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Preface

This book is intended to give an introduction to the theory of forward-
backward stochastic differential equations (FBSDEs, for short) which has
received strong attention in recent years because of its interesting structure
and its usefulness in various applied fields.

The motivation for studying FBSDEs comes originally from stochastic
optimal control theory, that is, the adjoint equation in the Pontryagin-type
maximum principle. The earliest version of such an FBSDE was introduced
by Bismut [1] in 1973, with a decoupled form, namely, a system of a usual
(forward) stochastic differential equation and a (linear) backward stochastic
differential equation (BSDE, for short). In 1983, Bensoussan [1] proved the
well-posedness of general linear BSDEs by using martingale representation
theorem. The first well-posedness result for nonlinear BSDEs was proved
in 1990 by Pardoux–Peng [1], while studying the general Pontryagin-type
maximum principle for stochastic optimal controls. A little later, Peng [4]
discovered that the adapted solution of a BSDE could be used as a prob-
abilistic interpretation of the solutions to some semilinear or quasilinear
parabolic partial differential equations (PDE, for short), in the spirit of the
well-known Feynman-Kac formula. After this, extensive study of BSDEs
was initiated, and potential for its application was found in applied and the-
oretical areas such as stochastic control, mathematical finance, differential
geometry, to mention a few.

The study of (strongly) coupled FBSDEs started in early 90s. In his
Ph.D thesis, Antonelli [1] obtained the first result on the solvability of an
FBSDE over a “small” time duration. He also constructed a counterexam-
ple showing that for coupled FBSDEs, large time duration might lead to
non-solvability. In 1993, the present authors started a systematic investiga-
tion on the well-posedness of FBSDEs over arbitrary time durations, which
has developed into the main body of this book. Today, several methods have
been established for solving a (coupled) FBSDE. Among them two are con-
sidered effective: the Four Step Scheme by Ma–Protter–Yong [1] and the
Method of Continuation by Hu–Peng [2], and Yong [1]. The former provides
the explicit relations among the forward and backward components of the
adapted solution via a quasilinear partial differential equation, but requires
the non-degeneracy of the forward diffusion and the non-randomness of the
coefficients; while the latter relaxed these conditions, but requires essen-
tially the “monotonicity” condition on the coefficients, which is restrictive
in a different way.

The theory of FBSDEs have given rise to some other problems that are
interesting in their own rights. For example, in order to extend the Four
Step Scheme to general random coefficient case, it is not hard to see that
one has to replace the quasilinear parabolic PDE there by a quasilinear
backward stochastic partial differential equation (BSPDE for short), with a



Preface

strong degeneracy in the sense of stochastic partial differential equations.
Such BSPDEs can be used to generalize the Feynman-Kac formula and even
the Black-Scholes option pricing formula to the case when the coefficients of
the diffusion are allowed to be random. Other interesting subjects generated
by FBSDEs but with independent flavors include FBSDEs with reflecting
boundary conditions as well as the numerical methods for FBSDEs. It is
worth pointing out that the FBSDEs have also been successfully applied to
model and to resolve some interesting problems in mathematical finance,
such as problems involving term structure of interest rates (consol rate
problem) and hedging contingent claims for large investors, etc.

The book is organized as follows. As an introduction, we present several
interesting examples in Chapter 1. After giving the definition of solvabil-
ity, we study some special FBSDEs that are either non-solvable or easily
solvable (e.g., those on small durations). Some comparison results for both
BSDE and FBSDE are established at the end of this chapter. In Chapter
2 we content ourselves with the linear FBSDEs. The special structure of
the linear equations enables us to treat the problem in a special way, and
the solvability is studied thoroughly. The study of general FBSDEs over
arbitrary duration starts from Chapter 3. We present virtually the first
result regarding the solvability of FBSDE in this generality, by relating the
solvability of an FBSDE to the solvability of an optimal stochastic control
problem. The notion of approximate solvability is also introduced and de-
veloped. The idea of this chapter is carried on to the next one, in which
the Four Step Scheme is established. Two other different methods leading
to the existence and uniqueness of the adapted solution of general FBSDEs
are presented in Chapters 6 and 7, while in the latter even reflections are
allowed for both forward and backward equations. Chapter 5 deals with a
class of linear backward SPDEs, which are closely related to the FBSDEs
with random coefficients; Chapter 8 collects some applications of FBSDEs,
mainly in mathematical finance, which in a sense is the inspiration for much
of our theoretical research. Those readers needing stronger motivation to
dig deeply into the subject might actually want to go to this chapter first
and then decide which chapter would be the immediate goal to attack.
Finally, Chapter 9 provides a numerical method for FBSDEs.

In this book all “headings” (theorem, lemma, definition, corollary, ex-
ample, etc.) will follow a single sequence of numbers within one chapter
(e.g., Theorem 2.1 means the first “heading” in Section 2, possibly followed
immediately by Definition 2.2, etc.). When a heading is cited in a different
chapter, the chapter number will be indicated. Likewise, the numbering
for the equations in the book is of the form, say, (5.4), where 5 is the sec-
tion number and 4 is the equation number. When an equation in different
chapter is cited, the chapter number will precede the section number.

We would like to express our deepest gratitude to many people who
have inspired us throughout the past few years during which the main
body of this book was developed. Special thanks are due to R. Buck-
dahn, J. Cvitanic, J. Douglas Jr., D. Duffie, P. Protter, with whom we
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enjoyed wonderful collaboration on this subject; to N. El Karoui, J. Jacod,
I. Karatzas, N. V. Krylov, S. M. Lenhart, E. Pardoux, S. Shreve, M. Soner,
from whom we have received valuable advice and constant support. We
particularly appreciate a special group of researchers with whom we were
students, classmates and colleagues in Fudan University, Shanghai, China,
among them: S. Chen, Y. Hu, X. Li, S. Peng, S. Tang, X. Y. Zhou. We also
would like to thank our respective Ph.D. advisors Professors Naresh Jain
(University of Minnesota) and Leonard D. Berkovitz (Purdue University)
for their constant encouragement.

JM would like to acknowledge partial support from the United States
National Science Fundation grant #DMS-9301516 and the United States
Office of Naval Research grant #N00014-96-1-0262; and JY would like to
acknowledge partial support from Natural Science Foundation of China, the
Chinese Education Ministry Science Foundation, the National Outstanding
Youth Foundation of China, and Li Foundation at San Francisco, USA.

Finally, of course, both authors would like to take this opportunity to
thank their families for their support, understanding and love.
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Chapter 1

Introduction

§1. Some Examples
To introduce the forward-backward stochastic differential equations (FBS-
DEs, for short), let us begin with some examples. Unless otherwise speci-
fied, throughout the book, we let (Ω,F , {Ft}t≥0,P) be a complete filtered
probability space on which is defined a d-dimensional standard Brownian
motionW (t), such that {Ft}t≥0 is the natural filtration ofW (t), augmented
by all the P-null sets. In other words, we consider only the Brownian fil-
tration throughout this book.

§1.1. A first glance
One of the main differences between a stochastic differential equation (SDE,
for short) and a (deterministic) ordinary differential equation (ODE, for
short) is that one cannot reverse the “time”. The following is a simple
but typical example. Suppose that d = 1 (i.e., the Brownian motion is
one-dimensional), and consider the following (trivial) differential equation:

(1.1) dY (t) = 0, t ∈ [0, T ],

where T > 0 is a given terminal time. For any ξ ∈ lR we can require
either Y (0) = ξ or Y (T ) = ξ so that (1.1) has a unique solution Y (t) ≡ ξ.
However, if we consider (1.1) as a stochastic differential equation (with
null drift and diffusion coefficients) in Itô’s sense, things will become a
little more complicated. First note that a solution of an Itô SDE has to
be {Ft}t≥0-adapted. Thus specifying Y (0) and Y (T ) will have essential
difference. Consider again (1.1), but as a terminal value problem:

(1.2)

{
dY (t) = 0, t ∈ [0, T ],
Y (T ) = ξ,

where ξ ∈ L2FT (Ω; lR), the set of all FT -measurable square integrable ran-
dom variables. Since the only solution to (1.2) is Y (t) ≡ ξ, ∀t ∈ [0, T ],
which is not necessarily {Ft}t≥0-adapted unless ξ is a constant, the equa-
tion (1.2), viewed as an Itô SDE, does not have a solution in general!
Intuitively, there are two ways to get around with this difficulty: (1)

modify (or even remove) the adaptedness of the solution in its definition;
(2) reformulate the terminal value problem of an SDE so that it may al-
low a solution which is {Ft}t≥0-adapted. We note here that method (1)
requires techniques such as new definitions of a backward Itô integral, or
more generally, the so-called anticipating stochastic calculus. For more on
the discussion in that direction, one is referred to the books of, say, Kunita
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[1] and Nualart [1]. In this book, however, we will content ourselves with
method (2), because of its usefulness in various applications as we shall see
in the following sections.
To reformulate (1.2), we first note that a reasonable way of modifying

the solution Y (t) = ξ so that it is {Ft}t≥0-adapted and satisfies Y (T ) = ξ
is to define

(1.3) Y (t)
Δ
=E{ξ|Ft}, t ∈ [0, T ].

Let us now try to derive, if possible, an (Itô) SDE that the process Y (·)
might enjoy. An important ingredient in this derivation is the Martingale
Representation Theorem (cf. e.g., Karatzas-Shreve [1]), which tells us that
if the filtration {Ft}t≥0 is Brownian, then every square integrable martin-
gale M with zero expectation can be written as a stochastic integral with
a unique integrand that is {Ft}t≥0-progressively measurable and square
integrable. Since the process Y (·) defined by (1.3) is clearly a square inte-
grable {Ft}t≥0-martingale, an application of the Martingale Representation
Theorem leads to the following representation:

(1.4) Y (t) = Y (0) +

∫ t
0

Z(s)dW (s), ∀t ∈ [0, T ], a.s. ,

where Z(·) ∈ L2F (0, T ; lR), the set of all {Ft}t≥0-adapted square integrable
processes. Writing (1.4) in a differential form and combining it with (1.3)
(note that ξ is FT -measurable), we have

(1.5)

{
dY (t) = Z(t)dW (t), t ∈ [0, T ],
Y (T ) = ξ.

In other words, if we reformulate (1.2) as (1.5); and more importantly,
instead of looking for a single {Ft}t≥0-adapted process Y (·) as a solution
to the SDE, we look for a pair (Y (·), Z(·)) (although it looks a little strange
at this moment), then finding a solution which is {Ft}t≥0-adapted becomes
possible! It turns out, as we shall develop in the rest of the book, that
(1.5) is the appropriate reformulation of a terminal value problem (1.2)
that possesses an adapted solution (Y, Z). Adding the extra component
Z(·) to the solution is the key factor that makes finding an adapted solution
possible.
As was traditionally done in the SDE literature, (1.5) can be written

in an integral form, which can be deduced as follows. Note from (1.4) that

(1.6) Y (0) = Y (T )−
∫ T
0

Z(s)dW (s) = ξ −
∫ T
0

Z(s)dW (s).

Plugging (1.6) into (1.4) we obtain

(1.7) Y (t) = Y (0) +

∫ t
0

Z(s)dW (s) = ξ −
∫ T
t

Z(s)dW (s), ∀t ∈ [0, T ].
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In the sequel, we shall not distinguish (1.5) and (1.7); each of them is called
a backward stochastic differential equation (BSDE, for short). We would like
to emphasize that the stochastic integral in (1.7) is the usual (forward) Itô
integral.
Finally, if we apply Itô’s formula to |Y (t)|2 (here | · | denotes the usual

Euclidean norm, see §2), then

(1.8) E|ξ|2 = E|Y (t)|2 +
∫ T
t

E|Z(s)|2ds, ∀t ∈ [0, T ].

Thus ξ = 0 implies that Y ≡ 0 and Z ≡ 0. Note that equation (1.7) is
linear, relation (1.8) leads to the uniqueness of the {Ft}t≥0-adapted solution
(Y (·), Z(·)) to (1.7). Consequently, if ξ is a non-random constant, then by
uniqueness we see that Y (t) ≡ ξ and Z(t) ≡ 0 is the only solution of
(1.7), as we expect. In the following subsections we give some examples
in stochastic control theory and mathematical finance that have motivated
the study of the backward and forward-backward SDEs.

§1.2. A stochastic optimal control problem
Consider the following controlled stochastic differential equation:

(1.9)

{
dX(t) =

[
aX(t) + bu(t)

]
dt+ dW (t), t ∈ [0, T ],

X(0) = x,

where X(·) is called the state process, u(·) is called the control process.
Both of them are required to be {Ft}t≥0-adapted and square integrable.
For simplicity, we assume X , u and W are all one-dimensional, and a and
b are constants. We introduce the so-called cost functional as follows:

(1.10) J(u) =
1

2
E
{∫ T
0

[
|X(t)|2 + |u(t)|2

]
dt+ |X(T )|2

}
.

An optimal control problem is then to minimize the cost functional (1.10)
subject to the state equation (1.9). In the present case, it can be shown
that there exists a unique solution to this optimal control problem (in fact,
the mapping u �→ J(u) is convex and coercive). Our goal is to determine
this optimal control.
Suppose u(·) is an optimal control and X(·) is the corresponding (opti-

mal) state process. Then, for any admissible control v(·) (i.e., an {Ft}t≥0-
adapted square integrable process), we have

(1.11)

0 ≤ J(u + εv)− J(u)
ε

→ E
{∫ T
0

[
X(t)ξ(t) + u(t)v(t)

]
dt+X(T )ξ(T )

}
, ε→ 0,

where ξ(·) satisfies the following variational system:

(1.12)

{
dξ(t) =

[
aξ(t) + bv(t)

]
dt, t ∈ [0, T ],

ξ(0) = 0.
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In order to get more information from (1.11), we introduce the following
adjoint equation:

(1.13)

{
dY (t) = −

[
aY (t) +X(t)

]
dt+ Z(t)dW (t), t ∈ [0, T ],

Y (T ) = X(T ).

and we require that the processes Y (·) and Z(·) both be {Ft}t≥0-adapted.
It is clear that (1.13) is a BSDE with a more general form than the one we
saw in §1.1, since Y (·) is specified at t = T , and X(T ) is FT -measurable in
general.
Now let us assume that (1.13) admits an adapted solution (Y (·), Z(·)).

Then, applying Itô’s formula to Y (t)ξ(t), one has

(1.14)

E
[
X(T )ξ(T )

]
= E
[
Y (T )ξ(T )

]
= E

∫ T
0

{[
− aY (t)−X(t)

]
ξ(t) + Y (t)

[
aξ(t) + bv(t)

]}
dt

= E

∫ T
0

[
−X(t)ξ(t) + bY (t)v(t)

]
dt.

Hence, (1.11) becomes

(1.15) 0 ≤ E
∫ T
0

[
bY (t) + u(t)

]
v(t)dt.

Since v(·) is arbitrary, we obtain that
(1.16) u(t) = −bY (t), a.e. t ∈ [0, T ], a.s.
We note that since Y (·) is required to be {Ft}t≥0-adapted, the process
u(·) is an admissible control (this is why we need the adapted solution for
(1.13)!). Substituting (1.16) into the state equation (1.9), we finally obtain
the following optimality system:

(1.17)

⎧⎪⎪⎨⎪⎪⎩
dX(t) =

[
aX(t)− b2Y (t)

]
dt+ dW (t),

dY (t) = −
[
aY (t) +X(t)

]
dt+ Z(t)dW (t),

t ∈ [0, T ],

X(0) = x, Y (T ) = X(T ).

We see that the equation for X(·) is forward (since it is given the initial
datum) and the equation for Y (·) is backward (since it is given the final
datum). Thus, (1.17) is a coupled forward-backward stochastic differential
equation (FBSDE, for short). It is clear that if we can prove that (1.17)
admits an adapted solution (X(·), Y (·), Z(·)), then (1.16) gives an optimal
control, solving the original stochastic optimal control problem. Further, if
the adapted solution (X(·), Y (·), Z(·)) of (1.17) is unique, so is the optimal
control u(·).

§1.3. Stochastic differential utility
Two of the most remarkable applications of the theory of BSDEs (a spe-
cial case of FBSDEs) in finance theory have been the stochastic differential
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utility and the contingent claim valuation. In this and the following sub-
sections, we describe these problems from the perspective of FBSDEs.
Stochastic differential utility is an extension of the notion of recursive

utility to a continuous-time, stochastic setting. In the simplest discrete, de-
terministic model (see, e.g., Koopmans [1]), the problem of recursive utility
is to find certain utility functions that satisfy a recursive relation. For ex-
ample, assume that the consumption plans are denoted by c = {c0, c1, · · ·},
where ct represents the consumption in period t, and the current utility is
denoted by Vt, then we say that V = {Vt : t = 0, 1, · · ·} defines a recursive
utility if the sequence V0, V1, · · · satisfies the recursive relation:

(1.18) Vt =W (ct, Vt+1), t = 0, 1, · · · ,

where the function W is called the aggregator. We should note that in
(1.18), the recursive relation is backwards. The problem can also be stated
as finding a utility function U defined on the space of consumption plans
such that, for any t = 0, 1, · · ·, it holds that Vt = U({ct, ct+1, · · ·}), where V
satisfies (1.18). In particular, the utility function U can be simply defined
by U({c0, c1, · · ·}) = V0, once (1.18) is solved.
In the continuous-time model one often describes the consumption plan

by its rate c = {c(t) : t ≥ 0}, where c(t) ≥ 0, ∀t ≥ 0 (hence the accumulate
consumption up to time t is

∫ t
0
c(s)ds). The current utility is denoted by

Y (t)
Δ
=U({c(s) : s ≥ t}), and the recursive relation (1.18) is replaced by a

differential equation:

(1.19)
dY (t)

dt
= −f(c(t), Y (t)),

where the function f is the aggregator. We note that the negative sign in
front of f reflects the time-reverse feature seen in (1.18). Again, once a
solution of (1.19) can be determined, then U(c) = Y (0) defines a unitiliy
function.
An interesting variation of (1.18) and (1.19) is their finite horizon ver-

sion, that is, there is a terminal time T > 0, such that the problem is re-
stricted to 0 ≤ t ≤ T . Suppose that the utility of the terminal consumption
is given by u(c(T )) for some prescribed utility function u, then the (back-
ward) difference equation (1.18) with terminal condition VT = u(c(T )) can
be solved uniquely. Likewise, we may pose (1.19), the continuous counter-
part of (1.18), as a terminal value problem with given Y (T ) = u(c(T )), or
equivalently,

(1.20) Y (t) = u(c(T )) +

∫ T
t

f(c(s), Y (s))ds, t ∈ [0, T ].

In a stochastic model (model with uncertainty) one assumes that both
consumption c and utility Y are stochastic processes, defined on some (fil-
tered) probability space (Ω,F , {Ft}t≥0,P). A standard setting is that at
any time t ≥ 0 the consumption rate c(t) and the current utility Y (t) can
only be determined by the information up to time t. Mathematically, this
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axiomatic assumption amounts to saying that the processes c and Y are
both adapted to the filtration {Ft}t≥0. Let us now consider (1.20) again,
but bearing in mind that c and Y are {Ft}t≥0-adapted processes. Taking
conditional expectation on both sides of (1.20), we obtain

(1.21) Y (t) = E{Y (t)|Ft} = E
{
u(c(T )) +

∫ T
t

f(c(s), Y (s))ds
∣∣Ft},

for all t ∈ [0, T ]. In the special case when the filtration is generated by a
given Brownian motion W , just as we have assumed in this book, we can
apply the Martingale Representation Theorem as before to derive that

(1.22) Y (t) = u(c(T )) +

∫ T
t

f(c(s), Y (s))ds −
∫ T
t

Z(s)dWs, t ∈ [0, T ].

That is, (Y, Z) satisfies the BSDE (1.22). A more general BSDE that
models the recursive utility is one in which the aggregator f depends also
on Z. The following situation more or less justifies this point. Let U be
another utility function such that U = ϕ ◦ U for some C2 function ϕ with
ϕ′(x) > 0, ∀x (in this case we say that U and U are ordinally equivalent).
Let us define ū = ϕ ◦ u, Y (t) = ϕ(Y (t)), Z(t) = ϕ′(Y (t))Z(t), and

f̄(c, y, z) = ϕ′(ϕ−1(y))f(c, ϕ−1(y))− ϕ
′′(ϕ−1(y))
ϕ′(ϕ−1(y))

z.

Then an application of Itô’s formula shows that (Y , Z) satisfies the BSDE
(1.22) with a new terminal condition ū(c(T )) and a new aggregator f̄ , which
now depends on z.
The BSDE (1.22) can be turned into an FBSDE, if the consumption

plan depends on other random sources which can be described by some
other (stochastic) differential equations. The following scenario, studied by
Duffie-Ceoffard-Skiadas [1], should be illustrative. Consider m agents shar-
ing a total endowment in an economy. Assume that the total endowment,
denoted by e, is a continuous, non-negative, {Ft}t≥0-adapted process; and
that each agent has his own consumption process ci and utility process Y i

satisfying

(1.23) Y i(t) = ui(c
i(T )) +

∫ T
t

f i(ci(s), Y i(s))ds+

∫ T
t

Zi(s)dW (s),

for t ∈ [0, T ]. For a given weight vector α ∈ lRm+ , we say that an allocation
cα = (c

1
α, · · · , cmα ) is α-efficient if

(1.24)

m∑
i=1

αiUi(c
i
α) =sup

{ m∑
i=1

αiUi(c
i)
∣∣ m∑
i=1

ci(t) ≤ e(t), t ∈ [0, T ], a.s.
}
,

where Ui(c
i) = Y i(0).

It is conceivable that the α-efficient allocation cα is no longer an in-
dependent process. In fact, using techniques of non-linear programming
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it can be shown that, under certain technical conditions on the aggrega-
tors f i’s and the terminal utility functions ui’s, the process cα takes the
form: cα(t) = K(λ(t), e(t), Y (t)), for some lR

m-valued function K, and
λ = (λ1, · · · , λm), derived from a first-order necessary condition of the op-
timization problem (1.24), satisfies the differential equation:

(1.25) dλi(t) = λi(t)bi(t, λ(t), Y (t))dt; t ∈ [0, T ],

with bi(t, λ, y, ω) = ∂fi(c,yi)
∂yi

∣∣
c=(Ki(λ,e(t,ω),y))

. Thus (1.23) and (1.25) form

an FBSDE.

§1.4. Option pricing and contingent claim valuation
In this subsection we discuss option pricing problems in finance and their
relationship with FBSDEs. Consider a security market that contains, say,
one bond and one stock. Suppose that their prices are subject to the
following system of stochastic differential equations:

(1.26)

{
dP0(t) = r(t)P0(t)dt, (bond);

dP (t) = P (t)b(t)dt+ P (t)σ(t)dW (t), (stock),

where r(·) is the interest rate of the bond, b(·) and σ(·) are the appreciation
rate and volatility of the stock, respectively.
An option is by definition a contract which gives its holder the right to

sell or buy the stock. The contract should contain the following elements:
1) a specified price q (called the exercise price, or striking price);
2) a terminal time T (called the maturity date or expiration date);
3) an exercise time.
In this book we are particularly interested European options, which

specify the exercise time to be exactly equal to T , the maturity date. Let
us take the European call option (which gives its holder the right to buy)
as an example. The decision of the holder will depend, conceivably, on
P (T ), the stock price at time T . For instance, if P (T ) < q, then the
holder would simply discard the option, and buy the stock directly from
the market; whereas if P (T ) > q, then the holder should opt to exercise the
option to make profit. Therefore the total payoff of the writer (or seller) of
the option at time t = T will be (P (T ) − q)+, an FT -measurable random
variable. The (option pricing) problem to the seller (and buyer alike) is
then how to determine a premium for this contract at present time t = 0.
In general, we call such a contract an option if the payoff at time t = T can
be written explicitly as a function of P (T ) (e.g., (P (T ) − q)+). In all the
other cases where the payoff at time t = T is just an FT -measurable random
variable, such a contract is called a contingent claim, and the corresponding
pricing problem is then called contingent claim valuation problem.
Now suppose that the agent sells the option at price y and then invests

it in the market, and we denote his total wealth at each time t by Y (t).
Obviously, Y (0) = y. Assume that at each time t the agent invests a
portion of his wealth, say π(t), called portfolio, into the stock, and puts
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the rest (Y (t) − π(t)) into the bond. Also we assume that the agent can
choose to consume so that the cumulative consumption up to time t is
C(t), an {Ft}t≥0-adapted, nondecreasing process. It can be shown that the
dynamics of Y (·) and the portfolio/consumption process pair (π(·), C(·))
should follow an SDE as well:

(1.27)

{
dY (t) =

{
r(t)Y (t) + Z(t)θ(t)

}
dt+ Z(t)dW (t)− dC(t),

Y (0) = y,

where Z(t) = π(t)σ(t), and θ(t)
Δ
= σ−1(t)[b(t) − r(t)] (called risk premium

process). For any contingent claim H ∈ L2FT (Ω, lR), the purpose of the
agent is to choose such a pair (π,C) as to come up with enough money
to “hedge” the payoff H at time t = T , that is, Y (T ) ≥ H . Such a
consumption/investment pair, if exist, is called a hedging strategy against
H . The fair price of the contingent claim is the smallest initial endowment
for which the hedging strategy exists. In other words, it is defined by

(1.28) y∗ = inf{y = Y (0); ∃(π,C), such that Y π,C(T ) ≥ H}.

Now suppose H = g(P (T )), and consider an agent who is so prudent that
he does not consume at all (i.e., C ≡ 0), and is able to choose π so that
Y (T ) = H = g(P (T )). Namely, he chooses Z (whence π) by solving the
following combination of (1.26) and (1.27):

(1.29)

⎧⎪⎨⎪⎩
dP (t) = P (t)b(t)dt + P (t)σ(t)dW (t),

dY (t) =
{
r(t)Y (t) + Z(t)θ(t)

}
dt+ Z(t)dW (t),

P (0) = p, Y (T ) = g(P (T )),

which is again an FBSDE (an decouped FBSDE, to be more precise). An
interesting result is that if (1.29) has an adapted solution (Y, Z), then the
pair (π, 0), where π = Zσ−1, is the optimal hedging strategy and y = Y (0)
is the fair price! A more complicated case in which we allow the interaction
between the agent’s wealth/strategy and the stock price will be studied
in details in Chapter 8. In that case (1.29) will become a truly coupled
FBSDE.

§2. Definitions and Notations
In this section we list all the notations that will be frequently used through-
out the book, and give some definitions related to FBSDEs.
Let lRn be the n-dimensional Euclidean space with the usual Euclidean

norm | · | and the usual Euclidean inner product 〈 · , · 〉. Let lRm×d be the
Hilbert space consisting of all (m× d)-matrices with the inner product

(2.1) 〈A,B 〉 Δ=tr
{
ABT

}
, ∀A,B ∈ lRm×d.

Thus, the norm |A| of A induced by inner product (2.1) is given by |A| =√
tr {AAT } . Another natural norm for A ∈ lRm×d could be taken as
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‖A‖ Δ=
√
maxσ(AAT ) if we regard A as a linear operator from lRm to lRd,

where σ(AAT ) is the set of all eigenvalues of AAT . It is clear that the
norms | · | and ‖ · ‖ are equivalent since lRm×d is a finite dimensional space.
In fact, the following relations hold:

(2.2) ‖A‖ ≤
√
tr {AAT } = |A| ≤

√
m ∧ d‖A‖, ∀A ∈ lRm×d,

where m ∧ d = min{m, d}. We will see that in our later discussions, the
norm | · | in lRm×d induced by (2.1) is more convenient.
Next, we let T > 0 be fixed and (Ω,F , {Ft}t≥0,P) be as assumed at

the beginning of §1. We denote
• for any sub-σ-field G of F , L2G(Ω; lRm) to be the set of all G-measurable
lRm-valued square integrable random variables;

• L2F(Ω;L2(0, T ; lRn)) to be the set of all {Ft}t≥0-progressively measur-
able processes X(·) valued in lRn such that

∫ T
0
E|X(t)|2dt < ∞. The

notation L2F(0, T ; lR
n) is often used for simplicity, when there is no

danger of confusion.

• L2F(Ω;C([0, T ]; lRn)) to be the set of all {Ft}t≥0-progressively mea-
surable continuous processes X(·) taking values in lRn, such that
E supt∈[0,T ] |X(t)|2 <∞.
Also, for any Euclidean spaces M and N , we let

• L2F(0, T ;W 1,∞(M ;N)) be the set of all functions f : [0, T ] × M ×
Ω → N , such that for any fixed θ ∈ M , (t, ω) �→ f(t, θ;ω) is {Ft}t≥0-
progressively measurable with f(t, 0;ω) ∈ L2F(0, T ;N), and there exists
a constant L > 0, such that

|f(t, θ;ω)− f(t, θ;ω)| ≤ L|θ − θ|, ∀θ, θ ∈M, a.e. t ∈ [0, T ], a.s. ;

• L2FT (Ω;W 1,∞(lR
n; lRm)) be the set of all functions g : lRn × Ω→ lRm,

such that ω �→ g(x;ω) is FT -measurable for all x ∈ lRn and x �→ g(x;ω)
is uniformly Lipschitz in x ∈ lRn and g(0;ω) ∈ L2F(Ω; lRm).
Further, we define

(2.3)
M[0, T ] Δ=L2F(Ω;C([0, T ]; lRn))× L2F(Ω;C([0, T ]; lRm))

× L2F(0, T ; lR�).
The norm of this space is defined by

(2.4)

‖(X(·), Y (·), Z(·))‖ =
{
E sup
t∈[0,T ]

|X(t)|2 + E sup
t∈[0,T ]

|Y (t)|2

+ E

∫ T
0

|Z(t)|2dt
}1/2
,

for all (X(·), Y (·), Z(·)) ∈ M[0, T ]. It is clear that M[0, T ] is a Banach
space under norm (2.4).
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We are now ready to give the formal description of an FBSDE. Let us
consider an FBSDE in its most general form:

(2.5)

⎧⎪⎨⎪⎩
dX(t) = b(t,X(t), Y (t), Z(t))dt+ σ(t,X(t), Y (t), Z(t))dW (t),

dY (t) = h(t,X(t), Y (t), Z(t))dt+ σ̂(t,X(t), Y (t), Z(t))dW (t),

X(0) = x, Y (T ) = g(X(T )).

Here, the initial value x of X(·) is in lRn; and b, σ, h, σ̂ and g are some suit-
able functions which satisfy the following Standing Assumptions: denoting
M = lRn × lRm × lR�, one has

(2.6)

⎧⎪⎨⎪⎩
b ∈ L2F(0, T ;W 1,∞(M ; lRn)), σ ∈ L2F(0, T ;W 1,∞(M ; lRn×d)),
h ∈ L2F(0, T ;W 1,∞(M ; lRm)), σ̂ ∈ L2F(0, T ;W 1,∞(M ; lRm×d)),
g ∈ L2FT (Ω;W

1,∞(lRn; lRm)).

Definition 2.1. A process (X(·), Y (·), Z(·)) ∈M[0, T ] is called an adapted
solution of (2.5) if the following holds for any t ∈ [0, T ], almost surely:

(2.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(t) = x+

∫ t
0

b(s,X(s), Y (s), Z(s))ds

+

∫ t
0

σ(s,X(s), Y (s), Z(s))dW (s),

Y (t) = g(X(T ))−
∫ T
t

h(s,X(s), Y (s), Z(s))ds

−
∫ T
t

σ̂(s,X(s), Y (s), Z(s))dW (s).

Furthermore, we say that FBSDE (2.5) is solvable if it has an adapted
solution. An FBSDE is said to be nonsolvable if it is not solvable.

In what follows we shall try to answer the the following natural ques-
tion: for given b, σ, h, σ̂ and g satisfying (2.6) and for given x ∈ lRn, is
(2.5) always solvable? In fact, what makes this type of SDE interesting is
that the answer to this question is not affirmative, although the standing
assumption (2.6) is already quite strong from the standard SDE point of
view.

§3. Some Nonsolvable FBSDEs
In this section we shall first present some nonsolvability results, and then
give some necessary conditions for the solvability.
It is well-known that two-point boundary value problems for ordinary

differential equations do not necessarily admit solutions. On the other
hand, an FBSDE can be viewed as a two-point boundary value problem for
stochastic differential equations, with extra requirement that its solution is
adapted solely to the forward filtration. Therefore, we do not expect the
general existence and uniqueness result, even under the conditions that are
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usually considered strong in the SDE literature; for instance, the uniform
Lipschitz conditions.
The following result is closely related to the solvability of two-point

boundary value problem for ordinary differential equations.

Proposition 3.1. Suppose that the following two-point boundary value
problem for a system of linear ordinary differential equations does not admit
any solution:

(3.1)

⎧⎪⎨⎪⎩
(
Ẋ(t)
Ẏ (t)

)
= A(t)

(
X(t)
Y (t)

)
, t ∈ [0, T ],

X(0) = x, Y (T ) = GX(T ),

where A(·) : [0, T ]→ lR(n+m)×(n+m) is a deterministic integrable function
and G ∈ lRm×n. Then, for any properly defined σ(t, x, y, z) and σ̂(t, x, y, z),
the following FBSDE:

(3.2)

⎧⎪⎨⎪⎩ d
(
X(t)
Y (t)

)
= A(t)

(
X(t)
Y (t)

)
dt+

(
σ(t,X(t), Y (t), Z(t))
σ̂(t,X(t), Y (t), Z(t))

)
dW (t),

X(0) = x, Y (T ) = GX(T ),

does not admit any adapted solution.

Here, by properly defined σ, we mean that for any (X,Y, Z) ∈M[0, T ]
the process σ(t,X(t), Y (t), Z(t)) is in L2F(0, T ; lR

n×d). The similar holds
for σ̂.

Proof. Suppose (3.2) admits an adapted solution (X,Y, Z) ∈ M[0, T ].
Then, (EX(·), EY (·)) is a solution of (3.1), a contradiction. This proves
the assertion.

There are many examples of systems like (3.1) which do not admit
solutions. Here is a very simple one: (n = m = 1)

(3.3)

⎧⎪⎨⎪⎩
Ẋ = Y,

Ẏ = −X,
X(0) = x, Y (T ) = −X(T ).

We can easily show that for T = kπ + 3π
4 (k, nonnegative integer), the

above two-point boundary value problem does not admit a solution for any
x ∈ lR \ {0} and it admits infinitely many solutions for x = 0.
Using (3.3) and time scaling, we can construct a nonsolvable two-point

boundary value problem for a system of linear ordinary differential equa-
tions of (3.1) type over any given finite time duration [0, T ] with the un-
knowns X , Y taking values in lRn and lRm, respectively. Then, by Proposi-
tion 3.1, we see that for any duration T > 0 and any dimensions n, m, � and
d for the processes X , Y , Z and the Brownian motion W (t), nonsolvable
FBSDEs exist.
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The case that we have discussed in the above is a little special since
the drift of the FBSDE is linear. Let us now look at some more general
case. The following result gives a necessary condition for the solvability of
FBSDE (2.1).

Proposition 3.2. Assume that b, σ, h and σ̂ satisfy (2.6). Assume further
that σ and σ̂ are continuous in (t, x, y) uniformly in z, for each ω ∈ Ω;
and that g ∈ C2 ∩ C1b (lRn; lRm) and is deterministic. Suppose for some
x ∈ lRn, there exists a T > 0, such that (2.5) admits an adapted solution
(X,Y, Z) ∈ M[0, T ] with

(3.4) tr {gixx(X)(σσT )(· , X, Y, Z)} ∈ L2F(0, T ; lR), 1 ≤ i ≤ m.

Then,

(3.5)
inf
z∈lR�

|σ̂(T,X(T ), g(X(T )), z)

− gx(X(T ))σ(T,X(T ), g(X(T )), z)| = 0, a.s.
Furthermore, suppose there exists a T0 > 0, such that for all T ∈ (0, T0],
(2.5) admits an adapted solution (X,Y, Z) (depending on T > 0) satisfying
the following:

(3.6)

∫ T
0

E
{
|b(s,X(s), Y (s), Z(s))|2 + |σ(s,X(s), Y (s), Z(s))|β

}
ds ≤ C,

for some constants C > 0 and β > 2, independent of T ∈ (0, T0]. Then,

(3.7) E inf
z∈lR�

|σ̂(0, x, g(x), z)− gx(x)σ(0, x, g(x), z)| = 0.

Proof. Let (X,Y, Z) ∈ M[0, T ] be an adapted solution of (2.5). We
denote ⎧⎨⎩ h̃(s) = (h̃

1(s), · · · , h̃m(s))T ,

h̃i = hi − 〈 gix, b 〉−
1

2
tr (gixxσσ

T ), 1 ≤ i ≤ m.

Here, we have suppressed X,Y, Z and we will do so below for the notational
simplicity. Clearly, h̃ ∈ L2F(0, T ; lRm). Next, for any i = 1, 2, · · · ,m, by
Itô’s formula

(3.8)

0 = E|Y i(T )− gi(X(T ))|2

= E|Y i(t)− gi(X(t))|2 + E
∫ T
t

|σ̂i − gixσ|2ds

+ E

∫ T
t

2
[
Y i(s)− gi(X(s))

][
hi − 〈 gix, b 〉−

1

2
tr (gixxσσ

T )
]
ds

= E|Y i(t)− gi(X(t))|2 + E
∫ T
t

|σ̂i − gixσ|2ds

+ E

∫ T
t

2
[
Y i(s)− gi(X(s))

]
h̃i(s)ds.
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On the other hand, by (2.5) and Itô’s formula, we have

(3.9)

Y i(s)− gi(X(s)) = Y i(s)− Y i(T ) + gi(X(T ))− gi(X(s))

= −
∫ T
s

h̃i(r)dr −
∫ T
s

(σ̂i − gixσ)dW (r).

Combining (3.8) and (3.9), we obtain that

(3.10)

E|Y (t)− g(X(t))|2 + E
∫ T
t

∣∣σ̂ − gxσ∣∣2ds
= −2E

∫ T
t

〈Y (s)− g(X(s)), h̃(s) 〉 ds

= 2E

∫ T
t

〈
∫ T
s

h̃(r)dr +

∫ T
s

[σ̂ − gxσ]dW (r), h̃(s) 〉 ds

= 2E

∫ T
t

〈
∫ T
s

h̃(r)dr, h̃(s) 〉 ds

≤ (T − t)
∫ T
t

E|h̃(r)|2dr = o(T − t).

In the above, we have used the fact that

E
{
〈
∫ T
s

[σ̂ − gxσ]dW (r), h̃(s) 〉
}
= 0.

Consequently, we have that

(3.11)

E

∫ T
t

inf
z∈lR�

∣∣σ̂(s,X(s), Y (s), z)− gx(X(s))σ(s,X(s), Y (s), z)∣∣2ds
≤ E

∫ T
t

∣∣σ̂ − gxσ∣∣2ds = o(T − t).
Since σ and σ̂ are continuous in (t, x, y), uniformly in z, the process

F (s)
Δ
= infz∈lR�

∣∣σ̂(s,X(s), Y (s), z)−gx(X(s))σ(s,X(s), Y (s), z)|2 is contin-
uous, and an easy application of Lebesgue’s Dominated Convergence The-
orem and Differentiation Theorem leads to that

EF (T ) = lim
T−t→0

E
{ 1

T − t

∫ T
t

F (s)ds
}
= 0,

proving (3.5) since F (T ) is nonnegative. Finally, if (3.6) holds, then by the
forward equation in (2.5) one has

(3.12) lim
T→0
E|X(T )− x|2 = 0,

uniformly (note that (X(·), Y (·), Z(·)) depends on the time duration [0, T ]
on which (2.5) is solved). Hence, (3.7) follows.

We note that (3.4) holds if both gixx and σ are bounded, and (3.6) holds
if both b and σ are bounded.
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An interesting corollary of Proposition 3.2 is the following nonsolvabil-
ity result for FBSDEs.

Corollary 3.3. Suppose σ̂ is continuous in (t, x, y, z) and uniformly Lips-
chitz continuous in (x, y, z). Suppose there exists an ε > 0, such that

(3.13) {σ̂(0, x, y, z)
∣∣ z ∈ lR�} ⊂ lRm×d \Bε(σ̂0), a.s.

for some (x, y) ∈ lRn × lRm and some σ̂0 ∈ lRm×d, where Bε(σ̂0) is the
closed ball in lRm×d centered at σ̂0 with radius ε. Then there exist smooth
functions b, σ, h and g, such that the corresponding FBSDE (2.1) does not
have adapted solutions over all small enough time durations [0, T ].

Proof. In the present case, we may choose b, σ, h and g such that (3.6)
holds but (3.7) does not hold. Then our claim follows.

Since we are mainly interested in the case that FBSDEs do have
adapted solutions, we should prevent the situation (3.13) from happening.
A natural way of doing that is to assume that

(3.14) {σ̂(0, x, y, z)
∣∣ z ∈ lR�} = lRm×d, ∀(x, y) ∈ lRn × lRm, a.s.

This implies that � ≥ md. Further, (3.14) suggests us to simply take

(3.15) σ̂(t, x, y, z) ≡ z, ∀(t, x, y) ∈ [0, T ]× lRn × lRm,

with z ∈ lRm×d. From now on, we will restrict ourselves to such a situation.
Hence, (2.5) becomes

(3.16)

⎧⎪⎨⎪⎩
dX(t) = b(t,X(t), Y (t), Z(t))dt+ σ(t,X(t), Y (t), Z(t))dW (t),

dY (t) = h(t,X(t), Y (t), Z(t))dt+ Z(t)dW (t),

X(0) = x, Y (T ) = g(X(T )).

Also, (2.3) now should be changed to the following:

(3.17)
M[0, T ] Δ=L2F(Ω;C([0, T ]; lRn))× L2F(Ω;C([0, T ]; lRm))

× L2F(0, T ; lRm×d).

We keep (2.4) as the norm ofM[0, T ], but now |Z(t)|2 = tr {Z(t)Z(t)T }.

§4. Well-posedness of BSDEs
We now briefly look at the well-posedness of BSDEs. The purpose of this
section is to recall a natural technique used in proving the well-posedness
of BSDEs, namely, the method of contraction mapping.
We consider the following BSDE (compare with (3.16)):

(4.1)

{
dY (t) = h(t, Y (t), Z(t))dt + Z(t)dW (t), t ∈ [0, T ],
Y (T ) = ξ,

where ξ ∈ L2FT (Ω; lR
m) and h ∈ L2F(0, T ;W 1,∞(lRm × lRm×d; lRm)) i.e.,

(recall from §2), h : [0, T ] × lRm × lRm×d × Ω → lRm, such that (t, ω) �→
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h(t, y, z;ω) is {Ft}t≥0-progressively measurable for all (y, z) ∈ lRm× lRm×d
with h(t, 0, 0;ω) ∈ L2F(0, T ; lRm) and for some constant L > 0,

(4.2)
|h(t, y, z)−h(t, y, z)| ≤ L

{
|y − y|+ |z − z|

}
,

∀y, y ∈ lRm, z, z ∈ lRm×d, a.e. t ∈ [0, T ], a.s.
Denote

(4.3) N [0, T ] Δ=L2F(Ω;C([0, T ]; lRm))× L2F(0, T ; lRm×d),

and

(4.4) ‖(Y (·), Z(·))‖N [0,T ] Δ=
{
E sup
0≤t≤T

|Y (t)|2 + E
∫ T
0

|Z(t)|2dt
}1/2
.

Then, N [0, T ] is a Banach space under norm (4.4). We can similarly define
N [t, T ], for t ∈ [0, T ).
Let us introduce the following definition (compare with Definition 2.1).

Definition 4.1. A processes (Y (·), Z(·)) ∈ N [0, T ] is called an adapted
solution of (4.1) if the following holds:

(4.5)
Y (t) = ξ −

∫ T
t

h(s, Y (s), Z(s))ds−
∫ T
t

Z(s)dW (s),

∀t ∈ [0, T ], a.s.

The following result gives the existence and uniqueness of adapted so-
lutions to BSDE (4.1).

Theorem 4.2. Let h ∈ L2F(0, T ;W 1,∞(lRm × lRm×d; lRm)). Then, for any
ξ ∈ L2FT (Ω; lR

m), BSDE (4.1) admits a unique adapted solution (Y (·), Z(·)).
Proof. For any (y(·), z(·)) ∈ N [0, T ], we know that

(4.6) h(·) ≡ h(· , y(·), z(·)) ∈ L2F (0, T ; lRm).

Now, we define

(4.7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M(t) = E

{
ξ −
∫ T
0

h(s)ds
∣∣Ft},

Y (t) = E
{
ξ −
∫ T
t

h(s)ds
∣∣Ft}, t ∈ [0, T ].

Then M(t) is an {Ft}t≥0-martingale (square integrable), and

(4.8) M(0) = E
{
ξ −
∫ T
0

h(s)ds
}
= Y (0).

Therefore, by the Martingale Representation Theorem, we can find a Z(·) ∈
L2F(0, T ; lR

m×d), such that

(4.9) M(t) =M(0) +

∫ t
0

Z(s)dW (s), ∀t ∈ [0, T ].
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Since ξ is FT -measurable, we see that (note (4.7)–(4.8))

(4.10) ξ −
∫ T
0

h(s)ds =M(T ) = Y (0) +

∫ T
0

Z(s)dW (s).

Consequently, by (4.7)–(4.10), we obtain

(4.11)

Y (t) =M(t) +

∫ t
0

h(s)ds

= Y (0) +

∫ t
0

Z(s)dW (s) +

∫ t
0

h(s)ds

= ξ −
∫ T
0

h(s)ds−
∫ T
0

Z(s)dW (s)

+

∫ t
0

h(s)ds+

∫ t
0

Z(s)dW (s)

= ξ −
∫ T
t

h(s)ds−
∫ T
t

Z(s)dW (s).

It is not very hard to show that actually (Y (·), Z(·)) ∈ N [0, T ] (See below
for a similar proof). Thus, we obtain an adapted solution (Y (·), Z(·)) to
the following equation:

(4.12)

{
dY (t) = h(t, y(t), z(t))dt+ Z(t)dW (t),

Y (T ) = ξ.

Now, let (y(·), z(·)) ∈ N [0, T ] and (Y (·), Z(·)) ∈ N [0, T ] be the correspond-
ing solution of (4.12). Then, by Itô’s formula and (4.2), we have

(4.13)

E|Y (t)− Y (t)|2 + E
∫ T
t

|Z(s)− Z(s)|2ds

≤ 2LE
∫ T
t

|Y (s)− Y (s)|
{
|y(s)− y(s)|+ |z(s)− z(s)|

}
ds.

Next, we set

(4.14)

⎧⎨⎩ϕ(t) =
{
E|Y (t)− Y (t)|2

}1/2
,

ψ(t) =
{
E|y(t)− y(t)|2

}1/2
+
{
E|z(t)− z(t)|2

}1/2
.

Then, (4.13) implies

(4.15) ϕ(t)2 + E

∫ T
t

|Z(s)− Z(s)|2ds ≤ 2L
∫ T
t

ϕ(s)ψ(s)ds, t ∈ [0, T ].

We have the following lemma.

Lemma 4.3. Let (4.15) hold. Then,

(4.16) ϕ(t)2 + E

∫ T
t

|Z(s)− Z(s)|2ds ≤ L2
{∫ T
t

ψ(s)ds
}2
, ∀t ∈ [0, T ].
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Proof. We call the right hand side of (4.15) 2Lθ(t). Then, by (4.15),

(4.17) θ′(t) = −ϕ(t)ψ(t) ≥ −ψ(t)
√
2Lθ(t) ,

which yields

(4.18)
{√
θ(t)
}′ ≥ −√L/2ψ(t).

Noting θ(T ) = 0, we have

(4.19) −
√
θ(t) ≥ −

√
L/2

∫ T
t

ψ(s)ds.

Consequently,

(4.20) θ(t) ≤ L
2

{∫ T
t

ψ(s)ds
}2
, ∀t ∈ [0, T ].

Hence, (4.16) follows from (4.15) and (4.20).

Now, applying the above result to (4.13), we obtain

(4.21)

E|Y (t)− Y (t)|2 + E
∫ T
t

|Z(s)− Z(s)|2ds

≤ L2
{∫ T
t

{(
E|y(s)− y(s)|2

)1/2
+
(
E|z(s)− z(s)|2

)1/2}
ds
}2

≤ C(T − t)‖(y(·), z(·))− (y(·), z(·))‖2N [t,T ].

Then, by Doob’s inequality, we further have

(4.22)
‖(Y (·), Z(·)) − (Y (·), Z(·))‖2N [t,T ]
≤ C(T − t)‖(y(·), z(·))− (y(·), z(·))‖2N [t,T ], ∀t ∈ [0, T ].

Here C > 0 is a constant depending only on L. By taking δ = 1
2C , we

see that the map (y(·), z(·)) �→ (Y (·), Z(·)) is a contraction on the Banach
space N [T − δ, T ]. Thus, it admits a unique fixed point, which is the
adapted solution of (4.1) with [0, T ] replaced by [T − δ, T ]. By continuing
this procedure, we obtain existence and uniqueness of the adapted solutions
to (4.1).

We now prove the continuous dependence of the solutions on the final
data ξ and the function h.

Theorem 4.4. Let h, h ∈ L2F(0, T ;W 1,∞(lRm × lRm×d; lRm)) and ξ, ξ ∈
L2FT (Ω; lR

m). Let (Y (·), Z(·)), (Y (·), Z(·)) ∈ N [0, T ] be the adapted solu-
tions of (4.1) corresponding to (h, ξ) and (h, ξ), respectively. Then

(4.23)

‖(Y (·)− Y (·), Z(·) − Z(·))‖2N [0,T ]

≤ C
{
E|ξ − ξ|2 + E

∫ T
0

|h(s, Y (s), Z(s))− h(s, Y (s), Z(s))|2ds
}
,
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with C > 0 being a constant only depending on T > 0 and the Lipschitz
constants of h and h.

Proof. We denote

(4.24)

{
Ŷ (·) = Y (·)− Y (·), Ẑ(·) = Z(·)− Z(·),
ξ̂ = ξ − ξ, ĥ(·) = h(· , Y (·), Z(·)) − h(· , Y (·), Z(·)).

Applying Itô’s formula to |Ŷ (·)|2, we obtain

(4.25)

|Ŷ (t)|2 +
∫ T
t

|Ẑ(s)|2ds

= |ξ̂|2 − 2
∫ T
t

〈 Ŷ (s), h(s, Y (s), Z(s))− h(s, Y (s), Z(s)) 〉 ds

− 2
∫ T
t

〈 Ŷ (s), Ẑ(s)dW (s) 〉

≤ |ξ̂|2 + 2
∫ T
t

{
|Ŷ (s)||ĥ(s)|+ L|Ŷ (s)|

(
|Ŷ (s)|+ |Ẑ(s)|

)}
ds

− 2
∫ T
t

〈 Ŷ (s), Ẑ(s)dW (s) 〉

≤ |ξ̂|2 +
∫ T
t

{
(1 + 2L+ 2L2)|Ŷ (s)|2 + 1

2
|Ẑ(s)|2 + |ĥ(s)|2

}
ds

− 2
∫ T
t

〈 Ŷ (s), Ẑ(s)dW (s) 〉 .

Taking expectation in the above, we have

(4.26)

E|Ŷ (t)|2 + 1
2
E

∫ T
t

|Ẑ(s)|2ds ≤ E|ξ̂|2 + E
∫ T
0

|ĥ(s)|2ds

+ (1 + 2L+ 2L2)E

∫ T
t

|Ŷ (s)|2ds, t ∈ [0, T ].

Thus, it follows from Gronwall’s inequality that

(4.27)

E|Ŷ (t)|2 + E
∫ T
t

|Ẑ(s)|2ds

≤ C
{
E|ξ̂|2 + E

∫ T
0

|ĥ(s)|2ds
}
, ∀t ∈ [0, T ].

On the other hand, by Burkholder-Davis-Gundy’s inequality (see Karatzas-
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Shreve [1]), we have from (4.25) that (note (4.27))

(4.28)

E
{
sup
t∈[0,T ]

|Ŷ (t)|2
}
≤ C
{
E|ξ̂|2 + E

∫ T
0

|ĥ(s)|2ds
}

+ 2E sup
t∈[0,T ]

∣∣∣ ∫ T
t

〈 Ŷ (s), Ẑ(s)dW (s) 〉
∣∣∣

≤ C
{
E|ξ̂|2 + E

∫ T
0

|ĥ(s)|2ds
}

+ C1

(
E sup
t∈[0,T ]

|Ŷ (t)|2
)1/2(

E

∫ T
0

|Ẑ(s)|2ds
)1/2
.

Now (4.23) follows easily from (4.28) and (4.27).

We see that Theorems 4.2 and 4.4 give the well-posedness of BSDE
(4.1). These results are satisfactory since the conditions that we have im-
posed are nothing more than uniform Lipschitz conditions as well as certain
measurability conditions. These conditions seem to be indispensable, unless
some other special structure conditions are assumed.

§5. Solvability of FBSDEs in Small Time Durations
In this section we try to adopt the method of contraction mapping used in
the previous section to prove the solvability of FBSDE (3.16) in small time
durations. The main result is the following.

Theorem 5.1. Let b, σ, h and g satisfy (2.6). Moreover, we assume that

(5.1)

⎧⎪⎨⎪⎩
|σ(t, x, y, z;ω)− σ(t, x, y, z;ω)| ≤ L0|z − z|,

∀(x, y) ∈ lRn × lRm, z, z ∈ lRm×d, a.e. t ≥ 0, a.s.
|g(x;ω)− g(x;ω)| ≤ L1|x− x|, ∀x, x ∈ lRn, a.s.

with

(5.2) L0L1 < 1.

Then there exists a T0 > 0, such that for any T ∈ (0, T0] and any x ∈ lRn,
(3.16) admits a unique adapted solution (X,Y, Z) ∈M[0, T ].
Note that condition (5.2) is almost necessary. Here is a simple example

for which (5.2) does not hold and the corresponding FBSDE does not have
adapted solutions over any small time durations.

Example 5.2. Let n = m = d = 1. Consider the following FBSDEs:

(5.3)

⎧⎪⎨⎪⎩
dX(t) = Z(t)dW (t),

dY (t) = Z(t)dW (t),

X(0) = 0, Y (T ) = X(T ) + ξ,

where ξ is FT -measurable only (say, ξ = W (T )). Clearly, in the present
case, L0 = L1 = 1. Thus, (5.2) fails. If (5.3) admitted an adapted solution
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(X,Y, Z), then the process η
Δ
=Y −X would be {Ft}t≥0-adapted and satisfy

the following:

(5.4)

{
dη(t) = 0, t ∈ [0, T ],
η(T ) = ξ.

We know from §1 that (5.4) does not admit an adapted solution unless ξ is
deterministic.

Proof of Theorem 5.1. Let 0 < T0 ≤ 1 be undetermined and T ∈ (0, T0].
Let x ∈ lRn be fixed. We introduce the following norm:

(5.5) ‖(Y, Z)‖N [0,T ]
Δ
= sup
t∈[0,T ]

{
E|Y (t)|2 + E

∫ T
t

|Z(s)|2ds
}1/2
,

for all (Y, Z) ∈ N [0, T ]. It is clear that norm (5.5) is weaker than (4.4). We
let N [0, T ] be the completion of N [0, T ] in L2F(0, T ; lRm)×L2F(0, T ; lRm×d)
under norm (5.5). Take any (Yi, Zi) ∈ N [0, T ], i = 1, 2. We solve the
following FSDE for Xi:

(5.6)

{
dXi = b(t,Xi, Yi, Zi)dt+ σ(t,Xi, Yi, Zi)dW (t), t ∈ [0, T ],
Xi(0) = x.

It is standard that under our conditions, (5.6) admits a unique (strong)
solution Xi ∈ L2F(Ω;C([0, T ]; lRn)). By Itô’s formula and the Lipschitz
continuity of b and σ (note (5.1)), we obtain

(5.7)

E|X1(t)−X2(t)|2

≤ E
∫ t
0

{
2L|X1 −X2|

(
|X1 −X2|+ |Y1 − Y2|+ |Z1 − Z2|

)
+
(
L(|X1 −X2|+ |Y1 − Y2|) + L0|Z1 − Z2|

)2}
ds

≤ E
∫ t
0

{
Cε

(
|X1 −X2|2 + |Y1 − Y2|2

)
+ (L20 + ε)|Z1 − Z2|2

}
ds,

where Cε > 0 only depends on L, L0 and ε > 0. Then, by Gronwall’s
inequality, we obtain

(5.8) E|X1(t)−X2(t)|2 ≤ eCεTE
∫ T
0

{
Cε|Y1−Y2|2+(L20+ε)|Z1−Z2|2

}
ds.

Next, we solve the following BSDEs: (i = 1, 2)

(5.9)

{
dY i = h(t,Xi, Yi, Zi)dt+ ZidW (t), t ∈ [0, T ],
Y i(T ) = g(Xi(T )).

We see from Theorem 4.2 that (for i = 1, 2) (5.9) admits a unique adapted
solution (Y i, Zi) ∈ N [0, T ] ⊆ N [0, T ]. Thus, we have defined a map
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T : N [0, T ] → N [0, T ] by (Yi, Zi) �→ (Y i, Zi). Applying Itô’s formula
to |Y 1(t)− Y 2(t)|2, we have (note (5.1) and (5.8))

(5.10)

E|Y 1(t)− Y 2(t)|2 + E
∫ T
t

|Z1 − Z2|2ds

≤ L21E|X1(T )−X2(T )|2

+ 2LE

∫ T
t

|Y 1 − Y 2|
(
|X1 −X2|+ |Y1 − Y2|+ |Z1 − Z2|

)
ds

≤ L21E|X1(T )−X2(T )|2 + CεE
∫ T
t

|Y 1 − Y 2|2ds

+ εE

∫ T
t

|Z1 − Z2|2ds+ E
∫ T
t

(
|X1 −X2|2 + |Y1 − Y2|2

)
ds

≤ (L21 + T )eCεTE
∫ T
0

[
Cε|Y1 − Y2|2 + (L20 + ε)|Z1 − Z2|2

]
ds

+ εE

∫ T
0

|Z1 − Z2|2ds+ E
∫ T
0

|Y1 − Y2|2ds

+ CεE

∫ T
t

|Y 1 − Y 2|2ds.

In the above, Cε could be different from that appeared in (5.7)–(5.8). But
Cε is still independent of T > 0. Using Gronwall’s inequality, we have

(5.11)

E|Y 1(t)− Y 2(t)|2 + E
∫ T
t

|Z1 − Z2|2ds

≤ eCεT
{
C̃εE

∫ T
0

|Y1 − Y2|2ds

+ [ε+ (L21 + T )(L
2
0 + ε)e

CεT ]E

∫ T
0

|Z1 − Z2|2ds
}

≤ eCεT [C̃εT + ε+ (L21 + T )(L20 + ε)eCεT ]
· ‖(Y1, Z1)− (Y2, Z2)‖2N [0,T ],

where C̃ε > 0 is again independent of T > 0. In the above, the last
inequality follows from the fact that for any (Y, Z) ∈ N [0, T ],

(5.12)

⎧⎪⎨⎪⎩
E|Y (t)|2 ≤ ‖(Y, Z)‖2N [0,T ], ∀t ∈ [0, T ],∫ T
0

E|Z(t)|2dt ≤ ‖(Y, Z)‖2N [0,T ],

Since (5.2) holds, by choosing ε > 0 small enough then choosing T > 0
small enough, we obtain

(5.13) ‖(Y 1, Z1)− (Y 2, Z2)‖N [0,T ] ≤ α‖(Y1, Z1)− (Y2, Z2)‖N [0,T ],



22 Chapter 1. Introduction

for some 0 < α < 1. This means that the map T : N [0, T ] → N [0, T ] is
contractive. By the Contraction Mapping Theorem, there exists a unique
fixed point (Y, Z) for T . Then, similar to the proof of Theorem 4.2 we can
show that actually (Y, Z) ∈ N [0, T ]. Finally, we let X be the corresponding
solution of (5.6). Then (X,Y, Z) ∈ M[0, T ] is a unique adapted solution
of (3.16). The above argument applies for all small enough T > 0. Thus,
we obtain a T0 > 0, such that for all T ∈ (0, T0] and all x ∈ lRn, (3.16) is
uniquely solvable.

In the above proof, it is crucial that the time duration is small enough,
besides condition (5.2). This is the main disadvantage of applying the Con-
traction Mapping Theorem to two-point boundary value problems. Starting
from the next chapter, we are going to use different methods to approach
the solvability problem for the FBSDE (3.16).

§6. Comparison Theorems for BSDEs and FBSDEs

In this section we study an important tool in the theory of the BSDEs—
Comparison Theorems. The main ingredients in the proof of the desired
comparison results are “linearization of the equation” plus a change of
probability measure. We should also note that in the coupled FBSDE case
the situation becomes quite different. We shall give an example in the end
of this section to show that the simple-minded generalization from BSDEs
to FBSDEs fails in general.
To begin with, we consider two BSDEs: for i = 1, 2,

(6.1) Y i(t) = ξi +

∫ T
t

hi(s, Y i(s), Zi(s))ds −
∫ T
t

Zi(s)dW (s),

whereW is a d-dimensional Brownian motion, and naturally the dimension
of Y ’s and Z’s are assumed to be 1 and d, respectively. Assume that

(6.2) ξi ∈ L2FT (Ω; lR); hi ∈ L2F(0, T ;W 1,∞(lRd+1, lR)), i = 1, 2,

where L2F(0, T ;W
1,∞(lRd+1, lR)) is defined in §2. Since under these condi-

tions both BSDEs are well-posed, we denote by (Y i, Zi), i = 1, 2 the two
adapted solutions respectively. We have

Theorem 6.1. Suppose that assumption (6.2) holds, and suppose that
ξ1 ≥ ξ2, and h1(t, y, z) ≥ h2(t, y, z), for all (y, z) ∈ lRd+1, P-almost surely.
Then it holds that Y 1(t) ≥ Y 2(t), for all t ∈ [0, T ], P-a.s.

Proof. Denote Ŷ (t) = Y 1(t)− Y 2(t), Ẑ(t) = Z1(t)− Z2(t), ∀t ∈ [0, T ];
ξ̂ = ξ1 − ξ2; and

ĥ(t) = h1(t, Y 2(t), Z2(t))− h2(t, Y 2(t), Z2(t)), t ∈ [0, T ].

Clearly, ĥ is an {Ft}t≥0-adapted, non-negative process; and Ŷ satisfies the
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following (linear!) BSDE:

(6.3)

Ŷ (t) = ξ̂+

∫ T
t

{[h1(s, Y 1(s), Z1(s))− h1(s, Y 2(s), Z2(s))] + ĥ(s)}ds

−
∫ T
t

Ẑ(s)dW (s)

= ξ̂ +

∫ T
t

{α(s)Ŷ (s) + β(s)Ẑ(s) + ĥ(s)}ds−
∫ T
t

Ẑ(s)dW (s),

where

α(s) =

∫ 1
0

h1y(s, Y
2(s) + λŶ (s), Z2(s) + λẐ(s))dλ;

β(s) =

∫ 1
0

h1z(s, Y
2(s) + λŶ (s), Z2(s) + λẐ(s))dλ.

Clearly, α and β are {Ft}t≥0-adapted processes, and are both uniformly
bounded, thanks to (6.2). In particular, β satisfies the so-called Novikov
condition, and therefore the process

M(t) = exp
{∫ t
0

β(s)dW (s) − 1
2

∫ t
0

|β(s)|2ds
}
, t ∈ [0, T ]

is an P-martingale. We now define a new probability measure P̂ by

dP̂

dP
=M(T ).

Then by Girsanov’s theorem, Ŵ (t)
Δ
=W (t) −

∫ t
0
β(s)ds is a P̂-Brownian

motion, and under P̂, Ŷ satisfies

(6.4) Ŷ (t) = ξ̂ +

∫ T
t

[α(s)Ŷ (s) + ĥ(s)]ds−
∫ T
t

Ẑ(s)dŴ (s).

Now define Γ(t) = exp{
∫ t
0 α(s)ds}, then Itô’s formula shows that

Γ(T )ξ̂ − Γ(t)Ŷ (t) = −
∫ T
t

Γ(s)ĥ(s)ds+

∫ T
t

Ẑ(s)dŴ (t).

Taking conditional expectation EP̂{·|Ft} on both sides above, and noticing
the adaptedness of Γ(·)Ŷ (·) we obtain that

Γ(t)Ŷ (t) = EP̂

{
Γ(T )ξ̂ +

∫ T
t

Γ(s)ĥ(s)ds
∣∣∣Ft} ≥ 0, ∀t ∈ [0, T ],

P̂-almost surely, whence P-almost surely, proving the theorem.
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An interesting as well as important observation is that the comparison
theorem fails when the BSDE is coupled with a forward SDE. To be more
precise, let us consider the following FBSDEs: for i = 1, 2,

(6.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X i(t) = xi +

∫ t
0

bi(s,X i(s), Y i(s), Zi(s))ds

+

∫ t
0

σi(s,X i(s), Y i(s), Zi(s))dW (s)

Y i(t) = gi(X i(T )) +

∫ T
t

hi(s,X i(s), Y i(s), Zi(s))ds

−
∫ T
t

Zi(s)dW (s).

We would like to know whether g1(x) ≥ g2(x), ∀x would imply Y1(t) ≥
Y2(t), for all t? The following example shows that it is not true in general.

Example 6.2. Assume that d = 1. Consider the FBSDE:

(6.6)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dX(t) =

X(t)

(Z(t)− Y (t))2 + 1dt+X(t)dW (t),

dY (t) =
Z(t)

(Z(t)− Y (t))2 + 1dt+ Z(t)dW (t),

X(0) = x; Y (T ) = g(X(T )).

We first assume that g(x) = g1(x) = x. Then, one checks directly that
X1(t) ≡ Y 1(t) ≡ Z1(t) = x exp{W (t) + t/2}, t ∈ [0, T ] is an adapted
solution to (6.6). (In fact, it can be shown by using Four Step Scheme of
Chapter 6 that this is the unique adapted solution to (6.6)!)
Now let g2(x) = x + 1. Then one checks that X2(t) ≡ Z2(t) and

Y 2(t) ≡ X2(t) + 1 = Z2(t) + 1, ∀t ∈ [0, T ] is the (unique) adapted solution
to (6.6) with g2(x) = x + 1. Moreover, solving (6.6) explicitly again we
have Y 2(t) = 1 + x exp{W (t)}.
Consequently, we see that Y 1(t)− Y 2(t) = xeW (t)[et/2 − 1]− 1, which

can be both positive or negative with positive probability, for any t > 0,
that is, the comparison theorem of the Theorem 6.1 type does not hold!

Finally we should note that despite the discouraging counterexample
above, the comparison theorem for FBSDEs in a certain form can still be
proved under appropriate conditionis on the coefficients. A special case
will be presented in Chapter 8 (§8.3), when we study the applications of
FBSDE in Finance.



Chapter 2

Linear Equations

In this chapter, we are going to study linear FBSDEs in any finite time
duration. We will start with the most general case. By deriving a necessary
condition of solvability, we obtain a reduction to a simple form of linear
FBSDEs. Then we will concentrate on that to obtain some necessary and
sufficient conditions for solvability. For simplicity, we will restrict ourselves
to the case of one-dimensional Brownian motion in §§1–4. Some extensions
to the case with multi-dimensional Brownian motion will be given in §5.

§1. Compatible Conditions for Solvability
Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space on which de-
fined a one-dimensional standard Brownian motionW (t), such that {Ft}t≥0
is the natural filtration generated byW (t), augmented by all the P-null sets
in F . We consider the following system of coupled linear FBSDEs:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t) =
{
AX(t) +BY (t) + CZ(t) +Db(t)

}
dt

+
{
A1X(t) +B1Y (t) + C1Z(t) +D1σ(t)

}
dW (t),

dY (t) =
{
ÂX(t) + B̂Y (t) + ĈZ(t) + D̂b̂(t)

}
dt

+
{
Â1X(t) + B̂1Y (t) + Ĉ1Z(t) + D̂1σ̂(t)

}
dW (s),

t ∈ [0, T ],
X(0) = x, Y (T ) = GX(T ) + Fg.

In the above, A,B,C etc. are (deterministic) matrices of suitable sizes, b,

σ, b̂ and σ̂ are stochastic processes and g is a random variable. We are
looking for {Ft}t≥0-adapted processes X(·), Y (·) and Z(·), valued in lRn,
lRm and lR�, respectively, satisfying the above. More precisely, we recall
the following definition (see Definition 2.1 of Chapter 1):

Definition 1.1. A triple (X,Y, Z) ∈ M[0, T ] is called an adapted solution
of (1.1) if the following holds for all t ∈ [0, T ], almost surely:

(1.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(t) = x+

∫ t
0

{
AX(s) +BY (s) + CZ(s) +Db(s)

}
ds

+

∫ t
0

{
A1X(s) +B1Y (s) + C1Z(s) +D1σ(s)

}
dW (s),

Y (t) = GX(T ) + Fg −
∫ T
t

{
ÂX(s) + B̂Y (s) + ĈZ(s) + D̂b̂(s)

}
ds

−
∫ T
t

{
Â1X(s) + B̂1Y (s) + Ĉ1Z(s) + D̂1σ̂(s)

}
dW (s).
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When (1.1) admits an adapted solution, we say that (1.1) is solvable.

In what follows, we will let

(1.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A,A1 ∈ lRn×n; B,B1 ∈ lRn×m; C,C1 ∈ lRn×�;
Â, Â1, G ∈ lRm×n; B̂, B̂1 ∈ lRm×m; Ĉ, Ĉ1 ∈ lRm×�;
D ∈ lRn×n̄; D1 ∈ lRn×n̄1 ; D̂ ∈ lRm×m̄;
D̂1 ∈ lRm×m̄1 ; F ∈ lRm×k;
b ∈ L2F(0, T ; lRn̄); σ ∈ L2F(0, T ; lRn̄1);
b̂ ∈ L2F(0, T ; lRm̄); σ̂ ∈ L2F(0, T ; lRm̄1);
g ∈ L2FT (Ω; lR

k); x ∈ lRn.

Following result gives a compatibility condition among the coefficients
of (1.1) for its solvability.

Theorem 1.2. Suppose there exists a T > 0, such that for all b, σ, b̂, σ̂, g
and x satisfying (1.3), (1.1) admits an adapted solution (X,Y, Z) ∈M[0, T ].
Then

(1.4) R(Ĉ1 −GC1) ⊇ R(F ) +R(D̂1) +R(GD1),

where R(S) is the range of operator S. In particular, if

(1.5) R(F ) +R(D̂1) +R(GD1) = lRm,

then Ĉ1 −GC1 ∈ lRm×� is onto and thus � ≥ m.

To prove the above result, we need the following lemma, which is in-
teresting by itself.

Lemma 1.3. Suppose that for any σ̄ ∈ L2F(0, T ; lRk̄) and any g ∈
L2FT (Ω; lR

k), there exist h ∈ L2F(0, T ; lRm) and f ∈ L2F(Ω;C([0, T ]; lRm)),
such that the following BSDE admits an adapted solution (Y , Z) ∈
L2F(Ω;C([0, T ]; lR

m))× L2F(0, T ; lR�):

(1.6)

{
dY (t) = h(t)dt+ [f(t) + C1Z(t) +Dσ̄(t)]dW (t), t ∈ [0, T ],
Y (T ) = Fg.

where C1 ∈ lRm×� and D ∈ lRm×k̄. Then,

(1.7) R(C1) ⊇ R(F ) +R(D).

Proof. We prove our lemma by contradiction. Suppose (1.7) does not
hold. Then we can find an η ∈ lRm such that

(1.8) ηTC1 = 0, but ηTF �= 0, or ηTD �= 0.
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Let ζ(t) = ηTY (t). Then ζ(·) satisfies

(1.9)

{
dζ(t) = h̄(t)dt + [f̄(t) + ηTDσ̄(t)]dW (t),

ζ(T ) = ηTFg,

where h̄(t) = ηTh(t), f̄(t) = ηT f(t). We claim that for some choice of g and
σ̄(·), (1.9) does not admit an adapted solution ζ(·) for any h̄ ∈ L2F(0, T ; lR)
and f̄ ∈ L2F(Ω;C([0, T ]; lR)). To show this, we construct a deterministic
Lebesgue measurable function β satisfying the following:

(1.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β(s) = ±1, ∀s ∈ [0, T ],

|{s ∈ [Ti, T ]
∣∣ β(s) = 1}| = T − Ti

2
,

|{s ∈ [Ti, T ]
∣∣ β(s) = −1}| = T − Ti

2
,

i ≥ 1,

for a sequence Ti ↑T , where |{· · ·}| stands for the Lebesgue measure of
{· · ·}. Such a function exists by some elementary construction. Now, we
separate two cases.

Case 1. ηTF �= 0. We may assume that |FT η| = 1.
Let us choose

(1.11) g =
( ∫ T
0

β(s)dW (s)
)
FT η, σ̄(t) ≡ 0.

Then, by defining

(1.12) ζ̂(t) =
( ∫ t
0

β(s)dW (s)
)
, t ∈ [0, T ],

we have

(1.13)

{
d[ζ(t) − ζ̂(t)] = h̄(t)dt+ [f̄(t)− β(t)]dW (t), t ∈ [0, T ],
ζ(T )− ζ̂(T ) = 0.

Applying Itô’s formula to |ζ(t)− ζ̂(t)|2, we obtain

(1.14)

E|ζ(t)− ζ̂(t)|2 + E
∫ T
t

|f̄(s)− β(s)|2ds

= −2E
∫ T
t

〈 ζ(s)− ζ̂(s), h̄(s) 〉 ds

= 2E

∫ T
t

〈
∫ T
s

h̄(r)dr +

∫ T
s

[f̄(r) − β(r)]dW (r), h̄(s) 〉 ds

= 2E

∫ T
t

〈
∫ T
s

h̄(r)dr, h̄(s) 〉 ds

= E
∣∣∣ ∫ T
t

h̄(s)ds
∣∣∣2 ≤ (T − t)∫ T

t

E|h̄(s)|2ds.
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Consequently, (note h̄ ∈ L2F(0, T ; lR) and f̄ ∈ L2F(Ω;C([0, T ]; lR)))

(1.15)

E

∫ T
t

|f̄(T )− β(s)|2ds

≤ 2E
∫ T
t

|f̄(s)− β(s)|2ds+ 2E
∫ T
t

|f̄(T )− f̄(s)|2ds

≤ 2(T − t)
∫ T
t

E|h̄(s)|2ds+ 2E
∫ T
t

|f̄(T )− f̄(s)|2ds

= o(T − t).
On the other hand, by the definition of β(·), we have

(1.16)
E

∫ T
Ti

|f̄(T )− β(s)|2ds

=
T − Ti
2

(
E|f̄(T )− 1|2 + E|f̄(T ) + 1|2

)
, ∀i ≥ 1.

Clearly, (1.16) contradicts (1.15), which means ηTF �= 0 is not possible.

Case 2. ηTF = 0 and ηTD �= 0. We may assume that |DT η| = 1.
In this case, we choose σ̄(t) = β(t)D

T
η with β(·) satisfying (1.10).

Thus, (1.9) becomes

(1.17)

{
dζ(t) = h̄(t)dt + [f̄(t) + β(t)]dW (t), t ∈ [0, T ],
ζ(T ) = 0.

Then the argument used in Case 1 applies. Hence, ηTD �= 0 is impossible
either, proving (1.7).

Proof of Theorem 1.2. Let (X,Y, Z) ∈ M[0, T ] be an adapted solution
of (1.1). Set Y (t) = Y (t)−GX(t). Then Y (·) satisfies the following BSDE:

(1.18)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dY =
{
(Â−GA)X + (B̂ −GB)Y
+ (Ĉ −GC)Z + D̂b̂−GDb

}
dt

+
{
(Â1 −GA1)X + (B̂1 −GB1)Y
+ (Ĉ1 −GC1)Z + D̂1σ̂ −GD1σ

}
dW (t),

Y (T ) = Fg.

Denote

(1.19)

{
h = (Â−GA)X + (B̂ −GB)Y + (Ĉ −GC)Z + D̂b̂−GDb,
f = (Â1 −GA1)X + (B̂1 −GB1)Y.

We see that h ∈ L2F(0, T ; lRm) and f ∈ L2F(Ω;C([0, T ]; lRm)). One can
rewrite (1.18) as follows:

(1.20)

{
dY = hdt+ {f + (Ĉ1 −GC1)Z + D̂1σ̂ −GD1σ}dW (t),
Y (T ) = Fg.
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Then, by Lemma 1.3, we obtain (1.4). The final conclusion is obvious.

To conclude this section, let us present the following further result,
which might be less useful than Theorem 1.2, but still interesting.

Proposition 1.4. Suppose that the assumption of Theorem 1.2 holds.
For any b, σ, b̂, σ̂, g and x satisfying (1.3), let (X,Y, Z) ∈ M[0, T ] be an
adapted solution of (1.1). Then it holds

(1.21)
[Â1 −GA1 + (B̂1 −GB1)G]X(T )

+ (B̂1 −GB1)Fg ∈ R(Ĉ1 −GC1), a.s.

If, in addition, the following holds:

(1.22)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R(A+BG) +R(BF ) ⊆ R(D),
R(A1 +B1G) +R(B1F ) ⊆ R(D1),
R(Â+ B̂G) +R(B̂F ) ⊆ R(D̂),
R(Â1 + B̂1G) +R(B̂1F ) ⊆ R(D̂1),

then

(1.23)
R
(
Â1 −GA1 + (B̂1 −GB1)G

)
+R
(
(B̂1 −GB1)F

)
⊆ R(Ĉ1 −GC1).

Proof. Suppose η ∈ lRm such that

(1.24) ηT (Ĉ1 −GC1) = 0.

Then, by (1.4), one has

(1.25) ηTF = 0, ηT D̂1 = 0, η
TGD1 = 0.

Hence, from (1.20), we obtain

(1.26)

{
d[ηTY (t)] = ηTh(t)dt+ ηT f(t)dW (t), t ∈ [0, T ],
ηTY (T ) = 0.

Applying Itô’s formula to |ηTY (t)|2, we have (similar to (1.14))

(1.27)

E|ηTY (t)|2 + E
∫ T
t

|ηT f(s)|2ds = −2E
∫ T
t

ηTY (s)ηTh(s)ds

= 2E

∫ T
t

[ ∫ T
s

ηTh(r)dr +

∫ T
s

ηT f(r)dW (r)
]
ηTh(s)ds

= E
∣∣∣ ∫ T
t

ηTh(s)ds
∣∣∣2 ≤ (T − t)∫ T

t

E|ηTh(s)|2ds.
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Dropping the first term on the left side of (1.27), then dividing both sides
by T − t and sending t→ T , we obtain

(1.28) E|ηT f(T )|2 = 0.

By (1.19), and the relation Y (T ) = GX(T ) + Fg, we obtain

(1.29) ηT [Â1−GA1+(B̂1−GB1)G]X(T )+ ηT (B̂1−GB1)Fg = 0, a.s.

Thus, (1.21) follows. In the case (1.22) holds, for any x ∈ lRn and g ∈ lRm
(deterministic), by some choice of b, σ, b̂ and σ̂, (1.1) admits an adapted
solution (X,Y, Z) ≡ (x,Gx + Fg, 0). Then, (1.21) implies (1.23).

§2. Some Reductions
In this section, we are going to make some reductions under condition (1.5).
We note that (1.5) is very general. It is true if, for example, F = I ∈ lRm×m,
which is the case in many applications. Now, we assume (1.5). By Theorem

1.2, if we want (1.1) to be solvable for all given data, we must have Ĉ1−GC1
to be onto (and thus � ≥ m). Thus, it is reasonable to make the following
assumption:

Assumption A. Let � = m and Ĉ1 −GC1 ∈ lRm×m be invertible.
Let us make some reductions under Assumption A. Set Y = Y −GX .

Then Y (T ) = Fg and (see (1.18))

(2.1)

dY = (ÂX + B̂Y + ĈZ + D̂b̂)dt

+ (Â1X + B̂1Y + Ĉ1Z + D̂1σ̂)dW

−G(AX +BY + CZ +Db)dt
−G(A1X +B1Y + C1Z +D1σ)dW

=
{[
Â−GA+ (B̂ −GB)G

]
X + (B̂ −GB)Y

+ (Ĉ −GC)Z + D̂b̂−GDb
}
dt

+
{[
Â1 −GA1 + (B̂1 −GB1)G

]
X + (B̂1 −GB1)Y

+ (Ĉ1 −GC1)Z + D̂1σ̂ −GD1σ
}
dW.

Define

(2.2)
Z =
[
Â1 −GA1 + (B̂1 −GB1)G

]
X + (B̂1 −GB1)Y

+ (Ĉ1 −GC1)Z + D̂1σ̂ −GD1σ.

