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Chapter 1
Introduction

Nonlinear partial differential equations (PDEs) do not, in general, admit exact
solutions; these solutions are even more rare when initial/boundary conditions
are imposed. There are exceptional circumstances when the PDEs enjoy certain
symmetries: they are invariant to a class of finite or infinitesimal transformations
(Sachdev 2000). When this is the case, the PDEs are exactly reducible to ordi-
nary differential equations (ODEs) if they are functions of two independent vari-
ables; the ODEs may occasionally be integrated in a closed form. Alternatively,
one may study their qualitative properties and obtain the actual solutions numeri-
cally with reference to appropriate initial/boundary conditions. These solutions are
called self-similar and belong to one of the two classes, first kind and second kind
(Zel’dovich 1956, Zel’dovich and Raizer 1967, Barenblatt and Zel’dovich 1972,
Sachdev 2000), and solve some degenerate problems for which ‘all, or at least some,
of the constant parameters in the initial and boundary conditions of the problem,
having the dimensionality of independent variables, tend to zero or infinity.’ These
solutions describe those properties of the phenomena that do not depend on the de-
tails of the initial and boundary conditions; they do involve some nondimensional
parameters which, in some integral sense, represent the memory of initial/boundary
conditions. Exceptionally, there may not be any nondimensional parameter of the
problem in the asymptotic solution (Barenblatt and Zel’dovich 1972). These spe-
cial solutions do not describe equilibrium states; they describe intermediate stages
when the process of evolution of the solution is continuing and yet the details of
initial/boundary conditions have already disappeared. These solutions satisfy some
singular, delta functions like, initial conditions.

An interesting denomination of this class of solutions is ‘the profile at infinity’
due originally to Philip (1957, 1974). These solutions give, for large time, a remark-
ably accurate behaviour of an entire family of solutions of initial/boundary value
problems.

The notion, intermediate asymptotics, was first introduced formally by Barenblatt
and Zel’dovich (1971, 1972). However, the appearance of intermediate asymptotics
may be seen implicitly in the work of Kolmogorov et al. (1937); this work deals
with the propagation, in a certain spatial region, of a gene whose carriers have an

P.L. Sachdev, Ch. Srinivasa Rao, Large Time Asymptotics for Solutions of Nonlinear 1
Partial Differential Equations, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-87809-6 1, c© Springer Science+Business Media, LLC 2010



2 1 Introduction

advantage in the struggle for existence. They considered the equation

vt − kvxx = F(v), (1.1.1)

where the function F(v), 0 ≤ v ≤ 1, is sufficiently smooth and has the properties
that

F(0) = F(1) = 0, F(v) > 0 (0 < v < 1),
F ′(0) = α > 0, F ′(v) < α (0 < v < 1); (1.1.2)

here, k is a constant. Kolmogorov et al. (1937) proved that (1.1.1) has uniformly
propagating waves or ‘stationary solutions’ of the form

v = γ(x−λ t + c), (1.1.3)

where the constant c is arbitrary, satisfying the boundary conditions γ(−∞) = 0,
γ(∞) = 1 for any speed of propagation λ such that λ ≥ λ0 = 2

√
kα . It was further

shown that, among all the solutions (1.1.3), only the solution with the minimum
speed λ = λ0 is stable in the following sense. The solution of the Cauchy problem
satisfying the initial condition

v(x,0) ≡ 0, x ≤ a,

0 < v(x,0) < 1, a < x < b,

v(x,0) ≡ 1, x ≥ b,

where a and b are arbitrary numbers and vx(x,0) ≥ 0, tends as t → ∞, to a solution
of the type (1.1.3) with λ = λ0. The ‘stationary’ or travelling wave solution of the
form (1.1.3) is possible with a continuous spectrum of speeds of propagation λ ;
only the solution corresponding to the extreme (minimum) value λ0 is asymptotic to
a nonstationary solution of the Cauchy problem as t → ∞. The constant c in (1.1.3)
remains undetermined if only travelling waves are considered. It may be found by
numerically tracing the evolution of the nonstationary solution of the Cauchy prob-
lem until the travelling waveform emerges. The intermediate asymptotic character
of the above solution for λ = λ0 was demonstrated much later by Kanel’ (1962).
We may point out that the condition F ′(v) < α is not required for the existence of a
travelling wave solution of (1.1.1) with the speed of propagation λ = λ0. The above
investigation by Kolmogorov et al. (1937) was followed by the work of Zel’dovich
and Frank-Kamenetskii (1938) who treated uniformly propagating flames in the the-
ory of combustion. An excellent description of the Soviet contribution to this topic
may be found in the review article by Barenblatt and Zel’dovich (1972).

There are two distinct types of self-similar solutions, each depending on a sim-
ilarity variable, say, ξ = rt−α/A, which is a combination of the independent vari-
ables r and t. Here, A is a dimensional parameter. From a physical point of view,
such solutions exist when the length and time scales cannot be constructed from
the parameters of the problem so that r and t do not occur separately in the solution.
The unknown functions can depend only on a dimensionless combination of r, t, and
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a dimensional parameter A with the dimensions [A] = LT−α , where α is real. We
illustrate this matter with reference to one-dimensional equations of gas dynamics,

∂ lnρ
∂ t

+u
∂ lnρ
∂ r

+
∂u
∂ r

+(ν−1)
u
r

= 0, (1.1.4)

∂u
∂ t

+u
∂u
∂ r

+
1
ρ
∂ p
∂ r

= 0, (1.1.5)

∂
∂ t

ln pρ−γ +u
∂
∂ r

ln pρ−γ = 0. (1.1.6)

Here, p, ρ , and u are pressure, density, and particle velocity at any point r and time
t. The parameter ν equals 1,2,3 for the plane, cylindrical, and spherical symmetries,
respectively. Here, the solution would assume the form

p =
a

rk+1ts+2 P(ξ ), (1.1.7)

ρ =
a

rk+3ts G(ξ ), (1.1.8)

u =
r
t
V (ξ ), (1.1.9)

where ξ = rt−α/A and a is a parameter which appears in the given problem. It con-
tains the unit of mass and has the dimensions [a] = MLkT s, where k and s are real
numbers. If one substitutes the form (1.1.7)–(1.1.9) into (1.1.4)–(1.1.6), the latter
reduce to a system of nonlinear ODEs and the motion is said to be self-similar. If
the exponent α appearing in the similarity variable ξ and the exponents of r and t
are fully determined from dimensional considerations and/or the conservation laws
(1.1.4)–(1.1.6), the similarity solution is said to belong to the first kind. This class
of solutions may be exemplified by the solution describing a strong explosion into a
uniform medium with density ρ0. Here we have two physical parameters, the undis-
turbed density, ρ0 ∼ ML−3, and the energy of explosion, E0 ∼ ML2T−2, appearing
in the problem. The energy of explosion is assumed to be constant and equals the
energy of the moving gas. This constitutes an integral of the motion. For a strong
explosion, the pressure p0 and the sound speed c0 in the undisturbed motion are as-
sumed to be zero and do not enter the problem as parameters. The constants ρ0 and E
help construct the parameter A in the similarity variable: A = (E/ρ0)1/5 ∼ LT−2/5.
Therefore, we have the similarity variable ξ = r/(E/ρ0)1/5t2/5. The exponent α is
thus explicitly found to be 2/5. In this case, the (reduced) system of ODEs from the
system (1.1.4)–(1.1.6) is solved analytically or numerically subject to the Rankine–
Hugoniot conditions at the shock and zero particle velocity at the centre of the spher-
ical explosion (see Taylor 1950, Sedov 1946, Sachdev 2004).

In the self-similar solutions of the second kind, the substitution of the similarity
form (1.1.7)–(1.1.9) into the system (1.1.4)–(1.1.6) reduces the latter to a system of
nonlinear ODEs but the exponent α is not determined from dimensional consider-
ations or conservation laws. This exponent is found from the requirement that the
integral curve passes through an appropriate singular point, usually a saddle point,
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so that the boundary conditions, say, at the shock and the point at infinity behind
the shock are simultaneously satisfied. An example of self-similar solutions of the
second kind is a converging shock from an implosion. It has been discussed in some
detail by Zel’dovich and Raizer (1967) and Sachdev (2004).

We have already discussed the travelling wave solutions for the equation (1.1.1)
which constitute self-similar solutions of the second kind. Here, in general, the
wavespeed λ is not found by solving a boundary value problem for the ODE re-
sulting from substituting (1.1.3) into (1.1.1) and satisfying the boundary conditions
γ(−∞) = 0, γ(∞) = 1. The wavespeed λ possesses an infinite number of possible
values, the minimum of which gives a unique stable solution. Something analogous
to this happens for the converging shock problem (Sachdev 2004).

The nonlinear PDEs with two (or more) independent variables may admit self-
similar or travelling wave solutions which are governed by nonlinear ODEs. This
comes about when the PDEs enjoy certain invariance properties subject to finite or
infinitesimal transformations as we have remarked earlier (Bluman and Kumei 1989,
Sachdev 2000). Using group-theoretic methods or the so-called direct method of
Clarkson and Kruskal (1989), it becomes possible to exactly reduce the nonlinear
PDEs with two independent variables to nonlinear ODEs and hence analyse the
existence and uniqueness properties of the latter subject to appropriate boundary
and/or initial conditions. It helps to understand when these ODEs possess solutions
and know their behaviour for large distances. Their singular behaviour, if any, may
also be discovered. This study is often motivated by a canonical equation of a certain
class for which one may have access to all the relevant information. To exemplify
this, one may refer to the Burgers equation which admits exact linearisation by
the so-called Cole–Hopf transformation and hence yields considerable information
regarding its solution. This motivates the analysis for the large class of generalised
Burgers equations which do not enjoy the linearising felicity of the Cole–Hopf type
transformation and must therefore be treated directly (Sachdev 1987, 2000).

When a given PDE (or a system) does not possess sufficient invariance proper-
ties and therefore cannot be reduced to an ODE (or a system of ODEs), one must
turn to other methods to find analytic solutions. One intuitive approach is to mimic
the solution of a simpler equation; for example, for generalised Burgers equations,
one could simulate the behaviour of the solutions of the Burgers equation and obtain
large time solutions which embed in them limiting forms such as inviscid and/or lin-
ear viscous ones. This becomes possible for a class of generalised Burgers equations
with respect to N-wave or periodic initial conditions and involves solution of an in-
finite system of coupled nonlinear ODEs (see Sachdev and Joseph 1994, Sachdev
et al. 1996, 2005).

A more general approach to finding asymptotic solutions, usually not leading
to a closed form, is called the balancing argument. It was originally developed by
Grundy and his collaborators (Grundy 1988, Grundy et al. 1994a, 1994b) and has
since been exploited extensively by Sachdev and his coworkers (Sachdev et al. 1994,
1999, Sachdev and Srinivasa Rao 2000). Here, it is helpful to introduce in the given
PDE a transformation such as u = tαU(η , t), where η = xtβ is the relevant sim-
ilarity variable; α and β are constants found later. The given PDE in u = u(x, t)
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is changed to one in U with η and t as the independent variables. Varied combi-
nations of terms in the new equation are ‘balanced’ such that they constitute the
most dominant terms as t tends to infinity. The subdominant terms are subsequently
accounted for by a correction term. Several correction terms are discovered in a
sequential manner which may suggest an infinite series form of the solution in de-
scending powers of t. The large time behaviour(s) so determined prove very useful
and, in conjunction with the numerical solution of the problem, provide valuable
insight into the solution. A given problem may have several asymptotic behaviours
depending on the parameters that appear in the equation and or the initial/boundary
conditions.

To obtain a deeper analytical insight into the asymptotic nature of the special
solutions, self-similar or travelling waves, one must proceed in two steps. First,
one must, as pointed out earlier, carefully analyse the properties of the solutions of
the (reduced) ODEs with reference to appropriate initial/boundary conditions at a
finite point and/or at infinity. This is motivated by the form of solution one seeks.
Correspondingly, analytic methods – initial value or shooting – may be resorted to.
This analysis distinguishes different sets of parametric values for which solutions
with distinct behaviour exist and enjoy the uniqueness property. The asymptotic
character of these solutions may then be studied with reference to the numerical
solution of the original PDEs with relevant initial/boundary conditions.

More importantly, the asymptotic nature of the exact solutions may be exam-
ined by using rigourous analytic methods suggested originally by Serrin (1967),
Peletier (1970, 1971, 1972), and Oleinik (1966). These have since been extensively
used and improvised upon. We briefly describe their approach. Serrin (1967) con-
sidered the asymptotic behaviour of velocity profiles for the steady Prandtl bound-
ary layer equations. He showed that, for a power law streaming speed, U(x) =
C(x + d)m, where C, D, and m ≥ 0 are constants, the velocity profile which de-
velops downstream is asymptotically given by the similarity solution governed by
the Falkner–Skan equation, a third-order nonlinear ODE. It was also found that,
for a streaming speed satisfying certain bounds, the velocity profile which develops
downstream is asymptotically unique, though the particular form of the resulting
profile depends on the precise nature of the exterior stream. Peletier (1970) con-
sidered a simpler problem: asymptotic behaviour of temperature profiles for a class
of nonlinear heat conduction problems. More specifically, he considered the con-
duction of heat into a semi-infinite homogeneous solid for which the coefficient of
thermal conductivity depends on the temperature. The temperature at the face of the
solid is held fixed whereas far away it tends to a lower value, with a complemen-
tary error function behaviour as the distance tends to ∞. It was then shown, with
appropriate smoothness requirements on the solution, that whatever the initial tem-
perature profile, the ensuing profile tends to one given by the similarity solution as
time tends to infinity. These studies have made a seminal contribution to the analysis
of asymptotic solutions of nonlinear partial differential equations.

The description of the asymptotic character by these special solutions – self-
similar or more general obtained by the balancing argument – brings out the
importance of these solutions. These solutions per se arise from some singular
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initial/boundary conditions; their larger significance accrues from their asymp-
totic nature. These particular solutions, with specific features of their own, may
be exploited to demonstrate quantitatively how solutions of larger classes of ini-
tial/boundary value problems behave for large times. This information is hard to
obtain by other analytic means. The best course for a scientist interested in solv-
ing a nonlinear problem, therefore, is to have access to such asymptotic analysis
which, supplemented by a robust numerical scheme, can provide reliable answers
for a physical problem and hence enhance its understanding.

Chapter 2 deals with the large time asymptotics for solutions of nonlinear first-
order partial differential equations. We discuss the decay of discontinuous solu-
tions of a general hyperbolic partial differential equation subject to a top hat ini-
tial condition in detail. Chapter 3 describes some constructive approaches to study
the asymptotic nature of solutions of some nonlinear partial differential equations
of parabolic type: Burgers equation, generalised Burgers equations, nonlinear dif-
fusion equations, generalised Fisher’s equations, and a system of nonlinear PDEs
describing reaction–diffusion. The methods presented here include the balancing
argument and matched asymptotic expansions. In Chapter 4, we present some prob-
lems which possess self-similar solutions as intermediate asymptotics. In the final
chapter, we treat some systems of nonlinear PDEs which describe fluid flows. We
consider similarity solutions of these systems and investigate in detail when they
may constitute intermediate asymptotics. The topics discussed in this chapter in-
clude explosion in a power law density medium, self-similar solutions of the first
and second kind, self-similar solutions for collapsing cavities, large time behaviour
of solutions of compressible flow equations with damping, large time behaviour
of solutions of unsteady boundary layer equations for an incompressible fluid, and
asymptotic behaviour of velocity profiles in Prandtl boundary layer theory.
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Chapter 2
Large Time Asymptotics for Solutions of
Nonlinear First-Order Partial Differential
Equations

2.1 Introduction

In this chapter, we consider the asymptotic behaviour of the solution of the (gener-
alised) inviscid Burgers equation with damping, namely,

ut +g(u)ux +λh(u) = 0, λ > 0, gu(u) > 0, hu(u) > 0 for u > 0, (2.1.1)

where g(u) and h(u) are nonnegative functions. This equation appears in several
physical contexts including the Gunn effect (Murray 1970b). Equation (2.1.1) is
considered subject to the initial and boundary conditions

u(0, t) = 0, t > 0, (2.1.2)

u(x,0) = u0(x) =

⎧⎨
⎩

0, x < 0,
f (x), 0 < x < X ,
0, x > X ,

(2.1.3)

where
0 ≤ f (x) ≤ 1. (2.1.4)

The function u0(x) may initially be smooth or may possess a discontinuity (see
Figures 2.6a–c). We closely follow the work of Murray (1970a). The term h(u) =
O(uα), α > 0 for 0 < u 
 1 plays a crucial role in the asymptotic behaviour of
the solution of (2.1.1)–(2.1.4). The initial disturbance decays (i) in a finite time and
finite distance for 0 < α < 1, (ii) within an infinite time like O(e−λ t) and in a finite
distance for α = 1, and (iii) within an infinite time and distance like O(t−1/(α−1))
for 1 < α ≤ 3, and O(t−1/2) for α ≥ 3. The asymptotic behaviour also includes the
(possible) inception and propagation of (shock) discontinuity in each case as time
grows.

In a related study, Joseph and Sachdev (1994) showed how a class of first-order
nonlinear PDEs

ut +unux +H(x, t,u) = 0 (2.1.5)

P.L. Sachdev, Ch. Srinivasa Rao, Large Time Asymptotics for Solutions of Nonlinear 9
Partial Differential Equations, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-87809-6 2, c© Springer Science+Business Media, LLC 2010
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may be transformed to
vτ + vnvy = 0 (2.1.6)

and hence solved subject to certain initial conditions. In conclusion, we summarise
the work of Natalini and Tesei (1992) regarding the special case of (2.1.1), namely,

ut +
1
m

(um)x +up = 0 in IR× (0,∞),

(2.1.7)

u(x,0) = u0(x), x ∈ IR,

where m > 1, p > 1, and u0(x) is a bounded nonnegative function with compact
support. Here, the authors derived sharp estimates for the support of the solution of
the problem (2.1.7) and the intermediate asymptotic form of its solution as t → ∞.
Murray (1970a) dealt with an initial boundary value problem whereas Natalini and
Tesei (1992) discussed a pure initial value problem.

Section 2.2 deals with some nontrivial first-order PDEs whose asymptotic solu-
tions may be found directly. Section 2.3 details analysis of (2.1.1)–(2.1.4), following
mainly the work of Murray (1970a).

2.2 First-order nonlinear partial differential equations – Some
examples

This section is largely illustrative. Here, we discuss initial value problems for some
first-order nonlinear partial differential equations and show how some of them tend
to special exact solutions as time becomes large. These exact solutions – similarity
or product form – thus constitute intermediate asymptotics. The examples discussed
here include some which actually appear in applications. We also discuss numerical
solution of the equation describing spin-up and spin-down, subject to appropriate
initial conditions, to demonstrate how the initial profile actually evolves with time
(see Example 6).

Example 1. Consider

ut +ux = λ1u−λ2u2, x ∈ IR, t > 0, (2.2.1)

u(x,0) = f (x), λ1 > 0, λ2 > 0. (2.2.2)

Here, f (x) ≥ 0 and λ1,λ2 are constants. Equation (2.2.1) describes a population
model. We solve (2.2.1)–(2.2.2) exactly, following Mickens (1988), and hence find
the large time behaviour of the solution. Writing

u = 1/w (2.2.3)
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in (2.2.1) we obtain the linear PDE

wx +wt = λ2 −λ1w. (2.2.4)

By Lagrange’s method, we have

dx
1

=
dt
1

=
dw

λ2 −λ1w
. (2.2.5)

Equations (2.2.5) imply that

dx
dt

= 1,
dw
dt

= λ2 −λ1w. (2.2.6)

Solving (2.2.6), we get

x− t = c1, weλ1t =
λ2

λ1
eλ1t + c2. (2.2.7)

A general solution of (2.2.4), therefore, is given by

weλ1t − λ2

λ1
eλ1t = g(x− t), (2.2.8)

where g is an arbitrary function. Simplifying (2.2.8), we have

w(x, t) = g(x− t)e−λ1t +
λ2

λ1
. (2.2.9)

Equations (2.2.2), (2.2.3), and (2.2.9) give

g(x) =
1

f (x)
− λ2

λ1
(2.2.10)

and hence

u(x, t) =
λ1 f (x− t)

λ1e−λ1t +λ2 f (x− t)[1− e−λ1t ]
. (2.2.11)

The solution (2.2.11), in the limit t → ∞, x− t = O(1), tends to a constant :

u ≈
λ1

λ2
.

Example 2. Consider

ut +uux +u = 0, x ∈ IR, t > 0, (2.2.12)

u(x,0) = x, x ∈ IR. (2.2.13)

The characteristic system for (2.2.12) is
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dx
dt

= u,
du
dt

= −u. (2.2.14)

Suppose that a characteristic curve starts from (ξ ,0). Then, we solve (2.2.14) sub-
ject to the initial condition

t = 0, x = ξ , u = ξ . (2.2.15)

Equation (2.2.14)2 and (2.2.15) imply that

u = ξe−t . (2.2.16)

Solving (2.2.14)1 with the help of (2.2.16), we get

x = 2ξ
[

1− 1
2

e−t
]
. (2.2.17)

Eliminating ξ from (2.2.16) and (2.2.17), we arrive at the solution

u(x, t) =
xe−t

2− e−t , x ∈ IR, t > 0. (2.2.18)

This is a product solution and, in the limit t → ∞, becomes

u(x, t) ∼ xe−t

2
, x ∈ IR. (2.2.19)

Example 3. Consider

ut +uux = un, x ∈ IR, t > 0, (2.2.20)

u(x,0) = u0(x), x ∈ IR. (2.2.21)

Here, n is a positive integer. We solve this problem for n = 1,2, and n general �=
1,2, separately. In each of these cases the solution may be obtained as a functional
relation involving u, x, and t. However, these (implicit) solutions do not permit, for
general u0(x), an explicit asymptotic form as t → ∞.

Case (i): n = 1.
The characteristic equations for (2.2.20) are given by

dx
dt

= u,
du
dt

= u. (2.2.22)

The initial condition (2.2.21) may be written as

t = 0, x = ξ , u = u0(ξ ). (2.2.23)
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Solving (2.2.22) and (2.2.23), we find that

x = u0(ξ )[et −1]+ξ , u = u0(ξ )et . (2.2.24)

Eliminating ξ from (2.2.24), we have

u = etu0
(
x−u+ue−t) , (2.2.25)

an implicit functional relation in x, u, and t.

Case (ii): n = 2.
In this case, the characteristic system for (2.2.20) is given by

dx
dt

= u,
du
dt

= u2. (2.2.26)

Equation (2.2.26)2, in view of (2.2.23), gives

u =
u0(ξ )

1− tu0(ξ )
. (2.2.27)

Solving (2.2.26)1 with the help of (2.2.27), we obtain

x = − ln(1− tu0)+ c,

where c is a constant of integration. Imposing the initial conditions (2.2.23), we have

x = ξ − ln(1− tu0). (2.2.28)

Eliminating ξ from (2.2.27) and (2.2.28), we get

u =
u0(x− ln(1+ tu))

1− tu0(x− ln(1+ tu))
, (2.2.29)

a complicated (implicit) relation involving x, t, u.

Case (iii): n a positive integer not equal to 1 or 2.
Solving the characteristic system of (2.2.20) subject to (2.2.23), we get

u1−n = (1−n)t +u0(ξ )1−n, (2.2.30)

x = ξ − u0(ξ )2−n

2−n
+

[(1−n)t +u0(ξ )1−n](2−n)/(1−n)

2−n
. (2.2.31)

Elimination of ξ from (2.2.30) and (2.2.31) leads to

u1−n = (1−n)t +u1−n
0

(
x+

u2−n

n−2
− 1

n−2
(u1−n +(n−1)t)(n−2)/(n−1)

)
. (2.2.32)



14 2 Nonlinear First-Order Partial Differential Equations

We observe that the solutions given by (2.2.25), (2.2.29), and (2.2.32) are highly
implicit. It does not seem possible to get large time behaviour from these expressions
for arbitrary initial conditions directly.

Example 4. Here, we consider the initial value problem for the inviscid Burgers
equation

ut +uux = 0, x ∈ IR, t > 0, (2.2.33)

u(x,0) = f (x) =

⎧⎨
⎩

0, x < 0
1, 0 ≤ x ≤ 1
0, x > 1.

(2.2.34)

The characteristics of (2.2.33) are given by

dx
dt

= u,
du
dt

= 0. (2.2.35)

It is clear from (2.2.35) that the characteristics are straight lines in the (x, t) plane.
Assume that

x = ξ , u = f (ξ ) at t = 0. (2.2.36)

Equations (2.2.35) and (2.2.36) then imply that

x =

⎧⎨
⎩
ξ , ξ < 0
t +ξ , 0 ≤ ξ ≤ 1
ξ , ξ > 1

(2.2.37)

and
u = f (ξ ). (2.2.38)

Figure 2.1 gives the characteristics in the xt-plane. We observe the following.

(i) There is a ‘void’ between the the lines x = t (x ≤ 1) and the t-axis. In this
region no point is reached by the characteristics.

(ii) The characteristics intersect at x = 1, t = 0 itself. Therefore, the shock is
formed at x = 1, t = 0.

The ‘void’ shown in Figure 2.1 may be filled by the rarefaction wave u = x/t (0 ≤
u ≤ 1). Using the Rankine–Hugoniot condition at the shock, we have

dx
dt

=
1
2
, x = 1, t = 0. (2.2.39)

Therefore, the shock locus is given by

x =
t +2

2
. (2.2.40)

The characteristic issuing from x = 0 intersects the shock path x = (t +2)/2 at t = 2.
Therefore, for 0 ≤ t ≤ 2, we have the following solution of (2.2.33)–(2.2.34),
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0 1

1
x = t

void

x

t

Fig. 2.1 Characteristic diagram for the problem (2.2.33) and (2.2.34).

0 1 2

1

2

3

x

t

u = 0

x = t

u = 0

u = 1
x = 1 + t/2

x=
√

2t

u = x/t

Fig. 2.2 Solution of (2.2.33) and (2.2.34) in different regions of the (x, t)-plane.

u =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x < 0
x
t
, 0 ≤ x ≤ t

1, t < x < 1+
t
2

0, x > 1+
t
2
.

(2.2.41)

For t > 2, the value of u on the left of the shock is x/t whereas that on the right
is 0. Therefore, the shock path via the Rankine–Hugoniot condition is given by

dx
dt

=
x
2t

, x(2) = 2. (2.2.42)
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0

1

t0 1 + t0/2

u = x/t0

x

u(x, t0)

Fig. 2.3 Solution of (2.2.33) and (2.2.34) at time t = t0 < 2.

Solving (2.2.42), we have
x =

√
2t. (2.2.43)

Thus, for t > 2,

0
√

2t0

√
2/t0

u = x/ t0

x

u (x,t0)

Fig. 2.4 Solution of (2.2.33) and (2.2.34) at t = t0 > 2.

u =

⎧⎪⎨
⎪⎩

0, x < 0
x
t
, 0 ≤ x <

√
2t

0, x >
√

2t.

(2.2.44)

Figure 2.2 gives u for different regions of the xt-plane. Figures 2.3 and 2.4 depict u
at times t0 < 2 and t0 > 2, respectively. Thus, it follows from (2.2.44) that, for t > 2,



2.2 Examples 17

‖u(., t)‖∞ =
√

2t
t

= O(t−1/2),

where ‖.‖∞ is the sup norm.

Example 5. We discuss here the decay of solutions of

ut +unux +G(t)u+F(x)un+1 = 0, (2.2.45)

subject to the initial condition

u(x,0) = u0(x) =
{

g(x), −∞< a < x < b < ∞
0, otherwise,

(2.2.46)

closely following Joseph and Sachdev (1994). To that end, we first transform
(2.2.45) to the conservation form

vτ + vnvy = 0, −∞< y < ∞. (2.2.47)

via the transformation

τ = τ(x, t), (2.2.48)

y = y(x, t), (2.2.49)

v(y,τ) = f (x, t)u(x, t), (2.2.50)

where f (x, t) > 0 and

J = det

(
yt yx

τt τx

)
�= 0.

Now, using the known results regarding the decay of solutions of (2.2.47), subject
to the initial conditions with compact support, the decay results for (2.2.45) and
(2.2.46) may be found.

Let us start with the general equation

ut +unux +H(x, t,u) = 0, (2.2.51)

which contains (2.2.45) as a special case. A differentiation of (2.2.50) with respect
to x and t gives

vyyx + vττx = f ux + fxu, (2.2.52)

vyyt + vττt = f ut + ftu. (2.2.53)

Solving (2.2.52) and (2.2.53) for vτ and vy, we obtain

vτ = −1
J
[(yx ft − yt fx)u+ yx f ut − yt f ux], (2.2.54)

vy = −1
J
[(τt fx − τx ft)u+ τt f ux − τx f ut ]. (2.2.55)
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Using (2.2.54) and (2.2.55) in (2.2.47), we get

(yx f )ut +(yx ft − yt fx)u− yt f ux + f nun[(τt fx − τx ft)u+(τt f ux − τx f ut)] = 0.
(2.2.56)

For (2.2.56) to have the same form as (2.2.51), we require that

yt = 0, τx = 0,
f nτt

yx
= 1. (2.2.57)

Combining (2.2.56) and (2.2.57), we get

ut +unux +
fx

f
un+1 +

ft
f

u = 0. (2.2.58)

Furthermore, (2.2.57)3 gives

f (x, t) =
(

dy/dx
dτ/dt

)1/n

. (2.2.59)

Thus, equation (2.2.58) takes the form (2.2.45) with

G(t) = − d
dt

log

(
dτ
dt

)1/n

, (2.2.60)

F(x) =
d
dx

log

(
dy
dx

)1/n

. (2.2.61)

On the other hand, the transformation

τ = τ(t) =
∫ t
[

exp

(∫ s
G(s1)ds1

)]−n

ds, (2.2.62)

y = y(x) =
∫ x
[

exp

(∫ s
F(s1)ds1

)]n

ds, (2.2.63)

f (x, t) = exp

(∫ t
G(s)ds

)
exp

(∫ x
F(y)dy

)
(2.2.64)

reduces (2.2.45) to (2.2.47).
Assuming that the functions G(t) and F(x) in (2.2.60) and (2.2.61), respectively,

are such that τ(+∞) = +∞ and y(±∞) = ±∞, we prove that the solution to (2.2.45)
and (2.2.46) satisfies the estimate∣∣∣∣exp

[∫ x
F(y)dy

]
u(x, t)

∣∣∣∣≤ c

exp(
∫ t G(s)ds)[

∫ t(exp(
∫ s G(s1)ds1))−nds]1/(n+1)

.

(2.2.65)
To prove the estimate (2.2.65), we make use of the following result due to Lax (1957)
and Dafermos (1985) concerning the simpler equation (2.2.47). Suppose that v(y,τ)
is the solution of (2.2.47), subject to initial condition
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v(y,0) = v0(y) =
{

f̃ (y), −∞< a < y < b < ∞
0, otherwise.

(2.2.66)

Then, v(y,τ) satisfies the estimate

|v(y,τ)| ≤ cτ−1/(n+1), (2.2.67)

where c is a positive constant. Using (2.2.62)–(2.2.64) and (2.2.50) in (2.2.67), we
have the required estimate (2.2.65).

Example 6. We consider an interesting first-order nonlinear partial differential equa-
tion which describes spin-up and spin-down in a cylinder of small ratio of height to
diameter. It was first derived by Wedemeyer (1964) who, however, also included ra-
dial viscous effects in the equation. In a subsequent paper, Dolzhanskii et al. (1992)
ignored this term and studied in some detail the resulting first-order equation

vt + k(v− r)
(

vr +
v
r

)
= 0, (2.2.68)

where k is a constant. They showed that the travelling waveform of the solutions
of (2.2.68) describes a universal stage of spin-up; that is, they demonstrated that
‘every experimental run should demonstrate one of the travelling wave solutions
with specific values of the parameters arising from the initial data.’ In other words,
Dolzhanskii et al. (1992) showed how self-similar (or travelling wave in other coor-
dinates) solutions may constitute large time asymptotics. Their analysis confirmed
the experimental observations regarding the spin-up problem. We refer the reader
to the original work of Wedemeyer (1964) for a detailed physical description of the
problem.

We first find a general solution of (2.2.68). Writing w = v/r in (2.2.68), we have

wt − k(1−w)(2w+ rwr) = 0. (2.2.69)

Introducing w and r as independent variables and t = t(w,r) as the dependent vari-
able in (2.2.69), we get

1− k(1−w)(2wtw − rtr) = 0; (2.2.70)

here, wt = 1/tw, wr = −tr/tw. Equation (2.2.70) suggests the transformation

ξ = lnw, ρ = ln r.

Therefore, we have
1− k(1− eξ )(2tξ − tρ) = 0. (2.2.71)

It is possible to reduce (2.2.71) to a ‘canonical’ form by writing ζ = ξ + 2ρ (see
Zachmanoglou and Thoe (1976), p. 137):

1−2k(1− eξ )tξ = 0, t = t(ξ ,ζ ). (2.2.72)
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Equation (2.2.72) is immediately integrated to yield

2kt = 2kF(ζ )− ln(1/w−1), (2.2.73)

where F(ζ ) is an arbitrary function of ζ . Writing 2kF(lnwr2) = lnT (wr2) in
(2.2.73) we may change the latter to the form

e2kt =
wT (wr2)

1−w
. (2.2.74)

We may point out that an application of Lagrange’s method to (2.2.69) quickly gives
the general solution (2.2.74). Using the initial condition, w = w0(r), say, we obtain
the form of the unknown function T (x). The choice of the function

T (x) =

{ 1− x
x

, x < 1

0, x > 1

leads to the solution, obtained earlier by Wedemeyer (1964):

v = 0, r ≤ e−kt

v =
re2kt −1/r

e2kt −1
, r ≥ e−kt .

(2.2.75)

With T (x) = xα , (2.2.74) takes the form

t − α
k

lnr =
1
2k

ln
wα+1

1−w
. (2.2.76)

We observe that the solution (2.2.76) is a travelling wave in (t, ln r) coordinates.
Using local analysis (Bender and Orszag 1978), we may obtain the behaviour of the
solution (2.2.76) for −1 < α < 0 at t = 1 :

w ∼ r−2α/(α+1) as r → 0, (2.2.77)

w ∼ 1− r2α as r → ∞. (2.2.78)

Dolzhanskii et al. (1992) showed that the travelling wave solution (2.2.76) of
(2.2.68) represents large time asymptotic solution of the latter for a wide class of
initial conditions. Figure 2.5 compares the solution (2.2.76) of (2.2.69) subject to the
initial condition satisfying (2.2.77) and (2.2.78) and the experimental results for the
physical problem that equation (2.2.69) simulates. It shows that in the initial stage of
spin-up (r = 0.86), the Wedemeyer solution (short dashed curve) agrees very well
with the experimental results. For smaller radii, the Wedemeyer solution fails (curve
2, r = 0.71) but as r decreases the experimental results (solid curves) approach
one of the travelling wave solutions (long dashed curves), represented by (2.2.76).
Indeed it is verified that the front of the wave propagates with a constant speed in
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Fig. 2.5 w versus time: experimental data (—) for r = 0.86,0.71,0.64,0.5,0.44,0.37,0.28,0.21
as given by (curves 1–8, respectively); travelling wave solution (2.2.76) (− − −); Wedemeyer
solution (2.2.75) (....) (Dolzhanskii et al. 1992). Copyright c© 1992 Cambridge University Press,
Cambridge. Reprinted with permission. All rights reserved.)

(t, ln r) coordinates almost independent of the external parameters appearing in the
problem (see Dolzhanskii et al. 1992).

In the next section, we give details of a more general initial value problem studied
by Murray (1970a).

2.3 Decay estimates for solutions of nonlinear first-order partial
differential equations

In this section, we study the first-order PDE

ut +g(u)ux +λh(u) = 0, (2.3.1)

where λ > 0 and g(u) and h(u) are nonnegative strictly monotone increasing func-
tions for u > 0. Decay of solutions of (2.3.1) (for large time) subject to a finite
initial disturbance are discussed following the work of Murray (1970a). We also
summarise the related work of Natalini and Tesei (1992).

Equation (2.3.1) appears in many applications: stress wave propagation in a non-
linear Maxwell rod with damping, ion exchange in fixed columns, the Gunn effect
in semiconductors, and so on. In a model for the Gunn effect, g(u) and h(u) need
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not be monotonic and h(u) can even be negative for some u. This particular problem
was discussed in some detail by Murray (1970b).

We discuss the solution of (2.3.1) with the initial and boundary conditions

u(0, t) = 0, t > 0, (2.3.2)

u(x,0) = u0(x) =

⎧⎨
⎩

0, x < 0,
f (x), 0 < x < X ,
0, x > X ;

(2.3.3)

here, 0 ≤ f (x) ≤ 1. Three types of initial profiles are considered (see Figur-
es 2.6a−c).

0 X
x

u0(x)

1

δ

1 − δ

(b)0 X

u0(x)

x

1

(a)

0 X
x

u0(x)

1

(c)

Fig. 2.6 Typical initial profiles for u(x, t) (Murray 1970a. Copyright c© 1970 Society for Industrial
and Applied Mathematics. Reprinted with permission. All rights reserved.)

Murray (1970a) showed that the decay of the solutions of (2.3.1)–(2.3.3) for
large time depends crucially on the behaviour of the function h(u) as u → 0. He
proved that, for h(u) = O(uα), α > 0, 0 < u 
 1, the initial disturbance decays in a
finite time and finite distance when 0 < α < 1. It decays in infinite time and infinite
distance like O(t−1/(α−1)) for 1 < α ≤ 3 and like O(t−1/2) for α ≥ 3 as t →∞. The
solution of (2.3.1)–(2.3.3) decays exponentially in an infinite time and in a finite
distance for α = 1. Following Murray (1970a), we present a detailed discussion
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of the above results for the problem (2.3.1)–(2.3.3). It may be pointed out that the
solution of (2.3.1) for the special case λ = 0, starting from a smooth initial profile
(see Figure 2.6a), becomes discontinuous after some time for gu(u) > 0. However,
for λ �= 0, solutions of (2.3.1)–(2.3.3) may admit discontinuities for some cases
only. For simplicity, we assume that h(0) = 0.

In the first instance, we derive the solution of (2.3.1) by using the method of
characteristics. We then discuss the existence (or nonexistence) of discontinuities,
their speed of propagation, and decay as t → ∞.

The characteristic system for (2.3.1) is given by

dt
dσ

= 1,

dx
dσ

= g(u(x(σ), t(σ))), (2.3.4)

du
dσ

= −λh(u);

σ is a parameter measured along the characteristics. By integration of (2.3.4) from
t = 0 to t = σ along the characteristics, assuming that t = 0 and x = x0 when σ = 0,
we arrive at the solution

t(σ) = σ ,

x(σ) = x0 +
∫ σ

0
g(u(x(τ),τ))dτ, (2.3.5)∫ u

f (x0)

ds
h(s)

= −λσ .

Note that the integrals in (2.3.5) follow the characteristics. If x = xd(t) is the shock
path (when it exists), then, by the Rankine–Hugoniot condition (see Courant and
Friedrichs 1948),

dxd

dt
=

1
u1 −u2

∫ u1

u2

g(u)du; (2.3.6)

here, u1(t) and u2(t) are the states on the left and right of the shock, respectively.
For λ > 0, it may happen that u decays sufficiently fast and shocks do not form at
all. Now, we find an expression for the critical time t = tc, say, when, starting from
a smooth initial profile (see Figure 2.6a), the shock is formed. Let

H(u) =
∫ u

h−1(s)ds.

By (2.3.5)3, ∫ u

f (x0)
h−1(s)ds = H(u)−H( f (x0)) = −λσ . (2.3.7)

Monotonicity of H assures the existence of the inverse of H and hence from (2.3.7),
we have

u(σ) = G(H( f (x0))−λσ). (2.3.8)
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To derive (2.3.5)–(2.3.8), we have assumed that the characteristic curve initiates
from (x0,0).

We observe that differentiating (2.3.8) with respect to x partially gives an ex-
pression for ux containing the factor (∂x/∂x0)

−1, therefore, ux becomes unbounded
when ∂x/∂x0 = 0. The smallest time for which ∂x/∂x0 = 0 heralds the formation
of the shock. We may point out that when g is monotonic increasing, the points on
the initial profile with larger values of u move faster and therefore may lead to the
multivaluedness of the profile (see (2.3.4)). This happens where f ′(x) < 0. Using
(2.3.5)1 and (2.3.8) in (2.3.5)2,

x(t) = x0 +
∫ t

0
g(G(H( f (x0))−λτ))dτ. (2.3.9)

Differentiating (2.3.9) with respect to x0 and setting ∂x/∂x0 = 0, we have

1 = −
∫ tc

0
g′(G(H( f )−λτ))G′(H( f (x0))−λτ)H ′( f (x0)) f ′(x0)dτ,

or

1 =
1
λ

h−1( f (x0)) f ′(x0) [g(G(H( f (x0))−λτ))]tc0 ,

=
1
λ

h−1( f (x0)) f ′(x0) [g(G(H( f (x0))−λ tc))−g( f (x0))] . (2.3.10)

We now discuss the decay of solutions of the problem (2.3.1)–(2.3.3) when h(u) =
uα , α > 0. For large time, the decay of u is given by the behaviour of h(u) for u
 1.
We discuss the case α > 1 in detail and summarise the results for 0 < α ≤ 1. With
h(u) = uα , equation (2.3.1) becomes

ut +g(u)ux +λuα = 0, α > 1. (2.3.11)

The solution of the characteristic system (2.3.4) for the present case becomes

x(t) = x0 +
∫ t

0 g(u(x(τ),τ))dτ,
u(t) =

[
f 1−α(x0)− (1−α)λ t

]1/(1−α)
.

(2.3.12)

If we choose the initial condition corresponding to case (b) in Figure 2.6, the shock
path (2.3.6) becomes

dxd

dt
=

1
u1

∫ u1

0
g(u)du; (2.3.13)

here, u2 = 0 for all t ≥ 0 and u1(0) = 1. In the following, we derive a differential
equation for u1 by making use of (2.3.12) and (2.3.13). This differential equation
for u1, in turn, helps us to discuss the decay of u1(t) for large time. Now we define

G(s,−t) =
[
s1−α − (1−α)λ t

]1/(1−α)
(2.3.14)
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(see (2.3.8)). Clearly, G(s,0) = s. Equations (2.3.12) and (2.3.14) imply that, along
the characteristic emanating from (x0,0), we have

u(t) = G( f (x0),−t); (2.3.15)

u exists when G is real. Because the characteristics on both sides of the shock path
x = xd(t) terminate thereon, x = xd(t)− is given by (2.3.12)1 and u(xd(t)−, t) =
u1(t). For the sake of convenience, we write xd instead of xd− in the following.
Thus, equation (2.3.12)1 gives

xd(t) = x0(xd , t)+
∫ t

0
g(u(x(τ),τ))dτ,

= x0(xd , t)+
∫ t

0
g(G( f (x0(xd , t)),−τ))dτ. (2.3.16)

We differentiate (2.3.16) with respect to t and obtain

dxd

dt
=

dx0(xd , t)
dt

+g(u1(t))+
∫ t

0

d
dt

g(G( f (x0),−τ))dτ. (2.3.17)

It is easy to check that

d
dt

g(G( f (x0),−τ)) = − 1
λ (1−α)

d
dτ

g(G( f (x0),−τ)) d
dt

f 1−α(x0). (2.3.18)

Using (2.3.18) in (2.3.17), we have

dxd

dt
=

dx0

dt
+g(u1(t))− 1

λ (1−α)
d
dt

f 1−α(x0)
∫ t

0

d
dτ

g(G( f (x0),−τ))dτ

=
dx0

dt
+g(u1(t))− 1

λ (1−α)
d
dt

f 1−α(x0) [g(u1(t))−g( f (x0))] ; (2.3.19)

remember that x0 = x0(xd(t), t). Using (2.3.12)2 and (2.3.14) we find that

f (x0(xd , t)) = G(u1(t), t); (2.3.20)

therefore,
x0(xd , t) = F(G(u1(t), t)). (2.3.21)

Equations (2.3.13), (2.3.19), (2.3.20), and (2.3.21) give the following equation for
u1(t).

1
u1

∫ u1

0
g(u)du =

d
dt

F(G(u1, t))+g(u1)

− 1
λ (1−α)

d
dt

[G1−α(u1, t)]{g(u1)−g(G(u1, t))}(2.3.22)
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Inserting
G1−α(u1, t) = u1−α

1 (t)+(1−α)λ t

into (2.3.22), we get an ordinary differential equation for u1(t):

1
λuα1

du1

dt
= [g(u1)−g(G(u1, t))]−1

{
g(G(u1, t))

− 1
u1

∫ u1

0
g(u)du+

d
dt

F(G(u1, t))
}

. (2.3.23)

Now, we discuss the solution of (2.3.1) in some detail for the top hat initial con-
dition (see Figure 2.6c). Let t0 be the time at which the characteristic issuing from
x0 = 0 intersects the shock path x = xd(t). Note that the shock forms at t = 0 and
xd(0) = X . Furthermore, when x0 = 0, f (x0) = 1. An integration of (2.3.13) from 0
to t ≤ t0 gives

xd(t) = X +
∫ t

0
G−1(1,−τ)

∫ G(1,−τ)

0
g(u)dudτ, t ≤ t0, (2.3.24)

recalling that
u1(t) = G(1,−t), t ≤ t0 (2.3.25)

(see (2.3.12) and (2.3.15)). Therefore, at t = t0, we have

∫ t0

0
g(G(1,−τ))dτ = X +

∫ t0

0
G−1(1,−τ)

∫ G(1,−τ)

0
g(u)dudτ, (2.3.26)

where the LHS of (2.3.26) follows from (2.3.12) with x0 = 0, f (x0) = 1, and the
definition of G(s, t) (see (2.3.14)). Murray (1970a) has shown that a solution t0 of
(2.3.26) exists for all α ≥ 2. Now we discuss below the case α > 1 and quote the
results for 0 < α < 1.

We recall that h(u) = uα , α > 1. We assume that g′(0) �= 0; the case g′(0) = 0
may also be treated with some modifications. Here, again, we consider two cases:
when t0 exists and when it does not; we recall that t0 is the time at which the charac-
teristic curve issuing from x0 = 0, t = 0, u0(0) = 1 meets the shock which originated
at xd(0) = X .

(i) t0 does not exist.

This case is possible only when 1 < α < 2 (see Murray 1970a). From (2.3.25)
and (2.3.14), we have

u1(t) = G(1,−t)

= [1+(α−1)λ t]−1/(α−1)

= O(t−1/(α−1)), t � 1. (2.3.27)

Equation (2.3.13) implies that
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dxd

dt
=

1
u1

∫ u1

0

[
g(0)+

g′(0)
1

u+ . . .

]
du

= g(0)+
g′(0)

2
u1 +

g′′(0)
6

u2
1 + . . .

= g(0)+O(t−1/(α−1)), t � 1, (2.3.28)

(see (2.3.27)). It follows from (2.3.27) and (2.3.28) that u = u1(t), the value of u
behind the shock, tends to zero and the shock speed dxd/dt tends to g(0) as t → ∞.

(ii) t0 exists.

The initial condition in Figure 2.6b tends to that shown in Figure 2.6c as δ tends
to zero. This, in turn, implies that dF/dt → 0 in this limit. For t ≤ t0, u1(t) and xd(t)
may be found from equations (2.3.25) and (2.3.24), respectively. With dF/dt = 0,
equation (2.3.23) gives

1
λuα1

du1

dt
= [g(u1)−g(G(u1, t))]−1

{
g(G(u1, t))− 1

u1

∫ u1

0
g(u)du

}
, t ≥ t0.

(2.3.29)
To find the asymptotic form for u1(t) for t � 1, we first show that

G(u1, t) = [u−(α−1)
1 −λ t(α−1)]−1/(α−1) (2.3.30)

decreases as t increases. We observe from (2.3.25) and (2.3.14) that

G(u1, t) = 1, t ≤ t0. (2.3.31)

Differentiating (2.3.30) with respect to t and simplifying, we have

dG(u1, t)
dt

= λGα(u1, t)
[

1+
1

λuα1

du1

dt

]
. (2.3.32)

From (2.3.29) and (2.3.32), we obtain

dG(u1, t)
dt

= λGα(u1, t) [g(u1)−g(G(u1, t))]
−1
{

g(u1)− 1
u1

∫ u1

0
g(u)du

}
.

(2.3.33)
Because gu(u) > 0, g(u) < g(u1) for u < u1, we may write the inequality

1
u1

∫ u1

0
g(u)du < g(u1). (2.3.34)

Moreover, if u1 < 1 at t = t0, then by (2.3.31) we have

g(G(u1, t)) = g(1) > g(u1). (2.3.35)

Equations (2.3.33)–(2.3.35) imply that
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dG
dt

< 0 at t = t0;

that is, G(u1, t) decreases with time t > t0 in a right neighbourhood of t0. Now
we show that dG/dt < 0 for all t > t0. From (2.3.33), we infer that dG/dt → 0
as G(u1, t) → 0 or g(u1) → (1/u1)

∫ u1
0 g(u)du. This, in turn, requires that u1 → 0.

Thus, dG(u1, t)/dt < 0 for 0 < u1 < 1 and 0 < G(u1, t) < 1. Because G(u1, t) > 0
and 1−λ t(α−1)uα−1

1 < 1, we arrive at the inequality

0 <
[
1−λ t(α−1)uα−1

1

]
< 1 (2.3.36)

for u1 > 0. Thus, tuα−1
1 is bounded for all t > 0, u1 ≥ 0. We arrive at two subcases:

(a) tuα−1
1 → B, a positive constant, as t → ∞ and u1 → 0; and (b) tuα−1

1 → 0 as
u1 → 0 and t → ∞. From (2.3.36), we have 0 ≤ B ≤ 1/(λ (α−1)).

Case (a): 0 < B < 1/(λ (α−1)).

By (2.3.30),

G(u1, t) = u1
[
1−λ t(α−1)uα−1

1

]−1/(α−1)
,

→ u1[1−λB(α−1)]−1/(α−1) as t → ∞
= O(u1). (2.3.37)

Using Taylor’s series expansions for g in (2.3.29), we have

1
λuα1

du1

dt

∼
{

g(0)+u1g′(0)+ . . .−g(0)−u1 [1−λB(α−1)]−1/(α−1) g′(0)− . . .
}−1

×
{

g(0)+u1(1−λB(α−1))−1/(α−1)g′(0)+ . . .

− 1
u1

[
g(0)u1 +

g′(0)u2
1

2
+ . . .

]}

∼
{

u1g′(0)
[
1− (1−λB(α−1))−1/(α−1)

]
+ . . .

}−1

×
{

u1g′(0)
[
(1−λB(α−1))−1/(α−1)− 1

2

]
+ . . .

}
→ −A(α,B)+O(u1) as t → ∞, u1 → 0; (2.3.38)

here,

A(α,B) =
2− [1− (α−1)λB]1/(α−1)

2−2 [1− (α−1)λB]1/(α−1) . (2.3.39)

An integration of (2.3.38) gives
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u1−α
1

1−α
∼−λ tA(α,B)+ constant. (2.3.40)

It follows, therefore, that

u1(t) = O(t−1/(α−1)), t � t0. (2.3.41)

Using (2.3.40), we have

tuα−1
1 → 1

λ (α−1)A(α,B)
as t → ∞. (2.3.42)

But, by assumption (see below (2.3.36)), tuα−1
1 → B as t → ∞, u1 → 0. Therefore,

it follows from (2.3.42) that

B =
1

λ (α−1)A(α,B)
.

Thus, B satisfies the equation

W (B) ≡ 1
λ (α−1)A(α,B)

−B = 0

or

2[1−λB(α−1)]−2[1−λB(α−1)]1/(α−1)
[

1− 1
2
λB(α−1)

]
λ (α−1)

{
2− [1−λB(α−1)]1/(α−1)

} = 0 (2.3.43)

(see (2.3.39)). It is easy to check that (2.3.43) has solutions B = 0,1/(λ (α − 1))
for all α > 1. Besides, equation (2.3.43) has one more solution Bi in the parametric
range 2 < α < 3 with 0 < Bi < 1/(λ (α−1)). Furthermore, Bi → 1/(λ (α−1)) as
α → 2.

Case (b): B = 0.

From (2.3.30), we have

G(u1, t) = u1

[
1+
(
− 1
α−1

)
(−(α−1))λ tuα−1

1 + . . .

]
, t � t0

= u1 +λ tuα1 + . . . . (2.3.44)

On using (2.3.44) in (2.3.29), we get

1
λuα1

du1

dt
=
[
g(u1)+(λ tuα1 + . . .)g′(u1)+ . . .−g(u1)+

u1

2
g′(u1)− . . .

]
×[g(u1)− [g(u1)+(λ tuα1 + . . .)g′(u1)+ . . .]

]−1
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∼ − 1

2λ tuα−1
1

, t � t0.

This implies that

u1(t) ∼ constant

t1/2
as t → ∞. (2.3.45)

It follows from (2.3.45) that tuα−1
1 = O(t(3−α)/2) → 0 as t → ∞ only when α > 3.

Thus B = 0 is a possible limit only for the parametric range α > 3. This suggests
that for the parametric range 1 < α ≤ 2, we may choose B = 1/(λ (α − 1)). By
choosing the value Bi for B (see below (2.3.43)) in the parametric range 2 < α < 3,
a smooth variation in B with respect to α is observed. Thus,

B =

⎧⎪⎪⎨
⎪⎪⎩

1
λ (α−1)

, 1 < α ≤ 2,

Bi, 2 ≤ α < 3,

0, α ≥ 3.

Summarising the results obtained for cases (a) and (b), we have

u1(t) =

{
O(t−1/(α−1)), 1 < α ≤ 3,

O(t−1/2), α ≥ 3

and
dxd

dt
=

{
g(0)+O(t−1/(α−1)), 1 < α ≤ 3,

g(0)+O(t−1/2), α ≥ 3.

Murray (1970a) showed that u(x, t) decays in a finite time and finite distance for the
parametric range 0 < α < 1. For α = 1, it was proved that the initial disturbance
decays exponentially in an infinite time but in a finite distance. Murray (1970a) also
discussed the behaviour of u1(t) and xd(t) as λ → 0 in (2.3.1); the special case
g(u) = u+a, h(u) = u was studied in considerable detail.

Natalini and Tesei (1992) studied the Cauchy problem

ut +
1
m

(um)x = −up, IR× (0,∞), (2.3.46)

u(x,0) = u0(x), x ∈ IR; (2.3.47)

here m > 1, p > 1 and u0(x) = σχ[0,l](x), σ , l > 0 has a compact support. They
derived sharp estimates for the support of the solution of the problem (2.3.46) and
(2.3.47) and large time behaviour of its solution. Let supp u(., t) = [0,s(t)], l ≤
s(t) < ∞, t ≥ 0. Regarding the support of the solution of (2.3.46) and (2.3.47), they
proved the following theorem.

Theorem 2.3.1 (i) Suppose that 1 < p < m. Then there exists x∗ > 0 such that

l ≤ s(t) ≤ l + x∗, t ≥ 0. (2.3.48)
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(ii) Suppose that 1 < m ≤ p. Then there exist constants A, B > 0 such that for
large time

A ln t ≤ s(t) ≤ B ln t for p = m;

At(p−m)/(p−1) ≤ s(t) ≤ Bt(p−m)/(p−1) for m < p < m+1; (2.3.49)

At1/m(ln t)−(m−1)/m ≤ s(t) ≤ Bt1/m(ln t)−(m−1)/m for p = m+1;

At1/m ≤ s(t) ≤ Bt1/m for m+1 < p.

In the above, s(t) is the shock path starting from x = l at t = 0. Furthermore, the
constants x∗, A, B appearing in (2.3.48) and (2.3.49) may depend on l, ‖u0‖∞, m,
and p. Natalini and Tesei (1992) proved the following theorem with regard to the
decay of solutions of (2.3.46) and (2.3.47).

Theorem 2.3.2 (i) Assume that 1 < p < m. Then

t

[
1

p−1
− t‖u(., t)‖p−1

∞

]
→ c0

as t → ∞ where c0 is a positive constant.
(ii) Assume that 1 < m ≤ p. Then

t1/(p−1)‖u(., t)‖∞ → c1 for m ≤ p < m+1;

c2 ≤ (t ln t)1/m‖u(., t)‖∞ ≤ c3 for p = m+1;

c2 ≤ t1/m‖u(., t)‖∞ ≤ c3 for p > m+1,

where c1, c2, and c3 are positive constants.

Here, ‖u(., t)‖∞ := supx u(x, t). The constants ci (i = 1,2,3) may again depend on
l, ‖u0‖∞, m, and p. Reference may also be made to the related work of Guar-
guaglini (1995), Reyes (2001), and Pablo and Reyes (2006).

2.4 Conclusions

In this chapter, we have discussed large time behaviour of solutions of first-order
nonlinear partial differential equations subject to certain initial/boundary conditions.
In Section 2.2, we have presented some examples. Examples 1 and 2 showed that
special solutions such as product solutions or even constant solution may serve as
asymptotics for large time. Example 3 demonstrated that an exact implicit solution
may fail to provide large time behaviour of solutions. Example 4 dealt with the in-
viscid Burgers equation and clearly brought out the importance of self-similar solu-
tions. In Example 5, we have discussed a transformation which reduces a more gen-
eral first-order partial differential equation (2.2.45) to the conservative form (2.2.47)
and hence helps us to arrive at decay properties of the solutions of more general
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equations (see Joseph and Sachdev 1994). In Example 6, we have presented the
study of a first-order partial differential equation describing spin-up and spin-down
in a cylinder of small ratio of height to diameter, following the work of Dolzhanskii
et al. (1992). It was shown how travelling waves constitute large time asymptotics. In
Section 2.3, we have presented the decay of solutions of a nonlinear first-order par-
tial differential equation (2.3.1) subject to the initial profile (2.3.3) and the boundary
conditions (2.3.2) for x ≥ 0, t ≥ 0. It was proved that the decay of the solution of
(2.3.1)–(2.3.3) depends crucially on the behaviour of h(u) as u → 0. This section
closely followed the work of Murray (1970a).
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Chapter 3
Large Time Asymptotic Analysis of Some
Nonlinear Parabolic Equations – Some
Constructive Approaches

3.1 Introduction

This chapter describes some constructive approaches to the study of the asymp-
totic nature of solutions of some nonlinear partial differential equations of parabolic
type: travelling waves, and self-similar or more general solutions obtained by the
so-called balancing argument and its extensions. This is accomplished by first con-
structing these special solutions and hence showing their asymptotic nature analyti-
cally, numerically, or both. Sometimes it becomes possible to obtain asymptotic so-
lutions in terms of power series in time with coefficient functions depending on the
similarity variable. This approach is adopted to obtain solutions more general than
self-similar or travelling waves. The analysis for such problems requires solutions
of an infinite system of nonlinear ODEs. This class of solutions either ‘nonlinearise’
the linear solution of the given problem and/or embed in them limiting behaviour
such as inviscid forms for convective–diffusive equations. An alternative approach
is to use matched asymptotic expansions to obtain asymptotic solution of the initial
boundary value problem. This approach was adopted by Leach and Needham (2001)
for the generalised Fisher’s equation. We discuss this approach in Section 3.9.

