ Ω∗
i ,

(vi)l = 1, for xl ∈ ∂Ω∗
i ∩ Ω,

(vi)l = 0, for xl ∈ ∂Ω∗
i ∩ ∂Ω.

(9.9)

The global error reduction factor can then be estimated as:

e−α β h0/
√

τ ≤ max{κ1, . . . , κp} < 1,

see Chap. 15.
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9.3.2 Non-Iterative Schur Complement Algorithms

Next, we describe non-iterative Schur complement based algorithms for (9.6).
We describe algorithms of [KU3, KU5, KU6, DA4, DA5, ZH5], and alter-
native heuristic methods. Let Ω1, . . . , Ωp denote a nonoverlapping decom-
position of Ω with interface B. Corresponding to the nodes within these
subregions, we block partition a nodal vector as v =

(
vT

I ,vT
B

)T where

vI =
(
v(1)T

I , . . . ,v(p)T

I

)T

. This yields the following block structure for (9.6)

[
I + ατ AII ατ AIB

ατ ABI I + ατ ABB

][
uk

I

uk
B

]
=

[
g̃k

I

g̃k
B

]
, (9.10)

where AII = blockdiag(A(1)
II , . . . , A

(p)
II ). The reduced system for uk

B is:

S(τ)uk
B = gk

B , (9.11)

where the Schur complement matrix S(τ) and forcing gk
B are:{

S(τ) = (I + α τ ABB) − α2 τ2ABI(I + α τ AII)−1AIB

gk
B = g̃k

B − α τ ABI(I + α τAII)−1 g̃k
I .

An approximate solution to system (9.10) can be obtained non-iteratively by
solving (9.11) approximately using a non-iterative method, yielding wk

B ≈ uk
B .

Using wk
B ≈ uk

B , we may update wk
I ≈ uk

I by solving:

(I + α τ AII)wk
I = g̃k

I − ατ AIBwk
B . (9.12)

Since (I + α τ AII) is block diagonal, this can be implemented in parallel. (It
will be advantageous to expand uk

I = uk−1
I + vk

I and uk
B = uk−1

B + vk
B , to

form the residual equation and determine the updates vk
I and vk

B).

Explicit-Implicit Algorithms. Explicit-implicit methods approximate ei-
ther the Dirichlet data or Neumann flux on each subdomain interface B(i)

using an explicit scheme, while the other components of (ukT

I ,ukT

B )T are
approximated using an implicit scheme. For instance, the algorithm of
[KU3, KU5, KU6] seeks an approximation wk

B ≈ uk
B on the interface B at

time tk by applying a conditionally stable explicit scheme with time step
τe  τ and having the same order temporal accuracy as the original implicit
scheme, with time step τe = τ/Ne. An approximation wk

I of uk
I can then

be obtained by solving (9.12). The resulting solver thus combines stable im-
plicit and explicit discretizations. To reduce computational costs, the explicit
scheme should only be applied to compute the solution at space-time grid
points (xr, tk−1 + l τe) for l = 1, . . . , Ne which lie in the numerical domain of
dependence of nodes in B at time tk = tk−1 +Ne τe. Such a region will be the
union of space-time cones emanating from (xl, tk) towards tk−1 for xl ∈ B.
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If the implicit scheme is 2nd order in τ (such as in Crank-Nicolson), and the
explicit scheme is 1st order (as in forward Euler), we must choose τe = O(τ2)
to preserve the original local truncation error.

An explicit-implicit scheme may also update the Neumann flux on each
subdomain boundary [DA4, DA5, DA6]. We illustrate such a scheme in the
two subdomain case. Suppose uk,(i)

I and uk,(i)
B denote restrictions of uk

I and
uk

B to nodes in Ωi and B(i), then g̃k,(i)
B = ατ A

(i)
BIu

k,(i)
I + (I + ατA

(i)
BB)uk,(i)

B

will represent the local Neumann flux of uk on B(i). If the flux g̃k,(1)
B at time

tk is approximated by averaging the local fluxes of uk−1 on B(i) at time tk−1,
then we may approximate wk,(i)

I ≈ uk,(i)
I and wk,(i)

B ≈ uk,(i)
B as follows:

g̃k,(1)
B ≈ 1

2

∑2
i=1(−1)i+1

(
τ A

(1)
BIw

k−1,(1)
I + (I + ατA

(1)
BB)wk−1,(1)

B

)
[

I + ατ A
(i)
II ατ A

(i)
IB

ατ A
(i)
BI I + ατ A

(i)
BB

][
wk,(i)

I

wk,(i)
B

]
=

[
g̃k,(i)

I

(−1)i+1 g̃k,(1)
B

]
for 1 ≤ i ≤ 2.

A different averaging operator is employed in [DA4, DA5, DA6]. However,
the global error in this scheme deteriorates [DA6]. Alternative conditionally
stable Schur complement predictor-corrector schemes are described in [ZH5].

Remark 9.12. Generally, caution must be exercised in employing power series
expansions of matrix S(τ) to formulate modified schemes, as the following
example illustrates. Note that S(τ) has the following formal expansion in τ :

S(τ) = I + α τ ABB − α2τ2ABIAIB + O(τ3). (9.13)

However, for finite difference discretizations, the diagonal entries in ABB will
be O(h−2) while ABIAIB have entries O(h−4), making formal truncation
not meaningful. If we erroneously “truncate” S(τ) ≈ (I + α τ ABB), we may
obtain the following formal non-iterative “approximation” wk

B ≈ uk
B :

(I + α τ ABB)wk
B = gk

B + α2 τ2ABI(I + α τ AII)−1AIB wk−1
B .

The resulting Scheme will be stable, however, its local truncation error will
be quite large, due to the erroneous truncation. To verify stability, note that:

0 ≤ S(τ) = (I + α τ ABB) − α2 τ2AT
IB(I + α τ AII)−1AIB ≤ (I + α τ ABB)

yielding that (I + α τ ABB)−1 ≤ S(τ)−1 in terms of quadratic forms. Define
F ≡ ατ AT

IB(I + α τ AII)−1. Then the block LU factorization of (I + α τ A):

(I + α τ A) =

[
I 0
F I

][
I + α τ AII 0

0 S(τ)

][
I 0
F I

]T

,
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will yield the following relations between the quadratic forms:

(I + α τ A)−1 =

[
I 0
F I

]−T [
(I + α τ AII)−1 0

0 S(τ)−1

][
I 0
F I

]−1

≥
[

I 0
F I

]−T [
(I + α τ AII)−1 0

0 (I + α τ ABB)−1

][
I 0
F I

]−1

≡ M−1.

Here matrix M−1 defines the block matrix approximation of (I + α τ A)−1.
This will ensure stability of the truncated Schur complement scheme pro-
vided the original scheme is stable, however, this scheme is expected to be
inaccurate. This scheme corresponds to one symmetrized block Gauss-Seidel
iteration for (9.10) with starting guess from the previous time step.

Schur Complement-Operator Splitting Method. We shall next outline
a heuristic non-iterative algorithm for solving the Schur complement system
(9.11) approximately, using the generalized ADI algorithm. The reader is re-
ferred to the next section for a more general discussion of operator splittings
and the generalized ADI algorithm [DO9, PE, DO10, DO12]. The algorithm
we describe will be based on a splitting of the Schur complement matrix S(τ),
motivated by the following algebraic identity:

S(τ) = I + α τ ABB − α2τ2ABI(I + α τ AII)−1AIB

= I + α τ
(
ABB − ABI( I

ατ + AII)−1AIB

)
≡ I + α τ S(τ),

where S(τ) ≡ ABB − ABI( I
α τ + AII)−1AIB . Matrix S(τ) denotes the Schur

complement associated with the symmetric positive definite matrix A(τ):

A(τ) =

[
AII AIB

ABI ABB

]
+

1
α τ

[
I 0
0 0

]
.

Employing the subassembly identity for the Schur complement matrix, based
on the non-overlapping decomposition Ω1, . . . , Ωp of Ω, and decomposing the
interface B into the globs B(1), . . . , B(p), where B(i) = ∂Ωi ∩ Ω, and using
the nodal restriction matrix Ri which maps a vector of nodal values on B to
nodal values on B(i), we obtain a matrix splitting of S(τ) as:

{
S(τ) =

∑p
i=1 RT

i

(
A

(i)
BB − A

(i)
BI(

I
α τ + A

(i)
II )−1A

(i)
IB

)
Ri

≡
∑p

i=1 RT
i S

(i)
(τ)Ri,

(9.14)

where S
(i)

(τ) ≡
(
A

(i)
BB − A

(i)
BI(

I
α τ + A

(i)
II )−1A

(i)
IB

)
. Each matrix S

(i)
(τ) will be

symmetric and positive definite, while Hi ≡ RT
i S

(i)
(τ)Ri will be symmetric
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positive semi-definite. In terms of the matrices Hi, the splitting (9.14) becomes
S(τ) = (H1 + · · ·+ Hp), while the Schur complement system (9.11) becomes:(

I + α τ S(τ)
)

uk
B = (I + α τ (H1 + · · · + Hp))uk

B = gk
B .

The generalized ADI algorithm for approximately solving the above system,
applies one block Gauss-Seidel iteration to (I + α τ (H1 + · · · + Hp)) uk

B = gk
B

using wk−1
B ≈ uk−1

B as a starting guess, as described next in matrix form.
Re-arranging the block terms in (I + α τ (H1 + · · · + Hp)) uk

B = gk
B , will

trivially yield the following equivalent block linear system:⎡
⎢⎢⎢⎢⎣

(I + α τ H1) ατH2 · · · ατHp

ατH1 (I + ατH2) · · · ατHp

...
... . . .

...
ατH1 ατH2 · · · (I + ατHp)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v1

v2

...
vp

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

gk
B

gk
B

...
gk

B

⎤
⎥⎥⎥⎥⎦ , (9.15)

with solution v1 = · · · = vp = uk
B . The generalized ADI method corresponds

to one sweep of a block Gauss-Seidel iteration to solve the above block system,
using v1 = · · · = vp = wk−1

B as a starting guess, and defining wk
B ≡ vp after

the sweep as the approximation to uk
B .

Algorithm 9.3.3 (Schur Complement-ADI Algorithm to Solve (9.11))
Input: w(k−1)

B , gk
B

1. Solve for v1:(
I + α τRT

1 S
(1)

(τ)R1

)
v1 = gk

B −
p∑

j=2

α τ
(
RT

j S
(j)

(τ)Rj

)
wk−1

B .

2. For i = 2, · · · , p, solve for vi:(
I + α τ RT

i S
(i)

(τ)Ri

)
vi = vi−1 + α τ

(
RT

i S
(i)Ri

)
wk−1

B .

3. Endfor

Output: wk
B ≡ vp.

Remark 9.13. Each linear system of the form (I + α τRT
i S

(i)Ri)xi = ri aris-
ing in the generalized ADI algorithm can be solved at the cost of solving one
Neumann problem on Ωi as indicated below. With the exception of the sub-
matrix of (I + α τRT

i S
(i)Ri) corresponding to the nodes on B(i), this matrix

will have the same entries as the identity matrix. This yields (xi)l = (ri)l for
all nodes xl ∈ (B\B(i)). To determine Rixi we need to solve:[

I + α τ A
(i)
II α τ A

(i)
IB

α τ A
(i)
BI I + α τ A

(i)
BB

][
x(i)

I

Rixi

]
=

[
0
Riri

]
.

This can be verified using standard identities for Schur complement matrices.
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Remark 9.14. Rigorous results are not known on how the truncation error of
the preceding non-iterative scheme depends on τ , h and h0, nor on its con-
ditional stability. Heuristically, we expect the truncation error to deteriorate
as the subdomain size h0 → 0. As with all non-iterative solvers, care must
be exercised to test the scheme for stability and accuracy in each application.
Alternative fractional step algorithms may also be employed to solve (9.11).

9.3.3 Non-Iterative Operator Splitting Methods

Operator splitting methods [DO9, PE, BA11, LE14, KO, SA5, YA, ST11],
[GL7], such as fractional step and generalized ADI (Alternating Directions
Implicit) methods are classical methods for obtaining an approximate solution
to an evolution equation. Given an evolution equation ut + Lu = f with
initial value u(0) = u0, these methods employ a splitting of the operator L:

L = L1 + · · · + Lq.

Using the splitting, these methods seek an approximate solution to ut+Lu = f
by solving evolution equations of the form wt + Li w = fi for different fi.
If the operators Li in the splitting can be chosen so that wt + Li w = fi

are computationally “simpler” to solve than the original problem, then such
operator splitting methodology may offer computational advantages.

Traditional splittings [DO9, PE] are based on separation of variables.
For instance, the traditional splitting based on a separation of variables for
parabolic equation (9.1) with Lu ≡ − (ux1x1 + ux2x2) and Ω ⊂ IR2 is:

Lu = L1 u + L2 u, where Li u ≡ −uxixi for i = 1, 2.

An implicit discretization of (9.1) will yield the linear system:

(I + α τ A)uk + Cuk−1 + f̃
k
, (9.16)

at each discrete time tk = k τ , where A denotes the discretization of the
elliptic operator L. The operator splitting L = L1 + L2 will yield a matrix
splitting A = A1 + A2, where Ai corresponds to a discretization of Li. For
a traditional finite difference discretization of L on a uniform grid on Ω,
matrix Ai will be tridiagonal for an appropriate ordering of the nodes. In this
case, the parabolic equation wt + Li w = fi will yield a tridiagonal system
with coefficient matrix (I + α τ Ai), and can thus be solved very efficiently.
However, these computational advantages cannot be realized when the grid is
non-uniform or when the underlying elliptic operator is not separable.

Our discussion will focus on domain decomposition operator splittings
based on a partition of unity [VA, VA2, LA3, LA4, MA34]. Given an overlap-
ping decomposition Ω∗

1 , . . . , Ω∗
p of Ω, we let χ1(x), . . . , χp(x) denote a parti-

tion of unity subordinate to the subdomains. Then, an elliptic operator:
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L u = −∇ · (a(x)∇u) + b(x) · ∇u + c(x)u, (9.17)

can be split as Lu = L1 u + · · · + Lp u, where for 1 ≤ i ≤ p:

Li u ≡ −∇ · (χi(x) a(x)∇u) + χi(x)b(x) · ∇u + χi(x) c(x)u. (9.18)

By construction, Li u will have support in Ω∗
i and Lu = L1 u + · · · + Lp u,

since χ1(x) + · · · + χp(x) = 1. Furthermore, when b(x) = 0 and c(x) ≥ 0,
each Li and Ai will be semi-coercive. Unlike splittings based on separation of
variables, however, the truncation error of domain decomposition splittings
can deteriorate as the size of the subdomains h0 → 0.

Fractional Step Methods. This operator splitting method can be motivated
by considering a system of differential equations [BA11, YA, ST11]:

ut + Au = f(t), u(0) = u0, (9.19)

where matrix A is of size n and u(t) ∈ IRn. Using Duhamel’s principle, the
exact solution to this inhomogeneous system of ordinary differential equations
has the following representation involving matrix exponentials:

u(t) = e−A t u0 +
∫ t

0

e−A(t−s)f(s) ds, where e−A t =
∞∑

i=0

(−t)iAi

i!
.

If matrix A can be split as A = A1 + · · · + Aq, then provided the matrices Ai

commute, i.e., AiAj = AjAi for each pair i, j, it will hold that:

e−A t = e−(A1+···+Aq) t = e−A1 t · · · e−Aq t.

If it is simpler to compute the action of e−Ai t than the action of e−A t, then
this representation will yield a sequential algorithm for solving (9.19).

Generally, the matrices Ai in a splitting will not commute. However, if τ
denotes a time step and t = mτ , it will hold that e−m A τ = e−A τ · · · e−A τ ,
since each term in mτA = τA + · · · + τA commutes. If τ  1 is small, we
may heuristically approximate e−τ A as follows:

e−τ A = e−τ(A1+···+Aq) = e−τA1 · · · e−τAp + o(τ2).

This can be verified by substituting A = A1 + · · ·+ Aq into the formal power
series expansion for e−A τ and grouping terms. The first order fractional step
method is motivated by this property. From a matrix viewpoint, an implicit
discretization of (9.19) will yield a linear system of the form:

(I + α τ A)uk + Cuk−1 = f̃
k
, (9.20)

at each discrete time tk. The first order fractional step method approximates
(I + α τ A) by a product of matrices of the form (I + α τ Ai):

(I + α τ A) = (I + α τ A1) · · · (I + α τ Ap) + O(τ2), (9.21)
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which can be verified by formally multiplying all of the terms. The truncation
error in (9.21) will be O(τ2) at each time step, and due to accumulation of
errors, the global error will be 1st order. Substituting (9.21) into (9.20) yields
a modified discretization for wk−1 ≈ uk−1 and wk ≈ uk:

(I + α τ A1) · · · (I + α τ Aq)wk = f̃
k − Cwk−1. (9.22)

An algorithm for determining wk is summarized next.

Algorithm 9.3.4 (First Order Fractional Step Algorithm to Solve (9.22))
Input: wk−1, r1 = f̃

k − C wk−1

1. For i = 1, . . . , q solve:

(I + α τ Ai)zi = ri, and define ri+1 = zi.

Endfor

Output: wk ≡ zq

Remark 9.15. If L and Li are defined by (9.17) and (9.18) respectively, then
the entries of matrix Ai will be zero for nodes outside Ω∗

i , i.e., (Ai)lj = 0 if
xl or xj do not lie in Ω∗

i . As a result, the solution to (I + α τ Ai)zi = ri can
be computed at the cost of solving a subdomain problem:

(
(I + α τ Ai)−1r

)
l
=

{
(r)l, if xl �∈ Ω∗

i(
(Ri(I + α τ Ai)RT

i )−1Rir
)
l
, if xl ∈ Ω∗

i .

where Ri denotes a restriction map from Ω into Ω∗
i .

Approximation (9.22) will be locally 2nd order accurate in τ , however, due
to accumulation of errors [RI] the scheme will be 1st order accurate globally,
provided the modified scheme is stable. The following result concerns the
stability of the 1st order fractional step method.

Lemma 9.16. Suppose each Ai is symmetric and positive semi-definite, with
‖C‖ ≤ 1 in the Euclidean norm ‖.‖. Then, the 1st order fractional step scheme
will be stable with:

‖wk‖ ≤ ‖wk−1‖ + c ‖f̃k‖,
for some c > 0 independent of τ and h.

Proof. Since wk = (I + α τ Aq)−1 · · · (I + α τ A1)−1
(
f̃
k − Cwk−1

)
and since

‖C‖ ≤ 1 in the Euclidean norm, we only need verify that:

‖ (I + α τ Aq)
−1 · · · (I + α τ A1)

−1 ‖ ≤ 1.

However, this will follow since each of the terms (I + α τ Ai) are symmetric
positive definite with eigenvalues greater than 1, so that the Euclidean norms
of their inverses will be bounded by one. ��
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The truncation error of the 1st order fractional step scheme is derived next.

Lemma 9.17. The solution wk of the 1st order fractional step scheme:

(I + α τ A1) · · · (I + α τ Aq)wk = f̃
k − Cwk−1,

will satisfy:

(I + α τ A)wk +
∑q

m=2

(
αmτm

∑
1≤σ1<···<σm≤q Aσ1 · · ·Aσm

)
wk

= f̃
k − Cwk−1.

(9.23)

The local truncation error Tmod of (9.22) will have the following terms in
addition to the terms in the original local truncation error Torig of (9.20):

Tmod = Torig +
q∑

m=2

⎛
⎝αmτm

∑
1≤σ1<···<σm≤q

Aσ1 · · ·Aσm
uk
∗

⎞
⎠, (9.24)

where uk
∗ denotes the restriction of the exact solution of the parabolic equation

to the grid points at time k τ .

Proof. See [DO9, PE, BA11, ST11]. Evaluating the product yields:

(I + α τ A1) · · · (I + α τ Aq)

= I + α τ A +
q∑

m=2

⎛
⎝αmτm

∑
1≤σ1<···<σm≤q

Aσ1 · · ·Aσm

⎞
⎠ .

The proof immediately follows by replacing (I + ατA) in the original dis-
cretization by (I + ατA1) · · · (I + ατAq) and substituting the preceding. ��

Remark 9.18. The preceding result shows that the local truncation error of the
1st order fractional step scheme is O(τ2), resulting in a global error of O(τ)
due to accumulation of errors, see [RI]. Thus, 1st order fractional step methods
will only be suitable for globally 1st order schemes in time, such as backward
Euler, but not for globally 2nd order schemes such as Crank-Nicolson.

To preserve the accuracy of globally 2nd order schemes, a 2nd order frac-
tional step approximation can be employed using Strang splitting [ST11]. We
illustrate this for the matrix splitting A = A1 + A2. Strang splitting approxi-
mates e−α τ A by a third order accurate approximation in τ as follows:

e−α τ A = e−
α τ
2 A1e−α τ A2e−

α τ
2 A1 + O(τ3). (9.25)

This can be verified by substituting power series expansions of each exponen-
tial, observing that the matrices may not commute. Each term e−γ τAi can
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be approximated using the Crank-Nicolson method to yield the following 3rd
order approximation in τ , where the order of the terms is not important:

e−γτAi =
(
I +

γ τ

2
Ai

)−1 (
I − γ τ

2
Ai

)
+ O(τ3).

Substituting such approximations into each of the terms of (9.25), will yield
a locally 3rd order approximation of e−τ A = (I + τ

2 A)−1(I − τ
2 A) + O(τ3).

Lemma 9.19. Consider the update in the Crank-Nicolson discretization of
(9.19):

uk = (I +
τ

2
A)−1(I − τ

2
A)uk−1 +

τ

2
(I +

τ

2
A)−1(fk + fk−1),

where A = A1 +A2 and A1, A2 are symmetric positive semi-definite matrices.
Then, the following approximations will be O(τ3) and unconditionally stable:

(I + τ
2A)−1(I − τ

2A) = H1 H2 H1 + O(τ3)
(I + τ

2A)−1 τ
2 (fk + fk−1) = τ

2 (I + τ
2A2)−1(I + τ

2A1)−1 (fk + fk−1) + O(τ3),

where H1 = (I + τ
4A1)−1(I − τ

4A1) and H2 = (I + τ
2A2)−1(I − τ

2A2).

Proof. We leave the proof to the reader. ��

Remark 9.20. Strang splittings require more linear systems to be solved than
first order fractional step methods. It can be formulated for multiple splittings
A = A1+· · ·+Aq by recursive use of two matrix splittings, where Ai = AT

i ≥ 0:

(I + τ
2A)−1(I − τ

2A) = H1 · · ·Hq−1HqHq−1 · · ·H1 + O(τ3)

(I + τ
2A)−1 τ

2 (fk + fk−1) = τ
2 (I + τ

2Aq)−1 · · · (I + τ
2A1)−1

(fk + fk−1) + O(τ3),

where Hq ≡ (I + τ
2Aq)−1(I − τ

2Aq) and Hi ≡ (I + τ
4Ai)−1(I − τ

4Ai) for i �= q.
This will be unconditionally stable, but in practice, the generalized alternating
directions implicit method, as described next, will be preferable. It generates
smaller truncation errors and requires fewer systems to be solved. However,
it may not be unconditionally stable without additional assumptions.

Generalized Alternating Directions Implicit (ADI) Method. This
classical operator splitting method [DO9, PE, DO10, DO12] formally yields
3rd order local truncation error in τ , and can be applied to approximate any
implicit time stepped scheme. However, the modified scheme may only be
conditionally stable. Our discussion will consider the following discretization:

(I + α τ A)uk = g̃k ≡ f̃
k − Cuk−1, (9.26)

with A = A1 + . . . + Aq, where Ai are symmetric positive semi-definite
matrices.
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To motivate the generalized ADI method, we substitute the matrix split-
ting A = A1 + . . .+Aq into (9.26) and rearrange terms to obtain the following
block linear system whose block rows are each equivalent to (9.26) for the
choice v1 = · · · = vq = uk:

⎡
⎢⎢⎢⎢⎣

(I + ατA1) ατA2 · · · ατAq

ατA1 (I + ατA2) · · · ατAq

...
... . . .

...
ατA1 ατA2 · · · (I + ατAq)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v1

v2

...
vq

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

g̃k

g̃k

...

g̃k

⎤
⎥⎥⎥⎥⎥⎦ . (9.27)

The generalized ADI method can be obtained by applying one sweep of a block
Gauss-Seidel iteration to solve the above system, using v1 = · · · = vq = wk−1

as a starting guess, and defining wk ≡ vq as the approximate solution.
The block Gauss-Seidel iterates with starting guess wk−1 will satisfy:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(I + ατA1)v1 +
∑q

j=2 ατAjwk−1 = g̃k

...∑i−1
j=1 ατAjvj + (I + ατAi)vi +

∑q
j=i+1 ατAjwk−1 = g̃k

...∑q−1
j=1 ατAjvj + (I + ατAq)vq = g̃k.

Moving known quantities on the left hand side to the right, subtracting each
block equation from its preceding, and solving yields the following algorithm
for approximately solving (I + ατA)wk = g̃k using starting guess wk−1.

Algorithm 9.3.5 (Generalized ADI Algorithm to Solve (9.26))
Input: wk−1 ≈ uk−1

1. Solve for v1:

(I + ατA1)v1 = g̃k −
q∑

j=2

ατAjwk−1.

2. For i = 2, · · · , q, solve for vi:

(I + ατAi)vi = vi−1 + α τ Aiwk−1.

3. Endfor

Output: wk ≡ vq ≈ uk.

Remark 9.21. The generalized ADI algorithm requires the solution of q linear
systems, each with a coefficient matrix of the form (I +ατAi) of size n. If the
entries of Ai are zero for nodes outside Ω∗

i , then each such linear system can
be reduced to a smaller linear system involving only the unknowns in Ω∗

i . If
Ω∗

i is the union of disjoint subdomains of the same color, then problems on
disjoint subregions can be solved in parallel, see Fig. 9.1.
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Stability of the generalized ADI method is analyzed in [DO12].

Lemma 9.22. If the matrices Ai are symmetric, positive semi-definite for
i = 1, · · · , q, if C is symmetric, and if Ai and C commute pairwise, then the
generalized ADI scheme will be unconditionally stable. In the non-commuting
case, if q = 2 and if the matrices Ai are symmetric positive semi-definite, and
if ‖ · ‖ is any norm in which the original scheme (9.26) is stable, then the
generalized ADI scheme will be stable in the norm ‖|u‖| ≡ ‖(I + ατA2)u‖.
For q ≥ 3, if the matrices Ai are positive semi-definite, then the generalized
ADI scheme will be conditionally stable.

Remark 9.23. In the non-commuting case, examples are known for q ≥ 3 of
positive semi-definite splittings for which the generalized ADI method can
loose unconditional stability [DO12]. However, the above stability results are
a bit pessimistic and instability is only rarely encountered in practice.

The truncation error of the generalized ADI method is described next.

Lemma 9.24. Let Torig denote the truncation error of the original scheme:

(I + ατA)uk + Cuk−1 = f̃
k
.

The solution wk of the generalized ADI method will solve:

(I + ατA)wk +
∑q

m=2

(
αmτm

∑
1≤σ1<···<σm≤q Aσ1 · · ·Aσm

(
wk − wk−1

))
+ Cwk−1 = f̃

k
,

(9.28)
thereby introducing additional terms in the local truncation error:

TADI = Torig +
q∑

m=2

⎛
⎝αmτm

∑
1≤σ1<···<σm≤q

Aσ1 · · ·Aσm

(
uk
∗ − uk−1

∗
)⎞⎠,

(9.29)
where uk

∗ denotes the restriction of the exact solution to the parabolic equation
to the grid points at time tk.

Proof. See [DO12]. Step 2 of the generalized ADI method yields that:

(I + ατAi) (vi − wk−1) = vi−1 − wk−1, for 2 ≤ i ≤ q.

Recursively applying this, we deduce that:

(I + ατA2) · · · (I + ατAq) (vq − wk−1) = (v1 − wk−1). (9.30)

Now, step 1 of the generalized ADI algorithm yields that:
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(I + ατA1)(v1 −wk−1) = f̃
k −Cwk−1 − (I + ατA1)wk−1 −

∑q
j=2 ατAjwk−1

= f̃
k − Cwk−1 − (I + ατA)wk−1.

(9.31)
Multiplying equation (9.30) by (I + ατA1) and substituting (9.31) for the
resulting right hand side yields:

(I + ατA1) · · · (I + ατAq) (vq − wk−1) = f̃
k − Cwk−1 − (I + ατA)wk−1.

(9.32)
Using that wk = vq and noting that:

(I + ατA1) · · · (I + ατAq)

= I + ατA +
q∑

m=2

αmτm

⎛
⎝ ∑

1≤σ1<···<σm≤q

Aσ1 · · ·Aσm

⎞
⎠ ,

yields equation (9.28), which is the desired result. ��

Remark 9.25. The preceding truncation error term is estimated in Lemma 9.27
for domain decomposition operator splittings.

Domain Decomposition Operator Splittings. Here, we describe proper-
ties of domain decomposition splittings [VA, VA2, DR5, LA3, LA4, MA34].
To construct a partition of unity, we shall employ the following notation. Let
Ω1, . . . , Ωp denote a non-overlapping decomposition of Ω into p subdomains
of size h0. We shall construct an overlapping covering Ω̂∗

1 , . . . , Ω̂∗
p of Ω having

overlap β h0, by enlarging each subdomain Ωk to Ω̂∗
k to include all points in Ω

within a distance β h0 > 0 of Ωk as in Fig. 9.1. We then group the overlapping
subdomains into a small number q  p, of colors so that any two subdomains
of the same color are disjoint, see Fig. 9.1. We denote the colored subdomains
as Ω∗

1 , . . . , Ω∗
q where each Ω∗

i is the union of several disjoint subdomains Ω̂∗
l .

Multi-coloring reduces the number of operators in a splitting.

Ω1

Ω5

Ω9

Ω13

Ω2

Ω6

Ω10

Ω14

Ω3

Ω7

Ω11

Ω15

Ω4

Ω8

Ω12

Ω16

Non-overlapping subdomains

Ω̂∗
1

Ω̂∗
9

Ω̂∗
3

Ω̂∗
11

A colored subdomain Ω∗
1

Fig. 9.1. Multicolored subdomains
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Once an overlapping collection or multicolored subdomains have been con-
structed, a piecewise smooth partition of unity χ1(x), . . . , χq(x) subordinate
to Ω∗

1 , . . . , Ω∗
q can be constructed as follows:

1. For x ∈ Ω∗
k , let ωk(x) denote the distance of x to the boundary ∂Ω∗

k ∩Ω:

ωk(x) =
{

dist(x, ∂Ω∗
k ∩ Ω), for x ∈ Ω∗

k

0, for x �∈ Ω∗
k .

By construction 0 ≤ ωk(x) will be continuous and zero outside Ω
∗
k.

2. Define χk(x) by normalizing the ωk(x) so that its sum equals 1:

χk(x) ≡ ωk(x)∑q
j=1 ωj(x)

, for 1 ≤ k ≤ q.

The functions χ1(x), . . . , χq(x) will be continuous and piecewise smooth.

Remark 9.26. Alternatively, any other choice of sufficiently smooth functions
ωk(x) positive in Ω∗

k and vanishing outside Ωk
∗

can be employed.

The preceding partition of unity functions χk(x) will satisfy:⎧⎪⎨
⎪⎩

0 ≤ χk(x) ≤ 1, for 1 ≤ k ≤ q

supp(χk(x)) ⊂ Ω
∗
k, for 1 ≤ k ≤ q

χ1(x) + · · ·χq(x) = 1, in Ω.

For computational purposes, we have considered partition of unity functions
χk(x) which are continuous and piecewise smooth. Smoother partition of unity
functions (such as in C∞(Ω)) can also be constructed, see [ST9].

Given a partition of unity χ1(x), . . . , χq(x) subordinate to Ω∗
1 , . . . , Ω∗

q , a
domain decomposition splitting Lu = L1u + · · · + Lqu of an elliptic operator
Lu = −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u can be constructed as follows:{

Lku = −∇ · (ak(x, y)∇u) + bk(x) · ∇u + ck(x)u(x), where
ak(x) ≡ χk(x) a(x) ≥ 0, bk(x) ≡ χk(x)b(x), ck(x) ≡ χk(x) c(x).

Given a discretization Au of Lu, we formally define Ai u as the discretization
of Li u, so that A = A1 + · · · + Aq, with (Ai)lj = 0 for nodes xl, xj ∈ Ω\Ω∗

i .
If c(x) ≥ 0 and b(x) = 0, then by construction each Lk and Ak will be
self-adjoint and semi-coercive, and zero outside Ω

∗
i . They can be employed in

fractional step and generalized alternating directions implicit methods.
The following result estimates the truncation error of the generalized ADI

method with domain decomposition splitting [VA, VA2, MA34].
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Lemma 9.27. Let u(x, t) ⊂ C1(Ω × [0, t]) denote the solution of (9.1) with
∂tu(., t) ∈ C2q

0 (Ω), and let a(x) ∈ C2q(Ω). Then, the truncation error Tk
ADI of

the generalized ADI method with domain decomposition splitting will satisfy:

‖Tk
ADI‖ ≤ ‖Tk

orig‖ + K(τ, β h0, u) τ3,

where Torig is the truncation error of the original scheme (9.44) and:

K(τ, β h0, u) ≡
(

1
(β h0)3

+
τ

(β h0)5
+ · · · + τ q−2

(β h0)2q−1

)
sup
[0,t]

‖∂tu‖C2q(Ω),

estimates the truncation error due to non-iterative approximate solver. If the
ADI scheme is stable, then the error ek

ADI = wk − u∗(k τ) will satisfy:

‖ek
ADI‖ ≤ ‖ek

orig‖ + K(τ, β h0, u) τ2. (9.33)

Proof. See [VA, VA2, MA34]. ��

Remark 9.28. The preceding result indicates that the accuracy of the ADI-
domain decomposition splitting method can deteriorate as β h0 → 0+ or if
the exact solution u(., .) is not sufficiently smooth. However, for sufficiently
smooth u(., .) and fixed overlap, the additional error due to the non-iterative
solver will be O(τ2) globally. Alternative non-iterative domain decomposition
solvers are described in [DR5, DA4, DA5, LA3, LA4, ZH5].

9.4 Parareal-Multiple Shooting Method

The parareal method is a parallel-in-time iterative method for solving a dissi-
pative evolution equation based on a decomposition of its time domain [LI3].
Given a dissipative equation ut + Lu = f posed on a time interval [0, T ] with
initial value u(0) = u0, the parareal method decomposes the interval into p
sub-intervals [Ti−1, Ti] for 1 ≤ i ≤ p with 0 = T0 < T1 < · · · < Tp = T and
determines the solution at the times Ti for 1 ≤ i ≤ p using a multiple-shooting
technique which solves the evolution equation on each interval in parallel.
To speed up the multiple shooting iteration, the residual equations are “pre-
conditioned” by solving a “coarse” time-grid discretization of the evolution
equation using a time-step |Ti − Ti−1|, see [LI3, MA6, CH20]. The resulting
algorithm is parallel, with coarse granularity, and suited for application to
time dependent optimal control problems, see [MA7].

We shall describe the parareal method for solving parabolic equation (9.1)
on Ω × (0, T ) discretized by an unconditionally stable θ-scheme in time and a
finite difference discretization in space. From a matrix viewpoint, the result-
ing algorithm can be viewed as a Schur complement algorithm [GA7, AS]
with an appropriately chosen “coarse time-grid” preconditioner, however,
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the truncated algorithm can also be regarded as a predictor-corrector time-
discretization of the underlying parabolic equation, see [LI3, MA6, FA4]. We
shall decompose [0, T ] into p uniform sub-intervals [Ti−1, Ti] for 1 ≤ i ≤ p:

Ti = i∆T for 0 ≤ i ≤ p, and ∆T ≡ T

p
. (9.34)

We partition each interval [Ti−1, Ti] into m sub-intervals with step size τ :

τ ≡ ∆T

m
=

T

p m
and tl = l τ for 0 ≤ l ≤ pm. (9.35)

We express the θ-scheme (9.45) for (9.1) compactly as:

−F uk−1 + uk = g̃k, for 1 ≤ k ≤ pm, with u0 = Ihu0, (9.36)

where matrix F of size n and g̃k ∈ IRn are defined by:

F = (I + θ τA)−1(I − (1 − θ) τ A) and g̃k ≡ (I + θ τ A)−1f̃
k
, (9.37)

and n denotes the number of nodal unknowns in Ω. This corresponds to:
⎡
⎢⎢⎢⎢⎣

I 0
−F I

. . . . . .

0 −F I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u0

u1

...
up m

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Ihu0

g̃1

...
g̃p m

⎤
⎥⎥⎥⎥⎦ , (9.38)

which is a block lower bi-diagonal system of equations for u0, . . . ,up m. Since it
is lower block diagonal, it can be solved by marching in time. At each time step
tk = k τ , an application of F requires solving a linear system with coefficient
matrix (I + θ τ A). For unconditional stability, we choose 1

2 ≤ θ ≤ 1.
Given a temporal decomposition [Ti−1, Ti] of [0, T ] for 1 ≤ i ≤ p, we

partition the unknowns in {uk}p m
k=0 as interior and boundary nodal vectors,

where the “boundary” denotes the union of all endpoints of the time intervals
[Ti−1, Ti] for 1 ≤ i ≤ p. We shall employ the following block nodal vectors:

u(i)
I =

⎡
⎢⎢⎢⎢⎢⎣

u(i−1)m+1

...

...
ui m−1

⎤
⎥⎥⎥⎥⎥⎦ for 1 ≤ i ≤ p, uI =

⎡
⎢⎢⎢⎢⎢⎢⎣

u(1)
I

...

...

u(p)
I

⎤
⎥⎥⎥⎥⎥⎥⎦

, and uB =

⎡
⎢⎢⎢⎢⎣

u0

um

...
up m

⎤
⎥⎥⎥⎥⎦ .

Similarly, we define nodal vectors g̃(i)
I , g̃I and g̃B for the forcing term g̃

in (9.38). By construction u(i)
I ∈ IR(m−1)n, uI ∈ IRp(m−1)n and uB ∈ IRn(p+1),
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and similarly for the forcing terms. Based on the block partition uI and uB ,
we shall block partition the evolution block matrix system (9.38) as:[

EII EIB

EBI EBB

][
uI

uB

]
=

[
g̃I

g̃B

]
, (9.39)

where the block matrices EII , EIB , EBI and EBB are defined as:

EII ≡

⎡
⎢⎢⎢⎣

E
(1)
II 0

. . .

0 E
(p)
II

⎤
⎥⎥⎥⎦ , EIB =

⎡
⎢⎢⎢⎢⎢⎢⎣

E
(1)
IB

...

...

E
(p)
IB

⎤
⎥⎥⎥⎥⎥⎥⎦

,

EBI =

⎡
⎢⎢⎢⎢⎢⎢⎣

E
(1)T

BI

...

...

E
(p)T

BI

⎤
⎥⎥⎥⎥⎥⎥⎦

T

, EBB =

⎡
⎢⎢⎣

I 0
. . .

0 I

⎤
⎥⎥⎦,

where each of the above submatrices have the following block structure:

E
(i)
II =

⎡
⎢⎢⎢⎢⎣

I 0
−F I

. . .

0 −F I

⎤
⎥⎥⎥⎥⎦ , E

(i)
IB =

⎡
⎢⎢⎢⎢⎣

Xi0 · · · Xip

0 · · · 0
...

...
0 · · · 0

⎤
⎥⎥⎥⎥⎦ , E

(i)
BI =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 Y0i

0 · · · 0 Y1i

...
...

...
0 · · · 0 Ypi

⎤
⎥⎥⎥⎥⎦ ,

where Xil ≡ −δi (l+1) F for 0 ≤ l ≤ p and Yli = −δl i F for 0 ≤ l ≤ p. Here
δij denotes the Kronecker index function δij = 0 if i �= j and δij = 1 if i = j.
Matrices E

(i)
II , E

(i)
IB and E

(i)
BI are block (m − 1) × (m − 1), (m − 1) × (p + 1)

and (p + 1) × (m − 1) matrices, respectively, with each block of size n × n.
The parareal algorithm solves the discrete evolution equations (9.39) by

solving the reduced Schur complement system for uB using a preconditioner
S0 (which shall be described shortly). Since uB denotes the block vector con-
sisting of the unknown solution at the times T0, . . . , Tp, given uB we can
determine the solution uI at the interior of the time intervals [Ti−1, Ti] by
solving for uI = E−1

II (g̃I − EIBuB) in (9.39). Substituting uI into the second
block row in (9.39) yields the Schur complement system for uB :

S uB = gB where

{
S ≡ (EBB − EBIE

−1
II EIB)

gB ≡ (g̃B − EBIE
−1
II g̃I).

(9.40)

The following is an explicit expression for S = (EBB − EBIE
−1
II EIB).
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Lemma 9.29. Let the matrices EII , EIB, EBI and EBB be as defined earlier.
Then, the Schur complement matrix will have the following expression:

S =

⎡
⎢⎢⎢⎣

I 0
−Fτ I

. . . . . .
0 −Fτ I

⎤
⎥⎥⎥⎦ , with Fτ ≡ Fm, (9.41)

where S is a block (p + 1) × (p + 1) matrix with blocks of size n.

Proof. Employ the following expression for S:[
0

S uB

]
=

[
EII EIB

EBI EBB

][
−E−1

II EIB uB

uB

]
,

where E−1
II =

⎡
⎢⎢⎣

E
(1)−1

II 0
. . .

0 E
(p)−1

II

⎤
⎥⎥⎦ ,

and substitute for EBB , EIB , EBI , and E−1
II using the block matrix identity:

E
(i)
II =

⎡
⎢⎢⎢⎢⎣

I 0
−F I

. . . . . .

0 −F I

⎤
⎥⎥⎥⎥⎦ =⇒ E

(i)−1

II =

⎡
⎢⎢⎢⎢⎣

I 0
F I

...
. . . . . .

Fm−2 · · · F I

⎤
⎥⎥⎥⎥⎦ .

The desired result follows directly. ��

The matrix Fm represents a discrete time approximation of the matrix ex-
ponential e−m τ A. Since mτ = ∆T , we may heuristically approximate e−∆T A

by F∆T obtained by employing a stable θ-scheme with time-step ∆T :

F∆T ≡ (I + θ ∆T A)−1 (I − (1 − θ)∆T A) ≈ e−∆T A ≈ Fτ = Fm.

Substituting this into (9.41) yields the parareal preconditioner S0 for S:

S0 ≡

⎡
⎢⎢⎢⎢⎣

I 0
−F∆T I

. . . . . .

0 −F∆T I

⎤
⎥⎥⎥⎥⎦ .

The error amplification matrix (I − S−1
0 S) will be a contraction in the Eu-

clidean norm for certain θ, and an unaccelerated iteration to solve S uB = gB

with preconditioner S0 will be convergent. The rate will be independent of τ
and ∆T . Below, we summarize the matrix version of the parareal algorithm.
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Algorithm 9.4.1 (Matrix Version of the Parareal Algorithm to Solve (9.39))
Input: g̃I , g̃B and starting guess vB

1. For i = 1, . . . p in parallel solve:

E
(i)
II w(i)

I = g̃(i)
I

2. Endfor
3. Compute gB = (g̃B − EBIwI)
4. For k = 0, 1, . . . until convergence do
5. Compute rB ← (gB − S vB)
6. Solve S0 xB = rB

7. Update vB ← vB + xB

8. Endfor
9. Solve EIIvI = g̃I − EIB vB

Output: vI , vB

Remark 9.30. The notation vB ← vB + rB means that we determine a new
update vB by adding xB to the old vB . In step 1, solving E

(i)
II w(i)

I = g̃(i)
I

corresponds to solving the discretized parabolic equation on [Ti−1, Ti]. Since
E

(i)
II is block lower bi-diagonal, the computational time will be proportional to

(m− 1) solves of a linear system with coefficient matrix (I + θ τ A). In step 5,
the time for computing S vB will be proportional to the time for computing
E−1

II (EIBvB). Since EII is block diagonal with p blocks E
(i)
II , this can be

implemented on p parallel processors in a time proportional to (m− 1) solves
of systems with coefficient matrix (I + θ τ A). In step 6, the solution of S0xB =
rB will be sequential and the computational time will be proportional to the
cost of solving p linear systems with coefficient matrix (I + θ ∆T A). Each
solve of (I +θ ∆T A) may be parellelized using spatial domain decomposition.

The following result estimates ‖I − S−1
0 S‖ in the Euclidean norm [LI3].

Lemma 9.31. Consider the θ-scheme discretization of (9.1) for 1
2 ≤ θ ≤ 1.

Let A = AT > 0, ∆T = (T/p), τ = (T/pm), with F∆T , F and Fτ defined by:⎧⎪⎨
⎪⎩

F∆T ≡ (I + θ ∆T A)−1 (I − (1 − θ) ∆T A)
F = (I + θ τ A)−1 (I − (1 − θ) τ A)
Fτ ≡ Fm.

Let QT AQ = diag(λ1, . . . , λn) denote the spectral decomposition of matrix A,
where QT Q = I. Then, the matrices F∆T and Fτ will be diagonalized by Q with
diag(µ1, . . . , µn) ≡ QT FτQ and diag(α1, . . . , αn) ≡ QT F∆T Q. Furthermore,
the following bounds will hold for the matrices S and S0 defined earlier:

‖I − S−1
0 S‖ ≤ max

1≤i≤n

(
1 − |αi|p
1 − |αi|

)
|µi − αi|, (9.42)
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Proof. The Euclidean norm of ‖I −S−1
0 S‖ will correspond to the square root

of the maximal eigenvalue of (I − S−1
0 S)T (I − S−1

0 S). To estimate this, we
employ the following matrix identity for S−1

0 to obtain:

S−1
0 =

⎡
⎢⎢⎢⎢⎣

I 0
F∆T I

...
. . . . . .

F p
∆T · · · F∆T I

⎤
⎥⎥⎥⎥⎦ =⇒

(
I − S−1

0 S
)

= D

⎡
⎢⎢⎢⎢⎣

0 0
F 0

∆T 0
...

. . . . . .

F p−1
∆T · · · F 0

∆T 0

⎤
⎥⎥⎥⎥⎦ ,

where D ≡ blockdiag(Fτ −F∆T , . . . , Fτ −F∆T ). Here, we have used that since
I and A commute, matrices Fτ = FT

τ > 0 and F∆T = FT
∆T > 0 also commute.

Forming (I − S−1
0 S)T (I − S−1

0 S) yields:

(I − S−1
0 S)T (I − S−1

0 S) = D2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xp−1 · · · F p−2
∆T X1 F p−1

∆T X0 0
...

. . .
...

...
...

X1F
p−2
∆T · · · X1 F∆T X0

...

X0F
p−1
∆T · · · X0F∆T X0

...
0 · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Xl ≡
∑l

i=0 F i
∆T . Since A is diagonalized by matrix Q, each submatrix

of (I − S−1
0 S)T (I − S−1

0 S) will also be diagonalized by Q. So if we define
Q = blockdiag(Q, . . . , Q), then QT (I − S−1

0 S)T (I − S−1
0 S)Q will have diago-

nal submatrices. The maximal eigenvalue of (I−S−1
0 S)T (I−S−1

0 S) will equal
the maximal eigenvalue of QT (I −S−1

0 S)TQQT (I −S−1
0 S)Q, and this can be

estimated using ‖QT (I−S−1
0 S)TQ‖∞ ‖QT (I−S−1

0 S)Q‖∞. Using maximal ab-
solute row sums, and the identity (1+α+α2 + · · ·+αp−1) = (1−αp)/(1−α)
for α �= 1, yields the desired result. ��

The following Corollary shows that ‖I − S−1
0 S‖ ≤ 1

2 for θ = 1.

Corollary 9.32. Let θ = 1 and m ≥ 2. Then, it will hold that ‖I−S−1
0 S‖ ≤ 1

2 .

Proof. Let 0 < xi ≡ τ λi < ∞ denote the i’th eigenvalue of τ A. Since A is
diagonalized by Q, matrices F∆T = (I +mτ A)−1 and Fτ = (I + τ A)−m will
also be diagonalized by Q. The eigenvalues αi and µi of F∆T and Fτ , will be:

αi =
1

(1 + mxi)
and µi =

1
(1 + xi)m

, for 1 ≤ i ≤ p.

Substituting this into the expression (9.42) and simplifying yields:(
1 − |αi|p
1 − |αi|

)
|µi − αi| =

(
(1 + mxi)p − 1

mxi (1 + mxi)p−1

) (
(1 + xi)m − (1 + mxi)
(1 + mxi) (1 + xi)m

)
.
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Employing the binomial expansion, rearranging terms, and simplifying yields:

(
1 − |αi|p
1 − |αi|

)
|µi − αi| =

⎛
⎜⎜⎝
∑p

l=1

(
p
l

)
(m xi)l

mxi (1 + mxi)p−1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∑m
k=2

(
m
k

)
xk

i

(1 + mxi) (1 + xi)m

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
∑p

l=1

(
p
l

)
(mxi)l

(1 + m xi)p

⎞
⎟⎟⎠
⎛
⎜⎜⎝
∑m

k=2

(
m
k

)
xk

i

mxi (1 + xi)m

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
∑p

l=1

(
p
l

)
(mxi)l

(1 + m xi)p

⎞
⎟⎟⎠
⎛
⎜⎜⎝
∑m

k=2

(
m
k

)
xk−1

i

m (1 + xi)m

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝
∑p

l=1

(
p
l

)
(mxi)l

∑p
l=0

(
p
l

)
(mxi)l

⎞
⎟⎟⎠
⎛
⎜⎜⎝
∑m−1

k=1

(
m

k + 1

)
xk−1

i

m
∑m

k=0

(
m
k

)
xk

i

⎞
⎟⎟⎠ .

Since xi > 0, we note that the quotient in the first bracket will be bounded
by 1 by comparing coefficients of xl

i. Similarly, comparing the coefficients of
xl

i in the quotient in the second bracket yields the following upper bound:

max
1≤k≤m−1

(
m

k + 1

)

m

(
m
k

) = max
1≤k≤m−1

(m − k)
m (k + 1)

≤ 1
2
.

This yields the desired result. ��

Remark 9.33. The eigenvalues λi of matrix A ranges from O(1) to O(h−2),
so that the eigenvalues xi = τ λi of τ A will range from O(τ) to O(τ h−2).
If τ = O(h) this range will be from O(h) to O(h−1). In particular, when
λi = O(1), the contraction factor (1 − |αi|p) |αi − µi|/(1 − |αi|) = O(∆T τ).

Remark 9.34. In Alg. 9.4.1, steps 1, step 5 and step 6 are the most expensive
in terms of computational costs. Steps 1 and 5 require the solution of linear
systems with coefficient matrices E

(i)
II in parallel for 1 ≤ i ≤ p, and when p is

large, the total memory requirements can also be significant if implemented
on a shared memory architecture. Step 6 requires the solution of the block
lower bi-diagonal system with coefficient matrix S0, with storage requirement
for vB or rB proportional to n p.
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Remark 9.35. The theoretical bounds in Lemma 9.31 and Coro. 9.32 can be
improved to ‖(I −S−1

0 S)‖ ≤ 0.294, we refer the reader to [LI3, GA7, SC2] for
more general analysis and notation. For Alg. 9.4.1, it is heuristically expected
that the error propagation matrix (I − S−1

0 S) will still be contractive for
1
2 ≤ θ ≤ 1. However, for 1

2 ≤ θ < 1, the contraction factors may depend
on τ, h, ∆T, p. More generally, the implementation of the parareal coarse
preconditioner S0 can use a different choice of θ for F∆T than for F (or Fτ ).

9.5 Theoretical Results

In this section, we describe some background results on the stability and con-
vergence of discretizations of parabolic equations. Following that, we estimate
convergence bounds for a Schwarz preconditioner without a coarse space cor-
rection term. We consider a discretization of the parabolic equation:⎧⎨

⎩
ut + Lu = f, in Ω × (0, t),
u(x, 0) = u0(x), in Ω,
u(x, t) = 0, on ∂Ω × (0, t),

(9.43)

where Lu ≡ −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u has smooth coefficients
satisfying a(x) ≥ a0 > 0 and c(x) ≥ 0 in Ω. In most of our applications, we
shall assume that b(x) = 0, in which case L will be self-adjoint and coercive.
However, several results are also described for b(x) �= 0.

9.5.1 Stability and Convergence of Time-Stepping Schemes

Consider a discretization of (9.43) having the following form:

(I + α τ A)uk + C uk−1 = f̃
k
, (9.44)

where τ > 0 denotes the time step and matrix A denotes a finite difference
discretization of L, where C is a matrix, f̃

k
a forcing term, and α > 0. To be

specific, we shall consider the θ-scheme for 0 ≤ θ ≤ 1:

(I + θ τA)uk − (I − (1 − θ)τA)uk−1 = θ τ fk + (1 − θ) τ fk−1. (9.45)

In this case α = θ, C = − (I − (1 − θ)τA) and f̃
k

= θ τ fk +(1−θ) τ fk−1. The
θ-scheme yields the forward Euler method when θ = 0, the Crank-Nicolson
method when θ = 1/2 and the backward Euler method when θ = 1.

Definition. We define the local truncation error Tk
orig of (9.44) as:

Tk
orig ≡ (I + ατA)uk

∗ + Cuk−1
∗ − f̃

k
, (9.46)

at time tk = k τ , where uk
∗ denotes the restriction of the exact solution u(x, t)

of (9.43) to the spatial grid at time tk.
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Remark 9.36. For instance, if b(x) = 0 and A is a 2nd order accurate spatial
discretization of L, then the θ-scheme in time will yield a local truncation
error of O

(
τ(τ + h2)

)
if θ �= 1

2 and O
(
τ2(τ2 + h2)

)
if θ = 1

2 .

Definition. Discretization (9.44) is said to be stable in a norm ‖ · ‖ if:

‖uk‖ ≤ (1 + c1 τ) ‖uk−1‖ + c2 ‖f̃
k‖, (9.47)

holds with c1, c2 > 0 independent of τ and h for arbitrary f̃
k
. If this holds

without restrictions on τ , the discretization is unconditionally stable. If this
holds only with restrictions on τ , it is said to be conditionally stable.

The next result summarizes the Euclidean norm stability of the θ-scheme
for (9.43) when b(x) = 0 and c(x) ≥ 0. In this case, matrix A = AT > 0.

Lemma 9.37. Consider discretization (9.45) with A = AT > 0, and let ‖ · ‖
denote the Euclidean norm. Then, the following results will hold:

1. For 1
2 ≤ θ ≤ 1, the θ-scheme will be unconditionally stable in ‖ · ‖.

2. For 0 ≤ θ < 1
2 , the θ-scheme will be stable in ‖ · ‖ provided:

τ ≤ 1
(1 − θ) λ1

,

where 0 < λ1 ≤ · · · ≤ λn are the eigenvalues of A.

Proof. The solution uk in the θ-scheme has the representation:

uk = (I + θ τ A)−1 (I − (1 − θ) τ A) uk−1 + (I + θ τ A)−1 f̃
k
.

Since A = AT > 0 is of size n, let A = QΛQT be its eigendecomposition
where Q is an orthogonal matrix and Λ = diag(λ1, . . . , λn). Substituting that
(I + θ τ A) = Q(I + θ τ Λ)QT for θ ∈ [0, 1] and using that ‖Q‖ = ‖QT ‖ = 1 in
the Euclidean norm ‖ · ‖ yields:

‖uk‖ ≤ ‖(I + θ τ Λ)−1(I − (1 − θ) τ Λ)‖ ‖uk−1‖ + ‖(I + θ τ Λ)−1‖ ‖f̃k‖.

The bound ‖(I + θ τ Λ)−1‖ ≤ 1 will hold trivially for θ ≥ 0. To estimate
‖(I + θ τ Λ)−1(I − (1 − θ) τ Λ)‖ substitute that Λ is a diagonal matrix with
diagonal entries 0 < λ1 ≤ · · · ≤ λn. The desired result will follow trivially
from the scalar requirements:∣∣∣∣1 − (1 − θ) τ λi

1 + θ τ λi

∣∣∣∣ ≤ 1, for 1 ≤ i ≤ n,

using that 1 + θ τ λi ≥ 1. ��
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Remark 9.38. The stability bounds in the preceding result will also be valid in
the mesh dependent norm ‖·‖I+α τ A for 0 ≤ α. To verify this, suppose that F
is a matrix which commutes with (I +α τ A), such that F and (I +α τ A) are
simultaneously diagonalized by an orthogonal matrix Q. Let F = QDF QT

and (I + α τ A) = Q(I + α τ Λ)QT . Then, the following will hold:

‖F‖2
I+α τ A = supv �=0

‖Fv‖2
I+α τ A

‖v‖2
I+α τ A

= supv �=0

vT FT (I + α τ A)Fv
vT (I + α τ A)v

= supv �=0

vT DT
F (I + α τΛ)DF v

vT (I + α τ Λ)v

= supv �=0

vT DT
F DF v

vT v
= ‖F‖2,

since the factors (1 + α τ λi) which occur in the numerator and denominator
of the above quotient cancel. Choosing F = (I +θ τ A)−1(I − (1−θ)θτA) and
F = (I + θ τ A)−1 yields stability bounds in ‖ · ‖I+α τ A.

In the following, we shall describe a few Euclidean norm stability results
for implicit discretizations of non-self adjoint parabolic equations (b(x) �= 0)
and for hyperbolic equations (a(x) = 0 and c(x) = 0). We shall decompose
A = H + N with H = H∗ denoting the Hermitian part of A and N = −N∗

the skew-Hermitian part of A, i.e., H = 1
2 (A+A∗) and N = 1

2 (A−A∗), where

X∗ = X
T

denotes the complex adjoint of X, i.e., the complex conjugate of
the transpose. Matrices H and N will be unitarily diagonalizable (though not
simultaneously). If H = H∗ ≥ 0, then the eigenvalues of A will have non-
negative real part (based on its field of values), while the eigenvalues of N
will be pure imaginary. In the non-self adjoint case, the following Euclidean
norm stability result will hold for the backward Euler scheme.

Lemma 9.39. Consider discretization (9.45) for θ = 1 with A = H + N ,
where matrix H = H∗ > 0 and N∗ = −N . Then, the backward Euler scheme
will be unconditionally stable in the (complex) Euclidean norm ‖ · ‖.

Proof. We substitute A = H + N into the backward Euler scheme to obtain:

(I + τ H + τ N)uk = uk−1 + τ fk,

at each discrete time tk = k τ . Matrix (I + τ H) will be Hermitian positive
definite so that (I + τ H)1/2 is well defined. We may thus express:

(I + τ H) + τ N = (I + τ H)1/2 (I + τ Ñ) (I + τ H)1/2,

where Ñ ≡ (I + τ H)−1/2N(I + τ H)−1/2 is skew-Hermitian. Matrices (I +
τ H) and (I + τ Ñ) will be unitarily diagonalizable (although, not simul-
taneously), with eigenvalues of magnitude greater that 1, yielding ‖(I +
τ H)−1/2‖ ≤ 1 and ‖(I + τ Ñ)−1‖ ≤ 1, so that ‖(I + τ A)−1‖ ≤ 1. We shall
thus obtain:
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‖uk‖ ≤ ‖(I + τ A)−1uk−1‖ + τ ‖(I + τ A)−1fk‖
≤ ‖uk−1‖ + τ ‖fk‖.

This verifies the unconditional stability of the backward Euler scheme. ��

Remark 9.40. More generally, if A = H + N = W ΛW−1 is diagonalizable
(where W may not be unitary), with eigenvalues λi = (Λ)ii, then:

(I + θ τ A)−1(I − (1 − θ) τ A) = W (I + θ τ Λ)−1(I − (1 − θ) τ Λ)W−1,

since I, A, and the other terms will be simultaneously diagonalized by W . If
(1 − (1 − θ) τ Re(λi)) ≥ 0, then the eigenvalues will satisfy:

|(1 − (1 − θ) τ λi)/(1 + θ τ λi)| ≤ 1, provided
1
2
≤ θ ≤ 1.

In this case ‖(I + θ τ A)−1(I − (1 − θ) τ A)‖ ≤ ‖W‖ ‖W−1‖. This will not
guarantee Euclidean norm stability of (9.45) since W may not be unitary.
However, when H = 0 (for instance, if a(x) = 0 and c(x) = 0), then W will be
unitary (and (I +τ N) will be diagonalized by W ), yielding that the θ-scheme
for the hyperbolic equation will be unconditionally stable for 1

2 ≤ θ ≤ 1.

We next consider the maximum norm stability of θ-schemes when A is an
M -matrix (and AT �= A). We shall employ the following preliminary results.

Lemma 9.41. Let A be a diagonally dominant M -matrix [VA9, SA2]. Then:

‖ (I + ατA)−1 ‖∞ ≤ 1,

for any α > 0, τ > 0.

Proof. It will be sufficient to show that for any vector w ∈ Rn:

‖w‖∞ ≤ ‖ (I + ατA)w‖∞.

To show this, choose i such that: |(w)i| = ‖w‖∞, and without loss of gen-
erality, assume that (w)i > 0 (otherwise, replace w by −w and repeat the
argument). It will thus also hold that −|(w)j | ≥ −(w)i. Now, since A is an
M -matrix, it will hold that Aii > 0 and Aij ≤ 0 for j �= i. Applying the
preceding properties at index i yields:

(I + ατAw)i = (w)i + ατ
∑

j Aij(w)j

= (w)i + ατAii(w)i + ατ
∑

j �=i Aij(w)j

= (w)i + ατAii(w)i − ατ
∑

j �=i |Aij | (w)j

≥ (w)i + ατAii(w)i − ατ
∑

j �=i |Aij |(w)i

= (w)i + ατ
(
Aii −

∑
j �=i |Aij |

)
(w)i

≥ (w)i,

where the last line holds by the diagonal dominance of A. This yields the
desired result since ‖(I + ατA)w‖∞ ≥ ‖w‖∞. ��
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We next estimate the maximum norm of (I −ατA) with constraints on τ .

Lemma 9.42. Let A be a diagonally dominant M -matrix of size n. Then:

‖I − ατA‖∞ ≤ 1,

provided α > 0 and τ > 0 satisfies:

τ ≤ min
1≤i≤n

1
α Aii

.

Proof. We use the property that:

‖I − ατA‖∞ = max1≤i≤n

(
|(I − ατA)ii| +

∑
j �=i |(I − ατA)ij |

)
= max1≤i≤n

(
|1 − ατAii| +

∑
j �=i |ατAij |

)
= max1≤i≤n

(
|1 − ατAii| − α τ

∑
j �=i Aij

)
= max1≤i≤n

(
1 − ατAii − α τ

∑
j �=i Aij

)
= max1≤i≤n

(
1 − α τ

∑
j Aij

)
≤ 1.

Here, we have used that (1 − ατAii) ≥ 0 to obtain the 4th equality. The last
line follows since

∑
j Aij ≥ 0. ��

As a corollary of the preceding two results, we obtain sufficient conditions
for the maximum norm stability of the θ-scheme.

Lemma 9.43. Let A be a diagonally dominant M -matrix of size n. Then:

1. If 0 ≤ θ < 1, the θ-scheme will be stable in ‖ · ‖∞ provided:

τ ≤ min
1≤i≤n

1
(1 − θ) Aii

. (9.48)

2. If θ = 1, the backward Euler scheme will be unconditionally stable in ‖·‖∞.

Proof. We shall employ the matrix representation of the θ-scheme:

uk = (I + θ τ A)−1 (I − (1 − θ)τ A) uk−1 + (I + θ τ A)−1 f̃
k
,

and estimate ‖uk‖∞ using the triangle inequality:

‖uk‖∞ ≤ ‖ (I + θ τ A)−1 ‖∞ ‖I − (1 − θ) τ A‖∞ ‖uk−1‖∞
+ ‖ (I + θ τ A)−1 ‖∞ ‖f̃k‖∞.

For 0 ≤ θ < 1, an application of Lemma 9.41 and Lemma 9.42 yields:

‖uk‖∞ ≤ ‖uk−1‖∞ + ‖f̃k‖∞, (9.49)

provided (9.48) holds. For θ = 1, the term I−(1−θ) τ A = I and Lemma 9.41
yields bound (9.49). ��
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Lax’s Convergence Theorem. The discretization (9.44) of the parabolic
equation (9.43) will be convergent in a norm ‖ · ‖, if the error satisfies:

‖uk
∗ − uk‖ → 0 as (h, τ) → (0, 0),

where uk
∗ denotes the restriction of the exact solution u(x, t) of (9.43) to the

grid points of Th(Ω) at time tk = k τ . The following result provides sufficient
conditions for convergence, see [RI].

Lemma 9.44. Suppose the following conditions hold.

1. Let discretization (9.44) be stable in a norm ‖ · ‖, satisfying (9.47).
2. Let discretization (9.44) be consistent, satisfying the following:

‖Tk
orig‖ ≤ c3(u) τ(hq1 + τ q2) and ‖e0‖ ≤ c3(u) (hq1 + τ q2),

where c3(u) > 0 is independent of h and τ (but dependent on u).
3. Given t∗ > 0, let k∗ = (t∗/τ).

Then, the error ek ≡ uk
∗ − uk will satisfy:

‖ek‖ ≤ c4(u) t∗ ec1 t∗ (hq1 + τ q2) , for 0 ≤ k ≤ k∗,

where c4(u) = (1 + c2 c3(u)) > 0 is independent of h and τ .

Proof. We describe the proof of sufficiency, see [RI] for necessary conditions.
By definition of the local truncation error, uk

∗ will satisfy:

(I + α τ A)uk
∗ + C uk−1

∗ = f̃
k

+ Tk
orig,

at time tk. On the other hand, the discrete solution uk will satisfy:

(I + α τ A)uk + C uk−1 = f̃
k
.

Subtracting these two equations yields:

(I + α τ A) (uk
∗ − uk) + C (uk

∗ − uk) = Tk
orig, for 1 ≤ k ≤ k∗,

where typically (u0
∗ − u0) = 0. Defining ek ≡ (uk

∗ − uk) as the error vector
and employing stability of the scheme in the norm ‖ · ‖, we obtain that:

‖ek‖ ≤ (1 + c1 τ) ‖ek−1‖ + c2 ‖Tk
orig‖, for 1 ≤ k ≤ k∗.

Applying this bound recursively and using that (1 + c1 τ) ≤ ec1 τ yields:

‖ek‖ ≤ ec1 k τ ‖e0‖ + c2

∑k
i=1 ec1 (k−i) τ‖Tk−i

orig‖
≤ ec1 k τ‖e0‖ + c2

∑k
i=1 ec1 k τ‖Tk−i

orig‖
≤ ec1 k τ‖e0‖ + c2 ec1 k τ k∗ maxi ‖Tk−i

orig‖
≤ ec1 k τ‖e0‖ + c2 c3(u) t∗ ec1 t∗ (hq1 + τ q2) ,
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where we have also used that k∗ τ = t∗. Since the initial error e0 satisfies
‖e0‖ ≤ c3(u) (hq1 + τ q2), we obtain:

‖ek‖ ≤ c4(u) t∗ ec1 t∗ (hq1 + τ q2) ,

where c4(u) ≡ (1 + c2 c3(u)) is independent of h and τ (but depends on the
higher order derivatives of u(x, t)). ��

9.5.2 Convergence Bounds for Time-Stepped Iterative Algorithms

We conclude this section by describing two convergence results on iterative
algorithms for solving an implicit discretization of parabolic equation (9.1).
The first result estimates the convergence rate of a Schwarz iterative algorithm
without coarse space correction for solving a symmetric positive definite sys-
tem of the form (M + τ A)uk = g̃k, obtained by applying an implicit scheme
in time and a finite element discretization in space, when b(x) = 0, c(x) ≥ 0.
Here M is the finite element mass matrix. The second result analyzes the sym-
metric positive definite preconditioner (I + τ H) for solving a non-symmetric
system (I + τ H + τ N)uk = g̃k, obtained by an implicit scheme in time and
a finite difference discretization in space, when b(x) �= 0 and c(x) ≥ 0.

Let Ω1, . . . , Ωp be a non-overlapping decomposition of Ω with subdomains
of size h0, and let Ω∗

1 , . . . , Ω∗
p denote an overlapping decomposition of Ω with

overlap β h0, obtained by extending the non-overlapping subdomains.

Lemma 9.45. Suppose the following conditions hold.

1. Let b(x) = 0, c(x) ≥ 0 and a(x) = aj in Ωj ⊂ Ω∗
j for 1 ≤ j ≤ p.

2. Let Vh denote the continuous piecewise linear finite element space on a
quasi-uniform triangulation Th(Ω) of Ω. Let Vi ≡ Vh ∩ H1

0 (Ω∗
i ).

3. Let H(., .) and M(., .) denote the following bilinear forms:⎧⎪⎨
⎪⎩

H(u, v) ≡
∫

Ω
a(x)∇u · ∇v dx, for u, v ∈ H1

0 (Ω)
M(u, v) ≡

∫
Ω

(1 + τ c(x))u v dx, for u, v ∈ H1
0 (Ω)

MΩ∗
i
(u, v) ≡

∫
Ω∗

i
(1 + τ c(x))u v dx, for u, v ∈ H1

0 (Ω).

Then, given vh ∈ Vh, there exists vi ∈ Vi satisfying:

vh = v1 + · · · + vp,

and a parameter C > 0 independent of h, τ and h0, such that:∑p
i=1 (M(vi, vi) + τ H(vi, vi))

≤ C(1 + τ ‖a‖∞ β2 h−2
0 ) (M(vh, vh) + τH(vh, vh)) .

Proof. See [CA, CA3]. Given vh ∈ Vh, we shall employ Lemma 2.72 from
Chap. 2.5.3 and define vi = Ih (χi(x) vh(x)) where each χi(·) is a partition of
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unity function subordinate to Ω∗
i , and Ih is the nodal interpolation map. If

g0 denotes the maximum number of subdomains Ω∗
j adjacent to a subdomain

Ω∗
i , then equation (2.47) from Lemma 2.72 yields the bound:∑p

i=1 H(vi, vi) ≤ 2g0 H(vh, vh) + 2 g0 Cβ−2h−2
0

∑p
j=1 aj‖vh‖2

L2(Ωj)

≤ 2g0 H(vh, vh) + 2 g0 Cβ−2h−2
0 ‖a‖∞‖vh‖2

L2(Ω)

≤ 2g0 H(vh, vh) + 2 g0 Cβ−2h−2
0 ‖a‖∞M(vh, vh).

(9.50)

We shall next estimate ‖vi‖2
L2(Ω) where vi = Ih(χi vh) has support in Ω∗

i .
We shall employ the property that on each element κ, the elemental mass
matrix Mκ is well conditioned for a quasi-uniform triangulation, i.e., if Iκ

denotes the identity matrix on κ and Ω ⊂ IRd, then there exists 0 < γ1 < γ2

independent of h such that γ1 hd Iκ ≤ Mκ ≤ γ2 hd Iκ holds in the sense of
quadratic forms. Let Rκ denote the nodal restriction map onto nodes in κ,
and let v and vi denote the global nodal vectors associated with vh and vi,
respectively. Then, using the well conditioned property yields that:

‖vi‖2
L2(Ω) =

∑
κ∈Ω∗

i
vT

i RT
κ MκRκvi ≤ γ2 hd

∑
κ∈Ω∗

i
vT

i RT
κ IκRκvi

≤ γ2 hd
∑

κ∈Ω∗
i
vT RT

κ IκRκv,

since each entry of vi is an entry of v multiplied by a factor 0 ≤ χi(·) ≤ 1.
Again applying the well conditionedness of Mκ yields:

‖vi‖2
L2(Ω) ≤ γ2 γ−1

1

∑
κ∈Ω∗

i

vT RT
κ MκRκv = γ2 γ−1

1 ‖v‖2
L2(Ω∗

i ).

Letting γ = (γ2/γ1) we obtain:

1
1+τ‖c‖∞

M(vi, vi) ≤ γ ‖vh‖2
L2(Ω∗

i )

≤ γ MΩ∗
i
(vh, vh).

Assuming τ < 1 and summing the preceding bounds for 1 ≤ i ≤ p yields:

p∑
i=1

M(vi, vi) ≤ g0 γ(1 + ‖c‖∞)M(vh, vh). (9.51)

Combining (9.50) and (9.51) yields:∑p
i=1 (M(vi, vi) + τH(vi, vi))

≤ 2g0 τ H(vh, vh) +
(
g0 γ(1 + ‖c‖∞) + 2g0 C τ ‖a‖∞ β−2h−2

0

)
M(vh, vh),

from which the desired result follows. ��

Remark 9.46. Thus, the partition parameter K0 from Chap. 2.3 satisfies:

K0 ≤ C (1 + τ ‖a‖∞ β−2 h−2
0 ).
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Since the partition parameter K1 (see Chap. 2.3) is bounded independent of
h, h0, τ and a(.), we may combine both bounds to obtain that the convergence
rate of Schwarz algorithms, without coarse space correction, depends primarily
on τ ‖a‖∞ β−2 h−2

0 for implicit discretizations of parabolic equations. Thus,
provided τ ≤ c β2 h2

0, its convergence will be uniform.

We next consider the solution of a non-symmetric time-stepped system.

Lemma 9.47. Suppose the following assumptions hold.

1. Let A = H + N , with HT = H > 0 and N non-symmetric.
2. For 0 ≤ τ let M = (I + τ H) denote a preconditioner for (I + τA).
3. Let τ σmax(N) ≤ δ0 < 1, where σmax(N) = ‖N‖ denotes the maximum

singular value of N and ‖ · ‖ the Euclidean norm.

Then, the following bounds will hold.

1. ‖I − M−1 (I + τA) ‖ ≤ δ0.
2. The GMRES iterates z(k) when solving M−1(I + τA)u = f will satisfy:

‖u − z(k)‖ ≤
(

1 −
(

1 − δ0

1 + δ0

)2
)k

‖u − z(0)‖.

Proof. Since (I + τH)−1(I + τH + τN) = I + τ (I + τH)−1N , we obtain:

‖I − (I + τH)−1(I + τH + τN)‖ = τ ‖(I + τH)−1N‖
≤ τ ‖(I + τH)−1‖ ‖N‖
≤ τ‖N‖
= δ0,

since ‖(I + τH)−1‖ ≤ 1. It thus holds that ‖M−1(I + τ A)‖ ≤ 1 + δ0. Next,
since ‖I − M−1 (I + τA) ‖ ≤ δ0, it will hold that:(

z∗z − z∗M−1(I + τ A)z
)
≤ δ0 z∗z,

so that:
(1 − δ0) z∗z ≤ z∗M−1(I + τ A)z,

which shows that λmin

(
1
2 (M−1(I + τ A) + (I + τ A)∗M−∗)

)
≥ (1 − δ0) > 0.

The bounds for the GMRES iterates follows immediately. ��
Remark 9.48. For a finite difference discretization, Hu will correspond to a
discretization of −∇·(a(x)∇u) and Nu the discretization of b(x) ·∇u+c(x)u.
In this case, it will hold that HT = H > 0, and ‖N‖ = σmax(N) ≤ c1 h−1 for
some c1 > 0 independent of h. Thus, if τ ≤ c h, then (I + τ H) will be an
effective preconditioner for (I + τ A).

Remark 9.49. In applications, the symmetric positive definite preconditioner
(I + τH) may be replaced by an appropriate symmetric domain decomposi-
tion preconditioner, provided the time step τ satisfies c1 τ h−1 = δ0 < 1.
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Saddle Point Problems

Saddle point problems are associated with constrained optimization problems.
The search for the minimum u of an objective functional J(v) in IRn subject
to m constraints B(v) − g = 0 can be transformed into a search for the
saddle point (u,µ) (i.e., a critical point which is not a local optimum) of
the associated Lagrangian functional L(v,η) = J(v)+ηT (B(v)−g). Here, the
introduced variables η ∈ IRm are referred to as Lagrange multipliers, and the
search for the saddle point of L(., .) is unconstrained.

The problem that we shall consider will seek to minimize the quadratic
objective functional J(v) ≡ 1

2v
T Av − vT f defined in IRn, subject to m < n

linear constraints Bv = g, where A = AT is positive semi-definite matrix of
size n and B is a full rank matrix of size m × n. The Lagrangian functional
L(v, η) = J(v)+ηT (Bv−g) is associated with this constrained minimization
problem, where η ∈ IRm denotes the Lagrange multipliers. The first derivative
test for a critical point (u, µ) of L(., .) yields the indefinite linear system:[

A BT

B 0

] [
u
µ

]
=
[
f
g

]
(10.1)

which is referred to as a saddle point linear system. By construction, u will
minimize J(v) within the constraint set satisfying Bv = g.

Our focus in this chapter will be on iterative algorithms for solving (10.1).
Chap. 10.1 describes various properties of saddle point systems. Chap. 10.2
introduces the duality formulation and Uzawa’s algorithm. Chap. 10.3 de-
scribes the penalty and regularization method for obtaining an approximate
solution. Chap. 10.4 describes projection methods. Chap. 10.5 describes block
matrix preconditioners and Krylov algorithms. Applications to Navier-Stokes
equations, mixed formulations of elliptic equations, and to optimal control
problems, are described in Chaps. 10.6, 10.7 and 10.8, respectively. For
a more detailed discussion of saddle point problems, readers are referred
to [CI4, GI3, BE12].
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10.1 Properties of Saddle Point Systems

In this section, we shall describe properties of the saddle point system:[
A BT

B 0

] [
u
µ

]
=
[
f
g

]
, (10.2)

where A = AT is a positive semi-definite matrix of size n, and B is a full rank
matrix of size m×n with m < n, with u, f ∈ IRn and µ, g ∈ IRm. We discuss
the solvability of saddle point systems, and the distribution of its eigenvalues.
See [CI4, GI3, BE12] for a more detailed discussion of saddle point problems.

10.1.1 Constrained Minimization Formulation

The following result [CI4, GI3] describes how linear system (10.2) arises as a
necessary condition for determining the minimum of the functional J(·):

J(v) ≡ 1
2
vT Av − vT f , (10.3)

within the constraint set Bv = g. The additional variables µ ∈ IRm in (10.2),
referred to as Lagrange multipliers, arise when enforcing first order conditions
for the minimization of J(·) within the constraint set Bv = g. We define
Kg ⊂ IRn and K0 ⊂ IRn as the following convex constraint sets:

Kg = {v ∈ IRn : Bv = g}
K0 = {v ∈ IRn : Bv = 0} = Kernel(B),

(10.4)

defined by the linear constraints Bv = g and Bv = 0, respectively.

Lemma 10.1. Suppose the following conditions hold.

1. Let u denote the solution of the constrained minimization problem:

J(u) = min
v∈Kg

J(v) (10.5)

2. Let B be a matrix of full rank m.

Then, there will exist a vector µ ∈ IRm such that:[
A BT

B 0

][
u
µ

]
=

[
f
g

]
. (10.6)

Proof. To verify the first block row of (10.6) consider the curve x(t) = u+ tv
for t ∈ IR, for arbitrary v ∈ K0. By construction x(t) ∈ Kg and passes through
u when t = 0. Since the minimum of J (·) within Kg is attained at u and since
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x(0) = u with x(t) ⊂ Kg, the function J (x(t)) must attain its minimum when

t = 0. Applying the derivative test and substituting that dx(t)
dt

∣∣∣
t=0

= v yields:

dJ(x(t))
dt

∣∣∣
t=0

= 0, ∀v ∈ K0 ⇔ ∇J (u) · v = 0, ∀v ∈ K0

⇔ ∇J (u) ⊥ Kernel(B)

⇔ ∇J (u) ∈ Kernel(B)⊥

⇔ ∇J (u) ∈ Range(BT ).

Since we may represent any vector in Range(BT ) in the form −BT µ for some
µ ∈ IRm (the negative sign here is for convenience), we obtain that:

∇J (u) = Au − f = −BT µ, for some µ ∈ IRm,

which yields the first block row of (4.22). The second block row of (10.6) holds
since u ∈ Kg, yielding Bu = g. ��

Definition 10.2. The components µi of µ = (µ1, . . . , µm)T are referred to
as Lagrange multipliers. A functional L(v, λ), referred to as a Lagrangian
function, is associated with (10.2):

L(v, λ) ≡
(

1
2
vT Av − vT f

)
+ λT (Bv − g) . (10.7)

It is easily verified that linear system (10.2) arises from the first order deriva-
tive test for a critical point (u,µ) of L(·, ·):{ ∂L

∂v

∣∣
(u,µ)

= Au + BT µ − f = 0
∂L
∂λ

∣∣
(u,µ)

= Bu − g = 0.

In § 5.2, it is shown that (u, µ) corresponds to a saddle point of L(v, λ), i.e.,

L(u,λ) ≤ L(u, µ) ≤ L(v, µ), ∀v ∈ IRn, λ ∈ IRm.

This property motivates the name saddle point system for (10.2).

10.1.2 Well-Posedness of the Saddle Point System

We shall now consider the solvability and well posedness of system (10.2), and
provide estimates for the Euclidean norm of its solution. For simplicity, we
shall assume that matrix A is positive definite and that matrix B has full rank.
When matrix A is positive semidefinite, system (10.2) will still be uniquely
solvable, provided A is positive definite within the subspace K0 = Kernel(B),
see [GI3]. In this case, the solution to (10.2) may be sought using an augmented
Lagrangian approach [GL7] described in Chap. 10.2, the projection approach
from Chap. 10.4, or the FETI approach [FA14] from Chap. 4.
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Lemma 10.3. Suppose the following conditions hold.

1. Let A be symmetric positive definite of size n.
2. Let matrix B of size m × n have full rank m, with m < n.
3. Let S ≡ (BA−1BT ) denote a Schur complement matrix.

Then system (10.2) will be nonsingular with solution (u,µ) satisfying:{
‖u‖ ≤

(
‖A−1f‖ + ‖A−1BT S−1BA−1f‖ + ‖A−1BT S−1g‖

)
‖µ‖ ≤

(
‖S−1BA−1f‖ + ‖S−1g‖

)
,

where ‖ · ‖ denotes the Euclidean norm.

Proof. Since A is nonsingular, solving for u in terms of µ using the first block
row of (10.2) yields u = A−1

(
f − BT µ

)
. Substituting this expression for u

into the second block row of (10.2), yields S µ = (BA−1f − g). Since A is
nonsingular and B is of full rank, S will be nonsingular (see Lemma 10.11 for
bounds on the eigenvalues of S), yielding the bound:

‖µ‖ ≤
(
‖S−1B A−1f‖ + ‖S−1g‖

)
.

Substituting the expression for µ into u = A−1
(
f − BT µ

)
and estimating:

‖u‖ ≤
(
‖A−1f‖ + ‖A−1BT S−1BA−1f‖ + ‖A−1BT S−1g‖

)
.

This completes the proof. ��

Remark 10.4. In our applications, A−1, S−1, A−1BT S−1BA−1, A−1BT S−1

and S−1BA−1 will have bounds independent of h in the Euclidean norm.

Remark 10.5. System (10.6) will be solvable even if A is singular, provided A
is coercive within the subspace K0 and matrix B has rank m. Under these
assumptions, the solution to (10.6) can be determined in three steps. In the
first step, solve the 2nd block row of (10.6) to determine any w ∈ IRn such
that B w = g. For instance, we may seek w = BT γ for γ ∈ IRm and solve
(BBT )γ = g, where (BBT ) will have full rank. By construction, it will hold
that u0 ≡ (u−w) ∈ K0. In the second step, using the first block row of (10.6),
we seek u0 ∈ K0 satisfying:{

vT
0 Au0 = vT

0

(
f − Aw − BT µ

)
, ∀v0 ∈ K0

= vT
0 (f − Aw) , ∀v0 ∈ K0,

where vT
0 BT µ = (Bv0)T µ = 0. The problem to determine u0 ∈ K0 will be

well posed, since A is coercive within K0. Furthermore, the residual will satisfy
vT

0 (f − A (w + u0)) = 0 for all v0 ∈ K0, yielding that (f − A (w + u0)) ∈ K⊥
0 .

Since K0 = Kernel(B), the fundamental theorem of linear algebra will yield
that (f − A (w + u0)) ∈ Range(BT ). Thus, there must be some µ ∈ IRm such
that (f − A (w + u0)) = −BT µ. To determine µ ∈ IRm, in the third step
multiply the first block row of (10.6) by BT and solve (BBT )µ = BT (f −Au)
for µ. By construction, (w + u0,µ) will solve (10.6).
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In various applications, it will be of interest to employ different norms for
u and µ and to employ estimates in such norms [GI3]. It will be convenient to
formulate saddle point problem (10.6) weakly using bilinear forms. Accord-
ingly, let U and Q denote finite dimensional Hilbert spaces of dimension n
and m respectively, with inner products (., .)U and (., .)Q, and norms ‖ · ‖U
and ‖ · ‖Q, respectively. We shall let U ′ and Q′ denote the dual spaces of U
and Q, respectively, and employ 〈., .〉U and 〈., .〉Q to denote their respective
duality pairings. The following notation shall be employed.

• Given a symmetric bilinear form A(u, v) defined for u, v ∈ U , we define
A : U → U ′ as a linear map associated with it:

〈Au, v〉U = A(u, v), ∀u, v ∈ U .

If u and v denote vector representations of u and v in U , relative to some
chosen basis, then we may represent A(u, v) ≡ vT Au with A = AT .

• Similarly, given a bilinear form B(u, µ) for u ∈ U and µ ∈ Q, we let
B : U → Q′ denote the linear map associated it:

〈Bu, µ〉Q = B(u, µ), ∀u ∈ U , µ ∈ Q.

If u and µ denote vector representations of u ∈ U and µ ∈ Q, then B will
be a matrix of size m× n such that B(u, µ) ≡ µT Bu, in the chosen basis.

• Given f ∈ U ′ and g ∈ Q′ let 〈u, f〉U = uT f and 〈µ, g〉Q = µT g denote
their vector representations.

The weak form of saddle point problem (10.6) will seek u ∈ U and µ ∈ Q:{
A(u, v) + B(v, µ) = 〈f, v〉U , ∀v ∈ U

B(u, η) = 〈g, η〉Q , ∀η ∈ Q.
(10.8)

The solvability of (10.8) will require the coercivity of A(., .) within the subspace
K0 = {v ∈ U : B(v, η) = 0, ∀v ∈ U} and an inf-sup condition for B(., .).

Definition 10.6. We say that the bilinear form B(·, ·) satisfies an inf-sup
condition, if there exists a constant β > 0 such that:

inf
µ∈Q\{0}

sup
u∈U\{0}

B(u, µ)
‖u‖U ‖µ‖Q

≥ β. (10.9)

The inf-sup condition is trivially equivalent to the requirement:

sup
u∈U\{0}

B(u, µ)
‖u‖U

≥ β ‖µ‖Q, ∀µ ∈ Q. (10.10)

For the inf-sup condition to hold, the map B : U → Q′ must be surjective.
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Remark 10.7. If U = Rn and Q = Rm are endowed with standard Euclidean
inner products, and B(u, µ) = µT Bu, then the inf-sup condition requires
Range(B) = Q, i.e., B must have full rank m < n. Furthermore, it requires:

β = σ1(B) > 0,

where σ1(B) denotes the smallest singular value of B.

Remark 10.8. Given a map B : U → Q′, let K0 = Kernel(B) denote:

K0 = {u ∈ U : B u = 0}.

Then, the restricted mapping B : K⊥
0 ⊂ U → Q′ will be one to one. The

inf-sup condition shows that B will also be onto, see [GI3], since:

sup
u∈K⊥

0

B(u, µ)
‖u‖U

≥ β ‖µ‖Q,

otherwise there would be µ ∈ Q for which the right hand side above is zero.
Furthermore, the map B will satisfy:

‖B u‖Q′ ≥ β ‖u‖U , for u ∈ K⊥
0 ,

so that the pseudoinverse of B satisfies ‖B†‖ ≤ 1
β .

The following result derives norm bounds for the solution of (10.8).

Lemma 10.9. Suppose the following conditions hold:

1. Let the symmetric bilinear form A(., .) be coercive in K0 with:

α0 ‖v‖2
U ≤ A(v, v), ∀v ∈ K0,

for some α0 > 0, where K0 = {v ∈ U : B(v, η) = 0, ∀v ∈ U}.
2. Let A(., .) be bounded with |A(u, v)| ≤ α1 ‖u‖U ‖v‖U for some α1 > 0.
3. Let the inf-sup condition hold for B(·, ·) with constant β > 0.
4. Let c > 0 be such that ‖Bu‖Q′ ≤ c ‖u‖U , for all u ∈ U .

Then, the solution (u, µ) ∈ U ×Q of (10.8) will satisfy the bounds:⎧⎨
⎩

‖u‖U ≤ 1
α0

‖f‖U ′ + 1
β

(
1 + α1

α0

)
‖g‖Q′

‖µ‖Q ≤ 1
β

(
1 + α1

α0

)
‖f‖U ′ + α1

β2

(
1 + α1

α0

)
‖g‖Q′ .

Proof. Employ the three steps from Remark 10.5 and estimate the terms. ��
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10.1.3 Eigenvalues of the Saddle Point Matrix

The distribution of eigenvalues of the saddle point matrix L:

L =

[
A BT

B 0

]

can be estimated using energy arguments [RU5]. The convergence rate of
Krylov space algorithms to solve (10.2) will depend on the intervals [a, b]∪[c, d]
containing the eigenvalues of L, where a < b < 0 and 0 < c < d, see [RU5]. In
Chap. 10.5, block matrix preconditioners are described for L.

Theorem 10.10. Let λ be an eigenvalue of L with eigenvector
(
uT ,µT

)T :{
Au + BT µ = λu

Bu = λ µ.
(10.11)

Furthermore, suppose that the following conditions hold:

1. 0 < γ1 ≤ · · · ≤ γn denote the eigenvalues of the n×n matrix A = AT ≥ 0.
2. Let 0 < σ1 ≤ · · · ≤ σm denote the singular values of the m × n matrix B.

Then any eigenvalue λ of L must lie in the union of the intervals:

λ ∈
[
1
2
(γ1 −

√
γ2
1 + 4σ2

m),
1
2
(γn −

√
γ2

n + 4σ2
1)
]
∪
[
γ1,

1
2
(γn +

√
γ2

n + 4σ2
m)
]

,

where 1
2 (γn −

√
γ2

n + 4σ2
1) < 0 and 0 < γ1.

Proof. See [RU5]. Since matrix L is real and symmetric, its eigenvalues and
eigenvectors will be real. Taking an inner product of the first row of (10.11)
with u, and the second row with µ will yield the following expressions:{

uT Au + uT BT µ = λuT u

µT Bu = λ µT µ.
(10.12)

Since L is non-singular, we obtain λ �= 0. Thus, the second row of (10.11)
yields µ = 1

λ B u, and substituting this into the first block row of (10.12)
and multiplying the resulting equation by λ and rearranging terms yields the
following quadratic equation for λ:

λ2 (uT u) − λ (uT Au) − (uT BT Bu) = 0. (10.13)

Since λ �= 0, it can easily be verified that u �= 0. Upper and lower bounds can
be obtained for λ by substituting the following bounds into (10.13):{

γ1 uT u ≤ uT Au ≤ γn uT u
σ1 uT u ≤ uT BT Bu ≤ σm uT u

and solving for λ, as described next.
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(i). To derive a lower bound for λ, when λ > 0, we substitute into (10.13)
that (uT BT Bu) ≥ 0 and (uT Au) ≥ γ1 (uT u) to obtain:

0 ≤ λ2 (uT u) − λ (uT Au) ≤ λ2 (uT u) − λ γ1 (uT u)
= λ (uT u) (λ − γ1) .

Since λ (uT u) > 0 this requires λ ≥ γ1.

(ii). To derive an upper bound for λ when λ > 0, we substitute into (10.13)
that (uT Au) ≤ γn (uT u) and (uT BT Bu) ≤ σ2

m (uT u) to obtain:

0 = λ2(uT u) − λ(uT Au) − (uT BT Bu) ≤ λ2(uT u) − λ γn(uT u) − σ2
m(uT u)

≤
(
λ2 − γn λ − σ2

m

)
(uT u).

Since r1 = 1
2

(
γn −

√
γ2

n + 4σ2
m

)
< 0 and r2 = 1

2

(
γ1 +

√
γ2

n + 4σ2
m

)
are the

roots of the quadratic
(
λ2 − γn λ − σ2

m

)
= (λ − r1)(λ − r2), we obtain that

this polynomial is non-positive in the interval (r1, r2). Since λ > 0, we require:

λ ≤ 1
2

(
γn +

√
γ2

n + 4σ2
m

)
.

(iii). To derive a lower bound for λ when λ < 0, we substitute into (10.13)
that −λ (uT Au) ≥ −λ γ1 (uT u) and − (uT BT Bu) ≥ −σ2

m (uT u) to obtain:

0 = λ2(uT u) − λ(uT Au) − (uT BT Bu) ≥ λ2(uT u) − γ1 λ(uT u) − σ2
m(uT u)

=
(
λ2 − γ1 λ − σ2

m

)
(uT u).

Since r1 = 1
2

(
γ1 −

√
γ2
1 + 4σ2

m

)
< 0 and r2 = 1

2

(
γ1 +

√
γ2
1 + 4σ2

m

)
are the

roots of the quadratic (λ2 −γ1 λ−σ2
m) = (λ− r1)(λ− r2), we obtain that this

polynomial is non-positive for λ ∈ (r1, r2) which yields the requirement:

1
2

(
γ1 −

√
γ2
1 + 4σ2

m

)
≤ λ.

(iv). To derive an upper bound for λ when λ < 0, we substitute into (10.13)
that −λ (uT Au) ≤ −λ γn (uT u) and − (uT BT Bu) ≤ −σ2

1 (uT u) to obtain:

0 = λ2(uT u) − λ(uT Au) − (uT BT Bu) ≤ λ2(uT u) − γn λ(uT u) − σ2
1(uT u)

=
(
λ2 − γn λ − σ2

1

)
(uT u).

Since r1 = 1
2

(
γn −

√
γ2

n + 4σ2
1

)
< 0 and r2 = 1

2

(
γn +

√
γ2

n + 4σ2
1

)
are the

roots of the quadratic (λ2 − γn λ−σ2
1) = (λ− r1)(λ− r2), we obtain that this

polynomial is non-negative for λ < r1or λ > r2. Since λ < 0 this yields:

λ ≤ 1
2

(
γn −

√
γ2

n + 4σ2
1

)
,

which yields the desired bound. ��
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10.1.4 Condition Number of the Schur Complement

Duality and Krylov based algorithms for (10.2) require preconditioners for the
Schur complement matrix S = (BA−1BT ). Here, we discuss its conditioning.

Lemma 10.11. Suppose the following conditions hold:

1. Let bilinear form A(., .) be symmetric and coercive with:

α0 ‖v‖2
U ≤ A(v, v) ≤ α1 ‖v‖2

U , ∀v ∈ U ,

for some α1 > α0 > 0.
2. Let the inf-sup condition hold for B(·, ·) with constant β > 0:

sup
u∈U\{0}

B(u, µ)
‖u‖U

≥ β ‖µ‖Q, ∀µ ∈ Q.

3. Let c > 0 be such that:

‖Bu‖Q′ ≤ c ‖u‖U , ∀u ∈ U .

Then, the Schur complement S = (BA−1BT ) will satisfy:

β2

α1
‖µ‖2

Q ≤
〈
BA−1BT µ, µ

〉
Q ≤ c2

α0
‖µ‖2

Q, ∀µ ∈ Q. (10.14)

Proof. We first verify (10.14). Since bilinear form A(., .) is symmetric and
coercive, it defines an inner product on U , so that A−1 : U ′ → U is bounded.
Employing this yields the following equivalent expression for 〈Sµ, µ〉Q:〈

BA−1BT µ, µ
〉
Q =

〈
A−1BT µ,BT µ

〉
U

=
〈
AA−1BT µ,A−1BT µ

〉
U

= supv ∈U\{0}

〈
AA−1BT µ, v

〉2
U

〈Av, v〉U

= supv ∈U\{0}

〈
BT µ, v

〉2
U

〈Av, v〉U
.

To obtain a lower bound, apply the inf-sup condition:

〈Sµ, µ〉Q = sup
v ∈U\{0}

〈
BT µ, v

〉2
U

〈Av, v〉U
≥ β2

α1
‖µ‖2

Q.

To obtain an upper bound, the third assumption can be employed:

〈Sµ, µ〉Q = sup
v ∈U ′\{0}

〈µ,Bv〉2U
〈Av, v〉U

≤
c2 ‖µ‖2

Q‖v‖2
U

‖v‖2
A

≤ c2

α0
‖µ‖2

Q.

The preceding two bounds verify (10.14). ��
Remark 10.12. The parameters β, c, α0, α1 can be estimated in applications
using results from finite element theory, yielding bound (10.14) for cond(S).



426 10 Saddle Point Problems

10.2 Algorithms Based on Duality

Duality formulations are motivated by a geometric characterization of saddle
points [CI4, GI3]. Heuristically, if (u, µ) is a saddle point of L(., .), then the
“restricted” functional L(v, µ), when considered as a function of v ∈ IRn,
will attain its minimum at u, while the restricted functional L(u, η), when
considered as a function of η ∈ IRm, will attain its maximum at µ. The
saddle point (u, µ) will thus be invariant when L(., .) is optimized within such
“sections” (planes). This suggests an alternate characterization of a saddle
point. Given η ∈ IRm, let vη ∈ IRn denote the minimum of the restricted
functional L(·, η). Then vη can be determined by solving an unconstrained
minimization problem in IRn. As η ∈ IRm is varied, it can be shown that the
functional D(η) ≡ L(vη, η), referred to as the dual functional, will attain its
maximal value at η = µ. Thus, a saddle point of L(., .) can be sought by
maximization of the dual functional D(η) = L(vη,η), which will yield η = µ
as the maximum and (u,µ) = (vµ,µ) as the saddle point.

To elaborate the details, recall our constrained minimization problem:

J(u) = min
v∈Kg

J(v) (10.15)

where J(v) = 1
2v

T Av − vT f and Kg = {v : Bv = g}. We defined L(., .) as:

L(v, η) ≡ J(v) + ηT (Bv − g), (10.16)

where η ∈ IRm denotes the vector of Lagrange multipliers. By construction,
the first derivative test for a critical point of L(., .) yields system (10.2). In
most of the algorithms we describe, we shall assume that A = AT > 0.

Definition 10.13. A point (u, µ) is said to be a saddle point of L(., .) if:

L(u,η) ≤ L(u,µ) ≤ L(v, µ), ∀v ∈ IRn, η ∈ IRm. (10.17)

We associate the following two functionals with the Lagrangian L(., .).

Definition 10.14. We define a dual functional D(·) and a functional E(·):

D(η) ≡ infv L(v,η), ∀η ∈ IRm

E(v) ≡ supη L(v, η), ∀v ∈ IRn,
(10.18)

where it is easily verified that:

E(v) =

{
+∞, if v �∈ Kg

J(v), if v ∈ Kg,

while −∞ < D(η) < ∞. Since L(v,η) is quadratic in v and A = AT > 0, for
each η ∈ IRm the infimum will be attained for some vη ∈ IRn such that:

L(vη,η) = inf
v

L(v,η).
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By construction, for arbitrary v ∈ IRn and η ∈ IRm it will hold that:

D(η) ≤ L(v,η) ≤ E(v).

Since E(v) < ∞ for v ∈ Kg, minimizing over v and maximizing over η
yields:

D(η) = inf
v

L(v,η) ≤ inf
v

E(v) =⇒ sup
η

D(η) ≤ inf
v

E(v) < ∞. (10.19)

If D(µ) = sup D(·) = inf E(·) = E(u), then (u,µ) will be a saddle point.

Lemma 10.15. Let A be symmetric positive definite and B be of full rank.
Then (u, µ) will be a saddle point of L(., .) iff:

min
v∈IRn

E(v) = min
v∈IRn

(
sup

η∈IRm
L(v, η)

)
= max

η∈IRm

(
inf

v∈IRn
L(v, η)

)
= max

η∈IRm
D(η).

(10.20)

Proof. We shall first show that condition (10.20) will hold at a saddle point.
Accordingly, suppose that (u,µ) is a saddle point:

L(u, η) ≤ L(u, µ) ≤ L(v,µ), ∀v ∈ IRn and η ∈ IRm.

Maximizing over η and minimizing over v yields:

E(u) ≤ L(u, µ) ≤ D(µ).

Using property (10.19) at the saddle point yields:

D(µ) ≤ sup
η

D(η) ≤ inf
v

E(v) ≤ E(u) ≤ L(u, µ) ≤ D(µ),

so it follows that D(µ) = E(u) at the saddle point, yielding (10.20).
Next, we consider the converse. Suppose (10.20) holds. Let the minimal

value of E(·) be attained at u:

E(u) = min
v∈IRn

E(v) = min
v∈IRn

(
sup

η∈IRm
L(v, η)

)
.

Similarly, let the maximal value of D(·) be attained at µ:

D(µ) = max
η∈IRm

D(η) = max
η∈IRm

(
inf

v∈IRn
L(v, η)

)
.

Then, condition (10.20) is equivalent to requiring requiring E(u) = D(µ).
Substituting the definitions of E(·) and D(·) yields:

E(u) = sup
η

L(u,η) ≥ L(u,µ) ≥ inf
v

L(v, µ) = D(µ).

Since E(u) = D(µ), we obtain that E(u) = L(u, µ) = D(µ). Thus:

L(u, η) ≤ sup
η

L(u,η) = E(u) = L(u, µ) = D(µ) = inf
v

L(v, µ) ≤ L(v,µ),

for arbitrary v and η, and (u,µ) is a saddle point of L(., .). ��
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Uzawa’s Algorithm. Based on (10.20), the Lagrange multiplier µ at a saddle
point (u, µ) of L(., .) can be sought by maximization of the dual function D(·).
Uzawa’s method is a gradient ascent algorithm with a fixed step size τ > 0
for maximizing D(·), see [AR7, CI4, GI3]. Given an iterate µ(k−1) ∈ IRm,
Uzawa’s method computes an update µ(k) ∈ IRm as follows:

µ(k) = µ(k−1) + τ

[
∂D

∂η

]∣∣∣∣
µ(k−1)

, (10.21)

where the gradient:

[
∂D

∂η

]
≡
[

∂D

∂η1
, . . . ,

∂D

∂ηm

]T

∈ IRm.

