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Introduction to Volume 1 — Foundations and
Integral Representations

Partial differential equations equally appear in physics and geometry. Within
mathematics they unite the areas of complex analysis, differential geome-
try and calculus of variations. The investigation of partial differential equa-
tions has substantially contributed to the development of functional analysis.
Though a relatively uniform treatment of ordinary differential equations is
possible, quite multiple and diverse methods are available for partial differen-
tial equations. With this two-volume textbook we intend to present the entire
domain PARTIAL DIFFERENTIAL EQUATIONS — so rich in theories and applica-
tions — to students at the intermediate level. We presuppose a basic knowledge
of Analysis, as it is conveyed in S. Hildebrandt’s very beautiful lectures [Hil,2]
or in the lecture notes [S1,2] or in W. Rudin’s influential textbook [R]. For the
convenience of the reader we develop further foundations from Analysis in a
form adequate to the theory of partial differential equations. Therefore, this
textbook can be used for a course extending over several semesters. A survey
of all the topics treated is provided by the table of contents. For advanced
readers, each chapter may be studied independently from the others.

Selecting the topics of our lectures and consequently for our textbooks, I tried
to follow the advice of one of the first great scientists — of the Enlightenment
— at the University of Gottingen, namely G.C. Lichtenberg: Teach the students
h o w they think and not w h a t they think! As a student at this University,
I admired the commemorative plates throughout the city in honor of many
great physicists and mathematicians. In this spirit I attribute the results and
theorems in our compendium to the persons creating them — to the best of
my knowledge.

We would like to mention that this textbook is a translated and expanded ver-
sion of the monograph by Friedrich Sauvigny: Partielle Differentialgleichun-
gen der Geometrie und der Physik 1 — Grundlagen und Integraldarstellungen
— Unter Beriicksichtigung der Vorlesungen von E. Heinz, which appeared in
Springer-Verlag in 2004.
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In Chapter I we treat Differentiation and Integration on Manifolds, where we
use the improper Riemannian integral. After the Weierstrassian approxima-
tion theorem in §1 , we introduce differential forms in §2 as functionals on
surfaces — parallel to [R]. Their calculus rules are immediately derived from the
determinant laws and the transformation formula for multiple integrals. With
the partition of unity and an adequate approximation we prove the Stokes
integral theorem for manifolds in §4 , which may possess singular boundaries
of capacity zero besides their regular boundaries. In § 5 we especially obtain
the Gaussian integral theorem for singular domains as in [H1], which is indis-
pensable for the theory of partial differential equations. After the discussion
of contour integrals in §6 , we shall follow [GL] in § 7 and represent A. Weil’s
proof of the Poincaré lemma. In § 8 we shall explicitly construct the %-operator
for certain differential forms in order to define the Beltrami operators. Finally,
we represent the Laplace operator in n-dimensional spherical coordinates.

In Chapter II we shall constructively supply the Foundations of Functional
Analysis. Having presented Daniell’s integral in §1 , we shall continue the
Riemannian integral to the Lebesgue integral in § 2. The latter is distinguished
by convergence theorems for pointwise convergent sequences of functions. We
deduce the theories of Lebesgue measurable sets and functions in a natural
way; see §3 and §4. In §5 we compare Lebesgue’s with Riemann’s integral.
Then we consider Banach and Hilbert spaces in §6 , and in §7 we present the
Lebesgue spaces LP(X) as classical Banach spaces. Especially important are
the selection theorems with respect to almost everywhere convergence due to
H. Lebesgue and with respect to weak convergence due to D. Hilbert. Following
ideas of J.v. Neumann we investigate bounded linear functionals on LP(X) in
§8 . For this Chapter I have profited from a seminar on functional analysis,
offered to us as students by my academic teacher, Professor Dr.E. Heinz in
Gottingen.

In Chapter III we shall study topological properties of mappings in R™ and
solve nonlinear systems of equations. In this context we utilize Brouwer’s
degree of mapping, for which E. Heinz has given an ingenious integral repre-
sentation (compare [H8]). Besides the fundamental properties of the degree of
mapping, we obtain the classical results of topology. For instance, the theorems
of Poincaré on spherical vector-fields and of Jordan-Brouwer on topological
spheres in R™ appear. The case n = 2 reduces to the theory of the winding
number. In this chapter we essentially follow the first part of the lecture on
fixed point theorems [H4] by E. Heinz.

In Chapter IV we develop the theory of holomorphic functions in one and
several complex variables. Since we utilize the Stokes integral theorem, we
easily attain the well-known theorems from the classical theory of functions
in §2 and §3. In the subsequent paragraphs we additionally study solutions
of the inhomogeneous Cauchy-Riemann differential equation, which has been
completely investigated by L. Bers and I. N. Vekua (see [V]) . In § 6 we assemble
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statements on pseudoholomorphic functions, which are similar to holomorphic
functions as far as the behavior at their zeroes is concerned. In §7 we prove
the Riemannian mapping theorem with an extremal method due to Koebe
and investigate in §8 the boundary behavior of conformal mappings. In this
chapter we intend to convey, to some degree, the splendor of the lecture [Gr]
by H. Grauert on complex analysis.

Chapter V is devoted to the study of Potential Theory in R™. With the aid of
the Gaussian integral theorem we investigate Poisson’s differential equation in
§1 and §2 , and we establish an analyticity theorem. With Perron’s method
we solve the Dirichlet problem for Laplace’s equation in §3. Starting with
Poisson’s integral representation we develop the theory of spherical harmonic
functions in R™; see §4 and §5 . This theory was founded by Legendre, and we
owe this elegant representation to G.Herglotz. In this chapter as well, I was
able to profit decisively from the lecture [H2] on partial differential equations
by my academic teacher, Professor Dr. E. Heinz in Gottingen.

In Chapter VI we consider linear partial differential equations in R™. We prove
the maximum principle for elliptic differential equations in § 1 and apply this
central tool on quasilinear, elliptic differential equations in §2 (compare the
lecture [H6]). In §3 we turn to the heat equation and present the parabolic
maximum-minimum principle. Then in §4 , we comprehend the significance of
characteristic surfaces and establish an energy estimate for the wave equation.
In § 5 we solve the Cauchy initial value problem of the wave equation in R™ for
the dimensions n = 1, 3,2. With the aid of Abel’s integral equation we solve
this problem for all n > 2 in §6 (compare the lecture [H5]). Then we consider
the inhomogeneous wave equation and an initial-boundary-value problem in
§7 . For parabolic and hyperbolic equations we recommend the textbooks
[GuLe] and [J]. Finally, we classify the linear partial differential equations
of second order in §8. We discover the Lorentz transformations as invariant
transformations for the wave equation (compare [G]).

With Chapters V and VI we intend to give a geometrically oriented introduc-
tion into the theory of partial differential equations without assuming prior
functional analytic knowledge.

It is a pleasure to express my gratitude to Dr. Steffen Frohlich and to Dr. Frank
Miiller for their immense help with taking the lecture notes in the Branden-
burgische Technische Universitat Cottbus, which are basic to this monograph.
For many valuable hints and comments and the production of the whole TEX-
manuscript I express my cordial thanks to Dr. Frank Miiller. He has elaborated
this textbook in a superb way.

Furthermore, I owe to Mrs. Prescott valuable recommendations to improve the
style of the language. Moreover, I would like to express my gratitude to the
referee of the English edition for his proposal, to add some historical notices
and pictures, as well as to Professor Dr. M. Frohner for his help, to incorporate



X Introduction to Volume 1 — Foundations and Integral Representations
the graphics into this textbook. Finally, I thank Herrn C.Heine and all the
other members of Springer-Verlag for their collaboration and confidence.

Last but not least, I would like to acknowledge gratefully the continuous
support of my wife, Magdalene Frewer-Sauvigny in our University Library
and at home.

Cottbus, in May 2006 Friedrich Sauvigny
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I

Differentiation and Integration on Manifolds

In this chapter we lay the foundations for our treatise on partial differential
equations. A detailed description for the contents of Chapter I is given in the
Introduction to Volume 1 above. At first, we fix some familiar notations used
throughout the two volumes of our textbook.

By the symbol R™ we denote the n-dimensional Euclidean space with the
points x = (x1,...,x,) where z; € R, and we define their modulus

n 3
o] = (Zx?)
=1

In general, we denote open subsets in R” by the symbol 2. By the symbol M

we indicate the topological closure and by ]\3[ the open kernel of a set M C R"™.
In the sequel, we shall use the following linear spaces of functions:

Co)...... continuous functions on {2

Ck(2)...... k-times continuously differentiable functions on {2

Ck(2)...... k-times continuously differentiable functions f on {2 with the
compact support supp f = {z € 2: f(z) #0} C 2

Ck(2)...... k-times continuously differentiable functions on (2, whose

derivatives up to the order k can be continuously extended
onto the closure {2

CE(2UO).. k-times continuously differentiable functions f on {2, whose
derivatives up to the order k£ can be extended onto the closure
{2 continuously with the property supp f C 2U &

C¥(+,K) ... space of functions as above with values in K =R" or K = C.

Finally, we utilize the notations

V.o gradient (ug,,...,us,) of a function v = wu(wzy,...,x,) €

CL(R)
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n
Au .o Laplace operator Y g,z of a function u € C?(R™)
i=1
Jpoooo functional determinant or Jacobian of a function f : R" —

R" € C1(R",R™).

81 The Weierstraf3 approximation theorem

Let 2 C R" with n € N denote an open set and f(x) € C*(2) with k €
N U {0} =: Ny a k-times continuously differentiable function. We intend to
prove the following statement:

There exists a sequence of polynomials p,,(z), z € R™ for m = 1,2,... which
converges on each compact subset C' C {2 uniformly towards the function f(z).
Furthermore, all partial derivatives up to the order k of the polynomials p,,
converge uniformly on C towards the corresponding derivatives of the function
f. The coefficients of the polynomials p,, depend on the approximation, in
general. If this were not the case, the function

exp (—%) , x>0
fz) = v

0, <0

could be expanded into a power series. However, this leads to the evident
contradiction:

0

= f*(0)
;;) Pt

In the following Proposition, we introduce a 'mollifier’ which enables us to
smooth functions.

Proposition 1. We consider the following function to each € > 0, namely

oy e (1)

1 1
:Wexp (E(szr...JrzZ)), z € R™

Then this function K. = K.(z) possesses the following properties:
1. We have K.(z) > 0 for all z € R™;
2. The condition /Kg(z) dz =1 holds true;

RTL
3. For each § > 0 we observe: lim K. (2)dz=0.
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Proof:

1. The exponential function is positive, and the statement is obvious.
2. We substitute z = y/ex with dz = \/e" dx and calculate

1 2
/Ke(z)dz = " /exp (%) dz
R R
400 "

:#@[exp(—bﬂﬁ) dx = \/17r /exp(—t2> dt] =1.

— 00

3. We utilize the substitution from part 2 of our proof and obtain

1
/K / exp<—|x|2)d:1:—>0 for e —0+.

|z|>6 |z|26/+/= q.e.d.

Proposition 2. Let us consider f(z) € C§(R™) and additionally the function

) Z/Ka(y—w)f(y)dy, r R

for e > 0. Then we infer

sup |fe(z) — f(x)] — 0 for e— 0+,
xER™

and consequently the functions f-(x) converge uniformly on the space R™ to-
wards the function f(x).

Proof: On account of its compact support, the function f(z) is uniformly
continuous on the space R™. The number 1 > 0 being given, we find a number
d = d(n) > 0 such that

2,y R o —yl <6 = |f(z) - fly)l <.

Since f is bounded, we find a quantity €9 = £¢(n) > 0 satisfying

2 sup |f(y)| / Kg(y—w)dygn forall 0<e<egg.
yER™
ly—x|>6

We note that

fula |—\/K o) fy)dy — fa /K y—x)dy|

/K y—2) (F(y) ~ F()} dy|

ly—z|<8

H [ Ko U - @),

ly—x|>6
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and we arrive at the following estimate for all points z € R™ and all numbers
0 < € < €p, namely

fol@) - ()] < / Koy —2) /() — f()] dy

ly—z|<é
v [ K- ()] + @) dy
ly—z[>6
<u+zsw @) [ Ky-o)dy<zn
yEeR™

ly—z|>4
We summarize our considerations to

sup |f-(z) — f(z)] — O for e—0+.

eeR™ q.e.d.

In the sequel, we need

Proposition 3. (Partial integration in R"™)
When the functions f(x) € C§(R™) and g(z) € C1(R™) are given, we infer

/g(:z:) 0 f(:z:)dz:—/f(:z:) 0 g(x)dx for i=1,...,n.
RTL

8:101- 8:101-
Rn

Proof: On account of the property f(z) € C}(R™), we find a radius r > 0 such
that f(z) = 0 and f(x)g(z) = 0 is correct for all points z € R™ with |z;| > r
for one index j € {1,...,n} at least. The fundamental theorem of differential-
and integral-calculus yields

/ - {S@g(o)} d

R’Vl
—+r “+r —+r

:// /ai {F@)g@)} dos | dor ... deirdaigs .., =0,

This implies

0= [ o @ }do = [ 9@ s@ydo+ [ 1)

R R R

0
oz, g(x)dx.
q.e.d.

Proposition 4. Let the function f(x) € CE(R™ C) with k € Ny be given.
Then we have a sequence of polynomials with complex coefficients
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N(m)
pm(x) = Z CE-T?vjnx]f...xf{l for m=1,2,...

J1se3dn=0

such that the limit relations
Dy (x) — D f(x) for m— oo, o<k

are satisfied uniformly in each ball Br = {x € R™ : |z| < R} with the
radius 0 < R < 4o00. Here we define the differential operator D% with o =
(a1,...,an) by

oled

= b
Oz ... dzp”

D~ : o] i=a1 4+ ... 4+ an,

where o, ..., a, > 0 represent nonnegative integers.

Proof: We differentiate the function f.(x) with respect to the variables z;,
and together with Proposition 3 we see

0 0
s feo) = [ { e Kty =)} £y
RTI,
- [{, K-} 1)
= Ay e\Y y)ay
R’n
- [K-a), S0
= e\Y Ay y)ay
RTI,
for i =1,...,n. By repeated application of this device, we arrive at

zwmw=/&@—wmﬂm@,mmh
R’n

Here we note that D?f(y) € CJ(R™) holds true. Due to Proposition 2, the
family of functions D f.(x) converges uniformly on the space R" towards
Def(x) - for all || < k - when € — 0+ holds true. Now we choose the radius
R > 0 such that supp f C Bp is valid. Taking the number £ > 0 as fixed, we
consider the power series

1 |22 1 X1 22
KE = n - = n . - )
(2) \/Te P ( € ) \/Te ;j! ( €

=0

which converges uniformly in Bsgr. Therefore, each number € > 0 possesses
an index Ny = Ny(e, R) such that the polynomial

1 N()(&,R)

_\/T(En = J! 5

P&R(Z) :
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is subject to the following estimate:

sup |K.(z) — P:.r(2)| <e.
|2|<2R

With the expression

For(z) = / Pen(y —2)f(y) dy

R

we obtain a polynomial in the variables z1,...,x, - for each € > 0. Further-
more, we deduce

D“j;R(x) = /PE,R(y —2)D“f(y)dy forall zeR" |of<k.
RTL

Now we arrive at the subsequent estimate for all || < k and |z| < R, namely

D°0.w) = D*Fnle) = | [ {Kely ) = Ponly~ )} D s ) dy|

ly|<R
< |Ke(y —2) — Per(y — 2)|[D* f(y)| dy
ly|<R
<= [ 10wl
ly|<R

Therefore, the polynomials Do‘f; r(z) converge uniformly on Bp towards the
derivatives D® f(z). Choosing the null-sequence ¢ = % with m = 1,2,...,

we obtain an approximating sequence of polynomials p,, gr(z) := ]71 r(x)in
Bpg, which is still dependent on the radius R. We take » = 1,2,... and find
polynomials p, = pp,,. » satisfying

1
sup |Dp,(z) — D f(x)| < for all |o| <k
rEB, r

The sequence p, satisfies all the properties stated above. q.e.d.

We are now prepared to prove the fundamental

Theorem 1. (The Weierstrafl approximation theorem)

Let 2 C R™ denote an open set and f(x) € C*(£2,C) a function with the
degree of reqularity k € Ng. Then we have a sequence of polynomials with
complez coefficients of the degree N(m) € Ny, namely

N(m)
fu@y= 30 ™ el ad, 2R, m=12...
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such that the limit relations
D f,(x) — D f(x) for m—o0, |af <k

are satisfied uniformly on each compact set C C 2.

Proof: We consider a sequence 21 C {2 C ... C {2 of bounded open sets
exhausting {2. Here we have §2; C (2;4, for all indices j. Via the partition
of unity (compare Theorem 4), we construct a sequence of functions ¢;(z) €
C§°(02) satisfying 0 < ¢;(z) <1, 2 € 2 and ¢j(x) =1 on 2, for j =1,2,....
Then we observe the sequence of functions

_ Jf@)¢i(x), x € 02
f](fL'> '_{ 0, xGR”\Q

with the following properties:
fi(z) € C¥R") and D°f;(z) = D*f(x), x €82, la| <k

Due to Proposition 4, we find a polynomial p;(z) to each function f;(z) sat-
isfying

o « (07 « 1
sup |D%p;(x) — D*fj(x)| = sup [Dpj(x) = Df(x)| < ., o[ <k
IGQ]‘ IGQ]‘ J

since {2; is bounded. For a compact set C' C {2 being given arbitrarily, we find
an index jo = jo(C) € N such that the inclusion C' C £2; for all j > jo(C) is
correct. This implies
1 L

sup [D%pj(x) = Df(x)| < -, j=5o(C), laf<k.

zeC J
When we consider the transition to the limit j — oo, we arrive at the state-
ment

sup |D%p;(x) — D*f(z)] — 0
zeC

for all |a|] < k and all compact subsets C' C {2. q.e.d.

Theorem 1 above provides a uniform approximation by polynomials in the in-
terior of the domain for the respective function. Continuous functions defined
on compact sets can be uniformly approximated up to the boundary of the
domain. Here we need the following

Theorem 2. (Tietze’s extension theorem)

Let C C R™ denote a compact set and f(x) € C°(C,C) a continuous function
defined on C. Then we have a continuous extension of f onto the whole space
R™ which means: There erists a function g(x) € C°(R™,C) satisfying

f(z) =g(x) for all points z € C.
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Proof:
1. We take x € R™ and define the function

d(z) :==min|y — z| ,

() = min |y — 2

which measures the distance of the point x to the set C. Since C' is com-
pact, we find to each point 2 € R™ a point y € C satisfying |y — x| = d(x).
When z1, 22 € R™ are chosen, we infer the following inequality for y, € C
with |y, — z2| = d(z2), namely

d(an) — d(zz) = inf (|e1 — y]) ~ |2~ )

IN

|21 *y2| — |@2 *y2|
< oy — 22

Interchanging the points x; and x5, we obtain an analogous inequality
and infer

|[d(xz1) — d(z2)| < |x1 — x2| for all points 7,z € R"

In particular, the distance d : R™ — R represents a continuous function.
2. For ¢ C and a € R", we consider the function

o) = max {2 - = o}

The point a being fixed, the arguments above tell us that the function
o(z,a) is continuous in R™ \ C. Furthermore, we observe 0 < o(x,a) < 2
as well as
o(z,a) =0 for |a— x| > 2d(x),
1 3
o(z,a) > for |a—2a| < _d(x).
2 2
3. With {a(k)} C C let us choose a sequence of points which is dense in C.

Since the function f(z) : C' — C is bounded, the series below

g2‘kg(:v,a(k))f(a(k)) and 22_]“@(95,@(’“))

converge uniformly for all x € R™\ C, and represent continuous functions
in the variable x there. Furthermore, we observe

i2_kg(w,a(k)>>0 for xeR"\C
k=1
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since each point = € R™\ C possesses at least one index k with o(x,a®)) >
0. Therefore, the function

iQikQ(x,a(k))f(a(k)) -
h(z) = *=L = Z ok () (a(k)>, zeR"\C,
k=1

Z 27kg(:v,a(k))
k=1
is continuous. Here we have set
2’kg(x, a(k))
Z 27kg(x,a(k))
k=1

We have the identity

ok () for zeR"\C

ng(:v) =1, zeR"\C
k=1
. Now we define the function

fl@),zeC
g(x) := { .
h(z), z e R"\ C

We have still to show the continuity of g on dC. We have the following
estimate for z € C and x ¢ C:

o)~ 1)1 = | 3 e { £(a®) - £} |
k=1

IN

> a@|f(a™) - 1)

k:la(®) —z|<2d(x)

< sup |f(a) = f(2)]
a€C : |a—xz|<2d(x)

< sup f(a) = f(2)]

a€C': la—z|<2d(z)+|z—z|

< sup |f(a) = f(2)]-

aeC:|a—z|<3|z—z|
Since the function f : C' — C is uniformly continuous, we infer

lim h(z) = f(z) for z€0C and x¢ C.

T—Zz

zgC
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The assumption of compactness for the subset C is decisive in the theorem
above. The function f(z) = sin(1/z), € (0,00) namely cannot be continu-
ously extended into the origin 0.

Theorem 1 and Theorem 2 together yield

Theorem 3. Let f(z) € C°(C,C) denote a continuous function on the com-
pact set C C R™. To each quantity € > 0, we then find a polynomial pe(x)
with the property

|pe(z) — f(z)| <e for all points x € C.

We shall construct smoothing functions which turn out to be extremely valu-
able in the sequel. At first, we easily show that the function

1y .
w(t):{eXp(t)’lft>O (1)
0, ift<0

belongs to the regularity class C*°(R). We take R > 0 arbitrarily and consider
the function

or(r) = ¢(|x|2 - R2>, z e R" 2)

Then we observe g € C*°(R™,R). We have ¢r(z) > 0 if || > R holds true,
or(z) = 0if |2| < R holds true, and therefore

supp(pr) = {:17 eR™ : |z| > R}.
Furthermore, we develop the following function out of 1 (t), namely
o=p0():R—-R € C*(R) via t— o(t) =y -1 +1t) . (3)

This function is symmetric, which means o(—t) = o(t) for all ¢ € R. Further-
more, we see o(t) > 0 for allt € (—1,1), o(¢t) = 0 for all else, and consequently

supp(e) = [—1,1].
Finally, we define the following ball for £ € R™ and € > 0, namely
B.(¢) == {xeR" Lo — ¢ gg} (4)

as well as the functions

Pee(T) = Q(

Then the regularity property ¢e. € C*(R",R) is valid, and we deduce

wee(x) > 0 for all z € B.(§) as well as ¢¢(x) = 0 if |z — & > € holds
true. This implies

|z — ¢

2

), x e R". (5)

Supp(@&,s) = B.(§).

A fundamental principle of proof is presented in the next
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Theorem 4. (Partition of unity)

Let K C R™ denote a compact set, and to each point x € K the symbol
O, C R" indicates an open set with x € O,. Then we can select finitely many
points M) 22 2" e K with the associate number m € N such that the
covering

m
K C U Ozw)
p=1
holds true. Furthermore, we find functions x, = xu(z) : Oy — [0,+00)
satisfying X, € C3°(Opww) for p=1,...,m such that the function

x(z) := Z Xu(z), zeR” (6)
p=1

has the following properties:

(a) The regularity x € C§°(R™) holds true.
(b) We have x(x) =1 for all z € K.
(c) The inequality 0 < x(z) <1 is valid for all x € R™.

Proof:

1. Since the set K C R" is compact, we find a radius R > 0 such that
K C B := Bg(0) holds true. To each point 2 € B we now choose an

open ball B (z) of radius e, > 0 such that B, (x) C Oy for x € K
and B. (z) € R"\ K for x € B\ K is satisfied. The system of sets

[e]
{Bgm (:v)} yields an open covering of the compact set B. According to
zeEB

the Heine-Borel covering theorem, finitely many open sets suffice to cover
B, let us say

o o o o )

Bm (‘T(l))v Baz (‘T(Q))a s >B£m (‘T(m))v B€m+1 (x(m+l))v ce B€m+M (‘T(m+M)) :

Here we observe z(#*) € K for p = 1,2,...,m and z®) € B \ K for
p=m+1,...,m+ M, defining e, := e, for p=1,....m+M .

With the aid of the function from (5), we now consider the nonneg-
ative functions ¢, (z) = @y ., (z). We note that the following reg-
ularity properties hold true: ¢, € C§°(O,u) for p = 1,...,m and
op € CPR"\ K) for p =m+1,...,m+ M, respectively. Furthermore,
we define @, yar41(2) := @r(z), where we introduced g already in (2).
Obviously, we arrive at the statement

m-+M-+1
> gul@)>0  forall zeR™
p=1
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2. Now we define the functions x, due to

mxm:—[m+M+l

Z <pu(x)}¢#(x), reR"

p=1

for p =1,...,m+ M + 1. The functions x, and ¢, belong to the same
classes of regularity, and we observe additionally

m4M+1 m+M+1 —1 m+M+1
Z Xu(z) = [ Z gou(x)} Z pu(x)=1 forall zeR"
p=1 pn=1 pn=1

m
The properties (a), (b), and (c) of the function x(z) = > xu(x) are
p=1
directly inferred from the construction above. q.e.d.
Definition 1. We name the functions x1, X2, - - -, Xm from Theorem / a par-

tition of unity subordinate to the open covering {O, }.ck of the compact set
K.

§2 Parameter-invariant integrals and differential forms

In the basic lectures of Analysis the following fundamental result is estab-
lished.

Theorem 1. (Transformation formula for multiple integrals)

Let 2,0 C R™ denote two open sets, where we take n € N. Furthermore, let
y=(n(x1, .- s xn), oy Yn(T1,...,2p)) : 2 — O denote a bijective mapping
of the class C*(2,R™) satisfying

Oy;(x)
an

Jy(z) == det( )ijﬂ . #0 forall xe€ (2

Let the function f = f(y) : © — R € C%(O) be given with the property

/V@ww<+m
€]

for the improper Riemannian integral of | f| . Then we have the transformation
formula

/f(y) dy = /f(y(:z:)) |7, (x)| dz.
e n

In the sequel, we shall integrate differential forms over m-dimensional surfaces
in R™.
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Definition 1. Let the open set T C R™ with m € N constitute the parameter
domain. Furthermore, the symbol

l’l(tl,. .. ,tm)
X(t) = : . T — R™ € C*(T,R™)
l’n(tl, L. ,tm)
represents a mapping - with k,n € N and m < n - whose functional matrix

AX(t) = (th(t),...,Xtm(t)>, teT

has the rank m for allt € T. Then we call X a parametrized regular surface
with the parametric representation X(t) : T — R™.

When X : T — R™ and X : T — R" are two parametric representations, we
call them equivalent if there exists a topological mapping

t=t(s) = (tl(sl,...,sm),...,tm(sl,...,sm)) T — T e CYT,T)

with the following properties:

” . bor (8) - 5ek(s)
1. J(s):= H(s): : : >0  fordl seT;
S1y.++s8m : :
1 P (s) . G ()

2. X(s) = X(t(s)) forallseT.

We say that X originates from X by an orientation-preserving reparametriza-
tion. The equivalence class [X] consisting of all those parametric representa-
tions which are equivalent to X is named an open, oriented, m-dimensional,
regular surface of the class C* in R". We name a surface embedded into the
space R"™ if additionally the mapping X : T — R" is injective.

Ezample 1. (Curves in R™)

On the interval T' = (a,b) C R we consider the mapping

X =X(t) = (xl(t), . ,xn(t)> cCHT,RY), teT

satisfying

X)) = {0 + .+ {2,(0}2 > 0 forall teT.

Then the integral
b
L(X)= /|X’(t)| dt

determines the arc length of the curve X = X(t) .
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Ezample 2. (Classical surfaces in R?)

When 7' C R? denotes an open parameter domain, we consider the Gaussian
surface representation

X (u,v) = (w(u,v),y(u,v),z(u,v)) : T — R3 € CY(T,R®).

The vector in the direction of the normal to the surface is given by

Ay,z) O(z,x) 3($,y))
A(u,v)’ d(u,v)’ d(u,v)

Xu/\sz(

= (yuzv — ZulYv, Ruly — Tyl TulYv — xvyu)
The unit normal vector to the surface X is defined by the formula

Xu N Xy
Nwv) =250

and we note that
|N(u,v)] =1, N(u,v)-X,(u,v)=N(u,v)-X,(u,v) =0 forall (u,v)eT.

Via the integral

A(X) = // | Xu A Xy| dudv
T

we determine the area of the surface X = X (u,v). We evaluate
|Xu A Xy * = (Xu A Xy) - (Xu A Xy) = [ XX )7 — (X - Xy)?

such that

A(X) ://\/|XU|Q|XU|2 — (X, - X,)2 dudv
T

follows.

Ezample 3. (Hypersurfaces in R™)

Let X : T'— R"” denote a regular surface - defined on the parameter domain
T c R*!. The (n — 1) vectors Xy,,...,Xt, , are linear independent for all
t € T; and they span the tangential space to the surface at the point X (t) €
R™. Now we shall construct the unit normal vector v(t) € R™. Therefore, we
require

lv() =1 and v(t) -X¢ (t)=0 forall k=1,...,n—1
as well as

det (th(t), D N () V(t)) >0 forall ¢teT.
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., Xy, _, and v constitute a positive-oriented

n-frame. In this context we define the functions

Di(t) == (—

Then we obtain the identity

6LE1
oty

Oxq

At

T e

Now we introduce the unit normal vector

v(t) = (Vl(t),...,yn(t)) —

1)n+i3($1,172,~-~7$i71,$i+1,~-~,17n), i=1,....n
8(t1,...,tn_1)
Oy
oty
n
=Y AD;  forall Aj,... .\ €R
Ozy, i=1
Otn_1
An
teT

Evidently, the equation |v(t)| = 1 holds true and we calculate

811
oty

Oz N
6tn—1

811
ot

Oy
oty

oz,
atn—l

Oy
ot

0,

1<j<n-1.

This implies the orthogonality relation Xy, (t) - v(t) = 0 for all ¢ € T" and
j=1,...,n—1. The surface element of the hypersurface in R™ is given by

do :

811
oty

o1

181

T N

Oxy
8t1

oz,
Otn—1

Un

dty...dtp—1

Z Vij dtl N dtn_l
j=1
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Consequently, the surface area of X is determined by the improper integral

Example 4. An open set 2 C R™ can be seen as a surface in R™ - via the
mapping
X(t):=t, with teT and T:=CR"™

Ezample 5. (An m-dimensional surface in R™)

Let X(t) : T — R™ denote a surface with ' C R™ as its parameter domain
and the dimensions 1 < m < n. By the symbols

gij(t) = Xy, - Xy, for d,5=1,....,m

we define the metric tensor of the surface X. Furthermore, we call
9(t) = det (g;,(1))

its Gramian determinant. We complete the system {Xti}izl,___m in R™ at each
point X (¢) by the vectors §; with j = 1,...,n — m such that the following
properties are valid:

(a) We have &; - § = d; for all j,k=1,...,n—m;
(b) The relations X, -§; =0for¢=1,...,mand j =1,...,n —m hold true;

(¢c) The condition det (th, cey Xt 1y ,fn_m) > 0 is correct.

Then we determine the surface element as follows:

do(t) = det (th,...,Xtm,gl,...,gn,m)dtl...dtm

- \/det {(th, e Enm)to (th,...,gn_m)} dty ...dtm

.....

= V/g(t) dty...dtp,.

In order to evaluate our surface element via the Jacobi matrix 0X (t), we need
the following

Proposition 1. Let A and B denote two n X m-matrices, where m < n holds
true. For the numbers 1 < i1 < ... < ip < n, let A;,. i, define the matriz
consisting of those columns with the indices i1, ..., 4, from the matriz A.
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Correspondingly, we define the submatrices of the matriz B. Then we have
the identity

det (At @) B) = Z det Ail.,.im det Bil...im-

1<i1 <...<im<n

Proof: We fix A and show that the identity above holds true for all matrices

B.
1.

When we consider the unit vectors ey, . .., e, as columns in R™, the formula
above holds true for all B = (ej,,...,¢€j,,) with j1,...,jm € {1,...,n} at
first.

When the formula above holds true for the matrix B = (by,...,bs), this

remains true for the matrix B’ = (by,..., Abs, ..., by).
When we have our formula for the matrices B" = (by,...,b,,...,bm)
and B” = (by,..., b/,...,by), this remains true for the matrix B =

/ /1
(b1,..., 0, + b, ... bm). q.e.d.

Corollary: Given the n X m-matrix A, we have the identity

det (A' o0 A) = Z (det Ay, .., )7

1<i1 <...<im<n

We write the metric tensor into the form

(gij(t)>i)_ — 0X (1) 0 DX (1)

with the functional matrix 0X (t) = (th t),... X, (t)), and we deduce

g(t) = det (gij(t))i7j:17...7m
G =)

1<i1 <...<im<n

Therefore, the surface element satisfies

do(t) = /g(t) dty ... dtp,

> (Grerslo) ad,.

1<i1 <...<im<n

Definition 2. The surface area of an open, oriented, m-dimensional, regular
Cl-surface in R™ with the parametric representation X (t) : T — R™ is given
by the improper Riemannian integral
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A(X) :—! > (H)thl...dtm

1<i1 <. <im<n

Here the parameter domain T C R™ is open and the dimensions 1 < m <n
are prescribed. If A(X) < +o0 is valid, the surface [X] possesses finite area.

Remarks:

1. With the aid of the transformation formula for multiple integrals, we im-
mediately verify that the value of our surface area is independent of the
parametric representation.

2. In the case m = 1, we obtain by A(X) the arc length of the curve X :
T — R"™. The case m = 2 and n = 3 reveals the classical area of a surface

X in R3. In the case m = n — 1 we evaluate the area of hypersurfaces in
R™.

In physics and geometry, we often meet with integrals which only depend
on the m-dimensional surface and which are independent of their parametric
representation. In this way, we are invited to consider integrals over so-called
differential forms.

Definition 3. On the open set O C R™, let the functions a;,. ;, € C*(O)
with i1, ...,4m € {1,...,n} and 1 < m < n be given; where k € Ny holds true.
Now we define the set

F = {X | X : T — R" is a reqular, oriented, m-dimensional

surface with finite area such that X(T) CcC O }

By a differential form of the degree m in the class C*(QO), namely

n

W= Z ail'“ihl (:'L.) dwil VANPAN dxzm R

i1yenim=1

or briefly an m-form of the class C*(O), we comprehend the function w :
F — R defined as follows:

W(X)ZZ/ > ail...im(X(t))H

T i1, tm =1

dti...dtm, X€F.

Remark:

1. We abbreviate A CC O, if the set A C R" is compact and A C O holds
true.

2. Since the coefficient functions a;,  ;, (X (t)), ¢ € T are bounded and the
surface has finite area, the integral above converges absolutely.
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3. When two differential symbols

n
w = g aiy. i, (@) dx, Ao N dx,,
i1y stm =1

and
n

W= Z 'dzllm(:zz) d:l?l'l A /\dCCZm

i1y stm=1

are given, we introduce an equivalence relation between them as follows:
wr~w = wX)=w(X) forall XeF

Therefore, we comprehend a differential form as an equivalence class of
differential symbols, where we choose a representative to characterize this
differential form.

4. When X, X € F are two equivalent representations of the surface [X], we
observe

B = [ S (R) ATy,

a(817 e '75m)

1yeenrtm=1

[ X () i) Hted g,

om)

o - 8(:171-1,...,xim)
—/ Z Ay ..y (X(t)) m dty...dt,
i

Therefore, w is a mapping which is defined on the equivalence classes of
the oriented surfaces [X] with X € F.

5. An orientation-reversing parametric transformation ¢t = t(s) with J(s) <
0, s € T induces the change of sign: w(X) = —w(X).

Definition 4. A 0-form of the class C*(O) is simply a function f(x) € C*(O)
and more precisely

w= f(x), zeO.

When 1 < m < n is fized, we name
" i=dxiy, N... Ndxy,,, 1<iy,...;im <n

a basic m-form.
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Definition 5. Let w,wy,ws represent three m-forms of the class C°(O) and
choose ¢ € R. Then we define the differential forms cw and wi + wy by the
prescription

(cw)(X) := cw(X) forall X eF

and

(w1 4+ w2)(X) := wi1(X) + w2 (X) forall XeF

respectively.

The m-dimensional differential forms constitute a vector space with the null-
element
o(X)=0 forall X e F.

Definition 6. (Exterior product of differential forms)
Let the differential forms

w1 = Z Ay ..., (I) d:l?l'l VANAN dSCZ'l

1Si1,...,ilgn

of degree | and

Wo = Z bj1~~~jm (l’) dl‘jl VAN d:vjm

of degree m in the class C*(O) with k € Ng be given. Then we define the
exterior product of wi and wy as the (I +m)-form

w = wiAwg := Z @iy iy (T)bjy g (@) dziy AL Adxs, Adz g, A Adxj,,
1<i1,0 080,015 Jm <

of the class C*(0O).
Remarks:
1. Arbitrary differential forms wy,ws, w3 are subject to the associative law
(wl A w2> Nws =wi A (w2 A\ w3>.

2. When two [-forms wi,ws and one m-form w3 are given, we have the dis-
tributive law
(wl +w2>/\W3 = w1 ANws + w2 A ws.

3. The alternating character of the determinant reveals
dziy A ... Ndz;, = sign (m)dzi ) A... ANdzi .

Here the symbol 7 : {1,...,1} — {1,...,l} denotes a permutation with
sign () as its sign.
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4. In particular, when the two indices 7;, and ¢;, coincide, we deduce
dCCil /\/\dSCZl =0.

Therefore, each m-form in R™ with the degree m > n vanishes identically.
5. An [-form w; and an m-form ws are subject to the commutator relation

l

w1 N\ wg = (—1) Mwo A w1.

Therefore, the exterior product is not commutative.
6. We can represent each m-form in the following way:

w = Z @iy i, (@) dxg, Ao N d,, .

1<i1 <..<im<n

The basic m-forms dz;, A ... ANdx;,, 1 < i1 < ... < ipn < n constitute
a basis for the space of all differential forms, with coefficient functions in
the class C*(0), where k € Ny holds true.

Definition 7. Let the symbol

w= Z aiy .4, () dey Ao Ndxy,, €O

1<i1 <...<im<n

denote a continuous differential form on the open set O C R™, with 1 <
m < n being fired. Then we define the improper Riemannian integral of the
differential form w over the surface [X]| C O via

Nwiyy. .oy,
/w ::/ Z Ay . iy (X(t)) ﬁdtl“'dtm’
(X] T

1<i1<...<im<n

if w is absolutely integrable over X and consequently
8(:51- I o )
= i Xt)M dty...dtm,
/lwl /} X Z al---wn( () 8(t1,...,tm) 1
(X] T 1<i1<...<tm<n
< o0
is satisfied.