Since (Ĉ1 −GC1) is invertible, we have

(2.3)
Z = (Ĉ1 −GC1)−1

{
Z − [Â1 −GA1 + (B̂1 −GB1)G

]
X

− (B̂1 −GB1)Y − (D̂1σ̂ −GD1σ)
}
.
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Then, it follows that

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dX =
(
AX +B Y + C Z + b

)
dt

+
(
A1X +B1Y + C1Z + σ

)
dW,

dY =
(
A0X +B0Y + C0Z + h

)
dt+ ZdW,

X(0) = x, Y (T ) = Fg,

where

(2.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = A+BG− C(Ĉ1 −GC1)−1[Â1 −GA1 + (B̂1 −GB1)G],
B = B − C(Ĉ1 −GC1)−1(B̂1 −GB1),
C = C(Ĉ1 −GC1)−1,
b = Db− C(Ĉ1 −GC1)−1(D̂1σ̂ −GD1σ),
A1 = A1 +B1G

− C1(Ĉ1 −GC1)−1[Â1 −GA1 + (B̂1 −GB1)G],
B1 = B1 − C1(Ĉ1 −GC1)−1(B̂1 −GB1),
C1 = C1(Ĉ1 −GC1)−1,
σ = D1σ − C1(Ĉ1 −GC1)−1(D̂1σ̂ −GD1σ),
A0 = Â−GA+ (B̂ −GB)G

− (Ĉ −GC)(Ĉ1 −GC1)−1[Â1 −GA1 + (B̂1 −GB1)G],
B0 = B̂ −GB − (Ĉ −GC)(Ĉ1 −GC1)−1(B̂1 −GB1),
C0 = (Ĉ −GC)(Ĉ1 −GC1)−1,
h = D̂b̂−GDb − (Ĉ −GC)(Ĉ1 −GC1)−1(D̂1σ̂ −GD1σ).

The above tells us that under Assumption A, (1.1) and (2.4) are equivalent.
Next, we want to make a further reduction. To this end, let us denote

(2.6)

⎧⎪⎪⎨⎪⎪⎩
A =

(
A B
A0 B0

)
, C =

(
C
C0

)
,

A1 =
(
A1 B1
0 0

)
, C1 =

(
C1
I

)
.

Let Ψ(·) be the solution of the following:

(2.7)

{
dΨ(t) = AΨ(t)dt+A1Ψ(t)dW (t), t ≥ 0,
Ψ(0) = I.
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Then (2.4) is equivalent to the following: For some y ∈ lRm,

(2.8)

(
X(t)
Y (t)

)
= Ψ(t)

(
x
y

)
+Ψ(t)

∫ t
0

Ψ(s)−1
[
(C − A1C1)Z(s)

+

(
b(s)
h(s)

)
−A1

(
σ(s)
0

)]
ds

+Ψ(t)

∫ t
0

Ψ(s)−1
[
C1Z(s) +

(
σ(s)
0

)]
dW (s),

t ∈ [0, T ],

with the property that

(2.9)

Fg =(0, I)Ψ(T )

(
x
y

)
+ (0, I)Ψ(T )

∫ T
0

Ψ(s)−1
[
(C − A1C1)Z(s)

+

(
b(s)
h(s)

)
−A1

(
σ(s)
0

)]
ds

+ (0, I)Ψ(T )

∫ T
0

Ψ(s)−1
[
C1Z(s) +

(
σ(s)
0

)]
dW (s).

Clearly, (2.9) is equivalent to the following: For some y ∈ lRm and Z(·) ∈
L2F(0, T ; lR

m), it holds

(2.10)

η
Δ
=Fg − (0, I)Ψ(T )

(
x
0

)
− (0, I)Ψ(T )

∫ T
0

Ψ(s)−1
[(
b(s)
h(s)

)
ds−A1

(
σ(s)
0

)]
− (0, I)Ψ(T )

∫ T
0

Ψ(s)−1
(
σ(s)
0

)
dW (s)

= (0, I)Ψ(T )

(
0
y

)
+ (0, I)Ψ(T )

∫ T
0

Ψ(s)−1(C − A1C1)Z(s)ds

+ (0, I)Ψ(T )

∫ T
0

Ψ(s)−1C1 Z(s)dW (s).

Thus, if we can solve the following:

(2.11)

⎧⎪⎨⎪⎩ d
(
X̃
Ỹ

)
=
{
A
(
X̃
Ỹ

)
+ C Z̃

}
dt+

{
A1
(
X̃
Ỹ

)
+ C1Z̃

}
dW,

X̃(0) = 0, Ỹ (T ) = η,

with η being given by (2.10), then for such a pair y ≡ Ỹ (0) and Z(·) ≡ Z̃(·),
by setting (X,Y ) as (2.8), we obtain an adapted solution (X,Y , Z) ∈
M[0, T ] of (2.4). The above procedure is reversible. Thus, by the equiv-
alence between (2.4) and (1.1), we actually have the equivalence between
the solvability of (1.1) and (2.11). Let us state this result as follows.
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Theorem 2.1. Let F = I ∈ lRm×m and � = m. Then (1.1) is solvable for
all b, σ, b̂, σ̂, x and g satisfying (1.3) if and only if (2.11) is solvable for all
η ∈ L2FT (Ω; lR

m).

We note that by Theorem 1.2, F = I and � = m imply Assumption
A. Based on the above reduction, in what follows, we concentrate on the
following FBSDE:

(2.12)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dX =
(
AX +BY + CZ

)
dt

+
(
A1X +B1Y + C1Z

)
dW (t),

dY =
(
ÂX + B̂Y + ĈZ

)
dt+ ZdW (t),

t ∈ [0, T ],

X(0) = 0, Y (T ) = g.

By denoting

(2.13)

⎧⎪⎪⎨⎪⎪⎩
A =

(
A B
Â B̂

)
, C =

(
C
Ĉ

)
,

A1 =
(
A1 B1
0 0

)
, C1 =

(
C1
I

)
,

we can write (2.12) as follows:

(2.14)

⎧⎪⎨⎪⎩ d
(
X
Y

)
=
{
A
(
X
Y

)
+ CZ

}
dt+

{
A1
(
X
Y

)
+ C1Z

}
dW,

X(0) = 0, Y (T ) = η.

In what follows, we will not distinguish (2.12) and (2.14), and we will let

(2.15)

{
dΦ(t) = AΦ(t)dt+A1Φ(t)dW (t), t ∈ [0, T ],
Φ(0) = I.

If we call (X,Y ) the state and Z the control, (2.12) is called a (lin-
ear) stochastic control system. Then, the solvability of (2.12) becomes the
following controllability problem: For give g ∈ L2FT (Ω; lR

m), find a control
Z ∈ L2F (0, T ; lRm), such that some initial state (X(0), Y (0)) ∈ {0} × lRm
can be steered to the final state (X(T ), Y (T )) ∈ L2FT (Ω; lR

n) × {g} at the
moment t = T , almost surely. This is referred to as the controllability of
the system (2.12) from {0} × lRm to L2FT (Ω; lR

n)× {g}. We note that g is
an FT -measurable square integrable random vector, and we need exactly
control Y (T ) to g.

§3. Solvability of Linear FBSDEs
In this section, we are going to present some solvability results for linear
FBSDE (2.12). The basic idea is adopted from the study of controllability
in control theory. For convenience, we denote hereafter in this chapter that
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H = L2FT (Ω; lR
m) and H = L2F(0, T ; lRm) (which are Hilbert spaces to

which the final datum g and the process Z(·) belong, respectively).

§3.1. Necessary conditions

First of all, we recall that if Φ is the solution of (2.15), then, Φ−1 exists
and it satisfies the following linear SDE:

(3.1)

{
dΦ−1 = −Φ−1

[
A−A21

]
dt− Φ−1A1dW (t), t ≥ 0,

Φ−1(0) = I.

Moreover, (X,Y, Z) ∈ M[0, T ] is an adapted solution of (2.12) if and only
if the following variation of constant formula holds:

(3.2)

(
X(t)
Y (t)

)
= Φ(t)

(
0
y

)
+Φ(t)

∫ t
0

Φ(s)−1(C − A1C1)Z(s)ds

+Φ(t)

∫ t
0

Φ(s)−1C1Z(s)dW (s), t ∈ [0, T ],

for some y ∈ lRm with the property:

(3.3)

g = (0, I)
{
Φ(T )

(
0
y

)
+Φ(T )

∫ T
0

Φ(s)−1(C − A1C1)Z(s)ds

+Φ(T )

∫ T
0

Φ(s)−1C1Z(s)dW (s)
}
.

Let us introduce an operator K : H → H as follows:

(3.4)

KZ = (0, I)
{
Φ(T )

∫ T
0

Φ(s)−1(C − A1C1)Z(s)ds

+Φ(T )

∫ T
0

Φ(s)−1C1Z(s)dW (s)
}
.

Then, for given g ∈ H , finding an adapted solution to (2.12) is equivalent
to the following: Find y ∈ lRm and Z ∈ H, such that

(3.5) g = (0, I)Φ(T )

(
0
I

)
y +KZ,

and define (X,Y ) by (3.2). Then (X,Y, Z) ∈M[0, T ] is an adapted solution
of (2.12). Hence, the study of operators Φ(T ) and K is crucial to the
solvability of linear FBSDE (2.12). We now make some investigations on
Φ(·) and K. Let us first give the following lemma.

Lemma 3.1. For any f ∈ L1F(0, T ; lRn+m) and h ∈ L2F(0, T ; lRn+m), it
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holds

(3.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EΦ(t) = eAt,

E
{
Φ(t)

∫ t
0

Φ(s)−1f(s)ds
}
=

∫ t
0

eA(t−s)Ef(s)ds,

E
{
Φ(t)

∫ t
0

Φ(s)−1h(s)dW (s)
}

=

∫ t
0

eA(t−s)A1Eh(s)ds,

t ∈ [0, T ].

Also, it holds that

(3.7) E sup
0≤t≤T

|Φ(t)|2k + E sup
0≤t≤T

|Φ(t)−1|2k <∞, ∀k ≥ 1.

Proof. Let us first prove the second equality in (3.6). The other two in
(3.6) can be proved similarly. Set

(3.8) ξ(t) = Φ(t)

∫ t
0

Φ(s)−1f(s)ds, t ∈ [0, T ].

Then ξ(·) satisfies the following SDE:

(3.9)

{
dξ(t) = [Aξ(t) + f(t)]dt+A1ξ(t)dW (t), t ∈ [0, T ],
ξ(0) = 0.

Taking expectation in (3.9), we obtain

(3.10)

{
d[Eξ(t)] = [AEξ(t) + Ef(t)]dt, t ∈ [0, T ],
Eξ(0) = 0.

Thus,

(3.11) Eξ(t) =

∫ t
0

eA(t−s)Ef(s)ds, t ∈ [0, T ],

proving our claim.

Now, we prove (3.7). For any ξ0 ∈ lRn+m, process ξ(t) Δ=Φ(t)ξ0 satisfies
the following SDE:

(3.12)

{
dξ(t) = Aξ(t)dt+A1ξ(t)dW (t), t ∈ [0, T ],
ξ(0) = ξ0.

Then, by Itô’s formula, Burkholder-Davis-Gundy’s inequality and Gron-
wall’s inequality, we can show that

(3.13) E sup
0≤t≤T

|ξ(t)|2k ≤ K|ξ0|2k, k ≥ 1,
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for some constant K > 0. Thus, the first term on the left hand side of
(3.7) is finite. Similarly, one can prove that the second term is finite as
well.

From (3.7), we see that K : H → H is a bounded linear operator. Now,
if (2.12) admits an adapted solution, by taking expectation in (2.12), we
obtain

(3.14) Eg = (0, I)
{
eAT
(
0
I

)
y +

∫ T
0

eA(T−s)CEZ(s)ds
}
,

for some y ∈ lRm and EZ(·) ∈ L2(0, T ; lRm). This leads to the following
necessary condition for the solvability of (2.12).

Theorem 3.2. Suppose (2.12) is solvable for all g ∈ H . Then

(3.15) rank
{
(0, I)

(
eAT
(
0
I

)
, C,AC, · · · ,An+m−1C

)}
= m.

Proof. Define

Lu(·) Δ=
∫ T
0

eA(T−s)Cu(s)ds, ∀u(·) ∈ L2(0, T ; lRm).

Then L : L2(0, T ; lRm)→ lRn is a linear bounded operator. We claim that

(3.16) R(L) = R(C) +R(AC) + · · ·+R(An+m−1C).

In fact, if x ∈ R(L)⊥, then, for any u(·) ∈ L2(0, T ; lRm), it holds

0 = xTLu(·) =
∫ T
0

xT eA(T−s)Cu(s)ds,

which yields

xT eAsC = 0, ∀s ∈ [0, T ].

Consequently,

xTAkC = d
k

dsk
[
xT eAsC

]∣∣
s=0
= 0, k ≥ 0.

This implies that

x ∈
{
R(C) +R(AC) + · · ·+R(An+m−1C)

}⊥
,

which results in

R(C) +R(AC) + · · ·+R(An+m−1C) ⊆ R(L).

The above proof is reversible with the add of Calay-Hamilton’s theorem.
Thus, we obtain the other inclusion, proving (3.16). Then (3.15) follows
easily.
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We note that in the case C = 0, (3.15) becomes

(3.17) det
{
(0, I)eAT

(
0
I

)}
�= 0.

This amounts to say that the FBSDEs (2.12) (with C = 0) is solvable for all
g ∈ H implies that the corresponding two-point boundary value problem
for ODEs:

(3.18)

⎧⎪⎨⎪⎩
(
Ẋ(t)
Ẏ (t)

)
= A

(
X(t)
Y (t)

)
, t ∈ [0, T ],

X(0) = 0, Y (T ) = ḡ,

admits a solution for all ḡ ∈ lRm.
Let us now present another necessary condition for the solvability of

(2.12).

Theorem 3.3. Let C = 0. Suppose (2.12) is solvable for all g ∈ H . Then,

(3.19) det
{
(0, I)eAtC1

}
> 0, ∀t ∈ [0, T ].

Consequently, if

(3.20) T̂ = inf{T > 0
∣∣ det [(0, I)eATC1] = 0} <∞,

then, for any T ≥ T̂ , there exists a g ∈ H , such that (2.12) is not solvable.

Remark 3.4. The above result reveals a significant difference between
the solvability of FBSDEs and that of two-point boundary value problems
for ODEs. We note that for (3.18) to be solvable for all ḡ ∈ lRm, if and
only if (3.16) holds. Since the function t �→ det

{
(0, I)eAt

(
0
I

)}
is analytic

(and it is equal to 1 at t = 0), except at most a discrete set of T ’s, (3.16)
holds. That implies that for any T0 ∈ (0,∞), if it happens that (3.18) is not
solvable for T = T0 with some ḡ ∈ lRm, then, at some later time T > T0,
(3.18) will be solvable again for all ḡ ∈ lRm. But, in the above FBSDEs
case, if T̂ < ∞, then for any T ≥ T̂ , we can always find a g ∈ H , such
that (2.12) (with C = 0) is not solvable. Thus, FBSDEs and the two-point
boundary value problem for ODEs are significantly different as far as the
solvable duration is concerned.

Proof of Theorem 3.3. Suppose there exists an s0 ∈ [0, T ), such that

(3.21) det
{
(0, I)eA(T−s0)C1

}
= 0.

Note that s0 < T has to be true. Then there exists an η ∈ lRm, |η| = 1,
such that

(3.22) ηT (0, I)eA(T−s0)C1 = 0.
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We are going to prove that for any ε > 0 with s0 + ε < T , there exists a
g ∈ L2Fs0+ε(Ω; lR

m) ⊆ H , such that (2.12) has no adapted solutions. To this
end, we let β : [0, T ]→ lR be a Lebesgue measurable function such that

(3.23)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β(s) = ±1, ∀s ∈ [0, s0 + ε]; β(s) = 0, ∀s ∈ (s0 + ε, T ];

|{s ∈ [s0, sk]
∣∣ β(s) = 1}| = sk − s0

2
,

|{s ∈ [s0, sk]
∣∣ β(s) = −1}| = sk − s0

2
,

k ≥ 1,

for some sequence sk ↓ s0 and sk ≤ T − ε. Next, we define

(3.24) ζ(t) =

∫ t
0

β(s)dW (s), t ∈ [0, T ],

and take g = ζ(T )η ∈ L2Fs0+ε(Ω; lR
m) ⊆ H . Suppose (2.12) admits an

adapted solution (X,Y, Z) ∈ M[0, T ] for this g. Then, for some y ∈ lRm,
we have (remember C = 0)

(3.25)

ζ(T )η = (0, I)
{
eAT
(
0
y

)
+

∫ T
0

eA(T−s)
[
A1
(
X(s)
Y (s)

)
+ C1Z(s)

]
dW (s)

}
.

Applying ηT from left to (3.25) gives the following:

(3.26) ζ(T ) = α+

∫ T
0

{
γ(s) + 〈ψ(s), Z(s) 〉

}
dW (s),

where

(3.27)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α = ηT (0, I)eAT
(
0
y

)
∈ lR,

γ(·) = ηT (0, I)eA(T−·)A1
(
X(·)
Y (·)

)
∈ L2F(Ω;C([0, T ]; lR)),

ψ(·) =
[
ηT (0, I)eA(T−·)C1

]T
is analytic, ψ(s0) = 0.

Let us denote

(3.28) θ(t) = α+

∫ t
0

[γ(s) + 〈ψ(s), Z(s) 〉]dW (s), t ∈ [0, T ].

Then, it follows that

(3.29)

{
d[θ(t)− ζ(t)] = [γ(t) + 〈ψ(t), Z(t) 〉−β(t)]dW (t), t ∈ [0, T ],
[θ(T )− ζ(T )] = 0.
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By Itô’s formula, we have

(3.30)

0 =E|θ(t)− ζ(t)|2

+ E

∫ T
t

|γ(s) + 〈ψ(s), Z(s) 〉 −β(s)|2ds, t ∈ [0, T ].

Thus,

(3.31) β(s)− γ(s) = 〈ψ(s), Z(s) 〉, a.e. s ∈ [0, T ], a.s.

which yields

(3.32)

∫ sk
s0

E|β(s)− γ(s)|2ds =
∫ sk
s0

E| 〈ψ(s), Z(s) 〉 |2ds, ∀k ≥ 1.

Now, we observe that (note γ ∈ L2F(Ω;C([0, T ]; lR)) and (3.23))

(3.33)

∫ sk
s0

E|β(s) − γ(s)|2ds

≥ 1
2

∫ sk
s0

E|β(s) − γ(s0)|2ds−
∫ sk
s0

E|γ(s)− γ(s0)|2ds

≥ sk − s0
4
E
[
|1− γ(s0)|2 + |1 + γ(s0)|2

]
− o(sk − s0), k ≥ 1.

On the other hand, since ψ(·) is analytic with ψ(s0) = 0, we must have

(3.34) ψ(s) = (s− s0)ψ̃(s), s ∈ [0, T ],

for some ψ̃(·) which is analytic and hence bounded on [0, T ]. Consequently,

(3.35)

∫ sk
s0

E| 〈ψ(s), Z(s) 〉 |2ds ≤ K(sk − s0)2
∫ sk
s0

E|Z(s)|2ds.

Hence, (3.32)–(3.33) and (3.35) imply

(3.36)

sk − s0
4
E
[
|1− γ(s0)|2 + |1 + γ(s0)|2

]
− o(sk − s0)

≤ K(sk − s0)2
∫ sk
s0

E|Z(s)|2ds, ∀k ≥ 1.

This is impossible. Finally, noting the fact that det{(0, I)eAtC1}
∣∣
t=0
= 1,

we obtain (3.19). The final assertion is clear.

It is not clear if the above result holds for the case C �= 0 since the
assumption C = 0 is crucial in the proof.

§3.2. Criteria for solvability
Let us now present some results on the operator K (see (3.4) for defini-
tion) which will lead to some sufficient conditions for solvability of linear
FBSDEs.



40 Chapter 2. Linear Equations

Lemma 3.5. The range R(K) of K is closed in H .

Proof. Let us denote H0 = L
2
FT (Ω; lR

n) and Ĥ = H0 × H ≡
L2FT (Ω; lR

n+m). Define

(3.37)

K̂Z =Φ(T )
∫ T
0

Φ(s)−1(C − A1C1)Z(s)ds

+Φ(T )

∫ T
0

Φ(s)−1C1Z(s)dW (s), Z ∈ H.

Then, by (3.7), K̂ is a bounded linear operator and K = (0, I)K̂. We claim
that the range R(K̂) of K̂ is closed in Ĥ . To show this, let us take any
convergence sequence

(3.38)

(
Xk(T )
Yk(T )

)
≡ K̂Zk → ζ, in Ĥ,

where (Xk, Yk) is the solution of the following:

(3.39)

⎧⎪⎪⎨⎪⎪⎩
d

(
Xk
Yk

)
=
{
A
(
Xk
Yk

)
+ CZk

}
dt+

{
A1
(
Xk
Yk

)
+ C1Zk

}
dW (t),(

Xk(0)
Yk(0)

)
= 0.

Then, by Itô’s formula, we have

(3.40)

E
{
|Xk(t)|2 + |Yk(t)|2 +

∫ T
t

∣∣∣A1(Xk(s)Yk(s)

)
+ C1Zk(s)

∣∣∣2ds}
= E
{
|Xk(T )|2 + |Yk(T )|2

− 2
∫ T
t

〈
(
Xk(s)
Yk(s)

)
,A
(
Xk(s)
Yk(s)

)
+ CZk(s) 〉 ds

}
.

We note that (recall C1 =
(
C1
I

)
)

(3.41)

∣∣∣A1(XkYk
)
+ C1Zk

∣∣∣2
= 〈(I + CT1 C1)Zk, Zk 〉+

∣∣∣A1(XkYk
) ∣∣∣2 + 2 〈 CT1 A1(XkYk

)
, Zk 〉

≥ 1
2
|Zk|2 − C(|Xk|2 + |Yk|2),
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for some constant C > 0. Thus, (3.40) implies

(3.42)

E
{
|Xk(t)|2 + |Yk(t)|2 +

∫ T
t

|Zk(s)|2ds
}

≤ CE
{
|Xk(T )|2 + |Yk(T )|2

+

∫ T
t

(
|Xk(s)|2 + |Yk(s)|2

)
ds
}
, t ∈ [0, T ].

Using Gronwall’s inequality, we obtain

(3.43)
E
{
|Xk(t)|2 + |Yk(t)|2 +

∫ T
t

|Zk(s)|2ds
}

≤ CE
{
|Xk(T )|2 + |Yk(T )|2

}
, t ∈ [0, T ].

From the convergence (3.38) and (3.41), we see that Zk is bounded in H.
Thus, we may assume that Zk → Z̃ weakly in H. Then it is easy to see
that K̂Z̃ = ζ, proving the closeness of R(K̂).
Now, R(K̂) is a Hilbert space with the induced inner product from that

of Ĥ . In this space, we define an orthogonal projection PH : Ĥ → Ĥ by
the following:

(3.44) PH

(
ξ
η

)
=

(
0
η

)
, ∀

(
ξ
η

)
∈ Ĥ ≡ H0 ×H.

Then the space

(3.45) PH(R(K̂)) = {0} ×R(K)

is closed in R(K̂) and so is in Ĥ. Hence, R(K) is closed in H .
The following result gives some more information for the operator K

when C = A1C1 = 0, which is equivalent to the conditions: C = 0, Ĉ = 0
and A1C1 +B1 = 0. Note that A1, B1 and C1 are not necessarily zero.

Lemma 3.6. Let C = 0 and let (3.19) hold. Then

(3.46) R(K) = {η ∈ H
∣∣ Eη = 0} Δ=N (E),

(3.47) N (K) Δ={Z ∈ H
∣∣ KZ = 0} = {0}.

Proof. First of all, by Lemma 3.5, we see that R(K) is closed. Also,
by (3.4) and Lemma 3.1, R(K) ⊆ N (E) (since C = A1C1). Thus, to show
(3.46), it suffices to show that

(3.48) N (E)
⋂
R(K)⊥ = {0}.

We now prove (3.48). Take η ∈ N (E). Suppose

(3.49)

0 = E 〈 η,KZ 〉

= E 〈 η, (0, I)Φ(T )
∫ T
0

Φ(s)−1C1Z(s)dW (s) 〉, ∀Z ∈ H.
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Denote

(3.50)

(
X(t)
Y (t)

)
= Φ(t)

∫ t
0

Φ(s)−1C1Z(s)dW (s), t ∈ [0, T ].

Then, by C = A1C1 = 0, we have

(3.51)

⎧⎪⎪⎨⎪⎪⎩
d

(
X
Y

)
= A

(
X
Y

)
dt+

{
A1
(
X
Y

)
+ C1Z

}
dW (t),(

X(0)
Y (0)

)
= 0.

By Itô’s formula and Gronwall’s inequality, we obtain

(3.52) E{|X(t)|2 + |Y (t)|2} ≤ K
∫ t
0

E|Z(s)|2ds, t ∈ [0, T ].

Also, we have

(3.53)

(
X(t)
Y (t)

)
=

∫ t
0

eA(t−s)
{
A1
(
X(s)
Y (s)

)
+ C1Z(s)

}
dW (s), t ∈ [0, T ].

Since Eη = 0 and η ∈ H , by Martingale Representation Theorem, there
exists a ζ ∈ H, such that

(3.54) η =

∫ T
0

ζ(s)dW (s).

Then, from (3.49) and (3.53), we have

(3.55)

0 = E 〈 η,KZ 〉 = E 〈 η, (0, I)
(
X(T )
Y (T )

)
〉

=

∫ T
0

E 〈 ζ(s), (0, I)eA(T−s)
{
A1
(
X(s)
Y (s)

)
+ C1Z(s)

}
〉 ds.

This yields

(3.56)

∫ T
0

E 〈 CT1 eA
T (T−s)

(
0
I

)
ζ(s), Z(s) 〉 ds

= −
∫ T
0

E 〈AT1 eA
T (T−s)

(
0
I

)
ζ(s),

(
X(s)
Y (s)

)
〉 ds.

By (3.49), the above holds for all Z ∈ H. Now, let 0 < δ < T and take

(3.57) Z(s) = CT1 eA
T (T−s)

(
0
I

)
ζ(s)χ[T−δ,T ](s), s ∈ [0, T ].
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Then X(s) = 0, Y (s) = 0 for all s ∈ [0, T − δ]. Consequently, (3.56) and
(3.52) result in

(3.58)

∫ T
T−δ
E
∣∣∣CT1 eAT (T−s) ( 0I

)
ζ(s)
∣∣∣2ds

≤ K
∫ T
T−δ

(
E|ζ(s)|2

)1/2(∫ s
T−δ
E|Z(r)|2dr

)1/2
ds

≤ K
∫ T
T−δ

(
E|ζ(s)|2

)1/2(∫ s
T−δ
E|ζ(r)|2dr

)1/2
ds.

By (3.19), we obtain

(3.59)

∫ T
T−δ
E|ζ(s)|2ds ≤ K

∫ T
T−δ
E
∣∣∣CT1 eAT (T−s)( 0I

)
ζ(s)
∣∣∣2ds

≤ K
∫ T
T−δ

(
E|ζ(s)|2

)1/2(∫ s
T−δ
E|ζ(r)|2dr

)1/2
ds

≤ 1
2

∫ T
T−δ
E|ζ(s)|2ds+K

∫ T
T−δ

∫ s
T−δ
E|ζ(r)|2drds.

Thus, it follows that

(3.60)

∫ T
T−δ
E|ζ(s)|2ds ≤ Kδ

∫ T
T−δ
E|ζ(s)|2ds,

with K > 0 being an absolute constant (independent of δ). Therefore, for
δ > 0 small, we must have

(3.61) ζ(s) = 0, a.e. s ∈ [T − δ, T ], a.s.

This together with (3.56) implies that

(3.62)

∫ T−δ
0

E 〈 CT1 eA
T (T−s)

(
0
I

)
ζ(s), Z(s) 〉 ds

= −
∫ T−δ
0

E 〈AT1 eA
T (T−s)

(
0
I

)
ζ(s),

(
X(s)
Y (s)

)
〉 ds.

Then, thanks to (3.19), we can continue the above procedure to conclude
that (3.61) holds over [0, T ] and hence it follows from (3.54) that η = 0.
This proves (3.48).
We now prove (3.47). Suppose KZ = 0. Again, we let (X(·), Y (·)) be

defined by (3.50). Then, for any ζ ∈ H, by (3.53), we have

(3.63)

0 = E 〈
∫ T
0

ζ(s)dW (s),KZ 〉

= E

∫ T
0

〈 ζ(s), (0, I)eA(T−s)
{
A1
(
X(s)
Y (s)

)
+ C1Z(s)

}
〉 ds.
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This implies that

(3.64) (0, I)eA(T−s)
{
A1
(
X(s)
Y (s)

)
+ C1Z(s)

}
= 0, a.e. s ∈ [0, T ], a.s.

By (3.19), we easily see that

s �→ B(s) Δ=
{
(0, I)eA(T−s)C1

}−1
(0, I)eA(T−s)A1

is analytic and hence bounded over [0, T ]. From (3.64), we obtain

(3.65) Z(s) = −B(s)
(
X(s)
Y (s)

)
, a.e. s ∈ [0, T ], a.s.

Then, (X,Y ) is the solution of

(3.66)

⎧⎪⎪⎨⎪⎪⎩
d

(
X
Y

)
= A

(
X
Y

)
dt+

[
A1 − B(t)

](X
Y

)
dW (t),(

X(0)
Y (0)

)
= 0.

Hence, we must have (X,Y ) = 0, which yields Z = 0 due to (3.65). This
proves (3.47).

A consequence of the above is the following.

Theorem 3.7. Let C = A1C1 = 0. Then, linear FBSDE (2.12) is solvable
for all g ∈ H if and only if (3.17) and (3.19) hold. In this case, the adapted
solution to (2.12) is unique (for any given g ∈ H).

Proof. Theorems 3.2 and 3.3 tell us that (3.17) and (3.19) are necessary.
We now prove the sufficiency. First of all, for any g ∈ H , by (3.17), we can
find y ∈ lRm, such that (3.14) holds (note C = 0). Then we have

(3.67) g − (0, I)Φ(T )
(
0
I

)
y ∈ N (E).

Next, by (3.46), there exists a Z ∈ H, such that

(3.68) g − (0, I)Φ(T )
(
0
I

)
y = KZ.

For this pair (y, Z) ∈ lRm × H, we define (X,Y ) by (3.2). Then one can
easily check that (X,Y, Z) ∈M[0, T ] is an adapted solution of (2.12). The
uniqueness follows easily from (3.47) and (3.17).

The above result gives a complete solution to the solvability of linear
FBSDE (2.12) with C = A1C1 = 0. By Theorems 1.2, 2.1 and 3.7, we can
obtain the solvability result for the original linear FBSDE (1.1). We omit
the precise statement here.
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§4. A Riccati Type Equation

In this section, we present another method. It will give a sufficient condition
for the unique solvability of (2.12). We will obtain a Riccati type equation
and a BSDE associated with (2.12). Let us now carry out a heuristic
derivation.
Suppose (X,Y, Z) ∈ M[0, T ] is an adapted solution of (2.12). We

assume that X and Y are related by

(4.1) Y (t) = P (t)X(t) + p(t), ∀t ∈ [0, T ], a.s.

where P : [0, T ] → lRm×n is a deterministic matrix-valued function and
p : [0, T ]×Ω→ lRm is an {Ft}t≥0-adapted process. We are going to derive
the equations for P (·) and p(·). First of all, from (4.1) and the terminal
condition in (2.12), we have

(4.2) g = P (T )X(T ) + p(T ).

Let us impose

(4.3) P (T ) = 0, p(T ) = g.

Since g ∈ L2FT (Ω; lR
m) and p(·) is required to be {Ft}t≥0-adapted, we

should assume that p(·) satisfies a BSDE:

(4.4)

{
dp(t) = α(t)dt+ q(t)dW (t), t ∈ [0, T ],
p(T ) = g,

with α(·), q(·) ∈ L2F(0, T ; lRm) being undetermined. Next, by Itô’s formula,
we have (for simplicity, we suppress t below):

(4.5)

dY = {ṖX + P [AX +BY + CZ] + α}dt
+ {P [A1X +B1Y + C1Z] + q}dW

= {[Ṗ + PA+ PBP ]X + PCZ + PBp+ α}dt
+ {[PA1 + PB1P ]X + PC1Z + PB1p+ q}dW,

Now, compare (4.5) with the second equation in (2.12) (note (4.1)), we
obtain that

(4.6) [Ṗ + PA+ PBP ]X + PCZ + PBp+ α = [Â+ B̂P ]X + ĈZ + B̂p,

and

(4.7) (PA1 + PB1P )X + PC1Z + PB1p+ q = Z.

By assuming I − PC1 to be invertible, we have from (4.7) that

(4.8) Z = (I − PC1)−1
{
(PA1 + PB1P )X + PB1p+ q

}
.
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Then, (4.6) can be written as

(4.9)

0 =
[
Ṗ + PA+ PBP − Â− B̂P
+ (PC − Ĉ)(I − PC1)−1(PA1 + PB1P )

]
X

+
[
PB − B̂ + (PC − Ĉ)(I − PC1)−1PB1

]
p

+ (PC − Ĉ)(I − PC1)−1q + α.

Now, we introduce the following differential equation for lRm×n-valued func-
tion P (·):

(4.10)

⎧⎪⎨⎪⎩
Ṗ + PA+ PBP − Â− B̂P
+ (PC − Ĉ)(I − PC1)−1(PA1 + PB1P ) = 0, t ∈ [0, T ],

P (T ) = 0.

We refer to (4.10) as a Riccati type equation. Suppose (4.10) admits a
solution P (·) over [0, T ] such that

(4.11) [I − P (t)C1]−1 is bounded for t ∈ [0, T ].
Then, (4.9) gives

α =−
[
PB − B̂ + (PC − Ĉ)(I − PC1)−1PB1

]
p

− (PC − Ĉ)(I − PC1)−1q.
Combining this with (4.4), we see that one should introduce the following
BSDE:

(4.12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dp = −

{[
PB − B̂ + (PC − Ĉ)(I − PC1)−1PB1

]
p

+ (PC − Ĉ)(I − PC1)−1q
}
dt+ qdW, t ∈ [0, T ],

p(T ) = g.

When (4.10) admits a solution P (·) such that (4.11) holds, by Theorem 3.2
of Chapter 1, BSDE (4.12) admits a unique adapted solution (p(·), q(·)) ∈
N [0, T ]. Then we can define the following:

(4.13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ã = A+BP + C(I − PC1)−1(PA1 + PB1P ),
Ã1 = A1 +B1P + C1(I − PC1)−1(PA1 + PB1P ),
b̃ = Bp+ C(I − PC1)−1(PB1p+ q),
σ̃ = B1p+ C1(I − PC1)−1(PB1p+ q).

It is clear that Ã and Ã1 are time-dependent matrix-valued functions and b̃
and σ̃ are {Ft}t≥0-adapted processes. Further, under (4.11), the following
SDE admits a unique strong solution:

(4.14)

{
dX = (ÃX + b̃)dt+ (Ã1X + σ̃)dW, t ∈ [0, T ],
X(0) = x.
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The following theorem gives a representation of the adapted solution of
FBSDE (2.12).

Theorem 4.1. Let (4.10) admits a solution P (·) such that (4.11) holds.
Then FBSDE (2.12) admits a unique adapted solution (X,Y, Z) ∈M[0, T ]
which is determined by (4.14), (4.1) and (4.8).

Proof. First of all, a direct computation shows that the process
(X,Y, Z) determined by (4.14), (4.1) and (4.8) is an adapted solution of
(2.12). We now prove the uniqueness. Let (X,Y, Z) ∈ M[0, T ] be any
adapted solution of (2.12). Set

(4.15)

{
Y = PX + p,

Z = (I − PC1)−1
[
(PA1 + PB1P )X + PB1p+ q

]
,

where P and (p, q) are (adapted) solutions of (4.10) and (4.12), respectively.

Denote Ŷ = Y −Y and Ẑ = Z−Z. Then a direct computation shows that

(4.16)

⎧⎪⎪⎨⎪⎪⎩
dŶ =

[
(PB − B̂)Ŷ
+ (PC − Ĉ)Ẑ

]
dt+

[
PB1Ŷ − (I − PC1)Ẑ

]
dW (t),

Ŷ (T ) = 0.

By (4.11), we may set

(4.17) Z̃ = PB1Ŷ − (I − PC1)Ẑ,

to get the following equivalent BSDE (of (4.16)):

(4.18)

⎧⎪⎪⎨⎪⎪⎩
dŶ =

{
[PB − B̂ + (PC − Ĉ)(I − PC1)−1PB1]Ŷ

− (PC − Ĉ)(I − PC1)−1Z̃
}
dt+ Z̃dW (t),

Ŷ (T ) = 0.

It is clear that such a BSDE admits a unique adapted solution (Ŷ , Z̃) = 0

(see Chapter 1, §3). Consequently, Ẑ = 0. Hence, by (4.15), we obtain

(4.19)

{
Y = PX + p,

Z = (I − PC1)−1
[
(PA1 + PB1P )X + PB1p+ q

]
,

This means that any adapted solution (X,Y, Z) of (2.12) must satisfy (4.19).
Then, similar to the heuristic derivation above, we have that X has to be
the solution of (4.14). Hence, we obtain the uniqueness.

The following result tells us something more.

Proposition 4.2. Let (4.10) admits a solution P (·) such that (4.11) holds
for t ∈ [T0, T ] (with some T0 ≥ 0). Then, for any T̃ ∈ [0, T − T0], linear
FBSDE (2.12) is uniquely solvable on [0, T̃ ].
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Proof. Let

(4.20) P̃ (t) = P (t+ T − T̃ ), t ∈ [0, T̃ ].

Then P̃ (·) satisfies (4.10) with [0, T ] replaced by [0, T̃ ] and

(4.21) [I − P̃ (t)C1]−1 is bounded for t ∈ [0, T̃ ].

Thus, Theorem 4.1 applies.

The above proposition tells that if (4.10) admits a solution P (·) satisfy-
ing (4.11), FBSDE (2.12) is uniquely solvable over any [0, T̃ ] (with T̃ ≤ T ).
Then in the case C = A1C1, by Theorem 3.2, the corresponding two-point
boundary value problem (3.17) of ODE over [0, T̃ ] admits a solution for all
g ∈ lRm, of which a necessary and sufficient condition is

(4.22) det
{
(0, I)eAt

(
0
I

)}
> 0, ∀t ∈ [0, T ].

Therefore, by Theorem 3.7, compare (4.22) and (3.17), we see that the
solvability of Riccati type equation (4.10) is only a sufficient condition for
the solvability of (2.12) (at least for the case C = A1C1 = 0).
In the rest of this section, we concentrate on the case C = 0. We do

not assume that A1C1 = 0. In this case, (4.10) becomes

(4.23)

{
Ṗ + PA+ PBP − Â− B̂P = 0, t ∈ [0, T ],
P (T ) = 0,

and the BSDE (4.12) is reduced to

(4.24)

{
dp = [B̂ − PB]pdt+ qdW (t), t ∈ [0, T ],
p(T ) = g.

We have seen that (4.22) is a necessary condition for (4.23) having a solution
P (·) satisfying (4.11). The following result gives the inverse of this.

Theorem 4.3. Let C = 0, Ĉ = 0. Let (4.22) hold. Then (4.23) admits a
unique solution P (·) which has the following representation:

(4.25) P (t) = −
[
(0, I)eA(T−t)

(
0
I

)]−1
(0, I)eA(T−t)

(
I
0

)
, t ∈ [0, T ].

Moreover, it holds

(4.26)
I − P (t)C1 =

[
(0, I)eA(T−t)

(
0
I

)]−1[
(0, I)eA(T−t)

(
C1
I

)]
,

t ∈ [0, T ].

Consequently, if in addition to (4.22), (3.19) holds, then (4.11) holds and
the linear FBSDE (2.12) (with C = 0) is uniquely solvable with the repre-
sentation given by (4.14), (4.1) and (4.8).
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Proof. Let us first check that (4.25) is a solution of (4.23). To this end,
we denote

(4.27) Θ(t) = (0, I)eA(T−t)
(
0
I

)
, t ∈ [0, T ].

Then we have (recall (2.13) for the definition of A)

(4.28) Θ̇(t) = −(0, I)eA(T−t)
(
I
0

)
B −Θ(t)B̂.

Hence,

(4.29)

Ṗ = Θ−1Θ̇Θ−1(0, I)eA(T−t)
(
I
0

)
+Θ−1(0, I)eA(T−t)A

(
I
0

)
= Θ−1

{
− (0, I)eA(T−t)

(
I
0

)
B −ΘB̂

}
(−P )

+ Θ−1(0, I)eA(T−t)
(
A
Â

)
= (PB − B̂)(−P ) + Θ−1(0, I)eA(T−t)

(
I
0

)
A+ Â

= −PBP + B̂P − PA+ Â.

Thus, P (·) given by (4.25) is a solution of (4.23). Uniqueness is obvious
since (4.23) is a terminal value problem with the right hand side of the
equation being locally Lipschitz. Finally, an easy calculation shows (4.26)
holds. Then we complete the proof.

§5. Some Extensions
In this section, we briefly look at the case with multi-dimensional Brown-
ian motion. Let W (t) ≡ (W 1(t), · · · ,W d(t)) be a d-dimensional Brownian
motion defined on (Ω,F , {Ft}t≥0,P) with {Ft}t≥0 being the natural fil-
tration of W (·) augmented by all the P-null sets. Similar to the case of
one-dimensional Brownian motion, we may also start with the most general
case, by using some necessary conditions for solvability to obtain a reduced
FBSDE. For simplicity, we skip this step and directly consider the following
FBSDE:

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX =
(
AX +BY

)
dt

+
d∑
i=1

(
Ai1X +B

i
1Y + C

i
1Z
i
)
dW i(t),

dY =
(
ÂX + B̂Y

)
dt+

d∑
i=1

ZidW i(t),

t ∈ [0, T ],

X(0) = 0, Y (T ) = g,



50 Chapter 2. Linear Equations

where A,B, etc. are certain matrices of proper sizes. Note that we only
consider the case that Z does not appear in the drift here since we have
only completely solved such a case. We keep the notation A as in (2.13)
and let

(5.2) Ai1 =
(
Ai1 Bi1
0 0

)
, Ci1

(
Ci1
I

)
, 1 ≤ i ≤ d.

If we assume X(·) and Y (·) are related by (4.1), then, we can derive a
Riccati type equation, which is exactly the same as (4.23). The associated
BSDE is now replaced by the following:

(5.3)

⎧⎪⎪⎨⎪⎪⎩
dp = [B̂ − PB]pdt+

d∑
i=1

qidW i(t), t ∈ [0, T ],

p(T ) = g.

Also, (4.13), (4.14) and (4.8) are now replaced by the following:

(5.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ã = A+BP, b̃ = Bp,

Ãi1 = A
i
1 +B

i
1P

+ Ci1(I − PCi1)−1(PAi1 + PBi1P ),

σ̃i = Bi1p+ C
i
1(I − PCi1)−1(PBi1p+ qi),

1 ≤ i ≤ d,

(5.5)

⎧⎪⎪⎨⎪⎪⎩
dX = (ÃX + b̃)dt+

d∑
i=1

(Ãi1X + σ̃
i)dW i(t), t ∈ [0, T ],

X(0) = 0,

(5.6) Zi = (I − PCi1)−1
{
(PAi1 + PB

i
1P )X + PB

i
1p+ q

i
}
, 1 ≤ i ≤ d.

Our main result is the following.

Theorem 5.1. Let (4.22) hold and

(5.7) det
{
(0, I)eAtCi1

}
> 0, ∀t ∈ [0, T ], 1 ≤ i ≤ d.

Then (4.23) admits a unique solution P (·) given by (4.25) such that

(5.8) [I − P (t)Ci1]−1 is bounded for t ∈ [0, T ], 1 ≤ i ≤ d,

and the FBSDE (5.1) admits a unique adapted solution (X,Y, Z) ∈M[0, T ]
which can be represented by (5.5), (4.1) and (5.6).

The proof can be carried out similar to the case of one-dimensional
Brownian motion. We leave the proof to the interested readers.



Chapter 3

Method of Optimal Control

In this chapter, we study the solvability of the following general nonlinear
FBSDE: (the same form as (3.16) in Chapter 1)

(0.1)

⎧⎪⎨⎪⎩
dX(t) = b(t,X(t), Y (t), Z(t))dt+ σ(t,X(t), Y (t), Z(t))dW (t),

dY (t) = h(t,X(t), Y (t), Z(t))dt + Z(t)dW (t), t ∈ [0, T ],
X(0) = x, Y (T ) = g(X(T )).

Here, we assume that functions b, σ, h and g are all deterministic, i.e., they
are not explicitly depending on ω ∈ Ω; and T > 0 is any positive number.
Thus, we have an FBSDE in a (possibly large) finite time duration. As we
have seen in Chapter 1, §4, under certain Lipschitz conditions, (0.1) admits
a unique adapted solution (X(·), Y (·), Z(·)) ∈ M[0, T ], provided T > 0 is
relatively small. But, for general T > 0, we see from Chapter 2 that even if
b, σ, h and g are all affine in the variables X , Y and Z, system (0.1) is not
necessarily solvable. In what follows, we are going to introduce a method
using optimal control theory to study the solvability of (0.1) in any finite
time duration [0, T ]. We refer to such an approach as the method of optimal
control.

§1. Solvability and the Associated Optimal Control Problem
§1.1. An optimal control problem
Let us make an observation on solvability of (0.1) first. Suppose (X(·),
Y (·), Z(·)) ∈ M[0, T ] is an adapted solution of (0.1). By letting y = Y (0) ∈
lRm, we see that (X(·), Y (·)) satisfies the following FSDE:

(1.1)

⎧⎪⎨⎪⎩
dX(t) = b(t,X(t), Y (t), Z(t))dt+ σ(t,X(t), Y (t), Z(t))dW (t),

dY (t) = h(t,X(t), Y (t), Z(t))dt + Z(t)dW (t), t ∈ [0, T ],
X(0) = x, Y (0) = y,

with Z(·) ∈ Z[0, T ] Δ=L2F(0, T ; lRm×d) being a suitable process. We note
that y and Z(·) have to be chosen so that the solution (X(·), Y (·)) of (1.1)
satisfies the following terminal constraint:

(1.2) Y (T ) = g(X(T )).

On the other hand, if we can find an y ∈ lRm and a Z(·) ∈ Z[0, T ], such that
(1.1) admits a strong solution (X(·), Y (·)) with the terminal condition (1.2)
being satisfied, then (X(·), Y (·), Z(·)) ∈ M[0, T ] is an adapted solution of
(0.1). Hence, (0.1) is solvable if and only if one can find an y ∈ lRm
and a Z(·) ∈ Z[0, T ], such that (1.1) admits a strong solution (X(·), Y (·))
satisfying (1.2).
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The above observation can be viewed in a different way using the
stochastic control theory. Let us call (1.1) a stochastic control system with
(X(·), Y (·)) being the state process, Z(·) being the control process, and
(x, y) ∈ lRn × lRm being the initial state. Then the solvability of (0.1) is
equivalent to the following controllability problem for (1.1) with the target:

(1.3) T = {(x, g(x))
∣∣ x ∈ lRn}.

Problem (C). For any x ∈ lRn, find an y ∈ lRm and a control Z(·) ∈
Z[0, T ], such that

(1.4) (X(T ), Y (T )) ∈ T , a.s.

Problem (C) having a solution means that the state (X(t), Y (t)) of
system (1.1) can be steered from {x}× lRm (at time t = 0) to the target T ,
given by (1.3), at time t = T , almost surely, by choosing a suitable control
Z(·) ∈ Z[0, T ].
In the previous chapter, we have presented some results related to this

aspect for linear FBSDEs. We point out that the above controllability
problem is very difficult for nonlinear case. However, the above formulation
leads us to considering a related optimal control problem, which essentially
decomposes the solvability problem of the original FBSDE into several rel-
atively easier ones; and we can treat them separately. Let us now introduce
the optimal control problem associated with (0.1).
Again, we consider the stochastic control system (1.1). Let us make

the following assumption:

(H1) Functions b(t, x, y, z), σ(t, x, y, z), h(t, x, y, z) and g(x) are contin-
uous and there exists a constant L > 0, such that for ϕ = b, σ, h, g, it holds
that

(1.5)

⎧⎪⎨⎪⎩
|ϕ(t, x, y, z)− ϕ(t, x, y, z)| ≤ L(|x− x|+ |y − y|+ |z − z|),
|ϕ(t, 0, 0, 0)|, |σ(t, x, y, 0)| ≤ L,

∀t ∈ [0, T ], x, x ∈ lRn, y, y ∈ lRm, z, z ∈ lRm×d.

Under the above (H1), we see that for any (x, y) ∈ lRn×lRm, and Z(·) ∈
Z[0, T ], (1.1) admits a unique strong solution, denoted by, (X(·), Y (·)) ≡
(X(· ;x, y, Z(·)), Y (· ;x, y, Z(·))), indicating the dependence on (x, y, Z(·)).
Next, we introduce a functional (called cost functional). The purpose is
to impose certain kind of penalty on the difference Y (T )− g(X(T )) being
large. To this end, we define

(1.6) f(x, y) =
√
1 + |y − g(x)|2 − 1, ∀(x, y) ∈ lRn × lRm.

Clearly, f is as smooth as g and satisfying the following:

(1.7)

{
f(x, y) ≥ 0, ∀(x, y) ∈ lRn × lRm,
f(x, y) = 0, if and only if y = g(x).
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In the case that (H1) holds, we have

(1.8)
|f(x, y)− f(x, y)| ≤L|x− x|+ |y − y|,

∀(x, y), (x, y) ∈ lRn × lRm.
Now, we define the cost functional as follows:

(1.9) J(x, y;Z(·)) Δ=Ef
(
X(T ;x, y, Z(·)), Y (T ;x, y, Z(·))

)
.

The following is the optimal control problem associated with (0.1).

Problem (OC). For any given (x, y) ∈ lRn × lRm, find a Z(·) ∈ Z[0, T ],
such that

(1.10) V (x, y)
Δ
= inf
Z(·)∈Z[0,T ]

J(x, y;Z(·)) = J(x, y;Z(·)).

Any Z(·) ∈ Z[0, T ] satisfying (1.10) is call an optimal control, the
corresponding state process

(X(·), Y (·)) Δ=(X(· ;x, y, Z(·)), Y (· ;x, y, Z(·)))

is called an optimal state process. Sometimes, (X(·), Y (·), Z(·)) is referred
to as an optimal triple of Problem(OC).
We have seen that the optimality in Problem(OC) depends on the

initial state (x, y). The number V (x, y) (which depends on (x, y)) in (1.10)
is called the optimal cost function of Problem(OC). By definition, we have

(1.11) V (x, y) ≥ 0, ∀(x, y) ∈ lRn × lRm.
We point out that in the associated optimal control problem, it is possible
to choose some other function f having similar properties as (1.7). For
definiteness and some later convenience, we choose f of form (1.6).
Next, we introduce the following:

(1.12) N (V ) Δ={(x, y) ∈ lRn × lRm
∣∣ V (x, y) = 0}.

This set is called the nodal set of function V . We have the following simple
result.

Proposition 1.1. For x ∈ lRn, FBSDE (0.1) admits an adapted solution
if and only if

(1.13) N (V )
⋂
[{x} × lRm] �= φ,

and for some (x, y) ∈ N (V ), there exists an optimal control Z(·) ∈ Z[0, T ],
such that

(1.14) V (x, y) = J(x, y;Z(·)) = 0.

Proof. Let (X(·), Y (·), Z(·)) ∈ M[0, T ] be an adapted solution of (0.1).
Let y = Y (0) ∈ lRm. Then (1.14) holds which gives (x, y) ∈ N (V ) and
(1.13) follows.
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Conversely, if (1.14) holds with some (x, y) ∈ lRn × lRm and Z(·) ∈
Z[0, T ], then (X(·), Y (·), Z(·)) ∈M[0, T ] is an adapted solution of (0.1).

In light of Proposition 1.1, we propose the following procedure to solve
the FBSDE (0.1):

(i) Determine the function V (x, y).

(ii) Find the nodal setN (V ) of V ; and restrict x ∈ lRn to satisfy (1.13).
(iii) For given x ∈ lRn satisfying (1.13), let y ∈ lRm such that (x, y) ∈

N (V ). Find an optimal control Z(·) ∈ Z[0, T ] of Problem(OC) with the
initial state (x, y). Then the optimal triple (X(·), Y (·), Z(·)) ∈ M[0, T ] is
an adapted solution of (0.1).

It is clear that in the above, (i) is a PDE problem; (ii) is a minimizing
problem over lRm; and (iii) is an existence of optimal control problem.
Hence, the solvability of original FBSDE (0.1) has been decomposed into
the above three major steps. We shall investigate these steps separately.

§1.2. Approximate solvability

We now introduce a notion which will be useful in practice and is related
to condition (1.13).

Definition 1.2. For given x ∈ lRn, (0.1) is said to be approximately
solvable if for any ε > 0, there exists a triple (Xε(·), Yε(·), Zε(·)) ∈M[0, T ],
such that (0.1) is satisfied except the last (terminal) condition, which is
replaced by the following:

(1.15) E
∣∣Yε(T )− g(Xε(T ))∣∣ < ε.

We call (Xε(·), Yε(·), Zε(·)) an approximate adapted solution of (0.1) with
accuracy ε.

It is clear that for given x ∈ lRn, if (0.1) is solvable, then it is approxi-
mately solvable. We should note, however, even if all the coefficients of an
FBSDE are uniformly Lipschitz, one still cannot guarantee its approximate
solvability. Here is a simple example.

Example 1.3. Consider the following simple FBSDE:

(1.16)

⎧⎪⎨⎪⎩
dX(t) = Y (t)dt+ dW (t),

dY (t) = −X(t)dt+ Z(t)dW (t),
X(0) = x, Y (T ) = −X(T ),

with T = 3π
4 and x �= 0. It is obvious that the coefficients of this FBSDE are

all uniformly Lipschitz. However, we claim that (1.16) is not approximately
solvable. To see this, note that by the variation of constants formula with
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y = Y (0), we have

(1.17)

(
X(t)
Y (t)

)
=

(
cos t sin t
− sin t cos t

)(
x
y

)
+

∫ t
0

(
cos(t− s) sin(t− s)
− sin(t− s) cos(t− s)

)(
1
Z(s)

)
dW (s).

Plugging t = T = 3π
4 into (1.17), we obtain that

X(T ) + Y (T ) = −
√
2x+

∫ T
0

η(s)dW (s),

where η is some process in L2F (0, T ; lR). Consequently, by Jensen’s inequal-
ity we have

E|Y (T )− g(X(T ))| = E|X(T ) + Y (T )| ≥ |E[X(T ) + Y (T )]| =
√
2|x| > 0,

for all (y, Z) ∈ lRm×Z[0, T ]. Thus, by Definition 1.2, FBSDE (1.16) is not
approximately solvable (whence not solvable).

The following result establishes the relationship between the approxi-
mate solvability of FBSDE (0.1) and the optimal cost function of the asso-
ciated control problem.

Proposition 1.4. Let (H1) hold. For a given x ∈ lRn, the FBSDE (0.1) is
approximately solvable if and only if the following holds:

(1.18) inf
y∈lRm

V (x, y) = 0.

Proof. We first claim that the inequality (1.15) in Definition 1.2 can
be replaced by

(1.19) Ef(Xε(T ), Yε(T )) < ε.

Indeed, by the following elementary inequalities:

(1.20)
r ∧ r2
3

≤
√
1 + r2 − 1 ≤ r, ∀r ∈ [0,∞),

we see that if (1.15) holds, so does (1.19). Conversely, (1.20) implies

Ef(Xε(T ), Yε(T )) ≥
1

3
E
(
|Yε(T )− g(Xε(T ))|2I(|Yε(T )−g(Xε(T ))|≤1)

)
+
1

3
E
(
|Yε(T )− g(Xε(T ))|I(|Yε(T )−g(Xε(T ))|>1)

)
.

Consequently, we have

(1.21) E|Yε(T )−g(Xε(T ))| ≤ 3Ef(Xε(T ), Yε(T ))+
√
3Ef(Xε(T ), Yε(T )).

Thus (1.19) implies (1.15) with ε being replaced by ε′ = 3ε+
√
3ε. Namely,

(1.18) is equivalent to the approximately solvability, by Definition 1.2 and
the definition of V .
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Using Proposition 1.4, we can now claim the non-approximate solvabil-
ity of the FBSDE (1.16) in a different way. By a direct computation using
(1.21), one shows that

J(x, y;Z(·)) = Ef(X(T ), Y (T ))

≥ 1
3

[√√
2|x|+ 1

4
− 1
2

]2
> 0, ∀Z(·) ∈ Z[0, T ].

Thus,

V (x, y) ≥ 1
3

[√√
2|x|+ 1

4
− 1
2

]2
> 0,

violating (1.18), whence not approximately solvable.

Next, we shall relate the approximate solvability to condition (1.13).
To this end, let us introduce the following supplementary assumption.

(H2) There exists a constant L > 0, such that for all (t, x, y, z) ∈
[0, T ]× lRn × lRm × lRm×d, one of the following holds:

(1.22)

{
|b(t, x, y, z)|+ |σ(t, x, y, z)| ≤ L(1 + |x|),
〈h(t, x, y, z), y 〉 ≥ −L(1 + |x| |y|+ |y|2),

(1.23)

{
〈h(t, x, y, z), y 〉 ≥ −L(1 + |y|2),
|g(x)| ≤ L.

Proposition 1.5. Let (H1) hold. Then (1.13) implies (1.18); conversely,
if V (x, ·) is continuous, and (H2) holds, then (1.18) implies (1.13).

Proof. That condition (1.13) implies (1.18) is obvious. We need only
prove the converse. Let us first assume that V is continuous and (1.22)
holds.
Since (1.18) implies the approximately solvability of (0.1), for every

ε ∈ (0, 1], we may let (Xε, Yε, Zε) ∈ M[0, T ] be an approximate adapted
solution of (0.1) with accuracy ε. Some standard arguments using Itô’s
formula, Gronwall’s inequality, and condition (1.22) will yield the following
estimate

(1.24) E|Xε(t)|2 ≤ C(1 + |x|2), ∀t ∈ [0, T ], ε ∈ (0, 1].

Here and in what follows, the constant C > 0 will be a generic one, de-
pending only on L and T , and may change from line to line. By (1.24) and
(1.15), we obtain

(1.25)
E|Yε(T )| ≤ E|g(Xε(T ))|+ E|Yε(T )− g(Xε(T ))|

≤ C(1 + |x|) + ε ≤ C(1 + |x|).
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Next, let 〈x 〉 Δ=
√
1 + |x|2. It is not hard to check that both D 〈x 〉 and

D2 〈x 〉 are uniformly bounded, thus applying Itô’s formula to 〈Yε(t) 〉, and
note (1.22) and (1.24), we have

(1.26)

E 〈Yε(T ) 〉−E 〈Yε(t) 〉

= E

∫ T
t

1

〈Yε(s) 〉
{
〈 Yε(s), h(s,Xε(s), Yε(s), Zε(s)) 〉

+
1

2

[
|Zε(s)|2 −

∣∣Zε(s)T Yε(s)〈Yε(s) 〉
∣∣2]}ds

≥ −LE
∫ T
t

(1 + |Xε(s)|+ 〈Yε(s) 〉)ds

≥ −C(1 + |x|)− LE
∫ T
t

〈Yε(s) 〉 ds, ∀t ∈ [0, T ].

Now note that |y| ≤ 〈 y 〉 ≤ 1 + |y|, we have by Gronwall’s inequality and
(1.25) that

(1.27) E 〈Yε(t) 〉 ≤ C(1 + |x|), ∀t ∈ [0, T ], ε ∈ (0, 1].

In particular, (1.27) leads to the boundedness of the set {|Yε(0)|}ε>0. Thus,
along a sequence we have Yεk(0)→ y, as k →∞. The (1.13) will now follow
easily from the continuity of V (x, ·) and the following equalities:

(1.28) 0 ≤ V (x, Yεk (0)) ≤ Ef(Xεk(T ), Yεk(T )) < εk.

Finally, if (1.23) holds, then redoing (1.25) and (1.26), we see that
(1.27) can be replaced by E 〈Yε(t) 〉 ≤ C, ∀t ∈ [0, T ], ε ∈ (0, 1]. Thus the
same conclusion holds.

We will see in §3 that if (H1) holds, then V (· , ·) is continuous.

§2. Dynamic Programming Method and the HJB Equation
We now study the optimal control problem associated with (0.1) via the
Bellman’s dynamic programming method. To this end, we let s ∈ [0, T ) and
consider the following controlled system (compare with (1.1)):

(2.1)

⎧⎪⎨⎪⎩
dX(t) = b(t,X(t), Y (t), Z(t))dt+ σ(t,X(t), Y (t), Z(t))dW (t),

dY (t) = h(t,X(t), Y (t), Z(t))dt + Z(t)dW (t), t ∈ [s, T ],
X(s) = x, Y (s) = y,

Note that under assumption (H1) (see the paragraph containing (1.5)), for

any (s, x, y) ∈ [0, T ) × lRn × lRm and Z(·) ∈ Z[s, T ] Δ=L2F(s, T ; lRm×d),
equation (2.1) admits a unique strong solution, denoted by, (X(·), Y (·)) ≡
(X(· ; s, x, y, Z(·)), Y (· ; s, x, y, Z(·))). Next, we define the cost functional as
follows:

(2.2) J(s, x, y;Z(·)) Δ=Ef
(
X(T ; s, x, y, Z(·)), Y (T ; s, x, y, Z(·))

)
,
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with f defined by (1.6). Similar to Problem(OC), we may pose the follow-
ing optimal control problem.

Problem (OC)s. For any given (s, x, y) ∈ [0, T ) × lRn × lRm, find a
Z(·) ∈ Z[s, T ], such that

(2.3) V (s, x, y)
Δ
= inf
Z(·)∈Z[s,T ]

J(s, x, y;Z(·)) = J(s, x, y;Z(·)).

We also define

(2.4) V (T, x, y) = f(x, y), (x, y) ∈ lRn × lRm.

Function V (· , · , ·) defined by (2.3)–(2.4) is called the value function of the
above family of optimal control problems (parameterized by s ∈ [0, T )). It
is clear that when s = 0, Problem(OC)s is reduced to Problem(OC) stated
in the previous section. In other words, we have embedded Problem(OC)
into a family of optimal control problems. We point out that this family of
problems contains some very useful “dynamic” information due to allowing
the initial moment s ∈ [0, T ) to vary. This is very crucial in the dynamic
programming approach. From our definition, we see that

(2.5) V (0, x, y) = V (x, y), ∀(x, y) ∈ lRn × lRm.

Thus, if we can determine V (s, x, y), we can do so for V (x, y). Recall
that we called V (x, y) the optimal cost function of Problem(OC), reserving
the name value function for V (s, x, y) for the conventional purpose. The
following is the well-known Bellman’s principle of optimality.

Theorem 2.1. For any 0 ≤ s ≤ ŝ ≤ T , and (x, y) ∈ lRn × lRm, it holds

(2.6) V (s, x, y) = inf
Z(·)∈Z[s,T ]

EV (ŝ, X(ŝ; s, x, y, Z(·)), Y (ŝ; s, x, y, Z(·))).

A rigorous proof of the above result is a little more involved. We present
a sketch of the proof here.

Sketch of the proof. We denote the right hand side of (2.6) by V̂ (s, x, y).
For any Z(·) ∈ Z[s, T ], by definition, we have

V (s, x, y) ≤ J(s, x, y;Z(·))
= EJ(ŝ, X(ŝ; s, x, y, Z(·)), Y (ŝ; s, x, y, Z(·));Z(·)).

Thus, taking infimum over Z(·) ∈ Z[s, T ], we obtain

(2.7) V (s, x, y) ≤ V̂ (s, x, y).

Conversely, for any ε > 0, there exists a Zε(·) ∈ Z[s, T ], such that

(2.8)

V (s, x, y) + ε ≥ J(s, x, y;Zε(·))
= EJ(ŝ, X(ŝ; s, x, y, Zε(·)), Y (ŝ; s, x, y, Zε(·));Zε(·))
≥ EV (ŝ, X(ŝ; s, x, y, Zε(·)), Y (ŝ; s, x, y, Zε(·)))
≥ V̂ (s, x, y).
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Combining (2.7) and (2.8), we obtain (2.6).

Next, we introduce the Hamiltonian for the above optimal control prob-
lem:

(2.9)

H(s, x, y, q,Q, z) Δ=
{
〈 q,
(
b(s, x, y, z)
h(s, x, y, z)

)
〉

+
1

2
tr
[
Q

(
σ(s, x, y, z)

z

)(
σ(s, x, y, z)

z

)T ]}
,

∀(s, x, y, q,Q, z) ∈ [0, T ]× lRn × lRm

× lRn+m × Sn+m × lRm×d,

and

(2.10)
H(s, x, y, q,Q) = inf

z∈lRm×d
H(s, x, y, q,Q, z),

∀(s, x, y, q,Q) ∈ [0, T ]× lRn × lRm × lRn+m × Sn+m,

where Sn+m is the set of all (n +m) × (n +m) symmetric matrices. We
see that since lRm×d is not compact, the function H is not necessarily
everywhere defined. We let

(2.11) D(H) Δ={(s, x, y, q,Q)
∣∣ H(s, x, y, q,Q) > −∞}.

From above Theorem 2.1, we can obtain formally a PDE that the value
function V (· , · , ·) should satisfy.
Proposition 2.2. Suppose V (s, x, y) is smooth and H is continuous in
IntD(H). Then

(2.12) Vs(s, x, y) +H(s, x, y,DV (s, x, y), D
2V (s, x, y)) = 0,

for all (s, x, y) ∈ [0, T )× lRn × lRm, such that

(2.13) (s, x, y,DV (s, x, y), D2V (s, x, y)) ∈ IntD(H),

where

DV =

(
Vx
Vy

)
, D2V =

(
Vxx Vxy
V Txy Vyy

)
.

Proof. Let (s, x, y) ∈ [0, T )× lRn× lRm such that (2.13) holds. For any
z ∈ lRm×d, let (X(·), Y (·)) be the solution of (2.1) corresponding to (s, x, y)
and Z(·) ≡ z. Then, by (2.6) and Itô’s formula, we have

(2.14)
0 ≤ E

{V (ŝ, X(ŝ), Y (ŝ))− V (s, x, y)
ŝ− s

}
→ Vs(s, x, y) +H(s, x, y,DV (s, x, y), D2V (s, x, y), z).

Taking infimum in z ∈ lRm×d, we see that

(2.15) Vs(s, x, y) +H(s, x, y,DV (s, x, y), D
2V (s, x, y)) ≥ 0.
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On the other hand, for any ε > 0 and ŝ ∈ (s, T ), by (2.6), there exists
a Z(·) ≡ Zε(·) ∈ Z[s, T ], with the corresponding state being (X(·), Y (·)),
such that
(2.16)

ε ≥ E
{V (ŝ, X(ŝ), Y (ŝ))− V (s, x, y)

ŝ− s
}

=
1

ŝ− sE
∫ ŝ
s

{
Vs(t,X(t), Y (t))

+H
(
t,X(t), Y (t), DV (t,X(t), Y (t)), D2V (t,X(t), Y (t)), Z(t))

)}
dt

≥ 1

ŝ− sE
∫ ŝ
s

{
Vs(t,X(t), Y (t))

+H
(
t,X(t), Y (t), DV (t,X(t), Y (t)), D2V (t,X(t), Y (t))

)}
dt

→ Vs(s, x, y) +H(s, x, y,DV (s, x, y), D2V (s, x, y)).
Here, we have used (2.13) and the assumption that H is continuous in
IntD(H). Combining (2.15)–(2.16), we obtain (2.12).
Equation (2.12) is called the Hamilton-Jacobi-Bellman (HJB for short)

equation associated with our optimal control problem. In principle, one
can determine the value function V (· , · , ·) through solving (2.12)–(2.13)
together with the terminal condition (2.4). However, since D(H) might
be a very complicated set, solving (2.12)–(2.13) together with (2.4) is very
difficult. Thus, much more needs to be done in order to determine the value
function V .

§3. The Value Function
In this section, we are going to study the value function V introduced in
the previous section in some details.

§3.1. Continuity and semi-concavity
We first look at the continuity of the value function V (s, x, y). Note that
since the control domain lRm×d is not compact, we can only prove the
right-continuity of V (s, x, y) in s ∈ [0, T ).
Proposition 3.1. Let (H1) hold. Then V (s, x, y) is right-continuous in
s ∈ [0, T ) and there exists a constant C > 0, such that

(3.1)
0 ≤ V (s, x, y) ≤C(1 + |x|+ |y|),

∀(s, x, y) ∈ [0, T ]× lRn × lRm,

(3.2)
|V (s, x, y)− V (s, x, y)| ≤ C(|x − x|+ |y − y|),

∀s ∈ [0, T ], x, x ∈ lRn, y, y ∈ lRm.

Proof. It is clear that for any (s, x, y) ∈ [0, T ]× lRn × lRm, we have
0 ≤ V (s, x, y) ≤ J(s, x, y; 0) ≤ C(1 + |x|+ |y|).
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This proves (3.1).
Next, let s ∈ [0, T ] and (x, y), (x, y) ∈ lRn × lRm be fixed. Then, for

any Z(·) ∈ Z[s, T ], by Itô’s formula and Gronwall’s inequality, using (H1),
we have

(3.3)

E
∣∣X(t; s, x, y, Z(·))−X(t; s, x, y, Z(·))∣∣2
+ E
∣∣Y (t; s, x, y, Z(·))− Y (t; s, x, y, Z(·))∣∣2

≤ C
{
|x− x|2 + |y − y|2

}
, t ∈ [s, T ],

with C > 0 only depending on L and T . Then (3.2) follows from (1.8),
which implies the (Lipschitz) continuity of V (s, x, y) in (x, y).
We now prove the right-continuity of V (s, x, y) in s ∈ [0, T ]. First of

all, it is clear that for any Z(·) ∈ Z[0, T ], the function

(s, x, y) �→ J
(
s, x, y;Z

∣∣
[s,T ]
(·)
)

is continuous. Thus, by the definition of V , it is necessary that V (s, x, y)
is upper semi-continuous. On the other hand, by (2.6) and (3.2), taking
Z(·) = 0, we have

(3.4) V (s, x, y) ≤ V (ŝ, x, y) + C(ŝ− s)1/2, ∀0 ≤ s ≤ ŝ ≤ T.

Thus, by the upper semi-continuity of V , we must have

lim
ŝ ↓ s
V (ŝ, x, y) = V (s, x, y),

which gives the right-continuity of V in s ∈ [0, T ).
From (2.5) and (3.2), we see that under (H1), the function V (x, y) is

continuous, the assertion that we promised to prove in §1.
Next, we would like to establish another important property for the

value function. To this end, we introduce the following definition.

Definition 3.2. A function ϕ : lRn → lR is said to be semi-concave if there
exists a constant C > 0, such that the function Φ(x) ≡ ϕ(x) − C|x|2 is
concave on lRn, i.e.,

(3.5) Φ(λx+ (1 − λ)x) ≥ λΦ(x) + (1− λ)Φ(x), ∀λ ∈ [0, 1], x, x ∈ lRn.

A family of functions ϕε : lR
n → lR is said to be semi-concave uniformly in

ε if there exists a constant C > 0, independent of ε, such that ϕε(x)−C|x|2
is concave for all ε.
We have the following result.

Lemma 3.3. Function ϕ : lRn → lR is semiconcave if and only if

(3.6)
λϕ(x) + (1− λ)ϕ(x)− ϕ(λx + (1− λ)x) ≤ Cλ(1 − λ)|x − x|2,

∀λ ∈ [0, 1], x, x ∈ lRn.

In the case that ϕ ∈ W 2,1loc (lRn), it is semiconcave if and only if

(3.7) D2ϕ(x) ≤ CI, a.e.x ∈ lRn,
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where D2ϕ is the (generalized) Hessian of ϕ (i.e., it consists of second order
weak derivatives of ϕ).

Proof. We have the following identity:

λ|x|2 + (1− λ)|x|2 − |λx+ (1 − λ)x|2 = λ(1− λ)|x − x|2,
∀λ ∈ [0, 1], x, x ∈ lRn.

Thus, we see immediately that (3.5) and (3.6) are equivalent.
Now, if ϕ is C2, then, by the concavity of ϕ(x) − C|x|2, we know that

(3.7) holds. By Taylor expansion, we can prove the converse. For the
general case, we may approximate ϕ using mollifier.

It is easy to see from the last conclusion of Lemma 3.3 that if ϕ has a
bounded Hessian, i.e., ϕx is uniformly Lipschitz, then, it is semi-concave.
This observation will be very useful below.
Let us make some further assumptions.

(H3) Functions b, σ, h and g are differentiable in (x, y) with the deriva-
tives being uniformly Lipschitz continuous in (x, y) ∈ lRn × lRm, uniformly
in (t, z) ∈ [0, T ]× lRm×d.

We easily see that under (H3), the function f defined by (1.6) has a
bounded Hessian, and thus it is semi-concave.
Now, we prove the following:

Theorem 3.4. Let (H1) and (H3) hold. Then the value function V (s, x, y)
is semi-concave in (x, y) ∈ lRn × lRm uniformly in s ∈ [0, T ].

Proof. Let s ∈ [0, T ), x0, x1 ∈ lRn and y0, y1 ∈ lRm. Denote

(3.8) xλ = λx1 + (1− λ)x0, yλ = λy1 + (1− λ)y0, λ ∈ [0, 1].

Then, for any ε > 0, there exists a Zε(·) ∈ Z[s, T ] (which is also depending
on λ), such that

(3.9) J(s, xλ, yλ;Zε(·)) < V (s, xλ, yλ) + ε.

We now fix the above Zε(·) and let (Xλ(·), Yλ(·)) be the solution of (2.1)
corresponding to (s, xλ, yλ, Zε(·)). We denote

(3.10)

{
ηλ(r) = (Xλ(r), Yλ(r)),

ξλ(r) = λη1(r) + (1− λ)η0(r),
λ ∈ [0, 1], r ∈ [s, T ].

Using Itô’s formula and Gronwall’s inequality, we have

(3.11) E|X1(t)−X0(t)|4 +E|Y1(t)− Y0(t)|4 ≤ C(|x1 − x0|4 + |y1 − y0|4).
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Since f(x, y) is semi-concave in (x, y) (by (H3)), we have

(3.12)

λV (s, x1, y1) + (1− λ)V (s, x0, y0)− V (s, xλ, yλ)− ε
≤ λJ(s, x1, y1;Zε(·)) + (1 − λ)J(s, x0, y0;Zε(·))

− J(s, xλ, yλ;Zε(·))

= E
{
λf(η1(T )) + (1 − λ)f(η0(T ))− f(ηλ(T ))

}
≤ CE

{
λ(1 − λ)|η1(T )− η0(T )|2 + |ξλ(T )− ηλ(T )|2

}
.

Let us now estimate the right hand side of (3.12). For the first term, we
have

(3.13) E|η1(t)− η0(t)|2 ≤ C(|x1 − x0|2 + |y1 − y0|2), t ∈ [s, T ].

To estimate the second term on the right hand side of (3.12), let us denote

(3.14)

⎧⎪⎨⎪⎩
bλ(r) = b(r, ηλ(r), Zε(r)),

hλ(r) = h(r, ηλ(r), Zε(r)),

σλ(r) = σ(r, ηλ(r), Zε(r)),

λ ∈ [0, 1], r ∈ [s, T ].

Then, applying Itô’s formula, one has (we suppress r in the integrand below)

(3.15)

E
∣∣ξλ(t)− ηλ(t)∣∣2
= 2E

∫ t
s

〈λX1 + (1− λ)X0 −Xλ, λb1 + (1− λ)b0 − bλ 〉 dr

+ 2E

∫ t
s

〈λY1 + (1 − λ)Y0 − Yλ, λh1 + (1− λ)h0 − hλ 〉 dr

+ E

∫ t
s

|λσ1 + (1− λ)σ0 − σλ|2dr, t ∈ [s, T ].

Note (we suppress r and Zε(r) from the second line on)

(3.16)

|λb1(r) + (1− λ)b0(r) − bλ(r)|
= |λb(η1) + (1 − λ)b(η0)− b(ηλ)|
≤ |λ[b(η1)− b(ξλ)] + (1− λ)[b(η0)− b(ξλ)]|+ L|ξλ − ηλ|

=
∣∣∣λ∫ 1

0

〈 bη(ξλ + α(1− λ)(η1 − η0))dα, (1 − λ)(η1 − η0) 〉

+ (1− λ)
∫ 1
0

〈 bη(ξλ − αλ(η1 − η0))dα,−λ(η1 − η0) 〉
∣∣∣

+ L|ξλ − ηλ|
≤ Cλ(1 − λ)|η1 − η0|+ L|ξλ − ηλ|.

We have the similar estimates for the terms involving h and σ. Then it
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follows from (3.13) and (3.15) that

E|ξλ(t)− ηλ(t)|2 ≤ Cλ2(1− λ)2(|x1 − x0|2 + |y1 − y0|2)

+ C

∫ t
s

E|ξλ(r) − ηλ(r)|2dr, ∀t ∈ [s, T ].

By applying Gronwall’s inequality, we obtain

(3.17) E|ξλ(t)− ηλ(t)|2 ≤ Cλ2(1 − λ)2(|x1 − x0|2 + |y1 − y0|2).

Combining (3.12), (3.13) and (3.17), we obtain the semi-concavity of
V (s, x, y) in (x, y), uniformly in s ∈ [0, T ].

§3.2. Approximation of the value function
We have seen that due to the noncompactness of the control domain lRm×d,
it is not very easy to determine the value function V through a PDE (the
HJB equation). In this subsection, we introduce some approximations of
the value function, which will help us to determine the value function (ap-
proximately).

First of all, let W̃ (t) ≡ (W̃1(t), W̃2(t)) be an (n+m)-dimensional Brow-
nian motion which is independent of W (t) (embedded into an enlarged

probability space, if necessary) and let {F̃t}t≥0 be the filtration generated
by W (t) and W̃ (t), augmented by all the P -null sets in F̃ . Define

(3.18)

⎧⎪⎪⎨⎪⎪⎩
Z0[s, T ] Δ=Z[s, T ],
Z̃0[s, T ] Δ={Z : [s, T ]× Ω→ lRm×d

∣∣ Z is {F̃t}t≥0-adapted ,∫ T
0
E|Z(t)|2dt <∞ }.

Next, for any δ > 0, we define

(3.19)

⎧⎪⎨⎪⎩
Zδ[s, T ] Δ={Z ∈ Z[s, T ]

∣∣ |Z(t)| ≤ 1
δ
, a.e. t ∈ [s, T ], a.s. },

Z̃δ[s, T ] Δ={Z ∈ Z̃0[s, T ]
∣∣ |Z(t)| ≤ 1

δ
, a.e. t ∈ [s, T ], a.s. }.

The following inclusions are obvious.

(3.20)
Z0[s, T ] ⊃ Zδ1 [s, T ] ⊃ Zδ2 [s, T ]
∩ ∩ ∩

Z̃0[s, T ] ⊃ Z̃δ1 [s, T ] ⊃ Zδ2 [s, T ]
∀δ2 ≥ δ1 ≥ 0.

In what follows, for any Z ∈ Z0[s, T ] (resp. Z̃0[s, T ]) and δ > 0, we
define the 1

δ
-truncation of Z as follows:

(3.21) Zδ(t, ω) =

⎧⎪⎪⎨⎪⎪⎩
Z(t, ω), if |Z(t, ω)| ≤ 1

δ
,

Z(t, ω)

δ|Z(t, ω)| , if |Z(t, ω)| > 1
δ
.
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Clearly, Zδ ∈ Zδ[s, T ] (resp. Z̃δ[s, T ]).
We now consider, for any ε > 0, the following regularized state equation

(compare to (2.1)):

(3.22)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dX(t) = b(t,X(t), Y (t), Z(t))dt + σ(t,X(t), Y (t), Z(t))dW (t)

+
√
2εdW̃1(t),

dY (t) = h(t,X(t), Y (t), Z(t))dt + Z(t)dW (t)

+
√
2εdW̃2(t), t ∈ [s, T ],

X(s) = x, Y (s) = y.

Define the cost functional by Jδ,ε(s, x, y;Z(·)) (resp. J̃δ,ε(s, x, y;Z(·)))
which has the same form as (2.3) with the control being taken in Zδ[s, T ]
(resp. Z̃δ[s, T ]) and the state satisfying (3.22), indicating the dependence
on δ ≥ 0 and ε ≥ 0. The corresponding optimal control problem is called
Problem (OC)δ,εs (resp. Problem ˜(OC)δ,εs ). The corresponding (approxi-
mate) value functions are then defined as, respectively,

(3.23)

⎧⎪⎨⎪⎩
Ṽ δ,ε(s, x, y) = inf

Z(·)∈Z̃δ[s,T ]
J̃δ,ε(s, x, y;Z(·)),

V δ,ε(s, x, y) = inf
Z(·)∈Zδ[s,T ]

Jδ,ε(s, x, y;Z(·)).