Given µ(k), Uzawa’s method constructs an approximation u(k+1) of u as the
argument which minimizes L(v, µ(k)) for v ∈ IRn:

D(µ(k)) = inf
v

L(v,µ(k)) = L(u(k+1), µ(k)),

where index (k + 1) has been used instead of k for convenience. An explicit
expression for ∂D

∂η (µ(k)) can be obtained as described below.

Lemma 10.16. Given µ(k) let u(k+1) denote the minimum:

D(µ(k)) = L(u(k+1),µ(k)) = inf
v

L(v, µ(k)),

where L(v, η) =
(

1
2v

T Av − vT f
)
+ηT (Bv − g). Then, the following will hold:

1. The update u(k+1) will solve:

Au(k+1) = f − BT µ(k). (10.22)

2. The following expression will hold for ∂D
∂η :

[
∂D

∂η

]∣∣∣∣
µ(k)

= Bu(k+1) − g. (10.23)

Proof. Given η ∈ IRm, let vη ∈ IRn denote the minimum:

L(vη, η) = inf
v∈IRn

L(v, η).

Since L(v, η) = ( 1
2v

T Av−vT )+ηT (Bv − g), an application of the first order
derivative test for the minimum yields the following linear system for vη:

Avη = f − BT η.
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Since vη minimizes L(v, η) for v ∈ IRn it will hold that:[
∂L
∂v

]∣∣∣∣
(vη,η)

=
[

∂L
∂v1

, . . . ,
∂L
∂vn

]∣∣∣∣
(vη,η)

= 0.

Applying the chain rule using D(η) = L(vη,η) will yield:

[
∂D

∂η

]T

=
[
∂L
∂v

]T [
∂vη

∂η

]
+
[
∂L
∂η

]T

=
[
∂L
∂η

]T

,

since
[

∂L
∂v

]
= 0 at (vη, η). Since ∂L

∂η = Bv − g, the desired result now follows
by substituting v = u(k+1) and η = µ(k). ��

Uzawa’s algorithm can now be summarized by substituting (10.23) for
(∂D/∂η) into (10.21) and employing (10.22) to determine u(k+1) given µ(k).

Algorithm 10.2.1 (Uzawa’s Algorithm for Solving (10.2))
Given u(0), µ(0):

1. For k = 0, 1, . . . until convergence do:
2. Solve: Au(k+1) = f − BT µ(k)

3. Update: µ(k+1) = µ(k) + τ
(
Bu(k+1) − g

)
4. Endfor

Remark 10.17. Substituting u(k+1) = A−1 (f − BT µ(k)) from step 2 above,
into the expression for the update µ(k+1)in step 3, will yield:

µ(k+1) = µ(k) + τ
(
BA−1f − g − Sµ(k)

)
, (10.24)

where S = (BA−1BT ) denotes the Schur complement. This corresponds to
an unaccelerated Richardson method to solve S µ = (BA−1f − g) for µ. To
ensure convergence, τ must satisfy 0 < τ < 1

λmax(S) .

Remark 10.18. From a matrix viewpoint, Uzawa’s algorithm to solve (10.2)
corresponds to an unaccelerated matrix splitting iteration:[

u(k+1)

µ(k+1)

]
=
[
u(k)

µ(k)

]
+
[

A 0
B −(I/τ)

]−1([ f
g

]
−
[

A BT

B 0

] [
u(k)

µ(k)

])
.

Thus, its rate of convergence will depend on the spectral radius of the error
propagation matrix, which computation yields as:

ρ

[
0 −A−1BT

0 I − τ S

]
= ρ(I − τ S), where S = (BA−1BT ). (10.25)

Other variants of Uzawa’s algorithm will be indicated later.

The following result concerns an optimal choice of fixed parameter τ .
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Proposition 10.19. Suppose the following conditions hold:

1. A = AT > 0 and B be of full rank m < n.
2. Let λ1 = λmin (S) and λm = λmax (S) where S = BA−1BT .

Then, the optimal fixed step size τ∗ will satisfy:

τ∗ =
2

λ1 + λm
,

and the error e(k) ≡ (µ − µ(k)) in the iterates will satisfy:

‖e(k)‖ ≤
(

κ − 1
κ + 1

)k

‖e(0)‖,

where (κ = λm/λ1) denotes the condition number of matrix S.

Proof. The following error contraction estimate will hold for expression
(10.24):

‖e(k)‖ ≤ (ρ(I − τ S))k ‖e(0)‖,
in the Euclidean norm ‖ · ‖. The optimal choice of parameter τ∗ must satisfy:

ρ (I − τ∗S) = min
τ

ρ (I − τ S) = min
τ

{|1 − τλ1| , |1 − τλm|} ,

which yields the expression:

1 − τ∗λ1 = τ∗λm − 1 =⇒ τ∗ =
2

λ1 + λm
.

For the above choice of parameter τ , we obtain:

ρ (I − τ∗S) = min
{∣∣∣∣1 − 2

λ1 + λm
λ1

∣∣∣∣ ,
∣∣∣∣1 − 2

λ1 + λm
λm

∣∣∣∣
}

=
κ − 1
κ + 1

,

where κ = (λm/λ1). ��

Remark 10.20. When the Schur complement S = (BA−1BT ) is ill conditioned,
Uzawa’s algorithm will converge slowly. In this case, a preconditioner S0 must
be employed for S. Step 3 of Uzawa’s algorithm can be updated as follows:

µ(k+1) = µ(k) + S−1
0

(
Bu(k+1) − g

)
,

where τ has been absorbed into the preconditioner. Preconditioners S0 for S
are described in § 5.6 and § 5.7 for different applications.

Inexact Versions of Uzawa’s Algorithm. In applications, it may be ex-
pensive to solve the system Au(k+1) =

(
f − BT µ(k)

)
exactly. If an inexact it-

erative solver is used, it will result in an inner iteration. Care must be exercised
to ensure that the modified iterates converge. Two alternative approaches are
possible [VE, QU7, GL7, BA18, EL5, BR16].
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• If a fixed preconditioner A0 = AT
0 is employed for A = AT , then the

update in step 2 of Uzawa’s algorithm can be modified as follows [BR16]:

u(k+1) = u(k) + A−1
0

(
f − Au(k) − BT µ(k)

)
,

where A−1
0 has formally replaced A−1. This iteration will be linear.

• If the stopping criterion for the inexact iterative solver is based on the
magnitude of the residual vector r(k), then step 2 of Uzawa’s algorithm
may involve a varying number of inner iterations to update u(k+1):

Au(k+1) =
(
f − BT µ(k)

)
+ r(k).

To ensure convergence of the modified Uzawa iterates, analysis in [EL5]
suggests the stopping criterion ‖r(k)‖ ≤ τ ‖Bu(k+1) − g‖ for some τ < 1

Below, we list the inexact Uzawa algorithm to solve (10.2), incorporating a
fixed preconditioner A0 for A. Since the convergence rate of Uzawa’s algorithm
will deteriorate if the Schur complement S is ill-conditioned, the following
algorithm additionally incorporates a preconditioner S0 for S, see [BR16].

Algorithm 10.2.2 (Preconditioned Inexact Uzawa Algorithm)
Given u(0) and µ(0).

1. For k = 0, 1, . . . until convergence do:
2. u(k+1) = u(k) + A−1

0

(
f − Au(k) − BT µ(k)

)
.

3. µ(k+1) = µ(k) + S−1
0 (Bu(k+1) − g)

4. Endfor

Here, the step size τ > 0 has been absorbed into S0.

Remark 10.21. From a matrix viewpoint, the above preconditioned inexact
Uzawa iteration corresponds to an unaccelerated iteration to solve (10.2) based
on the following matrix splitting:

[
u(k+1)

µ(k+1)

]
=
[
u(k)

µ(k)

]
+
[

A0 0
B −S0

]−1([ f
g

]
−
[

A BT

B 0

] [
u(k)

µ(k)

])
. (10.26)

Note that this matrix splitting expression will not be valid for a fixed A0 if
the update in step 2 has the form Au(k+1) =

(
f − BT µ(k)

)
+ r(k).

Remark 10.22. The rate of convergence of iteration (10.26) will depend on the
spectral radius of its error propagation matrix, which computation yields as:

ρ

[
I − A−1

0 A −A−1
0 BT

S−1
0 B(I − A−1

0 A) I − S−1
0 BA−1

0 BT

]
. (10.27)

This spectral radius is estimated in [BR16], as stated next.
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Lemma 10.23. Suppose the following assumptions hold.

1. Let there be 0 ≤ γ < 1 satisfying:

(1 − γ) (ηT S0η) ≤ (ηT Sη) ≤ (ηT S0η), ∀η ∈ IRm.

2. Let there be 0 ≤ δ < 1 satisfying:

(1 − δ) (vT A0v) ≤ (vT Av) ≤ (vT A0v), ∀v ∈ IRn.

Then, the following bound will hold for e(k) = (u − u(k), µ − µ(k)):

‖e(k)‖ ≤ ρk ‖e(0)‖,

for the iterates in Algorithm 10.2.2, where

ρ ≡ γ(1 − δ) +
√

γ2(1 − δ)2 + 4δ

2
.

Proof. See [BR16]. It can be noted that ρ ≤ 1 − (1/2)(1 − γ)(1 − δ), so that
this inexact Uzawa iteration will converge provided δ < 1 and γ < 1. ��

Remark 10.24. Provided A−1
0

(
f − Au(k) − BT µ(k)

)
corresponds to a descent

direction of L(·, µ(k)), and provided S0 is symmetric positive definite, it can
be verified that the iterates in the inexact Uzawa algorithm satisfy:

L(u(k+1),µ(k)) ≤ L(u(k), µ(k)), and

L(u(k+1),µ(k+1)) ≥ L(u(k+1), µ(k)),

due to the alternating descent (minimization) and ascent (maximization) of
L(., .). At the saddle point (u,µ), these iterates will remain stationary.

Remark 10.25. In certain applications matrix B may not be of full rank. In
this case Kernel(BT ) will not be trivial and system (10.2) will be consistent
only if g ⊥ Kernel(BT ). If this holds, then Uzawa’s iterates for A0 = A will
be well defined provided S0 = (I/τ).

The Arrow-Hurwicz algorithm [AR7, TE, GI3] corresponds to a special
case of the inexact Uzawa method, in which, given µ(k), one step of a gradient
descent method with a step size ω is applied to approximate the minimum of
L(v, µ(k)) for v ∈ IRn. This corresponds to approximately solving the system:

Au(k+1) =
(
f − BT µ(k)

)
.

Define φk(v) = L(v,µ(k)) = 1
2v

T Av−vT
(
f − BT µ(k)

)
as the functional to

be minimized. Then, the direction d(k) of steepest descent of φk(·) at u(k) is:

d(k) = −∇φk(u(k)) =
(
f − BT µ(k) − Au(k)

)
.
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The gradient descent update with step size ω will satisfy:

u(k+1) = u(k) + ω
(
f − BT µ(k) − Au(k)

)
,

and the resulting algorithm is summarized below.

Algorithm 10.2.3 (Arrow-Hurwicz Algorithm)

1. For k = 0, 1, . . . until convergence do:
2. u(k+1) = u(k) + ω

(
f − Au(k) − BT µ(k)

)
3. µ(k+1) = µ(k) + τ

(
Bu(k+1) − g

)
4. Endfor

From a matrix viewpoint, the Arrow-Hurwicz algorithm corresponds to an
inexact Uzawa algorithm with A0 = (I/ω) and S0 = (I/τ).

Lemma 10.26. The Arrow-Hurwicz algorithm has block matrix form:[
u(k+1)

µ(k+1)

]
=
[
u(k)

µ(k)

]
+
[

(I/ω) 0
B −(I/τ)

]−1([ f
g

]
−
[

A BT

B 0

] [
u(k)

µ(k)

])
.

If ω = (1/λmax(A)) and τ = (1/λmax(S)) then the convergence factor ρ of the
Arrow-Hurwicz algorithm will satisfy:

ρ ≤ γ(1 − δ) +
√

γ2(1 − δ)2 + 4δ

2
,

for γ = (λmin(A)/λmax(A)) and δ = (λmin(S)/λmax(S)).

Proof. Follows by Lemma 10.23 using A0 = λmax(A)I and S0 = λmax(S)I,
see [BR16]. ��

Augmented Lagrangian Method. The variants of Uzawa’s algorithm that
we have described are applicable when A is symmetric and positive definite.
When A is singular, saddle point problem (10.2) may still be well posed,
provided B is of full rank and A is coercive in the subspace K0 = Kernel(B),
see Lemma 10.9. In this case, minimizing L(v, µ) for v ∈ IRn will not yield a
unique minimum. However, if the augmented Lagrangian method is employed
to construct an equivalent reformulation of the saddle point system (10.6),
then matrix A will be replaced by a non-singular matrix [GL7], and Uzawa’s
algorithm can be applied to solve the augmented saddle point system.

The original constrained minimization problem sought to minimize the
functional J(v) = 1

2v
T Av − vT f within the constraint set Kg. If we replace

the objective functional J(v) by Jρ(v) ≡ J(v) + ρ ‖Bv − g‖2
W , where ρ > 0

is a parameter and W = WT > 0 is a weight matrix of size m, then the
minima of Jρ(v) and J(v) will coincide within the constraint set Kg, since
since ρ ‖Bv−g‖2

W vanishes within it. However, in the augmented saddle point
system, matrix A will be replaced by the non-singular matrix A + ρBT WB.
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The augmented Lagrangian Lρ(v,η) associated with the minimization of
Jρ(v) within Kg is defined as:{

Lρ(v, η) ≡ J(v) + ρ
2 ‖Bv − g‖2

W + ηT (Bv − g)
= L(v,η) + ρ

2 ‖Bv − g‖2
W ,

(10.28)

where ‖Bv−g‖2
W = (Bv−g)T W (Bv−g) vanishes within Kg. The following

properties can easily be verified.

• As ρ → 0, the augmented Lagrangian Lρ(., .) → L(., .).
• For v ∈ Kg = {v : B v = g}, it will hold that: L(v, η) = Lρ(v, η).
• (u, µ) is a saddle point of L(., .) iff it is a saddle point of Lρ(., .).

These properties suggest that the saddle point of L(., .) may be sought by
determining the saddle point of Lρ(., .). Applying the first derivative test to
determine the saddle point of Lρ(., .) yields the following linear system:[

A + ρBT WB BT

B 0

][
u
µ

]
=

[
f + ρBT Wg

g

]
. (10.29)

Since A is coercive within K0 and since ρBT WB is coercive within K⊥
0 (when

B has full rank and since K0 = Kernel(B)), matrix A + ρBT WB will be
positive definite for ρ > 0. Thus, Uzawa’s algorithms can be employed to
solve (10.29). The choice of parameter ρ > 0 is considered in [GL7].

10.3 Penalty and Regularization Methods

Penalty and regularization methods are related techniques for approximating
a constrained optimization problem or its saddle point formulation [CI4, GI3].
Both methods formulate a family of computationally simpler problems which
depend on a small parameter ε > 0, such that as ε → 0+, the penalty or
regularized solutions converge to the solution of the original problem.

We shall first describe the penalty (or “barrier” function) method. Given
a constrained minimization problem (P), the penalty method constructs a
family of unconstrained minimization problems (Pε) for ε > 0, whose solu-
tions converge to the constrained minimum as ε → 0+. Let (P) denote the
constrained minimization problem:

(P) J(u) = min
v∈Kg

J(v), (10.30)

where J(v) = 1
2v

T Av − vT f , and Kg = {v ∈ IRn : Bv = g}. The penalty
method employs a nonnegative penalty function ψ(·) which vanishes in Kg:

ψ(v) =
1
2
‖Bv − g‖2

D−1 =
1
2

(Bv − g)T
D−1 (Bv − g) , (10.31)
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where D−1 denotes a symmetric positive definite matrix of size m. Using the
penalty function, a penalized objective function Jε(v) is defined for ε > 0 as:

Jε(v) = J(v) +
1
ε
ψ(v) =

(
1
2
vT Av − vT f

)
+

1
2ε

(Bv − g)T
D−1 (Bv − g) ,

(10.32)
so that as ε → 0+ the penalty term (1/ε)ψ(v) dominates J(v) except when
the constraints Bv = g are satisfied.

The penalty method seeks the unconstrained minimum of Jε(·):

(Pε) Jε(uε) = min
v∈IRn

Jε(v). (10.33)

Heuristically, we expect the minimum uε of Jε(·) to satisfy the constraints
as ε → 0+, since the penalty term 1

ε ψ(uε) will dominate J(uε) otherwise.
Applying the first derivative test to Jε(v) yields the linear system:(

A +
1
ε
BT D−1B

)
uε = f +

1
ε
BT D−1g. (10.34)

Its solution uε can be shown to converge to the solution u of (P).

Proposition 10.27. Let A be a symmetric positive definite matrix of size n
and let D−1 be symmetric positive definite of size m. If uε and u denote the
solutions to problems (P)ε and (P), respectively, then the following will hold:

‖uε − u‖ ≤ c ε,

for some c > 0 independent of ε (but dependent on A, B, D, f and g).

Proof. See [CI4] and Lemma 10.29. ��

The advantage of the penalty method is that it replaces a constrained
minimization problem by an unconstrained minimization problem. However,
the linear system (10.34) for uε can become highly ill-conditioned as ε → 0+:

cond
(

A +
1
ε
BT D−1B

)
≤ O

(
λmax(A) + 1

ε λmax(BT D−1B)
λmin(A)

)
.

As a result care must be exercised when solving for uε. Alternatively, uε may
be obtained by solving a related regularized saddle point system (10.35).

The regularization method [GI3] is closely related to the penalty method.
Given a small parameter ε > 0, the regularization method perturbs the saddle
point system (10.2) by introducing a perturbation term −εD µε in the second
block row, resulting in the following block system:[

A BT

B −εD

] [
wε

µε

]
=
[
f
g

]
. (10.35)
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Here D is a symmetric positive definite matrix of size m. System (10.35) can
easily be verified to be well posed. Indeed, using wε = A−1

(
f − BT µT

ε

)
and

substituting this into the 2nd block row of (10.35) yields the reduced system:(
BA−1BT + εD

)
µε =

(
BA−1f − g

)
.

Since D and BA−1BT are symmetric positive definite, the Schur complement
(BA−1BT + εD) will also be symmetric and positive definite, for ε > 0. Thus,
system (10.35) will be solvable when A = AT > 0 and B has full rank.

The regularized system (10.35) can be solved by block elimination of µε.
Indeed, the second block row of (10.35) can be solved for µε resulting in:

µε =
1
ε

D−1 (Bwε − g) .

Substituting this expression for µε into the first block row of (10.35) yields:(
A +

1
ε

BT D−1B

)
wε = f +

1
ε

BT D−1g. (10.36)

This system is identical to the penalty system (10.34), and it follows that
component wε in the regularized saddle point problem (10.35) is identical to
the penalty solution uε in (10.34).

Remark 10.28. The solution to (10.35) can be sought iteratively obtained by
formally modifying step 3 of Uzawa’s method:

µ(k+1) = µ(k) + τ
(
B u(k+1) − εDµ(k)

)
,

leaving all other steps the same. If matrix (BA−1BT + εD) is ill-conditioned,
we may replace τ by M−1, where M is a preconditioner for (BA−1BT + εD).

The next result estimates the error (wε − u, µε − µ) between the solution
to the regularized problem (10.35) and to the saddle point system (10.2).

Lemma 10.29. Let A and D be symmetric positive definite matrices of size
n and m, respectively. Let (wε, µε) solve the regularized system (10.35) and
(u, µ) solve (10.2). Then, there exists c > 0 independent of ε such that:

‖wε − u‖ ≤ c ε.

Proof. We subtract (10.35) from (10.2) obtaining:[
A BT

B 0

] [
u − wε

µ − µε

]
=
[
0
εDµε

]
. (10.37)

The well posedness of (10.35) in the Euclidean norm yields the estimate:

‖µε‖ ≤
(
‖(S + εD)−1BA−1f‖ + ‖(S + εD)−1 g‖

)
,
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where S = (BA−1BT ). Using the well posedness of (10.2) from Lemma 10.3,
and substituting the preceding bound yields the estimate:{

‖u − wε‖ ≤ ε ‖A−1BT S−1D(S + εD)−1(BA−1f − g)‖
≤ c ε,

where c ≡ ‖A−1BT S−1D(S+εD)−1(BA−1f−g)‖. In our applications, c > 0
is expected to have bounds independent of h and ε. ��

10.4 Projection Methods

Projection methods to solve saddle point system (10.2) are motivated by an
orthogonal decomposition property which system (10.2) inherits, that enables
computing its solution using orthogonal projections [CH27, CH28, CI4, TE].
The use of projections can be motivated by considering system (10.2) when
A = I is of size n, matrix B of size m × n has rank m and g = 0 ∈ IRm. In
this case, system (10.2) reduces to:{

u + BT µ = f ,
Bu = 0.

(10.38)

The second block equation B u = 0 in (10.38) requires u ∈ K0 = Kernel(B).
Since Range(BT ) = Kernel(B)⊥ it follows that BT µ ∈ Range(BT ) = K⊥

0 .
Thus, u + BT µ = f corresponds to an Euclidean orthogonal decomposition
of f ∈ IRn with u ∈ K0 and BT µ ∈ K⊥

0 . To determine µ, multiply the first
block row of (10.38) by B and use that Bu = 0 to obtain

(
BBT

)
µ = B f .

This system will be non-singular since B has full rank m < n, yielding:

µ =
(
BBT

)−1
Bf and u = PK0f =

(
I − BT (BBT )−1B

)
f ,

where PK0f denotes the Euclidean orthogonal projection of f onto K0.
The preceding procedure is applicable only when A = I and g = 0. More

generally, saddle point system (10.2) with A = AT > 0 and g �= 0 can
be reduced to the case g = 0 in a preliminary step, and the computation
of the component of u in K0 will involve an A-orthogonal projection onto
K0, while µ can be computed using an Euclidean orthogonal projection (or
by an alternative approach in the case Schwarz projections). The following
preliminary result, applicable when g = 0, describes why the problem to
determine u in system (10.2) is positive definite within the subspace K0.

Lemma 10.30. Consider system (10.2) in which A = AT > 0 and matrix B
of size m × n has rank m, and f ∈ IRn, g = 0 ∈ IRm:[

A BT

B 0

] [
w
γ

]
=
[
f
0

]
. (10.39)

Then, the following properties will hold.
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• w ∈ K0 = Kernel(B) and will satisfy:

vT Aw = vT f , ∀v ∈ K0. (10.40)

• If f = Au + BT η for some u ∈ IRn and η ∈ IRm, then w = PA
K0

u will be
an A-orthogonal projection of u onto K0.

In particular, w will not depend on η, if f = Au + BT η.

Proof. The second block row B w = 0 of (10.39) yields that w ∈ K0. Choose
v ∈ K0 and compute the inner product of

(
vT ,0T

)T with (10.39) to obtain:

vT Aw + vT BT γ =
[
v
0

]T [
A BT

B 0

] [
w
γ

]
=
[
v
0

]T [ f
0

]
= vT f . (10.41)

Since vT BT = 0 for v ∈ K0, this reduces to vT Aw = vT f . Since A = AT > 0,
the problem (10.40) to determine w ∈ K0 is coercive within K0 and solvable.
When f = Au + BT η, the inner product of v ∈ K0 with f will satisfy:

vT f = vT Au + vT BT η = vT Au, ∀v ∈ K0,

since vT BT = 0 for v ∈ K0. Substituting this into (10.40) will yield:

vT Aw = vT Au, ∀v ∈ K0.

Thus w = PA
K0

u corresponds to an A-orthogonal projection of u onto K0. ��

Thus, if g = 0, then w in (10.39) can be determined by solving (10.40)
within K0. Since a basis for K0 can be computationally expensive to construct,
we shall describe projection algorithms which will compute approximations of
w iteratively, without an explicit basis for K0. The following result describes
how to reduce the general case of saddle point problem (10.2) to the case with
g = 0 and furthermore, how µ can be determined.

Lemma 10.31. Consider system (10.2) with A = AT > 0 and B of rank m:[
A BT

B 0

] [
u
µ

]
=
[
f
g

]
. (10.42)

Suppose u∗ ∈ IRn, w ∈ IRn and γ ∈ IRm are computed as follows.

1. Let u∗ = BT (BBT )−1Bg.
2. Let w ∈ K0 solve vT Aw = vT (f − Au∗), for all v ∈ IRn.
3. Let γ = (BBT )−1B (f − Au∗ − Aw) .

Then, u = (w∗ + w) and µ = γ.
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Proof. Firstly, since B is m × n with rank m, matrix (BBT ) is invertible.
Thus, u∗ = BT (BBT )−1g is well defined and Bu∗ = BBT (BBT )−1g = g.

Secondly, since f = Au + BT µ, we obtain that w ∈ K0 solves:

vT Aw = vT
(
Au + BT µ − Au∗

)
∀v ∈ K0.

Applying Lemma 10.30 to the above expression yields w = PA
K0

(u− u∗). By
construction of u∗, we obtain B(u − u∗) = 0, yielding that (u − u∗) ∈ K0.
Uniqueness of the projection within K0 yields w = (u − u∗).

Thirdly, once u∗ and w have been determined, the first block row of (10.42)
yields the overdetermined system BT µ = (f − Au∗ − Aw) . This system will
be consistent since vT (f − Au∗ − Aw) = 0 for v ∈ K0, by step 2. Multiplying
both sides by B yields µ = (BBT )−1B (f − Au). ��

We now summarize the general projection algorithm to solve (10.2).

Algorithm 10.4.1 (General Projection Algorithm to Solve (10.2))

1. Determine u∗ such that Bu∗ = g:

u∗ = BT
(
BBT

)−1
g

2. Determine w ∈ K0 satisfying:

vT Aw = vT (f − Au∗) , ∀v ∈ K0 (10.43)

3. Determine µ such that BT µ = (f − Au∗ − Aw):

µ =
(
BBT

)−1
B (f − Au∗ − Aw)

Output: (u = u∗ + w,µ)

The first step in the preceding algorithm involves computing u∗. This re-
quires solving a linear system with the coefficient matrix (BBT ) of size m.
Depending on m and the application, efficient solvers may be available. How-
ever, for Stokes and mixed formulations of elliptic equations, we shall indicate
an alternate method for computing u∗ satisfying Bu∗ = g, using domain
decomposition methods. Typically, the second step is the most computation-
ally expensive. We shall describe a projected gradient and projection Schwarz
algorithm for this step. Step three has a similar computational cost as step
one. In specific applications, we shall indicate alternatives for computing µ,
based on domain decomposition.

10.4.1 Projected Gradient Descent

The projected gradient algorithm [CI4] can be employed to solve (10.43) for
w ∈ K0 in step 2, without constructing a basis for K0. We define:
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Φ(v) =
1
2
vT Av − vT (f − Au∗) . (10.44)

Since K0 = Kernel(B) is a subspace of IRn and A = AT > 0, solving (10.43)
corresponds to a first order derivative test for minimizing Φ(v) within K0:

vT (Aw + Au∗ − f) = 0 ⇔ vT · ∇Φ(w) = 0, ∀v ∈ K0.

Thus (10.43) is equivalent to the constrained minimization problem:

Φ (w) = min
v∈K0

Φ (v) . (10.45)

At the constrained minimum w ∈ K0 of Φ(·), applying the stationarity of
the directional derivative of Φ(·) within K0 will yield the equivalences:

vT · ∇Φ(w) = 0, ∀v ∈ K0 ⇔ PK0
∇Φ(w) = 0

⇔ w = PK0
(w − τ ∇Φ(w)) ,

(10.46)

since PK0
w = w for w ∈ K0, where PK0

= I−BT
(
BBT

)−1
B is the Euclidean

orthogonal projection onto K0 and τ > 0 is a fixed parameter. The equation
w = PK0

(w − τ ∇Φ(w)) in (10.46) expresses that w is a fixed point of:

T (v) ≡ PK0
(v − τ ∇Φ(v)) . (10.47)

Substituting that ∇Φ(v) = Av − (f − Au∗) in (10.47) yields:

T (v) ≡ PK0
(v − τAv + τ(f − Au∗)) . (10.48)

For suitable τ > 0, the map T (·) will be a contraction and Picard iteration:

v(k+1) = PK0

(
v(k) − τAv(k) + τ(f − Au∗)

)
, (10.49)

can be shown to converge geometrically to the unique fixed point w of T (·).
This is described in the following result.

Lemma 10.32. Suppose the following conditions hold:

1. Let τ = 2/ (λmin(A) + λmax(A)).
2. Given v(0) define the Picard iterates:

v(k+1) = PK0

(
v(k) − τAv(k) + τ(f − Au∗)

)
. (10.50)

Then the iterates v(k) will converge to the solution w of (10.43):

‖v(k) − w‖ ≤
(

κ(A) − 1
κ(A) + 1

)k

‖v(0) − w‖,

where ‖ · ‖ denotes the Euclidean norm, λ(A) an eigenvalue of A and κ(A)
the spectral condition number of A.
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Proof. See [CI4]. Since ‖PK0
‖ ≤ 1 we estimate:

‖T (v) − T (w)‖ = ‖PK0
((v − w) − τ A(v − w)) ‖ ≤ ‖ (I − τ A) (v − w)‖.

Since ‖I − τ A‖ ≤ max{|1 − τ λmin(A)|, |1 − τ λmax(A)}, substituting the op-
timal fixed choice of parameter τ :

τ∗ =
2

λmin(A) + λmax(A)
,

yields the contraction factor:

‖T (v) − T (w)‖ ≤
(

κ(A) − 1
κ(A) + 1

)
‖v − w‖, where κ(A) =

λmax(A)
λmin(A)

.

This completes the proof. ��

Algorithm 10.4.2 (Projected Gradient Algorithm to Solve (10.43))
Let v(0) denote a starting guess

1. For k = 0, 1, . . . until convergence do:

v(k+1) = PK0

(
v(k) − τAv(k) + τ(f − Au∗)

)
2. Endfor

Output: v(k)

Remark 10.33. The action of the projection PK0
= I − BT

(
BBT

)−1
B on a

vector can be computed at a cost proportional to the cost of solving a linear
system with coefficient matrix

(
BBT

)
. Matrix

(
BBT

)
will be sparse if B is

sparse, and direct or iterative methods may be employed.

Remark 10.34. The projected gradient algorithm with parameter τ :

τ = 2/ (λmin(A) + λmax(A)) ,

will converge slowly when matrix A is ill-conditioned.

Since K0 ⊂ IRn is a subspace, the projected gradient algorithm can be
accelerated based on the following alternate expression for w:

Aw + BT µ = f − Au∗. (10.51)

Multiply (10.51) by B and solve for µ to obtain:

µ =
(
BBT

)−1
B (f − Au∗ − Aw) .
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Substituting the preceding into (10.51) yields the formal expression:(
I − BT (BBT )−1B

)
Aw =

(
I − BT (BBT )−1B

)
(f − Au∗) .

Here
(
I − BT (BBT )−1B

)
= PK0

denotes the Euclidean orthogonal projection
onto K0. Since w ∈ K0, we may seek w = PK0

w by solving the following
consistent symmetric positive semidefinite system:(

PK0
APK0

)
w = PK0

(f − Au∗) . (10.52)

Matrix
(
PK0

APK0

)
is symmetric and positive semidefinite, and the conjugate

gradient method can be applied to solve this singular but consistent system.
The following should be noted when solving the singular system (10.52).

• The initial iterate v(0) must be chosen from K0 (or projected onto K0 using
the orthogonal projection PK0

= I − BT
(
BBT

)−1
B..)

• For v ∈ K0 the matrix-vector product
(
PK0

APK0

)
v simplifies to

(
PK0

A
)
v.

Thus, the action of PK0
need only be computed once per iteration.

• A preconditioner A−1
0 can be applied to solve the system:

A−1
0

(
PK0

APK0

)
w = A−1

0 PK0
(f − Au∗) ,

using the inner product generated by PK0
APK0

.

By construction, all iterates will lie in K0.

10.4.2 Schwarz Projection Algorithms

An alternative approach to solve (10.43) is to use a divide and conquer ap-
proach based on the projection formulation of Schwarz methods, see Chap. 2.2
and Chap. 2.3. If K(0)

0 ,K(1)
0 , . . . ,K(p)

0 denote subspaces of K0 = Kernel(B),
then Schwarz algorithms can be formulated to solve (10.43) using A-orthogonal
projections onto these subspaces. In applications, if these projections are com-
puted by solving smaller saddle point problems, then not only can w ∈ K0 be
determined, but also the Lagrange multiplier µ. We assume the following.
Assumptions.

1. For 0 ≤ i ≤ p, let K(i)
0 ⊂ K0 denote subspaces of K0 of dimension ki:

K0 = K(0)
0 + K(1)

0 + · · · + K(p)
0 .

Thus, it must also hold that k0 + k1 + · · · + kp ≥ dim (K0) = (n − m).
2. For 0 ≤ i ≤ p let U (i) ⊂ Rn denote a subspace of dimension ni such that:

U (i) = Range(Ui),

where Ui is a matrix of size n × ni whose columns form a basis for U (i).
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3. For 0 ≤ i ≤ p let Q(i) ⊂ Rm denote a subspace of dimension mi such that:

Q(i) = Range(Qi),

where Qi is a matrix of size m×mi whose columns form a basis for Q(i).
4. For 0 ≤ i ≤ p let K(i)

0 ⊂ U (i) and satisfy:

K(i)
0 =

{
v ∈ U (i) : qT Bv = 0, ∀q ∈ Q(i)

}
.

Thus, we implicitly require that ki = (ni − mi).

Employing A-orthogonal projections onto each subspace K(i)
0 , it will be possi-

ble to formulate implicitly preconditioned additive and multiplicative Schwarz
algorithms to solve (10.43), without employing a basis for K0.

Definition 10.35. We define PA

K(i)
0

as the A-orthogonal projection onto sub-

space K(i)
0 . Given w ∈ IRn the projection PA

K(i)
0

w ∈ K(i)
0 will satisfy:

vT APA

K(i)
0

w = vT Aw, ∀v ∈ K(i)
0 . (10.53)

To obtain a matrix representation, let PA

K(i)
0

w = Ui wi ∈ K(i)
0 for wi ∈ IRni :

PA

K(i)
0

w = Ui wi.

Then, the requirement vT AUi wi = vT Aw, for all v ∈ K(i)
0 can be formulated

as a saddle point system, as described in the following.
Applying Lemma 10.30 with local spaces Range(Ui) and Range(Qi) yields:{

UT
i AUi wi + UT

i BT Qi γi = UT
i Aw

QT
i BUi wi = 0,

(10.54)

where γi ∈ IRmi denotes a vector of local Lagrange multiplier variables which
enforce the local constraints QT

i B Ui vi = 0. Defining submatrices:

Ai = UT
i AUi and Bi = QT

i BUi (10.55)

of size ni × ni and mi × ni respectively, system (10.54) can be expressed as:[
Ai BT

i

Bi 0

] [
wi

γi

]
=
[

UT
i Aw

0

]
, (10.56)

so that:

PA

K(i)
0

w = Ui

[
I
0

]T [
Ai BT

i

Bi 0

]−1 [
UT

i Aw
0

]
. (10.57)

This yields a matrix representation of the A-orthogonal projection PA

K(i)
0

.
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Additive Schwarz Algorithm. The additive Schwarz algorithm to solve
problem (10.43) is based on the following equation equivalent to (10.43):

PA w = r, (10.58)

where PA denotes the additive Schwarz preconditioned matrix, defined by:

PA ≡
p∑

i=0

PA

K(i)
0

,

while vector r = PA w can be computed explicitly, even though w is unknown,
by replacing UT

i Aw = UT
i (f − Au∗):

r =
p∑

i=0

PA

K(i)
0

w =
p∑

i=0

Ui

[
I
0

]T [
Ai BT

i

Bi 0

]−1 [
UT

i (f − Au∗)
0

]
. (10.59)

By construction, the additive Schwarz preconditioned matrix PA will be self
adjoint in the A-inner product, with r ∈ K0, since it is a sum of self adjoint
projections onto subspaces of K0. Furthermore, results from § 2.3 and § 2.3
show that PA will be coercive given our assumptions. We may thus determine
w as the solution to (10.58) using the conjugate gradient method with inner
product 〈v,w〉A ≡ vT Aw. Provided the initial iterate v(0) ∈ K0, all subse-
quent iterates will lie in K0. Condition number bounds for cond(PA) can be
estimated in terms of the partition parameters for K(0)

0 , . . . ,K(p)
0 .

Multiplicative Schwarz Algorithm. We next list the unaccelerated mul-
tiplicative Schwarz algorithm to solve (10.43).

Algorithm 10.4.3 (Multiplicative Schwarz Algorithm to Solve (10.43))
Let v(0) ∈ K0 be a starting iterate.

1. For l = 0, 1, . . . until convergence do:
2. For i = 0, 1, . . . , p do:

v(l+ i+1
p+1 ) = v(l+ i

p+1 )+Ui

[
I
0

]T[
Ai BT

i

Bi 0

]−1[
UT

i (f − Au∗ − Av(l+ i
p+1 ))

0

]
.

3. Endfor
4. Endfor

Output: v(l)

Remark 10.36. The iterates v(k) can be shown to converge geometrically to
the solution w of (10.43). The rate of convergence will depend on the par-
tition parameters associated with the subspaces K(0)

0 ,K(1)
0 , . . . ,K(p)

0 of K0,
as analyzed in Chap. 2.3. In applications to the Stokes equation and mixed
formulations of elliptic equations, the Lagrange multiplier variables in the
smaller saddle point problems, will also approximate the Lagrange multiplier
variables µ in (10.43), and converge as the iterates v(k) converge to w.
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10.5 Krylov Space and Block Matrix Methods

In this section, we describe preconditioned Krylov methods for solving (10.2).
Since saddle point system (10.2) is symmetric indefinite, the CG algorithm
cannot be employed to solve it. However, the MINRES (or the conjugate
residual) method [PA3, CH19, RU5, SA2, HA3] will be applicable, with the
same storage requirements as the CG algorithm. Here, we shall describe:

• The Schur complement method for (10.2) using CG acceleration.
• A symmetric positive definite reformulation of (10.2) for use with CG.
• Block diagonal preconditioner for (10.2) using MINRES acceleration.
• Block triangular preconditioner for (10.2) using GMRES acceleration.
• Saddle point preconditioner for (10.2) using GMRES acceleration.

Each of the above methods will employ a preconditioner A0 for A, and a
preconditioner S0 for the Schur complement S = (BA−1BT ).

10.5.1 Schur Complement Method to Solve (10.2)

The Schur complement method to solve (10.2) is based on the elimination of
u = A−1

(
f − BT µ

)
. Substituting this into the second block row of (10.2)

and rearranging terms yields the following reduced system for µ:

S µ = (BA−1f − g), where S ≡
(
BA−1BT

)
. (10.60)

The Schur complement method solves system (10.60) for µ using a PCG
algorithm with preconditioner S0, and u = A−1

(
f − BT µ

)
u is subsequently

determined. Although similar to a duality method, µ is determined first, and
the methodology requires a solver for matrix A.

Algorithm 10.5.1 (Schur Complement Algorithm to Solve (10.2))

1. Solve: S µ = (BA−1f − g) with preconditioner S0

2. Solve: Au = (f − BT µ)

Output: (u, µ)

Remark 10.37. Matrix S = (BA−1BT ) need not be assembled. Instead, when
B is of full rank and A = AT > 0, matrix S will be symmetric and positive
definite, and S µ = (BA−1f − g) can be solved by a PCG method. Each
matrix-vector product with S will require products with BT , solving a linear
system of the form Av = r, and a product with B.

The Schur complement method can also be motivated by the factorization:[
A BT

B 0

]
=
[

I 0
BA−1 I

] [
A 0
0 −S

] [
I A−1BT

0 I

]
,

when A = AT > 0 and B is of full rank. Its inverse will be:[
A BT

B 0

]−1

=
[

I −A−1BT

0 I

] [
A−1 0
0 −S−1

] [
I 0
−BA−1 I

]
.

Preconditioners can be obtained by approximation of matrices A and S.
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10.5.2 A Symmetric Positive Definite Reformulation of (10.2)

When A = AT > 0, the symmetric indefinite saddle point system (10.2)
can be transformed into a symmetric positive definite system, see [BR8]. The
reformulation of [BR8] is not based on the normal equations, and employs
a preconditioner A0 of A. The transformed system can be solved by a PCG
method, but its implementation requires computing the action of A0 (which
may not be available for various preconditioners), see Remark 10.39.

To construct a positive definite reformulation of (10.2), let A0 = AT
0 > 0

be a preconditioner for matrix A, satisfying:

α0

(
vT Av

)
≤
(
vT A0v

)
≤ α1

(
vT Av

)
, ∀v ∈ IRn, (10.61)

where 0 < α0 ≤ α1 < 1. It can be noted that given any positive definite
symmetric preconditioner Ã for A, it will be sufficient to define A0 as:

A0 = δ Ã,

for some δ < λmin

(
Ã−1A

)
, and this will yield α1 < 1. This will require

estimating the minimal eigenvalue of Ã−1A by the Lanczos method [GO4].
To reformulate (10.2) as a positive definite system, given a preconditioner

A0 for A satisfying (10.61), apply the following block transformation:[
A−1

0 0
BA−1

0 −I

] [
A BT

B 0

] [
u
µ

]
=
[

A−1
0 0

BA−1
0 −I

] [
f
g

]
. (10.62)

This yields the system:[
A−1

0 A A−1
0 BT

BA−1
0 A − B BA−1

0 BT

] [
u
µ

]
=
[

A−1
0 f

BA−1
0 f − g

]
, (10.63)

which we shall write more compactly as:

M
[
u
µ

]
=
[

A−1
0 f

BA−1
0 f − g

]
, (10.64)

where M is defined as the following block matrix:

M ≡
[

A−1
0 A A−1

0 BT

BA−1
0 A − B BA−1

0 BT

]
. (10.65)

Matrix M is not symmetric (in the standard Euclidean sense). However, it
will be shown to be symmetric in the following inner product 〈., 〉:

〈(
u
µ

)
,

(
v
λ

)〉
≡
[
u
µ

]T [
A − A0 0
0 I

] [
v
λ

]
= uT (A − A0)v + µT λ.

(10.66)
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Expression (10.66) defines an inner product since by assumption on the choice
of A0 matrix (A−A0) is positive definite symmetric. To verify that the block
matrix M is symmetric in the inner product 〈., .〉 note that:〈

M
[
u
µ

]
,

[
v
λ

]〉
=
[
u
µ

]T [ (A − A0)A−1
0 A (AA−1

0 − I)BT

B(A−1
0 A − I) BA−1

0 BT

] [
v
λ

]

=
〈[

u
µ

]
,M

[
v
λ

]〉
.

(10.67)
Heuristically, we note that as A0 → A:[

(A − A0)A−1
0 A (AA−1

0 − I) BT

B(A−1
0 A − I) BA−1

0 BT

]
→
[

A − A0 0
0 BA−1BT

]
,

which is positive definite. As a result, when A0 → A, we heuristically expect:〈
M
[
u
µ

]
,

[
v
λ

]〉
→
[
u
µ

]T [
A − A0 0
0 BA−1BT

] [
v
λ

]
=
〈
M∗

[
u
µ

]
,

[
v
λ

]〉
,

where matrix M∗ is a symmetric positive definite matrix (in the Euclidean
and 〈., .〉 inner products) defined by:

M∗ ≡
[

I 0
0 BA−1BT

]
. (10.68)

Rigorous bounds for the eigenvalues of M−1
∗ M are stated below.

Lemma 10.38. Suppose the following conditions hold.

1. Let matrix A0 satisfy (10.61).
2. Let M and M∗ be as defined by (10.65) and (10.68), respectively.

3. Let λ0 ≡
(

1 + α
2 +

√
α + α2

4

)−1

and λ1 =
1 +

√
α

1 − α
, where α ≡ 1 − α0.

Then the following bound will hold.

λ0

〈
M∗

(
v
λ

)
,

(
v
q

)〉
≤
〈
M
(

v
λ

)
,

(
v
λ

)〉
≤ λ1

〈
M∗

(
v
λ

)
,

(
v
λ

)〉
.

(10.69)

Proof. See [BR8]. ��

The parameter α in the preceding lemma can easily be verified to depend
on 1/cond(A0, A). Additionally, the condition number of M∗ depends solely
on the condition number of S = BA−1BT . As a result, the preceding lemma
shows that system (10.64) can be solved by a conjugate gradient algorithm
using the inner product 〈., .〉, with preconditioner M∗ if S is ill conditioned,
or without preconditioner if M∗ is well conditioned. The algorithm of [BR8]
solves (10.64) without preconditioning. We summarize the resulting algorithm
in the following, noting that it requires computing the action of A0.
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Algorithm 10.5.2 (Algorithm of [BR8] to Solve (10.2))

1. Compute: A−1
0 f and BA−1

0 f − g.
2. Solve using CG with 〈., .〉 inner product:

M
[

u
µ

]
=

[
A−1

0 f

BA−1
0 f − g

]

Output: (u, µ)

Remark 10.39. Multiplying equation (10.63) by blockdiag(A − A0, I) yields:[
AA−1

0 A − A (AA−1
0 − I)BT

B(A−1
0 A − I) BA−1

0 BT

] [
u
µ

]
=
[

(AA−1
0 − I)f

BA−1
0 f − g

]
. (10.70)

This system is symmetric. By Lemma10.38, its coefficient matrix will also
be positive definite and spectrally equivalent to blockdiag(A,S). The above
system may thus be solved by PCG using a preconditioner blockdiag(A0, S0).
Solving the above system does not require computing the action of A0.

Remark 10.40. The normal equations associated with (10.2) has the form:[
A BT

B 0

]T [
A BT

B 0

] [
u
µ

]
=
[

A BT

B 0

]T [ f
g

]
.

This yields the symmetric positive definite system:[
A2 + BT B ABT

BA BBT

] [
u
µ

]
=
[

Af + BT g
Bg

]
.

However, this squares the condition number. To reduce the condition number,
a preconditioner may be applied before the normal equations are formed.

Remark 10.41. Yet another positive definite reformulation of (10.2) can be
obtained by multiplying (10.2) on the left as follows:[

I 0
2BA−1 −I

] [
A BT

B 0

] [
u
µ

]
=
[

I 0
2BA−1 −I

] [
f
g

]
,

which yields: [
A BT

B 2BA−1BT

] [
u
µ

]
=
[

f
2BA−1f − g

]
.

The transformed coefficient matrix will have the block factorization:[
A BT

B 2BA−1BT

]
=
[

I 0
BA−1 I

] [
A BT

0 S

]

=
[

I 0
BA−1 I

] [
A 0
0 2S

] [
I A−1BT

0 I

]
,

where S = (BA−1BT ). The transformed coefficient matrix is symmetric.
Additionally, an application of Sylvester’s law of inertia [GO4] shows that
the coefficient matrix is positive definite when A = AT > 0 and B has full
rank. However, the resulting formulation requires the action of A−1.
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10.5.3 Block Diagonal Preconditioner for (10.2)

When saddle point system (10.2) is solved using the MINRES algorithm, its
rate of convergence will depend on the distribution of the eigenvalues of the
coefficient matrix [PA3, CH19, RU5, SA2]. Preconditioning can help improve
its rate of convergence, and here, we shall describe a block diagonal precon-
ditioner for a saddle point system [EL8, EL2, KL2, EL3, SI, EL4, EL9, ZU].

We shall denote the saddle point matrix in (10.2) as L and denote its
symmetric positive definite block diagonal preconditioner as L0:

L =
[

A BT

B 0

]
and L0 =

[
A0 0
0 S0

]
, (10.71)

where A0 = AT
0 > 0 denotes a preconditioner for A, while S0 = ST

0 > 0 de-
notes a preconditioner for the Schur complement matrix S = BA−1BT . The
following result describes the distribution of eigenvalues of the (left) precon-
ditioned matrix L−1

0 L in the special case when A0 = A.

Lemma 10.42. Suppose the following conditions hold:

1. Let A0 = A be a symmetric positive definite matrix of size n, and let B
be an m × n matrix of full rank m, where m < n.

2. Let S0 = ST
0 > 0 denote a preconditioner for the Schur complement matrix

S = BA−1BT , with γi denoting the i’th eigenvalue of S−1
0 S:

S qi = γi S0 qi,

with corresponding eigenvector qi ∈ IRm.

Then, an eigenvalue λ of the above preconditioned matrix L−1
0 L will lie in:

λ ∈ I(−) ∪ I(+),

where

I(−) ≡ [
1 −

√
1 + 4γmax

2
,
1 −

√
1 + 4γmin

2
] ⊂ (−∞, 0)

I(+) ≡ {1} ∪ [
1 +

√
1 + 4γmin

2
,
1 +

√
1 + 4γmax

2
] ⊂ [1,∞).

(10.72)

Proof. We follow the proof in [EL8, EL2, KL2, EL3, SI]. Let λ be an eigenvalue
of L−1

0 L corresponding to eigenvector
(
uT ,µT

)T :[
A BT

B 0

][
u
µ

]
= λ

[
A 0
0 S0

][
u
µ

]
.

This yields the equations:{
(1 − λ)Au + BT µ = 0
Bu = λS0µ.

(10.73)
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If λ = 1, then the first block row yields that µ = 0 since BT has full rank.
Substituting this into the second block row yields that Bu = 0, i.e., u ∈ K0.
Since dim(K0) = n − m, this yields that λ = 1 will be an eigenvalue of L−1

0 L
of multiplicity (n−m). If {w1, . . . ,wn−m} forms a basis for K0, the (n−m)
independent eigenvectors of L−1

0 L will be (wT
i ,0T )T for 1 ≤ i ≤ (n − m).

To determine the remaining 2m eigenvalues of L−1
0 L, let λ �= 1. In this

case, the first block row of (10.73) yields u = (λ−1)−1 A−1BT µ. Substituting
this into the second block row yields:(

BA−1BT
)

µ = λ (λ − 1) S0 µ.

If γi is an eigenvalue of S−1
0 S corresponding to eigenvector qi:

S qi = γi S0 qi, for i = 1, . . . , m,

then it must hold that γi = λ (λ − 1) . Solving this quadratic equation for λ
using each of the m eigenvalues γi of S−1

0 S yields two roots λ+i and λ−i as:

λ±i =
1 ±

√
1 + 4γi

2
, for i = 1, . . . , m,

with the associated eigenvectors:[
A BT

B 0

]⎡⎣ 1
(λ±i − 1)

A−1BT qi

qi

⎤
⎦ = λ±i

[
A 0
0 S0

]⎡⎣ 1
(λ±i − 1)

A−1BT qi

qi

⎤
⎦ .

Thus, we have determined all the eigenvalues and eigenvectors of L−1
0 L.

Bound (10.72) follows immediately. ��
Remark 10.43. The analysis in Lemma 10.42 applies only when A0 = A.
In practice, it will be preferable to employ a block diagonal preconditioner
L0 = blockdiag(A0, S0) where A0 �= A. In this case, determining the exact
eigenvalues of L−1

0 L will be complicated. However, we may still obtain bounds
for distribution of eigenvalues of L−1

0 L as follows [RU5]. Let A0 = AT
0 > 0

and S0 = ST
0 > 0, so that L

1/2
0 is well defined. It is easily verified that the

eigenvalues of L−1
0 L are identical to the eigenvalues of L̃ ≡ (L−1/2

0 LL
−1/2
0 ):

L̃ ≡ L
−1/2
0 LL

−1/2
0 =

[
Ã B̃T

B̃ 0

]
,

where Ã = (A−1/2
0 AA

−1/2
0 ) and B̃ = (S−1/2

0 BA
−1/2
0 ). The eigenvalues of L̃

can be estimated by applying Lemma 10.10 (with A replaced by Ã and B

replaced by B̃). When A0 � A, the eigenvalues γi of Ã = (A−1/2
0 AA

−1/2
0 )

will lie in an interval independent of the mesh parameters. Since the singular
values σj of B̃ correspond to the positive square roots of the eigenvalues of
B̃B̃T = S

−1/2
0 (BA−1

0 BT )S−1/2
0 , when A0 � A, we will obtain (BA−1

0 BT ) � S.

If additionally S � S0, we will obtain S
−1/2
0 (BA−1

0 BT )S−1/2
0 � I. As a result,

the singular values σj of B̃ will also be independent of the mesh parameters.
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Motivated by the preceding, the preconditioner L0 = blockdiag(A0, S0)
may be employed to precondition (10.2) using a Krylov space algorithm such
as MINRES [PA3, CH19, RU5] or the conjugate residual method [SA2]. These
algorithms require the coefficient matrix to be symmetric. Since the precon-
ditioned matrix L−1

0 L will unfortunately not be symmetric in the Euclidean
inner product, though it is easily verified to be symmetric in the inner product
〈., .〉L0

generated by the positive definite symmetric preconditioner L0:

〈(u, µ), (v, λ)〉L0
≡ vT A0u + λT S0µ. (10.74)

As a result, the MINRES algorithm may be employed to solve:[
A0 0
0 S0

]−1 [
A BT

B 0

] [
u
µ

]
=
[

A0 0
0 S0

]−1 [ f
g

]
, (10.75)

with 〈., .〉L0
replacing the Euclidean inner product. See [PA3, CH19, RU5] or

[SA2] for a listing of the algorithm.

Remark 10.44. An alternate preconditioning method was described for (10.2)
in [RU5]. Let M = blockdiag(R, Q) denote a (possibly nonsymmetric) block
diagonal matrix with diagonal blocks R and Q of size n and m, respectively.
Then, system (10.2) can be transformed into the symmetric indefinite system:(

M−1

[
A BT

B 0

]
M−T

) (
MT

[
u
µ

])
= M−1

[
f
g

]
.

We shall denote the transformed system as:

L̃

[
ũ
µ̃

]
=
[
f̃
g̃

]
, (10.76)

where

L̃ =
[

R−1AR−T R−1BT Q−T

Q−1BR−T 0

]
,

[
ũ
µ̃

]
=
[

RT u
QT µ

]
,

[
f̃
g̃

]
=
[

R−1f
Q−1g

]
.

(10.77)
System (10.77) may be solved by the MINRES algorithm, from which we
may obtain u = R−T ũ and µ = Q−T µ̃. Its convergence rate will depend
on the eigenvalues of L̃, which depends on the eigenvalues of R−1AR−T and
the singular values of R−1BT Q−T by Lemma 10.10. Heuristically, R must be
chosen such that:

R−1AR−T � I ⇔ A � RRT .

Requiring R−1BT Q−T to be a unitary matrix will be equivalent to requiring:

Q−1BR−T R−1BT Q−T � I ⇔ Q−1SQ−T � I ⇔ S � QQT ,

since R−T R−1 � A−1. Matrices R and Q may be obtained by incomplete
factorization of A and S, respectively. Since S is typically not assembled,
heuristic approximations can be employed for Q, based on the structure of S.
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10.5.4 Block Triangular Preconditioner for (10.2)

If a block triangular matrix is employed to precondition the saddle point
system (10.2), symmetry will be lost. However, it may be noted that:

• For suitably chosen diagonal blocks, the eigenvalues of the resulting pre-
conditioned system can be chosen to be all positive. By comparison, the
preconditioned system resulting from a symmetric positive definite block
diagonal preconditioner is indefinite.

• Block triangular preconditioners can be inverted at almost the computa-
tional cost as block diagonal preconditioners.

Due to non-symmetry of the preconditioned system, a GMRES method will
be required. In this case, the eigenvalues of the preconditioned matrix may not
be the sole factor determining the convergence rate of the algorithm [SA2].

We shall consider block triangular preconditioners of the following form:

M1 =
[

A0 0
B −S0

]
or M2 =

[
A0 BT

0 −S0

]
, (10.78)

where A0 and S0 are symmetric positive definite matrices of size n and m,
respectively. The following preliminary result describes the distribution of
eigenvalues of the preconditioned matrix M−1

1 L in the case when A0 = A,
where L denotes the coefficient matrix in (10.2).

Lemma 10.45. Suppose the following conditions hold:

1. Let A be a symmetric positive definite matrix of size n and let B be full
rank matrix of size m × n with m < n.

2. Let M1 denote the block lower triangular preconditioner defined in (10.78)
with A0 = A, and a symmetric positive definite matrix S0 of size m.

3. Let γi denote the i’th eigenvalue of S−1
0 S:

S qi = γi S0qi, (10.79)

with corresponding eigenvector qi ∈ IRm.

Then, if λ is an eigenvalue of M−1
1 L:[

A BT

B 0

] [
u
µ

]
= λ

[
A 0
B −S0

] [
u
µ

]
,

it will lie in the set:

λ ∈ ({1} ∪ [γmin, γmax]) ⊂ (0,∞),

where γmin = min{γ1, . . . , γm} and γmax = max{γ1, . . . , γm}.
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Proof. The proof is similar to the block diagonal case [EL8, EL2, KL2, EL3,
SI]. The equation corresponding to the generalized eigenvalue problem is:

{
(1 − λ) Au + BT µ = 0
(1 − λ) Bu = −λ S0µ.

The first block row yields that if λ = 1, then µ = 0, since BT has rank m.
When λ = 1 and µ = 0, the second block row is satisfied. As a result, λ = 1
is an eigenvalue of M−1

1 L of multiplicity n. Indeed, if u1, . . . ,un form a basis
for IRn, then

(
uT

i ,0T
)T for i = 1, . . . , n will form a basis for the eigenspace

corresponding to λ = 1. To determine the remaining m eigenvalues of M−1
1 L,

suppose λ �= 1. The first block row yields u = (λ−1)−1 A−1 BT µ. Substituting
this into the second block row yields:

S µ = λ S0 µ,

where S = BA−1BT . Thus λ corresponds to a generalized eigenvalue of
S q = γ S0q. Given m linearly independent eigenvectors q1, . . . ,qm satis-
fying S qi = γi S0 qi, it will hold that ui = (γi − 1)−1 A−1 BT qi. Thus
λ = γi will be an eigenvalue of M−1

1 L corresponding to the eigenvector(
uT

i ,qT
i

)T for i = 1, . . . ,m. Thus, the eigenvalues of M−1
1 L lie in the set

λ ∈ ({1} ∪ [γmin, γmax]) . ��

Remark 10.46. The eigenvalues of M−1
2 L will also lie in the same interval

when A0 = A. However, the eigenvectors will differ from those for M−1
1 L.

Remark 10.47. The preconditioner M1 defined by (10.78) is identical to that
employed in the block matrix form (10.26) of the inexact preconditioned
Uzawa algorithm [BR16] described in Chap. 10.2. As a result, by Lemma 10.23,
if matrices A0 and S0 satisfy the following for some 0 ≤ γ < 1 and
0 ≤ δ < 1:

{
(1 − γ) ηT S0η ≤ ηT Sη ≤ ηT S0η, ∀η ∈ IRm

(1 − δ)vT A0v ≤ vT Av ≤ vT A0v, ∀v ∈ IRm,

then the eigenvalues of M−1
1 L will have positive real part. See also [ZU].

Remark 10.48. A result in [KL2] shows that the (right) preconditioned matrix
LM−1

2 is symmetrizable with positive eigenvalues, under appropriate restric-
tions on A0 = AT

0 > 0 and S0 = ST
0 > 0. Additional results on the spectra of

M−1
1 L and LM−1

2 may be found in [EL8, EL2, EL3, SI, EL4, EL9, ZU].
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10.5.5 A Saddle Point Preconditioner for (10.2)

In certain applications, it may be advantageous to precondition system (10.2)
using another saddle point matrix [AL2], see Chap. 10.7. The efficacy of such
a preconditioner will depend on the computational cost of solving the precon-
ditioned system. We consider a saddle point preconditioner L0 of the form:

L0 =
[

A0 BT

B 0

]
where L =

[
A BT

B 0

]
,

where A0 denotes a symmetric positive definite preconditioner for A. Below,
we list an unaccelerated splitting algorithm for solving (10.2).

Algorithm 10.5.3 (Unaccelerated Splitting Algorithm)

1. Let u(0) and µ(0) be starting iterates
2. For k = 0, 1, . . . until convergence do:

[
u(k+1)

µ(k+1)

]
=

[
u(k)

µ(k)

]
+

[
A0 BT

B 0

]−1([
f
g

]
−
[

A BT

B 0

][
u(k)

µ(k)

])

(10.80)
3. Endfor

Output:
(
u(k)T

, µ(k)T
)T

If the linear system with coefficient matrix L0 is solved using a Schur com-
plement algorithm, each iteration will involve an inner iteration. The following
result describes the distribution of eigenvalues of L−1

0 L.

Lemma 10.49. Suppose the following conditions hold.

1. Let A and A0 be symmetric positive definite matrices of size n and let B
be a full rank matrix of size m × n with m < n.

2. Let γi denote a generalized eigenvalue of the system:

Awi = γi A0 wi,

corresponding to eigenvector wi ∈ IRn.
3. Let λ be a generalized eigenvalue of:[

A BT

B 0

][
u
µ

]
= λ

[
A0 BT

B 0

][
u
µ

]
. (10.81)

Then, the eigenvalue λ will be real and lie in the interval:

λ ∈ ({1} ∪ [γmin, γmax]) ,

where γmin = min{γ1, . . . , γn} and γmax = max{γ1, . . . , γn}.
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Proof. We shall follow the proof in [AL2]. We rewrite (10.81) as:{
(A − λA0)u + (1 − λ) BT µ = 0
(1 − λ)B u = 0.

(10.82)

Suppose λ = 1. In this case system (10.82) reduces to:

(A − A0)u = 0,

for arbitrary µ ∈ IRm. There will be a nonzero solution u to the above equation
iff γ = 1 is an eigenvalue of A−1

0 A. Regardless, the component µ ∈ IRm can be
chosen arbitrarily, so that λ = 1 will be an eigenvector of L−1

0 L of multiplicity
m+r, where r denotes the multiplicity of γ = 1 as an eigenvalue of A−1

0 A. We
set r = 0 if γ = 1 is not an eigenvalue of A−1

0 A. Corresponding eigenvectors
can be obtained easily in the form (0T , µT

i )T or (uT
i ,0T )T .

Next, suppose that λ �= 1, possibly complex. In this case, the second block
row of (10.82) reduces to B u = 0, so that u ∈ K0 = Kernel(B) ⊂ Cn. Taking
the complex inner product of the first block row of (10.82) with u ∈ K0 ⊂ Cn

and rearranging terms yields:

λ =
uHAu
uHA0u

.

Bounds for the generalized Rayleigh quotient yields γmin ≤ λ ≤ γmax. It can be
verified that an eigenvalue λ �= 1 will correspond to the value of uHAu/uHA0u
at critical points u within K0. Corresponding eigenvectors can be obtained by
solving for u ∈ K0 and µ. We omit further details. ��

Remark 10.50. The preceding lemma shows that ρ(I −L−1
0 L) = ρ(I −A−1

0 A).
As a result, if matrix A0 is chosen such that ρ

(
I − A−1

0 A
)

< 1, then the
unaccelerated iteration (10.80) will converge with an error contraction factor
given by ρ

(
I − A−1

0 A
)
. In practice, A0 must also be chosen so that saddle

point matrix L0 is easily inverted, which requires that both A0 and (BA−1
0 BT )

be invertible at low cost.

Remark 10.51. If matrix A0 is spectrally equivalent to A then BA−1
0 BT will

be spectrally equivalent to BA−1BT . Indeed, if λ
(
A−1

0 A
)

∈ [β1, β2] then
λ
(
(BA−1

0 BT )−1 (BA−1BT )
)
∈ [β−1

2 , β−1
1 ] since:

µT BA−1BT µ

µT BA−1
0 BT µ

=
yT A−1y
yT A−1

0 y
, for y = BT µ,

and since λ
(
A0A

−1
)
∈ [β−1

2 , β−1
1 ] when λ

(
A−1

0 A
)
∈ [β1, β2].
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10.6 Applications to the Stokes and Navier-Stokes
Equations

In this section, we describe applications of saddle point iterative methods
to solve discretizations of the incompressible Stokes and Navier-Stokes equa-
tions. Computational methods for the incompressible Navier-Stokes equations
are described in [CH27, CH28, PE4, TE, GI3, BR33, CH29, CA28, BE19].
Although we shall focus primarily on the steady state Stokes equation, we
shall indicate extensions to implicit time discretizations of linearizations of
the Navier-Stokes equations. Our discussion will include the following.

• Background on the Stokes and Navier-Stokes equations.
• Properties of matrices A and B for the steady state Stokes equation.
• Applications of Uzawa, penalty, projection and block matrix algorithms

for the steady state Stokes equation.
• Applications to the Stokes-Oseen (linearized Navier-Stokes) problem.
• Applications to the time dependent Stokes and Navier-Stokes equations.

We consider finite element and finite difference discretizations of the Stokes
equations [TE, GI3, BR33, CH27, CH28]. Domain decomposition applications
to fluid flow problems are described in [CA12, CA16, CA11].

10.6.1 Background

The incompressible Navier-Stokes equations on a domain Ω ⊂ IRd are:⎧⎨
⎩

∂u
∂t

− ν ∆u + (u · ∇)u + ∇p = f , in Ω × (0, t)

∇ · u = 0, in Ω × (0, t),
(10.83)

where u(x, t) and p(x, t) denote the unknown velocity and pressure of the fluid,
while f(x, t) denotes a forcing term. The first equation expresses conservation
of momentum, while the second equation expresses incompressibility of the
fluid, see [CH29]. The parameter ν > 0 represents the viscosity of the flow
on the domain Ω, and is the reciprocal of the Reynolds number. The Navier-
Stokes equation is of parabolic character, and appropriate boundary and initial
conditions must be prescribed. Typical boundary conditions are:⎧⎪⎨

⎪⎩
u = gD, on ∂ΩD × (0, t), Dirichlet type

−ν
∂u
∂n

+ pn = gN , on ∂ΩN × (0, t), Neumann type
(10.84)

where n represents the unit exterior normal to the boundary segment ∂Ω.
Initial conditions will specify u(x, 0) = u0(x) on Ω.

Remark 10.52. Since The momentum equation in (10.83) will admit multiple
solutions for the pressure, since ∇ (p(x, t) + c) = ∇p(x, t) for a constant c.
Imposing Dirichlet boundary conditions u = gD on ∂Ω will not eliminate
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this nonuniqueness in the pressure. However, Neumann boundary conditions
−ν ∂u

∂n + pn = gN on a segment ∂ΩN �= ∅ will yield a unique pressure.

An important approximation of the Navier-Stokes equation occurs when
the term (u · ∇)u is relatively small in relation to the other terms, typically
when ν is large. The Stokes problem is obtained by omitting this nonlinear
term. The steady state Stokes equation with Dirichlet boundary conditions is:⎧⎪⎪⎨

⎪⎪⎩
−ν ∆u + ∇p = f , in Ω

∇ · u = 0, in Ω

u = gD, on ∂Ω.

(10.85)

An alternative approximation of the steady state Navier-Stokes equations
arises when it is linearized about a given velocity field w(x) using a fixed
point linearization. This results in the Stokes-Oseen problem:⎧⎪⎪⎨

⎪⎪⎩
−ν ∆u + (u · ∇)w + (w · ∇)u + ∇p = f , in Ω

∇ · u = 0, in Ω

u = gD, on ∂Ω.

(10.86)

where we have considered the Dirichlet problem for simplicity. In applications,
for further simplification, we shall shift the term (u · ∇)w (zeroth order in
the derivatives of u) to the right hand side as in a Picard iteration.

Discretization of (10.85). Let gD(x) = 0 and Ω ⊂ IRd. A finite element
discretization of (10.85) can be obtained by Galerkin approximation of its
weak form, see [TE, GI3, BR33]. Define VD ≡ (VD)d and QD = L2(Ω)/IR
(functions in L2(Ω) with mean value zero), where VD ≡ H1

0 (Ω).Then, the
weak form of (10.85) is obtained by multiplying the momentum equation
in (10.85) by v(x) ∈ VD and integrating by parts over Ω, and multiplying
the incompressibility equation by −q(x) ∈ QD and integrating over Ω. The
resulting weak formulation seeks u(x) ∈ VD and p(x) ∈ QD satisfying:{

A(u,v) + B(v, p) = (f ,v), ∀v ∈ VD

B(u, q) = 0, ∀q ∈ QD,
(10.87)

where A(., .) : VD ×VD → IR and B(., .) : VD ×QD → IR are bilinear forms:{
A(u,v) ≡ ν

∑d
i=1

∫
Ω

(∇ui · ∇vi) dx

B(v, q) ≡ −
∫

Ω
q (∇ · v) dx.

(10.88)

for u(x) = (u1(x), . . . , ud(x)) ∈ VD and v = (v1(x), . . . , vd(x)) ∈ VD, and
p(x), q(x) ∈ QD. The term:

B(v, p) = −
∫

Ω

p(x) (∇ · v(x)) dx =
∫

Ω

∇p(x) · v(x) dx,

using integration by parts, since v(x) has zero boundary values.
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Given a quasiuniform triangulation Ωh of Ω with elements of size h, let
Vh ⊂ VD and Qh ⊂ QD denote finite element spaces for the velocity and
pressure, with Vh = (Vh)d where Vh ⊂ VD. A finite element discretization
of (10.87) is obtained by seeking uh(x) ∈ VD and ph(x) ∈ Qh such that:{

A(uh,vh) + B(vh, ph) = (f ,vh), ∀vh ∈ Vh

B(uh, qh) = 0, ∀qh ∈ Qh.
(10.89)

A linear system corresponding to the above discretization can be obtained as
follows. Let {ψ1(x), . . . ,ψn(x)} denote a basis for Vh and {q1(x), . . . , qm(x)}
a basis for Qh ⊂ L2(Ω). Expand uh(x) and ph(x) using this basis:

uh(x) =
∑n

i=1(uh)i ψi(x)
ph(x) =

∑m
i=1(ph)i qi(x),

where with some abuse of notation, we have used uh(x) to denote a finite
element function and uh to denote its vector representation relative to the
given basis. Substituting vh(x) = ψi(x) for i = 1, . . . , n and qh(x) = qi(x) for
i = 1, . . . , m into the above yields the following saddle point linear system:[

A BT

B 0

] [
uh

ph

]
=
[
fh

0

]
, (10.90)

where matrices A and B, and vector fh are defined by:

(A)ij = A(ψi, ψj), (B)ij = B(ψj , qi) (fh)i = (f , ψi).

Importantly, for a suitable ordering of the basis of Vh, matrix A will be block
diagonal. Let {φ1, . . . , φk} form a nodal basis for Vh where n = k d. Define:⎧⎪⎨

⎪⎩
ψi(x) = (φi(x), . . . , 0)T

, for 1 ≤ i ≤ k
...
ψ(d−1)k+i(x) = (0, . . . , φi(x))T

, for 1 ≤ i ≤ k.

In this case matrix A will have the block diagonal form:

A =

⎡
⎢⎣

A(1)

. . .
A(d)

⎤
⎥⎦ , where

(
A(l)

)
ij

= ν

∫
Ω

(∇φi · ∇φj) dx.

By construction, matrix A will be symmetric positive definite where each diag-
onal block A(l) corresponds to a finite element discretization of −ν ∆. Matrix
BT will correspond to a discretization of the gradient operator, while B will
be a discretization of the negative of the divergence operator. To ensure that
discretization (10.89) of (10.87) is stable and that saddle point system (10.90)
is solvable, the finite element spaces Vh and Qh must be compatibly chosen.
The following result states sufficient conditions for a stable discretization.
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Lemma 10.53. Suppose the following conditions hold.

1. Coercivity: Let α > 0 be independent of h such that:

A(vh,vh) ≥ α ‖vh‖2
VD

, ∀vh ∈ Kh
0 , (10.91)

where Kh
0 = {vh ∈ Vh : B(vh, qh) = 0, ∀qh ∈ Qh}.

2. Uniform inf-sup condition: Let β > 0 be independent of h such that:

sup
vh∈Vh\{0}

B(vh, qh)
‖vh‖VD

≥ β ‖qh‖QD
, ∀qh ∈ Qh. (10.92)

Then, discretization (10.89) of (10.87) will be stable with the error bound:

‖u − uh‖VD
+ ‖p − ph‖QD

≤ C

(
inf

vh∈Vh

‖u − vh‖VD
+ inf

qh∈Qh

‖p − qh‖QD

)
,

for some C > 0 independent of h, but dependent on α > 0 and β > 0.

Proof. See [TE, GI3, BR33]. ��

Remark 10.54. The coercivity condition (10.91) will hold trivially for the
Stokes equation since A(v,v) = ν |v|21,Ω is equivalent to the Sobolev norm
‖v‖2

1,Ω . As a result, the stability of a discretization of Stokes equation will
depend primarily on the uniform inf-sup condition (10.92) holding for the
given choice of spaces Vh and Qh. From a matrix viewpoint, the uniform inf-
sup condition (10.92) is equivalent to the requirement that given qh ∈ IRm

(satisfying 1T qh = 0, for the Dirichlet problem), there exists vh ∈ IRm:

B vh = qh with ‖vh‖A ≤ β−1 ‖qh‖M , (10.93)

for β > 0 independent of h, where M denotes the mass matrix:

Mij ≡
∫

Ω

qi(x) qj(x) dx with qT
h Mqh = ‖qh‖2

0,Ω . (10.94)

Here, we have used that ‖vh‖Vh
is equivalent to ‖vh‖A. Thus, given a finite

element space Qh, the finite element space Vh must be “large enough” to
ensure that (10.93) holds. See [GI3, BR33] for examples of such spaces.

Remark 10.55. For Dirichlet boundary conditions, if we choose QD = L2(Ω),
and qh(x) = 1 belongs to Qh, then it can be verified that matrix BT will
satisfy BT 1 = 0, where 1 = (1, . . . , 1)T . This will hold because ∇ qh(x) = 0,
or equivalently B(vh, qh) = 0 for all vh ∈ Vh, when qh(x) = 1. Thus, under
these assumptions matrix B will not have full rank, and the saddle point
matrix in (10.90) will be singular. However, system (10.90) will be consistent
since 1T 0 = 0. A full rank matrix B can be constructed, if desired, by choosing
the pressure spaces Qh and QD to consist only of functions having mean value
zero, i.e., Qh ⊂ QD = L2(Ω)/IR. However, this will be cumbersome and we
shall instead work with a singular coefficient matrix, and modify algorithms
from preceding sections appropriately.
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Properties of A and B. Matrices A and B in the system (10.90) will satisfy
the following properties for a finite element discretization of (10.85). Matrix
A = blockdiag

(
A(1), . . . , A(d)

)
of size n will be symmetric positive definite

and sparse. Each diagonal block A(l) will correspond to a discretization of
−ν ∆. Thus, by standard finite element theory [ST14, CI2, JO2], there will
exist γ0 > 0 and γ1 > 0 independent of h such that:

γ0 hd ≤ λmin(A) ≤ λmax(A) ≤ γ1h
d−2.

The condition number of matrix A will satisfy cond(A) ≤ C h−2 for some
C > 0 independent of h. By construction, matrix B of size m × n will be
sparse, with m < n. We shall assume that it satisfies the uniform inf-sup
condition (10.93). The following additional property will hold for matrix B.

Lemma 10.56. The matrix B arising in the discretization (10.90) of Stokes
equation (10.85) will satisfy:∣∣qT

h Bvh

∣∣ ≤ C∗ ‖vh‖A ‖qh‖M , (10.95)

for some C∗ > 0 independent of h, where M denotes the mass matrix (10.94)
for the pressure satisfying qT

h Mqh = ‖qh‖2
0,Ω.

Proof. Let vh(x) and qh(x) denote finite element functions with nodal vectors
vh ∈ IRn and qh ∈ IRm, respectively. Then, bound (10.95) will hold since:∣∣qT

h Bvh

∣∣ = |B(vh, qh)| =
∣∣∫

Ω
qh(x) (∇ · vh(x)) dx

∣∣
≤ ‖∇ · vh‖0,Ω ‖qh‖0,Ω

≤ C1 ‖vh‖1,Ω ‖qh‖0,Ω

≤ C∗ ‖vh‖A ‖qh‖0,Ω ,

for some C∗ > 0 independent of h. ��

An application of bound (10.95) and the inf-sup condition (10.93) will yield
the following spectral bounds for the Schur complement matrix S = BA−1BT .

Lemma 10.57. Let A(., .) and B(., .) satisfy the inf-sup condition (10.92) and
bound (10.95). Then, there will exist 0 < α0 < α1 independent of h, such that:

α0 β2
(
qT

h Mqh

)
≤ qT

h

(
BA−1BT

)
qh ≤ α1 C2

∗
(
qT

h Mqh

)
, (10.96)

where M denotes the mass matrix (10.94) for the pressure space Qh (for
simplicity, we assume Qh ⊂ L2(Ω)/IR for Dirichlet conditions on ∂Ω).

Proof. Follows immediately by an application of Lemma 10.11. ��

Remark 10.58. If Dirichlet boundary conditions are imposed on ∂Ω and the
pressure space satisfies Qh ⊂ L2(Ω) (without the zero mean value require-
ment), then matrix BT will be singular (with BT 1 = 0) and bound (10.96)
will be valid only for qh ∈ IRm satisfying 1T qh = 0.
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Since the mass matrix M defined by (10.94) is well conditioned, having
diagonal entries Mii = O(hd), it will follow that the Schur complement matrix
S = (BA−1BT ) is also well conditioned (apart from the singularity S 1 = 0
when Dirichlet boundary conditions are imposed).

Remark 10.59. Bounds for the singular values of matrix BT can be obtained,
as the square root of the eigenvalues of BBT . To obtain such an estimate,
consider BA−1BT and substitute bounds for the eigenvalues of matrix A−1.
Since γ0 hd ≤ λmin(A) ≤ λmax(A) ≤ γ1h

d−2, for 0 < α0 < α1 it will hold that:

γ−1
0 h−d ≥ λmax(A−1) ≥ λmin(A−1) ≥ γ−1

1 h2−d.

Substituting this into S = BA−1BT will yield:

γ−1
0 h−d qT

h

(
BBT

)
qh ≥ qT

h

(
BA−1BT

)
qh ≥ γ−1

1 h2−d qT
h

(
BBT

)
qh.

Since BA−1BT is spectrally equivalent to the mass matrix M , where M de-
fined by (10.94) is spectrally equivalent to hd I, we obtain:

c0 h−d qT
h

(
BBT

)
qh ≥ hdI ≥ ch2−d qT

h

(
BBT

)
qh. (10.97)

This yields c hd ≤ σi(BT ) ≤ C hd−1 for some 0 < c < C independent of h.
However, 0 = σ1 < σ2 = c hd ≤ σi(B) ≤ C hd−1 if Qh contains constants.

10.6.2 Algorithms for the Steady State Stokes Equation

In the following, we comment on the algorithms from Chaps. 10.2 to 10.5 to
solve discretizations of Stokes equations with Dirichlet boundary conditions.

Uzawa type algorithms. As described in Chap. 10.2, different versions
of Uzawa’s algorithm correspond to different choices of preconditioners A0 for
A and S0 for S = BA−1BT in the preconditioned inexact Uzawa algorithm.

Algorithm 10.6.1 (Preconditioned Inexact Uzawa Algorithm)
Given u(0), p(0) and g = 0

1. For k = 0, 1, . . . until convergence do:
2. u(k+1) = u(k) + A−1

0

(
f − Au(k) − BT p(k)

)
.

3. p(k+1) = p(k) + S−1
0 (Bu(k+1) − g)

4. Endfor

Recall that A = blockdiag(A(1), . . . , A(d)) is block diagonal in Stokes ap-
plications, with d diagonal blocks when Ω ⊂ IRd, where A(i) corresponds to
a discretization of −ν ∆ with Dirichlet boundary conditions. As a result, we
may employ any suitable preconditioner A

(l)
0 for A(l) (for instance domain

decomposition or multigrid), and define A0 = blockdiag(A(1)
0 , . . . , A

(d)
0 ). If

cond(A(l)
0 , A(l)) is independent of h for each l, then cond(A0, A) will also be

independent of h.



462 10 Saddle Point Problems

Since the Schur complement S = BA−1BT is spectrally equivalent to
hd I (when Qh ⊂ L2(Ω)/IR), we may choose S0 = c hdI for some c > 0. In
particular, if matrices A0 and S0 are scaled as in Lemma 10.23:

(1 − γ)qT S0q ≤ qT Sq ≤ qT S0q, ∀q ∈ IRm

(1 − δ)vT A0v ≤ vT Av ≤ vT A0v, ∀v ∈ IRn,
(10.98)

for some 0 ≤ γ < 1 and 0 ≤ δ < 1, then the preconditioned inexact Uzawa
algorithm will converge at a rate independent of h. If BT 1 = 0 and 1T p(0) = 0,
then all subsequent iterates p(k) will satisfy 1T p(k) = 0 provided 1T S−1

0 = 0.

Penalty and Regularization Methods. An approximate solution (uε,pε)
to (10.90) can also be obtained by solving the regularized saddle point sys-
tem (10.35) from Chap. 10.3. The parameter ε can be chosen to be the same
order as the discretization error, with D = S (or D = hd I), and Uzawa’s
algorithm can be suitably modified to solve (10.35). However, regularization
does not provide particular advantages in this application [GI3].

Projection Methods. In applications to the stationary Stokes equation,
the projected gradient algorithm from Chap. 10.4 will converge slowly since
matrix A is ill-conditioned with cond(A) = O(h−2). The projected conjugate
gradient method with a preconditioner A0 = AT

0 > 0 should converge more
rapidly for an effective choice of preconditioner, however, rigorous studies
are not known. Both algorithms require applying the Euclidean projection
PK0

= I − BT
(
BBT

)−1
B. Matrix (BBT ) corresponds to a discretization of

−∆ and although BBT will be sparse, fast solvers may be available only for
special geometries and grids. Parallelization may also pose a challenge.

In the following, we describe Schwarz projection algorithms to solve (10.90),
see [FO, LI6, PA2, CA34, PA12, CO5]. Let Ω1, . . . , Ωl denote a decom-
position of Ω into nonoverlapping subdomains of size h0. Additionally, let
Ω∗

1 , . . . , Ω∗
l denote an associated overlapping decomposition with subdomains

Ω∗
i ≡ {x ∈ Ω : dist(x,Ωi) < β h0} , having overlap β h0. We shall assume that

the elements of the triangulation Ωh of Ω align with the subdomains Ωi and
Ω∗

i . Given finite element spaces Vh ⊂
(
H1

0 (Ω)
)d and Qh ⊂ L2(Ω) we define

subdomain velocity and pressure spaces Vi and Qi on Ω∗
i as follows:{

Vi = Vh ∩
(
H1

0 (Ω∗
i )
)d

, for 1 ≤ i ≤ p

Qi = Qh ∩ L2(Ω∗
i ), for 1 ≤ i ≤ p.

We shall employ the following notation for discrete divergence free subspaces:

Kh
0 = {vh ∈ Vh : B(vh, qh) = 0, ∀qh ∈ Qh}

Ki
0 = {v ∈ Vi : B(v, qh) = 0, ∀qh ∈ Qi} .

(10.99)

All Schwarz projection iterates will be required to remain within the constraint
set Kh

0 . For most traditional choices of finite element spaces, the local discrete
divergence free space Ki

0 will be a subset of Kh
0 . However, without additional

assumptions, this property may not hold if a coarse space is employed.



10.6 Applications to the Stokes and Navier-Stokes Equations 463

To define a coarse space, let Ω1, . . . , Ωl form a coarse triangulation τh0(Ω)
of Ω, and let V0 and Q0 denote coarse velocity and pressure spaces:{

V0 = Vh0 ∩
(
H1

0 (Ω)
)d

Q0 = Qh0 ∩ L2(Ω)

defined on the triangulation τh0(Ω). If the coarse grid divergence free space
K0

0 is a subspace of the fine grid divergence free space Kh
0 , then the coarse

space can be employed. In the special case that Kh
0 ⊂ K0 and K0

0 ⊂ K0, where
K0 denotes the continuous divergence free space:

K0 ≡
{
v ∈

(
H1

0 (Ω)
)d : ∇ · v = 0

}
, (10.100)

then it can be verified that K0
0 ⊂ Kh

0 .
To implement the Schwarz algorithm, let Ui denote a matrix of size n×ni

whose columns form a basis for the space of nodal vectors associated with Vi.
Similarly, let Qi denote a matrix of size m × mi whose columns form a basis
for the space of nodal vectors associated with Qi. We define Ai and Bi as:

Ai = UT
i AUi and Bi = QT

i BUi, (10.101)

of size ni × ni and mi × ni respectively. By construction, it will hold that:

Biwi = 0 =⇒ Uiwi ⊂ Kh
0 , for 0 ≤ i ≤ l. (10.102)

We assume that BT 1 = 0 and that BT
i 1i = 0 for some 1i ∈ IRmi . To avoid

discontinuous pressures across Ω∗
i , we shall employ a restriction matrix Ri of

size mi×mi, such that (Riµi)j = (µi)j when node j is in Ω∗
i and (Riµi)j = 0

when node j is on ∂Ω∗
i . We define R0 = 0. We list the multiplicative Schwarz

algorithm to solve the Dirichlet problem (10.90).

Algorithm 10.6.2 (Multiplicative Schwarz Algorithm to Solve (10.90))
Let v(0) = 0 and p(0) = 0 denote starting iterates

1. For k = 0, 1, . . . until convergence do:
2. For i = 0, 1, . . . , l do:[

w(k)
i

µ
(k)
i

]
=

[
Ui 0
0 QiRi

][
Ai BT

i

Bi 0

]−1[
UT

i (f − Av(k+ i
l+1 ) − BT p(k+ i

l+1 ))
0

]

Define γi =
(
1T (p(k+ i

l+1 ) + µ
(k)
i )/1T QiRi1i

)
and update:

[
v(k+ i+1

l+1 )

p(k+ i+1
l+1 )

]
=

[
v(k+ i

l+1 )

p(k+ i
l+1 )

]
+

[
w(k)

i

µ
(k)
i − γiQiRi1i

]

3. Endfor
4. Endfor

Output: v(k) and p(k)
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Remark 10.60. Several modifications have been introduced to obtain the above
algorithm from the multiplicative Schwarz algorithm listed Chap. 10.4. First,
since g = 0, we have omitted step 1, setting u∗ = 0. Next, steps 2 and 3 to
determine w ∈ Kh

0 and µ = p have been combined by computing the local
pressures µ

(k)
i to determine p as indicated above. By construction, all velocity

iterates will be discrete divergence free, i.e., v(k+ i
l+1 ) ∈ Kh

0 , while the pressure
iterates p(k+ i+1

l+1 ) will have mean value zero. For sufficiently large overlap, the
iterates v(k) in the above algorithm will converge geometrically to the discrete
solution uh at a rate independent h, see [LI6, PA2, CA34]. The pressure p(k)

will similarly converge geometrically to ph. If a coarse space is included, then
this rate of convergence is expected to be robust as h0 → 0.

Remark 10.61. When i �= 0, each fractional iteration in the multiplicative
Schwarz algorithm above corresponds to a discrete version of the iteration:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−ν ∆u
(k+

i + 1
l + 1

)

+ ∇p
(k+

i + 1
l + 1

)

= f , in Ω∗
i

−∇ · u
(k+

i + 1
l + 1

)

= 0, in Ω∗
i

u
(k+

i + 1
l + 1

)

= u
(k+

i

l + 1
)

, on ∂Ω∗
i ,

for 1 ≤ i ≤ l and k = 0, 1, . . .. Here, the velocity and pressure are defined
as u(k+ i+1

l+1 ) = u(k+ i
l+1 ) and p(k+ i+1

l+1 ) = p(k+ i
l+1 ) on Ω \ Ω∗

i . The pressure is
also normalized to have mean value zero on Ω. The above can be derived
from the discrete version by expressing the equations satisfied by the updated
velocity and pressure in a weak form. The multiplicative Schwarz algorithm
is sequential, but can be parallelized by multicoloring the subdomains.

Remark 10.62. The additive Schwarz algorithm from Chap. 10.4 may also be
employed to solve (10.90). It is highly parallel:

• We can skip step 1, since g = 0, setting u∗ = 0.
• In step 2, the velocity vector w = uh can be determined by solving the

equation PAw = r using a CG algorithm with the A-inner product.
• In step 3, once the velocity uh has been determined, subdomain pressures

µi can be computed for i = 1, . . . , l as follows:

µi = Qi

[
0
I

]T [
Ai BT

i

Bi 0

]−1 [
UT

i (f − Auh)
0

]
.

A global pressure ph can be constructed from the local pressures µi such
that ph = µi + γi Qi1i on each subdomain Ω∗

i . The parameters γi can be
determined sequentially so that the subdomain pressures have the same
mean value as the pressures on adjacent subdomains on the regions of
overlap, and so that the global pressure has mean value zero [MA31].
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The additive Schwarz is heuristically expected to converge independent of h.
If a coarse space is included, then its rate of convergence is expected to remain
robust as h0 → 0. Theoretical bounds are not known.

Block Matrix Methods. The block matrix methods described in Chap. 10.5
are very effective for the iterative solution of (10.90).

• Since S = BA−1BT is well conditioned for the stationary Stokes equation,
the Schur complement system can be solved using the CG method without
preconditioning. Computing the action of S requires the action of A−1, and
an inner iteration may be employed with preconditioner A0. However, an
inexact Uzawa or block matrix preconditioned Krylov space algorithm will
be preferable [VE, QU7, BA18, EL5, BR16].

• The positive definite reformulation of [BR8] can also be employed to
solve (10.90) using CG acceleration. Any suitably scaled preconditioner
A0 for A can be employed, satisfying (10.61). Since S is well conditioned,
the resulting algorithm will converge at a rate independent of h.

• Block diagonal preconditioning is effective for solving stationary Stokes
with MINRES acceleration [EL8, EL2, KL2, EL3, SI, ZU]. Block triangular
preconditioning can be even more effective, but GMRES acceleration is
required [EL4, EL9, ZU]. If preconditioner A0 is spectrally equivalent to
A and S0 = c hdI is the preconditioner for S, then the resulting rate of
convergence will be independent of h. For block triangular preconditioners,
the matrices A0 and S0 must be suitably scaled as indicated in (10.98).

• Saddle point preconditioners do not offer particular advantages in applica-
tions to steady state Stokes, since matrix A is ill-conditioned.

If A0 � A and S0 � S, the rate of convergence will be independent of h.

10.6.3 The Stokes-Oseen Problem

The Stokes-Oseen problem (10.86) arises when a solution to the stationary
Navier-Stokes equations is sought based on the linearization (u·∇)w+(w·∇)u
of the nonlinear term (u · ∇)u about a velocity field w(x). We shall further
simplify the zeroth order term (u · ∇)w by shifting it to the right hand side
in a Picard iteration. A discretization of (10.86) without the (u · ∇)w term
will yield the following nonsymmetric linear system:[

ν A + N BT

B 0

][
uh

ph

]
=

[
fh

0

]
, (10.103)

where matrices B and BT are as in the discretization of Stokes equation,
Auh and Nuh correspond to discretizations of the diffusion term −∆u and
advection term (w · ∇)u, respectively. By construction, matrices A and N
will be block diagonal with d identical diagonal blocks when Ω ⊂ IRd. We
shall assume that matrix N is skew-symmetric, i.e., NT = −N , satisfying:

‖A−1/2NA−1/2‖ ≤ γ, (10.104)
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for some γ > 0 independent of h. When the parameter ν is small, a streamline
diffusion or upwind scheme may need to be employed in constructing N , to
ensure stability of the discretization.

Remark 10.63. Since A−1/2NA−1/2 is unitarily diagonalizable (because N is
skew-Hermitian and A is Hermitian), to show that ‖A−1/2NA−1/2‖ ≤ γ, it
will be sufficient to show that:

(vHNv) ≤ γ (vHAv), ∀v ∈ Cn (10.105)

for some γ > 0 independent of h. Such a bound will hold since matrix N
corresponds to the discretization of a first order differential operator, while A
corresponds to the discrete Laplacian.

The Oseen problem does not admit a saddle point interpretation due to
non-self adjointness of N . As a result, saddle point iterative algorithms will
not be applicable to solve (10.103). However, block matrix preconditioned
algorithms accelerated by Krylov space methods can be employed, and we
shall consider preconditioners having the block matrix form [EL8]:

M1 ≡
[

ν A + N 0
0 1

ν C

]
and M2 ≡

[
ν A + N BT

0 − 1
ν C

]
, (10.106)

where C is any symmetric positive definite preconditioner for
(
BA−1BT

)
.

The following result expresses the eigenvalues of such preconditioned systems
in terms of the eigenvalues of (1/ν) C−1S, where S = B (ν A + N)−1

BT . In
practice, matrix ν A + N can be replaced by a suitable preconditioner.

Lemma 10.64. Suppose the following conditions hold.

1. Let L denote the following nonsymmetric matrix:

L ≡
[

ν A + N BT

B 0

]
.

2. Let M1 and M2 be the block matrix preconditioners defined in (10.106).
3. Let µi ∈ C denote eigenvalues of ν C−1S for i = 1, . . . , m, where the Schur

complement matrix S = B (ν A + N)−1
BT is nonsymmetric.

Then, the following results will hold:

1. If λ is an eigenvalue of M−1
1 L, it will satisfy:

λ ∈ {1} ∪
(
∪m

i=1

{
1 ±

√
1 + 4µi

2

})
.

2. If λ is an eigenvalue of M−1
2 L, it will satisfy:

λ ∈ {1} ∪ (∪m
i=1{µi}) .

Proof. See [EL8]. Identical to the proof given in Chap. 10.5. ��
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The next result applies Bendixson’s lemma 8.3 to estimate the eigenvalues
of ν C−1S when S = B (ν A + N)−1

BT and C =
(
BA−1BT

)
. We let FH

denote the complex conjugate transpose of F , i.e., FH = F
T
.

Lemma 10.65. Suppose the following conditions hold.

1. Let S = B (ν A + N)−1
BT where A = AH > 0 is real and N = −NT is

real skew-symmetric, with Ñ ≡ A−1/2NA−1/2 satisfying:

‖Ñ‖ ≤ γ,

for some γ > 0 independent of h.
2. Let C =

(
BA−1BT

)
be symmetric positive definite

Then, the eigenvalues of ν C−1S will lie in a rectangular subregion of the
complex plane whose size is independent of h.

Proof. We follow the proof in [EL8] and estimate the real parameters γ1 < γ2

and δ1 < δ2, see (8.14), employed in Bendixson’s lemma 8.3. Consider first
the Hermitian part D of S = BK−1BT , where K ≡ ν A + N :

D = 1
2

(
S + SH

)
= 1

2B
(
K−1 + K−H

)
BH

= 1
2BK−1

(
K + KH

)
K−HBH

= BK−1 (νA) K−HBH .

Here we have used that AH = A and that NH + N = 0. Note that:

K−1 = (νA + N)−1 = A−1/2
(
ν I + Ñ

)−1

A−1/2,

where Ñ ≡ A−1/2NA−1/2. Substituting this into the expression for D yields:

D = ν BA−1/2
(
ν I + Ñ

)−1 (
ν I + Ñ

)−T

A−1/2BT

= ν BA−1/2
(
ν2 I + ÑT Ñ

)−1

A−1/2BT

= BA−1/2
(
ν I + ν−1 ÑT Ñ

)−1

A−1/2BT .

Consider the Rayleigh quotient ν
(
zHDz/zHCz

)
and substitute the preceding:

ν
zHDz
zHCz

= ν
zHBA−1/2

(
ν I + ν−1 ÑT Ñ

)−1

A−1/2BT z

zH (BA−1BT ) z

=
zHBA−1/2

(
I + ν−2 ÑT Ñ

)−1

A−1/2BT z

zHBA−1BT z
.
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Substituting w = A−1/2BT z and employing Ñ = −ÑH with ‖Ñ‖ ≤ γ yields:

1 ≤
wH

(
I + ν−2 ÑT Ñ

)
w

wHw
≤ 1 + (γ2/ν2), for w ∈ Cm \ 0.

This yields γ1 = 1 and γ2 = (ν2 + γ2)/ν2:

1 ≤ ν
zHDz
zHCz

≤ ν2 + γ2

ν2
, for z ∈ Cm \ 0.

We next consider the skew-Hermitian part E and obtain:

E =
1
2
B
(
K−1 − K−H

)
BH

=
1
2
BK−1

(
KH − K

)
K−HBH

= −BK−1NK−HB−H

= −B (ν A + N)−1
N (ν A + N)−H

B−H

= −BA−1/2
(
ν I + Ñ

)−1

Ñ
(
ν I + Ñ

)−H

A−1/2B−H .

Thus, the Rayleigh quotient:

(ν

i

)(zHEz

zHCz

)
= ν i

⎛
⎜⎝ zHBA−1/2

(
ν I + Ñ

)−1
Ñ
(
ν I + Ñ

)−H
A−1/2B−Hz

zH
(
BA−1BH

)
z

⎞
⎟⎠

= ν i

⎛
⎜⎝ wHÑw

wH
(
ν I + Ñ

) (
ν I + Ñ

)H
w

⎞
⎟⎠

= ν i

⎛
⎝ wHÑw

wH
(
ν2 I + ÑÑH

)
w

⎞
⎠ ,

where w ≡
(
ν I + Ñ

)−H

A−1/2B−Hz. Since Ñ is skew-Hermitian, it will be

unitarily diagonalizable with Ñ = i UΛUH for a real diagonal matrix Λ and
a unitary matrix U . Substituting this in the preceding yields:

(ν

i

)(zHEz
zHCz

)
= ν i

⎛
⎝ wHÑw

wH
(
ν2 I + ÑÑH

)
w

⎞
⎠

= −ν

(
wHUΛUHw

wH (ν2 I + UΛ2UH)w

)
= −ν

(
vHΛv

vH (ν2 I + Λ2)v

)
,

where v = UHw. Since ‖Ñ‖ = ‖Λ‖ ≤ γ, we obtain the bound:∣∣∣∣zHEz
zHCz

∣∣∣∣ = ν

∣∣∣∣ vHΛv
vH (ν2 I + Λ2)v

∣∣∣∣ ≤ max
λ∈[0,γ]

ν λ

ν2 + λ2
≤ 1

2
.

This yields the bound −δ1 = δ2 = 1
2 . ��
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The next result considers the eigenvalues of LM−1
i when matrix C = hdI.

Lemma 10.66. Suppose the assumptions of the preceding lemma holds. Then,
for the choice C = hdI, the eigenvalues of ν C−1S will lie in a rectangular
subregion of the complex plane whose size is independent of h.

Proof. Follows immediately from the observation that:

ν
zHSz

zHhdIz
= ν

(
zHSz

zHBA−1BT z

)(
zHBA−1BT z

zHhdIz

)
,

and that BA−1BT is spectrally equivalent to hdI independent of h. ��

10.6.4 Time Dependent Stokes and Navier-Stokes Equation

We shall now describe algorithms to solve an implicit discretization of the
following linearization of the Navier-Stokes equations:⎧⎨
⎩

∂u
∂t

− ν ∆u + (w · ∇)u + (u · ∇)w + ∇p = f , in Ω × (0, t)

∇ · u = 0, in Ω × (0, t),
(10.107)

with initial data u(x, 0) = u0(x) and u(·, t) = 0 on ∂Ω. Here w(x, t) denotes a
known velocity field about which the Navier-Stokes equations was linearized,
with a modified forcing term f(.), initial data u0(x) and boundary data u(·, t).

To simplify our discussion, we consider a backward Euler discretization in
time and a finite element or finite difference spatial discretization of (10.107).
Let τ > 0 denote a time step and let u(k)

h , p(k)
h and f (k)

h denote the dis-
crete velocity, pressure and forcing term at time k τ . Then, the backward
Euler discretization in time with a finite element or finite difference spatial
discretization will yield the following linear system at each time kτ :[

M + τ (ν A + N) τ BT

τ B 0

][
u(k)

h

p(k)
h

]
=

[
u(k−1)

h + τ f (k)
h

0

]
, (10.108)

where Auh denotes a discretization of −∆u with Nuh a discretization of
(w · ∇)u,. Here M denotes the mass (Gram) matrix, which will be block
diagonal with d diagonal blocks, BT ph corresponds to a discretization of ∇p
and Buh to a discretization of −∇·u. If a finite difference spatial discretization
is employed, then M = I. For convenience, we have multiplied the discrete
divergence constraint Bu(k)

h = 0 by the time step τ in (10.108).

Time Dependent Stokes. The time dependent Stokes equation arises when
w = 0 in (10.107). In this case matrix N = 0 in (10.108):[

M + τ ν A τ BT

τ B 0

][
u(k)

h

p(k)
h

]
=

[
u(k−1)

h + τ f (k)
h

0

]
, (10.109)
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and system (10.108) will be symmetric indefinite. Saddle point algorithms
from Chap. 10.2 to Chap. 10.5 can be employed, however, the preconditioners
employed for (M + τ ν A) and the Schur complement τ2 B(M + τ ν A)−1BT

must be modified to ensure a rate of convergence independent of h and τ .
Matrix (M + τ ν A) in (10.108) is better conditioned than matrix ν A in the
stationary case, and various effective preconditioners can be formulated for it.
However, the Schur complement matrix associated with (10.109) for the pres-
sure variables will have the form S(τ) = τ2 B (M + τ ν A)−1

BT and unlike
the stationary case, this matrix can be ill-conditioned for τ  1.

The convergence rate of Uzawa and block matrix algorithms depend on
the choice preconditioners for (M + τ ν A) and for S(τ), and we shall now
indicate preconditioners for them. Matrix (M + τ ν A) will be block diagonal:

(M + τ ν A) = blockdiag
(
M (1) + τ ν A(1), . . . , M (d) + τ ν A(d)

)
,

where each (M (l) + τ ν A(l)) corresponds to a discretization of the operator
(I − τ ν ∆) with Dirichlet boundary conditions. Effective domain decompo-
sition preconditioners have been described for such matrices in chapter 9.
Importantly, if τ ≤ c h2

0 (where h0 denotes the size of subdomains), then
coarse space correction can typically be omitted in domain decomposition
preconditioners, without deterioration in the rate of convergence.

As τ → 0+ and as τ → ∞ we will obtain: (S(τ)/τ2) will satisfy:

B (M + τ ν A)−1
BT →

{ (
BM−1BT

)
, as τ → 0

τ−1 ν−1
(
BA−1BT

)
, as τ → ∞.