To illustrate the appoach above, we first discuss in Section 3.2 a family of trav-
elling wave solutions of the Burgers equation which admits an exact solution of
this form satisfying some definite conditions as the spatial distance tends to ±∞.
It is then numerically shown how these solutions emerge from step function initial
conditions as time becomes large. In Section 3.3, we take up an initial boundary
value problem for the Burgers equation which arises from a minimally nonlinear
form of the Fokker–Planck equation and describes vertical nonhysteretic flow in
nonswelling soil. It was first studied by Philip (1969) who, quite evocatively, in-
troduced the term ‘profile at infinity’ to denominate the asymptotic form of the
solutions. This work was later discussed more effectively by Clothier et al. (1981).
Section 3.4 describes the work of Vanaja and Sachdev (1992) relating to travelling
waves in a porous medium. The asymptotic nature of these solutions is demonstrated
quite rigourously and is confirmed with reference to numerical solutions. Section 3.5

P.L. Sachdev, Ch. Srinivasa Rao, Large Time Asymptotics for Solutions of Nonlinear 33
Partial Differential Equations, Springer Monographs in Mathematics,
DOI 10.1007/978-0-387-87809-6 3, c© Springer Science+Business Media, LLC 2010
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concerns the evolution of a stable profile describing cross-field diffusion in toroidal
multiple plasma; here, a separable solution of an initial value problem constitutes
an asymptotic solution. Section 3.6 deals with fast nonlinear diffusion and it is
shown that the large time behaviour of solutions is described by an asymptotic so-
lution in ‘unusual’ self-similar form (King 1993); here, the argument is intuitive
but is closely related to the balancing argument which is taken up in Section 3.8.
Section 3.7 illustrates how periodic solutions of the linearised form of a nonlin-
ear PDE may be generalised to include the nonlinear effects; indeed it becomes
possible to ‘exactly’ obtain the periodic solutions of several generalised Burgers
equations in the form of infinite series, which contain that for the Burgers equation
as a special case. Here, again, the asymptotic nature of the solution is verified by
comparison with the numerical solution (see Sachdev et al. 2003, 2005, Srinivasa
Rao and Satyanarayana 2008a). In Section 3.8, we discuss in considerable detail
the balancing argument due to Grundy and his collaborators (Dawson et al. 1996,
Grundy et al. 1994, Van Duijn et al. 1997); this approach delivers (approximate)
asymptotic results when the given equation does not admit exact similarity or trav-
elling wave solutions. In this approach Grundy (1988), in the manner of Bender and
Orszag (1978) for nonlinear ODEs, showed how different classes of solutions may
be obtained by balancing different sets of terms; the given PDE is first rewritten
with time and similarity variables as the new independent variables. The generali-
sation of this approach due to Sachdev and his collaborators (Sachdev et al. 1999,
Sachdev and Srinivasa Rao 2000, Srinivasa Rao and Satyanarayana 2008b) is also
discussed in this section. Section 3.9 describes the evolution of travelling wave solu-
tions of generalised Fisher’s equations as time becomes large. We follow Leach and
Needham (2001) where the method of matched asymptotic expansions is used. The
final section considers periodic travelling waves for a coupled system of equations.
Curiously, the analysis here is largely inspired by the asymptotic nature of the so-
lution of the boundary value problem, obtained numerically; the latter experiments
vividly bring out the independence of the asymptotic solutions (when they exist) of
the details of the initial conditions.

3.2 Travelling waves as asymptotics of solutions of initial value
problems – The Burgers equation

It is convenient and illustrative to consider the Burgers equation

ut +uux = εuxx, (3.2.1)

where 0 < ε 
 1 is a parameter (Sachdev 1987). First we find travelling wave so-
lutions of (3.2.1) and then show how they arise from the solutions of step-function
initial conditions as t → ∞. We also show numerically how such initial conditions
actually evolve from t = 0. Let the initial conditions be such that
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u → ul as x →−∞ and u → ur as x → +∞. (3.2.2)

The same conditions are imposed on the travelling wave solutions as x →∓∞. We
let X = x−Ut and seek solutions of (3.2.1) in the form u =Ψ(x−Ut), subject to
the conditions (3.2.2). Thus, we have

−UΨX +ΨΨX = εΨXX . (3.2.3)

Integrating (3.2.3) and using the conditions (3.2.2), we obtain

1
2
Ψ 2 −UΨ +C = εΨX , (3.2.4)

where

U =
1
2
(ul +ur), C =

1
2

ulur. (3.2.5)

Writing (3.2.4) as
(Ψ −ur)(ul −Ψ) = −2εΨX (3.2.6)

and integrating we have
X
ε

=
2

ul −ur
log

ul −Ψ
Ψ −ur

(3.2.7)

or
Ψ = ur +

ul −ur

1+ exp

[
ul −ur

2ε
(x−Ut)

] , U =
ul +ur

2
; (3.2.8)

the integration constant is taken to be zero. We may write (3.2.8) as

Ψ =
ul +ur exp

[
ul −ur

2ε
(x−Ut)

]
1+ exp

[
ul −ur

2ε
(x−Ut)

]
=

ul +ur

2
− ul −ur

2
tanh

[
ul −ur

4ε
(x−Ut)

]
. (3.2.9)

We must now show how (3.2.9) emerges from the solution of the Burgers equation
(3.2.1) with step function initial conditions. For this purpose we quote the existence
theorem due to Hopf (1950) for (3.2.1) over Ω = {−∞< x <∞,0 < t <∞}, subject
to the initial condition

u(x,0) = g(x). (3.2.10)

Suppose that g(x) is integrable in every finite x-interval and that∫ x

0
g(s)ds = O

(|x|1+α) as |x| → ∞ (3.2.11)

with 0 ≤ α < 1. Then the function
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u(x, t) =

∫ ∞

−∞
x−ξ

t
exp

[
− 1

2ε

∫ ξ

0
g(s)ds

]
. exp

[
− (x−ξ )2

4εt

]
dξ

∫ ∞

−∞
exp

[
− 1

2ε

∫ ξ

0
g(s)ds

]
. exp

[
− (x−ξ )2

4εt

]
dξ

(3.2.12)

is a regular solution of (3.2.1) in Ω and satisfies the initial condition

lim
t→0

∫ x

0
u(s, t)ds =

∫ x

0
g(s)ds (3.2.13)

for every x ∈ (−∞,∞). If, in addition, g is continuous, then

lim
t→0

u(x, t) = g(x). (3.2.14)

A solution of (3.2.1) which is regular in some strip −∞ < x < ∞,0 < t < T and
which satisfies (3.2.13) for each value of x necessarily coincides with (3.2.12) in
that strip. If we now choose the initial function
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Fig. 3.1 Solution (3.2.16) of (3.2.1) subject to the initial condition (3.2.15) and the travelling wave
solution (3.2.8) with ul = 2, ur = 0, and ε = 0.1 at t = 1/2,1,3/2,2. Travelling wave solution
(3.2.8) at t = 1/2,1,3/2,2 is marked as A, C, E, and G, respectively. The solution (3.2.16) at the
corresponding times is marked as B, D, F, and H. (Shih 1991. Copyright c© 1991 World Scientific,
River Edge, NJ. Reprinted with permission. All rights reserved.)
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g(x) =
{

ur, x > 0
ul > ur, x < 0

(3.2.15)

and substitute in (3.2.12), we obtain, after some simplification, the solution

u = ur +
ul −ur

1+hexp

[
ul −ur

2ε
(x−Ut)

] , U =
ul +ur

2
, (3.2.16)

where

h =

∫ ∞

−(x−urt)/
√

4εt
exp(−ξ 2)dξ∫ ∞

(x−ult)/
√

4εt
exp(−ξ 2)dξ

. (3.2.17)

For fixed x/t such that ur < x/t < ul ,h → 1 as t → ∞ and the solution (3.2.16)

approaches (3.2.8). Shih (1991) plotted (3.2.8) and (3.2.16) with ul = 2 and ur = 0
and varied values of ε = 10−1,10−3. The results are shown in Figures 3.1 and 3.2.
The curves A,C,E, and G denote the travelling wave Ψ given in (3.2.8) whereas
B,D,F , and H refer to the solution of IVP (3.2.1) and (3.2.15) given in (3.2.16) at
t = 1/2,1,3/2, and 2, respectively. The agreement between evolving and travelling
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waves seems quite close even at an early time. We may summarise here another
asymptotic result regarding the solution of the Burgers equation (3.2.1) with ε =
1/2, subject to the initial condition u(x,0) = u0(x) (Dix 2002). The initial condition
has the form

u0(x) = u1(x)+
nx

1+ x2 , x ∈ IR (3.2.18)

when u1 ∈ L1(IR) and n ∈ IR, implying that u0(x) ∼ n/x as |x| → ∞. Two con-
stants appear in the large time behaviour, namely, the area under the profile μ =
limA→∞

∫ A
−A u0(x)dx and n as in (3.2.18). Dix (2002) generalised the result of

Hopf (1950) who assumed that n = 0. He obtained different results for n < 1 and
n ≥ 1. For the former case, Dix (2002) showed that

t1/2u(ξ t1/2, t) = U(ξ )+o((1+ |ξ |)−1) as t → ∞, (3.2.19)

uniformly in ξ , where ξ = xt−1/2 is the similarity variable. For n ≥ 1, there are
two different similarity solutions U(ξ ) ‘that simultaneously “attract” the quantity
t1/2u(ξ t1/2, t) and each one wins in its own range of ξ .’ Sharp estimates were ob-
tained to describe asymptotic behaviour of the solution in different regions.

3.3 Profile at infinity – Initial boundary value problem
for Burgers equation

A minimally nonlinear form of the Fokker–Planck equation – the Burgers equa-
tion – describes the vertical nonhysteretic flow of water in nonswelling soil. An
initial boundary value problem, which describes this phenomenon, can be solved
exactly and has a simple asymptotic form as t → ∞, which Philip (1969) quite figu-
ratively referred to as the profile at infinity. This is an excellent illustrative example
to explain asymptoticity. The work of Clothier et al. (1981) succinctly deals with
this problem.

The nonlinear Fokker–Planck diffusion–convection equation, which describes
nonhysteretic infiltration in nonswelling soil, may be written as

θt = (Dθz)z − [k(θ)]θθz, (3.3.1)

where θ is the volumetric water content, t is the time, and z is the depth of the soil.
Assuming that the diffusivity coefficient D is constant and the conductivity k(θ) is
quadratic, dk(θ)/dθ = Aθ +B, we may write (3.3.1) as

θt = Dθzz − (Aθ +B)θz, (3.3.2)

where A and B are constants. The physical validity of these assumptions has been
discussed by Clothier et al. (1981). It may further be assumed that initially

θ = θn for z > 0 at t = 0 (3.3.3)
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and
B = −Aθn, k(θn) = 0, (3.3.4)

where θn is the antecedent water content. By integrating the conductivity equation
(see above (3.3.2)) and using (3.3.4) we obtain

k(θ) = A(θ −θn)2/2. (3.3.5)

The boundary condition at z = 0 implying constant flux may be stated as follows,

−Dθz +
A
2

(θ −θn)2 = V0 =
A
2

(θ0 −θn)2 at z = 0 for t ≥ 0. (3.3.6)

By introducing the nondimensional variables

ζ = A(θ0 −θn)z/2D,τ = A2(θ0 −θn)2t/4D, (3.3.7)

where θ0 is a notional water content such that k(θ0) = V0 (see the boundary condi-
tions below) and the Cole–Hopf transformation (see Sachdev 1987)

Aθ +B = A(θ −θn) = −2D(lnu)z, (3.3.8)

we change (3.3.2) to the heat equation

uτ = uζζ . (3.3.9)

The initial condition (3.3.3) at τ = 0 via (3.3.8) becomes

(lnu)ζ = 0 (3.3.10)

and the boundary condition (3.3.6) at ζ = 0 assumes the form

∂u
∂τ

= u. (3.3.11)

The conditions (3.3.10) and (3.3.11), without loss of generality, may be written as

u = 1 at τ = 0 (3.3.12)

and
u = expτ at ζ = 0. (3.3.13)

The solution of (3.3.9), subject to (3.3.12) and (3.3.13), may be found by the Laplace
transform or otherwise (Carslaw and Jaeger 1959). The reduced water content

Θ =
θ −θn

θ0 −θn
(3.3.14)

is related to u via (3.3.8),
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Θ = −1
u

uζ , (3.3.15)

and may, therefore, be found from the solution of the heat equation and so on as

Θ =
f [(ζ −2τ)/2τ1/2]− f [(ζ +2τ)/2τ1/2]

f [(ζ −2τ)/2τ1/2]+ f [(ζ +2τ)/2τ1/2]−2 f [ζ/2τ1/2]+2exp(ζ 2/4τ)
,

(3.3.16)
where

f [x] = (expx2)erfc(x).

The derivation of (3.3.16) requires the following result,

∫
e−a2x2−b2/x2

dx =
√
π

4a

[
e2aberf(ax+b/x)+ e−2aberf(ax−b/x)

]
+ constant

(see Abramowitz and Stegun 1972, p. 304). Two interesting results follow from
(3.3.16). First, the rise of water content at the surface z = 0 is easily found to be

θ(0,τ)−θn = (θ0 −θn)erf(τ1/2). (3.3.17)

The asymptotic form as τ → ∞, ‘the profile at infinity,’ comes out from (3.3.16) to
be simply

lim
τ→∞

[θ(ζ ,τ)−θn] =
(θ0 −θn)

(1+ exp(ζ − τ))
. (3.3.18)

The flux (see (3.3.6)), relative to the prescribed flux V = V0 at z = 0, is

V
V0

= τ−1
∫ ∞

0

θ(ζ ,τ)−θn

θ0 −θn
dζ (3.3.19)

which, on using the profile at infinity, becomes

V
V0

= 1+
ln[1+ exp(−τ)]

τ
, (3.3.20)

showing that V →V0 as τ → ∞. Equation (3.3.20) shows that, for τ > 2, the profile
at infinity satisfies the inequality 1 < V/V0 < 1.0635. The surface water content
from the profile at infinity (3.3.18) is found to be

lim
τ→∞

Θ(0,τ) =Θ ′ = [1+ exp(−τ)]−1 (3.3.21)

and the exact solution (3.3.16) gives (3.3.17). If we call the latter Θ0, we get the
ratio

Θ0

Θ ′ = erf(τ1/2)[1+ exp(−τ)]. (3.3.22)
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We conclude that Θ ′ →Θ0 as τ → ∞. It is easily seen that for all times τ > 2.0,
1 <Θ0/Θ ′ < 1.08319. Thus the asymptotic profile at infinity is quite accurate for
all times τ larger than 2.

Clothier et al. (1981) compared the full solution (3.3.16) with the profile at in-
finity (3.3.18) at different (nondimensional) times for V0 = 3.40× 10−6ms−1 and
ks = 12× 10−6ms−1 for fine sand. The convergence of the general solution to the
profile at infinity is quite remarkable. The ‘wet-front’ penetration was also found to
be in good agreement with the field experimental data in spite of the simple assump-
tions regarding the soil, namely, a constant diffusivity and a quadratic conductivity–
water content relationship referred to earlier.

A more general initial boundary value problem for the Burgers equation which
includes the above work of Clothier et al. (1981) as a special case was mathemati-
cally treated by Joseph and Sachdev (1993) (see also Broadbridge et al. 1988, Broad-
bridge and Rogers 1990). Specifically, the Burgers equation

ut +uux =
ε
2

uxx, x > 0, t > 0 (3.3.23)

was solved subject to the initial condition

u(x,0) = u0(x) (3.3.24)

and the boundary condition

− ε
2

ux(0, t)+
u2(0, t)

2
= λ (t) (3.3.25)

where the functions u0(x) and λ (t) are bounded; they are assumed in the form

u0(x) = u∞+ue(x), (3.3.26)

λ (t) = λ∞+λe(t), (3.3.27)

with
lim
x→∞

ue(x) = 0, lim
t→∞

λe(t) = 0; (3.3.28)

u∞ and λ∞ in the above are constants. The functions ue(x) and λe(t) are chosen such
that the integrals

ū =
∫ ∞

0
ue(x)dx, λ̄ =

∫ ∞

0
λe(t)dt (3.3.29)

exist. The solution uε(x, t) of (3.3.23)–(3.3.29) is shown to be unique.
To obtain the asymptotic behaviour of the solution of (3.3.23)–(3.3.25) as t →∞,

Joseph and Sachdev (1993) first solved this problem explicitly for the function

u∗ = u−u∞. (3.3.30)

Then, equation (3.3.23) becomes
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u∗t +

[(
u∗

2

)2
]

x

+ u∞u∗x =
ε
2

u∗xx. (3.3.31)

Now we define the function

W (x, t) = −
∫ ∞

x
u∗(y, t)dy (3.3.32)

so that (3.3.31) and (3.3.24) become

Wt +
1
2

(
W 2

x

)
+u∞Wx =

ε
2

Wxx, x > 0, t > 0, (3.3.33)

W (x,0) = −
∫ ∞

x
ue(y)dy (3.3.34)

(see (3.3.26) and (3.3.30)). The Cole–Hopf transformation

V (x, t) = exp

[
−1
ε

W (x, t)
]

(3.3.35)

changes the problem (3.3.33) and (3.3.34) to

Vt +u∞Vx =
ε
2

Vxx, x > 0, t > 0, (3.3.36)

V (x,0) = exp

[
1
ε

∫ ∞

x
ue(y)dy

]
. (3.3.37)

Now writing

Z = exp

(
−u∞x

ε
+

u2
∞

2ε
t

)
V (3.3.38)

in (3.3.36) and (3.3.37), we obtain

Zt =
ε
2

Zxx, x > 0, t > 0, (3.3.39)

Z(x,0) = Z0(x) = exp

{
1
ε

[∫ ∞

x
ue(y)dy−u∞x

]}
, (3.3.40)

Z(0, t) = Zb(t). (3.3.41)

Z0(x) and Zb(t) are now expressed in terms of the original variables. We find from
(3.3.30), (3.3.32), (3.3.35), and (3.3.38) that

ux = −ε
(
ZZxx −Z2

x

)
Z2 , (3.3.42)

−εux +u2 = ε2

(
ZZxx −Z2

x

)
Z2 + ε2 Z2

x

Z2 = ε2 Zxx

Z
. (3.3.43)

Combining (3.3.25) and (3.3.43), we have

ε2Zxx(0, t) = 2λ (t)Z(0, t). (3.3.44)
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We also have ε
2

Zxx(0, t) = Zt(0, t) (3.3.45)

from (3.3.39) which, in view of (3.3.44), becomes

Zt(0, t) =
1
ε
λ (t)Z(0, t). (3.3.46)

On integration of (3.3.46), we have

Z(0, t) = exp

[
1
ε

∫ t

0
λ (s)ds

]
Z(0,0). (3.3.47)

From (3.3.29), (3.3.34), (3.3.35), and (3.3.38), we have

Z(0,0) = exp

[
1
ε

ū

]
. (3.3.48)

We thus have the following initial boundary value problem for Z = Z(x, t) (see
(3.3.39), (3.3.40), (3.3.47), and (3.3.48)),

Zt =
ε
2

Zxx, x > 0, t > 0, (3.3.49)

Z(x,0) = Z0(x), (3.3.50)

Z(0, t) = Zb(t), (3.3.51)

where

Z0(x) = exp

{
−1
ε

[
u∞x−

∫ ∞

x
ue(y)dy

]}
, (3.3.52)

Zb(t) = exp

{
1
ε

[
λ∞t +

∫ t

0
λe(s)ds+ ū

]}
. (3.3.53)

We may recover uε(x, t) from Z(x, t) as follows.

uε(x, t) = u∞+u∗(x, t) = u∞+Wx = u∞− ε(log V )x

= u∞− ε
[

u∞
ε

+
Zx

Z

]
= −ε Zx

Z
. (3.3.54)

Explicit solutions of the boundary value problem (3.3.49)–(3.3.51) for the heat equa-
tion is well known (see Carslaw and Jaeger 1959):

Z(x, t) =
1

(2πεt)1/2

∫ ∞

0

[
exp

(
− (x− y)2

2tε

)
− exp

(
− (x+ y)2

2tε

)]
Z0(y)dy

+
x

(2πε)1/2

∫ t

0
Zb(s)

exp

(
− x2

2ε(t − s)

)
(t − s)3/2

ds. (3.3.55)
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When (3.3.55), with Z0(y) and Zb(y) given by (3.3.52) and (3.3.53), respectively,
are substituted into (3.3.54), we get an explicit solution uε(x, t) of (3.3.23)–(3.3.25).

To find the asymptotic form of uε(x, t) as t → ∞, we let ε = 1 for convenience.
Thus, u1(x, t) ≡ u(x, t). We first write (3.3.55) in a more convenient form:

Z(x, t) =
2

π1/2

∫ ∞

a
Zb

(
t − x2

2s2

)
e−s2

ds+
1

π1/2

∫ ∞

−a
e−z2

Z0(x+(2t)1/2z)dz

− 1

π1/2

∫ ∞

a
e−z2

Z0(−x+(2t)1/2z)dz, (3.3.56)

where a = x/(2t)1/2.
Differentiating (3.3.56) with respect to x, we have

Zx = − 2√
π

∫ ∞

a
exp(−s2)Z′

b

(
t − x2

2s2

)
x
s2 ds

+
1√
π

∫ ∞

a
exp(−z2)Z′

0

(
z
√

2t − x
)

dz

+
1√
π

∫ ∞

−a
exp(−z2)Z′

0

(
z
√

2t + x
)

dz. (3.3.57)

For t → ∞, we may write

Zb

(
t − x2

2s2

)
≈ exp

[
λ̄ + ū+λ∞

(
t − x2

2s2

)]
,

dZb

dt

(
t − x2

2s2

)
≈ λ∞ exp

[
λ̄ + ū+λ∞

(
t − x2

2s2

)]
,

Z0

(
(2t)1/2z± x

)
≈ exp

{
−u∞

[
(2t)1/2z± x

]}
; (3.3.58)

see (3.3.52) and (3.3.53). Using (3.3.56)–(3.3.58) in (3.3.54), we have

u(x, t) ≈

2λ∞
∫ ∞

a

xe−s2

s2 exp

{
λ̄ + ū+λ∞

(
t − x2

2s2

)}
ds

+ u∞

∫ ∞

a
exp
{
−[z2 +u∞(

√
2tz− x)]

}
dz+u∞

∫ ∞

−a
exp
{
−[z2 +u∞(

√
2tz+ x)]

}
dz

2
∫ ∞

a
e−s2

exp

{
λ̄ + ū+λ∞

(
t − x2

2s2

)}
ds−

∫ ∞

a
exp
{
−[z2 +u∞(

√
2tz− x)]

}
dz

+
∫ ∞

−a
exp
{
−[z2 +u∞(

√
2tz+ x)]

}
dz.

(3.3.59)
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We restrict ourselves to the case λ∞ > 0 (see (3.3.27)). To simplify (3.3.59), we
observe the following identities,

e2(λ∞)1/2x
∫ ∞

a+b
e−y2

dy = −λ 1/2
∞

∫ ∞

a

x
s2 exp

[
−
(

s2 +
λ∞x2

s2

)]
ds

+
∫ ∞

a
exp

[
−
(

s2 +
λ∞x2

s2

)]
ds, (3.3.60)

e−2(λ∞)1/2x
∫ ∞

a−b
e−y2

dy = λ 1/2
∞

∫ ∞

a

x
s2 exp

[
−
(

s2 +
λ∞x2

s2

)]
ds

+
∫ ∞

a
exp

[
−
(

s2 +
λ∞x2

s2

)]
ds, (3.3.61)

where b = (2λ∞t)1/2. From (3.3.60) and (3.3.61) we also find that

∫ ∞

a
exp

[
−
(

s2 +λ∞
x2

s2

)]
ds =

1
2

[
exp
[
2(λ∞)1/2x

]∫ ∞

a+b
e−y2

dy

+ exp
[
−2(λ∞)1/2x

]∫ ∞

a−b
e−y2

dy

]
, (3.3.62)

∫ ∞

a

x
s2 exp

[
−
(

s2 +λ∞
x2

s2

)]
ds =

1

2(λ∞)1/2

[
exp
[
−2(λ∞)1/2x

]∫ ∞

a−b
e−y2

dy

− exp
[
2(λ∞)1/2x

]∫ ∞

a+b
e−y2

dy

]
. (3.3.63)

Moreover, by a simple change of variable, we have

∫ ∞

±a
exp
{
−
[
z2 +u∞

[
(2t)1/2z∓ x

]]}
dz = exp

(
±u∞x+

u2
∞t
2

)∫ ∞

±a+c
e−y2

dy,

(3.3.64)
where c = (t/2)1/2u∞.

Now, using (3.3.60)–(3.3.64) in (3.3.59), we get the asymptotic form

u(x, t) ≈√
2λ∞e(λ̄+ū+λ∞t)

{
exp
(
−
√

2λ∞x
)∫ ∞

a−b1

e−y2
dy − exp

(√
2λ∞x

)∫ ∞

a+b1

e−y2
dy

}

+ u∞ exp

(
tu2
∞

2
+ xu∞

)∫ ∞

a+c
e−y2

dy + u∞ exp

(
tu2
∞

2
− xu∞

)∫ ∞

−a+c
e−y2

dy

e(λ̄+ū+λ∞t)
{

exp
(
−
√

2λ∞x
)∫ ∞

a−b1

e−y2
dy + exp

(√
2λ∞x

)∫ ∞

a+b1

e−y2
dy

}

+ exp

(
tu2
∞

2
− xu∞

)∫ ∞

−a+c
e−y2

dy − exp

(
tu2
∞

2
+ xu∞

)∫ ∞

a+c
e−y2

dy; (3.3.65)
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here b1 = (λ∞t)1/2. Three cases arise depending on whether u∞ = 0, u∞ < 0, or
u∞ > 0. Here we consider the case u∞ = 0. In this case, (3.3.65) simplifies to

u(x, t) ≈
√

2λ∞e(λ̄+ū+λ∞t)
{

e(−
√

2λ∞x) ∫ ∞
a−b1

e−y2
dy− e(

√
2λ∞x) ∫ ∞

a+b1
e−y2

dy
}

e(λ̄+ū+λ∞t)
{

e(−
√

2λ∞x) ∫ ∞
a−b1

e−y2dy+ e(
√

2λ∞x) ∫ ∞
a+b1

e−y2 dy
}

+2
∫ a

0 e−y2 dy
.

(3.3.66)

Setting

ξ =
√

2λ∞x and τ = λ∞t (3.3.67)

so that
x

(2t)1/2
± (λ∞t)1/2 =

ξ
2τ1/2

± τ1/2 (3.3.68)

and observing the asymptotic properties of the complementary error function,
namely, ∫ ∞

p
e−y2

dy ≈ 1
2p

e−p2
as p → ∞,

∫ ∞

p
e−y2

dy ≈ π1/2 − 1
2p

e−p2
as p →−∞, (3.3.69)

(3.3.66) may be simplified to yield

u(x, t) ≈ (2λ∞)1/2
e(λ̄+ū+τ)

{
e−ξ π1/2 +o(1)

}
e(λ̄+ū+τ)

{
e−ξ π1/2 +o(1)

}
+π1/2 +o(1)

; (3.3.70)

that is,

u(x, t) ≈ (2λ∞)1/2

1+ e(ξ−τ−λ̄−ū)
(3.3.71)

as τ → ∞, where ξ = (2λ∞)1/2x,τ = λ∞t, and λ̄ and ū are given by (3.3.29). Sim-
ilar expressions may be obtained for the cases u∞ < 0 and u∞ > 0 (see Joseph and
Sachdev 1993). If we put λ∞ = 1/2, λ̄ = 0, ū = 0 in (3.3.71), we recover the simple
profile at infinity (3.3.18), obtained earlier by Clothier et al. (1981).

We may also refer to some related studies here. Weidman (1976) considered spin-
up and spin-down of a rotating fluid. He studied (essentially) the Burgers equation
in the form

vτ +(1− v)vx = E1/2
Ω vxx, (3.3.72)

subject to the initial boundary conditions v(x,0) = 0,v(0,τ) = 1. Here, EΩ is a
constant. The solution could be found explicitly in terms of complementary error
functions.
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Calogero and De Lillo (1991) attempted to solve the Burgers equation

ut = uxx +2uux, (3.3.73)

subject to the conditions

u(x,0) = u0(x), 0 ≤ x < ∞, (3.3.74)

H [u(0, t),ux(0, t); t] = 0, t ≥ 0. (3.3.75)

Using a generalised Cole–Hopf transformation, the problem (3.3.73)–(3.3.75) was
first reduced to that for the heat equation, subject to two boundary conditions at
x = 0. Further analysis led to a nonlinear integrodifferential equation which for the
special case, H [u(0, t),ux(0, t); t] ≡ a(t)u(0, t)+b(t)(ux(0, t)+u2(0, t))−F(t), re-
duces to a linear integral equation of Volterra type. This equation can be solved by
quadratures if a(t)/F(t) = c1 and b(t)/F(t) = c2, where c1 and c2 are constants.
Asymptotic behaviour of these solutions may be obtained in the manner of Joseph
and Sachdev (1993).

3.4 Travelling waves describing flow in a porous medium

In this section we consider a more general model describing infiltration of water into
a homogeneous soil, pose an initial boundary value problem for the same, and show
rigourously how a travelling wave emerges as an intermediate asymptotic. In the
present case, unlike for problems in Sections 3.2 and 3.3, it does not seem possible to
construct an explicit solution of the initial boundary value problem; the asymptotic
character of the travelling wave is demonstrated in a rigourous qualitative manner.
Large time numerical solution of the problem is also obtained to confirm the analytic
results. We follow here the work of Vanaja and Sachdev (1992). Let u denote the
volume of water per unit volume of porous medium and q, the flux, that is, the
volume of water flowing across the unit area per unit time. Assuming the density of
water to be constant, the equation of continuity is

ut −qx = 0, (3.4.1)

where the flux q is given by Darcy’s law,

q = K(u)Gx. (3.4.2)

x and t denote the space coordinate, measured positive downward from the sur-
face, and time, respectively. K(u) is the hydraulic conductivity. Under certain con-
ditions applicable to unsaturated flows, the potential G is written out as the sum
of a gravitational potential and a potential H(u) due to capillary suction. Thus, we
have
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G = H(u)− x (3.4.3)

so that (3.4.1) becomes

ut = (K(u)Hx)x − (K(u))x. (3.4.4)

With
D(u) = K(u)Hu,

equation (3.4.4) becomes

ut = (D(u)ux)x − (K(u))x (3.4.5)

(see Section 3.8). We consider the special power law case (see Bear 1972, Philip
1970) for which

D(u) = D0um−1, K(u) = K0un, (3.4.6)

where D0,K0,m, and n are positive constants and n ≥ m > 1. Scaling the variables

suitably, we may now write (3.4.5) as

ut = (um)xx − (un)x, n ≥ m > 1. (3.4.7)

This is a standard porous medium equation. Taking into account the initial moisture
distribution in the soil and infiltration on the surface of the ground, we may impose
the following initial and boundary conditions for u(x, t).

u(0, t) = u1, a constant, for 0 ≤ t < ∞,

u(x,0) = u0(x) for 0 ≤ x < ∞, (3.4.8)

u0 ≤ u0(x) ≤ u1, lim
x→∞

u0(x) = u0.

It is also assumed that there is no water at a large depth beneath the ground. u1 = 1
corresponds to full saturation of the soil on the surface of the ground.

We now show that the travelling wave solutions of (3.4.5) are intermediate
asymptotics for the initial boundary value problem (3.4.5) and (3.4.8). We assume
that the functions D(u), D′(u), K(u), K′(u), and K′′(u) > 0 exist and are continuous
and bounded for u ≥ u0 > 0; here u0 is a constant. Let E = (0, ∞) × (0, ∞).

We may observe that, although equation (3.4.5) is more general than the Burg-
ers equation, the boundary conditions considered by Joseph and Sachdev (1993)
were more general than those in (3.4.8) (see Section 3.3). Besides, the intermediate
asymptotic being studied here is a travelling wave, different from that in Section 3.3.

We first consider travelling wave solution u = U(η) of (3.4.5), which depends
only on η = x−At + c, where A > 0 and c are constants. Thus, (3.4.5) reduces to
the ODE

(D(U)Uη)η − (K(U))η = −AUη . (3.4.9)

We impose the following end conditions on U at ±∞,
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U(−∞) = u1, U(+∞) = u0. (3.4.10)

Integrating (3.4.9) and using the end conditions (3.4.10), we have

D(U)Uη −K(U)+K(u0) = −A(U −u0), (3.4.11)

where

A =
K(u1)−K(u0)

(u1 −u0)
. (3.4.12)

Integration of (3.4.11) yields

x−At + c =
∫ U

u2

D(u)
[K′(u0 +θ(u−u0))−A][u−u0]

du, (3.4.13)

where u0 < U(0) = u2 < u1 and 0 < θ(u) < 1. Thus, (3.4.13) gives the travel-
ling wave solution of (3.4.5) subject to end conditions (3.4.10). From (3.4.13), we
observe that

dU
dη

=
[K′(u0 +θ(U −u0))−A](U −u0)

D(U)
. (3.4.14)

If we expand K(U) about u0, we find that K′(u0 + θ(U − u0)) ≤ A (see (3.4.12)).
Because D(U) ≥ 0,U − u0 ≥ 0, we conclude that dU/dη ≤ 0 and the travelling
wave solution U(η) is a monotonically decreasing function of η . For the special
choice D(u) = mum−1, K(u) = un, u0 < u2 < u1, and A > 0, (3.4.13) becomes

x−At + c =
∫ U

u2

mum−1[u1 −u0][
(u1 −u0)(un −un

0)− (u−u0)(un
1 −un

0)
]du. (3.4.15)

Here, U = u2 when η = 0. Denoting by E+ the domain bounded by x = 0, t = 0,
t = T , where T is a finite positive number, we have the following minimum prin-
ciple due to Krzyżański (1959). Let z(x, t) be a bounded solution of the differential
inequality

a(x, t)zxx +b(x, t)zx + c(x, t)z− zt ≤ 0 (3.4.16)

in E+. Let a(x, t),b(x, t), and c(x, t) be bounded continuous functions of x and t and
a(x, t) > 0. If z ≥ 0 on x = 0 and t = 0, then z ≥ 0 in E+.

To prove the main theorem regarding the approach of the solution of (3.4.5) and
(3.4.8) to the travelling wave, we need several intermediate steps.

First we prove that if u and v are two solutions of (3.4.5) and (3.4.8) in E and
u ≤ v on x = 0 and t = 0, then u ≤ v in E. Let ū =

∫ u
0 D(s)ds and v̄ =

∫ v
0 D(s)ds, then

ū and v̄ satisfy

ūt = D(u)ūxx −K′(u)ūx, v̄t = D(v)v̄xx −K′(v)v̄x. (3.4.17)

Setting w = v̄− ū, we find that w satisfies

wt = D(v)wxx −K′(v)wx + ūxx[D(v)−D(u)]− ūx[K′(v)−K′(u)]. (3.4.18)
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Because D(v)−D(u) = (v− u)D′(θ1) and K′(v)−K′(u) = (v− u)K′′(θ2), where
θ1 = θ1(x, t) and θ2 = θ2(x, t) lie between u and v, and because we may also write
v̄− ū = (v−u)D(θ3), where again u < θ3(x, t) < v, we may put (3.4.18) as

wt = D(v)wxx −K′(v)wx +w

[
ūxx(v−u)D′(θ1)

v̄− ū
− ūx(v−u)K′′(θ2)

v̄− ū

]
or

D(v)wxx −K′(v)wx +ξ (x, t)w−wt = 0, (3.4.19)

where

ξ (x, t) =
[

ūxxD′(θ1)
D(θ3)

− ūxK′′(θ2)
D(θ3)

]
. (3.4.20)

We observe that D, K′, and ξ (x, t) are bounded in E. Because D > 0 and w = (v−u)
D(θ3) ≥ 0 on x = 0 and t = 0, w satisfies the conditions of the minimum princi-
ple (see (3.4.16) etc.). We infer that w ≥ 0 in E+ (see below (3.4.15)). The above
argument is independent of the choice of T , therefore we infer that u ≤ v in E for
all t ≥ 0.

As a corollary, we easily check that if u(x, t) is the solution of (3.4.5) and (3.4.8),
then u0 ≤ u(x, t) ≤ u1 for each (x, t) in E. This is accomplished by applying the
above result first to the functions u(x, t) and u1, leading to u(x, t) ≤ u1. The other
inequality can be obtained in a similar fashion.

Now we show that u(x, t) is bounded between two travelling wave solutions (see
(3.4.22) below). Let u(x, t) be the solution of (3.4.5) and (3.4.8) and let the initial
condition u0(x) satisfy the inequality

u0(x)−u0 ≤ M1e−γ1x, (3.4.21)

where γ1 > |K′(u0)−A|/D(u0) is a positive constant; M1 is another positive con-
stant specified later. Then there exist travelling wave solutions U1(x−λ1t + c1) and
U2(x−λ2t−c2) of (3.4.5) with the constants λ1, λ2, c1, c2 > 0, satisfying the condi-
tions U1(−∞) = u1 , U1(+∞) = u0−ε(ε > 0), U2(−∞) = u1 +ε , and U2(+∞) = u0

such that the following inequalities hold,

U1(x−λ1t + c1) ≤ u(x, t) ≤U2(x−λ2t − c2) (3.4.22)

for every (x, t) in E.
First we observe that λ2 = [K(u1 +ε)−K(u0)]/(u1 +ε−u0) > A (see (3.4.12)).

Let m2 = |K′(u0)− λ2|/D(u0). We then choose ε > 0 sufficiently small such that
γ1 ≥ m2 > |K′(u0)−A|/D(u0). This is possible in view of the inequality following
(3.4.21) for γ1.

The travelling wave solution U and the function u0(x) both decrease with x, thus
we may find travelling wave solutions U2 and U1 satisfying the end conditions in the
statement below (3.4.21) such that

u0(x) ≤U2(x− c2) for each x > 0, (3.4.23)



3.4 Travelling waves describing flow in a porous medium 51

u0(x) ≥U1(x+ c1) for each x > 0. (3.4.24)

Also, we have U1 ≤ u1 ≤ U2 at x = 0. The result (3.4.22) for the region E now
follows from the statement made above (3.4.17).

Recalling the behaviour of U1 and U2 as x → ∞, we have limx→∞ u(x, t) = u0 for
any finite t.

Now we proceed to prove the main result regarding the rate at which the solution
of the IBVP (3.4.5) and (3.4.8) approaches the travelling wave solution (Vanaja and
Sachdev 1992).

Theorem 3.4.1 Let u(x, t) be the solution of (3.4.5) and (3.4.8) and let U(x−At +c)
be a travelling wave solution of (3.4.5). Moreover, let the initial condition u0(x)
satisfy the inequality (3.4.21). Then there exist constants M, l > 0, and c such that

|u(x, t)−U(x−At + c)| ≤ Me−lt (3.4.25)

for each (x, t) in E.

First we choose the constant c such that K(u0)−Au0 + c = K(u1)−Au1 + c = 0.
We also write ū =

∫ u
0 D(s)ds,Ū =

∫U
0 D(s)ds and let y = ū−Ū . Then, y satisfies the

equation
L(y) = D(u)yxx −K′(u)yx +β (x, t)y− yt = 0 (3.4.26)

(cf. (3.4.19)), where

β (x, t) =
[

ŪxxD′(θ4)
D(θ6)

− ŪxK′′(θ5)
D(θ6)

]
(3.4.27)

and θ4(x, t),θ5(x, t), and θ6(x, t) all lie between u and U . We now show that β (x, t)
is bounded. We write Uη = dU/dη . Because η = x−At +c, and Ūx = D(U)Uη , we
have

Ūxx =
d

dη
[D(U)Uη ] =

d
dη

[K(U)]−AUη = [K′(U)−A]Uη , (3.4.28)

where we have used (3.4.9). Thus, (3.4.27) becomes

β (x, t) = (−Uη)
[
(A−K′(U))D′(θ4)

D(θ6)
+

D(U)K′′(θ5)
D(θ6)

]
. (3.4.29)

Because Uη = [K′(u0 + θ(U − u0)) − A](U − u0)/D(U), where K′(u0 + θ(U −
u0)) ≤ A, U ≤ u1, and D(U) ≥ D(u0) for all U , we get |Uη | ≤ 2A(u1 −u0)/D(u0).
Thus, we get from (3.4.29) the inequality

|β | ≤
[

2A(u1 −u0)
D(u0)

]
[2AD′ +D(u1)K′′]

D(u0)
. (3.4.30)

We choose the comparison function
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z(x, t) = e−ltω(η) (3.4.31)

in the manner of Peletier (1970), where ω(η) is a positive, continuous, and piece-
wise differentiable function to be chosen such that the inequality L(z) ≤ 0 holds for
all η (see (3.4.26)). We first observe that

L(z) = z

[
D(u)ω ′′

ω
+

(A−K′(u))ω ′

ω
+β (x, t)+ l

]
. (3.4.32)

As in the original work of Khusnytdinova (1967), we let

ω(η) =
{

e−α exp(λη), |η | < N
e−αη , |η | ≥ N,

(3.4.33)

where α = (1/k)exp(−λN),k ≥ 1; λ and N are specified presently. It is clear that

ω ′

ω
=
{−αλeλη for |η | < N,
−α for |η | > N

(3.4.34)

and
ω ′′

ω
=
{
α2λ 2e2λη −αλ 2eλη for |η | < N,
α2 for |η | > N.

(3.4.35)

Now we show that with the above choice ofω(η), L(z)≤ 0 for all |η | �= N. Referring
to (3.4.14), we have

Uη =
[K′(u0 +θ(U −u0))−A](U −u0)

D(U)
. (3.4.36)

Also U → u0 as η → ∞ and [K′(u0 +θ(U −u0))−A] → 0 as η →−∞. We choose
N so large that, for |η | ≥ N,β given by (3.4.29) is small.

We consider L(z) for |η | < N and |η | > N separately. For the former we have

D(u)
ω ′′

ω
+(A−K′(u))

ω ′

ω
+β + l = D(u)λ 2

[
1

k2e2λ (N−η) −
1

keλ (N−η)

]

− [A−K′(u)]λ
keλ (N−η) +β + l. (3.4.37)

Because D(u) ≥ D(u0) and K′(u) ≤ K′(u1), by assumption, and β is bounded, we
may choose λ so large that

l1 = D(u0)λ 2
[

1

keλ (N−η) −
1

k2e2λ (N−η)

]
+

[A−K′(u1)]λ
keλ (N−η) −β ≥ 0. (3.4.38)

Choosing l ≤ l1, we have from (3.4.37) and (3.4.38) the inequality

L(z) ≤ 0 for |η | < N. (3.4.39)
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Now we consider the interval |η | > N. Here,

D(u)
ω ′′

ω
+(A−K′(u))

ω ′

ω
+β + l =

D(u)
k2e2λN

− (A−K′(u))
KeλN

+β + l. (3.4.40)

Because K′(u)≤A, we let supK′(u) be equal to s. We have already shown that β can
be made arbitrarily small for |η | ≥ N. Moreover, D(u)≤ D(u1). We may, therefore,
choose k so large that

1

k2e2λN
+

β
D(u1)

≤ |A− s|
D(u1)keλN

. (3.4.41)

This would, in view of (3.4.40), ensure that

l2 =
(A− s)keλN −D(u1)

k2e2λN
−β ≥ 0. (3.4.42)

The inequality (3.4.41), together with that following (3.4.21), imply that

1

keλN
<

|A− s|
D(u1)

≤ |A−K′(u0)|
D(u0)

< γ1, say. (3.4.43)

Now we let l ≤ l2. For this choice of l, we have from (3.4.40)–(3.4.43) the inequality

L(z) ≤ 0 for |η | > N. (3.4.44)

With l = min(l1, l2) in (3.4.31), we have shown that L(z) ≤ 0 for all η , |η | �= N.
For the final part of the proof, we let

φ(x, t) = N1z(x, t)− y(x, t), (3.4.45)

where the constant N1 is chosen presently. We observe from (3.4.31) and (3.4.33)
that z(0, t) ≥ 0; moreover, y(0, t) =

∫ u1
U(0,t) D(s)ds ≥ 0 because U(0, t) ≤ u1. We

also have φ(x,0) = N1z(x,0)− y(x,0), where z(x,0) > 0. We may now choose N1

sufficiently large that both φ(0, t) and φ(x,0) are greater than or equal to zero. We
observe that

L(φ) = N1L(z)−L(y) = N1L(z) ≤ 0 for all η (3.4.46)

in view of the fact that L(y) = 0 and L(z) ≤ 0 for all η . Therefore the minimum

principle (see (3.4.16) etc.) ensures that φ ≥ 0 everywhere in E+, implying that

y(x, t) ≤ N1z(x, t) in E+. (3.4.47)

We may similarly show by using the function ψ = N2z + y, where N2 is a constant,
that

y(x, t) ≥−N2z(x, t) in E+. (3.4.48)



54 3 Large Time Asymptotics via Direct Approaches

8 10 12 14 16 18 20 22 24
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

u  

TWave Sol : t = 26

TWave Sol : t = 39

Num Sol : t = 26

Num Sol : t = 39

and U

Fig. 3.3 Numerical solution of (3.4.5) subject to the initial condition (3.4.8) (+++) and travelling
wave solution given by (3.4.9) and (3.4.10) (***) at t = 26,39. Here, D(u) = u, K(u) = u2/2,
and u0(x) = 0.1 +(1.6/(1 + e10x)), u1 = 0.9, u0 = 0.1. (Vanaja and Sachdev 1992. Copyright c©
1992 Brown University and American Mathematical Society. Reprinted with permission. All rights
reserved.)

Combining (3.4.47) and (3.4.48) we have

−N2z(x, t) ≤ y(x, t) ≤ N1z(x, t) in E+. (3.4.49)

We, therefore, infer that

|y| = |ū−Ū | ≤ |z|max(N1,N2) =
[ |ω(η)|

elt

]
max(N1,N2). (3.4.50)

We may check that

|u−U | =
|ū−Ū |
|D(θ)|

≤
[ |ω(η)|max(N1,N2)

D(u0)

]
e−lt
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≤
[

max(N1,N2)
D(u0)

]
e−lt , (3.4.51)

where we have used the results, |ū− Ū | = |(u−U)|D(θ(x, t)), θ lying between u
and U , and |ω(η)| ≤ 1. Finally, if we write M = max(N1,N2)/D(u0), we arrive at
the estimate

|u−U | ≤ Me−lt in E+. (3.4.52)

M does not depend on the choice of T , therefore (3.4.52) holds for all t > 0. We
have thus vindicated the manner in which the solution u approaches the travelling
wave U as t → ∞. Vanaja and Sachdev (1992) carried out an extensive numerical
study to confirm the above analytical results. The following cases were studied: (i)
D(u) = u, K(u) = u2/2; (ii) D(u) = 2u, K(u) = u3; (iii) D(u) = 2u, K(u) = u4.
The far off conditions for all these cases were chosen to be u1 = 0.9 and u0 =
0.1. The initial condition for case (i), for example, was chosen to be u0(x) = 0.1 +
(1.6/(1+ exp(10x))). Figures 3.3–3.5 show numerical solutions for different times
as well as the travelling wave solutions for different choices of D(u) and K(u). The
numerical study of (3.4.5) and (3.4.8) clearly brings out the intermediate asymptotic
character of the travelling wave solutions given by (3.4.9) and (3.4.10) (see Vanaja
and Sachdev 1992 for details).
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Num Sol : t = 40

Num Sol : t = 49

Fig. 3.4 Same as in Figure 3.3 with D(u) = 2u, K(u) = u3. (Vanaja and Sachdev 1992. Copyright
c© 1992 Brown University and American Mathematical Society. Reprinted with permission. All

rights reserved.)
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Fig. 3.5 Same as in Figure 3.3 with D(u) = 2u, K(u) = u4. (Vanaja and Sachdev 1992. Copyright
c© 1992 Brown University and American Mathematical Society. Reprinted with permission. All

rights reserved.)

3.5 Evolution of a stable profile describing cross-field diffusion
in toroidal multiple plasma

In a series of papers, Berryman (1977) and Berryman and Holland (1978a, b, 1980,
1982) studied a class of nonlinear diffusion equations with fixed boundaries which
describe particle diffusion across magnetic fields in the Wisconsin toroidal octupole
plasma-containing device (see Drake 1973, Drake et al. 1977, Greenwood 1975).
Their experiments involved a purely poloidal field and showed that after a few sec-
onds the density profile evolves into a fixed shape, the so-called normal mode, and
then simply decays with time. This suggested a separable form of the asymptotic
solution which was later mathematically shown to be the case. It is the intermediate
asymptotic character of this separable solution of an initial boundary value problem
that we are concerned with here. First we briefly discuss the first paper in this series
by Berryman (1977) and then detail a later study by Berryman and Holland (1982);
the latter work has some interesting rigourous analysis.

In the standard form involving normalised quantities, we discuss the equation

F(x)nt = (D(n)nx)x, 0 ≤ x ≤ 1, (3.5.1)
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where n is the particle density, x is the spatial variable in one-dimension, and t is
the time. The function F(x) is positive and describes the geometry of the octupole.
Assuming

D(n) = (1+δ )nδ for δ > −1 (3.5.2)

and introducing the function

m(x, t) = n1+δ for δ > −1 (3.5.3)

in (3.5.1), we have
F(x)(mq−1)t = mxx, (3.5.4)

where q = (2 + δ )/(1 + δ ). It is clear that, for δ > −1, 0 ≤ m(x, t) < ∞ when 0 ≤
n(x, t) < ∞. m may be referred to as the pseudo-density. The function F(x), from
physical considerations, is assumed to satisfy the conditions

F(x) > 0 for 0 ≤ x ≤ 1 (3.5.5)

and ∫ 1

0
F(x)dx < ∞. (3.5.6)

Thus, F(x) may have a singularity at some x = xs; it was found consistent and conve-
nient to assume that F ′(x)≥ 0 for x < xs and F ′(x)≤ 0 for x > xs. The experimental
results show that, for large times, the situation in the toroidal octupole is well repre-
sented by taking n = 0 at the boundaries so that

m(0, t) = m(1, t) = 0. (3.5.7)

For δ > −1, (3.5.7) is consistent with the physical requirement of a finite flux.
Berryman (1977) assumed the solution of the BVP (3.5.4)–(3.5.7) in the form

m(x, t) = S(x)T (t) (3.5.8)

and showed that this separable solution evolves from an arbitrary initial distribution
of particles. He then demonstrated, both analytically and numerically, the evolution
and stability of this solution. Indeed, for the case for which initial particle distri-
bution vanishes only at the boundaries, an approximate analysis showed that the
perturbations decay exponentially causing a rapid evolution to the separable solu-
tion. We refer the reader to Berryman (1977) for details.

We discuss here in some detail another interesting paper by Berryman and Hol-
land (1982) relating to the equation

nt = D

(
1
n

nx

)
x
, (3.5.9)

where D is a constant. This equation also appears in other applications such as an
expansion of a thermalised electron cloud. It is a special case of (3.5.1) with F(x) =
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D−1, a constant, and D(n) = 1/n. In the present case, the boundary conditions at the
two ends of the interval, 0 ≤ x ≤ 1, are assumed to be

n(0, t) = n(1, t) = n0, (3.5.10)

where n0 �= 0 is a small value of the density which may be thought of as the back-
ground value. Furthermore, the initial data n(x,0) ≥ n0. Introducing the variable

m(x, t) = ln(n/n0),

where m is nonnegative, one may write (3.5.9) and (3.5.10) as

(em)t = mxx, 0 ≤ x ≤ 1, (3.5.11)

and
m(0, t) = m(1, t) = 0. (3.5.12)

The new time scale has a factor n0/D. Berryman and Holland (1982), by using
several inequalities, proved the result that

m(x, t) → Aexp(−π2t)φ1(x) (3.5.13)

where
φk(x) = 21/2 sin(kπx), k = 1,2,3, . . . (3.5.14)

are the normalised eigenfunctions satisfying the equation φk,xx + k2π2φk = 0 and the
boundary conditions φk(0) = φk(1) = 0. The asymptotic amplitude A in (3.5.13) is
a constant which depends on the initial data. Berryman and Holland (1982) derived
other inequalities to determine the bounds for A.

First, a lower bound is found for the function

Q(t) =
π

23/2

∫ 1

0
(exp(m(x, t))−1)φ1(x)dx. (3.5.15)

A simple calculation and use of (3.5.11) and (3.5.12) show that

− d
dt

∫ 1

0
(em −1)φ1(x)dx = −

∫ 1

0
mxxφ1dx

= −
∫ 1

0
mφ1xxdx = π2

∫ 1

0
mφ1dx

≤ π2
∫ 1

0
(em −1)φ1dx, (3.5.16)

where we have also used the inequality m ≤ (em − 1). With the definition (3.5.15)
of Q(t), (3.5.16), on integration, shows that

Q(t) ≥ Q(0)e−π
2t ≡ Q0e−π

2t , (3.5.17)
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giving a lower bound for Q(t). To find an upper bound for m, we first observe that,
for any differentiable function f (x) such that f (0) = f (1) = 0,

f (x) =
∫ x

0
fx(x)dx = −

∫ 1

x
fx(x)dx. (3.5.18)

On using the Cauchy–Schwarz inequality, (3.5.18) yields

f 2(x) ≤ x
∫ x

0
f 2
x dx and f 2(x) ≤ (1− x)

∫ 1

x
f 2
x dx. (3.5.19)

Adding the inequalities in (3.5.19), we have(
1
x

+
1

1− x

)
f 2 =

f 2

x(1− x)
≤
∫ 1

0
f 2
x dx. (3.5.20)

With f (x) = m(x, t), wherein t is treated as a parameter, we get

m2(x, t) ≤ x(1− x)
∫ 1

0
m2

xdx ≤ 1
4

∫ 1

0
m2

xdx ≡ z2(t). (3.5.21)

We may now recall the standard inequality,

π2 ≤
∫

m2
xdx∫

m2dx
. (3.5.22)

From (3.5.21), exp(m− z) ≤ 1, therefore,∫
m2dx ≥ e−z

∫
m2emdx. (3.5.23)

Combining (3.5.22) and (3.5.23), we get

π2 ≤ ez
∫

m2
xdx∫

m2emdx
. (3.5.24)

Furthermore, we have(∫
m2

xdx

)2

=
(
−
∫

mmxxdx

)2

=
[∫ (

mem/2
)(

mxxe−m/2
)

dx

]2

≤
∫

m2emdx
∫

m2
xxe−mdx, (3.5.25)

where we have used integration by parts and the Cauchy–Schwartz inequality. Equa-
tions (3.5.24) and (3.5.25) yield
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π2 ≤ ez
∫

m2
xxe−mdx∫
m2

xdx
= −e−z

z
dz
dt

, (3.5.26)

where we have used the result

d
dt

z(t) = −
∫

m2
xxe−mdx/4z (3.5.27)

(see (3.5.21)). Integrating the inequality (3.5.26), we get

Ei(z) ≤ Ei(z0)−π2t, (3.5.28)

where z0 = z(0) and Ei(.) is the exponential integral (Abramowitz and Stegun (1972)).
Using the expansion

Ei(y) = γ+ ln |y|+
∞

∑
k=1

yk

k.k!
, (3.5.29)

where γ is Euler’s constant, and the fact that z ≥ 0, it easily follows from (3.5.28)
that

z ≤ exp[Ei(z)− γ] ≤ exp[Ei(z0)− γ−π2t] ≡ zBe−π
2t . (3.5.30)

Thus, (3.5.30) gives an upper bound for z and, in view of (3.5.21), it bounds sup m.
It may be observed that the bounds (3.5.17) and (3.5.30) both share exponential time
dependence.

To find the actual asymptotic behaviour, we write

u(x, t) = eπ
2tm(x, t) (3.5.31)

so that (3.5.11) becomes
ut = e−muxx +π2u. (3.5.32)

It is clear from (3.5.21) and (3.5.30) that m → 0 as t → ∞. We must now show that
|ut | → 0 as t → ∞. This will ensure that in some sense the solution approaches the
solution of the steady equation uxx +π2u = 0. To that end, we consider the functional

I(u) =
∫ 1

0
u2

xdx−π2
∫ 1

0
emu2dx. (3.5.33)

Using (3.5.21), (3.5.30), and (3.5.31) we find that

0 ≤
∫

u2
xdx = 4e2π2t z2 ≤ 4z2

B (3.5.34)

and

0 ≤
∫

emu2dx ≤ ez
∫

u2dx ≤ ez

π2

∫
u2

xdx, (3.5.35)

the last inequality following from (3.5.22). Therefore, both the integrals in (3.5.33)
and hence I(u) are bounded for all time. Differentiating (3.5.33) and using (3.5.31)
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and (3.5.32) we get

dI
dt

= −2
∫

emu2
t dx+2π2e−π

2t
∫

uu2
xdx. (3.5.36)

To show that the second integral in (3.5.36) is bounded above by a positive constant,
we employ the second inequality in (3.5.20):

0 ≤
∫

uu2
xdx ≤ 1

2

(∫
u2

xdx

)3/2

≤ 4z3
B ≡C (3.5.37)

(see (3.5.34)). Now, for contradiction, suppose |ut | does not tend to zero as t → ∞.
Then there exists a constant ε such that

2
∫

emu2
t dx ≥ ε > 0. (3.5.38)

It, therefore, follows from (3.5.36), (3.5.37), and (3.5.38) that

dI
dt

≤−ε+2π2Ce−π
2t (3.5.39)

which, on integration, yields

I ≤ 2C
(

1− e−π
2t
)
− εt + I(0) ≤ 2C− εt + I(0). (3.5.40)

Equation (3.5.40) implies that I(u) is not bounded from below as t →∞, contradict-
ing the result proven earlier. Therefore, we must have a sequence ti for which∫

emu2
t dx → 0 as ti → ∞. (3.5.41)

By an argument, detailed in Berryman and Holland (1980), there exists a function
R such that u(., ti) → R(.) as ti → ∞. The final step is to show that R(.) is, in fact, a
solution of the linear equation satisfied by φ1 (see below (3.5.14)).

Multiplying (3.5.32) by Pem, where P is a C∞ function vanishing at the bound-
aries, and integrating we obtain∫

Pemutdx = −
∫

Pxuxdx+π2
∫

Pemudx. (3.5.42)

The Cauchy–Schwarz inequality gives(∫
Pemutdx

)2

≤
∫

emu2
t dx

∫
emP2dx. (3.5.43)

Inasmuch as P and m are bounded and the first integral on the RHS of (3.5.43)
tends to zero as ti → ∞ (see (3.5.41)), the LHS of (3.5.43) tends to zero as the
sequence ti → ∞. Furthermore, because em → 1 as ti → ∞, it follows from (3.5.42)
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that u → R(x), where R(x) satisfies the equation

−
∫

PxRxdx+π2
∫

PRdx = 0. (3.5.44)

Equation (3.5.44) states that R(x) is a weak solution of

uxx +π2u = 0, (3.5.45)

the steady form of (3.5.32) with em = 1. From the existence of the lower bound
(3.5.17) for Q(t) defined by (3.5.15), we infer that R is not identically zero. By an
argument similar to that used by Berryman and Holland (1980), it may be shown
that R is a classical solution of (3.5.45). To be able to show that u → R for all t, we
consider

d
dt

∫
u2dx = 2π2

∫
u2dx+2

∫
e−muuxxdx = 2π2

∫
u2dx−2

∫
(1−m)e−mu2

xdx,

(3.5.46)
where we have used (3.5.31) and (3.5.32) as well as an integration by parts. Using
the inequality (3.5.22) in (3.5.46), we have

d
dt

∫
u2dx ≤ 2

∫ [
1− (1−m)e−m]u2

xdx ≤ 4
∫

mu2
xdx = 4e−π

2t
∫

uu2
xdx, (3.5.47)

where we have employed the result that [1− (1−m)e−m] ≤ 2m for any m. Combin-
ing (3.5.37) and (3.5.47), we get

d
dt

∫
u2dx ≤ 16z3

Be−π
2t . (3.5.48)

Again, for contradiction, assume that
∫

u2dx does not converge to a constant as
t →∞. Let si and ti be two time sequences for which

∫
u2dx converges to two distinct

constants α and β , respectively, where α < β . Then, using the inequality (3.5.48)
and some standard arguments, one may show that both sequences must, in fact, con-
verge to the lower constant α , contradicting the hypothesis. Therefore, the integral∫

u2dx must converge to a constant for all t. Again using the arguments of Berryman
and Holland (1980), one may show that this limit is R for large t.

Thus, we have demonstrated that

u(x, t) → R(x) = Aφ1(x) (3.5.49)

or
m(x, t) → Ae−π

2tφ1(x), (3.5.50)

uniformly in x for large t. Bounds for the constant A may be obtained from (3.5.17)
and (3.5.30):

lim
t→∞

eπ
2tQ(t) =

π
23/2

∫ 1

0
R(x)φ1(x)dx =

π
23/2

A ≥ Q0, (3.5.51)
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and

lim
t→∞

eπ
2t z(t) =

1
2

[∫ 1

0
R2(x)dx

]1/2

=
π
2

A ≤ zB. (3.5.52)

Thus, for the amplitude A in (3.5.50), we have

23/2

π
Q0 ≤ A ≤

(
2
π

)
zB, (3.5.53)

where Q0 and zB may be found from (3.5.17) and (3.5.30), respectively. To check
the asymptotic nature of the solution (3.5.50), Berryman and Holland (1982) nu-
merically integrated (3.5.11) and (3.5.12) subject to the initial conditions,

m(x,0) =
4

∑
k=1

αk sin(kπx), (3.5.54)

for different sets of values for {αk}; they used a linear implicit three-level difference
scheme for quasilinear parabolic equations (Lees 1966). The value of the parame-
ter A was determined as the computation proceeded. The analytic bounds for A,
however, were not found to be too close to those found numerically. Shenker and
Roseman (1995) discussed a more general initial boundary value problem

ρ(x)
∂u
∂ t

= (A(x,u, t)ux)x, 0 < x < 1, 0 < t < ∞, (3.5.55)

u(0, t) = 0 or
∂u
∂x

(0, t) = 0, (3.5.56)

u(1, t) = 0 or
∂u
∂x

(1, t) = 0, (3.5.57)

u(x,0) = f (x), 0 < x < 1. (3.5.58)

They showed that the solution of the IBVP (3.5.55)–(3.5.58) converges to a constant
exponentially and the derivatives of the solution decay exponentially to zero as t
becomes large.