Due to the inclusions in (3.20), we see that for any (s, x, y) ∈ [0, T ]× lRn×
lRm,

(3.24)

⎧⎪⎪⎨⎪⎪⎩
V δ,ε(s, x, y) ≥ Ṽ δ,ε(s, x, y) ≥ 0, ∀δ, ε ≥ 0,
Ṽ δ2,ε(s, x, y) ≥ Ṽ δ1,ε(s, x, y), ∀δ2 ≥ δ1 ≥ 0, ε ≥ 0,
V δ2,ε(s, x, y) ≥ V δ1,ε(s, x, y), ∀δ2 ≥ δ1 ≥ 0, ε ≥ 0.

Also, it is an easy observation that V 0,0(s, x, y) = V (s, x, y), ∀(s, x, y).
Note that for δ > 0 and ε ≥ 0, the corresponding HJB equation for the
value function Ṽ δ,ε(s, x, y) takes the following form:

(3.25)

⎧⎪⎨⎪⎩
Ṽ δ,εs + εΔṼ δ,ε +Hδ(s, x, y,DṼ δ,ε, D2Ṽ δ,ε) = 0,

(s, x, y) ∈ (0, T )× lRn × lRm;
Ṽ δ,ε(T, x, y) = f(x, y), (x, y) ∈ lRn × lRm,

where Δ is the Laplacian operator in lRn+m, and Hδ is defined by the
following:

Hδ(s, x, y, q,Q)
Δ
= inf

z∈lRm×d
|z|≤1/δ

{
〈 q,
(
b(s, x, y, z)
h(s, x, y, z)

)
〉

+
1

2
tr
[
Q

(
σ(s, x, y, z)

z

)(
σ(s, x, y, z)

z

)T ]}
,
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for (s, x, y, q,Q) ∈ [0, T ]× lRn × lRm × lRn+m × Sn+m, where Sn+m is the
set of all (n+m)× (n+m) symmetric matrices. We observe that for ε > 0,
(3.25) is a nondegenerate nonlinear parabolic PDE; and for ε = 0, however,
(3.25) is a degenerate nonlinear parabolic PDE. The following notion will
be necessary for us to proceed further.

Definition 3.5. A continuous function v : [0, T ]× lRn× lRm → lR is called
a viscosity subsolution (resp. viscosity supersolution) of (3.25), if

(3.26)
v(T, x, y) ≤ f(x, y), ∀(x, y) ∈ lRn × lRm,
(resp. v(T, x, y) ≥ f(x, y), ∀(x, y) ∈ lRn × lRm),

and for any smooth function ϕ(s, x, y) whenever the map v − ϕ attains a
local maximum (resp. minimum) at (s, x, y) ∈ [0, T )× lRn × lRm, it holds:

(3.27)
ϕs(s, x, y) + εΔϕ(s, x, y)

+Hδ(s, x, y,Dϕ(s, x, y), D2ϕ(s, x, y)) ≥ 0 (resp. ≤ 0).
If v is both viscosity subsolution and viscosity supersolution of (3.25), we
call it a viscosity solution of (3.25).

We note that in the above definition, v being continuous is enough.
Thus, by this, we can talk about a solution of differential equations without
its differentiability. Furthermore, such a notion admits the uniqueness.
The following proposition collects some basic properties of the approx-

imate value functions.

Proposition 3.6. Let (H1) hold. Then

(i) Ṽ δ,ε(s, x, y) and V δ,ε(s, x, y) are continuous in (x, y) ∈ lRn × lRm,
uniformly in s ∈ [0, T ] and δ, ε ≥ 0; For fixed δ > 0 and ε ≥ 0, Ṽ δ,ε(s, x, y)
and V δ,ε(s, x, y) are continuous in (s, x, y) ∈ [0, T ]× lRn × lRm.
(ii) For δ > 0 and ε ≥ 0, Ṽ δ,ε(s, x, y) is the unique viscosity solution of

(3.25), and for δ, ε > 0, Ṽ δ,ε(s, x, y) is the unique strong solution of (3.25).

(iii) For δ > 0 and ε ≥ 0, V δ,ε(s, x, y) is a viscosity super solution of
(3.25), V δ,0(s, x, y) is the unique viscosity solution of (3.25) (with ε = 0).

The proof of (i) is similar to that of Proposition 3.1 and the proof of
(ii) and (iii) are by now standard, which we omit here for simplicity of
presentation (see Yong-Zhou [1] and Fleming-Soner [1], for details).
The following result gives the continuous dependence of the approxi-

mate value functions on the parameters δ and ε.

Theorem 3.7. Let (H1) hold. Then, for any s ∈ [0, T ], there exists a
continuous function ηs : [0,∞) × [0,∞) → [0,∞), with ηs(0, r) = 0 for all
r ≥ 0, such that

(3.28)

|Ṽ δ,ε(s, x, y)− Ṽ δ̂,ε̂(s, x, y)| ≤ ηs(|δ − δ̂|+ |ε− ε̂|, |x|+ |y|),
|V δ,ε(s, x, y)− V δ̂,ε̂(s, x, y)| ≤ ηs(|δ − δ̂|+ |ε− ε̂|, |x|+ |y|),

∀(s, x, y) ∈ [0, T ]× lRn × lRm, δ, δ̂, ε, ε̂ ∈ [0, 1].
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Proof. Fix (s, x, y) ∈ [0, T ]× lRn × lRm, δ, δ̂, ε, ε̂ ≥ 0, and Z ∈ Z[s, T ].
Let Zδ (resp. Zδ̂) be the 1/δ- (resp. 1/δ̂-) truncation of Z; and (X,Y ) (resp.

(X̂, Ŷ )) the solution of (3.22) corresponding to (ε, Zδ) (resp. (ε̂, Zδ̂)). By
Itô’s formula and Gronwall’s inequality,

(3.29)

E
{
|X(T )− X̂(T )|2 + |Y (T )− Ŷ (T )|2

}
≤ C
{
E

∫ T
s

|Zδ(t)− Zδ̂(t)|2dt+ |
√
ε−

√
ε̂|2
}
,

where C > 0 depends only on L and T . Thus, we obtain

(3.30)
|V δ,ε(s, x, y)− V δ,ε̂(s, x, y)|

≤ C|
√
ε−

√
ε̂|, ∀(s, x, y), δ, ε, ε̂ ≥ 0.

Combining with Proposition 3.6, we see that V δ,ε(s, x, y) is continuous in
(ε, x, y) ∈ [0,∞)× lRn × lRm uniformly in δ ≥ 0 and s ∈ [0, T ].
Next, for fixed (s, x, y) ∈ [0, T ]× lRn × lRm, ε ≥ 0, and δ̂ ≥ δ ≥ 0, by

(3.24), we have

(3.31) 0 ≤ V δ̂,ε(s, x, y)− V δ,ε(s, x, y).
On the other hand, for any δ > 0, and ε0 > 0, we can choose Z

ε0 ∈ Zδ[s, T ]
so that

(3.32) V δ,ε(s, x, y) + ε0 > J
δ,ε(s, x, y;Zε0).

Let Zε0
δ̂
be the 1

δ̂
-truncation of Zε0 , and denote the corresponding solution

of (3.22) with Zε0 (resp. Zε0
δ̂
) by (Xε0 , Y ε0) (resp. (X̂ε0 , Ŷ ε0)). Setting

(X,Y ) = (Xε0 , Y ε0), (X̂, Ŷ ) = (X̂ε0 , Ŷ ε0), ε = ε̂, Zδ = Z
ε0 , and Zδ̂ = Z

ε0
δ̂

in (3.29), we obtain

(3.33)

E
{
|Xε0(T )− X̂ε0(T )|2 + |Y ε0(T )− Ŷ ε0(T )|2

}
≤ CE

∫ T
s

|Zε0(t)− Zε0
δ̂
(t)|2dt.

We consider the following two cases:

Case 1. δ > 0. In this case, note that |Zε0(t) − Zε0
δ̂
(t)| ≤ |1/δ − 1/δ̂|,

a.e. t ∈ [s, T ], a.s. By (1.8) and (H1), one easily checks that

(3.34)

Jδ,ε(s, x, y;Zε0) ≥ J δ̂,ε(s, x, y;Zε0
δ̂
)− C

∣∣∣1
δ
− 1
δ̂

∣∣∣
≥ V δ̂,ε(s, x, y)− C

∣∣∣1
δ
− 1
δ̂

∣∣∣.
Combining (3.31), (3.32) and (3.34), we obtain (note ε0 > 0 is arbitrary)

(3.35)
0 ≤ V δ̂,ε(s, x, y)− V δ,ε(s, x, y)| ≤ C

∣∣∣1
δ
− 1
δ̂

∣∣∣,
∀(s, x, y), δ, δ̂ > 0, ε ≥ 0,
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where C is again an absolute constant.

Case 2. δ = 0. Now let δ̂ > 0 be small enough so that the right side of
(3.33) is no greater than ε20. Then, similar to (3.36), we have

(3.36) J0,ε(s, x, y;Zε0) ≥ V δ̂,ε(s, x, y)− ε0.

Combing (3.31), (3.32) and (3.36), one has 0 ≤ V δ̂,ε(s, x, y)−V 0,ε(s, x, y) ≤
2ε0, which shows that

(3.37) V δ̂,ε(s, x, y) ↓ V 0,ε(s, x, y), δ̂ ↓ 0.
Since V 0,ε(s, x, y) is continuous in (ε, x, y) (see (3.30) and Proposition 3.6-
(i)), by Dini’s theorem, we obtain that the convergence in (3.37) is uniform
in (ε, x, y) on compact sets. Thus, for some continuous function ηs : [0,∞)×
[0,∞)→ [0,∞) with ηs(0, r) = 0 for all r ≥ 0, one has

(3.38)
0 ≤ V δ̂,ε(s, x, y)− V 0,ε(s, x, y) ≤ ηs(δ̂, |x|+ |y|),

∀(s, x, y), ε ∈ [0, 1], δ̂ ≥ 0.

Combining (3.30), (3.35) and (3.38), we have that V δ,ε(s, x, y) is continuous

in (δ, ε, x, y) ∈ [0,∞) × [0,∞) × lRn × lRm. The proof for Ṽ δ,ε is exactly
the same.

Corollary 3.8. Let (H1) hold. Then

(3.39) Ṽ δ,0(s, x, y) = V δ,0(s, x, y), ∀(s, x, y) ∈ [0, T ]× lRn × lRm, δ ≥ 0.

Proof. If δ > 0, then both Ṽ δ,0 and V δ,0 are the viscosity solutions of
the HJB equation (3.25). Thus, (3.39) follows from the uniqueness. By the

continuity of Ṽ δ,0 and V δ,0 in δ ≥ 0, we obtain (3.39) for δ = 0.
Corollary 3.9. Let V (0, x, y) = 0. Then, for any ε̂ > 0, there exist δ, ε > 0
and Zδ,ε(·) ∈ Zδ[0, T ] satisfying
(3.40) Jδ,ε(0, x, y;Zδ,ε(·)) < ε̂,
such that, if (Xδ,ε(·), Y δ,ε(·)) is the solution of (2.1) with Z(·) = Zδ,ε(·),
then the triplet (Xδ,ε, Y δ,ε, Zδ,ε) is an approximate solution of (1.1) with
accuracy 3ε̂+

√
3ε̂.

Proof. Let V (0, x, y) = 0. Since V = V 0,0, by Theorem 3.7, there
exist δ, ε > 0, such that V δ,ε(0, x, y) < ε̂. Now by (3.9) we can find a
Zε,δ ∈ Zδ[0, T ] such that (3.40) is satisfied. Let (Xδ,ε, Y δ,ε) be the solutions
of (2.1) with s = 0, and Z = Zδ,ε. Then we have (see (1.21))

E|Y δ,ε(T )− g(Xδ,ε(T ))|

≤ 3Ef(Xδ,ε(T ), Y δ,ε(T )) +
√
3Ef(Xδ,ε(T ), Y δ,ε(T ))

= 3Jδ,ε(0, x, y;Zδ,ε(·)) +
√
3Jδ,ε(0, x, y;Zδ,ε(·))

≤ 3ε̂+
√
3ε̂.
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This proves our assertion.

To conclude this section, we present the following result.

Proposition 3.10. Let (H1) and (H3) hold. Then Ṽ δ,ε(s, x, y) is semi-
concave uniformly in s ∈ [0, T ], δ ∈ (0, 1] and ε ∈ [0, 1]. In particular, there
exists a constant C > 0, such that

(3.41) ΔyṼ
δ,ε(s, x, y) ≤ C, ∀(s, x, y) ∈ [0, T ]× lRn × lRm, δ, ε ∈ (0, 1],

where Δy =
∑m
j=1 ∂

2
yj .

Proof. The proof of the first claim is similar to that of Theorem 3.4.
To show the second one, we need only to note that by (3.7),

ΔyṼ
δ,ε = tr

{(
0 0
0 I

)
D2Ṽ δ,ε

(
0 0
0 I

)}
≤ C,

which gives (3.41).

§4. A Class of Approximately Solvable FBSDEs
We have seen from Proposition 1.4 that if (1.13) holds, then (0.1) is ap-
proximate solvable. Further, from §3 we see that if (x, y) ∈ lRn × lRm is
such that V (0, x, y) = 0, then one can actually construct a sequence of
approximate solutions to (0.1). Finally, (1.13) is also an important step of
solving (0.1) (see Proposition 1.1). In this section, we look for conditions
under which (1.13) holds. Moreover, we would like to construct the nodal
set N (V ) for some special and interesting cases.
In what follows, we restrict ourselves to the following FBSDE:

(4.1)

⎧⎪⎨⎪⎩
dX(t) = b(t,X(t), Y (t))dt+ σ(t,X(t), Y (t))dW (t),

dY (t) = h(t,X(t), Y (t))dt+ Z(t)dW (t), t ∈ [0, T ],
X(0) = x, Y (T ) = g(X(T )).

The difference between (0.1) and (4.1) is that in (4.1), the functions b, σ
and h are all independent of Z. To study the set N (V ), we introduce the
nodal set of value function V (s, x, y):

(4.2) N (V ) = {(s, x, y) ∈ [0, T ]× lRn × lRm
∣∣ V (s, x, y) = 0 }.

Clearly,

(4.3) {0} × N (V ) = N (V )
⋂[

{0} × lRn × lRm
]
.

We will study N (V ) below, which will automatically give the information
on N (V ) that we are looking for.
Let us now first make an observation. Suppose there exists a function

θ : [0, T ]× lRn → lRm, such that

(4.4) V (s, x, θ(s, x)) = 0, ∀(s, x) ∈ [0, T ]× lRn,
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then it holds

(4.5) {(s, x, θ(s, x))
∣∣ (s, x) ∈ [0, T ]× lRn} ⊆ N (V ).

In particular,

(4.6) (x, θ(0, x)) ∈ N (V ), ∀x ∈ lRn.
This gives the nonemptiness of the nodal set N (V ). Thus, finding some
way of determining θ(s, x) is very useful. Now, let us assume that both V
and θ are smooth and we find an equation that is satisfied by θ (so that
(4.4) holds). To this end, we define

(4.7) w(s, x) = V (s, x, θ(s, x)), ∀(s, x) ∈ [0, T ]× lRn.
Differentiating the above, we obtain

(4.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ws = Vs + 〈Vy , θs 〉,
wxi = Vxi + 〈Vy, θxi 〉, 1 ≤ i ≤ n,
wxixj = Vxixj + 〈Vxiy, θxj 〉+ 〈Vyxj , θxi 〉

+ 〈Vy, θxixj 〉+ 〈Vyyθxj , θxi 〉, 1 ≤ i, j ≤ n.
Clearly,

(4.9) tr [σσTwxx] = tr
{
σσT
[
Vxx + 2Vxyθx + θ

T
x Vyyθx + 〈Vy, θxx 〉

]}
,

where we note that Vxy is an (n × m) matrix and θx is (m × n) matrix.
Then it follows from (2.12) that (recall (4.1) for the form of functions b, σ
and h)

(4.10)

0 = Vs +
1

2
tr [σσTVxx] + 〈 b, Vx 〉+ 〈h, Vy 〉

+
1

2
inf

z∈lRm×d
tr [V Txyσz

T + Vxyzσ
T + Vyyzz

T ]

= ws − 〈Vy , θs 〉+
1

2
tr [σσT (wxx − 2Vxyθx − θTx Vyyθx)]

+ 〈 b, wx − θTx Vy 〉+ 〈h, Vy 〉−
1

2
〈 tr σσT θxx, Vy 〉

+
1

2
inf

z∈lRm×d
tr [V Txyσz

T + Vxyzσ
T + Vyyzz

T ]

=
{
ws +

1

2
tr [σσTwxx] + 〈 b, wx 〉

}
− 〈Vy, θs +

1

2
tr [σσT θxx] + θxb− h 〉

}
+
1

2
inf

z∈lRm×d
tr [2(z − θxσ)σTVxy + (zzT − θxσσT θTx )Vyy ].

Thus, if we suppose θ to be a solution of the following system:

(4.11)

⎧⎨⎩ θs +
1

2
tr [σσT θxx] + θxb− h = 0, (s, x) ∈ [0, T )× lRn,

θ
∣∣
s=T
= g.
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Then we have

(4.12)

⎧⎨⎩ws +
1

2
tr [σσTwxx] + 〈 b, wx 〉 ≥ 0,

w
∣∣
s=T
= 0.

Hence, by maximum principle, we obtain

(4.13) 0 ≥ w(s, x) ≡ V (s, x, θ(s, x)) ≥ 0, ∀(s, x) ∈ [0, T ]× lRn.

This gives (4.4). The above gives a proof of the following proposition.

Proposition 4.1. Suppose the value function V is smooth and θ is a
classical solution of (4.11). Then (4.4) holds.

We know that V (s, x, y) is not necessarily smooth. Also since σσT

could be degenerate, (4.11) might have no classical solutions. Thus, the
assumptions of Proposition 4.1 are rather restrictive. The goal of the rest
of the section is to prove a result similar to the above without assuming
the smoothness of V and the nondegeneracy of σσT . To this end, we need
the following assumption.

(H4) Function g(x) is bounded in C2+α(lRn) for some α ∈ (0, 1) and
there exists a constant L > 0, such that

(4.14) |b(s, x, 0)|+ |σ(s, x, 0)|+ |h(s, x, 0)| ≤ L, ∀(s, x) ∈ [0, T ]× lRn.

Our main result of this section is the following.

Theorem 4.3. Let (H1)–(H3) hold. Then, for any x ∈ lRn, (1.13) holds,
and thus, (4.1) is approximately solvable.

To prove this theorem we need some lemmas.

Lemma 4.4. Let (H1)–(H3) hold. Then, for any ε > 0, there exists a
unique classical solution θε : [0, T ]× lRn → lRm of the following (nondegen-
erate) parabolic system:

(4.15)

⎧⎨⎩ θεs + εΔθε +
1

2
tr [σσT θεxx] + θ

ε
xb− h = 0, (s, x) ∈ [0, T )× lRn,

θε
∣∣
s=T
= g,

with θε, θεxi and θ
ε
xixj

all being bounded (with the bounds depending on
ε > 0, in general). Moreover, there exists a constant C > 0, independent
of ε ∈ (0, 1], such that

(4.16) |θε(s, x)| ≤ C, ∀(s, x) ∈ [0, T ]× lRn, ε ∈ (0, 1].
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Proof. We note that under (H1)–(H3), following hold:

(4.17)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 ≤ (σσT )(s, x, y) ≤ C(1 + |y|2)I,
|(σxiσT )(s, x, y)|+ |(σykσT )(s, x, y)| ≤ C(1 + |y|),

1 ≤ i ≤ n, 1 ≤ k ≤ m,
|b(s, x, y)| ≤ L(1 + |y|),
− 〈h(s, x, y), y 〉 ≤ L(1 + |y|2).

Thus, by Ladyzenskaja, et al [1], we know that for any ε > 0, there exists
a unique classical solution θε to (4.15) with θε, θεxi and θ

ε
xixj

all being
bounded (with the bounds depending on ε > 0). Next, we prove (4.16). To
this end, we fix an ε ∈ (0, 1] and denote

(4.18)

Aεw Δ= εΔw +
1

2
tr [σσT (s, x, θε(s, x))wxx] + 〈 b(s, x, θε(s, x)), wx 〉

≡
n∑

i,j=1

aεijwxixj +
n∑
i=1

bεiwxi .

Set

(4.19) w(s, x)
Δ
=
1

2
|θε(s, x)|2 ≡ 1

2

m∑
i=1

θε,k(s, x)2.

Then it holds that (note (4.17))

ws =

m∑
k=1

θε,kθε,ks =

m∑
k=1

θε,k[−Aεθε,k + hk(s, x, θε)]

=

m∑
k=1

θε,k
[
−

n∑
i,j=1

aεijθ
ε,k
xixj

−
n∑
i=1

bεiθ
ε,k
xi
+ hk(s, x, θε)

]
= −

m∑
k=1

n∑
i,j=1

aεij
{
[(
1

2
θε,k)2]xixj − θε,kxi θε,kxj

}
−
m∑
k=1

n∑
i=1

bεi [(
1

2
θε,k)2]xi +

m∑
k=1

θε,khk(s, x, θε)

≥ −Aεw − 2Lw − L.

Thus, w is a bounded (with the bound depending on ε > 0) solution of the
following:

(4.20)

⎧⎨⎩ws +Aεw + 2Lw ≥ −L, (s, x) ∈ [0, T )× lRn,

w
∣∣
s=T

≤ 1
2
‖g‖∞.

By Lemma 4.5 below, we obtain

(4.21) w(s, x) ≤ C, ∀(s, x) ∈ [0, T ]× lRn,
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with the constant only depending on L and ‖g‖∞ (and independent of
ε > 0). Since w is nonnegative by definition (see (4.19)), (4.16) follows.

In the above, we have used the following lemma. In what follows, this
lemma will be used again.

Lemma 4.5. Let Aε be given by (4.18) and w be a bounded solution of
the following:

(4.22)

{
ws +Aεw + λ0w ≥ −h0, (s, x) ∈ [0, T )× lRn,
w
∣∣
s=T

≤ g0,

for some constants h0, g0 ≥ 0 and λ0 ∈ lR, with the bound of w might
depend on ε > 0, in general. Then, for any λ > λ0 ∨ 0,

(4.23) w(s, x) ≤ eλT
[
g0 ∨

h0

λ− λ0

]
, ∀(s, x) ∈ [0, T ]× lRn.

Proof. Fix any λ > λ0 ∨ 0. For any β > 0, we define

(4.24) Φ(s, x) = eλsw(s, x) − β|x|2, ∀(s, x) ∈ [0, T ]× lRn.

Since w(s, x) is bounded, we see that

(4.25) lim
|x|→∞

Φ(s, x) = −∞.

Thus, there exists a point (s, x) ∈ [0, T ]× lRn (depending on β > 0), such
that

(4.26) Φ(s, x) ≤ Φ(s, x), ∀(s, x) ∈ [0, T ]× lRn.

In particular,

(4.27) eλsw(s, x)− β|x|2 = Φ(s, x) ≥ Φ(T, 0) = eλTw(T, 0),

which yields

(4.28) β|x|2 ≤ eλsw(s, x)− eλTw(T, 0) ≤ Cε.

We have two cases. First, if there exists a sequence β ↓ 0, such that s = T ,
then, for any (s, x) ∈ [0, T ]× lRn, we have

(4.29)

w(s, x) ≤ e−λs[β|x|2 +Φ(T, x)]
≤ e−λs[β|x|2 + eλT g0 − β|x|2]
≤ β|x|2 + eλT g0 → eλT g0, as β → 0.

We now assume that for any β > 0, s < T . In this case, we have

(4.30)

0 ≥ (Φs +AεΦ)(s, x)
= λeλsw + eλs[ws +Aεw] − βAε(|x|2)

∣∣
x=x

≥ (λ − λ0)eλsw − eλsh0 − βAε(|x|2)
∣∣
x=x
.
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Note that (see (4.28))

Aε(|x|2)
∣∣
x=x
= 2nε+ |σ(s, x, θε(s, x))|2 + 2 〈 b(s, x, θε(s, x)), x 〉
≤ 2nε+ Cε + Cε|x| ≤ Cε + Cεβ−1/2.

Hence, for any (s, x) ∈ [0, T ]× lRn, we have

eλsw(s, x) − β|x|2 = Φ(s, x) ≤ Φ(s, x) = eλsw(s, x)− β|x|2

≤ e
λsh0

λ− λ0
+
eλs

λ− λ0
βAε(|x|2)

∣∣
x=x

≤ e
λTh0

λ− λ0
+
eλT

λ− λ0
(βCε +

√
βCε).

Sending β → 0, we obtain

(4.31) w(s, x) ≤ e
λTh0

λ− λ0
, ∀(s, x) ∈ [0, T ]× lRn.

Combining (4.29) and (4.31), one obtains (4.23).

Proof of Theorem 4.3. We define (note (3.24))

wδ,ε(s, x)
Δ
= Ṽ δ,ε(s, x, θε(s, x)) ≥ 0, ∀(s, x) ∈ [0, T ]× lRn.

Then we obtain (using (3.25), (3.29) and (4.15))

(4.32)

0 = Ṽ δ,εs + εΔṼ δ,ε +
1

2
tr [σσT Ṽ δ,εxx ] + 〈 b, Ṽ δ,εx 〉+ 〈h, Ṽ δ,εy 〉

+
1

2
inf

|z|≤1/δ
tr [(Ṽ δ,εxy )

TσzT + Ṽ δ,εxy zσ
T + Ṽ δ,εyy zz

T ]

=
{
wδ,εs + εΔw

δ,ε +
1

2
tr [σσTwδ,εxx ] + 〈 b, wδ,εx 〉

}
+ εΔyṼ

δ,ε

− 〈 Ṽ δ,εy , θεs + εΔθε +
1

2
tr [σσT θεxx] + θ

ε
xb− h 〉

+
1

2
inf

|z|≤1/δ
tr [2(z − θεxσ)σT Ṽ δ,εxy + (zzT − θεxσσT (θεx)T )Ṽ δ,εyy ]

≤
{
wδ,εs + εΔw

δ,ε +
1

2
tr [σσTwδ,εxx ] + 〈 b, wδ,εx 〉

}
+ εC.

The above is true for all ε, δ > 0 such that |θεx(s, x)σ(s, x, θε(s, x))| ≤ 1
δ
,

which is always possible for any fixed ε, and δ > 0 sufficiently small. Then
we obtain {

wδ,εs +Aεwδ,ε ≥ −εC, ∀(s, x) ∈ [0, T ]× lRn,
wδ,ε
∣∣
s=T
= 0.

On the other hand, by (H1) and (H3), we see that corresponding to the

control Zδ(·) = 0 ∈ Z̃δ[s, T ], we have (by Gronwall’s inequality) |Y (T )| ≤
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C(1 + |y|), almost surely. Thus, by the boundedness of g, we obtain (using
Lemma 4.5)

0 ≤ wδ,ε(s, x) ≡ Ṽ δ,ε(s, x, θε(s, x))
≤ J̃δ,ε(s, x, θε(s, x); 0) ≤ C(1 + |θε(s, x)|) ≤ C.

Next, by Lemma 4.5 (with λ0 = g0 = 0, λ = 1 and h0 = εC), we must have
wδ,ε(s, x) ≤ εCeT , ∀(s, x) ∈ [0, T ] × lRn. Thus, we obtain the following
conclusion: There exists a constant C0 > 0, such that for any ε > 0, one
can find a δ = δ(ε) with the property that

(4.33) 0 ≤ Ṽ δ,ε(s, x, θε(s, x)) ≤ εC0, ∀δ ≤ δ(ε).

Then, by (3.28), (3.39) (with δ = 0) and (4.33), we obtain

0 ≤ V (0, x, θε(0, x)) ≤
∣∣Ṽ 0,0(0, x, θε(0, x))− Ṽ δ,ε(0, x, θε(0, x))∣∣+ εC0

≤ η0(ε+ δ, |x|+ |θε(0, x)|) + εC0.
Now, we let δ → 0 and then ε→ 0 to get the right hand side of the above
going to 0. This can be achieved due to (4.16). Finally, since θε(s, x)
is bounded, we can find a convergent subsequence. Thus, we obtain that
V (0, x, y) = 0, for some y ∈ lRm. This implies (1.13).

§5. Construction of Approximate Adapted Solutions
We have already noted that in order that the method of optimal control
works completely, one has to actually find the optimal control of the Prob-
lem (OC), with the initial state satisfying the constraint (1.13). But on the
other hand, due to the non-compactness of the control set (i.e., there is no
a priori bound for the process Z), the existence of the optimal control itself
is a rather complicated issue. The conceivable routes are either to solve the
problem by considering relaxed control, or to figure out an a priori compact
set in which the process Z lives (it turns out that such a compact set can
be found theoretically in some cases, as we will see in the next chapter).
However, compared to the other methods that will be developed in the fol-
lowing chapters, the main advantage of the method of optimal control lies
in that it provides a tractable way to construct the approximate solution
for fairly large class of the FBSDEs, which we will focus on in this section.
To begin with, let us point out that in Corollary 3.9 we had a scheme

of constructing the approximate solution, provided that one is able to start
from the right initial position (x, y) ∈ N (V ) (or equivalently, V (0, x, y) =
0). The draw back of that scheme is that one usually do not have a way
to access the value function V directly, again due to the possible degener-
acy of the forward diffusion coefficient σ and the non-compactness of the
admissible control set Z[0, T ]. The scheme of the special case in §4 is also
restrictive, because it involves some other subtleties such as, among others,
the estimate (4.16).
To overcome these difficulties, we will first try to start from some initial

state that is “close” to the nodal set N (V ) in a certain sense. Note that
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the unique strong solution to the HJB equation (3.25), Ṽ δ,ε, is the value
function of a regularized control problem with the state equation (3.22),
which is non-degenerate and with compact control set, thus many standard
methods can be applied to study its analytical and numerical properties, on
which our scheme will rely. For notational convenience, in this section we
assume that all the processes involved are one dimensional (i.e., n = m =
d = 1). However, one should be able to extend the scheme to general higher
dimensional cases without substantial difficulties. Furthermore, throughout
this section we assume that

(H4) g ∈ C2; and there exists a constant L > 0, such that for all
(t, x, y, z) ∈ [0, T ]× lR3,

(5.1)

{
|b(t, x, y, z)|+ |σ(t, x, y, z)|+ |h(t, x, y, z)| ≤ L(1 + |x|);
|g′(x)| + |g′′(x)| ≤ L.

We first give a lemma that will be useful in our discussion.

Lemma 5.1. Let (H1) and (H4) hold. Then there exists a constant C > 0,
depending only on L and T , such that for all δ, ε ≥ 0, and (s, x, y) ∈
[0, T ]× lR2, it holds that

(5.2) Ṽ δ,ε(s, x, y) ≥ f(x, y)− C(1 + |x|2),

where f(x, y) is defined by (1.6).

Proof. First, it is not hard to check that the function f is twice con-
tinuously differentiable, such that for all (x, y) ∈ lR2 the following hold:

(5.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|fx(x, y)| ≤ |g′(x)|, |fy(x, y)| ≤ 1,

fxx(x, y) =
(g(x)− y)g′′(x)
[1 + (y − g(x))2]1/2 +

g′(x)2

[1 + (y − g))2]3/2 ,

fyy(x, y) =
1

[1 + (y − g(x))2] 32
> 0, fxy(x, y) = −g′(x)fyy(x, y).

Now for any δ, ε ≥ 0, (s, x, y) ∈ [0, T ]× lR2 and Z ∈ Z̃δ[s, T ], let (X,Y ) be
the corresponding solution to the controlled system (3.22). Applying Itô’s
formula we have

(5.4)

J̃δ,ε(s, x, y;Z) = Ef(X(T ), Y (T ))

= f(x, y) + E

∫ T
s

Π(t,X(t), Y (t), Z(t))dt,
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where, denoting (fx = fx(x, y), fy = fy(x, y), and so on),

(5.5)

Π(t, x, y, z) = fxb(t, x, y, z) + fyh(t, x, y, z)

+
1

2
[fxxσ

2(t, x, y, z) + 2fxyσ(t, x, y, z)z + fyyz
2]

≥ fxb(t, x, y, z) + fyh(t, x, y, z) +
1

2

[
fxx −

f2xy
fyy

]
σ2(t, x, y, z)

≥ −C(1 + |x|2),
where C > 0 depends only on the constant L in (H4), thanks to the esti-
mates in (5.3). Note that (H4) also implies, by a standard arguments using
Gronwall’s inequality, that E|X(t)|2 ≤ C(1 + |x|2), ∀t ∈ [0, T ], uniformly
in Z(·) ∈ Z̃δ[s, T ], δ ≥ 0. Thus we derive from (5.4) and (5.5) that

Ṽ δ,ε(s, x, y) = inf
Z∈Z̃δ [s,T ]

J̃δ,ε(s, x, y;Z)

= f(x, y) + inf
Z∈Z̃δ[s,T ]

E

∫ T
s

Π(t,X(t), Y (t), Z(t))dt

≥ f(x, y)− C(1 + |x|2),
proving the lemma.

Next, for any x ∈ lR and r > 0, we define

Qx(r)
Δ
={y ∈ lR : f(x, y) ≤ r + C(1 + |x|2)},

where C > 0 is the constant in (5.2). Since lim|y|→∞ f(x, y) = +∞, Qx(r)
is a compact set for any x ∈ lR and r > 0. Moreover, Lemma 5.1 shows
that, for all δ, ε ≥ 0, one has
(5.6) {y ∈ lR : Ṽ δ,ε(0, x, y) ≤ r} ⊆ Qx(r).
From now on we set r = 1. Recall that by Proposition 3.6 and Theorem
3.7, for any ρ > 0, and fixed x ∈ lR, we can first choose δ, ε > 0 depending
only on x and Qx(1), so that

(5.7) 0 ≤ Ṽ δ,ε(0, x, y) < V (0, x, y) + ρ, for all y ∈ Qx(1).
Now suppose that the FBSDE (1.1) is approximately solvable, we have

from Proposition 1.4 that infy∈lR V (0, x, y) = 0 (note that (H4) implies
(H2)). By (5.6), we have

0 = inf
y∈lR
V (0, x, y) = min

y∈Qx(1)
V (0, x, y).

Thus, by (5.7), we conclude the following
Lemma 5.2. Assume (H1) and (H4), and assume that the FBSDE (0.1)
is approximately solvable. Then for any ρ > 0, there exist δ, ε > 0 and
depending only on ρ, x and Qx(1), such that

0 ≤ inf
y∈lR
Ṽ δ,ε(0, x, y) = min

y∈Qx(1)
Ṽ δ,ε(0, x, y) < ρ.
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Our scheme of finding the approximate adapted solution of (0.1) start-
ing from X(0) = x can now be described as follows: for any integer k, we
want to find {y(k)} ⊂ Qx(1) and {Z(k)} ⊂ Z[0, T ] such that

(5.8) Ef(X(k)(T ), Y (k)(T )) ≤ Cx
k
,

here and below Cx > 0 will denote generic constant depending only on L,
T and x. To be more precise, we propose the following steps for each fixed
k.
Step 1. Choose 0 < δ < 1

k and 0 < ε < δ
4, such that

inf
y∈lR
Ṽ δ,ε(0, x, y) = min

y∈Qx(1)
Ṽ δ,ε(0, x, y) <

1

k
.

Step 2. For the given δ and ε, choose y(k) ∈ Qx(1) such that

Ṽ δ,ε(0, x, y(k)) < min
y∈Qx(1)

Ṽ δ,ε(0, x, y) +
1

k
.

Step 3. For the given δ, ε, and y(k), find Z(k) ∈ Zδ[0, T ], such that

J(0, x, y(k);Z(k)) = Ef(X(k)(T ), Y (k)(T )) ≤ Ṽ δ,ε(0, x, y(k)) + Cx
k
,

where (X(k), Y (k)) is the solution to (2.1) with Y (k)(0) = y(k) and Z = Z(k);
and Cx is a constant depending only on L, T and x.
It is obvious that a combination of the above three steps will serve our

purpose (5.8). We would like to remark here that in the whole procedure we
do not use the exact knowledge about the nodal set N (V ), nor do we have
to solve any degenerate parabolic PDEs, which are the two most formidable
parts in this problem. Now that the Step 1 is a consequence of Lemma 5.2
and Step 2 is a standard (nonlinear) minimizing problem, we only briefly

discuss Step 3. Note that Ṽ δ,ε is the value function of a regularized control
problem, by standard methods of constructing ε-optimal strategies using
information of value functions (e.g., Krylov [1, Ch.5]), we can find a Markov

type control Ẑ(k)(t) = α(k)(t, X̂(k)(t), Ŷ (k)(t)), where α(k) is some smooth

function satisfying supt,x,y |α(k)(t, x, y)| ≤ 1
δ
and (X̂(k), Ŷ (k)) is the corre-

sponding solution of (4.8) with Ŷ (k)(0) = y(k), so that

(5.9) J̃δ,ε(0, x, y(k); Ẑ(k)) < Ṽ δ,ε(0, x, y(k)) +
1

k
.

The last technical point is that (5.9) is only true if we use the state equa-
tion (3.22), which is different from (2.1), the original control problem that
leads to the approximate solution that we need. However, if we denote
(X(k), Y (k)) to be the solutions to (2.1) with Y (k)(0) = y(k) and the feed-
back control Z(k)(t) = α(k)(X(k)(t), Y (k)(t)), then a simple calculation
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shows that

(5.10)

0 ≤ J(0, x, y(k);Z(k)) = Ef(X(k)(T ), Y (k)(T ))
< Ef(X̂(k)(T ), Ŷ (k)(T )) + Cα

√
2ε

< Ṽ δ,ε(0, x, y(k)) +
1

k
+ Cα

√
2ε,

thanks to (5.9), where Cα is some constant depending only on L, T and
the Lipschitz constant of α(k). But on the other hand, in light of Lemma
5.1 of Krylov [1], the Lipschitz constant of α(k) can be shown to depend
only on the bounds of the coefficients of the system (2.1) (i.e., b, h, σ, and
σ̂(z) ≡ z) and their derivatives. Therefore using assumptions (H1) and
(H4), and noting that supt |Z(k)(t)| ≤ sup |α(k)| ≤ 1

δ , we see that, for fixed
δ, Cα is no more than C(1+ |x|+1/δ) where C is some constant depending
only on L. Consequently, note the requirement we posed on ε and δ in Step
1, we have

(5.11) Cα
√
2ε < C(1 + |x| + 1

δ
)
√
2δ4 ≤ 2

√
2C(1 + |x|)δ ≤ Cx − 1

k
,

where Cx
Δ
=C(1 + |x|)2

√
2 + 1. Finally, we note that the process Z(k)(·)

obtain above is {Ft}t≥0-adapted and hence it is in Zδ[0, T ] (instead of
Z̃δ[0, T ]). This, together with (5.10)–(5.11), fulfills Step 3.
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Four Step Scheme

In this chapter, we introduce a direct method for solving FBSDEs. Since
this method contains four major steps, it has been called the Four Step
Scheme.

§1. A Heuristic Derivation of Four Step Scheme

Let us consider the following FBSDE:

(1.1)

⎧⎪⎨⎪⎩
dX(t) = b(t,X(t), Y (t), Z(t))dt+ σ(t,X(t), Y (t), Z(t))dW (t),

dY (t) = h(t,X(t), Y (t), Z(t))dt + Z(t)dW (t),

X(0) = x, Y (T ) = g(X(T )).

We assume throughout this section that the functions b, σ, h and g are
deterministic. As we have seen in the previous chapter that for any given
x ∈ lRn, the solvability of (1.1) is essentially equivalent to the following:

V (0, x, θ(0, x)) = 0,

where θ(s, x) is the “solution” of some parabolic system and V (s, x, y) is the
value function of the optimal control problem associated with the FBSDE
(1.1). Assuming the Markov property (since coefficients are determinis-
tic!) we suspect that V (t,X(t), θ(t,X(t))) = 0, and Y (t) = θ(t,X(t))
should hold for all t. In other words, we see a strong indication that there
might some special relations among the components of an adapted solution
(X,Y, Z), which we now explore.
Suppose that (X,Y, Z) is an adapted solution to (1.1). We assume that

that Y and X are related by

(1.2) Y (t) = θ(t,X(t)), ∀t ∈ [0, T ], a.s.P,

where θ is some function to be determined. Let us assume that θ ∈
C1,2([0, T ]× lRn). Then by Itô’s formula, we have for 1 ≤ k ≤ m:

(1.3)

dY k(t) = dθk(t,X(t))

=
{
θkt (t,X(t)) + 〈 θkx(t,X(t)), b(t,X(t), θ(t,X(t)), Z(t)) 〉

+
1

2
tr
[
θkxx(t,X(t))(σσ

T )(t,X(t), θ(t,X(t)), Z(t))
]}
dt

+ 〈 θkx(t,X(t)), σ(t,X(t), θ(t,X(t)), Z(t))dW (t) 〉 .

Comparing (1.3) and (1.1), we see that if θ is the right choice, it should be
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that, for k = 1, · · · ,m,

(1.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

hk(t,X(t), θ(t,X(t))

= θkt (t,X(t)) + 〈 θkx(t,X(t)), b(t,X(t), θ(t,X(t)), Z(t)) 〉

+
1

2
tr
[
θkxx(t,X(t))(σσ

T )(t,X(t), θ(t,X(t)), Z(t))
]
;

θ(T,X(T )) = g(X(T )),

and

(1.5) θx(t,X(t))σ(t,X(t), θ(t,X(t)), Z(t)) = Z(t).

The above heuristic arguments suggest the following Four Step Scheme for
solving the FBSDE (1.1).

The Four Step Scheme:

Step 1. Find a function z(t, x, y, p) that satisfies the following:

(1.6)
z(t, x, y, p) = pσ(t, x, y, z(t, x, y, p)),

∀(t, x, y, p) ∈ [0, T ]× lRn × lRm × lRm×n.

Step 2. Using the function z obtained in above to solve the following
parabolic system for θ(t, x):

(1.7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θkt +

1

2
tr
[
θkxx(σσ

T )(t, x, θ, z(t, x, θ, θx))
]

+ 〈 b(t, x, θ, z(t, x, θ, θx)), θkx 〉−hk(t, x, θ, z(t, x, θ, θx)) = 0,
(t, x) ∈ [0, T )× lRn, 1 ≤ k ≤ m,

θ(T, x) = g(x), x ∈ lRn.

Step 3. Using θ and z obtained in Steps 1–2 to solve the following
forward SDE:

(1.8)

{
dX(t) = b̃(t,X(t))dt+ σ̃(t,X(t))dW (t), t ∈ [0, T ],
X(0) = x,

where

(1.9)

{
b̃(t, x) = b(t, x, θ(t, x), z(t, x, θ(t, x), θx(t, x))),

σ̃(t, x) = σ(t, x, θ(t, x), z(t, x, θ(t, x), θx(t, x))).

Step 4. Set

(1.10)

{
Y (t) = θ(t,X(t)),

Z(t) = z
(
t,X(t), θ(t,X(t)), θx(t,X(t))

)
.

If the above scheme is realizable, (X,Y, Z) would give an adapted solution
of (1.1). As a matter of fact, we have the following result.
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Theorem 1.1. Let (1.6) admit a unique solution z(t, x, y, p) which is uni-
formly Lipschitz continuous in (x, y, p) with z(t, 0, 0, 0) being bounded. Let
(1.7) admit a classical solution θ(t, x) with bounded θx and θxx. Let func-
tions b and σ be uniformly Lipschitz continuous in (x, y, z) with b(t, 0, 0, 0)
and σ(t, 0, 0, 0) being bounded. Then the process (X(·), Y (·), Z(·)) deter-
mined by (1.8)–(1.10) is an adapted solution to (1.1). Moreover, if h is also
uniformly Lipschitz continuous in (x, y, z), σ is bounded, and there exists
a constant β ∈ (0, 1), such that

(1.11)

∣∣[σ(s, x, y, z)− σ(s, x, y, z̃)]T θkx(s, x)∣∣ ≤ β|z − z̃|,
∀(s, x, y) ∈ [0, T ]× lRn × lRm, z, z̃ ∈ lRm×d,

then the adapted solution is unique, which is determined by (1.8)–(1.10).

Proof. Under our conditions both b̃(t, x) and σ̃(t, x) (see (1.9)) are
uniformly Lipschitz continuous in x. Thus, for any x ∈ lRn, (1.8) has a
unique strong solution. Then, by defining Y (t) and Z(t) via (1.10) and
applying Itô’s formula, we can easily check that (1.1) is satisfied. Hence,
(X,Y, Z) is a solution of (1.1).
It remains to show the uniqueness. We claim that any adapted solution

(X,Y, Z) of (1.1) must be of the form we constructed using the Four Step
Scheme. To show this, let (X,Y, Z) be any solution of (1.1). We define

(1.12) Ỹ (t) = θ(t,X(t)), Z̃(t) = z(t,X(t), θ(t,X(t)), θx(t,X(t))).

By our assumption, (1.6) admits a unique solution. Thus, (1.12) implies

(1.13) Z̃(t) = θx(t,X(t))σ(t,X(t), Ỹ (t), Z̃(t)), a.s. t ∈ [0, T ].

Now, applying Itô’s formula to θ(t,X(t)), noting (1.7) and (1.10), we have
the following (for notational simplicity, we suppress t in X(t), etc.):

dỸ k(t) = dθk(t,X(t))

=
{
θkt (t,X)+〈 θkx(t,X), b(t,X, Y, Z) 〉+

1

2
tr [θkxx(t,X)(σσ

T )(t,X, Y, Z)]
}
dt

+ 〈 θkx(t,X), σ(t,X, Y, Z)dW (t) 〉
=
{
〈 θkx(t,X), b(t,X, Y, Z)− b(t,X, Ỹ , Z̃) 〉

+
1

2
tr
[
θkxx(t,X)

{
(σσT )(t,X, Y, Z)− (σσT )(t,X, Ỹ , Z̃)

}]
+ hk(t,X, Ỹ , Z̃)

}
dt+ 〈 θkx(t,X), σ(t,X, Y, Z)dW (t) 〉 .
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Then, it follows from (1.1) and (1.13) that

(1.14)

E|Ỹ (t)− Y (t)|2 = −E
∫ T
t

n∑
k=1

{
2(Ỹ k − Y k)·[

〈 θkx(s,X), b(s,X, Y, Z)− b(s,X, Ỹ , Z̃) 〉

+
1

2
tr
{
θkxx(s,X)

[
(σσT )(s,X, Y, Z)− (σσT )(s,X, Ỹ , Z̃)

]}
+ hk(s,X, Ỹ , Z̃)− hk(s,X, Y, Z)

]
+
∣∣∣{σ(s,X, Y, Z)− σ(s,X, Ỹ , Z̃)}T θkx(s,X) + Z̃ − Z∣∣∣2}ds.

Since, by (1.11), the boundedness of θx, and the uniform Lipschitz conti-
nuity of σ, we have∣∣∣{σ(s,X, Y, Z)− σ(s,X, Ỹ , Z̃)}T θkx(s,X) + Z̃ − Z∣∣∣2

≥|Z̃ − Z|2 − |σ(s,X, Y, Z)− σ(s,X, Ỹ , Z̃)(θkx)T (s,X)|2

≥(1− β)|Z̃ − Z|2 − C|Ỹ − Y |2,

here and in the sequel C > 0 is again a generic constant which may vary
from line to line. Thus (1.14) leads to that

(1.15)

E|Ỹ (t)− Y (t)|2 + (1 − β)
∫ T
t

E|Z(s)− Z̃(s)|2ds

≤ C
∫ T
t

E{|Ỹ (s)− Y (s)|2 + |Ỹ (s)− Y (s)||Z̃(s)− Z(s)|}ds

≤ Cε
∫ T
t

E|Ỹ (s)− Y (s)|2ds+ ε
∫ T
t

|Z̃(s)− Z(s)|2ds,

where ε > 0 is arbitrary and Cε depends on ε. Since β < 1, choosing
ε < 1− β and applying Gronwall’s inequality, we conclude that

(1.16) Y (t) = Ỹ (t), Z(t) = Z̃(t), a.s. , a.e. t ∈ [0, T ]

Thus any solution of (1.1) must have the form that we have constructed,
proving our claim.
Finally, let (X,Y, Z) and (X̃, Ỹ , Z̃) be any two solutions of (1.1). By

the previous argument we have

(1.17)

{
Y (t) = θ(t,X(t)), Z(t) = z(t,X(t), θ(t,X(t)), θx(t,X(t))),

Ỹ (t) = θ(t, X̃(t)), Z̃(t) = z(t, X̃(t), θ(t, X̃(t)), θx(t, X̃(t))).

Hence X(t) and X̃(t) satisfy exactly the same forward SDE (1.8) with the
same initial state x. Thus we must have

X(t) = X̃(t), ∀t ∈ [0, T ], a.s.P,
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which in turn shows that (by (1.17))

Y (t) = Ỹ (t), Z(t) = Z̃(t), ∀t ∈ [0, T ], a.s.P.

The proof is now complete.

Remark 1.2. We note that the uniqueness of FBSDE (1.1) requires the
condition (1.11), which is very hard to be verified in general and therefore
looks ad hoc. However, we should note this condition is trivially true if σ
is independent of z! Since the dependence of σ on variable z also causes
difficulty in solving (1.6), the first step of the Four Step Scheme, in what
follows to simplify discussion we often assume that σ = σ(t, x, y) when the
generality is not the main issue.

§2. Non-Degenerate Case — Several Solvable Classes

From the previous subsection, we see that to solve FBSDE (1.1), one needs
only to look when the Four Step Scheme can be realized. In this subsection,
we are going to find several such classes of FBSDEs.

§2.1. A general case
Let us make the following assumptions.

(A1) d = n; and the functions b, σ, h and g are smooth functions taking
values in lRn, lRm, lRn×n, lRm×n and lRm, respectively, and with first order
derivatives in x, y, z being bounded by some constant L > 0.

(A2) The function σ is independent of z and there exists a positive
continuous function ν(·) and a constant μ > 0, such that for all (t, x, y, z) ∈
[0, T ]× lRn × lRm × lRn×m

(2.1) ν(|y|)I ≤ σ(t, x, y)σ(t, x, y)T ≤ μI,

(2.2) |b(t, x, 0, 0)|+ |h(t, x, 0, z)| ≤ μ.

(A3) There exists a constant α ∈ (0, 1), such that g is bounded in
C2+α(lRn).

Throughout this section, by “smooth” we mean that the involved func-
tions possess partial derivatives of all necessary orders. We prefer not to
indicate the exact order of smoothness for the sake of simplicity of presen-
tation.
Since σ is independent of z, equation (1.6) is (trivially) uniquely solv-

able for z. In the present case, FBSDEs (1.1) reads as follows:

(2.3)

⎧⎪⎨⎪⎩
dX(t) = b(t,X(t), Y (t), Z(t))dt + σ(t,X(t), Y (t))dW (t),

dY (t) = h(t,X(t), Y (t), Z(t))dt + Z(t)dW (t), t ∈ [0, T ],
X(0) = x, Y (T ) = g(X(T )),
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and (1.7) takes the following form:

(2.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θkt +

1

2
tr
[
θkxx(σσ

T )(t, x, θ)
]
+ 〈 b(t, x, θ, z(t, x, θ, θx)), θkx 〉

− hk(t, x, θ, z(t, x, θ, θx)) = 0,
(t, x) ∈ (0, T )× lRn, 1 ≤ k ≤ m,

θ(T, x) = g(x), x ∈ lRn.

Let us first try to apply the result of Ladyzenskaja et al [1]. Consider
the following initial boundary value problem:

(2.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θkt +

n∑
i,j=1

aij(t, x, θ)θxixj +

n∑
i=1

bi(t, x, θ, z(t, x, θ, θx))θ
k
xi

− hk(t, x, θ, z(t, x, θ, θx)) = 0,
(t, x) ∈ [0, T ]×BR, 1 ≤ k ≤ m,

θ
∣∣
∂BR
= g(x), |x| = R,

θ(T, x) = g(x), x ∈ BR,
where BR is the ball centered at the origin with radius R > 0 and⎧⎪⎪⎨⎪⎪⎩

(
aij(t, x, y)

)
=
1

2
σ(t, x, y)σ(t, x, y)T ,

(b1(t, x, y, z), · · · , bn(t, x, y, z))T = b(t, x, y, z),
(h1(t, x, y, z), · · · , hm(t, x, y, z))T = h(t, x, y, z).

Clearly, under the present situation, the function z(t, x, y, p) determined by
(1.6) is smooth. We now give a lemma, which is an analogue of Ladyzen-
skaja et al [1, Chapter VII, Theorem 7.1].

Lemma 2.1. Suppose that all the functions aij , bi, h
k and g are smooth.

Suppose also that for all (t, x, y) ∈ [0, T ] × lRn × lRm and p ∈ lRm×n, it
holds that

(2.6) ν(|y|)I ≤
(
aij(t, x, y)

)
≤ μ(|y|)I,

(2.7) |b(t, x, y, z(t, x, y, p))| ≤ μ(|y|)(1 + |p|),

(2.8)

∣∣∣∣ ∂∂x� aij(t, x, y)
∣∣∣∣+ ∣∣∣∣ ∂∂yk aij(t, x, y)

∣∣∣∣ ≤ μ(|y|),
for some continuous functions μ(·) and ν(·), with ν(r) > 0;
(2.9) |h(t, x, y, z(t, x, y, p))| ≤ [ε(|y|) + P (|p|, |y|)](1 + |p|2),

where P (|p|, |y|)→ 0, as |p| → ∞ and ε(|y|) is small enough;

(2.10)

m∑
k=1

hk(t, x, y, z(t, x, y, p))yk ≥ −L(1 + |y|2),
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for some constant L > 0. Finally, suppose that g is bounded in C2+α(lRn)
for some α ∈ (0, 1). Then (2.5) admits a unique classical solution.
In the case g is bounded in C2+α(lRn), the solution of (2.5) and its

partial derivatives θ(t, x), θt(t, x), θx(t, x) and θxx(t, x) are all bounded
uniformly in R > 0 since only the interior type Schauder estimate is used.
Using Lemma 2.1, we can now prove the solvability of (2.4) under our
assumptions.

Theorem 2.2. Let (A1)–(A3) hold. Then (2.4) admits a unique classical
solution θ(t, x) which is bounded and θt(t, x), θx(t, x) and θxx(t, x) are all
bounded as well. Consequently, FBSDE (2.3) is uniquely solvable.

Proof. We first check that all the required conditions in Lemma 2.1 are
satisfied. Since σ is independent of z, we see that the function z(t, x, y, p)
determined by (1.6) satisfies

(2.11) |z(t, x, y, p)| ≤ C|p|, ∀(t, x, y, p) ∈ [0, T ]× lRn × lRm × lRm×n.

Now, we see that (2.6) and (2.8) follow from (A1) and (A2); (2.7) follows
from (A1), (2.2) and (2.11); and (2.9)–(2.10) follow from (A1) and (2.2).
Therefore, by Lemma 2.1 there exists a unique bounded solution θ(t, x;R)
of (2.5) for which θt(t, x;R), θx(t, x;R) and θxx(t, x;R) together with θ(t, x)
are bounded uniformly in R > 0. Using a diagonalization argument one
further shows that there exists a subsequence θ(t, x, R) which converges
uniformly to θ(t, x) as R→∞. Thus θ(t, x) is a classical solution of (2.4),
and θt(t, x), θx(t, x) and θxx(t, x), as well as θ(t, x) itself, are all bounded.
Noting that all the functions together with the possible solutions are

smooth with required bounded partial derivatives, the uniqueness follows
from a standard argument using Gronwall’s inequality.
Finally, by Theorem 1.1, FBSDE (2.3) is uniquely solvable.

§2.2. The case when h has linear growth in z
Although Theorem 2.2 gives a general solvability result of the FBSDE (2.3),
condition (2.2) in (A2) is rather restrictive; for instance, the case that
the coefficient h(t, x, y, z) is linearly growing in z is excluded. This case,
however, is very important for applications in optimal stochastic control
theory. For example in the Pontryagin maximum principle for optimal
stochastic control, the adjoint equation is of the form that the corresponding
h is affine in z. Thus we would like to discuss this case separately.
In order to relax the condition (2.2), we compensate by considering the

following special FBSDE:

(2.12)

⎧⎪⎨⎪⎩
dX(t) = b(t,X(t), Y (t), Z(t))dt+ σ(t,X(t))dW (t),

dY (t) = h(t,X(t), Y (t), Z(t))dt+ Z(t)dW (t),

X(0) = x, Y (T ) = g(X(T )).

We assume that σ is independent of y and z, but we allow h to have a linear
growth in z. In this case, the parabolic system looks like the following
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(compare with (2.4)):

(2.13)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θkt +

1

2
tr (θkxxσ(t, x)σ(t, x)

T ) + 〈 b(t, x, θ, z(t, x, θ, θx)), θkx 〉

− hk(t, x, θ, z(t, x, θ, θx)) = 0,
(t, x) ∈ [0, T ]× lRn, 1 ≤ k ≤ m,

θ(T, x) = g(x), x ∈ lRn.

Since now h has linear growth in z, the result of Ladyzenskaja et al [1] does
not apply. We use the result of Wiegner [1] instead. To this end, let us
rewrite the above parabolic system in divergence form:

(2.14)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θkt +

n∑
i,j=1

(aij(t, x)θxi)xj = f
k(t, x, θ, θx),

(t, x) ∈ [0, T ]× lRm, 1 ≤ k ≤ m,
θ(T, x) = g(x), x ∈ lRn,

where

(2.15)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
aij(t, x)

)
=
1

2
σ(t, x)σ(t, x)T ,

fk(t, x, y, p) =

n∑
i,j=1

aijxj (t, x)p
k
i −

n∑
i=1

bi(t, x, y, z(t, x, y, p))p
k
i

+ hk(t, x, y, z(t, x, y, p)).

By Wiegner [1], we know that for any T > 0, (2.14) has a unique classical
solution, global in time, provided the following conditions hold:

(2.16) νI ≤
(
aij(t, x)

)
≤ μI, ∀(t, x) ∈ [0, T ]× lRn,

(2.17)

m∑
k=1

ykfk(t, x, y, p) ≤ ε0|p|2 + C(1 + |y|2),

∀(t, x, y, p) ∈ [0, T ]× lRn × lRm × lRn×m,

where ν, μ, C, ε0 are constants with ε0 being small enough. (To fit the
framework of Wiegner [1], we have taken H = |y|2, ck ≡ 0 and rk ≡ 0,
k = 1, · · · ,m. See Wiegner [1] for details). Therefore, we need the following
assumption:

(A2)′ There exist positive constants ν, μ, such that

(2.18) νI ≤ σ(t, x)σ(t, x)T ≤ μI, ∀(t, x) ∈ [0, T ]× lRn,

(2.19)
|b(t, x, y, z)|, |h(t, x, 0, 0)| ≤ μ,

∀(t, x, y, z) ∈ [0, T ]× lRn × lRm × lRm×n.
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Theorem 2.3. Suppose that (A1), (A2)′ and (A3) hold. Then (2.12)
admits a unique adapted solution (X,Y, Z).

Proof. In the present case, for the function z(t, x, y, p) determined by
(1.6), we still have (2.11). Also, conditions (2.16) and (2.17) hold, which
will lead to the existence and uniqueness of classical solutions of (2.14) or
(2.13). Next, applying Theorem 1.1, we can show that there exists a unique
adapted solution (X,Y, Z) of (2.12).

Since h(t, x, y, z) is only assumed to be uniformly Lipschitz continuous
in (y, z) (see (A1)), we have

(2.20)
|h(t, x, y, z)| ≤C(1 + |y|+ |p|),

∀(t, x, y, z) ∈ [0, T ]× lRn × lRm × lRm×n.

In other words, the function h is allowed to have a linear growth in (y, z).

§2.3. The case when m = 1
Unlike the previous cases, this is the case in which the existence of adapted
solutions can be derived from a more general system than (2.4) and (2.13).
The main reason is that in this case, function θ(t, x) is scalar valued, and
the theory of quasilinear parabolic equations is much more satisfactory than
that for parabolic systems. Consequently, the corresponding results for the
FBSDEs will allow more complicated nonlinearities. Remember that in the
present case, the backward component is one dimensional, but the forward
part is still n dimensional.
We can now consider (1.1) with m = 1. Here W is an n-dimensional

standard Brownian motion, b, σ, h and g take values in lRn, lRn×n, lR
and lR, respectively. Also, X , Y and Z take values in lRn, lR and lRn,
respectively. In what follows we will try to use our Four Step Scheme to
solve (1.1). To this end, we first need to solve (1.6) for z. In the present
case, using the convention that all the vector are column vectors, we should
rewrite (1.6) as follows:

(2.21) z = σ(t, x, y, z)T p.

Let us introduce the following assumption.

(A2)′′ There exist a positive continuous function ν(·) and constants
C, β > 0, such that for all (t, x, y, z) ∈ [0, t]× lRn × lR× lRn,

(2.22) ν(|y|)I ≤ σ(t, x, y, z)σ(t, x, y, z)T ≤ CI,

(2.23)
〈[σ(t, x, y, z)T ]−1z − [σ(t, x, y, ẑ)T ]−1ẑ, z − ẑ 〉

≥ β|z − ẑ|2,

(2.24) |b(t, x, 0, 0)|+ |h(t, x, 0, 0)| ≤ C.



§3. Infinite horizon case 89

We note that condition (2.23) amounts to saying that the map z �→
[σ(t, x, y, z)T ]−1z is uniformly monotone. This is a sufficient condition for
(2.21) to be uniquely solvable for z. Some other conditions are also possible,
for example, the map z �→ −[σ(t, x, y, z)T ]−1z is uniformly monotone.
We have the following result for the unique solvability of FBSDE (1.1)

with m = 1.

Theorem 2.4. Let (A1) with m = 1, (A2)′′ hold. Then there exists a
unique smooth function z(t, x, y, p) that solves (2.21) and satisfies (2.11).
In addition, if (A3) also holds, then FBSDE (1.1) (with m = 1) admits an
adapted solution determined by the Four Step Scheme.

The proof is omitted here.
We should note that the well-posedness of (1.7) in the present case

(m = 1) follows from Ladyzenskaja et al. [1, Chapter V, Theorem 8.1]. We
see that the condition (2.24) together with (A1) means that the functions
b and h are allowed to have linear growth in y and z. Also, note that we
do not claim the uniqueness of adapted solutions since a condition similar
to (1.11) is not easy to be made explicit.

§3. Infinite Horizon Case
In this section, we are concerned with the following FBSDE:

(3.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dX(t) = b(X(t), Y (t))dt+ σ(X(t), Y (t))dW (t), t ∈ [0,∞),
dY (t) = [h(X(t))Y (t)− 1]dt− 〈Z(t), dW (t) 〉, t ∈ [0,∞),
X(0) = x,

Y (t) is bounded a.s. , uniformly in t ∈ [0,∞).

Note that the time duration here is [0,∞). Thus, (3.1) is an FBSDE in an
infinite time duration. In this section, we only consider the case m = 1,
i.e., Y (·) is a scalar-valued process. Hence, Z(·) is valued in lRd. Note that
X(·) is still taking values in lRn.

§3.1. The nodal solution
First of all, let us introduce the following notion.

Definition 3.1. A process {(X(t), Y (t), Z(t))}t≥0 is called an adapted
solution of (3.1) if for any T > 0, (X,Y, Z)

∣∣
[0,T ]

∈ M[0, T ], and

(3.2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X(t) = x+

∫ t
0

b(X(s), Y (s))ds+

∫ t
0

σ(X(s), Y (s))dW (s),

Y (t) = Y (T )−
∫ T
t

[h(X(s))Y (s)− 1]ds+
∫ T
t

〈Z(s), dW (s) 〉,

0 ≤ t ≤ T <∞,

such that ∃M > 0, |Y (t)| ≤M , ∀t, P-a.s. Moreover, if an adapted solution
(X,Y, Z) is such that for some θ ∈ C2(lRn)∩C1b (lRn), the following relations
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hold:

(3.3)

{
Y (t) = θ(X(t)),

Z(t) = σ(X(t), θ(X(t)))�θx(X(t)),
t ∈ [0,∞),

then we call (X,Y, Z) a nodal solution of (3.1), with the representing func-
tion θ.

Let us now make some assumptions.

(H1) The functions σ, b, h are C1 with bounded partial derivatives and
there exist constants λ, μ > 0, and some continuous increasing function
ν : [0,∞)→ [0,∞), such that

(3.4) λI ≤ σ(x, y)σ(x, y)� ≤ μI, (x, y) ∈ lRn × lR,

(3.5) |b(x, y)| ≤ ν(|y|), (x, y) ∈ lRn × lR,

(3.6) inf
x∈lRn

h(x) ≡ δ > 0, sup
x∈lRn

h(x) ≡ γ <∞.

The following result plays an important role below.

Lemma 3.2. Let (H1) hold. Then the following equation admits a classical
solution θ ∈ C2+α(lRn):

(3.7)
1

2
tr
(
θxxσ(x, θ)σ

�(x, θ)
)
+ 〈 b(x, θ), θx 〉 −h(x)θ + 1 = 0, x ∈ lRn.

such that

(3.8)
1

γ
≤ θ(x) ≤ 1

δ
, x ∈ lRn.

Sketch of the proof. Let BR(0) be the ball of radius R > 0 centered
at the origin. We consider the equation (3.7) in BR(0) with the homo-
geneous Dirichlet boundary condition. By [Gilbarg-Trudinger, Theorem
14.10], there exists a solution θR ∈ C2+α(BR(0)) for some α > 0. By the
maximum principle, we have

(3.9) 0 ≤ θR(x) ≤ 1
δ
, x ∈ BR(0).

Next, for any fixed x0 ∈ lRn, and R > |x0| + 2, by Gilbarg-Trudinger [1,
Theorem 14.6], we have

(3.10) |θRx (x)| ≤ C, x ∈ B1(x0),

where the constant C is independent of R > |x0| + 2. This, together with
the boundedness of σ and the first partial derivatives of σ, b, h, implies
that as a linear equation in θ (regarding σ(x, θ(x)) and b(x, θ(x)) as known
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functions), the coefficients are bounded in C1. Hence, by Schauder’s interior
estimates, we obtain that

(3.11) ‖θR‖C2+α(B1(x0)) ≤ C, ∀R > |x0|+ 2.

Then, we can let R→∞ along some sequence to get a limit function θ(x).
By the standard diagonalization argument, we may assume that θ is defined
in the whole of lRn. Clearly, θ ∈ C2+α(lRn) and is a classical solution of
(3.7). Finally, by the maximum principle again, we obtain (3.8).
Now, we come up with the following existence of nodal solutions to

(3.1). This result is essentially the infinite horizon version of the Four Step
Scheme presented in the previous sections.

Theorem 3.3. Let (H1) hold. Then there exists at least one nodal solu-
tion (X,Y, Z) of (3.1), with the representing function θ being the solution
of (3.7). Conversely, if (X,Y, Z) is a nodal solution of (3.1) with the repre-
senting function θ. Then θ is a solution of (3.7).

Proof. By Lemma 3.2, we can find a classical solution θ ∈ C2+α(lRn)
of (3.7). Now, we consider the following (forward) SDE:

(3.12)

{
dX(t) = b(X(t), θ(X(t)))dt+ σ(X(t), θ(X(t)))dW (t), t > 0,

X(0) = x.

Since θx is bounded and b and σ are uniformly Lipschitz, (3.12) admits
a unique strong solution X(t), t ∈ [0,∞). Next, we define Y (·) and Z(·)
by (3.3). Then, by Itô’s formula, we see immediately that (X,Y, Z) is an
adapted solution of (3.1). By Definition 3.1, it is a nodal solution of (3.1).
Conversely, let (X,Y, Z) be a nodal solution of (3.1) with the represent-

ing function θ. Since θ is C2, we can apply Itô’s formula to Y (t) = θ(X(t)).
This leads to that

(3.13)

dY (t) =
[
〈 b(X(t), θ(X(t))), θx(X(t)) 〉

+
1

2
tr
(
θxx(X(t))σσ

�(X(t), θ(X(t)))
)]
dt

+ 〈 θx(X(t)), σ(X(t), θ(X(t)))dW (t) 〉 .

Comparing (3.13) with (3.1) and noting that Y (t) = θ(X(t)), we obtain
that
(3.14)

〈 b(X(t), θ(X(t))), θx(X(t)) 〉+
1

2
tr
[
θxx(X(t))σσ

�(X(t), θ(X(t)))
]

= h(X(t))θ(X(t))− 1, ∀t ≥ 0, P-a.s.

Define a continuous function F : lRn → lR by

(3.15)
F (x)

Δ
= 〈 b(x, θ(x)), θx(x) 〉+

1

2
tr
[
θxx(x)σσ

�(x, θ(x))
]

− h(x)θ(x) + 1.
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We shall prove that F ≡ 0. In fact, processX actually satisfies the following
FSDE

(3.16)

{
dX(t) = b̃(X(t))dt+ σ̃(X(t))dW (t), t ≥ 0;
X0 = x,

where b̃(x)
Δ
= b(x, θ(x)) and σ̃(x)

Δ
=σ(x, θ(x)). Therefore, X is a time-

homogeneous Markov process with some transition probability density
p(t, x, y). Since both b̃ and σ̃ are bounded and satisfy a Lipschitz con-

dition; and since ã
Δ
= σσ� is uniformly positive definite, it is well known

(see, for example, Friedman [1,2]) that for each y ∈ lRn, p(· , · , y) is the
fundamental solution of the following parabolic PDE:

(3.17)
1

2

n∑
i,j=1

ãij(x)
∂2p

∂xi∂xj
+

n∑
i=1

b̃i(x)
∂p

∂xi
− ∂p
∂t
= 0,

and it is positive everywhere. Now by (3.14), we have that F (X(t)) = 0 for
all t ≥ 0, P-a.s. , whence

(3.18) 0 = E0,x
[
F (X(t))2

]
=

∫
lRn
p(t, x, y)F (y)2dy, ∀t > 0.

By the positivity of p(t, x, y), we have F (y) = 0 almost everywhere under
the Lebesgue measure in lRn. The result then follows from the continuity
of F .

Theorem 3.3 tells us that if (3.7) has multiple solutions, we have the
non-uniqueness of the nodal solutions (and hence the non-uniqueness of the
adapted solutions) to (3.1); and the number of the nodal solutions will be
exactly the same as that of the solutions to (3.7). However, if the solution
of (3.7) is unique, then the nodal solution of (3.1) will be unique as well.
Note that we are not claiming the uniqueness of adapted solutions to (3.1).

§3.2. Uniqueness of nodal solutions

In this subsection we study the uniqueness of the nodal solutions to (3.1).
We first consider the one dimensional case, that is, when X and Y are
both one-dimensional processes. However, the Brownian motion W (t) is
still d-dimensional (d ≥ 1). For simplicity, we denote

(3.19) a(x, y) =
1

2
|σ(x, y)|2, (x, y) ∈ lR2.

Let us make the some further assumptions:

(H2) Let m = n = 1 and the functions a, b, h satisfy the following:

(3.20) h(x) is strictly increasing in x ∈ lR.
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(3.21)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a(x, y)h(x) − (h(x)y − 1)

∫ 1
0

ay(x, y + β(ŷ − y))dβ ≥ η > 0,∫ 1
0

[
a(x, y)by(x, y + β(ŷ − y))

− ay(x, y + β(ŷ − y))b(x, y)
]
dβ ≥ 0, y, ŷ ∈ [ 1γ , 1δ ], x ∈ lR.

Condition (3.21) essentially says that the coefficients b, σ and h should
be somewhat “compatible.” Although a little complicated, (3.21) is still
quite explicit and not hard to verify. For example, a sufficient conditions
for (3.21) is

(3.22)

⎧⎪⎨⎪⎩
a(x, y)h(x) − (h(x)y − 1)ay(x,w) ≥ η > 0,
a(x, y)by(x,w) − ay(x,w)b(x, y) ≥ 0,

y, w ∈ [ 1
γ
, 1
δ
], x ∈ lR.

It is readily seen that the following will guarantee (3.22) (if (H1) is as-
sumed):

(3.23) ay(x, y) = 0, by(x, y) ≥ 0, (x, y) ∈ lR× [ 1
γ
, 1
δ
].

In particular, if both a and b are independent of y, then (3.21) holds auto-
matically.

Our main result of this subsection is the following uniqueness theorem.

Theorem 3.4. Let (H1)–(H2) hold. Then (3.1) has a unique adapted
solution. Moreover, this solution is nodal.

To prove the above result, we need several lemmas.

Lemma 3.5. Let h be strictly increasing and θ solves

(3.24) a(x, θ)θxx + b(x, θ)θx − h(x)θ + 1 = 0, x ∈ lR.
Suppose xM is a local maximum of θ and xm is a local minimum of θ with
θ(xm) ≤ θ(xM ). Then xm > xM .
Proof. Since h is strictly increasing, from (3.24) we see that θ is not

identically constant in any interval. Therefore xm �= xM . Now, let us look
at xM . It is clear that θx(xM ) = 0 and θxx(xM ) ≤ 0. Thus, from (3.24) we
obtain that

(3.25) θ(xM ) ≤
1

h(xM )
.

Similarly, we have

(3.26) θ(xm) ≥
1

h(xm)
.

Since θ(xm) ≤ θ(xM ), we have

(3.27)
1

h(xm)
≤ 1

h(xM )
,
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whence xM < xm because h(x) is strictly increasing.

Lemma 3.6. Let (H1)–(H2) hold. Then (3.24) admits a unique solution.

Proof. By Lemma 3.2 we know that (3.24) admits at lease one classical
solution θ. We first show that θ is monotone decreasing. Suppose not,
assume that it has a local minimum at xm. Since θ ∈ C1 and θ is not
constant on any interval as we pointed out before, θx > 0 near xm. Using
Lemma 3.5, one further concludes that θx ≥ 0 over (xm,∞). In other
words, θ is monotone increasing on (xm,∞). The boundedness of θ then
leads to that limx→∞ θ(x) exists.
Next we show that

(3.28) lim
x→∞ θx(x) = limx→∞ θxx(x) = 0,

To see this, we first apply Taylor’s formula and use the boundedness of θxx
to conclude that there exists M > 0 such that for any x ∈ (xm,∞) and
h > 0

θ(x+ h)− θ(x)−Mh2 ≤ θx(x)h ≤ θ(x + h)− θ(x) +Mh2.

Since limx→∞ θ(x+ h)− θ(x) = 0, we have

−Mh2 ≤ lim
x→∞

θx(x)h ≤ lim
x→∞ θx(x)h ≤Mh

2.

Dividing h and letting h → 0 we derive limx→∞ θx(x) = 0. Further, note
that

θxx =
1

a(x, θ)
[−b(x, θ)θx + h(x)θ − 1].

The boundedness of θ, θx, and θxx and the assumption (H1) then show that
θxxx exists and is continuous and bounded as well. Thus apply Taylor’s
expansion to the third order and repeat the discussion above one shows
further that limx→∞ θxx(x) = 0 as well, proving (3.28). Consequently, by
(3.24) we have

(3.29) lim
x→∞ θ(x) =

1

h(+∞) .

On the other hand, by (3.20), we see that

(3.30) lim
x→∞ θ(x) > θ(xm) ≥

1

h(xm)
>

1

h(+∞) ,

which contradicts (3.29). This means that θ has no local minimum. Sim-
ilarly one shows that θ can not have any local maximum either, hence it
must be monotone on lR. Finally, since

(3.31) θ(−∞) = 1

h(−∞) >
1

h(+∞) = θ(+∞),

it is necessary that θ is monotone decreasing.
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Next, let θ and θ̂ be two solutions of (3.24). Then, w ≡ θ̂ − θ satisfies

(3.32)

0 = a(x, θ̂)wxx + b(x, θ̂)wx

−
(
h(x) −

∫ 1
0

[
ay(x, θ + βw)θxx + by(x, θ + βw)θx

]
dβ
)
w

= a(x, θ̂)wxx + b(x, θ̂)wx − c(x)w,

where

(3.33)

c(x) = h(x)−
∫ 1
0

[
ay(x, θ + βw)

h(x)θ − 1− b(x, θ)θx
a(x, θ)

+ by(x, θ + βw)θx
]
dβ

=
a(x, θ)h(x) − (h(x)θ − 1)

∫ 1
0
ay(x, θ + β(θ̂ − θ))dβ

a(x, θ)

+ |θx|
∫ 1
0

[
a(x, θ)by(x, θ + β(θ̂ − θ))

− ay(x, βθ + β(θ̂ − θ))b(x, θ)
]
dβ ≥ η

μ
.

Here, we have used the fact that θx(x) = −|θx(x)| (since θ is decreasing
in x) and (3.21) as well as (3.7). From (H1), we also see that a(x, θ̂) ≥ 0
and b(x, θ̂) are bounded. Thus, by the lemma that will be proved below,
we obtain w = 0, proving the uniqueness.

Lemma 3.7. Let w be a bounded classical solution of the following equa-
tion:

(3.34) ã(x)wxx + b̃(x)wx − c(x)w = 0, x ∈ lR,

with c(x) ≥ c0 > 0, ã(x) ≥ 0, x ∈ lRn, and with ã and b̃ bounded. Then
w(x) ≡ 0.
Proof. For any α > 0, let us consider Φα(x) = w(x) − α|x|2. Since w

is bounded, there exists some xα at which Φα attains its global maximum.
Thus, Φ′α(xα) = 0 and Φ′′α(xα) ≤ 0, which means that

(3.35) wx(xα) = 2αxα, wxx(xα) ≤ 2α.

Now, by (3.34),

(3.36)
c(xα)w(xα) = ã(xα)wxx(xα) + b̃(xα)wx(xα)

≤ 2α
(
ã(xα) + b̃(xα)xα

)
.

For any x ∈ lR, by the definition of xα, we have (note the boundedness of
ã and b̃)

(3.37)
w(x) − α|x|2 ≤ w(xα)− α|xα|2

≤ α
c0

(
2ã(xα) + 2b̃(xα)xα − |xα|2) ≤ Cα.
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Sending α→ 0, we obtain w(x) ≤ 0. Similarly, we can show that w(x) ≥ 0.
Thus w(x) ≡ 0.

Proof of Theorem 3.4. Let (X,Y, Z) be any adapted solution of (3.1).
Under (H1)–(H2), by Lemma 3.6, equation (3.24) admits a unique classical
solution θ with θx ≤ 0. We set

(3.38)

{
Ỹ (t) = θ(X(t)),

Z̃(t) = σ
(
X(t), θ(X(t))

)�
θx(X(t)),

t ∈ [0,∞).

By Itô’s formula, we have (note (3.19))

(3.39)
dỸ (t) =

[
θx(X(t))b(X(t), Y (t)) + θxx(X(t))a(X(t), Y (t))

]
dt

+ 〈 σ(X(t), Y (t))�θx(X(t)), dW (t) 〉 .

Hence, with (3.1), we obtain (note (3.24)) that for any 0 ≤ r < t <∞,

(3.40)

E[Ỹ (r) − Y (r)]2 − E[Ỹ (t)− Y (t)]2

= −E
∫ t
r

{
2[Ỹ − Y ]

[
θx(X)b(X,Y ) + θxx(X)a(X,Y )

− h(X)Y + 1
]
+ |σ(X,Y )θx(X)− Z|2

}
ds

≤ −2E
∫ t
r

[Ỹ − Y ]
[
θx(X)

(
b(X,Y )− b(X, Ỹ )

)
+ θxx(X)

(
a(X,Y )− a(X, Ỹ )

)
− h(X)(Y − Ỹ )

]
ds

= −2E
∫ t
r

{
[Ỹ − Y ]2

[
|θx(X)|

∫ 1
0

by(X, Ỹ + β(Y − Ỹ ))dβ

− θxx(X)
∫ 1
0

ay(X, Ỹ + β(Y − Ỹ ))dβ + h(X)
]}
ds

≡ −2E
∫ t
r

c(s)|Ỹ (s)− Y (s)|2ds,
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where (note the equation (3.24))

(3.41)

c(s) = h(X) + |θx(X)|
∫ 1
0

by(X, Ỹ + β(Y − Ỹ ))dβ

+
b(X, Ỹ )θx(X)− h(X)Ỹ + 1

a(X, Ỹ )

·
∫ 1
0

ay(X, Ỹ + β(Y − Ỹ ))dβ

=
1

a(X,Y )

{
a(X,Y )h(X)

− [h(X)Ỹ − 1]
∫ 1
0

ay(X, Ỹ + β(Y − Ỹ ))dβ

+ |θx(X)|
∫ 1
0

[
a(X, Ỹ )by(X, Ỹ + β(Y − Ỹ ))

− b(X, Ỹ )ay(X, Ỹ + β(Y − Ỹ ))
]
dβ ≥ η

μ
.

Denote ϕ(t) = E[Ỹ (t)−Y (t)]2 and α = 2η
μ
> 0. Then (3.40) can be written

as

(3.42) ϕ(r) ≤ ϕ(t) − α
∫ t
r

ϕ(s)ds, 0 ≤ r < t <∞.