Here, cond
(
BA−1BT

)
≤ c, while cond

(
BM−1BT

)
≤ c h−2 where c > 0 is

independent of h, see (10.97). As a result, care must be exercised in precon-
ditioning S(τ). Below, we describe a heuristic preconditioner S0(τ) of [BR9]
for S(τ), motivated by the following observation:

(
B (M + τ ν A)−1

BT
)−1

→
{ (

BM−1BT
)−1

, as τ → 0

τ−1 ν−1
(
BA−1BT

)−1
, as τ → ∞.

Motivated by this, the inverse S0(τ)−1 of the preconditioner is defined as:

S0(τ)−1 =
(
BM−1BT

)−1
+ τ ν

(
BA−1BT

)−1
.

It is shown in [BR9] that cond (S0(τ), S(τ)) ≤ c for τ ∈ [h2, 1], where c > 0
is independent of h. Since Buh corresponds to a discretization of −∇ ·u, and
BT ph to a discretization of ∇p, matrix

(
BM−1BT

)
ph formally corresponds

to a mixed finite element discretization of −∆p on Ω, with Neumann bound-
ary conditions on ∂Ω, see Chap. 10.7. Such discretizations are obtained using
mixed formulations of elliptic equations.

Remark 10.67. Since
(
BA−1BT

)
is spectrally equivalent to the mass matrix

M � c hdI, we may approximate
(
BA−1BT

)−1 by ch−dI for some c > 0.
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Similarly, we may approximate
(
BM−1BT

)
� h−d

(
BBT

)
. As indicated in

Chap. 10.7, matrix
(
BM−1BT

)
will correspond to a discretization of −∆ with

Neumann boundary conditions for the pressure, using mixed finite element
methods. Since B is sparse, matrix BBT may be assembled explicitly, and
sparse direct, multigrid or domain decomposition solvers can be employed.

Chorin’s Projection Method. Chorin’s projection method [CH27, CH28],
is a noniterative algorithm for obtaining an approximate solution to (10.109),
by decoupling the computation of the velocity and pressure unknowns u(k)

h

and p(k)
h at each time step. The algorithm can be motivated by considering

a finite difference discretization of the time dependent Stokes equation, with
M = I in (10.109). From a matrix viewpoint, Chorin’s projection method
solves (10.109) approximately, by modifying the linear system by replacing
the term τBT p(k)

h in the first block row by the term τ(I + τ ν A)BT p(k)
h .

This modification formally introduces an additional term τ2 ν ABT p(k)
h in the

discretization error. To distinguish between the original and modified schemes,
we shall denote the solution to the modified scheme as ũ(k)

h and p̃(k)
h :[

(I + τ ν A) τ (I + τ ν A) BT

τ B 0

][
ũ(k)

h

p̃(k)
h

]
=

[
ũ(k−1)

h + τ f (k)
h

0

]
. (10.110)

The above modified system enables decoupling the velocity and pressures.
Indeed, since (I + τ ν A) multiplies both terms in the first block equation
of (10.110), multiplying this block row of (10.110) by (I + τ ν A)−1 yields:

ũ(k)
h + τBT p̃(k)

h = (I + τ ν A)−1
(
ũ(k−1)

h + τ f (k)
h

)
. (10.111)

Applying matrix B to the above equation, and using that Bũ(k)
h = 0 yields:

τ
(
BBT

)
p̃(k)

h = B (I + τ ν A)−1
(
ũ(k−1)

h + τ f (k)
h

)
.

Solving this system yields the pressure p̃(k)
h . Here, as in preceding discussions,

matrix
(
BBT

)
p̃h corresponds to a mixed formulation discretization of −∆p̃

with Neumann boundary conditions.
To compute ũ(k)

h note that ũ(k)
h ∈ Kh

0 = Kernel(B) the space of discrete
divergence free velocities. The fundamental theorem of linear algebra yields
Range(BT )⊥ = Kernel(B), so applying the Euclidean orthogonal projection
PKh

0
= I − BT (BBT )−1B (onto the subspace Kh

0 ) to (10.111) we obtain:

ũ(k)
h = PKh

0

(
ũ(k)

h + τBT p̃(k)
h

)
= PKh

0
(I + τ ν A)−1

(
ũ(k−1)

h + τ f (k)
h

)
.

This computation also requires the solution of a linear system with coeffi-
cient matrix (BBT ), corresponding to a discretization of −∆ with Neumann
boundary conditions. The pressure and velocity p̃(k)

h and ũ(k)
h can thus be

updated in parallel. We summarize the resulting algorithm.
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Algorithm 10.6.3 (Chorin’s Projection Method to Solve (10.109))
Given ũ(k−1)

h , p̃(k−1)
h :

1. Update the velocity:

w̃(k)
h = (I + τ ν A)−1

(
ũ(k−1)

h + τ f (k)
h

)
2. In parallel compute:

p̃(k)
h = τ−1

(
BBT

)−1
Bw̃(k)

h

ũ(k)
h = PKh

0
w̃(k)

h

Output: ũ(k)
h , p̃(k)

h

Remark 10.68. Chorin’s scheme is stable in the Euclidean norm ‖ · ‖:

‖ũ(k)
h ‖ = ‖PKh

0
w̃(k)

h ‖ ≤ ‖w̃(k)
h ‖ = ‖ (I + τνA)−1

(
ũ(k−1)

h + τ f (k)
h

)
‖

≤ ‖ũ(k−1)
h + τ f (k)

h ‖,

since ‖PKh
0
‖ ≤ 1 and since ‖(I + τνA)−1‖ ≤ 1 when A = AT > 0. Fur-

thermore, since Chorin’s projection scheme introduces the additional term
τ2ABT p̃(k)

h into the discretization, the local truncation error will formally be
O(τ2) if the true solution is sufficiently smooth. As a result, Chorin’s projec-
tion scheme will be globally 1st order accurate in τ .

Remark 10.69. Chorin’s projection method can also be motivated by the
Hodge decomposition theorem [TE]. A special case of this result states that a
sufficiently smooth velocity field u(x) on Ω with zero flux n ·u on ∂Ω, can be
orthogonally decomposed within

(
L2(Ω)

)d as sum of a divergence free velocity
field v(x) and the gradient of scalar potential:

u(x) = v(x) + ∇p, where ∇ · v(x) = 0.

This decomposition is seen to be orthogonal in the
(
L2(Ω)

)d inner product
since

∫
Ω

v(x) · ∇p(x) dx = −
∫

Ω
p(x) (∇ · v(x)) dx = 0 using integration by

parts when n·v = 0 on ∂Ω. This orthogonal decomposition enables elimination
of the pressure term in the Navier-Stokes equation [TE] by an application of
the

(
L2(Ω)

)d-orthogonal projection map PK0 onto the space K0 of divergence
free functions: ⎧⎪⎨

⎪⎩
∂u
∂t

= PK0 (f + ν∆u − (u · ∇)u)

u(0, x) = u0(x).

Chorin’s projection scheme computes an update w(k)
h at time k τ omitting the

projection PK0 in the evolution equation on [(k−1)τ, k τ ]. The velocity update
is then defined by applying the projection u(k)

h ≡ PK0w
(k)
h . The pressure p(k)

h

update is computed by orthogonality of the decomposition [TE].
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Schwarz Projection Methods. Apart from Uzawa and block matrix meth-
ods, and Chorin’s method, the Schwarz projection algorithms can also be em-
ployed to solve (10.108), see Chap. 10.4. Such Schwarz algorithms will employ
(M+τ ν A)-orthogonal local projections, and the rate of convergence is heuris-
tically expected to be independent of h and τ , and if a coarse space projection
is employed, independent of h0, where h0 is the diameter of subdomains. If
τ ≤ c h2

0, in some cases, the coarse space term may be omitted. These algo-
rithms are easily parallelized [FO, LI6, PA2, CA34, PA12, CO5].

Time Dependent Linearized Navier-Stokes Equation. Next consider
the solution of system (10.108) arising from the implicit discretization of the
time dependent linearized Navier-Stokes equation (10.107). When w �= 0,
matrix N will not be zero, and for simplicity, we shall assume that N is skew-
symmetric, i.e., NT = −N . Since (10.108) is nonsymmetric, this linear system
does not admit a saddle point interpretation (however, some saddle point
algorithms may still converge due to positive definiteness of the symmetric
part (M + τ ν A) of M + τ (νA + N)).

Block matrix preconditioning algorithms from Chap. 10.5 can be employed,
with Krylov space acceleration. Here block diagonal and block tridiagonal
preconditioners may be employed. Symmetric positive definite preconditioners
of the form M + τνA can be employed for M + τ (νA + N) and symmetric
positive definite preconditioners S0(τ) of the form:

S0(τ)−1 =
(
BM−1BT

)−1
+ τ ν

(
BA−1BT

)−1
,

can be employed for S(τ) = B (M + τνA + τN)−1
BT , the nonsymmetric

Schur complement matrix.
Chorin’s projection scheme is also easily extended to the linearized Navier-

Stokes equations, as indicated below.

Algorithm 10.6.4 (Chorin’s Projection Method to Solve (10.108))
Given ũ(k−1)

h , p̃(k−1)
h :

1. Update the velocity:

w̃(k)
h = (I + τ ν A + τ N)−1

(
ũ(k−1)

h + τ f (k)
h

)
2. In parallel compute:

p̃(k)
h = τ−1

(
BBT

)−1
Bw̃(k)

h

ũ(k)
h = PKh

0
w̃(k)

h

Output: ũ(k)
h , p̃(k)

h

Remark 10.70. As before, Chorin’s scheme will be stable in the Euclidean
norm ‖ ·‖ provided ‖ (I + τ ν A + τ N)−1 ‖ ≤ 1+cτ for some c independent of
h and τ . For higher order schemes and further analysis see [BE3, RA, E, WE2].
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10.7 Applications to Mixed Formulations
of Elliptic Equations

In this section, we describe saddle point algorithms to solve discretizations of
mixed formulations of elliptic equations. Such formulations reduce a 2nd order
self-adjoint coercive elliptic equation to an equivalent system of first order
partial differential equations having a saddle point structure. Discretization of
this first order system yields a saddle point linear system which simultaneously
approximates the solution of the original elliptic equation, as well as a linear
combination of the gradient of the solution. Applications involve fluid flow in
a porous medium, where the flow velocity satisfies Darcy’s law [DA, EW2].
Our discussion is organized as follows.

• Background on mixed formulations of elliptic equations.
• Properties of matrices A and B.
• Uzawa, penalty and block matrix algorithms.
• Projection algorithms.
• Alternative algorithms.

10.7.1 Background

In mathematical models of fluid flow in a porous medium [DA, EW2], it is
assumed that the velocity of the fluid interspersed between porous rocks is
proportional to the negative of the pressure gradient. This law, referred to as
Darcy’s law, together with the conservation of mass yields a first order system
of partial differential equations:⎧⎨

⎩
u = − a(x)∇p, in Ω Darcy’s law

∇ · u = f(x), in Ω Conservation of mass
n · u = − g(x), in ∂Ω Flux boundary condition,

(10.112)

where p(·) and u(·) denote the pressure and Darcy velocity, respectively, of
the fluid in Ω ⊂ IRd, while a(·) denotes a tensor (matrix) coefficient of size
d, referred to as the permeability, representing the proportionality between
the Darcy velocity and the pressure gradient. Here f(·) denotes the rate of
injection of fluid (through wells) into the medium, g(·) denotes the inward flux
of fluid on ∂Ω, and n(·) denotes the unit outward normal on ∂Ω. Substituting
the Darcy velocity u(x) into the conservation of mass equation and applying
the flux boundary condition yields the following elliptic equation:{

−∇ · (a(x)∇p) = f(x), in Ω

n · (a(x)∇p) = g(x), on ∂Ω.
(10.113)

An application of divergence theorem yields the following requirement:∫
Ω

f(x) dx +
∫

∂Ω

g(x) dsx = 0. (10.114)



10.7 Applications to Mixed Formulations of Elliptic Equations 475

Neumann problem (10.113) will be solvable when the preceding consis-
tency requirement holds, and the solution p(·) will be unique up to a constant.
System (10.112) is generally coupled to a larger system of partial differential
equations modeling the dynamics of the flow within the porous medium, and
the permeability a(x) of the medium is typically assumed to be a piecewise
smooth, symmetric positive definite tensor (matrix valued function) with pos-
sibly large jump discontinuities [DA, EW2]. We shall assume the bounds:

a0 ‖ξ‖2 ≤ ξT a(x)ξ ≤ a1 ‖ξ‖2, ∀ξ ∈ IRd,

for some 0 < a0 < a1. In applications, the Darcy velocity u = −a(x, y)∇p
is expected to be smooth, even when a(x) is discontinuous. This property
motivates discretizing the first order system (10.112) or its mixed formula-
tion (10.115) to numerically approximate u, instead of discretizing (10.113)
and subsequently differentiating the discrete pressure [RA4, EW4, BR33].
Mixed Formulation of (10.113) and its Discretization. A mixed for-
mulation of the first order system (10.112) is obtained by multiplying Darcy’s
law by a(x)−1 on the left, and retaining the other equations:⎧⎪⎨

⎪⎩
a(x)−1 u + ∇p = 0, in Ω

∇ · u = f(x), in Ω

n · u = g(x), in ∂Ω.

(10.115)

The mixed formulation is a saddle point problem similar to Stokes equation,
with a(x)−1u replacing the term −ν∆u in Stokes equation. For convenience,
henceforth we shall assume that g(·) = 0 on ∂Ω.

A weak formulation of (10.115) can be obtained as follows. Multiply the
first vector equation in (10.115) by a test function v(·) satisfying n ·v = 0 on
∂Ω and integrate over Ω. The term

∫
Ω
∇p ·v(x) dx can be integrated by parts

to yield −
∫

Ω
p(x)∇·v(x) dx, since n ·v = 0 on ∂Ω. The conservation of mass

equation in (10.115) can similarly be multiplied by a test function −q(·) and
integrated over Ω. Choosing appropriate function spaces so that the resulting
integrals are well defined [RA4], we obtain a weak formulation which seeks
u(·) ∈ H0(div,Ω) and p(·) ∈ L2(Ω) satisfying:{∫

Ω
vT a(x)−1u dx −

∫
Ω

p(∇ · v)dx = 0, ∀v ∈ H0(div, Ω)

−
∫

Ω
q(∇ · u)dx = −

∫
Ω

f(x)q(x) dx, ∀q ∈ L2(Ω),
(10.116)

where H0(div, Ω) is defined by:⎧⎪⎨
⎪⎩

H(div, Ω) = {v(x) ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)},
‖v‖2

H(div,Ω) = ‖v‖2
L2 + ‖∇ · v‖2

L2 , and
H0(div, Ω) = {v ∈ H(div,Ω) : v · n = 0 on ∂Ω}.

The flux n · v can be shown to be well defined for v ∈ H(div, Ω), due to a
trace theorem [RA4], so that H0(div,Ω) is well defined.
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Remark 10.71. To obtain a unique pressure, the pressure space L2(Ω) should
be replaced by the quotient space L2(Ω)/IR.

A mixed finite element discretization of (10.115) can be obtained by
Galerkin approximation of (10.116), see [RA4, BR33]. Let τh(Ω) denote a
quasiuniform triangulation of Ω having grid size h. Using this triangulation,
let Vh ⊂ H0(div,Ω) and Qh ⊂ L2(Ω) denote finite element spaces of dimen-
sion n and m, respectively, for the velocity and pressure. Then, a mixed finite
element discretization of (10.116) will seek uh ∈ Vh and ph ∈ Qh such that:{

A(uh,vh) + B(vh, ph) = 0, ∀vh ∈ Vh

B(uh, qh) = −(f, qh), ∀qh ∈ Qh,
(10.117)

where A(., .) : Vh × Vh → IR and B(., .) : Vh × Qh → IR are bilinear forms:⎧⎪⎪⎨
⎪⎪⎩

A(u,v) ≡
∫

Ω

(
v(x)T a(x)−1u(x)

)
dx

B(v, q) ≡ −
∫

Ω
q(x) (∇ · v(x)) dx

(f, q) ≡
∫

Ω
f(x) q(x) dx,

(10.118)

for u(·),v(·) ∈ Vh and p(·), q(·) ∈ Qh. Integration by parts yields:

B(v, p) = −
∫

Ω

p(x) (∇ · v(x)) dx =
∫

Ω

∇p(x) · v(x) dx,

since n ·v = 0 on ∂Ω. To ensure that the discretization (10.117) of (10.116) is
stable and to ensure that system (10.119) is solvable, the finite element spaces
Vh and Qh will be assumed to satisfy the coercivity and uniform inf-sup
conditions described in Lemma 10.53.

Unlike finite element spaces which are subspaces of Sobolev spaces, the
spaces Vh ⊂ H0(div, Ω) and Qh ⊂ L2(Ω) are discontinuous across elements.
The velocity flux n · vh, however, will be required to be continuous across
inter-element faces (when Ω ⊂ IR3) or edges (when Ω ⊂ IR2). For the lowest
order finite element spaces [RA4, BR33], the discrete velocities within each
element are determined uniquely by the fluxes on the faces (when Ω ⊂ IR3)
or edges (when Ω ⊂ IR2) of the elements.

A linear system corresponding to (10.117) can be constructed as follows.
Let {ψ1(x), . . . ,ψn(x)} denote a basis for Vh and {q1(x), . . . , qm(x)} a basis
for Qh ⊂ L2(Ω). Expand uh(x) and ph(x) using this basis:

uh(x) =
∑n

i=1(uh)i ψi(x)
ph(x) =

∑m
i=1(ph)i qi(x),

where with some abuse of notation, we have used uh(x) to denote a finite
element function and uh to denote its vector representation relative to the
given basis. Substituting vh(·) = ψi(·) for i = 1, . . . , n and qh(·) = qi(·) for
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i = 1, . . . , m into the above yields the following saddle point linear system:[
A BT

B 0

] [
uh

ph

]
=
[

0
fh

]
, (10.119)

where we define the matrices A and B, and the vector fh as:

(A)ij = A(ψi, ψj), (B)ij = B(ψj , qi) (fh)i = −(f, qi).

By construction, matrix A will be symmetric and sparse. It will reduce to
a mass (Gram) matrix G when a(x) = I, where vT

h Gvh = ‖vh‖2
0,Ω . More

generally, using upper and lower bounds for a(x), we obtain that A satisfies:

1
a1

(
vT

h Gvh

)
≤
(
vT

h Avh

)
≤ 1

a0

(
vT

h Gvh

)
. (10.120)

By construction, matrix BT will be sparse and correspond to a discretization
of the gradient operator, while B will correspond to a discretization of the
negative of the divergence operator.

The finite element spaces Vh ⊂ H0(div, Ω) and Qh ⊂ L2(Ω) will be
assumed to satisfy the property:

B(vh, qh) = 0, ∀qh ∈ Qh =⇒ ∇ · vh = 0, in Ω. (10.121)

As a result, the discrete divergence free velocity space Kh
0 will be a subspace

of the divergence free velocity space K0:

Kh
0 = {vh ∈ Vh : B(vh, qh) = 0, ∀ qh ∈ Qh}
⊂ K0 = {v ∈ H0(div, Ω) : ∇ · v = 0} .

(10.122)

For a description of finite element spaces satisfying the above properties, see
[RA4, BR33]. When (10.122) holds, coercivity condition (10.91) will hold:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

‖vh‖2
H(div,Ω) = ‖vh‖2

0,Ω + ‖∇ · vh‖2
0,Ω ,

= ‖vh‖2
0,Ω ,

≤ a1 A(vh,vh),
= a1 vT

h Avh,

when vh ∈ Kh
0 , (10.123)

since the H(div,Ω) norm reduces to the
(
L2(Ω)

)d norm within the class
of divergence free functions. Thus, the matrix A will satisfy the coercivity
condition (10.91) within the subspace Kh

0 .
We shall assume that the spaces Vh and Qh satisfy the uniform inf-sup

condition (10.93) with β > 0 independent of h such that:

sup
vh∈Vh\{0}

B(vh, qh)
‖vh‖H(div,Ω)

≥ β ‖qh‖0,Ω , ∀qh ∈ Qh/IR. (10.124)
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Remark 10.72. Mixed finite element methods can also be formulated for more
general boundary conditions [RA4, BR33]. The Dirichlet problem:{

−∇ · (a(x)∇p) = f(x), in Ω

p = gD(x), on ∂Ω,
(10.125)

will seek u ∈ H(div,Ω) and p ∈ L2(Ω) satisfying (10.126) and (10.127) below.
The first block row of (10.116) will be replaced by:∫

Ω

vT a(x)−1u dx −
∫

Ω

p(∇ · v)dx = −
∫

∂Ω

gD n · v dsx, (10.126)

for each v ∈ H(div, Ω), since integration by parts yields:∫
Ω

v · ∇p dx = −
∫

Ω

p (∇ · v) dx +
∫

∂Ω

pn · v dsx,

and since p = gD on ∂Ω. The second row of (10.116) will remain unchanged:

−
∫

Ω

q(∇ · u)dx = −
∫

Ω

f(x)q(x) dx, ∀q ∈ L2(Ω). (10.127)

We omit further details.

10.7.2 Properties of A and B

We now summarize properties of matrix A in system (10.119). Matrix A will
be sparse and symmetric positive definite of size n corresponding to a mass
(Gram) matrix when a(x) = I. When a(x) �= I, we will obtain that:

1
a1

≤ vT
h Avh

vT
h Gvh

≤ 1
a0

, vh ∈ Vh \ {0},

where G denotes the mass matrix. Thus, it will hold that:

γ0 a−1
1 hd ≤ λmin(A) ≤ λmax(A) ≤ γ1 a−1

0 hd,

for γ0 < γ1 independent of h, since the mass matrix G is spectrally equivalent
to chdI. As a result, cond(A) ≤ c

(
a1
a0

)
for some c > 0 independent of h.

In addition to the above, the following property will hold for matrix B.

Lemma 10.73. Matrix B in discretization (10.117) of (10.116) will satisfy:∣∣qT
h Bvh

∣∣ ≤ c∗ h−1 ‖vh‖A ‖qh‖M , (10.128)

for some c∗ > 0 independent of h, where M denotes the mass matrix for the
pressure qT

h Mqh = ‖qh‖2
0,Ω.
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Proof. Let vh(·) and qh(·) denote finite element functions with associated
nodal vectors vh ∈ IRn and qh ∈ IRm, respectively. Then, bound (10.128) will
hold for some c∗ independent of h since:∣∣qT

h Bvh

∣∣ = |B(vh, qh)| =
∣∣∫

Ω
qh(x) (∇ · vh(x)) dx

∣∣
≤ ‖∇ · vh‖0,Ω ‖qh‖0,Ω

≤ c1 h−1 ‖vh‖0,Ω ‖qh‖0,Ω

≤ c∗ h−1 ‖vh‖A ‖qh‖0,Ω ,

where an inverse inequality ‖∇ · vh‖0,Ω ≤ c1 h−1 ‖vh‖0,Ω was employed. ��
The Schur complement S = (BA−1BT ) corresponds to a discretization of

the elliptic operator L where Lp ≡ −∇ · (a(x)∇p) with Neumann boundary
conditions. We heuristically expect the following bounds to hold for S.

Lemma 10.74. Let the uniform inf-sup condition (10.95) and bound (10.95)
hold. Then, there will exist 0 < α0 < α1 independent of h, such that:

β a0

(
qT

h Mqh

)
≤ qT

h

(
BA−1BT

)
qh ≤ c∗ a1 h−2

(
qT

h Mqh

)
, (10.129)

where M denotes the mass matrix associated with the pressure finite element
space Qh (which we assume to satisfy Qh ⊂ L2(Ω)/IR).

Proof. Follows by a modification of lemma 10.11 and bound (10.128). Indeed,
it will hold that:(

qT
h BA−1BT qh

)
=
(
qT

h BA−1AA−1BT qh

)
= ‖A−1BT qh‖2

A

= supvh �=0

(
vT

h AA−1BT qh

‖vh‖A

)2

= supvh �=0

(
qT

h Bvh

‖vh‖A

)2

.

(10.130)

Now, using that ‖vh‖H(div,Ω) ≥ a0‖vh‖A and substituting the uniform inf-sup
condition (10.124) into (10.130) yields:(

qT
h BA−1BT qh

)
= supvh �=0

(
qT

h Bvh

‖vh‖A

)2

≥ a0 supvh �=0

(
qT

h Bvh

‖vh‖H(div,Ω)

)2

≥ a0 β2qT
h Mqh,

which is a lower bound for S = BA−1BT . To obtain an upper bound, substi-
tute (10.128) into (10.130) to obtain:(

qT
h BA−1BT qh

)
= supvh �=0

(
qT

h Bvh

‖vh‖A

)2

≤ c2
∗ h−2a1 qT

h Mqh.

This yields the desired bound. ��
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Remark 10.75. If qh(x) = 1 ∈ Qh for a Neumann boundary value problem,
with nodal vector 1 = (1, . . . , 1)T associated with qh(x) = 1, then matrix BT

will satisfy BT 1 = 0. This is because ∇ qh(x) = 0, since B(vh, qh) = 0 for all
vh ∈ Vh, when qh(x) = 1. In this case, matrix B will not have full rank and the
saddle point matrix in (10.119) will be singular. However, system (10.119) will
be consistent provided 1T fh = 0. A full rank matrix B can be constructed, if
desired, by choosing the pressure space Qh to consist only of functions having
mean value zero, i.e., Qh ⊂ L2(Ω)/IR. This, however, will be cumbersome and
we shall instead work with a singular coefficient matrix, and appropriately
modify algorithms from the preceding sections.

Remark 10.76. Since each singular value of matrix BT corresponds to the
square root of an eigenvalue of BBT , their range may be estimated as follows.
When a(x) = I, bounds from Lemma 10.74 yield:

β
(
qT

h Mqh

)
≤ qT

h

(
BA−1BT

)
qh ≤ c∗ h−2

(
qT

h Mqh

)
. (10.131)

Since M is spectrally equivalent to a matrix hdI of size m and since A is
spectrally equivalent to a matrix hdI of size n, it follows that:

γ0 β
(
qT

h qh

)
≤ qT

h

(
BBT

)
qh ≤ γ1 h−2

(
qT

h qh

)
, (10.132)

for 0 < γ0 < γ1 independent of h. Thus, the singular values of BT will range
from (γ0 β)1/2 to (γ1)

1/2
h−1 when Qh ⊂ L2(Ω)/IR. If qh(x) = 1 ∈ Qh, then

BT 1 = 0 and σ1(B) = 0 < σ2(B) ≤ · · · ≤ σm(B) ≤ γ
1/2
1 h−1.

Remark 10.77. When a(x) = I, mixed finite element discretization (10.119) of
Neumann problem (10.113) shows that matrix

(
BM−1BT

)
from Chap. 10.6

and matrix S =
(
BA−1BT

)
from this section, correspond to a discretization of

Neumann problem (10.113). Lemma 10.74 yields cond(BA−1BT ) = O(h−2).

10.7.3 Uzawa and Block Matrix Algorithms

Saddle point system (10.119) can be solved using algorithms from Chap. 10.2
to Chap. 10.5. Below, we indicate different choices of preconditioners A0 for
A and S0 for S for use in Uzawa and block matrix algorithms.

Preconditioners for A. Since matrix A has a condition number inde-
pendent of h, employ its diagonal A0 as a preconditioner for A:

A0 = diag(A).

In this case cond(A0, A) ≤ c, independent of h. However, heuristically such a
diagonal preconditioner may also help eliminate dependence on the variations
(a1/a0) in the coefficient a(x), particularly when (a1/a0) is large.
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Preconditioners for S. The Schur complement matrix S =
(
BA−1BT

)
corresponds to a discretization of the elliptic operator L associated with the
pressure. Since A−1 is generally dense, matrix S will also be dense. However,
cell centered finite difference or finite element discretizations, can be employed
to construct a sparse approximation S0 of S, see [WH, WE, AL2, AR2]. Sparse
direct solvers, or iterative solvers such as multigrid and domain decomposition
solvers may then be employed.

An alternative sparse algebraic preconditioner S0 ≡ BA−1
0 BT can be con-

structed using the diagonal matrix A0. Since B and BT are sparse, we may
assemble S0. By construction, the condition number will satisfy [AL2]:

cond(S0, S) ≤ cond(A0, A),

since the associated Rayleigh quotients satisfy:

qT
h Sqh

qT
h S0qh

=
qT

h BA−1BT qh

qT
h BA−1

0 BT qh

=
wT

h A−1wh

wT
h A−1

0 wh

, for wh = BT qh.

We may solve linear systems of the form S0ph = rh using either sparse direct
solvers or iterative multigrid and domain decomposition solvers.

Remark 10.78. System (10.119) will be singular for the Neumann problem,
with BT 1 = 0. In this case, we require 1T fh = 0 for solvability of (10.119).
The Schur complement matrix will also be singular with S 1 = 0, and the
discrete pressure ph will be unique up to a constant. In Uzawa algorithms, the
initial pressure iterate p(0)

h must be chosen to satisfy 1T p(0)
h = 0. Subsequent

iterates will automatically satisfy 1T p(k)
h = 0 provided 1T S−1

0 B = 0. Since
the Schur complement S will be singular, computation of the action S−1

0 rh

should ideally be implemented in the form (I − P0)S−1
0 (I − P0)rh where:

P0wh ≡
(

1T wh

1T 1

)
1,

denotes the Euclidean orthogonal projection onto span(1). When 1T rh = 0,
the pre-projection step can be omitted. If inexact Uzawa or block triangular
preconditioners are employed, it may be necessary to scale the preconditioners
A0 and S0 as described in Chap. 10.2 and Chap. 10.5.

Remark 10.79. We shall not consider penalty or regularization algorithms,
except to note that since cond(BBT ) = O(h−2), the matrix

(
A + 1

ε BBT
)

will
be ill-conditioned for 0 < ε < ∞. For an application of penalty methods to
mixed formulations of elliptic equations, see [CA22]. See also [LA11] for an
algorithm based on A0 = A + ε−1BT B and S0 = I.

Remark 10.80. Saddle point preconditioners [AL2] as described in Chap. 10.5
can be employed for mixed formulations of elliptic equations, using a diagonal
matrix A0, as efficient solvers can be obtained for S0 = BA−1

0 BT .
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10.7.4 Projection Algorithms

Projected Gradient. Since matrix A has a condition number independent of h,
both the projected gradient descent algorithm with a fixed step τ > 0 and the
projected CG algorithm to solve (10.119) will converge at a rate independent
of h, but dependent on the magnitude of the jumps in a(x). When these jumps
have a large magnitude, the projected CG algorithm can be employed with
the diagonal preconditioner A0. In both cases, the projection will require the
action of (BBT )−1 each iteration, requiring the solution of a sparse system.

Schwarz Projection Algorithms. Schwarz projection algorithms, which are
highly parallelizable, can also be employed to solve system (10.119). They
require the solution of smaller saddle point problems [EW8, MA31, MA32].
We shall employ non-overlapping and overlapping subdomains. Let Ω1, . . . , Ωl

denote a nonoverlapping decomposition of Ω with subdomains of size h0. We
let Ω∗

1 , . . . , Ω∗
l denote an overlapping decomposition of Ω with the extended

subdomains Ω∗
i ≡ {x ∈ Ω : dist(x, Ωi) < β h0} , having overlap β h0. We shall

assume that the elements of τh(Ω) align with Ωi and Ω∗
i . Given finite element

spaces Vh ⊂ H0(div,Ω) and Qh ⊂ L2(Ω) we define subdomain velocity and
pressure spaces Vi and Qi on Ωi, and V∗

i and Q∗
i on Ω∗

i , as follows:{
Vi = Vh ∩ H0(div, Ωi) and V∗

i = Vh ∩ H0(div, Ω∗
i ), for 1 ≤ i ≤ l

Qi = Qh ∩ L2(Ωi) and Q∗
i = Qh ∩ L2(Ω∗

i ), for 1 ≤ i ≤ l.

For 1 ≤ i ≤ l the spaces Vi and V∗
i will be extended outside Ωi and Ω∗

i ,
respectively, by zero extension due to the zero flux requirement on ∂Ωi and
∂Ω∗

i . We shall assume that the discrete divergence free space Kh
0 = Kernel(B)

is a subspace of the divergence free space K0 within H0(div, Ω). This property
will hold for most discretizations of mixed formulations of elliptic equations
[RA4, BR33]. If the subdomains Ω1, . . . , Ωl form the elements of a coarse
triangulation τh0(Ω) of Ω, we shall define coarse velocity and pressure spaces
V0 and Q0 using finite elements defined on τh0(Ω):{

V0 = Vh0 ∩ H0(div, Ω)
Q0 = Qh0 ∩ L2(Ω).

Let ni, n∗
i , mi and m∗

i denote the dimension of Vi, V∗
i , Qi and Q∗

i , respec-
tively. We shall let Ui and U∗

i denote matrices of size n × ni and n × n∗
i ,

whose columns span the space of nodal vectors associated with Vi and V∗
i ,

respectively, Similarly, we let Qi and Q∗
i denote matrices of size m × mi and

m × m∗
i whose columns span the space of nodal vectors associated with Qi

and Q∗
i , respectively. We define the matrices Ai, A∗

i , Bi and B∗
i as:

Ai = UT
i AUi, A∗

i = U∗T
i AU∗

i , Bi = QT
i BUi and B∗

i = Q∗T
i BU∗

i ,
(10.133)

of size ni × ni, n∗
i × n∗

i , mi × ni and m∗
i × n∗

i respectively. We shall let
1 = (1, . . . , 1)T ∈ IRm, 1i = (1, . . . , 1)T ∈ IRmi , 1∗

i = (1, . . . , 1)T ∈ IRm∗
i span

the subspaces Kernel(BT ), Kernel(BT
i ) and Kernel(B∗T

i ), respectively.
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Remark 10.81. By choice of Vh and Qh, it will hold that:{
Biwi = 0 =⇒ Uiwi ⊂ Kh

0 ⊂ K0, for 0 ≤ i ≤ l

B∗
i w

∗
i = 0 =⇒ U∗

i w∗
i ⊂ Kh

0 ⊂ K0, for 1 ≤ i ≤ l.
(10.134)

Thus, the local divergence free updates will be globally divergence free.

Schwarz projection algorithms to solve (10.119) involve three steps. In the
first step, a discrete velocity u∗ is computed such that Bu∗ = fh. In the second
step the divergence free component w ≡ uh − u∗ is determined by a Schwarz
projection algorithm. In the third step, the discrete pressure ph is determined.
Below, we describe the first step, to compute u∗.

Algorithm 10.7.1 (Algorithm to Compute u∗ Satisfying Bu∗ = fh)

1. Solve the following coarse grid problem:[
v0

q0

]
=

[
U0 0
0 Q0

][
A0 BT

0

B0 0

]−1 [
UT

0 0
QT

0 fh

]
(10.135)

2. For 1 ≤ i ≤ l solve these local problems in parallel:[
vi

qi

]
=

[
Ui 0
0 Qi

][
Ai BT

i

Bi 0

]−1 [
UT

i (0 − Av0)
QT

i (fh − Bv0)

]
(10.136)

Output: u∗ = v0 + v1 + · · · + vl

Remark 10.82. Each of the local problems in (10.136) will be consistent by
construction of v0. The reader may verify B u∗ = fh as follows. The coarse
velocity v0 computed in (10.135) will not satisfy the constraint Bv0 �= fh on
the fine grid. However, the coarse solution v0 will provide flux boundary con-
ditions on the boundary of each subdomain Ωi compatible with f(x). Indeed,
by construction, (fh − Bv0) will have mean value zero on each Ωi since:

1T
i QT

i (fh − Bv0) =
∫

Ω

χi(x) (f(x) −∇ · v0(x)) dx = 0, ∀χi(x) ∈ Q0,

where χi(x) denotes the characteristic function of subdomain Ωi with nodal
vector Qi1i ∈ IRm. Substituting for χi(x) in the above yields:∫

Ωi

∇ · v0(x) dx =
∫

∂Ωi

n(x) · v0(x) dsx = −
∫

Ωi

f(x) dx.

Since (fh − B v0) has mean value zero within each subdomain Ωi, it follows
that zero flux boundary conditions n ·vi = 0 posed on ∂Ωi will be compatible
with the mixed finite element discretization of ∇ · vi = (−f(x) −∇ · v0(x))
within Ωi. Thus, subproblems in (10.136) will be well posed for 1 ≤ i ≤ l.
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Remark 10.83. The component u∗ satisfying Bu∗ = fh, may alternatively be
obtained in the form u∗ = BT γ∗ for some γ∗ ∈ IRm satisfying:(

BBT
)
γ∗ = fh.

This formally yields u∗ = BT
(
BBT

)†
fh, where

(
BBT

)† denotes the Moore-
Penrose pseudoinverse of BBT since BT will be singular.

We next describe the computation of the divergence free velocity w =
(uh − u∗) and also the pressure ph. An additive or multiplicative Schwarz
projection algorithm can be employed within Kh

0 , as in Chap. 10.4. Below, we
list the multiplicative Schwarz algorithm to determine w and ph, see [MA31].

Algorithm 10.7.2 (Multiplicative Schwarz Algorithm)
Let v(0)

h = 0 and p(0)
h = 0 denote starting iterates

1. For k = 0, 1, . . . until convergence do:
2. For i = 0, 1, . . . , l do:

[
w(k)

i

µ
(k)
i

]
=

[
Ui 0
0 Qi

] [
Ai BT

i

Bi 0

]−1 [
UT

i (−Av
(k+ i

l+1 )

h − BT p
(k+ i

l+1 )

h )
0

]

Define γi =
(
1T (p

(k+ i
l+1 )

h + µ
(k)
i )/1T Qi1i

)
and update:

⎡
⎣v

(k+ i+1
l+1 )

h

p
(k+ i+1

l+1 )

h

⎤
⎦ =

[
v

(k+ i
l+1 )

h

ph
(k+ i

l+1 )

]
+

[
w(k)

i

µ
(k)
i − γiQi1i

]

3. Endfor
4. Endfor

Output: v(k)
h ≈ w and p(k)

h ≈ ph

Once w has been computed, an approximate solution to (10.119) can be ob-
tained as uh ≈ u∗ + v(k)

h and p(k)
h . The multiplicative Schwarz algorithm is

sequential. However, it can be parallelized by multicoloring of the subdomains.
Alternatively, the additive Schwarz algorithm may be employed.

Remark 10.84. By construction, all the velocity iterates in the multiplicative
Schwarz algorithm will be discrete divergence free, i.e., v(k+ i

l+1 ) ∈ Kh
0 , while

the pressure iterates p
(k+ i+1

l+1 )

h will have mean value zero. For sufficiently large
overlap β, the iterates v(l)

h above will converge geometrically to the discrete
solution uh at a rate independent h, see [EW8, MA32]. The pressure p(k)

h

will converge similarly to ph. If a coarse space is included, then this rate of
convergence will also be independent of h0.
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10.7.5 Alternative Algorithms for Mixed Formulations

We mention here several alternative approaches for solving system (10.119).
Algorithm of [GL14]. The algorithm of [GL14] is a non-overlapping

domain decomposition algorithm for mixed formulations of elliptic equations.
This algorithm was a precursor to the development of a variety of domain
decomposition algorithms and introduced a natural coarse space to enforce
certain constraints [BO7, WI6, MA31, FA14, FA15, CO10, MA17, FA14].
Below, we outline the key steps in this algorithm for solving a mixed finite
element discretization (10.119) of an elliptic Neumann problem.

Let Ω1, . . . , Ωl form a non-overlapping decomposition of Ω with subdo-
mains of size h0 and a common interface Γ =

(
∪l

i=1∂Ωi

)
∩ Ω (we use Γ

to denote the subdomain interface, instead of B, since in this section, the
latter denotes the discretization of the divergence operator). Based on this
decomposition, the algorithm decomposes a discrete velocity wh as follows:

wh =
∑l

i=1 Ui wi + G α + H β, (10.137)

where Ui is a matrix of size n×ni, G of size n× l, H of size n×nβ , wi ∈ IRni ,
α ∈ IRl and β ∈ IRnβ . In the above, we let the i’th column of matrix G be
the nodal vector corresponding to a discrete velocity χi(x) satisfying:∫

∂Ωi

(ni(x) · χi(x)) dsx �= 0,

where ni(x) is the unit exterior normal to ∂Ωi. For instance ni(x)·χi(x) = 1 on
∂Ωi∩Ω with zero flux on Γ \∂Ωi, so that χ1, . . . ,χl are linearly independent.
The columns of matrix Ui are nodal velocity vectors corresponding to a basis
for Vh ∩ H0(div,Ωi) zero outside Ωi. The columns of H form a nodal vector
basis for the velocities vh with support on Γ , satisfying:∫

∂Ωi

(n(x) · vh(x)) dsx = 0, for i = 1, . . . , l,

with zero flux on all interior edges or faces in ∪l
i=1Ωi. By construction, the

columns of G, H and U1, . . . , Ul together form a basis for Vh ∩ H0(div, Ω),
and we may decompose wh = wI + wΓ with wI =

∑l
i=1 Uiwi corresponding

to subdomain interiors, and wΓ = Gα + Hβ corresponding to interface Γ .
Similarly, the pressure can be decomposed as:

ph =
∑l

i=1 Qi pi + C µ, (10.138)

where Qi is of size m × (mi − 1), C is m × l, pi ∈ IR(mi−1) and µ ∈ IRl. The
columns of Qi forms a basis for the discrete pressures in Qh ∩

(
L2(Ωi)/IR

)
with mean value zero, while the i’th column of C denotes a nodal vector for
the pressure corresponding to the characteristic function of Ωi. The columns
of Qi and C thus together form a basis for Qh ∩ L2(Ω).
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The algorithm of [GL14] determines the solution to (10.119) in two steps.
In the first step, a discrete velocity u∗ is computed satisfying Bu∗ = fh. This
can be computed as in Algorithm 10.7.1.

In the second step, the components wh = uh − u∗ and ph are sought. By
construction of u∗ in the first step, wh will satisfy Bwh = 0, so that the finite
element function wh(x) associated with wh will satisfy ∇ · wh(x) = 0 in Ω,
yielding that

∫
∂Ωi

n ·wh dsx = 0 for i = 1, . . . , l. As a result, the term Gα can
be omitted in the expansion (10.137) of wh. The block unknowns wh and ph

will solve the residual equation:[
A BT

B 0

][
wh

ph

]
=

[
−Au∗

0

]
. (10.139)

Since Bwh = 0, the problem to determine wh ∈ Kh
0 will be coercive satisfying:

vT
h Awh = −vT

h Au∗, ∀vh ∈ Kh
0 . (10.140)

The algorithm of [GL14] expands wh using (10.137) omitting G α, and ex-
pands ph using (10.138), and eliminates w1, . . . ,wl, p1, . . . ,pl and µ in sys-
tem (10.139) to solve a positive definite symmetric Schur complement system
for β. To eliminate w1, . . . ,wl, p1, . . . ,pl and µ in system (10.139), substitute
expression (10.137) for wh omitting G α, and (10.138) for ph into the residual
equation (10.139), move the term involving Hβ to the right hand side:⎧⎨
⎩

A
(∑l

i=1 Uiwi

)
+ BT

(∑l
i=1 Qipi + Cµ

)
= −Au∗ − AHβ

B
(∑l

i=1 Uiwi

)
= −BHβ,

(10.141)

and solve for the block unknowns w1, . . . ,wl, p1, . . . ,pl,µ as outlined below.
Step 1. Multiply both sides of (10.141) by blockdiag(UT

i , QT
i ) to obtain:[

Ai BT
i

Bi 0

][
wi

pi

]
=

[
−UT

i Au∗ − UT
i AHβ

−QT
i BHβ

]
,

where Ai = UT
i AUi and Bi = QT

i B Ui. The other terms are zero because of
disjoint subdomains UT

i A Uj = 0 and UT
i B Qj = 0 when i �= j, and since

UT
i BT C µ = 0 because C µ is constant within subdomains.

Step 2. To determine µ, multiply both sides of (10.141) by blockdiag(GT , 0)
and move the terms involving wi and pi to the right hand side to obtain:

(
GT BT C

)
µ = −GT A

(
u∗ + H β +

l∑
i=1

Uiwi

)
− GT BT

(
l∑

i=1

Qipi

)
,

(10.142)
where wi and pi are as obtained in step 1. Solve for µ.
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Remark 10.85. The linear systems (10.140) can be solved in parallel for
i = 1, . . . , l. The matrix

(
GT BT C

)
in (10.142) will be of size l. It will be

singular for the Neumann problem since BT 1 = 0 and C 1 = 1. However, it
can easily be seen to be consistent, so any solution with mean value zero may
be chosen.

To determine β, denote by E β the discrete divergence free velocity exten-
sion obtained in step 1 when u∗ = 0:

E β ≡ Hβ +
l∑

i=1

[
Ui 0

] [Ai BT
i

Bi 0

]−1 [
−UT

i AH β

−QT
i B H β

]
. (10.143)

By construction, E β ∈ Kh
0 . A reduced Schur complement system to determine

β can be obtained by taking inner products of the first block row of (10.141)
with E ω for each ω ∈ IRnβ and substituting for w1, . . . ,wl in terms of β.
Since E ω ∈ Kh

0 this yields a linear system of the following form:

Sβ = r, where

{
S = ET AE,

r = − ET Au∗.
(10.144)

Matrix S will be of size nβ and is easily seen to be symmetric positive definite.
It should not be assembled explicitly, instead its action can be computed
algorithmically using steps 1 and 2 described previously, using u∗ = 0.

A preconditioned CG method can be employed to solve (10.144). Once β
has been determined, the components wi, pi and µ can be determined as in
steps 1 and 2. The original algorithm of [GL14] employed weighted sums of
mass matrices on Γ to precondition S, where the weights were chosen based
on the coefficient of a(·) on subdomains adjacent to a face (when Ω ⊂ IR3) or
edge (when Ω ⊂ IR2). The resulting rate of convergence depends mildly on h,
but is independent of h0, due to inclusion of the natural coarse space.

Algorithm of [CO10]. We next outline an algorithm of [CO10] for solving
system (10.119). It is based on the solution of a larger saddle point system
equivalent to (10.119), but obtained by decoupling the velocity flux in different
elements, and by introducing new Lagrange multiplier variables to enforce the
matching of such decoupled velocity variables. Below, we outline the construc-
tion of such an extended system.

Let vh ∈ IRn denote the nodal vector associated with a finite element
velocity function vh(x) ∈ Vh ∩H0(div, Ω). By construction, the flux of vh(x)
will be continuous across elements. If κl and κj are adjacent elements, the
flux of the velocity vh(x) on a face ∂κl ∩ ∂κj (when Ω ⊂ IR3, or an edge
∂κl ∩ ∂κj when Ω ⊂ IR2) must be the same when computed from element
κl or κj . The algorithm of [CO10] introduces extended finite element velocity
functions with arbitrary nodal values for its flux within each element. These
extended velocity functions ṽh(x) will have discontinuous flux across elements.

Let ṽh ∈ IRñ denote the nodal vector associated with such an extended
velocity function ṽh(x). Here ñ > n due to multiple flux values on each face
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or edge. For i = 1, 2, let B̃i denote a matrix of size ri × ñ chosen as follows.
Matrix B̃2 should be chosen with entries in {−1, 0, 1} so that B̃2 ṽh = 0,
requires the flux of ṽh to match on each face (or edge) ∂κl ∩∂κj . In this case,
the extended velocity vectors in Kernel(B̃2) can be represented in the form:

Kernel(B̃2) = {E vh : vh ∈ IRn} ,

where E is a matrix of size ñ×n with entries in {0, 1} such that the extended
velocity ṽh = E vh has continuous flux across elements, i.e., B̃2 Evh = 0.
Matrix B̃1 of size r1 × ñ should be chosen so that B̃1 E vh = B vh = fh,
corresponds to the original divergence constraints in (10.119), with r1 = m.

Associated with each element κ ∈ Ωh, we shall let Ãκ denote the element
velocity stiffness matrix corresponding to A(., .) integrated on κ. Define a
block diagonal matrix Ã of size ñ as Ã = blockdiag

(
Ãκ1 , . . . , Ãκne

)
, where

κ1, . . . , κne
is an enumeration of the elements in the triangulation Ωh. By

construction, it will hold that:

vT
h

(
ET ÃE

)
vh = vhAvh,

where A is as in (10.119).
Introducing new Lagrange multipliers µh ∈ IRr2 to enforce the constraints

B̃2 ũh = 0 yields the following saddle point problem equivalent to (10.119):⎡
⎢⎣

Ã B̃T
1 B̃T

2

B̃1 0 0

B̃2 0 0

⎤
⎥⎦
⎡
⎢⎣

ũh

ph

µh

⎤
⎥⎦ =

⎡
⎢⎣

0
g1

g2

⎤
⎥⎦ , (10.145)

where g1 = fh and g2 = 0. The Lagrange multipliers µh will approximate
the pressure on the faces (or edges) across elements. Eliminating ũh in sys-
tem (10.145) yields the following Schur complement system for

(
µT

h ,pT
h

)T :[
B̃1Ã

−1B̃T
1 B̃1Ã

−1B̃T
2

B̃2Ã
−1B̃T

1 B̃2Ã
−1B̃T

2

][
ph

µh

]
=

[
−fh

0

]
.

This system corresponds to a nonconforming finite element discretization of
the original elliptic equation [AR4]. It can be solved using a CG method
with domain decomposition preconditioner for nonconforming discretizations
of elliptic equations, see [SA7, CO8, CO10, BR23]. The rate of convergence will
be poly-logarithmic in h and robust with respect to a(.). Once this system
has been solved for ph and µh, the extended velocity can be obtained as
ũh = −Ã−1

(
B̃T

1 ph + B̃T
2 µh

)
and uh =

(
ET E

)−1
ET ũh, see [CO10].

Algorithm of [EW8]. The algorithm of [EW8] employs the Helmholtz de-
composition in two dimensions, which represents the space of divergence free
functions in two dimensions in terms of the curl of a stream function:
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K0 = {v(x) : ∇ · v(x) = 0 in Ω and n · v = 0 on ∂Ω}
= {curl (ψ) : ψ(x) = 0 on ∂Ω} ,

(10.146)

where curl(ψ)(x) ≡ (ψx2(x),−ψx1(x)). To solve (10.119), the algorithm of
[EW8] employs three steps. In the first step a discrete velocity u∗ is deter-
mined such that Bu∗ = fh, as in Algorithm 10.7.1. In the second step the
unknown divergence free component wh = uh − u∗ is sought using the curl
representation (10.146). It is shown in [EW8] that the discrete divergence
free subspace of various mixed finite element spaces in two dimensions can be
represented as the curl of stream functions from standard conforming finite
element spaces Vh ⊂ H1

0 (Ω). Suppose ψ1(x), . . . , ψn−m(x) denotes a basis for
Vh ⊂ H1

0 (Ω) such that:

Kh
0 = Kernel(B) =

{
curl(ψ) : ψ ∈ Vh ∩ H1

0 (Ω)
}

.

Then, we may let C be a matrix of size n × (m − n) whose columns satisfy:

curl(ψi)(x) =
n∑

j=1

Cij φj(x).

The positive definite problem (10.140) to determine wh can be expressed:

CT AC w = −CT Au∗,

where wh = Cw. In [EW8], a Schwarz method is employed to solve the result-
ing conforming finite element discretization. In the third step, the pressure is
determined as in Algorithm 10.7.2. Importantly, representation (10.146) en-
ables analysis of the convergence of Schwarz algorithms for mixed formulations
of elliptic equations in two dimensions, see [EW8, MA32].

Other Algorithms. Other algorithms for mixed formulations include the
H(div) and H(curl) algorithms of [AR6], Schwarz algorithms of [ME2] and a
block matrix method of [LA11], based on A0 = A + δ−1BT B and S0 = I.

10.8 Applications to Optimal Control Problems

Optimal control problems [LI2] involving partial differential equations arise
in various engineering applications, and yield large saddle point problems.
The problem we shall consider involves an output variable y(·) which solves
an elliptic or a parabolic equation with an input boundary data or forcing
term u(·), referred to as the control. The problem of interest is to choose the
control u(·) so that y(·) closely matches a given target output y∗(·). As an
example, the output variable y(·) may represent the stationary temperature
in an object Ω, the input u(·) may represent a heat source on the boundary
or interior of Ω, and the target y∗(·) may represent a desired temperature
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distribution within Ω. Here, y(.) will solve an elliptic equation with Neumann
data u, and the control problem will seek u(·) such that y(·) closely matches
the target y∗(·). In optimal control theory [LI2], the “matching” between the
output y(·) and the target y∗(·) is measured by a performance functional J0(·):

J0(y) =
1
2
‖y − y∗‖2,

where ‖ · ‖ denotes some chosen norm. To obtain an optimal choice of control
u(.), we may seek to minimize J0(y) subject to the constraint that y(·) solves
the partial differential equation with input data u(·). However, this typically
results in an ill-posed problem, requiring the inversion of a compact operator
to determine u, with eigenvalues clustered around zero. Such ill-posedness
can be handled by Tikhonov regularization, which replaces J0(y) by a modified
functional J(y, u) = J0(y) + α

2 ‖u‖2, with small α > 0 to limit the magnitude
of the regularization term. We may then seek the minimum of J(y, u), subject
to the original constraints involving y(·) and u(·), and Lagrange multipliers
can be introduced to reformulate it as a saddle point problem.

Our discussion in this section will focus on saddle point methods to solve
a discretized optimal control problem [LI2, BI4, BI5, HE4, HE5, PR3, MA36].
Our focus will be on block matrix methods based on the solution of a reduced
Schur complement system, referred to as a “Hessian” system, for the con-
trol variable u, see [HA, BI4, BI5, MA36]. We shall omit discussion of duality
based algorithms, since in some applications, the leading diagonal block in the
resulting saddle point system can be singular, without augmentation of the
Lagrangian. In Chap. 10.8.1, we consider an elliptic optimal control problem
with Neumann controls, and describe preconditioned Hessian algorithms that
converge uniformly with respect to the mesh size h and the regularization pa-
rameter α. In Chap. 10.8.2, we describe a parabolic optimal control problem
with control in the forcing term, and describe preconditioned Hessian algo-
rithms that converge uniformly with respect to the mesh size h and time step
τ . For alternative algorithms, see [BI4, BI5, HE4, HE5, PR3, MA36, GO5].

10.8.1 Elliptic Optimal Control Problems

In an elliptic control problem, the variable y(·) will solve an elliptic equation.
More specifically, we shall assume that y(·) solves an elliptic equation on
Ω ⊂ IRd with Neumann control data u(·) ∈ L2(Γ ) on a segment Γ ⊂ ∂Ω:⎧⎪⎪⎨

⎪⎪⎩
−∆y(x) + σ y(x) = f(x), in Ω

∂y(x)
∂n

= u(x), on Γ

y(x) = 0, on ∂Ω \ Γ,

(10.147)

where σ > 0 is a given parameter. The control data u(·) parameterizes y(·)
in (10.147). So, given a target y∗(·) ∈ L2(Ω), we may seek to optimally match
y(·) with y∗(·) by choosing u(·) which minimizes the functional:
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J0(y) =
1
2
‖y − y∗‖2

L2(Ω). (10.148)

However, as discussed later, minimization of J0(·) amongst solutions to
(10.147) will be ill-posed. Instead, minimization of the regularized functional:

J(y, u) ≡ 1
2

(
‖y − y∗‖2

L2(Ω0)
+ α1 ‖u‖2

L2(Γ ) + α2 ‖u‖2

(H
1/2
00 (Γ ))′

)
, (10.149)

for α1, α2 ≥ 0 will yield a well posed problem, provided either αi > 0. In
the following sub-sections, we formulate the optimal control problem, its fi-
nite element discretization, and resulting saddle point system. We derive the
reduced symmetric positive definite Hessian system for determining the dis-
cretized control u(·) and describe a preconditioner yielding a rate of conver-
gence uniform with respect to the mesh and regularization parameters. Our
discussion will closely follow [MA36, GO5]. For a discussion of alternative
iterative solvers, the reader is referred to [BI4, BI5, HE4, HE5, PR3].

The Constrained Minimization Problem. Given f(.) ∈ L2(Ω), define
the constraint set Vf of solutions to elliptic problem (10.147) as:

Vf ≡ {(y, u) : equation (10.147) holds} . (10.150)

Given a target function y∗ ∈ L2(Ω), the regularized optimal control problem
will seek to minimize the functional J(·, ·) within Vf :

J(y, u) = min
(ỹ,ũ)∈Vf

J(ỹ, ũ). (10.151)

The constraint set Vf will be closed in H1
Γ (Ω) × (H1/2

00 (Γ ))′, where:

H1
Γ (Ω) ≡ {w ∈ H1(Ω) : w = 0 on ∂Ω \ Γ}, (10.152)

and (H1/2
00 (Γ ))′ is the dual space of H

1/2
00 (Γ ) = [L2(Γ ), H1

0 (Γ )]1/2. As
mentioned before, the minimization of J(·) within Vf will be ill-posed if
α1 = α2 = 0, and the reason for this will be indicated later.

Remark 10.86. Recall that the dual Sobolev norm ‖u‖
(H

1/2
00 (Γ ))′ is defined as:

‖u‖
(H

1/2
00 (Γ ))′ ≡ sup

v∈H
1/2
00 (Γ )

∫
Γ

u v dsx

‖v‖
H

1/2
00 (Γ )

,

where H
1/2
00 (Γ ) =

[
L2(∂Ω),H1

0 (Γ )
]
1/2

.

Remark 10.87. The regularization term in J(., .) alters the original functional
J0(.) and the intended matching between y(·) and y∗(·) will also be altered.
As a result, it will be important that α1, α2 ≥ 0 be small parameters in
applications, to ensure that the minimization determines y(·) close to y∗(·).
The traditional choice is α1 > 0 and α2 = 0. However, the choice α1 = 0 and
α2 > 0 yields a weaker regularization term.
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Weak Formulation and Discretization. Given f(·) ∈ L2(Ω), the con-
straint set Vf ⊂ V ≡ H1

Γ (Ω) × (H1/2
00 (Γ ))′ can be described weakly as:

Vf ≡
{
(y, u) ∈ V : A(y, w)− < u, w >= (f, w), ∀w ∈ H1

Γ (Ω)
}

, (10.153)

where the forms are defined by:⎧⎪⎨
⎪⎩

A(u,w) ≡
∫

Ω
(∇u · ∇w + σ uw) dx, for u,w ∈ H1

Γ (Ω)
(f, w) ≡

∫
Ω

f(x) w(x) dx, for w ∈ H1
Γ (Ω)

< u, w > ≡
∫

Γ
u(x) w(x) dsx, for u ∈ (H1/2

00 (Γ ))′, w ∈ H
1/2
00 (Γ ).
(10.154)

To ensure well posedness of (10.151), saddle point theory [GI3] requires an
inf-sup condition to hold (in appropriately chosen norms), and requires J(., .)
to be coercive within V0. The inf-sup condition can be shown to hold for
this problem, however, J(., .) = J0(·) for α1 = α2 = 0 will not be coercive
within V0, since the L2(Ω) norm in J0(·) is weaker than the H1(Ω) norm for
y(·). However, if α2 > 0 and α1 = 0, then for y(·) ∈ V0, elliptic regularity
theory for harmonic functions will yield coercivity of J(., .) within V0. Note
that if α2 = 0 and α1 > 0, the term ‖u‖L2(Γ ) is not strictly defined for
u ∈ (H1/2

00 (Γ ))′, however, it will be defined for finite element discretizations.
The solution (y, u) of (10.151) can be obtained from the saddle point

(y, u, p) of the Lagrangian L(·, ·, ·) with Lagrange multiplier p ∈ H1
Γ (Ω):

L(y, u, p) ≡ J(y, u) + (A(y, p)− < u, p > −(f, p)) , (10.155)

The appropriate function space is (y, u, p) ∈ H1
Γ (Ω)× (H1/2

00 (Γ ))′×H1
Γ (Ω). A

finite element discretization of the saddle point problem for L(., ., .) in (10.155)
can be obtained by discretizing its weak formulation [GI3], using finite element
subspaces of H1

Γ (Ω)× (H1/2
00 (Γ ))′×H1

Γ (Ω), as outlined next. A discretization
of α2 ‖u‖2

(H
1/2
00 (Γ ))′

will be based on an equivalent expression.

Given a triangulation τh(Ω) of Ω, let Vh(Ω) ⊂ H1
Γ (Ω) denote a finite

element space with restriction Vh(Γ ) ⊂ L2(Γ ) to Γ . A discretization of the
saddle point problem for L(., ., .) will seek an approximation (yh, uh, ph) of
(y, u, p) within Vh(Ω) × Vh(Γ ) × Vh(Ω). Given the standard finite element
nodal basis {φ1(x), . . . , φn(x)} and {ψ1(x), . . . , ψm(x)} for Vh(Ω) and Vh(Γ ),
respectively, let y, u, p be the nodal vectors associated with yh, uh, ph:

yh(x) =
n∑

i=1

yi φi(x), uh(x) =
m∑

j=1

uj ψj(x), ph(x) =
n∑

l=1

pl φl(x).

(10.156)
The following matrices M , A and Q shall be employed:⎧⎪⎨

⎪⎩
Mij ≡

∫
Ω

φi(x) φj(x) dx, for 1 ≤ i , j ≤ n

Aij ≡
∫

Ω
(∇φi(x) · ∇φj(x) + σ φi(x) φj(x)) dx, for 1 ≤ i , j ≤ n

Qij ≡
∫

∂Ω
ψi(x) ψj(x) dsx, for 1 ≤ i , j ≤ m,

(10.157)
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where M denotes the mass matrix of size n on Ω, and A denotes the stiffness
matrix of size n with Neumann boundary conditions on Γ , and Q denotes the
mass matrix of size m on Γ . It will hold that M = MT > 0, Q = QT > 0,
and when σ > 0, then A = AT > 0. We shall order the nodal unknowns in y
and p so that the nodes in the interior of Ω are ordered prior to the nodes
on Γ . This will yield a partition y =

(
yT

I ,yT
Γ

)T and p =
(
pT

I ,pT
Γ

)T . Based
on this, we block partition A and define matrix B of size n × m as follows:

A =

[
AII AIΓ

AT
IΓ AΓΓ

]
and B ≡

[
0

−Q

]
, BT ≡

[
0 −QT

]
. (10.158)

The following discrete forcing vectors will also be employed:⎧⎪⎨
⎪⎩

(f1)i =
∫

Ω
y∗(x) φi(x) dx, for 1 ≤ i ≤ n

(f2)i = 0, for 1 ≤ i ≤ m

(f3)i =
∫

Ω
f(x) φi(x) dx, for 1 ≤ i ≤ n.

(10.159)

Then, using the above, the discrete performance functional Jh(y,u) and the
discrete constraint set Vh

f can be expressed as:

{
Jh(y,u) = 1

2

(
(y − y∗)T M(y − y∗) + α1 uT Qu + α2 uT BT A−1Bu

)
Vh

f = {(y,u) : Ay + B u = f3} ,

where y∗ = M−1f1, and the saddle point discretization of (10.151) will be:⎡
⎢⎣

M 0 AT

0 G BT

A B 0

⎤
⎥⎦
⎡
⎢⎣

y
u
p

⎤
⎥⎦ =

⎡
⎢⎣

f1

f2

f3

⎤
⎥⎦ , (10.160)

where matrix G ≡ α1 Q + α2 (BT A−1B).
Given a finite element function uh(·) on Γ , with associated nodal vector u,

it can be verified that A−1Bu is the nodal vector corresponding to the discrete
harmonic extension of Neumann data uh into Ω. Thus, uT BT A−1Bu will
denote the A-energy of the discrete harmonic extension of u. The block matrix
structure of A and B in (10.158), and the block structure of A−1, will yield
BT A−1B = QT S−1Q, where S = (AΓΓ − AT

IΓ A−1
II AIΓ ), see Lemma 10.88.

The discrete extension theorem and elliptic regularity theory will yield the
following spectral equivalence (denoted �), see Remark 10.90 and [MA36]:

uT
(
BT A−1B

)
u = uT

(
QT S−1Q

)
u � ‖uh‖2

(H
1/2
00 (∂Ω))′

As a consequence of the above, the regularization term can be expressed as:

α1 ‖uh‖2
L2(Γ ) + α2 ‖uh‖2

(H
1/2
00 (Γ ))′

� uT
(
α1 Q + α2 (BT A−1B)

)
u,
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and this is what motivated the definition of G ≡ α1 Q + α2

(
BT A−1B

)
.

Solvability of (10.160), with norm bounds for ‖y‖A, ‖u‖QS−1Q and ‖p‖A,
can be analyzed using saddle point theory [GI3]. It requires the coercivity of(
yT My + uT Gu

)
within the constraint set Vh

0 , and that the bilinear form
pT (Ay + Bu) satisfy an inf-sup condition, both in the appropriate norms.
When α1 > 0 or α2 > 0,

(
yT My + uT Gu

)
will be coercive within Vh

0 , by
discrete elliptic regularity theory, and the inf-sup condition will hold trivially
for pT (Ay + Bu), by discrete elliptic regularity theory.

Hessian System for u. The algorithm we describe for solving (10.160) will
be based on the solution of a reduced Schur complement system for the control
variable u. When A is non-singular, solving the third block row in (10.160)
formally yields y = A−1 (f3 − B u). Solving the first block row for p yields
p = A−T

(
f1 − MA−1f3 + MA−1Bu

)
. Substituting these into the second

block row yields the following reduced system, referred to as the Hessian
system, for the control variable u:⎧⎪⎨

⎪⎩
C u = f̃2, where

C ≡
(
G + BT A−T MA−1B

)
f̃2 ≡

(
f2 − BT A−T f1 + BT A−T MA−1f3

)
.

(10.161)

The Hessian matrix C = CT > 0 will be symmetric and positive definite of size
m, and system (10.161) can be solved using a PCG algorithm. Each matrix
vector product with C requires the action of A−T and A−1 (two applications
of A−1 since A = AT ). If the action of A−1 is computed iteratively, this will
result in double iteration, with inner and outer iterations. Once u has been
determined by solving (10.161), we can determine y and p by solving:

Ay = (f3 − Bu) and AT p =
(
f1 − MA−1f3 + MA−1Bu

)
. (10.162)

In the following, we describe the spectral properties of the Hessian matrix C,
and formulate a preconditioner C0 which yields a rate of convergence inde-
pendent of the mesh size h and α1, α2.

Since the Hessian C is a weighted sum of three matrices:

C = α1 Q + α2 (BT A−1B) + (BT A−T MA−1B), (10.163)

its properties will depend on α1, α2. The block structures of A and B yield:

A−1 =

[
A−1

II + A−1
II AIΓ S−1AT

IΓ A−1
II −A−1

II AIΓ S−1

−S−1AT
IΓ A−1

II S−1

]
, BT = [0 − QT ],

(10.164)
where S = (AΓΓ − AT

IΓ A−1
II AIΓ ). This yields A−1B = −E S−1 Q where:

E =

[
−A−1

II AIΓ

I

]
(10.165)
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denotes the discrete A-harmonic extension of Dirichlet data on Γ into Ω. Also:

BT A−1B = QT S−1Q

BT A−T MA−1B = QT S−T ET MES−1Q.
(10.166)

The next result describes a spectral equivalence for (BT A−T MA−1B).

Lemma 10.88. Let Ω ⊂ Rd be a convex polygonal domain and let Γ ⊂ ∂Ω
be smooth. The following equivalence will hold independent of h, α1 and α2:

BT A−T MA−1B � QT S−T QT S−1QS−1Q, (10.167)

where S = (AΓΓ − AT
IΓ A−1

II AIΓ ).

Proof. We shall employ the property that if matrices X and X0 of size n
satisfy c1 X0 ≤ X ≤ c2 X0 in the sense of quadratic forms, then:

c1 (Y T X0Y ) ≤ (Y T XY ) ≤ c2 (Y T X0Y ),

will hold for any matrix Y of size n × p. Thus, if ET ME � QT S−1Q, we
may substitute X = ET ME, X0 = QS−1Q, and Y = S−1Q into (10.166) to
obtain (10.167). To verify ET ME � QT S−1Q, given a finite element Dirichlet
data vh on Γ , let E vh denote its discrete harmonic extension into Ω. As a
result of H2(Ω) regularity for the Dirichlet problem, the equivalence:

‖Evh‖2
L2(Ω) � ‖vh‖2

(H
1/2
00 (Γ ))′

will hold [PE2], where the dual norm is defined in Remark 10.86. If vΓ and
EvΓ denote the nodal vectors associated with vh and Evh, the equivalence of
[PE2] can be expressed in matrix terms, see Remark 10.90, as:

vT
Γ

(
ET ME

)
vΓ � vT

Γ

(
QT S−1Q

)
vΓ

Thus ET ME � QS−1Q and the desired equivalence follows. ��

Remark 10.89. As a corollary, we obtain (denoting G = α1 Q+α2 (QT S−1Q)):

C = G + QT S−T ET MES−1Q � G + (QT S−1QT S−1QS−1Q). (10.168)

For α1, α2 “large”, we will obtain λmin(G) ≥ λmax(QT S−T ET MES−1Q) and
cond(G,C) ≤ 2. For α1, α2 “small”, λmax(G) ≤ λmin(QT S−T ET MES−1Q)
and cond(QT S−T ET MES−1Q,C) ≤ 2. In the latter case, matrix C will be
ill-conditioned with a condition number of O(h−3). We shall later consider
preconditioners for C which are uniformly effective for h, α1, α2.

Remark 10.90. Let vh, wh ∈ Vh(Γ ) with associated nodal vectors v, w with
the notation ‖w‖X =

(
wT Xw

)1/2 for X = XT > 0. Since S will be spectrally
equivalent to matrix generating the fractional Sobolev inner product, there
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should be c1 > 0 independent of h such that ‖wh‖H
1/2
00 (Γ )

≤ c1 ‖w‖S . Then,
the following bound will hold:

‖v‖QT S−1Q = supw �=0

wT Qv
‖w‖S

≤ c1 supwh∈Vh(Γ )\{0}

∫
Γ

vh wh dsx

‖wh‖H
1/2
00 (Γ )

≤ c1 sup
w∈H

1/2
00 (Γ )\0

∫
Γ

vh w dsx

‖w‖
H

1/2
00 (Γ )

= c1 ‖v‖(H
1/2
00 (Γ ))′

If Phw denotes the L2(Γ )-orthogonal projection of w onto Vh(Γ ), then this
projection will satisfy ‖Phw‖

H
1/2
00 (Γ )

≤ c2 ‖w‖
H

1/2
00 (Γ )

for some c2 > 0 inde-

pendent of h (by interpolation and stability of the L2(Γ )-projection Ph in the
H1

0 (Γ ) and L2(Γ ) norms [BR21]). As a result, the reverse bound should hold:

‖vh‖(H
1/2
00 (Γ ))′ = sup

w∈H
1/2
00 (Γ )\{0}

∫
Γ

vh w dsx

‖w‖
H

1/2
00 (Γ )

= sup
w∈H

1/2
00 (Γ )\{0}

∫
Γ

vh Phw dsx

‖w‖
H

1/2
00 (Γ )

≤ c2 sup
w∈H

1/2
00 (Γ )\{0}

∫
Γ

vh Phw dsx

‖Phw‖
H

1/2
00 (Γ )

.

Combining both bounds yields ‖v‖QS−1Q � ‖vh‖(H
1/2
00 (Γ ))′ .

Remark 10.91. When α1 = α2 = 0, the ill-posedness of system (10.151) can
be understood heuristically by studying the Hessian system (10.161). Under
H2(Ω) regularity assumptions for the Dirichlet problem on Ω, the bilinear
form corresponding to C = BT A−T MA−1B will be a compact operator with
eigenvalues clustered around zero, coercive for uh ∈ H−3/2(Γ ). Formally, its
inverse C−1 will be a bounded map for a forcing term with H3/2(Γ ) regularity.
However, f̃2 =

(
f2 − BT A−T f1 + BT A−T MA−1f3

)
can be verified to repre-

sent a term with only H1/2(Γ ) regularity, resulting in a formal solution C−1f̃2

that is unbounded as h → 0. However, when α1 > 0, the bilinear form corre-
sponding to C will be bounded in L2(Γ ), and when α2 > 0, it will be bounded
for forcing terms with H1/2(Γ ) regularity, yielding a bounded solution.

Remark 10.92. Inclusion of a regularization term alters the original ill-posed
minimization problem, yielding a bounded solution, instead of an unbounded
solution. Its effects can be understood heuristically by studying the minimiza-
tion of the following least squares functional:

F (x) =
1
2
‖Hx − b‖2
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where H is a rectangular or singular matrix of dimension m×n with singular
value decomposition H = UΣV T . A minimum of the functional F (·) will occur
at x∗ = H†b = V Σ†UT b. However, when H has a non-trivial null space, there
will be an affine space of minima. For instance, if N is a matrix of dimension
n× k whose columns span the null space of H, with Range(N) = Kernel(H),
then, the general minimum of F (·) will be x∗ + Nβ for any vector β ∈ IRk.
We shall consider two alternative regularization terms:

F1(x) = F (x) +
α

2
‖PNx‖2 and F2(x) = F (x) +

α

2
‖x‖2,

where PN denotes the Euclidean orthogonal projection onto the null space N .
The minimum of F1(·) will occur at x∗ = H†b and it will be unique for α > 0.
The minimum of F2(·) will solve (HT H + α I)x = HT b. Using the singular
value decomposition of H, we will obtain x = V

(
ΣT Σ + α I

)−1
ΣT UT b as

the unique solution to the regularized functional F2(·). The ith diagonal entry
of
(
ΣT Σ + α I

)−1
ΣT will be σi/(σ2

i +α), with σi/(σ2
i +α) → 1/σi as α → 0+

when σi > 0, while if σi = 0, then σi/(σ2
i + α) = 0. Thus, x → x∗ = H†b

as α → 0+. In our applications, HT H will correspond to (BT A−T MA−1B),
while F (x) will correspond to J(y(u),u) with x corresponding to u.

Remark 10.93. The regularization parameter α > 0 must be appropriately
small. When matrix H arises from the discretization of an ill posed problem,
its singular values will cluster around 0, and the choice of parameter α > 0
must balance the accuracy of the modes associated with the larger singular
values of H and dampen the modes associated with the smaller singular values
of H (resulting in a bounded solution in our applications).

Solution of the Hessian System Cu = f̃2. Two alternative approaches can
be employed to iteratively solve the Hessian system. In the first approach, we
solve Cu = f̃2 using a PCG algorithm with preconditioner C0 = CT

0 > 0. In
the second approach, the control problem for Neumann data u is transformed
into an equivalent control problem for associated Dirichlet data v = S−1Qu.
Since C = QT S−T D S−1Q, the Dirichlet control v can be shown to solve:

D v = g, where D = α1 (ST Q−1S) + α2 S + ET ME, g = ST Q−T f̃2.
(10.169)

Here D = DT > 0. To obtain u, solve D v = g using a PCG algorithm
with preconditioner D0 = DT

0 > 0, and compute u = Q−1Sv. The precon-
ditioners we describe for D require weaker regularity assumptions than those
for C.

In both approaches, the matrices C and D are the sums of products of
matrices, and caution must be exercised when formulating a preconditioner
for the products of matrices. Consider matrices X = XT > 0 and Y = Y T > 0
of size n, with effective preconditioners X0 and Y0 for X and Y , respectively.
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Then, Y T
0 X0Y0 need not be an effective preconditioner for Y T XY . Indeed, as

an example, for a > 0 choose X = X0 = I with:

Y =

[
2 a

1
2

a
1
2 2a

]
, Y0 =

[
1 0
0 a

]
, Y T Y =

[
4 + a 2(a

1
2 + a

3
2 )

2(a
1
2 + a

3
2 ) a + 4a2

]
,

Y T
0 Y0 =

[
1 0
0 a2

]
.

Then, (Y T XY ) = Y T Y , (Y T
0 X0Y0) = Y T

0 Y0, with cond(X, X0) = 1 and
cond(Y, Y0) ≤ 3, yet cond(Y T Y, Y T

0 Y0) depends on a and can be arbitrarily
large. As another example, choose X0 = X and Y0 = I with:

X =

[
1 0
0 a

]
, Y =

[
2 1
1 2

]
, Y T XY =

[
4 + a 2 + 2a

2 + 2a 1 + 4a

]
, Y T

0 X0Y0 =

[
1 0
0 a

]
,

Then, cond(X, X0) = 1 and cond(Y, Y0) ≤ 3, yet cond(Y T XY, Y T
0 X0Y0) is

dependent on a and can be arbitrarily large. Despite the above examples, the
matrix (Y T XY ) will be spectrally equivalent to (Y T

0 X0Y0) under additional
assumptions on X, Y , X0 and Y0, as noted below.

• Replacing the “inner” matrix X by a preconditioner X0 will yield the fol-
lowing bounds trivially, if Y T X0Y is used as a preconditioner for Y T XY :

c1 ≤ vT Xv
vT X0v

≤ c2 =⇒ c1 ≤ vT (Y T XY )v
vT (Y T X0Y )v

≤ c2.

However, computing the action of (Y T X0Y )−1 requires the action of Y −1.
• When the matrices X, Y , X0 and Y0 commute, the following bounds will

hold trivially if Y T
0 X0Y0 is used as a preconditioner for Y T XY :⎧⎪⎪⎪⎨

⎪⎪⎪⎩
c1 ≤ vT Xv

vT X0v
≤ c2

d1 ≤ vT Y v
vT Y0v

≤ d2

=⇒ c1 d2
1 ≤ vT (Y T XY )v

vT (Y T
0 X0Y0)v

≤ c2 d2
2.

However, such commutativity assumptions hold only rarely in practice.
• If matrix X � Kβ

0 and (Y T Kβ
0 Y ) � Kβ+2α

0 , then we may employ Kβ+2α
0

as a preconditioner for (Y T XY ). Indeed, the following bounds will hold:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1 ≤ vT Xv

vT Kβ
0 v

≤ c2

d2
1 ≤ vT (Y T Kβ

0 Y )v

vT (Kβ+2α
0 )v

≤ d2
2

=⇒ c1 d2
1 ≤ vT (Y T XY )v

vT (Kβ+2α
0 )v

≤ c2 d2
2.

Such properties may hold under regularity assumptions. Importantly, there
must be efficient ways to compute the action of the inverse of Kβ+2α

0 .

Motivated by these properties, we shall describe preconditioners Q0 and S0

for Q and S, respectively, and formulate preconditioners for C and D.
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FST Based Preconditioners. When Ω ⊂ IR2, we may precondition the
matrices Q and S by tridiagonal matrices Q0 and S0, which are simultaneously
diagonalized by the fast sine transform (FST). Let Q0 denote the mass matrix
associated with a uniform mesh of size h on Γ and let L0 denote the discrete
Laplace-Beltrami matrix associated with LB = − d2

ds2
x

on a uniform mesh of
size h on Γ (with zero Dirichlet conditions on ∂Γ ). If Q and S are of size m,
then Q0 and L0 will be tridiagonal matrices of size m given by:

Q0 =
h

6
tridiag(1, 4, 1) and L0 =

1
h

tridiag(−1, 2,−1).

Our preconditioner S0 for S will be the interpolation matrix:

S � S0 ≡ [Q0, L0]1/2 = Q
1/2
0

(
Q

−1/2
0 L0Q

−1/2
0

)1/2

Q
1/2
0 .

Matrices Q0 and L0 (and hence S0) will be simultaneously diagonalized by
the discrete sine transform matrix F of size m:

(F )ij =

√
2

m + 1
sin
(

i j π

m + 1

)
, for 1 ≤ i, j ≤ m.

The eigenvalues (ΛQ0)ii in the spectral decomposition Q0 = FΛQ0F
T are:

(ΛQ0)ii =
1

3 (m + 1)

(
3 − 2 sin2

(
i π

2 (m + 1)

))
, for 1 ≤ i ≤ m.

The eigenvalues (ΛL0)ii in the spectral decomposition L0 = FΛL0F
T are:

(ΛL0)ii = 4 (m + 1) sin2

(
i π

2 (m + 1)

)
, for 1 ≤ i ≤ m.

Since Q0 and L0 are diagonalized by F , we obtain:

S0 = FΛS0F
T = F

(
Λ

1/4
Q0

Λ
1/2
L0

Λ
1/4
Q0

)
FT .

Replacing Q by Q0 and S by S0 in the expressions for C and D, we obtain
the following preconditioners C0 and D0:

C0 = F ΛC0 FT = F
(
α1 ΛQ0 + α2 Λ2

Q0
Λ−1

S0
+ Λ4

Q0
Λ−3

S0

)
FT ,

D0 = F ΛD0 FT = F
(
α1 ΛS0 Λ−1

Q0
ΛS0 + α2 ΛS0 + ΛQ0 Λ−1

S0
ΛQ0

)
FT .

(10.170)
Under regularity assumptions on Q and S, the above preconditioners will yield
a rate of convergence independent of h and αi (weaker assumptions for D).
The action of C−1

0 and D−1
0 can be computed at a cost proportional to two

FST’s, once ΛQ0 and ΛS0 are computed analytically. The FST preconditioner
can be generalized for Ω ⊂ R3, provided the grid on Γ can be mapped onto
an uniform rectangular grid. It requires using two dimensional FST matrices
to diagonalize the Laplace-Beltrami matrix L0 and the mass matrix Q0.
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Multilevel Preconditioners. When the grid τh(Γ ) restricted to Γ has a
hierarchical structure, obtained by successive refinement of some coarse grid
τh0(Γ ) on Γ , we can formulate multilevel preconditioners for C and D using
hierarchical projections [BR17, BR20, OS, OS2]. We shall denote the refined
grid sizes as h = hp < hp−1 < · · · < h1 < h0, where hi = (hi−1/2) for
1 ≤ i ≤ p. Let Vh(Γ ) = Vhp

(Γ ) denote the restriction of the fine grid finite
element space onto Γ , and let Vhj

(Γ ) denote the finite element space based
on the triangulation τhj (Γ ). By construction, these spaces will be nested:

Vh0(Γ ) ⊂ Vh1(Γ ) ⊂ · · · ⊂ Vhp−1(Γ ) ⊂ Vhp
(Γ ).

Let Pj denote the L2(Γ )-orthogonal projection onto Vhj
(Γ ). The projections

(Pj−Pj−1) can be employed to provide a spectrally equivalent approximation
of the discrete Laplace-Beltrami operator L0 on Vh(Γ ) endowed with the
L2(Γ ) inner product [BR20, BR17]:

I = P0 +
∑p

j=1 (Pj − Pj−1)
L0 � h−2

0 P0 +
∑p

j=1 h−2
j (Pj − Pj−1) .

The theory of Hilbert scales yields the following equivalences [BR17]:

S0 � h−1
0 P0 +

∑p
j=1 h−1

j (Pj − Pj−1) , S−1
0 � h1

0P0 +
∑p

j=1 h1
j (Pj − Pj−1) ,

where (S0·, ·)L2(Γ ) generates the H
1/2
00 (Γ ) space inner product in Vh(Γ ). Under

regularity assumptions on S, Q and S0, and using ET ME � QT S−1Q and
Q � hd−1 I, we will obtain the equivalences:

C � α1 hd−1 I + α2 h2d−2 S−1
0 + h4d−4 S−3

0

D � α1 h−d+1 S2
0 + α2 S0 + h2d−2 S−1

0 .

To obtain the hierarchical preconditioners for C and D, we shall substitute
S0 � Q

1/2
0 S0Q

1/2
0 � hd−1

(
h−1

0 P0 +
∑p

j=1 h−1
j (Pj − Pj−1)

)
, which is the

relation between S0 and its matrix representation S0. This will yield:

C � hd−1
((

α1 + α2 h0 + h3
0

)
P0 +

∑p
i=1

(
α1 + α2 hi + h3

i

)
(Pi − Pi−1)

)
D ≡ hd−1

((
α1 h−2

0 + α2 h−1
0 + h1

0

)
P0

+
∑p

i=1

(
α1 h−2

i + α2 h−1
i + h1

i

)
(Pi − Pi−1)

)
,

where Pi denotes the matrix representation of Pi. In practice, to reduce the
computational cost of applying each Pi, we may use an approximation P̃i ≈ Pi.
The resulting action of the inverse of the preconditioners for C and D will be:

C−1
0 = h−d+1

(
α1 + α2 h0 + h3

0

)−1
P̃T

0 P̃0

+h−d+1
∑p

i=1

(
α1 + α2 hi + h3

i

)−1 (P̃i − P̃i−1)T (P̃i − P̃i−1)

D−1
0 = hd−1

(
α1 h−2

0 + α2 h−1
0 + h1

0

)−1
P̃T

0 P̃0

+hd+−1
∑p

i=1

(
α1 h−2

i + α2 h−1
i + h1

i

)−1
(P̃i − P̃i−1)T (P̃i − P̃i−1).

(10.171)
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Under appropriate assumptions on P̃i ≈ Pi, see [BR17], the resulting precon-
ditioners will be as effective as for exact implementation of Pi.

Augmented Lagrangian Algorithms. The disadvantage of solving (10.160)
based on the Hessian system (10.161) is that the PCG algorithm requires the
action of A−1 twice each iteration, since the Hessian C=(G+BTA−TMA−1B).
If an efficient sparse direct solver is available for A (such as when Ω ⊂ IR2),
this approach can be tractable. However, if the action of A−1 is computed
iteratively within an inner loop, this will result in double iteration, and such
double iteration can be avoided if a preconditioned MINRES algorithm is
applied to iteratively solve (10.160), see [RU5, BR9, EL2, KL2, ZU].

We consider an augmented Lagrangian reformulation of system (10.160),
see [GL7], since it will be easier to precondition the augmented system. Choose
a weight matrix W = WT ≥ 0 of size n, and multiply the third block row
of (10.160) by AT W and add it to the first block row, and similarly multiply
the third row of (10.160) by BT W and add it to the second block row. This
will yield the following augmented Lagrangian system:⎡
⎢⎣

M + AT WA AT WB AT

BT WA G + BT WB BT

A B 0

⎤
⎥⎦
⎡
⎢⎣

y
u
p

⎤
⎥⎦ =

⎡
⎢⎣

f1 + AT W f3

f2 + BT W f3

f3

⎤
⎥⎦ , (10.172)

where by construction system (10.160) and (10.172) have the same solution.
For convenience, we shall employ the notation:

K =

[
M + AT WA AT WB

BT WA G + BT WB

]
, K0 =

[
M0 0
0 C0

]
, NT =

[
AT

BT

]
.

(10.173)
The next result describes a choice of matrix W and preconditioner for (10.172)
yielding preconditioned eigenvalues independent of h and αi, see [GO6].

Lemma 10.94. Suppose the following assumptions hold.

1. Let A0 and M0 be chosen such that A0M
−1
0 A0 � AM−1A.

2. Let C0 � (G + BT A−T MA−1B) and let W ≡ A−1
0 M0A

−1
0 .

Then, the following properties will hold for K, K0 and N as defined
in (10.173):

1. The equivalences K � K0 and (NK−1NT ) � (A0M
−1
0 A0) will hold.

2. The generalized eigenvalues λ of:[
K NT

N 0

][
w
p

]
= λ

[
K0 0
0 A0M

−1
0 A0

][
w
p

]
(10.174)

will lie in [−b,−a] ∪ [a, b] where 0 < a < b are independent of h and αi.

Proof. See [GO6] and [RU5, BR9, EL2, KL2, ZU]. ��
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Thus, solving system (10.172) using the MINRES algorithm [SA2] with the
preconditioner blockdiag

(
K0, A0M

−1
0 A0

)
will yield robust convergence. This

approach requires the action of A−1
0 twice each iteration (but not that of A−1).

10.8.2 Parabolic Optimal Control Problems

In a parabolic control problem, variable y(·) will solve a parabolic equation.
The computational time and memory required for solving a parabolic optimal
control problem can be significantly larger than for an elliptic optimal control
problem. Traditionally, the solution to temporal optimal control problems
are sought by an application of the Pontryagin maximum principle and by
solving a Riccati equation [LI2, LU4]. However, when the number n of output
variables is large, the Riccati approach can become prohibitively expensive,
since it requires computing and storing a dense matrix of size n at each time
step. Thus, although we shall outline the Pontryagin maximum principle and
Riccati equation approach, our focus will be on an alternative approach which
solves an “all-at-once” spatial and temporal discretization of the parabolic
optimal control problem, using a preconditioned MINRES algorithm.

The Control Problem. We consider an output variable y(., .) which solves
a parabolic equation on Ω × (0, T ) with an input control u(., .) as the forcing:⎧⎪⎪⎨

⎪⎪⎩
∂y

∂t
+ Ly = u, in Ω × (0, T )

y = 0, on ∂Ω × (0, T )
y(0, .) = y0(.), in Ω,

(10.175)

where Ly ≡ −∆y. Given a target output y∗(., .), we define a regularized
performance functional J(y, u) measuring the difference between y and y∗:

J(y, u) =
1
2
∫ T
0

(
‖y(t, .) − y∗(t, .)‖2

L2(Ω) + α ‖u(t, .)‖2
L2(Ω)

)
dt

+
β

2
‖y(T , .) − y∗(T , .)‖2

L2(Ω).
(10.176)

Here α > 0 is a regularization parameter and β ≥ 0 is a weight. The control
problem will seek to minimize J(., .) within a constraint set Vy0 :

J(y, u) = inf
(ỹ,ũ)∈Vy0

J(ỹ, ũ), (10.177)

where Vy0 consists of solutions to (10.175):

Vy0 ≡ {(y, u) : equation (10.175) holds } . (10.178)

To obtain a saddle point formulation of (10.177), let p(., .) denote a Lagrange
multiplier to enforce the constraint (10.175). Define:

L(y, u, p) = J(y, u) +
∫ T

0

∫
Ω

p(t, x)
(

∂y

∂t
+ Ly − u

)
dx dt,
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as the Lagrangian functional. Formally, if (y, u, p) is the saddle point of
L(., ., .), then (y, u) will solve the constrained minimization problem (10.177).
An application of the Pontryagin maximum principle, and elimination of
u(., .), will yield a Hamiltonian system for y(., .) and p(., .). We shall describe
the Hamiltonian system when we consider the Pontryagin maximum principle.

Semi-Discretized Control Problem. Let τh(Ω) denote a triangulation of
Ω and let Vh(Ω) ⊂ H1

0 (Ω) denote a finite element space defined on τh(Ω),
with basis {φ1(.), . . . , φn(.)}. Let Uh(Ω) denote a finite element space for
the controls on Ω with basis {ψ1(.), . . . , ψm(.)}. A semi-discretization of
the saddle point formulation of (10.177), will seek approximations yh(t, .),
ph(t, .) ∈ Vh(Ω) and uh(t, .) ∈ Uh(Ω) of y(t, .), p(t, .) and u(t, .), respectively.

Let A and M denote the stiffness and mass matrices of size n, as defined
in (10.157). Let B and Q be matrices of size n × m and m × m:

Bij ≡
∫

Ω

φi(x)ψj(x) dx and Qij ≡
∫

Ω

ψi(x) ψj(x) dx.

Let y(t), p(t) ∈ IRn and u(t) ∈ IRm denote nodal vectors associated with
yh(t, .), ph(t, .) and uh(t, .). A semi-discretization of the constraint Vy0 yields:

Vy0 =
{

(y,u) : y′ + M−1 Ay = M−1 B u, for 0 < t < T , y(0) = y0

}
where y′(t) = dy

dt (t). The semi-discrete performance functional will be:

Jh(y,u) =
1
2
∫ T
0

(
‖y(t) − y∗(t)‖2

M + α ‖u(t)‖2
Q

)
dt

+
β

2
‖y(T ) − y∗(T )‖2

M ,
(10.179)

where y∗(t) is the discretized target function. Denote the Lagrange multiplier
function for enforcing the constraints in Vy0 as p(·) ∈ IRn. We then define the
semi-discrete Lagrangian Lh(y,u,p) associated with Jh(y,u) in Vy0 as:

Lh(y,u,p) ≡ Jh(y,u) +
∫ T

0

p(t)T
(
y′ + M−1Ay − M−1Bu

)
dt.

Formally, if (y(.),u(.),p(.)) is the saddle point of Lh(., ., .), we expect (y,u)
to minimize Jh(ỹ, ũ) within Vy0 . Furthermore, we expect the finite element
functions (yh(.), uh(.), ph(.)) associated with (y(.),u(.),p(.)) to approximate
(y(.), u(.), p(.)). At the saddle point of Lh(., ., .), the paths y(t), u(t) and p(t)
will satisfy a system of differential equations and an algebraic inequality, and
these conditions are stated in the Pontryagin maximum principle.

The Pontryagin Maximum Principle. Our discussion of the Pontryagin
maximum principle will be heuristic, and will only consider the case where
Vy0 involves initial conditions (i.e., no terminal constraints). The maximum
principle derives a system of ordinary differential equations for y(.) and p(.)
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and an algebraic inequality characterizing u(.) at the saddle point of the
Lagrangian Lh(., ., .), see [LU4]. The following functional H(p,y,u), referred
to as the Hamiltonian, is associated with the Lagrangian functional Lh(., ., .):

H(p,y,u) =
1
2
(
‖y − y∗‖2

M + α ‖u‖2
Q

)
+ pT

(
M−1Ay − M−1Bu

)
.

(10.180)
The Lagrangian can be expressed using the Hamiltonian as:

Lh(y,u,p) =
∫ T
0

(
pT y′ + H(y,u,p)

)
dt +

β

2
‖y(T ) − y∗(T )‖2

M .

We now state the minimum principle of Pontryagin.

Theorem 10.95 (Pontryagin). Let y(.) ∈ IRn and u(.) ∈ IRm denote
the output variable and control functions which minimize Jh(., .) within Vy0 .
Then, y(.) and u(.), along with the Lagrange multiplier p(.) ∈ IRn will satisfy:{

y′ = −M−1Ay + M−1Bu with y(0) = y0

p′ = AT M−T p + M (y − y∗) with p(T ) = −β M (y(T ) − y∗(T ))

together with the minimization requirement:

H(y,u,p) ≤ H(y,v,p)

for any other path v(.) for the control.

Proof. We shall outline the proof heuristically, see [LU4]. Requiring the
Gateaux derivative of Lh(y,u,p) with respect to p(.) to be zero will yield
the constraints y′ = −M−1Ay + M−1Bu, since:

Lh(y,u,p + δp) − Lh(y,u,p) =
∫ T

0

δp(t)T
(
y′ + M−1Ay − M−1Bu

)
dt.

Next, given a control v(.) = u(.) + δu(.), let y(.) + δy(.) denotes the output
variable such that (y + δy,u + δu) ∈ Vy0 where δy(0) = 0. We decompose

δLh ≡ (Lh(y + δy,u + δu,p) − Lh(y,u,p)) = δL(1)
h + δL(2)

h

where each of the terms are defined as:{
δL(1)

h ≡ (Lh(y + δy,u + δu,p) − Lh(y,u + δu,p))

δL(2)
h ≡ (Lh(y,u + δu,p) − Lh(y,u,p)) .

Since (y + δy,u + δu) ∈ Vy0 and (y,u) ∈ Vy0 , the constraints are satisfied,
and it must hold that δLh = δJh = (Jh(y + δy,u + δu) − Jh(y,u)) ≥ 0.

To evaluate δL(1)
h and δL(2)

h , we shall employ the following alternative
expression for Lh(y,u,p) obtained using integration by parts:

Lh(y,u,p) =
(
p(T )T y(T ) − p(0)T y(0)

)
+

β

2
‖y(T ) − y∗(T )‖2

M

+
∫ T
0

(
−yT p′ + H(y,u,p)

)
dt.
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Employing this expression, we obtain:

δL(1)
h = δy(T )T (p(T ) + β M (y(T ) − y∗(T )))

+
∫ T
0

δyT (−p′ + Hy(y,u,p)) dt + O(‖δ‖2),

where O(‖δ‖2) = O(‖δy‖2 + ‖δy‖ ‖δu‖ + ‖δu‖2). Thus, if we require:

p′ = Hy(y,u + δu,p) and p(T ) = −β M (y(T ) − y∗(T ))

we obtain p′ = M(y − y∗) + AT M−T p and δL(1)
h = O(‖δ‖2). Evaluating

δL(2)
h employing the alternative expression for Lh(y,u,p) yields:

δL(2)
h =

∫ T
0

(H(y,u + δu,p) − H(y,u,p)) dt.

Since it must hold that δLh = δJh ≥ 0 for arbitrary δu, it must also hold that
H(y,u + δu,p) − H(y,u,p) ≥ 0. ��

Remark 10.96. The minimization requirement H(y,u,p) ≤ H(y,v,p) can
be reduced to Hu(y,u,p) = 0, since there are no inequality constraints:

Hu(y,u,p) = α Qu − BT M−1p = 0 =⇒ u =
1
α

Q−1BT M−1p.

Substituting u(t) = 1
α Q−1BT M−1p into the equations yields:

{
y′ = −M−1Ay +

1
α

M−1 B Q−1 BT M−1p with y(0) = y0

p′ = AT M−T p + M (y − y∗) with p(T ) = −β M (y(T ) − y∗(T ))
(10.181)

This system will have a Hamiltonian structure for the reduced Hamiltonian:

H(y,p) ≡ H(y,
1
α

Q−1BT M−1p,p)

=
1
2
‖y − y∗‖2

M − 1
2 α

pT M−T BQ−1BT M−1p + pT M−1Ay.

After elimination of u(t), the reduced system for y(t) and p(t) will be:{
y′ = −Hp(y,p) with y(0) = y0

p′ = Hy(y,p) with p′(T ) = −β M(y(T ) − y∗(T )).

The reduced Hamiltonian will be constant along the solution, since:

dH(y(t),p(t))
dt

= Hy(y,p) · y′ + Hp(y,p) · p′

= −Hy(y,p) · Hp(y,p) + Hp(y,p) · Hy(y,p) = 0.

Thus, H(y(t),p(t)) = H(y(0),p(0)) for ∀t.
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Riccati Method. The Hamiltonian system (10.181) for y(t) and p(t) does
not have a complete set of initial data. The requirement y(0) = y0 yields n
data constraints at time t = 0, while p(T ) = −β M (y(T ) − y∗(T )) yields
n constraints at time t = T . In principle, we may seek the unknown initial
data p(0) = p0 by applying a shooting method. This will require solving
system (10.181) with initial data y(0) = y0 and p(0) = p0 on the time interval
(0, T ) and seeking p0 such that p(T ) = −β M (y(T ) − y∗(T )). Unfortunately,
the shooting method can be unstable in our applications, due to positive and
negative eigenvalues of a large magnitude for the coefficient matrix of the
linear Hamiltonian system involving y(t) and p(t).

Instead, traditionally, the solution to system (10.181) is obtained when
y∗(.) = 0 by solving an associated matrix Riccati equation [LU4]. It seeks
an n × n matrix function W (t) so that the relation p(t) = W (t)y(t) holds.
Substituting this ansatz into the Hamiltonian system (10.181) yields:⎧⎨

⎩ y′ =
(
−M−1A +

1
α

M−1BQ−1BT M−1W

)
y

W ′ y + W y′ = M y + AT M−1Wy.

Multiplying the first row by −W (t) adding it to the second row yields:(
W ′ − WM−1A − AT M−1W +

1
α

WM−1BQ−1BT M−1W − M

)
y = 0.

Requiring the above equations to hold for arbitrary y(.) yields a first order
matrix differential equation for W (t). Imposing p(T ) = −β My(T ) yields
terminal conditions for W (T ). We obtain:{

W ′ =
(
WM−1A + AT M−1W

)
− 1

α

(
WM−1BQ−1BT M−1W

)
+ M

W (T ) = −β M
(10.182)

This first order differential equation for the n × n matrix W (t) on (0, T ) is
referred to as the Riccati equation. The Riccati differential equation for W (t)
has quadratic non-linearity, and can be solved numerically backwards in time
on (0, T ) using the terminal data W (T ) = −β M . Since W ′(t) and W (T )
are symmetric, matrix W (t) will also be symmetric. Furthermore, if β = 0,
matrix W (t) can also be shown to be positive semi-definite.

The solution W (t) to the Riccati equation can be computed and stored
offline. Given an observation y(t), the control u(t) = 1

αQ−1BT M−1Wy(t) can
be computed instantaneously, and thus, the Riccati based solution is useful
in real time applications. However, the cost of computing and storing the
n × n matrix function W (t) at each discrete time can be prohibitive when
n is large. In some applications, it may be sufficient to compute a stationary
solution W∗ of the Riccati equation using time marching. Using W∗ can reduce
computational costs.
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Dynamic Programming. Dynamic programming provides an alternative
approach for solving time dependent control problems [LU4]. Although the
methodology is prohibitively expensive in applications to the control of
parabolic equations, we shall outline it for its intrinsic interest.

The dynamic programming method determines the control u(.) based on
an optimal value function V (t,y) defined for 0 ≤ t ≤ T and y ∈ IRn. The
value function V (t,y) represents the minimum value of the functional Jh(., .)
when restricted to the time interval (t, T ) for sub-trajectories in Vy0 that pass
through y at time t. Given 0 ≤ t0 < T and w ∈ IRn, define V(t0,w) as:

V(t0,w) = { (y(.),u(.)) : y′(t) = f(y(t),u(t)), for t0 < t < T , y(t0) = w} ,

where f(y,u) = −M−1Ay + M−1B u. Define the restricted functional:

J(t0,T )(y,u) ≡
∫ T

t0

l(y(t),u(t)) dt +
β

2
‖y(T ) − y∗(T )‖2

M , (10.183)

where l(y,u) = 1
2‖y − y∗‖2

M + α
2 ‖u‖2

Q and J(t0,T )(y,u) is the contribution
to Jh(., .) along (t0, T ). The value function V (t0,w) is then defined as:

V (t0,w) ≡ inf
(ỹ,ũ)∈V(t0,w)

J(t0,T )(ỹ, ũ).