3.6 Asymptotic solutions describing fast nonlinear diffusion

Friedman and Kamin (1980), Esteban et al. (1988), and King (1993) considered
asymptotic behaviour of the nonlinear parabolic equation

ut = �.
(
u−n �u

)
, (3.6.1)
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where n > 0 and N ≥ 1 is the dimension of space being considered. We have already
considered (3.6.1) with n = 1 and N = 1 in Section 3.5. Equation (3.6.1) appears
in many contexts including spreading of microscopic droplets and plasma physics.
King (1993) considered (3.6.1) in great detail and analysed specific cases for which
the solution with a finite mass either extinguishes in a finite time or decays over an
infinite time; this depends strongly on the choice of the parameters n and N. Here,
we are concerned with the radially symmetric form of (3.6.1) (see (3.6.5) below)
and consider only those parameters for which the solution decays over an infinite
time.

We may first observe that the solution of (3.6.1) subject to delta function initial
conditions,

u(x,0) = M∗δ (x) for x ∈ IRn, (3.6.2)

has the similarity form

u(x, t) = t−N/(2−nN) f

( |x|
t1/(2−nN)

)
, (3.6.3)

where, for n > 0,

f (η) =
(

n
2(2−nN)

(a2 +η2)
)−1/n

. (3.6.4)

This solution holds for n < min(1,2/N) and neatly illustrates the typical behaviour
of similarity solutions as they arise from delta function initial conditions. The (un-
known) constant a may be obtained from the conservation of mass condition∫

IRN
u(x, t)dV = M∗,

which is assumed to hold for all time in the above parametric range (see Zel’dovich
and Barenblatt 1958).

King (1993) considered the case n ≥ 2/N for which the solution (3.6.3) is not
applicable and restricted himself to the radially symmetric form of (3.6.1), namely,

ut =
1

rN−1

(
rN−1u−nur

)
r . (3.6.5)

Equation (3.6.5) was solved subject to the initial boundary conditions

u = I(r) at t = 0, (3.6.6)

rN−1u−nur = 0 at r = 0, (3.6.7)

and
u → 0 as r → ∞. (3.6.8)

In addition, it was assumed that the mass

M =
∫ ∞

0
rN−1I(r)dr (3.6.9)
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under the profile is finite. As pointed out earlier, we are concerned here only with
the case N > 2 and n = 2/N, which guarantees the finiteness of the mass M. It is
shown that the large time solution of the initial boundary value problem in this case
is given by an unusual form of a similarity solution. We also summarise the results
for other cases for which either the solution vanishes after a finite time and/or the
finite mass condition is not satisfied. This study demonstrates how the asymptotic
form may depend crucially on the large distance (r → ∞) behaviour of the solution.

It is clear from (3.6.4) that this similarity solution breaks down when n = 2/N. It
may also be observed that, for n < 2/N, it behaves as does the separable solution

u ∼
(

nr2

2(2−nN)t

)−1/n

as r → ∞ (3.6.10)

when the initial profile decays faster than r−2/N as r → ∞. Seeking a comparable
product form of the solution of

ut =
1

rN−1

(
rN−1u−2/Nur

)
r

(3.6.11)

with n = 2/N,N > 2 in (3.6.5) we write

u ∼ tN/2F(r) as r → ∞, (3.6.12)

where F(r) satisfies

N
2

rN−1F =
d
dr

(
rN−1F−2/N dF

dr

)
. (3.6.13)

In the manner of Grundy et al. (1994) (see Section 3.8), a balancing argument for
(3.6.13) shows that, for N > 2 and r → ∞,

F ∼ [(N −2)−1 (r2 lnr
)]−N/2

. (3.6.14)

The mass M defined by (3.6.9) with u given by (3.6.12) and (3.6.14) may be shown
to be bounded; the corresponding flux

− rN−1u−2/Nur ∼ N

(
lnr

(N −2)t

)−(N−2)/2

as r → ∞ (3.6.15)

decays logarithmically for large r.
King (1993) specifically considered the initial data with compact support:

I(r) = 0 for r ≥ r0,

I(r) = A(r0 − r)b as r → r−0 ,
(3.6.16)
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where A and b are positive constants. The solution of (3.6.11) and (3.6.16) for
t → 0+ may be found to be

u ∼ I(r), r < r0, (3.6.17)

u ∼ tNb/2(N+b)φ(w), r = r0 +O
(

tN/2(N+b)
)

, (3.6.18)

where w = (r− r0)t−N/2(N+b); φ(w) satisfies the equation

N
2(N +b)

(
bφ −w

dφ
dw

)
=

d
dw

(
φ−2/N dφ

dw

)
(3.6.19)

and the conditions φ ∼ A(−w)b as w → −∞ and φ → 0 as w → +∞. This initial
behaviour may again be found by using the balancing argument. The dominant term
in the solution of (3.6.19) for any value of b may be found to be

φ ∼
(

w2

2(N −1)

)−N/2

as w → +∞. (3.6.20)

This yields the following useful result for r > r0, t 
 1,

u ∼
(

(r− r0)2

2(N −1)t

)−N/2

for tN/2(N+b) 
 (r− r0) 
 1. (3.6.21)

This approximation is independent of the behaviour of I(r) in the neighbourhood of
r = r0. Now referring to (3.6.12) and (3.6.21), we find that F satisfies (3.6.13) with

F ∼
(

(r− r0)2

2(N −1)

)−N/2

as r → r+
0 ,

F → 0 as r → +∞.

(3.6.22)

The next order approximation to the solution of (3.6.13) (by perturbation or other-
wise) may be found to be

F−2/N =
r2

N −2

(
lnr− N

2(N −2)
ln lnr− x0 +o(1)

)
as r → ∞, (3.6.23)

where x0 is a constant which may be found by solving (3.6.13) subject to (3.6.22).
In fact, equation (3.6.13) is invariant under the transformation r → r0r, F → r−N

0 F,
therefore, one may write x0 = lnr0 +γN , where the constant γN is independent of r0.
The form (3.6.23) suggests the transformation

u = r−Nc, x = lnr (3.6.24)

so that (3.6.11) becomes
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ct =
(

c−2/N(cx −Nc)
)

x
. (3.6.25)

Now if we write the boundary condition at x = 0 as

u(0, t) = U(t), (3.6.26)

we may solve (3.6.25) subject to the conditions

c ∼U(t)eNx as x →−∞

c ∼
(

x
(N −2)t

)−N/2

as x → +∞,

(3.6.27)

where the function U(t) must be found as part of the solution. The second condi-
tion in (3.6.27) conforms to the far field behaviour (3.6.14). The mass conservation
condition (3.6.9) in terms of c(x, t) may be written as∫ ∞

−∞
c(x, t)dx = M. (3.6.28)

In terms of new variables, (3.6.23) becomes

c−2/N ∼

(
x− N

2(N −2)
ln x− x0

)
(N −2)t

for t 
 1, x → ∞. (3.6.29)

This result actually holds for all t as x → ∞ as we presently show. Writing

c− tN/2G(x) ∼C(x, t) as x → ∞, (3.6.30)

where G(x) = eNxF (ex) so that G(x) ∼ (x/(N −2))−N/2 as x →∞, and substituting
in (3.6.25), we have, to the leading order,

Ct = −
(

xC
t

)
x
. (3.6.31)

The solution to (3.6.31) may be found in the form

C = t−1P(x/t), (3.6.32)

where P is an arbitrary function. Because, for fixed x > ln r0, u goes to zero more
rapidly than tN/2 as t → 0 (see (3.6.12)), P(σ) with σ = x/t must tend to zero faster
than σ−(N+2)/2 as σ → ∞. We infer that

c−2/N =

((
x−
(

N
2(N −2)

))
lnx− x0 +o(1)

)
(N −2)t

as x → ∞. (3.6.33)
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Now, the large time behaviour of the solution of (3.6.25) subject to (3.6.27), (3.6.28),
and (3.6.33) is found in some detail by using the balancing argument (Grundy 1988;
see Section 3.8):

c ∼ t−N/(N−2)g0(η)+ t−2N/(N−2) ln t g1(η)+ t−2N/(N−2)g2(η) as t →∞, (3.6.34)

where η = x/tN/(N−2). Substituting (3.6.34) into (3.6.25) and so on, we find that g0

is governed by

− N
N −2

(
g0 +η

dg0

dη

)
= −N

d
dη

(
g1−2/N

0

)
, (3.6.35)

showing that, to the leading order, the convective effect dominates (see Section 3.8).
The relevant solution of (3.6.35) is

g0(η) =
(

η
(N −2)

)−N/2

. (3.6.36)

As usual, (3.6.36) must be corrected by introducing an inner region. The asymptotic
structure is schematically shown in Figure 3.6. The representation (3.6.34) therefore
gives the outer expansion valid in the domain

x = O
(

tN/(N−2)
)

as t → ∞ with
x

tN/(N−2) > η0, (3.6.37)

x /  tN/(N − 2)

c t N/(N−2)

(a)
(b)

η0

Fig. 3.6 Schematic diagram representing the asymptotic behaviour of the solution of (3.6.25)
as t → ∞. g0 and h0 are given by (a) and (b), respectively; see equations (3.6.36) and (3.6.52).
(King 1993. Copyright c© 1993 The Royal Society, Great Britain. Reprinted with permission. All
rights reserved.)



3.6 Asymptotic solutions describing fast nonlinear diffusion 69

where the constant η0 may be found from the conservation equation (3.6.28):∫ ∞

η0

g0(η) = M

or

η0 = (N −2)
(

M
2

)−2/(N−2)

. (3.6.38)

One may obtain the ODEs governing the correction terms g1 and g2 in (3.6.34) as
follows.

− N
(N −2)

(
2g1 +η

dg1

dη

)
= −(N −2)

d
dη

(
g−2/N

0 g1

)
(3.6.39)

and

g1 − N
N −2

(
2g2 +η

dg2

dη

)
=

d
dη

(
g−2/N

0
dg0

dη

)
− (N −2)

d
dη

(
g−2/N

0 g2

)
.

(3.6.40)

Equations (3.6.39) and (3.6.40) can be solved to yield

g1 =
(

η
N −2

)−(N+2)/2

A1, (3.6.41)

g2 =
(

η
N −2

)−(N+2)/2(
A2 +

(
(N −2)A1

2
− N2

8(N −2)

)
lnη
)

,

(3.6.42)

where A1 and A2 are constants of integration. For the solution (3.6.34) to match the
distant behaviour (3.6.29) we must choose these constants to be

A1 =
N3

4(N −2)3 , A2 =
Nx0

2(N −2)
. (3.6.43)

Thus the solution (3.6.34), with gi(i = 0,1,2) found above reproduces the far field
behaviour to this order.

As we remarked earlier, we must introduce an inner layer to complete the solu-
tion. To that end we introduce the variable

z = x−η0tN/(N−2)− N2

2(N −2)2 ln t, (3.6.44)

where z = O(1) (see (3.6.37)). The inner expansion has the form

c ∼ t−N/(N−2)h0(z)+ t−2N/(N−2)h1(z) as t → ∞. (3.6.45)
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From the expressions (3.6.36) and (3.6.41) for g0(η) and g1(η), respectively, we
may find the matching conditions to be

h0 ∼
(

η0

N −2

)−N/2

as z → +∞, (3.6.46)

h1 ∼−
N

(
η0

N −2

)−N/2(
z− N

2(N −2)
lnη0 − x0

)
2η0

as z → +∞. (3.6.47)

Moreover, we must have

h0, h1 → 0 as z →−∞. (3.6.48)

Writing (3.6.25) in terms of z and t we obtain

ct =
(
η0N

N −2
t2/(N−2) +

N2

2(N −2)2

1
t

)
cz +

(
c−2/N(cz −Nc)

)
z
. (3.6.49)

Substituting (3.6.45) into (3.6.49) and so on, we obtain the following ODEs for
h0(z) and h1(z).

− N
N −2

η0
dh0

dz
=

d
dz

(
h−2/N

0

(
dh0

dz
−Nh0

))
, (3.6.50)

− Nh0

N −2
− N2

2(N −2)2

dh0

dz
− Nη0

N −2
dh1

dz
=

d2

dz2

(
h−2/N

0 h1

)
− (N −2)

d
dz

(
h−2/N

0 h1

)
.

(3.6.51)

Equation (3.6.50) may be solved subject to the conditions (3.6.46) and (3.6.48):

h0(z) =
(

η0

N −2

(
1+ e−2(z−z0)

))−N/2

; (3.6.52)

z0 is the constant of integration. Integrating (3.6.51) with (3.6.48), we get

− N
N −2

∫ z

−∞
h0(z′)dz′ − N2

2(N −2)2 h0 − N
N −2

η0h1

=
d
dz

(
h−2/N

0 h1

)
− (N −2)h−2/N

0 h1 (3.6.53)

which, in the limit z → +∞, may be written as

h1 ∼−N

(
η0

N −2

)−N/2

(
z+

1
N −2

+κN − z0

)
2η0

, (3.6.54)



3.6 Asymptotic solutions describing fast nonlinear diffusion 71

where

κN =
∫ ∞

−∞

((
1+ e−2z′

)−N/2 −H(z′)
)

dz′. (3.6.55)

Here, H(z′) denotes the Heaviside step function. Comparing (3.6.54) with (3.6.47)
we find that

z0 =
N

2(N −2)
lnη0 +

1
N −2

+κN + x0. (3.6.56)

Making use of (3.6.52), we arrive at the asymptotic form for the function U(t) in
the boundary condition (3.6.26):

U(t) ∼ a−N
(

M
2

)N/(N−2)+N2/(N−2)2

t−N/(N−2)−N3/2(N−2)2

×exp
(
−Nη0tN/(N−2)

)
as t → ∞, (3.6.57)

where the constant a is given by

a = (N −2)N/2(N−2) exp

(
1

(N −2)
+κN + x0

)
. (3.6.58)

Thus, the function U(t) decays exponentially for large time. In terms of the original
variables we may write the leading order behaviour of the solution for large t:

u ∼
(

M
2t

)N/(N−2)
(

a2
(

M
2

)−2N/(N−2)2

tN2/(N−2)2
exp
(

2η0tN/(N−2) + r2
)−N/2

)
(3.6.59)

for

r = O
(

tN2/2(N−2)2
exp
(
η0tN/(N−2)

))
,

where η0 is given by (3.6.38). The solution for lnr/(tN/(N−2)) > η0 and t → ∞ is
found with the help of (3.6.36) as

u ∼
(

r2 lnr
(N −2)t

)−N/2

. (3.6.60)

The above large time analysis assumes that the initial conditions have a compact
support. If one considers other types of initial conditions such as I(r) ∼ Ar−b, anal-
ysis similar to the above shows that the asymptotic solution also depends on the
constant b. This is in contrast to the results for n < 2/N where the large time be-
haviour (3.6.3) depends on the initial conditions only through M.

King (1993) showed that for N > 2 with 2/N < n < 1 and for N = 2 with n = 1,
the solution of IBVP (3.6.5)–(3.6.8) extinguishes in a finite time. For the former
case it was shown that the behaviour close to the extinction time is governed by
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a self-similar solution of the second kind. The limit N → ∞ is also considered to
demonstrate how various types of asymptotic behaviour arise from the evolution
over earlier times.

We refer to Galaktionov et al. (2000) for a rigourous analysis of solutions of
(3.6.1) for N ≥ 3, n = 2/N subject to nonnegative initial data u(x,0) ∈ L1(IRN) for
large time.

Bowen and King (2001) considered the fourth-order ‘thin film equation’

ut = −(unuxxx)x, n < 2 (3.6.61)

with the conditions

u = ux = 0 at x = ±1 (3.6.62)

and
u = u0(x) at t = 0, (3.6.63)

where u0(x) ≥ 0 is assumed to have a finite mass. Here, also, ‘appropriate’ similar-
ity solutions are identified to describe asymptotics which extinguish over finite or
infinite time.

In a related study, King and McCabe (2003) studied a generalised form of the
Fisher–KPP equation with fast nonlinear diffusion:

ut = ∇.
(
u−n∇u

)
+u(1−u), x ∈ IRN , t > 0 (3.6.64)

where N ≥ 1 is the spatial dimension and 0 < n < max(1,2/N). This equation at-
tempts to explain some observations concerning the dispersal of early Palaeoindian
peoples in North America; in this context the diffusivity is believed to be a de-
creasing function of the population density so that low concentrations disperse very
rapidly. King (1993) considered (3.6.64) in the absence of the reaction term.

King and McCabe (2003) studied (3.6.64) subject to the initial condition

u(x,0) = I(x) for x ∈ IRn (3.6.65)

where the total mass
∫
IRN I(x)dx is bounded.

In fact equations (3.6.64) and (3.6.65) do not possess a permanent travelling
waveform as a large time asymptotic solution. This can be easily seen for N = 1
and 0 < n < 2. In this case, if we put z = x− ct in (3.6.64) we have

d
dz

(
u−n du

dz

)
+ c

du
dz

+u(1−u) = 0. (3.6.66)

We look for solutions of (3.6.66) subject to the boundary conditions

u → 0 as z → ∞, u → 1 as z →−∞. (3.6.67)
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Writing dζ/dz = un in (3.6.66) we obtain

d2u
dζ 2 + c

du
dζ

+u1−n(1−u) = 0, (3.6.68)

where −1 < 1− n < 1. The nonlinear BVP (3.6.68) and (3.6.67) in terms of ζ do
not possess a classical solution for −1 < 1−n ≤ 0 because u = 0 is not a zero of the
nonlinear term. It was also shown by McCabe et al. (2002) that this problem does
not have any monotonically decreasing classical solutions for 0 < 1− n < 1. Thus
the Cauchy problem for (3.6.64) with 0 < n < 2 and N = 1 does not have permanent
travelling waveform solutions as its asymptotics.

With this background, King and McCabe (2003) investigated other large time be-
haviours of the above initial value problem. They considered specifically the radially
symmetric form of (3.6.64), namely,

ut = r1−N ∂
∂ r

(
rN−1u−n ∂u

∂ r

)
+u(1−u), r, t > 0, (3.6.69)

which is likely to furnish the relevant asymptotic behaviour of broader classes of
solutions, subject to the initial and boundary conditions

u = I(r) at t = 0, (3.6.70)

rN−1u−nur = 0 at r = 0, (3.6.71)

u(r, t) → 0 as r → ∞, (3.6.72)

where
M =

∫ ∞

0
rN−1I(r)dr (3.6.73)

is finite and 0 ≤ I(r) ≤ 1 is a smooth monotone decreasing function for all r ≥ 0.
King and McCabe (2003) essentially used the balancing argument and distin-

guished a large number of asymptotic behaviours often the similarity solutions of
simpler equation(s) containing the dominant terms would yield large time behaviour.
These solutions, however, would in general not be analytic near r = 0. To com-
plete the description of the large time behaviour of other solutions in the region
r = O(t1/2), t → ∞ would have to be found and appropriately matched with the
similarity solutions referred to above.

As pointed out earlier, similarity solutions of the truncated equations arising from
the balancing argument play an important role in the asymptotic forms. It would be
interesting to carry out the analysis of King and McCabe (2003) in a more formal
manner, possibly combining distinct behaviours in a single form (see Section 3.8).
These authors also considered the asymptotic behaviour for the more general quasi-
linear reaction diffusion equation

ut = (D(u)ux)x + f (u), x ∈ IR, t > 0,



74 3 Large Time Asymptotics via Direct Approaches

where

D(u) ∼ um, f (u) ∼ up as u → 0+,

f (u) > 0 for 0 < u < 1, f (1) = 0,

for initial data I(x) satisfying 0 < I < 1 for all x. They assumed that I = 0 for |x|> a
where a > 0 is a constant. Several distinct cases were identified for different values
of m and p and their asymptotic forms reviewed. It was observed that even semi-
linear equations can exhibit accelerating wavefronts for compactly supported initial
data provided these equations were ‘nearly linear’ for small u.

3.7 Large time asymptotic behaviour of periodic solutions
of some generalised Burgers equations

The Burgers equation has been much studied with respect to periodic initial con-
ditions; its analysis is easier because it is exactly linearisable to the heat equation
via the Cole–Hopf transformation (see Section 3.2). The generalised Burgers equa-
tions (GBEs), which actually appear in applications, do not, in general, admit ex-
act linearisation and must be treated directly. Sachdev et al. (2003) and Sachdev
et al. (2005) have treated this class of equations with periodic initial conditions.
They could directly find large time asymptotic behaviour of this class of equations.
The GBEs studied by these authors include the nonplanar Burgers equation, the
Burgers equation with linear damping, and the modified Burgers equation. We treat
here the nonplanar Burgers equation in some detail and summarise the results for
others; the analytic results thus obtained show excellent agreement with the numer-
ical solution of the relevant initial/boundary value problems for large time. The ana-
lytic approach is similar to that of Bender and Orszag (1978) for nonlinear ordinary
differential equations. The basic idea is to start with the solution of the linearised
form of the equation and then include nonlinear effects. It sometimes becomes pos-
sible to write even a general term for the series form of the solution that is sought;
however, the first few terms themselves give an excellent description of the asymp-
totic solution.

We seek the large time periodic solution of the nonplanar Burgers equation

ut +uux +
ju
2t

=
δ
2

uxx, (3.7.1)

where δ > 0 is small. j = 0,1,2 for plane, cylindrical, and spherical geometry, re-
spectively. The periodic solution of (3.7.1) should, for large time, tend to the peri-
odic solution

u(x, t) = A1 exp(−kt)t(− j/2) sin(πx/l), k =
δπ2

2l2 (3.7.2)
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of the linearised form of (3.7.1), namely,

ut +
ju
2t

=
δ
2

uxx. (3.7.3)

This is true for the planar case with j = 0 (see Sachdev 1987). The linear solution
(3.7.2) satisfies the initial condition

u(x, t0) = Asin
(πx

l

)
, 0 ≤ x ≤ l, (3.7.4)

and the boundary conditions

u(0, t) = u(l, t) = 0, (3.7.5)

where l and A are positive constants. The idea here is to correct the solution (3.7.2)
to take into account the effect of the nonlinear term in (3.7.1). This is done by first
writing

u(x, t) = A1e−ktt− j/2 sin
(πx

l

)
+ ε(x, t), (3.7.6)

where ε(x, t) is small and 2l periodic in x; moreover, we must have u(0, t) = 0 =
u(l, t). Substituting (3.7.6) into (3.7.1) and retaining only the linear terms in ε and
its derivatives, we have

εt +
j

2t
ε− δ

2
εxx ≈− π

2l
A2

1e−2ktt− j sin

(
2πx

l

)
. (3.7.7)

Writing the solution of (3.7.7) in the product form

ε(x, t) = T (t)X(x) (3.7.8)

and solving the resulting equations for T (t) and X(x) and so on we obtain

ε(x, t) ∼− A2
1l

2δπ
e−2ktt− j sin

(
2πx

l

)
+O

(
e−2ktt− j−1

)
, (3.7.9)

where we have imposed the periodicity condition in x on ε(x, t). Thus, to this order,
we have

u(x, t) = A1e−ktt− j/2 sin
(πx

l

)
− A2

1l
2δπ

e−2ktt− j sin

(
2πx

l

)
+O

(
e−2ktt− j−1

)
(3.7.10)

as t → ∞. The form (3.7.10) suggests that we seek solution of (3.7.1) in the form

u(x, t) = A1e−kt f1(x, t)+ e−2kt f2(x, t)+ e−3kt f3(x, t)+ . . . . (3.7.11)

Substituting (3.7.11) into (3.7.1) and equating to zero the coefficients of e−nkt , n =
1,2, . . ., we obtain the following system of linear PDEs for fi(x, t), i = 1,2, . . ..
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f1,t +
(

j
2t

− k

)
f1 − δ

2
f1,xx = 0, (3.7.12)

f2,t +
(

j
2t

−2k

)
f2 − δ

2
f2,xx = −A2

1 f1 f1,x, (3.7.13)

f3,t +
(

j
2t

−3k

)
f3 − δ

2
f3,xx = −A1 ( f1 f2,x + f2 f1,x) , (3.7.14)

. . .

fn,t +
(

j
2t

−nk

)
fn − δ

2
fn,xx = −A1 ( f1 fn−1,x + . . .+ fn−1 f1,x) . (3.7.15)

Using the initial and boundary conditions (3.7.4) and (3.7.5) and the periodicity
condition with respect to x, the solution of (3.7.12) is found to be

f1(x, t) = t− j/2 sin
(πx

l

)
. (3.7.16)

Using (3.7.16) in (3.7.13), we have

f2,t +
(

j
2t

−2k

)
f2 − δ

2
f2,xx = −A2

1π
2l

t− j sin

(
2πx

l

)
. (3.7.17)

Motivated by (3.7.10), we let

f2(x, t) = t− j
(

b0 +
b1

t
+

b2

t2 + . . .

)
sin

(
2πx

l

)
. (3.7.18)

Substituting (3.7.18) into (3.7.17) and equating coefficients of t− j, t− j−1, . . . on both
sides we get, after some simplification, the coefficients bi:

b0 = − A2
1l

2πδ
, (3.7.19)

4kbn+1 = ( j +2n)bn, n ≥ 0. (3.7.20)

Using (3.7.16) and (3.7.18) for f1 and f2 in (3.7.14) and employing the perturbative
approach as for f2(x, t), we find that f3(x, t) may be sought in the form

f3(x, t) = t−3 j/2 f31(t)sin

(
3πx

l

)
+ t−3 j/2 f32(t)sin

(πx
l

)
. (3.7.21)

Now putting the functions f1, f2, and f3 from (3.7.16), (3.7.18), and (3.7.21) into
(3.7.14) and equating the coefficients of sin(πx/l) and sin(3πx/l) on both sides, we
get the following ODEs for f31(t) and f32(t).
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f ′31(t)+
(
− j

t
+

3δπ2

l2

)
f31(t) = −3π

2l
A1

(
b0 +

b1

t
+

b2

t2 + . . .

)
, (3.7.22)

f ′32(t)+
(
− j

t
− δπ2

l2

)
f32(t) =

A1π
2l

(
b0 +

b1

t
+

b2

t2 + . . .

)
. (3.7.23)

We may now write

f31(t) = c0 +
c1

t
+

c2

t2 + . . . , (3.7.24)

f32(t) = d0 +
d1

t
+

d2

t2 + . . . . (3.7.25)

Putting (3.7.24) and (3.7.25) into (3.7.22) and (3.7.23), respectively, we get

c0 = −A1b0l
2δπ

,

6kcn+1 = ( j +n)cn − 3π
2l

A1bn+1, n ≥ 0 (3.7.26)

and

d0 = − A1l
2δπ

b0,

2kdn+1 = −( j +n)dn − A1π
2l

bn+1, n ≥ 0, (3.7.27)

where bi are given by (3.7.19) and (3.7.20). Thus, we obtain an elegant form of the
periodic solution of (3.7.1):

u(x, t) = A1e−ktt− j/2 sin
(πx

l

)
+ e−2ktt− j

(
∞

∑
n=0

bnt−n

)
sin

(
2πx

l

)

+ e−3ktt−3 j/2

(
∞

∑
n=0

cnt−n sin

(
3πx

l

)
+

∞

∑
n=0

dnt−n sin
(πx

l

))
+ . . . , (3.7.28)

where k = δπ2/(2l2), and bn, cn, and dn (n = 1,2,3, . . .) are given by (3.7.19),
(3.7.20), (3.7.26), and (3.7.27), respectively. If we put j = 0 in (3.7.28), we may
verify, after considerable simplification, that it reduces to the exact periodic solution

u =
2πν

l

{
∑∞

n=1 e−νn2π2t/l2
nAn sin

(
nπx

l

)}
A0 +∑∞

n=1 e−νn2π2t/l2An cos
(nπx

l

) , ν =
δ
2

(3.7.29)

of the Burgers equation. The coefficients An in (3.7.29) are defined in terms of Bessel
functions.
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We now summarise the results for some other GBEs. We consider the GBE with
linear damping,

ut +uux +λu =
δ
2

uxx, (3.7.30)

where λ > 0, and δ > 0 is small. This equation is again solved subject to (3.7.4)–
(3.7.5). The balancing argument (see Section 3.8) leads to three distinct cases: (i)
λ < δπ2/l2, (ii) λ = δπ2/l2, (iii) λ > δπ2/l2. For case (i) and λ sufficiently small,
the solution comes out to be

u(x, t) = e−kt
[
B1 sin

(πx
l

)]
+ e−2kt

[
B2 sin

(
2πx

l

)]

+ e−3kt
[

B3 sin
(πx

l

)
+B4 sin

(
3πx

l

)]
+ . . . as t → ∞, (3.7.31)

where

B2 =
B2

1π
2l(3λ −2k)

, B3 = −B1B2π
4kl

, B4 =
3B1B2π

4l(4λ −3k)
, . . . ; (3.7.32)

here, B1 is an arbitrary constant. For case (ii), namely λ = δπ2/l2, the asymptotic
solution is found to be

u(x, t) ≈ Ae−kt sin
(πx

l

)
+
(
−A2π

2l
t

)
e−2kt sin

(
2πx

l

)

+ e−3kt
(

A3t
12δ

sin
(πx

l

)
+

3A3t
4δ

sin

(
3πx

l

))
+ . . . (3.7.33)

as t →∞. The case λ > δπ2/l2 leads to a more complicated form of the solution (see
Srinivasa Rao and Satyanarayana (2008a) for details). In the appendix of the paper
by Sachdev et al. (2003), the solution of (3.7.30) was found in a different manner: we
used part of the Cole–Hopf transformation, namely, u(x, t) = −2νGx(x, t), ν = δ/2
in (3.7.30), and obtained, after an integration, the equation for G(x, t):

Gt −νGxx −νG2
x +λG = 0. (3.7.34)

The form

G(x, t) =
∞

∑
n=1

Φn(x)e−n(λ+a)t (3.7.35)

of the solution with u(x,0) = u0 sin(πx/l) was found such that it coincided with
the (exact) Fay solution of the plane Burgers equation in the limit λ → 0; here
a = ν(π2/l2).

The numerical study of (3.7.1), subject to (3.7.4) and (3.7.5), confirmed the
accuracy of the analytical solution as t → ∞. We also compared our analytical solu-
tion with the (approximate) analytical results of Parker (1981) who considered the
GBE
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∂V
∂ t

+β (t)V − γ(t)V
∂V
∂x

= ν(t)
∂ 2V
∂x2 . (3.7.36)

Parker (1981) used a generalised Cole–Hopf transformation and, under some further
assumptions, could reduce (3.7.36) to the heat equation. The solution, thus found,
agrees, under appropriate conditions, with the large time asymptotic solution that
we have obtained.

Sachdev et al. (2005) also sought large time periodic solutions of the modified
Burgers equation

ut +unux =
δ
2

uxx, (3.7.37)

where δ is greater than 0 and n is an integer greater than or equal to 2. The case
n = 1 corresponds to the Burgers equation. Equation (3.7.37) displays analytically
distinct solutions depending on whether n is odd or n even: for the former it enjoys
the antisymmetry property u(−x, t) = −u(x, t). N-wave solutions for the latter have
a more complicated structure (see Sachdev and Srinivasa Rao 2000).

Now we summarise the results for (3.7.37) with n = 2 and n = 3. For the former
we have

ut +u2ux =
δ
2

uxx, (3.7.38)

where δ > 0. Equation (3.7.38) has, for large time, the periodic solution

u(x, t) = A1e−(δ/2)t sin(x− x0); (3.7.39)

it exactly satisfies the linearised form of (3.7.38), namely, the heat equation

ut =
δ
2

uxx, (3.7.40)

and the conditions

u(x,0) = Asin(x− x0), −∞< x < ∞; u(x, t) = u(x+2π, t), t > 0. (3.7.41)

Here, x0 is an arbitrary constant. Our numerical study of (3.7.38), subject to (3.7.41)
with x0 = 0, showed that the zeros x = 0,x = 2π of the initial profile u(x,0) = Asinx
move as this profile evolves under (3.7.38). So the solution of (3.7.38) and (3.7.41)
was sought in the form

u(x, t) = A1e−εt sin(x− x̃0(t))+U1(x, t); ε =
δ
2

, (3.7.42)

where x̃0(t) → x0 as t → ∞ and U1(x, t) 
 A1e−εt sin(x− x̃0(t)). The shift of the
zero, x̃0(t), was assumed in the form

x̃0(t) = x0 + x1e−2εt + x2e−4εt + x3e−6εt + . . . . (3.7.43)

Following the same procedure as for the nonplanar GBE, we found that
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U1(x, t) ∼ e−3εt [c1 cos(x− x̃0(t))+ c2 cos3(x− x̃0(t))] , (3.7.44)

where

x̃0(t) = x0 − A2
1

6ε
e−2εt +O(e−4εt), (3.7.45)

and

c1 = − A3
1

24ε
, c2 =

A3
1

24ε
, x1 = −A2

1

6ε
. (3.7.46)

Continuing as for the nonplanar Burgers equation the solution with the first three
terms was found to be

u(x, t) = A1e−εt siny+ e−3εt [c1 cosy+ c2 cos3y]
+ e−5εt [c4 siny+ c5 sin3y+ c6 sin5y]+ . . . , (3.7.47)

where y = x− x̃0(t), x̃0(t) and c1,c2 are given by (3.7.45) and (3.7.46). We observe
that the solution (3.7.47) together with (3.7.45) and (3.7.46) involves two arbitrary
constants, A1 and x0. This is in contrast to the nonplanar Burgers equation which
involves only the initial amplitude A0. This is possibly due to the lack of antisym-
metry in the modified Burgers equation (3.7.37) with n = 2. For the case n = 3, we
have the GBE

ut +u3ux =
δ
2

uxx. (3.7.48)

The large time periodic solution of (3.7.48) subject to (3.7.4) and (3.7.5) was ob-
tained in the same manner as for the nonplanar GBE (3.7.1); here, the transforma-
tion x → −x,u → −u leaves (3.7.48) invariant. The periodic solution for (3.7.48)
was found in the form

u(x, t) = e−kt f0(x, t)+ e−4kt f1(x, t)+ e−7kt f2(x, t)+ . . . , (3.7.49)

where f0, f1, and f2 are given by

f0(x, t) ≡ f0(x) = A1 sin
(πx

l

)
, (3.7.50)

f1(x, t) ≈ −A4
1π
4l

t sin

(
2πx

l

)
+

A4
1l

48δπ
sin

(
4πx

l

)

≡ B1t sin

(
2πx

l

)
+B2 sin

(
4πx

l

)
, (3.7.51)

f2(x, t) = g3(t)sin
(πx

l

)
+g4(t)sin

(
3πx

l

)
+g5(t)sin

(
5πx

l

)
+g6(t)sin

(
7πx

l

)
,

(3.7.52)

where

g3(t) = − l2

3δπ2

[
D1t +E1 +

l2D1

3δπ2

]
, (3.7.53)
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g4(t) =
l2

δπ2

[
D2t +E2 − l2D2

δπ2

]
,

g5(t) =
l2

9δπ2

[
D3t +E3 − l2D3

9δπ2

]
,

g6(t) =
l2E4

21δπ2 ,

and

D1 =
A3

1B1π
4l

, D2 = −9A3
1B1π
8l

, D3 =
5A3

1B1π
8l

,

E1 = −A3
1B2π
8l

, E2 =
9A3

1B2π
8l

,

E3 = −15A3
1B2π
8l

, E4 =
7A3

1B2π
8l

. (3.7.54)

Table 3.1 Comparison of numerical and analytical solutions at t = 250. uanal is calculated from
(3.7.47) with three terms with δ = 0.01; unum is the numerical solution of (3.7.38) satisfying
u(x,0) = sinx; old age constant A1 =−0.3129, x0 = 1.8069. x̃0(t) is calculated from the expression
(3.7.45). (Sachdev et al. 2005. Copyright c© 2005 MIT and Blackwell Publishing, USA. Reprinted
with permission. All rights reserved.)

x unum uanal

0.0000 0.0884 0.0869
0.0628 0.0895 0.0882
0.2670 0.0909 0.0906
0.4744 0.0882 0.0883
0.7320 0.0774 0.0770
1.1624 0.0408 0.0396
1.4074 0.0154 0.0143
1.6211 −0.0056 −0.0065
1.8441 −0.0250 −0.0258
2.0672 −0.0415 −0.0420
2.2682 −0.0541 −0.0541
2.4787 −0.0653 −0.0645
2.6892 −0.0747 −0.0730
3.0976 −0.0876 −0.0858
3.3301 −0.0907 −0.0901
3.5531 −0.0895 −0.0896
3.7762 −0.0826 −0.0824
4.0118 −0.0678 −0.0670
4.2066 −0.0505 −0.0494
4.4202 −0.0287 −0.0276
4.6496 −0.0053 −0.0043
4.8632 0.0147 0.0156
5.5323 0.0609 0.0604
5.7554 0.0716 0.0701
5.9502 0.0792 0.0772
6.2832 0.0884 0.0869
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As we observed earlier, the modified Burgers equation (3.7.37) possesses dis-
tinct forms of the solution depending on whether n is odd or even. For n = 2, for
example, the asymptotic solution involves two arbitrary constants whereas for n = 3
it involves only one arbitrary constant. These constants represent memory of the
initial conditions and must be found by matching the asymptotic solution with the
numerical solution. The constants A1 and x0 in the solution (3.7.47) for n = 2 were
obtained by matching the numerical solution with the linear form of the solution for
large t when the nonlinear terms become negligible. With these values of A1 and
x0, our analytic solution gives a good description of the asymptotic behaviour; this
is clearly brought out by comparison of this solution with the numerical solution in
Table 3.1 For n = 3, there is only one unknown constant, A1, in the asymptotic form
of the solution. The asymptotic solution again agreed very well with the numerical
results.

3.8 Asymptotic behaviour of some generalised Burgers equations
via balancing argument

As we have observed earlier, the self-similar solutions (when they exist) describe
behaviour of the original nonlinear PDEs subject to some singular initial conditions.
These special solutions arise only if the basic system of nonlinear PDEs enjoys
certain symmetries (Sachdev 2000, Mayil Vaganan 1994). That is generally not the
case. Other avenues such as exact linearisation or transformation to simpler PDEs
better amenable to analysis are rather limited. One must therefore look for other
means to find asymptotic solutions which may subsequently be improvised or may
even be rendered ‘exact’ in some series form. This is what was accomplished in
the context of generalised Burgers equations by Grundy and his collaborators. Here
we describe in detail the work of Grundy et al. (1994) for the nonplanar Burgers
equation with a more general convective term:

ut +uαux =
δ
2

uxx − ju
2t

, α > 0, j > 0. (3.8.1)

Here, j = 0,1,2 refer to plane, cylindrical, and spherical symmetry, respectively.
The case j = 0,α = 1 corresponds to the plane Burgers equation which can be
exactly linearised to the heat equation via Cole–Hopf transformation and hence fully
analysed (see Sachdev 1987). We later summarise the results (via this method) for
other GBEs such as one with nonlinear damping. Sachdev and Nair (1987) first
sought similarity solutions of (3.8.1) in the form

u = t−1/2α f (η), η =
x

(2δ t)1/2
. (3.8.2)

Thus, (3.8.1) reduces to the ODE
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f ′′ +2η f ′ +
2(1−α j)

α
f −23/2δ−1/2 f α f ′ = 0. (3.8.3)

Sachdev and Nair (1987) solved the connection problem for (3.8.3) subject to the
conditions

f ∼ Aexp
(−η2)Hγ(η) as η → ∞, (3.8.4)

f → 0 as η →−∞, (3.8.5)

| f | < ∞, (3.8.6)

where γ = (1/α)− ( j +1) and A is a positive constant; Hγ(η) is the Hermite func-
tion. The condition (3.8.4) states that the solution of (3.8.3) tends to the solution
of its linear form as η → +∞. The numerical solution of (3.8.3) subject to (3.8.4)
revealed the following features of the solution for special values of j = 0,1,2. (i)
If 1/( j +2) < α < 1/( j +1), the solution of (3.8.3) and (3.8.4) vanishes at a finite
point. (ii) For 1/( j + 1) ≤ α < 1/ j, the solution of (3.8.3) and (3.8.4) is positive
over (−∞,∞) and tends to zero as η →−∞. (iii) For α j = 1, the solution of (3.8.3)
and (3.8.4) is positive on (−∞,∞) and tends monotonically to a nonzero constant
value as η →−∞. (iv) For α j > 1, the solution of (3.8.3) and (3.8.4) is positive and
diverges to +∞ as η →−∞.

Sachdev and Nair (1987) also numerically demonstrated the intermediate asymp-
totic character of the self-similar solution for α = 1/( j +1).

In a more recent study, Srinivasa Rao et al. (2002) studied both the connection
problem (3.8.3) and (3.8.4) and an initial value problem for (3.8.3). For the former
they showed that (i) f has a finite zero when 0 < α < 1/( j + 1), (ii) f is positive
on (−∞,∞) and decays algebraically to zero as η →−∞ provided that 1/( j +1) <
α < 1/ j, (iii) f is monotonic and tends to a nonzero positive constant as η →
−∞ if α j = 1, and (iv) f is monotonic and becomes unbounded as η → −∞ if
α j > 1. It was further shown that, for 1/( j + 1) < α < 1/ j, there exists a positive
solution of (3.8.3) which satisfies (3.8.4)–(3.8.6) and decays algebraically to zero as
η →−∞.

The IVP for (3.8.3) was solved subject to the conditions

f (0) = ν , f ′(0) = 0. (3.8.7)

A variety of solutions of the IVP (3.8.3) and (3.8.7) exists depending on the parame-
ters α and j; there is also a strong dependence on the amplitude parameter ν . These
solutions include all the behaviours at η =±∞, summarised above in the context of
the connection problem. Reference may be made to Srinivasa Rao et al. (2002) for
further details. The (possible) intermediate asymptotic character of these solutions
has not yet been explored analytically or numerically.

Numerical study of Sachdev and Nair (1987) shows that the self-similar solu-
tion of (3.8.1) for α > 1/( j + 1) does not constitute intermediate asymptotics for
solutions of (3.8.1) subject to initial data with compact support. Therefore, we seek
more general bounded solutions of (3.8.1) in the entire (α, j)-plane by relaxing the
requirement of self-similarity. Thus, we may seek different dominant balances of
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the terms in (3.8.1) in the lowest order approximation (of the solution) and improve
upon them by including the effect of the terms which were ignored earlier. The
problem, following this procedure, does not reduce to solving ODEs but to sim-
pler PDEs accruing from different (possible) dominant balances. This is indeed the
approach adopted by Grundy et al. (1994). They sought large time asymptotic be-
haviour of solutions of a slightly different form of (3.8.1) which have nonnegative
initial data and decay sufficiently rapidly as x→±∞ to ensure that the area under the
profile,

M(t) =
∫ ∞

−∞
u(x, t)dx, (3.8.8)

remains finite for all time. It readily follows from the new version of (3.8.1),
namely,

ut = uxx − (uα+1)x − ju
2t

, j > 0, α > 0, (3.8.9)

that

dM
dt

=
∫ ∞

−∞

[
uxx − (uα+1)x − ju

2t

]
dx (3.8.10)

= [ux]
∞
−∞−

[
uα+1]∞

−∞−
jM
2t

. (3.8.11)

Therefore, provided u and ux tend to zero as |x| → ∞, we have

Mt j/2 = M(1) = M1, say,

or
M(t) = M1t− j/2. (3.8.12)

Thus, we seek solution of (3.8.9) with the bounded initial data

u(x,1) = u1(x) (3.8.13)

which has either finite support or vanishes sufficiently rapidly as |x| → ∞. It seems
natural, and numerical results seem to suggest, that we may generalise the self-
similar concept and introduce the form

u(x, t) = t−av(η , t), η = xt−δ , (3.8.14)

where the constants a > 0 and δ > 0 may be chosen to meet other requirements
regarding the solutions. Substituting (3.8.14) into (3.8.9) we obtain the following
PDE for v = v(η , t),

tvt +
(

j
2
−a

)
v−δηvη = t1−2δ vηη − t1−δ−aα (vα+1)

η . (3.8.15)



3.8 Asymptotics of some generalised Burgers equations via balancing argument 85

The so-called balancing argument compares the relative importance, as t →∞, of the
terms on the RHS of (3.8.15) involving t explicitly. The simplest situation relates to
the case when diffusion dominates nonlinear convection. Thus, assuming that tvt =
o(1),η = O(1), and all the η derivatives are bounded as t → ∞, the case for which
diffusion is dominant, requires that the first term on the RHS must (asymptotically)
balance the terms on the left, the second term being less important. Thus we find
that

1−2δ = 0 and 1−δ −aα < 0, (3.8.16)

implying that

δ =
1
2
, a >

1
2α

. (3.8.17)

Expressing the mass M in (3.8.8) in terms of the variables v and η , we have

M = M1t− j/2 =
∫ ∞

−∞
u(x, t)dx = tδ−a

∫ ∞

−∞
v(η , t)dη . (3.8.18)

Because, to the lowest order, v is assumed to be a function of η alone, one may write
the large time expansion for v(η , t) as

v(η , t) = v0(η)+o(1), η = O(1). (3.8.19)

Therefore, (3.8.18) becomes

M1 = tδ−a+ j/2
[∫ ∞

−∞
v0(η)dη+o(1)

]
. (3.8.20)

Inasmuch as M1 is a constant and δ = 1/2, we must have

a =
j +1

2
(3.8.21)

and hence the inequality in (3.8.17) becomes

α >
1

j +1
. (3.8.22)

This is the region of the (α, j)-plane where diffusion dominates nonlinear convec-
tion. Putting (3.8.19) into (3.8.15) we find the equation satisfied by v0(η):

v′′0 +
η
2

v′0 +
v0

2
= 0. (3.8.23)

The general solution of (3.8.23) is

v0 = Aexp(−η2/4)
∫ η

0
exp(r2/4)dr +Bexp(−η2/4), (3.8.24)
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where A and B are constants. For the solution v0, given by (3.8.24), to converge as
η → ∞, we must require that A = 0. Substituting (3.8.24) with A = 0 into (3.8.20),
we evaluate the constant B and hence obtain the asymptotic behaviour

v0 =
M1

2
√
π

exp

(
−η2

4

)
(3.8.25)

to the lowest order. Thus, the asymptotic solution u (as t → ∞) of (3.8.9) for α >
1/( j +1) may be written as

u(x, t) =
M1

2
√
π

t−( j+1)/2 exp

(
−x2

4t

)
{1+o(1)}. (3.8.26)

The result (3.8.26) holds uniformly in −∞< x < ∞. Substituting

v(η , t) = v0(η)+ ε(η , t), (3.8.27)

into (3.8.15) and solving the equation for the perturbation term ε and so on, one
may check for the special case α = 2/( j +1) that

v(η , t) = v0(η)−2

(
M1

2
√
π

)2/( j+1)
√

j +1
j +3

v′0t−1/2 log t +O
(

t−1/2
)

(3.8.28)

which may conveniently be written as

v(η , t) = v0(η1)+O
(

t−1/2
)

, (3.8.29)

where

η1 = η−2

(
M1

2
√
π

)2/( j+1)
√

j +1
j +3

t−1/2 log t. (3.8.30)

Figure 3.7 shows the solution (3.8.14), (3.8.28)–(3.8.30) for α = 2/3, j = 2 for
different values of t = 500,1500. The initial condition for the numerical solution
for this set of parameters was chosen to be

u0(x) =
{H(x+1)−H(x−1)}

2
, (3.8.31)

where H denotes the Heaviside function. This gives M1 = 1 (see (3.8.18)). Figure 3.8
shows v = ut3/2 versus η for different times. The agreement of the numerical solu-
tion with the analytic asymptotic results is remarkable.

Next we consider the case for which both nonlinear convection and diffusion
terms in (3.8.15) balance those on the left-hand side as t → ∞. This requires that

1−2δ = 1−δ −aα = 0; (3.8.32)
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Fig. 3.7 Convergence of the numerical solution of (3.8.9) and (3.8.31) to the large time solution
(3.8.14) and (3.8.28) for α = 2/3, j = 2 at t = 500 (—), 1500 (...). (Grundy et al. 1994. Copyright
c© 1994 Narosa Publishing House, New Delhi. Reprinted with permission. All rights reserved.)
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Fig. 3.8 Same as in Figure 3.7 with η replaced by the scaled coordinate η1 (see (3.8.30)). (Grundy
et al. 1994. Copyright c© 1994 Narosa Publishing House, New Delhi. Reprinted with permission.
All rights reserved.)
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that is,

δ =
1
2
, a =

1
2α

. (3.8.33)

The mass invariance condition (3.8.18) in the present case becomes

M1 = t [α( j+1)−1]/2α
∫ ∞

−∞
v(η , t)dη . (3.8.34)

If we write
v(η , t) = v0(η)+o(1) (3.8.35)

in (3.8.34), as t → ∞, η = O(1), we obtain

M1 = t [α( j+1)−1]/2α
∫ ∞

−∞
v0(η)dη . (3.8.36)

We assume that the integral in (3.8.36) converges. Then,

α =
1

j +1
(3.8.37)

and hence the mass
M1 =

∫ ∞

−∞
v0(η)dη . (3.8.38)

is constant. Continuing as before, we find that, to leading order terms, v0 is governed
by

v′′0 −
(
vα+1

0

)′
+
η
2

v′0 +
v0

2
= 0 (3.8.39)

which, on integration, yields

v′0 − vα+1
0 − η

2
v0 = A, (3.8.40)

where A is a constant. For the integral in (3.8.38) to converge we require that v0 =
o
(
η−1

)
as |η | → ∞; therefore, A = 0 in (3.8.40). An integration of (3.8.40) with

A = 0 yields

v0 =
exp
(−η2/4

)
{

B+
√
απ erfc

(
η
√
α

2

)}1/α , (3.8.41)

where B is an arbitrary constant which may be found from (3.8.38) in terms of M1.
In fact (3.8.41) is the exact similarity solution of (3.8.9) which was first found by
Sachdev and Nair (1987) for α = 1/( j + 1). In the present context we write the
solution for α = 1/( j +1) in the form

u = t−1/2αv0(η){1+o(1)} (3.8.42)
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as t → ∞, where v0(η) is given by (3.8.41) in terms of η = x/t1/2. This result is
also uniform in −∞ < x < ∞. The numerical solution of (3.8.9) for α = 1/3, j =
2 (satisfying α = 1/( j + 1)) with (3.8.31) as the initial condition as well as the
asymptotic solution (3.8.41) is depicted in Figure 3.9. This plot shows ut3/2 versus
η . The excellent agreement of the large time asymptotic solution with the numerical
solution is apparent. We show later how to write an ‘exact solution’ of (3.8.9) for
α > 1/( j + 1) as an infinite series which, in the limit α → 1/( j + 1), tends to the
closed form solution (3.8.41).

The case α < 1/( j + 1) presents more difficulties. To understand it better, we
briefly review the exact single hump solution of the Burgers equation, the case
j = 0,α = 1 in (3.8.1). By using the Cole–Hopf transformation, the solution of
the Burgers equation subject to the δ function initial condition

u(x,0) = Aδ (x)

may be explicitly written as

u(x, t) =

√
δ
2t

(eR −1)e−x2/2δ t

√
π+(eR −1)

∫ ∞
x/
√

2δ t e−r2 dr
(3.8.43)

(see Whitham 1974, Sachdev 1987); here R = A/δ is a constant in the present case
and referred to as the Reynolds number. The Reynolds number R (a dimensionless
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Fig. 3.9 Convergence of the numerical solution of (3.8.9) and (3.8.31) to the large time solution
(3.8.14) and (3.8.41) for α = 1/3, j = 2 at t = 500 (—), 1500 (...). (Grundy et al. 1994. Copyright
c© 1994 Narosa Publishing House, New Delhi. Reprinted with permission. All rights reserved.)
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number) represents the ratio of nonlinear effects to diffusive effects and facilitates
the discussion of the solution for large or small viscosity.

For R 
 1, diffusion dominates convection and (3.8.43) may be approximated by

u(x, t) ≈
√

δ
2πt

R exp

(
− x2

2δ t

)

=
A√

2πδ t
exp

(
− x2

2δ t

)
. (3.8.44)

This, in fact, is the exact solution of the heat equation, ut = (δ/2)uxx. On the other
hand, if convection dominates diffusion, we may write (3.8.43) as

u =

√
2A
t

v(η ,R), η =
x

(2At)1/2
, (3.8.45)

where

v(η ,R) =
eR −1

2
√

R

e−η2R
√
π+(eR −1)

∫ ∞
η
√

R exp(−r2)dr

∼ 1

2
√

R

eR(1−η2)
√
π+ eR

∫ ∞
η
√

R exp(−r2)dr
as R → ∞. (3.8.46)

The form (3.8.46) helps to write approximate forms of the solution in different
ranges of η . Because

∫ ∞

ζ
e−r2

dr ∼ e−ζ 2

2ζ
as ζ → ∞, (3.8.47)

we may approximate (3.8.46) for η > 0 as

v ∼ η

1+2η
√
πReR(η2−1)

(3.8.48)

and, therefore, for 0 < η < 1, we have

v ∼ η as R → ∞; (3.8.49)

for η > 1, we find that
v → 0 as R → ∞. (3.8.50)

Thus, we get the inviscid or outer solution v ∼ η in 0 < η < 1 and zero solution out-
side. This inviscid solution must be supplemented by transition layers in the leading
and trailing edges.

In the leading edge η � 1, we may approximate (3.8.48) by

v ≈ 1

1+2
√
πReR(η2−1)

(3.8.51)
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which shows that the transition layer near η ≈ 1 is O
(
R−1

)
. There is another

(weaker) transition layer about η = 0 which smooths out the discontinuity in the
derivative at η = 0 : v = 0 in η < 0 and v = η in 0 < η < 1. It may be observed from
the denominator of (3.8.46) that this transition layer occurs when η = O

(
R−1/2

)
.

We may approximate (3.8.46) in this layer as

v ≈ e−Rη2

2
√

R
∫ ∞
η
√

R e−r2dr
. (3.8.52)

We infer from (3.8.46), (3.8.51), and (3.8.52) that for some fixed time and R →
∞, the leading edge becomes a discontinuity in u and the trailing edge displays a
discontinuity in ux.

We observe the same behaviour for the nonplanar Burgers equation for which we
have no Cole–Hopf transformation; we must deal with this equation directly using
the balancing argument or otherwise.

We return now to (3.8.15) and consider the third possibility that convection dom-
inates diffusion for large time when η = O(1). Then (3.8.15) shows that, for this to
happen, we must have

1−δ −aα = 0 and δ >
1
2

(3.8.53)

so that convection balances the terms on the left. Here, also, we assume that vt =
o(1). The relations (3.8.53), together with the mass conservation condition (3.8.20),
give

a =
(2+ j)

2(1+α)
, (3.8.54)

δ =
(2−α j)
2(1+α)

(3.8.55)

and

α <
1

j +1
. (3.8.56)

The condition (3.8.56), in conjunction with (3.8.22) and (3.8.37), completes (α, j)
parameter space. Using the constraints (3.8.54) and (3.8.55) in (3.8.15) we get

tvt − (2+ j)
2(α+1)

v− (2−α j)
2(1+α)

ηvη +
jv
2

+
(
vα+1)

η = t [α( j+1)−1]/(α+1)vηη . (3.8.57)

Now, for t → ∞,η = O(1), we substitute

v(η , t) = v0(η)+o(1)

into (3.8.57) and obtain, to leading order,

(
vα+1

0

)′ − (2−α j)
2(1+α)

ηv′0 +
( jα−2)
2(α+1)

v0 = 0, (3.8.58)
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which may be integrated to yield

v0 {(2−α j)η−2(α+1)vα0 )} = C, (3.8.59)

where C is the constant of integration. We must choose C negative to avoid multi-
valuedness of v0(η). Therefore, as η →−∞, (3.8.59) gives

v0 ∼ C
(2−α j)η

(3.8.60)

which, however, would make the integral
∫ ∞
−∞ v0(η)dη diverge. We must therefore

choose C = 0. Let the solution be zero for η < 0 and for η > η1, a constant, so that
the above integral converges. Thus, we have

v0 =

⎧⎪⎪⎨
⎪⎪⎩

0, η < 0,{
(2−α j)η
2(α+1)

}1/α
, 0 ≤ η ≤ η1,

0, η > η1.

(3.8.61)

The conservation of mass (3.8.20) gives

M1 =
{

(2−α j)
2(α+1)

}1/α ∫ η1

0
η1/αdη

or

η1 =
{

M1(1+α)
α

}α/(α+1){2(α+1)
(2−α j)

}1/(α+1)

, (3.8.62)

to leading order. If M1 is known, (3.8.62) gives the value of η1.
The numerical solution for ut(2+ j)/2(α+1) as a function of η for the parametric

values j = 1 and α = 1/4 is shown in Figure 3.10. Here, the value of the unscaled
diffusion coefficient δ was chosen to be 10−2; this, however, does not affect the
outer solution because the particular combination of variables chosen in the anal-
ysis eliminates δ so that η1 in (3.8.62) is independent of δ . The numerical results
confirm the veracity of the outer solution. It is clear from (3.8.61) that the solution
to this order is not uniformly valid for all η . As we showed earlier for the Burgers
equation (see (3.8.46) and (3.8.52)), it must be supplemented by leading and trail-
ing edges to make it continuous for all x; it would thus have an infinite support. The
discontinuities at η = 0 and η = η1 must be smoothed out by taking into account
the effect of the diffusion term. To that end we first introduce the scaled variable

y = (η−η1) tβ , β > 0 (3.8.63)

near η = η1 and transform (3.8.57) in terms of v = v(y, t). We get[
tvt +

{
β − (2−α j)

2(1+α)

}
yvy +

( jα−2)
2(α+1)

v

]
t−β − (2−α j)

2(α+1)
η1vy +

(
vα+1)

y

= tβ−[1−α( j+1)]/(α+1)vyy. (3.8.64)
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Fig. 3.10 Convergence of the numerical solution of (3.8.9) and (3.8.31) to the large time solution
(3.8.81) for α = 1/4, j = 1 at t = 500 (—), 1500 (...). (Grundy et al. 1994. Copyright c© 1994
Narosa Publishing House, New Delhi. Reprinted with permission. All rights reserved.)

To include the effect of the diffusion term on the RHS of (3.8.64) as t →∞, we must
choose

β =
{1−α( j +1)}

(α+1)
. (3.8.65)

Now letting
v(y, t) = w0(y)+o(1) (3.8.66)

as t → ∞, y = O(1), and substituting it into (3.8.64), we get, to the leading order,
the ODE

w′′
0 −
(
wα+1

0

)′
+

(2−α j)
2(α+1)

η1w′
0 = 0, (3.8.67)

where prime now denotes the derivative with respect to y. Equation (3.8.67) must
be solved subject to the matching conditions arising from the outer solution (3.8.61)
for η < η1, t → ∞. Thus, we require that

w0 →
{

(2−α j)η1

2(α+1)

}1/α
as y →−∞. (3.8.68)

In addition, we must satisfy the vanishing conditions as y → ∞:

w0,w
′
0 → 0 as y → +∞. (3.8.69)
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Integrating (3.8.67) subject to the conditions (3.8.69), we have

w′
0 = wα+1

0 − (2−α j)
2α+1

η1w0 (3.8.70)

which, in turn, has the solution

w0 =

⎧⎪⎪⎨
⎪⎪⎩

η1(2−α j)

2(α+1)
[

1+ exp

(
αη1

(2−α j)
2(α+1)

(y− y0)
)]
⎫⎪⎪⎬
⎪⎪⎭

1/α

, (3.8.71)

satisfying the end condition (3.8.68). Here, y0 is an arbitrary constant. Thus the so-
lution (3.8.71) is unique within this arbitrary constant. This constant is the memory
of the initial condition and may be found by considering higher-order terms in the
expansion (3.8.66).