Thus,

(3.43)

(
e−αt

∫ t
r

ϕ(s)ds
)′
= e−αt

(
ϕ(t) − α

∫ t
r

ϕ(s)ds
)

≥ e−αtϕ(r), t ∈ [r,∞).

Integrating it over [r, T ], we obtain (note Y and Ỹ are bounded, and so is
ϕ)

(3.44)
e−αr − e−αT

α
ϕ(r) ≤ e−αT

∫ T
r

ϕ(s)ds ≤ CTe−αT , T > 0.

Therefore, sending T →∞, we see that ϕ(r) = 0. This implies that

(3.45) Y (r) = Ỹ (r) ≡ θ(X(r)), r ∈ [0,∞), a.s.ω ∈ Ω.

Consequently, from the second equality in (3.40), one has

(3.46) Z(s) = Z̃(s) = σ
(
X(s), θ(X(s))

)T
θx(X(s)), ∀s ∈ [0,∞).

Hence, (X,Y, Z) is a nodal solution. Finally, suppose (X,Y, Z) and

(X̂, Ŷ , Ẑ) are any adapted solutions of (3.1). Then, by the above proof,
we must have

(3.47) Y (t) = θ(X(t)), Ŷ (t) = θ(X̂(t)), t ∈ [0,∞).
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Thus, by (3.1), we see that X(·) and X̂(·) satisfy the same forward SDE
with the same initial condition (see (3.12)). By the uniqueness of the strong

solution to such an SDE, X = X̂. Consequently, Y = Ŷ and Z = Ẑ. This
proves the theorem.

Let us indicate an obvious extension of Theorem 3.4 to higher dimen-
sions.

Theorem 3.8. Let (H1) hold and suppose there exists a solution θ to (3.7)
satisfying

(3.48)

h(x) −
∫ 1
0

[ n∑
i,j=1

aijy (x, (1 − β)θ(x) + βθ̂)θxixj (x)

−
n∑
i=1

biy(x, (1 − β)θ(x) + βθ̂)θxi(x)
]
dβ ≥ η > 0,

x ∈ lRn, θ̂ ∈ [ 1
γ
, 1
δ
].

Then (3.1) has a unique adapted solution. Moreover, this solution is nodal
with θ being the representing function.

Sketch of the proof. First of all, by an equality similar to (3.32), we
can prove that (3.7) has no other solution except θ(x). Then, by a proof
similar to that of Theorem 3.4, we obtain the conclusion here.

Corollary 3.9. Let (H1) hold and both a and b be independent of y. Then
(3.1) has a unique adapted solution and it is nodal.

Proof. In the present case, condition (3.48) trivially holds. Thus, The-
orem 3.8 applies.

§3.3. The limit of finite duration problems

In this subsection, we will prove the following result, which gives a rela-
tionship between the FBSDEs in finite and infinite time durations.

Theorem 3.10. Let (H1)–(H2) hold and let θ be a solution of (3.7) with
the property (3.48). Let (X,Y, Z) be the nodal solution of (3.1) with the
representing function θ, and (XK , Y K , ZK) ∈ M[0,K] be the adapted
solution of (3.1) with [0,∞) replaced by [0,K], and Y K(K) = g(X(K)) for
some bounded smooth function g. Then

(3.49) lim
K→∞

E
{
|XK(t)−X(t)|2+|Y K(t)−Y (t)|2+E|ZK(t)−Z(t)|2

}
= 0,

uniformly in t on any compact sets.

To prove the above result, we need the following lemma.
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Lemma 3.11. Suppose that

(3.50)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λI ≤ (aij(t, x)) ≤ μI,
|bi(t, x)| ≤ C, 1 ≤ i ≤ n,
c(t, x) ≥ η > 0,
|w0(x)| ≤M,

(t, x) ∈ [0,∞)× lRn,

with some positive constants λ, μ, η, C and M . Let w be the classical solu-
tion of the following equation:

(3.51)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wt −

n∑
ij=1

aij(t, x)wxixj −
n∑
i=1

bi(t, x)wxi + c(t, x)w = 0,

(t, x) ∈ [0,∞)× lRn,
w
∣∣
t=0
= w0(x).

Then

(3.52) |w(t, x)| ≤Me−ηt, (t, x) ∈ [0,∞)× lRn.

Proof. First, let R > 0 and consider the following initial-boundary
value problem:

(3.53)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wRt −
n∑

i,j=1

aij(t, x)wRxixj −
n∑
i=1

bi(t, x)wRxi + c(t, x)w
R = 0,

(t, x)[0,∞)× ∈ BR,
wR
∣∣
∂BR
= 0,

wR
∣∣
t=0
= w0(x)χ

R(x),

where BR is the ball of radius R > 0 centered at 0 and χ
R is some “cut-

off” function. Then we know that (3.53) admits a unique classical solution
wR ∈ C2+α,1+α/2(BR × [0,∞)) for some α > 0, where C2+α,1+α/2 is the
space of all functions v(x, t) which are C2 in x and C1 in t with Hölder
continuous vxixj and vt of exponent α and α/2, respectively. Moreover, we
have

(3.54) |wR(t, x)| ≤M, (t, x) ∈ [0,∞)×BR,

and for any x0 ∈ lRn and T > 0, (0 < α′ < α)

(3.55) wR
s→w, in C2+α

′,1+α′/2([0, T ]×B1(x0)), as R→∞,

where w is the solution of (3.51). Now, we let ψ(t, x) =Me−(η−ε)t (ε > 0).
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Then

(3.56)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ψt −
n∑

i,j=1

aij(t, x)ψxixj −
n∑
i=1

bi(t, x)ψxi + c(t, x)ψ

=
(
c(t, x)− η + ε)M−(η−ε)t ≥ εM−(η−ε)t > 0,

ψ
∣∣
∂BR
> 0 = wR

∣∣
∂BR
,

ψ
∣∣
t=0
=M ≥ w0(x) = wR

∣∣
t=0
.

Thus, by Friedman [1, Chapter 2, Theorem 16], we have

(3.57) wR(t, x) ≤ ψ(t, x) =M−(η−ε)t, (t, x) ∈ [0,∞)×BR.

Similarly, we can prove that

(3.58) wR(t, x) ≥ −Me−(η−ε)t, (t, x) ∈ [0,∞)×BR.

Since the right hand sides of (3.57)–(3.58) are independent of R, we see
that

(3.59) |w(t, x)| ≤Me−(η−ε)t, (t, x) ∈ [0,∞)× lRn.

Hence, (3.52) follows by sending ε→ 0.
Proof of Theorem 3.10. By the result from §2, we know that

(XK , Y K , ZK) satisfies

(3.60)

⎧⎪⎨⎪⎩
Y K(t) = θK(t,XK(t)),

ZK(t) = σ(XK(t), θK(t,XK(t)))T θKx (t,X
K(t)),

t ∈ [0,K], a.s.ω ∈ Ω,

where θK is the solution of the parabolic equation:

(3.61)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θKt +

n∑
i,j=1

aij(x, θK)θKxixj +
n∑
i=1

bi(x, θK)θKxi − h(x)θ
K + 1 = 0,

(x, t) ∈ lRn × [0, T ),
θK
∣∣
t=T
= g(x),

with a = 1
2σσ

T . Next, we define ϕ to be the solution of

(3.62)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕt −

n∑
i,j=1

aij(x, ϕ)ϕxixj −
n∑
i=1

bi(x, ϕ)ϕxi + h(x)ϕ − 1 = 0,

(t, x) ∈ [0,∞)× lRn,
ϕ
∣∣
t=0
= g(x).

Clearly, we have

(3.63) θK(t, x) = ϕ(K − t, x), (t, x) ∈ [0,K]× lRn.
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Now, we let w(t, x) = ϕ(t, x) − θ(x). Then

(3.64)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt −
n∑

i,j=1

aij(x, ϕ)wxixj −
n∑
i=1

b(x, ϕ)wxi

−
[
h(x)−

∫ 1
0

( n∑
i,j=1

aijy (x, θ + βw)θxixj

+

n∑
i=1

biy(x, θ + βw)θxi

)
dβ
]
w = 0,

w
∣∣∣
t=0
= g(x)− θ(x).

We note that both ϕ(x, t) and θ(x) lie in [ 1γ ,
1
δ ]. Thus, by condition (3.48)

and Lemma 3.11, we see that

(3.65)
|θK(t, x) − θ(x)| = |ϕ(K − t, x) − θ(x)| ≤ 1

δ
e−η(K−t),

(t, x) ∈ [0,K]× lRn × [0,K], K > 0.

Now, we look at the following forward SDEs:

(3.66)

⎧⎪⎨⎪⎩
dXK(t) = b(X(t)K , θK(t,X(t)K))dt

+ σ(X(t)K , θK(t,X(t)K))dW (t),

XK(0) = x.

(3.67)

{
dX(t) = b(X(t), θ(X(t)))dt + σ(X(t), θ(X(t)))dW (t),

X(0) = x.

By Itô’s formula, we have

(3.68)

E|XK(t)−X(t)|2

= E

∫ t
0

[
2 〈XK −X, b(XK , θK(s,XK))− b(X, θ(X)) 〉

+ tr
([
σ(XK , θK(s,XK))− σ(X, θ(X))

]
·[

σ(XK , θK(s,XK))− σ(X, θ(X))
]�)]

ds

≤ CE
∫ t
0

[
|XK −X |

(
|XK −X |+ |θK(s,XK)− θ(XK)|

)
+
(
|XK −X |+ |θK(s,XK)− θ(XK)|

)2]
ds

≤ C
∫ t
0

[
E|XK(s)−X(s)|2 + e−2η(K−s)

]
ds

≤ C
∫ t
0

|XK(s)−X(s)|2ds+ Ce−2η(K−t).
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Applying Gronwall’s inequality, we obtain that

(3.69) E
(
|XK(t)−X(t)|2

)
≤ Ce−2η(K−t), t ∈ [0,K], K > 0.

Furthermore,

(3.70)

E
(
|Y K(t)− Y (t)|2

)
= E

(
|θK(t,XK(t))− θ(X(t))|2

)
≤ 2E

(
|θK(t,XK(t)) − θ(XK(t))|2

)
+ 2E

(
|θ(XK(t)) − θ(X(t))|2

)
≤ Ce−2η(K−t) + CE

(
|XK(t)−X(t)|2

)
≤ Ce−2η(K−t), t ∈ [0,K], K > 0.

Similarly, we have

(3.71) E
(
|ZK(t)− Z(t)|2

)
≤ Ce−2η(K−t), t ∈ [0,K], K > 0.

Finally, letting K →∞, the conclusion follows.



Chapter 5

Linear, Degenerate Backward Stochastic
Partial Differential Equations

§1. Formulation of the Problem
We note that in the previous chapter, all the coefficients b, σ, h and g
are deterministic, i.e., they are all independent of ω ∈ Ω. If one tries to
apply the Four Step Scheme to FBSDEs with random coefficients, i.e., b,
σ, h and g are possibly depending on ω ∈ Ω explicitly, then it will lead
to the study of general degenerate nonlinear backward partial differential
equations (BSPDEs, for short). In this chapter, we restrict ourselves to the
study of the following linear BSPDE:

(1.1)

⎧⎪⎪⎨⎪⎪⎩
du =

{
− 1
2
∇·(ADu)− 〈 a,Du 〉−cu−∇·(Bq)− 〈 b, q 〉−f

}
dt

+ 〈 q, dW (t) 〉, (t, x) ∈ [0, T ]× lRn,
u
∣∣
t=T
= g,

where Du is the gradient of u,⎧⎪⎨⎪⎩ ∇· ξ =
n∑
i=1

∂xiξi, ∀ξ = (ξ1, · · · , ξn) ∈ C1(lRn; lRn),

∇·Φ = (∇·Φ1, · · · ,∇·Φm)T , ∀Φ = (Φ1, · · · ,Φm) ∈ C1(lRn; lRn×m),
and

(1.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : [0, T ]× lRn × Ω→ Sn,
B : [0, T ]× lRn × Ω→ lRn×d,
a : [0, T ]× lRn × Ω→ lRn,
b : [0, T ]× lRn × Ω→ lRd,
c, f : [0, T ]× lRn × Ω→ lR,
g : lRn × Ω→ lR,

are random fields (Sn is the set of all (n × n) symmetric matrices). We
assume that W = {W (t) : t ∈ [0, T ]} is a d-dimensional Brownian motion
defined on some complete filtered probability space (Ω,F , {Ft}t≥0,P), with
{Ft}t≥0 being the natural filtration generated by W , augmented by all the
P-null sets in F .
In our discussions, we will always assume that A and B are differen-

tiable in x. In such a case, (1.1) is equivalent to an equation of a general
form. To see this, we note that

(1.3)

{
tr [AD2u] = ∇·(ADu)− 〈∇·A,Du 〉;
tr [BTDq] = ∇·(Bq) − 〈∇·B, q 〉,
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where D2u is the Hessian of u and

Dq
Δ
=(Dq1, · · · , Dqd) Δ=

⎛⎜⎝ ∂x1q1 · · · ∂x1qd
... · · ·

...
∂xnq1 · · · ∂xnqd

⎞⎟⎠ .
Therefore, if we define

(1.4) ã = a+
1

2
∇·A; b̃ = b+∇·B,

then (1.1) is the same as

(1.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
du =

{
− 1
2
tr [AD2u]− 〈 ã, Du 〉−cu− tr [BTDq]

− 〈 b̃, q 〉−f
}
dt+ 〈 q, dW (t) 〉, (t, x) ∈ [0, T ]× lRn,

u
∣∣
t=T
= g,

Since (1.1) and (1.5) are equivalent, all the results for (1.1) can be
automatically carried over to (1.5) and vice versa. For notational conve-
nience, we will concentrate on (1.1) for well-posedness (§§2–5) and on (1.5)
for comparison theorems (§6).
Next, we introduce the following definition.

Definition 1.1. If A and B satisfy the following:

(1.6) A(t, x) −B(t, x)B(t, x)T ≥ 0, a.e. (t, x) ∈ [0, T ]× lRn, a.s. ,

we say that equation (1.1) is parabolic; if there exists a constant δ > 0, such
that

(1.7) A(t, x) −B(t, x)B(t, x)T ≥ δI, a.e. (t, x) ∈ [0, T ]× lRn, a.s.

we say that (1.1) is super-parabolic; whereas, if (1.6) holds and there exists
a set G ⊆ [0, T ]× lRn of positive Lebesgue measure, such that

(1.8) det
[
A(t, x) −B(t, x)B(t, x)T

]
= 0, ∀(t, x) ∈ G, a.s.

we say that (1.1) is degenerate parabolic.

We see that in the above definition, only A and B are involved. Thus,
the above three notions are adopted to equation (1.5) as well.
Note that if (1.1) is super-parabolic, it is necessary that A(t, x) is uni-

formly positive definite, i.e.,

(1.9) A(t, x) ≥ δI > 0, a.e. (t, x) ∈ [0, T ]× lRn, a.s.

However, if A(t, x) is uniformly positive definite and (1.6) holds, we do
not necessarily have the super-parabolicity of (1.1). As a matter of fact, if
A(t, x) satisfies (1.9) and

(1.10) A(t, x) = B(t, x)B(t, x)T , a.e. (t, x) ∈ [0, T ]× lRn, a.s.
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then (1.1) is degenerate parabolic. This is the case if we have the BSPDE
from the Four Step Scheme for FBSDEs with random coefficients (see Chap-
ter 4, §6).

Now, we introduce the notion of solutions to (1.1). In what follows, we
denote BR = {x ∈ lRn

∣∣ |x| < R} for any R > 0.
Definition 1.2. Let {(u(t, x;ω), q(t, x;ω)), (t, x, ω) ∈ [0, T ]× lRn × Ω} be
a pair of random fields.

(i) (u, q) is called an adapted classical solution of (1.1) if

(1.11)

{
u ∈ CF ([0, T ];L2(Ω;C2(BR))),
q ∈ L2F(0, T ;C1(BR; lRd)),

∀R > 0,

such that almost surely the following holds for all (t, x) ∈ [0, T ]× lRn:

(1.12)

u(t, x) = g(x) +

∫ T
t

{1
2
∇·[A(s, x)Du(s, x)] + 〈 a(s, x), Du(s, x) 〉

+ c(s, x)u(s, x) +∇·[B(s, x)q(s, x)]
+ 〈 b(s, x), q(s, x) 〉+f(s, x)

}
ds

−
∫ T
t

〈 q(s, x), dW (s) 〉 .

(ii) (u, q) is called an adapted strong solution of (1.1) if

(1.13)

{
u ∈ CF ([0, T ];L2(Ω;H2(BR))),
q ∈ L2F(0, T ;H1(BR; lRd)),

∀R > 0,

such that almost surely (1.12) holds for all t ∈ [0, T ], a.e.x ∈ lRn.
(iii) (u, q) is called an adapted weak solution of (1.1) if

(1.14)

{
u ∈ CF([0, T ];L2(Ω;H1(BR))),
q ∈ L2F(0, T ;L2(BR; lRd)),

∀R > 0,

such that almost surely for all ϕ ∈ C∞0 (lRn) and all t ∈ [0, T ],

(1.15)

∫
lRn
u(t, x)ϕ(x)dx −

∫
lRn
g(x)ϕ(x)dx

=

∫ T
t

∫
lRn

{
− 1
2
〈A(s, x)Du(s, x), Dϕ(x) 〉

+ 〈 a(s, x), Du(s, x) 〉ϕ(x) + c(s, x)u(s, x)ϕ(s, x)
− 〈B(s, x)q(s, x), Dϕ(x) 〉+ 〈 b(s, x), q(s, x) 〉ϕ(x)

+ f(s, x)ϕ(x)
}
dxds−

∫ T
t

〈
∫
lRn
q(s, x)ϕ(x)dx, dW (s) 〉 .
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We note that in the definition of adapted classical solution, we need A
and B to be C1 in x; in the definition of adapted strong solution, we need
A and B to be differentiable in x almost everywhere; and in the definition
of adapted weak solution, we need only the coefficients {A,B, a, b, c} to be
bounded and f and g to be locally square integrable.
It is clear that for (1.1), if (u, q) is an adapted classical solution, it is

an adapted strong solution; if (u, q) is an adapted strong solution, it is an
adapted weak solution. The following result tells the other way around,
which will be useful later. In the following proposition, by “the coefficients
are regular enough” we mean that all the coefficients have the required
differentiability, continuity and integrability.

Proposition 1.3. Let the coefficients of (1.1) be regular enough. Let
(u, q) be an adapted weak solution of (1.1). If in addition, (1.13) holds,
then (u, q) is an adapted strong solution of (1.1). Further, if (1.11) holds,
then (u, q) is an adapted classical solution of (1.1).

Proof. Let (u, q) be an adapted weak solution of (1.1) such that (1.13)
holds. Then, from (1.15), by integration by parts, we have

(1.16)

∫
lRn

{
u(t, x)− g(x)

}
ϕ(x)dx

=

∫
lRn

{∫ T
t

{1
2
∇·[A(s, x)Du(s, x)] + 〈 a(s, x), Du(s, x) 〉

+ c(s, x)u(s, x) +∇·[B(s, x)q(s, x)] + 〈 b(s, x), q(s, x) 〉

+ f(s, x)
}
ds−

∫ T
t

〈 q(s, x), dW (s) 〉
}
ϕ(x)dx.

The above is true for all ϕ ∈ C∞0 (lRn). Then, (1.12) follows, proving that
(u, q) is an adapted strong solution. The other assertion is obvious.

Although the parabolicity condition (1.6) is not necessary in Definition
1.2 and Proposition 1.3, we will see later that such a condition is very
crucial for our studying the well-posedness of BSPDE (1.1).

§2. Well-posedness of Linear BSPDEs
In this section, we state the results of well-posedness for BSPDE (1.1). The
proofs of them will be carried out in later sections.
To begin with, let us introduce the following assumption concerning

the coefficients of equation (1.1). Let m ≥ 1.
(H)m Functions {A,B, a, b, c} satisfy the following:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A ∈ L∞F (0, T ;Cm+1b (lRn;Sn)),

B ∈ L∞F (0, T ;Cm+1b (lRn; lRn×d)),
a ∈ L∞F (0, T ;Cmb (lRn; lRn)),
b ∈ L∞F (0, T ;Cmb (lRn; lRd)),
c ∈ L∞F (0, T ;Cmb (lRn)).
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We note that (H)m implies that the partial derivatives of A and B in
x up to order (m+ 1), and those of a, b and c up to order m are bounded
uniformly in (t, x, ω) by a constant Km > 0. This constant will be referred
in the statements of Theorems 2.1, 2.2 and 2.3.
In what follows, we let⎧⎪⎪⎨⎪⎪⎩

α
Δ
=(α1, · · · , αn), αi’s are nonnegative integers,

|α| Δ=
n∑
i=1

αi, ∂α
Δ
= ∂α1x1 · · ·∂

αn
xn
, xα

Δ
=xα11 · · ·xαnn .

Any α of the above form is called a multi-index. If β = (β1, · · · , βn) is
another multi-index, by β ≤ α, we mean that βi ≤ αi for each i = 1, · · · , n,
and by β < α, we mean β ≤ α and at least for one i, one has βi < αi.
Now, we state the following result concerning the well-posedness of

BSPDE (1.1).

Theorem 2.1. Suppose that the parabolicity condition (1.6) holds and
(H)m holds for some m ≥ 1. Suppose further that the coefficient B(t, x)
satisfies the following “symmetry condition”:

(2.2)

[
B(∂xiB

T )
]T
=B(∂xiB

T ),

a.e. (t, x) ∈ [0, T ]× lRn, a.s. , 1 ≤ i ≤ n.

Then for any random fields f and g satisfying

(2.3)

{
f ∈ L2F(0, T ;Hm(lRn)),
g ∈ L2FT (Ω;H

m(lRn)),

BSPDE (1.1) admits a unique adapted weak solution (u, q), such that the
following estimate holds:

(2.4)

max
t∈[0,T ]

E‖u(t, ·)‖2Hm + E
∫ T
0

‖q(t, ·)‖2Hm−1dt

+
∑
|α|≤m

E

∫ T
0

∫
lRn

{
〈(A−BBT )D(∂αu), D(∂αu) 〉

+
∣∣∣BT [D(∂αu)] + ∂αq∣∣∣2}dxdt

≤ CE
{∫ T
0

‖f(t, ·)‖2Hmdt+ ‖g‖2Hm
}
,

where the constant C > 0 only depends on m, T and Km.
Furthermore, if m ≥ 2, the weak solution (u, q) becomes the unique

adapted strong solution of (1.1); and if m > 2 + n/2, then (u, q) is the
unique adapted classical solution of (1.1).

The symmetry condition (2.2) is technical. It will play a very important
role in proving the existence of adapted solutions. However, we point out
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that such a condition is not needed for the uniqueness of adapted weak (and
hence strong and classical) solutions. See §3.1 for details. Several examples
satisfying such a condition are listed below:

(2.5)

⎧⎪⎨⎪⎩
d = n = 1;B is a scalar;

B is independent of x;

B(t, x) = ϕ(t, x)B0(t),where ϕ is a scalar-valued random field.

The following result tells us that the symmetry condition (2.2) can be
removed if the parabolicity condition (1.6) is strengthened.

Theorem 2.2. Suppose (1.6) holds and (H)m with m ≥ 1 is in force.
Suppose further that for some ε0 > 0, either

(2.6) A−BBT ≥ ε0BBT ≥ 0, a.e. (t, x) ∈ [0, T ]× lRn, a.s. ,

or

(2.7)

A−BBT ≥ ε0
∑
|α|=1

(∂αB)(∂αBT ) ≥ 0,

a.e. (t, x) ∈ [0, T ]× lRn, a.s.

Then the conclusion of Theorem 2.1 remains true and the estimate (2.4) is
improved to the following:

(2.8)

max
t∈[0,T ]

E‖u(t, ·)‖2Hm + E
∫ T
0

‖q(t, ·)‖2Hmdt

+
∑
|α|≤m

E

∫ T
0

∫
lRn
〈AD(∂αu), D(∂αu) 〉 dxdt

≤ CE
{∫ T
0

‖f(t, ·)‖2Hmdt+ ‖g‖2Hm
}
,

where the constant C > 0 only depends on m, T , Km and ε0.
In addition, if A is uniformly positive definite, i.e., (1.9) holds for some

δ > 0 (this is the case if (1.1) is super-parabolic, i.e., (1.7) holds), then
(2.8) can further be improved to the following:

(2.9)

max
t∈[0,T ]

E‖u(t, ·)‖2Hm + E
∫ T
0

{
‖u(t, ·)‖2Hm+1 + ‖q(t, ·)‖2Hm

}
dt

≤ CE
{∫ T
0

‖f(t, ·)‖2Hm−1dt+ ‖g‖2Hm
}
.

We note here that conditions (2.6) and (2.7) together with (1.9) are
still weaker than the super-parabolicity condition (1.7). For example, if
n > d and B is an (n× d) matrix, then BBT is always degenerate. We can
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easily find an A such that (2.6), (2.7) and (1.9) hold but (1.7) fails. Let us
also note that if (2.6) or (2.7) holds, we have

(2.10) |BT ξ|2 ≤ 〈Aξ, ξ 〉, ∀ξ ∈ lRn, a.e. (t, x) ∈ [0, T ]× lRn, a.s.

Thus, (2.8) follows from (2.4) easily.
In the above theorems, we have assumed that f and g are square inte-

grable in x ∈ lRn globally. This excludes the case that f and g approach
infinity as |x| goes to infinity. In some important applications, such a case
happens very often. Thus, in the rest of this section, we would like to ex-
tend the above theorems a little further so that f and g are allowed to have
certain growth as |x| → ∞. To this end, let us make an observation. Sup-
pose (u, q) is an adapted classical solution of (1.1). Let λ > 0 and denote

〈x 〉 Δ=
√
|x|2 + 1. Set

(2.11)

{
v(t, x) = e−〈λ 〉u(t, x),

p(t, x) = e−〈λ 〉q(t, x),
(t, x) ∈ [0, T ]× lRn.

Then, by a direct computation, we see that (v, p) satisfies the following
BSPDE: (compare with (1.1))

(2.12)

⎧⎪⎪⎨⎪⎪⎩
dv =

{
− 1
2
∇·(ADv)− 〈 a,Dv 〉 −cv −∇·(Bp)− 〈 b, p 〉−f

}
dt

+ 〈 p, dW (t) 〉, (t, x) ∈ [0, T ]× lRn,
v
∣∣
t=T
= g,

with

(2.13)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a = a+ λA
[
x
〈x 〉
]
,

c = c+
λ2

2
〈A
[
x
〈 x 〉
]
,
[
x
〈 x 〉
]
〉+λ
2
∇·
(
A
[
x
〈x 〉
])
+ λ 〈 a,

[
x
〈x 〉
]
〉,

b = b+ λBT
[
x
〈x 〉
]
,

f = e−〈λ 〉f(t, x), g = e−〈λ 〉g(t, x).

Conversely, if (v, p) is an adapted classical solution of (2.12), then (u, q),
which is determined through (2.11), is an adapted classical solution of (1.1).
Clearly, the same equivalence between (1.1) and (2.12) holds for adapted
strong and weak solutions, respectively.
On the other hand, from (2.13) we see easily that the group

{A,B, a, b, c} satisfies (H)m if and only if {A,B, a, b, c} satisfies (H)m. This
is due to the fact that for any multi-index α, it holds that

|∂α 〈x 〉 | ≤ C, ∀x ∈ lRn,

with the constant C > 0 only depending on |α|. Hence, from Theorems 2.1
and 2.2, we can derive the following result.
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Theorem 2.3. Let m ≥ 1 and (H)m hold for {A,B, a, b, c}. Let (1.6) and
(2.2) hold. Let λ > 0 such that

(2.14)

{
e−λ 〈 · 〉f ∈ L2F (0, T ;Hm(lRn)),
e−λ 〈 · 〉g ∈ L2FT (Ω;H

m(lRn)).

Then BSPDE (1.1) admits a unique adapted weak solution (u, q), such that
the following estimate holds:

(2.15)

max
t∈[0,T ]

E‖e−λ 〈 · 〉u(t, ·)‖2Hm + E
∫ T
0

‖e−λ 〈 · 〉q(t, ·)‖2Hm−1dt

+
∑
|α|≤m
E

∫ T
0

∫
lRn

{
〈(A−BBT )D[∂α(e−λ 〈 · 〉u)], D[∂α(e−λ 〈 · 〉u)] 〉

+
∣∣∣BT {D[∂α(e−λ 〈 · 〉u)]}+ ∂α(e−λ 〈 · 〉q)∣∣∣2}dxdt

≤ CE
{∫ T
0

‖e−λ 〈 · 〉f(t, ·)‖2Hmdt+ ‖e−λ 〈 · 〉g‖2Hm
}
,

where the constant C > 0 only depends on m, T and Km.
Furthermore, if m ≥ 2, the weak solution (u, q) becomes the unique

adapted strong solution of (1.1); and if m > 2 + n/2, then (u, q) is the
unique adapted classical solution of (1.1).
In the case that (2.2) is replaced by (2.6) or (2.7), the above conclusion

remains true and the estimate (2.15) can be improved to the following:

(2.16)

max
t∈[0,T ]

E‖e−λ 〈 · 〉u(t, ·)‖2Hm + E
∫ T
0

‖e−λ 〈 · 〉q(t, ·)‖2Hmdt

+
∑
|α|≤m

E

∫ T
0

∫
lRn
〈AD[∂α(e−λ 〈 · 〉u)], D[∂α(e−λ 〈 · 〉u)] 〉 dxdt

≤ CE
{∫ T
0

‖e−λ 〈 · 〉f(t, ·)‖2Hmdt+ ‖e−λ 〈 · 〉g‖2Hm
}
,

Finally, if in addition, (1.9) holds for some δ > 0, then (2.16) can further
be improved to the following:

(2.17)

max
t∈[0,T ]

E‖e−λ 〈 · 〉u(t, ·)‖2Hm

+ E

∫ T
0

{
‖e−λ 〈 · 〉u(t, ·)‖2Hm+1 + ‖e−λ 〈 · 〉q(t, ·)‖2Hm

}
dt

≤ CE
{∫ T
0

‖e−λ 〈 · 〉f(t, ·)‖2Hm−1dt+ ‖e−λ 〈 · 〉g‖2Hm
}
.

Clearly, (2.14) means that f and g can have an exponential growth as
|x| → ∞. This is good enough for many applications.
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We note that {A,B, a, b, c} satisfies (H)m if and only if {A,B, ã, b̃, c}
satisfies (H)m, where ã and b̃ are given by (1.4). Thus, we have the exact
statements as Theorems 2.1, 2.2 and 2.3 for BSPDE (1.5) with a and b

replaced by ã and b̃.

§3. Uniqueness of Adapted Solutions

In this section, we are going to establish the uniqueness of adapted weak,
strong and classical solutions to our BSPDEs. From the discussion right
before Proposition 1.3, we see that it suffices for us to prove the uniqueness
of adapted weak solutions.

§3.1. Uniqueness of adapted weak solutions

For convenience, we denote

(3.1)

⎧⎨⎩Lu
Δ
=
1

2
∇·[ADu] + 〈 a,Du 〉+cu,

Mq Δ=∇·[Bq] + 〈 b, q 〉 .

Then, equation (1.1) is the same as the following:

(3.2)

{
du = −

{
Lu+Mq + f

}
dt+ 〈 q, dW (t) 〉, (t, x) ∈ [0, T ]× lRn,

u
∣∣
t=T
= g.

In this section, we are going to prove the following result.

Theorem 3.1. Let (2.3) hold and the following hold:

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A ∈ L∞F (0, T ;L∞(lRn;Sn)),
B ∈ L∞F (0, T ;L∞(lRn; lRn×d)),
a ∈ L∞F (0, T ;L∞(lRn; lRn)),
b ∈ L∞F (0, T ;L∞(lRn; lRd)),
c ∈ L∞F (0, T ;L∞(lRn)).

Then, the adapted weak solution (u, q) of (3.2) is unique in the class

(3.4)

{
u ∈ CF ([0, T ];L2(Ω;H1(lRn))),
q ∈ L2F(0, T ;L2(lRn; lRd)).

To prove the above uniqueness theorem, we need some preliminaries.
First of all, let us recall the Gelfand triple H1(lRn) ↪→L2(lRn) ↪→H−1(lRn).
Here, H−1(lRn) is the dual space of H1(lRn), and the embeddings are
dense and continuous. We denote the duality paring between H1(lRn) and
H−1(lRn) by 〈 · , · 〉0, and the inner product and the norm in L2(lRn) by
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(· , ·)0 and | · |0, respectively. Then, by identifying L2(lRn) with its dual
L2(lRn)∗ (using Riesz representation theorem), we have the following:

(3.5)

〈ψ, ϕ 〉0 = (ψ, ϕ)0

=

∫
lRn
ψ(x)ϕ(x)dx, ∀ψ ∈ L2(lRn), ϕ ∈ H1(lRn),

and

(3.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
i=1

∂iψi ∈ H−1(lRn), ∀ψi ∈ L2(lRn), 1 ≤ i ≤ n,

〈
n∑
i=1

∂iψi, ϕ 〉0 Δ=−
∫
lRn
ψi(x)∂iϕ(x)dx, ∀ϕ ∈ H1(lRn).

Next, let (u, q) be an adapted weak solution of (3.2) satisfying (3.4).
Note that in (3.4), the integrability of (u, q) in x is required to be global.
By (3.5)–(3.6), we see that

(3.7) Lu+Mq ∈ L2F(0, T ;H−1(lRn)).

In the present case, from (1.15), for any ϕ ∈ H1(lRn) (not just C∞0 (lRn)),
we have

(3.8)

{
d(u, ϕ)0 = −〈Lu+Mq + f, ϕ 〉0 + 〈(q, ϕ)0, dW (t) 〉, t ∈ [0, T ],
(u, ϕ)0

∣∣
t=T
= (g, ϕ)0.

Here, (q, ϕ)0
Δ
=((q1, ϕ)0, · · · , (qd, ϕ)0) and q = (q1, · · · , qd). Sometimes, we

say that (3.2) holds in H−1(lRn) if (3.8) holds for all ϕ ∈ H1(lRn).
In proving the uniqueness of the adapted weak solutions, the following

special type of Itô’s formula is very crucial.

Lemma 3.2. Let ξ ∈ L2F(0, T ;H−1(lRn)) and (u, q) satisfy (3.4), such that

(3.9) du = ξdt+ 〈 q, dW (t) 〉, t ∈ [0, T ].

Then

(3.10)

|u(t)|20 = |u(0)|20 +
∫ t
0

{
2 〈 ξ(s), u(s) 〉0 + |q(s)|20

}
ds

+ 2

∫ t
0

〈(q(s), u(s))0, dW (s) 〉, t ∈ [0, T ].

Although the above seems to be a very special form of general Itô’s
formula, it is enough for our purpose. We note that the processes u, q and ξ
take values in different spaces H1(lRn), L2(lRn) andH−1(lRn), respectively.
This makes the proof of (3.10) a little nontrivial. We postpone the proof of
Lemma 3.2 to the next subsection.
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Proof of Theorem 3.1. Let (u, q) be any adapted weak solution of (3.2)
with f and g being zero, such that (3.4) holds. We need to show that
(u, q) = 0, which gives the uniqueness of adapted weak solution. Applying
Lemma 3.2, we have (note (3.7))

(3.11)

E|u(t)|20 = E
∫ T
t

{
2 〈Lu(s) +Mq(s), u(s) 〉0 − |q(s)|20

}
ds

= E

∫ T
t

∫
lRn

{
− 〈ADu,Du 〉+ 〈 a,D(u2) 〉+2cu2

− 2 〈 q, BTDu 〉+2 〈 bu, q 〉 −|q|2
}
dxds

= E

∫ T
t

∫
lRn

{
− 〈(A−BBT )Du,Du 〉

− |q +BTDu− bu|2

+ [b2 + 2c−∇·(a+Bb)]u2
}
ds

≤ C
∫ T
t

E|u(s)|20ds, t ∈ [0, T ].

By Gronwall’s inequality, we obtain

E|(t)|20 = 0, t ∈ [0, T ].

Hence, u = 0. By (3.11) again, we must also have q = 0. This proves the
uniqueness of adapted weak solutions to (3.2).

§3.2. An Itô formula
In this subsection, we are going to present a special type of Itô’s formula
in abstract spaces for which Lemma 3.2 is a special case.
Let V and H be two separable Hilbert spaces such that the embedding

V ↪→H is dense and continuous. We identify H with its dual H ′ (by Riesz
representation theorem). The dual of V is denoted by V ′. Then we have
the Gelfand triple V ↪→H = H ′ ↪→V ′. We denote the inner product and
the induced norm of H by (· , ·)0 and | · |0, respectively. The duality paring
between V and V ′ is denoted by 〈 · , · 〉0, and the norms of V and V ′ are
denoted by ‖ · ‖ and ‖ · ‖∗, respectively. We know that the following holds:

(3.12) 〈u, v 〉0 = (u, v)0, ∀u ∈ H, v ∈ V.

Due to this reason, H is usually called the pivot space. It is also known (see
[Lions]) that in the present setting, there exists a symmetric linear operator
A ∈ L(V, V ′), such that

(3.13) 〈Av, v 〉0 ≤ −‖v‖2, ∀v ∈ V.

Now, let us state the following result which is more general than Lemma
3.2.
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Lemma 3.3. Let

(3.14)

⎧⎪⎨⎪⎩
u ∈ CF ([0, T ];V ),
q ∈ L2F(0, T ;H)d,
ξ ∈ L2F(0, T ;V ′),

satisfying

(3.15) du = ξdt+ 〈 q, dW (t) 〉, t ∈ [0, T ].

Then

(3.16)

|u(t)|20 = |u(0)|20 +
∫ t
0

{
2 〈 ξ(s), u(s) 〉0 + |q(s)|20

}
ds

+ 2

∫ t
0

〈(q(s), u(s))0, dW (s) 〉, t ∈ [0, T ].

In the above, q ∈ L2F(0, T ;H)d means that q = (q1, · · · , qd) with qi ∈
L2F(0, T ;H). In what follows, we will see the expression q ∈ L2F(0, T ;V )d
whose meaning is similar. Before giving a rigorous proof of the above result,
let us try to prove it in an obvious (naive) way. From (3.16), we see that
the trouble mainly comes from ξ since it takes values in V ′. Thus, it is
pretty natural that we should find a sequence ξk ∈ L2F(0, T ;H), such that

(3.17) ξk → ξ, in L2F(0, T ;V
′), (k →∞),

and let uk be defined by

(3.18) uk(t) = u(0) +

∫ t
0

ξk(s)ds+

∫ t
0

〈 q(s), dW (s) 〉, t ∈ [0, T ].

Since the processes uk, ξk and q are all taking values in H , we have

(3.19)

|uk(t)|20 = |u(0)|20 +
∫ t
0

{
2 〈 ξk(s), uk(s) 〉0 + |q(s)|20

}
ds

+ 2

∫ t
0

〈(q(s), uk(s))0, dW (s) 〉, t ∈ [0, T ].

This can be proved by projecting (3.18) to finite dimensional spaces, using
usual Itô’s formula, then pass to the limit. Having (3.19), one then hopes
to pass to the limit to obtain (3.16). This can be done provided one has
the following convergence:

uk → u, in L2F (0, T ;V ).

However, (3.17)–(3.18) only guarantees

uk → u, in L2F(0, T ;V
′).

Thus, the convergence of uk to u is not strong enough and such an approach
does not work! In what follows, we will see that to prove (3.16), much more
has to be involved.
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Let us now state two standard lemmas for deterministic evolution equa-
tions whose proofs are omitted here (see Lions [1]).

Lemma 3.4. Let v : [0, T ]→ V ′ be absolutely continuous, such that

(3.20)

{
v ∈ L2(0, T ;V ),
v̇ ∈ L2(0, T ;V ′).

Then v ∈ C([0, T ];H) and

(3.21)
d

dt
|v(t)|20 = 2 〈 v̇(t), v(t) 〉0, a.e. t ∈ [0, T ].

Lemma 3.5. Let A ∈ L(V, V ′) be symmetric satisfying (3.13). Then for
any v0 ∈ H and f ∈ L2(0, T ;V ′), the following problem

(3.22)

{
v̇ = Av + f, t ∈ [0, T ],
v(0) = v0,

admits a unique solution v satisfying (3.20) and

(3.23) |v(t)|20 +
∫ t
0

‖v(s)‖2ds ≤ |v0|20 +
∫ t
0

‖f(s)‖2∗ds, t ∈ [0, T ].

Moreover, it holds

(3.24) |v(t)|20 = |v0|20 + 2
∫ t
0

〈Av(s) + f(s), v(s) 〉0ds, t ∈ [0, T ].

Now, we consider stochastic evolution equations. We first have the
following result.

Lemma 3.6. Let v be an {Ft}t≥0-adapted V ′-valued processes which is
absolutely continuous almost surely and q be an {Ft}t≥0-adaptedH-valued
process such that the following holds:

(3.25)

⎧⎪⎨⎪⎩
v ∈ L2F(0, T ;V ),
v̇ ∈ L2F(0, T ;V ′),
q ∈ L2F(0, T ;V )d.

Let

(3.26) M(t) =

∫ t
0

〈 q(s), dW (s) 〉, t ∈ [0, T ].

Then, M ∈ CF ([0, T ];V ) and

(3.27)
|M(t)|20 = 2

∫ t
0

〈(M(s), q(s))0, dW (s) 〉+
∫ t
0

|q(s)|20ds,

t ∈ [0, T ], a.s.
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(3.28)
d(v(t),M(t))0 = 〈 v̇(t),M(t) 〉0dt+ 〈(v(t), q(t))0, dW (t) 〉,

a.e. t ∈ [0, T ], a.s.

Proof. First of all, it is clear that M ∈ CF ([0, T ];V ) and (3.27) holds
since we may regard both M and q as H-valued processes. We now prove
(3.28). Take a sequence of absolutely continuous processes vk with the
following properties:

(3.29)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vk ∈ L2F(0, T ;V ),
v̇k ∈ L2F(0, T ;H),
vk → v, in L2F(0, T ;V ),

v̇k → v̇, in L2F(0, T ;V
′).

Now, in H , we have (note (3.12))

(3.30)
d(vk(t),M(t))0 = (v̇k(t),M(t))0dt+ 〈(vk(t), q(t))0, dW (t) 〉

= 〈 v̇k(t),M(t) 〉0dt+ 〈(vk(t), q(t))0, dW (t) 〉 .

Pass to the limit in the above, using (3.29), we obtain (3.28).

Lemma 3.7. Let A ∈ L(V, V ′) be symmetric satisfying (3.13). Then, for
any f, q, u0 satisfying

(3.31)

⎧⎪⎨⎪⎩
f ∈ L2F(0, T ;V ′),
q ∈ L2F(0, T ;H)d,
u0 ∈ H,

the following problem

(3.32)

{
du = (Au+ f)dt+ 〈 q, dW (t) 〉, t ∈ [0, T ],
u(0) = u0,

admits a unique solution u ∈ L2F(0, T ;V ) ∩ CF([0, T ];H), such that

(3.33)

|u(t)|20 = |u0|20 +
∫ t
0

{
2 〈Au(s) + f(s), u(s) 〉0 + |q(s)|20

}
ds

+ 2

∫ t
0

〈(q(s), u(s))0, dW (s) 〉, ∀t ∈ [0, T ], a.s.

Proof. We first let q ∈ L2F(0, T ;V )d and define M(t) by (3.26). Con-
sider the following problem:

(3.34)

{
v̇ = Av + f +AM, t ∈ [0, T ],
v(0) = u0.
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By Lemma 3.5, for almost all ω ∈ Ω, (3.34) admits a unique solution v.
Obviously (by the variation of constants formula, if necessary), v is {Ft}t≥0-
adapted. Thus, we have {

v ∈ L2F(0, T ;V ),
v̇ ∈ L2F(0, T, V ′),

which implies (by Lemma 3.4) v ∈ CF ([0, T ];H) and (by (3.24))

(3.35)
|v(t)|20 = |u0|20 + 2

∫ t
0

〈Av(s) + f(s) +AM(s), v(s) 〉0ds,

∀t ∈ [0, T ], a.s.

Set u(t) = v(t) +M(t). Then, we see that u ∈ L2F(0, T ;V ) ∩ CF ([0, T ];H)
is a solution of (3.32). We now combining (3.27)–(3.28) and (3.34)–(3.35)
to obtain the following:

(3.36)

|u(t)|20 = |v(t)|20 + |M(t)|20 + 2(v(t),M(t))0

= |u0|20 + 2
∫ t
0

〈Av(s) + f(s) +AM(s), v(s) 〉0ds

+ 2

∫ t
0

〈(M(s), q(s))0, dW (s) 〉+
∫ t
0

|q(s)|20ds

+ 2

∫ t
0

〈 v̇(s),M(s) 〉0ds+ 2
∫ t
0

〈(v(s), q(s))0, dW (s) 〉

= |u0|20 + 2
∫ t
0

〈Au(s) + f(s), v(s) 〉0ds

+ 2

∫ t
0

〈(u(s), q(s))0, dW (s) 〉+
∫ t
0

|q(s)|20ds

+ 2

∫ t
0

〈Au(s) + f(s),M(s) 〉0ds

= |u0|20 +
∫ t
0

{
2 〈Au(s) + f(s), u(s) 〉0 + |q(s)|20

}
ds

+ 2

∫ t
0

〈(u(s), q(s))0, dW (s) 〉 .

Next, we claim that solution to (3.32) is unique (for any f , q and u0 sat-
isfying (3.31)). As a matter of fact, if û is another solution to (3.32), then
u− û is a solution of (3.32) with f , q and u0 all being zero. Applying (3.36)
to u− û, we obtain (see (3.13))

|u(t)− û(t)|20 = 2
∫ t
0

〈A[u(s)− û(s)], u(s)− û(s) 〉0ds ≤ 0,

which results in u = û. Thus, we have proved our lemma for the case
q ∈ L2F(0, T ;V )d. Now, for general case, i.e., q ∈ L2F(0, T ;H)d, we take a
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sequence qk ∈ L2F(0, T ;V )d with

qk → q, in L2F(0, T ;H)
d.

Let uk be the solution of (3.32) with q being replaced by qk. Then applying
(3.36) to uk − u�, we have (note (3.13))

(3.37)

E|uk(t)− u�(t)|20 + 2E
∫ t
0

‖uk(s)− u�(s)‖2ds

≤ E
∫ T
0

|qk(s)− q�(s)|20ds→ 0, k, �→∞.

This means that the sequence {uk} is Cauchy in L2F(0, T ;V )∩CF ([0, T ];H).
Hence, there exists a limit u of {u}k in this space. Clearly, u is a solution
of (3.32). Also, we have a similar equality (3.33) for each uk. Pass to the
limit, we obtain the equality (3.33) for u (with general q ∈ L2F(0, T ;H)d).

Now, we are ready to prove Lemma 3.3.

Proof of Lemma 3.3. Set{
u0 = u(0) ∈ H,
f
Δ
= ξ −Au ∈ L2F(0, T ;V ′).

Then u is a solution of (3.32) with (3.31) holds. Hence, (3.33) holds, which
yields (3.16).

Now, by taking V = H1(lRn), H = L2(lRn) and V ′ = H−1(lRn), we see
that Lemma 3.2 follows immediately from Lemma 3.3.

§4. Existence of Adapted Solutions
The proofs of existence of adapted solutions is based on the following fun-
damental lemma.

Lemma 4.1. Let the parabolicity condition (1.6) and the symmetry con-
dition (2.2) hold. Let (H)m hold for some m ≥ 1. Then there exists a
constant C > 0, such that for any u ∈ C∞0 (lRn) and q ∈ C∞0 (lRn; lRd), it
holds

(4.1)

∫
lRn

{ ∑
|α|≤m

{
〈(A−BBT )D(∂αu), D(∂αu) 〉

+ |BTD(∂αu) + ∂αq|2
}
+
∑

|α|≤m−1
|∂αq|2

}
dx

≤ C
∫
lRn

∑
|α|≤m

{
− 2(∂αu)∂α(Lu +Mq) + |∂αq|2 + |∂αu|2

}
dx,

a.e. t ∈ [0, T ], a.s.
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If (2.6) or (2.7) holds instead of (2.2), the above can be replaced by the
following:

(4.2)

∫
lRn

{ ∑
|α|≤m

〈AD(∂αu), D(∂αu) 〉+
∑
|α|≤m

|∂αq|2
}
dx

≤ C
∫
lRn

∑
|α|≤m

{
− 2(∂αu)∂α(Lu +Mq) + |∂αq|2 + |∂αu|2

}
dx,

a.e. t ∈ [0, T ], a.s.

Furthermore, if (2.6) or (2.7) holds andA(t, x) is uniformly positive definite,
then (4.2) can be improved to the following:

(4.3)

∫
lRn

{ ∑
|α|≤m+1

|∂αu|2 +
∑
|α|≤m

|∂αq|2
}
dx

≤ C
∫
lRn

∑
|α|≤m

{
− 2(∂αu)∂α(Lu +Mq) + |∂αq|2 + |∂αu|2

}
dx,

a.e. t ∈ [0, T ], a.s.

We note that the square root of the left hand side of (4.1) is a norm
in the space C∞0 (lR

n)×C∞0 (lRn; lRd). Thus, if we denote the completion of
the space C∞0 (lR

n)×C∞0 (lRn; lRd) under this norm by Hm(t, ω) (note that
it depends on (t, ω) ∈ [0, T ]× Ω), then we have the following inclusions:

C∞0 (lR
n)× C∞0 (lRn; lRd) ⊂ Hm(t, ω) ⊆ Hm(lRn)×Hm−1(lRn; lRd).

It is clear that estimate (4.1) also holds for any (u, q) ∈ Hm(t, ω). A similar
argument holds for (4.2) and (4.3).

Since the proof of the above lemma is rather technical and lengthy, we
postpone its proof to the next section.

Before going further, let us recall the following fact concerning the dif-
ferentiability of stochastic integrals with respect to the parameter. Let
h ∈ L2F(0, T ;Cmb (lRn; lRd)). Then it can be shown that the stochastic inte-
gral with parameter:

∫ t
0
〈h(s, x, ·), dW (s) 〉 has a modification that belongs

to L2F(0, T ;C
m−1
b (lRn; lRm)) and it satisfies

(4.4)
∂α
∫ t
0

〈h(s, x, ·), dW (s) 〉 =
∫ t
0

〈 ∂αh(s, x, ·), dW (s) 〉,

for |α| = 1, 2, · · · ,m− 1.

Consequently, if h ∈ L2F(0, T ;C∞b ), then∫ ·
0

〈h(s, · , ·), dW (s) 〉 ∈ L2F(0, T ;C∞b ),

and (4.4) holds for all multi-index α.
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In the rest of this section, we prove the existence of adapted weak
solutions to (1.1) (or equivalently (3.2)) under conditions of Theorems 2.1
or 2.2.

We first assume that conditions of Theorem 2.1 hold.
Let us take an orthonormal basis {ϕk}k≥1 ⊆ C∞0 (lRn) for the Hilbert

space Hm ≡ Hm(lRn), whose inner product is denoted by

(ϕ, ψ)m ≡
∫
lRn

∑
|α|≤m

(∂αϕ)(∂αψ)dx, ∀ϕ, ψ ∈ Hm.

The induced norm is denoted by | · |m. When q = (q1, · · · , qd), p =
(p1, · · · , pd) ∈ (Hm)d, we denote

(q, p)m =

d∑
i=1

(qi, pi)m,

which should not be misunderstood from the context. As a usual conven-
tion, H0 ≡ L2(lRn). Let k ≥ 1 be fixed. Consider the following linear
BSDE (not BSPDE):

(4.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dukj(t) =

{
−

k∑
i=1

[
(Lϕi, ϕj)muki(t)− 〈(Mϕi, ϕj)m, qki(t) 〉

]
− (f, ϕj)m

}
dt+ 〈 qkj(t), dW (t) 〉,

ukj(T ) = (g, ϕj)m, 1 ≤ j ≤ k.

By the result of Chapter 1, we know that there exists a unique adapted
solution

(4.6)

{
ukj(·) ∈ CF ([0, T ]; lR),
qkj(·) ∈ L2F(0, T ; lRd),

1 ≤ j ≤ k.

We define

(4.7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
uk(t, x, ω) =

k∑
j=1

ukj(t, ω)ϕj(x),

qk(t, x, ω) =

k∑
j=1

qkj(t, ω)ϕj(x),

(t, x, ω) ∈ [0, T ]× lRn × Ω.

Then we see that for any fixed (t, ω) ∈ [0, T ]× Ω,

uk(t, · , ω) ∈ C∞0 (lRn), qk(t, · , ω) ∈ C∞0 (lRn; lRd).

Also, the following holds:

(4.8)

{
duk =

{
− Pk[Luk +Mqk]− fk

}
dt+ 〈 qk, dW (t) 〉,

uk
∣∣
t=T
= gk,
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where

Pk : H
m → span{ϕ1, · · · , ϕk} Δ=Hmk ,

is the orthogonal projection (in Hm), and

fk = Pkf, gk = Pkg.

Note that, as processes, uk and qk1 , · · · , qkd are taking values in Hmk , where
qk = (qk1 , · · · , qkd). Thus, in particular,

(4.9) Pku
k = uk, k ≥ 1.

Next, we want to derive a proper estimate for (uk, qk). By Lemma 4.1, we
have the following:

(4.10)

∫
lRn

{ ∑
|α|≤m

{
〈(A−BBT )D(∂αuk), D(∂αuk) 〉

+ |BTD(∂αuk) + ∂αqk|2
}
+
∑

|α|≤m−1
|∂αqk|2

}
dx

≤ C
∫
lRn

∑
|α|≤m

{
− 2(∂αuk)∂α(Luk +Mqk) + |∂αqk|2

+ |∂αuk|2
}
dx.

On the other hand, applying Itô-Ventzel’s formula to |∂αuk|2, we have from
(4.8) that

(4.11)

E

∫
lRn

∑
|α|≤m

{
|∂αgk(x)|2 − |∂αuk(t, x)|2

}
dx

= E

∫ T
t

∫
lRn

∑
|α|≤m

{
2(∂αuk)∂α

[
Pk
(
− Luk −Mqk

)
− fk

]
+ |∂αqk|2

}
dxds

= E

∫ T
t

{
− 2(uk, Pk(Luk +Mqk) + fk)m + |qk|2m

}
ds

= E

∫ T
t

{
− 2(uk,Luk +Mqk + fk)m + |qk|2m

}
ds

= E

∫ T
t

∫
lRn

∑
|α|≤m

{
− 2(∂αuk)∂α(Luk +Mqk)

+ |∂αqk|2 − 2(∂αuk)(∂αfk)
}
dxds.

The third equality in above is due to (4.9). Then combining (4.10)–(4.11),
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we obtain

(4.12)

∫
lRn

{ ∑
|α|≤m

{
〈(A−BBT )D(∂αuk), D(∂αuk) 〉

+ |BTD(∂αuk) + ∂αqk|2
}
+
∑

|α|≤m−1
|∂αqk|2

}
dx

≤ C
{
E|gk|2m − E|uk(t)|2m

+ E
∑
|α|≤m

∫ T
t

∫
lRn

[
2(∂αuk)(∂αfk) + |∂αuk|2

]
dxds

}
≤ C
{
E|gk|2m − E|uk(t)|2m +

∫ T
t

E
[
|uk(s)|2m + |fk(s)|2m

]
ds
}
.

By Gronwall’s inequality, we obtain

(4.13)

max
t∈[0,T ]

E|uk(t)|2m + E
∫ T
0

|qk(t)|2m−1dt

+
∑
|α|≤m

E

∫ T
0

∫
lRn

{
〈(A−BBT )D(∂αuk), D(∂αuk) 〉

+
∣∣∣BT [D(∂αuk)] + ∂αqk∣∣∣2}dxdt

≤ CE
{∫ T
0

|fk(t)|2m + |gk|2m
}
.

Note that the constant C > 0 in (4.13) only depends on T , m and Km.
From (4.13), we may assume that

(4.14)

{
uk → u, weak∗ in L∞F (0, T ;L

2(Ω;H�)), 0 ≤ � ≤ m,
qk → q, weakly in L2F(0, T ;H

�)d, 0 ≤ � ≤ m− 1,

and for any |α| ≤ m,

(4.15)

⎧⎪⎨⎪⎩
(A−BBT )1/2D(∂αuk)→ (A−BBT )1/2D(∂αu),
BT [D(∂αuk)] + ∂αqk → BT [D(∂αu)] + ∂αq,

weakly in L2F(0, T ;H
0).

By taking limits in (4.13), we see that (u, q) satisfies the estimate (2.4)
with the constant C > 0 only depending on T , m and Km. We are going
to prove that (u, q) is a weak solution of (3.2). To this end, let us take
ρ ∈ H1(0, T ) such that

(4.16)

{
ρ(0) = 0, ρ(T ) = 1,

0 ≤ ρ(t) ≤ 1, t ∈ [0, T ].
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Let � > 0 be fixed and k ≥ �. For any ϕ ∈ Hm� ⊂ C∞0 (lRn), from (4.8) and
the fact Pkϕ = ϕ, we have

(4.17)

(gk, ϕ)m =

∫ T
0

{
ρ̇(t)(uk(t), ϕ)m

− ρ(t)(Luk(t) +Mqk(t) + fk(t), ϕ)m
}
dt

+

∫ T
0

ρ(t) 〈(qk(t), ϕ)m, dW (t) 〉 .

By the definition of L andM, using integration by parts, we obtain

(4.18)

(gk, ϕ)m =

∫ T
0

{
ρ̇(t)(uk(t), ϕ)m

− ρ(t)
[
− 1
2
(A(t)Duk(t) +B(t)qk(t), Dϕ)m

+ (〈 a(t), Duk(t) 〉+c(t)uk(t) + 〈 b(t), qk(t) 〉+fk(t), ϕ)m
]}
dt

+

∫ T
0

ρ(t) 〈(qk(t), ϕ)m, dW (t) 〉, a.s.

If we denote

(4.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (x, ω) = g −
∫ T
0

{
ρ̇(t)uk(t)− ρ(t)

[
〈 a(t), Duk(t) 〉+c(t)uk(t)

+ 〈 b(t), qk(t) 〉+fk(t)
]}
dt−

∫ T
0

〈 ρ(t)qk(t), dW (t) 〉,

G(x, ω) =

∫ T
0

ρ(t)[
1

2
A(t)Duk(t) +B(t)qk(t)]dt,

then (4.18) reads

(4.20) (F, ϕ)m = (G,Dϕ)m, ∀ϕ ∈ C∞0 (lRn), a.s.

By the lemma below, we must have

(4.21) (F, ϕ)0 = (G,Dϕ)0, ∀ϕ ∈ C∞0 (lRn), a.s.

This tells us that

(4.22)

(gk, ϕ)0 =

∫ T
0

{
ρ̇(t)(uk(t), ϕ)0

− ρ(t) 〈 Luk(t) +Mqk(t) + fk(t), ϕ 〉0
}
dt

+

∫ T
0

ρ(t) 〈(qk(t), ϕ)0, dW (t) 〉, a.s.

We want to pass to the limit in (4.22) to obtain a similar equality for (u, q).
By (4.14) with � = 1 for uk and � = 0 for qk, together with the convergence
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of (fk, gk) to (f, g), we can pass to the limit in (4.22) weakly in L2(Ω) for
all terms except the last term which is involving the Itô integral. To treat
this last term, we define K : L2F(0, T ;H

0)d → L2(Ω) by

(4.23) Kp =

∫ T
0

ρ(t) 〈(p(t), ϕ)0, dW (t) 〉, ∀p ∈ L2F(0, T ;H0)d.

Then

(4.24)

E|Kp|2 = E
∫ T
0

|ρ(t)(p(t), ϕ)0|2dt

≤ |ϕ|20E
∫ T
0

|p(t)|20dt, ∀p ∈ L2F(0, T ;H0)d.

This means that K is a bounded linear operator. Thus, for any η ∈ L2(Ω),
one has

(4.25)
E
(
η

∫ T
0

ρ(t) 〈(qk(t)− q(t), ϕ)0, dW (t) 〉
)

= (η,K(qk − q))L2(Ω) = (K∗η, qk − q)L2F (0,T ;H0)d → 0.

Thus, we obtain

(4.26)

(g, ϕ)0 =

∫ T
0

{
ρ̇(t)(u(t), ϕ)0

− ρ(t) 〈 Lu(t) +Mq(t) + f(t), ϕ 〉0
}
dt

+

∫ T
0

ρ(t) 〈(q(t), ϕ)0, dW (t) 〉, a.s.

Now, fixed any t ∈ (0, T ). For any ε > 0, we let

(4.27) ρε(s) =

⎧⎪⎨⎪⎩
0, s ≤ t− ε/2,
1
2 +

s−t
ε
, t− ε/2 < s < t+ ε/2,

1, s ≥ t+ ε/2.

Choosing ρ = ρε in (4.26) and letting ε→ 0, we obtain

(4.28)

(g, ϕ)0 = (u(t), ϕ)0 −
∫ T
t

〈 Lu(t) +Mq(t) + f(t), ϕ 〉0dt

+

∫ T
t

〈(q(t), ϕ)0, dW (t) 〉, ∀ϕ ∈ C∞0 (lRn), a.s.

This means that (u, q) is an adapted weak solution of (3.2). By Theorem
3.2, it is unique.
In the case that m ≥ 2, from (2.4), we see that (1.13) holds and thus,

by Proposition 1.3, (u, q) is an adapted strong solution (3.2). In the case
m > 2+ n/2, by Sobolev’s embedding theorem, (1.11) holds and therefore,
(u, q) is an adapted classical solution of (3.2) by Proposition 1.3 again.
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Finally, let us look at the case when conditions of Theorem 2.2 hold.
Suppose (2.6) or (2.7) holds instead of (2.2). By Lemma 4.1, we still have
(4.1), which is now equivalent to (4.2). Then all the proof that we have
presented above remains true. Moreover, we have estimate (2.8). In the
case that A is uniformly positive definite, a little more careful estimate leads
to (2.9). In fact, for the present case, in (4.12), we can use integration by
parts to get

(4.29)

E
∑
|α|≤m

∫ T
t

∫
lRn
2(∂αuk)(∂αfk)dxds

≤ CE
∫ T
t

{
|uk(s)|2m+1 + |fk(s)|2m−1

}
ds.

We leave the details of the proof to the interested readers.

We now prove the following lemma which has been used in the above
proof.

Lemma 4.2. Let F ∈ Hm(lRn) and G ∈ Hm(lRn)n, such that

(4.30) (F, ϕ)m = (G,Dϕ)m, ∀ϕ ∈ C∞0 (lRn).

Then

(4.31) (F, ϕ)0 = (G,Dϕ)0, ∀ϕ ∈ C∞0 (lRn).

Proof. Let S Δ=S(lRn) be the set of all ϕ ∈ C∞(lRn), such that

(4.32) Φα,β(ϕ)
Δ
= sup
x∈lRn

|xα∂βϕ(x)| <∞, ∀α, β.

Under the family of semi-norms Φα,β , S is a Fréchet space. Also, C∞0 (lRn) is
a dense subset of S. Thus, (4.30) holds for all ϕ ∈ S. Next, by Hörmander
[1, p.161], Fourier transformation ϕ �→ ϕ̂ is an isomorphism of S onto itself.
Applying Parseval’s formula to (4.30), we obtain

(4.33)

∫
lRn

[
F̂ (ξ)− 〈 Ĝ(ξ), ξ 〉

]( ∑
|α|≤m

|ξα|2
)
ϕ̂(ξ)dξ = 0, ∀ϕ ∈ C∞0 (lRn).

Now, for any ψ ∈ C∞0 (lRn), we have ψ̂(ξ)
(∑

|α|≤m |ξα|2
)−1

∈ S. Thus,
there exists a ϕ ∈ S, such that

(4.34) ϕ̂(ξ) = ψ̂(ξ)
( ∑
|α|≤m

|ξα|2
)−1
.

Combining (4.33) and (4.34), using Parseval’s formula again, we obtain

(F, ψ)m = (G,Dψ)m, ∀ψ ∈ C∞0 (lRn).

This proves our lemma.
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§5. A Proof of the Fundamental Lemma
In this section, we are going to prove Lemma 4.1, which has played an
essential role in the proof of well-posedness theorems for (1.1).

Proof of Lemma 4.1. Let �
Δ
= |α| ≤ m. For any u ∈ C∞0 (lRn) and

q ∈ C∞0 (lRn; lRd), by definition of L andM, and differentiation, we have

(5.1)

Iα Δ=
∫
lRn

{
− 2(∂αu)∂α(Lu+Mq) + |∂αq|2

}
dx

=

∫
lRn

{
− 2(∂αu)∂α

[1
2
∇·(ADu) + 〈 a,Du 〉+cu

+∇·[Bq] + 〈 b, q 〉
]
+ |∂αq|2

}
dx

=

∫
lRn

{
− 2(∂αu)

[1
2
∇·[AD(∂αu)] + 〈 a,D(∂αu) 〉+c(∂αu)

+∇·[B(∂αq)] + 〈 b, ∂αq 〉
]
+ |∂αq|2

− 2(∂αu)
∑
0≤β<α

Cαβ

[1
2
∇·[(∂α−βA)D(∂βu)]

+ 〈 ∂α−βa,D(∂βu) 〉+(∂α−βc)(∂βu)

+∇·[(∂α−βB)(∂βq)] + 〈 ∂α−βb, ∂βq 〉
}]}
dx

≡ Iα0 + Iα1 + Iα2 + Iα3 ,

where Cαβ is a positive integer depending on α and β, and

(5.2)
Iα0 =

∫
lRn

{
− 2(∂αu)

[1
2
∇·[AD(∂αu)] + 〈 a,D(∂αu) 〉+c(∂αu)

+∇·[B(∂αq)] + 〈 b, ∂αq 〉
]
+ |∂αq|2

}
dx,

(5.3)

Iα1 = −2
∫
lRn

∑
0≤β<α

Cαβ(∂
αu)
[1
2
∇·[(∂α−βA)D(∂βu)]

+ 〈 ∂α−βa,D(∂βu) 〉+(∂α−βc)(∂βu) + 〈 ∂α−βb, ∂βq 〉
]
dx,

(5.4) Iα2 = −2
∫
lRn

∑
0≤β<α
|β|<|α|−1

Cαβ(∂
αu)∇·[(∂α−βB)(∂βq)]dx,

(5.5) Iα3 = −2
∫
lRn

∑
0≤β<α
|β|=|α|−1

Cαβ(∂
αu)∇·[(∂α−βB)(∂βq)]dx.

We note that in the case � = 0, Iα1 , Iα2 and Iα3 are all absent. We now treat
Iα0 , Iα1 , Iα2 and Iα3 , separately.



§5. A proof of the fundamental lemma 127

Since A and B are Cm+1b in x, we see immediately that

(5.6) |Iα1 |+ |Iα2 | ≤ C
(
|u|2� + |q|2�−1

)
.

Now, let us look at Iα0 and Iα3 . Using integration by parts, we have

(5.7)

Iα0 =
∫
lRn

{
〈AD(∂αu), D(∂αu) 〉+2 〈 ∂αq, BTD(∂αu) 〉+|∂αq|2

− 〈 a,D[(∂αu)2] 〉−2c(∂αu)2 − 2 〈 b(∂αu), ∂αq 〉
}
dx

=

∫
lRn

{
〈(A−BBT )D(∂αu), D(∂αu) 〉+|BTD(∂αu)|2 + |∂αq|2

+ 2 〈∂αq, BTD(∂αu) 〉−2 〈 b(∂αu), ∂αq 〉

− 2 〈BTD(∂αu), b(∂αu) 〉+[∇·(a−Bb)− 2c](∂αu)2
}
dx.

In the meantime, let us look at each term in Iα3 . For β < α with |β| = |α|−1,
using integration by parts, we have

(5.8)

−
∫
lRn
(∂αu)∇·[(∂α−βB)(∂βq)]dx

=

∫
lRn
(∂βu)∇·{∂α−β[(∂α−βB)(∂βq)]}dx

=−
∫
lRn
〈D(∂βu), (∂α−βB)∂αq + (∂2(α−β)B)∂βq 〉 dx

=−
∫
lRn
[〈(∂α−βBT )D(∂βu), ∂αq 〉+ 〈D(∂βu), (∂2(α−β)B)∂βq) 〉]dx.

Thus, it follows that

(5.9)

Iα0 + Iα3 =
∫
lRn

{
〈(A−BBT )D(∂αu), D(∂αu) 〉

+
∣∣∣BTD(∂αu) + ∂αq − b(∂αu)− ∑

0≤β<α
|β|=|α|−1

Cαβ(∂
α−βBT )D(∂βu)

∣∣∣2
− |b(∂αu)|2 −

∣∣∣ ∑
0≤β<α
|β|=|α|−1

Cαβ(∂
α−βBT )D(∂βu)

∣∣∣2
+ 2

∑
0≤β<α
|β|=|α|−1

Cαβ 〈(∂α−βBT )D(∂βu), BTD(∂αu) 〉

− 2
∑
0≤β<α
|β|=|α|−1

Cαβ 〈(∂α−βBT )D(∂βu), b(∂αu) 〉

+ [∇·(a−Bb)− 2c](∂αu)2

− 2
∑
0≤β<α
|β|=|α|−1

Cαβ 〈D(∂βu), (∂2(α−β)B)(∂βq) 〉
}
dx.
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Note that

(5.10)

∫
lRn

∣∣∣BTD(∂αu) + ∂αq − b(∂αu)
−
∑
0≤β<α
|β|=|α|−1

Cαβ(∂
α−βBT )D(∂βu)

∣∣∣2dx
≥ 1
2

∫
lRn

∣∣∣BTD(∂αu) + ∂αq∣∣∣2dx
− 1
2

∫
lRn

∣∣∣b(∂αu) + ∑
0≤β<α
|β|=|α|−1

Cαβ(∂
α−βBT )D(∂βu)

∣∣∣2dx
≥ 1
2

∫
lRn

∣∣∣BTD(∂αu) + ∂αq∣∣∣2dx− C|u|2� .
Next, by the symmetry condition (2.2), for β < α, |β| = |α| − 1, we have

(5.11)

∫
lRn
〈(∂α−βBT )D(∂βu), BTD(∂αu) 〉dx

=

∫
lRn
〈(B∂α−βBT )D(∂βu), D(∂αu) 〉 dx

=

∫
lRn

1

2

[
∂α−β 〈(B∂α−βBT )D(∂βu), D(∂βu) 〉

− 〈 ∂α−β(B∂α−βBT )D(∂βu), D(∂βu) 〉
]
dx

= −1
2

∫
lRn
〈 ∂α−β(B∂α−βBT )D(∂βu), D(∂βu) 〉 dx ≥ −C|u|2� .

Combining (5.6), (5.9)–(5.11) yields

(5.12)

Iα = Iα0 + Iα1 + Iα2 + Iα3
≥
∫
lRn

{
〈(A−BBT )D(∂αu), D(∂αu) 〉

+
1

2
|BTD(∂αu) + ∂αq|2

}
dx − C(|u|2� + |q|2�−1).

Now, we sum (5.12) up for all |α| ≤ � to get the following:

(5.13)

Ψ�
Δ
=
∑
|α|≤�

∫
lRn

{
− 2(∂αu)∂α(Lu +Mq) + |∂αq|2

}
dx

≥ 1
2

∑
|α|≤�

∫
lRn

{
〈(A−BBT )D(∂αu), D(∂αu) 〉

+ |BTD(∂αu) + ∂αq|2
}
dx− C(|u|2� + |q|2�−1).
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Thus, it follows that

(5.14)

Φ�
Δ
=
∑
|α|≤�

∫
lRn

{
〈(A−BBT )D(∂αu), D(∂αu) 〉

+ |BTD(∂αu) + ∂αq|2
}
dx

≤ C
(
Ψ� + |u|2� + |q|2�−1

)
.

Note that

(5.15) |∂αq|2 ≤ 2|BTD(∂αu) + ∂αq|2 + 2|BTD(∂αu)|2.

Using the parabolicity condition (1.6) and the definition of Φ� (see (5.14)),
we have

(5.16) |q|2�−1 ≤ C(Φ�−1 + |u|2�).

Consequently, from (5.14), we obtain

(5.17) Φ� ≤ C(Ψ� +Φ�−1 + |u|2�), 1 ≤ � ≤ m.

On the other hand, for � = 0 (i.e., α = 0), we have

(5.18)

∫
lRn

{
− 2u(Lu+Mq) + |q|2

}
dx

=

∫
lRn

{
− 2u

[1
2
∇·[ADu] + 〈 a,Du 〉+cu

+∇·[Bq] + 〈 b, q 〉
]
+ |q|2

}
dx

=

∫
lRn

{
〈(A−BBT )Du,Du 〉+|BTDu|2 + |q|2

+ 2 〈 q, BTDu 〉−2 〈 bu, q 〉

− 2 〈BTDu, bu 〉+[∇·(a−Bb)− 2c]u2
}
dx

≥
∫
lRn

{
〈(A−BBT )Du,Du 〉+

∣∣BTDu+ q∣∣2dx− C|u|20.
This implies

(5.19) Φ0 ≤
∫
lRn

{
− 2u(Lu+Mq) + |q|2

}
dx+ C|u|20.

Hence, it follows from (5.17) and (5.19) that

(5.20) Φm ≤ C(Ψm + |u|2m),

which is the same as (4.1).



130 Chapter 5. Linear, Degenerate BSPDEs

In the case that (2.6) holds, we use the following estimate:

(5.21)

∫
lRn
〈(∂α−βBT )D(∂βu), BTD(∂αu) 〉 dx

≥ −ε
∫
lRn
|BTD(∂αu)|2dx− C

∫
lRn
|D(∂βu)|2dx,

for small enough ε > 0 to get

(5.22)

∫
lRn

{
〈(A−BBT )D(∂αu), D(∂αu) 〉

+ 2
∑
0≤β<α
|β|=|α|−1

Cαβ 〈(∂α−βBT )D(∂βu), BTD(∂αu) 〉

≥ ε0
2

∫
lRn
〈(A−BBT )D(∂αu), D(∂αu) 〉dx − C|u|2� .

Then, we still have (5.14) and finally have (5.20) which is the same as (4.1).
In the case (2.7) holds, we use the following estimate:

(5.23)

∫
lRn
〈(∂α−βBT )D(∂βu), BTD(∂αu) 〉 dx

=

∫
lRn
〈(∂α−βBT )D(∂βu), ∂α−β[BTD(∂βu)]

− (∂α−βBT )D(∂βu)〉 dx

= −
∫
lRn

{
〈(∂2(α−β)BT )D(∂βu), BTD(∂βu) 〉

+ 〈(∂(α−β)BT )D(∂αu), BTD(∂βu) 〉
+ |(∂α−βBT )D(∂βu)|2

}
dx

≥ −ε
∫
lRn

∣∣∣(∂α−βBT )D(∂αu)|2dx− C|u|2� ,
for ε > 0 small enough to obtain (5.22) and finally to obtain (5.20).
Note that in the case (2.6) or (2.7) holds, we have (2.10). Then, (4.2)

follows from (4.1) easily. Finally, if in addition, (1.9) also holds, then, (4.3)
follows from (4.2). This completes the proof of Lemma 4.1.

§6. Comparison Theorems

In this section, we are going to present some comparison theorems on the
solutions of different BSPDEs. For convenience, we consider BSPDEs of
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form (1.5). Let us denote (compare (3.1))

(6.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Lu Δ= 1
2
tr [AD2u]− 〈 a,Du 〉−cu

Mq Δ=tr [BTDq]− 〈 b, q 〉,

Lu Δ= 1
2
tr [AD2u]− 〈 a,Du 〉−cu,

Mq Δ=tr [BTDq]− 〈 b, q 〉 .

We assume that (H)m holds for {A,B, a, b, c} and {A,B, a, b, c}. Consider
the following BSPDEs:

(6.2)

{
du = −

{
Lu+Mq + f

}
dt+ 〈 q, dW (t) 〉, (t, x) ∈ [0, T ]× lRn,

u
∣∣
t=T
= g.

(6.3)

{
du = −

{
Lu+Mq + f

}
dt+ 〈 q, dW (t) 〉, (t, x) ∈ [0, T ]× lRn,

u
∣∣
t=T
= g.

Note that (6.2) and (3.2) are a little different since the operators L and
M are defined a little differently. However, by the discussion at the end
of §2, we know that Theorems 2.1, 2.2 and 2.3 hold for (6.1). Throughout
this section, we assume that the parabolicity condition (1.6), the symmetry
condition (2.2) and (H)m (for some m ≥ 1) hold for (6.2) and (6.3). Then
by Theorem 2.3, for any pairs (f, g) and (f, g) satisfying (2.14), there exist
unique adapted weak solutions (u, q) and (u, q) to (6.2) and (6.3), respec-
tively. We hope to establish some comparisons between u and u in various
cases.
Our comparison results are all based on the following lemma.

Lemma 6.1. Let (1.6), (2.2) and (H)m with m ≥ 1 hold. Let (u, q)
be the unique adapted weak solution of (6.2) corresponding to some (f, g)
satisfying (2.14) for some λ ≥ 0. Then there exists a constant μ ∈ lR, such
that

(6.4)

E

∫
lRn
e−λ 〈x 〉

∣∣u(t, x)−∣∣2dx
≤ eμ(T−t)E

∫
lRn
e−λ 〈x 〉

∣∣g(x)−∣∣2dx
+ E

∫ T
t

eμ(s−t)
∫
lRn
e−λ 〈x 〉

∣∣f(s, x)−∣∣2dxds, ∀t ∈ [0, T ].

Proof. We first assume that (f, g) satisfies (2.14) with λ = 0. Let
ϕ : lR→ [0,∞) be defined as follows:

(6.5) ϕ(r) =

⎧⎪⎨⎪⎩
r2, r ≤ −1,
(6r3 + 8r4 + 3r5)2, −1 ≤ r ≤ 0,
0, r ≥ 0.
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We can directly check that ϕ is C2 and

(6.6)

{
ϕ(0) = ϕ′(0) = ϕ′′(0) = 0,
ϕ(−1) = 1, ϕ′(−1) = −2, ϕ′′(−1) = 2.

Next, for any ε > 0, we let ϕε(r) = ε
2ϕ( r

ε
). Then, it holds

(6.7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

lim
ε→0
ϕε(r) = |r−|2, lim

ε→0
ϕ′ε(r) = −2r−, uniformly,

|ϕ′′ε (r)| ≤ C, ∀ε > 0, r ∈ lR;

lim
ε→0
ϕ′′ε (r) =

{
2, r < 0,

0, r > 0.

Denote

(6.8) â = a− 1
2
∇·A, b̂ = b−∇·B.

Then by (1.3), we have

(6.9)

⎧⎨⎩
1

2
tr [AD2u] + 〈 a,Du 〉 = 1

2
∇·[ADu] + 〈 â, Du 〉,

tr [BTDq] + 〈 b, q 〉 = ∇·(Bq) + 〈 b̂, q 〉 .

Applying the Itô’s formula to ϕε(u), we obtain (let Qt = [t, T ]× lRn)

(6.10)

E

∫
lRn
ϕε(g(x))dx − E

∫
lRn
ϕε(u(t, x))dx

= E

∫
Qt

{
ϕ′ε(u)

[
− 1
2
∇·(ADu)−∇·(Bq)− 〈 â, Du 〉

− cu− 〈 b̂, q 〉−f
]
+
1

2
ϕ′′ε (u)|q|2

}
dxds

= E

∫
Qt

{1
2
ϕ′′ε (u)

[
〈ADu,Du 〉+2 〈BTDu, q 〉+|q|2

]
− ϕ′ε(u)

[
〈 â, Du 〉+cu+ 〈 b̂, q 〉+f

]}
dxds

= E

∫
Qt

{1
2
ϕ′′ε (u)

[
〈(A−BBT )Du,Du 〉+|BTDu+ q − b̂u|2

]
+
1

2
ϕ′′ε (u)

[
− |̂b|2u2 + 2 〈BTDu, b̂u 〉+2 〈 b̂u, q 〉

]
− 〈 â, Dϕε(u) 〉−ϕ′ε(u)[cu+ 〈 b̂, q 〉+f ]

}
dxds

≥ E
∫
Qt

{
− 1
2
ϕ′′ε (u)|̂b|2u2 + 〈Bb̂,D

∫ u
0

ϕ′′ε (r)rdr 〉

+ [ϕ′′ε (u)u− ϕ′ε(u)] 〈 b̂, q 〉+(∇· â)ϕε(u)

− ϕ′ε(u)[cu+ f ]
}
dxds.
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We note that

(6.11)

∫ u
0

ϕ′′ε (r)rdr = ϕ
′
ε(u)u− ϕε(u),

and

(6.12) lim
ε→0
[ϕ′′ε (u)u− ϕ′ε(u)] = 2uI(u≤0) + 2u− = 0.