In the following, we shall heuristically derive a partial differential equation
for V (., .) employing the principle of optimality [LU4]. This principle says
that if t0 < t1 and (y(.),u(.)) optimizes J(t0,T )(., .) then its restriction to
(t1, T ) will optimize J(t1,T )(., .). As a result, the optimal value V (t0, ·) will
depend on the optimal value V (t1, ·), and the control u(·) can be determined
on (t0, t1) based on V (., .). To derive an equation for V (., .) let δt > 0 be an
infinitesimally small time step and let y(t0) = w with u(t0) = u0. Then, using
J(t0,T )(y,u) = l(w,u0) δt + J(t0+δt,T )(y,u) + O(δt2) yields:

V (t0,w) = lim
δt→0+

inf
u0

{l(w,u0) δt + V (t0 + δt,w + δt f(w,u0))} . (10.184)

We substitute the following first order Taylor series expansion for V (., .):

V (t0 + δt,w + δt f(w,u0)) = V (t0,w)) + δt Vt(t0,w)
+ V T

y (t0,w) δt f(w,u0) + O(δt2),

into (10.184). Since V (t0,w) does not depend on u0, canceling terms yields:

0 = lim
δt→0+

inf
u0

{
l(w,u0) δt + δt Vt(t0,w) + V T

y (t0,w) δt f(w,u0)
}

.

Replacing t0, w, u0 by t, y, u, respectively, and simplifying yields:

Vt(t,y) + inf
u

{
l(y,u) + V T

y (t,y) f(y,u)
}

= 0. (10.185)

This is referred to as the Hamilton-Jacobi-Bellman equation. By construction,
V (., .) will satisfy the terminal condition V (T ,y) = β

2 ‖y − y∗‖2
M at t = T .
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The Hamilton-Jacobi-Bellman equation is hyperbolic in nature. It will be
non-linear when infu

{
l(y,u) + V T

y (t,y) f(y,u)
}

is non-linear. Indeed, for
l(y,u) = 1

2

(
(y − y∗)T M(y − y∗) + αuT Qu

)
and f(y,u)=M−1(−Ay + Bu),

the first derivative test yields:

α Qu + BT M−1Vy = 0 =⇒ u = − 1
α

Q−1BT M−1Vy.

Substituting for u in the Hamilton-Jacobi-Bellman equation yields:⎧⎪⎨
⎪⎩

Vt +
1
2

(
yT My − 1

α
V T
y M−1BQ−1BT M−1Vy

)
− yT AT M−1Vy = 0

V (T ,y) =
β

2
‖y − y∗‖2

M ,

when y∗ = 0. If we formally seek a solution using the ansatz:

V (t,y) ≡ −1
2

yT W (t)y,

where W (t) is an n × n symmetric matrix function. Substituting this ansatz
into the Hamilton-Jacobi-Bellman yields the following equations:⎧⎨
⎩yT

(
−1

2
W ′ +

1
2

M − 1
2 α

WT M−1BQ−1BT M−1W + AT M−1W

)
y = 0

W (T ) = −β M.

Eliminating y yields the following matrix Riccati equations for W (.):{
W ′ = M − 1

α
WT M−1BQ−1BT M−1W + (AT M−1W + WT M−1A)

W (T ) = −β M.

This is identical to the Ricatti equation (10.182) described earlier for the
reduced Hamiltonian system. The solution W (t) can be determined by time
marching. However, as mentioned before, since y ∈ IRn and n is large in
our applications, the computation and storage of W (.) can be prohibitively
expensive. Once V (., .) has been determined, the control u(.) will satisfy:

u(t) = − 1
α

Q−1BT M−1Vy(t,y(t)) =
1
α

Q−1BT M−1W (t)y(t),

by local optimization of (10.185).

Hessian System. Since the dynamic programming and Riccati equation
based solution of control problem (10.177) are prohibitively expensive for
large n (as it requires computing a matrix W (t) of size n for 0 < t < T ),
we outline an alternative iterative approach for determining the optimal con-
trol u(.), based on the solution of a reduced Hessian system. This iterative
approach will not yield a feedback solution, as in the Riccati method. However,
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we shall outline heuristic modifications of this iterative approach, which will
yield approximations of the optimal control u(.) in real time applications.

Our discussion will consider a full discretization of the parabolic optimal
control problem with time step τ = (T /l) and spatial mesh size h. We denote
the discrete times as ti = i τ for 1 ≤ i ≤ l. For simplicity, we shall assume
that the discrete control u(t) corresponding to the finite element function
uh(t, x) is constant on each time interval (ti, ti+1). The discrete output variable
y(t) corresponding to the finite element function yh(t, x) will be assumed to
continuous and piecewise linear, i.e., y(t) will be linear on each (ti, ti+1). We
shall let yi = y(ti) ∈ IRn denote the nodal vector solution at time ti. Similarly,
ui ∈ IRm will denote the discrete control for t ∈ [ti−1, ti) for 1 ≤ i �= l. Denote
the nodal vectors associated with y(.), p(.) and u(.) at the discrete times as:

Y =

⎡
⎢⎢⎣

y1

...
yl

⎤
⎥⎥⎦ ∈ IRn l, P =

⎡
⎢⎢⎣

p1

...
pl

⎤
⎥⎥⎦ ∈ IRn l, and U =

⎡
⎢⎢⎣

y1

...
ul

⎤
⎥⎥⎦ ∈ IRm l.

For simplicity, we shall assume that y∗(0, ·) = y0(·), so that y(0) = y∗(0). We
define a block matrix G of size ml and K of size n l as:

G = α τ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q 0
. . .

. . .

. . .

0 Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and K =
τ

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4M M 0
M 4M M

. . . . . . . . .

M 4M M

0 M γM

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where γ = 2 + (6β/τ). Then, the discretized functional Jh(., .) will satisfy:

Jh,τ (y,u) =
1
2

(Y − Y∗)T K(Y − Y∗) +
1
2

UGU,

where Y∗ =
(
y∗(t1)T , . . . ,y∗(tl)T

)T ∈ IRn l denotes a discretization of the
target output. To obtain a spatio-temporal discretization of the constraint set
Vy0 , we apply a θ-scheme to discretize M y′(t)+Ay(t) = B u(t) in time. This
will yield a large system of linear equations for the evolution problem:

Vh,τ = {(Y,U) : E Y + N U = F}

where matrices E and N will be described later for the backward Euler scheme.
The initial data y(0) = y0 is included in F.
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For the backward Euler scheme, E ∈ IRnl×nl and N ∈ IRnl×ml satisfy:

E =

⎡
⎢⎢⎢⎢⎢⎣

(M + τA)

−M
. . .

. . . . . .

−M (M + τA)

⎤
⎥⎥⎥⎥⎥⎦ and N = −τ

⎡
⎢⎢⎢⎢⎢⎣

B 0
. . .

. . .

0 B

⎤
⎥⎥⎥⎥⎥⎦ ,

while the forcing term F ∈ IRn l is defined as F =
[
My0 0 · · · 0

]T
. The

following discrete Lagrangian functional Lh,τ (Y,U,P) will be associated with
the minimization of Jh,τ (Y,U) within the constraint set Vh,τ :

Lh,τ (Y,U,P) = Jh,τ (Y,U) + PT (E Y + N U − F) .

The system for determining the saddle point (Y,U,P) of Lh,τ (., ., .) is:⎡
⎢⎣

K 0 ET

0 G NT

E N 0

⎤
⎥⎦
⎡
⎢⎣

Y
U
P

⎤
⎥⎦ =

⎡
⎢⎣

KY∗
0
F

⎤
⎥⎦ . (10.186)

The properties of matrices K, G, E and N are as follows. Matrix K = KT > 0
is spectrally equivalent to τ hd I of size nl. Matrix G = GT > 0 will be
spectrally equivalent to α τ hd I of size ml, provided Q is well conditioned.
Matrix E is block lower bi-diagonal, and its diagonal blocks are ill-conditioned.
The properties of the rectangular matrix N of size nl × ml, depend on the
choice of the control basis. In the special case that m = n and B = M , matrix
N will be spectrally equivalent to hdI.

The Hessian system for U can be obtained by eliminating Y = E−1

(F − Nu) using the third block row and eliminating P = E−T K(Y∗ − Y)
using the first block row, and substituting these into the second block row,
yielding: ⎧⎪⎨

⎪⎩
C U = g where

C ≡ (G + NT E−T KE−1N)
g ≡ (NT E−T KE−1F − NT E−T KY∗).

(10.187)

The Hessian matrix C is symmetric positive definite, and system (10.187) can
be solved by a PCG algorithm. Matrix NT E−T KE−1N is ill-conditioned, and
corresponds to the discretization of a compact operator whose eigenvalues are
bounded and cluster around zero. Thus, the addition of the α dependent
regularization term G to NT E−T KE−1N shifts the eigenvalues of C away
from zero. If α = O(1), matrix C will be well conditioned, while if α → 0+,
matrix C will be ill-conditioned, and require a preconditioner C0.



10.8 Applications to Optimal Control Problems 511

Solving the Hessian System. Our discussion will be restricted to a few
special cases. The first case arises when α = O(1). In this case, the Hessian
C will be well conditioned, and system (10.187) can be solved using a PCG
algorithm with preconditioner I, see [SC2]. The second case arises when the
number m of control basis and the number l of time steps are both “small”
with ml  n. In this case, the dense matrix NT E−T KE−1N of size ml can
be assembled and stored and a direct solver can be used to solve (10.187).

The third case arises when m = n and matrices B = M = Q. In this case
G = α N and a preconditioner C0 can be formulated based on the identity:{

C = α N + NT E−T KE−1N

= NT E−T
(
α ET N−1E + K

)
E−1N.

(10.188)

To obtain a preconditioner C0, we shall formally replace each block submatrix
M , A and (M + τ A) in the matrices N , K and E by spectrally equivalent
approximations M0 � M , A0 � A and (M0 + τA0) � (M + τ A), where we
require that M0 = MT

0 and A0 = AT
0 are simultaneously diagonalizable. One

such choice is M0 = hdI, A0 = A and (M0 + τA0) = (hdI + τA), however,
in applications we shall choose M0 � M and A0 � A that are simultaneously
diagonalized by the fast sine transform (FST) or hierarchical projections.

Let N0, K0 and E0 denote the matrices obtained when we replace the block
submatrices M , A and (M + τA) of N , K and E by M0, A0 and (M0 + τA0).
We formally define the preconditioner C0 as:{

C0 ≡ NT
0 E−T

0

(
α ET

0 N−1
0 E0 + K0

)
E−1

0 N0

C−1
0 = N−1

0 E0

(
α ET

0 N−1
0 E0 + K0

)−1
ET

0 N−T
0 .

(10.189)

Let V0 denote the unitary matrix which diagonalizes M0 = V T
0 ΛM0V0 and

A0 = V T
0 ΛA0V0, simultaneously. Then, the block submatrices in N0, E0 and

K0, and hence in C0 and C−1
0 , will also be diagonalized by V0. This property

will yield a fast and efficient algorithm for computing the action of C−1
0 .

Let V ≡ blockdiag(V0, . . . , V0) denote the block diagonal matrix of size
n l × n l whose diagonal blocks are V0. Then V C−1

0 V T will have the form:

V C−1
0 V T = Ñ−1

0 Ẽ0

(
α ẼT

0 Ñ−1
0 Ẽ0 + K̃0

)−1

ẼT
0 Ñ−T

0 . (10.190)

where K̃0, Ẽ0 and Ñ0 are obtained by replacing M0, A0 and (M0 + τA0) by
the diagonal matrices ΛM0 , ΛA0 and (ΛM0 + τΛA0), respectively:

K̃0 =
τ

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4ΛM0 ΛM0 0

ΛM0 4ΛM0 ΛM0

. . .
. . .

. . .

ΛM0 4ΛM0 ΛM0

0 ΛM0 γΛM0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Ñ0 = −τ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΛM0 0

. . .

. . .

. . .

0 ΛM0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and:

Ẽ0 =

⎡
⎢⎢⎢⎢⎢⎣

(ΛM0 + τΛA0)

−ΛM0

. . .

. . . . . .

−ΛM0 (ΛM0 + τΛA0)

⎤
⎥⎥⎥⎥⎥⎦ .

Importantly, matrix
(
α ẼT

0 Ñ−1
0 Ẽ0 + K̃0

)
will be block tridiagonal:

(α ẼT
0 Ñ−1

0 Ẽ0 + K̃0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z1 Z3

Z3 Z1 Z3

. . . . . . . . .

Z3 Z1 Z3

Z3 Z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where Z1, Z2 and Z3 are the following diagonal matrices:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z1 =
4 τ

6
ΛM0 +

α

τ
(ΛM0 + τ ΛA0)

2Λ−1
M0

+
α

τ
ΛM0

Z2 =
γ τ

6
ΛM0 +

α

τ
(ΛM0 + τ ΛA0)

2Λ−1
M0

Z3 =
τ

6
ΛM0 −

α

τ
(ΛM0 + τ ΛA0).

(10.191)

The action of C−1
0 can now be computed using the expression:

C−1
0 = V T Ñ−1

0 Ẽ0

(
α ẼT

0 Ñ−1
0 Ẽ0 + K̃0

)−1

ẼT
0 Ñ−T

0 V. (10.192)

As C−1
0 is a product of several matrices, this involves consecutive products

with V , Ñ−T
0 , ẼT

0 ,
(
α ẼT

0 Ñ−1
0 Ẽ0 + K̃0

)−1

, Ẽ0, Ñ−1
0 and V T . Computing the

action of
(
α ẼT

0 Ñ−1
0 Ẽ0 + K̃0

)−1

corresponds to solving a block tridiagonal

linear system with the coefficient matrix
(
α ẼT

0 Ñ−1
0 Ẽ0 + K̃0

)
in (10.191).

However, since Z1, Z2 and Z3 are diagonal matrices, permuting the rows
and columns of (10.191) so that indices modulo n belong to the same block
will yield a block diagonal matrix whose diagonal blocks are tridiagonal. The
permuted system can be solved using a direct solver at a cost of O(n l) and
the total computational cost will be proportional to 2 l applications of V0, and
solving l tridiagonal linear systems system of size n. We omit the details.

Remark 10.97. If M and A are diagonalized by the FST, then we can choose
M0 = M and A0 = A, yielding C0 = C. In this case, the preceding method
will yield a fast direct solver, with multiplication by V costing O(l n log(n)).
Generally, however, C0 will be a formal preconditioner for C.
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Remarks on Real Time Applications. In real time applications, at each
time ti, the control ui+1 for t ∈ (ti, ti+1) must be computed in real time. If
the output state y(.) is observed at each time ti, this will provide additional
information for determining the control. One of the advantages of the Riccati
approach is that once matrix W (.) has been computed and stored, the control
ui+1 can be expressed as an instantaneous “feedback” function of the observed
output state yi. However, when n is large, storage and multiplication with
matrix W (.) can be prohibitively expensive. The alternative approach based
on the solution of the reduced Hessian (10.187) may also not be viable in real
time applications, without additional modifications.

To reduce the computational costs in real time applications, the optimal
control problem on [0, T ] may be replaced by a local optimal control problem
on a smaller time interval, yielding an approximate solution. For instance,
if the output state y(ti) is observed at time ti, we may seek an approximate
control ûi+1 on (ti, ti+1) by solving an optimal control problem on [ti, ti + l0 τ ]
choosing 1 ≤ l0  l. To obtain a local tracking function, the global tracking
function y∗(t) on [0, T ] can be restricted to (ti, ti + l0τ), or the current state
y(ti) and the terminal target y∗(T ) may be interpolated. Then, the Hessian
system (10.187) can be replaced by the following smaller local Hessian system,
resulting from the control problem on (ti, ti + l0τ):⎧⎪⎪⎨

⎪⎪⎩
Ĉ Ûi = ĝi, where

Ĉ = (Ĝ + N̂T Ê−T K̂Ê−1N̂) and

Ûi =
(
ûT

i+1, . . . , û
T
i+l0

)T

,

(10.193)

where g̃i is computed based on y(ti) and the local tracking function (omitting
the y∗(T ) term). Here, Ĝ, N̂ , Ê and K̂ have the same block structure as G,
N , E and K, respectively, with l0 blocks, instead of l blocks. The local Hessian
Ĉ will be of size ml0, and if m  n and l0  l, a direct solver can be used.

In the limiting case l0 = 1, we obtain Ĝ = α τQ, N̂ = −τ B, Ê = (M+τA),
K̂ = τ M and F = Myi and K Y∗ = τ M y∗(ti+1). This will yield:⎧⎪⎨

⎪⎩
Ĉ ûi = ĝi, where

Ĉ =
(
α τQ + θi τ2 BT (M + τA)−1M(M + τA)−1B

)
ĝi = θi τ2 BT (M + τA)−1M

(
(M + τA)−1Myi − y∗(ti+1)

)
,

where θi = 2τ
6 for i < l and θi = γτ

6 for i = l. This linear system will be of size
m, and may be solved using a direct solver. Other heuristic choices of K Y∗
and ĝi may also be used.

Remark 10.98. Alternative approximate control problems may be obtained.
For instance, instead of the local Hessian system, we may solve the global
Hessian system with a larger time step τ = (T /l0) for small l0. This will yield

an approximate control Û =
(
ûT

1 , . . . , ûT
l0

)T

to accuracy O(T /l0).
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Non-Matching Grid Discretizations

A non-matching grid is a collection of overlapping or non-overlapping grids,
with associated subdomains that cover a domain, where the grids are obtained
by the independent triangulation of the subdomains, without requirement to
match with the grids adjacent to it, see Fig. 11.1. In this chapter, we describe
several methods for the global discretization of a self adjoint and coercive
elliptic equation on a non-matching grid:

• Mortar element discretization of an elliptic equation.
• Chimera (composite grid or Schwarz) discretization of an elliptic equation.
• Alternative non-matching grid discretizations of an elliptic equation.

Each non-matching grid discretization is based on a hybrid formulation of the
underlying elliptic equation on its associated subdomain decomposition. The
mortar element method, for instance, is formulated for a non-overlapping non-
matching grid, and employs a Lagrange multiplier hybrid formulation of the
elliptic equation, which enforces weak matching of the solution across adjacent
subdomains [MA4, BE18, BE23, BE6, BE4, WO, WO4, WO5, KI], while the
Chimera discretization is a finite difference discretization on an overlapping
grid that enforces strong matching of the solution across adjacent grids, using
a Schwarz formulation [ST, ST6, GR16, HE9, HE10, GO7, CA17].

Chap. 11.1 describes the hybrid formulations used in the mortar and
Chimera discretizations of an elliptic equation. Chap. 11.2 and Chap. 11.3
describe the saddle point and the non-conforming versions of the mortar
element discretization. The former yields a saddle point system, while the
latter yields a positive definite system. Chap. 11.4 describes the Chimera
discretization of an elliptic equation. It yields a non-symmetric linear system.
Chap. 11.5 heuristically outlines the Steklov-Poincare, least squares-control
and partition of unity discretizations. Chap. 11.6 outlines heuristic discretiza-
tions of a parabolic equation on a non-matching space-time grid. Alternative
approaches are described in [DO4, PH, TH, KU7, CA7, AC5, HU3].
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Fig. 11.1. Two subdomain non-matching grids

11.1 Multi-Subdomain Hybrid Formulations

In this section, we describe the multi-subdomain hybrid formulations used to
construct the mortar element and Chimera discretizations of a self adjoint
and coercive elliptic equation. The mortar element discretization employs the
Lagrange multiplier formulation which enforces weak continuity of the local
solutions across non-overlapping subdomains, while the Chimera discretiza-
tion employs the Schwarz hybrid formulation which enforces strong continuity
of the solution across overlapping subdomains.

We consider the following self adjoint and coercive elliptic equation:{
L u ≡ −∇ · (a(x)∇u) + c(x)u = f(x), in Ω

u = 0, on ∂Ω
(11.1)

where f(x) ∈ L2(Ω) and a(x) = a(x)T > 0 is a matrix function satisfying
λmin (a(x)) ≥ a0 > 0 and the scalar function c(x) satisfies c(x) ≥ 0. A weak
formulation of elliptic equation (11.1) will seek u ∈ H1

0 (Ω) satisfying:⎧⎪⎨
⎪⎩

A(u, v) = (f, v) , ∀v ∈ H1
0 (Ω), where

A(u, v) =
∫

Ω
(a(x)∇u · ∇v + c(x)u v) dx

(f, v) =
∫

Ω
f(x) v(x) dx.

(11.2)

An equivalent minimization formulation of (11.1) will seek u ∈ H1
0 (Ω):

J(u) = min
v ∈H1

0 (Ω)
J(v), (11.3)

where J(v) ≡ 1
2A(v, v) − (f, v). The Lagrange multiplier formulation will be

derived using (11.3), and the Schwarz formulation using (11.1).
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11.1.1 Lagrange Multiplier Hybrid Formulation

The multi-subdomain Lagrange multiplier hybrid formulation provides the
framework for constructing the mortar element discretization of (11.1). This
hybrid formulation employs a non-overlapping decomposition Ω1, . . . , Ωp of
Ω, and seeks the minimum to (11.3) by solving an equivalent constrained
minimization problem, which replaces v by (v1, . . . , vp), where vl is defined on
Ωl. Given vl on Ωl, we let Jl(vl) ≡ 1

2AΩl
(vl, vl) − (f, vl)Ωl

denote the local
energy, see (11.12), and the total energy as J∗(v1, . . . , vp) ≡

∑p
l=1 Jl(vl).

This will be defined even if vl does not match vj on ∂Ωl ∩ ∂Ωj . However, by
construction, if vl = v on each subdomain Ωl, then J∗(v1, . . . , vp) = J(v).

The minimum of (11.3) may now be sought by minimizing J∗(v1, . . . , vp)
subject to the constraint that vl weakly matches vj for all ∂Ωl ∩ ∂Ωj �= ∅.
Weak matching between vl and vj requires

∫
∂Ωl∩∂Ωj

(vl − vj)µlj dsx = 0 for

µlj ∈ Ylj where Ylj is an appropriately chosen multiplier space. When Ω ⊂ IRd,
weak matching is applied only for ∂Ωl ∩ ∂Ωj of dimension (d− 1). Finite ele-
ment approximation of this hybrid formulation will yield the mortar element
discretization, where finite element spaces must be chosen for approximating
each vl, and discrete multiplier spaces for approximating the spaces Ylj on
each (d − 1) dimensional interface ∂Ωl ∩ ∂Ωl. Discrete multiplier spaces are
constructed using finite element basis functions defined on the triangulation
of ∂Ωl ∩ ∂Ωj obtained by restricting the triangulation from either Ωl or Ωj

(the side chosen is called the non-mortar side). In this section, we describe the
hybrid formulation. Multiplier spaces are described in Chaps. 11.2 and 11.3.

We elaborate the details. Let Ω1, . . . , Ωp be non-overlapping subdomains:

Ω = Ω1 ∪ · · · ∪ Ωp with Ωi ∩ Ωj = ∅, for i �= j.

Define B(l) = (∂Ωl\∂Ω) and B[l] = (∂Ωl ∩ ∂Ω) as the interior and exterior
boundary segments of Ωl. Let O(l) denote the subdomains adjacent to Ωl:

O(l) ≡ {j : ∂Ωl ∩ ∂Ωj �= ∅} . (11.4)

By construction j ∈ O(l) ⇔ l ∈ O(j). We let Blj = ∂Ωl ∩ ∂Ωj denote the
common interface between Ωl and Ωj . Using this notation, we can express:

B(l) = ∪{ j∈O(l)}Blj . (11.5)

For each subdomain Ωl and for each of its boundary segments Blj , the user
must assign a “side” j ∈ I(l) as the “non-mortar” side of Blj . We require:

I(l) ⊂ O(l), (11.6)

such that if Blj �= ∅ then either j ∈ I(l) or l ∈ I(j), but not both. When
Ω ⊂ IRd, we define I∗(l) ⊂ I(l) as the indices of segments Blj of dimension
(d − 1). Only interfaces Blj of dimension (d − 1) will be used for matching.
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When Blj �= ∅, the “side” of Blj approached from Ωj shall be referred to
as the nonmortar side if j ∈ I∗(l), while the “side” of Blj approached from
Ωl shall be referred to as the mortar side. Using the index set I(l) or I∗(l),
we may decompose the interface B = ∪p

l=1B
(l) as follows:

B = ∪p
l=1

(
∪{j∈I(l)}Blj

)
= ∪p

l=1

(
∪{j∈I∗(l)} Blj

)
. (11.7)

To derive a multi-subdomain Lagrange multiplier hybrid formulation of (11.3),
let u ∈ H1

0 (Ω) denote the desired solution. On each subdomain, let ul denote
the restriction of u to Ωl:

ul ≡
(
u|Ωl

)
for 1 ≤ l ≤ p.

By construction, it will hold that ul ∈ H1
0,B[l]

(Ωl), where:

H1
0,B[l]

(Ωl) =
{
vl ∈ H1(Ωl) : vl = 0 on B[l]

}
, (11.8)

with the boundary data of uj having the following regularity [GR8]:(
ul|Blj

)
∈ H1/2(Blj), ∀j ∈ O(l).

Since u ∈ H1(Ω), the following strong matching conditions will hold between
ul and uj on each intersubdomain interface Blj :

[u]lj = 0 on Blj , ∀j ∈ I∗(l), ∀l, (11.9)

where [u]lj ≡ ul−uj on Blj . Such strong matching conditions can be replaced
by equivalent weak matching conditions as follows:∫

Blj

[u]lj ψlj(x) dsx = 0, ∀ψlj(x) ∈ H−1/2(Blj), ∀j ∈ I∗(l), ∀l, (11.10)

where H−1/2(Blj) denotes the dual space of H
1/2
00 (Blj).

The hybrid formulation of (11.3) based on Ω1, . . . , Ωp will minimize an
extended energy functional J∗(·) subject to constraints. Given wl ∈ H1

0,B[l]
(Ωl)

for 1 ≤ l ≤ p where each wl may not match across subdomains, define:

J∗(w) =
1
2
A∗(w, w) − (f, w)∗ for w = (w1, . . . , wp) (11.11)

where A∗(w, w) =
∑p

l=1 AΩl
(wl, wl) and (f, w)∗ =

∑p
l=1 (f, wl)Ωl

with:

{
AΩl

(vl, wl) =
∫

Ωl
(a(x)∇vl · ∇wl + c(x) vl wl) dx

(f, wl)Ωl
=
∫

Ωl
f(x) wl dx.

(11.12)
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By construction, if wl(x) = v(x) on each Ωl for some v ∈ H1(Ω), then:

J(v) = J∗(w) for w = (w1, . . . , wp). (11.13)

Define X = πp
l=1

(
H1

0,B[l]
(Ωl)

)
with norm ‖w‖X =

(∑p
l=1 ‖wl‖2

1,Ωl

)1/2 as
the function space for J∗(w). Then, if w ∈ X and constraint (11.9) or (11.10)
holds, there will exist v ∈ H1(Ω) such that wl = v on each Ωl, yielding (11.13).
Motivated by this, we define a constraint set K0:

K0 ≡
{

w ∈ X :
∫

Blj

[w]lj ψlj dsx = 0,∀ψlj ∈ H−1/2(Blj),∀j ∈ I∗(l),∀ l

}
,

(11.14)
where w = (w1, . . . , wp) and [w]lj = wl − wj on each Blj . The preceding
observations suggest that when u is the solution to (11.3) and ul = u on each
Ωl, then (u1, . . . , up) will satisfy:

J∗(u1, . . . , up) = min
(w1,...,wp)∈K0

J∗(w1, . . . , wp), (11.15)

yielding a constrained minimization problem equivalent to (11.3).
As in Chap. 10, problem (11.15) can be reformulated as a saddle point

problem by introducing Lagrange multipliers to enforce the constraints. We
define a Lagrange multiplier space Y and its associated norm as follows:

Y ≡ Πp
l=1

(
Πj∈I∗(l)H

−1/2(Blj)
)
, ‖ψ‖Y = (

p∑
l=1

∑
j∈I∗(l)

‖ψlj‖2
−1/2,Blj

)1/2,

(11.16)
for ψ =

(
(ψlj)j∈I∗(l)

)p
l=1

∈ Y . Define a bilinear form M∗(., .) : X × Y → IR:

M∗(w, ψ) =
p∑

l=1

∑
j∈I∗(l)

∫
Blj

[w]lj ψlj dsx, (11.17)

for w = (w1, . . . , wp) ∈ X and [w]lj = wl − wj . Then K0 can be expressed:

K0 = {v ∈ X : M∗(v, ψ) = 0, ∀ψ ∈ Y } . (11.18)

Let L(w, φ) = ( 1
2A∗(w, w) − (f, w)∗) + M∗(w, φ) denote a Lagrangian

functional associated with (11.15), with Lagrange multiplier φ ∈ Y , where
A∗(., .) : X × X → IR and (f, ·)∗ : X → IR are as defined in (11.12). Then,
the saddle point (u, ψ) ∈ X × Y of L(·, ·) will satisfy:{

A∗(u, v) + M∗(v, ψ) = (f, v)∗, ∀v ∈ X

M∗(u, φ) = 0, ∀φ ∈ Y,
(11.19)

where u ∈ X denotes the solution of (11.15). It is shown in (11.21) that each
component ψlj(·) on Blj of ψ ∈ Y corresponds to Neumann flux data of u(·)
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on Blj for j ∈ I∗(l). The Lagrange multiplier ψ can be eliminated from (11.19)
as indicated in the following. The second row of (11.19) shows that u ∈ K0.
Substituting v(·) ∈ K0 ⊂ X into the first row of (11.19) yields:

A∗(u, v) = (f, v)∗ , ∀v ∈ K0, (11.20)

since M∗(v, φ) = 0 for v ∈ K0. Thus, we may seek u ∈ K0 by solving (11.20),
which will be a coercive problem, provided A∗(., .) is coercive in K0.

Lemma 11.1. Let K0 be as in (11.18).

1. Equip the space X with the following norm:

‖w‖2
X =

p∑
l=1

‖wl‖2
1,Ωl

.

2. Equip the space Y with the following norm:

‖ψ‖2
Y =

p∑
l=1

∑
j∈I∗(l)

‖ψlj‖2
−1/2,Blj

.

Then, the following will hold for some c > 0 and β > 0.

1. The bilinear form A∗(., .) will be X-coercive within the subspace K0:

A∗(w, w) ≥ c ‖w‖2
X , ∀w ∈ K0.

2. The following inf-sup condition will hold:

sup
v∈X\{0}

M∗(v, ψ)
‖v‖X

≥ β ‖ψ‖Y , ∀ψ ∈ Y.

3. Saddle point problem (11.19) will be uniquely solvable and u will solve
(11.20).

Proof. See [BE18, BE4, WO5]. ��

Remark 11.2. Given ψ ∈ Y , let u = (u1, . . . , up) ∈ X solve the first
row A∗(u, v) = (f, v)∗ − M∗(v, ψ) of (11.19). Then ul solves the Neumann
problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−∇ · (a(x)∇ul) + c(x)ul = f(x), in Ωl

n · (a∇ul) = −ψlj(x), on Blj , ∀j ∈ I∗(l)
n · (a∇ul) = ψjl(x), on Blj , ∀l ∈ I∗(j)

ul = 0, on B[l],

(11.21)

with ±ψlj corresponding to the Neumann flux data of ul on Blj .
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The mortar element method discretizes (11.1) on a nonmatching grid by
Galerkin approximation of saddle point formulation (11.19), or nonconforming
approximation of (11.20). In the saddle point approach, spaces X and Y are
replaced by finite element or spectral subspaces Xh ⊂ X and Yh ⊂ Y , where
subspace Yh is referred to as the multiplier space. The discretization seeks an
approximation (uh, ψh) of (u, ψ) whose associated linear system is a saddle
point system. If an approximation ψh of the subdomain fluxes ψ is not desired,
then the approximation uh of u can be sought directly by discretizing (11.20)
using a nonconforming approximation Kh

0 of K0. This will yield a symmetric
positive definite linear system, as described in Chap. 11.3.

11.1.2 Schwarz Hybrid Formulation

The Schwarz hybrid formulation of (11.1) is constructed on a non-overlapping
subdomain decomposition of Ω. It replaces (11.1) by a coupled system of
partial differential equations for the restrictions of u to the subdomains. Let
Ω∗

1 , . . . , Ω∗
p form an overlapping decomposition of Ω with boundary segments:

B(l) = (∂Ω∗
l \∂Ω) and B[l] = (∂Ω∗

l ∩ ∂Ω).

Ideally, if {Ωl}p
l=1 is a non-overlapping decomposition of Ω, with subdomains

of size h0, define Ωβh0
l = {x ∈ Ω : dist(x,Ωl) ≤ β h0} and choose Ω∗

l = Ωβ h0
l

for some 0 < β < 1. Let χ1(x), . . . , χp(x) denote a smooth partition of unity
subordinate to Ωεh0

1 , . . . , Ωε h0
p for some 0 < ε  β (so that Ωεh0

l ⊂ Ω∗
l ):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χl(x) ≥ 0, in Ω, for 1 ≤ l ≤ p

χl(x) ≤ 1, in Ω, for 1 ≤ l ≤ p

χl(x) = 0, in Ω\Ωε h0
l , for 1 ≤ l ≤ p

χ1(x) + · · · + χp(x) = 1, in Ω.

Then, since χl(x) = 0 on B(l), it will hold that
∑

j �=l χj(x) = 1 on each B(l).
If we define ul ≡ u on Ω∗

l as the restriction of the solution u of (11.1) to Ω∗
l ,

then by construction the following equations will be satisfied by ul(·):⎧⎪⎨
⎪⎩

Lul = f(x), in Ω∗
l

ul =
∑

j �=l χj uj , on B(l)

ul = 0, on B[l]

for 1 ≤ l ≤ p. (11.22)

The above corresponds to a coupled system of partial differential equations
for the unknowns (u1(x), . . . , up(x)). If c(x) ≥ c0 > 0 and suitable regular-
ity conditions hold for f(x) and the subdomains, and the overlap is suffi-
ciently large, this coupled system is heuristically expected to be well posed
in the maximum norm, and to satisfy a contraction property, see Chap. 15.2
and [ST, CA17]. Given non-matching overset grids on the overlapping sub-
domains, a discretization of (11.1) can be obtained by discretizing each local
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equation in (11.22) using a finite difference scheme, and discretizing the in-
terface matching conditions on each B(l), using weighted interpolation. This
is described in Chap. 11.4, and yields a non-symmetric linear system, even
though (11.1) is self adjoint. Although the discretization is simple to formu-
late, its stability and accuracy is sensitive to the amount of overlap between
the subdomains.

Remark 11.3. An alternative overlapping subdomains based hybrid formula-
tion was introduced in [CA7] for two subdomains, using a partition of unity,
and extended to the multi-subdomain case in [AC5]. These hybrid formula-
tions enable the construction of alternative non-matching grid discretizations.

Remark 11.4. Given the overlapping subdomains Ω∗
1 , . . . , Ω∗

p , the Lagrange
multiplier formulation (11.19) can be extended to the case of overlapping
subdomains to yield an alternative hybrid formulation of (11.1). However,
the stability of the resulting formulation may again depend on the amount
of overlap between the subdomains. To derive such a hybrid formulation, let
ul = u on Ω∗

l denote the restriction of the solution u of (11.1) to Ω∗
l . Then,

ul will solve a Neumann problem on Ω∗
l for unknown data −ψl on B(l):⎧⎪⎨

⎪⎩
−∇ · (a(x)∇ul) + c(x)ul = f(x), in Ω∗

l

nl · (a∇ul) = −ψl(x), on B(l)

ul = 0, on B[l].

(11.23)

Here nl(x) denotes the exterior unit normal on B(l). These local fluxes
(ψ1, . . . , ψp) must be chosen so that ul =

∑
j �=l χj uj on B(l), given a partition

of unity χ1(x), . . . , χp(x). To obtain a saddle point problem for determining
(u1, . . . , up) and (ψ1, . . . , ψp), we define X and a multiplier space Y as:

X = Πp
l=1

(
H1

0,B[l]
(Ω∗

l )
)

and Y = Πp
l=1

(
H1/2(B(l))

)′
.

Define A∗(., .) : X × X → IR and linear functional (f, ·)∗ : X → IR as:{
A∗(v, w) =

∑p
l=1

∫
Ω∗

l
(a(x)∇vl · ∇wl + c(x) vl wl) dx

(f, w)∗ =
∑p

l=1

∫
Ω∗

l
(f(x) wl) dx.

(11.24)

Let M∗(., .) : X × Y → IR denote the following bilinear form:

M∗(w,ψ) =
p∑

l=1

∫
B(l)

⎛
⎝wl(x) −

∑
j �=l

χj(x)wj(x)

⎞
⎠ ψl(x) dsx. (11.25)

Then, solve the saddle point problem which seeks (u, ψ) ∈ X × Y such that:{
A∗(u, v) + M∗(v, ψ) = (f, v)∗, ∀v ∈ X

M∗(u, φ) = 0, ∀φ ∈ Y.
(11.26)
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By construction, the constraints ul =
∑

j �=l χjuj will hold on each B(l) for
u = (u1, . . . , up). We leave it to the reader to verify the stability and well
posedness of Lagrange multiplier formulation (11.26). An overset grid dis-
cretization of (11.1) can be obtained by Galerkin approximation of (11.26),
based on subspaces Xh ⊂ X or Yh ⊂ Y , yielding a saddle point system. A
space Πp

l=1Yh(B(l)) of multipliers may be chosen, with Yh(B(l)) based on the
triangulation of Ω∗

l , as in mortar element discretizations.

Remark 11.5. The local solutions in a non-matching grid discretization may
be mildly discontinuous across the subdomains. To obtain a continuous global
solution, a conforming finite element solution can be constructed by modifying
the non-matching grid [KU7], or a partition of unity method can be employed
as in [HU3, BA6, BA7], or the solutions combined using a partition of unity.

11.2 Mortar Element Discretization:
Saddle Point Approach

In this section, we describe the saddle point version of a mortar element
discretization of Dirichlet problem (11.1). Such a discretization is obtained by
Galerkin approximation of (11.19) using finite element spaces Xh ⊂ X and
Yh ⊂ Y . To obtain stable and accurate schemes, care must be exercised in the
selection of these subspaces. The choice of Xh will be standard, however, the
choice of the discrete multiplier space Yh will be novel. Our discussion will first
focus on two subdomain mortar discretizations before considering extensions
to many subdomains. Two alternative choices of discrete multiplier spaces Yh

will be described, a continuous multiplier space and a discontinuous multiplier
space, the latter equipped with an easily computed biorthogonal basis (dual
basis). Iterative algorithms for solving the resulting systems will be outlined.

11.2.1 Notation

Let Ω1, . . . , Ωp be a nonoverlapping decomposition of Ω, with B(l) = ∂Ωl ∩Ω
and B[l] = ∂Ωl ∩ ∂Ω. As before, Blj = ∂Ωl ∩ ∂Ωj will denote the common
interface between Ωl and Ωj , with O(l) denoting the indices such that Blj �= ∅
when j ∈ O(l). It will thus hold that j ∈ O(l) ⇔ l ∈ O(j).

Local Triangulations. We assume that each subdomain Ωl ⊂ IRd is tri-
angulated by a quasiuniform grid Thl

(Ωl) with elements of size hl. On each
boundary segment Blj = ∂Ωl ∩ ∂Ωj of dimension (d − 1), we let Thl

(Blj)
denote the restriction of triangulation Thl

(Ωl) to Blj . We shall assume, see
assumption (A.1), that the restriction of triangulation Thl

(Ωl) to boundary
segment Blj and the restriction of triangulation Thj

(Ωj) to boundary segment
Blj , triangulates Blj . Mortar element discretizations select only one specific
triangulation for each nonempty segment Blj , either Thl

(Blj) or Thj
(Blj). We

let I(l) ⊂ O(l) denote indices such that Thj
(Blj) is the chosen triangulation
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Fig. 11.2. Two subdomain non-matching grids

of Blj for each j ∈ I(l). When there are three or more subdomains, we only
consider segments Blj of dimension (d − 1) in typical mortar element dis-
cretizations. We denote the subset of indices j within I(l) for which Blj is
of dimension (d − 1) as I∗(l) ⊂ I(l). The segments Blj for j ∈ I∗(l) and
1 ≤ l ≤ p will partition B = ∪p

l=1B
(l).

Definition 11.6. When j ∈ I∗(l), the “side” of Blj approached from Ωj is
referred to as the “nonmortar” side, while the “side” of Blj approached from
Ωl is referred to as the “mortar” side. Nodal unknowns on the mortar side of
Blj will be “master” variables, and on the nonmortar side “slave” variables.

We shall henceforth focus primarily on nonmatching grids which satisfy
certain geometrical conformity assumptions, see Fig. 11.2. Typically, condition
(A.1) will always be assumed to hold, while the stronger condition (A.2) will
be assumed to hold when improved theoretical bounds are desired.

Geometrical Conformity. We caution the reader that our terminology on
geometrical conformity differs from that used in the literature.
(A.1) A nonmatching grid satisfies condition (A.1) if each local triangulation
Thl

(Ωl) restricted to Blj triangulates this interface. Each restricted triangula-
tion shall be denoted Thl

(Blj) for j ∈ I(l). The local triangulations Thl
(Blj)

and Thj (Blj) of Blj may not match on Blj .

(A.2) A nonmatching grid satisfies condition (A.2), if (A.1) holds and if each
local triangulation Thl

(Blj) matches Thj
(Blj) on ∂Blj for j ∈ I(l). This re-

quires both local triangulations to share the same nodes on ∂Blj .
Mortar element discretizations of (11.1) will be obtained by the Galerkin

approximation of (11.19) using finite element spaces Xh ⊂ X and Yh ⊂ Y
defined on the nonmatching grid, where:

X = Πp
l=1

(
H1

0,B[l]
(Ωl)

)
and Y = Πp

l=1

(
Πj∈I∗(l) H−1/2(Blj)

)
.

(11.27)
Discrete solutions uh ∈ Xh ⊂ X and ψh ∈ Yh ⊂ Y will be sought satisfying:{

A∗(uh, vh) + M∗(vh, ψh) = (f, vh)∗, ∀vh ∈ Xh

M∗(uh, φh) = 0, ∀φh ∈ Yh,
(11.28)
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where A∗(u, v) ≡
∑p

l=1 AΩl
(ul, vl) and (f, v)∗ ≡

∑p
l=1 (f, vl)Ωl

with:⎧⎪⎨
⎪⎩

AΩl
(ul, vl) ≡

∫
Ωl

(a(x)∇ul · ∇vl + c(x)ul vl) dx

(f, vl)Ωl
≡
∫

Ωl
f(x) vl(x) dx

M∗(u, φ) ≡
∑p

l=1

∑
j∈I∗(l)

∫
Blj

[u]lj φlj dsx,

(11.29)

and [u]lj = ul − uj with u = (u1, . . . , up) , v = (v1, . . . , vp) ∈ X. Expanding
uh ∈ Xh and φh ∈ Yh relative to bases for Xh and Yh will yield a saddle point
linear system, whose block structure shall be described later.

Local Finite Element Spaces. We shall let Xhl
⊂ H1

0,B[l]
(Ωl) denote a con-

forming finite element subspace defined on triangulation Thl
(Ωl). If whl

∈ Xhl

denotes a local finite element function, we shall associate a nodal vector

whl
=
(
w(l)T

I ,w(l)T

B

)T

where w(l)
I denotes a vector of nodal values corre-

sponding to interior nodes of Thl
(Ωl), while w(l)

B denotes a vector of nodal
values on B(l). We shall let n

(l)
I and n

(l)
B denote the number of nodes of Thl

(Ωl)
in the interior and on B(l), respectively, with nl denoting nl = n

(l)
I + n

(l)
B .

Local Stiffness Matrices and Load Vectors. We shall let A(l) and f (l)

denote the local stiffness matrix and load vector corresponding to:

AΩl
(vhl

, whl
) =

[
v(l)

I

v(l)
B

]T [
A

(l)
II A

(l)
IB

A
(l)T

IB A
(l)
BB

][
w(l)

I

w(l)
B

]
, (f, vhl

)Ωl
=

[
v(l)

I

v(l)
B

]T [
f (l)
I

f (l)
B

]
,

where A
(l)
II , A

(l)
IB and A

(l)
BB , are matrices of size n

(l)
I , n

(l)
I × n

(l)
I and n

(l)
B , with

f (l)
I and f (l)

B of size n
(l)
I and n

(l)
B , respectively.

Guidelines for Choosing Xh and Y h. Theoretical analysis [GI3, BR33]
of saddle point problems suggests three requirements for Xh and Yh.

• For the stability of discretization (11.28), given Xh, subspace Yh must be
compatible with Xh, satisfying inf-sup condition (11.31) uniformly in h.

• For stability, bilinear form A∗(., .) must satisfy A∗(vh, vh) ≥ α ‖vh‖2
X for

vh ∈ Kh
0 , i.e., be coercive, where:

Kh
0 = {vh ∈ Xh : M∗(vh, ψh) = 0, ∀ψh ∈ Yh},

and α > 0 is independent of h.
• For the accuracy of discretization (11.28), subspaces Xh and Yh must have

approximation properties such as (11.30) and (11.32).

Motivated by the preceding, the subspaces Xh and Yh are chosen as follows.

Subspace Xh. On each subdomain Ωl, let Xhl
(Ωl) ⊂ H1

0,B[l]
(Ωl) denote a

finite element space of continuous piecewise polynomial functions of degree ql

with zero Dirichlet boundary conditions on B[l]:

Xhl
(Ωl) ≡ {uhl

∈ C(Ωl) : u|τ ∈ Pql
(τ), ∀τ ∈ Thl

(Ωl), uhl
= 0 on B[l]},
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where τ ∈ Thl
(Ωl) denotes an element and Pql

(τ) denotes polynomials of
degree ql or less on τ . Define Xh ⊂ X as the product space:

Xh ≡ (Πp
l=1 Xhl

(Ωl) ) ⊂ X,

equipped with the inherited norm. Such a choice of finite element space on
each subdomain Ωl will ensure an approximation property of the form:

inf
vhl

∈Xhl
(Ωl)

‖u − vhl
‖1,Ωl

≤ C hql

l ‖u‖ql+1,Ωl
, (11.30)

for sufficiently smooth u. For simplicity, we shall henceforth assume that all
triangulations involve triangular elements in two dimensions and tetrahedral
elements in three dimensions, and that each finite element space Xhl

(Ωl)
consists of continuous piecewise linear functions, i.e., ql = 1.

Subspace Y h. For mortar element discretizations, the multiplier space Y
for the flux, and defined by (11.27), will admit discontinuous functions on
each interface segment Blj , since L2(Blj) ⊂ H−1/2(Blj). The uniform inf-sup
condition [GI3, BR33] corresponds to the requirement that Mh : Xh → Y ′

h

(where Y ′
h denotes the dual space of Yh) induced by M∗(., .) : Xh × Yh → IR

be surjective, satisfying:

sup
vh∈Xh

M∗(vh, ψh)
‖vh‖X

≥ β ‖ψh‖Y , ∀ψh ∈ Yh, (11.31)

for β > 0 independent of h, i.e., ‖M†
h‖ ≤ (1/β).

The requirement that A∗(., .) be coercive within Kh
0 will be satisfied for

arbitrary subspaces Xh and Yh provided c(x) ≥ c0 > 0. This is because,
A∗(v, v) will be equivalent to ‖v‖2

X in X using (11.12) for c(x) ≥ c0 > 0.
When c(x) = 0, coercivity will be lost in the interior subdomains (as in the
FETI method of Chap. 4). If Xh satisfies (11.30), then ideally Yh should
be chosen with compatible approximation property. Let Yh(Blj) denote the
discrete multiplier space on Blj . If φ ∈ Y is sufficiently smooth, we require:

inf
φh∈Yh(Blj)

‖φ − φh‖Yh(Blj) ≤ c max{hql

l , h
qj

j } ‖φ‖−1/2+q∗,Blj
. (11.32)

Generally, subspace Yh will be pivotal for the stability and accuracy of the
mortar element discretization. Once subspace Xh has been chosen, subspace
Yh must be selected so that a uniform inf-sup condition holds, and so that
an approximation property compatible with the accuracy of Xh holds. The
multiplier space Y defined by (11.27) will represent the flux on each interface
segment Blj in ∪p

l=1

(
∪j∈I∗(l)Blj

)
and must include the constant functions on

Blj . The multiplier space Y and the discrete multiplier space Yh will be:

Y = Πp
l=1

(
Πj∈I∗(l)H

−1/2(Blj)
)

and Yh = Πp
l=1

(
Πj∈I∗(l)Yh(Blj)

)
,
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where each space Yh(Blj) denotes the discrete multipliers on Blj . The space
Yh(Blj) is typically represented as span{ψlj

1 (x), . . . , ψlj
mlj

(x)}.
When j ∈ I(l) or j ∈ I∗(l), the space Yh(Blj) will be constructed using

triangulation Thj
(Blj) of Blj , and required to satisfy the following properties:

• Yh(Blj) has the same dimension as Xhj
(Blj) ∩ H1

0 (Blj).
• Yh(Blj) contains constant functions on Blj .
• Yh(Blj) is at most of degree qj in each element of Thj (Blj).

Since the inf-sup condition requires that the map Mh : Xh → Y ′
h induced

by M∗(., .) be surjective, and since M∗(., .) depends only on the degrees of
freedom on B, this restricts the dimension of space Yh not to exceed the
degrees of freedom on B.

Remark 11.7. When there are three or more subdomain, there will be segments
Blj with dimension is (d − 2) or lower, such as when Blj is a cross point
in two dimensions, or an edge or cross point in three dimensions. In mortar
element discretizations, the discrete multiplier spaces Yh(Blj) are defined only
on segments Blj of dimension (d−1), when Ω ⊂ IRd. When Blj is triangulated
by Thj (Blj), the dimension of Yh(Blj) on segment Blj will correspond to the
number of interior nodes of triangulation Thj

(Blj) on Blj .

Next, we describe the multiplier space Yh(Blj) for two subdomains.

11.2.2 Two Subdomain Discretizations

Two subdomain mortar element discretizations have a simple structure, and
in the multi-subdomain case, each multiplier space Yh(Blj) is defined based
on the two subdomain case. Let Ω1 and Ω2 be polygonal subdomains forming
a nonoverlapping decomposition of Ω ⊂ IRd for d = 2, 3. Let each subdomain
Ωl be triangulated by a quasiuniform triangulation Thl

(Ωl) with grid size hl.
We shall assume that either conformity condition (A.1) or (A.2) holds, and let
B12 = ∂Ω1 ∩ ∂Ω2 denote the common interface between the two subdomains.
Let j∗ denote the nonmortar side with Thj∗ (B12) as the triangulation of B12.

In two dimensions, a two subdomain interface B12 will either be a loop
(homeomorphic to a circle) or an arc (homeomorphic to the unit interval).
When B12 is a loop, conformity condition (A.1) requires both local triangu-
lations to triangulate B12. If B12 is an arc, then conformity condition (A.1)
requires the endpoints of B12 be nodes of both local triangulations. For two
dimensional domains (A.1) and (A.2) are equivalent.

In three dimensions, geometrical conformity is more restrictive. A two
subdomain interface B12 will be two dimensional, and homeomorphic either
to the surface of a sphere (when one subdomain is floating) or to a rectangle. In
the former case, condition (A.1) requires both triangulations to triangulate
B12 (and condition (A.2) can be ignored), while in the latter case, ∂B12

will be a loop, and condition (A.2) will hold only if the nodes of both local
triangulations match on ∂B12.
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Fig. 11.3. A non-matching grid in three dimensions satisfying (A.2)

Remark 11.8. The nonmatching grid on the left side of Fig. 11.2 violates (A.1),
since the endpoints of B12 are not nodes of Th1(Ω1), by contrast the non-
matching grid on the right side of Fig. 11.2 satisfies (A.1). When conformity
condition (A.1) is violated on Ωl, zero boundary conditions may not be accu-
rately imposed on ∂Ω1 ∩ ∂Ω. For the three dimensional domain in Fig. 11.3,
triangulations Th1(B12) and Th2(B12) do not match on B12. However, they do
match on ∂B12, yielding that condition (A.2) is satisfied.

In the two grid case, given subspaces Xh ⊂ X and Yh ⊂ Y , the mortar
element discretization of (11.1) will seek uh ∈ Xh and ψh ∈ Yh satisfying:{

A∗(uh, vh) + M∗(vh, ψh) = (f, vh)∗, ∀vh ∈ Xh

M∗(uh, φh) = 0, ∀φh ∈ Yh,
(11.33)

where A∗(v, w) =
∑2

l=1 AΩl
(vl, wl) and (f, w)∗ =

∑2
l=1 (f, wl)Ωl

with:⎧⎪⎨
⎪⎩

AΩl
(v, w) =

∫
Ωl

(a(x)∇vl · ∇wl + c(x) vl wl) dx

(f, w)Ωl
=
∫

Ωl
f(x) wl(x) dx

M∗(v, ψ) =
∫

B12
(v1(x) − v2(x)) ψ(x) dsx.

(11.34)

Given a basis for Xh and Yh, let u(l) and ψ denote the coefficient vectors
of uhl

(x) ∈ Xhl
(Ωl) and ψh(x) ∈ Yh, respectively, relative to each basis. If

Xhl
(Ωl) is a finite element space, let u(l)

I and u(l)
B denote vectors of nodal

values in the interior of Ωl and on B12, of size n
(l)
I and n

(l)
B , respectively. Also

let m denote the dimension of Yh. Then, discretization (11.33) will yield the
following saddle point system:⎡

⎢⎣
A(1) 0 M (1)T

0 A(2) −M (2)T

M (1) −M (2) 0

⎤
⎥⎦
⎡
⎢⎣

u(1)

u(2)

ψ

⎤
⎥⎦ =

⎡
⎢⎣

f (1)

f (2)

0

⎤
⎥⎦ , (11.35)

where for l = 1, 2:
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A(l) =

[
A

(l)
II A

(l)
IB

A
(l)T

IB A
(l)
BB

]
, M (l) =

[
0 M

(l)
B

]
, u(l) =

[
u(l)

I

u(l)
B

]
, f (l) =

[
f (l)
I

f (l)
B

]
,

(11.36)
with the matrices and vectors defined by:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

AΩl
(uhl

, uhl
) = u(l)T

A(l)u(l),

(f, uhl
)Ωl

= u(l)T

f (l),

M∗ (uh, φh) = φT
(
M (1)u(1) − M (2)u(2)

)
= φT

(
M

(1)
B u(1)

B − M
(2)
B u(2)

B

)
.

(11.37)

Here block matrices A
(l)
II , A

(l)
IB , A

(l)
BB and M

(l)
B will be of size n

(l)
I , n

(l)
I × n

(l)
I ,

n
(l)
B and m × n

(l)
B , respectively, while the vectors f (l)

I , f (l)
B and f (l) will be of

size n
(l)
I , n

(l)
B and nl, respectively. In the two subdomain case, we note that if

φ denotes the coefficient vector associated with φh(x) ∈ Yh, then:

φT M
(l)
B u(l)

B =
∫

B12

uhl
(x) φ(x) dsx. (11.38)

Matrix M
(l)
B will be rectangular of size m × n

(l)
B . If Dirichlet conditions are

imposed on ∂Ω, then nodal unknowns on ∂B12 will be zero. If the multiplier
space Yh(B12) can be chosen so that M

(1)
B or M

(2)
B is an invertible square

matrix, it would enable us to solve for u(1)
B or u(2)

B in terms of the other:

u(1)
B =

(
M

(1)
B

)−1

M
(2)
B u(2)

B or u(2)
B =

(
M

(2)
B

)−1

M
(1)
B u(1)

B .

This will be particularly useful for explicitly deriving a symmetric positive
definite linear system for u(1) and u(2), by eliminating the multipliers ψ.

Choice of Subspace Xh. Each subdomain space Xhl
(Ωl) can be chosen to

be any conforming finite element space defined on triangulation Thl
(Ωl) and

satisfying Xhl
(Ωl) ⊂ H1

0,B[l]
(Ωl). The two subdomain space Xh will be:

Xh = Xh1(Ω1) × Xh2(Ω2).

Typically, each Xhl
(Ωl) is chosen to consist of continuous functions which

are polynomials of degree ql on each element of Thl
(Ωl). In this case, the

approximation error will satisfy (11.30).
We shall describe two alternative choices of multiplier spaces Yh for two

subdomain decompositions, motivated by stability and approximation consid-
erations [MA4, BE18, PH, BE23, BE6, BE4, BR2, WO, WO4, WO5, KI].

• A space Yh of continuous piecewise polynomials defined on triangulation
Thj∗(B12), and having the same dimension as Xhj∗(B12) ∩ H1

0 (B12) (or
Xhj∗(B12) when B12 is homeomorphic to a loop or a sphere). The space
Yh must contain the constant functions.
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• A space Yh of discontinuous piecewise polynomials defined on triangulation
Thj∗(B12), generated by a basis biorthogonal (dual) to the standard nodal
basis for Xhj∗(B12) ∩ H1

0 (B12) (or Xhj∗(B12) when B12 is homeomorphic
to a loop or a sphere), containing constant functions.

For simplicity, our description will focus on piecewise linear finite elements,
and j∗ will denote the index of the nonmortar (slave variable) side.

Continuous Multiplier Space Y h. Continuous multipliers were used in
early mortar element methods [MA4, BE18, PH, BE23, BE6, BE4, BR2].
When condition (A.1) holds, let Xhj∗(B12) denote the restriction of finite ele-
ment space Xhj∗(Ωj∗) to triangulation Thj∗(B12), with degree qj∗ polynomials
in each element. The space Yh = Yh(B12) must satisfy the following.

• Yh has the same dimension as Xhj∗(B12) ∩ H1
0 (B12).

• Yh contains constant functions on B12.
• Yh is at most of degree qj∗ in each element of Thj∗(B12).

We shall separately describe the construction of Yh for Ω ⊂ IR2 and Ω ⊂ IR3.
Consider a two subdomain nonmatching grid in two dimensions, in which

the interface B12 is an arc. If Xhj∗(Ωl) consists of polynomials of degree qj∗
in each element, define the continuous multiplier space Yh to consist of poly-
nomials of degree qj∗ in each element of Thj∗(B12) except those touching the
boundary ∂B12, in which case the degree should be (qj∗ − 1):

Yh =

{
ψh ∈ C(B12) : ψh|e ∈ Pα(e) where

(
α = qj∗ if e ∩ ∂B12 = ∅
α = qj∗ − 1 if e ∩ ∂B12 �= ∅

)}
,

(11.39)
where e denotes an element of Thj∗(B12).

For piecewise linear finite elements (i.e., qj∗ = 1), functions in Yh will
be constant on elements adjacent to the boundary. Let x0, x1, . . . , xm, xm+1

denote the nodes of Thj∗(B12), arranged so that consecutive nodes define ele-
ments of Thj∗(B12), with x0, xm+1 corresponding to the endpoints of B12. Let
Shj∗(B12) ⊂ H1(B12) denote the standard continuous piecewise linear finite
element space on triangulation Thj∗(B12), with standard nodal basis functions
φ0, φ1, . . . , φm, φm+1 for Shj∗(B12). Then, the multiplier space Yh will be
defined as span of the following basis functions {ψ1, . . . , ψm}, see Fig. 11.4:

Yh = span {ψ1, ψ2, . . . , ψm−1, ψm}
= span {φ0 + φ1, φ2, . . . , φm−1, φm + φm+1} ⊂ Shj∗ (B12),

where ψ1 = φ0 + φ1, ψj = φj for j = 2, . . . , (m − 1) and ψm = φm + φm+1.

�
�� �

��
�

���
��

xj−1 xj xj+1

ψj

� � � � � � � � � � � � �

x0 x1 x2

ψ1

xm−1 xm

ψm

xm+1

Fig. 11.4. Sample continuous basis functions for Yh on an interface B12
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Remark 11.9. If one of the subdomains is floating, then B12 will be a loop.
In this case, we can define Yh = Xhj∗ (B12) = Shj∗ (B12) as the space of
continuous piecewise linear finite elements on B12.

In three dimensions, we shall only consider the case where qj∗ = 1 and
the two subdomain interface B12 is homeomorphic to a rectangle (since when
B12 is homeomorphic to a sphere, we may define Yh = Xhj∗(B12)). When
Ω ⊂ IR3, interface B12 will have a one dimensional boundary ∂B12. To define
a continuous multiplier space Yh on B12, we shall assume condition (A.1) when
zero Dirichlet boundary conditions are imposed on ∂B12, and condition (A.2)
more generally. Unlike when B12 is one dimensional, it will not be possible
to define a continuous piecewise linear multiplier space Yh satisfying (11.39)
with dimension equal to dim

(
Xhj∗(B12) ∩ H1

0 (B12)
)
. To illustrate this, note

that if xl ∈ ∂B12 is a boundary node adjacent to nodes xi, xj in the interior
of B12, then any continuous function that is linear in all the interior elements
of Thj∗(B12) and constant on elements intersecting ∂B12 must have the same
nodal values at xi and xj . This cannot hold if all interior nodes represent true
degrees of freedom. To avoid such difficulties, the continuous piecewise linear
multiplier space Yh will permit linear functions on elements adjacent to ∂B12,
see [BE4, BE6, BR2], to ensure that constants are included and that dim(Yh)
equals the number m of interior nodes of triangulation Thj∗(B12).

The continuous piecewise linear multiplier space Yh(B12) ⊂ L2(B12) on
the two dimensional interface B12 will be a subspace of Shj∗(B12) of continu-
ous piecewise linear functions on the triangulation Thj∗(B12). Let x1, . . . , xm∗
denote the nodes of Thj∗(B12) with associated nodal basis φ1, . . . , φm∗ :

Shj∗(B12) = span{φ1, . . . , φm∗}.

Two nodes xi and xj on B12 will be said to be adjacent if they belong to a
common triangular element e ∈ Thj∗(B12). We define:

NI(B12) = indices of nodes in the interior of B12

NI0(B12) = indices of interior nodes not adjacent to ∂B12 ⊂ NI(B12)
NB(B12) = indices of nodes on the boundary ∂B12.

We let m denote the number of indices in NI(B12), i.e., the number of interior
nodes, and (m∗ − m) the number of indices in NB(B12).

The continuous multiplier space Yh(B12) ⊂ L2(B12) will be defined as the
subspace generated by m basis functions ψ1, . . . , ψm from Shj∗(B12):

Yh = Yh(B12) = span{ψ1, . . . , ψm} ⊂ Shj∗(B12).

We shall associate one basis function ψj with each interior node xj and define

B(xj) = {l ∈ NB(B12) : xl and xj are adjacent},

as the set of indices of nodes on ∂B12 adjacent to xj . For each boundary node
xi ∈ ∂B12, let d (xi) denote the number of interior nodes adjacent to xi:
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Fig. 11.5. Triangulations with and without “opposite” nodes

d(xi) = |{l ∈ NI(B12) : xi and xl are adjacent}| .

Some of the nodes xi on ∂B12 may not have interior nodes adjacent to it,
i.e., d (xi) = 0. This can happen if the only triangular element containing
xi has all its three vertices lying on ∂B12. Such nodes will be referred to as
“opposite” nodes [BE4, BE6, BR2], see nodes xi and xl in Fig. 11.5. If xi is
an “opposite” node, then the element e to which it belongs will have all its
nodes on ∂B12, so that if constants must be included in Yh(B12) on B12, then
at least one of the basis functions ψj must have its support intersecting e.
Accordingly, if xi is an opposite node and xj is an interior node closest to it,
let O(xj) = {i} denote the opposite node associated with xj .

The basis functions generating the continuous multiplier space Yh(B12) is:

ψj(x) =

⎧⎪⎨
⎪⎩

φj(x), if j ∈ NI0(B12)
φj(x) +

∑
l∈B(j)

1
d(xl)

φl(x), if O(xj) = ∅
φj(x) +

∑
l∈B(j)

1
d(xl)

φl(x) + φO(j)(x), if O(xj) �= ∅,

for 1 ≤ j ≤ m. By construction, ψj will be continuous and piecewise linear
with ψj = φj when xj is an interior node not adjacent to nodes on ∂B12. Since
ψi(xj) = δij for each interior node xj , they will be linearly independent. Terms
of the form

∑
l∈B(j)

1
d(xl)

φl(x) and φO(j)(x) are included so that constants
belong to Yh, with ψ1 + · · · + ψm = 1 on B12. The term φO(j)(x) will be
nonzero only if there is an “opposite node” associated with xj .

Matrix Representation. The constraint M∗(uh, φh) = 0 for all φh ∈ Yh

can be expressed in matrix form as:

M∗(uh, φh) =
∫

B12

(uh1(x) − uh2(x)) φ(x) dsx = 0 ⇔ φT Muh = 0, (11.40)

where uh ∈ IRn and φ ∈ IRm denote the nodal vectors associated with the
finite element functions uh(x) = (uh1(x), uh2(x)) ∈ Xh and φh(x) ∈ Yh,
expanded relative to a basis {u1, . . . , un} for Xh and {ψ1, . . . , ψm} for Yh.
Matrix M will be of size m × n with entries Mij = M∗(uj , ψi).
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We may block partition uh and matrix M as follows. Order the basis for
Xh = Xh1(Ω1) × Xh2(Ω2) so that the first n1 basis functions form a basis
for Xh1(Ω1) while the remaining n2 form a basis for Xh2(Ω2). Further, order
the basis for each Xhl

(Ωl) with the n
(l)
I basis functions for the interior nodes

ordered before the n
(l)
B basis functions for nodes on B12. Let:

uh =
(
u(1)T

,u(2)T
)T

=
(
u(1)T

I ,u(1)T

B ,u(2)T

I ,u(2)T

B

)T

,

denote the resulting block partitioned vector associated with uhl
(x) ∈ Xhl

(Ωl)
for l = 1, 2. Then constraint (11.40) can be equivalently expressed as:

M uh = 0 ⇔ M
(1)
B u(1)

B − M
(2)
B u(2)

B = 0 (11.41)

where M =
[
M

(1)
I M

(1)
B −M

(2)
I −M

(2)
B

]
with M

(l)
I = 0 of size m × n

(l)
I

and sparse matrix M
(l)
B of size m × n

(l)
B whose entries are given by:(

M
(l)
B

)
ij

=
∫

B12

ψi(x) u
(l)
j (x) dsx, for l = 1, 2. (11.42)

Here {u(l)
j (x)} denotes a nodal basis for Xhl

(B12) ∩ H1
0 (B12) on Thl

(B12). If

the unknowns on ∂B12 are zero, then m = n
(l∗)
B and M

(j∗)
B will be square.

Remark 11.10. Entries of M
(l)
B in (11.42) can be computed by subassembly:(

M
(l)
B

)
ij

=
∑

σ∈Thj∗(B12)

(∫
σ

ψi(x) u
(l)
j (x) dsx

)
, (11.43)

based on the elements σ ∈ Thj∗(B12). When l = j∗, both ψi(x) and u
(l)
j (x) will

be polynomials on each element σ ∈ Thj∗(B12). In this case matrix M
(l)
B can be

computed exactly using an exact quadrature rule for each elemental integral
in (11.43). When l �= j∗, the functions ψi(x) and u

(l)
j (x) will be defined on

different triangulations of B12, and the preceding will not apply. However, each
integral on σ in (11.43) can be evaluated approximately, using a quadrature
rule for piecewise smooth functions with accuracy O(hql

l ), where ql denotes
the degree of φj(x), see [CA38, MA5]. If m = n

(j∗)
B , then M

(j∗)
B will be square,

and solving constraint (11.41) will express u(j∗)
B as slave variables:⎧⎪⎨

⎪⎩
u(1)

B =
(
M

(1)
B

)−1

M
(2)
B u(2)

B , if j∗ = 1

u(2)
B =

(
M

(2)
B

)−1

M
(1)
B u(1)

B , if j∗ = 2.

This expression is computationally expensive to evaluate when matrix(
M

(j∗)
B

)−1 is dense, and motivates the construction of a discontinuous multi-
plier space Yh(B12) ⊂ L2(B12) which yields a diagonal matrix M

(j∗)
B .



534 11 Non-Matching Grid Discretizations

Discontinuous Multiplier Space Y h. The motivation for employing a mul-
tiplier space Yh ⊂ L2(B12) of discontinuous functions is that a basis {ψi}m

i=1

can be constructed for Yh at low computational cost, such that the mass ma-
trix M

(j∗)
B in (11.41) reduces to a diagonal matrix. This will yield an efficient

master-slave expression for the nodal unknowns in the interior of the nonmor-
tar side, in terms of the nodal unknowns on the mortar side. Discontinuous
multiplier spaces were originally proposed in [WO4, WO5], and extended in
[KI], and are based on a finite element technique for interpolating nonsmooth
boundary data [SC6]. This applies even with unknowns on ∂B12.

When condition (A.1) holds, discretizing the weak continuity condition on
interface B12 using a multiplier space Yh = Yh(B12) yields (11.40):

M
(1)
B u(1)

B − M
(2)
B u(2)

B = 0,

where the local mass matrices are defined by:(
M

(l)
B

)
ij

=
∫

B12

ψi(x)u
(l)
j (x) dsx, for l = 1, 2, (11.44)

for {ψi} and {u(l)
j } denoting basis functions for Yh and Xhl

(B12) ∩ H1
0 (B12)

respectively. Generally, each matrix M
(l)
B will be rectangular, however, when

zero Dirichlet boundary conditions are imposed on ∂B12 and m = dim(Yh)
equals the dimension of Xhj∗(B12) ∩ H1

0 (B12) (which equals the number of
interior nodes in Thj∗(B12)), then mass matrix M

(j∗)
B will be square. To obtain

a diagonal matrix M
(j∗)
B , the basis {ψi}m

i=1 for Yh(B12) ⊂ L2(B12) must be
biorthogonal to the nodal basis {u(j∗)

j }m
j=1 for Xhj∗(B12) ∩ H1

0 (B12):∫
B12

ψi(x) u
(j∗)
j (x) dsx =

(
M

(j∗)
B

)
ij

= γi δij , for 1 ≤ i, j ≤ m, (11.45)

for δij denoting the Kronecker delta and γi > 0 a scaling factor typically
chosen so that

∫
B12

ψi(x) dsx = 1.

Remark 11.11. For the Dirichlet problem (11.1) (with no nodal unknowns on
∂B12), a biorthogonal (dual) basis {ψj}m

j=1 consisting of continuous finite
element functions on Thj∗(B12) satisfying (11.45) can be constructed at high
computational cost as follows. If M

(j∗)
B is the mass matrix corresponding to

the standard continuous multiplier space Yh = span{ψ̂1, . . . , ψ̂m}, then define
a biorthogonal basis {ψj}m

j=1 as follows:

ψj(x) =
m∑

l=1

(
M

(j∗)−T

B

)
jl

ψ̂l(x), for j = 1, . . . , m. (11.46)

By construction, biorthogonality will hold. However, since m can be large, it
will be computationally expensive to assemble the dense matrix M

(j∗)−T

B .
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For convenience, let {φi}m
i=1 denote the finite element nodal basis for

Xhj∗(B12) ∩ H1
0 (B12), where φi(x) = u

(j∗)
i (x) for 1 ≤ i ≤ m. To construct

a discontinuous basis {ψi}m
i=1 ⊂ L2(B12) biorthogonal to {φj}m

j=1, note that:

• Each integral on B12 can be decomposed using the subassembly identity:∫
B12

ψi(x) φj(x) dsx =
∑

σ∈Thj∗(B12)

∫
σ

ψi(x)φj(x) dsx

=
∑

σ∈Thj∗(B12)

∫
σ

ψi;σ(x)φj;σ(x) dsx,
(11.47)

where ψi;σ(x), φj;σ(x) denote restrictions of ψi(x), φj(x) to element σ.
• Since each φj(x) is a standard nodal basis for Xhj∗(B12) ∩ H1

0 (B12), its
restriction φj;σ(x) will correspond to one of the local nodal basis for Pqj∗ (σ)
on σ. Define an element mass matrix M

(hj∗ )
σ of size d∗:(

M
(hj∗ )
σ

)
ij

=
∫

σ

φ
(σ)
i (x)φ

(σ)
j (x) dsx, 1 ≤ i, j ≤ d∗,

where {φ(σ)
l (x)}d∗

l=1 denotes the standard local nodal basis for Pqj∗(σ).

• Since d∗ will be small, we may explicitly compute its inverse M
(hj∗ )−1

σ and
use it construct another basis {ψ(σ)

l (x)}d∗
l=1 for Pqj∗(σ):

ψ
(σ)
j (x) =

d∗∑
l=1

(
M (j∗)−1

σ

)
jl

φ
(σ)
l (x), 1 ≤ j ≤ d∗, (11.48)

where {ψ(σ)
l (x)}d∗

l=1 are biorthogonal to {φ(σ)
l (x)}d∗

l=1, satisfying:∫
σ

φ
(σ)
i (x) ψ

(σ)
j (x) dsx = δij , for 1 ≤ i, j ≤ d∗. (11.49)

• If x1, . . . , xm denotes an ordering of all interior nodes in Thj∗(B12), for
each xj ∈ σ define 1 ≤ index(xj , σ) ≤ d∗ as the index of node xj in the
local ordering of nodes on σ. Then, by construction, it will hold that:

φj; σ(x) = φ
(σ)

j̃
(x), on σ, when j̃ = index(xj , σ). (11.50)

Substituting identity (11.50) into expression (11.47), it is easily seen that
for each xi ∈ σ it is sufficient to define ψi; σ(x) as:

ψi(x) = γi,σ ψ
(σ)

ĩ
(x) on σ, for ĩ = index(xi, σ), (11.51)

where ψ
(σ)

ĩ
(x) is given by (11.48) and γi,σ =

∫
σ

φ
(σ)

ĩ
(x) dsx > 0. If σ is

adjacent to ∂B12, however, multiple choices of ψi; σ(x) will be available.

The above basis {ψi}m
i=1 will satisfy (11.45) with γi =

∑
σ γi,σ with each ψi(x)

having support in the elements containing xi. To ensure that constant functions
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are in Yh = span{ψ1(x), . . . , ψm(x)} a careful choice of ψi; σ(x) on elements σ
adjacent to ∂B12 must be employed, without violating global biorthogonality.

We now apply the general guidelines (11.51) to construct piecewise linear
dual basis functions, see [WO4, WO5, KI]. We first consider a uniform grid
on a one dimensional interface B12 with nodes x0, x1, . . . , xm, xm+1 and end-
points x0, xm+1. Let {φl(x)}m

l=1 denote the standard piecewise linear nodal
basis for Xhj∗(B12) ∩ H1

0 (B12) satisfying φi(xj) = δij . For 1 ≤ i ≤ m, node
xi will belong to elements σi−1 = [xi−1, xi] and σi = [xi, xi+1], while x0 and
xm+1 will only belong to σ0 = [x0, x1] and σm = [xm, xm+1], respectively. On
each element σ, the space P1(σ) will be of dimension d∗ = 2, and spanned by
the two local nodal basis {φ(σ)

1 (x), φ(σ)
2 (x)}. The element mass matrix and its

inverse on an element σ will have the form:

M
(hj∗ )
σ =

hσ

6

[
2 1
1 2

]
, M

(hj∗ )−1

σ =
2
hσ

[
2 −1

−1 2

]
,

where hσ denotes the length of σ. For γi,σ =
∫

σ
φ

(σ)
i (x) dx = (hσ/2), a local

basis in P1(σ) biorthogonal to {φ(σ)
1 (x), φ(σ)

2 (x)} will be:{
ψ

(σ)
1 (x) = 2 φ

(σ)
1 (x) − φ

(σ)
2 (x)

ψ
(σ)
2 (x) = 2 φ

(σ)
2 (x) − φ

(σ)
1 (x).

The global dual basis functions {ψi(x)}m
i=1 will be constructed in terms of

the elemental dual basis functions {ψ(σ)
j (x)} using (11.51). Each ψi(x) will

have support among σ with xi ∈ σ. On the elements σ0 and σm adjacent to
∂B12 = {x0, xm+1}, any linear combination of ψ

(σ)
1 (x) and ψ

(σ)
2 (x) can be used

without violating global biorthogonality. To include constants in Yh, we must
require ψ1(x) and ψm(x) to be constant on σ0 and σm, respectively, since all
other basis functions will be zero on these elements. Since ψ

(σ)
1 (x) + ψ

(σ)
2 (x) =

1 on σ, this constant can be chosen to be 1, yielding ψ1 + · · ·+ ψm(x) = 1 on
B12. The resulting basis dual to {φj(x)}m

j=1 will be:

ψl(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 on σ0 for l = 1
−φl−1(x) + 2φl(x) on σl−1 for 2 ≤ l ≤ m

2φl(x) − φl+1(x), on σl for 1 ≤ l ≤ m − 1
1 on σm for l = m

0, elsewhere.

(11.52)

The above discontinuous dual basis functions are plotted in Fig. 11.6.
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Fig. 11.6. Sample basis functions {ψj} ⊂ Yh biorthgonal to {φi} on B12
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When interface B12 is two dimensional, constructing a uniform grid dual
basis for {φl(x)}m

l=1 using (11.51) will be complicated near the boundary
[KI]. As before, let {xl}m

l=1 denote the interior nodes of B12 and {φl(x)}m
l=1

the standard piecewise linear nodal basis for Xhj∗(B12) ∩ H1
0 (B12) satisfying

φi(xj) = δij . On each element σ ∈ Thj∗(B12) let {φ(σ)
l }3

l=1 denote local nodal
basis for P1(σ). The element mass matrix and its inverse will be:

M
(hj∗ )
σ =

|σ|
12

⎡
⎢⎣

2 1 1
1 2 1
1 1 2

⎤
⎥⎦ , M

(hj∗ )−1

σ =
3
|σ|

⎡
⎢⎣

3 −1 −1
−1 3 −1
−1 −1 3

⎤
⎥⎦ ,

where |σ| denotes the area of triangular element σ. A local basis {ψ(σ)
l (x)}3

l=1

dual to {φ(σ)
l (x)}3

l=1 satisfying γj, σ =
∫

σ
φ

(σ)
j (x)dxx will thus be:

ψ
(σ)
j (x) = 3φ

(σ)
j (x) −

∑
l �=j

φ
(σ)
l (x) on σ, for 1 ≤ j ≤ 3. (11.53)

Each global dual basis function ψj(x) will have support in the elements σ
containing xj . When defining ψj(x) on elements σ adjacent to ∂B12, con-
taining more than one interior node on it, several choices of local dual basis
will be possible which yields global biorthogonality. However, requiring that
constants be included in Yh can restrict the available choices, as noted below.

To simplify our discussion, we shall use the notation {yl,σ}3
l=1 to denote

the three vertices of a triangular element σ ∈ Thj∗(B12). The local nodal basis
will be denoted {φ(σ)

l (x)}3
l=1 satisfying φ

(σ)
i (yj,σ) = δij for 1 ≤ i, j ≤ 3,

and its local dual basis will be denoted {ψ(σ)
l (x)}3

l=1 as in (11.53). Below, we
describe ψi(x) on each element σ containing xi (except in cases D and E).
The construction depends on the number of interior nodes in σ, see Fig. 11.7:

Case A. All three nodes y1,σ, y2,σ, y3,σ of σ are interior nodes in B12. In this
case, if xi = y1,σ, define:

ψi(x)|σ = ψ
(σ)
1 (x) =

(
3φ

(σ)
1 (x) − φ

(σ)
2 (x) − φ

(σ)
3 (x)

)
, on σ.

Case B. Only two nodes, xi = y1,σ and xj = y2,σ are interior nodes in
B12. In this case, ψ

(σ)
1 (x) + c3 ψ

(σ)
3 (x) and ψ

(σ)
2 (x) + d3 ψ

(σ)
3 (x) will both be

locally biorthogonal to φ
(σ)
1 (x) and φ

(σ)
2 (x) for arbitrary c3, d3 ∈ IR. Choosing

c3 = d3 = 1
2 will ensure that γl,σ =

∫
σ

φl,σ(x) dsx for l = i, j:

ψi(x)|σ =
(

ψ
(σ)
1 (x) +

1
2
ψ

(σ)
3 (x)

)
= 1

2

(
5φ

(σ)
1 (x) − 3φ

(σ)
2 (x) + φ

(σ)
3 (x)

)

ψj(x)|σ =
(

ψ
(σ)
2 (x) +

1
2
ψ

(σ)
3 (x)

)
= 1

2

(
5φ

(σ)
2 (x) − 3φ

(σ)
1 (x) + φ

(σ)
3 (x)

)
.
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Fig. 11.7. Nonzero nodal values of discontinuous dual basis functions

Case C. Only one node yl,σ is an interior node. Suppose that xi = yl,σ is
the interior node, then any linear combination of the local dual basis func-
tions {ψ(σ)

j (x)}3
j=1 can be employed to define ψi(x) without violating global

biorthogonality. However, since constants must be included in Yh, this restricts
the choice to c1 = c2 = c3 = 1, yielding:

ψi(x)|σ = 1 on σ,

since ψ
(σ)
1 (x) + ψ

(σ)
2 (x) + ψ

(σ)
3 (x) = 1 on σ.

Case D. None of the nodes y1,σ, y2,σ and y3,σ are interior nodes of B12. In this
case, all three nodes must lie on ∂B12. To ensure that constants are included
in Yh, let xi denote the interior node closest to triangle σ and define:

ψi(x)|σ = 1 on σ.

Case E. If xi �∈ σ and it is not case D, then we define ψi(x)|σ = 0 on σ.

Remark 11.12. Below, see [KI], we summarize the definition of each dual basis
function ψi(x) on an element σ containing interior node xi (except in cases
D and E), where we denote the vertices of σ as xi = y1,σ, y2,σ and y3,σ:

ψi(x) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3φ
(σ)
1 (x) − φ

(σ)
2 (x) − φ

(σ)
3 (x), Case A with xi = y1,σ

1
2

(
5φ

(σ)
1 (x) − 3φ

(σ)
2 (x) + φ

(σ)
3 (x)

)
, Case B with xi = y1,σ

1, Case C with xi = y1,σ

1, Case D with xi �∈ σ

0, Case E with xi �∈ σ.
(11.54)

In case D, we assume that xi is the interior node closest to triangle σ. For
the above choice of dual basis functions, the following will hold:

ψ1(x) + · · · + ψm(x) = 1,

ensuring that constants are included in Yh = span{ψ1, . . . , ψm}.
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A mortar discretization of (11.1). using continuous or discontinuous spaces
Yh will yield a stable discretization [BE18, BE6, BE4, WO4, WO5, KI].

Remark 11.13. When zero Dirichlet conditions are imposed on ∂B12, and if
m = dim(Yh) = dim(Xhj∗(B12)∩H1

0 (B12)), then matrix M
(j∗)
B will be m×m

for continuous and discontinuous spaces Yh. Solving (11.41) will yield:⎧⎪⎨
⎪⎩

u(1)
B =

(
M

(1)
B

)−1

M
(2)
B u(2)

B , if j∗ = 1

u(2)
B =

(
M

(2)
B

)−1

M
(1)
B u(1)

B , if j∗ = 2,

The above mass matrices can be computed using subassembly and quadra-
tures. For the discontinuous space Yh, the diagonal matrix M

(j∗)
B will satisfy:

(
M

(j∗)
B

)
ii

=
∫

B12

ψi(x) φi(x) dsx =
∫

B12

φi(x) dsx, for 1 ≤ i ≤ m.

When both grids match on B12 and zero boundary conditions are imposed
on ∂B12, then it will hold that M

(1)
B = M

(2)
B and u(1)

B = u(2)
B and the global

discretization will reduce to the conforming finite element discretization.

Remark 11.14. The preceding construction of a basis biorthogonal to a nodal
basis for Xhj∗(B12) ∩ H1

0 (B12) applies even when the nodal values on ∂B12

are nonzero. This property will be employed in multisubdomain discretiza-
tions. For instance, if Neumann boundary conditions are imposed on any seg-
ment of ∂Ω containing ∂B12, then the nodal unknowns on ∂B12 will not
be zero (as in the Dirichlet case). If {xl}m

l=1 denotes the interior nodes of
Thj∗ (B12) and {φl(x)}m

l=1 the standard piecewise linear nodal basis satisfy-
ing φi(xj) = δij , then a basis {ψl(x)}m

l=1 biorthogonal (dual) to {φl(x)}m
l=1

can be constructed using the local dual basis {ψ(σ)
i (x)}. When B12 is one

dimensional:

ψi(x) ≡
{

2φ
(σ)
1 (x) − φ

(σ)
2 (x), if xi = y1,σ ⊂ σ

0, if xi �∈ σ,
(11.55)

where element σ has vertices y1,σ and y2,σ. When B12 is two dimensional:

ψi(x) ≡
{

3φ
(σ)
1 (x) − φ

(σ)
2 (x) − φ

(σ)
3 (x), if xi = y1,σ ⊂ σ

0, if xi �∈ σ,
(11.56)

where σ is a triangular element with vertices y1,σ, y2,σ and y3,σ. The mass
matrix M

(j∗)
B will be rectangular of size m×n

(j∗)
B . However, the nodes can be

ordered so that its leading m × m sub-matrix is diagonal:(
M

(j∗)
B

)
ii

=
∫

B12

ψi(x) φi(x) dsx =
∫

B12

φi(x) dsx, for 1 ≤ i ≤ m.
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If {xl}m∗
l=1 denotes all nodes of Thj∗(B12) and {φl(x)}m∗

l=1 ⊂ Xhj∗(B12) is the
standard nodal basis satisfying φi(xj) = δij , then {ψl(x)}m∗

l=1 biorthogonal to
{φl(x)}m∗

l=1 can also be constructed. Matrix M
(j∗)
B will be diagonal of size m∗.

Remark 11.15. When qj∗ = 1, each ψl(x) will be linear on element σ and
satisfy ψl(x) ∈ Dhj∗(B12), where:

Dhj∗(B12) ≡
{
v(x) ∈ L2(B12) : v(x)|σ ∈ Pqj∗(σ), ∀σ ∈ Thj∗(B12)

}
.

Since each v(x) ∈ Dhj∗(B12) is a polynomial of degree qj∗ on each element
σ, it will hold that dim(Dhj∗(B12)) = ne d∗, where ne denotes the number of
elements in Thj∗(B12) and d∗ = dim(Pqj∗(σ)).

Saddle Point System. Let u(l) =
(
u(l)T

I ,u(l)T

B

)T

∈ IRnl denote the block
partitioned nodal vector corresponding to uhl

(x) ∈ Xhl
(Ω) for l = 1, 2 and let

ψ ∈ IRm denote the nodal vector associated with ψh(x) ∈ Yh. Then, the saddle
point linear system obtained by discretization of (11.19) on a two subdomain
nonmatching grid, will have the block structure:

⎡
⎢⎣

A(1) 0 M (1)T

0 A(2) −M (2)T

M (1) −M (2) 0

⎤
⎥⎦
⎡
⎢⎣

u(1)

u(2)

ψ

⎤
⎥⎦ =

⎡
⎢⎣

f (1)

f (2)

0

⎤
⎥⎦ , (11.57)

where for l = 1, 2:

A(l) =

[
A

(l)
II A

(l)
IB

A
(l)T

IB A
(l)
BB

]
, M (l) =

[
0 M

(l)
B

]
, u(l) =

[
u(l)

I

u(l)
B

]
, f (l) =

[
f (l)
I

f (l)
B

]
,

(11.58)
with the entries of A(l) and f (l) satisfying:{

AΩl
(uhl

, uhl
) = u(l)T

A(l)u(l)T

(f, uhl
)Ωl

= f (l)T

u(l),
(11.59)

and with matrix M (l) satisfying:

M∗((uh1 , uh2), ψh) = ψT
(
M (1)u(1) − M (2)u(2)

)
= ψT

(
M

(1)
B u(1)

B − M
(2)
B u(2)

B

)
.

(11.60)

Let n
(l)
I , n

(l)
B and nl = n

(l)
I + n

(l)
B denote the sizes of u(l)

I , u(l)
B and u(l),

respectively, with m = n
(j∗)
B . Then matrices A

(l)
II , A

(l)
IB , A

(l)
BB and M

(hl)
B will

be of size n
(l)
I , n

(l)
I × n

(l)
I , n

(l)
B and m× n

(l)
B , respectively. The vectors f (l)

I , f (l)
B

and f (l) will be of size n
(l)
I , n

(l)
B and nl, respectively.
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11.2.3 Multi-Subdomain Discretizations

We shall now describe mortar discretizations of (11.1) on a multi-subdomain
non-matching grid in Ω ⊂ IRd. The methodology will be more complicated
since the segments Blj = ∂Ωl ∩ ∂Ωj can have dimension (d − 1), (d − 2) or
lower. However, it will often be sufficient to consider discretizations which
enforce intersubdomain matching on interfaces Blj of dimension (d− 1). The
discrete solution, however, may be nonconforming even if the grids match.

We decompose Ω into p nonoverlapping subdomains Ω1, . . . , Ωp, and let
O(l) denote an index set such that Blj = ∂Ωl ∩ ∂Ωj �= ∅ for j ∈ O(l).
We let Thl

(Ωl) denote a quasiuniform triangulation of Ωl with mesh size hl

and assume for simplicity that either assumption (A.1) or assumption (A.2)
holds for each non-empty Blj . Thus, the nonmatching grid on the left side of
Fig. 11.8 will be considered (since assumption (A.1) holds), while the non-
matching grid on the right side of Fig. 11.8 will not be considered (since Ω1

and Ω3, and Ω2 and Ω3 violate (A.1)). We let I(l) ⊂ O(l) be an index set,
such that if j ∈ I(l), then we select Thj

(Blj) as the triangulation of Blj , ob-
tained by restricting Thj(Ωj) to Blj . The “side” of Blj approached from Ωj

for j ∈ I∗(l) is referred to as the nonmortar side, and the nodal unknowns in
the interior of Blj on the nonmortar side Ωj will be slave variables, while the
nodal unknowns on Blj from the mortar side Ωl will be master variables.

For multiple subdomains, two alternative saddle point formulations of
(11.1) may be employed to construct the mortar element discretizations. In the
first version, constraints are matched weakly on each segment Blj for j ∈ I(l)
and 1 ≤ l ≤ p, while in the second version, the discretization is simplified
by matching only on segments Blj of dimension (d − 1) when Ω ⊂ IRd, see
[MA4, BE18, PH, BE23, BE6, BE4, WO, WO4, WO5, KI], without signifi-
cantly altering its accuracy. Thus, in the second version, matching along cross
point segments Blj in two dimensions (such as B13 and B24 on the left side of
Fig. 11.8) and edges or cross points Blj in three dimensions, are omitted.
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Fig. 11.8. Sample multi-subdomain non-matching grids
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The function space X = Πp
l=1

(
H1

0,B[l]
(Ωl)

)
will be the same in both

versions of (11.19). The function space for the multipliers may be Ỹ or Y :

Ỹ = Πp
l=1

(
Πj∈I(l)H

−1/2(Blj)
)

and Y = Πp
l=1

(
Πj∈I∗(l)H

−1/2(Blj)
)
.

(11.61)
Here Ỹ is only a formal expression, since H−1/2(Blj) will not be appropriate
for Blj of dimension (d − 2) or lower. However, Y is well defined. We define:{

M∗(w,ψ) =
∑p

l=1

∑
j∈I(l)

∫
Blj

[w]lj ψlj dsx, for w ∈ X, ψ ∈ Ỹ

M∗(w,ψ) =
∑p

l=1

∑
j∈I∗(l)

∫
Blj

[w]lj ψlj dsx, for w ∈ X, ψ ∈ Y,
(11.62)

where [w]lj = wl − wj for w = (w1, . . . , wp) ∈ X.
A mortar element discretization of (11.1) is now obtained by Galerkin

approximation of (11.19) by enforcing weak matching on all nonempty Blj , or
by enforcing weak matching on all non-empty Blj of dimension (d − 1). This
will seek uh ∈ Xh and ψh ∈ Yh ⊂ Ỹ or ψh ∈ Yh ⊂ Y satisfying:{

A∗(uh, vh) + M∗(vh, ψh) = (f, vh)∗, ∀vh ∈ Xh

M∗(uh, φh) = 0, ∀φh ∈ Yh,
(11.63)

for finite element spaces Xh ⊂ X and Yh ⊂ Ỹ or Yh ⊂ Y where:{
A∗(w, w) =

∑p
l=1

∫
Ωl

(a(x)∇vl · ∇wl + c(x) vl wl) dx

(f, w)∗ =
∑p

l=1

∫
Ωl

(f(x) wl) dx,
(11.64)

for w = (w1, . . . , wp) ∈ X and M∗(., .) defined by (11.62), with [w]lj = wl−wj

and ψ ∈ Yh. Expanding uh ∈ Xh and ψh ∈ Yh relative to a basis for Xh and
Yh will yield a saddle point linear system, to be described later.

Choice of Subspace Xh. The choice of the subspace Xh ⊂ X for the
multisubdomain case will be analogous to that for the two subdomain case.
On each subdomain Ωl, let Xhl

(Ωl) denote a conforming finite element space
defined on triangulation Thl

(Ωl) of degree ql on each element satisfying:

Xhl
(Ωl) ⊂ H1

0,B[l]
(Ωl).

Define Xh = Πp
l=1Xhl

(Ωl). Then, approximation property (11.30) will hold:

inf
vhl

∈Xhl
(Ωl)

‖u − vhl
‖1,Ωl

≤ C hql

l ‖u‖ql+1,Ωl
, (11.65)

for sufficiently smooth u.

Choice of Subspace Y h. The choice of the finite element space Yh will de-
pend on whether weak matching is enforced on all nonempty segments Blj (in
which case Yh ⊂ Ỹ ) or whether weak matching is enforced only on nonempty
segments Blj of dimension (d − 1) (in which case Yh ⊂ Y ). The latter case is
computationally simpler, and also yields optimal order accuracy.
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If weak matching is enforced on all segments Blj for j ∈ I(l), then:

Yh = Πp
l=1(Πj ∈I(l) Yhj

(Blj)).

Here, some of the segments Blj may be of dimension (d − 2) or lower. When
assumption (A.1) holds, on each segment Blj for j ∈ I(l) and 1 ≤ l ≤ p, we
let Yhj

(Blj) ⊂ L2(Blj) denote a continuous or discontinuous multiplier space
defined on the triangulation Thj (Blj) and satisfying:

• Yhj(Blj) has dimension mlj (number of interior nodes of Thj (Blj) on Blj).
• Yhj(Blj) consists of piecewise polynomials of degree qj (typically qj = 1).
• Yhj

(Blj) contains constant functions (if qj = 1).

We let z
(l,j)
1 , . . . , z

(l,j)
mlj denote the interior nodes of triangulation Thj

(Blj).
Then, each local space Yhj

(Blj) can be defined as:

Yhj
(Blj) = span{ψ(l,j)

1 (x), . . . , ψ(l,j)
mlj

(x)} ⊂ L2(Blj),

where each continuous or discontinuous multiplier basis ψ
(l,j)
i (x) is associ-

ated with the interior node z
(l,j)
i of the triangulation Thj

(Blj). The constraint
M∗(uh, ψ) = 0 for each ψ ∈ Yh will yield m equations:∫

Blj

(
uhl

(x) − uhj
(x)
)

ψ(x) dsx = 0, ∀ψ(x) ∈ Yhj
(Blj),

for j ∈ I(l) and 1 ≤ l ≤ p, where m =
∑p

l=1

∑
j I(l) mlj , n = (n1 + · · · + np).

Remark 11.16. If assumption (A.2) holds for each Blj , we may alternatively
apply strong matching between uhl

(x) and uhj
(x) on all interior nodes

z
(l,j)
1 , . . . , z

(l,j)
mlj of Thj

(Blj) for Blj having dimension (d − 2) or lower:

uhl
(z(l,j)

r ) = uhj (z
(l,j)
r ), for 1 ≤ r ≤ mlj .

On the segments Blj of dimension (d−1), the standard two subdomain mortar
based weak matching can be applied based on Yhj

(Blj). If all the grids match
on Blj , then the global solution will be conforming.

If matching is enforced only on segments Blj of dimension (d − 1), then:

Yh = Πp
l=1

(
Πj ∈I∗(l) Yhj

(Blj)
)
,

where the segments Blj of dimension (d−1) do not include cross points when
Ω ⊂ IR2, or cross points and edges when Ω ⊂ IR3. Despite omission of the
segments Blj of dimension (d− 2) or lower, the segments of dimension (d− 1)
will cover B. On each (d − 1) dimensional segment Blj separating Ωl and
Ωj , we shall let Yhj

(Blj) ⊂ H−1/2(Blj) denote a continuous or discontinuous
multiplier space (as for a two subdomain interface B12) satisfying:
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• Yhj
(Blj) has dimension mlj (number of interior nodes in Thj

(Blj)).
• Yhj (Blj) consists of piecewise polynomials of degree qj (typically qj = 1).
• Yhj

(Blj) contains constant functions (if qj = 1).

The constraint M∗(uh, ψ) = 0 for ψ ∈ Yh will yield a total of m equations:∫
Blj

(
uhl

(x) − uhj
(x)
)

ψ(x) dsx = 0, ∀ψ(x) ∈ Yhj
(Blj),

for j ∈ I∗(l), 1 ≤ l ≤ p, m =
∑p

l=1

∑
j I∗(l) mlj , and n = (n1 + · · · + np).

The multiplier space Yh will contain constants on B, and the resulting mortar
element discretization will have optimal order convergence (as when Yh ⊂ Ỹ ).

Saddle Point System. Given uh(x) = (uh1(x), . . . , uhp
(x)) ∈ Xh, we shall

let u ∈ IRn denote the vector of nodal values associated with uh(x), where
each u is block partitioned as follows:

u =
(
u(1)T

, . . . ,u(p)T
)T

with u(l) =
(
u(l)T

I ,u(l)T

B

)T

,

where u(l)
I ∈ IRn

(l)
I and u(l)

B ∈ IRn
(l)
B denote nodal vectors corresponding to

values of uhl
(x) ∈ Xhl

(Ωl) on nodes of Thl
(Ωl) in the interior of Ωl and on

B(l), respectively. Similarly, we shall let ψ ∈ IRm denote the coefficient vector
associated with ψ(x) ∈ Yh.

A matrix representation of discretization (11.19) or (11.63) will involve:

A(l) =

[
A

(l)
II A

(l)
IB

A
(l)T

IB A
(l)
BB

]
, M (l) =

[
0 M

(l)
B

]
, u(l) =

[
u(l)

I

u(l)
B

]
, f (l) =

[
f (l)
I

f (l)
B

]

(11.66)
where A(l) and f (l) satisfy:{

AΩl
(uhl

, uhl
) = u(l)T

A(l)u(l)

(f, uhl
)Ωl

= f (l)T

u(l),
(11.67)

and for Yh ⊂ Ỹ , the matrices M (l) satisfy:

M∗(uh, ψh) =
∑p

l=1

∑
j∈I(l)

∫
Blj

(
uhl

(x) − uhj (x)
)

ψ(l,j)(x) dsx

= ψT
(
M

(1)
B u(1)

B + · · · + M
(p)
B u(p)

B

)
= ψT

(
M (1)u(1) + · · · + M (p)u(p)

)
= ψT Mu.

(11.68)

For Yh ⊂ Y , the index set I(l) above must be replaced by I∗(l) ⊂ I(l). The
saddle point linear system corresponding to (11.19) or (11.63) will be:⎡

⎢⎢⎢⎢⎢⎣

A(1) 0 M (1)T

. . .
...

0 A(p) M (2)T

M (1) · · · M (p) 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u(1)

...

u(p)

ψ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f (1)

...

f (p)

0

⎤
⎥⎥⎥⎥⎦ . (11.69)
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Here n
(l)
I , n

(l)
B and nl = n

(l)
I + n

(l)
B denote the sizes of u(l)

I , u(l)
B and u(l),

respectively, while m denotes the dimension of Yh. Matrices A
(l)
II , A

(l)
IB , A

(l)
BB

and M
(l)
B will be of size n

(l)
I , n

(l)
I ×n

(l)
I , n

(l)
B and ml×n

(l)
B , respectively. Vectors

f (l)
I , f (l)

B and f (l) will be of size n
(l)
I , n

(l)
B and nl, respectively.

A more compact representation of saddle point system (11.69) is:[
A MT

M 0

][
u
ψ

]
=

[
f
0

]
, (11.70)

involving the block partitioned matrices

A =

⎡
⎢⎢⎣

A(1) 0
. . .

0 A(p)

⎤
⎥⎥⎦ and M =

[
M (1) · · · M (p)

]
, (11.71)

with partitioned vectors u =
(
u(1)T

, . . . ,u(p)T
)T

and f =
(
f (1)T

, . . . , f (p)T
)T

.

Iterative algorithms for solving the system (11.70) are considered next.

11.2.4 Saddle Point Iterative Solvers

Saddle point system (11.70) can be solved by modifying the FETI algorithm
from Chap. 4, or the block matrix preconditioned algorithms from Chap. 10.5.
We outline variants of the FETI algorithm, and other block preconditioners,
see [AC2, KU7, LE8, KU8, HO5, AC6, KL8, FA11, FA10, LA, ST5, ST4].

Employing the block matrix structure of submatrices A(l) and M (l), and
vectors u(l), f (l) in (11.69), we may reduce this system to a smaller, but
equivalent, saddle point system. To obtain this, substitute the expressions
from (11.63) into (11.69), and reorder the blocks as follows:

uI =
(
u(1)T

I , . . . ,u(p)T

I

)T

and uB =
(
u(1)T

B , . . . ,u(p)T

B

)T

.

This will yield the following reordered system:⎡
⎢⎣

AII AIB 0
AT

IB ABB MT
B

0 MB 0

⎤
⎥⎦
⎡
⎢⎣

uI

uB

ψ

⎤
⎥⎦ =

⎡
⎢⎣

f I

fB

0

⎤
⎥⎦ , (11.72)

where the block submatrices AII , AIB and ABB are defined as follows:

AII =

⎡
⎢⎢⎣

A
(1)
II 0

. . .

0 A
(p)
II

⎤
⎥⎥⎦ , AIB =

⎡
⎢⎢⎣

A
(1)
IB 0

. . .

0 A
(p)
IB

⎤
⎥⎥⎦ , ABB =

⎡
⎢⎢⎣

A
(1)
BB 0

. . .

0 A
(p)
BB

⎤
⎥⎥⎦ ,
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with matrix MB =
[
M

(1)
B · · · M

(p)
B

]
, while the load vectors satisfy:

f I =
(
f (1)T

I , . . . , f (p)T

I

)T

and fB =
(
f (1)T

B , . . . , f (p)T

B

)T

.

Solving for uI using the first block row of (11.72) yields uI = A−1
II (f I −

AIBuB). Substituting this expression into the second block row of (11.72)
yields the following reduced saddle point system for uB and ψ:[

SEE MT
B

MB 0

][
uB

ψ

]
=

[
f̃B

0

]
, (11.73)

where f̃B ≡
(
fB − AT

IBA−1
II f I

)
and SEE = (ABB − AT

IBA−1
II AIB) satisfies:

SEE = blockdiag
(
(A(1)

BB − A
(1)T

IB A
(1)−1

II A
(1)
IB), . . . , (A(p)

BB − A
(p)T

IB A
(p)−1

II A
(p)
IB)
)

.