Now we correct the large time solution near η = 0 by introducing the trailing
edge. We write

ζ = ηtb, b > 0. (3.8.72)

The (nonzero) outer solution (3.8.61) in terms of ζ becomes

v0 =
{

(2−α j)
2(α+1)

}1/α
ζ 1/α t−b/α . (3.8.73)

Motivated by the form (3.8.73) we write

v = t−b/ατ(ζ , t), (3.8.74)

where ζ = O(1), corresponding to t → ∞, η → 0. Equation (3.8.57) now becomes

tτt +
{

b− (2−α j)
2(α+1)

}
ζτζ +

{
α j−2

2(α+1)
− b
α

}
τ+
(
τα+1)

ζ

= t2b−[1−α( j+1)]/(α+1)τζζ . (3.8.75)

To make the diffusion term on the RHS of (3.8.75) comparable to those on the left
as t → ∞, we must choose

b =
[1−α( j +1)]

2(α+1)
. (3.8.76)

Now seeking the solution of (3.8.75) in the form

τ(ζ , t) = τ0(ζ )+o(1) (3.8.77)

as t → ∞, ζ = O(1), we get, to leading order,
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τ ′′0 − (τα+1
0

)′
+
ζτ ′0
2

+
(1− jα)

2α
τ0 = 0. (3.8.78)

The boundary condition as x →−∞ now becomes

τ0 → 0, ζ →−∞. (3.8.79)

The matching condition (3.8.73), relating (3.8.78) to the outer solution, becomes

τ0 ∼
{

2−α j
2(α+1)

}1/α
ζ 1/α , ζ → +∞. (3.8.80)

Thus, one must solve the nonlinear ODE (3.8.78) for τ0 subject to the end condi-
tions (3.8.79) and (3.8.80). Cazenave and Escobedo (1994) showed that a ‘similar’
boundary value problem for j = 0 posed by Grundy et al. (1994) has a unique solu-
tion with exponential decay as ζ → ∞.

We may now summarise the asymptotic results in terms of the original variables
for the case α < 1/( j + 1) in the language of singular perturbation theory in the
three layers we have discussed above.

In the outer region, we have η = x/tδ = O(1), 0 < η < η1,

u(x, t) = t−a
{

(2−α j)x
2(α+1)tδ

}1/α
{1+o(1)} (3.8.81)

=
{

(2−α j)x
2(α+1)t

}1/α
{1+o(1)} as t → ∞.

In the leading edge described by

y =

{
x−η1tδ

tδ

}
tβ =

{
x−η1tδ

}
tα(2+α j)/2(α+1) = O(1), (3.8.82)

the solution is given by

u(x, t) = t−aw0(y){1+o(1)}

= t−a

⎧⎨
⎩ η1(2−α j)

2(α+1)
[
1+ eαη1(2−α j)(x−η1tδ−y0tδ1)/2(α+1)tδ1

]
⎫⎬
⎭

1/α

{1+o(1)}

(3.8.83)

as t →∞, where δ1 = α(2+α j)/2(α+1) and a = (2+ j)/2(α+1). Finally, in the
trailing edge,

ζ = ηt [1−α( j+1)]/2(α+1) = xt−1/2, (3.8.84)

we have

u = t−1/2ατ0

( x

t1/2

)
{1+o(1)} (3.8.85)
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as t → ∞ where τ0(ζ ) is given by the solution of the boundary value problem
(3.8.78)–(3.8.80).

We now summarise the asymptotic results obtained by the balancing argument
for a related GBE,

ut = auxx −b(un)x − cup, p ≥ 1, n ≥ 1, (3.8.86)

where a,b, and c are positive constants (Grundy 1988). This equation has several in-
teresting special cases of physical interest. For b = c = 0, we have the heat equation.
The special case b = 0 represents the reaction–diffusion equation which has been
extensively studied. The case c = 0 is a direct generalisation of the Burgers equa-
tion with higher-order nonlinearity; it is often referred to as the modified Burgers
equation.

Equation (3.8.86) with nonnegative initial data on a finite support was first con-
sidered by Sachdev et al. (1986). Supported by extensive computational work, these
authors proposed that, for p = 2n−1, p > 3, the solution of (3.8.86) for large time
tends to the linear solution,

u(x, t) → At−1/2 exp
(−x2/4t

)
, (3.8.87)

which vanishes as x → ±∞; the constant A depends only on the initial data. The
result (3.8.87) is obtained by retaining only the linear terms in (3.8.86). For p < 3,
Sachdev et al. (1986) conjectured that

u(x, t) → t−1/(p−1) f (η), η = xt−1/2 (3.8.88)

as t → ∞, where f (η) is the solution of the boundary value problem

a f ′′ +
η f ′

2
+

f
p−1

−b
(

f (p+1)/2
)
− c f p = 0, (3.8.89)

f (±∞) = 0. (3.8.90)

A detailed numerical solution of (3.8.89) and (3.8.90) showed that it behaves like

f ∼ Aη(3−p)/(p−1) exp
(−η2/4

)
as η → +∞; (3.8.91)

the vanishing condition at η = −∞ could only be satisfied for a certain range of
values of A.

Grundy (1988) studied this problem in great detail in the manner of the nonplanar
GBE (3.8.9) above. The parameters a,b, and c in (3.8.86) may be scaled out except
when p = 2n−1; in the latter case, the parameter c still persists. Thus, without loss
of generality, one may write (3.8.86) as

ut = uxx − (un)x − cup, p ≥ 1, n ≥ 1, (3.8.92)

where c = 1 when p �= 2n−1. The initial and boundary conditions for (3.8.92) may
be chosen to be
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u(x,0) = u0(x) (3.8.93)

and
u(x, t) → 0, x →±∞. (3.8.94)

Here, u0(x) ≥ 0 has either a compact support or vanishes sufficiently rapidly as
x →±∞. Grundy (1988) again introduced the ‘mass’

M(t) =
∫ ∞

−∞
u(x, t)dx (3.8.95)

and, by using (3.8.92)–(3.8.94), concluded that

dM
dt

= −c
∫ ∞

−∞
updx. (3.8.96)

Clearly, if the absorption term is absent, M is invariant in time; if the absorption
term is small for large time, M may approach a constant as t → ∞. Here again,
Grundy (1988) introduced the independent variables η = xt−δ , δ > 0, and t and
transformed (3.8.92) to

tvt +αv−δηvη︸ ︷︷ ︸
A

= t1−2δ vηη︸ ︷︷ ︸
B

− tα(n−1)+1−δ (vn)η︸ ︷︷ ︸
C

− tα(p−1)+1vp︸ ︷︷ ︸
D

(3.8.97)

via the transformation
u = tαv(η , t), (3.8.98)

where α < 0. The respective terms in (3.8.97) were denominated as A,B,C, and D
as indicated above. Putting (3.8.98) into (3.8.95) and (3.8.96), we obtain

M(t) = tα+δ
∫ ∞

−∞
v(η , t)dη (3.8.99)

and
dM
dt

= −ctα p+δ
∫ ∞

−∞
vp(η , t)dη . (3.8.100)

Depending on which set of terms in (3.8.97) balances, the following asymptotic
behaviours of solutions of (3.8.92) were discovered.

(i) The linear balance with n > 2 and p > 3. In this case

u(x, t) → ct−1/2 exp
(−x2/4t

)
(3.8.101)

as t → ∞ uniformly in x. Here, M(t) ∼ 2c
√
π.

(ii) The linear absorption balance with p < 2n−1, p < 3. Here the solution was
found in the form

u(x, t) ∼ t−1/(p−1)v0

(
xt−1/2

)
as t → ∞ uniformly in x, where v0(η) is the solution of the BVP
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v′′0 +
ηv′0

2
+

v0

p−1
− vp

0 = 0, v0(±∞) = 0. (3.8.102)

The asymptotic behaviour of the solution of the BVP (3.8.102) was found to be

v0(η) ∼ A|η |(3−p)/(p−1) exp
(−η2/4

){
1+O(η−2)

}
, η →±∞

by Brezis et al. (1986). Here,

M(t) ∼ t(p−3)/2(p−1)
∫ ∞

−∞
v0(η)dη . (3.8.103)

(iii) p = 2n− 1, p < 3. In this case a similarity solution exists (Sachdev et al.
(1986)) and is governed by (3.8.89)–(3.8.91) with a = 1, b = 1. Here,

M(t) ∼ O(t(p−3)/2(p−1)), t → ∞. (3.8.104)

(iv) p > n+1, n < 2. In this case, the convection term dominates. The dominant
behaviour is given by

v0 =
(η

n

)1/(n−1)
(3.8.105)

and must be supplemented by leading and trailing edge solutions. Specifically,
for 1 < n < 2 and p > n+1, we have

u(x, t) ∼ t−1/n
(η

n

)1/(n−1)
(3.8.106)

as t → ∞, η = xt−1/n = O(1). For t → ∞, y = (η−η1)(2−n)/n = O(1), we have

u(x, t) ∼ t−1/n

{
η1

n
[
1+μ2eη1(n−1)y/n

]}1/(n−1)

. (3.8.107)

For t → ∞, ζ = xt−1/2 = O(1),

u(x, t) → t−1/2(n−1)W0(ζ ), (3.8.108)

where W0(ζ ) is governed by the boundary value problem

W ′′
0 +

ζ
2

W ′
0 +

W0

2(n−1)
− (W n

0 )′ = 0, (3.8.109)

W0 → 0 as ζ →−∞ and W0 ∼
(
ζ
n

)1/(n−1)

as ζ → +∞. (3.8.110)

Here,

M(t) ∼
∫ η1

0
v0(η)dη =

(n−1)
n

(
1
n

)1/(n−1)

ηn/(n−1)
1 . (3.8.111)
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(v) 2n − 1 < p < n + 1, 1 < n < 2. This case refers to the situation when the
terms A,C, and D in (3.8.97) balance and B is small, implying that diffusion is
subdominant. Here,

u(x, t) → t−1/(p−1)v0(η) (3.8.112)

as t → ∞, η = xt−(p−n)/(p−1) = O(1). v0(η) is governed by

v0

(p−1)
+

(p−n)
(p−1)

ηv′0 = (vn
0)

′ + vp
0

with the implicit solution

η =
nvn−p

0

(p−n)

{
1−
[
1− (p−1)vp−1

0

](p−n)/(p−1)
}

.

Leading and trailing edge solutions must be found as for case (iv) satisfying
v0(0) = 0.

(vi) n = 2, p > 3. In this case the terms A, B, and C balance and D = O
(

t−(p−3)/2
)

is small. The solution here is found to be

u(x, t) ∼ t−1/2v0(η) (3.8.113)

as t → ∞, η = xt−1/2 = O(1), where

v0(η) =
e−η2/4[

C− ∫ η0 exp(−s2/4)ds
] (3.8.114)

and C >
√
π is an arbitrary constant. Here, v0 → 0 as η → ∞. The asymptotic

form (3.8.113) holds uniformly in x. Here,

M(t) →
∫ ∞

−∞
v0(η)dη (3.8.115)

as t → ∞.

Grundy (1988) considered two other interesting ‘singular’ cases which need intro-
duction of complicated similarity variables different from those used for the cases
(i)–(vi).

(vii) p = 3, n ≥ 2. In this case the terms D, A, and B balance and C is small,
requiring that α = −δ = −1/2; with this choice, M(t) is asymptotically in-
variant even when the absorption term is present. This is clearly untenable. So
Grundy (1988) introduced more general variables involving log t terms:

u = t−1/2(log t)γv(η , t),η = xt−1/2(log t)β .

Proceeding with the balancing argument as in the previous cases, he arrived at
the lowest-order solution
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u(x, t) =

√
31/2

2c
t−1/2(log t)−1/2e−x2/4t (3.8.116)

as t → ∞, uniformly in x. Here,

M(t) ∼ 2

√
π31/2

2c
(log t)−1/2. (3.8.117)

(viii) For the case p = n+1, 1 < n < 2, Grundy (1988) proceeded in the manner
of case (vii) and concluded that, for t →∞, y = (η−η1)(2−n)/n(log t)−2(n−1)/n =
O(1),

u(x, t) → t−1/n(log t)−1/n
{

η1

n[1+μ2eη1(n−1)y/n]

}1/(n−1)

. (3.8.118)

For t → ∞, ζ = xt−1/2 = O(1),

u(x, t) → t−1/2(n−1)W0(ζ ), (3.8.119)

where the function W0(ζ ) is the same as for case (iv) (see (3.8.109)–(3.8.110)).
(ix) For the case n = 1, p ≥ 1, Grundy (1988) introduced the variable X = x− t

into (3.8.92) to obatain

ut = uXX −up,

with u(X ,0) = u0(X) and u(X , t) → 0 as X →±∞.
(3.8.120)

He then carried out the balancing argument for (3.8.120)1 by introducing the
usual transformation u = tαv(η , t), η = Xt−δ , and so on. He finally arrived at
the following result for the special case p = 3, n = 1;

u(x, t) →
(√

3
2

)1/2

t−1/2(log t)−1/2e−x2/4t (3.8.121)

as t → ∞, uniformly in x, and

M(t) ∼ 2
√
π

(√
3

2

)1/2

(log t)−1/2. (3.8.122)

Other cases with p < 3 and p > 3 were also treated.
(x) The final case p = 1, n > 1 turns out to be singular (see (3.8.112)). One must

introduce the transformation

u(x, t) = e−t v(η , t), η = xt−1/2 (3.8.123)
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in (3.8.86). A balancing argument in the transformed equation leads to the
asymptotic solution

u(x, t) ∼ Ae−t−x2/4t (3.8.124)

as t → ∞, uniformly in x, and

M(t) ∼ 2A
√
πt1/2e−t . (3.8.125)

Observing the large diversity of asymptotic solutions of (3.8.86) summarised above,
we may marvel at its rich structure. Clearly, further work is needed to fully under-
stand the evolution of solutions of generalised Burgers equations such as (3.8.9) and
(3.8.86).

We refer the reader to Sections 4.6–4.8 for a rigourous analysis of solutions for
special cases of (3.8.92) and the references therein.

Grundy and his collaborators (Grundy et al. 1994, Dawson et al. 1996, Van Duijn
et al. 1997) extended the balancing argument to the study of a related class of non-
linear parabolic equations. We quote the main results of Dawson et al. (1996) for
the (scaled) two-dimensional equation

∂
∂ t

(u+up)+
∂u
∂x

=
∂ 2u
∂x2 +

∂ 2u
∂y2 for (x,y, t) ∈ Q, (3.8.126)

subject to the initial condition

u(x,y,0) = u0(x,y), (x,y) ∈ IR2. (3.8.127)

Here Q = {(x,y, t) : −∞ < x,y < ∞, t > 0} and p > 0. They investigated the large
time behaviour of the nonnegative solution of the problem (3.8.126) and (3.8.127),
where u ≥ 0 is the (redefined) concentration which satisfies the mass conservation
law ∫ ∫

IR2
(u+up)(x,y, t)dxdy =

∫ ∫
IR2

(u0 +up
0)(x,y)dxdy := M (3.8.128)

for all t ≥ 0. This requires that for all t ≥ 0, u(x,y, t) → 0 sufficiently fast as
|x|, |y| →∞ so that the term u+up is integrable (see (3.8.128)). Using the method of
dominant balance discussed in detail earlier they obtained several reduced equations
which depend crucially on the values of the parameters that appear in the problem.
They first summarised the corresponding one-dimensional results for (3.8.126) and
(3.8.127) due to Grundy et al. (1994a). In some cases the reduced equations via
the balancing arguments could be solved explicitly whereas others posed intractable
analytical or numerical difficulties. However, Dawson et al. (1996) could extract a
number of global and local properties of the solution which helped them to form
a reasonably complete picture of the kind of asymptotic profiles that may emerge.
This work, just as the one-dimensional one, was much supported by the numerical
solution of the original initial value problem to confirm the asymptotic nature of the
approximate analytical solutions in different parametric domains.
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We summarise here considerable work by Sachdev and his collaborators (1994,
1999, 1996) on the ‘exact’ asymptotic solutions of generalised Burgers equations
with N-wave initial conditions. This work was initiated by Sachdev, Joseph and
Nair (1994) who constructed an exact representation of the N-wave solution of the
nonplanar Burgers equation (3.8.1) with α = 1 for 0 < j < 2, j = p/q, where p
and q are positive integers with no common factor. This equation may be written
explicitly as

ut +uux +
ju
2t

=
δ
2

uxx. (3.8.129)

The N-wave solution of (3.8.129) was sought in the form

u(x, t) =
(2δ )1/2ξ
V (η ,τ)

, ξ =
x

(2δ t)1/2
, η = ξ 2, τ = t1/2q, (3.8.130)

where

V (η ,τ) =
∞

∑
i=0

fi(τ)
η i

i!
. (3.8.131)

Substitution of (3.8.130) and (3.8.131) into (3.8.129) leads to an infinite system
of coupled nonlinear ODEs for fi(τ), i ≥ 0. To embed the inviscid (δ = 0) and
linear behaviours of solutions of (3.8.129) into the exact N-wave solution under
appropriate limits, the functions fi(τ), i = 0,1,2 were sought in the polynomial
form

fi(τ) = τq
p+q

∑
k=0

a(i)
k τk. (3.8.132)

This approach was inspired by the exact N-wave solutions of the plane Burgers
equation ( j = 0 in (3.8.129)), namely,

u(x, t) =
x/t1/2

t1/2
[
1+
(
t1/2/c0

)
exp(x2/2δ t)

] , c0 a constant, (3.8.133)

which may be written in the form (3.8.130)–(3.8.132) with q = 1, p = 0 so that

f0(τ) = τ+aτ2, fi(τ) = aτ2, i ≥ 1 (3.8.134)

(see Whitham 1974; Sachdev 1987). Here a = 1/c0. The N-wave solution (3.8.133)
of the plane Burgers equation tends to its inviscid solution as the lobe Reynolds
number (area under one lobe of the N-wave divided by δ ) tends to infinity. It also
asymptotes to the linear solution of the Burgers equation as t → ∞. Srinivasa Rao
and Satyanarayana (2008b) constructed large-time asymptotic N-wave solutions for
(3.8.129) for j > 0 following a perturbative approach similar to that in Section 3.7.

Sachdev et al. (1996) considered the more general equation

ut +unux +
(

j
2t

+α
)

u+
(
β +

γ
x

)
un+1 =

δ
2

uxx, (3.8.135)
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where j,α,β , and γ are nonnegative constants and n is a positive integer. This
equation contains a large number of PDEs of physical interest as special cases.
For j = γ = 0, for example, it is the well known Fisher–Burgers equation; for
j = γ = β = 0 it is GBE with linear damping (see also Sachdev and Joseph 1994). It
may be observed that the N-wave solutions of (3.8.135) are not antisymmetric about
x = 0 when n is an even integer or when β �= 0 (we discuss this case later). These
solutions are antisymmetric about x = 0 when n is an odd integer and β = 0. The
work of Sachdev et al. (1996) writes out the solution of (3.8.135) such that it tends
to the solution of its linearised form as t → ∞. The linearised form of (3.8.135),

ut +
(
α+

j
2t

)
u =

δ
2

uxx, (3.8.136)

has the N-wave solution

u(x, t) = C
x/t1/2

eαt t1+ j/2
exp

(−x2

2δ t

)
, (3.8.137)

where C is a constant. When n is an odd integer, two kinds of solutions were found
for different sets of parameters. The solution is now written in the form

u(x, t) =
(2δ )1/2ξ

[V (ξ ,τ)]1/n
, ξ =

x

(2δ t)1/2
, τ = t1/2, (3.8.138)

where

V (ξ ,τ) =
∞

∑
i=0

fi(τ)
ξ i

i!
. (3.8.139)

(i) For β = 0 or β �= 0,α �= 0, N-wave solutions of (3.8.135) were found in the
form (3.8.138) and (3.8.139) such that

f2i(τ) ≈ ani(2i)!
i!

τn j+2nenατ2
as τ → ∞, i ≥ 0,

f2i+1(τ)
τn j+2nenατ2 → 0 as τ → ∞, i ≥ 0. (3.8.140)

a in (3.8.140) is related to the old age constant C by a = 1/Cn (see (3.8.137).
(ii) For α = β = γ = 0, (3.8.135) reduces to

ut +unux +
ju
2t

=
δ
2

uxx; (3.8.141)

the solution is now sought in the form (3.8.138) and (3.8.139), where

fi(τ) = τn j+2n
r

∑
k=0

a(i)
k

τk (3.8.142)
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and r is a nonnegative integer. As r → ∞, the solution of the system of ODEs
governing fi(τ) would, in general, be an infinite series involving negative powers
of τ . The series (3.8.139) together with (3.8.142) embed the old age solution and
extend its validity far back in time.

For the case for which n is even, we refer to the work of Sachdev and Srinivasa
Rao (2000) who treated the so-called modified Burgers equation

ut +unux =
δ
2

uxx, (3.8.143)

with N-wave initial conditions

u(x,0) =
{−x, |x| ≤ 1,

0, otherwise.
(3.8.144)

This problem was considered earlier by Lee-Bapty and Crighton (1987) and Har-
ris (1996). When (3.8.143) and (3.8.144) were solved numerically with n even,
it was observed that the node of the N-wave moves from its initial position as it
evolves. The shift, however, becomes negligible after some initial time. The large
time analytic solution of (3.8.143) and (3.8.144) was sought with the assumption
that the node has come to a halt. The solution was written out in the form (3.8.138)–
(3.8.140) where ξ = (x− x0)/(2δ t)1/2; x = x0 is the point where the node of the
evolving N-wave finally comes to rest. The approach here is similar to that in
Sachdev et al. (1996); the linear solution is embedded in the exact large time solu-
tion and is approached as t →∞. Here, the inviscid solution, unlike for the nonplanar
case, cannot be recovered in the limit of the large Reynolds number. The numerical
solution of (3.8.143) and (3.8.144) was carried out for n = 2 and n = 4. It was found
that this solution begins to agree with the analytic one at t ≈ 300 and then it merges
smoothly with the old age solution as time increases. It may also be remarked that
the series solution of (3.8.143) with n even involves two constants instead of one,
manifesting the fact that this equation is not antisymmetric for even n. This is in
contrast to the case when n is odd for which there is only one arbitrary constant (see
Sachdev and Srinivasa Rao (2000) for further details). These constants represent the
memory of initial conditions in some integral sense.

We must emphasise that, in the analysis summarised here, no initial value prob-
lem for (3.8.143) is solved to find its limiting asymptotic behaviour. Instead, the
N-wave solution of the plane Burgers equation is mimicked and simulated such that
the corresponding solution of the GBE embeds its old age solution and tends to it as
t becomes large.

It is of some interest to summarise an approach complementary to the balancing
argument of Grundy and his collaborators which gives the asymptotic behaviour of
a certain class of parabolic equations. Here we discuss the simple model

ut +(uq)x − (um)xx = 0 in IR× (0,∞), (3.8.145)

u(x,0) = u0 in IR, (3.8.146)
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where
m > 1, and q > 1 (3.8.147)

and
u0 ∈ L1(IR), u0 ≥ 0 a.e. (3.8.148)

This model describes the transport of a solute through a porous medium under the
assumption that it undergoes equilibrium adsorption with the porous matrix (Grundy
et al. 1994). The relevant physical cases for m and q are m = q > 1 and m = 1, q≥ 1.
We summarise here the long time behaviour of (3.8.145)–(3.8.148) due to Laurencot
and Simondon (1998). The same problem was discussed earlier for m = 1 and q > 1
by Escobedo et al. (1993) and Escobedo and Zuazua (1991). Their analysis showed
that there exists a critical value q1 = 2 such that: if q > q1, the solution to (3.8.145)
behaves as t → ∞ as the fundamental solution to the linear heat equation with the
same mass as u(0); that is, the large time behaviour is given by the diffusive part
of (3.8.145) with m = 1; if q = q1, the solution u to (3.8.145) tends, as t → ∞,
to its source type solution with initial data Mδ , where δ denotes the Dirac delta
mass centered at zero and M =

∫
u(x,0)dx; if q ∈ (1,q1), the long time behaviour

of (3.8.145)–(3.8.148) is dominated by the convective part of (3.8.145); that is, the
solution of (3.8.145) behaves, as t → ∞, as the unique nonnegative entropy solution
of At +(Aq)x = 0 with the initial data Mδ .

Now we summarise the result of Laurencot and Simondon (1998) for m > 1 and
q > 1. To that end we introduce the following notations. For m > 1 and M > 0, let

eM(x) = ((β 2
M − c2

mx2)+)1/(m−1), x ∈ IR,

where βM is a positive real number such that |eM|L1 = M and

c2
m = (m−1)/(2m(m+1)).

Define
EM(x, t) = t−1/(m+1)eM

(
xt−1/(m+1)

)
, (x, t) ∈ IR× (0,∞);

EM satisfies

EMt − (Em
M)xx = 0, IR× (0,∞),

lim
t→0

∫
EM(x, t)ζ (x)dx = Mζ (0), ∀ ζ ∈ Cb(IR);

here Cb(IR) is the space of continuous bounded functions on IR. Laurencot and Si-
mondon (1998) proved the following result.

Theorem 3.8.1 Suppose that m > 1 and q > m + 1. Let u0 ∈ L1(IR) be a non-
negative function with M = |u0|L1 > 0. Then, for p ≥ 1,

lim
t→+∞

t(1−1/p)/(m+1)|u(t)−EM(t)|Lp = 0;

here u is the mild solution of (3.8.145)–(3.8.146).



106 3 Large Time Asymptotics via Direct Approaches

Laurencot and Simondon (1998) discussed the cases q = m+1 and 1 < q < m+1.
We refer the reader to the work of Laurencot and Simondon (1998) for more details.

3.9 Evolution of travelling waves in generalised Fisher’s
equations via matched asymptotic expansions

We have observed in Section 3.8 that exact similarity solutions may not always con-
stitute large time asymptotics. Grundy and his collaborators (Dawson et al. 1996,
Grundy et al. 1994, Van Duijn et al. 1997) attempted to go beyond similarity solu-
tions by the so-called balancing argument. They introduced the similarity variable
and time as new independent variables and then, by balancing different sets of terms
corresponding to different dominant physical effects, they could go beyond the lim-
ited class of similarity solutions. Grundy et al. (1994) and Grundy (1988) imposed
the requirement that the area under the evolving profile remained bounded in time.
Here, explicit initial conditions were not imposed. So the asymptotic solutions cor-
responded to a class of initial conditions vanishing appropriately at x = ±∞ and
having a given ‘mass’ of the initial profile (see Section 3.8).

In a series of papers, Merkin and Needham (1989), Needham (1992), and Leach
and Needham (2001) addressed initial/initial boundary value problems for a class of
nonlinear PDEs which may be termed generalised Fisher’s equations. They used
matched asymptotic expansions to study the evolution of travelling waves from
some initial conditions in the large time limit. Thus, by using an (approximate) ana-
lytic approach, they studied different behaviours in different space and time regimes,
starting from t = 0 till the wave assumed its travelling waveform.

In the present section we follow the work of Leach and Needham (2001) and
summarise main results of other related studies.

The relevant reaction–diffusion equation and the corresponding initial boundary
conditions in a nondimensional form may be stated as follows.

ut = uxx +F(u), x, t > 0, (3.9.1)

u(x,0) =
{

u0g(x), 0 ≤ x ≤ σ
0, x > σ ,

(3.9.2)

ux(0, t) = 0, t > 0, (3.9.3)

u(x, t) → 0 as x → ∞, t ≥ 0, (3.9.4)

where F : (−∞,∞) → IR satisfies the following (normalised) conditions: (i) F(u) is
continuous and differentiable for u∈ (−∞,∞); (ii) F ′(0) = 1, F ′(1) < 0; (iii) F(u) >
0 for u ∈ (0,1); (iv) F(u) < 0 for u ∈ (1,∞); and (v) F(0) = F(1) = 0. It is known
that the above IBVP has a unique global solution with 0 < u(x, t) < max[1,u0] for all
x, t > 0 (Smoller (1989)). Before we take up the case of more general F(u) satisfying
the conditions (i)–(v) above, we summarise the results for the well known Fisher–
Kolmogorov equation with F(u) = u(1−u) (see Larson 1978). If we write z = x−vt
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in (3.9.1) with v > 0 and look for nonnegative travelling wave solutions u = u(z)
which join ‘unreacted’ state u = 0 ahead of the wavefront with the fully reacted
state u = 1 at the rear of the wavefront, we get the following nonlinear eigenvalue
problem to discover permanent travelling waves (PTW).

uzz + vuz +u(1−u) = 0, −∞< z < ∞,

u(z) →
{

1 as z →−∞,
0 as z → +∞,

(3.9.5)

u(z) ≥ 0, −∞< z < ∞.

We refer to (3.9.5) as BVP I. It is known that this problem has a unique (to a trans-
lation) solution if and only if the eigenvalue v ≥ 2 (Kolmogorov et al. 1937). With
reference to initial and boundary conditions (3.9.2)–(3.9.4), it was shown by Kol-
mogorov et al. (1937) and McKean (1975) that, with g(x) ≡ 1 and u0 = 1, a PTW
does evolve from the solution of the IBVP as t → ∞ and propagates with the min-
imum possible speed v = 2. For this specific case, Bramson (1978) proved that the
asymptotic estimate for the propagation speed is given by

ṡ = 2− 3
2

t−1 +o(t−1) as t → ∞. (3.9.6)

Needham (1992) recovered the formula (3.9.6) by requiring g(x) to have a finite
support. His approach is the same as discussed below but he primarily used a lin-
earised form of the IBVP. It is instructive to discuss this linear form of the IBVP
(3.9.1)–(3.9.4) with F(u) = u(1−u) and u0  1. For the linearised form of (3.9.1),

ut = uxx +u, x, t > 0 (3.9.7)

with initial and boundary conditions (3.9.2)–(3.9.4), we have the solution

u(x, t) = etD(x, t), x, t ≥ 0, (3.9.8)

where D(x, t) is the relevant solution of the heat equation. It may be checked from
(3.9.8) that, under the assumptions that t � 1, x � O(t), and u  1, we have

u(x, t) ∼ u0t−1/2 exp

[
−t

(
y2

4
−1

)]
, (3.9.9)

where y = x/t � O(1) and t � 1. The linear approximation (3.9.8) and (3.9.9) is
valid only when u remains small, that is, when t � 1, y � 2; it fails when y ≤ 2.
Thus, for small initial data with finite support, the solution (3.9.9) with exponential
decay undergoes a transition at y ∼ 2; that is, x ∼ 2t, t � 1. This transition from
u = O(1) to u  1 when x ∼ 2t and t � 1 is indicative of the large t development
of the PTW with minimum speed v = 2, starting from the given initial/boundary
conditions. This simple argument is in agreement with the more rigourous results
(see Needham 1992) that the development of a PTW from the initial conditions of



108 3 Large Time Asymptotics via Direct Approaches

IBVP for t � 1 takes place by selecting the propagation speed from those available
(v≥ 2) via the evolution in the far field, namely, x� 1, t ≥ 0, where a linear solution
holds. This may not be always true for the generalised Fisher’s equation as we show
later in this section.

Now we consider the more general problem (3.9.1)–(3.9.4) where F(u) satis-
fies the conditions (i)–(v) listed therein. First we quote the results concerning the
PTW for F(u) satisfying (i)–(v) and then discuss in detail the evolution of given
initial/boundary conditions (3.9.1)–(3.9.4) to the travelling waveform. Thus, if we
substitute z = x− vt in (3.9.1) and pose the boundary conditions as in (3.9.5), we
have

u′′(z)+ vu′(z)+F(u) = 0, −∞< z < ∞, (3.9.10)

u(z) → 0 as z → ∞, (3.9.11)

u(z) → 1 as z →−∞, (3.9.12)

u(z) ≥ 0, −∞< z < ∞. (3.9.13)

This eigenvalue problem for the wavespeed v > 0 may be referred to as BVP2. Any
solution to this problem may provide a permanent waveform to which the solution
of initial value problem (3.9.1)–(3.9.4) may evolve as t tends to infinity. The prob-
lem (3.9.10)–(3.9.13) has been well studied (Fife 1979) and the following theorem
summarises the results. BVP2 has a unique solution uT (z,v) for each v ∈ [v∗,∞)
with v∗ ≥ 2. Furthermore, the following asymptotic forms result depending on the
nature of the function F and the value of v = v∗.

(a) If F(u) ≤ u ∀ u ∈ [0,1], then v∗ = 2 and

uT (z,v) ∼
{

(A∗z+B∗)e−z as z → ∞, v = v∗,
Aeλ+(v)z as z → ∞, v > v∗. (3.9.14)

(b) If F(u) �≤ u ∀u ∈ [0,1] and v∗ = 2, then

uT (z,v) ∼
{

(A∗z+B∗)e−z as z → ∞, v = v∗,
Aeλ+(v)z as z → ∞, v > v∗. (3.9.15)

(c) If F(u) �≤ u ∀u ∈ [0,1] and v∗ > 2, then

uT (z,v) ∼
{

A∗eλ−(v∗)z as z → ∞, v = v∗,
Aeλ+(v)z as z → ∞, v > v∗,

(3.9.16)

where

λ± = − v
2
± 1

2
(v2 −4)1/2. (3.9.17)

For each of the cases above we also have the following behaviour as z →−∞,

uT (z,v) ∼ 1− c∗eλm(v)z as z →−∞, (3.9.18)
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where

λm(v) = − v
2

+
1
2
(v2 −4F ′(1))1/2 (> 0). (3.9.19)

Here, the constants A∗,B∗, and A are such that A∗ ≥ 0, with B∗ > 0 when A∗ = 0 and
A is positive. These constants can be determined analytically or otherwise. Thus,
for any F(u) satisfying the conditions (i)–(v), there exists a travelling wave with
minimum wavespeed v = v∗; faster travelling waves for each v > v∗ also exist. v∗ = 2
or v∗ > 2 depending on the curvature of the function F(u) in [0,1].

Now consider specifically the more general Fisher’s equation

ut = uxx +F(u,σ), (3.9.20)

where
F(u,σ) = u(1−u)(1+σu), −∞< u < ∞. (3.9.21)

Here, σ ∈ [0,∞) is a dimensionless parameter. Equation (3.9.20) with F(u,σ) de-
fined by (3.9.21) describes migration of advantageous genes; it may also model
mixed quadratic and cubic autocatalysis where σ measures the ratio of the quadratic
to cubic reaction rates. Equation (3.9.20) reduces to the standard Fisher’s equa-
tion when σ = 0; it also satisfies conditions (i)–(v). It is fortunate that (3.9.20) and
(3.9.21) admit an exact travelling wave solution

ue(z) =

[
1+ exp

(
σ1/2z√

2

)]−1

, −∞< z < ∞, (3.9.22)

for any σ > 0, with the propagation speed

v = ve =
√

2

σ1/2
+
σ1/2
√

2
, σ > 0. (3.9.23)

It is clear from (3.9.23) that

ve

{
> 2, σ ∈ (0,2)∪ (2,∞),
= 2, σ = 2.

(3.9.24)

Moreover,

ue(z) ∼ exp

(
−σ1/2z√

2

)
as z → ∞. (3.9.25)

Therefore, we have

ue(z) ∼

⎧⎪⎪⎨
⎪⎪⎩

eλ+(ve)z, 0 < σ < 2,

e−z, σ = 2,

eλ−(ve)z, σ > 2

(3.9.26)
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as z → ∞ (see (3.9.17)). In view of (3.9.14)–(3.9.16), we find that, for the present
model with σ > 0, we have

2 ≤ v∗ ≤ ve, (3.9.27)

which, together with (3.9.24), gives

v∗ = 2 when σ = 2. (3.9.28)

Because, here, F(u) ≤ u if and only if σ ∈ [0,1], we infer from (3.9.14) that

v∗ = 2 when σ ∈ [0,1]. (3.9.29)

Now, combining (3.9.26) with (3.9.14)–(3.9.16), we conclude that

v∗ = ve =
√

2

σ1/2
+
σ1/2
√

2
(> 2) when σ ∈ (2,∞). (3.9.30)

It was independently proved by Hadeler and Rothe (1975) that

v∗ = 2 when σ ∈ (1,2). (3.9.31)

Combining (3.9.29)–(3.9.31) we have propagation speed v∗ of the permanent wave
for all σ ∈ (0,∞). Referring to the cases (a)–(c) of the general theorem (see (3.9.14)–
(3.9.16)) and (3.9.28)–(3.9.31), we have case (a) when σ ∈ [0,1], case (b) when
σ ∈ (1,2], and case (c) when σ ∈ (2,∞).

Now, following Leach and Needham (2001), we discover how the (initial) waves
starting from the initial and boundary conditions (3.9.2)–(3.9.4), actually evolve to
assume their asymptotic form. We revert here to the general form of F satisfying
conditions (i)–(v) and consider the case v∗ > 2 (F(u) �≤ u ∀ u ∈ [0,1]).

Because the initial function u(x,0) > 0 and is analytic in the region 0 ≤ x ≤
σ−O(1), to be called region I, and because u = O(1) as t → 0, we may easily write
a power series solution in the neighbourhood of t = 0 with 0 ≤ x ≤ σ −O(1):

u(x, t) = u0g(x)+ t
[
u0g′′(x)+F(u0g(x))

]
+O(t2). (3.9.32)

If we assume that 0 < (σ − x)  1, we may write (3.9.32) as

u(x, t) ∼ u0gσ [(σ − x)r + . . .]+ t
[
u0(r−1)rgσ (σ − x)r−2 + . . .

+ u0gσ (σ − x)r + . . .]+ . . . (3.9.33)

as t → 0. This expansion obviously fails when σ − x = O
(
t1/2
)
; here, u = O

(
tr/2
)
.

This requires introduction of a second region, called region II, where x = σ ±
O
(
t1/2
)

as t → 0.
To study this region we introduce the scaled coordinate η = (x−σ)t−1/2 and

seek the asymptotic expansion (as t → 0)
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u(η , t) = tr/2ǔ(η)+o
(

tr/2
)

(3.9.34)

with η = O(1). Substituting (3.9.34) into (3.9.1), written in terms of η and t, we
obtain

ǔηη +
η
2

ǔη − r
2

ǔ = 0, −∞< η < ∞, (3.9.35)

to leading order. The solution of (3.9.35) must satisfy the initial condition (3.9.2) as
t → 0 and match the solution (3.9.33) in region I as η → −∞ (because x < σ and
t → 0). Thus we have the conditions

ǔ(η) ∼ u0gσ (−η)r as η →−∞, (3.9.36)

ǔ(η) ∼ o(ηr) as η → +∞. (3.9.37)

The solution of the boundary value problem (3.9.35)–(3.9.37) is unique and may
explicitly be written out as

ǔ(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u0gσ r!( r
2

)
!k1

A(η)
∫ ∞

η

e−s2/4

A2(s)
ds, r even

u0gσ r!(
1
2
(r−1)

)
!k2

[
A(η)
η

−A(η)
∫ ∞

η

{
1
s2 − e−s2/4

A2(s)

}
ds

]
, r odd,

(3.9.38)

where

A(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑r/2
p=0

( r
2

)
!η2p

(2p)!
( r

2
− p
)

!
, r even,

∑(r−1)/2
p=0

(
r−1

2

)
!η2p+1

(2p+1)!
(

r−1
2

− p

)
!
, r odd

(3.9.39)

and

k1 =
∫ ∞

−∞
e−s2/4

A2(s)
ds, k2 =

∫ ∞

−∞

(
1
s2 − es2/4

A2(s)

)
ds. (3.9.40)

It is clear from (3.9.38) that ǔ(η) is positive and decreases monotonically for all
−∞< η < ∞. We find from (3.9.38) that

ǔ(η) ∼ c∞
1

ηr+1 e−η
2/4 as η → +∞ (3.9.41)

with
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c∞ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2u0gσ (r!)2

k1 [(r/2)!]2
, r even,

2u0gσ (r!)2

k2

[(
r−1

2

)
!

]2 , r odd.
(3.9.42)

In the above we have assumed that η = O(1). To treat the region where η � 1, we
introduce region III for which x = σ +O(1).

In region III, ǔ is exponentially small (see (3.9.41)). The form (3.9.34) and
(3.9.41) of the solution as η→∞ in region II suggests that we may write the solution
in region III as

u(x, t) = e−F̌(x,t)/t as t → 0, (3.9.43)

where
F̌(x, t) = F0(x)+F1(x)t ln t +F2(x)t +O(t2) (3.9.44)

and x = σ + O(1). F̌(x, t) > 0 for all x > σ . Substituting (3.9.43)–(3.9.44) into
(3.9.1) and solving the resulting ODEs for F0,F1, and so on, we find that

u(x, t) = exp

{
− (x+C)2

4t
−A ln t −

(
1
2
−A

)
ln(x+C)−B+O(t)

}
(3.9.45)

as t → 0 with x = σ +O(1). Here, A,B, and C are arbitrary constants. The solution
(3.9.45) holding in region III satisfies the initial condition u(x, t)→ 0 as t → 0. It also
satisfies the boundary condition (3.9.4) as x → ∞. Matching the solution (3.9.45) as
x → σ+ with the solution (3.9.34) in region II as η → ∞ leads to the determination
of the constants:

A = −
(

r +
1
2

)
, B = − ln c∞, C = −σ . (3.9.46)

Writing the exponential more explicitly one may check that the expansion of
(3.9.45) remains uniform for x � 1 as t → 0.

Now the solution in region III is generalised and extended to apply to the region
IV where x → ∞ and t = O(1). The expansion (3.9.45) which holds for x � 1 as
t → 0 suggests that we write the solution in region IV in the form

u(x, t) = e−Ȟ(x,t) as x → ∞, (3.9.47)

where Ȟ is a series in decreasing power of x and ln x with coefficients functions of
time:

Ȟ(x, t) = H0(t)x2 +H1(t)x+H2(t) lnx+H3(t)+H4(t)x−1 +O(x−2), (3.9.48)

where now t = O(1) and x →∞ (the form (3.9.48) may be discovered by a balancing
argument). Substituting (3.9.47) and (3.9.48) into (3.9.1) and solving the resulting
ODEs for Hi(t) and so on we get
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u(x, t) = exp

{
−x2

4t
+
σx
2t

− (r +1) lnx

+
[(

r +
1
2

)
ln t + t + lnc∞− σ2

4t

]
+O(x−1)

}
. (3.9.49)

Comparing the term x2/4t with t in the exponential, and so on, we find that (3.9.49)
remains valid for t � 1 provided that x � t. It clearly fails when x = O(t), t → ∞.

To extend the solution (3.9.49) such that it remains valid when x = O(t) and
t → ∞, called region V, we introduce the variable y = x/t and rewrite the form
(3.9.49) as

u(y, t) = e−tF̌(y,t) as t → ∞, (3.9.50)

where

F̌(y, t) = f0(y)+ f1(y)
ln t
t

+ f2(y)
1
t

+O(t−2). (3.9.51)

Substituting (3.9.50)–(3.9.51) into (3.9.1) we have, to leading order, the problem

f 2
0y − y f0y + f0 +1 = 0, y > 0, (3.9.52)

f0(y) > 0, y > 0, (3.9.53)

f0(y) ∼ 1
4

y2 −1 as y → ∞. (3.9.54)

The condition (3.9.54) arises from matching (3.9.50) with y � 1 and (3.9.49) where
x = O(t). Equation (3.9.52) has two solutions

f0(y) = c0(y− c0)−1, y > 0, (3.9.55)

and

f0(y) =
1
4

y2 −1, y > 0, (3.9.56)

the latter being the envelope solution of the former linear solutions. However, the
matching condition (3.9.54) selects the envelope solution

f0(y) =
1
4

y2 −1, y > 0

or

f0(y) =

⎧⎪⎨
⎪⎩

1
4

y2 −1, y > y0,

1
2

y0

(
y− 1

2
y0

)
−1, 0 < y ≤ y0

(3.9.57)

for any y0 > 2. However, neither of these solutions satisfies the condition f0(y) >
0,y > 0 (see (3.9.53)); (3.9.56) vanishes as y → 2+ and (3.9.57) goes to zero as
y → ((2/y0)+(1/2)y0)

+ which is greater than 2 when y0 > 2. We conclude that a
nonuniformity arises in the expansion (3.9.51) when y → yc(≥ 2), where
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yc =
2
y0

+
y0

2

{
= 2, y0 = 2,
> 2, y0 > 2,

(3.9.58)

for some y0 ≥ 2. We observe that, for y0 = 2, f0(y) is given by (3.9.56), whereas for
y0 > 2, f0(y) is defined by (3.9.57). If one computes more terms in the expansion
(3.9.51), one may discover that a nonuniformity appears when

y = yc +O(t−1) with u = O(1) as t → ∞. (3.9.59)

It is therefore natural to introduce the independent variable

y = yc +
z
t

(3.9.60)

with z = O(1) as t → ∞ and write

u(z, t) = uc(z)+o(1), z = O(1). (3.9.61)

We call this region TW. Substitution of (3.9.61) into (3.9.1) yields, to leading order,
the problem

u′′c + ycu′c +F(uc) = 0, −∞< z < ∞, (3.9.62)

uc(z) > 0, −∞< z < ∞, (3.9.63)

uc(z) → 0 as z → +∞, (3.9.64)

uc(z) is bounded as z →−∞. (3.9.65)

The vanishing condition (3.9.64) arises from matching this solution with (3.9.50) in
region V as y → y+

c . A phase plane analysis of (3.9.62) and use of the Poincaré–
Bendixson theorem with the conditions (3.9.63) and (3.9.64) allows the bounded-
ness condition (3.9.65) to be replaced by

uc(z) → 1 as z →−∞. (3.9.66)

All other possibilities in the phase plane lead to an unbounded solution uc(z) as
z →−∞. Thus we arrive exactly at the BVP2 − (3.9.10)–(3.9.13) − which has per-
manent travelling wave solutions. Using (3.9.14)–(3.9.16) we infer that this prob-
lem has a unique solution uc(z) = uT (z,yc) for each yc ∈ [v∗,∞). In the present case,
v∗ > 2, therefore, we have yc > 2. It follows from (3.9.58) that y0 > 2 in region V;
f0(y) itself is given by (3.9.57).

We now match expansion (3.9.50) and (3.9.51) in region V to the expan-
sion (3.9.61) in terms of U = log u. We follow the matching principle of Van
Dyke (1975). Writing (3.9.50) and (3.9.51) in terms of U and employing it in the
TW region up to O(1), we have

Ut0 = −1
2

y0z = λ−(yc)z, (3.9.67)
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where we have used (3.9.57) and (3.9.58). Conversely, expanding (3.9.61) for U in
region V up to O(t) gives the expression

U0t =
{
λ−(yc)z, yc = v∗,
λ+(yc)z, yc > v∗. (3.9.68)

The matching principle requires U0t ≡Ut0. Thus matching (3.9.67) and (3.9.68) we
obtain

yc = v∗. (3.9.69)

Thus the travelling wave solution of minimum speed v∗(> 2) is selected in the region
TW. Now, combining (3.9.58) and (3.9.69), we find that

y0 = v∗ +((v∗)2 −4)1/2 = −2λ−(v∗)(> 2). (3.9.70)

This completes the expansions in both the regions V and TW to leading order.
The main objective of the present section is to show by using matched asymp-

totic expansions how the travelling waveform emerges for large times, starting the
solution at the initial time. Leach and Needham (2001) analysed region V to make
the solution smooth. It is clear from (3.9.56) and (3.9.57) that f ′′0 (y) is discontin-
uous at the point y = y0(> v∗). The approach here is quite intuitive and requires
considerable experience in matched asymptotic expansions.

3.10 Periodic travelling wave solutions in reaction–diffusion
systems

In the present section, we consider systems of reaction–diffusion equations. Here we
show, following the work of Sherratt (2003), how periodic travelling waves (PTWs)
are generated by such a system with Dirichlet conditions at one edge of a semi-
infinite domain: both the dependent variables are assumed to be zero at the edge x =
0. Sherratt (2003) was much motivated in his analysis by the results of his numerical
study which we presently summarise. The ‘oscillatory’ reaction–diffusion system
that we study is

ut = �2u+
(
1− r2)u− (w0 −w1r2)v, (3.10.1)

vt = �2v+(w0 −w1r2)u+
(
1− r2)v, (3.10.2)

where r =
√

u2 + v2. The system (3.10.1) and (3.10.2) is often said to belong to
the ‘λ −w’ class, first introduced by Kopell and Howard (1973), and is considered
natural for studying generic behaviour in systems in which each variable has the
same diffusion coefficient. Here, we restrict ourselves to the one-dimensional form
of (3.10.1) and (3.10.2).

It is known (see Kopell and Howard 1973) that the above system has an unstable
equilibrium at u = v = 0 and a stable circular limit cycle of radius 1, centred at this
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equilibrium. Kopell and Howard (1973) found a travelling wave periodic solution
of (3.10.1)–(3.10.2) in the form

u = r∗ cos
[
θ0 ±

√
1− r∗2x+

(
w0 −w1r∗2

)
t
]
, (3.10.3)

v = r∗ sin
[
θ0 ±

√
1− r∗2x+

(
w0 −w1r∗2

)
t
]
, (3.10.4)

where r∗ is a parameter and θ0 is an arbitrary constant. They showed that the above
wave solution is stable provided that

r∗ > rstab ≡
(

2+2w2
1

3+2w2
1

)1/2

. (3.10.5)

The solution (3.10.3) and (3.10.4) suggests that we introduce the polar coordinates
r =

√
u2 + v2 and θ = tan−1(v/u) in the (u,v) plane. We thus write (3.10.1) and

(3.10.2) as

rt = rxx − rθ 2
x + r(1− r2), (3.10.6)

θt = θxx +
2rxθx

r
+w0 −w1r2. (3.10.7)

The PTW (3.10.3) and (3.10.4) now becomes

r = r∗, θ = θ0 ±
√

1− r∗2x+
(

w0 −w1r∗2
)

t. (3.10.8)

Indeed, it may be shown that any solution of (3.10.6) and (3.10.7) with r = constant
< 1 is a PTW.

Sherratt (2003) carried out a very interesting numerical study of (3.10.1) and
(3.10.2) in the one-dimensional semi-infinite domain x > 0 with the boundary con-
dition u = v = 0 at x = 0. He chose the numerical domain to be 0 < x < X∞ where
X∞ is large. He assumed zero flux conditions ux = vx = 0 at x = X∞. The initial
conditions in 0 < x < X∞ were chosen to be random, obtained by a random num-
ber generator to calculate u and v values between +1 and −1 at equidistant points
with Δx = 5 throughout the domain. These random values were joined by straight
lines to give the initial conditions. This is a very useful numerical experiment which
shows the ‘independence’ of the asymptotic solution of the details of the initial
conditions.

It was found that, for a wide range of values of the parameters w0 and w1, the
numerical solutions of this problem showed the same behaviour. Generally, the so-
lution changes rapidly from the random initial conditions to spatially uniform oscil-
lations everywhere away from the boundary x = 0. A transition wave then develops
so that there is a homogeneous oscillation ahead of it and a PTW behind. For large
time it is the PTW that prevails away from the boundary x = 0. This behaviour is
strongly dependent on the specific boundary conditions u = v = 0 at x = 0. If this
condition, for example, is changed to zero flux, namely, ux = vx = 0 at x = 0, the
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PTW disappears and is replaced by spatially uniform oscillations. The intermediate
asymptotic character of the PTW is confirmed by the fact that the speed/amplitude
of this wave is independent of the ‘seed’ in the random number generator used for
the initial conditions and, thus, the Dirichlet boundary conditions very carefully se-
lect a particular member of the PTW family.

Numerical results of Sherratt (2003) show distinct behaviours when |w1| is small
and when it is large. For the former, as we remarked earlier, a transition front moves
across the domain behind which PTWs develop and move in the positive x- or neg-
ative x-direction. For large |w1|, the long-term behaviour does not exhibit PTW but
irregular spatiotemporal oscillation. This behaviour arises when the PTW that is se-
lected by the boundary conditions has an amplitude less than rstab (see (3.10.5)).
It is an unstable solution of the PDEs and hence the spatiotemporal oscillations.
If the numerical results referred to above are shown in terms of r and θx rather
than u and v (see Figure 3.11) then it is observed that the solution changes rapidly
from its random initial behaviour until r ≈ 1 and θx ≈ 0 everywhere away from the
boundary x = 0; this defines the spatially homogeneous oscillations in u and v. This
behaviour is followed by a transition front in r and θx which moves in the posi-
tive x-direction. The conditions ahead of this front are such that r → 1 and θx → 0
whereas behind it r and θx have constant values, rPTW andψPTW , say, corresponding

Fig. 3.11 Evolution of the solution of (3.10.1) and (3.10.2) subject to random initial conditions and
the boundary conditions u = v = 0 at x = 0 and ux = vx = 0 at x = 400. (Sherratt 2003. Copyright
c© 2003 Society for Industrial and Applied Mathematics. Reprinted with permission. All rights

reserved.)
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to the PTW. The numerical solution suggests that this transition front moves with
constant shape and speed. Therefore, we look for the travelling waveform of the
solution of (3.10.1) and (3.10.2) or more specifically of (3.10.6) and (3.10.7) in
the form

r(x, t) = r̂(x− st) and θx(x, t) = ψ̂(x− st) or θ(x, t) =
∫ z=(x−st)

ψ̂(z)dz+ f (t),

(3.10.9)
where s > 0 is the speed of the wavefront and f (t) is a function of integration.

Substitution of (3.10.9) into (3.10.6) and (3.10.7) leads to the ODEs

r̂′′ + sr̂′ + r̂
(
1− r̂2 − ψ̂2) = 0, (3.10.10)

ψ̂ ′ + sψ̂+w0 −w1r̂2 +2ψ̂
r̂′

r̂
= f ′(t). (3.10.11)

It is clear from (3.10.11) that f ′(t) must be a constant; moreover, because r̂ → 1 and
ψ̂ → 0 as x− st →∞, f ′(t) = w0−w1. Putting the asymptotic values r̂ = rPTW , ψ̂ =
ψPTW in (3.10.10) and (3.10.11) we check that

rPTW =

√
1− s2

w2
1

, ψPTW = − s
w1

. (3.10.12)

The velocity of the front, s, may be found from the numerical solution and hence
rPTW and ψPTW obtained from (3.10.12). This equation also shows that ψPTW and
w1 have opposite signs inasmuch as s is positive.

Now we consider large time behaviour of the solutions of (3.10.6) and (3.10.7).
The numerical results of the boundary value for this system suggest that this is a
(steady) equilibrium state which may be denoted by r(x, t) = R(x) and θx(x, t) =
ψ(x). Thus, we may write θ =

∫ xψ(x̄)dx̄ + g(t), where g(t) is a function of inte-
gration. By substituting this form of the solution into (3.10.6) and (3.10.7), we infer
that g′(t) is a constant which we may, for convenience, denote by w0 −k, where k is
arbitrary. The system (3.10.6) and (3.10.7) now becomes

Rxx +R(1−R2 −Ψ 2) = 0, (3.10.13)

Ψx +
2ΨRx

R
+ k−w1R2 = 0. (3.10.14)

The boundary conditions u = v = 0 at x = 0 imply that R = 0 there. We also require
that R and Ψ tend to the constant solution, rPTW and ψPTW , as x → ∞, where the
sign of ψPTW is opposite to that of w1 (see (3.10.12)). It follows from (3.10.13) and
(3.10.14) that

rPTW =
√

k
w1

, ψPTW = −sgn(w1)
√

1− k
w1

, (3.10.15)
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where we have used the fact that ψPTW and w1 have opposite signs. k is related to
the speed s by k = w1 − (s2/w1) (see (3.10.12)). Clearly, k and w1 must have the
same sign. Rescaling (3.10.13) and (3.10.14) according to

φ = R
(w1

k

)1/2
, w = Rx

(
w1 − k

k

)1/2 sgn(w1)
k

,

Γ = −Ψ
R

(
k

w1 − k

)1/2

sgn(w1), z = x

(
w1

w1 − k

)1/2

ksgn(w1), (3.10.16)

we obtain

φz = w, (3.10.17)

wz = − α
k2 φ

[
1−φ 2 −αφ 2(Γ 2 −1)

]
, (3.10.18)

Γz =
1−3wΓ −φ 2

φ
, (3.10.19)

where α = 1− k/w1 so that 0 ≤ α ≤ 1. The boundary conditions in terms of the
new variables become

φ = 0 at z = 0 and φ = 1, w = 0, Γ = 1 at z = ∞. (3.10.20)

The constant k in (3.10.18) is arbitrary. Thus, one must enquire for what values of k
the boundary value problem (3.10.17)–(3.10.20) has a solution. To solve this eigen-
value problem one may integrate (3.10.17)–(3.10.19) backward in z from (1,0,1).
Numerical solution of this problem shows that there is a unique stable eigenvector
for given values of k and w1 if φ becomes zero along one of these trajectories. There
is a large discrete set of values of k for which this happens. These values of k are
widely separated when |k| is just below |w1| and become closer as |k| → 0.

Sherratt (2003) used perturbation analysis to find the analytic character of the so-
lution for small |w1|. Here, we content ourselves with some other simple aspects of
the solution. Numerical results for the one-dimensional form of (3.10.1) and (3.10.2)
with u = v = 0 at x = 0 suggest that Ψ/R is constant in the observed solution. So,
one may seek a solution of (3.10.17)–(3.10.19) under the assumption that Γ ≡ 1
(see (3.10.16)). This system now assumes the form

φz = w, (3.10.21)

wz = − α
k2 φ

(
1−φ 2) , (3.10.22)

3w+φ 2 = 1. (3.10.23)

Combining (3.10.21) and (3.10.22) suitably and hence integrating with the condition
φ = 1 when w = 0, we obtain

w2 =
α

2k2

(
1−φ 2)2

. (3.10.24)
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Equations (3.10.23) and (3.10.24) are compatible only when k2 = 9α/2; here we
have used the fact that k and w1 have the same sign. Because α = 1− (k/w1), we
get

k = k∗ ≡ −9+
(
81+72w2

1

)1/2

4w1
. (3.10.25)

The solution corresponding to this value of k is monotonic in w as well as φ . We may
now explicitly solve (3.10.17)–(3.10.19) using (3.10.23). This solution, in terms of
the original variables, is found to be

R(x) = rPTW tanh

(
x√
2

)
, Ψ(x) = ψPTW tanh

(
x√
2

)
, (3.10.26)

where

rPTW =

{
1
2

[
1+
(

1+
8
9

w2
1

)1/2
]}−1/2

,

ψPTW = −sgn(w1)

⎧⎪⎪⎨
⎪⎪⎩
√

1+
8
9

w2
1 −1√

1+
8
9

w2
1 +1

⎫⎪⎪⎬
⎪⎪⎭

1/2

.

(3.10.27)

The solution (3.10.26) and (3.10.27) was shown by Sherratt (2003) to be in excel-
lent agreement with the large time behaviour predicted by the numerical solution
of (3.10.1) and (3.10.2) subject to the conditions u = v = 0 at x = 0. Substituting
(3.10.27) into the stability condition (3.10.5) for the PTW, we find that

8w6
1 +16w4

1 −10w2
1 −27 < 0, (3.10.28)

implying that |w1| < 1.110468. Details of the numerical solution of the initial/
boundary value problem indicate that irregular oscillations develop exactly when
the values of w1 are chosen to be above this critical value. One may also deter-
mine the direction of PTWs with the help of (3.10.27). The travelling wave (3.10.3)
and (3.10.4) for u and v, in conjunction with (3.10.8) and (3.10.27), shows that it
propagates in the positive x-direction if and only if

ψPTW
(
w0 −w1r2

PTW

)
< 0, (3.10.29)

implying that w0 and w1 have the same sign and

|w0| > 2|w1|

1+

√
1+

8
9

w2
1

. (3.10.30)

The conditions (3.10.28)–(3.10.30) are shown graphically in Figure 3.12.
The main result of the present study is that the boundary conditions at x = 0

for the system (3.10.1) and (3.10.2) select a unique PTW amplitude which is
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Fig. 3.12 Stability and direction of the periodic travelling wave solution when u = v = 0 at x = 0
(see (3.10.28)–(3.10.30)). (Sherratt 2003. Copyright c© 2003 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.)

independent of initial conditions. This amplitude is given by (3.10.27). If the condi-
tions u = 0,v = 0 at x = 0, for example, are changed to a zero flux condition, namely,
ux = vx = 0, PTWs disappear and are replaced by spatially uniform oscillations.

We may summarise some other work on travelling waves and their asymptotic
nature. Sneyd et al. (1998) considered travelling waves in buffered systems with ap-
plication to calcium waves which themselves result from the reaction and diffusion
of calcium. Specifically, they studied buffered reaction–diffusion system

ct = Dccxx + f (c)+ k−b− k+c(bt −b), (3.10.31)

bt = Dbbxx − k−b+ k+c(bt −b), (3.10.32)

where b is [CaB] and bt = [B] + [CaB] and c is the concentration of free cytosolic
Ca2+. f (c) in (3.10.31) is taken to be c(1− c)(c− a). Dc,Db,k+, and k− are con-
stants. Sneyd et al. (1998) derived an approximate expression for the wavespeed of
the travelling wave which is numerically confirmed for both high and low affinity
buffers. It was also shown that similar behaviour holds for the related FitzHugh–
Nagumo equations.