Remark: With the aid of the transformation formula, we show that these
integrals are independent of the choice of the representatives for the surface.
Therefore, we are allowed to write

fi=fut [o [

(X] X [X] X
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Ezample 6. (Curvilinear integrals)

Let a(z) = (al(xl, ces Ty e G (X, . ,xn)) denote a continuous vector-
field and .
w= Z a;(x) dx;
i=1

the associate 1-form or Pfaffian form. Furthermore, let
X = (xl(t% - vxn(t>) . T —R" e CY(T)

represent a regular C'-curve defined on the parameter interval T = (a,b).

Then we observe
/X W= /ab (Zj: ai (X(t))x;(t>> dt.

We shall investigate curvilinear integrals in §6 more intensively.

Ezample 7. (Surface integrals)
Let the continuous vector-field a(x) = (a1 (1, Tn)y oy an(x, ... ,xn))

with the associate (n — 1)-form
w= Zai(l')(—l)n+i de; A ... Ndxi—1 Ndzip1 A ... Ndzy,
i=1

be given. Furthermore, let X (¢1,...,t,—1) : T — R™ represent a regular
C'-surface. Then we observe

- ; 8($1 ey i1y Tj415 - - - In)
— ) _ n+1 I 9 3 3 9
/w_/; al(X(t))( 1) IO dty...dt, 1

|
—
U

zn: ai (X(t))Di(t)> dty ... dty_,

@
Il
=

Jtatx@) -vio doo).

T

This surface integral will be studied more intensively in §5, when we prove
the Gaussian integral theorem.

Ezample 8. (Domain integrals)
Let us consider the continuous function f = f(z1,...,z,) with the associate
n-form

w=f(z)dxy A...\Ndzp.
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Furthermore, X = X (t) : T — R" represents a regular C'-surface. Then we
infer the identity

/w_/f@mﬁ%gffﬁgﬁynﬁw
X T

This parameter-invariant integral is well-suited for transformations of the do-
main.

83 The exterior derivative of differential forms

We begin with the fundamental

Definition 1. For a 0-form f(z) of the class C*(O), we define the exterior
derivative as its differential

df(x) = fo(@)dzi,  w€O,
=1

When
w = Z ai, . i, () dxy, N .. ANdx;,,

1<i1 <...<im<n

represents an m-form of the class C1(O), we define its exterior derivative as
the (m + 1)-form

dw := Z (dail___im (a:)) ANdzi, N...Ndz;,, .
1<ir<...<im<n
Remarks:

1. When w; and wy are two m-forms in R™ and a3, € R are given, we
have the identity

d(alwl + ang) = ai1dwy + asdws.

Therefore, the differential operator d constitutes a linear operator.
2. When X denotes an [-form and w an m-form of the class C1(Q), we infer
the product rule

dwAX) = (dw) AN+ (=1)"w A dA.
We shall prove only the last statement. Here it suffices to consider the situation
w=f(@)p", A=g@)s

where ™ and [ are basic forms of the order m and [, respectively. Now we
deduce
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wAX= f)g(x)s™ NS

and moreover
dw A X) = d(f(x)g(@)) AB™ A B

= (9(@)df (@) + F@)dg(x)) A 5™ A B
=dw AN+ (—1)"w A dA

Ezample 1. Taking the function f(x) € C*(0O), we can integrate immediately
the differential form df over curves. With the curve

X(t) = (21(t).-.., 2n(t)) € C' ([0, 0] RY)
being given, we calculate
b n

[ar= [t (x@)ia
X a
b

=1

:/jtf(X(t)) dt

;@wﬂﬂxw)

Ezample 2. We consider the Pfaffian form

a;(x) dz;
1

n
w =
1=

of the class C1(0) and determine its exterior derivative as follows:

K2

dw = Zdaj(x) Ndxj = Z gzj dx; A dx;
j=1

ij=1

- 3aj 8a1-
= Z ((’“)wi — Bacj) dx; N\dx;.

1<i<j<n

Obviously, the identity dw = 0 holds true if and only if the functional matrix

8.’,Ej

Oa;
( ! ) is symmetric. In the case n = 3, we evaluate
7,j=1 n

.....
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dw = (8&2 aal) dri Ndxo + (8&3 O ) dx1 N\ dxs

8$1 81172 8$1 81173
8&3 8a2
<6—$2 - a—xs> dCCQ A dCCg

= bl (I) dIEQ A dCCg + bQ(I) d:l?g A dCCl + bg(x) dCCl A dIEQ .

Here we have defined the vector-field

8a3 8a2 8&1 8&3 8a2 8a1
(bl(:v),b2(:v),b3(x)) (8—172_8—% 8—%_8—1171 8—171_8—$Q>

=V A (a1,a2,a3)(z) =: rota(z)

where V := ( o 0 ) denotes the nabla-operator. Integration of this

811 ? 812 ? 813
differential form dw over surfaces in R? will be possible by the classical Stokes
integral theorem.

Definition 2. We name

rota(z) = (20 992 Oa das Jay  Jay
o 6$2 (9.%'3, (9.%'3 6,@1 ’ 6,@1 (9.%'2

the rotation of the vector-field a(z) = (al(x), az(z), ag(a:)) € CY(O,R3).

Ezample 3. Now we consider a specific (n — 1)-form in R™, namely
n
Zal “Ll dry N ... ANdxi—1 Ndxig1 A ... Ndxy,
i=1

whose exterior derivative takes on the following form:

dw = Z(—l)i+1 (dai(:zz)) ANdxy A ANdxi—1 ANdxgga N ... Ndzy,

:Z( 1)itt a()d:cj/\d:cl/\ Adzig Ndzigq AL A day,

ij=1

n 61
:E (1)t 8a (x)dz; Ndzy A ... Ndioy Adzipr A Aday,
€Z;

o)

az

Q

€Z;
i=1 v

(35

) dry A ... Ndzy,

= (dlva ) dri N ... ANdx,.
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Definition 3. The vector-field a(z) = (al(a:),...,an(:r)) e CHO,R™) on

the open set O C R™ possesses the divergence

diva(x Z gal rzeO.
Xq

Ezxample 4. We can integrate the n-form
dw = (diva(x))dzy A ... Ndzy

over an n-dimensional rectangle. This differential form can also be integrated
over a substantially larger class of domains in R™ - bounded by finitely many
hypersurfaces - with the aid of the Gaussian integral theorem, one of the most
important theorems in Analysis.

At first, we integrate dw over a semicube. We choose r > 0 and define the
semidisc

H = {:v =(x1,...,2n) ER" | 21 € (—1,0), z; € (=71, +71), i:2,...,n}
with the upper bounding side
S = {x:(O,xQ,...,xn) | || <7y i:2,...,n}

The exterior normal vector to the surface S is given by e; = (1,0,...,0) € R"
explicitly. Then we comprehend H and S as surfaces in R" via the represen-
tations

H2X(tl,...,tn):(tl,...,tn), (tl,...,tn)GH

and
S2Y(/{l,...,/{nfl):(0,/{1,...,%'",1), |/1E;'|<T, Z.Zl,...,’/lfl,

respectively. With the assumption w € C}(H U S), we obtain

0 +r —+r a a
a an
/dw—/dw—// /(awi 5£Cn) dry...dz,
+r “+r
:/.../al(O,xg,...,xn)dxg...dxn = /w.
2 5

In the sequel, we shall investigate the behavior of differential forms with re-
spect to transformations of the ambient space.

Definition 4. (Transformed differential form)
Let the symbol
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w= Z @iy iy, () dagy AL ANdag,,
1<i1 <...<im<n

denote a continuous m-form in an open set O C R™. Furthermore, let T C R
with I € N describe an open set such that

z=(21,...,2,) = D(y)
=(pr(yr,-w)s - on(yns - m) : T— 0
defines a mapping of the class C*(T,R™). With

l
i .

j=1 "%

and
We = Z iy i, (@(y)) dgﬁzl Ao A d(,Olm 5

1<i) <. <im <n

we obtain the transformed m-form wg with respect to the mapping @.
Remarks:

1. When wi,ws are two m-forms and a1, € R are given, we infer the
identity
(w1 + cow2)e = o (wr)e + az2(w2)s.

2. When A represents an [-form and w an m-form, we have the rule

(w/\)\)qs =we A A\o.

The following result is important for the evaluation of integrals for differential
forms over surfaces.

Theorem 1. (Pull-back of differential forms)
Let w denote a continuous m-form in the open set O C R™. On the open set
T C R™ we define a surface X by the parametric representation

r=0(y) : T — O cCYT)
with ®(T) CC O. Finally, we define the surface
Y()=(t1,..-,tm), teT

and note that
X(t)=PoY(t), teT.

Then the following identity holds true:

for o

X Y
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Proof: We calculate

m m

6901'1 630%1
dei, N...Ndy;, = Za dyj, | Ao A Za dy;,.
=1 YU jm=1 Yim
a(%‘u sy Y5 )
= ———""" dy1 A . Adym,
a(ylv .. 7ym)
as well as
0 Piry -+ Pim
1<i1 <. <im<n Yoo Ym
This implies
8 Lipyeeoy Ly,
/qu = > ai,..q,, (X (1) H dty ...dty,
a 4 1<ii<o.<im<n Lyeeertm
= /w,
b'e
and our theorem is proved. q.e.d.

Theorem 2. Let w denote an m-form in the open set O C R™ of the reqularity
class C1(O). Furthermore, let the mapping

r=30(y) : T — O c C*T)

be given on the open set T C R!, where | € N holds true. Then we have the
calculus rule

d(LA)q;) = (dw)q5.
Proof: At first, an arbitrary function ¥(y) € C?(O) satisfies the identity

d*W = d(d¥) = d <Z 7, dyi> =Y Wy, dy; Ady; =0.

i=1 ij=1

Now we note that

W = Z @iy i (@(y)) dpiy N ... Ndy;,,

1<i1<...<im<n

and we arrive at
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dwg = Z dailmim (@(y)) AN d(p“ VANPAN dgﬁlm
1<i1<.. <im<n
" Oa;. i 0y
= Z Z % (@(y)) a—% dyr Ndpi, N .. ANdp;,,
1<ir<.. <im<n j=1 k=1 %3 Yk

n

Z Zaagx i (QS )) dp; Ndpiy A ... Ndp;,
J

1<i1<...<tm<n g=1

and consequently
du}q5 = (dw)q5.

q.e.d.
Theorem 3. (Chain rule for differential forms)
Let w denote a continuous m-form in an open set O C R™. Furthermore, we

consider the open sets T' C RY and T” c RY - with I,1” € N - where the
C*-functions ,¥ are defined due to

UoT ST, d:T -0 with 2yl
Then the following identity holds true:

(We)w = Waow.

Proof: We calculate

Whow = Z @iy i (@ o W(z)) d(piy, W) A ... Nd(p;,, o)

iy 81/)J1 0vi,, OY;
= i1 im (PO dz . ZHim T¥im g
Hzl i ’"( ° (Z)) <(’“)y]1 0z, 4 0y;,, 0z, Fhem
Jis :.}z}m
= ai, i, (Pow(z g, ) A A Sy,
u,Z,z'm ( ( )) (8%—1 ’ Wj
NARTERD) ]m

D1y 5bm y=w(z)
and consequently
Waow = (Wo)w -
Here we perform our summation over the indices i1,...,i, € {1,...,n},

Jiyeeydm €41, .U}, and Ky, ..k € {1,017} q.e.d.
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84 The Stokes integral theorem for manifolds

We choose m € N and consider the m-dimensional plane
E™ .= {(O,yl, e Ym) ER™TL (g1 € Rm}.

Similar to Example 4 from § 3, we take the data n € R™*! and » > 0 in order
to define the semicube

Hy(n) := {y eR™yy € (m—r,m), y; € (nj—r,m+r)forj=2,... ,m+1}
with the lateral lengths 2r. This object has the upper bounding side
Sp(n) :== {?J eER™! Ly = m,y; € (mj —r,mj+r)forj=2,...,m+ 1}.
We comprehend H,.(n) and S,.(n) as surfaces in R™*1:
He(m) « Y(t,. o tmg1) = (11, gt + tngn)

with —r<t1 <0, |t|<r, j=2,....m+1

as well as

ST(T]) N Y(tl,,tm> = (771,’[]2 +t1,...,’l]m+1 —f—tm)
with |t <r, j=1,...,m.

When n € E™ and r > 0 are fixed, we define H := H,.(n) and S := S,.(n),
respectively. With n > m given, we denote by

S=b(y1,...,Yms1) : H—R" € C'(H,R")

a surface, which can be continued onto an open set containing H in R™*!,
When we set

X(t1, .o ootmyr) = P(t1, .oy tmg1),  (try. o tmyr) € H,

we obtain the following (m + 1)-dimensional surface in R™, namely
F = {X(t)GR" : tGH} ,

whose boundary contains the m-dimensional surface
S::{X(t)ER" : tES}

Let the m-form be given on the set F = $(H) by the symbol
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n
w = Z @iy, (@) day Ao o Ndx,,, x€F

i1 yenim=1

of the class C§(F US) N C(F). Here the symbol w € C*(F) means that we
have an open set O C R" with F C O satisfying w € C*(0O). Finally, let dw
be absolutely integrable over F in the following sense:

~ a 1.1 6 119y Ly
[rm ] % s .
F ot i 1 tm+1 e

U1 eenybmp1= o ’tm+1)
< 4o0.
Now we prove the basic

Proposition 1. (Local Stokes theorem)
Let the surface F with the boundary part S be given as above, and furthermore
the symbol w may denote an m-dimensional differential form of the class

CHFUS)NCHF)

satisfying

/|dw| < 4o00.
F

Jaw= [ o

F S

Then we have the identity

Proof:

1. At first, we prove this formula under the stronger assumptions ¢ € C?(H)
and w € C§(FUS). Utilizing Theorem 2 and Example 4 from § 3, we infer
the identity

[ao= [ao= = [ = [w=[o

X H H S S

2. When & € C'(H) and w € CH(F)NCY(FUS) hold true, we approximate ¢
uniformly in H up to the first derivatives by the functions &) (y) € C*°,
due to the Weierstral approximation theorem. Now we exhaust H by
rectangles

1
HY = H, (771 _ l,ng,...,an) CH

with the upper bounding sides

1
S(l) = ST72 (771 — l NIIER ~77]m+1)

1
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The considerations in part 1.) reveal

/(du})ds(k) = /wds(k) for all k,01> N e€N.
HO S

The transition to the limit £ — oo implies
/ (dw)g = / We.
HO s

On account of [, |dw| < 400, the limit procedure [ — oo yields

[ar- o= feo= [
F H S S

This is exactly the identity stated above. q.e.d.

Now we introduce the fundamental notion of a differentiable manifold.

Definition 1. Let us fix the dimensions 1 < m < n as well as the set
M C R™. We name M an m-dimensional C*-manifold, if each point & € M
possesses an element n € R™ and open neighborhoods U C R™ of € € U and
V CR™ of n eV as well as an embedded regular surface

r=®(y) : V—UcCkV)

such that
E=d(n) and d(V)=MnNU

is correct; here we have chosen k € N adequately. We call ($,V) a chart of
the manifold. All charts together

A= {(@L,VL) : LEJ}

constitute an atlas of the manifold. When &; : V; — U; N M with j = 1,2
represent two charts of the atlas A such that

Wl,QZ:MﬂUlﬁUg#@

is correct, then we consider the parameter transformation @1 = @51 o Pq.
If the functional determinant satisfies Jg,, > 0 on &7 (Wio) for such ar-
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bitrarily chosen charts from the atlas, the manifold is oriented by the atlas.

(pl @2
Dyl 0@y
i ) J( ) Vo
O (W) ;' (W)

Definition 2. Let M denote a bounded, (m + 1)-dimensional, oriented C*-
manifold in R™ with n > m. We indicate the topological closure of the point
set M by the symbol M and the set of boundary points by the symbol M =
MA\M. We name € € M a regular boundary point of the manifold M if the
following holds true:

We have a semicube H,(n) in R™+1

with n € E™ and r > 0, a regular e
embedded surface
N —_— ®
B(y) : H, () — R" € " (H, (1)) [} ? *
such that @, () belongs to the ori- €1
ented atlas A of M,

and an open neighborhood U C R™ of £ € U with the following properties:
o) =€ o(S:() = MU, @(H(n) =MNU.

The set of regular boundary points will be denoted by the symbol OM.

Definition 3. For the bounded manifold M from Definition 2, we define the
set of singular boundary points AM according to

AM = M\ OM.

In the case AM = (), we obtain a compact manifold with regular boundary. If
the condition OM = 0 is fulfilled additionally, we speak of a closed manifold.

IM  JAM Am—g =~ AM=0

Mo Q

. OM =10
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Proposition 2. (Induced orientation on M)
Let M and OM from Definition 2 with the charts ® : H.(n) — R"be given.
Then the mappings

{o
constitute an oriented atlas of OM. Consequently, OM represents an oriented

C'-manifold.

Selm) ¢}H7‘(77) belongs to the oriented atlas A of/\/l} =:0A

Proof: We consider &(n)) = ¢ = &(7j). The vectors Dy, (M), Py, (1) and
By, (@), ..., Py, 4. (1) span the m-dimensional tangential space Torq(§) to OM

at the point £&. When we add the vectors &, () and 51/1 (1), respectively, the
tangential space Th(€) to M is generated.

Now we construct an orthonormal system
N',...,N" ™ ¢ R" which is orthogonal to : o
Tom(€). Choosing the vector N' € Th(€) EHW?\~
such that it is directed out of the surface at ‘ri N
the point ¢, we obtain K e
~ 15 — ¢
Gy, (n) - N' >0, &, (7)-N'>0. Hen

With the parameter 0 < 7 < 1, we consider the matrices

(1—=7)Py, (n) + TN1 (1- 7')57;1 (m) + TN'
By, () By, (1)
M(T) = q)ym+1 (77) ’ M(T) = éym+1 (ﬁ)
N2 N2
Nn—m Nﬂ*m

Furthermore, we define ¥ := @}S - and ¥ = 55‘ @ Now the func-

tions det M(7) and det M(7) in [0,1] are continuous with det M () # 0 and
det M (1) # 0 for all 0 < 7 < 1. Consequently, the following function is con-
tinuous in [0,1], and we have

det (M(T)710M<T)) #0, 0<7<1.

By assumption we note that
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det (M(O)—l o M(O)) = detd(@ Lo d)| >0 |
and a continuity argument implies
det D(F 1 0 0)| = det (M(u—l ° M(l)) > 0.
Therefore, A constitutes an oriented atlas of IM. q.e.d.

We now intend to prove the Stokes integral theorem for manifolds M with the
regular boundary OM and the singular boundary AM, namely the identity

/dw:/w ,
M oM

under weak assumptions. The transition from the local Stokes theorem to the
global result is achieved by the partition of unity.

Let M denote an (m + 1)-dimensional, bounded, oriented C'-manifold in R™
with the regular boundary M. Furthermore, let the symbol

)\: Z bil...im+1($) d:l?l'l A .../\dSCim+1, S M

1< <...<im41<n
represent a continuous differential form on M.

We shall investigate which conditions for A allow us to define the improper

integral
[

M
of the differential form A over the manifold M.

1. At first, let the set

suppA:={x e M : Axz) #0} C MUIM

be compact. Then we have open sets V, C R™*! and U, ¢ R*\ AM with
¢ € J and moreover charts @, : V, — U, N M such that the open sets
{U.,}.e cover the compact set supp A. Now we choose a partition of unity
in R™ subordinate to the sets {U,} and obtain

ar(z) : M —[0,1] € C' with suppay C U, for k=1,...,ko
as well as

ko
Zak(:zz) =1 for all z € supp A
k=1

We define
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/)\—Z/ak)\ Z/akx% (1)
k= 1Vk
if
/ak|)\| <400 for k=1,... kg
M
is correct.

We still have to show that the integral, given in equation (1), is indepen-
dent of the covering for the support of A and of the partition of unity
used.

When @ : IN/L — (Z NM with . € J represents an alternative system of
charts covering supp A, we choose again a partition of unity for supp A
subordinate to the system {U,},. We obtain

a : M —[0,1] € Ct, Supp&le]Ll, l=1,...,0

as well as

Z&l(:zz) =1 for all z € supp A

We note that supp (axa;) C Up NU; N M holds true. Under the mapping
QS_ o (Zil for all indices k = 1,...,kg and [ = 1,...,ly we transform the

mtegrals
/(Oékal)\)qsk :/ (ak&l)\);él. (2)

Vi v
The summation yields

ko lo

Z / Oék)\ :Z Z /(ak&l)\)ék
k= 1Vk k=1 =1 Vi
ko o lo
= Z Z/ akal)\ Z /(&l)\)[}jl
k=1 l:1‘7[ =1 ‘71

Consequently, the integral given in (1) is independent of the choice of
charts and the partition of unity. Correspondingly, we define [ M [A] and

Jom A

The differential form A € C°(M) is absolutely integrable over M, symbol-

ically
[<s
M
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if we have a constant M € [0, +00) such that the inequality

/|6>\|§M for all B € Cy(MUIM,[0,1])
M

is correct. The sequence of functions 3, € C§(M U IM,[0,1]) is named
ezhausting the manifold, when each compact set K C M UM possesses
an index ko = ko(K) € N such that

Br(x) =1 forall ze K, k> k.

When fM |A| < 400 holds true, we show as in the theory of improper
integrals that for each exhausting sequence of functions {8y }x=1,2,... the
following expression
lim BrA
k—oo
M

exists and has the same value. We set
/ A= lim [ g 3)
M M

In this sense, we comprehend all improper integrals appearing in the se-
quel.

Definition 4. The singular boundary AM of the manifold M has capacity
zero if we can find a function

X € CHMUIM, [0,1])

for each € > 0 and each compact set K C M UIM with the following prop-
erties:

1.
2.

We have x(z) =1 for all x € K;
The following condition holds true:

/\/V(X,x) d™" o <e.

M

Here d™ o denotes the (m + 1)-dimensional surface element on M, and we

set

VO] = V06| = sun{IVx- ¢ : € € Tula), 6] =1},

x

Now we arrive at our central result, namely
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Theorem 1. (The Stokes integral theorem for manifolds)
Assumptions:

1. Let M represent a bounded, oriented, (m+1)-dimensional C*-manifold in
R™ - where n > m is correct - with the atlas A. Via the induced atlas 0A,
the regular boundary OM becomes a bounded, oriented, m-dimensional
C'-manifold. We assume that the reqular boundary possesses finite surface

area as follows:
/ d™o < 4o00.

oM

Furthermore, the singular boundary AM has capacity zero.
2. Let the symbol

W= Z aiy. i, ()dxy, Ao Ndx,,,, xEM

1<i1 <...<im<n

denote an m-dimensional differential form of the class C*(M) N C°(M),
such that its exterior derivative dw is absolutely integrable in the following

sense:
/|dw| < 4o00.
M

Statement: Then we have the identity

[ ]

M oM
Proof:
1. At first, let the condition w € C*(M) N CH(M U IOM) be fulfilled. As
above we choose a partition of unity {ag} with £ = 1,..., ko on the set

suppw C M UIM subordinate to the covering system of the charts. We
utilize Proposition 1 and deduce

k() k()
/w:Z/akw:Z/d(akw):/dw.
oM k=lom k=1 M M

2. Let the differential form w be arbitrary now. Then we choose a sequence
{Bk}k=1,2,.. of functions exhausting the manifold M with the property

/\/V(ﬁk,ﬁk)d””laﬂ() for k— oo
M

According to part 1, we obtain the following identities for kK = 1,2,...,
namely
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/ﬁka/d(ﬁkw)Z/ﬁkdw-i-/dﬁk/\w- (4)
oM M M

M

At first, we see

’/dﬁk/\w‘ Sc/\/V(ﬁk,ﬁk)dm+1a—>O for k — oo.
M M

Furthermore, we estimate

/|ﬁkw|§/|w|§c/dm+1a<+oo for k=1,2,...
oM oM oM

Therefore, we comprehend

lim Orw =: / w < +00.
k—o0
oM oM

On account of [, |dw| < 400, we infer

The transition to the limit &k — oo in (4) reveals the identity

[ [

oM M

which corresponds to the statement above. q.e.d.

85 The integral theorems of Gaufl and Stokes
We endow the bounded open set {2 C R™ with the chart X (t) =t¢, t € {2 gen-

erating an atlas A. In this way, we obtain a bounded oriented n-dimensional
manifold M = 2 in R". When

f@) = (@), fal@) : @ — R € CH2,RY)
denotes an n-dimensional vector-field in R™ with its divergence
div f(x) = 2 fu(a) + .+
ivf(z)==—fi(lzx)+...+ =—
8951 !

we consider the (n — 1)-form
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n
w= Z fi(x)(—ly—i_l dey N...ANdxi—g Ndzipq A .. Ndxy,
i=1

The set of regular points 92, endowed by the induced atlas 0.4, becomes an
(n — 1)-dimensional bounded oriented manifold in R™. We show the identity

/ ‘“:/ (/@) -&@) a o , z/au)

o8 a1

later, where &(x) denotes the exterior normal to the domain 2 at the point
z. When we take the relation

dw = (div f(x)) dry A ... Ndzy,

into account, Theorem 1 from §4 reveals the fundamental identity of Gauf:

/divf(x) Az = / (f(x) ~§(x)) 1. (1)
0 an
With the aid of Theorem 1 from §4, we shall derive the identity (1) under
very general conditions to {2 and f which are relevant for the applications in
this textbook. Thus we shall obtain the Gaussian integral theorem.
Assumption (A):
Let 2 C R™ denote a bounded open set, with the topological boundary Q=
2\ 2. For each boundary point = € {2, we can find a sequence of points

{x(p)}CR"\ﬁ, p=12...

satisfying z(®) — x for p — oo; this means each boundary point is attainable
from outside.

Assumption (B):
We choose N € N bounded domains T; ¢ R*! with i = 1,2,...,N as

our parameter domains. Then we consider IV regular hypersurfaces in R” as
follows:

Fit XO@1) = (xgi)(tl,...,tn,l),...,ng)(tl,...,tn,l)) . T; — R™,
Here the mapping X () € C(T;) N CO(T;) is injective, and the rank of

its functional matrix satisfies the condition rgdX ) (t) = n — 1 for all points
t € T; and the indices i = 1,..., N. Furthermore, their surface areas fulfill

A(F;) = /d"_lo(i)(t) <+oo for i=1,...,N.

T;



85 The integral theorems of Gaufl and Stokes 41

We define
Fy:=X(Ty), F;:=XO(Ty), F:=X9T)

with 4 = 1,..., N. Let the union of these finitely many hypersurfaces F;
constitute the boundary of 2; more precisely

Q=F,U...UFy.
Furthermore, we require the condition
FinF;=FNE; forall i,j€{l,...,N} with i#j

Therefore, two different hypersurfaces possess common boundary points at
most.

We need the following two auxiliary lemmas:

Proposition 1. The point set 2 C R"™ may satisfy the assumptions (A) and
(B). Furthermore, let z° € F; denote an arbitrary point of the surface Fy with
l€{1,...,N}. Then we find an index k = k(2°) € {1,...,n} as well as two
positive numbers o = o(x°) and o = o(2°), such that the rectangle

QY 0,0) = {:17 ER" : |zi—al| <o, i=1,...,nwithi#k; |zp—z%| < O’}
is subject to the following conditions:

QﬂQ: {xER” : |xi—:17?| <o, i#k; xp :@(:rl,...,xk,l,:rk+1,...,xn)}.

Here @ denotes a C'-function on the domain of definition being given, such
that | — 29| < éa holds true. Furthermore, we have the alternative

QHQ:{:CER” Do —al <o fori#k,

lzg — 20| < o, Tk < B(@1,. .oy Tho1, Thot1s - - - ,xn)}
or
0NN = {xeR" Do — 2% <o fori#k,
|Ik - I2| <0, Ty > ¢(Ila coe s Th—15 Tht-1y - - ,In)}
Q
0
x
9yt .
The diagram shown here depicts the 2NQ

statement of our proposition.




42 I Differentiation and Integration on Manifolds
Proof:
1. Let the set 7 C R™"! be open, and let us represent our surface F = F

by the mapping
X(t) = (xl(tl,...,tn,l),...,xn(tl,...,tn,l)) . T — R™

On account of rgdX (t) = n — 1 for all points t € T, we find an index
k=k(z% € {1,...,n} with 20 = X ("), such that

6($1a-'-7xk—1axk+17"->xn)

A(t1, - tn1)

is correct. Now the theorem of inverse mappings provides an open set
U c R* ! and a rectangle

t=t0

Ryi= (2} — 0,2} +0) x ... x (2_ — 0,2} _; + 0)

><(:172+1—g,:172+1+g)>< ...... X (29 — 0,20 + o)
with a sufficiently small quantity o = o(x°) > 0, such that
fQtis. oo tnn) = (xl(t),~-~7$k71(t)7$k+1(t)7-~-vxn(w) U — R,

constitutes a C''-diffeomorphism. This means that f is bijective, f as well
as f~! are continuously differentiable, and we have the condition J¢(t) # 0
for all t € U. We define

k
V

I —1
Ti= (xl,...,Ik,1,$k+1,...,$n) S RQ CR"

and introduce the function

8 <=

B(z) = :ck(f’l(:z@:)), 7€ R,.

Then we observe

& e CY(R,R), X(U)= {(zl,...,xn) . 2€ R,, xk:gb(;%)}.

Now we see

and consequently



85 The integral theorems of Gaufl and Stokes 43

We choose the quantities o > 0 and ¢ > 0 sufficiently small, such that

<=

. 1
Q(xo,g,a)ﬁQ:Q(xO,g,a)ﬂFl as well as |€P(w)—x2|<2a

k
M . . . .
holds true for all z€ R,. We summarize our considerations and obtain

k

k
on Q(2°,0,0) = {:v ER" :xc R,, xp = @(%)}
2. Now we define the point sets
N
pt .= {:17 € Q(2°,0,0) : xp > @(:E)},

P = Q. 0.0) ¢ = 0(h).

>

P = {:v €Q(z° 0,0) : a1 < @(%)}

These sets above decompose the set Q(2°, o, o) according to the prescrip-
tion
Q(2°,0,0) = P~ UP°U PT. (2)

From the first part of our proof we infer
2NQa°0,0) = P°. (3)

On account of z° € 2 and the assumption (A), we can find the two points
y € NNQ and z € (R"\ )N Q. We distinguish between two possible
cases, namely the case 1: y € P~ and the case 2: y € PT.

Case 1. When we consider with §y € P~ an arbitrary further point, we
find a continuous curve I' C P~ from y to g, which does not intersect the
surface P°. Since y € (2 holds true and the curve I" does not intersect the
set 2 due to (3), we infer § € £2. Finally, we obtain the inclusion

P Cco2nq. (4)

Now we arrive at z € P'. Each further point 2 € Pt can be connected
by a curve I" in P with the point z. Since this curve does not intersect
§2, the condition z € R™ \ {2 implies zZ € R™ \ {2 as well. We conclude

Pt c (R"\2)NQ. (5)

Furthermore, we observe

Qa’0.0) = (@NQUE@NQU(R\D)NQ).  (©
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We deduce P~ = 2N Q and PT = (R"\ 2) N Q from the equations (2)
to (6).

Case 2. In the same way as in the first case, we show PT = 2N Q and
P =R"\2)NQ. qed.

Remark: In the neighborhood of a regular boundary point

we choose the function
¥(r) = i(ifk —D(T1,. o T, They 1, - - 7$n))

due to Proposition 1. Thus we can characterize the set {2 in this neighborhood
by the inequality ¥(z) < 0.

Proposition 2. The set 2 C R™ may satisfy the assumptions (A) and (B);
let 2° € F, with 1 € {1,..., N} denote a point of the surface F;. Furthermore,
we have an open set U = U(x®) C R™ containing the point 2° and a function

¥(x) € CY(U) with |V¥(z)| > 0 for all points v € U, such that
2NU={z€U : ¥(z) <0}
Then the vector
E(x) = |V&(2)|"VP(z), ze2nU
has the following properties:

1. We have §(X(t)> Xy, (t) =0 fori=1,...,n—1 neart =%

2. The condition [§| =1 on QNU holds true;

3. For each point x € 2 NU, we can find a number go(x) > 0 such that
2 for —pg<op<0

T+ o€ € _
{R"\Q for 0< o< +po

The vector £ is uniquely determined by these conditions.

Definition 1. The function § = (), defined in Proposition 2 for all points
xz € F1 U...UPFy, is named the exterior normal of (2 at the point .

Proof of Proposition 2: The uniqueness of ¢ follows from the properties 1 to
3 above. Now we shall prove the properties given for the function £. At first,
¥ =0 on 2NU holds true, and we infer
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0= W(xl(t), . ,xn(t)), b=ty taot) € V(... 1% ) C R"L open,

and consequently

O:zn:%i()((t)) gz j=1,...n—1

i=1

This implies - Xy, =0in V for j = 1,...,n—1 and the property 1. Evidently,
the condition |{| = 1 is valid on 2 N U. Therefore, it remains to show the
property 3. When 0 < |g| < go holds true, we infer the inequality

n

U(w+ 08) = U(w+ 08) —V(z) = 0 W, (2+ rob);
=1

1 n <0if —pg<p<O0
= U, (2 + ko€, (x
Q|VW(:E)|; ( o) (){>Oif0<g<go

for all points = € 2 N U; with a quantity x = x(p) € (0,1). This implies

2 if —pg<o0<0

+ S —
vtol {R"\Qif0<g<go

q.e.d.

Remark: Let the surface patch F' = F; bounding {2 be given by the parametric
representation

X(t)=X(t1,...,tn_1) : T — R™ on the domain T Cc R"~!
with the normal
I/(t) = |Xt1 A A th71|71th A A th—l(t>
1
n 2 2
= [Z (Dj(t)> ] (Dy(t),...,Dn(t)), teT
j=1

With a fixed ¢ € {£1}, we observe

f(X(t)) =cev(t) forall teT.

Proof: At first, we see f(X(t)) = e(t)v(t), t € T with the orientation factor
e(t) € {£1}. Now the function

c(t) = §(X(t)) u(t), teT

is continuous on the domain 7', and we obtain e(t) = +1 or e(t) = —1 on T
q.e.d.
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Definition 2. The set 2 C R™ may satisfy the assumptions (A) and (B).
Then we define

as the regular boundary of 2. Furthermore, let g(z) : 02 — R denote a
continuous bounded function on 0f2. We define the surface integral of g over
the regular boundary 0f2 by the expression

oo i [o@ata,
i=1p,

[210)

Now we formulate the assumption for our vector-fields to be integrated.

Assumption (C):
The function f(x) = (f1(x),..., fu(z)), z € 2 belongs to the regularity class
CH(2,R") N C°(N2,R"), and we require

/|div f(2)] dz < +oo.

[0}

We present a condition on the singular boundary FyU...UFy, which guar-
antees the validity of the Gaussian identity (1):

Assumption (D):
The set Fy U...U Fy has the (n — 1)-dimensional Hausdorff content null or

equivalently represents an (n — 1)-dimensional Hausdorff null-set. More pre-
cisely, for each quantity € > 0 we have finitely many balls

K; = {xeR" : |x—x(j)|§gj} for 7=1,...,J

with the centers (/) € R” and radii 0; > 0, such that the following conditions
hold true:

J
1. FU...UEyC U K; (Covering property);
j=1

J
2. Z Q;-”l <e (Smallness of the total area).
j=1

Remark: The condition (D) is valid, if all surface patches F; with I =1,..., N
fulfill the subsequent assumptions: When Fj is parametrized by the represen-
tation X = X(t) : T; — F; , we require the following:

1. The set T constitutes a Jopdan domain in R*!, which means that 7T} is
compact and its boundary 7} represents a Jordan null-set in R*~!;
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2. The mapping X (t) satisfies a Lipschitz condition on T, namely
[ X(#)— X" < LIt —t"| forall ¢,t" €T,

with the Lipschitz constant L > 0.

We now arrive at the central theorem of the n-dimensional integral-calculus.

Theorem 1. (Gaussian integral theorem)

Let 2 C R™ denote a bounded open set satisfying the assumptions (A), (B),
and (D). Furthermore, the vector-valued function f(x) fulfills the assumption
(C). Then we have the identity

/ div f(z) dz = / f(z) - €(2) do.
2 o0

Proof: (E. Heinz)
We shall prove this statement by referring to Theorem 1 from §4.

1. We comprehend M = {2 C R™ as an n-dimensional manifold in R™ with
the atlas A : X (t) =t, t € 2. For each point

N
20 e U Fc
1=1
we now find a rectangle Q(z, o, ) due to Proposition 1, such that
nNnQE = {xER” Do — 2V < o(i #£ k),
Tk § D(T1, o TRl Tl 1y - - Ty |2 — 2| < O’}.
On the semicube
H = {teR" Lty € (—0,0), |L] < o, i=2,...,n}
with the upper bounding side
S = {teR” ct =0, [ti] <o i=2,...,n}
in the direction of eq, we consider the transformation
Y(t) = (:v? +eota, .., a0 Feptn, (a2 + eata, ..., a0, + Epth,
:v2+1 + eppithats - 22 4 Enty) + 1ty $2+1 4 Eppithats ..o+ antn>

where €, € {£1} for kK = 1,...,n holds true. Choosing the sign factors
€1,...,Ep suitably, we attain the conditions
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Y(H)Cc2nQ, Y(S)=02nQ ,and Jy(0)=+1

for the functional determinant of Y. Therefore, the mapping Y is com-
patible with the chart X from above, and we endow OM = 9{2 with the
induced atlas. On account of the condition Jy(0) > 0, the normal v(t)
to a surface patch oriented by 0f2 points in the direction of the exterior
normal & to 912.

We now consider the (n — 1)-form

w = Z(*l)”lfi(I) d:l?l/\. . ./\dCCZ',1 /\dlﬂi+1/\. . /\dCCn S Cl (M)QCO(M)

i=1

From our considerations above we infer

Due to the assumption (D), we have finitely many balls to each quantity
€ > 0, namely

K-::{xER”:|x—x(j)|§gj} for 7=1,...,J ,

satisfying
J J
BU...UFyCc|JK; and > pi7'<e
j=1 j=1
Now we show that the capacity of the singular boundary vanishes. In this

context we construct a function ¥(r) : [0, +o0) — [0,1] € C* with

0,0<r<2 )
U(r) = and M :=sup |¥'(r)] < +o0.
1, 3<r r>0

For the indices 7 =1,...,J we consider the functions
X; () ::W(|x—x(j)|/gj>, x € R™,

satisfying x; € C'(R™) and

= { b |z — 20| > 30,
(z) = , .
X3 0, |z — 20| < 29

When E,, denotes the volume of the n-dimensional unit ball, we evaluate
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1 N
Vyi(z)|dz = / ’!I/’ z— 2 ’ dz
[ 9y (=21,

j
R™ 20;<|z—2()|<30;
M
< M@ -2
j

=ME,(3" —2")o} "

for j=1,...,J . We obtain a function

X(@) == x1(z) ... xs(z) € cg(ﬁ \ (B u...uFN))

with

J
[19x@lae <3 [ 1@l de
0 J=lgn

J
< ME,(3"-2")> o
j=1

< ME, (3" — 2")e .

Therefore, the set F} U...U F, C {2 has capacity zero.
3. The Stokes integral theorem for manifolds finally reveals

[ [ o= [ a0 fanscrs

a8

This corresponds to the statement above. q.e.d.