The solution to (11.69) can be obtained by solving (11.73) for uB and ψ,
and subsequently uI = A−1

II (f I − AIBuB). Here MB and M
(l)
B will be of size

m × nB and m × n
(l)
B respectively, and SEE of size nB = (n(1)

B + · · · + n
(p)
B ).

We shall first describe the solution of (11.73) using variants of the FETI
algorithm [FA11, FA10]. For convenience, we assume that coefficient c(x) = 0.
In this case the subdomain stiffness matrices A(l) and Schur complement ma-
trices S(l) = (A(l)

BB −A
(l)T

IB A
(l)−1

II A
(l)
IB) will be singular on floating subdomains.

Let Z(l) be a matrix of size n
(l)
B × dl such that Kernel(S(l)) = Range(Z(l)).

We let Z = blockdiag(Z(1), . . . , Z(p)) of size nB × d denote a matrix such
that Kernel(SEE) = Range(Z), where nB = (n(1)

B + · · · + n
(p)
B ) and d =

(d1 + · · ·+ dp). In this case, the first block equation of (11.73) will be solvable
only if:

ZT
(
f̃B − MT

Bψ
)

= 0. (11.74)

When the above compatibility condition holds, uB will satisfy:

uB = S†
EE
(
f̃B − MT

Bψ
)

+ Zα, (11.75)

where S†
EE denotes the Moore-Penrose pseudoinverse of SEE and α ∈ IRd. If

this expression is substituted into the second block row of (11.73), we obtain:

MT
BS†

EE
(
f̃B − MT

Bψ
)

+ MBZα = 0. (11.76)

Combining the above equation with the compatibility condition (11.74) will
yield the following system of equations for ψ ∈ IRm and α ∈ IRd:{

K ψ − G α = d
GT ψ = e,

(11.77)
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where matrices K = MBS†
EEMT

B and G = MBZ are of sizes m and m × d,
with d = MBS†

EE f̃B ∈ IRm and e = ZT f̃B ∈ IRd. A projection method will
solve (11.77). Decompose ψ = ψ0 + ψ̃ using ψ0 = G(GT G)−1e (so that
GT ψ0 = e). Then ψ̃ ∈ IRm and α ∈ IRd will solve the following linear system:{

K ψ̃ − G α = d̃

GT ψ̃ = 0,
where d̃ = d − K ψ0. (11.78)

When Kernel(MB) ∩Range(Z) = {0}, matrix K will satisfy K = KT > 0. We
may formally eliminate α by applying the (Euclidean) orthogonal projection
P0 = I − G(GT G)−1GT to the first block row above, and seek ψ̃ within the
subspace Kernel(GT ), using that Range(G)⊥ = Kernel(GT ). This will yield:

P0 K ψ̃ = P0 d̃, (11.79)

where α can be determined as α = (GT G)−1 GT (K ψ̃ − d̃). Since typically
d ≤ p, an application of the projection P0 will be computationally tractable.

To determine ψ̃ ∈ IRm, system (11.79) can be solved using a projected CG
algorithm, as described in Chap. 4 (see also [ST4]). Projection P0 will provide
global transfer of information. We list three Dirichlet preconditioners Di for
P0 K, see [LA, LA2, KL8, ST4], where the action of D−1

i has the form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D−1
1 = P0

∑p
l=1 M

(l)
B S(l)M

(l)T

B

D−1
2 = P0 R−T

(∑p
l=1 M

(l)
B S(l)M

(l)T

B

)
R−1

D−1
3 = P0

(
MBMT

B

)−T
(∑p

l=1 M
(l)
B S(l)M

(l)T

B

) (
MBMT

B

)−1
.

(11.80)

Here R = blockdiag(MBMT
B ) denotes the block diagonal matrix obtained

from MBMT
B , where each block corresponds to Lagrange multipliers variables

associated with interior nodes on each nonmortar interface Blj for j ∈ I∗(l).
Preconditioner D1 is the original Dirichlet preconditioner [FA15, FA14], while
preconditioners D2 and D3 were proposed in [LA] and [KL8], respectively.
Theoretical results indicate that:

cond(Di, P0 K) ≤ C (1 + log(h0/h))3 , for i = 2, 3,

where h0 denotes the diameter of the subdomains. The iterative algorithm
converges faster for discontinuous mortar spaces with dual basis, see [ST4].
The performance of preconditioner D1 deteriorates for nonmatching grids.

Remark 11.17. When coefficient c(x) ≥ c0 > 0, matrices A and SEE will be
nonsingular, yielding P0 = I. Then ψ will solve the following reduced problem:

K ψ = d, where K = MB S−1
EE MT

B and d = MBS−1
EE f̃B . (11.81)
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In this case, the preconditioners in (11.80) will not provide global transfer of
information. Such transfer may be included by employing the K-orthogonal
projection Q described in Chap. 4. Let C denote an m × d matrix defined
by C = MB Z̃, where Z̃ = blockdiag(Z̃(1), . . . , Z̃(p)) of size nB × d with
Range(Z(i)) = Kernel(S̃(i)) where S̃(i) denotes the subdomain Schur comple-
ment when c(x) = 0. Then, system (11.81) will be equivalent to:

K ψ = d and CT Kψ = CT Kd, (11.82)

since the second block equation is redundant. Decompose ψ = ψ0+ψ̃ choosing
ψ0 = C(CT KC)−1CT Kd so that CT Kψ̃ = 0. Then ψ̃ will solve:

K ψ̃ = d̃ with CT Kψ̃ = 0, (11.83)

where d̃ = d−K ψ0. The solution to (11.83) can be sought by solving K ψ̃ = d̃
within the subspace G0 = Kernel(CT K), using a projected conjugate gradient
method. Dirichlet preconditioners can be obtained by replacing projection P0

in (11.80) by the K-orthogonal projection Q = I − C
(
CT KC

)−1
CT K.

Block matrix preconditioned algorithms may also be used to solve (11.70)
using preconditioners of the form L̃i for the coefficient matrix L of the saddle
point system [AC2, AC3, LE9, LE8, KU8, AC6]:

L =

[
A MT

M 0

]
, L̃1 =

[
Ã 0

M −K̃

]
, L̃2 =

[
Ã 0

0 −K̃

]
, L̃3 =

[
Ã MT

M 0

]
,

where Ã and K̃ denote preconditioners for matrices A and K = MA†MT ,
respectively. Such iterative solvers were described in Chap. 10.5.

Since A = blockdiag(A(1), . . . , A(p)) where A(l) corresponds to the sub-
domain stiffness matrix on Ωl with Neumann boundary conditions on B(l),
standard preconditioners Ã(l) can be employed for each A(l). We may define
Ã = blockdiag(Ã(1), . . . , Ã(p)) such that cond

(
Ã, A

)
≤ C independent of hl.

To construct a preconditioner for K = MA†MT in (11.70) note that:

MA†MT =
p∑

l=1

M (l) A(l)† M (l)T

, (11.84)

due to the block structure of A and M . Employing the block structure of each
subdomain stiffness matrix A(l) and M (l), we obtain:

M (l) A(l)† M (l)T

=

[
0

M
(l)T

B

]T [
A

(l)
II A

(l)
IB

A
(l)T

IB A
(l)
BB

]† [
0

M
(l)T

B

]

= M
(l)
B S(l)† M

(l)T

B ,

(11.85)
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where S(l) = (A(l)
BB −A

(l)T

IB A
(l)−1

II A
(l)
IB) denotes the Schur complement of A(l).

This yields the equivalence:

MA†MT =
p∑

l=1

M
(l)
B S(l)† M

(l)T

B = MBS†MT
B = K. (11.86)

As a result, Dirichlet preconditioners described earlier can be employed. Thus,
when c(x) = 0, the following preconditioner K̃ can be employed for K:

K̃−1 = T0 + P0

(
MBMT

B

)−T

(
p∑

l=1

M
(l)
B S(l)M

(l)T

B

)(
MBMT

B

)−1
P0,

where P0 = I − G
(
GT G

)−1
GT and T0 = G

(
GT KG

)−1
GT . Alternative

preconditioners Di from (11.80) may also be suitably substituted. When the
coefficient c(x) ≥ c0 > 0, a preconditioner K̃ for K can be defined as:

K̃−1 = T̃0 + Q
(
MBMT

B

)−T

(
p∑

l=1

M
(l)
B S(l)M

(l)T

B

)(
MBMT

B

)−1
QT ,

where Q = I − C(CT KC)−1CT K and T̃0 = C(CT KC)−1CT .

Remark 11.18. In the special case of a saddle point preconditioner L̃:

L̃ =

[
Ã MT

B

MB 0

]
,

the following choice was suggested in [AC2, AC3] for Ã(l) on Ωl ⊂ IRd, where
Ã = blockdiag(Ã(1), · · · , Ã(p)):

Ã(l) = hd−2
l αl (I(l) − P (l)) + γl h

d−1
l βlP

(l), ∀1 ≤ l ≤ p,

for γl = diam(Ωl), I(l) the identity of size corresponding to the number of
unknowns in Xhl

(Ωl) and P (l) is the matrix that maps a function defined on
∂Ωl onto its mean value, based on a preconditioner of [BR13]. A condition
number cond(L̃, L) ≤ C maxl (hl/γl) is proved in [AC2, AC3] with C inde-
pendent of hl, γl (for aspect ratios bounded by a constant), and αl and βl. A
linear system with coefficient matrix Ã can be solved at a cost proportional
to the number of unknowns in u.

Remark 11.19. Alternative Neumann-Neumann, Schwarz and multigrid algo-
rithms are described in [LE, DR6, GO11, BR3, DR7, DR8].
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11.2.5 Accuracy of Mortar Element Discretizations

In the following, we state without proof, theoretical results on the stability
and accuracy of mortar element saddle point discretizations. The reader is
referred to [BE18, BE6, BE4, BE21, HO5, BR2, WO4, KI] for proofs and
details. We shall focus only on the convergence of mortar element-saddle point
discretizations based on continuous and discontinuous multiplier spaces Yh.

Let Ω1, . . . , Ωp denote a nonoverlapping decomposition of Ω in which each
Ωl is triangulated by a quasiuniform local grid Thl

(Ωl) for 1 ≤ l ≤ p. We shall
assume that the local grids satisfy conformity condition (A.2), and assume
that the nonmortar segments Blj have indices j ∈ I∗(l) for 1 ≤ l ≤ p, where
the dimension of each nonmortar Blj is (d − 1) when Ω ⊂ IRd.

We employ the notation A∗(., .) and M∗(., .) to denote the bilinear forms:{ A∗(u, v) =
∑p

l=1

∫
Ωl

(a(x)∇u · ∇v + c(x)u v) dx

M∗(u, ψ) =
∑p

l=1

∑
j∈I∗(l)

∫
Blj

(ul(x) − uj(x)) ψl,j(x) dsx,
(11.87)

where u, v ∈ X and ψ ∈ Ỹ . The following result concerns the stability and
convergence of mortar element discretizations. Bounds for u − uh will reduce
to standard finite element bounds when the grids match and when hl are all
of the same size, showing that mortar element discretizations are of optimal
order in hl. Here ‖ · ‖1,Ωl

will denote a Sobolev norm while ‖ · ‖Yh(Blj) would

denote the norm
(
H

1/2
00 (Blj)

)′
.

Lemma 11.20. Suppose the following conditions hold.

• Let the coefficient a(x) = al on each Ωl in (11.1).
• Let the solution u to (11.1) satisfy u ∈ H1+s(Ωl) for 0 < s ≤ 2 on Ωl.
• Let the nonmortar sides be chosen so that aj ≥ al and hj ≥ hl for each

j ∈ I(l) and 1 ≤ l ≤ p.
• Let Xhl

(Ωl) denote piecewise linear finite element spaces with associated
continuous or discontinuous multiplier space Yh ⊂ Y .

Then the following results will hold.

1. The uniform inf-sup condition (11.31) will hold.
2. The coercivity condition:

A∗(vh, vh) ≥ α ‖vh‖2
X ,

will hold for vh ∈ Kh
0 , where:

Kh
0 = {vh ∈ Xh : M∗(vh, ψh) = 0, ∀ψh ∈ Yh},

for α > 0 independent of h1, . . . , hp.
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3. The following error bound will hold:∑p
l=1 ‖u − uhl

‖2
1,Ωl

+
∑p

l=1

∑
j∈I∗(l) ‖ψ − ψh‖2

Yh(Blj)

≤ C
(∑p

l=1 h2 s
l ‖u‖2

1+s,Ωl
+
∑p

l=1 h2 s
l ‖u‖2

1/2+s,Blj

)
,

where C > 0 is independent of h1, . . . , hp.

Proof. General results [GI3, BR33] on the stability and accuracy of discretiza-
tions of saddle point problems will yield result 3, provided results 1 and 2
hold, and provided suitable approximation properties hold for the spaces
Xh and Yh, see [BE18, BE6, BE4, BE21, HO5, BR2, WO4, KI]. The proof
of the inf-sup condition will depend on each term

∫
Blj

(ul − uj) ψl,j dsx in
M∗(u, ψ). Given ψl,j(x) ∈ Yhj (Blj) define uj,l(x) = 0 on Blj and construct

ul,j(x) ∈
(
Xhl

(Blj) ∩ H
1/2
00 (Blj)

)
satisfying:

∫
Blj

(ul,j − uj,l) ψl,j dsx ≥ ‖ψl,j‖2
Yh(Blj)

with ‖ul,j‖ ≤ γl,j ‖ψl,j‖,

with γl,j independent of hl, see preceding references. Define ul =
∑

j∈I∗(l) ul,j

and extend it discrete harmonically into Xhl
(Ωl). It can then easily be verified

that the inf-sup bound will depend only on γl,j and the maximum number
of nonmortars on each subdomain. Proof of the coercivity condition will be
trivial when c(x) ≥ c0 > 0, see preceding references. Once the inf-sup and
coercivity conditions have been proved, the discretization error will depend
solely on Sobolev norm approximation errors within Xh and Yh, which will
follow by finite element techniques and Sobolev interpolation theory. ��

11.3 Mortar Element Discretization:
Nonconforming Approach

The nonconforming approach to the mortar element discretization of elliptic
equation (11.1) solves a self adjoint and coercive problem for the solutions
uhl

(x) on the subdomain Ωl, by eliminating the flux unknowns ψlj(x) on the
interfaces Blj . Recall that the mortar element-saddle point discretization of
elliptic equation (11.1) seeks uh ∈ Xh and ψh ∈ Yh satisfying:{

A∗(uh, vh) + M∗(vh, ψh) = (f, vh)∗, ∀vh ∈ Xh

M∗(uh, φh) = 0, ∀φh ∈ Yh,
(11.88)

for subspaces Xh ⊂ X and Yh ⊂ Y (or Yh ⊂ Ỹ ) with bilinear forms:⎧⎪⎨
⎪⎩

A∗(w, w) =
∑p

l=1

∫
Ωl

(a(x)∇vl · ∇wl + c(x) vl wl) dx

(f, w)∗ =
∑p

l=1

∫
Ωl

(f(x) wl) dx

M∗(w,ψ) =
∑p

l=1

∑
j∈I∗(l)

∫
Blj

[w]lj ψlj dsx,

(11.89)
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for [w]lj = wl −wj for w = (w1, . . . , wp) ∈ X and ψ ∈ Y . This not only yields
approximations uhl

(x) to the solution u(x) on each subdomain Ωl, but also
approximations ψlj(x) of the flux ψ(x) on each mortar segment Blj . However,
the flux unknowns ψh(x) can be eliminated (as will be shown later), yielding
a self adjoint coercive problem for determining the subdomain solutions uhl

for 1 ≤ l ≤ p. These subdomain solutions will be identical to that obtained in
the saddle point approach, and since they do not match strongly across the
interfaces Blj , the global solution will generally be H1(Ω)-nonconforming.

The mortar element-saddle point discretization (11.88) can be reduced to
a self adjoint coercive problem within the following subspace Kh

0 :

Kh
0 = {vh(x) ∈ Xh : M∗(vh, φh) = 0, ∀φh ∈ Yh}. (11.90)

Substituting vh ∈ Kh
0 into the first row of (11.88) and using M∗(vh, φh) = 0

for all φh ∈ Yh, yields a reduced problem for uh ∈ Kh
0 satisfying:

A(uh, vh) = (f, vh), ∀vh ∈ Kh
0 . (11.91)

The bilinear form A(., .) is self adjoint, but will also be coercive within Kh
0 ,

when the saddle point discretization (11.88) is stable. Thus problem (11.91)
will be uniquely solvable.

Remark 11.21. Generally, Kh
0 will not be H1(Ω) conforming, and hence the

name nonconforming approach. However, if the local grids match, and the
multiplier space Yh uses all segments Blj , so that Yh ⊂ Ỹ , then Kh

0 ⊂ H1(Ω)
will be a conforming finite element space defined on the global grid.

In matrix terms, the saddle point linear system associated with the saddle
point discretization (11.88) of (11.1) is:[

A MT

M 0

][
u
ψ

]
=

[
f
0

]
, (11.92)

involving the block partitioned matrices

A =

⎡
⎢⎢⎣

A(1) 0
. . .

0 A(p)

⎤
⎥⎥⎦ and M =

[
M (1) · · · M (p)

]
, (11.93)

with partitioned vectors u =
(
u(1)T

, . . . ,u(p)T
)T

and f =
(
f (1)T

, . . . , f (p)T
)T

.

A reduced system for u can be obtained by eliminating the block vector ψ by
taking inner products of the first block row in the above system using vectors
v ∈ Kernel(M). The reduced problem will seek u ∈ Kernel(M) satisfying:

vT Au = vT f , ∀v ∈ Kernel(M), (11.94)

since vT MT = 0 when v ∈ Kernel(M). We shall now describe how to compute
an explicit parametric representation of the subspace Kernel(M). We shall
separately consider the two subdomain and multisubdomain cases.
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11.3.1 Two Subdomain Case

In the two subdomain case, the constraint M v = 0 has the form:

M
(1)
B v(1)

B − M
(2)
B v(2)

B = 0.

If zero boundary conditions are imposed on ∂B12 and j∗ denotes nonmortar
side, then M

(j∗)
B will be a square matrix and yield the representation:

{
v(1)

B = R12v
(2)
B = M

(1)−1

B M
(2)
B v(2)

B , if j∗ = 1

v(2)
B = R21v

(1)
B = M

(2)−1

B M
(1)
B v(1)

B , if j∗ = 2.

In this case Kernel(M) will have the following parametric representation:

Kernel(M) =

⎧⎪⎨
⎪⎩
(
v(1)T

I , R12v
(2)T

B ,v(2)T

I ,v(2)T

B

)T

, if j∗ = 1(
v(1)T

I ,v(1)T

B ,v(2)T

I , R21v
(1)T

B

)T

, if j∗ = 2,

for arbitrary v(l)
I ∈ IRn

(l)
I for 1 ≤ l ≤ 2 and v(j∗)

B ∈ IRn
(j∗)
B . Substituting this

representation into (11.94) yields the following linear system when j∗ = 1:⎡
⎢⎢⎣

A
(1)
II 0 A

(1)
IBR12

0 A
(2)
II A

(2)
IB

RT
12A

(1)T

IB A
(2)T

IB RT
12A

(1)
BBR12 + A

(2)
BB

⎤
⎥⎥⎦
⎡
⎢⎢⎣

u(1)
I

u(2)
I

u(2)
B

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f (1)
I

f (2)
I

RT
12f

(1)
B + f (2)

B

⎤
⎥⎥⎦ .

Similarly, when j∗ = 2 the following linear system will be obtained:⎡
⎢⎢⎣

A
(1)
II 0 A

(1)
IB

0 A
(2)
II A

(2)
IBR21

A
(1)T

IB RT
21A

(2)T

IB A
(1)
BB + RT

21A
(2)
BBR21

⎤
⎥⎥⎦
⎡
⎢⎢⎣

u(1)
I

u(2)
I

u(1)
B

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f (1)
I

f (2)
I

f (1)
B + RT

21f
(2)
B

⎤
⎥⎥⎦ .

The resulting reduced system will be symmetric and positive definite.

Remark 11.22. When a discontinuous multiplier space Yh is employed, the ma-
trices R12 = M

(1)−1

B M
(2)
B or R21 = M

(2)−1

B M
(1)
B will be sparse and computable

at low computational cost, since matrix M
(j∗)
B will be a diagonal matrix. For

a continuous multiplier space Yh, matrix M
(j∗)−1

B will be dense.

Remark 11.23. When the grids match, it will hold that M
(1)
B = M

(2)
B . Provided

these matrices are square, then R12 = R21 = I, and the global system will be
equivalent to a conforming finite element discretization.
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11.3.2 Multisubdomain Case

In the multisubdomain case, constructing a parametric representation of
Kernel(M) will be more complicated. Below, we outline this for the case of p
subdomains of Ω ⊂ IRd, when the multiplier space Yh is defined based only
on segments Blj of dimension (d − 1), with indices j ∈ I∗(l) for 1 ≤ l ≤ p:

Yh = Πp
l=1

(
Πj∈I∗(l)Yhj (Blj)

)
,

with discontinuous multiplier spaces Yhj (Blj). The following may be noted.

• On each subdomain boundary ∂Ωj , the nodal unknowns in the interior of
nonmortar segments Blj (i.e., if j ∈ I∗(l) for some l) will be dependent
(slave) variables. All other unknowns associated with the nodes on ∂Ωj

will correspond to independent (master) variables.
• On each nonmortar side, a relation of the form u(j)

Blj
= M

(j)−1

Blj
M

(l)
Blj

u(l)

Blj

will hold, where u(l)

Blj
denotes a vector of nodal unknowns associated with

uhl
(x) on all nodes of Blj , while u(j)

Blj
will denote a nodal vector associated

with uhj
(x) on the interior nodes of Blj .

Collecting together the above master variables, we shall employ the notation:

u(l)
B = RlµB , (11.95)

where µB denotes a nodal vector of all master unknowns on B. In this nota-
tion, the reduced symmetric positive definite linear system (11.94) will be:

⎡
⎢⎢⎢⎢⎢⎣

A
(1)
II 0 A

(1)
IBR1

. . .
...

0 A
(p)
II A

(p)
IBRp

RT
1 A

(1)T

IB · · · RT
p A

(p)T

IB RT ABBR

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u(1)
I

...

u(p)
I

µB

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

f (1)
I

...

f (p)
I

RT fB

⎤
⎥⎥⎥⎥⎥⎦ , (11.96)

where {
RT ABBR = RT

1 A
(1)
BBR1 + · · · + RT

p A
(p)
BBRp

RT fB = RT
1 f (1)

B + · · · + RT
p f (p)

B .
(11.97)

Linear system (11.96) will be symmetric and positive definite by construction.

11.3.3 Iterative Solvers

System (11.96) can be solved using a preconditioned CG method, with
Neumann-Neumann, Schwarz or multigrid methods [LE, DR6, GO11, BR3].
Below, we outline a heuristic variant of the Neumann-Neumann algorithm to
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solve (11.96), which we express as:[
AII AIBR

RT AT
IB RT ABBR

][
uI

µB

]
=

[
f I

RT fB

]
, (11.98)

where RT ABBR and RT fB are defined by (11.97), and Rl by (11.95).
A Schur complement method can be formally employed, by eliminating

uI = A−1
II (f I − AIBRµB). This will yield the system:

RT
(
ABB − AT

IBA−1
II AIB

)
R µB = RT

(
fB − AT

IBA−1
II f I

)
. (11.99)

For discontinuous multiplier spaces, the parameterization u(l)
B = RlµB can be

chosen with each Rl to be of full rank, provided the number of interior nodes on
each mortar side exceeds the number of interior nodes on its nonmortar side.
To construct a Neumann-Neumann preconditioner for the Schur complement
system, note that when c(x) = 0 some of the matrices S(l) will be singular. In
this case, let R0 = span

{
RT

1 Z(1), . . . , RT
p Z(p)

}
and Range(R0) as the coarse

space, where Range(Z(k)) = Kernel(S(k)). If c(x) ≥ c0 > 0, each S(l) will
be nonsingular, and so define Range(Z(k)) = Kernel(S̃(k)) where S̃(k) is the
subdomain Schur complement resulting when c(x) = 0. The inverse of the
formal Neumann-Neumann preconditioner S̃ will be:

S̃−1 = RT
0 S(0)−1

R0 +
p∑

l=1

RT
l S(l)†Rl,

where S(0) ≡ R0SRT
0 . Rigorous convergence bounds are not known [LE].

11.4 Schwarz Discretizations on Overlapping Grids

In certain applications, it may be advantageous to employ overlapping non-
matching grids, see Fig. 11.9. Different techniques may be employed to dis-
cretize an elliptic equation on such grids [ST, ST6, GR16, HE9, HE10, GO7],
[CA17, AC5], and techniques, such as Chimera, were formulated prior to the
development of domain decomposition methodology, employing finite differ-
ence or finite volume methods locally. Such discretizations are also related
to composite grid schemes [BA5, BE15, MC4, GR9, MC3, FE3]. In this sec-
tion, we describe the discretization of an elliptic equation on an overlapping
non-matching grid, using the Schwarz hybrid formulation.

11.4.1 Schwarz Hybrid Formulation

We shall consider the elliptic equation:{
Lu ≡ −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f, in Ω

u = 0, on ∂Ω,
(11.100)
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Fig. 11.9. Two overlapping non-matching grids

where c(x) ≥ c0 > 0. Let Ω∗
1 , . . . , Ω∗

p denote an overlapping decomposition
of Ω, obtained by extension of a nonoverlapping decomposition Ω1, . . . , Ωp

of diameter h0. Ideally, let Ωβh0
l = {x ∈ Ω : dist(x,Ωl) ≤ β h0} and choose

Ω∗
l = Ωβh0

l for β < 1. Let {χl(x)}p
l=1 denote a partition of unity subordinate

to {Ωεh0
l }p

l=1 for some 0 < ε  β, where Ωεh0
l ⊂ Ω∗

l . By construction:∑
j �=l

χj(x) = 1, for x ∈ ∂Ωl ∩ Ω, for 1 ≤ l ≤ p.

If wl(x) denotes the restriction of the solution u(x) of (11.100) to Ω∗
l , then the

following coupled system of equations will be satisfied by wl(x) for 1 ≤ l ≤ p:⎧⎪⎨
⎪⎩

Lwl = f, in Ω∗
l

wl =
∑

j �=l χj wj , on B(l) = ∂Ωl ∩ Ω

wl = 0, on B[l] = ∂Ωl ∩ ∂Ω,

(11.101)

Under suitable regularity assumptions, this coupled system will be well posed.

11.4.2 Nonmatching Grid Discretization

Let each subdomain Ω∗
l be triangulated by a quasiuniform triangulation

Thl
(Ω∗

l ) with grid size hl, where the local grids need not match on regions
of overlap. Given such overlapping grids, a discretization of (11.100) can be
obtained by discretization of its Schwarz hybrid formulation (11.101). Let w(l)

I

denote the vector of interior nodal values of the discrete solution on Ω∗
l , and

w(l)
B the vector of nodal values of the discrete solution on the boundary seg-

ment B(l) = ∂Ω∗
l ∩ Ω. Then, the matrix form of a finite difference or finite

volume discretization of (11.101) will have the form:{
A

(l)
II w(l)

I + A
(l)
IB w(l)

B = f (l)
I ,

w(l)
B =

∑
j �=l C

(l,j) w(j),
for 1 ≤ l ≤ p. (11.102)

Here A
(l)
II w(l)

I + A
(l)
IB w(l)

B = f (l)
I denotes a discretization of Lwl = f in Ω∗

l ,
while w(l)

B =
∑

j �=l C
(l,j) w(j) denotes a discretization of wl =

∑
j �=l χj wj ,
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Fig. 11.10. Example of an interpolation stencil

where w(j) =
(
w(j)T

I ,w(j)T

B

)T

. The stencil for computing the boundary values

of w(l)
B on B(l) can be obtained by using suitably accurate finite difference or

finite element interpolation to define the nodal values of w(l) on B(l) using
w(j) for j �= l. For instance, if xr denotes a node from triangulation Thl

(Ω∗
l )

lying on B(l) lying within a element of Thj (Ω
∗
j ), then each term χj(xr)wj(xr)

can be approximated using the nodal values of wj(x) on the vertices of the
element and summed up, see Fig. 11.10. Define:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wI =
(
w(1)T

I , . . . ,w(p)T

I

)T

wB =
(
w(1)T

B , . . . ,w(p)T

B

)T

f I =
(
f (1)T

I , . . . , f (p)T

I

)T

.

Then, the above coupled system can be expressed in block matrix form as:[
AII AIB

−C I

][
wI

wB

][
f I

0

]
, (11.103)

where AII = blockdiag(A(1)
II , . . . , A

(p)
II ), AIB = blockdiag(A(1)

IB , . . . , A
(p)
IB), and

C is a block submatrix with blocks C(l,j) for l �= j and zero diagonal blocks.
Under suitable assumptions, system (11.103) will be nonsingular [CA17].

11.4.3 Accuracy of the Discretization

Theoretical results in [ST, CA17] and computational results in [ST6, GR16],
[HE9, HE10, GO7] show that when the interpolation stencils are at least as
accurate as the truncation errors of the local discretization schemes, when
the overlap is sufficiently large, and when each local scheme satisfies a dis-
crete maximum principle, then the global discretization error of a Schwarz
discretization will be of optimal order, see Chap. 15.



558 11 Non-Matching Grid Discretizations

Lemma 11.24. Suppose the following conditions hold.

1. Let the local discretization error on Ω∗
l be O(hql

l ).
2. Let the local interpolation stencil C(l) on B(l) be O(El) accurate, with

‖C(l)‖∞ ≤ 1.
3. Let wl and whl

denote the exact and discrete solution restricted to the grid
points of Ω∗

l ∪ B(l).
4. Let a discrete maximum principle hold on each local grid.

Then, the following bound will hold:

p∑
l=1

‖wl − whl
‖∞ ≤ α

p∑
l=1

(O(hql

l ) + O(El)),

where α will depend on higher order derivatives of the exact solution u(x) and
the amount of overlap, but will be independent of hl.

Proof. See [ST, CA17] for finite difference schemes satisfying a discrete max-
imum principle, and see [AC5] for the finite element case. ��

Remark 11.25. Generally, the stability bound improves as the overlap factor
β increases with Ω∗

l = Ωβh0
l . It also improves as the parameter ε used in the

partition of unity {χl}p
l=1 subordinate to {Ωεh0

l }p
l=1, decreases. In the discrete

case, a discontinuous partition of unity obtained as ε → 0+ would also be
sufficient. In practice, the inter-subdomain interpolation stencil can be chosen
to be a convex combination of nodal values from nodes on adjacent grids.

11.4.4 Iterative Solvers

We shall now describe sequential and parallel Schwarz iterative solvers for
(11.102). Let w(l;k) to denote the k’th iterate approximating:

w(l) =
(
w(l)T

I ,w(l)T

B

)T

.

Algorithm 11.4.1 (Sequential Schwarz Algorithm)

1. Let v(l;0) = w(l;0) for 1 ≤ l ≤ p
2. For k = 0, 1, . . . , until convergence do:
3. For l = 1, . . . , p solve:⎧⎨

⎩A
(l)
II w

(l;k+ l
p )

I + A
(l)
IB w

(l;k+ l
p )

B = f (l)
I ,

w
(l;k+ l

p )

B =
∑

j �=l C
(l,j) v(j;k+

(l−1)
p ),

4. Define: v(l;k+ l
p ) = w(l;k+

(l−1)
p )

5. Endfor
6. Endfor
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A parallel version of the above algorithm is outlined below.

Algorithm 11.4.2 (Parallel Schwarz Algorithm)

1. For k = 0, 1, . . . , until convergence do:
2. For l = 1, . . . , p in parallel solve:{

A
(l)
II w(l;k+1)

I + A
(l)
IB w(l;k+1)

B = f I ,

w(l;k+1)
B =

∑
j �=l C

(l,j) w(j;k),

3. Endfor
4. Endfor

The above algorithms correspond to the block Gauss-Seidel and Jacobi
algorithms to solve (11.103). Both of the above algorithms can be shown to
converge geometrically at a rate independent of the mesh sizes {hl}, given
sufficiently large overlap amongst the subdomains, see [CA17]. Since a coarse
space is not included, the rate of convergence can deteriorate with increasing
number of subdomains. Using a zero starting guess, and employing one itera-
tion of the preceding algorithms, a preconditioner can be defined to accelerate
the solution of the nonsymmetric system (11.103).

11.5 Alternative Nonmatching Grid
Discretization Methods

In this section, we outline alternative techniques for discretizing a self adjoint
elliptic equation on a nonmatching grid. We first outline a heuristic discretiza-
tion based on the Steklov-Poincaré formulation [AG2, AG, DO4, GA15] on a
nonoverlapping nonmatching grid, see Fig.11. . We next outline a heuristic
discretization based on the least square-control approach [AT, GL13, GU3].
It is applicable on overlapping or nonoverlapping grids. Next, the partition
of unity approach is outlined [HU3]. It is applicable either on overlapping or
nonoverlapping grids. In each case, our discussion is heuristic in nature, since
such discretizations have not been analyzed (except for the partition of unity
approach [HU3]). For alternative approaches, see [PH, DO4, CA7].
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Fig. 11.11. Non-overlapping non-matching grid
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11.5.1 Steklov-Poincaré Approach

A non-overlapping non-matching grid discretization of (11.100) can also be
obtained using the Steklov-Poincaré approach [AG2, AG, DO4, GA15]. For
simplicity, we only consider a two subdomain nonoverlapping decomposition
Ω1 and Ω2 of Ω. An extension to multi-subdomain decompositions will be
possible, but more involved. For 1 ≤ l ≤ 2, let Thl

(Ωl) denote a quasiuniform
triangulation of Ωl with grid size hl, which does not necessarily match on
B12 = ∂Ω1 ∩∂Ω2. Then, a nonmatching grid discretization of (11.100) can be
obtained by discretizing its Steklov-Poincaré formulation.

Accordingly, recall the Steklov-Poincaré formulation associated with
(11.100) described in Chap. 1.3 is based on the transmission boundary con-
ditions. Let wl(x) = u(x) on Ωl. Then, we seek wl(x) on each subdomain Ωl

satisfying:⎧⎪⎨
⎪⎩

Lw1 = f, in Ω1

w1 = w2, on B12

w1 = 0, on B[1]

and

⎧⎪⎨
⎪⎩

Lw2 = f, in Ω2

n · (a∇w2) = n · (a∇w1) , on B12

w2 = 0, on B[2]

(11.104)

where B[l] = ∂Ωl ∩ ∂Ω and n is the normal to Ω2 on B12 = ∂Ω1 ∩ ∂Ω2.
We shall denote the local discretization of Lw1 = f on Ω1 as:

A
(1)
II w(1)

I + A
(1)
IBw(1)

B = f (1)
I ,

where w(1)
I and w(1)

B denote vectors of nodal values in the interior of Ω1 and
on B(1) = B12 = ∂Ω1∩Ω, while f (1)

I denotes the forcing vector in the interior
of Ω1. Similarly, we denote the discretization of Lw2 = f on Ω2 with flux
boundary conditions n · (a∇w2) = g on B12 as:{

A
(2)
II w(2)

I + A
(2)
IBw(2)

B = f (2)
I

A
(2)
BIw

(2)
I + A

(2)
BBw(2)

B = f (2)
B + gB ,

where f (2)
B + gB denotes the discrete flux on B12.

Discretization of the transmission boundary conditions require care, to en-
sure that the global discretization is stable. In particular, the total number
of equations must equal the total number unknowns. For finite element dis-
cretizations, we may discretize the matching condition w1 = w2 on B12 by
applying a mortar element discretization of its weak form:∫

B12

ψ12(x) (w1(x) − w2(x)) dsx = 0, ∀ψ12(x) ∈ Yh(B12),

using a multiplier space Yh(B12) ⊂ H−1/2(B12), yielding:

M
(1)
B w(1)

B − M
(2)
B w(2)

B = 0.
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If a discontinuous multiplier space Yh = Yhj∗(B12) is employed, where j∗
denotes the index of the nonmortar side for j∗ = 1, 2, then M

(j∗)
B will be a

diagonal matrix. This will yield a parameterization (master-slave relation):{
w(1)

B = R1w
(2)
B = M

(1)−1

B M
(2)
B w(2)

B , if j∗ = 1

w(2)
B = R2w

(1)
B = M

(2)−1

B M
(1)
B w(1)

B , if j∗ = 2.

This will yield the following mappings and their adjoints:{
R1 : Xh2(B12) → Xh1(B12), RT

1 : Xh1(B12)′ → Xh2(B12)′, when j∗ = 1
R2 : Xh1(B12) → Xh2(B12), RT

2 : Xh2(B12)′ → Xh1(B12)′, when j∗ = 2.

(11.105)
If n

(l)
B denotes the number of interior nodes of Thl

(Ωl) on B(l) = B12, this will
denote the dimension of Xhl

(B12) for l = 1, 2. In this case, matrix R1 will be
of size n

(1)
B × n

(2)
B , while R2 will be of size n

(2)
B × n

(1)
B . To discretize:∫

B12

φ12(x)n ·(a∇w1(x) − a∇w2(x)) dsx = 0, ∀φ12(x) ∈ Zh(B12), (11.106)

i.e., flux matching, we may choose a subspace Zh(B12) ⊂ H
1/2
00 (B12).

To ensure that the total number of equations equals the number of un-
knowns, the sum of the dimension of Yh(B12) and Zh(B12) must equal
(n(1)

B + n
(2)
B ). If a mortar element discretization was employed to weakly

match w1 = w2 on B12, for a multiplier space Yhj∗(B12), dimension of Yh(B12)
will be n

(j∗)
B . In this case, a simple choice for Zh(B12) ⊂ H

1/2
00 (B12) can be

obtained using adjoint map RT
j∗ as indicated below. To be specific, suppose

j∗ = 1. Then, w(1)
B = R1w

(2)
B will denote a parameterization (slave-master

relation), and in this case the flux can be mapped using RT
1 , yielding:

A
(2)
BIw

(2)
I + A

(2)
BBw(2)

B = −RT
1

(
A

(1)
BIw

(1)
I + A

(1)
BBw(1)

B

)
+ RT

1 f (1)
B + f (2)

B .

Substituting that w(1)
B = R1w

(2)
B , and combining the discretization of each

equation in the Steklov-Poincaré system yields the following global system:⎡
⎢⎢⎣

A
(1)
II 0 A

(1)
IBR1

0 A
(2)
II A

(2)
IB

RT
1 A

(1)
BI A

(2)
BI RT

1 A
(1)
BBR1 + A

(2)
BB

⎤
⎥⎥⎦
⎡
⎢⎢⎣

u(1)
I

u(2)
I

u(2)
B

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f (1)
I

f (2)
I

RT
1 f (1)

B + f (2)
B

⎤
⎥⎥⎦ .

(11.107)
In the special case that A

(1)
BI = A

(1)T

IB and A
(2)
BI = A

(2)T

IB , this linear system
will be symmetric and positive definite. Additionally, when the grids match, it
will hold that R1 = I and this system will reduce to the standard conforming
discretization. General theoretical results are not known on the convergence
and stability of such discretizations. This discretization, can in principle be
extended to multi-subdomain non-overlapping nonmatching grids.
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11.5.2 Least Squares-Control Approach

Least squares-control formulations, see [AT, GL13, GU3, GU2], have not been
studied for constructing nonmatching grid discretizations. However, we outline
how elliptic equation (11.100) can be discretized on a nonmatching grid using
the least square-control hybrid formulation, as noted in Chap. 1.5.

Our discussion will focus on overlapping nonmatching grids, though it
will be evident that the methodology immediately extends to non-overlapping
nonmatching grids. Let Ω∗

1 , . . . , Ω∗
p denote an overlapping decomposition of

Ω with B(l) = ∂Ω∗
l ∩ Ω and B[l] = ∂Ω∗

l ∩ ∂Ω. We shall assume that each Ω∗
l

is obtained from a nonoverlapping subdomain Ωl by extension. An equivalent
least squares-control formulation of (11.100) can be obtained as follows. Let
wl(x) = u(x) on Ω∗

l . Then, we seek w1(x), . . . , wp(x) defined on Ω∗
1 , . . . , Ω∗

p ,
respectively, satisfying the following constrained minimization problem:

J(w1, . . . , wp) = min
(v1,...,vp)∈K

J(v1, . . . , vp) (11.108)

where we define K as a constraint set of local solutions to (11.100):

K =

⎧⎨
⎩(v1, . . . , vp) :

Lvl = f, in Ω∗
l

vl = 0, on B[l]

n · (a∇vl) = gl, on B(l)
for 1 ≤ l ≤ p

⎫⎬
⎭ ,

for gl(x) denoting unknown fluxes parameterizing the subdomain solutions
vl(x) for 1 ≤ l ≤ p. Here, J(v1, . . . , vp) is a nonnegative functional that can be
defined in many alternative ways, provided J(·) is minimized when the true
solution is obtained on each subdomain. For instance, we may define:

J(v1, . . . , vp) =
p∑

l=1

∑
j∈I∗(l)

‖vl − vj‖2
L2(Blj)

,

where Blj = ∂Ωl ∩ ∂Ωj and I∗(l) denotes indices of subdomains such that
Blj �= ∅ has dimension (d − 1), as in preceding sections.

To obtain a nonmatching grid discretization of (11.108), let Thl
(Ω∗

l ) de-
note a quasiuniform triangulation of Ω∗

l with grid size hl. For simplicity, we
shall assume that the restriction of each triangulation Thl

(Ω∗
l ) to Ωl yields a

triangulation Thl
(Ωl). Define a discrete functional Jh(·) as follows:

Jh(v1, . . . , vp) =
p∑

l=1

∑
j∈I∗(l)

‖vj − Pjl vl‖2
L2(Blj)

, (11.109)

where Pjlvl ∈
(
Xhj

(Blj) ∩ H1/2(Blj)
)

denotes an oblique projection of vl:∫
Blj

(Pjlvl) ψ dsx =
∫

Blj

vl ψ dsx, ∀ψ ∈ Yhj (Blj),

where Yhj
(Blj) denotes a local nonmortar multiplier space.
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The least squares-control discretization will seek w(1), . . . ,w(p):

Jh(w(1), . . . ,w(p)) = min
(v(1),...,v(p))∈Kh

Jh(v(1), . . . ,v(p)) (11.110)

where

Kh =

{
(v(1), . . . ,v(p)) :

A
(l)
II v

(l)
I + A

(l)
IBv(l)

B = f (l)
I

A
(l)T

IB v(l)
I + A

(l)
BBv(l)

B = g(l)
B .

for 1 ≤ l ≤ p

}
,

with g(l)
B denoting unknown fluxes parameterizing Kh. Here:

J(v(1), . . . ,v(p)) =
p∑

l=1

∑
j∈I∗(l)

‖v(j) − Pjlv(l)‖2
0,Blj

,

denotes the differences between local solutions on common interfaces. The pre-
ceding constrained minimization problem can be reduced to a unconstrained
minimization problem, using the parameterization of Kh in terms of the dis-
crete fluxes g(1)

B , . . . ,g(p)
B . We omit further details.

11.5.3 Partition of Unity Approach

The partition of unity method [HU3] constructs an H1(Ω) solution to an
elliptic equation (11.100) using overlapping (or nonoverlapping) subdomains
and a partition of unity [BA6, BA7]. To obtain a Galerkin approximation, a
globally H1(Ω)-conforming finite dimensional space is constructed from local
finite element spaces on the nonmatching grids, using the partition of unity.
Apart from yielding a conforming solution, the accuracy of such discretizations
do not deteriorate with decreasing overlap between the grids [HU3].

We describe the partition of unity method for overlapping subdomains. Let
Ω∗

1 , . . . , Ω∗
p denote an overlapping decomposition of Ω obtained by extending

a nonoverlapping decomposition Ω1, . . . , Ωp. We let B[l] = ∂Ω∗
l ∩∂Ω. On each

subdomain Ω∗
l , let Thl

(Ω∗
l ) denote a quasiuniform triangulation of grid size hl

and Xhl
(Ω∗

l ) ⊂ H1
0,B[l]

(Ω∗
l ) a finite element space on Ω∗

l . Let χ1(x), . . . , χp(x)
denote a partition of unity subordinate to the subdomains Ω∗

1 , . . . , Ω∗
p . Using

the local finite element spaces and the partition of unity, define a global finite
dimensional space Xh(Ω) as follows:

Xh(Ω) =

{
p∑

l=1

χl(x) wl(x) : wl(x) ∈ Xhl
(Ω∗

l )

}
⊂ H1

0 (Ω). (11.111)

A Galerkin approximation of (11.100) will seek uh(x) ∈ Xh(Ω) satisfying:

A(uh, vh) = (f, vh) , ∀vh ∈ Xh(Ω), (11.112)
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where {
A(u, v) =

∫
Ω

(a(x)∇u · ∇v + c(x) u v) dx

(f, v) =
∫

Ω
f(x) v(x) dx.

Theoretical results in [HU3] show that this discretization is accurate of optimal
order. Importantly, this accuracy does not deteriorate as the overlap between
the subdomains decreases. However, a computational disadvantage of this
approach is that explicit construction of a basis for Xh(Ω) can be difficult,
since when the overlap is sufficiently large, smooth partitions of unity can be
constructed for which the nodal basis on each subdomain do not form a global
basis for Xh(Ω). In this case, the standard assembled stiffness matrix can be
singular, see [HU3].

Remark 11.26. A similar approach can be employed for non-overlapping sub-
domains Ω1, . . . , Ωp of Ω. However, a partition of unity sub-ordinate to
Ω1, . . . , Ωp will be discontinuous across ∂Ωl. Despite this, the preceding can
be extended for non-overlapping subdomains [HU3].

11.6 Applications to Parabolic Equations

In time dependent problems, it can be computationally advantageous to use
different time steps in different space-time regions [EW5, JA], with smaller
time steps in regions of rapid change in the solution, and larger time steps in
regions of slower change. Such choices in the time step can reduce the total
computational cost, but will generally result in nonmatching space-time grids.
In this section, we heuristically describe discretizations of a parabolic equation
on nonmatching space-time grids.

Our discussion will focus on a parabolic equation of the form:⎧⎨
⎩

ut + Lu = f(x, t), in Ω × (0, T )
u = 0, on ∂Ω × (0, T )
u = u0(x), in Ω when t = 0,

(11.113)

where
Lu = −∇ · (a∇u) + cu. (11.114)

Three alternative discretizations will be considered, one based on a Schwarz
hybrid formulation (involving overlapping space-time grids), another based on
a Steklov-Poincaré formulation (for nonoverlapping space-time grids) and one
based on a least squares-control formulation (for overlapping or nonoverlap-
ping space-time grids). The methods we shall consider are:

• Schwarz hybrid formulation. Here, the spatial domain Ω is partitioned into
p overlapping subregions {Ω∗

l }
p
l=1 with different time steps τl ≡ (T/nl) and
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grid size hl on each space-time subregion Ω∗
l × [0, T ]. A global discretiza-

tion of the parabolic equation is obtained by discretizing its Schwarz hybrid
formulation on the space-time regions {Ω∗

l × (0, T )}p
l=1.

• Steklov-Poincaré formulation. Here, the spatial domain is partitioned into
p nonoverlapping domains {Ωl}p

l=1 with different time steps τl = (T/nl)
and grid size hl on each space-time subregion Ωl × [0, T ]. A global dis-
cretization is obtained by discretization of the Steklov-Poincaré hybrid
formulation of the parabolic equation. We consider only the case p = 2.

• Least squares-control formulation. Here, the spatial domain is partitioned
into overlapping or nonoverlapping subdomains, with different time steps
τl = (T/nl) and grid size hl in each space-time region. A least squares-
control hybrid formulation of the parabolic equation is then discretized.

11.6.1 Schwarz Formulation

Let Ω∗
1 , . . . , Ω∗

p denote an overlapping decomposition of the spatial domain Ω,
so that {Ω∗

l × [0, T ]}p
l=1 forms an overlapping cover of the space-time domain

Ω × [0, T ]. Let {χl(x)}p
l=1 form a spatial partition of unity on Ω subordinate

to the subdomains {Ω∗
l }

p
l=1. By construction, it will satisfy:

1 =
∑
j �=l

χj(x) on B(l) = ∂Ω∗
l ∩ Ω, for 1 ≤ l ≤ p.

On each space-time region let wl(x, t) denote the restriction of the solution
u(x, t) to Ω∗

l × [0, T ]. Then, the following coupled system of partial differen-
tial equations can be shown to be well posed and equivalent to the original
parabolic equation, provided c(x) ≥ c0 > 0 and other assumptions hold:⎧⎪⎨
⎪⎩

∂wl

∂t + Lwl = f, on Ω∗
l × (0, T ),

wl =
∑

j �=l χj wj , on B(l) × (0, T ),
wl = u0(x), on Ω∗

l when t = 0,

for 1 ≤ l ≤ p. (11.115)

We shall consider a quasiuniform spatial triangulation Thl
(Ω∗

l ) of each spa-
tial subdomain Ω∗

l with grid size hl, and a time step τl = (T/nl) on Ω∗
l ×[0, T ].

The resulting space-time grids may not match, see Fig. 11.12. A space-time
discretization of the original parabolic equation (11.113) can be constructed on
the nonmatching space-time grid, by discretizing the Schwarz hybrid formula-
tion (11.115). On each local space-time region Ω∗

l × (0, T ), a stable explicit or
implicit scheme can be employed to discretize ∂wl

∂t +L wl = f . The intersubdo-
main matching conditions wl =

∑
j �=l χj wj can be appropriately discretized

using a local interpolation stencil (or a mortar element matching in the finite
element case), with convex weights.

The resulting steps can be summarized as follows:

• Let w(l);k denote the discrete solution on Ω∗
l at time k τl for 0 ≤ k ≤ nl.

If a backward Euler Scheme is employed in time, and a finite difference
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Fig. 11.12. Non-matching space-time grids

discretization in space on Ω∗
l , then the following equations will hold on

each space-time region Ω∗
l × (0, T ) for 0 ≤ k ≤ (nl − 1) and 1 ≤ l ≤ p:{

(I + τlA
(l)
II )w(l);k+1

I + τl A
(l)
IBw(l);k+1

B = w(l);k
I + τlf

(l);k+1
I

w(l);k+1
B = g(l);k+1

B ,
(11.116)

where g(l);k+1
B denotes the boundary data obtained by interpolating the

discrete solution on adjacent space-time grids (thus coupling the differ-
ent local equations). An explicit scheme may alternatively be employed,
provided the local time step τl satisfies stability restrictions.

• The boundary data g(l);k+1
B on B(l)× (0, T ) is obtained by discretizing the

matching condition wl(x, t) =
∑

j �=l χj(x) wj(x, t) at the different discrete
times k τl, using interpolation stencils for each term χj(x)wj(x, t) involving
its nodal values on adjacent space-time grid points. Non-negative, convex
weights are ideal. We shall denote the resulting stencil as:

w(l);k+1
B = g(l);k+1

B =
∑

k̃

∑
j �=l

I(l),k+1

k̃,j
w(j);k̃

j . (11.117)

Substituting (11.117) into (11.116) couples the local discretizations.

The above coupled system of algebraic equations involving all the unknowns
on each of the different space-time grids, can be expressed compactly. Let
W(l)

I , W(l)
B , WI , WB and f (l)

I denote the following block vectors:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(l)
I =

(
w(l);1T

I , . . . ,w(l);nT
l

I

)T

W(l)
B =

(
w(l);1T

B , . . . ,w(l);nT
l

B

)T

WI =
(
W(1)T

I , . . . ,W(p)T

I

)T

WB =
(
W(1)T

B , . . . ,W(p)T

B

)T

f (l)
I =

(
u(l);0T

I + τlf
(l);1T

I , τlf
(l);2T

I , . . . , τlf
(l);nT

l

I

)T

.

Define the following block matrices and vectors for 1 ≤ l ≤ p:

G
(l)
II =

⎡
⎢⎢⎣

(I + τl A
(l)
II )

−I
. . .

−I (I + τl A
(l)
II )

⎤
⎥⎥⎦ , G

(l)
IB =

⎡
⎢⎢⎣

I

. . .

I

⎤
⎥⎥⎦ ,

and additionally define:

GII =

⎡
⎢⎢⎣

G
(1)
II

. . .

G
(p)
II

⎤
⎥⎥⎦ , GIB =

⎡
⎢⎢⎣

G
(1)
IB

. . .

G
(p)
IB

⎤
⎥⎥⎦ , f I =

⎡
⎢⎢⎣

f (1)
I

...
f (p)
I

⎤
⎥⎥⎦ .

Then, the coupled global discretization can be expressed compactly as:[
GII GIB

−I I

] [
WI

WB

]
=

[
f I

0

]
, (11.118)

where I denotes the matrix associated with interpolation stencil, which ex-
presses the boundary value WB = I WI . Importantly, the diagonal blocks of
I will be zero (since we require that the interpolation stencil does not employ
boundary nodal values from adjacent grids).

System (11.118) can be solved by a sequential or parallel Schwarz type
iterative algorithm. For instance, each iteration of a parallel Schwarz algorithm
will update the old solution as follows:{

Wnew
B = I Wold

I

Wnew
I = G−1

II (f I − GIBWnew
B ) .

In practice, each local solution need only be stored on the grid points of the
boundary B(l) × {0, τl, . . . , T}. The following result concerns the accuracy of
the global discretization on Ω × (0, T ).
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Lemma 11.27. Suppose the following conditions hold.

1. Let each local scheme on Ω∗
l × (0, T ) be accurate of order O

(
hql

l + τ rl

l

)
.

2. Let the interpolation I(l) stencil be accurate of order O(El).
3. Let ‖I‖∞ ≤ 1.
4. Let a discrete maximum principle hold on each space-time grid.

Then, if U (l) −W (l) denotes the error at all grid points of the space-time grid
Thl

(Ω∗
l ) × {0, τl, . . . , T}, the following bound will hold:

p∑
l=1

‖U (l) − W (l)‖∞ ≤ C

(
p∑

l=1

(hql

l + τ rl

l ) +
p∑

l=1

El

)
,

where C will depend on higher order derivatives of the exact solution u(x, t)
and the amount of overlap, but will be independent of hl and τl.

Proof. See [MA33]. ��

11.6.2 Steklov-Poincaré Approach

We next outline a heuristic discretization of parabolic equation (11.113) on a
non-overlapping non-matching space-time grid, based on a Steklov-Poincaré
formulation, see [AG2, GA15, QU4], of (11.113). For simplicity, we consider
only two nonoverlapping space-time grids. Accordingly, let Ω1 × (0, T ) and
Ω2 × (0, T ) denote cylindrical nonoverlapping space-time regions where Ω1

and Ω2 form a nonoverlapping decomposition of Ω. We let B(l) = ∂Ωl ∩ Ω
and B[l] = ∂Ωl ∩∂Ω. On each spatial region Ωl let Thl

(Ωl) denote a quasiuni-
form grid, and let the time interval [0, T ] be partitioned as {0, τl, 2 τl, . . . , T},
where τl = (T/nl) denotes the local time step. The two local space-time grids
need not match on B12 × [0, T ], where B12 = ∂Ω1 ∩ ∂Ω2.

A discretization of the parabolic equation (11.113) can be obtained on the
nonmatching space-time grid by discretizing its equivalent Steklov-Poincaré
formulation. Let wl(x, t) denote the restriction of u(x, t) to Ωl × [0, T ]. Then,
the following coupled system will be solved by w1(x, t) and w2(x, t):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w1
∂t + Lw1 = f, in Ω1 × (0, T )

w1 = w2, on B12 × (0, T )
w1 = 0, on B[1] × (0, T )
w1 = u0(x), when t = 0

∂w2
∂t + Lw2 = f, in Ω2 × (0, T )

∂w2
∂t + n · (a∇w2) = ∂w1

∂t + n · (a∇w1) , on B12 × (0, T )
w2 = 0, on B[1] × (0, T )
w2 = u0(x), when t = 0,

(11.119)

where n denotes the unit exterior normal to B(2).
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Remark 11.28. When w1 = w2 on B12×(0, T ) it will also hold that ∂w1
∂t = ∂w2

∂t
on B12 × (0, T ), so that the flux transmission condition can also be stated:

n · (a∇w2) = n · (a∇w1), on B12 × (0, T ).

However, we shall retain the terms involving the time derivatives.

On each local space-time grid, the equation ∂wl

∂t + L wl = f can be dis-
cretized using an explicit or implicit scheme in time, and a finite element
method in space. A backward Euler scheme in time and a finite element
method in space will yield the following for 0 ≤ k ≤ (nl − 1) and 1 ≤ l ≤ p:

(M (l)
II + τlA

(l)
II )w(l);k+1

I + (M (l)
IB + τl A

(l)
IB)w(l);k+1

B = M (l)w(l);k + τlf
(l);k+1
I ,
(11.120)

where w(l);k+1
I and w(l);k+1

B denote the nodal unknowns on Ωl and B(l) at time

(k + 1)τl, respectively, and M (l) = [M (l)
II M

(l)
IB ], w(l);k = [w(l);kT

I w(l);kT

B ]T

and f (l);k+1
I is the discrete forcing term on Ωl at time (k + 1)τl.

The preceding local discretizations can be expressed more compactly as
follows. Define block vectors for 1 ≤ l ≤ 2:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W(l)
I =

(
w(l);1T

I , . . . ,w(l);nT
l

I

)T

W(l)
B =

(
w(l);1T

B , . . . ,w(l);nT
l

B

)T

F(l)
I =

(
M (l)w(l);0T

I + τlf
(l);1T

I , τlf
(l);2T

I , . . . , τlf
(l);nT

l

I

)T

.

Define the following nl × nl block matrices using D
(l)
II = (M (l)

II + τl A
(l)
II ):

G
(l)
II =

⎡
⎢⎢⎣

D
(l)
II

−M
(l)
II

. . .

−M
(l)
II D

(l)
II

⎤
⎥⎥⎦ , G

(l)
IB =

⎡
⎢⎢⎣

D
(l)
IB

−M
(l)
IB

. . .

−M
(l)
IB D

(l)
IB

⎤
⎥⎥⎦ ,

and D
(l)
IB = (M (l)

IB + τl A
(l)
IB). Then, each local discretization (11.120) is:

G
(l)
II W

(l)
I + G

(l)
IBW(l)

B = F(l)
I , for 1 ≤ l ≤ 2, (11.121)

where transmission conditions must additionally be imposed for W(l)
B . When

both space-time grids match on B12 × (0, T ), the space-time boundary data
must match W(1)

B = W(2)
B . When both local space-time grids match, the

flux transmission condition ∂w2
∂t + n · (a∇w2) = ∂w1

∂t + n · (a∇w1) can be
heuristically discretized on B12 × (0, T ) using a backward Euler method as:

∑2
l=1

(
(M (l)

BB + τl A
(l)
BB)w(l);k+1

B + (M (l)
BI + τlA

(l)
BI)w

(l);k+1
I

)
=
∑p

l=1

(
M

(l)
BBw(1);k

B + M
(l)
BIw

(1);k
I + τ1f

(1);k+1
B

)
,

(11.122)
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for 0 ≤ k ≤ (nl − 1) with n1 = n2 and τ1 = τ2. This can be expressed as:

2∑
l=1

(
G

(l)
BBW(l)

B + G
(l)
BIW

(l)
I

)
=

2∑
l=1

F(l)
B , (11.123)

where F(l)
B =

(
M

(l)
BBw(l);0T

B + M
(l)
BIw

(l);0T

I + τlf
(l);1T

B , τlf
(l);2T

B , . . . , τlf
(l);nT

l

B

)T

,

and the block entries of G
(l)
BB and G

(l)
BI are the same as for G

(l)
II and G

(l)
IB with

B and I interchanged. By combining the local equations and the interface
matching conditions yields the following global discretization:⎡

⎢⎢⎣
G

(1)
II 0 G

(1)
IB

0 G
(2)
II G

(2)
IB

G
(1)
BI G

(2)
BI G

(1)
BB + G

(2)
BB

⎤
⎥⎥⎦
⎡
⎢⎣

W(1)
I

W(2)
I

WB

⎤
⎥⎦ =

⎡
⎢⎢⎣

F(1)
I

F(2)
I

F(1)
B + F(2)

B

⎤
⎥⎥⎦ ,

in the case of matching space-time grids, where WB = W(1)
B = W(2)

B .
When the space-time grid is nonmatching, W(1)

B �= W(2)
B . Indeed, these

vectors may be of different sizes. To discretize the transmission boundary
conditions, we shall assume for simplicity that the discrete solution is piecewise
linear in time on each local space-time grid. The matching conditions w1 = w2

on B12 × (0, T ) can be discretized using the weak form:
∫ T

0

∫
B12

(w1(x, t) − w2(x, t))ψ(x, t) dsx dt = 0, ∀ψ(x, t) ∈ Yh,t(B12 × [0, T ]),

where Yh,t (B12 × [0, T ]) denotes a nonmortar multiplier space defined on the
triangulation Thj∗(B12)×{0, τj∗ , . . . , T}, where j∗ = 1, 2 denotes the nonmor-
tar side. This will yield a master-slave parameterization relationship:

M (1)W(1)
B − M

(2)
B W(2)

B = 0.

Depending on the choice of nonmortar side, this will be:{
W(1)

B = R1W
(2)
B = M (1)−1

M (2)W(2)
B , if j∗ = 1

W(2)
B = R2W

(1)
B = M (2)−1

M (1)W(1)
B , if j∗ = 2,

thus defining a map:

R1 : Xh2,τ2(B12 × [0, T ]) → Xh1,τ1(B12 × [0, T ]) when j∗ = 1
R2 : Xh1,τ1(B12 × [0, T ]) → Xh2,τ2(B12 × [0, T ]), when j∗ = 2.

The formal adjoints will then map:

RT
1 : Xh1,τ1(B12 × [0, T ])′ → Xh2,τ2(B12 × [0, T ])′,

RT
2 : Xh2,τ2(B12 × [0, T ])′ → Xh1,τ1(B12 × [0, T ])′.



11.6 Applications to Parabolic Equations 571

The flux matching conditions ∂w1
∂t + n · (a∇w1) = ∂w2

∂t + n · (a∇w2) can be
heuristically discretized on B12 × [0, T ] using the adjoint of the preceding
maps. For instance, if j∗ = 1, then W(1)

B = R1W
(2)
B and:

RT
1 G

(1)
BIW

(1)
I + G

(2)
BIW

(2)
I +

(
RT

1 G
(1)
BBR1 + G

(2)
BB

)
W(2)

B = RT
1 F(1)

B + F(2)
B .

When the grids are nonmatching, and j∗ = 1 is the nonmortar side, we may
heuristically substitute the master-slave expression W(1)

B = R1W
(2)
B , and the

adjoint map RT
1 to map the flux on B12 × (0, T ) from the nonmortar side to

the mortar side. Combining all the equations and employing the adjoint map
of R1 will yield the global discretization:⎡

⎢⎢⎣
G

(1)
II 0 G

(1)
IBR1

0 G
(2)
II G

(2)
IB

RT
1 G

(1)
BI G

(2)
BI RT

1 G
(1)
BBR1 + G

(2)
BB

⎤
⎥⎥⎦
⎡
⎢⎢⎣

W(1)
I

W(2)
I

W(2)
B

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

F(1)
I

F(2)
I

RT
1 F(1)

B + F(2)
B

⎤
⎥⎥⎦ .

In the case of matching grids, R1 = I and this will formally reduce to a
standard discretization. Convergence results are not known for this scheme.

11.6.3 Least Squares-Control Approach

We conclude our discussion of heuristic methods for discretizing parabolic
equations on nonmatching space-time grids by outlining a least squares-control
approach. Such formulations have been extensively employed for heterogenous
approximation of various time dependent partial differential equations [GL13]
but not for discretization on nonmatching space-time grids. For simplicity, our
discussion will be heuristic and only consider overlapping space-time grids.

Let {Ω∗
l }

p
l=1 form an overlapping decomposition of Ω, obtained by extend-

ing a nonoverlapping decomposition {Ωl}p
l=1 of Ω. Let Ω∗

l ×[0, T ] denote over-
lapping space-time regions. We shall let B(l) = ∂Ω∗

l ∩Ω and B[l] = ∂Ω∗
l ∩∂Ω,

for 1 ≤ l ≤ p. We also let Blj = ∂Ωl ∩ ∂Ωj and I∗(l) denote the indices of
nonmortar sides. Let wl(x, t) denotes the restriction of u(x, t) to Ω∗

l × [0, T ].
Then, a least squares-control formulation of (11.113) will seek:

J(w1, . . . , wp) = min
(v1,...,vp)∈K

J(v1, . . . , vp), (11.124)

where J(v1, . . . , vp) is a nonnegative functional defined by:

J(v1, . . . , vp) ≡
p∑

l=1

∑
j∈I∗(l)

‖vl − vj‖2
L2(Blj×(0,T )) (11.125)

which measures the difference between the vl(.) across all nonmortar surfaces,
while the constraint set K is parameterized by the local Dirichlet data gl:
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K =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(v1, . . . , vp) :

∂vl

∂t + Lvl = f, on Ω∗
l × (0, T )

vl = gl, on B(l) × (0, T )
vl = 0, on B[l] × (0, T )

v(x, t = 0) = u0(x), on Ω∗
l

for 1 ≤ l ≤ p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(11.126)
The minimum value of J(., . . . , .) within K will be zero.

On each space-time region, we shall consider a quasiuniform triangulation
Thl

(Ω∗
l ) of Ω∗

l with grid size hl. A time step τl = (T/nl) will be employed
for [0, T ] on Ω∗

l × [0, T ]. For simplicity, we shall assume that the restriction of
the quasiuniform triangulation to Ωl yields a triangulation Thl

(Ωl). On each
space-time domain, the parabolic equation ∂wl

∂t + Lwl = f can be discretized
by an explicit or implicit local scheme and a finite element (or finite difference)
method in space. For instance, if a backward Euler scheme is employed in time,
and a finite element discretization in space on Ω∗

l , this will yield a system of
algebraic equations for 0 ≤ k ≤ (nl − 1) and 1 ≤ l ≤ p:{

(M (l)
II + τlA

(l)
II )w(l);k+1

I + (M (l)
IB + τlA

(l)
IB)w(l);k+1

B = M (l)w(l);k + τlf
(l);k+1
I

w(l);k+1
B = g(l);k+1

B ,
(11.127)

where g(l);k+1
B denotes the Dirichlet data parameterizing the local solution

and M (l)w(l);k = M
(l)
II w(l);k

I + M
(l)
IBw(l);k

B . The local discretizations can be
expressed more compactly using the following block vectors for 1 ≤ l ≤ p:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

W(l)
I =

(
w(l);1T

I , . . . ,w(l);nT
l

I

)T

W(l)
B =

(
w(l);1T

B , . . . ,w(l);nT
l

B

)T

g(l)
B =

(
g(l);1T

B , . . . ,g(l);nT
l

B

)T

F(l)
I =

(
M (l)w(l);0T

+ τlf
(l);1T

I , τlf
(l);2T

I , . . . , τlf
(l);nT

l

I

)T

.

Define the nl × nl block matrices using D
(l)
II = (M (l)

II + τl A
(l)
II ):

G
(l)
II =

⎡
⎢⎢⎣

D
(l)
II

−M
(l)
II

. . .

−M
(l)
II D

(l)
II

⎤
⎥⎥⎦ , G

(l)
IB =

⎡
⎢⎢⎣

D
(l)
IB

−M
(l)
IB

. . .

−M
(l)
IB D

(l)
IB

⎤
⎥⎥⎦ ,

and D
(l)
BB = (M (l)

BB + τl A
(l)
BB). Define the following matrices and vectors:

GII = blockdiag(G(1)
II , . . . , G

(p)
II ) GIB = blockdiag(G(1)

IB , . . . , G
(p)
IB)

FI =
(
F(1)T

I , . . . ,F(p)T

I

)T

gB =
(
g(1)T

B , . . . ,g(p)T

B

)T

.
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Let VI = (v(1)T

I , . . . ,v(p)T

I )T , VB = (v(1)T

B , . . . ,v(p)T

B )T . System (11.127) is:{
GIIVI + GIBVB = FI

VB = gB ,
(11.128)

where VI = G−1
II (FI − GIBgB) is parameterized by the Dirichlet data gB .

We define the discrete constraint set Kh,τ as follows:

Kh,τ ≡
{
(VI ,VB) : VI = G−1

II (FI − GIBVB)
}

.

Let (v(1), . . . ,v(p)) ∈ Kh,τ where v(l) = (v(l)T

I ,v(l)T

B )T . We shall let
J(v(1), . . . ,v(p)) denote the discretization of J(v1, . . . , vp):

J(v(1), . . . ,v(p)) =
1
2

p∑
l=1

∑
j∈I∗(l)

‖Rlv(l) − Rljv(j)‖2
L2(B12×(0,T ))

where Rlv(l) denotes the nodal restriction of v(l) to nodes on B(l), while Rlj

denotes a discretization of the oblique projection:

∫ T

0

∫
Blj

(Rljvj − vl) ψ(x, t) dsx dt = 0, ∀ψ ∈ Yhj ,τj
(Blj × (0, T )).

The least squares-control approach will seek (w(1), . . . ,w(p)) minimizing
J(v(1), . . . ,v(p)), subject to constraints (11.128). We omit further details.
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Heterogeneous Domain Decomposition
Methods

A partial differential equation is considered to be of heterogeneous type if
its classification (as an elliptic, parabolic or hyperbolic equation) changes
across subregions. For instance, Tricomi’s equation uxx + y uyy = f(x, y), is
of heterogenous type since it is elliptic for y > 0 and hyperbolic for y < 0,
see [JO]. An equation will be said to have heterogeneous character if it can be
accurately approximated by an equation of heterogeneous type.

Heterogeneous domain decomposition methods are computational tech-
niques motivated by perturbation methods [KE5, LA5], which approximate
equations of heterogeneous character by equations of heterogeneous type.
In applications, equations of heterogeneous type may sometimes be solved
numerically at reduced computational cost, and this motivates their use
[GL13, GA15, QU5, QU3, AS2, QU4, BO8, LE7, QU6]. Applications include
the approximation of the Boltzmann equation by a coupled Boltzmann and
Navier-Stokes model, or the approximation of the large Reynolds number
Navier-Stokes equation by a coupled Navier-Stokes and Euler model, or the
approximation of the Euler equations by a coupled Euler and potential equa-
tion model. Although such heterogeneous models will be beyond the scope of
these notes, we shall illustrate different methods for constructing an elliptic-
hyperbolic approximation of an advection dominated elliptic equation.

Our discussion will be organized as follows. In § 12.1, we describe the
vanishing viscosity approach of [GA15] for constructing an elliptic-hyperbolic
approximation on a non-overlapping decomposition. In § 12.2, we describe
an elliptic-hyperbolic approximation on overlapping subdomains, based on
a Schwarz hybrid formulation. In § 12.3, we describe an elliptic-hyperbolic
approximation based on the least squares-control method [GL13]. In § 12.4,
we describe the χ-formulation which adaptively identifies viscid and inviscid
subregions for heterogeneous approximation [BR32, CA29]. This formulation
yields a nonlinear approximation, even for a linear problem. In § 12.5, we
remark on extensions to advection dominated parabolic equations.
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12.1 Steklov-Poincaré Heterogeneous Model

In this section, we shall describe a heterogeneous model of [GA15] based on the
Steklov-Poincaré formulation. Although this method extends to systems such
as Stokes equations, see [QU6], we shall illustrate it for an elliptic-hyperbolic
approximation of the following advection dominated elliptic equation:{

−ε∆u + b(x) · ∇u + c(x)u = f(x), on Ω,
u = 0, on ∂Ω

(12.1)

where 0 < ε  1 is a perturbation parameter representing the viscosity. We
shall assume

(
c(x) − 1

2∇ · b(x)
)
≥ β > 0 and that there is a subdomain Ω1,

referred to as an inviscid subdomain, on which the following holds:

ε |∆ u|  |b(x) · ∇u + c(x) u|, on Ω1.

By assumption, on Ω1 we may approximate Lu by L0 u, i.e., Lu ≈ L0 u,
where:

Lu = −ε∆u + b(x) · ∇u + c(x) u and L0 u = b(x) · ∇u + c(x) u.

On the complementary subdomain Ω2 =
(
Ω\Ω1

)
, referred to as a viscid sub-

domain, we shall pose the original elliptic equation. To obtain a heterogeneous
approximation of (12.1), the vanishing viscosity method of [GA15] employs
a Steklov-Poincaré hybrid formulation of (12.1) based on Ω1 and Ω2, and
considers its formal limit as the “viscosity” coefficient ε vanishes on Ω1.

Subdomain Vanishing Viscosity Approach. Given Ω1 and Ω2 as above
for (12.1), consider the family of elliptic equations parameterized by η:{

Lηw(η) ≡ −∇ ·
(
aη(x)∇w(η)

)
+ b(x) · ∇w(η) + c(x)w(η) = f(x), in Ω,

w(η) = 0, on ∂Ω,
(12.2)

where the coefficient aη(x) is defined by:

aη(x) = η, on Ω1 and aη(x) = ε, on Ω2. (12.3)

Equation (12.2) reduces to (12.1) when η = ε. Define w
(η)
l (x) ≡ w(η)(x) on Ωl

for l = 1, 2. Then, a combination of the Dirichlet and Neumann transmission
conditions yields the following hybrid formulation of (12.2), see Chap. 1:⎧⎪⎪⎨
⎪⎪⎩

Lηw
(η)
1 = f, in Ω1

w
(η)
1 = w

(η)
2 , on B

w
(η)
1 = 0, on B[1]

and

⎧⎪⎪⎨
⎪⎪⎩

Lηw
(η)
2 = f, in Ω2

n2 · F2(w
(η)
2 ) = n2 · F1(w

(η)
1 ), on B

w
(η)
2 = 0, on B[2]

(12.4)
where B = ∂Ω1 ∩ ∂Ω2 and B[l] = ∂Ωl ∩ ∂Ω, while n2(x) is a unit normal to
∂Ω2, with F1(w

(η)
1 ) = η∇w

(η)
1 − 1

2bw
(η)
1 and F2(w

(η)
2 ) = ε∇w

(η)
2 − 1

2bw
(η)
2

denoting local fluxes. We shall consider the formal limit of (12.4) as η → 0.
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The formal limit of the Steklov-Poincaré system (12.4) will not be well
posed as η → 0. To see this, let w1 and w2 denote the formal limiting
solutions. Then, given w2, the limiting problem for w1 on Ω1 is:⎧⎪⎨
⎪⎩

L0w1 = f, in Ω1

w1 = w2, on B

w1 = 0, on B[1]

and

⎧⎪⎨
⎪⎩

Lw2 = f, in Ω2

n2 · F2(w2) = n2 · F1(w1), on B

w2 = 0, on B[2]

(12.5)

where L0w1 = b(x) · ∇w1 + c(x)w1. The partial differential equation for w1

is of hyperbolic type, and will not be well posed since Dirichlet boundary
conditions are imposed on both on inflow and outflow segments of ∂Ω1:

∂Ωl,in = {x ∈ ∂Ωl : nl(x) · b(x) < 0} ,

∂Ωl,out = {x ∈ ∂Ωl : nl(x) · b(x) ≥ 0} ,

where nl(x) is the exterior normal to x ∈ ∂Ωl. Let B[l,in] = ∂Ω ∩ ∂Ωl,in and
B

(l)
in = ∂Ωl,in∩B for l = 1, 2. Locally, a well posed hyperbolic (inviscid) prob-

lem can be obtained for w1 on Ω1 (given w2) by imposing Dirichlet boundary
conditions only on the inflow boundary ∂Ω1,in = B

(1)
in ∪ B[1,in]:⎧⎪⎨

⎪⎩
L0w1 = f, in Ω1

w1 = w2, on B
(1)
in

w1 = 0, on B[1,in].

(12.6)

Interestingly, substituting this modification into the limiting Steklov-Poincaré
system yields a well posed heterogeneous problem for w1 and w2, see [GA15]:⎧⎪⎨
⎪⎩

L0w1 = f, in Ω1

w1 = w2, on B
(1)
in

w1 = 0, on B[1,in]

and

⎧⎪⎨
⎪⎩

Lw2 = f, in Ω2

n2 · F̃2(w2) = n2 · F̃1(w1), on B

w2 = 0, on B[2]

(12.7)
where F̃1(w1) = − 1

2bw1 and F̃2(w2) = ε∇w2 − 1
2bw2 are the local fluxes.

Importantly, w1(x) and w2(x) will not match on B ∩ ∂Ω1,out, resulting in a
discontinuous solution, however, the fluxes of w1(x) and w2(x) match on B.

Proposition 12.1. Let w(η) be the solution to (12.2), where the coefficients
satisfy

(
c(x) − 1

2∇ · b(x)
)
≥ β > 0. The following will hold for f ∈ L2(Ω).

1. There exists (w1, w2) ∈ L2(Ω1) × H1(Ω2) such that as η → 0:

w(η)
∣∣∣
Ω1

→ w1, weakly in L2(Ω1), w(η)
∣∣∣
Ω2

→ w2, weakly in H1(Ω2).

2. The weak limits w1(x) and w2(x) will satisfy heterogeneous system (12.7).

Proof. See [GA15]. ��
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Discretization of (12.7). We consider a heuristic discretization of the het-
erogeneous system (12.7), by directly discretizing its component equations for
w1(x) and w2(x). Since w1(x) �= w2(x) on (B ∩ ∂Ω1,out) and since ε  1, care
must be exercised to ensure that the global discretization is stable [JO2]. Let
Ω be triangulated by a quasiuniform grid Th(Ω) with mesh size h. We shall
decompose B = (∂Ω1 ∩ ∂Ω2) as B = B− ∪ B+ where:

B− = {x ∈ B : n1(x) · b(x) < 0} and B+ = {x ∈ B : n1(x) · b(x) ≥ 0} .

Note that B− = B
(1)
in . We shall assume that all nodes on B lie in (B− ∪ B+).

On subdomain Ω1, we shall discretize the following hyperbolic problem:⎧⎪⎨
⎪⎩

L0 w1 = b(x) · ∇w1 + c(x) w1 = f(x), in Ω1

w1 = w2, on B−
w1 = 0, on B[1,in],

(12.8)

using a stable scheme (such as upwind finite difference, Galerkin finite ele-
ment with weakly enforced boundary conditions, or streamline-diffusion finite
element [JO2]). We shall denote the resulting linear system as:

⎡
⎢⎣

C
(1)
II C

(1)
IB+

C
(1)
IB−

C
(1)
B+I C

(1)
B+B+

C
(1)
B+B−

0 0 I

⎤
⎥⎦
⎡
⎢⎢⎣

w(1)
I

w(1)
B+

w(1)
B−

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f (1)
I

f (1)
B+

w(2)
B−

⎤
⎥⎥⎦ , (12.9)

where we have block partitioned the nodal unknowns on Ω1 as follows. We let
w(1)

I , w(1)
B+

and w(1)
B− denote nodal vectors corresponding to nodal values on

the interior nodes in Ω1, the nodes on B+ and on B−, respectively.
On Ω2, we shall discretize the elliptic equation:⎧⎪⎨
⎪⎩

Lw2 = −ε∆w2 + b(x) · ∇w2 + c(x) w2 = f(x), in Ω2

n2 ·
(
ε∇w2 − 1

2 bw2

)
= β(x), on B

w2 = 0, on B[2].

(12.10)

We denote a stable discretization of elliptic equation (12.10) as:⎡
⎢⎢⎣

εA
(2)
II + C

(2)
II εA

(2)
IB+

+ C
(2)
IB+

εA
(2)
IB− + C

(2)
IB−

ε A
(2)
B+I + C

(2)
B+I εA

(2)
B+B+

+ C
(2)
B+B+

εA
(2)
B+B− + C

(2)
B+B−

εA
(2)
B−I + C

(2)
B−I εA

(2)
B−B+

+ C
(2)
B−B+

εA
(2)
B−B− + C

(2)
B−B−

⎤
⎥⎥⎦
⎡
⎢⎢⎣

w(2)
I

w(2)
B+

w(2)
B−

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

f (2)
I

β̃
(2)
B+

β̃
(2)
B−

⎤
⎥⎥⎦,

(12.11)

where the unknowns on Ω2 were block partitioned as w(2)
I , w(2)

B+
and w(2)

B− ,

while A
(2)
XY for X, Y = I, B−, B+ denotes submatrices of the stiffness matrix

when b(x) = 0 and c(x) = 0, and C
(2)
XY denotes the discretization of the first

and zeroth order terms. We let L
(2)
XY = εA

(2)
XY + C

(2)
XY for X, Y = I, B+, B−.
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To obtain a global discretization, we shall need a discretization of the
transmission condition n1 ·

(
− 1

2b(x) w1

)
+ n2 ·

(
ε∇w2 − 1

2b(x) w2

)
= 0 on B.

We shall express this separately on B− and B+. Given w(1)
I , w(1)

B+
and w(1)

B− ,

let β
(1)
B+

and β
(1)
B− denote the discrete flux n1 ·

(
− 1

2b(x) w1

)
on B+ and B−:⎧⎨

⎩
β

(1)
B+

= D
(1)
B+Iw

(1)
I + D

(1)
B+B+

w(1)
B+

+ D
(1)
B+B−w(1)

B−

β
(1)
B− = D

(1)
B−Iw

(1)
I + D

(1)
B−B+

w(1)
B− + D

(1)
B+B−w(1)

B− .
(12.12)

For instance β
(1)
B+

= MB+B+w(1)
B+

and β
(1)
B− = MB−B−w(1)

B− , where:{ (
MB+B+

)
ij

=
∫

B+
(−n1(x) · b(x)) φi(x) φj(x) dsx(

MB−B−
)
ij

=
∫

B−
(−n1(x) · b(x)) φi(x) φj(x) dsx,

where {φi(.)} is the finite element basis restricted to B. The discrete flux
tranmission condition can then be expressed as:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L
(2)
B+I w(2)

I + L
(2)
B+B+

w(2)
B+

+ L
(2)
B+B− w(2)

B−

+ D
(1)
B+I w(1)

I + D
(1)
B+B+

w(1)
B+

+ D
(1)
B+B− w(1)

B− = f (1)
B+

+ f (2)
B+

L
(2)
B−I w(2)

I + L
(2)
B−B+

w(2)
B+

+ L
(2)
B−B− w(2)

B−

+ D
(1)
B−I w(1)

I + D
(1)
B−B+

w(1)
B+

+ D
(1)
B−B− w(1)

B− = f (1)
B− + f (2)

B− .

A global discretization of heterogeneous problem (12.7) can now be obtained
employing the preceding local discretizations.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
(1)
II w(1)

I + C
(1)
IB+

w(1)
B+

+ C
(1)
IB−w(1)

B− = f (1)
I

C
(1)
B+Iw

(1)
I + C

(1)
B+B+

w(1)
B+

+ C
(1)
B+B−w(1)

B− = f (1)
B+

w(1)
B− = w(2)

B−

L
(2)
II w(2)

I + L
(2)
IB+

w(2)
B+

+ L
(2)
IB− w(2)

B− = f (2)
I

L
(2)
B+I w(2)

I + L
(2)
B+B+

w(2)
B+

+ L
(2)
B+B− w(2)

B−

+D
(1)
B+I w(1)

I + D
(1)
B+B+

w(1)
B+

+ D
(1)
B+B− w(1)

B− = f (1)
B+

+ f (2)
B+

L
(2)
B−I w(2)

I + L
(2)
B−B+

w(2)
B+

+ L
(2)
B−B− w(2)

B−

+D
(1)
B−I w(1)

I + D
(1)
B−B+

w(1)
B+

+ D
(1)
B−B− w(1)

B− = f (1)
B− + f (2)

B− .

(12.13)

The first three blocks discretize b(x) · ∇w1 + c(x) w1 = f(x) in Ω1 ∪ B+

with boundary conditions w1 = w2 on B−. The fourth block corresponds to a
discretization of Lw2 = f in Ω2. The fifth block discretizes the flux matching
condition n2 ·

(
ε∇w2 − 1

2bw2

)
− 1

2 n1 ·bw1 = 0 on B+, while the sixth block
discretizes n2 ·

(
ε∇w2 − 1

2bw2

)
− 1

2 n1 · bw1 = 0 on B−.
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Eliminating w(1)
B− using w(1)

B− = w(2)
B− , we may express the preceding system

compactly using the unknowns w(1)
I , w(1)

B+
, w(2)

I , w(2)
B+

and w(2)
B− = w(1)

B− :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C
(1)
II C

(1)
IB+

0 0 C
(1)
IB−

C
(1)
B+I C

(1)
B+B+

0 0 C
(1)
B+B−

0 0 L
(2)
II L

(2)
IB+

L
(2)
IB−

D
(1)
B+I D

(1)
B+B+

L
(2)
B+I L

(2)
B+B+

LB+B−

D
(1)
B−I D

(1)
B−B+

L
(2)
B−I L

(2)
B−B+

LB−B−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w(1)
I

w(1)
B+

w(2)
I

w(2)
B+

w(2)
B−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f (1)
I

f (1)
B+

f (2)
I

fB+

fB−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (12.14)

where L
(2)
XY = εA

(2)
XY +C

(2)
XY and LXX = L

(2)
XX +D

(2)
XX for X = B+ or X = B−,

while fB+ = f (1)
B+

+ f (2)
B+

and fB− = f (1)
B− + f (2)

B− .

Using the above block system, we may construct a Schur complement
system involving w(2)

B−(= w(1)
B−) and w(2)

B+
, by eliminating w(1)

I , w(1)
B+

and w(2)
I

as follows. Given w(1)
B− and w(2)

B+
, solving the first three block equations yields:

⎡
⎢⎢⎣

w(1)
I

w(1)
B+

w(2)
I

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C
(1)
II C

(1)
IB+

0

C
(1)
B+I C

(1)
B+B+

0

0 0 L
(2)
II

⎤
⎥⎥⎦
−1 ⎡
⎢⎢⎣

f (1)
I − C

(1)
IB−w(1)

B−

f (1)
B+

− C
(1)
B+B−w(1)

B−

f (2)
I − L

(2)
IB−w(1)

B− − L
(2)
IB+

w(2)
B+

⎤
⎥⎥⎦ .

Substituting this expression into the fourth and fifth block row equations
yields the reduced Schur complement system:

S

[
w(2)

B+

w(2)
B−

]
=

[
f̃B+

f̃B−

]
, (12.15)

where S = S(1) + S(2) is a sum of local Schur complements defined by:

S(1) =

⎛
⎝[D

(1)
B+B−

D
(1)
B−B−

]
−
[

D
(1)
B+I D

(1)
B+B+

D
(1)
B−I D

(1)
B−B+

] [
C

(1)
II C

(1)
IB+

C
(1)
B+I C

(1)
B+B+

]−1 [
C

(1)
IB−

C
(1)
B+B−

]⎞⎠[ 0

I

]T

S(2) =

[
L

(2)
B+B+

L
(2)
B+B−

L
(2)
B−B+

L
(2)
B−B−

]
−

⎡
⎣L

(2)
B+IL

(2)−1

II L
(2)
IB+

L
(2)
B+IL

(2)−1

II L
(2)
IB−

L
(2)
B−IL

(2)−1

II L
(2)
IB+

L
(2)
B−IL

(2)−1

II L
(2)
IB−

⎤
⎦ ,

(12.16)

and where the forcing terms f̃B+ and f̃B− are defined by:

[
f̃B+

f̃B−

]
=

⎡
⎣ fB+ − L

(2)
B+IL

(2)−1

II f (2)
I

fB− − L
(2)
B−IL

(2)−1

II f (2)
I

⎤
⎦

−
[

D
(1)
B+I D

(1)
B+B+

D
(1)
B−I D

(1)
B−B+

][
C

(1)
II C

(1)
IB+

C
(1)
B+I C

(1)
B+B+

]−1 [
f (1)
I

f (1)
B+

]
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Each local discretization should be chosen to ensure stability of (12.14).

Iterative Solver. Below, we describe a variant of the Dirichlet-Neumann
algorithm of [GA15] to solve (12.7) using a relaxation parameter 0 < θ < 1.

Algorithm 12.1.1 (Dirichlet-Neumann Algorithm for Solving (12.7))
Let (w(0)

1 , w
(0)
2 ) be a starting iterate, and (w(k)

1 , w
(k)
2 ) the k’th iterate

1. For k = 0, 1, · · · until convergence do:
2. Solve an hyperbolic equation to determine w

(k+1)
1 :⎧⎪⎨

⎪⎩
L0 w

(k+1)
1 = f(x), in Ω1

w
(k+1)
1 = 0, on B[1,in]

w
(k+1)
1 = θ w

(k)
1 + (1 − θ) w

(k)
2 , on B−.

3. Solve an elliptic equation to determine w
(k+1)
2 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lw
(k+1)
2 = f(x), on Ω2

n2 ·
(
ε∇w

(k+1)
2 − 1

2bw
(k+1)
2

)
= − 1

2n2 · bw
(k+1)
1 , on B+

n2 ·
(
ε∇w

(k+1)
2 − 1

2bw
(k+1)
2

)
= − 1

2n2 · bw
(k+1)
1 , on B−

w
(k+1)
2 = 0, on B[2].

4. Endfor

In the discrete version, w(l);k
X will denote the k’th iterate for w(l)

X .

Algorithm 12.1.2 (Dirichlet-Neumann Matrix Algorithm for (12.14))

1. For k = 0, 1, · · · until convergence do:
2. Define w(1);k+1

B− = θ w(1);k
B− + (1 − θ)w(2);k

B−
3. Solve the linear system:

[
C

(1)
II C

(1)
IB+

C
(1)
B+I C

(1)
B+B+

][
w(1);k+1

I

w(1);k+1
B+

]
=

⎡
⎣ f (1)

I − C
(1)
IB−w(1);k+1

B−

f (1)
B+

− C
(1)
B+B−w(1);k+1

B−

⎤
⎦

4. Update f̃ (k+1)
B+

= fB+−D
(1)
B+Iw

(1):k+1
I −D

(1)
B+B+

w(1):k+1
B+

−D
(1)
B+B−w(2):k+1

B−

5. Update f̃ (k+1)
B− = fB−−D

(1)
B−Iw

(1):k+1
I −D

(1)
B−B+

w(1):k+1
B+

−D
(1)
B−B−w(2):k+1

B− .
6. Solve the linear system:⎡

⎢⎢⎣
L

(2)
II L

(2)
IB+

L
(2)
IB−

L
(2)
B+I L

(2)
B+B+

L
(2)
B+B−

L
(2)
B−I L

(2)
B−B+

L
(2)
B−B−

⎤
⎥⎥⎦
⎡
⎢⎢⎣

w(2);k+1
I

w(2);k+1
B+

w(2);k+1
B−

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f (2)
I

f̃ (k+1)
B+

f̃ (k+1)
B−

⎤
⎥⎥⎦

7. Endfor
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Remark 12.2. If
(
c(x) − 1

2 ∇ · b(x)
)
≥ β > 0 and 0 < θ < 1, this algorithm

will converge independent of h for appropriate discretizations, see [GA15].

Remark 12.3. The Dirichlet-Neumann algorithm we have described differs
from the algorithm described in [GA15, QU6] in two ways. Firstly, the flux
transmission condition employed in [GA15, QU6] has the following form:

n2 · (ε∇w2 − b(x) w2) = n2 · (−b(x)w1) on B.

Secondly, since w1(x) = w2(x) on B−, this is equivalent to:

n2 · (ε∇w2) = 0 on B− and n2 · (ε∇w2 − b(x) w2) = n2 · (−b(x) w1) on B+.

The transmission conditions we employ are different from the above (though
equivalent), but yields coercive local problems.

Remark 12.4. Generally, it is preferable to employ GMRES acceleration when
solving either (12.14) or (12.15). In this case, one iteration of the preceding
Dirichlet-Neumann algorithm (or its Robin-Robin generalizations) with a zero
starting guess, can be employed to formulate a preconditioner.

Remark 12.5. If
(
c(x) − 1

2∇ · b(x)
)
≥ β > 0 and w1(.) is smooth on Ω1, a

stable discretization of (12.8) can be obtained using a Galerkin method with
weakly enforced inflow boundary conditions on ∂Ω1,in. A Galerkin method
with weakly enforced boundary conditions w1(.) = g(.) on ∂Ω1,in will be
based on Galerkin approximation of B1(u, v) = F1(v) where:{

B1(u, v) ≡
∫

Ω1
(b(x) · ∇u + c(x)u) v dx −

∫
∂Ω1,in

n1(x) · b(x)u v dsx

F1(v) ≡
∫

Ω1
f(x) v dx +

∫
∂Ω1,in

g(x) vdsx.

It can be verified that B1(u, u) ≥ β ‖u‖2
L2(Ω1

+ 1
2

∫
∂Ω1

|n1(x) · b(x)|u2 dsx,
thereby ensuring stability in the induced norm. Alternatively, a streamline
diffusion or upwind difference discretization can be employed [JO2].

Remark 12.6. If the local solution w1(.) is smooth in Ω1, the grid size h1 in
Ω1 can be chosen to be larger than the grid size h2 in the layer region Ω2.
Depending on the number of unknowns in Ω1, it may be possible to use a
direct solver. Furthermore, if the layer region Ω2 is of width O(ε), it may be
possible to reorder the unknowns and to employ a band solver on Ω2.

Accuracy of the Heterogeneous Approximation. Generally, the local
solutions w1(.) and w2(.) to the heterogenous system (12.7) will differ from
the solution u(.) to the original advection dominated elliptic equation (12.1)
on the subdomains. It is important to estimate the error due to omission
of the viscous term in Ω1 and omission of the conormal derivative on B−.
For a stable discretization of (12.7), we heuristically indicate why the elliptic-
hyperbolic approximation will introduce an error of magnitude O(ε), provided
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the subdomains are chosen carefully, and the solution is sufficiently smooth
on Ω1, and the heterogeneous problem is well posed.

Let H w = f formally denote the linear system (12.14) obtained by dis-

cretizing the heterogeneous problem (12.7) (where w =
(
w(1)T

,w(2)T
)T

rep-
resents the nodal vectors associated with the heterogeneous solution on Ω1

and Ω2, respectively). Let u denote an interpolant or projection of the so-
lution u(x) of (12.1) to the nodes associated with w(1) and w(2). Then, by
formulation of the elliptic-hyperbolic model, it will hold that H u = f + E,
where E combines the discretization error for the heterogeneous system (12.7)
and the error introduced by omission of viscous terms in Ω1 and conormal
derivatives on B. Subtracting the two equations formally yields:

H (u − w) = E =⇒ ‖u − w‖ ≤ ‖H−1‖ ‖E‖.
The magnitude of the error can be estimated under the following assumptions.

Lemma 12.7. Suppose the following conditions hold.

1. Let the heterogeneous discretization be stable, i.e., ‖H−1‖ ≤ c1 for some
c1 > 0 independent of h and ε.

2. Let ‖E‖ ≤ c2 hq + c3 ε for c2 > 0, c3 > 0 independent of h and ε, where
u denotes the restriction of u(x) to the grid points associated with w and
O(hq) denotes the truncation error of the heterogeneous discretization.

Then, the following error bound will hold:

‖u − w‖ ≤ c1 (c2 hq + c3 ε) .

Proof. Follows trivially from the assumptions. ��

Remark 12.8. The assumption that ‖H−1‖ ≤ c1 be independent of h, ε will
depend on the well posedness of the heterogenous problem as ε → 0, and
on the stability of the heterogeneous discretization in the norm ‖ · ‖. The
term E will be a sum of the truncation error for the discretization of the
heterogeneous system, and a viscous term −ε∆u on interior nodes of Ω1 and
εn ·∇u on nodes of B. Provided u(x) is sufficiently smooth on Ω1 (which was
our assumption regarding the choice of subdomain Ω1), the latter term will
be O(ε) in magnitude. In this case, the discrete solution to the heterogeneous
model will have an accuracy comparable to the discrete solution of the original
problem, provided ε ≤ O(hq).

Application to a Model Problem. We end this section by illustrat-
ing a Steklov-Poincaré heterogeneous approximation of the following one-
dimensional elliptic boundary value problem which is explicitly solvable:⎧⎨

⎩
−ε u′′(x) + u′(x) = 1, for x ∈ (0, 1)

u(0) = 0,
u(1) = 0.

(12.17)
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An explicit solution of the above boundary value problem is:

u(x) = x −
(

1 − ex/ε

1 − e1/ε

)
.

Examination of u(x) indicates a boundary layer of width O(ε) near x = 1.
Thus, for some 0 < a < 1 such that |1 − a| � ε, we may choose Ω1 = (0, a)
as the inviscid subdomain and Ω2 = (a, 1) as the viscid subdomain. For such
a choice of a, the boundary layer will be contained within Ω2 = (a, 1). For
simplicity assume a = 1/2 (though a value of a depending on ε would be
more appropriate). Since b(x) = 1, the left boundary x = 0 will be an
inflow segment for Ω1 = (0, 0.5), while B = 0.5 will be an outflow bound-
ary for Ω1 = (0, 0.5). Thus B− = ∅ and B+ = B. Applying the limit-
ing transmission conditions n2 · (ε∇w1 − bw2) = n2 · (−bw2) on B+ as
in [GA15, QU6], and omitting the transmission condition w1 = w2 on B−
(since B− is empty), we obtain the following heterogeneous Steklov-Poincaré
approximation of (12.17), coupling a viscous problem on Ω2 with an inviscid
problem on Ω1:

{
w′

1(x) = 1, x ∈ (0, 0.5)

w1(0) = 0,

⎧⎪⎨
⎪⎩

−εw′′
2 (x) + w′

2(x) = 1, x ∈ (0.5, 1)

εw′
2(1/2) + w2(1/2) = w1(1/2),

w2(1) = 0.

Since the equation for w1(x) is decoupled from w2(x), we may solve for w1(x),
determine its flux on B = 0.5 and subsequently solve for w2(x):⎧⎪⎪⎨

⎪⎪⎩
w1(x) = x, x ∈ (0, 1/2)

w2(x) = x −
(

ε e
1
ε − 2 e

1
2ε

e
1
ε − 2 e

1
2ε

)
+
(

(ε − 1) e
x
ε

e
1
ε − 2 e

1
2 ε

)
, x ∈ (1/2, 1).

Note that w1( 1
2 ) �= w2(1

2 ), i.e., the heterogeneous solution is discontinuous at
x = 1/2. A different heterogeneous approximation will be obtained for the
transmission condition n2 ·

(
ε∇w1 − 1

2 bw2

)
= n2 ·

(
− 1

2 bw2

)
on B+:⎧⎪⎪⎨

⎪⎪⎩
w1(x) = x, x ∈ (0, 1/2)

w2(x) = x −
(

2 ε e
1
ε − 3 e

1
2ε

e
1
ε − 3 e

1
2ε

)
+
(

(2 ε − 1) e
x
ε

e
1
ε − 3 e

1
2 ε

)
, x ∈ (1/2, 1).

Again, w1( 1
2 ) �= w2( 1

2 ). Despite the discontinuity across B+, the maximum
norm error will satisfy: ‖w1 − u‖∞,Ω1 + ‖w2 − u‖∞,Ω2 = O(ε) as ε → 0.



12.2 Schwarz Heterogeneous Models 585

12.2 Schwarz Heterogeneous Models

In this section, we shall describe an elliptic-hyperbolic approximation of (12.1)
on two overlapping subdomains, and based on a Schwarz hybrid formulation
of (12.1), see [GL13, GA8, AS2, GA9, BR32, CA29, MA35]. We will assume
that c(x) ≥ c0 > 0 in (12.1) and let Ω1 ⊂ Ω denote a subregion such that:

|ε∆u|  |b(x) · ∇u + (x) u| , for x ∈ Ω1. (12.18)

Given Ω1, we shall assume that an overlapping decomposition Ω∗
1 and Ω∗

2

is chosen such that Ω∗
1 = Ω1 and Ω∗

2 ⊃ (Ω\Ω1). The subdomain Ω∗
1 will

be referred to as the inviscid subdomain and Ω∗
2 as the viscid subdomain.

Given Ω∗
1 and Ω∗

2 , we shall employ a Schwarz hybrid formulation of (12.1) as
in (12.18), and take its limit as the viscosity vanishes on Ω∗

1 . This will yield
an hyperbolic approximation on Ω∗

1 and an elliptic approximation on Ω∗
2 .

Limiting Schwarz Hybrid Formulation. Given the overlapping subdo-
mains Ω∗

1 and Ω∗
2 , the advection dominated elliptic equation (12.1) will have

the following equivalent Schwarz hybrid formulation. Let ul(x) = u(x) on Ω∗
l

for 1 ≤ l ≤ 2. Then, u1(x) and u2(x) will solve the following system for η = ε:⎧⎪⎨
⎪⎩

L
(η)
1 u1 = f, on Ω∗

1

u1 = u2, on B(1)

u1 = 0, on B[1]

and

⎧⎪⎨
⎪⎩

L
(η)
2 u2 = f, on Ω∗

2

u2 = u1, on B(2)

u2 = 0, on B[2].