A very detailed study of travelling wave solutions of the coupled system of non-
linear diffusion equations
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at = axx +1−a−μab2, (3.10.33)

bt = bxx +μab2 −φb (3.10.34)

was carried out by Merkin and Sadiq (1996). This (scaled) system describes an open
isothermal chemical system governed by cubic autocatalytic kinetics. It was first
shown to sustain up to three spatially uniform steady states: the (trivial) unreacted
state, which is a stable node, and two nontrivial states one of which is always unsta-
ble, a saddle point. The third state can change its stability through Hopf bifurcation,
both subcritical and supercritical. Different sets of travelling waves connecting dif-
ferent behaviour at ±∞ were considered. Specifically, it was assumed that at t = 0,

a = 1, −∞< x < ∞
b = β0g(x) if |x| < σ (3.10.35)

= 0 if |x| > σ ,

where β0 and σ are dimensionless constants. It was also assumed that the behaviour
of the solution is symmetrical about x = 0; one may, therefore, consider only x > 0
with symmetry conditions

ax = bx = 0 at x = 0, t > 0. (3.10.36)

Different kinds of exact solutions of (3.10.33) and (3.10.34) were considered: spa-
tially uniform, permanent travelling waveform, and self-similar solutions. The con-
ditions under which a particular kind of wave is initiated were investigated by a dis-
cussion of the ordinary differential equations governing any of the special solutions
and by numerical integration of an initial value problem. Curiously, the treatment
of Merkin and Sadiq (1996) reveals the possibility of a stable travelling wave prop-
agating through the system, leaving behind a temporally unstable stationary state.
Under these conditions, spatiotemporal chaotic behaviour is seen to develop after
the passage of the wave.

3.11 Conclusions

This chapter was mainly concerned with the large time asymptotic analysis of non-
linear parabolic partial differential equations via some constructive approaches such
as the balancing argument, matched asymptotic expansions, as well as some ad
hoc approaches. In Section 3.2, we have derived exact travelling wave solutions
of the Burgers equation satisfying specific conditions at x = ±∞. These solutions
were shown to be large time asymptotics for solutions of initial value problems
for the Burgers equation (3.2.1) with the step function as the initial data. This was
confirmed numerically following the work of Shih (1991). In Section 3.3, we have
discussed the solution of an initial boundary value problem for the Burgers equation
describing vertical nonhysteretic flow of water in nonswelling soil. This problem
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was solved exactly via an application of the Cole–Hopf transformation (3.3.8). The
large time behaviour of the solution thus obtained has a simple form, referred to
as the profile at infinity. Experimental and analytical results for this problem were
found to be in good agreement (Clothier et al. 1981). We have also analysed a
more general initial boundary value problem (3.3.23)–(3.3.25) following Joseph and
Sachdev (1993). The large time asymptotic behaviour of the solution of this prob-
lem was shown to contain the profile at infinity solution of Clothier et al. (1981)
as a special case. In Section 3.4, we have presented an asymptotic analysis of an
initial boundary value problem describing infiltration of water into a homogeneous
soil, following Vanaja and Sachdev (1992). First, the existence of travelling wave
solutions with constant end conditions at ±∞ was discussed. Travelling wave solu-
tions given by (3.4.9) and (3.4.10) describe the large time behaviour of solutions
of (3.4.7) and (3.4.8). It was confirmed numerically that the solution of (3.4.7)
satisfying (3.4.8), for particular choices of D(u) and K(u), approaches the trav-
elling wave solution as time becomes large. Section 3.5 is concerned with a sta-
ble profile describing cross-field diffusion in a toroidal multiple plasma. Follow-
ing Berryman and Holland (1982), we have discussed the asymptotic behaviour
of the solution of (3.5.9) and (3.5.10) with initial data satisfying the condition
n(x,0) ≥ n0 (see below (3.5.10)). It was shown that the large time behaviour is
given by ln(n/n0) ∼ Aexp

(−π2t
)
φ1(x), φ1(x) = 21/2 sin(πx). This was achieved

via the derivation of several rigourous inequalities involving the integrals of the de-
pendent variable and its derivatives. In Section 3.6, we have discussed in detail the
large time solutions of the radially symmetric version (3.6.5) for the N-dimensional
nonlinear diffusion equation (3.6.1) subject to the conditions (3.6.6)–(3.6.8) for the
parametric range n = 2/N, N > 2. Equation (3.6.1) appears in many applications:
spreading of microscopic droplets, diffusion of impurities in silicon, and so on. We
may recall that equation (3.5.9) discussed in Section 3.5 is a special case of (3.6.1)
with n = 1, N = 1. However, in Section 3.5, we discussed the large time behaviour
of solutions of (3.5.1) with fixed boundaries. The large time behaviour of solutions
of (3.6.5)–(3.6.8) has an ‘unusual’ self-similar form when n = 2/N, N > 2. Fur-
thermore, solutions of (3.6.5)–(3.6.8) preserve mass for this parametric range. The
asymptotic analysis here closely followed the work of King (1993). In Section 3.7,
we have discussed large time asymptotic behaviour of the periodic solutions of some
generalised Burgers equations, following the work of Sachdev and his collaborators
(Sachdev et al. 2003, 2005). It does not seem possible to exactly linearise the gener-
alised Burgers equations via a Cole–Hopf-like transformation. Thus, we must deal
with these partial differential equations directly. We resorted to a certain perturbative
approach, where we started with the solution of the linearised form of the original
nonlinear partial differential equation, satisfying appropriate boundary conditions.
This solution was improvised by including nonlinear effects. We may mention that
this perturbative approach is reminiscent of the method frequently used by Bender
and Orszag (1978) for nonlinear ordinary differential equations. We have presented
in detail the large time asymptotic solution for the nonplanar Burgers equation and
summarised the results for some other generalised Burgers equations. The problems
discussed here satisfy periodic initial conditions. In Section 3.8, we discussed the
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asymptotic behaviour of solutions of some generalised Burgers equations. Here, we
first introduced time and a similarity variable as the new independent variables and
transformed the given partial differential equation to the one which, in a sense, em-
beds all possible similarity solutions using the so-called balancing argument. Then,
we looked for the relative importance of the terms in the transformed partial dif-
ferential equation for large time. This led to different sets of parametric ranges and
reduced partial differential equations relevant to those parametric ranges. We have
presented the asymptotic analysis of solutions of the nonplanar Burgers equation
(3.8.1), following Grundy et al. (1994) in some detail. The balancing argument re-
sulted in three parametric ranges: α > 1/( j + 1),α = 1/( j + 1),α < 1/( j + 1). It
was shown that in the parametric range α > 1/( j + 1), the diffusion dominates
convection whereas for α < 1/( j + 1), the convection dominates diffusion. For
α = 1/( j+1), all the terms are equally important and the ordinary differential equa-
tion governing self-similar solution of (3.8.1) describes the large time behaviour
of solutions with integrable initial data. We have also summarised the results of
Grundy (1988) for a more general partial differential equation (3.8.86) with inte-
grable initial data. Later in this section we have discussed N-wave solutions of some
generalised Burgers equations. The construction of asymptotic N-wave solutions
for these equations mimics the structure of the corresponding solution of the plane
Burgers equation. In Section 3.9, we have treated an initial boundary value prob-
lem involving generalised Fisher’s equation following Leach and Needham (2001).
A complete asymptotic structure of solutions of an initial boundary value problem
as t → ∞ was presented. It was shown that the permanent travelling wave (PTW)
with minimum speed v = v∗ > 2 evolves from the initial profile only when the func-
tion F(u) in (3.9.1) satisfies the inequality F(u) � u for all u ∈ [0,1]. For a general
Fisher’s equation, the minimum speed of propagation v∗ for travelling wave solu-
tions was also determined. In Section 3.10, we have presented periodic travelling
wave solutions of the oscillatory reaction–diffusion system (3.10.1) and (3.10.2)
in one space dimension, following Sherratt (2003). Sherratt’s numerical study of
(3.10.1) and (3.10.2) in one space dimension with Dirichlet condition u = v = 0 at
x = 0 and a ‘random initial condition’ showed the development of periodic travel-
ling waves. It was also observed that these travelling waves are independent of the
initial conditions used.
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Chapter 4
Self-similar Solutions as Large Time
Asymptotics for Some Nonlinear Parabolic
Equations

4.1 Introduction

Nonlinear partial differential equations, scalar or systems, are extremely hard to
analyse in an exact manner. For given initial/boundary conditions, it is rare to find
an explicit exact solution of a physical problem. Thus, a resort to numerical solu-
tion is inevitable but it is important to have some approximate or asymptotic solu-
tion which may be used to provide some support or verification of the numerical
solution. It is here that the so-called similarity solutions (which include product
solutions as special cases) come in handy. For linear problems, these special solu-
tions may be superposed and hence certain classes of initial/boundary value prob-
lems can be explicitly solved in a series form. For nonlinear problems for which
no such superposition is possible, one looks for invariant properties of the govern-
ing partial differential equations (see Bluman and Kumei 1989, Olver 1986). The
symmetries of the partial differential equations are exploited to find the so-called
similarity solutions. Finite and infinitesimal transformations or the so-called direct
approach (Clarkson and Kruskal 1989) help change a PDE or a system of PDEs to
corresponding ODEs. These impose some conditions on the parameters appearing
in the problem. The solutions of these (nonlinear) ODEs may correspond as such to
some generalised functions as initial conditions for the PDEs. One must first analyse
when these ODEs admit solutions which relate sensibly to those pertaining to PDEs.
To that end, a careful existence analysis of the ODEs, subject to appropriate bound-
ary conditions, is clearly important. This analysis yields a certain set of parameters
for which the similarity solution with physical boundary conditions makes sense.
Thus, before the reduced nonlinear ODEs are used to investigate the asymptotic be-
haviour of the original nonlinear PDEs, one must carefully study their qualitative
nature. Therefore, one must first prove existence and uniqueness of the solution of
the ODEs resulting from the original PDEs, subject to appropriate initial/boundary
conditions. The second major step is to show, both qualitatively and quantitatively,
when these similarity solutions constitute the so-called intermediate asymptotics to
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which a large class of solutions of initial/boundary value problems of the original
system of PDEs tend as time becomes large.

Section 4.2 is illustrative; here we discuss in some detail the above aspects of
the asymptotic analysis with reference to the heat equation. The heat equation, a
linear PDE, has played an important role in the understanding of nonlinear PDEs.
For example, the Cole–Hopf transformation changes the (nonlinear) Burgers equa-
tion to the heat equation, hence much analysis of the former becomes possible
(Sachdev 1987). The heat equation has been studied in much detail (Widder 1975)
and enjoys considerable symmetry properties (Bluman and Kumei 1989, Olver 1986).
Here, following the work of Kloosterziel (1990), we show how superposition of the
similarity solutions for this linear PDE helps to solve an initial value problem over
an infinite domain and hence brings out the asymptotic character of the solution,
essentially via the first nonzero term of the expansion.

In a remarkable paper, Kamenomostskaya (1973), called Kamin in her subse-
quent publications, showed that, just as the fundamental solution of the heat equa-
tion describes asymptotic behaviour of its solution with compactly supported initial
data, a certain similarity solution of the unsteady filtration equation

ut = (uλ+1)xx (4.1.1)

with initial condition
WE(x,0) = Eδ (x) (4.1.2)

enjoys the same property; here E is an arbitrary constant and λ > 0 is a parameter.
More specifically, equation (4.1.1) is invariant under the group of transformations

u′ = cu, x′ = l−1x, t ′ = l−2c−λ t (4.1.3)

and, therefore, possesses the self-similar solution

WE(x, t) = E2/(λ+2)t−1/(λ+2)Φ
(

xE−λ (λ+2)t−1/(λ+2)
)

, (4.1.4)

where

Φ(ξ ) =
{

a(λ )(ξ 2
0 −ξ 2)1/λ , ξ ≤ ξ0,

0, ξ > ξ0,

where ξ0 = ξ0(λ ). The interesting feature of the proof of Kamin (1973) is that it also
uses a group of transformations of the type (4.1.3) to prove the asymptotic result.
She studied the Cauchy problem for equation (4.1.1) on the half plane

S = {(x, t) : x ∈ IR,0 ≤ t < ∞}

with the initial condition
u(x,0) = u0(x), (4.1.5)
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where u0(x) is a continuous nonnegative function with compact support, and, for
simplicity, assumed that the function [u0(x)]λ+1 satisfied the Lipschitz condition.
She then proved the following theorem.

Theorem 4.1.1 Suppose that u(x, t) is a generalised solution of the Cauchy problem
(4.1.1) and (4.1.5) and ∫ ∞

−∞
u0(x)dx = E0.

Then
t1/(λ+2)|u(x, t)−WE0(x, t)| → 0 (4.1.6)

as t → ∞, uniformly with respect to x ∈ IR.

Here, the Cauchy problem (4.1.1) and (4.1.5) possesses a generalised solution. A
generalised solution of (4.1.1) with (4.1.5) satisfies the following conditions.

(i) u(x, t) is continuous and nonnegative.
(ii) There exists a generalised bounded derivative (∂uλ+1)/(∂x).
(iii) For any continuously differentiable function f (x, t) with compact support,

∫ ∫
S

(
u
∂ f
∂ t

− ∂uλ+1

∂x
∂ f
∂x

)
dxdt +

∫ ∞

−∞
u0(x) f (x,0)dx = 0. (4.1.7)

The existence and uniqueness of the generalised solution of (4.1.1) was proved
earlier by Oleinik et al. (1958) and Aronson (1969, 1970a, b).

In Section 4.3, we present a recent study of Barenblatt et al. (2000) which demon-
strates in a vivid manner the intermediate asymptotic character of a self-similar so-
lution of a degenerate parabolic equation. The latter describes the groundwater flow
in a water-absorbing fissurised porous rock, hence the filtration–absorption equa-
tion. Numerical solution of the problem, subject to a class of initial conditions, con-
firms the large time asymptotic character of the self-similar solution. In Section 4.4,
we discuss a class of weak similarity solutions of the porous media equation fol-
lowing Gilding and Peletier (1976). A detailed existence analysis of the ODE gov-
erning the similarity solution, subject to appropriate boundary conditions, is pre-
sented using a shooting argument. This analysis exemplifies how the existence of
the ODEs subject to relevant initial/boundary conditions in the present context may
be rigourously proved. The role of these special solutions as intermediate asymp-
totics is brought out in Section 4.6. In Sections 4.5–4.8, we treat several nonlinear
parabolic equations – nonlinear heat conduction equation, porous media equation,
heat equation with absorption, and a very singular diffusion equation – and deter-
mine sets of parameters occuring in the problem for which they possess similarity
solutions. We then rigourously show how the latter may describe large time asymp-
totic behaviour of the solutions of original PDEs, subject to relevant initial/boundary
conditions.
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4.2 Self-similar solutions as large time asymptotics for linear
heat equation

In this section we demonstrate with the help of analytic solution of initial/boundary
value problems for the heat equation how self-similar solutions describe large time
behaviour. This is in contrast to other solutions, even exact ones, which do not
throw much light on the asymptotic form. We follow here a very interesting work by
Kloosterziel (1990) where this idea is brought out with the help of several examples.
A standard problem in heat conduction which is discussed in elementary books on
PDEs relates to a slab of conducting material between x = 0 and x = l, assuming
that both the ends are kept at zero temperature. The mathematical problem reduces
to solving

Ct = DCxx, 0 < x < l, t > 0; (4.2.1)

D is a constant, subject to the initial condition expressed as a sine series

C0(x) =
∞

∑
n=1

an sin(λnx), an =
2
l

∫ l

0
C0(x)sin(λnx)dx (4.2.2)

with λn = nπ/l, and the boundary conditions

C(0, t) = C(l, t) = 0. (4.2.3)

The solution of this problem is well known (see, for example, Carslaw and Jaeger
(1959)) and is given by

C(x, t) =
∞

∑
n=1

ane−λ
2
n Dt sin(λnx), t > 0 (4.2.4)

or, equivalently,

C(x, t) =
∞

∑
n=1

An(t)sin(λnx), (4.2.5)

where
An(t) = ane−λ

2
n Dt . (4.2.6)

The solution (4.2.5) may be interpreted as a superposition of an infinite system
of product solutions of (4.2.1). For each n, the amplitude An(t) decays exponen-
tially; it forms an ordered point-spectrum decaying exponentially: for each m > n,
limt→∞(Am/An) = 0,An(0) �= 0. However, it is easy to see a clear asymptotic form
of the solution from (4.2.5). The solution gets closer to the mth term in (4.2.4) as
time increases:

C(x, t) ≈ ame−λ
2
mDt sin(λmx) (4.2.7)

and has asymptotically vanishing amplitude, where m is the smallest integer with
am �= 0. The spectrum in (4.2.4) describes a diffusive phenomenon where the small-
scale irregularities in the initial data are ironed out with increasing time.
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We now show that, when the initial data are slightly restricted, the similarity solu-
tions of the heat equation give a very quick and precise description of the large time
asymptotics. If the heat equation (4.2.1) is transformed to an ODE via a similarity
transformation (see Sachdev 2000), that is, if we write

C(x, t) = t−m/2F(xt−1/2) (4.2.8)

in (4.2.1), we may solve the resulting ODE and hence write the solution in terms of
a known function, which is readily interpreted. An example of this class of solutions
of (4.2.1) is the so-called point source solution

C(x, t) =
1

2
√
πDt

exp(−x2/4Dt) (4.2.9)

which, for all t > 0, satisfies ∫
IR

C(x, t)dx = 1 (4.2.10)

and
lim

t→0+
C(x, t) = 0 (4.2.11)

for x �= 0. It also solves an inhomogeneous form of (4.2.1) with δ (x)δ (t) on the
RHS and, therefore, serves as the Green’s function. However, here we wish to study
more general similarity solutions of (4.2.1) than (4.2.9) which may throw light on
the asymptotic behaviour of solutions of a class of IVPs or IBVPs.

Now we seek similarity solutions of (4.2.1) for t > 0 in the form

C(x, t) =
1

a(t)
Ĉ

(
x

b(t)

)
, (4.2.12)

where we assume that a(0) = b(0) = 1. The solution (4.2.12) satisfies the initial
condition

C(x, t = 0) = Ĉ(x). (4.2.13)

The superposed solutions e−λ 2
n Dt sin(λnx) in (4.2.4) are product solutions which are

special cases of (4.2.12) with b(t) ≡ 1. The constant D in (4.2.1) can be scaled out
by a simple transformation. Hence, now onwards, we assume that D = 1 without
loss of generality. Substituting (4.2.12) into (4.2.1), we get

d2Ĉ
ds2 +b

db
dt

s
dĈ
ds

+
b2

a
da
dt

Ĉ = 0, (4.2.14)

where s = x/b(t) is the similarity variable. Equation (4.2.14) becomes an ODE in s
only if

b2

a
da
dt

= α, b
db
dt

= β , (4.2.15)
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where α and β are constants. Thus, (4.2.14) reduces to an ODE for Ĉ = Ĉ(s). Three
cases arise from (4.2.15): (i) α �= 0, β = 0; (ii) α = 0, β �= 0; (iii) α �= 0, β �=
0. For case (i) with α > 0 or α < 0, we get exponentially decaying or growing
solutions with trigonometric functions for Ĉ(s). For case (ii) with a(t) =constant,
we get explicit solutions in terms of the error function: Ĉ(s) =

∫ s e−βu2/2du. Case
(iii) is more general and allows time-dependent amplitude a(t) and a more general
solution for Ĉ(s) than trigonometric functions. The solution of the system (4.2.15)
with a(0) = b(0) = 1 may be found to be

a(t) = bα/β (t), b(t) = (2β t +1)1/2. (4.2.16)

Because b(t) becomes zero for β < 0 at t = |β |/2 (see (4.2.12)), we discuss here
only the case β > 0. We may, without loss of generality, choose β = 1. Thus, equa-
tion (4.2.14) becomes

d2Ĉ
ds2 + s

dĈ
ds

+αĈ = 0 (4.2.17)

with the solution Ĉ(s) = Ĉα(s), say. The similarity form of the solution (4.2.12) may
now be written as

C(x, t) =
1

bα(t)
Ĉα

(
x

b(t)

)
. (4.2.18)

Clearly, Ĉα(x) satisfies the differential equation

d2Ĉ
dx2 + x

dĈ
dx

+αĈ = 0. (4.2.19)

The solutions (4.2.18) cannot be used to solve arbitrary initial value problems on
a finite interval. We may solve either a pure initial value problem on IR or IBVP
on the semiline IR+ or IR− with appropriate boundary condition at the point x = 0
which corresponds to the similarity variable s = 0; of course, appropriate boundary
conditions must be imposed as x → +∞, −∞, or ±∞. Writing (4.2.19) in the
Sturm–Liouville form

d
dx

(
ex2/2 dĈ

dx

)
+αex2/2Ĉ = 0, (4.2.20)

we observe that if Ĉαs are integrable with respect to the weight function ex2/2, we
may derive the orthogonality relation∫ ∞

−∞
Ĉν(x)Ĉμ(x)w(x)dx = 0 (ν �= μ). (4.2.21)

The solution of (4.2.20) may easily be found in terms of Hermite polynomials if
α > 0 is an integer. Writing

Ĉ(x) = e−x2/2H(x) (4.2.22)
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and introducing the independent variable y = x/
√

2, we transform (4.2.20) to the
Hermite equation

d2H
dy2 −2y

dH
dy

+2(α−1)H = 0. (4.2.23)

Now choosing α − 1 = n, a positive integer or zero, we may write the solutions of
(4.2.23) as Hermite poynomials

Hn(y) = (−1)ney2 dn

dyn e−y2
. (4.2.24)

The first few Hermite polynomials are H0 = 1, H1 = 2y, H2 = 4y2 − 2, and so on.
Thus, for α = 1+n, a positive integer, we get a particular set of similarity functions
of the heat equation as

Ĉα(x) = e−x2/2Hn(x/
√

2), n = 0,1,2, . . . (4.2.25)

whereas the solutions of (4.2.1) themselves are given by (4.2.18) and (4.2.25) with
b(t) = (1+2t)1/2. For general α , the similarity solutions may be expressed in terms
of parabolic cylinder functions, which reduce to Hermite functions when α is a
positive integer. Now we show how these solutions describe large time asymptotic
behaviour of solutions of a large class of initial value problems for the heat equation
on an infinite domain.

It is well known (see Higgins 1977) that the functions

φn(x) =
Hn(x)e−x2/2√

2nn!
√
π

, n = 0,1,2, . . . (4.2.26)

are orthogonal on IR and form a complete set in L2(IR). This result in turn shows
that the set of functions

Ωn(x) =
Hn(x/

√
2)e−x2/2√

2nn!
√

2π
(4.2.27)

is orthonormal with respect to the weight function w(x) = ex2/2 on IR and is also
complete in L2(IR,w). Suppose that the initial function C0(x) =C(x, t = 0) is square
integrable with respect to the weight function w(x) = ex2/2; that is,∫ ∞

−∞
|C0(x)|2ex2/2dx < ∞; (4.2.28)

then,

C0(x) =
∞

∑
n=0

anΩn(x), (4.2.29)

where
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an =
∫ ∞

−∞
C0(x)Ωn(x)w(x)dx, n = 0,1,2, . . . . (4.2.30)

Thus, it follows from (4.2.18) and (4.2.29) that

C(x, t) =
∞

∑
n=0

an

b(t)n+1Ωn

(
x

b(t)

)
(4.2.31)

is the solution of the heat equation (4.2.1), subject to the initial condition (4.2.29).
The first nonzero term in (4.2.31) determines its large time asymptotic behaviour.

In this section, we have shown how the series expansion in terms of the similarity
solutions of the heat equation clearly brings out the large time asymptotic behaviour
of the solution of IVP on an infinite domain. Because the similarity solutions con-
sidered here form a basis for L2(IR,e|x|2/2), only those initial conditions that are
square integrable with respect to the weight function e|x|2/2 may be expanded in
terms of similarity functions. This vividly brings out the role of the first nonzero
term in the series expansion as the descriptor of the large time asymptotic behaviour
of the solution of (4.2.1).

4.3 Self-similar solutions as intermediate asymptotics for
filtration–absorption model

An interesting parabolic equation describing groundwater flow in a (water) absorb-
ing fissurised porous rock was first derived by Barenblatt et al. (2000). It also occurs
in some biological models. We consider here only one-dimensional and axisymmet-
ric cases. This equation in nondimensional form may be written as

ut = uuxx − (c−1)u2
x . (4.3.1)

Here, u is the (nondimensional) groundwater level, t is the time, x is the horizontal
space coordinate along the impermeable bed, and c > 1 is the absorption coefficient.
For a (purely) porous medium, this coefficient is less than one. For a fissurised
rock, c can be much greater than one. Equation (4.3.1) is solved subject to an initial
distribution

u(x,0) = u0(x), (4.3.2)

where u0(x) is a bounded continuous nonnegative function on IR with compact
support. Barenblatt et al. (2000) considered a self-similar solution of (4.3.1) with
c > 3/2 in the form

u = B2μ(t0 − t)2μ−1F

(
x− x0

x f

)
, (4.3.3)

x f = B(t0 − t)μ , (4.3.4)
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where x0 is the point where the solution collapses at t = t0, and x f denotes the
contracting half width of the support: the groundwater dome. The positive dome of
water is symmetric about x = x0. Thus, F(ξ ), ξ = (x− x0)/x f , is an even function
of ξ in the interval −1≤ ξ ≤ 1; it vanishes for |ξ |> 1. B and μ in (4.3.3) and (4.3.4)
are constants. It was shown by Barenblatt et al. (2000) that the self-similar solution
(4.3.3) belongs to the so-called second kind (see Barenblatt 1996): conservation
laws and dimensional considerations alone do not suffice to determine the similarity
exponent μ ; one must solve a nonlinear eigenvalue problem. The constants B, t0,
and x0 depend on the initial condition and must be determined by matching the self-
similar solution with the numerical solution of the Cauchy problem at the earlier
non-self-similar stage.

It becomes possible to find the above self-similar solution explicitly. Substituting
(4.3.3) into (4.3.1), one may obtain the nonlinear ODE

FF ′′ − (c−1)F ′2 −ξF ′ +
2μ−1
μ

F = 0, ξ =
x− x0

B(t0 − t)μ
. (4.3.5)

Barenblatt et al. (2000) sought solutions of (4.3.5) which have a maximum at ξ = 0
and a front at ξ = 1 where F(1) = 0. F ′(ξ ) is also required to be continuous at
ξ = 1. Thus, we have the following boundary conditions for (4.3.5) :

F ′(0) = 0, F(1) = 0, F ′(1) = − 1
c−1

. (4.3.6)

In view of (4.3.6), we seek a solution of (4.3.5) in the form

F(ξ ) =
∞

∑
n=1

an(1−ξ 2)n. (4.3.7)

One may easily check that a1 = 1/2(c−1), an = 0, n≥ 2. Thus, we have the explicit
solution of (4.3.5) and (4.3.6) as

F(ξ ) =
1−ξ 2

2(c−1)
, ξ =

x− x0

B(t0 − t)μ
, μ =

c−1
2c−3

. (4.3.8)

The self-similar solution may, therefore, be written as

us =
1

2(2c−3)
B2(t0 − t)1/(2c−3)

[
1− (x− x0)2

B2(t0 − t)2(c−1)/(2c−3)

]
+

,

x f = B(t0 − t)(c−1)/(2c−3). (4.3.9)

For nongrowing solutions we must have c > 3/2; the time of collapse t = t0 is
assumed to be finite. The solution (4.3.9) is a weak solution of (4.3.1) which is
positive in the interval [−x f ,x f ] and vanishes outside. The form (4.3.9) must change
for other values of c. For 1 < c < 3/2, μ = (c−1)/(2c−3) becomes negative and
the compact support contracts but the collapse time is infinite. In this case, if we
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replace μ and t0 by −μ and −t0, respectively, we may express the solution (4.3.9)
in the form

us =
1

2(3−2c)
B2(t0 + t)−1/(3−2c)

[
1− (x− x0)2

B2(t0 + t)−2(c−1)/(3−2c)

]
+

,

x f = B(t0 + t)−(c−1)/(3−2c). (4.3.10)

Now t0 is merely an additive constant; the solution (4.3.10) for 1 < c < 3/2 vanishes
in an infinite time.

It is interesting to consider the limiting behaviour of the solution (4.3.9) as c →
(3/2)+. Writing c = (3/2)+ ε , and, therefore, μ = (1/2)+(1/4ε), where ε > 0 is
a small parameter, we have

(t0 − t)μ = t(1/4ε)+(1/2)
0

(
1− t

t0

)(1/4ε)+(1/2)

, (t0 − t)2μ−1 = t1/2ε
0

(
1− t

t0

)1/2ε

(4.3.11)
and, therefore,

x f = Bt(1/4ε)+(1/2)
0

(
1− t

t0

)(1/4ε)+(1/2)

. (4.3.12)

Thus, as ε → 0 such that 4εt0 tends to a certain constant θ and B2t1/2ε+1
0 tends to

another constant, C2θ , say, the solution (4.3.9) assumes the form

u = C2e−2t/θ
[

1− (x− x0)2

C2θe−2t/θ

]
, x f = Cθ 1/2e−t/θ . (4.3.13)

Barenblatt et al. (2000) pointed out that, for 0 < c < 1, the case of weak absorption,
the compact support grows instead of contracting, though at a slower rate than for
the special case of (4.3.1) with c = 0. For the latter, the solution (4.3.9) reduces to
a self-similar solution of the first kind (see Barenblatt 1996). The degenerate case
c = 1 was considered in detail by King (1993).

Chertock (2002) interpreted the intermediate asymptotic character of the self-
similar solutions (4.3.3) and (4.3.4) in the sense of their stability. A self-similar
solution is called stable if the solution of any perturbed problem (with a sufficiently
small perturbation) can be represented as sum of a self-similar solution (4.3.3) with
a constant B′ (can be different from B) and a perturbation term which, relative to the
first term, tends to zero as t →∞. Restricting our discussion to the case c > 3/2, we
first write (4.3.1) in terms of ws = u2

s (x, t) (see (4.3.9)):

2
√

ws(ws)t = 2ws(ws)xx − c((ws)x)2. (4.3.14)

This new variable is convenient because the derivative ∂us/∂x is discontinuous at
the boundary ξ = 1; the derivative (ws)x, however, is continuous at ξ = 1. The
function ws = ws(x, t), in view of (4.3.3), can be written as
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ws = B4μ2(t0 − t)4μ−2F2(ξ ), ξ =
x− x0

B(t0 − t)μ
(4.3.15)

for |ξ | ≤ 1 and ws ≡ 0 for |ξ | ≥ 1. The function F(ξ ) and the constant μ are given
by (4.3.8). Now write the perturbed solution as

ws(ξ , t) = B4μ2(t0 − t)4μ−2[F2(ξ )+δ 2φ(ξ ,τ)], (4.3.16)

where δ is a small parameter. A simple argument shows that τ = −μ log(t0 − t) is a
more convenient variable for the perturbation term than t itself. It is clear that |ξ |= 1
is not the boundary of the solution. It is now displaced and may be defined by −1−
β2(τ)≤ ξ ≤ 1+β1(τ). The perturbed boundaries are, in general, not symmetrically
placed so that β1(τ) �= β2(τ). The displacement of the boundaries is proportional
to the small parameter δ . This may be seen by writing ξ = 1 +β1(τ) in (4.3.16),
linearising it, and recalling that F2(1) = (F2)′(1) = 0 and w = 0 at ξ = 1 +β1(τ).
Thus, we have

β 2
1 (τ)
2

(F2)′′(1)+δ 2φ(1,τ) = 0. (4.3.17)

It, therefore, follows that β1 is proportional to δ . A similar argument gives the equa-
tion for β2(τ). Substituting (4.3.16) into (4.3.14) and linearising, we get the follow-
ing equation for the perturbation φ .

φτ = Lξ φ ≡ 1
2(c−1)

[
(1−ξ 2)φξξ +2(c+1)ξφξ +

4(c+1)
1−ξ 2 φ −2(2c+1)φ

]
.

(4.3.18)
The functions φ and φξ must be continuous at the boundaries ξ = ±1; that is,
φ = φξ = 0 there. Equation (4.3.18) has the series solution

φ(ξ ,τ) =
∞

∑
n=0

ane−λnτΦn(ξ ) =
∞

∑
n=1

an(t0 − t)μλnΦn(ξ ), (4.3.19)

where Φn(ξ ) is the eigenfunction with λn as the corresponding eigenvalue for the
operator Lξ . For the self-similar solutions to be stable we must show that all the
eigenvalues λn are nonnegative and the corresponding set of eigenfunctions is com-
plete. It turns out that it is possible to solve the eigenvalue problem for Φn(ξ ) in
terms of Jacobi polynomials:

Φn(ξ ) = (1−ξ 2)c+1P(c,c)
n (ξ ), λn =

(n+1)(n+2c)
2(c−1)

, (4.3.20)

where P(c,c)
n (ξ ) is the Jacobi polynomial of degree n defined by

P(c,c)
n (ξ ) =

n+ c
n(n+2c)

[
(2n+2c−1)ξP(c,c)

n−1 (ξ )− (n+ c−1)P(c,c)
n−2 (ξ )

]
,

P(c,c)
0 (ξ ) = 1, P(c,c)

1 (ξ ) = (c+1)ξ . (4.3.21)
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The set {Φn(ξ )} is complete and the eigenvalues λn for c > 3/2 are nonnegative.
Hence the stability of the self-similar solution for c > 3/2 is proved.

We may remark that (4.3.5) possesses other solutions if we do not impose the
condition that F(ξ ) has a maximum at ξ = 0. For example, if F(ξ ) has local extrema
in [−1,1], a local minimum at ξ = 0 with F(0) = 0, say, then one may derive the
solution

u =
B2(t0 + t)1/(c−2)

2(2c−3)

⎡
⎣ (x− x0)2

B2(t0 + t)(c−1)/(c−2)

−
(

x− x0

B(t0 + t)(c−1)/2(c−2)

)1/(2−c)
]

+

, (4.3.22)

x f = B(t0 + t)(c−1)/2(c−2), − x f (t) ≤ x ≤ x f (t), (4.3.23)

and u(x, t) ≡ 0 outside the interval [−x f (t),x f (t)]. Here, t0 > 0 is an additive con-
stant and 3/2 < c < 2. A similar form of the solution exists for 1 < c < 3/2. The
time of collapse here is again infinite.

For c = 7/4, we have a very simple solution of the BVP (4.3.5)–(4.3.6), namely,

F(ξ ) =
4
3
ξ 3(1−ξ ), μ = −1, (4.3.24)

leading to

u =
4

3B
(x− x0)3

(
1− x− x0

t0 + t

)
+

, x f = B(t0 + t)−1. (4.3.25)

Before we turn to the numerical validation of the asymptotically stable nature of the
solutions discussed above, we briefly study the axisymmetric case corresponding to
(4.3.1). Here, u = u(r, t) is governed by

ut = u
(

urr +
ur

r

)
− (c−1)u2

r . (4.3.26)

The self-similar solution of (4.3.26) is sought in the form

u(r, t) = B2μ(t0 − t)2μ−1F(ξ ), (4.3.27)

where the similarity variable

ξ =
r

B(t0 − t)μ
(4.3.28)

is defined over [0,1]. In this case (4.3.26) becomes

FF ′′ +
F
ξ

F ′ − (c−1)F ′2 −ξF ′ +
2μ−1
μ

F = 0. (4.3.29)

The function F satisfies the same conditions as before:
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F ′(0) = 0, F(1) = 0, F ′(1) = − 1
c−1

. (4.3.30)

For the case for which F possesses a maximum at ξ = 0, the solution may be found
to be

F(ξ ) =
1−ξ 2

2(c−1)
, μ =

c−1
2(c−2)

, (4.3.31)

yielding

u =
B2

4(c−2)
(t0 − t)1/(c−2)

[
1− r2

B2(t0 − t)(c−1)/(c−2)

]
+

, r ∈ [0,r f (t)], (4.3.32)

where the radius of the front is given by

r f = B(t0 − t)(c−1)/2(c−2). (4.3.33)

Here, we assume that c > 2 and u ≡ 0 outside the interval [0,r f (t)]. For 1 < c < 2,
μ is negative (see (4.3.31)); the solution, therefore, may be sought in the form

u(r, t) = −B2μ(t0 + t)2μ−1F(ξ ), ξ =
r

B(t0 + t)μ
. (4.3.34)

This form leads again to the eigenvalue problem (4.3.29) and (4.3.30). The solution
in this case is found to be

u =
B2

4(2− c)
(t0 + t)1/(c−2)

[
1− r2

B2(t0 + t)(c−1)/(c−2)

]
+

, (4.3.35)

r f = B(t0 + t)(c−1)/2(c−2). (4.3.36)

For the limiting case c = 2, μ → ±∞ (see (4.3.31)), (4.3.29) assumes the simple
form

d
dξ

(
ξ
F

F ′ +
ξ 2

F

)
= 0 (4.3.37)

and, subject to the conditions (4.3.30), has the solution

F(ξ ) =
1

α−2
(ξ 2 −ξα), α �= 2, (4.3.38)

where α is either zero or a constant greater than one. In the manner of the solution of
Barenblatt et al. (2000) for the planar case, detailed earlier, the limiting self-similar
solution of (4.3.26) for c → 2+0, μ → +∞, may be obtained as

u =
r2

D(α−2)

[
1− rα−2

Cα−2 et(α−2)/D
]
, (4.3.39)

where C is a constant; the radius of the front now is given by
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r f = Ce−t/D. (4.3.40)

The limiting case c → 2−0, μ →−∞ of the self-similar solution (4.3.27) again has
the form (4.3.39) and (4.3.40).

Chertock (2002) also carried out linear stability analysis of the self-similar solu-
tion for the axisymmetric case in the manner of the planar case and concluded that
this solution is stable both when 1 < c < 2 and when c > 2.

Barenblatt et al. (2000) demonstrated numerically how the self-similar solution
(4.3.9) of (4.3.1) attracts other solutions of (4.3.1) subject to the nonsymmetric ini-
tial conditions with compact support, namely,

u(x,0) =
{

u0(x), xL(0) ≤ x ≤ xR(0),
0, otherwise.

(4.3.41)

The constant c in (4.3.1) was chosen to be 1.75. Two distinct finite difference
schemes were used to ensure accurate large time behaviour. For the numerical study,
the first initial condition, u0(x), represented a smooth block, a homogeneous water
level distribution smoothly going to zero at the edges (see Figure 4.1). Figure 4.1
shows u(x, t)/umax(t), where umax(t) is the maximum water level at each time. It is
clearly seen that the solution curves with increasing time collapse to the parabola
representing the self-similar solution (4.3.8). The time of collapse t0 and the con-
stant B in the self-similar solution were found from the numerical solution by a suit-
able matching; these depend on the specific initial conditions. The second example
related to the nonsymmetric initial condition

u(x,0) =
{−4x2 +4x, 0 < x < 1/2
− 4

9 x2 + 4
9 x+ 8

9 , 1
2 < x < 2.

(4.3.42)

Figures 4.2 and 4.3 show the numerical solution of (4.3.1) subject to (4.3.42) at dif-
ferent times. It is observed that, after some time, the solution assumes a symmetric
form and becomes self-similar. The arbitrary constants t0 and B in (4.3.9) turn out to
be different from those for the earlier example. A third example with a self-similar
solution itself as the initial condition confirmed the veracity of the numerical solu-
tion (see Figures 4.4 and 4.5); in this case, the scaled solution collapses to a single
curve, the self-similar solution for all time.

Chertock (2002) first recovered some of the numerical results of Barenblatt
et al. (2000) and then proceeded to show that the axisymmetric self-similar solu-
tions (4.3.32) describe the large time behaviour for the solutions of (4.3.26) (for
c = 2.25) subject to axisymmetric initial condition with compact support.

It was found by Ughi (1986) and Dal Passo and Luckhaus (1987) that the solu-
tions of (4.3.1) and (4.3.2) for c = 1 are not uniquely determined by the initial data
u0(x). A reference may be made to the work of Bertsch et al. (1992) for a study of
nonuniqueness of the solutions of the filtration–absorption equation for some other
values of c.

In this section, we have studied the asymptotic behaviour of an initial value
problem for a (degenerate) parabolic filtration–absorption equation. A family of
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Fig. 4.1 Numerical solution of Cauchy problem for (4.3.1) with c = 1.75, subject to a ‘smoothed
block’ type initial data (4.3.41) at different times in the scaled coordinates. The solution collapses
to its self-similar asymptotic form (4.3.9). (Barenblatt et al. 2000. Copyright c© 2000, National
Academy of Sciences, USA. Reprinted with permission. All rights reserved.)

Fig. 4.2 Numerical solution of (4.3.1) with c = 1.75 subject to the nonsymmetric initial profile
(4.3.42) at different times: initial profile (- - -), numerical solution (—). (Barenblatt et al. 2000.
Copyright c© 2000, National Academy of Sciences, USA. Reprinted with permission. All rights
reserved.)
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Fig. 4.3 Same as in Figure 4.2 with scaled coordinates u(ξ , t)/umax(t) and ξ . (Barenblatt
et al. 2000. Copyright c© 2000, National Academy of Sciences, USA. Reprinted with permission.
All rights reserved.)

Fig. 4.4 Numerical solution of (4.3.1) with c = 1.75 subject to the initial profile given by the self-
similar solution (4.3.9) at different times: initial profile (- - -), numerical solution (—). (Barenblatt
et al. 2000. Copyright c© 2000, National Academy of Sciences, USA. Reprinted with permission.
All rights reserved.)
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Fig. 4.5 Same as in Figure 4.4 with scaled coordinates u(ξ , t)/umax(t) and ξ . (Barenblatt
et al. 2000. Copyright c© 2000, National Academy of Sciences, USA. Reprinted with permission.
All rights reserved.)

self-similar solutions for this problem is constructed. The numerical study confirms
that these special solutions form intermediate asymptotics for a wide class of initial
conditions. We have also considered an axisymmetric filtration–absorption equation
and constructed a family of self-similar solutions analogous to those for the one-
dimensional case. These self-similar solutions attract solutions of problems with
more general initial conditions.

4.4 Analysis of a class of similarity solutions of the porous media
equation

In this section, we exemplify the analysis of nonlinear ODEs subject to certain
boundary conditions. These boundary value problems arise from the similarity re-
duction of nonlinear PDEs with appropriate initial/boundary conditions. This analy-
sis helps pick up sets of parameters for each of which the solution of the BVP for the
ODE exists and is unique. One may then discover which of these solutions constitute
intermediate asymptotics for the original PDEs, subject to relevant initial/boundary
conditions.

In this section, we discuss the existence and uniqueness of weak solutions with
compact support for the boundary value problem

( f m)′′ + pη f ′ = q f , 0 < η < ∞, (4.4.1)
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f (0) = U, f (∞) = 0; (4.4.2)

here p, q, and U > 0 are arbitrary constants. Equation (4.4.1) is a generalisation of
the ODE obtained by similarity reduction of the porous media equation

ut = (um)xx, m > 1 (4.4.3)

(see Section 4.6). Here, we follow the work of Gilding and Peletier (1976), who
extended an earlier work of Atkinson and Peletier (1971).

A function f is a weak solution of (4.4.1) if it satisfies the following conditions.

(i) f is bounded, continuous, and nonnegative on [0,∞).
(ii) ( f m)(η) has a continuous derivative with respect to η on (0,∞).
(iii) f satisfies the equation∫ ∞

0
φ ′{( f m)′ + pη f}dη+(p+q)

∫ ∞

0
φ f dη = 0

for all φ ∈C1
0(0,∞).

In the sequel, we prove the following theorem.

Theorem 4.4.1 Suppose that U > 0. Then the boundary value problem (4.4.1)–
(4.4.2) has a weak solution with compact support if and only if p≥ 0 and 2p+q > 0.
Furthermore, this weak solution of (4.4.1)–(4.4.2) is unique.

To prove this theorem, we pose the following boundary value problem for (4.4.1),

f (0) = U, (4.4.4)

f (a) = 0, ( f m)′(a) = 0, (4.4.5)

where a > 0 is a real number. Using a shooting argument with a > 0 as the shoot-
ing parameter, we first prove the following theorem for the existence and unique-
ness of classical solutions for (4.4.1) with the boundary conditions (4.4.4) and
(4.4.5).

Theorem 4.4.2 Suppose that U > 0. Then the boundary value problem (4.4.1),
(4.4.4), and (4.4.5) has a unique solution and there exists a unique a(U) > 0 such
that f (η ;a(U)) is positive on (0,a) if and only if p ≥ 0 and 2p+q > 0.

Atkinson and Peletier (1971) showed that if f (η0) > 0 for some η0, then f is a clas-
sical solution of (4.4.1) in a neighbourhood (η0 − ε,η0 + ε). Thus, the solution f
appearing in Theorem 4.4.2 is a classical solution of (4.4.1). The proof of Theorem
4.4.2 follows three steps: (i) proof of existence and uniqueness of solution of (4.4.1)
satisfying (4.4.5) in a neighbourhood of η = a via a contraction principle; (ii) exten-
sion of this solution up to η = 0 as a positive solution (if possible); and (iii) proving
the existence of a(U) (when possible) such that f (0,a(U)) = U .

In Lemma 4.4.3, we determine necessary conditions on the parameters p and q
for the existence of a nontrivial weak solution of (4.4.1) with compact
support.
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Lemma 4.4.3 There exists a nontrivial weak solution of (4.4.1) with a compact
support only when p > 0 or p = 0, q > 0.

Proof: Suppose that f (η ;a) is a nontrivial weak solution of (4.4.1) with compact
support. Then f > 0 in (a− ε,a) and f = 0 in [a,∞) for some a > 0 and ε > 0.
It follows that f is a classical solution of (4.4.1) on (a− ε,a) and satisfies (4.4.5)
at η = a; that is, f (a) = 0, ( f m)′(a) = 0. Integrating (4.4.1) from η to a, where
a− ε < η < a, we get

− ( f m)′(η) = pη f (η)+(p+q)
∫ a

η
f (ξ )dξ . (4.4.6)

The continuity of f and ( f m)′ ensures the existence of η0 ∈ (a− ε,a) such that
f ′(η0) < 0. This implies that the LHS of (4.4.6) is positive at η = η0 and, therefore,
p and p + q cannot both be less than zero. Thus, p = 0 implies that q > 0. Now
consider the case p < 0. This requires that p + q > 0 and hence q > 0. We easily
check from (4.4.1) that f cannot have a maximum as long as f is positive. Therefore,
f does not assume a maximum at any point in (a− ε,a). Thus, f ′ < 0 on (a− ε,a).
It follows from (4.4.6) that

−m f m−2(η) f ′(η)− pη ≤ (p+q)(a−η), (4.4.7)

where we have used the fact that f (ξ ) ≤ f (η) for ξ ∈ (η ,a), a− ε < η < a. As
η → a in (4.4.7), LHS becomes positive, and the RHS tends to zero, a contradiction.
Thus we have shown that p = 0, q > 0 or p > 0 are the only cases for which a
nontrivial weak solution of (4.4.1) exists with a compact support.

Explicit solution of (4.4.1), (4.4.4) and (4.4.5) when p = 0, q > 0.

With p = 0, q > 0, (4.4.1) becomes

( f m)′′ = q( f m)1/m. (4.4.8)

Substituting f m = g in (4.4.8) and integrating we get

(g′)2 =
2qm

m+1
g(m+1)/m, (4.4.9)

where we have used (4.4.5). Solving (4.4.9) for g and using (4.4.5)1, we obtain

f m = g =
{

q(m−1)2(a−η)2

2m(m+1)

}m/(m−1)

, 0 < η < a.

Thus

f (η ;a) =
{

q(m−1)2(a−η)2

2m(m+1)

}1/(m−1)

, 0 < η < a, (4.4.10)
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is the unique solution of the problem (4.4.1) satisfying (4.4.5). We observe that

f (0;a) =
{

q(m−1)2a2

2m(m+1)

}1/(m−1)

.

Because m > 1, f (0;a) is a continuous function of a with f (0;0) = 0 and f (0;∞) =
∞; furthermore, f is a continuous and monotonically increasing function of a. This
implies that, for a given U > 0, there exists a unique a(U) such that f (0;a(U)) =U .
Therefore, f (η ;a(U)) is the unique solution of (4.4.1) satisfying (4.4.4) and (4.4.5).
An easy calculation shows that

a(U) =
[

2m(m+1)Um−1

q(m−1)2

]1/2

.

We give below an elementary lemma for the case p > 0.

Lemma 4.4.4 Suppose that 0 < b < a and f is a positive solution of (4.4.1) on [b,a)
satisfying (4.4.5). Then the following results hold.

(i) f ′(η) < 0 on [b,a) provided that p+q ≥ 0.
(ii) Suppose that p + q < 0 and f ′(η0) = 0 for some η0 ∈ [b,a). Then f has a

maximum at η0 and η0 < a(p+q)/q.

Suppose that f is a positive solution of (4.4.1) and (4.4.5) on [0,a). Then

f ′(0)

⎧⎨
⎩

> 0, p+q < 0,
= 0, p+q = 0,
< 0, p+q > 0.

Proof: Integration of (4.4.1) from η ∈ [b,a) to a yields

− ( f m)′(η) = pη f (η)+(p+q)
∫ a

η
f (ξ )dξ . (4.4.11)

Because p > 0, the RHS of (4.4.11) is positive when p+q≥ 0 and hence ( f m)′(η) <
0. This implies that f ′(η) < 0 on [b,a). Again, if p + q < 0 then q < 0 (because
p > 0). By (4.4.1), f ′′(η0) < 0 when f ′(η0) = 0. Thus f has a maximum at η = η0

and is strictly decreasing on (η0,a); that is, f ′(η) < 0 on (η0,a). Putting η = η0 in
(4.4.11), we have

0 = pη0 f (η0)+(p+q)
∫ a

η0

f (ξ )dξ

> pη0 f (η0)+(p+q)(a−η0) f (η0);

therefore, pη0 + (p + q)(a − η0) < 0 or η0 < a(p + q)/q. With η = 0, (4.4.11)
becomes

− ( f m)′(0) = (p+q)
∫ a

0
f (ξ )dξ . (4.4.12)
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The result for f ′(0) follows immediately from (4.4.12). In particular, f ′(0) < 0 when
p+q ≥ 0.

In the next lemma, we prove the local existence and uniqueness of a solution of
(4.4.1) satisfying (4.4.5). This is accomplished by formulating an equivalent inte-
gral equation following the work of Atkinson and Peletier (1971) and Gilding and
Peletier (1976).

Lemma 4.4.5 Suppose that p is greater than zero and q is any real number. Then,
for any a > 0, equation (4.4.1) with initial condition (4.4.5) at η = a has a unique
positive solution in a neighbourhood (a− ε,a) of a; here, ε > 0 is a constant.

Proof: Suppose that f is a positive solution in a left neighbourhood of η = a. By
Lemma 4.4.4, f ′(η) < 0 for η ∈ (a− ε,a) for some ε > 0. Let η = σ( f ) where σ
is the inverse of f on (a− ε,a). Rewriting (4.4.11), we have

( f m)′(η) = qη f (η)+(p+q)
∫ a

η
ξ f ′(ξ )dξ . (4.4.13)

With σ( f ) = η in (4.4.13) we have

dσ
d f

=
m f m−1

q fσ( f )− (p+q)
∫ f

0 σ(φ)dφ
; (4.4.14)

equation (4.4.14) is an integrodifferential equation for σ =σ( f ). Integrating (4.4.14)
from 0 to f , we obtain

σ( f )−a = m
∫ f

0

φm−1dφ
qφσ(φ)− (p+q)

∫ φ
0 σ(ψ)dψ

. (4.4.15)

Let
τ( f ) = 1−a−1σ( f ). (4.4.16)

Then, equation (4.4.15) becomes

τ( f ) =
m
a2

∫ f

0

φm−1dφ
pφ +qφτ(φ)− (p+q)

∫ φ
0 τ(ψ)dψ

. (4.4.17)

By using the Banach–Cacciopoli contraction mapping principle (see Hartman 1964),

we now show that equation (4.4.17) admits a unique positive solution in a right
neighbourhood of f = 0. Let X be the set of all bounded functions τ( f ) on
[0,γ], γ > 0, satisfying

0 ≤ τ( f ) ≤ ρ =
p

2(|q|+ |p+q|) . (4.4.18)

Let ‖..‖ be the sup norm defined on X . Then X is a complete metric space. Define
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M(τ)( f ) =
m
a2

∫ f

0

φm−1dφ
pφ +qφτ(φ)− (p+q)

∫ φ
0 τ(ψ)dψ

, τ( f ) ∈ X . (4.4.19)

First we show that M maps X into X over [0,γ0], γ ≤ γ0. Let τ ∈ X . Clearly,

pφ +qφτ(φ)− (p+q)
∫ φ

0
τ(ψ)dψ

≥ pφ −|q|φτ(φ)−|p+q|‖τ‖φ
≥ pφ − (|q|+ |p+q|)‖τ‖φ
≥ pφ

2
, (4.4.20)

where we have used (4.4.18). Therefore, from (4.4.19), we have

M(τ)( f ) ≤ 2m
pa2

∫ f

0
φm−2dφ

=
2m f m−1

pa2(m−1)

≤ 2mγm−1

pa2(m−1)
. (4.4.21)

Thus, M(τ) is well defined on X and M(τ): [0,γ] → IR is nonnegative and con-
tinuous. The RHS of (4.4.21) suggests that we may find γ0, γ ≤ γ0 such that
‖M(τ)‖ ≤ ρ , τ ∈ X . Thus M maps X into X for γ ≤ γ0.

In the next step, we show that M is a contraction map on X . Let τ1, τ2 ∈ X , and
γ ≤ γ0. Then

‖M(τ1)−M(τ2)‖ ≤ 4m
p2a2

∫ f

0
φm−3(|q|φ‖τ1 − τ2‖+ |p+q|

∫ φ

0
‖τ1 − τ2‖dψ)dφ

≤ 4m
(m−1)p2a2 (|q|+ |p+q|)γm−1‖τ1 − τ2‖.

Therefore, there exists γ1 ∈ (0,γ0] such that if γ ≤ γ1, M is a contraction on X . By
the Banach–Cacciopoli contraction principle, M has a unique fixed point in X and
hence equation (4.4.17) has a unique solution. This, in turn, implies that there exists
a unique positive solution of (4.4.1), (4.4.5) in an interval (a−ε,a) for some ε > 0.

Now we enquire whether it is possible to extend f (η ;a) back to η = 0. This
extension may be carried out uniquely as long as f is bounded and positive. The
following three cases may arise.

(A) f (η) → ∞ as η ↓ η1 for some η1 ∈ [0,a).
(B) f (η) may be continued back to η = 0.
(C) f (η) → 0 as η ↓ η2 for some η2 ∈ (0,a).

In the next lemma, we prove that a positive solution f (η ;a) of (4.4.1) and (4.4.5)
cannot be unbounded. This will rule out the possibility (A) above.
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Lemma 4.4.6 Suppose that p > 0 and b ∈ [0,a). Furthermore, let f be a positive
solution of (4.4.1) and (4.4.5) on (b,a). Then f is bounded on (b,a) and

sup
(b,a)

f (η) ≤
[
(m−1)a2

2m
max{p,2p+q}

]1/(m−1)

.

Proof: We prove this lemma for the following two cases: (i) p+q≥ 0, (ii) p+q < 0.

Case (i). p+q ≥ 0.

Because, for this case, f ′ < 0 on (b,a) by Lemma 4.4.4, f (η) ≥ f (ξ ), ξ ∈ (η ,a).
By (4.4.11),

− ( f m)′(η) ≤ pη f (η)+(p+q) f (η)(a−η), b ≤ η < a

or
−m f m−2 f ′ ≤ a(p+q)−qη , b ≤ η < a. (4.4.22)

Integrating (4.4.22) from η to a gives

m
m−1

f m−1(η) ≤ [pa+q(a−η)/2](a−η), b ≤ η ≤ a. (4.4.23)

Thus,
m

m−1
sup
(b,a)

f m−1(η) ≤ 1
2

a2(2p+q). (4.4.24)

Case (ii). p+q < 0.

By equation (4.4.11),

− ( f m)′(η) ≤ pη f (η), b ≤ η < a

or
−m f m−2 f ′ ≤ pη , b ≤ η < a. (4.4.25)

Integrating (4.4.25) from η to a, we have

m
m−1

f m−1(η) ≤ 1
2

p(a2 −η2), b ≤ η ≤ a. (4.4.26)

This, in turn, implies that

m
m−1

sup
(b,a)

f m−1(η) ≤ 1
2

pa2. (4.4.27)

Observe that the bounds in (4.4.24) and (4.4.27) are independent of b and, therefore,
f (η) cannot be unbounded as η decreases from η = a.
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In the manner of the proof for Lemma 4.4.6, we arrive at the following lower
bounds for the positive solution f of (4.4.1) and (4.4.5) on an interval [b,a) for
p+q ≥ 0 and p+q < 0:

(i) p+q ≥ 0,

m
m−1

f m−1(η) ≥ 1
2

p(a2 −η2), b ≤ η ≤ a. (4.4.28)

(ii) p+q < 0,

m
m−1

f m−1(η) ≥
[

pa+
1
2

q(a−η)
]
(a−η),

≥ 1
2
(2p+q)(a2 −η2), max{b,η0} ≤ η ≤ a. (4.4.29)

Lemma 4.4.7 below and the discussion that follows clearly bring out the paramet-
ric ranges of p and q for which the cases (B) and (C) may hold (see above Lemma
4.4.6).

Lemma 4.4.7 Suppose that f is a positive solution of (4.4.1) and (4.4.5) in a left
neighbourhood of η = a, and p > 0. Then f (η) > 0 on [0,a) when 2p+q > 0.

Proof: Integrating (4.4.11) from η to a, we have

f m(η) = pη
∫ a

η
f (ξ )dξ +(2p+q)

∫ a

η
(ξ −η) f (ξ )dξ . (4.4.30)

It is easy to see from (4.4.30) that, if 2p + q > 0, then f (η) > 0 on (0,a). It may
also be shown that f > 0 on (0,a) and f (0) = 0 when 2p + q = 0. Moreover, f
cannot remain positive when 2p + q < 0 on (0,a) (see (4.4.30)) (see Gilding and
Peletier 1976 for details). In the next proposition, we find the bounds for f (0). To
that end, we define

λ =
2p+q

p
, μ = 1−

(
p+q

q

)2

, A =
[

m−1
2m

pa2
]1/(m−1)

.

Proposition 4.4.8 Suppose that p > 0 and 2p+q > 0. Then, the following bounds
hold for f (0).

(i) λ 1/mA ≤ f (0) ≤ λ 1/(m−1)A if p+q ≥ 0, λ ≥ 1.
(ii) (μλ )1/(m−1)A ≤ f (0) ≤ λ 1/mA if p+q ≤ 0, 0 < λ ≤ 1.

Proof: (i) Putting η = 0 in (4.4.24) and simplifying, we get

f (0) ≤
[(

m−1
2m

pa2
)

2p+q
p

]1/(m−1)

,

≤ Aλ 1/(m−1).
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To prove the lower bound, put η = 0 in (4.4.30). Then,

f m(0) = (2p+q)
∫ a

0
ξ f (ξ )dξ . (4.4.31)

Using (4.4.28) in (4.4.31) and simplifying, we have f (0) ≥ λ 1/mA.
(ii) For p+q ≤ 0, we find from (4.4.26) and (4.4.29) that

λ 1/(m−1)A[1− (η/a)2]1/(m−1) ≤ f (η) ≤ A[1− (η/a)2]1/(m−1), η0 ≤ η ≤ a.
(4.4.32)

We recall that η = η0 is the point at which f attains its maximum. Because
f (η)≤ f (η0) on [0,η0], the second inequality in (4.4.32) holds for 0 ≤ η ≤ a. Mak-
ing use of the upper bound for f on [0,a) from (4.4.32) in (4.4.31) and simplifying,
we obtain f (0) ≤ λ 1/mA. To prove the lower bound, we use (4.4.31) and write

f m(0) ≥ (2p+q)
∫ a

a∗
ξ f (ξ )dξ (4.4.33)

inasmuch as, in view of Lemma 4.4.4, a∗ = a(p+q)/q and η0 ≤ a∗. Now substitut-
ing the lower bound for f (η) from (4.4.32) in (4.4.33) and simplifying we arrive at
the lower bound for f (0).