Thus, let ε→ 0 in (6.10), we obtain

(6.13)

E

∫
lRn
|g(x)−|2dx− E

∫
lRn
|u(t, x)−|2dxds

≥ E
∫
Qt

{
− I(u≤0) |̂b|2u2 −∇·(Bb̂)[−2u−u− |u−|2]

+ (∇· â)|u−|2 + 2u−[cu+ f ]
}
dxds

≥ E
∫
Qt

{
(−|̂b|2 −∇·(Bb̂) +∇· â− 2c)|u−|2 − 2u−f−

}
dxds

≥ −μE
∫
Qt

|u−|2dxds− E
∫
Qt

|f−|2dxds,

where

(6.14) μ
Δ
= sup
t,x,ω

[
−∇· â+∇·(Bb̂) + |̂b|2 + 2c+ 1

]
<∞.

Then by Gronwall’s inequality, we obtain (6.4) for the case λ = 0. The
general case can be proved by using transformation (2.11) and working on
(v, p) for the transformed equations.

Our main comparison result is the following.

Theorem 6.2. Let (1.6), (2.2) and (H)m hold for (6.2) and (6.3). Let
(f, g) and (f, g) satisfy (2.14) with some λ ≥ 0. Let (u, q) and (u, q) be
adapted strong solutions of (6.2) and (6.3), respectively. Then for some
μ > 0,

(6.15)

E

∫
lRn
e−λ 〈x 〉

∣∣[u(t, x)− u(t, x)]−∣∣2dx
≤ eμ(T−t)E

∫
lRn
e−λ 〈x 〉

∣∣[g(x) − g(x)]−∣∣2dx
+ E

∫ T
t

eμ(s−t)
∫
lRn
e−λ 〈x 〉

∣∣[(L − L)u(s, x)
+ (M−M)q(s, x) + f(s, x)− f(s, x)]−

∣∣2dxds,
∀t ∈ [0, T ],
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In the case that

(6.16)

⎧⎪⎨⎪⎩
g(x)− g(x) ≥ 0, ∀x ∈ lRn, a.s.
(L − L)u(t, x) + (M−M)q(t, x) + f(t, x)− f(t, x) ≥ 0,

∀(t, x) ∈ [0, T ]× lRn, a.s.
it holds

(6.17) u(t, x) ≥ u(t, x), ∀(t, x) ∈ [0, T ]× lRn, a.s.

This is the case, in particular, if L = L,M =M and

(6.18)

{
g(x) ≥ g(x), a.e.x ∈ lRn, a.s.
f(t, x) ≥ f(t, x), a.e. (t, x) ∈ [0, T ]× lRn, a.s.

Proof. It is clear that

(6.19)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d(u− u) = −

{
L(u− u) +M(q − q)
+ (L − L)u + (M−M)q + f − f

}
dt

+ 〈 q − q, dW (t) 〉,
(u− u)

∣∣
t=T
= g − g.

Then, (6.15) follows from (6.4). In the case (6.16) holds, (6.15) becomes

(6.20) E

∫
lRn
e−λ 〈x 〉

∣∣[u(t, x)− u(t, x)]−∣∣2dx ≤ 0, ∀t ∈ [0, T ].

This yields (6.17). The last conclusion is clear.

Corollary 6.3. Let the condition of Lemma 6.1 hold. Let

(6.21)

{
g(x) ≥ 0, a.e.x ∈ lRn, a.s.
f(t, x) ≥ 0, a.e. (t, x) ∈ [0, T ]× lRn, a.s.

and let (u, q) be an adapted strong solution of (6.2). Then

(6.22) u(t, x) ≥ 0, a.e. (t, x) ∈ [0, T ]× lRn, a.s.

Proof. We take L = L, M = M, f ≡ 0 and g ≡ 0. Then (u, q) =
(0, 0) is the unique adapted classical solution of (6.3) and (6.18) holds.
Consequently, (6.22) follows from (6.17).

Let us make an observation on Theorem 6.2. Suppose (u, q) is an
adapted strong solution of (6.3). Then (6.16) gives a condition on A, B,
a, b, c, f and g, such that the solution (u, q) of the equation (6.2) satisfies
(6.17). This has a very interesting interpretation (see Chapter 8). We now
look at the cases that condition (6.16) holds.

Lemma 6.4. Let A, B, a, b and c be independent of x. Let f and g be
convex in x. Let (u, q) be a strong solution of (3.1). Then, u is convex in
x almost surely.
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Proof. First, we assume that f and g are smooth enough in x. Then,
the corresponding solution (u, q) is smooth enough in x. Now, for any
η ∈ lRn, we define⎧⎪⎨⎪⎩
v(t, x) = 〈D2u(t, x)η, η 〉,
p(t, x) = (p1(t, x), · · · , pd(t, x)),
pk(t, x) = 〈D2qk(t, x)η, η 〉, 1 ≤ k ≤ d,

∀(t, x) ∈ [0, T ]× lRn, a.s.

Then, it holds

(6.23)

{
dv = [−Lv −Mp− 〈(D2f)η, η 〉]dt+ 〈 p, dW (t) 〉,
v
∣∣
t=T
= 〈(D2g)η, η 〉 .

By Corollary 6.3 and the convexity of f and g (in x), we obtain

(6.24)
〈D2u(t, x)η, η 〉 = v(t, x) ≥ 0,

∀(t, x) ∈ [0, T ]× lRn, η ∈ lRn, a.s.

This implies the convexity of u(t, x) in x almost surely. In the case that f
and g are not necessarily smooth enough, we may make approximation.

Proposition 6.5. Let A, B, a, b and c be independent of x. Let f and
g be convex in x and nonnegative. Let (u, q) be a strong solution of (6.3).
LetM =M and let

(6.25)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A(t, x) = A(t) +A0(t, x),

c(t, x) = c(t) + c0(t, x),

f(t, x) = f(t, x) + f0(t, x),

g(x) = g(x) + g0(x),

(t, x) ∈ [0, T ]× lRn, a.s.

with

(6.26)

{
A0(t, x) ≥ 0, c0(t, x) ≥ 0,
f0(t, x) ≥ 0, g0(x) ≥ 0,

∀(t, x) ∈ [0, T ]× lRn, a.s.

Then (6.16) is satisfied and thus (6.17) holds.

Proof. By Corollary 6.3 and Lemma 6.4, u is convex and nonnegative.
Thus,

(L − L)u(t, x) = 1
2
tr [A0D

2u] + c0u ≥ 0.

Then (6.16) follows.

Next, we have the following.

Proposition 6.6. Let all the functions A, B, a, b, c, f and g be determin-
istic. Let u be the solution of the following equation:

(6.27)

{
ut = −Lu− f, (t, x) ∈ [0, T ]× lRn,
u
∣∣
t=T
= g.
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Further, we assume that u(t, x) is convex in x. Next, let (6.25) hold. Then
(6.16) is satisfied and (6.17) holds.

Proof. In the present case, (u, 0) is an adapted strong solution of (6.3).
Then similar to the proof of Proposition 6.5 and note q = 0, we can obtain
our assertion.

Note that in Proposition 6.6, B and b are arbitrary.



Chapter 6

Method of Continuation

In this chapter, we consider the solvability of the following FBSDE which
is the same as (3.16) of Chapter 1 (We rewrite here for convenience):

(0.1)

⎧⎪⎨⎪⎩
dX(t) = b(t,X(t), Y (t), Z(t))dt+ σ(t,X(t), Y (t), Z(t))dW (t),

dY (t) = h(t,X(t), Y (t), Z(t))dt + Z(t)dW (t),

X(0) = x, Y (T ) = g(X(T )).

Here, functions b, σ, h and g are allowed to be random, i.e., they can depend
on ω ∈ Ω. For the notational simplicity, we have suppressed ω and we will
do so below.
We have seen that for the case when all the coefficients are determin-

istic, one can use the Four Step Scheme to approach the problem (see
Chapter 4), which involving the study of parabolic systems; in the case of
random coefficients, in applying the Four Step Scheme, we need to study
the solvability of BSPDEs (see Chapter 5). In this chapter, we are going
to introduce a completely different method to approach the solvability of
(0.1). Such a method is called the method of continuation.

§1. The Bridge
Recall that Sn is the set of all (n×n) symmetric matrices. In what follows,
whenever A is a square matrix, (with λ being a scalar), by A+λ, we mean
A + λI. For any A ∈ Sn, by A ≥ δ, we mean that A − δ is positive
semidefinite. The meaning of A ≤ −δ is similar. For simplicity of notation,
we will denote M = lRn × lRm × lRm×d; a generic point in M is denoted
by θ = (x, y, z) with x ∈ lRn, y ∈ lRm and z ∈ lRm×d. The norm in M is
defined by

(1.1) |θ| Δ=
{
|x|2 + |y|2 + |z|2

}1/2
, ∀θ ≡ (x, y, z) ∈M,

where |z|2 Δ=tr (zzT ). Similarly, we will use Θ = (X,Y, Z), and so on.
Now, let T > 0 be fixed and let

(1.2)
H [0, T ] =L2F(0, T ;W

1,∞(M ; lRn × lRn×d × lRm))
× L2FT (Ω;W 1,∞(lR

n; lRm)).

Any generic element in H [0, T ] is denoted by Γ ≡ (b, σ, h, g). Thus, Γ ≡
(b, σ, h, g) ∈ H [0, T ] if and only if⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b ∈ L2F(0, T ;W 1,∞(M ; lRn)),
σ ∈ L2F(0, T ;W 1,∞(M ; lRn×d)),
h ∈ L2F(0, T ;W 1,∞(M ; lRm)),
g ∈ L2FT (Ω;W 1,∞(lR

n; lRm)),
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where the space L2F (0, T ;W
1,∞(M ; lRn)), etc. are defined as in Chapter 1,

§2. Further, we let

(1.3)
H[0, T ] = L2F(0, T ; lRn)× L2F(0, T ; lRn×d)

× L2F(0, T ; lRm)× L2FT (Ω; lR
m).

An element in H[0, T ] is denoted by γ ≡ (b0, σ0, h0, g0) with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b0 ∈ L2F(0, T ; lRn),
σ0 ∈ L2F(0, T ; lRn×d),
h0 ∈ L2F(0, T ; lRm),
g0 ∈ L2FT (Ω; lR

m).

We note that the range of the elements in H [0, T ] and H[0, T ] are all in
lRn × lRn×d × lRm × lRm. Hence, for any Γ ≡ (b, σ, h, g) ∈ H [0, T ] and
γ = (b0, σ0, h0, g0) ∈ H[0, T ], we can naturally define

(1.4) Γ + γ = (b+ b0, σ + σ0, h+ h0, g + g0) ∈ H [0, T ].

Now, for any Γ ≡ (b, σ, h, g) ∈ H [0, T ], γ ≡ (b0, σ0, h0, g0) ∈ H[0, T ]
and x ∈ lRn, we associate them with the following FBSDE on [0, T ]:

(1.5)Γ,γ,x

⎧⎪⎨⎪⎩
dX(t) = {b(t,Θ(t)) + b0(t)}dt+ {σ(t,Θ(t)) + σ0(t)}dW (t),
dY (t) = {h(t,Θ(t)) + h0(t)}dt+ Z(t)dW (t),
X(0) = x, Y (T ) = g(X(T )) + g0,

with Θ(t) ≡ (X(t), Y (t), Z(t)). In what follows, sometimes, we will simply
identify the FBSDEs (1.5)Γ,γ,x with (Γ, γ, x) or even with Γ (since γ and x
are not essential in some sense). Let us recall the following definition.

Definition 1.1. A process Θ(·) ≡ (X(·), Y (·), Z(·)) ∈ M[0, T ] is called
an adapted solution of (1.5)Γ,γ,x, if the following holds for any t ∈ [0, T ],
almost surely.

(1.6)Γ,γ,x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(t) = x+

∫ t
0

{b(t,Θ(s)) + b0(s)}ds

+

∫ t
0

{σ(t,Θ(s)) + σ0(s)}dW (s),

Y (t) = g(X(T )) + g0 −
∫ T
t

{h(t,Θ(s)) + h0(s)}ds

−
∫ T
t

Z(s)dW (s).

When (1.5)Γ,γ,x admits a unique adapted solution, we say that (1.5)Γ,γ,x is
(uniquely) solvable.

We see that (1.6)Γ,γ,x is the integral form of (1.5)Γ,γ,x. In what follows,
we will not distinguish (1.5)Γ,γ,x and (1.6)Γ,γ,x.
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Definition 1.2. Let T > 0. A Γ ∈ H [0, T ] is said to be solvable if for
any x ∈ lRn and γ ∈ H[0, T ], equation (1.5)Γ,γ,x admits a unique adapted
solution Θ(·) ∈ M[0, T ]. The set of all Γ ∈ H [0, T ] that is solvable is
denoted by S[0, T ]. Any Γ ∈ H [0, T ] \ S[0, T ] is said to be nonsolvable.
Now, let us introduce the following notions, which will play the central

role in this chapter.

Definition 1.3. Let T > 0 and Γ ≡ (b, σ, h, g) ∈ H [0, T ]. A C1 function
Φ ≡

(
A BT

B C

)
: [0, T ]→ Sn+m, with A : [0, T ]→ Sn, B : [0, T ]→ lRm×n

and C : [0, T ]→ Sm, is called a bridge extending from Γ, (defined on [0, T ]),
if there exist some constants K, δ > 0, such that

(1.7)

⎧⎪⎨⎪⎩
C(T ) ≤ 0, A(t) ≥ 0, ∀t ∈ [0, T ],

Φ(0) ≤ K
(
I 0
0 0

)
,

and either (1.8)–(1.9) or (1.8)′–(1.9)′ hold:

(1.8) 〈Φ(T )
(

x− x
g(x)− g(x)

)
,

(
x− x

g(x)− g(x)

)
〉 ≥ δ|x− x|2, ∀x, x ∈ lRn.

(1.9)

〈 Φ̇(t)
(
x− x
y − y

)
,

(
x− x
y − y

)
〉

+ 2 〈Φ(t)
(
x− x
y − y

)
,

(
b(t, θ)− b(t, θ)
h(t, θ)− h(t, θ)

)
〉

+ 〈Φ(t)
(
σ(t, θ) − σ(t, θ)

z − z

)
,

(
σ(t, θ) − σ(t, θ)

z − z

)
〉

≤ −δ|x− x|2, ∀θ, θ ∈M, a.e. t ∈ [0, T ], a.s.

(1.8)′ 〈Φ(T )
(

x− x
g(x)− g(x)

)
,

(
x− x

g(x)− g(x)

)
〉 ≥ 0, ∀x, x ∈ lRn.

(1.9)′

〈 Φ̇(t)
(
x− x
y − y

)
,

(
x− x
y − y

)
〉

+ 2 〈Φ(t)
(
x− x
y − y

)
,

(
b(t, θ)− b(t, θ)
h(t, θ)− h(t, θ)

)
〉

+ 〈Φ(t)
(
σ(t, θ)− σ(t, θ)

z − z

)
,

(
σ(t, θ) − σ(t, θ)

z − z

)
〉

≤ −δ{|y − y|2 + |z − z|2}, ∀θ, θ ∈M, a.e. t ∈ [0, T ], a.s.

If (1.7)–(1.9) (resp. (1.7) and (1.8)′–(1.9)′) hold, we call Φ a type (I) (resp.
type (II)) bridge extending from Γ (defined on [0, T ]). The set of all type
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(I) and type (II) bridges extending from Γ (defined on [0, T ]) are denoted
by BI(Γ; [0, T ]) and BII(Γ; [0, T ]), respectively. Finally, we let

(1.10)

⎧⎨⎩B(Γ; [0, T ]) = BI(Γ; [0, T ])
⋃
BII(Γ; [0, T ]),

Bs(Γ; [0, T ]) = BI(Γ; [0, T ])
⋂
BII(Γ; [0, T ]).

Any element Φ ∈ Bs(Γ; [0, T ]) is called a strong bridge extending from Γ
(defined on [0, T ]).

Definition 1.4. Let T > 0 and Γ,Γ ∈ H [0, T ]. We say that they are linked
by a direct bridge if

(1.11)

{
BI(Γ; [0, T ])

⋂
BI(Γ; [0, T ])

}⋃{
BII(Γ; [0, T ])

⋂
BII(Γ; [0, T ])

}
�= φ;

and we say that they are linked by a bridge, if there are Γ1, · · · ,Γk ∈ H [0, T ],
such that with Γ0 = Γ and Γk+1 = Γ, it holds

(1.12)

{
BI(Γi; [0, T ])

⋂
BI(Γi+1; [0, T ])

}
⋃{

BII(Γi; [0, T ])
⋂
BII(Γi+1; [0, T ])

}
�= φ, 0 ≤ i ≤ k.

We may similarly define the notion that Γ and Γ are linked by a (direct)
strong bridge.

§2. Method of Continuation
In this section, we are going to present the solvability of FBSDEs by the
method of continuation. The notion of bridge plays an important role here.

§2.1. The solvability of FBSDEs linked by bridges
Let us state the following theorem.

Theorem 2.1. Let T > 0 and Γ1,Γ2 ∈ H [0, T ] be linked by a bridge.
Then, Γ1 ∈ S[0, T ] if and only if Γ2 ∈ S[0, T ].
The above theorem tells us that if the FBSDE associated with Γ1 is

solvable, so is the one associated with Γ2, provided Γ1 and Γ2 are linked
by a bridge. In applications, if one wants to prove the solvability of the
FBSDE associated with Γ2, he/she can start with a known solvable FBSDE
Γ1, and try to construct a bridge linking Γ1 and Γ2. We will see a detailed
construction of bridges in §5 for an interesting case.
Let us now explain the idea of proving Theorem 2.1. First of all, we

make a simple reduction. By induction, to prove Theorem 2.1, it suffices
to prove it for the case that Γ1 ≡ (b1, σ1, h1, γ1) and Γ2 ≡ (b2, σ2, h2, g2)
are linked by a direct bridge. We now assume this. Next, for any γ ≡
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(b0(·), σ0(·), h0(·), g0) ∈ H[0, T ], x ∈ lRn and α ∈ [0, 1], we consider the
following FBSDE:

(2.1)αγ,x

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dX(t) =
{
(1− α)b1(t,Θ(t)) + αb2(t,Θ(t)) + b0(t)

}
dt

+
{
(1− α)σ1(t,Θ(t)) + ασ2(t,Θ(t)) + σ0(t)

}
dW (t),

dY (t) =
{
(1− α)h1(t,Θ(t)) + αh2(t,Θ(t)) + h0(t)

}
dt

+ Z(t)dW (t),

X(0) = x, Y (T ) = (1− α)g1(X(T )) + αg2(X(T )) + g0.

We may give the definition of the (adapted) solutions to above system
(2.1)αγ,x similar to Definition 1.1. It is clear that (2.1)

0
γ,x and (2.1)

1
γ,x co-

incide with (1.5)Γ1,γ,x and (1.5)Γ2,γ,x, respectively. Let us assume that
Γ1 ∈ S[0, T ], i.e., (2.1)0γ,x is uniquely solvable for any γ ∈ H[0, T ] and
x ∈ lRn. We want to prove Γ2 ∈ S[0, T ], i.e., (2.1)1γ,x is uniquely solvable
for all γ ∈ H[0, T ] and x ∈ lRn. The essence of the method of continuation
is contained in the following claim:

There exists a fixed step-length ε0 > 0, such that if for some
α ∈ [0, 1), (2.1)αγ,x is uniquely solvable for any γ ∈ H[0, T ] and
x ∈ lRn, then the same conclusion holds for α being replaced
by α+ ε ≤ 1 with ε ∈ [0, ε0].

Once this has been proved, we can start with (2.1)αγ,x with α = 0 which
is solvable by our assumption, increase the parameter α step by step and
finally reach α = 1, which gives the unique solvability of (2.1)1γ,x.
In order to prove the above claim, the following a priori estimates for

the adapted solutions of (2.1)αγ,x will be crucial.

Lemma 2.2. Let α ∈ [0, 1]. Let Θ(·) Δ=(X(·), Y (·), Z(·)) and Θ(·) Δ=
(X(·), Y (·), Z(·)) be adapted solutions of (2.1)αγ,x and (2.1)αγ,x, respectively,
with γ = (b0, σ0, h0, g0), γ = (b0, σ0, h0, g0) ∈ H[0, T ] and x, x ∈ lRn. Then,
the following estimate holds:

(2.2)

‖Θ(·)−Θ(·)‖2M[0,T ]
≡ E sup

t∈[0,T ]
|X(t)−X(t)|2 + E sup

t∈[0,T ]
|Y (t)− Y (t)|2

+ E

∫ T
0

|Z(t)− Z(t)|2dt

≤ C
{
|x− x|2 + E|g0 − g0|2 + E

∫ T
0

{
|b0(t)− b0(t)|2

+ |σ0(t)− σ0(t)|2 + |h0(t)− h0(t)|2
}
dt
}
.

Since the proof of the above lemma is technical and lengthy, we would
like to postpone it to the next subsection. Based on the above a priori esti-
mate, we now prove the following result, which we call it the continuation
lemma.
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Lemma 2.3. Let Γ1,Γ2 ∈ H [0, T ] be linked by a direct bridge. Then,
there exists an absolute constant ε0 > 0, such that if for some α ∈ [0, 1],
(2.1)αγ,x is uniquely solvable for any γ ∈ H[0, T ] and x ∈ lRn, then the same
is true for (2.1)α+εγ,x with ε ∈ [0, ε0], α+ ε ≤ 1.
Proof. Let ε0 > 0 be undetermined. Let ε ∈ [0, ε0]. For k ≥ 0, we

successively solve the following systems for Θk(t)
Δ
=(Xk(t), Y k(t), Zk(t)):

(compare (2.1)α+εγ,x )

(2.3)α+εγ,x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ0(t)
Δ
=(X0(t), Y 0(t), Z0(t)) ≡ 0,

dXk+1(t) =
{
(1− α)b1(t,Θk+1(t)) + αb2(t,Θk+1(t))

− εb1(t,Θk(t)) + εb2(t,Θk(t)) + b0(t)
}
dt

+
{
(1 − α)σ1(t,Θk+1(t)) + ασ2(t,Θk+1(t))

− εσ1(t,Θk(t)) + εσ2(t,Θk(t)) + σ0(t)
}
dW (t),

dY k+1(t) =
{
(1− α)h1(t,Θk+1(t)) + αh2(t,Θk+1(t))

− εh1(t,Θk(t)) + εh2(t,Θk(t)) + h0(t)
}
dt

+ Zk+1(t)dW (t),

Xk+1(0) = x,

Y k+1(T ) = (1 − α)g1(Xk+1(T )) + αg2(Xk+1(T ))
− εg1(Xk(T )) + εg2(Xk(T )) + g0.

By our assumption, the above systems are uniquely solvable. We now apply
Lemma 2.2 to Θk+1(·) and Θk(·). It follows that

(2.4)

‖Θk+1(·)−Θk(·)‖M[0,T ]
≤ C
{
ε2E|Xk(T )−Xk−1(T )|2

+ ε2E

∫ T
0

|Θk(t)−Θk−1(t)|2dt
}

≤ ε2C0‖Θk(·) −Θk−1(·)‖M[0,T ].

We note that the constant C0 > 0 appearing in (2.4) is independent of
α and ε. Hence, if we choose ε0 > 0 so that ε

2
0C0 < 1/2, then for any

ε ∈ [0, ε0], we have the following estimate:

(2.5) ‖Θk+1(·)−Θk(·)‖M[0,T ] ≤
1

2
‖Θk(·)−Θk−1(·)‖M[0,T ], ∀k ≥ 1.

This implies that the sequence {Θk(·)} is Cauchy in the Banach space
M[0, T ]. Hence, it admits a limit. Clearly, this limit is an adapted solution
to (2.1)α+εγ,x . Uniqueness follows from estimate (2.2) immediately.

Now, we are ready to give a proof of our main result.

Proof of Theorems 2.1. We know that it suffices to consider the case
that Γ1 and Γ2 are linked by a direct bridge. Let us assume that (1.5)Γ1,γ,x
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is uniquely solvable for any γ ∈ H[0, T ] and x ∈ lRn. This means that
(2.1)0γ,x is uniquely solvable. By Lemma 2.3, we can then solve (2.1)

α
γ,x

uniquely for any α ∈ [0, 1]. In particular, (2.1)1γ,x, which is (1.5)Γ2,γ,x, is
uniquely solvable. This proves Theorem 2.1.

Note that Lemma 2.2 has the following implication.

Corollary 2.4. Let Γ ∈ H [0, T ] with B(Γ; [0, T ]) �= φ. Then, for any
γ ∈ H[0, T ] and x ∈ lRn, (1.5)Γ,γ,x admits at most one adapted solution.
Moreover, for any γ, γ ∈ H[0, T ] and x, x ∈ lRn, the stability estimate (2.2)
holds for any adapted solutions Θ(·) of (1.5)Γ,γ,x and Θ(·) of (1.5)Γ,γ,x.

Proof. We take Γ1 = Γ2 = Γ in Lemma 2.2. Then, (2.2) applies.

From Corollary 2.4 we see that for the Γ associated with example (3.3)
in Chapter 1, B(Γ; [0, T ]) = φ for T = kπ + 3π4 , k ≥ 0.

§2.2. A priori estimate

In this subsection, we present a proof of the a priori estimate stated in
Lemma 2.2.
Proof. Let Θ and Θ be two adapted solutions of (2.1)αγ,x and (2.1)

α
g,x,

respectively. Define ξ̂ = ξ − ξ for ξ = X,Y, Z,Θ, b0, σ0, h0, g0, x̂ = x − x,
and

(2.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b̂i(t) = bi(t,Θ(t))− bi(t,Θ(t)),
σ̂i(t) = σi(t,Θ(t))− σi(t,Θ(t)),
ĥi(t) = hi(t,Θ(t))− hi(t,Θ(t)),
ĝi(T ) = gi(X(T ))− gi(X(T )),

i = 1, 2,

Note that Γi ∈ H [0, T ] implies that all the functions bi, σi, hi, gi are uni-
formly Lipschitz continuous. Suppose the common Lipschitz constant is
L > 0. Applying Itô’s formula to |X̂(t)|2, we obtain that

(2.7)

|X̂(t)|2 = |x̂|2 + 2
∫ t
0

〈 X̂(s), (1 − α)̂b1(s) + αb̂2(s) + b̂0(s) 〉 ds

+

∫ t
0

|(1− α)σ̂1(s) + ασ̂2(s) + σ̂0(s)|2ds

+ 2

∫ t
0

〈 X̂(s), [(1− α)σ̂1(s) + ασ̂2(s) + σ̂0(s)]dW (s) 〉

≤ |x̂|2 + C
∫ t
0

|X̂(s)|
{
|X̂(s)|+ |Ŷ (s)|+ |Ẑ(s)|+ |̂b0(s)|

}
ds

+ C

∫ t
0

{
|X̂(s)|+ |Ŷ (s)|+ |Ẑ(s)|+ |σ̂0(s)|

}2
ds

+ 2

∫ t
0

〈 X̂(s), [(1− α)σ̂1(s) + ασ̂2(s) + σ̂0(s)]dW (s) 〉,
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with some constant C > 0. As before, in what follows, C will be some
generic constant, which can be different in different places. By taking the
expectation and using Gronwall’s inequality, we obtain

(2.8) E|X̂(t)|2 ≤ CE
{
|x̂|2+

∫ T
0

{
|Ŷ (t)|2+|Ẑ(t)|2+ |̂b0(t)|2+|σ̂0(t)|2

}
dt
}
,

with some constant C = C(L, T ). Next, applying Burkholder-Davis-
Gundy’s inequality to (2.7) (note (2.8)), one has that

(2.9)
E sup
t∈[0,T ]

|X̂(t)|2 ≤ C
{
|x̂|2 +

∫ T
0

{
|Ŷ (t)|2 + |Ẑ(t)|2

+ |̂b0(t)|2 + |σ̂0(t)|2
}
dt
}
.

On the other hand, by applying Itô’s formula to |Ŷ (t)|2, we have

(2.10)

|Ŷ (t)|2 +
∫ T
t

|Ẑ(s)|2ds

= |Ŷ (T )|2 − 2
∫ T
t

〈 Ŷ (s), (1 − α)ĥ1(s) + αĥ2(s) + ĥ0(s) 〉 ds

− 2
∫ T
t

〈 Ŷ (s), Ẑ(s)dW (s) 〉

≤ C
{
|X̂(T )|2 + |ĝ0|2 +

∫ T
t

{
|X̂(s)|2 + |Ŷ (s)|2 + |ĥ0(s)|2

}
ds
}

− 1
2

∫ T
t

|Ẑ(s)|2ds− 2
∫ T
t

〈 Ŷ (s), Ẑ(s)dW (s) 〉 .

Similar to the procedure of getting (2.9), we obtain

(2.11)

E sup
t∈[0,T ]

|Ŷ (t)|2 + E
∫ T
0

|Ẑ(t)|2dt

≤ CE
{
|X̂(T )|2 + |ĝ0|2 +

∫ T
0

{
|X̂(t)|2 + |ĥ0(t)|2

}
dt
}
.

We emphasize that the constants C appeared in (2.9) and (2.11) only de-
pend on L and T . Also, in deriving these two estimates, only the condition
Γi ∈ H [0, T ] has been used (and we have not used the bridge yet). Now,
we apply Itô’s formula to

〈Φ(t)
(
X̂(t)

Ŷ (t)

)
,

(
X̂(t)

Ŷ (t)

)
〉 .
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It follows that

(2.12)

E 〈Φ(T )
(
X̂(T )

Ŷ (T )

)
,

(
X̂(T )

Ŷ (T )

)
〉−E 〈Φ(0)

(
x̂
Ŷ (0)

)
,

(
x̂
Ŷ (0)

)
〉

= E

∫ T
0

{
〈 Φ̇(t)

(
X̂(t)

Ŷ (t)

)
,

(
X̂(t)

Ŷ (t)

)
〉

+ 2 〈Φ(t)
(
X̂(t)

Ŷ (t)

)
,

(
(1− α)̂b1(t) + αb̂2(t) + b̂0(t)
(1 − α)ĥ1(t) + αĥ2(t) + ĥ0(t)

)
〉

+ 〈Φ(t)
(
(1 − α)σ̂1(t) + ασ̂2(t) + σ̂0(t)

Ẑ(t)

)
,(

(1− α)σ̂1(t) + ασ̂2(t) + σ̂0(t)
Ẑ(t)

)
〉
}
dt.

Let us separate two cases.
Case 1. Suppose Φ ∈ BI(Γi; [0, T ]) (i = 1, 2). In this case, we have

(2.13)

F (α)
Δ
= 〈Φ(T )

(
X̂(T )

(1− α)ĝ1(T ) + αĝ2(T )

)
,(

X̂(T )
(1− α)ĝ1(T ) + αĝ2(T )

)
〉

= 〈A(T )X̂(T ), X̂(T ) 〉+2 〈B(T )X̂(T ), (1− α)ĝ1(T ) + αĝ2(T ) 〉
+ 〈C(T ){(1− α)ĝ1(T ) + αĝ2(T )}, (1− α)ĝ1(T ) + αĝ2(T ) 〉

= α2 〈C(T ){ĝ2(T )− ĝ1(T )}, {ĝ2(T )− ĝ1(T )} 〉
+ α{· · ·}+ {· · ·} ≥ δ|X̂(T )|2, ∀α ∈ [0, 1],

where {· · ·} are terms that do not depend on α. The above holds because
C(T ) ≤ 0 implies that F (α) is concave in α, whereas (1.8) tells us that
(recall Φ ∈ BI(Γi; [0, T ]), i = 1, 2)

(2.14) F (0), F (1) ≥ δ|X̂(T )|2.

Then, (2.13) follows easily. Similarly, we have

(2.15)

f(α)
Δ
= 〈 Φ̇(t)

(
X̂(t)

Ŷ (t)

)
,

(
X̂(t)

Ŷ (t)

)
〉

+ 2 〈Φ(t)
(
X̂(t)

Ŷ (t)

)
,

(
(1− α)̂b1(t) + αb̂2(t)
(1− α)ĥ1(t) + αĥ2(t)

)
〉

+ 〈Φ(t)
(
(1− α)σ̂1(t) + ασ̂2(t)

Ẑ(t)

)
,(

(1− α)σ̂1(t) + ασ̂2(t)
Ẑ(t)

)
〉

= α2 〈A(t){σ̂2(t)− σ̂1(t)}, σ̂2(t)− σ̂1(t) 〉
+ α{· · ·}+ {· · ·} ≤ −δ|X̂(t)|2, ∀α ∈ [0, 1],
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since now A(t) ≥ 0 which implies f(α) is convex in α. Then, we have

(2.16)

Left side of (2.12) = E
{
〈A(T )X̂(T ), X̂(T ) 〉

+ 2 〈B(T )X̂(T ), (1− α)ĝ1(T ) + αĝ2(T ) + ĝ0 〉
+ 〈C(T ){(1− α)ĝ1(T ) + αĝ2(T ) + ĝ0},

(1− α)ĝ1(T ) + αĝ2(T ) + ĝ0 〉
}

− E 〈Φ(0)
(
x̂
Ŷ (0)

)
,

(
x̂
Ŷ (0)

)
〉

≥ δE|X̂(T )|2 − 2|B(T )|E
(
|X̂(T )||ĝ0|

)
− 2L|C(T )|E

(
|X̂(T )||ĝ0|

)
− |C(T )|E|ĝ0|2 −K|x̂|2

≥ δ
2
E|X̂(T )|2 − C

{
|x̂|2 + E|ĝ0|2

}
.

Here, the constant C > 0 only depends on K, L, δ, |B(T )| and |C(T )|.
Similarly, we have the following estimate for the right hand side of (2.13).

(2.17)

Right side of (2.12) ≤ E
∫ T
0

{
− δ|X̂(t)|2dt

+ 2 〈Φ(t)
(
X̂(t)

Ŷ (t)

)
,

(
b̂0(t)

ĥ0(t)

)
〉

+ 2 〈Φ(t)
(
(1− α)σ̂1(t) + ασ̂2(t)

Ẑ(t)

)
,

(
σ̂0(t)
0

)
〉

+ 〈Φ(t)
(
σ̂0(t)
0

)
,

(
σ̂0(t)
0

)
〉
}
dt

≤ − δ
2
E

∫ T
0

|X̂(t)|2dt+ εE
∫ T
0

{
|Ŷ (t)|2 + |Ẑ(t)|2

}
dti

+ CεE

∫ T
0

{
|̂b0(t)|2 + |σ̂0(t)|2 + |ĥ0(t)|2

}
dt.

with the constant Cε > 0 only depending on the bounds of |Φ(t)|, as well
as δ, L and the undetermined small positive number ε > 0. Combining
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(2.16)–(2.17) and note (2.11), we have

(2.18)

E|X̂(T )|2 + E
∫ T
0

|X̂(t)|2dt

≤ Cε
{
|x̂|2 + E|ĝ0|2 + E

∫ T
0

{
|̂b0(t)|2 + |σ̂0(t)|2 + |ĥ0(t)|2

}
dt
}

+
2ε

δ
E

∫ T
0

{
|Ŷ (t)|2 + |Ẑ(t)|2

}
dt

≤ Cε
{
|x̂|2 + E|ĝ0|2 + E

∫ T
0

{
|̂b0(t)|2 + |σ̂0(t)|2 + |ĥ0(t)|2

}
dt
}

+ εCE
{
|X̂(T )|2 + |ĝ0|2 +

∫ T
0

{
|X̂(t)|2 + |ĥ0(t)|2

}
dt
}
,

with the constant C independent of ε > 0, and Cε might be different from
that appeared in (2.17). Thus, we may choose suitable ε > 0, such that

(2.19)

E|X̂(T )|2 + E
∫ T
0

|X̂(t)|2dt

≤ CE
{
|x̂|2 + |ĝ0|2 +

∫ T
0

{
|̂b0(t)|2 + |σ̂0(t)|2 + |ĥ0(t)|2

}
dt
}
.

Then, return to (2.11), we obtain

(2.20)

E sup
t∈[0,T ]

|Ŷ (t)|2 + E
∫ T
0

|Ẑ(t)|2dt

≤ CE
{
|x̂|2 + |ĝ0|2 +

∫ T
0

{
|̂b0(t)|2 + |σ̂0(t)|2 + |ĥ0(t)|2

}
dt
}
.

Finally, by (2.9), we have

(2.21)

E sup
t∈[0,T ]

|X̂(t)|2 ≤CE
{
|x̂|2 + |ĝ0|2

+

∫ T
0

{
|̂b0(t)|2 + |σ̂0(t)|2 + |ĥ0(t)|2

}
dt
}
.

Hence, (2.2) follows from (2.20) and (2.21).

Case 2. Let Φ ∈ BII(Γi; [0, T ]) (i = 1, 2) now. In this case, we still
have (2.9), (2.11) and (2.12). Further, we have inequalities similar to (2.13)

and (2.15) with |X̂(T )|2 and |X̂(t)|2 replaced by 0 and |Ŷ (t)|2 + |Ẑ(t)|2,
respectively. Thus, it follows that

(2.22) Left side of (2.12) ≥ −εE|X̂(T )|2 − Cε
{
|x̂|2 + E|ĝ0|2

}
,

with the constant Cε > 0 depending on K,L, δ, |B(T )|, |C(T )|, and the
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undetermined constant ε > 0. Whereas,

(2.23)

Right side of (2.12)

≤ − δ
2
E

∫ T
0

{
|Ŷ (t)|2 + |Ẑ(t)|2

}
dt+ εE

∫ T
0

|X̂(t)|2dt

+ CεE

∫ T
0

{
|̂b0(t)|2 + |σ̂0(t)|2 + |ĥ0(t)|2

}
dt.

Now, combining (2.22)–(2.23) and using (2.9), we obtain (for suitable choice
of ε > 0)

(2.24)

E

∫ T
0

{
|Ŷ (t)|2 + |Ẑ(t)|2

}
dt

≤ CE
{
|x̂|2 + |ĝ0|2 +

∫ T
0

{
|̂b0(t)|2 + |σ̂0(t)|2 + |ĥ0(t)|2

}
dt
}
.

Finally, by (2.9) and (2.11) again, we obtain the estimate (2.2).

§3. Some Solvable FBSDEs
In this section, we are going to prove the unique solvability of some FBSDEs
by constructing appropriate bridges.

§3.1. A trivial FBSDE
We denote Γ0 = (0, 0, 0, 0) ∈ H [0, T ]. The FBSDE associated with Γ0 reads
as (compare with (1.5)Γ,γ,x)

(3.1)

⎧⎪⎨⎪⎩
dX(t) = b0(t)dt + σ0(t)dW (t),

dY (t) = h0(t)dt + Z(t)dW (t),

X(0) = x, Y (T ) = g0.

Clearly, (3.1) is trivially uniquely solvable for all γ ≡ (b0, σ0, h0, g0) ∈
H[0, T ] and x ∈ lRn. Thus, hereafter, we will refer to the FBSDE associated
with Γ0 as the trivial FBSDE. Now, let us present the following result.

Proposition 3.1. Let T > 0 and Γ0 = {0, 0, 0, 0} ∈ H [0, T ]. Then,
Φ ≡

(
A BT

B C

)
∈ Bs(Γ0; [0, T ]) if and only if

(3.2)

{
C(0) < 0, A(T ) > 0,

Φ̇(t) < 0, ∀t ∈ [0, T ].

Proof. By Definition 1.3, we know that Φ ∈ Bs(Γ0; [0, T ]) if and only
if (1.7)–(1.9) and (1.8)′–(1.9)′ hold. These are equivalent to the following:

(3.3)

{
C(0) ≤ −δ, A(T ) ≥ δ,
Φ̇(t) ≤ −δ, ∀t ∈ [0, T ],
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for some δ > 0. We note that under condition C(0) < 0, the second
inequality in (1.7) is always true for sufficiently large K > 0. Then, we see
easily that Φ ∈ Bs(Γ0; [0, T ]) is characterized by (3.3) since δ > 0 can be
arbitrarily small.

From the above, we also have the following characterization:

(3.4)

Bs(Γ0; [0, T ]) =
{
Q−

∫ ·
0

Ψ(s)ds
∣∣∣

0 < Ψ(·) =
(
Ψ1(·) Ψ2(·)T
Ψ2(·) Ψ3(·)

)
∈ C([0, T ];Sn+m),

Q =

(
Q1 QT2
Q2 Q3

)
∈ Sn+m, Q3 < 0,

Q1 −
∫ T
0

Ψ1(s)ds > 0
}
.

A useful consequence of Proposition 3.1 is the following.

Corollary 3.2. Let Γ ∈ H [0, T ] admit a bridge Φ ∈ B(Γ; [0, T ]) satisfying
(3.2). Then, Γ ∈ S[0, T ].
Proof. Under our assumptions, it holds that

Φ ∈ B(Γ0; [0, T ])
⋂
B(Γ; [0, T ]).

Since Γ0 ∈ S[0, T ], Theorem 2.1 applies.
Next, we would like to discuss some concrete cases.

§3.2. Decoupled FBSDEs
Let Γ ≡ (b, σ, h, g) ∈ H [0, T ] such that

(3.5)

{
b(t, x, y, z) ≡ b(t, x),
σ(t, x, y, z) ≡ σ(t, x), ∀(t, x, y, z) ∈ [0, T ]×M.

We see that the associated FBSDE is decoupled, which is known to be
solvable under usual Lipschitz conditions, by the result of Chapter 1, §4.
The following result recovers this conclusion with some deeper insight.

Proposition 3.3. Let T > 0, Γ0 ≡ (0, 0, 0, 0) ∈ H [0, T ] and Γ ≡
(b, σ, h, g) ∈ H [0, T ] satisfying (3.5). Then,

(3.6) Bs(Γ0; [0, T ])
⋂
Bs(Γ; [0, T ]) �= φ.

Consequently, Γ ∈ S[0, T ].
Proof. We take

(3.7)

⎧⎪⎨⎪⎩Φ(t) =
(
a(t)I 0
0 c(t)I

)
,

a(t) = A0e
A0(T−t), c(t) = −C0eC0t, t ∈ [0, T ],
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where A0, C0 > 0 are undetermined constants. We first check that this
Φ ∈ Bs(Γ0; [0, T ]). In fact,

(3.8)

⎧⎪⎨⎪⎩
c(0) = −C0 < 0, a(T ) = A0 > 0,

ȧ(t) = −A20eA0(T−t) < 0, t ∈ [0, T ],
ċ(t) = −C20eC0t < 0, t ∈ [0, T ].

Thus, by Proposition 3.1, we see that Φ ∈ Bs(Γ0; [0, T ]). Next, we show
that Φ ∈ Bs(Γ; [0, T ]) for suitable choice of A0 and C0. To this end, we let
L be the common Lipschitz constant for b, σ, h and g. We note that (3.8)
implies (1.7). Thus, it is enough to further have

(3.9) a(T ) + L2c(T ) ≥ δ,

and

(3.10)

ȧ(t)|x− x|2 + ċ(t)|y − y|2 + c(t)|z − z|2

+ 2a(t) 〈x− x, b(t, x)− b(t, x) 〉+a(t)|σ(t, x) − σ(t, x)|2

+ 2c(t) 〈 y − y, h(t, x, y, z)− h(t, x, y, z) 〉
≤ −δ

{
|x− x|2 + |y − y|2 + |z − z|2

}
,

∀t ∈ [0, T ], x, x ∈ lRn, y, y ∈ lRm, z, z ∈ lRm×d, a.s.

Let us first look at (3.10). We note that

(3.11)

Left side of (3.10) ≤ ȧ(t)|x− x|2 + ċ(t)|y − y|2 + c(t)|z − z|2

+ 2a(t)L|x− x|2 + a(t)L2|x− x|2

+ 2|c(t)|L|y − y|
{
|x− x|+ |y − y|+ |z − z|

}
≤
{
ȧ(t) + 2a(t)L+ a(t)L2 + |c(t)|L

}
|x− x|2

+
{
ċ(t) + 3|c(t)|L+ 2L2|c(t)|

}
|y − y|2 + c(t)

2
|z − z|2.

Hence, to have (3.10), it suffices to have the following:

(3.12)

⎧⎪⎨⎪⎩
ȧ(t) + (2L+ L2)a(t) + L|c(t)| ≤ −δ,
ċ(t) + (3L+ 2L2)|c(t)| ≤ −δ,
c(t) ≤ −2δ,

∀t ∈ [0, T ].

Now, we take a(t) and c(t) as in (3.7) and we require

(3.13)
ċ(t)+(3L+ 2L2)|c(t)| = −C0(C0 − 3L− 2L2)eC0t,

≤ −C0(C0 − 3L− 2L2) ≤ −δ, ∀t ∈ [0, T ],

and

(3.14) c(t) = −C0eC0t ≤ −C0 ≤ −2δ, ∀t ∈ [0, T ].
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These two are possible if C0 > 0 is large enough. Next, for this fixed C0 > 0,
we choose A0 > 0 as follows. We want

(3.15) a(T ) + c(T )L2 = A0e
A0(T−t) − C0L2eC0t ≥ A0 − C0L2eC0T ≥ δ,

and

(3.16)

ȧ(t) + (2L+ L2)a(t) + L|c(t)|
= −A0(A0 − 2L− L2)eA0(T−t) + LC0eC0t

≤ −A0(A0 − 2L− L2) + LC0eC0T ≤ −δ.

These are also possible by choosing A0 > 0 large enough. Hence, (3.9) and
(3.12) hold and Φ ∈ Bs(Γ; [0, T ]).
From the above, we obtain that any decoupled FBSDE is solvable. In

particular, any BSDE is solvable. Moreover, from Lemma 2.2, we see that
the adapted solutions to such equations have the continuous dependence
on the data.
The above proposition also tells us that decoupled FBSDEs are very

“close” to the trivial FBSDE since they can be linked by some direct strong
bridges of Γ0.

§3.3. FBSDEs with monotonicity conditions
In this subsection, we are going to consider coupled FBSDEs which satisfy
certain kind of monotonicity conditions. Let Γ = (b, σ, h, g) ∈ H [0, T ]. We
introduce the following conditions:

(M) Let m ≥ n. There exists a matrix B ∈ lRm×n such that for some
β > 0, it holds that

(3.17) 〈B(x− x), g(x)− g(x) 〉 ≥ β|x − x|2, ∀x, x ∈ lRn, a.s.

(3.18)

〈BT
[
h(t, θ)− h(t, θ)

]
, x− x 〉+ 〈B

[
b(t, θ)− b(t, θ)

]
, y − y 〉

+ 〈B
[
σ(t, θ) − σ(t, θ)

]
, z − z 〉 ≤ −β|x− x|2,

∀t ∈ [0, T ], θ, θ ∈M, a.s.

(M)′ Let m ≤ n. There exists a matrix B ∈ lRm×n such that for some
β > 0, it holds that

(3.17)′ 〈B(x− x), g(x)− g(x) 〉 ≥ 0, ∀x, x ∈ lRn, a.s.

(3.18)′
〈BT
[
h(t, θ)− h(t, θ)

]
, x− x 〉+ 〈B

[
b(t, θ)− b(t, θ)

]
, y − y 〉

+ 〈B
[
σ(t, θ) − σ(t, θ)

]
, z − z 〉 ≤ −β

(
|y − y|2 + |z − z|2

)
,

∀t ∈ [0, T ], θ, θ ∈M, a.s.

Condition (3.17) means that the function x �→ BT g(x) is uniformly
monotone on lRn, and condition (3.18) implies that the function θ �→
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−(BTh(t, θ), Bb(t, θ), Bσ(t, θ)) is monotone on the space M . The mean-
ing of (3.17)′ and (3.18)′ are similar. Here, we should point out that (3.17)
implies m ≥ n and (3.17)′ implies m ≤ n. Hence, (M) and (M)′ overlaps
only for the case m = n.

We now prove the following.

Proposition 3.4. Let T > 0 and Γ ≡ (b, σ, h, g) ∈ H [0, T ] satisfy (M)
(resp. (M)′). Then, (3.6) holds. Consequently, Γ ∈ S[0, T ].
Proof. First, we assume (M) holds. Take

(3.19)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Φ(t) =

(
A(t) B(t)T

B(t) C(t)

)
A(t) = a(t)I ≡ δeT−tI,
B(t) ≡ B,
C(t) = c(t)I ≡ −2δC0eC0tI,

t ∈ [0, T ],

with δ, C0 > 0 being undetermined. Since

(3.20)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(0) = −2δC0I < 0,
A(T ) = δI > 0,

Φ̇(t) =

(
−δeT−tI 0
0 −2δC20eC0t

)
< 0,

by Proposition 3.1, we see that Φ ∈ Bs(Γ0; [0, T ]). Next, we prove Φ ∈
Bs(Γ; [0, T ]) for suitable choice of δ and C0. Again, we let L be the common
Lipschitz constant for b, σ, h and g. We will choose δ and C0 so that

(3.21) a(T ) + 2β + c(T )L2 ≥ δ,

and

(3.22)

ȧ(t)|x|2 + ċ(t)|y|2 + c(t)|z|2 + 2La(t)|x|(|x|+ |y|+ |z|)
+ 2L|c(t)| |y|(|x|+ |y|+ |z|) + L2a(t)(|x| + |y|+ |z|)2

≤ (2β − δ)|x|2 − δ(|y|2 + |z|2), ∀(t, θ) ∈ [0, T ]×M.

It is not hard to see that under (3.17)–(3.18), (3.21) implies (1.8) and (3.22)
implies (1.7) and (1.9)′ (Note (1.8) implies (1.8)′). We see that the left hand
side of (3.22) can be controlled by the following:

(3.23)

{
ȧ(t) +Ka(t) +K|c(t)|

}
|x|2 +

{
ċ(t) +K|c(t)|+Ka(t)

}
|y|2

+
{c(t)
2
+Ka(t)

}
|z|2,

for some constant K > 0. Then, for this fixed K > 0, we now choose δ and
C0. First of all, we require

(3.24)
c(t)

2
+Ka(t) = −δC0eC0t +KδeT−t ≤ −δC0 +KδeT ≤ −δ,
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and

(3.25)
ċ(t) +K|c(t)|+Ka(t) = −2δC20eC0t + 2KC0δeC0t +KδeT−t

≤ −2δC0(C0 −K) +KδeT < −δ.

These two can be achieved by choosing C0 > 0 large enough (independent
of δ > 0). Next, we require

(3.26)
ȧ(t) +Ka(t) +K|c(t)| = −δeT−t +KδeT−t + 2δKC0eC0t

≤ −δ +KδeT + 2δKC0eC0T ≤ 2β − δ,

and

(3.27) a(T ) + 2β + c(T )L2 = δ + 2β − 2δC0eC0TL2 ≥ δ.

Since β > 0, (3.26) and (3.27) can be achieved by letting δ > 0 be small
enough (note again that the choice of C0 is independent of δ > 0). Hence,
we have (3.21) and (3.22), which proves Φ ∈ Bs(Γ; [0, T ]).
Now, we assume (M)′ holds. Take (compare (3.19))

(3.28)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Φ(t) =

(
A(t) B(t)T

B(t) C(t)

)
,

A(t) = a(t)I ≡ δA0eA0(T−t)I,
B(t) ≡ B,
C(t) = c(t)I ≡ −δetI,

∀t ∈ [0, T ],

with δ, A0 > 0 being undetermined. Note that

(3.29)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(0) = −δI < 0,
A(T ) = A0I > 0,

Φ̇(t) =

(
−δA20eA0(T−t)I 0

0 −δetI

)
< 0.

Thus, by Proposition 3.1, we have Φ ∈ Bs(Γ0; [0, T ]). We now choose the
constants δ and A0. In the present case, we will still require (3.21) and the
following instead of (3.22):

(3.30)

ȧ(t)|x|2 + ċ(t)|y|2 + c(t)|z|2 + 2La(t)|x|(|x|+ |y|+ |z|)
+ 2L|c(t)||y|(|x|+ |y|+ |z|) + L2a(t)(|x| + |y|+ |z|)2

≤ −δ|x|2 + (2β − δ)
{
|y|2 + |z|2

}
, ∀(t, θ) ∈ [0, T ]×M.

These two will imply the conclusion Φ ∈ Bs(Γ; [0, T ]). Again the left hand
side of (3.30) can be controlled by (3.23) for some constant K > 0. Now,
we require

(3.31)
ȧ(t) +Ka(t) +K|c(t)| = −δA20eA0(T−t) + δKA0eA0(T−t) +Kδet

≤ −δA0(A0 −K) + δKeT ≤ −δ,
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and

(3.32)
a(T ) + c(T )L2 = δA0e

A0(T−t) − δL2et

≥ δ(A0 − L2eT ) > δ.

We can choose A0 > 0 large enough (independent of δ > 0) to achieve the
above two. Next, we require

(3.33)
c(t)

2
+Ka(t) ≤ Ka(t) ≤ δKA0eA0T ≤ 2β − δ,

and

(3.34)
ċ(t) +K|c(t)|+Ka(t) = −δet +Kδet +KA0δeA0(T−t)

≤ δ(KeT +KA0eA0T ) ≤ 2β − δ.

These two can be achieved by choosing δ > 0 small enough. Hence, we
obtain (3.21) and (3.30), which gives Φ ∈ Bs(Γ; [0, T ]).
It should be pointed out that the above FBSDEs with monotonicity

conditions do not cover the decoupled case. Here is a simple example.
Let n = m = 1. Consider the following decoupled FBSDE:

(3.35)

⎧⎪⎨⎪⎩
dX(t) = X(t)dt+ dW (t),

dY (t) = X(t)dt+ Z(t)dW (t),

X(0) = x, Y (T ) = X(T ).

We can easily check that neither (M) nor (M)′ holds. But, (3.35) is uniquely
solvable over any finite time duration [0, T ].

Remark 3.5. From the above, we see that decoupled FBSDEs and the
FBSDEs with monotonicity conditions are two different classes of solvable
FBSDEs. None of them includes the other. On the other hand, however,
these two classes are proved to be linked by direct bridges to the trivial
FBSDE (the one associated with Γ0 = (0, 0, 0, 0)). Thus, in some sense,
these classes of FBSDEs are very “closer” to the trivial FBSDE.

§4. Properties of the Bridges
In order to find some more solvable FBSDEs with the aid of bridges, we
need to explore some useful properties that bridges enjoy.

Proposition 4.1. Let T > 0.
(i) For any Γ ∈ H [0, T ], the set BI(Γ; [0, T ]) is a convex cone whenever

it is nonempty. Moreover,

(4.1) BI(Γ; [0, T ]) = BI(Γ + γ; [0, T ]), ∀γ ∈ H[0, T ].

(ii) For any Γ1,Γ2 ∈ H [0, T ], it holds

(4.2) BI(Γ1; [0, T ])
⋂
BI(Γ2; [0, T ]) ⊆

⋂
α,β>0

BI(αΓ1 + βΓ2; [0, T ]).
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Proof. (i) The convexity of BI(Γ; [0, T ]) is clear since (1.7)–(1.9) are lin-
ear inequalities in Φ. Conclusion (4.1) also follows easily from the definition
of the bridge.
(ii) The proof follows from (2.13), (2.15) and the fact that BI(Γ; [0, T ])

is a convex cone.

It is clear that the same conclusions as Proposition 4.1 hold for
BII(Γ; [0, T ]) and Bs(Γ; [0, T ]).
As a consequence of (3.2), we see that if Γ1,Γ2 ∈ H [0, T ], then

(4.3)
BI(αΓ1 + βΓ2; [0, T ]) = φ, for some α, β > 0,

⇒ BI(Γ1; [0, T ])
⋂
BI(Γ2; [0, T ]) = φ.

This means that for such a case, Γ1 and Γ2 are not linked by a direct bridge
(of type (I)). Let us look at a concrete example. Let Γi = (bi, σi, hi, gi) ∈
H [0, T ], i = 1, 2, 3, with

(4.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
b1
h1

)
=

(
−λ 0
−1 −ν

)(
x
y

)
,

(
b2
h2

)
=

(
λ 1
0 ν

)(
x
y

)
,(

b3
h3

)
=

(
0 1
−1 0

)(
x
y

)
,

σ1 = σ2 = σ3 = 0,

g1 = g2 = g3 = −x,

with λ, ν ∈ lR. Clearly, it holds

(4.5) Γ3 = Γ1 + Γ2.

By the remark right after Corollary 2.4, we know that B(Γ3; [0, T ]) = φ.
Thus, it follows from (3.5) and (4.3) that Γ1 and Γ2 are not linked by
a direct bridge. However, we see that the FBSDE associated with Γ1 is
decoupled and thus it is uniquely solvable (see Chapter 1). In §5, we will
show that for suitable choice of λ and ν, Γ2 ∈ S[0, T ]. Hence, we find two
elements in S[0, T ] that are not linked by a direct bridge. This means Γ1
and Γ2 are not very “close”.

Next, for any b1, b2 ∈ L2F(0, T ;W 1,∞(M ; lRn)), we define

(4.6)

‖b1 − b2‖0(t)

= esssup
ω∈Ω

sup
θ,θ∈M

∣∣b1(t, θ;ω)− b1(t, θ;ω)− b2(t, θ;ω) + b2(t, θ;ω)∣∣
|θ − θ|

.

We define ‖h1 − h2‖0(t) and ‖σ1 − σ2‖0(t) similarly. For g1, g2 ∈
L2FT (Ω;W

1,∞(lRn; lRm)), we define

(4.7)

‖g1 − g2‖0

= esssup
ω∈Ω

sup
x,x∈lRn

∣∣g1(x;ω) − g1(x;ω)− g2(x;ω) + g2(x;ω)∣∣
|x− x| .
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Then, for any Γi = (bi, σi, hi, gi) ∈ H [0, T ] (i = 1, 2), set

(4.8)
‖Γ1 − Γ2‖0(t) = ‖b1 − b2‖0(t) + ‖σ1 − σ2‖0(t)

+ ‖h1 − h2‖0(t) + ‖g1 − g2‖0.

Note that ‖ · ‖0(t) is just a family of semi-norms (parameterized by t ∈
[0, T ]). As a matter of fact, ‖Γ1−Γ2‖0(t) = 0 for all t ∈ [0, T ] if and only if

(4.9) Γ2 = Γ1 + γ,

for some γ ∈ H[0, T ].

Theorem 4.2. Let T > 0 and Γ ∈ H [0, T ]. Let Φ ∈ Bs(Γ; [0, T ]). Then,
there exists an ε > 0, such that for any Γ′ ∈ H [0, T ] with

(4.10) ‖Γ− Γ′‖0(t) < ε, ∀t ∈ [0, T ],

we have Φ ∈ Bs(Γ′; [0, T ]).

Proof. Let Γ = (b, σ, h, g) and Γ′ = (b′, σ′, h′, g′). Suppose Φ ∈
Bs(Γ; [0, T ]). Then, for some K, δ > 0, (1.7)–(1.9) and (1.8)′–(1.9)′ hold.
Now, we denote (for any θ, θ ∈M)

(4.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x̂ = x− x, θ̂ = θ − θ,
b̂ = b(t, θ)− b(t, θ), σ̂ = σ(t, θ) − σ(t, θ),
ĥ = h(t, θ)− h(t, θ), ĝ = g(x)− g(x),
b̂′ = b′(t, θ)− b′(t, θ), σ̂′ = σ′(t, θ)− σ′(t, θ),
ĥ′ = h′(t, θ)− h′(t, θ), ĝ′ = g′(x) − g′(x).

Then one has

(4.12) |ĝ′ − ĝ| = |g′(x)− g′(x)− g(x) + g(x)| ≤ ‖g′ − g‖0|x̂|.

Similarly, we have

(4.13)

⎧⎪⎪⎨⎪⎪⎩
|̂b′ − b̂| ≤ ‖b′ − b‖0(t)|θ̂|,
|σ̂′ − σ̂| ≤ ‖σ′ − σ‖0(t)|θ̂|,
|ĥ′ − ĥ| ≤ ‖h′ − h‖0(t)|θ̂|.
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Hence, it follows that

(4.14)

〈Φ(T )
(
x̂
ĝ′

)
,

(
x̂
ĝ′

)
〉 = 〈Φ(T )

(
x̂
ĝ

)
,

(
x̂
ĝ

)
〉

+ 2 〈Φ(T )
(
x̂
ĝ

)
,

(
0

ĝ′ − ĝ

)
〉

+ 〈Φ(T )
(
0

ĝ′ − ĝ

)
,

(
0

ĝ′ − ĝ

)
〉

≥ δ|x̂|2 + 2 〈B(T )x̂, ĝ′ − ĝ 〉+ 〈C(T )(ĝ′ + ĝ), ĝ′ − ĝ 〉

≥
{
δ − 2|B(T )|‖g′ − g‖0 − |C(T )|‖g′ + g‖0‖g′ − g‖0

}
|x̂|2

≥ δ
2
|x̂|2,

provided ‖g′ − g‖0 is small enough. Similarly, we have the following:

(4.15)

〈 Φ̇(t)
(
x̂
ŷ

)
,

(
x̂
ŷ

)
〉+2 〈Φ(t)

(
x̂
ŷ

)
,

(
b̂′

ĥ′

)
〉

+ 〈Φ(t)
(
σ̂′
ẑ

)
,

(
σ̂′
ẑ

)
〉

≤ −δ|θ̂|2 + 2 〈Φ(t)
(
x̂
ŷ

)
,

(
b̂′ − b̂
ĥ′ − ĥ

)
〉

+ 2 〈Φ(t)
(
σ̂
ẑ

)
,

(
σ̂′ − σ̂
0

)
〉

+ 〈Φ(t)
(
σ̂′ − σ̂
0

)
,

(
σ̂′ − σ̂
0

)
〉

≤ −δ|θ̂|2 + 2 〈A(t)x̂ +B(t)T ŷ, b̂′ − b̂ 〉
+ 2 〈B(t)x̂ + C(t)ŷ, ĥ′ − ĥ 〉
+ 2 〈B(t)T ẑ, σ̂′ − σ̂ 〉+ 〈A(t)(σ̂′ + σ̂), σ̂′ − σ̂ 〉

≤
{
− δ + 2

(
|A(t)|+ |B(t)|

)
‖b′ − b‖0(t)

+ 2
(
|B(t)|+ |C(t)|

)
‖h′ − h‖0(t)

+ 2|B(t)|‖σ′ − σ‖0(t) + |A(t)|‖σ′ + σ‖0(t)‖σ′ − σ‖0(t)
}
|θ̂|2.

Then, our assertion follows.

The above result tells us that if the equation associated with Γ is solv-
able and Γ admits a strong bridge, then all the equations “nearby” are
solvable. This is a kind of stability result.

Remark 4.3. We see from (4.14) and (4.15) that the condition (4.10) can
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be replaced by

(4.16)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2
(
|B(T )|+ |C(T )|‖g′ + g‖0

)
‖g′ − g‖0 < δ,

sup
t∈[0,T ]

{
2
(
|A(t)|+ |B(t)|

)
‖b′ − b‖0(t)

+ 2
(
|B(t)|+ |C(t)|

)
‖h′ − h‖0(t)

+
[
2|B(t)|+ |A(t)|‖σ′ + σ‖0(t)

]
‖σ′ − σ‖0(t)

}
< δ,

where δ > 0 is the one appeared in the definition of the bridge (see Defi-
nition 1.3). Actually, (4.16) can further be replaced by the following even
weaker conditions:

(4.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 〈B(T )x̂, ĝ′ − ĝ 〉+ 〈C(T )(ĝ′ + ĝ), ĝ′ − ĝ 〉 > −δ|x̂|2,
∀x, x ∈ lRn,

sup
t∈[0,T ]

{
2 〈A(t)x̂ +B(t)T ŷ, b̂′ − b̂ 〉

+ 2 〈B(t)x̂+ C(t)ŷ, ĥ′ − ĥ 〉+2 〈B(t)T ẑ, σ̂′ − σ̂ 〉
+ 〈A(t)(σ̂′ + σ̂), σ̂′ − σ̂ 〉

}
< δ|θ̂|2, ∀θ, θ ∈M.

The above means that if the perturbation is made not necessarily small but
in the right direction, the solvability will be kept. This observation will be
useful later.

To conclude this section, we present the following simple proposition.

Proposition 4.4. Let T > 0, Γ ≡ (b, σ, h, g) ∈ H [0, T ] and Φ ∈
BI(Γ; [0, T ]). Let β ∈ lR and

(4.18)

{
Φ̃(t) = e2βtΦ(t), t ∈ [0, T ],
Γ̃ = (b− βx, σ, h − βy, g) ∈ H [0, T ].

Then, Φ̃ ∈ BI(Γ̃; [0, T ]).
The proof is immediate. Clearly, the similar conclusion holds if we

replace BI(Γ; [0, T ]) by BII(Γ; [0, T ]), B(Γ; [0, T ]) or Bs(Γ; [0, T ]).

§5. Construction of Bridges
In this section, we are going to present some more results on the solvability
of FBSDEs by constructing certain bridges.

§5.1. A general consideration
Let us start with the following linear FBSDE:

(5.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

(
X(t)
Y (t)

)
=
{
A
(
X(t)
Y (t)

)
+

(
b0(t)
h0(t)

)}
dt+

(
σ0(t)
Z(t)

)
dW (t),

t ∈ [0, T ],
X(0) = x, Y (T ) = GX(T ) + g0,
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where A ∈ lR(n+m)×(n+m), G ∈ lRm×n, γ ≡ (b0, σ0, h0, g0) ∈ H[0, T ] (see
(1.3)) and x ∈ lRn. We have the following result.

Lemma 5.1. Let T > 0. Then, the two-point boundary value problem
(5.1) is uniquely solvable for all γ ∈ H[0, T ] if and only if

(5.2) det
{
(−G, I)eAt

(
0
I

)}
> 0, t ∈ [0, T ].

Proof. Let

(5.3)

(
ξ(t)
η(t)

)
=

(
I 0
−G I

)(
X(t)
Y (t)

)
.

Then we have the linear FBSDE for (ξ, η) as follows:

(5.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

(
ξ(t)
η(t)

)
=
{(

I 0
−G I

)
A
(
I 0
G I

)(
ξ(t)
η(t)

)
+

(
b0(t)

h0(t)Gb0(t)

)}
dt

+

(
σ0(t)

Z(t)−Gσ0(t)

)
dW (t), t ∈ [0, T ],

ξ(0) = x, η(T ) = g0,

Clearly, the solvability of (5.3) is equivalent to that of (5.1). By Theorem
3.7 of Chapter 2, we obtain that (5.3) is solvable for all γ ∈ H[0, T ] if and
only if (3.16) and (3.19) of Chapter 2 hold. In the present case, these two
conditions are the same as (5.2). This proves the result.

Now, let us relate the above result to the notion of bridge. From
Theorem 2.1, we know that if Γ1 and Γ2 are linked by a bridge, then
Γ1 and Γ2 have the same solvability. On the other hand, for any given Γ,
Corollary 2.4 tells us that if Γ admits a bridge, then, the FBSDE associated
with Γ admits at most one adapted solution. The existence, however, is not
claimed. The following result tells us something concerning the existence.
This result will be useful below.

Proposition 5.2. Let T0 > 0 and Γ = (b, 0, h, g) with

(5.4)

(
b(t, θ)
h(t, θ)

)
= A

(
x
y

)
, g(x) = Gx, ∀(t, θ) ∈ [0, T0]×M.

Then Γ ∈ S[0, T ] for all T ∈ (0, T0] if B(Γ; [0, T ]) �= φ for all T ∈ (0, T0].

Proof. Since B(Γ; [0, T ]) �= φ, by Corollary 2.4, (5.1) admits at most
one solution. By taking γ ≡ (b0, σ0, h0, g0) = 0 and x = 0, we see that
the resulting homogeneous equation only admits the zero solution. This is
equivalent to that (5.1) with the nonhomogeneous terms being zero only
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admits the zero solution. On the other hand, in this case, the solution of
(5.1) is given by

(5.5)

(
X(t)
Y (t)

)
= eAt

(
Y (0)

)
, t ∈ [0, T ],

with the condition

(5.6) 0 = (−G, I)
(
X(T )
Y (T )

)
= (−G, I)eAT

(
0
I

)
Y (0).

We require that (5.6) leads to Y (0) = 0. Thus, it is necessary that the left
hand side of (5.2) is non-zero for t = T . Since T ∈ (0, T0] is arbitrary, we
must have (5.2). Then, by Lemma 5.1, we have Γ ∈ S[0, T ].
Let us now look at some class of nonlinear FBSDEs. Recall the semi-

norms ‖ · ‖0(t) defined by (4.8).

Theorem 5.3. Let T0 > 0, A ∈ lR(n+m)×(n+m) and Γ ≡ (b, 0, h, g) be
defined by (5.4). Suppose (5.2) holds for T = T0 and that Bs(Γ; [0, T ]) �= φ
for all T ∈ (0, T0]. Then for any T ∈ (0, T ], there exists an ε > 0, such that
for all β ∈ lR and Γ ≡ (b, σ, h, g) ∈ H [0, T ] with

(5.7) ‖Γ‖0(t) < ε, t ∈ [0, T ],

the following FBSDE:

(5.8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d

(
X(t)
Y (t)

)
=
{(
A+ βI

)(X(t)
Y (t)

)
+

(
b(t,Θ(t))
h(t,Θ(t))

)}
dt

+

(
σ(t,Θ(t))
Z(t)

)
dW (t), t ∈ [0, T ],

X(0) = x, Y (T ) = GX(T ) + g(X(T )),

admits a unique adapted solution Θ ≡ (X,Y, Z) ∈ M[0, T ].
Proof. We note that if

(5.9) b̃(t, θ) = eβtb(t, e−βtθ), ∀(t, θ) ∈ [0, T ]×M,

then,

(5.10) ‖b̃‖0(t) = ‖b‖0(t), ∀t ∈ [0, T ].

Similar conclusion holds for σ, h and g if we define σ̃, h̃ and g̃ similar to
(5.9). On the other hand, if Θ(t) ≡ (X(t), Y (t), Z(t)) is an adapted solution
of (5.8) with β = 0, then Θ̃(t)

Δ
= eβtΘ(t) is an adapted solution of (5.8).

Thus, we need only consider the case β = 0 in (5.8). Then, by Theorems
2.1, 4.2 and Proposition 5.2, we obtain our conclusion immediately.

We note that FBSDEs (5.8) is nonlinear and the Lipschitz constants
of the coefficients could be large. Also, (5.8) is not necessarily decoupled
nor with monotonicity conditions. Thus, Theorem 5.3 gives the unique
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solvability of a (new) class of nonlinear FBSDEs, which is not covered
by the classes discussed before. On the other hand, by Remark 4.3, we
see that condition (5.7) can be replaced by something like (4.16), or even
(4.17). This further enlarges the class of FBSDEs covered by (5.8).
We note that the key assumption of Theorem 5.3 is that Γ ≡ (b, 0, h, g)

given by (5.4) admits a strong bridge. Thus, the major problem left is
whether we can construct a (strong) bridge for Γ. In the rest of this section,
we will concentrate on this issue.
We now consider the construction of the strong bridges for Γ =

(b, 0, h, g) given by (5.4). From the definition of strong bridge, we can
check that Φ ∈ Bs(Γ; [0, T ]) if it is the solution to the following differential
equation for some constants K,K, δ, ε > 0,

(5.11)

⎧⎪⎨⎪⎩
Φ̇(t) +ATΦ(t) + Φ(t)A = −δI, t ∈ [0, T ],

Φ(0) =

(
K 0
0 −K

)
,

satisfying the following additional conditions:

(5.12)

⎧⎪⎪⎨⎪⎪⎩
(I, 0)Φ(t)

(
I
0

)
≥ 0, (0, I)Φ(t)

(
0
I

)
≤ −εI, ∀t ∈ [0, T ],

(I,GT )Φ(T )

(
I
G

)
≥ εI.

On the other hand, we find that the solution to (5.11) is given by

(5.13)
Φ(t) = e−A

T t

(
K 0
0 −K

)
e−At−δ

∫ t
0

e−A
T se−Asds,

t ∈ [0, T ].

Thus, in principle, if we can find constants K,K, δ, ε > 0, such that (5.12)
holds with Φ(t) given by (5.13), then we obtain a strong bridge Φ(·) for Γ
and Theorem 5.3 applies.

§5.2. A one dimensional case
In this subsection, we are going to carry out a detailed construction of strong
bridges for a case of n = m = d = 1 based on the general consideration of
the previous subsection. The corresponding class of solvable FBSDEs will
also be determined.
Let Γ = (b, 0, h, g) be given by

(5.14)

⎧⎪⎨⎪⎩
(
b(t, x, y, z)
h(t, x, y, z)

)
= A

(
x
y

)
≡
(
−λ μ
0 0

)(
x
y

)
,

g(x) = −gx,

for all (t, x, y, z) ∈ [0,∞)× lR3, with λ, μ, g ∈ lR being constants satisfying
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the following:

(5.15) λ, μ, g > 0,
1

2
+
3gμ

2λ
− g2 ≥ 0.

We point out that conditions (5.15) for the constants λ, μ, g are not neces-
sarily the best. We prefer not to get into the most generality to avoid some
complicated computation. Let us now carry out some calculations. First
of all

(5.16) eAt =
(
e−λt μ

λ
(1− e−λt)

0 1

)
, ∀t ≥ 0.

Thus, for all t ≥ 0,

(5.17)

e−A
T t

(
K 0
0 −K

)
e−At

=

(
eλt 0

μ
λ
(1− eλt) 1

)(
K 0
0 −K

)(
eλt μ

λ (1− eλt)
0 1

)
=

(
Ke2λt Kμ

λ
(eλt − e2λt)

Kμ
λ (e

λt − e2λt) −K + Kμ2λ2 (1− eλt)2
)
,

and

(5.18)

∫ t
0

e−A
T se−Asds =

∫ t
0

(
e2λs μ

λ
(eλs − e2λs)

μ
λ
(eλs − e2λs) 1 + μ2

λ2
(1 − eλs)2

)
ds

=

( 1
2λ(e

2λt − 1) − μ
2λ2 (e

λt − 1)2
− μ
2λ2 (e

λt − 1)2 μ2

2λ3 (e
λt − 2)2 + λ2+μ2

λ2
t− μ2

2λ3

)
.

We let K > 0 be undetermined and choose

(5.19) K =
3

4λ
, δ = 1.

Then, according to (5.13), we define

Φ(t) =

(
A(t) B(t)
B(t) C(t)

)
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with

(5.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(t) = Ke2λt − δ
2λ
(e2λt − 1) =

(
K − δ

2λ

)
e2λt +

δ

2λ

=
1

4λ
(e2λt + 2),

B(t) =
Kμ

λ
(eλt − e2λt) + δμ

2λ2
(eλt − 1)2

= −μ
λ

(
K − δ

2λ

)
e2λt +

μ

λ

(
K − δ

λ

)
eλt +

δμ

2λ2

= − μ
4λ2
(e2λt + eλt − 2),

C(t) = −K + Kμ
2

λ2
(eλt − 1)2 − δμ

2

2λ3
(eλt − 2)2

− δ(λ
2 + μ2)

λ2
t+
δμ2

2λ3

=
μ2

λ2

(
K − δ

2λ

)
e2λt − 2μ

2

λ2

(
K − δ

λ

)
eλt − μ

2

λ2

(
K − 3δ

2λ

)
−K − δ(λ

2 + μ2)

λ2
t

=
μ2

4λ3
(e2λt + 2eλt + 3)−K − λ

2 + μ2

λ2
t.

From (5.12), we need the following: (ε > 0 is undetermined)

(5.21)

{
A(t) ≥ 0, C(t) ≤ −ε, ∀t ∈ [0, T ],
A(T )− 2gB(T ) + g2C(T ) ≥ ε.

Let us now look at these requirements separately.
First of all, it is clear true that A(t) ≥ 0 for all t ∈ [0, T ]. Next,

C(t) ≤ −ε for all t ∈ [0, T ], if and only if

(5.22) K ≥ ε+ μ
2

4λ3
(e2λt + 2eλt + 3)− λ

2 + μ2

λ2
t
Δ
= f(t), t ∈ [0, T ].

Since f ′′(t) ≥ 0 for all t ∈ [0,∞), the function f(t) is convex. Thus, (5.22)
holds if and only if

(5.23) K ≥ f(0) ∨ f(T ).
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Finally, we need

(5.24)

ε ≤ A(T )− 2gB(T ) + g2C(T )

=
1

4λ
(e2λT + 2) +

gμ

2λ2
(e2λT + eλT − 2)

+
g2μ2

4λ3
(e2λT + 2eλT + 3)− g2K − g

2(λ2 + μ2)

λ2
T

=
1

4λ

(
1 +
gμ

λ

)2
e2λT +

gμ

2λ2

(
1 +
gμ

λ

)
eλT − g

2(λ2 + μ2)

λ2
T

+
1

2λ
− gμ
λ2
+
3g2μ2

4λ3
− g2K.

Thus, we need (note (5.23))

(5.25)

F (T )
Δ
=
1

4λ

(
1 +
gμ

λ

)2
e2λT +

gμ

2λ2

(
1 +
gμ

λ

)
eλT − g

2(λ2 + μ2)

λ2
T

+
1

2λ
− gμ
λ2
+
3g2μ2

4λ3
− ε

≥ g2K ≥ g2
(
f(0) ∨ f(T )

)
.

We now separate two cases (with f(T ) and f(0), respectively). First of all,
for f(T ), we want

(5.26)
0 ≤ F (T )− g2f(T )

=
1

4λ

(
1 +
2gμ

λ

)
e2λT +

gμ

2λ2
eλT +

1

2λ
− gμ
λ2
− ε(1 + g2) Δ= F̂ (T ).

We see that T �→ F̂ (T ) is monotone increasing. Thus, to have the above,
it suffices to have

(5.27) 0 ≤ F̂ (0) = 3
4λ
− ε(1 + g2).

Hence, in what follows, we take

(5.28) ε =
3

4λ(1 + g2)
.

Then, (5.26) holds. Next, we claim that under (5.15) and (5.28), the fol-
lowing holds.

(5.29) F (T )− g2f(0) ≥ 0.

In fact, by the choice of ε and by (5.27),

(5.30) F (0)− g2f(0) = F̂ (0) = 0.

On the other hand,

(5.31) F ′(T ) =
1

2

(
1 +
gμ

λ

)2
e2λT +

gμ

2λ

(
1 +
gμ

λ

)
eλT − g

2(λ2 + μ2)

λ2
.
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Thus, by (5.15), it follows that

(5.32) F ′(0) =
(1
2
+
3gμ

2λ
− g2
)
≥ 0.

Then, by F ′′(T ) ≥ 0, together with (5.30) and (5.32), we must have (5.29).
Hence, we obtain (5.25). This shows that a strong bridge Φ(t) has been
constructed with K, δ and ε being given by (5.19) and (5.28), respectively,
and we may take

(5.33) K = f(0) ∨ f(T ).

It is interesting that the Φ(·) constructed in the above is not in
B(Γ0; [0, T ]) for any T > 0 since Ȧ(t) > 0. On the other hand, we note that
both A(t) and B(t) are independent of T . However, due to the fact that
K depending on T , C(t) depends on T . But, we claim that there exists a
constant c0 > 0, only depending on λ, μ, g (independent of T ), such that

(5.34)

⎧⎪⎪⎨⎪⎪⎩
− c0 − f(T ) ≤ C(t) ≤ −

3

4λ(1 + g2)
, t ∈ [0, T ],

− c0 ≤ C(T ) ≤ −
3

4λ(1 + g2)
,

where f(t) is defined by (5.22). In fact, by (5.20), (5.22), (5.28) and (5.33),
we have

(5.35) C(t) = f(t)− f(0) ∨ f(T )− 3

4λ(1 + g2)
.

Clearly, C(t) is convex. Thus,

(5.36) C(t) ≤ C(0) ∨ C(T ) = − 3

4λ(1 + g2)
, ∀t ∈ [0, T ].

On the other hand, by the fact that f(t) is strictly convex and
limt→∞ f(t) =∞, we see that there exists a unique T0 > 0, only depending
on λ and μ, such that

(5.37) C(t) ≥ f(T0)− f(0) ∨ f(T )−
3

4λ(1 + g2)
, t ∈ [0, T ].

This proves the first relation in (5.34). Next, we see easily that there exists
a unique T1 > T0, such that f(T1) = f(0), and

(5.38)

{
f(t) ≤ f(0), ∀t ∈ [0, T1],
f(t) > f(0), ∀t ∈ (T1,∞).

Hence, we obtain

(5.39) C(T ) ≥ f(T0)− f(0)−
3

4λ(1 + g2)
.

This proves the second relation in (5.34).
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Now, from Remark 4.3 and Theorem 5.3, we know that the following
FBSDEs is solvable on [0, T ].