(12.19)

Here B[l] = ∂Ω∗
l ∩ ∂Ω and B(l) = ∂Ω∗

l ∩ Ω, and the local elliptic operators
L

(η)
l are defined by:{

L
(η)
1 u1 = −η ∆u1 + b(x) · ∇u1 + c(x)u1, on Ω∗

1

L
(η)
2 u2 = −ε∆u2 + b(x) · ∇u2 + c(x) u2, on Ω∗

2

(12.20)

In the vanishing viscosity Schwarz approach, an heterogeneous approximation
of (12.1)is obtained by letting the viscosity parameter η → 0 in Ω∗

1 . This will
yield the following formal heterogeneous limiting system, where wl(.) ≈ ul(.):⎧⎪⎨

⎪⎩
L0 w1 = f, on Ω∗

1

w1 = w2, on B(1)

w1 = 0, on B[1]

and

⎧⎪⎨
⎪⎩

Lw2 = f, on Ω∗
2

w2 = w1, on B(2)

w2 = 0, on B[2],

(12.21)

where L0w1 = b(x) ·∇w1 +c(x) w1 and Lw2 = −ε∆w2 +b(x) ·∇w2 +c(x)w2.
Unfortunately, since L0 w1 = f is of hyperbolic type, the hyperbolic problem
on Ω∗

1 will not be well posed due to the Dirichlet boundary conditions being
imposed on all of ∂Ω1. However, this can be modified.
The hyperbolic problem on Ω∗

1 can be made well posed locally by imposing
Dirichlet conditions only on its inflow boundary segment ∂Ω1,in ⊂ ∂Ω1:

∂Ω1,in = {x ∈ ∂Ω∗
1 : n1(x) · b(x) < 0} ,
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where n1(x) denotes the unit exterior normal to x ∈ ∂Ω1. Substituting this
modification into (12.21) yields the following coupled heterogeneous system:⎧⎪⎨

⎪⎩
L0 w1 = f, on Ω∗

1

w1 = w2, on B(1) ∩ ∂Ω1,in

w1 = 0, on B[1] ∩ ∂Ω1,in

and

⎧⎪⎨
⎪⎩

Lw2 = f, on Ω∗
2

w2 = w1, on B(2)

w2 = 0, on B[2].

(12.22)

When c(x) ≥ c0 > 0, a discretization of this coupled system satisfying a
discrete maximum principle can be shown to be well posed, see Chap. 15.

Discretization of the Schwarz Heterogeneous System (12.22). To
obtain a finite difference discretization of (12.22), we consider a stable fi-
nite difference discretization of the Schwarz hybrid formulation (12.19), with
η = ε:{

L
(1)
II w(1)

I + L
(1)
IBw(1)

B = f (1)
I

w(1)
B = I1w(2)

and

{
L

(2)
II w(2)

I + L
(2)
IBw(2)

B = f (2)
I

w(2)
B = I2w(1),

(12.23)
where L

(1)
XY = η A

(1)
XY +C

(1)
XY and L

(2)
XY = εA

(2)
XY +C

(2)
XY for X, Y = I, B, and

w(l) =
(
w(l)T

I ,w(l)T

B

)T

. Here Il denotes an interpolation defining the nodal

values of wl(x) on the nodes of B(l), using wj(x) for j �= l. Setting the viscosity
η = 0 in Ω∗

1 and imposing boundary conditions only on B
(1)
in = B(1) ∩ ∂Ω1,in

will yield the following discretization of (12.22).{
C

(1)
II w(1)

I + C
(1)
IBin

w(1)
Bin

= f (1)
I

w(1)
Bin

= I1,inw(2)
and

{
L

(2)
II w(2)

I + L
(2)
IBw(2)

B = f (2)
I

w(2)
B = I2w(1),

(12.24)
where

(
εA

(2)
II + C

(2)
II

)
w(2)

I +
(
ε A

(2)
IB + C

(2)
IB

)
w(2)

B = f (2)
I denotes a discretiza-

tion of Lw2 = f on Ω∗
2 and C

(1)
II w(1)

I + C
(1)
IBin

w(1)
Bin

= f (1)
I denotes an upwind

finite difference discretization of L0w1 = f on Ω∗
1 .

Remark 12.9. When c(x) ≥ c0 > 0 and both subdomain discretizations satisfy
a discrete maximum principle, and each interpolation map Il has its maximum
norm bounded by one, and when the subdomains have sufficient overlap, then
the above discretization will be stable in the maximum norm, see Chap. 15.

Iterative Solvers. Under appropriate assumptions, system (12.24) can be
solved using an unaccelerated sequential Schwarz algorithm. Typically, it will
converge robustly provided c(x) ≥ c0 > 0. Below, we summarize the discrete
Schwarz algorithm using w(l);k

X to denote the k’th iterate approximating w(l)
X

for X = I, B(l), B
(l)
in . We let w(l);0

X denote starting iterates.
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Algorithm 12.2.1 (Multiplicative Schwarz for (12.24))

Let w(1);0 =
(
w(1);0T

I ,w(1);0T

Bin

)T

and w(2);0 =
(
w(2);0T

I ,w(2);0T

B

)T

1. For k = 0, 1, · · · until convergence do:
2. Solve the linear system:{

C
(1)
II w(1);k+1

I + C
(1)
IBin

w(1);k+1
Bin

= f (1)
I

w(1);k+1
Bin

= I1,inw(2);k

3. Solve the linear system:{
L

(2)
II w(2);k+1

I + L
(2)
IB w(2);k+1

B = f (2)
I

w(2);k+1
B = I2w(1);k+1

4. Endfor

Remark 12.10. When c(x) ≥ c0 > 0, when both subdomain discretizations
satisfy a discrete maximum principle, when each interpolation map Il has
maximum norm bounded by one, and when the subdomains have sufficient
overlap, then it can be shown that the above iterates converge to the solution
of (12.24) geometrically at a rate independent of h and ε. The parallel version
of the Schwarz algorithm will also converge at a rate independent of h and ε,
see Chap. 15. In practice, Krylov acceleration should be employed.

Accuracy of the Schwarz Heterogeneous Approximation. Here, we
indicate heuristically the effect of omitting the viscous term −ε∆u in Ω∗

1 ,
on the accuracy of a stable discretization of the heterogeneous system. Let
Hw = f formally denote the Schwarz heterogeneous linear system (12.24).
Let u denote the restriction of the solution u(x) of (12.1) to the gridpoints
associated with w. Then, H u = f+E , where E is a sum of the local truncation
error of the heterogeneous Schwarz discretization and a term of the form −ε∆u
restricted to the grids points associated with w. If the Schwarz discretization
is stable, then the following error bound can be obtained.

Lemma 12.11. Suppose the following conditions hold.

1. Let the Schwarz heterogeneous discretization be stable, i.e., ‖H−1‖ ≤ c1

for some c1 > 0 independent of h and ε.
2. Let ‖E‖ ≤ c2 hq + c3 ε for c2 > 0, c3 > 0 independent of h and ε, where

u denotes the restriction of u(x) to the grid points associated with w and
O(hq) denotes the truncation error of the heterogeneous discretization.

Then, the following error bound will hold:

‖u − w‖ ≤ c1 (c2 hq + c3 ε) .

Proof. Follows trivially from the assumptions. ��
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Remark 12.12. The assumption that ‖H−1‖ ≤ c1 be independent of h, ε will
depend on the stability of the heterogenous discretization (12.24) as ε → 0.
The term E will be a sum of the truncation error for the discretization of
the heterogeneous system and a viscous term −ε∆u on interior nodes of Ω∗

1 .
Provided u(x) is sufficiently smooth on Ω

∗
1 (which was our assumption on the

choice of subdomain Ω∗
1), the latter term will be O(ε) in magnitude, and the

Schwarz heterogeneous approximation can be employed when ε ≤ O(hq).

Application to a Model Problem. Below, we illustrate how to construct
a Schwarz heterogeneous approximation of a model one dimensional elliptic
boundary value problem of heterogeneous character for 0 < ε  1:⎧⎨

⎩
−ε u′′(x) + u′(x) = 1, for x ∈ (0, 1)

u(0) = 0,
u(1) = 0.

An explicit solution of the above boundary value problem is:

u(x) = x −
(

1 − ex/ε

1 − e1/ε

)
.

The exact solution u(x) will have a boundary layer of width O(ε) near x = 1.
Let Ω∗

1 = (0, b) denote the inviscid subdomain and Ω∗
2 = (a, 1) the viscid

subdomain. The parameter a < b should be chosen so that the boundary layer
of width O(ε) is contained within Ω2 = (a, 1). To be specific, we shall choose
a = 1/2 and b = 3/4 (though the values of a and b should ideally depend on
ε). Since b(x) = 1, the left boundary x = 0 of Ω∗

1 is an inflow segment, while
boundary B(1) = 3/4 is an outflow boundary, with ∂Ω1,in = {0}.
As a result, the Schwarz heterogeneous system is:

{
w′

1(x) = 1, x ∈ (0, 3/4)
w1(0) = 0,

and

⎧⎨
⎩

−ε w′′
2 (x) + w′

2(x) = 1, x ∈ (1/2, 1)
w2(1/2) = w1(1/2),

w2(1) = 0.

Since w1(x) is decoupled from w2(x), we obtain the following solutions:

w1(x) = x and w2(x) = x −
(

1 − e
(2 x−1)

2 ε

1 − e
1
2 ε

)
.

A continuous approximation w(x) of u(x) can be obtained as:

w(x) = χ1(x) w1(x) + χ2(x) w2(x),

for any choice of partition of unity functions χ1(x), χ2(x) subordinate to
(0, 3/4) and (1/2, 1). As ε → 0+, it can be verified that ‖w − u‖∞ = O(ε).
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12.3 Least Squares-Control Heterogeneous Models

In this section, we describe an alternative elliptic-hyperbolic approximation
of the advection dominated elliptic equation (12.1), based on a least squares-
control formulation of (12.1), see [GL13]. This general approach can be applied
given an overlapping or nonoverlapping decomposition, however, for simplicity
we shall only illustrate it for a two overlapping subdomain decomposition.

Let Ω∗
1 ⊂ Ω denote a inviscid subregion such that:

|ε∆u|  |b(x) · ∇u + c(x) u| , on Ω∗
1 .

Thus, on Ω∗
1 we may omit the diffusion term to obtain an approximate solu-

tion. We shall assume that Ω∗
2 is an overlapping viscid subregion such that Ω∗

1

and Ω∗
2 form an overlapping decomposition of Ω. To obtain a heterogeneous

approximation of (12.1), we shall employ a least squares-control formulation
of (12.1) and take a zero viscosity limit on Ω∗

1 , resulting in a hyperbolic equa-
tion, while employing the original elliptic equation on Ω∗

2 , see [GL13].

Least Squares-Control Heterogeneous Limit. To obtain a hybrid least
squares-control formulation of (12.1) based on the overlapping subdomains
Ω∗

1 and Ω∗
2 , let ul(x) = u(x) on Ω∗

l for l = 1, 2. Define Ω∗
12 = Ω∗

1 ∩Ω∗
2 . Then,

u1(x) and u2(x) will trivially minimize the following square norm:

J(w1, w2) =
1
2
‖w1 − w2‖2

L2(Ω∗
12)

, (12.25)

subject to the constraints (w1, w2) ∈ Kε,ε, where:

Kη,ε =

⎧⎨
⎩ (w1, w2) :

⎛
⎝L

(η,ε)
l wl = f, on Ω∗

l

wl = gl, on B(l)

wl = 0, on B[l]

⎞
⎠ for 1 ≤ l ≤ 2

⎫⎬
⎭ , (12.26)

where gl(.) are Dirichlet data and B[l] = ∂Ω∗
l ∩∂Ω and B(l) = ∂Ω∗

l ∩Ω, with:

L
(η,ε)
l wl =

{
−η ∆w1 + b(x) · ∇w1 + c(x) w1, if l = 1
−ε∆w2 + b(x) · ∇w2 + c(x) w2, if l = 2.

By construction (u1, u2) ∈ Kε,ε and will satisfy:

J(u1, u2) = min
(w1,w2)∈Kε,ε

J(w1, w2). (12.27)

To obtain a heterogeneous approximation of (12.1), J(., .) can be minimized
over K0,ε, the limit of Kη,ε as η → 0+ on Ω∗

1 . Unfortunately, the formal limit
K0,ε will not be well defined on Ω∗

1 , since b(x) ·∇w1+c(x) w1 = f is hyperbolic
and since Dirichlet boundary conditions cannot be imposed on all of ∂Ω1.
However, this limiting problem can be made locally well posed by imposing
Dirichlet boundary conditions only on ∂Ω1,in = {x ∈ ∂Ω∗

1 : n1(x) ·b(x) < 0}.
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Motivated by this observation, we define:

K∗ =

⎧⎨
⎩(w1, w2) :

⎛
⎝L0 w1 = f, on Ω∗

1

w1 = g1, on B
(1)
in

w1 = 0, on B[1],in

⎞
⎠ and

⎛
⎝Lw2 = f, on Ω∗

2

w2 = g2, on B(2)

w2 = 0, on B[2]

⎞
⎠
⎫⎬
⎭ ,

(12.28)
where Lw2 = −ε∆w2 + b · ∇w2 + cw2 and L0 w1 = b · ∇w1 + cw1, with
B

(1)
in = ∂Ω1,in ∩ Ω and B[1],in = ∂Ω1,in ∩ ∂Ω. We may now formulate the

heterogeneous least squares-control problem as seeking (w1, w2) ∈ K∗:

J(w1, w2) = min
(v1,v2)∈K∗

J(v1, v2). (12.29)

Here g1(.) and g2(.) are unknown boundary data parameterizing K∗.

Discretization of (12.29). A heuristic discretization of (12.29) can be ob-
tained as follows. On subdomain Ω∗

1 let:{
C

(1)
II v(1)

I + C
(1)
IBin

v(1)
Bin

= f (1)
I

v(1)
Bin

= g1,in,
(12.30)

denote a stable discretization of L0 v1 = f with v1 = g1 on B
(1)
in . Similarly, on

subdomain Ω∗
2 let: {

L
(2)
II v(2)

I + L
(2)
IBv(2)

B = f (2)
I

v(2)
B = g2,

(12.31)

denote a stable discretization of Lv2 = f with v2 = g2 on B(2), where matrices
L

(2)
XY = εA

(2)
XY + C

(2)
XY for X, Y = I, B. If the triangulations of Ω∗

1 and Ω∗
2

match on Ω
∗
12, let M denote the mass matrix on Ω

∗
12. Then, in the discrete

case the square norm J(v1, v2) can be represented as J(v(1),v(2)):

J(v(1),v(2)) =
1
2

[
R1v(1)

R2v(2)

]T [
M −M

−M M

][
R1v(1)

R2v(2)

]
, (12.32)

where v(1) =
(
v(1)T

I ,v(1)T

Bin

)T

and v(2) =
(
v(2)T

I ,v(2)T

B

)T

are nodal vectors
associated with the finite element solutions v1 and v2, while R1, R2 restrict
v(1), v(2), respectively, onto nodes on Ω∗

12. We then obtain:∫
Ω∗

12

vi vj dx = v(i)T (
RT

i MRj

)
v(j), for 1 ≤ i, j ≤ 2.

A discretization of constrained minimization (12.28) will seek:

J(w(1),w(2)) = min
(v(1),v(2))∈Kh∗

J(v(1),v(2)). (12.33)

where Kh
∗ is defined by (12.30) and (12.31).
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The discretized constrained minimization problem (12.33) can be expressed
as an unconstrained minimization problem, provided we can parameterize Kh

∗
defined by (12.30) and (12.31) in terms of the boundary data g1 and g2:

v(1) = T1g1 and v(1) = T2g2,

where

T1g1 ≡
[

C
(1)−1

II

(
f (1)
I − C

(1)
IBin

g1

)
g1

]
, T2g2 ≡

[
L

(2)−1

II

(
f (2)
I − L

(2)
IBg2

)
g2

]
.

A modified functional J̃(., .) can be defined as follows:

J̃(g1,g2) ≡ J(T1g1, T2g2).

The minimum of J(v(1),v(2)) in Kh
∗ can be sought by minimizing J̃(g1,g2).

The latter is an unconstrained minimization problem. Its solution can be
sought by solving the linear system corresponding to the first order critical
point of J̃(g1,g2) relative to g1 and g2. This will yield:[

ET
1 ME1 −ET

1 ME2

−ET
2 ME1 ET

2 ME2

][
g1

g2

]
=

[
γ1

γ2

]
, (12.34)

where:

E1 = R1

[
−C

(1)−1

II C
(1)
IBin

I

]
and E2 = R2

[
−L

(2)−1

II L
(2)
IB

I

]
, (12.35)

and: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ1 = ET
1 M R1

[
C

(1)−1

II f (1)
I

0

]
− ET

1 MR2

[
L

(2)−1

II f (2)
I

0

]
,

γ2 = −ET
2 M R1

[
C

(1)−1

II f (1)
I

0

]
+ ET

2 MR2

[
L

(2)−1

II f (2)
I

0

]
.

(12.36)

System (12.34) will be symmetric positive definite.

Remark 12.13. More generally, instead of J(v1, v2) = 1
2 ‖v1 − v2‖2

0,Ω∗
12

, we
may employ a similar square norm on some carefully chosen subset of Ω∗

12.
For instance, if Ω∗

1 and Ω∗
2 were constructed by extension of nonoverlapping

subdomains Ω1 and Ω2, then we may replace Ω∗
12 by B = ∂Ω1 ∩∂Ω2 and em-

ploy J(v1, v2) = 1
2 ‖v1−v2‖2

0,B . In particular, if Ω∗
1 and Ω∗

2 are nonoverlapping
subdomains, then Dirichlet boundary conditions on B(l) must be replaced by
transmission condition enforcing a common flux g(.) on B = ∂Ω1 ∩ ∂Ω2.
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Iterative Solvers. Under appropriate assumptions, system (12.34) will be
symmetric and positive definite, and can be solved using a PCG method:

K−1
0

[
ET

1 ME1 −ET
1 ME2

−ET
2 ME1 ET

2 ME2

][
g1

g2

]
= K−1

0

[
γ1

γ2

]
,

where K0 is a preconditioner. Effective preconditioners have not been stud-
ied extensively. Heuristically, K0 = blockdiag(ET

1 ME1, E
T
2 ME2) may be an

effective preconditioner. When b(x) = 0, matrix ET
l MEl may also be spec-

trally equivalent to the inverse of a scaled square-root of the Laplace-Beltrami
operator on B(l) with zero boundary conditions. We omit further discussion.

Accuracy of the Heterogeneous Approximation. When the solution
u(x) to (12.1) is sufficiently smooth on Ω∗

1 , the magnitude of the omitted
term −ε∆u in Ω∗

1 will be O(ε). Consequently, if the heterogeneous least
squares-control problem is well-posed, we heuristically expect its solution
(w1(x), w2(x)) to approximate u(x) to O(ε). Below, we outline how to heuris-
tically estimate the accuracy of the discrete heterogeneous least-squares con-
trol solution. Formally denote the saddle point system associated with the
discretized least squares-control heterogeneous problem as Hw̃ = f , where:

w̃ =
(
w(1)T

,w(2)T

, µ(1)T

, µ(2)T
)T

,

with w(1) and w(2) denoting the discrete solutions on Ω∗
1 and Ω∗

2 , respectively,
and µ(1) and µ(2) denoting Lagrange multiplier variables enforcing the discrete
constraints for w(1) and w(2), respectively. If ũ denotes the nodal values of
the solution u(x) and the Lagrange multiplier function p(x) restricted to the
nodes associated with w̃, it should hold that Hũ = f +E where E corresponds
to a sum of local truncation error and the omitted viscous term ε∆w1. When
u(.) is smooth in Ω∗

1 , it should hold that ‖E‖ ≤ (c2 hq + c3 ε) for c2, c3 > 0
independent of h and ε. If H is stable (i.e., ‖H−1‖ ≤ c1 where c1 is independent
of h and ε), then the error will satisfy the bound ‖ũ − w̃‖ ≤ c1 ‖E‖.

Application to a Model Problem. We end this section by illustrating a
least squares-control heterogeneous approximation of the following model one
dimensional elliptic boundary value problem:⎧⎨

⎩
−ε u′′(x) + u′(x) = 1, for x ∈ (0, 1)

u(0) = 0,
u(1) = 0.

An explicit solution of the above boundary value problem is:

u(x) = x −
(

1 − ex/ε

1 − e1/ε

)
.
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The exact solution u(x) will have a boundary layer of width O(ε) near x = 1,
and motivated by this, we shall choose Ω∗

1 = (0, 3/4) as the inviscid subdomain
and Ω∗

2 = (1/2, 1) as the viscid subdomain. Since b(x) = 1, it follows that
∂Ω1,in = {0} for the hyperbolic problem on Ω∗

1 = (0, 3/4).
The resulting heterogenous elliptic-hyperbolic model will seek (w1, w2):

{
w′

1(x) = 1, in (0, 3/4)
w1(0) = 0, on ∂Ω1,in

and

⎧⎪⎨
⎪⎩

−εw′′
2 (x) + w′

2(x) = 1, in (1/2, 1)
w2(1) = 0, on B[2]

w2(1/2) = β2, on B(2).
(12.37)

Solving for w1(x) (which is decoupled from w2(x)) yields w1(x) = x.
The general solution to heterogeneous system (12.37) will thus be:

w1(x) = x and w2(x) = x + c1 + c2 ex/ε, (12.38)

where c1 and c2 can be determined by imposing the boundary conditions
involving the control parameter β2 (there is no β1 in this problem):

c1 =

(
(1
2 − β2) e

1
2ε − 1

1 − e
1
2ε

)
and c2 =

(
( 1
2 + β2) e−

1
2ε

1 − e
1
2ε

)
.

The parameter β2 must be chosen to minimize J̃(β2):

J̃(β2) =
∫ 3/4

1/2

(w1(x) − w2(x))2 dx.

Substituting for w1(x) and w2(x) in terms of c1(β2) and c2(β2), and minimiz-
ing J̃(β2) with respect to β2 yields the following optimal value β∗

2 :

β∗
2 = −1

2

(
−8 e

1
4 ε + (2 + 2 ε) e

1
2 ε − e

1
ε + 6 ε

−8 ε e
3
4 ε + 10 ε e

1
2 ε + e

1
ε − 2 ε

)
.

Note that β∗
2 → −1 as ε → 0. Substituting c1(β∗

2), c2(β∗
2) into (12.38) using

β∗
2 above, a continuous approximation w(x) ≈ u(x) can be obtained given a

partition of unity:

w(x) = χ1(x) w1(x) + χ2(x) w2(x).

It can be verified that ‖u − w‖ → 0 as ε → 0, in some appropriate norm.

Remark 12.14. If ∂Ω1,in ∩ B(1) = ∅, i.e., n1(x) · b(x) ≥ 0 on B(1), then the
local solution w1(x) will not depend on β1. In this case J̃(g1, g2) = J̃(g2), and
the bulk of the computation will involve determining w2(x).
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12.4 χ-Formulation

In the preceding sections, it was assumed that subdomains Ω1 (or Ω∗
1) and

Ω2 (or Ω∗
1) were known in advance for (12.1) such that:

|ε∆u|  |b(x) · ∇u + c(x) u| on Ω1 (or Ω∗
1).

When such regions are not known in advance, they may be determined adap-
tively. The χ-formulation (“chi”-formulation) of [BR32, CA29] provides a
framework for adaptively determining an inviscid region Ω1 and a viscid re-
gion Ω2, and for building an heterogeneous model approximating a viscous
problem. Unlike the Steklov-Poincaré vanishing viscosity approach [GA15],
the χ-formulation yields a continuous solution, but the resulting χ-equation
is nonlinear even when the original problem is linear.

In this section, we shall illustrate the χ-formulation for approximating the
model advection-diffusion equation:{

−ε ∆u + b(x) · ∇u + c(x) u = f, in Ω

u = 0, on ∂Ω.
(12.39)

Our discussion will be organized as follows. We shall first describe a non-
linear heterogeneous χ-approximation of (12.39). We shall reformulate the
χ-equation as an hyperbolic-elliptic system on two nonoverlapping subdo-
mains. Following that, we shall describe an overlapping subdomain based
hyperbolic-elliptic system. Both formulations yield iterative algorithms. We
then remark on discretizations and linearizations of the χ-formulation, and
the error associated with a χ-approximation.

The χ-Formulation of (12.39). The χ-formulation constructs an hetero-
geneous approximation of (12.39) by replacing the diffusion term ∆u by a
nonlinear term χ (∆u) which vanishes whenever |∆u| ≤ δ1. More precisely,
the nonlinear function χ(·) is the following user chosen odd and monotone
increasing scalar function, see Fig. 12.1, satisfying:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

χ(s) = u, for δ2 ≤ s

χ(s) = δ2
δ2−δ1

(s − δ1) , for s ∈ [δ1, δ2]
χ(s) = 0, for 0 ≤ s ≤ δ1,

χ(−s) = −χ(s), 0 ≤ s,

where 0 < δ1 < δ2 < 1 are user chosen parameters (that may depend on the
viscous coefficient ε). Alternatively, any smooth monotone increasing function
having a similar profile can be employed. By construction, χ(∆u) vanishes
when |∆u| ≤ δ1 and χ(∆u) = ∆u when |∆u| ≥ δ2.

The χ-formulation seeks an approximation w(x) of u(x) by solving the
following degenerate nonlinear elliptic equation for w(x):
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Fig. 12.1. Profile of a χ(·) function

{
Lχ(w) ≡ −ε χ(∆w) + b(x) · ∇w + c(x) w = f, in Ω

w = 0, on ∂Ωχ.
(12.40)

Here ∂Ωχ ⊂ ∂Ω denotes a boundary segment on which Dirichlet boundary
conditions can be enforced, depending on w(x). For instance, if χ(∆w(x)) �= 0
on ∂Ω, then ∂Ωχ = ∂Ω, while ∂Ωχ = {x : n(x) ·b(x) < 0} if χ(∆w(x)) =
0 on ∂Ω, where n(x) denotes the unit exterior normal at x ∈ ∂Ω. More
generally:

∂Ωχ = {x ∈ ∂Ω : χ(∆w(x)) �= 0or χ(∆w(x)) = 0 and n(x) · b(x) < 0} .

When χ(.) is monotone increasing, i.e., χ ′(·) ≥ 0, equation (12.40) will be well
posed, see [BR32, CA29]. By choice of χ(.), the term χ(∆w(x)) = 0 wherever
|∆w(x)| ≤ δ1 so that Lχ(w) becomes hyperbolic:

Lχ(w) = L0 w = b(x)∇w + c(x) w = f(x), when |∆w(x)| ≤ δ1.

On the other hand, Lχ(·) will be uniformly elliptic when |∆w(x)| ≥ δ2, since:

Lχ(w) = −ε∆w + b(x)∇w + c(x)w = f(x), when |∆w(x)| ≥ δ2.

Thus, even though the original problem (12.39) is linear, the χ-equation (12.40)
is nonlinear. Consequently, the χ-formulation will be more expensive to solve
than the original linear problem, unless additional structure of the χ-equation
is used to advantage. In accordance, equation (12.40) can be reformulated as
a coupled heterogeneous system, either based on two nonoverlapping subdo-
mains Ω1 and Ω2 or based on two overlapping subdomains Ω∗

1 and Ω∗
2 .

Remark 12.15. Well posedness of (12.40) will be guaranteed under smoothness
assumptions on the coefficients b(x), c(x), f(x) and ∂Ω, see [BR32, CA29].
We shall require that c(x) ≥ c0 > 0 and c(x) − 1

2∇ · b(x) ≥ c0 > 0 and that
there exists a sufficiently smooth function φ1(x) such that:

−∆φ1(x) ≥ 0, in Ω and b(x) · ∇φ1(x) ≥ α0 > 0, in Ω.

Under such smoothness assumptions, the χ-equation (12.40) will have a solu-
tion w(x) ∈ C1(Ω). In particular, w(·) will be continuous, see [BR32, CA29].
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Nonoverlapping Heterogeneous Formulation of (12.40). To obtain a
heterogeneous formulation of (12.40), let Ω1 denote an open subregion:

Ω1 ⊂ {x : |χ(∆w(x))| = 0} ,

with the property that χ(∆w(x)) = 0 on B(1) = ∂Ω1 ∩ Ω. Choose Ω2 as its
complementary subregion so that Ω1 and Ω2 form a nonoverlapping decom-
position of Ω. Let wl(x) = w(x) on Ωl denote the restriction of w(x) to Ωl,
and B = ∂Ω1 ∩ ∂Ω2. Define ∂Ω1,in and ∂Ω1,out as follows:

∂Ω1,in = {x ∈ ∂Ω1 : n1(x) · b(x) < 0}
∂Ω1,out = {x ∈ ∂Ω1 : n1(x) · b(x) > 0} ,

(12.41)

where n1(x) denotes the unit exterior normal to x ∈ ∂Ω1. We shall assume
that ∂Ω1 = ∂Ω1,in ∪ ∂Ω1,out.

A heterogeneous reformulation of the χ-equation (12.40) can be obtained
analogous to the Steklov-Poincaré heterogeneous formulation of [GA15, QU6]
based on the two nonoverlapping subdomains Ω1 and Ω2.

• By choice of Ω1, the local solution w1(x) = w(x) on Ω1 will satisfy:

b(x) · ∇w1 + c(x) w1 = f(x), in Ω1.

since χ(∆w1) = 0 in Ω1. Additionally, continuity of w(·) for sufficiently
smooth b(.), c(.), f(.) and boundary ∂Ω, requires w1(x) and w2(x) to
match on B = ∂Ω1 ∩ ∂Ω2, see[BR32, CA29]:

w1(x) = w2(x) on B.

As a result, inflow boundary conditions can be posed for w1 locally:

w1 = w2, on B ∩ ∂Ω1,in and w1 = 0, on ∂Ω ∩ ∂Ω1,in.

• On Ω2, the component w2(x) = w(x) will satisfy:

−ε χ(∆w2) + b(x) · ∇w2 + c(x)w2 = f(x), in Ω2.

Since continuity of w(.) was not enforced on ∂Ω1,out, we require:

w2(x) = w1(x), on B ∩ ∂Ω1,out.

By selection of Ω1, it will hold that χ(∆w) = 0 on B = B(1), so that
b(x) · ∇w2 + c(x) w2 = f(x) on B. It will be sufficient to require:

b(x) · ∇w2(x) + c(x)w2(x) = f(x) on B ∩ ∂Ω1,in.

The above first order boundary condition on B∩∂Ω1,in is referred to as an
“oblique derivative” boundary condition. Additional boundary conditions
for w2(.) must be enforced on ∂Ω2 ∩ ∂Ω, as in (12.40).

The preceding heuristic observations suggest the following nonoverlapping
subdomain based equivalent reformulation of the χ-equation (12.40).



12.4 χ-Formulation 597

Lemma 12.16. Suppose the following conditions hold.

1. Let w(x) be a solution of:{
−ε χ(∆w) + b(x) · ∇w + c(x) w = f, in Ω

w = 0, on ∂Ωχ.

2. Let Ω1 and Ω2 form a nonoverlapping subdomain decomposition with
χ(∆w) = 0 on Ω1 ∪ B, with wi(x) = w(x) on Ωi for 1 ≤ i ≤ 2.

Then (w1(x), w2(x)) will solve:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(x) · ∇w1 + c(x) w1 = f(x), in Ω1

w1 = w2, on B ∩ ∂Ω1,in

w1 = 0, on ∂Ω1 ∩ ∂Ω1,in

−ε χ(∆w2) + b(x) · ∇w2 + c(x) w2 = f(x), in Ω2

b(x) · ∇w2 + c(x) w2 = f(x), on B ∩ ∂Ω1,in

w2 = w1, on B ∩ ∂Ω1,out

w2 = 0, on ∂Ω2 ∩ ∂Ωχ.

(12.42)

Proof. See [BR32, CA29]. ��

In the preceding formulation, Ω1 and Ω2 were assumed to be given. In
applications, given wk(x) ≈ w(x), Ω1 can be estimated using χ(∆wk), see
Chap. 12.4.1. Below, we describe a Dirichlet-Neumann algorithm for (12.42).

Algorithm 12.4.1 (Dirichlet-Oblique Derivative Algorithm for (12.42))
Let w

(0)
2 be a starting iterate

1. For k = 1, 2, . . . until convergence do
2. Solve the local hyperbolic equation on Ω1 for w

(k)
1 :⎧⎪⎪⎨

⎪⎪⎩
b(x) · ∇w

(k)
1 + c(x) w

(k)
1 = f(x), in Ω1

w
(k)
1 = w

(k−1)
2 , on B ∩ ∂Ω1,in

w
(k)
1 = 0, on ∂Ω1 ∩ ∂Ω1,in

3. Solve the following elliptic equation on Ω2 for w
(k)
2 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ε χ(∆w
(k)
2 ) + b(x) · ∇w

(k)
2 + c(x) w

(k)
2 = f(x), in Ω2

w
(k)
2 = w

(k)
1 , on B ∩ ∂Ω1,out

b(x) · ∇w
(k)
2 + c(x) w

(k)
2 = f(x), on B ∩ ∂Ω1,in

w
(k)
2 = 0, on ∂Ω2 ∩ ∂Ωχ

4. Endfor
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Under appropriate assumptions, the iterates w
(k)
l can be shown to converge

geometrically to the exact solution wl(x) of (12.42), see [BR32, CA29].

Overlapping Subdomain Heterogeneous Formulation of (12.40). We
shall next indicate a reformulation of the χ-equation based on overlapping
subdomains. Let Ω∗

1 = Ω1 as before, and let Ω∗
2 denote an overlapping do-

main. Let ∂Ω∗
1,in and ∂Ω∗

1,out denote segments as in (12.41) with Ω∗
1 replacing

Ω1. Due to continuity of the solution w(.) of the χ-equation, we obtain the
following reformulation [BR32, CA29] of the χ-equation.

Lemma 12.17. Suppose the following conditions hold.

1. Let w be the solution of the χ-equation.
2. Let (w1, w2) satisfy:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(x) · ∇w1 + c(x) w1 = f(x), in Ω∗
1

w1 = w2, on ∂Ω∗
1,in ∩ Ω

w1 = 0, on ∂Ω ∩ ∂Ω∗
1,in

−ε χ (∆w2) + b(x) · ∇w2 + c(x)w2 = f(x), in Ω∗
2

w2 = w1, on ∂Ω∗
2 ∩ Ω

w2 = 0, on ∂Ω∗
2 ∩ ∂Ωχ.

(12.43)

Then the following result will hold:

w = w1 on ∂Ω∗
1 , and w = w2 on ∂Ω∗

2 .

Proof. See [BR32, CA29]. ��
The above reformulation suggests a Schwarz iterative algorithm.

Algorithm 12.4.2 (Sequential Schwarz Algorithm for (12.43))
Let

(
w

(0)
1 , w

(0)
2

)
denote starting iterates

1. For k = 1, . . . until convergence do
2. Solve the local hyperbolic equation for w

(k)
1 on Ω∗

1 :⎧⎪⎪⎨
⎪⎪⎩

b(x) · ∇w
(k)
1 + c(x)w

(k)
1 = f(x), in Ω∗

1

w
(k)
1 = w

(k−1)
2 , on ∂Ω∗

1,in ∩ Ω

w
(k)
1 = 0, on ∂Ω ∩ ∂Ω∗

1,in

3. Solve the local nonlinear elliptic equation for w
(k)
2 on Ω∗

2 :⎧⎪⎪⎨
⎪⎪⎩

−ε χ(∆w
(k)
2 ) + b(x) · ∇w

(k)
2 + c(x) w

(k)
2 = f(x), in Ω∗

2

w
(k)
2 = w

(k)
1 , on ∂Ω∗

2 ∩ Ω

w
(k)
2 = 0, on ∂Ω∗

2 ∩ ∂Ωχ

4. Endfor

Under appropriate assumptions, the above iterates can be shown to converge
geometrically to the local solution (w1, w2) of the χ-equation.
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12.4.1 Discretization of the χ-Formulation

We shall now describe a heuristic finite difference discretization of (12.40).
Let Ω be triangulated by a finite difference grid Th(Ω) of size h. We shall
denote the vector of interior nodal unknowns as uI and the vector of boundary
nodal unknowns as uB, and denote the linear system corresponding to a finite
difference discretization of (12.39) as:{

ε (AIIuI + AIBuB) + (CIIuI + CIBuB) = fI
uB = 0,

(12.44)

where AIIuI + AIBuB denotes a discretization of −∆u and CIIuI + CIBuB
denotes an upwind discretization of b(x) · ∇u + c(x) u.

To obtain a discretization of the χ-equation, we shall formally apply the
χ(·)-function to each row entry (AIIuI + AIBuB)i and denote the resulting
row vector as χ (AIIuI + AIBuB), where:

χ (AIIuI + AIBuB)i = χ ((AIIuI + AIBuB)i) . (12.45)

Thus, a discretization of the χ-equation can be obtained formally as:{
εχ (AIIwI + AIBwB) + (CIIwI + CIBwB) = fI

wB = 0,
(12.46)

where χ (AIIwI + AIBwB) corresponds to a discretization of χ (−∆w) and
CIIwI + CIBwB to a discretization of b(x) · ∇w + c(x) w.

Remark 12.18. If one or more row entries of χ (AIIwI + AIBwB) are zero,
then it is possible that not all boundary nodal values wB influence the in-
terior solution wI . Indeed, suppose χ (AIIwI + AIBwB)i = 0, then at the
associated node xi, the stencil will depend solely on the stencil of matrix C,
where the latter will have a domain of dependence primarily on the inflow
boundary ∂Ωin, i.e., x ∈ ∂Ω such that n(x) ·b(x) < 0. Furthermore, if A and
C are M -matrices, and χ′(·) ≥ 0, then the linearized system (12.47) will yield
an M -matrix, and a discretize maximum principle will hold.

Remark 12.19. The nonlinear χ-equations (12.46) can be solved by applying
a Newton iteration. Given the k’th Newton iterate wk

I ≈ wI , a new iterate
wk+1

I can be computed by solving the following system for (wk+1
I − wk

I):

Hk
II
(
wk+1

I − wk
I
)

= fI − εχ(AIIwk
I) − CIIwk

I , (12.47)

where Hk
II = εdiag

(
χ′(AIIwk

I)
)

AII + CII and χ′(yk
I) denotes the vector

with entries χ′ ((AIIwk
I)i

)
. Here, since diag

(
χ(yk

I)
)

is a diagonal matrix, the
i’th row of εdiag

(
χ(yk

I)
)

AII corresponds to i’th row of AII multiplied by
ε χ
(
(AIIwk

I)i

)
. Each Newton iteration requires the solution of system (12.47).
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Below, we summarize the Newton iteration to solve (12.46).

Algorithm 12.4.3 (Newton Iteration to solve (12.46))
Let w0

I = 0 denote a starting iterate

1. For k = 1, . . . until convergence do
2. Assemble Hk

II =
(
εdiag

(
χ′(AIIwk

I)
)

AII + CII
)

3. Compute rk
I ≡ fI − εχ(AIIwk

I) − CIIwk
I and solve:

Hk
II
(
wk+1

I − wk
I
)

= rk
I

4. Endfor

Assembly of matrix Hk
II is not expensive, since only the diagonal ma-

trix diag
(
χ′(AIIwk

I)
)

multiplying AII depends on wk
I . However, an efficient

solver will be required to solve Hk
II
(
wk+1

I − wk
I
)

= rk
I in step 3 above. We

shall describe two iterative solvers for Hk
II , yielding inner and outer iterations.

Non-Overlapping Subdomains Based Algorithm. Here, we describe a
discrete linearized version of Alg. 12.4.1. Given wk

I ≈ wI , define the set:

Ik
1 =

{
i : χ((AIIwk

I)i) = 0
}

. (12.48)

Given Ik
1 , let Ωk

1 denote an open region such that for each i ∈ Ik
1 , it holds

that node xi ∈ Ω
k

1 ∩ Ω, i.e., χ
((

AIIwk
I

)
i

)
= 0. Let Ωk

2 denote a subregion
complementary to Ωk

1 with interface Bk = ∂Ωk
1 ∩∂Ωk

2 . For simplicity, we shall
assume that the subregions are consistent with the cells of the grid on Ω. Given

this decomposition, we partition yI =
(
yk;(1)T

I ,yk;(2)T

I ,ykT

B

)T

corresponding

to nodal values of yI in Ωk
1 , Ωk

2 and Bk, respectively. We let R
k;(1)
I , R

k;(2)
I

and Rk
B denote the restriction map onto nodal vectors on Ωk

1 , Ωk
2 and Bk,

respectively. A Then, the Newton system Hk
II
(
wk+1

I − wk
I
)

= f̃
k

I , can be
block partitioned using this wk

I dependent decomposition:⎡
⎢⎢⎣

H
k;(1)
II 0 H

k;(1)
IB

0 H
k;(2)
II H

k;(2)
IB

H
k;(1)
BI H

k;(2)
BI Hk

BB

⎤
⎥⎥⎦
⎡
⎢⎣

wk+1;(1)
I − wk;(1)

I

wk+1;(2)
I − wk;(2)

I

wk+1
B − wk

B

⎤
⎥⎦ =

⎡
⎢⎣

R
k;(1)
I rk

I
R

(k:(2)
I rk

I
Rk

Brk
I

⎤
⎥⎦ ,

where H
k;(l)
XY = εA

k;(l)
XY + C

(l)
XY for X, Y,= I, B. Our choice of Ωk

l and Bk

yields H
k;(1)
II = C

(1)
II , H

k;(1)
IB = C

(1)
IB , Hk

BB = CBB and H
k;(l)
BI = C

(l)
BI for

l = 1, 2. Substituting this into the above system yields the Newton system:⎡
⎢⎢⎣

C
(1)
II 0 C

(1)
IB

0 H
k;(2)
II H

k;(2)
IB

C
(1)
BI C

(2)
BI CBB

⎤
⎥⎥⎦
⎡
⎢⎣

wk+1;(1)
I − wk;(1)

I

wk+1;(2)
I − wk;(2)

I

wk+1
B − wk

B

⎤
⎥⎦ =

⎡
⎢⎣

R
k;(1)
I rk

I
R

k:(2)
I rk

I
Rk

Brk
I

⎤
⎥⎦ . (12.49)
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Applying a block Gauss-Seidel iteration to the above system yields a discrete
linearized version of the Dirichlet-Oblique derivative algorithm (12.4.1).

Although matrix CII does not depend on wk
I , its submatrices C

(l)
XY de-

pend on the partition induced by Ωk
1 , Ωk

2 and Bk. Despite this, for notational
simplicity we have omitted the k dependence of C

(l)
XY . The first block row

in (12.49) corresponds to a discretized hyperbolic equation in Ωk
1 , while the

second block row corresponds to a linearization of the discrete χ-equation in
Ωk

2 , and the third block row corresponds to a a discretized oblique deriva-
tive condition on Bk. Below, we describe a discrete and linearized version of
Alg. 12.4.1 using N∗ inner iterations.

Algorithm 12.4.4 (Newton-Dirichlet-Oblique Algorithm for (12.46))
Let w0

I = 0 denote a starting iterate

1. For k = 1, . . . until convergence do
2. Assemble Hk

II =
(
εdiag

(
χ′(AIIwk

I)
)

AII + CII
)

3. Compute the residual rk
I ≡

(
fI − ε χ(AIIwk

I) − CIIwk
I
)

4. Define x1
I ≡ 0

5. For l = 1, . . . , N∗
6. Update the solution:

xl+ 1
2

I = xl
I + R

k;(1)T

I C
(1)−1

II R
k;(1)T
I

(
rk
I − Hk

IIx
l
I
)

7. Update the solution:

xl+1
I = xl+ 1

2
I +

[
R

k;(2)
I

Rk
B

]T [
H

k;(2)
II H

k;(2)
IB

C
(2)
BI CBB

]−1 [
R

k;(2)
I

Rk
B

](
rk
I − Hk

IIx
l+ 1

2
I
)

8. Endfor
9. Update wk+1

I ≡ wk
I + xN∗+1

I
10. Endfor

Remark 12.20. The preceding algorithm applies a two-step block Gauss-Seidel
iteration to solve each Newton system. Step 6 above corresponds to a discrete
and linearized version of step 2 in Alg. 12.4.1, while step 7 above corresponds
to a discrete and linearized version of step 3 in Alg. 12.4.1. If matrix AII is an
M -matrix, then matrix Hk

II will also be an M -matrix, and the block Gauss-
Seidel inner iteration will be convergent provided c(x) ≥ c0 > 0. More rapid
convergence can be obtained by increasing the overlap between the subregions.
More generally, Krylov acceleration should be employed.

Overlapping Subdomains Based Algorithm. We next outline a discrete
version of Alg. 12.4.2 to solve (12.46). Given an iterate wk

I ≈ wI , we employ
the index set Ik

1 in (12.48) and let Ωk;∗
1 = Ωk

1 denote an open subregion con-
taining all the nodes xi for i ∈ Ik

1 . A subdomain Ωk;∗
2 ⊂ Ω is chosen so that it
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overlaps with Ωk;∗
1 . On each subdomain, we let Bk;(l) ≡

(
∂Ωk;∗

l ∩ Ω
)

denote

its interior boundary. On subdomain Ωk;∗
l we let R

k;(l)
I and R

k;(l)
B denote re-

striction maps which map a nodal vector on Ω into vectors of nodal values on
Ωk;∗

1 and Bk;(l), respectively. Additionally, given yI , we let yk;(1)
I = R

k;(l)
I yI

and yk;(1)
B = R

k;(l)
B yI denote its nodal vectors associated with Ωk;∗

l and Bk;(l),
respectively, and we block partition the submatrix of Hk

II corresponding to
nodes in Ωk;∗

l and Bk;(l) with sub-blocks H
k;(l)
XY = ε Ã

k;(l)
XY + C

(l)
XY , where the

index sets X, Y = I, B. By our choice of Ωk;∗
1 , it will hold that Ã

k;(l)
XY = 0.

Below, we summarize the Schwarz alternating method to solve (12.46) using
Newton linearization and a fixed number N∗ of inner iterations.

Algorithm 12.4.5 (Newton-Schwarz Alternating Algorithm for (12.46))
Let w0

I denote a starting iterate

1. For k = 1, . . . until convergence do
2. Assemble Hk

II =
(
εdiag

(
χ′(AIIwk

I)
)

AII + CII
)
.

3. Compute the residual rk
I ≡

(
fI − ε χ(yk

I) − CIIwk
I
)

4. Define x1
I ≡ 0

5. For l = 1, . . . , N∗
6. Update the solution in Ωk;∗

1 :

xl+ 1
2

I = xl
I + R

k;(1)T

I C
(1)−1

II R
k;(1)
I

(
rk
I − Hk

IIx
l
I
)

7. Update the solution in Ωk;∗
2 by solving:

xl+1
I = xl+ 1

2
I +

[
R

k;(2)
I

Rk
B

][
H

k;(2)
II H

k;(2)
IB

H
k;(2)
BI Hk

BB

]−1 [
R

k;(2)
I

Rk
B

](
rk
I − Hk

IIx
l+ 1

2
I
)

8. Endfor
9. Define wk+1

I = wk
I + xN∗+1

I
10. Endfor

Remark 12.21. Steps 6 and 7 in the preceding unaccelerated Newton-Schwarz
algorithm correspond to steps 2 and 3 in Alg.12.4.2. If matrix AII is an
M -matrix, then matrix Hk

II will also be an M -matrix. Furthermore, if the
coefficient c(x) ≥ c0 > 0 and the overlap between the two subdomains is
sufficiently large, then the rate of convergence of the inner iteration will be
independent of h and ε, see Chap. 15. Krylov acceleration can be employed.

Accuracy of the χ-Formulation. We end this section by heuristically esti-
mating the accuracy of the discrete χ-formulation (12.46). Let uI denote the
original discretization of (12.39):

εAIIuI + CIIuI = fI .
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By comparison, the solution wI to the discrete χ-formulation will satisfy:

εχ (AIIwI) + CIIwI = fI .

Subtracting the two yields:

(εAII + CII) (uI − wI) = ε (χ(AIIwI) − AIIwI) .

Formally applying matrix norm bounds yields the estimates:

‖uI − wI‖ ≤ ‖ (εAII + CII)−1 ‖ ε ‖χ (AIIwI) − (AIIwI) ‖

≤ ‖ (εAII + CII)−1 ‖ ε δ2,

using the definition of χ(·). So, if the original discretization is stable, i.e.,
‖ (εAII + CII)−1 ‖ ≤ C independent of h (and ε), then ‖uI − wI‖ = O(ε).

12.5 Applications to Parabolic Equations

Our discussion in this section will be heuristic and brief. Given an advection
dominated parabolic equation, we outline how alternative hyperbolic-parabolic
approximations of the parabolic equation can be formulated based on two
space-time subregions. The resulting heterogeneous system may subsequently
be discretized on matching or non-matching space-time grids and iterative
algorithms can be formulated for its solution.

We consider the following advection dominated parabolic equation:⎧⎪⎨
⎪⎩

ut + Lu = f, in Ω × (0, T )
u = 0, on ∂Ω × (0, T )

u(x, 0) = u0(x), on Ω when t = 0,

(12.50)

where the underlying advection-diffusion elliptic operator is:

L u = −ε∆u + b(x) · ∇u + c(x) u, (12.51)

for 0 < ε  1 and c(x) ≥ c0 > 0 with
(
c(x) − 1

2∇ · b(x)
)
≥ β > 0. We shall

assume there is a subdomain Ω1 ⊂ Ω (or Ω1 = Ω∗
1 ⊂ Ω) such that:

ε |∆u|  |ut + b(x) · ∇u + c(x)u| for (x, t) ∈ Ω1 × (0, T ). (12.52)

When this holds, a parabolic-hyperbolic approximation of (12.50) can be ob-
tained by constructing a hybrid formulation of (12.50) involving Ω1 × (0, T )
and another space-time region, and by omitting −ε∆u on Ω1 × (0, T ). The
resulting problem can subsequently be discretized.

Steklov-Poincaré Approximation. Given Ω1 ⊂ Ω satisfying (12.52), let
Ω2 be a complementary region with interface B = ∂Ω1 ∩ ∂Ω2. Analogous
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to the elliptic case, a Steklov-Poincaré hybrid formulation of (12.50) can be
formulated based on Ω1 × (0, T ) and Ω2 × (0, T ) with transmission conditions
on B × (0, T ), see [GA15, QU3, QU4, QU6]. If we omit −ε ∆u in Ω1 × (0, T )
and appropriately modify the transmission conditions, we shall obtain the
following hyperbolic-parabolic system for wl(x, t) ≈ u(x, t) on Ωl × (0, T ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w1
∂t + L0w1 = f, in Ω1 × (0, T )

w1 = w2, on (B ∩ ∂Ω1,in) × (0, T )
w1 = 0, on

(
B[1] ∩ ∂Ω1,in

)
× (0, T )

w1(x, 0) = u0(x), on Ω1 when t = 0

∂w2
∂t + Lw2 = f, in Ω2 × (0, T )

n1 · F2(w2) = n1 · F1(w1), on B × (0, T )
w2 = 0, on B[2] × (0, T )

w2(x, 0) = u0(x), on Ω1 when t = 0,

(12.53)

where F1(w1) = − 1
2 bw1 and F2(w2) = ε∇w2 − 1

2bw2 are the local fluxes,
with L0w1 = b(x) ·∇w1 + c(x) w1 and ∂Ω1,in = {x ∈ ∂Ω1 : n1(x) · b(x) < 0}.

A heuristic discretization of this hyperbolic-parabolic system can be ob-
tained by discretizing the evolution equation on each region Ωl × (0, T ) by
a locally stable scheme, and by carefully discretizing the transmission condi-
tions. Let w(1)

I denote the vector of nodal unknowns associated with w1(., .)
on Ω1 × (0, T ) and let w(1)

B± denote the vector of nodal unknowns associated

with w1(., .) on B± × (0, T ). Similarly, let w(2)
I denote the vector of nodal

unknowns associated with w2(., .) on Ω2× (0, T ) and w(2)
B± the vector of nodal

unknowns associated with w2(., .) on B± × (0, T ), where:

B− = {x ∈ B : n1(x) · b(x) < 0}
B+ = {x ∈ B : n1(x) · b(x) ≥ 0} .

Then, a discretization of the hyperbolic-parabolic system will yield a large
system of equations with the block structure (12.14), where w(1)

B− = w(2)
B− .

Heuristic Schur complement solvers can be formulated for the resulting sys-
tem. Importantly, since −ε∆w1 is omitted in Ω1 × (0, T ), we may employ a
stable explicit scheme in Ω1×(0, T ) and a stable implicit scheme in Ω2×(0, T ),
with a larger time step τ1 � τ2, where τl denotes the time step on Ωl × (0, T ),
see § 11.6 (appropriately extended). We omit further details.

Schwarz Approximation. Given Ω∗
1 = Ω1 satisfying (12.52), let Ω∗

2 denote
an overlapping subdomain. Let B[l] = ∂Ω∗

l ∩ ∂Ω and B(l) = ∂Ω∗
l ∩ Ω. By

analogy with the elliptic case, we may construct a hybrid Schwarz formulation
of (12.50) based on Ω∗

1×(0, T ) and and Ω∗
2×(0, T ), and omit −ε∆u to obtain a

hyperbolic equation on Ω∗
1×(0, T ), see [BR32, CA29, MA35]. If wl(x, t) denotes

the heterogeneous solution on Ω∗
l × (0, T ), then appropriately modifying the
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boundary conditions on ∂Ω∗
1 , we obtain the following hyperbolic-parabolic

Schwarz approximation, as in § 11.6:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w1
∂t + L0 w1 = f, on Ω∗

1 × (0, T )

w1 = w2, on
(
B(1) ∩ ∂Ω∗

1,in

)
× (0, T )

w1 = 0, on
(
B[1] ∩ ∂Ω∗

1,in

)
× (0, T )

w1(x, 0) = u0(x), on Ω∗
1 when t = 0

∂w2
∂t + L w2 = f, on Ω∗

2 × (0, T )

w2 = w1, on B(2) × (0, T )
w2 = 0, on B[2] × (0, T )

w2(x, 0) = u0(x), on Ω∗
2 when t = 0.

(12.54)

Here ∂Ω1,in = {x ∈ ∂Ω∗
1 : n1(x) · b(x) < 0} and L0 w1 = b(x)·∇w1+c(x)w1.

This heterogeneous system can be discretized on a matching or non-matching
space-time grid, see § 11.6, using a stable scheme for each evolution equation
on Ω∗

l × (0, T ) and inter-subdomain interpolation. Importantly, since −ε ∆w1

is omitted in Ω∗
1×(, 0, T ), we may employ a time step τ1 � τ2, where τl denotes

the time step in Ω∗
l × (, 0, T ) without adversely affecting local stability.

If w(l)
I denotes the vector of nodal values of wl(., .) on Ω∗

l × (0, T ) and w(l)
B

the vector of nodal values associated with wl(., .) on B(l)×(0, T ), we will obtain
a large linear system having the same block structure as (12.24). Schwarz
iterative algorithms can be formulated to solve this system, see [MA35]. We
omit further details.

Least Squares-Control Approximation. An heterogeneous least squares-
control approximation of (12.50) can be constructed based on overlapping
or nonoverlapping subdomains, see [GL13]. For simplicity, we shall consider
overlapping subdomains. Let Ω∗

1 = Ω1 denote a subdomain on which (12.52)
holds, and let Ω∗

2 denote an overlapping subdomain. Let B[l] = ∂Ω∗
l ∩∂Ω and

B(l) = ∂Ω∗
l ∩Ω. By analogy with the vanishing viscosity least squares-control

formulation for advection dominated elliptic equations, we define:

K∗ = { (v1, v2) : v1, v2 satisfies (12.56)} , (12.55)

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v1

∂t
+ L0 v1 = f, on Ω∗

1 × (0, T )

v1 = g1, on
(
B(1) ∩ ∂Ω1,in

)
× (0, T )

v1 = 0, on
(
B[1] ∩ ∂Ω1,in

)
v1(x, 0) = u0(x), in Ω∗

1 for t = 0

∂v2

∂t
+ Lv2 = f, on Ω∗

2 × (0, T )

v2 = g2, on B(2) × (0, T )
v2 = 0, on B[2] × (0, T )

v2(x, 0) = u0(x), in Ω∗
2 for t = 0.

(12.56)
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Here vl(x, t) denotes a local solution on Ω∗
l × (0, T ) and ∂Ω1,in is:

∂Ω1,in = {x ∈ ∂Ω∗
1 : n1(x) · b(x) < 0} ,

and L0 v1 = b(x)·∇v1+c(x) v1. We have approximated (12.50) by a hyperbolic
equation on Ω∗

1 × (0, T ), by omitting −ε∆u, see [GL13].
An heterogeneous least squares-control approximation of (12.50) will seek:

J(w1, w2) = min
(v1,v2)∈K∗

J(v1, v2). (12.57)

where K∗ is as defined by (12.56). An unconstrained minimization formulation
of (12.55) can be obtained by using a parametric representation of K∗ using
the Dirichlet boundary values g1(x, t) and g2(x, t) as control data. This will
formally yield vl = El gl for l = 1, 2 where El gl denotes a formal affine linear
extension of the Dirichlet boundary data as defined above.

To obtain an unconstrained minimization formulation of (12.57), define:

J̃(g1, g2) ≡ J (E1 g1, E2 g2) .

By construction, we may equivalently seek g1 and g2 which minimizes J̃(., .)..
A discretization of the least squares-control problem can be constructed using
matching on non-matching space-time grids. Importantly, since we have a
hyperbolic equation on Ω∗

1 × (0, T ), we may employ a larger time step τ1 on
Ω∗

1 × (0, T ), provided the local stability conditions are satisfied. We shall let
τ2 > τ1 denote the time step on Ω∗

2 × (0, T ). This will yield a nonmatching
space-time grid, and least squares-control problem (12.57) can be discretized
heuristically as outlined in § 11.6. Iterative solvers can be formulated for the
resulting linear system. We omit further details.

χ-formulation. As in the elliptic case, since we may not know Ω1 a pri-
ori, it can be estimated iteratively using the χ-formulation [BR32, CA29]. If
w(x, t) denotes the χ-approximation of u(x, t), then we shall obtain a nonlin-
ear parabolic equation (even though the original problem is linear):⎧⎪⎨
⎪⎩

wt − ε χ(∆w) + b(x) · ∇w + c(x)w = f, in Ω × (0, T )
w = 0, on ∂Ω × (0, T )

w(x, 0) = u0(x), on Ω when t = 0,

(12.58)

where χ(.) is as defined in Chap. 12.4. The above system can be discretized
on a matching space-time grid (for instance finite difference in space and a
θ-scheme in time). Given an approximation wk(·) ≈ w(·), we may employ a
Newton linearization of the discrete equations and solve the resulting system
by methods analogous to those in Chap. 12.4.
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Fictitious Domain and Domain Imbedding
Methods

Fictitious domain and domain imbedding methods are methods for imbedding
an elliptic equation within a family of elliptic equations posed on an extended
or fictitious domain. A solution to the original elliptic equation is sought
based on solving the associated elliptic equation on the extended domain.
Unlike the divide and conquer strategies employed in domain decomposition
methods, fictitious domain methods employ an imbed and conquer strategy,
and it can be advantageous when the underlying domain is irregular or when
the boundary conditions are complex. However, such imbedding may reduce
computational costs only if the extended problem can be solved efficiently.

In this chapter, we describe fictitious domain iterative methods for solving
discretizations of elliptic equations on irregular domains. Early literature on
such methods, which pre-date domain decomposition methodology, focused
on block matrix preconditioners [BU, PR2, AS4, OL, LE12, MA28, FI3, BO5]
based on the extended domain. Recent literature has also included formula-
tions which are based on the Lagrange multiplier and least squares-control
frameworks [AT, NE7, DI2, GL12, PR, GL4, GL11]. Chap. 13.1 describes
heuristic examples motivating fictitious domain methods, and formulates a
useful matrix lemma for constructing preconditioners on extended domains.
Chap. 13.2 describes a fictitious domain preconditioner for Neumann data
problems, while Chap. 13.3 describes a similar preconditioner for Dirichlet
problems. Chap. 13.4 describes several fictitious domain solvers based on the
Lagrange multiplier and least squares-control formulations.
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13.1 Background

Consider a self adjoint and coercive elliptic equation on a domain Ω:

Lu = −∇ · (a(x)∇u) = f, in Ω, (13.1)

with either Dirichlet or Neumann boundary conditions imposed on ∂Ω. The
use of fictitious domains to approximate its solution u(·) can be motivated by
regarding the above as a heat conduction problem to determine the steady
state temperature u(x) in a conductor Ω, see [LE12, MA28, FI3, NE7].

Suppose a constant temperature T0 is imposed on ∂Ω, then an approximate
steady state temperature wε(x) ≈ u(x) in Ω can be sought by extending the
conductor to Ω∗ ⊃ Ω, using a material of high conductivity 1/ε in Ω∗ \ Ω
(where ε → 0+), see Fig. 13.1. If the temperature on the boundary ∂Ω∗ is T0,
then due to the high conductivity in Ω∗ \Ω we heuristically expect the steady
state temperature wε(x) → T0 on Ω∗ \ Ω, yielding wε(x) ≈ T0 on ∂Ω. As a
result, we heuristically expect wε(x) ≈ u(x) on Ω. Formally, u(x) and w(ε(x)
will solve: {

Lu = f, in Ω

u = T0, on ∂Ω,
and

{
Lε wε = fε, in Ω∗

wε = T0, on ∂Ω∗,
(13.2)

where L u = −∇ · (a(x)∇u) and Lε wε = −∇ · (αε(x)∇u) with:

αε(x) =

{
a(x) in Ω
1
ε in Ω∗ \ Ω,

and fε(x) =

{
f(x), in Ω

0, in Ω∗ \ Ω,
(13.3)

and wε → T0 on Ω∗ \ Ω, as ε → 0+, yielding that wε → u on Ω.
A similar approximation can be constructed when zero Neumann (flux)

boundary conditions are imposed on ∂Ω. However, in this case the conductiv-
ity on the extended region Ω∗\Ω should be small, say ε → 0+. Then, zero flux
boundary conditions on ∂Ω∗ and low conductivity within Ω∗ \ Ω will ensure
that wε(x) has approximately zero flux on ∂Ω, yielding that wε(x) ≈ u(x)
within Ω. Formally, u(x) and wε(x) will satisfy:{

Lu = f, in Ω

n · (a∇u) = 0, on ∂Ω,
and

{
Lε wε = fε, in Ω∗

n · (ε∇wε) = 0, on ∂Ω∗,
(13.4)

Ω Ω∗
�

���
��

Fig. 13.1. A triangular domain Ω imbedded inside a rectangle Ω∗
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where L u = −∇ · (a(x)∇u) and Lε wε = −∇ · (αε(x)∇u) with:

αε(x) =

{
a(x) in Ω

ε in Ω∗ \ Ω,
and fε(x) =

{
f(x), in Ω

0, in Ω∗ \ Ω.
(13.5)

As ε → 0+ the flux n · (ε∇wε) → 0 on ∂Ω, yielding wε(x) ≈ u(x) on Ω.
The preceding heat conduction example illustrates that an approximate

solution can be sought on Ω by solving an associated elliptic equation on an
extended domain Ω∗ ⊃ Ω. More generally, by varying the boundary conditions
on ∂Ω∗, it may be possible to obtain an exact solution to the original problem
on Ω by solving an extended problem on Ω∗. However, such an approach will
be computationally advantageous only if the extended problem can be solved
efficiently. We next state a matrix result for preconditioning on a domain Ω
based on an extended domain Ω∗.

A Fictitious Domain Preconditioning Lemma. Several of the block ma-
trix fictitious domain preconditioners can be analyzed using a common pre-
conditioning lemma [NE7]. Let A = AT > 0 denote a stiffness matrix of size
n arising form the discretization of a self adjoint elliptic equation on Ω. Let
K = KT > 0 denote a stiffness matrix of size m > n, arising from the dis-
cretization of an extended elliptic equation on an extended domain Ω∗ ⊃ Ω.
From a matrix viewpoint, the action M−1 of the inverse of several fictitious
domain preconditioners M for A have the form M−1 = RK−1RT , where R
is a rectangular restriction matrix of size n × m. The following lemma states
appropriate conditions for estimating the condition number of such a precon-
ditioned system, see [NE7]. We shall let V and V∗ denote Euclidean spaces of
nodal vectors defined on Ω and Ω∗, respectively. We let R denote a restriction
map R : V∗ → V and E : V → V∗ an extension map such that R E = IV ,
where IV denotes the identity matrix of size n < m.

Lemma 13.1. Suppose the following conditions hold.

1. Suppose γR > 0 exists, such that:(
vT
∗ RT ARv∗

)
≤ γR

(
vT
∗ Kv∗

)
, ∀v∗ ∈ V∗.

2. Suppose γE > 0 exists, such that:

γE

(
vT ET KEv

)
≤
(
vT Av

)
, ∀v ∈ V.

Then, the following estimate will hold for cond
(
RK−1RT , A−1

)
:

γE ≤ vT RK−1RT v
vT A−1v

≤ γR, ∀v ∈ V.

Proof. We omit the proof, see [NE7]. ��



610 13 Fictitious Domain and Domain Imbedding Methods

Remark 13.2. The preconditioning lemma above formally generalizes the equiv-
alence between the Schur complement energy and the energy of the underly-
ing matrix on a space of homogeneous solutions. Indeed, let v = vB ∈ V
and v∗ = (vT

I ,vT
B)T ∈ V∗ denote nodal vectors. Let R(vT

I ,vT
B)T = vB

and let matrix K be block partitioned based on vI and vB . Furthermore,
if EvB = (vT

I ,vT
B)T where vI = −K−1

II KIBvB , then the assumptions in
the preceding lemma are equivalent to requiring that matrix A be spectrally
equivalent to the Schur complement (KBB − KT

IBK−1
II KIB) of K.

13.2 Preconditioners for Neumann Problems

Consider the following Neumann problem on Ω ⊂ Ω∗ for c(x) ≥ 0:{
−∇ · (a(x)∇u) + c(x)u = f, in Ω

n · (a∇u) = g, on ∂Ω.
(13.6)

If c(x) = 0, then we shall assume the compatibility condition:∫
Ω

f(x) dx +
∫

∂Ω

g(x) dsx = 0.

We imbed Ω within a rectangular or periodic domain Ω∗ and define Ω1 = Ω,
Ω2 = (Ω∗ \ Ω1), B = ∂Ω1 ∩ ∂Ω2. A discretization of (13.6) then yields:

AN

[
u(1)

I

uB

]
≡
[

A
(1)
II A

(1)
IB

A
(1)T

IB A
(1)
BB

][
u(1)

I

uB

]
=

[
f (1)
I

f (1)
B

]
, (13.7)

where u(1)
I and uB correspond to nodal vectors of unknowns in the interior

of Ω = Ω1 and on B = ∂Ω1 ∩ ∂Ω2, respectively.
On the extended region Ω∗, we consider the extended elliptic equation:{

−∇ · (a∗(x)∇u) + c∗(x)u = f, in Ω∗
u = 0, on ∂Ω∗,

(13.8)

where the extended coefficients a∗(x) and c∗(x) have the form:

a∗(x) =

{
a(x), for x ∈ Ω

ã(x), for x ∈ Ω∗ \ Ω
and c∗(x) =

{
c(x), for x ∈ Ω

c̃(x), for x ∈ Ω∗ \ Ω

(13.9)
with ã(x) and c̃(x) chosen so that (13.8) has an efficient solver.

We denote a discretization of the extended elliptic equation (13.8) as:⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
⎡
⎢⎣

u(1)
I

u(2)
I

uB

⎤
⎥⎦ =

⎡
⎢⎣

f (1)
I

f (2)
I

fB

⎤
⎥⎦ , (13.10)
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where the unknowns are partitioned according to nodes in the interior of Ω1,
interior of Ω2 = (Ω∗ \ Ω1) and in B = ∂Ω1 ∩ ∂Ω2. By construction, it should
hold that K

(1)
II = A

(1)
II , K

(1)
IB = A

(1)
IB , KBB = A

(1)
II +K

(2)
BB , and fB = f (1)

B + f (2)
B .

We shall consider a fictitious domain preconditioner MN for the coefficient
matrix AN in (13.7), such that its inverse has the form M−1

N = R K−1RT ,
and which yields optimal order convergence with respect to mesh size h, see
[BO5]. Matrix R will be a restriction and K the stiffness matrix in (13.10):

M−1
N

[
g1

g3

]
≡

⎡
⎢⎣

I 0
0 0
0 I

⎤
⎥⎦

T
⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
−1 ⎡
⎢⎣

I 0
0 0
0 I

⎤
⎥⎦
[
g1

g3

]
.

Computing the action of M−1
N , thus involves the solution of a linear system

of the form (13.10) with right hand side f (1)
I = g1, f (2)

I = 0 and fB = g3. The
following can be easily verified using a block factorization of K:

MN =

[
K

(1)
II K

(1)
IB

K
(1)T

IB K
(1)
BB + S(2)

]
,

where S(2) = (K(2)
BB − K

(2)T

IB K
(2)−1

II K
(2)
IB ) denotes the Schur complement with

respect to nodes in Ω2 and B. Since K
(1)
II = A

(1)
II , K

(1)
IB = A

(1)
IB and since

K
(1)
BB = A

(1)
BB , preconditioner MN will correspond to a modification of matrix

AN, by addition of the Schur complement S(2) to its lower diagonal block.
The convergence rate will be of optimal order with respect to h.

Theorem 13.3. The exists C > 0, independent of h, such that

cond(MN, AN ) ≤ C.

Proof. See [BO5]. ��

Remark 13.4. In practice, there are computational issues for choosing a grid
on Ω1 which allows a fast solver on Ω∗. This is discussed at length in [BO5],
where a triangulation algorithm is also described. Additionally, exact solvers
for the extended stiffness matrix K can be replaced by inexact solvers based
on a topologically equivalent grid.

13.3 Preconditioners for Dirichlet Problems

We shall next outline two preconditioners for the Dirichlet problem:{
−∇ · (a(x)∇u) + c(x)u = f, in Ω

u = 0, on ∂Ω.
(13.11)
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We imbed Ω in a rectangular or periodic domain Ω∗ and define Ω1 = Ω,
Ω2 = (Ω∗ \ Ω1), B = ∂Ω1 ∩ ∂Ω2. A discretization of (13.11) will then be:

A
(1)
II u(1)

I = f (1)
I ,

where we shall denote AD = A
(1)
II . On the extended region Ω∗, we shall pose

elliptic equation (13.8) and employ its discretization (13.10). By construction,
it will hold that K

(1)
II = AD.

An obvious first choice of fictitious domain preconditioner M̃D for AD is:

M̃−1
D f1 ≡

⎡
⎢⎣

I

0
0

⎤
⎥⎦

T
⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
−1 ⎡
⎢⎣

I

0
0

⎤
⎥⎦ f1,

obtained by analogy with the Neumann preconditioner MN. Unfortunately,
cond(M̃D, AD) grows as O(h−1), see [BO5]. Instead, we describe an alternative
fictitious domain preconditioner [PR] for AD. The Dirichlet preconditioner MD

of [PR] is motivated by the following block matrix identity.

Lemma 13.5. Consider block matrix K in (13.10) with K
(1)
II = A

(1)
II = AD

and define a Schur complement matrix S as:

S = KBB − K
(1)T

IB K
(1)−1

II K
(1)
IB − K

(2)T

IB K
(2)−1

II K
(2)
IB .

Then the following identity will hold:

A−1
D =

⎡
⎢⎣

I

0
0

⎤
⎥⎦

T

K−1

⎛
⎜⎝
⎡
⎢⎣

I 0 0
0 I 0
0 0 I

⎤
⎥⎦−

⎡
⎢⎣

0 0 0
0 0 0
0 0 S

⎤
⎥⎦K−1

⎞
⎟⎠
⎡
⎢⎣

I

0
0

⎤
⎥⎦ , (13.12)

where

S−1 =

⎡
⎢⎣

0
0
I

⎤
⎥⎦

T
⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
−1 ⎡
⎢⎣

0
0
I

⎤
⎥⎦ .

Proof. Follows from the block matrix factorization of K. ��

A preconditioner MD for AD can be obtained by replacing the action of S
by a scaled preconditioner MS of S. We express it in symmetric form as:

M−1
D =

⎡
⎢⎣

I

0
0

⎤
⎥⎦

T

K−1

⎛
⎜⎜⎝
⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦−

⎡
⎢⎣

0 0 0
0 0 0
0 0 MS

⎤
⎥⎦
⎞
⎟⎟⎠K−1

⎡
⎢⎣

I

0
0

⎤
⎥⎦ .
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From the preceding expression, to ensure that MD ≥ 0 we shall assume that
MS ≤ S (which can be obtained by scaling MS). Choices for MS which do not
employ inversion of subdomain stiffness matrices include square root of the
discrete Laplace-Beltrami matrix on B and multilevel approximations. Below,
we summarize an algorithm for computing the action of M−1

D .

Algorithm 13.3.1 (Capacitance Matrix Preconditioner M−1
D f1)

1. Solve: ⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
⎡
⎢⎣

w(1)
I

w(2)
I

wB

⎤
⎥⎦ =

⎡
⎢⎣

f1

0
0

⎤
⎥⎦

2. Compute gB = MSwB

3. Solve: ⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
⎡
⎢⎣

v(1)
I

v(2)
I

vB

⎤
⎥⎦ =

⎡
⎢⎣

0
0
gB

⎤
⎥⎦

4. Define: M−1
D f1 ≡ w(1)

I − v(1)
I

Theorem 13.6. If MS � S and MS ≤ S, it will hold that:

cond(MD, AD) ≤ c,

where c > 0 is independent of h.

Proof. See [PR]. ��

Remark 13.7. Another fictitious domain preconditioner MD for AD = A
(1)
II

having the form MD = R K−1RT is described in [NE7] for R defined as:

R

⎡
⎢⎣

w(1)
I

w(2)
I

wB

⎤
⎥⎦ = w(1)

I − C
(1)−1

II C
(1)
IBwB ,

where C � K. An explicit and computationally efficient algorithm is described
for computing the action −C

(1)−1

II C
(1)
IBwB which approximates a discrete har-

monic extension of wB into Ω1 without requiring the inversion of K
(1)
II . Non-

symmetric capacitance matrix preconditioners for AD are described in [BO5].
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13.4 Lagrange Multiplier and Least Squares-Control
Solvers

The Lagrange multiplier and least squares-control formulations provide use-
ful frameworks for constructing fictitious domain solvers for elliptic equations
[AT, NE7, DI2, DE4, GL12, PR, GL4, GL11]. The Lagrange multiplier for-
mulation we describe will be applicable only to a self adjoint coercive elliptic
equation with Dirichlet boundary conditions, while the least squares-control
formulation will be applicable to general elliptic boundary value problems.
Our discussions, however, will be restricted to the discrete case. We consider
simply connected domains Ω1, and omit discussion of exterior problems.

The Dirichlet problem we consider will be of the form:{
−∇ · (a(x)∇) + c(x) u = f, in Ω

u = gD, on ∂Ω,
(13.13)

for c(x) ≥ 0. We shall denote its discretization on Ω1 = Ω as:{
A

(1)
II u(1)

I + A
(1)
IBuB = f (1)

I

uB = gD,
(13.14)

where gD denotes a discretization of the Dirichlet boundary data.
The Neumann problem we consider will be of the form:{

−∇ · (a(x)∇u) + c(x) u = f, in Ω

n · a(x)∇u = gN, on ∂Ω.
(13.15)

When c(x) = 0, we shall assume
∫

Ω
f(x) dx+

∫
∂Ω

gN(x) dsx = 0, for compata-
bility. We denote a discretization of the Neumann problem as:[

A
(1)
II A

(1)
IB

A
(1)T

IB A
(1)
BB

][
u(1)

I

uB

]
=

[
f (1)
I

f (1)
B

]
. (13.16)

As before, Ω = Ω1 will be imbedded within an extended region Ω∗, with
Ω2 ≡ Ω∗ \ Ω1. On the extended domain Ω∗, we pose the elliptic equation:{

−∇ · (a∗(x)∇) + c∗(x)u = f∗(x), in Ω∗
u = 0, on ∂Ω∗,

(13.17)

where a∗(x) and c∗(x) are defined as in (13.9), while:

f∗(x) =

{
f(x), for x ∈ Ω

f̃(x), for x ∈ Ω∗ \ Ω.
(13.18)
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A discretization of this extended elliptic equation will be denoted:⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
⎡
⎢⎣

u(1)
I

u(2)
I

uB

⎤
⎥⎦ =

⎡
⎢⎣

f (1)
I

f (2)
I

fB

⎤
⎥⎦ , (13.19)

where K
(1)
II = A

(1)
II , K

(1)
IB = A

(1)
IB and KBB = A

(1)
BB + K

(2)
BB .

Lagrange Multiplier Formulation. Our description of the Lagrange multi-
plier formulation for fictitious domain problems will focus only on a matrix
version of an algorithm of [DI2]. We will seek the solution to the dis-
cretized Dirichlet problem (13.14) on Ω1, by imbedding this system within
a larger linear system involving the discretization (13.19) of the extended
equation (13.17) on Ω∗ ⊃ Ω1. The imbedding may be motivated by the ob-
servation that if uB = gD in (13.19), then the first block row of (13.19) yields
u(1)

I = K
(1)−1

II

(
f (1)
I − K

(1)
IBgD

)
which is the desired solution to (13.14) for

K
(1)
II = A

(1)
II and K

(1)
IB = A

(1)
IB . We now describe a constrained minimization

problem which yields a system with uB = gD.
Accordingly, consider the energy J(·) associated with system (13.19):

J(v) =
1
2

⎡
⎢⎣

v(1)
I

v(2)
I

vB

⎤
⎥⎦

T ⎡⎢⎢⎣
K

(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
⎡
⎢⎣

v(1)
I

v(2)
I

vB

⎤
⎥⎦−

⎡
⎢⎣

v(1)
I

v(2)
I

vB

⎤
⎥⎦

T ⎡
⎢⎣

f (1)
I

f (2)
I

fB

⎤
⎥⎦ ,

where v =
(
v(1)T

I ,v(2)T

I ,vT
B

)T

. We shall assume K and A
(1)
II are symmetric

positive definite matrices of size m and n < m, respectively. Seeking the
minimum of J(v) subject to a constraint of the form M vB = M gD, (where
M denotes a mass or identity matrix of size n) will yield a saddle point linear
system as in Chap. 10. Indeed, define a Lagrangian functional:

L(w, λ) = J(w) + λT M (wB − gD) ,

where λ ∈ IRn denotes a vector of Lagrange multipliers which enforce the
constraint MwB = gD. As in Chap. 10, the saddle point of L(., .) will solve:⎡

⎢⎢⎢⎢⎣
K

(1)
II 0 K

(1)
IB 0

0 K
(2)
II K

(2)
IB 0

K
(1)T

IB K
(2)T

IB KBB MT

0 0 M 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v(1)
I

v(2)
I

vB

λ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f (1)
I

f (2)
I

fB

MgD

⎤
⎥⎥⎥⎥⎦ . (13.20)

Solving the fourth block row of (13.20) yields vB = gD, and substituting this
into the first block row of (13.20) yields K

(1)
IBv(1)

I + K
(1)
IBgD = f (1)

I . This has
the same solution v(1)

I as (13.14), and can be sought by solving (13.20).
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Saddle point system (13.20) can be solved using any of the iterative algo-
rithms from Chap. 10. Such algorithms require either an efficient solver for
K or an efficient preconditioner for K (this will hold by our assumption on
the choice of fictitious domain), and an efficient preconditioner for the saddle
point Schur complement matrix T :

T =

⎡
⎢⎣

0
0
M

⎤
⎥⎦

T
⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
−1 ⎡
⎢⎣

0
0
M

⎤
⎥⎦ .

It is easily verified that T ≡ MT S−1M , where:

S =
(
KBB − K

(1)T

IB K
(1)−1

II K
(1)
IB − K

(2)T

IB K
(2)−1

II K
(2)
IB

)
,

denotes a two subdomain (domain decomposition) Schur complement ma-
trix. Since M is a mass or identity matrix, it will follow that T is spectrally
equivalent to S−1, and thus, the action of T−1 may be approximated by mul-
tiplication by any suitable preconditioner MS for S. We omit the details. See
[GL4, GL11] for alternative Lagrange multiplier methods.

Least Squares-Control Formulation. The preceding method does not gen-
eralize to Neumann problems (in any obvious way), nor to non-self adjoint
problems. However, a least squares-control method can be formulated for such
problems. We outline matrix versions of two families of least squares-control
fictitious domain methods [DE4, GL12]. The first least squares-control ficti-
tious domain method we describe corresponds to a weighted residual least
squares method, while the second method to a constrained least squares
method involving a weighted residual on the subdomain boundary. We de-
scribe both algorithms in matrix terms, and assume that the matrices are
nonsingular.

Weighted Residual Least Squares. The algorithm of [DE4] seeks the so-
lution to a linear system Au = f of size n, corresponding to the discretization
of an elliptic equation on Ω1 with Dirichlet or Neumann boundary conditions
on ∂Ω1, by a weighted residual method. Let K denote the extended stiffness
matrix of size m > n, associated with the elliptic equation on Ω∗ ⊃ Ω1. We
assume that an efficient solver is available for K. Let E : IRn → IRm denote
an extension map which extends a nodal vector on Ω1 by zero to Ω∗ \Ω1. Let
y ∈ IRm denote a weighted residual:

K y + E (Au − f) = 0,

so that when Au = f , variable y = 0. Here u ∈ IRn corresponds to a control
variable and y ∈ IRm to a state variable.
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Using the preceding, a solution to Au = f may be sought by minimizing a
nonnegative quadratic functional J(y) = yT Hy (for any matrix H = HT > 0
of size m) subject to the following constraint:

J(y∗) = min
y∈V

J(y) (13.21)

where
V = {y ∈ IRm : K y + E (Av − f) = 0, ∀v ∈ IRn} .

By construction, the minimum will occur when y∗ = 0 and Av = f . We may
parameterize the space V in terms of the control variables as follows:

V =
{

K−1E (f − Av) : for v ∈ IRn
}

.

Substituting this parameterization, we may reduce the constrained minimiza-
tion problem (13.21) to the following unconstrained minimization problem:

J∗(u) = min
v∈IRn

J∗(v) (13.22)

where J∗(v) ≡ J
(
K−1E(f − Av)

)
. At the minimum, Au = f . Applying the

first order derivative test ∇J∗ = 0 for a minimum yields:(
AT ET K−T HK−1EA

)
u = f∗, (13.23)

where f∗ ≡
(
AT ET K−T HK−1E

)
f . This system will be symmetric positive

definite and can be solved by a preconditioned conjugate gradient method.
Each matrix vector product with matrix

(
AT ET K−T HK−1EA

)
will require

computing the action of K−1 and K−T . Here, matrix H = HT > 0 of size m
can be regarded as a preconditioner to reduce the condition number.

Remark 13.8. In applications, block matrix K in (13.19) can be used for
Dirichlet and Neumann boundary value problems. In this case, the matrices
A = AD, ED, A = AN and EN can be chosen as follows:

AD = K
(1)
II , ED =

⎡
⎢⎣

I

0
0

⎤
⎥⎦ and AN =

[
K

(1)
II K

(1)
IB

K
(1)T

IB K
(1)
BB

]
, EN =

⎡
⎢⎣

I 0
0 0
0 I

⎤
⎥⎦ ,

to solve the discretized Dirichlet problem (13.14) on Ω1 and the discretized
Neumann problem (13.16) on Ω1, respectively. The vectors f = f (1)

I for the

Dirichlet problem and f = (f (1)T

I , f (1)T

B )T for the Neumann problem.

Boundary Residual Least Squares. We next describe the matrix version
of a control algorithm of [GL12] involving a boundary functional. It can be
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formulated to solve either a discretized Dirichlet or Neumann problem, but
to be specific, we shall consider the following discretized Dirichlet problem:{

A
(1)
II u(1)

I + A
(1)
IBuB = f (1)

I

uB = gD.
(13.24)

The matrix version of such algorithms employ constraints of the form:⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
⎡
⎢⎣

v(1)
I

v(2)
I

vB

⎤
⎥⎦ =

⎡
⎢⎣

f (1)
I

β
(2)
I

βB

⎤
⎥⎦ , (13.25)

where β
(2)
I = 0 and K

(1)
II = A

(1)
II , K

(1)
IB = A

(1)
IB and K

(1)
BB = A

(1)
BB in stiffness

matrix K associated with the extended elliptic equation.
A control algorithm for solving (13.24) can be motivated as follows. Let

f (1)
I in (13.25) be the same as in system (13.24). Then, if vB = gD, the first

block row of (13.25) yields v(1)
I = u(1)

I . This suggests minimizing ‖vB − gD‖2

subject to a constraint of the form (13.25). Then, by construction, at the
minimum we should obtain v(1)

I = u(1)
I and vB = gD.

More specifically, let n1 be the size of v(1)
I , n2 the size of v(2)

I , and n3

the size of vB , with n = (n1 + n2 + n3). Given an extended nodal vector

v =
(
v(1)T

I ,v(2)T

I ,vT
B

)T

and a symmetric positive definite matrix H of size
n3, define a boundary energy functional J(v):

J(v) = (vB − gB)T
H (vB − gB) .

The preceding least squares control formulation of (13.24) will seek:

J(u) = min
v∈V

J(v) (13.26)

where the constraint set V is defined as:

V =
{
v ∈ IRn : (v(1)T

I , v(2)T

I , vT
B)T satisfies (13.25)

}
.

Since (13.24) is solvable, we should obtain J(·) = 0 as the minimum, yielding
uB = gD. A solution to (13.24) can thus be obtained by solving (13.26). Im-
portantly, we may set β

(2)
I = 0, as it will only yield extra control parameters.

Then, V can be parameterized in terms of βB ∈ IRn3 as:

V =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎣

v(1)
I

v(2)
I

vB

⎤
⎥⎦ =

⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
−1 ⎡
⎢⎣ f (1)

I

0
βB

⎤
⎥⎦ : ∀βB ∈ IRn3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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An unconstrained minimization problem equivalent to (13.26) will thus be:

J∗(uB) = min
βB∈IRn3

J∗(βB) (13.27)

where J∗(βB) = J(F βB + γ) is defined using the parametric representation:

⎡
⎢⎣

v(1)
I

v(2)
I

vB

⎤
⎥⎦ =

⎡
⎢⎢⎣

K
(1)
II 0 K

(1)
IB

0 K
(2)
II K

(2)
IB

K
(1)T

IB K
(2)T

IB KBB

⎤
⎥⎥⎦
−1 ⎡
⎢⎣ f (1)

I

0
βB

⎤
⎥⎦ ≡ F βB + γ,

with

F βB ≡ K−1

⎡
⎢⎣

0
0
βB

⎤
⎥⎦ and γ ≡

⎡
⎢⎣

γ
(1)
I

γ
(2)
I

γB

⎤
⎥⎦ ≡ K−1

⎡
⎢⎣ f (1)

I

0
0

⎤
⎥⎦ .

Here F will be a matrix of size n × n3 and γ a vector of size n. Substitut-
ing the above parameterization and applying a first order derivative test for
determining the minimum of J∗(·) will yield the linear system:(

FT RT HRF
)
uB =

(
FT RT H

)
gD. (13.28)

Here R denotes a restriction matrix R =
[
0 0 I

]
. A conjugate gradient

algorithm may be employed to solve system (13.28), using a suitable precon-
ditioner H. It is easily verified that RF = RK−1RT = S−1 where:

S =
(
KBB − K

(1)T

IB K
(1)−1

II K
(1)
IB − K

(2)T

IB K
(2)−1

II K
(2)
IB

)
,

is a two subdomain Schur complement. Thus, H may be chosen as a discrete
Laplace-Beltrami matrix on B. We omit further details.

Remark 13.9. A constrained minimization problem similar to (13.26) can also
be developed for solving the discretized Neumann problem (13.16). In this
case, the boundary functional could be defined as:

J(v) =
∥∥∥(A(1)T

IB v(1)
I + A

(1)
BBvB

)
− gN

∥∥∥2

H
,

for a suitably chosen positive definite matrix H of size n3. The least squares-
control problem will then seek the minimum of J(·) subject to the constraint
V as before. Using the same parameterization of V, an unconstrained mini-
mization problem can be obtained, yielding a linear system of the form (13.28)
with matrix R replaced by:

R =
[
A

(1)T

IB 0 A
(1)
BB

]
.

We omit further details.
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Variational Inequalities and Obstacle Problems

In this chapter, we describe traditional and domain decomposition Schwarz
algorithms for iteratively solving obstacle problems. In an obstacle problem,
an elliptic (or parabolic) equation or inequality is posed on a domain, however,
the desired solution is constrained to lie above a specified function, referred
to as an obstacle [CR2, GL, FR6, KI4]. Applications arise in elasticity theory
[GL10, GL], heat conduction (Stefan problems) and mathematical finance
(option pricing) [CR2, EL, WI10, WI11]. Even when the underlying elliptic
(or parabolic) equation is linear, an obstacle problem is nonlinear due to the
unknown region of contact between the solution and the obstacle. However,
once the contact set is known, the problem is linear on its complementary set.

Our discussion will focus on variational inequalities which arise from scalar
elliptic equations with obstacle constraints. Its discretization yields a linear
complementarity algebraic problem. We describe algorithms for solving such
problems iteratively, both when the elliptic equation is self adjoint and coer-
cive and when it is non-self adjoint. Chap. 14.1 describes properties of vari-
ational inequalities and their discretizations, and a projection theorem onto
convex sets. Chap. 14.2 describes the gradient and relaxation methods for iter-
atively solving linear complementarity problems. Schwarz linear complemen-
tarity algorithms, see [LI6, HO3, KU12, KU13, ZE, LI10, BA10, TA2, TA3],
are described in Chap. 14.3. Chap. 14.4. discusses the maximum norm con-
vergence of Schwarz linear complementarity algorithms. Chap. 14.5 briefly
discusses extensions to parabolic variational inequalities.
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14.1 Background

Let L denote an elliptic operator defined on a domain Ω:

L u ≡ −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u, (14.1)

where the coefficients a(x) ≥ a0 > 0, b(x) and c(x) ≥ 0 are smooth. For
simplicity, when b(x) �= 0, we assume c(x) ≥ c0 > 0. Below, we describe
background on the continuous and discrete versions of an obstacle problem.

Continuous Obstacle Problem. Let ψ(x) ∈ C1(Ω) be a given function,
referred to as an obstacle function, and let f(x) ∈ C(Ω), g(x) ∈ C(∂Ω)
denote forcing and boundary terms, respectively. Then, an obstacle problem
formally seeks u(x) ∈ C2(Ω) satisfying:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Lu(x) − f(x) ≥ 0, a.e. in Ω

u(x) − ψ(x) ≥ 0, a.e. in Ω

(u(x) − ψ(x)) (Lu(x) − f(x)) = 0, a.e. in Ω

u(x) = g(x), on ∂Ω.

(14.2)

Since (Lu(x) − f(x)) ≥ 0 and since (u(x) − ψ(x)) ≥ 0, the requirement that:

(Lu(x) − f(x)) (u(x) − ψ(x)) = 0, on Ω,

can be equivalently stated that, if u(x) > ψ(x), then Lu(x) = f(x). For
compatability of the boundary data with the obstacle, we shall require that
ψ|∂Ω ≤ g(x). However, for simplicity we assume g(x) = 0, in which case this
reduces to ψ|∂Ω ≤ 0. See Fig. 14.1 for an illustration of u(x) and ψ(x).

Definition 14.1. Given a solution u(x) to (14.2), we define its contact set
as G ≡ {x ∈ Ω : u(x) = ψ(x)} for the obstacle problem. The boundary ∂G of
the contact set is referred to as a free boundary, and is generally unknown.
However, when G is known, u(x) can formally be determined by solving:

Lu = f, in (Ω\G) with u = ψ on (∂G ∩ Ω) and u = g on ∂Ω.

Let K denote a closed, convex subset of H1
0 (Ω) satisfying:

K ≡
{
u ∈ H1

0 (Ω) : u(x) ≥ ψ(x), a.e. in Ω
}

. (14.3)
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Fig. 14.1. A triangular obstacle function ψ(x) on a one dimensional domain
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We note that the second requirement in (14.2) justifies seeking u(·) ∈ K.
By definition of the contact set G, for any v(·) ∈ K it must hold that
(v(x) − u(x)) ≥ 0 on G. Multiplying (Lu(x) − f(x)) by (v(x) − u(x)) and
integrating yields:∫

Ω
(Lu − f)(v − u) dx =

∫
G

(Lu − f)(v − u) dx +
∫

Ω\G
(Lu − f)(v − u) dx

=
∫

G
(Lu − f)(v − u) dx ≥ 0,

since (Lu(x) − f(x)) ≥ 0 on Ω and since (Lu(x) − f(x)) = 0 on (Ω\G).
Integrating the preceding expression by parts yields a weak version of the

obstacle problem, which seeks u(x) ∈ K satisfying:

a(u, v − u) − (f, v − u) ≥ 0, ∀v ∈ K, (14.4)

where {
a(u, v) ≡

∫
Ω

(a(x)∇u · ∇v + b(x) · ∇u v + c(x) u v) dx,

(f, w) ≡
∫

Ω
f(x) w(x) dx.

Inequality (14.4) is referred to as a variational inequality [GL, KI4]. When
b(x) = 0 and c(x) ≥ 0, the variational inequality (14.4) can be shown to be
equivalent to the following constrained minimization problem [GL, KI4]:

J(u) = min
w∈K

J(w) (14.5)

where the energy is defined J(w) ≡ 1
2 a(w,w) − (f, w) for w ∈ H1(Ω). The

existence and uniqueness of solutions to this constrained optimization problem
can be found in [GL, KI4]. In the following, we verify that the differential
version (14.2) of the obstacle problem can be derived from (14.4).

Lemma 14.2. Let u ∈ K be a sufficiently smooth solution of the variational
inequality (14.4). Then u(x) will satisfy the following:

1. u(x) ≥ ψ(x) a.e. in Ω.
2. (Lu(x) − f(x)) ≥ 0 a.e. in Ω.
3. (u(x) − ψ(x)) (Lu(x) − f(x)) = 0 a.e. in Ω.

Proof. Since u ∈ K, the first inequality holds by definition of K. To prove the
second inequality, choose a nonnegative function φ ∈ H1

0 (Ω) and define:

v(x) = u(x) + φ(x), where φ(x) ≥ 0, x ∈ Ω.

Since u(x) ≥ ψ(x) and φ(x) ≥ 0 it follows that v(x) = u(x) + φ(x) ≥ ψ(x)
and so v(·) ∈ K. Substituting v(·) into the variational inequality, we obtain:

0 ≤ a(u, v − u) − (f, v − u)
= a(u, φ) − (f, φ)
=
∫

Ω
(Lu(x) − f(x)) φ(x) dx,



624 14 Variational Inequalities and Obstacle Problems

where the last line follows by integration by parts when u(x) is sufficiently
smooth, since φ(·) ∈ H1

0 (Ω). Thus,
∫

Ω
(Lu(x) − f(x)) φ(x) dx ≥ 0 for smooth

nonnegative test functions φ(x), yielding (Lu(x) − f(x)) ≥ 0 a.e. in Ω.
To prove the third item, suppose that u(x) > ψ(x) for x ∈ N(x0), some

open set containing x0. Then, choose any sufficiently smooth nonpositive test
function 0 ≥ φ(x) ∈ H1

0 (Ω) with support in N(x0) and negative at x0, yet
such that v(x) = u(x) + φ(x) ≥ ψ(x). For this choice of φ(·), we obtain:

0 ≤ a(u, v − u) − (f, v − u)
= a(u, φ) − (f, φ)
=
∫

N(x0)
(Lu(x) − f(x)) φ(x) dx ≤ 0,

since (L (x) − f(x)) ≥ 0 and φ(x) ≤ 0. Thus a(u, φ) − (f, φ) = 0 and since
φ(x0) < 0, this can hold only if (Lu(x) − f(x)) = 0 at x0. Thus, we have
established that if u(x0) > ψ(x0) then (Lu(x0) − f(x0)) = 0. ��

Discrete Obstacle Problem. A discretization of the obstacle problem can
be obtained using either a finite element or finite difference method. For def-
initeness, we consider a finite difference discretization. Let Th(Ω) denote a
triangulation of Ω with grid size h and interior nodes x1, . . . , xn. We shall
denote the linear system corresponding to Lu = f in Ω with u = 0 on ∂Ω
as Au = f , where u ∈ IRn denotes a vector of nodal unknowns with (u)i

approximating u(xi) and f ∈ IRn denoting the discrete forcing term. We let
ψ ∈ IRn denote a nodal vector corresponding to the obstacle function at the
interior nodes, with (ψ)i = ψ(xi).

A discretization of the obstacle problem can be obtained either by dis-
cretization of (14.2) or by discretization of (14.4). The obstacle constraint
u(x) ≥ ψ(x) will be discretized as u ≥ ψ, where the inequality between the
two nodal vectors apply component wise, i.e., with (u)i ≥ (ψ)i for 1 ≤ i ≤ n.
A discretization of (14.2) will seek u ∈ IRn satisfying:⎧⎪⎨

⎪⎩
u − ψ ≥ 0

Au − f ≥ 0

(u − ψ)T (Au − f) = 0.

(14.6)

This problem is referred to as a linear complementarity problem. Since u ≥ ψ
and (Au − f) ≥ 0 are taken component wise, it will follow that if ui > ψi,
then (Au)i = f i and that if ui = ψi, then (Au)i ≥ f i.

Definition 14.3. The discrete constraint set Kh is defined as:

Kh = {v ∈ IRn : (v)i ≥ (ψ)i, for 1 ≤ i ≤ n} ,

and it is easily verified to be a closed, convex set.
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Remark 14.4. We leave it to the reader to verify that linear complementarity
problem (14.6) can be expressed equivalently as seeking u ∈ Kh such that:

(v − u)T (Au − f) ≥ 0, ∀v ∈ Kh. (14.7)

This corresponds to a discretization of the variational inequality (14.4). When
matrix A = AT > 0 (if b(x) = 0 and c(x) ≥ 0), the linear complementarity
problem (14.7) will be equivalent to a constrained minimization problem.

Lemma 14.5. Suppose the following conditions hold.

1. Let A be a symmetric positive definite matrix of size n and let J (v) denote
the quadratic function associated with Au = f for f ∈ IRn:

J (v) ≡ 1
2
vT Av − vT f . (14.8)

2. Let u denote the minimum of J(·) within the closed, convex set Kh:

J (u) = min
v∈Kh

J (v) (14.9)

Then, the following result will hold.

(v − u)T (Au − f) ≥ 0, ∀v ∈ Kh.

Proof. Given u ∈ Kh satisfying (14.9), choose v ∈ Kh. By convexity of Kh:

(1 − t)u + tv = u + t (v − u) ∈ Kh, for t ∈ [0, 1].

By assumption, J (u) ≤ J (u + t (v − u)) for 0 ≤ t ≤ 1, so we must have:

0 ≤ dJ (u + t(v − u))
dt

∣∣∣∣
t=0

= (v − u)T
Au − (v − u)T f , ∀v ∈ Kh.

This yields the desired result. ��

The preceding result shows that when A is symmetric positive definite,
the variational inequality version (14.7) of the linear complementarity prob-
lem (14.6) is equivalent to the constrained minimization version (14.9). The
following result concerns the uniqueness of the solution in this case.

Lemma 14.6. Let A = AT > 0 be of size n and let w ∈ Kh satisfy:

(v − w)T (Aw − f) ≥ 0, ∀v ∈ Kh.

Then w is unique.
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Proof. To show uniqueness of the solution, suppose there were two distinct so-
lutions u, w ∈ Kh of the discrete variational inequality above. Given solution
u, substitute v = w to obtain:

(Au − f ,w − u) ≥ 0.

When w is the solution, substitute v = u and reverse signs to obtain:

(−Aw + f ,w − u) ≥ 0.

Adding this with the preceding expression and reversing signs yields:

(w − u)T
A (w − u) ≤ 0.

Since A = AT > 0 this yields that ‖u−w‖2 = 0, establishing uniqueness. ��

Remark 14.7. When matrix A is not symmetric positive definite, the linear
complementarity problem (14.6) will not have a minimization interpretation.

Projection Theorem onto Convex Sets. We next state an abstract pro-
jection theorem, onto a closed, convex set K in a Hilbert space V , see [CI4].
This result will be used when formulating the projected gradient method.

Theorem 14.8. Suppose the following conditions hold.

1. Let V denote a Hilbert space with inner product (·, ·)V and norm ‖ · ‖V .
2. Let K be a closed convex set in V .
3. Given w ∈ V , let d (w,K) denote the distance between w and K:

d (w,K) ≡ inf
v∈K

‖v − w‖V .

Then, the following results will hold:

1. For any w ∈ V , there exists a unique element PKw ∈ K closest to w:

‖w − PKw‖V = inf
v∈K

‖v − w‖V .

2. The element PKw ∈ K is characterized by the variational inequality:

(PKw − w, v − PKw)V ≥ 0, ∀v ∈ K. (14.10)

3. The projection operator: PK : V → K is nonexpansive, i.e.,

‖PKw − PKv‖V ≤ ‖w − v‖V .

4. PK is linear if and only if K is a subspace of V .
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Proof. For a complete proof, see [CI4]. We shall only prove 2 (the variational
inequality characterization of PKw). Given w ∈ V , let w∗ ∈ K be the closest
vector in K to w, i.e.,

‖w − w∗‖V = inf
v∈K

‖v − w‖V .

The existence of a closest element is proved in [CI4], and will be valid only
when K is closed). The vector w∗ can be expressed as:

Jw(w∗) = min
v∈K

Jw(v),

where Jw (v) ≡ 1
2 (v − w, v − w)V is a quadratic functional. Given w∗ ∈ K

and v ∈ K, consider θv + (1 − θ)w∗ = w∗ + θ(v − w∗) ∈ K for θ ∈ [0, 1], since
K is convex. Since the minimum of Jw (·) in K occurs at w∗, we obtain:

Jw (w∗) ≤ Jw (w∗ + θ(v − w∗)) , for θ ∈ [0, 1].

Using the definition of Jw (·), we obtain:

Jw (w∗ + θ(v − w∗)) =
1
2
‖w∗ − w‖2

V + θ (w∗ − w, v − w∗)V +
θ2

2
‖v − w∗‖2

V .

Requiring that:
dJw (w∗ + θ(v − w∗))

dθ
|θ=0 ≥ 0,

yields that:
(w∗ − w, v − w∗)V ≥ 0.

This is valid for each v ∈ K. Thus w∗ (which we denoted by PKw) satisfies:

(PKw − w, v − PKw) ≥ 0, ∀v ∈ K.

For a complete proof, see [CI4]. ��

Remark 14.9. The projection PK onto a closed convex set K will not be linear,
unless unless K is a linear space. For general convex sets K, it may be com-
putationally expensive to determine PKw given w. However, for the type of
convex sets occurring in obstacle problems, it will be inexpensive to compute
PKw. Indeed, let V = IRn be equipped with the Euclidean inner product.
Given a discrete obstacle vector ψ, define the closed convex set Kh as:

Kh = {v ∈ IRn : vi ≥ ψi, for i = 1, · · · , n} .