In the next proposition, we prove that, when p > 0, 2p+q ≥ 0, the solution f (η)
of (4.4.1) and (4.4.5) is monotonically increasing with respect to the parameter a
(see equation (4.4.5)) for a fixed η .

Proposition 4.4.9 Suppose that p > 0 and 2p + q ≥ 0. Furthermore, let f (η ;a1)
and f (η ;a2) be solutions of (4.4.1) and (4.4.5) on (0,a1) and (0,a2), respectively,
where a1 > a2. Then f (η ;a1) > f (η ;a2) everywhere on (0,a2).

Proof: For convenience, we let f (η ;ai) = fi(η), i = 1,2. Suppose, for contra-
diction, that the conclusion in Proposition 4.4.9 is not true. Then there exists an
η ∈ (0,a2) such that f1(η) = f2(η) and f1(η) > f2(η) on (η ,a2). From (4.4.30),
we have

f m
i (η) = pη

∫ ai

η
fi(ξ )dξ +(2p+q)

∫ ai

η
(ξ −η) fi(ξ )dξ , i = 1,2. (4.4.34)

This implies that

pη
∫ a2

η
( f1 − f2)dξ +(2p+q)

∫ a2

η
(ξ −η)( f1 − f2)dξ

+ pη
∫ a1

a2

f1(ξ )dξ +(2p+q)
∫ a1

a2

(ξ −η) f1(ξ )dξ = 0. (4.4.35)

Because the second and fourth terms on the LHS of (4.4.35) are nonnegative and
the other two terms are positive, we arrive at a contradiction. Hence the proposition
4.4.9.
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Now we proceed to prove Theorem 4.4.2. We have already proved in Lemma
4.4.5 the local existence of a solution about η = a for (4.4.1) and (4.4.5). This
unique local solution may be extended back to η = 0 as a positive solution with
f (0) > 0 if and only if when 2p + q > 0 (see Lemma 4.4.7). Now if we can prove
that there exists a(U) such that f (0;a(U)) = U , then Theorem 4.4.2 is proved. To
that end, we use the following result due to Barenblatt (1952). Suppose that f (η ;a)
is a solution of (4.4.1) and (4.4.5) on (0,a); then μ−2/(m−1) f (μη ;μa) is a solution
of (4.4.1) and (4.4.5) on (0,μa) for any μ > 0. Let μ = a−1. Then,

f (0;a) = a2/(m−1) f (0;1) = U. (4.4.36)

Because f (0;1) > 0 for 2p+q > 0, p > 0, we get a unique root a = a(U) of (4.4.36).
Thus, f (η ;a(U)) is the unique solution of (4.4.1), (4.4.4), and (4.4.5). Theorem
4.4.2 follows if we add that, for p = 0, we have already constructed the explicit
solution (4.4.10).

We observe that

f (η) =
{

f (η ;a), 0 ≤ η < a
0, a ≤ η < ∞,

(4.4.37)

is a weak solution of (4.4.1) and (4.4.5). Now we must show that, given U > 0,
(4.4.37) is the only solution of (4.4.1), (4.4.4), and (4.4.5) with compact support.
Suppose that f (η) is a weak solution of the problem (4.4.1) and (4.4.2) with com-
pact support. By Lemma 4.4.7, this is possible only if 2p+q > 0. Moreover,

f (η)
{

> 0 on [0,a),
= 0 on [a,∞), a > 0.

By Theorem 4.4.2, this is also the unique solution. Thus, we have proved Theorem
4.4.1.

In this section, we have proved that the second-order nonlinear ODE (4.4.1) gov-
erning the self-similar solution of the porous media equation subject to the boundary
conditions (4.4.2) has a weak solution with compact support if and only if p ≥ 0 and
2p+q > 0. We prove in Section 4.6 that this subset of solutions describes large time
asymptotic behaviour of the solutions of the porous medium equation subject to a
certain class of initial/boundary conditions.

4.5 Similarity solutions of nonlinear heat conduction problems
as large time asymptotics

This section concerns the large time asymptotics for the solutions of nonlinear heat
conduction problems following the work of Peletier (1970). We consider the quasi-
linear PDE

ut = (k(u)ux)x, (4.5.1)
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which describes the conduction of heat into a semi-infinite homogeneous solid oc-
cupying the length 0 ≤ x < ∞. Here, u = T − T0, T being the temperature in the
solid; T0 is its value far from its face (initially). The temperature at the face x = 0
is denoted by T1 > T0. The coefficient of thermal conductivity, k(u), is assumed to
be continuously differentiable and positive for all values of u and k′(u) < 0 for all
nonnegative values of u. This applies specifically to the situation in metals and in
certain crystals.

The initial temperature profile u(x,0) = u0(x) is assumed to be smooth; more-
over, u0 ≥ 0 for all x ≥ 0 and behaves as

u0(x) = O

{
erfc

(
x

2
√

k(0)

)}
as x → ∞. (4.5.2)

Besides, this initial function satisfies compatibility conditions at (0,0):

u0(0) = T1 −T0,
d
dx

{
k(u0)

du0

dx

}
= 0. (4.5.3)

These conditions guarantee smoothness of the solution up to the boundary x = 0.
If we look for a solution of (4.5.1) in the similarity form u(x, t) = f (η), η =

x/(t +1)1/2, we check from (4.5.1) that f (η) satisfies the ODE

{
k( f ) f ′

}′ + 1
2
η f ′ = 0, (4.5.4)

where the prime denotes the derivative with respect to η . The idea now is to con-
nect the solution of (4.5.4) with that of (4.5.1) with the initial condition u0(x) sat-
isfying (4.5.2) and (4.5.3). As Peletier (1970) succinctly points out, the tempera-
ture profile will be given by f (η) itself only if at t = 0, the initial profile happens
to be u0 = f (x). This is clearly a very special solution and, therefore, of limited
importance. The significance of f (η) is much more than being this special solu-
tion. Peletier (1970) showed that, whatever the initial profile, subject only to certain
smoothness requirements and the compatibility conditions (4.5.3), the evolving pro-
file will tend to the similarity profile f (η) as t → ∞. This convergence will be like
|u(x, t)− f (η)| = O

(
t−λ
)

as t → ∞, where the constant λ lies between 0 and 1/7
and depends on u0(x) and k(u), as we state more precisely later.

In the proof of the convergence theorem several properties of the solution u(x, t)
and the similarity solution f (η) are made use of. Here we briefly state these results.
We recapitulate the results concerning the solution f (η) here for ready reference.
According to a theorem of Bailey et al. (1968), a solution f (η ,A) of (4.5.4) with the
boundary conditions

f (0,A) = A, lim
η→∞

f (η ,A) = 0 (4.5.5)

exists provided we can find functions g(η ,A) and h(η ,A) which satisfy the inequal-
ities
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{k(g)g′}′ + 1
2ηg′ > 0, (4.5.6)

{k(h)h′}′ + 1
2ηh′ < 0, (4.5.7)

and g < h, (4.5.8)

for η > 0 and which tend to zero as η →∞. Furthermore, not only does the solution
of this BVP for (4.5.4) exist, it also satisfies the inequalities

g(η ,A) ≤ f (η ,A) ≤ h(η ,A). (4.5.9)

Peletier (1970) showed that the functions g(η ,A) and h(η ,A) may be identified as

g(η ,A) = −β log

[
1−
{

1− exp

(−A
β

)}
erfc

(
η

2
√

k(A)

)]
, (4.5.10)

h(η ,A) = A erfc

(
η

2
√

k(0)

)
, (4.5.11)

where

β = k(A)
{

max
0≤ f≤A

|k′( f )|
}−1

(4.5.12)

(see also Shampine 1973). Observe that g(0,A) = h(0,A) = A.
Peletier (1970) also proved that the solution f (η ,A) satisfying the BCs (4.5.5) at

η = 0 and η → ∞ has the limiting behaviour

f = O

{
erfc

(
η

2
√

k(0)

)}
as η → ∞. (4.5.13)

The initial boundary conditions for the solution u(x, t) of (4.5.1) may be written as

u(0, t) = U = u0(0), u = u0(x) at t = 0, (4.5.14)

where it is assumed that u0(x) is twice continuously differentiable and has bounded
first and second derivatives on [0,∞). The initial function u0(x) also satisfies the
compatibility conditions (4.5.3) and the large distance behaviour u0 =
O{erfc(x/2

√
k(0))} as x → ∞ (see (4.5.13)). With these conditions on u0(x), a

simple modification of two theorems of Oleinik and Kruzhkov (1961) guaran-
tees that a smooth unique solution of (4.5.1) and (4.5.14) exists in the half-strip
H+ := 0 ≤ t ≤ T, x ≥ 0, where T is any finite positive number. Moreover, u,ux,uxx,
and ut are all continuous and bounded on H+.

The main theorem requires the following result. Let u and v be two solutions of
(4.5.1) in H+ and let u ≤ v at t = 0 and at the boundary x = 0. Then u ≤ v in H+.

This result may be proved via the following maximum principle due to Krzyżański
(1959). Let z(x, t) be a bounded solution of the differential inequality

zt ≤ a(x, t)zxx +b(x, t)zx + c(x, t)z (4.5.15)
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in H+. Suppose that the coefficients a(x, t),b(x, t), and c(x, t) are bounded continu-
ous functions of x and t and that a(x, t) > 0. If z ≤ 0 on x = 0 and t = 0, then z ≤ 0
in H+.

To use this result we introduce the function ū =
∫ u

0 k(s)ds and v̄ =
∫ v

0 k(s)ds. Then
it easily follows from (4.5.1) that

ūt = k(u)ūxx (4.5.16)

and
v̄t = k(v)v̄xx. (4.5.17)

Writing w = ū− v̄, we easily show that w satisfies the equation

wt = k(u)wxx +[k(u)− k(v)]v̄xx = k(u)wxx +β (x, t)w, (4.5.18)

where

β (x, t) =
{

k′(θ1)
k(θ2)

}
v̄xx; (4.5.19)

here θ1 and θ2 are chosen suitably between u and v. Such a choice of θ1 and θ2

is possible due to the Cauchy mean value theorem. In view of assumptions on the
functions u and v and their derivatives, k(u) and β (x, t) are bounded in H+. Further-
more,

w =
∫ u

v
k(s)ds (4.5.20)

is bounded and negative or zero on x = 0 and t = 0. Hence, direct application of
Krzyżański’s maximum principle (1959) gives w ≤ 0; that is, u ≤ v in H+.

In particular, if we choose u = u(x, t) and u = f (η ,A) as two solutions of (4.5.1)
for any A > 0 and find a constant B > 0 such that

0 ≤ u0(x) ≤ f (x,B), (4.5.21)

then
0 ≤ u(x, t) ≤ f (η ,B) in H+. (4.5.22)

If

u0 = O

{
erfc

(
x

2
√

k(0)

)}
as x → ∞,

the number B in (4.5.21) can always be identified (see (4.5.13)). Because (4.5.22)
holds for any strip x ≥ 0,0 ≤ t ≤ T, we may let T tend to infinity therein.

The main result regarding the asymptotic solution of the IBVP for (4.5.1)
may now be stated (Peletier 1970). Let u(x, t) be the solution of the IBVP for
(4.5.1) subject to the conditions u = U at x = 0 and u = u0(x) at t = 0. Let
k(s) > 0 for all s and let k′(s) < 0 for s ≥ 0. Moreover, let u0(x) be smooth
and satisfy the compatibility conditions at (0,0) (see (4.5.3)) and the limiting
behaviour
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u0 = O

{
erfc

(
x

2
√

k(0)

)}
as x → ∞.

Then one may find numbers M > 0 and λ ∈ (0,1/7) such that

|u(x, t)− f (η ,U)| ≤ M(t +1)−λ , x ≥ 0, t ≥ 0. (4.5.23)

To prove this theorem we define ū =
∫ u

0 k(s)ds and f̄ =
∫ f

0 k(s)ds. Then, y = ū− f̄
may be shown to satisfy the equation

L(y) ≡ k(u)yxx +β (x, t)y− yt = 0, (4.5.24)

where β is given by (4.5.19). Because

f̄xx =
{

k( f ) f ′
}′ (t +1)−1 = −1

2
η(t +1)−1 f ′, (4.5.25)

we have

β (x, t) = −1
2
η(t +1)−1 f ′

{
k′(θ1)
k(θ2)

}
. (4.5.26)

Now we introduce the comparison function

z(x, t) = (t +1)−λw(η), (4.5.27)

where w(η) is a positive, continuous, and piecewise differentiable function, which
is prescribed later. Now,

L(z) =
z

t +1

{
k(u)

w′′

w
+ γ+λ +

1
2
η

w′

w

}
, (4.5.28)

where

γ = −1
2
η f ′

{
k′(θ1)
k(θ2)

}
(see (4.5.24)). Because f ′ < 0 and k′ < 0, we infer that γ ≤ 0. Therefore, we have

L(z) ≤ z
t +1

{
k(u)

w′′

w
+λ +

1
2
η

w′

w

}
. (4.5.29)

Peletier (1970), following Serrin (1967) (see Section 5.6), chose the following form
of the function w(η),

w(η) = 1+
1
4

{
1−
(η

N

)2
}

, 0 ≤ η < N, (4.5.30)

= exp
{

1−
(η

N

)}
, η > N.
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This function satisfies the conditions (see below (4.5.27)) envisaged earlier; the con-
stant N is specified presently. It is easy to check that

k(u)
w′′

w
+λ +

1
2
η

w′

w
= λ − 2k(u)+η2

4N2w
(4.5.31)

for 0 ≤ η < N and

k(u)
w′′

w
+λ +

1
2
η

w′

w
=

k(u)
N2 +λ − η

2N
(4.5.32)

for η > N.
Now, if we choose N2 = k(0)/δ and λ ≤ (1/2)− δ ,δ ∈ (0,1/2), the RHS of

(4.5.32) is negative. For (4.5.31), we choose B in (4.5.21) so large such that u0(x)≤
f (x,B); this is possible in view of the asymptotic behaviour (4.5.2) and (4.5.13) of
u0(x) and f (η), respectively. With this choice, u ≤ B,k(u) ≥ k(B) and, therefore,

λ − 2k(u)+η2

4N2w
≤ λ − 2k(B)

5k(0)
δ ≤ 0 (4.5.33)

if

λ ≤ λ0 =
2
5

{
k(B)
k(0)

}
δ .

With N2 = k(0)/δ and λ ≤ min{(1/2)−δ ,λ0} < 1/7, it follows from (4.5.31) to
(4.5.32) that z satisfies the inequality

L(z) ≤ 0, η �= N. (4.5.34)

We may observe from (4.5.30) that

lim
ε→0

w′(N + ε) = −N−1 (ε > 0) (4.5.35)

and
lim
ε→0

w′(N − ε) = −(2N)−1 (ε > 0), (4.5.36)

therefore z has a concave corner at η = N (see (4.5.27)). Now we define the function

Φ(x, t) = −M1z(x, t)+ y(x, t), (4.5.37)

where the constant M1 is chosen so large that Φ is not positive at x = 0 and t = 0.
The asymptotic behaviour of u0(x) and f (x,U) for x → ∞ ensures that such an M1

can always be found. Because L(y) = 0 (see (4.5.24)) and L(z) ≤ 0 for η �= N we
have

L(Φ) = −M1L[z]+L[y] ≥ 0, η �= N (4.5.38)

and, because z has a concave corner at η = N, it follows from Krzyżański’s max-
imum principle (1959) enunciated earlier that Φ ≤ 0; that is, y(x, t) ≤ M1z(x, t) in
H+. By considering the functionΨ = −M2z− y in a similar manner, we may show
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that −y ≤ M2z. Therefore, by using the definition of y and z, we find that

|ū− f̄ | ≤ 5
4

max{M1,M2}(t +1)−λ . (4.5.39)

We observe from the definition of ū and f̄ (see below (4.5.23)) that

|u− f | < {k(B)}−1 |ū− f̄ |. (4.5.40)

We conclude from (4.5.39) and (4.5.40) that

|u− f | ≤ M(t +1)−λ , (4.5.41)

where M = (5/4){k(B)}−1 max{M1,M2}. Because M does not depend on the
choice of T , the estimate (4.5.41) holds for all t ≥ 0.

We may observe that this analysis due to Peletier (1970) closely follows the sem-
inal work of Serrin (1967) for Prandtl boundary layer equations (see Section 5.6). It
is constructive, rigourous, and highly instructive.

In a related study, Van Duyn and Peletier (1977b) studied the large time be-
haviour of solutions of (4.5.1) in ET = (−∞,∞)× (0,T ], T > 0 (a constant), subject
to the initial condition

u(x,0) = u0(x), −∞< x < ∞. (4.5.42)

They assumed that the function k(u) satisfies the following conditions.

(H1) k(s) is defined on IR.
(H2) k ∈C2+α(IR), 0 < α < 1.
(H3) k(s) ≥ Δ > 0 for all s ∈ IR.

Furthermore, u0(x) satisfies the following conditions:

(H4) u0 ∈C2+α(IR).
(H5) u0(x)→ A0 as x →−∞ and u0(x)→ B0 as x →∞, A0 and B0 being arbitrary

constants.
(H6) u0(x)−A0 = O

(
erfc

(
− x

2(k(A0))1/2

))
as x →−∞,

u0(x)−B0 = O
(

erfc
(

x
2(k(B0)1/2)

))
as x → ∞.

Existence of solutions of (4.5.1) subject to (4.5.42) was proved by Oleinik and
Kruzhkov (1961). Let f (η ;A,B) be the solution of (4.5.4) subject to the conditions

f (−∞) = A, f (∞) = B. (4.5.43)

Existence and uniqueness of f (η : A,B) was proved by Van Duyn and Peletier (1977a).
Van Duyn and Peletier (1977b) clearly demonstrated the convergence of solu-

tions of (4.5.1) subject to (4.5.42) to the similarity solution of the former governed
by (4.5.4) and subject to (4.5.43). They proved the following theorem.
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Theorem 4.5.1 Suppose that u0(x) satisfies the conditions (H4)–(H6) stated above.
Furthermore, let u be a solution of (4.5.1) satisfying (4.5.42) and let f (η ;A0,B0)
satisfy (4.5.4) and (4.5.43) with A = A0,B = B0, say. Then, for any ε > 0, there
exists a constant G(ε) such that

sup
x∈IR

|u(x, t)− f (η ;A0,B0)| ≤ G(ε)(t +1)−(1−ε)/2, t ≥ 0.

.

4.6 Large time asymptotics for solutions of the porous media
equation

In this section, we discuss large time behaviour of solutions of initial boundary value
problems for the porous media equation

ut = (um)xx. (4.6.1)

If u denotes the density of a polytropic gas flowing through a homogeneous porous
medium, then u satisfies an equation like (4.6.1) for m ≥ 2 (see Muskat (1937)).
Equation (4.6.1) also appears in Prandtl’s boundary layer theory. Indeed the sys-
tem of PDEs describing the latter transforms to (4.6.1) with m = 2 if we introduce
the so-called von Mises variables and assume the pressure gradient to be zero (see
Schlichting 1960). Equation (4.6.1) also appears in plasma physics (see Okuda and
Dawson (1973) for details). Because the diffusion coefficient on the RHS of (4.6.1)
is given by D(u) = mum−1, it is called fast diffusion if 0 < m < 1 and slow diffusion
if m > 1, corresponding, respectively, to its behaviour as u → 0.

In this section, we assume that m > 1. The transformation

u(x, t) = (t +1)α f (η), η = x(t +1)−(1+(m−1)α)/2 (4.6.2)

changes (4.6.1) to

( f m)′′ +
1
2
{1+(m−1)α}η f ′ = α f , 0 < η < ∞ (4.6.3)

(see Barenblatt 1952).
Atkinson and Peletier (1971) studied a more general ordinary differential equa-

tion than (4.6.3) with α = 0. Their analysis showed that equation (4.6.3) with α = 0,
together with the boundary conditions

f (0) = U > 0, f → 0 as η → ∞, (4.6.4)

has a unique weak solution f (η ;U). Furthermore, they proved that there exists a =
a(U) such that f (η) > 0 on [0,a(U)) and f (η) ≡ 0 on [a(U),∞).
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Peletier (1971) studied (4.6.1) with m > 1 in the half-strip ST = (0,∞)×(0,T ], T >
0, subject to the condition

u(0, t) = U, 0 < t < T, (4.6.5)

u(x,0) = u0(x), 0 ≤ x < ∞. (4.6.6)

Here, U > 0 is a constant and u0(x) satisfies the following conditions.

(i) u0(x) is continuous and nonnegative on [0,∞).
(ii) u0(0) = U and u0(x) = 0 for large values of x.
(iii) (um

0 )′′ = 0 at x = 0 and |(um−1
0 )′| ≤ L on [0,∞) for some L > 0.

Peletier (1971) showed that similarity solutions f (η ;U) of (4.6.1) defined by
(4.6.2) with α = 0 describe the large time behaviour of (weak) solutions u(x, t)
of (4.6.1) subject to the boundary conditions (4.6.5) and (4.6.6). He derived two
estimates: an integral estimate and a pointwise estimate.
(a)
∫ ∞

0 η |ũ(η , t)− f (η ;U)|dη = O
(
t−1
)

as t → ∞; here, ũ(η , t) = u(x, t).
(b) |u(x, t)− f (η ;U)|= O

(
t−λ
)

as t →∞; here, λ = min(1/3,1/(2m−1)) ,m > 1.
In the present section, we closely follow Gilding (1979) and obtain an estimate

for the large time asymptotic behaviour of the solution of (4.6.1) satisfying (4.6.6)
and u(0, t) = ψ(t), a more general boundary condition than (4.6.5). Gilding (1979)
essentially followed Peletier (1971) for proving the large time behaviour of weak
solutions of (4.6.1). For related study, reference may be made to Kamin (1973),
Bertsch (1982), Kamin and Vázquez (1991), and Vázquez (2003, 2007).

We define the domain

ST = (0,∞)× (0,T ], T > 0.

We discuss the asymptotic behaviour of solutions of the following initial bound-
ary value problem for the porous media equation (4.6.1).

ut = (um)xx, (x, t) ∈ ST , (4.6.7)

u(x,0) = u0(x), 0 ≤ x < ∞, (4.6.8)

u(0, t) = ψ(t), 0 ≤ t ≤ T. (4.6.9)

We assume that m > 1 and the functions u0(x) and ψ(t) satisfy the following condi-
tions.

(A1) u0 is a compactly supported nonnegative function on [0,∞) and um−1
0 is Lip-

schitz continuous on [0,∞).
(A2) ψ is a nonnegative function on [0,∞) and ψm is Lipschitz continuous on

[0,∞).
(A3) u0 and ψ satisfy compatibility condition ψ(0) = u0(0).

In the manner of Oleinik, Kalashnikov, and Yui-Lin (1958), a function u(x, t) is said
to be a weak solution of (4.6.7)–(4.6.9) on ST if u satisfies the following conditions.

(i) u is bounded, nonnegative, and continuous in ST .
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(ii) u(0, t) = ψ(t), ∀ t ∈ [0,T ].
(iii) A generalised derivative of um with respect to x exists and is bounded in

(δ ,∞)× (0,T ] for every δ > 0. Furthermore, (um)x is square integrable in every
bounded subset of ST .

(iv) u satisfies the equation∫ ∫
ST

{φx(um)x −φtu}dxdt =
∫ ∞

0
φ(x,0)u0(x)dx (4.6.10)

for all continuously differentiable functions φ on ST that vanish at x = 0, large
x, and t = T . Existence of a unique weak solution for (4.6.7)–(4.6.9) was assured
by Oleinik et al. (1958) under the requirement that u0 and ψ satisfy (A1)–(A3).
We may state that u(x, t) is a weak solution of the problem (4.6.7)–(4.6.9) in S =
(0,∞)× (0,∞) if u is a weak solution of (4.6.7)–(4.6.9) on every ST , T > 0. We
quote here some important results about the weak solutions of (4.6.7)–(4.6.9) which
we use in the following.

(B1) The weak solution of (4.6.7)–(4.6.9) can be obtained as a pointwise limit
of a decreasing sequence {un(x, t)} of positive classical solutions of (4.6.7) in
Qn

T = (0,n)× (0,T ], n = 1,2, . . ..
(B2) If u is positive at a point (x0, t0), then u is a classical solution of (4.6.7) in a

neighbourhood of that point.
(B3) Suppose that u01(x), ψ1(t) and u02(x), ψ2(t) are functions such that u01(x)≥

u02(x), ∀ x ∈ [0,∞), and ψ1(t) ≥ ψ2(t), ∀ t ∈ [0,T ]. If u1 and u2 are weak so-
lutions of (4.6.7)–(4.6.9) with data u01(x), ψ1(t) and u02(x), ψ2(t), respectively,
then u1 ≥ u2 everywhere in ST .

(B4) If u0(x) has compact support in [0,∞), then the corresponding weak solution
u of (4.6.7)–(4.6.9) has compact support in ST .

(B5) The generalised derivative (um)x is continuous in ST and um−1(x, t) is Lips-
chitz continuous in x for any t > 0.

For a detailed discussion of weak solutions, reference may be made to Oleinik
et al. (1958) and Aronson (1969).

Gilding and Peletier (1976) discussed the existence of weak solutions of the or-
dinary differential equation

( f m)′′ + pη f ′ = q f , 0 < η < ∞, (4.6.11)

where p and q are real constants, subject to the boundary conditions (4.6.4); (4.6.3)
is a special case of (4.6.11) with p = (1 +(m−1)α)/2 and q = α . Their study re-
vealed that the BVP (4.6.11) and (4.6.4) has a weak solution with compact support if
and only if p ≥ 0 and 2p+q > 0. Furthermore, this solution is unique. Thus, a weak
solution of (4.6.3) with boundary conditions (4.6.4) exists if and only if α >−1/m.
Moreover, this solution is unique. Let this solution be denoted by f (η ;U). Gild-
ing and Peletier (1976) showed that the solution f (η ;U) possesses the following
features.
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(C1) f (η ;U) is a positive classical solution of (4.6.3) on the interval [0,a(U))
and f (η ;U) ≡ 0 on [a(U),∞) for some a(U).

(C2) f (η ;U) is monotonic with respect to U ; that is, f (η ;U1) ≥ f (η ;U2) for
U1 > U2 on [0,∞).

(C3) If U → ∞, then f (η ;U) → ∞ uniformly on compact subsets of [0,∞); fur-
thermore, a(U) → ∞ as U → ∞.

(C4) If U → 0, then f (η ;U) → 0 uniformly on [0,∞); furthermore, a(U) → 0 as
U → 0.

We have discussed this problem in considerable detail in Section 4.4. Here we have
summarised the results for ready reference. To show that the similarity solution
(4.6.2) of (4.6.7) describes large time behaviour of the weak solution of (4.6.7)–
(4.6.9), Gilding (1979) proved the following important theorem.

Theorem 4.6.1 Suppose that u01,ψ1 and u02,ψ2 satisfy the assumptions (A1)–(A3)
stated below equation (4.6.9). Further assume that, for α > −(1/m), ψ1 and ψ2

satisfy the inequalities

A(t +1)α ≤ ψ1(t), ψ2(t) ≤ B(t +1)α , t ≥ 0 (4.6.12)

for some positive constants A and B. If u1 and u2 are the weak solutions of (4.6.7)–
(4.6.9) with data u01, ψ1 and u02, ψ2, respectively, then, for (x, t) ∈ S,

|u1(x, t)−u2(x, t)| ≤C(t +1)α
{

(t +1)−(mα+1)
(

1+
∫ t

0
|ψm

1 (s)−ψm
2 (s)|ds

)}λ
;

here, λ = min(1/3,1/(2m−1)) and C is a constant which depends on m, α, A, B,
u01, and u02.

This theorem is proved via the derivation of an integral identity and Hölder conti-
nuity of weak solutions of (4.6.7)–(4.6.9). This process requires a modified result of
Peletier (1971).

Lemma 4.6.2 Suppose that u is a weak solution of (4.6.7)–(4.6.9) in ST for some
T > 0. Then the following equality holds for any t0 ∈ (0,T ].∫ ∞

0
xu(x, t0)dx =

∫ ∞

0
xu0(x)dx+

∫ t0

0
ψm(t)dt. (4.6.13)

Proof: By assumption, u0(x) has compact support. By Property (B4) (see above
(4.6.11)), the weak solution u(x, t) of (4.6.7)–(4.6.9) has compact support in ST .
Thus u(x, t) = 0 if x ≥ ρ , t ∈ [0,T ], for some ρ > 0. By property (B5) (see above
(4.6.11)), (um)x ∈ C(ST ). This, in turn, implies that (um)x = 0 on [ρ,∞)× (0,T ].
Because u and (um)x are identically zero for x large (in fact, for x ≥ ρ), equation
(4.6.10) is valid for all continuously differentiable functions on ST , which vanish at
x = 0 and t = T . We first prove (4.6.13) for t0 < T ; the result for t0 = T then follows
from the continuity in t. First, choose t0 < T . Define
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k(s) =

{
exp
[
− 1

(1−s2)

]
, |s| < 1,

0, |s| ≥ 1,

and

Bn(t) =
(∫ n(T−t0)

n(t−t0)
k(s)ds

)(∫ ∞

−∞
k(s)ds

)−1

, n ≥ 1.

Because φ(x, t) = xBn(t) is continuously differentiable and vanishes for x = 0, t = T ,
it is an admissible test function for u. Putting φ(x, t) = xBn(t) in (4.6.10), we have∫ ∫

ST

{Bn(t)(um)x − xB′
n(t)u}dxdt =

∫ ∞

0
xBn(0)u0(x)dx.

A simple manipulation and use of the boundary condition u(0, t) = ψ(t) lead to

−
∫ T

0
Bn(t)ψm(t)dt −

∫ ∫
ST

xB′
n(t)u(x, t)dxdt =

∫ ∞

0
xBn(0)u0(x)dx. (4.6.14)

Letting n → ∞ and using the dominated convergence theorem, we arrive at (4.6.13)
for t0 < T . The result (4.6.13) for t0 = T follows from continuity with respect to t0.

In the next lemma, we obtain an integral estimate for the difference of two weak
solutions of (4.6.7)–(4.6.9).

Lemma 4.6.3 Suppose that u1(x, t) and u2(x, t) are two weak solutions of (4.6.7)–
(4.6.9) in S with initial and boundary data u01, ψ1 and u02, ψ2, respectively. Then
the inequality∫ ∞

0
x|u1(x, t0)−u2(x, t0)|dx ≤

∫ ∞

0
x|u01(x)−u02(x)|dx+

∫ t0

0
|ψm

1 (t)−ψm
2 (t)|dt

(4.6.15)
holds for any t0 ∈ (0,∞).

Proof: Define

u+
0 (x) = max{u01(x),u02(x)},

u−0 (x) = min{u01(x),u02(x)},
ψ+(t) = max{ψ1(t),ψ2(t)}, and

ψ−(t) = min{ψ1(t),ψ2(t)}.

Because u01, ψ1 and u02, ψ2 satisfy conditions (A1)–(A3) (see below (4.6.9)),
the functions u+

0 , ψ+ and u−0 , ψ− also satisfy the same conditions. Let u+(x, t)
and u−(x, t) be the weak solutions of (4.6.7) in S with initial and boundary data
u+

0 (x), ψ+(t) and u−0 (x), ψ−(t), respectively. Then, by Lemma 4.6.2, for any
t0 ∈ (0,∞), we have



166 4 Self-similar Solutions as Large Time Asymptotics∫ ∞

0
x{u+(x, t0)−u−(x, t0)}dx =

∫ ∞

0
x{u+

0 (x)−u−0 (x)}dx

+
∫ t0

0
{(ψ+)m(t)− (ψ−)m(t)}dt

=
∫ ∞

0
x|u01(x)−u02(x)|dx+

∫ t0

0
|ψm

1 (t)−ψm
2 (t)|dt.

(4.6.16)

By a maximum principle (see property (B3) above (4.6.11)),

u−(x, t) ≤ u1(x, t), u2(x, t) ≤ u+(x, t), (x, t) ∈ S.

This implies that

|u1(x, t)−u2(x, t)| ≤ u+(x, t)−u−(x, t), (x, t) ∈ S. (4.6.17)

Equation (4.6.15) follows from (4.6.16) and (4.6.17).
The following lemma helps us to derive pointwise estimates from the integral

estimates (4.6.15). This can be proved following Peletier (1971).

Lemma 4.6.4 Suppose that θ(x) is a nonnegative function defined on [0,∞). Fur-
thermore, let θ(x) satisfy the following conditions.

(i) θ is uniformly Hölder continuous on [0,∞) with exponent γ̃ ∈ (0,1] and coef-
ficient K.

(ii)
∫ ∞

0 xθ(x)dx ≤ L < ∞.
(iii) θ(x0) = 0 for some x0 ∈ [0,∞).

Then, θ(x) satisfies the inequality

θ(x) ≤C0K2/(γ̃+2)Lγ̃/(γ̃+2), x ∈ [0,∞);

here,

C0 =
{

2(γ̃+2)
γ̃

}γ̃/(γ̃+2)

.

Our interest, now, is to obtain an estimate of Hölder continuity for classical solu-
tions of (4.6.7). Then the result B1 (see below (4.6.10)) is used to derive an estimate
for Hölder continuity of weak solutions of (4.6.7). The lateral boundary condition
(4.6.9) at x = 0 suggests the use of similarity transformation (4.6.2) for (4.6.7) (see
(4.6.18) below). Lemmas 4.6.5 and 4.6.6 deal with positive classical solutions of
(4.6.7) and Lemma 4.6.7 deals with the Hölder continuity of the weak solutions of
(4.6.7)–(4.6.9). Define

R = (0,H)× (0,T ], H > 0, T > 0,

R∗ = (0,H/2)× (0,T ].

Lemma 4.6.5 Let v ∈C2,1(R) be a positive solution of the equation

vτ = (vm)ηη + pηvη −qv (4.6.18)
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in R such that vη ∈C2,1(R); here, p and q are two constants satisfying the inequali-
ties p ≥ 0 and 2p+q > 0. Further assume that there exist positive constants A, M,
and C1 such that

v(η ,τ) ≤ M, (η ,τ) ∈ R, (4.6.19)

v(0,τ) ≥ A, τ ∈ [0,T ], (4.6.20)

|(vm−1)η(η ,0)| ≤ C1, η ∈ [0,H]. (4.6.21)

Then, the inequality

|v(η1,τ)− v(η2,τ)| ≤ K|η1 −η2|γ (4.6.22)

holds for all (η1,τ), (η2,τ) ∈ R
∗
; here γ = min{1,1/(m−1)}. K appearing on the

RHS of (4.6.22) is a positive constant depending on the constants m, p, q, A, M, C1,
and H.

The proof of this lemma requires considerable details, therefore we refer the
reader to the original work of Gilding (1979), Oleinik and Kruzhkov (1961), Aron-
son (1969), and the references therein. The following lemma proves the Hölder con-
tinuity for the classical solutions of (4.6.7).

Lemma 4.6.6 Suppose that α > −(1/m). Now, define

D =
{

(x, t) : 0 < x < X(t +1)(1+(m−1)α)/2, 0 < t ≤ T
}

,

D∗ =
{

(x, t) : 0 < x <
1
2

X(t +1)(1+(m−1)α)/2, 0 < t ≤ T

}
.

Further suppose that u(x, t) ∈C2,1(D) is a positive classical solution of (4.6.7) in D
with ux ∈C2,1(D). We assume that this solution u satisfies the following conditions.

(i) u(x, t) ≤ M(t +1)α , (x, t) ∈ D;
(ii) u(0, t) ≥ A(t +1)α , t ∈ [0,T ];
(iii) |(um−1)x(x,0)| ≤C1, x ∈ [0,X ];

here M,A, and C1 are some positive constants. Then

|u(x1, t)−u(x2, t)| ≤ K(t +1)α−(γ/2)[1+(m−1)α]|x1 − x2|γ , ∀ (x1, t), (x2, t) ∈ D∗.
(4.6.23)

The constant K depends only on m, α, A, M, C1, and X.

Proof: Let u(x, t) = (t + 1)αv(η) where η = x(t + 1)−[1+(m−1)α]/2, τ = log(t + 1).
Then v satisfies (4.6.18) and all the conditions of Lemma 4.6.5 with p = (1/2)[1+
(m−1)α], q = α for some α > −(1/m). Hence we obtain (4.6.23).

The following lemma discusses the Hölder continuity of weak solutions of (4.6.7)
on S = (0,∞)× (0,∞).

Lemma 4.6.7 Suppose that u(x, t) is a weak solution of (4.6.7)–(4.6.9) in S and
suppose that, for some α > −(1/m), there exist constants B ≥ A > 0, such that
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A(t +1)α ≤ ψ(t) ≤ B(t +1)α , t ≥ 0. (4.6.24)

Then

|u(x1, t)−u(x2, t)| ≤ K(t +1)α−(γ/2)[1+(m−1)α]|x1 − x2|γ , ∀ (x1, t), (x2, t) ∈ S;
(4.6.25)

here γ = min{1,1/(m−1)} and K is a constant depending on m, α, A, B, and u0.

Proof: By Property (C3) (see above (4.6.12)), there exists a U ≥ B such that
f (η ;U) ≥ u0(η) on [0,∞); f (η ;U) is the weak solution of (4.6.3) with compact
support satisfying the boundary conditions (4.6.4). Let u(x, t;U) be the correspond-
ing similarity solution of (4.6.7), given by(4.6.2). Then,

u(0, t;U) = U(t +1)α ≥ B(t +1)α ≥ ψ(t), t ≥ 0, (4.6.26)

and
u(x,0;U) = f (x;U) ≥ u0(x), x ≥ 0. (4.6.27)

By the maximum principle (see B3 above (4.6.11)), u(x, t;U) ≥ u(x, t) in S. This
implies that

u(x, t) ≤ M0(t +1)α , ∀ (x, t) ∈ S,

u(x, t) ≡ 0 in E∗,

where E∗ =
{

(x, t) ∈ S : x ≥ a(U)(t +1)[1+(m−1)α]/2
}

; M0 is some positive con-

stant and a(U) = sup{η : f (η ;U) > 0}. Define

X = 2a(U) and D =
{

(x, t) : 0 < x < X(t +1)(1+(m−1)α)/2, 0 < t ≤ T
}

.

Suppose that {un(x, t)} is a decreasing sequence of positive classical solutions of
(4.6.7) in Qn

T (see B1 above (4.6.11)). Furthermore, u(x, t) may be obtained from
un as a pointwise limit. Assume that (i) un ∈ C2,1(Qn

T ), (ii) (un)x ∈ C2,1(Qn
T ), and

(iii) |(um−1
n )x(x,0)| ≤ C1 ∀ x ∈ (0,n), where C1 is a constant independent of n.

Then, by Dini’s theorem, un → u uniformly on D as n →∞. This implies that, given
M > M0, there exists N large enough such that un is defined on D, and, (iv) un(x, t)≤
M(t +1)α , ∀ (x, t) ∈ D ∀n ≥ N. Observe that un, n ≥ N satisfies the hypotheses of
Lemma 4.6.6 (see (i)–(iv) here and (4.6.24)). Therefore, by Lemma 4.6.6, we have
for n ≥ N,

|un(x1, t)−un(x2, t)|

≤ K(t +1)α−(γ/2)[1+(m−1)α]|x1 − x2|γ , ∀ (x1, t), (x2, t) ∈ ST \E∗;(4.6.28)

here K depends on the constants m, α, A, M, C1, and X but not on n. Because
un → u as n → ∞ pointwise in ST and u ≡ 0 in E∗ and because T > 0 is arbitrary,
we have (4.6.25).
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Proof of Theorem 4.6.1: We recall that if y1(x) and y2(x) are Hölder continuous
with exponent γ and coefficients K1 and K2, respectively, in a set Ω , then |y1(x)−
y2(x)| is Hölder continuous with exponent γ and coefficient (K1 +K2) inΩ . Because
u1 and u2 are two weak solutions of (4.6.7)–(4.6.9), they are Hölder continuous on
[0,∞) for a fixed t. This, in turn, implies that |u1(x, t)−u2(x, t)| is Hölder continuous
with respect to x on [0,∞) for a fixed t. Let the exponent and the coefficient in the
Hölder’s inequality be γ and K, respectively. By Lemma 4.6.3, we have

∫ ∞

0
x|u1(x, t)−u2(x, t)|dx ≤C1

[
1+

∫ t

0
|ψm

1 (s)−ψm
2 (s)|ds

]
≡ L(t).

Because u1 and u2 are weak solutions of (4.6.7)–(4.6.9) with compact support, there
exists an x0 in (0,X) such that |u1(x0, t)−u2(x0, t)|= 0. Then, by Lemma 4.6.4 with
θ = |u1(x, t)−u2(x, t)|, we have

|u1(x, t)−u2(x, t)| ≤C0K(t)2/(γ+2)L(t)γ/(γ+2), ∀ x ∈ [0,∞), (4.6.29)

where

C0 =
{

2(γ+2)
γ

}γ/(γ+2)

.

Note that, here K(t) = (K1 + K2)(t + 1)α−(γ/2)[1+(m−1)α]; K1 and K2 are constants
corresponding to u1 and u2 in the Hölder’s inequality (4.6.25). Note that γ/(γ+2) =
min(1/3,1/(2m−1)) = λ , (say). Therefore, by (4.6.29),

|u1(x, t)−u2(x, t)| ≤ C(t +1)2{α−(γ/2)[1+(m−1)α]}/(γ+2)

×
(

1+
∫ t

0
|ψm

1 (s)−ψm
2 (s)|ds

)λ
. (4.6.30)

Because 2{α− (γ/2)[1+(m−1)α]}/(γ+2) = α−λ (mα+1),

|u1(x, t)−u2(x, t)| ≤C(t +1)α
[
(t +1)−(mα+1)

(
1+

∫ t

0
|ψm

1 (s)−ψm
2 (s)|ds

)]λ
.

Thus, the proof of Theorem 4.6.1 is complete. Following closely the proof of Theo-
rem 4.6.1, we may prove the following theorem (Gilding (1979)).

Theorem 4.6.8 Suppose that u1 and u2 are two weak solutions of (4.6.7)–(4.6.9) in
S with initial and boundary data u01, ψ1 and u02, ψ2, respectively, satisfying the
assumptions (A1)–(A3) (see below (4.6.9)). Suppose further that

Aexp(αt) ≤ ψ1(t), ψ2(t) ≤ Bexp(αt), t ≥ 0;

here A and B are some positive constants and α > 0. Then,

|u1(x, t)−u2(x, t)| ≤C exp(αt)
[

exp(−mαt)
(

1+
∫ t

0
|ψm

1 (s)−ψm
2 (s)|ds

)]λ
,
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(x, t) ∈ S,

where λ = min(1/3,1/(2m− 1)) and C is a constant which depends only on the
constants m, α, A, B, u01, u02.

Using Theorem 4.6.1, we can see that u(x, t) converges, as t → ∞, to the similarity
solution (4.6.2) uniformly with respect to x. To prove this assertion, suppose that
u1(x, t) is the weak solution of (4.6.7)–(4.6.9) with boundary dataψ1(t)∼U(t +1)α

as t → ∞. Further suppose that u2(x, t) is the similarity solution of (4.6.7) given by
(4.6.2) with f (0) = U . This, in turn, implies that u2(0, t) = U(t + 1)α . Then, it is
easy to see that∫ t

0
|ψ(s)m −Um(s+1)αm|ds = o

(
tmα+1) as t → ∞.

Then, by Theorem 4.6.1, (t + 1)−α |u1(x, t)− u2(x, t)| → 0 as t → ∞. Hence the
result.

In this section, we have obtained a pointwise estimate for the weak solutions
u(x, t) of the initial boundary value problem (4.6.7)–(4.6.9) as t → ∞; this estimate
involves the boundary condition u(0, t) = ψ(t). This, in turn, shows that the solu-
tion u(x, t) of the IBVP (4.6.7)–(4.6.9) converges to the similarity solution of (4.6.7)
as t → ∞. Thus, following the work of Gilding (1979), we have proved that simi-
larity solutions of (4.6.1) subject to relevant initial/boundary conditions constitute
intermediate asymptotics for the problem (4.6.7)–(4.6.9).

4.7 Large time behaviour of solutions of a dissipative semilinear
heat equation

In this section we consider the initial value problem for the semilinear parabolic
equation

ut −�u+up = 0 for x ∈ IRN , t > 0, (4.7.1)

u(x,0) = u0(x) for x ∈ IRN , (4.7.2)

subject to the condition

u0(x) ∼ A|x|−α as |x| → ∞, (4.7.3)

where u0(x) is a continuous, nonnegative, and bounded function and the parameters
p, N, A, and α satisfy the conditions p > 1, N ≥ 1, A > 0, and α > 0.

We follow closely the work of Herraiz (1999). First, we give a formal derivation
of the asymptotic behaviour of the solutions of (4.7.1)–(4.7.3) for the parametric
range α < 2/(p− 1). This formal approach resembles that of Grundy (1988), and
Grundy, Van Duijn, and Dawson (1994). Afterwards, we prove that, for N > α =
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2/(p−1), self-similar solutions of (4.7.1) form the large time asymptotics. This is
achieved via a construction of suitable supersolution and subsolution of an equation
related to (4.7.1).

Kamin and Peletier (1985) studied (4.7.1) subject to the initial condition

u(x,0) = φ(x), x ∈ IRN , (4.7.4)

where N ≥ 1 and p > (N + 2)/N. Here φ ≥ 0 and φ ∈ L∞
(
IRN
)
. Furthermore, φ

satisfies
lim
|x|→∞

|x|αφ(x) = A > 0. (4.7.5)

It was assumed that 0 < α < N. They proved that the large time behaviour of non-
negative solutions of (4.7.1) satisfying (4.7.4) and (4.7.5) is described by a self-
similar solution of the heat equation when 2/(p− 1) < α < N. They also showed
that self-similar solutions of (4.7.1) are large time asymptotics for the nonnegative
solutions of (4.7.1) satisfying (4.7.4) and (4.7.5) when α = 2/(p− 1). The case
α < 2/(p−1) was discussed by Gmira and Veron (1984).

Escobedo and Kavian (1987) studied (4.7.1) with the intial data u(x,0) = u0(x)
satisfying u0(x) �= 0, 0 ≤ u0(x)≤ Aexp(−a|x|2), x ∈ IRN . Here A and a are positive
constants and 1 < p < 1+2/N. Their analysis showed that, for large time, solutions
of (4.7.1) behave as do the positive self-similar solutions of equation (4.7.1).

A reference may be made to Galaktionov et al. (1986), Herraiz (1998), Kwak (1998),
and Cazenave et al. (2001) for a related study. Now we present below a study of so-
lutions of (4.7.1)–(4.7.3) following Herraiz (1999).

The existence of a unique, classical, and global solution of (4.7.1)–(4.7.3) is well
established (Friedman 1964). If we drop the Laplacian in (4.7.1) and integrate with
respect to t, a natural upper bound immediately results:

u(x, t) ≤ ((p−1)t)−1/(p−1) . (4.7.6)

Herraiz (1999) introduced the form

u(x, t) = t−1/(p−1)Φ(y,τ), y = xt−1/2, τ = log t, (4.7.7)

where y = xt−1/2 is the standard similarity variable. Equation (4.7.1), in view of
(4.7.7), becomes

Φτ = �Φ+
1
2

y.∇Φ+
1

p−1
Φ−Φ p. (4.7.8)

It seems ‘reasonable’ to assume that, as τ → ∞, the solution of (4.7.8) tends to a
global, bounded, and nonnegative stationary solution of the same equation. Exclud-
ing for the moment the nonconstant self-similar asymptotic form, we may infer from
(4.7.8) that either

Φ(y,τ) → c∗ ≡ (p−1)−1/(p−1) as τ → ∞ (4.7.9)

or
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Φ(y,τ) → 0 as τ → ∞. (4.7.10)

These forms of asymptotics do not hold uniformly on IRN . These have to be com-
patible with the requirement that, for |y| = |x|t−1/2 � 1, the solution remains close
to the initial values. Thus

u(x, t) ∼ A|x|−α as t → ∞ for |y| = |x|t−1/2 � 1. (4.7.11)

In fact, we may verify that either (4.7.9) and (4.7.11) or (4.7.10) and (4.7.11) hold
as t → ∞. The first case comes about only if

α <
2

p−1
. (4.7.12)

To show that we write
Φ(y,τ) = c∗ +Ψ(y,τ) (4.7.13)

so that (4.7.8) becomes

Ψτ = �Ψ +
1
2

y.∇Ψ −Ψ +F(Ψ), (4.7.14)

where F(Ψ) = O
(
Ψ 2
)

as Ψ → 0. Ignoring the nonlinear term (in (4.7.14)) and
seeking solutions for the radial case, we may write

Ψ(y,τ) = ke−λτζ (|y|) (4.7.15)

and obtain

ζ ′′(s)+
(

N −1
s

+
s
2

)
ζ ′(s) = (1−λ )ζ (s) for s = |y| > 0. (4.7.16)

We seek solution of (4.7.16) subject to the conditions

ζ (s) is bounded at s = 0, ζ (s) ∼ s2(1−λ ) as s → ∞; (4.7.17)

the second condition easily follows from (4.7.16) as s → ∞. Equation (4.7.16) sub-
ject to the conditions (4.7.17) has its solution provided that 0 < λ < 1. In view of
(4.7.13), (4.7.15), and (4.7.17), we may seek an expansion for Φ of the following
form,

Φ(y,τ) ∼ c∗ + ke−λτ |y|2(1−λ ) as |y| → ∞, (4.7.18)

where k and λ may be easily determined; here 0 < λ < 1. The expansion (4.7.18)
breaks down when ke−λτ |y|2(1−λ ) = O(1). Thus, we introduce the new variable
ξ = ye−λτ/2(1−λ ) in (4.7.8) and obtain

Φτ =
ξ .∇Φ

2(1−λ )
+

1
p−1

Φ−Φ p + e−Γ τ�Φ , (4.7.19)
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where Γ = λ/(1−λ ) > 0 is some constant. The operators ∇ and � now apply with
respect to the new variable ξ . Restricting ourselves again to radial solutions and
noting that Φτ = o(1) and e−Γ τ�Φ = o(1) as τ → ∞, (4.7.19) reduces in this limit
to the first-order ODE of Bernoulli type,

|ξ |Φ ′(|ξ |)
2(1−λ )

+
1

p−1
Φ−Φ p = 0, (4.7.20)

with the general solution

Φ(|ξ |) =
(
(p−1)+C|ξ |2(1−λ )

)−1/(p−1)
, (4.7.21)

where C is an arbitrary constant. Thus, with (4.7.3), (4.7.18), and (4.7.21) in view,
we arrive at the following asymptotic behaviour of the solution u(x, t) for t � 1:

u(x, t) ∼ t−1/(p−1)
(

c∗ + ke−λτζ (|y|)
)

for |ξ |  1,

∼ t−1/(p−1)
(
(p−1)+C|ξ |2(1−λ )

)−1/(p−1)
for |ξ | = O(1),

∼ A|x|−α for |ξ | � 1. (4.7.22)

The constants k, λ , and C in (4.7.22) must be found by matching solution forms in
different domains. For example, we may require that

t−1/(p−1)
(
(p−1)+C|ξ |2(1−λ )

)−1/(p−1) ∼ A|x|−α for |ξ | � 1, (4.7.23)

yielding the relations

C = A−(p−1), λ = 1− 1
2β

with β =
1

α(p−1)
. (4.7.24)

Because 0 < λ < 1, we must have α < 2/(p− 1). Taking these values of the con-
stants into account we may match the first two relations in (4.7.22) in different
regions under the assumptions, |y| � 1 and |ξ | = O(1), and obtain

t−1/(p−1)
(

c∗ + ke−λτζ (|y|)
)
∼ t−1/(p−1)

(
(p−1)+C|ξ |2(1−λ )

)−1/(p−1)
.

(4.7.25)

This relation holds provided that

k = −C(p−1)−1/(p−1)−2. (4.7.26)

Thus, we arrive at the following result. Let u(x, t) be the solution of (4.7.1)–
(4.7.3) such that α < 2/(p−1). Then, for sufficiently large time t, we have
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u(x, t) = t−1/(p−1)
(

c∗ − kt−λ ζ
( |x|√

t

))
(1+o(1)) for |x| ≤ f (t),

=
(
(p−1)t +A1−p|x|α(p−1)

)−1/(p−1)
(1+o(1)) for f (t) ≤ |x| ≤ g(t),

= A|x|−α(1+o(1)) for g(t) ≤ |x|, (4.7.27)

where f (t) and g(t) are arbitrary functions such that, for t � 1, we have

t1/2  f (t)  tβ with β =
1

α(p−1)
, tβ  g(t),

and λ = 1−1/2β ; ζ (r) is the solution of (4.7.16) and (4.7.17) (where s is replaced
by r).

Thus Herraiz (1999) showed the existence of three asymptotic regions: an ex-
ternal region, an internal region, and a transition region. In the external region, the
solution of (4.7.1)–(4.7.3) behaves as does the initial profile itself. The effect of
nonlinearity is observed in the internal region and the nonlinear effects die away
gradually in the transition zone. We may point out that the asymptotic results known
previously were mostly given in the regions of the form |x| ≤ ct1/2. However, Her-
raiz (1999) gave global asymptotic expansions (see (4.7.27)).

Now we turn to the similarity solution of (4.7.1) and its asymptotic nature. For
this purpose, write

u(x, t) = (t +1)−1/(p−1)Φ(y,τ), y = x(t +1)−1/2, τ = log(t +1) (4.7.28)

(see (4.7.7)). Then Φ(y,τ) satisfies (4.7.8). If we substitute Φ(y,τ) = g(|y|), then
(4.7.8) transforms to

g′′(s)+
(

N −1
s

+
s
2

)
g′(s)+

1
p−1

g(s)−g(s)p = 0 for s > 0; (4.7.29)

here s = |y| = |x|/√t +1. Now we impose the special conditions

g(0) = μ , g′(0) = 0. (4.7.30)

Existence and uniqueness of the solution of the IVP (4.7.29) and (4.7.30) were dis-
cussed in detail by Brezis et al. (1986) and Escobedo et al. (1995).

Herraiz (1999) discussed the asymptotic nature of the similarity solution (4.7.28)
of (4.7.1) in radial symmetry, governed by (4.7.29) and (4.7.30). He proved the
following theorem.

Theorem 4.7.1 Suppose that N > α = 2/(p− 1). Furthermore, let u(x, t) be the
solution of (4.7.1)–(4.7.3) and wμ(x, t) = (t + 1)−1/(p−1)gμ(|x|/√t +1), where
gμ(|x|/√t +1) is the solution of (4.7.29)–(4.7.30). Then there exists a unique μ(A)
such that

u(x, t) = wμ(x, t)(1+o(1)) as t → ∞ uniformly for x ∈ IRN .
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To prove this theorem, Herraiz (1999) constructed a supersolution and a subsolution
of (4.7.8) in such a way that these supersolutions and subsolutions behave as do the
self-similar solutions of (4.7.1) for large time. This, in turn, results in the large time
behaviour of solutions of (4.7.1)–(4.7.3).

Let ε > 0 be sufficiently small such that 1/(p−1)+ ε < N/2. Define

Φ+(y,τ) = (1+ ε)g(|y|)+M1 exp(−ετ)G(|y|),
Φ−(y,τ) = ((1− ε)g(|y|)−M2 exp(−ετ)G(|y|))+ .

Here G(s) ≡ Gε(s) is a positive bounded solution of

G′′(s)+
(

N −1
s

+
s
2

)
G′(s)+dG(s) = 0, d =

1
p−1

+ ε, s > 0

satisfying G(s)∼ s−2((1/(p−1))+ε) as s →∞. Furthermore, g(s) is the unique positive
solution of (4.7.29)–(4.7.30) satisfying g(s) ∼ As−2/(p−1) as s −→ ∞. Let

L0(Φ) ≡Φss +
(

N −1
s

+
s
2

)
Φs +

1
p−1

Φ , (4.7.31)

where s = |y|. It is easy to see that

L0((1+ ε)g) = (1+ ε)g(s)p ≤ (1+ ε)pg(s)p,

L0(M1G(s)) = −M1εG(s) < 0

(see the definitions of g and G). Then

Φ+
τ −L0

(
Φ+)+Φ+p ≥Φ+

τ − ((1+ ε)g(s))p +M1εG(s)e−εz +Φ+p

= −((1+ ε)g(s))p +
(
(1+ ε)g(s)+M1e−ετG(s)

)p ≥ 0

for ε small. Thus Φ+ is a supersolution of (4.7.8).
Again

L0((1− ε)g(s)) = (1− ε)g(s)p,

L0 (M2 exp(−ετ)G(s)) = −εM2 exp(−ετ)G(s).

Then, for (1− ε) g (s) > M2e−εz G(s),

L0((1− ε)g(s)−M2e−ετG(s)) = (1− ε)g(s)p +M2ε exp(−ετ)G(s)

This implies that

Φ−
τ −L0

(
Φ−)+Φ−p ≤−(1− ε)pg(s)p +((1− ε)g(s)−M2 exp(−ετ)G(s))p ≤ 0.

Thus Φ− is a subsolution of (4.7.8). Observe that the jump of Φ−
ss has the right sign

at (1− ε)g(s) = M2 exp(−ετ)G(s). Now we are ready to prove that the self-similar
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solution (4.7.28) describes the large time behaviour of solutions of (4.7.1)–(4.7.3).
At first, we show that

Φ−(y,0) ≤Φ(y,0) ≤Φ+(y,0) for all y. (4.7.32)

This inequality follows easily from (4.7.3) for |y| ≥ M; M is sufficiently large. The
boundedness of u(y,0) =Φ(y,0) gives that Φ(y,0)≤ k for some k > 0 and |y| ≤ M.
Choose M1 and M2 in such a way that k ≤ M1G(M) and M2 = (1− ε)g(0)/G(M).
This implies that

(1− ε)g(y) ≤ (1− ε)g(0) = G(M)M2 ≤ G(y)M2 for |y| ≤ M

and hence Φ−(y,0) = 0 on |y| ≤ M. Furthermore,

Φ(y,0) ≤ k ≤ M1G(M) ≤ M1G(y)+(1+ ε)g(y) ≡Φ+(y,0).

This proves (4.7.32). By the maximum principle,

Φ−(y,τ) ≤Φ(y,τ) ≤Φ+(y,τ), y ∈ IRN .

Because g(|y|) � exp(−ετ)G(|y|) as τ → ∞ for any y ∈ IRn and ε arbitrarily small,
we have Theorem 4.7.1.

It may be pointed out that Theorem 4.7.1 is also true for the parametric ranges
N ≤ α = 2/(p− 1). Thus the space dimension N plays no role for the parametric
ranges α = 2/(p− 1) and α < 2/(p− 1). We refer the reader to the original work
of Herraiz (1999) for other cases. He made use of a blend of matched asymptotic
techniques, integral results, and comparison methods to arrive at the results.

In this section we have studied, using formal asymptotic methods, the asymptotic
behaviour of solutions of (4.7.1) in N dimensions for α < 2/(p−1) when the initial
profile (4.7.2) is continuous, bounded, and nonnegative and has algebraic decay as
|x| → ∞ (see (4.7.2) and (4.7.3)). We have also proved that for the case N > α =
2/(p− 1) the self-similar solution (4.7.28) describes large time behaviour of the
solutions of (4.7.1) and (4.7.2) subject to (4.7.3).

4.8 Large time asymptotics for the solutions of a very fast
diffusion equation

In this section, we study the solutions of the singular diffusion equation

ut = Δ(logu); (4.8.1)

this equation is termed singular because the diffusivity coefficient 1/u tends to zero
or infinity depending on whether u tends to infinity or zero. It appears in many ap-
plications; for example, it describes limiting density distribution of gases obeying
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the Boltzmann equation (Kurtz 1973). Equation (4.8.1) is also the central limit ap-
proximation to Carleman’s model of the Boltzmann equation (see Carleman 1957).

We discuss large time asymptotics of the ‘maximal’ solutions of the nonlinear
parabolic equation

ut = Δ(logu), (x, t) ∈ IRN × (0,∞), (4.8.2)

subject to the Cauchy data

u(x,0) = u0(x), x ∈ IRN , N ≥ 2; (4.8.3)

u0 ≥ 0 is a locally integrable function in IRN . We follow here the work of Guo (1996)
(see also Hsu 2005). Equation (4.8.2) may also be viewed as a special case of the
more general equation

ut = ∇.(um−1∇u) (4.8.4)

with m = 0. Esteban et al. (1988) discussed the existence and uniqueness of ‘maxi-
mal’ solutions of (4.8.4) for the parametric range −1 < m ≤ 0, N = 1. They proved
the following theorems.