(5.40)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dX(t) =

{
(β − λ)X(t) + μY (t) + b(t,X(t), Y (t), Z(t))

}
dt

+ σ(t,X(t), Y (t), Z(t))dW (t),

dY (t) =
{
βY (t) + h(t,X(t), Y (t), Z(t))

}
dt+ Z(t)dW (t),

X(0) = x, Y (T ) = −gX(T ) + g(X(T )),

where λ, μ, g > 0 satisfying (5.15), β ∈ lR, and Γ ≡ (b, σ, h, g) ∈ H [0, T ]
satisfying

(5.41)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2|B(T )|‖g‖0 + |C(T )|‖g‖20 < ε ∧ 1,

sup
t∈[0,T ]

{
2
(
|A(t)| + |B(t)|

)
‖b‖0(t) + 2

(
|B(t)|+ |C(t)|

)
‖h‖0(t)

+ 2|B(t)|‖σ‖0(t) + |A(t)|‖σ‖0(t)2
}
< ε ∧ 1,

with A(·), B(·) and C(·) given by (5.20) and ε > 0 given by (5.28). If we
use (4.17), then, (5.41) can be relaxed to the following:

(5.42)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2B(T )x̂ĝ + C(T )(ĝ − 2gx̂)ĝ > −(ε ∧ 1)|x̂|2, ∀x, x ∈ lR,

sup
t∈[0,T ]

{
2
(
A(t)x̂+B(t)T ŷ

)
b̂+ 2

(
B(t)x̂+ C(t)ŷ

)
ĥ

+ 2B(t)ẑσ̂ +A(t)σ̂
2
}
< (ε ∧ 1)|θ̂|2, ∀θ, θ ∈M.

If b, σ, h and g are differentiable, then, we see that (5.42) is equivalent to
the following:

(5.43)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2B(T )gx(x) + C(T )
(
gx(x)− 2g

)
gx(x) > −(ε ∧ 1), ∀x ∈ lR,⎛⎝A(t) B(t) 0

B(t) C(t) 0
0 0 B(t)

⎞⎠ (∇b(t, θ),∇h(t, θ),∇σ(t, θ))
+
{⎛⎝A(t) B(t) 0
B(t) C(t) 0
0 0 B(t)

⎞⎠ (∇b(t, θ),∇h(t, θ),∇σ(t, θ))}T
+A(t)∇σ(t, θ)

{
∇σ(t, θ)

}T
< ε ∧ 1, ∀(t, θ) ∈ [0, T ]×M,

where ∇b(t, θ) = (bx(t, θ), by(t, θ), bz(t, θ))T , and so on. Some direct com-
putation shows that the first relation in (5.43) is equivalent to the following:

(5.44)

−r(T ) Δ=−
√
ε ∧ 1
|C(T )| +

(B(T )
C(T )

− g
)2
− B(T )
C(T )

+ g ≤ gx(x)

<

√
ε ∧ 1
|C(T )| +

(B(T )
C(T )

− g
)2
− B(T )
C(T )

+ g, ∀x ∈ lR.



§5. Construction of bridges 167

By (5.34), we know that C(T ) is bounded uniformly in T , while, B(T ) →
−∞ as T →∞ (see (5.20)). Thus, by some calculation, we see that

(5.45) −
√
ε ∧ 1
|C(T )| ≥ −r(T ) ↓−∞, as T →∞,

and g need only to satisfy the following:

(5.46) −r(T ) ≤ gx(x) ≤ 0, ∀t ∈ lR.

Clearly, the larger the T , the weaker the restriction of (5.46). The second
condition in (5.43) is also checkable (although it is a little more complicated
than the first one). It is not hard to see that the choice of functions b and σ
are independent of T as A(t) and B(t) do not depend on T . However, since
C(t) depends on T , by some direct calculation, we see that in order FBSDE
(5.40) is solvable for all T > 0, we have to restrict ourselves to the case that
h(t, θ) = h(t, y). Clearly, even with such a restriction, (5.40) is still a very
big class of FBSDEs, which are not necessarily decoupled, nor monotone.
Also, σ is allowed to be degenerate. We omit the exact statement of the
explicit conditions on b, σ and h under which (5.40) is solvable to avoid some
lengthy computation. Instead, to conclude our discussion, let us finally look
at the following FBSDE:

(5.47)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dX(t) =

{
(β − λ)X(t) + μY (t) + b(t,X(t), Y (t), Z(t))

}
dt

+ σ(t,X(t), Y (t), Z(t))dW (t),

dY (t) =
{
βY (t) + h0(t)

}
dt+ Z(t)dW (t),

X(0) = x, Y (T ) = −gX(T ) + g0,

with λ, μ, g > 0 satisfying (5.15) and

(5.48)

sup
t∈[0,∞)

{
2
(
|A(t)|+ |B(t)|

)
‖b‖0(t) + 2|B(t)| ‖σ‖0(t)

+ |A(t)| ‖σ‖0(t)2
}
< ε ∧ 1.

This is a special case of (5.40) in which h ≡ h0 and g ≡ g0. Then, by the
above analysis, we know that (5.47) is uniquely solvable over any finite time
duration [0, T ]. Condition (5.48) can be carried out explicitly as follows:

(5.49)

{
2(e2λt + 2) +

2μ2

λ
(e2λt + eλt − 2)

}
‖b‖0(t)

+
2μ2

λ
(22λt + eλt − 2)‖σ‖0(t)

+ (e2λt + 2)‖σ‖0(t)2 < min{4λ,
3

1 + g2
}, t ∈ [0,∞).

It is clear that although (5.47) is a special case of (5.40), it is still very
general and in particular, it is not necessarily decoupled nor monotone.
Also, if we regard (5.47) as a nonlinear perturbation of (5.1) (with m =
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n = d = 1 and (5.14) holds), then the perturbation is not necessarily small
(for t not large).



Chapter 7

Forward-Backward SDEs with Reflections

In this chapter we study FBSDEs with boundary conditions. In the simplest
case when the FBSDE is decoupled, it is reduced to a combination of a well-
understood (forward) reflected diffusion and a newly developed reflected
backward SDE. However, the extension of such FBSDEs to the general
coupled case is quite delicate. In fact, none of the methods that we have
seen in the previous chapters seems to be applicable, due to the presence of
the reflecting process. Therefore, the route we take in this chapter to reach
the existence and uniqueness of the adapted solution is slightly different
from those we have seen before.

§1. Forward SDEs with Reflections
Let O be a closed convex domain in lRn. Define for any x ∈ ∂O the set of
inward normals to O at x by

(1.1) Nx = {γ : |γ| = 1, and 〈 γ, x− y 〉 ≤ 0, ∀y ∈ O}.

It is clear that if the boundary ∂O is smooth (say, C1), then for any x ∈ ∂O,
the set Nx contains only one vector, that is, the unit inner normal vector
at x. We denote BV ([0, T ]; lRn) to be the set of all lRn-valued functions of
bounded variation; and for η ∈ BV ([0, T ]; lRn), we denote |η|(T ) to be the
total variation of η on [0, T ].
A general form of (forward) SDEs with reflection (FSDER, for short)

is the following:

(1.2) X(t) = x+

∫ t
0

b(s,X(s))ds+

∫ t
0

σ(s,X(s))dW (s) + η(t).

Here the b and σ are functions of (t, x, ω) ∈ [0, T ]× lRn × Ω (with ω being
suppressed, as usual); and η ∈ BVF ([0, T ]; lRm), the set of all {Ft}t≥0-
adapted processes η with paths in BV ([0, T ]; lRm).

Definition 1.1. A pair of continuous, {Ft}t≥0-adapted processes (X, η) ∈
L2F([0, T ]; lR

n)×BVF ([0, T ]; lRn) is called a solution to the FSDER (1.2) if
1) X(t) ∈ O, ∀t ∈ [0, T ], a.s. ;
2) η(t) =

∫ t
0 1{X(s)∈∂O}γ(s)d|η|(s), where γ(s) ∈ NX(s), 0 ≤ s ≤ t ≤ T ,

d|η|-a.e.;
3) equation (1.2) is satisfied almost surely.

A widely used tool for solving an FSDER is the following (determinis-
tic) function-theoretic technique known as the Skorohod Problem: Let the
domain O be given,
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Problem SP (· ;O): Let ψ ∈ C([0, T ]; lRn) with ψ(0) ∈ O be given. Find
a pair (ϕ, η) ∈ C([0, T ]; lRn)×BV ([0, T ]; lRn) such that
1) ϕ(t) = ψ(t) + η(t), ∀t ∈ [0, T ], and ϕ(0) = ψ(0);
2) ϕ(t) ∈ O, for t ∈ [0, T ];
3) |η|(t) =

∫ t
0 1{ϕ(s)∈∂O}d|η|(s);

4) there exists a measurable function γ : [0, T ] �→ lRn, such that γ(t) ∈
Nϕ(t) (d|η| a.s.) and η(t) =

∫ t
0 γ(s)d|η|(s).

A pair (ϕ, η) satisfying the above 1)–4) is called a solution of the
SP (ψ;O).
It is known that under various technical conditions on the domain O

and its boundary, for any ψ ∈ C([0, T ]; lRn) there exists a unique solu-
tion to SP (ψ;O). In particular, these conditions are satisfied when O
is convex and with smooth boundary, which will be the case considered
throughout this chapter. Therefore we can consider a well-defined map-
ping Γ : C([0, T ]; lRn) �→ C([0, T ]; lRn) such that Γ(ψ)(t) = ϕ(t), t ∈ [0, T ],
where (ϕ, η) is the (unique) solution to SP (ψ;O). We will call Γ the solu-
tion mapping of the SP (· ;O).
An elegant feature of the solution mapping Γ is that it may have a

Lipschitz property: for some constant K > 0 that is independent of T , such
that for ψi ∈ C([0, T ], lRn), i = 1, 2, it holds that

(1.3) |Γ(ψ1)(·)− Γ(ψ2)(·)|∗T ≤ K|ψ1(·)− ψ2(·)|∗T ,

where |ξ|∗t denotes the sup-norm on [0, t] for ξ ∈ C([0, T ]; lRn). Conse-
quently, if (ϕi, ηi), i = 1, 2 are solutions to SP (ψi;O), i = 1, 2, respectively,
then for some constant K independent of T ,

(1.4) |ϕ1(·) + ϕ2(·)|∗T + |η1(·)− η2(·)|∗T ≤ K|ψ1(·)− ψ2(·)|∗T .

In what follows we call a (convex) domain O ⊆ lRn regular if the so-
lution mapping of the corresponding SP (· ;O) satisfies (1.3). The sim-
plest but typical example of a regular domain is the “half space” O =
lRn+

Δ
={(x1, · · · , xn) ∈ lRn : xn ≥ 0}. With a standard localization tech-

nique, one can show that a convex domain with smooth boundary is also
regular. A much deeper result of Dupuis and Ishii [1] shows that a convex
polyhedron is regular, which can be extended to a class of convex domains
with piecewise smooth boundaries. We should note that proving the regu-
larity of a given domain is in general a formidable problem with independent
interest of its own. To simplify presentation, however, in this chapter we
consider only the case when the domains are regular, although the result we
state below should hold true for a much larger class of (convex) domains,
with proofs more complicated than what we present here.
We shall make use of the following assumptions.

(A1) (i) for fixed x ∈ lRn, b(·, x, ·) and σ(·, x, ·) are {Ft}t≥0-progressively
measurable;
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(ii) there exists constant K > 0, such that for all (t, ω) ∈ [0, T ]×Ω and
x, x′ ∈ lRn, it holds that

(1.5)
|b(t, x, ω)− b(t, x′, ω)| ≤ K|x− x′|;
|σ(t, x, ω) − σ(t, x′, ω)| ≤ K|x− x′|.

Theorem 1.2. Suppose that O ⊆ lRn is a regular, convex domain; and
that (A1) holds. Then the SDER (1.2) has a unique strong solution.

Proof. Let Γ be the solution mapping to SP (· ;O). Consider the fol-
lowing SDE (without reflection):

(1.6) X̃(t) = x+

∫ t
0

b̃(s, X̃(·))ds +
∫ t
0

σ̃(s, X̃(·))dW (s),

where for y(·) ∈ C([0, T ]; lRn),

b̃(t, y(·), ω) = b(t,Γ(y)(t), ω); σ̃(t, y(·), ω) = σ(t,Γ(y)(t), ω).

Note that for any {Ft}t≥0-adapted, continuous process Y , the processes
b̃(·, Y (·), ·) and σ̃(·, Y (·), ·), are all {Ft}t≥0-progressively measurable. Fur-
ther, the regularity of the domain O implies that there exists a constant
K0 > 0 depending only on the Lipschitz constant of Γ and K in (A1), such
that for any {Ft}t≥0-adapted, continuous processes Y and Y ′, it holds that

|̃b(s, Y (·, ω), ω)− b̃(s, Y ′(·, ω), ω)|∗t ≤ K0|Y (s, ω)− Y ′(s, ω))|∗t ;
|σ̃(s, Y (·, ω), ω)− σ̃(s, Y ′(·, ω), ω)|∗t ≤ K0|Y (s, ω)− Y ′(s, ω))|∗t ,

for all (t, ω) ∈ [0, T ]× O. Therefore, by the standard theory of SDEs (cf.
e.g., Protter [1]), we know that the SDE (1.6) has a unique strong solution

X̃.
Next, we define a processX(t) = Γ(X̃)(t), t ∈ [0, T ]. Then by definition

of the Skorohod problem, we see that there exists a process η such that
(X, η) satisfies the conditions 1)–3) of Definition 1.1. Consequently, for all
t ∈ [0, T ], we have

X(t) = X̃(t) + η(t)

= x+

∫ t
0

b̃(s, X̃(·))ds +
∫ t
0

σ̃(s, X̃(·))dW (s) + η(t)

= x+

∫ t
0

b(s,X(s))ds+

∫ t
0

σ(s,X(s))dW (s) + η(t).

In other words, (X, η) is a solution to the SDER (1.5). The uniqueness fol-
lows easily from the construction of the solution and the Lipschitz property
(1.3) and (1.4). The proof is complete.

§2. Backward SDEs with Reflections
In this section we study the reflected BSDEs (BSDERs, for short). For
clearer notation we will call the domain in which a BSDE lives by O2,
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to distinguish it from those in the previous section. A slight difference is
that we shall allow O2 to “move” when time varies, and even randomly.
Namely, we shall consider a family of closed, convex domains {O2(t, ω) :
(t, ω) ∈ [0, T ]× Ω} in lRm satisfying certain conditions. Let ξ ∈ O2(T, ω)
be given, we consider the following SDE:

(2.1) Y (t) = ξ +

∫ T
t

h(s, Y (s), Z(s))ds −
∫ T
t

Z(s)dW (s) + ζ(T )− ζ(t).

Analogous to the FSDER, we define the adapted solution to a BSDER
as follows:

Definition 2.1. A triplet of processes (Y, Z, ζ) ∈ L2F(Ω;C([0, T ]; lRm)) ×
L2F(0, T ; lR

m×d)×BVF ([0, T ]; lRm) is called a solution to (2.1) if
(1) Y (t, ω) ∈ O2(t, ω), for all t ∈ [0, T ], P-a.e.ω;
(2) for any {Ft}t≥0-adapted, RCLL process V (t) such that V (t) ∈

O2(t, ·), ∀t ∈ [0, T ], a.s. , it holds that 〈Y (t)−V (t), dζ(t) 〉 ≤ 0, as a signed
measure.

We note that Definition 2.1 more or less requires that the domains
{O2(·, ·)} be “measurable” (or even “progressively measurable”) in (t, ω) in
a certain sense, which we now describe. Let y ∈ lRm and A ⊆ lRm be any
closed set, we define the projection operator Pr with respect to A, denoted
Pr(· ;A), by

(2.2) Pr(y;A) = y − 1
2
∇yd2(y,A), y ∈ lRm;

where d(·, ·) is the usual distance function:

(2.3) d(y,A)
Δ
= inf{|y − x| : x ∈ A}.

For each y ∈ lRm, we define β(t, y, ω) = Pr(y;O2(t, ω)). Throughout this
chapter we shall assume the following technical condition.

(A2) (i) For every fixed y ∈ lRm, the process (t, ω) �→ β(t, y, ω) is {Ft}t≥0-
progressively measurable;
(ii) for fixed y ∈ lRm, it holds that

(2.4) E

∫ T
0

|β(t, y, ·)|2dt <∞.

Before we go any further, let us look at some examples.

Example 2.2. Let Hm be the collection of all compact subsets of lRm,
endowed with the Hausdorff metric d∗, that is,

(2.5) d∗(A,B) = max{sup
x∈A
d(x,B), sup

y∈B
d(y,A)}, ∀A,B ∈ Hm.

It is well-known that (Hm, d∗) is a complete metric space. Now suppose that
O2 Δ={O2(t, ω) : (t, ω) ∈ [0, T ]×Ω} ⊆ (Hm, d∗), then we can view O2 as an
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(Hm, d∗)-valued process, and thus assume that it is {Ft}t≥0-progressively
measurable. Noting that for fixed y ∈ lRm, the mapping A �→ d(y,A) is a
continuous mapping from (Hm, d∗) to lR, as

|d(y,A)− d(y,B)| ≤ d∗(A,B), ∀y ∈ lRm, ∀A,B ∈ Hm,

the composition function (t, ω) �→ d2(y,O(t, ω)) is {Ft}t≥0-progressively
measurable as well, which then renders ∇yd2(y,O2(·, ·)) an {Ft}t≥0-
progressively measurable process, for any fixed y ∈ lRm. Consequently,
O2 satisfies (A2)-(i).
Next, using elementary inequality |d(z1, A) − d(z2, A)| ≤ |z1 − z2|,

∀z1, z2 ∈ lRm, ∀A ⊆ lRm one shows that

|∇yd2(y,O2(t, ω))| ≤ 2d(y,O2(t, ω)).

Assumption (A2)-(ii) is easily satisfied provided d(y,O2(·, ·)) ∈ L2([0, T ]×
Ω), which is always the case if, for example, 0 ∈ O2(t, ω) for all (t, ω), or,
more generally, O2(t, ω) has a selection in L2F(0, T ; Ω).
Example 2.3. As a special case of Example 2.2, the following moving do-
mains are often seen in applications. Let {O(t, x) : (t, x) ∈ [0, T ]× lRn} be
a family of convex, compact domains in lRm such that
(i) the mapping (t, x) �→ O(t, x) is continuous as a function from [0, T ]×

lRn to (Hm, d∗).
(ii) for each (t, x), 0 ∈ O(t, x); and there exists a constant C > 0 such

that

sup
t∈[0,T ]

d∗(O(t, x),O(t, 0)) ≤ C|x|.

Let X ∈ L2F(Ω;C([0, T ]; lRn)), and define O2(t, ω)
Δ
=O(t,X(t, ω)), (t, ω) ∈

[0, T ]×Ω. We leave it to the readers to check that O2 satisfies (A2).

Example 2.4. Continuing from the previous examples, let us assume that
m = 1 and O(t, x) = [L(t, x), U(t, x)], where −∞ < L(t, x) < 0 < U(t, x) <
∞ for all (t, x) ∈ [0, T ]× lRn. Suppose that the functions L and U are both
uniformly Lipschitz in x, uniformly in t ∈ [0, T ]. Then a simple calculation
using the definition of the Hausdorff metric shows that

d∗(O(t, 0),O(t, x)) = max{|L(t, x)− L(t, 0)|, |U(t, x)− U(t, 0)|} ≤ C|x|.

Thus O2 satisfies (A2), thanks to the previous example.

Let us now turn our attention to the well-posedness of the BSDER (2.1).
We shall make use of the following standing assumptions on coefficient
h : [0, T ]× lRm × lRm×d × Ω �→ lRm and the domain {O2(t, ω)}.
(A3) (i) for each (y, z) ∈ lRm×lRm×d, h(·, y, z, ·) is an {Ft}t≥0-progressively
measurable process; and for fixed (t, z) ∈ [0, T ] × lRm×d and a.e.ω ∈ Ω,
h(t, ·, z, ω) is continuous;



174 Chapter 7. FBSDEs with Reflections

(ii) E
∫ T
0 |h(t, 0, 0)|2dt <∞;

(iii) there exist α ∈ lR and k2 > 0, such that for all t ∈ [0, T ], y, y′ ∈
lRm, and z, z′ ∈ lRm×d, it holds P-a.s. that⎧⎪⎨⎪⎩

〈 y − y′, h(t, y, z)− h(t, y′, z) 〉 ≤ α|y − y′|2;
|h(t, y, z)− h(t, y, z′)| ≤ k2|z − z′|;
|h(t, y, z)− h(t, 0, z)| ≤ k2(1 + |y|).

(iv) The domains {O2(t, ·)} is “non-increasing”. In other words, it
holds that

O(t, ω) ⊆ O(s, ω), ∀t ≥ s, a.s.

Our main result of this section is the following theorem.

Theorem 2.5. Suppose that (A2) and (A3) are in force. Then the BSDER
(2.1) has a unique (strong) solution. Furthermore, the process ζt is abso-
lutely continuous with respect to Lebesgue measure, and for any process Vt
such that Vt(ω) ∈ O2(t, ω), ∀t ∈ [0, T ], a.s. , it holds that

(2.6) 〈 dζt
dt
, Yt − Vt 〉 ≤ 0, ∀t ∈ [0, T ], a.s.

Remark 2.6. Suppose m = 1 and O2 = [L,U ], for appropriate processes
L and U . Denote by ζ = ζ+−ζ−, ζ+0 = ζ−0 = 0, the minimal decomposition
of ζ as a difference of two non-decreasing processes. By replacing V in (2.6)
by

V Lt = Lt1{ dζtdt ≥0} + Yt1{ dζtdt <0},

V Ut = Ut1{ dζtdt ≤0} + Yt1{dζtdt >0}, t ∈ [0, T ],

respectively, we obtain

(2.7) 〈Yt − Lt, dζ+t 〉 = 0, 〈Yt − Ut, dζ−t 〉 = 0, ∀t ∈ [0, T ], a.s.

Proof of Theorem 2.5. Since the proof is quite lengthy, we shall split it
into several lemmas. To begin with, let us first recall the notion of Yosida
approximation, which is another typical route of attacking the existence and
uniqueness of an SDE with reflection other than using Skorohod problem.
Let ϕ be any proper, lower semicontinuous (l.s.c., for short), convex

function (by proper we mean that ϕ is not identically equal to +∞). Let
D(ϕ) = {x : ϕ(x) <∞}. We define the subdifferential of ϕ, denoted by ∂ϕ,
as

∂ϕ(y)
Δ
={x∗ ∈ lRm : 〈x∗, y − x 〉 ≥ 0, ∀x ∈ D(ϕ)}.

In what follows we denote A
Δ
= ∂ϕ. Define, for each ε > 0, a function

(2.8) ϕε(y)
Δ
= inf
x∈lRm

{ 1
2ε
|y − x|2 + ϕ(x)

}
.
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Since lRm is a Hilbert space, and ϕ is a l.s.c. proper convex mapping, the
the following result can be found in standard text (cf. Barbu [1, Chapter
II]):

Lemma 2.7. (i) The function ϕε is (Fréchet) differentiable.

(ii) The Fréchet differential of ϕε, denoted by Dϕε, satisfies Dϕε = Aε,
where Aε is the Yosida approximation of A, define by

(2.9) Aε(y) =
1

ε
(y − Jε(y)), where Jε(y) = (I + εA)

−1(y).

(iii) |Jε(x) − Jε(y)| ≤ |x− y|; |Aε(x)−Aε(y)| ≤ 1
ε |x− y|,

(iv) Aε(y) ∈ ∂ϕ(Jε(y)).

(v) |Aε(y)| ↗ε→0
{
|A0(x)|, if x ∈ O;
+∞, otherwise,

where A0(y)
Δ
=Pr∂ϕ(y)(0),

y ∈ lRm.

Let us now specify a l.s.c. proper convex function to fit our discussion.
For any convex, closed subset O ⊆ lRm, we define its indicator function,
denoted by ϕ := IO to be

ϕ(y)
Δ
=

{
0 y ∈ O;
+∞ y /∈ O,

In this case, D(ϕ) = O. Now by definitions (2.8) and (2.9), we have

ϕε(y) = inf
x∈O

1

2ε
|y − x|2 = 1

2ε
d2(y,O),

Aε(y) = Dϕε(y) =
1

2ε
∇d2(y,O) = 1

ε
(y − Pr(y,O)),

Consequently, we have

(2.10)

⎧⎪⎨⎪⎩
Jε(y) = Pr(y;O), ∀ε > 0;
Aε(y) = 0, ∀y ∈ O, ∀ε > 0;
A0(y) = 0, ∀y ∈ O.

Further, we replace O by the (Hm, d∗)-valued process {O2}, then

(2.11)

ϕε(t, y, ω) =
1

2ε
IO2(t,ω)(y), ∀ε > 0;

Jε(t, y, ω) = (I + εA(t, ·, ω))−1(y);

Aε(t, y, ω) =
1

ε
(y − Jε(t, y, ω)).

By (2.10) we know that Jε(t, y, ω) = Pr(y,O2(t, ω)), and by assumption
(A2) we have that for every ε > 0, Jε(·, y, ·) ∈ L2F(0, T ; lRm) for all y ∈ lRm.
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Let us now consider the following approximation of (2.1):

(2.12)

Y ε(t) = ξ +

∫ T
t

h(s, Y ε(s), Zε(s))ds−
∫ T
t

Zε(s)dW (s)

−
∫ T
t

Aε(Y
ε(s))ds,

where Aε is the Yosida approximation of A(t, ω) = ∂IO2(t,ω) defined by
(2.11). Since Aε is uniform Lipschitz for each fixed ε, by Lemma 2.7-(iii)
and by slightly modifying the arguments in Chapter 1, §4 to cope with the
current situation where α in (A3) is allowed to be negative, one shows that
(2.12) has a unique strong solution (Y ε, Zε) satisfying

(2.13) E
{
sup
0≤t≤T

|Y ε(t)|2 +
∫ T
0

‖Zε(t)‖2dt
}
<∞.

We will first show that as ε→ 0, (Y ε, Zε) converges in a certain sense, then
show that the limit will give the solution of (2.12). To begin with, we need
some elementary estimates.

Lemma 2.8. Suppose that condition (A3) holds, and that ξ ∈ L2FT (Ω).
Then there exists a constant C > 0, independent of ε, such that the follow-
ing estimates hold

(2.14)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E
{
sup
t∈[0,T ]

|Y ε(t)|2 +
∫ T
0

|Zε(t)|2dt
}
≤ C;

E
{∫ T
0

|Aε(t, Y ε(t))|2dt
}
≤ C.

Proof. The proof of the first inequality is quite similar to those we
have seen many times before, with the help of the properties of Yosida
approximations listed in §2.2, we only prove the second one. First note that
since O2 is convex, so is ϕε(t, ·, ω) (recall (2.11)). We have the following
inequality (suppressing ω):

(2.15) ϕε(t, y) + 〈Dϕε(t, y), ỹ − y 〉 ≤ ϕε(t, ỹ), ∀(t, y), a.s.

Now let t = t0 < t1 < · · · < tn = T be any partition of [t, T ]. Then (2.15)
leads to that

(2.16)
ϕε(ti, Y

ε(ti)) + 〈Dϕε(ti, Y ε(ti)), Y ε(ti+1)− Y ε(ti) 〉
≤ ϕε(ti, Y ε(ti+1)) ≤ ϕε(ti+1, Y ε(ti+1)), a.s. ,

where the last inequality is due to Assumption (A3)-iv). Summing both
sides of (2.16) up and letting the mesh size of the partition maxi |ti+1−ti| →
0 we obtain that

(2.17) ϕε(t, Y
ε(t)) +

∫ T
t

〈Dϕε(s, Y ε(s)), dY ε(s) 〉 ≤ ϕε(T, ξ) = 0.
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Thus, recall the equation for Y ε we have

(2.18)

ϕε(t, Y
ε(t)) +

1

ε

∫ T
t

|Dϕε(Y ε(s))|2ds

≤ ϕε(T, ξ) +
∫ T
t

〈Dϕε(s, Y ε(s)), h(s, Y ε(s), Zε(s)) 〉 ds

−
∫ T
t

〈Dϕε(Y ε(s)), ZεdWs 〉 .

By Cauchy-Schwartz inequality and (A3)-(iii),

〈Dϕε(t, y), h(t, y, z) 〉 ≤
1

2ε
|Dϕε(t, y)|2 + εC(1 + ‖z‖2 + |y|2), ∀(t, y, z).

We now recall that ϕε ≥ 0; ξ ∈ O2(T, ·) (i.e., ϕε(T, ξ) = 0); and
Aε(t, y, ω) = Dϕε(t, y, ω). Using the first inequality of this lemma we ob-
tain that

E

∫ T
t

|Aε(t, Y ε(s))|2ds = E
∫ T
t

|Dϕε(Y ε(s))|2ds

≤ C
(
1 + E sup

t∈[0,T ]
|Y ε(t)|2 + E

∫ T
0

‖Zε(t)‖2dt
)
≤ C̃,

where C̃ > 0 is some constant independent of ε. Thus, by a slightly abuse
of notations on the constant C, we obtain the desired estimate.

Lemma 2.9. Suppose that the assumptions of Lemma 2.8 hold. Then
there exists a constant C > 0, such that for any ε, δ > 0, it holds that

(2.19) E
{
sup
t∈[0,T ]

|Y ε(t)− Y δ(t)|2 +
∫ T
0

|Zε(t)− Zδ(t)|2dt
}
≤ (ε+ δ)C.

Proof. Applying Itô’s formula we get

(2.20)

|Y ε(t)− Y δ(t)|2 +
∫ T
t

‖Zε(s)− Zδ(s)‖2ds

+ 2

∫ T
t

〈Aε(s, Y ε(s)) −Aδ(s, Y δ(s)), Y ε(s)− Y δ(s) 〉 ds

=2

∫ T
t

〈h(s, Y ε(s), Zε(s))− h(s, Y δ(s), Zδ(s)), Y ε(s)− Y δ(s) 〉ds

− 2
∫ T
t

〈 Y ε(s)− Y δ(s), [Zε(s)− Zδ(s)]dW (s) 〉 .

Since Aε(t, y, ω) ∈ ∂ϕ(Jε(y)), we have by definition that

〈Aε(t, y, ω), Jε(t, y, ω)− x 〉 ≥ 0, ∀ x ∈ O2(t, ω).
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In particular for any ỹ ∈ lRm, and any δ > 0, Jδ(t, ỹ, ω) ∈ O2(t, ω) and
therefore

〈Aε(t, y, ω), Jε(t, y, ω)− Jδ(t, ỹ, ω) 〉 ≥ 0, ∀ ỹ ∈ lRm, a.e.ω ∈ Ω.

Similarly,

〈Aδ(t, ỹ, ω), Jδ(t, ỹ, ω)− Jε(t, y, ω) 〉 ≥ 0, ∀ y ∈ lRm, a.e.ω ∈ Ω.

Consequently, we have (suppressing ω)

(2.21)

〈Aε(t, y)−Aδ(t, ỹ), y − ỹ 〉
= 〈Aε(t, y), [y − Jε(t, y)] + [Jε(t, y)− Jδ(t, ỹ)] + Jδ(t, ỹ)− ỹ 〉
+ 〈Aδ(t, ỹ), [ỹ − Jδ(t, ỹ)] + [Jδ(t, ỹ)− Jε(t, y)] + Jε(t, y)− y 〉

≥ − 〈Aε(t, y), δAδ(t, ỹ) 〉− 〈Aδ(t, ỹ), εAε(t, y) 〉
= − (ε+ δ) 〈Aε(t, y), Aδ(t, ỹ) 〉 .

Also, some standard arguments using Schwartz inequality lead to that

(2.22) 2 〈h(t, y, z)− h(t, ỹ, z̃), y − ỹ 〉 〉 ≤ 1
2
‖z − z̃‖2 + C|y − ỹ|2.

Combining (2.20)—(2.22) and using the Burkholder and Gronwall inequal-
ities we obtain, for some constant C > 0,

E
{
sup
t∈[0,T ]

|Y ε(t)− Y δ(t)|2 +
∫ T
0

‖Zε(t)− Zδ(t)‖2dt
}

≤(ε+ δ)E
∫ T
0

∣∣∣ 〈Aε(t, Y ε(t)), Aδ(t, Y δ(t)) 〉 ∣∣∣dt
≤(ε+ δ)

{
E

∫ T
0

|Aε(Y ε(t))|2dt · E
∫ T
0

|Aδ(Y δ(t))|2dt
} 1
2 ≤ (ε+ δ)C,

thanks to (2.14). This proves the Lemma.

As a direct consequence of Lemma 2.8, we see that if we send ε to
zero along an arbitrary sequence {εn}, then there exist processes Y ∈
L2F(Ω;C([0, T ]; lR

m)), Z ∈ L2F(Ω × [0, T ]; lRm)), independent of the choice
of the sequence {en} chosen, such that

(Y n, Zn)
Δ
=(Y εn , Zεn)→ (Y, Z), as n→∞,

strongly in L2F(Ω;C([0, T ]; lR
m))× L2F(Ω× [0, T ]; lRm).

Furthermore, by Lemma 2.8 and the equation (2.12), it follows that
for some η ∈ L2F(0, T ; lRm), ζ ∈ L2F(Ω;C([0, T ]; lRm)), and possibly along a
subsequence which we still denote by {εn}, it holds that⎧⎪⎨⎪⎩

Aεn(Y
εn(·))→ −η(·), weakly in L2F(0, T ; lR

m);

E
{
sup
0≤t≤T

∣∣∣ ∫ t
0

Aεn(Y
εn(s))ds + ζ(t)

∣∣∣2}→ 0, as n→∞.
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Here, we use −η and −ζ to match the signs in (2.1) and (2.12). Obviously,
we see that the limiting processes Y , Z, and ζ will satisfy the SDE (2.1),
and the proof of Theorem 2.6 will be complete after we prove the following
lemma.

Lemma 2.10. Suppose that the process (Y, Z), η, and ζ are defined as
before. Then (Y, Z, ζ) satisfies (2.11), such that

(i) E|ζ|(T ) = E
∫ T
0
|η(t)|dt <∞;

(ii) Y (t) ∈ O2(t, ·), ∀t ∈ [0, T ], a.s.;
(iii) for any RCLL, {Ft}t≥0-adapted process V , 〈Y (t)−V (t), η(t) 〉 ≤ 0,

a.s., as a signed measure.

Proof. (i) We first show that ζ has absolutely continuous paths al-
most surely and that ζ̇ = η. To see this, note that η is the weak limit of
Aεn(Y

εn)’s. By Mazur’s theorem, there exists an convex combination of

Aεn(Y
εn)’s, denoted by Ãεn(Y

εn), such that Ãεn(Y
εn) → η, strongly in

L2F(Ω× [0, T ]; lRm)). Note that for this sequence of convex combinations of
the sequence Aεn(Y

εn), we also have

E
{
sup
0≤t≤T

∣∣∣ ∫ t
0

Ãεn(Y
εn(s))ds + ζ(t)

∣∣∣2}→ 0, as n→∞.

Thus the uniqueness of the limit implies that ζ(t) =
∫ t
0
η(s)ds, ∀t ∈ [0, T ].

Furthermore, since L2F(Ω) ⊆ L1(Ω), we derive (i) immediately.
(ii) In what follows we denote d(y, t, ω) = d(y,O2(t, ω)). Since O2(t, ω)

is convex for fixed (t, ω), d(·,O2(t, ω)) is a convex function. Further, since
O2 has smooth boundary, one derives from (2.9) that

d(y, t, ω) = |y − Pr(y,O2(t, ω))| = |y − Jε(y)| = ε|Aε(y, t, ω)|.

for all y ∈ lRm, and t ∈ [0, T ], P -a.s.. Hence by part (i), we see that

(2.23)

E

∫ T
0

d(Y ε(t), t, ω)dt ≤ εE
∫ T
0

|Aε(Y ε(t))|dt

≤ ε
√
TE
{∫ T
0

|Aε(Y ε(t))|2dt
} 1
2 → 0.

Next, define for each (t, ω) ∈ [0, T ]× Ω the conjugate function of d(·, t, ω)
by

(2.24) G(z, t, ω)
Δ
= inf
y
{d(y, t, ω)− 〈 z, y 〉},

and define the effective domain of G by

(2.25) DG(t, ω) = {z ∈ lR : G(z, t, ω) > −∞}.

Since d(·, t, ω) is convex and continuous everywhere, it must be identi-
cal to its biconjugate function, or equivalently, its closed convex hull (see
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Hiriart-Urruty-Lemaréchal [1]). Consequently, the following conjugate re-
lation holds:

(2.26) d(y, t, ω) = sup
z∈DG(t,ω)

{G(z, t, ω) + 〈 z, y 〉};

and both the infimum of (2.24) and the supremum of (2.26) are achieved
for every fixed (t, ω). Now for fixed (t, ω), and any z0 ∈ DG(t, ω), we let
y0 = y0(t, ω) be the minimizer in (2.24). Then

d(y0, t, ω)− 〈 y0, z0 〉 = G(z0, t, ω) ≤ d(y, t, ω)− 〈 y, z0 〉, ∀y ∈ lRn,

and hence

〈 y − y0, z0 〉 ≤ d(y, t, ω)− d(y0, t, ω), ∀y ∈ lRn.

Since it is easily checked that d(·, t, ω) is uniformly Lipschitz with Lipschitz
constant 1, we deduce from above that |z0| ≤ 1. Namely DG(t, ω) ⊆ [−1, 1].
Now let Y be the limit process of Y εn , we apply a measurable selec-

tion theorem to obtain a (bounded) {Ft}t≥0-adapted process R, such that
R(t, ω) ∈ DG(t, ω) ⊆ [−1, 1], ∀t, a.s. ; and

(2.27)

{
d(Y (t, ω), t, ω) = G(R(t, ω), t, ω) + 〈R(t, ω), Y (t, ω)),
d(Y εn(t, ω), t, ω) ≥ G(R(t, ω), t, ω) + 〈R(t, ω), Y εn(t, ω)),

Therefore, recall that Y εn → Y , we have

E

∫ T
0

d(Y (t), t, ·)dt = E
∫ T
0

{
G(Y (t), t, ·) + 〈R(t), Y (t) 〉 dt

= lim
n→∞E

∫ T
0

{
G(Y (t), t, ·) + 〈R(t), Y n(t) 〉 dt

≤ lim
n→∞E

∫ T
0

d(Y εn(t), t, ·)dt = 0,

thanks to (2.23). That is, E
∫ T
0
d(Y (t), t, ·)dt = 0, which implies that

Y (t, ω) ∈ O2(t, ω), dt× dP-a.e. Thus the conclusion follows from the con-
tinuity of the paths of Y .

(iii) Let V (t) be any {Ft}t≥0-adapted process such that V (t, ω) ∈
O2(t, ω), ∀t ∈ [0, T ], P -a.s. For every ε > 0, and t ∈ [0, T ], consider

(2.28) Λε(t) = E

∫ t
0

〈Jε(Y ε(s))− V (s), Aε(Y ε(s)) 〉 ds.

Since V (t) ∈ O2(t, ·), for all t, and Aε(Y ε(t)) ∈ ∂IO2(t,·)(Jε(Y ε(t)) (see
Lemma 2.7-(iv)), we have

〈Jε(Y ε(t))− V (t), Aε(t, Y ε(t)) 〉 ≥ 0.
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Namely, Λε(t) ≥ 0, ∀ε > 0 and t ∈ [0, T ]. On the other hand, since

(2.29)

Λε(t) = E

∫ t
0

{
〈Jε(Y ε(s))− Y ε(s), Aε(s, Y ε(s)) 〉

+ 〈Y ε(s)− V (s), Aε(s, Y ε(s)) 〉
}
ds

= E

∫ t
0

{
− ε|Aε(s, Y ε(s))|2+〈Y ε(s)− V (s), Aε(s, Y ε(s)) 〉

}
ds

Now using the uniform boundedness (2.14) and the weak convergence
of {Aεn(·, Y εn)(·))}, and the fact that Y εn converges to Y strongly in
L2F(Ω;C([0, T ]; lR

m)), one derives easily by sending n→∞ in (2.29) that

0 ≤ E
∫ t
0

〈Y (s)− V (s),−η(s) 〉 ds, ∀t ∈ [0, T ].

Or equivalently,

〈 Y (t)− V (t), η(t) 〉 = 〈Y (t)− V (t), dζ
dt
(t) 〉 ≤ 0, ∀t ∈ [0, T ], a.s.

as a (random) signed measure. Thus completes the proof of Lemma 2.10.

§3. Reflected Forward-Backward SDEs
We are now ready to formulate forward-backward SDEs with reflection
(FBSDER, for short). Let O1 be a closed, convex domain in lRn, and
O2 = {O2(t, ω) : (t, ω) ∈ [0, T ] × lRn × Ω} be a family of closed, convex
domains in lRm. Let x ∈ O1, and g : lRn × Ω �→ lRm be a given FT -
measurable random field satisfying

(3.1) g(x, ω) ∈ O2(T, ω), ∀(x, ω).

Consider the following FBSDER:

(3.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xt = x+

∫ t
0

b(s,Xs, Ys, Zs)ds+

∫ t
0

σ(s,Xs, Ys, Zs)dWs + ηt;

Yt = g(XT ) +

∫ T
t

h(s,Xs, Ys, Zs)ds−
∫ T
t

ZsdWs + ζT − ζt;

Definition 3.1. A quintuple of processes (X,Y, Z, η, ζ) is called an adapted
solution of the FBSDER (3.2) if
1) (X,Y ) ∈ L2F(Ω, C(0, T ; lRn × lRm)), Z ∈ L2F(0, T ; lRm×d), (η, ζ) ∈
BVF (0, T ; lRn × lRm);

2) Xt ∈ O1, Yt ∈ O2(t, ·), ∀t ∈ [0, T ], a.s. ;
3) |η|t =

∫ t
0 1{Xs∈∂O1}d|η|s; ηt =

∫ t
0 γsd|η|s, ∀t ∈ [0, T ], a.s. , for some

progressively measurable process γ such that γs ∈ NXs(O1), d|η|-a.e. ;
4) for all RCLL and progressively measurable processes U such that Ut ∈
O2(t, ·), ∀t ∈ [0, T ], a.s. , one has 〈Yt − Ut, dζt 〉 ≤ 0, ∀t ∈ [0, T ], a.s. ;
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5) (X,Y, Z, η, ζ) satisfies the SDE (3.2) almost surely.

In light of assumptions (A1)-(A3), we will assume the following

(A4) (i) O1 has smooth boundary;
(ii) O2(t, ω) ⊆ O2(s, ω), ∀t ≥ s, a.s.; and for fixed y ∈ lRm, the map-
ping (t, ω) �→ β(t, y, ω) Δ=Pr(y;O2(t, ω) belongs to L2F([0, T ]; lRm).

(iii) The coefficients b, h, σ, and g are random fields defined on
[0, T ] × lRn × lRm × lRm×d such that for fixed (x, y, z), the pro-
cesses b(·, x, y, z, ·), h(·, x, y, z, ·), and σ(·, x, y, z, ·) are {Ft}t≥0-
progressively measurable, and g(x, ·) is FT -measurable.

(iv) For fixed (t, x, z) and a.e. ω, h(t, x, ·, z, ω) is continuous, and there
exists a constantK > 0 such that |h(t, x, y, z, ω)| ≤ K(1+ |x|+ |y|),
for all (t, x, y, z, ω). Moreover,

E

∫ T
0

|b(t, 0, 0, 0)|2dt+ E
∫ T
0

|σ(t, 0, 0, 0)|2dt+ E|g(0)|2 <∞.

(v) There exist constants ki ≥ 0, i = 1, 2 and γ ∈ lR such that for all
(t, ω) ∈ [0, T ] × Ω and x Δ=(x, y, z),xi Δ=(xi, yi, zi) ∈ lRn × lRm ×
lRm×d, i = 1, 2, and x0 Δ=(x, y) for x = (x, y, z).

• |b(t,x1, ω)− b(t,x2, ω)| ≤ K|x1 − x2|;
• 〈h(t, x, y1, z, ω)− h(t, x, y2, z, ω), y1 − y2 〉 ≤ γ|y1 − y2|2;
• |h(t, x1, y, z1, ω)− h(t, x2, y, z2, ω)| ≤ K(|x1 − x2|+ ‖z1 − z2‖);
• ‖σ(t,x1, ω)− σ(t,x2, ω)‖2 ≤ K2|x01 − x02|2 + k21‖z1 − z2‖2;
• |g(x1, ω)− g(x2, ω)| ≤ k2|x1 − x2|.

We should note that if k1 = k2 = 0, then σ and g are independent
of z, just as the many cases we considered before. Therefore, the FBSDE
considered in this chapter is more general. We note also that the method
presented here should also work when there is no reflection involved (e.g.,
O1 = lRn, O2 ≡ lRm).

§3.1. A priori estimates
We first establish a new type of a priori estimates that is different from
what we have seen in the previous chapters. To simplify notations we shall
denote, for t ∈ [0, T ), H(t, T ) = L2F(t, T ; lR), and let Hc(t, T ) be the subset
of H(t, T ) consisting of all continuous processes. For any λ ∈ lR, define an
equivalent norm on H(t, T ) by:

‖ξ‖t,λ Δ=
{
E

∫ T
t

e−λs|ξ(s)|2ds
} 1
2

.

Then Hλ(t, T )
Δ
={ξ ∈ H(t, T ) : ‖ξ‖t,λ < ∞} = H(t, T ). We shall also use

the following norm on Hc(t, T ):

ξ t,λ,β
Δ
= e−λTE|ξT |2 + β‖ξ‖2t,λ, ξ ∈ Hc(t, T ), λ ∈ lR, β > 0,
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and denote Hλ,β(t, T ) to be the completion ofH
c(t, T ) under norm · t,λ,β.

Then for any λ and β, Hλ,β(t, T ) is a Banach space. Further, if t = 0, we

simply denote ‖·‖λ Δ= ‖·‖0,λ; · 2λ,β
Δ
= · 20,λ,β ; H =H(0, T ); Hc = Hc(0, T );

Hλ = Hλ(t, T ), and Hλ,β = Hλ,β(t, T ).
Moreover, the following functions will be frequently used in this section:

for λ ∈ lR and t ∈ [0, T ],

(3.3) A(λ, t) = e−(λ∧0)t; B(λ, t) =
1− e−λt
λ

= t

∫ 1
0

e−λtθdθ.

It is easy to see that, for all λ ∈ lRn, B(λ, ·) is a nonnegative, increasing
function, A(λ, t) ≥ 1; and B(λ, 0) = 0, A(λ, 0) = 1.
Lemma 3.2. Let (A4) hold. Let (X,Y, Z, η, ζ) and (X ′, Y ′, Z ′, η′, ζ′)
be two solutions to the FBSDER (3.2), and let ξ̂

Δ
= ξ − ξ′, where ξ =

X,Y, Z, η, ζ, respectively.
(i) Let λ ∈ lR, C1, C2 > 0, and let λ̄1 = λ −K(2 + C−11 + C−12 ) −K2.

Then, for all λ′ ∈ lR,

(3.4)

e−λtE|X̂t|2 + (λ̄1 − λ′)
∫ t
0

e−λτe−λ
′(t−τ)E|X̂τ |2dτ

≤
∫ t
0

e−λτe−λ
′(t−τ){K(C1 +K)E|Ŷτ |2 + (KC2 + k21)E|Ẑτ |2}dτ.

(ii) Let λ ∈ lR and C3, C4 > 0, and let λ̄2 = −λ− 2γ−K(C−13 +C−14 ).
Then, for all λ′ ∈ lR,

(3.5)

e−λtE|Ŷt|2 + (λ̄2 − λ′)
∫ T
t

e−λτe−λ
′(τ−t)E|Ŷτ |2dτ

+ (1 −KC4)
∫ T
t

e−λτe−λ
′(τ−t)E|Ẑτ |2dτ

≤ k22e−λT e−λ
′(T−t)E|X̂T |2 +KC3

∫ T
t

e−λτe−λ
′(τ−t)|X̂τ |2dτ

Consequently, if KC4 = 1− α for some α ∈ (0, 1), then

(3.6) e−λTE|X̂T |2 + λ̄1‖X̂‖2λ ≤ K(C1 +K)‖Ŷ ‖2λ + (KC2 + k21)‖Ẑ‖2λ.

(3.7) ‖X̂‖2λ ≤ B(λ̄1, T )[K(C1 +K)‖Ŷ ‖2λ + (KC2 + k21)‖Ẑ‖2λ].

(3.8) ‖Ŷ ‖2λ ≤ B(λ̄2, T )[k22e−λTE|X̂T |2 +KC3‖X̂‖2λ],

(3.9) ‖Ẑ‖2λ ≤
A(λ̄2, T )

α
[k22e

−λTE|X̂T |2 +KC3‖X̂‖2λ].

Proof. We first show (3.4). Let t ∈ (0, T ], λ, λ′ be arbitrarily given, and
consider the function Ft(s, x)

Δ
= e−λse−λ

′(t−s)|x|2, for (s, x) ∈ [0, t] × lRn.
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Applying Itô’s formula to Ft(s, X̂s) from 0 to t, and then taking expectation
we have

e−λtE|X̂t|2 + (λ− λ′)E
∫ t
0

e−λτe−λ
′(t−τ)|X̂τ |2dτ

=

∫ t
0

e−λτe−λ
′(t−τ)

{
2 〈 X̂τ , b(τ,Xτ , Yτ , Zτ )− b(τ,X ′τ , Y ′τ , Z ′τ ) 〉

+ ‖σ(τ,Xτ , Yτ , Zτ )− σ(τ,X ′τ , Y ′τ , Z ′τ )‖2
}
dτ

+ 2E

∫ t
0

e−λτe−λ
′(t−τ) 〈 X̂τ , dη̂τ 〉 .

Since Xt, X
′
t ∈ O1, ∀t ∈ [0, T ], a.s. , we derive from Definition 3.1-(3)

that e−λte−λ
′(t−τ) 〈 X̂t, dη̂τ 〉 ≤ 0 (as a signed measure), ∀s ∈ [0, T ], a.s. .

Therefore, repeatedly applying the Schwartz inequality and the inequality
2ab ≤ ca2 + c−1b2, ∀c > 0, using the definition of λ̄1, together with some
elementary computation with the help of (A4), we derive (3.4).

To prove (3.5), we let F̃t(s, x) = e
−λse−λ

′(s−t)|x|2, and apply Itô’s
formula to F̃t(s, Ys) from t to T to get

e−λtE|Ŷt|2 + (λ′ + λ)E
∫ T
t

e−λτe−λ
′(τ−t)|Ŷτ |2dτ

+ E

∫ T
t

e−λτe−λ
′(τ−t)‖Ẑτ‖2dτ

= e−λT e−λ
′(T−t)E|g(XT )− g(X ′T )|2

+ 2

∫ T
t

e−λ
′(τ−t)e−λτ 〈 Ŷτ , h(τ,Xτ , Yτ , Zτ )− h(τ,X ′τ , Y ′τ , Z ′τ ) 〉 dτ

+ 2E

∫ T
t

e−λ
′(τ−t)e−λτ 〈 Ŷτ , dζ̂τ 〉 .

Again, since Y (t, ·), Y ′(t, ·) ∈ O2(t, ·), P -a.s., by Definition 3.1-(4) we have
〈 Ŷt(ω), dζ̂t(ω) 〉 ≤ 0, dt × dP -a.s.. Thus, by using the similar argument as
before, and using the definition of λ̄2, we obtain (3.5).
Now, letting λ′ = 0 and t = T in (3.4) yields (3.6); letting λ′ = λ̄1 in

(3.4) and then integrating both sides from 0 to T yields (3.7), since B(λ1, ·)
is increasing; letting λ′ = λ̄2 in (3.5) and integrating from 0 to T yields
(3.8). Finally, note that if λ̄2 ≤ 0, then letting λ′ = λ̄2 and t = 0 in (3.5)
one has (remember KC4 = 1− α)

‖Ẑ‖2λ ≤
∫ T
0

e−λτe−λ̄2(τ−t)‖Ẑτ‖2dτ

≤ e
|λ̄2|T

α

{
k22e

−λTE|X̂T |2 +KC3‖X̂‖2λ
}
;
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while if λ̄2 > 0, then let λ
′ = 0 in (3.4) one has

‖Ẑ‖2λ ≤
1

α

{
k22e

−λTE|X̂T |2 +KC3‖X̂‖2λ
}
.

Combining the above we obtain (3.9).

We now present another set of useful a priori estimates for the adapted
solution to FBSDER (3.2). Denote σ0(t, ω) = σ(s, 0, 0, 0, ω), f0(t, ω) =
f(s, 0, 0, 0, ω), h0(t, ω) = h(t, 0, 0, 0, ω), and g0(ω) = g(0, ω).

Lemma 3.3. Assume (A4). Let (X,Y, Z, η, ζ) be an adapted solution to
the FBSDER (3.2). For any λ, λ′ ∈ lR, ε > 0, C1, C2, C3, C4 > 0, we define
λ̄ε1 = λ̄1− (1+K2)ε and λ̄ε2 = λ̄2− ε, where λ̄1 and λ̄2 are those defined in
Lemma 3.2. Then

(3.10)

e−λtE|Xt|2 + (λ̄ε1 − λ′)
∫ t
0

e−λ
′(t−τ)e−λsE|Xτ |2dτ ≤ e−λ

′t|x|2

+

∫ t
0

e−λ
′(t−τ)e−λτ

{1
ε
E|f(τ, 0, 0, 0)|2 +

(
1 +
1

ε

)
|σ(τ, 0, 0, 0)|2

+K(C1 +K(1 + ε))E|Yτ |2 + (KC2 + k21(1 + ε))E|Zτ |2
}
dτ.

and

(3.11)

e−λtE|Yt|2 + (λ̄ε2 − λ′)
∫ T
t

e−λ
′(τ−t)e−λτE|Yτ |2dτ

+ (1− k4C4)
∫ T
t

e−λ
′(τ−t)e−λτE|Zτ |2dτ

≤k22(1 + ε)e−λ
′(T−t)e−λTE|XT |2 +

(
1+
1

ε

)
e−λ

′(T−t)e−λTE|g(0)|2

+

∫ T
t

e−λ
′(τ−t)e−λτ

{
KC3E|Xτ |2 +

1

ε
E|h(τ, 0, 0, 0)|2

}
dτ.

Consequently, if C4 =
1−α
K
, for some α ∈ (0, 1), we have

(3.12)

e−λTE|XT |2 + λ̄ε1‖X‖2λ ≤
[
|x|2 +K(C1 +K(1 + ε))‖Y ‖2λ

+ (KC2 + k
2
1(1 + ε))‖Z‖2λ +

1

ε
‖f0‖2λ +

(
1 +
1

ε

)
‖σ0‖2λ

]
.

(3.13)

‖X‖2λ ≤ B(λ̄ε1, T )
[
|x|2 +K(C1 +K(1 + ε))‖Y ‖2λ

+ (KC2 + k
2
1(1 + ε))‖Z‖2λ +

1

ε
‖f0‖2λ +

(
1 +
1

ε

)
‖σ0‖2λ

]
.
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(3.14)

‖Y ‖2λ ≤ B(λ̄ε2, T )
[
k22(1 + ε)e

−λTE|XT |2 +KC3‖X‖2λ

+

(
1 +
1

ε

)
e−λTE|g0|2 + 1

ε
‖h0‖2λ

]

(3.15)

‖Z‖2λ ≤
A(λ̄ε2, T )

α

[
k22(1 + ε)e

−λTE|XT |2 +KC3‖X‖2λ

+

(
1 +
1

ε

)
e−λTE|g0|2 + 1

ε
‖h0‖2

]
.

§3.2. Existence and uniqueness of the adapted solutions
We are now ready to study the well-posedness of the FBSDER (3.2). To
begin with we introduce a mapping Γ : Hc �→ Hc defined as follows: for
fixed x ∈ lRn, let X Δ

=Γ(X) be the solution to the FSDER:

(3.16) Xt = x+

∫ t
0

b(s,Xs, Ys, Zs)ds+

∫ t
0

σ(s,Xs, Ys, Zs)dWs + ηt,

where the processes Y and Z are the solution to the following BSDER:

(3.17) Yt = g(XT ) +

∫ T
t

h(s,Xs, Ys, Zs)ds−
∫ T
t

ZsdWs + ζT − ζt.

Clearly, the assumption (A4) enables us to apply Theorem 2.5 to con-
clude that the BSDER (3.17) has a unique solution (Y, Z, ζ), which in turn
guarantees the existence and uniqueness of the adapted solution X to the
FSDER (3.16), thanks to Theorem 1.2. Furthermore, by definition of λε1
(Lemma 3.3) we see that if λ is chosen so that λ̄1 > 0, then it is always
possible to choose ε > 0 small enough so that λ̄ε1 > 0 as well; and (3.12) will
lead to X ∈ Hλ,λ̄1 (since λ̄1 > 0 and λ̄ε1 > 0). Let us try to find a suitable
λ̄1 > 0 so that Γ is a contraction on Hλ,λ̄1 , which will lead to the existence
and uniqueness of the adapted solution to the FBSDER (3.2) immediately.

To this end, let X1, X2 ∈ Hc; and let (Y i, Zi, ζi) and (X i, ηi), i = 1, 2,
be the corresponding solutions to (3.17) and (3.16), respectively. Denote
Δξ = ξ1 − ξ2, for ξ = X,Y, Z,X. Applying (3.6)–(3.9) (with C4 = 1−α

K )
we easily deduce that

(3.18)
e−λTE|ΔXT |2 + λ̄1‖ΔX‖2λ

≤ μ(α, T ){k22e−λTE|ΔXT |2 +KC3‖ΔX‖2λ}.
where

(3.19) μ(α, T )
Δ
=K(C1 +K)B(λ̄2, T ) +

A(λ̄2, T )

α
(KC2 + k

2
1);

and (recall Lemma 3.2)

(3.20) λ̄1 = λ−K(2+C−11 +C−12 )−K2; λ̄2 = −λ−2γ−K(C−13 +C−14 ).
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Clearly, the function μ(·, ·) depends on the constants K, k1, k2, γ, the du-
ration T > 0, and the choice of C1–C4 as well as λ, α. To compensate the
generality of the coefficients, we shall impose the following compatibility
conditions.

(C-1) 0 ≤ k1k2 < 1;
(C-2) k2 = 0; ∃α ∈ (0, 1) such that μ(α, T )KC3 < λ̄1,
(C-3) k2 > 0; ∃α0 ∈ (k1k2, 1), such that μ(α20, T )k22 < 1 and λ̄1 = KC3

k22
.

We remark here that the compatibility condition (C-1) is not a surprise.
We already saw it in Chapter 1 (Theorem 1.5.1). In fact, in Example 1.5.2
we showed that such a condition is almost necessary for the solvability of
an FBSDE with general coefficients, even in non-reflected cases with small
duration. The first existence and uniqueness result for FBSDER (3.2) is
the following.

Theorem 3.4. Assume (A4) and fix C4 =
1−α20
K . Assume that the compat-

ibility conditions (C-1), and either (C-2) or (C-3) hold for some choices of
constants λ, α, and C1–C3. Then the FBSDER (3.2) has a unique adapted
solution over [0, T ].

Proof. Fix C4 =
1−α20
K
. First assume that (C-1) and (C-2) hold. Since

k2 = 0, (3.18) leads to that

‖ΔX‖2λ ≤
μ(α, T )KC3

λ̄1
‖ΔX‖2λ,

Since we can find C1—C3 and α ∈ (0, 1) so that μ(α, T )KC3 < 1, Γ is a
contraction mapping on (H, ‖ · ‖λ). The theorem follows.
Similarly, if (C-1) and (C-3) hold, then we can solve λ from (3.20) and

λ̄1 = KC3/k
2
2 , and then derive from (3.18) that

ΔX 2
λ0,λ̄1

≤ μ(α20, T )k22 ΔX 2
λ0,λ̄1

,

Let Ci, i = 1, 2, 3 and α0 ∈ (k1k2, 1) be such that μ(α20, T )k22 < 1, the
mapping Γ is again a contraction, but on the space Hλ,λ̄1 , proving the
theorem again.

A direct consequence of Theorem 3.4 is the following.

Corollary 3.5. Assume (A4) and the compatibility condition (C-1). Then
there exists T0 > 0 such that for all T ∈ (0, T0], the FBSDER (3.2) has a
unique adapted solution.
In particular, if either k1 = 0 or k2 = 0, then the FBSDER (3.2) is

always uniquely solvable on [0, T ] for T small.

Proof. First assume k2 = 0. In light of Theorem 3.4 we need only show
that there exists T0 = T0(C1, C2, C3, λ, α) such that (C-2) holds for some
choices of C1–C3 and λ, α, for all T ∈ (0, T0].
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For fixed C1, C2, C3, λ, and α ∈ (0, 1) we have from (3.19) that

μ(α, 0)KC3 =
(KC2 + k

2
1)KC3
α

.

Therefore, let C1–C3 and α be fixed we can choose λ large enough so that
μ(α, 0)KC3 < λ̄1 holds. Then, by the continuity of the functions A(α, ·)
and B(α, ·), for this fixed λ we can find T0 > 0 such that μ(α, T )KC3 < λ̄1
for all T ∈ (0, T0]. Thus (C-2) holds for all T ∈ (0, T0] and the conclusion
follows from Theorem 3.4.
Now assume that k2 > 0. In this case we pick an α0 ∈ (k1k2, 1), and

define

(3.21) δ
Δ
=
1

k22
− k

2
1

α20
> 0.

Now let C2 =
α20δ

2K , C4 =
1−α20
K
, and choose λ so that λ̄1 = (k3C3)/k

2
2 > 0.

Since in this case we have

μ(α20, 0) =
KC2 + k

2
1

α20
=
1

2k22
+
k21
2α20
<
1

k22
,

thanks to (3.21). Using the continuity of μ(α20, ·) again, for any C1, C3 > 0
we can find T0(C1, C3) > 0 such that μ(α

2
0, T )k

2
2 < 1 for all T ∈ (0, T0].

In other words, the compatibility condition (C-3) holds for all T ∈ (0, T0],
proving our assertion again.
Finally if k1 = 0, then (C-1) becomes trivial, thus the corollary always

holds.

From the proofs above we see that there is actually room for one to play
with constant C1–C3 to improve the “maximum existence interval” [0, T0).
A natural question is then is there any possibility that T0 =∞ so that the
FBSDER (3.2) is solvable over arbitrary duration [0, T ]? Unfortunately,
so far we have not seen an affirmative answer for such a question, even
in the non-reflecting case, under this general setting. Furthermore, in the
reflecting case, even if we assume all the coefficients are deterministic and
smooth, it is still far from clear that we can successfully apply the method
of optimal control or Four Step Scheme (Chapters 3 and 4) to solve an
FBSDER, because the corresponding PDE will become a quasilinear varia-
tional inequality, thus seeking its classical solution becomes a very difficult
problem in general.
We nevertheless have the following result that more or less covers a

class of FBSDERs that are solvable over arbitrary durations.

Theorem 3.6. Assume (A4) and the compatibility condition (C-1). Then
there exists a constant Λ > 0, depending only on the constants K, k1, k2,
such that whenever γ < −Λ, the FBSDER (3.2) has a unique adapted
solution for all T > 0.

Proof. We shall prove that either (C-2) or (C-3) will hold for all T > 0
provided γ is negative enough, and we shall determine the constant Λ in
each case, separately.
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First assume k2 = 0. In this case let us consider the following mini-
mization problem with constraints:

(3.22) min
Ci>0, i=1,2,3;λ̄1>0,0<α<1,

λ̄1−2K(KC2+k21)C3>0

F (C1, C2, C3, λ̄1, α),

where

(3.23)
F (C1, C2, C3, λ̄1, α)

Δ
=

(C1 +K)K
2C3

λ̄1 − 2(KC2 + k21)KC3
+ λ̄1

+K(2 + C−11 + C
−1
2 + C

−1
3 ) +K

2
(2− α
1− α

)
.

Let Λ be the value of the problem (3.22) and (3.23). We show that if
γ < −Λ/2, then (C-2) holds for all T > 0.
Indeed, if γ < −Λ/2, then we can find C1, C2, C3, λ̄1 > 0 and α ∈ (0, 1),

such that λ̄1 − 2(KC2 + k21)KC3 > 0, and

(3.24)
−2γ > (C1 +K)K

2C3

λ̄1 − 2(KC2 + k21)KC3
+ λ̄1

+K(2 + C−11 + C
−1
2 + C

−1
3 ) +K

2
(2− α
1− α

)
.

On the other hand, eliminating λ in the expressions of λ̄1 and λ̄2 in (3.20),

and letting C4 =
(1−α)
K we have

λ̄2 = −
(
λ̄1 +K(2 + C

−1
1 + C

−1
2 + C

−1
3 ) +

K2

1− α +K
2
)
− 2γ.

Thus (3.24) is equivalent to

(3.25)
1

λ̄1

{K(C1 +K)
λ̄2

+
(KC2 + k

2
1)

α

}
KC3 < 1,

and λ̄2 > 0. Consequently, A(λ̄2, T ) = 1 and B(λ̄2, T ) ≤ λ̄−12 (recall (3.3));
and (3.25) implies that μ(α, T )KC3 < λ̄1, i.e., (C-2) holds for all T > 0.
Now assume k2 > 0. Following the arguments in Corollary 3.5 we

choose λ̄1 =
KC3
k22
> 0, C4 =

1−α20
K , and α0 ∈ (k1k2, 1). Let δ > 0 be that

defined by (3.21), and consider the minimization problem:

(3.26) min
Ci>0, i=1,2,3;

δα2
0
−KC2>0

F̃ (C1, C2, C3),

where

(3.27)

F̃ (C1, C2, C3)
Δ
=
α20K(C1 +K)

δα20 −KC2
+K(2 + C−11 + C

−1
2 + C

−1
3 )

+
KC3

k22
+K2

(2− α20
1− α20

)
.
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Let Λ be the value of the problem (3.26) and (3.27), one can show as in
the previous case that if γ < −Λ/2, then λ̄2 > 0 (hence A(λ̄2, T ) = 1 and
B(λ̄2, T ) ≤ λ̄−12 ), and μ(α20, T )k22 < 1. Namely (C-3) holds for all T > 0.
Combining the above we proved the theorem.

§3.3. A continuous dependence result
In many applications one would like to study the dependence of the adapted
solution of an FBSDE on the initial data. For example, suppose that there
exists a constant T > 0 such that the FBSDER (3.2) is uniquely solv-
able over any duration [t, T ] ⊆ [0, T ], and denote its adapted solution by
(Xt,x, Y t,x, Zt,x, ηt,x, ζt,x). Then an interesting question would be how the
random field (t, x) �→ (Xt,x, Y t,x, Zt,x, ηt,x, ζt,x) behaves. Such a behav-
ior is particularly useful when one wants to relate an FBSDE to a partial
differential equation, as we shall see in the next chapter.
In what follows we consider only the case when m = 1, namely, the

BSDER is one dimensional. We shall also make use of the following as-
sumption:

(A5) (i) The coefficients b, h, σ, g are deterministic;
(ii) The domains {O2(·, ·)} are of the form O(s, ω) = O2(s,Xt,x(s, ω)),

(s, ω) ∈ [t, T ] × lRn, where O2(t, x) = (L(t, x), U(t, x)), where L(·, ·) and
U(·, ·) are smooth deterministic functions of (t, x).
We note that the part (ii) of assumption (A5) does not cover, and is

not covered by, the assumption (A4) with m = 1. This is because when
m = 1 the domain O2 is simply an interval, and can be handled differently
from the way we presented in §2 (see, e.g., Cvitanic & Karatzas [1]). Note
also that if we can bypass §2 to derive the solvability of BSDERs, then
the method we presented in the current section should always work for the
solvability for FBSDERs. Therefore in what follows we shall discuss the
continuous dependence in an a priori manner, without going into the details
of existence and uniqueness again. Next, observe that under (A5) FBSDER
(3.2) becomes “Markovian”, we can apply the standard technique of “time
shifting” to show that the process {Y t,x(s)}s≥t is Fst -adapted, where F ts =
σ{Wr, t ≤ r ≤ s}. Consequently an application of the Blumenthal 0-1 law
leads to that the function u(t, x) = Y t,xt is always deterministic!
In what follows we use the convention that Xt,x(s) ≡ x, Y t,x(s) ≡

Y t,x(t), and Zt,x(s) ≡ 0, for s ∈ [0, t]. Our main result of this subsection is
the following.

Theorem 3.7. Assume (A5) as well as (A4)-(iii)–(v). Assume also
that the compatibility conditions (C-1) and either (C-2) or (C-3) hold. Let

u(t, x)
Δ
=Y t,xt , (t, x) ∈ [0, T ]×O1. Then u is continuous on [0, T ]×O and

there exists C > 0 depending only on T , b, h, g, and σ, such that the
following estimate holds:

(3.28) |u(t1, x1)− u(t2, x2)|2 ≤ C
(
|x1− x2|2+(1+ |x1|2 ∨ |x2|2)|t1− t2|

)
.
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Proof. The proof is quite similar to that of Theorem 3.4, so we only
sketch it.
Let (t1, x1) and (t2, x2) be given, and let X̂ = X

t1,x1 −Xt2,x2 . Assume
first t1 ≥ t2, and recall the norms ‖ · ‖t,λ and · t,λ,β at the beginning of
§3.1. Repeating the arguments of Theorem 3.4 over the interval [t2, T ], we
see that (3.8) and (3.9) will look the same, with ‖ · ‖λ being replaced by
‖ · ‖t2,λ; but (3.6) and (3.7) become

(3.6)′
e−λTE|X̂T |2 + λ̄1‖X̂‖2t1,λ
≤K(C1 +K)‖Ŷ ‖2t2,λ + (KC2 + k

2
1)‖Ẑ‖2t2,λ + E|X̂(t2)|

2.

(3.7)′
‖X̂‖2t2,λ ≤B̃(λ̄1, T )[K(C1 +K)‖Ŷ ‖

2
t2,λ

+ (KC2 + k
2
1)‖Ẑ‖2t2,λ + E|X̂(t2)|

2],

where B̃(λ, T )
Δ
= e

−λt2−e−λT
λ

. Now similar to (3.18), one shows that

(3.18)′
e−λTE|X̂T |2 + λ̄1‖X̂‖2t2,λ
≤μ(α, T ){k22e−λTE|X̂T |2 +KC3‖X̂‖2t2,λ}+ E|X̂(t2)|

2.

Arguing as in the proof of Theorem 3.4 and using compatibility conditions
(C-1)–(C-3), we can find a constant C > 0 depending only on T > 0 and
K, k1, k2 such that

(3.29) X̂ 2
t2,λ,β

≤ CE|X̂(t2)|2 = CE|x2 −Xt1,x1(t2)|2,

where β = λ̄1 − μ(α, T )KC3 if k2 = 0; and β = μ(α, T )k22 if k2 > 0.
From now on by slightly abuse of notations we let C > 0 be a generic

constant depending only on T,K, k1 and k2, and be allowed to vary from
line to line. Applying standard arguments using Burkholder-Davis-Gundy
inequality we obtain that

(3.30) E sup
t2≤s≤T

|X1(s)|2 + E sup
t2≤s≤T

|Y 1(s)|2 ≤ CE|X̂(t2)|2,

To estimate E|X̂(t2)|2 let us recall the parameters λε1 and λε2 defined
in Lemma 3.3. For each ε > 0 define

με(α, T )
Δ
=K(C1 +K(1 + ε))B(λ

ε
2, T ) +

A(λε2, T )

1−KC4
KC2.

Since λε1 → λ1, λε2 → λ2, and με(α, T )→ μ(α, T ), as ε→ 0, if the compat-
ibility condition (C-1) and either (C-2) or (C-3) hold, then we can choose
ε > 0 such that με(α, T )k22(1 + ε) < 1 when k2 = 0 and μ

ε(α, T )KC3 < λ
ε
1

when k2 �= 0. For this fixed ε > 0 we can then repeat the argument of
Theorem 3.4 by using (3.12)—(3.15) to derive that(

1− μ
ε(α, T )KC3

λ̄ε1

)
‖X1‖2λ ≤ C(ε)

[
|x1|2 +

(
1 +
1

ε

)]
, k2 = 0;
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or (
1− με(α, T )k22

)
X1 2λ,β ≤ C(ε)

[
|x1|2 +

(
1 +
1

ε

)]
, k2 �= 0,

where C(ε) is some constant depending on T , K, k1, k2, and ε. Since ε > 0
is now fixed, in either case we have, for a generic constant C > 0,

‖X1‖2λ ≤ C(1 + |x1|2),

which in turn shows that, in light of (3.12)–(3.15) ‖Y 1‖2λ ≤ C(1 + |x1|2),
and ‖Z‖2λ ≤ C(1 + |x1|2). Again, applying the Burkholder and Hölder
inequalities we can then derive

(3.31) E
{
sup
t1≤s≤T

|X1(t)|2
}
+ E
{
sup
t1≤s≤T

|Y 1(t)|2
}
≤ C(1 + |x1|2).

Now, note that on the interval [t1, t2] the process (X̂, Ŷ , Ẑ) satisfies the
following SDE:

(3.32)

⎧⎪⎪⎨⎪⎪⎩
X̂(s) = (x1 − x2) +

∫ s
t1

b1(r)dr +

∫ s
t1

σ1(r)dW (r),

Ŷ (s) = Ŷ (t2) +

∫ t2
s

h1(r)dr +

∫ t2
s

Z1(r)dW (r),

s ∈ [t1, t2],

where b1(r) = b(r,X2(r), Y 1(r), Z1(r)), σ1(r) = σ(r,X1(r), Y 1(r), Z1(r)),
and h1(r) = h(r,X1(r), Y 1(r), Z1(r)). Now from the first equation of (3.32)
we derive easily that

E{ sup
t1≤s≤t2

|X̂(s)|2} ≤ C{|x1 − x2|2 + (1 + |x1|2)|t1 − t2|}.

Combining this with (3.30), (3.31), as well as the assumption (A4-iv), we
derive from the second equation of (3.32) that

E|Ŷ (t1)|2 ≤ E|Ŷ (t2)|2 + C(1 + |x1|2 ∨ |x2|2)|t1 − t2|
≤ C{|x1 − x2|2 + (1 + |x1|2 ∨ |x2|2)|t1 − t2|}.

Since Ŷ (t1) = u(t1, x1)−u(t2, x2) is deterministic, (3.28) follows. The case
when t1 ≤ t2 can be proved by symmetry, the proof is complete.



Chapter 8

Applications of FBSDEs

In this chapter we collect some interesting applications of FBSDEs. These
applications appear in various fields of both theoretical and applied prob-
ability problems, but our main interest will be those that related to the
truly coupled FBSDEs and their applications in mathematical finance. Let
us first recall the FBSDE in its general form: denote Θ = (X,Y, Z),

(1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(t) = x+

∫ t
0

b(s,Θ(s))ds+

∫ t
0

σ(s,Θ(s))dW (s),

Y (t) = g(X(T )) +

∫ T
t

b̂(s,Θ(s))ds−
∫ T
t

Z(s)dW (s), t ∈ [0, T ],

In different applications we will make assumptions that are variations of
what we have seen before, in order to suit the situation.

§1. An Integral Representation Formula
In this section we consider a special case: b̂ ≡ 0, and σ is independent of z.
Thus (1.1) takes the form:

(1.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(t) = x+

∫ t
0

b(s,Θ(s))ds+

∫ t
0

σ(s,X(s), Y (s))dW (s),

Y (t) = g(X(T ))−
∫ T
t

Z(s)dW (s), t ∈ [0, T ],

From the Four Step Scheme (see Chapter 4), we know that if we define
z(t, x, y, p) = pσ(t, x, y), and let θ(t, x) be the classical solution of the fol-
lowing system of PDEs:

(1.3)

⎧⎪⎪⎨⎪⎪⎩
θkt +
1

2
tr [θkxxσ(t, x, θ)σ(t, x, θ)

T ]+〈 b(t, x, θ, z(t, x, θ, θx)), θkx 〉 = 0,

k = 1, · · · ,m;
θ(T, x) = g(x),

then the (unique) adapted solution of (1.2) is given by

(1.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(t) = x+

∫ t
0

b̃(s,X(s))ds+

∫ t
0

σ̃(s,X(s))dW (s),

Y (t) = θ(t,X(t));

Z(t) = θx(t,X(t))σ(t,X(t), θ(t,X(t))).

where

(1.5)

{
b̃(t, x) = b(t, x, θ(t, x), θx(t, x)σ(t, x, θ(t, x)));

σ̃(t, x) = σ(t, x, θ(t, x)),
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Now from the second (backward) equation in (1.2), and noting that Y0 is
non-random by Blumenthal 0-1 law, we have Y0 = EY0 = Eg(XT ); and
setting t = 0 in (1.2) we then have

(1.6) g(X(T )) = Eg(X(T ))+

∫ T
0

θx(s,X(s))σ(s,X(s), θ(s,X(s)))dW (s).

Let us compare (1.6) with the Clark-Haussmann-Ocone formula in this
special setting. For simplicity, we assume m = n = 1. Recall that the
general form of the Clark-Haussmann-Ocone formula in this case is:

(1.7) g(X(T )) = Eg(X(T )) +

∫ T
0

E{Dsg(X(T ))|Fs}dWs,

where D is the so-called “Malliavin derivative” operator. Note that by
Malliavian calculus we have, for each s ∈ [0, T ], that Dsg(X(T )) =
g′(X(T ))DsX(T ), and

DsX(t) = σ̃(s,X(s)) +

∫ t
s

b̃x(r,X(r))DsX(r)dr

+

∫ t
s

σ̃x(r,X(r))DsX(r)dW (r), t ∈ [s, T ].

Denote

Z(t) =

∫ t
s

b̃x(r,X(r))dr +

∫ t
s

σ̃x(r,X(r))dW (r),

and let E(Z)t be the Doléans-Dade stochastic exponential of Z, that is,

(1.8)

E(Z)t = exp{Z(t)−
1

2
[Z,Z](t)}

= exp

{∫ t
s

σ̃x(r,X(r))dW (r)+

∫ t
s

[b̃x(r,X(r)) −
1

2
σ̃2x(r,X(r))]dr

}
.

Then the process u(t)
Δ
=DsX(t), t ∈ [s, T ] can be written as u(t) =

E(Z)tσ̃(s,X(s)). Therefore,

(1.9)
E{Dsg(X(T ))|Fs} = E{g′(X(T ))DsX(T )|Fs}

= E{g′(X(T ))E(Z)T |Fs}σ̃(s,X(s)).

Putting this back into (1.7) and comparing it to (1.6) we obtain immediately
that ∫ T

t

{
E{Dsg(X(T ))|Fs} − σ̃(s,X(s))θx(s,X(s))

}
dW (s) = 0,

and consequently,

(1.10)

{
E{Dsg(X(T ))|Fs} = σ̃(s,X(s))θx(s,X(s));
E{g′(X(T ))E(X)T |Fs} = θx(s,X(s)),

dP⊗ dt-a.e.
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Since the expressions on the right sides of (1.10) depend neither on the
Malliavin derivatives, nor on the conditional expectations, they are more
amenable in general. Also, since forward SDE in (1.4) depends actually on
Y and Z, we thus obtained an integral representation formula (1.6) that is
more general than the “classical” Clark-Haussmann-Ocone’s formula, when
the Brownian functional is of the form g(X(T )).
It is interesting to notice that the second equation in (1.10) does not

contain the Malliavin derivative, and it leads to Haussmann’s version of
integral representation formula. Let us now prove it directly without using

Malliavin calculus. To do this, we define a the process pt
Δ
= θx(t,X(t))

(such a process is often of independent interest in, e.g., stochastic control
theory). For simplicity we assume m = n = 1 again and that the FBSDE
is decoupled. That is

(1.11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(t) = x+

∫ t
0

b(s,X(s))ds+

∫ t
0

σ(s,X(s))dW (s),

Y (t) = g(X(T ))−
∫ T
t

Z(s)dW (s), t ∈ [0, T ],

and the PDE (1.3) becomes

(1.12)

⎧⎨⎩ θt +
1

2
θxxσ

2(t, x) + b(t, x)θx = 0,

θ(T, x) = g(x),

We should note that the following arguments are all valid for the coupled
FBSDEs with b̂ = 0, in which case we should simply replace (1.11) by (1.4).

Proposition 1.1 There exists an adapted process {K(t) : t ≥ 0} such that
(p,K) is the unique adapted solution of the following backward SDE:

(1.13)

pt = g
′(X(T )) +

∫ T
t

[bx(s,X(s))ps + σx(s,X(s))K(s)]ds

−
∫ T
t

K(s)dW (s).

In particular, if the function θ is C3, then K(t) = θxx(t,X(t))σ(t,X(t)) for
t ≥ 0.
Proof. We first assume that θ is C3. Taking one more derivative in the

x variable to the equation (1.12) and denote u = θx we have

(1.14)

⎧⎨⎩ut +
1

2
uxxσ

2(t, x) + [b(t, x) + (σσx)(t, x)]ux + b(t, x)u = 0,

u(T, x) = gx(x).

On the other hand, if we apply Itô’s formula to u from t to τ (0 ≤ t ≤ τ),
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then we have

(1.15)

u(τ,X(τ)) = u(t,X(t)) +

∫ τ
t

{ut(s,X(s)) + ux(s,X(s))b(s,X(s))

+
1

2
uxx(s,X(s))σ

2(s,X(s))}ds

+

∫ τ
t

ux(s,X(s))σ(s,X(s))dW (s).