We obtain immediately Green’s formula from Theorem 1, which is fundamen-
tal for the Potential Theory presented in Chapter V.

Theorem 2. (Green’s formula)

Let £2 C R™ denote an open bounded set in R™ satisfying the assumptions (A),
(B), and (D). Furthermore, let the functions f(x) and g(z) belong to the class
CL(02) N C?(2) subject to the integrability condition

[ (145@)1+ 18g@)) da < +0

i)

Here the symbol A denotes the Laplace operator due to

Z 8:518:171

Then we have the identity
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!(ng—gAf) da =aé (f gg —gg—g) do

using the notations

of _

5 = 9 o) @), zeon,

Proof: We apply the Gaussian integral theorem to the vector-field

hz) == f(2)Vy(z) — g(x)V f(z)

Now we deduce

divh(z) = Vh(z) = f(¢)Ag(z) - g(a) Af (a),

and we obtain

[ (1@a90) - g Af(@)) dz = [ hia) (o) do

0 an
_ dg of
~ [ (105i@ - a5t do .
an
which implies the statement above. q.e.d.

We specialize the Stokes integral theorem for manifolds onto 2-dimensional
surfaces in the Euclidean space R3. Since we even prove this theorem for
surfaces with singular boundaries, we need the following result which is of
independent interest for the theory of Nonlinear Elliptic Systems in Chapter
XII.

Theorem 3. (Oscillation lemma of Courant and Lebesgue)
Let

B:= {wzu—i—ivz(u,v) €C=R?: ju| < 1}
denote the open unit disc and

X(u,v) = (xl(u,v),...,xn(u,v)) : B—R"cCYB)

a vector-valued function with finite Dirichlet integral D(X); more precisely

D(X) = // (1% ()P + X (0, 0)]?) dudv < N < +oc.

For each point wy = ug + ivg € B and each quantity § € (0,1), we then find
a number §* € [6,V/0], such that the estimate
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TN
log (15

L= / do(w) < 2

|w—wg|=6
weB

is valid for the length L of the curve X (w), |w —wg| = 6%, w € B.

For the proof of this theorem we need the elementary

Proposition 3. Let the numbers a < b be given and the function f(zx) :
[a,b] — R be continuous. Then we have the estimate

b

jlf(w)ldwsm /|f(:c)|2dac.

a

Proof: Let Z2 : a = 9 < 1 < ... < zy = b represent an equidistant
decomposition of the interval [a, b] - with the partitioning points z; := a+ K Its
for j=0,1,...,N. When {; € [z, x;4+1] denote arbitrary intermediate points,

the Cauchy-Schwarz inequality reveals

N—

IN

| f(E) (41 — 25)
=0

N—-1 N—-1
Z |f(&) 1P (@)1 — ;) Z Tjt1 —
=0 5=0

<.

N-1
=Vh—a | Y IF(&) P — )
j=0
The transition to the limit N — oo yields the inequality

/blf(x)ldzém /ab|f<x>|2dz ,

which has been stated above. q.e.d.

Proof of Theorem &: We introduce polar coordinates about the point wg =
ug + 1vg as follows:

u=up+0cosp, v=1vy+osing, 0<0<VE, ¢i1(0) <o < pa(o).
Furthermore, we define the function
¥(0,p) == X (ug+ 0cos g, vy + osinp)

and calculate
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U, = X, cosp+ X, sinp,
U, = —Xy0sinp + X,0cos
as well as

1
|W.Q|2 + 02 |W90|2 = |Xu|2 + |Xv|2-

Using the intermediate value theorem of the integral-calculus in combination

with Proposition 3, we obtain

Vi @2(0) 1
N2 ) = ([P 41Xy dudo= [ [ (10 + o) edods
B 5 v1(0)
N »p2(0) 2(6™) \/6d
. 0
> [ = /I%Istﬁ do = W, (6%, 0) d /?
g 1(0) p1(0%) 4
L ) 1 p2(8") 2
> (lo - - W, (5%, 0)| d
N 2< g5> ©2(0*) — p1(6%) (0%, 9l do
p1(6*)
2(5%) 2
> Dog (1 7,(5%, )| d
= ar g 5 pl0,P)lap

©1(0%)

for a number 6* € [§, v/d]. Finally, we infer the inequality

2(5")
I —

»1(6%)

@, (0%, )| dp S\/

and arrive at the statement above.

ArN
log}s B

TN
log (15

d

q.e.d.

Remark: When we choose wg € B in Theorem 3, we have only to require the

regularity X € C*(B\ {wo}).

We are now prepared to prove the interesting

Theorem 4. (Classical Stokes integral theorem with singular bound-

ary)
1. On the boundary of the closed unit disc B we

have given ko € NU {0}

points wi, = exp (ipy) for k = 1,... ko with their associate angles 0 <
01 < ... < @, < 2m. When we exempt the points wy, for k = 1,..., ko

from the sets B and OB, we obtain the sets B’

and OB’', respectively.
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. Furthermore, let the injective mapping
X(u,v) = (xl(u,v),xg(u,v),xg(u,v)) :B—R*cCYB')nCB)

with the property X, AN X, # 0 for all (u,v) € B’ and finite Dirichlet inte-
gral D(X) < 400 be given. Let the surface be conformally parametrized,
which means the conformality relations

| Xu| = 1X0|, Xu-X,=0 for all (u,v) € B
are satisfied. Denoting by
X(p)i=X (%), 0<p<on
the restriction of X onto OB, we obtain the line element

!
d'o(p) = |X'(9)|de, 0<o<2m, ©&{@1,. .., Pr}-

We require finite length for the curve X (v); and more precisely

ko—1 Prt1

LX) =Y [ dole) <+,

k=0 Pk

where we defined @o = @i, — 2.
. By the symbol

v(u,v) = | Xy A Xo| P Xu A Xy, (u,v) € B’
we denote the unit normal vector and by
d?o(u,v) :== | Xy A X, | dudv

the surface element of the surface X (u,v). The tangential vector to the
boundary curve is abbreviated by

X (e
Tl =)

. Let O D X(B) =: M constitute an open set in R3, and let the vector-field

a(z) = (al(acl,xg,xg),ag(:vl,xg,xg),ag(:vl,xg,xg)) € CHO)NnC' (M)
be prescribed with the integrability property

/ lrot a(X (u,v))| d?o(u,v) < +oo
B
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Then we have the Stokes identity

2m

// {rot a(X(u,v)) -u(u,v)} d?o(u,v) = / {a(X(gp)) -T((p)} d'o(p). (7)

Remarks: Since the surface is conformally parametrized, our condition D(X) <
400 is equivalent to the finiteness of the surface area of X, on account of the
relation

D(X) = 2//d20(u,v) =:2A(X)

The introduction of isothermal parameters in the large is treated in §8 of
Chapter XII.

Proof of Theorem 4:

1. We intend to apply the Stokes integral theorem for manifolds: The set
M = X(B) constitutes a bounded oriented 2-dimensional C'-manifold
in R? with the chart X (u,v) : B — M. The regular boundary OM :=
X (OB') inherits its orientation by the mapping X (), 0 < ¢ < 27 and
possesses finite length L(X) < +o00. At first, we show that the singular
boundary AM := X ({w1,...,wp,}) C M C R3 has capacity zero.

2. When w* € 0B is a singular point of the surface, we introduce polar
coordinates in a neighborhood of w* as follows:

w=w"+0e”, 0<o0<0", ¢i1(0) <p < p2(0).

For the quantity n > 0 being given, the Courant-Lebesgue oscillation
lemma provides a number ¢ € (0, p*) with the following property: Defining
the function Y (g, ) := X(w* +0€'%), 0 < p < p*, p1(p) < ¢ < 2(p), we
have the inequality
©2(8%)
Yo (67, @)l dp < 2

©1(0%)

7D(X)

1
é

IN

7 (8)

for one number §* € [§,/8] at least. Consequently, we find two numbers
0 < p1 <0* < p2 < p* with the property

»2(0)
[Yo(0,0)[dp <2n  forall o€ [o1,02]

»v1(0)

Now we consider the weakly monotonic, mollifying function

U(p) : [0,0"] — [0,1] € ct
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with the properties

V(o) =

0,0<0< 01
Lo<o<po*’

In a neighborhood of the surface M, we now construct a function
X = x(z1,22,23) € C(M)
satisfying
U(o) =xoY(0,9), 0<o <" vi(0) < <o)
This implies
V' (0) = Vx|y (. Yelor9) = [VX(Y (0, 0) Yo (0, 0)I-

‘We conclude

[] wdaetu

wEBNB ,x (w*)

0" w2(0)
< / / VXY (0, )Y, ][Y, | dp | do
0 v1(0)

0" w2(0)
Z/W’(Q) / Yo (0, 0)de | do
0

v1(e)

02 @2(9) 02
:/W’(Q) / Y, (0, 0)dp | do < 277/&'7’(9) do = 27

o1 v1(e) o

for all 5 > 0. In this way, we see that the boundary point X (w*) €
M has capacity zero. Therefore, the finitely many boundary points
X ({ws,...,wk, }) have a vanishing capacity.

. Now we consider the Pfaffian form

w = a1(z) dxy + as(x) dry + az(z) des € CH(M) N CO(M)

satisfying

/|dw| < // |rota(X(u,v))|d2o(u,v) < +00
M B

Theorem 1 from §4 yields the identity
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g/ {rota(X(u,u)) -u} do

27
— o= [o=[{a(x@) - T} d'ate) .
M oM 0
and our theorem is proved. q.e.d.

86 Curvilinear integrals

We begin with the fundamental

Ezample 1. (Gravitational potentials)
Let the solid of the mass M > 0 and another solid of the mass m > 0 with
m < M be given (imagine the system Sun - Farth). Based on the Theory
of Gravitation by I. Newton, the movement in the arising force-field can be
described by the Newtonian potential

M
F(:z:):'ymT , r=r(z)=1\/2? +23+23, xeR*\{0} ;

here v > 0 means the gravitational constant. We determine the work being
performed during the movement from a given point P to another point @) in
the Euclidean space by the formula W = F(Q) — F(P). We can deduce the
force-field by differentiation from the potential as follows:

@) = (A@). L@) Si@) = VF(@)

mM mM
= 777“—3 (71,22, 73) = *VT—3117-

Now we associate the Pfaffian form
w = fi(z)dz1 + fo(z) dos + f3(2) dzs
M
=7 ﬂ:,—g(iﬂl dzy + xo dxo + 3 dxs).

When
X(t) : [a,b] — R*\ {0} € C*([a, b))

denotes an arbitrary path satisfying X (a) = P and X (b) = @, we infer
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b
I / Foy @ (1) Feyah (1) + Fry (1)) di
X

:F(Xﬁn>—F(X@D.

Consequently, this integral depends only on the end-points - and does not
depend on the path chosen. Then we speak of a conservative force-field; move-
ments along closed curves do not require energy.

We intend to present the theory of curvilinear integrals in the sequel.

Definition 1. Let 2 C R™ - with n > 2 - denote a domain and P,Q €
2 two points. Then we define the class C(£2, P,Q) of piecewise continuously
differentiable paths (or synonymously, curves) in {2 from P to @ as follows:

aQRQ%:{ﬂw:MH~%QEC%mm:
—xo<a<b<4oo, X(a)=P, X(b)=0Q;
We have a =ty < t1 < ... <ty =b such that
€ CY([ti,tiz1],2) fori=0,...,N —1 holds true}.

[ti,tit]

With the set
cn):=Jcwrpr
pPe

we obtain the class of closed paths (or synonymously, closed curves) in (2.
When X (t) = P, a <t < b holds true, we speak of a point-curve.

Remark: In particular, the polygonal paths from P to () are contained in

C(2,P,Q) .
Definition 2. Let
wal Jdri, @€ R

denote a continuous Pfaffian form in the domain 2 and X € C(£2,P,Q) a
piecewise continuously differentiable path between the two points P,Q € {2.
Introducing

X(J) = X‘[tj-,thrl] S Cl([tj,tj+1]) f07“ 7j=0,....N—1 |

we define by
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N-1 No1 b,

o= -__0 [o=% [ Yn(xm)oa

=0 ¥ j=0 ¢, =1
the curvilinear integral of w over X.
Definition 3. Let
w:Zfi(:r)d:Ei, x €2
represent a continuous Pfaffian form in the domain 2 C R™. Then we call
F(z) € CY(2) a primitive of w, if the identity
dF =w in 2
or equivalently the equations
F.(z) = fi(x) for xe€ 2 and i=1,...,n

hold true. When w possesses a primitive, we speak of an exact Pfaffian form.

Theorem 1. (Curvilinear integrals)
Let {2 C R™ denote a domain and w a continuous Pfaffian form in §2. Then
w possesses a primitive F' in 2 if and only if we have the identity fw =0

X
for each closed curve X € C(£2, P, P) - with a point P € (2. In the latter case,
we obtain a primitive as follows: We take a fized point P € 2 and have the
following representation for all arbitrary points Q € 2, namely

F(Q)::'y—i—/w with 'Y € C(2,P,Q)
Y

where v € R is a constant.

Proof:
1. When w possesses a primitive F', we infer

n n

w= Zfl(x) dx; = ZFII(LE) dz;, x € 1.

i=1 i=1
Let us consider X € C(f2, P, P) with P € {2 and

X0 =X, €C Ity ty4a]) for j=0,... N —1

j+1]

This implies
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/w - ]f_l / w= i t/(zn:Fm (X(t)):c;(t) dt)

X 7=0 ¥ g=0 ¢ \i=l
N—1 tig N-1
= / )= Y {F(X) - F(X1)}
J=0 {, j=0

- F(X(tN)) - F(X(t0)> — F(P)— F(P) = 0.
2. Now we start with the assumption

/w =0 forall curves X €C(2,P,P) with Pe
b'e

The point P € {2 being fixed, we choose a path X € C(£2,P,Q) for
an arbitrary @ € (2 and define F(Q) := [w. Then we have to show

X
the independence of this definition from the choice of the curve X: When
Y € C(£2, P, Q) represents another curve, we have to establish the identity

I

We associate the following closed curve to the curves X : [a,b] — R™ and
Y : [¢,d] — R™, namely

B X(t),t € [a,b]
7= {Y(b+dt>,te oot d—c

Evidently, Z € C({2, P, P) holds true and

oLt
o

X Y

follows, which implies

3. Finally, we have to deduce the formulas

F..(Q)=fi(Q) for i=1,...,n

Here we proceed from () to the point
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Q. = Q + ey, ei::(O,..., 1 ,...,0)

along the path
Y(t) :[0,e] = R", Y(t) =Q + te;

for a fixed index i € {1,...,n}. Now we evaluate

F(Q.) = F(Q) + F(Q.) - F(Q) = F(Q) + / o
Y

—r@+ [ Y a(ro)on
0 =1

~ F(Q)+ / 10 + tes) dt
0

Finally, we obtain

d d .
dwlFQ:dEF(QE)}&-:O:f’L(Q)v 7’:15"'777’
proving the statement above. q.e.d

Let .
w= Z fi(x) dx;
i=1

represent an exact differential form of the class C1(£2) in a domain 2 C R".
Then we have a function F(z) : 2 — R € C?(£2) with the property

dF =w or equivalently fi(z) = Fy,(x).

Furthermore, we infer the identity

n n
do=dF=dY F dr;=Y Fpu dojNde; =0
i=1 i,j=1
n 1S symmetric.

.....

Definition 4. We name an m-form w € C'(£2) in a domain 2 C R™ as being
closed, if the identity dw = 0 in {2 holds true.

Remark: The Pfaffian form w =Y | fi(z)dz;, x € 2 is closed if and only
if the matrix (%ﬁ)) is symmetric.
The considerations above show that an exact Pfaffian form is always closed.

We shall now answer the question, which conditions guarantee that a closed
Pfaffian form is necessarily exact - and consequently has a primitive.
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Ezample 2. In the pointed plane R? \ {(0,0)}, we consider the Pfaffian form
-y

_ x 2 2
w—x2+y2d:c+x2+y2dy, z°+y° > 0.

This 1-form is closed, since we have

O ( —y \_—@+y) - (92  —2®+y°
oy \x2+y>)

(22 + 12)2 T @+ 2)2

as well as

0 x ity —a(2e)  y? —a?
oz :1:2+y2 - (x2+y2)2 - (x2+y2)2’

and consequently

0 —y 0 x
do=— | —=—2—= ) dyNd — | ———= ) de Ady =0.
@ Oy (:v2+y2> 4 z+6:v (:v2+y2> vy

We observe the closed curve
X(t) := (cost,sint), 0<t<2or

and evaluate

2m
/w:/(—Sint(fsint)Jrcostcost) dt = 2.
X 0

According to Theorem 1, a primitive to w in R? \ {0,0} does not exist - and
the differential form is not exact there.

The nonvanishing of this curvilinear integral is caused by the fact that the
curve X in R?\ {(0,0)} cannot be contracted to a point-curve.

Definition 5. Let 2 C R" denote a domain. Two closed curves
X(®) : [a, b)) — 2 and Y(t) : [a,b] — 2, X, Y €C(2)
are named homotopic in §2, if we have a mapping
Z(t,s) : [a,b] x [0,1] — 2 € C°([a,b] x [0,1],R™)
with the properties
Z(a,s) = Z(b, s) for all s €[0,1]
as well as

Z(t,0)=X(t), Z(t1)=Y(¢) for all t € [a,b]
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Now we establish the profound

Theorem 2. (Curvilinear integrals)
Let 2 C R™ constitute a domain, where the two closed curves X, Y € C(f2)
are homotopic to each other. Finally, let

w:Zfi(:r)d:Ei, x €2
i=1

represent a closed Pfaffian form of the class C1(§2). Then we have the identity

fon o

X Y

For our proof we need the following

Proposition 1. (Smoothing of a closed curve)
Let
X(t) : [a, b)) — R € C(£2)

represent a closed curve, which is continued periodically via
X(t—i—k(b—a)) = X(t), teR, kel
onto the entire real line R with the period (b—a). Furthermore, let the function
x(t) € Cg°((=1,+1),[0,00))
give us a mollifier with the properties

x(—t) = x(t) forall € (-1,1)

and

When we define

1 T—1
Xt.e(T) = <€X< ), T € R,

we obtain the smoothed function

+oo +oo
X0~ [ Xoemar = [ x@ Iy () an

3

which has the period (b — a) again. Then we observe
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li%1+ Xe(t) = X(t) uniformly on [a,b].
E—

Furthermore, the function X¢(t) belongs to the class C*°(R), and we obtain
the estimate

d
‘thE(t)'SC forall te€a,b], 0<e<ey,
with a constant C > 0 and a sufficiently small 9. For all compact subsets
T C (to,tl) U (tl,tQ) U...u (tN—latN) C (a,b)
we infer

d

it Xe(t) — X'(t) for e =0+ uniformly in T.

Proof: We show parallel to Proposition 2 in §1 that

Xe(t) — X(t) forall te€[a,b] uniformly, where e — 0+ holds true.

Since X is piecewise differentiable and continuous, a partial integration yields

- TX%r)xt,s(r) dr.

Therefore, we obtain

+oo +oo
‘ZXE(t)‘ < / | X' (T)|xte(T)dr < C / Xte(T)dr =C for all teR,

using the estimate | X' (7)| < C on R. Finally, we show - parallel to Proposition
2 in §1 again - the relation

d
lim  X°(t)=X'(t) uniformly in T C (to,t1)U...U(tny—1,tn)
e—0+ dt

which had to be proved. q.e.d.

Proof of Theorem 2:

1. Let X, Y € C(£2) represent two homotopic closed curves. Then we have a
continuous function

Z(t,s) : [a,b] x [0,1] — 2 € C°([a,b] x [0,1],R™)
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with the properties
Z(a,s) = Z(b,s) for all s € [0,1]
and
Z(t,0)=X(), Z(t1)=Y(?) for all ¢ € [a,b].

We continue Z onto the rectangle [a,b] X
[—2, 3] to the function

X(t), (t,s) € [a,b] x [—2,0] Y(t) Q
B(t,s) =14 Z(t,s), (t,s) € [a,b] x [0,1] . (1) Z0t.s) .
Y(t), (t,5) € [a,b] x [1, f X(t) b

Via the prescription
@(tJrk(bfa),s) =&(t,s) for teR, se€[-2,3] and keZ ,

we extend the function onto the stripe R x [—2, 3] to a continuous function,
which is periodic in the first variable with the period (b — a).

On the rectangle @ := [a, b] x [—1, 2] we consider the function
“+oo 400
P (u,v) = / /¢(€,n)xu,a(€)xv,5(n) dédn  forall 0<e<l.

Now the regularity ¢ € C*°(Q) is fulfilled, and we have the limit relation
& (u,v) — P(u,v) for e — 0 uniformly in [a,d] x [-1,2].

This implies the property &¢(Q) C {2, 0 < € < g9 and the periodicity

@° (u+ k(b — a),v) = ¢ (u,v) forall (u,v)€Rx[-1,2], keZ

For all parameters a < u < b we have

+oo 400

& (u, 1) = / / BE ) Xowe (€)X 1.2 () dEdn
“+oo 400
- / X ()X (€)X 1.0 () ddly

+oo
/ X(€)Xuc€)dE = X(u)

and additionally
P°(u,2) =Y (u)
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3. By the Stokes integral theorem on the rectangle ), we obtain the following
identity for all 0 < € < g9, namely

/w—/w: ]{w@ :/d(W¢s) :/(dw)¢s =0.
Xe ye aQ Q Q
We observe ¢ — 0+ , and Proposition 1 yields

0= lim /wf/w :/wf/w
e—0+
XE YE

X Y

and therefore our statement above. q.e.d

Definition 6. Let the domain 2 C R™ as well as the points P,Q € {2 be
giwen. We name two curves

X(@),Y(#) : [a,b] — 2€C(2,P,Q)

as being homotopic in {2 with the fixed start-point P and end-point Q, if we
have a continuous mapping

Z(t,s) : [a,b] x [0,1] — 2
with the following properties:
Z(a,s) =P, Z(b,s)=0Q for all s €[0,1]
as well as

Z(t,0)=X(t), Z(t,1)=Y(¢) for all t € [a,b)].

We deduce immediately the following result from Theorem 2.

Theorem 3. (Monodromy)

Let £2 C R™ denote a domain and P, Q € {2 two arbitrary points. Furthermore,
let the two curves X (t),Y (t) € C(£2,P,Q) be homotopic to each other with
fixed start- and end-point. Finally, let

w:Zfi(:r)d:Ei, x €2
i=1

represent a closed Pfaffian form of the class C*(£2). Then we have the identity

)
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Proof: We consider the following homotopy of closed curves in §2, namely
P(t,s) : [a,2b—a] x [0,1] — 2

with

3

51, 5) = X(t),a<t<b
YT Yz —ts), b<t<2—a’

Now we note that

Xt),a<t<b
&(t,0) = (B asts .
X(20—1),b<t<2b—a

Here the curve X is run through from P to @ and then backwards from @ to
P. Therefore, we infer
/ w = 0.

Furthermore, we deduce
X(t <t<b
B(t,1) = (t),asts .
Y(20—1),0<t<2b—a

Here the curve X is run through from P to @, at first - and the curve Y is
run through from @ to P, afterwards. Finally, Theorem 2 reveals the identity

Oz/w:/w:/w—/w.
®(-,0) ®(-,1) b'e y

q.e.d.
The study of curvilinear integrals becomes very simple in the following do-
mains.

Definition 7. A domain 2 C R™ is named simply connected, if each closed
curve X (t) € C(£2) is homotopic to a point-curve in §2. This means geometri-
cally that each closed curve is contractible to one point.

Theorem 4. (Curvilinear integrals in simply connected domains)
Let 2 C R™ constitute a simply connected domain and

w:Zfi(:v)d:Ei, x e

a Pfaffian form of the class C1(§2). Then the following statements are equiv-
alent:
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1. The Pfaffian form w is exact, and therefore possesses a primitive F.
2. For all curves X € C(§2, P, P) - with a point P € 2 - we have the identity
Jw=0.

X
3. The Pfaffian form w is closed, which means
dw=0 in
or equivalently that the matrix (gf: (w)) is symmetric for all
i ij=1,em

points x € (2.

Proof: From the first theorem on curvilinear integrals we infer the equivalence
1. & 2.°. The statement ’1. = 3.’ is revealed by the considerations preceding
Definition 4. We only have to show the direction '3. = 2.”: Here we choose an
arbitrary closed curve X (t) € C(£2, P, P) , which is homotopic to the closed
curve Y(t) = P, a <t < b, due to the assumption on the domain 2. The
application of Theorem 2 yields

/w—/w—/b _" H(Y®)viwyde=o
X Yy o =1

(2

which implies our theorem. q.e.d.

Remark: In the Euclidean space R3, our condition 3 from Theorem 4 implies
that the vector-field f(z) = (fl(x),fg(:r),fg(x)), x € {2 is irrotational,

which means

rot f(x) =0 in f£2.

In simply connected domains 2 C R?, Theorem 4 guarantees the existence of
a primitive F' : 2 — R € C?(£2) with the property VF(z) = f(z), z € (2.

87 The lemma of Poincaré

The theory of curvilinear integrals was transferred to the higher-dimensional
situation of surface-integrals especially by de Rham (compare G. de Rham:
Varietés differentiables, Hermann, Paris 1955). In this context we refer the
reader to Paragraph 20 in the textbook by H. Holmann and H. Rummler: Al-
ternierende Differentialformen, BI-Wissenschaftsverlag, 2. Auflage, 1981.

We shall construct primitives for arbitrary m-forms, which correspond to
vector-potentials - however, in ’contractible domains’ only. Here we do not
need the Stokes integral theorem!

Definition 1. A continuous m-form with 1 < m < n in an open set {2 C R™
with n € N, namely



68 I Differentiation and Integration on Manifolds

w= Z @iy .4, (@) dag, AL Nday,, x € {2,

1<i1 <..<im<n

is named exact if we have an (m — 1)-form

A= Z biy i, (@) dziy Ao ANdxy,, z e

1<i1 < . <im—1<n
of the class C*(§2) with the property
d\ =w in  £2.

We begin with the easy
Theorem 1. An ezact differential form w € C1(£2) is closed.
Proof: We calculate
dw = d(d\) = d > dbs, 4, (x) Adai, A... Ndxs,,

1<i1<..<im-1<n

S (ddbii @) Adz A Ad, = 0,

1<i1 <. <im_1<n

which implies the statement above. q.e.d.

We now provide a condition on the domain {2, which guarantees that a closed
differential form is necessarily exact.

Definition 2. Let 2 C R™ denote a domain with the associate cylinder
Q:=02x[0,1] c R™.

Furthermore, we have a point xo € 2 and a mapping

~

F=F(x,t) = (fl(wl,...,xn,t),...,fn(acl,...,xn,t)) 00

of the class C’%Q,R”) as follows:
F(z,0) =9, F(z,1)=x forall =z € (2.
Then we name the domain {2 contractible (onto the point x).

Remarks:

1. Let the domain {2 be star-shaped with respect to the point g € 2, which
means
(tx+ (1 —t)xg) € 12 forall tel0,1], ze€ .

Then (2 is contractible with the contraction-mapping

F(z,t) :=tx+ (1 —t)zo, x €2, te][0,1].



87 The lemma of Poincaré 69

2. Each contractible domain {2 C R™ is simply connected as well. When
X(s), 0 < s <1 with X(0) = X(1) represents a closed curve in 2, it is
contractible onto the point zg via

Y (s, 1) ::F(X(s),t), 0<s<1, 0<t<l

In a contractible domain, we can perform the contraction of an arbitrary
curve X (s) by the joint mapping F. Therefore, the contraction is inde-
pendent from the choice of the curve X.

3. The following chain of implications for domains in R™ holds true:

convex —> star-shaped
= contractible
—> simply connected.

On the cylinder 2 we consider the I-form

y(z,t) = Z Ciyiy (@ t) dzgy Ao AN day,
1<ip<...<1<n,
of the class C1(£2). We use the abbreviation 4 =" for the time-derivative
and define
Az, t) = Z Ciy i (@ t)dagy Ao A day,.

1<i1<... <1 <n
Furthermore, we set

1 1
/'y(:zz,t) dt = Z /Cil...iz (x,t)dt | dxi, A...Ndxy,.
0

1<ii<..<i<n \}

The fundamental theorem of the differential- and integral-calculus reveals
1
[3@ =) - 22,0 o
0

The function g(z,t) : 2 — R € C'(£2) being given, we determine its exterior
derivative

“~ g . .
dg=>_ Tor dei + gz, t) dt =: dpg + ¢ dt.
k=1

Consequently, we obtain
dy=dzy+dt N7y

abbreviating
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dyy = Z (dxcl-lmil (, t)) Adxi, Ao Ndx,

1<i1<...<i;<n

Finally, we deduce the identity

d /’y(a:,t)dt :/(dxv(x,t)) dt . 2)
0 0

Therefore, we calculate

1
d /'y(ac, t)dt
0

1
Z Z 817 /Cil...iz (.”L',t) dt | dr; Ndxg, N... A dl‘il
0

1<ip<..<yy<n =1

n 1

- >

1<11< <y <n =1 0

1
"9
:/ (Z B Ciy..q (2, 1) d:c1> Adzi, N...ANdx;, p dt
0 1<11< <iyy<n v
1

=1
/ dzy(z, t

0

t) dt | dz; Ndxg, N... A dl‘il

We are now prepared to prove the central result of this section.

Theorem 2. (Lemma of Poincaré)
Let £2 C R™ denote a contractible domain, and choose a dimension1 < m < n.
Then each closed m-form w in {2 is exact.

Proof (A.Weil):

1. Since {2 is contractible, we have a mapping
F=F(zt): 2— 2ecC*N)
satisfying
F(z,0) =z9, F(z,1)=2x for all =z e (2.

On the set 2 = 2 x [0,1] , we consider the transformed differential form
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O(z,t) == wo F(x,t)
= Y ai (P t)dfi, Ao A,

1<i1 <..<im<n

= > iy (F (2, 1)) do fiy A ... Ny fi, + dt Awo(z,t)

1<) <. <im <n

= w1 +dt Aws.
Here we used the identities
dflk:dzf1k+f1kdt for k::l,...,m

The differential forms wq(z,t) and wa(z,t) are independent of dt and have
the degrees m and (m — 1), respectively. Furthermore, we note that

wi(z,0) =0 and wi(z,1) =w(x).
2. We evaluate
0= (dw)o F =d(woF) = di
= dwy + d(dt A ws) = dywi + dt AWy — dt A dwo
= dywy + dt Ay — dt A (dgws + dt A i)
= dywy + dt A (&1 — dyws).

This implies
d)l = dxu.)Q. (3)

3. Now we define the (m — 1)-form

1
:/wg(:vtdt
0

With the aid of the identities (1), (2), and (3) we calculate

1 1
d\ = / d wwa (T, t dt = /d)l(x,t) dt = wi(z,1) —wi(x,0) = w(x),
0

0
which completes the proof. q.e.d.

Example 1. In a star-shaped domain 2 C R3 | let the source-free vector-field

b(z) = (bl(w),bz(x),bs(x)) : 2 — R? e C'(2,R?)
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with
divb(z) =0

be given. Then its associate 2-form
w = b1(z) dee A dxs + ba(z) deg A dxy + bs(x) dzy A dag
is closed. Theorem 2 gives us a Pfaffian form
A = ay(z) drvy + az(z) dos + az(x) des € C*(0)

satisfying d\ = w. The calculations in § 3 imply the following identity for the
vector-field a(z) = (a1(x), az(z), asz(x)), namely

rota(x) = b(x) forall =ze€ {2

Therefore, we have constructed a vector-potential a(x) for the source-free
vector-field b(x).

88 Co-derivatives and the Laplace-Beltrami operator

In this section we introduce an inner product for differential forms. We con-
sider the space

R" := {x:(xl,...,xn) :x; €R, i:l,...,n}

with the subset ©® C R™. Furthermore, we have given two continuous m-forms
on O , namely

o= Z iy (.T) d,iCil VANPAN dZCim, x € (“),
1<i1 <. <im<n
as well as
8= Z biy. ., () dxy, Ao Ndxy,,, x € 06O.

1<i1<...<im<n

We define an inner product between the m-forms a and 3 as follows:

(Oé,ﬁ)m = Z ail...im(w)bil___im(l'), m=20,1,...,n. (1)

1<i1<...<im<n

Consequently, the inner product attributes a 0-form to a pair of m-forms. It
represents a symmetric bilinear form on the vector space of m-forms.

Now we consider the parameter transformation

v =d(z) = ((151(:61,...,xn),...,@n(gcl,...,xn)) L0 —0eCN)
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on the open set 2 C R™. The mapping @ satisfies
Jo(z) = det (agp(x)) £0 forall ze . 2)
We set
2
g(x) := (JQ(:E)) = det (6(15(:10)’5 o 8(15(:10)), x € .
The volume form
w=+g(x)drr A... ANdxy, x €2 (3)

is associated with the transformation 2 = @(z) in a natural way. The m-forms
«a and # are transformed into the m-forms

ai=ap = Z @iy i ((15(:10)) dd; () A ... NdD; , (x)

1<i1 <...<im<n
=: E Ay, (ac) de;, N... A dl‘im
1<i1 <. <im<n

and

Bi=Bo= D b (B(@) dPi,(2) A A A, ()

1<i1 <. <im<n
=: E bil...im (ac) de;, N... N\ dl‘im,
1<i1 <. <im<n

respectively. We shall define an inner product (a,f),, between the trans-
formed m-forms a and ( such that it is parameter-invariant:

(@.B)m(@) = (@ B (2()),  a e (4)

We shall explicitly represent this inner product for differential forms of the
orders 0,1,n — 1,n in the sequel.

1. Let m = 0 hold true. We consider the 0-forms
a=a(z), L=0bz).
Then we see
oa=ap= a(@(w)), B=P0s= b(@(m))
Setting

we obtain



74 I Differentiation and Integration on Manifolds
2. Let m = n hold true. We consider the n-forms
a=a(z)dxy N...Ndx,, L=0bx)dryA...Adx,.
We calculate

a=as :a(qﬁ(:c)) ddy A ... A dD,

~a(2()) (21 g;ﬂ d%) (Z_l Do d:czn>

= a(@(m))Jq;(x) dey A ... ANday, .

Therefore, we have
a(x) = a(@(m))Jq;(x), b(z) = b(@(:v))lp(:v), x € 1.

Now we set

3. Let m = 1 hold true. We consider the Pfaffian forms

ial Ydz;, (= Zb ) dx;
i=1

and calculate
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Thus we obtain

n n

az( )ax]
= 545_21) v)d; with bj(x Z( )ax]

where j = 1,...,n is valid. We introduce the following abbreviation for
the functional matrix

09;
F(z) := (6:53( )>i,j—1,...,n, z €

i=1

The vectors
a(z) = (al(x), . ,an(x)), a(z) = (al (x),... ,an(x))

and

b(z) = (bl(:c), . ,bn(:c)>, b(z) = (bl(:c), . ,bn(:v)>

are subject to the transformation laws

a(x) = a(@(:v)) oF(x), b(z)= b(@(m)) o F(x),

and

a(z) o F~Y(z) = a(@(x)), b(z) o F~Y(z) = b(@(z)),

respectively. We define the transformation matriz
@)= (95@), | =F@) oF()

with the inverse matrix

and

Now we define
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n

(@, Ba(@) = Y g¥(x)ai2)b ().

4,j=1

Then we infer

(@, 8)1(2) = a(2) 0 G~} (@) o (b(x))

= a(2(2)) o (b(@()))’
= (o )1 (2(@)).

4. Let m = n — 1 hold true. We define the (n — 1)-forms

0; = (—1)1-71 dry AN ... ANdxi—y Ndzipy A ... Ndxy,

for 1 <4 < n and consider the (n — 1)-forms

o = zn:ai(x)&, ﬁ = ibz(w)el
i=1 i=1

We use the symbol ~ to indicate that we omit this factor. Defining

Hj = (*1)j71 d:l?l VANAN d.Ij,l A d$j+1 VANAN dCCn

for j =1,...,n, we calculate

n

o =0p = Z a; (@(x)) (71)1'_1 d@l VANIAN dﬁpi,1 A dﬁpi+1 A A d@n

=1

n

- zn:a (@(x)) EIDY g;i? daj,

n

0D;_
ANon YD e day,

=1 Jji=1 J1 Ji—1=1
0P, "~ 0P,
A odag | A A dx,
Ji+1=1 anHI Jn=1 8xj"
~ N NDy,...,D,..., D)
_ i (p ) _1 7—1 I I ) )
;a ( (:C) ( ) Zl 8(.’51, 7jja 71771)
dCCl/\/\dj?J/\/\dCCn
" (& o(Dr,..., Bs, ... B
— ) 1 i+j ) ) ) ) R
3 (Slo)i Ge=fetale
j=1 =1

Lji_1
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Correspondingly, we define b;(x) for j =1,..., n. The matrix of adjoints
for F(x), namely

N

.....

and equivalently
E(z) = Jo(x) (F(I)t)_1~ (5)
When n n
ap=a=Y aj@)l;, Bp=p= b;(x)d
j=1 J=1

denote the transformed (n — 1)-forms, their coefficient vectors

a(z) = (al(x) ..... an(x)), a(z) = (al (x),..., an(x))

and
b(x):(bl(x) ..... bn(x)), b(a:):(bl(x) ..... bn(:z:))

are subject to the transformation laws
a(z) = a(@(x)) o BE(zx) = Jq;(x)a(@(x)) 0 (F(z)t)_l,
b(z) = b(@(m)) o E(x) = JQ(:v)b(@(x)) o (F(x)t)il.
Now we define as the inner product

1 n
(@ B)n-1(z) = 9@ ;1 9ij (x)ai()bj(x).

Finally, we infer

1
(o, B)n—1(z) = a(z) o G(z) o (b(z)
(J¢(x)>2 ( )
- a(q5(a:)) o F(x)t)_l o F(z)' o F(z) o (F@:)) s (b(@(x)))t
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Now we introduce another operation in the set of differential forms.

Definition 1. When k € K := {0,1,n— 1,n} holds true, we attribute to each
k-form « its dual (n — k)-form x« as follows:

1. Let k =0 and oo = a(x) be given. Then we define

where
w=+g(x)dxy A...Ndzy,

denotes the volume form (compare (3)).
2. Let k=1 and .
Z a;(x) dz;
i=1

be given. Then we define

*0412\/9(56)2 Zgij(fﬂ)aj(fv) 0;.

3. Letk=n—1 and
a= Z a;(z)0
i=1
be given. Then we define

*Q = Z Zg” a;(x) | d;.

g(x =1

4. Let k =n and o = a(z)w be given. Then we define

We collect some properties of the x-operator.

1. The *-operator represents a linear operator from the vector space of k-
forms into the vector space of (n — k)-forms. It gives us an involution,

which means
Xk Q= (—l)k(”fk)oz

for all k-forms o with k € K.
2. The k-form « and the (n — k)-form g fulfill the identity

(o, %B) = (x, B)n—k (=D ke K.