Then, the projection PKw of w ∈ IRn onto Kh can be verified to satisfy:

(PKw)i = max {wi, ψi} , for 1 ≤ i ≤ n.

This can be derived using the variational characterization of the projection.
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Remark 14.10. The preceding projection theorem applies when minimizing
the distance defined using the Hilbert norm ‖ · ‖V . The minimum of a more
general quadratic functional J(·):

J(v) =
1
2

a(v, v) − (f, v),

within K can be sought, if desired, by applying the preceding projection theo-
rem, provided a(., .) is a symmetric, coercive bilinear form on V equivalent to
(., .)V and (f, ·) is a bounded linear functional on V . Indeed, if u ∈ V solves:

a(u, v) = (f, v), ∀v ∈ V,

then it can be verified that:

J(v) =
1
2

a(v − u, v − u) − 1
2

a(u, u).

Since a(·, ·) is equivalent to (·, ·)V , we may apply the projection theorem by
employing the inner product induced by a(., .) and by translating K by u. We
omit the details.

14.2 Projected Gradient and Relaxation Algorithms

In this section, we shall describe two traditional iterative methods, see [CI4],
for solving the linear complementarity problem (14.6). The projected gradient
method will be applicable primarily when A is symmetric and positive definite,
while the relaxation method will be applicable more generally (even when
matrix A is nonsymmetric, provided A is a diagonally dominant M -matrix).
Readers are referred to [CI4] for a detailed exposition and analysis of these
algorithms. The iterative methods described here can be used to solve local
problems when Schwarz algorithms are employed.

Projected Gradient Method. The projected gradient method seeks to it-
eratively determine the minimum u ∈ Kh of a functional J(·) : Kh → IR by
applying a fixed point iteration:

J(u) = min
u∈Kh

J(v).

We assume that J(v) is a sufficiently smooth elliptic and Lipschitz functional
defined on a closed, convex set Kh ⊂ IRn.

Definition 14.11. A sufficiently smooth functional J : IRn → IR will be said
to be elliptic if there exists α > 0 such that:

(∇J(u) −∇J(v),u − v) ≥ α ‖u − v‖2,

where ‖ · ‖ and (·, ·) denotes the Euclidean norm and inner product on IRn.
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Definition 14.12. A sufficiently smooth functional J : IRn → IR will be said
to be Lipschitz if there exists M > 0 such that:

‖∇J(u) −∇J(v)‖ ≤ M ‖u − v‖,

where ‖ · ‖ denotes the Euclidean norm.

The projected gradient method can be motivated as follows. If u ∈ Kh is
a solution to the constrained minimization problem:

J (u) = min
v∈Kh

J (v) ,

then the first order optimality conditions at u requires:

(∇J(u),v − u) ≥ 0, ∀v ∈ Kh,

since the derivative of J (u + θ(v − u)) with respect to θ must be nonnegative
when θ = 0. Next, note that for any ρ > 0, the above optimality condition
will be equivalent to find u ∈ Kh such that:{

ρ (∇J(u),v − u) ≥ 0, ∀v ∈ Kh

(u − (u − ρ∇J(u)) ,v − u) ≥ 0, ∀v ∈ Kh.

The preceding characterization is identical to characterization (14.10) of the
projection onto Kh. As a result, the preceding seeks u ∈ Kh:

PK (u − ρ∇J(u)) = u.

Thus, the solution u of the constrained minimization problem will be a fixed
point of the mapping T : Kh → Kh defined by:

T (w) ≡ PK (w − ρ∇J(w)) ,

for any ρ > 0. If the mapping T is a contraction for a suitable choice of
parameter ρ > 0, then given a starting guess u(0) ∈ Kh, we can determine the
solution to the variational inequality by iterating the contraction mapping:

u(k+1) = T
(
u(k)

)
, for k = 0, 1, . . .

We show below that when J (·) is elliptic and ∇J (·) is Lipschitz, then T (·)
will be a contraction for appropriate ρ > 0, with geometric convergence.

Algorithm 14.2.1 (Projected Gradient Method)
Given a starting iterate u(0) ≥ ψ and ρ > 0

1. For k = 0, · · · , until convergence do:
2. Compute:

u(k+1) ≡ PK
(
u(k) − ρ∇J(u(k))

)
3. Endfor
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Remark 14.13. Substituting for PK and ∇J in the obstacle problem yields:

u(k+1)
i = max{u(k)

i − ρ (Au(k) − f)i,ψi} for 1 ≤ i ≤ n,

for step 2 above. The following convergence result will hold.

Proposition 14.14. Let J : IRn → IR be elliptic with parameter α > 0 and
Lipschitz with parameter M > 0. Then, there exists an interval:

0 < δ1 ≤ ρ ≤ δ2 ≤ 2α

M2
,

on which the map T (w) ≡ PK (w − ρ∇J(w)) is a contraction, i.e., there exists
0 < γ < 1 such that:

‖T (w) − T (v)‖ ≤ γ ‖u − w‖, ∀w, v ∈ Kh.

Furthermore, the iterates {u(k)} of the projected gradient method will satisfy:

‖u(k) − u‖ ≤ γk ‖u(0) − u‖.

Proof. We follow the proof in [CI4]. Using the definition of T (·) and the
nonexpansive property of the projection PK map, we obtain:

‖T (u) − T (v)‖2 = ‖PK(u) − PK(v)‖2

≤ ‖ (u − ρ∇J(u)) − (v − ρ∇J(v)) ‖2

= ‖(u − v) − ρ (∇J(u) −∇J(v))‖2

= (u − v,u − v) − 2ρ(∇J(u) −∇J(v),u − v)
+ρ2 (∇J(u) −∇J(v),∇J(u) −∇J(v))

≤ ‖u − v‖2 − 2 ρ α ‖u − v‖2 + ρ2 M2 ‖u − v‖2

=
(
1 − 2 ρα + ρ2 M2

)
‖u − v‖2,

where we have used ellipticity of J (·) and Lipschitz continuity of ∇J . Thus:

‖T (u) − T (u)‖ ≤
(
1 − 2 ρα + ρ2M2

)1/2 ‖u − v‖,

which yields that for 0 < ρ < 2α
M2 the above is a contraction. ��

Remark 14.15. When A = AT > 0, the optimal parameter ρ will be:

ρ =
2

λmin(A) + λmax(A)
.

When A is nonsymmetric, the projected gradient algorithm can be shown
to converge, provided A is a strictly diagonally dominant M -matrix. In this
case, the algorithm will correspond to a Richardson method for an associated
parabolic variational inequality. The projection PK can also be shown to be



14.2 Projected Gradient and Relaxation Algorithms 631

nonexpansive in the maximum norm, and ‖I − ρA‖∞ < 1 for appropriate
choices of ρ. For each 0 < ρ the contraction factor will satisfy:

‖Tu − Tv‖∞ ≤
(

max
i

{ (1 − ρAii), ρ max
j �=i

|Aij |}
)
‖u − v‖∞,

and an optimal choice of ρ can be selected based on the preceding expression.

Relaxation Methods. Gauss-Seidel and Jacobi relaxation algorithms can be
formulated to solve variational inequalities, see [CR4, CI4]. We shall describe
versions of these relaxation methods, applicable when matrix A is either a
symmetric positive definite matrix or a strictly diagonally dominant M -matrix
(possibly nonsymmetric):⎧⎪⎨

⎪⎩
Aii > 0, for 1 ≤ i ≤ n

Aij ≤ 0, for j �= i, 1 ≤ i ≤ n∑
j Aij > 0, for 1 ≤ i ≤ n.

(14.11)

When matrix A is symmetric positive definite, these relaxation algorithms
will have interpretations in terms of the minimization of functional J(·) along
one dimensional subspaces. We shall use ei ∈ IRn to denote the i’th column
of the identity matrix I of size n. We shall require the starting guess u(0) in
the relaxation algorithms to solve (14.6) to satisfy u(0) ≥ ψ and Au(0) ≥ f .
Such a starting guess can be constructed as follows. Solve the linear system
Aw(0) = (f + 1), for 1 = (1, . . . , 1)T ∈ IRn, and compute:

δ = min
1≤i≤n

{w(0)
i − ψi}.

Then define u(0) ≡ (w(0) − δ 1). It can easily be verified that u(0) ≥ ψ and
Au(0) ≥ f , when A is strictly diagonally dominant.

Algorithm 14.2.2 (Gauss-Seidel Linear Complementarity Relaxation)
Choose a starting guess u(0) satisfying u(0) ≥ ψ and (Au(0) − f) ≥ 0

1. For k = 0, 1, . . . until convergence do:
2. For i = 1, · · · , n in sequence do:
3. Update i’th component of current iterate

(
u(k+ i

n )
)

i
= max

⎧⎨
⎩u(k+ i−1

n )
i +

f i −
(
Au(k+ i−1

n )
)

i

Aii
, ψi

⎫⎬
⎭

4. Endfor
5. Endfor

Output: u(k)
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Remark 14.16. When matrix A is symmetric positive definite, step 3 above
will have the following minimization interpretation:

J(u(k+ i
n ) = min

{α:u(k+ i−1
n

)+α ei≥ψ}
J(u(k+ i−1

n ) + α ei).

An over-relaxation parameter can also be introduced, see [CR4, WI10].

We next describe a Jacobi relaxation method for the iterative solution of
the linear complementarity problem (14.6). Let 0 < αi < 1 denote user chosen
parameters for 1 ≤ i ≤ n satisfying:

n∑
i=1

αi = 1.

For instance, αi = (1/n) for 1 ≤ i ≤ n. (Alternatively, we may choose the
parameters 0 < αi < 1 for 1 ≤ i ≤ n such that

∑n
i=1 αi < 1.)

Algorithm 14.2.3 (Jacobi Linear Complementarity Relaxation Method)
Choose a starting guess u(0) satisfying u(0) ≥ ψ and (Au(0) − f) ≥ 0

1. For k = 0, 1, . . . until convergence do:
2. For i = 1, . . . , n in parallel update:

(
u(k+1)

)
i
= (1 − αi)u

(k)
i + αi max

{
u(k)

i +
f i −

(
Au(k)

)
i

Aii
,ψi

}

3. Endfor
4. Endfor

Remark 14.17. When A is symmetric positive definite, each Jacobi update in
step 2 will have the form u(k+1) =

∑p
i=1 αi

(
u(k) + ξk

i ei

)
and will have the

following minimization interpretation:

J
(
u(k) + ξk

i ei

)
= min

{ξ:u(k)+ξ ei≥ψ}
J
(
u(k) + ξ ei

)
.

Convexity of J(·) will yield that:

J
(
u(k+1)

)
= J

(
n∑

i=1

αi(u(k) + ξk
i ei)

)
≤

n∑
i=1

αi J
(
u(k) + ξk

i ei

)
≤ J

(
u(k)

)
.

Remark 14.18. Unlike the projected gradient method, the Gauss-Seidel and
Jacobi complementarity relaxation algorithms may not converge on general
convex sets [CI4]. For instance, if we seek the minimum of J (x1, x2) = x2

1 +x2
2

on the convex set K∗ = {(x1, x2) : x1 + x2 ≥ 2} , then, each point along the
line x1 +x2 = 2 will be a fixed point of the preceding Gauss-Seidel and Jacobi
iterations, but only (1, 1) will correspond to the true minimum.
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14.3 Schwarz Algorithms for Variational Inequalities

Schwarz algorithms [LI6, HO3, KU12, KU13, ZE, LI10, BA10, TA2, TA3]
can be formulated for variational inequalities by generalizing point relaxation
methods to involve blocks of unknowns based on subdomains. We consider the
iterative solution of linear complementarity problem (14.6), and describe se-
quential and parallel Schwarz complementarity algorithms (without and with
coarse grid correction). These algorithms can be employed either when A is
symmetric and positive definite or when A is a strictly diagonally dominant
M -matrix (possibly nonsymmetric). For a description of multilevel algorithms
for variational inequalities, see [MA10, KO5, TA2, TA3].

Let x1, . . . , xn denote the interior nodes in Ω, and let Ω1, . . . , Ωp denote
an nonoverlapping decomposition of Ω into subdomains of size h0. We let
Ω∗

1 , . . . , Ω∗
p denote an overlapping subdomain decomposition of Ω, obtained

be extending each Ωl to Ω∗
l by including a points within a distance of β h0 > 0.

Given an overlapping covering Ω∗
1 , . . . , Ω∗

p of Ω, we let I∗
l denote the set of

indices of nodes xi ∈ Ω∗
l . We shall also let Il for 1 ≤ l ≤ p denote a partition

of all indices, so that each node on ∂Ωl ∩∂Ωj is assigned either to Il or to Ij ,
and such that if i ∈ Il, then xi ∈ Ωl. Thus, Il will correspond to a partition
of the nodes based on subdomains with minimal overlap. We shall let nl and
n∗

l denote the number of nodes in Il and I∗
l , respectively.

Define V = IRn and equip it with the Euclidean inner product. Corre-
sponding to index sets Il and I∗

l , define subspaces Vl and V ∗
l of V as:

Vl = span {ej : j ∈ Il} ⊂ V ∗
l = span {ej : j ∈ I∗

l } .

This yields V = V1 + · · · + Vp = V ∗
1 + · · · + V ∗

p . We employ the notation:

• Let Rl denote an nl ×n restriction matrix whose rows form a basis for Vl,
consisting of elementary vectors {ej} for indices j ∈ Il. By construction,
matrix Rl will have 0 or 1 entries, with orthogonal rows.

• Let Rl,∗ denote an n∗
l ×n restriction matrix whose rows form a basis for V ∗

l ,
consisting of elementary vectors {ej} for indices j ∈ I∗

l . By construction,
matrix Rl,∗ will have 0 or 1 entries, with orthogonal rows.

• Let Al = RlART
l and Al,∗ = Rl,∗ART

l,∗ denote submatrices of A associated
with indices Il and I∗

l .

If A is a strictly diagonally dominant M -matrix, we shall choose a starting
guess u(0) ≥ ψ satisfying (Au(0) − f) ≥ 0 component wise, constructed as
described earlier. In the following, we summarize the sequential Schwarz linear
complementarity algorithm for solving (14.6), without a coarse grid.
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Algorithm 14.3.1 (Sequential Schwarz Complementarity Algorithm)
Let u(0) ∈ IRn satisfy u(0) ≥ ψ and (Au(0) − f) ≥ 0

1. For k = 0, 1, . . . until convergence do:
2. For l = 1, . . . , p in sequence determine d(l) ∈ IRn∗

l on Ω∗
l s.t:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d(l) ≥ Rl,∗

(
ψ − u(k+ l−1

p )
)

Al,∗d(l) ≥ Rl,∗
(
f − Au(k+ l−1

p )
)

(
d(l) − Rl,∗(ψ − u(k+ l−1

p ))
)T (

Al,∗d(l) − Rl,∗(f − Au(k+ l−1
p ))

)
= 0,

Define u(k+ l
p ) = u(k+ l−1

p ) + RT
l,∗d

(l)

3. Endfor
4. Endfor

Output: u(k)

Remark 14.19. When A = AT > 0, step 2 above will correspond to choosing
d(l) ∈ IRn∗

l which solves the local constrained minimization problem:

J(u(k+ l−1
p ) + RT

l,∗d
(l)) = min{

v(l):u
(k+ l−1

p
)
+RT

l,∗v
(l)≥ψ

} J(u(k+ l−1
p ) + RT

l,∗v
(l)).

Remark 14.20. This sequential algorithm can be parallelized by coloring the
subdomains Ω∗

1 , . . . , Ω∗
p into a minimal number of colors, so that problems on

disjoint subdomains of the same color can be solved in parallel. Below, we list
a parallel Schwarz algorithm for (14.6).

Algorithm 14.3.2 (Parallel Schwarz Complementarity Algorithm)
Let u(0) ∈ IRn satisfy u(0) ≥ ψ and (Au(0) − f) ≥ 0
Let 0 < αi < 1 satisfy

∑p
i=1 αi = 1

1. For k = 0, 1, . . . until convergence do:
2. For l = 1, . . . , p in sequence determine d(l) ∈ IRn∗

l satisfying:⎧⎪⎨
⎪⎩

d(l) ≥ Rl,∗
(
ψ − u(k)

)
Al,∗d(l) ≥ Rl,∗

(
f − Au(k)

)
(
d(l) − Rl,∗(ψ − u(k))

)T (
Al,∗d(l) − Rl,∗(f − Au(k))

)
= 0

3. Endfor
4. Define u(k+1) = u(k) +

∑p
l=1 αl R

T
l,∗d

(l)

5. Endfor

Output: u(k)
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Remark 14.21. A variant of the preceding parallel Schwarz algorithm can be
constructed as follows. Employ the index sets Il having minimal overlap, and
replace the local solve in step 2 above by seeking d(l) ∈ IRnl satisfying:⎧⎪⎨

⎪⎩
d(l) ≥ Rl

(
ψ − uk

)
Ald(l) ≥ Rl

(
f − Auk

)
(
d(l) − Rl(ψ − uk)

)T (
Aldl − Rl(f − Aul)

)
= 0,

and replace step 4 by uk+1 = uk +
∑p

l=1 RT
l d(l). However, Auk+1 �≥ f .

Remark 14.22. If A is a strictly diagonally dominant M -matrix, the subma-
trices Al,∗ = Rl,∗ART

l,∗ and Al = RlART
l of A corresponding to the indices in

I∗
l or Il, will be M -matrices.

Lemma 14.23. When A = AT > 0 and the overlap between the subdomains is
β h0, the rate of convergence of the sequential and parallel Schwarz algorithms
without a coarse grid will be independent of h (but dependent on h0).

Proof. See [BA10, TA2, TA3]. ��
Remark 14.24. As for elliptic equations without obstacle constraints, the use
of a coarse grid of size h0 can speed up the convergence of Schwarz comple-
mentarity algorithms, eliminating the dependence on h0. However, care must
be exercised when enforcing obstacle constraints on the coarse grid, as this
can adversely affect convergence. From an algorithmic viewpoint, such an al-
gorithm may associate the coarse grid problem with l = 0 (so that the indices
in step 2 involve 0 ≤ l ≤ p, instead of 1 ≤ l ≤ p). Let n0 denote the number
of interior nodes on the coarse grid, and let R0,∗ denote an n0 × n matrix
corresponding to a restriction onto the coarse grid with coarse grid matrix
A0,∗ = R0,∗ART

0,∗ of size n0. The difficulty arises when enforcing the obsta-
cle constraints ui ≥ ψi on the coarse grid (since only n0  n constraints
can be employed for the coarse grid problem, unlike the n fine grid obstacle
constraints). One approach is to employ a nonlinear interpolation map I−0
when enforcing obstacle constraints on the coarse grid. More specifically, if
z1, . . . , zn0 denotes the coarse grid interior nodes with associated corse grid
basis functions φ

(0)
1 (·), . . . , φ(0)

n0 (·), define:

N (zi) = {j : xj ∈ support
(
φ

(0)
i (·)

)
.

Given a nodal vector v ∈ IRn define I−0 v ∈ IRn0 as follows:(
I−0 v

)
i
≡ min

{j∈N (zi)}
(v)j , for 1 ≤ i ≤ n0.

Then, given a current iterate w ∈ IRn, the linear complementarity problem on
the coarse grid should seek an update d(0) ∈ IRn0 enforcing the constraints:

d(0) ≥ I−0 (ψ − w) ,

instead of d(0) ≥ R0,∗ (ψ − w). Analysis of coarse grid Schwarz algorithms
yields a convergence rate independent of h and h0, see [BA10, TA2, TA3].
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14.4 Monotone Convergence of Schwarz Algorithms

We next describe selected results on the maximum norm convergence of
Schwarz complementarity algorithms for (14.6), without coarse grid correc-
tion, see [BA9, KU12, KU13, ZE]. We assume that A is a strictly diagonally
dominant M -matrix as in (14.11). For energy based convergence results, read-
ers are referred to [LI6, HO3, BA10, TA2, TA3]. The following preliminary
result describes the monotone nature of subdomain updates.

Lemma 14.25. Suppose the following conditions hold.

1. Let A be a strictly diagonally dominant M -matrix.
2. Let w ∈ IRn satisfy w ≥ ψ and (Aw − f) ≥ 0 component wise.
3. Let Rl,∗ denote a restriction matrix of size n∗

l × n corresponding to index
set I∗

l associated with Ω∗
l . Let Al,∗ = Rl,∗ART

l,∗ and let d(l) ∈ IRn∗
l satisfy:

⎧⎪⎨
⎪⎩

d(l) ≥ Rl (ψ − w)

Al,∗ d(l) ≥ Rl,∗ (f − Aw)(
d(l) − Rl,∗(ψ − w)

)T (
Al,∗ d(l) − Rl,∗(f − Aw)

)
= 0,

4. Let u ∈ Kh denote the solution of the linear complementarity problem:

(v − u)T
A (u − f) ≥ 0, ∀v ∈ K.

Then, the following results will hold:⎧⎪⎪⎨
⎪⎪⎩

d(l) ≤ 0

w + RT
l,∗d

(l) ≥ u

A
(
w + RT

l,∗d
(l)
)
− f ≥ 0,

and update w + RT
l,∗ d(l) will be “sandwiched” u ≤

(
w + RT

l,∗ d(l)
)

≤ w.

Furthermore, it will hold that A
(
w + RT

l,∗d
(l)
)
≥ f .

Proof. We shall first show that d(l) ≤ 0 component wise. Suppose, for con-
tradiction, that there is at least one component of d(l) which is positive:

0 <
(
d(l)
)

j
= max

k

(
d(l)
)

k
.

Then, j cannot be a contact node (i.e.,
(
d(l)
)
j

> (Rl,∗(ψ − w))j must hold,
since ψ − w ≤ 0 and Rl,∗(ψ − w) ≤ 0). Then, the linear complementarity
equation will yield: (

Al,∗d(l)
)

j
+ (Rl,∗(Aw − f))j = 0.
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Since A is a strictly diagonally dominant matrix M -matrix, Al,∗ will also be
a strictly diagonally dominant M -matrix. Since Rl,∗(Aw− f) ≥ 0, we obtain:

(Al,∗)jj

(
d(l)
)
j

= −
(∑

k �=j (Al,∗)jk (d(l))k

)
− (Rl,∗(Aw − f))j

≤ −
(∑

k �=j (Al,∗)jk (d(l))k

)
≤ −

(∑
k �=j (Al,∗)jk (d(l))j

)
= −

(∑
k �=j (Al,∗)jk

)
(d(l))j

< (Al,∗)jj (d(l))j ,

which is a contradiction. Thus, d(l) ≤ 0 and
(
w + RT

l,∗d
(l)
)
≤ w.

Next, we shall show that w+RT
l,∗d

(l) ≥ u. Again, suppose for contradiction
that there is an index j such that:(

u − w − RT
l,∗d

(l)
)

j
= max

k

(
u − w − RT

l,∗d
(l)
)

k
> 0.

Then, j cannot be a contact index of u with the obstacle ψ. This is because,
(u)j > wj +

(
Rl,∗d(l)

)
j
≥ ψj . Thus, the following expressions must hold:(

A (w + RT
l,∗d

(l)) − f
)

j
≥ 0 and (Au − f)j = 0.

Subtracting the two equations and using that Ajk ≤ 0 for j �= k yields:

0 ≤
(
Aw + ART

l,∗d
(l) − Au

)
j

=
∑n

k=1 Ajk

(
w + RT

l,∗d
(l) − u

)
k

= Ajj

(
w + RT

l,∗d
(l) − u

)
j
+
∑

k �=j Ajk

(
w + RT

l,∗d
(l) − u

)
k

≤ Ajj

(
w + RT

l,∗d
(l) − u

)
j
+
∑

k �=j Ajk

(
mink

(
w + RT

l,∗d
(l) − u

)
k

)
= Ajj

(
w + RT

l,∗d
(l) − u

)
j
−
∑

k �=j Ajk

(
maxk

(
u − w − RT

l,∗d
(l)
)

k

)
= Ajj

(
w + RT

l,∗d
(l) − u

)
j
−
∑

k �=j Ajk

(
u − w − RT

l,∗d
(l)
)

j

= Ajj

(
w + RT

l,∗d
(l) − u

)
j
+
∑

k �=j Ajk

(
w + RT

l,∗d
(l) − u

)
j

= (
∑n

k=1 Ajk)
(
w + RT

l,∗d
(l) − u

)
j
.

Now, since
∑

k Ajk > 0 and
(
w + RT

l,∗d
(l) − u

)
j

< 0, we obtain:

0 ≤
(

n∑
k=1

Ajk

)(
w + RT

l,∗d
i − u

)
j

< 0,

which is a contradiction. Thus, we must have
(
w + RT

l,∗d
(l)
)
≥ u.
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Next, we shall verify that A
(
w + RT

l,∗d
(l)
)
− f ≥ 0. To do this, note

that by construction of d(l), it will hold that
(
A(w + RT

l,∗d
(l)) − f

)
j
≥ 0 for

j ∈ I∗
l . When j �∈ I∗

l , since
(
RT

l,∗d
(l)
)

j
= 0, we will obtain:

(
A(w + RT

l,∗d
(l)) − f

)
j

= (Aw − f)j +
(
ART

l,∗d
(l)
)

j

≥
(
ART

l,∗d
(l)
)

j

≥
∑

k �=j Ajk

(
RT

l,∗d
(l)
)

k
≥ 0,

since Ajk ≤ 0 for j �= k and since RT
l,∗d

(l) ≤ 0. ��

Remark 14.26. The preceding result yields that if A is a strictly diagonally
dominant M -matrix, with w ≥ ψ and Aw ≥ f , then the subdomain updates
w+RT

l,∗d
(l) will lie “sandwiched” between the true solution u and the approx-

imation w. Thus, given an iterate u(0) satisfying Au(0) ≥ f and u(0) ≥ ψ, a
monotone decreasing sequence of iterates can be constructed using subdomain
solves, with each iterate lying above the desired solution u.

To analyze the convergence of u(k), we employ a convex set H ⊂ IRn:

H ≡ {v ∈ IRn : v ≥ ψ} ∩ {v ∈ IRn : Av − f ≥ 0} . (14.12)

We first focus on the convergence of the parallel Schwarz complementarity
algorithm, for which T

(
u(k)

)
= u(k+1) for u(k+1) ∈ H with:

T (v) = v +
p∑

l=1

αl R
T
l,∗d

(l), (14.13)

where ⎧⎪⎨
⎪⎩

d(l) ≥ Rl,∗ (ψ − v)

Al,∗d(l) ≥ Rl,∗ (f − Av)(
d(l) − Rl,∗(ψ − v)

)T (
Al,∗d(l) − Rl,∗(f − Av)

)
= 0.

(14.14)

By construction, it is clear that if u is a solution of the linear complementarity
problem (14.6), then T (u) = u, i.e., u will be a fixed point of T . It will be
shown later that T : H → H is a contraction. The following result shows that
a fixed point of T will solve the linear complementarity problem (14.6).

Lemma 14.27. Suppose the following conditions hold.

1. Let A be a strictly diagonally dominant M -matrix and let Tv be defined
by (14.13) and (14.14) for v ∈ H.

2. Let w∗ ∈ H denote a fixed point of T , with T (w∗) = w∗.

Then w∗ = u will be a solution to linear complementarity problem (14.6).
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Proof. To verify that w∗ ∈ Kh is a solution to (14.6), we need to show that:

(v − w∗)
T (Aw∗ − f) ≥ 0, ∀v ∈ Kh.

Let {χl(x)}p
l=1 denote a partition of unity, subordinate to {Ω∗

l }
p
l=1:

0 ≤ χl(x) ≤ 1 for 1 ≤ l ≤ p and
p∑

l=1

χl(x) = 1.

Using the χl(·), given v ∈ Kh, we decompose (v − w∗) =
∑p

l=1 χl(v − w∗):

(χl(v − w∗))j ≡
(
RT

l,∗e
(l)
)

j
≡ χl(xj) (v − w∗)j , for 1 ≤ j ≤ n,

where xj denotes the node corresponding to index j. By construction:

p∑
l=1

χl(v − w∗) =
p∑

l=1

RT
l,∗e

(l) = v − w∗.

Substituting this decomposition yields:

(v − w∗)
T (Aw∗ − f) =

(∑p
l=1 RT

l,∗e
(l)
)T

(Aw∗ − f)

=
∑p

l=1 e(l)T

Rl,∗ (Aw∗ − f) .
(14.15)

We may express e(l) = (v(l) − Rl,∗w∗) where v(l) ≡ Rl,∗ (w∗ + χl(v − w∗)).
Since v ≥ ψ and since 0 ≤ χl(xi) ≤ 1, it will hold that:

(RT
l,∗v

(l))i ≥ (w∗)i + χl(xi)(ψi − (w∗)i) ≥ ψi

Now, we may apply local optimality of w∗ to obtain e(l)T

Rl,∗ (Aw∗ − f) ≥ 0.
Substituting this into (14.15) yields (v−w∗)T (Aw∗ − f) ≥ 0 for v ∈ Kh. ��

The preceding results can be employed to show that the parallel Schwarz
complementarity iterates converge monotonically.

Proposition 14.28. Suppose the following conditions hold.

1. Let A be a strictly diagonally dominant M -matrix.
2. Let u(0) ∈ IRn satisfy the following, component wise:

u(0) ≥ ψ and (Au(0) − f) ≥ 0.

Then the following results will hold for the iterates u(k+1) = T (u(k)):

1. The iterates will be monotonically decreasing:

u(0) ≥ u(1) ≥ · · · ≥ u(k) ≥ · · ·
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2. Each iterate u(k) will satisfy:

(Au(k) − f) ≥ 0, k = 0, 1, 2, . . .

3. The iterates will converge to a fixed point u of T (·):

lim
k→∞

u(k) = u = T (u).

Proof. First, we shall show monotonicity of the iterates. Recall that:

u(k+1) = T
(
u(k)

)
= u(k) +

p∑
l=1

αl R
T
l,∗d

(l),

where, by Lemma 14.25 each d(l) ≤ 0, so that u(k) ≥ u(k+1) ≥ u.
Next, we shall show that (Au(k) − f) ≥ 0 for each k, using induction.

Assume it holds for k, we shall it holds for k+1. By Lemma 14.25, it will hold
that A

(
u(k) + RT

l,∗d
(l)
)
− f ≥ 0 for 1 ≤ l ≤ p. Since

∑p
l=1 αl = 1, we obtain:

(Au(k+1) − f) =
p∑

l=1

αl

(
A(u(k) + RT

l,∗d
(l)) − f

)
≥ 0.

Thus, each iterate will satisfy (Au(k) − f) ≥ 0, provided u(0) ≥ ψ.
Since

(
u(k)

)
j

will be monotone decreasing as k → ∞ and bounded below
by ψj , it must be convergent to some limit (u)j . It will thus hold:

min
k→∞

uk = u,

in any norm in IRn. Since u(k+1) = T
(
u(k)

)
, as u(k) → u it will hold that:

T (u) = u,

yielding that u is a fixed point of T . Since u(k) ≥ ψ, it will follow that u ≥ ψ.
Furthermore, it will also hold that (Au − f) ≥ 0. ��

When A is a strictly diagonally dominant M -matrix, the parallel Schwarz
iteration map T : H → H will be a contraction. The following result estimates
a subdomain contraction factor ρl in the maximum norm. Let {Ω∗

l }
p
l=1 denote

an overlapping decomposition obtained from a non-overlapping decomposition
{Ωl}p

l=1 where Ω∗
l = {x ∈ Ω : dist(x,Ωl) < βh0}. Let I∗

l and B∗
l denote sets

of nodal indices associated with interior nodes in Ω∗
l and on B(l) = ∂Ω∗

l ∩Ω,
respectively. We shall let A

(l)
II and A

(l)
IB denote submatrices of A coupling

indices within I∗
l , and between I∗

l and B∗
l , respectively. We also let Il denote

the indices of nodes in Ωl.
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Definition 14.29. Let γ
(l)
B = (1, . . . , 1)T denote a vector associated with sub-

domain boundary values on B(l) = ∂Ω∗
l ∩ Ω and solve for the vector γ

(l)
I

associated with interior nodal values on Ω∗
l :

A
(l)
II γ

(l)
I + A

(l)
IBγ

(l)
B = 0.

Define a local contraction factor 0 < ρl < 1 as:

ρl ≡ max
{i : xi∈Ωl}

(
γ

(l)
I

)
i
= max

{i∈Il}

(
γ

(l)
I

)
i

(14.16)

In the following, we shall estimate the contraction factor of T in terms of ρl.

Lemma 14.30. Suppose A is a strictly diagonally dominant M -matrix.

1. Let Rl,∗ denote a restriction matrix of size n∗
l × n corresponding to index

set I∗
l associated with Ω∗

l and let Al,∗ = Rl,∗ART
l,∗.

2. Given w ∈ H define w̃ = (w + RT
l,∗d

(l)) ≥ ψ where d(l) ∈ IRn∗
l satisfies:

⎧⎪⎨
⎪⎩

d(l) ≥ Rl (ψ − w)

Al,∗ d(l) ≥ Rl,∗ (f − Aw)(
d(l) − Rl,∗(ψ − w)

)T (
Al,∗ d(l) − Rl,∗(f − Aw)

)
= 0,

3. Given v ∈ H define ṽ = v + RT
l,∗e

(l) ≥ ψ where e(l) ∈ IRn∗
l satisfies:

⎧⎪⎨
⎪⎩

e(l) ≥ Rl (ψ − v)

Al,∗ e(l) ≥ Rl,∗ (f − Av)(
e(l) − Rl,∗(ψ − v)

)T (
Al,∗ e(l) − Rl,∗(f − Av)

)
= 0,

Then, the following result will hold in the maximum norm:

‖w̃ − ṽ‖∞,Il
≡ max

{j∈Il}
|w̃j − ṽj | ≤ ρl ‖w − v‖∞.

Proof. By Lemma 14.25 it will follow that d(l) ≤ 0 and e(l) ≤ 0. To show
that |w̃j − ṽj | ≤ ρl ‖w−v‖∞ for j ∈ I∗

l , there will be three cases to consider.

Case A. If j is not a contact index for both vectors, then w̃j > ψj and
ṽj > ψj . In this case, by linear complementarity, the following will hold:{

(Aw̃)j = f j

(Aṽ)j = f j

Subtracting the two, and using that Ajk ≤ 0 for j �= k yields:

(A(w̃ − ṽ))j = 0 =⇒ Ajj (w̃ − ṽ)j = −
∑

k �=j Ajk (w̃ − ṽ)k

=⇒ Ajj

∣∣∣(w̃ − ṽ)j

∣∣∣ ≤ −
∑

k �=j Ajk |(w̃ − ṽ)k| .
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Case B. If j is a contact index for only one of the vectors, say w̃j = ψj . In
this case, by linear complementarity, the following will hold:{

(Aṽ)j = f j

(Aw̃)j ≥ f j

Subtracting the two equations and using that Ajk ≤ 0 for j �= k yields:

(A(ṽ − w̃))j ≤ 0 =⇒ Ajj (ṽ − w̃)j ≤ −
∑

k �=j Ajk (ṽ − w̃)k

=⇒ Ajj

∣∣∣(ṽ − w̃)j

∣∣∣ ≤ −
∑

k �=j Ajk |(ṽ − w̃)k| .

Case C. If j is a contact index for both vectors, then w̃j = ṽj = ψj . In this
case, the following bound will hold trivially:

Ajj

∣∣∣(w̃ − ṽ)j

∣∣∣ ≤ −
∑
k �=j

Ajk |(w̃ − ṽ)k| .

To estimate the local contraction factor, define a nodal vector m ∈ IRn:

0 ≤ (m)j = |ṽj − w̃j | ,

with nonnegative entries. Then, combining the three preceding cases yields:

Ajjmj +
∑
k �=j

mk ≤ 0, for j ∈ I∗
l .

Using comparison Thm. 15.20, we may estimate the majorants mj for j ∈ Il

in terms of β γ
(l)
I and β γ

(l)
B for the choice β = ‖ṽ − w̃‖∞,B(l) . It yields:

‖w̃ − ṽ‖∞,Il
= ‖m‖∞,Il

≤ ρl ‖βγB‖∞,B∗
l

= ρl ‖v − w‖∞,B∗
l
.

We omit the details. ��

The following result estimates the global contraction factor of T .

Lemma 14.31. Let A be a strictly diagonally dominant M -matrix, and let
α1 = · · · = αp = (1/p). Then, the parallel Schwarz iteration T : H → H will
be a contraction map satisfying:

‖T (v) − T (w)‖∞ ≤ 1
p

(
(p − 1) + max

l
ρl

)
‖v − w‖∞.

Proof. Follows by an application of the preceding result and convexity. ��

Remark 14.32. For an elliptic operator L with c(x) ≥ c0 > 0, one can obtain
estimates for the local contraction factors ρl independent of the mesh parame-
ters, provided there is sufficient overlap between the subregions, see Chap. 15.
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Remark 14.33. The above contraction property may also be used to establish
the solvability of the linear complementarity problem, provided the local sub-
problems are solvable. When Vl is one-dimensional, we can easily show that
each one-dimensional linear complementarity problem is solvable (using the
strict diagonal dominance of A). We omit the details.

We next describe the convergence estimate for the sequential version of
the Schwarz complementarity algorithm to solve (14.6).

Lemma 14.34. Let A be a strictly diagonally dominant M -matrix and let ρl

denote the subdomain contraction factor (14.16) for subdomain Ω∗
l . Given a

starting iterate u(0) satisfying u(0) ≥ ψ and Au(0) ≥ f , the sequential Schwarz
iterates {u(k)} will converge monotonically down to u, satisfying:

‖u(k+1) − u‖∞ ≤
(

max
l

ρl

)
‖u(k) − u‖∞.

Proof. The monotone nature of the fractional iterates u ≤ u(k+ l
p ) ≤ u(k+ l−1

p )

follows by Lemma 14.25. Employing the monotonicity of the iterates yields:

0 ≤
(
u(k+1)(x) − u(x)

)
≤ minl

(
u(k+ l

p )(x) − u(x)
)

≤ (maxl ρl)
(
u(k)(x) − u(x)

)
≤ (maxl ρl) ‖u(k) − u‖∞

where the contraction bounds follow by Lemma 14.30 for x ∈ Ωl. ��

A Two Sided Approximation of the Free Boundary ∂G. We end our
discussion of monotone convergence results by considering a two-sided approx-
imation of the contact set G in a variational inequality, see [KU12, KU13]. The
contact set G is defined as the set where the continuous solution u(x) is in
contact with the obstacle ψ(x):

G = {x ∈ Ω : u(x) = ψ(x)} .

From a computational viewpoint, knowledge of the contact set G can be useful,
since a linear complementarity problem becomes linear on

(
Ω\G

)
, and linear

solvers (which are cheaper) can be employed on such regions.
In the discrete case, a contact set Gh is defined as the index set:

Gh =
{

j : (u)j = ψj

}
.

A two-sided approximation of Gh can be determined using the monotone
nature of Schwarz iterates [KU12, KU13]. A sequence of index sets {Gk} and
{Ĝk} can be constructed, “sandwiching” the discrete contact set Gh:

· · ·Gk ⊂ Gk+1 ⊂ Gh ⊂ Ĝk+1 ⊂ Ĝk · · ·
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An inner approximation of Gh can be constructed based on the following
observation. If the starting guess u(0) ∈ Kh satisfies (Au(0) − f) ≥ 0, then
subsequent Schwarz iterates will satisfy:

u ≤ · · · ≤ u(k+1) ≤ u(k) ≤ · · · ≤ u(0).

Thus, if we define:

Gk ≡
{

j :
(
u(k)

)
j

= ψj

}
,

then since u(k) converges monotonically down to u, it will hold that:

Gk ⊂ Gk+1 ⊂ · · ·Gh.

Formally, {∂Gk} will approach ∂G monotonically.
Given an inner contact region Gk associated with Schwarz iterate u(k),

an outer approximation Ĝk ⊂ Gh can be constructed as follows. Note that
(u)j =

(
u(k)

)
j

= ψj for j ∈ Gk. Define û(k) as the solution to:

{(
Aû(k)

)
j

= f j , for j /∈ Gk(
û(k)

)
j

= u(k)
j , for j ∈ Gk.

Then, by construction,
(
u − û(k)

)
will satisfy:{(

A(u − û(k))
)
j
≥ 0, for j /∈ Gk(

u − û(k)
)
j

= 0, for j ∈ Gk.

Applying the discrete maximum principle (since A is a strictly diagonally
dominant M -matrix) yields û(k) ≤ u. Thus, if we define:

Ĝk ≡
{

j :
(
û(k)

)
j
≤ ψj

}
,

then Gh ⊂ Ĝk. Similarly, it can be shown that: û(k+1) ≥ û(k), from which it
follows that:

Gh ⊂ · · · ⊂ Ĝk+1 ⊂ Ĝk · · ·

Thus, a two-sided approximation of Gh can be constructed as Gk ⊂ Gh ⊂ Ĝk.

14.5 Applications to Parabolic Variational Inequalities

A parabolic variational inequality [EL, CR2, FR6, WI10] seeks a sufficiently
smooth solution u(x, t) on Ω × (0, T ) satisfying:
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⎪⎪⎪⎪⎪⎪⎩

(ut + L u − f) ≥ 0, in Ω × (0, T )
(u − ψ) ≥ 0, in Ω × (0, T )

(u − ψ) (ut + L u − f) = 0, in Ω × (0, T )
u = g, on ∂Ω × (0, T )

u(x, 0) = u0(x), in Ω,

(14.17)

where Lu = ∇ · (a(x)∇u) + b(x) · ∇u + c(x)u is an elliptic operator with
sufficiently smooth coefficients, and ψ(x, t) is a sufficiently smooth obstacle
function. For compatibility of the data, we shall assume that g(x, t) ≥ ψ(x, t)
on ∂Ω × (0, T ) and that u0(x) ≥ ψ(x, 0) on Ω. For simplicity, let g(x, t) = 0.

A finite difference discretization of (14.17) in space yields:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ut + Au − f) ≥ 0, for 0 < t < T

(u − ψ) ≥ 0, for 0 < t < T

(u − ψ)T (ut + Au − f) = 0, for 0 < t < T

u(0) = u0.

(14.18)

Here A denotes the matrix discretization of L. Discretization of the preceding
system in time, using an implicit time stepping scheme, such as backward
Euler, with step size τ = (T/N), will yield:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(I + τ A)u(k+1) − (u(k) + τ f (k+1))

)
≥ 0,

for 0 ≤ k ≤ (N − 1)(
u(k+1) − ψ(k+1)

)
≥ 0,

for 0 ≤ k ≤ (N − 1)(
u(k+1) − ψ(k+1)

)T (
(I + τ A)u(k+1) − (u(k) + τ f (k+1))

)
= 0,

for 0 ≤ k ≤ (N − 1)
u(0) = u0.

(14.19)

At discrete time (k +1) τ , given u(k), f (k+1) and the discrete obstacle ψ(k+1),
the preceding system of equations will require the solution of the following
linear complementarity problem to determine u(k+1):⎧⎪⎨
⎪⎩

(
(I + τ A)u(k+1) − (u(k) + τ f (k+1))

)
≥ 0(

u(k+1) − ψ(k+1)
)
≥ 0(

u(k+1) − ψ(k+1)
)T (

(I + τ A)u(k+1) − (u(k) + τ f (k+1))
)

= 0.

(14.20)

Methods described in preceding sections can be employed to solve such lin-
ear complementarity problems, including Schwarz algorithms. In particular, if
Schwarz algorithms are employed with subdomains of size h0, then heuristics
suggest that a coarse space may not be necessary when τ ≤ C h2

0.



646 14 Variational Inequalities and Obstacle Problems

Discretization of (14.18) by an explicit scheme in time, such as forward
Euler, will yield:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
u(k+1) − (I − τ A)u(k) − τ f (k)

)
≥ 0,

for 0 ≤ k ≤ (N − 1)(
u(k+1) − ψ(k+1)

)
≥ 0,

for 0 ≤ k ≤ (N − 1)(
u(k+1) − ψ(k+1)

)T (
u(k+1) − (I − τ A)u(k) − τ f (k)

)
= 0,

for 0 ≤ k ≤ (N − 1)
u(0) = u0.

(14.21)

In this case, at discrete time (k + 1) τ , given u(k), f (k+1) and the discrete ob-
stacle ψ(k+1), the preceding system of equations yields an immediate solution
to the linear complementarity problem:

u(k+1)
j = max

{
ψ

(k+1)
j ,

(
u(k) − τ Au(k) − τ f (k)

)
j

}
, for 1 ≤ j ≤ n.

This is similar to a projected gradient method. When matrix A = AT > 0,
convergence and stability can be guaranteed if the time step parameter τ > 0
is chosen so that ‖I − τ A‖ ≤ ρ < 1. We summarize the resulting algorithm.

Algorithm 14.5.1 (Explicit Time Stepping Algorithm)
Given a starting iterate satisfying u(0) ≥ ψ and Au(0) − f ≥ ψ

1. For k = 0, 1, . . . , until convergence do:
2. For j = 1, . . . , n update:
3.

u(k+1)
j = max{

(
u(k) − τ Au(k) − τ f (k)

)
j
, ψ

(k+1)
j }

4. Endfor
5. Endfor

Readers are referred to [CR2, EL, WI10, WI11] for applications.
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Maximum Norm Theory

In this chapter, we describe theoretical results on the maximum norm stability
and convergence of Schwarz domain decomposition methods. The tools we de-
scribe are continuous and discrete versions of maximum principles and com-
parison theorems for elliptic equations, as well as methods for estimating the
maximum norm error contraction factor on subdomains. From a matrix view-
point, these tools are applicable when the discretization of the given elliptic
equation results in a strictly diagonally dominant M -matrix.

We shall consider an elliptic equation of the form:{
L u = −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f, in Ω

u = g, on ∂Ω
(15.1)

with coefficients a(x) ≥ 0 and c(x) ≥ c0 > 0. In some applications a(x) = 0.
We consider a finite difference discretization of (15.1) which yields the system:{

AIIuI + AIBuB = f I

uB = gB ,
(15.2)

where uI , uB are nodal vectors corresponding to the interior nodes of Ω and
boundary nodes ∂Ω. Matrix AII will be assumed to be an M -matrix and
AIB to have nonpositive entries. Various approximations, based on upwind
discretization of the convection term b(x) · ∇u, satisfy these properties.

Our discussion of maximum norm theory for Schwarz algorithms is based
on [LI7, CH6, MI, ST, GA8, BL3, CH22, GA10, MA33, CA17, GA12, MA35].
Related literature includes [CI, CI5, OH, HA6, IK, MI3, YA3, KA2, TA8],
[SU, FE3, FR7, FR8]. Chap. 15.1 describes maximum principles and compar-
ison theorems Chap. 15.2 describes the well posedness of the Schwarz hybrid
formulation. Chap. 15.3 describes the maximum norm convergence of Schwarz
iterative algorithms that do not employ coarse space correction. In Chap. 15.4
nonmatching grid Schwarz discretizations are analyzed. Chap. 15.5 analyzes
the well posedness and accuracy of Schwarz heterogeneous approximations.
In Chap. 15.6, we briefly indicate extensions to parabolic equations.
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15.1 Maximum Principles and Comparison Theorems

In this section, we introduce theoretical tools that will be employed to analyze
the convergence and stability of Schwarz methods in the maximum norm. We
describe continuous and discrete maximum principles and comparison theo-
rems, and indicate how comparison theorems can be employed to estimate
the contraction factor of harmonic functions on subregions. The stability and
rate of convergence of Schwarz hybrid formulations depend on such contrac-
tion factors on individual subdomains, and such factors can be estimated by
constructing comparison (or “barrier”) functions. Under appropriate assump-
tions, this methodology applies to elliptic, hyperbolic and parabolic equations.

Maximum Principles, Comparison Theorems, Contraction Factors.
Let Ω1, . . . , Ωp form a nonoverlapping decomposition of Ω with subdomains
of size h0. We shall construct an overlapping decomposition Ω∗

1 , . . . , Ω∗
p where

each Ω∗
l is obtained by extension of Ωl by β h0. We will employ the notation

B(l) = ∂Ω∗
l ∩ Ω and B[l] = ∂Ω∗

l ∩ ∂Ω. Additionally, ‖w‖∞,S will denote the
maximum norm of w(x) on the set S. Below, we state a weak version of the
maximum principle for the elliptic operator L defined in (15.1) with c(x) ≥ 0.

Lemma 15.1. Suppose a(x) ≥ a0 > 0. Let Lw(x) = 0 in Ω∗
l with Dirichlet

data w(x) = g(x) on ∂Ω∗
l . Then, the following results will hold:⎧⎪⎪⎨

⎪⎪⎩
w(x)≤ max

{x̃∈∂Ω∗
l }

g(x̃) when c(·) = 0

w(x)≥ min
{x̃∈∂Ω∗

l }
g(x̃) when c(·) = 0

‖w‖∞,Ω
∗
l
≤‖g‖∞,∂Ω∗

l
when c(·) ≥ 0.

(15.3)

When c(x) ≥ c0 > 0, a stronger result can be shown on Ωl ⊂ Ω∗
l :

‖w‖∞,Ωl
≤ ρl ‖g‖∞,∂Ω∗

l
, (15.4)

for some 0 ≤ ρl < 1 (referred to as the local contraction factor).

Proof. See [JO, SM7, GI] . ��

Remark 15.2. A modified result can be shown to hold when a(x) = 0. In
this case operator L will be hyperbolic. Let Γl,in denote the inflow boundary
segment of ∂Ω∗

l and let n(x) denote the unit exterior normal to Ω∗
l :

Γl,in ≡ {x ∈ ∂Ω∗
l : n(x) · b(x) < 0} . (15.5)

Then, the following can be shown to hold:{
w(x) ≤ max

{x̃∈Γl,in}
g(x̃) when c(·) = 0

‖w‖∞,Ω∗
l
≤‖g‖∞,Γl,in

when c(·) ≥ 0.
(15.6)
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When c(x) ≥ c0 > 0, a stronger result can be shown:

‖w‖∞,Ωl
≤ ρl ‖g‖∞,Γl,∗ , (15.7)

for some 0 ≤ ρl < 1. These results can be proved formally by employing
the method of characteristics, provided the characteristic curves fill Ω∗

l , and
provided the coefficients and boundary are smooth.

We next describe a comparison theorem for elliptic equations. Such a result
makes a pointwise comparison between two sufficiently smooth solutions to
an elliptic equation (or inequality) on Ω∗

l with Dirichlet data.

Lemma 15.3. Let a(x) ≥ a0 > 0 and c(x) ≥ 0 on Ω∗
l . Suppose that:{

Lw1(x) = f1(x), in Ω∗
l

w1(x) = g1(x), on ∂Ω∗
l .

and

{
Lw2(x) = f2(x), in Ω∗

l

w2(x) = g2(x), on ∂Ω∗
l .

Then, if f1(x) ≥ f2(x) and g1(x) ≥ g2(x), the following result will hold:

w1(x) ≥ w2(x), in Ω∗
l . (15.8)

Proof. See [JO, SM7, GI]. ��

We next associate a contraction factor 0 ≤ ρl ≤ 1 with an elliptic operator
on a domain. It will represent the reduction in the magnitude of a homogeneous
solution to an elliptic equation within an interior region Ωl ⊂ Ω∗

l .

Definition 15.4. Let a(x) ≥ a0 > 0 and c(x) ≥ c0 > 0, and let w∗(x) solve:⎧⎪⎨
⎪⎩

L w∗(x) = 0, for x ∈ Ω∗
l

w∗(x) = 1, on B(l)

w∗(x) = 0, on B[l]

(15.9)

Then, the contraction factor ρl of L from Ω∗
l to Ωl is defined as:

ρl ≡ max
Ωl

w∗(x) = ‖w∗‖∞,Ωl
, (15.10)

within the interior region Ωl of Ω∗
l , where dist

(
B(l), ∂Ωl ∩ Ω

)
≥ β h0.

Remark 15.5. An application of the comparison theorem yields w∗(x) ≥ 0.
Since c(x) ≥ c0 > 0, by the strong maximum principle it will hold that
0 ≤ ρl < 1. Subdomain contraction factors will be an important parameter in
maximum norm convergence theory, for estimating the maximum norm stabil-
ity of Schwarz hybrid formulations (in the discrete case) and the convergence
of Schwarz iterative algorithms.

The next result shows how a contraction factor and the comparison theo-
rem, enables estimating the interior maximum norm of a L-harmonic function.
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Lemma 15.6. Suppose a(x) ≥ a0 > 0 and c(x) ≥ c0 > 0, and let v(x) be
a sufficiently smooth solution to Lv(x) = 0 in Ω∗

l satisfying v(x) = g(x) on
B(l) and v(x) = 0 on B[l]. Then, the following bound will hold on Ωl ⊂ Ω∗

l :

v(x) ≤ (‖g‖∞,B(l)) w∗(x) in Ωl

‖v‖∞,Ωl
≤ ρl ‖g‖∞,B(l) ,

where w∗(x) is the comparison function defined in (15.9).

Proof. Apply the comparison theorem using w1(x) =
(
‖g‖∞,B(l)

)
w∗(x),

where w∗(x) is defined by (15.9), and w2(x) = v(x). By construction,
it will hold that Lw1(x) = f1(x) = 0 ≥ f2(x) = 0 in Ω∗

l . Addition-
ally, it will hold that w1(x) = ‖g‖∞,B(l) ≥ w2(x) = g(x), on B(l), with
w1(x) = 0 ≥ w2(x) = 0 on B[l]. Repeat the arguments using −v(x). ��

We next describe the construction of comparison functions (or “barrier
functions”) to explicitly estimate the contraction factor associated with an
elliptic operator L on a domain Ω∗

l . We shall assume that a(x) ≥ a0 > 0 and
c(x) ≥ c0 > 0. Additionally, to simplify our discussion, we shall assume there
exits a sufficiently smooth function d(x) ≥ 0 satisfying:{

d(x) = 0, on B(l)

d(x) ≥ dist
(
x,B(l)

)
for x ∈ Ωl,

(15.11)

where dist(x, B(l)) denotes the minimal distance between x and B(l). Indeed,
if dist(x,B(l)) is sufficiently smooth, choose d(x) = dist(x,B(l)). Otherwise
dist(x,B(l)) will need to be appropriately mollified.

Lemma 15.7. Let w∗(x) satisfy (15.9) and let d(x) ≥ 0 satisfy (15.11). Also,
let c(x) ≥ c0 > 0. Then, there will exist γ > 0 such that:

0 ≤ w∗(x) ≤ e−γ d(x).

Proof. We shall outline the proof sketched in [LI7] (see also [MA33, MA35]).
Substitute z(x) = e−γ d(x) into Lz(x) to obtain:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lz(x) = γ (∇a(x) · ∇d(x) + a(x)∆d(x)) z(x)
− γ

(
γ a(x) |∇d(x)|2 + b(x) · ∇d(x)

)
z(x) + c(x) z(x), in Ω∗

l

z(x) ≥ 1, on B(l)

z(x) ≥ 0, on B[l].

When the coefficients are sufficiently smooth, select γ > 0 such that:

γ
(
|∇a · ∇d| + |a∆d| + a |∇d|2 + |∇d · b|

)
≤ 1

2
c0, in Ω∗

l .

For such a choice of γ we obtain Lz(x) ≥ 1
2 c0 z(x) ≥ 0 in Ω∗

l (parameter γ
will depend on d(x), a(x) and b(x)). Applying the comparison theorem using
w1(x) = z(x) and w2(x) = w∗(x) yields the desired result. ��
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Remark 15.8. When c(x) ≥ c0 > 0, the preceding estimate shows that the
contraction factor ρl decreases with increasing distance between Ωl and B(l):

ρl ≤ max
{x∈Ωl}

(
e−γ d(x)

)
= e−γ dl , (15.12)

where dl = dist(B(l), ∂Ωl ∩ Ω). Formally, this result should hold even when
a(x) = 0. It will be shown later that for sufficiently small grid size h, a similar
contraction factor will apply in the discrete case.

In applications involving singularly perturbed elliptic equations, often bet-
ter estimates can be obtained for the contraction factors. The following result
describes the construction of a comparison function for a singularly perturbed
elliptic equation obtained by time stepping a parabolic equation using a time
step τ , see [KU3, KU6, MA33]. The result shows that ρl decreases rapidly as
τ → 0+. Heuristically, this may be expected, since as τ → 0+ the homogeneous
solution to the formal limiting equation approaches zero.

Lemma 15.9. Let 0 < τ  1 denote a time step and let w∗(x) solve:⎧⎪⎨
⎪⎩

Lw∗(x) = −τ ∇ · (ã(x)∇w∗) + τ b̃(x) · ∇w∗(x) + c(x) w∗(x) = 0, in Ω∗
l

w∗(x) = 1, on B(l)

w∗(x) = 0, on B[l],
(15.13)

where c(x) ≥ c0 > 0. Then, there exists γ > 0 such that:

ρl = max
{x∈Ωl}

w∗(x) ≤ e
− γ√

τ
dl , (15.14)

where dl = dist
(
B(l), ∂Ωl ∩ Ω

)
.

Proof. Apply the comparison theorem using w1(x) = z(x) = e
− γ√

τ
d(x) and

w2(x) = w∗(x), where d(x) satisfies (15.11). Computing Lz(x) yields:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lz(x) = γ (
√

τ ∇ã(x) · ∇d(x) +
√

τ ã(x)∆d(x)) z(x)

− γ
(
γ ã(x) |∇d(x)|2 +

√
τ ∇d(x) · b̃(x)

)
z(x) + c(x) z(x), in Ω∗

l

z(x) ≥ 1, on B(l)

z(x) ≥ 0, on B[l].

When the coefficients of L are smooth, select γ > 0 such that:

γ
(
|∇ã · ∇d| + |ã ∆d| + ã |∇d|2 +

∣∣∣b̃ · ∇d
∣∣∣) ≤ 1

2
c0.

Then, for 0 ≤ τ ≤ 1, an application of the comparison theorem will yield the
estimate 0 ≤ w∗(x) ≤ e

− 1√
τ
d(x). The desired result follows. ��
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The preceding contraction factor decreases exponentially as τ → 0+. We
shall next estimate the contraction factor of an advection dominated elliptic
equation on Ω∗

l , in the special case in which the interior boundary segment
B(l) is contained in the outflow boundary Γl,out of the limiting advection
(hyperbolic) equation. We shall estimate the contraction factor ρl of the fol-
lowing homogeneous advection dominated elliptic equation for 0 < ε  1:⎧⎪⎨
⎪⎩

Lε w∗ = −ε∇ · (ã(x)∇w∗) + b(x) · ∇w∗ + c(x)w∗ = 0, in Ω∗
l

w∗(x) = 1, on B(l)

w∗(x) = 0, on B[l],

(15.15)

in the special case where B(l) ⊂ Γl,out, where Γl,out denotes the outflow bound-
ary segment of the limiting operator L0 w∗ = b(x) · ∇w∗ + c(x) w∗:

Γl,out = {x ∈ ∂Ω∗
l : n(x) · b(x) > 0} , (15.16)

where n(x) denotes the unit exterior normal to ∂Ω∗
l . The following result

describes a distance-like function q(x) ≥ 0 defined in Ω∗
l , constructed using

characteristic curves from x to B(l).

Lemma 15.10. Let Ω∗
l be smooth of diameter h0, with B(l) ⊂ Γl,out.

1. Let the Euclidean norm ‖b(x)‖ ≥ b0 for x ∈ Ω∗
l .

2. Let the characteristic curves of L∗ q ≡ −
(

b(x)
‖b(x)‖

)
· ∇q fill Ω∗

l .
3. Let 0 ≤ ψ(x) ≤ h0 denote a smooth function on Γl,out satisfying ψ(x) = 0

if x ∈ B(1) and ψ(x) = h0 if dist(x,B(l)) > η for some 0 < η  β h0.

Then, there exists a function q(x) ≥ dist(x,B(l)) defined in Ω∗
l satisfying:{

−
(

b(x)
‖b(x)‖

)
· ∇q(x) = 1, in Ω∗

l

q(x) = ψ(x), on Γl,out.
(15.17)

Proof. Solve the following hyperbolic equation for q(x):{
− b(x)

‖b(x)‖ · ∇q = 1, in Ω∗
l

q(x) = ψ(x), on Γl,out.
(15.18)

Employ the method of characteristics using x(s) to denote the characteristic
curve and q(x(s)) to denote the solution along x(s). This yields the following
coupled ordinary differential equations for each x0 ∈ Γl,out:⎧⎪⎪⎨

⎪⎪⎩
dq

ds
= 1

dx

ds
=
(

−b(x)
‖b(x)‖

) with initial conditions

{
q(s = 0) = ψ(x0)
x(s = 0) = x0.
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Since n(x0) · b(x0) > 0, the characteristic curve x(s) will traverse into Ω∗
l .

By assumption on b(x), these curves will fill Ω∗
l . Since b(x)/‖b(x)‖ is a unit

vector field, parameter s will represent arclength. If ψ(x0) = 0, then q(s) = s
will denote the arclength distance from x0 to x(s) along the characteristic
curve. The desired result now follows. ��

Remark 15.11. Since dq/ds = 1 and ψ(x0) = 0 for x0 ∈ B(l), and ψ(x0) = h0

for x0 ∈ B(l) it follows that q(x(s)) = ψ(x0) + s ≥ dist(x,B(l)), since s
represents arclength distance along a characteristic curve, by construction.

Below, employing q(x), we construct a comparison function for (15.15).

Lemma 15.12. Let q(x) defined by (15.17) satisfy q(x) ≥ dist(x, B(l)). Also,
let c(x) ≥ c0 > 0. Then, there exists γ > 0 for which the following holds:

0 ≤ w∗(x) ≤ e−
γ
ε q(x) .

Proof. Substitute the ansatz z(x) = e−
γ
ε q(x) to obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L z(x) = γ (∇ã · ∇q + ã ∆q) z(x)

+
(
c(x) − γ

ε b · ∇q − γ2

ε ã |∇q|2
)

z(x) in Ω∗
l

= γ (∇ã · ∇q + ã ∆q) z(x)

+
(
c(x) + γ

ε ‖b‖ −
γ2

ε ã |∇q|2
)

z(x) in Ω∗
l

≥ γ (∇ã · ∇q + ã ∆q) z(x)
+
(
c(x) + γ

ε (b0 − γ ã |∇q|2)
)
z(x) in Ω∗

l

z(x) ≥ 1, on B(l)

z(x) ≥ 0, on B[l].

Since b0 > 0, we may choose γ sufficiently small, so that:

γ (|∇ã · ∇q| + ã |∆q|) ≤ 1
2
c0 and γ ã |∇q|2 ≤ b0.

This will yield L z(x) ≥ c0
2 z(x) ≥ 0. Applying the comparison theorem using

w1(x) = z(x) and w2(x) = w∗(x) yields the desired result. ��

Remark 15.13. The preceding result shows that if B(l) is contained within the
outflow segment Γl,out of the limiting hyperbolic problem on Ω∗

l as ε → 0+,
the contraction factor ρl associated with w∗(x) decreases exponentially:

ρl ≤ e−
γ
ε dl ,

where dl = dist(B(l), ∂Ωl ∩Ω). A heuristic explanation for this rapid contrac-
tion is that as ε → 0+, the homogeneous solution w∗(x) of (15.15) approaches
zero in Ω∗

l due to zero boundary conditions on B[l], which contains the inflow
boundary of the limiting hyperbolic equation.
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Remark 15.14. Similar estimates may be obtained for anisotropic problems.
Consider Lε u = −ε ux1x1−ux2x2+c(x)u = f(x) on Ω ⊂ IR2 for 0 < ε  1. For
such anisotropy, choose Ω∗

l ≡ Ω ∩ {θl < x1 < θl+1} as strip like subdomains.
A barrier function of the form z(x) = e

− γ√
ε

q(x) can be constructed, where
0 ≤ q(x) ≡ q(x1) depends only on x1 (for instance q(x1, x2) = min{|x1 − y1|}
for y = (y1, y2) ∈ B(l) = ∂Ω∗

l ∩ Ω). We omit the details.

Discrete Maximum, Comparison and Contraction Principles. We
shall now describe discrete analogs of maximum principles, comparison theo-
rems and contraction factors. These results will be employed to analyze the
stability and convergence of Schwarz discretizations, iterative algorithms and
heterogeneous approximations in the maximum norm. Our focus will be on
finite difference discretizations in which the coefficient matrix is a strictly
diagonally dominant M -matrix, see [VA9, SA2].

Definition 15.15. A matrix K of size n is said to be an M -matrix if:

1. Kii > 0 for each 1 ≤ i ≤ n.
2. Kij ≤ 0 for i �= j.
3. K is nonsingular with

(
K−1

)
ij
≥ 0 for each i, j.

It is easily shown that if Kij ≤ 0 for j �= i, and if K is a strictly diagonally
dominant matrix with: Kii >

∑
j �=i |Kij |, for 1 ≤ i ≤ n, then K will be an

M -matrix, see [SA2].

We shall assume that the finite difference discretization (15.2) of elliptic
equation (15.1) in which c(x) ≥ c0 > 0 results in a matrix AII which is a
strictly diagonally dominant M -matrix and yields (AIB)ij ≤ 0:

{
AIIuI + AIBuB = f I

uB = gB ,

Here uI denotes a nodal vector of size n corresponding to nodal unknowns at
interior grid points x1, . . . , xn of Ω, while uB denotes a nodal vector of size
m corresponding to nodal unknowns on the boundary ∂Ω.

Notation. Given nodes xi in Ω, let I∗
l and Il denote the global indices of

nodes in Ω
∗
l and Ωl, respectively. The nodes in a subdomain will be given

a local ordering, with J ∗
l and Jl denoting the local indices of nodes in Ω

∗
l

and Ωl, respectively. These local nodes in Ω
∗
l will be denoted as {y(l)

i }. By
construction, {y(l)

j }j∈Jl
and {y(l)

j }j∈J ∗
l

should correspond to the same nodes
as {xi}i∈Il

and {xi}i∈I∗
l
.

On each subdomain, let nodal vectors u(l)
I ∈ IRnl and u(l)

B ∈ IRml satisfy:{
A

(l)
II u

(l)
I + A

(l)
IBu(l)

B = f (l)
I

u(l)
B = g(l)

B ,
(15.19)
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corresponding to a discretization of:{
Lu = −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f, in Ω∗

l

u = g, on ∂Ω∗
l .

(15.20)

Matrices A
(l)
II and A

(l)
IB will be submatrices of [AII AIB ] for indices in I∗

l .
Matrix A

(l)
II will be a strictly diagonally dominant M -matrix, and A

(l)
IB ≤ 0.

The following result describes a discrete maximum principle. We consider
a rectangular matrix A =

[
AII AIB

]
, where AII is of size n and AIB of

size n × m, corresponding to the coefficient matrix for a Dirichlet problem.
We shall assume that matrix AII is irreducible (i.e., the incidence matrix
associated with A is connected) and that AIB �= 0.

Lemma 15.16. Let A =
[
AII AIB

]
be of size n × (n + m) satisfy Aii > 0

for each i and Aij ≤ 0 for i �= j. Let A be weakly diagonally dominant with
zero row sums, i.e., Aii =

∑
j �=i |Aij | , for each i, and let AII be irreducible.

Let N (i) ≡ {j : Aij �= 0, where j �= i} denote the index set of neighbours of
node i. Then, the following will hold:

1. If u =
(
uT

I ,uT
B

)T ∈ IRn+m satisfies (Au)i ≤ 0 for some 1 ≤ i ≤ n, then:

ui ≤ max
j∈N (i)

uj . (15.21)

2. If (Au)i = 0 for some 1 ≤ i ≤ n, then:

|ui| ≤ max
j∈N (i)

|uj | . (15.22)

3. If Au = 0, then either uI = α (1, . . . , 1)T ∈ IRn for some α ∈ IR (i.e.,
each entry of uI will be identical), or ‖uI‖∞ ≤ ‖uB‖∞.

Proof. Since Aii > 0, the condition that (Au)i ≤ 0 reduces to:

ui ≤
∑

j∈N (i)

(
−Aij

Aii

)
uj .

Weak diagonal dominance of A yields zero row sums, with Aii = −
∑

j �=i Aij ,

since Aij ≤ 0 for j �= i, with
(−Aij

Aii

)
≥ 0 and

∑
j �=i

(−Aij

Aii

)
= 1. This shows

that
∑

j �=i

(−Aij

Aii

)
uj is a convex combination of uj for j ∈ N (i), and yields:

ui ≤
∑

j∈N (i)

(
−Aij

Aii

)
uj ≤

∑
j∈N (i)

(
−Aij

Aii

) (
max

j̃∈N (i)
uj̃

)
≤ max

{j̃∈N (i)}
uj̃ .

To show part 2, apply the preceding result for u and −u (since A(−u) = 0).
The desired result will follow since uj̃ ≤ |uj̃ |. To show part 3, suppose that
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1 ≤ i∗ ≤ n denotes an index such that |ui∗ | = ‖u‖∞. Since (Au)i∗ = 0, apply
weak diagonal dominance of A to obtain:

ui∗ =
∑

j∈N (i∗)

(
−Ai∗j

Ai∗i∗

)
uj ≤

∑
j∈N (i∗)

(
−Ai∗j

Ai∗i∗

)
|uj |

≤
∑

j∈N (i∗)

(
−Ai∗j

Ai∗i∗

)
ui∗ = ui∗ .

Thus, we must have uj = ui∗ for all nodes j ∈ N (i∗), and the irreducibility
of AII will yield uI = α (1, . . . , 1)T for α = ui∗ . Thus, if the maximum occurs
in the interior, uI must be constant, otherwise ‖uI‖ ≤ ‖u‖∞. ��

Remark 15.17. When matrix A is strictly diagonally dominant (such as when
c(x) ≥ c0 > 0), the following changes can be made to the preceding results:⎧⎪⎨

⎪⎩
if ui �= 0 and (Au)i ≤ 0, then ui < max{j∈N (i)} uj

if ui �= 0 and (Au)i = 0, then |ui| < max{j∈N (i)} |uj |
if u �= 0 and Au = 0, then ‖uI‖∞ < ‖uB‖∞, if AIB �= 0,

since
∑

j �=i

(−Aij

Aii

)
< 1. We next describe a discrete comparison principle.

Lemma 15.18. Suppose the following conditions hold.

1. Let A
(l)
II be an M -matrix and let A

(l)
IB ≤ 0 entry wise.

2. Let u(l)
I , u(l)

B and v(l)
I , v(l)

B satisfy:{
A

(l)
II u

(l)
I + A

(l)
IBu(l)

B = f (l)
I

u(l)
B = g(l)

B

and

{
A

(l)
II v

(l)
I + A

(l)
IBv(l)

B = f̃ (l)
I

v(l)
B = g̃(l)

B

(15.23)

If f (l)
I ≥ f̃ (l)

I and g(l)
B ≥ g̃(l)

B component wise, then u(l)
I ≥ v(l)

I .

Proof. Substitute u(l)
B = g(l)

B and v(l)
B = g̃(l)

B in the above equations, and
subtract the resulting expressions to obtain:

A
(l)
II

(
u(l)

I − v(l)
I

)
=
(
f (l)
I − f̃ (l)

I

)
− A

(l)
IB

(
g(l)

B − g̃(l)
B

)
.

Since
(
f (l)
I − f̃ (l)

I

)
≥ 0,

(
g(l)

B − g̃(l)
B

)
≥ 0, and

(
−A

(l)
IB

)
≥ 0 component

wise, it will hold that A
(l)
II

(
u(l)

I − v(l)
I

)
≥ 0. Since A

(l)
II is an M -matrix with(

A
(l)
II

)−1

≥ 0, multiplying both sides of A
(l)
II

(
u(l)

I − v(l)
I

)
≥ 0 by

(
A

(l)
II

)−1

will preserve the inequality, yielding:(
u(l)

I − v(l)
I

)
≥ 0.

The desired result follows. ��
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Definition 15.19. Let w(l)
I denote the solution to the homogenous system:

A
(l)
II w

(l)
I + A

(l)
IBw(l)

B = 0, in Ω∗
l

(15.24)

where the boundary data w(l)
B satisfies:

(
w(l)

B

)
i
=

{
1, if y

(l)
i ∈ B(l)

0, if y
(l)
i ∈ B[l].

(15.25)

We define a discrete contraction factor ρh,l for A from Ω∗
l to Ωl as:

ρh,l ≡ max
{j∈Jl}

∣∣∣∣(w(l)
I

)
j

∣∣∣∣ = max
xj∈Ωl

∣∣∣∣(w(l)
I

)
j

∣∣∣∣ .
The following is a consequence of the discrete comparison principle.

Lemma 15.20. Let A
(l)
II be an M -matrix and let A

(l)
IB ≤ 0 component wise.

1. Let w(l)
I and w(l)

B satisfy (15.24) and (15.25).
2. Let v(l)

I and v(l)
B satisfy:{

A
(l)
II v

(l)
I + A

(l)
IBv(l)

B = 0

v(l)
B = g(l)

B .
(15.26)

Then, it will hold that:

‖v(l)
I ‖∞,Ωl

= max
{xi∈Ωl}

∣∣∣(v(l)
I

)
i

∣∣∣ ≤ ρh,l ‖g(l)
B ‖∞.

Proof. Follows by an application of the discrete comparison theorem, using
u(l)

I = (‖gB‖∞) w(l)
I and u(l)

B = (‖gB‖∞) w(l)
B . ��

The next result shows that, for a consistent discretization of (15.1), the
discrete contraction factor ρh,l ≤ ρl for sufficiently small h with h ≤ h0.

Lemma 15.21. Suppose Lu = −∇ · (a(x)∇u) + b(x) · ∇u + c(x)u and:

1. Let z(x) = e−γ d(x) denote a comparison function satisfying:

Lz(x) ≥ 1
2
c0z(x), in Ω∗

l , z(x) = 1, on B(l), z(x) ≥ 0, on B[l].

2. Let A
(l)
II be a strictly diagonally dominant M -matrix, and let A

(l)
IB ≤ 0.

3. Let |E(l)
i | ≤ C(z)hr be the truncation error of z(x) at the grid point y

(l)
i :

(Lz) (y(l)

ĩ
) =

(
A

(l)
II z

(l)
I + A

(l)
IBz(l)

B

)
i
+ E(l)

i ,

where z(l)
I = π

(l)
I z, z(l)

B = π
(l)
B z are interpolants of z(·) onto the grids.
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Then, the discrete contraction factor ρh,l will satisfy:

ρh,l ≤ ρl = e−γ dl ,

for sufficiently small h ≤ h0, where dl = dist(B(l), ∂Ωl ∩ Ω).

Proof. Given z(x), let the local discretization error E(l)
i at node y

(l)
i satisfy:∣∣∣E(l)

i

∣∣∣ ≤ C(z) hr,

for some r ≥ 1. If we choose h small so that
∣∣∣E(l)

i

∣∣∣ ≤ C(z) hr ≤ c0
4 z(y(l)

i ),

holds for each y
(l)
i ∈ Ω∗

l , then we will obtain that:(
A

(l)
II z

(l)
I + A

(l)
IBz(l)

B

)
i
≥ 0, ∀y

(l)
i ∈ Ω∗

l or i ∈ J ∗
l .

Apply the discrete comparison Lemma 15.18 using u(l)
I = z(l)

I , u(l)
B = z(l)

B and
v(l)

I = w(l)
I , v(l)

B = w(l)
B , for w(l)

I , w(l)
B satisfying (15.24) and (15.25), to obtain

u(l)
I = z(l)

I ≥ v(l)
I = w(l)

I :

ρh,l = max
{y

(l)
i ∈Ωl}

(
w(l)

I

)
i
≤ z(y(l)

i ) ≤ max
{x∈Ωl}

z(x) ≤ e−γ dl ,

since z(x) = e−γ d(x). ��

Remark 15.22. In practical computations, the discrete contraction factor ρh,l

can be computed numerically, by solving (15.24). This requires one solve per
subdomain. This contraction factor will decrease with increasing overlap. For
time stepped problems and advection dominated elliptic equations, ρh,l may

be estimated in terms of e
− γ√

τ
dl and e−

γ
ε dl , under suitable assumptions, for

sufficiently small h, see [GA10, MA33, GA12, CA17, MA35].

Remark 15.23. Explicit estimates of contraction factors can be constructed in
special cases in which matrix AII is Toeplitz [GA12, MA35]. For instance, if
matrix A is tridiagonal and Toeplitz with A = tridiag(θ, α, µ), then a homo-
geneous system of the form (15.24) can be solved analytically using the ansatz
wi = c1κ

i
1 + c2κ

i
2, where κ1 and κ2 are roots of θ + α r + µ r2 = 0. Boundary

conditions can be enforced and the contraction factors estimated.
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15.2 Well Posedness of the Schwarz Hybrid Formulation

In this section, we heuristically study the well posedness of the Schwarz hybrid
formulation (11.22) of elliptic equation (15.1), see [CA17]. Many of the results
in later sections are based on the contraction mapping described here. We
shall construct an overlapping decomposition {Ω∗

l }
p
l=1 of Ω based on a non-

overlapping decomposition {Ωl}p
l=1 of Ω, with subdomains of size h0. For

0 < β < 1, define an overlapping decomposition with overlap βh0 as:

Ω∗
l ≡ Ωβh0

l ≡ {x ∈ Ω : dist(x,Ωl) < βh0} , for 1 ≤ l ≤ p. (15.27)

Choose 0 < ε < β and let {χl(x)}p
l=1 denote a smooth partition of unity

subordinate to {Ωεh0
l }p

l=1. Since Ωεh0
l ⊂ Ω∗

l for 1 ≤ l ≤ p, the partition of
unity will also be subordinate to {Ω∗

l }
p
l=1. Further, it will satisfy:∑

j �=l

χj(x) = 1, on B(l), for 1 ≤ l ≤ p,

since each χl(x) = 0 on B(l), where B(l) ≡ ∂Ω∗
l ∩ Ω and B[l] ≡ ∂Ω∗

l ∩ ∂Ω.
The Schwarz hybrid formulation of (15.1) seeks w1(x), . . . , wp(x) solving:⎧⎪⎨
⎪⎩

Lwl(x) = f(x), in Ω∗
l

wl(x) =
∑

j �=l χj(x) wj(x), on B(l)

wl(x) = 0, on B[l]

for 1 ≤ l ≤ p. (15.28)

We shall heuristically indicate why (15.28) will be well posed in the maximum
norm, provided ε  β and β > 0 is sufficiently large, and provided the
subdomains and f(x) are sufficiently smooth, to ensure the existence and
regularity of the local solutions.

We shall employ a formal metric space H defined as follows:

H =
{

(v1, . . . , vp) : vl ∈ C2
(
Ω

∗
l

)
, L vl = f, in Ω∗

l , vl = 0on B[l], 1 ≤ l ≤ p
}

.

(15.29)
Given v = (v1, . . . , vp) ∈ H, we define ‖v‖∞ = max1≤l≤p ‖vl‖∞,Ω∗

l
. We define

the metric d(u, v) = ‖u − v‖∞ for u = (u1, . . . , up) , v = (v1, . . . , vp) ∈ H.

Definition 15.24. Given v = (v1, . . . , vp) ∈ H, define T v = ṽ = (ṽ1, . . . , ṽp):⎧⎪⎨
⎪⎩

L ṽl(x) = f(x), in Ω∗
l

ṽl(x) =
∑

j �=l χj(x) vj(x), on B(l)

ṽl(x) = 0, on B[l]

for 1 ≤ l ≤ p. (15.30)

The map T : H → H will be pivotal to the analysis of the Schwarz hybrid
formulation, since by construction, if a solution w ∈ H to (15.28) exists, it
will be a fixed point of T with T w = w. The map T will be a contraction.
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Definition 15.25. We define a contraction factor ρl,ε,β as:

ρl,ε,β ≡ ‖vl‖∞,Ω
εh0
l

, (15.31)

where Lvl = 0 in Ωβh0
l with vl = 0 on ∂Ωβh0

l ∩ ∂Ω and vl = 1 on ∂Ωβh0
l ∩Ω.

Lemma 15.26. Suppose c(x) ≥ c0 > 0 and let the overlap β h0 between the
subdomains Ωβh0

l be large. Let the partition of unity be based on Ωεh0
l for

ε  β and let ρl,ε,β denote the contraction factor into Ωεh0
l , associated with

L-harmonic solutions on Ωβh0
l . Then T : H → H will be a contraction:

d(Tu, Tv) = ‖Tu−Tv‖∞ ≤
(

max
1≤l≤p

ρl,ε,β

)
‖u−v‖∞ =

(
max
1≤l≤p

ρl,ε,β

)
d(u, v).

Proof. We outline the proof, assuming sufficiently smooth subdomains and
forcing terms. Given u, v ∈ H, let ũ = T u and ṽ = T v. Then, by definition
of T , the components of ũ = (ũ1, . . . , ũp) and ṽ = (ṽ1, . . . , ṽp) will solve:⎧⎪⎨

⎪⎩
L ũl = f, in Ω∗

l

ũl =
∑

j �=l χj uj , on B(l)

ṽl = 0, on B[l]

and

⎧⎪⎨
⎪⎩

L ṽl = f, in Ω∗
l

ṽl =
∑

j �=l χj vj , on B(l)

ṽl = 0, on B[l].

Subtracting the two will yield:⎧⎪⎨
⎪⎩

L (ũl − ṽl) = 0, in Ω∗
l

(ũl − ṽl) =
∑

j �=l χj (uj − vj) , on B(l)

(ũl − ṽl) = 0, on B[l].

An application of the maximum principle for homogenous solutions yields:

‖ũl − ṽl‖∞,Ω∗
l
≤ ‖

∑
j �=l

χj (uj − vj) ‖∞,B(l) . (15.32)

Since
∑

j �=l χj(x) (uj(x) − vj(x)) is a convex combination of (uj(x) − vj(x))
for each x ∈ B(l), and since χj(·) has support on Ωεh0

j , we obtain:

‖
∑

j �=l χj (uj − vj) ‖∞,B(l) ≤ maxj �=l ‖uj − vj‖∞,B(l)∩Ω
εh0
j

≤ maxj �=l ρj,ε,β ‖uj − vj‖∞,B(j)

≤ maxj �=l ρj,ε,β ‖u − v‖∞.

(15.33)

The second and third inequalities above follow by Lemma 15.6 and by the
definition of ρj,ε,β , since (uj − vj) is also L-harmonic in Ω∗

j for u, v ∈ H:⎧⎪⎨
⎪⎩

L (uj − vj) = 0, in Ω∗
j

(uj − vj) = (uj − vj) , on B(j)

(uj − vj) = 0. on B[j].

Combining (15.32) and (15.33) yields ‖ũ − ṽ‖∞ ≤ (maxj ρj,ε,β) ‖u − v‖∞,
which shows that T is a contraction, provided (maxj ρj,ε,β) < 1. ��
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Since T : H → H is a contraction, a unique fixed point w = Tw ∈ H will
exist, which will formally solve (15.28). It can be obtained by Picard iteration.
Each computation vk+1 = T vk will correspond to a parallel Schwarz iteration.
We next heuristically outline the well posedness of system (15.28).

Lemma 15.27. Let (w1, . . . , wp) ∈ H solve (15.28) and where Ω∗
l = Ωβh0

l

for 1 ≤ l ≤ p. Let {χl(.)}p
l=1 be a smooth partition of unity subordinate to

{Ωεh0
l }p

l=1. Assume also that ρ = (maxl ρl,ε,β) < 1. Then:

‖w‖∞ ≤
(

C

1 − ρ

)
‖f‖∞.

Proof. We outline a heuristic proof. Choose v(0) = (v(0)
1 , . . . , v

(0)
p ) ∈ H as:⎧⎪⎪⎨

⎪⎪⎩
Lv

(0)
l = f, in Ω∗

l

v
(0)
l = 0, on B(l)

v
(0)
l = 0, on B[l].

for 1 ≤ l ≤ p.

For sufficiently smooth f(.) and smooth subdomains, maximum norm esti-
mates for elliptic equations [GI] yield:

‖v(0)
l ‖∞,Ω∗

l
≤ ‖f‖∞,Ω∗

l
.

By construction v(0) ∈ H. Apply Picard iteration to define v(k) ≡ T kv(0) ∈ H
which converges to w = Tw. Estimates for Picard iteration [AR3] yields:

d(v(0), w) ≤
(

ρ

1 − ρ

)
d(v(0), T v(0)).

Since d(u, v) = ‖u − v‖∞, this yields:

‖w‖∞ ≤ ‖v(0)‖∞ + ‖w − v(0)‖∞
= ‖v(0)‖∞ +

(
ρ

1−ρ

)
d(v(0), T v(0)).

The term d(v(0), T v(0)) = ‖v(0) − Tv(0)‖∞ may be estimated using maximum
norm estimates for L-harmonic functions, since the components v

(0)
l −(Tv(0))l

are L-harmonic. We omit further details. ��

15.3 Convergence of Schwarz Iterative Algorithms

Continuous Case. We shall now describe the maximum norm convergence
of the continuous versions of the sequential and parallel Schwarz algorithms
(without coarse spaces). Given overlapping subdomains Ω∗

1 , . . . , Ω∗
p , the con-

tinuous version of the multiplicative Schwarz algorithm updates the solution
on each subdomain Ω∗

l in sequence as follows.
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Algorithm 15.3.1 (Multiplicative Schwarz Algorithm)
Let u(0) be a starting iterate

1. For k = 0, 1, . . . , until convergence do:
2. For l = 1, . . . , p compute⎧⎪⎨

⎪⎩
Lw(k,l) = f, in Ω∗

l

w(k,l) = u(k+ l−1
p ), on B(l)

w(k,l) = 0, on B[l]

Update:

u(k+ l
p ) ≡

{
w(k,l), in Ω∗

l

u(k+ l−1
p ), in Ω \ Ω∗

l

3. Endfor
4. Endfor

If the starting iterate satisfies u(0) ≥ u and L u(0) − f ≥ 0, subsequent
iterates will converge monotonically downwards to the true solution u.

Lemma 15.28. Suppose u(0) satisfies u(0) ≥ u and Lu(0) − f ≥ 0. On Ω∗
l ,

let ρl denote the contraction factor into Ωl for a L-harmonic solution. Then:

1. The iterates u(k+ l
p ) will satisfy u ≤ u(k+ l

p ) ≤ u(k+ l−1
p ) ≤ · · ·

2. Each iterate will satisfy L u(k+ l
p ) − f ≥ 0.

3. The maximum norm of the error will satisfy:

‖u − u(k+1)‖∞,Ω ≤
(

max
{1≤l≤p}

ρl

)
‖u − u(k)‖∞,Ω .

Proof. The properties u ≤ u(k+ l
p ) ≤ u(k+ l−1

p ) ≤ · · · and Lu(k+ l
p ) −f ≥ 0 will

be verified only in the discrete case, see [LI6, LI7] and (15.31). To estimate
the error reduction, note that by construction u(k+ l

p ) satisfies Lu(k+ l
p ) = f

in Ω∗
l , with u(k+ l

p ) = u(k+ l−1
p ) on B(l). Since u satisfies Lu = f , subtracting

the two equations yields:⎧⎪⎪⎨
⎪⎪⎩

L (u(k+ l
p ) − u) = 0, in Ω∗

l

(u(k+ l
p ) − u) = (u(k+ l−1

p ) − u), on B(l)

(u(k+ l−1
p ) − u) = 0, on B[l].

Applying Lemma 15.3 with w1(x) = u(k+ l−1
p )(x) − u(x) and w2(x) = 0 in

Ω∗
l and g1(x) = u(k+ l−1

p )(x) − u(x) ≥ 0 and g2(x) = 0 on ∂Ω∗
l yields that

w1(x) ≥ 0. Thus u(k+ l−1
p )(x) ≥ u(x) in Ω∗

l and outside too. Lemma 15.6 with
v(x) = u(k+ l

p )(x) − u(x) in Ω∗
l and g(x) = u(k+ l−1

p )(x) − u(x) on B(l) yields:
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0 ≤
(
u(k+ l

p )(x) − u(x)
)
≤
(
‖u − u(k+ l−1

p )‖∞,B(l)

)
wl,∗(x) in Ωl

≤
(
‖u − u(k+ l−1

p )‖∞,Ω

)
wl,∗(x) in Ωl

≤
(
‖u − u(k)‖∞,Ω

)
wl,∗(x) in Ωl

where wl,∗(x) is the comparison function (15.9) on Ω∗
l . Since the iterates

u(k+ l
p ) decrease monotonically for each x, and since wl,∗(x) ≤ ρl on Ωl:

0 ≤
(
u(k+1)(x) − u(x)

)
≤
(
u(k+ l

p )(x) − u(x)
)

in Ωl

≤ ρl ‖u − u(k)‖∞,Ω in Ωl.

Combining the bounds over Ω yields:

‖u(k+1) − u‖∞,Ω ≤
(

max
1≤l≤p

ρl

)
‖u(k) − u‖∞,Ω .

The desired result follows. ��

For two subdomain decompositions, a sharper bound can be obtained for
the convergence of the sequential Schwarz algorithm [LI7]. Indeed, suppose Ω∗

1

and Ω∗
2 are obtained by extending two non-overlapping subdomains Ω1 and

Ω2. Then B(1) ⊂ Ω2 and B(2) ⊂ Ω1 and it will be sufficient to estimate the
maximum norm of the error on these segments. Applying Lemma 15.6 yields:

‖u(k+1) − u‖∞,B(1) ≤ ‖u(k+1) − u‖∞,Ω2
≤ ρ2 ‖u(k+ 1

2 ) − u‖∞,B(2)

‖u(k+ 1
2 ) − u‖∞,B(2) ≤ ‖u(k+ 1

2 ) − u‖∞,Ω1
≤ ρ1 ‖u(k) − u‖∞,B(1) .

Combining the two bounds yields:

‖u(k+1) − u‖∞,B(1) ≤ (ρ2 ρ1) ‖u(k) − u‖∞,B(1) .

Since this is a product of two contraction factors (in contrast to the maximum
of the same contraction factors), this error bound is sharper.

We next analyze the continuous version of a parallel partition of unity
Schwarz algorithm where each χj(x) has support in a neighborhood of Ωj .

Algorithm 15.3.2 (Parallel Schwarz Algorithm)
Let u(0) be a starting iterate

1. For k = 0, 1, . . . , until convergence do:
2. For l = 1, . . . , p in parallel compute:⎧⎪⎨

⎪⎩
L w(k,l) = f, in Ω∗

l

w(k,l) = u(k), on B(l)

w(k,l) = 0, on B[l]

3. Endfor
4. Update u(k+1)(x) ≡

∑p
l=1 χl(x)w(k,l)(x)

5. Endfor
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The following result describes the convergence of the preceding algorithm.

Lemma 15.29. Let Ω∗
l = Ωβh0

l be overlapping subdomains for 1 ≤ l ≤ p,
where β < 1. Let {χj(·)}p

j=1 be a partition of unity subordinate to {Ωεh0
l }p

l=1

where ε  β. Let ρl,ε,β be contraction factors defined by (15.31). Then:

1. Each local iterate w(k,l)(x) will satisfy:

‖u − w(k,l)‖∞,Ω
εh0
l

≤ ρl,ε,β ‖u − u(k)‖∞,Ω∗
l
.

2. The maximum norm of the error will satisfy:

‖u − u(k+1)‖∞,Ω ≤
(

max
1≤l≤p

ρl,ε,β

)
‖u − u(k)‖∞,Ω .

Proof. Each w(k,l)(x) satisfies Lw(k,l) = f in Ω∗
l with w(k,l) = u(k) on B(l),

while the exact solution satisfies Lu = f in Ω∗
l . Subtracting them yields:⎧⎪⎨

⎪⎩
L
(
u − w(k,l)

)
= 0, in Ω∗

l(
u − w(k,l)

)
=
(
u − u(k)

)
, on B(l)(

u − w(k,l)
)

= 0, on B[l].

An application of Lemma 15.6 using v = u − w(k,l) and g = u − u(k) yields:

‖u − w(k,l)‖∞,Ω
εh0
l

≤ ρl,ε,β ‖u − u(k)‖∞,Ω .

Provided each χl(x) has support within Ωεh0
l . we may combine the estimates:

‖u − u(k+1)‖∞,Ω ≤
(

max
1≤l≤p

ρl

)
‖u − u(k)‖∞,Ω .

This yields the desired result. ��

Discrete Case. We now consider the convergence of discrete versions of the
multiplicative and parallel Schwarz algorithms to solve system (15.2) obtained
by the discretization of (15.1). For simplicity, we rewrite the discrete system
AIIuI = (f I − AIBgB) as Au = f , where gB is the discretization of the
boundary data g(.) on ∂Ω. We shall employ the notation R

(l)
B v and R

(l)
I v

to denote the restriction of a nodal vector v = vI to nodes on B(l) and in
Ω∗

l . For each node xi ∈ Ω
∗
l , we shall let ĩ denote its local index, such that

xi = y
(l)

ĩ
. Below, the discrete version of the multiplicative Schwarz algorithm

is summarized, where nl denotes the number of interior nodes in Ω∗
l .
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Algorithm 15.3.3 (Multiplicative Schwarz Algorithm)
Let u(0) be a starting iterate

1. For k = 0, 1, . . . , until convergence do:
2. For l = 1, . . . , p solve for d(l) ∈ IRnl :

R
(l)
I

(
A(u(k+ l−1

p ) + R
(l)T

I d(l)) − f
)

= 0

Update:

u(k+ l
p ) = u(k+ l

p ) + R
(l)T

I d(l)

3. Endfor
4. Endfor

The following result concerns the monotonicity of Schwarz updates.

Lemma 15.30. Let A be a strictly diagonally dominant M -matrix.

1. Let v ∈ IRn satisfy Av − f ≥ 0.
2. Let d(l) ∈ IRnl be chosen such that R

(l)
I

(
A(v + R

(l)T

I d(l)) − f
)

= 0.

Then, it will hold that d(l) ≤ 0 and A
(
v + R

(l)T

I d(l)
)
− f ≥ 0.

Proof. By choice of d(l), it will hold that
(
A(v + R

(l)T

I d(l)) − f
)

i
= 0 for

each xi ∈ Ω∗
l . Since (Av − f)i ≥ 0, subtracting the two equations will yield(

AR
(l)T

I d(l)
)

i
≤ 0. Applying the discrete maximum principle (15.16) will

yield
(
R

(l)T

I d(l)
)

i
≤ 0 for each xi ∈ Ω∗

l . Since R
(l)T

I is an extension matrix,

it will thus hold that d(l) ≤ 0.
We shall next show that A

(
v + R

(l)T

I d(l)
)
− f ≥ 0. By choice of d(l), for

each xi ∈ Ω∗
l it will hold that

(
A (v + R

(l)T

I d(l)) − f
)

i
= 0. Thus, we only

need consider xi �∈ Ω∗
l . Since (Av − f)i ≥ 0, we will obtain:(

A(v + R
(l)T

I d(l)) − f
)

i
= (Av − f)i +

(
AR

(l)T

I d(l)
)

i

≥
(
AR

(l)T

I d(l)
)

i
.

For xi �∈ Ω∗
l , it will hold that

(
R

(l)T

I d(l)
)

i
= 0. Using this, and noting that

Aij ≤ 0 for j �= i and that
(
R

(l)T

I d(l)
)

j
≤ 0 for xj ∈ Ω∗

l , we obtain that(
AR

(l)T

I d(l)
)

i
=
∑

j Aij(R
(l)T

I d(l))j ≥ 0. This yields the desired result. ��

We now consider the multiplicative Schwarz algorithm.



666 15 Maximum Norm Theory

Lemma 15.31. Let A be a strictly diagonally dominant M -matrix. Suppose
that u(0) ∈ IRn satisfies Au(0) − f ≥ 0, Then, the following results will hold.

1. The multiplicative Schwarz iterates u(k+ l
p ) will satisfy:

u ≤ u(k+ l
p ) ≤ u(k+ l−1

p ) ≤ · · ·

2. Each iterate u(k+ 1
p ) will satisfy Au(k+ 1

p ) − f ≥ 0.
3. The maximum norm error will satisfy:

‖u − u(k+1)‖∞ ≤
(

max
1≤l≤p

ρh,l

)
‖u − u(k)‖∞.

Proof. We shall prove by induction on k and l. Suppose Au(k+ l−1
p ) ≥ f . Then

the discrete comparison theorem will yield A
(
u(k+ l−1

p ) − u
)

≥ 0, yielding

that u(k+ l−1
p ) − u ≥ 0 (since A−1 ≥ 0). Next, since iterate u(k+ l

p ) is con-
structed so that R

(l)
I

(
A (u(k+ l−1

p ) + R
(l)T

I d(l)) − f
)

= 0, we may apply the

preceding lemma to obtain that d(l) ≤ 0 and that
(
Au(k+ l

p ) − f
)
≥ 0. Since

d(l) ≤ 0, it will hold that u(k+ l
p ) ≤ u(k+ l−1

p ). Since
(
Au(k+ l

p ) − f
)
≥ 0, it

will hold that u(k+ l
p ) ≥ u. This proves parts 1 and 2.

To obtain an estimate for the reduction in error in the maximum norm,
we shall employ the monotone nature of the Schwarz iterates, and employ
the reduction in error on each Ωl by the discrete contraction factor ρh,l. The
monotone nature of the iterates yields the following for each i:

0 ≤
(
u(k+1) − u

)
i
≤ min

1≤l≤p

(
u

(k+ l−1
p )

i − ui

)
≤
(
u(k)

i − ui

)
.

Applying the discrete contraction factor ρh,l in (15.25), we estimate:

0 ≤
(
u(k)

i − ui

)
≤ ρh,l

(
max

xj∈B(l)
(u(k) − u)j

)
, for xi ∈ Ωl.

Since (u(k) − u) ≥ 0 componentwise, we obtain:

max
xj∈B(l)

(u(k) − u)j = ‖u(k) − u‖∞,B(l) ≤ ‖u(k) − u‖∞.

Taking the maximum over each xi ∈ Ω and using the preceding yields:

‖u(k+1) − u‖∞,Ω ≤
(

max
1≤l≤p

ρh,l

)
‖u(k) − u‖∞

since Ω1, . . . , Ωp covers Ω. ��
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Remark 15.32. In the two subdomain case, sharper estimates can be obtained
for the rate of convergence of the multiplicative Schwarz algorithm (regardless
of whether Au(0) ≥ f holds). The global contraction factor will be ρh,1 ρh,2

instead of max {ρh,1, ρh,2}. The proof will be analogous to the proof in the
continuous case described earlier.

We next consider the convergence of the discrete version of the parallel
Schwarz algorithm. The estimates in the discrete case will be analogous to
the continuous case. We summarize the discrete parallel Schwarz algorithm.

Algorithm 15.3.4 (Parallel Partition of Unity Schwarz Algorithm)
Let u(0) ∈ IRn be a starting iterate

1. For k = 0, 1, . . . , until convergence do:
2. For l = 1, . . . , p in parallel determine d(l) ∈ IRnl :

R
(l)
I

(
A (u(k) + R

(l)T

I d(l)) − f
)

= 0

3. Endfor
4. Update u(k+1)

i ≡
∑p

l=1 χl(xi)
(
u(k) + R

(l)T

I d(l)
)

i
for 1 ≤ i ≤ n

5. Endfor

We have the following convergence bound.
Lemma 15.33. Let A be a strictly diagonally dominant M -matrix. Then, the
following will hold for the parallel Schwarz iterates.

‖u(k+1) − u‖∞ ≤
(

max
1≤l≤p

)
‖u(k) − u‖∞.

Proof. Since R
(l)
I

(
A (u(k) + R

(l)T

I d(l)) − f
)

= 0 and R
(l)
I (Au − f) = 0, sub-

tracting the two and applying the discrete maximum principle, using the dis-
crete contraction factor on Ωl (from Ω∗

l ) will yield the estimate:∣∣∣(u(k) + R
(l)T

I d(l)
)

i
− ui

∣∣∣ ≤ ρh,l ‖u(k) − u‖∞, for xi ∈ Ωl.

Next, decompose the error using the partition of unity to obtain:(
u − u(k+1)

)
i
=
∑p

l=1 χl(xi)
(
u − u(k+1)

)
i

=
∑p

l=1 χl(xi)
(
u − (u(k) + R

(l)T

I d(l))
)

i
.

Estimating
(
u − (u(k) + R

(l)T

I d(l))
)
i

using the contraction factor yields:∣∣(u − u(k+1)
)
i

∣∣ =
∑p

l=1 χl(xi)
∣∣(u − u(k+1)

)
i

∣∣
=
∑p

l=1 χl(xi)
∣∣∣(u − (u(k) + R

(l)T

I d(l))
)

i

∣∣∣
≤
∑p

l=1 χl(xi) ρh,l ‖u − u(k)‖∞
≤
(
max{1≤l≤p} ρh,l

) ∑p
l=1 χl(xi) ‖u − u(k)‖∞

≤
(
max{1≤l≤p} ρh,l

)
‖u − u(k)‖∞.

We assumed that each χl(·) has support in Ωl. The desired result follows. ��
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Remark 15.34. In practice, the bounds for ρh,l are uniformly independent of h
(for sufficiently small h). These rates of convergence will typically be robust,
and depend only mildly on the geometry and the coefficients, see [CH6]. The
rate of convergence of Schwarz algorithms can be more rapid for singularly
perturbed problems, such as the time stepped parabolic equation.

15.4 Analysis of Schwarz Nonmatching Grid
Discretizations

In this section, we describe maximum norm estimates on the stability and con-
vergence of discretizations of elliptic equations on nonmatching overlapping
grids. We obtain a finite difference discretization of elliptic equation (15.1)
by discretizing its Schwarz hybrid formulation (15.28) based on an overlap-
ping decomposition Ω∗

1 , . . . , Ω∗
p of Ω. On each subdomain Ω∗

l , we let Thl
(Ω∗

l )
denote a quasiuniform triangulation of size hl. A global nonmatching grid
discretization of (15.1) will require a local discretization of L wl(x) = f(x) on
Ω∗

l using the grid Thl
(Ω∗

l ), as well as constructing an intergrid interpolation
stencil to discretize the boundary condition wl(x) =

∑
j �=l χj(x)wj(x). We

shall denote the resulting local algebraic equations as:{
A

(l)
II w

(l)
I + A

(l)
IBw(l)

B = f (l)
I

w(l)
B = Ihl

w
for 1 ≤ l ≤ p. (15.34)

Here w(l)
I and w(l)

I denote local nodal vectors corresponding to unknowns in

the interior of Ω∗
l and on B(l) = ∂Ω∗

l ∩ Ω, while w =
(
w(1)T

, . . . ,w(p)T
)T

,

with w(l) =
(
w(l)T

I ,w(l)T

B

)T

. Each Ihl
will be an intergrid interpolation map.