Using (1.14) and denoting K(t) = ux(t,X(t))σ(t,X(t)), we obtain from
(1.15) that

(1.16)

u(τ,X(τ)) = u(t,X(t))−
∫ τ
t

[ubx + ux(σσx)](s,X(s))ds

+

∫ τ
t

ux(s,X(s))σ(s,X(s))dW (s)

= u(t,X(t))−
∫ τ
t

[ubx(s,X(s)) +K(s)σx(s,X(s))]ds

+

∫ τ
t

K(s)dW (s),

Now setting pt = u(t,X(t)) and τ = T , we obtain (1.13) immediately.
In the general case where θ is not necessarily C3 we argue as follows.

Let (p,K) be the adapted solution to the backward SDE (1.13), and we are
to show that pt = θx(t,X(t)), that is, ∀h ∈ lR,

(1.17) θ(t,X(t) + h)− θ(t,X(t)) = pth+ o(h), ∀t, a.s.

To this end, fix t ∈ [0, T ] and consider the SDE

(1.18) Xh(τ) = X(t) + h+

∫ τ
t

b(s,Xh(s))ds+

∫ τ
t

σ(s,Xh(s))dW (s),

for t ≤ τ ≤ T . Define ζhτ = Xh(τ) − X(τ), τ ∈ [t, T ]. Then it is easy to
verify that ζh satisfies

(1.19) dζh(τ) = bx(τ,X(τ))ζ
h(τ)dτ + σx(τ,X(τ))ζ

h(τ)dW (τ) + εh(τ),

where

εh(τ) =

∫ τ
t

{∫ 1
0

[bx(s,X(s) + βζ
h(s))− bx(s,X(s))]dβ

}
ζh(s)ds

+

∫ τ
t

{∫ 1
0

[σx(s,X(s) + βζ
h(s)) − σx(s,X(s))]dβ

}
ζh(s)dW (s).

Thus by the standard results in SDE we have E{supt≤τ≤T |εh(τ)|
∣∣∣Ft} =

o(h).
On the other hand, using Four Step Scheme one shows that

θ(t,X(t)) = E{g(X(T ))|Ft}, θ(t,X(t) + h) = E{g(X(T ))|Ft},
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thus

(1.20)

θ(t,X(t) + h)− θ(t,X(t))
=E{g(Xh(T ))− g(X(T ))|Ft}

=E{g′(X(T ))ζhT |Ft}+ E
{∫ 1
0

[g′(XT + βζhT )− g′(XT )]dβζhT
∣∣∣Ft}

=E{g′(X(T ))ζhT |Ft}+ o(h).

Now applying Itô’s formula to pτζ
h
τ from τ = t to τ = T we have

〈 g′(X(T )ζh(T ) = pth+ o(h) +m(T )−m(t),

where m stands for some {Ft}t≥0-martingale. Taking conditional expecta-
tion we obtain from (1.20) that

θ(t,X(t) + h)− θ(t,X(t)) = pth+ o(h), P-a.s., ∀t ∈ [0, T ].

Using the continuity of both X and p we have θx(t,X(t)) = pt, ∀t, P-a.s.,
proving the proposition.

§2. A Nonlinear Feynman-Kac Formula
In this section we establish a stochastic representation theorem for a class
of quasilinear PDEs, via th route of FBSDEs. We note that following
presentation will include the BSDEs as a special case. To begin with, let
us rewrite (1.1) again, on an arbitrary time interval [t, T ], t ∈ [0, T ): for
t ≤ s ≤ T ,

(2.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(s) = x+

∫ s
t

b(r,Θ(r))dr +

∫ t
s

σ(r,X(r), Y (r))dW (r),

Y (s) = g(X(T )) +

∫ T
s

h(r,Θ(r))dr −
∫ T
s

Z(r)dW (r)

We would like to show that if the FBSDE (2.1) has unique adapted solutions
on all subintervals [t, T ] ⊆ [0, T ], denoted by (Xt,x, Y t,x, Zt,x), then the
function u(t, x)

Δ
=Y t,x(t) would give a viscosity solution to a quasilinear

PDE. Thus if we can prove the uniqueness of such viscosity solution (see
Chapter 3, §3), then clearly we obtain a certain “probabilistic solution”
to the corresponding PDE, in the spirit of the celebrated Feynman-Kac
formula. For this purpose, in what follows we shall always assume the
solvability of the the FBSDE (2.1), under the following assumptions:

(A1) (i) m = 1; and the coefficients b, h, σ, g are deterministic.
(ii) The functions b and h are differentiable in z.

Note that (A1)-(i) amounts to saying that coefficients of (1.2) are
“Markovian”. Thus the standard technique of “time shifting” can be used
to show that the process {Y t,xs }s≥t is Fst -adapted, where F ts = σ{Wr, t ≤
r ≤ s}. Consequently the function u(t, x) = Y t,xt is deterministic, thanks
again to the Blumenthal 0-1 law.
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In order to describe the quasilinear PDE that an FBSDE is correspond-
ing to, let us denote S(n) to be the set of n × n symmetric non-negative
matrices, and for p ∈ lRn, Q ∈ S(n), define

(2.2)
H(t, x, u, p,Q)

Δ
=
1

2
tr {σσT (t, x, u)Q}+ 〈 b(t, x, u, σ(t, x, u)p), p 〉

+ h(t, x, u, σ(t, x, u)p),

and denote Du
Δ
=∇u = (∂x1u, · · · , ∂xnu)T , D2u = (∂2xixju)i,j (the Hessian

of u), and ut = ∂tu. The quasilinear PDE that we are interested in is of
the following form:

(2.3)

{
ut +H(t, x, u,Du,D

2u) = 0,

u(T, x) = g(x),

We have the following theorem.

Theorem 2.1. Assume (A1). Suppose that for a given time duration
[t, T ], the FBSDE (2.1) has an adapted solution (Xt,x, Y t,x, Zt,x). Then

the function u(t, x)
Δ
=Y t,xt , (t, x) ∈ [0, T ]× lRn is a viscosity solution of the

quasilinear PDE (2.3).

Proof. We shall prove only that u is a viscosity subsolution to (2.3).
The proof of the “supersolution” is left as an exercise. First note that
u(t, x) = Y t,x(t) is continuous on [0, T ]× lRn, locally Lipschitz-continuous
in x, and locally Hölder- 12 in t.

Let (t, x) ∈ [0, T )× lRn be given; and let ϕ ∈ C1,2([0, T ]× lRn) be such
that (t, x) is a global maximum point of u − ϕ such that u(t, x) = ϕ(t, x).
We are to check that the inequality (3.27) of Chapter 3 holds.
To simplify notations, in what follows we suppress the superscript “ t,x ”

for the processes X , Y , and Z. First note that by modifying ϕ slightly at
“infinite” if necessary we assume without loss of generality that and Dϕ
is uniformly bounded, thanks to the uniform Lipschitz property of u in x.
Next note that the pathwise uniqueness of the FBSDE leads to that for
any 0 ≤ τ ≤ τ ≤ T one has u(τ,X(τ)) = Y (τ), hence we can rewrite the
backward SDE in (2.1) as

(2.8)

u(t, x) = u(τ,X(τ)) +

∫ τ
t

h(s,X(s), Y (s), Z(s))ds

−
∫ τ
t

Z(s)dW (s).
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Now applying Itô’s formula to ϕ(·, X(·)) from t to τ we have

(2.9)

ϕ(τ,X(τ)) = ϕ(t, x) +

∫ τ
t

ϕt(s,X(s))ds

+

∫ τ
t

〈Dϕ(s,X(s)), b(s,X(s), u(s,X(s)), Z(s)) 〉ds

+

∫ τ
t

1

2
tr {σσT (s,X(s), u(s,X(s)))D2ϕ(s,X(s))}ds

+

∫ τ
t

〈Dϕ(s,X(s)), σ(s,X(s), u(s,X(s)))dW (s) 〉 .

Write

(2.10)

h(s,X(s), Y (s), Z(s)) = h(s,X(s), Y (s), [σTDϕ](s,X(s), Y (s)))

+ 〈α(s), Z(s)− [σTDϕ](s,X(s), Y (s)) 〉;
b(s,X(s), Y (s), Z(s)) = b(s,X(s), Y (s), [σTDϕ](s,X(s), Y (s)))

+ β(s){Z(s)− [σTDϕ](s,X(s), Y (s)))},

where

(2.11)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α(s) =

∫ 1
0

∂h

∂z
(s,X(s), Y (s), Zτ (s))dθ;

β(s) =

∫ 1
0

∂b

∂z
(s,X(s), Y (s), Zθ(s))dθ;

Zθ(s) = θZ(s) + (1− θ)σT (s,X(s), Y (s))Dϕ(s,X(s)).

By assumption (A1), we see that α and β are bounded, adapted pro-
cesses. Therefore, subtracting (2.9) from (2.8), using (2.10) and (2.11),
and noting the facts that u(t, x) = ϕ(t, x) and u(τ,X(τ)) ≤ ϕ(τ,X(τ)), we
obtain

(2.12)

0 ≥ u(τ,X(τ))− ϕ(τ,X(τ))

=

∫ τ
0

{
− ∂ϕ
∂t
(s,X(s))−F (s,X(s), Y (s), [σTDϕ](s,X(s), Y (s))

− 〈Z(s)−[σTDϕ](s,X(s), Y (s)), α(s) −Dϕ(s,X(s))β(s)〉
}
ds

+

∫ τ
t

〈Z(s)− [σTDϕ](s,X(s), Y (s)), dW (s)〉 .

Since θ(s)
Δ
=α(s) + Dϕ(s,X(s))β(s), s ∈ [t, T ] is uniformly bounded, the

following process is a P-martingale on [t, T ]:

Θts
Δ
=exp

{
−
∫ s
t

〈 θ(r), dW (r) 〉 −1
2

∫ s
t

|θ(r)|2dr
}
, s ∈ [t, T ].

By Girsanov’s Theorem, we can define a new probability measure P̃ via
dP̃
dP = Θ

t
T , so that W̃

t(s) = W (s) − W (t) −
∫ s
t
θ(r)dr is a P̃-Brownian
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motion on [t, T ]. Furthermore, since the processes (X,Y, Z)) satisfies

E
{
sup
t≤s≤T

|X(s)|2
}
+ E
{
sup
t≤s≤T

|Y (s)|2
}
+ E

∫ T
t

|Z(s)|2ds <∞,

the boundedness of Dϕ and the uniform Lipschitz property of σ imply that,
for some constant C > 0,

Ẽ
{∫ T
t

|Z(s)− [σTDϕ](s,X(s), Y (s))|2ds
} 1
2

≤ CE
{
ΘtT

(∫ T
t

[1 + |Z(s)|2 + |X(s)|2 + |Y (s)|2]ds
) 1
2
}

≤ C
{
E(ΘtT )

2
} 1
2

{
E

∫ T
t

[1 + |Z(s)|2 + |X(s)|2 + |Y (s)|2]ds
} 1
2

<∞.

In other words, the integral

M t(u)
Δ
=

∫ u
t

〈Z(s)− [σTDϕ](s,X(s), Y (s)), dW̃ (s) 〉, u ∈ [t, T ]

is a P̃-local martingale on [t, T ] satisfying E 〈M t 〉
1
2

T < ∞, the by
Burkholder-Davis-Gundy’s inequality, one shows that it is a P̃-martingale
on [t, T ]. Hence, by taking expectation Ẽ{·} on both sides of (2.12) we
obtain that
(2.13)

0 ≥ Ẽ
∫ τ
t

{
− ∂ϕ
∂t
(s,X(s))−H(s,X(s), Y (s), [σTDϕ](s,X(s), Y (s)))

}
ds.

Dividing both sides by τ and then sending τ → 0 we obtain (3.27) of
Chapter 3 immediately.

Remark 2.2. For a more complete theory, one should also prove that the
viscosity solution to the quasilinear PDE (2.3) is unique. This is indeed the
case when the coefficient σ is independent of y as well (i.e., σ = σ(t, x));
and when the solution class is restricted to, for example, bounded, contin-
uous functions that are uniform Lipschitz in x and Hölder - 12 in t. We note
that due to the special quasilinearity, the function (2.2) is neither mono-
tone, nor even one-sided uniform Lipschitz in the variable x, therefore H
is not “proper” in the sense of Crandall-Ishii-Lions [1], or convertible to a
proper function using the standard technique of “exponentiating” (see, e.g.,
Fleming-Soner [1]). Consequently, the uniqueness of the viscosity solution
is by no means trivial. However, since this issue is more or less beyond the
scope of this book, we will not include the proof here. We refer the inter-
ested readers to the works of Barles-Buckdahn-Pardoux [1], Pardoux-Tang
[1], or Cvitanic-Ma [2].
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§3. Black’s Consol Rate Conjecture
One of the early applications of FBSDE is to confirm and explore a conjec-
ture by Fischer Black regarding consol rate models for the term structure
of interest rates. A consol is by definition a perpetual annuity, that is, a
security that pays dividends continually and in perpetuity. A consol rate
model is one in which the stochastic behavior of the short rate, taken as a
non-negative progressively measurable process below, is influenced by the
consol rate process. The relation between the two rate processes then yields
a special term structure of interest rates.
In order to set up a mathematical model, let us consider the following

simplest situation in which the short rate is a constant r > 0, then there
should be no difference between the short rate and long term (consol) rate.
In this case the consol price Y can be calculated as the simple actuarial
present value of a perpetual annuity. Assuming, for instance, that the
annuity is in a form of annuity-immediate in terms of actuarial mathematics,
that is , it pays, say $1, at the end of each year, then the price Y can be
calculated easily as

(3.1) Y =

∞∑
k=1

1

(1 + r)k
=

1

(1 + r)
· 1

1− 1
(1+r)

=
1

r
.

In other words, the price for the (unit) consol is the reciprocal of the interest
(consol) rate. In general, let us define the consol rate to be the reciprocal
of the consol price, then instead of studying the original term structure
of interest rates, it would be equivalent to study the relation between the
consol price and the short rate.
Now let us generalize the above idea. For a given short rate process

r = {rt : t ≥ 0}, we use the standard expected discounted value formula (an
extension of the aforementioned actuarial present value formula) to evaluate
the consol price process Y = {Yt : t ≥ 0} †:

(3.2) Y (t) = E

{∫ ∞
t

e
−
∫
s

t
r(u)du

ds

∣∣∣∣ Ft} , t ≥ 0.
(One can check that if r(t) ≡ r, then Y (t) ≡ 1

r
, as (3.1) shows!). The

Consol rate problem can be formulated as follows. Assume that the short
rate process depends on the consol price (whence consol rate) in a non-
anticipating manner, via the following SDE:

(3.3) dr(t) = μ(r(t), Y (t))dt+ α(r(t), Y (t))dW (t).

where W is a standard Brownian motion in lR2, and μ, α are some appro-
priate functions. Then is there actually a pair of adapted processes (r, Y )

† Without getting into the associated definitions and related notions of ar-
bitrage, it is not unusual in applications to work from the beginning with the

so-called “equivalent martingale measure,” in the sense of Harrison and Kreps

[1], and we do so.
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that satisfies both (3.2) and (3.3)? If so, can Y also be described by an
SDE? In an earlier work Brennan and Schwartz [1] proposed a model of
term structure of interest rates in which both short rate and long rate are
characterized by SDEs. However, it was shown later by Hogan [1] by ex-
amples that such a model may not be meaningful in practice. Sensing that
the controversy might be caused by the inappropriate specification of the
coefficients, together with a simple observations by using Ito’s formula and
(3.1), the late economist/mathematician Fisher Black made the following
conjecture:

(Black’s Conjecture). Under at most technical conditions, for any (μ, α)
there is always a function A : (0,∞)× (0,∞)→ (0,∞) depending on μ and
α, such that

dY (t) = (r(t)Y (t)− 1) dt+A(r(t), Y (t))dW (t).

Black’s conjecture essentially re-confirms the SDE model of Brennan
and Schwartz, but it was not clear at the time for how to determine the
function A, and how it should related to the coefficients μ and α in (3.3).
We now show how to confirm Black’s conjecture by using the theory of

FBSDEs. To this end, let us assume first that the short rate r process is
“hidden Markovian”. That is, there is a (Markovian) “state process” X in
lRn such that the short rate is given by rt = h(Xt), for some well behaved
function h. To be more specific, we will assume that X satisfies an SDE:

(3.4)

{
dX(t) = b(X(t), Y (t))dt + σ(X(t), Y (t))dW (t),

X(0) = x, t ∈ [0, T ],

where b, σ are some appropriate functions defined on lRn × lR. Since the
coefficients b and σ can be computed explicitly in terms of μ, α, and h using
Itô’s formula, we can recast the consol rate problem as follows.

Infinite Horizon Consol Rate Problem (IHCR). Find a pair of
adapted, locally square-integrable processes (X,Y ), such that

(3.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dX(t) = b(X(t), Y (t))dt + σ(X(t), Y (t))dW (t), t ∈ [0,∞),

Y (t) = E

{∫ ∞
t

e
−
∫ s
t
h(X(u)) du

ds
∣∣∣ Ft} ,

X0 = x, t ∈ [0,∞).
Any adapted process (X,Y ) satisfying (3.5) is called an adapted solution of
Problem IHCR. Moreover, an adapted solution (X,Y ) of Problem IHCR is
called a nodal solution with representing function θ if there exists a bounded
C2 function θ with θx being bounded, such that

(3.6) Y (t) = θ(X(t)), t ∈ [0,∞).

Recall that the term “nodal solution” was first introduced in Chapter 4,
§3, where we studied the FBSDE in a infinite horizon [0,∞) of the following
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type:

(3.7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dX(t) = b(X(t), Y (t)) dt + σ(X(t), Y (t))dW (t),

dY (t) = (h(X(t))Y (t)− 1)dt− 〈Z(t), dW (t) 〉, t ∈ [0,∞),
X(0) = x,

Y (t) is bounded a.s. , uniformly in t ∈ [0,∞).

The following theorem shows that (3.7) is exactly the system of SDEs that
can characterize the process X and Y simultaneously, which will be the
first step towards the resolution of Black’s conjecture. First let us recall
the technical assumptions (3.4)–(3.6) of Chapter 4:

(A2) The functions σ, b, h are C1 with bounded partial derivatives and
there exist constants λ, μ > 0, and some continuous increasing function
ν : [0,∞)→ [0,∞), such that⎧⎪⎪⎨⎪⎪⎩

λI ≤ σ(x, y)σ(x, y)� ≤ μI, (x, y) ∈ lRn × lR,
|b(x, y)| ≤ ν(|y|), (x, y) ∈ lRn × lR,
inf
x∈lRn

h(x) = δ > 0, sup
x∈lRn

h(x) = γ <∞.

Theorem 3.1. Assume (A2). If (X,Y, Z) is an adapted solution to (3.7),
then (X,Y ) is an adapted solution to Problem (IHCR).
Conversely, if (X,Y ) is an adapted solution to Problem IHCR, then

there exists an adapted, lRd-valued, locally square-integrable process Z,
such that (X,Y, Z) is an adapted solution of (3.7).

Proof. To see the first assertion, let (X,Y, Z) be an adapted solution to

(3.7). Let Γ(t) = e
−
∫
t

0
h(X(u))du

, t ∈ [0, T ]. Then using integration by parts
(or Itô’s formula) one shows easily that

Γ(T )Y (T ) = Γ(t)Y (t) +

∫ T
t

Γ(s)dY (s) +

∫ T
t

Y (s)dΓ(s)

= −
∫ T
t

e
−
∫ s
t
h(X(u))du

ds,

or

Y (t) = e
−
∫
T

t
h(X(s))ds

+

∫ T
t

e
−
∫
T

t
h(X(u))du

ds+m(T )−m(t).

where m denotes some {Ft}t≥0-martingale, as usual. Taking conditional
expectation E{ · |Ft} on both sides and letting T →∞, we prove the first
assertion.
Conversely, suppose that (X,Y ) is an adapted solution to Problem

IHCR. Define

(3.8) U(t) =

∫ ∞
t

e
−
∫ s
t
h(X(u))du

ds.
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Clearly, U(t) is well-defined for each t ≥ 0, thanks to (A2). We claim
that U is the unique bounded solution of the following ordinary differential
equation with random coefficients:

(3.9)
dU(t)

dt
= h(X(t))U(t)− 1, t ∈ [0,∞).

Indeed, by a direct verification one shows that the function U defined by
(3.8) is a bounded solution of (3.9). On the other hand, let U be any
bounded solution to (3.9) defined on [0,∞). Then for any 0 ≤ t ≤ T , we
can apply the variation of constants formula to get

(3.10) U(t) = e
−
∫ T
t
h(X(u))du

U(T ) +

∫ T
t

e
−
∫ s
t
h(X(u))du

ds.

Since U(T ) is bounded for all T > 0, and by (A2), h(X(u)) ≥ δ > 0
∀u ∈ [0, T ], P-a.s., sending T →∞ on both sides of (3.10) we obtain (3.8),
proving claim.
Next, define Y (t) = E{U(t)|Ft}. Note that since the filtration {Ft}t≥0

is Brownian, the process Y is continuous and is indistinguishable from the
optional (as well as predictable) projection of U . Hence, for any bounded,
{Ft}t≥0-adapted process H , it holds that†

(3.11) E
{∫ T
t

H(s)U(s)ds
∣∣∣Ft} = E{∫ T

t

H(s)Y (s)ds
∣∣∣Ft},

Now for 0 ≤ t < T <∞ we have from (3.9) and (3.11) that

(3.12)

Y (t) = E(U(t)|Ft) = E
{
U(T )−

∫ T
t

[h(X(s))U(s)− 1]ds
∣∣∣Ft}

= E
{
Y (T )−

∫ T
t

[h(X(s))Y (s)− 1]ds
∣∣∣Ft}.

Thus, by using the martingale representation theorem one shows that there
exists an adapted, square-integrable process Z(T ) defined on [0, T ], such
that for all t ∈ [0, T ],

(3.13) Y (t) = Y (T )−
∫ T
t

[h(X(s))Y (s)− 1]ds+
∫ T
t

〈Z(T )(s), dWs 〉 .

Since (3.13) holds for any T > 0, let 0 ≤ T1 < T2 < ∞, we have for
t ∈ [0, T1] that

Y (t) = Y (T1)−
∫ T1
t

[h(X(s))Y (s)− 1]ds+
∫ T1
t

〈Z(T1)(s)dW (s) 〉

= Y (T2)−
∫ T2
t

[h(X(s))Y (s)− 1]ds+
∫ T2
t

〈Z(T2)(s), dW (s) 〉 .

† See, for example, Dellacherie and Meyer [1, Chapter VI].
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From this one derives easily that

(3.14)

∫ T1
t

〈Z(T2)(s)− Z(T1)(s), dW (s) 〉 = 0, for all

This leads to that E
{∫ T1
0 [Z

(T2)(s)− Z(T1)(s)]2ds
}
= 0. In other words,

Z(T1) = Z(T2), dt⊗ dP-almost surely on [0, T1]×Ω. Consequently, modulo
a dt⊗ dP -null set, we can define a process Z by Zt = Z(N)(t), if t ∈ [0, N ],
where N = 1, 2, · · ·. Clearly Z is locally square-integrable, and (3.13) can
now be rewritten as

(3.15) Y (t) = Y (T )−
∫ T
t

[h(X(s))Y (s)− 1]ds+
∫ T
t

〈Z(s), dW (s) 〉,

for all T > 0, or equivalently, (X,Y ) satisfies the SDE (3.7). Finally, the
boundedness of Y follows easily from the definition of Y and the fact that
Ut ≤ 1

δ
, ∀t ≥ 0, P-a.s. , proving the proposition.

We remark here that Theorem 3.1 shows that the Black’s conjecture
can be partially solved if the FBSDE (3.7) is solvable. However, in order to
confirm Black’s conjecture completely, we have to show that the process Z
can actually be written as Z(t) = ϕ(X(t), Y (t)) for some function ϕ, which
in turn will give Z(t) = A(r(t), Y (t)) for some functionA, as the conjecture
states. But this is exactly where the nodal solution comes into play, and
the Chapter 4, Theorem 3.3 essentially solves the problem. We recast that
theorem here in the new context.

Theorem 3.2. Assume (A2). Then there exists at least one nodal solution
(X,Y ) of Problem IHCR. Moreover, the representing function θ satisfies
(i) γ−1 ≤ θ(x) ≤ δ−1, for all x ∈ lR.
(ii) θ satisfies the following differential equation for x ∈ lRn:

(3.16)
1

2
tr
(
θxxσ(x, θ)σ

T (x, θ)
)
+ 〈 b(t, θ), θx 〉−h(x)θ + 1 = 0,

Consequently, The Black’s conjecture is solved (in terms of Problem IHCR)
with A(x, y) = σT (x, y)θx(x).

Proof. This is the direct consequence of Chapter 4, Theorem 3.3; and
the last statement if due to the fact that Z(t) = A(X(t), Y (t)) whenever
the nodal solution exists.

Remark 3.3. We should point out here that although the bounded solution
U of the random ODE (3.9) with infinite-horizon is unique, the uniqueness
of the adapted solution to the FBSDE (3.7) over an infinite duration is
still unknown. In fact, as we saw in Chapter 4 (§3), the uniqueness of the
adapted solution, as well as that of the nodal solution, to FBSDE (3.7),
is a more delicate issue, especially in the higher dimensional case. How-
ever, since Black’s conjecture concerns only the existence of the function
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A, Theorem 3.2 provides a sufficient answer. Interested readers could of
course revisit Chapter 4, §3 for more details on various issues regarding
uniqueness.

Finite-Horizon Valuation Problem and its limit.
In the standard theory of term structure of interest rates the time

duration is often set to be finite. Namely, we content ourselves only in
a finite time interval [0, T ]. Let us now view the process Y as a long
term interest rate (or the price of a long term bond to be comparable to
the consol price). and view X as the state process for the short rate r,
with r(t) = h(X(t)), and h satisfies (A2). In order to study the explicit
relation between X and Y , let us assume that they have an explicit relation
at terminal time T : Y (T ) = g(X(T )). We consider the following Finite-
Horizon-Valuation Problem. Note that Such a problem is a generalization of
the well-known finite horizon annuity valuation problem, which corresponds
to the case when g ≡ 0 below, by allowing the annuity price to influence
the short rate.

Problem FHV. Find an adapted process (X,Y ) such that for

(3.17)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(t) = x+

∫ t
0

b(X(s), Y (s))ds+

∫ t
0

σ(X(s), Y (s))dW (s),

Y (t) = E

{
ΓTt g(X(T )) +

∫ T
t

Γsds
∣∣∣ Ft} , t ∈ [0, T ],

where Γst
Δ
= e

−
∫ s
t
h(X(u))du

.
Any adapted process (X,Y ) satisfying (3.17) is called an adapted so-

lution of Problem FHV. Further, an adapted solution (X,Y ) of Problem
FHV is called a nodal solution of Problem FHV if there exists a function
θ : [0, T ]× lRn → lR, which is C1 in t and C2 in x, such that

(3.18) Y (t) = θ(t,X(t)), t ∈ [0, T ].

Conceivably the Problem FHV will associate to an FBSDE as well, as
was seen in the IHCR case. In fact, some similar arguments as those in
Theorem 3.1 shows that if (X,Y ) is an adapted solution to the Problem
FHV, then there exist a progressively measurable, square integrable process
Z such that (X,Y, Z) is an adapted solution to the following FBSDE:

(3.19)

⎧⎪⎨⎪⎩
dX(t) = b(X(t), Y (t)) dt+ σ(X(t), Y (t))dW (t),

dY (t) = (h(X(t))Y (t)− 1)dt− 〈Z(t), dW (t) 〉, t ∈ [0, T ],
X(0) = x, Y (T ) = g(X(T )).

Conversely, if (X,Y, Z) is an adapted solution to (3.19), then a variation
of constant formula applied to the backward SDE in (3.19) would lead
immediately to that Y satisfies (3.17). Furthermore, using the results in
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Chapter 4 (Four Step Scheme) we see that if g is regular enough, then any
adapted solution of (3.19) must be a nodal solution. These facts, together
with Chapter 4, Theorem 3.10, give us the following theorem, which slightly
goes beyond the Black Conjecture.

Theorem 3.4. In addition to (A2), assume further that the function g
belongs boundedly to C2+α(lRn) for some α ∈ (0, 1). Then, Problem FHV
admits a unique adapted solution (X,Y ). Moreover, this solution is in fact
a nodal solution.
Furthermore, if the Problem IHCR has a unique nodal solution, denoted

by (X,Y ), where Y = θ(X) and θ satisfies the differential equation (3.16);
and if we denote (XK , Y K) to be the nodal solution of Problem FHV on
the interval [0,K], then it holds that

(3.20) lim
K→∞

E|Y Kt − Yt|2 + E|XKt −Xt|2 = 0,

uniformly in t ∈ [0,∞) on compacts.

§4. Hedging Options for a Large Investor
In this section we apply the theory of FBSDEs to another problem in fi-
nance: hedging contingent claims for a large investor. We recall that the
problem of hedging a contingent claim was discussed briefly in Chapter 1,
§1.3. In this section we shall remove one of the fundamental assumptions
on which the Black-Scholes theory is built, that is, the “small investor” as-
sumption. Roughly speaking, the “small investor” assumption says that no
individual investor is influential enough so that his/her investment strat-
egy, or wealth, once exposed, could affect the market prices. Mathemati-
cally, under such an assumption the coefficients of the stochastic differential
equation that characterizes the price of underlying security should be inde-
pendent of the portfolio of any investor. Although such an assumption has
long been deemed as common sense, it has been also noted recently that
the investors that are “not-so-small” could really make disastrous effect to
a financial market. A probably indisputable evidence, for example, is the
“Hedge Fund” crisis of 1998 in the global financial market, in which the
“large investors” obviously played some important roles. In this section, we
try to attack the problem of hedging a contingent claim involving “large in-
vestors”. We should point out here that the model that we will be studying
is still quite “ad hoc”, and we shall only concentrate on the mathematical
side of the problem.
Recall from Chapter 1, §1.3 the mathematical model of a continuous-

time financial market. There are d+1 assets traded continuously: a money
market account and d stocks, whose prices at each time t are denoted by
P0(t), Pi(t), i = 1, · · · , d, respectively. An investor is allowed to trade
continuously and frictionlessly. The “wealth” of the investor at time t is
denoted by X(t); and the amount of money that the investor puts into the
i-th stock at time t is denoted by πi(t), 1 = 1, · · · , d (thus the amount of
money that the investor puts into the money market at time t is X(t) −
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i=1 πi(t)). We assume that the investor is “large” in the sense that his

wealth and strategy, once exposed, might influence the prices of the financial
instruments. More precisely, let us assume that the prices (P0, P1, · · · , Pd)
evolves according to the following (stochastic) differential equations on a
given finite time horizon [0, T ] (comparing to Chapter 1, (1.26)):

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dP0(t) = P0(t)r(t,X(t), π(t))dt, 0 ≤ t ≤ T ;
dPi(t) = Pi(t){bi(t, P (t), X(t), π(t))dt

+
d∑
j=1

σij(t, P (t), X(t), π(t))dWj(t)},

P0(0) = 1, Pi(0) = pi > 0, i = 1, · · · , d,
where W = (W1, · · · ,Wd) is a d-dimensional standard Brownian motion
defined on a complete probability space (Ω,F ,P), and we assume as usual
that {Ft}t≥0 is the P-augmentation of the natural filtration generated by
W . To be consistent with the classical model, we call b the appreciation
rate and σ the volatility matrix of the stock market.
Further, we assume that the investor is provided an initial endowment

x ≥ 0, and is allowed to consume, and denote C(t) to be the cumulative
consumption time t. It is not hard to argue that the change of the wealth
“dX(t)” should now follow the dynamics:

(4.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dX(t) =

d∑
i=1

πi(t)

Pi(t)
dPi(t) +

(X(t)−∑di=1 πi(t))
P0(t)

dP0(t)− dC(t)

X(0) = x > 0.

To simplify presentation, from now on we assume that d = 1 and that
the interest rate r is independent of π and X , i.e., r ≡ r(t), t ≥ 0. Denote

(4.3)
b̂(t, p, x, π)

Δ
=(x− π)r(t) + πb(t, p, x, π);

σ̂(t, p, x, π)
Δ
= πσ(t, p, x, π),

for (t, p, x, π) ∈ [0, T ]× lR3. We can rewrite (4.1) and (4.2) as

(4.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P0(t) = exp

{∫ t
0

r(s)ds
}
,

P (t) = p+

∫ t
0

P (s){b(s, P (s), X(s), π(s))ds

+ σ(s, P (s), X(s), π(s))dW (s)},

t ∈ [0, T ];

(4.5)

X(t) = x+

∫ t
0

b̂(s, P (s), X(s), π(s))ds

+

∫ t
0

σ̂(s, P (s,X(s), π(s))dW (s) − C(t);
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Before we proceed, we need to make some technical observations: first,
we say a pair of {Ft}t≥0-adapted processes (π,C) is a hedging strategy
(or simply strategy) if C(·) has nondecreasing and RCLL paths, such that
C(0) = 0 and C(T ) < ∞, a.s. -P; and E

∫ T
0
|π(s)|2ds < ∞. Clearly, under

suitable conditions, for a given strategy (π,C) and the initial values p > 0
and x ≥ 0 the SDEs (4.4) and (4.5) have unique strong solutions, which will
be denoted by P = P p,x,π,C and X = Xp,x,π,C, whenever the dependence
of the solution on p, x, π, C needs to be specified.
Next, for a given x ≥ 0, we say that a hedging strategy (π,C) is

admissible w.r.t. x, if for any p > 0, it holds that P p,x,π,C(t) > 0 and
Xp,x,π,C(t) ≥ 0, ∀t ∈ [0, T ], a.s.P. We denote the set of strategies that
are admissible w.r.t. x by A(x). It is not hard to show that A(x) �= ∅
for all x. Indeed, for any x > 0, and p > 0, consider the pair π ≡ 0 and
C ≡ 0. Therefore, under very mild conditions on the coefficients (e.g., the
standing assumptions below) we see that both P and X can be written as
“exponential” functions:

(4.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P (t) = p exp

{∫ t
0

[b(s)− 1
2
|σ(s)|2]ds+

∫ t
0

σ(s)dW (s)
}
> 0,

X(t) = x exp{
∫ t
0

r(s)ds} ≥ 0,

where b(s) = b(s, P (s), 0, 0) and σ(s) = σ(s, P (s), 0, 0). Thus (0, 0) ∈ A(x).
Recall from Chapter 1, §1.3 that an option is an FT -measurable random

variable B = g(P (T )), where g is a real function; and that the hedging price
of the option is

(4.7) h(B)
Δ
= inf{x ∈ lR : ∃(π,C) ∈ A(x), s.t. Xx,π,C(T ) ≥ B a.s. }.

In light of the discussion in Chapter 1, §1.3, we will be interested in the
forward-backward version of the SDEs (4.4) and (4.5):

(4.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (t) = p+

∫ t
0

P (s){b(s, P (s), X(s), π(s))ds

+ σ(s, P (s), X(s), π(s))dW (s)},

X(t) = g(P (T ))−
∫ T
t

b̂(s, P (s), X(s), π(s))ds

−
∫ T
t

σ̂(s, P (s,X(s), π(s))dW (s);

We first observe that under the standard assumptions on the coefficients
and that g ≥ 0, if (P,X, π) is a solution to FBSDE (4.8), then the pair (π, 0)
must be admissible w.r.t. X(0) (a deterministic quantity by Blumenthal
0 − 1 law). Indeed, let (P,X, π) be an adapted solution to (4.8). Then a
similar representation as that in (4.6) shows that P (t) > 0, ∀t, a.s. Further,
define a (random) function

f(t, x, z) = r(t)x + zσ−1(t, P (t), X(t), π(t))[b(t, P (t), X(t), π(t)) − r(t)],
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then x(t) = X(t), z(t) = σ(t, P (t), X(t), π(t))π(t) solves the following back-
ward SDE

x(t) = g(P (T )) +

∫ T
t

f(s, x(s), z(s))ds+

∫ T
t

z(s)dW (s).

Applying the Comparison theorem (Chapter 1, Theorem 6.1), we conclude
that X(t) = x(t) ≥ 0, ∀t, P-a.s., since g(P (T )) ≥ 0, P-a.s. The assertion
follows.

§4.1. Hedging without constraint
We first seek the solution to the hedging problem (4.7) under the following
assumptions.

(H3) The functions b, σ : [0, T ] × lR3 �→ lR are twice continuously differ-
entiable, with first order partial derivatives in p, x and π being uniformly
bounded. Further, we assume that there exists a K > 0, such that for all
(t, p, x, π), ∣∣∣p ∂b

∂p

∣∣∣+ ∣∣∣p∂σ
∂p

∣∣∣+ ∣∣∣x∂σ
∂x

∣∣∣+ ∣∣∣x∂σ
∂π

∣∣∣ ≤ K.
(H4) There exist constants K > 0 and μ > 0, such that for all (t, p, x, π)
with p > 0, it holds that

μ < σ2(t, p, x, π) ≤ K.

(H5) g ∈ C2+αb (lR) for some α ∈ (0, 1); and g ≥ 0.
Remark 4.1. Assumption (H4) amounts to saying that the market is
complete. Assumption (H5) is inherited from Chapter 4, for the purpose
of applying the Four step scheme. However, since the boundedness of g
excludes the simplest, say, European call option case, it is desirable to
remove the boundedness of g. One alternative is to replace (H5) by the
following condition.

(H5)′ lim|p|→∞ g(p) = ∞; but g ∈ C3(lR) and g′ ∈ C2b (lR). Further, there
exists K > 0 such that for all p > 0,

(4.9) |pg′(p)| ≤ K(1 + g(p)); |p2g′′(p)| ≤ K.

The point will be revisited after the proof of our main theorem. Finally, all
the technical conditions in (H3)–(H5) are verified by the classical models.
An example of a non-trivial function σ that satisfies (H3) and (H4) could
be σ(t, p, x, π) = σ(t) + arctan(x2 + |π|2).
We shall follow the “Four Step Scheme” developed in Chapter 4 to solve

the problem. Assuming C = 0 and consider the FBSDE (4.8). Since we
have seen that the solution to (4.8), whenever exists, will satisfy P (t) > 0,
we shall restrict ourselves to the region (t, p, x, π) ∈ [0, T ] × (0,∞) × lR2
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without further specification. The Four Step Scheme in the current case is
the following:

Step 1: Find z : [0, T ]× (0,∞)× lR2 → lR such that

(4.10) qpσ(t, p, x, z(t, p, x, q))− z(t, p, x, q)σ(t, p, x, z(t, p, x, q)) = 0,

In other words, z(t, p, x, q) = pq since σ > 0 by (H4).

Step 2: Using the definition of b̂ and σ̂ in (4.3), we deduce the following
extension of Black-Scholes PDE:

(4.11)

⎧⎨⎩ 0 = θt +
1

2
σ2(t, p, θ, pθp)p

2θpp + pθp − r(t)θ,

θ(T, p) = g(p), p > 0.

Step 3: Let θ be the (classical) solution of (4.11), set

(4.12)

{
b̃(t, p) = b(t, p, θ(t, p), pθp(t, p))

σ̃(t, p) = σ(t, p, θ(t, p), pθp(t, p)),

and solve the following SDE:

(4.13) P (t) = p+

∫ t
0

P (s)b̃(s, P (s))ds+

∫ t
0

P (s)σ̃(s, P (s))dW (s).

Step 4: Setting

(4.14)

{
X(t) = θ(t, P (t))

π(t) = P (t)θp(t, P (t)),

show that (P,X, π) is an adapted solution to (4.8) with C ≡ 0.

The resolution of the Four Step Scheme depends heavily on the exis-
tence of the classical solution to the quasilinear PDE (4.11). Note that
in this case the PDE is “degenerate” near p = 0, the result of Chapter 4
does not apply directly. We nevertheless have the following result that is
of interest in its own right:

Theorem 4.2. Assume (H3)–(H5). There exists a unique classical solution
θ(·, ·) to the PDE (4.11), defined on (t, p) ∈ [0, T ] × (0,∞), which enjoys
the following properties:

(i) θ − g is uniformly bounded for (t, p) ∈ [0, T ]× (0,∞);
(ii) The partial derivatives of θ satisfy: for some constant K > 0,

(4.15) |pθp(t, p)| ≤ K(1 + |p|); |p2θpp(t, p)| ≤ K.
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Proof. First consider the function θ̂
Δ
= θ − g. It is obvious that θ̂t = θt,

θ̂p = θp − gp and θ̂pp = θpp − gpp; and θ̂ satisfies the following PDE:

(4.16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 = θ̂t +

1

2
σ2(t, p, θ̂ + g(p), p(θ̂p + g

′(p)))p2(θ̂pp + g′′)

+ r(t)[p(θ̂p + g
′)− (θ̂ + g)],

θ̂(T, p) = 0, p > 0.

To simplify notations, let us set σ̄(t, p, x, π) = σ(t, p, x + g(p), π + pg′(p)),
then we can rewrite (4.16) as

(4.17)

⎧⎨⎩ 0 = θ̂t +
1

2
σ̄2(t, p, θ̂, pθ̂p)p

2θ̂pp + r(t)pθ̂p + r̂(t, p, θ̂, pθ̂p),

θ̂(T, p) = 0, p > 0,

where

(4.18) r̂(t, p, x, π) =
1

2
σ̄2(t, p, x, π)p2g′′(p) + r(t)pg′(p)− r(t)(x + g(p)).

Next, we apply the standard Euler transformation: p = eξ, and de-

note θ̃(t, ξ)
Δ
= θ̂(t, eξ). Since θ̃t(t, ξ) = θ̂t(t, e

ξ), θ̃ξ(t, ξ) = e
ξθ̂p(t, e

ξ), and

θ̃ξξ(t, ξ) = e
2ξ θ̂pp(t, e

ξ) + eξθ̂p(t, e
ξ), we we derive from (4.17) a quasilinear

parabolic PDE for θ̃:

(4.19)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 = θ̃t +

1

2
σ̄2(t, eξ, θ̃, θ̃ξ)(θ̃ξξ − eξθ̃ξ) + r(t)θ̃ξ + r̂(t, eξ, θ̃, θ̃ξ),

= θ̃t +
1

2
σ̄20(t, ξ, θ̃, θ̃ξ)θ̃ξξ + b0(t, ξ, θ̃, θ̃ξ)θ̃ξ + b̂0(t, ξ, θ̃, θ̃ξ),

θ̃(T, ξ) = 0, ξ ∈ lR,

where

(4.20)

σ̄0(t, ξ, x, π) = σ̄(t, e
ξ, x, π);

b0(t, ξ, x, π) = r(t) −
1

2
[σ̄20(t, ξ, x, π)];

b̂0(t, ξ, x, π) = r̂(t, e
ξ, x, π).

Now by (H3) and (H4) we see that σ̄0(t, ξ, x, π) ≥ μ > 0, for all
(t, ξ, x, π) ∈ [0, T ] × lR3 and for all (t, ξ, x, π), it holds (suppressing the
variables) that

∂σ̄0

∂ξ
=
∂σ̄

∂p
eξ +

∂σ̄

∂x
g′(eξ)eξ +

∂σ̄

∂π

[
g′′(eξ)e2ξ + eξg′(eξ)

]
.

Thus, either (H5) or (H5)′, together with (H3), will imply the boundedness
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of ∂σ̄0∂ξ . Similarly, we have

sup
(t,ξ,x,π)

∣∣∣∂σ
∂p
(t, eξ, x+ g(eξ), π + eξg′(eξ))eξ

∣∣∣ <∞;
sup

(t,ξ,x,π)

∣∣∣∂σ
∂x
(t, x+ g(eξ), π + eξg′(eξ))g′(eξ)eξ

∣∣∣
≤ K sup

(t,ξ,x,π)

∣∣∣∂σ
∂x
(t, x + g(eξ), π + eξg′(eξ))

∣∣∣[1 + (x+ g(eξ))] <∞;
sup

(t,ξ,x,π)

∣∣∣∂σ
∂π
(t, x+ g(eξ), π + eξg′(eξ))g′(eξ)eξ

∣∣∣
≤ K sup

(t,ξ,x,π)

∣∣∣∂σ
∂π
(t, x + g(eξ), π + eξg′(eξ))

∣∣∣[1 + (x+ g(eξ))] <∞,
Consequently, we conclude that the function σ̄0 has bounded first order
partial (thus uniform Lipschitz) in the variables ξ, x and π, and thus so is
b0. Moreover, note that for any

1

2
σ̄2(t, eξ, x, π)g′′(eξ) =

1

2
σ̄20(t, ξ, x, π)e

2ξ2g′′(eξ)

is uniformly bounded and Lipschitz in ξ, x and π by either (H5) or (H5)′, we
see that b̂0 is also uniform bounded and uniform Lipschitz in (x, ξ, π). Now
we can apply Chapter 4, Theorem 2.2 to conclude that the PDE (4.11) has

a unique classical solution θ̃ in C1+
α
2 ,2+α (for any α ∈ (0, 1)). Furthermore,

θ̃, together with its first and second partial derivatives in ξ, is uniformly
bounded throughout [0, T ] × lR. If we go back to the original variable,
then we obtain that the function θ̂ is uniformly bounded and its partial
derivatives satisfy:

sup
(t,p)

|pθ̂p(t, p)| <∞; sup
(t,p)

|p2θ̂pp(t, p)| <∞.

This, together with the definition of θ̂ and condition (H5) (or (H5)′), leads
to the estimates (4.15), proving the proposition.

A direct consequence of Theorem 4.2 is the following

Theorem 4.3. Assume (H3), (H4), and either (H5) or (H5)′. Then for
any given p > 0, the FBSDE (4.8) admits an adapted solution (P,X, π).

Proof. We follow the Four Step Scheme. Step 1 is obvious. Step 2 is the
consequence of Theorem 4.2. For step 3, we note that since θp and θpp may
blow up when p ↓ 0, a little bit more careful consideration is needed here.
However, observe that b̃ and σ̃ are locally Lipschitz in [0, T ]× (0,∞)× lR2,
thus one can show that for ant p > 0, the SDE (4.13) always has a “local
solution” for t sufficiently small. It is then standard to show (or simply
note the exponential form (4.6)) that the solution, whenever exists, will
neither go across the boundary p = 0 nor explode before T . Hence step 3
is complete. Since step 4 is trivial, we proved the theorem.
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Our next goal is to show that the adapted solution of FBSDE (4.8)
does give us the optimal strategy. Also, we would like to study the unique-
ness of the adapted solution to the FBSDE (4.8), which cannot be easily
deduced from Chapter 4, since in this case the function σ depends on π (see
Chapter 4, Remark 1.2). It turns out, however, under the special setting of
this section, we can in fact establish some comparison theorems which will
resolve all these issues simultaneously. We should note that given the coun-
terexample in Chapter 1, §6 (Example 6.2 of Chapter 1), these comparison
theorems should be interesting in their own rights.

Theorem 4.4. (Comparison Theorem): Suppose that the assumptions
of the Theorem 4.3 are in force. For given p ∈ lRd+, let (π,C) be any
admissible pair such that the corresponding price/wealth process (P,X)
satisfies X(T ) ≥ g(P (T )), a.s. Then X(·) ≥ θ(·, P (·)), where θ is the
solution to (4.11).
Consequently, if (P ′, X ′) is an adapted solution to FBSDE (4.8) start-

ing from p ∈ lRd+, constructed by the Four-Step scheme. Then it holds that
X(0) ≥ θ(0, p) = X ′(0).
Proof. We only consider the case when condition (H5)′ holds, since

the other case is much easier. Let (P,X, π, C) be given such that (π,C) ∈
A(Y (0)) and X(T ) ≥ g(P (T )), a.s. We first define a change of probability
measure as follows: let

(4.21)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ0(t) = [σ
−1[b− r1

]
(t, P (t), X(t), π(t)).

Z0(t) = exp
{
−
∫ t
0

θ0(s)dW (s)−
1

2

∫ t
0

|θ0(s)|2ds
}
;

dP0
dP
= Z0(T ),

so that the process W0(t)
Δ
=W (t)+

∫ t
0
θ0(s)ds is a Brownian motion on the

new probability space (Ω,F ,P0). Then, the price/wealth FBSDE (4.4) and
(4.5) become

(4.22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (t) = p+

∫ t
0

P (s){r(s,X(s), π(s))ds

+

∫ t
0

σ(s, P (s), X(s), π(s))dW0(s)},

X(t) = g(P (T ))−
∫ T
t

r(s,X(t), π(s))X(s)ds

−
∫ T
t

π(s)σ(s, P (s), X(s), π(s))dW0(s) + C(T )− C(t),

Since in the present case the PDE (4.11) is degenerate, and the function
g is not bounded, the solution θ to (4.11) and its partial derivatives could
blow up as p approaches to ∂lRd+ and infinity. Therefore some modification
of the method in Chapter 4 are needed here. First, we apply Itô’s formula
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to the process g(P (·)) from t to T to get

g(P (t)) = g(P (T ))−
∫ T
t

{gp(P )r(s,X, π)P −
1

2
σ2(s, P,X, π)gpp(P )}ds

−
∫ T
t

gp(P )σ(s, P,X, π)dW0(s),

here and in what follows we write (P,X, π) instead of (P (s), X(s), π(s)) in
all the integrals for notational convenience.
Next, we define a process X̂ = X− g(P ), then X̂ satisfies the following

(backward) SDE:

X̂(t) = X̂(T )−
∫ T
t

{r(s,X, π)[X − gp(P )P ]−
1

2
σ2(s, P,X, π)gpp(P )}ds

−
∫ T
t

(π(s) − Pgp(P ))σ(s, P,X, π)dW0(s) + C(T )− C(t)

We now use the notation θ̂ = θ − g as that in the proof of Theorem 4.2;
then it suffices to show that X̂(t) ≥ θ̂(t, P (t)) for all t ∈ [0, T ], a.s.P0. To
this end, let us denote X̃(t) = θ̂(t, P (t)), π̃(t) = P (t)[θ̂p(t, P (t))+gp(P (t))];

and ΔX(t) = X̂(t) − X̃(t), Δπ(t) = π(t)− π̃(t). Applying Itô’s formula to
the process ΔX(t), we obtain

(4.23)

ΔX(t) = X̂(T )−
∫ T
t

{r(s,X, π)[Y − (gp(P ) + θ̂p(s, P ))P ]

− θ̂s(s, P )−
1

2
σ2(s, P,X, π)[θ̂pp(s, P ) + gpp(P )]}ds

−
∫ T
t

(π − P [gp(P ) + θ̂p(s, P )]σ(s, P,X, π)dW0(s)

=X̂(T )−
∫ T
t

A(s)ds−
∫ T
t

Δπσ(s, P,X, π)dW0(s)

+ C(T )− C(t),

where the process A(·) in the last term above is defined in the obvious way.
Recall that the function θ̂ satisfies PDE (4.16), that θ̂(t, P (t)) + g(P (t)) =
X(t)−ΔX(t), and the definition of π̃, we can easily rewrite A(·) as follows:

A(s) = r(s,X, π)X(s)− r(s,X −ΔX , π̃)[X(s)−ΔX(s)]
− r(s,X, π)π(s) − r(s, θ̂(s, P ), π̃)π̃(s)

+
1

2
{Δσ(s, P,X, π, π̃, θ̂(s, P ))Θ(s, P ) = I1(s) + I2(s) + I3(s),

where ⎧⎨⎩Θ(t, p)
Δ
= p2(θ̂pp(t, p) + gpp(p));

Δσ(t, p, x, π, π̃, q)
Δ
= σ2(t, p, q + g(p), π̃)− σ2(t, p, x, π)),
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and Ii’s are defined in the obvious way. Now noticing that

I1(s) = [r(s,X, π)X(s) − r(s,X −ΔX , π)(X −ΔX)]
+ [r(s,X −ΔX , π)− r(s,X −ΔX , π̃)][X(s)−ΔX(s)]

=
{∫ 1
0

∂

∂x
{r(s, x, π)x}

∣∣∣
x=(X(s)−λΔX(s))

dλ
}
ΔX(s)

+

∫ 1
0

∂r

∂π
(s,X −ΔX , π + λΔπ)[X −ΔX ]dλΔπ(s)

= α1(s)ΔX(s) + β1(s)Δπ(s) 〉,

we have from condition (A3) that both α1 and β2 are adapted processes
and are uniformly bounded in (t, ω). Similarly, by conditions (H1)–(H3)
and (H5’), we see that the process Θ(·, P (·)) is uniformly bounded and
that there exist uniformly bounded, adapted processes α2, α3 and β2, β3
such that

I2(s) = r(s,X, π)π(s) − r(s, θ̂(s, P ), π)π(s)
+ [r(s, θ̂(s, P ), π)π(s) − r(s, θ̂(s, P ), π̃)π̃(s)]
= α2(s)ΔX(s) + β2(s)Δπ(s);

I3(s) = α3(s)ΔX(s) + β3(s)Δπ(s).

Therefore, letting α =
∑3
i=1 αi, β =

∑3
i=1 βi, we obtain that

A(t) = α(t)ΔX (t) + β(t)Δπ(t),

where α and β are both adapted, uniformly bounded processes. In other
words, we have from (4.23) that

(4.24)

ΔX(t) = X̂(T )−
∫ T
t

{α(s)ΔX(s) + β(s)Δπ(s)}ds

−
∫ T
t

Δπ(s)σ(s, P,X, π)dW0(s) 〉+C(T )− C(t).

Now following the same argument as that in Chapter 1, Theorem 6.1
for BSDE’s, one shows that (4.24) leads to that

(4.25)

exp
(
−
∫ t
0

α(s)ds
)
ΔX(t) = E

{
exp
(
−
∫ T
0

α(s)ds
)
ΔX(T )

+

∫ T
t

exp
(
−
∫ s
0

α(u)du
)
dC(s)

∣∣∣Ft}.
Therefore ΔX(T ) = X(T ) − g(P (T )) ≥ 0 implies that ΔX(t) ≥ 0, ∀t ∈
[0, T ], P-a.s. We leave the details to the reader.
Finally, note that if (P ′, X ′) is an adapted solution of (4.8) starting

from p and constructed by Four Step Scheme, then it must satisfy that
X ′(0) = θ(0, p), hence X(0) ≥ X ′(0) by the first part, completing the
proof.



§4. Hedging options for large investors 217

Note that if (P,X, π) is any adapted solution of FBSDE (4.8) starting
from p, then (4.25) leads to that X(t) = θ(t, P (t)), ∀t ∈ [0, T ], P -a.s.,
since C ≡ 0 and Δ(T ) = X(T ) − g(P (T )) = 0. We derived the following
uniqueness result of the FBSDE (4.8).

Corollary 4.5. Suppose that assumptions of Theorem 4.4 are in force.
Let (P,X, π) be an adapted solution to FBSDE (4.8), then it must be the
same as the one constructed from the Four Step Scheme. In other words,
the FBSDE (4.8) has a unique adapted solution and it can be constructed
via (4.13) and (4.14).

Reinterpreting Theorem 4.4 and Corollary 4.5 in the option pricing
terms we derive the following optimality result.

Corollary 4.6. Under the assumptions of Theorem 4.4, it holds that
h(g(P (T ))) = X(0), where P,X are the first two components of the adapted
solution to the FBSDE (4.8). Furthermore, the optimal hedging strategy is
given by (π, 0), where π is the third component of the adapted solution to
FBSDE (4.8). Furthermore, the optimal hedging prince for (4.7) is given
by X(0), and the optimal hedging strategy is given by (π, 0).

Proof. We need only show that (π, 0) is the optimal Strategy. Let
(π′, C) ∈ H(B). Denote P ′ and X ′ be the corresponding price/wealth pair,
then it holds that X ′(T ) ≥ g(P ′(T )) by definition. Theorem 4.4 then tells
us that X ′(0) ≥ X(0), where X is the backward component of the solution
to the FBSDE (4.8), namely the initial endowment with respect to the
strategy (π, 0). This shows that h(g(P (T ))) = X(0), and therefore (π, 0) is
the optimal strategy.

To conclude this section, we present another comparison result that
compares the adapted solutions of FBSDE (4.8) with different terminal
condition. Again, such a comparison result takes advantage of the special
form of the FBSDE considered in this section, which may not be true for
general FBSDEs.

Theorem 4.7. (Monotonicity in terminal condition) Suppose that the
conditions of Theorem 4.3 are in force. Let (P i, X i, πi), i = 1, 2 be the
unique adapted solutions to (4.8), with the same initial prices p > 0 but
different terminal conditions X i(T ) = gi(P i(T )), i = 1, 2 respectively. If
g1, g2 all satisfy the condition (H5) or (H5)′, and g1(p) ≥ g2(p) for all
p > 0, then it holds that X1(0) ≥ X2(0).
Proof. By Corollary 4.5 we know that X1 and X2 must have the form

X1(t) = θ1(t, P 1(t)); X2(t) = θ2(t, P 2(t)),

where θ1 and θ2 are the classical solutions to the PDE (4.11) with terminal
conditions g1 and g2, respectively. We claim that the inequality θ1(t, p) ≥
θ2(t, p) must hold for all (t, p) ∈ [0, T ]× lRd+.
To see this, let us use the Euler transformation p = eξ again, and define

ui(t, ξ) = θi(T − t, eξ). It follows from the proof of Theorem 4.2 that u1
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and u2 satisfy the following PDE:

(4.26)

⎧⎨⎩ 0 = ut −
1

2
σ̄2(t, ξ, u, uξ)uξξ − b0(t, ξ, u, uξ)uξ + ur̄(t, u, uξ),

u(0, ξ) = gi(eξ), ξ ∈ lRd,

respectively, where

σ̄(t, ξ, x, π) = e−ξσ(T − t, eξ, x, π);

b0(t, ξ, x, π) = r(T − t, x, π)−
1

2
σ̄2(T − t, ξ, x, π);

r̄(t, x, π) = r(T − t, x, π).

Recall from Chapter 4 that ui’s are in fact the (local) uniform limits of the
solutions of following initial-boundary value problems:

(4.27)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 = ut −

1

2
σ̄21(t, ξ, u, uξ)uξξ − b0(t, ξ, u, uξ)uξ + ur(t, u, uξ),

u
∣∣
∂BR
(t, ξ) = gi(eξ), |ξ| = R;

u(0, ξ) = gi(eξ), ξ ∈ BR,

i = 1, 2, respectively, where BR
Δ
={ξ; |ξ| ≤ R}. Therefore, we need only

show that u1R(t, ξ) ≥ u2R(t, ξ) for all (t, ξ) ∈ [0, T ]×BR and R > 0.
For any ε > 0, consider the PDE:

(4.27ε)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut =

1

2
σ̄2(t, ξ, u, uξ)uξξ + b0(t, ξ, u, uξ)uξ − ur(t, u, uξ) + ε,

u
∣∣
∂BR
(t, ξ) = g1(eξ) + ε, |ξ| = R;

u(0, ξ) = g1(eξ) + ε, ξ ∈ BR,

and denote its solution by u1R,ε. It is not hard to check, using a standard

technique of PDEs (see, e.g., Friedman [1]), that u1R,ε converges to u
1
R,

uniformly in [0, T ]× lRd. Next, We define a function

F (t, ξ, x, q, q̂) =
1

2
σ̄2(t, ξ, x, q)q̂ + b0(t, ξ, q, q̂)q̂ − xr̄(t, x, q).

Clearly F is continuously differentiable in all variables, and u1R,ε and u
2
R

satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u1R,ε
∂t

> F (t, ξ, u1R,ε, (u
1
R,ε)ξ, (u

1
R,ε)ξξ);

∂u2R
∂t
= F (t, ξ, u2R, (u

2
R)ξ, (u

2
R)ξξ);

u1R,ε(t, ξ) > u
2
R(t, ξ), (t, ξ) ∈ [0, T ]×BT

⋃
{0} × ∂BR,

Therefore by Theorem II.16 of Friedman [1], we have u1R,ε > u
2
R in BR.

By sending ε → 0 and then R → ∞, we obtain that u1(t, ξ) ≥ u2(t, ξ)
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for all (t, ξ) ∈ [0, T ]× lRd, whence θ1(·, ·) ≥ θ2(·, ·). In particular, we have
X1(0) = θ1(0, p) ≥ θ2(0, p) = X2(0), proving the theorem.
Remark 4.8. We should note that from θ1(t, p) ≥ θ2(t, p) we cannot
conclude thatX1(t) ≥ X2(t) for all t, since in general there is no comparison
between θ1(t, P 1(t)) and θ2(t, P 2(t)), as was shown in Chapter 1, Example
6.2!

§4.2. Hedging with constraint
In this section we try to solve the hedging problem (4.7) with an extra
condition that the portfolio of an investor is subject to a certain constraint,
namely, we assume that

(Portfolio Constraint) There exists a constant C0 > 0 such that |π(t)| ≤
C0, for all t ∈ [0, T ], a.s.
Recall that π(t) denotes the amount of money the investor puts in the

stock, an equivalent condition is that the total number of shares of the stock
available to the investor is limited, which is quite natural in the practice.
In what follows we shall consider the log-price/wealth pair instead of

price/wealth pair like we did in the last subsection. We note that these two
formulations are not always equivalent, we do this for the simplicity of the
presentation. Let P be the price process that evolves according to the SDE
(4.1). We assume the following

(H6) b and σ are independent of π and are time-homogeneous; g ≥ 0 and
belongs boundedly to C2+α for some α ∈ (0, 1); and r is uniformly bounded.
Define χ(t) = lnP (t). Then by Itô’s formula we see that χ satisfies the

SDE:

(4.21)

χ(t) = χ0 +

∫ t
0

[b(eχ(s), X(s))− 1
2
σ2(eχ(s), X(s))]ds

+ σ(eχ(s), X(s))dW (s)

= χ0 +

∫ t
0

b̃(χ(s), X(s))ds+

∫ t
0

σ̃(χ(s), X(s))dW (s),

where χ0 = ln p; b̃(χ, x) = b(e
χ, x) − 1

2σ
2(eχ, x); and σ̃(χ, x) = σ(eχ, x).

Next, we rewrite the wealth equation (4.5) as follows.

(4.22)

X(t) = x+

∫ t
0

[r(s)X(s) + π(s)(b(P (s), X(s)) − r(s))]ds

+

∫ t
0

π(s)σ(P (s), X(s))dW (s) − C(t)

= x−
∫ t
0

f(s, χ(s), X(s), π(s))ds +

∫ t
0

π(s)dχ(s) − C(t).

where

(4.23) f(t, χ, x, π) = −r(s)x − π[ 1
2
σ̃2(χ, x)− r(s)].
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In light of the discussion in the previous subsection, we see that in order
to solve a hedging problem (4.7) with portfolio constraint, one has to solve
the following FBSDE

(4.24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(t) = χ0 +

∫ t
0

b̃(χ(s), X(s))ds +

∫ t
0

σ̃(χ(s), X(s))dW (s),

X(t) = g(χ(T )) +

∫ T
t

f(s, χ(s), X(s), π(s))ds−
∫ T
t

π(s)dχ(s)

+ C(T )− C(t),
|π(·)| ≤ C0, dt× dP-a.e. (t, ω) ∈ [0, T ]× Ω.

In the sequel we call the set of all adapted solutions (χ,X, π, C) to
the FBSDE (4.24) the set of admissible solutions. We will be interested
in the nonemptyness of this set and the existence of the minimal solution,
which will give us the solution to the hedging problem (4.7). To simplify
discussion let us make the following assumption:

(H7) b̃ and σ̃ are uniformly bounded in (χ, x) and both have bounded first
order partial derivatives in χ and x.

We shall apply a Penalization procedure similar to the one used in
Chapter 7 to prove the existence of the admissible solution. Namely, we let
ϕ be a smooth function defined on lR such that

(4.25)
ϕ(x) =

⎧⎪⎪⎨⎪⎪⎩
0 |x| ≤ C0;
x− (C0 + 1) x ≥ C0 + 2;
− x− (C0 + 1) x ≤ −C0 − 2;

|ϕ′(x)| ≤ 1, ∀x ∈ lR;

and consider the penalized FBSDEs corresponding to (4.24) with C = 0:
for each n > 0, and 0 ≤ t ≤ s ≤ T ,
(4.26)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

χn(s) = χ0 +

∫ s
t

b̃(χn(r), Xn(r))dr +

∫ s
t

σ̃(χn(r), Xn(r))dW (r),

Xn(s) = g(χn(T )) +

∫ T
s

[f(r, χn(r), Xn(r), πn(r)) + nϕ(πn(r))]dr

−
∫ T
s

πn(r)dχn(r).

Applying the Four Step Scheme in Chapter 4 (in the case m = 1), we see
that (4.26) has a unique adapted solution that can be written explicitly as

(4.27)

{
Xn(s) = θn(s, χn(s));

πn(s) = θnχ(s, χ
n(s)),

s ∈ [t, T ],
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where θn is the classical solution to the following parabolic PDE:

(4.28)

⎧⎨⎩ θnt +
1

2
σ̃2(χ, θn)θnχχ + f(t, χ, θ

n, θnχ) + nϕ(θ
n
χ) = 0,

θn(T, χ) = g(χ).

Further, the solution θn, along with its partial derivatives θnt , θ
n
χ and θ

n
χχ

are all bounded (with the bound depending possibly on n). The following
lemma shows that the bound for θn and θnχ can actually be made indepen-
dent of n.

Lemma 4.9. Assume (H6) and (H7). Then there exists and constant
C > 0 such that

0 ≤ θn(χ, x) ≤ C; |θnχ(χ, x)| ≤ C, ∀(χ, x) ∈ lR2.

Proof. By (H6) and (H7), definitions (4.23) and (4.25), we see that there
exist adapted process αn and βn such that |αn(s)| ≤ L, |βn(s)| ≤ Ln,
∀s ∈ [t, T ], ∀n > 0, P -a.s., for some L > 0, Ln > 0; and that
f(s, χ(s), Xn(s), πn(s)) + nϕ(πn(s)) = αn(s)Xn(s) + βn(s)πn(s).

Define Rn(s) = exp{
∫ s
t
αnr dr}, s ∈ [t, T ]. Then by Itô’s formula one has

(4.29)

Rn(s)Xn(s) = Rn(T )g(χn(T )) +

∫ T
s

Rn(r)βn(r)πn(r)dr

−
∫ T
s

Rn(s)πn(r)dW (r)

= Rn(T )g(χn(T ))−
∫ T
s

Rn(r)πn(r)dWn(r).

whereWn(s) =W (s)−W (t)−
∫ s
t
βn(r)dr. Since βn is bounded for each n,

there exists probability measure Qn � P such that Wn is a Qn Brownian
motion on [t, T ], thanks to Girsanov’s Theorem. We derive from (4.29) and
(H6) that

0 ≤ Rn(s)Xn(s) = EQn{Rn(T )g(χn(T ))|Fs} ≤ C, Qn-a.s.

where the constant C > 0 is independent of n. Consequently Xn, is uni-
formly bounded, uniformly in n, almost surely. In particular, there exists
C > 0 such that 0 ≤ Xnt = θn(t, χ) ≤ C, proving the first part of the
lemma.
To see the second part, denote Zn(s) = θnχχ(s, χ(s))σ̃(s, χ(s)). Since we

can always assume that θn is actually C3 by the smoothness assumptions
in (H6) and (H7), we can use the similar argument as that in Proposition
1.1 to show that the pair (πn, Zn) is an adapted solution to the BSDE:

πn(s) = g′(χ(T )) +
∫ T
s

[An(r)Zn(r) +Bn(r)πn(r) + Cn(r)]dr

−
∫ T
s

Zn(r)dW (r),
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where

(4.30)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

An(s) =
{
σ̃(χ, x)[σ̃χ(χ, x) + σ̃x(χ, x)θ

n
χ(t, χ) + nϕ

′(π)

+ fπ(s, χ, x, π)
}∣∣∣
(χ,x,π)=(χn(s),θn(s,χn(s)),θnχ(s,χ

n(s)))

Bn(s) = fx(s, χ, x, π)
∣∣∣
(χ,x,π)=(χn(s),θn(s,χn(s)),θnχ(s,χ

n(s)))

Cn(s) = fχ(s, χ, x, π)
∣∣∣
(χ,x,π)=(χn(s),θn(s,χn(s)),θnχ(s,χ

n(s)))

Since Bn and Cn are uniformly bounded, uniformly in n, by (H6) and (H7),
and An is bounded for each n, a similar argument as that of part 1 will
lead to the uniform boundedness of πn, with the bounded independent of
n. The proof of the lemma is now complete.
Next, we prove a comparison theorem that is not covered by those in

Chapter 1, §6.
Lemma 4.10. Assume (H6) and (H7). For any n ≥ 1 it holds that
θn+1(t, χ) ≥ θn(t, χ), ∀(t, χ) ∈ [0, T ]× lR.
Proof. For each n, let (χn, Xn, πn) be the adapted solution to

(4.26), defined on [t, T ]. Define X̃n(s) = θn(s, χn+1(s)) and π̃n(s) =
θnχ(s, χ

n+1(s)). Applying Itô’s formula and using the definition of X̃n, π̃n,
and θn one shows that

dX̃n(s) =
{
− f(s, χn+1(s), X̃n+1(s), π̃n+1(s))

− (n+ 1)ϕ(π̃n+1(s)) + π̃n(s)b̃(χn+1(s), Xn+1(s))
}
ds

+ π̃n(s)σ̃(χn+1(s), Xn+1(s))dW (s).

On the other hand, by definition we have

dXn+1(s) =
{
− f(s, χn+1(s), X̃n+1(s), πn+1(s))

− (n+ 1)ϕ(πn+1(s)) + πn(s)b̃(χn+1(s), Xn+1(s))
}
ds

+ πn(s)σ̃(χn+1(s), Xn+1(s))dW (s).

Now denote X̂n = Xn+1 − X̃n and π̂n = πn+1 − π̃n, and note that ϕ is
uniform Lipschitz with Lipschitz constant 1, b and θn are uniformly bound,
we see that for some some bounded processes αn and βn it holds that

dX̂n(s) =
{
− αn(s)X̂n(s)− βn(s)π̂n(s)− ϕ(πn+1(s))

+ π̂n(s)σ̃(χn+1(s), Xn+1(s))dW (s).

Since X̂n(T ) = 0 and ϕ ≥ 0, the same technique of Theorem 4.4 than shows
that under some probability measure Q̃ which is equivalent to P one has

X̂n(s) = EQ̃
{∫ T
s

Rn(r)ϕ(πn+1(r))dr
∣∣∣Fs} ≥ 0,
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where Γ(s) = exp{
∫ s
t
αn(r)dr}. Setting s = t we derive that θn+1(t, χ) ≥

θn(t, χ).

Combining Lemmas 4.9 and 4.10 we see that there exists function θ(t, x)
such that θn(t, χ) ↗ θ(t, χ), as n → ∞. Clearly θ is jointly measurable,
uniformly bounded, and uniform Lipschitz in χ, thanks to Lemma 4.9. Thus
the following SDE is well-posed:

(4.31) χ(s) =

∫ s
t

b̃(χ(r), θ(r, χ(r))dr +

∫ s
t

σ̃(χ(r), θ(r, χ(r))dW (r);

Now define X(s) = θ(s, χ(s)). It is easy to show, using the uniform Lips-
chitz property of θ (in x) and some standard argument for the stability of
SDEs, that

(4.32) lim
n→∞E

{
sup
t≤s≤T

|χn(s)− χ(s)|
}
= 0,

and, together with a simple application of Dominated Convergence Theo-
rem, that

(4.33)
E{|Xn(s)−X(s)|} = E{|θn(s, χn(s))− θ(s, χ(s))|}
≤ 2C22E{|χn(s)− χ(s)|} + 2E{|θn(s, χ(s))− θ(s, χ(s))|} → 0,

as n → ∞. We should note that at this point we do not have any infor-
mation about the regularity of the paths of process X , and neither do we
know that it is even a semimartingale. Let us now take a closer look.
First notice that Lemma 4.9 and the boundedness of r(·) and σ̃

E

∫ T
t

|πn(s)|2ds ≤ C; E

∫ T
t

|f(s, χn(s), Xn(s), πn(s))|2ds ≤ C.

Therefore for some processes π, f0 ∈ L2F(t, T ; lR) such that, possibly along
a subsequence, one has

(4.34) (πn, f(s, χn(s), Xn(s), πn(s)))
w
⇀(π, f0), in (L2F(t, T ; lR))

2.

Next, let us define

(4.35)

⎧⎪⎪⎨⎪⎪⎩
An(s) =

∫ s
t

nϕ(πn(r))dr, 0 ≤ t ≤ s ≤ T,

A(s) = θ(t, χ)−X(s)−
∫ s
t

f0(r)dr −
∫ s
t

π(r)dχ(r).

Since

(4.36)

An(s) = θn(t, χ)−Xn(s)−
∫ s
t

[f(r, χn(r), Xn(r), πn(r))dr

−
∫ s
t

πn(r)dχn(r),
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Combining (4.32)–(4.34), one shows easily that, An converges weakly in
L2(0, T ; lR) to A(s). Therefore it is not hard to see that for any fixed
t ≤ s1 < s2 ≤ T it holds that

(4.37) P{As1 ≤ As2} = 0,

since An’s are all continuous, monotone increasing processes. Thus one
shows that both A(s−) and A(s+) exist for all s ∈ [t, T ]. Denote Ã(s) =
A(s+), then Ã is càdlàg, and for fixed s, A(s) ≤ Ã(s), P -a.s.. We claim
that the equality actually holds. Indeed, from (4.35) we see that X(·)+A(·)
is continuous. Let Q be the rationals in lR, then for each s ∈ [t, T ], it holds
almost surely that

(4.38) lim
r ↓ s
r∈Q
X(r) = lim

r ↓ s
r∈Q
[X(r) +A(r) −A(r)] = X(s) +A(s)− Ã(s).

On the other hand, since for each r ∈ [t, T ] one has X(r) = θ(r, χ(r)) ≥
θn(r, χ(r)), using the continuity of the functions θn’s and the process χ(·)
we have

lim
r ↓ s
X(r) ≥ lim

r ↓ s
θn(r, χ(r)) = θn(s, χ(s)).

Letting n→∞ and using (4.38) we derive

X(s) +A(s) = lim
r ↓ s
r∈Q
X(r) + Ã(s) ≥ lim

n→∞ θ
n(s, χ(s)) + Ã(s)

= θ(s, χ(s)) + Ã(s) = X(s) + Ã(s).

Consequently, A(s) ≥ Ã(s), P -a.s., whence A(s) = Ã(s), P -a.s.. In other
words, Ã(s) is a càdlàg version of A.
From now on we replaceA by its càdlàg version in (4.35) without further

specification. Namely the process X (
Δ
= θ(·, χ(·))) is a semimartingale with

the decomposition:

(4.39) X(s) = θ(t, χ)−
( ∫ T
s

f0(r)dr+A(s)
)
−
∫ T
s

π(r)dχ(r), t ≤ s ≤ T,

and is càdlàg as well. We have the following theorem.

Theorem 4.11. Assume (H6) and (H7). Let χ, f0, π be defined by
(4.31) and (4.34), respectively; and let X(s) = θ(s, χ(s)), where θ is the
(monotone) limit of the solutions of PDEs (4.28), {θn}. Define

(4.40) C(s)
Δ
=

∫ s
t

{f0(s)− f(χ(r), X(r), π(r))}dr +A(s), t ≤ s ≤ T.

Then (χ,X, π, C) is an adapted solution to the FBSDE with constraint
(4.24).
Furthermore, if (χ̃, X̃, π̃, C̃) is any adapted solution to (4.24) on [t, T ],

then it must hold that X(t) ≤ X̃(t). Consequently, x∗ Δ=X(0) is the
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minimum hedging price to the problem (4.7) with the portfolio constraint
|π(t)| ≤ C0.
Proof. We first show that f0(r)−f(χ(r), X(r), Z(r))} ≥ 0, dt×dP-a.e.

In fact, using the convexity of f in the variable z and that f(t, x, 0, 0) = 0
we have, for each n,

f(s, χn(s), Xn(s), πn(s)) − f(s, χ(s), X(s), π(s))
≥ −L(|χn(s)− χ(s)|+ |Xn(s)−X(s)|)

+ [f(s, χ(s), X(s), πn(s))− f(s, χ(s), X(s), π(s))]
≥ −L(|χn(s)− χ(s)|+ |Xn(s)−X(s)|)

+ (πn(s)− π(s))fπ(χ(s), X(s), π(r)).

Using the boundedness of fπ, we see that for any η ∈ L2F(0, T ; lR) such that
η ≥ 0, dt× dP-a.e., it holds that, as n→∞,

E

∫ T
t

[f0(r)− f(r, χ(r), X(r), π(r))]ηrdr

= lim
n→∞E

∫ T
t

[f(r, χn(r), Xn(r), πn(r)) − f(r, χ(r), X(r), π(r))]ηrdr

≥ −LE
∫ T
t

[|χn(r) − χ(r)|+ |Xn(r) −X(r)|]η(r)dr

+ E

∫ T
t

(πn(r) − π(r))fπ(χ(s), X(s), π(r))η(r)dr → 0.

Therefore f0(s)− f(s, χ(s), X(s), π(s)) ≥ 0, dt× dP -a.e., namely C(·) is a
càdlàg, nondecreasing process. Now rewriting (4.39) as

X(s) = g(χ(T ))+

∫ T
s

f(r, χ(r), X(r), π(r))dr+

∫ T
s

π(r)dχ(r)+C(T )−C(s),

for t ≤ s ≤ T , we see that (χ,X, π, C) solves the FBSDE in (4.24). It
remains to check that π(t) ∈ Γ, dt × dP-a.e. But since ϕΓ(0) = 0 and
|ϕ′Γ| ≤ 1, we have

E

∫ T
0

|ϕΓ(πn(s))|2ds ≤ E
∫ T
0

|πn(s)|2ds ≤ C.

Thus, possibly along a subsequence, we have ϕΓ(π
n(·)) w⇀ϕ0Γ for some ϕ0Γ ∈

L2(0, T ; lR). Since ϕG is convex and C
1 by construction, we can repeat the

argument as before to conclude that ϕ0Γ(s) ≥ ϕΓ(π(s)) ≥ 0, dt × dP-a.e..
But on the other hand,

E

∫ T
t

ϕΓ(π(r))dr ≤ E
∫ T
t

ϕ0Γ(r)dr = lim
n→∞E

∫ T
t

ϕΓ(π
n(r))dr

= lim
n→∞

1

n
EAn(T ) = 0,
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we have that ϕΓ(π(s)) = 0, dt× dP-a.e.
To prove the last statement of the theorem let (χ̃, X̃, π̃, C̃) be any other

solutions of the FBSDE (4.24). Denote for each n, X̃n(s) = θn(s, χ(s)) and
π̃n(s) = θnχ(s, χ(s)). Applying Itô’s formula and Using (4.28) one can show

that X̃n is a solution to the BSDE

(4.41)

X̃n(s) = g(χ̃(T )) +

∫ T
s

[f(r, χ̃(r), X̃n(r), π̃n(r)) + nϕ(π̃n(r))

− 1
2
(σ2(χ̃(r), X̃(r)) − σ2(χ̃(r), X̃n(r))]dr −

∫ T
s

π̃n(r)dχ(r).

It then follows, with X̂
Δ
= X̃ − X̃n, π̂ Δ= π̃ − π̃n, that

X̂(s) =

∫ T
s

[αn(r)X̂(r) + βn(r)π̂(r)]dr −
∫ T
s

π̂(r)dχ(r) + C̃(T )− C̃(s),

where αn and βn are some bounded, adapted processes, thanks to the
assumptions on the coefficients. Thus some similar arguments as those in
Lemma 4.10 shows that X̂(s) ≥ 0, ∀s ∈ [t, T ], P-a.s. In particular, one
has X̃(t) ≥ X̃n(t) = θn(t, χ), for all n. Letting n → ∞ we obtain that
X̃(t) ≥ θ(t, χ) = X(t). Thus (χ,X, π, C) is the minimum solution of (4.24)
on [t, T ]. Finally, if t = 0, then we conclude that x∗ = X(0) is the minimum
hedging price to (4.7) with portfolio constraint, proving the theorem.

§5. A Stochastic Black-Scholes Formula
In this section we present another application of the theory established in
the previous chapters to the theory of option pricing. First recall that in the
last section we essentially assumed that the market is “Markovian”, that is,
we assumed that all the coefficients in the price equation are deterministic
so that the Four Step Scheme could be applied. We now try to explore
the possibility of considering more general market models in which the
market parameters can be random. To compensate this relaxation, we
return to a standard “small investor” world. Namely, we assume that the
price equations are (compared to (4.4)):

(5.1)

{
dP 0(t) = r(t)P 0(t)dt; (bond)

dP (t) = P (t)[b(t)dt+ σ(t)dW (t)], (stock)

where r, b, and σ are now assumed to be bounded, progressively measur-
able stochastic processes. We also assume that σ is bounded away from
zero. To simplify discussion, we shall assume that both P and W are one
dimensional. Thus the wealth equation (4.5) now becomes (replacing X by
Y in this section)

(5.2) dY (t) = [Y (t)r(t) + π(t)(b(t) − r(t))]dt + π(t)σ(t)dW (t) − dC(t).