We prove this statement for all k € K:
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a) Let k = 0, = a(x), f = b(z)w, *F = b(z), *a = a(x)w be given.
Then we obtain

(o, %8)o = a(x)b(z) = a(x)b(x)(w,w), = (a(x)w, b(x)w), = (*xa, B)n -

b) Let k = n, a an n-form, 8 a 0-form be given. We calculate with the
aid of property 1 and (a) as follows:

(av*ﬁ)n = (*(*a)v*ﬁ)n = (*a’ *(*6))0 = (*Oé,ﬁ)o :

¢) Let k =1 be given. We consider the forms

i=1

«

Then we obtain

g(x) i=1
as well as
(s, D)1 = VIO S~ () (Z gi’m)ak(x)) bi(x)
9(@) i=1 k=1
- > bj(x) (Z gij(w)glk(iv)ak(w)>
9(x) i,j=1 k=1
1 n
= bi(x) (6% ak(z
— Z (@) (0 an (@)

This implies (o, *3)1 = (=1)" " (xa, B)pn_1-
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d) The case k = n — 1 remains. With the aid of property 1 and (c), we
deduce for the (n — 1)-form « and the 1-form § as follows:

(e, #B)n-1 = (=1)" " (x(*a), B)n—1
= (va,x(xB))1 = (=1)" " (xev, B)1 -
3. Taking the two k-forms a and 3 with k € K, we infer
(xa, %B) - = (=1 P (x(xa), B

= (=04 (B = ..

Consequently, the x-operator represents an isometry.
4. Two k-forms « and [ satisfy the identity

AB) = (1) F (ka) A B = (a, Blrw, K EK.
For the proof, we show the relation
an(+8) = (o, Brw - (6)
Then the (n — k)-form *a and the k-form 3 satisfy
(=D B (ka) A B = BA (xa) = (B, @)kw = (o, Bkw = a A (+B).
a) Let k=0, a = a(z), 3 = b(x), *3 = b(z)w be given. Then we see
a A (+8) = a(@)b(z)w = (a, B)ow.

b) Let k = 1 as well as

a—Zal Ydx;, B= Zb ) dx;

and
n

B=Vo@ Y- [ Y g @) | 6

Jj=1

be given. Now we evaluate

al(x3) = Z g" bj(x) | deiA...Adzy, = (o, 3)1w.

3,7=1

¢) For k=n—1 and

a= iai(a@)ﬁi, 8= ibi(x)H
i=1 i=1
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as well as
()& (¢
“6 = S gu@bs(@) | dai
9(z) =\
we infer
a A (x0) = (Z ai($)9i> A % Z Zgij(x)bj(:r) dz;
- : Z gij(@)a;(z)bj(x) | dey A... ANdxy

= (o, B)n-1 mdxl Ao Ndey = (a, f)p—1w.
d) Finally, let k = n, @ = a(z)w, and 3 = b(z)w be given. This implies
o A (+8) = al@)wb(z) = a(@)b(z) = (a, Auw.
. Let .
a= Z a;(z)dx;
i=1
denote a Pfaffian form and
x=P(x) = (@1(:171, ces @)y P, . ,xn))
a parameter transformation. Then we observe (xa)g = *(ag).
We use the invariance of the inner product as well as the property 4: For

an arbitrary 1-form
n

=1

with the transformed 1-form (g, we infer the identity
Ba N *(ag) = (Bs, ae)1ws = {(B, a)1 }ews
={(B,0)1w}ts = {B A (xa)}e = o A (xa)e .
Then we obtain
Bo A (#(ag) — (xa)p) =0  forall g

and consequently
*(ag) = (*a)g.
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Definition 2. Given a 1-form
a:Zai(:v)d:Ei, r e
i=1

of the class C*(£2) , we define the co-derivative da due to
da := xd * a.

Remark: Now 0 represents a parameter-invariant differential operator of first
order - and attributes a O-form to each 1-form. We determine the operator §
in arbitrary coordinates. Let us consider

a:Zai(x)dxi, k= g(x)z Zgij(x)aj(:v) 0;.

Then we evaluate

d*a:' ox; m;gij(w)aj(x) dri A ... Ndxy,

==Y o [ VI E @) |

The application of the %-operator on d * « yields

Theorem 1. (Partial integration in arbitrary parameters)
Let £2 C R™ denote a domain satisfying the assumptions (A), (B), and (D)
for the Gaussian integral theorem. The parameter transformation

r=o(x) : 2 — 6 cCN)
may be bijective and subject to the condition
Js(x) >n>0 for all points x € (2.
Furthermore, let a 1-form

a;(x) dx;, r €N
1

n
o =

3



88 Co-derivatives and the Laplace-Beltrami operator 83

and a 0-form 3 = b(z), x € 2 of the class C1(£2) be given. Then we have the
identity

[+ [Gapow= [eans

0 0 o0
Here the boundary 02 is endowed with the induced canonical orientation of
R™.
Proof: The assumptions on the parameter transformation ¢ guarantee that
all functions appearing belong to the regularity class C1(£2). We apply the
Stokes integral theorem and obtain - with the aid of (6) - our statement as
follows:

Jtamw= [antan = [ea)nas

0 0 2

:/d((*a)w)—/(d*a)w
s 2

 fapno= fasaneen
N 2

= [tayns- [@rase
an 2

_ /(*a)Aﬁ—/(*d*a»ﬁ)ow
80 2

_ / (xa) A B — / (dar, B)ow.
N ?

q.e.d.

Corollary: When we require zero-boundary-values in Theorem 1 for the func-
tion 3, or more precisely 3 € C§(£2), we deduce the identity

[+ [ a0,

0 0
Therefore, we name 0 the adjoint derivative to the exterior derivative d.

Definition 3. The two functions (z) and x(x) of the class C*(§2) with their
associate differentials

dp = iwmi dr;, dx= ini dz;
i=1

i=1
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being given, we define the Beltrami operator of first order via

n

V(b x) = (dib,dx)1(z) = > g7 (2)he, ()X, (2)-

ij=1
Remark: Evidently, the property
V(. )(@) = V(1) (2(x))

holds true, where we note that

¥(2@)) = v(@). x(2@)) = x(@)

Consequently, V represents a parameter-invariant differential operator of first
order.

Definition 4. We define the Laplace-Beltrami operator
AY(z) := ddip(x), ren
for functions (x) € C*(£2).

Remark: Since the operators d and § are parameter-invariant, the operator A
is parameter-invariant as well:

A(z) = Ay (@(w)), v e .
Using (7), we now describe A in coordinates:

Ay =bdip =6 [ > s, da;

=1

> o (Vi g,

V()

Theorem 2. Let {2 C R™ denote a domain satisfying the assumptions (A),
(B), and (D) of the Gaussian integral theorem. Furthermore, the parameter
transformation -
r=®(x) : 22— 06O
belongs to the class C?(£2) and is bijective subject to the condition
Js(x) >n>0 for all points = € (2.

Finally, let the functions ¥ (x) € C?(2) as well as x(z) € CY(2) be given.
Then we have the identity

[vwo0o+ [@emw= [
(9]

2 a8
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Proof: We apply Theorem 1 and insert

a=dypeC (), B=x(x)eC'(N).
At first, we obtain

Jwdw+ [ pow = [ oo

0 2 o8

Using the Definitions 3 and 4, we infer the identity

[vwoow+ [(av0mw = [ o
(P

2 o8

stated above. q.e.d.

Remark:

1. We evaluate the Laplace operator in cylindrical coordinates,
xr=rcosp, y=rsing, z=Mh,

where 0 < 7 < 400, 0 < p < 27, —00 < h < 400 hold true. Therefore,
we consider the case n = 3 and choose

€Tl =T, T2 = @, $3:h.

The fundamental tensor appears in the following form:

100 ) 100
(gij)=[0720 |, (¢7)=10%0
001 001

This implies

g(x) = det (gij) = .
In our calculations we have to respect only those elements on the principal
diagonal. With the aid of (8), we then obtain

Ao 9N 9 (1IN 0 [ 0
o \ar ) o \rap) Tan \"an
(o 08 108 &

or T8r2 r Op? T8h2

T
_62+16+1 82+82

Cor2  ror  r20p?  Oh?

For plane polar coordinates we set z = 0, and the expression above is
reduced to



86 I Differentiation and Integration on Manifolds

92 190 1 02

A= or? + ror + 2 Op?
Defining
92
N
for the angular expression, we rewrite A into the form
92 10 1
A= 92 + "o + 2 A

(compare the Laplace operator in spherical coordinates).
2. We introduce spherical coordinates

x=rcospsing, y=rsingpsinf, z=rcosh

with 0 < 7 < 400, 0 < ¢ < 27, and 0 < 0 < 7. Calculations parallel to
Remark 1 yield

A = L g 7’22 Jria Sin&a +L8_2
or2 ) or or sin 6 96 0o sin? 6 0yp?

—8_2+23+1 La S'Qa +;8_2
T2 T rar T2 \sme oo \"Moe sin? 6 D2

_6_24_22_’_ 1A
o2 ror 27

Here the operator A does not depend on r again. However, it is only
dependent on the angles ¢, 6.

When we investigate spherical harmonic functions in Chapter V, we need the
Laplace operator for spherical coordinates in n dimensions. Now we treat this
general case.

Let the unit sphere in R™, namely
s={e=(a, ... R : gl =1},

by parametrized by

t
£=¢t) = (fl(tl, cetnet)s e En(t, . ,tn_l)) T — ¥ eC¥T)
with the open set T'C R"~!. Via the mapping
X(rt):=r&(t1, ..., tn_1), r€ (0,+00), teT,

we obtain polar coordinates in R™. Furthermore, the functional matrix appears
in the form
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aX(Ta t) = (X’I‘?Xtm co 7thf1) = (é-’Té-tl 3. '7T§tn71)'

We determine the metric tensor as follows:

1 0 - 0 10 - 0
0 72hy -+ 1%hi,_, 0
G = (gi(rt) = | . o= ,
0 N : : r?H(1)
072,11 T2hy 10y 0

where we abbreviate

H(t) = (hiy (1)),

i,j=1,...,n—1

= (fti (t) - &, (t)> .

ij=1,0,n—1

Using the convention

H\(t) = (hij(t))ij_L - G*(r,t)Z(gij(T,t))ij_l, x

we infer
10 --- 0 1 0 - 0
e : =
G (Tv t) = (glj(rv t))lj = . H*l(t> =
| . T2 . n—1,1 nfl' n—1
0 0 hrz ... h —

Furthermore, we define
g(r,t) :=det G(r,t), h(t) :=det H(¢)

and obtain
g(r,t) = r* " Dh(t).

When u = u(r,t) and v = v(r, t) are two functions, we determine the Beltrami
differential operator of first order due to

n

V(u,v) = Z gij<‘r)u$iij
i5=1
ou Ov Bu ov
h Ear r2 Z 815 ot;’

3,7=1

We express the invariant Beltrami operator of first order on the sphere X via

n—1
ou Ov
I'(u,v) = Z R (t )815 o,

i,j=1
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and deduce

ou Ov 1

V(u,v) = a or + o, I'(u,v) for all w=wu(rt), v=o(rt). (9)

Now we represent the Laplace-Beltrami operator in spherical coordinates: We
take the function

= U(T, t) = u(’l’, tla e 7tn71)7
utilize the identity \/g(r,t) = r"~1\/h(t) as well as formula (8), and obtain

Uy
1 . 1 Utq
Au = diviegy § Vg(rt) G
g(r,1)
Utn71
1 0 < ) 8u>
= — T,
A /g(r’ t) 87‘ g (97‘
1 h
— div; { "Rt H '(#)o :
oo a0
Utn 1
U 1
32u+n718u+ 1 1 & 10 Hﬁl(t) t
= — _— ——F AlVv (@]
or? roor  r2 /h(t) K
Utn71

Defining the Laplace-Beltrami operator on the sphere X by

Eai v Zh” 8t ’ teT,

Au=—+———+ _ Au for all u = u(r,t) € C*((0,+oc) x T).
roor

(10)
We still show the symmetry of the Laplace-Beltrami operator on the sphere
for later use.

Theorem 3. Taking the functions f,g € C*(X) , we have the relation

/ £(©)(49()) do(©) = / (19)do(6) = [ (47(9)g(6) dor©).

X

Here do denotes the surface element on X.
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Proof: Let 0 < & < 1 be given, and we consider the domain
0, = {xER" 1-¢e< | <1+5}.
Furthermore, we have
u(r,§) == f(§), v(r,§ =g, re(l-gl+e), {€X
Theorem 2 yields
ou
V(u,v)w+ [ (Au,v)ow = [ (xdu)v = v, do,
v
02 02 o082, 002,

where v denotes the exterior normal to 9f2.. These parameter-invariant inte-
grals are evaluated in (r, )-coordinates: Via the identities (9) as well as (10)
and noting that

ou ou
v —iE:O on 9.
we arrive at the relation
14¢ ) Lte )
o= [ [ pragderas [ [ Apgdoei ) ar
1-e = 1—e b
1+4e€
1—e B

This implies

/2 (Af(€)>9(§) do(&) = _/EF(f’ g) do(€).

Correspondingly, we deduce the second identity stated above. q.e.d.

89 Some historical notices to Chapter I

The theory of partial differential equations is usually treated within the frame-
work of the continuously differentiable functions. The profound integral the-
orem of Gauf} constitutes the center for the classical investigations of partial
differential equations. This might explain the title Princeps Mathematicorum
attributed to him. His tomb in Goéttingen and the monument for him, to-
gether with the physicist W. Weber, express the great respect, which is given
to C.F. Gau8.
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Our treatment within the framework of differential forms, created by E. Cartan
(1869-1961), simplifies the various integral theorems and classifies them geo-
metrically. Though differential forms are systematically used, with great suc-
cess, in Differential Geometry, analysts mostly refrain from their application in
the theory of partial differential equations. We owe the introduction of invari-
ant differential operators to E. Beltrami (1835-1900) — the first representative
of a great differential-geometric tradition in Italy.

PORTRAIT OF CARL FRIEDRICH GAUSS (1777-1855);

a lithography by Siegried Detlef Bendixen published in Schumacher’s As-
tronomische Nachrichten in 1828; taken from the inner titel-page of the biog-
raphy by Horst Michling: Carl Friedrich Gaufl — Aus dem Leben des Princeps
Mathematicorum, Verlag Gottinger Tageblatt, Gottingen (1976).




II

Foundations of Functional Analysis

We depart from the Riemannian integral - with the Riemann integrable func-
tions - and construct a considerably larger class of integrable functions via
an extension procedure. Then we obtain Lebesgue’s integral, which is distin-
guished by general convergence theorems for pointwise convergent sequences
of functions. This extension procedure - from the Riemannian integral to
Lebesgue’s integral - will be provided by the Daniell integral. The measure
theory for Lebesgue measurable sets will appear in this context as the theory
of integration for characteristic functions. We shall present classical results
from the theory of measure and integration in this chapter, e.g. the theorems
of Egorov and Lusin.

Then we treat the Lebesgue spaces LP with the exponents 1 < p < 400 as
classical Banach spaces. We investigate orthogonal systems of functions in the
Hilbert space L2. With ideas of J. von Neumann we determine the dual spaces
(LP)* = L9 and show the weak compactness of the Lebesgue spaces.

81 Daniell’s integral with examples

Our point of departure is the following

Definition 1. We consider an arbitrary set X, and by M = M (X) we denote
a space of functions f: X — R which have the following properties:

— M is a linear space, which means
forall f,g € M and all a, f € R we have of + g € M. (1)
— M s closed with respect to the modulus operation, which means
for all f € M we have |f| € M. (2)

Furthermore, the symbol I : M — R denotes a functional on M satisfying the
following conditions:
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I is linear, which means

for all f,g € M and all o, 8 € R we have I(af + Bg) =al(f)+ BI(g).

I is nonnegative, which means
for all f € M with f >0 we have I(f) > 0. (4)

Here the relation f > 0 means that f(x) > 0 for all x € X is correct.
I is continuous with respect to monotone convergence in M, which means

for each sequence{ fn}n=12.. CM with f, |0

. 2 O 8 5)
we have lim,_. I(f,) = I(0) = 0.

Here we comprehend by f, | 0 that the sequence {fn(z)}n=1,2.. C R is
weakly monotonically decreasing for all x € X and lim f,(x) = 0 holds
true.

Then this functional I is named Daniell’s integral defined on M.

Remarks:

1.

From the linearity (1) and the property (2) we infer

1
max (f, g) = 2(f+g+ Iffg|> eM
as well as 1
min(f,9) =, (F+9-1f —gl) €M
for two elements f,g € M. In particular, with each element f € M we

have
1

fH(z) ;== max (f(:z:),()) =,

(f@) +1f@)) €M
as well as
[ (z) = max(— f(ac),O) =(-f)"(x) € M.

We name f* the positive part of f and f~ the negative part of f. The
definitions of f™ and f~ reveal the identities

f=f"=f and |fl=f"+f =f"+(=H"
Consequently, the condition (2) is equivalent to
feM = ftell (2"

More generally, we see that finitely many functions fi,..., f,, € M with
m € N imply the inclusion

max (f1,...,fm) €M and min(f1,...,fm)EM
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2. The condition (4) is equivalent to the monotony of the integral, namely
I(f) > I(g) forall f,g e M with f > g. 4
3. The condition (5) is equivalent to the following property:

All sequences {fn}n=12,. C M with f, T f and f,g e M
with g S f fulfill (5/)
I(g) < lim I(fy).

Proof: At first, we show the direction ‘(5') = (5)’. Let the sequence of
functions {f }n=12,.. C M with f,, | 0 be given. Then we infer (—f,) T 0.
We set f(x) =0 = g(z). The linearity of I implies I(g) = 0 immediately.
The combination of (5’) and (4) reveals the relation
0=1I(g) < lim I(—fy) =— lim I(fn) <0
n—oo "

n—oo
>0

This yields lim I(f,) = I(0) = 0.
Now we show the implication ‘(5) = (5).
The sequence {fn}n=12.. may satisfy f, 1 f with an element f €
M, which immediately implies (f — f,) | 0. From (5) we infer 0 =
lim, oo I(f — fn), and the linearity of I yields

0=I(f)— lim I(f,).

n—oo

With g < f and (4'), we therefore obtain

lim I(f,) =1(f)>1(g) ,

n—oo

and the proof is complete. q.e.d.

Now we provide examples of Daniell integrals, where we need the following

Theorem 1. (Dini)

Let the continuous functions fi, f2,... and f € C°(K,R) be defined on the
compact set K C R™. We have the relation f; T f, which means that the
sequence {fi(z)} C R is weakly monotonically increasing for all x € K and
furthermore

lim fi(x) = f(z).

Then the sequence { fi}i=1,2,.. converges uniformly on the set K towards the

function f.

yeen

Remark: The transition to functions g; := f — f; implies that the statement
above is equivalent to the following:

A sequence of functions {gi}i=1,2,... C C°(K,R) with g, | 0 has necessarily the
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property that {g;}1=1,2,... converges uniformly on K towards 0.

Proof of Theorem 1: Let {gi}i=12
g1 | 0. We have to show that

C C°(K,R) denote a sequence satisfying

sup |gi(x)] — 0
reK

is correct. If this property was not valid, then we could find indices {I;} with
l; < liy1 and points & € K such that

g1, (&) >e>0 forall ieN

hold true with a fixed quantity € > 0. According to the Weierstrafl compact-
ness theorem, we can assume - without loss of generality - that the relation
& — € for i — oo is valid, with the limit point ¢ € K. For the fixed index
l., we now choose an index i, = i(l,) € N such that I; > l,holds true for all
i > .. Now the monotony of the sequence of functions {g;} implies

9.(&) = g, (&) = € for all i > i,.
Since the function g;, is assumed to be continuous, we infer

gi.(§) = lim g, (&) > ¢ for all 1, € N.

Therefore, {g;(€)} does not constitute a null-sequence, which gives an obvious

contradiction to the assumption.
q.e.d.

Main example 1: Let us consider X = {2 with the open set {2 C R™ and
the linear space

My = My(X) :={ f(z) € CO°(2,R") : /|f(x)|d:17<+oo
[0}

[1r@lds
(9]

means the improper Riemannian integral over the open set (2. Then our space
M, satisfies the conditions (1) and (2). Now we choose the functional

Here, the symbol

L(f) = [ f(z)dz, feM
/

where the improper Riemannian integral over 2 appears again on the right-
hand side. Because the Riemannian integral is linear and nonnegative, the
conditions (3) and (4) are evident. We still have to establish the continuity
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of our functional with respect to monotone convergence, namely (5). Let us
consider with {f,}n=1,2... C M7 a sequence of functions satisfying f, | 0. If
K C £ denotes a compact subset, Dini’s theorem tells us that {f,,} converges
uniformly on K towards 0. When we observe the properties 0 < f,,(z) < fi(x)
for all n € N and = € 2 as well as f |fi(x)|dx < +o00 , the fundamental

convergence theorem for improper Rlemanman integrals implies

n—oo

lim I(f,) = hm /fn dx—/( lim fn(x))d:E:O.
n o0
=0
Therefore, I; represents a Daniell integral on the space Mj.

Remark: The set M; does not contain all functions whose improper Rie-
mannian integral exists. The concept of Daniell’s integral additionally neces-
sitates the function space being closed with respect to the modulus operation,
namely the property (2). For instance, the integral

/ 1ngc for all powers « € (0,1)
1

does not converge absolutely; however, it exists as an improper Riemannian
integral.

Main example 2: As we described in §4 of Chapter I, let M C R™ denote
a bounded m-dimensional manifold of the class C' with the regular bound-
ary OM. Then we can cover M by finitely many charts, and we define the
Riemannian integral over M via partition of unity, namely

)= / f@)dmo(z),  feMs

for all functions of the class
My = {f(x) :M — R : fis continuous on M }

Here the symbol d"*c means the m-dimensional surface element on M. This
integral I gives us a further interesting Daniell integral: The linear space Ms
is closed with respect to the modulus operation. The properties (1) and (2)
are consequently fulfilled. The existence of the integral above follows from
the continuity - and therefore the boundedness - of f on the compactum M.
The linearity and the positive-semidefinite character of I are evident. The
continuity of I with respect to monotone convergence follows from Dini’s
theorem again.
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§2 Extension of Daniell’s integral to Lebesgue’s integral

In our main examples from §1, we already have a concept of integral which
allows us to integrate, at least, the continuous functions with compact support.
Now we consider an arbitrary Daniell integral I : M — R due to Definition 1
in §1. We intend to extend this integral onto the larger linear space

L(X) D> M(X) ,

in order to study convergence properties of the created integral on the space
L(X). This extension procedure is essentially based on the monotonicity prop-
erty (4) and the associate continuity property (5) of this integral.

Developing our theory of integration simultaneously for characteristic func-

tions
1L,z e A

Xa(@) ::{O,IEX\A

of the subsets A C X, we obtain a measure theory which depends on our
Daniell integral I for the subsets of X.

The extension procedure presented here was initiated by Carathéodory, later
Daniell considered these particular functionals I, and Stone established the
connection to measure theory. The consideration of minimal surfaces gave
H. Lebesgue the impetus to study thoroughly the concept of surface area.

We prepare our considerations and introduce the function

0,t<0
qs(t)::{t t>0

which is continuous and weakly monotonically increasing. Furthermore, we
define

[ (@) = o(f(z)) = max (f(2),0), ze€X
and study the following properties of the prescription f — fT:

i) f(z) < f(z) for all z € X;
i.) filz) < fale) = fif(2) < ff(2) forallze X;
iii.) fn(z) — f(2) — fif(z) = ff(z) for all z € X;
w.) fu(x) | f(2) = fi(@) | ff(z) forallze X;
v.) fu(@) T f(2) = fi(@) 1 f"(z) forallze X.
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Proposition 1. Let {g,} C M and {g,,} C M, n = 1,2,... denote two
sequences satisfying gn(x) 1 g(z) and g, (x) T ¢'(x) defined on X. Here
9,9 : X — RU{+o00} represent two functions with the property g'(x) > g(z).
Then we infer the inequality

lim I(g;) > lim I(gn).

n—oo

Proof: Since {I(gn)}n=1,2,.. and {I(g},)}n=1,2,... represent monotonically non-
decreasing sequences, their limits exist for n — oo in R U {+oc}. In the case
lim I(g),) = +oo, the inequality above evidently holds true. Therefore, we

n—oo
can assume lim I(g)) < +oo without loss of generality. With the index m
n—oo

being fixed, we observe
(gm - g;)—i_ ! (gm — g')+ =0 for n— o0

Then we invoke the properties of Daniell’s integral I as follows:

I(gm) — lim I(g,) = lim (I(gm) —I(g;)) = lim I(gm —g.,)

< lim I((gm —g;l)"’) = 0.
Now we see
I(gm) < lim I(g),) for all m €N,
and we arrive at the relation

lim I(gy) < lim I(g),)

m— 00
q.e.d.

When we assume g = ¢’ on X in Proposition 1, we obtain equality for the
two limits appearing. This justifies the following

Definition 1. Let the symbol V(X)) denote the set of all functions f : X —
R U {+o0}, which can be approximated weakly monotonically increasing from
M(X) as follows: Each such element f possesses a sequence {fn}n=12,.. in
M(X) with the property

folx) T f(x) for m— oo and forall xe€X.
For the element f € V, we then define

I(f) == lim I(fn),

n—oo

and we observe I(f) € RU {+4o0}.
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Definition 2. We set

—V::{f:XHRU{foo} : —fGV}

and define

I(f) :=—-I(—f) e RU{—o0} forall fe -V

Remarks:

1.

The set —V represents the set of all functions f which can be approxi-

mated weakly monotonically decreasing from M as follows: There exists

a sequence { fy, tn=1,2,... C M satisfying f,, | f. Then we obtain
1() = tim I(£,).

If f € VN(=V) holds true, we find sequences { f}, }n=1,2,... and {f}/ }n=12,...

in M which fulfill the approximative relations f/ 1 f and f/ | f, respec-

tively. Now we see f/ — f/ | 0, and the property (5) implies

0= lim I(f}~ f,) = lim I(f})~ lim I(f})

as well as

lim I(f!) = lim I(f}).

n—oo n—oo
Consequently, the functional I is uniquely defined on the set V U (—=V) D
Vn(=V)> M.
The set V contains the element f(zx) = +oo as the monotonically in-
creasing limit of f,(z) = n; however, it does not contain the element
g(x) = —oo. Therefore, the set V does not represent a linear space.

According to Proposition 1, the functional I is monotonic on V as follows:
Each two elements f,g € V with f < g fulfill I(f) < I(g). Furthermore,
the linear combination « f 4+ 3¢ of two elements f, g € V with nonnegative
scalars a > 0 and 8 > 0 belongs to V' as well, and we have

Iaf + Bg) = al(f) + BI(g)-

Proposition 2. The function f : X — [0, 400] satisfies the equivalence

fEV = fa)=>) eala),

where @, € M(X) and ¢, > 0 for all n € N hold true.
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Proof: The direction ‘<=’ is evident from the definition of the space V: The
element f is constructed monotonically by the functions ¢, € M, and this
implies the conclusion.

Now we show the opposite direction ‘=" as follows: Taking f € V, we find
a sequence {fn}n=12.. C M such that f,, 1 f, and we infer f;7 1 f* = f.
When we define

fol@) =0 and  gu(x) = f; () = f_1(2),
we observe i
K@) = en(@) 1 f(x)
n=1
and consequently

Y enl@) = fla).

Obviously, the functions fulfill ¢, (z) € M and ¢, (z) > 0 for all n € N.
q.e.d.

Proposition 3. Let the elements f; € V with f; >0 fori=1,2,... be given.
Then the function

f@) =3 i)

belongs to the set V, and we have
I(f) =Y I(f).
i=1

Proof: The double sequence c;; € R with ¢;; > 0 satisfies the following
equation:

o0 o0 o0 n
E Cij = E E Cij = lim E Cij- (1)
n—oo
i,j=1 =1 \j=1 i,j=1

This equation holds true for convergent as well as definitely divergent double
series. On account of f; € V, we have functions ¢;; € M satisfying ¢;; > 0
such that

fi(z) = Z(pij () forall ze€X andall ieN
j=1

is correct. From Definition 1 we infer
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n n oo
I(fi) = lim T[> ey | = lim §> " T(piy) p =Y I(ps)-
j=1

n—00 n—00
Jj=1 Jj=1

Furthermore, we have the following representation for all x € X:

oo

flz) = Zfz‘(if) => Z%‘j(ﬂ?) =Y i) = lim > il

i=1 i,j=1 i,j=1

Consequently, we see f € V' and Definition 1 yields

I(f)=lm I > gy | = lm > Igy)
i,j=1 i,j=1
apIRICHEDD Ipis) | =Y I(fo).
1,j=1 i=1 \j=1 i=1

x)

q.e.d.

Definition 3. We consider an arbitrary function f : X — R = RU {£o0}

and define

I (f) = inf{f(h) chevV, h> f}, I7(f) = sup {I(g) Lge—V, ggf}.

We name It (f) the upper and I~ (f) the lower Daniell integral of f.

Proposition 4. Let f : X — R denote an arbitrary function and (g, h) a pair
of functions satisfying g € =V and h € V as well as g(z) < f(x) < h(x) for

all x € X. Then we infer

I(g) < I"(f) < I™(f) < I(h).

Proof: Definition 3 implies I(h) > IT(f) and I(g) < I~ (f). Furthermore, we

find sequences {g, }n=1,2,.. C =V and {h,}n=12,.. C V satisfying
gn < f<h, forall neN |
such that
lim I(g,) =1 (f) and lim I(h,)=1I"(f)

n—oo n—oo

holds true. On account of 0 < h,, + (—gy) € V for arbitrary n € N, we see

0 < 1 (hu+(=92)) = 1(a) +1(=2)
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and consequently
I(gn) < I(hn)
and finally
I(f) = lim I(g,) < lim I(hy,) = I"(f).

In the sequel, we consider functions with values in the extended real number
system R = RU {—oo} U {+0o0}. Therefore, we need some calculus rules in R,
given as follows:

— Addition:
a+ (+o00)= (+0)4+a =+ooforallaeRU{+o0}
a+(—00)= (—o0)+a =—ocoforallaeRU{—c0}

(=00) + (+00) = (+00) + (=) = 0

—  Multiplication:
a(+0) = (+o0)a = 400 }
forall0 < a < +oc0
a(—o00) = (—0)a = — 0
0(+00) = (400)0 = +00
0(-0) = (—0)0 = —
a(+0) = (+o0)a = — o0 }
forall —co<a<0
a(—0) = (—0)a = 400

—  Subtraction: For a,b € R we define
a—b:=a+ (-b),
where we set
—(4+00)=—-00 and —(—0)=+40c0
—  Ordering: We have
—o00o<a< 40 for all a € R.

Remark: Algebraically R does not constitute a field, because the addition is
not associative; for instance:

(—o0) + ((+oo) + (+oo)) = (—00) + (+00) = 0,

((=00) + (+00)) + (+00) = 0+ (+00) = +oo.
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With these calculus operations in R, we can uniquely define the functions f+g,
f —g, cf for two functions f: X — R and g : X — R and arbitrary scalars
¢ € R. Furthermore, we have the inequality f < g if and only if g — f > 0 is
correct.

Definition 4. The function f : X — R belongs to the class L = L(X) =
L(X,I) if and only if

—oo < I (f)=T"(f) < +o0

holds true. Then we define

and we say that f is Lebesgue integrable with respect to I.

Remark: In our main example 1 from § 1, we consider the open subset 2 C R™
and obtain the class L(X) =: L({2) of Lebesgue integrable functions in £2. In
our main example 2, we get the class of Lebesgue integrable functions on the
manifold M with L(X) =: L(M).

Proposition 5. The function f : X — R belongs to the class L(X) if and
only if each quantity € > 0 admits two functions g € —V and h € V satisfying

g(z) < f(x) <h(z), z€X and I(h)—I(g)<e
In particular, I(g) and I(h) are finite.

Proof:

‘=" We consider f € L(X) and note that I~ (f) = I""(f) € R. According to
Definition 3, we find functions g € —V and h € V with ¢ < f < h and
I(h) — I(g) < e.

‘=" For each quantity ¢ > 0, we have functions g € —V and h € V with
g < f < hand I(h)—I(9) < e. On account of I(h) € (—o0,+00] and
I(g) € [—00,+00), we infer I(h),I(g) € R. Now Proposition 4 implies the
estimate

0<IT(f)=I"(f) <I(h)—1I(g) < ¢

for arbitrary e > 0. Consequently, I7(f) = I~ (f) € R holds true and
finally f € L(X). q.e.d.

Theorem 1. (Calculus rules for Lebesgue integrable functions)
The set L(X) of Lebesgue integrable functions has the following properties:
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a) The statement
fe LX) for each feV(X) with I(f)<4oo

is correct, and the integrals from Definition 1 and Definition 4 coincide.
Consequently, the functional I : M(X) — R has been extended onto
L(X) D M(X). Furthermore, we have

I(f)>0  foral feL(X) with f>0.
b) The space L(X) is linear, which means
c1f1 + cafa € L(X) forall f1,fo€ L(X) and c1,c0 €R.

Furthermore, I : L(X) — R represents a linear functional. Therefore, we
have the calculus rule

I(lel +02f2) = CII(fl) +Cg[(f2) for all fh f2 S L(X), c1,c0 €ER

c) When f € L(X) is given, then |f| € L(X) holds true and the estimate
[I(F)] < I(If]) is valid.

Proof:
a) Consider f € V(X) with I(f) < 4+o00. Then we find a sequence

{fntn=12.. C M(X)

such that f, T f holds true. When we define g,, := f,, and h,, := f for all
n € N, we infer g, < f < h,, with g, € —V and h,, € V, and we observe
I(hy) — I(gn) = I(f) = I(fn) — 0. Proposition 5 tells us that f € L(X),
and Definition 4 implies
o0 < I(f) = TF() = I (f) = lim I(f,) < +oc.

We consider 0 < f € L(X), and we infer from 0 € —V the statement
0<I-(f) = I(f).

b) At first, we show: If f € L(X) is chosen, we have —f € L(X) as well as
I(=f) = =1(f)-

With f € L(X) given, each quantity &€ > 0 admits a pair of functions
g € =V and h € V satisfying ¢ < f < h as well as I(h) — I(g) < e.
This implies —h < —f < —¢g with —h € —V and —g € V. We note that
I(—g) = —1I(g) and I(—h) = —I(h) hold true, and we obtain

I(—g) —I(=h) = —I(g) + I(h) <e forall e>0.

Finally, we arrive at —f € L(X) and I(—f) = —I(f).
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Now we show: With f € L(X) and ¢ > 0, we have ¢f € L(X) and
I(cf) = cI(f).

Therefore, we consider f € L(X),c > 0, and each £ > 0 admits functions
g€ —Vand heV withg < f <haswellas I(h)—I(g) < . This implies
cg <cf <ch,cg e -V, ch eV and finally

I(ch) —I(cg) =c (I(h) - I(g)) <ce
We have proved cf € L(X) and I(cf) = cI(f).

Finally, we deduce the calculus rule: From fi,fo € L(X) we infer
fi+ fo € L(X) and I(f1 + f2) = I(f1) + I(f2).

The elements f1, fa € L(X) being given, we find to each € > 0 the
functions g1,92 € —V and hy,hy € V satisfying g; < f; < h; and
I(h;) — I(gi) < e for i = 1,2. This immediately implies hy + ha € V,
g1+92 € =V, 914+92 < fi+ f2 < hi+hg and I(hy +hg) —I(g91+92) < 2¢.
We conclude f1; + fo € L(X) and obtain the calculus rule I(f1 + f2) =
1(f) + 1(f2).

Therefore, I : L(X) — R represents a linear functional on the linear space
L(X) of Lebesgue integrable functions.

With f € L(X), we find functions g € —V and h € V satisfying g <
f < hand I(h)—I(g) < € to each € > 0, and we see g* < f < ht.
Furthermore, we have sequences g,, | g and h,, T hin M (X), which give us
the approximations g;” | g™ and h; 1 ht, respectively. Therefore, ht € V
and gt € —V each holds true as well as ht — g7 € V. From h > g we
infer h™ — g7 < h — g and see

I(h") = I(g") = I(h") +1(—g") = I(h" —g")
<I(h—g) = I(h) ~ I(g) < <.
Consequently, the statements f* € L(X) and |f| = fT + (—f)" € L(X)
are established. With f € L(X), the elements — f and |f| belong to L(X)

as well, and the inequalities f < |f|, —f < |f| imply I(f) < I(|f]),

~I(f) = I(~f) < I(|]) and finally |I(/)] < 1(|f]). o

Now we deduce convergence theorems for Lebesgue’s integral: Fundamental
is the following

Proposition 6. Let the sequence {fir}r=12

C L(X) with fr >0, k € N

yees

and > I(fi) < +oo be given. Then the property

k=1

flz) =) filx) € L(X)
k=1
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is fulfilled, and we have
o0
I(f) =Y 1(fr)-
k=1

Proof: Given the quantity € > 0, we find functions g, € —V and hy € V with
0<gr < fr <hpand I(hg) — I(gx) < €27% for all k € N, on account of
fx € L(X). Therefore, we have the inequalities

3

Ig) > 10) = 5 = 1(fe) = 5 and () < Igi) + 0 S I(fi)+ o -

o0
Now we choose n so large that >, I(fx) < ¢ is correct. When we set
k=n+1

91:ng, h::th,
k=1 k=1

we observe g € —V and h € V, due to Proposition 3, as well as g < f < h.
Furthermore, we see

Ig) = Y 1ge) > > (1) = 5, ) = D 1(f) — 2

=~
Il
-
=~
Il
-
ol
Il
=

and
1) =1 () < > (1) + 3, ) = D 1) +e.
k=1 k k=1

Consequently, we obtain I'(h) — I(g) < 3¢ and additionally f € L(X). Finally,
our estimates yield the identity

I(f) = 1(fi).
k=1
q.e.d.

Theorem 2. (B.Levi’s theorem on monotone convergence)
Let {fn}n=1,2,.. C L(X) denote a sequence satisfying

fn(x) # to0 forall z€X andall neN
Furthermore, let the conditions

ful@) 1 f(x), 2z€X, and I(fn)<C, neN
be valid, with a constant C € R. Then we have f € L(X) and

lim I(fn) = I(f).

n—oo
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Proof: On account of fi(z) € R, the addition is associative there. Setting
ok (@) = (fr(x) — fr—1(x)) € L(X), k=23,...,

we infer @i > 0 as well as
Y or(@) = fule) - filz),  zEX
k=2

Now we observe

—I(f1) = I(fn) — I(f1) ZZI for all n > 2.

Proposition 6 implies
f=h=> e € LX)
k=2

and furthermore

n—oo

lim I(f,)—I(f1) :ZI Yk —I<Z§0k> =1I(f - f1) =1(f) — 1(f1)-
k=2 =

Therefore, we obtain f € L(X) and the following limit relation:

lim 1(f,) = 1(f).

n—oo

q.e.d.

Remark: The restrictive assumption f,(z) # too will be eliminated in the
next section.