Theorem 4.8.1 Suppose that u0 ∈ L1
loc(IR), u0 ≥ 0, and u0 �≡ 0. Then there exists a

function u > 0 in C∞(IR× (0,∞))∩C([0,∞);L1
loc(IR)) satisfying the following.

(i) u solves (4.8.4) in IR× (0,∞).
(ii) u → u0 as t → 0 in L1

loc(IR).

Theorem 4.8.2 For every u0 ∈ L1
loc(IR), there is a unique maximal solution of

(4.8.4) with initial condition (4.8.3). This maximal solution is characterized by the
following decay conditions.

um(x, t) = O(|x|) as |x| → ∞, when −1 < m < 0;

− ln(u) ≤ O(|x|) as |x| → ∞, when m = 0

uniformly in (τ,T ), τ > 0.

Analogous results were also proved for u0 ∈ L1(IR) when −1 < m≤ 0. They also de-
rived some asymptotic properties of the maximal solution of (4.8.4). Vázquez (1992)
proved the nonexistence of solutions of (4.8.4) with finite mass for the parametric
ranges : (i) m ≤ 0, N > 3; (ii) m < 0, N = 2; (iii) m ≤ −1, N = 1 (see also Her-
rero (1989, 1991) for m ≤−1 in one dimension).

A discussion on the existence of integrable solutions for (4.8.4), when m > 0,
may be found in Bénilan and Crandall (1981).

Zhang (1993) studied the large time behaviour of (4.8.4), with −1 < m ≤ 0, N =
1, subject to the initial condition u(x,0) = u0(x). Assuming that u0 ≥ 0, u0 −H ∈
L1(IR), Zhang proved that the maximal solution of (4.8.4) with u0(x) as the initial
data converges to a similarity solution of (4.8.4) as t →∞. For precise conditions on
u0(x), see Zhang (1993) and H(x) is the Heaviside function here. A study of relevant
similarity solutions of (4.8.4) may be found in Van Duijn et al. (1988).
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In this section, we include both the analysis of the ODE governing the similarity
solution and asymptotic nature of the latter (see Section 4.6 for a discussion on the
aymptotic behaviour of the solutions of ut = Δ(um) for m > 1).

u(x, t) is a solution of (4.8.2)–(4.8.3) when

(i) u ∈C∞(IRN × (0,∞))∩C0([0,∞);L1
loc(IR

N)).
(ii) u is positive for t > 0.
(iii) u satisfies (4.8.2) in the classical sense.
(iv) u(., t) → u0 in L1

loc(IR
N) as t → 0.

We discuss the large time asymptotics for (4.8.2) and (4.8.3) in three steps, following
Guo (1996). In the first step, we prove the existence of a family of self-similar
solutions SA,p(x, t) of (4.8.2) satisfying

SA,p(x, t)|x|−p → A > 0 as |x| → ∞.

In the next step, we quote the results concerning the existence of the maximal solu-
tion of (4.8.2) and (4.8.3) with continuous, nonnegative initial data u0(x) satisfying

liminf
|x|→∞

u0(x)|x|−p > 0, p > −2.

The maximal solution u(x, t) of (4.8.2) and (4.8.3) satisfies the decay condition

u(x, t) ≥ c|x|p, |x| sufficiently large, (4.8.5)

uniformly in t in any compact subset of (0,∞) for some c > 0 and p > −2. Finally,
we prove that the maximal solution of (4.8.2) and (4.8.3) behaves as does the self-
similar solution SA,p(x, t) for large time.

We write
u(x, t) = t−αφ(|x|/tσ ), (4.8.6)

where σ > 0 is a constant and α = 2σ −1. Substituting (4.8.6) into (4.8.2), we get

(φ−1φ ′)′ +
N −1

r
φ−1φ ′ +σrφ ′ +αφ = 0, r > 0, (4.8.7)

where r = |x|/tσ . The conditions required on φ are φ ′(0) = 0, φ > 0 on [0,∞).
In the manner of Brezis et al. (1986) and Guo (1995, 1996) posed an initial value

problem for (4.8.7) with

φ(0) = η > 0, φ ′(0) = 0, (4.8.8)

where η is a constant. He assumed that σ �= 1/2 is positive. The case σ = 1/2 gives
only a constant solution for the IVP (4.8.7) and (4.8.8). Using fixed point arguments,
one may prove local existence and uniqueness of solutions of the IVP (4.8.7) and
(4.8.8) (see, for example, Section 4.4). The transformation

w(r) = lnφ(r) or φ(r) = exp(w(r)) (4.8.9)
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transforms (4.8.7) to

w′′ +
N −1

r
w′ +σr exp(w)w′ +α exp(w) = 0, r > 0. (4.8.10)

The condition (4.8.8)2 becomes w′(0) = 0. Let

ρ(r) = exp

(
σ
∫ r

0
s exp(w(s))ds

)
. (4.8.11)

Equation (4.8.10) now assumes the form

(rN−1ρ(r)w′)′ = −αrN−1ρ exp(w). (4.8.12)

Integration of (4.8.12) from 0 to r gives

w′(r) = − α
rρ(r)

∫ r

0

( s
r

)N−2
s exp(w(s))ρ(s)ds. (4.8.13)

Because α = 2σ−1, w is monotonically increasing for σ < 1/2 and monotonically
decreasing for σ > 1/2. From (4.8.11), we have,

ρ ′(s) = σs exp(w(s))ρ(s). (4.8.14)

Because α < 0 for σ < 1/2, we have from (4.8.13) the inequality

w′(r) ≤ − α
rρ(r)

∫ r

0
s exp(w(s))ρ(s)ds

= − α
rρ(r)

∫ r

0

ρ ′(s)
σ

ds

≤ − α
σr

;

see (4.8.14). Thus,

0 < w′(r) ≤− α
σr

for σ < 1/2. (4.8.15)

Similarly, it may be shown that

− α
σr

≤ w′(r) < 0 if σ > 1/2. (4.8.16)

Equations (4.8.15) and (4.8.16) imply that the solutions of (4.8.7) and (4.8.8) are
global. It follows from (4.8.15) to (4.8.16) that w′(r) → 0 as r → ∞. Now, we prove
that w(r) → ∞ as r → ∞ for σ < 1/2. Recall that w is monotone increasing for
σ < 1/2 (see (4.8.15)). Assume, for contradiction, that w(r) → w0 as r → ∞ where
w0 is a fixed positive constant. This, in turn, implies that

w(1) ≤ w(r) ≤ w0, r ≥ 1. (4.8.17)
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Dividing (4.8.10) by r and hence integrating from 1 to r, we obtain

w′(r)
r

−w′(1)+σ
[
ew(r) − ew(1)

]
+N

∫ r

1

w′(s)
s2 ds = −

∫ r

1

α
s

ew(s)ds. (4.8.18)

Dividing (4.8.15) by r2 and integrating from 1 to ∞, we have

0 <
∫ ∞

1

w′

r2 dr ≤− α
2σ

. (4.8.19)

Using (4.8.17), we check that

−α
∫ r

1

ew(s)

s
ds ≥−αew(1) ln r. (4.8.20)

We also observe that the LHS of (4.8.18) is a finite quantity as r → ∞ (see (4.8.19))
whereas its RHS tends to ∞ (see (4.8.20)). Thus, we arrive at a contradiction. There-
fore, w(r) → ∞ as r → ∞. Using similar arguments, we may show that w(r) →−∞
as r → ∞ when σ > 1/2. From (4.8.11) we observe that ρ(r) → ∞ exponentially as
r → ∞ for σ < 1/2. Now we show that ρ(r) also tends to ∞ exponentially as r → ∞
when σ > 1/2. An integration of the first inequality in (4.8.16) from 1 to r shows
that

exp(w(r)) ≥ exp(w(1))r−α/σ , r ≥ 1. (4.8.21)

Recalling that α = 2σ − 1, we have −(α/σ)+ 1 = −1 +(1/σ) > −1; it follows
from (4.8.11) that ρ(r) → ∞ exponentially as r → ∞. Now we find the asymptotic
behaviour of the similarity function φ , governed by (4.8.7), as r → ∞.

Theorem 4.8.3 Assume that N ≥ 2 and σ > 0. Then

lim
r→∞

rα/σφ(r) = A > 0; (4.8.22)

here, α = 2σ −1.

To prove (4.8.22), we first show that

lim
r→∞

rφ ′(r)
φ(r)

= −α
σ

. (4.8.23)

Later, we find that

lim
r→∞

rλ
[

rφ ′(r)
φ(r)

+
α
σ

]
= 0; (4.8.24)

here (the parameter) λ > 0 is such that λ < 2 if σ < 1/2 and λ < 1/σ if σ > 1/2.
An integration of (4.8.24) would lead to (4.8.22). We integrate (4.8.12) from 0 to r
to obtain

w′(r) = − α
rN−1ρ(r)

∫ r

0
sN−1ρ(s)ew(s)ds. (4.8.25)

Substituting (4.8.9) in (4.8.25) and rewriting, we obtain
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rφ ′(r)
φ(r)

= − α
rN−2ρ(r)

∫ r

0
sN−1φ(s)ρ(s)ds. (4.8.26)

Letting r → ∞ on both sides of (4.8.26) and using L’Hospital’s rule, we obtain

lim
r→∞

rφ ′(r)
φ(r)

= − lim
r→∞

α
(N −2)r−2φ−1(r)+σ

, (4.8.27)

provided that the limit on the RHS of (4.8.27) exists. To prove (4.8.23), it suffices to
show that r2φ(r)→∞ as r →∞. Because φ(r) = exp(w(r)) and w(r)→∞ as r →∞
for σ < 1/2, it follows that r2φ(r) → ∞ as r → ∞. For σ > 1/2,

r2φ(r) = r2 exp(w(r)) ≥ exp(w(1))r2−α/σ = exp(w(1))r1/σ → ∞,

as r → ∞ (see (4.8.21)). Therefore, the limit (4.8.23) follows immediately from
(4.8.27).

Again,

lim
r→∞

rλ
[

rφ ′(r)
φ(r)

+
α
σ

]
=
α
σ

lim
r→∞

rN−2ρ−σ
∫ r

0 sN−1φ(s)ρ(s)ds

rN−λ−2ρ

=
α
σ

lim
r→∞

(N −2)rλ

(N −λ −2)+σr2φ
, (4.8.28)

after using L’Hospital’s rule and (4.8.14). Thus, we have

lim
r→∞

rλ
[

rφ ′(r)
φ(r)

+
α
σ

]
=
α
σ

lim
r→∞

(N −2)rλ−2

(N −λ −2)r−2 +σφ(r)
. (4.8.29)

For σ < 1/2 and λ < 2, the RHS of (4.8.29) tends to zero as r → ∞ (recall that for
σ < 1/2, φ → ∞ as r → ∞; see below (4.8.20)).

Now let σ > 1/2. Rewriting (4.8.28) as

lim
r→∞

rλ
[

rφ ′(r)
φ(r)

+
α
σ

]
=
α
σ

lim
r→∞

(N −2)rλ−1/σ

(N −λ −2)r−1/σ +σφr2−1/σ (4.8.30)

and observing that

(N −λ −2)r−1/σ +σφr2−1/σ ≥ (N −λ −2)r−1/σ +σew(1), (4.8.31)

where we have used (4.8.21), we find that

lim
r→∞

rλ
[

rφ ′(r)
φ(r)

+
α
σ

]
≤ α

σ
lim
r→∞

(N −2)rλ−1/σ

(N −λ −2)r−1/σ +σew(1)

→ 0 as r → ∞, for λ < 1/σ .

This proves (4.8.24). An integration of (4.8.24) gives (4.8.22).
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The constant A > 0 appearing in (4.8.22) depends on the initial condition φ(0) =
η ; that is, A = A(η). Define

g(r) =
1
η
φ
(

r√η
)

. (4.8.32)

Then, g(r) satisfies (4.8.7) and g(0) = 1 (see (4.8.8)). By Theorem 4.8.3,

lim
r→∞

rα/σφ(r) = A(η).

Therefore,

lim
r→∞

(r/
√
η)α/σφ(r/

√
η) = A(η)

or

lim
r→∞

rα/σ

η−1+α/2σ

{
1
η
φ(r/

√
η)
}

= A(η). (4.8.33)

The term in the braces in (4.8.33) is simply g(r). Recalling that g(0) = 1, we have

lim
r→∞

rα/σg(r) = A(1) = A(η)η−1+α/2σ .

Thus, for σ > 0, A > 0, and α = 2σ −1,

A(η) = A(1)η1/2σ . (4.8.34)

Because A(η) assumes all values in (0,∞) for η ∈ (0,∞), there exists a unique
positive solution of the problem (4.8.7) with the boundary condition

φ ′(0) = 0, lim
r→∞

rα/σφ = A (4.8.35)

for any given A > 0. Recasting (4.8.6) as

u(x, t) = |x|−α/σ (|x|/tσ )α/σφ(|x|/tσ ) (4.8.36)

and letting t → 0, we obtain

u(x,0) = A|x|−α/σ

where we have used (4.8.35)2. Thus we have shown the existence of a similarity
solution of (4.8.2) with the initial condition

u(x,0) = A|x|p, p = −2+1/σ , (4.8.37)

where p > −2 and A > 0. Let this similarity solution be denoted by SA,p. By Theo-
rem 4.8.3,

lim
|x|→∞

|x|−pSA,p(x, t) = A, (4.8.38)
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uniformly in t in any compact subset of (0,∞).
Guo (1996) proved a comparison principle and a global existence theorem for

(4.8.2). We state his results without proof.

Theorem 4.8.4 Let Q = IRN × (0,∞) and BR =
{

x ∈ IRN : |x| < R
}

and let L u =
ut −Δ(log u). Suppose that the following assumptions hold.

(i) u, v ∈C∞(Q), u > 0, v > 0 for t > 0.
(ii) L u ≤ L v in Q in the classical sense.
(iii) v satisfies the inequality v(x, t) ≥ c|x|p for |x| sufficiently large, uniformly in

t in any compact subset of (0,∞); here c is a positive constant and p > −2.
(iv)

lim
t↓0

∫
BR

(u− v)+(x, t)dx = 0

for any R > 0. Here (u− v)+ := max(u− v,0).

Then u ≤ v in Q.

Theorem 4.8.5 Suppose that u0(x) is continuous and positive and satisfies the con-
dition

lim
|x|→∞

inf[|x|−pu0(x)] > 0 (4.8.39)

for some p > −2. Then there exists a solution of the initial value problem (4.8.2)–
(4.8.3).

Guo (1996) pointed out that the solution u(x, t) of (4.8.2) and (4.8.3) satisfying
(4.8.39) is maximal (see (4.8.5)); moreover, u(x, t) ∈ C0(IRN × [0,∞)). Guo (1996)
then proved that the similarity solution SA,p describes large time behaviour of max-
imal solutions obtained in Theorem 4.8.5. More precisely, he proved the following
theorem.

Theorem 4.8.6 Let u0(x) > 0 be continuous and

lim
|x|→∞

|x|−pu0(x) = A, (4.8.40)

where A > 0 and p > −2. Further let u(x, t) be the maximal solution of (4.8.2) and
(4.8.3) with u0 as the initial data. Then,

lim
t→∞

tα |u(x, t)−SA,p(x, t)| = 0,

uniformly on sets {(x, t) : |x| ≤Ctσ}, ∀C > 0; here, σ = 1/(p+2) and α = 2σ−1.

To prove this theorem, we use the scaling argument (see, for example, Galaktionov
and Vázquez (2004), p. 26) and write

uλ (x, t) = λ−pu(λx,λ 1/σ t), (4.8.41)

where λ > 1. Let
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v0(x) =
{

c(1+ |x|)p, p > 0,
c|x|p, p ≤ 0,

(4.8.42)

where c is a constant. Then,

uλ (x,0) ≤ v0(x), ∀ x ∈ IRN , λ ≥ 1,

for some constant c. If v(x, t) is the maximal solution of (4.8.2) and (4.8.3) with
initial data v0 as in (4.8.42), then by the comparison principle (see Theorem 4.8.4),
we have

uλ (x, t) ≤ v(x, t) in Q ≡ IRN × (0,∞), ∀ λ ≥ 1.

By the regularity theory for parabolic equations (see Ladyženskaya et al. 1968),
uλ → SA,p uniformly in any compact subset of Q as λ → ∞. This, in turn, implies
that

uλ (y,1) ≡ λ−pu(λy,λ 1/σ ) → SA,p(y,1) ≡ φ(|y|) (4.8.43)

as λ →∞ uniformly on the sets {y : |y| ≤C}, ∀C > 0. Let λ = tσ and x = λy. Then,
λ → ∞ implies t → ∞. Therefore, (4.8.43) yields

lim
t→∞

tα |u(x, t)−SA,p(x, t)| = 0

uniformly on sets {(x, t) : |x| ≤Ctσ} ∀C > 0 recalling that SA,p(x, t) = t−αφ (|x|/tσ )
and α =−pσ . We have thus proved that the maximal solution of the (singular) non-
linear diffusion equation (4.8.2), subject to (4.8.3), behaves as its similarity solution
(4.8.6) as t →∞. A reference may be made to Guo and Man Sun (1996), Hsu (2002,
2005), and Vázquez (2006) for a related study.

In this section, we have shown that the maximal solution of IVP (4.8.2) and
(4.8.3), for large time, behaves as does the similarity solution SA,p satisfying the
condition SA,p|x|−p → A as |x| → ∞, p > −2.

4.9 Conclusions

In this chapter, we have shown, with examples, that self-similar solutions de-
scribe the large time behaviour of solutions of initial/initial boundary value prob-
lems posed for some nonlinear parabolic equations. These partial differential equa-
tions include the nonlinear heat conduction equation, porous medium equation,
heat equation with absorption, and a fast diffusion equation. We have also pre-
sented the study of ordinary differential equations obtained by the similarity re-
duction of the partial differential equations under study whenever needed. Sec-
tion 4.1 has presented the introduction to this chapter. Section 4.2 has been con-
cerned with the large time asymptotics for the linear diffusion equation on infinite
domains. Following Kloosterziel (1990), we have shown that expansion of the so-
lution of the diffusion equation on infinite/semi-infinite domains in terms of simi-
larity solutions quickly provides the large time asymptotics. Here the initial profile
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is assumed to be a square-integrable function with respect to the weight function
exp
(
x2/2

)
,−∞< x < ∞. In Section 4.3, we have discussed the self-similar asymp-

totics for a filtration–absorption equation . This equation models the groundwater
flow in a water-absorbing fissurised porous rock. A family of self-similar solutions
for the filtration–absorption equation has been constructed and has been shown nu-
merically to be intermediate asymptotic for a class of initial conditions with compact
support following Barenblatt et al. (2000). We have also discussed the axisymmetric
filtration–absorption equation in higher dimensions. We have constructed a family
of self-similar solutions analogous to those in the one-dimensional case following
Chertock (2002). Chertock (2002) has shown that these self-similar solutions are
the intermediate asymptotics for a class of initial conditions. In Section 4.4, we have
presented the existence and uniqueness of weak solutions of nonlinear ordinary dif-
ferential equations subject to certain boundary conditions at x = 0 and x =∞. These
ordinary differential equations are obtained by the similarity reduction of the porous
medium equation in one dimension. The shooting technique has been used to prove
the existence of similarity solutions with appropriate boundary conditions follow-
ing Gilding and Peletier (1976). In Section 4.6, we have shown that the similarity
solutions so obtained in Section 4.4 describe the large time behaviour of the weak
solutions of the porous medium equation subject to suitable initial and boundary
conditions. This is achieved via the derivation of an integral identity. Section 4.5 has
dealt with the large time asymptotic behaviour of the solutions of the nonlinear heat
conduction equation on the semi-infinite domain. It was assumed that the coefficient
of thermal conductivity depends on the temperature and is a decreasing function of
temperature. At infinity, the initial temperature distribution tends to a constant T0

and at x = 0, the temperature is maintained at T1 > T0. Existence of the similarity
solutions of nonlinear heat conduction with appropriate boundary conditions is pre-
sented. Finally, we have shown that these similarity solutions describe the large time
behaviour of the solutions of the initial boundary value problem for a wide class of
initial conditions. This section followed closely the work of Peletier (1970). In Sec-
tion 4.7, we have discussed the large time behaviour of the solutions of initial value
problems for the heat equation with absorption in higher dimensions. The initial
profile was assumed to be continuous, nonnegative, bounded, and have asymptotic
behaviour O(|x|−α) as |x| → ∞. We have informally discussed the asymptotic be-
haviour of the solutions of the initial value problem stated above for α < 2/(p−1).
We have shown, following Herraiz (1999), that similarity solutions of the heat equa-
tion with absorption describe the large time behaviour of the solutions of the above
initial value problem for α = 2/(p−1) via the construction of a supersolution and
subsolution. In Section 4.8, we have discussed the asymptotic behaviour (as t → ∞)
of solutions of the initial value problem for a very fast diffusion equation in higher
dimensions. This equation describes the limiting density distribution of gases obey-
ing the Boltzman equation. The initial profile is assumed to be nonnegative and
locally integrable in IRn. Following Guo (1996), we have shown that the similar-
ity solutions of the very fast diffusion equation describe the large time behaviour
of the maximal solutions of the initial value problem posed for the very fast diffu-
sion equation. We have also presented a detailed study of the similarity solutions
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of the very fast diffusion equation. Thus this chapter brought out quite clearly
the importance of self-similar solutions as large time asymptotics for solutions
of initial/initial boundary value problems posed for nonlinear partial differential
equations.
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Chapter 5
Asymptotics in Fluid Mechanics

5.1 Introduction

As we pointed out in some detail in Chapter 1, the concept of intermediate asymp-
totics first arose in two physical contexts: propagation in a certain spatial region of
a gene, whose carriers have an advantage in the struggle for existence, and fluid
mechanics, in particular, explosion and implosion phenomena involving shocks. In
Chapters 3 and 4, we studied the asymptotic behaviour of solutions of nonlinear
PDEs of parabolic type, which include those describing gene propagation. In the
present chapter, we discuss some physical problems which arise from fluid mechan-
ics and which are governed by hyperbolic or parabolic systems of equations. These
systems admit similarity solutions of the first or second kind. The latter, in general,
enjoy intermediate asymptotic character in some parametric regimes. We recall that
the self-similar solutions of the first kind are fully determined by the dimensional
considerations and require the solution of the resulting nonlinear ODEs with appro-
priate conditions at the shock and the centre of the explosion in this context, say,
whereas those of the second kind involve solution of an eigenvalue problem in the
reduced phase plane, the implosion problem, for example.

In Section 5.2, we study the propagation of a strong shock produced by a large
explosion into a medium for which the density varies according to the power law
ρ0(r) = kr−ω , where r is the distance measured from the centre of the explosion and
k > 0 and ω > 0 are constants. It is first shown that the self-similar solutions de-
scribing this phenomenon change their character from one of the first kind for ω < 3
to that of the second kind for ω > 3. The intermediate asymptotic character of the
solutions for ωg(γ) < ω < ωc(γ) is brought out by comparison with the numerical
solution of the original system of nonlinear PDEs with appropriate initial conditions;
here, ωg(γ) and ωc(γ) depend on the ratio of specific heats, γ = Cp/Cv. Section 5.3
deals with self-similar solutions of the second kind which describe a collapsing
spherical cavity. Here, we show by reference to the basic work of Hunter (1960)
that the numerical solution of the governing system of nonlinear PDEs with ap-
propriate initial/boundary conditions tends, for different sets of γ , to the relevant
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self-similar solution of the second kind as the radius of the cavity tends to zero. More
recent work on this problem is also summarised. Section 5.4 concerns large time be-
haviour of compressible flow equations with damping. It is shown, by following the
work of Liu (1996), that the solutions of this hyperbolic system of equations tend,
for large time, to those of a nonlinear parabolic equation; this is brought out by re-
ferring to a special class of solutions of each of these systems. This study justifies,
in a limited sense, the so-called Darcy’s law which is used to describe compressible
flow in a porous medium. Sections 5.5 and 5.6 deal with the systems of nonlinear
PDEs holding in the Prandtl boundary layer. In the former section, we take up the
study of unsteady boundary layer equations governing the flow in an incompressible
medium and rigourously show, following the work of Oleinik (1966a), that, under
a certain set of conditions, the solutions of an unsteady system of equations tend
to those of the corresponding steady equations as time becomes large. In the latter
section, we deal with the basic work of Serrin (1967) which proves that the similar-
ity solution of the steady boundary layer equations governed by the Falkner–Skan
equation, a nonlinear ODE of third order, subject to relevant boundary conditions
at 0 and ∞, describes the asymptotic behaviour of solutions of (steady) boundary
layer equations with appropriate initial/boundary conditions on the spatial domain
0 < x <∞. This is accomplished in a rigourous analytical manner. We may mention
that the present problem is parabolic in character.

5.2 Strong explosion in a power law density medium –
Self-similar solutions of first and second kind

One of the most important examples of self-similar solutions of the first kind in
fluid mechanics relates to a point source explosion into a uniform medium which
was analysed by Taylor (1950), Sedov (1946), and von Neumann (1947); see
Sachdev (2004) for a detailed account. This explosion results from a sudden re-
lease of a large amount of energy in a small volume. We consider here the case
of a spherical explosion; it is headed by a strong shock which propagates into a
medium with uniform density and zero pressure. This problem was solved by the
exact similarity reduction of the governing system of nonlinear PDEs to ODEs and
the solution of the latter subject to Rankine–Hugoniot conditions at the shock and
zero particle velocity at the centre of the explosion. It was dealt with in Eulerian
coordinates by Taylor (1950) and Sedov (1946) and Lagrangian coordinates by von
Neumann (1947).

Here we consider a more general problem: a strong shock produced by a large
explosion propagates into a medium for which the density varies according to power
law

ρ0(r) = Kr−ω , (5.2.1)

where r is the distance measured from the centre of the explosion and K > 0, ω > 0
are constants. The medium ahead is assumed to be an ideal gas with zero pressure.
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This is a curious example where the self-similar solution changes its character
from one of the first kind for ω < 3 to the (so-called) second kind for ω > 3 (see
Chapter 1). The case ω < 3, which is a straightforward generalisation of the Taylor–
Sedov solution, was first treated by Korobeinikov and Riazanov (1959). They re-
duced the system of nonlinear PDEs governing the inviscid gas dynamic equations
in spherical, cylindrical, and plane symmetries to a system of nonlinear ODEs by as-
suming that pressure, density, and particle velocity behind the shock may be written
in the form v = v2 f (λ ),ρ = ρ2g(λ ), p = p2h(λ ),λ = r/r2, where the subscript ‘2’
denotes conditions immediately behind the shock, r2 = r2(t). The nonlinear ODEs
for f ,g, and h were solved subject to the conditions f (1) = g(1) = h(1) = 1 at
the shock and the particle velocity f (0) = 0 at the centre; the latter arises from
the spherical symmetry of the problem. Indeed the system of ODEs with the above
conditions was solved in a closed form. Korobeinikov and Riazanov (1959) consid-
ered only those parameters for which the solution could be extended to the centre
of symmetry. The solution, however, exhibited singularities when the density expo-
nent ω in (5.2.1) assumes values ω = ω1,ω2,ω3, where ω1 = (7− γ)/(γ+1),ω2 =
(2γ+ 1)/γ , and ω3 = 3(2− γ) for the spherically symmetric case that we consider
here. For these singular cases, Korobeinikov and Riazanov (1959) found limiting
behaviour of the solutions by solving the governing system of ODEs directly.

Unaware of the above work, Waxman and Shvarts (1993) considered this prob-
lem in a different fashion. They did not directly impose the symmetry condition
u(0, t) = 0 at the centre of explosion. Instead they enquired for what values of the pa-
rameter ω the similarity solution was a straightforward generalisation of the Taylor–
Sedov solution. They arrived at a very interesting conclusion, namely, that Taylor–
Sedov type solutions exist only for the case ω < 3. The value ω = 3 is exactly the
point where the singularities in the solution of Korobeinikov and Riazanov (1959)
appear if we assume that γ > 1.

Waxman and Shvarts (1993) showed that self-similar solutions of the first kind
fail to describe the asymptotic behaviour as t → ∞ for 3 ≤ ω < 5. They discovered
new solutions belonging to the so-called second kind for 3 < ω < 5 and for ω ≥
5. These solutions are distinct from the Taylor–Sedov type because they describe
flows with accelerating shocks. This is in contrast to Taylor–Sedov solutions for
ω < 3, which are headed by decelerating shocks. The new class of solutions was
found in the manner of the solutions for the converging shocks for which the shock
exponent is found, not from dimensional considerations alone, but by requiring that
the solution, for a given γ , starting from the shock, passes through an appropriate
singular point of the reduced ODE in the sound speed square-particle velocity plane,
the so-called Guderley map. In the present case, the solution must pass through a
‘new’ singular point in the Guderley map (see Sachdev 2004).

Now we follow the work of Waxman and Shvarts (1993). The main purpose here
is to identify self-similar solutions of the second kind for ω > 3, which describe
the limiting behaviour which is approached asymptotically for t → ∞ by flows that
are initially non-self-similar. A large class of problems, which differ in boundary
and initial conditions, tends in the above limit to the same asymptotic self-similar
behaviour of the second kind.
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The spherically symmetric flows with shocks are governed by

∂
∂ t

lnρ+u
∂
∂ r

lnρ+
∂u
∂ r

+2
u
r

= 0, (5.2.2)

∂u
∂ t

+u
∂u
∂ r

+
c2

γ
∂
∂ r

lnρ+
1
γ
∂c2

∂ r
= 0, (5.2.3)

∂
∂ t

ln(c2ρ1−γ)+u
∂
∂ r

ln(c2ρ1−γ) = 0, (5.2.4)

where u,ρ , and c are particle velocity, density, and sound speed, respectively. We
assume that, at later time, the solution of the system (5.2.2)–(5.2.4) does not depend
upon constants with the dimension of length or time deriving from the boundary
conditions; the flow here must depend on only two-dimensional parameters. The
typical length scale is the radius of the shock given by

R(t) = Atα , (5.2.5)

where A and α are constants. The flow variables may now be expressed in the self-
similar form

u(r, t) = ṘξU(ξ ), c(r, t) = ṘξC(ξ ),

ρ(r, t) = BtβG(ξ ), ξ =
r

R(t)
. (5.2.6)

Here, ξ is the similarity variable. For sufficiently late times the length scale of the
flow is described by R = R(t).

In the Taylor–Sedov form of the solution, the early flow is described by two-
dimensional parameters, the parameter K in the density law (5.2.1) and the energy
of the flow which is assumed to be equal to the explosion energy E. By simple
dimensional considerations we may find the dimensional constants A and B and the
parameters α and β in (5.2.5) and (5.2.6) as

A = ϕ(γ,ω)
(

E
K

)α/2

, α =
2

5−ω
B = KA−ω , β = −αω, (5.2.7)

where ϕ is a dimensionless function of the (dimensionless) parameters γ and ω ,
which is determined from the constancy of the explosion energy behind the shock.
Korobeinikov and Riazanov (1959) considered the case ω ≤ 3.

Waxman and Shvarts (1993) showed that the self-similar solutions of Taylor–
Sedov type discussed above cease to hold for large R for two reasons: (i) the energy
of explosion in this case tends to infinity and therefore cannot be the second dimen-
sional parameter, and (ii) forω ≥ 3 there must exist a region around the origin with a
non-self-similar behaviour. For large time, when R(t) diverges, the initial length and
time scales which arise from the initial conditions do not characterise the physical
process; these scales characterise flows at early times.
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The solution in the outer region is in fact described by a self-similar solution of
the second kind, as we show presently. The substitution of (5.2.5) and (5.2.6) into
(5.2.2)–(5.2.4) reduces the latter to the system of ODEs,

ξ (U −1)G′ +ξGU ′ = −
(
β +3αU

α

)
G, (5.2.8)

ξG(U −1)U ′ +
C2

γ
ξG′ +

2
γ
ξCGC′ =

[
1
α
−U

]
UG− 2

γ
C2G, (5.2.9)

2αξ (U −1)GC′ +α(1− γ)ξ (U −1)CG′ = [β (γ−1)+2−2αU ]CG,

(5.2.10)

which, in the (U,C) plane, becomes

dU
dC

=
�1(U,C)
�2(U,C)

; (5.2.11)

U and C are related to ξ by

d log ξ
dU

=
�(U,C)
�1(U,C)

(5.2.12)

and
d log ξ

dC
=

�(U,C)
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. (5.2.13)

Here,

� = C2 − (1−U)2,

�1 = U(1−U)
(
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The function G in (5.2.6) may then be obtained from a quadrature of the system
(5.2.8)–(5.2.10), namely,

C−2(1−U)λGγ−1+λ ξ 3λ−2 = constant, (5.2.15)
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where

λ =
(γ−1)ω+2

[
(α−1)
α

]
3−ω

. (5.2.16)

It is customary to first examine the equation (5.2.11) in the (U,C)-plane to iden-
tify the required integral and then use (5.2.12) and (5.2.13) to relate U and C to the
variable ξ . The strong shock conditions

u =
2

γ+1
Ṙ, ρ =

γ+1
γ−1

ρ0, p =
2

γ+1
ρ0Ṙ2, (5.2.17)

in view of (5.2.6), become

U(1) =
2

γ+1
, C(1) =

√
2γ(γ−1)
γ+1

, G(1) =
γ+1
γ−1

. (5.2.18)

For the Taylor–Sedov type of solution, the energy E1 contained in the region ξ1 ≤
ξ ≤ 1 corresponding to [ξ1R(t) ≤ r ≤ R(t)] is given by

E1 =
∫ R

ξ1R
dr4πr2ρ

{
1
2

u2 +
1
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}

= 4πKR3−ω Ṙ2
∫ 1
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)

(5.2.19)

which, in view of (5.2.5)–(5.2.7), becomes

E1 =

[
4π
(

2
5−ω

)2

ϕ5−ω
∫ 1

ξ1

dξ ξ 4G

(
1
2

U2 +
1

γ(γ−1)
C2
)]

E. (5.2.20)

In this case, E1 is independent of time. In view of this constancy, the self-similar
contour in the (U,C)-plane may be obtained by the energy–work done principle,
namely, the work done during the interval dt by a fluid element which is at ξ = ξ1

at time t on the fluid that lies in ξ > ξ1 at time t equals the energy that leaves the
region ξ1 ≤ ξ ≤ 1 during the same time interval via the energy flux through the
surface ξ1 = constant. Thus, the work done by a fluid element that lies at ξ1 at the
time t on the fluid that occupies the region r > ξ1R(t) at that time during the interval
dt is

4πr2
1u(r1, t)dtγ−1ρ(r1, t)c2(r1, t) = 4πγ−1KR2−ω Ṙ3ξ 5

1 U(ξ1)G(ξ1)C2(ξ1)dt.
(5.2.21)

The corresponding energy that leaves the region ξ > ξ1 during the time dt due to
the energy flux across the surface ξ1 = constant is given by

4πr2
1

[
ξ1Ṙ−u(r1, t)

]
dt

(
1
2
ρ(r1, t)u2(r1, t)+

1
γ(γ−1)

c2(r1, t)
)
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= 4πγ−1KR2−ω Ṙ3ξ 5
1 [1−U(ξ1)]G(ξ1)

(
γ
2

U2(ξ1)+
C2(ξ1)
γ−1

)
dt. (5.2.22)

Equating (5.2.21) and (5.2.22), we arrive at the integral

C2 =
γ(γ−1)

2
U2(1−U)
γU −1

. (5.2.23)

In view of (5.2.23), equation (5.2.12) becomes

d log ξ
dU

= (γ+1)
γU2 −2U +

2
γ+1

U(γU −1) [5−ω− (3γ−1)U ]
(5.2.24)

which involves only U on the RHS.
Equation (5.2.24) was analysed by Waxman and Shvarts (1993) in the appendix

to their paper. It was found that, for ω < (7− γ)/(γ + 1), U tends to 1/γ and C
tends to infinity as ξ → 0. On the other hand, for ω > (7− γ)/(γ + 1), a vacuum
is formed in 0 < ξ < ξin where ξ = ξin > 0 is the outer boundary of this region.
The self-similar solution holds in ξin ≤ ξ ≤ 1 and is separated from the evacuated
region ξ < ξin by a particle path. We observe that the value (7− γ)/(γ + 1) of ω
coincides with the singularity ω = ω1 of Korobeinikov and Riazanov (1959) for
spherical symmetry.

The case ω > (7− γ)/(γ+1) includes ω ≥ 3 for γ ≥ 1. Here, the solution curve
approaches the point (C = 0,U = 1) as ξ tends to ξin. A simple local analysis of
(5.2.15), (5.2.23), and (5.2.24) shows that

U(ξ ) ≈ 1− 3γ+ω−6
γ

log

(
ξ
ξin

)
,

C(ξ ) ≈
[

3γ+ω−6
2

log

(
ξ
ξin

)]1/2

, (5.2.25)

G(ξ ) ≈ constant×
[

log

(
ξ
ξin

)]−(γω+ω−6)/(3γ+ω−6)

for ξ � ξin. Insertion of (5.2.25) in the expression (5.2.20) for the energy E1 in the
region ξ1 ≤ ξ ≤ 1 corresponding to ξ1R(t)≤ r ≤R(t) shows that, forω ≥ 3, E1 →∞
as ξ1 → ξin. The (constant) energy of the blast is therefore contained in a region
bounded by some point ξ1 = ξ∗ and the shock. It follows that the flow resulting
from the finite energy of the blast is described by a Taylor–Sedov solution in a
smaller region ξ∗ ≤ ξ0 ≤ ξ ≤ 1 and is different from the self-similar solution in the
intermediate layer ξin ≤ ξ ≤ ξ0. This implies that some initial length and time scales
influence the flow behaviour over the region O(R) as R → ∞, contradicting its self-
similar nature. It is this fact and not the infinite energy of the blast for ω > 3 alone
which makes the self-similar solution of Taylor–Sedov type untenable. In any case,
for ω > 3, (infinite) energy of the explosion is not the relevant second parameter.
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For ω > 3, Waxman and Shvarts (1993) constructed the asymptotic similarity
solution as follows. They considered two flow regions: the outer region lying in
r1(t) < r(t) < R(t) and the inner one lying between r = r1(t) and r = 0. They as-
sumed that the flow in the outer region is independent of that in the inner region and
is determined for t > t0 entirely by the initial flow conditions in the former at some
time t = t0. They also assumed that r1(t)/R(t) tends to zero as R →∞; furthermore,
they surmised that the flow behaviour in the inner region does not affect the descrip-
tion of the flow over the scales of order R. Thus, the flow in the large outer region is
assumed to be independent of that in the much smaller inner region. A self-similar
solution is constructed for the outer region, which is not affected by the initial length
and time scales; the latter influence only the smaller inner region.

It was shown that the inner region is bounded by a C+ characteristic which starts
from r = r1, t = t0 (Zel’dovich and Raizer 1967). The solution in the outer region
is constructed in the manner self-similar solutions of the second kind are analysed
(Zel’dovich and Raizer 1967). A physical solution starting from the shock must
cross the sonic line � = 0 at a singular point of (5.2.11) where �1 = �2 = 0,
otherwise equations (5.2.12) and (5.2.13) would imply that one of the functions
U(ξ ) and C(ξ ) is not single-valued. Thus the appropriate value of α for a given γ is
found by starting the integration from the shock point (U(1),C(1)) and continuing
until the integral curve crosses the sonic line � = 0 at a singular point of (5.2.11).
It is now shown that such an integral curve exists for a certain range of ω values
greater than 3.

Fortunately, it becomes possible to find an explicit self-similar solution of (5.2.12)
and (5.2.13) for a particular value of ω = ωa ≡ 2(4γ − 1)/(γ + 1), satisfying the
shock conditions [U(1),C(1)] and passing through the singular point U = 2/(γ+1),
C = (γ−1)/(γ+1). Because for γ > 1,ωa > 3, the exponent α =αa(γ) for this case
is simply (γ+ 1)/2. The explicit form of the solution for this special case is found
to be

U(ξ ) = U(1) =
2

γ+1

C(ξ ) = C(1)ξ 3 =

√
2γ(γ−1)
γ+1

ξ 3, (5.2.26)

G(ξ ) =
γ+1
γ−1

ξ−8

and motivates the solution for other values of ω . It also provides a valuable check
on the veracity of the numerical solution for large time. We may observe that the
exponent αa = (γ+1)/2 differs considerably from the corresponding Taylor–Sedov
value 2(γ+1)/(7−3γ).

Before considering the solution for other ω > 3, a numerical solution of the
full flow equations (5.2.2)–(5.2.4) was found by Waxman and Shvarts (1993) for
ω = ωa, using the methods of artificial viscosity (see Sachdev 2004). The initial
conditions for this particular example were zero particle velocity everywhere, con-
stant density and pressure at the time of energy release in r < d, zero pressure,
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and density proportional to r−ω for r > d. The results for ωa = 4.25 corresponding
to γ = 5/3 from the exact analytic solution, the numerical solution, and from the
Taylor–Sedov form of the solution are shown in Figure 5.1. Here, (t/τ)α/(R/d) is
plotted against R/d for large time with τ = (Kd5−ω/E)1/2. It is easily seen that this
quantity approaches a constant value for the explicit solution (5.2.26) with α = 4/3
(solid line). This is in contrast to the Taylor–Sedov values for α = 8/3 (dashed line)
which continue to diverge.

The solution C = C(U) for γ = 5/3 and ωa = 4.25 according to (5.2.26) (solid
line), numerical solution (dashed line), and the Taylor–Sedov type solution (dashed
dot line) are shown in Figure 5.2. U(ξ ) and C(ξ ) were found from (5.2.5) and
(5.2.6) by first computing R(t) and dR(t)/dt from the numerical results. It is clear
from Figure 5.2 that the numerical solution for large times agrees very well with
the exact asymptotic solution given by (5.2.26). The dotted line in the figure is
U +C = 1. There is some departure of the analytic solution from the numerical
solution when it is below this line (see Waxman and Shvarts 1993).
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Fig. 5.1 (t/τ)α/(R/d) versus R/d for α = 4/3 (—, Waxman and Shvarts 1993), and for α =
8/3 (−−−, αT S). (Waxman and Shvarts 1993. Copyright c©1993 American Institute of Physics.
Reprinted with permission. All rights reserved.)

The exact solution (5.2.26) shows that it approaches the point U = 2/(γ+1),C =
0 as ξ → 0. This is a singular point of (5.2.11). It is a special case of the singular
point P(U = 1/α,C = 0) which exists for all ω > 0 and α . This is the point where
the self-similar solution starting from the shock (5.2.18) crosses the sonic line; it
is approached in the limit ξ → 0. Waxman and Shvarts (1993) also studied (C,U)
curves for γ = 5/3, ω = 3.4 and γ = 5/3, ω = 5.5. The agreement of the self-
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Fig. 5.2 (C,U) curves for γ = 5/3 and ω = 4.25: Waxman and Shvarts self-similar solution
(5.2.26) (—), numerical solution (−−−) for R/d = 86.6, Taylor–Sedov solution (−.− .−). Dotted
line represents U +C = 1 and the circle denotes the singular point (U = 1/α,C = 0). (Waxman
and Shvarts 1993. Copyright c© 1993 American Institute of Physics. Reprinted with permission.
All rights reserved.)

similar solution with the numerical solution for large times was clearly observed.
The Taylor–Sedov type of solution does not exist for ω = 5.5. Because dU/dC = 0
when U = 1 (see (5.2.11)–(5.2.14)) and because U < 1 at the shock (see (5.2.18)),
the solution being considered here must satisfy the inequality U < 1 behind the
shock. Therefore, the singular point P(U = 1/α,C = 0) where the integral curve
crosses the sonic line is of interest only when α > 1. Thus for this class of self-
similar solutions the similarity exponent α is greater than 1; this is in contrast to the
self-similar solutions of the Taylor–Sedov type for ω < 3 for which α < 1.

It is of some interest to write the present self-similar solution in the neighbour-
hood of the singular point P. We may approximate �, �1, and �2 near P as

� = −
(

1− 1
α

)2

,

�1 = − 1
α

(
1− 1

α

)(
U − 1

α

)
+

⎛
⎜⎜⎝
ω−2

[
α−1
α

]
γ

− 3
α

⎞
⎟⎟⎠C2, (5.2.27)

�2 = − 3
α

(
1− 1

α

)
γ−1

2
C.
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We may, therefore, write an approximate solution of (5.2.11) near P as

U =
1
α

+

⎧⎨
⎩

constant C2/3(γ−1), γ > 4/3,
f1(γ,ω,α)C2 log C, γ = 4/3,
f2(γ,ω,α)C2, γ < 4/3,

(5.2.28)

where

f1 =
(

3
α
− ω−2[(α−1)/α]

γ

)
2α
α−1

,

f2 =
(

3
α
− ω−2[(α−1)/α]

γ

)
α2

(α−1)(3γ−4)
. (5.2.29)

The approximate form of the functions C(ξ ) and G(ξ ) may hence be obtained from
(5.2.13) and (5.2.15) as

C(ξ ) = constant ×ξ 3(γ−1)/2(α−1), (5.2.30)

G(ξ ) = constant ×ξ−(αω−3)/(α−1). (5.2.31)

A detailed numerical evaluation of the exponent α = α(ω) shows that α tends to
unity as ω ↓ ωg for some ωg > 3(ωg = 3.256 for γ = 5/3); α tends to infinity as
ω ↑ ωc for some finite ωc (ωc = 7.686 for γ = 5/3). For 3 ≤ ω ≤ ωg(γ), there is
no α for which the integral curve in the (U,C)-plane crosses the sonic line at the
singular point P.

To summarise, the self-similar analysis of flows arising from a strong explosion
into a nonuniform power law medium reveals some very fascinating features. These
solutions change their character from the first kind to those of the second kind as the
density exponent ω crosses the value 3. The asymptotic character of the solutions
in the ranges 3 ≤ ω ≤ ωg(γ) and ω ≥ ωc(γ) needs further investigation.

5.3 Self-similar solutions for collapsing cavities

The generation and propagation of converging shock waves were first treated by
Guderley (1942). Guderley’s self-similar solutions are self-similar solutions of the
second kind and are descriptors of converging cylindrical shocks close to the axis of
symmetry. This work was subsequently discussed by several authors (see Zel’dovich
and Raizer 1967, Whitham 1974). In particular, their analytical asymptotic be-
haviour in the neighbourhood of the axis was elegantly treated by Van Dyke and
Guttmann (1982). We have earlier discussed converging shocks in some detail
(Sachdev 2004). Here we deal with a related problem, the collapse of an empty
spherical or cylindrical cavity in water and air and the asymptotic behaviour of its
solution near the centre (axis) of collapse. First we discuss briefly the collapse of
an empty spherical cavity in water because the analysis here is quite close to that
detailed in Section 5.2. Later, we study the same problem when the medium is air;
the analytical results for the latter are quite distinct from those for water.
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The major work concerning cavity collapse in water is due to Hunter (1960).
Here, the effects of viscosity and surface tension were neglected but compressibility
of the water was allowed for by using a suitable form of the equation of state. It is
envisioned that a cavity of initially infinite size has been collapsing for an infinite
time. Thus the pressure in the cavity is zero and that for the liquid far from it is p0.
It is also assumed that there is a constant, finite energy E associated with the flow.
Following Rayleigh’s (1917) treatement of the same problem in an incompressible
medium, the cavity wall was assumed to move according to the formula

E = 2πρ ′R′3Ṙ′2, (5.3.1)

where Ŕ = Ŕ(t) is the radius of the cavity. On integration of (5.3.1), we have

R′5/2 =
5
2

√(
E

2πρ ′

)(
t ′0 − t ′

)
, (5.3.2)

where t ′0 is the instant of collapse. After appropriately scaling the variables by the
conditions at infinity, the problem may be reduced to solving the system

ut +uur +
1

γ−1
(c2)r = 0, (5.3.3)

(c2)t +u(c2)r +(γ−1)c2
(

ur +
2u
r

)
= 0. (5.3.4)

The boundary conditions are

c = 1 and u = Ṙ at the cavity wall r = R,

c → 1 as r → ∞,

R ∼ (t0 − t)2/5, u ∼−2
5

(t0 − t)1/5

r2 ,

c2 = 1+
2(γ−1)(t0 − t)−6/5

25

[
(t0 − t)2/5

r
− (t0 − t)8/5

r4

]
(5.3.5)

as t0 − t → ∞. The expression for c2 comes from the solution of this problem as-
suming the medium to be incompressible. The initial conditions for the numerical
solution of this problem were chosen to be (5.3.5) when Ṙ = −0.1. γ = cp/cv in
(5.3.3) and (5.3.4) was assumed to be 7. The method of characteristics was used to
solve this problem. Two significant results emerged from this numerical study: (i)
R(−Ṙ)τ → constant as R → 0 where the constant τ was found to be 1.27. (ii) For
each fixed value of r/R, −u → ∞ and c → ∞ as R → 0 in such a way that u/Ṙ and
c2/Ṙ2 become functions of r/R alone. In one of the first instances of similarity the-
ory, Hunter (1960) was motivated by the numerical results to seek out the solution
of this problem in the form
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u = Ṙ f (r/R), c2 = Ṙ2g(r/R). (5.3.6)

The problem of asymptotic collapse of the cavity was studied as its radius tends to
zero. Thus, any length scale for the flow, which may be derived from the boundary
conditions, will be too large to be relevant as R → 0. Therefore, the only suitable
length scale for the flow is the cavity radius R itself. The same is true for the velocity
scale because any such scale derived from the boundary conditions will be too small
compared to the velocity of the cavity wall. Thus, Ṙ is the appropriate velocity scale.
When (5.3.6) is substituted into (5.3.3) and (5.3.4), the latter reduce to ODEs only
if RR̈/Ṙ2 = constant = 1− n−1, say. Thus, R = A(−t)n where A is a constant and
t = 0 is the instant of the cavity collapse. The conditions u = Ṙ and c2 = 0 at r = R
lead to the boundary conditions f (1) = 1 and g(1) = 0 at the cavity. The equation of
state was assumed to be p ∝ ργ where γ = 7. The reduction of the system of ODEs
to a single equation is similar to that described in Section 5.2. Hunter (1960) carried
out a very detailed analysis of singularities in the (Y,Z)-plane (see Section 5.2). The
value of the similarity exponent n was determined by the regularity properties of the
similarity solution. For γ = 7, it was found to be 0.5552. The corresponding value
from the numerical solution was found to be 0.560. We may mention that τ and n
are related by τ = n/(1−n) (see discussion below (5.3.5)). The similarity analysis
valid only for high pressures and velocities was continued beyond the instant of the
cavity collapse to describe the formation and initial propagation of the shock wave
after the collapse is completed.

In a later study, Thomas et al. (1986) considered the collapse of a spherical cav-
ity surrounded by a perfect gas initially at rest. The cavity begins to move with
uniform velocity −2c0/(γ − 1), where c0 is the speed of sound in the undisturbed
gas. Thomas et al. (1986) showed that the cavity velocity remains practically uni-
form until the radius of the cavity, R, becomes a small fraction ξ (γ) of the initial
radius R0. Then it begins to move according to the asymptotic self-similar behaviour
Ṙ ∼ R−τ(γ). However, for 1 < γ < γcr,γcr ≈ 1.5, the velocity Ṙ of the cavity surface
remains strictly uniform for the entire period of collapse. The effect of geometry
seems to be overridden by the high compressibility of the gas.

We consider first the case when the radius R of the cavity remains sufficiently
close to its initial value R0. The flow is described by a plane rarefaction wave
(Courant and Friedrichs 1948) with the modulus of the velocity profile given by

u =
2

γ+1

(
R0 − r

t
+ c0

)
. (5.3.7)

In this case, the velocity of the cavity is simply

Ṙ = − 2c0

(γ−1)
= −Vi, say. (5.3.8)

Writing u = dri/dt in (5.3.7) and integrating we arrive at the result
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ri = R0 − 2c0t
γ−1

[
1− γ+1

2

(
rio −R0

c0t

)(γ−1)/(γ+1)
]

, (5.3.9)

where rio = ri(t = 0). The relation (5.3.9) holds provided that t ≥ (rio −R0)/c0.
The above analysis is valid until the geometrical compression begins to contribute
significantly.

As we discussed earlier with reference to the work of Hunter (1960) for γ = 7
(see also Zel’dovich and Raizer 1967), the flow for R  R0 is described by the
self-similar solution. Here the radius of the cavity is given by

R = A(−t)n, (5.3.10)

where A is a constant which depends on the initial conditions and n = n(γ). We may
rewrite (5.3.10) as

Ṙ = −CR−τ̂ (5.3.11)

where τ̂ = τ−1 = (1−n)/n and C = nA1/n.
As we mentioned earlier, the law (5.3.10) was motivated by Rayleigh’s re-

sults for the cavity collapse in an incompressible fluid for which τ̂ = 3/2 and

C = (3p0/2ρ0)
1/2 R3/2

0 . For an ideal gas τ̂ depends on the compressibility of the
medium.

Thomas et al. (1986) carried out the numerical solution of this problem with
a scheme different from Hunter’s and came up with some interesting conclu-
sions. The results we describe here refer to the asymptotic stage when r → R
and R → 0. Figure 5.3 shows −Ṙ as a function of the cavity radius R/R0. Here,
the undisturbed pressure p0 and density ρ0 were taken to be 106 dyn cm−2 and
1.6 × 10−4 g cm−3, respectively. The minimum value, Rmin/R0, for which ‘nu-
merical saturation’ took place depended on the value of γ . It was found to be
Rmin/R0 = 10−2, 2× 10−3, 8× 10−4 for γ = 7, 4, 2.4, respectively. Figure 5.3
also shows an (R/R0,−Ṙ) relation for γ = ∞, 7, 4, 2.4, and 5/3. It may be ob-
served that, for large γ , the cavity velocity remains constant for a short initial dis-
tance and time and then it begins to promptly conform to asymptotic self-similar
behaviour. As γ decreases, the early stage of uniform velocity increases and the
slope of the asymptotic line decreases until, for γ ≈ 5/3, the cavity speed becomes
essentially constant. For γ � 5/3, the cavity moves to the centre with almost uni-
form velocity −2c0/(γ − 1) during its entire course. In fact, there exists a value
of γ = γ1, 1.5 < γ1 < 5/3, below which the flow never approaches self-similar be-
haviour and the cavity moves inward with constant velocity right up to the point
of collapse. Thomas et al. (1986) compared their conclusions regarding the asymp-
totic nature of the cavity collapse with those from the stability analysis of these
flows by Lazarus (1982) and observed that there are no (one-dimensionally) stable
asymptotic solutions for 3/2 < γ < 5/3; there exist degenerate stable asymptotic so-
lutions with Ṙ = constant for γ � 3/2. These solutions were numerically simulated
by Thomas et al. (1986).
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Fig. 5.3 −Ṙ versus R/R0 with undisturbed pressure p0 = 106 dyn cm−2, density ρ0 = 1.6 ×
10−4 gm cm−3 and γ = ∞,7,4,2.4,5/3. (Thomas et al. 1986. Copyright c© 1986 American In-
stitute of Physics. Reprinted with permission. All rights reserved.)

5.4 Large time behaviour of solutions of compressible flow
equations with damping

In an interesting study, Liu (1996) showed how the solutions of compressible flow
equations with damping, which have a hyperbolic character, tend for large time to
those of a nonlinear parabolic equation. For this purpose, he made use of a special
class of solutions of each of these systems. Barenblatt (1953) had constructed a
special class of solutions for the porous flow equations. Making use of this class
of solutions, Liu (1996) justified, at least in a limited sense, the so-called Darcy’s
law which is used to describe compressible flow in a porous medium. The physical
situation described by these flows is rather special and includes a vacuum front
where ρ = 0. It is assumed that no shocks are formed in the flow.

The vector form of the isentropic compressible flow equations with damping may
be written as

ρt +� � (ρ ū) = 0, (5.4.1)

(ρ ū)t +� �ρ(ū⊗ ū)+�p(ρ)+αρ ū = 0, (5.4.2)

where p and ρ are related by the polytropic law
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p(ρ) = kργ , k > 0, γ > 1. (5.4.3)

α in (5.4.2) is positive and denotes the (constant) coefficient of friction. Using
Darcy’s law

� p(ρ) = −αρ ū, (5.4.4)

equation (5.4.2) becomes the porous media equation

ρt = α−1 � p(ρ). (5.4.5)

It was shown by Liu (1996) that a certain class of solutions of equations (5.4.1)–
(5.4.3) tends, for large time, to the corresponding solutions of the porous medium
equation (5.4.5). Darcy’s law for the porous medium is thus shown to hold, at least
in this asymptotic sense. We later summarise more general results in this context
due to Hsiao and Liu (1992). Introducing the speed of the sound via

c2 = p′(ρ) = kγργ−1 (5.4.6)

into (5.4.1) and (5.4.2) we get

(c2)t +�(c2) � ū+(γ−1)c2 � �ū = 0, (5.4.7)

ūt +(ū ��)ū+(γ−1)−1 � (c2) = −α ū. (5.4.8)

To motivate the form of the special solution in the neighbourhood of the vacuum
ρ = c = 0, one may observe that the trajectory of the vacuum front,

Γ ≡ {(x̄, t) : ρ(x̄, t) ≥ 0}∩{(x̄, t) : ρ(x̄, t) = 0} , (5.4.9)

is a particle line along which

dx̄
dt

= ū(x̄(t), t). (5.4.10)

Equations (5.4.8) in the direction (5.4.10) may be written as

dū
dt

+α ū = −(γ−1)−1 � (c2). (5.4.11)

Because we assume that dū/dt is finite, (5.4.11) suggests that we may write

c2(x̄, t) = η(x̄, t)|x̄(t)− x̄|, (5.4.12)

where the function η(x̄, t) is differentiable right up to the vacuum front Γ (see
(5.4.9)). Equation (5.4.12) implies that c(x̄, t) ∼= |x̄(t)− x̄|1/2 and therefore the char-
acteristic speeds of the system (5.4.7) and (5.4.8) are not Lipschitz continuous near
the vacuum front. Using (5.4.12) we may write
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ρ(x̄, t) ∼= |x̄(t)− x̄|
1

(γ−1) ,

p(x̄, t) ∼= |x̄(t)− x̄|
γ

(γ−1) . (5.4.13)

It turns out that the singularities of the system (5.4.7) and (5.4.8) are the same as
were first observed by Barenblatt (1953) for the porous medium equation (5.4.5).
Restricting himself to the plane and spherically symmetric flows with n = 1 and
n = 3, respectively, Liu (1996) specialised (5.4.7) and (5.4.8) as

(c2)t +u(c2)x +(γ−1)c2ux +
n−1

x
(γ−1)c2u = 0, (5.4.14)

ut +uux +
1

γ−1
(c2)x +αu = 0, (5.4.15)

x =
(
Σ n

i=1x2
i

)1/2
, ū = (x̄/x)u and sought their solutions in the form (see Sachdev 2004)

ρ(x, t) ≡ 0, |x| >
(

e(t)
b(t)

)1/2

, (5.4.16)

c2(x, t) = e(t)−b(t)x2, (5.4.17)

u(x, t) = a(t)x, (5.4.18)

where the particle velocity is linear in x and the sound speed square is quadratic.
Substituting (5.4.17) and (5.4.18) into (5.4.14) and (5.4.15) and equating coeffi-
cients of xi, i = 0,1,2 to zero we obtain the following system of ODEs for the func-
tions e(t),b(t), and a(t).

e′ +n(γ−1)ea = 0, (5.4.19)

b′ +(nγ−n+2)ab = 0, (5.4.20)

a′ +a2 +αa− 2
γ−1

b = 0. (5.4.21)

A phase plane analysis of (5.4.20) and (5.4.21) shows that the functions a(t) and
b(t) and hence e(t) exist for all time. Thus we find that the solutions of (5.4.14) and
(5.4.15) of the form (5.4.17) and (5.4.18) with given a(0),b(0), and e(0) exist for all
t > 0. There also exist travelling wave solutions of (5.4.14) and (5.4.15) with n = 1
of the simple form

c2(x, t) = D(e(t)− x), x < e(t), (5.4.22)

u(x, t) = a(t), (5.4.23)

where D is a constant. Here the functions a(t) and e(t) are governed by
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a′ +αa =
D

γ−1
, e′ = a. (5.4.24)

Equations (5.4.24) admit the exact solution

a(t) = a(0)e−αt +
D

α(γ−1)
(
1− e−αt) , (5.4.25)

e(t) = e(0)+
(

a(0)
α

− D
α2(γ−1)

)(
1− e−αt)+ D

α(γ−1)
t. (5.4.26)

This class of solutions tends, as t → ∞, to the simple travelling waveform

c2(x, t) = (γ−1)u0α(u0t − x),
u(x, t) = u0, (5.4.27)

where x < u0t and u0 = D/(α(γ−1)) > 0. It turns out that they are also the travelling
wave solutions of the porous medium equation (5.4.5).