In the case where r(·) ≡ r, b(·) ≡ b, and σ(·) ≡ σ are all constants,
the standard Black-Scholes theory tells us that the fair price of an option
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of the form g(P (T )) at any time t ∈ [0, T ] is given by

(5.3) Y (t) = Ẽ{e−r(T−t)g(P (T ))|Ft},

Here Ẽ is the expectation with respect to some risk-neutral probability
measure (or “equivalent martingale measure”). Furthermore, if we denote
u(t, x) to be the (classical) solution to the backward PDE:

(5.4)

⎧⎨⎩ut +
1

2
σ2x2uxx + rxux − ru = 0, (t, x) ∈ [0, T )× (0,∞);

u(T, x) = g(x),

then it holds that Y (t) = u(t, P (t)), ∀t ∈ [0, T ], a.s. . Further, using the
theory of BSDE, it is not hard to show that if (Y, Z) is the unique adapted
solution of the backward SDE:

Y (t) = g(P (T ))−
∫ T
t

[rY (s) + σ−1(b− r)Z(s)]ds −
∫ T
t

Z(s)dW (s),

then Y coincides with that in (5.3); and the optimal hedging strategy is
given by π(t) = σ−1Z(t) = vx(t, P (t)).
In light of the result of §4, we see that the valuation formula (5.3) is not

hard to prove even in the general cases when r, b, σ, and g(·) are allowed to
be random. But a more subtle problem is to find a proper replacement, if
possible, of the “Black-Scholes PDE” (5.4). We note that since the coeffi-
cients are now random, a “PDE” would no longer be appropriate. It turns
out that the BSPDE established in Chapter 5 will serve for this purpose.

§5.1. Stochastic Black-Scholes formula

Let us consider the price equation (5.1) with random coefficients r, b, σ;
and we consider the general terminal value g as described at the beginning
of the section. We allow further that r and b may depend on the stock
price in a nonanticipating way. In other words, we assume that r(t, ω) =
r(t, P (t, ω), ω); b(t, ω) = b(t, P (t, ω), ω), and σ(t, ω) = σ(t, P (t, ω), ω)
where for each fixed p ∈ lR, r(·, p, ·), b(·, p, ·), and σ(·, p, ·) are predictable
processes. Thus we can write (5.1) and (5.5) as an (decoupled) FBSDE:

(5.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P (t) = p+

∫ t
0

P (s)b(s, P (s))ds +

∫ t
0

P (s)σ(s)dWs,

Y (t) = g(P (T ))−
∫ T
t

[Y (s)r(s, P (s)) + Z(s)θ(s, P (s))]ds

−
∫ T
t

Z(s)dW (s),

where θ is the so-called risk premium process defined by

θ(t, P (t)) = σ−1(t, P (t))[b(t, P (t)) − r(t, P (t))], ∀t ∈ [0, T ];
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and Z(t)
Δ
=π(t)σ(t). We shall again make use of the Euler transformation

x = log p introduced in the last section. By Itô’s formula we see that the

log-price process X
Δ
= logP and the wealth process Y will satisfy

(5.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X(t) = ξ +

∫ t
0

b̄(s,X(s))ds+

∫ t
0

σ̄(s,X(s))dW (s),

Y (t) = ḡ(X(T ))−
∫ T
t

[Y (s)r̄(s,X(s)) + Z(s)θ̄(s,X(s))]ds

−
∫ T
t

Z(s)dW (s),

where

(5.8)

b̄(t, x, ω) = b(t, ex, ω)− 1
2
σ2(t, exω);

r̄(t, x, ω) = r(t, ex, ω); σ̄(t, x, ω) = σ(t, ex, ω);

θ̄(t, x, ω) = θ(t, ex, ω), ḡ(p, ω) = g(ex, ω).

We have the following result.

Theorem 5.1. (Stochastic Black-Scholes Formula) Suppose that the ran-
dom fields b̄, r̄, θ̄ and ḡ defined in (5.8) are progressively measurable in
(t, ω), and are m-th continuously differentiable in the variable x, with all
partial derivatives being uniformly bounded, for some m > 2. Let the
unique adapted solution of (5.7) be (X,Y, Z). Then the hedging price
against the contingent claim g(P (T ), ·) at any t ∈ [0, T ] is given by

(5.9)
Y (t) = Ẽ

{
e
−
∫
T

t
r̄(s,X(s))ds

ḡ(X(T ), ·)
∣∣∣Ft}

= Ẽ
{
e
−
∫
T

t
r(s,P (s))ds

g(P (T ), ·)
∣∣∣Ft},

where Ẽ{·|Ft} is the conditional expectation with respect to the equivalent
martingale measure P̃ defined by

dP̃

dP
= exp

{
−
∫ T
0

θ̄(t,X(t))dW (t)− 1
2

∫ T
0

|θ̄(t,X(t))|2dt
}
.

Furthermore, the backward SPDE

(5.10)

u(t, x) = ḡ(x) +

∫ T
t

{1
2
σ̄2uxx + (b̄− σ̄θ̄)ux

− r̄u+ σ̄qx − qθ̄
}
ds−

∫ T
t

q(s, x)dWs

has a unique adapted solution (u, q), such that the log-price X and the
wealth process Y are related by

(5.11) Y (t) = u(t,X(t), ·), ∀t ∈ [0, T ], a.s.
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Finally, the optimal hedging strategy π is given by, for all t ∈ [0, T ],

(5.12)
π(t) = σ̄−1(t,X(t))Z(t)

= ∇u(t,X(t), ·) + σ̄(t,X(t))−1q(t,X(t), ·), a.s.

Proof. First, since the FBSDE (5.7) is decoupled, it must have unique
adapted solution. Next, under the assumption, the backward SPDE (5.10)
admits a (classical) adapted solution, thanks to Chapter 5, Theorems 2.1–
2.3. Applying the generalized Itô’s formula, and the following the Four Step
Scheme one shows that the adapted solution (X,Y, Z) to (5.7) satisfies

(5.13) Y (t) = u(t,X(t)), Z(t) = q(t,X(t)) + σ(t,X(t))∇u(t,X(t)).

On the other hand, using the comparison theorem for BSDE (Chapter
1, Theorem 6.1), and following the same argument of Corollary 4.6, one
shows that the hedging price at any time t is Y (t), and the hedging strat-
egy is given by (5.12). Finally, since the Y satisfies a BSDE in (5.7), an
argument as that in Theorem 4.4 gives the expression (5.9).

Remark 5.2. In the case when all the coefficients are constants, by unique-
ness we see that the adapted solution to the BSPDE (5.10) is simply (u, 0),
where u is the classical solution to a backward PDE which, after a change of
variable x = log x′ and by setting v(t, x′) = u(t, log x′), becomes exactly the
Black-Scholes PDE (5.4). Thus Theorem 5.1 recovers the classical Black-
Scholes formula.

§5.2. Convexity of the European contingent claims
In this and the following subsection we apply the comparison theorems for
backward SPDEs derived in Chapter 5 to obtain some interesting conse-
quences in the option pricing theory, in a general setting that allows random
coefficients in the market models. Our discussion follows the lines of those
of El Karoui-Jeanblanc-Picqué-Shreve [1].
The first result concerns the convexity of the European contingent

claims. In the Markovian case such a property was discussed by Bergman-
Grundy-Wiener [1] and El Karoui-Jeanblanc-Picqué-Shreve [1]. Let us now
assume that r and σ are stochastic processes, independent of the current
stock price. From Theorem 5.1 we know that the option price at time t

with stock price x is given by ū(t, x)
Δ
=u(t, log x), where u is the adapted

solution to the BSPDE (5.10). (Note, here we slightly abuse the notations
x and p!). The convexity of the European option states that the function
ū(t, ·) is a convex function, provided g is convex. To prove this we first note
that by using the inverse Euler transformation one can show that ū is the
(classical) adapted solution to the BSPDE:

(5.14)

⎧⎪⎪⎨⎪⎪⎩
dū = {−1

2
p2σ2ūxx − xrūx + rū − xσqx − θq}dt− qdW (t),

[0, T )× (0,∞)
ū(T, x) = g(x), x ≥ 0.
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Differentiating (5.14) with respect to x twice and denote v = uxx, p = qxx,
then we see that (v, p) satisfies the following (linear) BSPDE:

(5.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dv =

{
− 1
2
x2σ2vxx − (2xσ2 + xr)vx − (σ2 + r)v

− xσpx−(2σ − θ)p
}
dt− pdW (t); (t, y) ∈ [0, T )× lR;

v(T, x) = g′′(x).

Here again the well-posedness of (5.15) can be obtained by considering its
equivalent form after the Euler transformation (since r and σ are indepen-
dent of x!). Now we can applying Chapter 5, Corollary 6.3 to conclude that
v ≥ 0, whenever g′′ ≥ 0, and hence ū is convex provided g is.
We can discuss more complicated situation by using the comparison

theorems in Chapter 5. For example, let us assume that both r and σ are
deterministic functions of (t, x), and we assume that they are both C2 for
simplicity. Then (5.10) coincides with (5.4). Now differentiating (5.4) twice
and denoting v = uxx, we see that v satisfies the following PDE:

(5.16)

⎧⎨⎩ 0 = vt +
1

2
x2σ2vxx + âxvx + b̂v + rxx(xux − u),

v(T, x) = g′′(x), x ≥ 0,

where

â = 2σ2 + 2xσσx + r;

b̂ = σ2 + 4xσσx + (xσx)
2 + x2σσxx + 2xrx + r.

Now let us denote V = xux − u, then some computation shows that V
satisfies the equation:

(5.17)

⎧⎨⎩ 0 = Vt +
1

2
x2σ2Vxx + ĉxVx + (xrx − r)V, on [0, T )× (0,∞),

V (T, x) = xg′(x)− g(x), x ≥ 0,

for some function ĉ depending on â and b̂ (whence r and σ). Therefore
applying the comparison theorems of Chapter 5 (use Euler transformation
if necessary) we can derive the following results: assume that g is convex,
then

(i) if r is convex and xg′(x) − g(x) ≥ 0, then u is convex.
(ii) if r is concave and xg′(x)− g(x) ≤ 0, then u is convex.
(iii) if r is independent of x, then u is convex.
Indeed, if xg′(x) − g(x) ≥ 0, then V ≥ 0 by Chapter 5, Corollary 6.3.

This, together with the convexity of r and g, in turn shows that the solution
v of (5.16) is non-negative, proving (i). Part (ii) can be argued similarly.
To see (iii), note that when r is independent of x, (5.16) is homogeneous,
thus the convexity of h implies that of ū, thanks to Chapter 5, Corollary
6.3 again.



§5. A stochastic Black-Scholes formula 231

§5.3. Robustness of Black-Scholes formula
The robustness of the Black-Scholes formula concerns the following prob-
lem: suppose a practitioner’s information leads him to a misspecified value
of, say, volatility σ, and he calculates the option price according to this
misspecified parameter and equation (5.4), and then tries to hedge the con-
tingent claim, what will be the consequence?
Let us first assume that the only misspecified parameter is the volatil-

ity, and denote it by σ = σ(t, x), which is C2 in x; and assume that the
interest rate is deterministic and independent of the stock price. By the
conclusion (iii) in the previous part we know that u is convex in x. Now let
us assume that the true volatility is an {Ft}t≥0-adapted process, denoted
by σ̂, satisfying

(5.18) σ̂(t) ≥ σ(t, x), ∀(t, x), a.s.

Since in this case we have proved that u is convex, it is easy to check that
in this case (6.16) of Chapter 5 reads

(5.19) (L̂ − L)u + (M̂ −M)q + f̂ − f = 1
2
x2[σ̂2 − σ2]uxx ≥ 0,

where (L̂,M̂) is the differential operator corresponding to the misspecified
coefficients (r, σ̂). Thus we conclude from Chapter 5, Theorem 6.2 that
û(t, x) ≥ u(t, x), ∀(t, x), a.s. Namely the misspecified price dominates the
true price.
Now let us assume that the inequality in (5.18) is reversed. Since

both (5.4) and (5.14) are linear and homogeneous, (−û,−q̂) and (−u, 0)
are both solutions to (5.14) and (5.4) as well, with the terminal condition
being replaced by −g(x). But in this case (5.19) becomes

(L̂ − L)(−u) = 1
2
x2[σ̂2 − σ2](−uxx) ≥ 0,

because u is convex, and σ̂2 ≤ σ2. Thus −û ≥ −u, namely û ≤ u.
Using the similar technique we can again discuss some more compli-

cated situations. For example, let us allow the interest rate r to be mis-
specified as well, but in the form that it is convex in x, say. Assume that
the payoff function h satisfies xh′(x) − h(x) ≥ 0, and that r̂ and σ̂ are
true interest rate and volatility such that they are {Ft}t≥0-adapted ran-
dom fields satisfying r̂(t, x) ≥ r(t, x), and σ̂(t, x) ≥ σ(t, x), ∀(t, x). Then,
using the notation as before, one shows that

(L̂ − L)u = 1
2
x2[σ̂2 − σ2]uxx + (r̂ − r)[xux − u] ≥ 0,

because u is convex, and xux− u = V ≥ 0, thanks to the arguments in the
previous part. Consequently one has û(t, x) ≥ u(t, x), ∀(t, x), a.s. Namely,
we also derive a one-sided domination of the true values and misspecified
values.
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We remark that if the misspecified volatility is not the deterministic
function of the stock price, the comparison may fail. We refer the inter-
ested readers to El Karoui-Jeanblanc-Picqué-Shreve [1] for an interesting
counterexample.

§6. An American Game Option

In this section we apply the result of Chapter 7 to derive an ad hoc option
pricing problem which we call the American Game Option.
To begin with let us consider the following FBSDE with reflections

(compare to Chapter 7, (3.2))

(6.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xt = x+

∫ t
0

b(s,Xs, Ys, Zs)ds+

∫ t
0

σ(s,Xs, Ys, Zs)dWs;

Yt = g(XT ) +

∫ T
t

h(s,Xs, Ys, Zs)ds−
∫ T
t

ZsdWs + ζT − ζt.

Note that the forward equation does not have reflection; and we assume
that m = 1 and O2(t, x, ω) = (L(t, x, ω), U(t, x, ω)), where L and U are
two random fields such that L(t, x, ω) ≤ U(t, x, ω), for all (t, x, ω) ∈ [0, T ]×
lRn × Ω. We assume further that both L and U are continuous functions
in x for all (t, ω), and are {Ft}t≥0-progressively measurable, continuous
processes for all x.
In light of the result of the previous section, we can think of X in

(6.1) as a price process of financial assets, and of Y as a wealth process
of an (large) investor in the market. However, we should use the latter
interpretation only up until the first time we have dζ < 0. In other words,
no external funds are allowed to be added to the investor’s wealth, although
he is allowed to consume.
The American game option can be described as follows. Unlike the

usual American option where only the buyer has the right to choose the
exercise time, in a game option we allow the seller to have the same right
as well, namely, the seller can force the exercise time if he wishes. However,
in order to get a nontrivial option (i.e., to avoid immediate exercise to be
optimal), it is required that the payoff be higher if the seller opts to force
the exercise. Of course the seller may choose not to do anything, then the
game option becomes the usual American option.
To be more precise, let us denote byMt,T the set of {Ft}t≥0-stopping

times taking values in [t, T ], and t ∈ [0, T ) be the time when the “game”
starts. Let τ ∈Mt,T be the time the buyer chooses to exercise the option;
and σ ∈Mt,T be that of the seller. If τ ≤ σ, then the seller pays L(τ,Xτ );
if σ < τ , then the seller pays U(σ,Xσ). If neither exercises the option
by the maturity date T , then the seller pays B = g(XT ). We define the
minimal hedging price of this contract to be the infimum of initial wealth
amounts Y0, such that the seller can deliver the payoff, a.s., without having
to use additional outside funds. In other words, his wealth process has to
follow the dynamics of Y (with dζ ≥ 0), up to the exercise time σ ∧ τ ∧ T ,
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and at the exercise time we have to have

(6.2) Yσ∧τ∧T ≥ g(XT )1{σ∧τ=T}+L(τ,Xτ )1{τ<T,τ≤σ}+U(σ,Xσ)1{σ<τ}.

Our purpose is to determine the minimal hedging price, as well as the
corresponding minimal hedging process.
To solve this option pricing problem, let us first study the following

stochastic game (Dynkin game): there are two players, each can choose a
(stopping) time to stop the game over an given horizon [t, T ]. Let σ ∈ Mt,T

be the time that player I chooses, and τ ∈ Mt,T be that of player II’s.
If σ < τ , the player I pays U(σ)(= U(σ,Xσ)) to player II; whereas if
τ ≤ σ < T , player I pays L(τ)(= L(τ,Xτ )) (yes, in both cases the player I
pays!). If no one stops by time T , player I pays B. There is also a running
cost h(t)(= h(t,Xt, Yt, Zt)). In other words the payoff player I has to pay
is given by

(6.3)
RBt (σ, τ)

Δ
=

∫ σ∧τ
t

h(u)du +B1{σ∧τ=T}

+ L(τ)1{τ<T, τ≤σ} + U(σ)1{σ<τ},

where B ∈ L2(Ω) is a given FT−measurable random variable satisfying
L(T ) ≤ B ≤ U(T ). Suppose that player II is trying to maximize the
payoff, while player I attempts to minimize it. Define the upper and lower
value s of the game by

(6.4)

V (t)
Δ
= essinf
σ∈Mt,T

esssup
τ∈Mt,T

E{RBt (σ, τ)
∣∣Ft},

V (t)
Δ
= esssup
τ∈Mt,T

essinf
σ∈Mt,T

E{RBt (σ, τ)
∣∣Ft}

respectively; and we say that the game has a value if V (t) = V (t)
Δ
=V (t).

The solution to the Dynkin game is given by the following theorem,
which can be obtained by a line by line analogue of Theorem 4.1 in Cvitanić
and Karatzas [2]. Here we give only the statement.

Theorem 6.1. Suppose that there exists a solution (X,Y, Z, ζ) to FB-
SDER (6.1) (with O2(t, x) = (L(t, x), U(t, x)). Then the game (6.3)
with B = g(XT ), h(t) = h(t,Xt, Yt, Zt), and L(t, ω) = L(t,Xt(ω)),
U(t, ω) = U(t,Xt(ω)) has value V (t), given by the backward component
Y of the solution to the FBSDER, i.e. V (t) = V (t) = V (t) = Yt, a.s. , for
all 0 ≤ t ≤ T . Moreover, there exists a saddle-point (σ̂t, τ̂t) ∈Mt,T ×Mt,T ,
given by

σ̂t
Δ
= inf{s ∈ [t, T ) : Ys = U(s,Xs)} ∧ T,

τ̂t
Δ
= inf{s ∈ [t, T ) : Ys = L(s,Xs)} ∧ T,



234 Chapter 8. Applications of FBSDEs

namely, we have

E{Rg(XT )t (σ̂t, τ)
∣∣Ft} ≤ E{Rg(XT )t (σ̂t, τ̂t)

∣∣Ft}
=Yt ≤ E{Rg(XT )t (σ, τ̂t)

∣∣Ft}, a.s.
for every (σ, τ) ∈ Mt,T ×Mt,T .

In what follows when we mention FBSDER, we mean (6.1) specified as
that in Theorem 6.1.

Theorem 6.2. The minimal hedging price of the American Game Option
is greater or equal to V̄ (0), the upper value of the game (at t = 0) of
Theorem 6.1. If the corresponding FBSDER has a solution (X̃, Ỹ , Z̃, ζ),
then the minimal hedging price is equal to Ỹ0.

Proof: Fix the exercise times σ, τ of the seller and the buyer, respec-
tively. If Y is the seller’s hedging process, it satisfies the following dynamics
for t ≤ τ ∧ σ ∧ T :

Yt +

∫ t
0

h(s,Xs, Ys, Zs)ds =

∫ t
0

ZsdWs − ζt,

with ζ non-decreasing. Hence, the left-hand side is a supermartingale.
From this and the requirement that Y be a hedging process, we get Yt ≥
E{Rg(XT )t (σ, τ)|Ft}, ∀t, a.s. in the notation of Theorem 4.1. Since the
buyer is trying to maximize the payoff, and the seller to minimize it, we
get Yt ≥ V̄t. ∀t, a.s. . Consequently, the minimal hedging price is no less
than V̄ (0).
Conversely, if the FBSDER has a solution with Ỹ as the backward

component, then by Theorem 6.1, process Ỹ is equal to the value process
of the game, and by (4.4) (with t = 0) and (2.10), up until the optimal
exercise time σ̂ := σ̂0 for the seller, it obeys the dynamics of a wealth
process, since ζt is nondecreasing for t ≤ σ̂0. So, the seller can start with
Ỹ0, follow the dynamics of Ỹ until t = σ̂ and then exercise, if the buyer
has not exercised first. In general, from the saddle-point property we know
that, for any τ ∈ M0,T ,

Ỹσ̂∧τ ≥ g(XT )1{σ̂∧τ=T} + L(τ,Xτ )1{τ<T,τ≤σ̂} + U(σ̂, Xσ̂)1{σ̂<τ}.

This implies that that the seller can deliver the required payoff if he uses
σ̂ as his exercise time, no matter what the buyer’s exercise time τ is. Con-
sequently, Ỹ0 = V (0) is no less than the minimal hedging price.
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Numerical Methods for FBSDEs

In the previous chapter we have seen various applications of FBSDEs in
theoretical and applied fields. In many cases a satisfactory numerical simu-
lation is highly desirable. In this chapter we present a complete numerical
algorithm for a fairly large class of FBSDEs, and analyze its consistency as
well as its rate of convergence. We note that in the standard forward SDEs
case two types of approximations are often considered: a strong scheme
which typically converges pathwisely at a rate O( 1√

n
), and a weak scheme

which approximates only approximates E{f(X(T ))}, with a possible faster
rate of convergence. However, as we shall see later, in our case the weak
convergence is a simple consequence of the pathwise convergence, and the
rate of convergence of our scheme is the same as the strong scheme for pure
forward SDEs, which is a little surprising because a FBSDE is much more
complicated than a forward SDE in nature.

§1. Formulation of the Problem
In this chapter we consider the following FBSDE: for t ∈ [0, T ],

(1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(t) = x+

∫ t
0

b(s,Θ(s))ds+

∫ t
0

σ(s,X(s), Y (s))dW (s);

Y (t) = g(X(T )) +

∫ T
t

b̂(s,Θ(s))ds−
∫ T
t

Z(s)dW (s),

where Θ = (X,Y, Z). We note that in some applications (e.g., in Chapter
8, §3, Black’s Consol Rate Conjecture), the FBSDE (1.1) takes a slightly
simpler form:

(1.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X(t) = x+

∫ t
0

b(s,X(s), Y (s))ds+

∫ t
0

σ(s,X(s), Y (s))dWs;

Y (t) = g(X(T )) +

∫ T
t

b̂(s,X(s), Y (s))ds−
∫ T
t

Z(s)dW (s).

That is, the coefficients b and b̂ do not depend on Z explicitly, and often in
these cases only the components (X,Y ) are of significant interest. In what
follows we shall call (1.2) the “special case” when only the approximation
of (X,Y ) are considered; and we call (1.1) the “general case” if the approx-
imation of (X,Y, Z) is required. We note that in what follows we restrict
ourselves to the case where all processes involved are one dimensional. The
higher dimensional case can be discussed under the same idea, but techni-
cally much more complicated. Furthermore, we shall impose the following
standing assumptions:
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(A1) The functions b, b̂ and σ are continuously differentiable in t and twice
continuously differentiable in x, y, z. Moreover, if we denote any one of
these functions generically by ψ, then there exists a constant α ∈ (0, 1),
such that for fixed y and z, ψ(·, ·, y, z) ∈ C1+α2 ,2+α. Furthermore, for some
L > 0,

‖ψ(·, ·, y, z)‖1,2,α ≤ L, ∀(y, z) ∈ lR2.

(A2) The function σ satisfies

(1.3) μ ≤ σ(t, x, y) ≤ C, ∀(t, x, y) ∈ [0, T ]× lR2,

where 0 < μ ≤ C are two constants.
(A3) The function g belongs boundedly to C4+α for some α ∈ (0, 1) (one
may assume that α is the same as that in (A1)).

It is clear that the assumptions (A1)–(A3) are stronger that those in
Chapter 4, therefore applying Theorem 2.2 of Chapter 4, we see that the
FBSDE (1.1) has a unique adapted solution which can be constructed via
the Four Step Scheme. That is, the adapted solution (X,Y, Z) of (1.1) can
be obtained in the following way:

(1.4)

⎧⎪⎨⎪⎩X(t) = x+
∫ t
0

b̃(s,X(s))ds+

∫ t
0

σ̃(s,X(s))dW (s),

Y (t) = θ(t,X(t)), Z(t) = σ(t,X(t), θ(t,X(t))θx(t,X(t)),

where

b̃(t, x) = b(t, x, θ(t, x), σ(t, x, θ(t, x))θx(t, x))),

σ̃(t, x) = σ(t, x, θ(t, x));

and θ ∈ C1+α2 ,2+α for some 0 < α < 1 is the unique classical solution to
the quasilinear parabolic PDE:

(1.5)

⎧⎪⎪⎨⎪⎪⎩
θt +

1

2
σ(t, x, θ)2θxx + b(t, x, θ, σ(t, x, θ)θx)θx

+ b̂(t, x, θ, σ(t, x, θ)θx) = 0, (t, x) ∈ (0, T )× lR,
θ(T, x) = g(x), x ∈ lR.

We should point out that, by using standard techniques for gradient esti-
mates, that is, applying parabolic Schauder interior estimates to the differ-
ence quotients repeatedly (cf. Gilbarg & Trudinger [1]), it can be shown
that under the assumptions (A1)–(A3) the solution θ to the quasilinear
PDE (1.5) actually belongs to the space C2+

α
2 ,4+α. Consequently, there

exists a constant K > 0 such that

(1.6) ‖θ‖∞+‖θt‖∞+‖θtt‖∞+‖θx‖∞+‖θxx‖∞+‖θxxx‖∞+‖θxxxx‖∞ ≤ K.

Our line of attack is now clear: we shall first find a numerical scheme
for the quasilinear PDE (1.5), and then find a numerical scheme for the
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(forward) SDE (1.4). We should point out that although the numerical
analysis for the quasilinear PDE is not new, but the special form of (1.5)
has not been covered by existing results. In the next Section 2 we shall study
the numerical scheme of the quasilinear PDE (1.5) in full details, and then
in Section 3 we study the (strong) numerical scheme for the forward SDE
in (1.4).

§2. Numerical Approximations of the Quasilinear PDE
In this section we study the numerical approximation scheme and its con-
vergence analysis for the quasilinear parabolic PDE (1.5). We will first
carry out the discussion for the special case completely, upon which the
study of the general case will be built.

§2.1. A special case
In this case the coefficients b and b̂ are independent of Z, we only ap-
proximate (X,Y ). Note that in this case the PDE (1.5), although still
quasilinear, takes a much simpler form:

(2.1)

⎧⎨⎩ θt +
1

2
σ(t, x, θ)2θxx + b(t, x, θ)θx + b̂(t, x, θ) = 0, t ∈ (0, T ),

θ(T, x) = g(x), x ∈ lR.

Let us first standardize the PDE (2.1). Define u(t, x) = θ(T − t, x),
and for ϕ = σ, b, and b̂, respectively, we define

ϕ̄(t, x, y) = ϕ(T − t, x, y), ∀(t, x, y).

Then u satisfies the PDE

(2.2)

⎧⎨⎩ut −
1

2
σ̄2(t, x, u)uxx − b̄(t, x, u)ux − ¯̂b(t, x, u) = 0;

u(0, x) = g(x).

To simplify notation we replace σ̄, b̄ and
¯̂
b by σ, b and b̂ themselves in

the rest of this section. We first determine the characteristics of the first
order nonlinear PDE

(2.3) ut − b(t, x, u)ux = 0.

Elementary theory of PDEs (see, e.g., John [1]) tells us that the character-
istic equation of (2.3) is

det|aijt′(s)− δijx′(s)| = 0, s ≥ 0,

where s is the parameter of the characteristic and (aij) is the matrix⎡⎣ 0 0 0
0 −b(t, x, u) 0
0 −1 0

⎤⎦ .
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In other words, if we let parameter s = t, then the characteristic curve C is
given by the ODE:

(2.4) x′(t) = −b(t, x(t), u(t, x(t))).

Further, if we let τ be the arclength of C, then along C we have

dτ =
[
1 + b2(t, x, u(t, x))

] 1
2 dt,

and

∂

∂τ
=
1

ψ

{ ∂
∂t
− b ∂
∂x

}
,

where ψ(t, x) =
[
1 + b2(t, x, u(t, x))

] 1
2 . Thus, along C, equation (2.2) is

simplified to

(2.5)

⎧⎨⎩ψ
∂u

∂τ
=
1

2
σ2(t, x, u)uxx + b̂(t, x, u);

u(0, x) = g(x).

We shall design our numerical scheme based on (2.5).

§2.1.1. Numerical scheme
Let h > 0 and Δt > 0 be fixed numbers. Let xi = ih, i = 0,±1, · · ·,
and tk = kΔt, k = 0, 1, · · · , N , where tN = T . For a function f(t, x), let
fk(·) = f(tk, ·); and let fki = f(tk, xi) denote the grid value of the function
f . Define for each k the approximate solution wk by the following recursive
steps:

Step 0: Set w0i = g(xi), i = · · · ,−1, 0, 1, · · ·; use linear interpolation to
obtain a function w0(x) defined on x ∈ lR.
Suppose that wk−1(x) is defined for x ∈ lR, let wk−1i = wk−1(xi) and

(2.6)

⎧⎪⎨⎪⎩
bki = b(t

k, xi, w
k−1
i ); σki = σ(t

k, xi, w
k−1
i ); b̂ki = b̂(t

k, xi, w
k−1
i );

x̄ki = xi − bkiΔt, w̄k−1i = wk−1(x̄ki );

δ2x(w)
k
i = h

−2[wki+1 − 2wki + wki−1].

Step k: Obtain the grid values for the k-th step approximate solution,
denoted by {wki }, via the following difference equation:

(2.7)
wki − w̄k−1i

Δt
=
1

2
(σki )

2δ2x(w)
k
i + (̂b)

k
i ; −∞ < i <∞,

Since by our assumption σ is bounded below positively and b̂ and g are
bounded, there exists a unique bounded solution of (2.7) as soon as an
evaluation is specified for wk−1(x).
Finally, we use linear interpolation to extend the grid values of

{wki }∞i=−∞ to all x ∈ lR to obtain the k-th step approximate solution wk(·).
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Before we do the convergence analysis for this numerical scheme, let
us point out a standard localization idea which is essential in our future
discussion, both theoretically and computationally. We first recall from
Chapter 4 that the (unique) classical solution of the Cauchy problem (2.2)
(therefore (2.5)) is in fact the uniform limit of the solutions {uR} (R→∞)
to the initial-boundary problems:

(2.2)R

⎧⎪⎪⎨⎪⎪⎩
ut −

1

2
σ̄(t, x, u)2uxx − b̄(t, x, u)ux − ¯̂b(t, x, u) = 0,

u(0, x) = g(x), x ∈ lR;
u(t, x) = g(x), |x| = R, 0 < t ≤ T.

It is conceivable that we can also restrict the corresponding difference equa-
tion (2.7) so that −i0 ≤ i ≤ i0, for some i0 <∞. Indeed, if we denote wi0,k
to be the following localized difference equation

(2.7)i0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wki − w̄k−1i

Δt
=
1

2
(σki )

2δ2x(w)
k
i + (̂b)

k
i ; −i0 ≤ i ≤ i0,

w0i = g(xi), −i0 ≤ i ≤ i0;
wk±i0 = g(x±i0 ), k = 0, 1, 2, · · · ,

then by (A1) and (A2), one can show that wki is the uniform limit of {wi0,ki },
as i0 →∞, uniformly in i and k. In particular, if we fix the mesh size h > 0,
and let R = i0h, then the quantities

(2.8) max
i
|u(tk, xi)− wki | and max

−i0≤i≤i0
|uR(tk, xi)− wi0,ki |

differ only by a error that is uniform in k, and can be taken to be arbitrarily
small as i0 (or i0h = R) is sufficiently large. Consequently, as we shall see
later, if for fixed h and Δt we choose R (or i0) so large that the error
between the two quantities in (2.8) differ by O(h + |Δt|), then we can
replace (2.2) by (2.2)R, and (2.7) by (2.7)i0 without changing the desired
results on the rate of convergence. But on the other hand, since for the
localized solutions the error |uR(tk, x±i0)−wi0,k±i0 | ≡ 0 for all k = 0, 1, 2, · · ·,
the maximum absolute value of the error |uR(tk, xi)−wi0,ki |, i = −i0, · · · , i0,
will always occur in an “interior” point of (−R,R). Such an observation
will be particularly useful when a maximum-principle argument is applies
(see, e.g., Theorem 2.3 below). Based on the discussion above, from now on
we will use the localized version of the solutions to (2.2) and (2.7) whenever
necessary, without further specifications.
To conclude this subsection we note that the approximate solutions

{wk(·) are defined only on the times t = tk, k = 0, 1, · · · , N . An approxi-
mate solution defined on [0, T ] × lR is defined as follows: for given h > 0
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and Δt > 0,

(2.9) wh,Δt(t, x) =

⎧⎪⎪⎨⎪⎪⎩
N∑
k=1

wk(x)1(tk−1,tk](t), t ∈ (0, T ];

w0(x), t = 0.

Clearly, for each k and i, wh,Δt(tk, xi) = w
k
i , where {wki } is the solution to

(2.7).

§2.1.2. Error analysis
We first analyze the approximate solution {wk(·)}. To begin with, let us
introduce some notations: for each k and i, let

(2.10) x̄ki
Δ
=xi + b(t

k, xi, u
k−1
i )Δt, ūk−1i

Δ
= u(tk−1, x̄ki ).

Let {x(t) : tk−1 ≤ t ≤ tk} be the characteristic such that x(tk) = xi. That
is, by (2.4),

x(t) = xi +

∫ tk
t

b(s, x(s), u(s, x(s)))ds, tk−1 ≤ t ≤ tk.

Denote x̄ = x(tk−1). It is then easily seen that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sup
tk−1≤t≤tk

|x(t) − xi| ≤ ‖b‖∞Δt;

|x̄ki − x̄| ≤
∫ tk
tk−1

|b(tk, xi, uk−1i )− b(t, x(t), u(t, x(t)))|dt

≤ {‖bt‖∞ + ‖bx‖∞‖b‖∞ + ‖bu‖∞(‖ut‖∞ + ‖ux‖∞‖b‖∞)}Δt2

To simplify notations from now on we let C > 0 to be a generic constant
depending only on b, b̂, σ, T , and the constant K in (1.6), which may vary
from line to line. Thus the above becomes

(2.11) sup
tk−1≤t≤tk

|x(t) − xi| ≤ CΔt; |x̄ki − x̄| ≤ CΔt2.

We now derive an equation for the approximation error. To this end,
recall x̄ and x̄ki defined by (2.10); and note that along the characteristic
curve C,

ψ
∂u

∂τ
≈ ψu(t

k, x)− u(tk−1, x̄)
Δτ

≈ ψ(x)u(t
k, x)− u(tk−1, x̄)

[(x − x̄)2 + (Δt)2] 12

=
u(tk, x)− u(tk−1, x̄)

Δt
.

The solution of (2.5) thus satisfies a difference equation of the following
form: for −∞ < i <∞ and k = 1, · · · , N ,

(2.12)
uki − ūk−1i

Δt
=
1

2
(σ(u)ki )

2δ2x(u)
k
i + b̂(u)

k
i + e

k
i ,
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where ūk−1i = uk−1(x̄ki ) and b̂(u)ki and σ(u)ki correspond to b̂ki and σki
defined in (2.6), except that the values {wk−1i } are replaced by {uk−1i }; eki
is the error term to be estimated. We have the following lemma.

Lemma 2.1. There exists a constant C > 0, depending only on b, b̂,
σ, T , and the constant K in (1.6), such that for all k = 0, · · · , N and
−∞ < i <∞,

|eki | ≤ C(h+Δt).

Proof. First observe that at each grid point (tk, xi)

ψ(tk, xi)
∂u

∂τ

∣∣∣
(tk,xi)

=
1

2
σ2(tk, xi, u

k
i )uxx

∣∣∣
(tk,xi)

+ b̂(tk, xi, u
k
i ).

Therefore, for −∞ < i <∞, k = 1, · · · , N ,

eki =

{
uki − ūk−1i

Δt
− ψ(tk, xi)

∂u

∂τ

∣∣∣
(tk,xi)

}

+

{
1

2
σ2(tk, xi, u

k
i )uxx

∣∣∣
(tk,xi)

− 1
2
(σ(u)ki )

2δ2(u)ki

}
+
{
b̂(tk, xi, u

k
i )− b̂(u)ki

}
= I1,ki + I2,ki + I3,ki .

We estimate I1,ki , I
2,k
i and I3,ki separately. Recall that C will denote

a generic constant that might vary from line to line. Using the uniform
boundedness of b̂y and ut we have

(2.13) |I3,ki | = |̂b(tk, xi, uki )− b̂(tk, xi, uk−1i )| ≤ CΔt,

Similarly,

(2.14)

|I2,ki | ≤ 1
2

{
|σ2(tk, xi, uki )− σ2(tk, xi, uk−1i )||uxx(ti, xi)|

+ |σ2(tk, xi, uk−1i )|
∣∣∣uxx(tk, xi)− uki+1 − 2uki + uki−1

h2

∣∣∣}
≤ C(‖ut‖∞Δt+ ‖uxxx‖∞h) ≤ C(h+Δt).

To estimate I1,ki we note from (2.11) that

(2.15)
∣∣∣u(tk−1, x̄)− u(tk−1, x̄ki )

Δt

∣∣∣ ≤ ‖ux‖∞|x̄− x̄ki |
Δt

≤ CΔt,

On the other hand, integrating along the characteristic from (tk−1, x̄) to
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(tk, xi), we have

(2.16)

u(tk, xi)− u(tk−1, x̄)
Δt

=
1

Δt

∫ tk
tk−1

d

dt
u(t, x(t))dt

=
1

Δt

∫ tk
tk−1
[ut − b(·, ·, u)ux](t, x(t))dt

=
1

Δt

∫ tk
tk−1

[
ψ
∂u

∂τ

]
(t, x(t))dt

=
[
ψ
∂u

∂τ

]
(tk, xi) +

1

Δt

∫ tk
tk−1

{[
ψ
∂u

∂τ

]
(t, x(t)) −

[
ψ
∂u

∂τ

]
(tk, xi)

}
dt.

Since along the characteristics
∂2u

∂τ2
depends on utt, utx and uxx and b,

which are all bounded, one can easily deduce that

(2.17)
∣∣∣ 1
Δt

∫ tk
tk−1

{[
ψ
∂u

∂τ

]
(t, x(t)) −

[
ψ
∂u

∂τ

]
(tk, xi)

}
dt
∣∣∣ ≤ C(h+Δt),

Combining (2.11)–(2.17), we have

|I1,ki | ≤
∣∣∣u(tk, xi)− u(tk−1, x̄)

Δt
−
[
ψ
∂u

∂τ

]
(tk, xi)

∣∣∣+ ∣∣∣u(tk, xi)− ūk−1i

Δt

∣∣∣
≤ C(h+Δt),

proving the lemma.

We are now ready to analyze the error between the approximate solu-
tion wh,Δt(t, x) and the true solution u(t, x). To do this we define the error
function ζ(t, x) = u(t, x) − wh,Δt(t, x) for (t, x) ∈ [0, T ]× lR; as before, let
ζki = ζ(t

k, xi) = u
k
i − wki . We have the following theorem.

Theorem 2.2. Assume (A1)—(A3). Then

sup
k,i
|ζki | = O(h+Δt).

Proof. First, by subtracting (2.7) from (2.12), we see that {ζki } satisfies
the difference equation

(2.18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ζki − (ūk−1i − w̄k−1i )

Δt
=
1

2

{
(σ(u)ki )

2δ2x(u)
k
i − (σki )2δ2(w)ki

}
+ [̂b(u)ki − b̂ki ] + eki ;

ζ0i = 0.

Since

ūk−1i − w̄k−1i = [u(tk−1, x̄ki )− u(tk−1, x̄ki )] + [u(tk−1, x̄ki )− wk−1(x̄ki )]
= ζ̄k−1i + [u(tk−1, x̄ki )− u(tk−1, x̄ki )],
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where ζ̄k−1i = u(tk−1, x̄ki )− wk−1(x̄ki ), and

(σ(u)ki )
2δ2x(u)

k
i − (σki )2δ2x(w)ki

= (σki )
2δ2x(ζ)

k
i + [σ

2(tk, xi, u
k−1
i )− σ2(tk, xi, wk−1i )]δ2x(u)

k
i ,

we can rewrite (2.18) as

(2.19)

⎧⎨⎩
ζki − ζ̄k−1i

Δt
=
1

2
(σki )

2δ2x(ζ)
k
i + I

k
i + e

k
i ,

ζ0i = 0,

where

Iki = −
u(tk−1, x̄ki )− u(tk−1, x̄ki )

Δt

+
1

2
[σ2(tk, xi, u

k−1
i )− σ2(tk, xi, wk−1i )]δ2x(u)

k
i + [̂b(u)

k
i − b̂ki ].

It is clear that, by (1.6) and (2.11), for some constant C > 0 that is inde-
pendent of k and i, it holds that⎧⎪⎨⎪⎩
∣∣∣1
2
[σ2(tk, xi, u

k−1
i )− σ2(tk, xi, wk−1i )]δ2x(u)

k
i + [̂b(u)

k
i − b̂ki ]

∣∣∣ ≤ C|ζk−1i |,∣∣∣u(tk−1, x̄ki )− u(tk−1, x̄ki )
Δt

∣∣∣ ≤ CΔt.
Consequently we have

(2.20) |Iki | ≤ C(|ζk−1i |+Δt).

Now by (2.19) we have

ζki = ζ̄
k−1
i +

{1
2
(σki )

2δ2x(ζ)
k
i + I

k
i + e

k
i

}
Δt.

Considering the “localized” solution of u (described in the previous sub-
section) if necessary, we assume without loss generality that the maxi-
mum absolute value of ζki occurs at an “interior” mesh point x

k
i(k), where

−R < i(k)h < R for some large R > 0. Now, if we set ‖ζk‖ = maxi |ζki |,
then at i(k) we have δ2x(ζ)

k
i(k) ≤ 0. Applying Lemma 2.1 and (2.20) we

have

(2, 21)
‖ζk‖ ≤ max

i
|ζ̄k−1i |+max

i

{
|Iki |+ |eki |

}
Δt

≤ max
i
|ζ̄k−1i |+ C‖ζk−1‖Δt+ C(h+Δt)Δt,

where C is again a generic constant. Note that the constant C is indepen-
dent of the localization, therefore by taking the limit we see that (2.21)
should hold for the “global solution” as well.
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In order to estimate maxi |ζ̄k−1i |, we let I1(u)(tk, ·) denote the linear
interpolate of the grid values {uki }∞i=−∞ and wk(·) the linear interpolate of
{wki }∞i=−∞, then

(2.22) max
i
|ζ̄k−1i | ≤ max

i
|ζk−1i |+max

i
|u(tk−1, x̄ki )− I1(u)(tk−1, x̄ki )|.

Apply the Peano Kernel Theorem (cf. e.g., Davis [1]) to show that

max
i
|u(tk−1, x̄ki )− I1(u)(tk−1, x̄ki )| ≤ Ch∗h,

where h∗ = O(Δt) and C > 0 is independent of k and i. This, together
with (3.27), amounts to saying that (2.21) can be rewritten as

(2.23)
‖ζk‖ ≤ ‖ζk−1‖+ C‖ζk−1‖Δt+ C(h+Δt)Δt,

= ‖ζk−1‖(1 + CΔt) + C(h+Δt)Δt,
where C is independent of k. It then follows from the Gronwall lemma and
the bound on ‖ζ0‖ that ‖ζk‖ ≤ C(h+Δt), proving the theorem.

§2.1.3. The approximating solutions {u(n)}∞n=1
We now construct for each n an approximate solution u(n) as follows. for
each n ∈ lN let Δt = T/n, and h = 2‖b‖∞Δt. Since h > CΔt implies that
|x̄ki − xi| ≤ ‖b‖∞Δt < h, x̄ki do not go beyond the interval (xki−1, xki+1) for
each i. Now define

(2.24) u(n)(t, x) = w
2‖b‖∞T

n ,Tn (t, x), (t, x) ∈ [0, T ]× lR,
where wh,Δt is defined by (2.9). Our main theorem of this section is the
following.

Theorem 2.3. Suppose that (A1)—(A3) hold. Then, the sequence
{u(n)(·, ·)} enjoys the following properties:
(1) for fixed x ∈ lR, u(n)(·, x) is left continuous;
(2) for fixed t ∈ [0, T ], u(n)(t, ·) is Lipschitz, uniformly in t and n (i.e.,

the Lipschitz constant is independent of t and n);

(3) supt,x |u(n)(t, x)− u(t, x)| = O( 1n ).
Proof. The property (1) is obvious by definition (2.9). To see (3), we

note that

u(n)(t, x)−u(t, x) = [w0(x)−u(0, x)]1{0}(t)+
N∑
k=1

[wk(x)−u(t, x)]1(tk−1,tk](t).

Since for each fixed t ∈ (tk−1, tk], k > 0 or t = 0, we have u(n)(t, x) = wk(x)
for k > 0 or k = 0 if t = 0. Thus,

sup
x
|wk(x) − u(t, x)|

≤ ‖ζk‖+ sup
x
|I1(u)(tk, x)− u(tk, x)|+ sup

x
|u(tk, x)− u(t, x)|

≤ ‖ζk‖+ o(h+Δt) + ‖ut‖∞Δt = O(h+Δt) = O(
1

n
),
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by virtue of Theorem 2.2 and the definitions of h and Δt. This proves (3).
To show (2), let n and t be fixed, and assume that t ∈ (tk, tk+1]. Then,

u(n)(t, x) = wk(x) is obviously Lipschitz in x. So it remains to determine
the Lipschitz constant of every wk. Let x1 and x2 be given. We may assume
that x1 ∈ [xi, xi+1) and x2 ∈ [xj , xj+1), with i < j. For i < � < j − 1,
Theorem 2.2 implies that

(2.25)

|wk(x�)− wk(x�+1)| ≤ |wk(x�)− u(tk, x�)|
+ |u(tk, x�)− u(tk, x�+1)|+ |u(tk, x�+1)− wk(x�+1)|

≤ 2‖ζk‖+ ‖ux‖∞|x� − x�+1| ≤ Kh = K(x�+1 − x�),

where K is a constant independent of k, � and n. Further, for x1 ∈
[xi, xi+1),

wk(x1) = wk(xi+1) +
wk(xi+1)− wk(xi)

xi+1 − xi
(x1 − xi+1).

Hence,

|wk(x1)− wk(xi+1)| =
∣∣∣wk(xi+1)− wk(xi)

xi+1 − xi

∣∣∣|x1 − xi+1| ≤ K|x1 − xi+1|,
where K is the same as that in (2.25). Similarly,

|wk(x2)− wk(xj)| ≤ K|x2 − xj |.

Combining the above gives

|wk(x1)− wk(x2)|

≤|wk(x1)− wk(xi+1)|+
j−1∑
�=1

|wk(x�)− wk(x�+1)|+ |wk(xj)− wk(x2)|

≤K
{
(xi+1 − x1) +

j−1∑
�=1

(x�+1 − x�) + (x2 − xj+1)
}
= K|x2 − x1|.

Since the constant K is independent of t and n, the theorem is proved.

§2.2. General case
In order to approximate the adapted solution Θ = (X,Y, Z) to the general
FBSDE (1.1), we need to approximate also component Z. In fact this com-
ponent is particularly important in some application, for instance, it is the
hedging strategy in an option pricing problem (see Chapter 1). The main
difficulty is, in light of the Four Step Scheme, we need also to approximate
the derivative of the solution θ of the PDE (2.4), which in general is more
difficult. Our idea is to reduce the PDE (2.4) to a system of PDEs so that
θx becomes a part of the solution but not the derivative of the solutions.
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To be more precise let us assume that b and b̂ both depend on z, thus
PDE (2.4) becomes

(2.25)

⎧⎪⎪⎨⎪⎪⎩
0 = θt +

1

2
σ2(t, x, θ)θxx + b(t, x, θ,−σ(t, x, θ)θx)θx

+ b̂(t, x, θ,−σ(t, x, θ)θx);
θ(T, x) = g(x).

Define b0 and b̂0 by

(2.26)
b0(t, x, y, z) = b(t, x, y,−σ(t, x, y)z);
b̂0(t, x, y, z) = b̂(t, x, y,−σ(t, x, y)z).

One can check that, if σ, b and b̂ satisfy (A1)–(A3), then so do the functions

σ, b0 and b̂0. Further, if we again set u(t, x) = θ(T − t, x), ∀(t, x), then
(2.25) becomes

(2.27)

⎧⎨⎩ut =
1

2
σ̄2(t, x, u)uxx + b̄0(t, x, u, ux)ux +

¯̂
b0(t, x, u, ux);

u(0, x) = g(x).

We will again drop the sign “¯” in the sequel. Now define v(t, x) = ux(t, x).
Using standard “difference quotient” argument (see, e.g., Gilbarg-Trudinger
[1]) one can show that under (A1)–(A3) v is a solution to the “differenti-
ated” equation of (2.27). In other words, (u, v) satisfies a parabolic system:

(2.28)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut =

1

2
σ̄2(t, x, u)uxx + b0(t, x, u, v)ux + b̂0(t, x, u, v);

vt =
1

2
σ̄2(t, x, u)vxx +B0(t, x, u, v)vx + B̂0(t, x, u, v);

u(0, x) = g(x), v(0, x) = g′(x),

where

(2.29)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B0(t, x, y, z) = σ(t, x, y)[σx(t, x, y) + σy(t, x, y)z] + b(t, x, y, z)

+ bz(t, x, y, z) + b̂z(t, x, y, z);

B̂0(t, x, y, z) = [bx(t, x, y, z) + by(t, x, y, z)z]z + b̂(t, x, y, z)z

+ b̂x(t, x, y, z).

We should point out that, unlike in the previous case, the functions B0
and B̂0 in (2.29) are neither uniformly bounded nor uniformly Lipschitz,
thus more careful consideration should be given before we make arguments
parallel to the previous special case. First let us modify (2.29) as follows.
Let K be the constant in (1.6) and let ϕK ∈ C∞(lR) be a “truncation
function” such that ϕK(z) = z for |z| ≤ K, ϕK(z) = 0 for |z| > K +1, and
|ϕ′K(z)| ≤ C for some (generic) constant C > 0. Define

BK0 (t, x, y, z)
Δ
=B0(t, x, y, ϕK(z)); B̂

K
0 (t, x, y, z)

Δ
= B̂0(t, x, y, ϕK(z)).
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Then BK0 and B̂
K
0 are uniformly bounded and uniform Lipschitz in all vari-

ables. Now consider the “truncated” version of (2.28), that is, we replaceB0
and B̂0 by B

K
0 and B̂

K
0 in (2.28). Applying Lemma 4.2.1 we know that this

truncated version of (2.28) has a unique classical solution, say, (uK , vK),
that is uniformly bounded. But since ‖v‖∞ ≤ K by (1.6), (u, v) is also a
(classical) solution to the truncated version of (2.28), thus we must have
(u, v) ≡ (uK , vK) by uniqueness. Consequently, we need only approximate
the solution to the truncated version of (2.28), which reduces the technical
difficulty considerably. For notational simplicity, from now on we will not
distinguish (2.28) and its truncated version unless specified. In fact, as we
will see later, such a truncation will be used only once in the error analysis.

§2.2.1. Numerical scheme
Following the idea presented in §2.1, we first determine the characteristics
of the first order system{

ut − b0(t, x, u, v)ux = 0;
vt −B0(t, x, u, v)vx = 0.

It is easy to check that the two characteristic curves Ci : (t, xi(t)), i = 1, 2,
are determined by the ODEs{

dx1(t) = −b0(t, x1(t), u(t, x1(t)), v(t, x1(t)))dt;
dx2(t) = −B0(t, x2(t), u(t, x2(t)), v(t, x2(t)))dt.

Let τ1 and τ2 be the arc-lengths along C1 and C2, respectively. Then,

dτ1 = ψ1(t, x1(t))dt; dτ2 = ψ2(t, x2(t))dt,

where {
ψ1(t, x) = [1 + b

2
0(t, x, u(t, x), v(t, x))]

1/2 ;

ψ2(t, x) = [1 +B
2
0(t, x, u(t, x), v(t, x))]

1/2.

Thus, along C1 and C2, respectively,

ψ1
∂

∂τ1
=
{ ∂
∂t
− b0

∂

∂x

}
; ψ2

∂

∂τ2
=
{ ∂
∂t
−B0

∂

∂x

}
,

and (2.28) can be simplified to

(2.30)

⎧⎪⎪⎨⎪⎪⎩
ψ1
∂u

∂τ1
=
1

2
σ2(t, x, u)uxx + b̂0(t, x, u, v);

ψ2
∂v

∂τ2
=
1

2
σ2(t, x, u)vxx + B̂0(t, x, u, v).

Numerical Scheme.

For any n ∈ lN, let Δt = T/n. Let h > 0 be given. Let tk = kΔt,
k = 0, 1, 2, · · ·, and xi = ih, i = · · · ,−1, 0, 1, · · ·, as before.
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Step 0: Set U0i = g(xi), V
0
i = g

′(xi), ∀i, and extend U0 and V 0 to all x ∈ lR
by linear interpolation.

Next, suppose that Uk−1, V k−1 are defined such that Uk−1(xi) = Uk−1i ,
V k−1(xi) = V k−1i , and let

(2.31)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(̂b0)
k
i = b̂0(t

k, xi, U
k−1
i , V k−1i );

(B̂0)
k
i = B̂0(t

k, xi, U
k−1
i , V k−1i );

σki = σ(t
k, xi, U

k−1
i );

x̄ki = xi + b0(t
k, xi, U

k−1
i , V k−1i )Δt;

x̄ki = xi +B0(t
k, xi, U

k−1
i , V k−1i )Δt,

and Ūk−1i = Uk−1(x̄ki ), V̄
k−1
i = V k−1(x̄ki ).

Step k: Determine the k-th step grid values (Uk, V k) by the system of
difference equations

(2.32)

⎧⎪⎪⎨⎪⎪⎩
Uki − Ūk−1i

Δt
=
1

2
(σki )

2δ2x(U)
k
i + (̂b0)

k
i ;

V ki − V̄ k−1i

Δt
=
1

2
(σki )

2δ2x(V )
k
i + (B̂0)

k
i .

We then extend the grid values {Uki } and {V ki } to the functions Uk(x) and
V k(x), x ∈ lR, by linear interpolation.

§2.2.2. Error analysis

We follow the arguments in §2.1. First, we evaluate the first equation in
(2.30) along C1 and the second one along C2 to get an analogue of (2.12):⎧⎪⎪⎨⎪⎪⎩

uki − ûk−1i

Δt
=
1

2
(σ(u)ki )

2δ2x(u)
k
i + b̂0(u, v)

k
i + (e1)

k
i ;

vki − v̂k−1i

Δt
=
1

2
(σ(u)ki )

2δ2x(u)
k
i + B̂0(u, v)

k
i + (e2)

k
i ,

where uki = u(t
k, xi), v

k
i = v(t

k, xi) (recall that (u, v) = (u, ux) is the true
solution of (2.29)), and ûk−1i = u(tk−1, x̂i), v̂ki = v(t

k−1, x̂i), with

x̂ki = xi + b0(t
k, xi, u

k−1
i , vk−1i )Δt; x̂ki = xi +B0(t

k, xi, u
k−1
i , vk−1i )Δt.

Also, σ(u)ki , b̂0(u, v)
k
i and B̂0(u, v)

k
i are analogous to σ

k
i , (̂b0)

k
i and (B̂0)

k
i ,

except that Uk−1i and V k−1i are replaced by uk−1i and vk−1i .
Estimating the error {(e1)ki } and {(e2)ki } in the same fashion as in

Lemma 2.1 we obtain that

(2.33) sup
k,i
{|(e1)ki |+ |(e2)ki |} ≤ O(h+Δt).
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We now define as we did in (2.9) the approximate solutions U (n) and
V (n) by

(2.34)

U (n)(t, x) =

⎧⎪⎪⎨⎪⎪⎩
n∑
k=1

Uk(x)1
(
(k−1)T
n , kTn ]

(t), t ∈ (0, T ];

U0(x), t = 0;

V (n)(t, x) =

⎧⎪⎪⎨⎪⎪⎩
n∑
k=1

V k(x)1
(
(k−1)T
n , kTn ]

(t), t ∈ (0, T ];

V 0(x), t = 0.

Let ξ(t, x) = u(t, x) − Un(t, x) and ζ(t, x) = v(t, x) − V n(t, x). We can
derive the analogue of (2.19):⎧⎪⎪⎨⎪⎪⎩

ξki − ξ̂k−1i

Δt
=
1

2
(σki )

2δ2x(ξ)
k
i + (I1)

k
i + (e1)

k
i ;

ζki − ζ̂k−1i

Δt
=
1

2
(σki )

2δ2x(ζ)
k
i + (I2)

k
i + (e2)

k
i ,

where

(I1)
k
i = −

u(tk−1, x̂ki )− u(tk−1, x̄ki )
Δt

+ [̂b0(u, v)
k
i − (̂b0)ki ]

+
1

2
[σ2(tk, xi, u

k−1
i )− σ2(tk, xi, Uk−1i )]δ2x(u)

k
i ;

(I2)
k
i = −

v(tk−1, x̂ki )− v(tk−1, x̄ki )
Δt

+ [B̂0(u, v)
k
i − (B̂0)ki ]

+
1

2
[σ2(tk, xi, v

k−1
i )− σ2(tk, xi, V k−1i )]δ2x(v)

k
i ;

Using the uniform Lipschitz property of b̂0 in y and z, one shows that

(2.35) |(I1)ki | ≤ C2{|ξk−1i |+ |ζk−1i |}+ C3(h+Δt), ∀k, i.

To estimate (I2)
k
i , we will assume that ({Uki }, {V ki }) is uniformly bounded,

otherwise we consider the truncated version version of (2.28). Thus B̂K0 is
uniform Lipschitz. Thus,

|B̂0(u, v)ki − (B̂0)ki | ≤ C4(|ξk−1i |+ |ζk−1i |), ∀k, i,

where C4 depends only on the bounds of u, v, {Uki }, {V ki }, and that of σ,
b, b̂ and their partial derivatives. Consequently,

(2.36) |(I2)ki | ≤ C′2{|ξk−1i |+ |ζk−1i |}+ C′3(h+Δt), ∀k, i.

Use of the maximum principle and the estimates (2.33), (2.35) and (2.36)
leads to

‖ξk‖ ≤ ‖ξk−1‖+ C2(‖ξk−1‖+ ‖ζk−1‖)Δt+ C5(h+Δt)Δt;
‖ζk‖ ≤ ‖ζk−1‖+ C′2(‖ξk−1‖+ ‖ζk−1‖)Δt+ C′5(h+Δt)Δt;
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Add the two inequalities above and apply Gronwall’s lemma; we see that

sup
k
(‖ξk‖+ ‖ζk‖) = O(h+Δt).

Applying the arguments similar to those in Theorem 2.3 we can derive the
following theorem.

Theorem 2.4. Suppose that (A1)–(A3) hold. Then,

sup
(t,x)

{|U (n)(t, x)− u(t, x)|+ |V (n)(t, x)− ux(t, x)|} = O(
1

n
).

Moreover, for each fixed x ∈ lR, U (n)(·, x) and V (n)(·, x) are left-continuous;
for fixed t ∈ [0, T ], U (n)(t, ·) and V (n)(t, ·) are uniformly Lipschitz, with the
same Lipschitz constant that is independent of n.

§3. Numerical Approximation of the Forward SDE
Having derive the numerical solution of the PDE (1.5), we are now ready
to complete the final step: approximating the Forward SDE (1.4). Recall
that the FSDE to be approximated has the following form:

(3.1) Xt = x+

∫ t
0

b̃(s,Xs)ds+

∫ t
0

σ̃(s,Xs)dWs,

where

b̃(t, x) = b(t, x, θ(t, x),−σ(t, x, θ(t, x)θx(t, x)) = b0(t, x, θ(t, x), θx(t, x));
σ̃(t, x) = σ(t, x, θ(t, x)).

for (t, x) ∈ [0, T ]× lR.
To define the approximate SDEs, we need some notations. For each

n ∈ lN, set Δtn = T/n, tn,k = kΔtn, k = 0, 1, 2, · · · , n, and

(3.2)

⎧⎪⎪⎨⎪⎪⎩
ηn(t) =

n−1∑
k=0

tn,k1[tn,k,tn,k+1)(t), t ∈ [0, T );

ηn(T ) = T.

Next, for each n, let (U (n), V (n)) be the approximate solution to the PDE
(1.5), defined by (2.35) (in the special case we may consider only u(n)

defined by (2.24)). Set

(3.3) θn(t, x) = U (n)(T − t, x), θnx (t, x) = V
(n)(T − t, x),

and

b̃n(t, x) = b0(t, x, θ
n(t, x), θnx (t, x)); σ̃n(t, x) = σ(t, x, θn(t, x)).

By Theorem 2.4 we know that θn is right continuous in t and uniformly
Lipschitz in x, with the Lipschitz constant being independent of t and n;
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thus, so also are the functions b̃n and σ̃n. We henceforth assume that there
exists a constant K such that, for all t and n,

(3.4) |̃bn(t, x)− b̃n(t, x′)|+ |σ̃n(t, x) − σ̃n(t, x′)| ≤ K|x− x′|, x, x′ ∈ lR.

Also, from Theorem 3.4,

(3.5) sup
t,x
|̃bn(t, x)− b̃(t, x)|+ sup

t,x
|σ̃n(t, x)− σ̃(t, x)| = O( 1

n
).

We now introduce two SDEs: the first one is a discretized SDE given
by

(3.6) X̄nt = x+

∫ t
0

b̃n(·, X̄n· )ηn(s)ds+
∫ t
0

σ̃n(·, X̄n· )ηn(s)dWs,

where ηn is defined by (3.2). The other is an intermediate approximate
SDE given by

(3.7) Xnt = x+

∫ t
0

b̃n(s,Xns )ds+

∫ t
0

σ̃n(s,Xns )dWs.

It is clear from the properties of b̃n and σ̃n mentioned above that both
SDEs (3.6) and (3.7) above possess unique strong solutions.
We shall estimate the differences X̄nt −Xnt and Xn −X , separately.

Lemma 3.1. Assume (A1)—(A3). Then,

E
{
sup
0≤t≤T

|X̄nt −Xnt |2
}
= O( 1

n
).

Proof. To simplify notation, we shall suppress the sign “˜ ” for the
coefficients in the sequel. We first rewrite (3.6) as follows:

X̄nt = X0 + u
n
t +

∫ t
0

bn(s, X̄ns )ds+

∫ t
0

σn(s, X̄ns )dWs,

where

unt =

∫ t
0

[bn(·, X̄n· )ηn(s)−bn(s, X̄ns )]ds+
∫ t
0

[σn(·, X̄n· )ηn(s)−σn(s, X̄ns )]dWs.

Applying Doob’s inequality, Jensen’s inequality, and using the Lipschitz
property of the coefficients (3.4) we have

(3.8)

E
{
sup
s≤t

|Xns − X̄ns |2
}

≤3E
{
sup
s≤t

|uns |2
}
+ 3K2t

∫ t
0

E
{∣∣Xns − X̄ns ∣∣2}ds

+ 12K2
∫ t
0

E
{∣∣Xns − X̄ns ∣∣2}ds.
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Now, set αn(t) = E
{
sups≤t |Xns − X̄ns |2

}
. Then, from (3.8),

αn(t) ≤ 3E
{
sup
s≤t

|uns |2
}
+ 3K2(T + 4)

∫ t
0

αn(s)ds,

and Gronwall’s inequality leads to

(3.9) E
{
sup
s≤t

|Xns − X̄ns |2
}
≤ 3e3K2(T+4)E

{
sup
s≤t

|uns |2
}
.

We now estimate E{sups≤t |uns |2}. Note that if s ∈ [tn,k, tn,k+1), for
some 1 ≤ k < n, then ηn(s) = kΔtn (whence T − ηn(s) = (n − k)Δtn, as
T = nΔtn) and T − s ∈ ((n− k− 1)Δtn, (n− k)Δtn]. Thus, by definitions
(2.9) and (3.2), for every x ∈ lR

θn(ηn(s), x) = u(n)(T − ηn(s), x) = u(n)((n− k)Δtn, x)
= u(n)(T − s, x) = θn(s, x).

More generally, for all (s, x) ∈ [0, T ]× lR,

bn(s, x) = b(s, x, θn(s, x)) = b(s, x, θn(ηn(s), x)).

Using this fact, it is easily seen that∣∣∣ ∫ t
0

bn(·, X̄n· )ηn(s) − bn(s,Xns )ds
∣∣∣

≤
∫ t
0

∣∣∣b(ηn(s), X̄nηn(s), θn(ηn(s), X̄nηn(s)))− b(s,Xns , θn(s,Xns ))∣∣∣ds
≤
∫ t
0

{∣∣∣b(ηn(s), X̄nηn(s), θn(s, X̄nηn(s)))− b(s,Xns , θn(s, X̄nηn(s)))∣∣∣
+
∣∣∣b(s,Xns , θn(s, X̄nηn(s)))− b(s,Xns , θn(s,Xns ))∣∣∣}ds

=I1 + I2.

Using the boundedness of the functions bt, bx and by, we see that⎧⎪⎪⎪⎨⎪⎪⎪⎩
I1 ≤

∫ t
0

{
‖bt‖∞|ηn(s)− s|+ ‖bx‖∞

∣∣X̄nηn(s) −Xns ∣∣}ds,
I2 ≤ K‖by‖∞ ·

∫ t
0

∣∣X̄nηn(s) −Xns ∣∣ds.
Thus,∣∣∣ ∫ t
0

bn(·, X̄n· )ηn(s)− bn(s,Xns )ds
∣∣∣ ≤ K̃ ∫ t

0

{
|ηn(s)− s|+

∣∣X̄nηn(s)−Xns ∣∣}ds,
where K̃ depends only on K, ‖bt‖∞, ‖bx‖∞ and ‖by‖∞. Since∫ t

0

|ηn(s)− s|ds =
n−1∑
k=0

∫ tk+1∧t
tk∧t

(s− tk)ds ≤ 1
2

n−1∑
k=0

(Δtn)
2 =
T 2

2n
,
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(3.10)

E
{
sup
u≤t

∣∣∣ ∫ t
0

bn(·, X̄n· )ηn(s) − bn(s,Xns )ds
∣∣∣2}

≤ 2K̃2
{
T

∫ t
0

E|X̄nηn(s) −Xns |2ds+
T 4

4n2

}
.

Using the same reasoning for σ with Doob’s inequality, we can see that

(3.11)

E
{
sup
u≤t

∣∣∣ ∫ t
0

σn(·, X̄n· )ηn(s) − σn(s,Xns )dWs
∣∣∣2}

≤ 8K̃2
{∫ t
0

E|X̄nηn(s) −Xns |2ds+
∫ t
0

(s− ηn(s))2ds
}

≤ 8K̃2
{∫ t
0

E|X̄nηn(s) −Xns |2ds+
T

3n2

}
Combining (3.10) and (3.11), we get

E{sup
s≤t

|uks |2} ≤ K̃2(4T + 16)
∫ t
0

E
∣∣X̄nηn(s) −Xns ∣∣2ds+ K̃2T (T + 163 ) 1n2 .

Thus, by (3.9),

(3.12)

E
{
sup
s≤t

|Xns − X̄ns |2
}

≤ 3e3K2(T+4)
{
K̃2(4T + 16)

∫ t
0

E
∣∣X̄nηn(s) −Xns ∣∣2ds

+ K̃2T (T +
16

3
)
1

n2

}
.

Finally, noting that |X̄nηn(s) −Xns | ≤ |X̄nηn(s) − X̄ns |+ |X̄ns −Xns | and that

X̄nηk(s) − X̄
n
s = b

n(·, X̄n· )ηn(s)(s− ηn(s)) + σ(·, X̄n· )ηn(s)(Ws −Wηn(s)),

we see as before that∫ t
0

E|X̄nηn(s) − X̄ns |2ds ≤ 2
∫ t
0

{
‖b‖2∞(s− ηn(s))2 + ‖σ‖2∞|s− ηn(s)|

}
ds

≤ 2‖b‖
2∞T
3

· 1
n2
+ ‖σ‖2∞T ·

1

n
.

Therefore, (3.12) becomes

(3.13) E
{
sup
s≤t

|Xns −X̄ns |2
}
≤ C1

1

n
+C2

1

n2
+C3

∫ t
0

E
{
sup
r≤s

∣∣X̄nr −Xnr ∣∣2}ds,
where C1, C2 and C3 are constants depending only on the coefficients b,
σ and K and can be calculated explicitly from (3.12). Now, we conclude
from (3.13) and Gronwall’s inequality that

αn(t) ≤ βneCT , ∀t ∈ [0, T ],
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where βn = C1n
−1 + C2n−2 and CT = C3T . In particular, by slightly

changing the constants, we have

αn(T ) = E
{
sup
0≤t≤T

|X̄nt −Xns |2
}
≤ C1
n
+
C2

n2
= O( 1

n
),

proving the lemma.

The main result of this chapter is the following theorem.

Theorem 3.2. Suppose that the standing assumptions (A1)—(A3) hold.
Then, the adapted solution (X,Y, Z) to the FBSDE (1.1) can be approxi-
mated by a sequence of adapted processes (X̄n, Ȳ n, Z̄n), where X̄n is the
solution to the discretized SDE (3.6) and, for t ∈ [0, T ],

Ȳ nt := θ
n(t, X̄nt ); Z̄nt := −σ(t, X̄nt , θn(t, X̄nt ))θnx (t, X̄nt ),

with θn and θnx being defined by (3.3) and U
(n) and V (n) by (2.34). Fur-

thermore,

(3.14) E
{
sup
0≤t≤T

|X̄nt −Xt|+ sup
0≤t≤T

|Ȳ nt −Yt|+ sup
0≤t≤T

|Z̄nt −Zt|
}
= O( 1√

n
).

Moreover, if f is C2 and uniformly Lipschitz, then for n large enough,

(3.15)
∣∣∣E{f(X̄nT , Z̄nT )} − E{f(XT , ZT )}∣∣∣ ≤ Kn ,

for a constant K.

Proof. Recall that at the beginning of the proof of Lemma 3.1, we have
suppressed the sign “˜” for b̃ and σ̃ to simplify notation. Set

εn(t) =
{
sup
x
|bn(t, x)− b(t, x)|2 + sup

x
|σn(t, x)− σ(t, x)|2

}
,

where b, bn, σ and σn are defined by (3.1) and (3.3). Then, from (3.5) we
know that supt |εn(t)| = O( 1n2 ). Now, applying Lemma 3.1, we have

E
{
sup
s≤t

|X̄ns −Xs|2
}
≤ 2E

{
sup
s≤t

|X̄ns −Xns |2
}
+ 2E

{
sup
s≤t

|Xns −Xs|2
}

= O( 1
n
) + 2E

{
sup
s≤t

|Xns −Xs|2
}
.
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Further, observe that

E
{
sup
s≤t

|Xns −Xs|2
}

≤2T
∫ t
0

E
∣∣bn(s,Xns )− b(s,Xs)∣∣2ds+ 8 ∫ t

0

E
∣∣σn(s,Xns )− σ(s,Xs)∣∣2ds

≤4T
∫ t
0

E
∣∣bn(s,Xns )− bn(s,Xs)∣∣2ds

+ 16

∫ t
0

E
∣∣σn(s,Xns )− σn(s,Xs)∣∣2ds+ 4(T + 4)∫ t

0

εn(s)ds

≤4(T + 4)K2
∫ t
0

E
{
sup
r≤s

|Xnr −Xr|2
}
ds+ 4(T + 4)

∫ t
0

εn(s)ds.

Applying Gronwall’s inequality, we get

(3.16) E
{
sup
s≤t

|Xns −Xs|2
}
≤ 4(T + 4)

∫ t
0

εn(s)ds · e4(T+4)K
2 ≤ C̃
n2
,

where C̃ is a constant depending only on K and T . Now, note that the
functions θ and θn are both uniformly Lipschitz in x. So, if we denote their
Lipschitz constants by the same L, then

E
{
sup
0≤t≤T

|Yt − Ȳ nt |2
}

≤ 2E
{
sup
0≤t≤T

|θ(t,Xt)− θn(t, X̄nt )|2
}

+ 2E
{
sup
0≤t≤T

|θn(t, X̄nt )− θ(t, Ȳ nt )|2
}

≤ 2L2E
{
sup
0≤t≤T

|Xt − X̄nt |2
}
+ 2 sup

(t,x)

|θ(t, x)− θn(t, x)|2 = O( 1
n
),

by Theorem 3.4 and (3.16). The estimate (3.14) then follows from an
easy application of Cauchy-Schwartz inequality. To prove (3.15), note that
Theorem 2.3 implies that, for n large enough, sup(t,x) |θn(t, x) − θ(t, x)| ≤
Cn−1, for some (generic) constant C > 0. We modify X̄nt as defined by
(3.6) by fixing n and approximating the solution Xn of (3.7) by a standard
Euler scheme indexed by k:

X̄n,kt = x+

∫ t
0

b(·, X̄n,k· )ηk(s)ds+
∫ t
0

σ(·, X̄n,k· )ηk(s)dWs.

It is then standard (see, for example, Kloeden-Platen [1, p.460]) that

(3.17)
∣∣∣E{f(XnT )} − E{f(X̄n,kT )}∣∣∣ ≤ C1k .
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On the other hand, we have

(3.18)

|E{f(XT )} − E{f(XnT )}| ≤ KE{|XT −XnT |}

≤ E
{
sup
0≤t≤T

|Xt −Xnt |
}
≤ C2
n

for Lipschitzian f , by (3.16). Therefore, noting that X̄nt as defined by (3.6)
is just X̄n,nt , the triangle inequality, (3.17) and (3.18) lead to (3.15).



Comments and Remarks

The main body of this book is built on the works of the authors, with
various collaboration with other researchers, on this subject since 1993.
Some significant results of other researchers are also included to enhance
the book. However, due to the limitation of our information, we inevitably
might have overlooked some new development in this field while writing
this book, for which we deeply regret.
In Chapter 1, the results on the pure BSDEs, especially the fundamen-

tal well-posedness result, are based on the method introduced in the seminal
paper of Pardoux-Peng [1]. The results on nonsolvability of FBSDEs are
inspired by the example of Antonelli [1]. The well-posedness results of FB-
SDEs over small duration is also based in the spirit of the work of Antonelli
[1]. The whole Chapter 2 is based on the paper of Yong [4].
In Chapter 3 we begin to consider a general form of the FBSDE (1)

with an arbitrarily given T > 0. The main references for this chapter
are based on the works of Ma-Yong [1], virtually the first result regarding
solvability of FBSDE in this generality; and Ma-Yong [4], in which the
notion of approximate solvability is introduced. A direct consequence of the
method of optimal control is the Four Step Scheme presented in Chapter 4.
The finite horizon case is initiated by Ma-Protter-Yong [1]; and the infinite
horizon case is the theoretical part of the work on “Black’s Consol Rate
Conjecture” presented later in Chapter 8, by Duffie-Ma-Yong [1].
Chapter 5 can be viewed either as a tool needed to extend the Four Step

Scheme to the situation when the coefficients are allowed to be random, or
as an independent subject in stochastic partial differential equations. The
main results come from the papers of Ma-Yong [2] and [3]; and the appli-
cations in finance (e.g, the stochastic Black-Scholes formula) are collected
in Chapter 8.
The method of continuation of Chapter 6 is based on the paper of Hu-

Peng [2], and its generalization by Yong [1]. The method adopted a widely
used idea in the theory of partial differential equations. Compared to the
Four Step Scheme, this method allows the randomness of the coefficients
and the degeneracy of the forward diffusion, but requires some analysis
which readers might find difficult in a different way.
Chapter 7 is based on the work of Cvitanic-Ma [2]. The idea for the

forward SDER using the solution mapping of Skorohod problem is due
to Anderson-Orey [1], while the Lipschitz property of such solution map-
ping is adopted from Dupuis-Ishii [1]. The proof of the backward SDER
is a modification of the arguments of Pardoux-Rascanu [1], [2], as well as
some arguments from Buckdahn-Hu [1]. The proof of the existence and
uniqueness of FBSDER adopted the idea of Pardoux-Tang [1], a general-
ized method of contraction mapping theorem, which can be viewed as an
independent method for solving FBSDE as well.
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Chapter 8 collects some successful applications of the FBSDEs devel-
oped so far. The integral representation theorem is due to Ma-Protter-Yong
[1]; the Nonlinear Feynman-Kac formula is in the spirit of Peng [4], but the
argument of the proof follows more closely those of Cvitanic-Ma [2]. The
Black’s consol rate conjecture is due to Duffie-Ma-Yong [1]; while hedging
contingent claims for large investors comes from Cvitanic-Ma [1] for uncon-
straint case, and from Buckdahn-Hu [1] for constraint case. The section on
stochastic Black-Scholes formula is based on the results of Ma-Yong [2] and
[3], and the American game option is from Cvitanic-Ma [2].
Finally, the numerical method presented in Chapter 9 is essentially

the paper of Douglas-Ma-Protter [1], with slight modifications. We should
point out that, to our best knowledge, the scheme presented here is the
only numerical method for (strongly coupled) FBSDEs discovered so far,
and even when reduced to the pure BSDE case, it is still one of the very
few existing numerical methods that can be found in the literature.
In summary, FBSDE is a new type of stochastic differential equations

that has its own mathematical flavor and many applications. Like a usual
two-point boundary value problem, there is no generic theory for its solv-
ability, and many interesting insights of the equations has yet to be dis-
covered. In the meantime, although the theory exists only for such a short
period of time (recall that the first paper on FBSDE was published in
1993!), many topics in theoretical and applied mathematics have already
been found closely related to it, and its applicability is quite impressive.
It is our hope that by presenting a lecture notes in the series of LNM,
more attention would be drawn from the mathematics community, and the
beauty of the problem would be further exposed.
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Commuting Projećtions: A Vector Measure Approach
(1999)

Vol. 1712: N. Schwartz, J. J. Madden, Semi-algebraic
Function Rings and Reflectors of Partially Ordered
Rings (1999)

Vol. 1713: F. Bethuel, G. Huisken, S. Müller, K. Stef-
fen, Calculus of Variations and Geometric Evolution Prob-
lems. Cetraro, 1996. Editors: S. Hildebrandt, M. Struwe
(1999)

Vol. 1714: O. Diekmann, R. Durrett, K. P. Hadeler,
P. K. Maini, H. L. Smith, Mathematics Inspired by Biol-
ogy. Martina Franca, 1997. Editors: V. Capasso, O. Diek-
mann (1999)

Vol. 1715: N. V. Krylov, M. Röckner, J. Zabczyk, Stochas-
tic PDE’s and Kolmogorov Equations in Infinite Dimen-
sions. Cetraro, 1998. Editor: G. Da Prato (1999)

Vol. 1716: J. Coates, R. Greenberg, K. A. Ribet, K. Ru-
bin, Arithmetic Theory of Elliptic Curves. Cetraro, 1997.
Editor: C. Viola (1999)

Vol. 1717: J. Bertoin, F. Martinelli, Y. Peres, Lectures
on Probability Theory and Statistics. Saint-Flour, 1997.
Editor: P. Bernard (1999)

Vol. 1718: A. Eberle, Uniqueness and Non-Uniqueness
of Semigroups Generated by Singular Diffusion Opera-
tors (1999)

Vol. 1719: K. R. Meyer, Periodic Solutions of the N-Body
Problem (1999)

Vol. 1720: D. Elworthy, Y. Le Jan, X-M. Li, On the Geo-
metry of Diffusion Operators and Stochastic Flows (1999)

Vol. 1721: A. Iarrobino, V. Kanev, Power Sums, Goren-
stein Algebras, and Determinantal Loci (1999)

Vol. 1722: R. McCutcheon, Elemental Methods in Ergodic
Ramsey Theory (1999)

Vol. 1723: J. P. Croisille, C. Lebeau, Diffraction by an
Immersed Elastic Wedge (1999)

Vol. 1724: V. N. Kolokoltsov, Semiclassical Analysis for
Diffusions and Stochastic Processes (2000)

Vol. 1725: D. A. Wolf-Gladrow, Lattice-Gas Cellular
Automata and Lattice Boltzmann Models (2000)
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