Theorem 3. (Fatou’s convergence theorem)
Let {fn}n=1,2,... C L(X) denote a sequence of functions such that

0< fu(z) < +00 forall xe€X andall neN
holds true. Furthermore, we assume

liminf I(f,) < +oc.

Then the function g(x) := liminf f, (x) belongs to the space L(X), and we

observe the lower semicontinuity

I(g) < liminf I(f,).

n—oo



§2 Extension of Daniell’s integral to Lebesgue’s integral 107

Proof: We note that

g(z) = liminf f,(z) = lim (nlgfnfm(:v)) = lim (klingognk(x)>

n—oo n—oo n—oo

holds true with
gn (@) 1= min (fu(@), fas1 (@), -, Fasa(2)) € L(X).

When we define
gn(x) ;== inf f,(x),

m>n

we infer the relations g,k | gn and —gn 1 T —gn for k — oo. Furthermore, we
obtain I(—gp. %) < 0 due to f,(z) > 0. From Theorem 2 we infer —g,, € L(X)
and consequently g, € L(X) for all n € N.

Furthermore, we see gn(z) < f(x), v € X for all m > n. Therefore, the
inequality

I(ga) < inf I(fyn) < lim ( inf I(fm)) = liminf I(f,) < +00

is correct for all n € N. We utilize g,, T g as well as Theorem 2, and we obtain
g € L(X) and moreover

I(g) = lim I(g,) < lminfI(f,).

q.e.d.

Theorem 4. Let {f,}n=12,.. C L(X) denote a sequence with
[fn(z)| < F(x) < +o00, neN, zeX,
where F(x) € L(X) is correct. Furthermore, let us define

g(z) :=liminf f,(x) and h(z):=limsup f,(z)

Then the elements g and h belong to L(X), and we have the inequalities

I(g) <liminf I(f,), I(h)>limsupI(f,).

n—00 n— o0

Proof: We apply Theorem 3 on both sequences {F + f,} and {F — f,} of
nonnegative finite-valued functions from L(X). We observe the inequality

IFtf,) <I(F+F)<2I(F) <400 for all neN.
Thus we obtain

L(X) 3 liminf(F + f,) = F +liminf f, = F +¢

n—oo
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as well as g € L(X). Now Theorem 3 yields
I(F)+1(g9) = I(F + g) < liminf I(F + f,) = I(F) + liminf I(f,)

and
I(g) < liminf I(f,).

n—oo

In the same way, we deduce

L(X) 5 liminf(F — f,) = F' — limsup f, = F'— h

and consequently h € L(X). This implies
I(F)—I(h)=I(F —h) <liminf I(F — f,) = I(F) — limsup I(f,)

and finally
I(h) > limsup I(fy).

n—oo

q.e.d.

Theorem 5. (H.Lebesgue’s theorem on dominated convergence)
Let {fn}n=1,2,... C L(X) denote a sequence with

fulz) — f(2) for n—o0, ze€lX.
Furthermore, we assume
|frn(z)| < F(z) < +00, neN, zeX
where F € L(X) is valid. Then we infer f € L(X) as well as
Tim 1(f,) = 1(9).
Proof: The limit relation

lim f,(z) = f(z), reX

implies

liminf f,,(z) = f(x) = limsup f,,(z).

n—00 n— oo

According to Theorem 4, we have f € L(X) and

limsup I(f,) < I(f) < liminf I(f).

n—oo

Therefore, the subsequent limit exists

lim I(fn),

n—oo

and we deduce

I(f) = lim I(fn).

n—oo q.e.d.
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83 Measurable sets

Beginning with this section, we have to require the following

Additional assumptions for the sets X and M(X):

e We assume X C R” with the dimension n € N. Then X becomes a topo-
logical space as follows: A subset A C X is open (closed) if and only if we
have an open (closed) subset A C R" such that A = X N A holds true.

e Furthermore, we assume that the inclusion CP (X, R) ¢ M(X) C C°(X,R)
is fulfilled. Here CP(X,R) describes the set of bounded continuous func-
tions. This is valid for our main example 2. In our main example 1, this is
fulfilled as well if the open set {2 C R"™ is subject to the following condition:

/1d:c<+oo

2

We see immediately that the function fy =1, x € X then belongs to the
class M (X).

Now we specialize our theory of integration from §2 to characteristic func-
tions and obtain a measure theory. For an arbitrary set A C X we define its
characteristic function by

() 1L,z e A
xak= 0,r€ X\ A

Definition 1. A subset A C X is called finitely measurable (or alternatively
integrable) if its characteristic function satisfies xa € L(X). We name

1(A) == 1(xa)

the measure of the set A with respect to the integral I. The set of all finitely
measurable sets in X is denoted by S(X).

From the additional assumptions above, namely fo = 1 € M(X), we infer
xx € M(X) C L(X) and consequently X € S(X). Therefore, we speak
equivalently of finitely measurable and measurable sets.

Proposition 1. (o-Additivity)
Let {A;}i=1,2,... C S(X) denote a sequence of mutually disjoint sets. Then the

set -
A= U A;
=1

belongs to S(X) as well, and we have

A)=Zu(4)
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Proof: We consider the sequence of functions

k

fr = ZXAL Txa < xx € L(X)
=1

and note that f, € L(X) for all k& € N holds true. Now Lebesgue’s convergence
theorem yields x4 € L(X) and consequently A € S(X). Finally, we evaluate

p(A) = I(xa) = lim I(fp) = lm I(xa, +...+xa,)

k—o0

= Tim (p(A) + - p(Ar)) = D (A,
=1

q.e.d.

Now we show that with A,B € S(X) their intersection A N B belongs to
S(X) as well. On account of xans = xaxs, we have to verify that with
XA, XB € L(X) their product satisfies xaxp € L(X) as well. In general, the
product of two functions in L(X) need not lie in L(X) as demonstrated by
the following

Ezample: With X = (0, 1), we define the space
1
M(X) = fﬂQUHREC%mJM@:/U@WM<+m
0

OH)_‘

and the improper Riemannian integral I(f) := [ f(x)dxz. Then we observe

1

Vo € L(X); however, f*(x):= 916 ¢ L(X).

fz) =

Now we establish the following

Theorem 1. (Continuous combination of bounded L-functions)
Let fr(x) € L(X) for k = 1,...,k denote finitely many bounded functions,
such that the estimate

[fe(x)] <ec  forall points =€ X and all indices ke {l,...,k}

is valid, with a constant ¢ € (0,400). Furthermore, let the function & =
D(y1,...,ys) : R® — R € CO(R®,R) be given. Then the composition

g@y=¢01m,ujumy reX

belongs to the class L(X) and is bounded.
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Proof:

1. With f: X — R € L(X) let us consider a bounded function. At first, we
show that its square satisfies 2 € L(X). We observe

@) = {f(x) = A} + 2 f(z) — N

and infer
f2(x) > 20 f(x) = A*  forall X€R,

where equality is attained only for A = f(z). Therefore, we can rewrite
the square-function as follows:

P2 (@) = sup (27f(2) - X2)
A€ER

Since the function A — (2\f(z) — A?) is continuous with respect to A for

each fixed x € X, it is sufficient to evaluate this supremum only over the

set of rational numbers. Furthermore, we have Q = {\;};=1 2,... and see

yeen

£2(z) = sup (le fla) - )\f) = lim_ (122(” (»l fla) - )\f)) .

With the aid of
©m(z) ;== max (2)\lf(x) — )\l2>

1<i<m
we obtain
fA(x) = lim pp(z) = lim @f (2),

m—00 m— 00

where the last equality is inferred from the positivity of f2(z). Since f €
L(X) holds true, the linearity and the closedness with respect to the
maximum operation of L(X) imply: The elements ¢, and consequently
@ belong to the space L(X). Furthermore, for all points z € X and all
m € N we have the estimate

0<@h(x) < fiz)<c

with a constant ¢ € (0, 400). From the property fo(z) =1 € L(X) we infer
fe(z) = ¢ € L(X), and the functions ¢}, have an integrable dominating
function. Now Lebesgue’s convergence theorem yields

fA(z) = lim ¢} (z) € L(X).

2. When f,g € L(X) represent bounded functions, its product f - g is
bounded as well. On account of part 1 of our proof and the identity

1 1
fo=,(f+9’ =, (f-9" ,

we deduce fg € L(X).
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3. On the rectangle

Q= {y: (Y1, ys) ER® 2 ykl < ¢, k= 1,...,,%}
we can approximate the continuous function @ uniformly by polynomials
¢l:¢l(y17"'ayﬁ)7 l:172a

From part 2 we infer that the functions

gi(z) = @l(fl(gc),...,f,g(:v)), reX
are bounded and belong to the class L(X). We have the estimate
lai(z)] < C forall z€X andall €N

with a fixed constant C' € (0,400). Since the function satisfies p(z) =
C € L(X), Lebesgue’s convergence theorem yields

g(x) = di(fl(:c), e 7f'€($)) = 11_1,12091@) € L(X). q.e.d.

Corollary from Theorem 1:1f f(x) € L(X) represents a bounded function, its
power |f|? belongs to the class L(X) for all exponents p > 0.

Proposition 2. With the sets A, B € S(X) the following sets ANB, AU B,
A\ B,A® := X \ A belong to S(X) as well.

Proof: Let us take A, B € S(X), and the associate characteristic functions
X4, X are bounded and belong to the class L(X). Via Proposition 1, we
deduce

XAnB = XaxB € L(X) and consequently AN B € S(X).

Now we see AUB € S(X) due to xaus = xXa+ XxB — xanB € L(X). Further-
more, we observe

XA\B = XA\(AnNB) = XA — XAnB € L(X) and consequently A\ B € L(X).
On account of X € S(X), we finally infer A° = (X \ 4) € S(X). q.ed.

Proposition 3. (0-Subadditivity)
Let {A;}i=1,2,.. C S(X) denote a sequence of sets. Then their denumerable

union -
A=A
i=1
belongs to S(X) as well, and we have the following estimate:

u(A) < ZM(AZ-) € [0, +].
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Proof: We make the transition from the sequence {4;};=12,... to the sequence
{B;}i=1,2,.. of mutually disjoint sets:

Bl ::Alv BQ ::AQ\Bl,..., Bk ::Ak\(Blu"'Ukal)a"'

Now Proposition 2 yields {B;}i=1,2.. C S(X). Furthermore, we note that
B; C A; holds true for all 7 € N and moreover A = G B;. Then Proposition 1
implies A € S(X) as well as u(A) =322, u(B;) Slifil wu(A). q.e.d.
Definition 2. A system A of subsets of a set X is called o-algebra if we have
the following properties :

1. X € A.
2. With B € A, its complement satisfies B¢ = (X \ B) € A as well.
3. For each sequence of sets { B;}i=1,2,... in A, their denumerable union |J B;

=1
belongs to A as well.

Remark: We infer ) € A immediately from these conditions. Furthermore,

oo

with the sets {B; }i=1,2,... C A their denumerable intersection satisfies [\ B; €
i=1

A as well.

Definition 3. We name the function p : A — [0,4+00] on a c-algebra A a
measure if the following conditions are fulfilled:

1. p(0) = 0.
2. u( U Bi> = > w(B;) for all mutually disjoint sets {B;}i=1,2,.. C A.
i=1 i=1

We call this measure finite if u(X) < +o0 holds true.

Remark: Property 2 is called the g-additivity of the measure. If we only have
finite additivity - that means p (Ufil Bi> = Zfil w(B;) for all mutually

disjoint sets {B;}i=1.2,.. .8~ C A - we speak of a content.

From our Propositions 1 to 3, we immediately infer

Theorem 2. The set S(X) of the finitely measurable subsets of X constitutes
a o-algebra. The prescription

pA) i=1(xa), AeSX)
defines a finite measure on the o-algebra S(X).

Remark: Carathéodory developed axiomatically the measure theory, on which
the integration theory can be based. We have presented the inverse approach
here. The axiomatic measure theory begins with Definitions 2 and 3 above.
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Definition 4. A set A C X is named null-set if A € S(X) and u(A) = 0 hold
true.

Remark: The measure p from Definition 1 has the property that each subset
of a null-set is a null-set again. For B C A and A € S(X) with u(A) =0 we

namely deduce
0=1I"(xa)>T"(x5)>1 (x5) >0,

and consequently
I(xp) =1 (x5) =0

Therefore, we obtain yp € L(X) and finally B € S(X) with u(B) = 0.
Proposition 3 immediately implies

Theorem 3. The denumerable union of null-sets is a null-set again.

Now we show the following
Theorem 4. Each open and each closed set A C X belongs to S(X).
Proof:

1. At first, let the set A be closed in X and bounded in R"™ O X. Then
we have a compact set Ain R? satisfying A = AN X. For the set A
we construct - with the aid of Tietze’s extension theorem - a sequence of
functions f; : R® — R € C§(R™) such that

1, :CEA\
filz) = 0, xeR" with dist (2, A) >

€ [O, 1] , elsewhere

holds true for I = 1,2,.... We observe fi(z) — xz(z) , set g1 = fi }X ,
and obtain
g € CP(X)C M(X)C L(X)

as well as
0<g(z) <1 and g(x)— xa(z), reX.

On account of fo(x) =1 € M(X), we can apply Lebesgue’s convergence
theorem and see

xa(w) = lim gi(z) € L(X).

Therefore, A € S(X) is satisfied.
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2. For an arbitrary closed set A C X we consider the sequence
A ::Aﬁ{xER" sz §l}.

Due to part 1 of our proof, the sets A; belong to the system S(X) and

consequently A = (J A; as well. Finally, the open sets belong to S(X) as
=1
complements of closed sets. q.e.d.

Proposition 4. Let us consider f € V(X). Then the level set
O(f,a) = {:v eX : f(z) > a} cX
is open for all a € R.
Proof: We note that f € V(X) holds true and find a sequence
{fa}n=12... C M(X) C C°(X,R)

satisfying f,, 17 f on X. Let us consider a point ¢ € O(f,a) which means
f(&) > a. Then we have an index ng € N with f,,,(£) > a. Since the function
fno © X — R is continuous, there exists an open neighborhood U C X of ¢
such that f,,,(x) > a for all z € U holds true. Due to f,, < f on X, we infer
f(z) > afor all € U, which implies U C O(f,a). Consequently, the level set
O(f,a) is open. qe.d.
The following criterion illustrates the connection between open and measur-
able sets.

Theorem 5. A set B C X belongs to the system S(X) if and only if the
following condition is valid: For all 6 > 0 we can find a closed set A C X and
an open set O C X, such that the properties A C B C O and p(O \ A) < §
hold true.

Proof:

‘=" When we take B € S(X), we infer xp € L(X) and Proposition 5 in §2
gives us a function f € V(X) satisfying 0 < xp < f and I(f) — u(B) <¢
for all € > 0. According to Proposition 4, the level sets

O.={zeX| f(z)>1—-¢} DB
with € > 0 are open in X. Now we deduce

1 (1 ) < 1
—c
1—e¢ Xo- =77

XB < Xo. =

and we see
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w(Oe) — u(B) = I(xo.) — u(B) < 1 i e

I(f) = n(B)

= (1) - B)) + T n(B) < 7 (14 u(B))

for all ¢ > 0. For the quantity § > 0 being given, we now choose a
sufficiently small € > 0 such that the set O := O. D B satisfies the
estimate

#(0) — u(B) <

Furthermore, we attribute to each measurable set B¢ = X \ B an open set
O = A° such that A° = 0 > B° and u(O N B) < 5 hold true. Therefore,
the closed set A C X fulfills the inclusion A C B C O and the estimate

#(O\ A) = u(0) = p(4) = (w(0) = u(B)) + (u(B) — u(A))

5 5 ~
<, tuB\A) =, +u(BNO) <.

‘=" The quantity § > 0 being given, we find an open set O O B and a
closed set A C B - they are measurable due to Proposition 4 - such
that the estimate I(xo — xa) < d is fulfilled. Since xa,x0 € L(X) is
fulfilled, Proposition 5 in § 2 provides functions g € —V(X) and h € V(X)
satisfying

g<xa<xB<xo<h in X and I(h—g) <35

Using Proposition 5 in § 2 again, we deduce xp € L(X) and consequently
B e §(X). q.e.d.

In the sequel, we shall intensively study the null-sets. These appear as sets
of exemption for Lebesgue integrable functions and can be neglected in the
Lebesgue integration. We start our investigations with the following

Proposition 5. A set N C X is a null-set if and only if we have a function
h € V(X) satisfying h(x) > 0 for all v € X, h(x) = 400 for all x € N, and
I(h) < 4o0.

Proof:

‘=" Let N C X denote a null-set. Then xny € L(X) and I(xn) = 0 hold
true. For each index k& € N we obtain a function hy € V(X) satisfying
0 < xn < hgin X and I(hy) < 27% | due to Proposition 5 in § 2. According
to Proposition 3 in § 2, the element

h(z) = hi(z)
k=1
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belongs to the space V(X)) and fulfills

I(h) = i I(hy) < 1.
k

=1

On the other hand, the estimates hi(x) > 1in N for all k € N imply that
the relation h(z) = +oo for all x € N is correct. We note that hy(z) > 0
in X holds true, and we deduce h(z) > 0 for all z € X.

‘=" Let the conditions h € V(X), h(xz) > 0 for all z € X, h(z) = +oo for
all z € N, and I(h) < o0 be fulfilled. When we define

he(z) == %I(h) h(z),

we immediately deduce h. € V(X), he(z) > Oforallz € X, and I(h:) < e
for all € > 0. On account of h(z) = oo for all z € N, we infer

0 < xn(z) < he(z) in X forall £>0.

Proposition 5 in §2 yields I(xn) = 0, which means that N is a null-set.
q.e.d.

Definition 5. A property holds true almost everywhere in X (symbolically:
a.e. ), if there exists a null-set N C X such that this property is valid for all
points € X \ N.

Theorem 6. (a.e.-Finiteness of L-functions)
Let the function f € L(X) be given. Then the set

N := {xEX : |f(x)|:+oo}

constitutes a null-set.

Proof: With f € L(X) being given, we obtain |f| € L(X) and find a func-
tion h € V(X) satisfying 0 < |f(z)] < h(z) in X as well as I(h) < 4o0.
Furthermore, h(z) = 400 in N holds true and Proposition 5 tells us that N
represents a null-set.

q.e.d.

Theorem 7. Let the function f € L(X) be given such that I(|f]) = 0 is
correct. Then the set

N::{xGX:f(:r)#O}

constitutes a null-set.
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Proof: With f € L(X) being given, we infer |f| € L(X). Setting

fe(x) = |f(2)], keN,

we observe -
D I(fi) =0
k=1

According to Proposition 6 in § 2, the function
g9(x) = fu(x)
k=1

is Lebesgue integrable as well. Now we see N = {z € X : g(z) = +oo}, and
Theorem 6 implies that N is a null-set. q.e.d.

Now we want to show that an L-function can be arbitrarily modified on a null-
set, without the value of the integral being changed! In this way we can confine
ourselves to consider finite-valued functions f € L(X), which are functions f
with f(xz) € R for all x € X, more precisely. A bounded function is finite-
valued; however, a finite-valued function is not necessarily bounded. In this
context, we mention the function f(z) = !, z € (0,1).

Proposition 6. Let N C X denote a null-set. Furthermore, the function f :
X — R may satisfy f(x) =0 for all x € X \ N. Then we infer f € L(X) as
well as I(f) =0.

Proof: Due to Proposition 5, we find a function h € V(X) satisfying h(z) > 0
for all z € X, h(z) = +oo for all z € N, and I(h) < +o0. For all numbers
€>0,weseeech eV and —ch € —V as well as

—eh(z) < f(x) < eh(x) forall ze X.
Furthermore, the identity
I(eh) — I(—eh) = 2eI(h) forall >0

is correct. We infer f € L(X) and moreover I(f) = 0 from Proposition 5 in

§2.
q.e.d.

Theorem 8. Consider the function f € L(X) and the null-set N C X. Fur-

thermore, let the function f : X — R with the property f(x) = f(z) for all

z € X\ N be given. Then we infer f € L(X) as well as I(|f — f|) = 0, and
consequently I(f) = I(f).
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Proof: Since f € L(X) holds true, the following set
Ny = {x eX :|f(x)] = +oo}

constitutes a null-set, due to Theorem 6. Now we find a function ¢(z) : X — R
such that

f(w) = f(z) + () forall zeX

Evidently, we have the identity ¢(x) = 0 outside the null-set N U N;. Propo-

sition 6 yields ¢ € L(X) and I(p) = 0. Consequently, f € L(X) is correct
and we see

I(f) =1(f +¢) = 1(f) + I(p) = I(f).
When we apply these arguments on the function
U(@) = |f2) = fl2)l,  weX

Proposition 6 shows us ¢ € L(X) and finally

0= I@) =I(f-fl)
q.e.d.

Remark: When a function ]7 coincides a.e. with an L-function f, then ]? €
L(X) holds true and their integrals are identical.

We are now prepared to provide general convergence theorems of the Lebesgue
integration theory.

Theorem 9. (General convergence theorem of B.Levi)

Let { frtr=1,2,... C L(X) denote a sequence of functions satisfying fr T f a.e.
in X. Furthermore, let I(fi) < ¢ for all k € N be valid - with the constant
c € R. Then we infer f € L(X) and

Jim I(f) = I(f).
Proof: We consider the null-sets
Ny = {xeX: |fk(x)|:+oo} for keN

as well as
Ny := {x € X : fr(x) 1 f(x) is not Valid}.

We define the null-set

N := EOJNk ,
k=0

and modify f, fr on N to 0. Then we obtain the functions ﬁc € L(X) with
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I(fe)=I(fx) <c forall keN

and f with f; T f. According to Theorem 2 from §2, we deduce f € L(X) as
well as

Jim I(fi) = I1(])
Now Theorem 8 yields f € L(X) and
I(f)=1(f) = lim I(fi) = lim I(fp).
g.e.d.

Modifying the functions to 0 on the relevant null-sets as above, we easily prove
the following Theorems 10 and 11 with the aid of Theorem 3 and 5 from § 2,
respectively.

Theorem 10. (General convergence theorem of Fatou)
Let {fr}r=12,.. C L(X) denote a sequence of functions with fr(xz) > 0 a.e.
in X for all k € N, and we assume

Hkm inf I(fx) < +o0.

Then the function
g(z) = hkminf fe(x)

belongs to the class L(X) as well, and we have lower semicontinuity as follows:

I(g) < liminf I(fy).

Theorem 11. (General convergence theorem of Lebesgue)

Let {fix}tr=1,2.. C L(X) denote a sequence with fr — [ a.e. on X and
|fx(x)] < F(z) a.e. in X for all k € N, where F' € L(X) holds true. Then we
infer f € L(X) and the identity

Jim I() = 1)

We conclude this section with the following

Theorem 12. Lebesgue’s integral I : L(X) — R constitutes a Daniell inte-
gral.

Proof: We invoke Theorem 1 in § 2 and obtain the following: The space L(X) is
linear and closed with respect to the modulus operation. Furthermore, L(X)
satisfies the properties (1) and (2) in §1. The Lebesgue integral I is non-
negative, linear, and closed with respect to monotone convergence - due to
Theorem 9. Therefore, the functional I fulfills the conditions (3)—(5) in §1.
Consequently, Lebesgue’s integral I : L(X) — R represents a Daniell integral
as described in Definition 1 from §1.

q.e.d.
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84 Measurable functions

Fundamental is the following

Definition 1. The function f : X — R is named measurable if the level set -
above the level a -

O(f,a) = {xEX 2 f(x) >a}

is measurable for all a € R.

Remark: Each continuous function f : X — R € C°(X,R) is measurable.
Then O(f,a) C X is an open set for all a € R, which is measurable due to
§ 3, Theorem 4. Furthermore, Proposition 4 in § 3 shows us that each function
f € V(X) is measurable as well.

Proposition 1. Let f : X — R denote a measurable function. Furthermore,
let us consider the numbers a,b € R with a < b and the interval I = [a,b];
for a < b we consider the intervals I = (a,b], I = [a,b), I = (a,b) as well.
Then the following sets

A::{:CEX:f(x)EI}

are measurable.

Proof: Definition 1 implies that the level sets

O1(f,c) :=0(f,c) = {IGX : f(2) >c}

are measurable for all ¢ € R. For a given ¢ € R, we now choose a sequence
{cn}n=12,.. satisfying ¢, T ¢, and we obtain again a measurable set via

Os(f,e) = {:CEX : f(x)zc}: ﬁ {:CEX : f(:c)>cn}

The measurable sets S(X) namely constitute a o-algebra due to § 3, Definition
2 and Theorem 2. Furthermore, we have the relations

OQ(f’ +OO) = ﬂ Og(f,ﬂ), Ol(f’_oo) = U Ol(f? _n)7

and these sets are measurable as well. The transition to their complements
shows that

Os(f,c) = {xeX : f(ac)gc} and O4(f,c) = {xEX : f(ac)<c}

are measurable for all ¢ € R. Here
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A= {IEX : f(x)EI}

can be generated by an intersection of the sets O1-O,4, when we replace ¢ by
a or b, respectively. This proves the measurability of the sets A. q.e.d.

For a,b € R with a < b, we define the function
a,—o0<t<a

Gap(t) =4 t, a<t<D
b, b<t<too

as a cut-off-function. Given the function f : X — R, we set

a, *OOSf(«I)SCL

fap(@) = Gap(f(2)) = q fx), a<flx)<D
b, b< f(z) <too

Evidently, we have the estimate
| fap(z)| <max(]al,|b]) < 400 forall ze€X, a,beR

Furthermore, we note that

(@) = foroo(z) and [ (2) = fuoo(z), r e X.

Theorem 1. A function f: X — R is measurable if and only if the function
fap belongs to L(X) for all a,b € R with a < b.

Proof:

‘=" Let f : X — R be measurable and —co < a < b < 400 hold true. We
define the intervals

b— b—
a, atk a); Lint1 = [b, +o0]
m

Iy :=[—00,a); I := |a+ (k—1)

with k =1,...,m for arbitrary m € N. Furthermore, we choose the inter-
mediate values
b—a

m=a+(—-1) — 1=0,...,m+1.

We infer from Proposition 1 that the sets

A= {:CEX : f(=) EIl}

are measurable. The function
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m+1

fm = Z XA,
=0

is Lebesgue integrable, and we observe
| frn(2)] < max(|2a —10|,|b|]) forall z€ X andall meN.

Since constant functions are integrable, Lebesgue’s convergence theorem
yields
Jap(z) = lim fp(z) € L(X).
m— 00

‘=" We have to show that the set O(f,a) is measurable for all a € R. Here
we prove: The set {z € X : f(x) > b} is measurable for all b € R. Then
we obtain the measurability of

o =U{rexiswza+,}

I=1
via Proposition 3 from §3. Choosing b € R arbitrarily, we take a = b — 1
and consider the function
9(x) == fap(z) —a € L(X).
Evidently, g : X — [0,1] holds true and moreover
@) =1 = f@) 20,

The corollary from Theorem 1 in §3 yields g'(x) € L(X) for all [ € N.
Now Lebesgue’s convergence theorem implies

\(@) = lim ¢'(z) = e L(X),

l—o00

1, z € X with f(z) >b
0, z€ X with f(z) <b

and consequently {z € X : f(x) > b} is measurable for all b € R. q.e.d.
Corollary: Each function f € L(X) is measurable.
Proof: We take f € L(X), and see that N := {z € X : |f(x)] = 400} is a

null-set. Then we define

= fl@), ze X\ N
f(z) -—{0, e N € L(X).

According to Definition 1, the function f is measurable if and only if fv is

measurable. We now apply the criterion of Theorem 1 on f. When —oo < a <
b < +o00 is arbitrary, we immediately infer

Foealw) =min (F),8) = ) (Fa)+b) ~ 1 F) b € LX),
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because f € L(X). Analogously, we deduce Ja+00 € L(X) for g € L(X).
Taking the following relation

ffil,b = (}:oo,b)

a,+o0o
into account, we infer fN‘a,b € L(X). q.e.d.

In the next theorem there will appear an adequate notion of convergence for
measurable functions.

Theorem 2. (a.e.-Convergence)
Let { fr}r=1,2,... denote a sequence of measurable functions with the property

fe(z) = f(x) a.e. in X. Then f is measurable.

Proof: Let us take a,b € R with a < b. Then the functions (fx)q» belong to
L(X) for all k € N, and we have

[(ft)ap(2)] < max(fal,[0]) and  (fi)ap = fap ae in X.

The general convergence theorem of Lebesgue yields f,, € L(X). Due to
Theorem 1, the function f is measurable.
q.e.d.

Theorem 3. (Combination of measurable functions)
We have the following statements:

a) Linear Combination: When f, g are measurable and o, 8 € R are chosen,
the four functions af + Bg, max(f,g), min(f,g), | f| are measurable as

well.
b) Nonlinear Combination: Let the k € N finite-valued measurable func-
tions f1,..., fx be given, and furthermore the continuous function ¢ =

d(y1, ..., yx) € CO(R® R). Then the composed function

g(z) == ¢>(f1(x), . ,fﬁ(x)), reX
is measurable.

Proof:

a) According to Theorem 1, we have f_, ,,9-pp, € L(X) for all p € R.
When we note that f = lim f_,, holds true, Theorem 2 combined with
p—oo

the linearity of the space L(X) imply that the function
af +Bg = pli)rfoo(af—p,p + B9-p.p)

is measurable for all a, § € R. In the same way, we see the measurability
of the functions
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max( I, g) = lim max( f_p,p, g_p,p)
p——+oo

and

min(fv g) = pggloo min(f*npa g*p,P) ’

as well as | f] - due to |f| = max(f,—f).
b) The functions (fx)—pp € L(X) are bounded forallp > 0and k= 1,..., k.
According to Theorem 1 in §3 and Theorem 1 in §4, the function

¢((f1)_p7p(:v), e (f,.i)_p,p(x)> belongs to the class L(X). Furthermore,

we have the limit relation

9@) = tim _6((f1)pp(@)s- - (f)-ps(@))

p—+00

for all x € X, and Theorem 2 finally yields the measurablity of g. q.e.d.

Now we define improper Lebesgue integrals.

Definition 2. We set for a nonnegative measurable function f the integral

I(f):= Nliffoo I(fo,n) €10, +oc].

Theorem 4. A measurable function f belongs to the class L(X) if and only
if the following limit
lim I(f.p) €R
b—too
erists. In this case we have the identity
I(f) = lim I(fap) = I(f7) = I(f7).

a——00

b——+o00

Therefore, a measurable function f belongs to L(X) if and only if I(f) < +o00
as well as I(f~) < +oo are valid.

Proof: On account of fo b = (fT)op—(f)o,—a forall —oo <a <0< b< 400
we see

lim I(fqp) existsinR <= NHIE I((fi)QN) exist in R.

b——+o0

Consequently, it suffices to show:
fELX) «  lm I((fi)o,N) exist in R

‘=" Let us take f € L(X). Then we infer f* € L(X), and B.Levi’s theorem
on monotone convergence yields
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lim 1((fi)O,N) = I(f*) eR.

N——+oc0

‘=’ 1If

lim I((fi)o,N)

N — 400

in R exist, the theorem of B.Levi implies f* € L(X), and together with the

identity f = f* — f~ the property f € L(X) is deduced. qed

Theorem 5. Let f : X — R denote a measurable function satisfying
f@)| < P), zeX,
with a dominating function F € L(X). Then we have
fel(X) and I(|f]) <I(F).

Proof: According to Theorem 3, the functions f™ and f~ are measurable,
and we see 0 < f* < F. Consequently, the estimates 0 < (f*)on < F and
(fF)o.n € L(X) are correct. Furthermore, we have

I((fi)QN) <I(F) <400 forall N >0.

B.Levi’s theorem now yields I(f*) < +oo and f* € L(X), which implies
f € L(X). On account of the monotony of Lebesgue’s integral, the estimate
I(] f|) < I(F) follows from the inequality | f(x)| < F(x).

q.e.d.

Theorem 6. Let {fl}l:1,27,,, denote a sequence of nonnegative measurable
functions satisfying fi(z) T f(x), x € X. Then the function f is measurable,
and we have

1) = Jim 1(f).

Proof: From Theorem 2 we infer the measurability of f. According to Defini-
tion 2, two measurable functions 0 < g < h satisfy the inequality I(g) < I(h).
Therefore, {I(fi)}i=1,2,... € [0,400] represents a monotonically nondecreas-
ing sequence, such that I(f) > I(f;) for all I € N holds true. We distinguish
between the following two cases:

a) Let us consider
llim I(fi) < e < +o0.

Then we have I(f;) < ¢, which implies f; € L(X) due to Theorem 4.
B.Levi’s theorem now yields f € L(X) and

1(f) = Jim I().



84 Measurable functions 127

b) Let us consider
llim I(f;) = +o0.
Then we note that I(f) > I(f;) for all I € N holds true, and we obtain
immediately

I(f) = o0 = lim I(f).

q.e.d.

Definition 3. We name a function g : X — R simple if there exist finitely
many mutually disjoint sets Ay, ..., Ap» € S(X) and numbersny,...,m« € R
with n* € N, such that the following representation holds true in X :

*
n

QZanXAk

k=1

Remark: Evidently, we then have g € L(X) and

I(g) =Y mk (Ax)
k=1

Let us take an arbitrary decomposition Z : —co <y < y1 < ... < Ypx < +0
in the real line R, with the intervals Iy, := [yg—1,yx) for k = 1,...,n*. Fur-
thermore, we consider an arbitrary measurable function f : X — R and select
arbitrary intermediate values n € Iy, for k =1,...,n*. Now we attribute the
following simple function to the data f, Z and 7, namely

FED = " xa,
k=1

with Ay :={x € X : f(z) € I} for k=1,...,n*. Then we observe

](f(Z.,n)) - iﬁk 1(A).
k=1

We denote by a canonical sequence of decompositions such a sequence of de-
compositions, whose start- and end-points tend towards —oc and 400, respec-
tively, and whose maximal interval-lengths tend to 0.

Theorem 7. When we consider f: X — R € L(X), each canonical sequence
of decompositions {Z(p)}p:m,___ i R and each choice of intermediate values
{n®P)} =10, gives us the asymptotic identity

n(®)

. (p) ,,(P) .
1) = Jim 1(fE77) = tim 3 p(A?) .
k=1

p—00
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Remark: Therefore, Lebesgue’s integral can be approximated by the Lebesgue
sums as above, and the notation

I(f) = / f() dy(z)
X

is justified. However, the Riemannian intermediate sums can be evaluated
numerically much better than the Lebesgue sums.

Proof of Theorem 7: Let us consider the function f € L(X), a decomposition
Z with its fineness 6(Z2) = max{(yr —yr—-1) : kK =1,...,n*}, and arbitrary
intermediate values {7 }x=1,... n+. Then we infer the estimate

|FEM(2)| <8(Z2) + |f(z)| forall zeX.

When {Z(p)}pzl_g,m describes a canonical sequence of decompositions and
n®1}, _1 5 denote arbitrary intermediate values, we observe the limit rela-
p=12,
tion (0) ()
FET)N () > flz) ae for p—oo

which is valid for all x € X with |f(z)| # +00. Now Lebesgue’s convergence
theorem yields

n(P)

1() = Jim 1(FE77) = tim Y (AP,
k=1

p—00

q.e.d.

Now we shall present a selection theorem related to a.e.-convergence.

Theorem 8. (Lebesgue’s selection theorem)
Let { fi}r=1,2,... denote a sequence in L(X) satisfying

k,lziinoomfk - fil) = 0.

Then a null-set N C X as well as a monotonically increasing subsequence
{km }m=1,2,... exist, such that the sequence of functions { fr,, (z)}m=1,2,.. con-
verges for all points x € X \ N and their limit fulfills

lim fi, (z) =: f(z) € L(X).

m— 00

Therefore, we can select an a.e. convergent subsequence from a Cauchy se-
quence with respect to the integral I.

Proof: On the null-set

Ny = [j {:v eX : |fulx) = —l—oo}
k=1



84 Measurable functions 129

we modify the functions f; and obtain

= @), re X\
fk(x) —{0, .CEENl

Without loss of generality, we can assume the functions {fx}r=12,. to be
finite-valued. On account of

im I([f, = fil) =0 ,

p,l—o0

we find a subsequence k1 < ko < --- with the property
1
I(| fp = fil) < om forall p,l>ky,, m=12...

In particular, we infer the following estimates:

1
I(|fkm+17fkm|)§2m7 m:1727"'

and
oo

Z I(|fk7n+1 _fkm|) < 1.

m=1

B.Levi’s theorem tells us that the function
g(x) = Z|fkm+l(:r)7fkm(x)|’ zeX
m=1

belongs to L(X), and Ny := {x € X \ N1 : |g(x)] = 400} represents a
null-set. Therefore, the series

> [ fria (@) = fr(2)] forall z€ X\ N with N:=NyUN,
m=1

converges, as well as the series
o0
(i @) = Fin (@)
m=1
Consequently, the limit

lim (fkm (@) — fr, (ZE)) = f(z) = fi, (¥)

exists for all points € X \ NV, and the sequence { fi,, }m=1,2,... converges on
X \ N towards f. We note that g € L(X) and | fx, (x) — fi, (z)] < |g(2)|
are valid, and Lebesgue’s convergence theorem is applicable. Finally, we infer
f € L(X) and the relation

I(f) = lim I(fx,,).

m—00
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Proposition 2. (Approximation in the integral)
Let the function f € L(X) be given. To each quantity € > 0, we then find a
function f. € M(X) satisfying

I(lf_faD <Ee.

Proof: Since f € L(X) holds true, Proposition 5 from §2 provides two func-
tions g € —V and h € V such that

3

g(z) < f(z) <h(z), z€X, and I(h)—I(g)<2.

Recalling the definition of the space V(X), we find a function h'(z) € M(X)
satisfying

W(x) <h(z), zeX, and I(h)—I(h)< ;

This implies
[f=WI<[f=hl+h=N][<(h—g)+(h—1N),
and the monotony and linearity of the integral yield
E €
IS = WD) < (1)~ 1(9)) + (I(h) — I(W) < § + 5 =<

With f. := h' we obtain the desired function. q.e.d.

Theorem 9. (a.e.-Approximation)

Let f denote a measurable function satisfying | f(z)| < ¢, x € X with the con-
stant ¢ € (0,400). Then we have a sequence {fi}r=1,2.. C M(X) satisfying
| fu(x)| <ec, € X forall keN, such that fr(z) — f(x) a.e. in X holds

true.