We may now obtain the corresponding solution of the basic system under Darcy’s
law. Thus, (5.4.4) in one dimension implies that

1
γ−1

(c2)x +αu = 0. (5.4.28)

The ansatz
c2(x, t) = ē(t)− b̄(t)x2, (5.4.29)

and
u(x, t) = ā(t)x (5.4.30)

in (5.4.14) and (5.4.28) and so on lead to the system of ODEs

ē′ +n(γ−1)ēā = 0, (5.4.31)

b̄′ +(nγ−n+2)āb̄ = 0, (5.4.32)

α ā =
2b̄
γ−1

. (5.4.33)

Equation (5.4.33) follows from Darcy’s law (5.4.28) and is, therefore, called Darcy’s
line. The solution of the system (5.4.31)–(5.4.33) leads to Barenblatt’s form (5.4.29)
and (5.4.30) with

ā(t) =
1

nγ−n+2
t−1, (5.4.34)

b̄(t) =
(γ−1)α

2(nγ−n+2)
t−1, (5.4.35)

ē(t) = e0t−n(γ−1)/(nγ−n+2), (5.4.36)
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where we assume that the solution passes through the point x = 0 at t = 0; thus
ā(0) = b̄(0) = ∞. The (positive) constant e0 may be related to the total mass

m = Ωn−1

∫ √
ē(t)/b̄(t)

0
ρ(x, t)xn−1dx

= Ωn−1(kγ)−1/(γ−1)
∫ √

ē(t)/b̄(t)

0
(c2(x, t))1/(γ−1)xn−1dx

= Ωn−1(kγ)−1/(γ−1)
∫ √

ē(t)/b̄(t)

0
(ē(t)− b̄(t)x2)1/(γ−1)xn−1dx

= Ωn−1(kγ)−1/(γ−1)
(

2(nγ−n+2)
(γ−1)α

)n/2

e(nγ−n+2)/2(γ−1)
0

×
∫ 1

0
(1− y2)1/(γ−1)yn−1dy, (5.4.37)

where we have used (5.4.29) to determine the limit in the integral in (5.4.37) and
Ωn−1 equals 1 and 4π for n = 1 and n = 3, respectively.

To prove formally the asymptotic nature of the Darcy solution we need to define
the following trajectories;

Γ1 : b =
γ−1

2

(
a2 +αa

)
, (5.4.38)

Γ2 : b =
γ−1

2
αa; (5.4.39)

see (5.4.21). It follows easily from these equations that

b′ < 0, a′ > 0 between b-axis and Γ1, (5.4.40)

b′ < 0, a′ = 0 on Γ1, (5.4.41)

b′ < 0, a′ < 0 between a-axis and Γ1. (5.4.42)

It follows from (5.4.20), (5.4.21), and (5.4.39) that

db
da

=
1
2
(nγ−n+2)(γ−1)α (5.4.43)

on Γ2. From these statements it may be checked that a(t) and b(t)→ 0 as t →∞. We
have already seen that all trajectories of Barenblatt’s solution move along the line Γ2

(see (5.4.34), (5.4.35) and (5.4.39)). One may verify from (5.4.20) and (5.4.21) that
all trajectories of this system are transversal to Γ2 at a constant angle θ given by

tanθ =
2(nγ−n+1)(γ−1)α

(nγ−n+2)(γ−1)2α2 +4
. (5.4.44)

Now we formally show that the trajectories of the system (5.4.20) and (5.4.21) obey
the asymptotic law
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b(t)
a(t)

→ γ−1
2

α as t → ∞; (5.4.45)

that is, they tend to the Darcy line Γ2 as t → ∞. From (5.4.20) and (5.4.21) we have(
b
a

)′
=

b′a−a′b
a2 = −(nγ−n+1)b+

αb
a

− 2
γ−1

(
b
a

)2

. (5.4.46)

Now, for a small ε > 0, consider the curve

Γε : −(nγ−n+1)ba2 +αba− 2
γ−1

b2 = εa2 (5.4.47)

(cf. (5.4.46)). The curve Γε lies below Γ2 and has the slope

γ−1
2

α+
γ−1

4

((
α2 − 8

γ−1
ε
)1/2

−α

)
>
γ−1

2
α− 2ε

α
(5.4.48)

at the origin (0,0). This slope tends to ((γ−1)/2)α , the slope of Γ2, as ε → 0. It is
also clear from (5.4.46) that, below Γε , (b/a)′ > ε . Therefore, any trajectory can
remain below Γε for a finite time only. Because ε is arbitrary, we may choose ε = 0.
Thus all trajectories approach Γ2 as t → ∞.

Finally, we show that the solutions (5.4.17)–(5.4.21) of (5.4.14) and (5.4.15) with
total mass m given by (5.4.37) tend to the special solutions (5.4.29) and (5.4.30)
together with (5.4.34)–(5.4.36) of the porous medium equations (5.4.4) and (5.4.5):

(a,b,e)(t) =
(
ā, b̄, ē

)
(t)+O(1)

ln t
t

(5.4.49)

as t → ∞. Here, the bound O(1) is independent of t ≥ 1 but varies with the trajecto-
ries of (5.4.19)–(5.4.21). Using (5.4.45) in (5.4.20) we find that

b′ +
2(nγ−n+2)
α(γ−1)

(1+o(1))b2 = 0, (5.4.50)

where the term o(1) tends to zero as t → ∞. It follows from (5.4.50) that

b(t) = D(t)t−1, b′(t) = O(1)t−2 (5.4.51)

for some function D(t) which is positive and bounded away from zero. Introducing

f = a− 2
α(γ−1)

b, (5.4.52)

we may write

f ′ +α f +
2

α(γ−1)
b′ = −a2 = O(1)t−2, (5.4.53)

where we have used (5.4.45) and (5.4.51). Thus, we have
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f (t) = a(t)− 2
α(γ−1)

b(t) = O(1)t−2 = O(1)b(t)t−1. (5.4.54)

It follows that
|a(t)|+ |b(t)| = O(1)t−1 (5.4.55)

and ∣∣∣∣a(t)− 2
α(γ−1)

b(t)
∣∣∣∣= O(1)b(t)t−1 (5.4.56)

as t → ∞.
Using the above estimates we may compare the solution b(t) of (5.4.20) and b̄(t)

of (5.4.32):

b′ +
2(nγ−n+2)
α(γ−1)

(
1+O(1)t−1)b2 = 0 (5.4.57)

or

b(t) =
[

b(t0)−1 +
2(nγ−n+2)
α(γ−1)

∫ t

t0

(
1+O(1)s−1)ds

]−1

= b̄(t)
(

1+O(1)
ln t

t

)
. (5.4.58)

Substituting (5.4.56) and (5.4.58) into (5.4.19), we get

e′ +n(γ−1)e ā

(
1+O(1)

ln t
t

)
= 0 (5.4.59)

which, on integration, gives

e(t) = e(t0)e
−∫ t

t0
n(γ−1)ā(s)dse−

∫ t
t0

O(1)(lns/s2)ds

= Aē(t)
(

1+O(1)
∫ t

t0

ln s
s2 ds

)

= Aē(t)
(

1+O(1)
ln t

t

)
(5.4.60)

for some constant A. Because (5.4.1)–(5.4.3) as well as the porous medium equation
(5.4.5) satisfy the same conservation of mass law

m =
∫ ∞

−∞
ρ(x, t)dx, (5.4.61)

it follows from (5.4.37), (5.4.58), and (5.4.60) that A = 1. Thus, the proof of (5.4.49)
is complete.

In a related study, Hsiao and Liu (1992) considered the system (5.4.1) and (5.4.2)
with n = 1, expressed in Lagrangian coordinates, namely,

vt −ux = 0, (5.4.62)
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ut +(p(v))x +αu = 0, α > 0, p′(v) < 0, (5.4.63)

and approximated it according to Darcy’s law. Thus, we have

vt = − 1
α

(p(v))xx, (5.4.64)

(p(v))x = −αu. (5.4.65)

Hsiao and Liu (1992) again attempted to prove the time asymptotic equivalence of
the systems (5.4.62), (5.4.63) and (5.4.64), (5.4.65) by referring to their solutions
subject to a class of initial conditions with the same behaviour at x = ±∞.

Specifically, equations (5.4.62) and (5.4.63) were first solved subject to initial
conditions which satisfy the conditions

(u,v)(x,0) → (u±,v±) as x →±∞. (5.4.66)

The solution v̄(x, t) of (5.4.64) must also satisfy the end conditions

v̄(±∞, t) = v±. (5.4.67)

The corresponding values for ū(±∞, t) may be obtained from −(1/α)(p(v̄))x (see
(5.4.65)). Hsiao and Liu (1992) made use of the self-similar solution of (5.4.64) of
the form

v∗(x, t) = φ
(

x√
t

)
≡ φ(ξ ), −∞< ξ < ∞, (5.4.68)

which must also satisfy the conditions φ(±∞) = v±. This problem is known to have
a unique solution, which is also strictly monotonic (Van Duyn and Peletier 1977).

First it was shown that the solutions of system (5.4.62) and (5.4.63) as well as
those of (5.4.64) and (5.4.65) with the same limiting values of the initial conditions
at x →±∞ satisfy the asymptotic behaviour

‖v(x, t)− v̄(x+ x0, t)‖L2(x) +‖v(x, t)− v̄(x+ x0, t)‖L∞(x) = O(1)t−1/2 (5.4.69)

as t → ∞, where the translation x0 in the solution of the porous medium equation is
uniquely given by ∫ ∞

−∞
[v(x,0)− v̄(x+ x0,0)]dx =

u+ −u−
−α . (5.4.70)

The corresponding solution u tends to ū in the following sense. Defining any smooth
function m0(x) with compact support and requiring that

∫ ∞
−∞m0(x)dx = 1, one may

write
m(x, t) = −u+ −u−

α
m0(x)e−αt . (5.4.71)

Then it was shown by Hsiao and Liu (1992) that u(x, t) tends to ū(x, t) in the fol-
lowing sense;
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‖(u− ū− û)(x, t)‖L2(x) +‖(u− ū− û)(x, t)‖L∞(x) = O(1)t−1/2 (5.4.72)

as t → ∞, where

û(x, t) = u−e−αt +
∫ x

−∞
mt(η , t)dη . (5.4.73)

For the special case when the end conditions v+ and v− coincide, one may choose v̄
to be a multiple of the heat kernel, namely,

v̄ = v− +
1√
4πt

e−(x−p′(v0)t)2/4t
∫ ∞

−∞
v(y,0)dy. (5.4.74)

If, furthermore, u+ = u−, then (5.4.71) shows that m ≡ 0. Moreover, if (u+,v+) =
(u−,v−) = (0,0) and ∫ ∞

−∞
v(y,0)dy = 0, (5.4.75)

then ū = v̄ = 0,m = 0 and the results of Hsiao and Liu (1992) reduce to those of
Matzumura (1978). The analysis of Hsiao and Liu (1992) involves energy methods
and uses the decay estimates for the self-similar solution of the parabolic equation
(5.4.64). The main contribution of the present study is again to show how the damp-
ing term in the basic hyperbolic system (5.4.62) and (5.4.63) produces diffusive
effects as t becomes large.

In an interesting study, Gallay and Raugel (1998) studied the large time behaviour
of small solutions of the damped nonlinear wave equation

εuττ +uτ = (a(ξ )uξ )ξ +N (u,uξ ,uτ), ξ ∈ IR, τ ≥ 0, ε > 0. (5.4.76)

Here ε > 0 need not be small. They assumed that (i) a(ξ )→ a± > 0 as ξ →±∞ and
(ii) N → 0 sufficiently fast as u → 0. They showed that the large time asymptotic
expansion in powers of τ−1/2 (up to second order) of the solution of (5.4.76) is given
by a linear parabolic equation. This parabolic equation depends on a+ and a− only.
We also refer to Nishihara (1996, 1997), Gallay and Raugel (2000), and Gallay and
Wayne (2002) for some more related studies on large time aymptotics.

5.5 Large time behaviour of solutions of unsteady boundary
layer equations for an incompressible fluid

We studied gas dynamic equations with damping for an isentropic flow in Sec-
tion 5.4 and arrived at their asymptotic behaviour which was shown to be governed
by a nonlinear diffusive equation. The damping effect in these hyperbolic equations
over long time manifests itself as diffusion. In the present section and the next we
take up the study of boundary layer equations in two steps. First we show, following
closely the work of Oleinik (1966a), how under appropriate conditions the horizon-
tal particle velocity for the unsteady flow in the boundary layer tends to that for
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a steady flow as time tends to infinity. Later, in Section 5.6, we study the asymp-
totic behaviour of steady boundary layer equations, subject to a class of initial and
boundary conditions and demonstrate that their solution tends to a self-similar so-
lution governed by a solution of the Falkner–Skan equation, a third-order nonlinear
ODE subject to ‘reduced’ boundary conditions, as the horizontal distance becomes
large. In the second asymptotic study (Section 5.6) it is the large distance behaviour
(Serrin 1967) with which we are concerned. Thus, we study the asymptotic be-
haviour of unsteady boundary layer equations in two steps: first for large time and
then for large horizontal distance. The latter is governed by a self-similar solution of
the steady system. How such a solution actually evolves remains to be investigated
numerically.

First we pose the initial boundary value problem and boundary value problem for
the unsteady and steady boundary layer equations, respectively.

The unsteady two-dimensional viscous incompressible flow is governed by the
system

ut +uux + vuy = − 1
ρ

px +νuyy, (5.5.1)

ux + vy = 0, (5.5.2)

which holds in the domain D := {0 ≤ t < ∞, 0 ≤ x ≤ x0, 0 ≤ y < ∞}. The initial
and boundary conditions for this flow are taken to be

u|t=0 = u0(x,y), (5.5.3)

u|y=0 = 0, v|y=0 = v0(t,x), u|x=0 = u1(t,y), lim
y→∞

u(t,x,y) = U(t,x).(5.5.4)

The pressure p(t,x) and the ‘free stream velocity’ U(t,x) are related by Bernoulli’s
law

− 1
ρ

px = Ut +UUx. (5.5.5)

It is assumed that the functions p(t,x), U(t,x), and v0(t,x) tend, respectively, to
p∞(x), U∞(x), and v∞0 (x) uniformly in x as t → ∞. Similarly, the horizontal velocity
u|x=0 = u1(t,y) is equal to u∞1 (y) for t > t1 ≥ 0. It is also assumed that the system
(5.5.1)–(5.5.5), subject to the limiting behaviour of the boundary and initial condi-
tions stated above, has a solution for which uy > 0 for 0 ≤ y < ∞, and u(t,x,y) and
uy have continuous and bounded first-order derivatives with respect to t,x, and y in
D. Besides, uyyy and vy must exist and satisfy the condition[

uyyyuy − (uyy)2](uy)−3 < K (5.5.6)

in D, where K is some constant. It was shown by Oleinik (1963a, 1966b) that these
assumptions hold physically provided x0 in the definition of the domain D is chosen
to be sufficiently small. We refer to Oleinik (1966b) for proof of the existence and
uniqueness of the solution of the system (5.5.1)–(5.5.5)).
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Oleinik (1966a) then posed the boundary value problem for the steady form of
(5.5.1)–(5.5.2), namely,

uux + vuy = − 1
ρ

p∞x +νuyy, (5.5.7)

ux + vy = 0, (5.5.8)

which hold in the region D∞ := {0≤ x≤ x0,0≤ y <∞}. The superscript ‘∞’ denotes
the limiting form of the relevant entity as t →∞. The initial and boundary conditions
relevant to the system (5.5.7) and (5.5.8) are

u|y=0 = 0, v|y=0 = v∞0 (x), u|x=0 = u∞1 (y), lim
y→∞

u(x,y) = U∞(x). (5.5.9)

The conditions (5.5.9) are assumed to be compatible with those for the unsteady
case in the limit t → ∞. It is assumed that the system (5.5.7)–(5.5.9) has a solution
u∞(x,y) and v∞(x,y) for which u∞y > 0,0 ≤ y < ∞ and the functions u∞(x,y) and
u∞y (x,y) have continuous and bounded derivatives of first-order with respect to x and
y in D∞. It is further assumed that the derivatives u∞yyy and v∞y exist. Indeed, existence
of the solution of (5.5.7)–(5.5.9) was proved by Oleinik (1963a) in the region D∞ for
some x0 > 0 subject to the conditions that the limiting functions p∞(x),v∞0 (x),u∞1 (y),
and U∞(x) satisfy certain smoothness requirements. The functions involved must
also assume the same value at (0,0) consistently and satisfy the conditions u∞1 (y) > 0
for y > 0 and U∞(x) > 0 for x ≥ 0. The solution u∞(x,y) and v∞(x,y) of the problem
thus formulated was shown to satisfy the conditions u∞y > 0 for y≥ 0 if ∂u∞1 /∂y > 0,
when y ≥ 0.

The main result of Oleinik (1966a) is that the horizontal velocity u∞(x,y) satis-
fying the system (5.5.7)–(5.5.9) is the large time limit of the unsteady counterpart
u(t,x,y) governed by (5.5.1)–(5.5.5):

lim
t→∞

u(t,x,y) = u∞(x,y) (5.5.10)

for all x,y in D∞. For this purpose, the initial/boundary conditions for the two sys-
tems must be assumed to be compatible as described in the following. The analysis
for the above result was carried out in terms of new variables which effectively
eliminate v from the system (5.5.1) and (5.5.2). Thus, introducing

τ = t, ξ = x, η = u(t,x,y) (5.5.11)

as the new independent variables and w = uy as the new dependent variable, the
system (5.5.1)–(5.5.2) changes to a single second-order PDE for w = w(τ,ξ ,η),

νw2wηη −wτ −ηwξ +
1
ρ

pxwη = 0, (5.5.12)

which holds in Ω = {0 ≤ τ < ∞, 0 ≤ ξ ≤ x0, 0 ≤ η ≤ U(τ,ξ )}. The conditions
(5.5.3) and (5.5.4) now become
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w|τ=0 = (u0)y ≡ w0(ξ ,η), w|ξ=0 = (u1)y ≡ w1(τ,η), w|η=U(τ ,ξ ) = 0 (5.5.13)

and (5.5.5) is replaced by the compatibility condition

(νwwη − 1
ρ

px − v0w)|η=0 = 0. (5.5.14)

For the steady system (5.5.7) and (5.5.8), we again introduce

ξ = x, η = u(x,y) (5.5.15)

as the independent variables and w = ∂u/∂y as the dependent variable. We then
obtain a single second-order PDE for w,

νw2wηη −ηwξ +
1
ρ

(p∞)x wη = 0 (5.5.16)

(cf. (5.5.12)) which holds in the region Ω∞ := {0 ≤ ξ ≤ x0, 0 ≤ η ≤U∞(ξ )}. The
boundary conditions

w|ξ=0 =
∂u∞1
∂y

≡ w∞
1 (η), w|η=U∞(ξ ) = 0, (5.5.17)

(νwwη − 1
ρ

(p∞)x − v∞0 w)|η=0 = 0 (5.5.18)

(cf. (5.5.14)) apply on the boundary of the region Ω∞. The solution of (5.5.16) sub-
ject to the conditions (5.5.17) and (5.5.18) is referred to as w∞(ξ ,η) in consonance
with the notation introduced earlier.

We define the difference function

V (τ,ξ ,η) = w(τ,ξ ,η)−w∞(ξ ,η) (5.5.19)

over the region Ω1, which is the intersection of the region Ω with the cylinder
{0 ≤ τ < ∞, 0 ≤ ξ ≤ x0, 0 ≤ η ≤U∞(ξ )} . The functions w and w∞ are governed
by the systems (5.5.12)–(5.5.14) and (5.5.16)–(5.5.18), respectively. Using (5.5.12)
and (5.5.16), we get the following equation governing V ,

ν(w∞)2Vηη −Vτ −ηVξ +
1
ρ

(p∞)xVη +ν(w+w∞)wηηV =Φ(τ,ξ ,η), (5.5.20)

where

Φ(τ,ξ ,η) =
1
ρ

(p∞x − px)wη . (5.5.21)

Referring to (5.5.13), (5.5.14) and (5.5.17), (5.5.18), we infer that V (τ,ξ ,η) must
satisfy the following conditions.

V |τ=0 = w0(ξ ,η)−w∞(ξ ,η), V |ξ=0 = w1(τ,η)−w∞
1 (η), (5.5.22)
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(νw∞Vη +(νwη − v∞0 )V ) |η=0 =Ψ(τ,ξ ), (5.5.23)

where

Ψ(τ,ξ ) =
[(

1
ρ

px − 1
ρ

p∞x

)
+(v0 − v∞0 )w

]
η=0

. (5.5.24)

Because we have assumed that

∂ p(t,x)
∂x

→ ∂ p∞(x)
∂x

and v0(t,x) → v∞0 (x) as t → ∞

uniformly in x and w and wη are bounded in Ω , it follows from (5.5.21) and (5.5.24)
that |Φ(τ,ξ ,η)| < ε and |Ψ(τ,ξ )| < ε for τ > τ1, a sufficiently large number; here
ε is a (small) arbitrary positive number. Moreover,

V |ξ=0 =
∂u1

∂y
− ∂u∞1

∂y
= 0 (5.5.25)

as τ > τ1 becomes sufficiently large.
To show the convergence of the unsteady solution to the steady solution for large

τ , Oleinik (1966a) introduced the function V1 by writing

V = eβξ φ(αη)V1(τ,ξ ,η), (5.5.26)

where α,β > 0 are sufficiently large numbers chosen later; the function φ(s),s ≥ 0
is defined such that φ(s) = 3 − es,0 ≤ s ≤ 1/2 and 1 ≤ φ(s) ≤ 3 for all s. The
function V1 is shown to tend to zero as τ → ∞ uniformly in ξ and η , implying that
w(τ,ξ ,η)→w∞(ξ ,η) as τ→∞. Substituting V (τ,ξ ,η) from (5.5.26) into (5.5.20)
we get the following equation for V1,

L(V1) ≡ ν(w∞)2V1ηη −V1τ −ηV1ξ +
(

1
ρ

p∞x +2να(w∞)2 φ ′

φ

)
V1η + cV1

= Φ
e−βξ

φ
, (5.5.27)

where

c = ν(w+w∞)wηη −ηβ +
α
ρ

p∞x
φ ′

φ
+ν(w∞)2α2 φ ′′

φ
. (5.5.28)

We easily check from the definition of the function φ that, for αη < 1/2, we have
−2 < φ ′ ≤ −1,φ ′′ ≤ −1, and 1 ≤ φ ≤ 3. We also observe from the nature of the so-
lution u∞(x,y) of the problem (5.5.7)–(5.5.9) (see Oleinik (1963a) or Serrin (1967))
that w∞(ξ ,η) ≥ a > 0 in 0 ≤ η ≤ δ1, where a is some constant and δ1 > 0 is
sufficiently small; besides, wηη is bounded. Therefore, it follows from (5.5.28) that,
if we choose α > 0 sufficiently large, we have
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ν(w+w∞)wηη −ηβ +2
α
ρ
|p∞x |−

1
3
νa2α2 < −M, (5.5.29)

where M > 0 is arbitrary. We easily check from (5.5.28) and (5.5.29) that c < −M
provided that αη < 1/2, and η < δ1. Furthermore, we may choose β > 0 so large
that c < −M when η > min

(
(1/2)α−1,δ1

)
. Now we write the conditions on V1 in

accordance with (5.5.22), (5.5.23), and (5.5.26):

V1|τ=0 = (w0(ξ ,η)−w∞(ξ ,η))
e−βξ

φ
, V1|ξ=0 =

1
φ

(w1(τ,η)−w∞
1 (η)) ,

(5.5.30)

l(V1) ≡ (νw∞V1η − c1V1)η=0 =
1
2
Ψe−βξ , (5.5.31)

where

c1 ≡
(

1
2
ναw∞−νwη + v∞0

)
η=0

. (5.5.32)

We now require that

α >
2
νa

(max |v∞0 |+ν |wη |+1) ; (5.5.33)

this ensures that c1 defined by (5.5.32) is greater that 1. Because w∞(ξ ,η) → 0 as
U∞(ξ )−η → 0 and w(τ,ξ ,η) → 0 as U(τ,ξ )−η → 0 uniformly with τ , there
exists κ > 0 sufficiently small such that |U(τ,ξ )−U∞(ξ )| ≤ κ for τ sufficiently
large; we may then write

|V | = |w−w∞| ≤ ε for η > U∞(ξ )−κ, τ > τ2, (5.5.34)

where τ−1
2 and ε are sufficiently small. In view of (5.5.26) and the definition of the

function φ (see below (5.5.26)), we have

|V1| =
∣∣∣∣V e−βξ

1
φ

∣∣∣∣≤ ε for τ > τ2, η > U∞(ξ )−κ. (5.5.35)

Now consider the part of the domain Ω1 (see below (5.5.19) ) for which τ ≥ σ . We
refer to this as Gσ .

It is now shown that in the domain Ω1 we have

|V1(τ,ξ ,η)| ≤ δ +M1e−γτ , (5.5.36)

where δ > 0 is an arbitrary given number, γ > 0 is a constant less than M, and
M1 > 0 is a constant which depends on δ and γ . We consider the functions W± in
Gσ defined by

W+ = δ +M1e−γτ +V1, W− = δ +M1e−γτ −V1, (5.5.37)
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where δ and γ have been defined earlier; M1 is chosen presently. Using (5.5.27) we
check that

L(W±) = cM1e−γτ + γM1e−γτ + cδ ±Φe−βξ
1
φ

. (5.5.38)

Because we have ensured that c defined by (5.5.28) is negative and less than −M

and γ < M and because
∣∣∣φ−1Φe−βξ

∣∣∣→ 0 as τ → ∞ uniformly in ξ and η , we have

±Φe−βξ φ−1 + cδ < 0 when δ > 0 (5.5.39)

provided that τ is chosen to be sufficiently large. Equation (5.5.38) now shows that
L(W+) and L(W−) are both negative in Gσ if σ is chosen sufficiently large. It follows
that W± cannot have a negative minimum in the region Gσ or when ξ = x0, and also
on τ = τ3, where τ3 > σ , if we consider W± over σ < τ < τ3.

Now we show that W+ ≥ 0 and W− ≥ 0 in Gσ provided that we choose σ suffi-
ciently large. On the part of the boundary of Gσ where η = U∞(ξ ) or η = U(τ,ξ ),
we have W± > 0; this is because for ξ ∼ 0 we have |V1|< ε when η >U(ξ )−κ and
τ > τ2 is sufficiently large. If we choose ε < δ , and κ and τ−1

2 sufficiently small,
we find from (5.5.37) that W± ≥ 0.

Now we consider the boundary η = 0. Here, we have (see (5.5.31))

l(W±) = −c1
(
δ +M1e−γτ

)± 1
2
Ψe−βξ < 0, (5.5.40)

if we choose τ > τ4 where τ4 is sufficiently large. The inequality in (5.5.40) fol-

lows from the fact that c1 > 1 and
∣∣∣Ψe−βξ

∣∣∣→ 0 as τ → ∞ uniformly in ξ . Thus,

W± cannot have a negative minimum when η = 0 and τ > τ4. We may choose
M1 large enough to ensure that both W+ and W− are positive when τ = σ where
σ > max(τ2,τ4).

Thus we have shown that, provided σ is sufficiently large, W± =±V1 +M1e−γτ +
δ ≥ 0 over Gσ ; that is,

|V1| ≤ δ +M1e−γτ in Gσ . (5.5.41)

Now we may choose M1 larger, if necessary, to ensure that (5.5.41) holds for all
of Ω1; hence the equality (5.5.36) follows. We, therefore, conclude from (5.5.19),
(5.5.26), and (5.5.41) that, because δ is arbitrary, w(τ,ξ ,η) → w∞(ξ ,η) uniformly
in ξ and η as τ → ∞.

Now, we prove that

lim
t→∞

u(t,x,y) = u∞(x,y) (5.5.42)

for all x,y in D∞. From (5.5.4)4, (5.5.9)4, and (5.5.13)3, we have

|U∞(x)−u∞(x,y)| < ε, (5.5.43)
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|U(t,x)−u(t,x,y)| < ε, (5.5.44)

for y > y1 and w(τ,ξ ,η) → 0 when U(τ,ξ )−η → 0 uniformly with respect to τ .
Therefore,

|u∞(x,y)−u(t,x,y)| ≤ |u(t,x,y)−U(t,x)|+ |U(t,x)−u∞(x,y)| < 2ε,
(5.5.45)

for y > y1 and t sufficiently large. Thus, we obtain (5.5.42) for y > y1. To prove
(5.5.42) for y ≤ y1, we write

y =
∫ u(t,x,y)

0

ds
w(t,x,s)

, y =
∫ u∞(x,y)

0

ds
w∞(x,s)

(5.5.46)

(see below (5.5.11)). This implies that

0 =
∫ u(t,x,y)

0

ds
w(t,x,s)

−
∫ u∞(x,y)

0

ds
w∞(x,s)

=
∫ u∞(x,y)

0

(
1
w
− 1

w∞

)
ds+

∫ u(t,x,y)

u∞(x,y)

ds
w(t,x,s)

. (5.5.47)

For y ≤ y1,
U(t,x)−u(t,x,y) > κ1, U∞(x)−u∞(x,y) > κ1, (5.5.48)

and
w(t,x,s) ≥ a1 > 0, w∞(x,s) ≥ a1 > 0 (5.5.49)

for s < U(t,x)−κ1 and s < U∞(x)−κ1, respectively. Then, by (5.5.47),

u(t,x,y)−u∞(x,y) = w(t,x,s1)
∫ u∞(x,y)

0

w−w∞

ww∞ ds, y ≤ y1; (5.5.50)

here, s1 lies between u(t,x,y) and u∞(x,y). This, in turn, implies that

|u(t,x,y)−u∞(x,y)| ≤ |w(t,x,s1)|
∣∣∣∣∫ u∞(x,y)

0

w−w∞

ww∞ ds

∣∣∣∣ ,
≤ |w(t,x,s1)| 1

a2

∫ u∞(x,y)

0
|w−w∞|ds,

≤ δ2 +M2e−γt , y ≤ y1, (5.5.51)

where δ2 and M2 are positive constants. Furthermore, inasmuch as δ2 is arbitrarily
small, we have (5.5.42) for y ≤ y1. It follows that

lim
t→∞

u(t,x,y) = u∞(x,y) (5.5.52)

for all x and y in D∞.
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5.6 Asymptotic behaviour of velocity profiles in Prandtl
boundary layer theory

We have shown in Section 5.5, following the work of Oleinik (1966a), how the
solutions of unsteady two-dimensional boundary layer equations tend to those of
the corresponding steady system. Here, we consider the asymptotic behaviour of
the latter as x → ∞. A most lucid exposition of asymptotics in (steady) boundary
layers governed by Prandtl’s equations was given by Serrin (1967). He explained
pointedly the important role played by the similarity solutions:

Perhaps the most fruitful source of information in this regard is the body of exact solutions
derived under the assumption of similarity, of which the famous Blasius solution is typi-
cal. Nevertheless, in spite of the success of these particular solutions in predicting actual
motions, a well known and primary problem has been present, namely, in what way are
similar solutions unique or special among the totality of solutions of Prandtl’s equations?
What theoretical justification can be offered for the pre-eminent role of similar solutions in
boundary layer theory?

This is the question which Serrin (1967) attempted to answer in a rigourous manner.
We follow his work closely in the following. Similar results for nonlinear parabolic
equations have been presented in Chapter 4.

Consider a steady two-dimensional flow past a rigid wall governed by the Prandtl
equations

ux + vy = 0, (5.6.1)

uux + vuy = UUx +νuyy, (5.6.2)

where x and y are coordinates in the horizontal and vertical directions: x denotes
the length along the wall whereas y, the perpendicular distance from the wall. u and
v are velocity components in the horizontal and vertical directions, respectively. ν
is the kinematic viscosity. U = U(x) ≥ 0 represents the external streaming speed
which is preassigned. It is related to the pressure p = p(x) in the boundary layer via
the Bernoulli relation

d p
dx

+UUx = 0. (5.6.3)

The boundary conditions on the wall are

u = v = 0 on y = 0. (5.6.4)

The flow must merge with the external streaming conditions, requiring that

u →U(x) as y → ∞, uniformly in x. (5.6.5)

One must also impose appropriate initial conditions at the leading edge:

u(0,y) = ũ(y), 0 < y < ∞. (5.6.6)
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The function ũ(y) is assumed to be nonnegative and continuous; it tends to U(0) as
y →∞. It is also assumed that u ≥ 0 in some neighbourhood of the initial line x = 0.
It is known (see Nickel 1958, Oleinik 1963b) that the above initial boundary value
problem for appropriate functions ũ(y) and U(x) possesses a unique solution. How
does this solution behave as x → ∞?

Serrin (1967) considered specifically the streaming flow

U(x) = C(x+d)m, 0 ≤ x < ∞, (5.6.7)

where C > 0 and d ≥ 0 are constants.
The similarity solution for the system (5.6.1) and (5.6.2) with the streaming func-

tion (5.6.7) is given by

ū(x,y) = U(x) f ′(ζ ), (5.6.8)

where ζ = y/g(x),g(x) =
√
ν(x+d)/U(x). The function f (ζ ) depends on m and

is governed by the Falkner–Skan equation

f ′′′ +
m+1

2
f f ′′ +m(1− f ′2) = 0. (5.6.9)

It satisfies the boundary conditions

f ′(0) = 0, f ′(∞) = 1, and f (0) = 0; (5.6.10)

furthermore, f ′ is a monotonically increasing, concave function of ζ for all values
of m (see Coppel 1960).

The main result that was proved by Serrin (1967) demonstrates the asymptotic
character of the similarity solutions governed by (5.6.9) and (5.6.10): with ũ(y) an
arbitrary initial profile at x = 0, he assumed that the solution u(x,y) of the Prandtl
equations (5.6.1) and (5.6.2) subject to the initial/boundary condition (5.6.4)–(5.6.6)
and the streaming flow (5.6.7) has a continuous derivative uy in 0 < x <∞,0≤ y <∞.
Then, Serrin (1967) showed that

∣∣∣ u
U

− f ′
∣∣∣= o

(
1+m ln x

xm

)
as x → ∞, uniformly in y; (5.6.11)

that is, the normalised velocity component u/U tends uniformly to the (derivative
of) normalised similarity solution, f ′, of the Falkner–Skan equation (5.6.9) subject
to (5.6.10) as x tends to infinity downstream, bringing out clearly the central position
of the similarity solution for this class of problems. This solution is asymptotically
‘independent’ of the motion at the leading edge x = 0.

Serrin (1967) also proved the asymptotic uniqueness of the solution; he showed
that this solution is independent of the state of motion at the initial point x = 0
provided that the free stream velocity U is twice continuously differentiable and
obeys the inequality
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C1(x+d)2m−1 ≤UUx ≤C2(x+d)2n−1, 0 ≤ x < ∞, (5.6.12)

where C1 and C2 are positive constants and m and n are exponents satisfying the
condition m ≤ n < 5m/3.

The main assumption in the proof is that the parameter m in (5.6.7) is greater than
or equal to zero ensuring a favourable pressure gradient, d p/dx ≤ 0. This follows
from (5.6.3) and (5.6.7).

Because u≥ 0 in some neighbourhood of x = 0 and is continuously differentiable
on y = 0 and because it is assumed that UUx ≥ 0, it follows from a theorem of
Velte (1960) that u > 0 in 0 < x < ∞,0 < y < ∞ and uy(x,0) > 0 for 0 < x < ∞.
Serrin (1967) also assumed the initial line to be x = 1 rather than x = 0. With this
choice, he relabelled the coordinates such that the new initial position is again called
x = 0. It is further assumed that u and uy are continuous in 0 ≤ x <∞,0 ≤ y <∞ and
the initial profile ũ(y) satisfies the conditions

ũ(0) = 0, ũy(0) > 0 and ũ(y) > 0 for y > 0. (5.6.13)

Inasmuch as u > 0, one may introduce the von Mises variables

x = x, ψ = ψ(x,y) =
∫ y

0
u(x, t)dt (5.6.14)

into the Prandtl system (5.6.1) and (5.6.2) and obtain

(u2)x = νu(u2)ψψ +(U2)x (5.6.15)

for which the boundary and initial conditions become

u = 0 on ψ = 0 (5.6.16)

and u →U as ψ → ∞, uniformly in x on any finite interval 0 ≤ x ≤ A. Moreover,

u(0,ψ) = ũ(ψ) (0 ≤ ψ < ∞), (5.6.17)

where ũ(ψ) is the transformed initial condition (see (5.6.4)–(5.6.6)) (see Schlicht-
ing 1960).

Serrin (1967) proved his main result via several lemmas. We discuss them here
informally.

Let u and ū be two solutions of the boundary layer equations as above with free
stream speeds U(x) and Ū(x) and initial conditions ũ(ψ) and ˜̄u(ψ), respectively,
such that

(U2)x ≤ (Ū2)x and ũ(ψ)2 ≤ ˜̄u(ψ)2 +a2, (5.6.18)

where a > 0 is some constant. Further let either uyy < 0 or ūyy < 0. Then, u(x,ψ) ≤
ū(x,ψ)+a.

We consider first the case uyy < 0. Because ū satisfies

(ū2)x = ν ū(ū2)ψψ +(Ū2)x (5.6.19)
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(see (5.6.15)), the difference function φ(x,ψ) = ū2 −u2 satisfies the equation

φx = ν ū(ū2)ψψ −νu(u2)ψψ +(Ū2)x − (U2)x

= ν ūφψψ +
ν(u2)ψψ

u+ ū
φ +(Ū2 −U2)x

= ν ūφψψ +αφ +(Ū2 −U2)x, (5.6.20)

where we have used the relation (u2)ψψ = 2uyy/u (see (5.6.1) and (5.6.14)) and have
set α = 2νuyy/u(u+ ū). The function φ satisfies the boundary conditions

φ = 0 on ψ = 0, φ ≥−a2 on x = 0 (5.6.21)

(see (5.6.16) and (5.6.18)2). Furthermore, φ → Ū2−U2 asψ→∞, uniformly in x on
any finite interval. Because it is given that (Ū2−U2)x ≥ 0 and Ū2(0)−U(0)2 ≥−a2

(see (5.6.18) and (5.6.21)), it follows that Ū2 −U2 ≥ −a2 for all x. Now it may be
shown that φ(x,ψ) ≥ −a2 for 0 ≤ x < ∞, 0 ≤ ψ < ∞. To that end, we assume
the contrary, namely, that φ < −a2 at some point (x0,ψ0). Consider φ(x,ψ) on
R : 0 < x ≤ x0,0 <ψ <∞. It follows, from (5.6.21) and the asymptotic behaviour of
φ as ψ → ∞, that φ assumes its absolute minimum in R. Let this point of minimum
be (x1,ψ1). At this point, we have

φx ≤ 0, φψψ ≥ 0, φ < 0 (5.6.22)

and α = 2νuyy/u(u+ ū) < 0 (because uyy < 0) and (Ū2−U2)x ≥ 0. This contradicts
(5.6.20) because the signs on the two sides are different. Thus, we have proved that
φ = ū2 −u2 ≥−a2. The case ūyy < 0 may be treated similarly.

Next we show how the constants C∗ and C∗∗ in the free stream velocities

U∗(x) = C∗(x+d)m, U∗∗(x) = C∗∗(x+d)n (5.6.23)

may be chosen so that the corresponding solutions u and ū of the Prandtl equations
are bounded by the similarity solutions: u∗ ≤ u ≤ u∗∗ and u∗ ≤ ū ≤ u∗∗, where

u∗(x,y) = U∗(x) f ′(ζ ), (5.6.24)

u∗∗(x,y) = U∗∗(x) f̂ ′(ζ̂ ), (5.6.25)

ζ =
y

g∗(x)
, g∗(x) =

√
ν(x+d)
U∗(x)

, (5.6.26)

ζ̂ =
y

g∗∗(x)
, g∗∗(x) =

√
ν(x+d)
U∗∗(x)

. (5.6.27)

(U∗2)x = 2mC∗2(x+d)2m−1 and (U∗∗2)x = 2nC∗∗2(x+d)2n−1, thus it follows from
(5.6.12) that we may satisfy the inequalities

(U∗2)x ≤ (U2)x ≤ (U∗∗2)x (5.6.28)
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by choosing C∗ and C∗∗ appropriately. Assuming that C∗ < C∗∗, we prove that

u∗(0,ψ) ≤ ũ(ψ), ˜̄u(ψ) ≤ u∗∗(0,ψ); (5.6.29)

the required result then follows from the statement involving (5.6.18) if we choose
a = 0 therein. We prove the result for the function ũ(ψ). The other part follows
in a similar manner. From the assumption (5.6.13) regarding the solution, we have

for x = 0 and y small, ũ ≈ by,ψ ≈ 1
2

by2 and, therefore, ũ2 ≈ 2bψ where b > 0. In

addition ũ > 0 for ψ > 0 and ũ tends to U(0) as ψ tends to infinity.
From the similarity form of the solution we have

u∗y(0,0) =
U∗(0) f ′′(0)

g∗(0)
= constant.C∗3/2. (5.6.30)

It follows that
u∗2 ≈ constant C∗3/2ψ (5.6.31)

for small ψ . Because, by assumption, u∗(0,ψ) tends to C∗dm as ψ tends to infinity
and (u∗2)ψψ < 0, it follows that C∗ can be chosen so small that u∗(0,ψ)≤ ũ(ψ). The
similarity solution square u∗∗2 is known to be a concave, monotonically increasing
function of ψ . Besides, for the flow u∗∗, we have from (5.6.14) and the definition of
u∗∗,

ψ = U∗∗g∗∗ f̂ (ζ̂ ). (5.6.32)

Because f̂ ′ is monotonic and f̂ ′(∞) = 1, one may use the mean value theorem to
show that f̂ (ζ̂ ) < ζ̂ . Therefore, we have at x = 0,ψ = 1 the inequality

ζ̂ > f̂ (ζ̂ ) = {U∗∗g∗∗}−1 =
constant

C∗∗1/2
. (5.6.33)

It follows that
u∗∗ = U∗∗ f̂ ′(ζ̂ ) ≥ constant .C∗∗1/2, (5.6.34)

where we assume that C∗∗ > 1. Therefore, u∗∗ at x = 0,ψ = 1 can be made arbitrarily
large. Thus, the second inequality in (5.6.29) follows.

Now if we assume that
∣∣ũ(ψ)2 − ˜̄u(ψ)2

∣∣ ≤ a2 and uyy < 0, we may prove
|u(x,ψ)− ū(x,ψ)| ≤ a (see (5.6.18) and below). a, here, is positive .

The main proof for the asymptotic result consists of three parts. The first part
requires the result that if uyy < 0, then we have for 0 < x < ∞,

y− ȳ ≤ ag∗

bU∗
(

1+
a

bU∗
)

ln

(
1+

bU∗

a

)
+

a
bU∗ ȳ, (5.6.35)

where b = f ′(1) and f is the Falkner–Skan function with the exponent m.
We recall that

y =
∫ ψ

0

dψ
u(x,ψ)

, ȳ =
∫ ψ

0

dψ
ū(x,ψ)

(5.6.36)
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are, respectively, the y coordinates associated with the flows u and ū for a given
value of ψ .

Because uyy < 0, we may use (5.6.36) and write

y− ȳ =
∫ (

1
u
− 1

ū

)
dψ ≤

∫ (
1
u
− 1

u+a

)
dψ = a

∫
dψ

u(u+a)
. (5.6.37)

Letting ψ1 = U∗g∗ f (1) and using the result u∗ ≤ u proved earlier (see above
(5.6.24)), we write (5.6.37) as

y− ȳ ≤ a
∫ ψ1

0

dψ
u∗(u∗ +a)

+a
∫ ψ

ψ1

dψ
u(u∗ +a)

, (5.6.38)

where the second integral is absent if ψ ≤ ψ1. Because dψ/u∗ = g∗dζ , we have

∫ ψ1

0

dψ
u∗(u∗ +a)

=
∫ 1

0

g∗dζ
u∗ +a

≤
∫ 1

0

g∗dζ
bζU∗ +a

, (5.6.39)

where we have used the fact that u∗ =U∗ f ′(ζ )≥U∗ f ′(1)ζ , 0 < ζ < 1, f ′ is concave
and f ′(1) = b. For the second integral in (5.6.38) we have∫ ψ

ψ1

dψ
u(u∗ +a)

≤
∫ ψ

ψ1

dψ
u(bU∗ +a)

≤
∫ y

0

dy
bU∗ +a

, (5.6.40)

because u∗ ≥U∗ f ′(1) for ζ > 1. Combining (5.6.38)–(5.6.40), we have

y− ȳ ≤ ag∗

bU∗ ln

(
1+

bU∗

a

)
+

a
bU∗ +a

y. (5.6.41)

Rewriting (5.6.41), we have

y ≤ bU∗ +a
bU∗

{
ag∗

bU∗ ln

(
1+

bU∗

a

)
+ ȳ

}
.

Using this inequality in (5.6.41) we get (5.6.35). In a similar manner, one may prove
that if uyy < 0, then for 0 < x < ∞, we also have

ȳ− y ≤ ag∗

bU∗
(

1+
a

bU∗
)

ln

(
1+

bU∗

a

)
+

a
bU∗ y. (5.6.42)

Next we show that, if uyy < 0, then for 0 < x < ∞,

|u(x,y)−u(x, ȳ)| ≤ aU∗∗

bU∗

{
1+ f ′′(0)

(
U∗∗

U∗

)1/2(
1+

a
bU∗

)
ln

(
1+

bU∗

a

)}
,

(5.6.43)
where f is the Falkner–Skan function associated with the exponent n. Suppressing
the dependence of u on x for convenience, we have
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u(y)−u(ȳ) = ûy(y− ȳ). (5.6.44)

The function u has been assumed to be a (positive) concave function in y with u(0) =
0 and u(∞) =U. Therefore, uy is a positive decreasing function of y. Thus, for y ≥ ȳ,
we have

ûy(y− ȳ) ≤ uy(ȳ)(y− ȳ) (5.6.45)

whereas for ȳ ≥ y,
ûy(y− ȳ) ≤ 0. (5.6.46)

In view of (5.6.35) we have for both the cases (5.6.45) and (5.6.46) the inequality

ûy(y− ȳ) ≤ ag∗uy(ȳ)
bU∗

(
1+

a
bU∗

)
ln

(
1+

bU∗

a

)
+

a
bU∗ ȳuy(ȳ). (5.6.47)

Because uyy < 0, we easily check that

ȳuy(ȳ) ≤U and uy(ȳ) ≤ uy(0). (5.6.48)

Using the result that u∗ ≤ u ≤ u∗∗ proved earlier, we have

u ≤ u∗∗, uy(0) ≤ u∗∗y (0) =
U∗∗ f ′′(0)

g∗∗
. (5.6.49)

From (5.6.44) and (5.6.47)–(5.6.49) it follows that u(y)− u(ȳ) is bounded by the
RHS of (5.6.43).

To obtain the reverse inequality we observe that

u(ȳ)−u(y) = ûy(ȳ− y) ≤ max(0,uy(y)(ȳ− y)). (5.6.50)

Now using (5.6.42), we obtain (5.6.43) as for the previous case.
In pursuit of the final result, we further show that, if uyy < 0, then∣∣∣∣u− ū

U

∣∣∣∣= O

{
a(1+m ln x+ ln+ 1/a

x(5m−3n)/2

}
as x → ∞, uniformly in y. (5.6.51)

We observe that, for any positive number ȳ,

|u(x, ȳ)− ū(x, ȳ)| ≤ |u(x, ȳ)−u(x,y)|+ |u(x,y)− ū(x, ȳ)| . (5.6.52)

Here y is such that

ψ =
∫ y

0
u(x, t)dt =

∫ ȳ

0
ū(x, t)dt.

We have already shown (see above (5.6.35)) that the second term on the RHS of
(5.6.52) is less than or equal to a. The first term therein can be estimated by using
(5.6.43). Here, one employs the simple result that (1+ r−1) ln(1+ r)≤ 2ln2+ ln+ r
for any nonnegative number r; r in (5.6.43) is bU∗/a. U∗ and U∗∗ are explic-
itly given by (5.6.23). The RHS of (5.6.43) is evaluated in the limit x → ∞. The
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multiplication factor implied in (5.6.51) involves C∗, C∗∗, and the given constants
f ′(1) and f ′′(0).

The final step in proving the estimate (5.6.11) requires the inequality∣∣ū(x0,ψ)2 −u(x0,ψ)2
∣∣≤ ε, (5.6.53)

where ε > 0 and x = x0 is a point far downstream. This inequality requires consid-
erable technical detail and we refer the reader to the original paper of Serrin (1967).
We assume this result in the following. We let U(x) = C(x + d)m; the correspond-
ing similarity solution is denoted by ū. When m > 0, this function satisfies (5.6.12)
with n = m and C1 = C2 = 2mC2. Now we use (5.6.51) (where the solutions ū and u
interchange but this is only a notational matter). The estimate (5.6.51) with ū = U f ′
becomes∣∣∣ u

U
− f ′

∣∣∣= O

{
a(1+m ln x+ ln+ 1/a)

xm

}
as x → ∞, uniformly in y. (5.6.54)

We assume that suitably downstream at x = x0, say, (5.6.53) holds and then take x0 as
the new initial position. C∗ and C∗∗ need not be changed in this process. Now we let
a in (5.6.54) be equal to ε1/2. In the limit x → ∞, we may choose ε arbitrarily small
by choosing x0 sufficiently large; the estimate (5.6.54) then reduces to (5.6.11).

We may observe that, if m = 0, the free stream speeds U,U∗,U∗∗ are all constants
and all the previous results continue to hold. Therefore (5.6.54) and hence (5.6.11)
apply in this case too.

Our main purpose here was to briefly discuss Serrin’s (1967) work to demonstrate
the central position of the similarity solution as an asymptotic as x →∞. The second
asymptotic result is also important. Let u and ū be two solutions of the Prandtl
system corresponding to the same streaming speed U(x) but with different initial
profiles ũ(y) and ˜̄u(y). Assume further that U(x) is twice continuously differentiable
and satisfies the inequality

C1(x+d)2m−1 ≤UUx ≤C2(x+d)2n−1, 0 ≤ x < ∞, (5.6.55)

where C1 and C2 are positive constants; the exponents m and n obey the inequality
m ≤ n < 5m/3. Then∣∣∣∣ ū−u

U

∣∣∣∣= o(1) as x → ∞, uniformly in y. (5.6.56)

This result proves the asymptotic uniqueness of the normalised velocity profile for
arbitrary conditions at the initial point x = 0. We refer the reader to Serrin (1967)
for the proof of (5.6.56).

Now we summarise two interesting and related investigations which followed
Serrin (1967). Peletier (1972) essentially studied the same problem as Serrin (1967).
However, there were some interesting departures. He assumed the flow to be gov-
erned by (5.6.1) and (5.6.2), where, however, the exterior streaming speed was cho-
sen to be
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U(x) = U0(x+1)m, (5.6.57)

where U0 > 0,m ≥ 0 (cf. equation (5.6.7)). The velocity U(x) and pressure p(x) in
the boundary layer are related by Bernoulli’s equation

p+
1
2
ρU2 = constant

or
d p
dx

= −ρUUx ≤ 0 (5.6.58)

for the choice (5.6.57) of the free stream velocity. Thus, the adverse pressure gra-
dient is excluded. The boundary conditions relevant to the flow are the same as in
Serrin (1967), namely, (5.6.4) and the Prandtl’s stream condition

u →U as y → ∞, uniformly in x. (5.6.59)

As in Serrin (1967), the initial station x = 0 is chosen to be located at some distance
from the leading edge where

u(0,y) = u0(y), 0 < y < ∞. (5.6.60)

u0 is assumed to be a smooth function with continuous and uniformly bounded first
and second derivatives. Moreover, it is required that u0(0) = 0,0 < u′0(0) <∞,u0 > 0
if y > 0, and u0 → U(0) as y → ∞. The existence of the solution of this boundary
value problem was proved by Nickel (1958) and Oleinik (1963b). Nickel (1958) also
proved that if U(x) and u0(y) satisfy the conditions laid down above, then u > 0 in
the entire domain, and uy(x,0)> 0 for 0 < x <∞. Peletier (1972) found the similarity
solution of the Prandtl equations, expressed in von Mises variables, namely,

ux =
1
2
ν(u2)ψψ +u−1UUx (5.6.61)

(cf. (5.6.15)), where u is now a function of x and ψ . The boundary conditions in
these variables become

u(x,0) = 0 for 0 < x < ∞ (5.6.62)

and
u →U as ψ → ∞, uniformly in x. (5.6.63)

The initial condition at x = 0 was imposed in the form

u(0,ψ) = u0(ψ), 0 < ψ < ∞. (5.6.64)

Peletier (1972) sought the similarity solution of (5.6.61) in the form

u(x,ψ) = (x+1)m f (η), η = ψ(x+1)−(m+1)/2 (5.6.65)
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which would satisfy the conditions (5.6.62) and (5.6.63). This, when substituted into
(5.6.61), leads to the second-order ODE

1
2
ν( f 2)′′ +

m+1
2

η f ′ +m

(
U2

0

f
− f

)
= 0, (5.6.66)

where the prime denotes differentiation with respect to η . The solution of equation
(5.6.66) must satisfy the conditions

f (0) = 0, f →U0 as η → ∞, (5.6.67)

(see (5.6.57), (5.6.62), and (5.6.63)). Peletier (1972) also obtained asymptotic be-
haviour of the solution of (5.6.66) and (5.6.67) in the form

U0 − f (η) = O

{
η−1−2β exp

(
−m+1

4νU0
η2
)}

as η → ∞, (5.6.68)

where β = 2m/(m+1).
Unlike Serrin (1967) and Peletier (1972) obtained an estimate for the conver-

gence of the velocity profile in terms of the arc length along the plate and the
stream function rather than the physical variables x and y themselves. His main
theorem may be stated as follows. Let u(x,y) be a solution of the boundary layer
equation (5.6.1) and (5.6.2) and let u(0,y) = u0(y) be a smooth function such that
u0(0) = 0,0 < u′0(0) < ∞,u0 > 0 if y > 0, which further satisfies the following con-
ditions as y → ∞.

(i) δ =
∫ ∞

0

∣∣∣∣1− u0

U0

∣∣∣∣dy < ∞, (5.6.69)

(ii) U0 −u0(y) = O

{
(y+δ )−1−2β exp

{
− (m+1)U0

4ν
(y+δ )2

}}
as y → ∞.

(5.6.70)

(In the above, if u0 ≤U0 for 0 ≤ y <∞,δ is the displacement thickness at x = 0.) Let
ū(x,y) be the similarity profile corresponding to the stream speed U(x) (see (5.6.57)
and (5.6.65)). Then,∫ ∞

0
η
∣∣∣∣u− ū

U

∣∣∣∣dη ≤ M(x+1)−(2+μ)m−1, x ≥ 0, (5.6.71)

where the positive constants M and μ depend only on ν ,U(x), and the initial velocity
profile u0(y). Moreover, μ ≤ 1; when u0 ≤U0, we may set μ = 1. It was also shown
that the power of (x+1) in (5.6.71) is best possible for m = 0.

In another related study, Khusnutdinova (1970) generalised the work of Ser-
rin (1967) to compare solutions which correspond not only to different initial con-
ditions at x = 0 but also to different external streaming flows. Specifically, he con-
sidered solutions u1(x,y) and u2(x,y) of the system (5.6.1) and (5.6.2) which arise
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from two different initial conditions ui
0(y)(i = 1,2) and external streaming condi-

tions Ui(x)(i = 1,2), respectively, where

lim
x→∞

Ui(x) = U∞ = constant (i = 1,2). (5.6.72)

It was shown that if limx→∞ |U1(x)−U2(x)| = limy→∞ |u1
0(y)− u2

0(y)| = 0, then for
x → ∞, the difference between the solutions u1(x,y) and u2(x,y) tends uniformly to
zero with respect to y, where y ∈ [0,∞). One consequence of this theorem is that the
solution u(x,y) of (5.6.1)–(5.6.5) in the boundary layer converges for large x to the
well known Blasius solution

u1 = U∞ f ′(η), η =
y
√

U∞√
2ν(x+1)

, (5.6.73)

which describes flow past a plate in the longitudinal direction at velocity U(x)≡U∞.
In this case, f (η) is governed by the boundary value problem

f ′′′ + f f ′′ = 0, f (0) = 0, f ′(0) = 0, f ′(∞) = 1. (5.6.74)

The function f together with its first derivative is monotonically increasing. In this
regard, the following theorem was proved by Khusnutdinova (1970). Let the follow-
ing inequalities hold.

0 ≤ u0(y) ≤U(0), u′0(0) > 0, u0(0) = 0,

0 ≤ dU
dx

≤ M0

(x+1)γ0+1 , γ0 > 0.

Then, as x → ∞, |u(x,y)− u1(x,y)| → 0, uniformly in y ∈ [0,∞); here, u1(x,y) =
U∞ f ′(η), where f (η) is the solution of the boundary value problem (5.6.74).

If, in addition, the inequalities

U(0) f ′(y−N) ≤ u0(y), y ∈ [N,∞)

and

|u0(y)−U(0)| ≤ M1 exp
(−γ1y2) , y ∈ [0,∞)

hold for some constants N, M1, and γ1 > 0, then

|u(x,y)−u1(x,y)| ≤ M
(x+1)γ

, (5.6.75)

where M and 0 < γ < γ0 are some constants which depend only on the initial data
of the problem. Khusnutdinova (1970) also worked with basic equations in terms of
von Mises variables.

We may observe that the external flow conditions U(x) lead to different forms of
ODEs, Falkner–Skan or Blasius, governing self-similar flows, and thus characterising
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different asymptotic behaviour as x tends to∞. Before proving the asymptotic nature
of these solutions, Serrin (1967) and Khusnutdinova (1970) ensured the existence
and uniqueness of the systems of PDEs and ODEs that were involved subject, of
course, to the relevant initial and boundary conditions.

5.7 Conclusions

In this chapter, we have discussed the asymptotic behaviour of solutions of some
physical problems arising from fluid mechanics. Section 5.1 presented the intro-
duction to the chapter. Section 5.2 was concerned with the flow due to a strong
explosion at the centre of an ideal gas sphere. It was assumed that the preshock
density is ρ0 = kr−ω ; here r is the distance from the origin and k and ω are posi-
tive constants. An interesting feature of this problem is that the asymptotic flow is
described by the self-similar solutions of first kind for ω < 3 (Sedov–Taylor solu-
tions) and by the self-similar solutions of the second kind for ωg(γ) < ω < ωc(γ);
here ωg and ωc depend on the adiabatic index γ of the gas. This section followed
the work of Waxman and Shvarts (1993). Section 5.3 dealt with the self-similar so-
lutions of the second kind which describe a collapsing spherical cavity. We showed,
by following Hunter (1960), that the numerical solution of the governing system of
nonlinear partial differential equations with appropriate initial/initial boundary con-
ditions converges to the relevant self-similar solutions of the second kind, for differ-
ent values of γ , as the radius of the cavity tends to zero. We have also summarised
the work of Thomas et al. (1986). In Section 5.4, we have presented a study of so-
lutions of the compressible Euler equations with damping. Following Liu (1996),
we constructed a family of solutions for the compressible flow with damping. As
t → ∞, these solutions converge to the Barenblatt solutions of the porous medium
equation. This study justifies, in a limited sense, Darcy’s law for the compressible
flow for large time. In Section 5.5, we have studied, following Oleinik (1966a), the
boundary layer equations for an unsteady flow of incompressible fluid. Under a cer-
tain set of conditions, it was shown that the large time behaviour of the longitudinal
velocity component of the unsteady flow is described by the longitudinal velocity
component of the steady flow. Section 5.6 was concerned with the study of boundary
layer equations for the steady two-dimensional laminar flow of an incompressible
viscous fluid past a rigid wall. Following Serrin (1967) closely, we clearly brought
out the importance of similarity solutions governed by the Falkner–Skan differential
equation. We have shown that the asymptotic behaviour (for large x) of the down-
stream velocity profile is described by the Falkner–Skan similarity solution when
the streaming speed is U(x) = c(x+d)m, m ≥ 0.
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