Assumptions. In our analysis, we shall assume that the following hold for
each local discretization and each intergrid interpolation stencil.

Assumption (A.1). Let {Ωl}p
l=1 denote a non-overlapping decomposition of Ω

of diameter h0, and for some 0 < β < 1 choose:

Ω∗
l = Ωβh0

l ≡ {x ∈ Ω : dist(x,Ωl) < βh0} , for 1 ≤ l ≤ p.

Let {χl(·)}p
l=1 be a partition of unity subordinate to {Ωεh0

l }p
l=1 for 0 ≤ ε  β.

When ε = 0, the partition will be discontinuous and subordinate to {Ωl}p
l=1:

χl(xi) =

⎧⎪⎪⎨
⎪⎪⎩

1 if xi ∈ Ωl

1
d(xi)

if xi ∈ B(l)

0 if xi ∈ Ω \ Ωl

for 1 ≤ l ≤ p,

where d(xi) denotes the number of subdomains Ωj such that xi ∈ Ωj .
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Assumption (A.2). On each grid Thl
(Ω∗

l ) discretize Lwl(x) = f(x) in Ω∗
l to

be accurate to O(hql

l ). So if v(x) is a smooth solution of Lv(x) = f(x) and

π(l)v =
(
(π(l)

I v)T , (π(l)
B v)T

)T

is the restriction of v(·) to nodes in Ω
∗
l , then:

∥∥∥(A(l)
II v(l)

I + A
(l)
IBv(l)

B − f (l)
I

)∥∥∥
∞

≤ cl(v) hql

l . (15.35)

Here cl(v) will depend on higher order derivatives of v(.).

Assumption (A.3). Let A
(l)
II be a strictly diagonally dominant M -matrix with

A
(l)
IB ≤ 0 entrywise.

Assumption (A.4). Let the inter-grid interpolation stencil Ihl
be chosen to

discretize wl(y
(l)

ĩ
) =

∑
j �=l χj(y

(l)

ĩ
)wj(y

(l)

ĩ
) using only nodal values of wj(x)

in Ωj for j �= l. In matrix terms, (Ihl
w)ĩ should employ only the nodal

vectors w(j) for j �= l. Furthermore, for each j �= l, only the nodal values of
w(j) for nodes in Ωj or Ωεh0

j must be used. Given a smooth function w(x)
on Ω, with wk(x) = w(x) on Ω

∗
k for 1 ≤ k ≤ p, define w(k) ≡ π(k) w and

w =
(
w(1)T

, . . . ,w(p)T
)T

. We shall assume that the stencil has accuracy:

∥∥∥w(y(l)

ĩ
) − (Ihl

w)ĩ

∥∥∥ ≤ cl(w) hrl

l .

Assumption (A.5). Let each inter-grid interpolation stencil Ihl
have non-

negative entries with unit row sum, yielding:

‖Ihl
w‖∞ ≤ ‖w‖∞.

Such an interpolation stencil employs convex weights.

Truncation Errors. When the above properties hold, the consistency and
stability of (15.34) can be analyzed in the maximum norm, as described below
[ST, CA17]. Let π

(l)
I v and π

(l)
B v denote the interpolation of a smooth function

v(x) onto the interior grid points of Ω∗
l and the grid points on B(l), respec-

tively. Let π v ≡
(
(π(l)

I v)T , (π(l)
B v)T , . . . , (π(p)

I v)T , (π(p)
B v)T

)T

. Then, if u(x)
denotes the true solution of (15.1), we define the local discretization errors as
E(l)

I and E(l)
B for 1 ≤ l ≤ p:{

A
(l)
II π

(l)
I u + A

(l)
IBπ

(l)
B u = f (l)

I + E(l)
I

π
(l)
B u = Ihl

πu + E(l)
B

for 1 ≤ l ≤ p. (15.36)
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Subtracting (15.36) from (15.34) will yield the following coupled system
for the error e(l)

I = π
(l)
I u − w(l)

I and e(l)
B = π

(l)
B u − w(l)

B for 1 ≤ l ≤ p:{
A

(l)
II e

(l)
I + A

(l)
IBe(l)

B u = E(l)
I

e(l)
B = Ihl

e + E(l)
B ,

for 1 ≤ l ≤ p. (15.37)

In the remainder of this section, we shall analyze the solvability of (15.34) and
obtain maximum norm bounds for ‖e(l)

I ‖∞ and ‖e(l)
B ‖∞. We shall employ the

following result on the convergence of Picard iterates [AR3].

Theorem 15.35. Suppose the following conditions hold.

1. Let H be a complete metric space with metric d(., .).
2. Let T : H → H be a contraction mapping, i.e., there is 0 ≤ δ < 1:

d (T u, T v) ≤ δ d (u, v) , ∀u, v ∈ H.

Then the following results will hold.

1. There exists a unique u∗ ∈ H which is a fixed point of T :

u∗ = T u∗.

2. Given any u(0) ∈ H, the iterates u(k) ≡ T ku(0) → u∗ geometrically:

d
(
u(k+1), u∗

)
≤ δ d

(
u(n), u∗

)
≤ δn d

(
u(0), u∗

)
.

3. For any u(0) ∈ H, the following will hold:

d
(
u(0), u∗

)
≤
(

1
1 − δ

)
d
(
T u(0), u(0)

)
.

Proof. See [AR3]. ��
To study the solvability of (15.34) and to obtain maximum norm estimates

for the solution to (15.37), we study the following more general system:{
A

(l)
II v

(l)
I + A

(l)
IBv(l)

B = g(l)
I

v(l)
B = Ihl

v + g(l)
B

for 1 ≤ l ≤ p. (15.38)

Note that when g(l)
I = f (l)

I and g(l)
B = 0, system (15.38) reduces to (15.34). In

addition, when g(l)
I = E(l)

I and g(l)
B = E(l)

B , system (15.38) reduces to (15.37).
Let nl and ml denote the number of nodal unknowns in Ω∗

l and B(l), and
denote n =

∑p
l=1 nl and m =

∑p
l=1 mp. Define V = IRn+m and equip it with

the maximum norm ‖ · ‖∞. Given g(l)
I ∈ IRnl and g(l)

I ∈ IRml for 1 ≤ l ≤ p,
we define the following metric space Hg ⊂ V as an affine set:

Hg ≡
{

(v(1)T

, . . . ,v(p)T

)T ⊂ V : A
(l)
II v

(l)
I + A

(l)
IBv(l)

B = g(l)
I , for 1 ≤ l ≤ p

}
,

(15.39)

where v(l) =
(
v(1)T

I ,v(p)T

B

)T

. Equip Hg with the metric d(v,w) = ‖v−w‖∞.
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To study the solvability of (15.38), we employ a map Tg : Hg → Hg

which we associate with (15.38). Given v = (v(1)T

, . . . ,v(p)T

)T ∈ Hg, define
ṽ = Tg v ∈ Hg, where the components of ṽ = (ṽ(1)T

, . . . , ṽ(p)T

)T solve:{
A

(l)
II ṽ

(l)
I + A

(l)
IBṽ(l)

B = g(l)
I

ṽ(l)
B = Ihl

v + g(l)
B

for 1 ≤ l ≤ p. (15.40)

By construction, v will solve (15.38) iff Tg v = v. Under suitable assumptions,
we shall show that Tg : Hg → Hg is a contraction.

Lemma 15.36. Let assumptions (A.1) through (A.5) hold and let v, w ∈ Hg.
Then for node yĩ ∈ Ωl with local index ĩ, the following bound will hold:

max
{y

(l)
ĩ

∈Ωl}

∣∣∣(v(l)
I − w(l)

I

)
ĩ

∣∣∣ ≤ ρh,l ‖v − w‖∞ for 1 ≤ l ≤ p.

Proof. By construction, v − w will be discrete harmonic in each subdomain:

A
(l)
II

(
v(l)

I − w(l)
I

)
+ A

(l)
IB

(
v(l)

B − w(l)
B

)
= 0.

The result follows by the discrete maximum principle, see Lemma 15.20. ��

The next result shows that Tg will be a contraction mapping.

Lemma 15.37. Let assumptions (A.1) to (A.5) hold. Then, for v, w ∈ Hg:

d (Tg v, Tg w) = ‖Tg v − Tg w‖∞ ≤ δ ‖v − w‖∞ = δ d (v,w) ,

where δ = max{ρh,1, . . . , ρh,p}.

Proof. Let ṽ = Tg v and w̃ = Tg w. By construction, ṽ − w̃ will satisfy:⎧⎨
⎩

A
(l)
II

(
ṽ(l)

I − w̃(l)
I

)
+ A

(l)
IB

(
ṽ(l)

B − w̃(l)
B

)
= 0(

ṽ(l)
B − w̃(l)

B

)
= Ihl

(v − w)
for 1 ≤ l ≤ p.

(15.41)
Thus, ṽ− w̃ will be discrete harmonic, and the maximum principle will yield:

‖ṽ(l)
I − w̃(l)

I ‖∞ ≤ ‖ṽ(l)
B − w̃(l)

B ‖∞.

By construction, ṽ(l)
B − w̃(l)

B = Ihl
(v − w) will only involve nodal values of

v − w within Ωj for j �= l. Combining this with ‖Ihl
‖∞ ≤ 1, yields:

‖ṽ(l)
B − w̃(l)

B ‖∞ = ‖Ihl
(v − w) ‖∞ ≤ max

{j �=l}
‖v(j) − w(j)‖∞,Ωj

,

where ‖v(j) − w(j)‖∞,Ωj
denotes the maximum norm of

(
v(j) − w(j)

)
for

nodes restricted to Ωj . Since v, w ∈ H, an application of Lemma 15.36 yields
max{j �=l} ‖v(j)−w(j)‖∞,Ωj

≤ δ ‖v−w‖∞. Combining these two results yields
the desired bound. ��
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Since Tg is a contraction, a unique fixed point will exist, and solve (15.38)
for arbitrary {g(l)

I } and {g(l)
B }. Maximum norm estimates of its solution can

be obtained with the aid of Lemma 15.35. We shall choose u(0) ∈ Hg and
estimate ‖Tg u(0) − u(0)‖∞.

Lemma 15.38. Suppose the solution to each local system:

A
(l)
II w

(l)
I + A

(l)
IBw(l)

B = β
(l)
I , (15.42)

satisfies the bound

‖w(l)
I ‖∞ ≤ c1 ‖β(l)

I ‖∞ + c2‖w(l)
B ‖∞. (15.43)

Then, given {g(l)
I } and {g(l)

B }, the following results will hold.

1. There exists u(0) ∈ Hg satisfying:

‖u(0)‖∞ ≤ c1

(
max
1≤l≤p

‖g(l)
I ‖∞

)
.

2. The Picard iterate Tg u(0) ∈ Hg will satisfy the bound:

‖Tg u(0)‖∞ ≤ (c1 + c2)
(

max
1≤l≤p

‖g(l)
I ‖∞

)
+ c2

(
max
1≤l≤p

‖g(l)
B ‖∞

)
.

3. The distance d
(
u(0), Tg u(0)

)
will satisfy the bound:

d
(
u(0), Tg u(0)

)
≤ (2 c1 + c2)

(
max
1≤l≤p

‖g(l)
I ‖∞

)
+ c2

(
max
1≤l≤p

‖g(l)
B ‖∞

)
.

4. The solution v to (15.38) will satisfy:

‖v‖∞ ≤
(

2 c1 + c2

1 − δ

)
‖g‖∞.

Proof. We construct u(0) = w ∈ Hg with zero boundary conditions on B(l):{
A

(l)
II w

(l)
I + A

(l)
IBw(l)

B = g(l)
I

w(l)
B = 0

By (15.43), the following bound will hold for w ∈ Hg:

‖w(l)
I ‖∞ ≤ c1 ‖g(l)

I ‖∞ for 1 ≤ l ≤ p.

Let u(0) = w, then part 1 follows from the preceding bound.
To prove part 2, let w̃ = Tg w. By definition w̃ will solve:
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A

(l)
II w̃

(l)
I + A

(l)
IBw̃(l)

B = g(l)
I

w̃(l)
B = Ihl

w + g(l)
B

for 1 ≤ l ≤ p.

Since ‖Ihl
‖∞ ≤ 1, we may estimate:

‖w̃(l)
B ‖∞ ≤ ‖w‖∞ + ‖g(l)

B ‖∞.

Employing a priori estimate (15.43) we obtain:

‖w̃(l)
I ‖∞ ≤ c1 ‖g(l)

I ‖∞ + c2

(
‖w‖∞ + ‖g(l)

B ‖∞
)

.

The desired result follows by maximizing over l.
Part 3 follows trivially from parts 1 and 2, and part 4 by an application

of Picard’s lemma. ��
We may now apply the preceding result to estimate the errors:

e(l)
I = π

(l)
I u − w(l)

I and e(l)
B = π

(l)
B u − w(l)

B ,

of Schwarz nonmatching grid discretizations.

Theorem 15.39. Schwarz discretization (15.34) will be solvable, and each
subdomain solution w(l)

I and w(l)
B . will satisfy the bound:

‖w(l)‖∞ ≤
(

2 c1 + c2

1 − δ

)
‖f I‖∞.

Given local truncation errors E(l)
I and boundary interpolation errors E(l)

I , the
error e = πu −w in the Schwarz solution will satisfy (15.37) and the bound:

‖e‖∞ ≤
(

2 c1 + c2

1 − δ

)
max {‖EI‖∞, ‖EB‖∞}.

Proof. Solvability of the Schwarz discretization follows by the preceding
lemma, provided δ ‖Ihl

‖∞ < 1. Estimates for w(l)
I and w(l)

B can be obtained
by using the preceding lemma, using g(l)

I = f (l)
I and g(l)

B = 0.
An application of the preceding lemma will yield estimates for the subdo-

main and boundary errors in terms of E(l)
I , E(l)

B . Provided the intergrid inter-
polation errors ‖E(l)

B ‖∞ are smaller in magnitude than the local discretization
errors, then the scheme will be accurate of optimal order:

‖e‖∞ ≤
(

2 c1 + c2

1 − δ

)
max {‖EI‖∞, ‖EB‖∞}. ��

Remark 15.40. Schwarz discretization (15.34) can be solved using Picard’s
contraction mapping u(k+1) = T u(k). The algorithm will be highly parallel,
with a maximum norm convergence factor of δ = max {ρh,1, . . . , ρh,p}.

Remark 15.41. When local grids are matching, the truncation error E(l)
I due

to intergrid interpolation will be zero, i.e., E(l)
I = 0 on each subdomain.
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15.5 Analysis of Schwarz Heterogeneous Approximations

In this section, we shall estimate the maximum norm of the error introduced by
a discretized elliptic-hyperbolic heterogeneous approximation of a discretized
advection dominated elliptic equation. We consider the equation:{

Lε u = −ε∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f, in Ω

u = 0, on ∂Ω.
(15.44)

Here 0 ≤ ε  1, a(x) ≥ 0 and c(x) ≥ c0 > 0. As ε → 0+, we shall denote
the formal limiting operator of Lε u as L0u = b(x) · ∇u + c(x)u. In order to
construct a Schwarz elliptic-hyperbolic approximation of (15.44), we assume
there are two overlapping subdomains Ω∗

1 and Ω∗
2 covering Ω, such that:

ε |∇ · (a(x)∇u)|  |b(x) · ∇u + c(x) u| , on Ω∗
1 .

If this holds, we may formally drop the viscous term −ε∇ · (a(x)∇u) in
Ω∗

1 , and impose inflow conditions on its boundary, within a Schwarz hybrid
formulation of (15.44). The latter will seek w1(x) on Ω∗

1 and w2(x) on Ω∗
2 :⎧⎪⎨

⎪⎩
Lε w1 = f, in Ω∗

1

w1 = w2, on B(1)

w1 = 0, on B[1]

and

⎧⎪⎨
⎪⎩

Lε w2 = f, in Ω∗
2

w2 = w1, on B(2)

w2 = 0, on B[2].

(15.45)

The elliptic-hyperbolic approximation of (15.45) replaces Lε w1 = f on Ω∗
1 by

L0v1 = f on Ω∗
1 , where v1(x) ≈ w1(x), and imposes inflow conditions on its

boundary. For normal n(x), the inflow boundary Γ1,in of L0v1 on ∂Ω∗
1 is:

Γ1,in ≡ {x ∈ ∂Ω∗
1 : n(x) · b(x) < 0} .

The elliptic-hyperbolic approximation seeks v1(x) ≈ w1(x) and v2(x) ≈ w2(x):⎧⎪⎨
⎪⎩

L0 v1 = f, in Ω∗
1

v1 = v2, on B(1) ∩ Γ1,in

v1 = 0, on B[1] ∩ Γ1,in.

and

⎧⎪⎨
⎪⎩

Lv2 = f, in Ω∗
2

v2 = v1, on B(2)

v2 = 0, on B[2].

(15.46)

To obtain a stable discretization of (15.46), we shall assume that assumptions
(A.1) to (A.5) from Chap. 15.4 holds. A discretization of (15.46) will be:{

C
(1)
II v(1)

I + C
(1)
IBin

v(1)
Bin

= f (1)
I

v(1)
Bin

= I1,in v(2)
I

and

{
K

(2)
II v(2)

I + K
(2)
IBv(2)

B = f (2)
I

v(2)
B = I2v

(1)
I

(15.47)
where C(1) is a first order upwind discretization of L0 on Ω∗

1 , whose stencil only
involves nodes in Ω∗

1 and B
(1)
in = B(1) ∩ Γ1,in, while K(2) = εA(2) + C(2) is a

discretization of Lε on Ω∗
2 . Both are strictly diagonally dominant M -matrices.
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The equations v(1)
Bin

= I1,in v(2)
I and v(2)

B = I2v
(1)
I in (15.47) discretize

v1 = v2 on B
(1)
in and v2 = v1 on B(2), respectively. When c(x) ≥ c0 > 0 and

assumptions (A.1) to (A.5) hold, the matrices C
(1)
II and K

(2)
II will be strictly

diagonally dominant M -matrices, with C
(1)
IBin

≤ 0, K
(2)
IB = εA

(2)
IB +C

(2)
IB ≤ 0. In

particular, each row of the interpolation matrices I1,in and I2 will have non-
negative entries which sum to one. Since −I1,in ≤ 0 and −I2 ≤ 0 entrywise,
the following block matrix form of (15.47) will be an M -matrix, and a discrete
maximum principle will hold:

⎡
⎢⎢⎢⎢⎣

C
(1)
II 0 C

(1)
IB 0

0 K
(2)
II 0 K

(2)
IB

0 −I1,in I 0
−I2 0 0 I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v(1)
I

v(2)
I

v(1)
Bin

v(2)
B

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f (1)
I

f (2)
I

0
0

⎤
⎥⎥⎥⎥⎦ . (15.48)

When the preceding assumptions hold, system (15.48) will be solvable, as Tg

described in Chap. 15.4 can be shown to be a contraction. Indeed, let H:

H =

{
(w(1)T

I ,w(2)T

I ,w(1)T

Bin
,w(2)T

B )T :
C

(1)
II w(1)

I + C
(1)
IBw(1)

Bin
= f (1)

I

K
(2)
II w(2)

I + K
(1)
IBw(2)

B = f (2)
I

}
.

Given w = (w(1)T

I ,w(2)T

I ,w(1)T

Bin
,w(2)T

B )T ∈ H, we define w̃ = Tw as solving:

⎡
⎢⎢⎢⎢⎣

C
(1)
II 0 C

(1)
IB 0

0 K
(2)
II 0 K

(2)
IB

0 0 I 0
0 0 0 I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

w̃(1)
I

w̃(2)
I

w̃(1)
Bin

w̃(2)
B

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f (1)
I

f (2)
I

I1,inw(2)
I

I2w
(1)
I

⎤
⎥⎥⎥⎥⎦ . (15.49)

By construction, if u,w ∈ H, then ũ = Tu, w̃ = Tw ∈ H and u − w, ũ − w̃
will each be discrete harmonic on the subdomains Ω∗

l for 1 ≤ l ≤ 2:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C
(1)
II (u(1)

I − w(1)
I ) + C

(1)
IB (u(1)

Bin
− w(1)

Bin
) = 0

K
(2)
II (u(2)

I − w(2)
I ) + K

(1)
IB (u(2)

B − w(2)
B ) = 0 and

C
(1)
II (ũ(1)

I − w̃(1)
I ) + C

(1)
IB (ũ(1)

Bin
− w̃(1)

Bin
) = 0

K
(2)
II (ũ(2)

I − w̃(2)
I ) + K

(1)
IB (ũ(2)

B − w̃(2)
B ) = 0

Thus, ‖(Tu)(l) − (Tw)(l)‖∞ ≤ max{‖u(1) − w(1)‖∞,Ω1
, ‖u(2) − w(2)‖∞,Ω2

},
since ‖I1,in‖∞ ≤ 1 and ‖I2‖∞ ≤ 1. Since c(x) ≥ c0 > 0 and assumptions (A.1)
to (A.5) hold, ρh,l ≤ e−γ dl independent of h and ε (for small h), using the
comparison function e−γdl(x) on Ω∗

l . Since u(l) −w(l) is discrete harmonic on
each Ω∗

l , we obtain ‖u(l)−w(l)‖∞,Ωl
≤ ρh,l‖u−w‖∞ for 1 ≤ l ≤ 2. Combining

the preceding yields the contraction factor of Tg as δ = max {ρh,1, ρh,2}.
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Truncation Errors. Since the heterogeneous system (15.46) omits the vis-
cosity term −ε (∇ · a(x)∇v1) in Ω∗

1 , its discretization (15.47) or (15.48) will
include a larger truncation error term due to the omitted viscosity term. Be-
low, we estimate the global error. Accordingly, let u(·) denote the true solution
of (15.44). We define the local discretization errors as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(E(1)
I )i ≡

(
C

(1)
II π

(1)
I u + C

(1)
IBin

π
(1)
Bin

u − f (1)
I

)
= (−ε∇ · (a∇u) + L0u − f)(xi) for xi ∈ Ω∗

1

(E(2)
I )i ≡

(
K

(2)
II π

(2)
I u + K

(2)
IBπ

(2)
B u − f (2)

I

)
= (Lεu − f)(xi) for xi ∈ Ω∗

2

E(1)
Bin

≡
(
π

(1)
Bin

u − I1,inπ(2)u
)

E(2)
B ≡

(
π

(2)
B u − I2π

(1)u
)

,

(15.50)

where π
(1)
I u, π

(1)
Bin

u, π
(2)
I u and π

(2)
B u denote nodal interpolation of u(.) onto

the grid points of Th1(Ω
∗
1) in Ω∗

1 and B
(1)
in and onto the grid points of Th2(Ω

∗
2)

in Ω∗
2 and B(2). Importantly, E(1)

I = O(hr1
1 ) + O(ε |∇ · (a∇u)|) is a sum of the

local truncation error O(hr1
1 ) for the discretization of (L0u−f) on Ω∗

1 and the
omitted viscosity term. When ε |∇ · (a∇u)| = O(hr1

1 ) in Ω∗
l , then omission of

the viscosity term on Ω∗
1 does not contribute significantly to the global error.

To ensure (maximum norm) stable local problems, we will require that:{
C

(1)
II w(1)

I + C
(1)
IBin

w(1)
Bin

= β
(1)
I

K
(2)
II w(2)

I + K
(2)
IBw(2)

B = β
(2)
I ,

(15.51)

satisfy the bounds:{
‖w(1)

I ‖∞ ≤ c1 ‖β(1)
I ‖∞ + c2‖w(1)

Bin
‖∞

‖w(2)
I ‖∞ ≤ c1 ‖β(2)

I ‖∞ + c2‖w(2)
B ‖∞.

(15.52)

Below, we state a result on the accuracy of (15.47).

Lemma 15.42. Suppose the following conditions hold.

1. Let c(x) ≥ c0 > 0 and let assumptions (A.1) to (A.5) hold.
2. Define the local discretization errors as (15.50).
3. Suppose that the a priori estimates (15.52) hold.

Then, the following error bounds will hold.

‖e‖∞ ≤
(

2 c1+c2
1−δ

)
max{‖E(1)

I ‖∞, ‖E(1)
Bin

‖∞, ‖E(2)
I ‖∞, ‖E(2)

B ‖∞}.

Proof. Analogous to the proof in the preceding section. The map Tg can also
be used as a parallel iterative solver. ��
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15.6 Applications to Parabolic Equations

The maximum norm theory described in the preceding sections can also be
extended to discretizations of parabolic equations, provided the discretizations
satisfy a discrete maximum principle and comparison theorem [MA35]. Below,
we outline the salient points for the following parabolic equation:⎧⎪⎨

⎪⎩
ut + Lu = f(x, t), in Ω × (0, t∗)

u = g(x, t), on ∂Ω × (0, t∗)
u(x, 0) = u0(x), in Ω, for t = 0,

(15.53)

where Lu(x) ≡ −∇ · (a(x)∇u) +b(x) · ∇u + c(x)u. We shall assume that the
coefficients satisfy a(x) ≥ 0 and c(x) ≥ c0 > 0.

Let AIIuI(t) + AIBuB(t) denotes a finite difference discretization of
Lu(., t), where uI(t) and uB(t) denote nodal vectors associated with the dis-
crete solution in the interior of Ω and on ∂Ω, respectively. We assume that
AII is a strictly diagonally dominant M -matrix and that AIB ≤ 0 entry-
wise. Let gB(t) denote the nodal vector associated with g(., t) on ∂Ω. Then,
a semi-discretization of (15.53) will be:⎧⎪⎨

⎪⎩
u′

I(t) + AIIuI(t) + AIBuB(t) = f I(t), for 0 < t < t∗
uB(t) = gB(t), for 0 < t < t∗
uI(0) = πIu0.

(15.54)

If τ = (t∗/m) denotes the time step and uk
I the discrete solution at time

tk = k τ , then a θ-scheme discretization of (15.53) will yield:⎧⎨
⎩

(I + τθAII)u
(k+1)
I − (I − τ(1 − θ)AII)u

(k)
I = f̃ (k+1)

I , for 0 ≤ k ≤ (m − 1)

u(0)
I = πIu0, for k = 0.

(15.55)
where f̃ (k+1)

I ≡ τ θ f (k+1)
I +τ (1−θ)f (k)

I −τ (θ AIBg(k+1)
B +(1−θ)AIBg(k)

B ) and
gk

B = gB(kτ) denotes the Dirichlet boundary data at time kτ . The resulting
system for determining u(1)

I , . . . ,u(m)
I can be expressed in block matrix form:

⎡
⎢⎢⎢⎢⎣

D

−E D

. . . . . .

−E D

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u(1)
I

u(2)
I

...

u(m)
I

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

f̃ (1)
I + Eu(0)

I

f̃ (2)
I

...

f̃ (m)
I

⎤
⎥⎥⎥⎥⎥⎦ , (15.56)

where D = (I + θτAII) and E = (I − (1− θ)τAII). We impose the time step
restriction 0 < τ ≤ mini

1
(1−θ) Aii

for maximum norm stability. It ensures
that D is a strictly diagonally dominant M -matrix and −E ≤ 0 entrywise.
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Thus, the coefficient matrix in system (15.56) will be an M -matrix, yielding
a maximum principle and comparison theorem [KA2, MA35].

When assumptions (A.1) to (A.5) hold and c(x) ≥ c0 > 0, and τ satisfies
the constraint 0 < τ ≤ mini

1
(1−θ) Aii

, the coefficient matrix in system (15.56)
will be an M -matrix [KA2, MA35]. Thus, the inverse of the coefficient matrix
in (15.56) will have non-negative entries. Since E ≥ 0 and −AIB ≥ 0 entry-
wise, we will immediately obtain that the components (u(k)

I )i of the solution
to (15.56) are monotone increasing with respect to the entries (fk

I )j of the
forcing data and the entries (gk

B)l of the boundary data. Importantly, if w∗
I is

a comparison function for the associated discretized elliptic equation, it will
be a stationary comparison function for the discretized parabolic equation:⎡

⎢⎢⎢⎢⎣
D

−E D

. . . . . .

−E D

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

w∗
I

w∗
I

...
w∗

I

⎤
⎥⎥⎥⎥⎦ ≥

⎡
⎢⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎥⎦ , (15.57)

As a result, the contraction factors will be the same as in the elliptic case,
and this result also applies on any cylindrical space-time subregion.

Given an overlapping decomposition Ω∗
1 , . . . , Ω∗

p of Ω, we obtain an over-
lapping decomposition of Ω×(0, t∗) into space-time cylinders {Ω∗

l ×(0, t∗)}p
l=1.

Most of the maximum norm results form preceding sections can be appropri-
ately generalized to the time dependent case, including the well posedness
of a Schwarz hybrid discretization on space-time domains and heterogeneous
approximations. The salient point is that any steady state comparison grid
function can be used as a comparison grid function in the parabolic case.
This enables contraction factor estimates analogous to the elliptic case, and
a contractive Picard mapping T . We omit the details [MA35].
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Eigenvalue Problems

In this chapter, we describe domain decomposition and block matrix methods
for large sparse symmetric eigenproblems [WI8, PA7, CH21, GO4, CI4, SA].
We focus on algorithms which iteratively approximate the minimal eigenvalue
and corresponding eigenvector of a matrix, though most such methods can
also be extended to simultaneously approximate several eigenvalues, and their
associated eigenvectors, see [KR, KU2, BO10, BO11, BO12, BR10, MA9, LU5]
and [LU6, KN2, BO13, KN3, CH16].

Our discussion will be organized as follows. In Chap. 16.1, we describe some
background on the symmetric eigenvalue problem. Following this, Chap. 16.2
describes preconditioned gradient methods for eigenvalue problems. Chap. 16.3
describes block matrix methods for eigenvalue problems, involving a Schur
complement matrix. Chap. 16.4 describes Schwarz subspace algorithms for
eigenvalue problems. We conclude our discussion with an outline of the modal
synthesis Rayleigh-Ritz approximation of eigenproblems in Chap. 16.5. We
focus primarily of the matrix formulation of the underlying algorithms.
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16.1 Background

We consider an eigenvalue problem associated with an elliptic operator L. It
seeks λ ∈ IR and sufficiently smooth u(.) �= 0 such that:{

Lu(x) ≡ −∇ · (a(x)∇u) + c(x) u = λu(x) in Ω

u = 0, on ∂Ω.

A discretization of the eigenproblem, by a finite element or finite difference
method, will seek λ ∈ IR and u ∈ IRn with u �= 0, satisfying:

Au = λM u, (16.1)

where AT = A is a real symmetric matrix of size n, obtained by the discretiza-
tion of the self adjoint elliptic operator L, while M = MT > 0 is a matrix of
size n, corresponding to the mass matrix in finite element methods [ST14], or
to the identity matrix M = I in finite difference methods.

The Rayleigh quotient function associated with (16.1) is defined as:

R (v) ≡ vT Av
vT Mv

, for v �= 0. (16.2)

Computing ∇R(u) and solving ∇R(u) = 0 yields:

∇R(u) =
(

2
uT Mu

)
(Au −R(u) M u) = 0 =⇒ Au = R(u) M u.

Thus, if u is a critical point of R(·), then u will be an eigenvector of the gener-
alized eigenvalue problem (16.1) corresponding to eigenvalue λ = R(u). Since
A and M are Hermitian, applying inner products yields that the generalized
eigenvalues of (16.1) are real, see [ST13], and can be ordered as:

λ1 ≤ λ2 ≤ · · · ≤ λn.

We let uk ∈ IRn denote the eigenvector corresponding to eigenvalue λk:

Auk = λk M uk.

By the preceding, the minimum value of R(·) will be attained when:

λ1

(
M−1A

)
= R(u1) = min

{v �=0}
R(v).

Additionally, the following property will hold for the k’th eigenvalue:

λk = R(uk) = min
{v �=0 :vT Mui = 0, 1≤i≤k−1}

R(v),

see for instance [GO4], where also the min-max characterization of the eigen-
values is described for the case M = I. In the following, we indicate several
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traditional methods for determining the minimal eigenvalue of a generalized
eigenvalue problem [WI8, PA7, CH21, GO4, CI4, SA].

Shifted Inverse Power Method. The shifted inverse power method is mo-
tivated by the following observation. Suppose M = I and v is a randomly
chosen vector which has a nontrivial component in the direction of the un-
known eigenvector u1. Then, if µ ≈ λ1 < λ2, the vector (A − µ I)−k v will
approach a scalar multiple of u1 for large k, provided λ1 < µ < (λ1 + λ2)/2.
Accordingly, the shifted inverse power method starts with a guess v(0) ∈ IRn,
defines µ(0) = R(v(0)) and computes updates as follows (when M = I):

{
v(k+1) ←

(
A − µ(k)I

)−1
v(k)

µ(k+1) ← R(v(k+1)).

For appropriately chosen starting iterates, the iterates v(k) and µ(k) will con-
verge to the desired minimum eigenvector and corresponding eigenvalue. Ef-
ficient implementations can be found in [GO4, SA, CI4].

Lanczos Method. The Lanczos method is an iterative algorithm based on
the computation of Ritz vectors and Ritz values associated with a Krylov
space Kl ⊂ IRn. Given a subspace Vl ⊂ IRn, recall that a vector vl ∈ Vl

is referred to as a Ritz vector provided it is a critical point of the Rayleigh
quotient R(·) restricted to Vl. A Ritz vector vl will approximate an eigen-
vector, while its associated Ritz value R(vl) will approximate an eigenvalue.
Ritz vectors and values can be computed by solving a generalized eigenvalue
problem of a smaller size. For instance, a Ritz value µl approximating the
minimal eigenvalue, and its associated Ritz vector vl will satisfy vl ∈ Vl

µl = R(vl) = min
{v∈Vl\0}

R(v).

If nl = dim (Vl) and Kl is a matrix of size n × nl whose columns span Vl

with Range(Kl) = Vl, then a Ritz vector vl ∈ Vl approximating the minimal
eigenvector can be computed by determining d(l) ∈ IRnl and µl ∈ IR satisfying:(

KT
l AKl

)
d(l) = µl

(
KT

l MKl

)
d(l).

This yields a eigenproblem of size nl. Here µl denotes the minimal eigenvalue
of (KT

l MKl)−1 (KT
l AKl). Once d(l) has been determined, the Ritz vector can

be computed as vl = Kld(l) ∈ Vl.
Given a starting guess v ∈ IRn, the Lanczos iterates formally correspond

to Ritz vectors and values based on a Krylov space Kl of dimension l:

Kl(v) = span
{
v, (M−1A)v, . . . , (M−1A)l−1v

}
.

Efficient implementations of the Lanczos method can be found in [GO4, SA].
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16.2 Gradient and Preconditioned Gradient Methods

Gradient methods determine approximate eigenvalues by seeking the minima
of the Rayleigh quotient [SA6, KN6, BR10, KN6]. In large sparse symmetric
eigenvalue computations arising from the discretization of elliptic eigenvalue
problems, gradient methods have the advantage of low computational cost per
iteration. With a careful choice of preconditioner, such methods can converge
at rates independent of the mesh size h, and yield parallelizable algorithms
[KN6, BR10, KN2]. In this section, we shall describe variants of the pre-
conditioned gradient method for determining the lowest eigenvalue λ1 and
associated eigenvector u1 of (16.1).

Given an iterate w(k) ≈ u1, the gradient update w(k+1) is computed as:{
w(k+1) = w(k) − τ ∇R(w(k))

= w(k) − τ̃
(
Aw(k) −R(w(k)) M w(k)

)
,

where τ, τ̃ > 0 are step sizes. A preconditioner G of size n can be employed:{
v(k+1) = v(k) − τ G−1 ∇R(v(k))

= v(k) − τ̃ G−1
(
Av(k) −R(v(k)) M v(k)

)
,

to speed up the gradient iteration. The idea of “preconditioning” an eigenvalue
problem may be heuristically motivated by observing that a suitably chosen
preconditioner G may increase the component of the update in the direction
of the desired eigenvector u1. Ideally, G−1 must amplify the components in
the direction of u1 and damp other components. Optimal preconditioners may
be indefinite of the form A−R(w(k))M and nearly singular [CA24, KN2] (as
in Davidson’s method [DA3]). We focus only on preconditioners G = GT > 0,
since theoretical results are scant for indefinite preconditioners. We assume:

(1 − γ)vT Gv ≤ vT Av ≤ (1 + γ)vT Gv, ∀v ∈ IRn,

for some 0 < γ < 1. In this case, the rate of convergence will depend only on
γ, see [KN, KN6, BR10]. Note that if Ĝ is a preconditioner satisfying:

c1

(
vT Ĝv

)
≤
(
vT Av

)
≤ c2

(
vT Ĝv

)
, ∀v ∈ IRn,

we may define G =
(

2
c1+c2

)
Ĝ by scaling, yielding γ < 1.

Remark 16.1. Given v(k) and d(k) ≡ G−1
(
Av(k) −R(v(k)) M v(k)

)
as the

descent direction, an optimal update v(k+1) with choice of τ may be found
by minimizing the Rayleigh quotient R(·) in the two dimensional subspace
span{v(k),d(k)} generated by v(k) and d(k), see [KN2]:

R(v(k+1)) = min
v∈span{v(k),d(k)}\0

R(v).

This will require the solution of a generalized eigenvalue problem of size 2 (for
which analytical expressions may be derived, if desired).



16.3 Schur Complement Methods 683

16.3 Schur Complement Methods

We next consider Schur complement based methods for eigenvalue problems.
Consider the following block partition of the eigenvalue problem (16.1):[

AII AIB

AT
IB ABB

][
uI

uB

]
= λ

[
MII MIB

MT
IB MBB

][
uI

uB

]
.

The above block partition may arise from a non-overlapping decomposition
Ω1, . . . , Ωp with interface B = ∪p

i=1(∂Ωi∩Ω), where uI = (u(1)T

I , . . . ,u(p)T

p )T

represents the unknowns in the interior of the subregions, and uB the un-
knowns on the interface. The block matrix AII = blockdiag(A(1)

II , . . . , A
(p)
II )

will then be block diagonal, where A
(i)
II is the stiffness matrix on Ωi. Matrix

MII can be block partitioned similarly MII = blockdiag(M (1)
II , . . . , M

(p)
II ). The

eigenvalue problem can be expressed as an equivalent inhomogeneous system
which seeks a non-zero solution (uT

I ,uT
B)T to:[

AII − λMII AIB − λMIB

AT
IB − λMT

IB ABB − λMBB

][
uI

uB

]
=

[
0
0

]
.

Formally eliminating uI , we seek uB �= 0 satisfying:{
S(λ)uB = 0, where

S(λ) = (ABB − λMBB) −
(
AT

IB − λMT
IB

)
(AII − λMII)

−1(AIB − λMIB) .

For the above reduction to be valid, it is sufficient that det (AII − λMII) �= 0,
i.e., λ is not an eigenvalue of (AII−λMII). If AII = blockdiag

(
A

(1)
II , . . . , A

(p)
II

)
,

and MII = blockdiag
(
M

(1)
II , . . . , M

(p)
II

)
, then the preceding requirement will

be equivalent to the condition that λ not be an eigenvalue of each of the
subdomain eigenvalue problems (A(l)

II − λM
(i)
II ). A nontrivial solution uB of

S(λ)uB = 0, will exist only when λ satisfies:

f(λ) ≡ det(S(λ)) = 0. (16.3)

In the following, we describe a secant method to determine λ (and hence uB).

Algorithm 16.3.1 (Variant of Kron’s Method)
Choose starting guess µ(0)

1. For k = 0, 1, . . . until convergence do:
2. Compute: f(µ(k)) = λmin(S(µ(k)))
3. Solve: f(µ) = 0 using the secant method:

µ(k+1) = µ(k) − f(µ(k))
(

µ(k) − µ(k−1)

f(µ(k)) − f(µ(k−1))

)

4. Endfor
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Remark 16.2. Since S(µ) is real symmetric, λmin(S(µ(k))) can be approxi-
mated using a Lanczos iteration, without assembly of S(µ(k)). Once λ ∈ IR
and uB �= 0 have been determined using Lanczos, we may determine uI as:

uI = − (AII − λMII)
−1 (AIB − λMIB) uB ,

provided λ is not an eigenvalue of (AII − λMII), see [KR, SI4].

Remark 16.3. Each matrix vector product with S(µ) requires the solution of a
linear system with an indefinite coefficient matrix of the form (AII − λMII).
If each A

(l)
II is of sufficiently small size, then a direct method may be employed.

Below, we describe a block matrix gradient type algorithm [KN6, KN2]
based on the Schur complement. We employ the notation S(λ) as before. Let
GB = GT

B > 0 be a multisubdomain Schur complement preconditioner for the
standard Schur complement matrix S(0) = S(0)T > 0:

GB � S(0) = (ABB − AT
IBA−1

II AIB).

Then, the algorithm below requires a careful choice of parameters µk and αk.

Algorithm 16.3.2 (Preconditioned Gradient Method in a Subspace)
Input: GB, αk, µk, u(0)

B

1. For k = 0, 1, . . . until convergence do:

u(k+1)
B =

(
αk I − G−1

B S(µk)
)
u(k)

B

2. Endfor

For choices of the parameters αk and µk each iteration, see [KN6, KN2].

16.4 Schwarz Subspace Methods

In this section, we describe the sequential and parallel versions of Schwarz
subspace methods for eigenvalue problems [MA9, LU5, LU6, CH16]. These
methods seek to minimize the Rayleigh quotient associated with an eigen-
value problem, using a family of subspaces. Each minimization of a Rayleigh
quotient within a subspace yields a lower dimensional eigenvalue problem,
and as a result, Schwarz Subspace methods for eigenvalue problems require
the solution of lower dimensional eigenvalue subproblems. Since the latter
can still be computationally expensive when the number of unknowns in each
subregion or subspace is large, multilevel or hierarchical approaches may be
employed recursively, to introduce subproblems of a smaller size [CH16].
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Consider the generalized eigenvalue problem (16.1). We will assume that
its generalized eigenvalues are ordered as follows:

λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn.

Let V1, . . . , Vp denote subspaces of V = IRn, satisfying:{
Vl = Range

(
RT

l

)
, for 1 ≤ l ≤ p

V = V1 + · · · + Vp

(16.4)

If nl denotes the dimension of Vl, then each matrix RT
l must be of size n×nl,

with columns that span Vl. The requirement that the subspaces Vl sum to V
imposes the constraint

∑p
l=1 nl ≥ n.

In Schwarz subspace methods, given an iterate w ∈ IRn and a subspace
Range

(
RT

l

)
, the algorithm computes updates of the form α∗ w + RT

l d(l)
∗ for

α∗ ∈ IR and d(l)
∗ ∈ IRnl , where α∗ w + RT

l d(l)
∗ is chosen from the subspace

generated by span{w, RT
l } to minimize the Rayleigh quotient R(·):

R
(
α∗ w + RT

l d(l)
∗
)

= min
{α∈IR, d∈IRnl}\0

R
(
αw + RT

l d
)
.

Each such minimization requires the solution of a generalized eigenproblem
involving (nl+1) unknowns. Given w, define Kl =

[
RT

l w
]
of size n×(nl+1),

whose columns consist of the nl columns of RT
l and w. Then, solve:

(
KT

l AKl

) [d(l)

α

]
= µmin

(
KT

l MKl

) [d(l)

α

]
.

Provided (nl + 1) is sufficiently small, this may be solved by the QR method
[GO4]. Otherwise, the Lanczos or gradient methods may be employed.

Algorithm 16.4.1 (Sequential Schwarz Minimization Algorithm)
Let w(0) ∈ IRn be a starting iterate satisfying λ1 < R(w(0)) < λ2

1. For k = 0, 1, . . . , until convergence do:
2. For l = 1, . . . , p determine w(k+ l

p ):

µ(k+ l
p ) = R(wk+ l

p ) = min
{α∈IR, d(l)∈IRnl}\0

R
(
αw(k+ l−1

p ) + RT
l d(l)

)

3. Endfor
4. Endfor

We next describe a parallel version of the preceding algorithm.
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Algorithm 16.4.2 (Parallel Schwarz Subspace Algorithm)
Let w(0) ∈ IRn be a starting iterate satisfying λ1 < R(u(0)) < λ2

1. For k = 0, 1, . . . do:
2. For l = 1, . . . , p in parallel minimize:

R
(
w(k,l)

)
≡ min

{α∈IR, dl)∈IRnl}\0
R
(
αw(k) + RT

l d(l)
)

3. Endfor
4. Minimize the Rayleigh quotient:

R
(
w(k+1)

)
= min

{(α1,...,αp) �=0}
R
(
α1 w(k,1) + · · · + αp w(k,p)

)

5. Endfor

Both of the preceding algorithms converge, provided λ1 < R(w(0)) < λ2.

Lemma 16.4. Let w(0) satisfy R(w(0)) < λ2 and V = V1 + · · · + Vp. Then,
µ(k+ l

N ) → λ1 as k → ∞.

Proof. See [LU5, LU6]. ��

16.5 Modal Synthesis Method

We conclude our discussion of domain decomposition and block methods for
eigenvalue problems by describing a non-iterative method for constructing
global approximations of the minimal eigenvectors and associated eigenvalues
of a generalized eigenvalue problem. The method, which is referred to as modal
synthesis [BO10, BO11, BO12, BO13], has its origins in aeronautical and
structural engineering applications. It is based on the decomposition of the
domain of an elastic structure, into smaller structures, computing a few of
the lowest eigenmodes (eigenvectors) associated with the substructures, and
employing additional modes which couple the different structures. A Rayleigh-
Ritz approximation is then employed to compute the lowest eigenmodes of the
global structure based on the subspace of local and interface modes.

More specifically, let Au = λM u denote the matrix discretization of an
elliptic eigenvalue problem on a domain Ω. Given a non-overlapping decom-
position Ω1, . . . , Ωp of Ω, let u(1)

I , . . . ,u(p)
I denote nodal vectors associated

with each substructure. Let uB denote the nodal vector associated with the
interface B = ∪p

l=1(∂Ωl ∩ Ω). The modal synthesis method constructs a low
dimensional subspace M ⊂ IRn with good approximation properties, and com-
putes the Rayleigh-Ritz approximation of λ1 and u1 based on M.

Local Modes. On each substructure Ωl, let Ml = span(KT
l ) denote a sub-

space of low dimension, “based” on minimal eigenvectors of A
(l)
II on Ωl. More
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precisely, if nl minimal eigenvectors of A
(l)
II have been determined, then KT

l

will be a matrix of size n×nl, whose columns are extensions by zero to Ω, of
the nl minimal eigenvectors of A

(l)
II . These are the local modes.

Coupling Modes. On the interface B which separates the subdomains, define
a space MB of coupling modes as the subspace of discrete harmonic nodal
vectors for arbitrary nodal values on B. Thus, if n0 denotes the number of
nodes on B, let I0 be an identity matrix of size n0, and define:

KT
0 =

[
−A−1

II AIBI0

I0

]
.

Thus each column of KT
0 will correspond to a discrete harmonic extension of

an elementary nodal vector on B into all the subdomains.
The space M generated by the local and coupling modes is defined as:

M = Range
(
KT
)
, where KT =

[
KT

1 · · · KT
p KT

0

]
, (16.5)

where KT denotes a matrix of size n×(n1+· · ·+np+n0). The modal synthesis
method determines approximate eigenvectors and eigenvalues of (16.1) as the
Ritz vectors and Ritz values based on the subspace M:(

KAKT
)

x = µ
(
KMKT

)
x, where x ∈ IRn1+···+np+n0 .

Given a minimal Ritz vector x and Ritz value µ, the eigenvector approximation
will be KT x ≈ u1 corresponding to the approximate eigenvalue µ ≈ λ1.



17

Optimization Problems

In this chapter, we describe extensions of the Schwarz subspace methods from
Chap. 2 to iteratively solve minimization problems [TA4, TA5]. Such methods
correspond to block generalizations of the Gauss-Seidel and Jacobi relaxation
methods for minimization problems. In general terms, domain decomposition
and multilevel methodology can be applied to minimization problems in two
alternative ways. In the first approach, domain decomposition methods can
be employed within an inner iteration, to solve the quadratic minimization
problem occurring during each iteration of a traditional Newton or trust region
method. Such an approach requires a global quadratic approximation of the
underlying functional whose minimum is sought. In the second approach, the
divide and conquer Schwarz subspace methodology seeks the global minimum
using lower dimensional minimization problems on subspaces. This approach
requires only local quadratic approximations.

Our discussion will focus on Schwarz subspace algorithms which employ
lower dimensional minimization problems. In Chap. 17.1, we describe some
background on traditional iterative methods for minimization (with selected
theoretical results). In Chap. 17.2, we describe sequential and parallel variants
of Schwarz subspace minimization algorithms. For a discussion of applications
to nonlinear elliptic equations, see [CA6, TA4, LU7, TA5, LU9].
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17.1 Traditional Algorithms

In this section, we describe traditional unconstrained minimization algo-
rithms. We consider the problem of determining the minimum of a sufficiently
smooth function J : V → IR, where V = IRn is equipped with the Euclidean
inner product (., .) and Euclidean norm ‖ · ‖. We shall seek u∗ ∈ V satisfying:

J(u∗) = min
v∈V

J(v). (17.1)

Traditional unconstrained minimization algorithms include the gradient (or
steepest descent) method, Gauss-Seidel and Jacobi relaxation methods, and
Newton and trust region methods. Readers are referred to [OR, GI2, DE7, CI4]
for detailed studies of such methods. In most applications, we shall assume
that J(·) satisfies the properties described below.

Definition 17.1. A function J : V → IR is said to be convex, if for points
u1, . . . ,uk ∈ V and scalars 0 < αi < 1 satisfying

∑k
i=1 αi = 1, it holds that:

J

(
k∑

i=1

αi ui

)
≤

k∑
i=1

αi J (ui) .

If the inequality is strict when ui �= uj, J(·) is said to be strictly convex.

Definition 17.2. A functional J : V → IR is said to be elliptic if there exists
α > 0 such that:

α ‖u − v‖2
V ≤ (∇J(u) −∇J(v),u − v) , ∀u, v ∈ V.

Definition 17.3. A functional J : V → IR is said to be Lipschitz if there
exists M > 0 such that:

‖∇J(u) −∇J(v)‖ ≤ M‖u − v‖V , ∀u, v ∈ V.

Remark 17.4. A convex elliptic functional can be shown to be strictly convex,
see [CI4]. Such functionals will have a unique minimum. Below, we describe
various traditional algorithms for the iterative solution of (17.1).

Gradient Method. The gradient (steepest descent) method seeks the mini-
mum in short steps involving line searches in the direction of steepest descent.
Given a current iterate u(k), the gradient method either minimizes J(·) along
the line u(k) − ρ∇J(u(k)) parameterized by ρ ∈ IR, or moves a short step
in the direction −∇J(u(k)) of steepest descent at u(k). When the step size
ρk is appropriately chosen, the gradient method can be robust, ensuring that
{u(k)} converges to a critical point of J(·) monotonically:

J(u(0)) ≥ J(u(1)) ≥ · · · ≥ J(u(k)) ≥ J(u(k+1)).

The rate of convergence of the gradient method can be slow, and it requires
computing ∇J(.), however, it does not require solving a linear system.
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Algorithm 17.1.1 (Gradient Method)
Let u(0) denote a starting guess

1. For k = 0, 1, . . . until convergence do:
2. Choose ρk > 0 and update:

u(k+1) = u(k) − ρk ∇ J
(
u(k)

)
3. Endfor

The following result describes the convergence of the gradient method for
a Lipschitz elliptic functional J (·) that is continuously differentiable.

Theorem 17.5. Let J : V → IR denote a sufficiently smooth convex func-
tional which is elliptic and Lipschitz, with parameters α and M respectively.
If the parameters ρk satisfy:

0 < δ1 ≤ ρk ≤ δ2 <
2α

M2
,

then the gradient iterates {u(k)} will converge geometrically to u∗, with:

‖u(k+1) − u∗‖V ≤ β ‖u(k) − u∗‖V ,

where β < 1, is a parameter that depends on δ1, δ2, α and M .

Proof. We follow [CI4]. By definition, the iterates {u(k)} will satisfy:

u(k+1) = u(k) − ρk ∇J(u(k)).

Since ∇J(u∗) = 0 at the minimum u∗, the following will hold trivially:

u∗ = u∗ − ρk ∇J(u∗).

Subtracting the two, yields the following equation for the error u∗ − u(k+1):(
u∗ − u(k+1)

)
=
(
u∗ − u(k)

)
− ρk

(
∇J(u∗) −∇J(u(k))

)
.

Equating the norms of both sides yields:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖u∗ − u(k+1)‖2

= ‖u∗ − u(k)‖2
V − 2ρk

(
u∗ − u(k),∇J(u∗) −∇J(u(k))

)
+ρ2

k ‖∇J(u∗) −∇J(u(k))‖2

≤ ‖u∗ − u(k)‖2 − 2ρk α ‖u∗ − u(k)‖2 + ρ2
k‖∇J(u∗) −∇J(u(k))‖2

≤
(
1 − 2 α ρk + ρ2

k M2
)
‖u∗ − u(k)‖2.

The choice ρk = α/M2 will minimize the estimate for the contraction factor.
It can be easily verified that

(
1 − 2 α ρk + ρ2

k M2
)
≥ 1 for ρk ≤ 0 and ρk ≥ 1.

For 0 < δ1 ≤ ρk ≤ δ2 < 2 α/M2 the factor β will be less than 1, and geometric
convergence would result. ��
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Remark 17.6. The choice of parameter ρk used in the estimate above is not
optimal when J(u) is quadratic with J(u) ≡= 1

2 uT Au−uT b, for A symmetric
positive definite. In this case, the optimal choice of parameter ρk will be
ρopt = 2/ (λmin(A) + λmax(A)), compared to ρk = (λmin(A)/λmax(A)2).

In applications to the discretizations of elliptic equations, the parameters
α or M can depend on the mesh size h and the coefficients. In this case, the
contraction factor β can deteriorate h → 0+ unless appropriate precondition-
ing is used. Below, we describe a “preconditioned” gradient method. We shall
employ a matrix HT = H > 0 of size n as the preconditioner.

Algorithm 17.1.2 (Preconditioned Gradient Method)
Let u(0) denote a starting guess

1. For k = 0, 1, . . . until convergence do:
2. Update:

u(k+1) = u(k) − ρk H−1 ∇J
(
u(k)

)
3. Endfor

Under appropriate assumptions, the preconditioned gradient method will
converge geometrically. Below, we employ a norm:

(u,v)H ≡ uT Hv, with ‖u‖H ≡
(
uT Hu

)1/2
,

induced by the positive definite symmetric matrix HT = H > 0.

Proposition 17.7. Let H be a symmetric positive definite matrix, and let
J (·) be a continuously differentiable elliptic functional satisfying:

1. Ellipticity in the H-induced norm:(
H−1(∇J(u) −∇J(v)),u − v

)
H

≥ α (u − v,u − v)H .

2. Lipschitz in the H-induced norm:

‖H−1 (∇J(u) −∇J(v)) ‖H ≤ M‖u − v‖H .

Then, if the parameters ρk are chosen so that 0 < δ1 ≤ ρk ≤ δ2 ≤
(
2α/M2

)
,

the gradient iterates {u(k)} will converge geometrically to u∗:

‖u(k+1) − u∗‖H ≤ β‖uk − u∗‖H ,

where β < 1 depends only on δ1, δ2, α and M .

Proof. The proof is the analogous to the proof in the unpreconditioned case
(except for the H-induced inner product). ��
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Gauss-Seidel and Jacobi Relaxation. Let {e1, . . . , en} denote a basis for
V = IRn. Each sweep of a point relaxation method will involve parallel or
sequential minimizations of J (·) in the direction of the basis vectors ej . The
Jacobi algorithm [CI4, TA4, TA5] employs parameters α1, . . . , αn satisfying∑n

l=1 αl = 1 with 0 < αl < 1 for 1 ≤ l ≤ n.

Algorithm 17.1.3 (Jacobi Relaxation)
Let u(0) ∈ IRn be a starting guess

1. For k = 0, 1, . . . until convergence do:
2. For i = 1, . . . , n in parallel find dk

i ∈ IR:

J(u(k) + dk
i ei) = min

d∈IR
J
(
u(k) + d ei

)
.

3. End
4. Update u(k+1) =

∑n
i=1 αi

(
u(k) + dk

i ei

)
= u(k) +

∑n
i=1 αi dk

i ei

5. Endfor

Remark 17.8. A simple choice of parameters would be αl ≡ (1/n). Since by
construction J(u(k) + dk

i ei) ≤ J(u(k)), for 1 ≤ i ≤ n, the following will hold,
provided J (·) is a convex function:{

J
(
u(k+1)

)
= J

(∑n
i=1 αi(u(k) + dk

i ei)
)
≤
∑n

i=1 αi J
(
ui + dk

i ei

)
≤
∑n

i=1 αi J
(
u(k)

)
= J

(
u(k)

)
.

Thus, Jacobi iterates decrease monotonically. Below, we describe the Gauss-
Seidel relaxation, which sequentially minimizes along each direction ej .

Algorithm 17.1.4 (Gauss-Seidel Relaxation)
Let u(0) ∈ IRn be a starting guess

1. For k = 0, 1, . . . until convergence do:
2. For i = 1, . . . , n in sequence determine dk

i ∈ IR:

J(u(k+ i−1
n ) + dk

i ei) = min
di∈IR

J
(
u(k+ i−1

n ) + diei

)
.

Define u(k+ i
n ) ≡ u(k+ i−1

n ) + dk
i ei

3. Endfor
4. Endfor

By construction, J(u(k+ i−1
n )) ≥ J(u(k+ i

n )) for each k, i, yielding monotone
iterates. Under suitable assumptions on J(·), both relaxation algorithms will
be globally convergent. The Schwarz algorithms that we shall describe in
the next section correspond to generalizations of these relaxation algorithms,
involving blocks of unknowns.

Newton’s Method. Gradient and relaxation methods have the advantage
of being globally convergent for Lipschitz and elliptic convex functions J(.).
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However, these algorithms have at best a geometric rate of convergence, with
‖u(k+1) − u∗‖ ≤ β ‖u(k) − u∗‖, for some β < 1. By comparison, Newton’s
method, which is based on minimizing a quadratic Taylor approximation of
J(·) at u(k), can converge “quadratically” close to the true minimum, i.e.:

‖u(k+1) − u∗‖ ≤ C ‖u(k) − u∗‖2,

for some constant C > 0. This yields more rapid convergence closer to the
true minimum, however, Newton’s method can diverge if u(k) is not sufficiently
close to u∗. It also requires computing the Hessian matrix and solving a linear
system, which can be significant expenses.

In our discussion, we let ∇2J(·) denote the (symmetric) Hessian matrix
size n consisting of 2nd order partial derivatives of J(·):

(
∇2J

)
ij

(u) =
(

∂2J

∂ui∂uj

)∣∣∣∣
u

, for 1 ≤ i, j ≤ n.

At each iterate u(k), we denote by Hk = ∇2J(u(k)) as the current Hessian. A
quadratic Taylor approximation Qk(u) ≈ J(u) “close” to u(k) will be:

Qk(u) ≡ J(u(k)) + ∇J(u(k)) · (u − u(k)) +
1
2
(u − u(k))T Hk(u − u(k)).

Newton updates are computed as the global minimum of Qk(.).

Algorithm 17.1.5 (Newton’s Method)
Let u(0) ∈ IRn denote a starting guess

1. For k = 0, 1, . . . until convergence do:
2. Compute ∇J(u(k))
3. Compute Hk ≡ ∇2J(u(k))
4. Update: u(k+1) = u(k) − H−1

k ∇J(u(k)).
5. Endfor

Under suitable assumptions, Newton’s method converges quadratically.

Proposition 17.9. Let J : V → IR satisfy the following.

1. Let K denote a closed region containing a minimum u∗ of J(·).
2. Let J(·) ∈ C3(K) and be elliptic:

αwT w ≤ wT
(
∇2J(u)

)
w, ∀u,w ∈ V.

3. Let the Taylor expansion of ∇J(·) satisfy:{
∇J(u + w) = ∇J(u) + ∇2J(u)w + R(u,w), with
‖R(u,w)‖ ≤ C ‖w‖2, for u ∈ K,

for u, u + w ∈ K. Here R(u,w) denotes the Taylor series third order
remainder terms evaluated at a point θ u + (1 − θ)w for some θ ∈ (0, 1).
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Then, if u(0) ∈ K with ‖u(0) − u∗‖ ≤ ε sufficiently small, all subsequent
Newton iterates u(k) will remain in K with ‖u(k) − u∗‖ ≤ ε and satisfying:

‖u(k+1) − u∗‖ ≤ C ‖u(k) − u∗‖2.

Proof. We follow [CI4, DE7]. The Newton iterates satisfy:

u(k+1) = u(k) − H−1
k ∇J(u(k)),

At the minimum, since ∇J(u∗) = 0 it will trivially hold that:

u∗ = u∗ − H−1
k ∇J(u∗),

Subtracting these two equations yields:

(u∗ − uk+1) = (u∗ − uk) − H−1
k

(
∇J(u∗) −∇J(u(k))

)
.

Expanding ∇J(u∗) = ∇J(u(k)) + Hk

(
u∗ − u(k)

)
+ R(u(k),u∗ − u(k)) yields:{(

u∗ − u(k+1)
)

=
(
u∗ − u(k)

)
− H−1

k

(
Hku∗ − Hku(k) + R(u(k),u∗ − uk)

)
= −H−1

k R(u(k),u∗ − u(k)).

Using bounds for the remainder term, yields quadratic convergence:

‖u∗ − u(k+1)‖ ≤ C‖H−1
k ‖‖u∗ − u(k)‖2.

Note that if 0 < ε < 1 is chosen so that C‖H−1
k ‖‖u∗ − u(k)‖ ≤ ε  1, then

the above iteration will be a contraction, and the iterates will stay in a region
in which the preceding bounds hold. ��

Trust Region Method. The trust region method attempts to combine the
stability of the gradient method with the rapid convergence of Newton’s
method [DE7]. Given a current iterate u(k), we assume that the following
quadratic Taylor approximation Qk(u) of J(u) is a “good” approximation of
J(u) in the disk Dk:{

Qk(u) = J(u(k)) + ∇J(uk) · (u − u(k)) + 1
2 (u − uk)T Hk(u − u(k))

Dk =
{
u : ‖u − u(k)‖ ≤ δ

}
(17.2)

where Hk = ∇2J(u(k)), and the user chooses the radius δ of the disk. Each
such region Dk is called a trust region. Given u(k) and the disk Dk, the trust
region method defines the new iterate u(k+1) as:

Qk(u(k+1)) = min
{v∈Dk}

Qk(v).

Thus, u(k+1) is the minimum of Qk(u) within the trust region Dk.
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To computationally determine the constrained minimum u(k+1) of Qk(.)
within Dk, we first determine the global critical point ũ(k+1) of Qk(.):

ũ(k+1) ≡ u(k) − H−1
k ∇J(u(k)).

If ũ(k+1) lies within Dk, then the update will be u(k+1) ≡ ũ(k+1). However, if
‖ũ(k+1) − u(k)‖ > δ, then the minimum of Qk(.) within Dk must lie on ∂Dk.
Since ∂Dk =

{
u : ‖u − u(k)‖2 = δ2

}
, we may seek the minimum of Qk(.)

on ∂Dk using constrained minimization. It will be the minimization of the
quadratic functional Qk(.) subject to the constraints ‖u− u(k)‖2 = δ2. Let λ
denote the Lagrange multiplier variable and define the Lagrangian functional:

L(u, λ) ≡ Qk(u) +
λ

2

(
(u − u(k))T (u − u(k)) − δ2

)
,

see Chap. 10. Seeking the saddle point of L(., .) yields the equations:{
∇J(u(k)) + Hk(u − u(k)) + λ (u − u(k)) = 0

‖u − u(k)‖2 = δ2.

This yields the equations:{
(Hk + λ I) (u − u(k)) = −∇J(u(k))

‖u − u(k)‖2 = δ2.

Thus, λ may be chosen by requiring the solution of the first block row above,
parameterized by λ, satisfies the constraint given in the second block row
above. We outline the resulting algorithm below, see [DE7].

Algorithm 17.1.6 (Trust Region Method)
Let u(0) ∈ IRn denote a starting guess

1. For k = 0, 1, . . . until convergence do:
2. Compute ũ(k+1) = u(k) − H−1

k ∇J(u(k)).
3. If ‖ũ(k+1) − u(k)‖ ≤ δ define u(k+1) ≡ ũ(k+1)

4. else determine λk > 0 such that:{
δ = ‖ (λkI + Hk)−1 ∇J(u(k))‖, and define:

u(k+1) ≡ u(k) − (λkI + Hk)−1 ∇J(u(k))

5. Endif
6. Endfor

The diameter δ of the trust region Dk can be chosen adaptively as δ = δk

provided λk ≥ 0 is chosen such that ‖ (λkI + Hk)−1 ∇J(u(k))‖ = δk, using
a bisection method [DE7]. As λk → 0+, the iteration reduces to Newton
iteration, while as λk → ∞, the iteration reduces to gradient iteration.



17.2 Schwarz Minimization Algorithms 697

17.2 Schwarz Minimization Algorithms

Schwarz subspace minimization algorithms [TA4, TA5, CH16] formally corre-
spond to generalized block Gauss-Seidel and Jacobi minimization algorithms.
These algorithms are based on the solution of various minimization problems
on subspaces, corresponding to blocks of unknowns. Below, we describe the
algebraic version of such algorithms for the iterative solution of (17.1).

Accordingly, let Vl ⊂ V denote subspaces of V = IRn satisfying:

V = V1 + · · · + Vp.

We shall let nl denote the dimension of Vl and assume that Vl = Range(RT
l ),

where each RT
l is an n × nl matrix whose columns form a basis for Vl. The

parallel Schwarz algorithm employs parameters αl for 1 ≤ l ≤ p satisfying:

p∑
l=1

αl = 1 with 0 < αl < 1 for 1 ≤ l ≤ p.

A default choice would be αl ≡ 1
p for 1 ≤ l ≤ p. We summarize the algorithm.

Algorithm 17.2.1 (Parallel Schwarz Minimization Algorithm)
Let u(0) denote a starting guess

1. For k = 0, 1, . . . until convergence do:
2. For l = 1, . . . , p in parallel determine d(l) ∈ IRnl :

J
(
u(k) + RT

l d(l)
∗
)

= min
{d(l)∈IRnl}

J
(
u(k) + RT

l d(l)
)

.

3. Endfor
4. Define u(k+1) =

∑p
l=1 αl

(
u(k) + RT

l d(l)
∗
)

= u(k) +
∑p

l=1 αlR
T
l d(l)

∗
5. Endfor

Remark 17.10. If J (·) is convex, the parallel Schwarz iterates will satisfy:{
J
(
u(k+1)

)
= J

(∑
l αl(u(k) + RT

l d(l)
∗ )
)
≤
∑

l αl J
(
u(k) + RT

l d(l)
∗
)

≤
∑

l αl J
(
u(k)

)
= J

(
u(k)

)
.

Thus, J(u(0)) ≥ J(u(1)) ≥ · · · ≥ J(u(k)) decreases monotonically.

We next describe a sequential version of the same algorithm.
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Algorithm 17.2.2 (Sequential Schwarz Subspace Minimization Algorithm)
Let u(0) denote a staring guess

1. For k = 0, 1, . . . until convergence do:
2. For l = 1, . . . , p determine d(l):

J(u(k+ l−1
p ) + RT

l d(l)
∗ ) = min

d(l)∈IRnl

J
(
u(k+ l−1

p ) + RT
l d(l)

)
.

3. Define u(k+ l
p ) ≡ u(k+ l−1

p ) + RT
l d(l)

∗
4. Endfor
5. Endfor

Remark 17.11. We may solve the local minimization problems in the Schwarz
algorithms using point relaxation, gradient or trust region methods, in an
inner iteration. For the trust region and Newton methods, we need to compute
submatrices of the Hessian matrix, without a global linearization. The inner
iteration can be solved up to some chosen local tolerance.

The following result concerns the convergence of Schwarz algorithms.

Proposition 17.12. Suppose the following assumptions hold.

1. Let J : V → IR be twice continuously differentiable and elliptic:

(∇J(u) −∇J(v),u − v) ≥ α (u − v,u − v) , ∀u, v ∈ V,

for some α > 0.
2. Let ∇J be Lipschitz continuous:

‖∇J(u) −∇J(v)‖ ≤ M ‖u − v‖, ∀u, v ∈ V,

for some M > 0.
3. Let Vi be subspaces of V = IRn satisfying:

V1 + · · · + Vm = V.

4. The local minimization problems are solved exactly.

Then, the iterates of the Schwarz minimization algorithms will converge to the
unique minimum u∗ of J (·). ��

Proof. See [TA4, TA5]. ��

Remark 17.13. Under additional assumptions, geometric convergence:

‖u(k+1) − u∗‖H∗ ≤ ρ ‖u(k) − u∗‖H∗ ,

is also proved in [TA4, TA5], for some 0 < β < 1, where H∗ = ∇2J(u∗).
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Helmholtz Scattering Problem

In this chapter, we describe several domain decomposition methods and also
outline a shooting method for determining the solution to the reduced wave
equation in wave scattering. The Helmholtz wave scattering problem is the
mathematical problem which describes the “scattered wave” when an incident
electromagnetic or acoustic wave impinges on an object D and is scattered
by it [KE, BL, KE2, KE3, BL2]. Mathematically, this leads to the problem
of computing a “standing wave” solution of the wave equation (i.e., a time
periodic solution of the special form eiktv(x)) in a domain Ω exterior to the
object D, with appropriate boundary conditions. This yields the following
“reduced wave equation” for v(x):⎧⎪⎪⎨

⎪⎪⎩
−∆v − κ2 n2(x) v = 0, in Ω \ D,

v = g, on ∂D,
∂v

∂n
− iκv = 0, on ∂Ω.

(18.1)

Here, Ω ⊃ D is a computational domain, on whose boundary the Bohr-
Sommerfeld radiation boundary condition is applied. A discretization of the
stationary problem (18.1), by finite difference or finite element methods, yields
a sparse, non-Hermitian but complex symmetric linear system.

Our discussion in this chapter will focus only on iterative methods for
solving the complex symmetric, but non-Hermitian, linear system arising from
the discretization of the reduced wave equation. In Chap. 18.1, we discuss
background on the reduced wave equation. Chap. 18.2 describes variants of
non-overlapping and overlapping domain decomposition iterative methods for
the reduced wave equation. Chap. 18.3 outlines an iterative method based on
fictitious domain or domain imbedding control formulations. We conclude our
discussion in Chap. 18.4 by outlining a control formulation based shooting
method for determining the standing wave solution to a wave equation. In
some sections, we shall formulate some algorithms in their continuous form,
omitting matrix implementation. For a discussion of applications to Maxwell’s
equations, readers are referred to [TO10].
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18.1 Background

Let D ⊂ IRd denote an obstacle with boundary ∂D. Consider an incident plane
wave Aei(k·x−ωt) impinging on the obstacle D and resulting in a scattered
wave. The sum (superposition) of the two waves (incident and scattered waves)
should be a solution of the wave equation in the exterior IRd \ D:

utt − c2(x)∆u = 0, in (IRd \ D) × (0, T ).

Here c(x) denotes the local speed of the wave in the given medium. If we seek
a scattered standing wave solution of the form v(x)e−iωt, then substituting:

u(x, t) = Aei(k·x−ω t) + v(x) e−iωt,

into the wave equation yields the following reduced wave equation for v(x):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∆v − κ2 n2(x) v = 0, in Rn \ D
v = −Aeik·x, on ∂D,

limr→∞ r

d − 1
2

(
∂v

∂r
− iκv

)
= 0, on Br(0),

(18.2)

where κn(x) = (ω/c(x)). The latter boundary condition, which is called the
Bohr-Sommerfeld radiation condition, is required to ensure the uniqueness of
the solution on the unbounded domain (IRd \D), see [BL]. If a computational
domain Ω with D ⊂ Ω ⊂ IRd is employed, then the radiation boundary
condition can be applied on ∂Ω, as an approximation.

A classical method for constructing approximate solutions of the reduced
wave equation is the ray method [KE, BL]. Ray methods have their origins
in Hamilton’s formulation of the laws of optics in terms of partial differential
equations (based on Fermat’s principle of least time for the path taken by a
ray in a refractive medium). This establishes a connection between geometri-
cal optics and the reduced wave equation. Mathematically, ray methods are
asymptotic techniques valid for large κ, see [KE, BL]. Consider the reduced
wave equation in the following form for large κ:

−∆v − κ2n2(x)v = 0, IRd \ D,

where n2(x) = 1/c2(x). Ray methods employ an asymptotic expansion:

v(x, κ) � e−κS(x)
∞∑

j=0

1
(iκ)j

Aj(x), as κ → ∞,

where S(x) denotes an unknown phase function, and {Aj(x)}∞j=0 denote un-
known amplitude functions. Formally substituting this expansion into the
Helmholtz equation and equating powers of κ (for κ assumed to be large),
yields a nonlinear 1st order hyperbolic partial differential equation (called the
Eiconal equation) for S(x):

|∇S(x)|2 = n2(x).
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Linear transport equations determine the amplitudes Aj(x) along the rays
(characteristic curves) of the Eiconal equation:{

2∇S · ∇A0 + A0∆S = 0, along rays,
2∇S · ∇An + An∆S = −∆An−1, n ≥ 1, along rays.

Numerical solution of the ray equations can be obtained by time stepping the
transport equations and the ordinary differential equations determining the
rays (characteristic curves). For details and boundary conditions, see [BL].

18.2 Non-Overlapping and Overlapping Subdomain
Methods

Consider a finite element discretization of (18.1) for n(x) = 1. Let vI denote
nodal unknowns in the interior of (Ω \ D), let vB denote nodal unknowns on
∂Ω and vD nodal unknowns on ∂D. Then, this discretization will be:[

AII − κ2MII AIB − κ2MIB

AT
IB − κ2MT

IB −i κGBB + ABB − κ2MBB

][
vI

vB

]
=

[
f I − AIDg∂D

fB

]
,

(18.3)
where g∂D denotes the discrete Dirichlet data on ∂D, matrices AXY and
MXY are blocks of the stiffness and mass matrices, while GBB is a boundary
mass matrix on ∂Ω. This is a complex symmetric linear system. Due to the
indefinite blocks (AXY I − κ2 MXY ), the eigenvalues of the above matrix will
generally have positive and negative real parts, depending on κ. Complex
preconditioned Krylov space methods such as GMREZ can be employed [SA2].
However, constructing preconditioners which are robust with respect to large
κ and small h is challenging. Below, we outline two iterative solvers, one based
on non-overlapping subdomains and employed without acceleration [DE8] and
another based on overlapping subdomains [CA5].

Non-Overlapping Subdomains Solver. Formally, given a non-overlapping
decomposition of Ω, any traditional Schur complement preconditioner may
be employed to precondition (18.3). However, the convergence rate will de-
teriorate for large κ, and the preconditioners will be indefinite. Here, we
shall describe an unaccelerated method of [DE8] in continuous form. Let
Ω1, . . . , Ωp denote a nonoverlapping decomposition of (Ω \ D). We shall use
Lu = −∆u − κ2 u to denote the Helmholtz operator. Consider the problem:⎧⎪⎨

⎪⎩
Lv = f, in Ω \ D,

v = g, on ∂D,
∂v

∂n
− i κ v = 0, on ∂Ω.

and let vl(x) = v(x) on Ωl. The algorithm of [DE8] updates approximations
v
(k)
l (x) of vl(x) by matching mixed boundary conditions with the approximate

solutions on adjacent subdomains, as in Robin-Robin algorithms.
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Algorithm 18.2.1 (Nonoverlapping Algorithm of [DE8])
Let (v(0)

l )p
l=1 denote starting iterates.

1. For k = 0, 1 . . ., until convergence do:
2. Solve in parallel (l = 1, . . . , p):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lv
(k+1)
l = f, in Ωl

v
(k+1)
l = g, on ∂D ∩ ∂Ωl

∂v
(k+1)
l

∂nlj
− i κv

(k+1)
l =

∂v
(k)
j

∂nlj
− i κv

(k)
j , on ∂Ωl ∩ ∂Ωj

∂v
(k+1)
l

∂nl
− i κv

(k+1)
l = 0, on ∂Ω.

3. Endfor

Remark 18.1. Here ∂v
∂nlj

denotes the directional derivative along the exterior
unit normal nlj to Ωl on ∂Ωl ∩ ∂Ωj . The algorithm is similar to [LI8, DO13].

Remark 18.2. As κ → ∞, the mixed boundary conditions:

∂v
(k+1)
l

∂nlj
− i κv

(k+1)
l =

∂v
(k)
j

∂nlj
− i κv

(k)
j , on ∂Ωl ∩ ∂Ωj ,

reduces to Dirichlet boundary conditions. Since Dirichlet data will be trans-
ferred between adjacent subdomains at the end of each iteration, we obtain:

v
(k+1)
l = v

(k)
j = v

(k−1)
l on ∂Ωl ∩ ∂Ωj .

Consequently,the boundary values of the iterates will oscillate, and repeat with
period two. Consequently, as κ → ∞, this algorithm will not be convergent
(except if the initial iterate is the solution). For large κ, its convergence rate
can be expected to deteriorate. Similarly, if κ → 0, then in the limit, Neumann
boundary data will be exchanged between neighboring subdomains:

∂v
(k+1)
l

∂nlj
=

∂v
(k)
j

∂nlj
=

∂v
(k−1)
l

∂nlj
on ∂Ωl ∩ ∂Ωj .

Again, the Neumann boundary conditions will repeat every alternate iteration,
and the algorithm will not be convergent (except if the initial iterate is the
solution). Thus, the convergence rate will deteriorate as κ → 0.

Remark 18.3. The above algorithm requires computing ∂v
∂nlj

on ∂Ωl ∩ ∂Ωj .
This can be computed using the weak form, for two subdomain interfaces.
However, if many subdomains are involved, then the continuous version of the
algorithm becomes ill-defined at the cross-points (vertices common to three
or more subdomain boundaries). However, an alternative constraint can be
imposed (for the discretized problem), see [DE8].
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The following convergence result is proved in [DE8].

Proposition 18.4. Let the following assumptions hold.

1. Let L = −∆ − κ2 be formally invertible for the given κ.
2. Let e

(k)
l ≡ v − v

(k)
l denote the error in the computed solution on Ωl.

Then, the energy on ∪p
l ∂Ωl will converge to zero:

p∑
l=1

∫
∂Ωl

|e(k)|2ds → 0, as k → ∞.

Proof. See [DE8]. ��

Remark 18.5. The above result shows strong convergence of the iterates, in
the L2(∪p

l=1∂Ωl) norm on the boundary. Unfortunately, the result does not
yield geometric convergence, and the rate will depend on the parameter κ.

Overlapping Subdomain Preconditioner. We next consider the matrix
form of a restricted Schwarz type preconditioner of [CA5] for system (18.3).
Let H u = f denote this system, and let Ω∗

1 , · · · , Ω∗
p form an overlapping

decomposition of (Ω \ D). We shall employ the notation:

• Let R0 denote a matrix whose columns form a basis for a coarse space,
and let H0 denote the following matrix:

H0 ≡ RT
0 HR0.

• Let Φ1, . . . , Φp be diagonal matrices Φl ≥ 0 that form a discrete partition
of the identity Φ1 + · · · + Φp = I of size n, subordinate to Ω∗

1 , · · · , Ω∗
p .

• Let RI,l denote the standard restriction matrix onto interior nodes in Ω∗
l

and let RB,l denote the restriction matrix onto nodes on ∂Ω∗
l \ ∂D.

• For 1 ≤ l ≤ p, define the following subdomain matrices:

H(l) ≡
[

A
(l)
II − κ2M

(l)
II A

(l)
IB − κ2M

(l)
IB

A
(l)T

IB − κ2M
(l)T

IB −i κG
(l)
BB + A

(l)
BB − κ2 M

(l)
BB

]
.

Then, the preconditioner H̃ of [CA5] is described next.
For 0 < θ < 1, the action H̃−1 of the inverse of the preconditioner H̃ is:

H̃−1 f ≡ θ

p∑
l=1

Φl

[
RI,l

RB,l

]
H(l)−1

[
RT

I,l f
0

]
+ (1 − θ)R0 H−1

0 RT
0 f .

The preceding preconditioner differs from an additive Schwarz preconditioner
in two ways. First, the local subproblems employ radiation boundary condi-
tions except at the nodes on ∂D. Second, a partition of identity sum is used,
as in a restricted additive Schwarz preconditioner. No rigorous convergence
estimates have been established for the above preconditioner [CA5].
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18.3 Fictitious Domain and Control Formulations

Least squares-control [AT, NE7, DI2, GL12] and Lagrange multiplier methods,
see [GL4, GL11], can be formulated on fictitious domains to provide iterative
algorithms for the solution of (18.3). The primary requirement is that a fast
solver, such as FFT based, be available for the discretized Helmholtz equa-
tion on a fictitious rectangular domain Ω∗, with Dirichlet, Neumann, periodic
or radiation boundary conditions. In this section, we briefly outline, using
continuous formulations, one class of fictitious domain or domain imbedding
methods for (18.3). Other control formulations are also possible, extending
methods from Chap. 13, see [AT, NE7, DI2, GL12, GL4, GL11].

The use of fictitious domain methodology is justified for the Helmholtz
problem when there is an efficient solver available for the discretization of:{

−∆w − κ2 n2(x)w = f̃(x), in Ω∗
w = g, on ∂Ω∗

(18.4)

on some rectangular domain Ω∗ ⊃ Ω. The Dirichlet conditions may be re-
placed by Neumann, periodic or radiation conditions on ∂Ω∗. To obtain a
solution of (18.1) on Ω, by employing the solution of (18.4) on Ω∗, define a
squares norm error term J(.) which is to be minimized:

J(w) ≡ 1
2
‖w − g‖2

0,∂D +
1
2
‖∂w

∂n
− iκw‖2

0,∂Ω . (18.5)

The control formulation will seek to minimize J(·) subject to constraints of the
form (18.4). To illustrate this in matrix terms, for simplicity, we shall assume
that Ω∗ = Ω, and assume that a fast solver is available on the entire domain Ω∗
with radiation boundary conditions on ∂Ω∗. When Ω∗ = Ω with the original
radiation conditions, the term 1

2 ‖
∂w
∂n − iκw‖2

0,∂Ω may be omitted. In the more
general case, the method may still be employed, with due modifications.

Formally, the forcing term f̃(x) in (18.4) should be of the form:

f̃(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, in D

γD, on ∂D

f(x), in Ω \ D

γ∗, on ∂Ω.

Such a forcing term f̃(x) will be “formal” only because in a strict sense, if
f̃(·) ∈ L2(Ω∗), then its restrictions γD and γ∗ on ∂D and ∂Ω∗ will have
zero mass. We shall require f̃(·) �∈ L2(Ω). This will not be an issue in the
discretized problem, since the forcing terms will be nodal values at grid points.
The control formulation to solve (18.1) will seek nontrivial controls γD and
γ∗ such that the solution to (18.4) with the above forcing, formally minimizes
J(w). When J(w) = 0, the desired solution will be obtained.
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Suppose Ω∗ = Ω and that a fast solver is available on Ω∗ with radiation
boundary conditions on ∂Ω∗. In this case, define subdomains Ω1 = D and
Ω2 = (Ω∗ \ D). Block partition the unknowns into w(1)

I , w(2)
I , wD and wB

where each nodal vector corresponds to unknowns in the interior of Ω1, interior
of Ω2, on ∂D and on ∂Ω, respectively. Then, the block matrix representation
of a discretization of (18.4) will have the following form:⎡

⎢⎢⎢⎢⎢⎣

L
(1)
II 0 L

(1)
ID 0

0 L
(2)
II L

(2)
ID L

(2)
IB

L
(1)T

ID L
(2)T

ID LDD 0

0 L
(2)T

IB 0 LBB

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

w(1)
I

w(2)
I

wD

wB

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f (1)
I

f (2)
I

fD

fB

⎤
⎥⎥⎥⎥⎦ . (18.6)

Here L
(l)
XY = (A(l)

XY −κ2 M
(l)
XY ), for X, Y = I, D, while L

(l)
IB = (A(l)

IB−κ2 M
(l)
IB)

and L
(l)
BB = (A(l)

BB − κ2 M
(l)
BB − i κ G

(l)
BB). Here A

(l)
XY and M

(l)
XY denote block

submatrices of the stiffness matrix associated with −∆ and the mass matrix on
Ω∗, respectively. Matrix GBB denotes the lower dimensional boundary mass
matrix. We may formally choose the forcing term f (1)

I = 0 in the interior of
the obstacle, and fB = 0 on ∂Ω∗ = ∂Ω. The forcing term f (2)

I is given, and fD

can be regarded as an unknown control vector. Define the discrete functional:

J (w) =
1
2
‖wD − gD‖2, (18.7)

where gD denotes the discretized Dirichlet data on ∂D. The least squares-
control formulation will then seek the control fD so that the solution to (18.6)
minimizes the function J(·) in (18.7). The methodology will be analogous to
that described in Chap. 13. We omit further details.

Remark 18.6. Preconditioners have been proposed in [ER2] for obtaining fast
iterative solvers for the Helmholtz problem with radiation boundary condi-
tions on rectangular domains. Fast Helmholtz solvers will also be available for
the Dirichlet or periodic problem on Ω∗.

18.4 Hilbert Uniqueness Method for Standing Waves

In this section, we describe a control theory based method [BR37] to solve the
Helmholtz scattering problem (18.1). This control method seeks the solution
to (18.1) as the control data, to an initial value problem for an associated wave
equation with a time periodic forcing term of a specified frequency. The initial
data is then sought to yield a time-periodic solution of the wave equation, and
a square norm functional is formulated to measure the time periodicity of
the solution to the wave equation. The minimum of this functional solves
the Helmholtz scattering problem (18.1), and this control problem can be
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solved using a shooting method. Computational tests in [BR37] indicate that
its solution can be obtained efficiently provided an associated elliptic equation
can be solved in optimal order complexity. In the discrete case, the computed
solution will satisfy an alternate discretization of the Helmholtz scattering
problem (due to discretization error introduced by time stepping).

In classical scattering theory for the wave equation, given a convex body
D, the time average of the scattered solution u(x, t) to the wave equation,
with arbitrary initial conditions, converges to the solution v(x) of the reduced
wave equation (Helmholtz scattering problem):

1
T

∫ T

0

u(x, t) dt → v(x).

In particular, exponential convergence is observed. Such a result, is however
not valid for scattering objects which are not convex. In this context, the
Hilbert uniqueness method [BR37] accelerates the convergence of time aver-
ages to the solution of the Helmholtz problem.

Our heuristic discussion will focus primarily on the continuous and semi-
discrete versions of the Helmholtz problem (18.1). We seek v(x) such that:⎧⎪⎪⎨

⎪⎪⎩
−∆v − κ2 v = f(x), in Ω \ D

v = g(x), in ∂D

∂v

∂n
− iκ v = 0, on ∂Ω.

(18.8)

Given v(x) in (18.8), let u(x, t) = v(x)e−i κ t denote an associated standing
wave. It can then be verified that u(x, t) = v(x)e−i κ t solves the wave equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − ∆u = f(x)e−iκt, in (Ω \ D) × (0,
2π

κ
)

u(x, t) = e−iκtg(x), on ∂D × (0,
2π

κ
)

∂u

∂t
+

∂u

∂n
= 0, on ∂Ω × (0,

2π

κ
)

u(x, 0) = u(x,
2π

κ
) in (Ω \ D)

ut(x, 0) = ut(x,
2π

κ
) in (Ω \ D).

(18.9)

Since v(x) = u(x, 0) and −iκv(x) = ut(x, 0), this suggests that the solution
to (18.8) can be obtained from a time-periodic solution to (18.9).

Remark 18.7. Thus, we may determine the solution v(.) to the Helmholtz
problem by seeking initial conditions to (18.9) which yields a solution which
is time-periodic of period 2π

κ . If the periodic solution u(x, t) to the wave
equation (18.9) is unique, then u(x, t) will be a standing wave of the form
u(x, t) = e−iκt v(x), yielding with u(0, x) = v(x) and ut(0, x) = −i κ v(x).
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Definition 18.8. Given initial data w0(.) and w1(.) for the wave equation
(18.9), we define the evolution map E:

E :

[
w0

w1

]
→
[

u(., 2π
κ )

ut(., 2π
κ )

]
(18.10)

where u(., .) solves (18.9) with initial data w0(.) and w1(.):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(x, t) − ∆u(x, t) = f(x)e−iκt, in (Ω \ D) × (0,
2π

κ
)

u(x, t) = e−iκtg(x), on ∂D × (0,
2π

κ
)

∂u

∂t
(x, t) +

∂u

∂n
(x, t) = 0, on ∂Ω × (0,

2π

κ
)

u(x, 0) = w0(x), on (Ω \ D)
ut(x, 0) = w1(x) on (Ω \ D).

(18.11)

The map E will be affine linear, and if (w0, w1) is a fixed point of E:

E

[
w0

w1

]
=

[
w0

w1

]

then v(.) = w0(.) will solve Helmholtz’s problem.

Control Problem. A control problem may now be posed for determining the
initial data v(.) = w0(.) and w1(.) leading to a periodic solution of (18.11). A
nonnegative functional J(., .) ≥ 0 measuring a square norm of the difference
E(w0, w1) − (w0, w1) may be employed, and the minimum of J(., .) may be
sought, where E is the evolution map defined by (18.10). We define:

J (w0, w1) ≡ 1
2

∫
Ω\D

(∣∣∣∣∇(u(x,
2π

κ
) − w0(x))

∣∣∣∣
2

+
∣∣∣∣ut(x,

2π

κ
) − w1(x)

∣∣∣∣
2
)

dx,

where u(t, x) solves the wave equation (18.11). The preceding functional will
be convex and quadratic, and is motivated by the energy:

E(t) ≡
∫

Ω\D

(
|∇u|2 + |ut|2

)
dx.

A minimization algorithm such as a gradient (steepest) descent or the CG
method may be employed to seek the minimum of J(., .). However, evaluating
J(.) will require evaluating the evolution map E, which in turn requires solving
the wave equation on the time interval (0, 2π

κ ). In applications, time stepping
can be employed, and this will introduce truncation errors.
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We next heuristically outline the structure of the evolution map and the
resulting control problem for a semi-discretization of the wave equation. For
simplicity, we consider a finite difference discretization of (18.1):[

AII − κ2I AIB

AT
IB −i κ I + ABB

][
vI

vB

]
=

[
f I − AIDg∂D

fB

]
, (18.12)

where AXY for X, Y = I, B is a block partition of a finite difference dis-
cretization of −∆ on (Ω \ D) with Neumann boundary conditions on ∂Ω
and Dirichlet boundary conditions on ∂D. Here, vI denotes a nodal vector of
unknowns in (Ω \ D), and vB with unknowns on ∂Ω and vD on ∂D.

If vI and vB are the solution components from (18.12), then the standing
waves xI(t) ≡ e−i κ t vI and xB(t) ≡ e−i κ t vB can be verified to solve the
following first order system of ordinary differential equations for xI(t), xB(t)
and yI(t) = (dxI/ dt) defined at the interior, boundary and interior grids
points of (Ω \D), ∂Ω and (Ω \D), respectively. The 2nd order derivatives in
time have been reduced to first order derivatives in time by introducing the
variables yI(t). The resulting system of differential equations will be:

d

dt

⎡
⎢⎣

xI

xB

yI

⎤
⎥⎦ =

⎡
⎢⎣

0 0 I

−AT
IB −ABB 0

−AII −AIB 0

⎤
⎥⎦
⎡
⎢⎣

xI

xB

yI

⎤
⎥⎦+

⎡
⎢⎣

0
0
gI

⎤
⎥⎦ ,

where gI(t) ≡ f Ie
−i κ t − AID g∂De−iκ t and with initial conditions:⎡

⎢⎣
xI(0)
xB(0)
yI(0)

⎤
⎥⎦ =

⎡
⎢⎣

w0

wB

−i κw0

⎤
⎥⎦ ,

provided fB = 0, w0 = vI and wB = vB . This system can be formally verified
using the reduced system (18.12). To derive an expression for the evolution
map Eh we express the preceding system of differential equations compactly:

dU
dt

= LU + F(t), for 0 < t <
2π

κ
, with U(0) = U0, (18.13)

where the block vectors U(t), U0, F(t) and matrix L are defined as:

L ≡

⎡
⎢⎣

0 0 I

−AT
IB −ABB 0

−AII −AIB 0

⎤
⎥⎦ , U ≡

⎡
⎢⎣

xI

xB

yI

⎤
⎥⎦ , F ≡

⎡
⎢⎣

0
0
gI

⎤
⎥⎦ , U0 ≡

⎡
⎢⎣

w0

wB

−i κw0

⎤
⎥⎦ .

The solution to the linear system of differential equations (18.13) can be
represented using Duhamel’s principle as:

U(t) ≡ eL t U0 +
∫ t

0

eL (t−s) F(s) ds.
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Thus, the semi-discrete evolution map Eh will satisfy:

Eh U0 = e
2π
κ L U0 − F̃ where F̃ ≡ −

∫ 2π
κ

0

eL (t−s) F(s) ds.

Using Eh, we define the discrete control functional Jh(., .) as:

Jh(U0) ≡ 1
2
‖EhU0 − U0‖2

X ,

where ‖ · ‖X denotes an appropriately chosen norm. The control functional
Jh(.) measures the square norm of the difference between solution at time
t = 2π

κ and at time t = 0. The semi-discrete control problem seeks to enforce
time periodicity of the solution by minimizing the control functional Jh(.).

The linear system resulting from the condition for minimizing Jh(.) will
be symmetric and positive definite:

∇Jh = 0 ⇔
(
e

2π
κ L − I

)H

X
(
e

2π
κ L − I

)
U0 =

(
e

2π
κ L − I

)H

XF̃.

A heuristic block matrix preconditioner can be formally obtained for the above
least squares system using the approximation (e

2π
κ L − I) ≈ ( 2π

κ ) L. This
yields the preconditioner M = ( 2π

κ )2 LT XL for the above system. To avoid
cumbersome notation, we shall define the block matrix A as follows:

A ≡
[

AT
IB ABB

AII AIB

]
so that L =

[
0 I

−A 0

]
.

This will yield the following 2 × 2 block structure for LHXL when X = I:

M = (
2π

κ
)2
[

A2 0
0 I

]
.

The action of M−1 can be computed at a computational cost proportional to
solving two systems with coefficient matrix A. We omit further details.
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problems. Computing: Archiv fűr Informatik und Numerik. 49 No. 1. (1992)
11–23

[BO] Bochev, P. B., Gunzburger, M. D.: Accuracy of least squares methods for the
Navier-Stokes equations. Comput. Fluids. 22 (1993) 549–563

[BO2] Bollobas, B.: Graph theory: An introductory course. Springer-Verlag (1979)
[BO3] Boppana, R. B.: Eigenvalues and graph bisection: An average case analysis.

28th Annual Symp. Found. Comp. Sci. (1987) 280–285
[BO4] Borgers, C.: The Neumann-Dirichlet domain decomposition method with in-

exact solvers on the subdomains. Numer. Math. 55 (1989) 123–136
[BO5] Borgers, C., Widlund, O. B.: On finite element domain imbedding methods.

SIAM J. Numer. Anal. 27 No. 4 (1990) 963–978
[BO6] Bornemann, F., Yserentant, H.: A basic norm equivalence for the theory of

multilevel methods. Numer. Math. 64 (1993) 455–476
[BO7] Bourgat, J.-F., Glowinski, R., Le Tallec, P., Vidrascu, M.: Variational formu-

lation and algorithm for trace operator in domain decomposition calculations. In:
Second international symposium on domain decomposition methods for partial
differential equations. SIAM (1989) 3–16

[BO8] Bourgat, J.-F., Le Tallec, P., Tidriri, M. D.: Coupling Boltzmann and Navier-
Stokes by friction. J. Comput. Phys. 127 (1996) 227–245

[BO9] Bourquin, F.: Analysis and comparison of several component mode synthesis
methods on one dimensional domains. Numer. Math. 58 No. 1 (1990) 11–34

[BO10] Bourquin, F.: Component mode synthesis and eigenvalues of second order
operators: Discretization and algorithms. RAIRO Model. Math. et Anal. Numer.
26 No. 3 (1992) 385–423

[BO11] Bourquin, F., d’Hennezel, F.: Application of domain decomposition tech-
niques to modal synthesis for eigenvalue problems. Fifth international symposium
on domain decomposition methods for partial differential equations. (Eds.) T. F.
Chan, D. E. Keyes, G. A. Meurant, J. S. Scroggs, R. G. Voigt. SIAM (1992)

[BO12] Bourquin, F., d’Hennezel, F.: Numerical study of an intrinsic component
mode synthesis method. Comp. Meth. Appl. Mech. Engrg. 97 (1992) 49–76

[BO13] Bourquin, F., Namar, R.: Decoupling and modal synthesis of vibrat-
ing continuous systems. In (Eds.) P. Bjorstad, M. Espedal, D. Keyes. Ninth



718 References

international conference: Domain decomposition methods in science and engi-
neering. www.ddm.org (1997)

[BR] Braess, D.: Finite elements: Theory, fast solvers and applications to solid me-
chanics. Cambridge University Press. (1997)

[BR2] Braess, D., Dahmen, W.: Stability estimates of the mortar element method
for three dimensional problems. East-West J. Numer. Math. 6 (1998) 249–263

[BR3] Braess, D., Dahmen, W., Wieners, C.: A multigrid algorithm for the mortar
finite element method. SIAM J. Numer. Anal. 37 (2000) 48–69

[BR4] Braess, D., Verfurth, R.: Multigrid methods for nonconforming finite element
methods. SIAM J. Numer. Anal. 27 No. 4 (1990) 979–986

[BR5] Bramble, J.: Multigrid methods. Chapman and Hall (1993)
[BR6] Bramble, J., Ewing, R. E., Pareshkevov, R., Pasciak, J.: Domain decomposi-

tion methods for problems with partial refinement. SIAM J. Sci. Comp. 13 No.
1 (1992) 397–410

[BR7] Bramble, J., Ewing, R. E., Pasciak, J., Schatz, A.: A preconditioning tech-
nique for the efficient solution of problems with local grid refinement. Comput.
Meth. Appl. Mech. Engg. 67 (1988) 149–159

[BR8] Bramble, J., Pasciak, J.: A preconditioning technique for indefinite systems
resulting from mixed approximations of elliptic problems. Math. Comp. 50 (1988)
1–18

[BR9] Bramble, J., Pasciak, J.: Iterative techniques for the time dependent Stokes
equation. Math. Applic. 33 (1997) 13–30

[BR10] Bramble, J., Pasciak, J., Knyazev, A.: A subspace preconditioning algorithm
for eigenvector/eigenvalue computation. Advances in computational mathemat-
ics. 6 No. 2 (1996) 159–189

[BR11] Bramble, J., Pasciak, J., Schatz, A.: An iterative method for elliptic prob-
lems on regions partitioned into substructures. Math. Comp. 46 No. 173, (1986)
361–369

[BR12] Bramble, J., Pasciak, J., Schatz, A.: The construction of preconditioners for
elliptic problems by substructuring, I. Math. Comp. 47 (1986) 103–134

[BR13] Bramble, J., Pasciak, J., Schatz, A.: The construction of preconditioners for
elliptic problems by substructuring, II. Math. Comp. 49 (1987) 1–16

[BR14] Bramble, J., Pasciak, J., Schatz, A.: The construction of preconditioners for
elliptic problems by substructuring, III. Math. Comp. 51 (1988) 415–430

[BR15] Bramble, J., Pasciak, J., Schatz, A.: The construction of preconditioners for
elliptic problems by substructuring, IV. Math. Comp. 53 (1989) 1–24

[BR16] Bramble, J., Pasciak, J., Vassilev, A.: Analysis of the inexact Uzawa algo-
rithm for saddle point problems. SIAM J. Numer. Anal. 34 (1997) 1072–1092

[BR17] Bramble, J., Pasciak, J., Vassilevski, P.: Computational scales of Sobolev
norms with application to preconditioning. Math. Comp. 69 (2000) 463–480

[BR18] Bramble, J., Pasciak, J., Wang, J., Xu, J.: Convergence estimates for product
iterative methods with applications to domain decomposition. Math. Comp. 57
No. 195 (1991) 1–21

[BR19] Bramble, J., Pasciak, J., Wang, J., Xu, J.: Convergence estimates for multi-
grid algorithms without regularity assumptions. Math. Comp. 57 No. 195 (1991)
23–45

[BR20] Bramble, J., Pasciak, J., Xu, J.: Parallel multilevel preconditioners. Math.
Comp. 55 (1990) 1–22

[BR21] Bramble, J., Xu, J.: Some estimates for a weighted L2 projection. Math.
Comp. 56 (1991) 163–176



References 719

[BR22] Brandt, A.: Multilevel adaptive solutions to boundary value problems.
Math. Comp. 31 (1977) 333–390

[BR23] Brenner, S. C.: Two level additive Schwarz preconditioners for nonconform-
ing finite elements. Domain decomposition methods in scientific and engineering
computing. Contemporary Mathematics 180 AMS (1994) 9–14

[BR24] Brenner, S. C.: The condition number of the Schur complement in domain
decomposition. Numer. Math. 83 (1999) 187–203

[BR25] Brenner, S. C.: Lower bounds of two level additive Schwarz preconditioners
with small overlap. SIAM J. Sci. Comp. 21 No. 5 (2000) 1657–1669

[BR26] Brenner, S. C.: An additive Schwarz preconditioner for the FETI method.
Numer. Math. 94 (2003) 1–31

[BR27] Brenner, S. C., He, Q.: Lower bounds for three dimensional nonoverlapping
domain decomposition algorithms. Numer. Math. 93 No. 3 (2003) 445–470

[BR28] Brenner, S. C., Scott, L. R.: Mathematical theory of finite element methods.
Springer-Verlag (1994)

[BR29] Brenner, S. C., Sung, L.-Y.: Discrete Sobolev and Poincaré inequalities via
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