Proof: Since f is measurable and dominated by the constant function ¢ €
L(X), we infer f € L(X) from Theorem 5. Now Proposition 2 allows us to
find a sequence {gx(x)}r=1,2,... C M(X) satistying I(| f —gx|) — 0 for k — occ.
We set

hk(w) = (gk)—c,C(x)

and observe hy € M(X) as well as | hg(x)| < ¢ for all x € X and all k € N.
We note that

|hk:_f| :|(gk7)—c,c_f—c,c| :|(gk7_f)—c,c| < |gk7_f|

is correct and see

Jm I([ oy = f1) < lim I(] g, = f]) = 0.
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On account of the relation
I(he —h) <I(he — f)+I(|f —h]) — 0  for k11— oo

Lebesgue’s selection theorem yields a null-set N; C X and a monotonically
increasing subsequence {km }m=1,2,... such that the following limit exists:

)

yees

h(z) := lim hg, (z) forall ze€ X\N

We extend h onto the null-set by the prescription h(z) := 0 for all x € Nj.
Now we conclude

lim | hy,, (2) = f(2)| = |h(z) = f(z)] in X\ Ny

m— 00

The theorem of Fatou yields

(k= ) < Y (A, ~ f]) =
Consequently, we find a null-set Ny C X such that

f(z) = h(x) forall z€ X\ Ny

holds true. When we define N := Ny UN; and f,,(x) := hy,, (z), we obviously

infer fp,(z) € M(X), |fm(z)] < cfor all x € X and all m € N, and moreover
the following limit relation:

lim fp,(z) = lim hyg, v h(x) vEN f(z) forall € X\ N.
Consequently, we obtain f,,(z) — f(z) for all z € X \ N. q.e.d.

Uniform convergence and a.e.-convergence are connected by the following re-
sult.

Theorem 10. (Egorov)

Let the measurable set B C X as well as the measurable a.e.-finite-valued
functions f : B — R and fr, : B — R for all k € N be given, with the
convergence property fi(x) — f(z) a.e. in B. To each quantity § > 0, we
then find a closed set A C B satisfying p(B \ A) < & such that the limit
relation, fr(x) — f(x) uniformly on A, holds true.

Proof: We consider the null-set

N = {:v € B : fr(z) — f(z) is not satisﬁed}

To m € N and for all [ € N exists
=<x€eB: 1
an index k > 1 with | fx(z) — f(2)| > —
m
:Uﬂ {:rEB:|fk(:17) f(z |>—} UBm,
m=1 l=1 k>l m=1
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where .
B, ;:mU{xeB s fr(@) = f(z)| > %}
I=1k>1

has been defined. We observe B, C N and consequently u(B,,) = 0 for all
m € N. We note that

B = U {x € B : |fe(x) — f(x)] > i}

m
k>l

holds true and infer By, ; D By, 141 for all m,l € N. From the relation
Bm = ﬂ Bm,l
=1
we then obtain

0= N(Bm> = ll—lglo M(Bm,l)-

Consequently, to each index m € N we find an index [,,, € N with [,,, < l;,41
such that

i U {eeniine-rol> L = utbn) < 5o

k>l

holds true. We define

Em = By, and B:= [j Em.

Evidently, the set B is measurable and the estimate

0

wB) <Y uBn) <,

m=1

is fulfilled. When we still define 4 := B\ B, we comprehend

Z:Bm<6§m> =Bﬂ<ﬁ§fn>
m=1

m=1

= ﬁ {xeB : |fk(x)—f(:v)|S%forallkZlm}.
m=1

For all points = € E, we find an index [,,, € N to a given m € N such that

forall k>1,,

3=

| fr(x) = f(z)] <
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holds true. Consequently, the sequence { fx| 7}r=1,2,... converges uniformly to-
wards f| 3. According to Theorem 5 in § 3, we now choose a closed set A C A
with

)

5
We note that A C A holds true, and the sequence of functions { fx |4 }k 1.2

converges uniformly towards f |4 . When we additionally observe B\ A= B
we finally see

A\ 4) <

e

W(B\A) = u(B\A) + p(A\A) < 40 =6

q.e.d.

The interrelation between measurable and continuous functions is revealed by
the following result.

Theorem 11. (Lusin)

Let f : B — R denote a measurable function on the measurable set B C X.
To each quantity § > 0, we then find a closed set A C X with the property
w(B\ A) < 6 such that the restriction f|a : A — R is continuous.

Proof: For j =1,2,... we consider the truncated functions

=7, f(a) €[00, —j]
fi@) = { f(@), f(2) €[], +]]
+7, f(x) € [+]; +oc]

All functions f; : B — R are measurable, and we infer
| fi(x)| < j for all z € B.

We utilize Theorem 9 and the property M (X) C CY(X): For each index j € N,
there exists a sequence of continuous functions f; : B — R satisfying

klim k(@) = fi() a.e.in  B.

Via Egorov’s theorem, we find a closed set A; C B to each j = 1,2,...
satisfying

B\ 4;) < DYESR
such that the sequence of functions {fj x|, }rx=1,2,... converges uniformly to-
wards the function f;|4,. The Weierstrafl convergence theorem reveals conti-
nuity of the functions f;|4, for all j € N. The set
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is closed, and we arrive at the estimate

TEAVIED SICIVIED SE

Jj=1

Now the functions f; : A — R are continuous for all j € N, and we recall

f(z) = lim f;(x) in A

J—0o0

Egorov’s theorem supplies a closed set A C A with

)

2 )

such that f; converges uniformly on A towards f. Consequently, the function
fla is continuous, and we estimate as follows:

u(AN\ A) <

W(B\A) = u(B\A) + p(A\A) < 40 =6
q.e.d.

Remark: We have learned the Three principles of Littlewood in Lebesgue’s the-
ory of measure and integration. J.E.LITTLEWOOD: ” There are three princi-
ples roughly expressible in the following terms: Every measurable set is nearly
a finite union of intervals; every measurable function is nearly continuous;
every a.e. convergent sequence of measurable functions is nearly uniformly
convergent.”

85 Riemann’s and Lebesgue’s integral on rectangles
With d € (0, +00) being given, we consider the rectangle

Q= {x:(xl,...,xn)GR" Dzl < d, j:l,...,n}, where n € N.

In our main example from § 1, we choose X = {2 :=() and extend the improper
Riemannian integral

I: M(X)—R, with  f— I(f) ::/f(ac)dx
Q
from the space
M(X):=S feC’(): /|f(a:)|d:c<+oo
I7;

onto the space L(X) D M(X) and obtain Lebesgue’s integral I : L(X) — R.
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Theorem 1. For the set E C {2 being given, the following statements are
equivalent:

(1) E is a null-set.

(2) To each quantity € > 0, we find with {Qk}x=1,2,... C 2 denumerably many

rectangles satisfying E C U Qr and Z |Qr| < e.
k=1 k=1
Proof:

(1)=>(2): Since FE represents a null-set, Proposition 5 from §3 provides a
function h € V(X) with h > 0 on X, h = +o00 on E, and I(h) < +oc.
With the constant ¢ € [1,4+00) chosen arbitrarily, we consider the open -
and consequently measurable - set

Ec::{xeﬂ : h(w)>c}:>E
Then we observe
p(E) = Txw.) = | Ilexp) < | 1(h) <
for ¢ > (h) . The open set E, can be represented as a denumerable union of

closed rectangles Q. which intersect, at most, in boundary points. There-
fore, we deduce

o0
EcE.=|J Qs
k=1
We note that the boundary points of a rectangle constitute a null-set and
see
o0
Z |Qk| = :LL(EC) <e
k=1

(2)==(1): For each index k € N we find a function hy € CJ({2) satisfying

) =] b TEd and  I(hy) < 2/Qx.
€[0,1], z € R"\ Q4

The sequence {g;(z)}i=1,2,... , defined by g;(z) := 22:1 hi(z) , converges
monotonically and belongs to M (X) . This implies

Furthermore, we have xg(z) < h(z), € R" and estimate

0< I (xp) <It(xp) <I(h thk <2Z|Qk|<2e

for all € > 0. Therefore, E is a null-set. q.e.d.
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Riemann’s and Lebesgue’s integral are compared as follows:

Theorem 2. A bounded function f : 2 — R is Riemann integrable if and
only if the set K, containing all points of discontinuities, constitutes a null-
set. In this case the function f belongs to the class L({2), and we have the

identity
= [ f@)de= | flz)dz ;
fronm=

this means that Riemann’s integral of f coincides with Lebesgue’s integral.
Here we have to extend f to 0 onto the whole space R™.

Proof: We consider the functions

m*t(x):= lim sup f(y) and m (z):= lim inf f(y), x € R™
=0+ |y _z|<e e=0+ |y—z|<e

We have the identity m™*(x) = m™(z) if and only if f is continuous at the
point x. Let

N
zZ:Q=
k=1

denote a canonical decomposition of () into N closed rectangles Q.. We define
the simple functions

N
m; =sup f(y), m, =inf f(y) and fz Zm xq, (z) € L(X).
Qk Qk k=1

We observe the identity

N
I(f%) :Zm | Qk|
k=1

Therefore, Lebesgue’s integral of the functions f;t coincides with the Rie-
mannian upper and lower sums, respectively, of the function f - associated
with the decomposition Z. When we denote by

N
02 = J 0Qk

k=1

the set of the boundary points for the decomposition Z, then 0Z constitutes
a null-set in R™. Now we observe an arbitrary canonical sequence of decom-
positions {Z,}p=1,2,... for the rectangle @, such that its fineness tends to 0.
We obtain the limit relation

lim f3 (r) =m*(z) forall ze2\N,

p—0oo
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where

oo
N=Joz,cQ
p=1
is a null-set. Now we select an adequate canonical sequence of decompositions
such that

[f@yde= tim (7)) wd [ f)do = i 175,
Q Q

Lebesgue’s convergence theorem implies

/f(:z:)dz:](m_) and /f(x)d:c:](m+).
Q Q

Now we note that the function f : {2 — R is Riemann integrable if and only
if

mt) = /f(:v) dx = /f(:v) dr =1(m~) orequivalently I(mT—m™)=0
Q Q

holds true. Due to m™ > m™, this is exactly the case if m™ = m™ a.e. in Q

holds true, or equivalently if f is continuous a.e. on Q. qed

We intend to prove Fubini’s theorem interchanging the order of integration for
Lebesgue integrable functions. Here we consider two open bounded rectangles
@ C RP and R C RY and begin with the following

Proposition 1. Let f = f(z,y) : @ x R— R € V(Q x R) be given. Then the
function f(x,y), y € R belongs to the class V(R) for each x € Q, and the

function
- / fl.y)dy

belongs to the class V(Q). Furthermore, we have

/fxyd:cdy—/ (x) da.

QXR

Proof: Since f € V(Q x R) holds true, we find a sequence { f,,(z,y)}n=12.. C
CY(Q x R) satisfying f,.(z,y) 1 f(z,y). For each z € Q, the functions
fn(x,y), y € R belong to the class C§(R) and consequently f(z,y) to V(R).
When we define

=/fn(:v,y)dy, req@
R
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we infer ¢, € CJ(Q) and ¢, (z) T ¢(z) in Q. This implies

//f z,y) drdy := lim //fn z,y) dvdy = lim /spn —/(p(x)d:c.

QxR QXR q.e.d.

Proposition 2. Let N denote a null-set in Q x R and define

N, = {ye R : (z,y) € N}.
Then we have a null-set E C Q, such that N constitutes a null-set in R for
all points x € Q \ E.

Proof: Since N is a null-set, we find a function h(z,y) € V(Q x R) with h > 0
on @ X R and h(z,y) = +oo for all (z,y) € N, such that the property

+OO>// z,Y) d:z:dy—/ (x) dx with  o(x) ::/h(w,y)dyZO

QxR R

holds true - due to Proposition 1. We note that ¢ € V(Q) and

/gp(ac) dx < 400
Q

is satisfied and deduce ¢ € L(Q). Furthermore, we find a null-set F C @ with
o(x) < +oo for all z € @ \ E. On account of h = 400 on N, the set N, is a

null-set for all z € Q \ E.
q.e.d.

Theorem 3. (Fubini) Let f(x,y) : @ x R — [0, +00] represent a measurable
function. Then we have a null-set E C Q, such that the function f(x,y),
y € R is measurable for all points x € Q\ E. When we define

/f@c,y)dy, reQ\E
olz) =1 & ,
0, rek

the function ¢ is nonnegative and measurable. Furthermore, we have Fubini’s

identity
/f:vydwdy—/ (z) da.

QXR
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Proof: For n = 1,2, ... we consider the functions

f(z,y), if f(z,y) € [0,n]

otherwise

fala,y) = {

n,

with f, € L(Q x R). Applying Theorem 9 from §4, we find for each number
n € N a null-set N,, C @ x R and a sequence of functions

fom(2,y) € CH(Q X R) with | fom|<n on QxR
such that
im fom(z,y) = fo(z,y)  forall (z,y) € (Qx R)\ Ny

Each fixed number n € N admits a null-set F,, C @, such that
{yeR: (x,y) e Ny} CR

represents a null-set for all points z € @ \ E,,. Now Lebesgue’s convergence
theorem yields

/ fn(z,y) dedy

QXR
= lim // fum(z,y) dady = lim / / fom(@,y)dy | da
QXR Q R
= lim /fn,m(af,y)dy dr = / /fn(fr,y) dy | dz.
m—oQ N, e’
Q\En R Q\En R GL(R)
In addition,
E:=|JE.cQ

n=1

constitutes a null-set, and we see

/ ful,y) dedy = / / fule,y)dy | do.

QxR Q\E \R

Finally, Theorem 6 from §4 yields

[ #@wyasdy= 1 (] a0 dody

QxR QxR
— i [ [fwway| o= [ | [rendy) o= [ o
Q\E \R Q\E \R Q

q.e.d.
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§6 Banach and Hilbert spaces

We owe the basic concepts for linear spaces, which appear in the next sections,
to the mathematicians D. Hilbert and S. Banach. Here we can equally consider
real and complex vector spaces.

Definition 1. Let M denote a real (or complex) linear space, which means
frgeM, a,B€eR (orC) = af+fge M.

Then we name M a normed real (or complex) linear space and equivalently
a normed vector space if we have a function

-1+ M —[0,+00)
with the following properties:

(N [fIl =0 <= f=0;
(N2) Triangle inequality: | f + gll < [[fIl + [lgll for all f,g € M;
(N3) Homogeneity: ||Af]| = M| fIl for all f € M, X €R (orC).

The function || - || is called the norm on M.

Remark: From the axioms (N1), (N2), and (N3) we immediately infer the
inequality

1f =gl = |IF] = llgll | forall f.ge M,

because we have

I =Nglh = 11f =g +gll = llgll < If = gll+llgl = llgll = 1F =gl

which yields our statement by interchanging f and g.

Definition 2. The normed vector space M is named complete, if each Cauchy
sequence in M converges. This means, to each sequence {fn} C M satisfying
limy ;—oo || f& — f1l] = 0 we find an element f € M with limy_. || f — fx|| = 0.

Definition 3. A complete normed vector space is named a Banach space.

Ezxample 1. Choosing the compact set K C R™ | we endow the space B :=
C°(K,R) with the norm

[ := sup | f(x)] = max|f(z)],  feB ,
TeEK reK
and thus obtain a Banach space. This norm generates the uniform convergence
- a concept already introduced by Weierstaf.

Definition 4. A complex linear space H' is named pre-Hilbert-space if an
inner product is defined in H’; more precisely, we have a function

() H xH —C

with the following properties:
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(H1) (f +9,h) = (f,h) + (g, h) for all f,g,h € H;

(H2) (f:Ag) = A(f.g) for all f,g € H', A€ C;

(H3) Hermitian character: (f,g) = (g,f) for all f,g € H';
(H4) Positive-definite character: (f, f) >0, if f #0.

Remarks:

1. We infer the following calculus rule from the axioms (H1) - (H4) immedi-
ately:
(H5) For all f,g,h € H' we have

(frg+h)=(g+hf)=(9,f)+(h f)=(f,9) + (f,h).

(H6) Furthermore, the relation

(Mf,9) = \(f,9) forall f,geH, XeC

is satisfied.
Therefore, the inner product is antilinear in its first and linear in its second
argument.
2. In a real linear space H' , an inner product is characterized by the prop-
erties (H1) - (H4) as well, where (H3) then reduces to the symmetry
condition

(f,9)=1(9,f) forall f,ge™H

Ezxample 2. Let us consider the numbers —oco < a < b < 400 and the space
H' := C°([a, b], C) of continuous functions. Via the inner product

b
(f.9) = / F@a()de

the set H' becomes a pre-Hilbert-space.

Theorem 1. Let H' represent a pre-Hilbert-space. With the aid of the norm

1= V()

the set H' becomes a normed vector space.
Proof:

1. At first, we show that the following inequality is valid in H’ , namely

(g, NI =19l < IfIlllgll for all - f,g € H’

With f,g € H' , we associate a quadratic form in A\, u € C as follows:
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0 < QA p) = (Af —pg, \f — ng)

= [AP(f. F) = Mulg, £) = Aulf, 9) + [ul(g, 9)-

When (g, f) = (f,g9) = 0 - in particular f = 0 or g = 0 - holds true, this
inequality is evident. In the other case, we choose

Il f1I?
A= =
Low (9, f)

The nonnegative character of @ - easily seen from the property (H4) -
implies the inequality

LA gl

O - 2
AT

and finally by rearrangement

[(f; 9l < [IfIlllgll for all - f,g € H'

2. Now we show that ||f|| := +/(f, f) satisfies the norm conditions (N1)
- (N3). We infer for all elements f,g € H' and A € C the following
properties:

i.) ||f]l = 0, and (H4) tells us that || f|| = 0 is fulfilled if and only if f =0
is correct;
iL) M= VAL AS) = A F) = AL
iii.)

If +9ll>=(f+9.f+9) = (f.f)+2Re(f,9) + (9,9)
< IFIIP +21(f, )1 + llgl?
< IFIP +2[1f 1 gl + llgll?
= (IF11+ llglh?,

and consequently

ILF+gll < 1LA1 -+ gl

Therefore, || - || gives us a norm on H’ . q.e.d.

Definition 5. A pre-Hilbert-space ‘H is named Hilbert space, if H endowed

with the norm
Il =~ (f,f), [feH

1s complete and consequently a Banach space.

Remarks:
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1. We prove that the inner product (f,g) is continuous in H. Here we note
the following estimate for the elements f, g, fn, gn € H:

|(fn»gn)_(fag)| = |(fnagn>_(fnag)—’—(fn»g)_(fvg”
< |(fnagn) - (fnag)| + |(fn»g) - (fag)|
< |(frrgn =PI+ [(fn = 1, 9)l

< A fallllgn = gll + 1fn = £l gl

Therefore, when the limit relations f, — f and g, — g for n — oo in ‘H
hold true, we infer

i (fn, 90) = (£, 9)-

We observe that the completeness of the space H is not needed for the
proof of the continuity of the inner product.

2. The pre-Hilbert-space from Example 2 is not complete and consequently
does not represent a Hilbert space.

3. In §3 from Chapter VIII, we shall embed - parallel to the transition
from rational numbers to real numbers - each pre-Hilbert-space H’ into a
Hilbert space H. This means H' C ‘H and H’ is dense in H.

4. Hilbert spaces represent particular Banach spaces. The existence of an
inner product in H allows us to introduce the notion of orthogonality:
Two elements f,g € H are named orthogonal to each other if (f,g) =0
holds true.

Let M C H denote an arbitrary linear subspace. We define the orthogonal
space to M via

MJ‘::{gEH:(g,f):OforalleM}.

We see immediately that M is a linear subspace of H , and the continuity
of the inner product justifies the following

Remark: For an arbitrary linear subspace M C H , its associate orthogonal
space M= is closed. More precisely, each sequence

{fa} c M+ in Mt satisfying f, — f for n — oo
fulfills f € M™.

Proof: Since {f,} C M% holds true, we infer (f,,g) = 0 for all n € N and
g € M. This implies

0= lim (fn,9)=(f,g) forall ge M

Fundamentally important is the following
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Theorem 2. (Orthogonal projection)
Let M C 'H denote a closed linear subspace of the Hilbert space H. Then each
element f € H possesses the following representation:

f=g9g+h with ge M and he M.

Here the elements g and h are uniquely determined.

This theorem says that the Hilbert space H can be decomposed into two
orthogonal subspaces M and M~ such that H = M @ M- holds true.
Proof:

1. At first, we show the uniqueness. Let us consider an element f € H with
f=g1+h1=g2+ ha, g; €M, hj e Mt
Then we deduce
0=f—f=(g—g2) + (h1—ha).
The uniqueness follows from the identity
0= 1l(g1 — g2) + (h1 — h2)||?
= ((91 = g92) + (h1 — h2), (91 — g2) + (h1 — h2))
= llgr = g2l* + [|h1 — ha||*.

2. Now we have to establish the existence of the desired representation. The
element f € H being given, we solve the subsequent variational problem:
Find an element g € M such that

—gll=inf ||f—g|l=:d
If =gl = inf [If =gl
holds true. We choose a sequence {gr} C M with the property
Tim [/ il = .

Then we prove that this sequence converges towards an element g € M.
Here we utilize the parallelogram identity

ol | R K R A 2
1) |22 = (o) roran pwen

which we easily check by evaluating the inner products on both sides. Now
we apply this identity to the elements

@:f_gka ’(/J:f_gla k7l€N
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and obtain

2
9k — a1
2

g + g

1
-5 =, (IF = aull? +11f = al1?)-

+

Rearrangement of these equations implies

gk — g1 2: gk+gz

2

0<|

1
o (17 =0 17— a?) = £ -

1 2 2 2
< (17 = gl + 17 = gul?) — .

The passage to the limit k,! — oo reveals that {gx} represents a Cauchy
sequence. Since the linear subspace M is closed, we infer the existence of
the limit g € M for the sequence {gy}.

Finally, we prove h = (f —g) € M~ and obtain the desired representation

f=9+(f—g9)=g+h
When ¢ € M is chosen arbitrarily as well as the number ¢ € (—&,ep),
we infer the inequality

I(f = 9) +eel? >d* = f —gl*
We note that

If —gll>+2eRe (f — g,9) +2|l0l> > |If — gl

and deduce
2eRe (f —g,0) +*|lgll> >0

for all ¢ € M and all € € (—eg,p). Therefore, the identity
Re(f—g,9)=0 forall ¢ e M

must be valid. When we replace ¢ by ip, we obtain (f — g, @) = 0. Since
the element ¢ has been chosen arbitrarily within M , the property

(f —g) e M*

is shown. q.e.d.

The subsequent concepts on the continuity of linear operators in infinite-
dimensional vector spaces have been created by S. Banach.

Definition 6. Let {My, || - |1} and {Ma, | - |2} denote two normed linear
spaces and A : My — My a linear mapping. Then A is called continuous at
the point f € My, if we can find a quantity 6 = 6(e, f) > 0 for all e > 0 such
that

geMy, llg—flh<d = [lAlg) - A(f)l2 <e.
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Theorem 3. Consider the linear functional A : M — C on the linear normed
space M, which means

Alaf + Bg) = «€A(f) + BA(g) forall f,ge M, «,8€C.

Then the following statements are equivalent:

(i) A is continuous at all points f € M;
(ii) A is continuous at one point f € M;
(iii) A is bounded in the following sense: There exists a constant a € [0, +00)
such that
AN <allfll - forall feM

holds true.

Proof:

(1) = (i1i) : Let A be continuous in M, then this holds true at the origin
0 € M in particular. For ¢ = 1 we find a quantity §(¢) > 0 such that
/Il <6 implies |A(f)| < 1. We obtain

A< SIFI - forall feM.

(791) = (i1) : We immediately infer the continuity of A at the origin 0 from
the boundedness of A.

(i1) = (i) : Let A be be continuous at one point fy € M. For a number € > 0
being given, we find a quantity § > 0 satisfying

peM, lloll<é = [Alfo+¢) - A(fo)l <e.

The linearity of our functional A gives us the following estimate for all

feMmM:
peM, o <6 = JA(f+¢)—A(f)| <e.

Therefore, A is continuous for all f € M. q.e.d.

Remark: This theorem remains true for linear mappings A : M; — My
between the normed vector spaces {Ma, | - ||1} and {May,|| - ||2}. Here we
mean by the notion ’A is bounded’ that we can find a number « € [0, +00)
such that

JADs < allfln forall e M,

holds true.

Definition 7. When we consider a bounded linear functional A : M — C
on the normed linear space M, we introduce the norm of the functional A as

follows:
[All == sup  |A(f)]
feM, |Ifli<1
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Definition 8. By the symbol
M* = {A:MH(C . A is bounded on./\/l} ,

we denote the dual space of the normed linear space M.

Remarks:

1. We easily show that M™*, endowed with the norm from Definition 7, con-
stitutes a Banach space.

2. Let 'H denote a Hilbert space. Then its dual space H* is isomorphic to H,
as we shall show now.

Theorem 4. (Representation theorem of Fréchet and Riesz)
Each bounded linear functional A : H — C, defined on a Hilbert space H, can
be represented in the form

A(f)=(9.f)  forall feH

with a generating element g € H which is uniquely determined.

Proof:

1. At first, we show the uniqueness. Let f € H and g1, g2 € H denote two
generating elements. Then we see

A(f) = (91, f) = (92, f)  forall feH.

We subtract these equations and obtain
(91, f) = (92, f) = (91 — g2, f/) =0 forall feH.
When we choose f = g1 — g2, we infer g; = g2 on account of
0= (91— 92,91 — 92) = lgr — g2I*.
2. In order to prove the existence of g, we consider
M::{fEH : A(f):O}CH

representing a closed linear subspace of H.
i.) Let M = H be satisfied. Then we set ¢ = 0 € H and obtain the
identity
A(f)=(g9,f)=0 forall feH.
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ii.) Let M%H be satisfied. We invoke the theorem of the orthogonal pro-
jection and see H = M @& M+ with {0} # M. Consequently, there
exists an element h € M+ with h # 0. We now determine a number
a € C, such that the identity A(h) = (g, h) for g = ah is correct. This
is equivalent to

A(h) = (9,h) = (ah,h) = a(h,h) = a|[h]?
and
A(h)
g=—-—=h.
([
Now the identity A(f) = (g, f) is valid for all f € M and for f = h.

When f € H is arbitrary, we define ¢ := %. With ]7:: f—ch, we

A(F) = A(f) — cA(h) = A(f) - % A(h) =0

obtain

and consequently fE M. Therefore, we have the representation
fZJ?-i-ch for fe™H, where fEM and ch e M* .
This implies
A(f) = A(f) + cA(h) = (9, f) + c(g. h) = (g, f + ch) = (g, f)
for all f € H. q.e.d.

Definition 9. We name a Banach space separable if a sequence {fi} C B
exists, which lies densely in B. More precisely, we find an index k € N to each
element f € B and every € > 0 such that || f — fx|| < & holds true.

Definition 10. In a pre-Hilbert-space H' , we name the denumerably infinite
many elements {p1,pa,...} C H' orthonormal if

(pi,pj) =0;5 forall i,j€N
1s valid.

Remark: When we have the system of denumerably many linear independent
elements in H' , we can apply the orthonormalization procedure of E. Schmidt
in order to transfer this into an orthonormal system.

Here we start with the linear independent elements { f1,..., fn} C H’ of the
pre-Hilbert-space H’'. Then we define inductively

N-1

p1 = Lfl g = f2_((p1,f2)(p1 R fojgl(wjva)Sﬁj
”fl” ’ ||f2 — (‘Pl,fQ)QOlH? P

In = 20 (@), fn)e;

Jj=1
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The vector spaces spanned by {f1,..., fn} and {¢1,...,on} coincide, and
we note that
(pi,pj) =0; for 4,j=1,...,N.

Proposition 1. Let {pr} with k = 1,..., N represent a system of orthonor-
mal elements in the pre-Hilbert-space H' and assume f € H'. Then we have
the identity

N
Hf* CksﬁkH —Hf (wk, sﬁkH +Z|0k* (on, NP
k=1 k=

k=1

for all numbers cq,...,cy € C.

Proof: At first, we define

N

N
=f =D _(or, ek, Z(‘Pk» —Ck><Pk-

k=1 k=1

Then we deduce the equation

N N N
F=>apr=F= (er: Flou+ ((@k»f) —Ck>90k =g+h.
k=1 k=1 k=1

Now we evaluate

(f éwk, ,i(% Cl)<ﬂl>

=1

((%f)*cl> (o1, f i (ow, f (% )*Cl> (e, 1)

1 k=1

I
WE

l

We note that (¢k, 1) = 0 and obtain (g, h) = 0. This implies

|£- cmH (9 hug+1h) = gl + 1]

= Hf Z Ok, f wH + ( @k f) —Ck> ((s@z,f) —Cl) (or> 1)
k,l=

1
—Hf <Pk, <PkH +Z|sﬂk, f) = exl?.
q.e.d.

Corollary: For all numbers cq,...,cy € C we have
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2

)

N N
Hf*ZCkQOkH Hf sﬁk,f)sﬁk’
=1

and equality is attained only if ¢ = (gpk, f) for k = 1,..., N holds true.
We name these numbers ¢ the Fourier coefficients of f (w1th respect to the

system (¢)).
When we set ¢; = ... =cny = 0, we obtain

Proposition 2. The followz'ng relation

Hf (ou D] = 1512 - Zwk, DI =20
=1
holds true.

From the last proposition we immediately infer

Theorem 5. Let {¢x}, k = 1,2,... represent an orthonormal system in the
pre-Hilbert-space H'. For all elements f € H’, Bessel’s inequality

Y e HE <A
k=1

holds true. An element f € H' satisfies the equation

> e HE =171
k=1

if and only if the limit relation

Jim Hf sok,me =0

1s valid.

Remark: The last statement means that f € H’' can be represented by its

Fourier series
o

Z(@kv e

k=1
with respect to the Hilbert-space-norm || - ||.

Definition 11. We say that an orthonormal system {@y} is complete - we
abbreviate this as c.o.n.s - if each element f € H' of the pre-Hilbert-space H'
satisfies the completeness relation

1712 =D 1w, NI
k=1
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Remarks:

1. In §4 and §5 of Chapter V, we shall present explicit c.o.n.s. with the clas-
sical Fourier series and the spherical harmonic functions. More profound
results are contained in Chapter VIII about Linear Operators in Hilbert
Spaces.

2. With the aid of E. Schmidt’s orthonormalization procedure, we can con-
struct a complete orthonormal system in each separable Hilbert space.

3. When we have a complete orthonormal system {prp} C H' with k =
1,2,... in the pre-Hilbert-space H’, the representation via the Fourier
series

F=> (er: Neen
k=1

holds true with respect to convergence in the Hilbert-space-norm. The in-
teresting question remains open, whether a Fourier series converges point-
wise or even uniformly (see e.g. H.Heuser: Analysis II. B. G. Teubner-
Verlag, Stuttgart, 1992).

§7 The Lebesgue spaces LP(X)

Now we continue our considerations from § 1 to § 4. We assume n € N as usual,
and we consider subsets X C R™ which we endow with the relative topology
of the Euclidean space R™ as follows:

. open
AcCXis { closed }
open

<= There exists B C R"
closed

}WithA—BﬂX.

By the symbol M(X) we denote a linear space of continuous functions f :
X - R=RU{+o0} with the following properties:

(M1) Linearity: With f,g € M(X) and o, 8 € R we have af + g € M (X).
(M2) Lattice property: From f € M(X) we infer |f| € M(X).
(M3) Global property: The function f(x) =1, € X belongs to M (X).

We name a linear functional I : M — R, which is defined on M = M (X),
Danzell’s integral if the following properties are valid:

(D1) Linearity: I(af 4+ Bg) = aI(f) + BI(g) for all f,g € M and a, 8 € R;

(D2) Nonnegativity: I(f) > 0 for all f € M with f > 0;

(D3) Monotone continuity: For all {fr} C M(X) with fi(z) | 0 (k — o0) on
X we infer I(fx) — 0 (k — 00).
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Example 1. Let X = 2 C R™ denote an open bounded set, and we define the
linear space

M=MX)={f:X->RecCX): /|f(x)|d:17<+oo
[0}

We utilize the improper Riemannian integral on the set X, namely

I(f) = | f(z)dx, femM
/

as our linear functional.

Example 2. On the sphere X = §"~ ! := {x ER™ : |z| = 1}, we consider the

linear space of all continuous functions M (X) = C%(S"~1), and we introduce
the Daniell integral

1(f) = / f@)do" (), feM.

Sn—1

In §2 we have extended the functional I from M (X) onto the space L(X)
of the Lebesgue integrable functions. In §3 we investigated sets which are
Lebesgue measurable, more precisely those sets A whose characteristic func-
tions x4 are Lebesgue integrable.

Definition 1. Let the exponent satisfy 1 < p < +o0o. We name a measurable
function f : X — R p-times integrable if |f|? € L(X) is correct. In this case
we write f € LP(X). With

17 =17l i= | [ 5@ dute) | = (1517))”
X

we obtain the LP-norm of the function f € LP(X); here the symbol y denotes
the Lebesgue measure on X.

Remark: Evidently, we have the identity L'(X) = L(X).

The central tool, when dealing with Lebesgue spaces, is provided by the sub-
sequent result.

Theorem 1. (Ho6lder’s inequality)

Let the exponents p,q € (1,+00) be conjugate, which means p~* + ¢~ 1 =1
holds true. Furthermore, we assume f € LP(X) and g € LX) being given.
Then we infer the property fg € LY(X) and the inequality

Ifalleixy < Nfllzecollgllnacx)-
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Proof: We have to investigate only the case || f||, > 0 and ||g||; > 0 . Alterna-
tively, we had || f]|, = 0, and consequently f =0 a.e. as well as f - g =0 a.e.
would hold. Analogously, we treat the case ||g||; = 0. Then we apply Young’s
inequality

aP b
ab < + —
p q
to the functions
1
p(z) = lf(@)], (@) =3l9(@)], z€X,
Hpr llgllq

and we obtain

L @ 1 @)
17T, [/ @e@l = e@ele) < ) Frae=+ S

for all points # € X. Theorem 5 from §4 implies fg € L(X) = L*(X). Now
integration yields the inequality

I(f9]) < I(|g|") =

(Iflp)

1
[1£Tllgllq || Hq

and finally

I(1fgl) < I Npllgllq- q.e.d.

Theorem 2. (Minkowski’s inequality)
With the exponent p € [1,+00), let us consider the functions f,g € LP(X).
Then we infer f + g € LP(X) and we have

If+glleecxy < flloecx)y + lglloeex)

Proof: The case p = 1 can be easily derived by application of the triangle
inequality on the integrand |f + g|. Therefore, we assume p, g € (1, +00) with
p~t 4+ ¢~ = 1. At first, convexity arguments yield

(@) + g(@)[P <2071 (| f ()P + |g(2) ")
and consequently f + g € LP or equivalently I(|f + g|?) < +oo. Now we have
(@) + g(@)[” = |f(2) + g(x)"~ | () + g(z)]
< |f(@) + g(@) [P~ f ()] + [ f(z) + g(2)[P~Hg(2)|
= £ @)+ g(@)| 7| f@)] + | (@) + g(2)| 7 ]g(x)].

The factors of the summands on the right-hand side are L?- and LP-functions,
respectively. Therefore, we obtain
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I(f +g1") < I(f + g2 (1F 1y + llglly)-

Finally, we see
1
(L(f +glP)r < 1 llo + llgll»
and the desired inequality

I+ glly < [1£1lp + llgllp-
q.e.d.

Remark: Minkowski’s inequality represents the triangle inequality for the ||-|| -
norm in the space LP.

The following result guarantees the completeness of LP-spaces, which means:
Each Cauchy sequence converges towards a function in the respective space.

Theorem 3. (Fischer, Riesz)
Let us consider the exponentp € [1,400) and a sequence { fx}k=12,... C LP(X)
satisfying

. [ fi = fillLe(x) = 0.

Then we have a function f € LP(X) with the property
T | fi — flline = 0.
Proof: With the aid of Holder’s inequality we show the identity
k,lzigloo I(|fx = fil) = 0.
Here we estimate in the case p > 1 as follows:

I(f = Ail) = I(fr = £il - 1) < | fx = fillpllLllg — O.

The Lebesgue selection theorem gives us a subsequence k1 < ko < k3 < ...
and a null-set N C X, such that

lim fi, (x) = f(z), xeX\N

m— 00

holds true. We observe that the function f is measurable. Now we choose
I > N(e) and ky,, > N(g), where || fr — fill, < € for all k,I > N(e) is valid,
and we infer

I(fr = ) = W = ill T () < €7

For m — oo, Fatou’s theorem implies the inequality
I(|f — filP) <& forall 1> N(e)

and consequently
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|f = fillLex) <&  forall [>N(e).

Since LP(X) is linear and f; as well as (f — f;) belong to this space, we infer
f € LP(X). Furthermore, we observe

Jim [1f — filly = 0.
oo q.e.d.

Definition 2. A measurable function f: X — R belongs to the class L>°(X)
if we have a null-set N C X and a constant ¢ € [0,+00) with the property

|f(z)] <c forall ze€ X\ N
We name

[fllc = [1fllL(x) = esssup [f(z)]
reX

inf {c >0 There exists a null-set N C X }

with |f(z)| <c forallz € X\ N
the L*°-norm or equivalently the essential supremum of the function f.
Remark: Evidently, we have the inclusion

L*X)c () LX)
p€E[l,+00)

Theorem 4. A function f € [\ LP(X) belongs to the class L>=°(X), if the
p>1

condition
limsup || f|| Lr(x) < 400
p—o0

1s correct. In this case we have
lfllzeexy = Hm [[fllzrx) < 400,
p—00

where the limit on the right-hand side exists.

Proof: Let f € () LP(X) hold true. When we assume f € L*°(X), we infer
p>1

0 <||flleo < 400 as well as

1P = AP < AFIAIES Y ave. on X

Therefore, we obtain
1_q q
1fllp < I flloe *I1LF 1l
and finally
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limsup || £, < [[fllec < +o00. (1)
p—00

In order to show the inverse direction, we consider the set
Ay = {:17 eX :|f(x)] > a}

for an arbitrary number a < || f||c. Therefore, A, does not constitute a null-
set. We obtain the estimate

+oo > limsup ||f|l, > liminf| f]],
p—oo pmee

1 1
= lim inf (I(|f|p)) " > aliminf (M(Aa)> "= a.
p—0o0 p—oo
Now we infer
+00 > liminf ||l 2 ||l (2)

and consequently f € L°(X). These inequalities immediately imply the ex-
istence of
lim = .
T [1f1lp = e

Corollary: Holder’s inequality remains valid for the case p = 1 and ¢ = oco.
Furthermore, Minkowski’s inequality holds true in the case p = oo as well.

Definition 3. Let 1 < p < 400 be satisfied. Then we introduce an equivalence
relation on the space LP(X) as follows:

f~g9g <= f(x)=g() ae inX.

By the symbol [f] we denote the equivalence class belonging to the element

feLr(X). We name

£r(x) = {If] : f € LX)}

the Lebesgue space of order 1 < p < 4o00.

We summarize our considerations to the subsequent

Theorem 5. For each fived p with 1 < p < +oc0, the Lebesgue space LP(X)
constitutes a real Banach space with the given LP-norm. Furthermore, we have
the inclusion

L7(X) D LX)

for all1 <r < s < +oo. Moreover, the estimate

1fllrxy < Clrys)lf]

£5(X) forall fe L(X)
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holds true with a constant C(r,s) € [0, +00). This means, the mapping for the
embedding
P LX) — LX), [feo(f)=f

is continuous. Therefore, a sequence converging in the space L*(X) is conver-
gent in the space L7 (X) as well.

Proof:

1. At first, we show that £P(X) constitute normed spaces. Let us consider
[f] € L£P(X): We have ||[f]ll, = 0 if and only if ||f|l, = 0 and conse-
quently f =0 a.e. in X is fulfilled. This implies [f] = 0 and gives us the
norm property (N1). Minkowski’s inequality from Theorem 2 ascertains
the norm property (N2), where Theorem 4 provides the triangle inequality
in the space L°(X). The norm property (N3), namely the homogeneity,
is obvious.

2. The Fischer-Riesz theorem implies completeness of the spaces £P for 1 <
p < 400. Therefore, only completeness of the space £>° has to be shown.
Here we consider a Cauchy sequence { f;} C L satisfying

lfx — filloo = 0  for k,I— oo

We infer the inequality ||fx]lcc < ¢ for all k € N, with a constant ¢ €
(0, 400). Then we find a null-set Ny C X with |fx(z)| < ¢ for all points
x € X \ Ny and all indices k& € N. Furthermore, we have null-sets Ny
with

|fr(x) = fl@)] <1 fk = fill o for z€ X\ Ngg

We define
N :=NyU U N
k,l

and observe

lim  sup |fr(z)— fi(z)| =0.
k,l—o00 e X\N

When we introduce the function

lim fy(z), z€ X\ N
f(x) = k—oo € L>®(X
() 0  .seN (X)
we infer
lim sup |fp(z) — f(z)| =0
k—oo gex\N
and finally

klggo Ilfr — fllze(x) = 0.
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3. Let us assume 1 < r < s < 4o00. The function f € L*(X) satisfies
17l = (1017 1) " < {(mfm) “(wx)) } = (X)) " 11
for all elements f € L%(X). q.ed.

Definition 4. Let By and By denote two Banach spaces with By C Bs. Then
we say Bi is continuously embedded into By if the mapping

L : B — B, feL(f)=f
is continuous. This means, the inequality

[flls. <cllflls,  for all f € B
holds true with a constant ¢ € [0, +00). Then we use the notation By — Ba.

Remarks:

1. The transition to equivalence classes will be made tacitly - such that we
can identify £P(X) and LP(X).

2. We have the embedding £°(X) — L7(X) for all 1 <r < s < 4o0.

3. On the space C°(X), we obtain with

[ fllo:=sup |f(x)],  feCX)
reX

the supremum-norm which induces uniform convergence. With the LP-
norms || - ||, for 1 < p < 400, we have constructed a family of norms
which constitute a continuum beginning with the weakest norm, namely
the L'-norm, and ending with the strongest norm, namely the L>-norm
or the C%-norm, respectively. Exactly in the centrum for p = 2, we find
the Hilbert space H = L?(X).

Ezxample 3. Let the space
M =L*X,C) = {f —g+ih: ghe L2(X,R)}
be endowed with the inner product
(fi,fo)n:=I(f1f2) for fj=gj+ih; € H and j=1,2

Here we define I(f) = I(g+ih) := I(g)+iI(h). Then H represents a Hilbert
space.

In the sequel, we use the space of functions

M>(X) := {f e M(X) : 51612|f(:v)| < +oo} = M(X)NL¥(X).
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Theorem 6. (Approximation of LP-functions)
Given the exponent p € [1,400), the space M (X) lies densely in LP(X),
which means: For each function f € LP(X) and each ¢ > 0, we have a function
fe € M*°(X) satisfying

If = fellr(x) <e.

Proof: Let € > 0 be given. We choose K > 0 and consider the truncated
function

f(z), x € X with |f(z)] < K
f-k+4k(x):=¢ —K, z € X with f(z) < -K
+K, x € X with f(z) > +K
subject to the inequality

|f(@) = fokx (@)]P < [f(2)]P.
Furthermore, we have
A |f(@) = fox e (@)P =0
almost everywhere in X. Lebesgue’s convergence theorem implies
Igijloo I(|f = f-k+k]|P) =0,
and we find a number K = K(g) > 0 with

If(2) = o ax(@)]p < ; .

According to Theorem 9 in §4, the function f_g 4k possesses a sequence
{¢k =12, C M(X) with |pr(x)] < K satisfying

or(r) — [k k() a.e. in X.
The Lebesgue convergence theorem yields
I f-x+x —erllh=I(f-K+x — ¢K|’) — 0

for k — co. Consequently, we find an index k = k(¢) with

g
I f-r+x —@rllp < 9"

The function f. := @p) € M(X), which is uniformly bounded by K(e) on
X, satisfies

& 19
If = fellp < Nf = forrxllp + [ f-k Kk —Pre)lly <+, =€
2 2 q.e.d.
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Theorem 7. (Separability of LP-spaces)

Let the set X C R™ be compact, and let the exponent p € [1,4+00) be given.
Then the Banach space LP(X) is separable: More precisely, there exists a
sequence of functions {pg(x)}r=1,2,... C C§°(X) C LP(X) which lies densely
in LP(X).

Proof: Let us consider the set

N
R:={g(x) = Z @iy iyt xi e, . €Q, N e NU{0}

i1yeeyin=0

of polynomials in R™ with rational coefficients. Furthermore, let
xj(z) : X — R € C°(X), ji=12,...

denote an exhausting sequence for the set X, which means

X;(x) < xjp1(x), lim xj(z) =1 forall zeX
j—00

Now we show that the denumerable set
D(X) = {h(2) = x;(@)g(x) : €N, g R}

lies densely in LP(X). Here we take the function f € LP(X) and the quantity
¢ > 0 arbitrarily. Then we find a function g € M*°(X) with ||f — g|l, < e.
Now we infer

lg — x;9ll5 = / lg(z) — x;(z)g(2)[? du(x)
X

= [ (1= 0@) 9@ dutw) — 0

X

due to B.Levi’s theorem. Consequently, we find an index j € N satisfying
llg — x;9llp < e. Now the function x,g¢ has compact support in X. Via the
Weierstrafl approximation theorem, there exists a polynomial h(z) € R such
that sup,cx X;lg — k| < d(¢) is correct - with a quantity 6(¢) > 0 given.
Consequently, we find a polynomial h(z) € R with the property

IX39 = x5hllp < e
This implies
1f = xshlly < I1f = gllo + 19 = X591l + x59 = x5hllp < 3¢.
Consequently, D(X) lies densely in LP(X). q.e.d.
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§8 Bounded linear functionals on L?(X) and weak
convergence

We begin with

Theorem 1. (Extension of linear functionals)
Take p € [1,+00) and let A : M*°(X) — R denote a linear functional with
the following property: We have a constant « € [0, +00) such that

AN < allfllex)y  forall f € M>™(X)

holds true. Then there exists exactly one bounded linear functional A
LP(X) — R satisfying

|A| <o and A(f)= A(f) forall fe M>(X).

Consequently, the functional A can be uniquely continued from M (X) onto
LP(X).

Proof: The linear functional A is bounded on {M>°(X), || - ||Lr(x)} and there-
fore continuous. According to Theorem 6 from §7, each element f € LP(X)
possesses a sequence { fx}r=12.. C M*>(X) satisfying

yeen

I fe = fllerx)y = 0 for &k — oo.

Now we define

A(f) = lim A(fy)-

We immediately verify that A has been defined independently of the sequence
{fr}r=12,.. chosen, and that the mapping A : LP(X) — R is linear. Further-
more, we have

[All= " sup  JA(f)l=  sup  JA(f)| < e
feLr, |ifllp<1 feM=, |Iflp<1

When we consider with A and B two extensions of A onto LP(X), we infer A=
Bon M *°(X). Since the functionals A and B are continuous, and M (X)

lies densely in LP(X), we obtain the identity A = B on LP(X).
q.e.d.

Now we consider multiplication functionals A, as follows:

Theorem 2. Let us choose the exponent 1 < p < +oo and with g € [1,4+00]

its conjugate exponent satisfying
1 1
+ =1
p q

For each function g € LY(X) being given, the symbol Ay : LP(X) — R with
Ag(f):=1I(fg),  felL’(X)

represents a bounded linear functional such that || Agll = |lgllq holds true.
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Proof: Obviously, A, : LP(X) — R constitutes a linear functional. Hélder’s
inequality yields the estimate

[Ag(NI =1l < I(|FllgD) < I fllpllgllq  for all - f € LP(X)

and we see
1 Agll < llgllq -

In the case 1 < p < 400, we choose the function

f(x) = |g(x)|» sign g(x)

and calculate

Ay(f) = 1(rg) =T (lgl#+") = 1(1g|")

q 1
= llgllg = llgllallglls = Hgllq(f(lflp)> = llgllallFllp-
This implies

Ay(f)
1/l

and consequently ||A,| = |lgllq for all 1 < p < +o0. In the case p = 400, we
choose

= llglly  and therefore [[Ag[l > [[gllq (1)

f(2) = signg(a)

and we obtain

Ay(f) = I(gsigng) = I(|g]) = llgll1 | /|l
This implies

Ay(f)
1/ lloo

In the case p = 1, we choose the following function to the element g € L4(X) =
L>°(X) and for all quantities € > 0, namely

= llgl  and therefore [[Aq]| = lgl[x

1, z€ X with g(z) > [|gllc — ¢
fe(z) =14 0, 2 € X with |g(x)] < [lgllec — €
—1,z € X with g(z) < —[|g|lc + €

Therefore, we have

Ag(fe) = 1(gfe) = (l9llo =) felly forall e>0,

which reveals



§8 Bounded linear functionals on LP(X) and weak convergence 163

Ag(fe)
I[fllx

Consequently, [|Ag|l > ||lgllcc — € is correct and finally || Ayl = [|9]lec-  q-e.d.

> gl — ¢

We want to show that each bounded linear functional on LP(X) with 1 <
p < oo can be represented as a multiplication functional A, via a generating
element g € L9(X), where p~1 + ¢~ = 1 holds true.

Theorem 3. (Regularity in L?(X))
Let us consider 1 < p < +oo and g € L'(X). Furthermore, we have a constant
a € [0, +00) such that

Ag(NI =1L(fg)l < alflly  foral feM>(X) (2)
holds true. Then we infer the property g € LY(X) and the estimate ||g|l4 < a.
Proof:
1. At first, we deduce the following inequality from (2), namely

[I(fg)l < allfllp for all f measurable and bounded. (3)

According to Theorem 9 from §4, the bounded measurable function f :
X — R possesses a sequence of functions { fi}r=12,.. C M*>°(X) with

fr(z) — f(z) a.e.in X

and
sup | fx(z)| < sup|f(x)| =: c € [0, +00).
X X

Now Lebesgue’s convergence theorem yields
[1(fg)l = lim |I(frg)l < lim ol fll, = allfl,-
—00 k—o0
2. Let us assume 1 < p < 400, at first. Then we consider the functions

g(x), x € X with |g(z)] <k
g(x) = .
0 , xze€ X with |g(x)] > k

Now the functions
fr(z) = |g(@)|» signgr(z), =z €X,

are measurable and bounded. Consequently, we are allowed to insert fj(x)
into (3) and obtain

1(frg) = 1(1gul#*") = I(lgwl?) = Nl
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Then (3) implies

[(frg) < all fully = a(I(lge]?)> = allgilld -

For k =1,2,... we have the estimate

qiq
a>lgrllq * = llgelly, > I(lgrl?).
We invoke Fatou’s theorem and obtain
a.e. ;. .
lg(@)|” *E" timinf lgi(2)|7 € L(X)
—00
as well as

a? > I(|g|?) and consequently |lg|lq < .

3. Now we assume p = 1. The quantity € > 0 being given, we consider the
set
E = {:v €X : |g(x)] Za—i—a}.

We insert the function f = xgsigng into (3) and obtain
ap(E) = allfllr = 1(fg)l = (e +&)u(E)

This implies p(F) = 0 for all € > 0 and finally ||g||ec < a. q.e.d.

Until now, we considered only one Daniell integral I : M*°(X) — R as fixed,
which we could extend onto the Lebesgue space L!(X). When a statement
refers to this functional, we do not mention this functional I explicitly: We
simplify LP(X) = LP(X,I), for instance, or f(xz) = 0 almost everywhere in
X if and only if we have an I-null-set N C X such that f(z) = 0 for all
2 € X \ N holds true. We already know that

M>(X) C L>*(X) C LP(X), 1<p<+o0
is correct. Additionally, we consider the Daniell integral J.

Definition 1. We name a Daniell integral
J: M*(X) —R,

which satisfies the conditions (M1) to (M3) as well as (D1) to (D3) from
§ 7 and is extendable onto L*(X,J) D L>(X), as absolutely continuous with
respect to I if the following property is valid:

(D4)  Each I-null-set is a J-null-set.

With the aid of ideas of John v. Neumann (see L.H. Loomis: Abstract har-
monic analysis), we prove the profound
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Theorem 4. (Radon, Nikodym)
Let the Daniell integral J be absolutely continuous with respect to I. Then a
uniquely determined function g € L*(X) exists such that

J(f)=1(fg) forall feM>(X)
holds true.
Proof:

1. Let f € L°°(X) be given, then we have a null-set N C X and a constant
¢ € [0,400) such that

[f(@)] <e¢ for all z € X\N

is valid. We recall the property (D4), and see that N is a J-null-set as
well, which implies f € L>(X, J). A sequence { fx}r=1,2.. C L>(X) with
& 10 (k— o0) a.e. on X fulfills the limit relation

fel0 Jae.on X for k— oo
due to (D4). Now B.Levi’s theorem on the space L'(X,J) yields
klirn J(fr) =0.

Consequently, J : L*°(X) — R represents a Daniell integral. Then we
introduce the Daniell integral

K(f) =15+ J(f), feL=X). (4)

As in §2 we extend this functional onto the space L' (X, K); here the a.e.-
properties are sufficient. We consider the inclusion L'(X, K) D LP(X, K)
for all p € [1, +o0].

2. We take the exponents p,q € [1,+o00] with p~ 4+ ¢! = 1 and obtain the
following estimate for all f € M (X), namely

SN < J(f]) < K(|f])
< fllzex, ) 1 Lo x, )
= (1) + T " 1l necx.s0)-

Therefore, J represents a bounded linear functional on the space LP(X, K)
for an arbitrary exponent p € [1,+00). In the Hilbert space L?(X, K) we
can apply the representation theorem of Fréchet-Riesz and obtain

J(f) = K(fh)  forall fe M>(X) (5)

with an element h € L?(X, K). Now Theorem 3 - in the case p = 1 - is
utilized and we see the regularity improvement h € L>°(X, K). Since J is
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nonnegative, we infer h(xz) > 0 K-a.e. on X . Furthermore, the relation (4)
together with the assumption (D4) tell us that the K-null-sets coincide
with the I-null-sets, and we arrive at

h(z) >0 a.e.in  X.
3. Taking f € M*°(X), we can iterate (5) and (4) as follows

J(f) = K(fh) = I1(fh) + J(fh)
I(fh) + K(fh?)
I(

fh) +I(fRY) + J(fh%) =...

and we obtain

l
J(f)_I<thk>+J(fhl), 1=1,2,... (6)
k=1

Let us define
A::{:CEX : h(x)zl}

and f = xa. Via approximation, we immediately see that this element f
can be inserted into (6). Then we observe

l

oo > J(f) > 1T <f th> >11(xa) forall leN

k=1

and consequently I(xa) = 0. Therefore, the inequality 0 < h(z) < 1 a.e.in
X is satisfied and moreover

hi(z) | 0 ae.in X for [ — oo. (7)

Via transition to the limit I — oo in (6), then B.Levi’s theorem implies
J(f)=1 (f th> for all f e M*(X),
k=1

when we note that f = f+ — f~ holds true. Taking f(z) = 1 on X in
particular, we infer that

gla) = > W) = 1ﬁ(7hg) €L'(x)
k=1

is fulfilled. q.e.d.
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Theorem 5. (Decomposition theorem of Jordan and Hahn)

Let the bounded linear functional A : M*°(X) — R be given on the linear
normed space {M>(X),||-|lp}, where 1 < p < 400 is fized. Then we have two
nonnegative bounded linear functionals A* : M>®(X) — R with A= AT —A~;

this means, more precisely,
A(f)=AT(f)—AT(f)  foral feM>(X)

with
AE(f)>0  forall feM>(X) with f>0.

Furthermore, we have the estimates
A= <24, [[A] <3[I4]
Here we define

A= sup  JA(H)l AF[= sup  |JAF(f)].
Fenr=, i flp<1 Fem==, fiflp<1

Proof:
1. We take f € M>°(X) with f > 0 and set

A*(f) = sup {A(g) : g € M*(X), 0= g < f}. (8)
Evidently, we have AT(f) > 0 for all f > 0. Moreover, the identity
AT (cf) = Sup{A(g) 10<g< cf} = sup{A(cg) 10<g< f}

:csup{A(g) : Oﬁgﬁf}:&‘ﬁ(f)

for all f > 0 and ¢ > 0 holds true. When we take f; € M*°(X) with
fi > 0 - for j=1,2 - we infer

AY(f1) + AT (f2)
= sup {A(g1) : 0< g0 < i} +sup {Alg2) s 0< gs < 1o}
:SUP{A(gl +g2) : 0< g1 < f1, 0< g2 sz}
< sup {A(g) :0<g<fi+ fz} = AT (f1 + fa).
Given the function g with 0 < g < f1 + f5 , we introduce

g1:=min (g, f1) and go:=(g— f1)".

Then we observe g; < f; for j = 1,2 as well as g1 + g2 = g. Consequently,
we obtain
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AT (f1+ f2) S AT (f1) + AT(f2)
and finally
A (fi+ fa) = AT (1) + AT (f2).

Furthermore, the following inequality holds true for all f € M*°(X) with
f >0, namely

A ()] = |sup {Alg) : g € M=(X), 0< g < £}
< sup {|A(g)] : g € M™(X), 0< g < f}
< sup {[14]| lglly = 9 € M*(X), 0< g < ff

< A1l -
2. Now we extend AT : M*°(X) — R via
M>(X)3 f(z) = ff(&) = f~(z)  with f5(z)>0

and define

AT(f) = AT(fF) = AT (f7).
Consequently, we obtain with AT : M*°(X) — R a bounded linear map-
ping. More precisely, we have the following estimate for all f € M (X):

[AT(N) < JAT(FO)+ AT
<ALl + 17 1p) < 20LAN A1l

This implies |AT|| < 2| Al
3. Now we define

A™(f) == AT (f) — A(f) for all fe M*>(X).
Obviously, A~ represents a bounded linear functional. Here we observe

AT < [AT DI+ AL < 20 Al 11l + TAT Il

and consequently ||A~|| < 3||AJ|. Finally, the inequality
AZ(f) = AT(f) = A(f) = sup {Alg) : 0< g < [} = A(f) 2 0

for all f € M*°(X) with f >0 is satisfied. q.e.d.
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Theorem 6. (The Riesz representation theorem)
Let 1 < p < 400 be fized. For each bounded linear functional A € (LP(X))*
being given, there exists exactly one generating element g € L9(X) with the
property

A(f) = I(fg) for all f € £7(X).
Here the identity p~' + ¢~' = 1 holds true for the conjugate exponent q €
(1, +00].

Proof: We perform our proof in two steps.

1. Uniqueness: Let the functions g1, g2 € £4(X) with

A(f) =I(fg1) = I(fg2) ~ forall feLP(X)

be given, and we deduce

O:I(f(gl—gg)> for all f e LP(X).

We recall Theorem 2 and obtain 0 = ||g1 — g2|| £a(x), which implies g1 = g2
in £9(X).
2. Ewistence: The functional A : M*°(X) — R satisfies

AN < allfll, — forall fe M™(X) (9)

with a bound «a € [0,400). The decomposition theorem of Jordan-Hahn
gives us nonnegative bounded linear functionals A% : M (X) — R satis-
fying
|A*|| <3|A] <3a and A=At — A~

Here the space M*>°(X) is endowed with the || - ||,-norm. In particular, we
observe |A%(f)| < +oo for f(z) = 1, x € X. A sequence {fi}r=12.. C
M®>(X) with f; | 0in X converges uniformly on each compactum towards
0, due to Dini’s theorem. Then we arrive at the estimate

|Ai(fk)| <3a|fxllp — 0 for k — oo.

With A* we have two Daniell integrals, which are absolutely continuous
with respect to I. When N namely is an I-null-set, we infer

A% (xw)| < Ballxwllp =0

Therefore, N is a null-set for the Daniell integrals A* as well. The Radon-
Nikodym theorem provides elements g* € £!(X) such that the represen-
tation

AE(f) =1I(fg%)  forall fe M>(X)
holds true. This implies
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A(f) =AY (f) - A~(f)
=1I(fg")—I(fg7)
=1I(fg) for all fe M*(X),

when we define g := g7 — g~ € £L}(X). On account of (9) our regularity
theorem yields g € £9(X). When we extend the functional continuously
onto LP(X), we arrive at the representation

A(f)=1I(fg) for all f e LP(X)
with a generating function g € £LI(X). q.e.d.
Now we address the question of compactness in infinite-dimensional spaces of
functions.

Definition 2. A sequence {xy}r=1,2,.. C B in a Banach space B is called
weakly convergent towards an element x € B - symbolically xi, — x - if the
limit relations

klirgo A(zy) = A(x)

hold true for each continuous linear functional A € B*.

Theorem 7. (Weak compactness of L?(X))
Let us take the exponent 1 < p < 4+o00. Furthermore, let { fx}x=1,2,.. C LP(X)
denote a bounded sequence with the property

I fellp < ¢ for a constant ¢ € [0,+00) and all indices k € N.

Then we have a subsequence { fx, }1=1.2
that fr, — f in LP(X) holds true.

and a limit element f € LP(X) such

yees

Proof:

1. We invoke the Riesz representation theorem and see the following: The
relation f; — f holds true if and only if I(f;g) — I(fg) for all g € LY(X)
is correct; here we have p~! 4+ ¢~! = 1 as usual. Theorem 7 from §7
tells us that the space LY(X) is separable. Therefore, we find a sequence
{gm}m=1,2,.. C LI(X) which lies densely in L?(X). From the bounded
sequence { fx}r=1,2,.. C LP(X) satisfying || fx|l, < ¢ for all k € N, we now
extract successively the subsequences

{f}k=1,2.. D {fkl<1>}l:1,2,... > {fkfz)}z:1,2,... D...
such that

llim I(f omgm) =t am € R, m=1,2,...
— 00 1
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Then we apply Cantor’s diagonalization procedure, and we make the tran-
sition to the diagonal sequence f, = fkl“)’ [=1,2,... .Now we observe
that

llirgof(fklgm) =Qnm, m=12 ...

holds true.
2. By the symbol
There exist N € Nand ¢1,...,cy €R
N
and1 <1 <...<iy <40 withg:chgik
k=1

D:=1g€ LX) :

yeen

Obviously, the limits
A(g) == llim I(fx,9) forall geD

exist. The linear functional A : D — R is bounded on the space D which
lies densely in L9(X), and we have, more precisely,

[A(9)l < cllglly forall g eD.

As described in Theorem 1, we continue our functional A from D onto the
space L1(X), and the Riesz representation theorem provides an element
f € LP(X) such that

A(g) = I(fg) forall g € LI(X).

3. Now we show that fy, — f in LP(X) holds true. For each element g €
C D satisfying

g% lim g; € L9(X).
Then we obtain
(fg) = 1(fr9)l < [I(f(g = @) + L((f = fr)gi)| + L (fri (95 — 9))

<2009 = gillg + 1I((f = fr)gs) < €
for sufficiently large - but fixed - j and the indices [ > [j. q.e.d.
Remarks:

1. Similarly, we can introduce the notion of weak convergence in Hilbert
spaces. Due to Hilbert’s selection theorem, we can extract a weakly con-
vergent subsequence from each bounded sequence in Hilbert spaces. How-
ever, it is not possible to extract a norm-convergent subsequence from an
arbitrary bounded sequence in infinite-dimensional Hilbert spaces. Here
we recommend the study of § 6 in Chapter VIII, in particular Definition 1,
Theorem 3, and Example 1.
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2. We assume 1 < p; < po < 400. Then the weak convergence fy — f in
LP2(X) implies weak convergence f; — f in LP*(X), which is immediately
inferred from the embedding relation LP?(X) < LP*(X).

Theorem 8. The LP-norm is lower semicontinuous with respect to weak con-
vergence, which means:

foer fin X)) = |fllp < liminf | fel,

Here we assume 1 < p < 400 for the Hélder exponent.
Proof: We start with fr — f in LP(X) and deduce
I(fug) — I(fg) forall geLi(X).

When we choose )
g(z) := | f(z)|«sign f(z) € LU(X),

we infer

1(fulf7sign f(@)) = 10517) = |71

with p~1 +¢~! = 1. For all quantities € > 0, we find an index ko = ko(¢) € N
such that

1715 — = < 1(ful17sign f(2)) < 1(1£ul1£17)

< 1 Aello (Z0£17)) " = el 1L 1)

holds true for all indices k > ko(¢). When we assume || f||, > 0 - without loss
of generality - we find to each quantity € > 0 an index ko(e) € N such that

I fullp = £l = (Ifllp) e forall k> ko(e)

is correct. This implies
likminf ||kap 2 ||f||p
—00

89 Some historical notices to Chapter 11

The modern theory of partial differential equations requires to understand
the class of Lebesgue integrable functions — extending the classical family
of continuous functions. These more abstract concepts were only reluctantly
accepted — even by some of the mathematical heroes of their time. A beauti-
ful source of information, written within the Golden Era for Mathematics in
Poland between World War I and II, is the following textbook by
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Stanistaw Saks: Theory of the Integral; Warsaw 1933, Reprint by Hafner Publ.
Co., New York (1937).

We would like to present a direct quotation from the preface of this mono-
graph: ”On several occasions attempts were made to generalize the old process
of integration of Cauchy-Riemann, but it was Lebesgue who first made real
progress in this matter. At the same time, Lebesgue’s merit is not only to
have created a new and more general notion of integral, nor even to have
established its intimate connection with the theory of measure: the value of
his work consists primarily in his theory of derivation which is parallel to
that of integration. This enabled his discovery to find many applications in
the most widely different branches of Analysis and, from the point of view of
method, made it possible to reunite the two fundamental conceptions of in-
tegral, namely that of definite integral and that of primitive, which appeared
to be forever separated as soon as integration went outside the domain of
continuous functions.”

The integral of Lebesgue (1875-1941) was wonderfully combined with the
abstract spaces created by D.Hilbert (1862-1943) and S. Banach (1892-1945).
When we develop the modern theory of partial differential equations in the
next volume of our textook, we shall highly appreciate the great vision of the
words above by Stanistaw Saks — written already in 1933.
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Brouwer’s Degree of Mapping with Geometric
Applications

Let the function f : [a,b] — R be continuous with the property f(a) < 0 <
f(b). Due to the intermediate value theorem, there exists a number £ € (a, b)
satisfying f(£) = 0. When we assume that the function f is differentiable and
each zero & of f is nondegenerate - this means f’(£) # 0 holds true - we name
by

i(f,€) = sgn f'(€)

the index of f at the point £&. We easily deduce the following index-sum formula
oo =1,
§€(a,b): f(£)=0

where this sum possesses only finitely many terms. In this chapter we intend
to deduce corresponding results for functions in n variables. We start with the
case n = 2, which is usually treated in a lecture on complex analysis.

81 The winding number

Let us begin with the following

Definition 1. The number k € Ny := NU {0} being prescribed, we define the
set of k-times continuously differentiable (in the case k > 1) or continuous
(in the case k = 0) periodic complex-valued functions by the symbol

L= {p=¢(t) :R—>CeC*R,C) : p(t+2m)=p(t) for allt R}

Now we note the following

Definition 2. Let the function ¢ € It with p(t) # 0 for all t € R be given.
Then we define the winding number of the closed curve p(t), 0 <t < 2w with
respect to the point z =0 as follows:
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W) = W(p,0) = %/ “"/(t)) dt

27 27
1 [ 1 [d
— dt = — log (1)) dt
2m'/ o(t) Qm'/dt( 08 ))
0 0
1
— o | iy (ole®)] + imgp)) dr
0
Therefore, we obtain
1 Fd 1
Wio) =, [ o (o) di= ) (arge(zn) - argeo(0).
0

where we have to extend the function argp(t) along the curve continuously.
The integer W () consequently describes the number of rotations (or wind-
ings) of the curve ¢ about the origin.

Theorem 1. Let the function ¢ € I with p(t) # 0 for all t € R be given.
Then we have the statement W (p) € Z.

Proof: We consider the function

t

B(t) 1= @(t) exp ( / #() ds), 0<t<or

0

We observe

—
< |5,
|~
G
QU
V)
N——
—
~6\
—
Nt
_|_
©
—
/
|
€ |5,
|~
SAGS
~[~—
SN—
—
Il
(@)

' (t) = exp ( —
0

for all 0 <t < 27 and consequently @(t) = const. In particular, we see

¢(0) = 3(0) = 2(27) = p(2m) e - / 78 )
and therefore
exp (72/((‘:)) ds) =1 as well as 72/((5)) ds = 2mik, keZ.

0 0
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This implies W(p) = k € Z.
q.e.d.

Proposition 1. For the functions po, 01 € It we assume |po(t)| > € and
leo(t) — p1(t)] < e, t € R with a number € > 0. Then we have the identity

W(po) = W(p1).

Proof: Witht € R, 0 <7 <1 we consider the family of functions

P (t) = (t, 7) = (1 = m)po(t) + Te1(t) = po(t) + 7(1(t) — po(t))-

These have the properties

ot 7) = [@o(t)] = Tlor(t) — po(t)] > e —71e 20

as well as

o(t,0) = @o(t), ot 1) =v1(t) for all ¢teR.

Furthermore, we note that

W(@T)_i,/‘plr(t) dt:i/ (1= 7)ep(t) + 764 (1)

(1 —=7)po(t) + 1e1(2)

with an integrand which is continuous in the variables (¢,7) € [0,27] x [0, 1].
Therefore, the winding number W(®,) is continuous in the parameter 7 €
[0,1] and gives an integer due to Theorem 1. Consequently, the identity
W (p-) = const holds true, and we arrive at the statement W(pg) = W(p1)
from above.

q.e.d.

We shall now define the winding number for continuous, closed curves as well.
From Proposition 1 we immediately infer the subsequent

Proposition 2. Let {pr}r=12,.. C I1 denote a sequence of curves with
wr(t) # 0 for all t € R and k € N, which converge uniformly on the inter-
val [0,27] towards the continuous function ¢ € I'y. Furthermore, we assume
o(t) #0 for all t € R. Then we have a number kg € N such that

Wipr) =W(p)  forall k,0>ko
holds true.

Definition 3. Let us consider the function ¢ € Iy with o(t) # 0 for allt € R.
Furthermore, let the sequence of functions {¢k}k=12,.. C I1 with pr(t) # 0
for allt € R and k € N be given, which converges uniformly on the interval
[0, 27] towards the function ¢ as follows:
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klim or(t) = (t) for all t€[0,27].
— 0

Then we define
W(g) = lim W(e).
k—oo

Remark: The existence of such a sequence for each continuous function ¢ € Iy
can be ascertained by the usual mollification process. We still have to show
that the limit is independent of the choice of an approximating sequence
{¢k}tr=12,.. C I1. Taking two approximating sequences {@k}xr=12, . and
{@k}k=1,2,.. , we make the transition to the mixed sequence

01,01, 92, P2, - .. = {Uk}k=1,2,...

and Proposition 2 yields

lim W(gp) = lim W(yy) = lLim W(py).

k—o0

From Theorem 1 and Proposition 2 we infer the inclusion W(p) € Z for
(RS F().

Theorem 2. (Homotopy lemma)
Let the family of continuous curves ®,(t) = p(t,7) € Iy for 7= <7< 7% be
given. Furthermore, we have ¢(t,7) € C°([0,27] x [r7,7F],R?) and

ot,7)#£0  forall (t,7)€[0,2n] x [, 7]
Then the winding numbers W (p,) in [77, 7] are constant.

Remark: The family of curves described in the theorem above is named a
homotopy. Therefore, the winding number is homotopy-invariant.

Proof of Theorem 2: On account of the property ¢(t,7) # 0 and the com-
pactness of the set [0,27] X [77,77], we have a number € > 0 such that the
inequality |¢(¢,7)| > € for all (¢,7) € [0,27] x [r~,7"] holds true. Since the
function ¢ is uniformly continuous on the interval [0,27] x [t7, 77|, we have
a number §(¢) > 0 with the property

lp(t, 7°) — (t, 7%)| < e for all ¢e€0,2n], if |[7" — 7% < d(e).

With the symbols {¢} }r=1,2,.. C I't and {¢}*}k=1,2,... C I, we consider two
approximating sequences such that

klim ©p(t) = p(t, ) and klim O (t) = o(t, 77) for all ¢ € [0,27]

hold true. Then we have an index ky € N such that the following estimates
are valid for all & > kq:
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ler @] > e, e > &, p(t) =i (@) <e  forall te[0,27].

Proposition 1 now yields W (p;) = W(p;*) for all indices k > ko , and we
infer

W (Prs) = W(Drwx) forall 7*,7* € [r~,7%] with |7 — 71" < d(e).

Since the quantity d(¢) does not depend on 7*,7** and the interval [77, 77|
is compact, a continuation argument gives us the identity W (e, ) = const for
all parameters T € [77, 7).

q.e.d.

Theorem 3. Let the disc
BR::{ZE(CZ |z|§R}

and the continuous function f : Bgr — C be given for a fixed radius R > 0.
The boundary function p(t) := f(Re') may fulfill the condition

o) #0 for 0<t<2m,

and the winding number of ¢ satisfies W(p) # 0. Then we have a point
zx € Br with f(z) =0.

Proof: We assume that f did not have any zero in Br . Then we consider the
following homotopy:

D, (t) == f(re'), 0<t<2r, 0<7<R.
With the aid of Theorem 2 and the identity @ (t) = f(0) = const, we infer
0=W(Po) =W(Pr)

in contradiction to the assumption W(®r) = W(p) # 0. q.e.d.

Theorem 4. (Rouché)
The radius R > 0 being fixed, let fo, fi1 : B — C denote two continuous
functions with the property

|fi(2) = fo(2)| < |fo(2)] for all z € OBg.

The curve po(t) := fo(Re') satisfies the condition

wo(t) #0 for 0<t<2m aswell as W(ypg) #0.

Then we have a point z, € B with f1(z.) = 0.
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Proof: We set ¢1(t) := f1(Re®), 0 <t < 27, and consider the homotopy
Pr(t) = (t,7) := (L =T)po(t) + Tr(t),  0<t<2m
Note that
ot ) = leo(t) + (@1 (t) = @0 (t))]
> |po(t)] = [p1(t) = po(t)] >0

for all (¢,7) € [0,2n] x [0,1] holds true, and the homotopy lemma yields

W(p1) = W(gpo) # 0. According to Theorem 3, there exists a point z, € Br
With fl (Z*) =0.

q.e.d.
Theorem 5. (Fundamental theorem of Algebra)
Each nonconstant complex polynomial
f(2)=2"+an 12" +... +ao
of the degree n € N possesses at least one complez zero.

Proof: (C.F.Gaufs)
We set fo(z) := 2", z € C and consider the following function for a fixed
R > 0, namely

©o(t) := f(Re') = R"e™, 0<t<2m.

We calculate

W(go) = L./%

21
0 0

(t) 1 inR"e'mt

We choose the radius R > 0 so large that all points z € C with |z| = R fulfill
the subsequent inequality:

lfo(2)] = R" > |f(2) = fo(2)| = lan—12""" + ... + ao|
Using the theorem of Rouché, we then find a point z, € C with |z.] < R such

that f(z.) = 0 is satisfied.
q.e.d.

Theorem 6. (Brouwer’s fixed point theorem)
Let f(z) : Bg — Bpr denote a continuous mapping. Then the function f
possesses at least one fixed point: This means that we have a point z, € Br

satisfying f(z+) = zx.
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Proof: We consider the family of mappings
g(z,7) =z —1f(2), z€ Bgr, T€][0,1).
For all points z € 0Bg we have
l9(z,7)[ = [2] = 7|f(2)] = R(1 = T) > 0.

Now we apply Rouché’s theorem on the function fy(z) := z, with the bound-
ary function ¢g(t) = Re®, and on the function fi(z) := g(z,7), for a fixed

[e]
parameter 7 € [0,1). Then we find a point z, € Br - for each parameter
7 €[0,1) - with the following property:

0=g:(2r) = 2 — 7f(27)-

For the parameters 7, =1 — 711 with n = 1,2,..., we obtain the relation

(1—71L)f(zn):zn, n=12...

abbreviating z, := z,, . Selecting a subsequence which converges in Br , the
continuity of the function f gives us the limit relation

ze i= lim z,, = lm 7, f(2n,)
k—oo k—o0

Definition 4. Let z € C denote an arbitrary point, and the function o(t) € Iy
may satisfy the condition (t) # z for all t € R. Then we name

W(p,2) = Wlp(t) - 2)

the winding number of the curve ¢ about the point z.

Theorem 7. Let the function ¢ € Iy with the associate curve
vi={pt)eC: 0<t<2n}

be prescribed. Furthermore, let the domain G C C\ v be given. Then the
following function

P(z) == W(p, z), ze G

is constant. If the domain G contains a point zo with |zo| > max{|p(t)| : 0 <
t < 27}, then we have the identity
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Proof:

1. Let zp and z; denote two points in G , which are connected by the con-
tinuous path

z=2(1):10,1] = G with  2(0) = 2o, 2(1) = 21
We consider the family of curves
pr(t) = o(t) = 2() £0,  te[0,2q), Te01).
The homotopy lemma implies
const = W(p,) = W(p — 2(r)) = W(p,2(r),  re[0,1],

and consequently W (p, z9) = W(p, z1) for arbitrary pairs zg, 21 € G.
2. If we have a point 2o € G with the property |zg| > max{|p(t)] : 0 <t <
27}, we consider the following path

2(1) = !

S 1—7

20 , 76[0,1)

satisfying the condition z(7) & « for all 7 € [0,1) . Now we comprehend
the identity W (g, z(7)) = const for 7 € [0,1) . With the assumption
@ € In , we deduce the relation

21
. o 1 ¢'(t) _
Jim Wi, 2(7) = lim 9 o= / o) — () (=0
0

The functions ¢ € I consequently fulfill W(p, z(7)) = 0 for all 7 €
[0,1) and finally W (e, 29) = 0. Via approximation, we deduce the identity
W (e, z0) = 0 for the functions ¢ € Iy as well.

q.e.d.
Definition 5. Let the continuous function
f=7fz):{z€eC: |z—2)| <ep} = C with 2€C and >0

be given, which possesses an isolated zero at the origin zy in the following
sense: We have the relations

f(z0) =0 and f(z)#0 for all points 0 < |z — zo| < 0.
Then we define the index of f with respect to z = zg as follows:
i(f, z0) == W(p) with  p(t) == f(z0 +ee™), 0<t<2m 0<e<ep.

Remark: On account of the homotopy lemma (Theorem 2), this definition is
justified because W (¢) does not depend on e.
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Ezample 1. Let the function f(z) be holomorphic with an isolated zero at the
point zg. Then f admits the representation

f(z) = (2 —20)"g(z) with the integer n €N

3

where the function g(z) is analytic and g(zp) # 0 holds true. This implies the
identity
i(f,20) =i((z — 20)",20) =n €N.

Ezample 2. An antiholomorphic function f(z) (that means f(z) is holomor-
phic) with the property f(zp) = 0 admits the representation

f(z) = (z=20)"g(2).

Here the function g(z) is analytic and g(z9) # 0 holds true. The index of f
with respect to zo satisfies the identity

’L(f, Zo) =-n € —N.

Theorem 8. (Index-sum formula)
The function f € C?(Bg,C) has the boundary function ¢(t) := f(Re®) # 0,

t € [0, 2x]. Furthermore, this function f possesses in B the mutually different
zeroes zj, with their associate indices i(f,zr), k = 1,...,p and their total
number p € No. Then we have the identity

W(p) = ilf,2r).

k=1
Proof:
1. We set

F(xvy) = lng(iZ?,y), (xvy) EBR
and calculate

27 27 .
1w, 1 [ L f(ReY)
Wip) = _'/ o0 M= o ) fmen
0 0

e 7fz(R€it)(—RSint) + fy(Re™)(Rcost)
2ms ) f(Reit)

dt

1 1
- {Fdr+F,dy} = — ¢ dF
2m’%{ v+ By dy} Qm'?{
6BR 8BR

with the Pfaffian 1-form dF' = F,(z,y)dz+ Fy(z, y)dy. Here the boundary
0Bpg is run through in the mathematically positive sense.
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2. The sufficiently small quantity € > 0 being given, we consider the domain
) = {z EéR: |z — 2| > ¢ for k= 1,...,p}.
Setting
or(t) == flzi, +ee'), 0<t<2mr, k=1,...,p,
we deduce

e
|z—zK|=¢

1
W(QD]@):2_ % dF, kzl,...,p,

similarly as in part 1 of our proof. Here the curves |z — zix| = £ are run
through in the mathematically positive sense. The Stokes integral theorem
yields

p p
W(e) =D if,26) = W(p) = > Wi(er)
k=1 k=1
1 1 &
= 5= f‘dF——§;%§: !f‘ dF
OBRr k=1 |z—zk|=¢
1 1
= dF = —
211 / 211 / dar
20(e) 2(e)
=0 q.e.d

82 The degree of mapping in R™

J.L.E. Brouwer introduced the degree of mapping in R™ by simplicial approxi-
mation within combinatorial topology. When we intend to define the degree of
mapping analytically, we have to replace the integral of the winding number
by (n — 1)-dimensional surface-integrals in R” (compare G. de Rham: Varietés
differentiables). E. Heinz transformed the boundary integral for the winding
number into an area-integral and thus created a possibility to define the de-
gree of mapping in R™ in a natural way. We present the transition of the
winding-number-integral to the area-integral in R? in the sequel:

Let the radius R € (0, +oc) and the function f = f(z) € C?(Bg, C) satisfying
o(t) := f(Re®) # 0, 0 <t < 27 be given. We choose ¢ > 0 so small that
e < |e(t)] for all ¢ € [0,27] holds true. Now we consider a function

0,0<r<$é
MHZ{ € CY([0,+0),R)
l,e<r
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with 0 < § < ¢, and we investigate the winding-number-integral

2miW () = 7{ {J;mdx-i-];f’dy} = de

0B 0BRr

= j{w(lf(Z)l)dF(Z) = fw(lf(xvy)l)dF(x,y)

BBR aBR

with
F(z,y) =log f(x,y) + 2mik, keZ.

We remark that F is defined only locally; however, the differential dF is
globally available. The 1-form

¢(|f($»y)|)dF(fﬂay)» (xvy)EBR

belongs to the class C'(Bgr) , and we determine its exterior derivative. Via
the identity

a{w(i@ )} = v (f @) {7 H?) det (7 02) dv

()

2(f(z,v)] {f(fw dx + f, dy) + f(fodz + fy dy)}

we obtain

afv(snar = afv(sn} nar

- %{f(fmd:erfydy)+f(fxd:17+fydy)}
Mot fya0)

_ %{hdwﬁydy}A{ﬁd:ﬁfﬂy}

%{(mwmy)(m&

:Z‘WIm{fmdx/\fydy} :

When we set f = u(x,y) + iv(x,y) as usual, we observe
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{ (|f|)dF} Mlm{(um—ivm)d:ﬂ/\(uy—i—ivy)dy}

(S y)l)

=i — " (uypvy — vpuy) dx A dy

|f(z,y)]
/
V(i) dor)
[f (@, 9)l O(z,y)
The Stokes integral theorem therefore yields

V(| f(x y d(u,v)
/ If(z,y)|  O(x,y) dady.

Now we define w(t) :=

!
t
1/’7” with ¢ > 0 and note that

P(t) = /Tw(T)dT, t>0
0

holds true. Therefore, we choose a function w(t) € C°([0,+00), R) with the
following properties:

(a) We have w(t) =0 for all ¢ € [0,d] U [e, +00);

(b) The condition /gw(g) do = 1 holds true.
0

Then we observe

- 217r //w(If(w,y)l)Jf(w,y) dxdy.
Br

Via the transition

we obtain the normalization

b’) //d(|z|)dxdy =1 with z = z + 4y,
R2

N //&(|f(x’y)|)Jf($7y)dxdy.

These considerations render plausible the following definition for the degree
of mapping in R", namely

and we see
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Definition 1. Let 2 C R™ denote a bounded open set in R™, and let us take
the function
f= (A1, @n) falan, o)) € AMQ) = CF(2,R") N C°(2,R™)

for k € N with the property f(x) # 0 for all points x € 012. Given the quantity
0 <e<inf{|f(z)] : z € 92} , we consider a function w € C°([0,+00), R)
with the following properties:

(a) We have w(r) =0 for all r € [0,0] U [e,4+00) , with an adequate number
0 € (0,¢);
(b) We require the condition

/ w(lyl) dy = 1.
]Rn

Then we define Brouwer’s degree of mapping for f with respect to y = 0 as
follows:

d(f,2)=4d(f,2,0) := /w(|f(x)|)Jf(x)dx

Here we denote by

the Jacobian of the mapping f.
Remarks:

1. Introducing n-dimensional spherical coordinates due to
y=rn=(rm,...,rn,) € R" with >0, [n|=1 ,

we comprehend

o0

/w(|y|) dy = op, /r"_lw(r) dr
R 0
where the symbol 0,, means the area of the (n—1)-dimensional unit sphere
in R™.
2. We still have to establish the independence of the quantity d(f, {2) from
the admissible test function w chosen.

The subsequent result is fundamental.

Theorem 1. Let 2 C R™ denote a bounded open set - with n € N - and
consider the function f € AY(2) satisfying |f(x)| > € > 0 for all points
x € 02. Furthermore, let w(r) € C°([0,400)) represent a test function with
the following properties:
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(a) w(r) =0 for all r € [0,0]U [e,+00), 0 < § < ¢;

(b)/ 0.

Then we have the identity
[l @stz)dz =0,
2

Proof:

1. It is sufficient to show the identity above only for those functions f €
A%(£2). By approximation this relation pertains to all functions f €
AL(92).

2. Let us consider the function f(z) = (fi(z),..., fa(z)) € A%(£2) and an
arbitrary vector-field a(y) = (a1(y),...,an(y)) € C1(R™,R") . Then we
introduce the (n — 1)-form

n

A= Z(—l)l"’iai(f(:v)) dfvy A ... Ndfi—1 A dfi+1 Ao Ndfy

i=1

With the aid of the identity

d{ai( (@)} (astr@n) oy = 32 9% (@) 2L
Jrk=1 J

I
INgE
7|

QU

1 4

<
Il

Q;

Y

(f () df

Il
NE
SIS

>
Il
>

1

we determine the exterior derivative

dx = Z(* Y d{ai(f(x)} Adfy Ao Adficy Adfiir Ao Adfn

3&1
Z gy, L@ A A T

:dlva(f( x)) J(x)dzr AL A day, .

3. Now we choose the vector-field a(y) adequately, such that w(|y|) = diva(y)
holds true. Via the function ¥ (r) € C3(0,+00) , we propose the ansatz
a(y) := ¥(|ly|)y and realize

wllyl) = diva(y) = milyl) + v/ o) (v ) = ms(ln) + e (o)

Using r = |y|, we obtain the differential equation
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) _ ()

r r rn

with the solution

P(r) =r" [ 0" 'w(o)do.
/

We note that ¢(r) = 0 for all r € [0,6] U [e, +00) holds true.
4. With the (n — 1)-form

n

D)) S (V)T @) dfi A Adfici Adfi A Adf € CH(R)

i=1
we consequently obtain

d\ = w(|f(@)])Jf(x)dey A ... Aday, .

The Stokes integral theorem now yields

/ (|f( )|) r(z)dz A .. /\d:vn:/d)\zo.
? @ q.e.d.

Corollary from Theorem 1: Definition 1 is independent from the choice of the
test function: Let wq,ws represent two admissible test functions: The function
w1 may satisfy the condition (a) from Definition 1 with §; € (0,¢), and the
function wy may fulfill the condition (a) with do € (0,e). Then we have the
identity

oo

/r"_l(wl(r) —wa(r))dr =0, (w1 —we)(r)=0 for r€[0,0]U[e,+00)
0

with § := min{d;,d2} € (0,¢). Therefore, our Theorem 1 yields

[ (5@ - wallf@)) Iy ez =0

0

and consequently

Jers@se)ds = [ws(1f@))Js @)

2 2

In order to prepare the homotopy lemma we prove
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Proposition 1. Let the two functions f1, fo € AY(2) satisfy | fi(x)| > 5 with
i =1,2 for all points x € 0f2. Furthermore, let the inequality

|f1(z) — fa(x)| <& for all points =€ 2
be valid. Then we have the identity
d(fr,2) = d(f2, £2).
Proof: Let A = A(r) € C*([0,+00),[0,1]) denote an auxiliary function such
that
1,0<r <2
Ar) = .

0,3e<r

Then we consider the function
f@) = (1= A(11@)) A0 AL @) fola), @D
We note that f3 € A'(£2) and
|f3(z)| > 4e for all points z € O
as well as
fal@) = fi@)] < (1=A(A@))1f(@) = fi@)]
+A(If1(@)]) [ f2(2) — fi2)| <e, re with i=1,2

hold true. Now we observe

fi(z) for all x € 2 with |f1 ()] > 3¢
fs(x) = ' _
fa(x) for all z € 2 with |fao(x)| < e

Let the symbols wi(r) € CJ((3¢,4¢),R) and wy € CP((0,¢),R) denote two
admissible test functions. Then we infer the identities

wi(lf1(@)) I (2) = wr([f3(2)) g (2),  x €82,

and
wa([f2(2)) g, (2) = wo(|fs(2)) I (@), =€ L2

An integration immediately yields

A1, 2) = / wr(|f1(@)]) T, () dor = / w1 (1fs(@)]) Ty, () da
(] (]
Z/w2(|f3($)|)Jf3($)dw = /w(lh(iﬂ)l)%(ﬂdw = d(f2, ).
7] 17) q.e.d.

Proposition 1 directly implies
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Proposition 2. Let the function f : 2 — R"™ € A°(2) := C°(2,R") be given
with the property f(x) # 0 for all x € 082. Furthermore, let {fi}r=1,2,.. C
AY(£2) denote a sequence of functions satisfying

fr(x) #0 forall €92 andall keN |

such that the convergence
Jim fu@) = f(2)
is uniform in §2. Then we have an index kg € N such that the identities
d(fr,2) = d(fi,22)  forall k,1>ko

are valid.

On account of Proposition 2 the following definition is justified.

Definition 2. Let the function f(x) € A°(2) with f(x) # 0 for all z € 0N
be given. Furthermore, let the sequence of functions {fx}r=12.. C A (£2) be
given with the property

fe(z) £0 for all points x € 02 andall keN |

which converge uniformly in 2 as follows:

fe(x) — f(x) for k— oo

Then we define
d(f, 02):= klim d(fr, 2)

and name this quantity Brouwer’s degree of mapping for continuous functions.

Fundamental is the following result.

Theorem 2. (Homotopy lemma)
Let f,(x) € A%(R2) for a < 1 < b denote a family of continuous mappings with
the following properties:

(a) f-(x) = f(2,7) : 2 x [a,8] = R" € C°(£2 x [a,b],R"),
(b) fr(x) # 0 for all points x € 082 and all parameters T € [a, b].

Then we have the identity d(f,, {2) = const in [a,b).

Proof: At first, we have a quantity ¢ > 0 such that |f-(z)] > 5e for all
points x € 92 and all parameters 7 € [a,b] is correct. Furthermore, there
exists a number ¢ = §(¢) > 0 such that all parameters 7%, 7** € [a, b] with
|7* — 7**| < d(e) satisfy the inequality
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|[f(z,7") = f(z,77")] < e for all points x € 2

With

{fith=12.. and {fi*}r=12.. C A ()
we consider admissible sequences of approximation for the functions fr«(x)
and fr««(x), respectively. Then we have an index kg € N, such that the in-
equalities

|fa(x)] > be, |fif(x)] > 5e forall ze€d2 andall k> kg
as well as
Ifilz) = fir(x)] <e for all points z € £ and all indices k& > ko
are valid. Now Proposition 1 yields
d(fi, 2)=d(fp*, ) for all indices k > ko,

and we observe

d(fre, 2) = d(frex,2) for all 7%, 7" € [a,b] with |7% — 7| < §(e).
This implies the identity d(f-,2) = const for a <7 <b. q.e.d.

Theorem 3. Let the function f € C°(2) with f(x) # 0 for all points x € O£
be given, such that d(f,{2) # 0 holds true. Then we have a point £ € {2

satisfying f(&) = 0.
Proof: If this statement were false, we would have a quantity € > 0 with the

property |f(z)| > € for all points = € 2. Let {fx}r=12... C A(£2) denote a
sequence of functions, where the convergence

fk(CC) —>f($) for k£ — oo

yees

is uniform in 2. Now we have an index ko € N such that |fx(x)| > ¢ in 2
holds true for all indices k > ko. When w = w(r) € CJ((0,¢),R) denotes an
admissible test function satisfying

/ w(lyl)dy =1,
R’Vl

we deduce the relation

d(fr,$2) = /w(|fk(x)|)<]fk (x)dz =0 for all indices k > ko
0
and consequently
d(f,2) = klim d(fe,2) =0

in contradiction to the assumption. Therefore, we have a point £ € 2 satisfying

f(&) =o. q.e.d.
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Theorem 4. Let the functions fo, fi € A°(2) with |fo(z) — f1(z)] < |fi(x)]
for all x € 082 be given. Then we have the identity

d(fo, £2) = d(f1,12).
Proof: We utilize the linear homotopy
fr(x) =1folx) + (1 —7) f1(x), ref, 1€l0,1]

On account of fr(z) # 0 for all x € 942 and all 7 € [0, 1], Theorem 2 yields
the identity

d(fo, 2) = d(f1, £2). q.e.d.

Definition 3. Let {2 C R" denote a bounded open set, and let the func-
tion f(x) : 002 — R™\ {0} be continuous. Furthermore, let the function
f(x) : R* - R™ € CO°(R"™,R") with f(z) = f(x) for all x € 082 constitute a

continuous extension of f onto the entire space R™. Then we set
o(f,00) = d(f, 2)
for the order of the function f with respect to the point z = 0.

Remarks:

1. Due to Tietze’s extension theorem, there always exists such a continuation
fof f.
2. Theorem 4 tells us that v(f,042) is independent of the extension chosen.

Using Definition 3, we obtain the following corollary from the homotopy
lemma:

Theorem 5. Let f.(z) = f(z,7) : 92 x [a,b] — R™\ {0} € C°(02 x [a,b])
constitute a continuous family of zero-free mappings. Then we have the iden-
tity v(fr, 082) = const in [a,b)].

83 Geometric existence theorems

We begin with the fundamental

Proposition 1. Let 2 C R™ denote a bounded open set and define the func-
tion f(r) = e(x—&), x € £2; here we choose € = £1 and € 2. Then we have
the identity d(f,2) = ™.

Proof: We take a number n > 0 such that |f(z)| > n for all points © € 912
holds true. Let w € C§((0,7),R) denote an arbitrary test function satisfying

/w(|:v|)dw ~ 1.

]R'n.



194 IIT Brouwer’s Degree of Mapping with Geometric Applications

Then we have
41,2 = [w(lF@)) Jy(@ydo = [wlle - g)e do =<
2 I7;
q.e.d.
Theorem 1. Let f,(z) = f(x,7) : 2x[a,b] — R™ € C°(2 x [a,b],R"™) denote
a family of mappings with
fr(x) #£0 forall z€02 andall 7€ ]la,b].

Furthermore, we have the function

fa@)=(x—=¢), xen

with a point £ € (2. For each parameter T € [a,b] we find a point x, € (2
satisfying f(x;,7) = 0.

Proof: The homotopy lemma and Proposition 1 yield
d(fr,2)=d(fa,2)=1 for all 7 € [a,b].

Consequently, there exists a point x, € §2 with f(z,,7) = 0 for each parame-
ter 7 € [a, b], due to Theorem 3 in §2. q.e.d.

Theorem 2. (Brouwer’s fixed point theorem)
Each continuous mapping f(x) : B — B of the unit ball B := {x € R" :
|x| < 1} dnto itself possesses a fized point & € B, which satisfies the condition

§= ()
Proof: We consider the mapping
fr@) =w—rf@), ceB
for all parameters 7 € [0, 1), which fulfills the following boundary condition

|fr(@)] > z] —7|f(x)] >1=7>0 forall z€dB andall 7€]0,1)

According to Theorem 1, each 7 € [0,1) admits a point =, € é satisfying
fr(z;) = 0 and equivalently 7f(z,) = x,. We now choose a sequence 7,, T 1
for n — oo, such that {z,, }n=1,2,.. in B converges. This implies

&= lim z,, = lim 7,f(x;,) = lim f(z,,) = f(£).

Remark: Brouwer’s fixed point theorem remains true for all those sets which
are homeomorphic to the ball B.
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Theorem 3. (Poincaré, Brouwer)
Let the dimension n € N be even. By the symbol

S" = {w eR™! . |z| = 1}

we denote the n-dimensional sphere in R™t1. Then there do not exist tangen-
tial, zero-free, continuous vector-fields on the sphere S™.

Proof: If ¢ : 8™ — R™*! were such a vector-field, we would have the properties
lo(x)| > 0 and (p(x),x) = 0 for all z € S™. Given the sign factor ¢ = £1, we
consider the mapping f(x) := ex, x € S™ and the homotopy

fr(@) =1 =7)f(x) + To(x), r e S".

We observe
[fr (@) = (1= 1) f(@)]> + 72[p()* > 0

for all points « € S™ and all parameters T € [0, 1]. With the aid of Theorem 5
in §2 we comprehend

v(p, S™) = v(f1,8™) = v(fo,S™) = v(f, S™) ="t

where we use Proposition 1. When the dimension n is even, we deduce the

relation
—1=0v(p,S") =+1

This reveals an evident contradiction! q.e.d.

84 The index of a mapping

In this section we transfer the index-sum formula from the case n = 2 to the
situation of arbitrary dimensions. In this context we derive that the degree of
mapping gives us an integer. We begin with the easy

Proposition 1. Let £2; C R" for j = 1,2 denote two bounded open disjoint
sets and §2 1= 21 U 2y their union. Furthermore, let f(x) € A°(£2) represent
a continuous mapping with the property

fl@)#£0 for all points x € 0821 U 0L2s.
Then we have the identity

Proof: When we choose the quantity € > 0 sufficiently small, we obtain
|f(z)| > € for all points x € 91 U 0. Furthermore, we have a _sequence
of functions {fx}r=12.. C A'(£2) satisfying fr — f uniformly on (2 as well
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as |fi(x)| > e for all points x € 94 U 92, and all indices k > ko. Now
we utilize the admissible test function w € C§((0,¢),R) with the property

J w(ly|)dy = 1, and we easily see the following equation for all indices k > ko:
R'Vl

A5 D) = [ (@) 5 (o) do

0

= [eln@DIs@do+ [ w(lfie)) In (@) da
(o2 022
= d(fr, 1) + d(fx, {22).
This implies the desired identity d(f, 2) = d(f, £21) + d(f, £22). q.e.d.

Proposition 2. Let the function f € A°(2) be defined on the bounded open
set £2 C R™, with the associate set of zeroes

F:= {weﬁz f(w):O}

Furthermore, choose an open set with £2o C {2 such that F' C {2y holds true.
Then we have the conclusion

d(f,$2) = d(f, ).

Proof: We set £2, :=(£2\ £25) and observe 2\ 862, = 2y U 2. On account of
the property f(z) # 0 for all points = € £2; , Theorem 3 from §2 yields the
statement d(f, £21) = 0. Now Proposition 1 implies

d(f,92) = d(f, $20) + d(f, 1) = d(f, £2). q.e.d.

Definition 1. We consider the function f(x) € A%(2). With a sufficiently
small quantity € > 0, the point z € (2 satisfies the conditions f(z) = 0 and
f(x) #0 for all 0 < |z — 2| <e. Then we name

i(f,2) = d(f, B:(2))

the index of f at the point © = z. Here we abbreviate B.(z) := {x € R™ :
|z — 2] < e}.

Theorem 1. Consider the function f € A%(£2), and let the equation f(x) = 0,
x € 2 possess p € Ng mutually different solutions zV, ... z®) e Q. Then we
have the identity

d(f,2) =>i(f.a).

j=1
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Proof: We choose a sufficiently small quantity € > 0 such that the open sets
0, = {:v eR: |z —2Y| < 5}

are mutually disjoint. Now Proposition 1 and 2 yield

p

d(f, 2) = d(f, U Qj) = Zd(f, 2;) =Y i(f,20).

j=1 q.e.d.

Proposition 3. With A = (a;j)i j=1,....n let us consider a real n X n-matric
satisfying det A # 0. Then we have an orthogonal matriz S = (s;j)i j=1
n Such that A =

.....

S o P holds true.

Proof: On account of det A # 0 we have a positive-definite matrix P with
P?2 = A*A. The matrix A*A is namely symmetric and positive-definite, due

to
(A'Az,x) = |Az]* > 0 for all vectors z € R™\ {0}.

Via the principal axes transformation theorem, we find an orthogonal matrix
U and positive eigenvalues A1,..., A\, € (0,+00) such that

A1 0
AtA=UtoAoU  with A= —: Diag(A1, ..., An)

0 An

holds true. Setting

P:=U'oAY?0U,  AY?:=Diag(\/A1,...,V/2n)
we obtain a symmetric positive-definite matrix with the property
P?=U'oAolU=A'A
This implies
|Pz|* = (Px, Px) = (P?z,x) = (A'Az, x) = |Az|?

and consequently
|Pz| = |Az| for all =z e R".

Now we introduce the matrix S := A o P~1: For all vectors x € R" we infer
|Sz|=|Ao P_1w| = |POP_1:E| = |x|.

Therefore, the matrix S is orthogonal, and we arrive at the desired represen-
tation A = S o P. q.e.d.
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Theorem 2. Let the quantity € > 0 and the function f € C*(B:(z),R"™) be
given with f(z) =0 as well as J¢(z) # 0. Then we have the identity

i(f,z) = sgn Jr(z) € {£1}.
Proof: There exists a real n x n-matrix A, such that the representation
f(z) = A(x — 2) + R(x) forall |z—2z|<pyp with 0<gy<e

holds true. Here the condition det A = J¢(z) # 0 is fulfilled, and we have the
behavior

[R(@)] <nlo)lz — 2] forall |o—z[<e<eo with limn(e)=0

for the remainder term. Due to Proposition 3, we have the decomposition
A = S o P with an orthogonal matrix S and a positive-definite symmetric
matrix P. To the matrix

P =U"oDiag(\1,..., \n) 0 U
we associate the family of positive-definite symmetric matrices
P = UtoDiag(T+ (1=, 7+ (1 77’))\,1) olU

which satisfies Py = P and P; = E. Here the symbol E denotes the unit ma-
trix. When Apin > 0 gives us the least eigenvalue of P and X := min(1, Apin) >
0 is defined, we deduce

|Pyx|?> = (Pyx, Prx) = (P2x,2)

= (Ut o Dlag( + (=M. P+ (= T))\n]z) oUz, x)
> (Ut o Diag(A\?,...,\?) o U, x)
= \(z,2) = N|z|?,

and consequently
|P-x| > Mz forall zeR"™ andall 7€]0,1].
Now we consider the family of mappings
fr@)=f(z,7)=SoPr(x—2)+ (1 —7)R(x), =€ BAz), 7€]0,1].
Evidently, we infer

folx) =SoPy(x—2)+R(x) =SoP(x—2)+ R(z) = A(x — 2) + R(z) = f(x)
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as well as
filx)=SoPi(zx—2z)=5(x—z)=:g(x), x € Be(2).

Furthermore, we estimate for all points € R™ with |z — z| = g € (0, 0] as
follows:

o) 2 180 Pe(e = 2)] — (1= DIR()
> |z - 2)| - [R()
> (A= nfele =2l 2 Yle—2] > 0

Here we have chosen the quantity go > 0 sufficiently small. The homotopy
lemma implies

d(fr, Be(z)) = const for all parameters 7 € [0, 1]

and finally

i(f,2) = d(f, Bo(2)) = d(fo, Bo(2)) = d(f1, Bo(2)) = d(g, Bo(2))-
When w € CJ((0, ), R) denotes an admissible test function with the property

[ wtuhay =1,

]R'n.

we infer

d(g, By(2)) = / w(lg(z)]) Jy(2)dz = (det S) /w(|x — z|)dz = det S.
lr—z|<eo R™

We summarize our considerations to the identity i(f,z) = det .S = sgn J;(z).
q.e.d.

Theorem 3. The mapping f : 2 — R™ may be continuous and the equation
f(z) =0, T € 0,

possesses only finitely many solutions V..., x™N) € 2. Let the function f
be continuously differentiable in each neighborhood of the zeroes =), and we
assume

Jf(ai(”)) #£0 for v=1,....N
Then we have the identity

N
d(f, ) = ngan(x(“)) =NT-N".

v=1

Here the symbols Nt and N~ give us the numbers of zeroes with sgn Jy = +1
and sgnJy = —1 , respectively.
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Proof: Theorem 1 combined with Theorem 2 immediately provide the state-
ment above. q.e.d.

With the assumptions of the theorem above for the function f, we obtain that
the degree of mapping is an integer. In the sequel, the latter property will be
shown for arbitrary functions f € A°(§2) satisfying f|se # 0.

Proposition 4. With a = (a1,...,a,) € R™ and h > 0, we define the cube
W .= {xGR” Da; <z <a;+h, i:l,...,n}
and consider a function
f@)= (filz1,....20), ..., falze, .. zn)) : W — R™ € CH(W,R")

The associate image-set is denoted by the symbol W* := f(W). The functional
matriz

o) = (F2@)  =Un@hful@).  weW

=1,...,

possesses the following norm:

o= | 3 (5L ) =(Z|fm<w>|2> wew

ij=1

Furthermore, we have a constant M € [0,400) and a quantity € € (0, +00) ,
such that the inequalities

10f(@)| <M and |0f(a")—0f(x")|| <e  forall pairs 2’ 2" € W

hold true. Finally, we have a point §& € W satisfying J¢(&) = 0.

Then we have a function ¢ = p(y) € CJ(R™,[0,1]) with the property o(y) =1
for all y € W*, such that

[otway < ks niee
R’n
is correct with the constant K (M,n) = 4"/n" M"~ L.

Remark: Therefore, we can estimate the exterior measure of the set W* by
K(M,n)h"e.

Proof of Proposition 4:

1. We easily comprehend the invariance of the statement above with respect
to translations and rotations. Therefore, we can assume f(§) = 0 without
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loss of generality. On acount of the condition J;(§) = 0, we find a point
z € R™\ {0} satisfying z o 0f(§) = 0. Via an adequate rotation, we
can assume the condition z = e, = (0,...,0,1) € R™ without loss of
generality, and consequently

0=en00f(€) = Vfulé).

. The intermediate value theorem, applied to each component function,
yields

— 9fi

f@) = 10~ 16 = 25, N = &) = VLED) - (@ =9

with an individual point 2 = ¢ + t;(z — &) and t; € (0,1) for each
i € {1,...,n}. This implies

|fi(:v)|§|Vfi(z(i))Hw—§| < M+/nh, t=1,....,n—1,

fa(@)] < |Vfa () [lz =€ = [V (=) = VIa(©)le — €] < ev/nh
for arbitrary points € W. We obtain
W* Cc W .= {y ER™ : |y| < My/nh, i=1,....n—1; |y,| < 5\/nh}.
. Let the function ¢ € CJ(R, [0, 1]) with

_ L=t

be given. We set

oot =e(apgm) o Givan) o () e

Then we observe ¢ € C§(R"™,[0,1]) and ¢(y) = 1 for all y € W** D W*.
Furthermore, we deduce

/ e(y)dy

Rn,
+oo +oo oo
_ Y1 . . Yn—1
= [olsigm) n o [o(atm) e fo( i) o
+00 n
= /Q(t)dt M /n"h"e
< (4"M™'n")h"e = K(M,n)h"e.
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Theorem 4. (Sard’s lemma)
Let £2 C R™ denote an open set and f : 2 — R™ € C1(£2,R") a continuously
differentiable mapping. Furthermore, let the set F' C §2 be compact and

F* .= {y:f(:z:) : x €F, Jf(x):()}

describe the set of its critical values. Then F* is an n-dimensional Lebesgque
null-set.

Proof: Without loss of generality, we can assume that F' represents a cube:
F:W:{:EER" a; <xp <a;+h, i:l,...,n}.

Now we consider a uniform decomposition of the cube W into N™ subcubes,
with the lateral lenghts ]}\L] and an arbitrary number N € N. This is achieved
by decomposing the axes via aiJrj% withi=1,...,nand j =0,1,..., N and
by a subsequent Cartesian multiplication. In this way we obtain the subcubes
Wy for a=1,..., N® with the following properties:

.
W=|JWa,  WanWs=0(a#8)
a=1

The diameter of a subcube W, is determined by

h
di Wa) = .
iam (W,) = v/n N
Now we set
M = sup ||0f(z)]| and ey:= sup ||0f(x')—of(z")].
zeW 'z EW
‘II—IN‘S \/]Sh

Let N C {1,..., N"} describe the index set belonging to those subcubes W,
which possess at least one point £ € W, with J¢(§) = 0. Then we infer the
inclusion

wW* C U W with W} := {y:f(:z:) : J?EWQ}.
aeN

According to Proposition 4, we obtain a function to each index o« € N as
follows:

Yo = ¢a(y) € Co(R™,[0,1]) with ©a(y) > xw=(y),y € R

and

[ ety < KO (1) ex
.
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Here x4 means the characteristic function of a set A. We infer the estimate

=) <D xwsW) < D ealy),  yeERT,
aeN aeN

and the function Y ¢, (y) € CJ(R™, [0, +o0)) satisfies
aeN

/ (Z saa@)) w= Y (50t (1) e ) < WIKOLn)en

aeN aeN

for all N € N. Letting N — oo we observe ey | 0. Therefore, W* represents

an n-dimensional Lebesgue null-set.
q.e.d.

Theorem 5. (Generic finiteness)

Let 2 C R™ denote a bounded open set and f € AY(£2) a function satisfying
inf 0.

Jnf [f(2)] > e>

Then we have a point z € R™ with |z| < € such that the following properties
hold true:

(1) The equation f(x) = z, x € §2 possesses at most finitely many solutions
2D 2™ e .
(2) The conditions Jy (:v(”)) # 0 are correct for the indicesv =1,...,N.

Proof: Let us consider the set

F:= {weﬁz |f(:1c)|§<€},

and we observe that F' C R™ is compact as well as F' C 2. The set
F* .= {y: flx) : z€F, Jy(z) = 0}

of the critical values for f is a Lebesgue null-set, due to Sard’s lemma. There-
fore, we find a point z € R™ satisfying |z] < ¢ and z ¢ F*. Now we show
that this point z realizes the property (1): Assuming on the contrary that
the equation f(x) = z had infinitely many solutions x', 22, ... € £2, we easily
achieve the convergence =¥ — £ for v — co. When we observe the property
f(x”) = f(§) = z for all v € N | the preimages of the point z with respect to
the mapping f would accumulate at the point £. Because § € 2 and J;(§) # 0
are correct, the mapping f is there locally injective, and we attain an obvious
contradiction. Consequently, only finitely many solutions exist for the equa-

tion f(x) = z, x € £2 and each of them has the property (2). qed

Theorem 6. Let {2 C R™ denote a bounded open set and f : 2 — R™ € A%(£2)
a continuous mapping satisfying f(x) # 0 for all points x € 8f2. Then the
statement d(f, 2) € Z is correct.
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Proof: Evidently, we have to consider only mappings of the class f € A'(2).
We choose a sequence of points {z"},=12,.. C R™\ f(9£2), which do not
represent critical values of the function f and fulfill the asymptotic condition

lim 2 =0
V—00

The functions -
fo(x) = fx) — 2", xef), veN

satisfy the condition d(f,,{2) € Z , due to Theorem 5 and Theorem 3. Con-
sequently, we have an index vy € N such that

a(f,2)=4d(f,,2) for all indices v > vy

is correct. Therefore, the statement d(f, 2) € Z is established. q.e.d.

85 The product theorem

Let the function f € A'(£2) with 0 < e < i%fﬂ |f(z)| be given. Furthermore,
xE

we take an admissible test function w € C§((0,¢),R) satisfying

[tul) dy=1.

R™

Then we have the identity

/ w(If @) Ty (@) dz = d(f, 2) / w(ly]) dy.

N0 R

Now we shall generalize this identity to the class of arbitrary test functions
© € CQ(R™\ f(0£2),R). Then we utilize this result to determine the degree
of mapping d(g o f, {2, z) for a composed function g o f with the generators
f,g € C°(R™), and we obtain the so-called product theorem.

Definition 1. Let O C R" denote an open set and assume x € O. Then we
call the following set

o There exists a path o(t) : [0,1] — O € C°([0,1])
r 1= € :
VEOE satisfying p(0) =7, w(1) =y,
the connected component of x in O.

Remarks:

1. The connected component G, represents the largest open connected sub-
set of O which contains the point z.
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2. When we consider two connected components with G and G, only the
alternative G, NGy, = 0 or G, = G, is possible.

We easily establish the following

Proposition 1. Fach open set O C R™ can be decomposed into countably
many connected components. Therefore, we have open connected sets {G;}icr
- with the index-set I C N - such that G;NG; =0 for alli,j € I withi # j

as well as _
o=]JG
i€l
hold true. This decomposition is, apart from rearrangements, uniquely deter-

mined.

Definition 2. When the function ¢ € C§(R™) is given, we name

supp p = {:E eER™ : p(z) # O}

the support of .

Proposition 2. Let the open set O C R™ be decomposable into the connected
o0

components {G; }i=1,2,..., which means O = |J G;, and take the function ¢ €
i=1

CY(O). Then we have the identity

[etwir=3" [owas,
=1 G,

o

1=

where the series above possesses only finitely many nonvanishing terms.
Proof: We define the following functions

o(x), z € G;

() = , 1=1,2,...
50() {0, J?GR"\Gl

Now we have an index Ny € N| such that ¢;(z) = 0, z € R™ is correct for
all indices i > Nj. If this were not true, we could find points z(%) € G, for

j=1,2,... satisfying i; < iy < ... and @(z(%)) # 0. Since the inclusion

{x(ij)}jzl,Q,.,, C supp ¢

holds true and supp ¢ is compact, the selection of a subsequence z(%) —
&(j — o0) allows us to achieve § € supp ¢ C O. When we denote by G;» = G¢
the connected component of £ in O, we can find an index jo € N such that
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z(4) € Gy« for all j > jo holds true. This reveals a contradiction to the

property z(4) € Gi; for j =1,2,.... Consequently, we see
N[) NO
[e@io= [Ywwi =3 [wiw)is
Rn Rn i=1 i=1 Rn

%/gp(z)dz - i/gp(z)dm.

=14, i=1 &, q.e.d.
Definition 3. Let us consider f € A°(£2) and z € R™ \ f(02). Then we set
d(fa Qa Z) = d(f((b) -z Qa O)

for the degree of mapping for the function f with respect to the point z.

Proposition 3. If G C R"\ f(912) denotes a domain, we infer
d(f, 2, z) = const for all points z € G.

Proof: Given the two arbitrary points zg, z1 € G, we consider the connecting
path

@(t) : [Oa 1] —-Ge CO([Ov 1]7G)7 50(0) = 20, 90(1) = Z1-

Now the family of functions f(z) — ¢(t) with = € 2 and t € [0, 1] describes a
homotopy. This implies

d(f, 2,0(t)) =d(f — ¢(t), 2,0) = const, t € 0,1],
and we obtain d(f, {2, z0) = d(f, {2, z1), in particular. q.e.d.
Definition 4. When G C R™ \ f(012) represents a domain, we define
d(f,2,G) =d(f,2,2) for a point  z € G.

Remark: Let 2 C R™ denote an open bounded set and f € A°(£2) a continuous
..... N, With Ny €
{0,1,..., 400} constitute the bounded connected components of R™ \ f(942)
and G4 the unbounded connected component, we have the representation

No
R™\ f(002) = | JGi U Gw.
i=1

Since we can find a point z € f(£2) , we infer the identity
d(f7 Qa Goo) - d(f, Q,Z) =0.
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Theorem 1. Let { fi}r=12.... C_Al(Q) denote a sequence of functions, which
converge uniformly on the set 2 towards the function f € A°(£2). Further-
more, let

No
R™\ f(02) = JGi U G, No€{0,1,...,+00}

i=1

describe the decomposition into their connected components. To each function
o € CYR™\ f(002)) we find a number k* = k*(¢) € N, such that the identity

No
/ D@ g (@) dz = S d(f, 2,Gy) / o(2) dz

0 =1 G

for all indices k > k* is correct. Here the series above possesses only finitely
many nonvanishing terms - even in the case Ny = +00.

Proof:

1. We observe that supp N f(842) = 0 holds true and both sets are compact.
Therefore, we find a quantity €9 > 0 such that the estimate

|f(z) — 2| >ep forall z€0R2 andall ze&suppyp

is correct. Because the convergence fi — f is uniform on {2 , we find an
index k* = k*(¢) € N such that

| fr(x) — 2] > &g for all points = € 912, z €suppy, k>k*
holds true. We then take an admissible test function w € CJ((0,1),R)

satisfying f (ly]) dy = 1. With the number ¢ € (0, gg], we set

we(r) = Eln w(:;) € CJ((0,¢),R) satisfying /w5(|y|)dy =1.
RTL
Finally, we define the function
d(f,92,2),if z € R™\ f(012)
WNz) = :
0, if z € f(012)

2. For all points z € supp ¢ and all indices k& > k*(¢) we observe

JI(z) =d(f, 2,2) = /w5(|fk(x> — ) (2)dz, 0<e<e.

0

Now the integratio